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Preface

Group cohomology reveals a deep relation between algebra and topology. A
group determines a topological space in a natural way, its classifying space.
The cohomology ring of a group is defined to be the cohomology ring of its
classifying space. The challenges are to understand how the algebraic properties
of a group are related to its cohomology ring, and to compute the cohomology
rings of particular groups.

A fundamental fact is that the cohomology ring of any finite group is finitely
generated. So there is some finite description of the whole cohomology ring
of a finite group, but it is not clear how to find it. A central problem in group
cohomology is to find an upper bound for the degrees of generators and relations
for the cohomology ring. If we can do that, then there are algorithms to compute
the cohomology in low degrees and therefore compute the whole cohomology
ring.

Peter Symonds made a spectacular advance in 2010: for any finite group
G with a faithful complex representation of dimension n at least 2 and any
prime number p, the mod p cohomology ring of G is generated by elements of
degree at most n” [130]. Not only is this the first known bound for generators of
the cohomology ring; it is also nearly an optimal bound among arbitrary finite
groups, as we will see.

This book proves Symonds’s theorem (Corollary 4.3) and several new vari-
ants and improvements of it. Some involve algebro-geometric analogs of the
cohomology ring. Namely, Morel-Voevodsky and I independently showed how
to view the classifying space of an algebraic group G (e.g., a finite group) as
a limit of algebraic varieties in a natural way. That allows the definition of the
Chow ring of algebraic cycles on the classifying space BG [107, proposition
2.6]; [138]. A major goal of algebraic geometry is to compute the Chow ring for
varieties of interest, since that says something meaningful about all subvarieties
of the variety.

X1
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The fact that not all the cohomology of BG is represented by algebraic cycles
(even for abelian groups G) is the source of Atiyah-Hirzebruch’s counterexam-
ples to the integral Hodge conjecture [8, 137, 138]. It is a natural problem of
“motivic homotopy theory” to understand the Chow ring and more generally
the motivic cohomology of classifying spaces BG. Concretely, computing the
Chow ring of BG amounts to computing the Chow groups of the quotients
by G of all representations of G. Such quotients are extremely special among
all varieties, but they have been fundamental examples in algebraic geometry
for more than 150 years. Computing their Chow groups is a fascinating prob-
lem. (Rationally, the calculations are easy; the interest is in integral or mod p
calculations.)

Bloch generalized Chow groups to a bigraded family of groups, now called
motivic cohomology. A great achievement of motivic homotopy theory is the
proof by Voevodsky and Rost of the Bloch-Kato conjecture [145, theorem
6.16]. A corollary, the Beilinson-Lichtenbaum conjecture (Theorem 6.9), says
that for any smooth variety over a field, a large range of motivic cohomol-
ogy groups with finite coefficients map isomorphically to etale cohomology.
Etale cohomology is a more computable theory, which coincides with ordinary
cohomology in the case of complex varieties. Thus the Beilinson-Lichtenbaum
conjecture is a powerful link between algebraic geometry and topology.

Chow groups are the motivic cohomology groups of most geometric interest,
but they are also farthest from the motivic cohomology groups that are com-
puted by the Beilinson-Lichtenbaum conjecture. A fundamental difficulty in
computing Chow groups is “etale descent”: for a finite Galois etale morphism
X — Y of schemes, how are the Chow groups of X and Y related? This is easy
after tensoring with the rationals; the hard case of etale descent is to compute
Chow groups integrally, or with finite coefficients. Etale descent is well under-
stood for etale cohomology, and hence for many motivic cohomology groups
with finite coefficients.

The problem of etale descent provides some motivation for trying to compute
the Chow ring of classifying spaces of finite groups G. Computing the Chow
ring of BG means computing the Chow ring of certain varieties ¥ which have a
covering map X — Y with Galois group G (an approximation to EG — BG)
such that X has trivial Chow groups. Thus the Chow ring of BG is a model
case in seeking to understand etale descent for Chow groups.

Chow rings can be generalized in various ways, for example, to algebraic
cobordism and motivic cohomology. Another direction of generalization leads
to unramified cohomology, cohomological invariants of algebraic groups [47],
and obstructions to rationality for quotient varieties [17, 76]. All of these
invariants are worth computing for classifying spaces, but we largely focus on
the most classical case of Chow rings. Some of our methods will certainly be
useful for these more general invariants. For example, finding generators for the
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Chow ring of a smooth variety automatically gives generators of its algebraic
cobordism, by Levine and Morel [96, theorem 1.2.19].

This book mixes algebraic geometry and algebraic topology, and few read-
ers will have all the relevant background. With that in mind, I include brief
introductions to several of the theories we use. Chapter | introduces group
cohomology. Chapter 2 summarizes the basic properties of the Chow ring of a
smooth variety without proof, and then introduces equivariant Chow rings in
more detail, including some calculations. I hope this allows topologists who
have seen a little algebraic geometry to get some feeling for Chow rings. How-
ever, large parts of the book are devoted to group cohomology, including many
new results, and topologists may prefer to concentrate on those parts.

An explicit bound for the degrees of generators of the Chow ring of BG,
of the same form as Symonds’s bound for cohomology, was given in 1999
[138, theorem 14.1]. The first new result of this book is to improve the earlier
bound for the Chow ring by about a factor of two: for any finite group G with
a faithful complex representation of dimension »n at least 3, the Chow ring of
BG is generated by elements of degree at most n(n — 1)/2. Moreover, this
improved bound is optimal, for all n (Chapter 5).

For a p-group, Chapter 7 gives a stronger bound for the degrees of generators
of the cohomology ring and the Chow ring. For the cohomology ring of a p-
group, this result goes well beyond Symonds’s general bound. The case of
p-groups is central in the cohomology theory of finite groups, with many
questions reducing to that case. It may be that these bounds for p-groups can
be improved further.

Chapter 8 proves some of the fundamental theorems on the cohomology
and Chow ring of a finite group. First, there is Quillen’s theorem that, up to
F-isomorphism (loosely, “up to pth powers”), the cohomology ring of a finite
group is determined by the inclusions among its elementary abelian subgroups.
We prove Yagita’s theorem that the Chow ring of a finite group, up to F-
isomorphism, has the same description in terms of the elementary abelian
subgroups. It follows that the cycle map from the Chow ring of a finite group
to the cohomology ring is an F-isomorphism.

Next, we give a strong bound for the degrees of generators of the Chow ring
of a finite group modulo transfers from proper subgroups. In particular, for a
group with a faithful representation of dimension # and any prime number p,
the mod p Chow ring is generated by elements of degree less than n modulo
transfers from proper subgroups (Corollary 10.5). (In fact, we only need to con-
sider transfers from a particular class of subgroups, centralizers of elementary
abelian p-subgroups.) This result reduces the problem of finding generators for
the Chow ring of a given group to the problem of finding generators for the
Chow groups of certain low-dimensional quotient varieties. Symonds proved
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the analogous very strong bound for the cohomology ring of a finite group mod-
ulo transfers from proper subgroups, and we give a version of his argument
(Corollary 10.3).

In examples, the Chow ring of a finite group G always turns out to be simpler
than the cohomology ring, and it seems to be closely related to the complex
representation theory of G. In that direction, I conjectured that the Chow ring
of any finite group was generated by transfers of Euler classes (top Chern
classes) of complex representations [138]. That was disproved by Guillot for a
certain group of order 27, the extraspecial 2-group 2?6 [62]. It would be good
to find similar examples at odd primes. Nonetheless, the theorem on the Chow
ring modulo transfers gives a class of p-groups for which the question has a
positive answer. Namely, the Chow ring of a p-group with a faithful complex
representation of dimension at most p + 2 consists of transferred Euler classes
(Theorem 11.1). This includes all 2-groups of order at most 32, and all p-groups
of order at most p* with p odd.

We extend Symonds’s theorem on the Castelnuovo-Mumford regularity of
the cohomology ring to the Chow ring of the classifying space of a finite group
(Theorem 6.5). We also bound the regularity of motivic cohomology (Theorem
6.10). It follows, for example, that all our bounds on generators for the Chow
ring also lead to bounds on the relations. In each case, our upper bound for
the degree of the relations is twice the bound for the degree of the generators.
Another application is an identification of the motivic cohomology of a clas-
sifying space BG in high weights with the ordinary (or etale) cohomology.
This statement goes beyond the range where motivic cohomology and etale
cohomology are the same for arbitrary varieties, as described by the Beilinson-
Lichtenbaum conjecture.

Let G be a finite group with a faithful complex representation of dimension .
Chapter 12 shows that the cohomology of G is determined by the cohomology
of certain subgroups (centralizers of elementary abelian subgroups) in degrees
less than 2n. This was conjectured by Kuhn, who was continuing a powerful
approach to group cohomology developed by Henn, Lannes, and Schwartz
[86, 69]. We also prove an analogous result for the Chow ring: the Chow ring
of a finite group is determined by the cohomology of centralizers of elementary
abelian subgroups in degrees less than n. This is a strong computational tool,
in a slightly different direction from the bounds for degrees of generators. The
proof is inspired by Kuhn’s ideas on group cohomology.

For a finite group G, Henn, Lannes, and Schwartz found that much of the
complexity of the cohomology ring of G is described by one number, the “topo-
logical nilpotence degree” d of the cohomology ring. This number is defined
in terms of the cohomology ring as a module over the Steenrod algebra, but it is
also equal to the optimal bound for determining the cohomology of G in terms
of the low-degree cohomology of centralizers of elementary abelian subgroups.



Preface XV

Section 13.5 gives the first calculations of the topological nilpotence degree dy
for some small p-groups, such as the groups of order p3. In these examples,
dy turns out to be much smaller than known results would predict. Improved
bounds for dy would be a powerful computational tool in group cohomology.

To understand the cohomology of finite groups, it is important to compute the
cohomology of large classes of p-groups. The cohomology of particular finite
groups such as the symmetric groups and the general linear groups over finite
fields F* (with coefficients in F, for p invertible in F) were computed many
years ago by Nakaoka and Quillen. The calculations were possible because
the Sylow p-subgroups of these groups are very special (iterated wreath prod-
ucts). To test conjectures in group cohomology, it has been essential to make
more systematic calculations for p-groups, such as Carlson’s calculation of
the cohomology of all 267 groups of order 2° [26, appendix]. More recently,
Green and King computed the cohomology of all 2328 groups of order 27 and
all 15 groups of order 3* or 5* [51, 52]. In that spirit, we begin the systematic
calculation of Chow rings of p-groups. Chapter 13 computes the Chow rings
of all 5 groups of order p? and all 14 groups of order 16. Chapter 14 computes
the Chow ring for all 15 groups of order 3* = 81, and for 13 of the 15 groups of
order p* with p > 5. Most of the proofs use only Chow rings, but the hardest
cases also use calculations of group cohomology by Leary and Yagita.

One tantalizing example for which the Chow ring is not yet known is the
group G of strictly upper triangular matrices in GL(4, F),), which has order
p®. The machinery in this book should at least make that calculation easier.
For p odd, Kriz and Lee showed that the Morava K -theory K(2)*BG is not
concentrated in even degrees, disproving a conjecture of Hopkins, Kuhn, and
Ravenel [83, 84]. It seems to be unknown whether the complex cobordism of
BG is concentrated in even degrees in this example. Until this is resolved,
it remains a possibility that the Chow ring of BG may map isomorphically
to the quotient MU*(BG) ®y+ Z of complex cobordism for every complex
algebraic group G (including finite groups), as conjectured in [138]. Yagita
strengthened this conjecture to say that algebraic cobordism Q*BG should
map isomorphically to the topologically defined MU*BG for every complex
algebraic group G [154, conjecture 12.2].

Chapter 15 gives examples of p-groups for any prime number p such that
the geometric and topological filtrations on the complex representation ring are
different. When p = 2, Yagita has also given such examples [156, corollary
5.7]. A representation of G determines a vector bundle on BG, and these two
filtrations describe the “codimension of support” of a virtual representation
in the algebro-geometric or the topological sense. Atiyah conjectured that the
(algebraically defined) y-filtration of the representation ring was equal to the
topological filtration [6], but that was disproved by Weiss, Thomas, and (for
p-groups) Leary and Yagita [93]. Since the geometric filtration lies between the
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y and topological filtrations, the statement that the geometric and topological
filtrations can be different is stronger. The examples use Vistoli’s calculation of
the Chow ring of the classifying space of PG L(p) for prime numbers p [143].

Chapter 16 constructs an Eilenberg-Moore spectral sequence in motivic
cohomology for schemes with an action of a split reductive group. The spec-
tral sequence was defined by Krishna with rational coefficients [82, theorem
1.1]. We give an integral result, as far as possible. The Eilenberg-Moore spec-
tral sequence in ordinary cohomology is a basic tool in homotopy theory.
Given the cohomology of the base and total space of a fibration, the spectral
sequence converges to the cohomology of a fiber. The reason for including the
motivic Eilenberg-Moore spectral sequence in this book is to clarify the relation
between the classifying space of an algebraic group and its finite-dimensional
approximations.

Finally, Chapter 17 considers the Chow Kiinneth conjecture: for a finite group
G and a field k containing enough roots of unity, the natural map C H* BGy ®z
CH*X — CH*(BG} x X) should be an isomorphism for all smooth schemes
X over k. This would in particular imply that the Chow ring of BGg is the
same for all field extensions K of k. Although there is no clear reason to
believe the conjecture, we prove some partial results for arbitrary groups, and
prove the second version of the conjecture completely for p-groups with a
faithful representation of dimension at most p + 2. Chapter 18 is a short list of
open problems. The Appendix tabulates several invariants of the Chow rings
of p-groups of order at most p*.

I thank Ben Antieau and Peter Symonds for many valuable suggestions.



Group Cohomology

This chapter gives the topological and algebraic definitions of group cohomol-
ogy. We also define equivariant cohomology.

Although we give the basic definitions, a beginner may have to refer to other
sources. Brown [24] is an excellent introduction to group cohomology. Group
cohomology is also treated in general texts on homological algebra such as
Weibel [149]. Some of the main advanced books on the cohomology of finite
groups are Adem-Milgram [1], Benson [12], and Carlson [26].

Group cohomology unified many earlier ideas in algebra and topology. It
was defined in 1943-1945 by Eilenberg and MacLane, Hopf and Eckmann,
and Freudenthal.

1.1 Definition of group cohomology

Group cohomology arises from the fact that any group determines a topological
space, as follows. Let G be a topological group. The special case where G is
a discrete group is a rich subject in itself. Say that G acts freely on a space X
if themap G x X - X x X, (g,x)— (x, gx), is a homeomorphism from
G x X onto its image. By Serre, if a Lie group G acts freely on a metrizable
topological space X, then the map X — X /G is a principal G-bundle, meaning
that it is locally a product U x G — U [109, section 4.1].

There is always a contractible space EG on which G acts freely. The classi-
Jfying space of G is the quotient space of EG by the actionof G, BG = EG/G.
Any two classifying spaces for G that are paracompact are homotopy equiva-
lent [72, definition 4.10.5, exercise 4.9]. If G is a discrete group, a classifying
space of G can also be described as a connected space with fundamental group
G whose universal cover is contractible, or as an Eilenberg-MacLane space
K(G,1).



2 Group Cohomology

The cohomology of the classifying space of a topological group G is well-
defined, because the classifying space is unique up to homotopy equivalence.
In particular, for any commutative ring R, the cohomology H*(BG, R) is a
graded-commutative R-algebra that depends only on G. For a discrete group
G, we call H*(BG, R) the cohomology of G with coefficients in R; confusion
should not arise with the cohomology of G as a topological space, which is
uninteresting for G discrete. A fundamental challenge is to understand the
relation between algebraic properties of a group and algebraic properties of its
cohomology ring.

The cohomology of a group G manifestly says something about the coho-
mology of certain quotient spaces. More generally, for any space X on which
G acts freely, there is a fibration

X - (X x EG)/G - BG,

where the total space is homotopy equivalent to X/G. The resulting spec-
tral sequence H*(BG, H*X) = H*(X/G), defined by Hochschild and Serre,
shows that the cohomology of G gives information about the cohomology of
any quotient space by G.

Another role of the classifying space of a group G is that it classifies principal
G-bundles. By definition, a principal G-bundle over a space X is a space E
with a free G-action such that X = E/G. The classifying space BG classifies
principal G-bundles in the sense that for any CW-complex X, there is a one-to-
one correspondence between isomorphism classes of principal G-bundles over
X and homotopy classes of maps X — BG. (Explicitly, we have a “universal”
G-bundle EG — BG,and amap f: X — BG defines a G-bundle over X by
pulling back: let E be the fiber product X x5 EG.)

Therefore, computing the cohomology of the classifying space gives infor-
mation about the classification of principal G-bundles over an arbitrary space.
Namely, an elementu € H'(BG, R) gives a characteristic class for G-bundles:
for any G-bundle E over a space X, we get an element u(E) € H (X, R), by
pulling back u via the map X — BG corresponding to E.

A homomorphism G — H of topological groups determines a homotopy
class of continuous maps BG — BH. For example, we can view this as the
obvious map (EG x EH)/G — EH/H = BH. As aresult, given a commu-
tative ring R, a homomorphism G — H determines a “pullback map” on group
cohomology:

H*(BH,R) — H*(BG,R)
Example The classifying space of the group Z/2 can be viewed as the infinite

real projective space RP* = U,,-oRP". Its cohomology with coefficients in the
field F, = Z/2 is a polynomial ring,

H*(BZ/2,¥>) = Fy[x],
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where x has degree 1. On the finite-dimensional approximation RP" to BZ/2,
x restricts to the class of a hyperplane RP"~! ¢ RP".

Example The classifying space of the general linear group G L(n, C) can be
viewed as the Grassmannian Gr(n, 0o) of n-dimensional complex linear sub-
spaces in C®. The cohomology of this classifying space is a polynomial ring,

H*(BGL(n,C),Z) =Zcy, ..., ¢yl

A standard reference for this calculation is Milnor-Stasheff [106, theorem
14.5]. (We determine the Chow ring of BG L(n) in Theorem 2.13, by a method
that also works for cohomology.) These generators cy, . .., ¢, are called Chern
classes. They have degrees |c;| = 2i, meaning that ¢c; € H*(BGL(n, C), Z).

There is an equivalence of categories between rank-n complex vector
bundles V over a space X and principal GL(n, C)-bundles E over X; given
E, we define V = (E x C")/GL(n, C). Therefore, the Chern classes give
invariants for complex vector bundles V over any space X, ¢;(V) € H %X, 7).

Note that G L(n, C) deformation retracts onto the unitary group U (n). (For
a matrix in GL(n, C), the columns form a basis for C". The Gram-Schmidt
process shows how to move them continuously to an orthonormal basis for C",
which can be identified with an element of U (n).) It follows that the resulting
continuous map BU(n) - BGL(n,C) is a homotopy equivalence. So the

previous calculation can be restated as H*(BU (n), Z) = Z[c,, . . ., ¢,].
As a result, for any compact Lie group G (e.g., a finite group), any complex
representation G — U(n) has Chern classes ¢; € H(BG,Z)fori =1, ...,n,

defined by the pullback map H*(BU (n), Z) — H*(BG, Z). We can also say
that a representation of G determines a vector bundle on BG, and these are
the Chern classes of that bundle.

Although we won’t need this, it is interesting to note that for compact
Lie groups G and H, a continuous map BG — BH need not be homo-
topic to one coming from a homomorphism G — H. Sullivan gave the
first example: for any odd positive integer a, there is an “unstable Adams
operation” ¥%: BSU(2) — BSU(2) that induces multiplication by a? on
H*(BSU(2), Z) = Z [128, corollaries 5.10, 5.11]. Only the map ' (the iden-
tity map) comes from a group homomorphism SU(2) — SU(2).

1.2 Equivariant cohomology and basic calculations

Let G be a topological group acting on a topological space X. The (Borel)
equivariant cohomology of X with respect to G is Hé(X, R)= H'((X x
EG)/G, R). That is, we make the action of G free without changing the
homotopy type of X, and then take the quotient by G. In particular, if G acts
freely on X, then equivariant cohomology is simply the cohomology of the
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quotient space, Hi(X) = H'(X/G). At the other extreme, we write H/; for the
G-equivariant cohomology of a point (with a given coefficient ring, which we
usually take to be the field F, = Z/p for a prime number p):

H{, := H(point, F,) = H' (BG,F)).

Evens and Venkov proved the finite generation of the cohomology ring of
a finite group. We give Venkov’s elegant proof using equivariant cohomol-
ogy, which works more generally for compact Lie groups [12, vol. 2, theorem
3.10.1]. Venkov’s method helped to inspire Quillen’s work on group cohomol-
ogy and the later developments described in this book.

Theorem 1.1 Let G be a compact Lie group and R a noetherian ring. Then
H*(BG, R) is a finitely generated R-algebra. For any closed subgroup H of
G, H*(BH, R) is a finitely generated module over H*(BG, R).

Here the map BH — BG gives a ring homomorphism H*(BG, R) —
H*(BH, R), and so we can view H*(BH, R) as a module over H*(BG, R).

Proof Every compact Lie group G has a faithful complex representation,
giving an imbedding of G into U(n) for some n [20, theorem II1.4.1]. Since
H*(BU(n), R) = R[cy, ..., c,]isafinitely generated R-algebra, the first state-
ment of the theorem follows if we can show that H*(BG, R) is a finitely gen-
erated module over the ring of Chern classes H*(BU (n), R). (This will also
imply the second statement of the theorem: for H C G C U(n), H*(BH, R)
is a finitely generated module over R[cy, ..., ¢,] and hence over H*(BG, R).)

The Leray-Serre spectral sequence of the fibration U(n)/G — BG —
BU (n) has the form

E; = H'(BU(n), H'(U(n)/G, R)) = H"*/(BG, R).

Since U(n)/G is a closed manifold, its cohomology groups are finitely gen-
erated and are zero in degrees greater than the dimension of U(n)/G (which
is n?> — dim(G)). So the E; term of the spectral sequence has finitely many
rows, each of which is a finitely generated module over H*(BU (n), R). Since
the ring H*(BU (n), R) is noetherian, every submodule of a finitely generated
module over H*(BU (n), R) is finitely generated, and hence any quotient of
a submodule is finitely generated. The differentials in the spectral sequence
are linear over H*(BU(n), R), and so the E, term of the spectral sequence
also has finitely many rows, each of which is a finitely generated module
over H*(BU(n), R). Since H*(BG, R) is filtered with these rows as quotients,
H*(BG, R) is a finitely generated module over H*(BU (n), R). O

The cohomology of abelian groups is easy to compute. To state the result,
write R(xy, ..., x,) for the free graded-commutative algebra over a commuta-
tivering R. This is a graded ring, with given degrees |x;| € Z for the generators,
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which is the tensor product of the polynomial ring on the generators of even
degree with the exterior algebra on the generators of odd degree. We use this
notation only for rings R containing 1/2. (The point is that the cohomology ring
of a topological space with coefficients in any commutative ring R is graded-
commutative in the sense that xy = (—1)*!II’lyx, but only when R contains
1/2 does this imply that x> = 0 for x of odd degree. The F,-cohomology ring
of a topological space is commutative in the naive sense.)

Theorem 1.2  The cohomology ring of B(S')" with any coefficient ring R is
the polynomial ring R[yi, ..., y,] with |y;| = 2.

The integral cohomology ring of B(Z/n) for a positive integer n is Z[y]/(ny)
with |y| = 2. The generator y can be viewed as the first Chern class of a I-
dimensional complex representation Z/n C U(1).

The Fy-cohomology ring of B(Z/2) is the polynomial ring F>[x] with |x| = 1.
The F»-cohomology ring of B(Z/2") for r > 2 is Fo[x, y1/(x?) with |x| = 1
and |y| = 2.

Finally, for an odd prime number p and any r > 1, the F ,-cohomology ring
of BZ/p")isFp(x,y) with |x| = 1and |y| = 2.

These results can be proved by viewing BS' as the infinite projective space
CP* and viewing BZ/n as the principal S!-bundle over CP* whose first Chern
class is n times a generator of H>(CP, Z). Or one can give an algebraic proof,
as in [1, section I1.4]. These results determine the cohomology of BG for any
abelian compact Lie group G using the Kiinneth formula, since B(G x H) =
BG x BH.

For any topological space X, the Bockstein f: H'(X,Z/p) — H'*' (X, Z)
is the boundary map associated to the short exact sequence of coefficient
groups

0>Z—->Z—7Z/p—0.
P

The resulting long exact sequence shows that the Bockstein vanishes on inte-
gral classes. The composition H(X, Z/p) ? Hit\(X,Z) - HTY(X,Z/p)

is also called the Bockstein. Because the Bockstein vanishes on integral classes,
B% = 0. The Bockstein is a derivation on the mod p cohomology ring of any
space, in the sense that 8(xy) = B(x)y + (—=1)*¥x B(y) forx, y in H*(X, Z/p)
[68, section 3.E]. We also note that Sx = xXforall x € H\(X, Z7/2).

The Bockstein on mod p cohomology is a convenient way to encode
some information about integral cohomology. For that reason, we record
the Bockstein on the mod p cohomology of the cyclic group Z/p”: in the
preceding notation, Sy = 0 since y is an integral class, and Bx is equal
to y for r =1 (where we write y = x? for the group Z/2) and to zero
forr > 1.



6 Group Cohomology

1.3 Algebraic definition of group cohomology

We now present the purely algebraic definition of the cohomology of a discrete
group. This is good to know, but it is not used in the rest of the book.

The algebraic definition of group cohomology is one answer to the question
of how the algebraic structure of a group determines its cohomology ring. It
does not answer all the questions. For example, what special properties does
the mod p cohomology ring of a finite simple group have? Or a finite p-group?

To give the definition, let G be a discrete group. We can identify modules over
the group ring ZG with abelian groups on which G acts by automorphisms.
Consider the functor from ZG-modules M to abelian groups given by the
invariants M¢ := {x € M : gx = x for all g € G}. This is a left exact functor,
meaning that a short exact sequence 0 - A — B — C — 0 of ZG-modules
determines an exact sequence:

0— A° - BY — (6.

We can therefore consider the right-derived functors of M G which are called the
cohomology of G with coefficientsin M, H' (G, M). In particular, H*(G, M) =
MG, and a short exact sequence of ZG-modules gives a long exact sequence
of cohomology groups:

0> H%G,A) - H°G,B)— H%G,C)—> H'(G,A) — --- .

Moreover, this notion of group cohomology agrees with the topological defini-
tion: for any ZG-module M, H*(G, M) is isomorphic to the cohomology of the
topological space BG with coefficients in the locally constant sheaf associated
to M. In particular, if G acts trivially on M, then this is the usual notion of
cohomology of the space BG with coefficients in the abelian group M.

We recall how right-derived functors are defined: choose a resolution

O M—->Iy—>I1—> -

of M by injective ZG-modules and define H*(G, M) to be the cohomology of
the chain complex:

0—>IOG—>IIG—>~-~.

We can fit group cohomology into a bigger picture by observing that M% =
Homy;(Z, M) for any ZG-module M, where G acts trivially on Z. The derived
functors of Hom are called Ext, and so we have:

H'(G, M) = Exty;(Z, M)

[149]. Ext can also be viewed as the left-derived functor of Hom in the first
variable, and so group cohomology can be computed using either a projective
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resolution of the ZG-module Z or an injective resolution of M. A useful variant
is that if M is a representation of G over a field k, then

H'(G, M) = Extj;(k, M).

For example, this definition makes it clear that for a finite group G and prime
number p, there is an algorithm to compute any given cohomology group
H!(G,F »)- It suffices to work out the first i + 1 steps of a free resolution of F,
as an F,G-module,

Fiiyip— > F—>F,—0,

which amounts to doing linear algebra over F,. Then H'(G, F,) is the coho-
mology of the chain complex

HomeG(Fi—la Fp) - HomF,,G(Fia Fp) g HOHleG(Fi+1, Fp)~

There is a standard free resolution of Z as a ZG-module that works for any
group G [12, vol. 1, section 3.4], but it is usually too big for computations.
Rather, the programs that compute the cohomology of finite groups construct
a minimal resolution as far as is needed [51, 52].

Example Let G =Z/p for a prime number p. Write g for a generator of
the group G. Let tr be the element 1 + g+ ---+ g”_l, called the trace, in
the group ring F,G. Then F, has a free resolution as an F,G-module that is
periodic, of the form

~~—>FPGTg>FpG;>FpGl—_g>FpG—>Fp—>O.

Taking Hom over F,G from this resolution to F,, all the differentials become
zero. It follows that H'(G, F,) = F, for every i > 0, in agreement with The-
orem 1.2.

The low-dimensional cohomology groups have simple interpretations. For
any group G and abelian group A, H'(G, A) can be identified with the abelian
group of homomorphisms G — A. Also, H*(G, A) is the group of isomor-
phism classes of central extensions of G by A [24, theorem 3.12]. By defi-
nition, an extension of G by A is a group E with normal subgroup A and a
specified isomorphism E/A = G. It is central if all elements of the subgroup
A commute with all elements of E.



2

The Chow Ring of a Classifying Space

The Chow groups of an algebraic variety are an analog of homology groups,
with generators and relations given in terms of algebraic subvarieties. In this
chapter we define Chow groups and state their main formal properties, including
a version of homotopy invariance. Using those properties, we define the Chow
ring of the classifying space of an algebraic group, a central topic of this book.
More generally, we give Edidin and Graham’s definition of the equivariant
Chow ring of a variety with group action. The chapter ends with a discussion of
some open problems about Chow rings of classifying spaces. Examples suggest
that the Chow ring of the classifying space of a group is simpler, and closer
to representation theory, than the cohomology ring is. But we know much less
about general properties of the Chow ring, such as finite generation.

We state the formal properties of Chow groups without proof, using Fulton’s
book as a reference [43]. Building on that, we develop equivariant Chow groups
in more detail. We refer to the papers [138] and [38] for some results, but we
do the basic calculations of equivariant Chow groups.

2.1 The Chow group of algebraic cycles

Let us define Chow groups, following Fulton [43]. We work in the category of
separated schemes of finite type over a field k. A variety over k is a reduced
irreducible scheme (which is separated and of finite type over k, by our assump-
tions). An i-dimensional algebraic cycle on a scheme X over k is a finite
Z-linear combination of closed subvarieties of dimension i. The subgroup of
algebraic cycles rationally equivalent to zero is generated by the elements
> pordp(f)D, for every (i + 1)-dimensional closed subvariety W of X and
every nonzero rational function f on W. The sum runs over all codimension-
1 subvarieties D of W, and ordp(f) is the order of vanishing of f along D
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[43, section 1.2]. The Chow group C H;(X) is the group of i-dimensional cycles
modulo rational equivalence.

For a scheme X over the complex numbers, we can give the set X(C)
of complex points the classical (Euclidean) topology, instead of the Zariski
topology. For X over the complex numbers, there is a natural “cycle map”
from the Chow groups of X to the Borel-Moore homology of the associated
topological space [43, proposition 19.1.1], CH;(X) — H{‘Z?M(X, 7). The Borel-
Moore homology of a locally compact space is also known as homology with
closed support. The numbering is explained by the fact that a subvariety of
complex dimension i has real dimension 2i. The definition of the cycle map
uses the fact that a complex manifold has a natural orientation.

The cycle map is far from being an isomorphism in general. For example,
if X is a smooth complex projective curve, then the Chow group of O-cycles,
C Hy(X), maps onto Hy(X, Z) = Z with kernel the group of complex points
of the Jacobian of the curve. The Jacobian is an abelian variety of dimension
equal to the genus of X, and so C Hy(X) is an uncountable abelian group when
X has genus at least 1.

A proper morphism f: X — Y of schemes over a field k determines a
pushforward map on Chow groups, f.: CH;(X) - CH;(Y). A flat mor-
phism f: X — Y with fibers of dimension r determines a pullback map,
f*: CH;(Y) - CH;y,(X). (The morphism f is allowed to have some fibers
empty.) Both types of homomorphism occur in the basic exact sequence for
Chow groups, as follows [43, proposition 1.8].

Lemma 2.1 Let X be a separated scheme of finite type over a field k. Let Z
be a closed subscheme. Then the proper pushforward and flat pullback maps
fit into an exact sequence

CH;(Z) - CH;{(X) > CH;(X — Z) — 0.

For X a complex scheme, the basic exact sequence for Chow groups maps
to the long exact sequence of Borel-Moore homology groups:

o= HPM(Z,2) — HEM(X,Z) - HEM(X - Z,2) — HEM(Z,Z) — --- .

Note the differences between the two sequences. In the exact sequence of
Chow groups, we do not say anything about the kernel of CH;Z — CH; X.
Indeed, the exact sequence of Chow groups can be extended to the left, but that
involves a generalization of Chow groups known as motivic homology groups
(or, equivalently, higher Chow groups); see Section 6.2. But Chow groups are
simpler in one way than ordinary homology: the restriction map to an open
subset is always surjective on Chow groups. Geometrically, this is because the
closure in X of a subvariety of X — Z is a subvariety of X. This phenomenon
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lies behind various ways in which Chow groups behave more simply than
ordinary homology.

Chow groups are homotopy invariant in the following sense. An affine bundle
E — Bisamorphism thatis locally a product with fibers A”. We do not assume
anything about the structure group of the fibration. So the total space of a vector
bundle is an affine bundle, but affine bundles are more general.

Lemma 2.2 For an affine bundle E — B with fibers of dimension n, the
pullback CH; B — CH; ., E is an isomorphism.

Proof One natural approach uses motivic homology groups, a generaliza-
tion of Chow groups. Namely, flat pullback gives an isomorphism from the
motivic homology of any k-scheme B to the motivic homology of B x A"
[14, theorem 2.1]. The lemma follows via the localization sequence for motivic
homology [15]. (We state the localization sequence for smooth k-schemes as
Theorem 6.8.) O

For a smooth scheme X of dimension n over a field k, we write C H (X) for
the Chow group of codimension-i cycles, CH'(X) = C H,_;(X). Intersection
of cycles makes the Chow groups of a smooth scheme into a commutative
ring, CH'(X) x CH/(X) — CH*/(X). Fulton and MacPherson’s approach
to constructing this product first reduces the problem to that of intersecting a
cycle on X x X with the diagonal, and then defines the latter intersection by
deformation to the normal cone [43, chapter 6]. Any morphism f: X — Y
of smooth schemes over k determines a pullback map f*: CH*Y — CH*X,
which is a homomorphism of graded rings. (When f is flat, this coincides with
the flat pullback map f*: CH,Y — CH,X.) For a smooth complex scheme X
of dimension n, Poincaré duality is an isomorphism H'(X, Z) = HEM.(X, Z).
Sowehaveacyclemap CH*X — H*(X, Z), and this is aring homomorphism,
sending CH' into H*.

Note that homotopy invariance of Chow rings (Lemma 2.2) does not mean
that two smooth complex varieties that are homotopy equivalent as topological
spaces (in the classical topology) have isomorphic Chow rings. For example,
an elliptic curve X over C is homotopy equivalent, as a topological space, to
Y = (A' — 0)2. But CH'Y is zero by the basic exact sequence of Chow groups
(Lemma 2.1), whereas the abelian group C H'X is an extension of Z by the
group X(C) = (§")? [67, example 11.6.10.2, example IV.1.3.7].

A vector bundle E on a smooth scheme X has Chern classes ¢; E € CH' X,
with the same formal properties as in topology. We record the Chow ring of a
projective bundle, which is given by the same formula as the cohomology ring
of a projective bundle [43, remark 3.2.4, theorem 3.3]:

Lemma 2.3 Let X be a smooth scheme over a field. Let E be a vector bundle
of rank n on X. Let w: P(E) — X be the projective bundle of codimension-1
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linear subspaces of E. Then
CH*P(E) = CH*X[u]/(u" — ci(E)u" ™" 4 -+ + (—=1)"cu(E)),
where u is the first Chern class of the quotient line bundle O(1) of n*E.

It is also useful to know the Chow ring of the total space of a line bundle
minus the zero section. (In the terminology of Section 2.2, this is the Chow
ring of a principal G,,-bundle.) Lemma 2.4 follows from homotopy invariance
of Chow groups (Lemma 2.2) together with the basic exact sequence for Chow
groups (Lemma 2.1). Alternatively, this is [43, example 2.6.3]:

Lemma 2.4 Let X be a smooth scheme over a field k. Let L be a line bundle
over X. View L as a smooth scheme over k with a morphism L — X and zero
section X C L. Then the Chow ring of L minus the zero section is

CH*(L—-—X)ECH*X/(c1L).

By definition, Chow groups contain a huge amount of algebro-geometric
information, but they are very hard to compute for general varieties. Some of
the main problems in algebraic geometry, such as the Hodge conjecture, are
attempts to understand Chow groups.

2.2 The Chow ring of a classifying space

The Chow ring of the classifying space of an algebraic group was defined
in [138] and independently by Morel and Voevodsky [107, proposition 2.6].
Edidin and Graham generalized the definition to define the equivariant Chow
ring and (more generally) equivariant motivic cohomology [38].

Among many applications of equivariant Chow groups, we mention Bros-
nan’s construction of Steenrod operations on mod p Chow groups [21]. In the
more general setting of motivic cohomology, Voevodsky constructed Steenrod
operations as a crucial part of his proof with Rost of the Bloch-Kato con-
jecture. We summarize the properties of Voevodsky’s Steenrod operations in
section 6.3. Voevodsky’s construction includes a computation of the motivic
cohomology of the symmetric groups [144, 146].

A group scheme over a field k is a scheme G over k together with morphisms
G xx G — G (multiplication), G — G (inverse), and Spec(k) — G (identity)
over k that satisfy the axioms of a group (associativity, identity, and inverse).
Some basic examples of group schemes are the additive group G, over k,
meaning the curve A' with group operation being addition, and the multiplica-
tive group G,, over k, meaning the curve A! — 0 with group operation being
multiplication.
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Let G be a group scheme of finite type over a field k. We say that an action
of G on a separated scheme X of finite type over k is free if the morphism
G x; X — X x; X given by (g, x) — (x, gx) is an isomorphism to a closed
subscheme. Given a free action, we say that a scheme Y is the quotient X /G if
Y has finite type over k and we are given a flat surjective morphism f: X — Y
over k such that f is constant on G-orbits and the natural map G x; X —
X xy X is an isomorphism. In this situation, we also say that X — Y is a
principal G-bundle.

Note that the map X — X /G need not be locally a product in the Zariski
topology. For example, the group Z/2 acts freely on A' —0 over C by
x + —x, and (A! — 0)/(Z/2) is isomorphic to A' — 0, with the quotient map
f: Al —0 — A' —0being x > x2. This principal Z/2-bundle is not Zariski
locally trivial. Indeed, for any nonempty open set U C A' — 0 (so U is the
complement of a finite set), f~'(U) is again the complement of a finite subset
in A — 0, and so it is connected, in particular not isomorphic to U x (Z/2).
Nonetheless, any principal G-bundle is locally trivial in the “fppf topology”;
that is a restatement of the definition. A readable introduction to group schemes
and principal bundles is Waterhouse [147].

One important result about principal G-bundles X — Y is that there is an
equivalence of categories between G-equivariant vector bundles on X and vec-
tor bundles on Y. What makes this subtle is that vector bundles are Zariski
locally trivial by definition, whereas the morphism X — Y is in general not
Zariski locally trivial. Nonetheless, this equivalence has a straightforward alge-
braic proof, part of Grothendieck’s theory of faithfully flat descent [ 147, section
17.2]. (The case of descent used here is also known as Hilbert’s Theorem 90.)

Every affine group scheme G of finite type over a field k£ has a faithful
representation [ 147, theorem 3.4]. That s, G is isomorphic to a closed subgroup
scheme of G L(n) over k for some natural number 7.

For any affine group scheme G of finite type over a field k and any i > 0, we
define the Chow group CH'BG to be CH'(V — S)/G for any representation
V of G over k and any G-invariant closed subset S of V such that G acts freely
on V — §, the quotient (V — S)/G exists as a scheme, and S has codimension
greater than i. This definition of CH'BG is independent of the choices of
V and S, by Theorem 2.5. Moreover, the theorem gives a well-defined ring
CH*BG.

The point is that, for G an algebraic group over the complex numbers, BG
is typically an infinite-dimensional topological space, whereas algebraic vari-
eties in the usual sense have finite dimension. But the spaces V — S come
closer and closer to being contractible (in the topological sense) as the codi-
mension of § increases. So a direct limit of the spaces (V — S§)/G as the
codimension of S increases is homotopy equivalent to BG. This suggested the
definition of the Chow ring of BG, for an algebraic group G over any field. In
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Morel-Voevodsky’s A'-homotopy category, one can take direct limits of alge-
braic varieties, and so they were able to define BG as an object in their category
[107, proposition 2.6].

In the original papers, G was assumed to be an algebraic group, which is
usually understood to mean a smooth group scheme of finite type over k. (Every
group scheme of finite type over a field k of characteristic zero is smooth over
k [147], but for k of characteristic p > 0 there are non-smooth group schemes
overk,suchas u, ={x € G, : x’ =1} and o), = {x € G, : x” = 0}. To see
that ¢, and o, are not smooth over k, note that they have dimension 0, but the
derivative of the defining equation is px”~!, which is zero because p = 0in k;
so the Zariski tangent spaces of 1, and o, at the identity have dimension 1.) The
assumption of smoothness is not necessary, however. The only observation one
needs to define C H* BG for G not smooth is that if E — B is a principal G-
bundle with E smooth over k, then B is also smooth over k. (Apply [99, theorem
23.7] over the algebraic closure of k.) For example, (V — S)/G is smooth over
k even if G is not. We do not make much use of this extra generality.

Theorem 2.5 ([138, theorem 1.1]) Let G be an affine group scheme of finite
type over a field k and let i be a natural number. Let V be a representation of
G over k, and let S be a G-invariant closed subset of V such that G acts freely
on'V — S, the quotient (V — S)/ G exists as a scheme, and S has codimension
greater than i in V. Then the Chow ring of (V — S)/G in degrees at most i
depends only on G, not on 'V and S.

Proof To prove the independence of S (given that S has codimension greater
than i in V), let S’ be a larger G-invariant closed subset, still with codimen-
sion greater than i. Since G acts freely on V — S, (S8’ — S)/G has codimen-
sion greater than i in (V — S)/G. So the restriction map CH/(V — §)/G —
CH/(V — §')/G is an isomorphism for j < i by the basic exact sequence for
Chow groups (Lemma 2.1). So the Chow ring of (V — §)/G is independent of
S in the range we consider.

The independence of V follows from the double fibration method, used by
Bogomolov and others in invariant theory [17]. That is, consider two repre-
sentations V and W of G such that G acts freely outside subsets Sy and Sy
of codimension greater than i and such that the quotients (V — Sy)/G and
(W — Sw)/G exist as varieties. Then consider the direct sum V @& W. The
quotient ((V — Sy) x W)/G exists as a variety, being a vector bundle over
(V — Sy)/ G (constructed by faithfully flat descent, as discussed earlier in this
section). Likewise the quotient (V x (W — Sy))/G exists as a variety, being
a vector bundle over (W — Sy)/G. Independence of S (applied to the repre-
sentation V @ W) shows that these two total spaces of vector bundles have
the same Chow ring in degrees at most i. By homotopy invariance of Chow
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Figure 2.1 A?/(Z/2), the quadric cone, intersected with a plane.

rings (Lemma 2.2), (V — Sy)/G and (W — Sy )/ G have the same Chow ring
in degrees at most i. O

Remark 2.6 Here is a simple example of Chow groups of classifying spaces
that one can visualize; this example appears in Hartshorne [67, example
11.6.5.2]. Consider the group G = Z/2 as an algebraic group over C. We
will shortly compute that CH!BG is isomorphic to Z/2; here I just want
to explain the geometric meaning of that calculation. Consider a 2-dimensional
complex vector space V on which the generator of G acts by —1. Then G
acts freely on V outside the origin S. Since S has codimension 2 in V, we
have CH'BG = CH'(V — §)/G. Thus the computation of C H' BG means
that CH'(V — §)/G is isomorphic to Z/2. Equivalently, the Chow group
CH,(V/G) is isomorphic to Z/2; removing the singular point from the geo-
metric quotient V/G does not change this Chow group, by the basic exact
sequence (Lemma 2.1). Since C H;(V /G) is the Chow group of codimension-1
cycles on the surface V /G, it is also called the divisor class group of V/G.

Here V /G is the affine quadric cone {(x, y, z) € A® : xz = y?} over C, with
the morphism V — V/G given by (u, v) — (u?, uv, v?) (Figure 2.1). The
generator A of C H(V/G) is the class of any line through the origin in this
cone. The fact that 2A = 0 can be seen geometrically by intersecting a plane
through the origin in A* with the cone V/G; you always get a sum of two lines,
or (if the plane is tangent to the cone) 2 times a line. (A plane is the divisor of
a rational function on A3, namely a linear function, and so its intersection with
V /G (with multiplicities) is zero in CH;(V/G).)
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Figure 2.2 A%/(Qs, the Dy surface singularity.

Another example one can visualize is the quotient of V = A%: by the quater-
nion group G = Qg, whichis isomorphic to the “ Dy singularity” 7> = x%y — y3
in A3C (Figure 2.2). The full Chow ring CH*(BG)/2 is computed in Lemma
13.1. Here CH'BG = CH,(V/G) is isomorphic to Z/2 & Z/2, generated by
the three lines A, B, C through the origin in V /G that are visible in the figure.
These classes satisfy 2A = 2B = 2C = 0in CH{(V/G) (by intersecting V/G
with a tangent plane along any of the three lines) and A + B + C =0 (by
intersecting V /G with a plane containing the three lines).

Remark 2.7 ([138, remark 1.4]) If G is a finite group, then the geometric
quotient V /G exists as an affine variety for all representations V of G [108,
amplification 1.3]. So (V — S)/G is a quasi-projective variety for all closed
subsets S C V such that G acts freelyon V — S.

For any affine group scheme G over a field k and any positive integer s,
there is a representation V of G and a closed subset S C V of codimension
at least s such that G acts freely on V — S and (V — S)/G exists as a quasi-
projective variety. To see this, let W be any faithful representation W of G,
and let n = dim(W). Let V = Hom(AN*", W) = WON+" for N large. Let S
be the closed subset in V of non-surjective linear maps A¥*"* — W. Then S
has codimension N + 1 in V, as one easily counts. Also, (V — §)/G exists
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as a quasi-projective variety. Indeed, (V — S)/GL(n) is the Grassmannian
Gr(N, N + n) of N-dimensional linear subspaces of AN*", which we can view
as the homogeneous space GL(N + n)/((GL(N) x GL(n)) x Hom(A", AM)).
Therefore (V — S)/G is the homogeneous space GL(N + n)/((GL(N) x
G) x Hom(A", AN)). Any quotient of a linear algebraic group by a closed
subgroup scheme exists as a quasi-projective scheme [147, pp. 122-123]. So
(V = 8)/G is a quasi-projective variety.

Moreover, the natural map GL(N +n)/(GL(N) x G) - (V — §)/G is an
affine bundle. By homotopy invariance of Chow groups (Lemma 2.2), it follows
that

CH'BG = CH' GL(N 4+ n)/(GL(N) x G)
foralli < N.

One reason to be interested in the Chow ring of BG is that it is equal to the
ring of characteristic classes for principal G-bundles over smooth k-schemes,
in the following sense [138, theorem 1.3].

Theorem 2.8 Let G be an affine group scheme of finite type over a field k.
Then the group CH!BG defined above is naturally identified with the set of
assignments « to every smooth k-scheme X with a principal G-bundle E over
X of an element a(E) € CH'X, such that for any morphism f: Y — X over
k we have a( f*E) = f*(a(E)). The ring structure on C H* BG is the obvious
one on the set of characteristic classes.

2.3 The equivariant Chow ring

We now consider a generalization. For an affine group scheme G over a field &
that acts on a smooth k-scheme X, the equivariant Chow ring C Hf, X is defined
by CHéX = CH'(X x (V = 8))/G for any representation V of G over k and
any closed G-invariant subset S of V such that G acts freely on V — S, the
quotient (X x (V — §))/G exists as a scheme, and S has codimension greater
thani. Again, C H; X is independent of the choices of V and S [38]. The paper
[38] defines equivariant Chow groups for any G-scheme X, but since we take
X to be smooth, the groups CH}; X form a graded ring. (Briefly, the point is
that the quotients (X x (V — §))/G are smooth when X is smooth.)

The condition that (X x (V — S))/G is a scheme does not pose a difficulty.
First, under mild assumptions on X and G, there are many pairs (V, S) for
which (X x (V — §))/G is a scheme and § has codimension as big as we like,
by Remark 2.7 and [38, proposition 23]. Second, (X x (V — S))/G always
exists as an algebraic space, and once one defines Chow groups for algebraic
spaces, one can define C H;X using any (V, S) such that G acts freely on
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V — § and S has codimension greater than i. This is the preferred approach in
Edidin-Graham [38, section 6.1].

Kresch extended the definition of equivariant Chow groups to define Chow
groups for any algebraic stack of finite type over a field [81].

Since equivariant Chow groups are defined as the Chow groups of auxiliary
varieties, the formal properties of Chow groups imply analogous properties
for equivariant Chow groups, of which we mention the main ones. First, for a
smooth scheme X with G-action over the complex numbers, we have a cycle
map

CH.X — HZ(X,Z)
and in particular
CH'BG — H*(BG, Z).

Next, a proper morphism f: X — Y of smooth G-schemes over a field k
determines a pushforward map on equivariant Chow groups, fi.: CHS(X) —
C HLHmM=dmO yy Any morphism f: X — Y of smooth G-schemes deter-
mines a pullback map, f*: CHLY — CH[.X,and f*isaringhomomorphism.
Both types of homomorphism occur in the basic exact sequence for equivariant
Chow groups, as follows.

Lemma 2.9 Let G be an affine group scheme of finite type over a field k that
acts on a smooth k-scheme X and preserves a smooth closed k-subscheme Y of
codimension r. Then the proper pushforward and flat pullback homomorphisms
give an exact sequence

CHL'Y — CHLX — CHL(X —Y) — 0.

There are also homomorphisms relating equivariant Chow rings for different
groups. (These are analogous to the formal properties of equivariant coho-
mology.) First, for any homomorphism G — H of k-group schemes and any
H-scheme X over k, we have a ring homomorphism CHj;X — CHX. In
particular, this gives a pullback homomorphism CH*BH — CH*BG. (We
can view that as the pullback map on Chow groups associated to a morphism of
smooth varieties that approximates (EG x EH)/G — EH/H = BH. Here
we use the notation EG for a contractible space with free G-action, when G is
a topological group; we think of the smooth varieties V — S as approximating
EG when G is a k-group scheme.) There is also a “transfer” map in the other
direction, discussed in Section 2.5.

When we talk about the Chow ring of BG for a finite group G, we are
thinking of G as an algebraic group over some field. One common choice of
base field is the complex numbers.
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For an affine group scheme G over a field k, any representation G — G L(n)
over k determines a rank-n vector bundle over BG (that is, over the finite-
dimensional varieties (V — §)/G that approximate BG), by the equivalence
between principal GL(n)-bundles and vector bundles. It follows that an n-
dimensional representation V of G over k has Chern classes ¢; € CH' BG for
1 <i < n, the Chern classes of the corresponding vector bundle.

2.4 Basic computations

In this section, we compute the Chow ring of the classifying space for abelian
groups and the general linear group GL(n). We prove some partial results
on the Kiinneth formula for Chow rings of classifying spaces; the general
Chow Kiinneth formula is an open problem, to which we return in Chapter 17.
Finally, we explain that Chow rings of classifying spaces are easy to compute
with rational coefficients.

Theorem 2.10 Let k be a field. The Chow ring of B(G,,)" is the polynomial
ring Zly;, ...,y ] with |y;| = L.

Let k be a field, and let n be a positive integer. Let W, be the group scheme of
nth roots of unity, the kernel of the nth power map on G, over k. Then the Chow
ring of B, is isomorphic to Z]y]/(ny) with |y| = 1. The generator y is the first
Chern class of the natural I-dimensional representation u,, C GL(1) over k.

If n is invertible in k and k contains a primitive nth root of unity, then [,
is isomorphic to Z/n as an algebraic group over k, and so the Chow ring of
B(Z/n)y is isomorphic to Z[y]/(ny) with |y| = 1.

Proof Let V, be the direct sum of a copies of the natural 1-dimensional rep-
resentation of the multiplicative group G,,. Then G, acts freely on V, — 0, and
WV,=0)/G, = P“~!. Since the point 0 has codimension a in V,,, the Chow ring
of BG,, is defined to agree with the Chow ring of P*~! in degrees at mosta — 1.
We know that CH*(P*~") = Z[y]/(y%), with |y| = 1, for example by Lemma
2.3. It follows that CH*(BG,,) = Z[y]. Likewise, B(G,,)" is approximated by
products of r projective spaces, whose Chow ring is given by the projective
bundle formula (Lemma 2.3). It follows that CH* B(G,,,))" = Z[yy, ..., y-].

We can view V,, as a representation of u,, C G,,. The quotient (V, — 0)/(w,,)
is the principal G,,-bundle over P*~! whose first Chern class is n times the
generator of CH'P“~! = Z. We can view this G,,-bundle as the line bundle
O(n) minus the zero section. By Lemma 2.4,

CH*(V, — 0)/(1ty) = CH*(P*™")/(c1(O(n)))
= Z[yl/(y*, ny),

where |y| = 1. It follows that C H*Bu, = Z[y]/(ny). O
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For smooth varieties X and Y over a field &, the product map CH*X ®z
CH*(Y) - CH*(X x Y)need not be an isomorphism. For example, if X is an
elliptic curve, then the class of the diagonal in C H'(X x X) is not in the image
of CH*X ®z CH*X. It is an open question whether the Kiinneth formula
(meaning that this product map is an isomorphism) holds for the Chow ring
of the product of two finite groups, viewed as groups over C. That does hold
in many cases such as abelian groups over C [138, section 6]. The following
lemma is a bit more general. Lemma 2.12 is already interesting when the base
field is the complex numbers, but we assume as little as we can about the base
field.

Definition 2.11 For a subgroup G of the symmetric group S, and a group H,
the wreath product G H is the semidirect product group G X H", where G
acts on H” by permuting the factors.

Lemma 2.12 Let G be a group scheme over a field k that satisfies one of the
following assumptions. Then the product map

CH*BG ®7 CH*X — CH*(BG x X)

is an isomorphism for all smooth schemes X of finite type over k. It follows
that for these groups G, CH*BG @z CH*BH — CH*B(G x H) is an iso-
morphism for all affine group schemes H of finite type over k.

(i) G is the multiplicative group G .

(i1) G is a finite abelian group of exponent e viewed as an algebraic group
over k, e is invertible in k, and k contains the eth roots of unity.

(iii) G isaniterated wreathproductZ/p 2 ---2Z/p G, overk, p isinvertible
in k, and k contains the pth roots of unity.

(iv) G is an iterated wreath product Z/p 2 ---2Z/p A for a finite abelian
group A of exponent e, viewed as an algebraic group over k. Also, p and
e are invertible in k and k contains the pth and eth roots of unity.

Proof The assumptions imply that BG can be approximated by smooth linear
varieties over k in the sense of [140], by the proof of [138, lemma 9.1]. This
implies the Chow Kiinneth formula for BG x X with X arbitrary, by the
discussion after [138, lemma 6.1]. O

For example, let G be an elementary abelian p-group (Z/p)", considered
as an algebraic group over the complex numbers. Then Lemma 2.12 implies
that CH*(BG)/p = F,ly1, ..., y,] with |y;| = 1. Notice that this is simpler
than the cohomology of BG. For example, for p odd, H*(BG, F) is the free
graded-commutative algebra

Fp(xla cees Xy yla ~--,)’n),
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where |x;] =1 and |y;|=2. In this case, the ring homomorphism
CH*(BG)/p — H*(BG,F,) (which takes CH' to H?) is injective, and the
image is the polynomial subring F,[y1, ..., y,] of the cohomology ring.

Another way in which the Chow ring is simpler is that the Chow ring of
(Z/p)* is generated by Chern classes of complex representations, whereas
that fails for the cohomology ring (whether we use Z or F, coefficients).
The even-degree subring H*(B(Z/p)", Z) is generated by Chern classes for
n < 2, but not for n > 3. Group cohomology with F, coefficients has a tighter
relation to representation theory provided by Stiefel-Whitney classes of real
representations. Indeed, the F,-cohomology ring of any finite abelian group is
generated by Stiefel-Whitney classes; this has some analogy with the relation
between the Chow ring and Chern classes. To avoid undue optimism, note
that Gunawardena-Kahn-Thomas exhibited a group G of order 2° such that
H*(BG,F,) is not generated by Stiefel-Whitney classes or even by transfers
of Stiefel-Whitney classes [66, pp. 337-338].

Here is a fundamental calculation. Let G L(n) denote the general linear group
over any field k.

Theorem 2.13 The Chow ring of BGL(n) is isomorphic to Zlcy, ..., c,],
with |c;| = i. The generators are called the Chern classes.

Proof There is a natural rank-n vector bundle V on BG L(n) (that is, on the
finite-dimensional smooth varieties U/ G L(n) that approximate BG L(n)), by
the equivalence between principal G L(n)-bundles and vector bundles. Tak-
ing the Chern classes of V gives a ring homomorphism Z[cy, ..., c,] —
CH*BGL(n), which we want to show is an isomorphism.

For any vector bundle E of rank n on a smooth scheme X over k, let
FI(E) — X denote the bundle of flagsO C E; C E,--- C E, = Ein E, where
E; is a linear subspace of dimension i for all i. We can view this flag bundle as
an iterated projective bundle. (Explicitly, FI(E) is a bundle over the projective
bundle 7 : P(E) — X with fiber FI(E,_;), where E,_; is the kernel of the
surjection 7*E — O(1).) By induction on the rank of E, the projective bundle
formula (Lemma 2.3) gives that

CH*F](E) ; CH*X[y17-"ayn]/(ei(yla "'7yn) - CiE)v

where y; is the first Chern class of the bundle E;/E;_ on FI(E), and e; denotes
the ith elementary symmetric function, fori =1, ..., n.

Let B be the group of upper-triangular matrices in G L(n). Then GL(n)/B
is the variety of flags in the vector space A" over k. We have a fibration

GL(n)/B — BB — BGL(n)

that makes B B the flag bundle FI(V) over BG L(n). (To be rigorous, U/B is
the flag bundle FI(V') over U/ G L(n), for the finite-dimensional approximations
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U/GL(n) of BGL(n).) It follows that
CH*BB = CH*BGL()[y1, ..., yal/(ei(y1, ..., yu) = ;i V).

On the other hand, the Borel subgroup B of G L(n) is the semidirect product
(Gn)" x N where N is the group of strictly upper-triangular matrices. The
unipotent group N is an iterated extension of copies of the additive group G,,.
Using homotopy invariance of Chow groups (Lemma 2.2), one deduces that

CH*BB is isomorphic to CH*B(G )" = Z[y1, ..., yul.
The homomorphism Z[cy, ..., c,] = BGL(n) gives a homomorphism ¢
from
Z[Cla -"7cn9y]7 -"9yn]/(ei(y1’ ""yl’l) = Ci)
to
CH*BGL()[y1,...,yal/(ei(y1s...,ya) =ciV) = CH*BB.
The composition of ¢ with the isomorphism of the latter ring to Z[yy, ..., yu]

is clearly an isomorphism; so ¢ is an isomorphism. But ¢ is the direct sum of
n! copies of the homomorphism Z[cy, ..., c,] > CH*BGL(n) (indexed by
the monomials y{" - -y with 0 < a; <i — 1, for example). It follows that
Zlcy, ..., cy] > CH*BGL(n) is an isomorphism. O

Finally, the following result shows that Chow rings of classifying spaces are
easy to compute after tensoring with the rationals. So we will be concerned
mostly with integral or mod p calculations.

Theorem 2.14  For any affine algebraic group G over C, the natural map
CH*BG ® Q> H*(BG, Q)
is an isomorphism.

Proof We use the notion of a unipotent group scheme from Section 2.7. By
definition, a smooth connected affine group G over a field k is reductive if
every smooth connected unipotent subgroup of Gz is trivial. Over a perfect
field k, every smooth connected affine k-group G has a unique maximal normal
unipotent subgroup U, called the unipotent radical of G, and the quotient group
G/ U is reductive [18, section 11.21].

Let k£ be the complex numbers. The theorem was proved by Edidin and
Graham for complex reductive groups, as part of a more general statement about
equivariant Chow groups [38, proposition 6]. That implies the same statement
for any connected group G, using homotopy invariance of Chow rings (Lemma
2.2) to show that G has the same equivariant Chow ring as the quotient of G by
its unipotent radical. The result follows for arbitrary complex algebraic groups
by reducing to the connected case using transfers as in Section 2.5. (That is,
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one shows that CH*(BG) ® Q = (C H*(BGy) ® Q)¢/%, where G, denotes
the identity component of G, and similarly for rational cohomology.)

In more detail, the surjectivity of CH*BG — H*(BG, Q) for any complex
algebraic group G follows from the fact that H*(BG, Q) is generated by Chern
classes of complex representations of G, for every complex algebraic group
G [87, proof of theorem 1]. The injectivity, in the main case of a complex
reductive group G, follows from analyzing the fibration BB — BG with fiber
the flag manifold G/ B, where B is a Borel subgroup of G. This argument also
gives more precise results about the relation between CH*BG and H*(BG, Z)
for G reductive in terms of the “torsion index” of G [139, theorem 1.3]. (We
define the torsion index in section 16.1.) J

2.5 Transfer

For H a closed subgroup scheme of finite index in an affine k-group scheme
G, there is an abelian group homomorphism tr$: CH'BH — CH' BG called
transfer. (Indeed, for U/G a finite-dimensional approximation to BG, the
morphism U/H — U/G is finite since H has finite index in G, and transfer is
proper pushforward on Chow groups.) There is also a transfer homomorphism
on cohomology, tr$ : H'(BH, R) — H(BG, R),when H is a closed subgroup
of finite index in a compact Lie group G.

We list some of the formal properties of the transfer on Chow groups. Accord-
ing to the additive properties (in particular the double coset formula (iii)), for
a finite group G viewed as an algebraic group over a field k, the assignment
H — CH*BH for subgroups H of G is a Mackey functor. According to the
multiplicative properties (in particular, that CH*BH is a commutative ring
for each subgroup H of G, together with the projection formula (1)), H
CH*BH is a Green functor [148]. Group cohomology H — H®(BH, R) for
subgroups H of G is also a Green functor [24, proposition II1.9.5]. For a sub-
group H C G, write resg for the restriction map CH*BG — CH*BH. For a
subgroup H C G and an element g € G, write x — gx for the isomorphism
CH*BH — CH*B(gHg™") given by conjugation by g.

Lemma 2.15
(1) (Projection formula) Let H be a closed subgroup scheme of finite index in
an dffine k-group scheme G. Then the transfer trg :CH*BH — CH*BG
is a homomorphism of C H* BG-modules, where C H* BH is viewed as a
C H* BG-module by pullback.
(i1) We have trg(l) = [G: H]. (For general group schemes, the index [G: H]
means the dimension of the k-vector space of regular functions on G/H.)
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(iii) (Double coset formula) Let K and H be subgroups of a finite group G,

viewed as an algebraic group over a field k. Then

—1
resGusx = Z trgmgHg_lresiﬁng_,gx
¢€K\G/H

forxin CH*BH.
(iv) Let H be a normal subgroup of a finite group G, viewed as an algebraic

group over a field k. Then

resitrf,x: E 8gx
geG/H

forxin CH*BH.

Proof These follow from the properties of proper pushforward on Chow
groups of smooth varieties, since each Chow group C H'BG is defined as
CH!(V — 8)/G for a suitable smooth variety (V — S)/G. In more detail, (i) is
proved in [43, example 8.1.7]. To prove (ii), use that the pushforward map on
Chow groups for finite morphisms commutes with flat pullback [43, proposition
1.7]. Thus, to compute the degree of the finite map U/H — U/ G, it suffices to
compute the degree of the pulled back map U x G/H — U, which is easy by
definition of the algebraic cycle associated to a subscheme [43, lemma 1.7.1,
section 1.5].
We use the following lemma, a special case of [43, proposition 6.6(c)].

Lemma 2.16 Let Y — Z be a finite etale morphism of smooth schemes over
afieldk, and let X — Z be any morphism of smooth schemes over k. Consider
the fiber product

XXZY%Y

| l

X —— Z

Then pushforward commutes with pullback, as homomorphisms CH'Y —
CH'X.

Lemma 2.16 gives (iii) by considering the pullback of the finite morphism
BH — BG along the morphism BK — BG. (iv) is a special case of (iii)). [

Using these properties, the basic applications of the transfer in group coho-
mology also work for Chow rings. For example, from properties (i) and (ii), the
transfer and restriction maps satisfy tr% (x| ) = [G: H]x foranyx € CH*BG.
Applying this to the trivial group H = 1 C G, we deduce that the abelian group
CH'!BG is killed by |G| for any finite k-group scheme G and any i > 0.
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Also, let G be a finite group, p a prime number, and consider the Chow
ring modulo p, CH}; = CH*(BG)/p. For P a Sylow p-subgroup of G, we
have trgresg(x) =[G: Plx in CH}, where [G: P]is a unit in F,,. It follows
that CH, is a summand of C Hj. By the same argument, H/; is a summand of
H}. For this reason, many questions about Chow rings or cohomology of finite
groups can be reduced to questions about p-groups.

Cartan and Eilenberg gave an explicit description of H(; as the subring of
“stable elements” in Hj [24, theorem III.10.3]. The same statement holds
for any cohomological Mackey functor (meaning one that satisfies property
(ii) above) taking values in Z,-modules, such as mod p Chow rings [148,
corollary 3.7, proposition 7.2]. Namely, an element x in C H}, is in the image
of CH{ if and only if for every subgroup H of P and every element g € G
such that g Hg~! is contained in P, g(x|y) = Xlgrg-

2.6 Becker-Gottlieb transfer for Chow groups

Becker and Gottlieb defined a transfer map on cohomology for any closed
subgroup of a compact Lie group, not necessarily of finite index [94]. I extended
Becker-Gottlieb transfer to Chow groups, and it was written up by Vezzosi
[142, theorem 2.1]. We present the construction in this section. More generally,
Becker-Gottlieb transfer can be viewed as a stable map in Morel-Voevodsky’s
A'-homotopy category [107]. Using that machinery, it may be possible to
generalize Theorem 2.17 to fields of any characteristic. (The proof as written
requires a smooth G-equivariant compactification of G/N(T') by a divisor with
simple normal crossings, for G a reductive group over a field and 7 a maximal
torus in G. No such compactification seems to be known explicitly, even for
G =GL(n).)

By definition, a torus over a field k is a k-group scheme that becomes
isomorphic to (G,,)" over the algebraic closure of &, for some natural number
n. A torus is split if it is isomorphic to (G,,)" over k.

Theorem 2.17 Let G be a smooth affine group scheme over a field k of
characteristic zero such that the identity component G° is reductive. Let T be
a maximal torus in G and N (T) its normalizer in G. Then the restriction map

CH*BG — CH*BN(T)
is split injective, as a map of C H* BG-modules.

Proof Let X be a smooth projective variety over a field k, andlet D = U/_, D;
be a divisor with simple normal crossings on X. The vector bundle Q'(log D)
on X of I-forms with log poles along D can be defined as the sheaf of rational
1-forms « such that both & and do have at most simple poles along D. In etale
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local coordinates where D = {x;---x,, = 0} C A", Q}((log D) has a basis of
sections consisting of dx;/xy, ..., dXy /Xy, dXpm11, - .., dx,. We refer to [40,
chapter 2] for the various exact sequences involving Q'(log D). In particular,
for each component D; of D, we have the residue exact sequence

0 — QJ, (log D; N (U4 D;)) — Qy(log D)|p, = Op, — 0.

The logarithmic tangent bundle T X(—log D) is defined as the dual bundle
(' (log D))* on X. Equivalently, T X(— log D) is the sheaf of vector fields on
X that are tangent to D on the smooth locus of D.

Since we are considering varieties over a field k of characteristic zero, we
can define the Euler characteristic of a variety by reducing to the case where k
is a subfield of C and using ordinary cohomology (say, with compact support
and rational coefficients): x(X) = > (—1)' dimg H!(X, Q). One could also
define the Euler characteristic using /-adic cohomology. For a smooth proper
n-fold over k, the Euler characteristic x (X) is equal to the degree of the top
Chern class of the tangent bundle ¢,(TX) € CH"X [43, example 8.1.12],
[104, theorem 12.3]. Using the exact sequences for the logarithmic tangent
bundle and the additivity properties of the Euler characteristic, it follows that
for any smooth proper variety X with a simple normal crossing divisor D,
X(X = D) = [, cu(TX(~log D)).

Now let g: U — B be a smooth morphism between smooth k-schemes that
admits a smooth relative compactification f: X — B. That is, U is open in
X, f is a smooth proper morphism, X — U is a divisor with simple normal
crossings U; D;, and all intersections D; = N;¢; D; are smooth over B. Let n
be the dimension of the fibers. Define a modified pushforward g;: CH/U —
C H' B, Becker-Gottlieb transfer on Chow groups, by

8:(x) = fiXca(Tx, p(—log D))

for any lift ¥ of x to CH/X. Here the relative logarithmic tangent bundle
Tx,p(—log D) is a vector bundle of rank n on X. By the basic exact sequence
of Chow groups (Lemma 2.1), to show that g; is well-defined (independent of
the lift X), it suffices to show that the formula gives zero for the pushforward to
X of acycle on D; for some i. That holds because ¢,(Tx,z(— log D)) restricts
to zeroin C H" D;. Indeed, the rank-n vector bundle T, g(— log D) restricted to
D; contains a trivial line sub-bundle, by the dual of the residue exact sequence
for Qk/B(log D).

The transfer g;: CH*U — CH*B is C H* B-linear. Write F for any fiber
of g. Then we have

gzog" = x(F)
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by the projection formula, since ¢,(Tx,p(— log D)) restricts on each fiber of
X — B to a zero-cycle of degree x(F). A priori, the homomorphism g; may
depend on the compactification X of U, but that does not matter for our purpose.

Let G be a smooth affine group scheme over a field £ such that the identity
component G is reductive. Let 7 be a maximal k-torus in G. Grothendieck
showed that 7 remains a maximal torus over the algebraic closure k [18,
theorem 18.2]. Also, all maximal tori in G% are conjugate by elements of G°(k)
[18, corollary 11.3]. It follows that the normalizer N(T') in G meets every
connected component of Gz. (Indeed, given a point x in G(k), xTx ! is a
maximal torus in G°, and so there is an element g in G(k) with gxTx~'g™! =
T. Then gx is a k-point of N(T) in the connected component of x.) Therefore,
the morphism G°/Ngo(T) — G/Ng(T) is an isomorphism.

For a reductive group H (which is connected, by definition) with maximal
torus T over a field k, the scheme X = H/Ny(T) has Euler characteristic 1.
Indeed, this is a geometric statement, meaning that we can replace k by an
extension field. So we can assume that 7 is contained in a Borel subgroup
B of H. The Bruhat decomposition expresses H/B as the disjoint union of
cells (affine spaces) indexed by the Weyl group W = N(T)/T [18, theorem
14.12]. So x(H/B) = |W|. By homotopy invariance of ordinary cohomology,
it follows that y (H/T) = |W|. The Euler characteristic is multiplicative under
finite etale morphisms since k has characteristic zero, and so x(H/N(T)) =
x(H/T)/|W| = 1. (Alternatively, one can show directly that H/N(T) has the
Q;-cohomology of a point; that works for k of any characteristic.)

Two paragraphs back, we showed that G°/Ngo(T) = G/Ng(T). By the
previous paragraph, it follows that x(G/Ng(T)) = 1.

We apply the transfer map gy to the fibration G/N(T) — BN(T) — BG.
To be precise, consider the fibration G/N(T) - U/N(T) — U/G over a
finite-dimensional approximation U/G to BG. Since k has characteristic zero,
the smooth variety F = G/N(T) has a smooth G-equivariant compactification
F with complement a divisor with simple normal crossings, by equivariant
resolution of singularities [79, proposition 3.9.1]. Let X be the F-bundle over
U/ G associated to the G-action on F. Then the beginning of this proof gives
a homomorphism g;: CH*BN(T) — CH*BG such that g; o g* =1, using
that x(G/N(T)) = 1.SoCH*BG isasummand of CH*BN(T)asaCH*BG-
module. O

2.7 Groups in characteristic p

Morel and Voevodsky observed that for G a finite etale group scheme of order
a power of p over a field k of characteristic p, the classifying space BG is A'-
homotopy equivalent to Spec k [107, proposition 3.3]. (By definition, G is etale
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over k if it is smooth of dimension zero.) We now prove a slight generalization.
We make no further use of this, but it justifies concentrating on p-groups over
fields of characteristic not p in the rest of the book. It might be interesting
to explore the Chow ring and motivic cohomology for finite connected group
schemes over a field k of characteristic p that are not unipotent, such as the
kernel of the Frobenius homomorphism in G L(n) or in other reductive groups.
We have already seen that the Chow ring of B, over k is nontrivial (Theorem
2.10).

Lemma 2.18 Let G be a unipotent group scheme over a field k. Then BG is
A'-homotopy equivalent to Spec k. In particular, CH'BG = 0 fori > 0.

By definition, a group scheme over a field k is unipotent if it is isomorphic to
a closed subgroup scheme of the group of strictly upper triangular matrices in
G L(n) over k for some n. Every finite etale group scheme of order a power of p
over a field of characteristic p is unipotent [32, définition XVII.1.3, théor¢me
XVIL3.5(i)].

Proof Embed G as a closed subgroup scheme of the group U of strictly upper
triangular matrices in G L(n) for some n. Then U is a split unipotent group over
k, meaning that it is an iterated extension of copies of the additive group G,
over k. (Every smooth connected unipotent group over a perfect field is split,
although we don’t need that fact [18, theorem 15.4].)

Let G be embedded in a split unipotent group U over k. I claim that we can
identify the classifying space BG with the finite-dimensional variety U/ G. (For
our purpose, that just means that CH*BG = C H*(U/G), although in fact the
argument shows that BG and U/G are isomorphic in Morel-Voevodsky’s A'-
homotopy category.) Namely, for any approximation (V — §)/G to BG as in
the definition, consider the variety (U x (V — §))/ G, which fibers over both
U/G and (V — S)/G. The fibration over U/ G is a vector bundle minus a subset
of codimension equal to the codimension of S in V, which we take to be large.
The fibration over (V — §)/G is a principal U-bundle. Such a bundle is Zariski
locally trivial since U is split unipotent (by reducing to the case of the additive
group), and the fiber U is isomorphic to affine space as a variety. It follows
that (U x (V — S))/G — (V — S)/G is an A'-homotopy equivalence, and in
particular induces an isomorphism on Chow groups. So C H* BG is isomorphic
to CH*(U/G).

Let G be any closed subgroup scheme of a split unipotent group U over k.
Then Rosenlicht showed that the variety U/G is isomorphic to affine space
of some dimension over k [116, theorem 5]. The proof is by induction on the
dimension of U. The statement is clear if U = 1. Otherwise, U contains a
central subgroup Z isomorphic to G, over k. Then the morphism

U/G— U/D)/(G/(GN2Z))
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is a principal Z/(G N Z)-bundle. By induction on the dimension of U,
WU/Z)/(G/(G N Z)) is isomorphic to affine space over k. Any quotient group
scheme of Z = G, is either trivial or isomorphic to G, [18, theorem 15.4].
Principal G,-bundles on affine space A" over k are classified by the group
H'(A", 0) = 0, and so they are trivial. So U/G is isomorphic to affine space
over k. We deduce that BG is A'-homotopy equivalent to Spec k. In particular,
CH'BG =0fori > 0. O

2.8 Wreath products and the symmetric groups

For the symmetric groups, we have essentially complete information on the
cohomology ring and Chow ring. The results rely on the special structure of
the Sylow p-subgroups of the symmetric groups; they are products of iterated
wreath products of cyclic groups. In this section, we state the basic results on
the cohomology and Chow ring of a wreath product (Definition 2.11), referring
to [138] for the proofs.

Nakaoka and Quillen gave an explicit description of the cohomology of a
wreath product group Z/p: H = Z/p x H? [1, theorems IV.1.7 and 1V.4.3].
For our purposes, the most important fact is the following result of Quillen’s
[111, proposition 3.1]:

Theorem 2.19 Let H be any group, andlet G = Z/p  H. Then the restriction
map on F ,-cohomology,

Hf/sz — Hppp % Hik/pr»
is injective.
By definition, the F ,-cohomology ring of a group G is detected on subgroups

Hy, ..., H, if the restriction homomorphism HF — ]_[;:l H ;‘,/_ is injective.
Likewise for mod p Chow rings.

Corollary 2.20 Let p be a prime number and n a positive integer. Then the
F,-cohomology of the symmetric group S, is detected on elementary abelian
p-subgroups.

Proof By transfer, it suffices to prove this after replacing S, by a Sylow
p-subgroup. For n =a;p/ +---+ajp+ap with 0 <a; < p— 1, a Sylow
p-subgroup of S, is the product over all j of a; copies of a Sylow p-subgroup
of S,;, which in turn is the j-fold wreath product Z/pv---1Z/p. Then the
statement follows by induction from Theorem 2.19. O

We now turn to Chow rings. The Chow ring of a wreath product Z/p  H is
even simpler than the cohomology ring, assuming certain good properties of



2.8 Wreath products and the symmetric groups 29

H. In particular, we have a simple description of generators for the Chow ring,
as well as a detection theorem analogous to Theorem 2.19.

For an algebraic group G over a field k, a transferred Euler class in CH
is an F ,-linear combination of transfers of Euler classes (top Chern classes) of
representations of finite-index subgroups over k.

In the following lemma, for p invertible in k, we consider the cycle map
from the mod p Chow group CH; to etale cohomology HZ (BGy,, F,(i)),
where k; denotes a separable closure of k. For k = C, this etale cohomology
group coincides with the usual cohomology of BG. In fact, a choice of pth root
of unity in k; always determines an identification of these etale cohomology
groups with the group cohomology of G; see Lemma 8.3.

Lemma 2.21 Let p be a prime number, and let G be a group scheme over
a field k that satisfies one of the following assumptions. Then the mod p
Chow ring CH(, is detected on elementary abelian subgroups. Also, C Hé —
H2(BGy,, F,(i)) is injective for all i. Finally, CHf, consists of transferred
Euler classes.

(1) G is the multiplicative group G .

(i) G is a finite abelian group of exponent e viewed as an algebraic
group over k, e is invertible in k, and k contains the eth roots of
unity.

(iii) G isaniteratedwreathproductZ/p ---2ZL/p G,, overk, p isinvertible
in k, and k contains the pth roots of unity.

(iv) G is an iterated wreath product Z/p 2 ---2Z/p A for a finite abelian
group A of exponent e, viewed as an algebraic group over k. Also, p and
e are invertible in k and k contains the pth and eth roots of unity.

Proof Letkbeafield of characteristic not p that contains the pth roots of unity.
Let H be an affine group scheme over k such that BH can be approximated
by smooth quasi-projective varieties that can be cut into open subsets of affine
spaces over k, and CH}, — HZ2(BH,F,(i)) is injective for all i. Then [138,
section 9] shows that Z/ p : H satisfies the same assumptions. That paper also
gives an explicit additive basis for C Hz, , ;; in terms of C Hy;. In particular, the
description shows that if C Hy; is generated by transferred Euler classes, then
so is CHz,,; [138, section 11]. This gives the results we want on generation
of the Chow ring by transferred Euler classes, and injectivity of the mod p
cycle map. The description also shows that C Hy, , ,; maps onto the invariants
(CH},)Hr.

Under the same assumptions on H, [138, section 9] also shows that C H I H
is detected on the subgroups H? and Z/p x H. Combined with Lemma 2.12
on the Chow Kiinneth formula, it follows by induction that C H/; is detected on
elementary abelian subgroups for the groups in the theorem. O
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Corollary 2.22 Let n be a positive integer, p a prime number, and k a field.
Suppose that p is invertible in k and that k contains the pth roots of unity. Let
G be either the symmetric group S, or the wreath product S, : G,,, viewed as a
group scheme over k. Then the mod p Chow ring C H}; consists of transferred
Euler classes, and is detected on elementary abelian p-subgroups.

Proof By transfer, it suffices to prove this after replacing S, by a Sylow
p-subgroup. For n =a;p/ +---+ajp+ap with 0 <a; < p— 1, a Sylow
p-subgroup of S, is the product over all j of a; copies of a Sylow p-subgroup
of S,;, which in turn is the j-fold wreath product Z/pt---1Z/p. Then the
statement follows by induction from Lemma 2.21 (applied to the group Z/p?
- ZL/porZ/pr---2Z/pGy) together with Lemma 2.12 (on the Chow
Kiinneth formula). O

2.9 General linear groups over finite fields

This section gives the calculations by Quillen and Guillot of the cohomology
and Chow ring of the general linear group over finite fields. These are important
calculations, but we do not use them elsewhere in the book. Adem and Milgram
summarize what is known about the cohomology of other finite groups of Lie
type [1, chapter VII].

Let g be a power of a prime number p, and let / be a prime number different
from p. Then Quillen computed the mod / cohomology ring of the finite group
GL(n,F,), as follows [115, theorem 4, remark after theorem 1]. See also
Benson [12, vol. 2, theorem 2.9.3] for a summary of Quillen’s argument. This
result led to Quillen’s calculation of the algebraic K-theory of finite fields.
It turns out to be a simple example; for example, the mod [ cohomology of
GL(n,F,) for [ # p is detected on abelian subgroups, which is far from true
for finite groups in general. The mod p cohomology of GL(n, F,) is far more
complicated and is largely unknown.

The main reason for the simplicity of the mod / cohomology of GL(n, F,)
is that an /-Sylow subgroup of GL(n, F,;) with [ # p is a product of iterated
wreath products of abelian groups when / # 2 (and has a similar description
when / = 2). Compare Theorem 2.19.

Theorem 2.23 Let g be a power of a prime number p. Letl be a prime number
different from p, r the multiplicative order of ¢ modulo I, and m = |n/r]. For
I odd, the F;-cohomology ring of GL(n,¥,) is the free graded-commutative
algebra

Fl(er’ €25 Cmrs Cry Copyvvey Cmr)s
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where |e;,| = 2ir — 1 and |c;;| = 2ir. Ifl =2 and g = 1 (mod 4), then
H o, SFaler,ea, e c1 00, 0l /(€] = 0),

where |e;| =2i — 1 and |c;| = 2i. Ifl =2 and g = 3 (mod 4), then

i—1
* ~ 2
HGrnF,) =Fz[61,ez,-..en,cl,Cz,...,cn]/(e,- = E Cuc2i1a>7
a=0

where co = 1 and ¢; = 0 fori > n.

The standard representation of GL(n, F,) on (F,)" has a natural lift to a
virtual complex representation of GL(n, F), called the Brauer lift p; see Serre
[124, theorem 43] or Benson [12, vol. 1, section 5.9]. The classes ¢; in Theorem
2.23 are the Chern classes of p.

Guillot computed the mod / Chow ring of the finite group G L(n, F,), viewed
as an algebraic group over C, as follows [60, theorem 4.7]. Again, this turns
out to be a simple example: the Chow ring injects into the cohomology ring,
and is detected on elementary abelian subgroups.

Theorem 2.24 Let g be a power of a prime number p. Let | be an odd
prime number different from p, r the multiplicative order of g modulo 1, and
m = |n/r]. Let ¢; be the ith Chern class of the Brauer lift p of the standard
representation of GL(n, F,). Then the mod | Chow ring of GL(n,¥,) is the
polynomial ring

Fl[crv Copyvnnsy Cmr]-

2.10 Questions about the Chow ring of a finite group

In contrast to cohomology, there is no algorithm to compute Chow groups,
and they can be big. In particular, Schoen gave examples of smooth projective
3-folds X over 6 and prime numbers p such that CHZ(X)/p = CHZ(XC)/p
is infinite [118]. There are other varieties for which the subgroup of C H3(X)
killed by p is infinite [119]. It is an open question whether the Chow groups
CH'BG of the classifying space of an algebraic group are finitely generated
abelian groups. For a finite group G, which we generally view as an algebraic
group over the complex numbers, CH'BG is killed by |G| for i > 0, and
so the question is whether C H 'BG is finite for i > 0; that is true in all the
known computations. The results of this book shed some light: we can reduce
to checking finiteness of C H i BG for small values of i, and in some cases that
is enough to solve the problem (Corollary 10.5 and Theorem 11.1).

For the examples of groups G over C we have seen in this chapter, the homo-
morphism from the Chow ring of BG to the cohomology ring was injective, but
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that fails in general. In particular, for every prime number p, there is a p-group
G such that CH*(BG)/p — H*(BG, F,) is not injective. (Then the product
H =G x Z/p has CH’BH — H®BH,Z) not injective.) An example is the
extraspecial 2-group G = 21L+4, as shown in [137, section 5] (which we sum-
marize in the proof of Theorem 15.13). We give more complicated examples
at odd primes in Theorem 15.7.

A major tool in the cohomology theory of finite groups is the Hochschild-
Serre spectral sequence H*(Q, H*(N,F,)) = H*(G, F,) for a group exten-
sion 1l - N - G — Q — 1. No analog is known for Chow rings. Indeed,
there seems to be no way to define the Chow groups of a group G with
coefficients in a nontrivial G-module. Rost found what seems to be the right
notion of Chow groups with coefficients, but the possible coefficients are more
complicated objects known as cycle modules [117, 63].

Although the fibration BN — BG — B(Q makes sense in algebraic geom-
etry (using finite-dimensional approximations), almost nothing is known about
the Chow groups of a fibration in general. The difficulty is that the fibra-
tion is locally trivial in the etale topology, but not in the Zariski topology.
More broadly, the whole problem of computing Chow rings of classifying
spaces can be considered as a problem of “etale descent” for Chow groups:
given a finite group G acting freely on a scheme X, how are C H*(X) and
C H*(X/G) related? With rational coefficients we have the simple answer that
CH*(X/G)®Q = (CH*(X) ® Q)¢ (proved using transfer maps). But not
much is known integrally, or modulo a prime number.

Later (Theorem 8.10) we will prove Yagita’s theorem that the Chow ring of
a finite group is qualitatively similar to the cohomology ring, in the following
sense. For a fixed prime number p, write CH}, = CH*(BG)/p and Hj, =
H*(BG, F)). Then the cycle map CHf; — H{ is an F-isomorphism. That is:
every element of the kernel of CHi; — H(; is nilpotent, and for every element
x of H}, there is an r > 0 such that x?" is in the image of the cycle map. It
follows that the “variety” of C H/; is the same as that of H(;, meaning that the
morphism Spec HZ' — Spec CH(; is a universal homeomorphism. (That is,
it remains a homeomorphism after any extension of the base field F,.) This
holds even though it is not known whether C H/; is finitely generated as an
F,-algebra. Conceivably C H(; could contain an enormous square-zero ideal.

Examples suggest that the Chow ring of a group is more closely tied to
representation theory than the cohomology ring is. The following result is
some justification for that idea [138, corollary 3.2]. The geometric filtration of
the representation ring R(G) is defined in the proof.

Theorem 2.25 Let G be an affine group scheme of finite type over a field k, p
a prime number. Then the mod p Chow ring C H}, in degrees < p is generated
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by Chern classes of representations of G over k. Also, the natural surjection
CH'BG — gr

geom

R(G) is an isomorphism p-locally fori < p.

Proof Thomason defined equivariant G-theory GiGX of a G-scheme X over
k as the Quillen K-theory of the abelian category of G-equivariant coherent
sheaves on X, fori > 0[136]. In particular, GI.Gk is the K -theory of the abelian
category of representations of G, and so G§k = R(G). For X smooth over ,
the natural map KX — G¢X is an isomorphism, where K ¢ X is the Quillen
K -theory of the exact category of G-equivariant vector bundles on X.
Thomason proved homotopy invariance of equivariant G-theory, which
means in particular that GEk = GV for every representation V of G. More-
over, for any closed G-invariant subset S of a G-scheme X, Thomason showed
that every G-equivariant coherent sheaf on X — S is the restriction of a G-
equivariant coherent sheaf on V [136, corollary 2.4]. So we have a surjection

GSX — G§(X - S).

For a smooth variety X over a field k, the geometric filtration of the algebraic
K-group KX means the filtration by codimension of support [57]. That is, an
element of KoX belongs to Fy.,,, KoX if it restricts to zero in K O(X —S) for
some closed subset S of codimension at least 7. Equivalently, identifying KoX
with GoX (since X is smooth over k), an element of Ko X belongs to Fy, ., Ko X
if it can be represented by a coherent sheaf whose support has codimension at
least r.

We define the geometric filtration of R(G) as follows. For any natural num-
ber r, let V be a representation of G with a G-invariant closed subset S of
codimension greater than r such that G acts freely on V — § with quotient a
scheme over k. Let Fy., R(G) be the subgroup of R(G) of elements that restrict
to zero in K(?(V Sy = Ko(V — §')/ G for some closed G-invariant closed
subset S C 8’ C V of codimension at least r in V. This is independent of the
choices of V and S, by the same argument as for Theorem 2.5 showing that
CH*BG is well-defined. Moreover, by Thomason’s surjection earlier in the
proof, R(G) = Gg V — Ko(V — 8)/G is surjective, and therefore the natural
map

R(G) —> gr KoV —-98)/G

genm geom

is an isomorphism fori < r.

Let X = (V — S)/G; it remains to relate KoX with the Chow groups of
X. There is a natural map from CH'X to grgeomKoX , taking a subvariety Z
of codimension i to the class of the coherent sheaf Oz. The map CH'X —

8loeom Ko X is surjective, and the ith Chern class gives a map back such that the
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composition

CH'X — gryonKoX e CH'X
is multiplication by (=D = D, by Riemann-Roch without denomina-
tors [43, example 15.3.1], [57]. It follows that the surjection from CH'X
to gréeom Ko X becomes an isomorphism after inverting (i — 1)!, and the sub-

group of CH'X generated by Chern classes of elements of KoX contains
(i — 1)!ICH'X. This is what we want. O

In particular, C H' is easy to compute.

Lemma 2.26 Let G be an affine group scheme of finite type over a field k.
Then the first Chern class gives an isomorphism

¢1: Homy(G, G,,) - CH'BG.

Proof The homomorphism ¢ is surjective by Theorem 2.25, using that the
first Chern class of any representation V of G is equal to c¢;(det(V)).

To show that c; is injective, let «: G — G,, be a representation such that
cie = 0in CH'BG. Let V be a representation of G with a closed G-invariant
subset S of codimension at least 2 such that G acts freely on V — S with
quotient a scheme. Then the pullback of & by V — Spec(k) is a G-equivariant
line bundle L, on V. Since (V — S)/G is smooth over k, we can identify
CH'((V — §)/G) with the group Pic((V — S)/G) of isomorphism classes of
line bundles on (V — §)/G [67, corollary I1.6.16]. So the restriction of L,
to V — § is G-equivariantly trivial. That is, L, has a nowhere-vanishing G-
equivariant section s on V — §. Since S has codimension at least 2, s extends
to a nowhere-vanishing section of L, over V. This section is G-equivariant
because its restriction to V — § is G-equivariant. By restricting s to the origin
in V, it follows that the homomorphism «: G — G, is trivial. U

There is also an explicit description of CH>BG in terms of cohomology,
Lemma 15.1.
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Depth and Regularity

In this chapter, we define some fundamental concepts of commutative algebra:
depth and Castelnuovo-Mumford regularity. The depth of a ring (say, a finitely
generated commutative graded algebra) is the maximum length of a regular
sequence of elements of positive degree. For some purposes, depth is a good
measure of how well-behaved a ring is. The rings with maximal depth, known
as Cohen-Macaulay rings, are the rings that are free finitely generated modules
over some polynomial subring. Regularity is a quantitative measure of the
complexity of a graded ring in terms of the degrees of generators, relations,
and so on. It is not related to the notion of a regular local ring.

Depth and regularity have extremely good formal properties. That allowed
Symonds to prove strong bounds for the degrees of generators of the cohomol-
ogy ring of a finite group by studying the a priori harder problem of bounding
the regularity, as we see in Chapter 4.

The chapter ends with Duflot’s theorem, which gives a lower bound for the
depth of the cohomology ring of a group, and an analog for the Chow ring.

3.1 Depth and regularity in terms of local cohomology

In this section, we define depth and Castelnuovo-Mumford regularity for mod-
ules over a graded ring. Our definitions are in terms of local cohomology,
because that makes the formal properties of these invariants easy to prove. But
the reason these invariants are important in the rest of the book is their inter-
pretation in terms of generators and relations for a module, which we prove as
Theorem 3.14. Our exposition partly follows Benson [13] and Symonds [131].

Something new in our treatment is that in order to deal with Chow rings,
which are not known to be finitely generated algebras, we have to consider
non-noetherian rings and modules that are not finitely generated. The Chow
ring of the classifying space of an algebraic group is at least generated in a

35
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bounded set of degrees as a module over a graded polynomial ring on finitely
many generators (Theorem 5.2).

Let k be afield and let R=k® R & R, ® --- be a commutative graded
k-algebra. Let m be the maximal ideal R>% in R. For the rest of this section,
we define an R-module to be a graded R-module M = @,z M,. Ideals in R
are understood to be homogeneous, and homomorphisms of R-modules are
understood to mean homomorphisms that preserve the grading.

For an ideal / contained in m, let y; be a set of homogeneous generators
of positive degree for /, indexed by some totally ordered set S. Define the
local cohomology groups H; (M) as the cohomology of the following cochain
complex, called the Cech complex, with M placed in degree zero:

0—> M — @zean[l/)’i]l — @zEan[l/)’in]z —> e
i i<j
Here the subscript [ refers to the /th graded piece of these modules. The bound-
ary maps in the Cech complex are given by (—1)" times the obvious homomor-
phism from M[1/yo...V -+ ym]l to M[1/yo...yn]. Each group H'"(M) is
clearly a graded R-module, H;"(M) = ®;czH}"(M),. For a finitely generated
ideal I = (yy, ..., yu), we can write the Cech complex more simply as:

0— M — [[MI/yl— [ M /yiyl— -

i<j

For any ideal 7 in acommutative ring R, the definition implies that H?(M )is the
I-torsion submodule of M, definedas {x e M : (Vf € I)(Im > 0) f"x = 0}.
An introduction to local cohomology in the classical setting of noetherian
rings is [73]. Local cohomology was defined by Grothendieck for arbitrary
commutative rings [59, exposé II].

To see that the local cohomology groups H; (M) are independent of the
choice of generators for an ideal 7, we use the following geometric interpre-
tation. Let Proj(R) be the scheme associated to the graded ring R, and let M
be the quasicoherent sheaf on Proj(R) associated to M [55, definition 11.2.5.3].
For an integer I/, write M(!) for the graded module M with degrees lowered
by [. Let U be the complement of the closed subset of Proj(R) defined by the
ideal 1. Then local cohomology H; (M) is isomorphic to the cohomology of the
complex with M placed in degree 0 and only the first boundary map nonzero:

0= M — @1z HOU, M) > e H'(U, M) > - -

Indeed, this is identified with the cohomology of the Cech complex when
we compute the cohomology of U using its open cover by the affine open
subsets {y; # 0} [56, proposition III.1.4.1], [55, proposition I1.2.5.2]. From this
interpretation, we see that local cohomology H; (M), as a graded R-module,
does not depend on the choice of generators of /. In fact, it depends only on
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theradicalrad(/) = {x € R : x™ € I for some m > 0} of I, because two ideals
with the same radical define the same closed subset of Proj(R).

Example For R a commutative graded ring, it follows that
H)(R) = ker (R — @z H (Proj(R), 0(0))),
Hy (R) = coker (R — @,z H (Proj(R), 0(1))),
and
Hy (R) = @1z H'™ (Proj(R), O(1))

for i > 1. For R a graded polynomial ring k[yi, ..., y,] with the degrees |y;]|
positive, H. (R) is nonzero only if i = n, either by this geometric interpretation
or by the algebraic definition of local cohomology. Moreover,

H(R) = k[yE!, ..., yE'/( -y = 0if some i; > 0)

[73, example 7.16].

Remark 3.1 The grading on each local cohomology group H: (M) encodes
information about the degrees of generators and relations for an R-module M.
The precise relation is described in the main result of this chapter, Theorem
3.14. Here we show the relation in simple examples.

Let R be the polynomial ring k[x] with x in degree 1. (Then Proj(R) is
a point, and local cohomology is easy to compute by either the algebraic or
the geometric interpretation.) Let M be the free R-module on one generator
in degree a. Then H\. (M) is zero for i # 1, and Hnll(M) is the k[x]-module
k[x, x’l]/x“ k[x]. The vanishing of Hl?l(M) is equivalent to the freeness of M
as an R-module, and in this case the highest degree of an element needed to
generate M is 1 plus the highest degree (namely, @ — 1) occurring in HIL(M ),
as Theorem 3.14 explains.

Next, let M be the R-module generated by an element e in degree a modulo
the relation x’e = 0, for a positive integer b. Then H2(M) = M is nonzero
in degrees a,a +1,...,a+ b — 1, while H&(M) = 0. The non-vanishing of
Hf,)l(M ) is equivalent to the non-freeness of M as an R-module, and the relation
xPe = 0 for M in degree a + b is responsible for a + b — 1 being the highest
degree occurring in HY (M), as Theorem 3.14 explains.

A short exact sequence 0 —> M; — M, — M3 — 0 of R-modules gives a
long exact sequence of local cohomology groups

0 — HY(M)) - H (M) - H)(M3) — H} (M) — - - -,

since the Cech complexes form a short exact sequence of chain complexes (or
by the properties of sheaf cohomology).
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For noetherian rings, Grothendieck gave another interpretation of local coho-
mology [59, lemma II.8]. To stick with our situation, we state this only for
graded rings. Note that local cohomology H; (M) as we have defined it (for R
and M graded) coincides with local cohomology in the ungraded sense (as con-
sidered in some references) when R is a finitely generated k-algebra. Indeed, 1
is a finitely generated ideal in that case, and so both types of local cohomology
are computed by the same Cech complex.

Lemma 3.2 Let I be an ideal in a finitely generated graded k-algebra R.
Then local cohomology is a direct limit of Ext groups,

H{(M) = h_;TQExt;(R/I’, M).

Equivalently, for R noetherian, the groups H; (M) are the right-derived
functors of the left exact functor H,O(M ) on the category of R-modules. This
can fail for R not noetherian, even for a finitely generated ideal /. Explicitly,
let R be a ring with unbounded y-torsion for some element y € R, such as
R =k[y, 21,22, 23, ...1/(vz1, ¥*22, ¥3z3, ...). Then any injective R-module J
containing the module {x € R : yx = 0} has H(g,)(J ) # 0 by Grothendieck [59,
lemma I1.9], whereas the derived functors Eéy)(M )= li_r)nExt"R(R /ml, M) of

1

H&)(M ) on the category of R-modules have E(ly)(J ) = 0, since J is injective.

Theorem 3.3 (Independence Theorem for local cohomology) If f: R — R
is a homomorphism of commutative graded rings, I' C R’ is an ideal con-
tained in the maximal ideal (R')”°, and M is an R-module, then f induces an
isomorphism

Hi(R', M) — H. (R, M),
where we view M as an R'-module via f.

Proof This is immediate from the Cech interpretation: for I’ = (y; : [ € S),
both local cohomology groups are the cohomology of the same Cech complex

O_>M_>@IEZHM[]/)G]I_)GBZEZHM[l/yi.Yj]I_)"‘~ 0
i i<j

The Independence Theorem is a key advantage of the definition of local
cohomology in terms of the Cech complex (or, equivalently, in terms of sheaf
cohomology).

One last general property of local cohomology is that each local cohomology
group H}(M) is an I-torsion module. That is, for every y € I and every « in
Hli (M), there is a natural number m such that y"«o = 0. Indeed, let I be
generated by y together with some set of elements 7. Then H} (M) is computed
by the Cech complex of M with respect to the set {y} U T, which we can view
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as the complex 0 - R — R[1/y] — O tensored with the Cech complex of M
withrespectto 7. Therefore, if we tensor the Cech complex over R with R[1/y],
we get some chain complex tensored with 0 — R[1/y] — R[1/y] — 0, and
so the cohomology becomes zero. Since R[1/y] is a flat R-module, it follows
that H; (M) @k R[1/y] = 0. Equivalently, every element of H; (M) is killed
by a power of y, as we want.

We make the following definition for later use.

Definition 3.4 Let R be a finitely generated graded algebra over a field &,
assumed to be finite over its center Z(R). A system of parameters in R is a
sequence yi, . .., y, of elements of Z(R) such that R is finite over the polyno-
mial ring k[yy, ..., y,] and n is equal to the dimension of Z(R). Equivalently,
R is finite over k[yy, ..., y,] and k[y1, ..., y,] injects into R.

We now define depth in terms of local cohomology. Under extra finiteness
assumptions, we give several other interpretations, which may be clearer.

Definition 3.5 Let M be a module over a commutative graded ring R. The
depth of M, depth(R, M), is the supremum of the integers j such that Ht;(M )=
Oforalli < j.

The depth of a nonzero bounded below module over a graded polynomial
ring k[yi, ..., y,]is atmost n. We prove this as part of a more precise statement,
Theorem 3.14.

Lemma 3.6 Let R be a commutative graded ring. Then the depth of an R-
module M is at least the length n of any M -regular sequence in m, meaning a
sequence yi, . .., y, inmsuchthat y; is a non-zero-divisoron M /(y1, . .., ¥i—1)
fori=1,...,n.

If R is a finitely generated k-algebra and M is a finitely generated R-module,
then the depth of M is equal to the supremum of the lengths of all M-regular
sequences in m.

Proof Lety,...,y, bean M-regular sequence in m. By definition, we have
an exact sequence of R-modules

0— M/(ylv'~'1yi71))_y) M/(ylvu-»yifl)_) M/(ylvu-»yi)_) 0
for each i. The resulting long exact sequence of local cohomology has the form:

— HE T MG, y) > HE (MY 3ic1)
> H'(M/(ny ey yic1)) —

We show that HI{;(M/(yl, ..., yi)) =0for j <n —i by descending induction
on i. This is clear for i = n. Suppose it is true for a given value of i. The exact
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sequence shows that multiplication by y; is injective on H,‘,’;(M /1y ey Yie1))
for j < n — i+ 1. We showed that this local cohomology group is m-torsion; in
particular, every element of this group is killed by some power of y;. Therefore,
H,{;(M/(yl, ..., ¥i—1)) =0for j <n—i+ 1, completing the induction. For
i = 0, we conclude that H,{;(M) = 0 for j < n. Thatis, M has depth at least n
by our definition.

This lower bound for the depth is an equality for finitely generated modules
M over a noetherian ring R. A proof is given in [73, theorem 9.1]. O

For modules that are not finitely generated, the definition of depth in terms of
local cohomology has better properties than the maximum length of a regular
sequence. For example, let k be an algebraically closed field, R = k[x, y], and
M = R/(x) ® DsexR/(ax + y). Then M is an infinite direct sum of modules
of depth 1, and so it has depth 1 in our sense. Indeed, local cohomology with
respect to the finitely generated ideal m = (x, y) commutes with arbitrary direct
sums, by the Cech complex. But there is no M-regular sequence of length 1
inm.

Definition 3.7 Let R be a commutative graded ring. Let M be a graded
R-module. Let a;(R, M) denote the maximum degree of a nonzero element
of H;I(R, M) (possibly oo if unbounded or —oo if H&(Ra M) =0). The
(Castelnuovo-Mumford) regularity of M over R is

reg(R, M) = sup {a;(R, M) +i}.

Example Let R be a graded polynomial ring R = k[y;, ..., y,]. By the
computation stated earlier, the local cohomology H. (R) is zero except when
i =n, and the top-degree subspace of H] (R) is the k-vector space spanned
by yfl -y~ Tt follows that the regularity of R as an R-module is equal to
—o(R), where we define:

Definition 3.8 For a graded polynomial ring R = k[yy, ..., y,], let c(R) =
iyl = D).

We state some simple properties of regularity for later use.
Lemma 3.9 Let R be a commutative graded ring and M a graded R-module.

(1) Shifting M up in degree by an integer a increases the regularity of M by
a.
(1) If M is bounded above, then reg(R, M) is equal to the top degree in which
M is nonzero.
@iii) For a short exact sequence 0 - A — B — C — 0 of R-modules,
reg(R, B) < max(reg(R, A), reg(R, C)).
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Proof The definition of regularity implies (i). The Cech complex shows that
a bounded above module M has H&(M) = M and H‘;(M) =0 fori > 0,
which gives (ii) by the definition of regularity. The long exact sequence of local
cohomology implies (iii). O

For a commutative graded ring R, we define the depth and regularity of R to
mean the depth and regularity of R as a module over itself.

Lemma 3.10 Let R = kly1, ..., y.]| be a graded polynomial ring with |y;| >
0 for all i, and let S be a commutative graded ring with a homomorphism
R — S. Suppose that S is generated as an R-module by a set of elements of
bounded degree. Then depth(S) = depth(R, S) (the depth of S as an R-module)
and reg(S) = reg(R, S).

Proof We are given that there is an m > 0 such that S is generated as an
R-module by elements of degree less than m. Therefore, S=" maps to zero
in S/(y1,...,yn), and so the ideal (S>°)" is contained in (yi,..., y,). In
particular, S~ is the radical of the finitely generated ideal R*°S = (y1, ..., yu).

By the Independence Theorem (Theorem 3.3), we have HI’;>(,(R ,9H =
HI’;>US(S, S), compatibly with the gradings on these groups. Since §>0isthe rad-
ical of R>°S, it follows that Hz (R, S) = H;;O(S, S). Depth and regularity are
defined in terms of local cohomology, and so we have depth(R, §) = depth(S)
and reg(S) = reg(R, S). ]

3.2 Depth and regularity in terms of generators and relations

The formal properties of depth and regularity are easiest to prove using local
cohomology. But when R is a graded polynomial ring, we want to relate
depth and regularity to simpler invariants, such as the degrees of generators
and relations of a module. For that purpose, we now reformulate depth and
regularity in terms of a projective resolution of a module. For finitely generated
modules, this can be done using Grothendieck’s local duality theorem [73,
theorem 11.29], but we want to avoid the assumption of finite generation.

Let R = k[y1, ..., y,] be a graded polynomial ring. Let M be an R-module
that is bounded below (meaning that M; = 0 for i less than some integer i).
Clearly M has aresolution by free modules, which are understood to be graded:

o> F - Fp—> M — 0.

We say that a free resolution is minimal if the associated k-linear maps
F;/mF; — F;_;/mF;_; are zero. (We repeat that m denotes the ideal R>0) By
Eilenberg, M has a unique minimal resolution up to isomorphism [37, propo-
sition 15, proposition 7]. By definition of the minimal resolution, the group
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Torf (k, M) is canonically identified with F;/mF;, the space of generators of
F; as a free module.
We use the Koszul resolution [149, corollary 4.5.5]:

Lemma 3.11 Let R be the polynomial ring R = k[yi, ..., y,] over a com-
mutative ring k. Consider k as an R-module with y; acting by zero on k for all
i. Then k has a free resolution of the form:

Explicitly, let e(I) be basis elements for R®() indexed by the a-element subsets
I of {1, ..., n}. Then the differential is

d(e(iy - +ig)) = Y (=1 yjeliy--i;--+ia)
j=1

forip < ... <,

The Koszul resolution immediately implies the Hilbert syzygy theorem in
our setting [149, theorem 4.3.8].

Theorem 3.12 (Hilbert syzygy theorem) Let R = k[yy, ..., y,] be a graded
polynomial ring over a field k. Let M be a bounded below R-module. Then M
has a free resolution of length at most n.

Proof By the Koszul resolution (Lemma 3.11), Torfe (k, M) is zero for all
i > n. By the discussion of minimal resolutions above, it follows that the
minimal resolution of M has length at most 7. O

For later use, we give the following characterization of regular sequences.

Lemma 3.13 Let M be a bounded below module over a commutative graded

k-algebra R. Let yy, ..., Yy, € m. The following are equivalent.
(1) y1, ..., yu is an M-regular sequence.
(ii) M is a flat kly1, ..., y,]-module.
(iii) M is a free k[y1, ..., y,]-module.
Proof Let S be the graded polynomial ring k[yy, ..., y,]; then M is an S-
module. Suppose that yy, ..., y, is an M-regular sequence. Consider the short

exact sequence of S-modules
0= S/Gis-vsyim) = /G s yie) = S/, 3i) = 0
fori =1, ..., n. This gives a long exact sequence of Tor groups,

Torf(s/(ylv ~~»)’i—1)7 M) - TOrf(S/(yl, ~~7)’i)7 M)
= M/ yien) = MG Yie)
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It follows by induction on i that Torf(S/(yl, oY), M)=0fori =0,...,n
and j > 0, this being trivial fori = 0. Taking i = n, we find that Toer-(k, M) =
0 for j > 0.

It follows that the minimal resolution of M has length O; that is, M is a
free S-module. Conversely, if M is a free S-module, then yy, ..., y, is clearly
an M -regular sequence. Finally, if M is a flat S-module, then Torf(k, M)=0
for j > 0. Again, it follows using the minimal resolution that M is a free
S-module. O

Let M be a bounded below module over a graded polynomial ring R. Let
.-+ —> F| - Fy = M — 0 be the minimal resolution of M. By the isomor-
phism Tor;(k, M) = F; /mF;, the projective dimension pd(R, M) (the shortest
length of a projective resolution of M) is equal to the largest i such that F; £ 0
in the minimal resolution of M.

For a bounded below R-module M, let p;(R, M) be the maximum degree of
anonzero element of F; /mF; (possibly oo or —oo) in the minimal resolution of
M; equivalently, p;(R, M) is the maximum degree of a generator of F;. Define

Preg(R, M) = sup(pi(R, M) — i) — o(R),

where o (R) was defined in Definition 3.8. In view of Theorem 3.14, Preg does
not need a name of its own; it is simply another way to compute the regularity as
defined earlier, in the case of bounded below modules. In the common situation
where all the y; have degree 1, we have o(R) = 0, and so this definition of
regularity can be written without mentioning o (R).

Theorem 3.14 Let R = k[y1, ..., yu] be a graded polynomial ring. Let M
be a nonzero graded R-module that is bounded below. Then reg(R, M) =
Preg(R, M) and depth(R, M) + pd(M) = n.

We are interested in Preg(R, M) because it gives information about gen-
erators and relations of the R-module M, by its definition. In particular, the
R-module M is generated by elements of degree at most Preg(R, M).

Proof We first prove the formula for depth, due to Auslander-Buchsbaum for
M finitely generated [73, theorem 8.13]. We first show that depth(R, M) >
n — pd(M), that is, that H. (M) = 0 fori < n — pd(M). For pd(M) = 0, M is
a nonzero free graded R-module, and so this follows from the calculation that
H (R)isnonzeroif and only ifi = n.Forany pd(M), the upper bound for depth
follows by induction, using that a short exact sequence 0 — M; — M, —
M3 — 0 of R-modules gives a long exact sequence of local cohomology:

— HL(My) — H(My) — HL(M3) — HLF' (M) — .
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Conversely, suppose M is nonzero and has projective dimension d. By the
Hilbert syzygy theorem (Theorem 3.12), d is at most n. (In particular, d is
finite.) Next, the minimal resolution of M has F,; # 0. By the discussion of
projective dimension before Lemma 3.13, it follows that Tori',e (k, M) is not
ZEero.

By Cartan and Eilenberg, there is a canonical isomorphism

TorR (k, M) = Ext}; " (k, M)

for every R-module M and every integer i [27, exercise VIIL.7]. Indeed, if we
compute these groups using the Koszul resolution of k as an R-module (Lemma
3.11), then the two groups are the cohomology of the same chain complex (with
a shift in degrees). Both groups are graded, with the part of Tor; in degree j
corresponding to the part of Ext"~ in degree j — 3 _ |y;| = j — o(R) — n.

Therefore, Ext{e (k, M) is O for j < n — d and not zero for j =n — d. For
each ! > 0, the exact sequence 0 — m//m'*! — R/m'*! — R/m! — 0of R-
modules induces a long exact sequence of Ext groups,

Extyy ' (m'/m"™", M) — Exty “(R/m', M) — Ext} “(R/m'*', M).

We read off that the homomorphisms Ext"~¢(k, M) — Ext"~*(R/m?, M) —

- are all injective. Since R is noetherian, Lemma 3.2 gives that

HL(M) = h_:y Exth(R/m', M).
Therefore, we have H" 9(M)# 0. This completes the proof that
depth(R, M) + pd(M) = n.

Next, let us show that reg(R, M) < Preg(R, M). We know that Tor;(k, M)
is zero in degrees greater than Preg(R, M) + i + o(R), for all i. By Cartan-
Eilenberg’s isomorphism above, Ext’}{i (k, M) is zero in degrees greater than
Preg(R, M) + i — n, for all i. By the long exact sequence of Ext groups above,
it follows that H /(M) is zero in degrees greater than Preg(R, M)+ i — n,
for all i. This means that reg(R, M) < Preg(R, M).

Conversely, suppose that M is nonzero and has Preg(R, M) = r. First
suppose that r is finite. Then TorX(k, M) is zero in degrees greater than
r 4+ i+ o(R) for all i, and there is a j such that Torf(k, M) is nonzero in
degree r + j 4+ o(R). Equivalently, Ext','{i (k, M) is zero in degrees greater
than r +i — n for all i, and Ext’}{j (k, M) is nonzero in degree r + j — n. In
particular, Ext'}e_j _l(k, M) is zero in degrees greater than r + j + 1 — n, and
so Exty /= (m!/m!*!, M) is zero in degrees greater than r + j + 1 —n —1
(hence in degree r + j — n) for every positive integer /. (This uses that the
generators yy, ..., y, of the ideal m all have degree at least 1.) Considering the
exact sequence

Exty /' (m! /m'™!, M) — Ext} /(R/m!, M) — Exty /(R/m"*!, M)
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in graded degree r+ j —n, we find that the maps Ext’,’e_j (k, M) —
Exty /(R/m?, M) — - .- are all injective in degree r + j — n. It follows that
the direct limit, H,'fl_j (M),isnonzeroindegreer + j — n. Thusreg(R, M) > r.
That completes the proof that reg(R, M) = Preg(R, M) when Preg(R, M) is
finite.

Finally, suppose that Preg(R, M) is infinite; we will show that reg(R, M) is
infinite. The proof is similar to that for the finite case. Our assumption means
that there is a j such that Torf(k, M) is nonzero in arbitrary high degrees; note
that j must be in the set {0, 1, ..., n}. Let j be the maximum number with this
property. Then Ext';;j (k, M) is nonzero in arbitrarily high degrees, andn — j is
minimal with this property. Then there is an integer r such that Ext’;{j - (k, M)
is zero in degrees greater thanr + j + 1 — n (to be parallel with the notation in
the previous case of the proof). Then Ext',’{j ! (m! /m/*!, M) is zero in degrees
greater than r + j + 1 —n — [ (hence in degrees greater than r 4+ j — n) for
every positive integer /. By the exact sequence

Exty, /™ (m' /m*!, M) — Exty 7/ (R/m!, M) — Exty ' (R/m'*!, M),

the homomorphisms Ext’; / (k, M) — Exty ' (R/m?, M) — - - - are all injec-
tive in degrees greater than r + j — n. It follows that the direct limit, Hy, ' (M),
is nonzero in arbitrarily high degrees. So reg(R, M) = oo, as we want. O

Definition 3.15 Let R be a graded k-algebra (not necessarily commutative).
We say that R is Cohen-Macaulay if the local cohomology H. (R) is concen-
trated in one degree, where m is the maximal ideal of Z(R) and we consider R
as a module over Z(R).

This is a standard definition in the case of finitely generated commutative
k-algebras. We define the Cohen-Macaulay property in this generality because
we want to consider it for the F,-cohomology ring of a finite group, which
is only graded-commutative, and also to the mod p Chow ring of a finite
group, which is commutative but is only known to be generated in bounded
degrees over a polynomial subring (Theorem 5.2). In particular, the Chow ring
of a finite group is not known to be noetherian. (For rings not generated in
bounded degrees over a polynomial subring, Definition 3.15 is probably not
very meaningful.)

Lemma 3.16 Ler R be a graded k-algebra, not necessarily commutative. If R
is a free module with generators in bounded degrees over a graded polynomial
ring S contained in the center of R, then R is Cohen-Macaulay.

Proof Write S = k[xy,...,x,], with maximal ideal mg, and let m be the
maximal ideal of Z(R). The ideals mgZ(R) and m in Z(R) have the same
radical, by our assumption, and so R has the same local cohomology with



46 Depth and Regularity

respect to these two ideals. By the Independence Theorem, it follows that
H} R = H[ R forall i. Since R is a free S-module, we have H} R = 0 for
i # n. Therefore, R is Cohen-Macaulay in the sense of Definition 3.15. O

3.3 Duflot’s lower bound for depth

In this section, we prove Duflot’s lower bound for the depth of the cohomology
ring of a finite group [34], and generalize it to the Chow ring. Duflot’s theorem
has inspired a lot of work on group cohomology over the past 30 years, including
Theorem 9.1 in this book.

Depth is defined in Definition 3.5 for a module over a commutative graded
ring. The depth of the cohomology ring Hi; = H*(BG, F,) is understood to
mean its depth over the even-degree subring HZ', which is commutative. For
p = 2, the whole ring H{, is commutative, and this definition coincides with
the depth of H{ as a module over itself, by Lemma 3.10.

Theorem 3.17 Let G be a finite group, and let p be a prime number. Let S be
a Sylow p-subgroup of G and let C = Z(S)[p] be the p-torsion subgroup of the
center of S. Let ¢y, ..., {s be elements of H; = H*(BG, F) (of even degree
if p is odd) such that the restrictions of ¢, ..., {s form a regular sequence in
H}. Then ¢, ..., & is an Hf-regular sequence.

Proof We follow Carlson’s exposition [26, theorem 12.3.3] of Broto-Henn’s
proof [22]. We are given that H is a flat (or equivalently, free) F,[¢1, ..., &]-
module, by Lemma 3.13. Suppose we can show that the cohomology of a Sylow
p-subgroup H{ is a flat F, [y, ..., &]-module. Then it follows that H/; is a
flat F,[¢, ..., ¢]-module, because H; is a summand of H¢ as an H-module
via transfer (Section 2.5). Thus we have reduced to proving the theorem for G

a p-group.

Lemma 3.18 Ler G be a p-group. Let C be an elementary abelian subgroup
of the center of G. Then H{; is an H}-comodule.

Proof Since C is central in G, we have a group homomorphism C x G —
G defined by (c, g) — cg. The pullback homomorphism H — Hf, , =
H{ ®y, Hf; makes H; a comodule over the Hopf algebra H. O

We now prove Theorem 3.17, where we have arranged for G to be a p-group
and C = Z(G)[p]. Write

. * * * A~ pr*
a: Hg — He ®r, Hg = Heyg

for the pullback map associated to the homomorphism C x G — G, (c, g)
cg. Theinclusion G — C x Gby g > (1, g) gives arestrictionmap H, , —
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H(,. In terms of the identification H} ; = H{ ®F, H, this restriction map is
the obvious ring homomorphism

B: H ®F, H} — H{,
sending H % to zero. Since the composition G < C x G — G is the identity,
the composition
H; > HE ©, H; — H;

is the identity. Thus H is a summand of Hf ®F, H} as an Hj-module, where
we make H ®g, H into an Hi-module using o.

In particular, H¢; is a summand of H ®F, HfasanF,[¢y, ..., &]-module.
We can filter H' ®r, Hf by the F,[¢1, ..., {]-submodules Hf ®r, HZj, for

J = 0. The corresponding quotient modules can be identified with H: ®r, Hé,

with ¢y, ..., ¢ acting by 0 on Hé Since ¢j, ..., {; form a regular sequence
in Hf, Hf is a free F,,[{y, ..., {]-module by Lemma 3.13, and so these
quotients are free F,[{1, ..., {;]-modules. So, by induction, H ®F, H is
a free Fp[¢1, ..., {;]-module. Since Hg is a summand of Hj ®f, H; as a
graded F,[¢y, ..., {]-module, Hj is also a free F,[¢y, ..., ¢{]-module, by
Lemma 3.13. O

Corollary 3.19 Let G be a finite group and p a prime number. The depth of
H} = H*(BG,F,) is at least the p-rank of the center of a Sylow p-subgroup
of G.

Proof Let S be a Sylow p-subgroup of G, and let C = Z(G)[p], which is
isomorphic to (Z/p)° for some c. Let V be a faithful complex representation
of G, withn = dim(V). By Theorem 1.1, H/ is finite over H, and in fact over
Fylc1V,...,c,V]. By Lemma 3.10, since the ring H is Cohen-Macaulay,

there are elements ¢y, ..., ¢ in Fp[c(V, ..., ¢, V] that restrict to a regular
sequence in Hf. By Theorem 3.17, {1, ..., { is an H-regular sequence. By
Lemma 3.6, the depth of H is at least c. ]

We now generalize Duflot’s theorem on depth to the Chow ring.

Theorem 3.20 Let G be a finite group, p a prime number, k a field of char-
acteristic not p that contains the pth roots of unity. Consider G as an alge-
braic group over k. Let S be a Sylow p-subgroup of G and let C = Z(S)[p]

be the p-torsion subgroup of the center of S. Let {, ..., s be elements of
CH{, = CH*(BG)/p such that the restrictions of {1, ..., ¢ form a regular
sequence in CH}. Then ¢y, ..., { is a regular sequence in C H,.

The proof is essentially the same as for cohomology. Some details are:
The assumption on k implies that C = (Z/p)° has Chow ring CH} =
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F,[y1,..., y.]. This is slightly different from H, but the argument is unaf-
fected by the change. The Kiinneth formula is not known for the Chow ring of a
product of two finite groups in general, but it is true when one factor is abelian
of exponent e and k contains the eth roots of unity (Lemma 2.12), which is
the case needed to show that C H§ is a C H}:-comodule. Finally, the F ,-vector
spaces C H_. are not known to be finite-dimensional, but the filtration argument
in the proof of Theorem 3.17 still works.

Corollary 3.21 Let G be a finite group, p a prime number, k a field of
characteristic not p that contains the pth roots of unity. Consider G as an
algebraic group over k. The depth of C H, is at least the p-rank of the center
of a Sylow p-subgroup of G.

Proof Let C be the p-torsion subgroup of the center of a Sylow p-subgroup
of G. We have C = (Z/p)° for some c. By the same proof as for Corollary
3.19, there are Chern classes in CH, ¢y, ..., {., which restrict to a regu-
lar sequence in CHj =F,[yi, ..., y.]. By Theorem 3.20, ¢, ..., ¢, form a
regular sequence in C Hj. By Lemma 3.6, the depth of CH(; is atleast c. [
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Regularity of Group Cohomology

We now prove Symonds’s theorem on the regularity of group cohomology, and
its consequences for the degrees of generators and relations.

4.1 Regularity of group cohomology and applications

Theorem 4.1 (Symonds [130]) Let p be a prime number. Let N be a smooth
manifold with finite-dimensional F ,-cohomology. Let G be a compact Lie group
acting on N. Then the equivariant cohomology ring Hi;(N, F ) (graded with
H' in degree i) has regularity at most dim(N) — dim(G).

In particular, for a finite group G, the cohomology ring Hj; = H*(BG, F,)
has regularity at most zero. Moreover, Benson and Carlson showed that H
has regularity at least zero, using a spectral sequence they constructed from
a system of parameters in Hj. The key point is a duality on that spectral
sequence, analogous to Poincaré duality [13, theorem 4.2]. Combining the
results of Benson-Carlson and Symonds gives:

Corollary 4.2  For a finite group G and a prime number p, the graded ring
H}, = H*(BG,F)) has regularity equal to zero.

The fact that Hf; always has regularity equal to zero is an impressively sharp
result. For example, if G is a finite group such that H¢; is a finitely generated
free module over a polynomial ring F,[y] in one variable, then Corollary 4.2
says that the highest-degree module generator has degree equal to |y| — 1.
(This case of Corollary 4.2, where H(; is Cohen-Macaulay, was proved earlier
by Benson and Carlson [12, vol. 2, theorem 5.18.1].) We see this behavior in the
cohomology ring of a cyclic group of order an odd prime p, Hy,, = F,(x, y)
(the free graded-commutative algebra) with |x| = 1 and |y| = 2, and also in

49
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the cohomology of the symmetric group, H;p =F,(x,y) with [x| =2p -3
and |y| =2p — 2.

The most dramatic applications of Theorem 4.1 are the bounds it gives for
the generators of the cohomology ring of a finite group, such as the following.
No bound was known before Symonds’s work.

Corollary 4.3 (Symonds) Let G be a compact Lie group (for example, a
finite group) with a faithful complex representation V of dimension n. Let p
be a prime number. Then the cohomology Hf = H*(BG,F,) is generated
as a module over the polynomial ring Hy,, = Fylc1V, ..., c,V] by elements
of degree at most n*> — dim(G). It follows that the cohomology ring HE is
generated by elements of degree at most max(2n, n> — dim(G)).

Moreover, the relations among the ¥,[c1V, ..., c,V]-module generators
for Hf; are in degrees at most n? 4+ 1 — dim(G). It follows that the relations in
H(, as an'F ,-algebra are in degree at most max(2n, n? + 1 —dim(G), 2(n* —
dim(G))).

As Symonds pointed out, Corollary 4.3 implies that the mod p cohomology
ring of a nontrivial finite group G, for any prime number p, is generated by
elements of degree at most |G| — 1. But for most groups of interest, applying
Corollary 4.3 directly gives a much better bound than |G| — 1. For that reason,
this book seeks optimal bounds for the cohomology and Chow ring of a finite
group in terms of the dimension of a faithful complex representation, rather
than in terms of the order of the group.

Proof (Corollary 4.3) We are given a faithful representation G C U(n). By
Venkov (Theorem 1.1), H¢; is a finitely generated module over

Hyy =FplaiV,....c, V]

In the notation of Definition 3.8, the graded polynomial ring H, has
o(Hj,) = 3" ,(2i — 1) = n?. By Theorem 4.1, H}, has regularity at most
—dim(G) as a module over Hj, . By the interpretation of regularity in
Theorem 3.14, it follows that Hg is generated as a module over Hj,, by
elements of degree at most o (Hy,)) — dim(G) = n? — dim(G). It also fol-
lows that the relations among these module generators are in degree at most
o(Hl’;(n)) — dim(G) + 1 = n* — dim(G) + 1. This implies the statements we
want about generators and relations for Hj as an F ,-algebra. O

4.2 Proof of Symonds’s theorem

Using the formal properties of regularity, together with some basic arguments
on equivariant cohomology used by Quillen, Symonds’s proof quickly reduces
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the problem of bounding the regularity of H(; for any compact Lie group G
to the problem of bounding the regularity of H; M, for an elementary abelian
group A acting on a smooth manifold M. The latter problem is handled by a
theorem of Duflot on actions of elementary abelian groups (not to be confused
with her theorem on depth, Corollary 3.19). We also prove Duflot’s theorem.

Proof (Theorem 4.1) Write H}, for H*(BG, F,). Choose a faithful rep-
resentation G C U(n). We need the following variant of Venkov’s theorem
(Theorem 1.1).

Lemma 4.4 Let N be a smooth manifold such that N has finite-dimensional
F ,-cohomology. Let G be a compact Lie group acting on N. Let G C U(n)
be a faithful representation. Then HFN is a finitely generated module over
H§(11) =F,lci,...,cnl

Proof We can view the homotopy quotient N//G = (N x EG)/G as adou-
ble quotient G\(N x U(n))/U(n), where G acts on N and by left multiplication
on U(n), and U(n) acts trivially on N and by right multiplication on U (n) (so
the two actions commute). Thus we have a fibration

(N x U(n))/G — N//G — BU(®n).

Here (N x U(n))/G is a finite-dimensional manifold, and it has finite-
dimensional F,-cohomology in each degree using the Leray-Serre spectral
sequence

H*(BG, H*(N x U(n))) = H*((N x U(n))/G).

So (N x U(n))/G has finite-dimensional F ,-cohomology. The same argument
as in Venkov’s theorem (Theorem 1.1), applied to the fibration above, gives
that HXN = H*(N//G) is a finitely generated H*BU (n)-module. O

Thus we know that HX N is finitely generated as an F[cy, ..., ¢,]-module,
and we want to show that it has regularity at most dim(N) — dim(G) as an
F,[ci, ..., c,]-module. (By the properties of regularity (Lemma 3.10), this
property of HjN does not depend on the choice of faithful representation
G CcUm).

Let T be the subgroup (S Yy ¢ Un) of diagonal matrices, and S = (Z/p)"
the p-torsion subgroup of 7. The cohomology ring of the flag manifold
U(m)/T is well known: H*(U(n)/T) is the quotient of the polynomial

ring Fp[y1, ..., y,] with |y;| = 1 by the elementary symmetric polynomials
ci, ..., cy. For example, this follows from the spectral sequence of the fibra-
tion

Un)/T — BT — BU®),
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or by viewing U(n)/T as an iterated projective bundle as in the proof of
Theorem 2.13. Let Ly, ..., L, be the complex line bundles on U(n)/T given
by the obvious 1-dimensional representations of 7. The quotient manifold
U(n)/S is the principal (S 1y _bundle over U(n)/T corresponding to the pth
powers of the line bundles Ly, ..., L,. The first Chern classes of these pth
power line bundles are zero in H>(U (n)/T), since we are using F » coefficients.
So, applying the spectral sequence for the cohomology of an S'-bundle n times,
we find that for p odd,

H*(U(n)/S) = H*UMm)/T){x1, ..., xn),

where |x;| = 1fori =1,...,n.(Forp = 2,xi2 may not be zeroin H*(U (n)/S),
but it is enough for what follows that H*(U(n)/S) is a free module over
H*(U(n)/T) with basis elements [[,_; x; for all subsets I C {1,...,n}.) In
particular, the highest degree in which H*(U(n)/S) is nonzeroisn> —n +n =
n?. (That is also clear from the fact that U (n)/S is a closed orientable manifold
of dimension n2.)

Since G C U (n), the group G acts on the quotient manifold U(n)/S and also
on the given manifold N.

Lemma4.5 Hi(N x U(n)/S) is a free HE N -module with top generator in

degree n>.

This was proved by Quillen [113, lemma 6.5].

Proof  First consider Hf(N x U(n)/T), which we can view as the cohomol-
ogyringof Y := G\(EG x N x U(n))/T. This double quotientisa U(n)/T-
bundle over N//G = G\(EG x N), so its cohomology ring is the same as
that of a flag bundle (a U(n)/T-bundle) over N//G. Such a bundle is an
iterated projective bundle (corresponding to a sequence of vector bundles),
as in the proof of Theorem 2.13, and so its cohomology ring is known: it is
H*(BG)[y1, ..., ynl/(ei(¥1, ..., Yu) = c;) where |y;| = 2, e; denotes the ith
elementary symmetric function, and ¢; is the ith Chern class of the given
representation G — U(n). Next, Hj(N x U(n)/S) is the cohomology ring
of G\(EG x N x U(n))/S, which is a principal (S')"-bundle over Y, corre-
sponding to the pth powers of the obvious line bundles Ly, ..., L, on Y (with
Chern classes yi, ..., yu). So, for p odd, Hj;(N x U(n)/S) is the tensor prod-
uct of the previous ring with the free graded-commutative algebra on generators
X1, ..., X, indegree 1. So

HG(N x Un)/S) = (HGN) (X1, - X, V1o ooy Yu) /(€Y1 - ooy Yn) = €i).

(For p =2, we have the usual variation: H5(N x U(n)/S) is a free module
over HEN[y1, ..., yul/(ei(¥1, ..., ¥u) = ¢;) with basis elements ]_[,.61 x; for
all subsets / of {1, ..., n}.) Thus HE(N x U(n)/S)is afree H:N-module with
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basis elements corresponding to a basis for the F,-vector space H*(U(n)/S).
In particular, the top generator is in degree n”. O

By Lemma 4.5 and the interpretation of regularity in terms of a minimal
resolution (Theorem 3.14),

reg(HL(N x U(n)/S)) =reg(HEN) + n’.

So Theorem 4.1 reduces to showing that reg(HZ(N x U(n)/S)) < dim(N) +
n’> — dim(G). Here we are viewing HE(N x U(n)/S) as an Fplcy, ..., cql-
module via the homomorphism F,[ci, ..., c,] = H¢, but it is isomorphic
to H{(G\(N x U(n))), and so we can also view it as an H{-module. It is
generated in bounded degrees over both rings, by Lemma 6.3. Therefore, the
properties of regularity imply that it has the same regularity over both rings.
Thus it suffices to show that

reg(HE(G\(N x U(n)))) < dim(N) + n? — dim(G).

Atthis point, the group G disappears from the problem; it suffices to show that
reg(HgM) < dim(M) for every action of an elementary abelian p-group S =
(Z/p)" on a manifold M with finite-dimensional F,-cohomology. (Apply this
to the manifold M = G\(N x U(n)).) This will follow from Duflot’s theorem
on actions of elementary abelian groups [35], which we now prove.

For any compact Lie group K acting on a smooth manifold M, the fixed point
set MX is a smooth submanifold. (One can choose a K -invariant Riemannian
metric on M, and then the exponential map at a point p € MX identifies a
neighborhood of zero in (7, M)X with a neighborhood of p in MX.) Filter M
by the closed submanifolds MV for the various subgroups V C S. Let M; be
the closed subset of points with isotropy group in S of rank at least i, and let
M) be the open subset of M; consisting of points with isotropy group of rank
equal to i. For each d > 0, let M(;) 4 be the union of the connected components
of M(; with codimension d in M. Duflot’s theorem is:

Theorem 4.6 There is a short exact sequence of Hg-modules
0 — ©gH; (Mgy.a) = HEM — M) — Hiy(M — M;) — 0.

Proof This is part of the long exact localization sequence for equivariant
cohomology. One detail is that in order to write the first group as we have
(without twisted coefficients), we need to observe that the normal bundle of
Mgy in M is orientable when p is odd. (For p = 2, there is no issue about
orientability.) That holds because the normal bundle to a connected component
of MV, for a subgroup V = (Z/p)’ of S, is a real representation of V with no
trivial summands, and such a representation can be given a complex structure
in a canonical way, when p is odd.
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All we need to prove is the injectivity of the first homomorphism. (This will
imply the surjectivity of the last homomorphism, by the long exact sequence.)
It suffices to prove that pushing forward from [ [ M) 4 to M — M, and then
pulling back gives an injection on equivariant cohomology groups. Since the
restriction of cycles on one connected component of M;) to another component
is zero, it suffices to show for each subgroup V C S of p-rank i that pushing
forward from the subspace (M — M; )" fixed by V to M — M;, and then
pulling back gives an injection on equivariant cohomology groups. The result
of pushing forward from a smooth closed submanifold and then pulling back
is multiplication by the Euler class of the normal bundle [106, theorem 11.3].
(For a complex vector bundle, the Euler class is the top Chern class; when
p = 2, we define the Euler class of a real vector bundle in F,-cohomology to
be the top Stiefel-Whitney class.) Thus, it suffices to show that the Euler class
of the normal bundle to X := (M — M;,)" in M — M, is not a zero divisor
in Hy (M — M;)").

Since S = (Z/p)", we can choose a splitting S = V x W for the subgroup
V C S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

Hg(X) = (H*(X/W)(x1, .o X, Y1y oo ),

where |x;| =1, |y;| =2, and y,...,y, are the first Chern classes of 1-
dimensional representations of V = (Z/p)*. (This is for p odd; for p =2,
the elements x; are polynomial generators in degree 1, and y; = xiz.)

Let N be the normal bundle to X in M — M;;, which is an S-equivariant real
vector bundle on X, with a canonical complex structure for p odd. Because X
is the whole fixed point space in M — M, for the subgroup V, the sub-bundle
of N fixed by V is 0. Thus, if the isotypic decomposition of N with respect to
Vis N = @4 E, for « € Hom(V, S') = (Z/p)", then Ey = 0. Note that each
E, is an S-equivariant subbundle of the normal bundle N, because S commutes
with its subgroup V. The Euler class x () is the product of the Euler classes of
the subbundles E,, and so it suffices to show that y (E,) is a non-zero-divisor
in H{X for each & # 0 in Hom(V, sh.

Let L,, be the 1-dimensional complex representation of S given by projecting
S =V x W to V and applying the representation @ of V. Let F, = E, ® L.
Then F, is an S-equivariant vector bundle on X on which the subgroup V acts
trivially. Therefore, the Chern classes of F, lie in the subring H*(X/ W) of

H;(X) = (H*(X/W))(X], ~'-7xv’ )’1,~~,)’v>,

with the variation for p = 2 as above. The first Chern class of L, is a nonzero
F,-linear combination of yi, ..., y,, and so, after a change of basis for V, we
can assume that c;(Ly,) = y;. Write m for the rank of the bundle E,. Since
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E, =F, ® L,, we have
X(Eq) = ¥+ ci(F)y) ™ + -+ + cu(Fa),

by the formula for the Chern classes of the tensor product of a complex vector
bundle with a complex line bundle. (For p = 2, we use the analogous formula
for the top Stiefel-Whitney class of the tensor product of a real vector bundle
with areal line bundle.) Since this is a monic polynomial, it is a non-zero-divisor
in H{(X), as we want. O

For a subgroup V of S, let MY be the locally closed submanifold of M of
points with stabilizer equal to V. By Theorem 4.6, we have a filtration of H(M)
by finitely many H¢-submodules such that the subquotients are isomorphic to
Hi(M™)) for the subgroups V of S, shifted in degree by the codimension of
each connected component of M) in M. By the basic properties of regularity
in Lemma 3.9, it follows that

reg(Hy, Hi(M)) < r‘glgz{reg(H*, HiM™Y) + codim(M") c M)}.

So Theorem 4.1 follows if we can show that for each subgroup V of S, Hi(M"))
has regularity at most dim(M) — codim(M") ¢ M) = dim(M")) as an H¢-
module.

Choose asplitting S = V x W for the subgroup V C S = (Z/p)". The group
V acts trivially on MY while W acts freely, and so we have

HI M) = (H* MY J W) X1, ooy Xy V1o os Vo),

with the usual variant for p = 2. This is a finitely generated free module over
the polynomial ring F,[yi, ..., y,], with top generator x; - --x, (in degree
v) times a top-degree element of H*(MY)/W). By Lemma 3.10, the regu-
larity of Hi(M")) over H} is equal to its regularity over F,[y;, ..., y,]. In
terms of Definition 3.8, the graded polynomial ring F,[yy, ..., y,] has o equal
to v. By Theorem 3.14, the regularity of Hi(M")) is equal to its top degree as
afree F)[yi, ..., y,]-module, minus v. That is equal to the top degree of the
F ,-cohomology of the manifold M)/ W, which is at most the dimension of
MY, as we want. O
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Generators for the Chow Ring

Although Chow rings of classifying spaces are more mysterious than coho-
mology rings, one aspect of the Chow ring was understood earlier. In the
1990s, I showed that the Chow ring of a group with a faithful representation of
degree n was generated in degrees at most n?> (Theorem 5.1). The proof was
much simpler than the proof of Symonds’s 2010 regularity theorem for group
cohomology, which gave an analogous bound on generators for group coho-
mology (Corollary 4.3).

In this chapter, we improve the bound on the degree of generators for the
Chow ring by about a factor of 2, to n(n — 1)/2 (Theorem 5.2). The proof is
still simple. Later we will bound the regularity of the Chow ring (Theorem 6.5).
That is a stronger result — for example, it gives information about relations as
well as generators — but the proof is more complicated.

We give examples to show that the bound n(n — 1)/2 for generators of the
Chow ring is optimal, and that Symonds’s bound n? for generators of the
cohomology ring is at least close to optimal, among arbitrary finite groups.

5.1 Bounding the generators of the Chow ring

The following bound goes back to the 1990s [138, theorem 14.1]. We prove a
slight generalization as Lemma 6.3.

Theorem 5.1 Let G be an affine group scheme over a field k with a faithful
representation V of dimension n. Then

CH*GL(n)/G = CH*BG/(c\V,...,cuV).

As a result, CH*BG is generated as a module over the Chern classes
Z(c1V, ..., c.V]by elements of degree at most n> — dim(G). It follows that the
ring CH* BG is generated by elements of degree at most max(n, n> — dim(G)).

56
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At the time, no bound was known for the generators of the cohomology ring
of a finite group. It is remarkable that Symonds found a very similar bound
for the cohomology in 2010, Corollary 4.3 in this book. (Note that there is no
essential difference between compact Lie groups and complex algebraic groups
for homotopy-theoretic purposes. Every complex algebraic group is homotopy
equivalent to a maximal compact subgroup, and conversely the inclusion from
any compact Lie group to its complexification is a homotopy equivalence.)

It turns out that Theorem 5.1 can be improved by about a factor of two, as
follows. The improved bound turns out to be optimal. We concentrate on the
case of finite groups.

Theorem 5.2 Let G be an finite group with a faithful representation V of
dimension n over a field k with |G| invertible in k. Then, with G considered
as an algebraic group over k, the Chow ring CH*BG is generated as a
module over the Chern classes L[c\V, ..., c,V] by elements of degree at most
n(n — 1)/2. A fortiori, the ring C H* BG is generated by elements of degree at
most n ifn < 2, and at most n(n — 1)/2 if n > 3.

Proof By Theorem 5.1, it suffices to show that CH (GL(n)/G) =0 for
i > n(n — 1)/2. The homogeneous variety G L(n)/ G has dimension n%, and so
this is not immediately clear. But the proof turns out to be straightforward.

Let U be the group of strictly upper-triangular matrices in GL(n). The
homogeneous space U\GL(n) is a quasi-projective variety [147, pp. 122—
123], and so its quotient by the finite group G is a quasi-projective variety [32,
2nd ed., remarque V.5.1].

The group U has dimension n(n — 1)/2, and has a filtration by normal
subgroups with all quotients being the additive group G, over k. Since |G|
is invertible in k, the intersection of U with any conjugate of G is trivial.
Equivalently, G acts freely on U\ G L(n). So the quotient variety U\GL(n)/ G
is smooth.

We have a principal U-bundle GL(n)/G — U\GL(n)/G. The pullback
map CH*(U\GL(n)/G) — CH*(GL(n)/G) is an isomorphism. Indeed, this
follows by viewing this principal U-bundle as the composite of a sequence of
principal G,-bundles. The pullback on Chow rings associated to a principal
G ,-bundle over a smooth variety is an isomorphism, by homotopy invariance
of Chow groups (Lemma 2.2).

Therefore, we have CH!(GL(n)/G)=0 for i > n(n+1)/2, since
U\GL(n)/G has dimension n(n + 1)/2. We want to go further by n. Let
T be the group of diagonal matrices in GL(n), so that T = (G,,)". Since T
normalizes U, T acts on the variety U\GL(n)/G, by t(UxG) = UtxG. This
action is not free; indeed, every element of G is conjugate in G L(n) to some
element of T'.
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Nonetheless, the action of 7 on U\GL(n)/G has finite stabilizer groups,
since G is finite. Applying the following easy lemma completes the proof. [J

Lemma 5.3 Let X be a smooth variety over a field k. Let T be a split torus
that acts on X with finite stabilizer groups. Then CH'X = 0 fori > dim(X) —
dim(T).

Proof The T-action on X has only finitely many different stabilizer group
schemes in 7. Stratify X according to the possible stabilizer groups. The strata
are smooth, because the fixed points of any finite subgroup scheme of T on
X form a smooth subscheme. By the basic exact sequence of Chow groups
(Lemma 2.1), the lemma reduces to the special case where T acts on X with
the same finite stabilizer group A everywhere. Here 7'/ A is a split torus, and
so we have reduced to the case where a split torus 7 acts freely on a smooth
variety X. That is, X is a principal (G,,)"-bundle over a smooth variety B, for
some n.

It suffices to show that the pullback CH*B — C H*X is surjective, since B
has dimension dim(X) — dim(7"). This surjectivity follows by induction from
the case of a principal G,,-bundle X — B; thatis, X is the complement of the
zero section in the total space of a line bundle L over B. In that case, we have

CH*(X) = CH*(B)/(c/L)

by Lemma 2.4, which gives the surjectivity. (Alternatively, we could handle a
principal (G,,)"-bundle in one step, by viewing it as an open subset of a vector
bundle.) O

The same proof, with G L(n) replaced by a product of groups G L(n;), gives
the following sharper bound when the given representation is reducible. This
will also follow from a later result, Theorem 6.5, which strengthens Theorem
5.2 to abound on the regularity of the Chow ring, along the lines of Symonds’s
results on the cohomology ring.

Theorem 5.4 Let G be an finite group with a faithful representation V of
dimension n over a field k with |G| invertible in k. Write V as a direct sum of
irreducible representations V; of dimension n;, 1 <i <s. Then, with G con-
sidered as an algebraic group over k, the Chow ring C H* BG is generated as a
module over the Chern classes Zlc;j(V;) : 1 <i <s, 1 < j < n;] by elements
of degree at most y_, ni(n; — 1)/2. A fortiori, the ring C H*BG is generated
by elements of degree at most max(ny, ..., ny, Zi n;(n; —1)/2).

For completeness, we mention the analogous bound for cohomology. This is
immediate from Symonds’s regularity theorem, Theorem 4.1.
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Theorem 5.5 Let G be an finite group with a faithful complex representation
V of dimension n. Write V as a direct sum of irreducible representations V;
of dimension n;, 1 <i <s. Then the cohomology ring H}; = H*(BG,F),) is
generated as a module over the Chern classes F[c;(V)): 1 <i <s, 1 <j <
n;] by elements of degree at most ), ”12 A fortiori, the ring Hf, is generated
by elements of degree at most max(2ny, ..., 2ng, Zi nl.z).

5.2 Optimality of the bounds

In this section, we show that the bound n(n — 1)/2 in Theorem 5.2 for gen-
erators of the Chow ring is optimal. We also show that Symonds’s bound n?
for generators of the cohomology ring (Corollary 4.3) is at least close to being
optimal.

We first show that the bound n(n — 1)/2 for generators of CH*BG as a
ZlcV,...,c,V]-module is optimal. Write C H; for CH*(BG)/p, for a fixed
prime number p. Let G be the group (Z/p)", for any positive integer n and
any prime number p. Then G has a faithful complex representation V of

dimension #n, the direct sum of 1-dimensional representations Vi, ..., V,. In
this example, C H/; is the polynomial ring F,,[y1, ..., y.], |yi| = 1, where the
y; are the first Chern classes of the representations Vi, ..., V,. The pullback
homomorphism CHgL(n) =F,lci,...,cu] = CH( sends cy,...,c, to the
elementary symmetric polynomials in yj, ..., y,.

It is a classical algebraic fact that the ring of all polynomials R[yy, ..., y,]

over any commutative ring R is a free module over the subring of symmet-
ric polynomials, with module generators yi" sy for 0 <a; <i—11[19,
theorem IV.6.1]. In particular, the highest-degree generator y, y32 <oy lisin
degree n(n — 1)/2. Thus the bound n(n — 1)/2 for the degree of module gen-
erators of CH{ over F,[c|V, ..., c,V] (Theorem 5.2) is optimal, for every
positive integer n and every prime number p.

This example is unsatisfying in some respects. First, as a ring, C Hf; is gen-
erated in degree 1, and so this example is not interesting if we just look at
CH{ as a ring. Second, the representation V is reducible, and so it seems
artificial to view it as a module over the Chern classes of the whole repre-
sentation V =V @ --- @ V,,. It is more natural to view CH} as a module
over F,[c1V1,...,c1V,]; Theorem 5.4 shows that this module is generated
in degrees at most »_;_, 1(1 — 1)/2 = 0, which is clearly more useful. But it
leaves open the question of how good the bounds of Theorem 5.2 are for V
irreducible.

Both of these criticisms are answered by the following example. Let G be
the wreath product A, Z/p = A, X (Z/p)", for any n > 3 and any prime
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number p. Here A, denotes the alternating group. Then G has a faithful
irreducible complex representation of dimension n. (Indeed, G is contained
in the normalizer S, : G,, of a maximal torus in G L(n).)

What can we say about algebra generators for C H? Consider the restriction
map

CH; — (CH

A,
z/py)

=F i, .o Yal™
=Fyler,...,ci ]l ®@D-Fyler, ..., el

Here we define

—1 2
D= Z Yoy Yo@) *** Yotu-1)s

o€A,

which is a polynomial of degree n(n — 1)/2. This description of the invariants
of the alternating group is classical [10, p. 104]. For p odd, we could use the
square root of the discriminant, A = [, _ ;i — yj),inplace of D as a generator
of the invariants of the alternating group, but D works in any characteristic p.

Hn(nfl)/Z

—1.n-2
Ty oy, from C Z/py to

Let u be the transfer of the class y{™ y;

C Hg("_l)/ ?. Then the restriction of u to C H, 18 the sum of all conjugates
of y{~'y3~%...y,_ by the elements of G/(Z/p)" = A, (Lemma 2.15). This
sum is exactly the class D. Here D is not in the subring generated by lower-
degree A,-invariants, since they are S,-invariant while D is not. Therefore u is
indecomposable in the ring C H, and it has degree n(n — 1)/2.

Thus the group G = A, { Z/ p shows that the degree bound n(n — 1)/2 from
Theorem 5.2 for generators of the mod p Chow ring of a finite group is optimal,
for all n > 3 and all prime numbers p. Moreover, the faithful representation of
dimension # is irreducible, in this example.

The same group shows that Symonds’s bound n? for generators of the mod
p cohomology ring of a finite group (Corollary 4.3) is at least close to being
optimal. Let n > 3 and let p be a prime number. For p odd, let G be the wreath
product A, Z/p = A, X (Z/p)"; for p = 2, define G to be the wreath product
A, Z/4 instead. Let N be the normal subgroup (Z/p)" for p odd, or (Z/4)"
for p = 2. The group G has a faithful irreducible complex representation of
dimension n.

What can we say about generators of the ring H := H*(G,F,)? Consider
the restriction map

H} — (Hi)™

~ Ay
:Fp(-xlz~-~7-x111y17'-'7yn) .
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Here the elements x; have degree 1 and generate an exterior algebra, while
the elements y; have degree 2 and generate a polynomial algebra. We needed
to define N to be (Z/4)" rather than (Z/2)" when p =2 in order to have
this description of Hy. The elements yi, ..., y, are the first Chern classes of
1-dimensional complex representations of N.

Here A, permutes the generators x; and the generators y;. Therefore, the
ring homomorphism from Hy to F,[y1, ..., y,] that sends each x; to zero is
Ap-equivariant. So we have a ring homomorphism

Fo(Xt, ooy Xy Y1y ee oy Yu)™ = Fplyr, oo, yal™
;FI;[Cl,...,Cn]@D-FP[Cl,...,Cn],

where D =Y, _\ Yo\ Veg, +* Yom—1)- Here D is in degree n(n — 1) = n* —
n, since the elements y; are in degree 2 in cohomology.

We constructed an element u in the Chow ring of G, as an explicit transfer,
whose restriction to the Chow ring of N is the class D. Therefore, we have a
cohomology class u in Hg;z*” whose restriction to N is the cohomology class
D. The element D is indecomposable in the invariant ring F,[yy, ..., yal2,
because the lower-degree elements are S,-invariant and D is not. Therefore, u
is indecomposable in the cohomology ring of G.

Thus the group G = A, Z/p, or G = A, : Z/4 for p = 2, shows that the
degree bound n? from Corollary 4.3 for generators of the mod p cohomology
ring of a finite group is nearly optimal, for all » > 3 and all prime numbers p.
Namely, we need an algebra generator in degree n?> — n, at least. The faithful
representation of dimension # is irreducible in this example.
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Regularity of the Chow Ring

We prove here that the mod p Chow ring of any finite group scheme G has
regularity at most zero (Theorem 6.5), as Symonds proved for the cohomology
ring. The result has an assumption on the characteristic of the base field,
probably unnecessary. The proof is closely analogous to Symonds’s argument,
using an analog of Duflot’s theorem (on actions of elementary abelian groups)
for Chow rings. We also prove analogous bounds for the regularity of motivic
cohomology, which includes the Chow ring as a special case.

The regularity theorem implies our earlier bound on degrees of the generators
for the Chow ring, Theorem 5.2, but it is more powerful. For example, the
regularity theorem also bounds the degrees of relations in the Chow ring. The
rest of the book uses the regularity theorems for calculations as well as to prove
general results on Chow rings and cohomology rings.

Section 6.2 summarizes the properties of motivic cohomology, a natural
generalization of the Chow ring. We use motivic cohomology in the proofs of a
few later results about Chow rings, notably Yagita’s theorem, which computes
the Chow ring of a finite group up to F-isomorphism, Theorem 8.10. Theorem
6.10 proves the bound “regularity < 0” for the motivic cohomology of a finite
group, generalizing the case of the Chow ring (Theorem 6.5). Theorem 6.10 is
not used in the rest of the book.

6.1 Bounding the regularity of the Chow ring

Definition 6.1 Let R be a commutative graded algebra, or a graded-
commutative algebra, over a field k. We assume that R, = k. Let k be an alge-
braic closure of k. Define o (R) to be the minimum of the numbers  ,(|y;| — 1)
over all homomorphisms from graded polynomial rings T = k[y, ..., y,] to
R ®; k such that R ® k is generated as a T-module by a set of elements of
bounded degree.

62
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For the purpose of this book, we could have defined o (R) without the field
extension to k. But o (R) as defined here is potentially a smaller number because
of the field extension. Since our estimates of degrees of generators for group
cohomology will involve the number o (R) for suitable rings R, it may be
convenient to know that it suffices to find systems of parameters (roughly
speaking) for these rings after a field extension.

The definition of o (R) might be considered to be artificial; it does not have
a cohomological interpretation, as invariants such as depth or Castelnuovo-
Mumford regularity do. Nonetheless, it has one very convenient formal prop-
erty: if R — S is a homomorphism of graded rings such that S is generated as
an R-module by elements of bounded degree, then o' (S) < o (R). This is imme-
diate from the definition. (Note that it is crucial for this inequality to allow the
polynomial ring in the definition of o' (R) to have higher dimension than R.) We
deduce the following inequality for Chow rings and cohomology. Fix a prime
number p and write CHj; = CH*(BG)/p and H}, = H*(BG,F)).

Lemma 6.2 Let H C G be affine group schemes over a field k. Let p be a
prime number. Then o (CHJ;) < o(CH). Likewise, for compact Lie groups
H C G,o(H})) <o(HY).

Proof By the formal property of o mentioned previously, it suffices to show
that C H}, is generated over C H(; by elements of bounded degree, and likewise
for cohomology. Consider a faithful representation V of G of some dimension
n. Then CH}; is generated in bounded degrees as a module over the Chern
classes F,[ci, ..., cy] by Theorem 5.2 (or Theorem 5.1). A fortiori, C H},
is generated in bounded degrees as a module over C Hf;, as we want. The
same argument applies to cohomology, since Hj; is finitely generated as a
module over the Chern classes of a faithful complex representation, by Venkov
(Theorem 1.1). O

The following lemma, generalizing Theorem 5.1, will be used in the proof
of Theorem 6.5.

Lemma 6.3 Let G be an affine group scheme of finite type over a field k.
Let G act on a smooth variety X over k. Then CH}(X) is generated by
elements of bounded degree as a C H* BG-module. More strongly, for a faithful
representation G C G L(n), C Hi(X) is generated by elements of degree at most
dim(X) + n? — dim(G) as a Z[cy, . . ., c4]-module.

Proof It suffices to prove the second statement, that C H(X) is generated by
elements of degree at most dim(X) + n?> — dim(G) as a Z[cy, . . ., ¢,]-module.
Let Y = (X x GL(n))/G; then GL(n) actson Y, and CH;(X) = CHgy (Y.
So it suffices to show that if G L(n) acts on a smooth variety Y, then C H LY
is generated by elements of degree at most dim(Y’). This follows if we can
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prove the isomorphism
CH™Y = CHgy(,,(Y)/(c1, ..., cp),

since CH'Y =0 for i >dim(Y). By considering a finite-dimensional
approximation X to Y//GL(n), it suffices to show that CH*E =
CH*X/(c1V,...,c,V)when E is the principal G L(n)-bundle over a smooth
k-scheme X associated to a vector bundle V.

Let B be the subgroup of upper-triangular matrices in GL(rn). Then E/B is
the flag bundle FI(V) over X, whose Chow ring is computed in the proof of
Theorem 2.13:

CH*(E/B) = CH*X[y1, ..., yal/(ei(y1, ..., yn) = ciV),

where |y;| = 1 and e; denotes the ith elementary symmetric function, for i =
1,...,n. By the computation of the Chow ring of a principal G,,-bundle
(Lemma 2.4) plus homotopy invariance of Chow groups (Lemma 2.2),

CH*E = CH*(E/B)/(y1, -+ Yn)
=CH*X/(c1V,...,c,V). O

From now on, fix a prime number p and let C HZ X denote the equivariant
Chow ring modulo p. Lemmas 6.3 and 3.10 imply that the regularity of the
ring CH(Y for any smooth G-variety Y is equal to the regularity of CH.Y as
amodule over F[cy, ..., ¢,] for any faithful representation G C GL(n).

Estimating o (R) is useful when we know the regularity of a ring, for the
following reason.

Lemma 6.4 Let R be a graded algebra over a field k. Suppose that
reg(R) < 0. Suppose that the minimum in the definition of o(R) occurs for
a graded polynomial ring klyi, ..., y,]. Then R is generated as a k-algebra
by elements of degree at most max{|y;|, o(R)}, modulo relations in degree at
most max{|y;|, c(R) + 1, 20 (R)}. (Thus, if at least two elements y; have degree
at least 2, then the k-algebra R is generated in degree at most o (R) modulo
relations in degree 2 (R).)

Proof It suffices to show that R ®y k is generated as a k-algebra by elements
of degree at most o(R). Let R ®; k be generated as a module over a graded
polynomial ring T = z[yl, ..., Yu] by elements of bounded degree. Since R
(and hence R ®; k) has regularity at most zero, R ®; k is generated as a T-
module by elements z; of degree at most Y -, (|y;| — 1). Therefore the algebra
R ® k is generated by the elements y; and z j» which have degree at most
max{1yil, o (R)).

Since R ®; k has regularity at most zero, we also know that the relations
among the T-module generators z; are in degrees at most 1 + o(R). It is
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straightforward to deduce that the relations among the algebra generators y;
and z; for R ®; k are in degrees at most max{|y;|, c(R) + 1, 205(R)} [131,
proposition 2.1]. O

Theorem 6.5 Let G be a finite group scheme over a field k. Let p be a prime
number that is invertible in k. Then the ring CH}, = CH*(BG)/p (graded
with CH' in degree i) has regularity < 0.

The regularity of the Chow ring of a finite group can be less than 0, in contrast
to the cohomology ring (Corollary 4.2). For example, C H; /p = Fply], where
|y] = 1, has regularity zero, whereas the symmetric group S, has mod p Chow
ring F,[y], where |y| = p — 1, which has regularity —(p — 2). The Chow ring
of a p-group often has regularity zero, but Lemma 13.6 shows that the regularity
can be less than zero.

To get an idea of what Theorem 6.5 says, note that it immediately implies
Theorem 5.2: a finite group G with a faithful k-representation of dimension n
has C H* BG generated indegree at mostn(n — 1)/2asaZ[cy, ..., c,]-module,
once we know from Theorem 5.1 that this module is generated in a bounded set
of degrees. It suffices to bound the generators modulo p for each prime p, since
the groups C H'(BG) are killed by the order of G fori > 0. By Lemma 6.2,
the inclusion G C GL(n) implies that 0(G) < o (GL(n)) < Y. (lc;| — 1) =
Yo' —1)=n(n—1)/2. By Theorem 6.5, the ring CH} = CH*(BG)/p
has regularity at most 0, and so it is generated as an F,[cy, ..., ¢,]-module by
elements of degree at most n(n — 1)/2, as we wanted.

The original proof of Theorem 5.2 is simpler than the proof of Theorem
6.5. But Theorem 6.5 is more powerful, since it bounds the generators of
the Chow ring in terms of any set of elements over which the Chow ring is
generated by elements of bounded degree, not just the Chern classes of a faithful
representation. Also, Theorem 6.5 bounds the degrees of the relations in the
Chow ring, not only the generators.

Proof For clarity, we first prove Theorem 6.5 for G a finite k-group scheme of
order invertible in k. At the end, we explain the generalization to more general
finite group schemes.

Choose a faithful representation of G over k, G C GL(n). We know that
C H{ is generated in bounded degrees asan F ,[cy, . . ., ¢,]-module by Theorem
5.2 (or the weaker Theorem 5.1), and we want to show that it has regularity
at most 0 as an Fp[cy, ..., c,]-module. (By the properties of regularity, this
property does not depend on the choice of faithful representation.)

Let T be the subgroup (G,,)" C GL(n) of diagonal matrices, and S = (u,,)"
the p-torsion subgroup scheme of T. The quotient variety GL(n)/T is an iter-
ated affine-space bundle over the flag manifold GL(n)/B, and so its Chow
ring is well known: CH*(GL(n)/T)/p is the quotient of the polynomial
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ring F,[yi, ..., y,] with |y;| = 1 by the elementary symmetric polynomials
ci, ..., cy. This calculation is also immediate from Theorem 5.2. The quotient
variety GL(n)/S is a principal (G,,)"-bundle over GL(n)/T corresponding to
the pth powers of the line bundles L, ..., L, corresponding to the obvious
1-dimensional representations of 7. Therefore

CH*(GL(n)/S)/p = (CH*(GL(n)/T)/p)/(c(LS?), ..., ci(LEP))
~ CH*(GL(n)/T)/p.

In particular, the highest degree in which CH*(GL(n)/S)/p is nonzero is
nn —1)/2.
Since G C GL(n), the group G acts on the quotient variety GL(n)/S.

Lemma 6.6 CHZGL(n)/S is a free CHf-module with top generator in
degree n(n — 1)/2.

Proof This is a straightforward analog of Quillen’s Lemma 4.5. First con-
sider CH;(GL(n)/T), which we can view as the mod p Chow ring of
Y :=G\(EG x GL(n))/T. (To deal only with finite-dimensional varieties,
one can replace EG in this argument by an open subset W — Z of some
representation W of G such that G acts freely on W — Z and Z has high
codimension in W compared to the Chow groups we consider.) This double
quotient is a GL(n)/T-bundle over BG, so its Chow ring is the same as that
of a flag bundle (a GL(n)/B-bundle) over BG. Such a bundle is an iterated
projective bundle (corresponding to a vector bundle), and so its Chow ring is
known: itis CHS[y1, ..., Yal/(ei(y1, ..., y») = c;) where |y;| = 1, e; denotes
the ith elementary symmetric function, and ¢; is the ith Chern class of the given
representation G — GL(n). Next, CH};GL(n)/S is the mod p Chow ring of
G\(EG x GL(n))/S, which is a principal (G,,)"-bundle over Y, correspond-
ing to the pth powers of the obvious line bundles Ly, ..., L, on Y (with Chern
classes yi, ..., y,). So CH},GL(n)/S is the quotient of the previous ring by 0,
and so

CH;GL(n)/S = CHEy1, -, yul/(ei(V1s -y Yu) = o).

This is a free C Hf;-module with basis elements corresponding to a basis for
the F,-vector space CH*(GL(n)/S)/p. In particular, the top generator is in
degree n(n — 1)/2. O

By Lemma 6.6,
reg(CHLGL(n)/S) =reg(CHE) +n(n — 1)/2.

So Theorem 6.5 reduces to showing that reg(CH;GL(n)/S) < n(n — 1)/2.
Here we are viewing CHZGL(n)/S as a C Hi;-module, but it is isomorphic to
CHZGL(n)/ G, and so we can also view it as a C Hg-module. It is generated in
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bounded degrees over both rings, by Lemma 6.3. Therefore, the properties of
regularity imply that it has the same regularity over both rings. Thus it suffices
to show that

reg(CH{GL(n)/G) < n(n —1)/2.

Symonds’s proof that H has regularity < 0 uses Duflot’s theorem on actions
of elementary abelian groups at this point (Theorem 4.6). We generalize Duflot’s
theorem to the Chow ring instead of cohomology.

Let U be the group of strictly upper-triangular matrices in G L(n). Since
the diagonal torus 7 normalizes U, T acts on the variety M := U\GL(n)/G,
by t(UxG) = UtxG. Here G acts freely on U\GL(n), since |G| is invertible
in k and hence U intersects any conjugate of G only in the identity element.
The homogeneous space U\GL(n) is a smooth quasi-projective variety [147,
pp. 122-123], and so its quotient M by the finite group scheme G is a quasi-
projective variety [32, 2nd ed., remarque V.5.1]. Since the action is free, M
is smooth of dimension n(n + 1)/2 over k. Since § = (u,)" is a subgroup
scheme of T, S also acts on M. Since U is a repeated extension of addi-
tive groups, homotopy invariance of Chow groups (Lemma 2.2) implies that
CH{GL(n)/G = CHZM. So it suffices to show that C H{ M has regularity at
most n(n — 1)/2.

Filter M by the closed subsets M"Y for the various subgroup schemes V C S.
They are smooth subschemes of M. Each M" is mapped into itself by the torus
T, because T commutes with S. Let M; be the closed subset of points with
isotropy group in S of rank at least i, and let M;, be the open subset of M;
consisting of points with isotropy group of rank equal to i. For each d > 0, let
M ;.4 be the union of the connected components of M;) with codimension d
in M. The analog for the Chow ring of Duflot’s theorem on cohomology is:

Theorem 6.7 There is a short exact sequence of C Hg-modules
0— @dCH;idM(i),d d CH;(M — Mi-H) g CH;(M — M,) — 0.

Proof This is the usual exact sequence for equivariant Chow groups, Lemma
2.9, tensored over Z with F,,. All we need to prove is the injectivity of the first
homomorphism.

It suffices to prove that pushing forward from [ [ M4 to M — M, and
then pulling back gives an injection on equivariant Chow groups. Since the
restriction of cycles on one connected component of M;) to another component
is zero, it suffices to show for each subgroup scheme V C S of p-rank i that
pushing forward from the subspace (M — M, )" fixedby V to M — M;, | and
then pulling back gives an injection on equivariant Chow groups. The result
of pushing forward from a smooth closed subvariety and then pulling back is
multiplication by the Euler class of the normal bundle [43]. Thus, it suffices
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to show that the Euler class of the normal bundle to X := (M — M;;;)" in
M — M, is not a zero divisor in CH{(M — M)V,

Since § = (u,)", we can choose a splitting S = V x W for the subgroup
V C S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

CHgX = CH*(X/W)ly1, .-, »l,

where yi, ..., y, are the first Chern classes of 1-dimensional representations
of V.= (up)’.

Let N be the normal bundle to X in M — M, , which is an S-equivariant
vector bundle on X. Because X is the whole fixed point space in M — M,
for the subgroup V, and p is invertible in the base field k, the sub-bundle of N
fixed by V is 0. Thus, if the isotypic decomposition of N with respect to V is
N = @, E, for « € Hom(V, G,,) = (Z/p)", then Ey = 0. Note that each E,
is an S-equivariant subbundle of the normal bundle N, because S commutes
with its subgroup V. The Euler class of N is the product of the Euler classes of
the subbundles E,, and so it suffices to show that x(E,) is a non-zero-divisor
in CH{ X for each o # 0 in Hom(V, G,).

Let L, be the 1-dimensional representation of S given by projecting S =
V x W to V and applying the representation « of V. Let F, = E, ® L},. Then
F, is an S-equivariant vector bundle on X on which the subgroup V acts
trivially. Therefore, the Chern classes of F, lie in the subring CH*(X/W)/p
of

CHgX = (CH*(X/W)/P)ly1. - .-, yl.

The first Chern class of L, is a nonzero F,-linear combination of yy, ..., y,,
and so, after a change of basis for V, we can assume that ¢;(L,) = y;. Write
m for the rank of the bundle E,. Since £, = F, ® L,, we have

X(EQ) = ' + ci(F)y™ 4 -+ + cn(Fy),

by the formula for the Chern classes of the tensor product of a vector bundle
with a line bundle. Since this is a monic polynomial, it is a non-zero-divisor in
CH{X, as we want. O

Let M) be the locally closed smooth subscheme of M where the stabilizer
subgroup in S is equal to V. By Theorem 6.7, we have a filtration of CH{ M
by finitely many C Hg-submodules such that the subquotients are isomorphic
to CHE M"Y for the subgroups V of S, shifted in degree by the codimension of
M) in M. By the basic properties of regularity in Lemma 3.9, it follows that

reg(CH*BS, CH;M) < 1‘1/1a>5<{reg(CH*BS, CH;M™)) + codim(M") c M))}.
C
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So Theorem 6.5 follows if we can show that for each subgroup V
of S, CH;M") has regularity at most n(n — 1)/2 — codim(M") C M) =
dim(M"Y)) — n as a C Hi-module.

Choose a splitting S = V x W for the subgroup V C S = (u,,)". The group
V acts trivially on M) while W acts freely, and so we have

CH;M™ = (CH MY /W)/p)ly1, ..., »l,

by the Chow Kiinneth formula, Lemma 2.12. So the regularity of CH;M") as a
C H}-module is equal to the regularity of C H*(MY)/ W)/ p as a C H;,-module.
Since CH*(M"Y)/W)/p is 0 in high degrees, its regularity as a C H};,-module
is equal to the highest degree in which it is nonzero, by Lemma 3.9. So it
suffices to show that CH!(MY)/ W)/ p is zero for i > dim(M")) — n.

The torus T = (G,,)" acts with finite stabilizers on M = U\GL(n)/G.
Because T commutes with the action of S, T also acts on the locally closed sub-
scheme MY and hence on MY)/ W, again with finite stabilizers. By Lemma
5.3, CH' MY /W is zero for i > dim(MY)/W) —n = dim(M")) — n, as we
want.

This completes the proof that reg(C H) < 0 for every finite k-group scheme
G of order invertible in k. We now prove that reg(C H;) < 0 for every finite
group scheme G over k.

As in the proof above, choose a faithful representation G C G L(n) over k.
Let T be the diagonal torus (G,,)" in GL(n), S = T[p] = (u,)", and U the
group of strictly upper-triangular matrices in GL(n). As above, it suffices to
show that

reg(CH{GL(n)/G) < n(n — 1)/2.

For any finite extension field E of degree prime to p, C Hf, is a summand
of CH;, using transfers, and so reg(C H;) < 0 follows from reg(CHg;,) < 0.
So we can freely make field extensions of degree prime to p. Over the perfect
closure kP of k, the underlying reduced scheme (G ypert )req is a smooth subgroup
scheme [32, section VIA.0.2 and proposition VIA.1.3.1]. So, after replacing k
by a finite extension of degree a power of the characteristic (which we assumed
is prime to p), we can assume that Gq is a smooth k-subgroup scheme.
The index of Grq in G is a power of the characteristic of k, and so C Hf; is
a summand of CH;  using transfers. So we can assume that G is smooth
over k.

The finite etale k-group scheme G is determined by the action of Gal(k;/ k)
on the finite group F = G(k,). After replacing k by an extension of degree
prime to p, we can assume that Gal(k;/k) acts through a p-group P on F.
Then F has a Galois-invariant Sylow p-subgroup, by the usual Sylow theorem
applied to the semidirect product P x F. Thatis, G has a k-subgroup scheme
of order a power of p and index prime to p. Using transfer, we can assume
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that G has order a power of p. So the order of G is invertible in k. We proved
earlier that reg(C Hj) < 0 in this case. O

6.2 Motivic cohomology

This section briefly introduces motivic cohomology.

Bloch defined motivic homology, at first called higher Chow groups, as
a way to extend the basic exact sequence for Chow groups to a long exact
sequence [14]. For smooth schemes X over a field &, a suitable renumbering
of motivic homology is called motivic cohomology. The motivic cohomol-
ogy groups H! (X, Z(j)) form a bigraded ring, with Chow groups being the
special case CH'X = H,%}(X, Z(i)) [100, theorem 19.1]. The index j is tra-
ditionally called the “weight.” As in topology, motivic cohomology groups
can be defined with coefficients in any abelian group A, and they satisfy the
universal coefficient theorem. The group H,%,Ii (X, A(i) is CH' (X) ®z A. For
brevity, we sometimes write H'(X, A(j)) for motivic cohomology (without the
subscript M).

Bloch’s higher Chow groups C H(X, j) coincide with motivic homology
for schemes X of finite type over a field k, although they are written with
numbering by codimension. In particular, when X is smooth over k, higher
Chow groups coincide with motivic cohomology, with the numbering given
by:

CH(X,b) = Hy "(X, Z(a)).

We summarize Bloch’s definition of higher Chow groups, a straightforward
generalization of the definition of Chow groups [14, 100]. For a natural number
j, define the algebraic j-simplex A’ over a field k to be the hyperplane xq +
---+x; =1 in affine (j + 1)-space. The faces of A" are the subspaces of
A" defined by setting some of the variables x,, to zero. There are natural
morphisms f,,: A/~! — AJ form =0, ..., j whose images are the faces of
codimension i. For an equidimensional k-scheme X of finite type, let z' (X, j)
be the free abelian group on the set of codimension-i subvarieties of X x; A/
that intersect each face X x; A" in a codimension-i subset. Then there is a
natural chain complex z/(X, %) of the form

=7 (X,2) = Z(X, 1) > Z'(X,0) > 0,

where the boundary map on z/ (X, j)is ZLZO(— 1)" fx. The higher Chow group
CH'(X, j)is the homology of this chain complex at z' (X, j).

The localization sequence for motivic cohomology has the following form
[15].
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Lemma 6.8 Let X be a smooth scheme over a field k and Y C X a smooth
closed subscheme of codimension d. Let A be an abelian group. Then there is
a long exact sequence of motivic cohomology groups

— Hi74(Y, A — d) = Hiy(X, A(j) — Hi(X =Y, A(j))
S BN, AG = d)) —

The groups H jd(X , A(j)) are zero for i > 2j, as is immediate from the
interpretation of motivic cohomology as higher Chow groups. That implies the
surjectivity at the right in the basic exact sequence for Chow groups:

o= Hi " YX - Y,Z3)) » CH™Y - CH'X - CH' (X —Y) - 0.

Let n be a positive integer that is invertible in the field k. Then there is a
cycle map from motivic cohomology to etale cohomology,

Hi,(X,Z/n(j)) - HY(X,Z/n(j)) = H\(X, n¥)

[100, theorem 10.2]. For k = C, this etale cohomology group can be identified
with ordinary cohomology, H'(X, Z/n). The Beilinson-Lichtenbaum conjec-
ture (Voevodsky’s theorem) is the remarkable fact that the cycle map is an
isomorphism in a wide range of bidegrees [145, theorem 6.17]:

Theorem 6.9 Let X be a smooth scheme of finite type over a field k. Let n be
a positive integer that is invertible in k. Then the cycle map

Hy(X, Z/n() — Hy(X. Z/n()))
is an isomorphism for i < j and is injective fori = j + 1.

There are several elementary vanishing properties of motivic cohomology.
In particular, HI{,,(X, A(j)) is zero for j < 0, and also when i > j + dim(X),
for any smooth scheme X over a field. Both are clear from the interpretation
of motivic cohomology as higher Chow groups, since there are no cycles of
negative codimension or of negative dimension. Combined with the Beilinson-
Lichtenbaum conjecture, the latter vanishing gives a complete description
of motivic cohomology with finite coefficients for a field k, meaning the
motivic cohomology of Spec k. Namely, every motivic cohomology group
H 1lu (k, Z/n(j)) is either zero (if i > j) or isomorphic to etale cohomology (if
i < j), for n invertible in k.

The Beilinson-Soulé conjecture asserts that HZ{,I(X , A())) is zero for i < 0.
Although this remains open, it is true for A finite of order invertible in &, by
the Beilinson-Lichtenbaum conjecture.

Edidin and Graham defined the equivariant motivic cohomology of a smooth
k-scheme X with an action of an affine group scheme G at the same time as
they defined equivariant Chow rings. Namely, equivariant motivic cohomology
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is defined to be the motivic cohomology of suitable approximations (X x (V —
$))/Gto(X x EG)/G.Thelocalization sequence generalizes to G-equivariant
motivic cohomology [38, proposition 5].

6.3 Steenrod operations on motivic cohomology

We now state the basic properties of Steenrod operations on motivic coho-
mology. We use these operations for several proofs in this book, all in later
chapters.

Let p be a prime number and k a field in which p is invertible. Voevodsky
defined Steenrod operations on mod p motivic cohomology, for a smooth
scheme X over k:

P*: H'(X,F,(j) > HTP"VX F,(j + (p — Da))
for a > 0 [144, section 9]. We also have the Bockstein
B: H'(X,F,(j) — H(X,F,p(j)).

For example, the Steenrod operations P¢ send mod p Chow groups into them-
selves (since CH’/(X)/p = H* (X, F,(j))), while the Bockstein is zero on
mod p Chow groups (since H**!(X, F,(j)) = 0). As in topology, Steenrod
operations arise from the failure of multiplication on motivic cohomology to
come from a commutative operation at the level of cycles. The proof of Lemma
8.8 makes this point in more detail.

Steenrod operations commute with pullback for arbitrary morphisms of
smooth k-schemes. The operation P? is the identity. The Bockstein is a deriva-
tion, meaning that B(xy) = B(x)y + (—1)'xB(y) for x in H'(X,F,(j)). We
have the Cartan formula P%(xy) = ZZ:O PP(x)P2(y), assuming that k con-
tains the 4th roots of unity when p = 2. The Cartan formula holds without that
extra assumption when x and y are in the mod p Chow ring [144, proposition
9.7]. Finally, the Steenrod operations satisfy the “unstable” properties that

Pix =0
for x in H'(X, F,(j))whena >i — janda > j, and
Péx =x?P

for x in CH*(X)/p = H*(X, F,(a)) [144, lemmas 9.8 and 9.9].
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6.4 Regularity of motivic cohomology

In this section, Theorem 6.10 proves the bound “regularity < 0” for the motivic
cohomology of a classifying space over an algebraically closed field, generaliz-
ing the case of the Chow ring (Theorem 6.5). As an application, Corollary 6.16
shows that the motivic cohomology of BG maps isomorphically to ordinary
cohomology in a large range of bidegrees, more than is true for smooth varieties
in general.

This section is not used in the rest of the book.

Fix a prime number p. For an affine group scheme G and any integer j,
define

M;(G) = ®:H,, ' (BG,F,(i)).

We view M;(G) as a graded abelian group, graded by the degree of H*;
thus M;(G) is concentrated in degrees = j (mod 2). In particular, My(G)
is the Chow ring CH}; = CH*(BG)/p, and M;(G) is zero for j < 0. For
each j, M;(G) is a module over the Chow ring CH. In particular, given a
faithful representation G — G L(n), M j(G) is amodule over the Chern classes,
F,[c1, ..., c,]. Note that |c;| = 2 in this context.

Theorem 6.10 Let G be afinite group scheme over afieldk, p a prime number
invertible in k, and j a natural number. Suppose that the order of G is invertible
in k. Then, for any faithful representation G — GL(n), M;(G) is generated
by elements of degree at most n> + j as a module over Fylci,...,cul and at
most n? if k is algebraically closed. Moreover, M (G) has regularity at most j
asanF,lcy, ..., cyl-module, and at most O if k is algebraically closed.

Theorem 6.10 implies, say for k algebraically closed, that for any elements
Y1, ..., Yym of CHZ such that C H; is generated by elements of bounded degree
asanF,[yi, ..., yu]-module, M ;(G)is generated by elements of degree at most
> ;Qlyil — 1) asan Fp[yi, ..., y,l-module, where |y;| denotes the degree of
y; in the Chow ring.

For later use, we give a case where the Kiinneth formula holds for motivic
cohomology.

Lemma 6.11 Let G be an elementary abelian group (Z/p)* for some prime
number p. Let k be a field of characteristic not p that contains a primitive pth
root of unity ¢,. Let u be the corresponding element of HZ?,I (k, F, (1)) = pp(k).
Let X be a smooth scheme over a field k. Then

H[Tl(X X BG7 Fp(*)) ; H[TJ(X9 Fp(*))<x11 e a-xvv ylv RIS ] )’u),
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where each element x; is in H&(BG, F,(1))and y; = Bx; isin HI%,I(BG, F,(1)).
The notation means a free graded-commutative algebra if p is odd, and the

commutative algebra with relations x? = uy; if p = 2.

Proof 1t suffices by induction to describe the motivic cohomology of X x
B, Here B, can be approximated by the quotient variety (AN ™! —0)/p,,
for N large, and this variety is the complement of the zero section in the
line bundle O(p) over PV. The lemma follows from the motivic cohomology
of a projective bundle [14] together with the localization sequence (Lemma

6.8). O
Proof (Theorem 6.10) We simultaneously prove that M;(G) is generated
by a set of elements of bounded degree as an F,[c, ..., ¢,]-module, and
that M;(G) has regularity at most O as an F,[cy, ..., ¢,]-module. The two
statements together imply that M;(G) is generated by elements of degree at
most n? as an F,[cy, ..., ¢,]-module.

As in the proof of Theorem 6.5, let T be the subgroup (G,,)" C GL(n) of
diagonal matrices, and § = (u )" the p-torsion subgroup scheme of T'.

Lemma 6.12 As a CHf-module, M., c(GL(n)/S) contains M; ¢ shifted

up by degree n* as a summand.

Proof Firstconsider H,(GL(n)/ T, F,(x)), which we can view as the motivic
cohomology of Y := G\(EG x GL(n))/T.ThenY isa GL(n)/T-bundle over
BG, and so its motivic cohomology is that of a flag bundle (a G L(n)/ B-bundle)
over B G associated to a vector bundle. This motivic cohomology is well known:

H*(Yv Fp(*)) = H*(BG’ Fp(*))[)’l, R yn]/(ei(y17 e )’n) = Ci)7

where |y;| = (2, 1) and ¢; in H*(BG, F,(i)) is the ith Chern class of the given
representation G — G L(n).

Next, G\(EG x GL(n))/S is a (G,,)"-bundle over Y corresponding to the
pth powers of the obvious line bundles Ly, ..., L, on Y (with Chern classes
Y1, - .., Yn). The Chern classes of these pth powers are 0, since we are working
with F, coefficients. So

HE(GL(n)/S,Fp(x) = H*(BG, F,(x))

Xty oo s Xy Yy e Y /@1y oy Y0) = i)y

where |x;| = (1, 1). This is a free module over H**(BG) with highest-degree
n—1_n-2

generator (say, Xy - -+ X,¥| Yy ...Yn—1) of degree n2. O

To prove Theorem 6.10, it now suffices to show that M; g(GL(n)/S) is
generated in bounded degreesasanF ,[cy, . . ., ¢,]-module, that it has regularity
at most n2+1—n as an F,lci, ..., c,]-module, and that it has regularity
at most n? if k is algebraically closed. (We will apply this to [ = j +n, in
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view of Lemma 6.12.) Note that |c;| = 2i in this context. We can view the
groups M; c(GL(n)/S) as M; s(GL(n)/G). Since C Hy is finite over CH(*;L(n),
it suffices to show that M; (G L(n)/G) is generated in bounded degrees as a
C H-module and that it has regularity at most n> 4+ — n as a C H-module,
or at most n? if k is algebraically closed.

Let U be the group of strictly upper-triangular matrices in GL(n), and let
M = U\GL(n)/G. As in the proof of Theorem 6.5, M is a smooth quasi-
projective variety of dimension n(n + 1)/2, and T acts on M with finite sta-
bilizer groups. Since U is an iterated extension of additive groups, homotopy
invariance of motivic cohomology shows that M; s(GL(n)/S) = M; s(M). So
it suffices to show that M; ¢(M) is generated in bounded degrees and has regu-
larity at most n* + [ — n as a C H-module, or at most n? if k is algebraically
closed.

Let M; be the smooth closed subscheme in M of points with isotropy group
in S of rank at least i, and let M;) be the open subset of M; consisting of points
with isotropy group of rank equal to i. For each d > 0, let M(;) 4 be the union
of the connected components of M(; with codimension d in M. The analog for
motivic cohomology of Duflot’s theorem is:

Theorem 6.13  There is a short exact sequence of C Hg-modules
0 — @aHy ! (My.a, Fp(x — d)) — H5(M — Mi11, F (%))
— HE(M — M;, F (%) — 0.

Proof This is the usual long exact sequence, Lemma 6.8, for equivariant
motivic cohomology. If we prove the injectivity of the first homomorphism in
all degrees, the exact sequence gives the surjectivity of the last homomorphism.
As in the proof of Theorem 6.7, it suffices to show that for each subgroup V.C S
of p-rank i, the Euler class of the normal bundle to X := (M — M;;)" in M —
M1 is not a zero divisor in motivic cohomology Hi(M — M;11)", F,(%)).

Since § = (u,)", we can choose a splitting S = V x W for the subgroup
V C S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

HG(X,Fp,(x) = H(X/ W, F,() (X1, ..., X, Y1, ooy Vo),

where |x;| = (1, 1), |y;| = (2, 1), and yy, ..., y, are the first Chern classes of
1-dimensional representations of V = (,,)". As in the proof of Theorem 6.13,
the Euler class of the normal bundle is a monic polynomial in yy, ..., y, over
CH*(X/W)/p, and so it is a non-zero-divisor on this motivic cohomology
ring. O

By Theorem 6.13, we have a filtration of M; (M) by finitely many C H-
submodules such that the subquotients are isomorphic to M; (M) for the
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subgroups V of S, shifted up in degree by twice the codimension of M") in
M. Choose a splitting S = V x W for the subgroup V = (t,)" C S = (u,)".
The group V acts trivially on M) while W acts freely, and so we have

Hi MY F (%) = H* (MY /W, F G0N X1, oy Xy, Vi e ey Vs

by the Kiinneth formula for motivic cohomology, Lemma 6.11.

Lemma 6.14 Let X be a smooth scheme of dimension n over a field k. Then
HY (X, F,@) is 0if 2i —1 > 2n + 1. If k is algebraically closed and p is
invertible in k, then H* (X, F,(i)is0if2i —1 > 2n.

Proof The first bound is trivial from the identification of motivic cohomology
with higher Chow groups (these groups would be represented by cycles of nega-
tive dimension). For k algebraically closed, Suslin showed that H% “L(X,F »(@))
maps isomorphically to etale cohomology Hezli_l(X, F,()) for i > n [127,
corollary 4.3]. We can assume that /[ > 0; otherwise motivic cohomology is
zero. So our assumption 2i —/ > 2n implies that i > n, and so the given
motivic cohomology group is isomorphic to an etale cohomology group in
degree > 2n, which is known to be zero since k is algebraically closed. O

By Lemma 6.14, M;(M")) is concentrated in a bounded set of degrees
for each [ > 0. Therefore, the formula before the lemma shows that
H{(M W F p(%x)) is generated in a bounded set of degrees as a module over
CHS =F,[yi, ..., y.]. By Theorem 6.13, it follows that M; s(M) is generated
in a bounded set of degrees as a C Hg/ p-module. By our earlier arguments, we
have proved the first part of Theorem 6.10, on bounded generation.

Moreover, in the notation before Lemma 6.14, the regularity of M; s(M )
as a C H{-module is equal to the regularity of M;(M")/ W) as a C H;,-module.
Since M;(M")/W) is 0 in high degrees, its regularity as a C H;,/ p-module is
equal to the highest degree in which it is nonzero, by Lemma 3.9. If we can
show that M;(M)/W)/p is zero in degrees greater than 2 dim(M")/ W) —
2n + 1, or greater than 2dim(MY)/W) — n for k algebraically closed, then
our discussion before Lemma 6.14 shows that M; g(M) has regularity at most
2dim(M) —2n+1=n*+1—nasa C Hg-module, or n? for k algebraically
closed, which will finish the proof of Theorem 6.10.

The torus T = (G,,)" acts with finite stabilizers on M = U\GL(n)/G.
Because T commutes with the action of S, T also acts on the locally closed
subscheme M) and hence on M)/ W, again with finite stabilizers. The
following lemma proves the vanishing of M;(M"’/W) in degrees greater
than 2 dim(M") /W) — 2n + 1, or greater than 2 dim(M")/ W) — n for k alge-
braically closed, as we want. Theorem 6.10 is proved. O
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Lemma 6.15 Let X be a smooth variety over a field k. Let p be a prime
number that is invertible in k. Let T be a split torus that acts on X with
finite stabilizer groups. Then H*~/(X,F,(i)) = 0 for 2i — j > 2dim(X) +
j —2dim(T). If k is algebraically closed, then H*~/(X,F ,(i)) = 0 for 2i —
Jj > 2dim(X) — dim(T).

Proof The T-action on X has only finitely many different stabilizer group
schemes in 7. Stratify X according to the possible stabilizer groups. The
strata are smooth, because the fixed points of any finite subgroup scheme of
T on X form a smooth subscheme. By the localization sequence for motivic
cohomology (Lemma 6.8), the lemma reduces to the special case where T acts
on X with the same finite stabilizer group A everywhere. Here T/ A is a split
torus, and so we have reduced to the case where a split torus T acts freely on a
smooth variety X. That is, X is a principal (G,,)"-bundle over a smooth variety
B, for some n.

We can view a G,,-bundle E over a smooth variety M as the complement
of the zero section in the total space of a line bundle over M. Using homotopy
invariance for motivic cohomology, the localization sequence has the form:

HY (M, F,(i)) — H*(E,F,(i) - H* T~ (M,F,(i —1)).

Thus H*~/(E, F,(i)) vanishes if the two other groups vanish. Applying this
repeatedly, we find (whether k is algebraically closed or not) that the lemma
reduces to the case of the base variety B, with a trivial torus action.

We want to show that B smooth over an arbitrary field k, H*~/(B, F,(i))
vanishes for 2i — j > 2dim(B) + j, while for k algebraically closed,
H*-I(B,F (1)) vanishes for 2i — j > 2 dim(B). These statements are exactly
Lemma 6.15. O

Corollary 6.16 Let G be a finite group. Suppose that G has a faithful rep-
resentation of dimension n over an algebraically closed field k in which the
order of G and a fixed prime number p are invertible. Then the cycle map from
M (G) to etale cohomology in degrees = j (mod 2) is an isomorphism for all
Jj=> n2.

This means that the motivic cohomology of BG is closer to etale cohomology
than is true for smooth varieties in general. Namely, for a smooth variety X
over a field, the Beilinson-Lichtenbaum conjecture (Theorem 6.9) gives that
the cycle map from M ;(X) to etale cohomology is an isomorphism in degrees
at most j. But Corollary 6.16 says that M;(G) (meaning M;(BG)) is equal to
etale cohomology in all degrees when j is large.

The hypothesis j > n?in Corollary 6.16 can be weakened to j > o (CH(),
with C H' considered as having degree 2i. Theorem 7.1 gives a good bound for
o(CH{) when G is a p-group.
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Proof By the Beilinson-Lichtenbaum conjecture, M;(G) maps isomorphi-
cally to etale cohomology in degrees at most j, and injectively in degrees at
most j + 2. (Notice that M ;(G) is concentrated in degrees congruent to j mod-
ulo 2, so we are only considering etale cohomology in degrees congruent to j
modulo 2.)

By Theorem 6.10, M;(G) is generated by elements of degree at most n” as
a module over the Chern classes F,[cy, ..., ¢,]. The same is true for the etale
cohomology of BG (which is simply the cohomology of G) by Symonds’s
theorem, Corollary 4.3. So the map from M;(G) to etale cohomology is sur-
jective in all degrees if j > n®. Symonds’s theorem also gives that all relations
among a minimal set of generators of the etale cohomology of BG as an
F,lci, ..., c,]-module are in degrees at most n? + 1. Therefore M ;(G) maps
isomorphically to etale cohomology in all degrees if j > n2, since that implies
that j +2 > n? + 1. O
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Bounds for p-Groups

As we have seen in Section 5.2, the bounds in Theorem 5.2 and Symonds’s
Corollary 4.3 for the Chow and cohomology rings in terms of the dimension of
a faithful representation are essentially optimal among arbitrary finite groups.
In this chapter, we give much better bounds for the Chow and cohomology
rings of a p-group. It is natural to concentrate on the case of p-groups, since
the mod p cohomology of any finite group is a summand of the cohomology of
a Sylow p-subgroup, and likewise for Chow rings. I don’t know whether these
improved bounds for p-groups are anywhere near optimal.

The bounds involve a constant that we now define. For each prime number

p, let
p—1
p—2 p—2
=1 — d.
w=t+r+ S( 53] -[77))

For example, o, = 3, a3 = 6, o5 = 14, and o7 = 23. For large primes p, com-
paring the sum with an integral shows that o, is asymptotic to p log p.

Theorem 7.1 Let G be a p-group with a faithful complex representation V.
Write V as a direct sum of irreducibles, V = V| & ... ® Vi. The dimensions of
the irreducible representations V; are powers of p, say dim(V;) = p™. Then the
mod p Chow ring C H; is generated as a module over certain transferred Euler
classes of degree at most max(p™) by elements of degree at most Zi(azq" -
p™). A fortiori, the ring CH(, is generated by elements of degree at most

max(p™, ..., p", Yyt = p™)).

We also prove a strong bound for the cohomology of p-groups. This result
for p-groups is significantly better than the bound n? that holds for arbitrary
finite groups, as we will discuss.

Theorem 7.2 Let G be a p-group with a faithful complex representation V.
Write V as a direct sum of irreducibles, V. = V| & ... ® Vi. The dimensions

79
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of the irreducible representations V; are powers of p, say dim(V;) = p™. Then
the cohomology ring H:; = H*(BG, F ) is generated as a module over certain
transferred Euler classes of degree at most 2 max(p™) by elements of degree
at most Zi(Zot[”}f — p™). A fortiori, the ring H{; is generated by elements of
degree at most max(2p™, ..., 2p™, Zi(Zal”,"’ — p")).

For example, let G be a 2-group that has a faithful irreducible complex
representation of dimension n, which must be of the form n = 2. Then The-
orems 7.1 and 7.2 give that the Chow ring of BG is generated by elements of
degree at most 3" — 2™, and the cohomology ring is generated by elements
of degree at most 2 - 3™ — 2", for m > 2. These bounds are on the order of
nlogd/log2 = 158 for p = 2™ large, which significantly improves the bounds
on the order of n? that hold for arbitrary finite groups (Theorem 5.2 and
Corollary 4.3).

The bounds in Theorems 7.1 and 7.2 are even better for other classes of
p-groups. For example, if G is a p-group with a faithful irreducible complex
representation of dimension n = p, then the Chow ring of BG is generated
in degree at most &, — p and the cohomology ring is generated in degree at
most 2a, — p, for p odd. For large primes p, these bounds are on the order of
plog p, which is far better than the bounds on the order of n> = p? given by
the results for general finite groups.

The bounds in Theorems 7.1 and 7.2 are also very good for a faithful rep-
resentation that is a sum of low-dimensional irreducible representations. For
example, let G be a 2-group with a faithful complex representation of dimension
n = 2s that is a sum of s 2-dimensional irreducible representations, say with
s > 2. Then the Chow ring of BG is generated in degree at most s (= n/2), and
the cohomology ring is generated in degree at most 4s (= 2n). Although these
bounds are much smaller than n2, they happen to coincide with the bounds
given by Theorems 5.4 and 5.5 for an arbitrary finite group with a faithful
representation that is a sum of 2-dimensional irreducibles.

7.1 Invariant theory of the group Z/p

As a first step toward our bounds for the cohomology and Chow ring of p-
groups, we need the following new bound in the invariant theory of the group
7./ p. Namely, we describe a system of parameters (Definition 3.4) for the ring
of invariants.

Lemma 7.3 Let p be a prime number. Let the group G = Z/p act on the
polynomial ring R = F,[yo, ..., yp—1] by cyclically permuting the variables.
Then the ring of invariants RC has a system of parameters that consists of one



7.1 Invariant theory of the group 1/ p 81

element yo + - - - + y,—1 of degree I, LS—:IZJ - L”T_ZJ elements of degree d for
2 <d < p—1, and one element yq - - - y,_1 of degree p.

The proof uses the following standard constructions from invariant theory.

Definition 7.4 For a finite group G acting on an abelian group M, the trace is
the homomorphism tr = trIG: M — MC defined by tr(x) = Y geG 8- For G
acting on a commutative ring R, the norm is the function N = N ]G :R— RC
givenby N(x) = [, gx.

The following simplification of my first proof of Lemma 7.3 is due to Jim
Shank and David Wehlau.

Proof of Lemma 7.3  This is clear for p = 2, where R is the polynomial ring
F2[yo + y1, Yoy11. For larger primes p, the ring of invariants for the regular rep-
resentation of Z/ p in characteristic p becomes more complicated; for example,
it is not Cohen-Macaulay for p > 5, by Ellingsrud and Skjelbred [39].

Let g be the generator of Z/p, and let A = g — 1 in the group algebra
F,[Z/p]. Change the basis of the representation to xo = yo and x; = Ax;_;
for 1 <i < p— 1. (We have Ax,_; = 0.) The action of Z/p is given in this
basis by g/x; = Y, ({)xm, where we define x; = 0 fori > p.

Consider the graded reverse lexicographic ordering on monomials in
X0, ..., Xp—1 With

X0 > > Xpo.
That is, we have x! < x” if the degree || is less than |J|, or if |I| = |J| and
ip—1> jp—1,orif |Il =|J|andi,_y = j,—1 andi,_» > j,—», and so on.

The norm N(xo) = 5.’;3 g/xo is an invariant whose leading term is x/.

We will show that for each 1 < j < p — 1, there is an invariant with leading
term x;-i , where d is the least integer such that dj > p — 1. (Or, equivalently,
Jj > l(p —2)/d].) By the leading terms, these elements form a system of
parameters for k[xg, ..., x,_1] and hence for the subring of invariants. The
number of these elements of degree d is 1 for d =1, Ls—jj — LPT_ZJ for
2<d<p-—1,and 1 ford = p, as we want.

We define the invariant as the trace tr(xg_lxm), where m =dj — (p — 1).
By definition of d, we have 0 <m < j — 1. We have

p—1 . .
tr(nglxm) = Z [Z (ljl) - (]>]x,] X Xl

Iy da =05 /=0 la

We use the following simple identity, sometimes called Newton’s formula. It
follows, for example, from the fact that the sum of the elements of a nontrivial
subgroup of F’; is zero.
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Lemma 7.5 In the integers modulo a prime number p,

”Z‘l.e {0 ifo<e<p-2
J = .
= -1 ife=p—1,

where we define 0° = 1.

As a result, the expression in brackets in the formula above for tr(xg )
is zero unless [} + --- +1; > p — 1. It follows that the leading term of the
invariant tr(xg “Ix,)is x?, with a nonzero coefficient in F,. O

7.2 Wreath products

Lemma 7.6 Let p be a prime number and m a positive integer. Let G be the
wreath product Z/p ¥ - - - X L/ p with m copies of Z/ p. Let R be the polynomial
ring over ¥, with p™ variables, and let G act on R by the natural permutation
action on the variables. Let the variables have degree b > 0. Then

o(R%) < boc::’ —p".

The constant «, was defined before Theorem 7.1, and o (R) is defined in
Definition 6.1.

Proof The lemma is proved by constructing a system of parameters with
known degrees for the ring of invariants RY. For example, when p = 2, our
system of parameters for the invariants of the m-fold wreath product of Z/2
has degrees 1,2ifm = 1;1,2,2,4ifm =2;1,2,2,4,2,4,4,8if m = 3;and
so on. That is, for p = 2, each of these sequences of degrees starts with the
previous sequence, and then multiplies the previous sequence by 2.

For m =1, so that G =Z/p, Lemma 7.3 gives a system of parame-
ters fi(yo, ..., y,,_l) =Yo+ -+ Vp-15--- fp(y(), cee, yp_l) =Y Yp-1
for RS. We have Y " (| fi| — 1) = ba, — p by definition of «,, since we
define |y;| = b for all i. So we have o(R%) < ba, — pform = 1.

Suppose by induction that we have constructed a system of parameters
ui, ..., upm— for the invariants of the iterated wreath product H of m — 1
copies of Z/ p acting on the polynomial ring in p”~! variables. Then the product
group H? acts on the polynomial ring R in p™ variables by acting separately
on p sets of p"~!
that we call y;; forO<i <p—1land1<j < p’”’l, where the polynomial
u;; is the polynomial u; in the ith set of p”~! variables.

We have G = Z/p x H?, and so RY is the ring of invariants of the cyclic
group Z/p acting on R¥". In particular, a generator o of Z/p acts on
uij € R by o(u;;) = ui11,j, where i is understood modulo p. Therefore,

. . . »
variables. There is an obvious system of parameters for R
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for each 1 < j < p”’_l, the polynomials fi(uoj, ..., up—1,j) =ug; +---+
Up_1,js---s fp(Uoj, ..., Up_1,j) =Ugj - Up_1,; are G-invariant. The polyno-
mials u;; are all integral over this set of p™ elements v, ..., vpm Of RS, and
so the whole polynomial ring R is finite over F,[vi, ..., v,»]. As a result,
Vi, ..., Upn is a system of parameters for RC.
m—1
By induction, we have Z{’zl lu;| = aoz;,"", and the construction shows that
pm pm—]
il = Y luil
i=1 i=1
. m
= botp.
Soo(RE) <YV (lujl — 1) = b)) — p™. O

Corollary 7.7 Let G be the wreath product of m copies of Z/p with the
multiplicative group over a field k with p invertible ink, Z/p - - -2 Z/p 2 Gp,.
Then o(CH{) < ag — p™. Also, taking k to be the complex numbers, H}, =
H*(BG,Fp) has o(H) < 201;" - p".

Proof Let G be the wreath product G =Z/p---2Z/p:G,,. with Z/p
occurring m times. By Lemma 2.21, the Chow ring C H; consists of transferred
Euler classes. Form > 1, write G = Z/p : H. Then Lemma 2.21 and its proof
show that

CHg — CHyy, x CHy,p oy

is injective, and that C H} maps onto the invariants (C H* H?)%/? . Here Z/p x
H isincluded in G = Z/p H with H as the diagonal subgroup in H”.

Suppose by induction that we have constructed a system of parameters
ui, ..., upn-t for CHy such that |u;| =1 and )" |u;| = /=" Pulling these
classes back by the p projections H” — H, we get a system of parameters u;;
for CHj;, with0<i<p—-1land1<j < p’”_l, where the classes u;; are
pulled back from the ith factor H. We know that CH};, = (CH};)®", by the
assumption above on H (Lemma 2.12).

Since C H{; maps onto (CH,’_‘,F)Z/”, there are elements vy, ..., v of CHE
that restrict to the Z/ p-invariants

Siluoj, .o up_1j) =ugj + -+ up_1,
Jpuoj ooy p_yj) =ugj - Up_y,;
for 1 < j < p”~!. Here the polynomials fi, ..., fp are the system of param-

eters constructed in Lemma 7.3 for the invariants of Z/p on its regular repre-
sentation. Explicitly, the elements v; that restrict to

SiCuoj, oo sup_1j)s ooy fpm1(oj, oo Up_1,j)
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can be defined as transfers from CH};, to CH(, while the element v; that
restricts to ug;---u,—1,; can be defined as the multiplicative transfer (or
Evens norm) of uy; € CH};,, which was defined on Chow rings by Fulton
and MacPherson [45]. See the summary in Section 8.1.

We can say that v; is the element that restricts to ug; + - - - + 1 1, so that
|vi| = 1. By adding an element pulled back from CHzl/p = F, by the surjec-
tion G =Z/p H — Z/p if necessary, we can assume that v; has nonzero
restriction to the subgroup Z/p of G. This does not change the restriction of
vy to H?.

Clearly the elements u;; in CHj; are all integral over vy, ..., v,», and
so the whole ring C Hj; is finite over vy, ..., v,, in CHg. If we can show
that CHi‘/pr is also finite over vy, ..., v,n, then vy, ..., v, form a sys-
tem of parameters in C H; as we want, using that C H}; injects into C H};, X
CHE/px H-*

We know that vy restricts to ug; + - -+ +up_y,1 in CHF‘,,,, and so it restricts
to pu, which is zero, in CH}I under the diagonal inclusion H — H?”. We
have arranged that v; has nonzero restriction to C Hy, /p = Fp. So we know the
restriction of v to CHy,,, ; = CHyz,, ® CHy. It follows that the quotient
ring of

/P%

CHy)pyy = (CHpler]

by v, is isomorphic to C H};, with ¢ being sent to zero. The remaining elements
V2, ..., Uym include some that restrictin H” to ug; ---u,—; ;j foreachl < j <
p"~!. Those elements restrict in the diagonal subgroup H C H” to uf , for
1<j< pm‘l. We know that uy, ..., u 1 form a system of parameters in
CHj;, and so their pth powers do as well. Thus we have shown that CHy, .
is finite over F[vy, ..., vpn]. By the previous paragraph, this completes the
proof that C Hf, is finite over Fp,[vy, ..., vpn].

The construction shows that 37", |vi| = e, 7, |u;], and so Y vy] =
a’[’] by induction. It follows that o (CH;) < f’:l(lvil - 1= a,”] — p™,aswe
want.

We now prove the corresponding result for cohomology. It suffices to show
that the images of the algebraic cycles ui, ..., u,» in Hf form a system of
parameters in H;. Again, we prove this by induction on m, where G is the m-
fold wreath product of Z/ p with the multiplicative group G,, over the complex
numbers.

We have G =Z/p H, where H is the (m — 1)-fold wreath product of
Z/p with G,,. We use Quillen’s theorem that the restriction map H; I e
Hj, x H;/pr is injective (Theorem 2.19). So to show that Hz‘/sz is finite
over the polynomial ring F,[vy, ..., v,»], it suffices to show that Hj;, and
Hz, .y are finite over Fp[vy, ..., vpn].
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By induction on m, the ring H}; is finite over the analogous polynomial ring
F,[uy, ..., u,m1]. Therefore Hy;, = (H;})®p is finite over the elements u;; for
0<i<p-—1landl < j < p™ ! inthe notation used above. The definition of
the elements v; shows that the elements u;; are all integral over F,[vy, ..., vpn].
Therefore Hj;, is finite over this polynomial ring.

It remains to show that Hz*/pr is finite over Fp[vy, ..., vpn]. We know
that v, restricts to ¢ in H;/px
in the Chow ring. Here |x;| =1 and |¢;| =2 in H;/p;
is odd and x{ = ¢; if p = 2. Therefore the quotient ring of Hz, .y by Vi

u = Hj (x1, c1), by the corresponding statement
we have x12 =0if p

is isomorphic to Hj;[xi] /(xf). Some of the remaining elements vy, ..., vpn
restrict to the pth powers of the elements uy, ..., u -1 in Hy. Since Hj
is finite over uy, ..., upm-1, it is also finite over their pth powers. Therefore
Hi"/pr is finite over F,[vy, ..., vpn ], as we wanted.

That completes the proof that H is finite over Fp[vi, ..., v,]. Here
> |vil =2« (the factor of 2 is because CH  maps to H?*). Therefore
o(HE) < 37 (il = 1) = 2o — p™. O

7.3 Bounds for the Chow ring and cohomology of a p-group

Proof (Theorem 7.1) Let G be a p-group with a faithful complex representa-
tion V. Write V as a direct sum of irreducibles, V = V|, @ ... & V. The dimen-
sions of the irreducible representations V; are powers of p, say dim(V;) = p™.
More precisely, Blichfeldt showed that each irreducible complex representa-
tion V; of a p-group G is induced from a 1-dimensional representation of some
subgroup H [124, theorem 16]. Moreover, for any subgroup H in a p-group G,
there is a chain of subgroups H = Hy C H, C --- C H,, = G such that each
subgroup has index p in the next one. It follows that the homomorphism from G
into G L(p™) corresponding to V; factors through the m;-fold wreath product
of Z/ p with the multiplicative group G,,, Z/p:--- 2 Z/p 1 G,, C GL(p™).

Since the whole representation V of G is faithful, G is a subgroup of the
product K overi = 1, ..., s of the m;-fold wreath products of Z/ p with G,,. By
Lemma 6.2, 0(CH}) < o(CH). By Lemma 2.12, C H is the tensor product
of the Chow rings of the wreath products we mentioned, and so o(C Hg) is at
most the sum of o of these wreath products. Combining this with Lemma 7.6,
we have

o(CHE) < ) (@) = p™).
i=1

By Theorem 6.5, it follows that CH is generated as a module over our
system of parameters by elements of degree at most Zle(agf — p™). This
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system of parameters consists of transferred Euler classes, since they are pulled
back from the wreath products Z/p 2 - - -2 Z/p ? G,,, whose Chow ring consists
entirely of transferred Euler classes (Lemma 2.21). (Lemma 2.16 gives that
transfer commutes with pullback.) It follows from the bound on CH/, as a
module that CH/; is generated as an algebra by elements of degree at most

max(p™, ..., p™, > (a)" = p")). O

Proof of Theorem 7.2 As in the previous proof, G is a subgroup of the product
from i = 1 to s of the m;-fold wreath products of Z/p with the multiplicative
group G,, (or, if one prefers compact Lie groups, the circle group S'). By
Lemma 6.2, 0 (H}) is at most the sum from i = 1 to s of o of the cohomology
of these wreath products. By Lemma 7.6, we have

o(HE) <Y Qapi — p™).
i=1

By Symonds (Theorem 4.1), it follows that H, is generated as a module over
our system of parameters by elements of degree at most » ;_, (o)t — p™). This
system of parameters consists of transferred Euler classes, by the correspond-
ing statement in the Chow ring. It follows that from this bound on H( as
a module that H is generated as an algebra by elements of degree at most
max(2p™, ..., 2p"™, 3 2ayt — p™)). O
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The Structure of Group Cohomology
and the Chow Ring

In this chapter we prove some of the main results on the cohomology of a finite
group, and generalize them to the Chow ring. First, there is Quillen’s theorem
that, up to F-isomorphism (loosely, “up to pth powers”), the cohomology
ring of a finite group is determined in a simple way by its elementary abelian
subgroups. We prove Yagita’s theorem that the Chow ring of a finite group,
up to F-isomorphism, has the same description in terms of the elementary
abelian subgroups. In fact, we extend Yagita’s theorem from finite groups
viewed as algebraic groups over the complex numbers to finite groups over
any field containing the pth roots of unity (Theorem 8.10). It follows that the
cycle map from the Chow ring of a finite group to the cohomology ring is an
F-isomorphism.

The basic tool for the proof of Quillen’s and Yagita’s theorems is the norm
map, described in Section 8.1. This is an operation in cohomology or the Chow
ring which has had several important applications: a construction of Steenrod
operations, a formula for the Chern classes of an induced representation, as
well as the general properties of group cohomology and the Chow ring proved
by Quillen and Yagita.

We also prove Carlson’s theorem that, up to pth powers, describes the sum
of the images of transfer from all proper subgroups in the cohomology ring
of a p-group. Given Yagita’s theorem, Carlson’s theorem for cohomology
immediately implies the corresponding statement for the Chow ring. These
results are applied in Chapters 9 and 12 to show that the cohomology ring
modulo transfers from proper subgroups is significantly simpler than the whole
cohomology ring, and likewise for Chow rings.

Quillen proved his theorem relating group cohomology to elementary abelian
subgroups for the classifying space of any compact Lie group G, not only for
finite groups G. For a compact connected Lie group G and any prime number p,
Adams conjectured that the F ,-cohomology ring H¢; is detected on elementary
abelian subgroups [141, conjecture 1.1]. For finite groups, this holds only in

87
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some special cases. See Chapter 12 on more general detection theorems for
finite groups.

8.1 The norm map

Given a covering map f: X — Y with degree n of topological spaces, there
is a “transfer” or pushforward map f,: H'(X,Z) — H'(Y,Z), but also a
“multiplicative transfer” or “norm” map N : H'(X,Z) — H" (Y, Z) fori even.
(For i odd, the norm sends H'(X, Z) to H" (Y, Z), where Z is a locally con-
stant sheaf associated to the covering X — Y.) The norm map was first defined
by Evens in the context of group cohomology [12, vol. 2, section 4.1]. The
geometric intuition is simple. If X is a manifold, we can represent an element
u of H'(X, Z) by a submanifold S of codimension i (possibly with singulari-
ties). Move § into general position. Then the norm of u is represented by the
submanifold of Y that, on a contractible open subset U of Y, is the intersection
of the n submanifolds S N U;, where f~'(U) is the disjoint union of copies
Up,...,U,of U.

Evens defined the norm map for group cohomology, and applied it to give an
algebraic proof that the cohomology ring of a finite group is finitely generated.
The Chern classes of an induced representation can be expressed using the norm
(together with the usual additive transfer), by Evens and Fulton-MacPherson
[41, 45]. Finally, the norm map can be used to give an algebraic definition of
Steenrod operations on group cohomology [12, vol. 2, section 4.4].

Fulton and MacPherson defined the norm map on Chow groups for a finite
etale morphism of smooth k-schemes X — Y of degree n, Ny: CH'X —
CH"Y. (There is no need to restrict to even degrees in the Chow ring.) The
norm has a useful extension to non-homogeneous elements, N }; :CH*X —
CH*Y. We record the formal properties of the norm map in this section. In the
rest of this chapter, we use the norm map to prove some fundamental properties
of the Chow ring of a classifying space.

As in Lemma 2.15, write resfl for the restriction map CH*BG — CH*BH
and x > gx for the conjugation isomorphism CH*BH — CH*B(gHg™").

Lemma 8.1
(1) Let X1 — Y and X, — Y be finite etale morphisms of smooth k-
schemes. Let x; € CH*X1, x, € CH*X,, and let x be the element of
CH*(X, || X2) that restricts to x, and x,. Then

NY 1 3.(0) = NY (eDNY, ().

(ii) Let H be a subgroup of a finite group G, considered as an algebraic group
over afield k. Forx,y € CH*BH, Ng(xy) = Ng(x)Ng(y).
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(iii) For H a subgroup of a finite group G and x,y € CH*BH,
Nfj(x +y) = Nj@x) + Nj(y)

plus a sum of transfers from proper subgroups of G. Explicitly, let W —
BG denote the principal S,-bundle corresponding to the action f: G —
S, of G on the set G/H, so that W is the disjoint union of copies of
BXker(f) indexed by the set S,/f(G). Let Z, = W/(S, X Sp—r), X, =
W/(Sr—1 X Su—r), and Y, = W/(S, X S,—r_1), so that we have finite etale
morphisms X, — Z, of degree r and Y, — Z, of degree n — r. We also
have natural maps X, — BH andY, — BH, since BH = W/S,_,. Then
n—1
NG(x +y) = Nf(x) + N + Y trfONG 0Ny (3).
r=1
(iv) (Double coset formula) Let K and H be subgroups of a finite group G,
viewed as an algebraic group over a field. Then
res¢Ngx = l_[ lemgHg,lresf(ﬁ‘Z;g,,gx
¢€K\G/H
forxin CH*BH.
(v) For H a normal subgroup of a finite group G,

resO Nx = l_[ gx
geG/H

forxin CH*BH.

A more complete list of properties of norm and transfer maps says that for
a finite group G viewed as an algebraic group over a field k, the assignment
H — CH*BH for subgroups H of G is a Tambara functor [133]. (The main
property not mentioned in Lemmas 2.15 and 8.1 is the formula for the norm of a
transfer, generalizing Lemma 8.1(iii).) A more classical example of a Tambara
functor is the assignment H — H®'(H, R) for subgroups H of G, when the
finite group G acts on a commutative ring R [133, section 3.4].

Proof Fulton and MacPherson proved the corresponding properties for the
norm map associated to a finite etale morphism of smooth varieties: (ii) is
[45, property 7.1], (iii) is [45, theorem 8.1], and (iv) is [45, property 7.3].
These imply the corresponding properties for the Chow groups of a classifying
space BG, since each Chow group C H' BG is defined as CH'(V — S)/G for
a suitable smooth variety (V — S)/G. (v) is a special case of (iv). O

Note that N (a) = a" for an integer a € CH°BH and a subgroup H C G
of index n. Using formula (3) for the norm of a sum, it follows that the norm
CH*BH — CH*BG passes to a well-defined norm map on Chow groups
modulo a prime number p, N§j : CH};, — CH.
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8.2 Quillen’s theorem and Yagita’s theorem

In this section we prove Quillen’s theorem, probably the most important result
on the cohomology of finite groups. The theorem says that the cohomology
ring of a finite group G has a simple description up to F-isomorphism: it is
determined by the elementary abelian subgroups of G. By definition, an F-
isomorphism f: A — B is a homomorphism of F,-algebras such that every
element of the kernel of f is nilpotent, and for every element b in B, there is a
natural number r such that b” is in the image of f.

We also prove Yagita’s theorem that the Chow ring of a finite group has
exactly the same description, up to F-isomorphism. It follows that the map
from the Chow ring to the cohomology ring is an F-isomorphism. Thus
the Chow ring of a finite group is qualitatively similar to the cohomology
ring.

Yagita’s theorem was originally proved for finite groups viewed as algebraic
groups over the complex numbers [153, theorem 3.1]. In this section, we prove
it over any base field that contains the p? roots of unity, which requires some
new arguments using motivic cohomology. Finally, in Theorem 8.10, we prove
Yagita’s theorem over any base field that contains the pth roots of unity, which
examples show is an optimal assumption.

For a fixed prime number p, write CHj = CH*(BG)/p and Hf =
H*(BG, F ). Write k, for the separable closure of a field .

Theorem 8.2 Let G be a finite group and p a prime number. View G as an
algebraic group over a field k of characteristic not p that contains the p* roots of
unity. Then the cycle map C H}, — @®; HZ (BGy,, F,(i)) is an F-isomorphism.
For k C C, it is equivalent to say that CHf, — H(, is an F-isomorphism.

That is: every element of the kernel of CHf — H{; is nilpotent, and for
every element x of H}, there is an r > 0 such that x?" is in the image of the
cycle map. Later we will extend the theorem to the case where k contains only
the pth roots of unity (Theorem 8.10).

Let us begin the proof of Theorem 8.2.

Lemma 8.3 Let G be a finite group, viewed as an algebraic group over a
field k. Let M be a torsion Gal(k, / k)-module such that all elements have order
invertible in k. Then the etale cohomology H;(BGy, M) is isomorphic to the
continuous cohomology H*(G x Gal(k,/ k), M). In particular, for k separably
closed, the etale cohomology of BGy is simply the cohomology of the group G.

Grothendieck studied the continuous cohomology of the profinite group
G x Gal(ky/k) (viewed as the G-equivariant etale cohomology of Spec k)
before our algebro-geometric model for BG was defined [58].
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Proof Under our assumption on M, etale cohomology is homotopy invariant,
and so H:(EGy, M) is isomorphic to H}(k, M) = H*(Gal(k,/k), M) [104,
corollary VI.4.20]. There is a natural map from the continuous cohomology
H*(G x Gal(ks/ k), M) to H:(BGy, M). We have a Kiinneth spectral sequence

ES* = H*(G, H*(Gal(k;/ k), M)) = H*(G x Gal(k,/ k), M),
and this maps to the Hochschild-Serre spectral sequence for etale cohomology,
E3* = H*(G, H"(EGy, M)) = H*(BGy, M)

[104, theorem 2.20]. Since this homomorphism of spectral sequences is an
isomorphism on E, terms, it gives an isomorphism H*(G x Gal(k,/k), M) —
H*(BGy, M). O

For the proof of Theorem 8.2, let us write H; for either the ring H*(BG, F )
or @iHezti(BGkS, F,(i)) (isomorphic to the even-degree subring of the former
ring). The arguments work the same way in both cases.

Following Quillen, consider the category of elementary abelian p-subgroups
of G with morphisms being the homomorphisms given by conjugation by ele-
ments of G together with inclusions. Then restriction gives a ring homomor-
phism

CH{ — LiLnCH:.

(Explicitly, an element of limCH} is an element x4 of CH) for every
elementary abelian p-subgroup A such that xp = x4|p whenever B C A
and xg4,-1 = gx4 for every g € G.) We will show that this map is an F-
isomorphism. The same arguments prove Quillen’s theorem [114], [12, vol. 2,
corollary 5.6.4]:

Theorem 8.4 Let G be a finite group, p a prime number. Then
H; — Lir_nHZ
is an F-isomorphism.

A morphism of schemes over a field is called a universal homeomorphism
if it is a homeomorphism (for the Zariski topology), and remains so after any
extension of the base field. For example, the morphism x + x? is a univer-
sal homeomorphism from the affine line over F, to itself. Quillen observed
that Theorem 8.4 gives a simple description of the “variety” Spec HS', con-
sidered up to universal homeomorphisms: it is the union of affine spaces over
F, corresponding to the elementary abelian subgroups of G, glued together
by inclusion and conjugation of such subgroups. Here “glued” includes the
possibility of taking the quotient of the affine space Spec Hy' by the finite
group Ng(E)/Cg(E). In particular, all irreducible components of Spec Hf'
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are unirational. Thus the cohomology rings of finite groups are very special
among finitely generated F ,-algebras.

In particular, Quillen’s theorem implies that the dimension of the ring H
is equal to the p-rank of G (the maximal rank of the elementary abelian p-
subgroups of G). (For aring R that is finite over a central subring A, we define
the dimension of R to be the Krull dimension of A; this is independent of the
choice of A. The ring H( is finite over its commutative subring HZ', and so
this definition applies.) The irreducible components of Spec HZ' are in one-to-
one correspondence with the conjugacy classes of maximal elementary abelian
p-subgroups of G.

Since k contains the pth roots of unity, we have CH} =Fp[yi, ..., y.]. So
CH} — Hj is an F-isomorphism, and one deduces easily that lim CH}; —
1<i£1Hj{ is an F-isomorphism. So proving that CH} — l<iLnCH/}f is an F-
isomorphism will prove Theorem 8.2.

The proof of F-surjectivity follows Quillen’s and Yagita’s arguments [114,
153]. Here we only need k to contain the pth roots of unity.

Lemma 8.5 Letr A be an elementary abelian subgroup of G. Write
[NGg(A): A] = gb, where q is a power of p and b is prime to p. Let u be
a positive-degree element of (C HZ)NG(A) that restricts to zero on all proper
subgroups of A. Then there is an element v in C H, that restricts to u? on A
and to zero on all elementary abelian subgroups A" of G that are not conjugate
to a subgroup containing A.

Proof Letw = Nf(l + u). By the double coset formula for the norm (Lemma
8.1),

_ A gAg™!
wls = H NAmgAg,,resAmgAg,lg(l+u).
g€A\G/A

For g & Ng(A), the factor shown is equal to 1, since u restricts to zero on
proper subgroups of A. So

wa= [] et+w

8ENG(A)/A
=(1+u)
=1 + bu? + terms of higher degree,

using that u is fixed by Ng(A). Let v be 1/b € F,, times the term of degree
glu| in w. Then v restricts to u? on A, as we want. For an elementary abelian
subgroup A’ of G that is not conjugate to a subgroup containing A, we have

_ A gAg™!
wla = 1_[ NA,mgAg,lresA,mgAg,,g(l +u)
gEANG/A

=1,
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since A’ N gAg~! is always a proper subgroup of gAg~'. So v|4 = 0, as we
want. O

We can now prove the F-surjectivity of CHF — l(i£1CHj§. Let u be an
element of 1(121 C H}. We want to show that some p-power of u is the restriction
of an element of CHJ. We can assume that u has positive degree. Let A
be an elementary abelian subgroup of smallest order among those such that
us # 0. We know that u4 is in (C H})Ne¢4). By assumption, u restricts to zero
on all proper subgroups of A. Let ¢ be the maximum power of p dividing
[Ng(A): A]. By Lemma 8.5, there is an element v of CH that restricts to
u on A and to zero on all elementary abelian subgroups not conjugate to a
subgroup containing A.

Let up =u? — v in 1(£n CH?. We know that u, vanishes on all elementary
abelian subgroups of order smaller than A, and also on A, while it is equal to
u? on the elementary abelian subgroups that have the same order as A but are
not conjugate to it. By induction on the order of A and on the set of conjugacy
classes of elementary abelian subgroups of a given order, some p-power of u;
is a restriction from G. Therefore, some p-power of u is a restriction from G.
We have proved the F-surjectivity of CH}, — 1(&1 CHj}.

Lemma 8.6 Ler G be a finite group and p a prime number. View G as an
algebraic group over a field k of characteristic not p that contains the p* roots
of unity. Then any element of CH; that restricts to zero on all elementary
abelian subgroups of G is nilpotent.

We follow Yagita’s arguments on the case k = C, inspired by Minh’s proof
of the corresponding result in cohomology, originally due to Quillen. There is
some extra work for k not algebraically closed.

Proof We consider all Chow rings modulo p. The Chow ring of G injects
into the Chow ring of a Sylow p-subgroup, and so we can assume that G is a p-
group. If G is elementary abelian, then the result is clear. Let G be a p-group that
is not elementary abelian. Let V = G/[G, G]G? be the maximal elementary

abelian quotient group of G. Let x|, ..., x,, be a basis for H‘l/ and y; = Bx;;
then Hy; is a free module over F,[yi, ..., y,] with basis the monomials ]_[iel X;
for I C {1, ..., n}. Also, since k contains the pth roots of unity,

CH{; = Fp[yh ceey yn]-
For cohomology, the following result is due to Serre [123].

Lemma 8.7 Let ey be the product of one nonzero element from each line in the
F,-vector space CH‘I, =F,{y1, ..., yu}. Then ey pulls back to zero in C H,.

Proof Since the p-group G is nilpotent but not elementary abelian, it maps
onto a nontrivial central extension H of V by Z/p. Such an extension is
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classified by an element of H{ that pulls back to zero in H},. Therefore we
have a relation

f = ZC,’]X,‘X.]’ + deyj =0

i<j k

in Hf, for some c;;, di € F,, not all zero. The lemma is trivially true if some
nontrivial linear combination of yi, ..., y, is zero in H. (That is, the lemma
is easy if the abelianization of G is not elementary abelian.) So we can assume
that some c; ;i is not zero.

We want to deduce an analogous relation in motivic cohomology
H }@(BG, Z/p(2)). By the Beilinson-Lichtenbaum conjecture (Theorem 6.9),
the latter group is isomorphic to H3(BG,Z/p(2)). For k separably closed,
that would be isomorphic to H*(BG,Z/p), but we need more care since
we are assuming only that k contains the p? roots of unity. By Lemma 8.3,
H}(BGy, M) = H*(G x Gal(k,/ k), M) for every finite Gal(k,/k)-module M
of order invertible in k. In particular, we have a splitting

Hy(BV,Z/p(1)) = HY(BV, Z/p(1))
= H'(V, upk)) @ Hy(k, wp).

We can view x1, ..., x, in H}, as a basis for the summand of H,,(BV, Z/p(1))
that restricts to zero in H'(k, ,). Let y; = Bx; in Hy,(BV,Z/p(1)) = CH,.
Then y; has a class in

HX(BV,Z/p(1)) = H*(V, u,(k)) @ H'(V, H\(k, 11,)) ® H2(k, 11,,),

which I claim lies in the summand H>(V, u p(k)). Clearly y; restricts to zero in
Hezl(k, 1p), because x; restricts to zero in Helt(k, tp). If we assumed only that
k contained the pth roots of unity, then y; could have nonzero component in
H\(V, Helt (k, ;tp)); asimilar observation was made by Grothendieck [58, equa-
tion 5.6]. But since k contains the p? roots of unity, we have an exact sequence

0— upk) = pppk) = pupk)y = 0

of abelian groups. Viewing these as G-modules with G acting trivially, we
get a Bockstein map on H*(G, H(k, ip)), and this is compatible with
the Bockstein map on Hi(BGy, u,) = H*(BG x BGal(ks/k), iu,) via the
homomorphism G x Gal(k;/k) — G of profinite groups. We conclude that
the class of y; in etale cohomology lies in the summand H?(V, u (k).

Write t for a generator of Hl?,l(k, Z/p(1)) = up(k). Then the elements
x;x; for i < j and ty; in H}(BV,Z/p(2)) both map into the summand
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H(V, Hg(k, Z/p2)) = H‘% of Hezt(B V,Z/p(2)), by what we have shown.

Since the element
f = ZCUX[XJ' +7 deyj

i<j k

of H]@(B V,Z/p(2)) pulls back to zero in the ordinary cohomology of G,
it pulls back to zero in H2(BG,Z/p(2)), and so it pulls back to zero in
H,%l(B G, Z/p(2)) by the Beilinson-Lichtenbaum conjecture (Theorem 6.9).

At this point, we can return to Yagita’s arguments. Voevodsky defined the
Milnor operation

0,1 Hy (X, Z/p(j) — Hy, " " (X, Z/p(j + p" — 1))

on motivic cohomology inductively by writing Qq for the Bockstein § and
Qi1 = [P”[, Q;] [150, section 2.2]. (For p =2, this formula uses our
assumption that k contains the 4th roots of unity; otherwise Q; is defined
differently [144, example 13.7].) The operation Q; is a derivation, and we
have Q,x; = yip " and Q,y; =0, using y; = Bx; together with the unstable
properties of Steenrod operations (Section 6.3). Therefore
0:0:f =Y e3Pyl —yI'y!)=0
i<j

in CHZ, for any r and s. Note the remarkable feature of the Milnor operation
in this argument, emphasized by Yagita: it produces a relation among algebraic
cycles from purely topological input.

Let L = (CH)®", viewed as a free module over CH;, and lete; € L be the
vector (y;, ¥/, ..., yipH). The relation above in C H}; (applied forr, s <n — 1)
implies that ), _; cije; Aej = 0in A?L. We know that ¢;; is not zero in F, for
some i < j; after changing the numbering, we can assume that c¢j, # 0. Multi-
plying by ez A - - - A e, we find that c12e1 A -+ - A e, = 0. So the determinant

p!
det(yi )lfi,jfn =eiN---Negy

iszeroin A"L = CH{,.
The determinant of this matrix

yl yf) - ylp 1

2 ¥ Y
.n—l

L AR V4

is known as the Moore determinant, an analog in characteristic p of the
Vandermonde determinant. The Moore determinant is the product of one
nonzero vector in each line in F,{y, ..., y,}. (Indeed, the Moore determinant
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vanishes whenever there is an F-linear relation between y, ..., y,, since
that gives a linear relation among the rows. So the Moore determinant, as a
polynomial in yy, ..., y,, is a multiple of the product mentioned here. Since
both have degree 1+ p + ---+ p"~!, they are equal, up to a scalar.) We
have therefore shown that the product of one nonzero vector in each line in
F,{y1,..., ya} is equal to zero in CH. O

The following statement is an analog of a theorem on cohomology by Minh.
For Chow rings with k = C, it was proved by Yagita [153, theorem 3.4].

Lemma 8.8 Let G be a p-group that is not elementary abelian. Consider G
as an algebraic group over a field k of characteristic not p that contains the p*
roots of unity. Ifu € C H(, restricts to zero on all proper subgroups, then u? = 0.

Proof Let V = G/[G, G]G? be the maximal elementary abelian quotient
group of G. Let x be a nonzero element of H. = H, = Hom(V, Z/p). Then
ker(x) is a subgroup of index p in G. We will show that if u restricts to zero in the
Chow ring of ker(x) for all such x, then u” is a product of some element of C H;
with the product ey of one nonzero element from each F ,-line in C H}} restricted
to G. That will imply that u” = 0, by Lemma 8.7 (using that k contains the
p? roots of unity). Identifying H}, with a summand of H;,(V, Z/p(1)), we can
say that the Bockstein gives an isomorphism from H\, to CH\. Write y = fx.

Consider the norm v := NG **/”(u) in CH{, . By the Chow Kiinneth
formula (Lemma 2.12), we can write v as a sum Z;>o ﬁ(u)ti, where ¢ is a
generator of CHzl/p =7Z/p and fi(u)isin CHS. Rest_ricting v to the normal
subgroup G C G x Z/p gives u? by Lemma 8.1 (since Z/p acts trivially by
conjugation on G), and so we have fy(u) = u”. (The elements f;(u) are in fact
the Steenrod operations of u, suitably renumbered, but we do not use that [12,
vol. 2, definition 4.4.1].)

Intuitively, intersecting two cycles cannot be made a strictly commutative
operation, because of the need to perturb cycles when they do not intersect
transversely, although in a sense it is commutative up to all higher homotopies.
As Benson observed, this failure is manifested by the norm of the restriction of
an element (for example from B(G x Z/p) to BG) not always being a power
of that element, in other words by the non-vanishing of Steenrod operations.
By contrast, the transfer of a restriction is a multiple of the original element
[12, vol. 2, section 4.4]. With rational coefficients, there is no obstruction to
making the product commutative at the level of cycles, as shown in topology
by de Rham cohomology.

Let x = xy, ..., x, be a basis for H‘l, = Hom(G, Z/p), and let ay, ..., a,
be elements of G such that x;(a;) = §;; € Z/p. Then ay, ..., a, generate
the group G. Let G, be the subgroup (a;b, ay,...,a,) C G x Z/p, where
we write Z/p = (b), and let f,: G — G, be the isomorphism given by
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fi(a)) = a1b and fy(a;) = a; fori > 1. Then G and G, are both normal sub-
groups of index p in G x Z/ p, and their intersection is ker(x) C G. We have

fiole) =u’ + ) fiw)y'.
i>0
But the element on the left is zero, by the double coset formula for the norm
(Lemma 8.1), since u restricts to zero on ker(x). Adding up these formulas
for all 0 # x in H, we find that u” = Y o(fi) X spev- y'). For each
i>0, Z), £0eV* y' is a polynomial function on V ®r, F, that vanishes on
all codimension-1 linear subspaces defined over F,. So it is a multiple of the
product ey of one nonzero element y from each F,-line in CH \5 = V*. Thus
u? is a multiple of ey, pulled back to C H};, and hence is zero. O

We can now finish the proof of Lemma 8.6. As discussed earlier, this
complete the proof of Theorem 8.2. Let u be an element of C H}; that restricts
to zero on all elementary abelian subgroups of G. If G is elementary abelian,
then # = 0 and we are done. Otherwise, by induction on the order of G, the
restriction of u to each proper subgroup of G is nilpotent. So there is an» > 0
such that u”" restricts to zero on all proper subgroups of G. Then u’' =0 by
Lemma 8.8. O

8.3 Yagita’s theorem over any field containing
the pth roots of unity

We now strengthen Lemma 8.6 by removing the assumption that the base field
k contains the p? roots of unity.

Lemma 8.9 Let G be a finite group and p a prime number. View G as
an algebraic group over a field k of characteristic not p. Then any element of
CH{, = CH*(BG)/ p that restricts to zero on all elementary abelian subgroups
of G is nilpotent.

Proof Let E be the extension field of k obtained by adjoining the pth roots
of unity. The degree of E over k divides p — 1 and hence is prime to p. Also,
E is a separable extension of k. Using transfer for the finite etale morphism
BGr — BGy, it follows that the pullback map CHg;, — CH; is injective.
Thus it suffices to prove the lemma when & contains the pth roots of unity. We
can also assume that k is infinite, since we can replace a finite field k by the
direct limit over an infinite sequence of extensions of degree prime to p.

We have proved the lemma when k contains the p? roots of unity (Lemma
8.9). Suppose that k does not contain the p? roots of unity. Let F be the extension
field of k obtained by adjoining the p? roots of unity; then F is a cyclic extension
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of k of degree p. It follows that there is a morphism «: Spec(k) — B(Z/p)
of k-schemes that classifies the principal Z/p-bundle Spec(F) — Spec(k).
(To prove this, consider a finite-dimensional approximation (V — S)/(Z/p) of
B(Z/ p)i, where V is a representation of Z/p over k and S ; V is aclosed G-
invariant subset such that G acts freely on V — S. Then (Spec(F) x; V)/(Z/p)
is a vector bundle over Spec(F)/(Z/p) = Spec(k), by faithfully flat descent as
described in section 2.2. Since k is infinite, this k-vector space has a k-rational
point in the open subset (Spec(F) x; (V — §))/(Z/ p). The image of this point
in (V — S)/(Z/ p) is a morphism « : Spec(k) — (V — S)/(Z/ p) of k-schemes
that classifies the principal Z/ p-bundle Spec(F) — Spec(k), as we want.)
It follows that we have a pullback diagram

BGr ——  BGi

l L

BGy —— B(G X Z/p),
B

where the right vertical map y is given by the inclusion G C G x Z/ p, whereas
the bottom map S is given by the identity on B Gy together with the morphism
BG — Spec(k) — B(Z/p);. (To be precise, on finite-dimensional approxi-
mations to the cla:sifying spaces, this is an actual pullback diagram of finite
etale morphisms.)

Since k contains the pth roots of unity, we haye C H(*GXZ I = C H(*;k [t]
with 7| = 1. Therefore, for any element y in CHj;,, its norm via y has the
form NG"*/7(y) = Zfl:() fi(nti for some f;(y) € CHL'™/. Restricting the
principal Z/p-bundle y to BGy by the morphism y: BGy — B(G X Z/p)i
gives the trivial Z/ p-bundle over B Gy, from which we read off that fy(y) = y”.
(The other elements f;(y) are certain Steenrod operations of y, as mentioned
in the proof of Lemma 8.8, but we do not need that.)

The norm is compatible with pullback [45, property 7.3], and so our diagram
implies that

Gi G GxZ/
Ng'resghy = B*NG "y

pi
=B it

j=0

in CHg,. The important point is that CH'Spec(k) =0. So p*t =0 in
CH'BGj, because B factors through Spec(k). As a result,

Gy Gy, _ .p
Ng, resg y = y".

Therefore, if y € C Hék restricts to zero in C HéF, then y? = 0. Thus, since we
know the lemma for G, it holds for Gy. O
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We can now prove Yagita’s theorem assuming only that the base field contains
the pth roots of unity.

Theorem 8.10 Let G be a finite group and p a prime number. View G as
an algebraic group over a field k of characteristic not p. Then the cycle map
CH} — ®; He2t"(B Gy, , F,(i)) has nilpotent kernel. If k contains the pth roots
of unity, then the cycle map is an F -isomorphism. For k C C containing the pth
roots of unity, it is equivalent to say that CHf, — H is an F-isomorphism.

We do need k to contain the pth roots of unity, as shown by the example
of G =Z/p over Q for p odd. In that case, CHf, — H(; is not F-surjective,
since the image is the subring F, [y~ 1 of the free graded-commutative algebra
H =F,(x,y) [138, example 13.1].

Proof We already showed after Lemma 8.5 that the cycle map is F-surjective
when k contains the pth roots of unity. It remains to show that the cycle map
has nilpotent kernel, for any field k of characteristic not p.

Let E be the extension field of k obtained by adjoining the pth roots of unity.
Then E has degree prime to p over k, and so CHg;, — CH(;, is injective. So
it suffices to show that the kernel of the cycle map is nilpotent when k contains
the pth roots of unity. In that case, for every elementary abelian p-subgroup
A of G, CH} is a polynomial ring over F,, and the cycle map CH; — H}
is injective. So an element y of the kernel of CH}; — H; restricts to zero in
C H} for all elementary abelian p-subgroups A. By Lemma 8.9, y is nilpotent.
(In fact, the proof gives an explicit bound N such that all elements y of the
kernel have y"N =0.) O

8.4 Carlson’s theorem on transfer

Carlson’s theorem on transfer in group cohomology is important for the rest of
the book. Here we prove it and generalize it to the Chow ring.

Lemma 8.11 Ler H be a subgroup of a finite group G. Then the transfer
maps t;: CH}, — CH and w$: H}y — H commute with pth powers.

Proof For each i > 0, the pth power map CH& — CHé’i is equal to the
Steenrod operation P’ defined by Voevodsky (Section 6.3). Moreover, Steenrod
operations commute with pushforward maps for finite etale morphisms, hence
with the transfer, for example by [21, definition 8.13 and proposition 9.11].
The same argument works for cohomology. O

We now prove Carlson’s theorem [26, corollary 12.4.6]. We follow an argu-
ment by Benson, but with explicit estimates of the p-powers needed for the
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proof [11]. We will apply the theorem when G is a p-group. Readers may wish
to concentrate on that case, where the statement is a little simpler.

Theorem 8.12 Let G be a finite group and p a prime number. Let P be a
Sylow p-subgroup of G, and let C be the p-torsion subgroup of the center of P.
Then the kernel of Hf, — H{. has the same radical as the sum of the images of
all transfers to G from proper subgroups of P. Moreover, the sum of the images
of all transfers from centralizers Cg(E) of elementary abelian p-subgroups
E such that Cg(E) does not contain a Sylow p-subgroup of G has the same
radical in H,.

Example Let G be the dihedral group of order 8. Then
CH} =Fy[c|V, eV, al/(@* = ac,V)

by Lemma 13.2, and the kernel of restriction to C = Z/2 is the ideal (a, ¢; V) in
C H{;. Thus the ring C H; has Krull dimension 2 (and Spec(C H;) is the union of
two affine planes over F, that meet in a line), while the image of CH; in CH{: is
the 1-dimensional ring F»[c, V]. We use the notation from the proof of Lemma
13.2; so G has two non-central elementary abelian subgroups of G called A
and A, both isomorphic to (Z/ 2)2. Here A, and A, are their own centralizers
in G. We compute that tlrg1 (t1) =a+ ¢,V in CH}, while trfz(tz) = a. (These
computations can be done by observing that C H; is detected on A and A, in
this case. So it suffices to compute the restriction of these transferred elements
to A; and A, using the double coset formula, Lemma 2.15.) Thus the sum of
the images of transfer from C H and C H}, is the ideal ker(CH; — CH() =
(a, ¢ V), which checks Corollary 8.14 in this case.

Likewise, the cohomology ring of the dihedral group G is H} =
Falxy, x2, y]/(xl2 = Xx1X3), where |x;| = |x2] = 1 and |y| = 2. For a suitable
choice of these generators, the Chow ring C Hf maps to cohomology by
a > x12, V> x%, and ¢,V —~ y2. The restriction Hf — H{ has image
F;[y] and kernel the ideal (xi, x;). We compute (directly, or using the calcu-
lation for Chow rings) that the images of the transfer maps H /il — H/. and
H 1}\2 — H/, are spanned by x| + x; and xj, respectively. So the sum of the
images of transfer from H} and H} is the ideal ker(H; — H¢) = (x1, x2),
which checks Theorem 8.12 in this case.

Proof (Theorem §.12) One directionis easy. Let H C P be aproper subgroup.
Then the image of the transfer tr: H}, — H{ is contained in the kernel of
H} — H}.lIndeed,
H -1
resgtr x = Z T C g Hg—1TES e frg 187
§€C\G/H

for x in H}; (Lemma 2.15). The transfer from the cohomology of any proper
subgroup of C to C is zero, and so the expression is zero except for terms
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corresponding to C-orbits on G/H of size 1. Since P is a p-group and H is a
proper subgroup of P, all P-orbits on G/H have order a multiple of p. Finally,
the terms corresponding to C-orbits in a single P-orbit are all equal, since P
centralizes C. So the sum is a multiple of p and hence is zero in Hf.

For the reverse direction, we use the following result on invariant theory.
The statement uses the trace for a finite group action, defined after Lemma 7.3.
For a vector space V over F, let oy € F,[V*] be the product of all nonzero
elements of V*. (Thus oy = ¢, 71, in the notation of Lemma 8.7.)

Lemma 8.13 Let G be a finite group, and let V be a faithful representation

of G of dimension n over F,. Then there is a polynomial o € F,[V*] such that
G _ n—1

(o) = oy .

Proof It suffices to prove this when G = GL(n,F,). In that case,

this was shown by Campbell, Hughes, Shank, and Wehlau, with o =
i P 1=(p=Dp!

i1 X [25, corollary 9.14]. (There is a related calculation by
Priddy and Wilkerson, but as far as I can see, it shows only that oy is in the
image of the trace [110, p. 784].) Shank and Wehlau gave a simpler proof,
which also shows the optimality of this statement. In fact, the image of the
trace for GL(n, F,) on F,[V*] is the ideal generated by o7 " in the invariant

ring [125, theorem 5.5]. O

We now prove Theorem 8.12. Let y € H{; be an element that restricts to zero
on C. We will show that there is an » > 0 such that y’" is a sum of transfers
from centralizers C(E) of elementary abelian subgroups E with Cs(E) not
containing a Sylow p-subgroup of G.

It suffices to show: (*) let E be an elementary abelian subgroup of a p-group
G. Let y € H} be an element that restricts to zero on all proper subgroups of
E. Then there is an r > 0 and an element x € H{_, such that (i) res%(y” —
g px) =0 and (ii) resf,rg_ ;) x = 0 for all elementary abelian subgroups
E’ C G that are not conjugate to a subgroup containing E. Indeed, suppose that
we know (*), and let y be an element of H; that restricts to zero on C. Then
y restricts to zero on all elementary abelian subgroups of G whose centralizer
contains a Sylow p-subgroup of G. Then, after raising y to a suitable p-power,
(*) implies that we can subtract transfers from centralizers of elementary abelian
subgroups E such that C;(E) does not contain a Sylow p-subgroup of G, and
get an element of H, that restricts to zero on all elementary abelian subgroups.
(Here we use that transfers commute with p-powers, Lemma 8.11. Also, every
element of H transferred from Cg(E) is also transferred from a Sylow p-
subgroup of Cg(E), which is an element of S.) But then raising to a further
p-power gives zero, by Quillen (Theorem 8.4), and the theorem is proved.

To analyze property (ii) in (*), note that

§Ca(E)g™!

GG _ E
resptre, (pyX = E trE,mgCG(E)g,lresE,ngCG(E)g,lgx.
ENG/CG(E)
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On the right side, we are restricting x to g~' E’g N C(E), up to conjugation. So
(i) holds if x restricts to zero on all elementary abelian subgroups A C Cs(E)
that do not contain E, as we will arrange.

To prepare to prove (*), note that the group Wg(E) := Ng(E)/Cg(E) acts
faithfully on the given elementary abelian subgroup E. Let « € CH} C H}
be the element given by Lemma 8.13, so that terG(E)(a) = a,’:f_l, where E has
rank n. Let 8 = oga; then trYVG(E)(,B) = o and B restricts to zero on all proper
subgroups of E. By Lemma 8.5, there is an element of H¢_ 5, (constructed using
the norm) that restricts to ,3/’1 on E, where [Cg(E) : E] = p*, and restricts to
zero on all elementary abelian subgroups of C(E) that do not contain E. Let
[G: E] = p®, where it is clear that b > 5. For our purpose, raise the element
just produced to the p®~* power, so as to produce an element 7 of H( (g that
restricts to ﬂpb on E and restricts to zero on all elementary abelian subgroups
of Cs(FE) that do not contain E.

We will take x € H¢_ ) to be of the form x = reng( )2 for a suitable
z € H(,. Then x restricts to zero on all elementary abelian subgroups of C(E)
that do not contain E, and so property (ii) holds. It remains to choose z € H{
in order to make x satisfy property (i).

Clearly trgg( £(X) = (trgG( £z in Hg. The restriction of this to E is

GG G
(resgtré, pymres 2.

We want to choose z to make this equal to some p-power of y restricted to E.
Here

G,.G _ E gCG(E)g™!
resglypn = ) UEngcoE)g TS EngCo(m)g—1 871"

g€E\G/CG(E)

Up to conjugation, the expression on the right involves the restriction of n to
g 'Eg N Cs(E). We know that 7 restricts to zero on all elementary abelian
subgroups of C¢(E) that do not contain E. So the only nonzero terms are those
with g € Ng(E). That is,

G, .G CG(E)
reSptré, gyl = Z res;®gn
8EWG(E)

Cg(E
= D ses”
geWs(E)
=trYVG(E),3ph
We(E b
= (" gy

b
_ NP
=oyp .
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(Here we write tr}” for the trace of W acting on H}, and we use that the trace

commutes with pth powers.) So we need to find an element z € H¢; such that

b
o’ res$z is equal to some p-power of y restricted to E.

In the assumption of (*), we are given that y € H; restricts to zero on all
proper subgroups of E. So there is a positive integer m such that the restriction
of y™ to Hj is a multiple of oz. (Wecantakem =2if p =2, andm = p — 1
if p is odd.) So a high enough power of y, which we can take to be a p-power,
restricts on E to a multiple of ag“ ; write resg yP = ag“
some u € Hg. So resgypr = ogv where v := oru in Hj restricts to zero on
all proper subgroups of E. Since o is not a zero divisor in H} and res$ yP s
We(E)-invariant, v is also W (E)-invariant. By Lemma 8.5, there is an element

u for some ¢ > 0 and

z € HE withresCz = v”’, where [G: E] = p?. SoresCy?” = ¢ resCz. By
the previous paragraph, Theorem 8.12 is proved. O

Corollary 8.14 Let G be a finite group and p a prime number. Let P be a
Sylow p-subgroup of G, and let C be the p-torsion subgroup of the center of
P. Consider G as an algebraic group over a field k of characteristic not p that
contains the pth roots of unity. Then the kernel of CH}, — CH{. is the radical
of the sum of the images of all transfers to G from proper subgroups of P.
Moreover, the sum of the images of all transfers to G from centralizers in P of
non-central elementary abelian subgroups of P has the same radical.

Proof (Corollary 8.14) Given our assumption on k, the cycle map CH} —
H( is an F-isomorphism for all finite groups G, by Theorem 8.10. So Theorem
8.12 on cohomology implies the result for Chow rings, using that transfers
commute with pth powers (Lemma 8.11). One could also repeat the argument
essentially verbatim for Chow groups. U



9

Group Cohomology and the Chow Ring Modulo
Transfers Are Cohen-Macaulay

In this chapter, we show that the structure of group cohomology and Chow rings
is significantly simplified by working modulo transfers from proper subgroups.
Namely, the cohomology ring modulo transfers and the Chow ring modulo
transfers are Cohen-Macaulay rings. In this respect, they are much simpler
than the whole cohomology or Chow ring. Nonetheless, if we can compute the
cohomology modulo transfers for a group and its subgroups, then we can read
off additive generators for the whole cohomology.

More precisely, these results work for cohomology or Chow rings mod-
ulo transfers from a smaller class of subgroups. For a p-group, the relevant
subgroups are the centralizers of non-central elementary abelian subgroups.

Theorem 9.3 proves an analogous statement in invariant theory: for any linear
representation of a finite group G over any field, the quotient of the invariant
ring by traces from a certain class of subgroups to G is a Cohen-Macaulay ring.
This generalizes a result of Fleischmann’s [42].

9.1 The Cohen-Macaulay property

Fix a prime number p. For a finite group G, we continue to write H} =
H*(BG,F,)and CH} = CH*(BG)/p. Let P be a Sylow p-subgroup. Let S
be the set of centralizers C;(E) of elementary abelian p-subgroups E such that
C¢(E) contains no Sylow p-subgroup of G. Let

T(G) = H;;/ Ztrgﬂ;;
HeS
and

A(G) = CHg;/ > ufCHj.

HeS

104
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Note that the rings CH*BG and A(G) depend on a choice of field k, with
G being viewed as an algebraic group over k. We usually do not indicate k
in the notation. Our results also hold for the quotient rings of Hj and CH
by transfers from all proper subgroups of P, but it should be more useful to
understand the richer quotient rings 7'(G) and A(G).

For any subgroup H of a finite group G, the transfer map Hj; — HJ; is
H/-linear (Lemma 2.15(i)), and so its image is an ideal in H. It follows that
T(G) is a graded-commutative F,-algebra. Likewise, A(G) is a commutative
graded F ,-algebra.

Example Let G be the dihedral group of order 8. Then H} =
Fs[x1, x7, y]/(x% = Xx1x3), where |x;| = |xz] =1 and |y| = 2. By the exam-
ple after Theorem 8.12, the two elementary abelian subgroups of rank 2 in G
are their own centralizers, and the images of transfer from those two subgroups
span H/.. So the quotient ring 7(G) of H(; is the polynomial ring F»[y]. The
2-dimensional irreducible complex representation V of G is faithful, and its
Euler class x(V) (meaning ¢,V) is equal to y? in T(G). Thus T(G) is a free
F,[x(V)]-module, which agrees with Theorem 9.1.

In this section we show that the rings 7(G) and A(G) are always Cohen-
Macaulay. An earlier result with a similar flavor is Green’s theorem that the
essential ideal in H; is a Cohen-Macaulay module [50]; the method goes back
to Duflot’s lower bound for the depth of the cohomology ring (Corollary 3.19).
It is striking that working modulo transfers simplifies the cohomology ring in
this way.

For comparison, the whole cohomology ring of a finite group is Cohen-
Macaulay in some examples, but in most cases it is not; this seems to be a large
part of what makes the cohomology ring hard to compute. Among the main
successes in the cohomology of finite groups are Quillen’s calculation of the
cohomology of GL(n, F,) with mod / coefficients when ¢ and [ are relatively
prime (Theorem 2.23), and Quillen’s calculation of the cohomology of an
extraspecial 2-group [12, vol. 2, section 5.5], [112]. (By definition, a p-group
G is extraspecial if it is a central extension of an elementary abelian group by
Z/ p and the center of G is equal to Z/ p.) In those cases, the cohomology rings
are Cohen-Macaulay.

The cohomology of GL(n, F,) with mod p coefficients where g is a power
of p, and the cohomology of an extraspecial p-group with p odd, remain
unknown in general; these are non-Cohen-Macaulay examples. More broadly,
for any finite group G that has maximal elementary abelian p-subgroups of
different ranks, the scheme Spec H¢' is not equidimensional by Quillen’s theo-
rem (Theorem 8.4), and so the ring H; is not Cohen-Macaulay. That argument
shows that the cohomology of the symmetric group is not Cohen-Macaulay in
most cases.
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For some purposes, it is enough to consider the ring 7(G) for a p-group G,
in which case the definition is a little simpler: 7(G) is the quotient of Hf; by
transfers from centralizers of non-central elementary abelian subgroups of G.
But I have made an effort to formulate statements that are nontrivial for arbitrary
finite groups. One reason is that the mod p cohomology of a finite group G can
be simpler than the cohomology of a Sylow p-subgroup P, and so it may be
reasonable to study the cohomology of G without complete knowledge of the
cohomology of P.

For example, for [ an odd prime number and g a prime power congruent to
1 modulo /, the mod / cohomology ring of the general linear group GL(I, F,)
is Cohen-Macaulay by Quillen (Theorem 2.23). But the cohomology of an
[-Sylow subgroup P of G, which is a wreath product Z/[ : Z/I" for some r, is
not Cohen-Macaulay, since P has maximal elementary abelian /-subgroups of
different ranks (namely, 2 and /). In another direction, for a prime power g = 3
(mod 4), Quillen showed that the mod 2 cohomology of G = GL(2,F,) is
detected on the diagonal subgroup {#£1}? [115, corollary to theorem 3]. (In the
terminology of Section 12.1, the statement that H¢; is detected on elementary
abelian subgroups means that the topological nilpotence degree do(H() is
equal to zero.) But a Sylow 2-subgroup of G is a semidihedral group P, and the
cohomology of P (e.g., H}) is not detected on elementary abelian 2-subgroups
(cf. Lemma 13.4).

Theorem 9.1 Let G be a finite group, p a prime number; c the p-rank of the
center of a Sylow p-subgroup of G. Then the ring T (G) is Cohen-Macaulay of
dimension c.

Suppose in addition that G is a p-group. Let V. = V| & - - - & V. be a faith-
ful complex representation of dimension n with c irreducible summands (the
smallest possible number). Then the ring T(G) is a finitely generated free
F,[x(V1),..., x(Vo)]-module.

The same result holds if we replace T(G) by a cruder ring, the quotient of
H/, by transfers to G from all proper subgroups of a p-Sylow subgroup of G.
The same proof works, and some steps are easier.

Let us explain why the smallest number of irreducible summands for a
faithful complex representation V =V, @ --- @ V; of a p-group G is equal
to the p-rank c¢ of the center. Let C = Z(G)[p] = (Z/p)° be the p-torsion
subgroup of the center of G. By Schur’s lemma, C acts by scalars, through some
1-dimensional representation of C, on each of the irreducible representations
Vi,..., Vs of G. Since V is a faithful representation of G, it is faithful on C,
which means that these 1-dimensional representations of C span Hom(C, C*) =
(Z/p)°.So s > c. Conversely, a representation of G is faithful if and only if its
restriction to C is faithful, because every nontrivial normal subgroup of G has
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nontrivial intersection with the center [4, section 5.15] and hence with C. So
G has a faithful representation with exactly ¢ irreducible summands.

Corollary 10.3 will show that, for a p-group G, T(G) is generated as an
F,[x(V1), ..., x(Vc)]-module in degrees at most 2n — c. Since T(G) is a free
F,[x(V1),..., x(V.)]-module, it is equivalent to say that the ring 7(G) has
regularity at most zero.

Proof (Theorem 9.1) Let G be a finite group. Let P be a Sylow p-subgroup
of G and C = Z(P)[p] = (Z/p)‘. By Carlson’s theorem, the kernel of the
restriction map T(G) — T(C) = H isnilpotent (Theorem 8.12). By Venkov’s
theorem (Theorem 1.1), H is finite over H. So H is finite over the quotient
ring T (G). We conclude that the dimension of 7'(G) is equal to the dimension of
H, whichis the p-rank c of C. It remains to show that the graded-commutative
ring T'(G) has depth at least c.

Let T5(P) be the quotient ring of H} by transfers from all intersections
P N Cg(E) such that E is an elementary abelian subgroup of G with C(E)
containing no Sylow p-subgroup of G. This is not a very natural ring to consider,
but it serves our purpose. As the notation indicates, 7¢(P) depends on G as
well as on P.

I claim that the restriction and transfer maps

H} — Hj} — H{

TCS(; trf;
pass to well-defined homomorphisms on the quotient rings,
T(G) — Tg(P) — T(G).

Indeed, it is clear that the second map is well defined, and the double coset
formula (as in Lemma 2.15(iii)) gives that the first map is well defined. The
first map is a ring homomorphism, the second is 7' (G)-linear, and the composi-
tion is multiplication by [G : P] # 0 € F,, by the corresponding properties of
cohomology rings. Therefore, T(G) is a summand of 75 (P) as a T (G)-module.
Also, by Venkov’s theorem (Theorem 1.1), H} is finite over H;, and so T (P)
is finite over 7'(G). Since T (G) has dimension c, it follows that T (P) also has
dimension c. Suppose we can show that 7 (P) is Cohen-Macaulay; then the
summand statement implies that 7(G) is Cohen-Macaulay, as we want.

LetV =V, & .- @ V, be afaithful complex representation of P of dimen-
sion n with ¢ irreducible summands (the smallest possible number). As dis-
cussed after the statement of Theorem 9.1, C acts by scalars, through some
1-dimensional representation of C, on each of the irreducible representations
Vi, ..., V. of P, and these 1-dimensional representations of C form a basis
for Hom(C, C*) = (Z/p)¢. Write yy, ..., y. for the Euler classes of these
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representations in HZ2, and let ¢; be the Euler class x (V;) in Hp.Then¢, ..., ¢
restrict to y{”ﬂl, R y[’ in H}, where dim¢ V; = p% fori =1,...,c.

Recall that Hj is a comodule over the Hopf algebra H{, via the product
homomorphism C x P — P (Lemma 3.18). The crucial point is that the quo-
tient ring 7 (P) of Hp inherits the structure of a H*-comodule. To prove this,
we first note that 7 (P) can be defined as the quotient ring of Hj by transfers
from those subgroups H = P N Cg(E) such that E is an elementary abelian
subgroup of G with Cg(E) containing no Sylow p-subgroup of G, and such
that C is contained in H. Indeed, if C is not contained in H, then the subgroup
CH C P is the product of H with a nontrivial elementary abelian subgroup.
In that case, the transfer map from H to C H is zero, and so the transfer from
H to P is zero. So we can omit a subgroup H from the definition of T (P)
except when C is contained in H.

For a subgroup H of P that contains C, the transfer map trk : H};, — H} is
a map of HE-comodules, by the pullback diagram

CxH — H

l l

CxP — P.

Therefore, the quotient ring T(P) of Hf is an H-comodule.

Then the proof of Duflot’s theorem on depth (Theorem 3.17) applies ver-
batim to show that 7;(P) is a free graded module over the polynomial ring
F,[¢1, ..., ¢]. Since the ring T(P) has dimension c, it is Cohen-Macaulay.
As mentioned earlier, this completes the proof that 7(G) is Cohen-Macaulay
for every finite group G. When G is a p-group (so Tg(P) = T(G)), we have
proved the more precise statement that 7(G) is a finitely generated free module
over the polynomial ring F,[¢1, ..., {.] on Euler classes ¢; = x(V;). O

Theorem 9.2 Let G be a finite group, p a prime number, k a field of char-
acteristic not p that contains the pth roots of unity. Let ¢ be the p-rank of the
center of a Sylow p-subgroup of G. Then the ring A(G) is Cohen-Macaulay of
dimension c.

Suppose in addition that G is a p-group. Let V. = V| @ - - - @ V, be a faithful
k-representation of dimension n with c irreducible summands (the smallest
possible number). Then the ring A(G) is a free ¥ ,[x(V1), ..., x(V)]-module
with generators in bounded degrees.

Note that the ring A(G) is not known to be noetherian. We use the definition
of Cohen-Macaulayness in Definition 3.15.

Proof Essentially the same arguments work for A(G) as in Theorem 9.1
for T(G). In particular, Carlson’s theorem on transfer works for the Chow
ring (Corollary 8.14), using that k contains the pth roots of unity. Also, with
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that assumption, we know that CHj is a C H}-comodule, since the Chow
Kiinneth formula gives that CH}, , = CH{ ®p, CHp (Lemma 2.12). Here
CH} =Fply1, ..., y.]isslightly simpler than Hf, but the arguments work the
same way. O

9.2 The ring of invariants modulo traces

There is a surprisingly strong analogy between the F,-cohomology ring of a
finite group and the ring of invariants for a representation of a finite group over
any field. There are obvious differences. Invariant rings are always normal,
whereas cohomology rings are usually not even domains. But, for example,
Symonds showed that the ring of invariants for a representation of a finite
group over any field has regularity at most zero, just like the cohomology ring
of a finite group [131, 132].

In this section, following Symonds’s suggestion, we prove an analog for
invariant rings of the theorem that cohomology rings modulo transfers are
Cohen-Macaulay. The proof turns out to be closely analogous to that of Theo-
rem 9.1. Fleischmann proved Theorem 9.3 in the special case that the represen-
tation V is a summand of a permutation representation [42, proposition 12.4
and theorem 12.7]. Theorem 9.3 also generalizes Hochster-Eagon’s theorem
that rings of invariants in characteristic zero are Cohen-Macaulay [36]. (As
mentioned in Section 7.1, a ring of invariants even for the cyclic group Z/p in
characteristic p need not be Cohen-Macaulay when p is at least 5.)

This section is not used in the rest of the book.

To begin, we define the trace map in invariant theory [10, section 1.5]. Let G
be a finite group acting on an abelian group M, and let H C G be a subgroup.
Then we define the trace trg MY — M by trg(x) = deG/H gx. Thisis a
special case of the transfer in group cohomology, since M7 = HO(H, M). As
a result, the assignment H +— M* for subgroups H of G is a cohomological
Mackey functor (as described in Section 2.5). For R acommutative ring with G-
action, we can also define the norm Ng : RH — RG by Ng(x) = ngG/H gx,
which makes H — R" = HO(H, R) into a Tambara functor (as described in
Section 8.1). These statements are elementary to check by hand. In particular,
for R a commutative ring with G-action and a subgroup H C G, write res$,
for the inclusion RS — R*, which is a ring homomorphism. Then the trace
r%: R¥ — RY is RC-linear. That is,

trg(resg(x)y) =X trf,(y).
Theorem 9.3 Let G be a finite group, V a representation of G over a field k

of characteristic p, P a Sylow p-subgroup of G. (For k of characteristic zero,
let P be the trivial subgroup of G.) Let S be the class of all stabilizer subgroups
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G, in G of k-points u of V such that G, contains no Sylow p-subgroup of G.
Let O(V) be the polynomial ring of regular functions on V. Then the quotient of
the ring of invariants O(V)© by the sum of the traces trg O = o(V)S
Sfrom all subgroups H in S is a Cohen-Macaulay ring, of dimension equal to
dim(V?). The same goes for the quotient of O(V)C by traces from all proper
subgroups of P.

For applications, it should be useful that we can say something about the
ring of invariants modulo traces from a restricted class S of subgroups, not just
modulo traces from all proper subgroups. At least for G a p-group, the class
S is an analogue in invariant theory of the class of centralizers of non-central
elementary abelian subgroups in group cohomology; compare Theorem 9.1.

Proof Let R = O(V). Let I C R® be the sum of all traces to G from all
stabilizers G, of k-points u of V such that G, contains no Sylow p-subgroup
of G. Let (G, V) be the quotient ring R /1.

Lemma 9.4 The closed subset of the quotient variety V/G = Spec R® asso-
ciated to the ideal I in RC is the image of the linear subspace VP C V.

This result can be viewed as the analog for invariant rings of Carlson’s
theorem in group cohomology, Theorem 8.12. We only need Lemma 9.4 to
deduce that the quotient ring #(G, V) has dimension equal to the dimension
of V. Fleischmann proved a version of Lemma 9.4 for G a p-group [42,
proposition 12.5(ii)]. The proof of Lemma 9.4 shows that the image in R®
of traces from all proper subgroups of P defines the same closed subset. So
the latter ideal and the one defined using stabilizer subgroups have the same
radical, although they may not be equal.

Proof (Lemma9.4) Let T be the closed subset of V /G = Spec RY associated
to the ideal in the lemma. Then a k-point v of V maps into T if and only if every
element of the given ideal vanishes at v, which in turn means that for every
k-point u of V with stabilizer G, containing no p-Sylow subgroup of G and
every f € R6 = O(V)%, the trace trgu( f) vanishes at v. This is equivalent
to the same statement for every f in O(V;)G“. So we can assume from now
on that k is algebraically closed and work only with k-points. The G-orbit of
v has the form G/G,, and there is a G,-invariant polynomial on V that takes
any values we like in k on the G,-orbits in G /G,. So trgu( f) vanishes at v for
every f € O(V)% if and only if all G,-orbits on G/ G, have order a multiple
of p. These G,-orbits have the form G,/(G, N gG,g~") = G,/(G, N Gou)
for g € G. We conclude that a point v in V maps into T if and only if for every
point u in V with G, containing no Sylow p-subgroup of G, G,/(G, N G,)
has order a multiple of p.
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If G, contains a Sylow p-subgroup of G, then G,/(G, N G,) has order a
multiple of p for all points u as above, and so v maps into 7. Conversely, if
G, contains no Sylow p-subgroup of G, then we can take u = v, and then
G,/(G, N G,) has order 1, which is not a multiple of p. So v does not map
into 7. Note that V — V/G is surjective (as it is a finite dominant morphism
[10, theorem 1.4.4]). So we have identified the closed subset T C V/G. O

Let tG(P, V) be the quotient ring of R” by the sum of all traces to P from
all subgroups P N G, with u a k-point of V such that G, contains no Sylow
p-subgroup of G. The point of defining 75(P, V) is that the restriction and
trace maps

R® — R? — RC
pass to well-defined maps on the quotient rings
t(G,V)— tcg(P,V)— t(G, V).

Indeed, the restriction map is well-defined by the double coset formula, which
applies because the assignment H — R for subgroups H of G is a Mackey
functor. The trace map is well-defined simply because P N G, is contained in
G,. The composition of the two maps is multiplication by [G : P], which is
nonzero in k. We deduce that the ring #(G, V) is a summand of tG(P, V) as a
t(G, V)-module.

Also, R is finite over RC (because R is finite over R®), and so tg(P, V)
is finite over its subring #(G, V). It follows that the two rings have the same
dimension, which is equal to dim(V ") as we have shown. Therefore, the ring
t(G, V) is Cohen-Macaulay if we can show that 75 (P, V) is Cohen-Macaulay,
or equivalently that #;(P, V) has depth at least dim(V ).

Let S = O(V "), thering of regular functions on the linear subspace V¥ C V.
Addition V? x V — V is a P-equivariant morphism of k-schemes, and so it
gives a P-equivariant homomorphism

¢:R—> S® R

of k-algebras. Since this homomorphism comes from an action of the commuta-
tive algebraic group V* on V, it makes R into a comodule over the Hopf algebra
S. Also, since ¢ is P-equivariant, it commutes with trace maps. Explicitly, for
any subgroup H of P, ¢ maps trf, R” into

try (S @ R)) = trfy (S ® R™)
= S @ trh R,

Thus ¢ makes the quotient ring t(P, V) of R? into a comodule over S.
Let xy, ..., x, be linear functions on V that restrict to a basis for the vector
space (V9)*. Then the norms ¢; = N[ (x;) (Definition 7.4) are P-invariant
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regular functions that restrict to x‘lp‘, e, x,‘P‘. In particular, they restrict to a

regular sequence in S = k[xy, ..., x,]. Then the same argument as in the proof
of Duflot’s theorem in group cohomology (Theorem 3.17) shows that t5(P, V)
is a free module over the polynomial ring k[¢1, .. ., ¢-]. By the earlier part of
this proof, it follows that the ring (G, V) is Cohen-Macaulay. O



10

Bounds for Group Cohomology and the Chow
Ring Modulo Transfers

Symonds’s regularity theorem reduces the problem of computing the cohomol-
ogy ring of a finite group G to calculations in degree at most n> (Corollary
4.3), when G has a faithful complex representation of dimension n. Can the
calculations be reduced further? One answer is that the bounds can be improved
when G is a p-group (Theorem 7.2). In this chapter, we prove even stronger
bounds for the cohomology ring or Chow ring modulo transfers.

These results come from conversations I had with Symonds. First I showed
that the Chow ring of a finite group modulo transfers from proper subgroups
has regularity at most zero. Then Symonds showed that the cohomology ring
modulo transfers has regularity at most zero. We present a version of Symonds’s
argument here, and also extend it to Chow rings and motivic cohomology.

These results give very strong bounds for the degrees of generators of the
Chow ring or cohomology ring of a finite group modulo transfers from proper
subgroups. In Corollary 10.5, we show that for a finite p-group G with a
faithful representation of dimension n and p-rank of the center equal to c,
the Chow ring modulo transfers of G is generated over the Euler classes of
certain representations by elements of degree at most n — c. This is an optimal
bound, much better than the bounds for the whole Chow ring. For cohomology
modulo transfers, Symonds proved the optimal degree bound 2n — ¢ (Corollary
10.3). Compare Theorem 12.4, where we prove that a different measure of
the complexity of the cohomology ring, Henn-Lannes-Schwartz’s topological
nilpotence degree, is at most 2n — c.

Theorem 10.1 Let p be a prime number. Let M be a smooth manifold with
finite-dimensional ¥ ,-cohomology. Let G be a finite group acting on M. Let S
be a collection of subgroups of G. Then the quotient of H (M, F ) by the sum
over all subgroups H € S of transfers from Hj;(M, F ) has regularity at most
dim(M).

113
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If every elementary abelian p-subgroup of G is contained in some element
of S, then this quotient ring has regularity at most dim(M) — 1.

Here the regularity is defined by viewing the given quotient ring as a module
over Hj. The regularity is the same with respect to any ring over which the
given ring is a finitely generated module, by Lemma 3.10.

Corollary 10.2  For a finite group G and a prime number p, and any collection
S of subgroups H of G, the quotient of the graded ring H; = H*(BG,F,)
by transfers from S has regularity at most zero. If every elementary abelian
subgroup of G is contained in some element of S, then this quotient ring has
regularity at most —1.

Corollary 10.3 Let p be a prime number. Let G be a p-group, ¢ the p-rank
of the center of G. Let V = V| & - - - @ V. be a faithful complex representation
of G with c irreducible summands (the smallest possible number). Let n be
the dimension of V. Let S be the set of centralizers of non-central elementary
abelian subgroups of G. Then the ring

T(G) = Hg/ ZtrgH;;
HeS
is a free Fp[x(V1), ..., x(Vc)l-module, with generators in degrees at most
2n — c¢. Moreover, the same is true for the quotient ring of H}, by the sum of
all transfers from all proper subgroups.

For any p-group G that is not p-central, T(G) is in fact a free module over
F,[x(V1), ..., x(Vc)] with generators in degrees at most 2n — ¢ — 1. For any
p-group G that is not elementary abelian, the quotient of Hf, by transfers
from all proper subgroups of G is a free F,[x(V1), ..., x(Vco)]-module with
generators in degrees at most 2n — ¢ — 1.

By definition, a p-group G is p-central if every element of order p of G
belongs to the center of G. Equivalently, every elementary abelian p-subgroup
of G is contained in the center. We have to exclude p-central groups G from the
last statement of Corollary 10.3 about T(G), because for G p-central, T(G) is
equal to H}., which has regularity equal to zero by Benson-Carlson (Corollary
4.2). That is, for a p-central group G, H( is a free F,[x(V1), ..., x(Vo)I-
module with top generator in degree 2n — c.

Proof of Corollary 10.3 By Theorem 9.1, the ring 7(G) is Cohen-
Macaulay. More precisely, it is a finitely generated free module over
Folx(V1), ..., x(Vo)]. Also, T(G) has regularity at most zero by Theorem
10.1. So this free module is generated in degrees at most Y ._ (Ix(Vi)| — 1) =
2n — c¢. The same arguments apply to the quotient ring of H{, by transfers
from centralizers of non-central elementary abelian groups, rather than from
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all proper subgroups. Corollary 10.2 also explains when this degree bound can
be improved by 1. O

Proof of Theorem 10.1 We follow the proof of Symonds’s Theorem 4.1 as
far as possible. Choose a faithful complex representation G C U(n). Let S =
(Z/p)" C (S'Y* C U(n). Let G act on M x U(n) by the given action on M
and by left multiplication on U(n), and let S act trivially on M and by right
multiplication on U (n) (so the two actions commute).

By Lemma 4.5, for every subgroup H of G, Hj;(M x U(n)/S) is a free
H},M-module with top generator in degree n”. Moreover, these free mod-
ules can be taken to have the same set of generators for each subgroup H,
pulled back from H§. Therefore, the quotient ring of H:(M x U(n)/S) by the
sum over H € S of transfers from Hj;(M x U(n)/S) is a free module over
HEM/Y s WS (Hy M), with top generator in degree n”. So it suffices to
show that

HAH(M x U(n)/S)/ > Hiy (M x Un)/S)

HeS

has regularity at most dim(M) + n>.

At first we view this quotient as a module over H;; or Hjj, . Butit has the
same regularity as a module over H{ by Lemma 3.10, and from now on, we
view it as a module over H{. Let N be the manifold M x U(n); then N has
dimension dim(M) + n?, and has commuting actions of G and S, with G acting
freely. We want to show that the quotient ring

H3(N/G) / Y G HS(N/H)
HeS

has regularity at most dim(/) as a module over Hg. For each subgroup H
of G, let Ny ; be the closed subset of N of points whose image in N/H has
stabilizer in § of rank at least i, Ny (;y the submanifold of N where this rank
is equal to i, and Ny ()« the union of the connected components of Ny )
that have codimension d in N. Define a decreasing filtration of HS(N/H) as
an H{-module by F,’; =ker(H{(N/H) — H{((N — Npy;)/H)). By Theorem
4.6, the ith graded piece F,’;/F;;’l is isomorphic to @ngk_d(NH,(i),d/H).
In particular, that result used the observation that the normal bundle of the
submanifold Ny .4/ H in N /H is orientable when p is odd. (For p = 2, there
is no issue about orientability.) That holds because the normal bundle to a
connected component of (N/H)", for a subgroup V = (Z/p)’ of S, is a real
representation of V' with no trivial summands, and such a representation can
be given a complex structure in a canonical way, when p is odd.

Thus the bottom piece (a submodule) of H{ (N /H) corresponds to the points
of N/H with stabilizer in S of the highest rank i, and hence is a free module
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over a big polynomial quotient ring of H, whereas the higher graded pieces
of H{(N/H) are direct sums of free modules over successively smaller poly-
nomial quotient rings of Hg. The generators for these free modules over free
graded-commutative quotient rings H; are in degrees at most dim(/). (This
implies that the whole Hg-module H{(N /H) has regularity at most dim(N).)

For a subgroup H of G, the stabilizer in S of a point in N/H is at most the
stabilizer in § of the image point in N /G, although it is important to realize that
these stabilizers can be different. So the filtrations of N associated to different
subgroups of G can be different.

We will show by decreasing induction on j (starting with j = rank(S) + 1)
that the quotient of H§(N/G) by the sum over all H in S of the image of
the transfer map from F /1, H{(N/H) to HG(N/G) is filtered (by the image of
the given filtration of H{(N/G)) with ith graded piece a direct sum over the
subgroups V C § of rank i of free modules over Hy; with generators in degrees
< dim(N). We know this for j = rank(S) + 1, and the theorem follows if we
can prove it for j = 0.

Suppose we know this statement for j + 1, and we want to prove it for j.
Let Q be the quotient of H}(N/G) by the images of F},” Hi(N/H) for all
H in S. The filtration F(; of H{(N/G) induces a filtration of Q, which we
also call Fj5. We know that the filtration F} of Q has the property we want
(previous paragraph). Clearly we have a natural map from gr{{ H{(N/H)tothe
quotient Q for all H in S, and we want to show that the cokernel of this map
has the property we want. Let V be any subgroup of rank j in V, and fix a
splitting S = V x W. For each subgroup H in S, let N’/ H be a connected
component of the locally closed submanifold of N/H on which S has stabilizer
equal to V, and let d be the codimension of Ny /H in N/H. Then we know that
gr/ H(N/H) is the direct sum of the groups H 3 ~4(Ny/H) over all subgroups
V in S of rank j and all connected components Ny /H.

Here H;‘d(NV /H) is a free module over Hj with generators in degree
< dim(N). In geometric terms, its support as an H¢-module has dimension
equal to j. Therefore, the intersection of the sum of the images of all the
modules H;‘_d(NV /H) in Q with FéHQ is zero. Indeed, by our inductive
hypothesis, the latter submodule of Q is filtered with quotients that are free
modules on polynomial quotient rings of H§ of rank greater than ;.

So the quotient of Q by the sum over H € S of the images of H;‘_d(NV/H)
is filtered with all quotients of the form we want, except possibly for the jth
graded piece. This graded piece is a direct sum over the subgroups V C S
of rank j, and the summand corresponding to the group V we are consid-
ering is the quotient of H;_e(NéV)/G) by the images of H;‘_d(NS/)/H).
(Here N(GV) /G means the locally closed submanifold of N/G on which S
has stabilizer equal to V, and e means the codimension of N(GV) /Gin N/G.)
This map can be described as the composite of the restriction to an open
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subset, H;_d(N;,V)/H) — H;‘_d(NISV) N Név)/H), and proper pushforward
maps H: /(N N HY)/H) - H“(NSJH) — H: (NS’ /G). In par-
ticular, V acts trivially on all the spaces involved here. So this map can
be viewed as a map of modules concentrated in degrees at most dim(N),
H;‘V_d(NS/)/H) — HC‘V_e(N(GV)/G), tensored over F,, with H};. Therefore the
cokernel of this map has the form we want: a module in degrees < dim(N)
tensored over F, with H}.

This completes the induction. The first part of the theorem is proved.

Now suppose that every elementary abelian p-subgroup of G is contained
in some element of S. We have to show that the quotient of H:M by the
sum over all subgroups H € S of transfers from H}; M has regularity at most
dim(M) — 1. As above, let N = M x U(n), which has commuting actions of
G and S = (Z/p)"*, with G acting freely. It suffices to show that the quotient
ring

H3(N/G) / Y UGHI(N/H)
HeS
has regularity at most dim(N) — 1.

Our argument shows that this ring is filtered as an Hg-module with subquo-
tients that are modules in degrees < dim(/N) tensored over F,, with H;, for
subgroups V of S. We have to show that those modules are in fact in degrees
< dim(N) — 1. In the notation above, we need to show that the transfer map

> H (N /H) > HP(NG/G)

HeS
is surjective. Here S is isomorphic to V x W, and the elementary abelian group
W acts freely on the manifolds quv) /H and N(GV) /G. We write H'PX for the
cohomology H"X of an n-manifold X; more precisely, if X has connected
components of different dimensions, we mean the product of the top-degree
cohomology groups of the components.

For a connected manifold X, H*P X = 0if X is noncompact or nonorientable,
whereas H'P X is generated by the class of a point if X is compact and oriented.
So it suffices to show that every point in Név) /G 1is in the image of N;IV) /H
for some subgroup H € S. For that, it suffices to show that N(GV) is the union
of the subsets N},V).

Thus, let x be a point in N(GV)

C N. This means that
V={seS§:xs=gxforsome g e G},

where we write the action of G on the left and S on the right. Thus for any
subgroup H of G, the subgroup

Sy :={s €S :xs=nhxforsomeh € H}
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is contained in V, and we want to show that there is a subgroup H in S such
that Sy is equal to V.

Let A be the stabilizer subgroup in G x S of the point x in N. We know that
forevery s € V,thereis an element (g, s) € A. Since G acts freely on N, A has
trivial intersection with G x 1. So A projects isomorphically to some subgroup
of S, and hence A is an elementary abelian p-group. So the projection of A
to G is also an elementary abelian p-group. By our assumption on S, there is
a subgroup H in S that contains that subgroup of G. Then, for every s € V,
there is an element (%, s) € A with h € H. That is, in the previous paragraph’s
notation, Sy is equal to V, as we want. O

Theorem 10.4 Let G be a finite group scheme over a field k. Suppose that
the order of G is invertible in k. Let p be a prime number, and let S be any
collection of subgroup schemes H of G. Consider CH{, = CH*(BG)/p as a
graded ring with CH' in degree i. Then the quotient ring of C HE by transfers
from S has regularity at most zero.

If k is algebraically closed and every abelian p-subgroup of G is contained
in some element of S, then this quotient ring has regularity at most —1.

The following corollary gives a very strong bound on the degrees of gener-
ators for A(G), as defined in Section 9.1. For an r-dimensional representation
V of a finite group G over a field &, the Euler class x (V) denotes the top Chern
class ¢,(V) in CH*BG or in the quotient ring A(G).

Corollary 10.5 Let p be a prime number, and let k be a field of characteristic
not p that contains the pth roots of unity. Let G be a p-group, and let c be the
p-rank of the center of G. Let V. =V, @ - - - @ V,. be a faithful representation
of G over k with c irreducible summands (the smallest possible number). Let n
be the dimension of V. Let S be the set of centralizers of non-central elementary
abelian subgroups of G. Then the ring

AG) = CH;;/ Z S CH;,
HeS
is a free F,[x(V1), ..., x(Vc)l-module, with generators in degrees at most
n — c¢. Moreover, the same is true for the quotient ring of C Hf; by the sum of
all transfers from proper subgroups of G.

Suppose in addition that k is algebraically closed. If G is a p-group such
that every abelian subgroup centralizes some non-central elementary abelian
subgroup, then A(G) is in fact a free F,[x(V1), ..., x(V.)]-module with gen-
erators in degrees at most n — c — 1. If k is algebraically closed and G is
a p-group that is not abelian, then the quotient of C H, by transfers from all
proper subgroups is again afree ¥ p[ x (V1), . . ., x(V¢)]-module with generators
in degrees at mostn — ¢ — 1.
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The bounds in Corollary 10.5 are optimal for some p-groups. For example,
let G be any finite abelian p-group, viewed as an algebraic group over C. The
group G has a faithful complex representation V =V, @ --- @ V, with each
V; of dimension 1. Then A(G) = CH{ is equal to Fp[x(V1), ..., x(V,)] and
hence is generated in degree zero as a free module over that ring. That agrees
with the upper bound n — ¢ = n — n = 0 in this case.

For a nonabelian example, let G be the modular p-group Z/p x Z/p> for
an odd prime number p. In this case, G is not abelian, but it does not satisfy the
other condition in Corollary 10.5 (the abelian subgroup H = Z/p?* does not
centralize any non-central elementary abelian subgroup). Here G has a faithful
irreducible complex representation V of dimension p, and son —c = p — 1.
Let A be an elementary abelian subgroup of rank 2 in G, which is unique up to
conjugacy. Then A(G) is the quotient ring CH / tr$ C H}, which is isomorphic
toF,[b, x(V)]/(b?) with |b| = 1 and |x (V)| = p, by the computation of C H
in Lemmas 13.8 and 13.9. So A(G) is generated in degrees up to p — 1 as
a free F,[x(V)]-module, showing that the upper bound n — ¢ is optimal in
this case. On the other hand, the quotient ring of C H; by transfers from all
proper subgroups is CH /(G CH} + t; C H};), which we compute by the
same lemmas to be F,[b, x(V)1/(bP~1). So this quotient ring is generated in
degrees up to p — 2 as a free F,[x(V)]-module, which shows the optimality
of the upper bound n — ¢ — 1 for G nonabelian in Corollary 10.5.

Theorem 10.4 The proof follows that of Theorem 6.5, modified to take
account of transfers as in the proof of Theorem 10.1. To summarize:
we choose a faithful representation G C GL(n) over k, and let S be
the subgroup scheme (u,)" C (G,)" C GL(n). Then CH;;GL(n)/S is a
free module over CHj; with top generator in degree n(n —1)/2, for
every subgroup H of G. So we reduce to showing that the C H¢-module
(CH{GL)/G)/ Y yes trgCH;GL(n)/H has regularity at most n(n —
1)/2. Let U be the group of strictly upper-triangular matrices in GL(n),
and let N = U\GL(n). Taking the quotient by a free action of U does
not change Chow groups. So it suffices to show that the CHg-module
(CH{N/G)/ Y pes trgCHg*N/H has regularity at most n(n — 1)/2, which
is dim(N) — n. In short, the —n here comes from the action of the diagonal
torus T = (G,,)" on N /H for all subgroups H. This action has finite stabilizers
and commutes with the action of S (because S is contained in T').

It suffices to show that the C H¢-module above is filtered, with quotients
that are direct sums of free modules over polynomial quotient rings of C Hg
with generators in degree at most dim(N) — n. We showed this without taking
quotients by transfers in the proof of Theorem 6.5, and the same holds after
taking quotients by transfers by the proof of Theorem 10.1.Let N = U\GL(n).
For subgroups H of G and V of S, let N;,V) /H be the locally closed smooth



120 Bounds for Group Cohomology and the Chow Ring Modulo Transfers

subscheme of N/H on which § has stabilizer equal to V, and let ey be
the codimension of N;,V) /G in N/H. Choose a splitting S =V x W. The
last step is to prove that the quotient of CH *(W\N(GV) /G) by the images
of CH*“G’E”(W\N;,V)/H) for H in § is concentrated in degrees at most
dirn(N((;V) /G) — n. This follows from the same statement without taking the
quotient, which holds by Lemma 5.3 because the torus 7' acts on the smooth
k-scheme W\N)/G with finite stabilizers. This completes the proof that the
quotient ring of C H(; by transfers from S has regularity at most zero.

Now suppose that & is algebraically closed and every abelian p-subgroup
of G is contained in some element of S. In this case, we have to improve our
regularity bound for the quotient ring above by 1. By the same argument as for
cohomology in the proof of Theorem 10.1, it suffices to show that the transfer
map

> CH,(W\Ny/H) — CH,(W\N"/G)
HeS

is surjective, where S splits as V x W and the elementary abelian group W acts
freely on the smooth schemes N;,V) /H and N(GV) /G. Note that n is the lowest
dimension in which these Chow groups could be nonzero, because the torus
T = (G,,)" acts with finite stabilizers on the varieties W\N;,V) /H.

By the proof of Lemma 5.3, the Chow group of W\N(GV) /G in degree n
is generated by T -orbits of k-points, using that k is algebraically closed. The
surjectivity on Chow groups above holds if, for every k-point y of N(GV) /G,
there is a subgroup H € S and a point z in (Név) N N;IV))/H such that z maps
to y and the stabilizer in T of z in W\N}{V) /H has index prime to p in the
stabilizer in T of y in W\NY"/G.

This is a formal consequence of having commuting actions of 7 and G on
N (= U\GL(n))) such that each of T and G acts freely on N. Indeed, that
implies that the stabilizer subgroup in 7 x G of any k-point of N projects
isomorphically to both 7 and G. So, for any point y in N, the stabilizer
subgroup in T of y in N/G can be identified with the stabilizer subgroup in
G of yin T\N. Since T is abelian, the latter subgroup G, C G is abelian. So
there is a subgroup H € S that contains the Sylow p-subgroup of G,. Then,
using again the identification we mentioned, the stabilizer subgroup in 7' of y
in N/H contains a p-Sylow subgroup of the stabilizer subgroup in T of y in
N/G.

This implies the facts we wanted, two paragraphs back. Namely, if we write
V for the stabilizer in S = (u,)" C T of y in N/G, then the stabilizer in S of
y in N/H is also equal to V, because S is a p-subgroup of the torus 7. Also,
choose a splitting S = V x W, and let K be the stabilizer in T of y in N/L,
for any subgroup L of G. Then the stabilizer in T of the point y in W\N/L is
equal to K; W, for any subgroup L in G. For the subgroup H € S constructed
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in the previous paragraph, Ky has index prime to p in K, and so the stabilizer
in T of y in W\N/H (namely, Ky W) has index prime to p in the stabilizer of
yin W\N/G, as we wanted. O

Finally, we state the analogous regularity bound for motivic cohomology
modulo transfers. Fix a prime number p. We recall the notation from Theorem
6.10: for an affine group scheme G and any integer j, define

M;(G) = @& Hy ' (BG,F,(i)).

We view M;(G) as a graded abelian group, graded by the degree of H*; thus
M;(G) is concentrated in degrees = j (mod 2). In particular, My(G) is the
Chow ring CHf, = CH*(BG)/p. For each j, M;(G) is a module over the
Chow ring CH.

Theorem 10.6 Let G be a finite group scheme over a field k, p a prime
number, and j a natural number. Suppose that the order of G is invertible in
k. Then, for any faithful representation G — GL(n), M;(G) is generated by
elements of degree at most n> + j as a module over Fylci, ..., ¢l and at most
n? if k is algebraically closed. Moreover, let S be any collection of subgroup
schemes of G. Then M;j(G)/ Y s trg M ;(H) has regularity at most j as an
F,lc1, ..., c l-module, and at most O if k is algebraically closed.

The proof is the same as for Theorem 6.10, modified to take account of
transfers as in the proof of Theorem 10.1.
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Transferred Euler Classes

For many complex algebraic groups G, the Chow ring of the classifying space
BG is generated by Chern classes of complex representations of G. This fails in
general for the symmetric groups, but at least the Chow ring of any symmetric
group consists of transferred Euler classes, meaning Z-linear combinations
of transfers to G of Euler classes (top Chern classes) of representations of
subgroups (Corollary 2.22). We will see that transferred Euler classes form a
subring of the Chow ring (Lemma 11.2), and that they include all transferred
Chern classes (Lemma 11.3).

Schuster and Yagita gave an example of a finite group, the extraspecial 2-
group 2?6 of order 27 contained in Spin(7), whose complex cobordism does
not consist of transferred Euler classes [121]. Guillot showed that the Chow ring
of the same group (specifically, C H> BG) also does not consist of transferred
Euler classes [62], thus answering negatively a question in [138]. Presumably
there are similar examples at odd primes. There is no conjecture now about
what sort of elements suffice to generate the Chow ring of an arbitrary finite
group.

Nonetheless, the following theorem gives a fairly large class of finite groups
for which the Chow ring is generated by transferred Euler classes. Whenever
that holds, it follows that C H' BG is finite for all i > 0, or equivalently (by
Theorem 5.2) that C H*BG is a finitely generated Z-algebra. That remains an
open question for arbitrary finite groups.

By definition, the exponent of a finite group G is the least common multiple
of the orders of all elements of G.

Theorem 11.1 Let G be a finite group, and let p be a prime number. Suppose
that some Sylow p-subgroup P of G has a faithful complex representation
of dimension at most p + 2. Then the mod p Chow ring of BG¢ consists of
transferred Euler classes.

122
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More generally, consider a finite group G as an algebraic group over a field
k of characteristic not p that contains the pth roots of unity for p odd, or the
4th roots of unity for p = 2. Suppose that P has a faithful representation of
dimension n over k with c irreducible summands such that n — c < p. Then
the mod p Chow ring of BGy, consists of transferred Euler classes.

The theorem applies to infinitely many groups, including some with fairly
complicated p-local structure. An example is G = GL(4,F,) = Ag with p =
2, since the 2-Sylow subgroup S of G (the group of 4 x 4 strictly upper-
triangular matrices over F,, of order 64) has a faithful irreducible complex
representation of dimension 4. It follows that the mod 2 Chow rings of § and
G (as groups over C) consist of transferred Euler classes. Another example is
the Mathieu group M,. Its mod 2 Chow ring is generated by transferred Euler
classes, since the Sylow 2-subgroup of Mj, (another group of order 64) has a
faithful irreducible complex representation of dimension 4. The cohomology
of M, and other sporadic simple groups is discussed in Adem-Milgram [1,
chapter VIII].

Theorem 11.1 can also be used to show that the Chow ring of any 2-group
of order at most 32 consists of transferred Euler classes. Indeed, the only 2-
group of order at most 32 that does not have a faithful complex representation of
dimension 4 is (Z/2)°, for which the Chow ring certainly consists of transferred
Euler classes. The statement about faithful representations can be checked
using the free group-theory program GAP [46], or by the methods of Cernele-
Kamgarpour-Reichstein [28, proof of Lemma 13].

The result that the Chow rings of the 51 groups of order 23 = 32 consist of
transferred Euler classes is nearly optimal, in view of Guillot’s counterexample
of order 27. 1 would guess that the Morava K -theories of groups of order 32 also
consist of transferred Euler classes; this is true at least for K(2), by Schuster
[120].

For an odd prime p, Theorem 11.1 implies that the Chow ring of every
p-group of order at most p* consists of transferred Euler classes. Indeed, every
such group has a faithful complex representation of dimension at most p + 1
[28, theorem 1].

11.1 Basic properties of transferred Euler classes

In this section we define transferred Euler classes, which form a subring of the
Chow ring of a finite group. This subring contains all Chern classes. We prove a
theorem of Green and Leary: the homomorphism from transferred Euler classes
to the cohomology of a finite group is an F-isomorphism. Finally, we note that
the analog of Green and Leary’s result holds for the Chow ring.
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Let G be a finite group, viewed as an algebraic group over a field k. We
define the subgroup of transferred Euler classes tr x(G) in CH*BG to be
the subgroup generated by elements tr x (V) for all subgroups H in G and
all representations V of H over k. We can also talk about transferred Euler
classes in CH, = CH*(BG)/p or (for k =C) in H; = H*(BG,F,). The
transferred Euler classes in these other rings are, by definition, the images of
tr x(G) C CH*BG.

Lemma 11.2 Let G be a finite group, viewed as an algebraic group over a
field k. Then the transferred Euler classes form a subring of CH* BG.

Proof We follow an argument by Hopkins-Kuhn-Ravenel [70, proposition
7.2]. Let H; and H, be subgroups of G, with representations V; of H; and
V; of H, over k. We want to show that (tr§ x (Vi))(tr$ x(V2)) is a transferred
Euler class. Rewrite this product as

=resg O G i x (V) @ 73 x (V)
= resg (G x(Vi ® Va),

where m; and m, are the two projections on H; x H,. By the double coset
formula (Lemma 2.15), that element is a transferred Euler classin CH*BG. [

The following lemma shows that transferred Chern classes are no more
general than transferred Euler classes.

Lemma 11.3 Let G be a finite group, p a prime number, k a field such that
p is invertible in k. Suppose that k contains the pth roots of unity for p odd,
or the 4th roots of unity for p = 2. Consider G as an algebraic group over k.
Then all Chern classes in CH};, = CH*(BG)/p of representations of G over
k are transferred Euler classes.

Proof Using transfer, it suffices to prove this for G a p-group. Blichfeldt
showed that every irreducible k-representation of G over an algebraically closed
field is monomial (induced from a 1-dimensional representation of a subgroup).
Kahn generalized Blichfeldt’s theorem to an arbitrary field k satisfying our
assumptions: again, every irreducible k-representation of G is induced from a
1-dimensional k-representation [75, propositions 7.4, 9.1, and 9.2].

A monomial representation G — G L(p") factors through the wreath product
Sy 1 Gy, Lemma 2.21 gives that that all elements of the Chow ring of S, 2 G,
are transferred Euler classes, using again that k contains the pth roots of unity.
That completes the proof. O

Evens and Fulton-MacPherson gave formulas for the Chern classes of an
induced representation [41, 45], but they seem not to imply Lemma 11.3
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directly, because the formulas involve the Chern classes of a permutation rep-
resentation. In the most important case k = C, Lemma 11.3 can be deduced
from Symonds’s formula for the Chern classes of any complex representation
in terms of transfers, norms, and products starting from first Chern classes of
1-dimensional representations [129]. Using that formula, one can write Chern
classes as transferred Euler classes.

We now prove a result of Green and Leary for group cohomology [53,
corollary 8.3], and its analog for Chow rings. Recall that a homomorphism
f: A — B of graded-commutative F,-algebras is an F-isomorphism if every
element of the kernel is nilpotent, and for every element b € B there is a natural
number r and an element a € A such that f(a) = b”".

Theorem 11.4
(1) Let G be a finite group and p a prime number. Then the inclusion from

the subring of transferred Euler classes to HY, = H*(BG,F,) is an F-
isomorphism. In fact, it suffices to consider transferred Euler classes of
representations defined over Q(u,) C C.

(i) Let G be a finite group and p a prime number. Let k be a field of char-
acteristic not p that contains the pth roots of unity. View the finite group
G as an algebraic group over k. Then the inclusion from the subring of
transferred Euler classes to C H; is an F-isomorphism.

Green and Leary observed that transfers are essential here: the subring of
Chern classes need not be F-isomorphic to the whole cohomology ring of a
finite group [53].

Also, it would not be enough to use representations defined over Q in part (i),
by the example of G = Z/ p for p odd. The subring of transferred Euler classes
of representations over Q in Hz,, =F,(x, y) is F,[y”~'], and the inclusion
from that subring into Hz,, is not an F-isomorphism.

Proof We first prove (ii). Let k contain the pth roots of unity. By Theorem
8.10, the restriction map CHf, — 1(i1_nCHZ is an F-isomorphism. For any
element y of C H/., consider the image of y in 1(i£1C H. We showed after
Lemma 8.5 that any element of l(iﬂ‘lCH +, raised to some p-power, is the
restriction of an F,-linear combination of graded pieces of elements Nf(l +
u) € CHJ for A an elementary abelian subgroup of G andu € C H} of positive
degree. Therefore, y raised to a possibly higher power of p is equal to an F,-
linear combination of graded pieces of elements N{(1 + u) € CH{; for A
an elementary abelian subgroup of G and u € CH} of positive degree. So it
suffices to show that Nf(l + u) is a transferred Euler class.

By the formulas for the norm of a sum or product (Lemma 8.1), together
with the fact that CH} is generated by elements of degree 1, it suffices to
show that N (u) is a transferred Euler class for every subgroup H of a finite
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group G and every u € CH},. The element u is the first Chern class of a
1-dimensional representation L of H over k. Then Ng (u) is the Euler class of
the representation of G induced from L, by Fulton-MacPherson, generalizing
Evens’s theorem in cohomology [45, corollary 5.5], [41, theorem 4]. (ii) is
proved.

We now prove (i). We will use what we have shown about Chow rings to
prove this result on cohomology, although one could also give a more direct
argument.

Consider the finite group G as an algebraic group over k = Q(u,). We
know by Theorem 8.10 that the cycle map CHJ — H( is an F-isomorphism.
Then part (1) implies that the subring of transferred Euler classes in H, of
representations defined over Q(ip,) is F-isomorphic to the whole ring Hf,. [

11.2 Generating the Chow ring

Proof of Theorem 11.1 We can assume that G is a p-group. Consider G as
an algebraic group over the field k. We are given a faithful representation V
of dimension n over k. We have two different assumptions: for k = C, we
assume that n < p + 2; or, for any field k, we assume that n minus the number
of irreducible summands of V is at most p. By omitting some irreducible
summands of V, we can assume that the number of irreducible summands of
V is equal to the p-rank c of the center of G.

Either assumption passes from G to its subgroups, and so it suffices to show
that the quotient ring A’(G) of C H(; by transfers from all proper subgroups is
generated by Euler classes of k-representations of G. When k = C and G is
abelian, the ring A’(G) is generated by Euler classes, because the whole Chow
ring is generated by Euler classes. So we can assume that G is not abelian if
k=C.

By Corollary 10.5, the ring A’(G) is generated as a module over Euler
classes by elements of degree at most n — ¢, and at most n —c¢ — 1 if k = C,
since G is not abelian. We have ¢ > 1 if k = C since G is nontrivial, and
so A'(G) is generated by elements of degree at most p under either of our
assumptions. For any affine group scheme G of finite type over a field, the mod
p Chow group C H(i; is spanned by Chern classes of representations of G for
i < p, by Theorem 2.25. Thus the ring A’(G) is generated by Chern classes of
representations. By Lemma 11.3, using our assumption on the roots of unity in
k, it follows that the Chow ring modulo transfers, A’(G), is generated by Euler
classes of representations. O
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Detection Theorems for Cohomology and
Chow Rings

In 1991, Henn, Lannes, and Schwartz gave a powerful approach to computing
the cohomology of finite groups [69]. Using the work of Miller and Lannes on
unstable modules over the Steenrod algebra, they showed that the cohomology
of any finite group G is determined in all degrees by the cohomology of certain
subgroups (centralizers of elementary abelian subgroups) up to some finite
degree, which we denote dy(H(), the “topological nilpotence degree” of H.
It is a fundamental problem to estimate the number do(H;).

Henn, Lannes, and Schwartz showed that if G has a faithful complex rep-
resentation of dimension n, then do(H(;) is at most n®. Kuhn improved their
bound, and conjectured that in fact dy(H;) is at most 2n — c, for ¢ the p-rank of
the center of a Sylow p-subgroup [86]. We prove Kuhn’s conjecture in Theorem
12.4. This should be valuable for computations. There is a close connection
between the ideas here and Symonds’s result on the cohomology ring modulo
transfers, Corollary 10.3.

In Theorem 12.7, we prove an analogous detection theorem for Chow rings:
if a finite group G has a faithful complex representation of dimension n, then
CH is determined by the Chow rings of centralizers of elementary abelian
subgroups in degrees at most n — c. Compare the regularity theorem 6.5, which
says only that the ring C H has generators and relations in degrees at most
about n2. Nonetheless, the proof of Theorem 12.7 uses the regularity theorem.

The proof of this detection theorem for the Chow ring is very differ-
ent from Henn-Lannes-Schwartz’s arguments for cohomology. Henn-Lannes-
Schwartz’s argument uses some of the deepest results in homotopy theory,
including Lannes’s computation of the cohomology of certain mapping spaces
using his T'-functor. Those results are not available for Chow rings, where we
do not even have the spectral sequence of a group extension. Our approach is
strongly influenced by Kuhn’s work on group cohomology [86].

127
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12.1 Nilpotence in group cohomology

In this section, we prove Kuhn’s conjectured bound, Theorem 12.4, on the
detection of group cohomology using centralizers of elementary abelian sub-
groups. The proof turns out to be an easy extension of Kuhn’s results [86].

Let p be a prime number. For a finite group G, we write H¢; for the ring
H*(BG,F). Let c = ¢(G) be the p-rank of the center of a Sylow p-subgroup
of G, and r = r(G) the p-rank of G (i.e., the maximal rank of an elementary
abelian p-subgroup of G).

We start by defining the “topological nilpotence degree” of Henn-Lannes-
Schwartz. Since H is the mod p cohomology of a topological space, it belongs
to the category U of unstable modules over the mod p Steenrod algebra. We
recall the definition [122, definition 1.3.1]:

Definition 12.1 A graded module M over the mod p Steenrod algebra is
unstable if

() for p =2,Sq'x =0forallx € M andalli > |x;
(ii) for p odd, B°Pix =Oforallx € M and all e + 2i > |x| withe = O or 1.

Let ¢ M denote the dth suspension (upward shift) of a graded module M.
For an unstable module N € U, define the topological nilpotence degree dy(N)
to be the supremum of the natural numbers d such that N contains a nonzero
submodule of the form ¢ M with M € U.

For example, H is called reduced (as a module over the Steenrod algebra
A) if dy(H}) = 0. For p = 2, this is equivalent to H} being reduced as a
commutative ring; that is, every nilpotent element is zero. For p odd, do(H(;)
is zero if and only if every element x of H(, such that fx is nilpotent for
every 6 € Ais zero [122, lemma 2.6.4]. For example, dO(H;/p) = 0 for an odd
prime p, even though the degree-1 generator x in Hy,, = F, (x, y) is nilpotent,
because Sx = y is not nilpotent.

The invariant do(H(;) clearly only depends on H{ as a module over the
Steenrod algebra. Henn-Lannes-Schwartz gave a remarkable interpretation of
do(H¢,) that does not mention the Steenrod algebra [69, theorem 0.2].

Theorem 12.2 Let G be a finite group. Then do(H(,) is the least natural
number d such that the algebra homomorphism

Hi — 1—[ Hy, QF, ng(V)
v
is injective.
Here the product is over the elementary abelian p-subgroups V of G, the

component maps are induced by the group homomorphisms V x Cg(V) — G,
and M=“ denotes the quotient of a graded module M by all elements of degree
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greater than d. For example, dy(HJ) is zero if and only if H(; is detected on
elementary abelian subgroups; that is a very special situation, but it holds in
some important examples such as the symmetric groups at any prime p, by
Corollary 2.20.

One reason to be interested in the topological nilpotence degree of Hf,
perhaps not the most important, is that it gives a bound for the nilpotence of H
in the following algebraic sense [86, corollary 2.6]. The proofis straightforward.

Theorem 12.3 Let G be a finite group and p a prime number. Let e be
do(HE) for p =2, or do(HE) + r(G) for p odd. Then rad(H)¢ = 0. That is,
the product of any e nilpotent elements in H(; is zero.

We now prove the bound for do(H ;) conjectured by Kuhn [86, section 1].

Theorem 12.4 Let G be a finite group with a faithful complex representation
of dimension n. Let ¢ be the p-rank of the center of a Sylow p-subgroup of G.
Then dy(H{) <2n —c.

By Henn-Lannes-Schwartz’s interpretation of dy( H;) (Theorem 12.2), Theo-
rem 12.4 means that computing the cohomology of a finite group G essentially
reduces to a computation in degrees at most 2n — ¢, for G and certain sub-
groups. Henn-Lannes-Schwartz’s original bound for their invariant was that
do(H}) < n? [69, theorem 0.5].

Proof Let P be a Sylow p-subgroup of G. Then H; is a summand of H} as
a module over the Steenrod algebra, using transfer. It follows that do(H) <
do(H}). So we can assume from now on that G is a p-group.

Let C = C(G) be the p-torsion subgroup of the center of G. The ring Hf is a
commutative cocommutative Hopf algebra, since C is an abelian group; namely,
the group homomorphism C x C — C, (x,y) — xy, gives the coproduct
H{ — H{ ®p, Hi. Next, H; is a comodule over H{, using the group
homomorphism C x G — G. Although H/; is not a Hopf algebra, the image
of the restriction map H; — H/ is a Hopf subalgebra of H(, as one shows
using the commutative diagram

CxC — C

L

CxG — G

and the analogous diagram for G x C — G. Aguadé-Smith [2] and Broto-
Henn [22, remark 1.3] deduced (using the Borel structure theorem on the
structure of Hopf algebras [105, theorem 7.11]) that there is a basis x, ..., X,
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for HCl such that, writing y; = Bx;,

im(HG — Hy = |2 ] ifp=2

G c/— J1 Jb . .
Fo 0 ) Ybst ooy Yes Xotls - - -, Xo)  if pis odd,

for some natural numbers j; > j, > --- .For p odd, ¢ — b is the largest number

of copies of Z/ p that factor off G as a product group.

Definition 12.5 In this notation, we say that G has type [ay, ..., a.], where
271, ..., 2] ifp=2
lay,...,a]= . , e
2ph,....2p" 1,...,1] if pisodd,

following Kuhn [86, section 2.6].

Define e(G) to be the maximum degree of a generator for Hf as a module
over H(. By our description of the image of restriction, we have

e(G) = (a; — ).
i=1

Because the image of Hf, — H{ is so special, e(G) is often easy to compute.
Using Symonds’s theorem, Kuhn proved the following strong bound for
do(HE) [86, theorem 1.5].

Theorem 12.6 Let G be a p-group. Then
do(Hg) < e(G).
If G is p-central, then equality holds.

It remains to prove Kuhn’s conjecture that e(G) is at most 2n — c.

Let V be a faithful complex representation of G of dimension n. We can
assume (by omitting some irreducible summands, if necessary) that V has
exactly c irreducible summands, V = V| @ - - - @ V... The dimension of an irre-
ducible representation of G is a power of p, and so we can write dim(V;) = p®.
By Schur’s lemma, C acts by scalars on each V;, through some 1-dimensional
complex representation L; of C. Since V is faithful, the 1-dimensional rep-
resentations Ly, ..., L. form a basis for Hom(C, C*) = (Z/p)°. Let y; =
ci(L;) in H%. We can write y; = Bx; for elements x; in H}. In terms of
these elements, the cohomology ring of C is Fy[xy,...,x.] for p =2, or
F,{xi,..., % ¥1, ..., ) for p odd.

Because the restriction of the irreducible representation V; to the subgroup
C is a sum of p” copies of L;, the Euler class x(V;) in H, restricts to yfb'
in Hf, fori =1,...,n. As a result, we can write down generators for H}
as a module over F,[x(V1), ..., x(V.)], with the highest-degree generator

being x; .. .xcylpb' -1 .yfhf_l.That elementhas degreec + Y, (2(p” — 1)) =
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2n — c. A fortiori, H} is generated as an Hj-module by elements of degree at
most 21 — c. U

12.2 The detection theorem for Chow rings

We now define the topological nilpotence degree of the Chow ring, and prove
an upper bound for it. The bound is analogous to the bound for the topological
nilpotence degree of the cohomology ring proved in Theorem 12.4. It is a strong
computational tool, as we will see repeatedly in Chapter 13.

Fix a prime number p, and write C H; for Chow groups with F, coefficients.
Let G be a finite group, which we view as an algebraic group over a field
k. Define the topological nilpotence degree dy(C H(;) to be the least natural
number d such that the F,-algebra homomorphism

CH; — [ [ CHy &%, CHES
14
is injective. As in Theorem 12.2, the product is over the elementary abelian
p-subgroups V of G, the component maps are induced by the group homomor-
phisms V x Cs(V) — G, and M=? denotes the quotient of a graded module
M by all elements of degree greater than d. For example, do(C Hf,) is zero if
and only if CH( is detected on elementary abelian subgroups; that is a very
special situation, but it holds in some important examples such as the symmetric
groups at any prime p (Corollary 2.22).

Theorem 12.7 Let G be a finite group, p a prime number. Let k be a field of
characteristic not p that contains the pth roots of unity. Suppose that G has
a faithful representation of dimension n over k, and let c be the p-rank of the
center of a Sylow p-subgroup of G. Then

dy(CHE) <n —c,
where G is viewed as an algebraic group over k.

Theorem 12.7 reduces the problem of checking relations in the Chow ring to
computations in degrees at most the dimension n of a faithful representation,
in fact a bit better than that.

Conjecture 12.8 Let p and the field k be as in Theorem 12.7. Then do(C H;)
is equal to the supremum of the natural numbers d such that CH}, as a
module over the Steenrod algebra A4, contains a nonzero submodule of the form
>4 M, with M an unstable A-module. (For this purpose, “unstable” means that
Pix =0forall x € M and all i > |x|. Following section 6.3, remember that
P sends CH/ to CHLT™)
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One direction of Conjecture 12.8 is easy: do(C H;) (as we have defined it)
is at least the number so(C H) defined using the Steenrod algebra. To prove
that, use that the ring CHy; is reduced for an elementary abelian p-group
V. Conversely, if so(CHE) =0, then CH(, is reduced as a ring (using the
identity P(x”) = (Px)” for the total Steenrod operation P = P® + P! +...).
Then Yagita’s theorem (Lemma 8.9) gives that C Hf; is detected on elementary
abelian subgroups, that is, do(C Hf) = 0. So Conjecture 12.8 seems to be a
plausible extension of Yagita’s theorem.

Conjecture 12.8 would say that do(C H) is determined by C H; as a module
over the Steenrod algebra. That would be interesting to know, by analogy with
the Henn-Lannes-Schwartz theorem, Theorem 12.2. But it does not matter
for the applications we have in mind. Since we defined do(C H(;) in terms of
injectivity of restriction maps, an upper bound for do(C H;) (such as Theorem
12.7) is immediately useful for computing C H.

Proof (Theorem 12.7) We can assume that G is a p-group, because the Chow
ring of any finite group injects into that of a Sylow p-subgroup.

Let C = Z(G)[p]l. We will prove a stronger version of the theorem (although
it is easily seen to be equivalent): it suffices to consider elementary abelian
subgroups that contain C. That is, we will show that

CH:— [] CH;®CH:,

ccv
V elem ab

is injective, fore = n — c.

The ring C H}: is a commutative cocommutative Hopf algebra, since C is an
abelian group; namely, the group homomorphism C x C — C, (x, y) — xy,
gives the coproduct CH: — CH ®r, CH(. Next, CH(; is a comodule over
CH{, using the group homomorphism C x G — G. Although CH; is not
a Hopf algebra, the image of the restriction map CHE — CH( is a Hopf
subalgebra of CH}, by the same argument as in group cohomology (proof
of Theorem 12.4). Therefore, there is a basis yi, ..., y. for C Hé such that
im(CH{ — CH}) is equal to the subring

al dc
F,ly; ...,

of CHf =F,[yi, ..., y.] for some natural numbers a; > - - - > a.. This fol-
lows from the Borel structure theorem [105, theorem 7.11] applied to the Hopf
algebra quotient CHf://im(C Hf; — C H(), which is finite over F .

In this notation, we say that G has Chow type [p™, ..., p*], by analogy
with Definition 12.5 of the type for group cohomology. Define ¢“# (G) to be
the maximum degree of a generator for C H as a module over CH. By our
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description of the image of the restriction homomorphism CHf, — CH/, we
have

MGy =) (" = D).
i=l

(After Definition 12.5, we defined e(G) to be the analogous invariant using
group cohomology rather than the Chow ring.)

Since im(C Hi; — CH{) is a polynomial ring, we can fix a graded subring
B C CH( that maps isomorphically to im(CH} — CH{). We call such a
subring a Duflot algebra, following Kuhn’s definition in group cohomology
[86, definition 2.7]. Beware that a Duflot algebra need not be a C H-submodule
of CH, and it need not be closed under the Steenrod operations on C H;.

For a graded module M over a graded ring B, the space of indecomposables
for M is

QM := M/B>°M.

Define an ideal CEss(CH() in CH(;, the central essential ideal, as the
elements that restrict to 0 on Cg(V) for all elementary abelian subgroups
C ;Cé V of G. Kuhn considered the analogous ideal in group cohomology [86,
definition 2.7]. Define eflgéc(G) to be the supremum of the degrees of generators
for CEss(C H;) as a module over the Duflot algebra B C C Hf;. (We will show
that egic(G) < oo as well as more precise results.) Equivalently, egﬁc(G) is
the maximum degree of the space of indecomposables Q g CEss(C H).

Since all the groups C (V') contain C, CEss(C H¢;) is a sub-C H-comodule
of CHG,. For a CH}-comodule M, write PcM for the primitive subspace in

M9
PeM={xeM:Ax)=1Q x},

where A: M — CH ® M is the coproduct. Let ef {1 (G) be the supremum of

the degrees in which the graded vector space PcCEss(C H;) is not zero. The
main step toward the theorem is to prove the inequalities

esin(G) < ef il (G) < e“M(G) <n—c.

The inequality e“*(G) < n — ¢ follows by the arguments used for Theorem
12.4. Let V be a faithful representation of G of dimension n over k. We can
assume (by omitting some irreducible summands, if necessary) that V has
exactly c irreducible summands, V = V; @ - - - @ V,. Since k contains the pth
roots of unity, the dimension of an irreducible representation of G over k is a
power of p [29, theorem 70.12], and so we can write dim(V;) = pb. Since C
is central in G, G preserves the isotypic decomposition of any kG-module W
as a kC-module; so if W is irreducible for G, then it is isotypic for C (a direct
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sum of copies of one irreducible k-representation). Since k contains the pth
roots of unity, all irreducible k-representations of C are 1-dimensional, and so
C acts by scalars on each V;, through some 1-dimensional k-representation L;
of C. Since V is faithful, the 1-dimensional representations Ly, ..., L. form
a basis for CHé = Hom(C, k*)/p. So the Chow ring of C can be written as
Fplyi, ...,y ]l with y; = ci(Ly).

Because the restriction of the irreducible representation V; to the subgroup
C is a sum of p” copies of L;, the Euler class x(V;) in C H{, restricts to yipbi in
H}, fori =1,...,n. Thus im(CH} — CH{) contains ylpbI e yfh{' in this
basis. So C Hf. is generated as a module over im(C Hf; — CH}) by elements
of degree at most

i(pb" —1)=n-—c.
i=1

That is, ¢ (G) < n — ¢, as we want.
To prove that e5f (G) < e{[.(G), we start with the following algebraic
statement from Kuhn [85, lemma 5.2].

Lemma 12.9 Ler K be a Hopf subalgebra of a graded connected Hopf alge-
bra H over afield F. Let M be a graded K -module that is also an H-comodule
in a compatible way, meaning that the multiplication M @ K — M is a map
of H-comodules. Then

(a) M is a free K -module, and

(b) the composite PuM — M — QM is injective.

The following lemma applies Lemma 12.9 to our situation, although some
care is required.

Lemma 12.10 Let G be a p-group and let C = Z(G)[p]. Let M be a non-
negatively graded C Hf,-module that is also a C Hf-comodule such that the
map CHY, @ M — M is a map of C Hi:-comodules. Let B C C H}; be a Duflot
algebra. Then

(a) M is a free A-module, and

(b) the composite PcM — M — QgM is injective.

Proof The difficulty is that B need not be a sub-C H-comodule of C H;. To
deal with that, we filter M into simpler pieces. Let L = ker(CHf, — CH}),
andlet M; = L'M C M fori > 0, where we write L’ for the F p-linear span of
all products of i elements of the ideal L. Clearly M = My D M| D M, D - -
are C Hj-modules.
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Next, L =ker(CH} — CH{) is a sub-C Hf-comodule of CH{, by the
commutative diagram

CH}, ——  CH¢
> ] 2]
CH,®CH}! — CH!® CH{.
That follows from the commutative diagram

G+——C

I I

GxC +— CxC.

We now show that LM C M is a sub-C H-comodule, which implies by
induction that M; = L' M is a sub-C H/-comodule forall i > 0. We are assum-
ing that M is a C Hf;-module and a C H}-comodule in a compatible way, as
expressed by the commutative diagram:

CH:®M M

A®Al lA

(CH,®CHH)®MQ®CH}) — M ®CH{.

Here the bottom map comes from the products CH} ® CH} — CH{ and
CH} ® M — M. Combined with the fact that L is a sub-C H-comodule of
CH(, this diagram shows that LM C M is a C H}-comodule, as we want. So
M; is a sub-C H:-comodule of M for every i > 0.

Therefore, for each i > 0, gr;, M = M; /M, is a C Hj:-comodule. By def-
inition of M;, gr; M is also a module over the ring K :=im(CHj — CHy).
We have shown that K is a Hopf subalgebra of CH. Our assumption on M
implies that the K-module and C H-comodule structures on gr; M are com-
patible. By Lemma 12.9 (for H = CH{ and K = im(CH{ — CH{)), gr;M
is a free B-module and the composite

Pc(gr; M) — gr;M — Qp(gr; M)

is injective, for each i > 0.

Since L ¢ CHZ°, the submodule M; = L'M C M is concentrated in
degrees at least i, and so the intersection of all the submodules M; is zero.
Therefore, from gr; M being a free B-module for each i > 0, it follows that
M is a free B-module. Thus (a) is proved. Freeness of gr; M as an B-module
for each i > 0 also implies that the extensions of B-modules given by our
filtration of M are split, and so Qpg(gr;M) — Qp(M/M;;,) is injective. To
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prove (b), let u be a nonzero homogeneous element of Pc M. Then there is a
unique i > O such thatu € M; and u & M; ;. Then u gives a nonzero element
of Pc(gr; M) C gr; M. By the previous paragraph, the image of # in Q p(gr; M)
is not 0. By the injectivity just shown, the image of u in Qp(M/M;,) is not
zero. A fortiori, the image of u in Q g M is not zero. Thus (b) is proved. O

Apply the lemma to M = CEss(CH¢;) C CH/,. Then part (b) implies that
eSi(G) < ef L (G), as we want.

Next, we show that eﬁic(G) < ¢“H(G). This is the most surprising step:
we are bounding the central essential ideal in C H}., which can be considered
the most mysterious part of CH, in terms of im(CHf, — CH(), which is
much easier to estimate. This step uses the regularity theorem on the Chow ring
(Theorem 6.5).

The ideal ) cCv trgG(V)CHéG(W kills CEss(C H¢;), by the projection for-
V elem ab

mula x trga(v)(y) = tr(c;G(v)(x|Cu(V) v) =0 for x € CEss(CH(), y € CHéG(V)
(Lemma 2.15(i)). By Carlson’s theorem for Chow rings (Corollary 8.14), it
follows that for any u € ker(C H}; — C H{), there is a natural number m such
that u?" - CEss(CH},) = 0.

We now apply that fact to the local cohomology (see Section 3.1 for defini-
tions) of certain C H;-modules with respect to the maximal ideal m = C H;°.

Lemma 12.11
QpCEss(CH) = HX(QCEss(CHE)) = HY(QpCHY).

Proof  The Oth local cohomology of a C H’-module is the m-torsion subspace.
So the first statement means that every element of Q gCEss(C H(;) is m-torsion.
That is, by the definition in Section 3.1, we have to show that for any homo-
geneous elements x € QpCEss(CH{) and f € CH?Z, there is an r > 0 such
that f"x = 0. Since B is a Duflot algebra, there is an element g € B>° such
that f and g have the same restriction to C H}. That is, f — g is in the ideal
L =ker(CH}; — CH{). As shown before this lemma, it follows that there is a
natural number m with (f — g)?"x = 0. (We showed this for x in CEss(C Hp),
which implies the same statement for the quotient space QzCEss(CH).) So
fP"x = gP"x, which is zero in QpCEss(CH) since g is in B>, Thus we
have shown that Q gCEss(CH() = Hg(QBCEss(CH(’;)).
For the second equality we want, consider the exact sequence

0— CEss(CH$) > CHy — [ CHE )
csv
V elem ab
These are C H;-modules and C H:-comodules in a compatible way. Therefore,
applying Lemma 12.10 to the images and cokernels of the maps shown, all
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those images and cokernels are free B-modules. So the maps split, and we have
an exact sequence of B-indecomposables:

0— QpCEsS(CH}) — QpCHG — [ QsCHE, )
cCv
V elem ab

This trivially gives an exact sequence of m-torsion submodules:

0 — HYQpCEss(CHE) — HoQpCHE — [ HYQsCHE ).
cqv
V elem ab

So the lemma follows if we can show that for every elementary abelian
subgroup V of G that strictly contains C, we have HY QpC H¢ vy = 0. Let
H = Cg(V). We can assume that V is the whole group Z(H)[p]; if not, just
enlarge V. Since CHy; is a CHj-module and a C Hf-comodule in a compat-
ible way, it is free as a B-module, by Lemma 12.10. Here CHy; is a graded
polynomial ring over F,, on r > ¢ generators, and B is a graded polynomial
ring on c generators fi, ..., f.. So QpCH; is a complete intersection ring,
and hence Cohen-Macaulay. It has dimension » — ¢ > 0.

Let W be a faithful representation of G of dimension n over k. We
know that CH}; is generated in bounded degrees as a module over the ring
R=F,[c1W,...,c,W].Since C Hy, is of finite type over F ,, it is in fact finite
over R. So the quotient ring Qg C Hy, is finite over R. By the Noether nor-
malization lemma, Q gC H}; is finite over some graded polynomial ring S C R
of dimension r — ¢ (= dim(QC H}))). Since Q gC H;; is Cohen-Macaulay, it
is a finitely generated free module over S. Since S has positive dimension,
there is a nonzero element 4 € S°; then /4 is a non-zero-divisor on Q5C Hy.
So fi...., fe, hlcgvy € CHE, ) restrict to a regular sequence in CHy,. By
the Duflot theorem for Chow rings (Theorem 3.20), which applies as stated
since we made V equal to Z(Ce(V))Ipl, fi,..., fe, hlcyvy form a regular
sequence in CH(_y,. So the element h of m = CHg; 9 restricts to a non-zero-
divisor on QBCHéG(V). So the m-torsion subspace Hgl QBCHZ:G(V) is zero, as
we want. O

We want to prove that eSH (G) < e“#(G). That is, we want to show that
0pCEss(CH() is concentrated in degrees at most e“"(G). By Lemma 12.11,
it is equivalent to show that H2 Q3 CH; is concentrated in degrees at most
¢“H(G). The Duflot algebra B is a polynomial ring F,[uy, ..., u.] with [u;| =
p“ for some natural numbers ay, ..., a.. We know that CH is free as a
B-module by the Duflot theorem for Chow rings (Theorem 3.20). Therefore,
QpCH( is the quotient of C H/; by a regular sequence.

If M isa graded C H;-module and f € C H¢ is anon-zero-divisor on M, then
reg(M/f M) < reg(M) + d, by the long exact sequence of local cohomology
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applied to the exact sequence
0—> XM —>M-—> M/fM — 0.

Therefore,

reg(QpCHy) <reg(CH() + Z(pa; -1

i=1
= reg(CH}) + ¢ (G)
< (G,

by the regularity theorem for Chow rings (Theorem 6.5). By the definition of
regularity in terms of local cohomology, this says in particular that HgCHé is
concentrated in degrees at most ¢“*(G). By the previous paragraph, we have
shown that eS X (G) < e€#(G).

indec

Thus we have shown that elfr,-’fn(G) < el (G) < e“H(G) < n — c. Theinter-
est of eS[7 (G) is shown by the following lemma on Hopf algebras, which we

will apply to H = CH} and M = CEss(C H},).

Lemma 12.12 Let H be a graded connected Hopf algebra over a field F.
Let M be a graded comodule over H that is bounded below. If the subspace of
primitives Py M is concentrated in degrees at most e, then the composite

M—)H@kM—>H®kMSe
is injective.

Proof Let x be a homogeneous element of M that is not primitive, say of
degree d. Then the image of x under the coproduct M — H ® M has nonzero
component in H?~/ ® M/ for some j < d. By induction on d, if we apply the
coproduct map enough times, then x has nonzero image in H® --- Q@ H ®
M=¢. Since M is an H-comodule, we have the commutative diagram

M — HQM

l l I®A

ARl
HIM —— HQHQM.

Applying this repeatedly, we conclude that x has nonzero image in H @ M=°.
O

CH

Thus, our bound on e,

restriction map

(G) implies that, if we write e = n — ¢, then the

CEss(CH() — CH} ® CEss(CHZ®)
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is injective. Equivalently, the product map

CHi — CH:®CHE  x [] CH¢, )
cGv
V elem ab
is injective.

For any subgroup H of the p-group G, itis easy tosee thatny — cy < ng —
¢g- (A faithful representation V of G over k restricts to a faithful representation
of H over k, and so ny < ng. The p-rank cy of the center of H may be
smaller than than of G, but if that happens then we can omit some irreducible
summands from V' |y and still get a faithful representation; so we always have
ny —cyg < ng — cg.) Therefore, applying the previous injectivity result to
each of the subgroups H = Cg(V), we find that

CH} — ]_[ CHy ® CHE: y,

VcG
V elem ab

is injective. O
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Calculations

An important test of our machinery is to compute the Chow ring for large
classes of finite groups, not just for particular families of well-behaved groups.
For example, the Chow groups of the symmetric group S, are known for any
n (Corollary 2.22 and [138, section 11]), but computing Chow rings for more
general groups can be hard, even for relatively small groups. The main problem
is to compute the Chow ring of a p-group, since the Chow ring (with F,
coefficients) of any finite group is a summand of the Chow ring of a Sylow
p-subgroup. In that spirit, this chapter uses the tools we have developed to
compute the Chow ring for all 14 groups of order 16 and all 5 groups of order
p3. Chapter 14 computes the Chow ring for all 15 groups of order 81, and
for 13 of the 15 groups of order p* with p > 5. We also compute the Chow
ring for some infinite classes of p-groups, including all p-groups with a cyclic
subgroup of index p.

Section 13.3 relates the Chow ring of a p-group to the Chow ring of an
associated 1-dimensional group. This method simplifies a surprising number of
calculations. Leary used the same method to good effect in group cohomology
[89, 90].

In Section 13.5, we compute the topological nilpotence degree do(H(;) of
Henn-Lannes-Schwartz and the analogous invariant do(C H¢;) for some small p-
groups G. In a sense, computing the cohomology ring or the Chow ring reduces
to calculations in degrees at most do(H ) or do(C H(;). In our examples, these
numbers turn out to be surprisingly small. Any improvement on the known
upper bounds for dy(Hg) or do(C Hf:) would be useful for computations of
group cohomology or the Chow ring.

Throughout this chapter, we consider each finite p-group G of exponent e
as an algebraic group over any field k of characteristic not p that contains the
eth roots of unity. We find that the groups in this chapter have the same mod
p Chow ring over all such fields. We write ¢, to mean a primitive mth root of
unity in k.

140
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13.1 The Chow rings of the groups of order 16

We compute the Chow ring for all the groups of order 16 in this section. (There
are 14 of them.) We also compute the Chow rings of all 2-groups with a cyclic
subgroup of index 2 (the quaternion, dihedral, semidihedral, and modular 2-
groups). Previously, Yagita computed the Chow rings of the groups of order 8
[155], and Guillot computed the image of the Chow ring in the F»-cohomology
ring for 10 of the 14 groups of order 16 [64, 65].

Our methods (the regularity Theorem 6.5 and the detection Theorem 12.7)
reduce computing the Chow ring for a group of order 16 to computations of
the Chow ring in degree at most 1. We write C H(; for the Chow ring of G with
F, coefficients. Since C Hcl; is just Hom(G, £*)/2, computing the Chow ring of
a group of order 16 is completely algorithmic, and in fact easy to do by hand.

We first compute the Chow ring for the 5 groups of order 8. These are the
abelian groups Z/8, Z./4 x Z./2, and (Z/2)?, the quaternion group Qs, and the
dihedral group Dg. The Chow rings of abelian 2-groups are polynomial rings
over F, (Theorem 2.10). In fact, we compute the Chow ring for some infinite
families of 2-groups, namely the quaternion group Q,» and the dihedral group
Dy with n > 3. The quaternion groups are the only non-cyclic p-groups of
rank 1 [1, proposition I'V.6.6].

Lemma 13.1 Let G be the quaternion group of order 2", n > 3. Then
CH; =Fa[c;V, a, bl/(a*, ab, b?),

where |a| = |b| = 1 and V is the standard representation G — SL(2, k). The
ring C H; has dimension 1 and depth 1 (so it is Cohen-Macaulay), as follows
from the Duflot lower bound for depth since G is p-central.

The Chow ring of the quaternion group is Cohen-Macaulay but not Goren-
stein. This contrasts with the Benson-Carlson theorem: if the cohomology ring
of a finite group is Cohen-Macaulay, then it is Gorenstein [12, vol. 2, theorem
5.18.1].

Proof By definition, G is the group

1 on—2
).

(x,y: ¥ = Lyt=1yxy '=x1y?=x

The group G has a faithful irreducible representation V' of dimension 2 over k,
$on-1 0 0 1
G — SL(2,k),by x — < 0 Cz_nll> and y — (_1 o)
By Theorem 6.5, CH(; is generated as a module over F[c(V, V] by
elements of degree at most 1, modulo relations in degree at most 2. Since the

representation V has trivial determinant, we have ¢; V = 0. The abelianization
of G is isomorphic to (Z/2)*. So C H, = Hom(G, k*)/2 is the F,-vector space
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F»{a, b}, where we define the homomorphisma: G — k*asx — —1, y—~ 1
andb: G — k*asx — 1, y — —1. Therefore

CH} = Fa2[c2 V{1, a, b}/(relations),

where |a| = |b| = 1. For a ring R, we write Rfey, ..., e,} to mean the free
R-module with basis elements ey, ..., e,. By our computation of C Hé, any
relations are in degree 2.

The center of G is the group C = (27 Z/2. Since C hasrank 1, CH{,
has depth at least 1 by Corollary 3.21 (the analog of Duflot’s theorem for Chow
rings). Therefore C H(; is a free module over F[c, V], and so we have computed
it as a module:

CHE =Fyle, V{1, a, b).

As in the proof of Theorem 12.7, let ¢“¥(G) denote the maximum degree
of a generator of CH} as a module over im(CH} — CH{). We have
e (G)<n—c=2—1=1, where n is the dimension of a faithful com-
plex representation of G and c is the p-rank of the center. By Theorem 12.7,
since the quaternion group G is p-central, it follows that

CH} — CH; ® CHS'

is injective. This is another way in which the computation of the Chow ring
of G reduces to computations in degrees at most 1. (In the simple example of
the quaternion group, we could check this injectivity by hand, since we have
already computed C Hf; as a module. But our purpose is to show how to use
our general results to compute Chow rings as easily as possible.)

That restriction map sends a — 1 ® a and b — 1 ® b. Therefore a® maps
to 1 ®a?=0in CH! ® CHSI, and likewise ab and b> map to zero. Since
the map is injective, it follows that a*> = ab = b* = 0 in C H};. Thus we have
computed C H(; as aring:

CH}, = Fijla, b, c;V1/(a?, ab, b*). 0

Lemma 13.2 Let G be the dihedral group of order 2", n > 3. Then
CH} =F[c1V, eV, al/(@® = acV),

where |a| = 1 and V is the standard representation G — GL(2, k). The ring
CH, has dimension 2 and depth 2 (so it is Cohen-Macaulay, although the
Duflot bound gives only that the depth is at least 1).

Proof By definition, G is the group

(x,y: =1, yi=1,yxy ' =x71).
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The group G has a faithful irreducible representation V' of dimension 2 over k,
G — GL(Q2,k),by x — (Cz(; ] 4“2(_,,)11> and y — (? (1))

By Theorem 6.5, CH(; is generated as a module over Fy[c;V, c,V] by
elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to (Z/2)>. So CHé = Hom(G, k*)/2 is
F,{a, b}, where we definea: G — k*asx +— —1, y+— land b: G — k* as
x +— 1, y = —1. By computing the determinant of V, we find that ¢,V = b.
Therefore

CH}, = Fz[c1V, 2 V{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.

There are two conjugacy classes of maximal elementary abelian 2-subgroups
in the dihedral group G, A; = (x2'",y) = (Z/2)* and A, = (x¥', xy) =
(Z/2)*. For A, define t;,u;: G— k* by 11: x¥ + —1, y—> 1 and
up: PLAREN 1, y = —1, so that CH;{1 = F2[t;, u1]. The restriction CHf, —
C HA"I sendsa — Oandc;V = b +— u,. Also, the representation V restricted to
A1is Ty & (T} ® Uy), where we write T} and U, for the 1-dimensional represen-
tations of A with Chern classes #; and u, respectively. So the total Chern class
c(V)|a, isequal to (1 +1)(1 +#; +uy) =1+ u; + t1(¢1 + uy). In particular,
¢V + t1(t; + uy). From our description of C H as a module, we know that
CHé is spanned as an F,-vector space by c2V, ¢?V, ac; V. Since these restrict
onAjas V> ti(ty +uy), iV > u?, aciV > 0in Fac; V, ¢, V], the only
possible module relation in C H/; is that ac; V may be zero.

But restricting to the other elementary abelian 2-subgroup A, shows that
ac1V #0in CHg. (If we define t,: X7 1, xy > land up: ¥ >
1, xy — —1, then we compute that a — uy, c;V =b+> up, and c,V —
t(t) + uy), and so ac;V — u% # 0.) Thus, for the dihedral group G = D,
we have computed C H as a module:

CH; =F[c1V, e, VI{L, a},

where |a| = 1. In particular, the ring C H} has depth 2, although the Duflot
bound gives only that the depth is at least 1.

At the same time, we showed that C Hé is detected on A and A,, and so we
can compute the ring structure. We find that a®> — ac, V restricts to zero on A
and A,, and so it is zero in C Hf;. Thus

CH}, =Fy[c1V, 2V, al/(@* = ac, V),
where |a| = 1. [

Now we compute the Chow rings of the 14 groups of order 16. There are
five abelian groups, Z/16, Z/8 x Z./2, (Z/4)*, Z/4 x (Z/2)*, and (Z/2)*,
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for which the Chow ring is a polynomial ring. There are two other product
groups, Dg x Z/2 and Qg x Z/2, for which the Chow ring is determined by
the Chow Kiinneth formula, Lemma 2.12 (which applies to any product with
an abelian group, among others). We have already computed the Chow ring for
the dihedral group Dj¢ and the quaternion group Q6. The remaining groups
are the modular group of order 16, the semidihedral group of order 16, the
central product Dg * C4, the split metacyclic group Z/4 x Z /4, and one more.

Some of these are important examples of p-groups. The only nonabelian
p-groups with a cyclic subgroup of index p are the modular p-group Mod,,
the dihedral group D, the semidihedral group S D5, and the quaternion group
Q2 [4, section 23.4]. Here the modular p-group Mod,, is the split extension

Mod, = (x,y 1 x” = 1,y7 =1, yxy ' =x""*)

’

where we assume thatn > 3 for p odd andn > 4 for p = 2 (since Modg = Dy).
The semidihedral group S Dy is the split extension

SDy = (x,y:x? =1,y =1L yxy ' =x"""")

for n > 4. We have computed the Chow rings of the quaternion and dihedral
groups, and we now compute the Chow rings for the remaining 2-groups with
a cyclic subgroup of index 2. The modular p-group for p odd is handled in
Lemma 13.8.

We use the numbering of p-groups from the Small Groups library in GAP, a
free group theory program [46]. This is also the numbering used in Green and
King’s calculations of the cohomology of p-groups [52].

Lemma 13.3 Let G be the modular 2-group of order 2", n > 4. For n = 4,
this is #6 of the groups of order 16 in the Small Groups library [52]. Then

CH}, =Fy[c|V,c,V, al/(a* ac, V),

where |a| = 1 and V is the standard representation G — GL(2, k). The ring
CH( has dimension 2 and depth 1, which agrees with the Duflot lower bound.

Proof The group G has a faithful irreducible representation V of dimension
2overk, G < GL(2,k), by x > (CZ’” Z"OZH) and y > (0 1).
0 1o

By Theorem 6.5, CH{; is generated as a module over F[c;V, coV] by
elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to Z/2"~2 x Z/2.So C H}. = Hom(G, k*)/2
isFy{a, b}, where we definea: G — k*asx — {2, y+— landb: G — k*
asx — 1, y = —1. By computing the determinant of V, we find that ¢;V =
a + b. Therefore

CH{, = Fy[c1V, 2 VI{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.



13.1 The Chow rings of the groups of order 16 145

The center of G is (x2) = Z/2"2, and so C := Z(G)[p]is (x?' ) = Z/2.
We have e“#(G) <n —c =2 — 1 = 1, where n is the dimension of a faithful

complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH; — []| CHy®CHZy,

ccv
Velem ab

is injective. There are two conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A := (x?'", y) = (Z/2)*. The centralizer of
Ais Cg(A) = (x2, y) = 727 x Z/2. Since we are considering Chow groups
with F, coefficients, we compute that a € C Hé restricts to zero in C Hcla( A
and hence in CH} ® CHcfcl(A). Also, a restrictsto 1 ® aand ciVto 1l ® 1V
inCH*V ® CHgl. It follows that a? and ac, V restrict to zero in both CH!®
C HGSl andin CH; ® C HCSGI( 4)- By the injectivity statement above, it follows
that a> = ac;V = 01in CHé.

By our description of C H}; as a module, we know that C HZ is spanned by
a?,ac\V, c,V as an Fy-vector space, hence just by ¢, V. Here ¢, V restricts to
t>in C H} =TF[t], and so ¢,V is not zero. This completes the determination of
C H(, as amodule over Fy[c1V, ¢, V], since we knew that any module relations
were in degree 2:

CH; =Fle1V, 2 VI{1} @ Fo[e1 V, caV]/(e1V)a).
Since a? = 0, the ring structure is determined:
CH = Fle1V,e2V, al/(a@?, aci V),
where |a| = 1. O

It happens that the semidihedral and modular 2-groups have isomorphic mod
2 Chow rings. With our approach, the calculations in the two cases are almost
identical.

Lemma 13.4 Let G be the semidihedral group of order 2",

SDy = (x,y 2% =1, y* =1 yxy =277

)

withn > 4. For n = 4, this is #8 of the groups of order 16 in the Small Groups
library [52]. Then

CH}, =Fy[c|V,c;V,al/(@*, ac, V),

where |a| = 1 and V is the standard representation G — GL(2, k). The ring
CH(, has dimension 2 and depth 1, which agrees with the Duflot lower bound.

Proof The group G has a faithful irreducible representation V of dimension

0 2! 10

n— 0
2overk,G — GL(2,k),by x (Q 1 ) and y — (O 1).
on—1
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By Theorem 6.5, CH, is generated as a module over Fy[c;V, c,V] by
elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to (Z/2)?. So CH} = Hom(G, k*)/2 is
Fy{a, b}, where we definea: G — k*asx — —1, y— land b: G — k* as
x +— 1, y = —1. By computing the determinant of V, we find that ¢;V =
a + b. Therefore

CH{ =Falc1V, 2 V{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.

The center of G is (sz) =7Z/2, and so C := Z(G)[p] is (sz) =7Z/2.
We have e“#(G) <n —c =2 — 1 = 1, where n is the dimension of a faithful
complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH;— [] cHy®CHE.y,

ccv
Velem ab

is injective. There are two conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A := (xzn_z, y) = (Z/2)>. The centralizer
Ci(A) is equal to A. We compute that a € C Hcl; restricts to zero in C H A and
hence in CH} ® CHCSGI(A). Also, a restricts to 1 ® a and 1V to 1 ® ¢1V in
CH*V ® CHgl. It follows that a® and ac, V restrict to zero in both CH!®
C HGSl andinCH; ® C H(il( 4)- By the injectivity statement above, it follows
that a> = ac;V = 01in CHé.

By our description of C H}; as a module, we know that C HZ is spanned by
a?,ac,V,c,V as an Fy-vector space, hence just by ¢, V. Here ¢,V restricts to
t>inC H} = F[t],and so ¢,V is not zero. This completes the determination of
C H{; as amodule over Fy[c1V, ¢, V], since we knew that any module relations
were in degree 2:

CH} =Fala1V,ao.VI{L} @ Fa[e1V, e V1/(c1 V ){a}.
Since a® = 0, the ring structure is determined:
CH; =ZFlaiV, a0V, a]/(az, ac V),
where |a| = 1. O
We now compute the Chow ring for the three remaining groups of order 16.

Lemma 13.5 Foranyn > 4, let G be the central product group Dg * Cypu—2 =
(Dg x Z)2""2)/(Z/)2). For n = 4, this is #13 of the groups of order 16 in the
Small Groups library [52]. Then

CH} =
F[c1V, 0V, a, b]/(a2 =ac,V,ab = ch +ac,V +be,V, b = bc V),
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where |a| = |b| = 1 and V is the standard representation G — GL(2, k). The
ring CH has dimension 2 and depth 2, whereas the Duflot bound gives only
that the depth is > 1.

Proof We can write

G=(x,y,z:x* =1,y =1 yxy ' =x1, 2% =x% zx = xz, 2y = yz).
The abelianization of G is isomorphic to (Z/2)> x Z/2"73. So CHCI7 =
Hom(G, k*)/2 is isomorphic to F»{a, b, c}, where

a:x— -1y~ 1,z 1
b:x— 1,y -1,z 1

c:xr—> 1L,y 1,2 L.

Let H = (y,z) £Z/2 xZ/2"> C G,andlet B: H — k* be the represen-
tation y > 1,z > {é’_z. Then G has a faithful irreducible representation of

dimension 2 over k given by V = Ind% 8. In a suitable basis for V, G acts by

R ey G
1 0) 0 -1 0 L2 )

By theorem 6.5, CH[; is generated as a module over F[c;V, c;V] by ele-
ments of degree at most 1, modulo relations in degree at most 2. By computing

the determinant of V, we find that ¢;V = b 4+ c. Using our computation of
CH/., we have

CH} =Fylc1V, VI, a, b}/(relations),

where |a| = |b| = 1 and any module relations are in degree 2.

The center of G is (z) = Z/2"2, and so C := Z(G)[2] is () = Z/2.
We have ¢ (G) < n — ¢ =2 — 1 = 1, where n is the dimension of a faithful
complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH; — [] CHy®CHZ.y,
Vgtecmvab
is injective. There are four conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A; = (y,z2" ), Ay = (xz2" ', z%""), and
As = (xy, 227, where A; = (Z/2)* fori = 1,2, 3.
We know that CHZ is spanned by 2V, c?V,ac,V,be,V as an Fy-vector
space. We compute that these four elements have linearly independent images

under the restriction map

CH}; — CH; @& CH; & CHj .
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So we have computed C H(Z;. In fact, we have computed CH/, as a module,
since we showed that any module relations were in degree 2:

CHS = Fz[Clv, C2V]{l, a, b}

Thus C H; is Cohen-Macaulay.

Since we showed that CHé injects into CHi1 &) CHj2 &) CH23, we can
compute a?, ab, b* in terms of our basis for C HZ'; by restricting to these three
elementary abelian subgroups. We find that a> = ac,V, ab = C%V +acV +
beiV, and b*> = be, V. Thus the central product G = Dg % Cyi-> has Chow ring

CH} =
Falc1V, e,V a,bl/(a* = ac,V,ab = ¢}V +ac,V +be,V, b* = be, V),
where |a| = |b| = 1. O

The next group has Chow ring a polynomial ring, surprisingly. By contrast,
its F>-cohomology ring has dimension 3 and depth only 2 [52]. This is also the
first p-group we have seen for which the inequality reg(C H;) < 0 of Theorem
6.5 is strict; namely, C H{; has regularity —1.

Our notation for commutators is that [x, y] = xyx~'y~L

Lemma 13.6 Let
G=(x,y,z:x*=1,y"=1,22=1,[x, y] = z, xz2 = zx, yz = 2),
#3 of the groups of order 16 in the Small Groups library [52]. Then
CH} = Fala\W, oW, 18]

Here G has a faithful k-representation W @ B of dimension 3, with W irre-
ducible of dimension 2 and B of dimension 1. The ring C Hf, has dimension 3
and depth 3, whereas the Duflot bound gives only that the depth is > 2.

Proof Let H=(x,z) =Z/4xZ/2CG.Leta: H— k* be the represen-
tation x — 1,z > —1.Let W = Ind%a. The kernel of the 2-dimensional rep-
resentation W of G is (x?) = Z/2. Therefore, the representation W @ B of G
is faithful if we define 8: G — k*byx — &, y— 1,z 1.

Even though G does not have a faithful representation of dimension 2,
Theorem 6.5 works just as well as for the other groups of order 16, because
o(Fa2[ciW, oW, ¢ B]) = 1. We deduce that CH(; is generated as a module
over Fo[ci W, c; W, ¢ B] by elements of degree at most 1, modulo relations in
degree at most 2.

The abelianization of G is isomorphic to Z/4 x Z/2. So CH! =
Hom(G, k*)/2 is isomorphic to F,{a, b}, wherea: x +— &4, y — 1,z +— l and
b: x— 1,y +— —1,z+— 1. By computing determinants, we find thatc; 8 = a
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and c;W = 2a + b = b. So we do not need any module generators in degree
1: we have

CH{ = Fy[ci/W, c; W, ¢ B]/(relations),

where any module relations are in degree 2.

So CHZ is spanned by c¢iW, oW, i, ciWceiB as an Fa-vector space.
We compute that their restrictions to the elementary abelian subgroup K =
(x%,y,z) = (Z/2)? are linearly independent. So there are no module relations
in dimension 2, and we have shown that

CHE; = Fz[Cl W, CzW, Clﬁ].

(Alternatively, one can show that there are no relations among these generators
without computing any restrictions. Indeed, G has p-rank 3, and so the ring
C H(, has dimension 3 by Yagita’s theorem (Theorem 8.10). But the quotient
ring of Fo[c; W, ¢, W, ¢1 8] by any nonzero ideal would have dimension at most
2.) O

We now find the Chow ring for the last of the 14 groups of order 16.

Lemma 13.7 Let G be the split metacyclic group Z./4 x Z1./4,

1

G=(x,y:x*=1,y"=1yxy ' =x7",

#4 of the groups of order 16 in the Small Groups library [52]. Then
CH} = FaleaW, ¢18, al/ (@),

where |a| = 1. Here G has a faithful k-representation W @ B of dimension 3,
with W irreducible of dimension 2 and B of dimension 1. The ring C Hf; has
dimension 2 and depth 2, which follows from the Duflot bound because G is
p-central.

Proof LetH = (x?,y) =Z/2 xZ/4 C G.Leta: H — k* be the represen-
tation x% — —1, yi> 1. Let W = Indga. The kernel of the 2-dimensional
representation W of G is (y?) = Z/2. Therefore, the representation W @ f of
G is faithful if we define 8: G — k*byx = 1,y — 4.

By Theorem 6.5, CH(; is generated as a module over Fs[ci W, o W, ¢ 8]
by elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to Z/2 x Z/4. So CH). = Hom(G, k*)/2 is
isomorphic to F,{a, b}, wherea: x = —1,y+> landb: x — 1, y > &4. By
computing determinants, c;8 = b and c; W = 2b = 0. Thus

CH{. = Fy[c; W, ¢ B1{1, a}/(relations),

where any module relations are in degree 2.
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The center of G is C = (x2, y?) = (Z/2)?, and G is p-central. By the Duflot
bound 3.21, it follows that C H(; is Cohen-Macaulay. That is:

CH{ = Fa[cea W, ¢ BI{1, a}.
By Theorem 12.7,
CH} — CH: ® CHZ'

is injective. Under this map, a > 1 ®a and so a’> > 1 ®a*> =0€ CH} ®
C HGSI. Therefore a*> = 0in C H{,. This determines the ring structure:

CH}, = F[e,W, ¢, B, al/ (@),

where |a| = 1. O

13.2 The modular p-group

In this section and Section 13.4, we compute the Chow rings for the groups
of order p?, for an odd prime number p. These computations were first made
by Yagita. (Yagita’s original proof had a gap: [155, lemma 2.8] assumes that
the geometric and topological filtrations are the same. That has now been fixed
[156, lemma 3.7].) Besides the abelian groups Z/p*, Z/ p*> x Z/ p,and (Z/ p)>,
there are two nonabelian groups of order p?, the modular p-group Mod,: of
exponent p? and the extraspecial group pfz of order p? and exponent p (the
group of strictly upper triangular 3 x 3 matrices over F ).

More generally, we compute the Chow ring for the modular group of order
p". Combined with the results of Section 13.1, this completes the calculation
of the Chow ring for all p-groups with a cyclic subgroup of index p.

Lemma 13.8 Let G = Mod,: be the modular p-group

(x,y: =1, yP=1,yxy ' = XY

for p an odd prime number and n > 3. Then
CH}, =F,[b,c,V,x1, ..., x,_11/(bx; = 0, x;x; = 0)

where |b| = 1, |x;| =i, and the relations involve all i, j € {1,...,p — 1}
Here V is a faithful k-representation of G with dimension p. The ring CH
has dimension 2 and depth 1, which agrees with the Duflot bound. Finally,
do(CH{) = 1.

Proof The abelianization of G is isomorphic to Z/p"~2 x Z/p. So CH/, =
Hom(G, k*)/p is equal to F,{a, b}, where we define a: G — k* by x
{2,y landb: x = 1,y = .
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The center of G is (x?) = Z/p"~2. So the group C = Z(G)[p]is (x”" ") =
Z/ p. There is only one conjugacy class of elementary abelian subgroups strictly
containing C, namely A = (x”" ", y) = (Z/p)>.

Let H be the subgroup (x) = Z/p"~! of G, and let «: H — k* be the
representation x > ¢,»-1. For any integer i, the induced representation V; :=
Indga@’i of G has restriction to H given by

(Indga®i)|]-] — a@i o) ya®i P yp71a®i

= a® @ q®P T gy . ®P=D D

For i £ 0 (mod p), these p summands are all non-isomorphic as representa-
tions of H, and so V; is an irreducible representation of G of dimension p.
Moreover, the formula for the restriction to H shows that the irreducible repre-
sentations V; are non-isomorphic for 1 <i < p"~2 withi % 0 (mod p). Using
that the sum of the squares of the dimensions of the irreducible representations
is equal to the order of G, we find that these p"~2(p — 1) representations of
dimension p together with the p"~! representations of dimension 1 are all the
irreducible representations of G over k.

For an integer j prime to the order n of a group G, the Adams operation v/ V
of a representation V of G over the field Q(u,) is the representation obtained
by applying the automorphism ¢, {,{ of Q(w,) [77, section 4.6]. Moreover,
every complex representation of G can be defined over Q(u,). Therefore,
induction of representations commutes with the Adams operation ¥/ when j
is prime to the order of the groups involved. Since /() = a®/, it follows
that V; = Y (V) for j 0 (mod p). Our assumption on the field k implies
that the classification of representations over k is the same as over Q(u,),
and so we have the same isomorphism of representations over k. Therefore,
the Chern classes of V; in C H; are polynomials in those of V|. By Theorem
2.25, the Chow ring CH/; in degrees at most p is generated by the Chern
classes of representations. Therefore, C H(; in degrees at most p is generated
bya,b,c1Vi,...,c,Vi. We compute that ¢; V| = a, and so C H in degrees at
most p is generated by a, b, c2 Vi, ..., ¢, V1.

Lemma 13.9 Let p be a prime number, and let k be a field of characteristic
not p that contains the pth roots of unity. Let H be a normal subgroup of index
p in an affine algebraic group G over k. Let b € CH(I; be the pullback of a
generator of C Hcl; yu = Fp. Let a be a 1-dimensional representation of H, and
let V be the induced representation of G. Then, in the Chow ring of G with F,
coefficients,

¢V =uyy;
forl < j < p—2 while

-1
Cp,1V =trg(t1 ~"lp,1)—bp .
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Heret; =ci(a)inCH} 11, ..., t, are the conjugates of t| by the elements of
G/H =7/p, and y; for 1 < j < p — 1 is the sum of a set of representatives
for the free action of Z/ p on the set of monomials t;, ... t;, with1 < i} <--- <

Proof 1t suffices to prove these formulas in the universal case where G is
the wreath product Z/p : G,, and H is the subgroup (G,,)?. In that case, they
follow from the calculation of C Hf; in Lemma 2.21. Namely, that calculation
shows that C H/; is detected on the subgroups H and Z/p x G,, C G, and the
equalities are easily checked on restriction to those two subgroups. Alterna-
tively, Lemma 2.21 shows that the mod p Chow ring of G = Z/p G, injects
into the F,-cohomology of G, and then these formulas in the Chow ring follow
from Evens’s analogous formulas in cohomology [41]. O

For the modular group G, with normal subgroup H = Z/p"~', the quotient
group Z/ p acts trivially on CH}, = F {t}, where r: H — k* sends x > Cpnt.
By Lemma 13.9, we have

1 .
Cj(Vl) = ;(?)Ugll

forl <j <p—2and
cp1 (V) = P~ — pP 1,

Let x; = trgti for i =1,..., p—1. By these formulas, the ring CH{; in
degrees < p is generated by b, x| = a, x2, ..., x,_1, and ¢, (V).

Since the transfer tt$ : CH}, — CH; is C H-linear, we have x;w = 0 for
any 1 <i < p — landany w € CH( that restricts to zero on H. For example,
bly = 0,and so bx; = Oforalli. Also, x;|n = Y ,c7/, g(t') = pt' =0, using
that G/H = Z/p acts trivially on CH}; = F,[t]. So x;x; =0 for all i, j €

{1,..., p — 1}. Thus C H, is spanned in degrees < p as an F ,-vector space by:
| b b: ... prl bP
X1 X2 Xp—1 val.

Let A= (x""",y)=(Z/p? CG. We have CH)=F,{r,u}, where
t: A — k* takes x”' > {p.y > 1land u: A — k* takes S Ly
¢p. We compute that xy, ..., x,_; restrict to zero in CH} = F[t, u], while
b uandc,(Vy) > t¥ — tuP~"'. So the only possible relation in degrees < p
beyond those found so far is that some of xi, ..., x,_; might be zero. In fact,
X1, ..., Xp_1 are all nonzero, which implies that a basis for C H; in degrees
< p is given by the elements listed in the previous paragraph.

One way to show that the classes x; = trgti for i=1,...,p—1
are nonzero in CH} is to observe that they have nonzero image in
H*(G,Z)/p C H*(G, F,), by Thomas’s calculation of H*(G, Z) [135, p. 74].
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(In the special case G = Mod,3, this follows from the earlier calculation of
H*(G, Z) by Lewis [97, theorem 5.2].) But it seems preferable to give a direct
proof using Chow rings. We will prove that xy, ..., x,_; are nonzero in CH
using the idea of the topological nilpotence degree from Section 12.2. Also,
we know from Theorem 12.7 that dy(C H) is at most p — 1. Given that, our
calculation will simultaneously show that do(CH/) = 1.

To begin, the element x is nonzero in CH/., because CHé = Hom(G, k*)/p
is isomorphic to (F,)? and C H! is generated by b and x;. Since C C H C G,
we have a pullback diagram

CxH — H

l l

CxG — G.

Because pushforward commutes with pullback (Lemma 2.16), we have
(trf,ti)chG = trgig(ﬂCXH) for all i > 0. The restriction map from CH};, =
F,[7] to CH¢ is an isomorphism. The pullback CHy — CHg ®r, CHj

sends 7 to 7 ® 1 + 1 ®¢. So the image of t' in CH} ®p, CH="H is
rel+it ' @t

Here trgl =0, but trgt = x1, which is not zero. So the image of x; = trgti
in CH}, ®F, CHGSl is i#"~! ® x;. This is nonzero for i = 1, ....,p—1. 50
X1,...,Xp_1 are nonzero in C H, as we wanted.

We know that CH{ is generated by elements of bounded degree as a
module over F,[c| Vi, ..., c,Vi], since V| is a faithful representation. By the
formulas above, it follows that CH( is generated by elements of bounded
degree as a module over F,[b, x{, ..., x,_1,c,V]. We showed that xi2 =0,
and so CH(, is generated by elements of bounded degree as a module over
F,[b,c,Vi]. Since CH{, has regularity < 0 (Theorem 6.5), it follows that
C H{, is generated as a module over F,[b, ¢, V] by elements of degree at most
o(F,[b, c,Vi]) = p — 1, modulo relations in degree at most p. Since we have
computed C H(; in degrees at most p, we know C H; in all degrees as a module:

CHE =F,[b, c,Vil{l, x1, ..., xp_1}/(bx; =0,...,bx, | = 0).

We also showed that x;x; =0 for all 7,je{l,..., p—1}, which
determines the ring structure on C H/;:

CH} =
F,[b,c,Vi,x1,...,xp-11/(bx; =0, x;x; =0foralli, j € {1,..., p—1}),

where |b| = 1 and |x;| = i. O



154 Calculations

13.3 Central extensions by G,,

In computing the cohomology or Chow ring of a p-group, a natural inductive
approach is to consider a central extension by Z/p,

1-Z/p—>E— Q— 1.

In this section, we study the Chow ring of such an extension (for Q any affine
k-group scheme) by considering the associated extension by the multiplicative

group,
1-G,—>K— Q0 —1.

Explicitly, for z a generator of the subgroupZ/pin E,let K = (E x G,,)/Z/ p,
where the subgroup Z/p is generated by (z, ¢, 1. This maneuver can wonder-
fully simplify the problem. Throughout, we work over a field k of characteristic
not p that contains the pth roots of unity.

There is a simple relation between the cohomology of the Z/ p-extension E
and the G, -extension K, which becomes even simpler for Chow rings. Since
K = (E x G,)/(Z/p), E is a normal subgroup of K:

l1- FE—-K—>G, —>1,

where we have identified G,,/(Z/p) with G,,. Therefore, we have a principal
G,,-bundle

G,, > BE — BK,

(This can be formulated concretely in terms of the finite-dimensional approx-
imations to classifying spaces.) Let u € CHy be the first Chern class of the
homomorphism K — G, above. The Leray-Serre spectral sequence of the
G,,-bundle above reduces to a short exact sequence

0— Hg/(u) — Hp — X ker(u: Hi — Hf) — 0.
For Chow rings, Lemma 2.4 gives the even simpler statement:
Theorem 13.10
CHE Z CHE /(u).

Thus computing Chow rings of central extensions by Z/p reduces to the
same problem for central extensions of G,,. The problem is still nontrivial;
for example, we do not know whether finiteness of the groups C H, implies
finiteness of the groups C Hy. Nonetheless, we have gained something. One
point is that several different Z/ p-extensions of a group Q can determine G,,-
extensions that are isomorphic as groups. For example, the two nonabelian
groups of order p? for p odd are central extensions of (Z/p)* by Z/ p, and they
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both induce the same central extension W of (Z/ p)? by G,,, which we consider
in Section 13.4.

Moreover, there is the pleasant special case that a nontrivial Z/ p-extension
may give a trivial G,,-extension K = Q x G,,, in which case we know the
Chow ring C Hg completely in terms of C Hjj. This gives the following result.

Theorem 13.11 Let Q be an affine group scheme over k with a homomor-
phisma: Q — G,,. Let E be the subgroup of Q x G,, of elements (x, t) with
tPa(x) = 1. Then E is a extension of Q by Z/p, and

CH} = (CHp/(cia)ul,
where |u| = 1.

Proof To see what is going on, consider the case k = C. Then central
extensions of Q by Z/p are classified by H*(BQ,Z), and central exten-
sions of Q by G,, are classified by H*(BQ, Z). The short exact sequence
0—Z — Z — Z/p — 0 of coefficient groups gives an exact sequence

H*(BQ,Z) — H*(BQ,F,) — H*(BQ, 7).

Therefore, the central extensions by Z/p whose associated G,,-extension is
trivial are exactly those coming from H*(BQ, Z) = Hom(Q, G,,). We com-
pute that the central extension associated to a homomorphism «: Q — G, is
the one defined in this theorem.

Over any field & satisfying our assumptions, we can check directly that the
G ,-extension K associated to the given Z/ p-extension is trivial. That is, K is
isomorphic to Q x G, and so CH*BK is a polynomial ring (CH*B Q)[u]
with |u| = 1. As explained earlier in this section, BE is a principal G,,-bundle
over BQ. By Lemma 2.4, CH*BE is the quotient of CH*BK by the ideal
generated by one element of degree 1, which we compute to be cjo — pu. Mod
p. this gives that CH; = (CHp /(c1))[u]. O

For example, let p be an odd prime number and let Q be the modular p-
group Z/p x Z/ p*, whose Chow ring is computed in Lemma 13.8. Then the
split metacyclic group Z/ p* x Z/p? is an “integral Z/ p-extension” of Z,/ p x
Z./ p*, meaning an extension associated to a 1-dimensional representation as in
Theorem 13.11. That immediately computes the Chow ring of Z/p* x Z/p?,
as follows. Other approaches are possible, but this method is the quickest.

Lemma 13.12 Let p be an odd prime number, and let G be a split meta-
cyclic group 2./ p* X L] p™. Suppose that the image of the conjugation action
Z/p" — (Z/p™)* has order p. Let V be an irreducible p-dimensional repre-
sentation of G over k. If n = 1, then

CHE ZF,lb,c,V,x1,....,xp_11/(bx; =0, x;x; = 0),
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where |b| = 1, |x;| = i, and the relations involve all i, j € {1,..., p — 1}. The
ring C HE, has dimension 2 and depth 1, and do(CH,) = 1.
Ifn > 2, then
CHE =F,u,cpV,x1, ..., xp211/(xix; = 0),
where |u| =1 and |x;| =i. In this case, the ring CHE is Cohen-Macaulay

of dimension 2. This follows from the Duflot bound, since G is p-central.
Moreover, do(CH) = 1. In particular, this applies to the group Z/p> x Z/p?,
#4 of the groups of order p* in the Small Groups library [52].

Another integral Z/ p-extension of the modular group of order p? is the
group

E=(a,be:a” =1,b" =1,¢e” = 1,ecentral,aba™" = b'*7e)
= (a,b,c:a” =1,b" =1,c¢” = 1, c central, [a, b] = c).

This is #3 of the groups of order p* in the Small Groups library. It has rank 3,
and the Chow ring does not map onto H®(BE, Z), which complicates some
approaches to computing the Chow ring. But Theorem 13.11 makes it easy. We
state the result as follows.

Lemma 13.13 Let p be an odd prime number. Let G be #3 of the groups of
order p* in the Small Groups library [52]:

G ={a,b,c: a’ = 1,b? =1,c? =1, c central, [a, b] = c).
Then
CH; =F,[b,u,cpV,x2, ..., x,-11/(bx; =0, x;x; = 0),

where |b| = |u| = 1, |x;| =i, and the relations involve all i, j € {2,..., p —
1}. The ring CHE has dimension 3 and depth 2, which agrees with the Duflot
bound. The group G has a unique conjugacy class of maximal elementary
abelian subgroups, which is of rank 3. Finally, do(CHf,) = 2.

13.4 The extraspecial group E ;3

The nonabelian group E,; = plfz of order p* and exponent p is more com-
plicated than the other nonabelian group of order p?, the modular p-group. We
first compute the Chow ring of the associated central extension W of (Z/ p)? by
G . (One sign of the importance of W is that any nontrivial central extension
of (Z/ p)> by G,, over C is isomorphic to W as an algebraic group.) Leary com-
puted the integral cohomology of BW and used it to compute the cohomology
of E,: and related groups [90].
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Given the Chow ring of W, it is easy to read off the Chow rings of both E
and the modular p-group M : by Theorem 13.10, although we have preferred
to compute the Chow ring of M s separately in Lemma 13.8 because that is a
simpler calculation. (Both M, and E s are kernels of homomorphisms from
W to G,,.) One reason to approach the Chow ring of E ;3 via the 1-dimensional
group W is that we can compute the Chow ring of E,; without any dependence
on Lewis’s calculation of the integral cohomology of E s [97]. This happens
because the Chow ring of W turns out to be simpler than than of E,s. In
the notation of Section 12.2, do(C Hy;,) is 1 while do(CH§)3) is 2, for p > 5
(Theorem 13.23). This makes it easier to compute C Hy, ﬁrst, and then read
off the Chow ring of E . Finally, computing the Chow ring of W determines
the Chow ring for an infinite family of p-subgroups of W, the central products
E s % Cpia (Lemma 13.16).

Lemma 13.14 Let p be an odd prime number, and let k be a field of charac-
teristic not p that contains the pth roots of unity. Let W be the central product
pfz * Gy = (pf2 X Gp)/(Z]p) over k. Here G = pfz is the group

G=(x,y,z:x’ =y’ =z =[x, zl=[y,zl=1[x,y] =2)

and the subgroup Z./ p is generated by (z, {ljl). Then

CHy ZFyla.b.er.....epa.epr.c,V)/(ae; =0for 1 <i < p—2,
be; =0forl1 <i<p-—1,ae,_| = ab?™' —al,
€;e; :Oforl < i < p—Zandl < ] <p- ],6271 :_al)—lbp—l +a2p—2),

The ring CH{; has dimension 2 and depth 1, which agrees with the Duflot
bound. The topological nilpotence degree dy(C Hy,) is equal to 1. Finally,
for k a subfield of C, C Hy, maps isomorphically to H*(BW, Z)/p, which is
concentrated in even degrees.

Proof The abelianization of W is isomorphic to (Z/p)* x G,,. So CH}, =
F,{a,b, e}, where we define a,b,e;: G — G, bya: x— ¢,,y—> 1, A~
1(forAinG,),b: x— 1,y ¢{p, A lLiande i x > 1,y = 1, A > AL,
The center of W is the isomorphic image of 1 x G,, C G x G,,. So every
irreducible representation of W restricts to G,, as a A — A" for some integer j,
which we call the weight. Representations of W of weight j can be identified
with representations of G on which z acts by the scalar ¢ ,’, . By the representation
theory of G, it follows that W has a unique irreducible representation of each
weight j # 0 (mod p), and it has dimension p. Also, W has p? irreducible
representations of each weight j = 0 (mod p), all of dimension 1.



158 Calculations

Let H be the subgroup ({x, z) x G,)/{(z, g“p‘l)). This is a normal subgroup
of index pin W. Let 8: H — G, be a representation. Then

(Indyy B)ly ZB® B ® - &y (),

where a generator y of W/H acts by conjugation on H. If § has weight
Jj £ 0 (mod p), then these 1-dimensional representations are all distinct, and
so Ind}y B is irreducible. It must be the unique irreducible representation V; of
W of weight j.

For any integer i, the Adams operation ¥ on the representation ring R(W)
takes a representation of W of dimension n and weight j to a virtual representa-
tion of dimension n and weight ij [80]. Therefore, for integers i £ 0 (mod p)
and j % 0 (mod p), ¥’ of the unique irreducible representation Vi of W of
weight j must be the irreducible representation V;; of weight ij. Therefore,
the Chern classes of V; in C Hy, are polynomials in those of V = V. It fol-
lows that the ring of Chern classes of all representations in C Hy;, is generated
bya,b,e;,ciV,...,c,V, where we define V = IndVHV,B for a weight-1 homo-
morphism g: H — G,,. By Theorem 2.25, the ring C Hy; in degrees < p is
generated by these classes. Also, the representation V of W has ¢;V = e;, and
so C Hy, is generated in degrees < p by a, b, e;,c,V,...,c,V.

We have CH}{ =F,{t, u}, where we define t,u: H — k* by t: x —
¢p, A 1 (forAin G,,) and u: x +— 1, A — A. The restriction map CH};, —
CH}; sendsa +— t, b+ 0, and e; — pu = 0. Also,

VigZUS(TU)®-- & (T ' ®U),

where 7 and U are 1-dimensional representations of H with Chern classes ¢
and u. So the total Chern class of V restricts to

WMy =0+uwd+1+u)--- A+ (p— Dt +u)

=1—t"P"" ¢ WP — P ).

By Lemma 13.9, for 1 < j < p —2 we have ¢;V = tr}yy; where y; is
the sum of a set of orbit representatives for Z/p acting on the set of
products w;, C Wi, where 0 <ij <---<ij<p—1and wy=u, w; =
t4u,...,wp_1 =(p— Dt +u. Since b € CH&V restricts to 0 on H, we
have btr,‘@/(w) =0 for any w € CH};, and so bc;V =0for 1 < j <p—2.
But V is also induced from a 1-dimensional representation of the subgroup
A=y, z) x Gpn)/{(z, C;l)), and a restricts to 0 on A; so we also have
acj(V)=0forl < j < p —2.Sincearestricts to on H, we have trjy (t'u’) =
a'tryy(u’). Let ¢; = trjy (u') for 1 <i < p — 1. It follows by induction on j,
from the more complicated formula for ¢; V above, thatc;(V) = (1/ p)(?) e; for
1 <j<p-—2andthatae; =0for1 < j < p —2. (In particular, e; = ¢V,
as shown earlier.)
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Lemma 13.9 also relates c¢,_ V to transfers:
cp1V =ty (¢ +u)---((p = Dt +u)) = b7

= trp (uP~" =771y — pP7!

=é€p_1 — bpil.
The last step uses that tr})y (t7~') = a?~'tr}y (1) = 0 in CH},, since [W: H] =
p and we are using F, coefficients. From the relations between Chern
classes and the classes e;, the ring CHy, is generated in degrees < p by
a,b,ei,er,....ep_1,¢c,V.

Since b € CHVIV restricts to zero on H, the transfers e; satisfy be; =0
for 1 <i < p—1. For i = p— 1, this says that bc,_;V + b” = 0. Since
the representation V is also induced from A = ({y, z) X G,,)/{(z, ¢ » 1)) (the
kernel of the homomorphism a: W — G,,), the same argument shows that
acpy—1V +a” = 0in CHj,. It follows that ae,_ = ab?~! — a?.

Also,

elg = th(MiNH
=u' + @ +u) +-+(p— Dt +u),

which is zero for 1 <i < p — 2. Therefore ¢;e; =0 for 1 <i < p —2 and
1 < j < p — 1. On the other hand, the formula for e;|y gives that e,_i|y =
—tP~!, Therefore

e | = (trZu”_l)2
W, p—1
=tryu’ ep_ily)

= try (u?~ (—=t"71))

_ -1 W p—1
= —a tryu

To summarize, we have a ring homomorphism from

F,la,b,e,...,ep2,e,_1,c,V]/(ae; =0forl <i < p—2,
be;=0forl <i<p—1, ae,_; =ab’" —a?,
eiej=0forl <i<p-2andl<j<p—1, e _=—a""'b""" +a°"7?

to C Hy,. We know that C Hy;, is generated by elements of bounded degree as a
module over the Chern classes of the faithful representation V, hence over the
ring above. The relations show that the elements ey, ..., e,_; are integral over
theringF,[a, b, c, V], and so C Hy;, is generated by elements of bounded degree
over Fpla, b, c,V]. Since C Hy, has regularity < 0 (Theorem 6.5), it follows
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that C Hy;, is generated by elements of degree at mosto (F ,[a, b, c,V]) = p — 1
as a module over F,[a, b, ¢, V], modulo relations in degree p.
The relations above imply that we have a map of F[a, b, ¢,V ]-modules:

F,la,b,c,VI{l,e,...,e,_1}/(ae; =0forl <i < p -2,
be; =0for1 <i <p—1,ae, | =ab’™" —a’) — CH;,.

This is surjective in degrees at most p (since CHj;, is generated by Chern
classes in that range), hence in all degrees (since all module generators for
CHj, are in degree at most p — 1).

It remains to show that this map is injective in degrees at most p. A basis for
the domain as an F,-vector space in degrees at most p is given by monomials
in a and b in degrees at most p, e,_i, c,V, and the elements ¢; for 1 <
i < p—2. The elements ¢; for 1 <i < p — 2 restrict to zero on the p + 1
elementary abelian p-subgroups V of rank 2 in W, for example because e? = 0
for 1 <i < p — 2. We will show that the other elements listed have linearly
independent images in [, CH;).

Let C = Z(W)[pl =(z) =Z/p. Then ¢,V has nonzero restriction to
CH{ =F,lul, whereas a, b, ey, ..., e,_; all restrict to zero on C. So ¢,V
is linearly independent of the other elements listed above in [],, CH};. Next,
the kernels of restriction from F,[a, b] to the p + 1 elementary abelian p-
subgroups V of rank 2 in W are the ideals (a), (a + b), ..., (a + (p — Db),
and (b). So any element of F,[a, b] that restricts to zero on all these subgroups
must be a multiple of b ]—[f’:_l(a +ib) = a’b — ab?. In particular, the mono-
mials of degree at most p in a, b are linearly independent in [ [,, C H;,. Next,
in degree p — 1, suppose that f,_i(a, b) + e,_; restricts to zero in [ [, C H;.
Multiplying by b, we deduce that bf,_i(a, b) > 0, since be,_; = 0. By the
injectivity we proved in degree p, it follows that f,_; = 0,andsoe,_; > Oin
[1y CH;. But then multiplying by a gives that ab”~! — a” +— 0in [, CHy,
contradicting the injectivity in degree p.

To finish the computation of C Hy,, it remains to show that ¢; # 0 in C Hy,
for 1 <i < p —2. As in the proof of Lemma 13.8, we could prove this by
observing that ¢; has nonzero image in H*(BG, Z)/ p, by Lewis’s calculation
of H*(BG,Z) [97], but we prefer to give a direct proof using Chow rings.
Again, we use the idea of the topological nilpotence degree from Section 12.2.
We know that e; # 0 in CHvlv = Hom(W, G,,)/p.

Since the central subgroup C = Z/ p is contained in the subgroup H of W,
we have a pullback diagram

CxH — H

l l

CxW — W.
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Because pushforward commutes with pullback (Lemma 2.16), we have
(W u)cxw = &3 (ul|cxn) for all i > 0. The restriction map from C Hj,
to CH; = F[u] sends u to u. The pullback CHy; — CH{ ®r, C Hj; sends u

tou ® 1 +1® u. So the image of u’ in CHY @, CH='H is
W@ l+in @u.

Here tr}y 1 = 0, but tr}yu = e;, which is not zero. So the image of x; = tr}yu’
in CH{ ®F, CH‘f,l is iu'~!' ® xy. This is nonzero for i = 1, ...,p—2.50
el ..., ey, are nonzero in C Hy,, as we wanted.

Since all module relations for C Hy, over Fpla, b, c, V] are in degrees < p,
there are no more relations. Thus we have computed C Hy,. We have made
this calculation without using Leary’s calculation of H*(BW, Z) [90, theorem
2]. By inspecting that calculation, we see that CHy, — H*(BW,Z)/p is an
isomorphism. O

Corollary 13.15 Let p be an odd prime number. Let G be the nonabelian
group of order p3 and exponent p, also called the extraspecial group pfz
of order p> or the group of strictly upper-triangular 3 x 3 matrices over F IS

Then

CH; =Fpla,b,ey,....ep 0,e, 1,¢c,V]/(ae; =0for2 <i < p—2,
bei = 0f0r2 < i <p-— 1’ ae,_; :ab[)—l —Cl‘”,
eje;=0for2<i<p—-2and2<j<p-—1, ei_l = g ppl 4 g2,

Herela| = |b| =1, |e;| =ifor2 <i < p—1,and|c,V| = p. The ring CH}
has dimension 2 and depth 1 for p > 5, which agrees with the Duflot bound,
whereas C Hf, is Cohen-Macaulay of dimension 2 for p = 3. Finally, fork C C,
C H{; maps isomorphically to H*(BG, Z)/ p.

For comparison with Lewis’s computation of the integral cohomology ring
[97, theorem 6.26], which we state as Theorem 13.22, note that the relations
above imply that ab? — a?b = abe,_; = 0.

Proof The group G = p fz is a normal subgroup of the group W of Lemma

13.14,with1 - G - W — G,, — 1.Itfollows that C H} is the quotient ring
of C Hy;, by the first Chern class of the homomorphism W — G,,, which is e;.
We can also compute H*(BG, Z) in terms of H*(BW, Z), as mentioned before
Theorem 13.10. Then the isomorphism from CH{; to H*(BG, Z)/ p follows
from the isomorphism from C Hy, to H*(BW, Z)/p (Theorem 13.14). ]

Here is another family of p-groups whose Chow ring reduces to the Chow
ring of the 1-dimensional group W.
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Lemma 13.16 Let p be an odd prime number. Let G be the central product

Pit R Cpe = (P2 X Z/p"2)/(Z] p) forn > 4:

n—3

G=(x.y.z:x =y’ =z""" =[x, 2] =[y.z]l =1, [x.y] =" ).

For = 4, this is group #14 of order p4 in the Small Groups library [52]. Then

CHE =F,la,b,ei,er,...,ep_2,ep_1,¢,V]/(ae; =0for1 <i <p-—2,
be; =0forl <i<p—1,ae,_; =abP™ ! —a”,

eej=0forl<i<p—-2andl1 <j<p-— Lei—l — _arprl 4 g2,

The ring CH}, has dimension 2 and depth 1, which agrees with the Duflot
bound. The topological nilpotence degree dy(C H,) is equal to 1. Finally, for
k C C, CH{, maps isomorphically to H*(BG,Z)/ p.

For n = 3, the presentation above defines the extraspecial group pfz, whose
Chow ring looks the same but without the generator e; (Corollary 13.15). For
any n > 3, Leary computed the integral cohomology of the group G in the
lemma [90]. He observed that it is the unique isomorphism class of groups
that is neither abelian nor metacyclic but can be written as a central extension
of (Z/p)* by Z/p". For n =4, this group is sometimes called the almost
extraspecial group of order p*.

Proof Write E» for the extraspecial p-group of order p? and exponent p.
Let W be the central product (E 3 X G,,)/(Z/p), and lete;: W — G,, be the
homomorphism thatis trivial on E ;s and sends A € G,, to A?. The group G is the
kernel of the homomorphism e} : W — G,,. By Theorem 13.10), the restriction
CH};, — CH¢ is an isomorphism. Since C Hy, is computed in Lemma 13.14,
we know CHg. The fact that C HY maps isomorphically to H*(BG,Z)/p
follows from the statement that C H}, maps isomorphically to H*(BW,Z)/p
(Lemma 13.14). O

13.5 Calculations of the topological nilpotence degree

Kuhn gave good upper bounds for the topological nilpotence degree of any
finite group (Theorem 12.6, above). But so far, most exact calculations of the
topological nilpotence degree have focused on mod 2 cohomology [69, sections
I1.4 and IL.5], [85, appendix A]. In this section, we compute the topological
nilpotence degree do(H ;) of Henn-Lannes-Schwartz for some simple examples
of p-groups with p odd: split metacyclic groups (including the nonabelian
group of order p> and exponent p?), the extraspecial group of order p* and
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exponent p, and some p-central groups of order p®. In some cases, we also
compute the topological nilpotence degree of the Chow ring.

Theorems 12.4 and 12.7 bound these invariants in terms of the smallest
faithful complex representation of G. The experimental evidence in this section
suggests the possibility of major improvements to the known upper bounds for
do(CH() and do(H), at least for p odd. Proving such bounds would bring the
cohomology ring and Chow ring of a finite group under much better control.

Another observation is that the Chow ring of a finite group G tends to be
simpler than the cohomology ring. For example, a cyclic group G = Z/p"
with 7 > 2 has dy(C Hf;) = 0; equivalent statements are that the mod p Chow
ring of G is reduced (that is, has no nilpotent elements except zero), or that
it is detected on elementary abelian subgroups. The F,-cohomology of G is a
little more complicated, in the sense that dy(H) = 1. More generally, Guillot
observed that the mod / Chow ring of a finite group G of Lie type is often
reduced, so that do(CH%) = 0 [61]. By the examples in this section, we cannot
expect to have the Chow ring to have dy = 0 in much generality, but do(C H(;)
is often smaller than current bounds would predict.

As in Section 13.1, when we discuss the Chow ring of a p-group G of
exponent e in this section, we consider G as an algebraic group over any field
k of characteristic not p that contains the eth roots of unity.

Kuhn was able to improve the bound in Theorem 12.6 by 1 in some cases, as
follows. Let G be a finite group, and let C be the maximal central elementary
abelian subgroup of G. (In this book, we normally consider this subgroup C
only when G is a p-group.) Let CEss(H(;) be the central essential ideal in the
cohomology of G, the ideal in H; of elements that restrict to zero on Cg(V) for
all elementary abelian subgroups V that strictly contain C. Kuhn showed that
the central essential ideal is nonzero if and only if the depth of H is equal to
the rank of C (that is, the Duflot lower bound is an equality) [86, theorem 2.30].
This was proved earlier by Green when G is a p-group [49]. Let e,im(G) be the
supremum of the degrees in which the H-primitive subspace PcCEss(H() is
not zero. We write epim(G) = —oo if the central essential ideal is zero.

Theorem 13.17 /86, proposition 2.8, corollary 2.14, corollary 2.20, theorem
2.22] Let G be a finite group. Then

do(Hg) = max{epim(Cg(V)) : V C G elementary abelian p-subgroup}.

Here eyim(H) < e(H) for all finite groups H, with e,.j,(H) < e(H) when H
is not p-central. Finally, e(H) < e(G) for every subgroup H of a p-group G.
For any p-central finite group G, do(H() = epim(G) = e(G).

It follows that do(H) < e(G) for any p-group G, and sometimes Theorem
13.17 gives a strict inequality. For p = 2, the theorem is optimal in some cases.
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For example, let G be group #8 of order 32 in the Small Groups library,
G=(x,ylx lyx =x2y L x7lylx = y 72, x* = yh).

Then G has rank 2, the center has rank 1, and G has type [8] in the sense of Defi-
nition 12.5, for example by the computations of Green and King [52]. The group
G has a unique elementary abelian subgroup V' of rank 2, which is normal,
with centralizer isomorphic to Qg x Z/2. Since that centralizer is 2-central,
epim(Cg(V)) = e(Cs(V)) = 3. Since G is not 2-central, Theorem 13.17 gives
that epim(G) < e(G) = 7. From [85, table 3] (where G is called group num-
ber 48), we see that do(H{) = max(epim(G), eprim(C(V))) = max(6, 3) = 6,
showing the optimality of Theorem 13.17. The following calculations suggest
that things may be better at odd primes p.

Let p be an odd prime number, and let G be a split metacyclic p-group. That
is, G is a semidirect product Z/p" x Z/p™ for some positive integers m and
n. We compute do(H¢;) and give a partial result on do(C H,).

We assume that G is not abelian. Then G has a presentation

n mn !
G = (s, t|s?” =" =1,sts7 =117

where m > [ > max(m — n, 1). Diethelm computed the F,-cohomology ring
of G, as follows [33, theorem 1].

Theorem 13.18 Let G be a nonabelian split metacyclic p-group with p odd.
If1 > m — n in the notation above, then

Hj; =F,(a,b,x,y),

where |a| = |b| =1 and |x| = |y| = 2. Here b and y are pulled back from
nonzero classes on the cyclic group G/(t), while a and x have nonzero restric-
tions to the cyclic group (t).

Ifl =m — n, then

H; =Fy(ar,...,ap1,b,y,v,w)/(a;a; = a;y = a;v = 0),

where |a;| =2i — 1, |b] =1, |y| =2, |v| =2p — 1, and |w| = 2p. Here b and
y are pulled back from nonzero classes on the cyclic group G/(t), while the
elements a;, v, w all have nonzero restriction to the cyclic group (t).

We first observe that the topological nilpotence degree do(C H(;) is positive
for every nonabelian split metacyclic p-group G. If dy(C Hf;) were zero, then
the ring C H; would be reduced. Consider the 1-dimensional representation L
of G over k givenby s — 1 and ¢ — ¢,. Then z := ¢ L is nonzero in CH) =
Hom(G, C*)/p (Lemma 2.26). But z is nilpotent by Yagita’s theorem (Theorem
8.10), because it restricts to zero on the unique maximal elementary abelian p-
subgroup of G, (s, 1P""y = (Z/p)*. Since CH} = H*(BG,Z)/p always
injects into HZ, the image of z in H( is a nonzero element that restricts to
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zero on all elementary abelian subgroups V, and so we also have dy(H) > 0.
More precisely, since z comes from C H,, its image in the group Hy, ® H/_
is also zero, and so do(H) = 2.

Theorem 13.19 Let p be an odd prime number. Let G be a nonabelian split
metacyclic p-group. Then dy(H,) = 2.

Proof Firstconsider G of the first type in Theorem 13.18, where/ > m — n.In
this case, G is p-central, with C := Z(G)[p] equal to (s”" ', t"" ") = (Z/p)*.
Since G is a p-central p-group, Kuhn showed that dy(H¢;) is equal to e(G),
the largest degree of a generator for Hf as a module over H (Theorem 12.6).
By Quillen’s theorem (Theorem 8.4) together with the computation of H
in Theorem 13.18, we know that im(H}, — H/} /rad(H})) = H},/rad(H{,) =
F,[x, yl, where |x| = |y| = 2. By inspection, the generators a, b of HL. =
Hom(G, Z/p) restrict to zero on C. So the image of Hf — H{ is exactly the
polynomial ring F,[x, y]. It follows that do(H[) = e(G) = 2.

Next, again for an odd prime p, let G be a split metacyclic p-group that is
not p-central. This means that / = m — n, in the notation above. It follows that
the cyclic normal subgroup Z/p™ C G has m > 2. An example is the modular
p-group Z/p x Z/p™; for m = 2, this is the nonabelian group of order p* and
exponent p?.

For [ =m — n, the group C = Z(G)[p] is (t"""') = Z/p. Here e(G) =
2p — 1, since the computation of H¢; in Theorem 13.18 implies that im(H —
H}) = F,[w] where |w| = 2p. Kuhn’s upper bound (Theorem 13.17) implies
that do(Hj) < 2p — 2, as we check below. In fact, the cohomology of G is
much simpler than that; we will show that dy(Hg) = 2. Perhaps Kuhn’s upper
bound can be improved for non- p-central p-groups in general.

The group G has a unique maximal elementary abelian subgroup, A =
(s, 17"y = (Z/p)*. The centralizer Cg(A) is the subgroup (s, t?) of
G, which is a p-central split metacyclic group (possibly abelian) of the
form Z/p" x Z/p"~'. Our earlier calculation gives that epim(Cg(A)) <
do(Cg(A)) < 2. Therefore, by Theorem 13.17, do(H(;) < max(2, epim(G)) <
e(G) — 1 =2p — 2. That is,

% * <2p-2 * <2p-2
H; — He ®r, Hg X Hy ®r, He ()
is injective.
It remains to analyze the cohomology of G in degrees at most 2p — 2.
Namely, we want to show that the homomorphism

HG — HE ®r, Hg' x Hi ®x, He )

is injective in degrees at most 2p — 2.
Although other approaches are possible, we do this by constructing genera-
tors of H/;, explicitly. By Theorem 13.18, a basis for H¢; as an F ,-vector space
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in degrees at most 2p — 2 is given by:

0 1 2 3 4 5 ... 2p-3 2p—2
1 ai,b aib,y ay,yb ab,y* a3, y*b -+ a,_1,y"7*b a,_1b, yP!

Theorem 13.18 also gives that

He ooy =Fpla, b, x, y),

where |a|=1b|=1, |x|=1|y|=2, b and y are pulled back from
Cs(A)/(tP) = (s) = Z/p", and @ and x have nonzero restriction to (tP) =
Z/p™~'. We can assume that b and y are pulled back from the classes with the
same names in H(.

Define f; = trg_, (ax'™"),for 1 <i < p.1claim that f; and y'~'b form a
basis for Hé"’l, for 1 <i < p.By Theorem 13.18, this holds if f; has nonzero
restriction to (t) = Z/p™. By the double coset formula (Lemma 2.15),

filiy = trfon (ax™™).

Here o x'~!

is nonzero in H, = Hy, ... = Fp(a, x). The element y is the
restriction of a generator x of H(Zt> = H% Jpm while the transfer of o from
HZ1 St 1O H, /pm is not zero. It follows that the transfer of « x'~! from Z/p™~!
to Z/p™ is not zero. Thus f; has nonzero restriction to (¢), and hence is a
generator of H/; as claimed.

Therefore, a basis for H in degrees at most 2p — 1 is given by f; and yi=1b
in degree 2i — 1, and f;b and y' in degree 2i. By the calculation of HE o ay y
and y'b have nonzero restriction to Cs(A). Since dO(HgG(A)) <2,y" and y'b
have nonzero images in H} ® HCSGZ( 4)- On the other hand, y and b restrict to
zero on C, and so the images of y and b in H ®y, Hg; are of the form 1 ® y
(using that y comes from CHé) and 1 ® b. So yi fori > 2 and yib fori > 1
map to zero in Hi @ HS’.

To finish the proof that dy(Hf) < 2, it suffices to show that the images of
fiand f;bin H} ® Hsz are linearly independent of the images of y'~'b and
yi,forl <i < p. This is clear for i = 1 (by the basis for H}). It remains to
show that f; and f;b have nonzero image in H} ® HG52 for2 <i < p. Thisis
easy from the definition of f; as a transfer. Assume first that m > 3; then the
element o € HéG(A), which is nonzero on (¢7), restricts to zero on C = (t”m_I ).
So

fi lcxe = trgigG(A)(axi_] |C><C6(A))
=l @) ®1+1® 0™

CxG i—1
= trCXCG(A)(X’ ® )
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in H: ® H3". So
filexe = X' ® fi.
This is nonzero in Hf: ® HG52 (and evenin H} ® HGSL). Likewise,
fiblex = ('™ ® fi)(1 ® b)
=x"'® fib,

which is again nonzero in H ® HG52. For m = 2 (the case of the modular
p-group G = Z/p x Z/ p?), a slightly more complicated calculation leads to
the same conclusion. This completes the proof that dy(Hg) < 2. We showed
earlier that dy(H;) > 2 for every nonabelian split metacyclic p-group, and so
equality holds. O

In some cases, one can bound do(C H;) in terms of do(H ;) using the follow-
ing lemma. Note that, since k contains the pth roots of unity, the Chow ring
C H(, maps to etale cohomology HZ(BGy, , F,), which can be identified with
the usual cohomology H of G.

Lemma 13.20 Let p be a prime number. Let G be a finite group with CHf, —
H{ injective. Then do(CH},) < do(HE)/2.

Proof By Henn-Lannes-Schwartz’s interpretation of a := do(H{;) (Theorem
12.2), we know that

Hé - 1_[ H; ®Fp Hg(l;l(v)
vVcGe
is injective, where the product runs over all elementary abelian subgroups V of
G. Since CH}, — H{; is injective, the Chow ring also injects into the product
ring above. This homomorphism factors through [], ., CHy ®F, C HCSS(/‘%),
and so

CH — [] CHy ®x, CHEL,
vVcG

is injective. That means that dy(C Hf;) < a/2. O

One can use Lemma 13.20 and Theorem 13.19 to show that do(CHf) =1
when p is an odd prime number and G = Z/p" x Z/ p™ is a split metacyclic p-
group withim (Z/p" — (Z/p™)*) of order p. Indeed, one can show that C H
injects into H} in that case; we do not present the details, because we have
already shown more directly that do(C HZ) = 1 (Lemma 13.12). Theorem 12.7
gives only that do(CH(;) < p — 1 in this case, which suggests that Theorem
12.7 may be improvable more generally.

It seems reasonable to conjecture that the cycle map CH*BG —
H®(BG, Z) is an isomorphism for all p-groups G of rank at most 2. Then
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Theorem 13.19 would imply that do(CHf) =1 for every nonabelian split
metacyclic p-group G. For now, that remains an open question.

We now compute do( H;) for the nonabelian group of order p? and exponent
p, the extraspecial group pfz. For p = 3, the result is due to Milgram and

Tezuka [103].

Theorem 13.21 Let p be an odd prime number, and let G be the nonabelian
group of order p> and exponent p,

G =(A,B|A? = B? =[A,B]? =[A,[A, Bll =[B,[A, B]l = 1).

If p =3, thendy(H}) = 0. (Equivalently, H, is detected on elementary abelian
subgroups.) If p > 5, then dy(H{,) = 4.

Proof The center of G is the subgroup Z/ p generated by the element [A, B],
and so C = C(G) is isomorphic to Z/ p. For V an elementary abelian subgroup
of G that strictly contains C, V is isomorphic to (Z/p)? and the centralizer of V
in G is equal to V (otherwise, G would be abelian). In particular, e(Cg(V)) = 0
for such subgroups V. Since G is not p-central, Theorem 13.17 gives that
do(Hf,) = eprim(G) < e(G). Here e(G) < 2p — 1 because there is an element ¢
of Hép , the Euler class of a p-dimensional irreducible complex representation
of G, whose restriction to C is nonzero. So do(H}) < 2p — 2. That is, the
homomorphism

Hi — HE®p, H3 "7 x [ Hy
VcG
is injective.

We use Lewis’s calculation of H*(BG, Z), as follows [97, theorem 6.26].
In fact, we use Leary’s choice of generators, which seems more natural [90,
theorem 3]. Although this is complicated, the mod p cohomology ring H
is even more complicated and took 25 years longer to compute [91]. It is a
good feature of the proof that we can prove a strong property of the mod p
cohomology ring by working with integral cohomology.

Theorem 13.22 Let p be an odd prime number. Let G be the nonabelian
group of order p> and exponent p, the extraspecial group pfz. Then
H*(BG,Z)

= Z(ot, B, s v, X2s -5 Xp—15 §) /(P = pB = pu = pv = pxi = p’¢ =0,

ap = pv,a’u=prv,ax;=pxi=puxi =vxi =0for2<i,j<p-—1,
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X,-Xj:Ofor2§iSp—zand2§j§l’_l’X§71

— 22 +ﬂ2p—2 _ap—lﬂp—l’

axp-1=—a Bxp1=—=B""" puxp1 = —pB" " vxpor = —val
wf? = Bal. v = Axs forsome i € Fyifp>5 )
3¢ forsome A € {£1}ifp =3

Here |a| = |B] =2, |u| = [v| =3, i = 2i, and || = 2p.

Explicitly, « is the first Chern class of the complex representation A —
{p, B+ 1, and B is the first Chern class of A — 1, B — ¢,. Also, following
Lewis’s notation, let C be the central element B~' A~ BA and define elemen-
tary abelian subgroups H, = (AB',C) for 0 <t <p—1and H = (B, C).
Then S and u both restrict to zero on Hy and have nonzero restriction to H, for
t #0 and to H [97, lemma 6.16]. Likewise, o and v both restrict to zero on
H and have nonzero restriction to H, for all ¢. Finally, let y be the first Chern
class of the 1-dimensional representation of H givenby B +— 1, C + ¢,. Then
Leary defines x; = tr§y’ for2 <i < p—1land x,_1 = % y?~ 1 — Pl

We continue the proof of Theorem 13.21. Theorem 13.22 implies that
H*(BG, Z) is killed by p in degrees from 1 to 2p — 1. We also read off that a
basis for H'(BG, Z)/p over F,, in degrees < 2p — 1 is given by the monomials
a' B/ and y; in even degrees, and the monomials &/ 8/ v and B i in odd degrees.
I claim that H*(BG, Z) injects into [[,, H; in odd degrees from 1 to 2p — 1,
where the product runs over the elementary abelian subgroups V of rank 2
(namely, the groups H; and H). We first note that the kernel of restriction from
F,[a, 8] to the Chow ring of H; is the ideal (8 — ta), and the kernel of restric-
tion to H is (). So any element of F, [, B] that restricts to zero on all these
subgroups must be a multiple of o l—[f:o1 (B —ta) = af? — a?B. In particu-
lar, the monomials o' 8/ with i + j < p are linearly independent in [],, CH;
(and hence in [],, H;;). Likewise, the monomials o' 8/ withi + j < p — 1 are
linearly independent in ]_[ﬁ:l CHj, .

Next, it is convenient to observe that any nonzero element of CH;, is a
non-zero-divisor in Hy;, for an elementary abelian p-group V. Since u has
nonzero restriction to H, it follows that 8 is nonzero on H for all i > 0,
whereas all the elements o /v restrict to zero on H. Likewise, since v has
nonzero restriction to H, for each 0 <t < p — 1, the monomials o' /v with
i + j < p — 1 are linearly independent in Hf’;ol Hy; . Therefore, the elements
o' B/v and B’ of degrees at most 2p + 1 are linearly independent in [],, H;;.
(We only needed this in degrees at most 2p — 1.)

Thus we have shown that H*(BG, Z) injectsinto [ [, H} in odd degrees from
1to2p — 1. We have also seen that the elements o 8/ in degrees at most 2 p are
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also linearly independent in [ [, H;. In degree 2p — 2, we have the stronger
statement that the elements o/ 87!~/ and x,_; are linearly independent in
Hv Hy;. To show this, suppose that f,_i(c, B) + x,—1 restricts to zero in
[1, H;- We use the relations that B(B”~! + x,—1) = 0 and ala? ! + Kp—1) =
0in H*(BG, Z). Multiplying by 8, we deduce that Sf,_(«, 8) — B? maps to
zeroin [], H;. By the linear independence of o’ 8/ fori + j < pin[], H
follows that f,_ 1 = A7~ But multiplying by o, we find that «8”~! — «” maps
to zero in [ [, Hy;, contradicting the linear independence of those monomials.
This completes the proof that the elements o/ 87!~/ and x,_; are linearly
independent in [],, Hy. For p = 3, that completes the proof: H/ is detected
on elementary abelian p-subgroups.

By contrast, the elements y; for 2 < j < p — 2 restrict to zero on all ele-
mentary abelian subgroups V of rank 2 in G (hence to all proper subgroups
of G). To check this, note that for 2 < j < p — 2 we have x; = tr(y/). For
V # H, the double coset formula (Lemma 2.15) gives that

GG j v H i
resptry (y7)) = tryqyresgqy (v7),

which is zero because all transfers from proper subgroups are zero in the
cohomology of V. For V = H, we have

resfuf(y)= > g))

geG/H

=) (v +ap)

acF,

J .
=3 (o) S
m=0 acF,
Since Zuer a™ is zero for 0 <m < p —2 (Lemma 7.5), this restriction is
Zero.

In particular, it follows that trf,l = trf,y =0 in CH{ and hence in H{,
because every nonzero element of CH! = Hom(G, G,,)/p = (Z/p)* has
nonzero restriction to some elementary abelian subgroup of G.

Nonetheless, we will show that each element x; with 2 <i < p — 2 has
nonzero image in H} ® HG54. Since C C H C G, we have a pullback diagram

CxH — H

l l

CxG — G.

Because pushforward commutes with pullback (cf. Lemma 2.16), we have
% )lexe = tS G lexn) for all y € Hy. We will apply this to y =/,
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noting that y; = trg(yi). The pullback Hj; — HF ®r, Hj; sends y to y ®
1+1®y.Soy’ pulls back to 3~ (;.)yi_j ® y/. For f in H} and g in H},
we have

uSXG(f ® g) = f @uG(g),

by the projection formula (cf. Lemma 2.15(i)). So

i o .
Xilexe = Z <J,)y’ I @S ().
J
Here tr%1 = 0 and tr§;y = 0, but tr%(y?) = x» # 0 in HZ by Theorem 13.22.
Since (5) is not zero in F, for 2 <i < p —2, we have shown that x; has
nonzero image in H! ® HG54 for2 <i<p-2.
Thus the homomorphism

H*(BG,Z)/p — HE ®F, HF' x ]_[ H;

VcG
is injective in degrees at most 2p — 1. Since H*(BG, Z) is killed by p in
degrees at most 2p — 1, the Bockstein § has ker(8) = im(8) on H(; in degrees
between 1 and 2p — 2. Let x be any element of H of degree between 1 and
2p — 2 that maps to zero under the homomorphism above. Then the integral
class Sx must be zero by the injectivity above. So we can write x = By for
some y in H;. Thus x itself is integral, and so the injectivity above implies that
x = 0. Thus we have shown that

H; — HE®p, H5' x [ Hy
vVce
is injective in degrees at most 2p — 2. Combining this with the fact that
do(H}) < 2p — 2, we conclude that dy(H() < 4.

Finally, let us show that dy(H¢) > 4 for p > 5. Since 2 < p — 2, the element
X2 18 nonzero in Hé by Theorem 13.22, but it restricts to zero in H;; for all
elementary abelian subgroups V. It remains to show that x, pulls back to zero
inHf ® HG53 (thatis, x, is HZ-primitive). This follows from the formula above
for the pullback of x» to HE ® Hf, using that r% 1 = a$y = 0. O

We also record the topological nilpotence degree of the Chow ring in this
case. The result is much better than the bound do(CH) < p — 1 given by
Theorem 12.7.

Theorem 13.23 Let p be an odd prime number. Let G be the nonabelian
group of order p3 and exponent p, the extraspecial group plfz. Then do(CH)
is zero for p = 3, and is 2 for p > 5.

Proof The calculation of C H}; in Corollary 13.15 shows that C H(; injects into
H*(BG, Z)/ p and hence into H¢;. By Lemma 13.20, it follows that do(C H(;) <
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do(H)/2. By Theorem 13.21, it follows that do(C Hf) is zero for p = 3 and
is at most 2 for p > 5. For p > 5, the proof of Theorem 13.21 shows that
the element x, comes from C H 2BG and is nonzero and H}-primitive in Hf;.
So x» is nonzero and C H-primitive in C H;. Therefore, do(CH/) is equal
to 2. O

So far, we have only seen p-groups with do(H;) comparable in size to the
p-rank of G. In the case p = 2, Kuhn gave examples of 2-central 2-groups with
do(H¢,) fairly large: using the numbering of the Small Groups library, group
#32 of order 32 has p-rank 2 and type [4, 4], and hence dy = 6, and group
#245 of order 64, the 2-Sylow subgroup of the simple group Us(4), has p-rank
2 and type [8, 8], and hence dy = 14 [85, theorem 2.9 and appendix A]. We
now exhibit a p-central group for p odd with dj fairly large. The group we use
belongs to a family of p-central groups considered by Browder-Pakianathan
and Weigel [23, 151]. The group in Theorem 13.24 is not unusual; many similar
groups also have dj large, as the proof will show.

Theorem 13.24 Let p be an odd prime number. Let G be the group

G = (ey, ez, €3, f1, fa, f3:eip = f,-,fip =1, f; central,
le1, e2] = fi, [e2, &3] = fa, [e3, e1] = f3).
Then G is a p-central group of p-rank 3 and order p%, and do(H) =2p + 1.
Proof The group G is a central extension
1= (Z/pP — G~ (Z/p) — 1,

with the normal subgroup C := (Z/p)’ generated by the elements f;. The fact
that G has order equal to p® (not smaller) is a special case of [23, proposition
2.5]. From the relations ¢/ = f;, we see that every element of order p in G is
in C, and so G is p-central.

By inspection of the relations, the commutator subgroup [G, G] is equal
to C. So the restriction map H — H/ is zero. It follows that the image
of H} — H{ is a polynomial ring of the form Fp[y]""1 P, yé’us] for some
natural numbers ay, az, as, as discussed before Definition 12.5. Here y, y2, y3
form a basis for B(H!) C HZ. Since G is p-central, Theorem 12.6 says that
do(HE) = Y0, 2p% —1).Sowehave do(HZ) > 2p — 1)+ 14+1=2p+1
if we can show that H2 does not map onto B(H/) C HZ.

The fact that H3 — HZ does not map onto S(H/) is a special case of
Browder-Pakianathan [23, theorem 2.10], using that the alternating bilinear
product [eq, e2] = ey, [e2, €3] = €3, [e3,€1] = e3 Oon (Fp)3 is not a Lie algebra;
that is, the alternating 3-form

J(x,y,2) =[x, y1, 21 + [y, zl, x] + [z, x]1, ¥]1]
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on (F p)3 is not zero. (This would be true for most choices of relations, not just
the ones we chose.)

To compute dy(H) exactly (and also prove by hand that H2 — HZ does
not map onto B(H/)), we use the Hochschild-Serre spectral sequence for the
group extension 1 - C — G — Q — 1, where C = Q = (Z/p)’.

HZ
1 1 [ 1 2
H: HC®HQ < \HC ®HQ
| 2 T
F, HQ HQ HQ

Write H: = F ), (x;, y;)and Hjy = F ), (u;, v;), where 1 <i <3, |x;| = |u;| = 1,
yi = Bx;, and v; = Bu,. The differential d»: H. — Hé has the form d(x;) =
v + uur, dr(x3) = vy + uorus, and dr(x3) = v3 + usuy, by the relations defin-
ing G. The differential d, is zero on y; = Bx;, and d3(Bx;) = Bda(x;) [12,
vol. 2, theorem 4.8.1]. So ds3(y1) = viuy — u vy, ds(yz) = vous — upv3, and
d;(y3) = v3u; — usv. These expressions are elements of E;k '0, the quotient of
HE by the image of d,. In this quotient ring, we have v = —ujus, vy = —usus,
and vy = —usu;. It follows that dsz(y,) = ds3(y2) = ds(y3) = ujusus. (This
gives another proof that H3 — HZ is not surjective.)

Since d3 vanishes on y, — y; and y; — yj, those elements are permanent
cycles in the spectral sequence. That is, those elements of B(H/) are in the
image of HZ. We will show that y! is in the image of H(;; that will imply that
do(Hf) =e(G)<QRp—-—1D+2—-1)+2—-1)=2p+1, as we want.

Let H C G be the subgroup of index p such that ker(Hé — H},)is spanned
by u3. A similar calculation to the one above shows that for the central exten-
sionl > C — H— H/C — 1, ds(y;) is zero for all 1 <i < 3. That is, the
restriction Hy — HZ maps onto SH/. In particular, there is an element z in
H? that restricts to y; on C. Then the norm N§(z) is an element of Hé” that
restricts to y; on C by Lemma 8.1(v), using that C is central in G. The proof
is complete. O
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Groups of Order p*

In this chapter, we determine the Chow ring for the 15 groups of order 81 and
for 13 of the 15 groups of order p* with p > 5. Although we have tried to
give arguments that apply directly to Chow rings, in the hardest cases we use
calculations of group cohomology by Leary and Yagita. We prove some general
results about when the Chow ring injects into cohomology.

As in Chapter 13, we consider each finite p-group G of exponent e as an
algebraic group over any field k of characteristic not p that contains the eth
roots of unity. We find that the groups in this chapter have the same mod p
Chow ring over all such fields.

14.1 The wreath product Z/3:7Z/3

Lemma 14.1 Let G be the wreath product Z/3 : /3, also known as the Sylow
3-subgroup of the symmetric group Sy or as #7 of the groups of order 81 in the
Small Groups library [52]. Then

CH} = F3[y1, v, w, 8, ul/(8% = y1y3 + y; — yiw, yiu = yu = Su = 0),

where |y;| =i, |lw| = 3, |8| = 3, and |u| = 1. The ring C H; has dimension 3
and depth 2, whereas the Duflot bound gives only that the depth is at least 1.
The topological nilpotence degree do(CH() is zero; that is, CH[; is detected
on elementary abelian subgroups., Finally, CH{, — H{, is injective.

Proof The paper [138, sections 8 and 9] gives an additive description of the
mod p Chow ring of a wreath product G = Z/p : H, assuming that k contains
the pth roots of unity and that H is one of the groups in Lemma 2.21. Namely,
let elements e; for i in a set I be a basis for C Hy; as an F,-vector space. Let
u € CH/, be the first Chern class of the representation Z/p — k* sending the
generator to a primitive pth root of unity. Then a basis for C H; as an F ,-vector

174
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space is given by the transfers trg,) (e, ® -+ ®e;,)for(iy, ..., i) running over
a set of representatives for the free action of Z/p on I? — A, together with
the norms u/N§,(¢; ® 1 ® ---® 1) fori € I and j > 0.

Let p =3 and H =Z/3. Write CH};, = F3[v] with |v] = 1. We deduce
that an Fs-basis for CH¢ is given by the elements tr¥,(v* ® v* ® v°) with
0 <a <b and a < c, together with the elements ubNg3(v“ ®1®1) with
a>0andb > 0.Letw = Ng3(v ®1®1)in CHS. By multiplicativity of the
norm, we can write the second set of elements as w?u? with a, b > 0.

By Lemma 2.21 and its proof,

CHE — CH}p x CHy 3y

is injective, and C H; maps onto the invariants (CH*H?*)%/3. This ring of
invariants is F3[x, x2, x31%/3. By thinking of Z/3 as the alternating group
Aj, we see that this ring of invariants is Cohen-Macaulay, as discussed in
Section 5.2:

F3[x1, X2, X312 = Fsley, ez, e31{1, A},

where e; is the ith elementary symmetric polynomial and A =[], _.(x i —x;j)
is the square root of the discriminant. By the formula for the d1scr1mmant ofa
cubic polynomial [88, exercise VI.12], we have

F3[xq, xa, x3]%3

= Fsley, e, e3, A /(A2 =2 62 4(32 46?63 — 276% + 18e1e2€3)

2 22 3 3
= Filey, ez, €3, A]/(A” = eje; — e; — eje3)

The restriction of the norm w to CH}; is xixax3 = e3. We can choose
other elements of C H; that restrict to ey, >, and A. Namely, let y; = trfﬁ(l ®
l®v)and y, = trfp(l ®v®v);then yi|g3 = x; +x2 + x3 = ey and yp| g3 =
X1X2 + X2X3 + X3Xx; = e3. Also, A = (xlzxz + x§x3 + x32x1) — (xlx% + x2x32 +
x3x7). So the element § :=t%,(1® v Qv)— %, (1®v®v?) of CH
restricts to A.

Given any element of C H}., we can subtract off a polynomial in y;, y,, e, §
of degree at most 1 in § and get an element that restricts to zero on H3. From
the F3-basis for C Hf; above, we read off that any element of C H(; that restricts
to zero on the subgroup H? is an F3-linear combination of the elements w®u”
with a > 0 and b > 0. We therefore have a surjection

Fily2, y2, w, 8, u]l - CHg.

Since u restricts to zero in the Chow ring of H?, the projection formula gives
that u tr$,(v* ® v ® v°) = O for all a, b, c. So yju = y,u = su = 0in CH.
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Next, by our description of the invariant ring (C H ;3)Z/ 3, we know that
8% = ¥y + 3 + yiw
in C H}; restricts to zero on the subgroup H>. But the pullback diagram

H—— H®

! !

Z/3x H — Z/3x H?

implies that

Z/3xH
G ()z/3xn = trH/ *

=0

(slw)

for every s € CH;;. So the elements yi, y», § restrict to zero on the diagonal
subgroup Z/3 x H. So the element 8% — y7y3 + y3 + yjw of C HS restricts to
zero on both Z/3 x H and H?3, and hence is zero.

Thus we have a surjection

Fs[y1, y2, w, 8, ul /(8% — y{y3 + 3 + yjw = 0, yu = you = u = 0) - C H,.

By our F3-basis for C H}, this map is an isomorphism.

We compute that this ring has depth 2, although the center Z /3 of G only has
rank 1. Finally, it is a general fact about wreath products that C H; is detected
on elementary abelian subgroups (Lemma 2.21). It follows that CH}, — H(,
is injective. O

14.2 Geometric and topological filtrations

For several calculations of Chow rings of groups of order p*, we will need the
basic properties of the geometric and topological filtrations of the representation
ring. Chapter 15 discusses these filtrations in more detail, and gives examples
of p-groups for every prime number p such that the two filtrations differ.

For an affine group scheme G over a field k, a representation of G determines
a vector bundle on the classifying space BG. The geometric filtration of the
representation ring R(G) comes from the filtration of the algebraic K-group
KoBG by codimension of support. When k& = C, the topological filtration
comes from the filtration of the topological K-group K°BG by codimension
of support. Concretely, on a finite cell complex X approximating BG, the
codimension of support of an element « in K°X means the largest codimension
of a closed subcomplex S such that u restricts to zero in K°(X — S).
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The topological filtration of the representation ring is also the filtration given
by the Atiyah-Hirzebruch spectral sequence [6, 7, 9]:

Theorem 14.2 For any topological space X, there is a spectral sequence
from ordinary cohomology to topological K -theory,

EY = H/(X, K/ (point)) = K"t/ X.

The sequence is strongly convergent for X a finite CW complex or the classifying
space of a compact Lie group. It is periodic of order 2 in the vertical direction
and concentrated in even rows, since K/ (point) is isomorphic to Z for j even
and to 0 for j odd. For X = BG with G a compact Lie group, K°BG is
isomorphic to the completion R(G)" of the complex representation ring with
respect to powers of the augmentation ideal, while K' BG = 0.

HX,Z) HY(X,7Z) H*(X,Z) H3(X,7Z) e

0 0\0

H(X,Z) HY(X,Z) H*(X,Z) H3(X,Z)

We have ng R(G) C F¥ R(G), and hence there is a natural map

) eom top

8loeom R(G) — grfépR (G). The Atiyah-Hirzebruch spectral sequence shows
that grﬁij(G )is a subquotient of H* (BG, Z) and that the topological filtration
is concentrated in even degrees (that is, Fé’;l R(G) = Ff;hR (G)). Similarly, we

can describe the geometric filtration of R(G) as the filtration of KoBG associ-
ated to the spectral sequence from motivic cohomology to algebraic K -theory,
E}" = HP(BG,Z(—q/2)) = K_,_,BG [95, theorem 2.9], which we write
out as Theorem 15.12. (The groups contributing to KgBG = R(G)" are the
Chow groups CH' BG = H?(BG, Z(i)).) The relation between Chow groups
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and the geometric filtration is simpler than what happens in topology: the nat-
ural map CH' BG — gr;eomR(G) is surjective for all i and is an isomorphism
p-locally for i < p (Theorem 2.25).

For completeness, we also define the y-filtration of the representation ring
R(G) [44, chapter III]. For a representation E of G, write A/(E) for the
Jjth exterior power of E, and let A,(E) = ijo M (E)t/ in the power series
ring R(G)[[#]]. This definition extends to an operation A, : R(G) — R(G)[[]]
by M(E — F) = A(E)A(F)~!. Grothendieck defined operations y/ on R(G)
by Aji-nE = ijo y/(E). The y-filtration is defined by: F;,)R(G) = R(G),
Fy1 R(G) is the kernel of the rank homomorphism R(G) — Z, and FJ'R(G) for
m > 1 is the subgroup generated by elements y/'(x;) - - - y/*(x,) with

Xi..... % € F)R(G)and ) ji = m.

One basic result on the y-filtration is that F) R(G) is contained in Fg,, R(G).

geom

14.3 Groups of order p* for p > 5

Theorem 14.3 Let G be a finite group and p a prime number at least 5. Sup-
pose that G has p-rank at most 2 and that G (or just its Sylow p-subgroup) has
a faithful complex representation of the form W @& X where W has dimension
at most p and X is a sum of 1-dimensional representations. For e the exponent
of G, consider G as an algebraic group over any subfield k of C that contains
the eth roots of unity. Then the mod p Chow ring C H};, maps isomorphically to
H®(BG,Z)/p.

Using Theorem 14.3, we can compute the Chow ring for 13 of the 15 groups
of order p*, for p > 5. Indeed, there are five abelian groups of order p* and
two products of a nonabelian group of order p* with Z/p. In those cases, we
know the Chow rings by Section 13.2 and the Chow Kiinneth formula (Lemma
2.12).

Of the remaining eight groups, five have rank 2 and three have rank 3, for
p > 5. The five groups of rank 2 (numbers 4, 6, 9, 10, 14 in the Small Groups
library [52]) are handled by Theorem 14.3. In more detail, groups #4 and #6
are the split metacyclic groups Z/p? x Z/p* and Z/p x Z/ p*, whose Chow
rings are given in Theorem 13.12. Groups #9 and #10 are discussed below.
Group #14 is the central product pfz * C 2, whose Chow ring is computed in
Lemma 13.16. Of the three groups of rank 3 (numbers 3, 7, 8), we computed
the Chow ring of group #3 in Lemma 13.13, while Section 14.5 suggests an
approach to the open cases, groups #7 and #8.

The groups of order p* played a significant role in the history of group
cohomology. C. B. Thomas conjectured that for a p-group G of rank at most 2,
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H®(BG, Z) should be generated by Chern classes of complex representations
[135, chapter 8]. (The assumption on the rank is natural, since the statement
fails for abelian groups of rank 3.) The conjecture was verified for various
classes of p-groups of rank 2, such as metacyclic p-groups [71, 134]. But
Leary-Yagita showed that H®(BG, Z) is not generated by Chern classes for
certain p-groups G(n, €) of rank 2 [93]:

Gn,e)=(x,y,z:xP =y’ ="

=.zd=Lxz =y xl=z7"),

where p > 5,n > 4, the group has order p”, and for fixed p and n there are two
isomorphism classes of such groups, depending on whether € is 1 or a quadratic
non-residue modulo p. These include groups #9 and #10 of order p* for
p > 5. Nonetheless, Yagita proved a strong substitute for Thomas’s conjecture:
for p > 5, every p-group of rank at most 2 has H*(BG, Z) generated by
transferred Euler classes [152]. In particular, Yagita computed the integral
cohomology of groups #9 and #10, which gives the Chow rings by Theorem
14.3.

Proof of Theorem 14.3 1t suffices to prove the theorem for G a p-group, by
the properties of transfer for Chow rings and cohomology. By Yagita, since G
has rank at most 2 and p > 5, H®(BG, Z) is generated by transferred Euler
classes [152]. The assumption on k implies that the representation theory of G
over k is the same as over C. It follows that the homomorphism CH*BG —
H®(BG, Z) is surjective.

We use the geometric and topological filtrations of the representation ring,
as discussed in Section 14.2. (We consider the geometric filtration of the rep-
resentation ring of G over k, and the topological filtration of the representation
ring over C; these are filtrations of the same ring R(G), by our assumption
on k.) For a k-representation V of G of dimension n and any i > 0, the ele-
ment y/(V — n) of the representation ring lies in FéenmR(G), and its class in
grg,comR(G) is the image of the Chern class ¢;V in CH' BG [44, chapter III].
So the image of y!(V — n) in grlz(pr(G) is represented by the Chern class ¢; V
in H*(BG, Z), which is a permanent cycle in the Atiyah-Hirzebruch spectral
sequence.

For the group G of rank 2, since CH'BG — H?*(BG, Z) is surjective for
all i, the map grigeomR(G) — grtzng(G) is surjective for all natural numbers
i. Moreover, the two filtrations both define the same topology on R(G), that
associated to the powers of the augmentation ideal [9, corollary 2.3]. Therefore,
this surjectivity implies that the two filtrations of R(G) are actually the same.
In particular, the map gri_R(G) — grf(pr(G) is an isomorphism for all i.

geom

We have CH'BG = gr' . R(G) for i < p (Theorem 2.25), and so we have

geom
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isomorphisms

CH'BG = grl,, R(G) = gria R(G)

geom

fori < p. Since grﬁfPR(G) is a subquotient of H*(BG, Z), it follows that the
map CH'BG — H*(BG, Z) is injective for i < p. Since it is also surjective,
it is an isomorphism for i < p.

In particular, C H, = C H'(BG)/p maps isomorphically to H*(BG,Z)/p
for i < p, and so CH(i; injects into Héi = H*(BG, F,) fori < p. Now we
use the assumption that G has a faithful complex representation of the form
W @ X, where W has dimension at most p and X is a sum of 1-dimensional

representations. By Theorem 12.7, the restriction map

CH,— [] cHy® CHE'S)

VcG
V elem ab

is injective. Our assumptions on G (rank at most 2 and faithful representa-
tion W @ X) pass to the subgroups C(V), and so we know that CHCS(I”(;; —
HCEGZ(”V_)2 is injective, for every elementary abelian subgroup V of G. Like-
wise, C Hy, injects into Hy,. So CH{ injects into Hf. We also know that
CH maps onto H*(BG,Z)/p C H}, and so C Hf; maps isomorphically to

H®(BG,Z)/p. O

14.4 Groups of order 81

Let G be #7, #8, #9, or #10 of the groups of order 81 in the Small Groups
library [52]. Leary computed the integral cohomology of these four groups in
a unified way: they are all normal subgroups of the same 1-dimensional group
Gs

1G>G —S' =1

[92, corollary 9 and theorem 10]. (In more detail, G is a central extension of the
extraspecial 3-group 3?2 by S'.) For groups #8, #9, and #10, Leary showed
that H®(BG, Z) is generated by Chern classes of complex representations.
(That fails for #7, the wreath product Z/3 : Z /3, which has rank 3; but we have
already computed the Chow ring in that case as Lemma 14.1.) In all three cases,
G has a faithful irreducible complex representation of dimension 3. Given these
facts, the proof of Theorem 14.3 shows that the cycle map

CH*BG — H%(BG,Z)

is an isomorphism for groups #8, #9, and #10. We record the mod 3 Chow rings
of these groups, using Leary’s calculation of their integral cohomology.
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This completes the calculation of the Chow ring for the 15 groups of order 81.
First, there are five abelian groups of order 81 and two products of a nonabelian
group of order 27 with Z /3. In those cases, we know the Chow rings by Section
13.2 and the Chow Kiinneth formula (Lemma 2.12). For p = 3, two of the
remaining eight groups have rank 3 and six have rank 2. The groups of rank
3 are the wreath product Z/3:Z/3 (group #7 in the Small Groups library)
and group #3, whose Chow rings are computed in Lemmas 14.1 and 13.13.
The groups of rank 2 are the split metacyclic group Z/9 x Z/9 (group #4), the
modular group Z/3 x Z/27 (group #6), the central product 3?2 * Cy (group
#14), and groups #8, #9, and #10. The Chow rings are computed in Lemmas
13.12, 13.16, and 14.4.

To simplify the statement, we first give the ring R = H (G, 7Z) /3:

R =TFsla, B, 81,82, 83, £1/(@d) +af = 0,87 + 81 = 0,08, =0,
818, =0,0°B+882=0,00 =0,8,7 =0,
8+ 2+ 50182 + 68 — 632 — 6,8 + 818° + B° = 0),

where || = |B] = 2, |6;] = 2i, and || = 6. To correct two typos in the pub-
lished paper [92]: the relation for 87 in Theorem 10 should be 87 = 38, — 8,8
(as the proof shows), and the character table for G(n, ¢) (before Proposition
2) should contain the entry n(2 + 77‘33"73) for e = +1, where 5 is any primi-
tive 3"~2th root of unity. For what follows, we repeat our convention that the
commutator [A, B] means ABA~'B~.

Lemma 14.4 Let G be #8 of the groups of order 81 in the Small Groups
library [52], which Leary calls G(4, 1),

G=(A,B,C:A*=B°=C*=[B,C]=1,[B, Al =C,[C, A] = B).

Then CH( is the quotient of the ring R above (with grading |a| = |B| =1,
|6;| =i, and |¢| = 3) by the ideal generated by §; — B. The ring CH(, has
dimension 2 and depth 1, which agrees with the Duflot bound. The topological
nilpotence degree do(C H(;) is equal to 1. The group G has 2 conjugacy classes
of maximal elementary abelian subgroups, both of rank 2.

Let G be #9 of the groups of order 81 in the Small Groups library [52],
which Leary calls G(4, —1), the Sylow 3-subgroup of the simple group U;(8) =
PSU@3, Fs):

G=(A,B,C:A*=B°=C*=[B,C]1=1,[B,A]l=C,[C, Al = B7%).

Then C H(; is the quotient of the ring R above by the ideal generated by 5, + .
The ring C H(, is Cohen-Macaulay of dimension 2 (so it has depth 2), whereas
the Duflot bound gives only that the depth is at least 1. The ring C H, is reduced,
and is detected on elementary abelian subgroups; that is, do(CHZ) = 0. The
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group G has 4 conjugacy classes of maximal elementary abelian subgroups,
all of rank 2.

Let G be #10 of the groups of order 81 in the Small Groups library [52],
which Leary calls G'(4):

G=(A,B,C:B°=C>=[B,C]=1,[B,A]l=C,[C,A]l = B3 = A%).

Then CH(, is the quotient of the ring R above by the ideal generated by
81 + B +a. The ring CH, has dimension 2 and depth I, which agrees with
the Duflot bound. We have do(C H},) = 2. The group G has a unique conjugacy
class of maximal elementary abelian subgroups, which is of rank 2.

14.5 A 1-dimensional group

Let p be a prime number at least 5. Let G be group #7 of order p* in the Small
Groups library,

G = (hy, ha, h3, hs : h? = 1foralli, hy central,
[h1, haol = hs, [hy, h3] = ha, [ho, k3] = 1).

Then G has rank 3 and (using that p > 5) exponent p. The center of G is
(hs) =Z/p.

Let B=(G x G,,)/(Z/p), where the subgroup Z/ p is generated by
(hs, €, ~1). Since G/Z(G) is the extraspecial group E 3, B is a central extension

1—>Gm—>B—>Ep3—>l.

Any nontrivial central extension of E,; by G,, over C is isomorphic to B as
an algebralc group, which explains why it is useful to consider the Chow ring
of B. In fact, groups #7, #8, #9, and #10 of order p* all occur as kernels of
homomorphisms from B t0 G,,. As aresult, the Chow rings of these four groups
would follow immediately, using Theorem 13.10, if we knew the Chow ring
of B. That would complete the computation of the Chow ring for all groups of
order p*, by the discussion after Theorem 14.3. These groups are different in
other ways; for example, groups #7 and #8 have rank 3 while groups #9 and
#10 have rank 2.

Leary gave partial results on the integral cohomology H*(B B, Z). In par-
ticular, he showed that H®(B B , Z) is generated by transferred Chern classes
(using only transfers from finite-index subgroups) [89, corollary 3.10]. This is
related to Yagita’s construction of generators for the rank-2 subgroups #9 and
#10 of B [152, theorem 5.29]. The general results of this book say a lot about
the Chow ring of BB, but we leave the full computation as an open problem.
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We will just prove a relation between the Chow ring and cohomology for B.
The proof is similar to that of Theorem 14.3, but we have to argue separately
because B is a 1-dimensional group of p-rank 3 rather than a finite group of
p-rank 2.

Lemma 14.5 Let p a prime number at least 5, k a subfield of C that contains
the p? roots of unity, and let B be the above I-dimensional group over k. Then
the mod p Chow ring C Hz maps isomorphically to H* (BB, Z)/ p.

Proof Because G has exponent p, every element of order p is B is contained
in the subgroup G C B. So every elementary abelian p-subgroup of B is
contained in G. Some examples of elementary abelian subgroups of G are
A = (hy, h3, hy) = (Z/p)® and, fori € Z/p, H; = (hlhg, hs) = (Z/p)*. Here
A is normal in G, while the subgroups H; are not normal. Using that, it is
straightforward to check that A and the p subgroups H; are the only maximal
elementary abelian subgroups of G up to conjugation. The centralizer C(A)
is equal to A, and likewise C;(H;) = H; for each i. It follows that A and the
subgroups H; are the only maximal elementary abelian p-subgroups of B up
to conjugation, and we have C3(A) = (A x G,,)/(Z/p) = (Z/p)* x G,, and
C5(H) = (H; x G)/(Z/p) ZZ/p X Gp.

Since some results in this book are proved only for finite groups, it is con-
venient to observe that the mod p Chow ring of Bis isomorphic to the mod p
Chow ring of a certain finite subgroup. Let o : B — G, be the homomorphism
that pulls back on G x G,, to (g, A) — A?; then B is the kernel of . Let K be
the kernel of a”; then K is the central product G * C )2, of order p5. Theorem
13.10 gives that the restriction map CH% — CHy is an isomorphism. This
allows us to apply some results on the Chow rings of finite groups to the Chow
ring of B.

By Leary, H*(B B, Z)is generated by transferred Euler classes [89, corollary
3.10]. The assumption on k implies that the representation theory of Boverkis
the same as over C. It follows that the homomorphism C H* B B—H (B B ,7)
is surjective.

We use the geometric and topological filtrations of the representation ring, as
discusseEfl in Section 14.2. The above surjectivity implies that gr;eomR(g) —
grtzépR(B) is surjective for all natural numbers i. Moreover, the two filtra-
tions both define the same topology on R(B), that associated to the pow-
ers of the augmentation ideal [9, corollary 2.3]. Therefore, this surjectivity
implies that the two filtrations of R(B) are actually the same. In particu-
lar, the map gr;;eomR(NE) — grtz()ipR(E) is an isomorphism for all i. We have
CH'BB = 8locom R(B) for i < p (Theorem 2.25), and so we have isomor-
phisms

CH'BB = g}, R(B) = grit R(B)

geom
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fori < p- Since grmpR(B) is a subquotient of H* (B B, 7), it follows that the
map CH' BB — HZ’(BB Z) is injective for i < p. Since it is also surjective,
it is an isomorphism for i < p.

In particular, C Hy = CH'(BB)/p maps isomorphically to H%(BB,Z)/p
for i < p, and so CH~ injects into HZ’ HZi(Bg F,) fori < p. Now we
observe that B has a falthful 1rreduc1ble representation of dimension p over k,
which can be defined by inducing from the abelian subgroup of index p in B.
By Theorem 12.7, applied to the finite subgroup K of B with the same Chow
ring, the restriction map

* * <p—1
CH; - [] CHy®CH,,

vcB
V elem ab

is injective. Using the description of the maximal elementary abelian subgroups
of B, we check that the centralizer of each elementary abelian subgroup is either
abelian or the whole group B. Therefore,~C HCSE”(‘_,; — HE;(’)V_)z is injective, for
every elementary abelian subgroup V of B. Likewise, C H; injects into H;. So
CHZ injects into Hz. We alsoknow that C H% . maps onto H®(BB, 7)/p C H%,
and so C Hz maps 1somorphlcally to H eV(BB 7)/p. O
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The Geometric and Topological Filtrations of
the Representation Ring

Let G be a complex algebraic group, for example a finite group. The complex
representation ring R(G) has two natural filtrations, the topological and geomet-
ric filtrations, defined using the topological or algebro-geometric codimension
of support of a virtual bundle on BG. One might expect any naturally occurring
filtration of the representation ring to have a purely algebraic interpretation, but
no one knows how to do that for the geometric and topological filtrations; see
the comments below on the counterexamples to Atiyah’s conjecture.

In this chapter, we give examples of p-groups for any prime number p such
that the geometric and topological filtrations differ. For p = 2, such examples
were recently given by Yagita [156, corollary 5.7]. Related to that, we give
examples of finite groups for which the cycle map from the mod p Chow
ring to mod p cohomology is not injective. The examples build upon Vistoli’s
description of the Chow ring of the classifying space of PGL(p) for a prime
number p [143].

15.1 Summary

See Section 14.2 for the definitions of the geometric and topological filtrations
of the representation ring R(G).

For any prime number p, we give p-local examples of groups for which
the geometric and topological filtrations differ. Our simplest example is the
group (SL(p)?/(Z/ p)) x Z/ p for any prime p. Seeking examples among finite
groups, we find that the two filtrations differ for the 2-group 2L+4 x Z/2.For p
odd, we find a more complicated p-group for which the two filtrations differ:
G = (H, x Hy)/(Z/p) x Z/p, where H, =Z/p x (Z/p*)?~'  SL(p) and
Hy, =7/p x (Z/p)* C SL(p).

Atiyah conjectured that the topological filtration of the representation ring
was equal to the y-filtration, [6]. See Section 14.2 for the definition of the

185
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y-filtration, which is purely algebraic. Atiyah’s conjecture was disproved by
Weiss, Thomas, and (for p-groups) Leary and Yagita [93]. Since
F.R(G) C F,,,,R(G) C F

geom top

R(G),

the statement here (that the geometric and topological filtrations can differ)
strengthens Leary-Yagita’s result. Both the geometric and topological filtrations
are preserved by transfers, in contrast to the y-filtration. That makes it hard to
distinguish the geometric and topological filtrations.

15.2 Positive results

We show that the geometric and topological filtrations of the representation
ring agree in low degrees. The result (Lemma 15.2) is optimal, as we see in
Theorems 15.7 and 15.13.

Write Z,, for the ring of p-adic integers.

Lemma 15.1 Let G be a finite group scheme over a field k, and let p be a prime
number invertible in k. Then the cycle map (CHzBG)(,,) — H;(BG, Z,(2))
is injective, with image the Z,-submodule generated by Chern classes of rep-
resentations. For k = C, CH*BG — H*(BG,Z) is injective, with image the
subgroup generated by Chern classes of complex representations.

By contrast, for every prime number p there are p-groups G such that
CH3BGc — H®(BG, Z) is not injective. The example G = 21++4 x Z./2 was
given in [137, section 5], and we give examples for any p in Lemma 15.3 and
Theorem 15.7.

Proof This was proved for k = C in [138, corollary 3.5], by arguments of
Bloch and Colliot-Thélene using the Merkurjev-Suslin theorem. For conve-
nience, we give the argument in terms of the (more general, and now known)
Beilinson-Lichtenbaum conjecture.

The etale cohomology Hj(k,Z,(2)) splits off as a summand from
H}(BG, Z,(2)), using the two morphisms EG — BG — Spec k whose com-
position induces an isomorphism on etale cohomology. Likewise, the motivic
cohomology of k splits off as a summand from that of BG.

Let G have order p” times a number prime to p. We have a transfer map from
the etale cohomology of EG to that of BG, since EG — BG is approximated
by finite morphisms of smooth varieties. The composition of pullback and
pushforward is multiplication by |G| on the etale cohomology of BG. Therefore
the summand of H3(BG, Z,(2)) that pulls back to zero in HJ (k, Z,(2)) is killed
by |G| and hence by p’.
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Consider the commutative diagram

H%(BG,z/p*(2)) — H},(BG,Z(2)) —— H3(BG,Z(2))
Br p"

l | |

H2(BG,Z/p*(2)) —> H3(BG,Z,(2)) —> HI(BG,Z,2)).
Br p"

By the previous paragraph, any element v of H3(BG,Z,(2)) in the sum-
mand besides H;(k, Z,(2)) is the Bockstein B, of some element w of
H;(BG, Z/p"(2)). By the Beilinson-Lichtenbaum conjecture (Theorem 6.9),
w is in the image of an element x of motivic cohomology, H }@(BG, Z/p"(2)).
Then B,x is in H&(BG, Z(2)) and maps to the given element v in
Hy(BG, Zy(2)).

Now let z be an element of (CH*BG),) = H*(BG, Z,)(2)) that maps to

Zero in H;(B G, Z,(2)). Consider the commutative diagram

H3(BG,Z)(2) — Hy(BG,Z/p*?2) — Hi}(BG,Z»(2) —> H}(BG,Z,»(2)

! [

H3(BG,7,(2) — H3(BG,Z/p*(2)) — HXBG,Z,2)) — HX(BG,Z,Q)).
Br pr

We know that z is killed by |G|, hence by p”. So z is the Bockstein S, of some
element y of H}@(BG, Z/p"(2)). We can assume that y is in the summand
other than H&(k, Z/p"(2)). Let t be the image of y in H;(BG, Z/p"(2)). The
Bockstein of ¢ in HQ(BG, Z,(2)) is zero, by our assumption on z. So ¢ is the
image of some element v of HS[(BG, Z,(2)). Again, we can assume that v is in
the summand other than H3(k, Z,(2)). By the previous paragraph, v is in the
image of some element g of Hj,(BG,Z,(2)). Map g into H;,(BG,Z/p"(2));
by injectivity of H3,(BG, Z/p"(2)) — H2(BG,Z/p"(2)) (another application
of Beilinson-Lichtenbaum, Theorem 6.9), the image of g is equal to y in
H3(BG,Z/p"(2)). Therefore the original element z (the Bockstein of y) in
(CH?BG)y,) is zero, as we want.

We know that C H> BG is generated by Chern classes (Theorem 2.25). That
completes the proof for an arbitrary field k. The statements about k = C follow
from the isomorphism between completed etale cohomology and ordinary
cohomology with Z, coefficients [104, theorem III1.3.12]. U

Lemma 15.2 Let G be a finite group, viewed as an algebraic group over C.
Then Fi.__R(G) = F% R(G) fori < 3.

geom top

Proof We have gr’ R(G)=CH'BG =Z and gr?opR(G) = H%BG, 7).

geom
Since CH’BG maps isomorphically to H(BG, Z), we have F.,,R(G) =

eom
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tOpR(G) Next, grgeomR(G) CH'BG and grmpR(G) is a subgroup of
H*(BG, Z), by Theorem 2.25 and 1nspect10n of the Atiyah-Hirzebruch spec-
tral sequence (Theorem 14.2). But CH'BG (= Hom(G, C*), by Lemma 2.26)
maps isomorphically to H*(BG, Z). It follows that grgeomR(G) — grt R(G)
is an isomorphism, so that geomR(G) tOPR(G) At the same time, we have
proved the well-known fact that grmpR(G) is equal to H*(BG, Z).
Next, we have a commutative diagram

CH’BG —— grg.onR(G)

| !

H*(BG, L)oerm — grtopR(G),
where H*(BG, Z)perm denotes the subgroup of permanent cycles in H*(BG, Z)
for the Atiyah-Hirzebruch spectral sequence, that is, the kernel of all differen-
tials. The top horizontal map is an isomorphism by Theorem 2.25, and the right
geomR (G) = topR(G) On the other hand, the
left vertical map is injective by Lemma 15.1, and the bottom map is an iso-
morphism by inspection of the Atiyah-Hirzebruch spectral sequence. (The only
possible differential into H*(BG, Z) would come from H'(BG, Z), which is
zero.) Therefore, the map from upper left to lower right group is injective and
surjective, hence an isomorphism. It follows that all the maps shown are iso-
morphisms. In partlcular grgeomR(G) maps isomorphically to grfopR(G), and
so F2 R(G) = R(G). O

geom

vertical map is surjective since F,

top

15.3 Examples at odd primes

In this section, we show that the geometric and topological filtrations of the
representation ring can differ p-locally for p odd. Our examples are products
with Z/ p, as suggested by the following lemma.

Lemma 15.3 Let p be a prime number. Let G be a complex algebraic group
such that the image Of(CHzBG)(,,) — H*BG, Z,,)) is not a summand. Then
CH’B(G x Z/p) — H%B(G x Z/p), Z) is not injective. Also, if p is odd,
then

R(G xZ/p) & Fo,R(G x Z/p).

geom top

Note that the map CH?BG — H*(BG, Z) is injective, with image the sub-
group generated by Chern classes ¢, of representations of G, by Lemma 15.1.
So we can rephrase the assumption by saying that the Chern subgroup of
H*(BG, Z) is not a summand, p-locally.
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Proof The assumption implies that CH*(BG)/p — H*(BG, F,) is not
injective. Let H = G x Z/p. By the Kinneth formulas for Chow groups
(Lemma 2.12) and for cohomology, it follows that (CH*BH)) —
H%(BH,Z,) is not injective. Now suppose that the prime number p is
odd. Then the natural surjection CH*BH — grgeomR(H ) is an isomorphism
p-locally, by Riemann-Roch [138, proof of corollary 3.2]; more generally,
this holds in degrees at most p. The group grfopR(H ) is a subquotient of
HS(BH, Z), since the topological filtration of R(H) is the filtration associated
to the Atiyah-Hirzebruch spectral sequence (Theorem 14.2). Therefore, the
map gry.,m R(H) — gre, R(H) is not injective p-locally. So

3
geom

FyeomRUH) & F, R(H). O

The simplest complex algebraic group I know for which the Chern subgroup
of H*(BG, Z) is not a summand is G = SO(4). The group SO (4) was used to
give examples of torsion algebraic cycles with unexpected behavior in [137].
Since SO(4) is isomorphic to SL(2)?/(Z/2), it makes sense to try the group
G = SL(p)?*/(Z/p) to produce similar examples at an odd prime p, and indeed
we will see that this works. To be precise, we define G by dividing SL(p)* by
the diagonal subgroup {(a, a) : a € u, = Z(SL(p))}.

Theorem 15.4 Let p be a prime number, and let G = SL(p)*/(Z/p). Then
the Chern subgroup of H*(BG, Z) is not a summand. Moreover, for p odd, the
geometric and topological filtrations of the representation ring of G x Z/p are
different. Explicitly,

FomR(G x Z/p) G F R(G x Z/D).

In fact, for p = 2, the geometric and topological filtrations of the represen-
tation ring of (SL(2)*/(Z/2)) x Z./2 = SO(4) x Z/2 are also different. The
proof is slightly more elaborate for p = 2, and so we prove that later as Theorem
15.13.

Proof The integral cohomology of BP G L(p) in degrees at most 5 is

Z 00 Z/p Z 0
012 3 45,

This follows from Vistoli [143, theorem 3.6], who computed the integral
cohomology of BPGL(p) in all degrees; since we only want the coho-
mology in degrees at most 5, a direct computation is not hard. Next,
the exact sequence 1 — SL(p) - G — PGL(p) — 1 given by projecting
G = SL(p)*/(Z/p) to the second factor gives a spectral sequence E, =



190 Geometric and Topological Filtrations

H*(BPGL(p), H"(BSL(p), Z)) = H*(BG, Z):

Z\

0 \0\\\9

o o o *o

0o 0 0 0 0

Z 0 0 Z/p zZ 0

There are no possible differentials in this range. It follows that H*(BG, Z)
is isomorphic to Z? and the restriction map H*(BG,Z) — H*(BSL(p),Z) =
Zc,V is surjective, where V denotes the standard representation of SL(p). We
know that the image of CH>BG — H*(BG,Z) = Z? is a subgroup of finite
index, and that this is the subgroup spanned by Chern classes (Theorem 2.25).
So if we can show that the restriction map CH>BG — CH?BSL(p) = Zc,V
lands in Zpc,V, then CH?BG is not a summand of H*(BG, Z), as we want.

We need the following fact.

Lemma 15.5 Let W be an irreducible representation of the complex group
SL(p) with nontrivial central character. Then dim(W) =0 (mod p).

Proof By Schur’s lemma, the center 1, of SL(p) acts on W by a homo-
morphism o € Hom(u,, G,,) = Z/p, which we call the central character of
W. We know that the determinant of W in Hom(SL(p), G,,) is trivial, since
Hom(SL(p), G,) = 0. So the restriction det(W)|,,, is trivial. But this restric-
tion is equal to det(W|,,) = a9 So if o is nontrivial, then dim(W) = 0
(mod p). O

Now let W be any irreducible representation of G = SL(p)*/(Z/ p), where
we divide out by the diagonal central subgroup Z/p. Then we can write W =
A ® B, where A and B are irreducible representations of the two factors SL(p)
with inverse central characters. Restricting to the first factor of SL(p), we have
WisrLp) = A®AmB) If A has nontrivial central character, then so does B,
and so dim(B) is a multiple of p. We have ¢c;A =0 in CH'BSL(p) =0,
and 50 ¢2(W)|sr(p) = dim(B)c;A =0 (mod p) in CH?*BSL(p) = Zc,V.On
the other hand, if A has trivial central character, then we can view A as a
representation of PG L(p), and we can apply the following lemma.
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Lemma 15.6 The pullback map H*(BPGL(p),Z) — H*(BSL(p),Z) =
Zc,V is zero modulo p.

Proof This follows from Vistoli’s description of H*(BPGL(p),Z) [143,
section 14]. In more detail, an element of H*(BPGL(p),Z) maps by
restriction to the maximal torus to an S,-invariant element of the ring
Zly1 — Yo, vy-oy Yp—1 — Yp—2] C Zlyo, ..., y,—1], where the symmetric
group S, permutes the variables yo, ..., y,—1. The S,-invariants in degree
2 are the subgroup generated by an element y,. Likewise, an element of
H*(BSL(p),Z) restricts to an §,-invariant element of the quotient ring
Z[yo, ..., yp-11/(yo + -+ 4+ y,—1 = 0). Vistoli shows (in the equation “y; =
pr! v, that the image of y; in the latter invariant ring is p times the class of
oV = Zogquq yiy; for p odd, up to sign. For p = 2, a shorter calculation
shows that the image of y is 4 times the class of ¢,V up to sign, which is even
better. O

Therefore, if A is a representation of SL(p) with trivial central character,
the class c;(A) € CH?>BSL(p) = Zc,V is zero modulo p. This completes the
proof that the restriction to the first factor S L(p) of the second Chern class of any
representation A ® B of G = SL(p)*/(Z/p) is zero in CH*(BSL(p))/p. By
our earlier discussion, it follows that C H>*BG C H*(BG, Z)is not a summand.
Theorem 15.4 is proved. (The fact that the geometric and topological filtrations
are different follows from Lemma 15.3.) O

Thus, for every odd prime p, we have an example of a complex algebraic
group for which the geometric and topological filtrations of the representa-
tion ring are different, namely (SL(p)?/(Z/p)) x Z/p. We now want to give
examples among finite p-groups, for any odd prime number p. (We will give
examples among 2-groups later.) The idea is to find a big enough finite p-
subgroup S of SL(p)*/(Z/p) to make CH?BS C H*(BS, Z) not a summand.
Then the geometric and topological filtrations for the p-group S x Z/p are
different, by Lemma 15.10.

Theorem 15.7 Let G be an odd prime number, and let S be the p-group
(H, x H))/(Z]p), where H =Z/p x (Z/p*)P~' C SL(p) and H, is the
extraspecial p-group of order p* and exponent p, H, =7/p x (Z/p)* C
SL(p). Then the geometric and topological filtrations of the representation
ring of S x Z/ p are different. Explicitly,

FiomR(S xZ/p) G FS R(S x Z/p).

To clarify the definition of H,, let T denote the subgroup of diagonal matrices
in SL(p), so that T = (G,,)?~". Then the Weyl group N(T)/T is isomorphic
to the symmetric group S,,. In particular, using the subgroup Z/p C S,, SL(p)
contains an extension of Z/p by T, which is a semidirect product Z/p x T
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for p odd. Writing A[n] for the subgroup of an abelian group A killed by =, it
follows that SL(p) contains Z/p x T[p*] = Z/p x (Z/p*)P~', which is the
subgroup we call H;.

Here both H; and H, contain the center Z/p of SL(p), and we define S
by dividing by the diagonal subgroup {(a,a) : a € Z/p = Z(SL(p))}. Then it
is clear that S is a subgroup of SL(p)?/(Z/p). The group S is the smallest
p-group for odd p for which I was able to make the argument work, but there
are probably smaller examples.

The following lemma reduces the problem to one about H;.

Lemma 15.8 Let p be an odd prime number. Let H, be a finite p-subgroup of
SL(p) that contains the center Z/ p, and let H, be the extraspecial p-group of
order p* and exponent p, Hy = Z./ p x (Z/p)> C SL(p). Let V be the standard
representation of SL(p). Suppose that ¢,V € CH*BH, C H*(BH,, Z) is not
in the subgroup p CH*BH, + CH*B(H,/(Z/p)) + H*(BH,, Z)[p), where
M| p] denotes the subgroup of an abelian group M killed by p. Then the
p-group S = (H, x Hy)/(Z/p) has the property that the subgroup CH?BS
of HY(BS,Z) is not a summand. Moreover, the geometric and topological
filtrations of the representation ring are different for S x Z/ p. Explicitly,

FpomR(S x Z/p) G FS R(S x Z/p).

Proof If CH?BS is a summand of H*(BS,Z), and if x € H*(BS, Z) is an
element such that px isin CH?BS, then x is the sum of an element of C H2BS
with an element of H*(BS, Z)[ pJ, as one checks immediately.

We know that S is a subgroup of SL(p)?/(Z/p). There is an element
x of H*B(SL(p)*/(Z/p)),Z) that restricts on the first factor SL(p) C
SL(p)*/(Z/p) to the generator ¢,V of H*(BSL(p),Z), by the proof of
Theorem 15.4. Apply the previous paragraph’s observation to the restric-
tion of x to H*(BS,Z). We know that CH?B(SL(p)*/(Z/p)) contains p
times H*(B(SL(p)?/(Z/p)), Z), by pulling back from the two projections
to PGL(p), using that CH*(PGL(p)) = H*(BPGL(p), Z) by Vistoli [143,
corollary 3.5]. It follows that px belongs to CH?B(SL(p)?/(Z/p)), and
so px restricted to S is in CH?BS. Thus, to show that CH?BS is not a
summand of H*(BS, Z), it suffices to show that x is not in the subgroup
CH?BS + H*(BS,Z)[p] of H*(BS, Z.).

We know that the restriction of x to H; is equal to ¢,V in CH 2BH, C
H*(BH,, Z). So it suffices to show that ¢,V in H*(BH,, Z) is not in

im(CH?BS — CH*BH,)+ H*(BH,, Z)[ p].

We know that C H?BS is generated by Chern classes (Theorem 2.25). We
therefore consider the complex representations of S and their restrictions to
H,. Since H, is a p-group, every irreducible representation of H, has degree a
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power of p. Also, every irreducible representation R of S = (H; x H»)/(Z/p)
is the tensor product of an irreducible representation of H; with an irreducible
representation of H, having the inverse central character (because we divide
out by the diagonal subgroup {(a,a):a € Z/p} of H; x H,). Finally, the
extraspecial p-group H, has the property that the center of H, is contained
in the commutator subgroup of H,, and so every 1-dimensional representation
of H, has trivial central character. So the restriction of R to H; is either a
representation of H;/(Z/p) or the direct sum of a multiple of p copies of a
representation of H;. In the second case, c; R belongs to pCH 2BH,. (This
uses that p is odd, so that c;(M®”) = pc, M + (5)ci M for a representation M,
where (‘;) is a multiple of p.) In the first case, ¢, R belongs to the image of
CH’B(H,/(Z/p)).
Thus, if ¢,V in H*(BH,, Z) is not in

pCH’BH, + CH’B(H\/(Z/p))+ H*BH,, Z)[p],

then we have shown that C H>BS is not a summand of H*(BS, Z). By Lemma
15.3, it follows that the geometric and topological filtrations of the representa-
tion ring are different for the p-group S x Z/p. O

We now prove the property of H; we want.

Lemma 159 Let H, =7Z/p x (Z/p>)’~' C SL(p). Then the element
¢,V € CH*BH, C HY(BH,,Z) is not in the subgroup pCH?BH, +
CH?B(H,/(Z/p))+ H*(BH,, Z)[p].

Proof The maximal torus in GL(p) has Chow ring Z[yy, ..., y,—1]. The
maximal torus in SL(p) has Chow ring a quotient of that ring, namely
Zlyo, ..., yp-11/(yo + -+ y,—1). In those terms, the subgroup (Z)p*H)r!
of Hy C SL(p) has Chow ring

Zyo -, Yp11/(P*yi Yo+ oo 4 Vpo1)

The total Chern class of V restricted to (Z/p*)?P~"is (14 yo) -+ (1 + y,—1),
and so

eVl = Y, vy
O<i<j<p-—1
Writing this in terms of yo, ..., y,—» gives
p—2 2
aVlg/py = Z Viyj — <Zyi)
O<i<j<p-2 i=

p—2
=== > iy
i=0

O<i<j<p-2
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Write R{e; : i € I} for the free module over a ring R with basis elements e;.
Then we can view ¢,V as an element of C H>B(Z/p*)P~! = Z/pz{yiyj :0<
i<j=<p-2}

We will show that ¢,V in H*(BH,, Z) is not in the subgroup pCHZBHl +
CHZB(Hl/(Z/p)) + H*(BH,, Z)[p] by restricting to H*BK,Z), where
K = (Z/p*P~". Since H*(BK,Z) contains CH>BK as a summand (as is
true for any abelian group), it suffices to show that the restriction of ¢,V
to CH?BK isnotin pCH?>BK + CH?*B(H,/(Z/p)) + (CH?BK)[p]. Since
CH?’BK = Z/pz{y,-yj :0<i<j<p-—2}isasum of copies of Z/p?, it
suffices to show that the restriction of ¢,V to CH*(BK)/p = F,{yiyj: 0=
i < j < p—2}isnotin the image of CH>B(H,/(Z/p)).

We know that C H? of H;/(Z/p) is generated by Chern classes of complex
representations, by Theorem 2.25. Since H,/(Z/p) = Z/p X (K /(Z/p)) has
an abelian normal subgroup of index p, every complex irreducible represen-
tation of H,/(Z/p) is either 1-dimensional or induced from a 1-dimensional
representation of K /(Z/p) [124, proposition 24].

In terms of the inclusion of K = (Z/p?)?~! in the maximal torus of SL(p),
the subgroup Z/p C K is the center of SL(p). The Chow ring of the quotient
group K /(Z/p) = (Z/pY)'~2 x Z/p is Zlzo, - ., 2p3, wl/(p*2z; = 0, pw =
0), where z; + y;+1 — y; forO <i < p — 3 and w + pyy. The Chern class ¢,
of any 1-dimensional representation of H,/(Z/p) =Z/p x (K /(Z/p)) must
be an element of the subgroup of Z/ p-invariants in CH' B(K /(Z/ p)), which
we compute is generated by pyo + 2py; + -+ + (p — 1) pyp—2. In particular,
such classes pull back to zero in (CH*BK)/ p.

It remains to analyze the Chern class ¢, of a representation W of
H/(Z/p) =7Z/p x (K/(Z/p)) induced from a 1-dimensional representation
L of K/(Z/p). By Lemma 13.9, ¢, W is the transfer of some element u in
CH?B(K /(Z/p)) (plus a term that restricts to zero on K /(Z/p), in the case
p=23). Write tr=1+4+0 +---+0”"! acting on K and on K/(Z/p). We
deduce that ¢, W restricted to K /(Z/ p) can be written as the trace tr(u) for some
u e CH*BK /(Z/p).

Thus it suffices to show that ¢,V restricted to (CH?>BK)/p is not in the
image of the subgroup tr(C H 2B(K /(Z/ p))). This is somewhat subtle, because
¢,V is in the image of C H> B(K /(Z/ p)).1don’t have a general explanation for
this, but we can check it by calculation. Namely, the image of the Chow ring of
K /(Z/p)inthe mod p Chow ring of K is the subring of F,[yo, ..., y,—11/(yo +
-+ + yp—1) generated by y; — yo, ..., yp—2 — ¥p—3. And we can rewrite ¢, V,
computed earlier as a polynomial in y, ..., y,—2, as a polynomial in y; —
Y05 -+ Yp—2 — Yp—3. Explicitly:

p—2

aVik==Y i—y)— Y. 0=y — ).

i=1 I<i<j<p-2
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Let W, denote the F ,-vector space with basis yo, ..., y,—1, and let W,_; be
the subspace of W, spanned by y; — yo, ..., y,—1 — yp—2.Let W,_, denote the
image of CH'B(K /(Z/p)) — (CH'BK)/p, which is the quotient of W,,_,
by the line W; spanned by yo + --- 4+ y,—1 = 0. These vector spaces are all
representations of the symmetric group S, and hence of the subgroup Z/ p, by
permuting yo, ..., Y,—1.

Define a linear map S?W, — F, by mapping y? to 1 for all i and y;y; to 0
foralli # j, and write f for the restriction of this map to S?W,_;. Clearly the
map f is Z/p-invariant (and even S,-invariant, although we do not use that).
We compute that

f((o+-+yp—)Pit1 — ) =0

for all i, and so f factors through the surjection S?W,_; — S*W,_,. Thus we
have a Z/ p-invariant linear map f: S*?W,_» — F,.

Since f is Z/p-invariant, we have f(tr(y)) =0 for all y € S2Wp,2 =
im(CH?B(K/Z/p) — (CH?BK)/p). Therefore, to show that ¢,V is not in
the image of the trace map on S*W,_,, it suffices to show that f(c,V) € F,,
is not zero. We gave a formula above for ¢,V as an element of S?W,_,
(that is, as a polynomial in the elements y;;; — y;, modulo the relation
Yo+ o+ yp-1=0)

p—2
aV==>i—y)’— Y. Oi—y0;— ).
i=1 I<i<j=p-2

It follows that

2
=({p+Dp-2)/2
#£0cF,.

-2
feV)=-2p—-2)— (” )

Soc,Vin (CHZBK)/p is not in the image of tr(CHZB(K/(Z/p))).

This completes the proof that the subgroup CH?BS of H*(BS, Z) is not
a summand. By Lemma 15.3, the geometric and topological filtrations on the
representation ring of S x Z/p are different. O

15.4 Examples for p =2

In order to show that the geometric and topological filtrations of the represen-
tation ring can differ 2-locally, it seems that we need a little more homotopy
theory, notably Steenrod operations. We formulate the method p-locally for any
prime p, although our applications only involve p = 2. Yagita has also shown
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that the geometric and topological filtrations can differ 2-locally, namely for
the extraspecial group 21 [156, corollary 5.7].

Lemma 15.10 Let p be a prime number. Let G be a complex alge-
braic group such that CHP(BG)/p — H?*"(BG, F,) is not injective. Then
CHPY'B(G x Z/p) — H***2(B(G x Z/p), Z) is not injective. If in addition
the abelianization of G is killed by p, then

FPE2R(G x Z/p) G FL™R(G x Z/p).

geom top

Proof Let u e CHP?BG be an element that is nonzero in CH?(BG)/p
but maps to zero in H*’(BG,F,). Let K = G x Z/p, and let v e CH'BK
be the pullback of a generator of CH'BZ/p = Z/p. By the Kiinneth for-
mulas for Chow groups (Lemma 2.12) and for cohomology, it follows
that (CHP*'BK),y — H***(BK, Z,)) is not injective. Explicitly, uv is a
nonzero element of the kernel.

The natural surjection CH' BK — gr;eomR(K ) is an isomorphism p-locally
for i < p, by Riemann-Roch (Theorem 2.25). For i = p + 1, this map need
not be an isomorphism, but we can compute the kernel, as follows.

Lemma 15.11 For any smooth scheme X over the complex numbers and any
prime number p, there is a natural operation

.BPI : HS(Xa Z)p-power torsion > CH1)+1X~
For any complex algebraic group G, we have

CH""'BG/BP'H*(BG,Z) = gr’}! R(G).

geom

Proof The operation BP': H3(X, Z) -power torsion — CHPT'X comes from
Voevodsky’s Steenrod operations (section 6.3) together with the Bloch-Kato
conjecture proved by Voevodsky and Rost. This is a remarkable operation,
since it produces algebraic cycles from purely topological input. As a first step,
we write B P! for the composition

H3(X.2(2) — H3X.Z/p2) 2> H¥* (X, Z/p(p + 1))

L HPAX, Z(p + 1)) = CHPFIX,

which clearly maps into the p-torsion subgroup C H”*1 X[ p].
Next, the Beilinson-Lichtenbaum conjecture (Theorem 6.9) gives an isomor-
phism from ordinary to motivic cohomology,

H*X,Z/p") = Hy(Z,Z/p"(2)).

Thus, for a complex scheme X, BP! gives a map from the ordinary
cohomology H*(X,Z[1/pl/Z) to CHP*'[p] (identify the domain with
li_r)nr H*(X,Z/p") = li_r)nr HZ%,I(X, Z/p"(2)), apply the Bockstein to get to
motivic cohomology H3, (X, Z(2)), and apply BP' as before). Finally, this
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map vanishes on the image of H*(X, Z[1/p]) in H*(X, Z[1/ p]/Z), because it
lands in a group killed by p. By the exact sequence

H*(X,Z[1/p)) — H*(X,Z[1/pl/Z) — H*(X,Z) — H>(X,Z[1/p)),

we have a natural map BP' from H3(X, Z), power torsion 10 (CHPT'X)[p], as
we want.
In view of the exact sequence of motivic cohomology groups

H*(X,Z/p’ (2)) — H(X, Z(2)) — H>(X,Z(2)),
p

the image of BP! on the ordinary cohomology H 3X,Z) p-power torsion 1S €qual
to the image of 8P on motivic cohomology H 3(X, Z(2) p-power torsion- W€ NOW
specialize to the case X = BG, for a finite group G. (Any given motivic coho-
mology group of BG can be computed on a suitable finite-dimensional approx-
imation U/G, where U is an open subset of a representation of G on which
G acts freely.) Using transfers, we see that H3*(BG,Z(2)) = H*(C,Z2)) ® K
where K is an abelian group killed by the order of G. Moreover, the opera-
tion BP! vanishes on H3(C, Z(2)), because C H”*!(Spec C) = 0. So all that
matters is the torsion part. We conclude that the image of 8P on the motivic
cohomology H3(BG, Z(2)) is equal to the image of 8 P! on the ordinary coho-
mology H? (BG, Z)p—power torsion -

The motivic Atiyah-Hirzebruch spectral sequence from motivic cohomology
to algebraic K -theory has the following form [95]:

Theorem 15.12 Let X be a smooth scheme over a field k. Then there is a
spectral sequence
EY = H(X,Z(—j/2)) = K_i_X.

The E, term looks like:

HO(X, Z(0)) 0 0 0 0
0 0 0 0 0

HO(X, Z(1)) H'(X, Z(1)) H?(X, Z(1)) 0 0
0 0 0 0 0

HO(X, Z(2)) H'(X,Z(2)) H(X, Z(2)) H3 (X, Z(2)) HY(X, Z(2))
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The groups on the top diagonal are the Chow groups CH' X = H? (X, Z(i)).
If we localize the spectral sequence at a prime number p, then all differentials
are zero except dp-2)+1 for positive integers a, by the splitting of p-local
algebraic K-theory into p — 1 summands given by Adams operations [157,
proposition 1.2].

So the first possible p-local differential is

dop-1: H(X, Zip)(j)) — HP7NX, Zip(j + p — 1)).

This is in fact equal to —SP'; most of the argument was given by Yagunov
[157]. Indeed, by naturality of the spectral sequence and its stability under
suspensions, it suffices to compute this differential for the universal class on
the motivic Eilenberg-MacLane spectrum HZ,(j). Moreover, this differential
is killed by p [95], and so the differential on the universal class is the Bock-
stein of some element of H*?~2(HZ,(j), Z/p(j + p — 1)). By Voevodsky’s
calculation of the motivic Steenrod algebra over the complex numbers, such
a class is a polynomial in the Bockstein and the operations P’ [146, theorem
3.49]. By comparison with topology, where the corresponding differential in
the Atiyah-Hirzebruch spectral sequence is well known [8, proposition 7.2],
this operation in degree 2p — 2 must be equal to —P!. We conclude that the
first p-local differential in the motivic Atiyah-Hirzebruch spectral sequence is
equal to —BP'.

The geometric filtration on KyX, for a smooth scheme X over C, is the
filtration associated to this spectral sequence. (The groups contributing to Ko X
in the spectral sequence are those on the top diagonal, the Chow groups.) For a
finite group G, taking X = BG over C, the ring Ko BG is the completed repre-
sentation ring of G, by Merkurjev [101, corollary 4.4], [138, theorem 3.1]. All
differentials are zero on Chow groups (by the form of the spectral sequence), and
there are no possible p-local differentials into CH! BG fori < p; this proves
again Theorem 2.25°s isomorphism (CH' BG)(p) = gl R(G)(p) for i < p.

We can now add that the only possible p-local differential into CH?*!BG is
dop—1: H*(BG, Z(2)) — H*™*(BG,Z(p + 1)) = CH"™' BG.

This map is equal to —BP!. As we have discussed, its image is equal to
the image of the map BP': H3(BG,Z) — CH?*'BG. (For any complex
algebraic group G, H*(BG, Z) is torsion in odd degrees. So we can think of
BP! as being defined on all of H3(BG, Z), not just on the p-power torsion
subgroup.) We conclude that

gt?tl R(G) () = (CHP™' BG),,)/BP'H*(BG, Z). O

geom

We return to the proof of Lemma 15.10. We know that the product group K =
G x Z/p has (CH"™ BK),) > H*’**(BK,Z,) not injective. Explicitly,
we defined a nonzero element uv of the kernel. Since (gri,f,HR(K Np) 18 @



15.4 Examples for p =2 199

subquotient of H*?*2(BK, Z,)), it follows that
(CHP* BK) () — (grab R(K))p)

is not injective. Again, uv is a nonzero element of the kernel.

This map factors through gré’;g,lnR (K)p), and the subgroup of
(CHP“NK)(,,) that maps to zero in that group is 8 P! H*(BK, Z) by Lemma
15.11. So to show that griemR(K)(,) — grtZOTZR(K)(,,) is not injective, it
remains to show that uv € C H?T' BK is not in the image of H3(BK,Z).

By the Kiinneth formula for integral cohomology, we have

H*(BK,Z) = H*(BG,Z) ® Tort”(H*(BG, Z), H(BZ/p, 7).
We assumed that the abelianization of G is killed by p. It follows that
p: H'(BG,F,) - H*(BG,Z)

is an isomorphism. Using that, we can describe the Tor term explicitly as
follows. Let xy, ..., x, be a basis for H'(BG, F,) and w a generator of
HY(BZ/p, F,) = F,; we can assume that Bw = v. Then

HYBK,Z)= H*(BG,Z) @ F,{B(xw), ..., B(x,w)}.

The operation P! sends H*(BG,Z) C H*(BK,Z) into CHP*'BG C
C HP*!' BK , by functoriality. We can also compute 8 P! on the elements B(x;w),
using the formal properties of Voevodsky’s Steenrod operations (Section 6.3):

BP'(B(xjw)) = BP((Bxp)w — x; fw)
= B((Bx)’w — xi(Bw)")
= (Bxi)" Bw — (Bxi)(Bw)”
= (Bxi)’v — (Bxiv”.

Now we can see that uv is linearly independent of SP'H3(BK,Z), even
in CH*(BK)/p. We have CH*(BK)/p = CH*(BG)/p[v] by the Chow
Kiinneth formula, and we know that u is nonzero in CH?(BG)/p. Also,
the elements Bxi,...,Bx, are linearly independent in CH'(BG)/p =
H*(BG,Z)/p. So if uv = BP'(s +_a;B(x;w)) for some s € H>(BG,Z)
and a; € F,, then all a; must be zero (otherwise the right side would have
nonzero coefficient of v”). But then the right side has zero coefficient of v, a
contradiction.

Thus uv € (CHP*'BK)[p] is not in the image of H*(BK, Z) and hence

maps to a nonzero element of the kernel of grge-g.lnR(K ) — grtz(f;HR(K ). O

Theorem 15.13  The Chern subgroup of H*(BSO(4), Z) is not a summand.
Moreover, the geometric and topological filtrations of the representation ring
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of SO(4) x Z/2 are different. Explicitly,

FaomR(SO@) x /2) S F§,R(SO(4) x Z/2).

Likewise, the extraspecial 2-group

H = 21++4 = (Ui, up, Uz, Uy : ulz =1, [uy, uz] = [usz, ug] = v, v central,
[ur, us] = [u1, ug] = [uz, uz] = [uz, ug]l = 1)
has
FpomR(H X 2./2) S F§ R(H X Z,/2).

Proof The abelianization of SO(4) is trivial, hence killed by 2. By
Lemma 15.10, the conclusion on SO(4) follows if we can show that
CH*(BSO(4))/2 — H*(BSO(4), F,) is not injective. That holds by a calcu-
lation with Steenrod operations: we have H*(BSO(4), Z) = Z?, but the Euler
class in this group has nonzero image under the odd-degree mod 2 Steenrod
operation Sq3, and hence is not in the image of CH?BSO(4) [137, section 5].
On the other hand, C H?> BS O(4) maps onto H*(BSO(4), Z) tensor Q, because
H*(BG, Q) is generated by Chern classes for every complex algebraic group
G. It follows that CH*(BS0O(4))/2 — H*(BSO(4), F,) is not injective.

The abelianization of the subgroup H = 21++4 C SO(4) is isomorphic to
(Z./2)*, which is killed by 2. By Lemma 15.10, the conclusion on H follows if
we can show that CH*(BH)/2 — H*(BH, F,) is not injective. Since ¢,V in
C H?BSO(4) maps to zeroin H*(BSO(4), F,), its restriction to C H> B H maps
to zero in H*(BH, F»). Finally, ¢,V is nonzero in CHZ(BH)/Z, as shown in
[137, section 5] by computing that ¢, V has nonzero image in MU*BH ®yy~
F;. Thus CHZ(BH)/Z — H*BH,F,) is not injective. O
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The Eilenberg-Moore Spectral Sequence in
Motivic Cohomology

In this chapter, we construct an Eilenberg-Moore spectral sequence in motivic
cohomology for schemes with group actions. In topology, for a space X with
an action of a topological group G, there is a fibration

X —- X//G = BG,

and the Eilenberg-Moore spectral sequence converges to the cohomology of
the fiber X, given the cohomology of the base BG and total space X//G =
(X x EG)/G [98, chapter 7].

We prove a spectral sequence of the same form for motivic cohomology,
when X is a smooth scheme with an action of a split reductive group. The spec-
tral sequence was defined by Krishna with rational coefficients [82, theorem
1.1]. Our method is essentially the same, but we give an integral statement as
far as possible. Other related results include Merkurjev’s construction of the
Eilenberg-Moore spectral sequence of a group action for algebraic K -theory
[101, theorem 4.3] and for K-cohomology [102, section 3a].

Our Eilenberg-Moore spectral sequence works only after inverting the torsion
index, a positive integer associated to G. (If G is GL(n) or a torus, then the
torsion index is 1, and so the spectral sequence computes motivic cohomology
integrally.) This is unavoidable: the spectral sequence does not hold in the
same form as in topology without inverting the torsion index, by Remark 16.7.
One could hope for some more general form of the Eilenberg-Moore spectral
sequence in motivic homotopy theory.

The relevance of the Eilenberg-Moore spectral sequence for this book is
that it clarifies the relation between the motivic cohomology of the classifying
space BG and the finite-dimensional variety GL(n)/G, for any affine group
scheme G with a faithful representation G — G L(n). A basic result in this
book, Theorem 5.1, which relates the Chow groups of BG and GL(n)/G, is
an easy special case of the spectral sequence (Theorem 16.6).

201
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16.1 Motivic cohomology of flag bundles

In this section, we show that computing equivariant motivic cohomology with
respect to a split reductive group G reduces to the case of a torus, after inverting
the torsion index of G. This is close to several results in the literature: Edidin-
Graham [38, theorem 6] is a similar statement for Chow groups, and Asok-
Doran-Kirwan [5, proposition 3.9] gives the result here on motivic cohomology
after tensoring with the rationals.

Theorem 16.1 Let G be a split reductive group over a field k. Let B be
a Borel subgroup of G, and let t(G) be the torsion index of G. Then there
are elements ey, ...,e, of CH*(BB)[1/t(G)] that restrict to a basis for
CH*(G/B)[1/t(G)] as a free module over Z[1/t(G)]. Moreover, for any
smooth scheme X of finite type over k with an action of G, ey, . . ., e,, restrict to
a basis for the motivic cohomology of X/ /B as a free module over the motivic
cohomology of X//G.

A reductive group over a field k is split if it contains a maximal torus that
is split over k. (So every reductive group over an algebraically closed field
is split.) Chevalley made the remarkable discovery that the classification of
split reductive groups is the same over all fields [18, 32]. In particular, split
semisimple groups up to isogeny are classified by Dynkin diagrams.

We recall Grothendieck’s definition of the torsion index [54, 139]. Let G be
a split reductive group G over a field k. Let B be a Borel subgroup of G (that
is, a maximal smooth connected solvable k-subgroup). Each homomorphism
B — G,, determines a line bundle on the flag manifold G/B. (The group
Hom(B, G,,) is called the weight lattice of G.) Consider the subring S of
CH*(G/B) generated by the first Chern classes of these line bundles. Since
CH*BB is the polynomial ring over Z generated by the weight lattice, we
can also say that S is the image of the natural homomorphism CH*BB —
CH*(G/B). Let N be the dimension of G/B; then C HY (G/B) is isomorphic
to Z, generated by the class of a point. The torsion index t(G) is the least
positive integer such that S contains 7(G) times the class of a point.

Proof Equivariant motivic cohomology is defined as the motivic cohomology
of suitable G-spaces on which G acts freely with quotient a scheme. So it
suffices to prove the theorem when G acts freely on X, with quotient Y = X/G
a smooth scheme over k.

The flag manifold G/B has an algebraic cell decomposition, the Bruhat
decomposition [18, theorem 14.12, proposition 21.2.9]. As a result, the Chow
ring CH*(G/B) is a finitely generated free abelian group. Demazure gave a
combinatorial description of the Chow ring of G/B. In particular, he showed
that the natural homomorphism CH*BB — CH*(G/B) becomes surjective
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after inverting the torsion index #(G) [31, proposition 5]. Let R = Z[1/#(G)].
It follows that there are elements e, ..., ¢,, of C H*(BB) ®z R that restrict to
a basis for CH*(G/B) ®z R.

We now return to the situation where G acts freely on a smooth scheme X
over k with quotient scheme ¥ = X/G. More generally, let X — Y be a princi-
pal G-bundle over a scheme Y of finite type over k; we have to consider singular
schemes for our induction. We have a smooth proper morphism X/B — X/G
with fiber G/B. Define a homomorphism of motivic homology groups
(that is, higher Chow groups) ¢y : H,(X/G, R(*))®N — H,(X/B, R(x)) by
(x1, ..., xy) > Y e;mw*(x;). For a trivial principal bundle X = Y x; G over
Y, ¢ is an isomorphism, since G /B has a cell decomposition.

Next, let f: X — Y be a principal G-bundle that is trivialized by a finite flat
morphism Z — Y of degree d. Then ¢ is anisomorphism. Let X; = X xy Z;
then we have finite flat morphisms f: X;/B — X/Band f: X;/G =7 —
X/G =Y of degree d. For both maps, f.f* equals multiplication by d on
motivic homology. It follows that ¢y becomes an isomorphism after inverting
d.

Fix a prime number p not dividing #(G). It suffices to show that ¢ is an
isomorphism after localizing at p. By Grothendieck’s interpretation of the
torsion index, every principal G-bundle over a field is trivialized by a finite
separable extension field of degree prime to p [54, theorem 2]. Therefore, for
any principal G-bundle over a k-variety Y, there is a nonempty open subset
U C Y suchthat G is trivialized on some variety V with a finite etale morphism
V — U of degree prime to p. So ¢y is an isomorphism p-locally.

Let S be a closed subscheme of a k-scheme Y, with U =Y — S. By the
localization sequence for motivic homology, ¢y is an isomorphism if ¢y and ¢g
are isomorphisms. By induction on dimension, the previous paragraph implies
that ¢y is an isomorphism p-locally for every k-scheme Y of finite type. Since p
was any prime not dividing #(G), we have shown that ¢: H.(X/G, R(%))®V —
H.(X/B, R(x¥)) = H.(X/T, R(x)) is an isomorphism, where R = Z[1/t(G)].

O

16.2 Leray spectral sequence for a divisor with
normal crossings

In this section, we construct a spectral sequence converging to the motivic
cohomology of the complement of a divisor with normal crossings in a smooth
scheme. Deligne constructed the analogous spectral sequence for the ordinary
cohomology of complex varieties [30, equation 3.2.4.1]. (The weight filtration
of a smooth complex variety U is defined as the filtration of H*(U, Q) given
by this spectral sequence, using any simple normal crossing compactification
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of U.) In that topological setting, the spectral sequence can be viewed as the
Leray spectral sequence of the inclusion from U into its compactification. One
could ask for a motivic Leray spectral sequence in much greater generality than
Lemma 16.2.

All the spectral sequences we define have the standard cohomological num-
bering, meaning that the differential d, on the E, term has bidegree (r, 1 — r).

Lemma 16.2 Let U'_, D; be a divisor with simple normal crossings in a
smooth scheme E over a field k. For each subset I C {1,...,n}, let D; =
NictD; C E. Then, for each integer j, there is a second-quadrant spectral
sequence

EY' = @, Hy "Dy, 2] + p)) = H} (E — UL, Dy, Z(j).
The E, term is concentrated in rows 0 to 2j and in columns —n to 0.

Proof We write the proof in the language of higher Chow groups (section
6.2). Thus we want to define a spectral sequence, for every integer j:

E{" = ®11=—pCH'*P(D;,2j — q) = CH/(E — U}, D;, 2j — p — q).
For each integer j and scheme X over k, let 7/ (X, %) be Bloch’s chain complex
of abelian groups, whose homology is CH/(X, ). For D C X a divisor, we
have a pushforward map z/~'(D, %) — z/(X,%). For | <ij <--- <i, <n
and 1 < b < a, define a map

27Dy, iy ®) = Zj_aH(Di1 ..... Fpvveniar )

as (—1)’ times the pushforward map. Combining these gives a double
complex

0— zj_”(D]_.ﬂ, *) = o0 —> Gag’zlzj_l(D,-, *) —> zf(E, *) — 0,

where the summands are indexed by the subsets of {1, ..., n}. There is an
obvious map from this double complex to z/(E — UD;, %), given by the flat
pullback map on z/ (E, ). If we can show that this map is a quasi-isomorphism,
then we have the desired spectral sequence converging to CH/(E —
UD;, %), as one of the standard spectral sequences associated to a double
complex.

We show this by induction on n. It is trivial for n =0, and for n = 1,
(z/~NDy, %) — Z/(E, %)) — z/(E — Dy, %) is a quasi-isomorphism as we
want, by the localization theorem on higher Chow groups (Lemma 6.8). In
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general, consider the diagram

(27D, %) ZUDy, %) —— 27Dy —UL,Di %)
(Zj_n-H(DZ---na *) e Z'f(Ea *)) E— Zj(E - U;'l=2Dis *)
(2D %) e Z(E, %) —— Z/(E —U/_D;, %)

where the left complex on the first line is a sum over all subsets I C {1, ..., n}

containing 1, the left complex on the second line is a sum over all subsets
not containing 1, and the third line runs over all subsets. We trivially have a
distinguished triangle in the derived category of abelian groups on the left, and
we have an distinguished triangle on the right by the localization theorem for
the inclusion D; — U?'_,D; - E — U!_,D; (Lemma 6.8). By induction, the
first and second horizontal maps are quasi-isomorphisms. It follows that the
third horizontal map is a quasi-isomorphism, by the five lemma. This completes
the induction.

The E; term is clearly concentrated in columns —n to 0. It is concentrated
inrows 0 to j because Hy, (Y, Z(b)) = 0 for a > 2b and Y any smooth scheme
over k. O

16.3 Eilenberg-Moore spectral sequence in motivic
cohomology

In this section, we prove a motivic Eilenberg-Moore spectral sequence for
principal G-bundles, with G a split reductive group. As an application, the
spectral sequence relates the motivic cohomology of BG with the motivic
cohomology of GL(n)/G, for any affine group scheme G with a faithful
representation G — G L(n).

The first step is to prove the Eilenberg-Moore spectral sequence for a torus
action. This is a result of Krishna’s [82, theorem 1.1].

Corollary 16.3 Let X be a smooth scheme over a field k with a free action
of the torus T = (G,,)" for some natural number n. Suppose that the quotient
X/ T exists as a scheme. For each integer j, there is a second-quadrant spectral
sequence

E" =TorY P1(Z, Hy(X/ T, Z(%))) = Hj™ (X, Z())).

The E, term is concentrated in rows 0 to 2j and in columns —n to 0.
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Here we consider CH*BT = @®;H* (BT, Z(j)) = ®;H*"/(BT) as a
bigraded ring. For bigraded modules M and N over a bigraded ring R,
Torfqy j(M, N) denotes the (¢, j)th bigraded piece of Torf (M, N). We write
M (a, b) for the bigraded module M with bidegrees moved down by (a, b).

Proof Consider the standard representation of T = (G,,)" on A". The A”"-
bundle over X /T associated to this representation contains X as the comple-
ment of a divisor with normal crossings D; U - - - U D,,, corresponding to the
coordinate hyperplanes in A”. Each intersection D; of divisors is the total space
of a vector bundle over X/ T, and hence has the same motivic cohomology as
X/T. So, for each integer j, the spectral sequence of Lemma 16.2 takes the
form:

EP = H M) T, 2 + p)®C) = HE (X, 23))).

For n = 2, this E; term looks like:

0 H(X/T,Z(j - 2) - HX(X/T,Z(j — 1)®* — H*X/T,Z())) 0
0 0 H‘(X/T,\Z(\jjl;)@; 3 H3X/T,Z(j)) 0
0 0 HOX/T,Z(j — 1)®* — H*X/T,Z())) 0
0 0 0 HY(X/T, Z())) 0
0 0 0 HO(X/ T, Z(j)) 0

Moreover, we have an explicit description of the d; differential in this spectral
sequence in terms of pushforward maps for the inclusions D; — D;_;,. The
Chow ring C H*BT is a polynomial ring Z[uy, ..., u,] with |u;| = 1, and the
u; map in C H*(X/ T) to the first Chern classes of the n obvious line bundles on
X/T. The pushforward map for the inclusion D; — Dj_y,,; is multiplication
by u,,, when the motivic cohomology rings of both schemes are identified with
the motivic cohomology of X/T. Therefore, the E| term with its differential
is a complex that computes Tor$" 87(Z, H*(X/ T, Z(%))), using the Koszul
resolution of Z as a module over the bigraded polynomial ring R = CH*(BT)
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(Lemma 3.11):
0— R(=2n,—n) — ---— RO (=4, -2) > RO(=2, - 1) > R > Z — 0.

Thus the E, term of the spectral sequence is the Tor group we want. The E,
term vanishes outside the range mentioned, by the corresponding vanishing in
Lemma 16.2. O

We now deduce a motivic Eilenberg-Moore spectral sequence for actions of
G L(n). In fact, we get a weaker statement (inverting finitely many primes) for
any split reductive group. For our applications, we only need the case of G L(n)
or more generally products of groups G L(n;), in which case the torsion index
is 1. (The torsion index is defined in section 16.1.)

Theorem 16.4 Let X be a smooth scheme over a field k with an action of a
split reductive group G. Let t(G) be the torsion index of G. For each integer j,
there is a second-quadrant spectral sequence

E}" =Tor! BO(Z, HE(X, Z(x)[1(G) '] = HP (X, Z(j)[(G)™'].

The E, term is concentrated in rows 0 to 2j and in columns —rank(G) fo 0.

Proof Equivariant motivic cohomology is defined as the motivic cohomology

of suitable quotient schemes of free G-actions. So it suffices to prove the

theorem when G acts freely on X, with quotient X/G a scheme over k.
Consider the map of fibrations

X —— X/T —— BT

1

X —— X/G — BG.

By Lemma 16.3, we have a spectral sequence

Eyt = TorC) P (Z. H*(X/T. Z(»)) = H"™ (X, Z(j)).

By Theorem 16.1, after inverting the torsion index #(G), C H*BT becomes
a finitely generated free C H* BG-module, with basis elements ey, ..., ¢, in
C H* BT . Moreover, again with #(G) inverted, the motivic cohomology of X/ T
is a free module over the motivic cohomology of X /G, with the same basis
er, ..., en. By flat base change for Tor [149, proposition 3.2.9], we have

TorC? BT(Z, A @cr-pc CH*BT)[t(G)™'] = TorC" BO(Z, A)[1(G)™']

for any C H*BG-module A. Applying this with A the motivic cohomology
of X/G, we deduce that the E, term of the spectral sequence above can be
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rewritten (after inverting 7(G)) as

ED = Tor" B9 (Z, H(X, Z)[H(G) ™.

Thus we have the spectral sequence of Eilenberg-Moore type for G, converging
to the motivic cohomology of X. O

In particular, the Eilenberg-Moore spectral sequence of Theorem 16.4 allows
us to relate the motivic cohomology of GL(n)/G and BG for any group G, as
follows.

Corollary 16.5 Let G be an affine group scheme over a field k with a faithful
representation G — G L(n). For each integer j, there is a spectral sequence

E}? = TorS) "7H(Z, Hyy(BG, Z(x) = Hji ™ (GL(n)/ G, Z())).

Proof This is exactly Theorem 16.4 for the action of GL(n) on GL(n)/G,
using that G L(n) has torsion index 1. O

To emphasize that the motivic Eilenberg-Moore spectral sequence has good
properties that do not hold in topology, note that Corollary 16.5 implies Theo-
rem 5.1 as a very special case. We restate Theorem 5.1 as:

Theorem 16.6 Let G be an affine group scheme over a field k with a faithful
representation V of dimension n. Then

CH*GL(n)/G = CH*BG/(cV,...,cyV).

As a result, CH*BG is generated as a module over the Chern classes
Zc1V, ..., c,V]byelements of degree at most n> — dim(G). It follows that the
ring C H* BG is generated by elements of degree at most max(n, n> — dim(G)).

Proof We need to show that CH*(GL(n)/G) =Z Qcu+pcrmn) CH*BG.
Consider the spectral sequence of Theorem 16.5 converging to
Hy(GL(n)/G,Z(j)). The group Z ®cu+pcrmy CH*BG in degree j is at
the upper right corner of the rectangle in which the E, term of the spec-
tral sequence may be nonzero. So it is the only group contributing to
CH/(GL(n)/G) = Hfj(GL(n)/G, Z(j)), and there are no differentials into
or out of it. O

Remark 16.7 Let us check that the Eilenberg-Moore spectral sequence of
Theorem 16.4 does not hold without inverting the torsion index. Suppose that
the spectral sequence holds integrally, for a split reductive group G over a field
k. By the proof of Theorem 16.6, the spectral sequence implies that the natural
map CH*(X/G) @cu+pc Z — CH*X is an isomorphism, for any principal
G-bundle X — X /G over k. Taking X = G, this would imply that the Chow
ring of G as a variety is Z in degree 0. But Grothendieck showed that CH*G is
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the quotient of C H*(G/B) by the ideal generated by Hom(B, G,,) = CH' BB
[54]. It follows that C H*G is nonzero p-locally in positive degrees for every
prime number p that divides #(G). (If CH>°(G/B) is generated by CH' BB
as an ideal, then C H*(G/B) would be generated by C H' BB as an algebra, by
induction on the grading of C H*(G/B).) For example, CH'SOQB)c is Z/2,
not zero.
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The Chow Kunneth Conjecture

For smooth schemes X and Y over a field k, the product map CH*X ®z
CH*Y — CH*(X x Y) is rarely an isomorphism. The early calculations of
Chow rings of classifying spaces raised the unexpected possibility that they
might satisfy the Chow Kiinneth formula, meaning that CH*BG ®7z CH*X —
CH*(BG x X) is an isomorphism for all smooth schemes X over a field &,
provided that k contains enough roots of unity [138, section 6]. This would in
particular imply that C H* BG g is the same for all fields K containing k. Thus
the Chow Kiinneth property, when it holds, is a strong rigidity property for the
Chow groups of classifying spaces.

Conjecture 17.1 Let G be a finite group of exponent e. Let k be a field such
that the order of G is invertible in k and k contains the eth roots of unity. Then
the product map

CH*BG, @z CH*X — CH*(BG x; X)
is an isomorphism for every smooth scheme X of finite type over k.

Conjecture 17.1 is interesting even in the special case where k is algebraically
closed. In that case, one can expect the conjecture to hold for all affine group
schemes G of finite type over k.

Some assumption that k contains enough roots of unity is essential in Con-
jecture 17.1. For example, B(Z/n)qg does not satisfy the Chow Kiinneth
formula for n odd. Indeed, CH'B(Z/ n)g = Hom(Z/n, Q") = 0, whereas
CH'B(Z/n)x = Hom(Z/n, K*) is isomorphic to Z/n for a number field K
containing the nth roots of unity. This disproves the Chow Kiinneth formula
for the product

B(Z/n)q %spec @ Spec K = B(Z/n)k.
One can also check that CH*B(Z/3)q ®z CH*B(Z/3)q — CH*B(Z/3 x

Z/3)q is not surjective.

210
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The Suslin rigidity theorem says (in particular) that for any smooth scheme
X over an algebraically closed field k, and any algebraically closed field K
containing k, the motivic cohomology with finite coefficients of X maps iso-
morphically to that of Xk [126, corollary 2.3.3]. It follows that the Chow ring
CH*BGj is unchanged under extensions of algebraically closed fields &, for
a finite group G. But that does not explain why C H* BG seems to remain
unchanged for arbitrary field extensions.

One partial explanation for why classifying spaces over sufficiently large
fields seem to satisfy the Chow Kiinneth property is that any linear variety
X satisfies the Chow Kiinneth property: CH, X ®z CH,.Y — CH.(X x Y)
is an isomorphism for every Y [140]. Moreover, Joshua showed that linear
varieties satisfy a natural generalization of the Kuinneth property that applies
to all motivic homology groups [74]. Linear varieties are defined inductively:
a scheme over a field is linear if it can be stratified as a disjoint union of
finitely many locally closed subsets, each of which is an affine space of some
dimension minus a lower-dimensional linear variety. For abelian groups and
wreath product groups as in Lemma 2.12, over a field k with enough roots of
unity, the classifying space BG can be approximated by linear varieties, and
that implies the Chow Kiinneth formula for such groups G. (By the comments
above, it follows that B(Z/3)q cannot be approximated by linear varieties
over Q.)

On the other hand, linear varieties cannot provide the full explanation, if we
hope to prove the Chow Kiinneth formula for all finite groups. Indeed, Saltman
and Bogomolov gave examples of p-groups G such that the quotient by G of
a faithful complex representation is never a rational variety [17]. A fortiori,
we cannot approximate BG by linear varieties for those groups G. Even for a
group G such that quotient varieties are rational, we have to work hard (with
no guarantee of success) to show that BG is approximated by linear varieties.
It is natural to look for other ways to prove the Chow Kiinneth formula.

We get some information by relating Chow groups to representation theory.
To state this, let e be the exponent of a finite group G. Brauer showed that the
representation theory of a finite group G is “the same” over all fields K such
that |G| is invertible in K and K contains the eth roots of unity [124, theorem
24].

Lemma 17.2 Let G be afinite group. The geometric filtration of the represen-
tation ring KOG (K) is independent of the field K when K contains the algebraic

closure Q of Q.

Proof We know by Brauer that the inclusion Q C K induces an isomor-
phism KG(Q) = K§(K). Clearly FieomKE(Q) is contained in FieomKS (K),
and we want to show that equality holds. If not, then (looking at the small-
est j for which the filtrations differ) there is a natural number i such that
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gr;eom KEQ) — grgeomK J(K) is surjective but not injective. If we can show
that gréeom K§ Q) — gréeom K§(K) is injective for all i, then we have the same
injectivity for Q mapping into K, and we are done.

Let u € gri.,, K5 (Q) be an element that maps to zero in grl,,, K5 (K). To
state this concretely, let V be a representation of G over Q such that G acts
freely on V on an open subset U with V — U of codimension at least i + 1.
Then our assumption means that u can be represented by some coherent sheaf
with support of codimension at leasti 4+ 1 on (U/G)g. It follows that u can be
represented by some coherent sheaf of codimension at leasti + 1 on (U/G),
for some finitely generated field L over Q. Think of L as the function field of
a smooth variety ¥ over Q. Then, after possibly replacing ¥ by a dense open
subset, u is represented by a coherent sheaf of codimension at least i + 1 on
(U/G) xg Y. By restricting to some Q-rational point of ¥ (these being Zariski
dense in Y), it follows that u is represented by a coherent sheaf of codimension
at least i + 1 on the Q-variety U/G. Thus grh, K§'(Q) = grh, K5 (K) is
injective, as we want. O

Corollary 17.3 Let G be a finite group. Then the p-local Chow ring
(CH*BG)(p) is independent of the field K containing Q in degrees < p.

Proof The surjection CH'BGg — gri.BG is an isomorphism p-locally

geom

for all i < p by Theorem 2.25. Then the result follows from Lemma 17.2. [

It is tempting to try to extend this argument to prove that (CH' BGg)(,) is
independent of the field K containing Q(u.) fori < p, where e is the exponent
of a p-Sylow subgroup of G.

Beyond these results in degree at most p, our methods explain the Chow
Kiinneth formula in all degrees for a certain class of groups, in the version that
the Chow ring is unchanged under field extensions.

Theorem 17.4 Let G be a finite group, p a prime number, P a p-Sylow
subgroup of G. Consider G as an algebraic group over Q. Suppose that P has a
faithful representation of dimension n over Q with c irreducible summands such
that n — ¢ < p. Then the homomorphism (CH*BGg)p) — CH*(BGy)p) is

an isomorphism for all fields k containing Q.

Proof By Suslin’s rigidity theorem as discussed above, we know that this
homomorphism is injective for all fields k containing Q. To prove this p-local
surjectivity, it suffices to show that the homomorphism ¢ : CHéa — CHg, of
mod p Chow rings is surjective. By Theorem 11.1, C H* BGy, is generated by
transferred Euler classes for every field k containing Q. These classes are all
defined over Q. O
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For many groups, our calculations show that the Chow ring is the same over
all fields with enough roots of unity, not just those that contain Q. For example,
we showed in Chapter 13 that for all 14 groups of order 16, the Chow ring
is the same for all base fields of characteristic not 2 that contain the eth roots
of unity, where e is the exponent of G. Likewise for the 5 groups of order p3
with p odd (Section 13.2), the 15 groups of order 81, and 13 of the 15 groups
of order p* with p > 5, those for which we could make the calculation in
Chapter 14.
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Open Problems

(1) Yagitaconjectured that algebraic cobordism 2* BG maps isomorphically
to MU*BG for every complex algebraic group G [154, conjecture 12.2]. Since
Q' BG maps to the topological cobordism MU? BG, this would in particular
imply that MU*BG is concentrated in even degrees. Another consequence
would be that the Chow ring of BG maps isomorphically to MU*BG ® yy+ Z.
A natural test case is the finite group G of 4 x 4 strictly upper-triangular
matrices over F, for p odd, since the Morava K -theory K (2)°¥BG is nonzero
in that case by Kriz and Lee [83, 84].

(2) In this book, we have concentrated on the mod p Chow ring of clas-
sifying spaces BG. One can try to extend both the general methods and the
explicit calculations to richer theories, such as the integral Chow ring, motivic
cohomology, or algebraic cobordism.

It would be interesting to prove general bounds and make systematic calcula-
tions for the Bloch-Ogus spectral sequence H, (BG, Hé )= H,(BG, F,),
for an affine group scheme G over a field k. Guillot proi\jzed several results in
this direction [63]. The spectral sequence is closely related to the motivic coho-
mology of BG; in particular, Hy, (BG, Hy, ) is the mod p Chow group C Hj,.
The output of the spectral sequence is essentially the ordinary cohomology
of BG. The group H(BG, Hép) is the group of cohomological invariants for
G-torsors over fields, as defined by Serre [47, part 1, appendix C].

(3) For an odd prime number p and a finite group G, viewed as a complex
algebraic group, does the mod p Chow ring C Hf; consist of transferred Euler
classes? For p = 2, Guillot showed that the answer is no, using the extraspecial
2-group 270 [62].

4) LetV =V, & --- @ V, be afaithful complex representation of minimal
dimension of a p-group G. Find an optimal bound in terms of p and the
dimensions of the irreducible summands V; for the degrees of generators of
H} and C H};. Chapter 7 gives some bounds. One could also ask for bounds in
terms of other invariants, such as the order and the p-rank of G.

214
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(5) Give good bounds for Henn-Lannes-Schwartz’s topological nilpotence
degree do(H}) and do(CH(). Is do(CHE) < do(H(;)/2? Can the bounds in
Theorems 13.17 and 12.7 be improved? The examples in section 13.5 suggest
that these bounds may be improvable for non-p-central p-groups with p odd.

(6) Let p be a prime number, and let k be a field of characteristic not p
that contains the pth roots of unity. Let G be a finite group, viewed as an
algebraic group over k. Is the topological nilpotence degree do(C H) equal to
the supremum of the natural numbers d such that C H}, as a module over the
Steenrod algebra A, contains a nonzero submodule of the form >4 M with M an
unstable .A-module? The known partial results are listed after Conjecture 12.8.
The analogous statement is true for H by Henn-Lannes-Schwartz (Theorem
12.2).

(7) Is CH*BG afinitely generated Z-algebra for every affine group scheme
G over a field? It would suffice to show that CH BG is a finitely generated
abelian group for each i, by Theorem 5.2. Is there an explicit class of generators
that works for any finite group G? In view of Guillot’s example, transferred
Euler classes are not enough in general.

(8) Does the Chow Kiinneth formula hold for arbitrary finite groups (Con-
jecture 17.1)?

(9) Let G be a p-group of rank at most 2, say viewed as an algebraic
group over C. Is the cycle map CH*BG — H®(BG,Z) an isomorphism?
The assumption on the rank seems natural, since the map is not surjective
when G = (Z/p)*. For a p-group G of rank 2, CH*BG — H®(BG,Z) is
surjective at least for p > 5, since Yagita showed that H®Y(BG, Z) consists
of transferred Chern classes in that case [152]. Theorem 14.3 shows that the
map is an isomorphism mod p when, in addition, G has a faithful complex
representation that is the sum of a p-dimensional irreducible representation and
some 1-dimensional representations. Split metacyclic p-groups Z/p”" x Z/p™
are a natural test case for this problem.

(10) For a prlme number p > 5, compute the Chow ring C H for the 1-
dimensional group B from sect1on 14.5. The group B is a central extensmn of
the extraspecial p-group p + by the multiplicative group G,,. Since C H% £ maps
isomorphically to H®"(B B 7)/p (Lemrna 14.5), it is more or less equlvalent
to compute the cohomology of BB. As explained in section 14.5, computing

CH; would finish the computation of the Chow rings of all groups of order

p*.

(11) For a field k of characteristic p > 0, restricted Lie algebras over k are
equivalent to group schemes of height at most 1 [32, section VIIA.8]. As aresult,
the definition of C H* BG gives a definition of the Chow ring of a restricted Lie
algebra. The problem is to understand the Chow rings of restricted Lie algebras,
as systematically as possible. This is a model problem for trying to understand
mod p Chow groups in characteristic p. One goal is to relate the mod p Chow
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rings of smooth varieties in characteristic p to some more computable theory
related to de Rham cohomology.

Lemma 2.18 gives that the Chow ring of a unipotent restricted Lie algebra g
is trivial. One natural problem is to compute the Chow rings of the restricted
simple Lie algebras, which were classified in characteristic p > 11 by Block
and Wilson [16].

(12) Theorem 6.5 shows that for every finite group scheme G over a field
k and every prime number p invertible in k, the mod p Chow ring C H}; has
regularity at most zero. Does this hold for all affine group schemes of finite
type over k and all prime numbers p? The proof of Theorem 6.5 seems not
to work. (The group S = (u,)" acts on the algebraic space X = U\GL(n)/G,
and Chow groups make sense for algebraic spaces by Edidin-Graham [38,
section 6.1]. The difficulty in extending the proof of Theorem 6.5 to G of
positive dimension is that the fixed point sets in X for subgroups of S need not
be closed when G has positive dimension, because X need not be separated.
For example, for the diagonal torus 7' in GL(2), U\N\GL(2)/T is isomorphic to
the line with two origins, a non-separated scheme [67, example I1.2.3.6], and
U\GL(2)/N(T) is an algebraic space that is not a scheme, illustrated by Artin
[3] and named by Kollar a bug-eyed cover [78].)

More strongly, examples suggest that we may have reg(CH{) <
— dim(Gg/B) for every affine group scheme G and every prime number p,
where B is a Borel subgroup (a maximal smooth connected solvable subgroup)
of Gz.

Note added in proof: I found that questions (7) and (8) have negative
answers in general.



Appendix

Tables

The following tables show several invariants of the Chow ring for the p-groups
of order at most p*. Each p-group G of exponent e is viewed as an algebraic
group over any field of characteristic not p that contains the eth roots of unity.
The format was suggested by Kuhn’s tables of dyo(H[) and related invariants
for the 2-groups of order at most 64 [85, appendix A]. Most of the information
comes from Chapters 13 and 14, along with calculations in GAP or Macaulay?2
[48]. One observation is that do(C H;) turns out to be small in these examples;
compare Section 13.5.

The tables show the order of a p-group G, its number in GAP’s Small Groups
library [46, 52], the rank of G, the rank c(G) of C = Z(G)[ p], the depth of the
mod p Chow ring C H}, the Chow type (defined in the proof of Theorem 12.7,
to describe the image of CH) — CH{), the topological nilpotence degree
do(C H;) (defined in Section 12.2), and the ranks of all maximal elementary
abelian subgroups of G up to conjugacy.

We say that a group is indecomposable if it cannot be written as the product of
two nontrivial groups. In the list of ranks, “p 4 1 of 2” means p + 1 conjugacy
classes of maximal elementary abelian subgroups of rank 2. The Notes use
several different names for familiar groups, including both Z/n and C(n) for
the cyclic group of order n. We write “?” in a few places, meaning that the
calculation remains to be done.
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Table 1. Indecomposable nonabelian 2-groups of order < 16
Order # Rank ¢(G) Depth Type do(CHS) Ranks Notes
8 3 2 1 2 2] 0 22 D(8)
4 1 1 1 [2] 1 1 018
16 3 3 2 3 [2,1] 0 3
4 2 2 2 [2,1] 1 2 Z/4 x Z/4
6 2 1 1 2] 1 2 Mod(16)
7 2 1 2 2] 0 22 D(16)
8 2 1 1 2] 1 2 SD(16)
9 1 1 1 2] 1 1 0(16)
13 2 1 2 2] 0 222  DE®)xC4)
Table 2. Indecomposable nonabelian 3-groups of order < 81
Order # Rank «¢(G) Depth Type do(CH5) Ranks Notes
27 3 2 1 2 [3] 0 2,222 EQ27)
4 2 1 1 (3] 1 2 Mod(27)
81 3 3 2 2 [3,1] 2 3
4 2 2 2 [3,1] 1 2 7/9 x Z/9
6 2 1 1 3] 1 2 Mod(81)
7 3 1 2 3] 0 23 Z/3:2)3
8 2 1 1 [3] 1 2,2
9 2 1 2 3] 0 2222 Syl (Us(8)
10 2 1 1 [31] 2 2
4 2 1 1 (3] 1 2222 EQ7)%C©O)

Table 3. Indecomposable nonabelian p-groups of order < p* for p > 5

Order # Rank ¢(G) Depth Type dy(CHE) Ranks Notes
P 3 2 1 1 [p] 2 p+1of2 E(p®)
4 2 1 1 [p] 1 2 Mod(p?)
p* 3 3 2 2 [p,1] 2 3
4 2 2 2 [p, 1] 1 2 Z/p* x 7/ p*
6 2 1 1 [p] 1 2 Mod(p*)
7 3 1 ? [p] ? pof2; 3
8 3 1 ? [p] ? 3
9 2 1 1 [p] 1 2,2
10 2 1 1 [p] 1 2,2
14 2 1 1 [p] 1 p+1of2 E(p?)xC(p?
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