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B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK, B. SIMON, B. TOTARO

204 Group Cohomology and Algebraic Cycles



CAMBRIDGE TRACTS IN MATHEMATICS

GENERAL EDITORS
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Preface

Group cohomology reveals a deep relation between algebra and topology. A
group determines a topological space in a natural way, its classifying space.
The cohomology ring of a group is defined to be the cohomology ring of its
classifying space. The challenges are to understand how the algebraic properties
of a group are related to its cohomology ring, and to compute the cohomology
rings of particular groups.

A fundamental fact is that the cohomology ring of any finite group is finitely
generated. So there is some finite description of the whole cohomology ring
of a finite group, but it is not clear how to find it. A central problem in group
cohomology is to find an upper bound for the degrees of generators and relations
for the cohomology ring. If we can do that, then there are algorithms to compute
the cohomology in low degrees and therefore compute the whole cohomology
ring.

Peter Symonds made a spectacular advance in 2010: for any finite group
G with a faithful complex representation of dimension n at least 2 and any
prime number p, the mod p cohomology ring of G is generated by elements of
degree at most n2 [130]. Not only is this the first known bound for generators of
the cohomology ring; it is also nearly an optimal bound among arbitrary finite
groups, as we will see.

This book proves Symonds’s theorem (Corollary 4.3) and several new vari-
ants and improvements of it. Some involve algebro-geometric analogs of the
cohomology ring. Namely, Morel-Voevodsky and I independently showed how
to view the classifying space of an algebraic group G (e.g., a finite group) as
a limit of algebraic varieties in a natural way. That allows the definition of the
Chow ring of algebraic cycles on the classifying space BG [107, proposition
2.6]; [138]. A major goal of algebraic geometry is to compute the Chow ring for
varieties of interest, since that says something meaningful about all subvarieties
of the variety.

xi
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The fact that not all the cohomology of BG is represented by algebraic cycles
(even for abelian groups G) is the source of Atiyah-Hirzebruch’s counterexam-
ples to the integral Hodge conjecture [8, 137, 138]. It is a natural problem of
“motivic homotopy theory” to understand the Chow ring and more generally
the motivic cohomology of classifying spaces BG. Concretely, computing the
Chow ring of BG amounts to computing the Chow groups of the quotients
by G of all representations of G. Such quotients are extremely special among
all varieties, but they have been fundamental examples in algebraic geometry
for more than 150 years. Computing their Chow groups is a fascinating prob-
lem. (Rationally, the calculations are easy; the interest is in integral or mod p

calculations.)
Bloch generalized Chow groups to a bigraded family of groups, now called

motivic cohomology. A great achievement of motivic homotopy theory is the
proof by Voevodsky and Rost of the Bloch-Kato conjecture [145, theorem
6.16]. A corollary, the Beilinson-Lichtenbaum conjecture (Theorem 6.9), says
that for any smooth variety over a field, a large range of motivic cohomol-
ogy groups with finite coefficients map isomorphically to etale cohomology.
Etale cohomology is a more computable theory, which coincides with ordinary
cohomology in the case of complex varieties. Thus the Beilinson-Lichtenbaum
conjecture is a powerful link between algebraic geometry and topology.

Chow groups are the motivic cohomology groups of most geometric interest,
but they are also farthest from the motivic cohomology groups that are com-
puted by the Beilinson-Lichtenbaum conjecture. A fundamental difficulty in
computing Chow groups is “etale descent”: for a finite Galois etale morphism
X → Y of schemes, how are the Chow groups of X and Y related? This is easy
after tensoring with the rationals; the hard case of etale descent is to compute
Chow groups integrally, or with finite coefficients. Etale descent is well under-
stood for etale cohomology, and hence for many motivic cohomology groups
with finite coefficients.

The problem of etale descent provides some motivation for trying to compute
the Chow ring of classifying spaces of finite groups G. Computing the Chow
ring of BG means computing the Chow ring of certain varieties Y which have a
covering map X → Y with Galois group G (an approximation to EG → BG)
such that X has trivial Chow groups. Thus the Chow ring of BG is a model
case in seeking to understand etale descent for Chow groups.

Chow rings can be generalized in various ways, for example, to algebraic
cobordism and motivic cohomology. Another direction of generalization leads
to unramified cohomology, cohomological invariants of algebraic groups [47],
and obstructions to rationality for quotient varieties [17, 76]. All of these
invariants are worth computing for classifying spaces, but we largely focus on
the most classical case of Chow rings. Some of our methods will certainly be
useful for these more general invariants. For example, finding generators for the
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Chow ring of a smooth variety automatically gives generators of its algebraic
cobordism, by Levine and Morel [96, theorem 1.2.19].

This book mixes algebraic geometry and algebraic topology, and few read-
ers will have all the relevant background. With that in mind, I include brief
introductions to several of the theories we use. Chapter 1 introduces group
cohomology. Chapter 2 summarizes the basic properties of the Chow ring of a
smooth variety without proof, and then introduces equivariant Chow rings in
more detail, including some calculations. I hope this allows topologists who
have seen a little algebraic geometry to get some feeling for Chow rings. How-
ever, large parts of the book are devoted to group cohomology, including many
new results, and topologists may prefer to concentrate on those parts.

An explicit bound for the degrees of generators of the Chow ring of BG,
of the same form as Symonds’s bound for cohomology, was given in 1999
[138, theorem 14.1]. The first new result of this book is to improve the earlier
bound for the Chow ring by about a factor of two: for any finite group G with
a faithful complex representation of dimension n at least 3, the Chow ring of
BG is generated by elements of degree at most n(n − 1)/2. Moreover, this
improved bound is optimal, for all n (Chapter 5).

For a p-group, Chapter 7 gives a stronger bound for the degrees of generators
of the cohomology ring and the Chow ring. For the cohomology ring of a p-
group, this result goes well beyond Symonds’s general bound. The case of
p-groups is central in the cohomology theory of finite groups, with many
questions reducing to that case. It may be that these bounds for p-groups can
be improved further.

Chapter 8 proves some of the fundamental theorems on the cohomology
and Chow ring of a finite group. First, there is Quillen’s theorem that, up to
F -isomorphism (loosely, “up to pth powers”), the cohomology ring of a finite
group is determined by the inclusions among its elementary abelian subgroups.
We prove Yagita’s theorem that the Chow ring of a finite group, up to F -
isomorphism, has the same description in terms of the elementary abelian
subgroups. It follows that the cycle map from the Chow ring of a finite group
to the cohomology ring is an F -isomorphism.

Next, we give a strong bound for the degrees of generators of the Chow ring
of a finite group modulo transfers from proper subgroups. In particular, for a
group with a faithful representation of dimension n and any prime number p,
the mod p Chow ring is generated by elements of degree less than n modulo
transfers from proper subgroups (Corollary 10.5). (In fact, we only need to con-
sider transfers from a particular class of subgroups, centralizers of elementary
abelian p-subgroups.) This result reduces the problem of finding generators for
the Chow ring of a given group to the problem of finding generators for the
Chow groups of certain low-dimensional quotient varieties. Symonds proved
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the analogous very strong bound for the cohomology ring of a finite group mod-
ulo transfers from proper subgroups, and we give a version of his argument
(Corollary 10.3).

In examples, the Chow ring of a finite group G always turns out to be simpler
than the cohomology ring, and it seems to be closely related to the complex
representation theory of G. In that direction, I conjectured that the Chow ring
of any finite group was generated by transfers of Euler classes (top Chern
classes) of complex representations [138]. That was disproved by Guillot for a
certain group of order 27, the extraspecial 2-group 21+6

+ [62]. It would be good
to find similar examples at odd primes. Nonetheless, the theorem on the Chow
ring modulo transfers gives a class of p-groups for which the question has a
positive answer. Namely, the Chow ring of a p-group with a faithful complex
representation of dimension at most p + 2 consists of transferred Euler classes
(Theorem 11.1). This includes all 2-groups of order at most 32, and all p-groups
of order at most p4 with p odd.

We extend Symonds’s theorem on the Castelnuovo-Mumford regularity of
the cohomology ring to the Chow ring of the classifying space of a finite group
(Theorem 6.5). We also bound the regularity of motivic cohomology (Theorem
6.10). It follows, for example, that all our bounds on generators for the Chow
ring also lead to bounds on the relations. In each case, our upper bound for
the degree of the relations is twice the bound for the degree of the generators.
Another application is an identification of the motivic cohomology of a clas-
sifying space BG in high weights with the ordinary (or etale) cohomology.
This statement goes beyond the range where motivic cohomology and etale
cohomology are the same for arbitrary varieties, as described by the Beilinson-
Lichtenbaum conjecture.

Let G be a finite group with a faithful complex representation of dimension n.
Chapter 12 shows that the cohomology of G is determined by the cohomology
of certain subgroups (centralizers of elementary abelian subgroups) in degrees
less than 2n. This was conjectured by Kuhn, who was continuing a powerful
approach to group cohomology developed by Henn, Lannes, and Schwartz
[86, 69]. We also prove an analogous result for the Chow ring: the Chow ring
of a finite group is determined by the cohomology of centralizers of elementary
abelian subgroups in degrees less than n. This is a strong computational tool,
in a slightly different direction from the bounds for degrees of generators. The
proof is inspired by Kuhn’s ideas on group cohomology.

For a finite group G, Henn, Lannes, and Schwartz found that much of the
complexity of the cohomology ring of G is described by one number, the “topo-
logical nilpotence degree” d0 of the cohomology ring. This number is defined
in terms of the cohomology ring as a module over the Steenrod algebra, but it is
also equal to the optimal bound for determining the cohomology of G in terms
of the low-degree cohomology of centralizers of elementary abelian subgroups.
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Section 13.5 gives the first calculations of the topological nilpotence degree d0

for some small p-groups, such as the groups of order p3. In these examples,
d0 turns out to be much smaller than known results would predict. Improved
bounds for d0 would be a powerful computational tool in group cohomology.

To understand the cohomology of finite groups, it is important to compute the
cohomology of large classes of p-groups. The cohomology of particular finite
groups such as the symmetric groups and the general linear groups over finite
fields F (with coefficients in Fp for p invertible in F ) were computed many
years ago by Nakaoka and Quillen. The calculations were possible because
the Sylow p-subgroups of these groups are very special (iterated wreath prod-
ucts). To test conjectures in group cohomology, it has been essential to make
more systematic calculations for p-groups, such as Carlson’s calculation of
the cohomology of all 267 groups of order 26 [26, appendix]. More recently,
Green and King computed the cohomology of all 2328 groups of order 27 and
all 15 groups of order 34 or 54 [51, 52]. In that spirit, we begin the systematic
calculation of Chow rings of p-groups. Chapter 13 computes the Chow rings
of all 5 groups of order p3 and all 14 groups of order 16. Chapter 14 computes
the Chow ring for all 15 groups of order 34 = 81, and for 13 of the 15 groups of
order p4 with p ≥ 5. Most of the proofs use only Chow rings, but the hardest
cases also use calculations of group cohomology by Leary and Yagita.

One tantalizing example for which the Chow ring is not yet known is the
group G of strictly upper triangular matrices in GL(4, Fp), which has order
p6. The machinery in this book should at least make that calculation easier.
For p odd, Kriz and Lee showed that the Morava K-theory K(2)∗BG is not
concentrated in even degrees, disproving a conjecture of Hopkins, Kuhn, and
Ravenel [83, 84]. It seems to be unknown whether the complex cobordism of
BG is concentrated in even degrees in this example. Until this is resolved,
it remains a possibility that the Chow ring of BG may map isomorphically
to the quotient MU∗(BG) ⊗MU ∗ Z of complex cobordism for every complex
algebraic group G (including finite groups), as conjectured in [138]. Yagita
strengthened this conjecture to say that algebraic cobordism �∗BG should
map isomorphically to the topologically defined MU∗BG for every complex
algebraic group G [154, conjecture 12.2].

Chapter 15 gives examples of p-groups for any prime number p such that
the geometric and topological filtrations on the complex representation ring are
different. When p = 2, Yagita has also given such examples [156, corollary
5.7]. A representation of G determines a vector bundle on BG, and these two
filtrations describe the “codimension of support” of a virtual representation
in the algebro-geometric or the topological sense. Atiyah conjectured that the
(algebraically defined) γ -filtration of the representation ring was equal to the
topological filtration [6], but that was disproved by Weiss, Thomas, and (for
p-groups) Leary and Yagita [93]. Since the geometric filtration lies between the
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γ and topological filtrations, the statement that the geometric and topological
filtrations can be different is stronger. The examples use Vistoli’s calculation of
the Chow ring of the classifying space of PGL(p) for prime numbers p [143].

Chapter 16 constructs an Eilenberg-Moore spectral sequence in motivic
cohomology for schemes with an action of a split reductive group. The spec-
tral sequence was defined by Krishna with rational coefficients [82, theorem
1.1]. We give an integral result, as far as possible. The Eilenberg-Moore spec-
tral sequence in ordinary cohomology is a basic tool in homotopy theory.
Given the cohomology of the base and total space of a fibration, the spectral
sequence converges to the cohomology of a fiber. The reason for including the
motivic Eilenberg-Moore spectral sequence in this book is to clarify the relation
between the classifying space of an algebraic group and its finite-dimensional
approximations.

Finally, Chapter 17 considers the Chow Künneth conjecture: for a finite group
G and a field k containing enough roots of unity, the natural map CH ∗BGk ⊗Z

CH ∗X → CH ∗(BGk × X) should be an isomorphism for all smooth schemes
X over k. This would in particular imply that the Chow ring of BGK is the
same for all field extensions K of k. Although there is no clear reason to
believe the conjecture, we prove some partial results for arbitrary groups, and
prove the second version of the conjecture completely for p-groups with a
faithful representation of dimension at most p + 2. Chapter 18 is a short list of
open problems. The Appendix tabulates several invariants of the Chow rings
of p-groups of order at most p4.

I thank Ben Antieau and Peter Symonds for many valuable suggestions.



1

Group Cohomology

This chapter gives the topological and algebraic definitions of group cohomol-
ogy. We also define equivariant cohomology.

Although we give the basic definitions, a beginner may have to refer to other
sources. Brown [24] is an excellent introduction to group cohomology. Group
cohomology is also treated in general texts on homological algebra such as
Weibel [149]. Some of the main advanced books on the cohomology of finite
groups are Adem-Milgram [1], Benson [12], and Carlson [26].

Group cohomology unified many earlier ideas in algebra and topology. It
was defined in 1943–1945 by Eilenberg and MacLane, Hopf and Eckmann,
and Freudenthal.

1.1 Definition of group cohomology

Group cohomology arises from the fact that any group determines a topological
space, as follows. Let G be a topological group. The special case where G is
a discrete group is a rich subject in itself. Say that G acts freely on a space X

if the map G × X → X × X, (g, x) 	→ (x, gx), is a homeomorphism from
G × X onto its image. By Serre, if a Lie group G acts freely on a metrizable
topological space X, then the map X → X/G is a principal G-bundle, meaning
that it is locally a product U × G → U [109, section 4.1].

There is always a contractible space EG on which G acts freely. The classi-
fying space of G is the quotient space of EG by the action of G, BG = EG/G.
Any two classifying spaces for G that are paracompact are homotopy equiva-
lent [72, definition 4.10.5, exercise 4.9]. If G is a discrete group, a classifying
space of G can also be described as a connected space with fundamental group
G whose universal cover is contractible, or as an Eilenberg-MacLane space
K(G, 1).

1



2 Group Cohomology

The cohomology of the classifying space of a topological group G is well-
defined, because the classifying space is unique up to homotopy equivalence.
In particular, for any commutative ring R, the cohomology H ∗(BG,R) is a
graded-commutative R-algebra that depends only on G. For a discrete group
G, we call H ∗(BG,R) the cohomology of G with coefficients in R; confusion
should not arise with the cohomology of G as a topological space, which is
uninteresting for G discrete. A fundamental challenge is to understand the
relation between algebraic properties of a group and algebraic properties of its
cohomology ring.

The cohomology of a group G manifestly says something about the coho-
mology of certain quotient spaces. More generally, for any space X on which
G acts freely, there is a fibration

X → (X × EG)/G → BG,

where the total space is homotopy equivalent to X/G. The resulting spec-
tral sequence H ∗(BG,H ∗X) ⇒ H ∗(X/G), defined by Hochschild and Serre,
shows that the cohomology of G gives information about the cohomology of
any quotient space by G.

Another role of the classifying space of a group G is that it classifies principal
G-bundles. By definition, a principal G-bundle over a space X is a space E

with a free G-action such that X = E/G. The classifying space BG classifies
principal G-bundles in the sense that for any CW-complex X, there is a one-to-
one correspondence between isomorphism classes of principal G-bundles over
X and homotopy classes of maps X → BG. (Explicitly, we have a “universal”
G-bundle EG → BG, and a map f : X → BG defines a G-bundle over X by
pulling back: let E be the fiber product X ×BG EG.)

Therefore, computing the cohomology of the classifying space gives infor-
mation about the classification of principal G-bundles over an arbitrary space.
Namely, an element u ∈ Hi(BG,R) gives a characteristic class for G-bundles:
for any G-bundle E over a space X, we get an element u(E) ∈ Hi(X,R), by
pulling back u via the map X → BG corresponding to E.

A homomorphism G → H of topological groups determines a homotopy
class of continuous maps BG → BH . For example, we can view this as the
obvious map (EG × EH )/G → EH/H = BH . As a result, given a commu-
tative ring R, a homomorphism G → H determines a “pullback map” on group
cohomology:

H ∗(BH,R) → H ∗(BG,R)

Example The classifying space of the group Z/2 can be viewed as the infinite
real projective space RP∞ = ∪n≥0RPn. Its cohomology with coefficients in the
field F2 = Z/2 is a polynomial ring,

H ∗(BZ/2, F2) = F2[x],
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where x has degree 1. On the finite-dimensional approximation RPn to BZ/2,
x restricts to the class of a hyperplane RPn−1 ⊂ RPn.

Example The classifying space of the general linear group GL(n, C) can be
viewed as the Grassmannian Gr(n,∞) of n-dimensional complex linear sub-
spaces in C∞. The cohomology of this classifying space is a polynomial ring,

H ∗(BGL(n, C), Z) = Z[c1, . . . , cn].

A standard reference for this calculation is Milnor-Stasheff [106, theorem
14.5]. (We determine the Chow ring of BGL(n) in Theorem 2.13, by a method
that also works for cohomology.) These generators c1, . . . , cn are called Chern
classes. They have degrees |ci | = 2i, meaning that ci ∈ H 2i(BGL(n, C), Z).

There is an equivalence of categories between rank-n complex vector
bundles V over a space X and principal GL(n, C)-bundles E over X; given
E, we define V = (E × Cn)/GL(n, C). Therefore, the Chern classes give
invariants for complex vector bundles V over any space X, ci(V ) ∈ H 2i(X, Z).

Note that GL(n, C) deformation retracts onto the unitary group U (n). (For
a matrix in GL(n, C), the columns form a basis for Cn. The Gram-Schmidt
process shows how to move them continuously to an orthonormal basis for Cn,
which can be identified with an element of U (n).) It follows that the resulting
continuous map BU (n) → BGL(n, C) is a homotopy equivalence. So the
previous calculation can be restated as H ∗(BU (n), Z) = Z[c1, . . . , cn].

As a result, for any compact Lie group G (e.g., a finite group), any complex
representation G → U (n) has Chern classes ci ∈ Hi(BG, Z) for i = 1, . . . , n,
defined by the pullback map H ∗(BU (n), Z) → H ∗(BG, Z). We can also say
that a representation of G determines a vector bundle on BG, and these are
the Chern classes of that bundle.

Although we won’t need this, it is interesting to note that for compact
Lie groups G and H , a continuous map BG → BH need not be homo-
topic to one coming from a homomorphism G → H . Sullivan gave the
first example: for any odd positive integer a, there is an “unstable Adams
operation” ψa : BSU (2) → BSU (2) that induces multiplication by a2 on
H 4(BSU (2), Z) ∼= Z [128, corollaries 5.10, 5.11]. Only the map ψ1 (the iden-
tity map) comes from a group homomorphism SU (2) → SU (2).

1.2 Equivariant cohomology and basic calculations

Let G be a topological group acting on a topological space X. The (Borel)
equivariant cohomology of X with respect to G is Hi

G(X,R) = Hi((X ×
EG)/G,R). That is, we make the action of G free without changing the
homotopy type of X, and then take the quotient by G. In particular, if G acts
freely on X, then equivariant cohomology is simply the cohomology of the



4 Group Cohomology

quotient space, Hi
G(X) = Hi(X/G). At the other extreme, we write Hi

G for the
G-equivariant cohomology of a point (with a given coefficient ring, which we
usually take to be the field Fp = Z/p for a prime number p):

Hi
G := Hi

G(point, Fp) = Hi(BG, Fp).

Evens and Venkov proved the finite generation of the cohomology ring of
a finite group. We give Venkov’s elegant proof using equivariant cohomol-
ogy, which works more generally for compact Lie groups [12, vol. 2, theorem
3.10.1]. Venkov’s method helped to inspire Quillen’s work on group cohomol-
ogy and the later developments described in this book.

Theorem 1.1 Let G be a compact Lie group and R a noetherian ring. Then
H ∗(BG,R) is a finitely generated R-algebra. For any closed subgroup H of
G, H ∗(BH,R) is a finitely generated module over H ∗(BG,R).

Here the map BH → BG gives a ring homomorphism H ∗(BG,R) →
H ∗(BH,R), and so we can view H ∗(BH,R) as a module over H ∗(BG,R).

Proof Every compact Lie group G has a faithful complex representation,
giving an imbedding of G into U (n) for some n [20, theorem III.4.1]. Since
H ∗(BU (n), R) = R[c1, . . . , cn] is a finitely generated R-algebra, the first state-
ment of the theorem follows if we can show that H ∗(BG,R) is a finitely gen-
erated module over the ring of Chern classes H ∗(BU (n), R). (This will also
imply the second statement of the theorem: for H ⊂ G ⊂ U (n), H ∗(BH,R)
is a finitely generated module over R[c1, . . . , cn] and hence over H ∗(BG,R).)

The Leray-Serre spectral sequence of the fibration U (n)/G → BG →
BU (n) has the form

E
ij
2 = Hi(BU (n),Hj (U (n)/G,R)) ⇒ Hi+j (BG,R).

Since U (n)/G is a closed manifold, its cohomology groups are finitely gen-
erated and are zero in degrees greater than the dimension of U (n)/G (which
is n2 − dim(G)). So the E2 term of the spectral sequence has finitely many
rows, each of which is a finitely generated module over H ∗(BU (n), R). Since
the ring H ∗(BU (n), R) is noetherian, every submodule of a finitely generated
module over H ∗(BU (n), R) is finitely generated, and hence any quotient of
a submodule is finitely generated. The differentials in the spectral sequence
are linear over H ∗(BU (n), R), and so the E∞ term of the spectral sequence
also has finitely many rows, each of which is a finitely generated module
over H ∗(BU (n), R). Since H ∗(BG,R) is filtered with these rows as quotients,
H ∗(BG,R) is a finitely generated module over H ∗(BU (n), R).

The cohomology of abelian groups is easy to compute. To state the result,
write R〈x1, . . . , xn〉 for the free graded-commutative algebra over a commuta-
tive ring R. This is a graded ring, with given degrees |xi | ∈ Z for the generators,
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which is the tensor product of the polynomial ring on the generators of even
degree with the exterior algebra on the generators of odd degree. We use this
notation only for rings R containing 1/2. (The point is that the cohomology ring
of a topological space with coefficients in any commutative ring R is graded-
commutative in the sense that xy = (−1)|x|||y|yx, but only when R contains
1/2 does this imply that x2 = 0 for x of odd degree. The F2-cohomology ring
of a topological space is commutative in the naive sense.)

Theorem 1.2 The cohomology ring of B(S1)n with any coefficient ring R is
the polynomial ring R[y1, . . . , yn] with |yi | = 2.

The integral cohomology ring of B(Z/n) for a positive integer n is Z[y]/(ny)
with |y| = 2. The generator y can be viewed as the first Chern class of a 1-
dimensional complex representation Z/n ⊂ U (1).

The F2-cohomology ring of B(Z/2) is the polynomial ring F2[x] with |x| = 1.
The F2-cohomology ring of B(Z/2r ) for r ≥ 2 is F2[x, y]/(x2) with |x| = 1
and |y| = 2.

Finally, for an odd prime number p and any r ≥ 1, the Fp-cohomology ring
of B(Z/pr ) is Fp〈x, y〉 with |x| = 1 and |y| = 2.

These results can be proved by viewing BS1 as the infinite projective space
CP∞ and viewing BZ/n as the principal S1-bundle over CP∞ whose first Chern
class is n times a generator of H 2(CP∞, Z). Or one can give an algebraic proof,
as in [1, section II.4]. These results determine the cohomology of BG for any
abelian compact Lie group G using the Künneth formula, since B(G × H ) =
BG × BH .

For any topological space X, the Bockstein β : Hi(X, Z/p) → Hi+1(X, Z)
is the boundary map associated to the short exact sequence of coefficient
groups

0 → Z −→
p

Z → Z/p → 0.

The resulting long exact sequence shows that the Bockstein vanishes on inte-
gral classes. The composition Hi(X, Z/p) −→

β
H i+1(X, Z) → Hi+1(X, Z/p)

is also called the Bockstein. Because the Bockstein vanishes on integral classes,
β2 = 0. The Bockstein is a derivation on the mod p cohomology ring of any
space, in the sense that β(xy) = β(x)y + (−1)|x|x β(y) for x, y in H ∗(X, Z/p)
[68, section 3.E]. We also note that βx = x2 for all x ∈ H 1(X, Z/2).

The Bockstein on mod p cohomology is a convenient way to encode
some information about integral cohomology. For that reason, we record
the Bockstein on the mod p cohomology of the cyclic group Z/pr : in the
preceding notation, βy = 0 since y is an integral class, and βx is equal
to y for r = 1 (where we write y = x2 for the group Z/2) and to zero
for r > 1.



6 Group Cohomology

1.3 Algebraic definition of group cohomology

We now present the purely algebraic definition of the cohomology of a discrete
group. This is good to know, but it is not used in the rest of the book.

The algebraic definition of group cohomology is one answer to the question
of how the algebraic structure of a group determines its cohomology ring. It
does not answer all the questions. For example, what special properties does
the mod p cohomology ring of a finite simple group have? Or a finite p-group?

To give the definition, let G be a discrete group. We can identify modules over
the group ring ZG with abelian groups on which G acts by automorphisms.
Consider the functor from ZG-modules M to abelian groups given by the
invariants MG := {x ∈ M : gx = x for all g ∈ G}. This is a left exact functor,
meaning that a short exact sequence 0 → A → B → C → 0 of ZG-modules
determines an exact sequence:

0 → AG → BG → CG.

We can therefore consider the right-derived functors of MG, which are called the
cohomology of G with coefficients in M , Hi(G,M). In particular, H 0(G,M) =
MG, and a short exact sequence of ZG-modules gives a long exact sequence
of cohomology groups:

0 → H 0(G,A) → H 0(G,B) → H 0(G,C) → H 1(G,A) → · · · .

Moreover, this notion of group cohomology agrees with the topological defini-
tion: for any ZG-module M , H ∗(G,M) is isomorphic to the cohomology of the
topological space BG with coefficients in the locally constant sheaf associated
to M . In particular, if G acts trivially on M , then this is the usual notion of
cohomology of the space BG with coefficients in the abelian group M .

We recall how right-derived functors are defined: choose a resolution

0 → M → I0 → I1 → · · ·
of M by injective ZG-modules and define H ∗(G,M) to be the cohomology of
the chain complex:

0 → IG
0 → IG

1 → · · · .

We can fit group cohomology into a bigger picture by observing that MG =
HomZG(Z,M) for any ZG-module M , where G acts trivially on Z. The derived
functors of Hom are called Ext, and so we have:

Hi(G,M) ∼= ExtiZG(Z,M)

[149]. Ext can also be viewed as the left-derived functor of Hom in the first
variable, and so group cohomology can be computed using either a projective
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resolution of the ZG-module Z or an injective resolution of M . A useful variant
is that if M is a representation of G over a field k, then

Hi(G,M) ∼= ExtikG(k,M).

For example, this definition makes it clear that for a finite group G and prime
number p, there is an algorithm to compute any given cohomology group
Hi(G, Fp). It suffices to work out the first i + 1 steps of a free resolution of Fp

as an FpG-module,

Fi+1 → · · · → F0 → Fp → 0,

which amounts to doing linear algebra over Fp. Then Hi(G, Fp) is the coho-
mology of the chain complex

HomFpG(Fi−1, Fp) → HomFpG(Fi, Fp) → HomFpG(Fi+1, Fp).

There is a standard free resolution of Z as a ZG-module that works for any
group G [12, vol. 1, section 3.4], but it is usually too big for computations.
Rather, the programs that compute the cohomology of finite groups construct
a minimal resolution as far as is needed [51, 52].

Example Let G = Z/p for a prime number p. Write g for a generator of
the group G. Let tr be the element 1 + g + · · · + gp−1, called the trace, in
the group ring FpG. Then Fp has a free resolution as an FpG-module that is
periodic, of the form

· · · → FpG −−→
1−g

FpG −→
tr

FpG −−→
1−g

FpG → Fp → 0.

Taking Hom over FpG from this resolution to Fp, all the differentials become
zero. It follows that Hi(G, Fp) ∼= Fp for every i ≥ 0, in agreement with The-
orem 1.2.

The low-dimensional cohomology groups have simple interpretations. For
any group G and abelian group A, H 1(G,A) can be identified with the abelian
group of homomorphisms G → A. Also, H 2(G,A) is the group of isomor-
phism classes of central extensions of G by A [24, theorem 3.12]. By defi-
nition, an extension of G by A is a group E with normal subgroup A and a
specified isomorphism E/A ∼= G. It is central if all elements of the subgroup
A commute with all elements of E.



2

The Chow Ring of a Classifying Space

The Chow groups of an algebraic variety are an analog of homology groups,
with generators and relations given in terms of algebraic subvarieties. In this
chapter we define Chow groups and state their main formal properties, including
a version of homotopy invariance. Using those properties, we define the Chow
ring of the classifying space of an algebraic group, a central topic of this book.
More generally, we give Edidin and Graham’s definition of the equivariant
Chow ring of a variety with group action. The chapter ends with a discussion of
some open problems about Chow rings of classifying spaces. Examples suggest
that the Chow ring of the classifying space of a group is simpler, and closer
to representation theory, than the cohomology ring is. But we know much less
about general properties of the Chow ring, such as finite generation.

We state the formal properties of Chow groups without proof, using Fulton’s
book as a reference [43]. Building on that, we develop equivariant Chow groups
in more detail. We refer to the papers [138] and [38] for some results, but we
do the basic calculations of equivariant Chow groups.

2.1 The Chow group of algebraic cycles

Let us define Chow groups, following Fulton [43]. We work in the category of
separated schemes of finite type over a field k. A variety over k is a reduced
irreducible scheme (which is separated and of finite type over k, by our assump-
tions). An i-dimensional algebraic cycle on a scheme X over k is a finite
Z-linear combination of closed subvarieties of dimension i. The subgroup of
algebraic cycles rationally equivalent to zero is generated by the elements∑

D ordD(f )D, for every (i + 1)-dimensional closed subvariety W of X and
every nonzero rational function f on W . The sum runs over all codimension-
1 subvarieties D of W , and ordD(f ) is the order of vanishing of f along D

8
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[43, section 1.2]. The Chow group CHi(X) is the group of i-dimensional cycles
modulo rational equivalence.

For a scheme X over the complex numbers, we can give the set X(C)
of complex points the classical (Euclidean) topology, instead of the Zariski
topology. For X over the complex numbers, there is a natural “cycle map”
from the Chow groups of X to the Borel-Moore homology of the associated
topological space [43, proposition 19.1.1], CHi(X) → HBM

2i (X, Z). The Borel-
Moore homology of a locally compact space is also known as homology with
closed support. The numbering is explained by the fact that a subvariety of
complex dimension i has real dimension 2i. The definition of the cycle map
uses the fact that a complex manifold has a natural orientation.

The cycle map is far from being an isomorphism in general. For example,
if X is a smooth complex projective curve, then the Chow group of 0-cycles,
CH0(X), maps onto H0(X, Z) = Z with kernel the group of complex points
of the Jacobian of the curve. The Jacobian is an abelian variety of dimension
equal to the genus of X, and so CH0(X) is an uncountable abelian group when
X has genus at least 1.

A proper morphism f : X → Y of schemes over a field k determines a
pushforward map on Chow groups, f∗ : CHi(X) → CHi(Y ). A flat mor-
phism f : X → Y with fibers of dimension r determines a pullback map,
f ∗ : CHi(Y ) → CHi+r (X). (The morphism f is allowed to have some fibers
empty.) Both types of homomorphism occur in the basic exact sequence for
Chow groups, as follows [43, proposition 1.8].

Lemma 2.1 Let X be a separated scheme of finite type over a field k. Let Z

be a closed subscheme. Then the proper pushforward and flat pullback maps
fit into an exact sequence

CHi(Z) → CHi(X) → CHi(X − Z) → 0.

For X a complex scheme, the basic exact sequence for Chow groups maps
to the long exact sequence of Borel-Moore homology groups:

· · · → HBM
2i (Z,Z) → HBM

2i (X,Z) → HBM
2i (X −Z,Z) → HBM

2i−1(Z,Z) → · · · .

Note the differences between the two sequences. In the exact sequence of
Chow groups, we do not say anything about the kernel of CHiZ → CHiX.
Indeed, the exact sequence of Chow groups can be extended to the left, but that
involves a generalization of Chow groups known as motivic homology groups
(or, equivalently, higher Chow groups); see Section 6.2. But Chow groups are
simpler in one way than ordinary homology: the restriction map to an open
subset is always surjective on Chow groups. Geometrically, this is because the
closure in X of a subvariety of X − Z is a subvariety of X. This phenomenon
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lies behind various ways in which Chow groups behave more simply than
ordinary homology.

Chow groups are homotopy invariant in the following sense. An affine bundle
E → B is a morphism that is locally a product with fibers An. We do not assume
anything about the structure group of the fibration. So the total space of a vector
bundle is an affine bundle, but affine bundles are more general.

Lemma 2.2 For an affine bundle E → B with fibers of dimension n, the
pullback CHiB → CHi+nE is an isomorphism.

Proof One natural approach uses motivic homology groups, a generaliza-
tion of Chow groups. Namely, flat pullback gives an isomorphism from the
motivic homology of any k-scheme B to the motivic homology of B × An

[14, theorem 2.1]. The lemma follows via the localization sequence for motivic
homology [15]. (We state the localization sequence for smooth k-schemes as
Theorem 6.8.)

For a smooth scheme X of dimension n over a field k, we write CHi(X) for
the Chow group of codimension-i cycles, CHi(X) = CHn−i(X). Intersection
of cycles makes the Chow groups of a smooth scheme into a commutative
ring, CHi(X) × CHj (X) → CHi+j (X). Fulton and MacPherson’s approach
to constructing this product first reduces the problem to that of intersecting a
cycle on X × X with the diagonal, and then defines the latter intersection by
deformation to the normal cone [43, chapter 6]. Any morphism f : X → Y

of smooth schemes over k determines a pullback map f ∗ : CH ∗Y → CH ∗X,
which is a homomorphism of graded rings. (When f is flat, this coincides with
the flat pullback map f ∗ : CH∗Y → CH∗X.) For a smooth complex scheme X

of dimension n, Poincaré duality is an isomorphism Hi(X, Z) ∼= HBM
2n−i(X, Z).

So we have a cycle map CH ∗X → H ∗(X, Z), and this is a ring homomorphism,
sending CHi into H 2i .

Note that homotopy invariance of Chow rings (Lemma 2.2) does not mean
that two smooth complex varieties that are homotopy equivalent as topological
spaces (in the classical topology) have isomorphic Chow rings. For example,
an elliptic curve X over C is homotopy equivalent, as a topological space, to
Y = (A1 − 0)2. But CH 1Y is zero by the basic exact sequence of Chow groups
(Lemma 2.1), whereas the abelian group CH 1X is an extension of Z by the
group X(C) ∼= (S1)2 [67, example II.6.10.2, example IV.1.3.7].

A vector bundle E on a smooth scheme X has Chern classes ciE ∈ CHiX,
with the same formal properties as in topology. We record the Chow ring of a
projective bundle, which is given by the same formula as the cohomology ring
of a projective bundle [43, remark 3.2.4, theorem 3.3]:

Lemma 2.3 Let X be a smooth scheme over a field. Let E be a vector bundle
of rank n on X. Let π : P (E) → X be the projective bundle of codimension-1
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linear subspaces of E. Then

CH ∗P (E) ∼= CH ∗X[u]/(un − c1(E)un−1 + · · · + (−1)ncn(E)),

where u is the first Chern class of the quotient line bundle O(1) of π∗E.

It is also useful to know the Chow ring of the total space of a line bundle
minus the zero section. (In the terminology of Section 2.2, this is the Chow
ring of a principal Gm-bundle.) Lemma 2.4 follows from homotopy invariance
of Chow groups (Lemma 2.2) together with the basic exact sequence for Chow
groups (Lemma 2.1). Alternatively, this is [43, example 2.6.3]:

Lemma 2.4 Let X be a smooth scheme over a field k. Let L be a line bundle
over X. View L as a smooth scheme over k with a morphism L → X and zero
section X ⊂ L. Then the Chow ring of L minus the zero section is

CH ∗(L − X) ∼= CH ∗X/(c1L).

By definition, Chow groups contain a huge amount of algebro-geometric
information, but they are very hard to compute for general varieties. Some of
the main problems in algebraic geometry, such as the Hodge conjecture, are
attempts to understand Chow groups.

2.2 The Chow ring of a classifying space

The Chow ring of the classifying space of an algebraic group was defined
in [138] and independently by Morel and Voevodsky [107, proposition 2.6].
Edidin and Graham generalized the definition to define the equivariant Chow
ring and (more generally) equivariant motivic cohomology [38].

Among many applications of equivariant Chow groups, we mention Bros-
nan’s construction of Steenrod operations on mod p Chow groups [21]. In the
more general setting of motivic cohomology, Voevodsky constructed Steenrod
operations as a crucial part of his proof with Rost of the Bloch-Kato con-
jecture. We summarize the properties of Voevodsky’s Steenrod operations in
section 6.3. Voevodsky’s construction includes a computation of the motivic
cohomology of the symmetric groups [144, 146].

A group scheme over a field k is a scheme G over k together with morphisms
G ×k G → G (multiplication), G → G (inverse), and Spec(k) → G (identity)
over k that satisfy the axioms of a group (associativity, identity, and inverse).
Some basic examples of group schemes are the additive group Ga over k,
meaning the curve A1 with group operation being addition, and the multiplica-
tive group Gm over k, meaning the curve A1 − 0 with group operation being
multiplication.
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Let G be a group scheme of finite type over a field k. We say that an action
of G on a separated scheme X of finite type over k is free if the morphism
G ×k X → X ×k X given by (g, x) 	→ (x, gx) is an isomorphism to a closed
subscheme. Given a free action, we say that a scheme Y is the quotient X/G if
Y has finite type over k and we are given a flat surjective morphism f : X → Y

over k such that f is constant on G-orbits and the natural map G ×k X →
X ×Y X is an isomorphism. In this situation, we also say that X → Y is a
principal G-bundle.

Note that the map X → X/G need not be locally a product in the Zariski
topology. For example, the group Z/2 acts freely on A1 − 0 over C by
x 	→ −x, and (A1 − 0)/(Z/2) is isomorphic to A1 − 0, with the quotient map
f : A1 − 0 → A1 − 0 being x 	→ x2. This principal Z/2-bundle is not Zariski
locally trivial. Indeed, for any nonempty open set U ⊂ A1 − 0 (so U is the
complement of a finite set), f −1(U ) is again the complement of a finite subset
in A1 − 0, and so it is connected, in particular not isomorphic to U × (Z/2).
Nonetheless, any principal G-bundle is locally trivial in the “fppf topology”;
that is a restatement of the definition. A readable introduction to group schemes
and principal bundles is Waterhouse [147].

One important result about principal G-bundles X → Y is that there is an
equivalence of categories between G-equivariant vector bundles on X and vec-
tor bundles on Y . What makes this subtle is that vector bundles are Zariski
locally trivial by definition, whereas the morphism X → Y is in general not
Zariski locally trivial. Nonetheless, this equivalence has a straightforward alge-
braic proof, part of Grothendieck’s theory of faithfully flat descent [147, section
17.2]. (The case of descent used here is also known as Hilbert’s Theorem 90.)

Every affine group scheme G of finite type over a field k has a faithful
representation [147, theorem 3.4]. That is, G is isomorphic to a closed subgroup
scheme of GL(n) over k for some natural number n.

For any affine group scheme G of finite type over a field k and any i ≥ 0, we
define the Chow group CHiBG to be CHi(V − S)/G for any representation
V of G over k and any G-invariant closed subset S of V such that G acts freely
on V − S, the quotient (V − S)/G exists as a scheme, and S has codimension
greater than i. This definition of CHiBG is independent of the choices of
V and S, by Theorem 2.5. Moreover, the theorem gives a well-defined ring
CH ∗BG.

The point is that, for G an algebraic group over the complex numbers, BG

is typically an infinite-dimensional topological space, whereas algebraic vari-
eties in the usual sense have finite dimension. But the spaces V − S come
closer and closer to being contractible (in the topological sense) as the codi-
mension of S increases. So a direct limit of the spaces (V − S)/G as the
codimension of S increases is homotopy equivalent to BG. This suggested the
definition of the Chow ring of BG, for an algebraic group G over any field. In
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Morel-Voevodsky’s A1-homotopy category, one can take direct limits of alge-
braic varieties, and so they were able to define BG as an object in their category
[107, proposition 2.6].

In the original papers, G was assumed to be an algebraic group, which is
usually understood to mean a smooth group scheme of finite type over k. (Every
group scheme of finite type over a field k of characteristic zero is smooth over
k [147], but for k of characteristic p > 0 there are non-smooth group schemes
over k, such as μp = {x ∈ Gm : xp = 1} and αp = {x ∈ Ga : xp = 0}. To see
that μp and αp are not smooth over k, note that they have dimension 0, but the
derivative of the defining equation is pxp−1, which is zero because p = 0 in k;
so the Zariski tangent spaces of μp and αp at the identity have dimension 1.) The
assumption of smoothness is not necessary, however. The only observation one
needs to define CH ∗BG for G not smooth is that if E → B is a principal G-
bundle with E smooth over k, then B is also smooth over k. (Apply [99, theorem
23.7] over the algebraic closure of k.) For example, (V − S)/G is smooth over
k even if G is not. We do not make much use of this extra generality.

Theorem 2.5 ([138, theorem 1.1]) Let G be an affine group scheme of finite
type over a field k and let i be a natural number. Let V be a representation of
G over k, and let S be a G-invariant closed subset of V such that G acts freely
on V − S, the quotient (V − S)/G exists as a scheme, and S has codimension
greater than i in V . Then the Chow ring of (V − S)/G in degrees at most i

depends only on G, not on V and S.

Proof To prove the independence of S (given that S has codimension greater
than i in V ), let S ′ be a larger G-invariant closed subset, still with codimen-
sion greater than i. Since G acts freely on V − S, (S′ − S)/G has codimen-
sion greater than i in (V − S)/G. So the restriction map CHj (V − S)/G →
CHj (V − S′)/G is an isomorphism for j ≤ i by the basic exact sequence for
Chow groups (Lemma 2.1). So the Chow ring of (V − S)/G is independent of
S in the range we consider.

The independence of V follows from the double fibration method, used by
Bogomolov and others in invariant theory [17]. That is, consider two repre-
sentations V and W of G such that G acts freely outside subsets SV and SW

of codimension greater than i and such that the quotients (V − SV )/G and
(W − SW )/G exist as varieties. Then consider the direct sum V ⊕ W . The
quotient ((V − SV ) × W )/G exists as a variety, being a vector bundle over
(V − SV )/G (constructed by faithfully flat descent, as discussed earlier in this
section). Likewise the quotient (V × (W − SW ))/G exists as a variety, being
a vector bundle over (W − SW )/G. Independence of S (applied to the repre-
sentation V ⊕ W ) shows that these two total spaces of vector bundles have
the same Chow ring in degrees at most i. By homotopy invariance of Chow
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Figure 2.1 A2/(Z/2), the quadric cone, intersected with a plane.

rings (Lemma 2.2), (V − SV )/G and (W − SW )/G have the same Chow ring
in degrees at most i.

Remark 2.6 Here is a simple example of Chow groups of classifying spaces
that one can visualize; this example appears in Hartshorne [67, example
II.6.5.2]. Consider the group G = Z/2 as an algebraic group over C. We
will shortly compute that CH 1BG is isomorphic to Z/2; here I just want
to explain the geometric meaning of that calculation. Consider a 2-dimensional
complex vector space V on which the generator of G acts by −1. Then G

acts freely on V outside the origin S. Since S has codimension 2 in V , we
have CH 1BG = CH 1(V − S)/G. Thus the computation of CH 1BG means
that CH 1(V − S)/G is isomorphic to Z/2. Equivalently, the Chow group
CH1(V/G) is isomorphic to Z/2; removing the singular point from the geo-
metric quotient V/G does not change this Chow group, by the basic exact
sequence (Lemma 2.1). Since CH1(V/G) is the Chow group of codimension-1
cycles on the surface V/G, it is also called the divisor class group of V/G.

Here V/G is the affine quadric cone {(x, y, z) ∈ A3 : xz = y2} over C, with
the morphism V → V/G given by (u, v) 	→ (u2, uv, v2) (Figure 2.1). The
generator A of CH1(V/G) is the class of any line through the origin in this
cone. The fact that 2A = 0 can be seen geometrically by intersecting a plane
through the origin in A3 with the cone V/G; you always get a sum of two lines,
or (if the plane is tangent to the cone) 2 times a line. (A plane is the divisor of
a rational function on A3, namely a linear function, and so its intersection with
V/G (with multiplicities) is zero in CH1(V/G).)



2.2 The Chow ring of a classifying space 15

Figure 2.2 A2/Q8, the D4 surface singularity.

Another example one can visualize is the quotient of V = A2
C by the quater-

nion group G = Q8, which is isomorphic to the “D4 singularity” z2 = x2y − y3

in A3
C (Figure 2.2). The full Chow ring CH ∗(BG)/2 is computed in Lemma

13.1. Here CH 1BG ∼= CH1(V/G) is isomorphic to Z/2 ⊕ Z/2, generated by
the three lines A,B,C through the origin in V/G that are visible in the figure.
These classes satisfy 2A = 2B = 2C = 0 in CH1(V/G) (by intersecting V/G

with a tangent plane along any of the three lines) and A + B + C = 0 (by
intersecting V/G with a plane containing the three lines).

Remark 2.7 ([138, remark 1.4]) If G is a finite group, then the geometric
quotient V/G exists as an affine variety for all representations V of G [108,
amplification 1.3]. So (V − S)/G is a quasi-projective variety for all closed
subsets S ⊂ V such that G acts freely on V − S.

For any affine group scheme G over a field k and any positive integer s,
there is a representation V of G and a closed subset S ⊂ V of codimension
at least s such that G acts freely on V − S and (V − S)/G exists as a quasi-
projective variety. To see this, let W be any faithful representation W of G,
and let n = dim(W ). Let V = Hom(AN+n,W ) ∼= W⊕N+n for N large. Let S

be the closed subset in V of non-surjective linear maps AN+n → W . Then S

has codimension N + 1 in V , as one easily counts. Also, (V − S)/G exists
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as a quasi-projective variety. Indeed, (V − S)/GL(n) is the Grassmannian
Gr(N,N + n) of N -dimensional linear subspaces of AN+n, which we can view
as the homogeneous space GL(N + n)/((GL(N ) × GL(n)) � Hom(An,AN )).
Therefore (V − S)/G is the homogeneous space GL(N + n)/((GL(N ) ×
G) � Hom(An,AN )). Any quotient of a linear algebraic group by a closed
subgroup scheme exists as a quasi-projective scheme [147, pp. 122–123]. So
(V − S)/G is a quasi-projective variety.

Moreover, the natural map GL(N + n)/(GL(N ) × G) → (V − S)/G is an
affine bundle. By homotopy invariance of Chow groups (Lemma 2.2), it follows
that

CHiBG ∼= CHi GL(N + n)/(GL(N ) × G)

for all i ≤ N .

One reason to be interested in the Chow ring of BG is that it is equal to the
ring of characteristic classes for principal G-bundles over smooth k-schemes,
in the following sense [138, theorem 1.3].

Theorem 2.8 Let G be an affine group scheme of finite type over a field k.
Then the group CHiBG defined above is naturally identified with the set of
assignments α to every smooth k-scheme X with a principal G-bundle E over
X of an element α(E) ∈ CHiX, such that for any morphism f : Y → X over
k we have α(f ∗E) = f ∗(α(E)). The ring structure on CH ∗BG is the obvious
one on the set of characteristic classes.

2.3 The equivariant Chow ring

We now consider a generalization. For an affine group scheme G over a field k

that acts on a smooth k-scheme X, the equivariant Chow ring CH ∗
GX is defined

by CHi
GX = CHi(X × (V − S))/G for any representation V of G over k and

any closed G-invariant subset S of V such that G acts freely on V − S, the
quotient (X × (V − S))/G exists as a scheme, and S has codimension greater
than i. Again, CH ∗

GX is independent of the choices of V and S [38]. The paper
[38] defines equivariant Chow groups for any G-scheme X, but since we take
X to be smooth, the groups CH ∗

GX form a graded ring. (Briefly, the point is
that the quotients (X × (V − S))/G are smooth when X is smooth.)

The condition that (X × (V − S))/G is a scheme does not pose a difficulty.
First, under mild assumptions on X and G, there are many pairs (V, S) for
which (X × (V − S))/G is a scheme and S has codimension as big as we like,
by Remark 2.7 and [38, proposition 23]. Second, (X × (V − S))/G always
exists as an algebraic space, and once one defines Chow groups for algebraic
spaces, one can define CHi

GX using any (V, S) such that G acts freely on
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V − S and S has codimension greater than i. This is the preferred approach in
Edidin-Graham [38, section 6.1].

Kresch extended the definition of equivariant Chow groups to define Chow
groups for any algebraic stack of finite type over a field [81].

Since equivariant Chow groups are defined as the Chow groups of auxiliary
varieties, the formal properties of Chow groups imply analogous properties
for equivariant Chow groups, of which we mention the main ones. First, for a
smooth scheme X with G-action over the complex numbers, we have a cycle
map

CHi
GX → H 2i

G (X, Z)

and in particular

CHiBG → H 2i(BG, Z).

Next, a proper morphism f : X → Y of smooth G-schemes over a field k

determines a pushforward map on equivariant Chow groups, f∗ : CHi
G(X) →

CH
i+dim(Y )−dim(X)
G (Y ). Any morphism f : X → Y of smooth G-schemes deter-

mines a pullback map, f ∗ : CHi
GY → CHi

GX, and f ∗ is a ring homomorphism.
Both types of homomorphism occur in the basic exact sequence for equivariant
Chow groups, as follows.

Lemma 2.9 Let G be an affine group scheme of finite type over a field k that
acts on a smooth k-scheme X and preserves a smooth closed k-subscheme Y of
codimension r . Then the proper pushforward and flat pullback homomorphisms
give an exact sequence

CHi−r
G Y → CHi

GX → CHi
G(X − Y ) → 0.

There are also homomorphisms relating equivariant Chow rings for different
groups. (These are analogous to the formal properties of equivariant coho-
mology.) First, for any homomorphism G → H of k-group schemes and any
H -scheme X over k, we have a ring homomorphism CH ∗

H X → CH ∗
GX. In

particular, this gives a pullback homomorphism CH ∗BH → CH ∗BG. (We
can view that as the pullback map on Chow groups associated to a morphism of
smooth varieties that approximates (EG × EH )/G → EH/H = BH . Here
we use the notation EG for a contractible space with free G-action, when G is
a topological group; we think of the smooth varieties V − S as approximating
EG when G is a k-group scheme.) There is also a “transfer” map in the other
direction, discussed in Section 2.5.

When we talk about the Chow ring of BG for a finite group G, we are
thinking of G as an algebraic group over some field. One common choice of
base field is the complex numbers.
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For an affine group scheme G over a field k, any representation G → GL(n)
over k determines a rank-n vector bundle over BG (that is, over the finite-
dimensional varieties (V − S)/G that approximate BG), by the equivalence
between principal GL(n)-bundles and vector bundles. It follows that an n-
dimensional representation V of G over k has Chern classes ci ∈ CHiBG for
1 ≤ i ≤ n, the Chern classes of the corresponding vector bundle.

2.4 Basic computations

In this section, we compute the Chow ring of the classifying space for abelian
groups and the general linear group GL(n). We prove some partial results
on the Künneth formula for Chow rings of classifying spaces; the general
Chow Künneth formula is an open problem, to which we return in Chapter 17.
Finally, we explain that Chow rings of classifying spaces are easy to compute
with rational coefficients.

Theorem 2.10 Let k be a field. The Chow ring of B(Gm)r is the polynomial
ring Z[y1, . . . , yr ] with |yi | = 1.

Let k be a field, and let n be a positive integer. Let μn be the group scheme of
nth roots of unity, the kernel of the nth power map on Gm over k. Then the Chow
ring of Bμn is isomorphic to Z[y]/(ny) with |y| = 1. The generator y is the first
Chern class of the natural 1-dimensional representation μn ⊂ GL(1) over k.

If n is invertible in k and k contains a primitive nth root of unity, then μn

is isomorphic to Z/n as an algebraic group over k, and so the Chow ring of
B(Z/n)k is isomorphic to Z[y]/(ny) with |y| = 1.

Proof Let Va be the direct sum of a copies of the natural 1-dimensional rep-
resentation of the multiplicative group Gm. Then Gm acts freely on Va − 0, and
(Va − 0)/Gm

∼= Pa−1. Since the point 0 has codimension a in Va , the Chow ring
of BGm is defined to agree with the Chow ring of Pa−1 in degrees at most a − 1.
We know that CH ∗(Pa−1) ∼= Z[y]/(ya), with |y| = 1, for example by Lemma
2.3. It follows that CH ∗(BGm) ∼= Z[y]. Likewise, B(Gm)r is approximated by
products of r projective spaces, whose Chow ring is given by the projective
bundle formula (Lemma 2.3). It follows that CH ∗B(Gm)r ∼= Z[y1, . . . , yr ].

We can view Va as a representation of μn ⊂ Gm. The quotient (Va − 0)/(μn)
is the principal Gm-bundle over Pa−1 whose first Chern class is n times the
generator of CH 1Pa−1 ∼= Z. We can view this Gm-bundle as the line bundle
O(n) minus the zero section. By Lemma 2.4,

CH ∗(Va − 0)/(μn) ∼= CH ∗(Pa−1)/(c1(O(n)))

= Z[y]/(ya, ny),

where |y| = 1. It follows that CH ∗Bμn
∼= Z[y]/(ny).
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For smooth varieties X and Y over a field k, the product map CH ∗X ⊗Z

CH ∗(Y ) → CH ∗(X × Y ) need not be an isomorphism. For example, if X is an
elliptic curve, then the class of the diagonal in CH 1(X × X) is not in the image
of CH ∗X ⊗Z CH ∗X. It is an open question whether the Künneth formula
(meaning that this product map is an isomorphism) holds for the Chow ring
of the product of two finite groups, viewed as groups over C. That does hold
in many cases such as abelian groups over C [138, section 6]. The following
lemma is a bit more general. Lemma 2.12 is already interesting when the base
field is the complex numbers, but we assume as little as we can about the base
field.

Definition 2.11 For a subgroup G of the symmetric group Sn and a group H ,
the wreath product G � H is the semidirect product group G � Hn, where G

acts on Hn by permuting the factors.

Lemma 2.12 Let G be a group scheme over a field k that satisfies one of the
following assumptions. Then the product map

CH ∗BG ⊗Z CH ∗X → CH ∗(BG × X)

is an isomorphism for all smooth schemes X of finite type over k. It follows
that for these groups G, CH ∗BG ⊗Z CH ∗BH → CH ∗B(G × H ) is an iso-
morphism for all affine group schemes H of finite type over k.

(i) G is the multiplicative group Gm.
(ii) G is a finite abelian group of exponent e viewed as an algebraic group

over k, e is invertible in k, and k contains the eth roots of unity.
(iii) G is an iterated wreath product Z/p � · · · � Z/p � Gm over k, p is invertible

in k, and k contains the pth roots of unity.
(iv) G is an iterated wreath product Z/p � · · · � Z/p � A for a finite abelian

group A of exponent e, viewed as an algebraic group over k. Also, p and
e are invertible in k and k contains the pth and eth roots of unity.

Proof The assumptions imply that BG can be approximated by smooth linear
varieties over k in the sense of [140], by the proof of [138, lemma 9.1]. This
implies the Chow Künneth formula for BG × X with X arbitrary, by the
discussion after [138, lemma 6.1].

For example, let G be an elementary abelian p-group (Z/p)n, considered
as an algebraic group over the complex numbers. Then Lemma 2.12 implies
that CH ∗(BG)/p ∼= Fp[y1, . . . , yn] with |yi| = 1. Notice that this is simpler
than the cohomology of BG. For example, for p odd, H ∗(BG, Fp) is the free
graded-commutative algebra

Fp〈x1, . . . , xn, y1, . . . , yn〉,
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where |xi | = 1 and |yi | = 2. In this case, the ring homomorphism
CH ∗(BG)/p → H ∗(BG, Fp) (which takes CHi to H 2i) is injective, and the
image is the polynomial subring Fp[y1, . . . , yn] of the cohomology ring.

Another way in which the Chow ring is simpler is that the Chow ring of
(Z/p)n is generated by Chern classes of complex representations, whereas
that fails for the cohomology ring (whether we use Z or Fp coefficients).
The even-degree subring H ev(B(Z/p)n, Z) is generated by Chern classes for
n ≤ 2, but not for n ≥ 3. Group cohomology with F2 coefficients has a tighter
relation to representation theory provided by Stiefel-Whitney classes of real
representations. Indeed, the F2-cohomology ring of any finite abelian group is
generated by Stiefel-Whitney classes; this has some analogy with the relation
between the Chow ring and Chern classes. To avoid undue optimism, note
that Gunawardena-Kahn-Thomas exhibited a group G of order 25 such that
H 2(BG, F2) is not generated by Stiefel-Whitney classes or even by transfers
of Stiefel-Whitney classes [66, pp. 337–338].

Here is a fundamental calculation. Let GL(n) denote the general linear group
over any field k.

Theorem 2.13 The Chow ring of BGL(n) is isomorphic to Z[c1, . . . , cn],
with |ci | = i. The generators are called the Chern classes.

Proof There is a natural rank-n vector bundle V on BGL(n) (that is, on the
finite-dimensional smooth varieties U/GL(n) that approximate BGL(n)), by
the equivalence between principal GL(n)-bundles and vector bundles. Tak-
ing the Chern classes of V gives a ring homomorphism Z[c1, . . . , cn] →
CH ∗BGL(n), which we want to show is an isomorphism.

For any vector bundle E of rank n on a smooth scheme X over k, let
Fl(E) → X denote the bundle of flags 0 ⊂ E1 ⊂ E2 · · · ⊂ En = E in E, where
Ei is a linear subspace of dimension i for all i. We can view this flag bundle as
an iterated projective bundle. (Explicitly, Fl(E) is a bundle over the projective
bundle π : P(E) → X with fiber Fl(En−1), where En−1 is the kernel of the
surjection π∗E → O(1).) By induction on the rank of E, the projective bundle
formula (Lemma 2.3) gives that

CH ∗Fl(E) ∼= CH ∗X[y1, . . . , yn]/(ei(y1, . . . , yn) = ciE),

where yi is the first Chern class of the bundle Ei/Ei−1 on Fl(E), and ei denotes
the ith elementary symmetric function, for i = 1, . . . , n.

Let B be the group of upper-triangular matrices in GL(n). Then GL(n)/B
is the variety of flags in the vector space An over k. We have a fibration

GL(n)/B → BB → BGL(n)

that makes BB the flag bundle Fl(V ) over BGL(n). (To be rigorous, U/B is
the flag bundle Fl(V ) over U/GL(n), for the finite-dimensional approximations
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U/GL(n) of BGL(n).) It follows that

CH ∗BB ∼= CH ∗BGL(n)[y1, . . . , yn]/(ei(y1, . . . , yn) = ciV ).

On the other hand, the Borel subgroup B of GL(n) is the semidirect product
(Gm)n � N where N is the group of strictly upper-triangular matrices. The
unipotent group N is an iterated extension of copies of the additive group Ga .
Using homotopy invariance of Chow groups (Lemma 2.2), one deduces that
CH ∗BB is isomorphic to CH ∗B(Gm)n = Z[y1, . . . , yn].

The homomorphism Z[c1, . . . , cn] → BGL(n) gives a homomorphism ϕ

from

Z[c1, . . . , cn, y1, . . . , yn]/(ei(y1, . . . , yn) = ci)

to

CH ∗BGL(n)[y1, . . . , yn]/(ei(y1, . . . , yn) = ciV ) ∼= CH ∗BB.

The composition of ϕ with the isomorphism of the latter ring to Z[y1, . . . , yn]
is clearly an isomorphism; so ϕ is an isomorphism. But ϕ is the direct sum of
n! copies of the homomorphism Z[c1, . . . , cn] → CH ∗BGL(n) (indexed by
the monomials y

a1
1 · · · yan

n with 0 ≤ ai ≤ i − 1, for example). It follows that
Z[c1, . . . , cn] → CH ∗BGL(n) is an isomorphism.

Finally, the following result shows that Chow rings of classifying spaces are
easy to compute after tensoring with the rationals. So we will be concerned
mostly with integral or mod p calculations.

Theorem 2.14 For any affine algebraic group G over C, the natural map

CH ∗BG ⊗ Q → H ∗(BG, Q)

is an isomorphism.

Proof We use the notion of a unipotent group scheme from Section 2.7. By
definition, a smooth connected affine group G over a field k is reductive if
every smooth connected unipotent subgroup of Gk is trivial. Over a perfect
field k, every smooth connected affine k-group G has a unique maximal normal
unipotent subgroup U , called the unipotent radical of G, and the quotient group
G/U is reductive [18, section 11.21].

Let k be the complex numbers. The theorem was proved by Edidin and
Graham for complex reductive groups, as part of a more general statement about
equivariant Chow groups [38, proposition 6]. That implies the same statement
for any connected group G, using homotopy invariance of Chow rings (Lemma
2.2) to show that G has the same equivariant Chow ring as the quotient of G by
its unipotent radical. The result follows for arbitrary complex algebraic groups
by reducing to the connected case using transfers as in Section 2.5. (That is,
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one shows that CH ∗(BG) ⊗ Q = (CH ∗(BG0) ⊗ Q)G/G0 , where G0 denotes
the identity component of G, and similarly for rational cohomology.)

In more detail, the surjectivity of CH ∗BG → H ∗(BG, Q) for any complex
algebraic group G follows from the fact that H ∗(BG, Q) is generated by Chern
classes of complex representations of G, for every complex algebraic group
G [87, proof of theorem 1]. The injectivity, in the main case of a complex
reductive group G, follows from analyzing the fibration BB → BG with fiber
the flag manifold G/B, where B is a Borel subgroup of G. This argument also
gives more precise results about the relation between CH ∗BG and H ∗(BG, Z)
for G reductive in terms of the “torsion index” of G [139, theorem 1.3]. (We
define the torsion index in section 16.1.)

2.5 Transfer

For H a closed subgroup scheme of finite index in an affine k-group scheme
G, there is an abelian group homomorphism trGH : CHiBH → CHiBG called
transfer. (Indeed, for U/G a finite-dimensional approximation to BG, the
morphism U/H → U/G is finite since H has finite index in G, and transfer is
proper pushforward on Chow groups.) There is also a transfer homomorphism
on cohomology, trGH : Hi(BH,R) → Hi(BG,R), when H is a closed subgroup
of finite index in a compact Lie group G.

We list some of the formal properties of the transfer on Chow groups. Accord-
ing to the additive properties (in particular the double coset formula (iii)), for
a finite group G viewed as an algebraic group over a field k, the assignment
H 	→ CH ∗BH for subgroups H of G is a Mackey functor. According to the
multiplicative properties (in particular, that CH ∗BH is a commutative ring
for each subgroup H of G, together with the projection formula (i)), H 	→
CH ∗BH is a Green functor [148]. Group cohomology H 	→ H ev(BH,R) for
subgroups H of G is also a Green functor [24, proposition III.9.5]. For a sub-
group H ⊂ G, write resG

H for the restriction map CH ∗BG → CH ∗BH . For a
subgroup H ⊂ G and an element g ∈ G, write x 	→ gx for the isomorphism
CH ∗BH → CH ∗B(gHg−1) given by conjugation by g.

Lemma 2.15
(i) (Projection formula) Let H be a closed subgroup scheme of finite index in

an affine k-group scheme G. Then the transfer trGH : CH ∗BH → CH ∗BG

is a homomorphism of CH ∗BG-modules, where CH ∗BH is viewed as a
CH ∗BG-module by pullback.

(ii) We have trGH (1) = [G : H ]. (For general group schemes, the index [G : H ]
means the dimension of the k-vector space of regular functions on G/H .)
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(iii) (Double coset formula) Let K and H be subgroups of a finite group G,
viewed as an algebraic group over a field k. Then

resG
K trGHx =

∑
g∈K\G/H

trKK∩gHg−1resgHg−1

K∩gHg−1gx

for x in CH ∗BH .
(iv) Let H be a normal subgroup of a finite group G, viewed as an algebraic

group over a field k. Then

resG
H trGHx =

∑
g∈G/H

gx

for x in CH ∗BH .

Proof These follow from the properties of proper pushforward on Chow
groups of smooth varieties, since each Chow group CHiBG is defined as
CHi(V − S)/G for a suitable smooth variety (V − S)/G. In more detail, (i) is
proved in [43, example 8.1.7]. To prove (ii), use that the pushforward map on
Chow groups for finite morphisms commutes with flat pullback [43, proposition
1.7]. Thus, to compute the degree of the finite map U/H → U/G, it suffices to
compute the degree of the pulled back map U × G/H → U , which is easy by
definition of the algebraic cycle associated to a subscheme [43, lemma 1.7.1,
section 1.5].

We use the following lemma, a special case of [43, proposition 6.6(c)].

Lemma 2.16 Let Y → Z be a finite etale morphism of smooth schemes over
a field k, and let X → Z be any morphism of smooth schemes over k. Consider
the fiber product

X ×Z Y ��

��

Y

��

X �� Z

Then pushforward commutes with pullback, as homomorphisms CHiY →
CHiX.

Lemma 2.16 gives (iii) by considering the pullback of the finite morphism
BH → BG along the morphism BK → BG. (iv) is a special case of (iii).

Using these properties, the basic applications of the transfer in group coho-
mology also work for Chow rings. For example, from properties (i) and (ii), the
transfer and restriction maps satisfy trGH (x|H ) = [G : H ]x for any x ∈ CH ∗BG.
Applying this to the trivial group H = 1 ⊂ G, we deduce that the abelian group
CHiBG is killed by |G| for any finite k-group scheme G and any i > 0.
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Also, let G be a finite group, p a prime number, and consider the Chow
ring modulo p, CH ∗

G = CH ∗(BG)/p. For P a Sylow p-subgroup of G, we
have trGP resG

P (x) = [G : P ]x in CH ∗
G, where [G : P ] is a unit in Fp. It follows

that CH ∗
G is a summand of CH ∗

P . By the same argument, H ∗
G is a summand of

H ∗
P . For this reason, many questions about Chow rings or cohomology of finite

groups can be reduced to questions about p-groups.
Cartan and Eilenberg gave an explicit description of H ∗

G as the subring of
“stable elements” in H ∗

P [24, theorem III.10.3]. The same statement holds
for any cohomological Mackey functor (meaning one that satisfies property
(ii) above) taking values in Z(p)-modules, such as mod p Chow rings [148,
corollary 3.7, proposition 7.2]. Namely, an element x in CHi

P is in the image
of CHi

G if and only if for every subgroup H of P and every element g ∈ G

such that gHg−1 is contained in P , g(x|H ) = x|gHg−1 .

2.6 Becker-Gottlieb transfer for Chow groups

Becker and Gottlieb defined a transfer map on cohomology for any closed
subgroup of a compact Lie group, not necessarily of finite index [94]. I extended
Becker-Gottlieb transfer to Chow groups, and it was written up by Vezzosi
[142, theorem 2.1]. We present the construction in this section. More generally,
Becker-Gottlieb transfer can be viewed as a stable map in Morel-Voevodsky’s
A1-homotopy category [107]. Using that machinery, it may be possible to
generalize Theorem 2.17 to fields of any characteristic. (The proof as written
requires a smooth G-equivariant compactification of G/N (T ) by a divisor with
simple normal crossings, for G a reductive group over a field and T a maximal
torus in G. No such compactification seems to be known explicitly, even for
G = GL(n).)

By definition, a torus over a field k is a k-group scheme that becomes
isomorphic to (Gm)n over the algebraic closure of k, for some natural number
n. A torus is split if it is isomorphic to (Gm)n over k.

Theorem 2.17 Let G be a smooth affine group scheme over a field k of
characteristic zero such that the identity component G0 is reductive. Let T be
a maximal torus in G and N (T ) its normalizer in G. Then the restriction map

CH ∗BG → CH ∗BN (T )

is split injective, as a map of CH ∗BG-modules.

Proof Let X be a smooth projective variety over a field k, and let D = ∪r
i=1Di

be a divisor with simple normal crossings on X. The vector bundle �1(log D)
on X of 1-forms with log poles along D can be defined as the sheaf of rational
1-forms α such that both α and dα have at most simple poles along D. In etale
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local coordinates where D = {x1 · · · xm = 0} ⊂ An, �1
X(log D) has a basis of

sections consisting of dx1/x1, . . . , dxm/xm, dxm+1, . . . , dxn. We refer to [40,
chapter 2] for the various exact sequences involving �1(log D). In particular,
for each component Di of D, we have the residue exact sequence

0 → �1
Di

(log Di ∩ (∪j �=iDj )) → �1
X(log D)|Di

→ ODi
→ 0.

The logarithmic tangent bundle T X(− log D) is defined as the dual bundle
(�1(log D))∗ on X. Equivalently, T X(− log D) is the sheaf of vector fields on
X that are tangent to D on the smooth locus of D.

Since we are considering varieties over a field k of characteristic zero, we
can define the Euler characteristic of a variety by reducing to the case where k

is a subfield of C and using ordinary cohomology (say, with compact support
and rational coefficients): χ (X) = ∑

(−1)i dimQ Hi
c (X, Q). One could also

define the Euler characteristic using l-adic cohomology. For a smooth proper
n-fold over k, the Euler characteristic χ (X) is equal to the degree of the top
Chern class of the tangent bundle cn(T X) ∈ CHnX [43, example 8.1.12],
[104, theorem 12.3]. Using the exact sequences for the logarithmic tangent
bundle and the additivity properties of the Euler characteristic, it follows that
for any smooth proper variety X with a simple normal crossing divisor D,
χ (X − D) = ∫

X
cn(T X(− log D)).

Now let g : U → B be a smooth morphism between smooth k-schemes that
admits a smooth relative compactification f : X → B. That is, U is open in
X, f is a smooth proper morphism, X − U is a divisor with simple normal
crossings ∪iDi , and all intersections DI = ∩i∈IDi are smooth over B. Let n

be the dimension of the fibers. Define a modified pushforward g
 : CHjU →
CHjB, Becker-Gottlieb transfer on Chow groups, by

g
(x) = f∗(̃xcn(TX/B(− log D)))

for any lift x̃ of x to CHjX. Here the relative logarithmic tangent bundle
TX/B(− log D) is a vector bundle of rank n on X. By the basic exact sequence
of Chow groups (Lemma 2.1), to show that g
 is well-defined (independent of
the lift x̃), it suffices to show that the formula gives zero for the pushforward to
X of a cycle on Di for some i. That holds because cn(TX/B(− log D)) restricts
to zero in CHnDi . Indeed, the rank-n vector bundle TX/B(− log D) restricted to
Di contains a trivial line sub-bundle, by the dual of the residue exact sequence
for �1

X/B(log D).
The transfer g
 : CH ∗U → CH ∗B is CH ∗B-linear. Write F for any fiber

of g. Then we have

g
 ◦ g∗ = χ (F )
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by the projection formula, since cn(TX/B(− log D)) restricts on each fiber of
X → B to a zero-cycle of degree χ (F ). A priori, the homomorphism g
 may
depend on the compactification X of U , but that does not matter for our purpose.

Let G be a smooth affine group scheme over a field k such that the identity
component G0 is reductive. Let T be a maximal k-torus in G. Grothendieck
showed that T remains a maximal torus over the algebraic closure k [18,
theorem 18.2]. Also, all maximal tori in G0

k
are conjugate by elements of G0(k)

[18, corollary 11.3]. It follows that the normalizer N (T ) in G meets every
connected component of Gk . (Indeed, given a point x in G(k), xT x−1 is a
maximal torus in G0, and so there is an element g in G0(k) with gxT x−1g−1 =
T . Then gx is a k-point of N (T ) in the connected component of x.) Therefore,
the morphism G0/NG0 (T ) → G/NG(T ) is an isomorphism.

For a reductive group H (which is connected, by definition) with maximal
torus T over a field k, the scheme X = H/NH (T ) has Euler characteristic 1.
Indeed, this is a geometric statement, meaning that we can replace k by an
extension field. So we can assume that T is contained in a Borel subgroup
B of H . The Bruhat decomposition expresses H/B as the disjoint union of
cells (affine spaces) indexed by the Weyl group W = N (T )/T [18, theorem
14.12]. So χ (H/B) = |W |. By homotopy invariance of ordinary cohomology,
it follows that χ (H/T ) = |W |. The Euler characteristic is multiplicative under
finite etale morphisms since k has characteristic zero, and so χ (H/N (T )) =
χ (H/T )/|W | = 1. (Alternatively, one can show directly that H/N (T ) has the
Ql-cohomology of a point; that works for k of any characteristic.)

Two paragraphs back, we showed that G0/NG0 (T ) = G/NG(T ). By the
previous paragraph, it follows that χ (G/NG(T )) = 1.

We apply the transfer map g
 to the fibration G/N (T ) → BN (T ) → BG.
To be precise, consider the fibration G/N (T ) → U/N(T ) → U/G over a
finite-dimensional approximation U/G to BG. Since k has characteristic zero,
the smooth variety F = G/N (T ) has a smooth G-equivariant compactification
F with complement a divisor with simple normal crossings, by equivariant
resolution of singularities [79, proposition 3.9.1]. Let X be the F -bundle over
U/G associated to the G-action on F . Then the beginning of this proof gives
a homomorphism g
 : CH ∗BN (T ) → CH ∗BG such that g
 ◦ g∗ = 1, using
that χ (G/N (T )) = 1. So CH ∗BG is a summand of CH ∗BN (T ) as a CH ∗BG-
module.

2.7 Groups in characteristic p

Morel and Voevodsky observed that for G a finite etale group scheme of order
a power of p over a field k of characteristic p, the classifying space BG is A1-
homotopy equivalent to Spec k [107, proposition 3.3]. (By definition, G is etale
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over k if it is smooth of dimension zero.) We now prove a slight generalization.
We make no further use of this, but it justifies concentrating on p-groups over
fields of characteristic not p in the rest of the book. It might be interesting
to explore the Chow ring and motivic cohomology for finite connected group
schemes over a field k of characteristic p that are not unipotent, such as the
kernel of the Frobenius homomorphism in GL(n) or in other reductive groups.
We have already seen that the Chow ring of Bμp over k is nontrivial (Theorem
2.10).

Lemma 2.18 Let G be a unipotent group scheme over a field k. Then BG is
A1-homotopy equivalent to Spec k. In particular, CHiBG = 0 for i > 0.

By definition, a group scheme over a field k is unipotent if it is isomorphic to
a closed subgroup scheme of the group of strictly upper triangular matrices in
GL(n) over k for some n. Every finite etale group scheme of order a power of p

over a field of characteristic p is unipotent [32, définition XVII.1.3, théorème
XVII.3.5(ii)].

Proof Embed G as a closed subgroup scheme of the group U of strictly upper
triangular matrices in GL(n) for some n. Then U is a split unipotent group over
k, meaning that it is an iterated extension of copies of the additive group Ga

over k. (Every smooth connected unipotent group over a perfect field is split,
although we don’t need that fact [18, theorem 15.4].)

Let G be embedded in a split unipotent group U over k. I claim that we can
identify the classifying space BG with the finite-dimensional variety U/G. (For
our purpose, that just means that CH ∗BG ∼= CH ∗(U/G), although in fact the
argument shows that BG and U/G are isomorphic in Morel-Voevodsky’s A1-
homotopy category.) Namely, for any approximation (V − S)/G to BG as in
the definition, consider the variety (U × (V − S))/G, which fibers over both
U/G and (V − S)/G. The fibration over U/G is a vector bundle minus a subset
of codimension equal to the codimension of S in V , which we take to be large.
The fibration over (V − S)/G is a principal U -bundle. Such a bundle is Zariski
locally trivial since U is split unipotent (by reducing to the case of the additive
group), and the fiber U is isomorphic to affine space as a variety. It follows
that (U × (V − S))/G → (V − S)/G is an A1-homotopy equivalence, and in
particular induces an isomorphism on Chow groups. So CH ∗BG is isomorphic
to CH ∗(U/G).

Let G be any closed subgroup scheme of a split unipotent group U over k.
Then Rosenlicht showed that the variety U/G is isomorphic to affine space
of some dimension over k [116, theorem 5]. The proof is by induction on the
dimension of U . The statement is clear if U = 1. Otherwise, U contains a
central subgroup Z isomorphic to Ga over k. Then the morphism

U/G → (U/Z)/(G/(G ∩ Z))
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is a principal Z/(G ∩ Z)-bundle. By induction on the dimension of U ,
(U/Z)/(G/(G ∩ Z)) is isomorphic to affine space over k. Any quotient group
scheme of Z = Ga is either trivial or isomorphic to Ga [18, theorem 15.4].
Principal Ga-bundles on affine space An over k are classified by the group
H 1(An,O) = 0, and so they are trivial. So U/G is isomorphic to affine space
over k. We deduce that BG is A1-homotopy equivalent to Spec k. In particular,
CHiBG = 0 for i > 0.

2.8 Wreath products and the symmetric groups

For the symmetric groups, we have essentially complete information on the
cohomology ring and Chow ring. The results rely on the special structure of
the Sylow p-subgroups of the symmetric groups; they are products of iterated
wreath products of cyclic groups. In this section, we state the basic results on
the cohomology and Chow ring of a wreath product (Definition 2.11), referring
to [138] for the proofs.

Nakaoka and Quillen gave an explicit description of the cohomology of a
wreath product group Z/p � H = Z/p � Hp [1, theorems IV.1.7 and IV.4.3].
For our purposes, the most important fact is the following result of Quillen’s
[111, proposition 3.1]:

Theorem 2.19 Let H be any group, and let G = Z/p � H . Then the restriction
map on Fp-cohomology,

H ∗
Z/p�H → H ∗

Hp × H ∗
Z/p×H ,

is injective.

By definition, the Fp-cohomology ring of a group G is detected on subgroups
H1, . . . , Hr if the restriction homomorphism H ∗

G → ∏r
i=1 H ∗

Hi
is injective.

Likewise for mod p Chow rings.

Corollary 2.20 Let p be a prime number and n a positive integer. Then the
Fp-cohomology of the symmetric group Sn is detected on elementary abelian
p-subgroups.

Proof By transfer, it suffices to prove this after replacing Sn by a Sylow
p-subgroup. For n = ajp

j + · · · + a1p + a0 with 0 ≤ aj ≤ p − 1, a Sylow
p-subgroup of Sn is the product over all j of aj copies of a Sylow p-subgroup
of Spj , which in turn is the j -fold wreath product Z/p � · · · � Z/p. Then the
statement follows by induction from Theorem 2.19.

We now turn to Chow rings. The Chow ring of a wreath product Z/p � H is
even simpler than the cohomology ring, assuming certain good properties of
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H . In particular, we have a simple description of generators for the Chow ring,
as well as a detection theorem analogous to Theorem 2.19.

For an algebraic group G over a field k, a transferred Euler class in CH ∗
G

is an Fp-linear combination of transfers of Euler classes (top Chern classes) of
representations of finite-index subgroups over k.

In the following lemma, for p invertible in k, we consider the cycle map
from the mod p Chow group CHi

G to etale cohomology H 2i
et (BGks

, Fp(i)),
where ks denotes a separable closure of k. For k = C, this etale cohomology
group coincides with the usual cohomology of BG. In fact, a choice of pth root
of unity in ks always determines an identification of these etale cohomology
groups with the group cohomology of G; see Lemma 8.3.

Lemma 2.21 Let p be a prime number, and let G be a group scheme over
a field k that satisfies one of the following assumptions. Then the mod p

Chow ring CH ∗
G is detected on elementary abelian subgroups. Also, CHi

G →
H 2i

et (BGks
, Fp(i)) is injective for all i. Finally, CH ∗

G consists of transferred
Euler classes.

(i) G is the multiplicative group Gm.
(ii) G is a finite abelian group of exponent e viewed as an algebraic

group over k, e is invertible in k, and k contains the eth roots of
unity.

(iii) G is an iterated wreath product Z/p � · · · � Z/p � Gm over k, p is invertible
in k, and k contains the pth roots of unity.

(iv) G is an iterated wreath product Z/p � · · · � Z/p � A for a finite abelian
group A of exponent e, viewed as an algebraic group over k. Also, p and
e are invertible in k and k contains the pth and eth roots of unity.

Proof Let k be a field of characteristic not p that contains the pth roots of unity.
Let H be an affine group scheme over k such that BH can be approximated
by smooth quasi-projective varieties that can be cut into open subsets of affine
spaces over k, and CHi

H → H 2i
et (BH, Fp(i)) is injective for all i. Then [138,

section 9] shows that Z/p � H satisfies the same assumptions. That paper also
gives an explicit additive basis for CH ∗

Z/p�H in terms of CH ∗
H . In particular, the

description shows that if CH ∗
H is generated by transferred Euler classes, then

so is CH ∗
Z/p�H [138, section 11]. This gives the results we want on generation

of the Chow ring by transferred Euler classes, and injectivity of the mod p

cycle map. The description also shows that CH ∗
Z/p�H maps onto the invariants

(CH ∗
Hp )Z/p.

Under the same assumptions on H , [138, section 9] also shows that CH ∗
Z/p�H

is detected on the subgroups Hp and Z/p × H . Combined with Lemma 2.12
on the Chow Künneth formula, it follows by induction that CH ∗

G is detected on
elementary abelian subgroups for the groups in the theorem.
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Corollary 2.22 Let n be a positive integer, p a prime number, and k a field.
Suppose that p is invertible in k and that k contains the pth roots of unity. Let
G be either the symmetric group Sn or the wreath product Sn � Gm, viewed as a
group scheme over k. Then the mod p Chow ring CH ∗

G consists of transferred
Euler classes, and is detected on elementary abelian p-subgroups.

Proof By transfer, it suffices to prove this after replacing Sn by a Sylow
p-subgroup. For n = ajp

j + · · · + a1p + a0 with 0 ≤ aj ≤ p − 1, a Sylow
p-subgroup of Sn is the product over all j of aj copies of a Sylow p-subgroup
of Spj , which in turn is the j -fold wreath product Z/p � · · · � Z/p. Then the
statement follows by induction from Lemma 2.21 (applied to the group Z/p �
· · · � Z/p or Z/p � · · · � Z/p � Gm) together with Lemma 2.12 (on the Chow
Künneth formula).

2.9 General linear groups over finite fields

This section gives the calculations by Quillen and Guillot of the cohomology
and Chow ring of the general linear group over finite fields. These are important
calculations, but we do not use them elsewhere in the book. Adem and Milgram
summarize what is known about the cohomology of other finite groups of Lie
type [1, chapter VII].

Let q be a power of a prime number p, and let l be a prime number different
from p. Then Quillen computed the mod l cohomology ring of the finite group
GL(n, Fq), as follows [115, theorem 4, remark after theorem 1]. See also
Benson [12, vol. 2, theorem 2.9.3] for a summary of Quillen’s argument. This
result led to Quillen’s calculation of the algebraic K-theory of finite fields.
It turns out to be a simple example; for example, the mod l cohomology of
GL(n, Fq) for l �= p is detected on abelian subgroups, which is far from true
for finite groups in general. The mod p cohomology of GL(n, Fq ) is far more
complicated and is largely unknown.

The main reason for the simplicity of the mod l cohomology of GL(n, Fq )
is that an l-Sylow subgroup of GL(n, Fq ) with l �= p is a product of iterated
wreath products of abelian groups when l �= 2 (and has a similar description
when l = 2). Compare Theorem 2.19.

Theorem 2.23 Let q be a power of a prime number p. Let l be a prime number
different from p, r the multiplicative order of q modulo l, and m = �n/r�. For
l odd, the Fl-cohomology ring of GL(n, Fq ) is the free graded-commutative
algebra

Fl〈er , e2r , . . . emr , cr , c2r , . . . , cmr 〉,



2.10 Questions about the Chow ring of a finite group 31

where |eir | = 2ir − 1 and |cir | = 2ir . If l = 2 and q ≡ 1 (mod 4), then

H ∗
GL(n,Fq )

∼= F2[e1, e2, . . . en, c1, c2, . . . , cn]/(e2
i = 0),

where |ei | = 2i − 1 and |ci | = 2i. If l = 2 and q ≡ 3 (mod 4), then

H ∗
GL(n,Fq )

∼= F2[e1, e2, . . . en, c1, c2, . . . , cn]/

(
e2
i =

i−1∑
a=0

cac2i−1−a

)
,

where c0 = 1 and ci = 0 for i > n.

The standard representation of GL(n, Fq) on (Fq )n has a natural lift to a
virtual complex representation of GL(n, Fq), called the Brauer lift ρ; see Serre
[124, theorem 43] or Benson [12, vol. 1, section 5.9]. The classes ci in Theorem
2.23 are the Chern classes of ρ.

Guillot computed the mod l Chow ring of the finite group GL(n, Fq), viewed
as an algebraic group over C, as follows [60, theorem 4.7]. Again, this turns
out to be a simple example: the Chow ring injects into the cohomology ring,
and is detected on elementary abelian subgroups.

Theorem 2.24 Let q be a power of a prime number p. Let l be an odd
prime number different from p, r the multiplicative order of q modulo l, and
m = �n/r�. Let ci be the ith Chern class of the Brauer lift ρ of the standard
representation of GL(n, Fq ). Then the mod l Chow ring of GL(n, Fq ) is the
polynomial ring

Fl[cr, c2r , . . . , cmr ].

2.10 Questions about the Chow ring of a finite group

In contrast to cohomology, there is no algorithm to compute Chow groups,
and they can be big. In particular, Schoen gave examples of smooth projective
3-folds X over Q and prime numbers p such that CH 2(X)/p ∼= CH 2(XC)/p
is infinite [118]. There are other varieties for which the subgroup of CH 3(X)
killed by p is infinite [119]. It is an open question whether the Chow groups
CHiBG of the classifying space of an algebraic group are finitely generated
abelian groups. For a finite group G, which we generally view as an algebraic
group over the complex numbers, CHiBG is killed by |G| for i > 0, and
so the question is whether CHiBG is finite for i > 0; that is true in all the
known computations. The results of this book shed some light: we can reduce
to checking finiteness of CHiBG for small values of i, and in some cases that
is enough to solve the problem (Corollary 10.5 and Theorem 11.1).

For the examples of groups G over C we have seen in this chapter, the homo-
morphism from the Chow ring of BG to the cohomology ring was injective, but
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that fails in general. In particular, for every prime number p, there is a p-group
G such that CH 2(BG)/p → H 4(BG, Fp) is not injective. (Then the product
H = G × Z/p has CH 3BH → H 6(BH, Z) not injective.) An example is the
extraspecial 2-group G = 21+4

+ , as shown in [137, section 5] (which we sum-
marize in the proof of Theorem 15.13). We give more complicated examples
at odd primes in Theorem 15.7.

A major tool in the cohomology theory of finite groups is the Hochschild-
Serre spectral sequence H ∗(Q,H ∗(N, Fp)) ⇒ H ∗(G, Fp) for a group exten-
sion 1 → N → G → Q → 1. No analog is known for Chow rings. Indeed,
there seems to be no way to define the Chow groups of a group G with
coefficients in a nontrivial G-module. Rost found what seems to be the right
notion of Chow groups with coefficients, but the possible coefficients are more
complicated objects known as cycle modules [117, 63].

Although the fibration BN → BG → BQ makes sense in algebraic geom-
etry (using finite-dimensional approximations), almost nothing is known about
the Chow groups of a fibration in general. The difficulty is that the fibra-
tion is locally trivial in the etale topology, but not in the Zariski topology.
More broadly, the whole problem of computing Chow rings of classifying
spaces can be considered as a problem of “etale descent” for Chow groups:
given a finite group G acting freely on a scheme X, how are CH ∗(X) and
CH ∗(X/G) related? With rational coefficients we have the simple answer that
CH ∗(X/G) ⊗ Q = (CH ∗(X) ⊗ Q)G (proved using transfer maps). But not
much is known integrally, or modulo a prime number.

Later (Theorem 8.10) we will prove Yagita’s theorem that the Chow ring of
a finite group is qualitatively similar to the cohomology ring, in the following
sense. For a fixed prime number p, write CH ∗

G = CH ∗(BG)/p and H ∗
G =

H ∗(BG, Fp). Then the cycle map CH ∗
G → H ∗

G is an F -isomorphism. That is:
every element of the kernel of CH ∗

G → H ∗
G is nilpotent, and for every element

x of H ∗
G, there is an r ≥ 0 such that xpr

is in the image of the cycle map. It
follows that the “variety” of CH ∗

G is the same as that of H ∗
G, meaning that the

morphism Spec H ev
G → Spec CH ∗

G is a universal homeomorphism. (That is,
it remains a homeomorphism after any extension of the base field Fp.) This
holds even though it is not known whether CH ∗

G is finitely generated as an
Fp-algebra. Conceivably CH ∗

G could contain an enormous square-zero ideal.
Examples suggest that the Chow ring of a group is more closely tied to

representation theory than the cohomology ring is. The following result is
some justification for that idea [138, corollary 3.2]. The geometric filtration of
the representation ring R(G) is defined in the proof.

Theorem 2.25 Let G be an affine group scheme of finite type over a field k, p
a prime number. Then the mod p Chow ring CH ∗

G in degrees ≤ p is generated
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by Chern classes of representations of G over k. Also, the natural surjection
CHiBG → grigeomR(G) is an isomorphism p-locally for i ≤ p.

Proof Thomason defined equivariant G-theory GG
i X of a G-scheme X over

k as the Quillen K-theory of the abelian category of G-equivariant coherent
sheaves on X, for i ≥ 0 [136]. In particular, GG

i k is the K-theory of the abelian
category of representations of G, and so GG

0 k = R(G). For X smooth over k,
the natural map KG

i X → GG
i X is an isomorphism, where KG

i X is the Quillen
K-theory of the exact category of G-equivariant vector bundles on X.

Thomason proved homotopy invariance of equivariant G-theory, which
means in particular that GG

i k ∼= GG
i V for every representation V of G. More-

over, for any closed G-invariant subset S of a G-scheme X, Thomason showed
that every G-equivariant coherent sheaf on X − S is the restriction of a G-
equivariant coherent sheaf on V [136, corollary 2.4]. So we have a surjection

GG
0 X � GG

0 (X − S).

For a smooth variety X over a field k, the geometric filtration of the algebraic
K-group K0X means the filtration by codimension of support [57]. That is, an
element of K0X belongs to F r

geomK0X if it restricts to zero in K0(X − S) for
some closed subset S of codimension at least r . Equivalently, identifying K0X

with G0X (since X is smooth over k), an element of K0X belongs to Fr
geomK0X

if it can be represented by a coherent sheaf whose support has codimension at
least r .

We define the geometric filtration of R(G) as follows. For any natural num-
ber r , let V be a representation of G with a G-invariant closed subset S of
codimension greater than r such that G acts freely on V − S with quotient a
scheme over k. Let Fr

geomR(G) be the subgroup of R(G) of elements that restrict
to zero in KG

0 (V − S ′) = K0(V − S′)/G for some closed G-invariant closed
subset S ⊂ S′ ⊂ V of codimension at least r in V . This is independent of the
choices of V and S, by the same argument as for Theorem 2.5 showing that
CH ∗BG is well-defined. Moreover, by Thomason’s surjection earlier in the
proof, R(G) = GG

0 V → K0(V − S)/G is surjective, and therefore the natural
map

grigeomR(G) → grigeomK0(V − S)/G

is an isomorphism for i ≤ r .
Let X = (V − S)/G; it remains to relate K0X with the Chow groups of

X. There is a natural map from CHiX to grigeomK0X, taking a subvariety Z

of codimension i to the class of the coherent sheaf OZ . The map CHiX →
grigeomK0X is surjective, and the ith Chern class gives a map back such that the
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composition

CHiX → grigeomK0X −→
ci

CH iX

is multiplication by (−1)i−1(i − 1)!, by Riemann-Roch without denomina-
tors [43, example 15.3.1], [57]. It follows that the surjection from CH iX

to grigeomK0X becomes an isomorphism after inverting (i − 1)!, and the sub-
group of CHiX generated by Chern classes of elements of K0X contains
(i − 1)!CHiX. This is what we want.

In particular, CH 1 is easy to compute.

Lemma 2.26 Let G be an affine group scheme of finite type over a field k.
Then the first Chern class gives an isomorphism

c1 : Homk(G,Gm) → CH 1BG.

Proof The homomorphism c1 is surjective by Theorem 2.25, using that the
first Chern class of any representation V of G is equal to c1(det(V )).

To show that c1 is injective, let α : G → Gm be a representation such that
c1α = 0 in CH 1BG. Let V be a representation of G with a closed G-invariant
subset S of codimension at least 2 such that G acts freely on V − S with
quotient a scheme. Then the pullback of α by V → Spec(k) is a G-equivariant
line bundle Lα on V . Since (V − S)/G is smooth over k, we can identify
CH 1((V − S)/G) with the group Pic((V − S)/G) of isomorphism classes of
line bundles on (V − S)/G [67, corollary II.6.16]. So the restriction of Lα

to V − S is G-equivariantly trivial. That is, Lα has a nowhere-vanishing G-
equivariant section s on V − S. Since S has codimension at least 2, s extends
to a nowhere-vanishing section of Lα over V . This section is G-equivariant
because its restriction to V − S is G-equivariant. By restricting s to the origin
in V , it follows that the homomorphism α : G → Gm is trivial.

There is also an explicit description of CH 2BG in terms of cohomology,
Lemma 15.1.
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Depth and Regularity

In this chapter, we define some fundamental concepts of commutative algebra:
depth and Castelnuovo-Mumford regularity. The depth of a ring (say, a finitely
generated commutative graded algebra) is the maximum length of a regular
sequence of elements of positive degree. For some purposes, depth is a good
measure of how well-behaved a ring is. The rings with maximal depth, known
as Cohen-Macaulay rings, are the rings that are free finitely generated modules
over some polynomial subring. Regularity is a quantitative measure of the
complexity of a graded ring in terms of the degrees of generators, relations,
and so on. It is not related to the notion of a regular local ring.

Depth and regularity have extremely good formal properties. That allowed
Symonds to prove strong bounds for the degrees of generators of the cohomol-
ogy ring of a finite group by studying the a priori harder problem of bounding
the regularity, as we see in Chapter 4.

The chapter ends with Duflot’s theorem, which gives a lower bound for the
depth of the cohomology ring of a group, and an analog for the Chow ring.

3.1 Depth and regularity in terms of local cohomology

In this section, we define depth and Castelnuovo-Mumford regularity for mod-
ules over a graded ring. Our definitions are in terms of local cohomology,
because that makes the formal properties of these invariants easy to prove. But
the reason these invariants are important in the rest of the book is their inter-
pretation in terms of generators and relations for a module, which we prove as
Theorem 3.14. Our exposition partly follows Benson [13] and Symonds [131].

Something new in our treatment is that in order to deal with Chow rings,
which are not known to be finitely generated algebras, we have to consider
non-noetherian rings and modules that are not finitely generated. The Chow
ring of the classifying space of an algebraic group is at least generated in a

35
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bounded set of degrees as a module over a graded polynomial ring on finitely
many generators (Theorem 5.2).

Let k be a field and let R = k ⊕ R1 ⊕ R2 ⊕ · · · be a commutative graded
k-algebra. Let m be the maximal ideal R>0 in R. For the rest of this section,
we define an R-module to be a graded R-module M = ⊕l∈ZMl . Ideals in R

are understood to be homogeneous, and homomorphisms of R-modules are
understood to mean homomorphisms that preserve the grading.

For an ideal I contained in m, let yi be a set of homogeneous generators
of positive degree for I , indexed by some totally ordered set S. Define the
local cohomology groups H ∗

I (M) as the cohomology of the following cochain
complex, called the Cech complex, with M placed in degree zero:

0 → M → ⊕l∈Z

∏
i

M[1/yi]l → ⊕l∈Z

∏
i<j

M[1/yiyj ]l → · · · .

Here the subscript l refers to the lth graded piece of these modules. The bound-
ary maps in the Cech complex are given by (−1)r times the obvious homomor-
phism from M[1/y0 . . . ŷr · · · ym] to M[1/y0 . . . ym]. Each group Hm

I (M) is
clearly a graded R-module, Hm

I (M) = ⊕l∈ZHm
I (M)l . For a finitely generated

ideal I = (y1, . . . , yn), we can write the Cech complex more simply as:

0 → M →
∏

i

M[1/yi] →
∏
i<j

M[1/yiyj ] → · · · .

For any ideal I in a commutative ring R, the definition implies that H 0
I (M) is the

I -torsion submodule of M , defined as {x ∈ M : (∀f ∈ I )(∃m ≥ 0) f mx = 0}.
An introduction to local cohomology in the classical setting of noetherian
rings is [73]. Local cohomology was defined by Grothendieck for arbitrary
commutative rings [59, exposé II].

To see that the local cohomology groups H ∗
I (M) are independent of the

choice of generators for an ideal I , we use the following geometric interpre-
tation. Let Proj(R) be the scheme associated to the graded ring R, and let M̃

be the quasicoherent sheaf on Proj(R) associated to M [55, definition II.2.5.3].
For an integer l, write M(l) for the graded module M with degrees lowered
by l. Let U be the complement of the closed subset of Proj(R) defined by the
ideal I . Then local cohomology H ∗

I (M) is isomorphic to the cohomology of the
complex with M placed in degree 0 and only the first boundary map nonzero:

0 → M → ⊕l∈ZH 0(U, M̃(l))
0−→ ⊕l∈ZH 1(U, M̃(l))

0−→ · · · .

Indeed, this is identified with the cohomology of the Cech complex when
we compute the cohomology of U using its open cover by the affine open
subsets {yi �= 0} [56, proposition III.1.4.1], [55, proposition II.2.5.2]. From this
interpretation, we see that local cohomology H ∗

I (M), as a graded R-module,
does not depend on the choice of generators of I . In fact, it depends only on
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the radical rad(I ) = {x ∈ R : xm ∈ I for some m > 0} of I , because two ideals
with the same radical define the same closed subset of Proj(R).

Example For R a commutative graded ring, it follows that

H 0
m(R) = ker

(
R → ⊕l∈ZH 0(Proj(R),O(l))

)
,

H 1
m(R) = coker

(
R → ⊕l∈ZH 0(Proj(R),O(l))

)
,

and

Hi
m(R) = ⊕l∈ZHi−1(Proj(R),O(l))

for i > 1. For R a graded polynomial ring k[y1, . . . , yn] with the degrees |yj |
positive, Hi

m(R) is nonzero only if i = n, either by this geometric interpretation
or by the algebraic definition of local cohomology. Moreover,

Hn
m(R) = k[y±1

1 , . . . , y±1
n ]/(yi1

1 · · · yin
n = 0 if some ij ≥ 0)

[73, example 7.16].

Remark 3.1 The grading on each local cohomology group Hi
m(M) encodes

information about the degrees of generators and relations for an R-module M .
The precise relation is described in the main result of this chapter, Theorem
3.14. Here we show the relation in simple examples.

Let R be the polynomial ring k[x] with x in degree 1. (Then Proj(R) is
a point, and local cohomology is easy to compute by either the algebraic or
the geometric interpretation.) Let M be the free R-module on one generator
in degree a. Then H i

m(M) is zero for i �= 1, and H 1
m(M) is the k[x]-module

k[x, x−1]/xa k[x]. The vanishing of H 0
m(M) is equivalent to the freeness of M

as an R-module, and in this case the highest degree of an element needed to
generate M is 1 plus the highest degree (namely, a − 1) occurring in H 1

m(M),
as Theorem 3.14 explains.

Next, let M be the R-module generated by an element e in degree a modulo
the relation xbe = 0, for a positive integer b. Then H 0

m(M) ∼= M is nonzero
in degrees a, a + 1, . . . , a + b − 1, while H 1

m(M) = 0. The non-vanishing of
H 0

m(M) is equivalent to the non-freeness of M as an R-module, and the relation
xbe = 0 for M in degree a + b is responsible for a + b − 1 being the highest
degree occurring in H 0

m(M), as Theorem 3.14 explains.

A short exact sequence 0 → M1 → M2 → M3 → 0 of R-modules gives a
long exact sequence of local cohomology groups

0 → H 0
I (M1) → H 0

I (M2) → H 0
I (M3) → H 1

I (M1) → · · · ,

since the Cech complexes form a short exact sequence of chain complexes (or
by the properties of sheaf cohomology).
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For noetherian rings, Grothendieck gave another interpretation of local coho-
mology [59, lemma II.8]. To stick with our situation, we state this only for
graded rings. Note that local cohomology H ∗

I (M) as we have defined it (for R

and M graded) coincides with local cohomology in the ungraded sense (as con-
sidered in some references) when R is a finitely generated k-algebra. Indeed, I
is a finitely generated ideal in that case, and so both types of local cohomology
are computed by the same Cech complex.

Lemma 3.2 Let I be an ideal in a finitely generated graded k-algebra R.
Then local cohomology is a direct limit of Ext groups,

Hi
I (M) = lim−→

l

Ext i
R(R/I l,M).

Equivalently, for R noetherian, the groups H ∗
I (M) are the right-derived

functors of the left exact functor H 0
I (M) on the category of R-modules. This

can fail for R not noetherian, even for a finitely generated ideal I . Explicitly,
let R be a ring with unbounded y-torsion for some element y ∈ R, such as
R = k[y, z1, z2, z3, . . .]/(yz1, y

2z2, y
3z3, . . .). Then any injective R-module J

containing the module {x ∈ R : yx = 0} has H 1
(y)(J ) �= 0 by Grothendieck [59,

lemma II.9], whereas the derived functors Ei
(y)(M) := lim−→

l

ExtiR(R/ml,M) of

H 0
(y)(M) on the category of R-modules have E1

(y)(J ) = 0, since J is injective.

Theorem 3.3 (Independence Theorem for local cohomology) If f : R′ → R

is a homomorphism of commutative graded rings, I ′ ⊂ R′ is an ideal con-
tained in the maximal ideal (R′)>0, and M is an R-module, then f induces an
isomorphism

Hi
I ′ (R′,M) → Hi

I ′R(R,M),

where we view M as an R′-module via f .

Proof This is immediate from the Cech interpretation: for I ′ = (yi : I ∈ S),
both local cohomology groups are the cohomology of the same Cech complex

0 → M → ⊕l∈Z

∏
i

M[1/yi]l → ⊕l∈Z

∏
i<j

M[1/yiyj ]l → · · · .

The Independence Theorem is a key advantage of the definition of local
cohomology in terms of the Cech complex (or, equivalently, in terms of sheaf
cohomology).

One last general property of local cohomology is that each local cohomology
group Hi

I (M) is an I -torsion module. That is, for every y ∈ I and every α in
Hi

I (M), there is a natural number m such that ymα = 0. Indeed, let I be
generated by y together with some set of elements T . Then H ∗

I (M) is computed
by the Cech complex of M with respect to the set {y} ∪ T , which we can view
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as the complex 0 → R → R[1/y] → 0 tensored with the Cech complex of M

with respect to T . Therefore, if we tensor the Cech complex over R with R[1/y],
we get some chain complex tensored with 0 → R[1/y] → R[1/y] → 0, and
so the cohomology becomes zero. Since R[1/y] is a flat R-module, it follows
that H ∗

I (M) ⊗R R[1/y] = 0. Equivalently, every element of H ∗
I (M) is killed

by a power of y, as we want.
We make the following definition for later use.

Definition 3.4 Let R be a finitely generated graded algebra over a field k,
assumed to be finite over its center Z(R). A system of parameters in R is a
sequence y1, . . . , yn of elements of Z(R) such that R is finite over the polyno-
mial ring k[y1, . . . , yn] and n is equal to the dimension of Z(R). Equivalently,
R is finite over k[y1, . . . , yn] and k[y1, . . . , yn] injects into R.

We now define depth in terms of local cohomology. Under extra finiteness
assumptions, we give several other interpretations, which may be clearer.

Definition 3.5 Let M be a module over a commutative graded ring R. The
depth of M , depth(R,M), is the supremum of the integers j such that H i

m(M) =
0 for all i < j .

The depth of a nonzero bounded below module over a graded polynomial
ring k[y1, . . . , yn] is at most n. We prove this as part of a more precise statement,
Theorem 3.14.

Lemma 3.6 Let R be a commutative graded ring. Then the depth of an R-
module M is at least the length n of any M-regular sequence in m, meaning a
sequence y1, . . . , yn inm such that yi is a non-zero-divisor on M/(y1, . . . , yi−1)
for i = 1, . . . , n.

If R is a finitely generated k-algebra and M is a finitely generated R-module,
then the depth of M is equal to the supremum of the lengths of all M-regular
sequences in m.

Proof Let y1, . . . , yn be an M-regular sequence in m. By definition, we have
an exact sequence of R-modules

0 → M/(y1, . . . , yi−1) −→
yi

M/(y1, . . . , yi−1) → M/(y1, . . . , yi) → 0

for each i. The resulting long exact sequence of local cohomology has the form:

→ Hn−i−1
m (M/(y1, . . . , yi)) → Hn−i

m (M/(y1, . . . , yi−1))

−→
yi

H n−i
m (M/(y1, . . . , yi−1)) →

We show that H
j
m(M/(y1, . . . , yi)) = 0 for j < n − i by descending induction

on i. This is clear for i = n. Suppose it is true for a given value of i. The exact
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sequence shows that multiplication by yi is injective on H
j
m(M/(y1, . . . , yi−1))

for j < n − i + 1. We showed that this local cohomology group ism-torsion; in
particular, every element of this group is killed by some power of yi . Therefore,
H

j
m(M/(y1, . . . , yi−1)) = 0 for j < n − i + 1, completing the induction. For

i = 0, we conclude that H
j
m(M) = 0 for j < n. That is, M has depth at least n

by our definition.
This lower bound for the depth is an equality for finitely generated modules

M over a noetherian ring R. A proof is given in [73, theorem 9.1].

For modules that are not finitely generated, the definition of depth in terms of
local cohomology has better properties than the maximum length of a regular
sequence. For example, let k be an algebraically closed field, R = k[x, y], and
M = R/(x) ⊕ ⊕a∈kR/(ax + y). Then M is an infinite direct sum of modules
of depth 1, and so it has depth 1 in our sense. Indeed, local cohomology with
respect to the finitely generated idealm = (x, y) commutes with arbitrary direct
sums, by the Cech complex. But there is no M-regular sequence of length 1
in m.

Definition 3.7 Let R be a commutative graded ring. Let M be a graded
R-module. Let ai(R,M) denote the maximum degree of a nonzero element
of Hi

m(R,M) (possibly ∞ if unbounded or −∞ if Hi
m(R,M) = 0). The

(Castelnuovo-Mumford) regularity of M over R is

reg(R,M) = sup
i

{ai(R,M) + i}.

Example Let R be a graded polynomial ring R = k[y1, . . . , yn]. By the
computation stated earlier, the local cohomology Hi

m(R) is zero except when
i = n, and the top-degree subspace of Hn

m(R) is the k-vector space spanned
by y−1

1 · · · y−1
n . It follows that the regularity of R as an R-module is equal to

−σ (R), where we define:

Definition 3.8 For a graded polynomial ring R = k[y1, . . . , yn], let σ (R) =∑
i(|yi | − 1).

We state some simple properties of regularity for later use.

Lemma 3.9 Let R be a commutative graded ring and M a graded R-module.

(i) Shifting M up in degree by an integer a increases the regularity of M by
a.

(ii) If M is bounded above, then reg(R,M) is equal to the top degree in which
M is nonzero.

(iii) For a short exact sequence 0 → A → B → C → 0 of R-modules,
reg(R,B) ≤ max(reg(R,A), reg(R,C)).
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Proof The definition of regularity implies (i). The Cech complex shows that
a bounded above module M has H 0

m(M) = M and Hi
m(M) = 0 for i > 0,

which gives (ii) by the definition of regularity. The long exact sequence of local
cohomology implies (iii).

For a commutative graded ring R, we define the depth and regularity of R to
mean the depth and regularity of R as a module over itself.

Lemma 3.10 Let R = k[y1, . . . , yn] be a graded polynomial ring with |yi | >

0 for all i, and let S be a commutative graded ring with a homomorphism
R → S. Suppose that S is generated as an R-module by a set of elements of
bounded degree. Then depth(S) = depth(R, S) (the depth of S as an R-module)
and reg(S) = reg(R, S).

Proof We are given that there is an m ≥ 0 such that S is generated as an
R-module by elements of degree less than m. Therefore, S≥m maps to zero
in S/(y1, . . . , yn), and so the ideal (S>0)m is contained in (y1, . . . , yn). In
particular, S>0 is the radical of the finitely generated ideal R>0S = (y1, . . . , yn).

By the Independence Theorem (Theorem 3.3), we have H ∗
R>0 (R, S) ∼=

H ∗
R>0S

(S, S), compatibly with the gradings on these groups. Since S>0 is the rad-
ical of R>0S, it follows that H ∗

R>0 (R, S) ∼= H ∗
S>0 (S, S). Depth and regularity are

defined in terms of local cohomology, and so we have depth(R, S) = depth(S)
and reg(S) = reg(R, S).

3.2 Depth and regularity in terms of generators and relations

The formal properties of depth and regularity are easiest to prove using local
cohomology. But when R is a graded polynomial ring, we want to relate
depth and regularity to simpler invariants, such as the degrees of generators
and relations of a module. For that purpose, we now reformulate depth and
regularity in terms of a projective resolution of a module. For finitely generated
modules, this can be done using Grothendieck’s local duality theorem [73,
theorem 11.29], but we want to avoid the assumption of finite generation.

Let R = k[y1, . . . , yn] be a graded polynomial ring. Let M be an R-module
that is bounded below (meaning that Mi = 0 for i less than some integer i0).
Clearly M has a resolution by free modules, which are understood to be graded:

· · · → F1 → F0 → M → 0.

We say that a free resolution is minimal if the associated k-linear maps
Fi/mFi → Fi−1/mFi−1 are zero. (We repeat that m denotes the ideal R>0.) By
Eilenberg, M has a unique minimal resolution up to isomorphism [37, propo-
sition 15, proposition 7]. By definition of the minimal resolution, the group
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TorRi (k,M) is canonically identified with Fi/mFi , the space of generators of
Fi as a free module.

We use the Koszul resolution [149, corollary 4.5.5]:

Lemma 3.11 Let R be the polynomial ring R = k[y1, . . . , yn] over a com-
mutative ring k. Consider k as an R-module with yi acting by zero on k for all
i. Then k has a free resolution of the form:

0 → R⊕(n
n) → · · · → R⊕(n

1) → R⊕(n
0) → k.

Explicitly, let e(I ) be basis elements for R⊕(n
a) indexed by the a-element subsets

I of {1, . . . , n}. Then the differential is

d(e(i1 · · · ia)) =
a∑

j=1

(−1)j yj e(i1 · · · îj · · · ia)

for i1 < . . . < ia .

The Koszul resolution immediately implies the Hilbert syzygy theorem in
our setting [149, theorem 4.3.8].

Theorem 3.12 (Hilbert syzygy theorem) Let R = k[y1, . . . , yn] be a graded
polynomial ring over a field k. Let M be a bounded below R-module. Then M

has a free resolution of length at most n.

Proof By the Koszul resolution (Lemma 3.11), TorRi (k,M) is zero for all
i > n. By the discussion of minimal resolutions above, it follows that the
minimal resolution of M has length at most n.

For later use, we give the following characterization of regular sequences.

Lemma 3.13 Let M be a bounded below module over a commutative graded
k-algebra R. Let y1, . . . , yn ∈ m. The following are equivalent.

(i) y1, . . . , yn is an M-regular sequence.
(ii) M is a flat k[y1, . . . , yn]-module.

(iii) M is a free k[y1, . . . , yn]-module.

Proof Let S be the graded polynomial ring k[y1, . . . , yn]; then M is an S-
module. Suppose that y1, . . . , yn is an M-regular sequence. Consider the short
exact sequence of S-modules

0 → S/(y1, . . . , yi−1) −→
yi

S/(y1, . . . , yi−1) → S/(y1, . . . , yi) → 0

for i = 1, . . . , n. This gives a long exact sequence of Tor groups,

TorS1 (S/(y1, . . . , yi−1),M) → TorS1 (S/(y1, . . . , yi),M)

→ M/(y1, . . . , yi−1) −→
yi

M/(y1, . . . , yi−1).
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It follows by induction on i that TorSj (S/(y1, . . . , yi),M) = 0 for i = 0, . . . , n

and j > 0, this being trivial for i = 0. Taking i = n, we find that TorSj (k,M) =
0 for j > 0.

It follows that the minimal resolution of M has length 0; that is, M is a
free S-module. Conversely, if M is a free S-module, then y1, . . . , yn is clearly
an M-regular sequence. Finally, if M is a flat S-module, then TorSj (k,M) = 0
for j > 0. Again, it follows using the minimal resolution that M is a free
S-module.

Let M be a bounded below module over a graded polynomial ring R. Let
· · · → F1 → F0 → M → 0 be the minimal resolution of M . By the isomor-
phism Tori(k,M) ∼= Fi/mFi , the projective dimension pd(R,M) (the shortest
length of a projective resolution of M) is equal to the largest i such that Fi �= 0
in the minimal resolution of M .

For a bounded below R-module M , let ρi(R,M) be the maximum degree of
a nonzero element of Fi/mFi (possibly ∞ or −∞) in the minimal resolution of
M; equivalently, ρi(R,M) is the maximum degree of a generator of Fi . Define

Preg(R,M) = sup
i

(ρi(R,M) − i) − σ (R),

where σ (R) was defined in Definition 3.8. In view of Theorem 3.14, Preg does
not need a name of its own; it is simply another way to compute the regularity as
defined earlier, in the case of bounded below modules. In the common situation
where all the yi have degree 1, we have σ (R) = 0, and so this definition of
regularity can be written without mentioning σ (R).

Theorem 3.14 Let R = k[y1, . . . , yn] be a graded polynomial ring. Let M

be a nonzero graded R-module that is bounded below. Then reg(R,M) =
Preg(R,M) and depth(R,M) + pd(M) = n.

We are interested in Preg(R,M) because it gives information about gen-
erators and relations of the R-module M , by its definition. In particular, the
R-module M is generated by elements of degree at most Preg(R,M).

Proof We first prove the formula for depth, due to Auslander-Buchsbaum for
M finitely generated [73, theorem 8.13]. We first show that depth(R,M) ≥
n − pd(M), that is, that H i

m(M) = 0 for i < n − pd(M). For pd(M) = 0, M is
a nonzero free graded R-module, and so this follows from the calculation that
Hi

m(R) is nonzero if and only if i = n. For any pd(M), the upper bound for depth
follows by induction, using that a short exact sequence 0 → M1 → M2 →
M3 → 0 of R-modules gives a long exact sequence of local cohomology:

→ Hi
m(M1) → Hi

m(M2) → Hi
m(M3) → Hi+1

m (M1) → .
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Conversely, suppose M is nonzero and has projective dimension d. By the
Hilbert syzygy theorem (Theorem 3.12), d is at most n. (In particular, d is
finite.) Next, the minimal resolution of M has Fd �= 0. By the discussion of
projective dimension before Lemma 3.13, it follows that TorRd (k,M) is not
zero.

By Cartan and Eilenberg, there is a canonical isomorphism

TorRi (k,M) ∼= Extn−i
R (k,M)

for every R-module M and every integer i [27, exercise VIII.7]. Indeed, if we
compute these groups using the Koszul resolution of k as an R-module (Lemma
3.11), then the two groups are the cohomology of the same chain complex (with
a shift in degrees). Both groups are graded, with the part of Tori in degree j

corresponding to the part of Extn−i in degree j − ∑ |yi| = j − σ (R) − n.
Therefore, ExtjR(k,M) is 0 for j < n − d and not zero for j = n − d. For

each l ≥ 0, the exact sequence 0 → ml/ml+1 → R/ml+1 → R/ml → 0 of R-
modules induces a long exact sequence of Ext groups,

Extn−d−1
R (ml/ml+1,M) → Extn−d

R (R/ml,M) → Extn−d
R (R/ml+1,M).

We read off that the homomorphisms Extn−d (k,M) → Extn−d (R/m2,M) →
· · · are all injective. Since R is noetherian, Lemma 3.2 gives that

Hi
m(M) = lim−→

l

ExtiR(R/ml ,M).

Therefore, we have Hn−d
m (M) �= 0. This completes the proof that

depth(R,M) + pd(M) = n.
Next, let us show that reg(R,M) ≤ Preg(R,M). We know that Tori(k,M)

is zero in degrees greater than Preg(R,M) + i + σ (R), for all i. By Cartan-
Eilenberg’s isomorphism above, Extn−i

R (k,M) is zero in degrees greater than
Preg(R,M) + i − n, for all i. By the long exact sequence of Ext groups above,
it follows that Hn−i

m (M) is zero in degrees greater than Preg(R,M) + i − n,
for all i. This means that reg(R,M) ≤ Preg(R,M).

Conversely, suppose that M is nonzero and has Preg(R,M) = r . First
suppose that r is finite. Then TorRi (k,M) is zero in degrees greater than
r + i + σ (R) for all i, and there is a j such that TorRj (k,M) is nonzero in

degree r + j + σ (R). Equivalently, Extn−i
R (k,M) is zero in degrees greater

than r + i − n for all i, and Extn−j
R (k,M) is nonzero in degree r + j − n. In

particular, Extn−j−1
R (k,M) is zero in degrees greater than r + j + 1 − n, and

so Extn−j−1
R (ml/ml+1,M) is zero in degrees greater than r + j + 1 − n − l

(hence in degree r + j − n) for every positive integer l. (This uses that the
generators y1, . . . , yn of the ideal m all have degree at least 1.) Considering the
exact sequence

Extn−j−1
R (ml/ml+1,M) → Extn−j

R (R/ml ,M) → Extn−j
R (R/ml+1,M)
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in graded degree r + j − n, we find that the maps Extn−j
R (k,M) →

Extn−j
R (R/m2,M) → · · · are all injective in degree r + j − n. It follows that

the direct limit, Hn−j
m (M), is nonzero in degree r + j − n. Thus reg(R,M) ≥ r .

That completes the proof that reg(R,M) = Preg(R,M) when Preg(R,M) is
finite.

Finally, suppose that Preg(R,M) is infinite; we will show that reg(R,M) is
infinite. The proof is similar to that for the finite case. Our assumption means
that there is a j such that TorRj (k,M) is nonzero in arbitrary high degrees; note
that j must be in the set {0, 1, . . . , n}. Let j be the maximum number with this
property. Then Extn−j

R (k,M) is nonzero in arbitrarily high degrees, and n − j is
minimal with this property. Then there is an integer r such that Extn−j−1

R (k,M)
is zero in degrees greater than r + j + 1 − n (to be parallel with the notation in
the previous case of the proof). Then Extn−j−1

R (ml/ml+1,M) is zero in degrees
greater than r + j + 1 − n − l (hence in degrees greater than r + j − n) for
every positive integer l. By the exact sequence

Extn−j−1
R (ml/ml+1,M) → Extn−j

R (R/ml ,M) → Extn−j
R (R/ml+1,M),

the homomorphisms Extn−j
R (k,M) → Extn−j

R (R/m2,M) → · · · are all injec-
tive in degrees greater than r + j − n. It follows that the direct limit, Hn−j

m (M),
is nonzero in arbitrarily high degrees. So reg(R,M) = ∞, as we want.

Definition 3.15 Let R be a graded k-algebra (not necessarily commutative).
We say that R is Cohen-Macaulay if the local cohomology Hi

m(R) is concen-
trated in one degree, where m is the maximal ideal of Z(R) and we consider R

as a module over Z(R).

This is a standard definition in the case of finitely generated commutative
k-algebras. We define the Cohen-Macaulay property in this generality because
we want to consider it for the Fp-cohomology ring of a finite group, which
is only graded-commutative, and also to the mod p Chow ring of a finite
group, which is commutative but is only known to be generated in bounded
degrees over a polynomial subring (Theorem 5.2). In particular, the Chow ring
of a finite group is not known to be noetherian. (For rings not generated in
bounded degrees over a polynomial subring, Definition 3.15 is probably not
very meaningful.)

Lemma 3.16 Let R be a graded k-algebra, not necessarily commutative. If R
is a free module with generators in bounded degrees over a graded polynomial
ring S contained in the center of R, then R is Cohen-Macaulay.

Proof Write S = k[x1, . . . , xn], with maximal ideal mS , and let m be the
maximal ideal of Z(R). The ideals mSZ(R) and m in Z(R) have the same
radical, by our assumption, and so R has the same local cohomology with
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respect to these two ideals. By the Independence Theorem, it follows that
Hi

mS
R ∼= Hi

mR for all i. Since R is a free S-module, we have Hi
mS

R = 0 for
i �= n. Therefore, R is Cohen-Macaulay in the sense of Definition 3.15.

3.3 Duflot’s lower bound for depth

In this section, we prove Duflot’s lower bound for the depth of the cohomology
ring of a finite group [34], and generalize it to the Chow ring. Duflot’s theorem
has inspired a lot of work on group cohomology over the past 30 years, including
Theorem 9.1 in this book.

Depth is defined in Definition 3.5 for a module over a commutative graded
ring. The depth of the cohomology ring H ∗

G = H ∗(BG, Fp) is understood to
mean its depth over the even-degree subring H ev

G , which is commutative. For
p = 2, the whole ring H ∗

G is commutative, and this definition coincides with
the depth of H ∗

G as a module over itself, by Lemma 3.10.

Theorem 3.17 Let G be a finite group, and let p be a prime number. Let S be
a Sylow p-subgroup of G and let C = Z(S)[p] be the p-torsion subgroup of the
center of S. Let ζ1, . . . , ζs be elements of H ∗

G = H ∗(BG, Fp) (of even degree
if p is odd) such that the restrictions of ζ1, . . . , ζs form a regular sequence in
H ∗

C . Then ζ1, . . . , ζs is an H ∗
G-regular sequence.

Proof We follow Carlson’s exposition [26, theorem 12.3.3] of Broto-Henn’s
proof [22]. We are given that H ∗

C is a flat (or equivalently, free) Fp[ζ1, . . . , ζs]-
module, by Lemma 3.13. Suppose we can show that the cohomology of a Sylow
p-subgroup H ∗

S is a flat Fp[ζ1, . . . , ζs]-module. Then it follows that H ∗
G is a

flat Fp[ζ1, . . . , ζs]-module, because H ∗
G is a summand of H ∗

S as an H ∗
G-module

via transfer (Section 2.5). Thus we have reduced to proving the theorem for G

a p-group.

Lemma 3.18 Let G be a p-group. Let C be an elementary abelian subgroup
of the center of G. Then H ∗

G is an H ∗
C-comodule.

Proof Since C is central in G, we have a group homomorphism C × G →
G defined by (c, g) 	→ cg. The pullback homomorphism H ∗

G → H ∗
C×G =

H ∗
C ⊗Fp

H ∗
G makes H ∗

G a comodule over the Hopf algebra H ∗
C .

We now prove Theorem 3.17, where we have arranged for G to be a p-group
and C = Z(G)[p]. Write

α : H ∗
G → H ∗

C ⊗Fp
H ∗

G
∼= H ∗

C×G

for the pullback map associated to the homomorphism C × G → G, (c, g) 	→
cg. The inclusion G ↪→ C × G by g 	→ (1, g) gives a restriction map H ∗

C×G →
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H ∗
G. In terms of the identification H ∗

C×G = H ∗
C ⊗Fp

H ∗
G, this restriction map is

the obvious ring homomorphism

β : H ∗
C ⊗Fp

H ∗
G → H ∗

G

sending H>0
C to zero. Since the composition G ↪→ C × G → G is the identity,

the composition

H ∗
G −→

α
H ∗

C ⊗Fp
H ∗

G −→
β

H ∗
G

is the identity. Thus H ∗
G is a summand of H ∗

C ⊗Fp
H ∗

G as an H ∗
G-module, where

we make H ∗
C ⊗Fp

H ∗
G into an H ∗

G-module using α.
In particular, H ∗

G is a summand of H ∗
C ⊗Fp

H ∗
G as an Fp[ζ1, . . . , ζs]-module.

We can filter H ∗
C ⊗Fp

H ∗
G by the Fp[ζ1, . . . , ζs]-submodules H ∗

C ⊗Fp
H

≥j
G , for

j ≥ 0. The corresponding quotient modules can be identified with H ∗
C ⊗Fp

H
j
G,

with ζ1, . . . , ζs acting by 0 on H
j
G. Since ζ1, . . . , ζs form a regular sequence

in H ∗
C , H ∗

C is a free Fp[ζ1, . . . , ζs]-module by Lemma 3.13, and so these
quotients are free Fp[ζ1, . . . , ζs]-modules. So, by induction, H ∗

C ⊗Fp
H ∗

G is
a free Fp[ζ1, . . . , ζs]-module. Since H ∗

G is a summand of H ∗
C ⊗Fp

H ∗
G as a

graded Fp[ζ1, . . . , ζs]-module, H ∗
G is also a free Fp[ζ1, . . . , ζs]-module, by

Lemma 3.13.

Corollary 3.19 Let G be a finite group and p a prime number. The depth of
H ∗

G = H ∗(BG, Fp) is at least the p-rank of the center of a Sylow p-subgroup
of G.

Proof Let S be a Sylow p-subgroup of G, and let C = Z(G)[p], which is
isomorphic to (Z/p)c for some c. Let V be a faithful complex representation
of G, with n = dim(V ). By Theorem 1.1, H ∗

C is finite over H ∗
G, and in fact over

Fp[c1V, . . . , cnV ]. By Lemma 3.10, since the ring H ∗
C is Cohen-Macaulay,

there are elements ζ1, . . . , ζc in Fp[c1V, . . . , cnV ] that restrict to a regular
sequence in H ∗

C . By Theorem 3.17, ζ1, . . . , ζc is an H ∗
G-regular sequence. By

Lemma 3.6, the depth of H ∗
G is at least c.

We now generalize Duflot’s theorem on depth to the Chow ring.

Theorem 3.20 Let G be a finite group, p a prime number, k a field of char-
acteristic not p that contains the pth roots of unity. Consider G as an alge-
braic group over k. Let S be a Sylow p-subgroup of G and let C = Z(S)[p]
be the p-torsion subgroup of the center of S. Let ζ1, . . . , ζs be elements of
CH ∗

G = CH ∗(BG)/p such that the restrictions of ζ1, . . . , ζs form a regular
sequence in CH ∗

C . Then ζ1, . . . , ζs is a regular sequence in CH ∗
G.

The proof is essentially the same as for cohomology. Some details are:
The assumption on k implies that C ∼= (Z/p)c has Chow ring CH ∗

C =
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Fp[y1, . . . , yc]. This is slightly different from H ∗
C , but the argument is unaf-

fected by the change. The Künneth formula is not known for the Chow ring of a
product of two finite groups in general, but it is true when one factor is abelian
of exponent e and k contains the eth roots of unity (Lemma 2.12), which is
the case needed to show that CH ∗

S is a CH ∗
C-comodule. Finally, the Fp-vector

spaces CHi
S are not known to be finite-dimensional, but the filtration argument

in the proof of Theorem 3.17 still works.

Corollary 3.21 Let G be a finite group, p a prime number, k a field of
characteristic not p that contains the pth roots of unity. Consider G as an
algebraic group over k. The depth of CH ∗

G is at least the p-rank of the center
of a Sylow p-subgroup of G.

Proof Let C be the p-torsion subgroup of the center of a Sylow p-subgroup
of G. We have C ∼= (Z/p)c for some c. By the same proof as for Corollary
3.19, there are Chern classes in CH ∗

G, ζ1, . . . , ζc, which restrict to a regu-
lar sequence in CH ∗

C = Fp[y1, . . . , yc]. By Theorem 3.20, ζ1, . . . , ζc form a
regular sequence in CH ∗

G. By Lemma 3.6, the depth of CH ∗
G is at least c.
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Regularity of Group Cohomology

We now prove Symonds’s theorem on the regularity of group cohomology, and
its consequences for the degrees of generators and relations.

4.1 Regularity of group cohomology and applications

Theorem 4.1 (Symonds [130]) Let p be a prime number. Let N be a smooth
manifold with finite-dimensional Fp-cohomology. Let G be a compact Lie group
acting on N . Then the equivariant cohomology ring H ∗

G(N, Fp) (graded with
Hi in degree i) has regularity at most dim(N ) − dim(G).

In particular, for a finite group G, the cohomology ring H ∗
G = H ∗(BG, Fp)

has regularity at most zero. Moreover, Benson and Carlson showed that H ∗
G

has regularity at least zero, using a spectral sequence they constructed from
a system of parameters in H ∗

G. The key point is a duality on that spectral
sequence, analogous to Poincaré duality [13, theorem 4.2]. Combining the
results of Benson-Carlson and Symonds gives:

Corollary 4.2 For a finite group G and a prime number p, the graded ring
H ∗

G = H ∗(BG, Fp) has regularity equal to zero.

The fact that H ∗
G always has regularity equal to zero is an impressively sharp

result. For example, if G is a finite group such that H ∗
G is a finitely generated

free module over a polynomial ring Fp[y] in one variable, then Corollary 4.2
says that the highest-degree module generator has degree equal to |y| − 1.
(This case of Corollary 4.2, where H ∗

G is Cohen-Macaulay, was proved earlier
by Benson and Carlson [12, vol. 2, theorem 5.18.1].) We see this behavior in the
cohomology ring of a cyclic group of order an odd prime p, H ∗

Z/p = Fp〈x, y〉
(the free graded-commutative algebra) with |x| = 1 and |y| = 2, and also in

49
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the cohomology of the symmetric group, H ∗
Sp

= Fp〈x, y〉 with |x| = 2p − 3
and |y| = 2p − 2.

The most dramatic applications of Theorem 4.1 are the bounds it gives for
the generators of the cohomology ring of a finite group, such as the following.
No bound was known before Symonds’s work.

Corollary 4.3 (Symonds) Let G be a compact Lie group (for example, a
finite group) with a faithful complex representation V of dimension n. Let p

be a prime number. Then the cohomology H ∗
G = H ∗(BG, Fp) is generated

as a module over the polynomial ring H ∗
U (n) = Fp[c1V, . . . , cnV ] by elements

of degree at most n2 − dim(G). It follows that the cohomology ring H ∗
G is

generated by elements of degree at most max(2n, n2 − dim(G)).
Moreover, the relations among the Fp[c1V, . . . , cnV ]-module generators

for H ∗
G are in degrees at most n2 + 1 − dim(G). It follows that the relations in

H ∗
G as an Fp-algebra are in degree at most max(2n, n2 + 1 − dim(G), 2(n2 −

dim(G))).

As Symonds pointed out, Corollary 4.3 implies that the mod p cohomology
ring of a nontrivial finite group G, for any prime number p, is generated by
elements of degree at most |G| − 1. But for most groups of interest, applying
Corollary 4.3 directly gives a much better bound than |G| − 1. For that reason,
this book seeks optimal bounds for the cohomology and Chow ring of a finite
group in terms of the dimension of a faithful complex representation, rather
than in terms of the order of the group.

Proof (Corollary 4.3) We are given a faithful representation G ⊂ U (n). By
Venkov (Theorem 1.1), H ∗

G is a finitely generated module over

H ∗
U (n) = Fp[c1V, . . . , cnV ].

In the notation of Definition 3.8, the graded polynomial ring H ∗
U (n) has

σ (H ∗
U (n)) = ∑n

i=1(2i − 1) = n2. By Theorem 4.1, H ∗
G has regularity at most

− dim(G) as a module over H ∗
U (n). By the interpretation of regularity in

Theorem 3.14, it follows that H ∗
G is generated as a module over H ∗

U (n) by
elements of degree at most σ (H ∗

U (n)) − dim(G) = n2 − dim(G). It also fol-
lows that the relations among these module generators are in degree at most
σ (H ∗

U (n)) − dim(G) + 1 = n2 − dim(G) + 1. This implies the statements we
want about generators and relations for H ∗

G as an Fp-algebra.

4.2 Proof of Symonds’s theorem

Using the formal properties of regularity, together with some basic arguments
on equivariant cohomology used by Quillen, Symonds’s proof quickly reduces
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the problem of bounding the regularity of H ∗
G for any compact Lie group G

to the problem of bounding the regularity of H ∗
AM , for an elementary abelian

group A acting on a smooth manifold M . The latter problem is handled by a
theorem of Duflot on actions of elementary abelian groups (not to be confused
with her theorem on depth, Corollary 3.19). We also prove Duflot’s theorem.

Proof (Theorem 4.1) Write H ∗
G for H ∗(BG, Fp). Choose a faithful rep-

resentation G ⊂ U (n). We need the following variant of Venkov’s theorem
(Theorem 1.1).

Lemma 4.4 Let N be a smooth manifold such that N has finite-dimensional
Fp-cohomology. Let G be a compact Lie group acting on N . Let G ⊂ U (n)
be a faithful representation. Then H ∗

GN is a finitely generated module over
H ∗

U (n) = Fp[c1, . . . , cn].

Proof We can view the homotopy quotient N//G = (N × EG)/G as a dou-
ble quotient G\(N × U (n))/U (n), where G acts on N and by left multiplication
on U (n), and U (n) acts trivially on N and by right multiplication on U (n) (so
the two actions commute). Thus we have a fibration

(N × U (n))/G → N//G → BU (n).

Here (N × U (n))/G is a finite-dimensional manifold, and it has finite-
dimensional Fp-cohomology in each degree using the Leray-Serre spectral
sequence

H ∗(BG,H ∗(N × U (n))) ⇒ H ∗((N × U (n))/G).

So (N × U (n))/G has finite-dimensional Fp-cohomology. The same argument
as in Venkov’s theorem (Theorem 1.1), applied to the fibration above, gives
that H ∗

GN = H ∗(N//G) is a finitely generated H ∗BU (n)-module.

Thus we know that H ∗
GN is finitely generated as an Fp[c1, . . . , cn]-module,

and we want to show that it has regularity at most dim(N ) − dim(G) as an
Fp[c1, . . . , cn]-module. (By the properties of regularity (Lemma 3.10), this
property of H ∗

GN does not depend on the choice of faithful representation
G ⊂ U (n).)

Let T be the subgroup (S1)n ⊂ U (n) of diagonal matrices, and S = (Z/p)n

the p-torsion subgroup of T . The cohomology ring of the flag manifold
U (n)/T is well known: H ∗(U (n)/T ) is the quotient of the polynomial
ring Fp[y1, . . . , yn] with |yi | = 1 by the elementary symmetric polynomials
c1, . . . , cn. For example, this follows from the spectral sequence of the fibra-
tion

U (n)/T → BT → BU (n),
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or by viewing U (n)/T as an iterated projective bundle as in the proof of
Theorem 2.13. Let L1, . . . , Ln be the complex line bundles on U (n)/T given
by the obvious 1-dimensional representations of T . The quotient manifold
U (n)/S is the principal (S1)n-bundle over U (n)/T corresponding to the pth
powers of the line bundles L1, . . . , Ln. The first Chern classes of these pth
power line bundles are zero in H 2(U (n)/T ), since we are using Fp coefficients.
So, applying the spectral sequence for the cohomology of an S1-bundle n times,
we find that for p odd,

H ∗(U (n)/S) ∼= H ∗(U (n)/T )〈x1, . . . , xn〉,
where |xi | = 1 for i = 1, . . . , n. (For p = 2, x2

i may not be zero in H ∗(U (n)/S),
but it is enough for what follows that H ∗(U (n)/S) is a free module over
H ∗(U (n)/T ) with basis elements

∏
i∈I xi for all subsets I ⊂ {1, . . . , n}.) In

particular, the highest degree in which H ∗(U (n)/S) is nonzero is n2 − n + n =
n2. (That is also clear from the fact that U (n)/S is a closed orientable manifold
of dimension n2.)

Since G ⊂ U (n), the group G acts on the quotient manifold U (n)/S and also
on the given manifold N .

Lemma 4.5 H ∗
G(N × U (n)/S) is a free H ∗

GN -module with top generator in
degree n2.

This was proved by Quillen [113, lemma 6.5].

Proof First consider H ∗
G(N × U (n)/T ), which we can view as the cohomol-

ogy ring of Y := G\(EG × N × U (n))/T . This double quotient is a U (n)/T -
bundle over N//G = G\(EG × N ), so its cohomology ring is the same as
that of a flag bundle (a U (n)/T -bundle) over N//G. Such a bundle is an
iterated projective bundle (corresponding to a sequence of vector bundles),
as in the proof of Theorem 2.13, and so its cohomology ring is known: it is
H ∗(BG)[y1, . . . , yn]/(ei(y1, . . . , yn) = ci) where |yi | = 2, ei denotes the ith
elementary symmetric function, and ci is the ith Chern class of the given
representation G → U (n). Next, H ∗

G(N × U (n)/S) is the cohomology ring
of G\(EG × N × U (n))/S, which is a principal (S1)n-bundle over Y , corre-
sponding to the pth powers of the obvious line bundles L1, . . . , Ln on Y (with
Chern classes y1, . . . , yn). So, for p odd, H ∗

G(N × U (n)/S) is the tensor prod-
uct of the previous ring with the free graded-commutative algebra on generators
x1, . . . , xn in degree 1. So

H ∗
G(N × U (n)/S) ∼= (H ∗

GN )〈x1, . . . , xn, y1, . . . , yn〉/(ei(y1, . . . , yn) = ci).

(For p = 2, we have the usual variation: H ∗
G(N × U (n)/S) is a free module

over H ∗
GN [y1, . . . , yn]/(ei(y1, . . . , yn) = ci) with basis elements

∏
i∈I xi for

all subsets I of {1, . . . , n}.) Thus H ∗
G(N × U (n)/S) is a free H ∗

GN -module with
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basis elements corresponding to a basis for the Fp-vector space H ∗(U (n)/S).
In particular, the top generator is in degree n2.

By Lemma 4.5 and the interpretation of regularity in terms of a minimal
resolution (Theorem 3.14),

reg(H ∗
G(N × U (n)/S)) = reg(H ∗

GN ) + n2.

So Theorem 4.1 reduces to showing that reg(H ∗
G(N × U (n)/S)) ≤ dim(N ) +

n2 − dim(G). Here we are viewing H ∗
G(N × U (n)/S) as an Fp[c1, . . . , cn]-

module via the homomorphism Fp[c1, . . . , cn] → H ∗
G, but it is isomorphic

to H ∗
S (G\(N × U (n))), and so we can also view it as an H ∗

S -module. It is
generated in bounded degrees over both rings, by Lemma 6.3. Therefore, the
properties of regularity imply that it has the same regularity over both rings.
Thus it suffices to show that

reg(H ∗
S (G\(N × U (n)))) ≤ dim(N ) + n2 − dim(G).

At this point, the group G disappears from the problem; it suffices to show that
reg(H ∗

S M) ≤ dim(M) for every action of an elementary abelian p-group S =
(Z/p)n on a manifold M with finite-dimensional Fp-cohomology. (Apply this
to the manifold M = G\(N × U (n)).) This will follow from Duflot’s theorem
on actions of elementary abelian groups [35], which we now prove.

For any compact Lie group K acting on a smooth manifold M , the fixed point
set MK is a smooth submanifold. (One can choose a K-invariant Riemannian
metric on M , and then the exponential map at a point p ∈ MK identifies a
neighborhood of zero in (TpM)K with a neighborhood of p in MK .) Filter M

by the closed submanifolds MV for the various subgroups V ⊂ S. Let Mi be
the closed subset of points with isotropy group in S of rank at least i, and let
M(i) be the open subset of Mi consisting of points with isotropy group of rank
equal to i. For each d ≥ 0, let M(i),d be the union of the connected components
of M(i) with codimension d in M . Duflot’s theorem is:

Theorem 4.6 There is a short exact sequence of H ∗
S -modules

0 → ⊕dH
∗−d
S (M(i),d ) → H ∗

S (M − Mi+1) → H ∗
S (M − Mi) → 0.

Proof This is part of the long exact localization sequence for equivariant
cohomology. One detail is that in order to write the first group as we have
(without twisted coefficients), we need to observe that the normal bundle of
M(i) in M is orientable when p is odd. (For p = 2, there is no issue about
orientability.) That holds because the normal bundle to a connected component
of MV , for a subgroup V ∼= (Z/p)i of S, is a real representation of V with no
trivial summands, and such a representation can be given a complex structure
in a canonical way, when p is odd.
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All we need to prove is the injectivity of the first homomorphism. (This will
imply the surjectivity of the last homomorphism, by the long exact sequence.)
It suffices to prove that pushing forward from

∐
M(i),d to M − Mi+1 and then

pulling back gives an injection on equivariant cohomology groups. Since the
restriction of cycles on one connected component of M(i) to another component
is zero, it suffices to show for each subgroup V ⊂ S of p-rank i that pushing
forward from the subspace (M − Mi+1)V fixed by V to M − Mi+1 and then
pulling back gives an injection on equivariant cohomology groups. The result
of pushing forward from a smooth closed submanifold and then pulling back
is multiplication by the Euler class of the normal bundle [106, theorem 11.3].
(For a complex vector bundle, the Euler class is the top Chern class; when
p = 2, we define the Euler class of a real vector bundle in F2-cohomology to
be the top Stiefel-Whitney class.) Thus, it suffices to show that the Euler class
of the normal bundle to X := (M − Mi+1)V in M − Mi+1 is not a zero divisor
in H ∗

S ((M − Mi+1)V ).
Since S ∼= (Z/p)n, we can choose a splitting S = V × W for the subgroup

V ⊂ S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

H ∗
S (X) ∼= (H ∗(X/W ))〈x1, . . . , xv, y1, . . . , yv〉,

where |xi | = 1, |yi| = 2, and y1, . . . , yv are the first Chern classes of 1-
dimensional representations of V ∼= (Z/p)v. (This is for p odd; for p = 2,
the elements xi are polynomial generators in degree 1, and yi = x2

i .)
Let N be the normal bundle to X in M − Mi+1, which is an S-equivariant real

vector bundle on X, with a canonical complex structure for p odd. Because X

is the whole fixed point space in M − Mi+1 for the subgroup V , the sub-bundle
of N fixed by V is 0. Thus, if the isotypic decomposition of N with respect to
V is N = ⊕αEα for α ∈ Hom(V, S1) ∼= (Z/p)n, then E0 = 0. Note that each
Eα is an S-equivariant subbundle of the normal bundle N , because S commutes
with its subgroup V . The Euler class χ (N ) is the product of the Euler classes of
the subbundles Eα, and so it suffices to show that χ (Eα) is a non-zero-divisor
in H ∗

S X for each α �= 0 in Hom(V, S1).
Let Lα be the 1-dimensional complex representation of S given by projecting

S = V × W to V and applying the representation α of V . Let Fα = Eα ⊗ L∗
α .

Then Fα is an S-equivariant vector bundle on X on which the subgroup V acts
trivially. Therefore, the Chern classes of Fα lie in the subring H ∗(X/W ) of

H ∗
S (X) = (H ∗(X/W ))〈x1, . . . , xv, y1, . . . , yv〉,

with the variation for p = 2 as above. The first Chern class of Lα is a nonzero
Fp-linear combination of y1, . . . , yv , and so, after a change of basis for V , we
can assume that c1(Lα) = y1. Write m for the rank of the bundle Eα . Since
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Eα = Fα ⊗ Lα , we have

χ (Eα) = ym
1 + c1(Fα)ym−1

1 + · · · + cm(Fα),

by the formula for the Chern classes of the tensor product of a complex vector
bundle with a complex line bundle. (For p = 2, we use the analogous formula
for the top Stiefel-Whitney class of the tensor product of a real vector bundle
with a real line bundle.) Since this is a monic polynomial, it is a non-zero-divisor
in H ∗

S (X), as we want.

For a subgroup V of S, let M (V ) be the locally closed submanifold of M of
points with stabilizer equal to V . By Theorem 4.6, we have a filtration of H ∗

S (M)
by finitely many H ∗

S -submodules such that the subquotients are isomorphic to
H ∗

S (M (V )) for the subgroups V of S, shifted in degree by the codimension of
each connected component of M (V ) in M . By the basic properties of regularity
in Lemma 3.9, it follows that

reg(H ∗
S ,H ∗

S (M)) ≤ max
V ⊂S

{reg(H ∗
S ,H ∗

S M (V )) + codim(M (V ) ⊂ M)}.

So Theorem 4.1 follows if we can show that for each subgroup V of S, H ∗
S (M (V ))

has regularity at most dim(M) − codim(M (V ) ⊂ M) = dim(M (V )) as an H ∗
S -

module.
Choose a splitting S = V × W for the subgroup V ⊂ S ∼= (Z/p)n. The group

V acts trivially on M (V ) while W acts freely, and so we have

H ∗
S (M (V )) ∼= (H ∗(M (V )/W ))〈x1, . . . , xv, y1, . . . , yv〉,

with the usual variant for p = 2. This is a finitely generated free module over
the polynomial ring Fp[y1, . . . , yv], with top generator x1 · · · xv (in degree
v) times a top-degree element of H ∗(M (V )/W ). By Lemma 3.10, the regu-
larity of H ∗

S (M (V )) over H ∗
S is equal to its regularity over Fp[y1, . . . , yv]. In

terms of Definition 3.8, the graded polynomial ring Fp[y1, . . . , yv] has σ equal
to v. By Theorem 3.14, the regularity of H ∗

S (M (V )) is equal to its top degree as
a free Fp[y1, . . . , yv]-module, minus v. That is equal to the top degree of the
Fp-cohomology of the manifold M (V )/W , which is at most the dimension of
M (V ), as we want.
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Generators for the Chow Ring

Although Chow rings of classifying spaces are more mysterious than coho-
mology rings, one aspect of the Chow ring was understood earlier. In the
1990s, I showed that the Chow ring of a group with a faithful representation of
degree n was generated in degrees at most n2 (Theorem 5.1). The proof was
much simpler than the proof of Symonds’s 2010 regularity theorem for group
cohomology, which gave an analogous bound on generators for group coho-
mology (Corollary 4.3).

In this chapter, we improve the bound on the degree of generators for the
Chow ring by about a factor of 2, to n(n − 1)/2 (Theorem 5.2). The proof is
still simple. Later we will bound the regularity of the Chow ring (Theorem 6.5).
That is a stronger result – for example, it gives information about relations as
well as generators – but the proof is more complicated.

We give examples to show that the bound n(n − 1)/2 for generators of the
Chow ring is optimal, and that Symonds’s bound n2 for generators of the
cohomology ring is at least close to optimal, among arbitrary finite groups.

5.1 Bounding the generators of the Chow ring

The following bound goes back to the 1990s [138, theorem 14.1]. We prove a
slight generalization as Lemma 6.3.

Theorem 5.1 Let G be an affine group scheme over a field k with a faithful
representation V of dimension n. Then

CH ∗GL(n)/G ∼= CH ∗BG/(c1V, . . . , cnV ).

As a result, CH ∗BG is generated as a module over the Chern classes
Z[c1V, . . . , cnV ] by elements of degree at most n2 − dim(G). It follows that the
ring CH ∗BG is generated by elements of degree at most max(n, n2 − dim(G)).

56
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At the time, no bound was known for the generators of the cohomology ring
of a finite group. It is remarkable that Symonds found a very similar bound
for the cohomology in 2010, Corollary 4.3 in this book. (Note that there is no
essential difference between compact Lie groups and complex algebraic groups
for homotopy-theoretic purposes. Every complex algebraic group is homotopy
equivalent to a maximal compact subgroup, and conversely the inclusion from
any compact Lie group to its complexification is a homotopy equivalence.)

It turns out that Theorem 5.1 can be improved by about a factor of two, as
follows. The improved bound turns out to be optimal. We concentrate on the
case of finite groups.

Theorem 5.2 Let G be an finite group with a faithful representation V of
dimension n over a field k with |G| invertible in k. Then, with G considered
as an algebraic group over k, the Chow ring CH ∗BG is generated as a
module over the Chern classes Z[c1V, . . . , cnV ] by elements of degree at most
n(n − 1)/2. A fortiori, the ring CH ∗BG is generated by elements of degree at
most n if n ≤ 2, and at most n(n − 1)/2 if n ≥ 3.

Proof By Theorem 5.1, it suffices to show that CHi(GL(n)/G) = 0 for
i > n(n − 1)/2. The homogeneous variety GL(n)/G has dimension n2, and so
this is not immediately clear. But the proof turns out to be straightforward.

Let U be the group of strictly upper-triangular matrices in GL(n). The
homogeneous space U\GL(n) is a quasi-projective variety [147, pp. 122–
123], and so its quotient by the finite group G is a quasi-projective variety [32,
2nd ed., remarque V.5.1].

The group U has dimension n(n − 1)/2, and has a filtration by normal
subgroups with all quotients being the additive group Ga over k. Since |G|
is invertible in k, the intersection of U with any conjugate of G is trivial.
Equivalently, G acts freely on U\GL(n). So the quotient variety U\GL(n)/G

is smooth.
We have a principal U -bundle GL(n)/G → U\GL(n)/G. The pullback

map CH ∗(U\GL(n)/G) → CH ∗(GL(n)/G) is an isomorphism. Indeed, this
follows by viewing this principal U -bundle as the composite of a sequence of
principal Ga-bundles. The pullback on Chow rings associated to a principal
Ga-bundle over a smooth variety is an isomorphism, by homotopy invariance
of Chow groups (Lemma 2.2).

Therefore, we have CHi(GL(n)/G) = 0 for i > n(n + 1)/2, since
U\GL(n)/G has dimension n(n + 1)/2. We want to go further by n. Let
T be the group of diagonal matrices in GL(n), so that T ∼= (Gm)n. Since T

normalizes U , T acts on the variety U\GL(n)/G, by t(UxG) = UtxG. This
action is not free; indeed, every element of G is conjugate in GL(n) to some
element of T .
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Nonetheless, the action of T on U\GL(n)/G has finite stabilizer groups,
since G is finite. Applying the following easy lemma completes the proof.

Lemma 5.3 Let X be a smooth variety over a field k. Let T be a split torus
that acts on X with finite stabilizer groups. Then CHiX = 0 for i > dim(X) −
dim(T ).

Proof The T -action on X has only finitely many different stabilizer group
schemes in T . Stratify X according to the possible stabilizer groups. The strata
are smooth, because the fixed points of any finite subgroup scheme of T on
X form a smooth subscheme. By the basic exact sequence of Chow groups
(Lemma 2.1), the lemma reduces to the special case where T acts on X with
the same finite stabilizer group A everywhere. Here T/A is a split torus, and
so we have reduced to the case where a split torus T acts freely on a smooth
variety X. That is, X is a principal (Gm)n-bundle over a smooth variety B, for
some n.

It suffices to show that the pullback CH ∗B → CH ∗X is surjective, since B

has dimension dim(X) − dim(T ). This surjectivity follows by induction from
the case of a principal Gm-bundle X → B; that is, X is the complement of the
zero section in the total space of a line bundle L over B. In that case, we have

CH ∗(X) ∼= CH ∗(B)/(c1L)

by Lemma 2.4, which gives the surjectivity. (Alternatively, we could handle a
principal (Gm)n-bundle in one step, by viewing it as an open subset of a vector
bundle.)

The same proof, with GL(n) replaced by a product of groups GL(ni), gives
the following sharper bound when the given representation is reducible. This
will also follow from a later result, Theorem 6.5, which strengthens Theorem
5.2 to a bound on the regularity of the Chow ring, along the lines of Symonds’s
results on the cohomology ring.

Theorem 5.4 Let G be an finite group with a faithful representation V of
dimension n over a field k with |G| invertible in k. Write V as a direct sum of
irreducible representations Vi of dimension ni , 1 ≤ i ≤ s. Then, with G con-
sidered as an algebraic group over k, the Chow ring CH ∗BG is generated as a
module over the Chern classes Z[cj (Vi) : 1 ≤ i ≤ s, 1 ≤ j ≤ ni] by elements
of degree at most

∑
i ni(ni − 1)/2. A fortiori, the ring CH ∗BG is generated

by elements of degree at most max(n1, . . . , ns,
∑

i ni(ni − 1)/2).

For completeness, we mention the analogous bound for cohomology. This is
immediate from Symonds’s regularity theorem, Theorem 4.1.
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Theorem 5.5 Let G be an finite group with a faithful complex representation
V of dimension n. Write V as a direct sum of irreducible representations Vi

of dimension ni , 1 ≤ i ≤ s. Then the cohomology ring H ∗
G = H ∗(BG, Fp) is

generated as a module over the Chern classes Fp[cj (Vi) : 1 ≤ i ≤ s, 1 ≤ j ≤
ni] by elements of degree at most

∑
i n

2
i . A fortiori, the ring H ∗

G is generated
by elements of degree at most max(2n1, . . . , 2ns,

∑
i n2

i ).

5.2 Optimality of the bounds

In this section, we show that the bound n(n − 1)/2 in Theorem 5.2 for gen-
erators of the Chow ring is optimal. We also show that Symonds’s bound n2

for generators of the cohomology ring (Corollary 4.3) is at least close to being
optimal.

We first show that the bound n(n − 1)/2 for generators of CH ∗BG as a
Z[c1V, . . . , cnV ]-module is optimal. Write CH ∗

G for CH ∗(BG)/p, for a fixed
prime number p. Let G be the group (Z/p)n, for any positive integer n and
any prime number p. Then G has a faithful complex representation V of
dimension n, the direct sum of 1-dimensional representations V1, . . . , Vn. In
this example, CH ∗

G is the polynomial ring Fp[y1, . . . , yn], |yi | = 1, where the
yi are the first Chern classes of the representations V1, . . . , Vn. The pullback
homomorphism CH ∗

GL(n) = Fp[c1, . . . , cn] → CH ∗
G sends c1, . . . , cn to the

elementary symmetric polynomials in y1, . . . , yn.
It is a classical algebraic fact that the ring of all polynomials R[y1, . . . , yn]

over any commutative ring R is a free module over the subring of symmet-
ric polynomials, with module generators y

a1
1 · · · yan

n for 0 ≤ ai ≤ i − 1 [19,
theorem IV.6.1]. In particular, the highest-degree generator y2y

2
3 · · · yn−1

n is in
degree n(n − 1)/2. Thus the bound n(n − 1)/2 for the degree of module gen-
erators of CH ∗

G over Fp[c1V, . . . , cnV ] (Theorem 5.2) is optimal, for every
positive integer n and every prime number p.

This example is unsatisfying in some respects. First, as a ring, CH ∗
G is gen-

erated in degree 1, and so this example is not interesting if we just look at
CH ∗

G as a ring. Second, the representation V is reducible, and so it seems
artificial to view it as a module over the Chern classes of the whole repre-
sentation V = V1 ⊕ · · · ⊕ Vn. It is more natural to view CH ∗

G as a module
over Fp[c1V1, . . . , c1Vn]; Theorem 5.4 shows that this module is generated
in degrees at most

∑n
i=1 1(1 − 1)/2 = 0, which is clearly more useful. But it

leaves open the question of how good the bounds of Theorem 5.2 are for V

irreducible.
Both of these criticisms are answered by the following example. Let G be

the wreath product An � Z/p = An � (Z/p)n, for any n ≥ 3 and any prime
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number p. Here An denotes the alternating group. Then G has a faithful
irreducible complex representation of dimension n. (Indeed, G is contained
in the normalizer Sn � Gm of a maximal torus in GL(n).)

What can we say about algebra generators for CH ∗
G? Consider the restriction

map

CH ∗
G → (CH ∗

(Z/p)n )An

∼= Fp[y1, . . . , yn]An

∼= Fp[c1, . . . , cn] ⊕ D · Fp[c1, . . . , cn].

Here we define

D =
∑
σ∈An

yn−1
σ (1)y

n−2
σ (2) · · · yσ (n−1),

which is a polynomial of degree n(n − 1)/2. This description of the invariants
of the alternating group is classical [10, p. 104]. For p odd, we could use the
square root of the discriminant, � = ∏

i<j (yi − yj ), in place of D as a generator
of the invariants of the alternating group, but D works in any characteristic p.

Let u be the transfer of the class yn−1
1 yn−2

2 · · · yn−1 from CH
n(n−1)/2
(Z/p)n to

CH
n(n−1)/2
G . Then the restriction of u to CH ∗

(Z/p)n is the sum of all conjugates

of yn−1
1 yn−2

2 · · · yn−1 by the elements of G/(Z/p)n = An (Lemma 2.15). This
sum is exactly the class D. Here D is not in the subring generated by lower-
degree An-invariants, since they are Sn-invariant while D is not. Therefore u is
indecomposable in the ring CH ∗

G, and it has degree n(n − 1)/2.
Thus the group G = An � Z/p shows that the degree bound n(n − 1)/2 from

Theorem 5.2 for generators of the mod p Chow ring of a finite group is optimal,
for all n ≥ 3 and all prime numbers p. Moreover, the faithful representation of
dimension n is irreducible, in this example.

The same group shows that Symonds’s bound n2 for generators of the mod
p cohomology ring of a finite group (Corollary 4.3) is at least close to being
optimal. Let n ≥ 3 and let p be a prime number. For p odd, let G be the wreath
product An � Z/p = An � (Z/p)n; for p = 2, define G to be the wreath product
An � Z/4 instead. Let N be the normal subgroup (Z/p)n for p odd, or (Z/4)n

for p = 2. The group G has a faithful irreducible complex representation of
dimension n.

What can we say about generators of the ring H ∗
G := H ∗(G, Fp)? Consider

the restriction map

H ∗
G → (H ∗

N )An

∼= Fp〈x1, . . . , xn, y1, . . . , yn〉An.
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Here the elements xi have degree 1 and generate an exterior algebra, while
the elements yi have degree 2 and generate a polynomial algebra. We needed
to define N to be (Z/4)n rather than (Z/2)n when p = 2 in order to have
this description of H ∗

N . The elements y1, . . . , yn are the first Chern classes of
1-dimensional complex representations of N .

Here An permutes the generators xi and the generators yi . Therefore, the
ring homomorphism from H ∗

N to Fp[y1, . . . , yn] that sends each xi to zero is
An-equivariant. So we have a ring homomorphism

Fp〈x1, . . . , xn, y1, . . . , yn〉An → Fp[y1, . . . , yn]An

∼= Fp[c1, . . . , cn] ⊕ D · Fp[c1, . . . , cn],

where D = ∑
σ∈An

yn−1
σ (1)y

n−2
σ (2) · · · yσ (n−1). Here D is in degree n(n − 1) = n2 −

n, since the elements yi are in degree 2 in cohomology.
We constructed an element u in the Chow ring of G, as an explicit transfer,

whose restriction to the Chow ring of N is the class D. Therefore, we have a
cohomology class u in Hn2−n

G whose restriction to N is the cohomology class
D. The element D is indecomposable in the invariant ring Fp[y1, . . . , yn]An ,
because the lower-degree elements are Sn-invariant and D is not. Therefore, u

is indecomposable in the cohomology ring of G.
Thus the group G = An � Z/p, or G = An � Z/4 for p = 2, shows that the

degree bound n2 from Corollary 4.3 for generators of the mod p cohomology
ring of a finite group is nearly optimal, for all n ≥ 3 and all prime numbers p.
Namely, we need an algebra generator in degree n2 − n, at least. The faithful
representation of dimension n is irreducible in this example.
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Regularity of the Chow Ring

We prove here that the mod p Chow ring of any finite group scheme G has
regularity at most zero (Theorem 6.5), as Symonds proved for the cohomology
ring. The result has an assumption on the characteristic of the base field,
probably unnecessary. The proof is closely analogous to Symonds’s argument,
using an analog of Duflot’s theorem (on actions of elementary abelian groups)
for Chow rings. We also prove analogous bounds for the regularity of motivic
cohomology, which includes the Chow ring as a special case.

The regularity theorem implies our earlier bound on degrees of the generators
for the Chow ring, Theorem 5.2, but it is more powerful. For example, the
regularity theorem also bounds the degrees of relations in the Chow ring. The
rest of the book uses the regularity theorems for calculations as well as to prove
general results on Chow rings and cohomology rings.

Section 6.2 summarizes the properties of motivic cohomology, a natural
generalization of the Chow ring. We use motivic cohomology in the proofs of a
few later results about Chow rings, notably Yagita’s theorem, which computes
the Chow ring of a finite group up to F -isomorphism, Theorem 8.10. Theorem
6.10 proves the bound “regularity ≤ 0” for the motivic cohomology of a finite
group, generalizing the case of the Chow ring (Theorem 6.5). Theorem 6.10 is
not used in the rest of the book.

6.1 Bounding the regularity of the Chow ring

Definition 6.1 Let R be a commutative graded algebra, or a graded-
commutative algebra, over a field k. We assume that R0 = k. Let k be an alge-
braic closure of k. Define σ (R) to be the minimum of the numbers

∑
i(|yi | − 1)

over all homomorphisms from graded polynomial rings T = k[y1, . . . , yn] to
R ⊗k k such that R ⊗k k is generated as a T -module by a set of elements of
bounded degree.

62
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For the purpose of this book, we could have defined σ (R) without the field
extension to k. But σ (R) as defined here is potentially a smaller number because
of the field extension. Since our estimates of degrees of generators for group
cohomology will involve the number σ (R) for suitable rings R, it may be
convenient to know that it suffices to find systems of parameters (roughly
speaking) for these rings after a field extension.

The definition of σ (R) might be considered to be artificial; it does not have
a cohomological interpretation, as invariants such as depth or Castelnuovo-
Mumford regularity do. Nonetheless, it has one very convenient formal prop-
erty: if R → S is a homomorphism of graded rings such that S is generated as
an R-module by elements of bounded degree, then σ (S) ≤ σ (R). This is imme-
diate from the definition. (Note that it is crucial for this inequality to allow the
polynomial ring in the definition of σ (R) to have higher dimension than R.) We
deduce the following inequality for Chow rings and cohomology. Fix a prime
number p and write CH ∗

G = CH ∗(BG)/p and H ∗
G = H ∗(BG, Fp).

Lemma 6.2 Let H ⊂ G be affine group schemes over a field k. Let p be a
prime number. Then σ (CH ∗

H ) ≤ σ (CH ∗
G). Likewise, for compact Lie groups

H ⊂ G, σ (H ∗
H ) ≤ σ (H ∗

G).

Proof By the formal property of σ mentioned previously, it suffices to show
that CH ∗

H is generated over CH ∗
G by elements of bounded degree, and likewise

for cohomology. Consider a faithful representation V of G of some dimension
n. Then CH ∗

H is generated in bounded degrees as a module over the Chern
classes Fp[c1, . . . , cn] by Theorem 5.2 (or Theorem 5.1). A fortiori, CH ∗

H

is generated in bounded degrees as a module over CH ∗
G, as we want. The

same argument applies to cohomology, since H ∗
H is finitely generated as a

module over the Chern classes of a faithful complex representation, by Venkov
(Theorem 1.1).

The following lemma, generalizing Theorem 5.1, will be used in the proof
of Theorem 6.5.

Lemma 6.3 Let G be an affine group scheme of finite type over a field k.
Let G act on a smooth variety X over k. Then CH ∗

G(X) is generated by
elements of bounded degree as a CH ∗BG-module. More strongly, for a faithful
representation G ⊂ GL(n), CH ∗

G(X) is generated by elements of degree at most
dim(X) + n2 − dim(G) as a Z[c1, . . . , cn]-module.

Proof It suffices to prove the second statement, that CH ∗
G(X) is generated by

elements of degree at most dim(X) + n2 − dim(G) as a Z[c1, . . . , cn]-module.
Let Y = (X × GL(n))/G; then GL(n) acts on Y , and CH ∗

G(X) ∼= CH ∗
GL(n)Y .

So it suffices to show that if GL(n) acts on a smooth variety Y , then CH ∗
GL(n)Y

is generated by elements of degree at most dim(Y ). This follows if we can
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prove the isomorphism

CH ∗Y ∼= CH ∗
GL(n)(Y )/(c1, . . . , cn),

since CHiY = 0 for i > dim(Y ). By considering a finite-dimensional
approximation X to Y//GL(n), it suffices to show that CH ∗E =
CH ∗X/(c1V, . . . , cnV ) when E is the principal GL(n)-bundle over a smooth
k-scheme X associated to a vector bundle V .

Let B be the subgroup of upper-triangular matrices in GL(n). Then E/B is
the flag bundle Fl(V ) over X, whose Chow ring is computed in the proof of
Theorem 2.13:

CH ∗(E/B) = CH ∗X[y1, . . . , yn]/(ei(y1, . . . , yn) = ciV ),

where |yi | = 1 and ei denotes the ith elementary symmetric function, for i =
1, . . . , n. By the computation of the Chow ring of a principal Gm-bundle
(Lemma 2.4) plus homotopy invariance of Chow groups (Lemma 2.2),

CH ∗E = CH ∗(E/B)/(y1, . . . , yn)

= CH ∗X/(c1V, . . . , cnV ).

From now on, fix a prime number p and let CH ∗
GX denote the equivariant

Chow ring modulo p. Lemmas 6.3 and 3.10 imply that the regularity of the
ring CH ∗

GY for any smooth G-variety Y is equal to the regularity of CH ∗
GY as

a module over Fp[c1, . . . , cn] for any faithful representation G ⊂ GL(n).
Estimating σ (R) is useful when we know the regularity of a ring, for the

following reason.

Lemma 6.4 Let R be a graded algebra over a field k. Suppose that
reg(R) ≤ 0. Suppose that the minimum in the definition of σ (R) occurs for
a graded polynomial ring k[y1, . . . , yn]. Then R is generated as a k-algebra
by elements of degree at most max{|yi |, σ (R)}, modulo relations in degree at
most max{|yi|, σ (R) + 1, 2σ (R)}. (Thus, if at least two elements yi have degree
at least 2, then the k-algebra R is generated in degree at most σ (R) modulo
relations in degree 2σ (R).)

Proof It suffices to show that R ⊗k k is generated as a k-algebra by elements
of degree at most σ (R). Let R ⊗k k be generated as a module over a graded
polynomial ring T = k[y1, . . . , yn] by elements of bounded degree. Since R

(and hence R ⊗k k) has regularity at most zero, R ⊗k k is generated as a T -
module by elements zj of degree at most

∑n
i=1(|yi | − 1). Therefore the algebra

R ⊗ k is generated by the elements yi and zj , which have degree at most
max{|yi |, σ (R)}.

Since R ⊗k k has regularity at most zero, we also know that the relations
among the T -module generators zj are in degrees at most 1 + σ (R). It is
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straightforward to deduce that the relations among the algebra generators yi

and zj for R ⊗k k are in degrees at most max{|yi|, σ (R) + 1, 2σ (R)} [131,
proposition 2.1].

Theorem 6.5 Let G be a finite group scheme over a field k. Let p be a prime
number that is invertible in k. Then the ring CH ∗

G = CH ∗(BG)/p (graded
with CHi in degree i) has regularity ≤ 0.

The regularity of the Chow ring of a finite group can be less than 0, in contrast
to the cohomology ring (Corollary 4.2). For example, CH ∗

Z/p = Fp[y], where
|y| = 1, has regularity zero, whereas the symmetric group Sp has mod p Chow
ring Fp[y], where |y| = p − 1, which has regularity −(p − 2). The Chow ring
of a p-group often has regularity zero, but Lemma 13.6 shows that the regularity
can be less than zero.

To get an idea of what Theorem 6.5 says, note that it immediately implies
Theorem 5.2: a finite group G with a faithful k-representation of dimension n

has CH ∗BG generated in degree at most n(n − 1)/2 as a Z[c1, . . . , cn]-module,
once we know from Theorem 5.1 that this module is generated in a bounded set
of degrees. It suffices to bound the generators modulo p for each prime p, since
the groups CHi(BG) are killed by the order of G for i > 0. By Lemma 6.2,
the inclusion G ⊂ GL(n) implies that σ (G) ≤ σ (GL(n)) ≤ ∑n

i=1(|ci | − 1) =∑n
i=1(i − 1) = n(n − 1)/2. By Theorem 6.5, the ring CH ∗

G = CH ∗(BG)/p
has regularity at most 0, and so it is generated as an Fp[c1, . . . , cn]-module by
elements of degree at most n(n − 1)/2, as we wanted.

The original proof of Theorem 5.2 is simpler than the proof of Theorem
6.5. But Theorem 6.5 is more powerful, since it bounds the generators of
the Chow ring in terms of any set of elements over which the Chow ring is
generated by elements of bounded degree, not just the Chern classes of a faithful
representation. Also, Theorem 6.5 bounds the degrees of the relations in the
Chow ring, not only the generators.

Proof For clarity, we first prove Theorem 6.5 for G a finite k-group scheme of
order invertible in k. At the end, we explain the generalization to more general
finite group schemes.

Choose a faithful representation of G over k, G ⊂ GL(n). We know that
CH ∗

G is generated in bounded degrees as an Fp[c1, . . . , cn]-module by Theorem
5.2 (or the weaker Theorem 5.1), and we want to show that it has regularity
at most 0 as an Fp[c1, . . . , cn]-module. (By the properties of regularity, this
property does not depend on the choice of faithful representation.)

Let T be the subgroup (Gm)n ⊂ GL(n) of diagonal matrices, and S = (μp)n

the p-torsion subgroup scheme of T . The quotient variety GL(n)/T is an iter-
ated affine-space bundle over the flag manifold GL(n)/B, and so its Chow
ring is well known: CH ∗(GL(n)/T )/p is the quotient of the polynomial
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ring Fp[y1, . . . , yn] with |yi | = 1 by the elementary symmetric polynomials
c1, . . . , cn. This calculation is also immediate from Theorem 5.2. The quotient
variety GL(n)/S is a principal (Gm)n-bundle over GL(n)/T corresponding to
the pth powers of the line bundles L1, . . . , Ln corresponding to the obvious
1-dimensional representations of T . Therefore

CH ∗(GL(n)/S)/p ∼= (CH ∗(GL(n)/T )/p)/(c1(L⊗p
1 ), . . . , c1(L⊗p

n ))

∼= CH ∗(GL(n)/T )/p.

In particular, the highest degree in which CH ∗(GL(n)/S)/p is nonzero is
n(n − 1)/2.

Since G ⊂ GL(n), the group G acts on the quotient variety GL(n)/S.

Lemma 6.6 CH ∗
GGL(n)/S is a free CH ∗

G-module with top generator in
degree n(n − 1)/2.

Proof This is a straightforward analog of Quillen’s Lemma 4.5. First con-
sider CH ∗

G(GL(n)/T ), which we can view as the mod p Chow ring of
Y := G\(EG × GL(n))/T . (To deal only with finite-dimensional varieties,
one can replace EG in this argument by an open subset W − Z of some
representation W of G such that G acts freely on W − Z and Z has high
codimension in W compared to the Chow groups we consider.) This double
quotient is a GL(n)/T -bundle over BG, so its Chow ring is the same as that
of a flag bundle (a GL(n)/B-bundle) over BG. Such a bundle is an iterated
projective bundle (corresponding to a vector bundle), and so its Chow ring is
known: it is CH ∗

G[y1, . . . , yn]/(ei(y1, . . . , yn) = ci) where |yi | = 1, ei denotes
the ith elementary symmetric function, and ci is the ith Chern class of the given
representation G → GL(n). Next, CH ∗

GGL(n)/S is the mod p Chow ring of
G\(EG × GL(n))/S, which is a principal (Gm)n-bundle over Y , correspond-
ing to the pth powers of the obvious line bundles L1, . . . , Ln on Y (with Chern
classes y1, . . . , yn). So CH ∗

GGL(n)/S is the quotient of the previous ring by 0,
and so

CH ∗
GGL(n)/S ∼= CH ∗

G[y1, . . . , yn]/(ei(y1, . . . , yn) = ci).

This is a free CH ∗
G-module with basis elements corresponding to a basis for

the Fp-vector space CH ∗(GL(n)/S)/p. In particular, the top generator is in
degree n(n − 1)/2.

By Lemma 6.6,

reg(CH ∗
GGL(n)/S) = reg(CH ∗

G) + n(n − 1)/2.

So Theorem 6.5 reduces to showing that reg(CH ∗
GGL(n)/S) ≤ n(n − 1)/2.

Here we are viewing CH ∗
GGL(n)/S as a CH ∗

G-module, but it is isomorphic to
CH ∗

S GL(n)/G, and so we can also view it as a CH ∗
S -module. It is generated in
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bounded degrees over both rings, by Lemma 6.3. Therefore, the properties of
regularity imply that it has the same regularity over both rings. Thus it suffices
to show that

reg(CH ∗
S GL(n)/G) ≤ n(n − 1)/2.

Symonds’s proof that H ∗
G has regularity ≤ 0 uses Duflot’s theorem on actions

of elementary abelian groups at this point (Theorem 4.6). We generalize Duflot’s
theorem to the Chow ring instead of cohomology.

Let U be the group of strictly upper-triangular matrices in GL(n). Since
the diagonal torus T normalizes U , T acts on the variety M := U\GL(n)/G,
by t(UxG) = UtxG. Here G acts freely on U\GL(n), since |G| is invertible
in k and hence U intersects any conjugate of G only in the identity element.
The homogeneous space U\GL(n) is a smooth quasi-projective variety [147,
pp. 122–123], and so its quotient M by the finite group scheme G is a quasi-
projective variety [32, 2nd ed., remarque V.5.1]. Since the action is free, M

is smooth of dimension n(n + 1)/2 over k. Since S ∼= (μp)n is a subgroup
scheme of T , S also acts on M . Since U is a repeated extension of addi-
tive groups, homotopy invariance of Chow groups (Lemma 2.2) implies that
CH ∗

S GL(n)/G ∼= CH ∗
S M . So it suffices to show that CH ∗

S M has regularity at
most n(n − 1)/2.

Filter M by the closed subsets MV for the various subgroup schemes V ⊂ S.
They are smooth subschemes of M . Each MV is mapped into itself by the torus
T , because T commutes with S. Let Mi be the closed subset of points with
isotropy group in S of rank at least i, and let M(i) be the open subset of Mi

consisting of points with isotropy group of rank equal to i. For each d ≥ 0, let
M(i),d be the union of the connected components of M(i) with codimension d

in M . The analog for the Chow ring of Duflot’s theorem on cohomology is:

Theorem 6.7 There is a short exact sequence of CH ∗
S -modules

0 → ⊕dCH ∗−d
S M(i),d → CH ∗

S (M − Mi+1) → CH ∗
S (M − Mi) → 0.

Proof This is the usual exact sequence for equivariant Chow groups, Lemma
2.9, tensored over Z with Fp. All we need to prove is the injectivity of the first
homomorphism.

It suffices to prove that pushing forward from
∐

M(i),d to M − Mi+1 and
then pulling back gives an injection on equivariant Chow groups. Since the
restriction of cycles on one connected component of M(i) to another component
is zero, it suffices to show for each subgroup scheme V ⊂ S of p-rank i that
pushing forward from the subspace (M − Mi+1)V fixed by V to M − Mi+1 and
then pulling back gives an injection on equivariant Chow groups. The result
of pushing forward from a smooth closed subvariety and then pulling back is
multiplication by the Euler class of the normal bundle [43]. Thus, it suffices
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to show that the Euler class of the normal bundle to X := (M − Mi+1)V in
M − Mi+1 is not a zero divisor in CH ∗

S (M − Mi+1)V .
Since S ∼= (μp)n, we can choose a splitting S = V × W for the subgroup

V ⊂ S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

CH ∗
S X ∼= CH ∗(X/W )[y1, . . . , yv],

where y1, . . . , yv are the first Chern classes of 1-dimensional representations
of V ∼= (μp)v .

Let N be the normal bundle to X in M − Mi+1, which is an S-equivariant
vector bundle on X. Because X is the whole fixed point space in M − Mi+1

for the subgroup V , and p is invertible in the base field k, the sub-bundle of N

fixed by V is 0. Thus, if the isotypic decomposition of N with respect to V is
N = ⊕αEα for α ∈ Hom(V,Gm) ∼= (Z/p)n, then E0 = 0. Note that each Eα

is an S-equivariant subbundle of the normal bundle N , because S commutes
with its subgroup V . The Euler class of N is the product of the Euler classes of
the subbundles Eα, and so it suffices to show that χ (Eα) is a non-zero-divisor
in CH ∗

S X for each α �= 0 in Hom(V,Gm).
Let Lα be the 1-dimensional representation of S given by projecting S =

V × W to V and applying the representation α of V . Let Fα = Eα ⊗ L∗
α . Then

Fα is an S-equivariant vector bundle on X on which the subgroup V acts
trivially. Therefore, the Chern classes of Fα lie in the subring CH ∗(X/W )/p
of

CH ∗
S X = (CH ∗(X/W )/p)[y1, . . . , yv].

The first Chern class of Lα is a nonzero Fp-linear combination of y1, . . . , yv ,
and so, after a change of basis for V , we can assume that c1(Lα) = y1. Write
m for the rank of the bundle Eα . Since Eα = Fα ⊗ Lα, we have

χ (Eα) = ym
1 + c1(Fα)ym−1

1 + · · · + cm(Fα),

by the formula for the Chern classes of the tensor product of a vector bundle
with a line bundle. Since this is a monic polynomial, it is a non-zero-divisor in
CH ∗

S X, as we want.

Let M (V ) be the locally closed smooth subscheme of M where the stabilizer
subgroup in S is equal to V . By Theorem 6.7, we have a filtration of CH ∗

S M

by finitely many CH ∗
S -submodules such that the subquotients are isomorphic

to CH ∗
S M (V ) for the subgroups V of S, shifted in degree by the codimension of

M (V ) in M . By the basic properties of regularity in Lemma 3.9, it follows that

reg(CH ∗BS,CH ∗
S M) ≤ max

V ⊂S
{reg(CH ∗BS,CH ∗

S M (V )) + codim(M (V ) ⊂ M)}.
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So Theorem 6.5 follows if we can show that for each subgroup V

of S, CH ∗
S M (V ) has regularity at most n(n − 1)/2 − codim(M (V ) ⊂ M) =

dim(M (V )) − n as a CH ∗
S -module.

Choose a splitting S = V × W for the subgroup V ⊂ S ∼= (μp)n. The group
V acts trivially on M (V ) while W acts freely, and so we have

CH ∗
S M (V ) ∼= (CH ∗(M (V )/W )/p)[y1, . . . , yv],

by the Chow Künneth formula, Lemma 2.12. So the regularity of CH ∗
S M (V ) as a

CH ∗
S -module is equal to the regularity of CH ∗(M (V )/W )/p as a CH ∗

W -module.
Since CH ∗(M (V )/W )/p is 0 in high degrees, its regularity as a CH ∗

W -module
is equal to the highest degree in which it is nonzero, by Lemma 3.9. So it
suffices to show that CHi(M (V )/W )/p is zero for i > dim(M (V )) − n.

The torus T = (Gm)n acts with finite stabilizers on M = U\GL(n)/G.
Because T commutes with the action of S, T also acts on the locally closed sub-
scheme M (V ) and hence on M (V )/W , again with finite stabilizers. By Lemma
5.3, CHiM (V )/W is zero for i > dim(M (V )/W ) − n = dim(M (V )) − n, as we
want.

This completes the proof that reg(CH ∗
G) ≤ 0 for every finite k-group scheme

G of order invertible in k. We now prove that reg(CH ∗
G) ≤ 0 for every finite

group scheme G over k.
As in the proof above, choose a faithful representation G ⊂ GL(n) over k.

Let T be the diagonal torus (Gm)n in GL(n), S = T [p] ∼= (μp)n, and U the
group of strictly upper-triangular matrices in GL(n). As above, it suffices to
show that

reg(CH ∗
S GL(n)/G) ≤ n(n − 1)/2.

For any finite extension field E of degree prime to p, CH ∗
G is a summand

of CH ∗
GE

using transfers, and so reg(CH ∗
G) ≤ 0 follows from reg(CH ∗

GE
) ≤ 0.

So we can freely make field extensions of degree prime to p. Over the perfect
closure kperf of k, the underlying reduced scheme (Gkperf )red is a smooth subgroup
scheme [32, section VIA.0.2 and proposition VIA.1.3.1]. So, after replacing k

by a finite extension of degree a power of the characteristic (which we assumed
is prime to p), we can assume that Gred is a smooth k-subgroup scheme.
The index of Gred in G is a power of the characteristic of k, and so CH ∗

G is
a summand of CH ∗

Gred
using transfers. So we can assume that G is smooth

over k.
The finite etale k-group scheme G is determined by the action of Gal(ks/k)

on the finite group F = G(ks). After replacing k by an extension of degree
prime to p, we can assume that Gal(ks/k) acts through a p-group P on F .
Then F has a Galois-invariant Sylow p-subgroup, by the usual Sylow theorem
applied to the semidirect product P � F . That is, G has a k-subgroup scheme
of order a power of p and index prime to p. Using transfer, we can assume
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that G has order a power of p. So the order of G is invertible in k. We proved
earlier that reg(CH ∗

G) ≤ 0 in this case.

6.2 Motivic cohomology

This section briefly introduces motivic cohomology.
Bloch defined motivic homology, at first called higher Chow groups, as

a way to extend the basic exact sequence for Chow groups to a long exact
sequence [14]. For smooth schemes X over a field k, a suitable renumbering
of motivic homology is called motivic cohomology. The motivic cohomol-
ogy groups Hi

M (X, Z(j )) form a bigraded ring, with Chow groups being the
special case CHiX = H 2i

M (X, Z(i)) [100, theorem 19.1]. The index j is tra-
ditionally called the “weight.” As in topology, motivic cohomology groups
can be defined with coefficients in any abelian group A, and they satisfy the
universal coefficient theorem. The group H 2i

M (X,A(i)) is CHi(X) ⊗Z A. For
brevity, we sometimes write Hi(X,A(j )) for motivic cohomology (without the
subscript M).

Bloch’s higher Chow groups CHi(X, j ) coincide with motivic homology
for schemes X of finite type over a field k, although they are written with
numbering by codimension. In particular, when X is smooth over k, higher
Chow groups coincide with motivic cohomology, with the numbering given
by:

CHa(X, b) ∼= H 2a−b
M (X, Z(a)).

We summarize Bloch’s definition of higher Chow groups, a straightforward
generalization of the definition of Chow groups [14, 100]. For a natural number
j , define the algebraic j -simplex �j over a field k to be the hyperplane x0 +
· · · + xj = 1 in affine (j + 1)-space. The faces of �n are the subspaces of
�n defined by setting some of the variables xm to zero. There are natural
morphisms fm : �j−1 → �j for m = 0, . . . , j whose images are the faces of
codimension i. For an equidimensional k-scheme X of finite type, let zi(X, j )
be the free abelian group on the set of codimension-i subvarieties of X ×k �j

that intersect each face X ×k �r in a codimension-i subset. Then there is a
natural chain complex zi(X, ∗) of the form

· · · → zi(X, 2) → zi(X, 1) → zi(X, 0) → 0,

where the boundary map on zi(X, j ) is
∑j

m=0(−1)mf ∗
m. The higher Chow group

CHi(X, j ) is the homology of this chain complex at zi(X, j ).
The localization sequence for motivic cohomology has the following form

[15].
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Lemma 6.8 Let X be a smooth scheme over a field k and Y ⊂ X a smooth
closed subscheme of codimension d. Let A be an abelian group. Then there is
a long exact sequence of motivic cohomology groups

→ Hi−2d
M (Y,A(j − d)) → Hi

M (X,A(j )) → Hi
M (X − Y,A(j ))

→ Hi+1−2d
M (Y,A(j − d)) →

The groups Hi
M (X,A(j )) are zero for i > 2j , as is immediate from the

interpretation of motivic cohomology as higher Chow groups. That implies the
surjectivity at the right in the basic exact sequence for Chow groups:

· · · → H 2i−1
M (X − Y, Z(i)) → CHi−dY → CHiX → CHi(X − Y ) → 0.

Let n be a positive integer that is invertible in the field k. Then there is a
cycle map from motivic cohomology to etale cohomology,

Hi
M(X, Z/n(j )) → Hi

et(X, Z/n(j )) = Hi
et(X,μ⊗j

n )

[100, theorem 10.2]. For k = C, this etale cohomology group can be identified
with ordinary cohomology, Hi(X, Z/n). The Beilinson-Lichtenbaum conjec-
ture (Voevodsky’s theorem) is the remarkable fact that the cycle map is an
isomorphism in a wide range of bidegrees [145, theorem 6.17]:

Theorem 6.9 Let X be a smooth scheme of finite type over a field k. Let n be
a positive integer that is invertible in k. Then the cycle map

Hi
M (X, Z/n(j )) → Hi

et(X, Z/n(j ))

is an isomorphism for i ≤ j and is injective for i = j + 1.

There are several elementary vanishing properties of motivic cohomology.
In particular, Hi

M(X,A(j )) is zero for j < 0, and also when i > j + dim(X),
for any smooth scheme X over a field. Both are clear from the interpretation
of motivic cohomology as higher Chow groups, since there are no cycles of
negative codimension or of negative dimension. Combined with the Beilinson-
Lichtenbaum conjecture, the latter vanishing gives a complete description
of motivic cohomology with finite coefficients for a field k, meaning the
motivic cohomology of Spec k. Namely, every motivic cohomology group
Hi

M (k, Z/n(j )) is either zero (if i > j ) or isomorphic to etale cohomology (if
i ≤ j ), for n invertible in k.

The Beilinson-Soulé conjecture asserts that Hi
M (X,A(j )) is zero for i < 0.

Although this remains open, it is true for A finite of order invertible in k, by
the Beilinson-Lichtenbaum conjecture.

Edidin and Graham defined the equivariant motivic cohomology of a smooth
k-scheme X with an action of an affine group scheme G at the same time as
they defined equivariant Chow rings. Namely, equivariant motivic cohomology
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is defined to be the motivic cohomology of suitable approximations (X × (V −
S))/G to (X × EG)/G. The localization sequence generalizes to G-equivariant
motivic cohomology [38, proposition 5].

6.3 Steenrod operations on motivic cohomology

We now state the basic properties of Steenrod operations on motivic coho-
mology. We use these operations for several proofs in this book, all in later
chapters.

Let p be a prime number and k a field in which p is invertible. Voevodsky
defined Steenrod operations on mod p motivic cohomology, for a smooth
scheme X over k:

P a : Hi(X, Fp(j )) → Hi+2(p−1)a(X, Fp(j + (p − 1)a))

for a ≥ 0 [144, section 9]. We also have the Bockstein

β : Hi(X, Fp(j )) → Hi+1(X, Fp(j )).

For example, the Steenrod operations P a send mod p Chow groups into them-
selves (since CHj (X)/p = H 2j (X, Fp(j ))), while the Bockstein is zero on
mod p Chow groups (since H 2j+1(X, Fp(j )) = 0). As in topology, Steenrod
operations arise from the failure of multiplication on motivic cohomology to
come from a commutative operation at the level of cycles. The proof of Lemma
8.8 makes this point in more detail.

Steenrod operations commute with pullback for arbitrary morphisms of
smooth k-schemes. The operation P 0 is the identity. The Bockstein is a deriva-
tion, meaning that β(xy) = β(x)y + (−1)ixβ(y) for x in Hi(X, Fp(j )). We
have the Cartan formula P a(xy) = ∑a

b=0 P b(x)P a−b(y), assuming that k con-
tains the 4th roots of unity when p = 2. The Cartan formula holds without that
extra assumption when x and y are in the mod p Chow ring [144, proposition
9.7]. Finally, the Steenrod operations satisfy the “unstable” properties that

P ax = 0

for x in Hi(X, Fp(j )) when a > i − j and a ≥ j , and

P ax = xp

for x in CHa(X)/p = H 2a(X, Fp(a)) [144, lemmas 9.8 and 9.9].
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6.4 Regularity of motivic cohomology

In this section, Theorem 6.10 proves the bound “regularity ≤ 0” for the motivic
cohomology of a classifying space over an algebraically closed field, generaliz-
ing the case of the Chow ring (Theorem 6.5). As an application, Corollary 6.16
shows that the motivic cohomology of BG maps isomorphically to ordinary
cohomology in a large range of bidegrees, more than is true for smooth varieties
in general.

This section is not used in the rest of the book.
Fix a prime number p. For an affine group scheme G and any integer j ,

define

Mj (G) = ⊕iH
2i−j
M (BG, Fp(i)).

We view Mj (G) as a graded abelian group, graded by the degree of H ∗;
thus Mj (G) is concentrated in degrees ≡ j (mod 2). In particular, M0(G)
is the Chow ring CH ∗

G = CH ∗(BG)/p, and Mj (G) is zero for j < 0. For
each j , Mj (G) is a module over the Chow ring CH ∗

G. In particular, given a
faithful representation G → GL(n), Mj (G) is a module over the Chern classes,
Fp[c1, . . . , cn]. Note that |cj | = 2j in this context.

Theorem 6.10 Let G be a finite group scheme over a field k, p a prime number
invertible in k, and j a natural number. Suppose that the order of G is invertible
in k. Then, for any faithful representation G → GL(n), Mj (G) is generated
by elements of degree at most n2 + j as a module over Fp[c1, . . . , cn], and at
most n2 if k is algebraically closed. Moreover, Mj (G) has regularity at most j

as an Fp[c1, . . . , cn]-module, and at most 0 if k is algebraically closed.

Theorem 6.10 implies, say for k algebraically closed, that for any elements
y1, . . . , ym of CH ∗

G such that CH ∗
G is generated by elements of bounded degree

as an Fp[y1, . . . , ym]-module, Mj (G) is generated by elements of degree at most∑
i(2|yi | − 1) as an Fp[y1, . . . , ym]-module, where |yi | denotes the degree of

yi in the Chow ring.
For later use, we give a case where the Künneth formula holds for motivic

cohomology.

Lemma 6.11 Let G be an elementary abelian group (Z/p)v for some prime
number p. Let k be a field of characteristic not p that contains a primitive pth
root of unity ζp. Let u be the corresponding element of H 0

M (k, Fp(1)) = μp(k).
Let X be a smooth scheme over a field k. Then

H ∗
M (X × BG, Fp(∗)) ∼= H ∗

M(X, Fp(∗))〈x1, . . . , xv, y1, . . . , yv〉,
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where each element xi is in H 1
M (BG, Fp(1)) and yi = βxi is in H 2

M(BG, Fp(1)).
The notation means a free graded-commutative algebra if p is odd, and the
commutative algebra with relations x2

i = uyi if p = 2.

Proof It suffices by induction to describe the motivic cohomology of X ×
Bμp. Here Bμp can be approximated by the quotient variety (AN+1 − 0)/μp

for N large, and this variety is the complement of the zero section in the
line bundle O(p) over PN . The lemma follows from the motivic cohomology
of a projective bundle [14] together with the localization sequence (Lemma
6.8).

Proof (Theorem 6.10) We simultaneously prove that Mj (G) is generated
by a set of elements of bounded degree as an Fp[c1, . . . , cn]-module, and
that Mj (G) has regularity at most 0 as an Fp[c1, . . . , cn]-module. The two
statements together imply that Mj (G) is generated by elements of degree at
most n2 as an Fp[c1, . . . , cn]-module.

As in the proof of Theorem 6.5, let T be the subgroup (Gm)n ⊂ GL(n) of
diagonal matrices, and S = (μp)n the p-torsion subgroup scheme of T .

Lemma 6.12 As a CH ∗
G-module, Mj+n,G(GL(n)/S) contains Mj,G shifted

up by degree n2 as a summand.

Proof First consider H ∗
G(GL(n)/T , Fp(∗)), which we can view as the motivic

cohomology of Y := G\(EG × GL(n))/T . Then Y is a GL(n)/T -bundle over
BG, and so its motivic cohomology is that of a flag bundle (a GL(n)/B-bundle)
over BG associated to a vector bundle. This motivic cohomology is well known:

H ∗(Y, Fp(∗)) = H ∗(BG, Fp(∗))[y1, . . . , yn]/(ei(y1, . . . , yn) = ci),

where |yi | = (2, 1) and ci in H 2i(BG, Fp(i)) is the ith Chern class of the given
representation G → GL(n).

Next, G\(EG × GL(n))/S is a (Gm)n-bundle over Y corresponding to the
pth powers of the obvious line bundles L1, . . . , Ln on Y (with Chern classes
y1, . . . , yn). The Chern classes of these pth powers are 0, since we are working
with Fp coefficients. So

H ∗
G(GL(n)/S, Fp(∗)) = H ∗(BG, Fp(∗))

〈x1, . . . , xn, y1, . . . , yn〉/(ei(y1, . . . , yn) = ci),

where |xi | = (1, 1). This is a free module over H ∗,∗(BG) with highest-degree
generator (say, x1 · · · xny

n−1
1 yn−2

2 . . . yn−1) of degree n2.

To prove Theorem 6.10, it now suffices to show that Ml,G(GL(n)/S) is
generated in bounded degrees as an Fp[c1, . . . , cn]-module, that it has regularity
at most n2 + l − n as an Fp[c1, . . . , cn]-module, and that it has regularity
at most n2 if k is algebraically closed. (We will apply this to l = j + n, in
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view of Lemma 6.12.) Note that |ci | = 2i in this context. We can view the
groups Ml,G(GL(n)/S) as Ml,S(GL(n)/G). Since CH ∗

S is finite over CH ∗
GL(n),

it suffices to show that Ml,S(GL(n)/G) is generated in bounded degrees as a
CH ∗

S -module and that it has regularity at most n2 + l − n as a CH ∗
S -module,

or at most n2 if k is algebraically closed.
Let U be the group of strictly upper-triangular matrices in GL(n), and let

M = U\GL(n)/G. As in the proof of Theorem 6.5, M is a smooth quasi-
projective variety of dimension n(n + 1)/2, and T acts on M with finite sta-
bilizer groups. Since U is an iterated extension of additive groups, homotopy
invariance of motivic cohomology shows that Ml,S(GL(n)/S) = Ml,S(M). So
it suffices to show that Ml,S(M) is generated in bounded degrees and has regu-
larity at most n2 + l − n as a CH ∗

S -module, or at most n2 if k is algebraically
closed.

Let Mi be the smooth closed subscheme in M of points with isotropy group
in S of rank at least i, and let M(i) be the open subset of Mi consisting of points
with isotropy group of rank equal to i. For each d ≥ 0, let M(i),d be the union
of the connected components of M(i) with codimension d in M . The analog for
motivic cohomology of Duflot’s theorem is:

Theorem 6.13 There is a short exact sequence of CH ∗
S -modules

0 → ⊕dH
∗−2d
S (M(i),d , Fp(∗ − d)) → H ∗

S (M − Mi+1, Fp(∗))

→ H ∗
S (M − Mi, Fp(∗)) → 0.

Proof This is the usual long exact sequence, Lemma 6.8, for equivariant
motivic cohomology. If we prove the injectivity of the first homomorphism in
all degrees, the exact sequence gives the surjectivity of the last homomorphism.
As in the proof of Theorem 6.7, it suffices to show that for each subgroup V ⊂ S

of p-rank i, the Euler class of the normal bundle to X := (M − Mi+1)V in M −
Mi+1 is not a zero divisor in motivic cohomology H ∗

S ((M − Mi+1)V , Fp(∗)).
Since S ∼= (μp)n, we can choose a splitting S = V × W for the subgroup

V ⊂ S. Since V acts trivially on X while W acts freely on it, we have an
isomorphism

H ∗
S (X, Fp(∗)) ∼= H ∗(X/W, Fp(∗))〈x1, . . . , xv, y1, . . . , yv〉,

where |xi | = (1, 1), |yi | = (2, 1), and y1, . . . , yv are the first Chern classes of
1-dimensional representations of V ∼= (μp)v. As in the proof of Theorem 6.13,
the Euler class of the normal bundle is a monic polynomial in y1, . . . , yv over
CH ∗(X/W )/p, and so it is a non-zero-divisor on this motivic cohomology
ring.

By Theorem 6.13, we have a filtration of Ml,S(M) by finitely many CH ∗
S -

submodules such that the subquotients are isomorphic to Ml,S(M (V )) for the
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subgroups V of S, shifted up in degree by twice the codimension of M (V ) in
M . Choose a splitting S = V × W for the subgroup V = (μp)v ⊂ S ∼= (μp)n.
The group V acts trivially on M (V ) while W acts freely, and so we have

H ∗
S (M (V ), Fp(∗)) ∼= H ∗(M (V )/W, Fp(∗))〈x1, . . . , xv, y1, . . . , yv〉,

by the Künneth formula for motivic cohomology, Lemma 6.11.

Lemma 6.14 Let X be a smooth scheme of dimension n over a field k. Then
H 2i−l(X, Fp(i)) is 0 if 2i − l > 2n + l. If k is algebraically closed and p is
invertible in k, then H 2i−l(X, Fp(i)) is 0 if 2i − l > 2n.

Proof The first bound is trivial from the identification of motivic cohomology
with higher Chow groups (these groups would be represented by cycles of nega-
tive dimension). For k algebraically closed, Suslin showed that H 2i−l(X, Fp(i))
maps isomorphically to etale cohomology H 2i−l

et (X, Fp(i)) for i ≥ n [127,
corollary 4.3]. We can assume that l ≥ 0; otherwise motivic cohomology is
zero. So our assumption 2i − l > 2n implies that i ≥ n, and so the given
motivic cohomology group is isomorphic to an etale cohomology group in
degree > 2n, which is known to be zero since k is algebraically closed.

By Lemma 6.14, Ml(M (V )) is concentrated in a bounded set of degrees
for each l ≥ 0. Therefore, the formula before the lemma shows that
H ∗

S (M (V ), Fp(∗)) is generated in a bounded set of degrees as a module over
CH ∗

S = Fp[y1, . . . , yn]. By Theorem 6.13, it follows that Ml,S(M) is generated
in a bounded set of degrees as a CH ∗

S /p-module. By our earlier arguments, we
have proved the first part of Theorem 6.10, on bounded generation.

Moreover, in the notation before Lemma 6.14, the regularity of Ml,S(M (V ))
as a CH ∗

S -module is equal to the regularity of Ml(M (V )/W ) as a CH ∗
W -module.

Since Ml(M (V )/W ) is 0 in high degrees, its regularity as a CH ∗
W/p-module is

equal to the highest degree in which it is nonzero, by Lemma 3.9. If we can
show that Ml(M (V )/W )/p is zero in degrees greater than 2 dim(M (V )/W ) −
2n + l, or greater than 2 dim(M (V )/W ) − n for k algebraically closed, then
our discussion before Lemma 6.14 shows that Ml,S(M) has regularity at most
2 dim(M) − 2n + l = n2 + l − n as a CH ∗

S -module, or n2 for k algebraically
closed, which will finish the proof of Theorem 6.10.

The torus T = (Gm)n acts with finite stabilizers on M = U\GL(n)/G.
Because T commutes with the action of S, T also acts on the locally closed
subscheme M (V ) and hence on M (V )/W , again with finite stabilizers. The
following lemma proves the vanishing of Ml(M (V )/W ) in degrees greater
than 2 dim(M (V )/W ) − 2n + l, or greater than 2 dim(M (V )/W ) − n for k alge-
braically closed, as we want. Theorem 6.10 is proved.
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Lemma 6.15 Let X be a smooth variety over a field k. Let p be a prime
number that is invertible in k. Let T be a split torus that acts on X with
finite stabilizer groups. Then H 2i−j (X, Fp(i)) = 0 for 2i − j > 2 dim(X) +
j − 2 dim(T ). If k is algebraically closed, then H 2i−j (X, Fp(i)) = 0 for 2i −
j > 2 dim(X) − dim(T ).

Proof The T -action on X has only finitely many different stabilizer group
schemes in T . Stratify X according to the possible stabilizer groups. The
strata are smooth, because the fixed points of any finite subgroup scheme of
T on X form a smooth subscheme. By the localization sequence for motivic
cohomology (Lemma 6.8), the lemma reduces to the special case where T acts
on X with the same finite stabilizer group A everywhere. Here T/A is a split
torus, and so we have reduced to the case where a split torus T acts freely on a
smooth variety X. That is, X is a principal (Gm)n-bundle over a smooth variety
B, for some n.

We can view a Gm-bundle E over a smooth variety M as the complement
of the zero section in the total space of a line bundle over M . Using homotopy
invariance for motivic cohomology, the localization sequence has the form:

H 2i−j (M, Fp(i)) → H 2i−j (E, Fp(i)) → H 2i−j−1(M, Fp(i − 1)).

Thus H 2i−j (E, Fp(i)) vanishes if the two other groups vanish. Applying this
repeatedly, we find (whether k is algebraically closed or not) that the lemma
reduces to the case of the base variety B, with a trivial torus action.

We want to show that B smooth over an arbitrary field k, H 2i−j (B, Fp(i))
vanishes for 2i − j > 2 dim(B) + j , while for k algebraically closed,
H 2i−j (B, Fp(i)) vanishes for 2i − j > 2 dim(B). These statements are exactly
Lemma 6.15.

Corollary 6.16 Let G be a finite group. Suppose that G has a faithful rep-
resentation of dimension n over an algebraically closed field k in which the
order of G and a fixed prime number p are invertible. Then the cycle map from
Mj (G) to etale cohomology in degrees ≡ j (mod 2) is an isomorphism for all
j ≥ n2.

This means that the motivic cohomology of BG is closer to etale cohomology
than is true for smooth varieties in general. Namely, for a smooth variety X

over a field, the Beilinson-Lichtenbaum conjecture (Theorem 6.9) gives that
the cycle map from Mj (X) to etale cohomology is an isomorphism in degrees
at most j . But Corollary 6.16 says that Mj (G) (meaning Mj (BG)) is equal to
etale cohomology in all degrees when j is large.

The hypothesis j ≥ n2 in Corollary 6.16 can be weakened to j ≥ σ (CH ∗
G),

with CHi considered as having degree 2i. Theorem 7.1 gives a good bound for
σ (CH ∗

G) when G is a p-group.
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Proof By the Beilinson-Lichtenbaum conjecture, Mj (G) maps isomorphi-
cally to etale cohomology in degrees at most j , and injectively in degrees at
most j + 2. (Notice that Mj (G) is concentrated in degrees congruent to j mod-
ulo 2, so we are only considering etale cohomology in degrees congruent to j

modulo 2.)
By Theorem 6.10, Mj (G) is generated by elements of degree at most n2 as

a module over the Chern classes Fp[c1, . . . , cn]. The same is true for the etale
cohomology of BG (which is simply the cohomology of G) by Symonds’s
theorem, Corollary 4.3. So the map from Mj (G) to etale cohomology is sur-
jective in all degrees if j ≥ n2. Symonds’s theorem also gives that all relations
among a minimal set of generators of the etale cohomology of BG as an
Fp[c1, . . . , cn]-module are in degrees at most n2 + 1. Therefore Mj (G) maps
isomorphically to etale cohomology in all degrees if j ≥ n2, since that implies
that j + 2 ≥ n2 + 1.
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Bounds for p-Groups

As we have seen in Section 5.2, the bounds in Theorem 5.2 and Symonds’s
Corollary 4.3 for the Chow and cohomology rings in terms of the dimension of
a faithful representation are essentially optimal among arbitrary finite groups.
In this chapter, we give much better bounds for the Chow and cohomology
rings of a p-group. It is natural to concentrate on the case of p-groups, since
the mod p cohomology of any finite group is a summand of the cohomology of
a Sylow p-subgroup, and likewise for Chow rings. I don’t know whether these
improved bounds for p-groups are anywhere near optimal.

The bounds involve a constant that we now define. For each prime number
p, let

αp = 1 + p +
p−1∑
d=2

(⌊
p − 2

d − 1

⌋
−

⌊
p − 2

d

⌋)
d.

For example, α2 = 3, α3 = 6, α5 = 14, and α7 = 23. For large primes p, com-
paring the sum with an integral shows that αp is asymptotic to p log p.

Theorem 7.1 Let G be a p-group with a faithful complex representation V .
Write V as a direct sum of irreducibles, V = V1 ⊕ . . . ⊕ Vs . The dimensions of
the irreducible representations Vi are powers of p, say dim(Vi) = pmi . Then the
mod p Chow ring CH ∗

G is generated as a module over certain transferred Euler
classes of degree at most max(pmi ) by elements of degree at most

∑
i(α

mi
p −

pmi ). A fortiori, the ring CH ∗
G is generated by elements of degree at most

max(pm1 , . . . , pms ,
∑

i(α
mi
p − pmi )).

We also prove a strong bound for the cohomology of p-groups. This result
for p-groups is significantly better than the bound n2 that holds for arbitrary
finite groups, as we will discuss.

Theorem 7.2 Let G be a p-group with a faithful complex representation V .
Write V as a direct sum of irreducibles, V = V1 ⊕ . . . ⊕ Vs . The dimensions

79
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of the irreducible representations Vi are powers of p, say dim(Vi) = pmi . Then
the cohomology ring H ∗

G = H ∗(BG, Fp) is generated as a module over certain
transferred Euler classes of degree at most 2 max(pmi ) by elements of degree
at most

∑
i(2αmi

p − pmi ). A fortiori, the ring H ∗
G is generated by elements of

degree at most max(2pm1 , . . . , 2pms ,
∑

i(2αmi
p − pmi )).

For example, let G be a 2-group that has a faithful irreducible complex
representation of dimension n, which must be of the form n = 2m. Then The-
orems 7.1 and 7.2 give that the Chow ring of BG is generated by elements of
degree at most 3m − 2m, and the cohomology ring is generated by elements
of degree at most 2 · 3m − 2m, for m ≥ 2. These bounds are on the order of
nlog 3/ log 2 .= n1.58 for n = 2m large, which significantly improves the bounds
on the order of n2 that hold for arbitrary finite groups (Theorem 5.2 and
Corollary 4.3).

The bounds in Theorems 7.1 and 7.2 are even better for other classes of
p-groups. For example, if G is a p-group with a faithful irreducible complex
representation of dimension n = p, then the Chow ring of BG is generated
in degree at most αp − p and the cohomology ring is generated in degree at
most 2αp − p, for p odd. For large primes p, these bounds are on the order of
p log p, which is far better than the bounds on the order of n2 = p2 given by
the results for general finite groups.

The bounds in Theorems 7.1 and 7.2 are also very good for a faithful rep-
resentation that is a sum of low-dimensional irreducible representations. For
example, let G be a 2-group with a faithful complex representation of dimension
n = 2s that is a sum of s 2-dimensional irreducible representations, say with
s ≥ 2. Then the Chow ring of BG is generated in degree at most s (= n/2), and
the cohomology ring is generated in degree at most 4s (= 2n). Although these
bounds are much smaller than n2, they happen to coincide with the bounds
given by Theorems 5.4 and 5.5 for an arbitrary finite group with a faithful
representation that is a sum of 2-dimensional irreducibles.

7.1 Invariant theory of the group Z/ p

As a first step toward our bounds for the cohomology and Chow ring of p-
groups, we need the following new bound in the invariant theory of the group
Z/p. Namely, we describe a system of parameters (Definition 3.4) for the ring
of invariants.

Lemma 7.3 Let p be a prime number. Let the group G = Z/p act on the
polynomial ring R = Fp[y0, . . . , yp−1] by cyclically permuting the variables.
Then the ring of invariants RG has a system of parameters that consists of one
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element y0 + · · · + yp−1 of degree 1, �p−2
d−1 � − �p−2

d
� elements of degree d for

2 ≤ d ≤ p − 1, and one element y0 · · · yp−1 of degree p.

The proof uses the following standard constructions from invariant theory.

Definition 7.4 For a finite group G acting on an abelian group M , the trace is
the homomorphism tr = trG1 : M → MG defined by tr(x) = ∑

g∈G gx. For G

acting on a commutative ring R, the norm is the function N = NG
1 : R → RG

given by N (x) = ∏
g∈G gx.

The following simplification of my first proof of Lemma 7.3 is due to Jim
Shank and David Wehlau.

Proof of Lemma 7.3 This is clear for p = 2, where RG is the polynomial ring
F2[y0 + y1, y0y1]. For larger primes p, the ring of invariants for the regular rep-
resentation of Z/p in characteristic p becomes more complicated; for example,
it is not Cohen-Macaulay for p ≥ 5, by Ellingsrud and Skjelbred [39].

Let g be the generator of Z/p, and let � = g − 1 in the group algebra
Fp[Z/p]. Change the basis of the representation to x0 = y0 and xi = �xi−1

for 1 ≤ i ≤ p − 1. (We have �xp−1 = 0.) The action of Z/p is given in this
basis by gjxi = ∑

l≥0

(
j
l

)
xi+l , where we define xi = 0 for i ≥ p.

Consider the graded reverse lexicographic ordering on monomials in
x0, . . . , xp−1 with

x0 > · · · > xp−1.

That is, we have xI < xJ if the degree |I | is less than |J |, or if |I | = |J | and
ip−1 > jp−1, or if |I | = |J | and ip−1 = jp−1 and ip−2 > jp−2, and so on.

The norm N (x0) = ∏p−1
j=0 gjx0 is an invariant whose leading term is x

p
0 .

We will show that for each 1 ≤ j ≤ p − 1, there is an invariant with leading
term xd

j , where d is the least integer such that dj ≥ p − 1. (Or, equivalently,
j > �(p − 2)/d�.) By the leading terms, these elements form a system of
parameters for k[x0, . . . , xp−1] and hence for the subring of invariants. The
number of these elements of degree d is 1 for d = 1, �p−2

d−1 � − �p−2
d

� for
2 ≤ d ≤ p − 1, and 1 for d = p, as we want.

We define the invariant as the trace tr(xd−1
0 xm), where m = dj − (p − 1).

By definition of d, we have 0 ≤ m ≤ j − 1. We have

tr(xd−1
0 xm) =

∑
l1,...,ld≥0

[p−1∑
j=0

(
j

l1

)
· · ·

(
j

ld

)]
xl1 · · · xld−1xm+ld .

We use the following simple identity, sometimes called Newton’s formula. It
follows, for example, from the fact that the sum of the elements of a nontrivial
subgroup of F∗

p is zero.
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Lemma 7.5 In the integers modulo a prime number p,

p−1∑
j=0

j e =
{

0 if 0 ≤ e ≤ p − 2

−1 if e = p − 1,

where we define 00 = 1.

As a result, the expression in brackets in the formula above for tr(xd−1
0 xm)

is zero unless l1 + · · · + ld ≥ p − 1. It follows that the leading term of the
invariant tr(xd−1

0 xm) is xd
j , with a nonzero coefficient in Fp.

7.2 Wreath products

Lemma 7.6 Let p be a prime number and m a positive integer. Let G be the
wreath product Z/p � · · · � Z/p with m copies of Z/p. Let R be the polynomial
ring over Fp with pm variables, and let G act on R by the natural permutation
action on the variables. Let the variables have degree b > 0. Then

σ (RG) ≤ bαm
p − pm.

The constant αp was defined before Theorem 7.1, and σ (R) is defined in
Definition 6.1.

Proof The lemma is proved by constructing a system of parameters with
known degrees for the ring of invariants RG. For example, when p = 2, our
system of parameters for the invariants of the m-fold wreath product of Z/2
has degrees 1, 2 if m = 1; 1, 2, 2, 4 if m = 2; 1, 2, 2, 4, 2, 4, 4, 8 if m = 3; and
so on. That is, for p = 2, each of these sequences of degrees starts with the
previous sequence, and then multiplies the previous sequence by 2.

For m = 1, so that G = Z/p, Lemma 7.3 gives a system of parame-
ters f1(y0, . . . , yp−1) = y0 + · · · + yp−1, . . . , fp(y0, . . . , yp−1) = y0 · · · yp−1

for RG. We have
∑p

i=1(|fi | − 1) = bαp − p by definition of αp, since we
define |yi | = b for all i. So we have σ (RG) ≤ bαp − p for m = 1.

Suppose by induction that we have constructed a system of parameters
u1, . . . , upm−1 for the invariants of the iterated wreath product H of m − 1
copies of Z/p acting on the polynomial ring in pm−1 variables. Then the product
group Hp acts on the polynomial ring R in pm variables by acting separately
on p sets of pm−1 variables. There is an obvious system of parameters for RHp

that we call uij for 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ pm−1, where the polynomial
uij is the polynomial uj in the ith set of pm−1 variables.

We have G = Z/p � Hp, and so RG is the ring of invariants of the cyclic
group Z/p acting on RHp

. In particular, a generator σ of Z/p acts on
uij ∈ RHp

by σ (uij ) = ui+1,j , where i is understood modulo p. Therefore,
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for each 1 ≤ j ≤ pm−1, the polynomials f1(u0j , . . . , up−1,j ) = u0j + · · · +
up−1,j , . . . , fp(u0j , . . . , up−1,j ) = u0j · · · up−1,j are G-invariant. The polyno-
mials uij are all integral over this set of pm elements v1, . . . , vpm of RG, and
so the whole polynomial ring R is finite over Fp[v1, . . . , vpm ]. As a result,
v1, . . . , vpm is a system of parameters for RG.

By induction, we have
∑pm−1

i=1 |ui | = aαm−1
p , and the construction shows that

pm∑
i=1

|vi | = αp

pm−1∑
i=1

|ui|

= bαm
p .

So σ (RG) ≤ ∑pm

i=1(|ui | − 1) = bαm
p − pm.

Corollary 7.7 Let G be the wreath product of m copies of Z/p with the
multiplicative group over a field k with p invertible in k, Z/p � · · · � Z/p � Gm.
Then σ (CH ∗

G) ≤ αm
p − pm. Also, taking k to be the complex numbers, H ∗

G =
H ∗(BG, Fp) has σ (H ∗

G) ≤ 2αm
p − pm.

Proof Let G be the wreath product G = Z/p � · · · � Z/p � Gm. with Z/p

occurring m times. By Lemma 2.21, the Chow ring CH ∗
G consists of transferred

Euler classes. For m ≥ 1, write G = Z/p � H . Then Lemma 2.21 and its proof
show that

CH ∗
G → CH ∗

Hp × CH ∗
Z/p×H

is injective, and that CH ∗
G maps onto the invariants (CH ∗Hp)Z/p. Here Z/p ×

H is included in G = Z/p � H with H as the diagonal subgroup in Hp.
Suppose by induction that we have constructed a system of parameters

u1, . . . , upm−1 for CH ∗
H such that |u1| = 1 and

∑ |ui | = αm−1
p . Pulling these

classes back by the p projections Hp → H , we get a system of parameters uij

for CH ∗
Hp with 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ pm−1, where the classes uij are

pulled back from the ith factor H . We know that CH ∗
Hp = (CH ∗

H )⊗p, by the
assumption above on H (Lemma 2.12).

Since CH ∗
G maps onto (CH ∗

Hp )Z/p , there are elements v1, . . . , vpm of CH ∗
G

that restrict to the Z/p-invariants

f1(u0j , . . . , up−1,j ) = u0j + · · · + up−1,j ,

. . .

fp(u0j , . . . , up−1,j ) = u0j · · · up−1,j

for 1 ≤ j ≤ pm−1. Here the polynomials f1, . . . , fp are the system of param-
eters constructed in Lemma 7.3 for the invariants of Z/p on its regular repre-
sentation. Explicitly, the elements vi that restrict to

f1(u0j , . . . , up−1,j ), . . . , fp−1(u0j , . . . , up−1,j )
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can be defined as transfers from CH ∗
Hp to CH ∗

G, while the element vi that
restricts to u0j · · · up−1,j can be defined as the multiplicative transfer (or
Evens norm) of u0j ∈ CH ∗

Hp , which was defined on Chow rings by Fulton
and MacPherson [45]. See the summary in Section 8.1.

We can say that v1 is the element that restricts to u01 + · · · + up−1,1, so that
|v1| = 1. By adding an element pulled back from CH 1

Z/p
∼= Fp by the surjec-

tion G = Z/p � H → Z/p if necessary, we can assume that v1 has nonzero
restriction to the subgroup Z/p of G. This does not change the restriction of
v1 to Hp.

Clearly the elements uij in CH ∗
H are all integral over v1, . . . , vpm , and

so the whole ring CH ∗
H is finite over v1, . . . , vpm

in CH ∗
G. If we can show

that CH ∗
Z/p×H is also finite over v1, . . . , vpm , then v1, . . . , vpm form a sys-

tem of parameters in CH ∗
G as we want, using that CH ∗

G injects into CH ∗
Hp ×

CH ∗
Z/p×H .

We know that v1 restricts to u01 + · · · + up−1,1 in CH 1
Hp , and so it restricts

to pu1, which is zero, in CH 1
H under the diagonal inclusion H → Hp. We

have arranged that v1 has nonzero restriction to CH 1
Z/p

∼= Fp. So we know the
restriction of v1 to CH 1

Z/p×H = CH 1
Z/p ⊕ CH 1

H . It follows that the quotient
ring of

CH ∗
Z/p×H

∼= (CH ∗
H )[c1]

by v1 is isomorphic to CH ∗
H , with c1 being sent to zero. The remaining elements

v2, . . . , vpm include some that restrict in Hp to u0j · · · up−1,j for each 1 ≤ j ≤
pm−1. Those elements restrict in the diagonal subgroup H ⊂ Hp to u

p
j , for

1 ≤ j ≤ pm−1. We know that u1, . . . , upm−1 form a system of parameters in
CH ∗

H , and so their pth powers do as well. Thus we have shown that CH ∗
Z/p×H

is finite over Fp[v1, . . . , vpm ]. By the previous paragraph, this completes the
proof that CH ∗

G is finite over Fp[v1, . . . , vpm ].

The construction shows that
∑pm

i=1 |vi | = αp

∑pm−1

i=1 |ui |, and so
∑pm

i=1 |vi | =
αm

p by induction. It follows that σ (CH ∗
G) ≤ ∑pm

i=1(|vi | − 1) = αm
p − pm, as we

want.
We now prove the corresponding result for cohomology. It suffices to show

that the images of the algebraic cycles u1, . . . , upm in H ∗
G form a system of

parameters in H ∗
G. Again, we prove this by induction on m, where G is the m-

fold wreath product of Z/p with the multiplicative group Gm over the complex
numbers.

We have G = Z/p � H , where H is the (m − 1)-fold wreath product of
Z/p with Gm. We use Quillen’s theorem that the restriction map H ∗

Z/p�H →
H ∗

Hp × H ∗
Z/p×H is injective (Theorem 2.19). So to show that H ∗

Z/p�H is finite
over the polynomial ring Fp[v1, . . . , vpm ], it suffices to show that H ∗

Hp and
H ∗

Z/p×H are finite over Fp[v1, . . . , vpm ].
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By induction on m, the ring H ∗
H is finite over the analogous polynomial ring

Fp[u1, . . . , upm−1 ]. Therefore H ∗
Hp = (H ∗

H )⊗p is finite over the elements uij for
0 ≤ i ≤ p − 1 and 1 ≤ j ≤ pm−1, in the notation used above. The definition of
the elements vi shows that the elements uij are all integral over Fp[v1, . . . , vpm ].
Therefore H ∗

Hp is finite over this polynomial ring.
It remains to show that H ∗

Z/p×H is finite over Fp[v1, . . . , vpm ]. We know
that v1 restricts to c1 in H ∗

Z/p×H
∼= H ∗

H 〈x1, c1〉, by the corresponding statement
in the Chow ring. Here |x1| = 1 and |c1| = 2 in H ∗

Z/p; we have x2
1 = 0 if p

is odd and x2
1 = c1 if p = 2. Therefore the quotient ring of H ∗

Z/p×H by v1

is isomorphic to H ∗
H [x1]/(x2

1 ). Some of the remaining elements v2, . . . , vpm

restrict to the pth powers of the elements u1, . . . , upm−1 in H ∗
H . Since H ∗

H

is finite over u1, . . . , upm−1 , it is also finite over their pth powers. Therefore
H ∗

Z/p×H is finite over Fp[v1, . . . , vpm ], as we wanted.
That completes the proof that H ∗

G is finite over Fp[v1, . . . , vpm ]. Here∑ |vi | = 2αm
p (the factor of 2 is because CHi maps to H 2i). Therefore

σ (H ∗
G) ≤ ∑pm

i=1(|vi | − 1) = 2αm
p − pm.

7.3 Bounds for the Chow ring and cohomology of a p-group

Proof (Theorem 7.1) Let G be a p-group with a faithful complex representa-
tion V . Write V as a direct sum of irreducibles, V = V1 ⊕ . . . ⊕ Vs . The dimen-
sions of the irreducible representations Vi are powers of p, say dim(Vi) = pmi .
More precisely, Blichfeldt showed that each irreducible complex representa-
tion Vi of a p-group G is induced from a 1-dimensional representation of some
subgroup H [124, theorem 16]. Moreover, for any subgroup H in a p-group G,
there is a chain of subgroups H = H0 ⊂ H1 ⊂ · · · ⊂ Hmi

= G such that each
subgroup has index p in the next one. It follows that the homomorphism from G

into GL(pmi ) corresponding to Vi factors through the mi-fold wreath product
of Z/p with the multiplicative group Gm, Z/p � · · · � Z/p � Gm ⊂ GL(pmi ).

Since the whole representation V of G is faithful, G is a subgroup of the
product K over i = 1, . . . , s of the mi-fold wreath products of Z/p with Gm. By
Lemma 6.2, σ (CH ∗

G) ≤ σ (CH ∗
K ). By Lemma 2.12, CH ∗

K is the tensor product
of the Chow rings of the wreath products we mentioned, and so σ (CH ∗

K ) is at
most the sum of σ of these wreath products. Combining this with Lemma 7.6,
we have

σ (CH ∗
G) ≤

s∑
i=1

(αmi
p − pmi ).

By Theorem 6.5, it follows that CH ∗
G is generated as a module over our

system of parameters by elements of degree at most
∑s

i=1(αmi
p − pmi ). This
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system of parameters consists of transferred Euler classes, since they are pulled
back from the wreath products Z/p � · · · � Z/p � Gm, whose Chow ring consists
entirely of transferred Euler classes (Lemma 2.21). (Lemma 2.16 gives that
transfer commutes with pullback.) It follows from the bound on CH ∗

G as a
module that CH ∗

G is generated as an algebra by elements of degree at most
max(pm1 , . . . , pms ,

∑
i(α

mi
p − pmi )).

Proof of Theorem 7.2 As in the previous proof, G is a subgroup of the product
from i = 1 to s of the mi-fold wreath products of Z/p with the multiplicative
group Gm (or, if one prefers compact Lie groups, the circle group S1). By
Lemma 6.2, σ (H ∗

G) is at most the sum from i = 1 to s of σ of the cohomology
of these wreath products. By Lemma 7.6, we have

σ (H ∗
G) ≤

s∑
i=1

(2αmi
p − pmi ).

By Symonds (Theorem 4.1), it follows that H ∗
G is generated as a module over

our system of parameters by elements of degree at most
∑s

i=1(αmi
p − pmi ). This

system of parameters consists of transferred Euler classes, by the correspond-
ing statement in the Chow ring. It follows that from this bound on H ∗

G as
a module that H ∗

G is generated as an algebra by elements of degree at most
max(2pm1 , . . . , 2pms ,

∑
i(2αmi

p − pmi )).
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The Structure of Group Cohomology
and the Chow Ring

In this chapter we prove some of the main results on the cohomology of a finite
group, and generalize them to the Chow ring. First, there is Quillen’s theorem
that, up to F -isomorphism (loosely, “up to pth powers”), the cohomology
ring of a finite group is determined in a simple way by its elementary abelian
subgroups. We prove Yagita’s theorem that the Chow ring of a finite group,
up to F -isomorphism, has the same description in terms of the elementary
abelian subgroups. In fact, we extend Yagita’s theorem from finite groups
viewed as algebraic groups over the complex numbers to finite groups over
any field containing the pth roots of unity (Theorem 8.10). It follows that the
cycle map from the Chow ring of a finite group to the cohomology ring is an
F -isomorphism.

The basic tool for the proof of Quillen’s and Yagita’s theorems is the norm
map, described in Section 8.1. This is an operation in cohomology or the Chow
ring which has had several important applications: a construction of Steenrod
operations, a formula for the Chern classes of an induced representation, as
well as the general properties of group cohomology and the Chow ring proved
by Quillen and Yagita.

We also prove Carlson’s theorem that, up to pth powers, describes the sum
of the images of transfer from all proper subgroups in the cohomology ring
of a p-group. Given Yagita’s theorem, Carlson’s theorem for cohomology
immediately implies the corresponding statement for the Chow ring. These
results are applied in Chapters 9 and 12 to show that the cohomology ring
modulo transfers from proper subgroups is significantly simpler than the whole
cohomology ring, and likewise for Chow rings.

Quillen proved his theorem relating group cohomology to elementary abelian
subgroups for the classifying space of any compact Lie group G, not only for
finite groups G. For a compact connected Lie group G and any prime number p,
Adams conjectured that the Fp-cohomology ring H ∗

G is detected on elementary
abelian subgroups [141, conjecture 1.1]. For finite groups, this holds only in

87
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some special cases. See Chapter 12 on more general detection theorems for
finite groups.

8.1 The norm map

Given a covering map f : X → Y with degree n of topological spaces, there
is a “transfer” or pushforward map f∗ : Hi(X, Z) → Hi(Y, Z), but also a
“multiplicative transfer” or “norm” map N : Hi(X, Z) → Hni(Y, Z) for i even.
(For i odd, the norm sends Hi(X, Z) to Hni(Y, Z̃), where Z̃ is a locally con-
stant sheaf associated to the covering X → Y .) The norm map was first defined
by Evens in the context of group cohomology [12, vol. 2, section 4.1]. The
geometric intuition is simple. If X is a manifold, we can represent an element
u of Hi(X, Z) by a submanifold S of codimension i (possibly with singulari-
ties). Move S into general position. Then the norm of u is represented by the
submanifold of Y that, on a contractible open subset U of Y , is the intersection
of the n submanifolds S ∩ Ui , where f −1(U ) is the disjoint union of copies
U1, . . . , Un of U .

Evens defined the norm map for group cohomology, and applied it to give an
algebraic proof that the cohomology ring of a finite group is finitely generated.
The Chern classes of an induced representation can be expressed using the norm
(together with the usual additive transfer), by Evens and Fulton-MacPherson
[41, 45]. Finally, the norm map can be used to give an algebraic definition of
Steenrod operations on group cohomology [12, vol. 2, section 4.4].

Fulton and MacPherson defined the norm map on Chow groups for a finite
etale morphism of smooth k-schemes X → Y of degree n, NY

X : CHiX →
CHniY . (There is no need to restrict to even degrees in the Chow ring.) The
norm has a useful extension to non-homogeneous elements, NY

X : CH ∗X →
CH ∗Y . We record the formal properties of the norm map in this section. In the
rest of this chapter, we use the norm map to prove some fundamental properties
of the Chow ring of a classifying space.

As in Lemma 2.15, write resG
H for the restriction map CH ∗BG → CH ∗BH

and x 	→ gx for the conjugation isomorphism CH ∗BH → CH ∗B(gHg−1).

Lemma 8.1
(i) Let X1 → Y and X2 → Y be finite etale morphisms of smooth k-

schemes. Let x1 ∈ CH ∗X1, x2 ∈ CH ∗X2, and let x be the element of
CH ∗(X1

∐
X2) that restricts to x1 and x2. Then

NY
X1

∐
X2

(x) = NY
X1

(x1)NY
X2

(x2).

(ii) Let H be a subgroup of a finite group G, considered as an algebraic group
over a field k. For x, y ∈ CH ∗BH , NG

H (xy) = NG
H (x)NG

H (y).
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(iii) For H a subgroup of a finite group G and x, y ∈ CH ∗BH ,

NG
H (x + y) = NG

H (x) + NG
H (y)

plus a sum of transfers from proper subgroups of G. Explicitly, let W →
BG denote the principal Sn-bundle corresponding to the action f : G →
Sn of G on the set G/H , so that W is the disjoint union of copies of
B ker(f ) indexed by the set Sn/f (G). Let Zr = W/(Sr × Sn−r ), Xr =
W/(Sr−1 × Sn−r ), and Yr = W/(Sr × Sn−r−1), so that we have finite etale
morphisms Xr → Zr of degree r and Yr → Zr of degree n − r . We also
have natural maps Xr → BH and Yr → BH , since BH = W/Sn−1. Then

NG
H (x + y) = NG

H (x) + NG
H (y) +

n−1∑
r=1

trBG
Zr

(NZr

Xr
(x)NZr

Yr
(y)).

(iv) (Double coset formula) Let K and H be subgroups of a finite group G,
viewed as an algebraic group over a field. Then

resG
KNG

H x =
∏

g∈K\G/H

NK
K∩gHg−1 resgHg−1

K∩gHg−1gx

for x in CH ∗BH .
(v) For H a normal subgroup of a finite group G,

resG
HNG

H x =
∏

g∈G/H

gx

for x in CH ∗BH .

A more complete list of properties of norm and transfer maps says that for
a finite group G viewed as an algebraic group over a field k, the assignment
H 	→ CH ∗BH for subgroups H of G is a Tambara functor [133]. (The main
property not mentioned in Lemmas 2.15 and 8.1 is the formula for the norm of a
transfer, generalizing Lemma 8.1(iii).) A more classical example of a Tambara
functor is the assignment H 	→ H ev(H,R) for subgroups H of G, when the
finite group G acts on a commutative ring R [133, section 3.4].

Proof Fulton and MacPherson proved the corresponding properties for the
norm map associated to a finite etale morphism of smooth varieties: (ii) is
[45, property 7.1], (iii) is [45, theorem 8.1], and (iv) is [45, property 7.3].
These imply the corresponding properties for the Chow groups of a classifying
space BG, since each Chow group CHiBG is defined as CHi(V − S)/G for
a suitable smooth variety (V − S)/G. (v) is a special case of (iv).

Note that NG
H (a) = an for an integer a ∈ CH 0BH and a subgroup H ⊂ G

of index n. Using formula (3) for the norm of a sum, it follows that the norm
CH ∗BH → CH ∗BG passes to a well-defined norm map on Chow groups
modulo a prime number p, NG

H : CH ∗
H → CH ∗

G.
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8.2 Quillen’s theorem and Yagita’s theorem

In this section we prove Quillen’s theorem, probably the most important result
on the cohomology of finite groups. The theorem says that the cohomology
ring of a finite group G has a simple description up to F -isomorphism: it is
determined by the elementary abelian subgroups of G. By definition, an F -
isomorphism f : A → B is a homomorphism of Fp-algebras such that every
element of the kernel of f is nilpotent, and for every element b in B, there is a
natural number r such that bpr

is in the image of f .
We also prove Yagita’s theorem that the Chow ring of a finite group has

exactly the same description, up to F -isomorphism. It follows that the map
from the Chow ring to the cohomology ring is an F -isomorphism. Thus
the Chow ring of a finite group is qualitatively similar to the cohomology
ring.

Yagita’s theorem was originally proved for finite groups viewed as algebraic
groups over the complex numbers [153, theorem 3.1]. In this section, we prove
it over any base field that contains the p2 roots of unity, which requires some
new arguments using motivic cohomology. Finally, in Theorem 8.10, we prove
Yagita’s theorem over any base field that contains the pth roots of unity, which
examples show is an optimal assumption.

For a fixed prime number p, write CH ∗
G = CH ∗(BG)/p and H ∗

G =
H ∗(BG, Fp). Write ks for the separable closure of a field k.

Theorem 8.2 Let G be a finite group and p a prime number. View G as an
algebraic group over a field k of characteristic not p that contains the p2 roots of
unity. Then the cycle map CH ∗

G → ⊕iH
2i
et (BGks

, Fp(i)) is an F -isomorphism.
For k ⊂ C, it is equivalent to say that CH ∗

G → H ∗
G is an F -isomorphism.

That is: every element of the kernel of CH ∗
G → H ∗

G is nilpotent, and for
every element x of H ∗

G, there is an r ≥ 0 such that xpr

is in the image of the
cycle map. Later we will extend the theorem to the case where k contains only
the pth roots of unity (Theorem 8.10).

Let us begin the proof of Theorem 8.2.

Lemma 8.3 Let G be a finite group, viewed as an algebraic group over a
field k. Let M be a torsion Gal(ks/k)-module such that all elements have order
invertible in k. Then the etale cohomology H ∗

et(BGk,M) is isomorphic to the
continuous cohomology H ∗(G × Gal(ks/k),M). In particular, for k separably
closed, the etale cohomology of BGk is simply the cohomology of the group G.

Grothendieck studied the continuous cohomology of the profinite group
G × Gal(ks/k) (viewed as the G-equivariant etale cohomology of Spec k)
before our algebro-geometric model for BG was defined [58].
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Proof Under our assumption on M , etale cohomology is homotopy invariant,
and so H ∗

et(EGk,M) is isomorphic to H ∗
et(k,M) = H ∗(Gal(ks/k),M) [104,

corollary VI.4.20]. There is a natural map from the continuous cohomology
H ∗(G × Gal(ks/k),M) to H ∗

et(BGk,M). We have a Künneth spectral sequence

E∗∗
2 = H ∗(G,H ∗(Gal(ks/k),M)) ⇒ H ∗(G × Gal(ks/k),M),

and this maps to the Hochschild-Serre spectral sequence for etale cohomology,

E∗∗
2 = H ∗(G,H ∗(EGk,M)) ⇒ H ∗(BGk,M)

[104, theorem 2.20]. Since this homomorphism of spectral sequences is an
isomorphism on E2 terms, it gives an isomorphism H ∗(G × Gal(ks/k),M) →
H ∗(BGk,M).

For the proof of Theorem 8.2, let us write H ∗
G for either the ring H ∗(BG, Fp)

or ⊕iH
2i
et (BGks

, Fp(i)) (isomorphic to the even-degree subring of the former
ring). The arguments work the same way in both cases.

Following Quillen, consider the category of elementary abelian p-subgroups
of G with morphisms being the homomorphisms given by conjugation by ele-
ments of G together with inclusions. Then restriction gives a ring homomor-
phism

CH ∗
G → lim←−CH ∗

A.

(Explicitly, an element of lim←−CH ∗
A is an element xA of CH ∗

A for every
elementary abelian p-subgroup A such that xB = xA|B whenever B ⊂ A

and xgAg−1 = gxA for every g ∈ G.) We will show that this map is an F -
isomorphism. The same arguments prove Quillen’s theorem [114], [12, vol. 2,
corollary 5.6.4]:

Theorem 8.4 Let G be a finite group, p a prime number. Then

H ∗
G → lim←− H ∗

A

is an F -isomorphism.

A morphism of schemes over a field is called a universal homeomorphism
if it is a homeomorphism (for the Zariski topology), and remains so after any
extension of the base field. For example, the morphism x 	→ xp is a univer-
sal homeomorphism from the affine line over Fp to itself. Quillen observed
that Theorem 8.4 gives a simple description of the “variety” Spec H ev

G , con-
sidered up to universal homeomorphisms: it is the union of affine spaces over
Fp corresponding to the elementary abelian subgroups of G, glued together
by inclusion and conjugation of such subgroups. Here “glued” includes the
possibility of taking the quotient of the affine space Spec H ev

E by the finite
group NG(E)/CG(E). In particular, all irreducible components of Spec H ev

G
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are unirational. Thus the cohomology rings of finite groups are very special
among finitely generated Fp-algebras.

In particular, Quillen’s theorem implies that the dimension of the ring H ∗
G

is equal to the p-rank of G (the maximal rank of the elementary abelian p-
subgroups of G). (For a ring R that is finite over a central subring A, we define
the dimension of R to be the Krull dimension of A; this is independent of the
choice of A. The ring H ∗

G is finite over its commutative subring H ev
G , and so

this definition applies.) The irreducible components of Spec H ev
G are in one-to-

one correspondence with the conjugacy classes of maximal elementary abelian
p-subgroups of G.

Since k contains the pth roots of unity, we have CH ∗
A = Fp[y1, . . . , yn]. So

CH ∗
A → H ∗

A is an F -isomorphism, and one deduces easily that lim←−CH ∗
A →

lim←−H ∗
A is an F -isomorphism. So proving that CH ∗

G → lim←−CH ∗
A is an F -

isomorphism will prove Theorem 8.2.
The proof of F -surjectivity follows Quillen’s and Yagita’s arguments [114,

153]. Here we only need k to contain the pth roots of unity.

Lemma 8.5 Let A be an elementary abelian subgroup of G. Write
[NG(A) : A] = qb, where q is a power of p and b is prime to p. Let u be
a positive-degree element of (CH ∗

A)NG(A) that restricts to zero on all proper
subgroups of A. Then there is an element v in CH ∗

G that restricts to uq on A

and to zero on all elementary abelian subgroups A′ of G that are not conjugate
to a subgroup containing A.

Proof Let w = NG
A (1 + u). By the double coset formula for the norm (Lemma

8.1),

w|A =
∏

g∈A\G/A

NA
A∩gAg−1 resgAg−1

A∩gAg−1g(1 + u).

For g �∈ NG(A), the factor shown is equal to 1, since u restricts to zero on
proper subgroups of A. So

w|A =
∏

g∈NG(A)/A

g(1 + u)

= (1 + u)qb

= 1 + buq + terms of higher degree,

using that u is fixed by NG(A). Let v be 1/b ∈ Fp times the term of degree
q|u| in w. Then v restricts to uq on A, as we want. For an elementary abelian
subgroup A′ of G that is not conjugate to a subgroup containing A, we have

w|A′ =
∏

g∈A′\G/A

NA′
A′∩gAg−1 resgAg−1

A′∩gAg−1g(1 + u)

= 1,



8.2 Quillen’s theorem and Yagita’s theorem 93

since A′ ∩ gAg−1 is always a proper subgroup of gAg−1. So v|A′ = 0, as we
want.

We can now prove the F -surjectivity of CH ∗
G → lim←− CH ∗

A. Let u be an
element of lim←−CH ∗

A. We want to show that some p-power of u is the restriction
of an element of CH ∗

G. We can assume that u has positive degree. Let A

be an elementary abelian subgroup of smallest order among those such that
uA �= 0. We know that uA is in (CH ∗

A)NG(A). By assumption, u restricts to zero
on all proper subgroups of A. Let q be the maximum power of p dividing
[NG(A) : A]. By Lemma 8.5, there is an element v of CH ∗

G that restricts to
u

q
A on A and to zero on all elementary abelian subgroups not conjugate to a

subgroup containing A.
Let u2 = uq − v in lim←−CH ∗

A. We know that u2 vanishes on all elementary
abelian subgroups of order smaller than A, and also on A, while it is equal to
uq on the elementary abelian subgroups that have the same order as A but are
not conjugate to it. By induction on the order of A and on the set of conjugacy
classes of elementary abelian subgroups of a given order, some p-power of u2

is a restriction from G. Therefore, some p-power of u is a restriction from G.
We have proved the F -surjectivity of CH ∗

G → lim←−CH ∗
A.

Lemma 8.6 Let G be a finite group and p a prime number. View G as an
algebraic group over a field k of characteristic not p that contains the p2 roots
of unity. Then any element of CH ∗

G that restricts to zero on all elementary
abelian subgroups of G is nilpotent.

We follow Yagita’s arguments on the case k = C, inspired by Minh’s proof
of the corresponding result in cohomology, originally due to Quillen. There is
some extra work for k not algebraically closed.

Proof We consider all Chow rings modulo p. The Chow ring of G injects
into the Chow ring of a Sylow p-subgroup, and so we can assume that G is a p-
group. If G is elementary abelian, then the result is clear. Let G be a p-group that
is not elementary abelian. Let V = G/[G,G]Gp be the maximal elementary
abelian quotient group of G. Let x1, . . . , xn be a basis for H 1

V and yi = βxi ;
then H ∗

V is a free module over Fp[y1, . . . , yn] with basis the monomials
∏

i∈I xi

for I ⊂ {1, . . . , n}. Also, since k contains the pth roots of unity,

CH ∗
V = Fp[y1, . . . , yn].

For cohomology, the following result is due to Serre [123].

Lemma 8.7 Let eV be the product of one nonzero element from each line in the
Fp-vector space CH 1

V = Fp{y1, . . . , yn}. Then eV pulls back to zero in CH ∗
G.

Proof Since the p-group G is nilpotent but not elementary abelian, it maps
onto a nontrivial central extension H of V by Z/p. Such an extension is
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classified by an element of H 2
V that pulls back to zero in H 2

H . Therefore we
have a relation

f =
∑
i<j

cij xixj +
∑

k

dkyj = 0

in H ∗
G for some cij , dk ∈ Fp, not all zero. The lemma is trivially true if some

nontrivial linear combination of y1, . . . , yn is zero in H ∗
G. (That is, the lemma

is easy if the abelianization of G is not elementary abelian.) So we can assume
that some cij is not zero.

We want to deduce an analogous relation in motivic cohomology
H 2

M (BG, Z/p(2)). By the Beilinson-Lichtenbaum conjecture (Theorem 6.9),
the latter group is isomorphic to H 2

et(BG, Z/p(2)). For k separably closed,
that would be isomorphic to H 2(BG, Z/p), but we need more care since
we are assuming only that k contains the p2 roots of unity. By Lemma 8.3,
H ∗

et(BGk,M) ∼= H ∗(G × Gal(ks/k),M) for every finite Gal(ks/k)-module M

of order invertible in k. In particular, we have a splitting

H 1
M(BV, Z/p(1)) ∼= H 1

et(BV, Z/p(1))

∼= H 1(V,μp(k)) ⊕ H 1
et(k, μp).

We can view x1, . . . , xn in H 1
V as a basis for the summand of H 1

M (BV, Z/p(1))
that restricts to zero in H 1(k, μp). Let yi = βxi in H 2

M (BV, Z/p(1)) = CH 1
V .

Then yi has a class in

H 2
et(BV, Z/p(1)) = H 2(V,μp(k)) ⊕ H 1(V,H 1

et(k, μp)) ⊕ H 2
et(k, μp),

which I claim lies in the summand H 2(V,μp(k)). Clearly yi restricts to zero in
H 2

et(k, μp), because xi restricts to zero in H 1
et(k, μp). If we assumed only that

k contained the pth roots of unity, then yi could have nonzero component in
H 1(V,H 1

et(k, μp)); a similar observation was made by Grothendieck [58, equa-
tion 5.6]. But since k contains the p2 roots of unity, we have an exact sequence

0 → μp(k) → μp2 (k) → μp(k) → 0

of abelian groups. Viewing these as G-modules with G acting trivially, we
get a Bockstein map on H ∗(G,H 0(k, μp)), and this is compatible with
the Bockstein map on H ∗

et(BGk,μp) = H ∗(BG × BGal(ks/k), μp) via the
homomorphism G × Gal(ks/k) → G of profinite groups. We conclude that
the class of yi in etale cohomology lies in the summand H 2(V,μp(k)).

Write τ for a generator of H 0
M (k, Z/p(1)) = μp(k). Then the elements

xixj for i < j and τyi in H 2
M(BV, Z/p(2)) both map into the summand
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H 2(V,H 0
et(k, Z/p(2))) ∼= H 2

V of H 2
et(BV, Z/p(2)), by what we have shown.

Since the element

f =
∑
i<j

cij xixj + τ
∑

k

dkyj

of H 2
M (BV, Z/p(2)) pulls back to zero in the ordinary cohomology of G,

it pulls back to zero in H 2
et(BG, Z/p(2)), and so it pulls back to zero in

H 2
M (BG, Z/p(2)) by the Beilinson-Lichtenbaum conjecture (Theorem 6.9).
At this point, we can return to Yagita’s arguments. Voevodsky defined the

Milnor operation

Qr : Hi
M (X, Z/p(j )) → H

i+2pr−1
M (X, Z/p(j + pr − 1))

on motivic cohomology inductively by writing Q0 for the Bockstein β and
Qi+1 = [P pi

,Qi] [150, section 2.2]. (For p = 2, this formula uses our
assumption that k contains the 4th roots of unity; otherwise Qi is defined
differently [144, example 13.7].) The operation Qi is a derivation, and we
have Qrxi = y

pr

i and Qryi = 0, using yi = βxi together with the unstable
properties of Steenrod operations (Section 6.3). Therefore

QrQsf =
∑
i<j

cij (ypr

i y
ps

j − y
ps

i y
pr

j ) = 0

in CH ∗
G, for any r and s. Note the remarkable feature of the Milnor operation

in this argument, emphasized by Yagita: it produces a relation among algebraic
cycles from purely topological input.

Let L = (CH ∗
G)⊕n, viewed as a free module over CH ∗

G, and let ei ∈ L be the

vector (yi, y
p
i , . . . , y

pn−1

i ). The relation above in CH ∗
G (applied for r, s ≤ n − 1)

implies that
∑

i<j cij ei ∧ ej = 0 in �2L. We know that cij is not zero in Fp for
some i < j ; after changing the numbering, we can assume that c12 �= 0. Multi-
plying by e3 ∧ · · · ∧ en, we find that c12e1 ∧ · · · ∧ en = 0. So the determinant

det(ypj−1

i )1≤i,j≤n = e1 ∧ · · · ∧ en

is zero in �nL ∼= CH ∗
G.

The determinant of this matrix⎛⎜⎜⎜⎜⎝
y1 y

p
1 · · · y

pn−1

1

y2 y
p
2 · · · y

pn−1

2
...

...
. . .

...

yn y
p
n · · · y

pn−1

n

⎞⎟⎟⎟⎟⎠
is known as the Moore determinant, an analog in characteristic p of the
Vandermonde determinant. The Moore determinant is the product of one
nonzero vector in each line in Fp{y1, . . . , yn}. (Indeed, the Moore determinant
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vanishes whenever there is an Fp-linear relation between y1, . . . , yn, since
that gives a linear relation among the rows. So the Moore determinant, as a
polynomial in y1, . . . , yn, is a multiple of the product mentioned here. Since
both have degree 1 + p + · · · + pn−1, they are equal, up to a scalar.) We
have therefore shown that the product of one nonzero vector in each line in
Fp{y1, . . . , yn} is equal to zero in CH ∗

G.

The following statement is an analog of a theorem on cohomology by Minh.
For Chow rings with k = C, it was proved by Yagita [153, theorem 3.4].

Lemma 8.8 Let G be a p-group that is not elementary abelian. Consider G

as an algebraic group over a field k of characteristic not p that contains the p2

roots of unity. If u ∈ CH ∗
G restricts to zero on all proper subgroups, then up = 0.

Proof Let V = G/[G,G]Gp be the maximal elementary abelian quotient
group of G. Let x be a nonzero element of H 1

G = H 1
V

∼= Hom(V, Z/p). Then
ker(x) is a subgroup of index p in G. We will show that if u restricts to zero in the
Chow ring of ker(x) for all such x, then up is a product of some element of CH ∗

G

with the product eV of one nonzero element from each Fp-line in CH 1
V restricted

to G. That will imply that up = 0, by Lemma 8.7 (using that k contains the
p2 roots of unity). Identifying H 1

V with a summand of H 1
M (V, Z/p(1)), we can

say that the Bockstein gives an isomorphism from H 1
V to CH 1

V . Write y = βx.
Consider the norm v := N

G×Z/p
G (u) in CH ∗

G×Z/p. By the Chow Künneth
formula (Lemma 2.12), we can write v as a sum

∑
i≥0 fi(u)t i , where t is a

generator of CH 1
Z/p

∼= Z/p and fi(u) is in CH ∗
G. Restricting v to the normal

subgroup G ⊂ G × Z/p gives up by Lemma 8.1 (since Z/p acts trivially by
conjugation on G), and so we have f0(u) = up. (The elements fi(u) are in fact
the Steenrod operations of u, suitably renumbered, but we do not use that [12,
vol. 2, definition 4.4.1].)

Intuitively, intersecting two cycles cannot be made a strictly commutative
operation, because of the need to perturb cycles when they do not intersect
transversely, although in a sense it is commutative up to all higher homotopies.
As Benson observed, this failure is manifested by the norm of the restriction of
an element (for example from B(G × Z/p) to BG) not always being a power
of that element, in other words by the non-vanishing of Steenrod operations.
By contrast, the transfer of a restriction is a multiple of the original element
[12, vol. 2, section 4.4]. With rational coefficients, there is no obstruction to
making the product commutative at the level of cycles, as shown in topology
by de Rham cohomology.

Let x = x1, . . . , xn be a basis for H 1
V = Hom(G, Z/p), and let a1, . . . , an

be elements of G such that xi(aj ) = δij ∈ Z/p. Then a1, . . . , an generate
the group G. Let Gx be the subgroup 〈a1b, a2, . . . , an〉 ⊂ G × Z/p, where
we write Z/p = 〈b〉, and let fx : G → Gx be the isomorphism given by
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fx(a1) = a1b and fx(ai) = ai for i > 1. Then G and Gx are both normal sub-
groups of index p in G × Z/p, and their intersection is ker(x) ⊂ G. We have

f ∗
x (v|Gx

) = up +
∑
i>0

fi(u)yi.

But the element on the left is zero, by the double coset formula for the norm
(Lemma 8.1), since u restricts to zero on ker(x). Adding up these formulas
for all 0 �= x in H 1

V , we find that up = ∑
i>0(fi(u)

∑
y �=0∈V ∗ yi). For each

i > 0,
∑

y �=0∈V ∗ yi is a polynomial function on V ⊗Fp
Fp that vanishes on

all codimension-1 linear subspaces defined over Fp. So it is a multiple of the
product eV of one nonzero element y from each Fp-line in CH 1

V = V ∗. Thus
up is a multiple of eV , pulled back to CH ∗

G, and hence is zero.

We can now finish the proof of Lemma 8.6. As discussed earlier, this
complete the proof of Theorem 8.2. Let u be an element of CH ∗

G that restricts
to zero on all elementary abelian subgroups of G. If G is elementary abelian,
then u = 0 and we are done. Otherwise, by induction on the order of G, the
restriction of u to each proper subgroup of G is nilpotent. So there is an r ≥ 0
such that upr

restricts to zero on all proper subgroups of G. Then upr+1 = 0 by
Lemma 8.8.

8.3 Yagita’s theorem over any field containing
the pth roots of unity

We now strengthen Lemma 8.6 by removing the assumption that the base field
k contains the p2 roots of unity.

Lemma 8.9 Let G be a finite group and p a prime number. View G as
an algebraic group over a field k of characteristic not p. Then any element of
CH ∗

G = CH ∗(BG)/p that restricts to zero on all elementary abelian subgroups
of G is nilpotent.

Proof Let E be the extension field of k obtained by adjoining the pth roots
of unity. The degree of E over k divides p − 1 and hence is prime to p. Also,
E is a separable extension of k. Using transfer for the finite etale morphism
BGE → BGk , it follows that the pullback map CH ∗

Gk
→ CH ∗

GE
is injective.

Thus it suffices to prove the lemma when k contains the pth roots of unity. We
can also assume that k is infinite, since we can replace a finite field k by the
direct limit over an infinite sequence of extensions of degree prime to p.

We have proved the lemma when k contains the p2 roots of unity (Lemma
8.9). Suppose that k does not contain the p2 roots of unity. Let F be the extension
field of k obtained by adjoining the p2 roots of unity; then F is a cyclic extension
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of k of degree p. It follows that there is a morphism α : Spec(k) → B(Z/p)k
of k-schemes that classifies the principal Z/p-bundle Spec(F ) → Spec(k).
(To prove this, consider a finite-dimensional approximation (V − S)/(Z/p) of
B(Z/p)k , where V is a representation of Z/p over k and S � V is a closed G-
invariant subset such that G acts freely on V − S. Then (Spec(F ) ×k V )/(Z/p)
is a vector bundle over Spec(F )/(Z/p) = Spec(k), by faithfully flat descent as
described in section 2.2. Since k is infinite, this k-vector space has a k-rational
point in the open subset (Spec(F ) ×k (V − S))/(Z/p). The image of this point
in (V − S)/(Z/p) is a morphism α : Spec(k) → (V − S)/(Z/p) of k-schemes
that classifies the principal Z/p-bundle Spec(F ) → Spec(k), as we want.)

It follows that we have a pullback diagram

BGF
��

��

BGk

γ
��

BGk
β

�� B(G × Z/p)k,

where the right vertical map γ is given by the inclusion G ⊂ G × Z/p, whereas
the bottom map β is given by the identity on BGk together with the morphism
BGk → Spec(k) −→

α
B(Z/p)k . (To be precise, on finite-dimensional approxi-

mations to the classifying spaces, this is an actual pullback diagram of finite
etale morphisms.)

Since k contains the pth roots of unity, we have CH ∗
(G×Z/p)k

= CH ∗
Gk

[t]
with |t | = 1. Therefore, for any element y in CHi

Gk
, its norm via γ has the

form N
G×Z/p
G (y) = ∑pi

j=0 fj (y)t j for some fj (y) ∈ CH
pi−j
G . Restricting the

principal Z/p-bundle γ to BGk by the morphism γ : BGk → B(G × Z/p)k
gives the trivial Z/p-bundle over BGk , from which we read off that f0(y) = yp.
(The other elements fj (y) are certain Steenrod operations of y, as mentioned
in the proof of Lemma 8.8, but we do not need that.)

The norm is compatible with pullback [45, property 7.3], and so our diagram
implies that

N
Gk

GF
resGk

GF
y = β∗NG×Z/p

G y

= β∗
pi∑

j=0

fj (y)t i

in CH ∗
Gk

. The important point is that CH 1 Spec(k) = 0. So β∗t = 0 in
CH 1BGk , because β factors through Spec(k). As a result,

N
Gk

GF
resGk

GF
y = yp.

Therefore, if y ∈ CHi
Gk

restricts to zero in CHi
GF

, then yp = 0. Thus, since we
know the lemma for GF , it holds for Gk .
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We can now prove Yagita’s theorem assuming only that the base field contains
the pth roots of unity.

Theorem 8.10 Let G be a finite group and p a prime number. View G as
an algebraic group over a field k of characteristic not p. Then the cycle map
CH ∗

G → ⊕iH
2i
et (BGks

, Fp(i)) has nilpotent kernel. If k contains the pth roots
of unity, then the cycle map is an F -isomorphism. For k ⊂ C containing the pth
roots of unity, it is equivalent to say that CH ∗

G → H ∗
G is an F -isomorphism.

We do need k to contain the pth roots of unity, as shown by the example
of G = Z/p over Q for p odd. In that case, CH ∗

G → H ∗
G is not F -surjective,

since the image is the subring Fp[yp−1] of the free graded-commutative algebra
H ∗

G = Fp〈x, y〉 [138, example 13.1].

Proof We already showed after Lemma 8.5 that the cycle map is F -surjective
when k contains the pth roots of unity. It remains to show that the cycle map
has nilpotent kernel, for any field k of characteristic not p.

Let E be the extension field of k obtained by adjoining the pth roots of unity.
Then E has degree prime to p over k, and so CH ∗

Gk
→ CH ∗

GE
is injective. So

it suffices to show that the kernel of the cycle map is nilpotent when k contains
the pth roots of unity. In that case, for every elementary abelian p-subgroup
A of G, CH ∗

A is a polynomial ring over Fp and the cycle map CH ∗
A → H ∗

A

is injective. So an element y of the kernel of CH ∗
G → H ∗

G restricts to zero in
CH ∗

A for all elementary abelian p-subgroups A. By Lemma 8.9, y is nilpotent.
(In fact, the proof gives an explicit bound N such that all elements y of the
kernel have ypN = 0.)

8.4 Carlson’s theorem on transfer

Carlson’s theorem on transfer in group cohomology is important for the rest of
the book. Here we prove it and generalize it to the Chow ring.

Lemma 8.11 Let H be a subgroup of a finite group G. Then the transfer
maps trGH : CH ∗

H → CH ∗
G and trGH : H ∗

H → H ∗
G commute with pth powers.

Proof For each i ≥ 0, the pth power map CHi
G → CH

pi
G is equal to the

Steenrod operation P i defined by Voevodsky (Section 6.3). Moreover, Steenrod
operations commute with pushforward maps for finite etale morphisms, hence
with the transfer, for example by [21, definition 8.13 and proposition 9.11].
The same argument works for cohomology.

We now prove Carlson’s theorem [26, corollary 12.4.6]. We follow an argu-
ment by Benson, but with explicit estimates of the p-powers needed for the
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proof [11]. We will apply the theorem when G is a p-group. Readers may wish
to concentrate on that case, where the statement is a little simpler.

Theorem 8.12 Let G be a finite group and p a prime number. Let P be a
Sylow p-subgroup of G, and let C be the p-torsion subgroup of the center of P .
Then the kernel of H ∗

G → H ∗
C has the same radical as the sum of the images of

all transfers to G from proper subgroups of P . Moreover, the sum of the images
of all transfers from centralizers CG(E) of elementary abelian p-subgroups
E such that CG(E) does not contain a Sylow p-subgroup of G has the same
radical in H ∗

G.

Example Let G be the dihedral group of order 8. Then

CH ∗
G = F2[c1V, c2V, a]/(a2 = ac1V )

by Lemma 13.2, and the kernel of restriction to C = Z/2 is the ideal (a, c1V ) in
CH ∗

G. Thus the ring CH ∗
G has Krull dimension 2 (and Spec(CH ∗

G) is the union of
two affine planes over F2 that meet in a line), while the image of CH ∗

G in CH ∗
C is

the 1-dimensional ring F2[c2V ]. We use the notation from the proof of Lemma
13.2; so G has two non-central elementary abelian subgroups of G called A1

and A2, both isomorphic to (Z/2)2. Here A1 and A2 are their own centralizers
in G. We compute that trGA1

(t1) = a + c1V in CH ∗
G, while trGA2

(t2) = a. (These
computations can be done by observing that CH ∗

G is detected on A1 and A2 in
this case. So it suffices to compute the restriction of these transferred elements
to A1 and A2 using the double coset formula, Lemma 2.15.) Thus the sum of
the images of transfer from CH ∗

A1
and CH ∗

A2
is the ideal ker(CH ∗

G → CH ∗
C) =

(a, c1V ), which checks Corollary 8.14 in this case.
Likewise, the cohomology ring of the dihedral group G is H ∗

G =
F2[x1, x2, y]/(x2

1 = x1x2), where |x1| = |x2| = 1 and |y| = 2. For a suitable
choice of these generators, the Chow ring CH ∗

G maps to cohomology by
a 	→ x2

1 , c1V 	→ x2
2 , and c2V 	→ y2. The restriction H ∗

G → H ∗
C has image

F2[y] and kernel the ideal (x1, x2). We compute (directly, or using the calcu-
lation for Chow rings) that the images of the transfer maps H 1

A1
→ H 1

G and
H 1

A2
→ H 1

G are spanned by x1 + x2 and x1, respectively. So the sum of the
images of transfer from H ∗

A1
and H ∗

A2
is the ideal ker(H ∗

G → H ∗
C) = (x1, x2),

which checks Theorem 8.12 in this case.

Proof (Theorem 8.12) One direction is easy. Let H ⊂ P be a proper subgroup.
Then the image of the transfer trGH : H ∗

H → H ∗
G is contained in the kernel of

H ∗
G → H ∗

C . Indeed,

resG
C trGH x =

∑
g∈C\G/H

trCC∩gHg−1resgHg−1

C∩gHg−1gx

for x in H ∗
H (Lemma 2.15). The transfer from the cohomology of any proper

subgroup of C to C is zero, and so the expression is zero except for terms
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corresponding to C-orbits on G/H of size 1. Since P is a p-group and H is a
proper subgroup of P , all P -orbits on G/H have order a multiple of p. Finally,
the terms corresponding to C-orbits in a single P -orbit are all equal, since P

centralizes C. So the sum is a multiple of p and hence is zero in H ∗
C .

For the reverse direction, we use the following result on invariant theory.
The statement uses the trace for a finite group action, defined after Lemma 7.3.
For a vector space V over Fp, let σV ∈ Fp[V ∗] be the product of all nonzero
elements of V ∗. (Thus σV = e

p−1
V , in the notation of Lemma 8.7.)

Lemma 8.13 Let G be a finite group, and let V be a faithful representation
of G of dimension n over Fp. Then there is a polynomial α ∈ Fp[V ∗] such that
trG1 (α) = σn−1

V .

Proof It suffices to prove this when G = GL(n, Fp). In that case,
this was shown by Campbell, Hughes, Shank, and Wehlau, with α =∏n

i=1 x
pn−1−(p−1)pi−1

i [25, corollary 9.14]. (There is a related calculation by
Priddy and Wilkerson, but as far as I can see, it shows only that σn

V is in the
image of the trace [110, p. 784].) Shank and Wehlau gave a simpler proof,
which also shows the optimality of this statement. In fact, the image of the
trace for GL(n, Fp) on Fp[V ∗] is the ideal generated by σn−1

V in the invariant
ring [125, theorem 5.5].

We now prove Theorem 8.12. Let y ∈ H ∗
G be an element that restricts to zero

on C. We will show that there is an r ≥ 0 such that ypr

is a sum of transfers
from centralizers CG(E) of elementary abelian subgroups E with CG(E) not
containing a Sylow p-subgroup of G.

It suffices to show: (*) let E be an elementary abelian subgroup of a p-group
G. Let y ∈ H ∗

G be an element that restricts to zero on all proper subgroups of
E. Then there is an r ≥ 0 and an element x ∈ H ∗

CG(E) such that (i) resG
E (ypr −

trGCG(E)x) = 0 and (ii) resG
E′ trGCG(E)x = 0 for all elementary abelian subgroups

E′ ⊂ G that are not conjugate to a subgroup containing E. Indeed, suppose that
we know (*), and let y be an element of H ∗

G that restricts to zero on C. Then
y restricts to zero on all elementary abelian subgroups of G whose centralizer
contains a Sylow p-subgroup of G. Then, after raising y to a suitable p-power,
(*) implies that we can subtract transfers from centralizers of elementary abelian
subgroups E such that CG(E) does not contain a Sylow p-subgroup of G, and
get an element of H ∗

G that restricts to zero on all elementary abelian subgroups.
(Here we use that transfers commute with p-powers, Lemma 8.11. Also, every
element of H ∗

G transferred from CG(E) is also transferred from a Sylow p-
subgroup of CG(E), which is an element of S .) But then raising to a further
p-power gives zero, by Quillen (Theorem 8.4), and the theorem is proved.

To analyze property (ii) in (*), note that

resG
E′ trGCG(E)x =

∑
E′\G/CG(E)

trE
′

E′∩gCG(E)g−1 resgCG(E)g−1

E′∩gCG(E)g−1gx.
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On the right side, we are restricting x to g−1E′g ∩ CG(E), up to conjugation. So
(ii) holds if x restricts to zero on all elementary abelian subgroups A ⊂ CG(E)
that do not contain E, as we will arrange.

To prepare to prove (*), note that the group WG(E) := NG(E)/CG(E) acts
faithfully on the given elementary abelian subgroup E. Let α ∈ CH ∗

E ⊂ H ∗
E

be the element given by Lemma 8.13, so that trWG(E)
1 (α) = σn−1

E , where E has
rank n. Let β = σEα; then trWG(E)

1 (β) = σn
E and β restricts to zero on all proper

subgroups of E. By Lemma 8.5, there is an element of H ∗
CG(E) (constructed using

the norm) that restricts to βps

on E, where [CG(E) : E] = ps , and restricts to
zero on all elementary abelian subgroups of CG(E) that do not contain E. Let
[G : E] = pb, where it is clear that b ≥ s. For our purpose, raise the element
just produced to the pb−s power, so as to produce an element η of H ∗

CG(E) that

restricts to βpb

on E and restricts to zero on all elementary abelian subgroups
of CG(E) that do not contain E.

We will take x ∈ H ∗
CG(E) to be of the form x = η resG

CG(E)z for a suitable
z ∈ H ∗

G. Then x restricts to zero on all elementary abelian subgroups of CG(E)
that do not contain E, and so property (ii) holds. It remains to choose z ∈ H ∗

G

in order to make x satisfy property (i).
Clearly trGCG(E)(x) = (trGCG(E)η)z in H ∗

G. The restriction of this to E is

(resG
E trGCG(E)η)resG

Ez.

We want to choose z to make this equal to some p-power of y restricted to E.
Here

resG
E trGCG(E)η =

∑
g∈E\G/CG(E)

trEE∩gCG(E)g−1 resgCG(E)g−1

E∩gCG(E)g−1gη.

Up to conjugation, the expression on the right involves the restriction of η to
g−1Eg ∩ CG(E). We know that η restricts to zero on all elementary abelian
subgroups of CG(E) that do not contain E. So the only nonzero terms are those
with g ∈ NG(E). That is,

resG
E trGCG(E)η =

∑
g∈WG(E)

resCG(E)
E gη

=
∑

g∈WG(E)

g(resCG(E)
E η)

= trWG(E)
1 βpb

= (trWG(E)
1 β)p

b

= σ
npb

E .
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(Here we write trW1 for the trace of W acting on H ∗
E , and we use that the trace

commutes with pth powers.) So we need to find an element z ∈ H ∗
G such that

σ
npb

E resG
Ez is equal to some p-power of y restricted to E.

In the assumption of (*), we are given that y ∈ H ∗
G restricts to zero on all

proper subgroups of E. So there is a positive integer m such that the restriction
of ym to H ∗

E is a multiple of σE . (We can take m = 2 if p = 2, and m = p − 1
if p is odd.) So a high enough power of y, which we can take to be a p-power,
restricts on E to a multiple of σn+1

E ; write resG
Eypt = σn+1

E u for some t ≥ 0 and
some u ∈ H ∗

E . So resG
Eypt = σn

Ev where v := σEu in H ∗
E restricts to zero on

all proper subgroups of E. Since σE is not a zero divisor in H ∗
E and resG

Eypt

is
WG(E)-invariant, v is also WG(E)-invariant. By Lemma 8.5, there is an element

z ∈ H ∗
G with resG

Ez = vpb

, where [G : E] = pb. So resG
Eypt+b = σ

npb

E resG
Ez. By

the previous paragraph, Theorem 8.12 is proved.

Corollary 8.14 Let G be a finite group and p a prime number. Let P be a
Sylow p-subgroup of G, and let C be the p-torsion subgroup of the center of
P . Consider G as an algebraic group over a field k of characteristic not p that
contains the pth roots of unity. Then the kernel of CH ∗

G → CH ∗
C is the radical

of the sum of the images of all transfers to G from proper subgroups of P .
Moreover, the sum of the images of all transfers to G from centralizers in P of
non-central elementary abelian subgroups of P has the same radical.

Proof (Corollary 8.14) Given our assumption on k, the cycle map CH ∗
G →

H ∗
G is an F -isomorphism for all finite groups G, by Theorem 8.10. So Theorem

8.12 on cohomology implies the result for Chow rings, using that transfers
commute with pth powers (Lemma 8.11). One could also repeat the argument
essentially verbatim for Chow groups.
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Group Cohomology and the Chow Ring Modulo
Transfers Are Cohen-Macaulay

In this chapter, we show that the structure of group cohomology and Chow rings
is significantly simplified by working modulo transfers from proper subgroups.
Namely, the cohomology ring modulo transfers and the Chow ring modulo
transfers are Cohen-Macaulay rings. In this respect, they are much simpler
than the whole cohomology or Chow ring. Nonetheless, if we can compute the
cohomology modulo transfers for a group and its subgroups, then we can read
off additive generators for the whole cohomology.

More precisely, these results work for cohomology or Chow rings mod-
ulo transfers from a smaller class of subgroups. For a p-group, the relevant
subgroups are the centralizers of non-central elementary abelian subgroups.

Theorem 9.3 proves an analogous statement in invariant theory: for any linear
representation of a finite group G over any field, the quotient of the invariant
ring by traces from a certain class of subgroups to G is a Cohen-Macaulay ring.
This generalizes a result of Fleischmann’s [42].

9.1 The Cohen-Macaulay property

Fix a prime number p. For a finite group G, we continue to write H ∗
G =

H ∗(BG, Fp) and CH ∗
G = CH ∗(BG)/p. Let P be a Sylow p-subgroup. Let S

be the set of centralizers CG(E) of elementary abelian p-subgroups E such that
CG(E) contains no Sylow p-subgroup of G. Let

T (G) = H ∗
G

/ ∑
H∈S

trGHH ∗
H

and

A(G) = CH ∗
G

/ ∑
H∈S

trGHCH ∗
H .

104
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Note that the rings CH ∗BG and A(G) depend on a choice of field k, with
G being viewed as an algebraic group over k. We usually do not indicate k

in the notation. Our results also hold for the quotient rings of H ∗
G and CH ∗

G

by transfers from all proper subgroups of P , but it should be more useful to
understand the richer quotient rings T (G) and A(G).

For any subgroup H of a finite group G, the transfer map H ∗
H → H ∗

G is
H ∗

G-linear (Lemma 2.15(i)), and so its image is an ideal in H ∗
G. It follows that

T (G) is a graded-commutative Fp-algebra. Likewise, A(G) is a commutative
graded Fp-algebra.

Example Let G be the dihedral group of order 8. Then H ∗
G =

F2[x1, x2, y]/(x2
1 = x1x2), where |x1| = |x2| = 1 and |y| = 2. By the exam-

ple after Theorem 8.12, the two elementary abelian subgroups of rank 2 in G

are their own centralizers, and the images of transfer from those two subgroups
span H 1

G. So the quotient ring T (G) of H ∗
G is the polynomial ring F2[y]. The

2-dimensional irreducible complex representation V of G is faithful, and its
Euler class χ (V ) (meaning c2V ) is equal to y2 in T (G). Thus T (G) is a free
F2[χ (V )]-module, which agrees with Theorem 9.1.

In this section we show that the rings T (G) and A(G) are always Cohen-
Macaulay. An earlier result with a similar flavor is Green’s theorem that the
essential ideal in H ∗

G is a Cohen-Macaulay module [50]; the method goes back
to Duflot’s lower bound for the depth of the cohomology ring (Corollary 3.19).
It is striking that working modulo transfers simplifies the cohomology ring in
this way.

For comparison, the whole cohomology ring of a finite group is Cohen-
Macaulay in some examples, but in most cases it is not; this seems to be a large
part of what makes the cohomology ring hard to compute. Among the main
successes in the cohomology of finite groups are Quillen’s calculation of the
cohomology of GL(n, Fq ) with mod l coefficients when q and l are relatively
prime (Theorem 2.23), and Quillen’s calculation of the cohomology of an
extraspecial 2-group [12, vol. 2, section 5.5], [112]. (By definition, a p-group
G is extraspecial if it is a central extension of an elementary abelian group by
Z/p and the center of G is equal to Z/p.) In those cases, the cohomology rings
are Cohen-Macaulay.

The cohomology of GL(n, Fq ) with mod p coefficients where q is a power
of p, and the cohomology of an extraspecial p-group with p odd, remain
unknown in general; these are non-Cohen-Macaulay examples. More broadly,
for any finite group G that has maximal elementary abelian p-subgroups of
different ranks, the scheme Spec H ev

G is not equidimensional by Quillen’s theo-
rem (Theorem 8.4), and so the ring H ∗

G is not Cohen-Macaulay. That argument
shows that the cohomology of the symmetric group is not Cohen-Macaulay in
most cases.
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For some purposes, it is enough to consider the ring T (G) for a p-group G,
in which case the definition is a little simpler: T (G) is the quotient of H ∗

G by
transfers from centralizers of non-central elementary abelian subgroups of G.
But I have made an effort to formulate statements that are nontrivial for arbitrary
finite groups. One reason is that the mod p cohomology of a finite group G can
be simpler than the cohomology of a Sylow p-subgroup P , and so it may be
reasonable to study the cohomology of G without complete knowledge of the
cohomology of P .

For example, for l an odd prime number and q a prime power congruent to
1 modulo l, the mod l cohomology ring of the general linear group GL(l, Fq )
is Cohen-Macaulay by Quillen (Theorem 2.23). But the cohomology of an
l-Sylow subgroup P of G, which is a wreath product Z/l � Z/lr for some r , is
not Cohen-Macaulay, since P has maximal elementary abelian l-subgroups of
different ranks (namely, 2 and l). In another direction, for a prime power q ≡ 3
(mod 4), Quillen showed that the mod 2 cohomology of G = GL(2, Fq ) is
detected on the diagonal subgroup {±1}2 [115, corollary to theorem 3]. (In the
terminology of Section 12.1, the statement that H ∗

G is detected on elementary
abelian subgroups means that the topological nilpotence degree d0(H ∗

G) is
equal to zero.) But a Sylow 2-subgroup of G is a semidihedral group P , and the
cohomology of P (e.g., H 1

P ) is not detected on elementary abelian 2-subgroups
(cf. Lemma 13.4).

Theorem 9.1 Let G be a finite group, p a prime number, c the p-rank of the
center of a Sylow p-subgroup of G. Then the ring T (G) is Cohen-Macaulay of
dimension c.

Suppose in addition that G is a p-group. Let V = V1 ⊕ · · · ⊕ Vc be a faith-
ful complex representation of dimension n with c irreducible summands (the
smallest possible number). Then the ring T (G) is a finitely generated free
Fp[χ (V1), . . . , χ (Vc)]-module.

The same result holds if we replace T (G) by a cruder ring, the quotient of
H ∗

G by transfers to G from all proper subgroups of a p-Sylow subgroup of G.
The same proof works, and some steps are easier.

Let us explain why the smallest number of irreducible summands for a
faithful complex representation V = V1 ⊕ · · · ⊕ Vs of a p-group G is equal
to the p-rank c of the center. Let C = Z(G)[p] ∼= (Z/p)c be the p-torsion
subgroup of the center of G. By Schur’s lemma, C acts by scalars, through some
1-dimensional representation of C, on each of the irreducible representations
V1, . . . , Vs of G. Since V is a faithful representation of G, it is faithful on C,
which means that these 1-dimensional representations of C span Hom(C, C∗) ∼=
(Z/p)c. So s ≥ c. Conversely, a representation of G is faithful if and only if its
restriction to C is faithful, because every nontrivial normal subgroup of G has
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nontrivial intersection with the center [4, section 5.15] and hence with C. So
G has a faithful representation with exactly c irreducible summands.

Corollary 10.3 will show that, for a p-group G, T (G) is generated as an
Fp[χ (V1), . . . , χ (Vc)]-module in degrees at most 2n − c. Since T (G) is a free
Fp[χ (V1), . . . , χ (Vc)]-module, it is equivalent to say that the ring T (G) has
regularity at most zero.

Proof (Theorem 9.1) Let G be a finite group. Let P be a Sylow p-subgroup
of G and C = Z(P )[p] ∼= (Z/p)c. By Carlson’s theorem, the kernel of the
restriction map T (G) → T (C) = H ∗

C is nilpotent (Theorem 8.12). By Venkov’s
theorem (Theorem 1.1), H ∗

C is finite over H ∗
G. So H ∗

C is finite over the quotient
ring T (G). We conclude that the dimension of T (G) is equal to the dimension of
H ∗

C , which is the p-rank c of C. It remains to show that the graded-commutative
ring T (G) has depth at least c.

Let TG(P ) be the quotient ring of H ∗
P by transfers from all intersections

P ∩ CG(E) such that E is an elementary abelian subgroup of G with CG(E)
containing no Sylow p-subgroup of G. This is not a very natural ring to consider,
but it serves our purpose. As the notation indicates, TG(P ) depends on G as
well as on P .

I claim that the restriction and transfer maps

H ∗
G

resG
P

�� H ∗
P

trGP

�� H ∗
G

pass to well-defined homomorphisms on the quotient rings,

T (G) → TG(P ) → T (G).

Indeed, it is clear that the second map is well defined, and the double coset
formula (as in Lemma 2.15(iii)) gives that the first map is well defined. The
first map is a ring homomorphism, the second is T (G)-linear, and the composi-
tion is multiplication by [G : P ] �= 0 ∈ Fp, by the corresponding properties of
cohomology rings. Therefore, T (G) is a summand of TG(P ) as a T (G)-module.
Also, by Venkov’s theorem (Theorem 1.1), H ∗

P is finite over H ∗
G, and so TG(P )

is finite over T (G). Since T (G) has dimension c, it follows that TG(P ) also has
dimension c. Suppose we can show that TG(P ) is Cohen-Macaulay; then the
summand statement implies that T (G) is Cohen-Macaulay, as we want.

Let V = V1 ⊕ · · · ⊕ Vc be a faithful complex representation of P of dimen-
sion n with c irreducible summands (the smallest possible number). As dis-
cussed after the statement of Theorem 9.1, C acts by scalars, through some
1-dimensional representation of C, on each of the irreducible representations
V1, . . . , Vc of P , and these 1-dimensional representations of C form a basis
for Hom(C, C∗) ∼= (Z/p)c. Write y1, . . . , yc for the Euler classes of these
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representations in H 2
C , and let ζi be the Euler class χ (Vi) in H ∗

P . Then ζ1, . . . , ζc

restrict to y
pa1

1 , . . . , y
pac

c in H ∗
C , where dimC Vi = pai for i = 1, . . . , c.

Recall that H ∗
P is a comodule over the Hopf algebra H ∗

C , via the product
homomorphism C × P → P (Lemma 3.18). The crucial point is that the quo-
tient ring TG(P ) of H ∗

P inherits the structure of a H ∗
C-comodule. To prove this,

we first note that TG(P ) can be defined as the quotient ring of H ∗
P by transfers

from those subgroups H = P ∩ CG(E) such that E is an elementary abelian
subgroup of G with CG(E) containing no Sylow p-subgroup of G, and such
that C is contained in H . Indeed, if C is not contained in H , then the subgroup
CH ⊂ P is the product of H with a nontrivial elementary abelian subgroup.
In that case, the transfer map from H to CH is zero, and so the transfer from
H to P is zero. So we can omit a subgroup H from the definition of TG(P )
except when C is contained in H .

For a subgroup H of P that contains C, the transfer map trPH : H ∗
H → H ∗

P is
a map of H ∗

C-comodules, by the pullback diagram

C × H ��

��

H

��

C × P �� P.

Therefore, the quotient ring TG(P ) of H ∗
P is an H ∗

C-comodule.
Then the proof of Duflot’s theorem on depth (Theorem 3.17) applies ver-

batim to show that TG(P ) is a free graded module over the polynomial ring
Fp[ζ1, . . . , ζc]. Since the ring TG(P ) has dimension c, it is Cohen-Macaulay.
As mentioned earlier, this completes the proof that T (G) is Cohen-Macaulay
for every finite group G. When G is a p-group (so TG(P ) = T (G)), we have
proved the more precise statement that T (G) is a finitely generated free module
over the polynomial ring Fp[ζ1, . . . , ζc] on Euler classes ζi = χ (Vi).

Theorem 9.2 Let G be a finite group, p a prime number, k a field of char-
acteristic not p that contains the pth roots of unity. Let c be the p-rank of the
center of a Sylow p-subgroup of G. Then the ring A(G) is Cohen-Macaulay of
dimension c.

Suppose in addition that G is a p-group. Let V = V1 ⊕ · · · ⊕ Vc be a faithful
k-representation of dimension n with c irreducible summands (the smallest
possible number). Then the ring A(G) is a free Fp[χ (V1), . . . , χ (Vc)]-module
with generators in bounded degrees.

Note that the ring A(G) is not known to be noetherian. We use the definition
of Cohen-Macaulayness in Definition 3.15.

Proof Essentially the same arguments work for A(G) as in Theorem 9.1
for T (G). In particular, Carlson’s theorem on transfer works for the Chow
ring (Corollary 8.14), using that k contains the pth roots of unity. Also, with
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that assumption, we know that CH ∗
P is a CH ∗

C-comodule, since the Chow
Künneth formula gives that CH ∗

C×P = CH ∗
C ⊗Fp

CH ∗
P (Lemma 2.12). Here

CH ∗
C = Fp[y1, . . . , yc] is slightly simpler than H ∗

C , but the arguments work the
same way.

9.2 The ring of invariants modulo traces

There is a surprisingly strong analogy between the Fp-cohomology ring of a
finite group and the ring of invariants for a representation of a finite group over
any field. There are obvious differences. Invariant rings are always normal,
whereas cohomology rings are usually not even domains. But, for example,
Symonds showed that the ring of invariants for a representation of a finite
group over any field has regularity at most zero, just like the cohomology ring
of a finite group [131, 132].

In this section, following Symonds’s suggestion, we prove an analog for
invariant rings of the theorem that cohomology rings modulo transfers are
Cohen-Macaulay. The proof turns out to be closely analogous to that of Theo-
rem 9.1. Fleischmann proved Theorem 9.3 in the special case that the represen-
tation V is a summand of a permutation representation [42, proposition 12.4
and theorem 12.7]. Theorem 9.3 also generalizes Hochster-Eagon’s theorem
that rings of invariants in characteristic zero are Cohen-Macaulay [36]. (As
mentioned in Section 7.1, a ring of invariants even for the cyclic group Z/p in
characteristic p need not be Cohen-Macaulay when p is at least 5.)

This section is not used in the rest of the book.
To begin, we define the trace map in invariant theory [10, section 1.5]. Let G

be a finite group acting on an abelian group M , and let H ⊂ G be a subgroup.
Then we define the trace trGH : MH → MG by trGH (x) = ∑

g∈G/H gx. This is a
special case of the transfer in group cohomology, since MH = H 0(H,M). As
a result, the assignment H 	→ MH for subgroups H of G is a cohomological
Mackey functor (as described in Section 2.5). For R a commutative ring with G-
action, we can also define the norm NG

H : RH → RG by NG
H (x) = ∏

g∈G/H gx,
which makes H 	→ RH = H 0(H,R) into a Tambara functor (as described in
Section 8.1). These statements are elementary to check by hand. In particular,
for R a commutative ring with G-action and a subgroup H ⊂ G, write resG

H

for the inclusion RG → RH , which is a ring homomorphism. Then the trace
trGH : RH → RG is RG-linear. That is,

trGH (resG
H (x)y) = x trGH (y).

Theorem 9.3 Let G be a finite group, V a representation of G over a field k

of characteristic p, P a Sylow p-subgroup of G. (For k of characteristic zero,
let P be the trivial subgroup of G.) Let S be the class of all stabilizer subgroups
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Gu in G of k-points u of V such that Gu contains no Sylow p-subgroup of G.
Let O(V ) be the polynomial ring of regular functions on V . Then the quotient of
the ring of invariants O(V )G by the sum of the traces trGH : O(V )H → O(V )G

from all subgroups H in S is a Cohen-Macaulay ring, of dimension equal to
dim(V P ). The same goes for the quotient of O(V )G by traces from all proper
subgroups of P .

For applications, it should be useful that we can say something about the
ring of invariants modulo traces from a restricted class S of subgroups, not just
modulo traces from all proper subgroups. At least for G a p-group, the class
S is an analogue in invariant theory of the class of centralizers of non-central
elementary abelian subgroups in group cohomology; compare Theorem 9.1.

Proof Let R = O(V ). Let I ⊂ RG be the sum of all traces to G from all
stabilizers Gu of k-points u of V such that Gu contains no Sylow p-subgroup
of G. Let t(G,V ) be the quotient ring RG/I .

Lemma 9.4 The closed subset of the quotient variety V/G = Spec RG asso-
ciated to the ideal I in RG is the image of the linear subspace V P ⊂ V .

This result can be viewed as the analog for invariant rings of Carlson’s
theorem in group cohomology, Theorem 8.12. We only need Lemma 9.4 to
deduce that the quotient ring t(G,V ) has dimension equal to the dimension
of V P . Fleischmann proved a version of Lemma 9.4 for G a p-group [42,
proposition 12.5(ii)]. The proof of Lemma 9.4 shows that the image in RG

of traces from all proper subgroups of P defines the same closed subset. So
the latter ideal and the one defined using stabilizer subgroups have the same
radical, although they may not be equal.

Proof (Lemma 9.4) Let T be the closed subset of V/G = Spec RG associated
to the ideal in the lemma. Then a k-point v of V maps into T if and only if every
element of the given ideal vanishes at v, which in turn means that for every
k-point u of V with stabilizer Gu containing no p-Sylow subgroup of G and
every f ∈ RGu = O(V )Gu , the trace trGGu

(f ) vanishes at v. This is equivalent
to the same statement for every f in O(Vk)Gu . So we can assume from now
on that k is algebraically closed and work only with k-points. The G-orbit of
v has the form G/Gv , and there is a Gu-invariant polynomial on V that takes
any values we like in k on the Gu-orbits in G/Gv . So trGGu

(f ) vanishes at v for
every f ∈ O(V )Gu if and only if all Gv-orbits on G/Gu have order a multiple
of p. These Gv-orbits have the form Gv/(Gv ∩ gGug

−1) = Gv/(Gv ∩ Ggu)
for g ∈ G. We conclude that a point v in V maps into T if and only if for every
point u in V with Gu containing no Sylow p-subgroup of G, Gv/(Gv ∩ Gu)
has order a multiple of p.
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If Gv contains a Sylow p-subgroup of G, then Gv/(Gv ∩ Gu) has order a
multiple of p for all points u as above, and so v maps into T . Conversely, if
Gv contains no Sylow p-subgroup of G, then we can take u = v, and then
Gv/(Gv ∩ Gu) has order 1, which is not a multiple of p. So v does not map
into T . Note that V → V/G is surjective (as it is a finite dominant morphism
[10, theorem 1.4.4]). So we have identified the closed subset T ⊂ V/G.

Let tG(P, V ) be the quotient ring of RP by the sum of all traces to P from
all subgroups P ∩ Gu with u a k-point of V such that Gu contains no Sylow
p-subgroup of G. The point of defining tG(P, V ) is that the restriction and
trace maps

RG → RP → RG

pass to well-defined maps on the quotient rings

t(G,V ) → tG(P, V ) → t(G,V ).

Indeed, the restriction map is well-defined by the double coset formula, which
applies because the assignment H 	→ RH for subgroups H of G is a Mackey
functor. The trace map is well-defined simply because P ∩ Gu is contained in
Gu. The composition of the two maps is multiplication by [G : P ], which is
nonzero in k. We deduce that the ring t(G,V ) is a summand of tG(P, V ) as a
t(G,V )-module.

Also, RP is finite over RG (because R is finite over RG), and so tG(P, V )
is finite over its subring t(G,V ). It follows that the two rings have the same
dimension, which is equal to dim(V P ) as we have shown. Therefore, the ring
t(G,V ) is Cohen-Macaulay if we can show that tG(P, V ) is Cohen-Macaulay,
or equivalently that tG(P, V ) has depth at least dim(V P ).

Let S = O(V P ), the ring of regular functions on the linear subspace V P ⊂ V .
Addition V P × V → V is a P -equivariant morphism of k-schemes, and so it
gives a P -equivariant homomorphism

ϕ : R → S ⊗k R

of k-algebras. Since this homomorphism comes from an action of the commuta-
tive algebraic group V P on V , it makes R into a comodule over the Hopf algebra
S. Also, since ϕ is P -equivariant, it commutes with trace maps. Explicitly, for
any subgroup H of P , ϕ maps trPHRH into

trPH ((S ⊗k R)H ) = trPH (S ⊗k RH )

= S ⊗k trPHRH .

Thus ϕ makes the quotient ring tG(P, V ) of RP into a comodule over S.
Let x1, . . . , xr be linear functions on V that restrict to a basis for the vector

space (V G)∗. Then the norms ζi = NP
1 (xi) (Definition 7.4) are P -invariant
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regular functions that restrict to x
|P |
1 , . . . , x

|P |
r . In particular, they restrict to a

regular sequence in S = k[x1, . . . , xr ]. Then the same argument as in the proof
of Duflot’s theorem in group cohomology (Theorem 3.17) shows that tG(P, V )
is a free module over the polynomial ring k[ζ1, . . . , ζr ]. By the earlier part of
this proof, it follows that the ring t(G,V ) is Cohen-Macaulay.
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Bounds for Group Cohomology and the Chow
Ring Modulo Transfers

Symonds’s regularity theorem reduces the problem of computing the cohomol-
ogy ring of a finite group G to calculations in degree at most n2 (Corollary
4.3), when G has a faithful complex representation of dimension n. Can the
calculations be reduced further? One answer is that the bounds can be improved
when G is a p-group (Theorem 7.2). In this chapter, we prove even stronger
bounds for the cohomology ring or Chow ring modulo transfers.

These results come from conversations I had with Symonds. First I showed
that the Chow ring of a finite group modulo transfers from proper subgroups
has regularity at most zero. Then Symonds showed that the cohomology ring
modulo transfers has regularity at most zero. We present a version of Symonds’s
argument here, and also extend it to Chow rings and motivic cohomology.

These results give very strong bounds for the degrees of generators of the
Chow ring or cohomology ring of a finite group modulo transfers from proper
subgroups. In Corollary 10.5, we show that for a finite p-group G with a
faithful representation of dimension n and p-rank of the center equal to c,
the Chow ring modulo transfers of G is generated over the Euler classes of
certain representations by elements of degree at most n − c. This is an optimal
bound, much better than the bounds for the whole Chow ring. For cohomology
modulo transfers, Symonds proved the optimal degree bound 2n − c (Corollary
10.3). Compare Theorem 12.4, where we prove that a different measure of
the complexity of the cohomology ring, Henn-Lannes-Schwartz’s topological
nilpotence degree, is at most 2n − c.

Theorem 10.1 Let p be a prime number. Let M be a smooth manifold with
finite-dimensional Fp-cohomology. Let G be a finite group acting on M . Let S
be a collection of subgroups of G. Then the quotient of H ∗

G(M, Fp) by the sum
over all subgroups H ∈ S of transfers from H ∗

H (M, Fp) has regularity at most
dim(M).

113
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If every elementary abelian p-subgroup of G is contained in some element
of S , then this quotient ring has regularity at most dim(M) − 1.

Here the regularity is defined by viewing the given quotient ring as a module
over H ∗

G. The regularity is the same with respect to any ring over which the
given ring is a finitely generated module, by Lemma 3.10.

Corollary 10.2 For a finite group G and a prime number p, and any collection
S of subgroups H of G, the quotient of the graded ring H ∗

G = H ∗(BG, Fp)
by transfers from S has regularity at most zero. If every elementary abelian
subgroup of G is contained in some element of S , then this quotient ring has
regularity at most −1.

Corollary 10.3 Let p be a prime number. Let G be a p-group, c the p-rank
of the center of G. Let V = V1 ⊕ · · · ⊕ Vc be a faithful complex representation
of G with c irreducible summands (the smallest possible number). Let n be
the dimension of V . Let S be the set of centralizers of non-central elementary
abelian subgroups of G. Then the ring

T (G) = H ∗
G

/ ∑
H∈S

trGHH ∗
H

is a free Fp[χ (V1), . . . , χ (Vc)]-module, with generators in degrees at most
2n − c. Moreover, the same is true for the quotient ring of H ∗

G by the sum of
all transfers from all proper subgroups.

For any p-group G that is not p-central, T (G) is in fact a free module over
Fp[χ (V1), . . . , χ (Vc)] with generators in degrees at most 2n − c − 1. For any
p-group G that is not elementary abelian, the quotient of H ∗

G by transfers
from all proper subgroups of G is a free Fp[χ (V1), . . . , χ (Vc)]-module with
generators in degrees at most 2n − c − 1.

By definition, a p-group G is p-central if every element of order p of G

belongs to the center of G. Equivalently, every elementary abelian p-subgroup
of G is contained in the center. We have to exclude p-central groups G from the
last statement of Corollary 10.3 about T (G), because for G p-central, T (G) is
equal to H ∗

G, which has regularity equal to zero by Benson-Carlson (Corollary
4.2). That is, for a p-central group G, H ∗

G is a free Fp[χ (V1), . . . , χ (Vc)]-
module with top generator in degree 2n − c.

Proof of Corollary 10.3 By Theorem 9.1, the ring T (G) is Cohen-
Macaulay. More precisely, it is a finitely generated free module over
Fp[χ (V1), . . . , χ (Vc)]. Also, T (G) has regularity at most zero by Theorem
10.1. So this free module is generated in degrees at most

∑c
i=1(|χ (Vi)| − 1) =

2n − c. The same arguments apply to the quotient ring of H ∗
G by transfers

from centralizers of non-central elementary abelian groups, rather than from
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all proper subgroups. Corollary 10.2 also explains when this degree bound can
be improved by 1.

Proof of Theorem 10.1 We follow the proof of Symonds’s Theorem 4.1 as
far as possible. Choose a faithful complex representation G ⊂ U (n). Let S =
(Z/p)n ⊂ (S1)n ⊂ U (n). Let G act on M × U (n) by the given action on M

and by left multiplication on U (n), and let S act trivially on M and by right
multiplication on U (n) (so the two actions commute).

By Lemma 4.5, for every subgroup H of G, H ∗
H (M × U (n)/S) is a free

H ∗
HM-module with top generator in degree n2. Moreover, these free mod-

ules can be taken to have the same set of generators for each subgroup H ,
pulled back from H ∗

S . Therefore, the quotient ring of H ∗
G(M × U (n)/S) by the

sum over H ∈ S of transfers from H ∗
H (M × U (n)/S) is a free module over

H ∗
GM/

∑
H∈S trGH (H ∗

HM), with top generator in degree n2. So it suffices to
show that

H ∗
G(M × U (n)/S)

/ ∑
H∈S

trGH H ∗
H (M × U (n)/S)

has regularity at most dim(M) + n2.
At first we view this quotient as a module over H ∗

G or H ∗
U (n). But it has the

same regularity as a module over H ∗
S by Lemma 3.10, and from now on, we

view it as a module over H ∗
S . Let N be the manifold M × U (n); then N has

dimension dim(M) + n2, and has commuting actions of G and S, with G acting
freely. We want to show that the quotient ring

H ∗
S (N/G)

/ ∑
H∈S

trGHH ∗
S (N/H )

has regularity at most dim(N ) as a module over H ∗
S . For each subgroup H

of G, let NH,i be the closed subset of N of points whose image in N/H has
stabilizer in S of rank at least i, NH,(i) the submanifold of N where this rank
is equal to i, and NH,(i),d the union of the connected components of NH,(i)

that have codimension d in N . Define a decreasing filtration of H ∗
S (N/H ) as

an H ∗
S -module by F i

H = ker(H ∗
S (N/H ) → H ∗

S ((N − NH,i)/H )). By Theorem
4.6, the ith graded piece F i

H/F i+1
H is isomorphic to ⊕dH

∗−d
S (NH,(i),d/H ).

In particular, that result used the observation that the normal bundle of the
submanifold NH,(i),d/H in N/H is orientable when p is odd. (For p = 2, there
is no issue about orientability.) That holds because the normal bundle to a
connected component of (N/H )V , for a subgroup V ∼= (Z/p)i of S, is a real
representation of V with no trivial summands, and such a representation can
be given a complex structure in a canonical way, when p is odd.

Thus the bottom piece (a submodule) of H ∗
S (N/H ) corresponds to the points

of N/H with stabilizer in S of the highest rank i, and hence is a free module
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over a big polynomial quotient ring of H ∗
S , whereas the higher graded pieces

of H ∗
S (N/H ) are direct sums of free modules over successively smaller poly-

nomial quotient rings of H ∗
S . The generators for these free modules over free

graded-commutative quotient rings H ∗
V are in degrees at most dim(N ). (This

implies that the whole H ∗
S -module H ∗

S (N/H ) has regularity at most dim(N ).)
For a subgroup H of G, the stabilizer in S of a point in N/H is at most the

stabilizer in S of the image point in N/G, although it is important to realize that
these stabilizers can be different. So the filtrations of N associated to different
subgroups of G can be different.

We will show by decreasing induction on j (starting with j = rank(S) + 1)
that the quotient of H ∗

S (N/G) by the sum over all H in S of the image of
the transfer map from F

j
HH ∗

S (N/H ) to H ∗
S (N/G) is filtered (by the image of

the given filtration of H ∗
S (N/G)) with ith graded piece a direct sum over the

subgroups V ⊂ S of rank i of free modules over H ∗
V with generators in degrees

≤ dim(N ). We know this for j = rank(S) + 1, and the theorem follows if we
can prove it for j = 0.

Suppose we know this statement for j + 1, and we want to prove it for j .
Let Q be the quotient of H ∗

S (N/G) by the images of F
j+1
H H ∗

S (N/H ) for all
H in S . The filtration F ∗

G of H ∗
S (N/G) induces a filtration of Q, which we

also call F ∗
G. We know that the filtration F ∗

G of Q has the property we want
(previous paragraph). Clearly we have a natural map from grjHH ∗

S (N/H ) to the
quotient Q for all H in S , and we want to show that the cokernel of this map
has the property we want. Let V be any subgroup of rank j in V , and fix a
splitting S ∼= V × W . For each subgroup H in S , let N (V )/H be a connected
component of the locally closed submanifold of N/H on which S has stabilizer
equal to V , and let d be the codimension of NV /H in N/H . Then we know that
grjH ∗

S (N/H ) is the direct sum of the groups H ∗−d
S (NV /H ) over all subgroups

V in S of rank j and all connected components NV /H .
Here H ∗−d

S (NV /H ) is a free module over H ∗
V with generators in degree

≤ dim(N ). In geometric terms, its support as an H ∗
S -module has dimension

equal to j . Therefore, the intersection of the sum of the images of all the
modules H ∗−d

S (NV /H ) in Q with F
j+1
G Q is zero. Indeed, by our inductive

hypothesis, the latter submodule of Q is filtered with quotients that are free
modules on polynomial quotient rings of H ∗

S of rank greater than j .
So the quotient of Q by the sum over H ∈ S of the images of H ∗−d

S (NV /H )
is filtered with all quotients of the form we want, except possibly for the j th
graded piece. This graded piece is a direct sum over the subgroups V ⊂ S

of rank j , and the summand corresponding to the group V we are consid-
ering is the quotient of H ∗−e

S (N (V )
G /G) by the images of H ∗−d

S (N (V )
H /H ).

(Here N
(V )
G /G means the locally closed submanifold of N/G on which S

has stabilizer equal to V , and e means the codimension of N
(V )
G /G in N/G.)

This map can be described as the composite of the restriction to an open
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subset, H ∗−d
S (N (V )

H /H ) → H ∗−d
S (N (V )

H ∩ N
(V )
G /H ), and proper pushforward

maps H ∗−d
S ((N (V )

H ∩ H
(V )
G )/H ) → H ∗−e

S (N (V )
G /H ) → H ∗−e

S (N (V )
G /G). In par-

ticular, V acts trivially on all the spaces involved here. So this map can
be viewed as a map of modules concentrated in degrees at most dim(N ),
H ∗−d

W (N (V )
H /H ) → H ∗−e

W (N (V )
G /G), tensored over Fp with H ∗

V . Therefore the
cokernel of this map has the form we want: a module in degrees ≤ dim(N )
tensored over Fp with H ∗

V .
This completes the induction. The first part of the theorem is proved.
Now suppose that every elementary abelian p-subgroup of G is contained

in some element of S . We have to show that the quotient of H ∗
GM by the

sum over all subgroups H ∈ S of transfers from H ∗
H M has regularity at most

dim(M) − 1. As above, let N = M × U (n), which has commuting actions of
G and S = (Z/p)n, with G acting freely. It suffices to show that the quotient
ring

H ∗
S (N/G)

/ ∑
H∈S

trGHH ∗
S (N/H )

has regularity at most dim(N ) − 1.
Our argument shows that this ring is filtered as an H ∗

S -module with subquo-
tients that are modules in degrees ≤ dim(N ) tensored over Fp with H ∗

V , for
subgroups V of S. We have to show that those modules are in fact in degrees
≤ dim(N ) − 1. In the notation above, we need to show that the transfer map∑

H∈S
H

top
W (N (V )

H /H ) → H
top
W (N (V )

G /G)

is surjective. Here S is isomorphic to V × W , and the elementary abelian group
W acts freely on the manifolds N

(V )
H /H and N

(V )
G /G. We write H topX for the

cohomology HnX of an n-manifold X; more precisely, if X has connected
components of different dimensions, we mean the product of the top-degree
cohomology groups of the components.

For a connected manifold X, H topX = 0 if X is noncompact or nonorientable,
whereas H topX is generated by the class of a point if X is compact and oriented.
So it suffices to show that every point in N

(V )
G /G is in the image of N

(V )
H /H

for some subgroup H ∈ S . For that, it suffices to show that N
(V )
G is the union

of the subsets N
(V )
H .

Thus, let x be a point in N
(V )
G ⊂ N . This means that

V = {s ∈ S : xs = gx for some g ∈ G},
where we write the action of G on the left and S on the right. Thus for any
subgroup H of G, the subgroup

SH := {s ∈ S : xs = hx for some h ∈ H }
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is contained in V , and we want to show that there is a subgroup H in S such
that SH is equal to V .

Let A be the stabilizer subgroup in G × S of the point x in N . We know that
for every s ∈ V , there is an element (g, s) ∈ A. Since G acts freely on N , A has
trivial intersection with G × 1. So A projects isomorphically to some subgroup
of S, and hence A is an elementary abelian p-group. So the projection of A

to G is also an elementary abelian p-group. By our assumption on S , there is
a subgroup H in S that contains that subgroup of G. Then, for every s ∈ V ,
there is an element (h, s) ∈ A with h ∈ H . That is, in the previous paragraph’s
notation, SH is equal to V , as we want.

Theorem 10.4 Let G be a finite group scheme over a field k. Suppose that
the order of G is invertible in k. Let p be a prime number, and let S be any
collection of subgroup schemes H of G. Consider CH ∗

G = CH ∗(BG)/p as a
graded ring with CHi in degree i. Then the quotient ring of CH ∗

G by transfers
from S has regularity at most zero.

If k is algebraically closed and every abelian p-subgroup of G is contained
in some element of S , then this quotient ring has regularity at most −1.

The following corollary gives a very strong bound on the degrees of gener-
ators for A(G), as defined in Section 9.1. For an r-dimensional representation
V of a finite group G over a field k, the Euler class χ (V ) denotes the top Chern
class cr (V ) in CH ∗BG or in the quotient ring A(G).

Corollary 10.5 Let p be a prime number, and let k be a field of characteristic
not p that contains the pth roots of unity. Let G be a p-group, and let c be the
p-rank of the center of G. Let V = V1 ⊕ · · · ⊕ Vc be a faithful representation
of G over k with c irreducible summands (the smallest possible number). Let n

be the dimension of V . LetS be the set of centralizers of non-central elementary
abelian subgroups of G. Then the ring

A(G) = CH ∗
G

/ ∑
H∈S

trGHCH ∗
H

is a free Fp[χ (V1), . . . , χ (Vc)]-module, with generators in degrees at most
n − c. Moreover, the same is true for the quotient ring of CH ∗

G by the sum of
all transfers from proper subgroups of G.

Suppose in addition that k is algebraically closed. If G is a p-group such
that every abelian subgroup centralizes some non-central elementary abelian
subgroup, then A(G) is in fact a free Fp[χ (V1), . . . , χ (Vc)]-module with gen-
erators in degrees at most n − c − 1. If k is algebraically closed and G is
a p-group that is not abelian, then the quotient of CH ∗

G by transfers from all
proper subgroups is again a free Fp[χ (V1), . . . , χ (Vc)]-module with generators
in degrees at most n − c − 1.
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The bounds in Corollary 10.5 are optimal for some p-groups. For example,
let G be any finite abelian p-group, viewed as an algebraic group over C. The
group G has a faithful complex representation V = V1 ⊕ · · · ⊕ Vn with each
Vi of dimension 1. Then A(G) = CH ∗

G is equal to Fp[χ (V1), . . . , χ (Vn)] and
hence is generated in degree zero as a free module over that ring. That agrees
with the upper bound n − c = n − n = 0 in this case.

For a nonabelian example, let G be the modular p-group Z/p � Z/p2 for
an odd prime number p. In this case, G is not abelian, but it does not satisfy the
other condition in Corollary 10.5 (the abelian subgroup H = Z/p2 does not
centralize any non-central elementary abelian subgroup). Here G has a faithful
irreducible complex representation V of dimension p, and so n − c = p − 1.
Let A be an elementary abelian subgroup of rank 2 in G, which is unique up to
conjugacy. Then A(G) is the quotient ring CH ∗

G/trGACH ∗
A, which is isomorphic

to Fp[b, χ (V )]/(bp) with |b| = 1 and |χ (V )| = p, by the computation of CH ∗
G

in Lemmas 13.8 and 13.9. So A(G) is generated in degrees up to p − 1 as
a free Fp[χ (V )]-module, showing that the upper bound n − c is optimal in
this case. On the other hand, the quotient ring of CH ∗

G by transfers from all
proper subgroups is CH ∗

G/(trGACH ∗
A + trGH CH ∗

H ), which we compute by the
same lemmas to be Fp[b, χ (V )]/(bp−1). So this quotient ring is generated in
degrees up to p − 2 as a free Fp[χ (V )]-module, which shows the optimality
of the upper bound n − c − 1 for G nonabelian in Corollary 10.5.

Theorem 10.4 The proof follows that of Theorem 6.5, modified to take
account of transfers as in the proof of Theorem 10.1. To summarize:
we choose a faithful representation G ⊂ GL(n) over k, and let S be
the subgroup scheme (μp)n ⊂ (Gm)n ⊂ GL(n). Then CH ∗

HGL(n)/S is a
free module over CH ∗

H with top generator in degree n(n − 1)/2, for
every subgroup H of G. So we reduce to showing that the CH ∗

S -module
(CH ∗

S GL(n)/G)/
∑

H∈S trGHCH ∗
S GL(n)/H has regularity at most n(n −

1)/2. Let U be the group of strictly upper-triangular matrices in GL(n),
and let N = U\GL(n). Taking the quotient by a free action of U does
not change Chow groups. So it suffices to show that the CH ∗

S -module
(CH ∗

S N/G)/
∑

H∈S trGHCH ∗
S N/H has regularity at most n(n − 1)/2, which

is dim(N ) − n. In short, the −n here comes from the action of the diagonal
torus T = (Gm)n on N/H for all subgroups H . This action has finite stabilizers
and commutes with the action of S (because S is contained in T ).

It suffices to show that the CH ∗
S -module above is filtered, with quotients

that are direct sums of free modules over polynomial quotient rings of CH ∗
S

with generators in degree at most dim(N ) − n. We showed this without taking
quotients by transfers in the proof of Theorem 6.5, and the same holds after
taking quotients by transfers by the proof of Theorem 10.1. Let N = U\GL(n).
For subgroups H of G and V of S, let N

(V )
H /H be the locally closed smooth
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subscheme of N/H on which S has stabilizer equal to V , and let eH be
the codimension of N

(V )
H /G in N/H . Choose a splitting S = V × W . The

last step is to prove that the quotient of CH ∗(W\N (V )
G /G) by the images

of CH ∗+eG−eH (W\N (V )
H /H ) for H in S is concentrated in degrees at most

dim(N (V )
G /G) − n. This follows from the same statement without taking the

quotient, which holds by Lemma 5.3 because the torus T acts on the smooth
k-scheme W\N (V )/G with finite stabilizers. This completes the proof that the
quotient ring of CH ∗

G by transfers from S has regularity at most zero.
Now suppose that k is algebraically closed and every abelian p-subgroup

of G is contained in some element of S . In this case, we have to improve our
regularity bound for the quotient ring above by 1. By the same argument as for
cohomology in the proof of Theorem 10.1, it suffices to show that the transfer
map ∑

H∈S
CHn(W\N (V )

H /H ) → CHn(W\N (V )
G /G)

is surjective, where S splits as V × W and the elementary abelian group W acts
freely on the smooth schemes N

(V )
H /H and N

(V )
G /G. Note that n is the lowest

dimension in which these Chow groups could be nonzero, because the torus
T = (Gm)n acts with finite stabilizers on the varieties W\N (V )

H /H .
By the proof of Lemma 5.3, the Chow group of W\N (V )

G /G in degree n

is generated by T -orbits of k-points, using that k is algebraically closed. The
surjectivity on Chow groups above holds if, for every k-point y of N

(V )
G /G,

there is a subgroup H ∈ S and a point z in (N (V )
G ∩ N

(V )
H )/H such that z maps

to y and the stabilizer in T of z in W\N (V )
H /H has index prime to p in the

stabilizer in T of y in W\N (V )
G /G.

This is a formal consequence of having commuting actions of T and G on
N (= U\GL(n))) such that each of T and G acts freely on N . Indeed, that
implies that the stabilizer subgroup in T × G of any k-point of N projects
isomorphically to both T and G. So, for any point y in N , the stabilizer
subgroup in T of y in N/G can be identified with the stabilizer subgroup in
G of y in T \N . Since T is abelian, the latter subgroup Gy ⊂ G is abelian. So
there is a subgroup H ∈ S that contains the Sylow p-subgroup of Gy . Then,
using again the identification we mentioned, the stabilizer subgroup in T of y

in N/H contains a p-Sylow subgroup of the stabilizer subgroup in T of y in
N/G.

This implies the facts we wanted, two paragraphs back. Namely, if we write
V for the stabilizer in S = (μp)n ⊂ T of y in N/G, then the stabilizer in S of
y in N/H is also equal to V , because S is a p-subgroup of the torus T . Also,
choose a splitting S = V × W , and let KL be the stabilizer in T of y in N/L,
for any subgroup L of G. Then the stabilizer in T of the point y in W\N/L is
equal to KLW , for any subgroup L in G. For the subgroup H ∈ S constructed
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in the previous paragraph, KH has index prime to p in KG, and so the stabilizer
in T of y in W\N/H (namely, KH W ) has index prime to p in the stabilizer of
y in W\N/G, as we wanted.

Finally, we state the analogous regularity bound for motivic cohomology
modulo transfers. Fix a prime number p. We recall the notation from Theorem
6.10: for an affine group scheme G and any integer j , define

Mj (G) = ⊕iH
2i−j
M (BG, Fp(i)).

We view Mj (G) as a graded abelian group, graded by the degree of H ∗; thus
Mj (G) is concentrated in degrees ≡ j (mod 2). In particular, M0(G) is the
Chow ring CH ∗

G = CH ∗(BG)/p. For each j , Mj (G) is a module over the
Chow ring CH ∗

G.

Theorem 10.6 Let G be a finite group scheme over a field k, p a prime
number, and j a natural number. Suppose that the order of G is invertible in
k. Then, for any faithful representation G → GL(n), Mj (G) is generated by
elements of degree at most n2 + j as a module over Fp[c1, . . . , cn], and at most
n2 if k is algebraically closed. Moreover, let S be any collection of subgroup
schemes of G. Then Mj (G)/

∑
H∈S trGHMj (H ) has regularity at most j as an

Fp[c1, . . . , cn]-module, and at most 0 if k is algebraically closed.

The proof is the same as for Theorem 6.10, modified to take account of
transfers as in the proof of Theorem 10.1.
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Transferred Euler Classes

For many complex algebraic groups G, the Chow ring of the classifying space
BG is generated by Chern classes of complex representations of G. This fails in
general for the symmetric groups, but at least the Chow ring of any symmetric
group consists of transferred Euler classes, meaning Z-linear combinations
of transfers to G of Euler classes (top Chern classes) of representations of
subgroups (Corollary 2.22). We will see that transferred Euler classes form a
subring of the Chow ring (Lemma 11.2), and that they include all transferred
Chern classes (Lemma 11.3).

Schuster and Yagita gave an example of a finite group, the extraspecial 2-
group 21+6

+ of order 27 contained in Spin(7), whose complex cobordism does
not consist of transferred Euler classes [121]. Guillot showed that the Chow ring
of the same group (specifically, CH 3BG) also does not consist of transferred
Euler classes [62], thus answering negatively a question in [138]. Presumably
there are similar examples at odd primes. There is no conjecture now about
what sort of elements suffice to generate the Chow ring of an arbitrary finite
group.

Nonetheless, the following theorem gives a fairly large class of finite groups
for which the Chow ring is generated by transferred Euler classes. Whenever
that holds, it follows that CHiBG is finite for all i > 0, or equivalently (by
Theorem 5.2) that CH ∗BG is a finitely generated Z-algebra. That remains an
open question for arbitrary finite groups.

By definition, the exponent of a finite group G is the least common multiple
of the orders of all elements of G.

Theorem 11.1 Let G be a finite group, and let p be a prime number. Suppose
that some Sylow p-subgroup P of G has a faithful complex representation
of dimension at most p + 2. Then the mod p Chow ring of BGC consists of
transferred Euler classes.

122
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More generally, consider a finite group G as an algebraic group over a field
k of characteristic not p that contains the pth roots of unity for p odd, or the
4th roots of unity for p = 2. Suppose that P has a faithful representation of
dimension n over k with c irreducible summands such that n − c ≤ p. Then
the mod p Chow ring of BGk consists of transferred Euler classes.

The theorem applies to infinitely many groups, including some with fairly
complicated p-local structure. An example is G = GL(4, F2) ∼= A8 with p =
2, since the 2-Sylow subgroup S of G (the group of 4 × 4 strictly upper-
triangular matrices over F2, of order 64) has a faithful irreducible complex
representation of dimension 4. It follows that the mod 2 Chow rings of S and
G (as groups over C) consist of transferred Euler classes. Another example is
the Mathieu group M12. Its mod 2 Chow ring is generated by transferred Euler
classes, since the Sylow 2-subgroup of M12 (another group of order 64) has a
faithful irreducible complex representation of dimension 4. The cohomology
of M12 and other sporadic simple groups is discussed in Adem-Milgram [1,
chapter VIII].

Theorem 11.1 can also be used to show that the Chow ring of any 2-group
of order at most 32 consists of transferred Euler classes. Indeed, the only 2-
group of order at most 32 that does not have a faithful complex representation of
dimension 4 is (Z/2)5, for which the Chow ring certainly consists of transferred
Euler classes. The statement about faithful representations can be checked
using the free group-theory program GAP [46], or by the methods of Cernele-
Kamgarpour-Reichstein [28, proof of Lemma 13].

The result that the Chow rings of the 51 groups of order 25 = 32 consist of
transferred Euler classes is nearly optimal, in view of Guillot’s counterexample
of order 27. I would guess that the Morava K-theories of groups of order 32 also
consist of transferred Euler classes; this is true at least for K(2), by Schuster
[120].

For an odd prime p, Theorem 11.1 implies that the Chow ring of every
p-group of order at most p4 consists of transferred Euler classes. Indeed, every
such group has a faithful complex representation of dimension at most p + 1
[28, theorem 1].

11.1 Basic properties of transferred Euler classes

In this section we define transferred Euler classes, which form a subring of the
Chow ring of a finite group. This subring contains all Chern classes. We prove a
theorem of Green and Leary: the homomorphism from transferred Euler classes
to the cohomology of a finite group is an F -isomorphism. Finally, we note that
the analog of Green and Leary’s result holds for the Chow ring.
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Let G be a finite group, viewed as an algebraic group over a field k. We
define the subgroup of transferred Euler classes tr χ (G) in CH∗BG to be
the subgroup generated by elements trGHχ (V ) for all subgroups H in G and
all representations V of H over k. We can also talk about transferred Euler
classes in CH ∗

G = CH ∗(BG)/p or (for k = C) in H ∗
G = H ∗(BG, Fp). The

transferred Euler classes in these other rings are, by definition, the images of
tr χ (G) ⊂ CH ∗BG.

Lemma 11.2 Let G be a finite group, viewed as an algebraic group over a
field k. Then the transferred Euler classes form a subring of CH ∗BG.

Proof We follow an argument by Hopkins-Kuhn-Ravenel [70, proposition
7.2]. Let H1 and H2 be subgroups of G, with representations V1 of H1 and
V2 of H2 over k. We want to show that (trGH1

χ (V1))(trGH2
χ (V2)) is a transferred

Euler class. Rewrite this product as

= resG×G
G trG×G

H1×H2
π∗

1 χ (V1) ⊗ π∗
2 χ (V2)

= resG×G
G trG×G

H1×H2
χ (V1 ⊕ V2),

where π1 and π2 are the two projections on H1 × H2. By the double coset
formula (Lemma 2.15), that element is a transferred Euler class in CH ∗BG.

The following lemma shows that transferred Chern classes are no more
general than transferred Euler classes.

Lemma 11.3 Let G be a finite group, p a prime number, k a field such that
p is invertible in k. Suppose that k contains the pth roots of unity for p odd,
or the 4th roots of unity for p = 2. Consider G as an algebraic group over k.
Then all Chern classes in CH ∗

G = CH ∗(BG)/p of representations of G over
k are transferred Euler classes.

Proof Using transfer, it suffices to prove this for G a p-group. Blichfeldt
showed that every irreducible k-representation of G over an algebraically closed
field is monomial (induced from a 1-dimensional representation of a subgroup).
Kahn generalized Blichfeldt’s theorem to an arbitrary field k satisfying our
assumptions: again, every irreducible k-representation of G is induced from a
1-dimensional k-representation [75, propositions 7.4, 9.1, and 9.2].

A monomial representation G → GL(pr) factors through the wreath product
Spr � Gm. Lemma 2.21 gives that that all elements of the Chow ring of Spr � Gm

are transferred Euler classes, using again that k contains the pth roots of unity.
That completes the proof.

Evens and Fulton-MacPherson gave formulas for the Chern classes of an
induced representation [41, 45], but they seem not to imply Lemma 11.3
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directly, because the formulas involve the Chern classes of a permutation rep-
resentation. In the most important case k = C, Lemma 11.3 can be deduced
from Symonds’s formula for the Chern classes of any complex representation
in terms of transfers, norms, and products starting from first Chern classes of
1-dimensional representations [129]. Using that formula, one can write Chern
classes as transferred Euler classes.

We now prove a result of Green and Leary for group cohomology [53,
corollary 8.3], and its analog for Chow rings. Recall that a homomorphism
f : A → B of graded-commutative Fp-algebras is an F -isomorphism if every
element of the kernel is nilpotent, and for every element b ∈ B there is a natural
number r and an element a ∈ A such that f (a) = bpr

.

Theorem 11.4
(i) Let G be a finite group and p a prime number. Then the inclusion from

the subring of transferred Euler classes to H ∗
G = H ∗(BG, Fp) is an F -

isomorphism. In fact, it suffices to consider transferred Euler classes of
representations defined over Q(μp) ⊂ C.

(ii) Let G be a finite group and p a prime number. Let k be a field of char-
acteristic not p that contains the pth roots of unity. View the finite group
G as an algebraic group over k. Then the inclusion from the subring of
transferred Euler classes to CH ∗

G is an F -isomorphism.

Green and Leary observed that transfers are essential here: the subring of
Chern classes need not be F -isomorphic to the whole cohomology ring of a
finite group [53].

Also, it would not be enough to use representations defined over Q in part (i),
by the example of G = Z/p for p odd. The subring of transferred Euler classes
of representations over Q in H ∗

Z/p = Fp〈x, y〉 is Fp[yp−1], and the inclusion
from that subring into H ∗

Z/p is not an F -isomorphism.

Proof We first prove (ii). Let k contain the pth roots of unity. By Theorem
8.10, the restriction map CH ∗

G → lim←−CH ∗
A is an F -isomorphism. For any

element y of CH ∗
G, consider the image of y in lim←−CH ∗

A. We showed after
Lemma 8.5 that any element of lim←−CH ∗

A, raised to some p-power, is the

restriction of an Fp-linear combination of graded pieces of elements NG
A (1 +

u) ∈ CH ∗
G for A an elementary abelian subgroup of G and u ∈ CH ∗

A of positive
degree. Therefore, y raised to a possibly higher power of p is equal to an Fp-
linear combination of graded pieces of elements NG

A (1 + u) ∈ CH ∗
G for A

an elementary abelian subgroup of G and u ∈ CH ∗
A of positive degree. So it

suffices to show that NG
A (1 + u) is a transferred Euler class.

By the formulas for the norm of a sum or product (Lemma 8.1), together
with the fact that CH ∗

A is generated by elements of degree 1, it suffices to
show that NG

H (u) is a transferred Euler class for every subgroup H of a finite
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group G and every u ∈ CH 1
H . The element u is the first Chern class of a

1-dimensional representation L of H over k. Then NG
H (u) is the Euler class of

the representation of G induced from L, by Fulton-MacPherson, generalizing
Evens’s theorem in cohomology [45, corollary 5.5], [41, theorem 4]. (ii) is
proved.

We now prove (i). We will use what we have shown about Chow rings to
prove this result on cohomology, although one could also give a more direct
argument.

Consider the finite group G as an algebraic group over k = Q(μp). We
know by Theorem 8.10 that the cycle map CH ∗

G → H ∗
G is an F -isomorphism.

Then part (1) implies that the subring of transferred Euler classes in H ∗
G of

representations defined over Q(μp) is F -isomorphic to the whole ring H ∗
G.

11.2 Generating the Chow ring

Proof of Theorem 11.1 We can assume that G is a p-group. Consider G as
an algebraic group over the field k. We are given a faithful representation V

of dimension n over k. We have two different assumptions: for k = C, we
assume that n ≤ p + 2; or, for any field k, we assume that n minus the number
of irreducible summands of V is at most p. By omitting some irreducible
summands of V , we can assume that the number of irreducible summands of
V is equal to the p-rank c of the center of G.

Either assumption passes from G to its subgroups, and so it suffices to show
that the quotient ring A′(G) of CH ∗

G by transfers from all proper subgroups is
generated by Euler classes of k-representations of G. When k = C and G is
abelian, the ring A′(G) is generated by Euler classes, because the whole Chow
ring is generated by Euler classes. So we can assume that G is not abelian if
k = C.

By Corollary 10.5, the ring A′(G) is generated as a module over Euler
classes by elements of degree at most n − c, and at most n − c − 1 if k = C,
since G is not abelian. We have c ≥ 1 if k = C since G is nontrivial, and
so A′(G) is generated by elements of degree at most p under either of our
assumptions. For any affine group scheme G of finite type over a field, the mod
p Chow group CH i

G is spanned by Chern classes of representations of G for
i ≤ p, by Theorem 2.25. Thus the ring A′(G) is generated by Chern classes of
representations. By Lemma 11.3, using our assumption on the roots of unity in
k, it follows that the Chow ring modulo transfers, A′(G), is generated by Euler
classes of representations.
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Detection Theorems for Cohomology and
Chow Rings

In 1991, Henn, Lannes, and Schwartz gave a powerful approach to computing
the cohomology of finite groups [69]. Using the work of Miller and Lannes on
unstable modules over the Steenrod algebra, they showed that the cohomology
of any finite group G is determined in all degrees by the cohomology of certain
subgroups (centralizers of elementary abelian subgroups) up to some finite
degree, which we denote d0(H ∗

G), the “topological nilpotence degree” of H ∗
G.

It is a fundamental problem to estimate the number d0(H ∗
G).

Henn, Lannes, and Schwartz showed that if G has a faithful complex rep-
resentation of dimension n, then d0(H ∗

G) is at most n2. Kuhn improved their
bound, and conjectured that in fact d0(H ∗

G) is at most 2n − c, for c the p-rank of
the center of a Sylow p-subgroup [86]. We prove Kuhn’s conjecture in Theorem
12.4. This should be valuable for computations. There is a close connection
between the ideas here and Symonds’s result on the cohomology ring modulo
transfers, Corollary 10.3.

In Theorem 12.7, we prove an analogous detection theorem for Chow rings:
if a finite group G has a faithful complex representation of dimension n, then
CH ∗

G is determined by the Chow rings of centralizers of elementary abelian
subgroups in degrees at most n − c. Compare the regularity theorem 6.5, which
says only that the ring CH ∗

G has generators and relations in degrees at most
about n2. Nonetheless, the proof of Theorem 12.7 uses the regularity theorem.

The proof of this detection theorem for the Chow ring is very differ-
ent from Henn-Lannes-Schwartz’s arguments for cohomology. Henn-Lannes-
Schwartz’s argument uses some of the deepest results in homotopy theory,
including Lannes’s computation of the cohomology of certain mapping spaces
using his T -functor. Those results are not available for Chow rings, where we
do not even have the spectral sequence of a group extension. Our approach is
strongly influenced by Kuhn’s work on group cohomology [86].

127
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12.1 Nilpotence in group cohomology

In this section, we prove Kuhn’s conjectured bound, Theorem 12.4, on the
detection of group cohomology using centralizers of elementary abelian sub-
groups. The proof turns out to be an easy extension of Kuhn’s results [86].

Let p be a prime number. For a finite group G, we write H ∗
G for the ring

H ∗(BG, Fp). Let c = c(G) be the p-rank of the center of a Sylow p-subgroup
of G, and r = r(G) the p-rank of G (i.e., the maximal rank of an elementary
abelian p-subgroup of G).

We start by defining the “topological nilpotence degree” of Henn-Lannes-
Schwartz. Since H ∗

G is the mod p cohomology of a topological space, it belongs
to the category U of unstable modules over the mod p Steenrod algebra. We
recall the definition [122, definition 1.3.1]:

Definition 12.1 A graded module M over the mod p Steenrod algebra is
unstable if

(i) for p = 2, Sqix = 0 for all x ∈ M and all i > |x|;
(ii) for p odd, βeP ix = 0 for all x ∈ M and all e + 2i > |x| with e = 0 or 1.

Let �dM denote the dth suspension (upward shift) of a graded module M .
For an unstable module N ∈ U , define the topological nilpotence degree d0(N )
to be the supremum of the natural numbers d such that N contains a nonzero
submodule of the form �dM with M ∈ U .

For example, H ∗
G is called reduced (as a module over the Steenrod algebra

A) if d0(H ∗
G) = 0. For p = 2, this is equivalent to H ∗

G being reduced as a
commutative ring; that is, every nilpotent element is zero. For p odd, d0(H ∗

G)
is zero if and only if every element x of H ∗

G such that θx is nilpotent for
every θ ∈ A is zero [122, lemma 2.6.4]. For example, d0(H ∗

Z/p) = 0 for an odd
prime p, even though the degree-1 generator x in H ∗

Z/p = Fp〈x, y〉 is nilpotent,
because βx = y is not nilpotent.

The invariant d0(H ∗
G) clearly only depends on H ∗

G as a module over the
Steenrod algebra. Henn-Lannes-Schwartz gave a remarkable interpretation of
d0(H ∗

G) that does not mention the Steenrod algebra [69, theorem 0.2].

Theorem 12.2 Let G be a finite group. Then d0(H ∗
G) is the least natural

number d such that the algebra homomorphism

H ∗
G →

∏
V

H ∗
V ⊗Fp

H≤d
CG(V )

is injective.

Here the product is over the elementary abelian p-subgroups V of G, the
component maps are induced by the group homomorphisms V × CG(V ) → G,
and M≤d denotes the quotient of a graded module M by all elements of degree
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greater than d. For example, d0(H ∗
G) is zero if and only if H ∗

G is detected on
elementary abelian subgroups; that is a very special situation, but it holds in
some important examples such as the symmetric groups at any prime p, by
Corollary 2.20.

One reason to be interested in the topological nilpotence degree of H ∗
G,

perhaps not the most important, is that it gives a bound for the nilpotence of H ∗
G

in the following algebraic sense [86, corollary 2.6]. The proof is straightforward.

Theorem 12.3 Let G be a finite group and p a prime number. Let e be
d0(H ∗

G) for p = 2, or d0(H ∗
G) + r(G) for p odd. Then rad(H ∗

G)e = 0. That is,
the product of any e nilpotent elements in H ∗

G is zero.

We now prove the bound for d0(H ∗
G) conjectured by Kuhn [86, section 1].

Theorem 12.4 Let G be a finite group with a faithful complex representation
of dimension n. Let c be the p-rank of the center of a Sylow p-subgroup of G.
Then d0(H ∗

G) ≤ 2n − c.

By Henn-Lannes-Schwartz’s interpretation of d0(H ∗
G) (Theorem 12.2), Theo-

rem 12.4 means that computing the cohomology of a finite group G essentially
reduces to a computation in degrees at most 2n − c, for G and certain sub-
groups. Henn-Lannes-Schwartz’s original bound for their invariant was that
d0(H ∗

G) ≤ n2 [69, theorem 0.5].

Proof Let P be a Sylow p-subgroup of G. Then H ∗
G is a summand of H ∗

P as
a module over the Steenrod algebra, using transfer. It follows that d0(H ∗

G) ≤
d0(H ∗

P ). So we can assume from now on that G is a p-group.
Let C = C(G) be the p-torsion subgroup of the center of G. The ring H ∗

C is a
commutative cocommutative Hopf algebra, since C is an abelian group; namely,
the group homomorphism C × C → C, (x, y) 	→ xy, gives the coproduct
H ∗

C → H ∗
C ⊗Fp

H ∗
C . Next, H ∗

G is a comodule over H ∗
C , using the group

homomorphism C × G → G. Although H ∗
G is not a Hopf algebra, the image

of the restriction map H ∗
G → H ∗

C is a Hopf subalgebra of H ∗
C , as one shows

using the commutative diagram

C × C ��

��

C

��

C × G �� G

and the analogous diagram for G × C → G. Aguadé-Smith [2] and Broto-
Henn [22, remark 1.3] deduced (using the Borel structure theorem on the
structure of Hopf algebras [105, theorem 7.11]) that there is a basis x1, . . . , xc
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for H 1
C such that, writing yi = βxi ,

im(H ∗
G → H ∗

C) =
{

F2[x2j1

1 , . . . , x2jc

c ] if p = 2

Fp〈ypj1

1 , . . . , y
pjb

b , yb+1 . . . , yc, xb+1, . . . , xc〉 if p is odd,

for some natural numbers j1 ≥ j2 ≥ · · · . For p odd, c − b is the largest number
of copies of Z/p that factor off G as a product group.

Definition 12.5 In this notation, we say that G has type [a1, . . . , ac], where

[a1, . . . , ac] =
{

[2j1 , . . . , 2jc ] if p = 2

[2pj1 , . . . , 2pjb , 1, . . . , 1] if p is odd,

following Kuhn [86, section 2.6].

Define e(G) to be the maximum degree of a generator for H ∗
C as a module

over H ∗
G. By our description of the image of restriction, we have

e(G) =
c∑

i=1

(ai − 1).

Because the image of H ∗
G → H ∗

C is so special, e(G) is often easy to compute.
Using Symonds’s theorem, Kuhn proved the following strong bound for

d0(H ∗
G) [86, theorem 1.5].

Theorem 12.6 Let G be a p-group. Then

d0(H ∗
G) ≤ e(G).

If G is p-central, then equality holds.

It remains to prove Kuhn’s conjecture that e(G) is at most 2n − c.
Let V be a faithful complex representation of G of dimension n. We can

assume (by omitting some irreducible summands, if necessary) that V has
exactly c irreducible summands, V = V1 ⊕ · · · ⊕ Vc. The dimension of an irre-
ducible representation of G is a power of p, and so we can write dim(Vi) = pbi .
By Schur’s lemma, C acts by scalars on each Vi , through some 1-dimensional
complex representation Li of C. Since V is faithful, the 1-dimensional rep-
resentations L1, . . . , Lc form a basis for Hom(C, C∗) ∼= (Z/p)c. Let yi =
c1(Li) in H 2

C . We can write yi = βxi for elements xi in H 1
C . In terms of

these elements, the cohomology ring of C is F2[x1, . . . , xc] for p = 2, or
Fp〈x1, . . . , xc, y1, . . . , yc〉 for p odd.

Because the restriction of the irreducible representation Vi to the subgroup

C is a sum of pbi copies of Li , the Euler class χ (Vi) in H ∗
G restricts to y

pbi

i

in H ∗
C , for i = 1, . . . , n. As a result, we can write down generators for H ∗

C

as a module over Fp[χ (V1), . . . , χ (Vc)], with the highest-degree generator

being x1 . . . xcy
pb1 −1
1 · · · ypbc −1

c . That element has degree c + ∑
i(2(pbi − 1)) =
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2n − c. A fortiori, H ∗
C is generated as an H ∗

G-module by elements of degree at
most 2n − c.

12.2 The detection theorem for Chow rings

We now define the topological nilpotence degree of the Chow ring, and prove
an upper bound for it. The bound is analogous to the bound for the topological
nilpotence degree of the cohomology ring proved in Theorem 12.4. It is a strong
computational tool, as we will see repeatedly in Chapter 13.

Fix a prime number p, and write CH ∗
G for Chow groups with Fp coefficients.

Let G be a finite group, which we view as an algebraic group over a field
k. Define the topological nilpotence degree d0(CH ∗

G) to be the least natural
number d such that the Fp-algebra homomorphism

CH ∗
G →

∏
V

CH ∗
V ⊗Fp

CH≤d
CG(V )

is injective. As in Theorem 12.2, the product is over the elementary abelian
p-subgroups V of G, the component maps are induced by the group homomor-
phisms V × CG(V ) → G, and M≤d denotes the quotient of a graded module
M by all elements of degree greater than d. For example, d0(CH ∗

G) is zero if
and only if CH ∗

G is detected on elementary abelian subgroups; that is a very
special situation, but it holds in some important examples such as the symmetric
groups at any prime p (Corollary 2.22).

Theorem 12.7 Let G be a finite group, p a prime number. Let k be a field of
characteristic not p that contains the pth roots of unity. Suppose that G has
a faithful representation of dimension n over k, and let c be the p-rank of the
center of a Sylow p-subgroup of G. Then

d0(CH ∗
G) ≤ n − c,

where G is viewed as an algebraic group over k.

Theorem 12.7 reduces the problem of checking relations in the Chow ring to
computations in degrees at most the dimension n of a faithful representation,
in fact a bit better than that.

Conjecture 12.8 Let p and the field k be as in Theorem 12.7. Then d0(CH ∗
G)

is equal to the supremum of the natural numbers d such that CH ∗
G, as a

module over the Steenrod algebra A, contains a nonzero submodule of the form
�dM , with M an unstable A-module. (For this purpose, “unstable” means that
P ix = 0 for all x ∈ M and all i > |x|. Following section 6.3, remember that
P i sends CH

j
G to CH

j+i(p−1)
G .)
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One direction of Conjecture 12.8 is easy: d0(CH ∗
G) (as we have defined it)

is at least the number s0(CH ∗
G) defined using the Steenrod algebra. To prove

that, use that the ring CH ∗
V is reduced for an elementary abelian p-group

V . Conversely, if s0(CH ∗
G) = 0, then CH ∗

G is reduced as a ring (using the
identity P (xp) = (Px)p for the total Steenrod operation P = P 0 + P 1 + · · · ).
Then Yagita’s theorem (Lemma 8.9) gives that CH ∗

G is detected on elementary
abelian subgroups, that is, d0(CH ∗

G) = 0. So Conjecture 12.8 seems to be a
plausible extension of Yagita’s theorem.

Conjecture 12.8 would say that d0(CH ∗
G) is determined by CH ∗

G as a module
over the Steenrod algebra. That would be interesting to know, by analogy with
the Henn-Lannes-Schwartz theorem, Theorem 12.2. But it does not matter
for the applications we have in mind. Since we defined d0(CH ∗

G) in terms of
injectivity of restriction maps, an upper bound for d0(CH ∗

G) (such as Theorem
12.7) is immediately useful for computing CH ∗

G.

Proof (Theorem 12.7) We can assume that G is a p-group, because the Chow
ring of any finite group injects into that of a Sylow p-subgroup.

Let C = Z(G)[p]. We will prove a stronger version of the theorem (although
it is easily seen to be equivalent): it suffices to consider elementary abelian
subgroups that contain C. That is, we will show that

CH ∗
G →

∏
C⊂V

V elem ab

CH ∗
V ⊗ CH≤e

CG(V )

is injective, for e = n − c.
The ring CH ∗

C is a commutative cocommutative Hopf algebra, since C is an
abelian group; namely, the group homomorphism C × C → C, (x, y) 	→ xy,
gives the coproduct CH ∗

C → CH ∗
C ⊗Fp

CH ∗
C . Next, CH ∗

G is a comodule over
CH ∗

C , using the group homomorphism C × G → G. Although CH ∗
G is not

a Hopf algebra, the image of the restriction map CH ∗
G → CH ∗

C is a Hopf
subalgebra of CH ∗

C , by the same argument as in group cohomology (proof
of Theorem 12.4). Therefore, there is a basis y1, . . . , yc for CH 1

C such that
im(CH ∗

G → CH ∗
C) is equal to the subring

Fp[ypa1

1 , . . . , ypac

c ]

of CH ∗
C = Fp[y1, . . . , yc] for some natural numbers a1 ≥ · · · ≥ ac. This fol-

lows from the Borel structure theorem [105, theorem 7.11] applied to the Hopf
algebra quotient CH ∗

C//im(CH ∗
G → CH ∗

C), which is finite over Fp.
In this notation, we say that G has Chow type [pa1 , . . . , pac ], by analogy

with Definition 12.5 of the type for group cohomology. Define eCH (G) to be
the maximum degree of a generator for CH ∗

C as a module over CH ∗
G. By our
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description of the image of the restriction homomorphism CH ∗
G → CH ∗

C , we
have

eCH (G) =
c∑

i=1

(pai − 1).

(After Definition 12.5, we defined e(G) to be the analogous invariant using
group cohomology rather than the Chow ring.)

Since im(CH ∗
G → CH ∗

C) is a polynomial ring, we can fix a graded subring
B ⊂ CH ∗

G that maps isomorphically to im(CH ∗
G → CH ∗

C). We call such a
subring a Duflot algebra, following Kuhn’s definition in group cohomology
[86, definition 2.7]. Beware that a Duflot algebra need not be a CH ∗

C-submodule
of CH ∗

G, and it need not be closed under the Steenrod operations on CH ∗
G.

For a graded module M over a graded ring B, the space of indecomposables
for M is

QBM := M/B>0M.

Define an ideal CEss(CH ∗
G) in CH ∗

G, the central essential ideal, as the
elements that restrict to 0 on CG(V ) for all elementary abelian subgroups
C � V of G. Kuhn considered the analogous ideal in group cohomology [86,
definition 2.7]. Define eCH

indec(G) to be the supremum of the degrees of generators
for CEss(CH ∗

G) as a module over the Duflot algebra B ⊂ CH ∗
G. (We will show

that eCH
indec(G) < ∞ as well as more precise results.) Equivalently, eCH

indec(G) is
the maximum degree of the space of indecomposables QBCEss(CH ∗

G).
Since all the groups CG(V ) contain C, CEss(CH ∗

G) is a sub-CH ∗
C-comodule

of CH ∗
G. For a CH ∗

C-comodule M , write PCM for the primitive subspace in
M ,

PCM = {x ∈ M : �(x) = 1 ⊗ x},
where � : M → CH ∗

C ⊗ M is the coproduct. Let eCH
prim(G) be the supremum of

the degrees in which the graded vector space PCCEss(CH ∗
G) is not zero. The

main step toward the theorem is to prove the inequalities

eCH
prim(G) ≤ eCH

indec(G) ≤ eCH (G) ≤ n − c.

The inequality eCH (G) ≤ n − c follows by the arguments used for Theorem
12.4. Let V be a faithful representation of G of dimension n over k. We can
assume (by omitting some irreducible summands, if necessary) that V has
exactly c irreducible summands, V = V1 ⊕ · · · ⊕ Vc. Since k contains the pth
roots of unity, the dimension of an irreducible representation of G over k is a
power of p [29, theorem 70.12], and so we can write dim(Vi) = pbi . Since C

is central in G, G preserves the isotypic decomposition of any kG-module W

as a kC-module; so if W is irreducible for G, then it is isotypic for C (a direct
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sum of copies of one irreducible k-representation). Since k contains the pth
roots of unity, all irreducible k-representations of C are 1-dimensional, and so
C acts by scalars on each Vi , through some 1-dimensional k-representation Li

of C. Since V is faithful, the 1-dimensional representations L1, . . . , Lc form
a basis for CH 1

C = Hom(C, k∗)/p. So the Chow ring of C can be written as
Fp[y1, . . . , yc] with yi = c1(Li).

Because the restriction of the irreducible representation Vi to the subgroup

C is a sum of pbi copies of Li , the Euler class χ (Vi) in CH ∗
G restricts to y

pbi

i in

H ∗
C , for i = 1, . . . , n. Thus im(CH ∗

G → CH ∗
C) contains y

pb1

1 , . . . , y
pbc

c in this
basis. So CH ∗

C is generated as a module over im(CH ∗
G → CH ∗

C) by elements
of degree at most

c∑
i=1

(pbi − 1) = n − c.

That is, eCH (G) ≤ n − c, as we want.
To prove that eCH

prim(G) ≤ eCH
indec(G), we start with the following algebraic

statement from Kuhn [85, lemma 5.2].

Lemma 12.9 Let K be a Hopf subalgebra of a graded connected Hopf alge-
bra H over a field F . Let M be a graded K-module that is also an H -comodule
in a compatible way, meaning that the multiplication M ⊗ K → M is a map
of H -comodules. Then

(a) M is a free K-module, and
(b) the composite PHM ↪→ M � QKM is injective.

The following lemma applies Lemma 12.9 to our situation, although some
care is required.

Lemma 12.10 Let G be a p-group and let C = Z(G)[p]. Let M be a non-
negatively graded CH ∗

G-module that is also a CH ∗
C-comodule such that the

map CH ∗
G ⊗ M → M is a map of CH ∗

C-comodules. Let B ⊂ CH ∗
G be a Duflot

algebra. Then
(a) M is a free A-module, and
(b) the composite PCM ↪→ M � QBM is injective.

Proof The difficulty is that B need not be a sub-CH ∗
C-comodule of CH ∗

G. To
deal with that, we filter M into simpler pieces. Let L = ker(CH ∗

G → CH ∗
C),

and let Mi = LiM ⊂ M for i ≥ 0, where we write Li for the Fp-linear span of
all products of i elements of the ideal L. Clearly M = M0 ⊃ M1 ⊃ M2 ⊃ · · ·
are CH ∗

G-modules.
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Next, L = ker(CH ∗
G → CH ∗

C) is a sub-CH ∗
C-comodule of CH ∗

G, by the
commutative diagram

CH ∗
G

��

�
��

CH ∗
C

�
��

CH ∗
G ⊗ CH ∗

C
�� CH ∗

C ⊗ CH ∗
C.

That follows from the commutative diagram

G C��

G × C

��

C × C.��

��

We now show that LM ⊂ M is a sub-CH ∗
C-comodule, which implies by

induction that Mi = LiM is a sub-CH ∗
C-comodule for all i ≥ 0. We are assum-

ing that M is a CH ∗
G-module and a CH ∗

C-comodule in a compatible way, as
expressed by the commutative diagram:

CH ∗
G ⊗ M ��

�⊗�
��

M

�
��

(CH ∗
G ⊗ CH ∗

C) ⊗ (M ⊗ CH ∗
C) �� M ⊗ CH ∗

C.

Here the bottom map comes from the products CH ∗
C ⊗ CH ∗

C → CH ∗
C and

CH ∗
G ⊗ M → M . Combined with the fact that L is a sub-CH ∗

C-comodule of
CH ∗

G, this diagram shows that LM ⊂ M is a CH ∗
C-comodule, as we want. So

Mi is a sub-CH ∗
C-comodule of M for every i ≥ 0.

Therefore, for each i ≥ 0, griM = Mi/Mi+1 is a CH ∗
C-comodule. By def-

inition of Mi , griM is also a module over the ring K := im(CH ∗
G → CH ∗

C).
We have shown that K is a Hopf subalgebra of CH ∗

C . Our assumption on M

implies that the K-module and CH ∗
C-comodule structures on griM are com-

patible. By Lemma 12.9 (for H = CH ∗
C and K = im(CH ∗

G → CH ∗
C)), griM

is a free B-module and the composite

PC(griM) ↪→ griM � QB(griM)

is injective, for each i ≥ 0.
Since L ⊂ CH>0

G , the submodule Mi = LiM ⊂ M is concentrated in
degrees at least i, and so the intersection of all the submodules Mi is zero.
Therefore, from griM being a free B-module for each i ≥ 0, it follows that
M is a free B-module. Thus (a) is proved. Freeness of griM as an B-module
for each i ≥ 0 also implies that the extensions of B-modules given by our
filtration of M are split, and so QB (griM) → QB(M/Mi+1) is injective. To
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prove (b), let u be a nonzero homogeneous element of PCM . Then there is a
unique i ≥ 0 such that u ∈ Mi and u �∈ Mi+1. Then u gives a nonzero element
of PC(griM) ⊂ griM . By the previous paragraph, the image of u in QB(griM)
is not 0. By the injectivity just shown, the image of u in QB(M/Mi+1) is not
zero. A fortiori, the image of u in QBM is not zero. Thus (b) is proved.

Apply the lemma to M = CEss(CH ∗
G) ⊂ CH ∗

G. Then part (b) implies that
eCH

prim(G) ≤ eCH
indec(G), as we want.

Next, we show that eCH
indec(G) ≤ eCH (G). This is the most surprising step:

we are bounding the central essential ideal in CH ∗
G, which can be considered

the most mysterious part of CH ∗
G, in terms of im(CH ∗

G → CH ∗
C), which is

much easier to estimate. This step uses the regularity theorem on the Chow ring
(Theorem 6.5).

The ideal
∑

C�V

V elem ab

trGCG(V )CH ∗
CG(V ) kills CEss(CH ∗

G), by the projection for-

mula x trGCG(V )(y) = trGCG(V )(x|CG(V ) y) = 0 for x ∈ CEss(CH ∗
G), y ∈ CH ∗

CG(V )

(Lemma 2.15(i)). By Carlson’s theorem for Chow rings (Corollary 8.14), it
follows that for any u ∈ ker(CH ∗

G → CH ∗
C), there is a natural number m such

that upm · CEss(CH ∗
G) = 0.

We now apply that fact to the local cohomology (see Section 3.1 for defini-
tions) of certain CH ∗

G-modules with respect to the maximal ideal m = CH>0
G .

Lemma 12.11

QBCEss(CH ∗
G) = H 0

m(QBCEss(CH ∗
G)) = H 0

m(QBCH ∗
G).

Proof The 0th local cohomology of a CH ∗
G-module is them-torsion subspace.

So the first statement means that every element of QBCEss(CH ∗
G) is m-torsion.

That is, by the definition in Section 3.1, we have to show that for any homo-
geneous elements x ∈ QBCEss(CH ∗

G) and f ∈ CH>0
G , there is an r > 0 such

that f rx = 0. Since B is a Duflot algebra, there is an element g ∈ B>0 such
that f and g have the same restriction to CH ∗

C . That is, f − g is in the ideal
L = ker(CH ∗

G → CH ∗
C). As shown before this lemma, it follows that there is a

natural number m with (f − g)p
m

x = 0. (We showed this for x in CEss(CH ∗
G),

which implies the same statement for the quotient space QBCEss(CH ∗
G).) So

f pm

x = gpm

x, which is zero in QBCEss(CH ∗
G) since g is in B>0. Thus we

have shown that QBCEss(CH ∗
G) = H 0

m(QBCEss(CH ∗
G)).

For the second equality we want, consider the exact sequence

0 → CEss(CH ∗
G) → CH ∗

G →
∏
C�V

V elem ab

CH ∗
CG(V ).

These are CH ∗
G-modules and CH ∗

C-comodules in a compatible way. Therefore,
applying Lemma 12.10 to the images and cokernels of the maps shown, all
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those images and cokernels are free B-modules. So the maps split, and we have
an exact sequence of B-indecomposables:

0 → QBCEss(CH ∗
G) → QBCH ∗

G →
∏
C�V

V elem ab

QBCH ∗
CG(V ).

This trivially gives an exact sequence of m-torsion submodules:

0 → H 0
mQBCEss(CH ∗

G) → H 0
mQBCH ∗

G →
∏
C�V

V elem ab

H 0
mQBCH ∗

CG(V ).

So the lemma follows if we can show that for every elementary abelian
subgroup V of G that strictly contains C, we have H 0

mQBCH ∗
CG(V ) = 0. Let

H = CG(V ). We can assume that V is the whole group Z(H )[p]; if not, just
enlarge V . Since CH ∗

V is a CH ∗
G-module and a CH ∗

C-comodule in a compat-
ible way, it is free as a B-module, by Lemma 12.10. Here CH ∗

V is a graded
polynomial ring over Fp on r > c generators, and B is a graded polynomial
ring on c generators f1, . . . , fc. So QBCH ∗

V is a complete intersection ring,
and hence Cohen-Macaulay. It has dimension r − c > 0.

Let W be a faithful representation of G of dimension n over k. We
know that CH ∗

V is generated in bounded degrees as a module over the ring
R = Fp[c1W, . . . , cnW ]. Since CH ∗

V is of finite type over Fp, it is in fact finite
over R. So the quotient ring QBCH ∗

V is finite over R. By the Noether nor-
malization lemma, QBCH ∗

V is finite over some graded polynomial ring S ⊂ R

of dimension r − c (= dim(QBCH ∗
V )). Since QBCH ∗

V is Cohen-Macaulay, it
is a finitely generated free module over S. Since S has positive dimension,
there is a nonzero element h ∈ S>0; then h is a non-zero-divisor on QBCH ∗

V .
So f1, . . . , fc, h|CG(V ) ∈ CH ∗

CG(V ) restrict to a regular sequence in CH ∗
V . By

the Duflot theorem for Chow rings (Theorem 3.20), which applies as stated
since we made V equal to Z(CG(V ))[p], f1, . . . , fc, h|CG(V ) form a regular
sequence in CH ∗

CG(V ). So the element h of m = CH>0
G restricts to a non-zero-

divisor on QBCH ∗
CG(V ). So the m-torsion subspace H 0

mQBCH ∗
CG(V ) is zero, as

we want.

We want to prove that eCH
indec(G) ≤ eCH (G). That is, we want to show that

QBCEss(CH ∗
G) is concentrated in degrees at most eCH (G). By Lemma 12.11,

it is equivalent to show that H 0
mQBCH ∗

G is concentrated in degrees at most
eCH (G). The Duflot algebra B is a polynomial ring Fp[u1, . . . , uc] with |ui | =
pai for some natural numbers a1, . . . , ac. We know that CH ∗

G is free as a
B-module by the Duflot theorem for Chow rings (Theorem 3.20). Therefore,
QBCH ∗

G is the quotient of CH ∗
G by a regular sequence.

If M is a graded CH ∗
G-module and f ∈ CHd

G is a non-zero-divisor on M , then
reg(M/f M) ≤ reg(M) + d, by the long exact sequence of local cohomology
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applied to the exact sequence

0 → �dM → M → M/f M → 0.

Therefore,

reg(QBCH ∗
G) ≤ reg(CH ∗

G) +
c∑

i=1

(pai − 1)

= reg(CH ∗
G) + eCH (G)

≤ eCH (G),

by the regularity theorem for Chow rings (Theorem 6.5). By the definition of
regularity in terms of local cohomology, this says in particular that H 0

mCH ∗
G is

concentrated in degrees at most eCH (G). By the previous paragraph, we have
shown that eCH

indec(G) ≤ eCH (G).
Thus we have shown that eCH

prim(G) ≤ eCH
indec(G) ≤ eCH (G) ≤ n − c. The inter-

est of eCH
prim(G) is shown by the following lemma on Hopf algebras, which we

will apply to H = CH ∗
C and M = CEss(CH ∗

G).

Lemma 12.12 Let H be a graded connected Hopf algebra over a field F .
Let M be a graded comodule over H that is bounded below. If the subspace of
primitives PHM is concentrated in degrees at most e, then the composite

M → H ⊗k M → H ⊗k M≤e

is injective.

Proof Let x be a homogeneous element of M that is not primitive, say of
degree d. Then the image of x under the coproduct M → H ⊗ M has nonzero
component in Hd−j ⊗ Mj for some j < d. By induction on d, if we apply the
coproduct map enough times, then x has nonzero image in H ⊗ · · · ⊗ H ⊗
M≤e. Since M is an H -comodule, we have the commutative diagram

M ��

��

H ⊗ M

1⊗�
��

H ⊗ M
�⊗1

�� H ⊗ H ⊗ M.

Applying this repeatedly, we conclude that x has nonzero image in H ⊗ M≤e.

Thus, our bound on eCH
prim(G) implies that, if we write e = n − c, then the

restriction map

CEss(CH ∗
G) → CH ∗

C ⊗ CEss(CH≤e
G )
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is injective. Equivalently, the product map

CH ∗
G → CH ∗

C ⊗ CH≤e
G ×

∏
C�V

V elem ab

CH ∗
CG(V )

is injective.
For any subgroup H of the p-group G, it is easy to see that nH − cH ≤ nG −

cG. (A faithful representation V of G over k restricts to a faithful representation
of H over k, and so nH ≤ nG. The p-rank cH of the center of H may be
smaller than than of G, but if that happens then we can omit some irreducible
summands from V |H and still get a faithful representation; so we always have
nH − cH ≤ nG − cG.) Therefore, applying the previous injectivity result to
each of the subgroups H = CG(V ), we find that

CH ∗
G →

∏
V ⊂G

V elem ab

CH ∗
V ⊗ CH≤e

CG(V )

is injective.
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Calculations

An important test of our machinery is to compute the Chow ring for large
classes of finite groups, not just for particular families of well-behaved groups.
For example, the Chow groups of the symmetric group Sn are known for any
n (Corollary 2.22 and [138, section 11]), but computing Chow rings for more
general groups can be hard, even for relatively small groups. The main problem
is to compute the Chow ring of a p-group, since the Chow ring (with Fp

coefficients) of any finite group is a summand of the Chow ring of a Sylow
p-subgroup. In that spirit, this chapter uses the tools we have developed to
compute the Chow ring for all 14 groups of order 16 and all 5 groups of order
p3. Chapter 14 computes the Chow ring for all 15 groups of order 81, and
for 13 of the 15 groups of order p4 with p ≥ 5. We also compute the Chow
ring for some infinite classes of p-groups, including all p-groups with a cyclic
subgroup of index p.

Section 13.3 relates the Chow ring of a p-group to the Chow ring of an
associated 1-dimensional group. This method simplifies a surprising number of
calculations. Leary used the same method to good effect in group cohomology
[89, 90].

In Section 13.5, we compute the topological nilpotence degree d0(H ∗
G) of

Henn-Lannes-Schwartz and the analogous invariant d0(CH ∗
G) for some small p-

groups G. In a sense, computing the cohomology ring or the Chow ring reduces
to calculations in degrees at most d0(H ∗

G) or d0(CH ∗
G). In our examples, these

numbers turn out to be surprisingly small. Any improvement on the known
upper bounds for d0(H ∗

G) or d0(CH ∗
G) would be useful for computations of

group cohomology or the Chow ring.
Throughout this chapter, we consider each finite p-group G of exponent e

as an algebraic group over any field k of characteristic not p that contains the
eth roots of unity. We find that the groups in this chapter have the same mod
p Chow ring over all such fields. We write ζm to mean a primitive mth root of
unity in k.

140
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13.1 The Chow rings of the groups of order 16

We compute the Chow ring for all the groups of order 16 in this section. (There
are 14 of them.) We also compute the Chow rings of all 2-groups with a cyclic
subgroup of index 2 (the quaternion, dihedral, semidihedral, and modular 2-
groups). Previously, Yagita computed the Chow rings of the groups of order 8
[155], and Guillot computed the image of the Chow ring in the F2-cohomology
ring for 10 of the 14 groups of order 16 [64, 65].

Our methods (the regularity Theorem 6.5 and the detection Theorem 12.7)
reduce computing the Chow ring for a group of order 16 to computations of
the Chow ring in degree at most 1. We write CH ∗

G for the Chow ring of G with
F2 coefficients. Since CH 1

G is just Hom(G, k∗)/2, computing the Chow ring of
a group of order 16 is completely algorithmic, and in fact easy to do by hand.

We first compute the Chow ring for the 5 groups of order 8. These are the
abelian groups Z/8, Z/4 × Z/2, and (Z/2)3, the quaternion group Q8, and the
dihedral group D8. The Chow rings of abelian 2-groups are polynomial rings
over F2 (Theorem 2.10). In fact, we compute the Chow ring for some infinite
families of 2-groups, namely the quaternion group Q2n and the dihedral group
D2n with n ≥ 3. The quaternion groups are the only non-cyclic p-groups of
rank 1 [1, proposition IV.6.6].

Lemma 13.1 Let G be the quaternion group of order 2n, n ≥ 3. Then

CH ∗
G = F2[c2V, a, b]/(a2, ab, b2),

where |a| = |b| = 1 and V is the standard representation G ↪→ SL(2, k). The
ring CH ∗

G has dimension 1 and depth 1 (so it is Cohen-Macaulay), as follows
from the Duflot lower bound for depth since G is p-central.

The Chow ring of the quaternion group is Cohen-Macaulay but not Goren-
stein. This contrasts with the Benson-Carlson theorem: if the cohomology ring
of a finite group is Cohen-Macaulay, then it is Gorenstein [12, vol. 2, theorem
5.18.1].

Proof By definition, G is the group

〈x, y : x2n−1 = 1, y4 = 1, yxy−1 = x−1, y2 = x2n−2〉.
The group G has a faithful irreducible representation V of dimension 2 over k,

G ↪→ SL(2, k), by x 	→
(

ζ2n−1 0
0 ζ−1

2n−1

)
and y 	→

(
0 1

−1 0

)
.

By Theorem 6.5, CH ∗
G is generated as a module over F2[c1V, c2V ] by

elements of degree at most 1, modulo relations in degree at most 2. Since the
representation V has trivial determinant, we have c1V = 0. The abelianization
of G is isomorphic to (Z/2)2. So CH 1

G = Hom(G, k∗)/2 is the F2-vector space
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F2{a, b}, where we define the homomorphism a : G → k∗ as x 	→ −1, y 	→ 1
and b : G → k∗ as x 	→ 1, y 	→ −1. Therefore

CH ∗
G = F2[c2V ]{1, a, b}/(relations),

where |a| = |b| = 1. For a ring R, we write R{e1, . . . , em} to mean the free
R-module with basis elements e1, . . . , em. By our computation of CH 1

G, any
relations are in degree 2.

The center of G is the group C = 〈x2n−2〉 ∼= Z/2. Since C has rank 1, CH ∗
G

has depth at least 1 by Corollary 3.21 (the analog of Duflot’s theorem for Chow
rings). Therefore CH ∗

G is a free module over F2[c2V ], and so we have computed
it as a module:

CH ∗
G = F2[c2V ]{1, a, b}.

As in the proof of Theorem 12.7, let eCH (G) denote the maximum degree
of a generator of CH ∗

C as a module over im(CH ∗
G → CH ∗

C). We have
eCH (G) ≤ n − c = 2 − 1 = 1, where n is the dimension of a faithful com-
plex representation of G and c is the p-rank of the center. By Theorem 12.7,
since the quaternion group G is p-central, it follows that

CH ∗
G → CH ∗

C ⊗ CH≤1
G

is injective. This is another way in which the computation of the Chow ring
of G reduces to computations in degrees at most 1. (In the simple example of
the quaternion group, we could check this injectivity by hand, since we have
already computed CH ∗

G as a module. But our purpose is to show how to use
our general results to compute Chow rings as easily as possible.)

That restriction map sends a 	→ 1 ⊗ a and b 	→ 1 ⊗ b. Therefore a2 maps
to 1 ⊗ a2 = 0 in CH ∗

C ⊗ CH≤1
G , and likewise ab and b2 map to zero. Since

the map is injective, it follows that a2 = ab = b2 = 0 in CH ∗
G. Thus we have

computed CH ∗
G as a ring:

CH ∗
G = F2[a, b, c2V ]/(a2, ab, b2).

Lemma 13.2 Let G be the dihedral group of order 2n, n ≥ 3. Then

CH ∗
G = F2[c1V, c2V, a]/(a2 = ac1V ),

where |a| = 1 and V is the standard representation G ↪→ GL(2, k). The ring
CH ∗

G has dimension 2 and depth 2 (so it is Cohen-Macaulay, although the
Duflot bound gives only that the depth is at least 1).

Proof By definition, G is the group

〈x, y : x2n−1 = 1, y2 = 1, yxy−1 = x−1〉.
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The group G has a faithful irreducible representation V of dimension 2 over k,

G ↪→ GL(2, k), by x 	→
(

ζ2n−1 0
0 ζ−1

2n−1

)
and y 	→

(
0 1
1 0

)
.

By Theorem 6.5, CH ∗
G is generated as a module over F2[c1V, c2V ] by

elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to (Z/2)2. So CH 1

G = Hom(G, k∗)/2 is
F2{a, b}, where we define a : G → k∗ as x 	→ −1, y 	→ 1 and b : G → k∗ as
x 	→ 1, y 	→ −1. By computing the determinant of V , we find that c1V = b.
Therefore

CH ∗
G = F2[c1V, c2V ]{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.
There are two conjugacy classes of maximal elementary abelian 2-subgroups

in the dihedral group G, A1 = 〈x2n−2
, y〉 ∼= (Z/2)2 and A2 = 〈x2n−2

, xy〉 ∼=
(Z/2)2. For A1, define t1, u1 : G → k∗ by t1 : x2n−2 	→ −1, y 	→ 1 and
u1 : x2n−2 	→ 1, y 	→ −1, so that CH ∗

A1
= F2[t1, u1]. The restriction CH ∗

G →
CH ∗

A1
sends a 	→ 0 and c1V = b 	→ u1. Also, the representation V restricted to

A1 is T1 ⊕ (T1 ⊗ U1), where we write T1 and U1 for the 1-dimensional represen-
tations of A1 with Chern classes t1 and u1, respectively. So the total Chern class
c(V )|A1 is equal to (1 + t1)(1 + t1 + u1) = 1 + u1 + t1(t1 + u1). In particular,
c2V 	→ t1(t1 + u1). From our description of CH ∗

G as a module, we know that
CH 2

G is spanned as an F2-vector space by c2V, c2
1V, ac1V . Since these restrict

on A1 as c2V 	→ t1(t1 + u1), c2
1V 	→ u2

1, ac1V 	→ 0 in F2[c1V, c2V ], the only
possible module relation in CH ∗

G is that ac1V may be zero.
But restricting to the other elementary abelian 2-subgroup A2 shows that

ac1V �= 0 in CH ∗
G. (If we define t2 : x2n−2 	→ −1, xy 	→ 1 and u2 : x2n−2 	→

1, xy 	→ −1, then we compute that a 	→ u2, c1V = b 	→ u2, and c2V 	→
t2(t2 + u2), and so ac1V 	→ u2

2 �= 0.) Thus, for the dihedral group G = D2n ,
we have computed CH ∗

G as a module:

CH ∗
G = F2[c1V, c2V ]{1, a},

where |a| = 1. In particular, the ring CH ∗
G has depth 2, although the Duflot

bound gives only that the depth is at least 1.
At the same time, we showed that CH 2

G is detected on A1 and A2, and so we
can compute the ring structure. We find that a2 − ac1V restricts to zero on A1

and A2, and so it is zero in CH ∗
G. Thus

CH ∗
G = F2[c1V, c2V, a]/(a2 = ac1V ),

where |a| = 1.

Now we compute the Chow rings of the 14 groups of order 16. There are
five abelian groups, Z/16, Z/8 × Z/2, (Z/4)2, Z/4 × (Z/2)2, and (Z/2)4,
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for which the Chow ring is a polynomial ring. There are two other product
groups, D8 × Z/2 and Q8 × Z/2, for which the Chow ring is determined by
the Chow Künneth formula, Lemma 2.12 (which applies to any product with
an abelian group, among others). We have already computed the Chow ring for
the dihedral group D16 and the quaternion group Q16. The remaining groups
are the modular group of order 16, the semidihedral group of order 16, the
central product D8 ∗ C4, the split metacyclic group Z/4 � Z/4, and one more.

Some of these are important examples of p-groups. The only nonabelian
p-groups with a cyclic subgroup of index p are the modular p-group Modpn ,
the dihedral group D2n , the semidihedral group SD2n , and the quaternion group
Q2n [4, section 23.4]. Here the modular p-group Modpn is the split extension

Modpn = 〈x, y : xpn−1 = 1, yp = 1, yxy−1 = xpn−2+1〉,
where we assume that n ≥ 3 for p odd and n ≥ 4 for p = 2 (since Mod8

∼= D8).
The semidihedral group SD2n is the split extension

SD2n = 〈x, y : x2n−1 = 1, y2 = 1, yxy−1 = x2n−2−1〉
for n ≥ 4. We have computed the Chow rings of the quaternion and dihedral
groups, and we now compute the Chow rings for the remaining 2-groups with
a cyclic subgroup of index 2. The modular p-group for p odd is handled in
Lemma 13.8.

We use the numbering of p-groups from the Small Groups library in GAP, a
free group theory program [46]. This is also the numbering used in Green and
King’s calculations of the cohomology of p-groups [52].

Lemma 13.3 Let G be the modular 2-group of order 2n, n ≥ 4. For n = 4,
this is #6 of the groups of order 16 in the Small Groups library [52]. Then

CH ∗
G = F2[c1V, c2V, a]/(a2, ac1V ),

where |a| = 1 and V is the standard representation G ↪→ GL(2, k). The ring
CH ∗

G has dimension 2 and depth 1, which agrees with the Duflot lower bound.

Proof The group G has a faithful irreducible representation V of dimension

2 over k, G ↪→ GL(2, k), by x 	→
(

ζ2n−1 0

0 ζ 2n−2+1
2n−1

)
and y 	→

(
0 1
1 0

)
.

By Theorem 6.5, CH ∗
G is generated as a module over F2[c1V, c2V ] by

elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to Z/2n−2 × Z/2. So CH 1

G = Hom(G, k∗)/2
is F2{a, b}, where we define a : G → k∗ as x 	→ ζ2n−2 , y 	→ 1 and b : G → k∗

as x 	→ 1, y 	→ −1. By computing the determinant of V , we find that c1V =
a + b. Therefore

CH ∗
G = F2[c1V, c2V ]{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.
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The center of G is 〈x2〉 ∼= Z/2n−2, and so C := Z(G)[p] is 〈x2n−2〉 ∼= Z/2.
We have eCH (G) ≤ n − c = 2 − 1 = 1, where n is the dimension of a faithful
complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH ∗
G →

∏
C⊂V

V elem ab

CH ∗
V ⊗ CH≤1

CG(V )

is injective. There are two conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A := 〈x2n−2

, y〉 ∼= (Z/2)2. The centralizer of
A is CG(A) = 〈x2, y〉 ∼= Z2n−2 × Z/2. Since we are considering Chow groups
with F2 coefficients, we compute that a ∈ CH 1

G restricts to zero in CH 1
CG(A)

and hence in CH ∗
A ⊗ CH≤1

CG(A). Also, a restricts to 1 ⊗ a and c1V to 1 ⊗ c1V

in CH ∗V ⊗ CH≤1
G . It follows that a2 and ac1V restrict to zero in both CH ∗

C ⊗
CH

≤1
G and in CH ∗

A ⊗ CH≤1
CG(A). By the injectivity statement above, it follows

that a2 = ac1V = 0 in CH 2
G.

By our description of CH ∗
G as a module, we know that CH 2

G is spanned by
a2, ac1V, c2V as an F2-vector space, hence just by c2V . Here c2V restricts to
t2 in CH ∗

C = F2[t], and so c2V is not zero. This completes the determination of
CH ∗

G as a module over F2[c1V, c2V ], since we knew that any module relations
were in degree 2:

CH ∗
G = F2[c1V, c2V ]{1} ⊕ F2[c1V, c2V ]/(c1V ){a}.

Since a2 = 0, the ring structure is determined:

CH ∗
G

∼= F2[c1V, c2V, a]/(a2, ac1V ),

where |a| = 1.

It happens that the semidihedral and modular 2-groups have isomorphic mod
2 Chow rings. With our approach, the calculations in the two cases are almost
identical.

Lemma 13.4 Let G be the semidihedral group of order 2n,

SD2n = 〈x, y : x2n−1 = 1, y2 = 1, yxy−1 = x2n−2−1〉,
with n ≥ 4. For n = 4, this is #8 of the groups of order 16 in the Small Groups
library [52]. Then

CH ∗
G = F2[c1V, c2V, a]/(a2, ac1V ),

where |a| = 1 and V is the standard representation G ↪→ GL(2, k). The ring
CH ∗

G has dimension 2 and depth 1, which agrees with the Duflot lower bound.

Proof The group G has a faithful irreducible representation V of dimension

2 over k, G ↪→ GL(2, k), by x 	→
(

ζ2n−1 0

0 ζ 2n−2−1
2n−1

)
and y 	→

(
0 1
1 0

)
.
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By Theorem 6.5, CH ∗
G is generated as a module over F2[c1V, c2V ] by

elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to (Z/2)2. So CH 1

G = Hom(G, k∗)/2 is
F2{a, b}, where we define a : G → k∗ as x 	→ −1, y 	→ 1 and b : G → k∗ as
x 	→ 1, y 	→ −1. By computing the determinant of V , we find that c1V =
a + b. Therefore

CH ∗
G = F2[c1V, c2V ]{1, a}/(relations),

where |a| = 1 and any module relations are in degree 2.
The center of G is 〈x2n−2〉 ∼= Z/2, and so C := Z(G)[p] is 〈x2n−2〉 ∼= Z/2.

We have eCH (G) ≤ n − c = 2 − 1 = 1, where n is the dimension of a faithful
complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH ∗
G →

∏
C⊂V

V elem ab

CH ∗
V ⊗ CH

≤1
CG(V )

is injective. There are two conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A := 〈x2n−2

, y〉 ∼= (Z/2)2. The centralizer
CG(A) is equal to A. We compute that a ∈ CH 1

G restricts to zero in CH 1
A and

hence in CH ∗
A ⊗ CH≤1

CG(A). Also, a restricts to 1 ⊗ a and c1V to 1 ⊗ c1V in

CH ∗V ⊗ CH≤1
G . It follows that a2 and ac1V restrict to zero in both CH ∗

C ⊗
CH

≤1
G and in CH ∗

A ⊗ CH≤1
CG(A). By the injectivity statement above, it follows

that a2 = ac1V = 0 in CH 2
G.

By our description of CH ∗
G as a module, we know that CH 2

G is spanned by
a2, ac1V, c2V as an F2-vector space, hence just by c2V . Here c2V restricts to
t2 in CH ∗

C = F2[t], and so c2V is not zero. This completes the determination of
CH ∗

G as a module over F2[c1V, c2V ], since we knew that any module relations
were in degree 2:

CH ∗
G = F2[c1V, c2V ]{1} ⊕ F2[c1V, c2V ]/(c1V ){a}.

Since a2 = 0, the ring structure is determined:

CH ∗
G

∼= F2[c1V, c2V, a]/(a2, ac1V ),

where |a| = 1.

We now compute the Chow ring for the three remaining groups of order 16.

Lemma 13.5 For any n ≥ 4, let G be the central product group D8 ∗ C2n−2 =
(D8 × Z/2n−2)/(Z/2). For n = 4, this is #13 of the groups of order 16 in the
Small Groups library [52]. Then

CH ∗
G =

F2[c1V, c2V, a, b]/(a2 = ac1V, ab = c2
1V + ac1V + bc1V, b2 = bc1V ),
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where |a| = |b| = 1 and V is the standard representation G ↪→ GL(2, k). The
ring CH ∗

G has dimension 2 and depth 2, whereas the Duflot bound gives only
that the depth is ≥ 1.

Proof We can write

G = 〈x, y, z : x4 = 1, y2 = 1, yxy−1 = x−1, z2n−3 = x2, zx = xz, zy = yz〉.

The abelianization of G is isomorphic to (Z/2)2 × Z/2n−3. So CH 1
G =

Hom(G, k∗)/2 is isomorphic to F2{a, b, c}, where

a : x 	→ −1, y 	→ 1, z 	→ 1

b : x 	→ 1, y 	→ −1, z 	→ 1

c : x 	→ 1, y 	→ 1, z 	→ ζ2n−3 .

Let H = 〈y, z〉 ∼= Z/2 × Z/2n−2 ⊂ G, and let β : H → k∗ be the represen-
tation y 	→ 1, z 	→ ζ n−2

2 . Then G has a faithful irreducible representation of
dimension 2 over k given by V = IndG

H β. In a suitable basis for V , G acts by

x 	→
(

0 −1
1 0

)
, y 	→

(
1 0
0 −1

)
, z 	→

(
ζ2n−2 0

0 ζ2n−2

)
.

By theorem 6.5, CH ∗
G is generated as a module over F2[c1V, c2V ] by ele-

ments of degree at most 1, modulo relations in degree at most 2. By computing
the determinant of V , we find that c1V = b + c. Using our computation of
CH 1

G, we have

CH ∗
G = F2[c1V, c2V ]{1, a, b}/(relations),

where |a| = |b| = 1 and any module relations are in degree 2.
The center of G is 〈z〉 ∼= Z/2n−2, and so C := Z(G)[2] is 〈z2n−3〉 ∼= Z/2.

We have eCH (G) ≤ n − c = 2 − 1 = 1, where n is the dimension of a faithful
complex representation of G and c is the p-rank of the center. By Theorem
12.7,

CH ∗
G →

∏
C⊂V

V elem ab

CH ∗
V ⊗ CH≤1

CG(V )

is injective. There are four conjugacy classes of elementary abelian subgroups
V that contain C, namely C and A1 = 〈y, z2n−3〉, A2 = 〈xz2n−4

, z2n−3〉, and
A3 = 〈xy, z2n−3〉, where Ai

∼= (Z/2)2 for i = 1, 2, 3.
We know that CH 2

G is spanned by c2V, c2
1V, ac1V, bc1V as an F2-vector

space. We compute that these four elements have linearly independent images
under the restriction map

CH 2
G → CH 2

A1
⊕ CH 2

A2
⊕ CH 2

A3
.
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So we have computed CH 2
G. In fact, we have computed CH ∗

G as a module,
since we showed that any module relations were in degree 2:

CH ∗
G = F2[c1V, c2V ]{1, a, b}.

Thus CH ∗
G is Cohen-Macaulay.

Since we showed that CH 2
G injects into CH 2

A1
⊕ CH 2

A2
⊕ CH 2

A3
, we can

compute a2, ab, b2 in terms of our basis for CH 2
G by restricting to these three

elementary abelian subgroups. We find that a2 = ac1V , ab = c2
1V + ac1V +

bc1V , and b2 = bc1V . Thus the central product G = D8 ∗ C2n−2 has Chow ring

CH ∗
G =

F2[c1V, c2V, a, b]/(a2 = ac1V, ab = c2
1V + ac1V + bc1V, b2 = bc1V ),

where |a| = |b| = 1.

The next group has Chow ring a polynomial ring, surprisingly. By contrast,
its F2-cohomology ring has dimension 3 and depth only 2 [52]. This is also the
first p-group we have seen for which the inequality reg(CH ∗

G) ≤ 0 of Theorem
6.5 is strict; namely, CH ∗

G has regularity −1.
Our notation for commutators is that [x, y] = xyx−1y−1.

Lemma 13.6 Let

G = 〈x, y, z : x4 = 1, y2 = 1, z2 = 1, [x, y] = z, xz = zx, yz = zy〉,
#3 of the groups of order 16 in the Small Groups library [52]. Then

CH ∗
G = F2[c1W, c2W, c1β].

Here G has a faithful k-representation W ⊕ β of dimension 3, with W irre-
ducible of dimension 2 and β of dimension 1. The ring CH ∗

G has dimension 3
and depth 3, whereas the Duflot bound gives only that the depth is ≥ 2.

Proof Let H = 〈x, z〉 ∼= Z/4 × Z/2 ⊂ G. Let α : H → k∗ be the represen-
tation x 	→ 1, z 	→ −1. Let W = IndG

Hα. The kernel of the 2-dimensional rep-
resentation W of G is 〈x2〉 ∼= Z/2. Therefore, the representation W ⊕ β of G

is faithful if we define β : G → k∗ by x 	→ ζ4, y 	→ 1, z 	→ 1.
Even though G does not have a faithful representation of dimension 2,

Theorem 6.5 works just as well as for the other groups of order 16, because
σ (F2[c1W, c2W, c1β]) = 1. We deduce that CH ∗

G is generated as a module
over F2[c1W, c2W, c1β] by elements of degree at most 1, modulo relations in
degree at most 2.

The abelianization of G is isomorphic to Z/4 × Z/2. So CH 1
G =

Hom(G, k∗)/2 is isomorphic to F2{a, b}, where a : x 	→ ζ4, y 	→ 1, z 	→ 1 and
b : x 	→ 1, y 	→ −1, z 	→ 1. By computing determinants, we find that c1β = a
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and c1W = 2a + b = b. So we do not need any module generators in degree
1: we have

CH ∗
G = F2[c1W, c2W, c1β]/(relations),

where any module relations are in degree 2.
So CH 2

G is spanned by c2
1W, c2W, c2

1β, c1Wc1β as an F2-vector space.
We compute that their restrictions to the elementary abelian subgroup K =
〈x2, y, z〉 ∼= (Z/2)3 are linearly independent. So there are no module relations
in dimension 2, and we have shown that

CH ∗
G = F2[c1W, c2W, c1β].

(Alternatively, one can show that there are no relations among these generators
without computing any restrictions. Indeed, G has p-rank 3, and so the ring
CH ∗

G has dimension 3 by Yagita’s theorem (Theorem 8.10). But the quotient
ring of F2[c1W, c2W, c1β] by any nonzero ideal would have dimension at most
2.)

We now find the Chow ring for the last of the 14 groups of order 16.

Lemma 13.7 Let G be the split metacyclic group Z/4 � Z/4,

G = 〈x, y : x4 = 1, y4 = 1, yxy−1 = x−1〉,
#4 of the groups of order 16 in the Small Groups library [52]. Then

CH ∗
G = F2[c2W, c1β, a]/(a2),

where |a| = 1. Here G has a faithful k-representation W ⊕ β of dimension 3,
with W irreducible of dimension 2 and β of dimension 1. The ring CH ∗

G has
dimension 2 and depth 2, which follows from the Duflot bound because G is
p-central.

Proof Let H = 〈x2, y〉 ∼= Z/2 × Z/4 ⊂ G. Let α : H → k∗ be the represen-
tation x2 	→ −1, y 	→ 1. Let W = IndG

Hα. The kernel of the 2-dimensional
representation W of G is 〈y2〉 ∼= Z/2. Therefore, the representation W ⊕ β of
G is faithful if we define β : G → k∗ by x 	→ 1, y 	→ ζ4.

By Theorem 6.5, CH ∗
G is generated as a module over F2[c1W, c2W, c1β]

by elements of degree at most 1, modulo relations in degree at most 2. The
abelianization of G is isomorphic to Z/2 × Z/4. So CH 1

G = Hom(G, k∗)/2 is
isomorphic to F2{a, b}, where a : x 	→ −1, y 	→ 1 and b : x 	→ 1, y 	→ ζ4. By
computing determinants, c1β = b and c1W = 2b = 0. Thus

CH ∗
G = F2[c2W, c1β]{1, a}/(relations),

where any module relations are in degree 2.
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The center of G is C = 〈x2, y2〉 ∼= (Z/2)2, and G is p-central. By the Duflot
bound 3.21, it follows that CH ∗

G is Cohen-Macaulay. That is:

CH ∗
G = F2[c2W, c1β]{1, a}.

By Theorem 12.7,

CH ∗
G → CH ∗

C ⊗ CH≤1
G

is injective. Under this map, a 	→ 1 ⊗ a and so a2 	→ 1 ⊗ a2 = 0 ∈ CH ∗
C ⊗

CH≤1
G . Therefore a2 = 0 in CH ∗

G. This determines the ring structure:

CH ∗
G = F2[c2W, c1β, a]/(a2),

where |a| = 1.

13.2 The modular p-group

In this section and Section 13.4, we compute the Chow rings for the groups
of order p3, for an odd prime number p. These computations were first made
by Yagita. (Yagita’s original proof had a gap: [155, lemma 2.8] assumes that
the geometric and topological filtrations are the same. That has now been fixed
[156, lemma 3.7].) Besides the abelian groups Z/p3, Z/p2 × Z/p, and (Z/p)3,
there are two nonabelian groups of order p3, the modular p-group Modp3 of
exponent p2 and the extraspecial group p1+2

+ of order p3 and exponent p (the
group of strictly upper triangular 3 × 3 matrices over Fp).

More generally, we compute the Chow ring for the modular group of order
pn. Combined with the results of Section 13.1, this completes the calculation
of the Chow ring for all p-groups with a cyclic subgroup of index p.

Lemma 13.8 Let G = Modpn be the modular p-group

〈x, y : xpn−1 = 1, yp = 1, yxy−1 = xpn−2+1〉,
for p an odd prime number and n ≥ 3. Then

CH ∗
G = Fp[b, cpV, x1, . . . , xp−1]/(bxi = 0, xixj = 0)

where |b| = 1, |xi | = i, and the relations involve all i, j ∈ {1, . . . , p − 1}.
Here V is a faithful k-representation of G with dimension p. The ring CH ∗

G

has dimension 2 and depth 1, which agrees with the Duflot bound. Finally,
d0(CH ∗

G) = 1.

Proof The abelianization of G is isomorphic to Z/pn−2 × Z/p. So CH 1
G =

Hom(G, k∗)/p is equal to Fp{a, b}, where we define a : G → k∗ by x 	→
ζpn−2 , y 	→ 1 and b : x 	→ 1, y 	→ ζp.
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The center of G is 〈xp〉 ∼= Z/pn−2. So the group C = Z(G)[p] is 〈xpn−2〉 ∼=
Z/p. There is only one conjugacy class of elementary abelian subgroups strictly
containing C, namely A = 〈xpn−2

, y〉 ∼= (Z/p)2.
Let H be the subgroup 〈x〉 ∼= Z/pn−1 of G, and let α : H → k∗ be the

representation x 	→ ζpn−1 . For any integer i, the induced representation Vi :=
IndG

Hα⊗i of G has restriction to H given by

(IndG
Hα⊗i)|H = α⊗i ⊕ yα⊗i · · · ⊕ yp−1α⊗i

= α⊗i ⊕ α⊗(pn−2+1)i ⊕ · · ·α⊗(p−1)(pn−2+1)i

For i �≡ 0 (mod p), these p summands are all non-isomorphic as representa-
tions of H , and so Vi is an irreducible representation of G of dimension p.
Moreover, the formula for the restriction to H shows that the irreducible repre-
sentations Vi are non-isomorphic for 1 ≤ i ≤ pn−2 with i �≡ 0 (mod p). Using
that the sum of the squares of the dimensions of the irreducible representations
is equal to the order of G, we find that these pn−2(p − 1) representations of
dimension p together with the pn−1 representations of dimension 1 are all the
irreducible representations of G over k.

For an integer j prime to the order n of a group G, the Adams operation ψjV

of a representation V of G over the field Q(μn) is the representation obtained
by applying the automorphism ζn 	→ ζ

j
n of Q(μn) [77, section 4.6]. Moreover,

every complex representation of G can be defined over Q(μn). Therefore,
induction of representations commutes with the Adams operation ψj when j

is prime to the order of the groups involved. Since ψj (α) = α⊗j , it follows
that Vj

∼= ψj (V1) for j �≡ 0 (mod p). Our assumption on the field k implies
that the classification of representations over k is the same as over Q(μn),
and so we have the same isomorphism of representations over k. Therefore,
the Chern classes of Vi in CH ∗

G are polynomials in those of V1. By Theorem
2.25, the Chow ring CH ∗

G in degrees at most p is generated by the Chern
classes of representations. Therefore, CH ∗

G in degrees at most p is generated
by a, b, c1V1, . . . , cpV1. We compute that c1V1 = a, and so CH ∗

G in degrees at
most p is generated by a, b, c2V1, . . . , cpV1.

Lemma 13.9 Let p be a prime number, and let k be a field of characteristic
not p that contains the pth roots of unity. Let H be a normal subgroup of index
p in an affine algebraic group G over k. Let b ∈ CH 1

G be the pullback of a
generator of CH 1

G/H
∼= Fp. Let α be a 1-dimensional representation of H , and

let V be the induced representation of G. Then, in the Chow ring of G with Fp

coefficients,

cjV = trGHyj

for 1 ≤ j ≤ p − 2, while

cp−1V = trGH (t1 · · · tp−1) − bp−1.
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Here t1 = c1(α) in CH 1
H , t1, . . . , tp are the conjugates of t1 by the elements of

G/H ∼= Z/p, and yj for 1 ≤ j ≤ p − 1 is the sum of a set of representatives
for the free action of Z/p on the set of monomials ti1 . . . tij with 1 ≤ i1 < · · · <

ij ≤ p.

Proof It suffices to prove these formulas in the universal case where G is
the wreath product Z/p � Gm and H is the subgroup (Gm)p. In that case, they
follow from the calculation of CH ∗

G in Lemma 2.21. Namely, that calculation
shows that CH ∗

G is detected on the subgroups H and Z/p × Gm ⊂ G, and the
equalities are easily checked on restriction to those two subgroups. Alterna-
tively, Lemma 2.21 shows that the mod p Chow ring of G = Z/p � Gm injects
into the Fp-cohomology of G, and then these formulas in the Chow ring follow
from Evens’s analogous formulas in cohomology [41].

For the modular group G, with normal subgroup H ∼= Z/pn−1, the quotient
group Z/p acts trivially on CH 1

H = Fp{t}, where t : H → k∗ sends x 	→ ζpn−1 .
By Lemma 13.9, we have

cj (V1) = 1

p

(
p

j

)
trGH tj

for 1 ≤ j ≤ p − 2 and

cp−1(V1) = trGH tp−1 − bp−1.

Let xi = trGH ti for i = 1, . . . , p − 1. By these formulas, the ring CH ∗
G in

degrees ≤ p is generated by b, x1 = a, x2, . . . , xp−1, and cp(V1).
Since the transfer trGH : CH ∗

H → CH ∗
G is CH ∗

G-linear, we have xiw = 0 for
any 1 ≤ i ≤ p − 1 and any w ∈ CH ∗

G that restricts to zero on H . For example,
b|H = 0, and so bxi = 0 for all i. Also, xj |H = ∑

g∈Z/p g(t i) = pti = 0, using
that G/H = Z/p acts trivially on CH ∗

H = Fp[t]. So xixj = 0 for all i, j ∈
{1, . . . , p − 1}. Thus CH ∗

G is spanned in degrees ≤ p as an Fp-vector space by:

1
b b2 · · · bp−1 bp

x1 x2 · · · xp−1 cpV1
.

Let A = 〈xpn−2
, y〉 ∼= (Z/p)2 ⊂ G. We have CH 1

A = Fp{t, u}, where
t : A → k∗ takes xpn−2 	→ ζp, y 	→ 1 and u : A → k∗ takes xpn−2 → 1, y 	→
ζp. We compute that x1, . . . , xp−1 restrict to zero in CH ∗

A = Fp[t, u], while
b 	→ u and cp(V1) 	→ tp − tup−1. So the only possible relation in degrees ≤ p

beyond those found so far is that some of x1, . . . , xp−1 might be zero. In fact,
x1, . . . , xp−1 are all nonzero, which implies that a basis for CH ∗

G in degrees
≤ p is given by the elements listed in the previous paragraph.

One way to show that the classes xi = trGH ti for i = 1, . . . , p − 1
are nonzero in CH ∗

G is to observe that they have nonzero image in
H ∗(G, Z)/p ⊂ H ∗(G, Fp), by Thomas’s calculation of H ∗(G, Z) [135, p. 74].
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(In the special case G = Modp3 , this follows from the earlier calculation of
H ∗(G, Z) by Lewis [97, theorem 5.2].) But it seems preferable to give a direct
proof using Chow rings. We will prove that x1, . . . , xp−1 are nonzero in CH ∗

G

using the idea of the topological nilpotence degree from Section 12.2. Also,
we know from Theorem 12.7 that d0(CH ∗

G) is at most p − 1. Given that, our
calculation will simultaneously show that d0(CH ∗

G) = 1.
To begin, the element x1 is nonzero in CH 1

G, because CH 1
G = Hom(G, k∗)/p

is isomorphic to (Fp)2 and CH 1
G is generated by b and x1. Since C ⊂ H ⊂ G,

we have a pullback diagram

C × H ��

��

H

��

C × G �� G.

Because pushforward commutes with pullback (Lemma 2.16), we have
(trGH ti)|C×G = trC×G

C×H (t i |C×H ) for all i ≥ 0. The restriction map from CH ∗
H =

Fp[t] to CH ∗
C is an isomorphism. The pullback CH ∗

H → CH ∗
C ⊗Fp

CH ∗
H

sends t to t ⊗ 1 + 1 ⊗ t . So the image of t i in CH ∗
C ⊗Fp

CH≤1H is

t i ⊗ 1 + it i−1 ⊗ t.

Here trGH 1 = 0, but trGH t = x1, which is not zero. So the image of xi = trGH ti

in CH ∗
C ⊗Fp

CH≤1
G is it i−1 ⊗ x1. This is nonzero for i = 1, . . . , p − 1. So

x1, . . . , xp−1 are nonzero in CH ∗
G, as we wanted.

We know that CH ∗
G is generated by elements of bounded degree as a

module over Fp[c1V1, . . . , cpV1], since V1 is a faithful representation. By the
formulas above, it follows that CH ∗

G is generated by elements of bounded
degree as a module over Fp[b, x1, . . . , xp−1, cpV1]. We showed that x2

i = 0,
and so CH ∗

G is generated by elements of bounded degree as a module over
Fp[b, cpV1]. Since CH ∗

G has regularity ≤ 0 (Theorem 6.5), it follows that
CH ∗

G is generated as a module over Fp[b, cpV1] by elements of degree at most
σ (Fp[b, cpV1]) = p − 1, modulo relations in degree at most p. Since we have
computed CH ∗

G in degrees at most p, we know CH ∗
G in all degrees as a module:

CH ∗
G = Fp[b, cpV1]{1, x1, . . . , xp−1}/(bx1 = 0, . . . , bxp−1 = 0).

We also showed that xixj = 0 for all i, j ∈ {1, . . . , p − 1}, which
determines the ring structure on CH ∗

G:

CH ∗
G =

Fp[b, cpV1, x1, . . . , xp−1]/(bxi = 0, xixj = 0 for all i, j ∈ {1, . . . , p − 1}),
where |b| = 1 and |xi | = i.
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13.3 Central extensions by Gm

In computing the cohomology or Chow ring of a p-group, a natural inductive
approach is to consider a central extension by Z/p,

1 → Z/p → E → Q → 1.

In this section, we study the Chow ring of such an extension (for Q any affine
k-group scheme) by considering the associated extension by the multiplicative
group,

1 → Gm → K → Q → 1.

Explicitly, for z a generator of the subgroup Z/p in E, let K = (E × Gm)/Z/p,
where the subgroup Z/p is generated by (z, ζ−1

p ). This maneuver can wonder-
fully simplify the problem. Throughout, we work over a field k of characteristic
not p that contains the pth roots of unity.

There is a simple relation between the cohomology of the Z/p-extension E

and the Gm-extension K , which becomes even simpler for Chow rings. Since
K = (E × Gm)/(Z/p), E is a normal subgroup of K:

1 → E → K → Gm → 1,

where we have identified Gm/(Z/p) with Gm. Therefore, we have a principal
Gm-bundle

Gm → BE → BK,

(This can be formulated concretely in terms of the finite-dimensional approx-
imations to classifying spaces.) Let u ∈ CH 1

K be the first Chern class of the
homomorphism K → Gm above. The Leray-Serre spectral sequence of the
Gm-bundle above reduces to a short exact sequence

0 → H ∗
K/(u) → H ∗

E → � ker(u : H ∗
K → H ∗

K ) → 0.

For Chow rings, Lemma 2.4 gives the even simpler statement:

Theorem 13.10

CH ∗
E

∼= CH ∗
K/(u).

Thus computing Chow rings of central extensions by Z/p reduces to the
same problem for central extensions of Gm. The problem is still nontrivial;
for example, we do not know whether finiteness of the groups CH ∗

Q implies
finiteness of the groups CH ∗

K . Nonetheless, we have gained something. One
point is that several different Z/p-extensions of a group Q can determine Gm-
extensions that are isomorphic as groups. For example, the two nonabelian
groups of order p3 for p odd are central extensions of (Z/p)2 by Z/p, and they
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both induce the same central extension W of (Z/p)2 by Gm, which we consider
in Section 13.4.

Moreover, there is the pleasant special case that a nontrivial Z/p-extension
may give a trivial Gm-extension K = Q × Gm, in which case we know the
Chow ring CH ∗

K completely in terms of CH ∗
Q. This gives the following result.

Theorem 13.11 Let Q be an affine group scheme over k with a homomor-
phism α : Q → Gm. Let E be the subgroup of Q × Gm of elements (x, t) with
tpα(x) = 1. Then E is a extension of Q by Z/p, and

CH ∗
E

∼= (CH ∗
Q/(c1α))[u],

where |u| = 1.

Proof To see what is going on, consider the case k = C. Then central
extensions of Q by Z/p are classified by H 2(BQ, Z), and central exten-
sions of Q by Gm are classified by H 3(BQ, Z). The short exact sequence
0 → Z → Z → Z/p → 0 of coefficient groups gives an exact sequence

H 2(BQ, Z) → H 2(BQ, Fp) → H 3(BQ, Z).

Therefore, the central extensions by Z/p whose associated Gm-extension is
trivial are exactly those coming from H 2(BQ, Z) = Hom(Q,Gm). We com-
pute that the central extension associated to a homomorphism α : Q → Gm is
the one defined in this theorem.

Over any field k satisfying our assumptions, we can check directly that the
Gm-extension K associated to the given Z/p-extension is trivial. That is, K is
isomorphic to Q × Gm, and so CH ∗BK is a polynomial ring (CH ∗BQ)[u]
with |u| = 1. As explained earlier in this section, BE is a principal Gm-bundle
over BQ. By Lemma 2.4, CH ∗BE is the quotient of CH ∗BK by the ideal
generated by one element of degree 1, which we compute to be c1α − pu. Mod
p, this gives that CH ∗

E
∼= (CH ∗

Q/(c1α))[u].

For example, let p be an odd prime number and let Q be the modular p-
group Z/p � Z/p2, whose Chow ring is computed in Lemma 13.8. Then the
split metacyclic group Z/p2 � Z/p2 is an “integral Z/p-extension” of Z/p �
Z/p2, meaning an extension associated to a 1-dimensional representation as in
Theorem 13.11. That immediately computes the Chow ring of Z/p2 � Z/p2,
as follows. Other approaches are possible, but this method is the quickest.

Lemma 13.12 Let p be an odd prime number, and let G be a split meta-
cyclic group Z/pn � Z/pm. Suppose that the image of the conjugation action
Z/pn → (Z/pm)∗ has order p. Let V be an irreducible p-dimensional repre-
sentation of G over k. If n = 1, then

CH ∗
G

∼= Fp[b, cpV, x1, . . . , xp−1]/(bxi = 0, xixj = 0),
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where |b| = 1, |xi| = i, and the relations involve all i, j ∈ {1, . . . , p − 1}. The
ring CH ∗

G has dimension 2 and depth 1, and d0(CH ∗
G) = 1.

If n ≥ 2, then

CH ∗
G

∼= Fp[u, cpV, x1, . . . , xp−1]/(xixj = 0),

where |u| = 1 and |xi| = i. In this case, the ring CH ∗
G is Cohen-Macaulay

of dimension 2. This follows from the Duflot bound, since G is p-central.
Moreover, d0(CH ∗

G) = 1. In particular, this applies to the group Z/p2 � Z/p2,
#4 of the groups of order p4 in the Small Groups library [52].

Another integral Z/p-extension of the modular group of order p3 is the
group

E = 〈a, b, e : ap2 = 1, bp = 1, ep = 1, e central, aba−1 = b1+pe〉
∼= 〈a, b, c : ap2 = 1, bp = 1, cp = 1, c central, [a, b] = c〉.

This is #3 of the groups of order p4 in the Small Groups library. It has rank 3,
and the Chow ring does not map onto H ev(BE, Z), which complicates some
approaches to computing the Chow ring. But Theorem 13.11 makes it easy. We
state the result as follows.

Lemma 13.13 Let p be an odd prime number. Let G be #3 of the groups of
order p4 in the Small Groups library [52]:

G = 〈a, b, c : ap2 = 1, bp = 1, cp = 1, c central, [a, b] = c〉.
Then

CH ∗
G

∼= Fp[b, u, cpV, x2, . . . , xp−1]/(bxi = 0, xixj = 0),

where |b| = |u| = 1, |xi| = i, and the relations involve all i, j ∈ {2, . . . , p −
1}. The ring CH ∗

G has dimension 3 and depth 2, which agrees with the Duflot
bound. The group G has a unique conjugacy class of maximal elementary
abelian subgroups, which is of rank 3. Finally, d0(CH ∗

G) = 2.

13.4 The extraspecial group E p3

The nonabelian group Ep3 = p1+2
+ of order p3 and exponent p is more com-

plicated than the other nonabelian group of order p3, the modular p-group. We
first compute the Chow ring of the associated central extension W of (Z/p)2 by
Gm. (One sign of the importance of W is that any nontrivial central extension
of (Z/p)2 by Gm over C is isomorphic to W as an algebraic group.) Leary com-
puted the integral cohomology of BW and used it to compute the cohomology
of Ep3 and related groups [90].
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Given the Chow ring of W , it is easy to read off the Chow rings of both Ep3

and the modular p-group Mp3 by Theorem 13.10, although we have preferred
to compute the Chow ring of Mp3 separately in Lemma 13.8 because that is a
simpler calculation. (Both Mp3 and Ep3 are kernels of homomorphisms from
W to Gm.) One reason to approach the Chow ring of Ep3 via the 1-dimensional
group W is that we can compute the Chow ring of Ep3 without any dependence
on Lewis’s calculation of the integral cohomology of Ep3 [97]. This happens
because the Chow ring of W turns out to be simpler than than of Ep3 . In
the notation of Section 12.2, d0(CH ∗

W ) is 1 while d0(CH ∗
Ep3

) is 2, for p ≥ 5

(Theorem 13.23). This makes it easier to compute CH ∗
W first, and then read

off the Chow ring of Ep3 . Finally, computing the Chow ring of W determines
the Chow ring for an infinite family of p-subgroups of W , the central products
Ep3 ∗ Cpn−2 (Lemma 13.16).

Lemma 13.14 Let p be an odd prime number, and let k be a field of charac-
teristic not p that contains the pth roots of unity. Let W be the central product
p1+2

+ ∗ Gm = (p1+2
+ × Gm)/(Z/p) over k. Here G = p1+2

+ is the group

G = 〈x, y, z : xp = yp = zp = [x, z] = [y, z] = 1, [x, y] = z〉

and the subgroup Z/p is generated by (z, ζ−1
p ). Then

CH ∗
W

∼= Fp[a, b, e1, . . . , ep−2, ep−1, cpV ]/(aei = 0 for 1 ≤ i ≤ p − 2,

bei = 0 for 1 ≤ i ≤ p − 1, aep−1 = abp−1 − ap,

eiej = 0 for 1 ≤ i ≤ p − 2 and 1 ≤ j ≤ p − 1, e2
p−1 = −ap−1bp−1 + a2p−2).

The ring CH ∗
G has dimension 2 and depth 1, which agrees with the Duflot

bound. The topological nilpotence degree d0(CH ∗
W ) is equal to 1. Finally,

for k a subfield of C, CH ∗
W maps isomorphically to H ∗(BW, Z)/p, which is

concentrated in even degrees.

Proof The abelianization of W is isomorphic to (Z/p)2 × Gm. So CH 1
W =

Fp{a, b, e1}, where we define a, b, e1 : G → Gm by a : x 	→ ζp, y 	→ 1, λ 	→
1 (for λ in Gm), b : x 	→ 1, y 	→ ζp, λ 	→ 1, and e1 : x 	→ 1, y 	→ 1, λ 	→ λp.

The center of W is the isomorphic image of 1 × Gm ⊂ G × Gm. So every
irreducible representation of W restricts to Gm as a λ 	→ λn for some integer j ,
which we call the weight. Representations of W of weight j can be identified
with representations of G on which z acts by the scalar ζ

j
p . By the representation

theory of G, it follows that W has a unique irreducible representation of each
weight j �≡ 0 (mod p), and it has dimension p. Also, W has p2 irreducible
representations of each weight j ≡ 0 (mod p), all of dimension 1.
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Let H be the subgroup (〈x, z〉 × Gm)/〈(z, ζ−1
p )〉. This is a normal subgroup

of index p in W . Let β : H → Gm be a representation. Then

(IndW
H β)|H ∼= β ⊕ y(β) ⊕ · · · ⊕ yp−1(β),

where a generator y of W/H acts by conjugation on H . If β has weight
j �≡ 0 (mod p), then these 1-dimensional representations are all distinct, and
so IndW

H β is irreducible. It must be the unique irreducible representation Vj of
W of weight j .

For any integer i, the Adams operation ψi on the representation ring R(W )
takes a representation of W of dimension n and weight j to a virtual representa-
tion of dimension n and weight ij [80]. Therefore, for integers i �≡ 0 (mod p)
and j �≡ 0 (mod p), ψi of the unique irreducible representation Vj of W of
weight j must be the irreducible representation Vij of weight ij . Therefore,
the Chern classes of Vi in CH ∗

W are polynomials in those of V = V1. It fol-
lows that the ring of Chern classes of all representations in CH ∗

W is generated
by a, b, e1, c1V, . . . , cpV , where we define V = IndW

H β for a weight-1 homo-
morphism β : H → Gm. By Theorem 2.25, the ring CH ∗

W in degrees ≤ p is
generated by these classes. Also, the representation V of W has c1V = e1, and
so CH ∗

W is generated in degrees ≤ p by a, b, e1, c2V, . . . , cpV .
We have CH 1

H = Fp{t, u}, where we define t, u : H → k∗ by t : x 	→
ζp, λ 	→ 1 (for λ in Gm) and u : x 	→ 1, λ 	→ λ. The restriction map CH ∗

W →
CH ∗

H sends a 	→ t , b 	→ 0, and e1 	→ pu = 0. Also,

V |H ∼= U ⊕ (T ⊗ U ) ⊕ · · · ⊕ (T ⊗p−1 ⊗ U ),

where T and U are 1-dimensional representations of H with Chern classes t

and u. So the total Chern class of V restricts to

c(V )|H = (1 + u)(1 + t + u) · · · (1 + (p − 1)t + u)

= 1 − tp−1 + (up − tp−1u).

By Lemma 13.9, for 1 ≤ j ≤ p − 2 we have cjV = trWH yj where yj is
the sum of a set of orbit representatives for Z/p acting on the set of
products wi1 · · · wij , where 0 ≤ i1 < · · · < ij ≤ p − 1 and w0 = u, w1 =
t + u, . . . , wp−1 = (p − 1)t + u. Since b ∈ CH 1

W restricts to 0 on H , we
have b trWH (w) = 0 for any w ∈ CH ∗

H , and so bcjV = 0 for 1 ≤ j ≤ p − 2.
But V is also induced from a 1-dimensional representation of the subgroup
A = (〈y, z〉 × Gm)/〈(z, ζ−1

p )〉, and a restricts to 0 on A; so we also have
acj (V ) = 0 for 1 ≤ j ≤ p − 2. Since a restricts to t on H , we have trWH (t iuj ) =
ai trWH (uj ). Let ei = trWH (ui) for 1 ≤ i ≤ p − 1. It follows by induction on j ,
from the more complicated formula for cjV above, that cj (V ) = (1/p)

(
p
j

)
ej for

1 ≤ j ≤ p − 2 and that aej = 0 for 1 ≤ j ≤ p − 2. (In particular, e1 = c1V ,
as shown earlier.)
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Lemma 13.9 also relates cp−1V to transfers:

cp−1V = trWH ((t + u) · · · ((p − 1)t + u)) − bp−1

= trWH (up−1 − tp−1) − bp−1

= ep−1 − bp−1.

The last step uses that trWH (tp−1) = ap−1trWH (1) = 0 in CH ∗
W , since [W : H ] =

p and we are using Fp coefficients. From the relations between Chern
classes and the classes ei , the ring CH ∗

W is generated in degrees ≤ p by
a, b, e1, e2, . . . , ep−1, cpV .

Since b ∈ CH 1
W restricts to zero on H , the transfers ei satisfy bei = 0

for 1 ≤ i ≤ p − 1. For i = p − 1, this says that bcp−1V + bp = 0. Since
the representation V is also induced from A = (〈y, z〉 × Gm)/〈(z, ζ−1

p )〉 (the
kernel of the homomorphism a : W → Gm), the same argument shows that
acp−1V + ap = 0 in CH ∗

W . It follows that aep−1 = abp−1 − ap.
Also,

ei |H = trWH (ui)|H
= ui + (t + u)i + · · · + ((p − 1)t + u)i ,

which is zero for 1 ≤ i ≤ p − 2. Therefore eiej = 0 for 1 ≤ i ≤ p − 2 and
1 ≤ j ≤ p − 1. On the other hand, the formula for ei|H gives that ep−1|H =
−tp−1. Therefore

e2
p−1 = (trWH up−1)2

= trWH (up−1ep−1|H )

= trWH (up−1(−tp−1))

= −ap−1trWH up−1

= −ap−1ep−1

= −ap−1bp−1 + a2p−2.

To summarize, we have a ring homomorphism from

Fp[a, b, e1, . . . , ep−2, ep−1, cpV ]/(aei = 0 for 1 ≤ i ≤ p − 2,

bei = 0 for 1 ≤ i ≤ p − 1, aep−1 = abp−1 − ap,

eiej = 0 for 1 ≤ i ≤ p − 2 and 1 ≤ j ≤ p − 1, e2
p−1 = −ap−1bp−1 + a2p−2)

to CH ∗
W . We know that CH ∗

W is generated by elements of bounded degree as a
module over the Chern classes of the faithful representation V , hence over the
ring above. The relations show that the elements e1, . . . , ep−1 are integral over
the ring Fp[a, b, cpV ], and so CH ∗

W is generated by elements of bounded degree
over Fp[a, b, cpV ]. Since CH ∗

W has regularity ≤ 0 (Theorem 6.5), it follows
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that CH ∗
W is generated by elements of degree at most σ (Fp[a, b, cpV ]) = p − 1

as a module over Fp[a, b, cpV ], modulo relations in degree p.
The relations above imply that we have a map of Fp[a, b, cpV ]-modules:

Fp[a, b, cpV ]{1, e1, . . . , ep−1}/(aei = 0 for 1 ≤ i ≤ p − 2,

bei = 0 for 1 ≤ i ≤ p − 1, aep−1 = abp−1 − ap) → CH ∗
W .

This is surjective in degrees at most p (since CH ∗
W is generated by Chern

classes in that range), hence in all degrees (since all module generators for
CH ∗

W are in degree at most p − 1).
It remains to show that this map is injective in degrees at most p. A basis for

the domain as an Fp-vector space in degrees at most p is given by monomials
in a and b in degrees at most p, ep−1, cpV , and the elements ei for 1 ≤
i ≤ p − 2. The elements ei for 1 ≤ i ≤ p − 2 restrict to zero on the p + 1
elementary abelian p-subgroups V of rank 2 in W , for example because e2

i = 0
for 1 ≤ i ≤ p − 2. We will show that the other elements listed have linearly
independent images in

∏
V CH ∗

V .
Let C = Z(W )[p] = 〈z〉 ∼= Z/p. Then cpV has nonzero restriction to

CH ∗
C = Fp[u], whereas a, b, e1, . . . , ep−1 all restrict to zero on C. So cpV

is linearly independent of the other elements listed above in
∏

V CH ∗
V . Next,

the kernels of restriction from Fp[a, b] to the p + 1 elementary abelian p-
subgroups V of rank 2 in W are the ideals (a), (a + b), . . . , (a + (p − 1)b),
and (b). So any element of Fp[a, b] that restricts to zero on all these subgroups
must be a multiple of b

∏p−1
i=0 (a + ib) = apb − abp. In particular, the mono-

mials of degree at most p in a, b are linearly independent in
∏

V CH ∗
V . Next,

in degree p − 1, suppose that fp−1(a, b) + ep−1 restricts to zero in
∏

V CH ∗
V .

Multiplying by b, we deduce that bfp−1(a, b) 	→ 0, since bep−1 = 0. By the
injectivity we proved in degree p, it follows that fp−1 = 0, and so ep−1 	→ 0 in∏

V CH ∗
V . But then multiplying by a gives that abp−1 − ap 	→ 0 in

∏
V CH ∗

V ,
contradicting the injectivity in degree p.

To finish the computation of CH ∗
W , it remains to show that ei �= 0 in CH ∗

W

for 1 ≤ i ≤ p − 2. As in the proof of Lemma 13.8, we could prove this by
observing that ei has nonzero image in H ∗(BG, Z)/p, by Lewis’s calculation
of H ∗(BG, Z) [97], but we prefer to give a direct proof using Chow rings.
Again, we use the idea of the topological nilpotence degree from Section 12.2.
We know that e1 �= 0 in CH 1

W = Hom(W,Gm)/p.
Since the central subgroup C ∼= Z/p is contained in the subgroup H of W ,

we have a pullback diagram

C × H ��

��

H

��

C × W �� W.
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Because pushforward commutes with pullback (Lemma 2.16), we have
(trWH ui)|C×W = trC×W

C×H (ui |C×H ) for all i ≥ 0. The restriction map from CH ∗
H

to CH ∗
C = Fp[u] sends u to u. The pullback CH ∗

H → CH ∗
C ⊗Fp

CH ∗
H sends u

to u ⊗ 1 + 1 ⊗ u. So the image of ui in CH ∗
C ⊗Fp

CH≤1H is

ui ⊗ 1 + iui−1 ⊗ u.

Here trWH 1 = 0, but trWH u = e1, which is not zero. So the image of xi = trWH ui

in CH ∗
C ⊗Fp

CH≤1
W is iui−1 ⊗ x1. This is nonzero for i = 1, . . . , p − 2. So

e1, . . . , ep−2 are nonzero in CH ∗
W , as we wanted.

Since all module relations for CH ∗
W over Fp[a, b, cpV ] are in degrees ≤ p,

there are no more relations. Thus we have computed CH ∗
W . We have made

this calculation without using Leary’s calculation of H ∗(BW, Z) [90, theorem
2]. By inspecting that calculation, we see that CH ∗

W → H ∗(BW, Z)/p is an
isomorphism.

Corollary 13.15 Let p be an odd prime number. Let G be the nonabelian
group of order p3 and exponent p, also called the extraspecial group p1+2

+
of order p3 or the group of strictly upper-triangular 3 × 3 matrices over Fp.
Then

CH ∗
G

∼= Fp[a, b, e2, . . . , ep−2, ep−1, cpV ]/(aei = 0 for 2 ≤ i ≤ p − 2,

bei = 0 for 2 ≤ i ≤ p − 1, aep−1 = abp−1 − ap,

eiej = 0 for 2 ≤ i ≤ p − 2 and 2 ≤ j ≤ p − 1, e2
p−1 = − ap−1bp−1 + a2p−2).

Here |a| = |b| = 1, |ei| = i for 2 ≤ i ≤ p − 1, and |cpV | = p. The ring CH ∗
G

has dimension 2 and depth 1 for p ≥ 5, which agrees with the Duflot bound,
whereas CH ∗

G is Cohen-Macaulay of dimension 2 for p = 3. Finally, for k ⊂ C,
CH ∗

G maps isomorphically to H ev(BG, Z)/p.

For comparison with Lewis’s computation of the integral cohomology ring
[97, theorem 6.26], which we state as Theorem 13.22, note that the relations
above imply that abp − apb = abep−1 = 0.

Proof The group G = p1+2
+ is a normal subgroup of the group W of Lemma

13.14, with 1 → G → W → Gm → 1. It follows that CH ∗
G is the quotient ring

of CH ∗
W by the first Chern class of the homomorphism W → Gm, which is e1.

We can also compute H ∗(BG, Z) in terms of H ∗(BW, Z), as mentioned before
Theorem 13.10. Then the isomorphism from CH ∗

G to H ev(BG, Z)/p follows
from the isomorphism from CH ∗

W to H ∗(BW, Z)/p (Theorem 13.14).

Here is another family of p-groups whose Chow ring reduces to the Chow
ring of the 1-dimensional group W .
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Lemma 13.16 Let p be an odd prime number. Let G be the central product
p1+2

+ ∗ Cpn−2 = (p1+2
+ × Z/pn−2)/(Z/p) for n ≥ 4:

G = 〈x, y, z : xp = yp = zpn−2 = [x, z] = [y, z] = 1, [x, y] = zpn−3〉.
For = 4, this is group #14 of order p4 in the Small Groups library [52]. Then

CH ∗
G

∼= Fp[a, b, e1, e2, . . . , ep−2, ep−1, cpV ]/(aei = 0 for 1 ≤ i ≤ p − 2,

bei = 0 for 1 ≤ i ≤ p − 1, aep−1 = abp−1 − ap,

eiej = 0 for 1 ≤ i ≤ p − 2 and 1 ≤ j ≤ p − 1, e2
p−1 = − ap−1bp−1 + a2p−2).

The ring CH ∗
G has dimension 2 and depth 1, which agrees with the Duflot

bound. The topological nilpotence degree d0(CH ∗
G) is equal to 1. Finally, for

k ⊂ C, CH ∗
G maps isomorphically to H ev(BG, Z)/p.

For n = 3, the presentation above defines the extraspecial group p1+2
+ , whose

Chow ring looks the same but without the generator e1 (Corollary 13.15). For
any n ≥ 3, Leary computed the integral cohomology of the group G in the
lemma [90]. He observed that it is the unique isomorphism class of groups
that is neither abelian nor metacyclic but can be written as a central extension
of (Z/p)2 by Z/pn. For n = 4, this group is sometimes called the almost
extraspecial group of order p4.

Proof Write Ep3 for the extraspecial p-group of order p3 and exponent p.
Let W be the central product (Ep3 × Gm)/(Z/p), and let e1 : W → Gm be the
homomorphism that is trivial on Ep3 and sends λ ∈ Gm to λp. The group G is the
kernel of the homomorphism e

p
1 : W → Gm. By Theorem 13.10, the restriction

CH ∗
W → CH ∗

G is an isomorphism. Since CH ∗
W is computed in Lemma 13.14,

we know CH ∗
G. The fact that CH ∗

G maps isomorphically to H ev(BG, Z)/p
follows from the statement that CH ∗

W maps isomorphically to H ∗(BW, Z)/p
(Lemma 13.14).

13.5 Calculations of the topological nilpotence degree

Kuhn gave good upper bounds for the topological nilpotence degree of any
finite group (Theorem 12.6, above). But so far, most exact calculations of the
topological nilpotence degree have focused on mod 2 cohomology [69, sections
II.4 and II.5], [85, appendix A]. In this section, we compute the topological
nilpotence degree d0(H ∗

G) of Henn-Lannes-Schwartz for some simple examples
of p-groups with p odd: split metacyclic groups (including the nonabelian
group of order p3 and exponent p2), the extraspecial group of order p3 and
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exponent p, and some p-central groups of order p6. In some cases, we also
compute the topological nilpotence degree of the Chow ring.

Theorems 12.4 and 12.7 bound these invariants in terms of the smallest
faithful complex representation of G. The experimental evidence in this section
suggests the possibility of major improvements to the known upper bounds for
d0(CH ∗

G) and d0(H ∗
G), at least for p odd. Proving such bounds would bring the

cohomology ring and Chow ring of a finite group under much better control.
Another observation is that the Chow ring of a finite group G tends to be

simpler than the cohomology ring. For example, a cyclic group G = Z/pr

with r ≥ 2 has d0(CH ∗
G) = 0; equivalent statements are that the mod p Chow

ring of G is reduced (that is, has no nilpotent elements except zero), or that
it is detected on elementary abelian subgroups. The Fp-cohomology of G is a
little more complicated, in the sense that d0(H ∗

G) = 1. More generally, Guillot
observed that the mod l Chow ring of a finite group G of Lie type is often
reduced, so that d0(CH ∗

G) = 0 [61]. By the examples in this section, we cannot
expect to have the Chow ring to have d0 = 0 in much generality, but d0(CH ∗

G)
is often smaller than current bounds would predict.

As in Section 13.1, when we discuss the Chow ring of a p-group G of
exponent e in this section, we consider G as an algebraic group over any field
k of characteristic not p that contains the eth roots of unity.

Kuhn was able to improve the bound in Theorem 12.6 by 1 in some cases, as
follows. Let G be a finite group, and let C be the maximal central elementary
abelian subgroup of G. (In this book, we normally consider this subgroup C

only when G is a p-group.) Let CEss(H ∗
G) be the central essential ideal in the

cohomology of G, the ideal in H ∗
G of elements that restrict to zero on CG(V ) for

all elementary abelian subgroups V that strictly contain C. Kuhn showed that
the central essential ideal is nonzero if and only if the depth of H ∗

G is equal to
the rank of C (that is, the Duflot lower bound is an equality) [86, theorem 2.30].
This was proved earlier by Green when G is a p-group [49]. Let eprim(G) be the
supremum of the degrees in which the H ∗

C-primitive subspace PCCEss(H ∗
G) is

not zero. We write eprim(G) = −∞ if the central essential ideal is zero.

Theorem 13.17 [86, proposition 2.8, corollary 2.14, corollary 2.20, theorem
2.22] Let G be a finite group. Then

d0(H ∗
G) = max{eprim(CG(V )) : V ⊂ G elementary abelian p-subgroup}.

Here eprim(H ) ≤ e(H ) for all finite groups H , with eprim(H ) < e(H ) when H

is not p-central. Finally, e(H ) ≤ e(G) for every subgroup H of a p-group G.
For any p-central finite group G, d0(H ∗

G) = eprim(G) = e(G).

It follows that d0(H ∗
G) ≤ e(G) for any p-group G, and sometimes Theorem

13.17 gives a strict inequality. For p = 2, the theorem is optimal in some cases.
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For example, let G be group #8 of order 32 in the Small Groups library,

G = 〈x, y|x−1yx = x2y−1, x−1y2x = y−2, x4 = y4〉.
Then G has rank 2, the center has rank 1, and G has type [8] in the sense of Defi-
nition 12.5, for example by the computations of Green and King [52]. The group
G has a unique elementary abelian subgroup V of rank 2, which is normal,
with centralizer isomorphic to Q8 × Z/2. Since that centralizer is 2-central,
eprim(CG(V )) = e(CG(V )) = 3. Since G is not 2-central, Theorem 13.17 gives
that eprim(G) < e(G) = 7. From [85, table 3] (where G is called group num-
ber 48), we see that d0(H ∗

G) = max(eprim(G), eprim(CG(V ))) = max(6, 3) = 6,
showing the optimality of Theorem 13.17. The following calculations suggest
that things may be better at odd primes p.

Let p be an odd prime number, and let G be a split metacyclic p-group. That
is, G is a semidirect product Z/pn � Z/pm for some positive integers m and
n. We compute d0(H ∗

G) and give a partial result on d0(CH ∗
G).

We assume that G is not abelian. Then G has a presentation

G = 〈s, t |spn = tp
m = 1, sts−1 = t1+pl 〉

where m > l ≥ max(m − n, 1). Diethelm computed the Fp-cohomology ring
of G, as follows [33, theorem 1].

Theorem 13.18 Let G be a nonabelian split metacyclic p-group with p odd.
If l > m − n in the notation above, then

H ∗
G

∼= Fp〈a, b, x, y〉,
where |a| = |b| = 1 and |x| = |y| = 2. Here b and y are pulled back from
nonzero classes on the cyclic group G/〈t〉, while a and x have nonzero restric-
tions to the cyclic group 〈t〉.

If l = m − n, then

H ∗
G

∼= Fp〈a1, . . . , ap−1, b, y, v,w〉/(aiaj = aiy = aiv = 0),

where |ai | = 2i − 1, |b| = 1, |y| = 2, |v| = 2p − 1, and |w| = 2p. Here b and
y are pulled back from nonzero classes on the cyclic group G/〈t〉, while the
elements ai, v,w all have nonzero restriction to the cyclic group 〈t〉.

We first observe that the topological nilpotence degree d0(CH ∗
G) is positive

for every nonabelian split metacyclic p-group G. If d0(CH ∗
G) were zero, then

the ring CH ∗
G would be reduced. Consider the 1-dimensional representation L

of G over k given by s 	→ 1 and t 	→ ζpl . Then z := c1L is nonzero in CH 1
G =

Hom(G, C∗)/p (Lemma 2.26). But z is nilpotent by Yagita’s theorem (Theorem
8.10), because it restricts to zero on the unique maximal elementary abelian p-
subgroup of G, 〈spn−1

, tpm−1〉 ∼= (Z/p)2. Since CH 1
G = H 2(BG, Z)/p always

injects into H 2
G, the image of z in H ∗

G is a nonzero element that restricts to
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zero on all elementary abelian subgroups V , and so we also have d0(H ∗
G) > 0.

More precisely, since z comes from CH 1
G, its image in the group H 1

V ⊗ H 1
CG(V )

is also zero, and so d0(H ∗
G) ≥ 2.

Theorem 13.19 Let p be an odd prime number. Let G be a nonabelian split
metacyclic p-group. Then d0(H ∗

G) = 2.

Proof First consider G of the first type in Theorem 13.18, where l > m − n. In
this case, G is p-central, with C := Z(G)[p] equal to 〈spn−1

, tp
m−1〉 ∼= (Z/p)2.

Since G is a p-central p-group, Kuhn showed that d0(H ∗
G) is equal to e(G),

the largest degree of a generator for H ∗
C as a module over H ∗

G (Theorem 12.6).
By Quillen’s theorem (Theorem 8.4) together with the computation of H ∗

G

in Theorem 13.18, we know that im(H ∗
G → H ∗

C/rad(H ∗
C)) = H ∗

G/rad(H ∗
G) =

Fp[x, y], where |x| = |y| = 2. By inspection, the generators a, b of H 1
G =

Hom(G, Z/p) restrict to zero on C. So the image of H ∗
G → H ∗

C is exactly the
polynomial ring Fp[x, y]. It follows that d0(H ∗

G) = e(G) = 2.
Next, again for an odd prime p, let G be a split metacyclic p-group that is

not p-central. This means that l = m − n, in the notation above. It follows that
the cyclic normal subgroup Z/pm ⊂ G has m ≥ 2. An example is the modular
p-group Z/p � Z/pm; for m = 2, this is the nonabelian group of order p3 and
exponent p2.

For l = m − n, the group C = Z(G)[p] is 〈tpm−1〉 ∼= Z/p. Here e(G) =
2p − 1, since the computation of H ∗

G in Theorem 13.18 implies that im(H ∗
G →

H ∗
C) = Fp[w] where |w| = 2p. Kuhn’s upper bound (Theorem 13.17) implies

that d0(H ∗
G) ≤ 2p − 2, as we check below. In fact, the cohomology of G is

much simpler than that; we will show that d0(H ∗
G) = 2. Perhaps Kuhn’s upper

bound can be improved for non-p-central p-groups in general.
The group G has a unique maximal elementary abelian subgroup, A =

〈spn−1
, tp

m−1〉 ∼= (Z/p)2. The centralizer CG(A) is the subgroup 〈s, tp〉 of
G, which is a p-central split metacyclic group (possibly abelian) of the
form Z/pn � Z/pm−1. Our earlier calculation gives that eprim(CG(A)) ≤
d0(CG(A)) ≤ 2. Therefore, by Theorem 13.17, d0(H ∗

G) ≤ max(2, eprim(G)) ≤
e(G) − 1 = 2p − 2. That is,

H ∗
G → H ∗

C ⊗Fp
H

≤2p−2
G × H ∗

A ⊗Fp
H

≤2p−2
CG(A)

is injective.
It remains to analyze the cohomology of G in degrees at most 2p − 2.

Namely, we want to show that the homomorphism

H ∗
G → H ∗

C ⊗Fp
H≤2

G × H ∗
A ⊗Fp

H≤2
CG(A)

is injective in degrees at most 2p − 2.
Although other approaches are possible, we do this by constructing genera-

tors of H ∗
G explicitly. By Theorem 13.18, a basis for H ∗

G as an Fp-vector space
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in degrees at most 2p − 2 is given by:

0 1 2 3 4 5 · · · 2p − 3 2p − 2
1 a1, b a1b, y a2, yb a2b, y2 a3, y

2b · · · ap−1, y
p−2b ap−1b, yp−1

Theorem 13.18 also gives that

H ∗
CG(A) = Fp〈α, b, χ, y〉,

where |α| = |b| = 1, |χ | = |y| = 2, b and y are pulled back from
CG(A)/〈tp〉 ∼= 〈s〉 ∼= Z/pn, and α and χ have nonzero restriction to 〈tp〉 ∼=
Z/pm−1. We can assume that b and y are pulled back from the classes with the
same names in H ∗

G.
Define fi = trGCG(A)(αχi−1), for 1 ≤ i ≤ p. I claim that fi and yi−1b form a

basis for H 2i−1
G , for 1 ≤ i ≤ p. By Theorem 13.18, this holds if fi has nonzero

restriction to 〈t〉 ∼= Z/pm. By the double coset formula (Lemma 2.15),

fi |〈t〉 = tr〈t〉〈tp〉(αχi−1).

Here αχi−1 is nonzero in H ∗
〈tp〉 ∼= H ∗

Z/pm−1 = Fp〈α, χ〉. The element χ is the

restriction of a generator χ of H 2
〈t〉 = H 2

Z/pm , while the transfer of α from
H 1

Z/pm−1 to H 1
Z/pm is not zero. It follows that the transfer of αχi−1 from Z/pm−1

to Z/pm is not zero. Thus fi has nonzero restriction to 〈t〉, and hence is a
generator of H ∗

G as claimed.
Therefore, a basis for H ∗

G in degrees at most 2p − 1 is given by fi and yi−1b

in degree 2i − 1, and fib and yi in degree 2i. By the calculation of H ∗
CG(A), yi

and yib have nonzero restriction to CG(A). Since d0(H ∗
CG(A)) ≤ 2, yi and yib

have nonzero images in H ∗
A ⊗ H

≤2
CG(A). On the other hand, y and b restrict to

zero on C, and so the images of y and b in H ∗
C ⊗Fp

H ∗
G are of the form 1 ⊗ y

(using that y comes from CH 1
G) and 1 ⊗ b. So yi for i ≥ 2 and yib for i ≥ 1

map to zero in H ∗
C ⊗ H≤2

G .
To finish the proof that d0(H ∗

G) ≤ 2, it suffices to show that the images of
fi and fib in H ∗

C ⊗ H≤2
G are linearly independent of the images of yi−1b and

yi , for 1 ≤ i ≤ p. This is clear for i = 1 (by the basis for H ∗
G). It remains to

show that fi and fib have nonzero image in H ∗
C ⊗ H≤2

G for 2 ≤ i ≤ p. This is
easy from the definition of fi as a transfer. Assume first that m ≥ 3; then the
element α ∈ H 1

CG(A), which is nonzero on 〈tp〉, restricts to zero on C = 〈tpm−1〉.
So

fi |C×G = trC×G
C×CG(A)(αχi−1|C×CG(A))

= trC×G
C×CG(A)((1 ⊗ α)(χ ⊗ 1 + 1 ⊗ χ )i−1)

= trC×G
C×CG(A)(χ

i−1 ⊗ α)
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in H ∗
C ⊗ H≤2

G . So

fi|C×G = χi−1 ⊗ f1.

This is nonzero in H ∗
C ⊗ H

≤2
G (and even in H ∗

C ⊗ H
≤1
G ). Likewise,

fib|C×G = (χi−1 ⊗ f1)(1 ⊗ b)

= χi−1 ⊗ f1b,

which is again nonzero in H ∗
C ⊗ H≤2

G . For m = 2 (the case of the modular
p-group G = Z/p � Z/p2), a slightly more complicated calculation leads to
the same conclusion. This completes the proof that d0(H ∗

G) ≤ 2. We showed
earlier that d0(H ∗

G) ≥ 2 for every nonabelian split metacyclic p-group, and so
equality holds.

In some cases, one can bound d0(CH ∗
G) in terms of d0(H ∗

G) using the follow-
ing lemma. Note that, since k contains the pth roots of unity, the Chow ring
CH ∗

G maps to etale cohomology H ∗
et(BGks

, Fp), which can be identified with
the usual cohomology H ∗

G of G.

Lemma 13.20 Let p be a prime number. Let G be a finite group with CH ∗
G →

H ∗
G injective. Then d0(CH ∗

G) ≤ d0(H ∗
G)/2.

Proof By Henn-Lannes-Schwartz’s interpretation of a := d0(H ∗
G) (Theorem

12.2), we know that

H ∗
G →

∏
V ⊂G

H ∗
V ⊗Fp

H≤a
CG(V )

is injective, where the product runs over all elementary abelian subgroups V of
G. Since CH ∗

G → H ∗
G is injective, the Chow ring also injects into the product

ring above. This homomorphism factors through
∏

V ⊂G CH ∗
V ⊗Fp

CH
≤a/2
CG(V ),

and so

CH ∗
G →

∏
V ⊂G

CH ∗
V ⊗Fp

CH
≤a/2
CG(V )

is injective. That means that d0(CH ∗
G) ≤ a/2.

One can use Lemma 13.20 and Theorem 13.19 to show that d0(CH ∗
G) = 1

when p is an odd prime number and G = Z/pn � Z/pm is a split metacyclic p-
group with im (Z/pn → (Z/pm)∗) of order p. Indeed, one can show that CH ∗

G

injects into H ∗
G in that case; we do not present the details, because we have

already shown more directly that d0(CH ∗
G) = 1 (Lemma 13.12). Theorem 12.7

gives only that d0(CH ∗
G) ≤ p − 1 in this case, which suggests that Theorem

12.7 may be improvable more generally.
It seems reasonable to conjecture that the cycle map CH ∗BG →

H ev(BG, Z) is an isomorphism for all p-groups G of rank at most 2. Then
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Theorem 13.19 would imply that d0(CH ∗
G) = 1 for every nonabelian split

metacyclic p-group G. For now, that remains an open question.
We now compute d0(H ∗

G) for the nonabelian group of order p3 and exponent
p, the extraspecial group p1+2

+ . For p = 3, the result is due to Milgram and
Tezuka [103].

Theorem 13.21 Let p be an odd prime number, and let G be the nonabelian
group of order p3 and exponent p,

G = 〈A,B|Ap = Bp = [A,B]p = [A, [A,B]] = [B, [A,B]] = 1〉.

If p = 3, then d0(H ∗
G) = 0. (Equivalently, H ∗

G is detected on elementary abelian
subgroups.) If p ≥ 5, then d0(H ∗

G) = 4.

Proof The center of G is the subgroup Z/p generated by the element [A,B],
and so C = C(G) is isomorphic to Z/p. For V an elementary abelian subgroup
of G that strictly contains C, V is isomorphic to (Z/p)2 and the centralizer of V

in G is equal to V (otherwise, G would be abelian). In particular, e(CG(V )) = 0
for such subgroups V . Since G is not p-central, Theorem 13.17 gives that
d0(H ∗

G) = eprim(G) < e(G). Here e(G) ≤ 2p − 1 because there is an element ζ
of H

2p
G , the Euler class of a p-dimensional irreducible complex representation

of G, whose restriction to C is nonzero. So d0(H ∗
G) ≤ 2p − 2. That is, the

homomorphism

H ∗
G → H ∗

C ⊗Fp
H

≤2p−2
G ×

∏
V ⊂G

H ∗
V

is injective.
We use Lewis’s calculation of H ∗(BG, Z), as follows [97, theorem 6.26].

In fact, we use Leary’s choice of generators, which seems more natural [90,
theorem 3]. Although this is complicated, the mod p cohomology ring H ∗

G

is even more complicated and took 25 years longer to compute [91]. It is a
good feature of the proof that we can prove a strong property of the mod p

cohomology ring by working with integral cohomology.

Theorem 13.22 Let p be an odd prime number. Let G be the nonabelian
group of order p3 and exponent p, the extraspecial group p1+2

+ . Then

H ∗(BG, Z)

= Z〈α, β, μ, ν, χ2, . . . , χp−1, ζ 〉/(pα = pβ = pμ = pν = pχi = p2ζ = 0,

αμ = βν, αpμ = βpν, αχi = βχi = μχi = νχi = 0 for 2 ≤ i, j < p − 1,
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χiχj = 0 for 2 ≤ i ≤ p − 2 and 2 ≤ j ≤ p − 1, χ2
p−1

= α2p−2 + β2p−2 − αp−1βp−1,

αχp−1 = −αp, βχp−1 = −βp−1, μχp−1 = −μβp−1, νχp−1 = −ναp−1,

αβp = βαp, μν =
{

λχ3 for some λ ∈ F∗
p if p ≥ 5

3λζ for some λ ∈ {±1} if p = 3

)
Here |α| = |β| = 2, |μ| = |ν| = 3, χi = 2i, and |ζ | = 2p.

Explicitly, α is the first Chern class of the complex representation A 	→
ζp, B 	→ 1, and β is the first Chern class of A 	→ 1, B 	→ ζp. Also, following
Lewis’s notation, let C be the central element B−1A−1BA and define elemen-
tary abelian subgroups Ht = 〈ABt, C〉 for 0 ≤ t ≤ p − 1 and H = 〈B,C〉.
Then β and μ both restrict to zero on H0 and have nonzero restriction to Ht for
t �= 0 and to H [97, lemma 6.16]. Likewise, α and ν both restrict to zero on
H and have nonzero restriction to Ht for all t . Finally, let γ be the first Chern
class of the 1-dimensional representation of H given by B 	→ 1, C 	→ ζp. Then
Leary defines χi = trGHγ i for 2 ≤ i < p − 1 and χp−1 = trGH γ p−1 − αp−1.

We continue the proof of Theorem 13.21. Theorem 13.22 implies that
H ∗(BG, Z) is killed by p in degrees from 1 to 2p − 1. We also read off that a
basis for Hi(BG, Z)/p over Fp in degrees ≤ 2p − 1 is given by the monomials
αiβj and χi in even degrees, and the monomials αiβj ν and βiμ in odd degrees.
I claim that H ∗(BG, Z) injects into

∏
V H ∗

V in odd degrees from 1 to 2p − 1,
where the product runs over the elementary abelian subgroups V of rank 2
(namely, the groups Ht and H ). We first note that the kernel of restriction from
Fp[α, β] to the Chow ring of Ht is the ideal (β − tα), and the kernel of restric-
tion to H is (α). So any element of Fp[α, β] that restricts to zero on all these
subgroups must be a multiple of α

∏p−1
t=0 (β − tα) = αβp − αpβ. In particu-

lar, the monomials αiβj with i + j ≤ p are linearly independent in
∏

V CH ∗
V

(and hence in
∏

V H ∗
V ). Likewise, the monomials αiβj with i + j ≤ p − 1 are

linearly independent in
∏p−1

t=0 CH ∗
Ht

.
Next, it is convenient to observe that any nonzero element of CH ∗

V is a
non-zero-divisor in H ∗

V , for an elementary abelian p-group V . Since μ has
nonzero restriction to H , it follows that βiμ is nonzero on H for all i ≥ 0,
whereas all the elements αiβj ν restrict to zero on H . Likewise, since ν has
nonzero restriction to Ht for each 0 ≤ t ≤ p − 1, the monomials αiβj ν with
i + j ≤ p − 1 are linearly independent in

∏p−1
t=0 H ∗

Ht
. Therefore, the elements

αiβjν and βiμ of degrees at most 2p + 1 are linearly independent in
∏

V H ∗
V .

(We only needed this in degrees at most 2p − 1.)
Thus we have shown that H ∗(BG, Z) injects into

∏
V H ∗

V in odd degrees from
1 to 2p − 1. We have also seen that the elements αiβj in degrees at most 2p are
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also linearly independent in
∏

V H ∗
V . In degree 2p − 2, we have the stronger

statement that the elements αjβp−1−j and χp−1 are linearly independent in∏
V H ∗

V . To show this, suppose that fp−1(α, β) + χp−1 restricts to zero in∏
V H ∗

V . We use the relations that β(βp−1 + χp−1) = 0 and α(αp−1 + χp−1) =
0 in H ∗(BG, Z). Multiplying by β, we deduce that βfp−1(α, β) − βp maps to
zero in

∏
V H ∗

V . By the linear independence of αiβj for i + j ≤ p in
∏

V H ∗
V , it

follows that fp−1 = βp−1. But multiplying by α, we find that αβp−1 − αp maps
to zero in

∏
V H ∗

V , contradicting the linear independence of those monomials.
This completes the proof that the elements αjβp−1−j and χp−1 are linearly
independent in

∏
V H ∗

V . For p = 3, that completes the proof: H ∗
G is detected

on elementary abelian p-subgroups.
By contrast, the elements χj for 2 ≤ j ≤ p − 2 restrict to zero on all ele-

mentary abelian subgroups V of rank 2 in G (hence to all proper subgroups
of G). To check this, note that for 2 ≤ j ≤ p − 2 we have χj = trGH (γ j ). For
V �= H , the double coset formula (Lemma 2.15) gives that

resG
V trGH (γ j )) = trVH∩V resH

H∩V (γ j ),

which is zero because all transfers from proper subgroups are zero in the
cohomology of V . For V = H , we have

resG
H trGH (γ j ) =

∑
g∈G/H

g(γ j )

=
∑
a∈Fp

(γ + aβ)j

=
j∑

m=0

(
j

m

)
γ j−mβm

∑
a∈Fp

am.

Since
∑

a∈Fp
am is zero for 0 ≤ m ≤ p − 2 (Lemma 7.5), this restriction is

zero.
In particular, it follows that trGH 1 = trGHγ = 0 in CH ∗

G and hence in H ∗
G,

because every nonzero element of CH 1
G = Hom(G,Gm)/p ∼= (Z/p)2 has

nonzero restriction to some elementary abelian subgroup of G.
Nonetheless, we will show that each element χi with 2 ≤ i ≤ p − 2 has

nonzero image in H ∗
C ⊗ H≤4

G . Since C ⊂ H ⊂ G, we have a pullback diagram

C × H ��

��

H

��

C × G �� G.

Because pushforward commutes with pullback (cf. Lemma 2.16), we have
(trGHy)|C×G = trC×G

C×H (y|C×H ) for all y ∈ H ∗
H . We will apply this to y = γ i ,
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noting that χi = trGH (γ i). The pullback H ∗
H → H ∗

C ⊗Fp
H ∗

H sends γ to γ ⊗
1 + 1 ⊗ γ . So γ i pulls back to

∑
j

(
i
j

)
γ i−j ⊗ γ j . For f in H ∗

C and g in H ∗
H ,

we have

trC×G
C×H (f ⊗ g) = f ⊗ trGH (g),

by the projection formula (cf. Lemma 2.15(i)). So

χi|C×G =
∑

j

(
i

j

)
γ i−j ⊗ trGH (γ j ).

Here trGH 1 = 0 and trGHγ = 0, but trGH (γ 2) = χ2 �= 0 in H 4
G by Theorem 13.22.

Since
(
i
2

)
is not zero in Fp for 2 ≤ i ≤ p − 2, we have shown that χi has

nonzero image in H ∗
C ⊗ H≤4

G for 2 ≤ i ≤ p − 2.
Thus the homomorphism

H ∗(BG, Z)/p → H ∗
C ⊗Fp

H≤4
G ×

∏
V ⊂G

H ∗
V

is injective in degrees at most 2p − 1. Since H ∗(BG, Z) is killed by p in
degrees at most 2p − 1, the Bockstein β has ker(β) = im(β) on H ∗

G in degrees
between 1 and 2p − 2. Let x be any element of H ∗

G of degree between 1 and
2p − 2 that maps to zero under the homomorphism above. Then the integral
class βx must be zero by the injectivity above. So we can write x = βy for
some y in H ∗

G. Thus x itself is integral, and so the injectivity above implies that
x = 0. Thus we have shown that

H ∗
G → H ∗

C ⊗Fp
H≤4

G ×
∏
V ⊂G

H ∗
V

is injective in degrees at most 2p − 2. Combining this with the fact that
d0(H ∗

G) ≤ 2p − 2, we conclude that d0(H ∗
G) ≤ 4.

Finally, let us show that d0(H ∗
G) ≥ 4 for p ≥ 5. Since 2 ≤ p − 2, the element

χ2 is nonzero in H 4
G by Theorem 13.22, but it restricts to zero in H ∗

V for all
elementary abelian subgroups V . It remains to show that χ2 pulls back to zero
in H ∗

C ⊗ H≤3
G (that is, χ2 is H ∗

C-primitive). This follows from the formula above
for the pullback of χ2 to H ∗

C ⊗ H ∗
G, using that trGH 1 = trGHγ = 0.

We also record the topological nilpotence degree of the Chow ring in this
case. The result is much better than the bound d0(CH ∗

G) ≤ p − 1 given by
Theorem 12.7.

Theorem 13.23 Let p be an odd prime number. Let G be the nonabelian
group of order p3 and exponent p, the extraspecial group p1+2

+ . Then d0(CH ∗
G)

is zero for p = 3, and is 2 for p ≥ 5.

Proof The calculation of CH ∗
G in Corollary 13.15 shows that CH ∗

G injects into
H ∗(BG, Z)/p and hence into H ∗

G. By Lemma 13.20, it follows that d0(CH ∗
G) ≤
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d0(H ∗
G)/2. By Theorem 13.21, it follows that d0(CH ∗

G) is zero for p = 3 and
is at most 2 for p ≥ 5. For p ≥ 5, the proof of Theorem 13.21 shows that
the element χ2 comes from CH 2BG and is nonzero and H ∗

C-primitive in H ∗
G.

So χ2 is nonzero and CH ∗
C-primitive in CH ∗

G. Therefore, d0(CH ∗
G) is equal

to 2.

So far, we have only seen p-groups with d0(H ∗
G) comparable in size to the

p-rank of G. In the case p = 2, Kuhn gave examples of 2-central 2-groups with
d0(H ∗

G) fairly large: using the numbering of the Small Groups library, group
#32 of order 32 has p-rank 2 and type [4, 4], and hence d0 = 6, and group
#245 of order 64, the 2-Sylow subgroup of the simple group U3(4), has p-rank
2 and type [8, 8], and hence d0 = 14 [85, theorem 2.9 and appendix A]. We
now exhibit a p-central group for p odd with d0 fairly large. The group we use
belongs to a family of p-central groups considered by Browder-Pakianathan
and Weigel [23, 151]. The group in Theorem 13.24 is not unusual; many similar
groups also have d0 large, as the proof will show.

Theorem 13.24 Let p be an odd prime number. Let G be the group

G = 〈e1, e2, e3, f1, f2, f3 : e
p
i = fi, f

p
i = 1, fi central,

[e1, e2] = f1, [e2, e3] = f2, [e3, e1] = f3〉.
Then G is a p-central group of p-rank 3 and order p6, and d0(H ∗

G) = 2p + 1.

Proof The group G is a central extension

1 → (Z/p)3 → G → (Z/p)3 → 1,

with the normal subgroup C := (Z/p)3 generated by the elements fi . The fact
that G has order equal to p6 (not smaller) is a special case of [23, proposition
2.5]. From the relations e

p
i = fi , we see that every element of order p in G is

in C, and so G is p-central.
By inspection of the relations, the commutator subgroup [G,G] is equal

to C. So the restriction map H 1
G → H 1

C is zero. It follows that the image
of H ∗

G → H ∗
C is a polynomial ring of the form Fp[ypa1

1 , y
pa2

2 , y
pa3

3 ] for some
natural numbers a1, a2, a3, as discussed before Definition 12.5. Here y1, y2, y3

form a basis for β(H 1
C) ⊂ H 2

C . Since G is p-central, Theorem 12.6 says that
d0(H ∗

G) = ∑3
i=1(2pai − 1). So we have d0(H ∗

G) ≥ (2p − 1) + 1 + 1 = 2p + 1
if we can show that H 2

G does not map onto β(H 1
C) ⊂ H 2

C .
The fact that H 2

G → H 2
C does not map onto β(H 1

C) is a special case of
Browder-Pakianathan [23, theorem 2.10], using that the alternating bilinear
product [e1, e2] = e1, [e2, e3] = e2, [e3, e1] = e3 on (Fp)3 is not a Lie algebra;
that is, the alternating 3-form

J (x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]]
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on (Fp)3 is not zero. (This would be true for most choices of relations, not just
the ones we chose.)

To compute d0(H ∗
G) exactly (and also prove by hand that H 2

G → H 2
C does

not map onto β(H 1
C)), we use the Hochschild-Serre spectral sequence for the

group extension 1 → C → G → Q → 1, where C ∼= Q ∼= (Z/p)3.

H 2
C

�����
����

����
����

��

���
���������������

H 1
C

�����
����

����
����

����
� H 1

C ⊗ H 1
Q H 1

C ⊗ H 2
Q

Fp H 1
Q H 2

Q H 3
Q

Write H ∗
C = Fp〈xi, yi〉 and H ∗

Q = Fp〈ui, vi〉, where 1 ≤ i ≤ 3, |xi | = |ui | = 1,
yi = βxi , and vi = βui . The differential d2 : H 1

C → H 2
Q has the form d2(x1) =

v1 + u1u2, d2(x2) = v2 + u2u3, and d2(x3) = v3 + u3u1, by the relations defin-
ing G. The differential d2 is zero on yi = βxi , and d3(βxi) = βd2(xi) [12,
vol. 2, theorem 4.8.1]. So d3(y1) = v1u2 − u1v2, d3(y2) = v2u3 − u2v3, and
d3(y3) = v3u1 − u3v1. These expressions are elements of E

∗,0
3 , the quotient of

H ∗
Q by the image of d2. In this quotient ring, we have v1 = −u1u2, v2 = −u2u3,

and v3 = −u3u1. It follows that d3(y1) = d3(y2) = d3(y3) = u1u2u3. (This
gives another proof that H 2

G → H 2
C is not surjective.)

Since d3 vanishes on y2 − y1 and y3 − y1, those elements are permanent
cycles in the spectral sequence. That is, those elements of β(H 1

C) are in the
image of H 2

G. We will show that y
p
1 is in the image of H ∗

G; that will imply that
d0(H ∗

G) = e(G) ≤ (2p − 1) + (2 − 1) + (2 − 1) = 2p + 1, as we want.
Let H ⊂ G be the subgroup of index p such that ker(H 1

G → H 1
H ) is spanned

by u3. A similar calculation to the one above shows that for the central exten-
sion 1 → C → H → H/C → 1, d3(yi) is zero for all 1 ≤ i ≤ 3. That is, the
restriction H 2

H → H 2
C maps onto βH 1

C . In particular, there is an element z in
H 2

H that restricts to y1 on C. Then the norm NG
H (z) is an element of H

2p
G that

restricts to y
p
1 on C by Lemma 8.1(v), using that C is central in G. The proof

is complete.
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Groups of Order p4

In this chapter, we determine the Chow ring for the 15 groups of order 81 and
for 13 of the 15 groups of order p4 with p ≥ 5. Although we have tried to
give arguments that apply directly to Chow rings, in the hardest cases we use
calculations of group cohomology by Leary and Yagita. We prove some general
results about when the Chow ring injects into cohomology.

As in Chapter 13, we consider each finite p-group G of exponent e as an
algebraic group over any field k of characteristic not p that contains the eth
roots of unity. We find that the groups in this chapter have the same mod p

Chow ring over all such fields.

14.1 The wreath product Z/3 � Z/3

Lemma 14.1 Let G be the wreath product Z/3 � Z/3, also known as the Sylow
3-subgroup of the symmetric group S9 or as #7 of the groups of order 81 in the
Small Groups library [52]. Then

CH ∗
G = F3[y1, y2, w, δ, u]/(δ2 = y2

1y2
2 + y3

2 − y3
1w, y1u = y2u = δu = 0),

where |yi | = i, |w| = 3, |δ| = 3, and |u| = 1. The ring CH ∗
G has dimension 3

and depth 2, whereas the Duflot bound gives only that the depth is at least 1.
The topological nilpotence degree d0(CH ∗

G) is zero; that is, CH ∗
G is detected

on elementary abelian subgroups., Finally, CH ∗
G → H ∗

G is injective.

Proof The paper [138, sections 8 and 9] gives an additive description of the
mod p Chow ring of a wreath product G = Z/p � H , assuming that k contains
the pth roots of unity and that H is one of the groups in Lemma 2.21. Namely,
let elements ei for i in a set I be a basis for CH ∗

H as an Fp-vector space. Let
u ∈ CH 1

G be the first Chern class of the representation Z/p → k∗ sending the
generator to a primitive pth root of unity. Then a basis for CH ∗

G as an Fp-vector

174
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space is given by the transfers trGHp (ei1 ⊗ · · · ⊗ eip ) for (i1, . . . , ip) running over
a set of representatives for the free action of Z/p on Ip − �I , together with
the norms ujNG

Hp (ei ⊗ 1 ⊗ · · · ⊗ 1) for i ∈ I and j ≥ 0.
Let p = 3 and H = Z/3. Write CH ∗

H = F3[v] with |v| = 1. We deduce
that an F3-basis for CH ∗

G is given by the elements trG
H 3 (va ⊗ vb ⊗ vc) with

0 ≤ a ≤ b and a < c, together with the elements ubNG
H 3 (va ⊗ 1 ⊗ 1) with

a ≥ 0 and b ≥ 0. Let w = NG
H 3 (v ⊗ 1 ⊗ 1) in CH 3

G. By multiplicativity of the
norm, we can write the second set of elements as waub with a, b ≥ 0.

By Lemma 2.21 and its proof,

CH ∗
G → CH ∗

H 3 × CH ∗
Z/3×H

is injective, and CH ∗
G maps onto the invariants (CH ∗H 3)Z/3. This ring of

invariants is F3[x1, x2, x3]Z/3. By thinking of Z/3 as the alternating group
A3, we see that this ring of invariants is Cohen-Macaulay, as discussed in
Section 5.2:

F3[x1, x2, x3]Z/3 = F3[e1, e2, e3]{1,�},

where ei is the ith elementary symmetric polynomial and � = ∏
i<j (xi − xj )

is the square root of the discriminant. By the formula for the discriminant of a
cubic polynomial [88, exercise VI.12], we have

F3[x1, x2, x3]Z/3

= F3[e1, e2, e3,�]/(�2 = e2
1e

2
2 − 4e3

2 − 4e3
1e3 − 27e2

3 + 18e1e2e3)

= F3[e1, e2, e3,�]/(�2 = e2
1e

2
2 − e3

2 − e3
1e3)

The restriction of the norm w to CH ∗
H 3 is x1x2x3 = e3. We can choose

other elements of CH ∗
G that restrict to e1, e2, and �. Namely, let y1 = trG

H 3 (1 ⊗
1 ⊗ v) and y2 = trG

H 3 (1 ⊗ v ⊗ v); then y1|H 3 = x1 + x2 + x3 = e1 and y2|H 3 =
x1x2 + x2x3 + x3x1 = e2. Also, � = (x2

1x2 + x2
2x3 + x2

3x1) − (x1x
2
2 + x2x

2
3 +

x3x
2
1 ). So the element δ := trG

H 3 (1 ⊗ v2 ⊗ v) − trG
H 3 (1 ⊗ v ⊗ v2) of CH 3

G

restricts to �.
Given any element of CH ∗

G, we can subtract off a polynomial in y1, y2, e, δ

of degree at most 1 in δ and get an element that restricts to zero on H 3. From
the F3-basis for CH ∗

G above, we read off that any element of CH ∗
G that restricts

to zero on the subgroup H 3 is an F3-linear combination of the elements waub

with a ≥ 0 and b > 0. We therefore have a surjection

F3[y2, y2, w, δ, u] � CH ∗
G.

Since u restricts to zero in the Chow ring of H 3, the projection formula gives
that u trG

H 3 (va ⊗ vb ⊗ vc) = 0 for all a, b, c. So y1u = y2u = δu = 0 in CH ∗
G.
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Next, by our description of the invariant ring (CH ∗
H 3 )Z/3, we know that

δ2 − y2
1y2

2 + y3
2 + y3

1w

in CH ∗
G restricts to zero on the subgroup H 3. But the pullback diagram

H ��

��

H 3

��

Z/3 × H �� Z/3 � H 3

implies that

(trGH 3 (s))|Z/3×H = trZ/3×H
H (s|H )

= 0

for every s ∈ CH ∗
H 3 . So the elements y1, y2, δ restrict to zero on the diagonal

subgroup Z/3 × H . So the element δ2 − y2
1y

2
2 + y3

2 + y3
1w of CH 6

G restricts to
zero on both Z/3 × H and H 3, and hence is zero.

Thus we have a surjection

F3[y1, y2, w, δ, u]/(δ2 − y2
1y2

2 + y3
2 + y3

1w = 0, y1u = y2u = δu = 0)�CH ∗
G.

By our F3-basis for CH ∗
G, this map is an isomorphism.

We compute that this ring has depth 2, although the center Z/3 of G only has
rank 1. Finally, it is a general fact about wreath products that CH ∗

G is detected
on elementary abelian subgroups (Lemma 2.21). It follows that CH ∗

G → H ∗
G

is injective.

14.2 Geometric and topological filtrations

For several calculations of Chow rings of groups of order p4, we will need the
basic properties of the geometric and topological filtrations of the representation
ring. Chapter 15 discusses these filtrations in more detail, and gives examples
of p-groups for every prime number p such that the two filtrations differ.

For an affine group scheme G over a field k, a representation of G determines
a vector bundle on the classifying space BG. The geometric filtration of the
representation ring R(G) comes from the filtration of the algebraic K-group
K0BG by codimension of support. When k = C, the topological filtration
comes from the filtration of the topological K-group K0BG by codimension
of support. Concretely, on a finite cell complex X approximating BG, the
codimension of support of an element u in K0X means the largest codimension
of a closed subcomplex S such that u restricts to zero in K0(X − S).
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The topological filtration of the representation ring is also the filtration given
by the Atiyah-Hirzebruch spectral sequence [6, 7, 9]:

Theorem 14.2 For any topological space X, there is a spectral sequence
from ordinary cohomology to topological K-theory,

E
ij
2 = Hi(X,Kj (point)) ⇒ Ki+jX.

The sequence is strongly convergent for X a finite CW complex or the classifying
space of a compact Lie group. It is periodic of order 2 in the vertical direction
and concentrated in even rows, since Kj (point) is isomorphic to Z for j even
and to 0 for j odd. For X = BG with G a compact Lie group, K0BG is
isomorphic to the completion R(G)∧ of the complex representation ring with
respect to powers of the augmentation ideal, while K1BG = 0.

...

0 0 0 0 0

H 0(X, Z)

�����
����

����
����

����
����

����
����
H 1(X, Z)

����
���

���
���

���
���

���
���

���
���

��
H 2(X, Z) H 3(X, Z) · · ·

0 0 0 0 0

H 0(X, Z)

�����
����

����
����

����
����

����
����

����
H 1(X, Z)

����
���

���
���

���
���

���
���

���
���

���
�

H 2(X, Z) H 3(X, Z) · · ·

0 0 0 0 0

...

We have F i
geomR(G) ⊂ F 2i

topR(G), and hence there is a natural map
grigeomR(G) → gr2i

topR(G). The Atiyah-Hirzebruch spectral sequence shows
that gr2i

topR(G) is a subquotient of H 2i(BG, Z) and that the topological filtration

is concentrated in even degrees (that is, F 2i−1
top R(G) = F 2i

topR(G)). Similarly, we
can describe the geometric filtration of R(G) as the filtration of K0BG associ-
ated to the spectral sequence from motivic cohomology to algebraic K-theory,
E

pq
2 = Hp(BG, Z(−q/2)) ⇒ K−p−qBG [95, theorem 2.9], which we write

out as Theorem 15.12. (The groups contributing to K0BG = R(G)∧ are the
Chow groups CHiBG = H 2i(BG, Z(i)).) The relation between Chow groups
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and the geometric filtration is simpler than what happens in topology: the nat-
ural map CHiBG → grigeomR(G) is surjective for all i and is an isomorphism
p-locally for i ≤ p (Theorem 2.25).

For completeness, we also define the γ -filtration of the representation ring
R(G) [44, chapter III]. For a representation E of G, write λj (E) for the
j th exterior power of E, and let λt (E) = ∑

j≥0 λj (E)t j in the power series
ring R(G)[[t]]. This definition extends to an operation λt : R(G) → R(G)[[t]]
by λt (E − F ) = λt (E)λt (F )−1. Grothendieck defined operations γ j on R(G)
by λt/(1−t)E = ∑

j≥0 γ j (E). The γ -filtration is defined by: F 0
γ R(G) = R(G),

F 1
γ R(G) is the kernel of the rank homomorphism R(G) → Z, and Fm

γ R(G) for
m ≥ 1 is the subgroup generated by elements γ j1 (x1) · · · γ jn(xn) with

x1, . . . , xn ∈ F 1
γ R(G) and

∑
ji ≥ m.

One basic result on the γ -filtration is that Fm
γ R(G) is contained in Fm

geomR(G).

14.3 Groups of order p4 for p ≥ 5

Theorem 14.3 Let G be a finite group and p a prime number at least 5. Sup-
pose that G has p-rank at most 2 and that G (or just its Sylow p-subgroup) has
a faithful complex representation of the form W ⊕ X where W has dimension
at most p and X is a sum of 1-dimensional representations. For e the exponent
of G, consider G as an algebraic group over any subfield k of C that contains
the eth roots of unity. Then the mod p Chow ring CH ∗

G maps isomorphically to
H ev(BG, Z)/p.

Using Theorem 14.3, we can compute the Chow ring for 13 of the 15 groups
of order p4, for p ≥ 5. Indeed, there are five abelian groups of order p4 and
two products of a nonabelian group of order p3 with Z/p. In those cases, we
know the Chow rings by Section 13.2 and the Chow Künneth formula (Lemma
2.12).

Of the remaining eight groups, five have rank 2 and three have rank 3, for
p ≥ 5. The five groups of rank 2 (numbers 4, 6, 9, 10, 14 in the Small Groups
library [52]) are handled by Theorem 14.3. In more detail, groups #4 and #6
are the split metacyclic groups Z/p2 � Z/p2 and Z/p � Z/p3, whose Chow
rings are given in Theorem 13.12. Groups #9 and #10 are discussed below.
Group #14 is the central product p1+2

+ ∗ Cp2 , whose Chow ring is computed in
Lemma 13.16. Of the three groups of rank 3 (numbers 3, 7, 8), we computed
the Chow ring of group #3 in Lemma 13.13, while Section 14.5 suggests an
approach to the open cases, groups #7 and #8.

The groups of order p4 played a significant role in the history of group
cohomology. C. B. Thomas conjectured that for a p-group G of rank at most 2,
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H ev(BG, Z) should be generated by Chern classes of complex representations
[135, chapter 8]. (The assumption on the rank is natural, since the statement
fails for abelian groups of rank 3.) The conjecture was verified for various
classes of p-groups of rank 2, such as metacyclic p-groups [71, 134]. But
Leary-Yagita showed that H ev(BG, Z) is not generated by Chern classes for
certain p-groups G(n, ε) of rank 2 [93]:

G(n, ε) = 〈x, y, z : xp = yp = zpn−2

= [y, z] = 1, [x, z−1] = y, [y, x] = zεpn−3〉,

where p ≥ 5, n ≥ 4, the group has order pn, and for fixed p and n there are two
isomorphism classes of such groups, depending on whether ε is 1 or a quadratic
non-residue modulo p. These include groups #9 and #10 of order p4 for
p ≥ 5. Nonetheless, Yagita proved a strong substitute for Thomas’s conjecture:
for p ≥ 5, every p-group of rank at most 2 has H ev(BG, Z) generated by
transferred Euler classes [152]. In particular, Yagita computed the integral
cohomology of groups #9 and #10, which gives the Chow rings by Theorem
14.3.

Proof of Theorem 14.3 It suffices to prove the theorem for G a p-group, by
the properties of transfer for Chow rings and cohomology. By Yagita, since G

has rank at most 2 and p ≥ 5, H ev(BG, Z) is generated by transferred Euler
classes [152]. The assumption on k implies that the representation theory of G

over k is the same as over C. It follows that the homomorphism CH ∗BG →
H ev(BG, Z) is surjective.

We use the geometric and topological filtrations of the representation ring,
as discussed in Section 14.2. (We consider the geometric filtration of the rep-
resentation ring of G over k, and the topological filtration of the representation
ring over C; these are filtrations of the same ring R(G), by our assumption
on k.) For a k-representation V of G of dimension n and any i > 0, the ele-
ment γ i(V − n) of the representation ring lies in F i

geomR(G), and its class in
grigeomR(G) is the image of the Chern class ciV in CHiBG [44, chapter III].
So the image of γ i(V − n) in gr2i

topR(G) is represented by the Chern class ciV

in H 2i(BG, Z), which is a permanent cycle in the Atiyah-Hirzebruch spectral
sequence.

For the group G of rank 2, since CHiBG → H 2i(BG, Z) is surjective for
all i, the map grigeomR(G) → gr2i

topR(G) is surjective for all natural numbers
i. Moreover, the two filtrations both define the same topology on R(G), that
associated to the powers of the augmentation ideal [9, corollary 2.3]. Therefore,
this surjectivity implies that the two filtrations of R(G) are actually the same.
In particular, the map grigeomR(G) → gr2i

topR(G) is an isomorphism for all i.
We have CHiBG ∼= grigeomR(G) for i ≤ p (Theorem 2.25), and so we have
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isomorphisms

CHiBG ∼= grigeomR(G) ∼= gr2i
topR(G)

for i ≤ p. Since gr2i
topR(G) is a subquotient of H 2i(BG, Z), it follows that the

map CHiBG → H 2i(BG, Z) is injective for i ≤ p. Since it is also surjective,
it is an isomorphism for i ≤ p.

In particular, CHi
G = CHi(BG)/p maps isomorphically to H 2i(BG, Z)/p

for i ≤ p, and so CHi
G injects into H 2i

G = H 2i(BG, Fp) for i ≤ p. Now we
use the assumption that G has a faithful complex representation of the form
W ⊕ X, where W has dimension at most p and X is a sum of 1-dimensional
representations. By Theorem 12.7, the restriction map

CH ∗
G →

∏
V ⊂G

V elem ab

CH ∗
V ⊗ CH

≤p−1
CG(V )

is injective. Our assumptions on G (rank at most 2 and faithful representa-
tion W ⊕ X) pass to the subgroups CG(V ), and so we know that CH

≤p−1
CG(V ) →

H
≤2p−2
CG(V ) is injective, for every elementary abelian subgroup V of G. Like-

wise, CH ∗
V injects into H ∗

V . So CH ∗
G injects into H ∗

G. We also know that
CH ∗

G maps onto H ev(BG, Z)/p ⊂ H ∗
G, and so CH ∗

G maps isomorphically to
H ev(BG, Z)/p.

14.4 Groups of order 81

Let G be #7, #8, #9, or #10 of the groups of order 81 in the Small Groups
library [52]. Leary computed the integral cohomology of these four groups in
a unified way: they are all normal subgroups of the same 1-dimensional group
G̃,

1 → G → G̃ → S1 → 1

[92, corollary 9 and theorem 10]. (In more detail, G̃ is a central extension of the
extraspecial 3-group 31+2

+ by S1.) For groups #8, #9, and #10, Leary showed
that H ev(BG, Z) is generated by Chern classes of complex representations.
(That fails for #7, the wreath product Z/3 � Z/3, which has rank 3; but we have
already computed the Chow ring in that case as Lemma 14.1.) In all three cases,
G has a faithful irreducible complex representation of dimension 3. Given these
facts, the proof of Theorem 14.3 shows that the cycle map

CH ∗BG → H ev(BG, Z)

is an isomorphism for groups #8, #9, and #10. We record the mod 3 Chow rings
of these groups, using Leary’s calculation of their integral cohomology.
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This completes the calculation of the Chow ring for the 15 groups of order 81.
First, there are five abelian groups of order 81 and two products of a nonabelian
group of order 27 with Z/3. In those cases, we know the Chow rings by Section
13.2 and the Chow Künneth formula (Lemma 2.12). For p = 3, two of the
remaining eight groups have rank 3 and six have rank 2. The groups of rank
3 are the wreath product Z/3 � Z/3 (group #7 in the Small Groups library)
and group #3, whose Chow rings are computed in Lemmas 14.1 and 13.13.
The groups of rank 2 are the split metacyclic group Z/9 � Z/9 (group #4), the
modular group Z/3 � Z/27 (group #6), the central product 31+2

+ ∗ C9 (group
#14), and groups #8, #9, and #10. The Chow rings are computed in Lemmas
13.12, 13.16, and 14.4.

To simplify the statement, we first give the ring R = H ev(G̃, Z)/3:

R = F3[α, β, δ1, δ2, δ3, ζ ]/(αδ1 + αβ = 0, δ2
1 + δ1β = 0, αδ2 = 0,

δ1δ2 = 0, α2β + δ1β
2 = 0, αζ = 0, δ1ζ = 0,

δ3
2 + ζ 2 + δ3δ1β

2 + δ3β
3 − δ2

2β
2 − δ2β

4 + δ1β
5 + β6 = 0),

where |α| = |β| = 2, |δi | = 2i, and |ζ | = 6. To correct two typos in the pub-
lished paper [92]: the relation for δ2

1 in Theorem 10 should be δ2
1 = 3δ2 − δ1β

(as the proof shows), and the character table for G(n, e) (before Proposition
2) should contain the entry η(2 + ηe3n−3

) for e = ±1, where η is any primi-
tive 3n−2th root of unity. For what follows, we repeat our convention that the
commutator [A,B] means ABA−1B−1.

Lemma 14.4 Let G be #8 of the groups of order 81 in the Small Groups
library [52], which Leary calls G(4, 1),

G = 〈A,B,C : A3 = B9 = C3 = [B,C] = 1, [B,A] = C, [C,A] = B3〉.
Then CH ∗

G is the quotient of the ring R above (with grading |α| = |β| = 1,
|δi | = i, and |ζ | = 3) by the ideal generated by δ1 − β. The ring CH ∗

G has
dimension 2 and depth 1, which agrees with the Duflot bound. The topological
nilpotence degree d0(CH ∗

G) is equal to 1. The group G has 2 conjugacy classes
of maximal elementary abelian subgroups, both of rank 2.

Let G be #9 of the groups of order 81 in the Small Groups library [52],
which Leary calls G(4,−1), the Sylow 3-subgroup of the simple group U3(8) =
PSU (3, F8):

G = 〈A,B,C : A3 = B9 = C3 = [B,C] = 1, [B,A] = C, [C,A] = B−3〉.
Then CH ∗

G is the quotient of the ring R above by the ideal generated by δ1 + β.
The ring CH ∗

G is Cohen-Macaulay of dimension 2 (so it has depth 2), whereas
the Duflot bound gives only that the depth is at least 1. The ring CH ∗

G is reduced,
and is detected on elementary abelian subgroups; that is, d0(CH ∗

G) = 0. The
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group G has 4 conjugacy classes of maximal elementary abelian subgroups,
all of rank 2.

Let G be #10 of the groups of order 81 in the Small Groups library [52],
which Leary calls G′(4):

G = 〈A,B,C : B9 = C3 = [B,C] = 1, [B,A] = C, [C,A] = B−3 = A3〉.
Then CH ∗

G is the quotient of the ring R above by the ideal generated by
δ1 + β + α. The ring CH ∗

G has dimension 2 and depth 1, which agrees with
the Duflot bound. We have d0(CH ∗

G) = 2. The group G has a unique conjugacy
class of maximal elementary abelian subgroups, which is of rank 2.

14.5 A 1-dimensional group

Let p be a prime number at least 5. Let G be group #7 of order p4 in the Small
Groups library,

G = 〈h1, h2, h3, h4 : h
p
i = 1 for all i, h4 central,

[h1, h2] = h3, [h1, h3] = h4, [h2, h3] = 1〉.
Then G has rank 3 and (using that p ≥ 5) exponent p. The center of G is
〈h4〉 ∼= Z/p.

Let B̃ = (G × Gm)/(Z/p), where the subgroup Z/p is generated by
(h4, ζ

−1
p ). Since G/Z(G) is the extraspecial group Ep3 , B̃ is a central extension

1 → Gm → B̃ → Ep3 → 1.

Any nontrivial central extension of Ep3 by Gm over C is isomorphic to B̃ as
an algebraic group, which explains why it is useful to consider the Chow ring
of B̃. In fact, groups #7, #8, #9, and #10 of order p4 all occur as kernels of
homomorphisms from B̃ to Gm. As a result, the Chow rings of these four groups
would follow immediately, using Theorem 13.10, if we knew the Chow ring
of B̃. That would complete the computation of the Chow ring for all groups of
order p4, by the discussion after Theorem 14.3. These groups are different in
other ways; for example, groups #7 and #8 have rank 3 while groups #9 and
#10 have rank 2.

Leary gave partial results on the integral cohomology H ∗(BB̃, Z). In par-
ticular, he showed that H ev(BB̃, Z) is generated by transferred Chern classes
(using only transfers from finite-index subgroups) [89, corollary 3.10]. This is
related to Yagita’s construction of generators for the rank-2 subgroups #9 and
#10 of B̃ [152, theorem 5.29]. The general results of this book say a lot about
the Chow ring of BB̃, but we leave the full computation as an open problem.
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We will just prove a relation between the Chow ring and cohomology for B̃.
The proof is similar to that of Theorem 14.3, but we have to argue separately
because B̃ is a 1-dimensional group of p-rank 3 rather than a finite group of
p-rank 2.

Lemma 14.5 Let p a prime number at least 5, k a subfield of C that contains
the p2 roots of unity, and let B̃ be the above 1-dimensional group over k. Then
the mod p Chow ring CH ∗

B̃
maps isomorphically to H ev(BB̃, Z)/p.

Proof Because G has exponent p, every element of order p is B̃ is contained
in the subgroup G ⊂ B̃. So every elementary abelian p-subgroup of B̃ is
contained in G. Some examples of elementary abelian subgroups of G are
A = 〈h2, h3, h4〉 ∼= (Z/p)3 and, for i ∈ Z/p, Hi = 〈h1h

i
2, h4〉 ∼= (Z/p)2. Here

A is normal in G, while the subgroups Hi are not normal. Using that, it is
straightforward to check that A and the p subgroups Hi are the only maximal
elementary abelian subgroups of G up to conjugation. The centralizer CG(A)
is equal to A, and likewise CG(Hi) = Hi for each i. It follows that A and the
subgroups Hi are the only maximal elementary abelian p-subgroups of B̃ up
to conjugation, and we have CB̃(A) = (A × Gm)/(Z/p) ∼= (Z/p)2 × Gm and
CB̃(Hi) = (Hi × Gm)/(Z/p) ∼= Z/p × Gm.

Since some results in this book are proved only for finite groups, it is con-
venient to observe that the mod p Chow ring of B̃ is isomorphic to the mod p

Chow ring of a certain finite subgroup. Let α : B̃ → Gm be the homomorphism
that pulls back on G × Gm to (g, λ) 	→ λp; then B̃ is the kernel of α. Let K be
the kernel of αp; then K is the central product G ∗ Cp2 , of order p5. Theorem
13.10 gives that the restriction map CH ∗

B̃
→ CH ∗

K is an isomorphism. This
allows us to apply some results on the Chow rings of finite groups to the Chow
ring of B̃.

By Leary, H ev(BB̃, Z) is generated by transferred Euler classes [89, corollary
3.10]. The assumption on k implies that the representation theory of B̃ over k is
the same as over C. It follows that the homomorphism CH ∗BB̃ → H ev(BB̃, Z)
is surjective.

We use the geometric and topological filtrations of the representation ring, as
discussed in Section 14.2. The above surjectivity implies that grigeomR(B̃) →
gr2i

topR(B̃) is surjective for all natural numbers i. Moreover, the two filtra-
tions both define the same topology on R(B̃), that associated to the pow-
ers of the augmentation ideal [9, corollary 2.3]. Therefore, this surjectivity
implies that the two filtrations of R(B̃) are actually the same. In particu-
lar, the map grigeomR(B̃) → gr2i

topR(B̃) is an isomorphism for all i. We have
CHiBB̃ ∼= grigeomR(B̃) for i ≤ p (Theorem 2.25), and so we have isomor-
phisms

CHiBB̃ ∼= grigeomR(B̃) ∼= gr2i
topR(B̃)
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for i ≤ p. Since gr2i
topR(B̃) is a subquotient of H 2i(BB̃, Z), it follows that the

map CHiBB̃ → H 2i(BB̃, Z) is injective for i ≤ p. Since it is also surjective,
it is an isomorphism for i ≤ p.

In particular, CHi
B̃

= CHi(BB̃)/p maps isomorphically to H 2i(BB̃, Z)/p
for i ≤ p, and so CHi

B̃
injects into H 2i

B̃
= H 2i(BB̃, Fp) for i ≤ p. Now we

observe that B̃ has a faithful irreducible representation of dimension p over k,
which can be defined by inducing from the abelian subgroup of index p in B̃.
By Theorem 12.7, applied to the finite subgroup K of B̃ with the same Chow
ring, the restriction map

CH ∗
B̃

→
∏
V ⊂B̃

V elem ab

CH ∗
V ⊗ CH

≤p−1
CB̃ (V )

is injective. Using the description of the maximal elementary abelian subgroups
of B̃, we check that the centralizer of each elementary abelian subgroup is either
abelian or the whole group B̃. Therefore, CH

≤p−1
CB̃ (V ) → H

≤2p−2
CB̃ (V ) is injective, for

every elementary abelian subgroup V of B̃. Likewise, CH ∗
V injects into H ∗

V . So
CH ∗

B̃
injects into H ∗

B̃
. We also know that CH ∗

B̃
maps onto H ev(BB̃, Z)/p ⊂ H ∗

B̃
,

and so CH ∗
B̃

maps isomorphically to H ev(BB̃, Z)/p.
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The Geometric and Topological Filtrations of
the Representation Ring

Let G be a complex algebraic group, for example a finite group. The complex
representation ring R(G) has two natural filtrations, the topological and geomet-
ric filtrations, defined using the topological or algebro-geometric codimension
of support of a virtual bundle on BG. One might expect any naturally occurring
filtration of the representation ring to have a purely algebraic interpretation, but
no one knows how to do that for the geometric and topological filtrations; see
the comments below on the counterexamples to Atiyah’s conjecture.

In this chapter, we give examples of p-groups for any prime number p such
that the geometric and topological filtrations differ. For p = 2, such examples
were recently given by Yagita [156, corollary 5.7]. Related to that, we give
examples of finite groups for which the cycle map from the mod p Chow
ring to mod p cohomology is not injective. The examples build upon Vistoli’s
description of the Chow ring of the classifying space of PGL(p) for a prime
number p [143].

15.1 Summary

See Section 14.2 for the definitions of the geometric and topological filtrations
of the representation ring R(G).

For any prime number p, we give p-local examples of groups for which
the geometric and topological filtrations differ. Our simplest example is the
group (SL(p)2/(Z/p)) × Z/p for any prime p. Seeking examples among finite
groups, we find that the two filtrations differ for the 2-group 21+4

+ × Z/2. For p

odd, we find a more complicated p-group for which the two filtrations differ:
G = (H1 × H2)/(Z/p) × Z/p, where H1 = Z/p � (Z/p2)p−1 ⊂ SL(p) and
H2 = Z/p � (Z/p)2 ⊂ SL(p).

Atiyah conjectured that the topological filtration of the representation ring
was equal to the γ -filtration, [6]. See Section 14.2 for the definition of the

185
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γ -filtration, which is purely algebraic. Atiyah’s conjecture was disproved by
Weiss, Thomas, and (for p-groups) Leary and Yagita [93]. Since

F i
γ R(G) ⊂ F i

geomR(G) ⊂ F 2i
topR(G),

the statement here (that the geometric and topological filtrations can differ)
strengthens Leary-Yagita’s result. Both the geometric and topological filtrations
are preserved by transfers, in contrast to the γ -filtration. That makes it hard to
distinguish the geometric and topological filtrations.

15.2 Positive results

We show that the geometric and topological filtrations of the representation
ring agree in low degrees. The result (Lemma 15.2) is optimal, as we see in
Theorems 15.7 and 15.13.

Write Zp for the ring of p-adic integers.

Lemma 15.1 Let G be a finite group scheme over a field k, and let p be a prime
number invertible in k. Then the cycle map (CH 2BG)(p) → H 4

et(BG, Zp(2))
is injective, with image the Zp-submodule generated by Chern classes of rep-
resentations. For k = C, CH 2BG → H 4(BG, Z) is injective, with image the
subgroup generated by Chern classes of complex representations.

By contrast, for every prime number p there are p-groups G such that
CH 3BGC → H 6(BG, Z) is not injective. The example G = 21+4

+ × Z/2 was
given in [137, section 5], and we give examples for any p in Lemma 15.3 and
Theorem 15.7.

Proof This was proved for k = C in [138, corollary 3.5], by arguments of
Bloch and Colliot-Thélène using the Merkurjev-Suslin theorem. For conve-
nience, we give the argument in terms of the (more general, and now known)
Beilinson-Lichtenbaum conjecture.

The etale cohomology H ∗
et(k, Zp(2)) splits off as a summand from

H ∗
et(BG, Zp(2)), using the two morphisms EG → BG → Spec k whose com-

position induces an isomorphism on etale cohomology. Likewise, the motivic
cohomology of k splits off as a summand from that of BG.

Let G have order pr times a number prime to p. We have a transfer map from
the etale cohomology of EG to that of BG, since EG → BG is approximated
by finite morphisms of smooth varieties. The composition of pullback and
pushforward is multiplication by |G| on the etale cohomology of BG. Therefore
the summand of H 3

et(BG, Zp(2)) that pulls back to zero in H 3
et(k, Zp(2)) is killed

by |G| and hence by pr .
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Consider the commutative diagram

H 2
M (BG, Z/p2(2))

βr

��

��

H 3
M (BG, Z(2))

pr

��

��

H 3
M (BG, Z(2))

��

H 2
et(BG, Z/p2(2))

βr

�� H 3
et(BG, Zp(2))

pr

�� H 3
et(BG, Zp(2)).

By the previous paragraph, any element v of H 3
et(BG, Zp(2)) in the sum-

mand besides H 3
et(k, Zp(2)) is the Bockstein βr of some element w of

H 2
et(BG, Z/pr (2)). By the Beilinson-Lichtenbaum conjecture (Theorem 6.9),

w is in the image of an element x of motivic cohomology, H 2
M (BG, Z/pr (2)).

Then βrx is in H 3
M (BG, Z(2)) and maps to the given element v in

H 3
et(BG, Zp(2)).
Now let z be an element of (CH 2BG)(p) = H 4(BG, Z(p)(2)) that maps to

zero in H 4
et(BG, Zp(2)). Consider the commutative diagram

H 3
M (BG, Z(p)(2)) ��

��

H 3
M (BG, Z/p2(2))

βr

��

��

H 4
M (BG, Z(p)(2))

pr

��

��

H 4
M (BG, Z(p)(2))

��

H 3
et(BG, Zp(2)) �� H 3

et(BG, Z/p2(2))
βr

�� H 4
et(BG, Zp(2))

pr

�� H 4
et(BG, Zp(2)).

We know that z is killed by |G|, hence by pr . So z is the Bockstein βr of some
element y of H 3

M (BG, Z/pr (2)). We can assume that y is in the summand
other than H 3

M (k, Z/pr(2)). Let t be the image of y in H 3
et(BG, Z/pr (2)). The

Bockstein of t in H 4
et(BG, Zp(2)) is zero, by our assumption on z. So t is the

image of some element v of H 3
et(BG, Zp(2)). Again, we can assume that v is in

the summand other than H 3
et(k, Zp(2)). By the previous paragraph, v is in the

image of some element q of H 3
M (BG, Zp(2)). Map q into H 3

M (BG, Z/pr (2));
by injectivity of H 3

M (BG, Z/pr (2)) → H 3
et(BG, Z/pr (2)) (another application

of Beilinson-Lichtenbaum, Theorem 6.9), the image of q is equal to y in
H 3

M (BG, Z/pr(2)). Therefore the original element z (the Bockstein of y) in
(CH 2BG)(p) is zero, as we want.

We know that CH 2BG is generated by Chern classes (Theorem 2.25). That
completes the proof for an arbitrary field k. The statements about k = C follow
from the isomorphism between completed etale cohomology and ordinary
cohomology with Zp coefficients [104, theorem III.3.12].

Lemma 15.2 Let G be a finite group, viewed as an algebraic group over C.
Then F i

geomR(G) = F 2i
topR(G) for i ≤ 3.

Proof We have gr0
geomR(G) = CH 0BG = Z and gr0

topR(G) = H 0(BG, Z).
Since CH 0BG maps isomorphically to H 0(BG, Z), we have F 1

geomR(G) =
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F 2
topR(G). Next, gr1

geomR(G) = CH 1BG and gr2
topR(G) is a subgroup of

H 2(BG, Z), by Theorem 2.25 and inspection of the Atiyah-Hirzebruch spec-
tral sequence (Theorem 14.2). But CH 1BG (= Hom(G, C∗), by Lemma 2.26)
maps isomorphically to H 2(BG, Z). It follows that gr1

geomR(G) → gr2
topR(G)

is an isomorphism, so that F 2
geomR(G) = F 4

topR(G). At the same time, we have
proved the well-known fact that gr2

topR(G) is equal to H 2(BG, Z).
Next, we have a commutative diagram

CH 2BG ��

��

gr2
geomR(G)

��

H 4(BG, Z)perm
�� gr4

topR(G),

where H 4(BG, Z)perm denotes the subgroup of permanent cycles in H 4(BG, Z)
for the Atiyah-Hirzebruch spectral sequence, that is, the kernel of all differen-
tials. The top horizontal map is an isomorphism by Theorem 2.25, and the right
vertical map is surjective since F 2

geomR(G) = F 4
topR(G). On the other hand, the

left vertical map is injective by Lemma 15.1, and the bottom map is an iso-
morphism by inspection of the Atiyah-Hirzebruch spectral sequence. (The only
possible differential into H 4(BG, Z) would come from H 1(BG, Z), which is
zero.) Therefore, the map from upper left to lower right group is injective and
surjective, hence an isomorphism. It follows that all the maps shown are iso-
morphisms. In particular, gr2

geomR(G) maps isomorphically to gr4
topR(G), and

so F 3
geomR(G) = F 6

topR(G).

15.3 Examples at odd primes

In this section, we show that the geometric and topological filtrations of the
representation ring can differ p-locally for p odd. Our examples are products
with Z/p, as suggested by the following lemma.

Lemma 15.3 Let p be a prime number. Let G be a complex algebraic group
such that the image of (CH 2BG)(p) → H 4(BG, Z(p)) is not a summand. Then
CH 3B(G × Z/p) → H 6(B(G × Z/p), Z) is not injective. Also, if p is odd,
then

F 4
geomR(G × Z/p) � F 8

topR(G × Z/p).

Note that the map CH 2BG → H 4(BG, Z) is injective, with image the sub-
group generated by Chern classes c2 of representations of G, by Lemma 15.1.
So we can rephrase the assumption by saying that the Chern subgroup of
H 4(BG, Z) is not a summand, p-locally.
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Proof The assumption implies that CH 2(BG)/p → H 4(BG, Fp) is not
injective. Let H = G × Z/p. By the Künneth formulas for Chow groups
(Lemma 2.12) and for cohomology, it follows that (CH 3BH )(p) →
H 6(BH, Z(p)) is not injective. Now suppose that the prime number p is
odd. Then the natural surjection CH 3BH → gr3

geomR(H ) is an isomorphism
p-locally, by Riemann-Roch [138, proof of corollary 3.2]; more generally,
this holds in degrees at most p. The group gr6

topR(H ) is a subquotient of
H 6(BH, Z), since the topological filtration of R(H ) is the filtration associated
to the Atiyah-Hirzebruch spectral sequence (Theorem 14.2). Therefore, the
map gr3

geomR(H ) → gr6
topR(H ) is not injective p-locally. So

F 4
geomR(H ) � F 8

topR(H ).

The simplest complex algebraic group I know for which the Chern subgroup
of H 4(BG, Z) is not a summand is G = SO(4). The group SO(4) was used to
give examples of torsion algebraic cycles with unexpected behavior in [137].
Since SO(4) is isomorphic to SL(2)2/(Z/2), it makes sense to try the group
G = SL(p)2/(Z/p) to produce similar examples at an odd prime p, and indeed
we will see that this works. To be precise, we define G by dividing SL(p)2 by
the diagonal subgroup {(a, a) : a ∈ μp = Z(SL(p))}.

Theorem 15.4 Let p be a prime number, and let G = SL(p)2/(Z/p). Then
the Chern subgroup of H 4(BG, Z) is not a summand. Moreover, for p odd, the
geometric and topological filtrations of the representation ring of G × Z/p are
different. Explicitly,

F 4
geomR(G × Z/p) � F 8

topR(G × Z/p).

In fact, for p = 2, the geometric and topological filtrations of the represen-
tation ring of (SL(2)2/(Z/2)) × Z/2 = SO(4) × Z/2 are also different. The
proof is slightly more elaborate for p = 2, and so we prove that later as Theorem
15.13.

Proof The integral cohomology of BPGL(p) in degrees at most 5 is

Z 0 0 Z/p Z 0
0 1 2 3 4 5,

This follows from Vistoli [143, theorem 3.6], who computed the integral
cohomology of BPGL(p) in all degrees; since we only want the coho-
mology in degrees at most 5, a direct computation is not hard. Next,
the exact sequence 1 → SL(p) → G → PGL(p) → 1 given by projecting
G = SL(p)2/(Z/p) to the second factor gives a spectral sequence E2 =
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H ∗(BPGL(p),H ∗(BSL(p), Z)) ⇒ H ∗(BG, Z):

Z

		��
���

���
���



�
�

�
�

�
�

�
�

�
�

0 0 0

0 0 0 0

0 0 0 0 0

Z 0 0 Z/p Z 0

There are no possible differentials in this range. It follows that H 4(BG, Z)
is isomorphic to Z2 and the restriction map H 4(BG, Z) → H 4(BSL(p), Z) =
Zc2V is surjective, where V denotes the standard representation of SL(p). We
know that the image of CH 2BG → H 4(BG, Z) ∼= Z2 is a subgroup of finite
index, and that this is the subgroup spanned by Chern classes (Theorem 2.25).
So if we can show that the restriction map CH 2BG → CH 2BSL(p) = Zc2V

lands in Zpc2V , then CH 2BG is not a summand of H 4(BG, Z), as we want.
We need the following fact.

Lemma 15.5 Let W be an irreducible representation of the complex group
SL(p) with nontrivial central character. Then dim(W ) ≡ 0 (mod p).

Proof By Schur’s lemma, the center μp of SL(p) acts on W by a homo-
morphism α ∈ Hom(μp,Gm) = Z/p, which we call the central character of
W . We know that the determinant of W in Hom(SL(p),Gm) is trivial, since
Hom(SL(p),Gm) = 0. So the restriction det(W )|μp

is trivial. But this restric-
tion is equal to det(W |μp

) = αdim(W ). So if α is nontrivial, then dim(W ) ≡ 0
(mod p).

Now let W be any irreducible representation of G = SL(p)2/(Z/p), where
we divide out by the diagonal central subgroup Z/p. Then we can write W =
A ⊗ B, where A and B are irreducible representations of the two factors SL(p)
with inverse central characters. Restricting to the first factor of SL(p), we have
W |SL(p)

∼= A⊕ dim(B). If A has nontrivial central character, then so does B,
and so dim(B) is a multiple of p. We have c1A = 0 in CH 1BSL(p) = 0,
and so c2(W )|SL(p) = dim(B)c2A ≡ 0 (mod p) in CH 2BSL(p) = Zc2V . On
the other hand, if A has trivial central character, then we can view A as a
representation of PGL(p), and we can apply the following lemma.
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Lemma 15.6 The pullback map H 4(BPGL(p), Z) → H 4(BSL(p), Z) =
Zc2V is zero modulo p.

Proof This follows from Vistoli’s description of H ∗(BPGL(p), Z) [143,
section 14]. In more detail, an element of H ∗(BPGL(p), Z) maps by
restriction to the maximal torus to an Sp-invariant element of the ring
Z[y1 − y0, . . . , . . . , yp−1 − yp−2] ⊂ Z[y0, . . . , yp−1], where the symmetric
group Sp permutes the variables y0, . . . , yp−1. The Sp-invariants in degree
2 are the subgroup generated by an element γ2. Likewise, an element of
H ∗(BSL(p), Z) restricts to an Sp-invariant element of the quotient ring
Z[y0, . . . , yp−1]/(y0 + · · · + yp−1 = 0). Vistoli shows (in the equation “γk =
pk−1γ ′

k”) that the image of γ2 in the latter invariant ring is p times the class of
c2V = ∑

0≤i<j≤p−1 yiyj for p odd, up to sign. For p = 2, a shorter calculation
shows that the image of γ is 4 times the class of c2V up to sign, which is even
better.

Therefore, if A is a representation of SL(p) with trivial central character,
the class c2(A) ∈ CH 2BSL(p) = Zc2V is zero modulo p. This completes the
proof that the restriction to the first factor SL(p) of the second Chern class of any
representation A ⊗ B of G = SL(p)2/(Z/p) is zero in CH 2(BSL(p))/p. By
our earlier discussion, it follows that CH 2BG ⊂ H 4(BG, Z) is not a summand.
Theorem 15.4 is proved. (The fact that the geometric and topological filtrations
are different follows from Lemma 15.3.)

Thus, for every odd prime p, we have an example of a complex algebraic
group for which the geometric and topological filtrations of the representa-
tion ring are different, namely (SL(p)2/(Z/p)) × Z/p. We now want to give
examples among finite p-groups, for any odd prime number p. (We will give
examples among 2-groups later.) The idea is to find a big enough finite p-
subgroup S of SL(p)2/(Z/p) to make CH 2BS ⊂ H 4(BS, Z) not a summand.
Then the geometric and topological filtrations for the p-group S × Z/p are
different, by Lemma 15.10.

Theorem 15.7 Let G be an odd prime number, and let S be the p-group
(H1 × H2)/(Z/p), where H1 = Z/p � (Z/p2)p−1 ⊂ SL(p) and H2 is the
extraspecial p-group of order p3 and exponent p, H2 = Z/p � (Z/p)2 ⊂
SL(p). Then the geometric and topological filtrations of the representation
ring of S × Z/p are different. Explicitly,

F 4
geomR(S × Z/p) � F 8

topR(S × Z/p).

To clarify the definition of H1, let T denote the subgroup of diagonal matrices
in SL(p), so that T ∼= (Gm)p−1. Then the Weyl group N (T )/T is isomorphic
to the symmetric group Sp. In particular, using the subgroup Z/p ⊂ Sp, SL(p)
contains an extension of Z/p by T , which is a semidirect product Z/p � T
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for p odd. Writing A[n] for the subgroup of an abelian group A killed by n, it
follows that SL(p) contains Z/p � T [p2] ∼= Z/p � (Z/p2)p−1, which is the
subgroup we call H1.

Here both H1 and H2 contain the center Z/p of SL(p), and we define S

by dividing by the diagonal subgroup {(a, a) : a ∈ Z/p = Z(SL(p))}. Then it
is clear that S is a subgroup of SL(p)2/(Z/p). The group S is the smallest
p-group for odd p for which I was able to make the argument work, but there
are probably smaller examples.

The following lemma reduces the problem to one about H1.

Lemma 15.8 Let p be an odd prime number. Let H1 be a finite p-subgroup of
SL(p) that contains the center Z/p, and let H2 be the extraspecial p-group of
order p3 and exponent p, H2 = Z/p � (Z/p)2 ⊂ SL(p). Let V be the standard
representation of SL(p). Suppose that c2V ∈ CH 2BH1 ⊂ H 4(BH1, Z) is not
in the subgroup p CH 2BH1 + CH 2B(H1/(Z/p)) + H 4(BH1, Z)[p], where
M[p] denotes the subgroup of an abelian group M killed by p. Then the
p-group S = (H1 × H2)/(Z/p) has the property that the subgroup CH 2BS

of H 4(BS, Z) is not a summand. Moreover, the geometric and topological
filtrations of the representation ring are different for S × Z/p. Explicitly,

F 4
geomR(S × Z/p) � F 8

topR(S × Z/p).

Proof If CH 2BS is a summand of H 4(BS, Z), and if x ∈ H 4(BS, Z) is an
element such that px is in CH 2BS, then x is the sum of an element of CH 2BS

with an element of H 4(BS, Z)[p], as one checks immediately.
We know that S is a subgroup of SL(p)2/(Z/p). There is an element

x of H 4(B(SL(p)2/(Z/p)), Z) that restricts on the first factor SL(p) ⊂
SL(p)2/(Z/p) to the generator c2V of H 4(BSL(p), Z), by the proof of
Theorem 15.4. Apply the previous paragraph’s observation to the restric-
tion of x to H 4(BS, Z). We know that CH 2B(SL(p)2/(Z/p)) contains p

times H 4(B(SL(p)2/(Z/p)), Z), by pulling back from the two projections
to PGL(p), using that CH 2(PGL(p)) = H 4(BPGL(p), Z) by Vistoli [143,
corollary 3.5]. It follows that px belongs to CH 2B(SL(p)2/(Z/p)), and
so px restricted to S is in CH 2BS. Thus, to show that CH 2BS is not a
summand of H 4(BS, Z), it suffices to show that x is not in the subgroup
CH 2BS + H 4(BS, Z)[p] of H 4(BS, Z).

We know that the restriction of x to H1 is equal to c2V in CH 2BH1 ⊂
H 4(BH1, Z). So it suffices to show that c2V in H 4(BH1, Z) is not in

im(CH 2BS → CH 2BH1) + H 4(BH1, Z)[p].

We know that CH 2BS is generated by Chern classes (Theorem 2.25). We
therefore consider the complex representations of S and their restrictions to
H1. Since H2 is a p-group, every irreducible representation of H2 has degree a
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power of p. Also, every irreducible representation R of S = (H1 × H2)/(Z/p)
is the tensor product of an irreducible representation of H1 with an irreducible
representation of H2 having the inverse central character (because we divide
out by the diagonal subgroup {(a, a) : a ∈ Z/p} of H1 × H2). Finally, the
extraspecial p-group H2 has the property that the center of H2 is contained
in the commutator subgroup of H2, and so every 1-dimensional representation
of H2 has trivial central character. So the restriction of R to H1 is either a
representation of H1/(Z/p) or the direct sum of a multiple of p copies of a
representation of H1. In the second case, c2R belongs to pCH 2BH1. (This
uses that p is odd, so that c2(M⊕p) = pc2M + (

p
2

)
c2

1M for a representation M ,
where

(
p
2

)
is a multiple of p.) In the first case, c2R belongs to the image of

CH 2B(H1/(Z/p)).
Thus, if c2V in H 4(BH1, Z) is not in

pCH 2BH1 + CH 2B(H1/(Z/p)) + H 4(BH1, Z)[p],

then we have shown that CH 2BS is not a summand of H 4(BS, Z). By Lemma
15.3, it follows that the geometric and topological filtrations of the representa-
tion ring are different for the p-group S × Z/p.

We now prove the property of H1 we want.

Lemma 15.9 Let H1 = Z/p � (Z/p2)p−1 ⊂ SL(p). Then the element
c2V ∈ CH 2BH1 ⊂ H 4(BH1, Z) is not in the subgroup pCH 2BH1 +
CH 2B(H1/(Z/p)) + H 4(BH1, Z)[p].

Proof The maximal torus in GL(p) has Chow ring Z[y0, . . . , yp−1]. The
maximal torus in SL(p) has Chow ring a quotient of that ring, namely
Z[y0, . . . , yp−1]/(y0 + · · · + yp−1). In those terms, the subgroup (Z/p2)p−1

of H1 ⊂ SL(p) has Chow ring

Z[y0, . . . , yp−1]/(p2yi, y0 + . . . + yp−1).

The total Chern class of V restricted to (Z/p2)p−1 is (1 + y0) · · · (1 + yp−1),
and so

c2V |(Z/p2)p−1 =
∑

0≤i<j≤p−1

yiyj .

Writing this in terms of y0, . . . , yp−2 gives

c2V |(Z/p2)p−1 =
∑

0≤i<j≤p−2

yiyj −
( p−2∑

i=0

yi

)2

= −
p−2∑
i=0

y2
i −

∑
0≤i<j≤p−2

yiyj .
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Write R{ei : i ∈ I } for the free module over a ring R with basis elements ei .
Then we can view c2V as an element of CH 2B(Z/p2)p−1 = Z/p2{yiyj : 0 ≤
i ≤ j ≤ p − 2}.

We will show that c2V in H 4(BH1, Z) is not in the subgroup pCH 2BH1 +
CH 2B(H1/(Z/p)) + H 4(BH1, Z)[p] by restricting to H 4(BK, Z), where
K = (Z/p2)p−1. Since H 4(BK, Z) contains CH 2BK as a summand (as is
true for any abelian group), it suffices to show that the restriction of c2V

to CH 2BK is not in pCH 2BK + CH 2B(H1/(Z/p)) + (CH 2BK)[p]. Since
CH 2BK = Z/p2{yiyj : 0 ≤ i ≤ j ≤ p − 2} is a sum of copies of Z/p2, it
suffices to show that the restriction of c2V to CH 2(BK)/p = Fp{yiyj : 0 ≤
i ≤ j ≤ p − 2} is not in the image of CH 2B(H1/(Z/p)).

We know that CH 2 of H1/(Z/p) is generated by Chern classes of complex
representations, by Theorem 2.25. Since H1/(Z/p) = Z/p � (K/(Z/p)) has
an abelian normal subgroup of index p, every complex irreducible represen-
tation of H1/(Z/p) is either 1-dimensional or induced from a 1-dimensional
representation of K/(Z/p) [124, proposition 24].

In terms of the inclusion of K = (Z/p2)p−1 in the maximal torus of SL(p),
the subgroup Z/p ⊂ K is the center of SL(p). The Chow ring of the quotient
group K/(Z/p) ∼= (Z/p2)p−2 × Z/p is Z[z0, . . . , zp−3, w]/(p2zi = 0, pw =
0), where zi 	→ yi+1 − yi for 0 ≤ i ≤ p − 3 and w 	→ py0. The Chern class c1

of any 1-dimensional representation of H1/(Z/p) = Z/p � (K/(Z/p)) must
be an element of the subgroup of Z/p-invariants in CH 1B(K/(Z/p)), which
we compute is generated by py0 + 2py1 + · · · + (p − 1)pyp−2. In particular,
such classes pull back to zero in (CH ∗BK)/p.

It remains to analyze the Chern class c2 of a representation W of
H1/(Z/p) = Z/p � (K/(Z/p)) induced from a 1-dimensional representation
L of K/(Z/p). By Lemma 13.9, c2W is the transfer of some element u in
CH 2B(K/(Z/p)) (plus a term that restricts to zero on K/(Z/p), in the case
p = 3). Write tr = 1 + σ + · · · + σp−1 acting on K and on K/(Z/p). We
deduce that c2W restricted to K/(Z/p) can be written as the trace tr(u) for some
u ∈ CH 2BK/(Z/p).

Thus it suffices to show that c2V restricted to (CH 2BK)/p is not in the
image of the subgroup tr(CH 2B(K/(Z/p))). This is somewhat subtle, because
c2V is in the image of CH 2B(K/(Z/p)). I don’t have a general explanation for
this, but we can check it by calculation. Namely, the image of the Chow ring of
K/(Z/p) in the mod p Chow ring of K is the subring of Fp[y0, . . . , yp−1]/(y0 +
· · · + yp−1) generated by y1 − y0, . . . , yp−2 − yp−3. And we can rewrite c2V ,
computed earlier as a polynomial in y0, . . . , yp−2, as a polynomial in y1 −
y0, . . . , yp−2 − yp−3. Explicitly:

c2V |K = −
p−2∑
i=1

(yi − y0)2 −
∑

1≤i<j≤p−2

(yi − y0)(yj − y0).
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Let Wp denote the Fp-vector space with basis y0, . . . , yp−1, and let Wp−1 be
the subspace of Wp spanned by y1 − y0, . . . , yp−1 − yp−2. Let Wp−2 denote the
image of CH 1B(K/(Z/p)) → (CH 1BK)/p, which is the quotient of Wp−1

by the line W1 spanned by y0 + · · · + yp−1 = 0. These vector spaces are all
representations of the symmetric group Sp, and hence of the subgroup Z/p, by
permuting y0, . . . , yp−1.

Define a linear map S2Wp → Fp by mapping y2
i to 1 for all i and yiyj to 0

for all i �= j , and write f for the restriction of this map to S2Wp−1. Clearly the
map f is Z/p-invariant (and even Sp-invariant, although we do not use that).
We compute that

f ((y0 + · · · + yp−1)(yi+1 − yi)) = 0

for all i, and so f factors through the surjection S2Wp−1 � S2Wp−2. Thus we
have a Z/p-invariant linear map f : S2Wp−2 → Fp.

Since f is Z/p-invariant, we have f (tr(y)) = 0 for all y ∈ S2Wp−2 =
im(CH 2B(K/Z/p) → (CH 2BK)/p). Therefore, to show that c2V is not in
the image of the trace map on S2Wp−2, it suffices to show that f (c2V ) ∈ Fp

is not zero. We gave a formula above for c2V as an element of S2Wp−2

(that is, as a polynomial in the elements yi+1 − yi , modulo the relation
y0 + · · · + yp−1 = 0):

c2V = −
p−2∑
i=1

(yi − y0)2 −
∑

1≤i<j≤p−2

(yi − y0)(yj − y0).

It follows that

f (c2V ) = −2(p − 2) −
(

p − 2

2

)
= (p + 1)(p − 2)/2

�= 0 ∈ Fp.

So c2V in (CH 2BK)/p is not in the image of tr(CH 2B(K/(Z/p))).
This completes the proof that the subgroup CH 2BS of H 4(BS, Z) is not

a summand. By Lemma 15.3, the geometric and topological filtrations on the
representation ring of S × Z/p are different.

15.4 Examples for p = 2

In order to show that the geometric and topological filtrations of the represen-
tation ring can differ 2-locally, it seems that we need a little more homotopy
theory, notably Steenrod operations. We formulate the method p-locally for any
prime p, although our applications only involve p = 2. Yagita has also shown
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that the geometric and topological filtrations can differ 2-locally, namely for
the extraspecial group 21+6

+ [156, corollary 5.7].

Lemma 15.10 Let p be a prime number. Let G be a complex alge-
braic group such that CHp(BG)/p → H 2p(BG, Fp) is not injective. Then
CHp+1B(G × Z/p) → H 2p+2(B(G × Z/p), Z) is not injective. If in addition
the abelianization of G is killed by p, then

Fp+2
geomR(G × Z/p) � F

2p+4
top R(G × Z/p).

Proof Let u ∈ CHpBG be an element that is nonzero in CHp(BG)/p
but maps to zero in H 2p(BG, Fp). Let K = G × Z/p, and let v ∈ CH 1BK

be the pullback of a generator of CH 1BZ/p ∼= Z/p. By the Künneth for-
mulas for Chow groups (Lemma 2.12) and for cohomology, it follows
that (CHp+1BK)(p) → H 2p+2(BK, Z(p)) is not injective. Explicitly, uv is a
nonzero element of the kernel.

The natural surjection CHiBK → grigeomR(K) is an isomorphism p-locally
for i ≤ p, by Riemann-Roch (Theorem 2.25). For i = p + 1, this map need
not be an isomorphism, but we can compute the kernel, as follows.

Lemma 15.11 For any smooth scheme X over the complex numbers and any
prime number p, there is a natural operation

βP 1 : H 3(X, Z)p-power torsion → CHp+1X.

For any complex algebraic group G, we have

CHp+1BG/βP 1H 3(BG, Z) ∼= grp+1
geomR(G).

Proof The operation βP 1 : H 3(X, Z)p-power torsion → CHp+1X comes from
Voevodsky’s Steenrod operations (section 6.3) together with the Bloch-Kato
conjecture proved by Voevodsky and Rost. This is a remarkable operation,
since it produces algebraic cycles from purely topological input. As a first step,
we write βP 1 for the composition

H 3(X, Z(2)) → H 3(X, Z/p(2))
P 1−→ H 2p+1(X, Z/p(p + 1))

β−→ H 2p+2(X, Z(p + 1)) = CHp+1X,

which clearly maps into the p-torsion subgroup CHp+1X[p].
Next, the Beilinson-Lichtenbaum conjecture (Theorem 6.9) gives an isomor-

phism from ordinary to motivic cohomology,

H 2(X, Z/pr ) ∼= H 2
M(Z, Z/pr(2)).

Thus, for a complex scheme X, βP 1 gives a map from the ordinary
cohomology H 2(X, Z[1/p]/Z) to CHp+1[p] (identify the domain with
lim−→r

H 2(X, Z/pr) ∼= lim−→r
H 2

M (X, Z/pr (2)), apply the Bockstein to get to

motivic cohomology H 3
M(X, Z(2)), and apply βP 1 as before). Finally, this
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map vanishes on the image of H 2(X, Z[1/p]) in H 2(X, Z[1/p]/Z), because it
lands in a group killed by p. By the exact sequence

H 2(X, Z[1/p]) → H 2(X, Z[1/p]/Z) → H 3(X, Z) → H 3(X, Z[1/p]),

we have a natural map βP 1 from H 3(X, Z)p-power torsion to (CHp+1X)[p], as
we want.

In view of the exact sequence of motivic cohomology groups

H 2(X, Z/pr(2)) → H 3(X, Z(2)) −→
pr

H 3(X, Z(2)),

the image of βP 1 on the ordinary cohomology H 3(X, Z)p-power torsion is equal
to the image of βP 1 on motivic cohomology H 3(X, Z(2))p-power torsion. We now
specialize to the case X = BG, for a finite group G. (Any given motivic coho-
mology group of BG can be computed on a suitable finite-dimensional approx-
imation U/G, where U is an open subset of a representation of G on which
G acts freely.) Using transfers, we see that H 3(BG, Z(2)) = H 3(C, Z(2)) ⊕ K

where K is an abelian group killed by the order of G. Moreover, the opera-
tion βP 1 vanishes on H 3(C, Z(2)), because CHp+1(Spec C) = 0. So all that
matters is the torsion part. We conclude that the image of βP 1 on the motivic
cohomology H 3(BG, Z(2)) is equal to the image of βP 1 on the ordinary coho-
mology H 3(BG, Z)p-power torsion.

The motivic Atiyah-Hirzebruch spectral sequence from motivic cohomology
to algebraic K-theory has the following form [95]:

Theorem 15.12 Let X be a smooth scheme over a field k. Then there is a
spectral sequence

E
ij
2 = Hi(X, Z(−j/2)) ⇒ K−i−jX.

The E2 term looks like:

H 0(X, Z(0)) 0 0 0 0

0 0 0 0 0

H 0(X, Z(1)) H 1(X, Z(1))

�����
����

����
����

����
����

����
����

�
H 2(X, Z(1)) 0 0

0 0 0 0 0

H 0(X, Z(2)) H 1(X, Z(2)) H 2(X, Z(2)) H 3(X, Z(2)) H 4(X, Z(2))

...
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The groups on the top diagonal are the Chow groups CHiX = H 2i(X, Z(i)).
If we localize the spectral sequence at a prime number p, then all differentials
are zero except da(2p−2)+1 for positive integers a, by the splitting of p-local
algebraic K-theory into p − 1 summands given by Adams operations [157,
proposition 1.2].

So the first possible p-local differential is

d2p−1 : Hi(X, Z(p)(j )) → Hi+2p−1(X, Z(p)(j + p − 1)).

This is in fact equal to −βP 1; most of the argument was given by Yagunov
[157]. Indeed, by naturality of the spectral sequence and its stability under
suspensions, it suffices to compute this differential for the universal class on
the motivic Eilenberg-MacLane spectrum HZ(p)(j ). Moreover, this differential
is killed by p [95], and so the differential on the universal class is the Bock-
stein of some element of H 2p−2(HZ(p)(j ), Z/p(j + p − 1)). By Voevodsky’s
calculation of the motivic Steenrod algebra over the complex numbers, such
a class is a polynomial in the Bockstein and the operations P i [146, theorem
3.49]. By comparison with topology, where the corresponding differential in
the Atiyah-Hirzebruch spectral sequence is well known [8, proposition 7.2],
this operation in degree 2p − 2 must be equal to −P 1. We conclude that the
first p-local differential in the motivic Atiyah-Hirzebruch spectral sequence is
equal to −βP 1.

The geometric filtration on K0X, for a smooth scheme X over C, is the
filtration associated to this spectral sequence. (The groups contributing to K0X

in the spectral sequence are those on the top diagonal, the Chow groups.) For a
finite group G, taking X = BG over C, the ring K0BG is the completed repre-
sentation ring of G, by Merkurjev [101, corollary 4.4], [138, theorem 3.1]. All
differentials are zero on Chow groups (by the form of the spectral sequence), and
there are no possible p-local differentials into CHiBG for i ≤ p; this proves
again Theorem 2.25’s isomorphism (CHiBG)(p)

∼= grigeomR(G)(p) for i ≤ p.
We can now add that the only possible p-local differential into CHp+1BG is

d2p−1 : H 3(BG, Z(2)) → H 2p+2(BG, Z(p + 1)) = CHp+1BG.

This map is equal to −βP 1. As we have discussed, its image is equal to
the image of the map βP 1 : H 3(BG, Z) → CHp+1BG. (For any complex
algebraic group G, H ∗(BG, Z) is torsion in odd degrees. So we can think of
βP 1 as being defined on all of H 3(BG, Z), not just on the p-power torsion
subgroup.) We conclude that

grp+1
geomR(G)(p)

∼= (CHp+1BG)(p)/βP 1H 3(BG, Z).

We return to the proof of Lemma 15.10. We know that the product group K =
G × Z/p has (CHp+1BK)(p) → H 2p+2(BK, Z(p)) not injective. Explicitly,
we defined a nonzero element uv of the kernel. Since (gr

2p+2
top R(K))(p) is a



15.4 Examples for p = 2 199

subquotient of H 2p+2(BK, Z(p)), it follows that

(CHp+1BK)(p) → (gr
2p+2
top R(K))(p)

is not injective. Again, uv is a nonzero element of the kernel.
This map factors through grp+1

geomR(K)(p), and the subgroup of
(CHp+1NK)(p) that maps to zero in that group is βP 1H 3(BK, Z) by Lemma
15.11. So to show that grp+1

geomR(K)(p) → gr2p+2
top R(K)(p) is not injective, it

remains to show that uv ∈ CHp+1BK is not in the image of H 3(BK, Z).
By the Künneth formula for integral cohomology, we have

H 3(BK, Z) ∼= H 3(BG, Z) ⊕ TorZ
1 (H 2(BG, Z),H 2(BZ/p, Z)).

We assumed that the abelianization of G is killed by p. It follows that

β : H 1(BG, Fp) → H 2(BG, Z)

is an isomorphism. Using that, we can describe the Tor term explicitly as
follows. Let x1, . . . , xm be a basis for H 1(BG, Fp) and w a generator of
H 1(BZ/p, Fp) ∼= Fp; we can assume that βw = v. Then

H 3(BK, Z) = H 3(BG, Z) ⊕ Fp{β(x1w), . . . , β(xmw)}.
The operation βP 1 sends H 3(BG, Z) ⊂ H 3(BK, Z) into CHp+1BG ⊂

CHp+1BK , by functoriality. We can also compute βP 1 on the elements β(xiw),
using the formal properties of Voevodsky’s Steenrod operations (Section 6.3):

βP 1(β(xiw)) = βP 1((βxi)w − xiβw)

= β((βxi)
pw − xi(βw)p)

= (βxi)
pβw − (βxi)(βw)p

= (βxi)
pv − (βxi)v

p.

Now we can see that uv is linearly independent of βP 1H 3(BK, Z), even
in CH ∗(BK)/p. We have CH ∗(BK)/p ∼= CH ∗(BG)/p[v] by the Chow
Künneth formula, and we know that u is nonzero in CHp(BG)/p. Also,
the elements βx1, . . . , βxm are linearly independent in CH 1(BG)/p =
H 2(BG, Z)/p. So if uv = βP 1(s + ∑

aiβ(xiw)) for some s ∈ H 3(BG, Z)
and ai ∈ Fp, then all ai must be zero (otherwise the right side would have
nonzero coefficient of vp). But then the right side has zero coefficient of v, a
contradiction.

Thus uv ∈ (CHp+1BK)[p] is not in the image of H 3(BK, Z) and hence
maps to a nonzero element of the kernel of grp+1

geomR(K) → gr2p+2
top R(K).

Theorem 15.13 The Chern subgroup of H 4(BSO(4), Z) is not a summand.
Moreover, the geometric and topological filtrations of the representation ring
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of SO(4) × Z/2 are different. Explicitly,

F 4
geomR(SO(4) × Z/2) � F 8

topR(SO(4) × Z/2).

Likewise, the extraspecial 2-group

H = 21+4
+ = 〈u1, u2, u3, u4 : u2

i = 1, [u1, u2] = [u3, u4] = v, v central,

[u1, u3] = [u1, u4] = [u2, u3] = [u2, u4] = 1〉
has

F 4
geomR(H × Z/2) � F 8

topR(H × Z/2).

Proof The abelianization of SO(4) is trivial, hence killed by 2. By
Lemma 15.10, the conclusion on SO(4) follows if we can show that
CH 2(BSO(4))/2 → H 4(BSO(4), F2) is not injective. That holds by a calcu-
lation with Steenrod operations: we have H 4(BSO(4), Z) ∼= Z2, but the Euler
class in this group has nonzero image under the odd-degree mod 2 Steenrod
operation Sq3, and hence is not in the image of CH 2BSO(4) [137, section 5].
On the other hand, CH 2BSO(4) maps onto H 4(BSO(4), Z) tensor Q, because
H ∗(BG, Q) is generated by Chern classes for every complex algebraic group
G. It follows that CH 2(BSO(4))/2 → H 4(BSO(4), F2) is not injective.

The abelianization of the subgroup H = 21+4
+ ⊂ SO(4) is isomorphic to

(Z/2)4, which is killed by 2. By Lemma 15.10, the conclusion on H follows if
we can show that CH 2(BH )/2 → H 4(BH, F2) is not injective. Since c2V in
CH 2BSO(4) maps to zero in H 4(BSO(4), F2), its restriction to CH 2BH maps
to zero in H 4(BH, F2). Finally, c2V is nonzero in CH 2(BH )/2, as shown in
[137, section 5] by computing that c2V has nonzero image in MU∗BH ⊗MU ∗

F2. Thus CH 2(BH )/2 → H 4(BH, F2) is not injective.
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The Eilenberg-Moore Spectral Sequence in
Motivic Cohomology

In this chapter, we construct an Eilenberg-Moore spectral sequence in motivic
cohomology for schemes with group actions. In topology, for a space X with
an action of a topological group G, there is a fibration

X → X//G → BG,

and the Eilenberg-Moore spectral sequence converges to the cohomology of
the fiber X, given the cohomology of the base BG and total space X//G =
(X × EG)/G [98, chapter 7].

We prove a spectral sequence of the same form for motivic cohomology,
when X is a smooth scheme with an action of a split reductive group. The spec-
tral sequence was defined by Krishna with rational coefficients [82, theorem
1.1]. Our method is essentially the same, but we give an integral statement as
far as possible. Other related results include Merkurjev’s construction of the
Eilenberg-Moore spectral sequence of a group action for algebraic K-theory
[101, theorem 4.3] and for K-cohomology [102, section 3a].

Our Eilenberg-Moore spectral sequence works only after inverting the torsion
index, a positive integer associated to G. (If G is GL(n) or a torus, then the
torsion index is 1, and so the spectral sequence computes motivic cohomology
integrally.) This is unavoidable: the spectral sequence does not hold in the
same form as in topology without inverting the torsion index, by Remark 16.7.
One could hope for some more general form of the Eilenberg-Moore spectral
sequence in motivic homotopy theory.

The relevance of the Eilenberg-Moore spectral sequence for this book is
that it clarifies the relation between the motivic cohomology of the classifying
space BG and the finite-dimensional variety GL(n)/G, for any affine group
scheme G with a faithful representation G → GL(n). A basic result in this
book, Theorem 5.1, which relates the Chow groups of BG and GL(n)/G, is
an easy special case of the spectral sequence (Theorem 16.6).

201
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16.1 Motivic cohomology of flag bundles

In this section, we show that computing equivariant motivic cohomology with
respect to a split reductive group G reduces to the case of a torus, after inverting
the torsion index of G. This is close to several results in the literature: Edidin-
Graham [38, theorem 6] is a similar statement for Chow groups, and Asok-
Doran-Kirwan [5, proposition 3.9] gives the result here on motivic cohomology
after tensoring with the rationals.

Theorem 16.1 Let G be a split reductive group over a field k. Let B be
a Borel subgroup of G, and let t(G) be the torsion index of G. Then there
are elements e1, . . . , em of CH ∗(BB)[1/t(G)] that restrict to a basis for
CH ∗(G/B)[1/t(G)] as a free module over Z[1/t(G)]. Moreover, for any
smooth scheme X of finite type over k with an action of G, e1, . . . , em restrict to
a basis for the motivic cohomology of X//B as a free module over the motivic
cohomology of X//G.

A reductive group over a field k is split if it contains a maximal torus that
is split over k. (So every reductive group over an algebraically closed field
is split.) Chevalley made the remarkable discovery that the classification of
split reductive groups is the same over all fields [18, 32]. In particular, split
semisimple groups up to isogeny are classified by Dynkin diagrams.

We recall Grothendieck’s definition of the torsion index [54, 139]. Let G be
a split reductive group G over a field k. Let B be a Borel subgroup of G (that
is, a maximal smooth connected solvable k-subgroup). Each homomorphism
B → Gm determines a line bundle on the flag manifold G/B. (The group
Hom(B,Gm) is called the weight lattice of G.) Consider the subring S of
CH ∗(G/B) generated by the first Chern classes of these line bundles. Since
CH ∗BB is the polynomial ring over Z generated by the weight lattice, we
can also say that S is the image of the natural homomorphism CH ∗BB →
CH ∗(G/B). Let N be the dimension of G/B; then CHN (G/B) is isomorphic
to Z, generated by the class of a point. The torsion index t(G) is the least
positive integer such that S contains t(G) times the class of a point.

Proof Equivariant motivic cohomology is defined as the motivic cohomology
of suitable G-spaces on which G acts freely with quotient a scheme. So it
suffices to prove the theorem when G acts freely on X, with quotient Y = X/G

a smooth scheme over k.
The flag manifold G/B has an algebraic cell decomposition, the Bruhat

decomposition [18, theorem 14.12, proposition 21.2.9]. As a result, the Chow
ring CH ∗(G/B) is a finitely generated free abelian group. Demazure gave a
combinatorial description of the Chow ring of G/B. In particular, he showed
that the natural homomorphism CH ∗BB → CH ∗(G/B) becomes surjective
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after inverting the torsion index t(G) [31, proposition 5]. Let R = Z[1/t(G)].
It follows that there are elements e1, . . . , em of CH ∗(BB) ⊗Z R that restrict to
a basis for CH ∗(G/B) ⊗Z R.

We now return to the situation where G acts freely on a smooth scheme X

over k with quotient scheme Y = X/G. More generally, let X → Y be a princi-
pal G-bundle over a scheme Y of finite type over k; we have to consider singular
schemes for our induction. We have a smooth proper morphism X/B → X/G

with fiber G/B. Define a homomorphism of motivic homology groups
(that is, higher Chow groups) ϕY : H∗(X/G,R(∗))⊕N → H∗(X/B,R(∗)) by
(x1, . . . , xN ) 	→ ∑

eiπ
∗(xi). For a trivial principal bundle X = Y ×k G over

Y , ϕ is an isomorphism, since G/B has a cell decomposition.
Next, let f : X → Y be a principal G-bundle that is trivialized by a finite flat

morphism Z → Y of degree d. Then ϕZ is an isomorphism. Let XZ = X ×Y Z;
then we have finite flat morphisms f : XZ/B → X/B and f : XZ/G = Z →
X/G = Y of degree d. For both maps, f∗f ∗ equals multiplication by d on
motivic homology. It follows that ϕY becomes an isomorphism after inverting
d.

Fix a prime number p not dividing t(G). It suffices to show that ϕ is an
isomorphism after localizing at p. By Grothendieck’s interpretation of the
torsion index, every principal G-bundle over a field is trivialized by a finite
separable extension field of degree prime to p [54, theorem 2]. Therefore, for
any principal G-bundle over a k-variety Y , there is a nonempty open subset
U ⊂ Y such that G is trivialized on some variety V with a finite etale morphism
V → U of degree prime to p. So ϕU is an isomorphism p-locally.

Let S be a closed subscheme of a k-scheme Y , with U = Y − S. By the
localization sequence for motivic homology, ϕY is an isomorphism if ϕU and ϕS

are isomorphisms. By induction on dimension, the previous paragraph implies
that ϕY is an isomorphism p-locally for every k-scheme Y of finite type. Since p

was any prime not dividing t(G), we have shown that ϕ : H∗(X/G,R(∗))⊕N →
H∗(X/B,R(∗)) = H∗(X/T,R(∗)) is an isomorphism, where R = Z[1/t(G)].

16.2 Leray spectral sequence for a divisor with
normal crossings

In this section, we construct a spectral sequence converging to the motivic
cohomology of the complement of a divisor with normal crossings in a smooth
scheme. Deligne constructed the analogous spectral sequence for the ordinary
cohomology of complex varieties [30, equation 3.2.4.1]. (The weight filtration
of a smooth complex variety U is defined as the filtration of H ∗(U, Q) given
by this spectral sequence, using any simple normal crossing compactification
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of U .) In that topological setting, the spectral sequence can be viewed as the
Leray spectral sequence of the inclusion from U into its compactification. One
could ask for a motivic Leray spectral sequence in much greater generality than
Lemma 16.2.

All the spectral sequences we define have the standard cohomological num-
bering, meaning that the differential dr on the Er term has bidegree (r, 1 − r).

Lemma 16.2 Let ∪n
i=1Di be a divisor with simple normal crossings in a

smooth scheme E over a field k. For each subset I ⊂ {1, . . . , n}, let DI =
∩i∈IDi ⊂ E. Then, for each integer j , there is a second-quadrant spectral
sequence

E
pq
1 = ⊕|I |=−pH

2p+q
M (DI, Z(j + p)) ⇒ H

p+q
M (E − ∪n

i=1Di, Z(j )).

The E1 term is concentrated in rows 0 to 2j and in columns −n to 0.

Proof We write the proof in the language of higher Chow groups (section
6.2). Thus we want to define a spectral sequence, for every integer j :

E
pq
1 = ⊕|I |=−pCHj+p(DI , 2j − q) ⇒ CHj (E − ∪n

i=1Di, 2j − p − q).

For each integer j and scheme X over k, let zj (X, ∗) be Bloch’s chain complex
of abelian groups, whose homology is CHj (X, ∗). For D ⊂ X a divisor, we
have a pushforward map zj−1(D, ∗) → zj (X, ∗). For 1 ≤ i1 < · · · < ia ≤ n

and 1 ≤ b ≤ a, define a map

zj−a(Di1,...,ia , ∗) → zj−a+1(Di1,...,îb,...,ia
, ∗)

as (−1)b times the pushforward map. Combining these gives a double
complex

0 → zj−n(D1···n, ∗) → · · · → ⊕n
i=1z

j−1(Di, ∗) → zj (E, ∗) → 0,

where the summands are indexed by the subsets of {1, . . . , n}. There is an
obvious map from this double complex to zj (E − ∪Di, ∗), given by the flat
pullback map on zj (E, ∗). If we can show that this map is a quasi-isomorphism,
then we have the desired spectral sequence converging to CHj (E −
∪Di, ∗), as one of the standard spectral sequences associated to a double
complex.

We show this by induction on n. It is trivial for n = 0, and for n = 1,
(zj−1(D1, ∗) → zj (E, ∗)) → zj (E − D1, ∗) is a quasi-isomorphism as we
want, by the localization theorem on higher Chow groups (Lemma 6.8). In
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general, consider the diagram

(zj−n(D1···n, ∗) �� · · · ��

��

zj−1(D1, ∗)) �� zj−1(D1 − ∪n
i=2Di, ∗)

��

(zj−n+1(D2···n, ∗) �� · · · ��

��

zj (E, ∗)) �� zj (E − ∪n
i=2Di, ∗)

��

(zj−n(D1···n, ∗) �� · · · �� zj (E, ∗)) �� zj (E − ∪n
i=1Di, ∗)

,

where the left complex on the first line is a sum over all subsets I ⊂ {1, . . . , n}
containing 1, the left complex on the second line is a sum over all subsets
not containing 1, and the third line runs over all subsets. We trivially have a
distinguished triangle in the derived category of abelian groups on the left, and
we have an distinguished triangle on the right by the localization theorem for
the inclusion D1 − ∪n

i=2Di → E − ∪n
i=2Di (Lemma 6.8). By induction, the

first and second horizontal maps are quasi-isomorphisms. It follows that the
third horizontal map is a quasi-isomorphism, by the five lemma. This completes
the induction.

The E1 term is clearly concentrated in columns −n to 0. It is concentrated
in rows 0 to j because Ha

M (Y, Z(b)) = 0 for a > 2b and Y any smooth scheme
over k.

16.3 Eilenberg-Moore spectral sequence in motivic
cohomology

In this section, we prove a motivic Eilenberg-Moore spectral sequence for
principal G-bundles, with G a split reductive group. As an application, the
spectral sequence relates the motivic cohomology of BG with the motivic
cohomology of GL(n)/G, for any affine group scheme G with a faithful
representation G → GL(n).

The first step is to prove the Eilenberg-Moore spectral sequence for a torus
action. This is a result of Krishna’s [82, theorem 1.1].

Corollary 16.3 Let X be a smooth scheme over a field k with a free action
of the torus T = (Gm)n for some natural number n. Suppose that the quotient
X/T exists as a scheme. For each integer j , there is a second-quadrant spectral
sequence

E
pq
2 = TorCH ∗BT

−p,q,j (Z,H ∗
M (X/T, Z(∗))) ⇒ H

p+q
M (X, Z(j )).

The E2 term is concentrated in rows 0 to 2j and in columns −n to 0.
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Here we consider CH ∗BT = ⊕jH
2j (BT, Z(j )) = ⊕jH

2j,j (BT ) as a
bigraded ring. For bigraded modules M and N over a bigraded ring R,
TorRi,q,j (M,N ) denotes the (q, j )th bigraded piece of TorRi (M,N ). We write
M(a, b) for the bigraded module M with bidegrees moved down by (a, b).

Proof Consider the standard representation of T = (Gm)n on An. The An-
bundle over X/T associated to this representation contains X as the comple-
ment of a divisor with normal crossings D1 ∪ · · · ∪ Dn, corresponding to the
coordinate hyperplanes in An. Each intersection DI of divisors is the total space
of a vector bundle over X/T , and hence has the same motivic cohomology as
X/T . So, for each integer j , the spectral sequence of Lemma 16.2 takes the
form:

E
pq
1 = H

2p+q
M (X/T, Z(j + p))⊕( n

−p) ⇒ H
p+q
M (X, Z(j )).

For n = 2, this E1 term looks like:

...
...

...
...

0 H 0(X/T, Z(j − 2)) ��

��												 H 2(X/T, Z(j − 1))⊕2 �� H 4(X/T, Z(j )) 0

0 0 H 1(X/T, Z(j − 1))⊕2 �� H 3(X/T, Z(j )) 0

0 0 H 0(X/T, Z(j − 1))⊕2 �� H 2(X/T, Z(j )) 0

0 0 0 H 1(X/T, Z(j )) 0

0 0 0 H 0(X/T, Z(j )) 0

Moreover, we have an explicit description of the d1 differential in this spectral
sequence in terms of pushforward maps for the inclusions DI → DI−ib . The
Chow ring CH ∗BT is a polynomial ring Z[u1, . . . , un] with |ui | = 1, and the
ui map in CH ∗(X/T ) to the first Chern classes of the n obvious line bundles on
X/T . The pushforward map for the inclusion DI → DI−{m} is multiplication
by um, when the motivic cohomology rings of both schemes are identified with
the motivic cohomology of X/T . Therefore, the E1 term with its differential
is a complex that computes TorCH ∗BT

∗∗ (Z,H ∗(X/T, Z(∗))), using the Koszul
resolution of Z as a module over the bigraded polynomial ring R = CH ∗(BT )
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(Lemma 3.11):

0 → R(−2n,−n) → · · · → R(n
2)(−4,−2) → R(n

1)(−2,−1) → R → Z → 0.

Thus the E2 term of the spectral sequence is the Tor group we want. The E2

term vanishes outside the range mentioned, by the corresponding vanishing in
Lemma 16.2.

We now deduce a motivic Eilenberg-Moore spectral sequence for actions of
GL(n). In fact, we get a weaker statement (inverting finitely many primes) for
any split reductive group. For our applications, we only need the case of GL(n)
or more generally products of groups GL(ni), in which case the torsion index
is 1. (The torsion index is defined in section 16.1.)

Theorem 16.4 Let X be a smooth scheme over a field k with an action of a
split reductive group G. Let t(G) be the torsion index of G. For each integer j ,
there is a second-quadrant spectral sequence

E
pq
2 = TorCH ∗BG

−p,q,j (Z,H ∗
G(X, Z(∗)))[t(G)−1] ⇒ Hp+q(X, Z(j ))[t(G)−1].

The E2 term is concentrated in rows 0 to 2j and in columns −rank(G) to 0.

Proof Equivariant motivic cohomology is defined as the motivic cohomology
of suitable quotient schemes of free G-actions. So it suffices to prove the
theorem when G acts freely on X, with quotient X/G a scheme over k.

Consider the map of fibrations

X ��

��

X/T ��

��

BT

��

X �� X/G �� BG.

By Lemma 16.3, we have a spectral sequence

E
pq
2 = TorCH ∗BT

−p,q,j (Z,H ∗(X/T, Z(∗))) ⇒ Hp+q(X, Z(j )).

By Theorem 16.1, after inverting the torsion index t(G), CH ∗BT becomes
a finitely generated free CH ∗BG-module, with basis elements e1, . . . , em in
CH ∗BT . Moreover, again with t(G) inverted, the motivic cohomology of X/T

is a free module over the motivic cohomology of X/G, with the same basis
e1, . . . , em. By flat base change for Tor [149, proposition 3.2.9], we have

TorCH ∗BT
∗ (Z, A ⊗CH ∗BG CH ∗BT )[t(G)−1] ∼= TorCH ∗(BG)

∗ (Z, A)[t(G)−1]

for any CH ∗BG-module A. Applying this with A the motivic cohomology
of X/G, we deduce that the E2 term of the spectral sequence above can be



208 The Eilenberg-Moore Spectral Sequence in Motivic Cohomology

rewritten (after inverting t(G)) as

E
pq
2 = TorCH ∗BG

−p,q,j (Z,H ∗
G(X, Z(∗)))[t(G)−1].

Thus we have the spectral sequence of Eilenberg-Moore type for G, converging
to the motivic cohomology of X.

In particular, the Eilenberg-Moore spectral sequence of Theorem 16.4 allows
us to relate the motivic cohomology of GL(n)/G and BG for any group G, as
follows.

Corollary 16.5 Let G be an affine group scheme over a field k with a faithful
representation G → GL(n). For each integer j , there is a spectral sequence

E
pq
2 = TorCH ∗BGL(n)

−p,q,j (Z,H ∗
M (BG, Z(∗))) ⇒ H

p+q
M (GL(n)/G, Z(j )).

Proof This is exactly Theorem 16.4 for the action of GL(n) on GL(n)/G,
using that GL(n) has torsion index 1.

To emphasize that the motivic Eilenberg-Moore spectral sequence has good
properties that do not hold in topology, note that Corollary 16.5 implies Theo-
rem 5.1 as a very special case. We restate Theorem 5.1 as:

Theorem 16.6 Let G be an affine group scheme over a field k with a faithful
representation V of dimension n. Then

CH ∗GL(n)/G ∼= CH ∗BG/(c1V, . . . , cnV ).

As a result, CH ∗BG is generated as a module over the Chern classes
Z[c1V, . . . , cnV ] by elements of degree at most n2 − dim(G). It follows that the
ring CH ∗BG is generated by elements of degree at most max(n, n2 − dim(G)).

Proof We need to show that CH ∗(GL(n)/G) ∼= Z ⊗CH ∗BGL(n) CH ∗BG.
Consider the spectral sequence of Theorem 16.5 converging to
H ∗

M (GL(n)/G, Z(j )). The group Z ⊗CH ∗BGL(n) CH ∗BG in degree j is at
the upper right corner of the rectangle in which the E2 term of the spec-
tral sequence may be nonzero. So it is the only group contributing to
CHj (GL(n)/G) = H

2j
M (GL(n)/G, Z(j )), and there are no differentials into

or out of it.

Remark 16.7 Let us check that the Eilenberg-Moore spectral sequence of
Theorem 16.4 does not hold without inverting the torsion index. Suppose that
the spectral sequence holds integrally, for a split reductive group G over a field
k. By the proof of Theorem 16.6, the spectral sequence implies that the natural
map CH ∗(X/G) ⊗CH ∗BG Z → CH ∗X is an isomorphism, for any principal
G-bundle X → X/G over k. Taking X = G, this would imply that the Chow
ring of G as a variety is Z in degree 0. But Grothendieck showed that CH ∗G is
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the quotient of CH ∗(G/B) by the ideal generated by Hom(B,Gm) = CH 1BB

[54]. It follows that CH ∗G is nonzero p-locally in positive degrees for every
prime number p that divides t(G). (If CH>0(G/B) is generated by CH 1BB

as an ideal, then CH ∗(G/B) would be generated by CH 1BB as an algebra, by
induction on the grading of CH ∗(G/B).) For example, CH 1SO(3)C is Z/2,
not zero.
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The Chow Künneth Conjecture

For smooth schemes X and Y over a field k, the product map CH ∗X ⊗Z

CH ∗Y → CH ∗(X × Y ) is rarely an isomorphism. The early calculations of
Chow rings of classifying spaces raised the unexpected possibility that they
might satisfy the Chow Künneth formula, meaning that CH ∗BG ⊗Z CH ∗X →
CH ∗(BG × X) is an isomorphism for all smooth schemes X over a field k,
provided that k contains enough roots of unity [138, section 6]. This would in
particular imply that CH ∗BGK is the same for all fields K containing k. Thus
the Chow Künneth property, when it holds, is a strong rigidity property for the
Chow groups of classifying spaces.

Conjecture 17.1 Let G be a finite group of exponent e. Let k be a field such
that the order of G is invertible in k and k contains the eth roots of unity. Then
the product map

CH ∗BGk ⊗Z CH ∗X → CH ∗(BG ×k X)

is an isomorphism for every smooth scheme X of finite type over k.

Conjecture 17.1 is interesting even in the special case where k is algebraically
closed. In that case, one can expect the conjecture to hold for all affine group
schemes G of finite type over k.

Some assumption that k contains enough roots of unity is essential in Con-
jecture 17.1. For example, B(Z/n)Q does not satisfy the Chow Künneth
formula for n odd. Indeed, CH 1B(Z/n)Q = Hom(Z/n, Q∗) = 0, whereas
CH 1B(Z/n)K = Hom(Z/n,K∗) is isomorphic to Z/n for a number field K

containing the nth roots of unity. This disproves the Chow Künneth formula
for the product

B(Z/n)Q ×Spec Q Spec K = B(Z/n)K.

One can also check that CH ∗B(Z/3)Q ⊗Z CH ∗B(Z/3)Q → CH ∗B(Z/3 ×
Z/3)Q is not surjective.

210
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The Suslin rigidity theorem says (in particular) that for any smooth scheme
X over an algebraically closed field k, and any algebraically closed field K

containing k, the motivic cohomology with finite coefficients of X maps iso-
morphically to that of XK [126, corollary 2.3.3]. It follows that the Chow ring
CH ∗BGk is unchanged under extensions of algebraically closed fields k, for
a finite group G. But that does not explain why CH ∗BGk seems to remain
unchanged for arbitrary field extensions.

One partial explanation for why classifying spaces over sufficiently large
fields seem to satisfy the Chow Künneth property is that any linear variety
X satisfies the Chow Künneth property: CH∗X ⊗Z CH∗Y → CH∗(X × Y )
is an isomorphism for every Y [140]. Moreover, Joshua showed that linear
varieties satisfy a natural generalization of the Künneth property that applies
to all motivic homology groups [74]. Linear varieties are defined inductively:
a scheme over a field is linear if it can be stratified as a disjoint union of
finitely many locally closed subsets, each of which is an affine space of some
dimension minus a lower-dimensional linear variety. For abelian groups and
wreath product groups as in Lemma 2.12, over a field k with enough roots of
unity, the classifying space BG can be approximated by linear varieties, and
that implies the Chow Künneth formula for such groups G. (By the comments
above, it follows that B(Z/3)Q cannot be approximated by linear varieties
over Q.)

On the other hand, linear varieties cannot provide the full explanation, if we
hope to prove the Chow Künneth formula for all finite groups. Indeed, Saltman
and Bogomolov gave examples of p-groups G such that the quotient by G of
a faithful complex representation is never a rational variety [17]. A fortiori,
we cannot approximate BG by linear varieties for those groups G. Even for a
group G such that quotient varieties are rational, we have to work hard (with
no guarantee of success) to show that BG is approximated by linear varieties.
It is natural to look for other ways to prove the Chow Künneth formula.

We get some information by relating Chow groups to representation theory.
To state this, let e be the exponent of a finite group G. Brauer showed that the
representation theory of a finite group G is “the same” over all fields K such
that |G| is invertible in K and K contains the eth roots of unity [124, theorem
24].

Lemma 17.2 Let G be a finite group. The geometric filtration of the represen-
tation ring KG

0 (K) is independent of the field K when K contains the algebraic
closure Q of Q.

Proof We know by Brauer that the inclusion Q ⊂ K induces an isomor-
phism KG

0 (Q) ∼= KG
0 (K). Clearly F

j
geomKG

0 (Q) is contained in F
j
geomKG

0 (K),
and we want to show that equality holds. If not, then (looking at the small-
est j for which the filtrations differ) there is a natural number i such that
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grigeomKG
0 (Q) → grigeomKG

0 (K) is surjective but not injective. If we can show

that grigeomKG
0 (Q) → grigeomKG

0 (K) is injective for all i, then we have the same

injectivity for Q mapping into K , and we are done.
Let u ∈ grigeomKG

0 (Q) be an element that maps to zero in grigeomKG
0 (K). To

state this concretely, let V be a representation of G over Q such that G acts
freely on V on an open subset U with V − U of codimension at least i + 1.
Then our assumption means that u can be represented by some coherent sheaf
with support of codimension at least i + 1 on (U/G)K . It follows that u can be
represented by some coherent sheaf of codimension at least i + 1 on (U/G)L
for some finitely generated field L over Q. Think of L as the function field of
a smooth variety Y over Q. Then, after possibly replacing Y by a dense open
subset, u is represented by a coherent sheaf of codimension at least i + 1 on
(U/G) ×Q Y . By restricting to some Q-rational point of Y (these being Zariski
dense in Y ), it follows that u is represented by a coherent sheaf of codimension
at least i + 1 on the Q-variety U/G. Thus grigeomKG

0 (Q) → grigeomKG
0 (K) is

injective, as we want.

Corollary 17.3 Let G be a finite group. Then the p-local Chow ring
(CH ∗BGK )(p) is independent of the field K containing Q in degrees ≤ p.

Proof The surjection CHiBGK → grigeomBGK is an isomorphism p-locally
for all i ≤ p by Theorem 2.25. Then the result follows from Lemma 17.2.

It is tempting to try to extend this argument to prove that (CHiBGK )(p) is
independent of the field K containing Q(μe) for i ≤ p, where e is the exponent
of a p-Sylow subgroup of G.

Beyond these results in degree at most p, our methods explain the Chow
Künneth formula in all degrees for a certain class of groups, in the version that
the Chow ring is unchanged under field extensions.

Theorem 17.4 Let G be a finite group, p a prime number, P a p-Sylow
subgroup of G. Consider G as an algebraic group over Q. Suppose that P has a
faithful representation of dimension n over Q with c irreducible summands such
that n − c ≤ p. Then the homomorphism (CH ∗BGQ)(p) → CH ∗(BGk)(p) is

an isomorphism for all fields k containing Q.

Proof By Suslin’s rigidity theorem as discussed above, we know that this
homomorphism is injective for all fields k containing Q. To prove this p-local
surjectivity, it suffices to show that the homomorphism ϕ : CH ∗

GQ
→ CH ∗

Gk
of

mod p Chow rings is surjective. By Theorem 11.1, CH ∗BGk is generated by
transferred Euler classes for every field k containing Q. These classes are all
defined over Q.
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For many groups, our calculations show that the Chow ring is the same over
all fields with enough roots of unity, not just those that contain Q. For example,
we showed in Chapter 13 that for all 14 groups of order 16, the Chow ring
is the same for all base fields of characteristic not 2 that contain the eth roots
of unity, where e is the exponent of G. Likewise for the 5 groups of order p3

with p odd (Section 13.2), the 15 groups of order 81, and 13 of the 15 groups
of order p4 with p ≥ 5, those for which we could make the calculation in
Chapter 14.
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Open Problems

(1) Yagita conjectured that algebraic cobordism �∗BG maps isomorphically
to MU ∗BG for every complex algebraic group G [154, conjecture 12.2]. Since
�iBG maps to the topological cobordism MU 2iBG, this would in particular
imply that MU∗BG is concentrated in even degrees. Another consequence
would be that the Chow ring of BG maps isomorphically to MU ∗BG ⊗MU∗ Z.
A natural test case is the finite group G of 4 × 4 strictly upper-triangular
matrices over Fp for p odd, since the Morava K-theory K(2)oddBG is nonzero
in that case by Kriz and Lee [83, 84].

(2) In this book, we have concentrated on the mod p Chow ring of clas-
sifying spaces BG. One can try to extend both the general methods and the
explicit calculations to richer theories, such as the integral Chow ring, motivic
cohomology, or algebraic cobordism.

It would be interesting to prove general bounds and make systematic calcula-
tions for the Bloch-Ogus spectral sequence H i

Zar(BG,H
j
Fp

) ⇒ H
i+j
et (BG, Fp),

for an affine group scheme G over a field k. Guillot proved several results in
this direction [63]. The spectral sequence is closely related to the motivic coho-
mology of BG; in particular, Hi

Zar(BG,H i
Fp

) is the mod p Chow group CHi
G.

The output of the spectral sequence is essentially the ordinary cohomology
of BG. The group H 0(BG,Hi

Fp
) is the group of cohomological invariants for

G-torsors over fields, as defined by Serre [47, part 1, appendix C].
(3) For an odd prime number p and a finite group G, viewed as a complex

algebraic group, does the mod p Chow ring CH ∗
G consist of transferred Euler

classes? For p = 2, Guillot showed that the answer is no, using the extraspecial
2-group 21+6

+ [62].
(4) Let V = V1 ⊕ · · · ⊕ Vc be a faithful complex representation of minimal

dimension of a p-group G. Find an optimal bound in terms of p and the
dimensions of the irreducible summands Vi for the degrees of generators of
H ∗

G and CH ∗
G. Chapter 7 gives some bounds. One could also ask for bounds in

terms of other invariants, such as the order and the p-rank of G.

214
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(5) Give good bounds for Henn-Lannes-Schwartz’s topological nilpotence
degree d0(H ∗

G) and d0(CH ∗
G). Is d0(CH ∗

G) ≤ d0(H ∗
G)/2? Can the bounds in

Theorems 13.17 and 12.7 be improved? The examples in section 13.5 suggest
that these bounds may be improvable for non-p-central p-groups with p odd.

(6) Let p be a prime number, and let k be a field of characteristic not p

that contains the pth roots of unity. Let G be a finite group, viewed as an
algebraic group over k. Is the topological nilpotence degree d0(CH ∗

G) equal to
the supremum of the natural numbers d such that CH ∗

G, as a module over the
Steenrod algebraA, contains a nonzero submodule of the form �dM with M an
unstable A-module? The known partial results are listed after Conjecture 12.8.
The analogous statement is true for H ∗

G by Henn-Lannes-Schwartz (Theorem
12.2).

(7) Is CH ∗BG a finitely generated Z-algebra for every affine group scheme
G over a field? It would suffice to show that CHiBG is a finitely generated
abelian group for each i, by Theorem 5.2. Is there an explicit class of generators
that works for any finite group G? In view of Guillot’s example, transferred
Euler classes are not enough in general.

(8) Does the Chow Künneth formula hold for arbitrary finite groups (Con-
jecture 17.1)?

(9) Let G be a p-group of rank at most 2, say viewed as an algebraic
group over C. Is the cycle map CH ∗BG → H ev(BG, Z) an isomorphism?
The assumption on the rank seems natural, since the map is not surjective
when G = (Z/p)3. For a p-group G of rank 2, CH ∗BG → H ev(BG, Z) is
surjective at least for p ≥ 5, since Yagita showed that H ev(BG, Z) consists
of transferred Chern classes in that case [152]. Theorem 14.3 shows that the
map is an isomorphism mod p when, in addition, G has a faithful complex
representation that is the sum of a p-dimensional irreducible representation and
some 1-dimensional representations. Split metacyclic p-groups Z/pn � Z/pm

are a natural test case for this problem.
(10) For a prime number p ≥ 5, compute the Chow ring CH ∗

B̃
for the 1-

dimensional group B̃ from section 14.5. The group B̃ is a central extension of
the extraspecial p-group p1+2

+ by the multiplicative group Gm. Since CH ∗
B̃

maps
isomorphically to H ev(BB̃, Z)/p (Lemma 14.5), it is more or less equivalent
to compute the cohomology of BB̃. As explained in section 14.5, computing
CH ∗

B̃
would finish the computation of the Chow rings of all groups of order

p4.
(11) For a field k of characteristic p > 0, restricted Lie algebras over k are

equivalent to group schemes of height at most 1 [32, section VIIA.8]. As a result,
the definition of CH ∗BG gives a definition of the Chow ring of a restricted Lie
algebra. The problem is to understand the Chow rings of restricted Lie algebras,
as systematically as possible. This is a model problem for trying to understand
mod p Chow groups in characteristic p. One goal is to relate the mod p Chow
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rings of smooth varieties in characteristic p to some more computable theory
related to de Rham cohomology.

Lemma 2.18 gives that the Chow ring of a unipotent restricted Lie algebra g
is trivial. One natural problem is to compute the Chow rings of the restricted
simple Lie algebras, which were classified in characteristic p ≥ 11 by Block
and Wilson [16].

(12) Theorem 6.5 shows that for every finite group scheme G over a field
k and every prime number p invertible in k, the mod p Chow ring CH ∗

G has
regularity at most zero. Does this hold for all affine group schemes of finite
type over k and all prime numbers p? The proof of Theorem 6.5 seems not
to work. (The group S = (μp)n acts on the algebraic space X = U\GL(n)/G,
and Chow groups make sense for algebraic spaces by Edidin-Graham [38,
section 6.1]. The difficulty in extending the proof of Theorem 6.5 to G of
positive dimension is that the fixed point sets in X for subgroups of S need not
be closed when G has positive dimension, because X need not be separated.
For example, for the diagonal torus T in GL(2), U\GL(2)/T is isomorphic to
the line with two origins, a non-separated scheme [67, example II.2.3.6], and
U\GL(2)/N (T ) is an algebraic space that is not a scheme, illustrated by Artin
[3] and named by Kollár a bug-eyed cover [78].)

More strongly, examples suggest that we may have reg(CH ∗
G) ≤

− dim(Gk/B) for every affine group scheme G and every prime number p,
where B is a Borel subgroup (a maximal smooth connected solvable subgroup)
of Gk .

Note added in proof: I found that questions (7) and (8) have negative
answers in general.



Appendix

Tables

The following tables show several invariants of the Chow ring for the p-groups
of order at most p4. Each p-group G of exponent e is viewed as an algebraic
group over any field of characteristic not p that contains the eth roots of unity.
The format was suggested by Kuhn’s tables of d0(H ∗

G) and related invariants
for the 2-groups of order at most 64 [85, appendix A]. Most of the information
comes from Chapters 13 and 14, along with calculations in GAP or Macaulay2
[48]. One observation is that d0(CH ∗

G) turns out to be small in these examples;
compare Section 13.5.

The tables show the order of a p-group G, its number in GAP’s Small Groups
library [46, 52], the rank of G, the rank c(G) of C = Z(G)[p], the depth of the
mod p Chow ring CH ∗

G, the Chow type (defined in the proof of Theorem 12.7,
to describe the image of CH ∗

G → CH ∗
C), the topological nilpotence degree

d0(CH ∗
G) (defined in Section 12.2), and the ranks of all maximal elementary

abelian subgroups of G up to conjugacy.
We say that a group is indecomposable if it cannot be written as the product of

two nontrivial groups. In the list of ranks, “p + 1 of 2” means p + 1 conjugacy
classes of maximal elementary abelian subgroups of rank 2. The Notes use
several different names for familiar groups, including both Z/n and C(n) for
the cyclic group of order n. We write “?” in a few places, meaning that the
calculation remains to be done.
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Table 1. Indecomposable nonabelian 2-groups of order ≤ 16

Order # Rank c(G) Depth Type d0(CH ∗
G) Ranks Notes

8 3 2 1 2 [2] 0 2,2 D(8)
4 1 1 1 [2] 1 1 Q(8)

16 3 3 2 3 [2,1] 0 3
4 2 2 2 [2,1] 1 2 Z/4 � Z/4
6 2 1 1 [2] 1 2 Mod(16)
7 2 1 2 [2] 0 2,2 D(16)
8 2 1 1 [2] 1 2 SD(16)
9 1 1 1 [2] 1 1 Q(16)

13 2 1 2 [2] 0 2,2,2 D(8) ∗ C(4)

Table 2. Indecomposable nonabelian 3-groups of order ≤ 81

Order # Rank c(G) Depth Type d0(CH ∗
G) Ranks Notes

27 3 2 1 2 [3] 0 2,2,2,2 E(27)
4 2 1 1 [3] 1 2 Mod(27)

81 3 3 2 2 [3,1] 2 3
4 2 2 2 [3,1] 1 2 Z/9 � Z/9
6 2 1 1 [3] 1 2 Mod(81)
7 3 1 2 [3] 0 2,3 Z/3 � Z/3
8 2 1 1 [3] 1 2,2
9 2 1 2 [3] 0 2,2,2,2 Syl3(U3(8))
10 2 1 1 [3] 2 2
14 2 1 1 [3] 1 2,2,2,2 E(27) ∗ C(9)

Table 3. Indecomposable nonabelian p-groups of order ≤ p4 for p ≥ 5

Order # Rank c(G) Depth Type d0(CH ∗
G) Ranks Notes

p3 3 2 1 1 [p] 2 p + 1 of 2 E(p3)
4 2 1 1 [p] 1 2 Mod(p3)

p4 3 3 2 2 [p, 1] 2 3
4 2 2 2 [p, 1] 1 2 Z/p2

� Z/p2

6 2 1 1 [p] 1 2 Mod(p4)
7 3 1 ? [p] ? p of 2; 3
8 3 1 ? [p] ? 3
9 2 1 1 [p] 1 2,2

10 2 1 1 [p] 1 2,2
14 2 1 1 [p] 1 p + 1 of 2 E(p3) ∗ C(p2)
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H ∗
G, 133, 163

C = C(G), the p-torsion subgroup of the
center of G, 129

Carlson’s theorem on transfer, 100
Castelnuovo-Mumford regularity, see

regularity
CH ∗

G = CH ∗(BG)/p, 24
Chern class, 3, 10, 18
Chow groups, 8

basic exact sequence for, 9
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extraspecial p-group, 32, 105, 122, 161, 162,

168, 171, 191, 200

F -isomorphism, 90
free graded-commutative algebra, 4

Ga , the additive group, 11
Gm, the multiplicative group, 11
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Symonds’s theorem, 49
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Tambara functor, 89
topological filtration of the representation ring,
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torsion index, 22, 202
torus, 24
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transfer, 22
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