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subjects comprehensively. Less important results may be summarized as
exercises at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge
University Press. For a complete series listing visit
www.cambridge.org/mathematics.

106 A. Markoe Analytic Tomography

107 P. A. Martin Multiple Scattering

108 R. A. Brualdi Combinatorial Matrix Classes

109 J. M. Borwein and J. D. Vanderwerff Convex Functions

110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations

111 R.T. Curtis Symmetric Generation of Groups

112 H. Salzmann et al. The Classical Fields

113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise

114 J. Beck Combinatorial Games

115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity

116 D.Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics

117 R.Glowinski, J.-L.Lions and J. He Exact and Approximate Controllability for Distributed Parameter
Systems

118 A. A. Borovkov and K. A. Borovkov Asymptotic Analysis of Random Walks

119 M. Deza and M. Dutour Sikiri¢ Geometry of Chemical Graphs

120 T. Nishiura Absolute Measurable Spaces

121 M. Prest Purity, Spectra and Localisation

122 S. Khrushchev Orthogonal Polynomials and Continued Fractions

123 H. Nagamochi and T. Ibaraki Algorithmic Aspects of Graph Connectivity

124 F. W. King Hilbert Transforms I

125 F. W. King Hilbert Transforms Il

126 O. Calin and D.-C. Chang Sub-Riemannian Geometry

127 M. Grabisch et al. Aggregation Functions

128 L.W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph
Theory

129 J. Berstel, D. Perrin and C. Reutenauer Codes and Automata

130 T. G. Faticoni Modules over Endomorphism Rings

131 H. Morimoto Stochastic Control and Mathematical Modeling

132 G. Schmidt Relational Mathematics

133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic

134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science,
and Engineering

135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory

136 A. Kristdly, V. D. Radulescu and C. Varga Variational Principles in Mathematical Physics, Geometry,
and Economics

137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications

138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic

139 M. Fiedler Matrices and Graphs in Geometry

140 N. Vakil Real Analysis through Modern Infinitesimals

141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation

142 Y. Crama and P. L. Hammer Boolean Functions

143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes

144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets

145 D.Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and
Differential Equations

146 G. Dassios Ellipsoidal Harmonics

147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory

148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for
Materials Modeling

149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation

150 J. Borwein et al. Lattice Sums Then and Now

151 R. Schneider Convex Bodies: The Brunn—Minkowski Theory (Second Edition)

152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)

153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology

154 M. Cabrera Garcia and A. Rodriguez Palacios Non-Associative Normed Algebras I: The
Vidav—Palmer and Gelfand-Naimark Theorems

155 C.F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)


http://www.cambridge.org/mathematics

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Orthogonal Polynomials
of Several Variables

Second Edition

CHARLES F. DUNKL
University of Virginia

YUAN XU
University of Oregon

5 E CAMBRIDGE

S'By UNIVERSITY PRESS



CAMBRIDGE

UNIVERSITY PRESS
University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107071896

First edition © Cambridge University Press 2001
Second edition (©) Charles F. Dunkl and Yuan Xu 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2001
Second edition 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0O 4YY
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Dunkl, Charles F., 1941—
Orthogonal polynomials of several variables / Charles F. Dunkl,
University of Virginia, Yuan Xu, University of Oregon. — Second edition.
pages cm. — (Encyclopedia of mathematics and its applications; 155)
Includes bibliographical references and indexes.
ISBN 978-1-107-07189-6
1. Orthogonal polynomials. 2. Functions of several real variables.
I. Xu, Yuan, 1957— II. Title.
QA404.5.D86 2014
515'.55-dc23
2014001846

ISBN 978-1-107-07189-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9781107071896

To our wives
Philomena and Litian

with deep appreciation






Contents

Preface to the Second Edition
Preface to the First Edition

1 Background

1.1
1.2

1.3

1.4

1.5

1.6

The Gamma and Beta Functions
Hypergeometric Series

1.2.1 Lauricella series

Orthogonal Polynomials of One Variable
1.3.1 General properties

1.3.2 Three-term recurrence

Classical Orthogonal Polynomials

1.4.1 Hermite polynomials

1.4.2 Laguerre polynomials

1.4.3 Gegenbauer polynomials

1.4.4  Jacobi polynomials

Modified Classical Polynomials

1.5.1 Generalized Hermite polynomials
1.5.2  Generalized Gegenbauer polynomials
1.5.3 A limiting relation

Notes

2 Orthogonal Polynomials in Two Variables

2.1
2.2
23
24
25
2.6

Introduction

Product Orthogonal Polynomials

Orthogonal Polynomials on the Unit Disk

Orthogonal Polynomials on the Triangle

Orthogonal Polynomials and Differential Equations
Generating Orthogonal Polynomials of Two Variables
2.6.1 A method for generating orthogonal polynomials

page xiii
XV

28
28
29
30
35
37
38
38



viii Contents

2.6.2 Orthogonal polynomials for a radial weight 40
2.6.3 Orthogonal polynomials in complex variables 41
2.7  First Family of Koornwinder Polynomials 45
2.8 A Related Family of Orthogonal Polynomials 48
2.9  Second Family of Koornwinder Polynomials 50
2.10 Notes 54

3 General Properties of Orthogonal Polynomials in Several Variables 57

3.1 Notation and Preliminaries 58
3.2 Moment Functionals and Orthogonal Polynomials
in Several Variables 60
3.2.1 Definition of orthogonal polynomials 60
3.2.2  Orthogonal polynomials and moment matrices 64
3.2.3 The moment problem 67
3.3 The Three-Term Relation 70
3.3.1 Definition and basic properties 70
3.3.2 Favard’s theorem 73
3.3.3 Centrally symmetric integrals 76
3.3.4 Examples 79
3.4 Jacobi Matrices and Commuting Operators 82
3.5 Further Properties of the Three-Term Relation 87
3.5.1 Recurrence formula 87
3.5.2  General solutions of the three-term relation 94
3.6 Reproducing Kernels and Fourier Orthogonal Series 96
3.6.1 Reproducing kernels 97
3.6.2 Fourier orthogonal series 101
3.7 Common Zeros of Orthogonal Polynomials
in Several Variables 103
3.8 Gaussian Cubature Formulae 107
3.9 Notes 112
4 Orthogonal Polynomials on the Unit Sphere 114
4.1 Spherical Harmonics 114
4.2 Orthogonal Structures on S¢ and on B¢ 119
4.3  Orthogonal Structures on B¢ and on §¢*"~! 125
4.4 Orthogonal Structures on the Simplex 129
4.5  Van der Corput—Schaake Inequality 133
4.6 Notes 136
5 Examples of Orthogonal Polynomials in Several Variables 137
5.1  Orthogonal Polynomials for Simple Weight Functions 137
5.1.1 Product weight functions 138

5.1.2  Rotation-invariant weight functions 138



Contents ix

5.1.3 Multiple Hermite polynomials on R? 139
5.1.4 Multiple Laguerre polynomials on R‘}L 141
5.2 Classical Orthogonal Polynomials on the Unit Ball 141
5.2.1 Orthonormal bases 142
5.2.2  Appell’s monic orthogonal and biorthogonal
polynomials 143
5.2.3 Reproducing kernel with respect to W,f on B? 148
5.3 Classical Orthogonal Polynomials on the Simplex 150
5.4 Orthogonal Polynomials via Symmetric Functions 154
5.4.1 Two general families of orthogonal polynomials 154
5.4.2 Common zeros and Gaussian cubature formulae 156
5.5 Chebyshev Polynomials of Type .27, 159
5.6  Sobolev Orthogonal Polynomials on the Unit Ball 165
5.6.1 Sobolev orthogonal polynomials defined via the
gradient operator 165
5.6.2 Sobolev orthogonal polynomials defined via the
Laplacian operator 168
5.7 Notes 171
Root Systems and Coxeter Groups 174
6.1 Introduction and Overview 174
6.2 Root Systems 176
6.2.1 TypeAq—i 179
6.2.2 Type By 179
6.2.3 Type Ir(m) 180
6.2.4 Type Dy 181
6.2.5 Type H3 181
6.2.6 Type Fy 182
6.2.7 Other types 182
6.2.8 Miscellaneous results 182
6.3 Invariant Polynomials 183
6.3.1 Type A;_; invariants 185
6.3.2 Type B, invariants 186
6.3.3 Type D, invariants 186
6.3.4 Type I, (m) invariants 186
6.3.5 Type H; invariants 186
6.3.6 Type F; invariants 187
6.4 Differential-Difference Operators 187
6.5 The Intertwining Operator 192
6.6 The x-Analogue of the Exponential 200
6.7 Invariant Differential Operators 202

6.8 Notes 207



Contents

7 Spherical Harmonics Associated with Reflection Groups

7.1
7.2
7.3
7.4
7.5

7.6

7.7
7.8

h-Harmonic Polynomials

Inner Products on Polynomials

Reproducing Kernels and the Poisson Kernel
Integration of the Intertwining Operator
Example: Abelian Group Z‘zj

7.5.1 Orthogonal basis for ~A-harmonics
7.5.2 Intertwining and projection operators
7.5.3 Monic orthogonal basis
Example: Dihedral Groups

7.6.1 An orthonormal basis of %”n(hé
7.6.2 Cauchy and Poisson kernels
The Dunkl Transform

Notes

B)

8 Generalized Classical Orthogonal Polynomials

8.1

8.2

8.3
8.4
8.5

Generalized Classical Orthogonal Polynomials
on the Ball
8.1.1 Definition and differential-difference equations
8.1.2 Orthogonal basis and reproducing kernel
8.1.3  Orthogonal polynomials for Zg—invariant
weight functions
8.1.4 Reproducing kernel for Zg -invariant weight functions
Generalized Classical Orthogonal Polynomials on the Simplex
8.2.1 Weight function and differential—difference equation
8.2.2 Orthogonal basis and reproducing kernel
8.2.3 Monic orthogonal polynomials
Generalized Hermite Polynomials
Generalized Laguerre Polynomials
Notes

9 Summability of Orthogonal Expansions

9.1

9.2
9.3
9.4
9.5

9.6
9.7

General Results on Orthogonal Expansions

9.1.1 Uniform convergence of partial sums
9.1.2 Cesaro means of the orthogonal expansion
Orthogonal Expansion on the Sphere

Orthogonal Expansion on the Ball

Orthogonal Expansion on the Simplex
Orthogonal Expansion of Laguerre and Hermite
Polynomials

Multiple Jacobi Expansion

Notes

208
208
217
221
224
228
228
232
235
240
241
248
250
256

258

258
258
263

266
268
271
271
273
276
278
283
287

289
289
289
293
296
299
304

306
311
315



Contents

10 Orthogonal Polynomials Associated with Symmetric Groups

10.1 Partitions, Compositions and Orderings
10.2 Commuting Self-Adjoint Operators
10.3 The Dual Polynomial Basis

10.4 S;-Invariant Subspaces

10.5 Degree-Changing Recurrences

10.6 Norm Formulae

10.6.1 Hook-length products and the pairing norm

10.6.2 The biorthogonal-type norm

10.6.3 The torus inner product

10.6.4 Monic polynomials

10.6.5 Normalizing constants
10.7 Symmetric Functions and Jack Polynomials
10.8 Miscellaneous Topics
10.9 Notes

11 Orthogonal Polynomials Associated with Octahedral Groups,

and Applications

11.1 Introduction

11.2 Operators of Type B

11.3 Polynomial Eigenfunctions of Type B

11.4 Generalized Binomial Coefficients

11.5 Hermite Polynomials of Type B

11.6 Calogero—Sutherland Systems
11.6.1 The simple harmonic oscillator
11.6.2 Root systems and the Laplacian
11.6.3 Type A models on the line
11.6.4 Type A models on the circle
11.6.5 Type B models on the line

11.7 Notes

References

Author Index
Symbol Index
Subject Index

Xi

318
318
320
322
329
334
337
337
341
343
346
346
350
357
362

364
364
365
368
376
383
385
386
387
387
389
392
394

396
413
416
418






Preface to the Second Edition

In this second edition, several major changes have been made to the structure of
the book. A new chapter on orthogonal polynomials in two variables has been
added to provide a more convenient source of information for readers concerned
with this topic. The chapter collects results previously scattered in the book, spe-
cializing results in several variables to two variables whenever necessary, and
incorporates further results not covered in the first edition. We have also added
a new chapter on orthogonal polynomials on the unit sphere, which consolidates
relevant results in the first edition and adds further results on the topic. Since
the publication of the first edition in 2001, considerable progress has been made
in this research area. We have incorporated several new developments, updated
the references and, accordingly, edited the notes at the ends of relevant chapters.
In particular, Chapter 5, “Examples of Orthogonal Polynomials in Several Vari-
ables”, has been completely rewritten and substantially expanded. New materials
have also been added to several other chapters. An index of symbols is given at
the end of the book.

Another change worth mentioning is that orthogonal polynomials have been
renormalized. Some families of orthogonal polynomials in several variables have
expressions in terms of classical orthogonal polynomials in one variable. To pro-
vide neater expressions without constants in square roots they are now given in
the form of orthogonal rather than orthonormal polynomials as in the first edition.
The L? norms have been recomputed accordingly.

The second author gratefully acknowledges support from the National Science
Foundation under grant DMS-1106113.

Charles F. Dunkl
Yuan Xu






Preface to the First Edition

The study of orthogonal polynomials of several variables goes back at least as
far as Hermite. There have been only a few books on the subject since: Appell
and de Fériet [1926] and Erdélyi et al. [1953]. Twenty-five years have gone by
since Koornwinder’s survey article [1975]. A number of individuals who need
techniques from this topic have approached us and suggested (even asked) that
we write a book accessible to a general mathematical audience.

It is our goal to present the developments of very recent research to a readership
trained in classical analysis. We include applied mathematicians and physicists,
and even chemists and mathematical biologists, in this category.

While there is some material about the general theory, the emphasis is on clas-
sical types, by which we mean families of polynomials whose weight functions
are supported on standard domains such as the simplex and the ball, or Gaus-
sian types, which satisfy differential-difference equations and for which fairly
explicit formulae exist. The term “difference” refers to operators associated with
reflections in hyperplanes. The most desirable situation occurs when there is a
set of commuting self-adjoint operators whose simultaneous eigenfunctions form
an orthogonal basis of polynomials. As will be seen, this is still an open area of
research for some families.

With the intention of making this book useful to a wide audience, for both ref-
erence and instruction, we use familiar and standard notation for the analysis on
Euclidean space and assume a basic knowledge of Fourier and functional analy-
sis, matrix theory and elementary group theory. We have been influenced by the
important books of Bailey [1935], Szegd [1975] and Lebedev [1972] in style and
taste.

Here is an overview of the contents. Chapter 1 is a summary of the key one-
variable methods and definitions: gamma and beta functions, the classical and
related orthogonal polynomials and their structure constants, and hypergeometric
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and Lauricella series. The multivariable analysis begins in Chapter 2 with some
examples of orthogonal polynomials and spherical harmonics and specific two-
variable examples such as Jacobi polynomials on various domains and disk
polynomials. There is a discussion of the moment problem, general properties
of orthogonal polynomials of several variables and matrix three-term recurrences
in Chapter 3. Coxeter groups are treated systematically in a self-contained way,
in a style suitable for the analyst, in Chapter 4 (a knowledge of representation
theory is not necessary). The chapter goes on to introduce differential-difference
operators, the intertwining operator and the analogue of the exponential function
and concludes with the construction of invariant differential operators. Chapter 5
is a presentation of s-harmonics, the analogue of harmonic homogeneous poly-
nomials associated with reflection groups; there are some examples of specific
reflection groups as well as an application to proving the isometric properties
of the generalized Fourier transform. This transform uses an analogue of the
exponential function. It contains the classical Hankel transform as a special case.
Chapter 6 is a detailed treatment of orthogonal polynomials on the simplex, the
ball and of Hermite type. Then, summability theorems for expansions in terms of
these polynomials are presented in Chapter 7; the main method is Cesaro (C, §)
summation, and there are precise results on which values of § give positive or
bounded linear operators. Nonsymmetric Jack polynomials appear in Chapter
8; this chapter contains all necessary details for their derivation, formulae for
norms, hook-length products and computations of the structure constants. There
is a proof of the Macdonald—-Mehta—Selberg integral formula. Finally, Chapter 9
shows how to use the nonsymmetric Jack polynomials to produce bases associ-
ated with the octahedral groups. This chapter has a short discussion of how these
polynomials and related operators are used to solve the Schrodinger equations
of Calogero—Sutherland systems; these are exactly solvable models of quantum
mechanics involving identical particles in a one-dimensional space. Both Chap-
ters 8 and 9 discuss orthogonal polynomials on the torus and of Hermite type.

The bibliography is intended to be reasonably comprehensive into the near
past; the reader is referred to Erdélyi er al. [1953] for older papers, and Inter-
net databases for the newest articles. There are occasions in the book where we
suggest some algorithms for possible symbolic algebra use; the reader is encour-
aged to implement them in his/her favorite computer algebra system but again the
reader is referred to the Internet for specific published software.

There are several areas of related current research that we have deliber-
ately avoided: the role of special functions in the representation theory of
Lie groups (see Dieudonné [1980], Hua [1963], Vilenkin [1968], Vilenkin
and Klimyk [1991a,b,c, 1995]), basic hypergeometric series and orthogo-
nal polynomials of g-type (see Gasper and Rahman [1990], Andrews, Askey
and Roy [1999]), quantum groups (Koornwinder [1992], Noumi [1996],
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Koelink [1996] and Stokman [1997]), Macdonald symmetric polynomials (a gen-
eralization of the g-type) (see Macdonald [1995, 1998]). These topics touch on
algebra, combinatorics and analysis; and some classical results can be obtained as
limiting cases for ¢ — 1. Nevertheless, the material in this book can stand alone
and ‘g’ is not needed in the proofs.

We gratefully acknowledge support from the National Science Foundation over
the years for our original research, some of which is described in this book. Also
we are grateful to the mathematics departments of the University of Oregon for
granting sabbatical leave and the University of Virginia for inviting Y. X. to visit
for a year, which provided the opportunity for this collaboration.

Charles F. Dunkl
Yuan Xu






1

Background

The theory of orthogonal polynomials of several variables, especially those of
classical type, uses a significant amount of analysis in one variable. In this chapter
we give concise descriptions of the needed tools.

1.1 The Gamma and Beta Functions

It is our opinion that the most interesting and amenable objects of consideration
have expressions which are rational functions of the underlying parameters. This
leads us immediately to a discussion of the gamma function and its relatives.

Definition 1.1.1 The gamma function is defined for Re x > 0 by the integral
(x)= / rle'dr.
0
It is directly related to the beta function:

Definition 1.1.2 The beta function is defined for Rex > 0 and Rey > 0 by
1
B(x,y):/ P =1
0
By making the change of variables s = uv and r = (1 — u)v in the integral
C(x)C(y) =[5 J5"s* '~ e~ (T dsdt, one obtains

F()T(y) =T(x+y)B(x,y).

This leads to several useful definite integrals, valid for Rex > 0 and Rey > O:

1. / ! 9cos’™ 040 = 1B (3,3) = r%z )@),



2 Background

2. T'(3) = V7 (setx = y = 1 in the previous integral);
3. / lexp(—ar®)dr = a™/*T (%), fora>0;
0
! ;T (3)T)
4. /t"‘l 11— e =1B(2,y) =222 7.
Jo ( ) 3B(3.y) T(X+y)
5. T)T(1—x) = B(x,1 —x) = —
CT(x x) = Bx, 1 —x) = ——.

The last equation can be proven by restricting x to 0 < x < 1, making the substi-
tution s = 7/(1—1) in the beta integral [y [r/(1—£)]*'(1—#)~'ds and computing
the resulting integral by residues. Of course, one of the fundamental properties
of the gamma function is the recurrence formula (obtained from integration by
parts)

Ix+1) =xI'(x),

which leads to the fact that I can be analytically continued to a meromorphic
function on the complex plane; also, 1/T is entire, with (simple) zeros exactly at
{0,—1,—2,...}. Note that T interpolates the factorial; indeed, I'(n+ 1) = n! for
n=0,1,2,...

Definition 1.1.3 The Pochhammer symbol, also called the shifted factorial, is
defined for all x by

®o=1, @u=[Jx+i-1) for n=1,2,3,...

i=1
Alternatively, one can recursively define (x), by
(x)o=1 and (X)p+1 = (x)n(x+n) for n=1,2,3,...

Here are some important consequences of Definition 1.1.3:

L. (X)mtn = (X)m(x+m), form,n e Ny;
2. (X)n= ( 1)"(1 —n—x), (writing the product in reverse order);
3. (W)n—i = ()a(=1)"/(1 =n—x);.

The Pochhammer symbol incorporates binomial-coefficient and factorial

notation:
L (Dp=n!, 2"(3), =1x3x5x--x(2n—1);
2. (n+m)!=nl(n+1)n;
3. <’:> = (=) (7 i where () is the binomial coefficient;
4. (x)20=22"(3), (541),. the duplication formula.
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The last property includes the formula for the gamma function:
22)571
Nz

For appropriate values of x and n, the formula T'(x+n)/T'(x) = (x), holds, and
this can be used to extend the definition of the Pochhammer symbol to values of
n ¢ No.

I'(2x) =

T(x+ 3)0(x).

1.2 Hypergeometric Series

The two most common types of hypergeometric series are (they are convergent
for x| < 1)

where a and b are the “numerator” parameters and c is the “denominator” param-
eter. Later we will also use 3F> series (with a corresponding definition). The > F;
series is the unique solution analytic at x = 0 and satisfying f(0) = 1 of

d? d
x(1 —X)@f(X)Jr [c—(a+b+1)x] af(X) —abf(x) =

Generally, classical orthogonal polynomials can be expressed as hypergeo-
metric polynomials, which are terminating hypergeometric series for which a
numerator parameter has a value in —Ny. The two series can be represented
in closed form. Obviously | Fy(a;x) = (1 —x)™¢; this is the branch analytic in
{x € C: |x| < 1}, which has the value 1 at x = 0. The Gauss integral formula for
»F is as follows.

Proposition 1.2.1 ForRe(c—b) >0,Reb > 0and |x| < 1,

N N
2F1<c’x>l“(b)r(c—b)/o P =) (1 — ) dr.

Proof Use the |Fp series in the integral and integrate term by term to obtain a
multiple of

2 nxn/' (] = pyeb gy — i (a),,l"(b—i—n)l"(c—b)xn’

= n'T(c+n)

from which the stated formula follows. O]
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Corollary 1.2.2 For Rec > Re(a+b) and Reb > 0 the Gauss summation

formula is
a,b. \ T(c)I'(c—b—a)
2h1 < c ’1>  T(c—a)(c—b)’

The terminating case of this formula, known as the Chu—Vandermonde sum, is
valid for a more general range of parameters.

Proposition 1.2.3 For n € Ny, any a,b, and ¢ # 0,1,...,n— 1 the following

hold:
< (@)n—i(D)i _ (a+b)n an —n,b. _ (c—b),
Z;) (n—ili! — n d 2Fl< c ’1) ’

Proof The first formula is deduced from the coefficient of x" in the expression
(1—x)"%(1—=x)"" = (1 —x)~(@*?)_ The left-hand side can be written as

(@)n i (=n)i(b)i

n! S (1-n—a)

Now let a = 1 —n — ¢; simple computations involving reversals such as
(1—n—c), = (—1)"(c), finish the proof. O

The following transformation often occurs:

Proposition 1.2.4  For |x| < 1,

b —b
2Fi (a’ ;X) = (1-x)"“2F (a’c — ) .
c c x—1

Proof Temporarily assume that Re ¢ > Re b > 0; then from the Gauss integral
we have

a,b. N\ T(o) b b —a
»F ( i ,x> _m/o PN 1 =) P (1 —xr) ~dr

- r(b)rr((cc)—b) /Ols“b*‘(l —s)Pl1—x) (1 - xisl)ads,

where one makes the change of variable t = 1 —s. The formula follows from
another application of the Gauss integral. Analytic continuation in the parameters
extends the validity to all values of a,b, ¢ excluding ¢ € Ny. For this purpose we
tacitly consider the modified series

s _(@n(B)n
ng;)l"(c—i—n)n!x’

which is an entire function in a, b, c. O
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Corollary 1.2.5 For |x| <1,

2Fy (a’cb;X) =(1—x)"hR (c_aéc_b;X>.

Proof Using Proposition 1.2.4 twice,

ab N _ . . a,c—b x
2F1(C,x)—(1 %) 2F1< c ’x—l)
x \b—e c—a,c—b
—(1—x)(1- F o
(1—x) ( x—l) 21( c ,x>
and 1—x/(x—1)=(1—x)"". O

Equating coefficients of x* on the two sides of the formula in Corollary 1.2.5
proves the Saalschiitz summation formula for a balanced terminating 3 F, series.

Proposition 1.2.6 For n = 0,1,2,... and c,d # 0,—1,—-2,...,—n with
—n+a+b+1=c+d (the “balanced” condition), we have

—n,a,b_\ _(c—a),(c—b), (c—a),(d—a),
3F2( c,d ’1> C (), (c—a=b),  (0),@),

Proof Considering the coefficient of X" in the equation

(1—x)*t=¢, (“’c";x> —F (C_“’Cc_b;x>

yields
3 (c—a—b), ;(@);b); _(c—a),(c=b),
2T =)o), @,
but
(C —a— b)nfj . (C —a— b)n (—I’l)] .
(n—j) _n!(l—n—c+a+b)j’
this proves the first formula with d = —n +a + b — ¢ + 1. Further,
(c=b)p=(-1D)"1-n—c+b), =(-1)"(d —a), and (-1)"(c—a—b), =
(1-n—c+a+Db), = (d),, which proves the second formula. O

1.2.1 Lauricella series

There are many ways to define multivariable analogues of the hypergeometric
series. One straightforward and useful approach consists of the Lauricella gen-
eralizations of the ,F] series; see Exton [1976]. Fix d = 1,2,3,... vector
parameters a,b,c € R?, scalar parameters o,y and the variable x € R“. For
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concise formulation we use the following: let m € N¢, m!
d _1d _md M
zjzl mj, (a), = Hj:l (“j)m_/. and x™ = szlx !

The four types of Lauricella functions are (with summations over m € N¢):

=1 (m;)!,|m| =

() | (B) d
1. Fx(o,b;c;x) = 27‘)3“, convergent for Z |xj| < 1;
m (c) m! j=1
2. Fg(a,biyix) =, (21) m‘:‘xm, convergent for max |x;| < I;
m m| J

d
3. Fe(o, Bsesx 2 ‘m| ‘m‘)ﬂ“ convergent for 2|xj\1/2<1;

m mm‘ Jj=1
o b
4. Fp(a,b;y;x) = Zmﬂ convergent for max |x;| < 1.
o (7)mm! J

There are integral representations of Euler type (the following are subject to

obvious convergence conditions; further, any argument of a gamma function must
have a positive real part):

I'(c))
1. D) = 3T e —o0)
Fa(o,b;e;x) Jl:llr(bj)r(cj_bj)

d bi—1 ci—bi—1 d -
X/[01]dH(uj (1—u;)0 ) 1= Y ujx; | du
A2 =

2. Fp(a,byyix) = ﬁl‘(aj)‘l r

‘o N J 51
x/TdH(ujf (1—ujx;j) ./) <1_j_zluj> du,

j=1
where 8 = y—zjzl a;jand T4 is the simplex {u € R? : u; > 0 for all j, and
2?:114]' < 1};
T

F(e)T(y—a)

"1 d

></ u (1 —u) ! [Ta —uxj)_bf du,
0 i
j=1

a single integral.

1.3 Orthogonal Polynomials of One Variable
1.3.1 General properties

We start with a determinant approach to the Gram—Schmidt process, a method for
producing orthogonal bases of functions given a linearly (totally) ordered basis.
Suppose that X is a region in R? (for d > 1), u is a probability measure on X
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and {fi(x):i=1,2,3...} is a set of functions linearly independent in L*(X, ).
Denote the inner product [y fgdu as (f,g) and the elements of the Gram matrix
<flaf]> as 8ij» laJ eN.

Definition 1.3.1 For n € N letd, = det(g;;); ;_, and
811 812 .- 8ln
D, (x) = det

8n—1,1 8n—-12 --- En—1n
fix) Hlx) o fulx)

Proposition 1.3.2  The functions {D,(x) : n > 1} are orthogonal in L*(X, 1),
span{D;(x) : 1 < j <n} =span{fj(x): 1 < j<n}and (D,,D,) = dy_1dy.

Proof By linear independence, d,, > 0 for all n; thus D,(x) = d,—1 fu(x) +
Yj<ncjfj(x) for some coefficients c¢; (where dyp = 1) and span{D; : j < n} =
span{fj : j <n}. The inner product (f;,D,) is the determinant of the matrix in the
definition of D,, with the last row replaced by (g;1,8/2,---,&j») and hence is zero
for j <n.Thus (D;,D,) =0for j <nand (D,,D,) =du—1(fn,Dn) =dp—1d,. O

There are integral formulae for d, and D,(x) which are interesting fore-
shadowings of multivariable weight functions P, involving the discriminant, as

follows.

Definition 1.3.3 Forn € N and x;,x3,...,x, € X let
Pn(xl 3 X250 e 7xi’l) - det(f](xl));l,]:l
Proposition 1.3.4 Forn € Nand x1,x3,...,x, € X,

/ Py(x1,x2,. .. ,xn)zd,u(xl) < du(x,) = nldy,
Xﬂ

and
/X” Po(x1,%2, ..oy Xn)Pog1 (X1,X0, oy Xy x) dpe(x1) - -dpt (x,) = n!Dypg (x).
Proof In the first integral, make the expansion

Po(x1,x2,. .. x,)> = zzgcgrﬁfci(xi)fri(xi)a
c T i=1

where the summations are over the symmetric group S, (on n objects); &, 0i
denote the sign of the permutation ¢ and the action of ¢ on i, respectively. Inte-

grating over X" gives the sum Y. X.; €€ [11 8oiri = n! X & [1im | 8rii = n'dy.
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The summation over o is done by first fixing ¢ and then replacing i by 6—!i and
7 by 7o~ Similarly,
Pn(-xla-x27 e 7xn)Pn+1 (X] 3 X2y 7xn7x)
n
=2 > eotc | [ foilxi) fri(xi) Frniny (%),

o T i=1

and the 7-sum is over S,11. As before, the integral has the value
n
2 2 €€ Hgmi,rifr(rwl) (x)
o7 i=1

which reduces to the expression n! Y. & TT7_| griifr(ns1)(X) = n!Dyyi (x). O

We now specialize to orthogonal polynomials; let 1 be a probability mea-
sure supported on a (possibly infinite) interval [a,b] such that |, f |x["dp < eo for
all n. We may as well assume that u is not a finite discrete measure, so that
{1,x,x?,x3,...} is linearly independent in L?(u); it is not difficult to modify the
results to the situation where L?(u) is of finite dimension. We apply Proposition
1.3.2 to the basis f;(x) = x/~1; the Gram matrix has the form of a Hankel matrix
8ij = Cit+j—2, where the nth moment of u is

o= [ ¥ au(
Ja
and the orthonormal polynomials {p,(x) : n > 0} are defined by
pa(x) = (dn+1dn)7l/2Dn+1(x)§
they satisfy [ ab Pm(X)pn(x)diL(x) = Oy, and the leading coefficient of p, is
(dn/dyy1)'/? > 0. Of course this implies that fab Pu(x)g(x)dp(x) = 0 for any poly-

nomial g(x) of degree < n— 1. The determinant P, in Definition 1.3.3 is exactly
the Vandermonde determinant det(x; - l)l Lo = Mi<icjcn(xj — x0).

Proposition 1.3.5 Forn >0,
/ X —x)2dp () di () = nldy,
[a,b]" l<l<j<ﬂ

/aanx Xi) H xj_xi)zd:u(xl)"'d,u(xn):n!(dndm—l)l/zpn(x)-

1<i<j<n

It is a basic fact that p,(x) has n distinct (and simple) zeros in [a, b].
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Proposition 1.3.6 For n > 1, the polynomial p,(x) has n distinct zeros in the
open interval (a,b).

Proof Suppose that p,(x) changes sign at #1,...,t, in (a,b). Then it follows
that ep, (x) [T, (x—#) > 0 on [a,b] for € = 1 or —1. If m < n then [ p,(x)

" | (x—1t;)du(x) = 0, which implies that the integrand is zero on the support of
U, a contradiction. O

In many applications one uses orthogonal, rather than orthonormal, polyno-
mials (by reason of their neater notation, generating function and normalized
values at an end point, for example). This means that we have a family of
nonzero polynomials {P,(x) : n > 0} with P,(x) of exact degree n and for which
2Py (x)x du(x) = 0 for j < n.

We say that the squared norm [”P,(x)>du(x) = h, is a structural con-
stant. Further, p,(x) = £h, 2p, (x); the sign depends on the leading coefficient
of P,(x).

1.3.2 Three-term recurrence

Besides the Gram matrix of moments there is another important matrix associated
with a family of orthogonal polynomials, the Jacobi matrix. The principal minors
of this tridiagonal matrix provide an interpretation of the three-term recurrence
relations. For n > 0 the polynomial xP, (x) is of degree n+ 1 and can be expressed
in terms of {P; : j < n+ 1}, but more is true.

Proposition 1.3.7  There exist sequences {An }n>0,{Bn }n>0,{Cn }n>1 such that
Pit1 (x) = (Anx + Bn)Pn ()C) —CuP (x),

where

kny1 _ kny1kn—1hy ke

b
An= G = B, = — Py(x)*d
n n k%hnfl 9 n knhn u X n(x> ,ll(.x),

and ky is the leading coefficient of P,(x).

Proof Expanding xP,(x) in terms of polynomials P; gives Z;fié a;jPj(x) witha; =
h;l j;lb xP,(x)P;(x)du (x). By the orthogonality property, a; = 0 unless |[n— j| < 1.
The value of @, | = A, ! is obtained by matching the coefficients of x*!. Shifting
the label gives the value of C,. O

Corollary 1.3.8 For the special case of monic orthogonal polynomials, the
three-term recurrence is

Pn+l (X) = (X+Bn)P11 (X) - CnPnfl (X),
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where

b
/a Py () dp (x).

Proof In the notation from the end of the last subsection, the structure constant
for the monic case is h, = d,+1/d,. O

It is convenient to restate the recurrence, and some other, relations for orthog-
onal polynomials with arbitrary leading coefficients in terms of the moment
determinants d,, (see Definition 1.3.1).

Proposition 1.3.9  Suppose that the leading coefficient of P, (x) is ky, and let
by = ff xpn(x)?du(x); then

d
by =k =
n
k ko_1h
xPy(x) = % zlpn+1(x)+bn31(x)+ k”hl TPnfl(x)-
n n'tn—

Corollary 1.3.10 For the case of orthonormal polynomial p,,
Xpn(x) = anPus1(x) + by (X) + dn—1pn-1(x),
where @y = kn /kn1 = (dudpia/d2, )%

With these formulae one can easily find the reproducing kernel for polynomials
of degree < n, the Christoffel-Darboux formula:

Proposition 1.3.11 Forn > 1, ifk, is the leading coefficient of p, then we have

’

c _ kn pn I(X)Pn(y)—pn(X)Pn 1(y)
prj(x)pj(y)fkn+1 . P

ﬁfmf:f;mﬂmmw—mmmﬂmy
j= n

Proof By the recurrence in the previous proposition, for j > 0,
k:

(x=2)pi)pi() = == [Pis1 (P 0) = PP ()]
J+1
+Z;m»wmw—mmmmm.

The terms involving b; arising from setting n = j in Corollary 1.3.10 cancel out.
Now sum these equations over 0 < j < n; the terms telescope (and note that
the case j = 0 is special, with p_; = 0). This proves the first formula in the
proposition; the second follows from L’Hospital’s rule. O
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The Jacobi tridiagonal matrix associated with the three-term recurrence is the
semi-infinite matrix

by ap O
a b] aq
J— ap by a
ay b3
O

where a,_1 = \/C, = \/dy+1d,—1/dy (ay—1 is the same as the coefficient a, in
Corollary 1.3.10 orthonormal polynomials). Let J, denote the left upper subma-
trix of J of size n X n, and let [, be the n X n identity matrix. Then det(x,; —
Ju1) = (x—by) det(xl, —J,) — a _,det(xl,—1 —J,—1), a simple matrix identity;
hence P, (x) = det(xI, — J,). Note that the fundamental result regarding the eigen-
values of symmetric tridiagonal matrices with all superdiagonal entries nonzero
shows again that the zeros of P, are simple and real. The eigenvectors of J,, have
elegant expressions in terms of p; and provide an explanation for the Gaussian
quadrature.
Let A1,A2, ..., A, be the zeros of p,(x).

Theorem 1.3.12 For 1 < j<nlet

VO = (po (A1), pr(Ag)s oo s a1 (A) T

then J,v(/) =A; v\, Further,

Z YJPr ) = 6rs

where 0 <r,s <n—1and yj = (2:‘ o Pi(A )2)7l

Proof We want to show that the ith entry of (J, — A;I,)v") is zero. The typical
equation for this entry is

ai-api-2(Aj) + (bi-1 — Aj)pi-1(4; )+az 1pi(Aj)

(2= 12 ) piat + (a5 ) ity

=0,
because kl' = (di/di+1)1/2 and a1 = (d,urldl‘,]/diz)l/z = k,;]/kl' for i Z 1,
where k; is the leading coefficient of p;. This uses the recurrence in Propo-
sition 1.3.9; when i = 1 the term p_;(A;) = 0 and for i = n the fact that
Pn(Aj) = 0is crucial. Since J,, is symmetric, the eigenvectors are pairwise orthog-
onal, that is, ¥ | pi—1(A;)pi—1(A,) = 8;/v; for 1 < j,r < n. Hence the matrix
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(yll/ 2pic (kj))?jzl is orthogonal. The orthonormality of the rows of the matrix
is exactly the second part of the theorem. O

This theorem has some interesting implications. First, the set {p;(x) : 0 <
i < n—1} comprises the orthonormal polynomials for the discrete measure
321 7i6(A;), where §(x) denotes a unit mass at x. This measure has total mass 1
because po = 1. Second, the theorem implies that 37_; 7;q(4;) = j gdu for any
polynomial g(x) of degree < n — 1, because this relation is valid for every basis
element p; for 0 <i <n— 1. In fact, this is a description of Gaussian quadrature.
The Christoffel-Darboux formula, Proposition 1.3.11, leads to another expression
(perhaps more concise) for the weights ;.

Theorem 1.3.13 Forn>1let A1, A2, ..., Ay be the zeros of p,(x) and let y; =
(27 0 pl( ) )71' Then

kn
o e P () ot (A

and for any polynomial q(x) of degree < 2n— 1 the following holds:
b n
[ adu =314
a j=1

Proof In the Christoffel-Darboux formula for y = x, setx = 4; (thus p,(4;) =0).
This proves the first part of the theorem (note that 0 < y; < 1 because pp = 1).
Suppose that g(x) is a polynomial of degree 2n — 1; then, by synthetic division,
q(x) = pu(x)g(x) +r(x) where g(x), r(x) are polynomials of degree < n— 1. Thus
r(Aj) = q(A;) for each j and, by orthogonality,

b b b b n
/ qdu:/ pngdu+/ rdu:/ rdu =" vr(4))
a a a a j=1

This completes the proof. O

One notes that the leading coefficients k; (for orthonormal polynomials, see
Corollary 1.3.10) can be recovered from the Jacobi matrix J; indeed k; =
Hs»: 1 c;l and ko = 1, that is, pg = 1. This provides the normalization of the asso-
ciated discrete measures ¥}_; ¥;6(A;). The moment determinants are calculated

from d; = H’] 11 k?
If the measure U is finite with point masses at {t1,f,,...,#,} then the Jacobi
matrix has the entry ¢, = 0 and J, produces the orthogonal polynomials

{po,p1,-.-,pn—1} for i, and the eigenvalues of J, are t1,17,...,1,.
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1.4 Classical Orthogonal Polynomials
This section is concerned with the Hermite, Laguerre, Chebyshev, Legendre,
Gegenbauer and Jacobi polynomials. For each family the orthogonality measure
has the form du (x) = cw(x) dx, with weight function w(x) > 0 on an interval and
normalization constant ¢ = | [ w(x)dx] . Typically the polynomials are defined
by a Rodrigues relation which easily displays the required orthogonality prop-
erty. Then some computations are needed to determine the other structures: h,
(which is always stated with respect to a normalized ), the three-term recur-
rences, expressions in terms of hypergeometric series, differential equations and
so forth. When the weight function is even, so that w(—x) = w(x), the coefficients
by, in Proposition 1.3.9 are zero for all n and the orthogonal polynomials satisfy

Py(=x) = (=1)"Py(x).

1.4.1 Hermite polynomials

. . . . . 2
For the Hermite polynomials H,(x), the weight function w(x) is e on x € R
and the normalization constant ¢ is T'(1)~! /2,

d n
Definition 1.4.1 Forn > 0let H,(x) = (—1)"6)‘2 (dx) e

Proposition 1.4.2 For0<m<n,
/ P Hy(x)e " dx = 0
R
and

hp = n’l/z/ [H, (x))2e ™ dx = 2"n!
R

Proof For any polynomial g(x) we have

Jrswmtoeae= [ () store s
using n-times-repeated integration by parts. From the definition it is clear that the
leading coefficient k, = 2", and thus h, = 7~/ [ 2iple dx = 2"n! O
Proposition 1.4.3 For x,r € R, the generating function is

exp( 2rx—r ZH

and
n!

o
e 2@
=n
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Proof Expand f(r) = exp[—(x —r)?] in a Taylor series at = 0 for fixed x. Write
the generating function as

5 () ey,

set m = n+ j and collect the coefficient of ¥* /n! Now differentiate the generating
function and compare the coefficients of . O

The three-term recurrence (see Proposition 1.3.7) is easily computed using
kn=2" h, =2"n! and b, = 0:

Hy1(x) = 2xHy(x) — 2nH,_1 (x)

with @, = /3 (n+1). This together with the fact that H,(x) = 2nH,_1(x), used
twice, establishes the differential equation

H)!(x) — 2xH, (x) +2nH,(x) = 0.

1.4.2 Laguerre polynomials

For a parameter o« > —1, the weight function for the Laguerre polynomials is
x%¢*on Ry = {x:x >0} with constant I'(cz +1)~!

1 d\"
Definition 1.4.4 Forn > 0let L¥(x) = —x et (dx) (x1Toe™),
n!

Proposition 1.4.5 Forn >0,

@y (et D (=n); xl
Lt == Z;)(our ;"

Proof Expand the definition to

1 n
1500 = B (3 o
(with the n-fold product rule) and write (—n — &),—; = (=1)" (0t + 1),/
(+1);. O

Arguing as for Hermite polynomials, the following hold for the Laguerre
polynomials:

1. /0 " (0L (x)x% ¥ dx — (_nl!)" /0 ) (ic)”q(x)xa'”’e_xdx

for any polynomial g(x);
XL (x)x% 7 dx=0 for0<m<n;
0
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(71)11 ‘

3. the leading coefficient is k, = —
n

1 = '
4 hy=o—— [ [LY(x)Px% “dx
= D)y e
1 - o+n ,—x (Ot—i—l)n
= ——— dx:7_
F(OH—l)n!/o e n!

Proposition 1.4.6  The three-term recurrence for the Laguerre polynomials is

n+o .
n+1 n—1

(x)-

1
Ly (x) = H—l(—x+2n+ 14 a)LY(x)

Proof The coefficients A, and C, are computed from the values of 4, and &, (see
Proposition 1.3.7). To compute B, we have that

_1)
L (x) = (b [¥" —n(o+n)x""'] + terms of lower degree;

n!
hence
1 L "o
o) Jy Loste
= ;/w[(n—‘,- l)x—n(a_i_n)}on»ne—xdx
n!T(a+1) Jo
= M[(n-l—1)r(a+l’l+2)—n(a+n)r‘(a+n+2)]

1
= ;(OC‘F 1),(2n+1+ o).

The value of B, is obtained by multiplying this equation by —k,+1/(k,h,) =
n!/[(n+1)(a+1),]. O

The coefficient a, = /(n+ 1)(n+ 1+ o). The generating function is

(1 —r)_o‘_lexp< —xr) = ZL,?(x)r", [r| < 1.
n=0

1—r

This follows from expanding the left-hand side as
i (_xr)j (] _r)fafjfl — i (_xr)j i (OC—|— 1 +j)mrm

m!

j=0 J! Jj=0 J! m=0 ,

and then changing the index of summation to m = n — j and extracting the coeffi-
cient of 7*; note that (ot + 1+ j),—j = (a+1),/(cc+1),. From the | F; series for
L% (x) the following hold:

L0y = (9D,

n!
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2 S 1) = L ()
d2 o d o
3 x@Ln(x)‘F(O“*‘]—x)a Ly (x) +nL (x) =0

The Laguerre polynomials will be used in the several-variable theory, as func-
tions of |x|>. The one-variable version of this appears for the weight function
|x[ 24 e for x € R, with constant T (u+ l) - Orthogonal polynomials for this
weight are given by P, (x) = Lb 1/2( ) and Py, 11 (x) = xLA2 (x?). This fam-
ily is discussed in more detail in what follows. In particular, when u = 0O there

is a relation to the Hermite polynomlals (to see this, match up the leading coeffi-
cients): Ha (x) = (~1)"22"nlLy ' (x2) and Hay 1 (x) = (~1)"22 il (52).

1.4.3 Gegenbauer polynomials

The Gegenbauer polynomials are also called ultraspherical polynomials. For a
parameter A > —1 their weight function is (1 — )’1_1/ 2on —1 <x< 1; the
constant is B(%,?L +5 ) ! The special cases A =0, 1, 3 correspond to the Cheby-
shev polynomials of the first and second kind and the Legendre polynomials,
respectively. The usual generating function does not work for A = 0, neither
does it obviously imply orthogonality; thus we begin with a different choice of
normalization.

Definition 1.4.7 Forn >0, let

Phw =

d"
T (A2 | — 2)tA—1/2.
2”(7L+%)n( *) dx"( *)

Proposition 1.4.8 Forn >0,
1+x\" —n,—n—2A+3% x—1
P x) = F "
w () <2)2'( /1+2 x+1)
—n,n+2A 1—x
= F ’ S — .
A ()
Proof Expand the formula in the definition with the product rule to obtain

CORS Gt ) SR o L W NP NS

x (=1 (1=x)/(1 +x)"—f} .

This produces the first ,F; formula; note that (—n—A+3),— ;= (—1)""/ (A + 1),/
(A + %) j- The transformation in Proposition 1.2.4 gives the second
expression. O
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As before, this leads to the orthogonality relations and structure constants.

| 42 2 (A D
1. The lead fficient is k, = = ’
¢ lea mg coeincient 18 Ky, 2"()~+1/2)n (22.-‘1-1)"—1

where the second equality holds for n > 1;

1 —n 1 4qn
2 [ @R -2 =T [
-1

TrmLameu—
2/nY

for any polynomial ¢(x);

1
3. / PP )1 =22 =0 for0<m < n;
1

- 1 1 A X Y A—1/ B n'(n+27L) .
A= B(;,Hé)/_l[m (1) e = 224+ 1)(n+2)’
_2(n+A)

n
5. Pl () = =52 ) - B (),

n—|-2)L n—1
where the coefficients are calculated from k,, and 4,,;

(- D)m+22) \V?
6 a"_<4(n+l)(n+l+l)) :

Proposition 1.4.9 Forn>1,

d 2 . n(n+27t) A+1
" (x) = 1—&-721 n—1 (x)

and P} (x) is the unique polynomial solution of

(1=2%)/"(x) = QA+ Dxf'(x) +n(n+24) f(x) =0, f(1)=1.

Proof The ,F) series satisfies the differential equation

d _(ab N\ _ab _ ja+1,b+1
g () =2 (T )

k)

applying this to P,% (x) proves the first identity. Similarly, the differential equation

satisfied by 2 F (—nir:_—&—lZl;t) leads to the stated equation, using ¢ = %(1 —X),
2
and d/dr = —2d/dx. O

There is a generating function which works for A > 0 and, because of its
elegant form, it is used to define Gegenbauer polynomials with a different
normalization. This also explains the choice of parameter.

Definition 1.4.10 For n > 0, the polynomial C? (x) is defined by

(1—2m+r2)* = ZC,),L(x)r”, [rl<1, |x<1.
n=0
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Proposition 1.4.11  Forn > 0and A > 0, C}(x) . P*(x) and
2 (A)n2" 1 o (=552 1
F P
ch = B, 1(1 Tl
Proof First, expand the generating function as follows
-1
2r(x—1
[14+2r(1—x)=2r+r " =(1 r)fZ)L (1 — (rl()i r)2)>
=] )‘ . i
= 2 —.‘)j 2/r (x—1)/(1 r)lefzj
=0 7
o Jli!

i,j=
_ iﬂz(Zl)n i (—n)j(2A +n); (1 —x)j

nl 5 (A+35)j! 2

where in the last line i has been replaced by n — j, and (24 + 2j),—; =
(2A)2j (24 +2j)n—j/ (2A)2; = (2A)n(2A +n) /22 (A) (A + 3) .
Second, expand the generating function as follows:
[1— (2rx—r2)]7}L = Z —( ,‘)j (2rx—r2)1
j=0 J:

; ’l' (zx)/—trH—/

2’)nl i xn72i
S qaa e

i<n/2

b
-2

n

where in the last line j has been replaced by n —i. The latter sum equals the stated
formula. O

We now list the various structure constants for C*(x) and use primes to
distinguish them from the values for P,fL (x):

1. kK, = (ann;
n!

;o AQA) A,
2 I = (n+A)n! n—i—lc (1);

2 _ 2(n+A4) _n+27L—1 2 .
3' Cdn+1( ) n+l xcn (‘x) I’l+1 n—l(x)’
4. acl( x) = 2AC* 1 (x);
5.CH1) = @A

n!
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There is another expansion resembling the generating function which is used
in the Poisson kernel for spherical harmonics.

Proposition 1.4.12  For |x| < 1 and |r| < 1,

1—r2 Zn—i—l
(1 —2xr+ r2)A+1

= —P7L (x)r"

Proof Expand the left-hand side as ¥, {C’”l( )— C,’}“Lzl( )} . Then

(A + 1)n—i

i'(n—2i)! (=1 (@

) -c@=3

i<n/2

()u + 1)n—2_j . s
— —_— _1 j 2_)(" ;
jsgi_lﬂ(n—z—zj)y( )/ (2x)

_ 27 (?'(*;1_)*121,)1,"(_1)1‘(2@"2!‘(/1 +n).
i<n/2 °° .

In the sum for Cﬁle (x) replace j by i — 1, and combine the two sums. The end
result is exactly [(n+A/A)] C*(x). Further,

(n+21)(24),

-1
An! =

(the form for A, given in the list before Proposition 1.4.9 avoids the singularity at
A =0). O

Legendre and Chebyshev polynomials
The special case A = % corresponds to the Legendre polynomials, often denoted
by P,(x) = 1/2( ) = ol 2(x) (in later discussions we will avoid this notation
in order to reserve B, for general polynomials). Observe that these polynomials
are orthogonal for dx on —1 < x < 1. Related formulae are for the Legendre
polynomials 4, = 1/(2n+ 1) and

(n+ 1D)Pyy1(x) = 2n+ 1)xP,(x) — nPy—1 (x).

The case A = 0 corresponds to the Chebyshev polynomials of the first kind
denoted by T,,(x) = P?(x). Here hy = 1 and h, = 1 for n > 0. The three-term
recurrence forn > 1is

Th1(x) = 2xT,(x) — T,—1 (x)
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and Ty(x) = xTp. Of course, together with the identity cos(n + 1)6 =
2cosBOcosn® — cos(n — 1)0 for n > 1, this shows that T,(cos@) = cosn®.
Accordingly the zeros of 7, are at
2j— )z
2n

for j=1,2,...,n. Also, the associated Gaussian quadrature has equal weights at
the nodes (a simple but amusing calculation).

The case A = 1 corresponds to the Chebyshev polynomials of the second kind
denoted by U, (x) = (n+1)P}(x) = C}(x). For this family 4, = 1 and, for n >0,

Ccos

Upt1(x) = 2xUy (x) — Up—1 (x).
This relation, together with

sin(i?+2)9 _ Zcosesin(l?—k He si'nnG
sin 0 sin O sin O

for n > 0, implies that
sin(n+1)6

Un(cos 8) = sin6

1.4.4 Jacobi polynomials

For parameters o, 3 > —1 the weight function for the Jacobi polynomials is
(1—x)%(14x)B on —1 < x < 1; the constant ¢ is 2~ * P~ 1B(a+ 1,8 +1)"".

Definition 1.4.13 Forn > 0, let

A = DN e B [0 (1P ).

Proposition 1.4.14 Forn > 0,

PP () = (o+ 1)y <1+x>”2F1 (n,nﬁ_x—1)

n! 2 oa+1 “x+1
(ot 1), F —nn+o+B+1 1—x
T oa+1 2 )

Proof Expand the formula in Definition 1.4.13 with the product rule to obtain

AP @) = S S (1) onm s on= By

2"n! ZoL\J
x (1=x)/(1 +x)”_/].

This produces the first ,F} formula (note that (—n— a),—; = (—1)" (ot + 1),/
(¢ + 1);. The transformation in Proposition 1.2.4 gives the second
expression. O
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The orthogonality relations and structure constants for the Jacobi polynomials
are found in the same way as for the Gegenbauer polynomials.

1
1. The leading coefficient is k,, = %;
2. / (x)(1 —x)%(1 +x)Pdx
d n
2"n'/_1 <dx> g(x) (1 —x)% (1 4 x)B+7 dy

for any polynomial ¢(x);

3/ PP () (1 —x)*(1+x)Pdx =0 for 0 <m < n;

‘ (e, B) — ¥ xﬁ
& fn 2a+ﬁ+1B(a+1[3+1 / BP0 (10 (142 dx

(a4 1),(B+1)(a+B+n+1)
onla+BH2)(a+B+2n+1)°

5. PPl (—x) = (1) PP ) and PPN (—1) = (1) (B+ 1)u/nt.
The differential relations follow easily from the hypergeometric series.

Proposition 1.4.15 Forn>1,

d , n+o+p+1
S e (g = TELE P L plocten
where P,E""ﬁ ) (x) is the unique polynomial solution of

(1=x2)f"(x) = (@ =B+ (e +B+2)x)f (x) +n(n+o+B+1)f(x) =0

with f(1) = (a+1),/n!.

The three-term recurrence calculation requires extra work because the weight
lacks symmetry.

Proposition 1.4.16 Forn > 0,

@ntotfil)@ntotB+2) paup
2+ Dntatpt+l) W
2n+a+pB+1)(a?—B?) P(a’B)(x)
2+ )(nto+B+1)2ntatp)”
(+n)(B+n)2n+a+p+2) (B) (1)
T+ )t a+BrD)2ntatp)

PP () =
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Proof The values of A, = kyi1/k, and C, = kyy 1k, 1h,/k2h, 1 (see Propo-
sition 1.3.7) can be computed directly. To compute the B, term, suppose

that
(x) = 1—x "+ 1—x "71.
q\x) =Vvo > Vi ) 5

2 a1 [ B W1 -0 P

then

1
— (_1)n27a7ﬁ72n717‘3(a+Lﬁ_'_l)fl
n

X /_11 [—(n+ Dvo(1 —x) + (vo — 2v1)] (1 —x)"T*(1 +x)"+ﬁdx

7(—1)”(a+1)n(ﬂ+1)nv (—2(n+1)(0¢+n+1)+ V1>
N (ot +B+2)2n a+B+2n+2 vo )’

From the series for P,E""ﬁ ) (x) we find that
vi _ n(a+n)
Vo o+pB+2n
and the factor within large parentheses evaluates to
B2 — o2
(c+B+2n)(a+p+2n+2)
Multiply the integral by —kp+1/(knhy) to get the stated result. O

Vo = (—2)"k,,,

Corollary 1.4.17  The coefficient for the corresponding orthonormal polynomi-
als (andn > 0) is

B 2 ((a+n+1)(ﬁ+n+1)(n+1)(oc+ﬁ+n+1))l/2
Ca+f+2n+2 (+B+2n+1)(a+B+2n+3) ’

an

Of course, the Jacobi weight includes the Gegenbauer weight as a special case.
In terms of the usual notation the relation is

21 A—1/2,—1/2
A (x) = 7; )1 PATVRATD) ().
( + f)n
In the next section we will use the Jacobi polynomials to find the orthogonal
polynomials for the weight x| (1 —x2)*~1/2on -1 <x < 1.

1.5 Modified Classical Polynomials

The weights for the Hermite and Gegenbauer polynomials can be modified
by multiplying them by |x|**. The resulting orthogonal polynomials can be
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expressed in terms of the Laguerre and Jacobi polynomials. Further, there is an
integral transform which maps the original polynomials to the modified ones.
We also present in this section a limiting relation between the Gegenbauer and

Hermite polynomials.

Note that the even- and odd-degree polynomials in the modified families have
separate definitions. For reasons to be explained later, the integral transform is

denoted by V (it is an implicit function of u).

Definition 1.5.1 For yt >0, let ¢y = [2%B(u,u+1)] ' (see Definition 1.1.2)

and, for any polynomial g(x), let the integral transform V be defined by
1
Vg(x) = cﬂ/ g(tx)(1 —0)* =1 (1 +-1)H dr.
~1
Note that

/1(1 DL ) dr = 2/ 2l — B(L, p):;
J—1 2’ ’

thus ¢, can also be written as B (%,,u) - (and this proves the duplication formula

for T, given in item 5 of the list after Definition 1.1.2). The limit

fim s [ 00— de= 470 + £ 1)

A—0

shows that V is the identity operator when tt = 0.

Lemma 1.5.2 Forn>0,

(2),

x2n and V(x2n+1) _ (%)nJrl x2n+1.
(n+3),

V(x2n) —

Proof For the even-index case

1 1
cu [ltz"(l—t)“’l(l+t)“dt:Zcu/o (1 —r2)Htdr

Bn+i.1)  (3),
B(3.u)  (n+3),

and for the odd-index case

! 1
Cu /71 t2n+1(l —I)H—l(l th)”dt — 2cy /0 t2n+2(1 *tz)“_ldt

:B(”"’%aﬂ) (%)nJrl
B(3.1)  (M+3),,,

(1.5.1)
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1.5.1 Generalized Hermite polynomials

. . . . . . 2
For the generalized Hermite polynomials HJ', the weight function is |x|**e* on

x € R and the constant is " (/,L + %) ! From the formula
) |x[PHe dy = N1 2e dr
2 20 —x
R 0

we see that the polynomials {P,(x) : n > 0} given by Py, (x) = L 12 (x?) and
P (x) = xLi +1/ 2(x2) form an orthogonal family. The normalization is chosen
so that the leading coefficient becomes 2".

Definition 1.5.3 For u > 0 the generalized Hermite polynomials Hj' (x) are
defined by
Iz 77n2n|/~i_1/22
H,, (x) = (—=1)"2""n!L, (x%),

HE L (x0) = (=122 a2 (32),

The usual computations show the following (for n > 0):

1. k, =2";
2 a2 ), o <2 ),
3. Hy (%)= 2xH“(x) 4nHY | (x),

Hj,p(x) = 2,,+1(X) 2(2n+ 142p)Hy (x).

The integral transform V maps the Hermite polynomials H>, and Hj, | onto
this family:

Theorem 1.5.4 Forn>0and u >0,
1 1
(i)n M (i)nH i
1 2 1 2nt1
(u+§)n " (u+§)n+l "
Proof The series for the Hermite polynomials can now be used. For the even-
index case,

VHzn = and VH2,1+1 =

oy @t g2 2y
Vi) = 3 G (1) T

_a2n(_q1yn(l . (=n)i 2

APt}

:22)1 _1 n (i) ' Lll 1/2 x2 .
( ) (u+§)n ( )
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For the odd-index case,

1
L (2}1—'—1)‘ i 2n+1-2j (i)n7j+l
VHy1(x) = ), o (1) (20) 7 7 ——
- jz()(znﬂ—z])!]! (H+3), i1
a(2n+ 1)1 —n); ;
:(—1)( ’ )xz_‘ ( 3 S
n: i=Ol'(‘u+§)i+1
a 2n+1)!
— (-1 ( : ) L5+1/2( 2y,
("l+§)n+1

where we have changed the index of summation by setting i = n — j and used the

relations (2n)! = 2%"n! (%)n and (2n+1)! = 2"'n! (%)n—&—l' -

1.5.2 Generalized Gegenbauer polynomials
For parameters A,y with A > —% and g > 0 the weight function is |x|#(1 —

x2)*=1/2 on —1 < x < 1 and the constant ¢ is B (u+ %,l + %)_1 . Suppose that
f and g are polynomials; then

1
[ FPgl )P (1 -2
-1
= u-h /1 f (1 ;”) g (1 ;rt) A+ 120 =)*12a
-1

and
1
/71(xf(xz))(xg(XZ))|x|2u(l *Xz)}”_lﬂdx
—pH-A-I /_llf (12_H> g (12—1-1‘> (1 +t)“+1/2(1 _t>}til/2dt.

Accordingly, the orthogonal polynomials {P, : n > 0} for the above weight
function are given by the formulae

Pon(x) =P VHTUD 032 1) and  Popy (x) =xBOTVERTD (02 ),

As in the Hermite polynomial case, we choose a normalization which corresponds
in a natural way with V.

Definition 1.5.5 For A > f%, u >0, n >0, the generalized Gegenbauer
polynomials cit (x) are defined by

i () = A EM 121 g 2 gy

p+3),
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2, (A+u), —1/2,u+1/2
cgnmx):i(u#) Lt AR 22 .
2)nt1

The structural constants are as follows (for n > 0):
Lo — Ao oy (AW
) 1 1 2n+1 — n l) I
(u+3),n! (u+3 a1

5 g _ (A+3), G4, (A +u)
Mo (), At ptam)

o) _ (A+3), A4, (A+p)

T (e g), (A2 )]
(A) o\ 2(A 4+ +2n) A) 2L +2n—1 (A1)
3. C2n+1 (X) - 2“+2n+1 xc2n (x) 2“+2n+1c211—1 (X),
A+pu+2n+1 A+u+n_ i
Cortt) (x) = R E— xCyy ) () - ﬁcén ) ();
A, n+A+
4. C;(1 '”)(1) T‘u” . )

The modified polynomials C,S’“’“ ) are transforms of the ordinary Gegenbauer

polynomials C,(/H“ ),

Theorem 1.5.6 For A > —%, u>0,n>0,
VMR (x) = cMM) (x).
Proof We use the series found in Subsection 1.4.3. In the even-index case,

n ) 1
VC;Ln""“ (x) — z W(l)/(zx)Zn—Zj ( (j_)?
7)
(/,L:‘u)nZ}:i( nZ‘:_A—F )
' 2
M 121 22)
(L+3),
A+, 112 50
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and in the odd-index case
1
YRt < (l+“)2n+1—j (2012 (f)n+1—j
Ve, =Y ——— L (—1)/(2x) e
21 (%) jgojz(znﬂ—zj)!( "t (+2),01
A _
= (—1 nx( +u’)n]+le]< n?”""kt“—"_l’ 2)
n!(1n+3) pA+3
-1 (A _
_x(=1) (l+”)n+1PrEu+l/2,7L Y2 g2
(u+§)n+1
A _
:x( +1H)n+1Pr5)L 1/2’”“/2)(2)52—1).
(#+§)n+l

Note that the index of summation was changed to i = n — j in both cases. [

1.5.3 A limiting relation

With suitable renormalization the weight (1 —x*/ l)lfl/ ? tends to e The
effect on the corresponding orthogonal polynomials is as follows.

Proposition 1.5.7 For u,n > O,/llim l”’/zC,(,l’“)(x/\/}T) = s,Hj (x), where

B —1
s = [2m (4 3),) 7 s = [ ),

Proof Replace x by x/ VA in the o F; series expressions (with argument x°) found
above. Observe that limy_...A /(A +a); = 1 for any fixed @ and any j = 1,2,...
O

By specializing to p = 0 the following is obtained.

X

Corollary 1.5.8 Forn >0, lim;_ ... A~"/2C? ( v

)= %H,,(x).

1.6 Notes

The standard reference on the hypergeometric functions is the book of Bai-
ley [1935]. It also contains the Lauricella series of two variables. See also the
books Andrews, Askey and Roy [1999], Appell and de Fériet [1926], and Erdélyi,
Magnus, Oberhettinger and Tricomi [1953]. For multivariable Lauricella series,
see Exton [1976].

The standard reference for orthogonal polynomials in one variable is the book
of Szegd [1975]. See also Chihara [1978], Freud [1966] and Ismail [2005].
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Orthogonal Polynomials in Two Variables

We start with several examples of families of orthogonal polynomials of two vari-
ables. Apart from a brief introduction in the first section, the general properties
and theory will be deferred until the next chapter where they will be given in
d variables for all d > 2. Here we focus on explicit constructions and concrete
examples, most of which will be given explicitly in terms of classical orthogonal
polynomials of one variable.

2.1 Introduction

A polynomial of two variables in the variables x,y is a finite linear combination
of the monomials x/y*. The total degree of x/y* is defined as j+ k and the total
degree of a polynomial is defined as the highest degree of the monomials that
it contains. Let IT> = R[x,y] be the space of polynomials in two variables. For
n € Ny, the space of homogeneous polynomials of degree n is denoted by

P2 = span{x/y* : j+k=n,j,k €Ny}
and the space of polynomials of total degree n is denoted by
12 := span{x/y* : j+k <n,jkeNy}

Evidently, H% is a direct sum of 9,,21 form=0,1,..., n. Furthermore,

2
dim#2=n+1  and dimHﬁ_<n; )

Let {-,-) be an inner product defined on the space of polynomials of two
variables. An example of such an inner product is given by

(Fghu = [, S 0)e)dua (o)
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where du is a positive Borel measure on R? such that the integral is well defined
on all polynomials. Mostly we will work with du = W(x,y) dxdy, where W is a
nonnegative function called the weight function.

Definition 2.1.1 A polynomial P is an orthogonal polynomial of degree n with
respect to an inner product (-,-) if P € T12 and

(PO)=0 VQEeII, . @.1.1)

When the inner product is defined via a weight function W, we say that P is
orthogonal with respect to W.

According to the definition, P is an orthogonal polynomial if it is orthogonal to
all polynomials of lower degree; orthogonality to other polynomials of the same
degree is not required. Given an inner product one can apply the Gram—Schmidt
process to generate an orthogonal basis, which exists under certain conditions to
be discussed in the next chapter. In the present chapter we deal with only specific
weight functions for which explicit bases can be constructed and verified directly.

We denote by 7,2 the space of orthogonal polynomials of degree 7:

V2 =span{P € I : (P,Q) =0,VQ € IT;_,}.

When the inner product is defined via a weight function W, we sometimes write
#2(W). The dimension of ¥, is the same as that of 2

dim¥?> = dim 22 = n+1.

A basis of #;? is often denoted by {P}' : 0 < k < n}. If, additionally, (P, P1)=0
for j # k then the basis is said to be mutually orthogonal and if, further, (P, P}')
1 for 0 < k < n then the basis is said to be orthonormal.

In contrast with the case of one variable, there can be many distinct bases for
the space #;. In fact let P, := {P} : 0 < k < n} denote a basis of %, where we
regard [P, both as a set and as a column vector. Then, for any nonsingular matrix
M € R*HLn+L MP, s also a basis of 72

2.2 Product Orthogonal Polynomials

Let W be the product weight function defined by W(x,y) = wi(x)wa(y), where w)
and w; are two weight functions of one variable.

Proposition 2.2.1 Let {pi}7_, and {qi};_, be sequences of orthogonal poly-
nomials with respect to wy and wy, respectively. Then a mutually orthogonal basis
of ”//,12 with respect to W is given by

P (x,y) = pr(x)gn—i(y), 0<k<n.

Furthermore, if { i} and {qi} are orthonormal then so is {P}'}.
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Proof Verification follows from writing
/R2 P (x,y)P}" (x,y)W (x,y) dxdy

— [ 0w (e [ gt (3)n i ()w20)dy
R R

and using the orthogonality of {p,} and {g, }. O

Below are several examples of weight functions and the corresponding classi-
cal orthogonal polynomials.

Product Hermite polynomials
Wry)=e "

and
Pl(x,y) = Hy(x)H,—(y), 0<k<n. (2.2.1)

Product Laguerre polynomials

X—=y

W(x,y) =x%Pe ™7,

and
Bi(x,y) =LELE ,(y),  0<k<n. (2.2.2)

Product Jacobi polynomials
W(x,y) = (1=x)*(1+2)P (1=y)7(1+y)°,
and

Pi(xy) = BP0 ), 0<k<n (2.2.3)

There are also mixed-product orthogonal polynomials, such as the product of
the Hermite polynomials and the Laguerre polynomials.

2.3 Orthogonal Polynomials on the Unit Disk

The unit disk of R? is defined as B> := {(x,y) : x> 4+ < 1}, on which we consider
a weight function defined as follows:

1
_|_ =
Wli(xay) ::un2(1_x2_y2)[.171/27 ‘LL>—%,
which is normalized in such a way that its integral over B? is 1. Let

(f:8)y = /Bzf(w)g(x,y)Wu(x’y)dxdy

in this section. There are several distinct explicit orthogonal bases.
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First orthonormal basis This basis is given in terms of the Gegenbauer
polynomials.

Proposition 2.3.1 Let i > 0. For 0 < k < n define the polynomials

Pl (x,y) = CKTHHI2 00 (1 = y2)K/2cH (y ) 23.1)
k( y) n—k ( )( ) k m (
which holds in the limit limy_opu~'C} (x) = (2/k)Ti(x) if & = 0. Then {P}:
0 < k < n} is a mutually orthogonal basis for ¥,2(W,,). Moreover,

(2k 420 + 1), (201 ()i (1 + 3)
(n—k) k! + S)(n+p+3)
where, when . = 0, we multiply (2.3.2) by =2 and set L — 0 ifk > 1 and multiply

by an additional 2 if k = 0.

(P, Py = , (232

Proof Since the Gegenbauer polynomial C,f is even if k is even and odd if k is
odd, it follows readily that P, is a polynomial of degree at most n. Using the
integral relation

/Bzf(x,y)dxdy:/jl /V\/ll‘:zf(x,y)dxdy
[ [ iR

and the orthogonality of the Gegenbauer polynomials, we obtain

el
(PP, = “Tzh’;:g“/ WSSk, 0<j<m, 0<k<n,

where 1t = 1, [CF (x)] % (1 —x2)#=1/2 dx, from which the constant in (2.3.2) can
be easily verified. [

In the case u = 0, the above proposition holds under the limit relation
limy o pu~'C} (x) = (2/k)T(x), where Tj is the Chebyshev polynomial of the
first kind. We state this case as a corollary.

Corollary 2.3.2 For 0 < k < n, define the polynomials
_ k12 _ L 2V\k/2 M
Pl (x,y)=C, /" (x)(1 =x7) Tk(m) (2.3.3)
Then {P! : 0 < k < n} is a mutually orthogonal basis for ¥;2(Wy). Moreover,
(P§,Py)o=1/(2n+1) and, for 0 < k < n,
(2k + 1),_k!

(P Pe)o = 20—k (3)(2n+1)

(2.3.4)
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Second orthonormal basis The basis is given in terms of the Jacobi polynomi-
als in the polar coordinates (x,y) = (rcos0,rsinf),0<r<1and 0< 0 <2r.

Proposition 2.3.3 For1 < ;< % define

Piaxy) = Iyl PP 0 P eostn=2p)0
Pj,2(x,)7) _ [th’”]flP}Ivl*l/lanj)(2r2 _ l)rn72j Sil’l(n _ 2])67 .

where the constant is given by
P (u+3)(n= N n—j+u+3) [x2 n#2j,
S+ jn+u+3)

Then {P;1:0< j<3}U{Pj2:0 < j< 5} is an orthonormal basis of the space
KE(W ().

[7jn (2.3.6)

x1 n=2j.

Proof From Euler’s formula (x+1iy)” = " (cosm6 +isinm0), it follows readily
that ¥ cosm6 and r"sinm@ are both polynomials of degree m in (x,y). Conse-
quently, P; | and P; > are both polynomials of degree at most n in (x,y). Using the
formula

1 2
/Bzf()c,y)dxdy:/0 r/o f(rcosO,rsin0)drdo,

that P;; and P, are orthogonal to each other follows immediately from the fact
that sin(n — 2k)@ and cos(n — 2k)@) are orthogonal in L?([0,2r]). Further, we
have

L+ 3 o Y g —1/2,n-2j
Py Pty =A== ) 2/0 P2 22 (9,2

x PRI (22 1y (1 - AR ar,

where A; = mif 2j # nand 27 if 2 j = n. Make the change of variables ¢ — 2r2—1,
the orthogonality of P; ; and Py | follows from that of the Jacobi polynomials. The
orthogonality of P;> and Fy > follows similarly. O]

Orthogonal polynomials via the Rodrigues formula Classical orthogonal
polynomials of one variable all satisfy Rodrigues’ formula. For polynomials in
two variables, an orthogonal basis can be defined by an analogue of the Rodrigues
formula.

Proposition 2.3.4 For 0 < k < n, define

a}’l
axkayn—k
Then {U}', : 0 < k < n} is a basis for ¥;3(Wy).

Ut () = (1 =22 —y?) 412 [(1_x2_y2)n+u,1/2 :
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Proof LetQ € H,zhl. Directly from the definition,

_|_l on
(Ui Q) = £ 2/3 [(1 —xz—yz)”ﬂ‘"/z] O(x,y)dxdy,

T 2 Jxkoyn—k
which is zero after integration by parts n times and using the fact that the nth-order
derivative of Q is zero. O]

This basis is not mutually orthogonal, that is, <U15anﬁn>p # 0 for j # k. Let
Vinn be defined by

2002 (N N e Iy
Vrf'll,n(x7y>: Z ( m)ZI( n)zf(u+2)m+"*l*1xmle

n—2j
YT 1 :
i=0 j=0 22270 A+ 3 )men

Yy

Then V,, , is the orthogonal projection of x™y" in Lz(Bz,Wu) and the two families
of polynomials are biorthogonal.

Proposition 2.3.5 The set {Vk”nfk 10 <k <n} is a basis of ”//nz(Wu) and, for
0<j,k<n,

1 — )
Vi =2 ey o
The proof of this proposition will be given in Chapter 4 as a special case of

orthogonal polynomials on a d-dimensional ball.

An orthogonal basis for constant weight In the case of a constant weight
function, say W /,(x) = 1/, an orthonormal basis can be given in terms of the
Chebyshev polynomials U, of the second kind; this has the distinction of being
related to the Radon transform. Let ¢ denote the line £(0,7) = {(x,y) : xcos 0 +
ysin@ =t} for —1 <t < I, which is perpendicular to the direction (cos 8,sin8),
|| being the distance between the line and the origin. Let 1(6,¢) = £(6,¢) N B?,
the line segment of ¢ inside B>. The Radon projection %y (f;t) of a function f in
the direction 6 with parameter ¢ € [—1, 1] is defined by

Ro(ft) = /1 o S

/'\/ 1-12

= Sf(tcos® —ssinB,sin O + scos 0) ds, (2.3.7)
J—/1-12

where d/ denotes the Lebesgue measure on the line 7(6,7).

Proposition 2.3.6 For 0 < k < n, define

km . km
P (x,y) =U, (xcosn_H —|—ysmn+l). (2.3.8)

Then {P!' : 0 < k < n} is an orthonormal basis of ¥, (W12)-
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Proof For 6 € [0,7] and g : R — R, define gg(x,y) := g(xcos 6 + ysin0). The
change of variables t = xcos® 4+ ysin¢ and s = —xsin¢@ + ycos ¢ amounts to a
rotation and leads to

o) =+ [ rtemgotenaay="1 [ d(rgia @39)
Now, a change of variable in (2.3.7) gives

Ro(fit) =V 1—12
1

x/ f(tcos@—svl—tzsine, tsine—&-svl—tzcose)ds.
-1

If f is a polynomial of degree m then the last integral is a polynomial in ¢
of the same degree, since an odd power of \/1 —7 in the integrand is always
companied by an odd power of s, which has integral zero. Therefore, Q(¢) :=
Ro(f;t)/V/1—1%is a polynomial of degree m in ¢ for every 6. Further, the inte-
gral also shows that Q(1) = 2f(cos 6,sin ). Consequently, by the orthogonality
of Uy on [—1,1], (2.3.9) shows that (f,P!') = 0 for all f € I12, whenever m < n.
Hence P € ;2(W))2).

In order to prove orthonormality, we consider %y (P]’-‘;t). By (2.3.9) and the
fact that P} € “//,,Z(Wl /2),

1 %6
l —12
form=0,1,...,n— 1. Thus the polynomial Q(t) = % (P};t)/V'1 —1? is orthog-
onal to U, for 0 < m < n— 1. Since Q is a polynomial of degree n, it must be

a multiple of U,; thus Q(¢) = cU,(t) for some constant independent of ¢. Setting
t = 1 and using the fact that U,(1) = n+ 1, we have

NV1—r2dr= / (x,3)(Un) g (x,y)dxdy = 0,

_ P!(cos 8, sin 6) _ 2Uy(cos 6 — ;25)
n+1 (n+1)

Consequently, we conclude that

(k—j)m

U 1

.y - 20 ) [Un(,ﬂzmdt:sk,j,
—1 :

T n+1

using the fact that U, (cos (kmjl) ) =sin(k— j)m/ sin . ) =0whenk#j O

Since P} is a basis of VW, /2), the proof of the proposition immediately
implies the following corollary.

Corollary 2.3.7 IfP € ¥,}(W,5) then for eacht € (—1,1), 0 < 6 < 2,

Ko (Pit) = 1 —12U,(t)P(cos 0,sin 6).

+1
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2.4 Orthogonal Polynomials on the Triangle
We now consider the triangle 72 := {(x,y) : 0 < x,y,x+y < 1}. Fora, 8,7 > —1,

define the Jacobi weight function on the triangle,

I'a+pB+y+3) oy
Tla+ DI+ OT(y+1)" °

Wop.y(x,y) = 1—x—y)?, (2.4.1)

normalized so that its integral over T? is 1. Define, in this section,

U8y = [ L0800 Wer .3

An orthonormal basis An orthonormal basis can be given in the Jacobi
polynomials.

Proposition 2.4.1 For 0 < k < n, define
2
Pl (x,y) = PEAFPHTLO) (90 1) (1 — x)kpTP) (l—yx - 1) . (2.4.2)

Then {P}' : 0 < k < n} is a mutually orthogonal basis of ¥, (We, g ) and, further.

(o4 Dni(B+Di(r+ DB+ 7+2)n1x
(n—=k)!K (B +7+2)i(0t+ B +7+3)nsk
(n+k+a+B+y+2)(k+B+v+1)

2n+o+B+y+2)2k+B+y+1)

(PP gy =

(2.4.3)

Proof Itis evident that P}' € IT2. We need the integral relation
1 1—x
/ L[ y)dxdy = / f(x,y)dxdy
T 0 Jo
1 1
= / / Flx,(1=x)1))(1 — x)drdx. (2.4.4)
o Jo

Since P}'(x,(1 —x)y) = Pfﬁfﬁﬂﬂ a)(2x —1)(1- x)kPk(y’m(Zy — 1) and, more-

over, W, g (%, (1 —=x)y) = cq g yx* (1 — x)B+7yB (1 —y)7, where Cq,p,y denotes the
normalization constant of Wy, g ,, we obtain from the orthogonality of the Jacobi

polynomials P,§“’b>(2u — 1) on the interval [0, 1] that

2k 1, ,
<P]m7Pk >oc By — =Ca,p, yh,(l ;rﬁ+)/+ a)h;((yﬁ)aj,kSm,na

where h fo |Pab)( —1)]2(1 —¢)%"dr and the constant (2.4.3) can be
easily verlﬁed O

The double integral over the triangle 72 can be expressed as an iterated integral
in different ways. This leads to two other orthonormal bases of #%(W,, By)-
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Proposition 2.4.2 Denote by Pa‘ﬁ T the polynomials defined in (2.4.2) and by

ha BV the constant (2.4.3). Define the polynomials

Qi(wy) =B x) and Ri(xy) =Bl (1 =2y, ).
Then {Qk 0 <k <n}and {R} : 0 < k < n} are also mutually orthogonal bases
of ¥, (W p ). and, furthermore,
(OF Oy = s and (R RY)g = h"™

Proof For QF, we exchange x and y in the integral (2.4.4) and the same proof
then applies. For R}, we make the change of variables (x,y) — (s,¢) with x =
(1—5)(1—¢) and y = (1 —s)¢ in the integral over the triangle 7 to obtain

[rtaar= [ [ a-90-0,0-900-sasa.

Since PIP(1—x — yy) = PIP(s,(1 = 5)t) and Wop,(x.y) = capy
(1 —5)%*BsY(1 —1)%P, the proof follows, again from the orthogonality of the
Jacobi polynomials. O

These bases illustrate the symmetry of the triangle 72, which is invariant under
the permutations of (x,y, 1 —x—y).

Orthogonal polynomials via the Rodrigues formula The Jacobi polynomials
can be expressed in the Rodrigues formula. There is an analogue for the triangle.

Proposition 2.4.3 For 0 < k < n, define

P, -1 d" n— n
U,gnﬁ'y(%y) = [Wep.y(%)] oy kB ) w}.

Then the set {U,_ ,ﬁy( ;) 20 <k <n}is a basis of V;}(Wy.p.)-

Proof For Q € I12_,, the proof of (U, Q) apy = 0 follows evidently from
integration by parts and the fact that the nth derivative of Q is zero. O

Just as for the disk, this basis is not mutually orthogonal. We can again
define a biorthogonal basis by considering the orthogonal projection of x™y" onto
Y2 (Wo.p.y)- Let Vi, ©BY be defined by

aﬁ)/ X C X n+m+i+j m n

»=gzcr(i)()
(OC %) (B+ ) (a+ﬁ+y+%)n+m+i+jxiyj
(0+3)i(B+3)j(+B+Y+3)2ms2m .
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Proposition 2.4.4 The set {Vka,’llj 10 <k <n} is a basis of ¥;}(Wy.p.y) and,
for0< j.k<n,

<U]:x,ﬁ,y Vqﬁﬁ' _ (a+ %)k(ﬁ + %)n—k(Y‘F %)nk!(n —k)!

Vi = O i
Jn j>oc,B,y (O(—l—ﬁ Tyt %)Zn k., j

The proof of this proposition will be given in Chapter 4, as a special case of
orthogonal polynomials on a d-dimensional simplex.

2.5 Orthogonal Polynomials and Differential Equations

The classical orthogonal polynomials in one variable, the Hermite, Laguerre
and Jacobi polynomials, are eigenfunctions of second-order linear differential
operators. A similar result also holds in the present situation.

Definition 2.5.1 A linear second-order partial differential operator L defined by
Ly = A(X,y)Vax +2B(x,y)viy + C(x,¥)vyy + D(x,y)vi + E (x,y) vy,
where v, := dv/dx and vy, 1= d*v/dx? etc., is called admissible if for each
nonnegative integer n there exists a number A, such that the equation
Lv =24

has n+ 1 linearly independent solutions that are polynomials of degree n and no
nonzero solutions that are polynomials of degree less than n.

If a system of orthogonal polynomials satisfies an admissible equation then all
orthogonal polynomials of degree n are eigenfunctions of the admissible differen-
tial operator for the same eigenvalue A4,. In other words, the eigenfunction space
for each eigenvalue is “//,,2. This requirement excludes, for example, the product
Jacobi polynomial Pk(m’[3 ) (x)P,EZ’,f), which satisfies a second-order equation of the
form Lu = A ,u, where A, depends on both k and n.

Upon considering lower-degree monomials, it is easy to see that for L to be

admissible it is necessary that
A(x,y):Ax2+a1x—|-b1y+Cl, D(x,y) =Bx+d,
B(x,y) = Axy 4+ axx+bay+ ¢z, E(x,y) = By+d,,
C(x,y) = Ay’ +asx+bsy+c3,
and, furthermore, for eachn =0,1,2,...,
nA+B #0, and Ay = —n[A(n—1)+B].

A classification of admissible equations is to be found in Krall and Shef-
fer [1967] and is given below without proof. Up to affine transformations, there
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are only nine equations. The first five are satisfied by orthogonal polynomials that
we have already encountered. They are as follows:

Lo v+ vy — (v +yvy) = —nv;

2. ety + (I+a—x)ve+ (1 4+ B —y)vy = —nv;

3. Ve F vy —ave+ (1+a —y)vy = —nv;

4. (1 =x2) vy — 2xyvxy + (1 =32 vyy — (20 + 1) (xvy +yvy) = —n(n+2p +2)v;
5. x(1 =)y = 2xyvey +y(1 = y)vyy = [(00+ B +7+3)x— (00 +3)] v

)
—[(a+B+y+3y—(B+3)]vw=—n(n+a+B+y+i)v

These are the admissible equations for, respectively, product Hermite polyno-
mials, product Laguerre polynomials, product Hermite—Laguerre polynomials,
orthogonal polynomials on the disk "//nz (Wy) and orthogonal polynomials on
the triangle “I/nz(Wa’ﬁ”y). The first three can be easily verified directly from the
differential equations of one variable satisfied by the Hermite and Laguerre poly-
nomials. The fourth and the fifth equations will be proved in Chapter 7 as special
cases of the d-dimensional ball and simplex.

The other four admissible equations are listed below:

6. 3yVix + 20y — XV — YV = A5

7. (2 +y+ Dvee + (209 + 26) vy + (0 + 29+ vy + g(xve +yvy) = Av;
8. X2Vux + 2xyVyy + (1 —¥)vyy + &[(x = Dvy + (y — )] = Av;

9. (x+ a)var +2(y+ 1) vyy +xv +yvy = Av.

The solutions for these last four equations are weak orthogonal polynomials, in
the sense that the polynomials, are orthogonal with respect to a linear functional
that is not necessarily positive definite.

2.6 Generating Orthogonal Polynomials of Two Variables

The examples of orthogonal polynomials that we have described so far are given
in terms of orthogonal polynomials of one variable. In this section, we consider
two methods that can be used to generate orthogonal polynomials of two variables
from those of one variable.

2.6.1 A method for generating orthogonal polynomials

Let w; and w, be weight functions defined on the intervals (a,b) and (d,c),
respectively. Let p be a positive function defined on (a,b) such that

Casel p is a polynomial of degree 1;

Case II p is the square root of a nonnegative polynomial of degree at most 2;
we assume that ¢ = —d > 0 and that w; is an even function on (—c,c¢).
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For each k € Ny let {p, «};7_, denote the system of orthonormal polynomials
with respect to the weight function p>*!(x)w(x), and let {g,} be the system of
orthonormal polynomials with respect to the weight function w;(x).

Proposition 2.6.1 Define polynomials P of two variables by

PA(x,Y) = Puige(*) [ (%)) qi (p(yx)) ., 0<k<n (2.6.1)

Then {P}' : 0 < k < n} is a mutually orthogonal basis of ¥,*(W) for the weight
function

Wxy) =wixwa(p ™ (1)), (vy) €R, (2.6.2)
where the domain R is defined by

R={(x,y):a<x<b, dp(x) <y<cp(x)}. (2.6.3)

Proof That the P are polynomials of degree n is evident in case 1; in case 2
it follows from the fact that g; has the same parity as k, since w, is assumed to
be even. The orthogonality of P’ can be verified by a change of variables in the
integral

[ ey Wiy dvay

R
b ) d
[ Ptk 0P i (0 [ u3)g (w2 dy
a c
= hk,;zan,mak,j
for0<j<mand0<k<n. ]

Let us give several special cases that can be regarded as extensions of Jacobi
polynomials in two variables.

Jacobi polynomials on the square Let w; (x) = (1 —x)%(1 +x)P and wy(x) =
(1 —x)7(14x)% on [—1,1] and let p(x) = 1. Then the weight function (2.6.2)
becomes

Wx,y) = (1-x)%(1+x0P(1-3)7"(1+y)°  a,B,7,6> -1,

on the domain [—1,1]? and the orthogonal polynomials P in (2.6.1) are exactly
those in (2.2.3).

Jacobi polynomials on the disk Let w (x) = w(x) = (1 —x*)*~1/2 on [~ 1, 1]
and let p(x) = (1 —x?)!/2. Then the weight function (2.6.2) becomes
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) 1
Wli(xvy):(lix27y2)u 1/27 .u>7§a

on the domain B= = {(x,y) : x4+ y~ < 1}, and the orthogonal polynomials P in
he domain B> = {(x,y) : x* + y* < 1}, and the orthogonal polynomials £}’ i

(2.6.1) are exactly those in (2.3.1).

Jacobi polynomials on the triangle Let w;(x) = x%*(1 —x)P*7 and w,(x) =
xP(1—x)?, both defined on the interval (0, 1), and p(x) = 1 — x. Then the weight
function (2.6.2) becomes

Wa’ﬁjy(x,y):xo‘yﬂ(l—x_y)i” avﬁa’y>_la

on the triangle 72 = {(x,y) : x > 0,y > 0,1 —x —y > 0}, and the orthogonal
polynomials P in (2.6.1) are exactly those in (2.4.2).

Orthogonal polynomials on a parabolic domain Let wy(x) = x*(1 —x)? on
[0,1], wa(x) = (1 —x*)® on [—1,1], and p(x) = /x. Then the weight function
(2.6.2) becomes

Wa,b(x7y):(l_x)b(x_y2)av y2<x<1a Oﬂ,ﬁ>—1.

The domain R = {(x,y) : y> < x < 1} is bounded by a straight line and a parabola.
The mutually orthogonal polynomials P in (2.6.1) are given by

Pl (xy) = pi D - )P (v vR), mz k200 (264)

The set of polynomials {F, : 0 < k < n} is a mutually orthogonal basis of
%Ld(Wa,b)'

2.6.2 Orthogonal polynomials for a radial weight
A weight function W is called radial if it is of the form W (x,y) = w(r), where
r = y/x%2+y2. For such a weight function, an orthonormal basis can be given in
polar coordinates (x,y) = (rcos0,rsin6).
Proposition 2.6.2 Let pﬁ,’f ) denote the orthogonal polynomial of degree m with
respect to the weight function **'w(r) on [0,). Define
Pii(xy) = p5 () P cos(n—2j)0,  0<j<

)

(2.6.5)

NS o

Pir(x,y) = pgin_élj)(r)r"_zj sin(n—2j)0, 0<j<

Then {Pj;:0<j<n/2}U{P;»:0 < j<n/2} is a mutually orthogonal basis
of V,2(W) with W (x,y) = w(r/x2 +y?2).

The proof of this proposition follows the same line as that of Proposition 2.3.3
with an obvious modification. In the case of w(r) = (1 — r2)*~1/2, the basis
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(2.6.5) is, up to a normalization constant, that given in (2.3.5). Another exam-
ple gives the second orthogonal basis for the product Hermite weight function
W(x,y) = e~ for which an orthogonal basis is already given in (2.2.1).

Product Hermite weight w(r) = e~ The basis (2.6.5) is given by

Pii(xy) =L () cos(n—2j)0,  0<j< 7,
(2.6.6)

S o

Pio(x,y) = Lg;zj(rz)r("_zj) sin(n —2j)0, 0<j< 3

in terms of the Laguerre polynomials of one variable.

Likewise, we call a weight function ¢;-radial if it is of the form W (x,y) =
w(s) with s = x+ y. For such a weight function, a basis can be given in terms of
orthogonal polynomials of one variable.

Proposition 2.6.3 Let p,(,f ) denote the orthogonal polynomial of degree m with
respect to the weight function s**'w(s) on [0,). Define

P;’(x,y)=pff",1(x+y>(x+y)kPk<2xjy—1), 0<k<n, (267

where Py is the Legendre polynomial of degree k. Then {P;' : 0 < k < n} is a
mutually orthogonal basis of ¥,2>(W) with W (x,y) = w(x+y) on R%.

Proof 1t is evident that P is a polynomial of degree n in (x,y). To verify the
orthogonality we use the integral formula

/Rz F(x,y) dxdy = /: (/Olf(st,s(l —t))dt) sds

+

and the orthogonality of pﬁ,% “ and P. O

One example of proposition 2.6.3 is given by the Jacobi weight (2.4.1) on the
triangle for oo = B = 0, for which w(r) = (1 — r)”. Another example is given
by the product Laguerre weight function W (x,y) = e~*", for which a basis was
already given in (2.2.2).

Product Laguerre weight w(r) = e¢~" The basis (2.6.7) is given by
PR (x,y) = L (x4 y) (x +y) P (2i - 1) ., 0<k<n, (268)
x+y

in terms of the Laguerre polynomials and Legendre polynomials of one variable.

2.6.3 Orthogonal polynomials in complex variables

For a real-valued weight function W defined on Q C R?, orthogonal polynomials
of two variables with respect to W can be given in complex variables z and Z.
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For this purpose, we identify R? with the complex plane C by setting z = x +iy
and regard Q as a subset of C. We then consider polynomials in z and 7 that are
orthogonal with respect to the inner product

(8 = [ 7.8 Tw(e) dedy, 269

where w(z) = W(x,y). Let #,2(W, C) denote the space of orthogonal polynomials
in z and Z with respect to the inner product (2.6.9). In this subsection we denote by
Py (x,y) real orthogonal polynomials with respect to W and denote by Oy ,(z,Z)
orthogonal polynomials in 7,>(W,C).

Proposition 2.6.4  The space 7,>(W,C) has a basis Qy , that satisfies
Okn(2,2) = Qnkn(z,2), O0<k<n (2.6.10)

Proof Let {P,(x,y) : 0 <k < n} be a basis of #,>(W). We make the following
definitions:

1 —1
Qk,n(zvz) = ﬁ [Pk,n(xay) - iPnfk,n(xvy)] ) 0 < k < {n 7 J )
1 1
Qk,n(z7z) = ﬁ I:Pnfk,n(xmy) + iPk,n(x7y)] ) \‘n; J <k S n,
0n/2n(2,2) 1= %Pn/zyn(x,y) if n is even. (2.6.11)

If f and g are real-valued polynomials then (f, g>(vcv = (f,g)w- Hence, it is easy
to see that {Qy, : 0 < k <n} is a basis of #,2(W,C) and that this basis satisfies
(2.6.10). O

Conversely, given {Qy, : 0 <k <n} € #2(W,C) that satisfies (2.6.10), we can
define

1
Pk,n(-x>y) = \ﬁ [Qk,n(z7z) + ank,n(zaz)] 3 0 S k S 37

1 i (2.6.12)
Pk,n(xJ’) = ﬁ [Qk,n(ZyZ) - Qk*k,n(zaz)] 3 E <k S n.

It is easy to see that this is exactly the converse of (2.6.11). The relation (2.6.10)
implies that the P, are real polynomials. In fact P ,,(x,y) = Re{Qx ,(z,2)} for
0 <k <n/2and P,(x,y) =Im{Q}(z,2)} for n/2 < k < n. We summarize the
relation below.

Theorem 2.6.5 Let P, and Qi , be related by (2.6.11) or, equivalently, by
(2.6.12). Then:
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(i) {Qxn:0<k<n}isabasis of ¥;2(W,C) that satisfies (2.6.10) if and only
if {Pin:0<k<n}isabasis of ;7 (W);

(i) {Qxn:0<k<n}isan orthonormal basis of ¥;X(W,C) ifand only if { P, :
0 < k < n} is an orthonormal basis of V,>(W).

Expressing orthogonal polynomials in complex variables can often lead to for-
mulas that are more symmetric and easier to work with, as can be seen from the
following two examples.

Complex Hermite polynomials
These are orthogonal with respect to the product Hermite weight

2_\2 1,2 .
wy(z) =e ™~ Y =e z=x+iyeC.

We define these polynomials by
Hy j(z,2) = (—1)FHe= <§Z>k (;Z)Jei7 k,j=0,1,...,
where, with z = x + iy,
d 1/ .0 d 1/d .0
<9z2(8xl8y> and 822((9x+1(9y)'
By induction, it is not difficult to see that the H} ; satisfy an explicit formula:

Hij(z,2) = k1! S o —zkz'-fF(—k—"l)
WG =R 4 T v — ! PNz

from which it follows immediately that (2.6.10) holds, that is,

min{k,;j} (—1)Y k—v

Hyj(2,2) = Hjx(2.2). (2.6.13)

Working with the above explicit formula by rewriting the summation in »Fj in
reverse order, it is easy to deduce from (x);_; = (—1)"(x);/(1 — j—x); that Hy ;
can be written as a summation in ; F, which leads to

Hy j(2,2) = (=17 1L (12?), k>, (2.6.14)

where L?‘ is a Laguerre polynomial.

Proposition 2.6.6 The complex Hermite polynomials satisfy the following
properties:

Hyj = ZHy j — Hy jy1, Hyj = 2l j — Hpy,js

. 0

1) 371 372

(i) zHy j = Hiy1,j+ jHij—1, ZHpj = Hijy1 +kHe1 )5
(iii) /C Hi (2.2 Hmg (2, 2)wp () ddy = j1k! 885



44 Orthogonal Polynomials in Two Variables

Proof Part (i) follows from directly from the above definition of the polynomials.
Part (ii) follows from (2.6.14) and the identity L% (x) = L¢*+"(x) — L2 ! (x). The
orthogonal relation (iii) follows from writing the integral in polar coordinates and
applying the orthogonality of the Laguerre polynomials. O

Disk polynomials
Let doy (z) := Wj41/2(x,y) dxdy and define

_ J! Ak— .
Pli(z,2) = (/1+1)ij< D(2lz]* = 1) k> j, (2.6.15)

which is normalized by P,?j(l, 1) =1.Fork < j, we use

Pli(2,2) = PL(%2). (2.6.16)

Written in terms of hypergeometric functions, these polynomials take a more
symmetric form:

Ao (At Az —k,—j 1 s
Pk.j(zvz)* (}L—‘rl) (7(/-'—1) a4 2Fl (_ . )7 kv]—O

To see this, write the summation in the o] sum in reverse order and use (x),;_; =
(=1)'(x);/(1 = j—x);, to get

(k*jJrl)j ],k+l+1 ||>

P,&j(Z,Z)ZW(_l) 2 1( o

which is (2.6.15) by Proposition 1.4.14 and P,§ﬁ~°‘)(t) = (—1)"B{*P)(p).

Proposition 2.6.7 The disk polynomials satisfy the following properties:

() [Pl;(z,2)| <1for |zl <1and A > 0;

3 A+k+1 j

Pr (7.7) = A pA =
(@) 2P;(z2) = /1+1c+]+1’<+11(zZ> A+k+j+1kw4&ﬁ)
with a similar relation for zP}”j( ) upon using (2.6.16);

o A+1 kL)t
A pA — .
(i /DP"’J'PmJ 10 S e T T G DA, o

Proof Part (i) follows on taking absolute values inside the ,F; sum and using the
fact that \P,Sa’ﬁ>(—l)| = (B + 1),/n!; the condition A > 0 is used to ensure that
the coefficients in the »F} sum are positive. The recursive relation (ii) is proved
using the following formula for Jacobi polynomials:

@n+a+B+ DAY (1) = (n+ atB+ DE“P 1)+ (n+ ) P 1),
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which can be verified using the ,F; expansion of Jacobi polynomials in Propo-
sition 1.4.14. Finally, the orthogonal relation (iii) is established using the polar
coordinates z = re'? and the structure constant of Jacobi polynomials. [

2.7 First Family of Koornwinder Polynomials

The Koornwinder polynomials are based on symmetric polynomials. Throughout
this section let w be a weight function defined on [—1, 1]. For y > —1, let us define
a weight function of two variables,

By(x,y) ;= w(x)w(y)x—y?*, (xy) € [-1,1]% (2.7.1)

Since By is evidently symmetric in x,y, we need only consider its restriction on
the triangular domain A defined by

Ac={(xy):—1<x<y<l}.
Let Q be the image of A under the mapping (x,y) — (u,v) defined by
u=x+y, v=2xy. (2.7.2)

This mapping is a bijection between A and Q since the Jacobian of the change of
variables is dudv = |x — y|dxdy. The domain Q is given by

Q:={(uv): 14+u+v>0,1—u+v>0u>>4v} (2.7.3)

and is depicted in Figure 2.1. Under the mapping (2.7.2), the weight function By
becomes a weight function defined on the domain € by

Wy (u,v) = wx)w(y) (@ —4v)?,  (u,v) € Q, (2.7.4)

where the variables (x,y) and (u,v) are related by (2.7.2).

1.0

-1.0

Figure 2.1 Domains for Koornwinder orthogonal polynomials.
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Proposition 2.7.1 Let A4 = {(k,n) : 0 < k <n}. In N define an order < as
follows: (j,m) < (k,n) if m < n or m =n and j < k. Define monic polynomials
Pk(fl) under the order <,

P (uy) =u ™+ S gV (2.7.5)
() =(kon)

that satisfy the orthogonality condition
/ (u,v)u™ VI Wy(u,v) dudv =0, V(j,m) < (k,n). (2.7.6)

Then these polynomials are uniquely determined and are mutually orthogonal
with respect to Wy.

Proof Itis easy to see that < is a total order, so that the monomials can be ordered
linearly with this order. Applying the Gram—Schmidt orthogonalization process
to the monomials so ordered, the uniqueness follows from the fact that P,E_},;) has

leading coefficient 1. O

( 7)

In the case y = +1 the orthogonal polynomials P, fn Can be given explic-
itly in terms of orthogonal polynomials of one variable. Let {pPn}_o be the
sequence of monic orthogonal polynomials p, (x) = x" +lower-degree terms, with
respect to w.

Proposition 2.7.2  The polynomials Pk“:l) fory= :I:% are given by

PO ) {pnmpk(y) +Pa0)pi), k<m oo
’ pn(X)Pn()’), k=n
and
P2 ) = P P Pt D)D) (2.7.8)

X=Yy

where (u,v) are related to (x,y) by x =u+v, y = uv.

Proof By the fundamental theorem of symmetric polynomials, each symmetric
polynomial in x,y can be written as a polynomial in the elementary symmetric
polynomials x +y and xy. A quick computation shows that

nkk

Xyt =u + lower-degree terms in (u,v),
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so that the right-hand sides of both (2.7.7) and (2.7.8) are of the form (2.7.5).
Furthermore, the change of variables (x,y) — (u,v) shows that

[ )Wty dudv = [ f-t 3B, () dedy

= % PLHzf(x—l—y,xy)By(x,y) dxdy, (2.7.9)
where the second line follows since the integrand is a symmetric function of x
and y and where [—1,1]? is the union of A and its image under (x,y) — (y,x).
Using (2.7.9), the orthogonality of Pk(‘;l/ 2 and P,f‘ln/ 2 in the sense of (2.7.6) can
be verified directly from the orthogonality of p,. The proof is then complete upon
using Proposition 2.7.1. O

Of particular interest is the case when w is the Jacobi weight function w(x) =
(1 —x)*(1+x)P, for which the weight function Wy becomes

W g,y (1,v) = (1 —u+)* (1 +u+v)P (u? — 4v)?, (2.7.10)

where o, B, 7> —1, a+y+ % >0and B +y+ % > (; these conditions guarantee
that W, g , is integrable. The polynomials p, in (2.7.7) and (2.7.8) are replaced by

PIEO‘»B) (v)

monic Jacobi polynomials , and we denote the orthogonal polynomials P,

in Proposition 2.7.1 by P,f_‘ f Y This is the case originally studied by Koornwinder.
These polynomials are eigenfunctions of a second-order differential operator.

Proposition 2.7.3 Consider the differential operator

Loypy8= (7142 +2v+2)guu +2u(l —v)gu + (u2 -2 - 2v) gy
+[—(a+B+2y+3)u+2(8—a)gu
+[-(B—0)u— o +2B+2y+5)v—(2y+1)]gv-

Then, for (k,n) € N,

Lop PEPY = =22 TREPY, 2.7.11)
where 30D = n(n+ o+ B +2y+2) —k(k+ o+ B+1).

Proof A straightforward computation shows that, for 0 < k <,

Lo gy = APk S by Iy (2.7.12)
() <)

for some b ;,;, which implies that L, m,Pk'iC ’;ﬁ 7 is a polynomial of the same form

and degree. From the definition of L, g it is easy to verify directly that L, g , is
self-adjoint in L?(Q, Wy, g ) so that, for (j,m) € 4" with (j,m) < (k,n),
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.87\ po.B,y
/Q (Lap Pl ) PP Wey gy dudy

— o,y By —
f/gpk’n (Lap P57 ) Weypydudv =0,

by (2.7.6). By the uniqueness referred to in Proposition 2.7.1, we conclude that

L, IMP,:X ,’Zﬁ 7 is a constant multiple of Pka,’lﬁ ¥ and that the constant is exactly ),,f‘ f v,

as can be seen from (2.7.12). ]

It should be noted that although L g , is of the same type as the differen-

tial operator in Definition 2.5.1 it is not admissible, since the eigenvalues k,f ,’nﬁ v
depend on both k and n.

2.8 A Related Family of Orthogonal Polynomials
We consider the family of weight functions defined by

W py(x,y) 1= | =y ey PP (1 =) (1 =y (2.8.1)

for (x,y) € [-1,1]%, where &, B,y > —1, o+ y+3 > 0and B +y+3 > 0. These
weight functions are related to the W, g ., defined in (2.7.10). Indeed, let £ in
(2.7.3) be the domain of W, g , and define Q* by

Q ={(qy): —1<—y<x<y<l},
which is a quadrant of [—1, 1]2. We have the following relation:
Proposition 2.8.1 The mapping (x,y) — (2xy,x> +y> — 1) is a bijection from
Q* onto Q, and
Wy py(x,9) = AT|x2 = Y2 (W, g, (229,67 + 3% — 1) (2.8.2)
for (x,y) € [~1,1]%. Further,

4y/ S (u,v)Wy g o(u,v)dudv
o ,

- /[,1 12 f(2xy,x2 +y' - I)Wa,ﬁ,y(x>y)dXdy- (2.8.3)

Proof For (x,y) € [—1,1]%, let us write x = cos§ and y = cos ¢, 0 < 6, ¢ < .
Then it is easy to see that

2xy =cos(0 —¢)+cos(60+¢), x> +y* —1=cos(0 —)cos(6+¢),

from which it follows readily that (2xy,x> +y> — 1) € Q. The identity (2.8.2)
follows from a straightforward verification. For the change of variable u = 2xy
and v = x> +y% — 1, we have dudv = 4|x> — y?|dxdy, from which the integration
relation (2.8.3) follows. O
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An orthogonal basis for % can be given accordingly. Let PZ ,’lﬁ Y Oo<k<n,
denote a basis of mutually orthogonal polynomials of degree n for Wy, g ,,.

Theorem 2.8.2 For n € Ny, a mutually orthogonal basis of 7/2,1(7/&7137),) is
given by

legzﬁy( xy) =P2P 2y 242 —1),  0<k<n,

2013,y )-:(xz—yz)P/f‘,flB“Y(ny,xzﬂz—l), 0O<k<n—1

and a mutually orthogonal basis of Van1(W.py) is given by

100D (ny) == ()PP T 2y 432 - 1), 0<k<n,

1.8,
20087 (6,y) = (= y)PET P T Qay 4y~ 1), 0<k<n.

In particular, when y = i% the basis can be given in terms of the Jacobi
polynomials of one variable, upon using (2.7.7) and (2.7.8).

Proof These polynomials evidently form a basis if they are orthogonal. Let us
denote by <"'>Waﬁy and <"'>Waﬁy the inner product in L?(Q, W, ,) and in

L*([=1,1]2, %4, ), respectively. By (2.8.3), for 0 < j <mand 0 <k <n,

(oo aoid) =l P, =0

oy
for (j,2m) < (k,2n) and, furthermore,

<1Qk2n 72Q?2€"7>W ﬁy:/[—l,l]z(X2_y )P, aﬂy(nyx +y 1)

o.B,

1, 1,
x PO (2 32 32 — 1) W (x,y) dxdy,

The right-hand side of the above equation changes sign under the change

of variables (x,y) — (y,x), which shows that <1Qk s 20; zljn 7>W =0.
apy

Moreover, since (x> — yz)zWaﬁ#(x, y)dx dy is equal to a constant multiple of
W1 p41,y(u,v) dudy, we see that

(087, 0287)

<Poc+1ﬁ+1y Pa+lﬁ+1y> —0
o.B.y W

k,n—1 j.m—1 et Ll

for (k,2n) # (j,2m). Furthermore, setting F = P,((?;)Pk(’;l)’o?l, we obtain

<1Qk2n ) 1Q72€nil> :/ (X‘FY)P;?}P’Y(ZX%XZ-F)’Z—U
Warﬁﬁ’ 7171]2 ’

s 1
x Plgﬁﬁ+ 7y(2x)’ax2 +y2 - 1)Wa7[;‘y(x,y)dxdy,
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which is equal to zero since the right-hand side changes sign under (x,y) —

(—x,—y). The same proof shows also that <1Qk2n ’2Q/72€”11>W " = 0.
7

Together, these facts prove the orthogonality of 1Q,‘CX and zQa By,
Since (x —y)(x+y) = x> —y? changes sign under (x,y) — (y7 x), the same

consideration shows that <1Qk i1 QQ;XZIinL >Wa . = 0. Finally,
2 ﬁ+1,7 a, ﬁ+1 Y _
<1Qk2n+1’ 1Q12m+1>// <Pkn P > =0,
By WoB.y+1
o.B.y By > _ <Pa+l-,ﬁ-,7 P9ﬂ+l-ﬁ,y> -0
<2Qk,2n+l’ 2Qj 2m+1 Wa,B,y k.n L jm Wa+l,ﬁ,y
for (k,n) # (j,m), proving the orthogonality of ; Qk an, i=1,2. O

The structure of the basis in Theorem 2.8.2 can also be extended to the more
general weight function #4(x,y) = |x* — y*|Wy(2xy,x* +y* — 1), with Wy as in
(2.7.4).

2.9 Second Family of Koornwinder Polynomials

The second family of Koornwinder polynomials is based on orthogonal expo-
nentials over a regular hexagonal domain. It is convenient to use homogeneous
coordinates in

Ry = {t=(t1,t,13) ER> : 1y + 1 +13 = 0},
in which the hexagonal domain becomes

Q:={teRy:—1<1,n,5 <1}

as seen in Figure 2.2. In this section we adopt the convention of using bold face
letters, such as t and k, to denote homogeneous coordinates. For t € R, and
k € R}, NZ3, define the exponential function

(])k(t) = 627rik~t/3 — ezni(kltl +k2t2+k3t3)/3'

(-1,1,0) (0,1,-1)

i

y
-

(0,~1,1) (1,-1,0)

Figure 2.2 A hexagonal domain in homogeneous coordinates.
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Proposition 2.9.1 Fork,j € R}, NZ3,
L[ o a = b,

Proof Using homogeneous coordinates, it is easy to see that

/Qf(t)dt:/Oldtl/_Olf(t)dtz—i-/oldtz/_olf(t)dt3+/01dt3/_01f(t)dt1,

from which the orthogonality can be easily verified using the homogeneity of t,
k and j. O

Evidently the hexagon (see Figure 2.2) is invariant under the reflection group
@# generated by the reflections in planes through the edges of the shaded equilat-
eral triangle and perpendicular to its plane. In homogeneous coordinates the three
reflections o7, 0>, 03 are defined by

toy := —(t1,13,12), toy := —(t2,11,13), tos := —(13,12,11).
Because of the relations 63 = 010,01 = 0,003, the group ¥ is given by
9 = {170-176230-37610-27620-1}-

For a function f in homogeneous coordinates, the action of the group ¢ on f is
defined by o f(t) = f(to), o € 4. We define functions

TCh(t) :=¢ [0k ko ks (1) + By s sy () + Py ke ke (1)

FO_ty k3 —r () F Oty —ky,—ks () + Oty by 1 (1) ]
TSk(t) ::%]i [¢k1’k2~k3 (t)+ Dky s (t)+ Dks ey ey (t)

Oty ks () = Oyt ks (1) — Dty k1, ()] -

Then TCy is invariant under % and TSk is anti-invariant under %; these
functions resemble the cosine and sine functions. Because of their invariance
properties, we can restrict them to one of the six congruent equilateral triangles
inside the hexagon. We will choose the shaded triangle in Figure 2.2:

A= {(ll,tz,lj;) H+h+3=0,0<1,,—13 < 1}. (2.9.1)

Since TCks(t) = TCk(to) = TCk(t) for o € @ and t € A\, we can restrict the
index of TCy to the index set

A:={keH:k >0,k >0,k <0} (2.9.2)

A direct verification shows that TSk (t) = 0 whenever k has a zero component;
hence, TSk(t) is defined only for k € A°, where

A :={keH:k >0,ky > 0,k3 <0},

the set of the interior points of A.
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Proposition 2.9.2 Fork,jc A,

1, k=0,
Z/ATCk(t)TCj(t) dt= ;4 1, ke A\A® k0, (2.9.3)
i, ke A
and, fork,j € A°,
2 / TSk(H)TS;(t)dt = 1 &j. (2.9.4)
A ,

Proof 1If fg is invariant under <% then
L[ rwsae=2 s,
from which (2.9.3) and (2.9.4) follow from Proposition 2.9.1. O]

We can use these generalized sine and cosine functions to define analogues of
the Chebyshev polynomials of the first and the second kind. To see the polynomial
structure among the generalized trigonometric functions, we make a change of
variables. Denote

2:=TCo1-1(t) = §[@o,1.-1(t) + 1, —1,0(t) + d_1,0,1(t)]. (2.9.5)
Let z = x -+ iy. The change of variables (t,#,) — (x,y) has Jacobian
d 16
’ 5 ((;ffz )) = oo sinty siny sin(ty +12) (2.9.6)
= Ln (=30 +y* +1)* +8(x° —3x)%) +4] 12
3V3

and the region A is mapped onto the region A* bounded by —3(x? +y> +1)% +
8(x* — 3xy?) +4 = 0, which is called Steiner’s hypocycloid. This three-cusped
region is depicted in Figure 2.3.

Definition 2.9.3 Under the change of variables (2.9.5), define the generalized
Chebyshev polynomials

T (2,2) 1 = TChm—t,—m(t), 0<k<m,

_ TSk 1 m—tt1,-m—2(t)
U t= : :
k (Z7Z) TS]71‘72(t) b

Proposition 2.9.4  Let P denote either T)" or U}". Then B is a polynomial of
total degree m in z and 7. Moreover

Py (2,2) =P(z,2), 0<k<m, (2.9.7)
and the P" satisfy the recursion relation

P (2,2) = 32P(2,2) — PP (2,2) — PP (2, 2), (2.9.8)
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0.5r

Figure 2.3 The domain for the Koornwinder orthogonal polynomials of the second type.

for 0 <k <mandm > 1, where we use
(22 =T""(z,2), Tni(z2) =Ty (z,2),
U™(z,2) =0, U™ z,7)=0.
In particular, we have
TOO(sz) =1, TO1 (sz) =3 T]1 (Z’Z) =1z
U(?(sz) =1, UO1 (z,2) =3z, Ul1 (z,2) =3z
Proof Both (2.9.7) and (2.9.8) follow from a straightforward computation.

Together they determine all " recursively, which shows that both 7} and U;}"
are polynomials of degree m in z and Z. O

The polynomials 7" and U}" are analogues of the Chebyshev polynomials of
the first and the second kind. Furthermore, each family inherits an orthogonal
relation from the generalized trigonometric functions, so that they are orthogonal
polynomials of two variables.

N 2a
Proposition 2.9.5  Let we(x,y) = ‘ a((x’})) as given in (2.9.6). Define

(11,12

(.8 = ca [ S8l 3wl y)dedy,
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where cq is a normalization constant; cq =1/ [y we (x,y)dxdy. Then

1, m=k=0,
<7}<ma7}m>w_1/2:5k,j %, k=0ork=m, m>0,
%, 1<k<m—1m>0
and
(U, Jm>w./2:é5k,j, 0<j,k<m.

In particular, {T" : 0 < k < m} and {U]" : 0 < k < m} are mutually orthogonal
bases of ;2 (w_, /2) and 72 (w) /2), respectively.

Proof The change of variables (2.9.5) implies immediately that
2 [ rdt=coys [ fleywo oty dedy

As a result, the orthogonality of the 7;” follows from that of TC; in Proposi-
tion 2.9.2. Further, using

TSLL,Q(t) = % sin 7Tty sin 7tt) Sin 7t3
it is easily seen that the orthogonality of U}" follows from that of TS;. O

By taking the real and complex parts of ;" or U;" and using the relation (2.9.7),
we can also obtain a real orthogonal basis for 7,2.

2.10 Notes

The book by Appell and de Fériet [1926] contains several examples of orthog-
onal polynomials in two variables. Many examples up to 1950 can be found in
the collection Erdélyi, Magnus, Oberhettinger and Tricomi [1953]. An influential
survey is that due to Koornwinder [1975]. For the general properties of orthogonal
polynomials in two variables, see the notes in Chapter 4.

Section 2.3 The disk is a special case (d = 2) of the unit ball in R?. Con-
sequently, some further properties of orthogonal polynomials on the disk can be
found in Chapter 4, including a compact formula for the reproducing kernel.

The first orthonormal basis goes back as far as Hermite and was studied in
Appell and de Fériet [1926]. Biorthogonal polynomials were considered in detail
in Appell and de Fériet [1926]; see also Erdélyi et al. [1953]. The basis (2.3.8)
was first discovered in Logan and Shepp [1975], and it plays an important role in
computer tomography; see Marr [1974] and Xu [2006a]. For further studies on
orthogonal polynomials on the disk, see Waldron [2008] and Wiinsche [2005] as
well as the references on orthogonal polynomials on the unit ball B¢ for d > 2
given in Chapters 5 and 8.

Section 2.4 The triangle is a special case of the simplex in R?. Some further
properties of orthogonal polynomials on the triangle can be found in Chapter 5,
including a compact formula for the reproducing kernel.



2.10 Notes 55

The orthogonal polynomials (2.4.2) were first introduced in Proriol [1957]; the
case oo = B = y = 0 became known as Dubiner’s polynomials in the finite ele-
ments community after Dubiner [1991], which was apparently unaware that they
had appeared in the literature much earlier. The basis U;' was studied in detail in
Appell and de Fériet [1926], and the biorthogonal basis appeared in Fackerell and
Littler [1974]. The change of basis matrix connecting the three bases in Proposi-
tion 2.4.2 has Racah—Wilson 4F3; polynomials as entries; see Dunkl [1984b].

Section 2.5 The classification of all admissible equations that have orthogo-
nal polynomials as eigenfunctions was studied first by Krall and Sheffer [1967],
as summarized in Section 2.5. The classification in Suetin [1999], based on
Engelis [1974], listed 15 cases; some of these are equivalent under the affine
transforms in Krall and Sheffer [1967] but are treated separately because of other
considerations. The orthogonality of cases (6) and (7) listed in this section is
determined in Krall and Sheffer [1967]; cases (8) and (9) are determined in
Berens, Schmid and Xu [1995a]. For further results, including solutions of the
cases (6)—(9) and further discussion on the impact of affine transformations, see
Littlejohn [1988], Lyskova [1991], Kim, Kwon and Lee [1998] and references
therein. Classical orthogonal polynomials in two variables were studied in the
context of hypergroups in Connett and Schwartz [1995].

Fernandez, Pérez and Pifiar [2011] considered examples of orthogonal poly-
nomials of two variables that satisfy fourth-order differential equations. The
product Jacobi polynomials, and other classical orthogonal polynomials of two
variables, satisfy a second-order matrix differential equation; see Fernandez,
Pérez and Pifiar [2005] and the references therein. They also satisfy a matrix
form of Rodrigues type formula, as seen in de Alvarez, Fernindez, Pérez, and
Pifar [2009].

Section 2.6 The method in the first subsection first appeared in Larcher
[1959] and was used in Agahanov [1965] for certain special cases. It was pre-
sented systematically in Koornwinder [1975], where the two cases of p were
stated. For further examples of explicit bases constructed in various domains,
such as {(x,y) X 4+yP<1l,—a<y< b}, 0 < a,b < 1, see Suetin [1999].
The product formula for polynomials in (2.6.4) was given in Koornwinder and
Schwartz [1997]; it generates a convolution structure for Lz(Wa, ﬁ) and was used
to study the convergence of orthogonal expansions in zu Castell, Filbir and Xu
[2009]. The complex Hermite polynomials were introduced by 1t [1952]. They
have been widely studied and used by many authors; see Ghanmi [2008, 2013],
Intissar and Intissar [2006], Ismail [2013] and Ismail and Simeonov [2013] for
some recent studies and their references. Disk polynomials were introduced in
Zernike and Brinkman [1935] to evaluate the point image of an aberrated optical
system taking into account the effects of diffraction (see the Wikipedia article on
optical aberration); our normalization follows Dunkl [1982]. They were used in
Folland [1975] to expand the Poisson—Szegd kernel for the ball in C?. A Banach
algebra related to disk polynomials was studied in Kanjin [1985]. For further
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properties of disk polynomials, including the fact that for A =d —2,d =2,3,...,
they are spherical functions for U(d)/U(d — 1), see Tkeda [1967], Koornwinder
[1975], Vilenkin and Klimyk [1991a,b, c], and Wiinsche [2005]. The structure
of complex orthogonal polynomials of two variables and its connection to and
contrast with its real counterpart are studied in Xu [2013].

Section 2.7 The polynomials Pkof r’lﬁ 7 were studied in Koornwinder [1974a],
which contains another differential operator, of fourth order, that has the
orthogonal polynomials as eigenfunctions. See Koornwinder and Sprinkhuizen-
Kuyper [1978] and Sprinkhuizen-Kuyper [1976] for further results on these
polynomials, including an explicit formula for P,g ,"lB 7 in terms of power series,
and Rodrigues type formulas; in Xu [2012] an explicit formula for the repro-
ducing kernel in the case of Wy in (2.7.4) with y = :I:% was given in terms of
the reproducing kernels of the orthogonal polynomials of one variable. The case
W_1 2 for general w was considered first in Schmid and Xu [1994] in connection
with Gaussian cubature rules.

Section 2.8 The result in this section was developed recently in Xu [2012],
where further results, including a compact formula for the reproducing kernel and
convergence of orthogonal expansions, can be found.

Section 2.9 The generalized Chebyshev polynomials in this section were
first studied in Koornwinder [1974b]. We follow the approach in Li, Sun and
Xu [2008], which makes a connection with lattice tiling. In Koornwinder [1974b]
the orthogonal polynomials A%, for the weight function wg,, 0t > — %, were shown
to be eigenfunctions of a differential operator of third order. The special case P&‘n
was also studied in Lidl [1975], which includes an interesting generating function.
For further results, see Shishkin [1997], Suetin [1999], Li, Sun and Xu [2008] and
Xu [2010].

Other orthogonal polynomials of two variables The Berstein—Szegb two-
variable weight function is of the form

4 VI—a2\/1—)2 1
W(x,y)Z*—x y, x=z(z+-).
m2  |h(z,y)]? 2 z

Here, for a given integer m and —1 <y <1,

N
h(z,y) = Y hi(y)Z, z€C,
i=0

is nonzero for any |z| < 1in which A (y) = 1 and, for 1 <i <m, h;(y) are polyno-
mials in y with real coefficients of degree at most % — |5 —i|. For m < 2, complete
orthogonal bases for #,>(W) are constructed for all # in Delgado, Geronimo, Iliev
and Xu [2009].

Orthogonal polynomials with respect to the area measure on the regular
hexagon were studied in Dunkl [1987], where an algorithm for generating an
orthogonal basis was given.



3

General Properties of Orthogonal Polynomials in
Several Variables

In this chapter we present the general properties of orthogonal polynomials in
several variables, that is, those properties that hold for orthogonal polynomials
associated with weight functions that satisfy some mild conditions but are not
any more specific than that.

This direction of study started with the classical work of Jackson [1936] on
orthogonal polynomials in two variables. It was realized even then that the proper
definition of orthogonality is in terms of polynomials of lower degree and that
orthogonal bases are not unique. Most subsequent early work was focused on
understanding the structure and theory in two variables. In Erdélyi er al. [1953],
which documents the work up to 1950, one finds little reference to the general
properties of orthogonal polynomials in more than two variables, other than (Vol.
IL, p. 265): “There does not seem to be an extensive general theory of orthogonal
polynomials in several variables.” It was remarked there that the difficulty lies
in the fact that there is no unique orthogonal system, owing to the many pos-
sible orderings of multiple sequences. And it was also pointed out that since
a particular ordering usually destroys the symmetry, it is often preferable to
construct biorthogonal systems. Krall and Sheffer [1967] studied and classified
two-dimensional analogues of classical orthogonal polynomials as solutions of
partial differential equations of the second order. Their classification is based on
the following observation: while the orthogonal bases of #,%, the set of orthogo-
nal polynomials of degree n defined in Section 3.1, are not unique, if the results
can be stated “in terms of %d, ”//ld yeer, 7/,,‘1 ,... rather than in terms of a particular
basis in each ”I/nd , a degree of uniqueness is restored.” This is the point of view
that we shall adopt in much of this chapter.

The advantage of this viewpoint is that the result obtained will be basis inde-
pendent, which allows us to derive a proper analogy of the three-term relation
for orthogonal polynomials in several variables, to define block Jacobi matrices
and study them as self-adjoint operators and to investigate common zeros of
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orthogonal polynomials in several variables, among other things. This approach is
also natural for studying the Fourier series of orthogonal polynomial expansions,
since it restores a certain uniqueness in the expansion in several variables.

3.1 Notation and Preliminaries

Throughout this book we will use the standard multi-index notation, as follows.
We denote by Nj the set of nonnegative integers. A multi-index is usually denoted
by a,a=(0y,...,04) € Ng . Whenever « appears with a subscript, it denotes the
component of a multi-index. In this spirit we define, for example, o! = oy !- - - 0!
and || = 0y + -+ 0y, and if o, B € N then we define 8, 5 = 8¢, p, - - &

. Ba
For o € Ng and x = (x1,...,Xx4), a monomial in the variables xi,...,x; is a
product
o __ 0 O
X =x"x

The number |a| is called the fotal degree of x*. A polynomial P in d variables is
a linear combination of monomials,

P(x) =Y cqx”,

where the coefficients ¢, lie in a field &, usually the rational numbers Q, the real
numbers R or the complex numbers C. The degree of a polynomial is defined as
the highest total degree of its monomials. The collection of all polynomials in x
with coefficients in a field k is denoted by k[x1, .. .,x4], which has the structure of
a commutative ring. We will use the abbreviation T1¢ to denote k[xi,...,x4]. We
also denote the space of polynomials of degree at most n by HZ. Whend =1, we
will drop the superscript and write IT and IT, instead.

A polynomial is called homogeneous if all the monomials appearing in it have
the same total degree. Denote the space of homogeneous polynomials of degree
n in d variables by 3”,‘5 , that is,

P = {P:P(x) =3 caxo‘}.

lorf=n

Every polynomial in T1¢ can be written as a linear combination of homogeneous
polynomials; for P € Hff ,

n

Px)=Y Y cax™.

k=0|o|=k

Denote by < the dimension of 2¢. Evidently {x* : |a| = n} is a basis of 22¢,
hence, ! = #{a € N@ : || = n}. It is easy to see that



3.1 Notation and Preliminaries 59

1 - &
(Enr :H Yy %= 2( S 1>t": S e,
i=1 =0 n=0

n=0 \ |ot|=n

Therefore, recalling an elementary infinite series

1 = (A, & (ntd—1\,
(l—t)dzz(}gt:nzz)( n )t’

n=0

and comparing the coefficients of " in the two series, we conclude that

rd = dim 29 = <”+d1>.
n

Since the cardinalities of the sets {az € N¢ : || < n} and {& € N&™' @ |&t| = n}

are the same, as each « in the first set becomes an element of the second set upon

adding o;+1 = n— || and as this is a one-to-one correspondence, it follows that

dimI? = (”+d).

n

One essential difference between polynomials in one variable and polynomials

in several variables is the lack of an obvious natural order in the latter. The natural

order for monomials of one variable is the degree order, that is, we order mono-

mials in IT according to their degree, as 1,x,x2,... For polynomials in several

variables, there are many choices of well-defined total order. Two are described
below.

Lexicographic order We say that o =, 3 if the first nonzero entry in the
difference ot — B = (ct; — Bi,. .., &g — Ba) is positive.

Lexicographic order does not respect the total degree of the polynomials. For
example, o with oo = (3,0,0) of degree 3 is ordered so that it lies in front of f3
with B = (2,2,2) of degree 6, while y with ¥ = (0,0,3) of degree 3 comes after
B. The following order does respect the polynomial degree.

Graded lexicographic order We say that o >-giex B if |ct| > [B] orif |ot| = |B]
and the first nonzero entry in the difference o — B is positive.

In the case d = 2 we can write & = (n — k,k), and the lexicographic order
among {a : |a| = n} is the same as the order k = 0,1,...,n. There are various
other orders for polynomials of several variables; some will be discussed in later
chapters.

Let (-,-) be a bilinear form defined on I1¢. Two polynomials P and Q are said to
be orthogonal to each other with respect to the bilinear form if (P, Q) =0. A poly-
nomial P is called an orthogonal polynomial if it is orthogonal to all polynomials
of lower degree, that is, if

<P7 Q> =0, VQe n with degQ < degP.
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If the bilinear form is given in terms of a weight function W,
(P.0) = | PLOQEW () ds (LD

where Q is a domain in R? (this implies that Q has a nonempty interior), we
say that the orthogonal polynomials are orthogonal with respect to the weight
function W.

For arbitrary bilinear forms there may or may not exist corresponding orthog-
onal polynomials. In the following we hypothesize their existence, and later we
will derive necessary and sufficient conditions on the bilinear forms or linear
functionals for the existence of such orthogonal polynomial systems.

Definition 3.1.1 Assume that orthogonal polynomials exist for a particular
bilinear form. We denote by 7/¢ the space of orthogonal polynomials of degree
exactly n, that is,

yd={pPeni?:(PQ)=0 vQen’,}. (3.12)

When the dimension of #/¢ is the same as that of £?¢, it is natural to use a
multi-index to index the elements of an orthogonal basis of #,¢. Thus, we shall
denote the elements of such a basis by Py, |¢t| = n. We will sometimes use the
notation P}, in which the superscript indicates the degree of the polynomial. For
orthogonal polynomials of two variables, instead of P, with o = (k,n — k) the
more convenient notation P or Py for 0 < k < n is often used, as in Chapter 2.

3.2 Moment Functionals and Orthogonal Polynomials
in Several Variables
We will use the standard multi-index notation as in the above section. Throughout
this section we write r,, instead of r,’f whenever r;f would appear as a subscript or
superscript.

3.2.1 Definition of orthogonal polynomials
A multi-sequence s : N¢ — R is written in the form s = {54}, end- For each multi-

sequence s = {sq } oeNd> let ., be the linear functional defined on I1¢ by

L(x*) =54, aeNg; (3.2.1)

call %, the moment functional defined by the sequence s.

For convenience, we introduce a vector notation. Let the elements of the set
{o € N¢: |ae| = n} be arranged as oV, a?),..., ") according to lexicograph-
ical order. For each n € Ny let X" denote the column vector

Ol(j))r‘n

X' = (xa)loc\=n =(x j=1
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That is, x" is a vector whose elements are the monomials x* for |ot| = n, arranged
in lexicographical order. Also define, for k, j € Ny vectors of moments s; and
matrices of moments gy () by

s=Z(x)  and  spyqy = LD, (322

By definition sy} ;) is a matrix of size rd % rf and its elements are % (x**P)
for |ot| = k and |B| = j. Finally, for each n € No, the s(3,.(;) are used as building
blocks to define a matrix

Mn,d = (S{k}+{j})lycl,j:0 with An,d = det Mn,d~ (3.2.3)

We call M,, ; a moment matrix; its elements are %, (x**#) for || < nand |B| < n.

In the following we will write .Z for .Z; whenever s is not explicit. If .Z is a
moment functional then .Z(PQ) is a bilinear form, so that we can define orthog-
onal polynomials with respect to .Z. In particular, P is an orthogonal polynomial
of degree n if £ (PQ) = 0 for every polynomial of degree n — 1 or less. More
generally, we can put the monomials in the basis {x* : & € Ng} of I in a linear
order and use Gram—Schmidt orthogonalization to generate a new basis whose
elements are mutually orthogonal with respect to .. However, since there is
no natural order for the set {ot € Nd : |ot| = n}, we may just as well consider
orthogonality only with respect to polynomials of different degree, that is, we
take polynomials of the same degree to be orthogonal to polynomials of lower
degree but not necessarily orthogonal among themselves. To make this precise,
let us introduce the following notation. If {Pgr}la\:n is a sequence of polynomials
in IT¢, denote by P, the (column) polynomial vector

Py = (Py)jaj—n = (Phay -+ Pho))T, (3.2.4)
where o)), ..., ") is the arrangement of elements in { ot € N : |az| = n} accord-

ing to lexicographical order. Sometimes we use the notation PP, to indicate the set
of polynomials {P}}.

Definition 3.2.1 Let £ be a moment functional. A sequence of polynomials
{P!:|a| =n,n e Ny}, P! € T1¢, is said to be orthogonal with respect to . if
ZLX"PHY=0, n>m, and ZL(X"PI)=S8,, (3.2.5)

where S, is an invertible matrix of size r;f X rjf (assuming for now that . permits
the existence of such Py)).
We may also call P, an orthogonal polynomial. We note that this definition

agrees with our usual notion of orthogonal polynomials since, by definition,

LB =0 = ZEPP)=0, lol=n, [Bl=m;
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thus (3.2.5) implies that the P}, are orthogonal to polynomials of lower degree.
Some immediate consequences of this definition are as follows.

Proposition 3.2.2 Let £ be a moment functional and let Py, be the orthogonal
polynomial defined above. Then {Py,...,P,} forms a basis for HZ.

Proof Consider the sum aj Py + - - - +a} P, where a; € R". Multiplying the sum
from the right by the row vector }P’E and applying &, it follows from the orthogo-
nality that a.% (P;PT) = 0 for 0 < k < n, and this shows, by the orthogonality of
P to lower-degree polynomials, that azS;f =0. Thus, a; = 0 since Sy is invertible.
Therefore {Py }|o<, is linearly independent and forms a basis for e, O

Using the vector notation, the orthogonal polynomial P, can be written as
Pn = Gn,nxn + (;zz,n—1X’17l +---+ Gn,0X07 (326)
where G, = G, , is called the leading coefficient of P, and is a matrix of size

X1y

Proposition 3.2.3 Let P, be as in the previous proposition. Then the leading-
coefficient matrix Gy, is invertible.

Proof The previous proposition implies that there exists a matrix G, such that
X' = G;Pn + Qn—la

where Q,_1 is a vector whose components belong to ijfl. Comparing the
coefficients of X" gives G,,G, = I, which implies that G, is invertible. O]

Proposition 3.2.4 Let P, be as in the previous proposition. Then the matrix
H, = £ (P,PY) is invertible.

Proof Since H, = £ (P,P}) = G,.Z(x"P}) = G,S,, it is invertible by Proposi-
tion 3.2.3. O

Lemma 3.2.5 Let £ be a moment functional and let P, be an orthogonal
polynomial with respect to £. Then P, is uniquely determined by the matrix S,

Proof Suppose, otherwise, that there exist P, and P}, both satisfying the orthog-
onality conditions of (3.2.5) with the same matrices S,. Let G, and G}, denote
the leading-coefficient matrices of P, and [P}, respectively. By Proposition 3.2.2,
{Py,...,PP,} forms a basis of T1¢; write the elements of P, in terms of this basis.
That is, there exist matrices Cy : r¢ x rf such that

]P)Z =C,P,+C_ 1P+ +ColP.
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Multiplying the above equation by }P’Z and applying the moment functional
%, we conclude that Ck.,?(IP’kIP’Z) =0, 0 <k <n-—1, by orthogonality.
It follows from Proposition 3.2.4 that C; = 0 for 0 < k < n — 1; hence
Py = C,PP,. Comparing the coefficients of x” leads to G = C,G,. That is,
C, = G:G, ! and P, = G,G:~' P, which implies by (3.2.5) that S, = .2 (x"PT) =
LN (GG )T = S,(G,G; )T, Therefore G,G;™! =1 and so G, = G,
and P, =P;. O

Theorem 3.2.6 Let £ be a moment functional. A system of orthogonal
polynomials in several variables exists if and only if

An,d 75 0, n € Ny.

Proof Using the monomial expression of P, in (3.2.6) and the notation s; in
(3.2.2),

.Z(xk]P’I) = f(xk(an" + G,17,1,1)(”_1 4+t G,lyoxo)T)
=S(+(n}Gn + Sk (n—1}Gnn1+ 503501 Grro-

From the definition of M, 4 in (3.2.3), it follows that the orthogonality condition
(3.2.5) is equivalent to the following linear system of equations:

0
Guo
Mua| @ | = (1) . (3.2.7)
G

If an orthogonal polynomial system exists then for each S, there exists exactly
one PP,. Therefore, the system of equations (3.2.7) has a unique solution, which
implies that M, 4 is invertible; thus A, ; 7# 0.

However, if A, 4 # 0 then, for each invertible matrix S,, (3.2.7) has a unique
solution (Go, --- Gn,n)T. Let P, = ZGkJ,xk; then (3.2.7) is equivalent to
Z(x*PT) =0,k <n,and Z(x"PT) =S,. O

Definition 3.2.7 A moment linear functional .%; is said to be positive definite if
Z(p*)>0  Vpel?, p#o.
We also say that {54} is positive definite when _%; is positive definite.

If p=Yaux® is a polynomial in I1¢ then .%,(p) = Yaqsq. In terms of the
sequence s, the positive definiteness of .%; amounts to the requirement that

2 AadpSeip > 0,
‘X*,B
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where a+ = (a1 + i, - .., 0+ Bg), for every sequence a = {aa}aeNg in which
ag = 0 for all but finitely many . Hence it is evident that . is positive definite
if and only if for every tuple (8", ..., B(")) of distinct multi-indices B(/) & Ng,
1 < j <'r, the matrix (sﬁ(i) 4Bl 7)i.j=1,...,r has a positive determinant.

Lemma 3.2.8 If .Z; is positive definite then the determinant A, 4 > 0.

Proof Assume that .%; is positive definite. Let a be an eigenvector of the matrix
M, 4 corresponding to eigenvalue A. Then, on the one hand, aT™M, 4a = A|a|>.
On the other hand, a’M, ja = .%,(p*) > 0, where p(x) = =0 a}xj . It follows
that 4 > 0. Since all the eigenvalues are positive, A, ; = detM,, 4 > 0. O

Corollary 3.2.9 If % is a positive definite moment functional then there exists
a system of orthogonal polynomials with respect to £.

Definition 3.2.10 Let £ be a moment functional. A sequence of polynomials
{P!: || = n,n € No}, Pt € T1¢, is said to be orthonormal with respect to . if
2L (FuPg') = 8a.p;
in the vector notation, the above equations become
ZLP,PHY=0, n#m, and ZL(P,P))=1I,, (3.2.8)
where [; denotes the identity matrix of size k X k.

Theorem 3.2.11 [f % is a positive definite moment functional then there exists
an orthonormal basis with respect to L.

Proof By the previous corollary, there is a basis of orthogonal polynomials P,

with respect to .Z. Let H, = .Z(PP,PT). For any nonzero vector a, P = a'P,, is

a nonzero polynomial by Proposition 3.2.2. Hence aH,a’ = .Z(P?) > 0, which

shows that H, is a positive definite matrix. Let H,y ? be the positive square root

of H (the unique positive definite matrix with the same eigenvectors as H and
1/2 >1) Define Q, = (H ,:/2)_1]?”. Then

f(@n@b:(ml/z) L2(®,PL)(H ) = (HY?) T H(H ) =1,

which shows that the elements of @, consist of an orthonormal basis with
respect to .Z. O

3.2.2 Orthogonal polynomials and moment matrices

Let £ be a positive definite moment functional. For each n € Ny, let M, 4
be the moment matrix of £ as defined in (3.2.3). Then M, ; has a positive
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determinant by Lemma 3.2.8. For a € Nd we denote by s o the column vec-
tor Sg 1= .2 (xo‘xk); in particular, Sq 0 = 5¢. We will define monic orthogonal
polynomials in terms of the moment matrix. For o € {f : |B| = n}, define the
polynomial P}, by

Sa,0
M Sa,1
Pi(x) = det n—ld : . (3.2.9)
n—1,d ’
Sa,nfl
1 XT.“(anl)T | X

It is evident that the P}, are of degree n. Furthermore, they are orthogonal.

Theorem 3.2.12  The polynomials P}, defined above are monomial orthogonal
polynomials.

Proof Expanding the determinant in (3.2.9) by its last row, we see that Py is
a monomial polynomial, Py (x) = x* + ---. Moreover multiplying Py (x) by xP,
|B] < n—1, and applying the linear functional .%, the last row of the deter-
minant det.Z[x®M, (x)] coincides with one of the rows above; consequently,
ZL(xPPY =0. O

For d = 2, this definition appeared in Jackson [1936]; see also Suetin [1999]. It
is also possible to define a sequence of orthonormal bases in terms of moments.
For this purpose let .Z be a positive definite moment functional and define a
different matrix My (x) as follows.

The rows of the matrix M, 4 are indexed by {o : |a| = n}. Moreover, the row
indexed by « is

(S0 Sot 7 Sga) =L (x* xOxT ¥ ()T
Let M, (x) be the matrix obtained from M, 4 by replacing the above row, with
index o, by (x* x*x" .-+ x%(x")T). Define
1
n,d

Py(x) := —detMy(x), |a|=n, acNi. (3.2.10)

Multiplying the polynomial ﬁg by x# and applying the linear functional ., we
obtain immediately

o if|Bl<n—1
L(PP) = ifpj<n—1, 3.2.11)
Sup if |B]=n.

Thus {ﬁg}@‘zn " is a system of orthogonal polynomials with respect to .Z.
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Let adj M, 4 denote the adjoint matrix of M, 4; that is, its elements are the
cofactors of M, 4 (see, for example, p. 20 of Horn and Johnson [1985]). A
theorem of linear algebra states that

1
1 .
Mn,d = A—adj M, 4.

n,d
Let M, }(Ja| = n) denote the submatrix of M, } = (Me.p)al,|pl<n Which con-
sists of those m, g whose indices satisfy the condition lor] = | ﬁ\ = n; in other
words, M, d(|(x| = n) is the principal minor of M, d of size 4 x r¢ at the lower

right corner. The elements of M, J(lee| = n) are the cofactors of the elements of
ZL(x"(x")T) in M, 4. Since M, 4 is positive definite, so is M;é; it follows that
M, (|| = n) is also positive definite.

Theorem 3.2.13 Let £ be a positive definite moment functional. Then the
polynomials

Py = (M, j(|a| =n)) 2Py = Gpx" + - (3.2.12)

are orthonormal polynomials with respect to £, and G, is positive definite.

Proof By the definition of My, expand the determinant along the row
1 xt .. (x")T)'then

detMO( 2 CaﬁxB+Qn 1, Qn 161_[}1 s
1Bl=n

where C,, g is the cofactor of the element .2 (x* xﬁ) in M, 4; that is, adjM, 4 =
(CB,a)|al.||<n- Therefore, since adjM,, 4 = A, dM 4+ We can write

~ 1
]Pn:A Andjw d(la‘_”l)x +Qu-1
n,d

= M;(}(|oc| =n)x"+Q,_1.
From (3.2.11) we have that .,?(X”]IT’Z) =1, and X(Qn,lﬁz) = 0; hence,
Z(BF)) =M, (o] =n).
It then follows immediately that . (P,PT) = I; thus P, is orthonormal. Moreover,
Gn =M, j(Jae| =n)]'/2. (3.2.13)
Clearly, G, is positive definite. O
As is evident from the examples in the previous chapter, systems of orthonor-

mal polynomials with respect to . are not unique. In fact, if P, is orthonormal
then, for any orthogonal matrix O, of size r¢ x 1<, the polynomial components in

n»

P = 0,P, are also orthonormal. Moreover, it is easily seen that if the components



3.2 Moment Functionals and Orthogonal Polynomials 67

of P, and PP} are each a collection of orthonormal polynomials then multiplication
by an orthogonal matrix connects P, and P;.

Theorem 3.2.14 Let & be positive definite and let {QF} be a sequence of
orthonormal polynomials with respect to L. Then there is an orthogonal matrix
O, such that Q, = O,P,, where P, are the orthonormal polynomials defined in
(3.2.12). Moreover, the leading-coefficient matrix G}, of Q, satisfies G}, = 0,Gy,
where Gy, is the positive definite matrix in (3.2.13). Furthermore,
1.d

A
det G 2:”7
(det G,) And

(3.2.14)

Proof By Theorem 3.2.13, Q, = O,P, + Oy p—1Py—1 + - - + 0, 0Po. Multiplying
the equation by Py, 0 < k < n—1, it follows that O,y =0 for k=0,1,...,n—1.
Hence, Q, = O,P,. Since both PP, and QQ,, are orthonormal,

1= 2(Q,Q") =0,2P,PHol = 0,07,

which shows that O, is orthonormal. Comparing the leading coefficients of
Qn = 0,P, leads to G} = 0,,G,. To verify equation (3.2.14), use (3.2.13) and
the formula for the determinants of minors (see, for example, p. 21 of Horn and
Johnson [1985]):

o detMn,d(l < |OC| <n-— 1) o An—l,d

det M Y(la|=n )
n,d(| | ) An,d An,d

from which the desired result follows immediately. O

Equation (3.2.14) can be viewed as an analogue of the relation kﬁ =d,/dn11
for orthogonal polynomials of one variable, given in Section 1.4.

3.2.3 The moment problem

Let .# = .# (RY) denote the set of nonnegative Borel measures on R¢ having
moments of all orders, that is, if 4 € .# then

/ x|du(x) <e Vo e N
R4
For u € ., as in the previous section its moments are defined by
5y = /dxo‘dl.t, aeNd. (3.2.15)
R

However, if {sy} is a multi-sequence and there is a measure U € .# such
that (3.2.15) holds then s, is called a moment sequence. Two measures in .4
are called equivalent if they have the same moments. The measure u is called
determinate if | is unique in the equivalence class of measures. If a sequence
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is a moment sequence of a determinate measure, we say that the sequence is
determinate.

Evidently, if u € .# then the moment functional .Z defined by its moments is
exactly the linear functional

Z(P) = RdP(x)du(x), PecI.
Examples include any linear functional expressible as an integral with respect
to a nonnegative weight function W, that is for which du(x) = W(x)dx and
J1x*|W(x)dx < oo for all a. Whenever W is supported on a domain with
nonempty interior, it is positive definite in the sense of Definition 3.2.7, that is,
Z(P?) > 0 whenever P # 0.

The moment problem asks the question when is a sequence a moment
sequence and, if so, when is the measure determinate? Like many other prob-
lems involving polynomials in higher dimensions, the moment problem in several
variables is much more difficult than its one-variable counterpart. The problem
is still not completely solved. A theorem due to Haviland gives the following
characterization (see Haviland [1935]).

Theorem 3.2.15 A moment sequence s can be given in the form (3.2.15) if
and only if the moment functional %5 is nonnegative on the set of nonnegative
polynomials TI. = {P € T : p(x) > 0,x € R¢}.

The linear functional . is called positive if .-#(P) > 0 on T14. In one vari-
able, . being positive is equivalent to its being nonnegative definite, that is, to
Z(p?) > 0, since every positive polynomial on R can be written as a sum of
the squares of two polynomials. In several variables, however, this is no longer
the case: there exist positive polynomials that cannot be written as a sum of the
squared polynomials. Thus, Hamburger’s famous theorem that a sequence is a
moment sequence if and only if it is positive definite does not hold in several
variables (see Fuglede [1983], Berg, Christensen and Ressel [1984], Berg [1987]
and Schmudgen [1990]). There are several sufficient conditions for a sequence to
be determinate. For example, the following result of Nussbaum [1966] extends
a classical result of Carleman in one variable (see, for example, Shohat and
Tamarkin [1943]).

Theorem 3.2.16 If {sq} is a positive definite sequence and if Carleman’s
condition for a sequence {ay},

=

3 (az) V2 = oo, (3.2.16)
n=0
is satisfied by each of the marginal sequences $01,0,.:.0} {01, 0} s - - 5{0,0,....0}

then {sq} is a determinate moment sequence.
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This theorem allows us to extend some results for the moment problem of one
variable to several variables. For example, it follows that the proof of Theorem 5.2
in Freud [1966] in one variable can be extended easily to the following theorem.

Theorem 3.2.17 If u € A satisfies

/R ) el g (x) < oo (3.2.17)

for some constant ¢ > 0 then Ll is a determinate measure.

Evidently, we can replace ||x|| by |x|;. In particular, if y € .# has compact sup-
port then it is determinate. If K is a domain defined in R? then one can consider
the K-moment problem, which asks when a given sequence is a moment sequence
of a measure supported on K. There are various sufficient conditions and results
for special domains; see the references cited above.

A related question is the density of polynomials in L?(du). In one variable
it is known that if y is determinate then polynomials in L?(du) will be dense.
This, however, is not true in several variables; see Berg and Thill [1991], where
it is proved that there exist rotation-invariant measures u on R? which are deter-
minate but for which the polynomials are not dense in L?(du). For the study of
the convergence of orthogonal polynomial expansions in several variables in later
chapters, the following theorem is useful.

Theorem 3.2.18 [f u € .4 satisfies the condition (3.2.17) for some constant
¢ > 0 then the space of polynomials T is dense in the space L*(dp).

Proof The assumption implies that polynomials are elements of L?(du ). Indeed,
for each o € N¢ and for every ¢ > 0 there exists a constant A such that [x¥|? <
AeclHl for all sufficiently large ||x]|.

If polynomials were not dense in L?(du), there would be a function f, not
almost everywhere zero, in L?(du) such that f would be orthogonal to all
polynomials:

Jea F)x*du(x) =0, o€ Ng.

Let dv = f(x)du. Then, since ([|f|du)?> < [|f|*du [du, we can take the
Fourier—Stieltjes transform of dv, which is, by definition,

0(z) = / e iE0dy(x),  zeC.
R4

Let y = Im z. By the Cauchy—Schwarz inequality, for ||y|| < ¢/2 we have

: 2
P =| [ e tav] < [ @blklay [ 0P du <
R4 R4 R4
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since |(y,x)| < ||y]| ||x||- Similarly,
‘&f/(z) ’2
07

for ||y|| < c¢/4. Consequently ¥(z) is analytic in the set {z € C? : |Imz| < c/4}.
For small ||z||, expanding V(z) in a power series and integrating by parts gives

< [ predblllgy / LF(x)]2du < oo
R4 Rd

V(z) = i %/Rdf(xﬂx,@"du =0.

n=0

Therefore, by the uniqueness principle for analytic functions, ¥(z) = 0 for
ly|| < ¢/4. In particular ¥(z) = 0 for z € R¥. By the uniqueness of the Fourier—
Stieltjes transform, we conclude that f(x) = 0 almost everywhere, which is a
contradiction. O

This proof is a straightforward extension of the one-variable proof on p. 31 of
Higgins [1977].

3.3 The Three-Term Relation
3.3.1 Definition and basic properties

The three-term relation plays an essential role in understanding the structure
of orthogonal polynomials in one variable, as indicated in Subsection 1.3.2.
For orthogonal polynomials in several variables, the three-term relation takes a
vector—matrix form. Let £ be a moment functional. Throughout this subsection,
we use the notation P, for orthogonal polynomials with respect to . and the
notation H,, for the matrix

When H,, = I, the identity matrix, P, becomes orthonormal and the notation I, is
used to denote orthonormal polynomials. Note that H,, is invertible by Proposition
3.2.4.

Theorem 3.3.1 For n > 0, there exist unique matrices Ap; : rf,l X rg b
Byi: rdxr? and C,Ei 4 x e such that
xiPn = An,iﬂan-ﬁ—l +Bn7i1ﬁ)n +Cn,ipn—la 1<i<d, (3.3.1)
where we define P_1 = 0 and C_1 ; = 0; moreover,
An,iHnJrl = g(xi]pn]pgrl%
B, H, = £ (x;P,P)), (3.3.2)
An,iHnJrl = HnC;{+1,i'
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Proof Since the components of x;P, are polynomials of degree n+ 1, they can
be written as linear combinations of orthogonal polynomials of degree n+ 1 and
less by Proposition 3.2.2. Hence, in vector notation, there exist matrices My ; such
that

xtﬁ)n = Mn,i]fDnJrl ""Mnfl,i]pn +Mn72,i}pn71 +ee
However, if we multiply the above equation by I@Z from the right and apply the
linear functional . then My_ ;Hy = £ (xi]f”,,]f"z). By the orthogonality of P; and

the fact that Hy is invertible, M ; = 0 for k < n— 2. Hence, the three-term relation
holds and (3.3.2) follows. O

For orthonormal polynomials P,,, H, = I; the three-term relation takes a simpler
form:

Theorem 3.3.2 For n > 0, there exist matrices A, ; : rff Xy and By, ; : rff X rff
such that

XiPp = Ap Pt +BpiPu+ A, Por, 1<i<d, (3.3.3)
where we define P_; = 0 and A_ ; = 0. Moreover, each B,,; is symmetric.
The coefficients of the three-term relation satisfy several properties. First,

recall that the leading-coefficient matrix of B, (or P,) is denoted by G,.
Comparing the highest-coefficient matrices on each side of (3.3.3), it follows that

AniGnr1 =Gyuly;, 1<i<d, (3.34)
where the L, ; are matrices of size r,‘f X rz +1- defined by
Lyx™ =xx", 1<i<d. (3.3.5)

For example, for d =2,

1 O o 0 1 O
L1 = and Ln,2:

O 1 0 (.)O.l

We now adopt the following notation: if My,..., M, are matrices of the same
size p X g then we define their joint matrix M by

M=M] - MNT,  M:dpxq (3.3.6)

(it is better to write M as a column matrix of My,...,My). In particular, both L,
and A, are joint matrices of size dr? x rff 1 The following proposition collects
the properties of Ly, ;.
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Proposition 3.3.3 For each i, 1 <i < d, the matrix L,; satisfies the equation
Ln,,-L;i = 1. Moreover,

rankLmi = rZ’ 1<i< d, and rankL, = I"ZJrl.

Proof By definition, each row of L, ; contains exactly one element equal to 1; the
rest of its elements are 0. Hence L, ;LT ; = I, which also implies that rank ,, ; = <.
Moreover, let

Mp={aeNg:|oa|=n} and A;={0eN:|a|=n,0;#0},

and let a = (aq ) e s, be a vector of size r4, | x 1; then L, ; can be considered as
a mapping which projects a onto its restriction on .4, ;, that is, L, ;a = a|-%+1.r
To prove that L, has full rank, we show that if L,a = 0 then a = 0. By definition,
L,a=0implies that L, ;a=0, 1 <i <d. Evidently | J; 4, ; = -4;. Hence L, ;ja=0
implies that a = 0. O

Theorem 3.3.4 Forn>0and1<i<d,
rank A, ; =rank C,11; = rff. (3.3.7)
Moreover, for the joint matrix A, of A, ; and the joint matrix cr ofC,Ii,

rank A, = VZH and rank CLI = rZJrl. (3.3.8)

Proof From the relation (3.3.4) and the fact that G, is invertible, rank A, ; = r,’f
follows from Proposition 3.3.3. Since H, is invertible, it follows from the third
equation of (3.3.2) that rank C,, 11 ; = r‘ff In order to prove (3.3.8) note that (3.3.4)
implies that A, G+ = diag{G,, ..., G, } Ly, since G, being invertible implies that
the matrix diag{Gy,...,G,} is invertible. It follows from Proposition 3.3.3 that
rankA, = rff 1~ Furthermore, the third equation of (3.3.2) implies that A, H,+, =
diag{Hp, ... ,Hn}CLl, and H, is invertible; consequently, rank C,, ;| = rankA,,.

O

Since the matrix A, has full rank, it has a generalized inverse DE, which we
write as follows:

T T T d d
an(Dn,l Dn,i)? T+ Xdrna

where DL : rﬁH X rg, that is,

d
DyAy =Y, Dy A =1. (3.3.9)
i=1
We note that the matrix D, that satisfies (3.3.9) is not unique. In fact, let A
be a matrix of size s x ¢, s > ¢, with rank A = ¢, and let the singular-value
decomposition of A be given by
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A

A=wT|
"o

o
where A : ¢ Xt is an invertible diagonal matrix and W : s x s and U : ¢ x t are
unitary matrices. Then the matrix DT defined by

D' =UT (AL AW,

where Aj : s Xt can be any matrix, satisfies DTA = I. The matrix DT is known
as the generalized inverse of A. If A; = 0 then DT is the unique Moore—Penrose
generalized inverse, which is often denoted by A™.

Using the generalized matrix D}, we can deduce a recursive formula for
orthogonal polynomials in several variables.

Theorem 3.3.5 Let D be a generalized inverse of A,. There exist matrices
E,: rf,fH X rﬁl and F, : rffﬂ X VZ,I such that

n+1 szDTJEDn +EnIFDn +FnIFanl; (3.3.10)

where

d
> Dy iByi=—En, ZDT Cri =
i=1

Proof Multiplying the three-term relation (3.3.3) by DL and summing over 1 <
i <d, we find that the desired equality follows from (3.3.9). O

Equation (3.3.10) is an analogue of the recursive formula for orthogonal poly-
nomials in one variable. However, unlike its one-variable counterpart, (3.3.10)
does not imply the three-term relation; that is, if we choose matrices A, ;, By, ;
and C,;, and use (3.3.10) to generate a sequence of polynomials, in general the
polynomials do not satisfy the three-term relation. We will discuss the condition
under which equivalence does hold in Section 3.5.

3.3.2 Favard’s theorem

Next we prove an analogy of Favard’s theorem which states roughly that any
sequence of polynomials mich satisfies a three-term relation (3.3.1) whose coef-
ficient matrices satisfy the rank conditions (3.3.7) and (3.3.8) is necessarily a
sequence of orthogonal polynomials. We need a definition.

Definition 3.3.6 A linear functional . defined on I1¢ is called quasi-definite if
there is a basis B of IT¢ such that, for any P,Q € B,

ZL(PQ)=0 if P#Q and Z(P*)#0.
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From the discussion in Section 3.2 it is clear that if % is positive definite
then it is quasi-definite. However, quasi-definiteness may not imply positive
definiteness.

Theorem 3.3.7 Let {P,};_ = {Py :|a| =n,n € No}, Po = 1, be an arbitrary
sequence in T1%. Then the following statements are equivalent.

(1) There exists a linear functional £ which defines a quasi-definite linear
functional on T1¢ and which makes {P, o_o an orthogonal basis in I
(ii) Forn >0, 1 <i<d, there exist matrices Ay, Bn; and C,; such that

(a) the polynomials P, satisfy the three-term relation (3.3.1),
(b) the matrices in the relation satisfy the rank conditions (3.3.7) and
(3.3.8).

Proof That statement (i) implies statement (ii) is contained in Theorems 3.3.1
and 3.3.4. To prove the other direction, we first prove that the polynomial
sequence {IP, } forms a basis of T1¢. It suffices to prove that the leading coefficient,
G,, of P, is invertible.

The matrix diag{Gy,,...,G,} is of size dr¢ x dr? and has copies of the matrix
G, as diagonal entries in the sense of block matrices. Since the polynomial P,
satisfies the three-term relation, comparing the coefficient matrices of x"*! on
each side of the relation leads to A, ;G,41 = G,Ly;, 1 <i < d, from which it
follows that A, G, = diag{G,,...,G,}L,. We now proceed with induction in n
to prove that each G, is invertible. That Py = 1 implies Gy = 1. Suppose that G,
has been proved to be invertible. Then diag{G,,...,G,} is invertible and from
the relation rank L,, = ;f 1 we have

rank A, G, 41 = rank diag{Gp,...,G,}L, = rZH.

Therefore, by (3.3.8) and the rank inequality of product matrices (see, for
example, p. 13 of Horn and Johnson [1985]),

rank G, 11 > rank A,,G,4+1 > rank A, +rank G, — r,‘fH =rank Gy41.

Thus, it follows that rank G, = rank A,G,, 11 = rﬁ +1- Hence G, is invertible
and the induction is complete.
Since {P}'} is a basis of 1, the linear functional . defined on I by

Z()=1, Z[P)=0, nxl,
is well defined. We now use induction to prove that
Z(PP])=0, k#j. (3.3.11)

Let n > 0 be an integer. Assume that (3.3.11) hold for every k, j such that 0 <k <
n and j > k. Since the proof of (3.3.10) used only the three-term relation and the
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fact that rank A,, = rg 41 it follows from (iia) and (iib) that (3.3.10) holds for P,
under these considerations. Therefore, for ¢ > n+1,

d
ZLP Pl =2 (zx,-D,,,,-P,,P}>

=1
¥
=2 <z D, iPy (A ilPry1 + By iPy +Cé,i]Pé—1)T> =0.
i=1
The induction is complete. Next we prove that H, = .Z(P,PT) is invertible.

Clearly, H, is symmetric. From (iib) and (3.3.11), A, jH, 1 = H,,C,T s thus

AnH, 1 = diag{H,,...,H,}Cy, |. (3.3.12)

Since Z(1) = 1, it follows that Hy = .Z(]P’OIP’E) = 1. Thus Hy is invertible.
Suppose that H, is invertible. Then diag{H,,...,H,} is invertible and, by

rankCy,41 = rffﬂ,

rank A, H, | = 1rank(diag{Hn7 ... ,Hn}CLl) = "ZH-

by (iia) and A, : drd x rﬁH,HnH :rff+1 x rd

“ w1 We then

However, rank A,, = r,‘f 1
have

rank H, > rank(A,H,+1) > rank A, +rank H,,; | — rg 41 =rank Hy4 1.

Therefore rank H,, ;1 = rank A,,H,T 1= rZ +1» Which implies that H,. is invert-
ible. By induction, we have proved that H, is invertible for each n > 0. Since H,
is symmetric and invertible, there exist invertible matrices S, and A, such that

H,= S,,A,,S,Tl and A, is diagonal. For Q, =S, IP, it then follows that
2(QQ)) =S, Z®P) (S, )T =5 Ha(S, )T = A

This proves that .# defines a quasi-definite linear functional in T1¢; . makes
{P,};>_, an orthogonal basis. The proof is complete. O

If the polynomials in Theorem 3.3.7 satisfy (3.3.3) instead of (3.3.1) then they
will be orthogonal with respect to a positive definite linear functional instead of a
quasi-definite linear functional.

Theorem 3.3.8 Let {P,} = {P} :|a| =n,n € No}, Po = 1, be an arbitrary
sequence in T1¢. Then the following statements are equivalent.

(i) There exists a linear function £ which defines a positive definite linear
functional on T1¢ and which makes {P,}:>_, an orthonormal basis in 1.
(ii) Forn >0, 1 <i<d, there exist matrices A, ; and B, ; such that

(a) the polynomials P, satisfy the three-term relation (3.3.3),
(b) the matrices in the three-term relation satisfy the rank conditions
(3.3.7) and (3.3.8).
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Proof As in the proof of the previous theorem, we only need to prove that state-
ment (ii) implies statement (i). By Theorem 3.3.7 there exists a quasi-definite
linear functional .# which makes {P,}_, orthogonal. We will prove that .Z is
positive definite. It is sufficient to show that the matrix H, = .Z(P,PI) is the
identity matrix for every n € Ny. Indeed, since every nonzero polynomial P of
degree n can be written as P = a P, + --- + a} Py, it follows from H, = I that
ZL(P?) = ||ay||* +--- +||ao||> > 0. Since C,+1 = AT, equation (3.3.12) becomes
ApHyy = diag{Hy,...,Hy}A,. Since Py = 1 and .1 = 1, Hy = 1. Suppose that
H, is an identity matrix. Then diag{Hy,...,H,} is also an identity matrix. Thus,
it follows from the rank condition and the above equation that H, is an identity
matrix. The proof is completed by induction. O

Both these theorems are extensions of Favard’s theorem for orthogonal poly-
nomials of one variable. Since the three-term relation and the rank condition
characterize the orthogonality, we should be able to extract the essential infor-
mation on orthogonal polynomials by studying the three-term relation; indeed,
this has been carried out systematically for orthogonal polynomials in one vari-
able. For several variables, the coefficients of (3.3.1) and (3.3.3) are matrices and
they are unique only up to matrix similarity (for (3.3.3), unitary similarity) since
an orthogonal basis is not unique and there is no natural order among orthogonal
polynomials of the same degree. Hence, it is much harder to extract information
from these coefficients.

3.3.3 Centrally symmetric integrals
In this subsection we show that a centrally symmetric linear functional can be
described by a property of the coefficient matrices of the three-term relation.

Let .Z be a positive definite linear functional. Of special interest are examples
of .Z expressible as integrals with respect to a nonnegative weight function with
finite moments, that is, £ f = [ f(x)W(x)dx; in such cases we shall work with
the weight function W instead of the functional .Z.

Definition 3.3.9 Let Q C RY be the support set of the weight function W. Then
W is centrally symmetric if
x€EQ=—x€Q and W(x)=W(—x).
We also call the linear functional .Z centrally symmetric if it satisfies
Z(x*) =0, aeN! |ofanoddinteger.
It is easily seen that when £ is expressible as an integral with respect to W,

the two definitions are equivalent. As examples we mention the rotation invari-
ant weight function (1 — ||x||2)*~'/2 on the unit ball B¢ and the product weight
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function [T, (1 —x;)% (1 +x;)" on the cube [—1,1]¢, which is centrally symmet-
ric only if a; = b;. Weight functions on the simplex are not centrally symmetric
since the simplex is not symmetric with respect to the origin.

A centrally symmetric £ has a relatively simple structure which allows us to
gain information about the structure of orthogonal polynomials. The following
theorem connects the central symmetry of £ to the coefficient matrices in the
three-term relation.

Theorem 3.3.10 Ler .Z be a positive definite linear functional, and let {B,;}
be the coefficient matrices in (3.3.3) for the orthogonal polynomials with respect
to L. Then £ is centrally symmetric if and only if B, ; = 0 for all n € Ng and
1<i<d.

Proof First assume that . is centrally symmetric. From (3.3.2),
By = L (xPyPy) = L(x;) =0.

Therefore from (3.3.10) P; = Zx,-Dai, which implies that the constant terms in
the components of P; vanish. Suppose we have proved that By ; = 0 for 1 <k <
n — 1. Then, by (3.3.10), since E; = 0 for k = 0,1,...,k— 1 we can show by
induction that the components of [P, are sums of monomials of even degree if n
is even and of odd degree if n is odd. By definition,
d d
Bn,i = g(x,]P’nIP’Z) = 2 z & [xiDZ—l,j (Xj]Pn_l +A;[;‘—27j]Pn—2)
j=0k=0

X (x Py +A372,kpn72)TDn71,k] .

Since the components of (x;P,_; +A;727 iPu-2) (kPa1 —|—A£727 Pn_2)T are poly-
nomials that are sums of monomials of even degree, their multiples by x; are sums
of monomials of odd degree. Since . is centrally symmetric, B, ; = 0.

However, assuming that B,,; = 0 for all n € Ny, the above proof shows that the
components of P, are sums of monomials of even degree if n is even and sums
of monomials of odd degree if n is odd. From By ; = .¥ (xi]P’oPg) =2(x;)=0it
follows that . (x;) = 0. We now use induction to prove that

{Bri=0:1<k<n} = {ZLC"x5)=0: a1+ +a;=2n+1}.
Suppose that the claim has been proved for k < n— 1. By (3.3.3) and (3.3.2),

Anfl,./Bn,iAZ_wf iAn—1,/Pu(An-1,4Pn)"]
X (Pt — Ay 2,jPn-2) (Pn—1 _Azfz,kpn—Z)T]
XiX, kuPn ﬂpn 1) g(X‘Xj]P)n 1]?172)14,,_2’](

[x
(
— A i L (xixPu 1P _y) + Ay 5 Bu2ifn—2k-
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Then % (x;ix;P,—1PT ) = 0 and £ (xxP,—1PT_,) = 0, since the elements of
these matrices are polynomials that are sums of odd powers. Therefore, from
B, ; = 0 we conclude that £ (x;x jkuP,,,llP)Ll ) = 0. Multiplying the above matrix
from the left and the right by A; , and Azp, respectively, for | < p <dand!l =
n—2,...,1 and using the three-term relation, we can repeat the above argument
and derive £ (x]" -+ xj%) =0, oy + -+ 04y = 2n+ 1, in finitely many steps. [

One important corollary of the above proof is the following result.

Theorem 3.3.11 Let £ be a centrally symmetric linear functional. Then an
orthogonal polynomial of degree n with respect to £ is a sum of monomials of
even degree if n is even and a sum of monomials of odd degree if n is odd.

For examples see various bases of the classical orthogonal polynomials on the
unit disk in Section 2.3.

If a linear functional .Z or a weight function W is not centrally symmetric
but becomes centrally symmetric under a nonsingular affine transformation then
the orthogonal polynomials should have a structure similar to that of the centrally
symmetric case. The coefficients B, ; in the three-term relations, however, will not
be zero. It turns out that they satisfy a commutativity condition, which suggests
the following definition.

Definition 3.3.12 If the coefficient matrices B,; in the three-term relation
satisfy

Bn,iBn,j = Bn.jBn.h 1<i,j < d, née€Ny, (3.3.13)

then the linear functional .Z (or the weight function W) is called quasi-centrally-
symmetric.

Since the condition B, ; = 0 implies (3.3.13), central symmetry implies quasi-
central symmetry.

Theorem 3.3.13 Let W be a weight function defined on Q C R?. Suppose that
W becomes centrally symmetric under the nonsingular linear transformation

u—x, x=Tu+a, detT >0, x,u,a e R,
Then, W is quasi-centrally-symmetric.
Proof Let W*(u) = W(Tu+a) and Q" ={u:x=Tu+a, x€c Q}. Denote

by PP, the orthonormal polynomials associated to W; then, making the change
of variables x — T'x + a shows that the corresponding orthonormal polynomials
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for W* are given by P, (u) = v/detT P,(Tu+a). Let B, ;(W) denote the matrices
associated with W. Then, by (3.3.2),

By (W) = /Q X (1) BT (X)W (x) dx

= o (i lijuj+ a,) P;:(M)P;T(M)W*(u) du

=1

d
= z tijBn,j(W*) +a;l.
Jj=1

By assumption W* is centrally symmetric on Q, which implies that B, ;(W*)
= 0 by Theorem 3.3.10. Then B, ;(W) = a;I, which implies that B, ;(W) satisfies
(3.3.13). Hence W is quasi-centrally-symmetric. O

How to characterize quasi-central symmetry through the properties of the linear
functional .Z or the weight function is not known.

3.3.4 Examples

To get a sense of what the three-term relations are like, we give several examples
before continuing our study. The examples chosen are the classical orthogonal
polynomials of two variables on the square, the triangle and the disk. For a more
concise notation, we will write orthonormal polynomials of two variables as P;'.
The polynomials P}, 0 < k < n, constitute a basis of ”VHZ, and the polynomial
vector IP, is given by P, = (P --- P"T. The three-term relations are

xiPp = An,iIP)n-&-l +Bn,iIPn +AZ_1J]P)11—17 i=1,2,

where the sizes of the matrices are A,; : (n+1) X (n+2) and B,; : (n+1)x
(n+1). Closed formulae for the coefficient matrices are derived using (3.3.2) and
the explicit formulae for an orthonormal basis. We leave the verification to the
reader.

Product polynomials on the square
In the simplest case, that of a square, we can work with general product polyno-
mials. Let p, be the orthonormal polynomials with respect to a weight function w
on [—1, 1]; they satisfy the three-term relation

XPn = QnPpy1 +bppp+an_1pp—1, n>0.

Let W be the product weight function defined by W (x,y) = w(x)w(y). One basis
of orthonormal polynomials is given by

Pl (x,y) = ppr(X)pr(y), 0<k<n.



80  General Properties of Orthogonal Polynomials in Several Variables
The coefficient matrices of the three-term relation are then of the following form:
a, O 0_ _O ap O
O a 0 o O an
by O] [ by O

O .b() | O .bn

If w is centrally symmetric then by = 0; hence B,,; = 0.

Classical polynomials on the triangle
For the weight function

W(x,y) :xafl/Zyﬁfl/Z(l _x_y>yfl/2’
with normalization constant given by (setting |k| = a+  +7)

) o r(lx|+3)
Wapy = </T2W<x’y)dxdy) T T DI+ )Mt )’

we consider the basis of orthonormal polynomials, see (2.4.2),

PE(x,y) = (hye)  PEEPITO2) (9  1y(1 — x)kplr /2P (2y N 1> ,

1—x

where

( kn)2 = WOt.ﬂ,)/
’ (2n+|x|+3)2k+B+7)

T(n+k+B+y+1)(n—k+o+ HT(k+B+ T (k+y+1)
(n—k)k!T(n+k+ || + DTk + B +7) '
The coefficient matrices in the three-term relations are as follows:

ao,n O 0 b 0,n O

aln 0 blA,n
An,] = . . Bn,l =

O an,n 0 O bl’l‘,n

where
akn:h"’"“ (n—k+l)(n+k+|K|+%)7
T e Qn4 x|+ 1)+ x|+ 3)
I (B+y+2k)?—(a—3)?

bin = = :
T2 2+ k|- Hyn+ (k] +3)
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_eO,n dO,n O 0_
Cln €ln dl,n :
Ann = :
Cn—1,n dn—l,n 0
_O Cnyn €n,n dn,n_
where
= M 1k kA2 (kB -3k 47— )
T ha(nt k| D Cn+ x|+ )+ B+Y) 2k +B+y— 1)
ey :—(1—|— (ﬁ_%)Z_(},_%)z )an,k
Qk+B+y+1)2k+B+y—1)) 2
o hicstnet (n k| + 3) (nHk+ [k + 3) (k+ D (k+B+7)
T e (2nt k| + 1) 2+ K|+ )2k +B+y) 2k +B+y+ 1)
and finally
fO,n 80.n O
80.n fl,n 81.n
Bn,2: ’
8n—2.n fnfl,n 8n—1.n
O 8n—1,n fmn
where
o (14 BIARy1ohy
ko Qk+B+y+)2k+B+y—1)) 2
hk+ln
=-2
8k,n hkn

y (n—k+o—3)(n+k+|x[+3)(k+1)(k+B+7)
(n+ x| = 3)2n+ K[+ 3)k+B+7)(2k+B+7y+1)

Classical polynomials on the disk
With respect to the weight function W (x,y) = (1 —x> —y?)*~1/2, we consider the
orthonormal polynomials, see (2.3.1),

Pl(x,y) = (hyp) ' CEE 2 0y (1 - )R (y> ’

V1—x?
where
(i) 2r(2u+1) Fn+k+2u+1)T2u+k)

~ PEMOQR @n 20+ D) (k)T + o+ D (=0t
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If g =0, these formulae hold under the limit relation limy,_ou'Cy (x) =
(2/n)T,(x). In this case B, ; = 0, since the weight function is centrally symmet-
ric. The matrices A, ; and A, > are of the same form as in the case of classical
orthogonal polynomials on the triangle, with e; , = 0 and

4 :hk,n+1 n—k+1 :hk+1,n+1 (k+1)(2k—|—2[l+1)
S T hen 2n+2u 417 S e, 2(k+w)(2nt2u+1)
_hk—l,n+1 (k+2u71)(n7k+l)(n7k+2)

hin  2(k+p)(2k+2p—1)2n+2u+1)

Ckn =

3.4 Jacobi Matrices and Commuting Operators

For a family of orthogonal polynomials in one variable we can use the coeffi-
cients of the three-term relation to define a Jacobi matrix J, as in Subsection
1.3.2. This semi-infinite matrix defines an operator on the sequence space ¢2. It
is well known that the spectral measure of this operator is closely related to the
measure that defines the linear function . with respect to which the polynomials
are orthogonal.

For orthogonal polynomials in several variables, we can use the coefficient
matrices to define a family of tridiagonal matrices J;, 1 <i < d, as follows:

Bo; Ao, O
A({,- By A
Ji= . , 1<i<d. 3.4.1)
l AITJ By;

9

O

We call the J; block Jacobi matrices. It should be pointed out that their entries
are coefficient matrices of the three-term relation, whose sizes increase to infinity
going down the main diagonal. As part of the definition of the block Jacobi matri-
ces, we require that the matrices A, ; and B,,; satisfy the rank conditions (3.3.7)
and (3.3.8). This requirement, however, implies that the coefficient matrices have
to satisfy several other conditions. Indeed, the three-term relation and the rank
conditions imply that the IP,, are orthonormal, for which we have

Theorem 3.4.1 Let {P,} be a sequence of orthonormal polynomials satis-
fying the three-term relation (3.3.3). Then the coefficient matrices satisfy the
commutativity conditions
ApiAkr1,j = Ar, jAks1,iy
Ay iBiy1,j + BiiAk,j = Bk, jAki + Ak, jBi+1,i, (3.4.2)
ARy iAk—1,j+ BiiBij + AciAL ;= ALy Ak—1i+ B jBri+ Ak AL
fori#j, 1<i,j<d, andk >0, where A_1; =0.
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Proof By Theorem 3.3.8 there is a linear functional . that makes IP; orthonor-
mal. Using the recurrence relation, there are two different ways of calculating
the matrices .Z (xix; PPy ,), 2 (xixjPxP} ) and & (xix;P Py, ). These calcula-
tions lead to the desired matrix equations. For example, by the recurrence relation

(3.3.3),
2 (xixPiPlia) = L (6iPixPry)
=L[(AkPresr+- )+ AL Per) ] = Akifrsr
and
L(xixjPePL,) = L (xPexiPL,) = Ax jAir 1.,

which leads to the first equation in (3.4.2). O]

The reason that the relations in (3.4.2) are called commutativity conditions will
become clear soon. We take these conditions as part of the definition of the block
Jacobi matrices J;.

The matrices J; can be considered as a family of linear operators which act
via matrix multiplication on ¢2. The domain of the J; consists of all sequences
in /% for which matrix multiplication yields sequences in ¢2. As we shall see
below, under proper conditions the matrices J; form a family of commuting self-
adjoint operators and the spectral theorem implies that the linear functional .Z in
Theorem 3.3.7 has an integral representation. In order to proceed, we need some
notation from the spectral theory of self-adjoint operators in a Hilbert space (see,
for example, Riesz and Sz. Nagy [1955] or Rudin [1991]).

Let H be a separable Hilbert space and let (-,-) denote the inner product in H.
Each self-adjoint operator T in H is associated with a spectral measure £ on R
such that T = [x dE(x); E is a projection-valued measure defined for the Borel
sets of R such that E(R) is the identity operator in H and E(BNC) = E(B)NE(C)
for Borel sets B,C C R. For any ¢ € H the mapping B — (E(B)@, ¢) is an ordinary
measure defined for the Borel sets B C R and denoted (E¢, ¢). The operators in
the family {7},...,7;} in H commute, by definition, if their spectral measures
commute: that is, if E;(B)E;(C) = E;(C)E;(B) forany i, j = 1,...,d and any two
Borel sets B,C CR. If T1,...,T; commute then £ = E| ® --- ® E4 is a spectral
measure on R? with values that are self-adjoint projections in H. In particular, E
is the unique measure such that

E(B] X XBd) =E1(Bl)~--Ed(Bd)

for any Borel sets By,...,B; C R. The measure E is called the spectral measure
of the commuting family 7i,...,T;. A vector @y € H is a cyclic vector in H with
respect to the commuting family of self-adjoint operators 71, ...,7; in H if the
linear manifold {P(T,...,T;)®o: P € T1%} is dense in H. The spectral theorem
for Ty, ..., Ty states:
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Theorem 3.4.2 If{T\,...,T;} is a commuting family of self-adjoint operators
with cyclic vector ®¢ then Ty,...,T; are unitarily equivalent to multiplication
operators X1,..., Xy,

(Xif)(x) =xif(x), 1<i<d,

defined on L*(1), where the measure | is defined by u(B) = (E(B)®y,®) for
the Borel set B C R,

The unitary equivalence means that there exists a unitary mapping U : H —
L?(u) such that UT,U ! = X;, 1 <i < d. If the operators in Theorem 3.4.2 are
bounded and their spectra are denoted by S; then the measure ut has support S C
S1 X -+ x §4. Note that the measure u satisfies

(@0, P(J1,...,Ja) Do) = /S P(x) du(x).

We apply the spectral theorem to the block Jacobi operators Ji,...,J; on
2. Let {¢o} aeNd denote the canonical orthonormal basis for H = ¢2. Intro-
duce the notation @ = (@q)|q|—k for the column vector whose elements are @q
ordered according to lexicographical order. Then each f € H can be written as
f=3Ya]®. Let || - || be the matrix norm induced by the Euclidean norm for
vectors. First we consider bounded operators.

Lemma 3.4.3 The operator J; defined via (3.4.1) is bounded if and only if
SUPi>q [|Akil|2 < oo and supyg [|Byil|2 < .

Proof Forany f € H, f =Y al®y, we have ||f||% = (f,f) = Zazak. It follows
from the definition of J; that

=

Tif =3 af (A i1 + B @i+ AL @)
k=0

T T T T
= D (@ Ar 1+ a Bei+ag AL Py,
=0

where we define A_1; = 0. Hence, if sup;~¢||Aill2 and sup;~¢||Bx,|l2 are
bounded then it follows from

ITiflIE = lag 1 Ac—1+a Bei+ag AL
k=0
2 2 2
< 3(25up 4¢3 + sup BB ) 11
k>0 k>0

that J; is a bounded operator. Conversely, suppose that ||A ;||2, say, approaches
infinity for a subsequence of Ny. Let a; be vectors such that ||ax|[2 = 1 and
llafAgill2 = ||Ak.il|2- Then |lag@y|| = ||a||> = 1. Therefore, it follows from

2 2 2
il = 1 iag Pellfs = llag Awill3 + [lag Bl

P P 2
2+ HaZALqu > |l Akill2

that J; is unbounded. O]
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Lemma 3.4.4 Suppose that J;, 1 <i<d, is bounded. Then J1,...,J; are self-
adjoint operators and they pairwise commute.

Proof Since J; is bounded, it is self-adjoint if it is symmetric. That is, we need to
show that (J; f, g) = (f,Jig). Let f = ZaE(I)k and g = sztbk. From the definition
Of Ji,

(Jif,8) = zazfl(Ak—l,i‘Fasz,i+aZ+1A{i)bk
= b (AL k-1 + Bria +Ariai1) = (. ig).

Also, since the J; are bounded, to show that Ji,...,J; commute we need only
verify that

Jk.]jf:.]j]kf VfeH.

A simple calculation shows that this is equivalent to the commutativity condi-
tions (3.4.2). O]

Lemma 3.4.5 Suppose that J;, 1 <i <d, is bounded. Then ®y = ¢y € H is a
cyclic vector with respect to Jy,. .. ,Jg, and

@, =P,(J; - Ji)Po (3.4.3)

where P, (x) is a polynomial vector as in (3.2.4).

Proof We need only prove (3.4.3), since it implies that @ is a cyclic vector. The
proof uses induction. Clearly Py = 1. From the definition of J;,

Ji®y = Ap,i P + By Do, 1<i<d.
Multiplying by Dgl- from (3.3.9) and summing overi = 1,...,d, we get
d d d
) = Y Dj Ji®o— Y, D ;Bo,i®Po = (2 Dy Ji — Eo) @y,
i=1 i=1 i=1

where Ey = YDy ;Bo ;. Therefore Py (x) = 2?:1 x,-Dg"i — Ey. Since Dgl- is of size
r‘f X rf)l =d x 1, Py is of the desired form. Likewise, for k > 1,

Ji®y = A @yt + Bri @+ AL D1, 1<i<d,

which implies, by induction, that

Dy = sz O — Ex @y — Dy

i=1

Il
A

d
> Dy JiPi(J) — EPe(J) — By (J )) D,



86  General Properties of Orthogonal Polynomials in Several Variables

where J = (J; --- J;)T and E; and F; are as in (3.3.10). Consequently

d
Pk—H ()C) = ZX,'D{iPk ()C) — EkIEDk (X) — FkPk—l ()C)
i=1

Clearly, every component of Py | is a polynomial in Hf IRp O

The last two lemmas show that we can apply the spectral theorem to the
bounded operators Ji,...,J;. Hence, we can state the following.

Lemma 3.4.6 IfJ;, 1 <i<d, is bounded then there exists a measure |l € M
with compact support such that Ji,...,J; are unitarily equivalent to the multi-
plication operators Xi,...,X, on L*(dit). Moreover; the polynomials {IP,}:_ in
Lemma 3.4.5 are orthonormal with respect to [L.

Proof Since W(B) = (E(B)®y,®y) in Theorem 3.4.2,

Ba0PL () dia () = (a0, BD0) = (@,

This proves that the IP,, are orthonormal. O]

Unitary equivalence associates the cyclic vector @y with the function P(x) = 1
and the orthonormal basis {®, } in H with the orthonormal basis {P,} in L?(du).

Theorem 3.4.7 Let {P,}°_, Po = 1, be a sequence in T1%. Then the following
statements are equivalent.

() There exists a determinate measure | € # with compact support in R?
such that {P,};>_ is orthonormal with respect to |L.
(i) The statement (ii) in Theorem 3.3.8 holds, together with

sup||Axill2 <eo and sup||By;|l2 < oo, 1<i<d. (3.4.4)
k>0 k>0

Proof On the one hand, if y has compact support then the multiplication oper-
ators Xp,...,Xy in L?(du) are bounded. Since these operators have the J; as
representation matrices with respect to the orthonormal basis P,,, (3.4.4) follows
from Lemma 3.4.3.

On the other hand, by Theorem 3.3.8 the three-term relation and the rank con-
ditions imply that the P, are orthonormal; hence, we can define Jacobi matrices
Ji. The condition (3.4.4) shows that the operators J; are bounded. The existence
of a measure with compact support follows from Lemma 3.4.6. That the measure
is determinate follows from Theorem 3.2.17. O
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For block Jacobi matrices, the formal commutativity J;J; = J;J; is equivalent
to the conditions in (3.4.2), which is why we call them commutativity conditions.
For bounded self-adjoint operators, the commutation of the spectral measures is
equivalent to formal commutation. There are, however, examples of unbounded
self-adjoint operators with a common dense domain such that they formally com-
mute but their spectral measures do not commute (see Nelson [1959]). Theorem
3.4.7 shows that the measures with unbounded support set give rise to unbounded
Jacobi matrices. There is a sufficient condition for the commutation of opera-
tors in Nelson [1959], which turns out to be applicable to a family of unbounded
operators Ji,...,Jy that satisfy an additional condition. The result is as follows.

Theorem 3.4.8 Let {P,}, Po =1, be a sequence in T1¢ that satisfies the
three-term relation (3.3.3) and the rank conditions (3.3.7) and (3.3.8). If
oo 1
k=0 HAk,iH2 7

1<i<d, (3.4.5)

then there exists a determinate measure L € # such that the P, are orthonormal
with respect to L.

The condition (3.4.5) is a well-known condition in one variable and implies the
classical Carleman condition (3.2.16) for the determinacy of a moment problem;
see p. 24 of Akhiezer [1965]. For the proof of this theorem and a discussion of
the condition (3.4.5), see Xu [1993b].

3.5 Further Properties of the Three-Term Relation

In this section we discuss further properties of the three-term relation. To
some extent, the properties discussed below indicate major differences between
three-term relations in one variable and in several variables. They indicate that
the three-term relation in several variables is not as strong as that in one variable;
for example, there is no analogue of orthogonal polynomials of the second kind.
These differences reflect the essential difficulties in higher dimensions.

3.5.1 Recurrence formula

For orthogonal polynomials in one variable, the three-term relation is equivalent
to a recursion relation. For any given sequence of {a,} and {b,} we can use

an—1

1
pn+1=;(x—bn)plz— Pn—1, po=1, p1=0

n n
to generate a sequence of polynomials, which by Favard’s theorem is a sequence
of orthogonal polynomials provided that a, > 0.
In several variables, however, the recurrence formula (3.3.10) without
additional conditions is not equivalent to the three-term relation. As a
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consequence, although Theorem 3.3.8 is an extension of the classical Favard the-
orem for one variable, it is not as strong as that theorem. In fact, one direction of
the theorem says that if there is a sequence of polynomials P, that satisfies the
three-term relation and the rank condition then it is orthonormal. But it does not
answer the question when and which PP, will satisfy such a relation. The condi-
tions under which the recurrence relation (3.3.10) is equivalent to the three-term
relation are discussed below.

Theorem 3.5.1 Let {P}7_ be defined by (3.3.10). Then there is a linear func-
tional Z that is positive definite and makes {Py}y_, an orthonormal basis for
I if and only if By ; are symmetric and Ay ; satisfy the rank condition (3.3.7) and
together they satisfy the commutativity conditions (3.4.2).

This theorem reveals one major difference between orthogonal polynomials of
one variable and of several variables; namely, the three-term relation in the case
of several variables is different from the recurrence relation. For the recurrence
formula to generate a sequence of orthogonal polynomials it is necessary that its
coefficients satisfy the commutativity conditions. We note that, even if the set
{P,};7_, is only orthogonal rather than orthonormal, S, IP,, will be orthonormal,
where S, is a nonsingular matrix that satisfies S,S} = .2 (P,P}). Therefore, our
theorem may be stated in terms of polynomials that are only orthogonal. However,
it has to be appropriately modified since the three-term relation in this case is
(3.3.1) and the commutativity conditions become more complicated.

For the proof of Theorem 3.5.1 we will need several lemmas. One reason that
the recurrence relation (3.3.10) is not equivalent to the three-term relation (3.3.1)
lies in the fact that DZ is only a left inverse of A,,; that is, DZAn =1, but A,,DZ
is not equal to the identity. We need to understand the kernel space of I — A, D},
which is related to the kernel space of {An,u —A,—1,;:1<1i,j<n}.In order to
describe the latter object, we introduce the following notation.

Definition 3.5.2 For any given sequence of matrices Cy,...,Cy, where each C;
is of size s X ¢, a joint matrix Zc is defined as follows. Let Z; ;, 1 <i,j <d, i # j,
be block matrices defined by

Eij=(--[0|C]|---|=Cl0]---),  Eij:rxds,

that is, the only two nonzero blocks are CJT at the ith block and fCiT at the
Jjth block. The matrix Zc is then defined by using the Z;; as blocks in the
lexicographical order of {(i,j): 1 <i< j<d},

=T

Ec= [51,2|ET,3 "'|E$71,d]'

The matrix Z¢ is of size ds x (g) t.
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For example, for d = 2 and d = 3, respectively, E¢ is given by

c G G 0
[_é ] and - 0 G
! 0 -G -G

The following lemma follows readily from the definition of =Zc.

Lemma3.53 LetY = (Y -+ YT Y, €R’ Then
ECY=0  ifandonlyif C'Y;=CjY, 1<i<j<d.

By definition, Z4, and 2,1 are matrices of different sizes. Indeed,

d d
Ea, :dr,‘f X <2) r,‘fH and EqT :drgﬂ X <2) rff.

We will need to find the ranks of these two matrices. Because of the relation
(3.3.4), we first look at Z;,, and ELZ’ where the matrices L, ; are defined by (3.3.5).

Lemma3.54 FornceNyand1<i< j<d, Ln7iLn+l,j = LnJLnJr]’,'.

Proof From (3.3.5) it follows that, for any x € R?,
Ly iLys1 X" = xix X" = Ly jLay1 X2

Taking partial derivatives, with respect to x, of the above identity we conclude
that (L, iLy+1,j — Ly, jLn+1,i)ex = O for every element ey of the standard basis of
R’»+2, Hence, the desired identity follows. O

Lemma3.5.5 Ford>2andn> 1, rankE;r =drd | —rd ).

Proof We shall prove that the dimension of the null space of EIT is rg - LetY =

yr - YdT)T € R9n+1_ where ¥; € R™+1. Consider the homogeneous equation
indr?, | variables E{TY = 0, which by Lemma 3.5.3, is equivalent to

LYj=L,Y;, 1<i<j<d. (3.5.1)

There is exactly a single 1 in each row of L,; and the rank of L,; is r,ff
Define A, = {a € N : |&| = n} and, for each 1 <i<d, Ap; = {a € N&:
|| = n and o # 0}. Let u(4") denote the number of elements in the set .4
Counting the number of integer solutions of |ct| = n shows that u(.4;) = r<,
w( M) = rff_l. We can consider the L, ; as transforms from .4, to .4, ;. Fix a
one-to-one correspondence between the elements of .4, and the elements of a
vector in R, and write Y;| 4, 11; = Ln,j¥;. The linear systems of equations (3.5.1)

can be written as

Vi, =Yl 1<i<j<d. (3.5.2)
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This gives (9)r¢ equations in dr¢ , variables of ¥, not all of which are
independent. For any distinct integers i, j and k,

Yi|</Vn+l‘,jm%+1.k :Y/L/‘ﬁﬂ,zﬂ%ﬂw YiL/VnH.kﬁJVnH,j = Yklﬂ/nﬂﬁ%ﬂ,j’
Yj|%+1.kﬁ%+1,i = Yk'%ﬂ,ﬂ%ﬂ,f'

Thus, there are exactly p( A1, N Api1 k) = rjf_l duplicated equations among
these three systems of equations. Counting all combinations of the three systems
generated by the equations in (3.5.2) gives (g) rﬁf_l equations; however, among
them some are counted more than once. Repeating the above argument for the
four distinct systems generated by the equations in (3.5.1), we have that there
are W( i N AN Api) = rn , equations that are duplicated. There are (Z)
combinations of the four different systems of equations. We then need to consider
five systems of equations, and so on. In this way, it follows from the inclusion—
exclusion formula that the number of duplicated equations in (3.5.2) is

d d d d d+1 d d k+1 d d
3 Tp—1— 4 rn72+"'+(71) Ty— d+272(71) k Fn—k+2-

k=3

Thus, among the ( ) equations (3.5.1), the number that are independent is

<;l) - i“(—l)k+l (i) M2 = i(—l)k <Z) s

k=3 k=2

Since the dimension of the null space is equal to the number of variables minus
the number of independent equations, and there are drd 41 variables, we have

d

. — d

dim ker :ZZ = dr,‘fH - z (—1)k (k) V;iku = r,‘,f+2,
k=2

where the last equality follows from a Chu—Vandermonde sum (see Proposi-

tion 1.2.3). The proof is complete. O

Lemma3.5.6 Ford>2andn>1,rank Z;, =drd —r?_,.

Proof We shall prove that the dimension of the null space of E{n is 471 . Suppose
that ¥ = (YT <+ YNT € R4, where Y; € R™. Consider the homogeneous
equation Z; Ty =0. By Lemma 3.5.3 this equation is equivalent to the system of
linear equations

LyY=Ly Y, 1<i<j<d. (3.5.3)

We take .4, and .4}, ; to be as in the proof of the previous lemma. Note that LE,Y
is a vector in R"»+1, whose coordinates corresponding to .4}, ; are those of ¥; and
whose other coordinates are zeros. Thus, equation (3.5.3) implies that the ele-

ments of Y; are nonzero only when they correspond to .4, ;N .4;,; being in Li i
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that is, (L, ;Y;)| s .4, 5 the nonzero elements of ¥; are (L} ;Yi)| 4, .4, ;- More-
over, these two vectors are equal. Since for any X € R™+! we have L, ;L, ;X =
X|_t; 1Ay ;» Which follows from L,y L, X" = xpx;x"~!, from the fact that

Ly;Ly ; =1 we have

T T
(Lo Y| ity = L1, jLni (L i) = La1 Y = Yjl oy, -

Therefore, the nonzero elements of ¥; and Y; satisfy Y| 4, ,, = Y,~|{A¢HJ, 1<
i < j <d. Thus there are exactly p(Ayp—1;) = er] independent variables in the
solution of (3.5.3). That is, the dimension of the null space of E{n isrd . O

From the last two lemmas we can derive the ranks of 4, and Z,7.
n

Proposition 3.5.7 Let A,,; be the matrices in the three-term relation. Then

rank E4, = drff — rff_l, and rank EAI = d”r‘f+1 - rﬁf+2.

Proof By (3.3.4) and the definition of Z it readily follows that

Ea, diag{Gu+1,...,Guy1} = diag{G,,...,G,} E1,,,

where the block diagonal matrix on the left-hand side is of size (%)<, | x (4)r%,
and that on the right-hand side is of size dr¢ x dr?. Since G, and G, are both
invertible, so are these two block matrices. Therefore rank =4, = rank Z;,,. Thus,
the first equality follows from the corresponding equality in Lemma 3.5.6. The

second is proved similarly. [
Our next lemma deals with the null space of I —A,D;.

Lemma 3.5.8 Ler {A,;} be the coefficient matrices in the three-term rela-
tion (3.3.1), and let D} be the left inverse of A,, defined in (3.3.9). Then
Y=t - YdT)T, Y; € R, is in the null space of I —A,D} if and only if
An1iY;=A,1;Y, 1 <1, j < d, o, equivalently, EZT Y =0.

n—1

Proof Let the singular-value decompositions of A, and D} be of the form given
in Subsection 3.3.1. Both A, and D, are of size dr¢ x rZH. It follows that

0 —xX

where W is a unitary matrix, X and X; are invertible diagonal matrices and / is the
identity matrix of size drd —rd, |, from which it follows that rank(/ — A,D}) =

drd —rl, . Hence

dim ker(I — A,DY) = dr? —rank(I —A,D}) = 1%, ,.
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Since D} A, = 1, it follows that (I —A,DI)A, = A, — A, = 0, which implies that
the columns of A, form a basis for the null space of I —A,,DZ. Therefore, if
(I —A,DNY = 0 then there exists a vector ¢ such that ¥ = A,c. But the first
commutativity condition in (3.4.2) is equivalent to EXT A, = 0; it follows that

n—1

E}T Y = 0. This proves one direction. For the other direction, suppose that

n—1

=T, Y = 0. By Proposition 3.5.7,
1

=AT
AT
dimkerZ}; =drf —rankZ;; =rl .
n—1 n—1

T

= T
From = "

r Y =0italso follows that the columns of A, form a basis for ker= AT

n—1 n—1

Therefore, there exists a vector ¢* such that ¥ = A, c*, which, by DZA,, =1,
implies that (1 —A,D})Y = 0. O

Finally, we are in a position to prove Theorem 3.5.1.

Proof of Theorem 3.5.1 Evidently, we need only prove the “if” part of the theo-
rem. Suppose that {P, }*_ is defined recursively by (3.3.10) and that the matrices
A, ; and B, ; satisfy the rank and commutativity conditions. We will use induction.
Forn=0,Py=1 and P_; = 0; thus

P = i Dy x; — i Dy Bo,i-
i=1 i=1
Since Ap and Dy are both d x d matrices and Dng =1, it follows that AODE =1,
which implies that Ao.,-Da i= 5,'_,]'. Therefore
Ag,jP1 =x;— By j = x;Po — By j[Po.

Assuming we have proved that

A Peit = xjPr— B Pe— AL | Proy, 0<k<n—1, (3.5.4)
we now show that this equation also holds for k = n. First we prove that

AnjPry1 = xjPy =By Py — AL} Pu_i+Quay, (3.5.5)

where the components of Q,_» ; are elements of the polynomial space l'[gfz.
Since each component of P, is a polynomial of degree at most n, we can write

]Pn = Gn,nxn + Gn,nflxn_1 + Gn,anXn +-y

for some matrices G, and also write G, = G, . Upon expanding both sides
of (3.5.5) in powers of x¥, it suffices to show that the highest three coeffi-
cients in the expansions are equal. Since P4 is defined by the recurrence
relation (3.3.10), comparing the coefficients shows that we need to establish that
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Apj 2?:1 DL-X,,J =Xp,j, 1 < j<d,where X, ;isoneof Q, ;, R, j and S, ;, which
are as follows:
On,j = GuLy j,
R, j=Gpn-1Ly—1,j — By jGy, (3.5.6)
Snj = Gun—2Ln-2j—Bn jGun-1 —Ay_1 jGu_1;

see (3.3.5) for the L, ;. Written in a more compact form, the equations that we
need to show are

ADYQ,=Q,,  ADIR,=R,,  ADLS,=S,.

We proceed by proving that the columns of Q,, R, and S, belong to the null space
of I —A,DT. But, by Lemmas 3.5.8 and 3.5.3, this reduces to showing that

Ap_1,iOn,j =An-1,jOn,, Ap_1,iRyj =An_1jRu;,
Ay 1iSnj =Au—1,jSn,i-
These equations can be seen to follow from Lemma 3.5.4, equations (3.4.2) and
the following:

Gy 1Ly—1; =An1,Gy,
Goi1n2Lln2i=A411,Gupn1—Bn1Gn1,
Gu1n-3Ln3i=A,1iGun2—Bn 1,Gp1p-—2— AZ,z,iGn_L

which are obtained by comparing the coefficients of (3.5.4) for k = n — 1. For
example,

Ap—1,iRnj =An-1i(Gppn-1Ln—1,j — Bn ;jGn)
=Gpp—2Ln—2iln1,j—Bn1,Gp1Ln—1,j —An-1,Bn,jGn
= Gu_1p—2Ln—2iLn—1,j — (Ba—1,iAn—1,j + An—1,iBnj)Gn
=Ap1,jRn,-

The other two equations follow similarly. Therefore, we have proved (3.5.5). In
particular, from (3.5.4) and (3.5.5) we obtain

Ay iGirr1 = Gily 0<k<n, 1<i<d, (3.5.7)

which, since A, ; satisfies the rank condition, implies that G, is invertible, as in
the proof of Theorem 3.3.7.

To complete the proof, we now prove that Q,_, ; = 0. On the one hand, mul-
tiplying equation (3.5.5) by DL and summing for 1 < i < d, it follows from the
recurrence formulae (3.3.10) and DEAn = [ that

J

d
T
Dn,lezflj =
=1 j

d
Dy jAn jPri1 —PBpy1 =0. (3.5.8)
=1
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On the other hand, it follows from (3.5.4) and (3.5.5) that
Ap1,iQu2j = —xixjPy 1 +Ap_1,An jPur
+(Ap—1iBn,j+Bp1,iAn—1,j)Ps
+ (An—1,iAL1.j +B, 1,iBn1,j +A;Il‘72,iAn—2¢j)IPn—1
+ Ay 5 Bu2j+Bu1iAy 5 )Pa2+Ar 2 AN 3 Pus,
which implies by the commutativity conditions (3.4.2) that

Ap1,;Qu2i=A,1,;Q, 2,

We claim that this equation implies that there is a vector Q, such that Q,_»; =
A,;Q,, which, once established, completes the proof upon using (3.5.8) and
the fact that DA, = I. Indeed, the above equation by (3.5.7), is equivalent to
L, 1;X; =L, 1;X;. Define Q, by Q, = G;LX, where X is defined as a vector
that satisfies L, ;X = X;, in which X; = G; ll Qn—2,. In other words, recalling the

notations used in the proof of Lemma 3.5.5, X is defined as a vector that satisfies

X| . = X;. Since A" = J.A;; and
X[ tpinty = Ln1iln jX = Ln1iXj = Ln1,jXi = X 00, 5
we see that X, and hence Q,,, is well defined. 0

3.5.2 General solutions of the three-term relation

Next we turn our attention to another difference between orthogonal polynomials
of one and several variables. From the three-term relation and Favard’s theo-
rem, orthogonal polynomials in one variable can be considered as solutions of
the difference equation

Y1+ beyk + a1 yi-1 = Xyx, k>1,

where a; > 0 and the initial conditions are yo = 1 and y; = a; 1 (x—bp). It is well
known that this difference equation has another solution that satisfies the initial
conditions yo = 0 and y; = q, ! The components of the solution, denoted by g,
are customarily called associated polynomials, or polynomials of the second kind.
Together, these two sets of solutions share many interesting properties, and {g, }
plays an important role in areas such as the problem of moments, the spectral
theory of the Jacobi matrix and continuous fractions.

By the three-term relation (3.3.3), we can consider orthogonal polynomials in
several variables to be solutions of the multi-parameter finite difference equations

XY = Ap Vi1 + BV FAL | Yy, 1<i<d,k>1, (3.5.9)

where the B, ; are symmetric, the A, ; satisfy the rank conditions (3.3.8) and
(3.3.7) and the initial values are given by

Yo=a, Yi=b, acR, beR% (3.5.10)
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One might expect that there would be other linearly independent solutions of
(3.5.9) which could be defined as associated polynomials in several variables.
However, it turns out rather surprisingly that (3.5.9) has no solutions other than
the system of orthogonal polynomials. This result is formulated as follows.

Theorem 3.5.9 Ifthe multi-parameter difference equation (3.5.9) has a solution
P = {Py}y_ for the particular initial values

Yi=1, ¥ =A4,"(x—Bo) (3.5.11)

then all other solutions of (3.5.9) and (3.5.10) are multiples of P with the
possible exception of the first component. More precisely, if Y = {Yi}y_, is a
solution of (3.5.9) and (3.5.10) then Yy, = hPy for all k > 1, where h is a function
independent of k.

Proof The assumption and the extension of Favard’s theorem in Theorem 3.3.8
imply that P = {P; };_, forms a sequence of orthonormal polynomials. Therefore,
the coefficient matrices of (3.5.9) satisfy the commutativity conditions (3.4.2).

Suppose that a sequence of vectors {Y;} satisfies (3.5.9) and the initial values
(3.5.10). From equation (3.5.9),

ApiYrr1 = xi¥ — By Yy —AE,I,,Yk_h 1<i<d.

Multiplying the ith equation by A;_; ; and the jth equation by A;_y, it follows
from the first equation of (3.4.2) that

A—1,i(x; Y — By jYi —ALL,'kal) =Ag_1,j(xiYk — BriYx —ALL,‘kal ), (3.5.12)

for 1 <i,j <d and k > 1. In particular, the case k = 1 gives a relation between
Yo and Y, which, upon using the second equation of (3.4.2) for k = 1 and the fact
that A()’iA& i and By ; are numbers, we can rewrite as

(xi — Bo,i)Ao,jY1 = (xj — Bo,j)Ao,iY1.

However, x; and x; are independent variables; ¥; must be a function of x, and
moreover, has to satisfy Ag ;Y1 = (x; — b;)h(x), where h is a function of x. Substi-
tuting the latter equation into the above displayed equation, we obtain b; = By ;.
The case h(x) = 1 corresponds to the orthogonal polynomial solution P. Since
Dg = Aal, from (3.5.11) we have

d
Y = ZD&I-()CZ' — Bo,;)h(x) = Ay (x— Bo)h(x) = h(x)P;.
i=1

Therefore, upon using the left inverse DZ of Ay from (3.3.9) we see that every
solution of (3.5.9) satisfies
d
Yk+1 = Dz,ixiYk - EkYk - Fkkala (3513)
i=1
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where E; and Fj are defined as in (3.3.10); consequently,

d
Y, = ZDT,i(in_ B]ﬁ,‘)h(}C)P] — kY= h(x)Pz + F (h(x) - Yo).
i=1
Since P is a solution of equation (3.5.9) with initial conditions (3.5.11), it follows
from (3.5.12) that

ALi(xjPy — By, jPy — AT P1) = Ay j(xiPy — By Py — A Py).

Multiplying this equation by 4 and subtracting it from (3.5.12) with k = 2, we
conclude from the formulae for Y; and Y, that

Ay,i(x;I = By j)Fi(h(x) = Yo) = Ay j(xil —Ba;)Fi(h(x) —Yo).

If Yy = h(x) then it follows from (3.5.13) and ¥; = h(x)P; that ¥; = h(x)P; for all
k > 0, which is the conclusion of the theorem. Now assume that A(x) # Y. Thus,
h(x) —Yp is a nonzero number so, from the previous formula,

A17i(XjI—Bz7j)F1 =A1,j(xi1—32,i)F1.

However, since x; and x; are independent variables, we conclude that for this
equality to hold it is necessary that Aq ;F7 = 0, which implies that F; = 0 because
DTA, = 1. We then obtain from the formula for ¥> that ¥, = h(x)P,. Thus, by
(3.5.13), Y = h(x)Py for all k > 1, which concludes the proof. O

3.6 Reproducing Kernels and Fourier Orthogonal Series

Let Z(f) = [ fdu be a positive definite linear functional, where dit is a nonneg-
ative Borel measure with finite moments. Let {P1} be a sequence of orthonormal
polynomials with respect to . (f). For any function f in L?(du), we can consider
its Fourier orthogonal series with respect to {P%}:

feY X oanr it d(f)= [ foPwdn.
n=0|a|=n
Although the bases of orthonormal polynomials are not unique, the Fourier series
in fact is independent of the particular basis. Indeed, using the vector notation P,
the above definition of the Fourier series may be written as

fn ia}(f)[@n with an(f):/f(x)Pn(x)du. (3.6.1)
n=0

Furthermore, recalling that 7, denotes the space of orthogonal polynomials of
degree exactly n, as in (3.1.2), it follows from the orthogonality that the expansion
can be considered as

oo

[~ projyaf,  where  projya f =ay(f)Py
n=0
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We shall denote the projection operator projy/rld f by Py(f). In terms of an
orthonormal basis, it can be written as

Pa(fi) = [FOR0)d0). Pule) =PIOB0).  (62)

The projection operator is independent of the particular basis. In fact, since two
different orthonormal bases differ by a factor that is an orthogonal matrix (The-
orem 3.2.14), it is evident from (3.6.2) that P,(f) depends on “//nd rather than a
particular basis of 7. We define the nth partial sum of the Fourier orthogonal
expansion (3.6.1) by

$,() = X al (NP = [ Kl3)f () du, (3.63)
k=0
where the kernel K, (-, ) is defined by
Ki(x,y) =3 > Pa(0)Po(y) = X Pilx,y) (3.6.4)
k=0 |or|=k k=0

and is often called the nth reproducing kernel, for reasons to be given below.

3.6.1 Reproducing kernels

For the definition of K, it is not necessary to use an orthonormal basis; any
orthogonal basis will do. Moreover, the definition makes sense for any moment
functional.

Let .Z be a moment functional, and let [P, be a sequence of orthogonal poly-
nomials with respect to .Z. In terms of PP, the kernel function K, takes the
form

K, (x,y) =Y, P (x)H, "Pi(y), Hy =2 (PP)).
k=0

Theorem 3.6.1 Let ”I/kd, k > 0, be defined by means of a moment functional £ .
Then K, (+,-) depends only on “//kd rather than on a particular basis of ”de.

Proof Let P, be a basis of “f/k‘l. If Qy is another basis then there exists an invert-
ible matrix M, independent of x, such that Py(x) = MQx(x). Let Hi(P) =
Hy = 2 (PPl) and Hy(Q) = .2 (QQY). Then H '(P) = (MI)'H_ ' (Q)M, .
Therefore P H, ' (P)Py = QFH, ' (Q)Qx, which proves the stated result. O

Since the definition of K,, does not depend on the particular basis in which it is
expressed, it is often more convenient to work with an orthonormal basis when .Z
is positive definite. The following theorem justifies the name reproducing kernel.



98  General Properties of Orthogonal Polynomials in Several Variables

Theorem 3.6.2 Let £ be a positive definite linear functional on all P in the
polynomial space T1%. Then, for all P € 12,

P(x) = £ (Ku(x,)P("))-

Proof Let P, be a sequence of orthogonal polynomials with respect to &
and let .Z(P,PT) = H,. For P € T1¢ we can expand it in terms of the basis
{Py,Py,...,P,} by using the orthogonality property:
n
P(x)= Y [a(P)]"H 'Pe(x)  with  ay(P) = Z(PPy).
k=0

But this equation is equivalent to

x) = ,:Zl()z(pmfﬂglm(x) =2 [Ku(x,)P()],

which is the desired result. O

For orthogonal polynomials in one variable, the reproducing kernel enjoys
a compact expression called the Christoffel-Darboux formula. The following
theorem is an extension of this formula for several variables.

Theorem 3.6.3 Let £ be a positive definite linear functional, and let {P}7_,
be a sequence of orthogonal polynomials with respect to £. Then, for any integer
n>0xy€ RY,

z Pk 1]P)k )
T _ —
_ [AniPui ()] H, ' Pa(y) — P (), [AiPai (9)] 7 (3.6.5)
— Vi
for1<i<d wherex=(x; -+ xg)andy=(y1 -+ Yq)-

Proof By Theorem 3.3.1, the orthogonal polynomials PP, satisfy the three-term
relation (3.3.1). Let us write

Sy = [AgProyt (0] TH B(y) = Pe(0)TH [Ag Pt (0)]

From the three-term relation (3.3.1),

T = [6Pi(x) — B Pr(x) — Co P 1 (x)] H 'R ()
— Py (0)H, " [yiPx () — B Pe(y) — CeiPi1 ()]
= (x; —yiﬂPT( VH ' Pi(y) =P (x) (BiHy ' — Hi 'Bii) Pi(y)
— [Pii(x )Ckz Pe(y) = PR (0)H 'GPt ()]
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By the definition of Hy and (3.3.2), both Hy and By ;Hj are symmetric matrices;
hence By ;Hy = (Bk_,,-Hk)T = HkBZj, which implies that BLH,:l = kalBk_y,'. There-
fore, the second term on the right-hand side of the above expression for X is zero.
From the third equation of (3.3.2), C,ZiH,; = H,;_llAk,l’i. Hence, the third term
on the right-hand side of the expression for 2 is

P () H A Pe(y) + PLOAL  H Prci (y) = —Zit.
Consequently, the expression for X; can be rewritten as
(% — y)PL () H "Pr(y) = Tk — %

Summing this identity from O to n and noting that 2_; = 0, we obtain the stated
equation. O

Corollary 3.6.4 Let {IP;};", be as in Theorem 3.6.3. Then

Z]P)T l]P;k )
- PT( ) [Ant8 IP)n+1( )] - [An,iPn+l(x)]THr?l8iPn(x);

where d; = d/dx; denotes the partial derivative with respect to x;.

Proof Since P, (x)TH, '[A,P,:1(x)] is a scalar function, it is equal to its own
transpose. Thus

P () Hy APt (X)] = [AniPus1 (x)] H, 'Ba(x).

Therefore the numerator of the right-hand side of the Christoffel-Darboux
formula (3.6.5) can be written as

[An Pt (0)] 'Hy B (y) = Pu(x)] = Pu(x) "Hy A [Prs 1 (3) = Pyt ()]

Thus the desired result follows from (3.6.5) on letting y; — x;. O]

If P, are orthonormal polynomials then the formulae in Theorem 3.6.3 and
Corollary 3.6.4 hold with Hy = I. We state this case as follows, for easy reference.

Theorem 3.6.5 Let P, be a sequence of orthonormal polynomials. Then

[An,i]PIH»l (x)} IP)n (y) - PZ (X) [An,i]Pn+1 (y)]
Xi—Yi

T
K, (x,y) =

(3.6.6)

and

K, (x,%) = P} (%) [A i0Pus1(x)] — [AniPoi1 ()] 9Pa(x). (3.6.7)
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It is interesting to note that, for each of the above formulae, although the right-
hand side seems to depend on i, the left-hand side shows that it does not. By
(3.6.3), the function K, is the kernel for the Fourier partial sum; thus it is impor-
tant to derive a compact formula for K,,, that is, one that contains no summation.
In the case of one variable, the right-hand side of the Christoffel-Darboux for-
mula gives the desired compact formula. For several variables, however, the
numerator of the right-hand side of (3.6.6) is still a sum, since P} (x)A,, Pyi1(y) is
a linear combination of P} (x)P/'ilH (). For some special weight functions, includ-
ing the classical orthogonal polynomials on the ball and on the simplex, we are
able to find a compact formula; this will be discussed in Chapter 8.

For one variable the function 1/K, (x,x) is often called the Christoffel function.
We will retain the name in the case of several variables, and we define

—1

An(x) = [Kp(x,x)] (3.6.8)

Evidently this function is positive; moreover, it satisfies the following property.

Theorem 3.6.6 Let £ be a positive definite linear functional. For an arbitrary
point x € R%,

An(x) =min{ Z[P*]: P(x)=1, P!},

that is, the minimum is taken over all polynomials P € l‘[j{ subject to the condition

P(x)=1.

Proof Since £ is positive definite, there exists a corresponding sequence {IP;}
of orthonormal polynomials. If P is a polynomial of degree at most n, then P can
be written in terms of the orthonormal basis as follows:

n
=Y a (P)Pi(x) where a(P)=2(PP).
From the orthonormal property of [P it follows that
n T 2
=2 a(P)a Z 2k (P)[I"-
k=0

If P(x) = 1 then, by Cauchy’s inequality,
, 2 2
1= [P = (Z ag (P)Py(x) ) (Z [[ag(P)[[ [[Px( ))
k=0

n
< > llak(P) ”22”Pk )P = Z(P*)Ka(x,),
k=0

where equality holds if and only if a;(P) = [K, (x,x)]ilPk(x). The proof is
complete. O
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Theorem 3.6.6 states that the function A, is the solution of an extremum
problem. One can also take the formula in the theorem as the definition of the
Christoffel function.

3.6.2 Fourier orthogonal series

Let .Z be a positive definite linear functional, and let H & be the Hilbert space
of real-valued functions defined on R with inner product (f,g) = .Z(fg). Then
the standard Hilbert space theory applies to the Fourier orthogonal series defined
in (3.6.1).

Theorem 3.6.7 Let £ be a positive definite linear functional, and f € H .
Then among all the polynomials P in HZ, the value of

Z (1f(x) = P)%)
becomes minimal if and only if P = S,,(f).

Proof Let {P;} be an orthonormal basis of #;. For any P € I1¢ there exist by,

such that ;
= > b Pi(x)
k=0
and S, (f) satisfies equation (3.6.3). Following a standard argument,

0<Z(|f=PP) =2 () —2Xb{-L (fP) + 2, X b{ 2 (PiF)) b,
ko Jj

=2 (%) =2 biac(f)+ X bibg
k=0

=0
Z.Z(fz)—k;)aZ( +Z a (f)ac(f) +bib—2bia(f)]-

By Cauchy’s inequality the third term on the right-hand side is nonnegative;
moreover, the value of .Z(|f — P|?) is minimal if and only if by = ai(f), or
P=3S8,(f). O

In the case when the minimum is attained, we have Bessel’s inequality

Zak N <Z(IfF)-

Moreover, the following result holds as in standard Hilbert space theory.

Theorem 3.6.8 IfT1¢ is dense in H.o then S,(f) converges to f in H.g, and we
have Parseval’s identity

Zak (|f\ )
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The definition of the Fourier orthogonal series does not depend on the special
basis of ”//,{1 . If P, is a sequence of polynomials that are orthogonal rather than
orthonormal then the Fourier series will take the form

f~ia,f(f)H;1P”, a,(f)=Z(fP,), H,=2(P,P;). (369
n=0

The presence of the inverse matrix H, ! makes it difficult to find the Fourier
orthogonal series using a basis that is orthogonal but not orthonormal.

An alternative method is to use biorthogonal polynomials to find the Fourier
orthogonal series. Let P, = {P} } and Q, = { Q% } be two sequences of orthogonal
polynomials with respect to .Z. They are biorthogonal if .# (PgQ%) =du0u,p>
where d,, is nonzero. If all d, = 1, the two systems are called biorthonormal. If
P, and Q,, are biorthonormal then the coefficients of the Fourier orthogonal series
in terms of IP,, can be found as follows:

Fre S AR () = L(fQ):
n=0

that is, the Fourier coefficient associated with P} is given by .Z(fQ%). The idea
of using biorthogonal polynomials to study Fourier orthogonal expansions was
first applied to the case of classical orthogonal polynomials on the unit ball (see
Section 5.2), and can be traced back to the work of Hermite; see Chapter XII in
Vol. II of Erdélyi et al. [1953].

We finish this section with an extremal problem for polynomials in several vari-
ables. Let G,, be the leading-coefficient matrix corresponding to an orthonormal
polynomial vector P,, as before. Denote by ||G, || the spectral norm of G,; ||G, ||
is equal to the largest eigenvalue of G,G}.

Theorem 3.6.9 Let £ be a positive definite linear functional. Then

min{ Z(P*):P=a'x"+..-cIl¢, ||a]| = 1} = |G, 2.

Proof Since {Py,...,P,} forms a basis of T1¢, we can rewrite P as
P(x)=a"G,'P,+al P, ;+---+alPo.
For ||a]|z = 1, it follows from Bessel’s inequality that
Z(P) >a'G, (G, ) a+ an—|* + - + [lao®
>2'G, (G, ')"a > Amin

where A, is the smallest eigenvalue of (GIG,)~!, which is equal to the
reciprocal of the largest eigenvalue of G,G. Thus, we have proved that

LP) 2 G2 P =ax"+--, la]=1.
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Choosing a such that ||la]| = 1 and a'G, (G, ")Ta = A, we see that the
polynomial P = a'G; P, attains the lower bound. O

In Theorem 3.2.14, det G, can be viewed as an extension of the leading coeffi-
cient k, (see Proposition 1.3.7) of orthogonal polynomials in one variable in the
context there. The above theorem shows that ||G,|| is also a natural extension of
Yn- In view of the formula (3.3.4), it is likely that ||G,|| is more important.

3.7 Common Zeros of Orthogonal Polynomials
in Several Variables

For polynomials in one variable the nth orthonormal polynomial p, has exactly
n distinct zeros, and these zeros are the eigenvalues of the truncated Jacobi
matrix J,,. These facts have important applications in quadrature formulae, as we
saw in Subsection 1.3.2.

A zero of a polynomial in several variables is an example of an algebraic
variety. In general, a zero of a polynomial in two variables can be either a sin-
gle point or an algebraic curve on the plane. The structures of zeros are far more
complicated in several variables. However, if common zeros of orthogonal poly-
nomials are used then at least part of the theory in one variable can be extended
to several variables.

A common zero of a set of polynomials is a zero for every polynomial in the
set. Let .Z be a positive definite linear functional. Let P, = {P},} be a sequence
of orthonormal polynomials associated with .Z. A common zero of P, is a zero
of every Pj. Clearly, we can consider zeros of [P, as zeros of the polynomial
subspace 7/4.

We start with two simple properties of common zeros. First we need a defini-
tion: if x is a zero of P, and at least one partial derivative of [P, at x is not zero
then x is called a simple zero of P,,.

Theorem 3.7.1 All zeros of P, are distinct and simple. Two consecutive
polynomials P, and P,,_1 do not have common zeros.

Proof Recall the Christoffel-Darboux formula in Theorem 3.6.3, which gives
n—1
D PLPr(x) = Py (0)An-1,i0Pa(x) — P (x)A,_; ;0P (),
k=0
where d; = d/dx; denotes the partial derivative with respect to x;. If x is a zero of
P, then
n—1

kzz) ]P)Z ()C)]P)k ()C) = ]P;l;il ()C)An, 1 ,,48,»]P’n (x) .

Since the left-hand side is positive, neither P, (x) nor 9;P,(x) can be zero. [
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Using the coefficient matrices of the three-term relation (3.3.3), we define the
truncated block Jacobi matrices J, ; as follows:

By; Ao, O

Aai By; Ay
i = : : , . 1<i<d
Al 3 Buai Apai
O A172,i By,

Note that J,; is a square matrix of order N = dimHZil. We say that A =
(M -+ A)T € RY s a joint eigenvalue of Jy1,...,Juq if there is a & # 0,
& € RV, such that J, ;& = A€ for i = 1,...,d; the vector & is called a joint
eigenvector associated with A.

The common zeros of P, are characterized in the following theorem.

Theorem 3.7.2 A point A= (A --- Ag)T € R is a common zero of P,, if
and only if it is a joint eigenvalue of J, 1, . . ., J, 4; moreover, the joint eigenvectors
of A are constant multiples of (PY(A) -+ PT_ (A)T.

Proof 1If P,(A) = 0 then it follows from the three-term relation that
Bo,iPo(A) +Ag,P1(A) = LPo(A),
Af_1 P (A) + BiPr(A) + A Pry1 (A) = LBy (A), 1<k<n-2,
AY 5 Pya(A)+By1,Put(A) = APy 1(A),

for 1 <i <d. From the definition of J, ; it follows that, on the one hand,

T
Jni& = N, E=(Py(A) - Pri(A) .
Thus, A is the eigenvalue of J,, with joint eigenvector &.
On the other hand, suppose that A= (4; --- Ay) is an eigenvalue of J, and
that J,, has a joint eigenvector  for A. Write &€ = (x{ -+ xI_)T,x; € R,

Since J,, ;& = A;&, it follows that {x;} satisfies a three-term relation:

Bo,iXo +Ag,iX1 = AiXo,
Agfuxk,] + B i X+ Ag X1 = AiXg, 1<k<n-2,

T
A1172,ixn—2 + Bn—l,ixn—l = )vixn—h

for 1 < i < d. First we show that x, and thus &, is nonzero. Indeed, if xg = 0
then it follows from the first equation in the three-term relation that Ag ;x; = 0,
which implies that Agx; = 0. Since Ag is a d X d matrix and it has full rank, it
follows that x; = 0. With xg = 0 and x; = 0, it then follows from the three-term
relation that Ay ;xo = 0, which leads to A;x, = 0. Since A has full rank, x, = 0.
Continuing this process leads to x; = 0 for i > 3. Thus, we end up with £ = 0,



3.7 Common Zeros of Orthogonal Polynomials in Several Variables 105

which contradicts the assumption that £ is an eigenvector. Let us assume that
Xo = 1 =Py and define x, € R™ as x, = 0. We will prove that x; = IP;(A) for all
1 < j < n. Since the last equation in the three-term relation of x; can be written as

T
Anfz,ixn72 + By 1,Xn—1 +An—1,%Xn = AiXn—1,

it follows that {x; }7_, and {Px(A)}}_,, satisfy the same three-term relation. Thus
so does {yi} = {Px(A) — x¢}. But since yyp = 0, it follows from the previous
argument that y;, = 0 for all 1 < k < n. In particular, y, = P,(A) = 0. The proof
is complete. O

From this theorem follow several interesting corollaries.

Corollary 3.7.3  All the common zeros of P, are real and are points in R%.

Proof This follows because the J,, ; are symmetric matrices and the eigenvalues
of a symmetric matrix are real and hence are points in RY. O

Corollary 3.7.4 The polynomials in P,, have at most diml_[z_1 common zeros.

Proof Since J,; is a square matrix of size dim H;ihl , it can have at most that many

eigenvectors. O

In one variable, the nth orthogonal polynomial p, has n = dim l'[,Ll distinct
real zeros. The situation becomes far more complicated in several variables. The
following theorem characterizes when P, has the maximum number of common
Zeros.

Theorem 3.7.5 The orthogonal polynomial P, has N = dim qu distinct real
common zeros if and only if

An-1iAY | j=An 1 jA, 1<i,j<d. (3.7.1)

n—1,i»

Proof According to Theorem 3.7.2 a zero of P, is a joint eigenvalue of
Ju1s-..,Jna Whose eigenvectors forms a one-dimensional space. This implies
that P, has N = dim Hiffl distinct zeros if and only if J,, 1, ..., J, 4 have N distinct
eigenvalues, which is equivalent to stating that J;, 1,...,J, 4 can be simultaneously
diagonalized by an invertible matrix. Since a family of matrices is simultaneously
diagonalizable if and only if it is a commuting family,

Jn,i-]n,j :Jn,j-]n,ia 1 < iaj < d.

From the definition of J,,; and the commutativity conditions (3.4.2), the above
equation is equivalent to the condition

A;rlfz’iAnflj +B,1,;By1; = Azfz,jAth,i +B,_1,Bu1,-

The third equation in (3.4.2) then leads to the desired result. O
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The condition (3.7.1) is trivial for orthogonal polynomials in one variable, as
then A; = qa; are scalars. The condition is usually not satisfied, since matrix multi-
plication is not commutative; it follows that in general P, does not have dim Hz_l
common zeros. Further, the following theorem gives a necessary condition for [P,
to have the maximum number of common zeros. Recall the notation Z¢ for joint
matrices in Definition 3.5.2.

Theorem 3.7.6 A necessary condition for the orthogonal polynomial P, to have
dim 1‘[,”1"71 distinct real common zeros is

d-2 d-3
rank (E;ﬂBn) =rank (E}’HAn,l) = <n+ ) + (nJr )

n n—1

In particular, for d = 2, the condition becomes

rank(Bnﬁanvg — Bszn’]) = rank(ALHAn_Lz _A;Il;]’zAn—l,l) =2.

Proof If P, has diml'[z_1 distinct real common zeros then, by Theorem 3.7.5,
the matrices A,,_1 ; satisfy equation (3.7.1). It follows that the third commutativity
condition in (3.4.2) is reduced to

T T
Bn,iBn,j - Bn,jBn,i = An—l7jAn—1,i _An—l,iAn—lJ7

which, using the fact that the B, ; are symmetric matrices, can be written as
EEHB,, = —E}'HA,,,L Using the rank condition (3.3.8), Proposition 3.5.7 and
arank inequality, we have

rank Egan = rank EX'HA,,,l

>rankA,_| +rankEy | — dr?

n—1

>rdbdrd  —rl ,—drl  =rl -1,

To prove the desired result, we now prove the reverse inequality. On the one hand,
using the notation E¢ the first equation in (3.4.2) can be written as E}T A, =0.

1
By Proposition 3.5.7 and the rank condition (3.3.8), it follows that the columns
of A, form a basis for the null space of E}T . On the other hand, the condition

n—1

(3.7.1) can be written as E}T (An—11 -+ An_14)T =0, which shows that the
n—1
columns of the matrix (A,_1;1 - An,17d)T belong to the null space of EIT
n—1
So, there is a matrix S, : rzﬂ X rzfl such that (A,—11 --- A,,_Ld)T =A,S,. It

follows from
r,i] =rank(A,—11 - An,l‘d)T =rank A,S, <rank S, < r;ffl
that rank S, = ”571- Using the condition (3.7.1) with # in place of n — 1, we have

=T =T =T T
':'BnHBnJrlSn == nAnSn = —Z4, (Anfl,l T Anfl,d) =0,
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where the last equality follows from the first equation in (3.4.2). Hence
rank (EEHI B, 1) = ”Z+1 — dimker Egnﬂ By

d d d
§}’n+l *I‘ankSn:rmq 77‘”71,

which completes the proof. O

If £ is a quasi-centrally-symmetric linear functional then rank[Egan] =0,
since it follows from Lemma 3.5.3 that

=T
:‘B,,Bﬂ =0 = ByiBy,j = By jBni,

where we have used the fact that the B, ; are symmetric. Therefore, a immediate
corollary of the above result is the following.

Corollary 3.7.7 If £ is a quasi-centrally-symmetric linear functional then P,
does not have dim H571 distinct common zeros.

The implications of these results are discussed in the following section.

3.8 Gaussian Cubature Formulae

In the theory of orthogonal polynomials in one variable, Gaussian quadrature
formulae played an important role. Let w be a weight function defined on R.
A quadrature formula with respect to w is a weighted sum of a finite number
of function values that gives an approximation to the integral [ fwdx; it gives
the exact value of the integral for polynomials up to a certain degree, which is
called the degree of precision of the formula. Among all quadrature formulae a
Gaussian quadrature formula has the maximum degree of precision, which is 2n —
1 for a formula that uses n nodes, as discussed in Theorem 1.3.13. Furthermore,
a Gaussian quadrature formula exists if and only if the nodes are zeros of an
orthogonal polynomial of degree n with respect to w. Since such a polynomial
always has n distinct real zeros, the Gaussian quadrature formula exists for every
suitable weight function.

Below we study the analogues of the Gaussian quadrature formulae for several
variables, called the Gaussian cubature formulae. The existence of such formulae
depends on the existence of common zeros of orthogonal polynomials in several
variables.

Let .2 be a positive definite linear functional. A cubature formula of degree
2n — 1 with respect to .Z is a linear functional

N
Iu(f) = Aaf (), MER, xR,
=1
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such that Z(f) = %,(f) forall f € 114, | and L(f*) # Lan—1(f*) for at least
one f* € l'[gn. The points x; are called the nodes, and the numbers Ay the weights,
of the cubature formula. Such a formula is called minimal if N, the number of
nodes, is minimal. If a cubature formula has all positive weights, it is called a
positive cubature.

We are interested in the minimal cubature formulae. To identify a cubature
formula as minimal, it is necessary to know the minimal number of nodes in
advance. The following theorem gives a lower bound for the numbers of nodes of
cubature formulae; those formulae that attain the lower bound are minimal.

Theorem 3.8.1 The number of nodes of a cubature formula of degree 2n — 1
satisfies N > dim Hzil.

Proof If a cubature formula %, of degree 21 — 1 has less than dimI1¢_, nodes
then the linear system of equations P(x;) = 0, where the x; are nodes of the
cubature formula and P € ngq’ has dim 1"1371 unknowns that are coefficients of
P but fewer than dim Hﬁ_l equations. Therefore, there will be at least one nonzero
polynomial P € Hﬁ_l which vanishes on all nodes. Since the formula is of degree
2n— 1, it follows that . (P?) = .%,(P?) = 0, which contradicts the fact that . is

positive definite. O

For d = 1, the lower bound in Theorem 3.8.1 is attained by the Gaussian
quadrature formulae. As an analogy of this, we make the following definition.

Definition 3.8.2 A cubature formula of degree 27 — 1 with dimT1¢_| nodes is
called a Gaussian cubature.

The main result in this section is the characterization of Gaussian cubature
formulae. We start with a basic lemma of Mysovskikh [1976], which holds the
key to the proof of the main theorem in this section and which is of considerable
interest in itself. We need a definition: an algebraic hypersurface of degree m in
R? is a zero set of a polynomial of degree m in d variables.

Lemma 3.8.3 The pairwise distinct points x;, 1 <k <N = diml_[zil, on R4
are not on an algebraic hypersurface of degree n — 1 if and only if there exist rf,l
polynomials of degree n such that their nth degree terms are linearly independent,

for which these points are the common zeros.

Proof That the x; are not on a hypersurface of degree n — 1 means that the N x N
matrix (xf ), where the columns are arranged according to the lexicographical
order in {8 : 0 < |B| < n—1} and the rows correspond to 1 < k <N, is
nonsingular. Therefore, we can construct ¢ polynomials
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Q! = x% — Ry, la|=n, Re(x)= Y Cyprfemmd, (3.8.1)
|Bl<n—1

by solving the linear system of equations
R}, (xx) = x, 1<k<N,

for each fixed o. Clearly, the set of polynomials Q7 is linearly independent and
the conditions Q7 (xx) = 0 are satisfied.

However, suppose that there are r,‘f polynomials O, of degree n which have x;
as common zeros and that their nth terms are linearly independent. Because of
their linear independence, we can assume that these polynomials are of the form
(3.8.1). If the points x; are on an algebraic hypersurface of degree n — 1 then the
matrix X,, = (xf), where 1 <k <N and || <n— 1, is singular. Suppose that
rank X, = M — 1, M < N. Assume that the first M — 1 rows of this matrix are
linearly independent. For each k define a vector Uy = (x,l{3 )|Bl<n—1 In RY; then
Uy, ..., Uy are linearly independent and there exist scalars cy,...,cpy, not all
zero, such that 22/[:1 cUy = 0. Moreover, by considering the first component of
this vector equation it follows that at least two ¢ are nonzero. Assume that ¢; # 0
and cy # 0. By (3.8.1) the equations Q7 (x;) = 0 can be written as

Xy — Z C%Bxf:O, o) =n, k=1,...,N.
IBl<n—1

Since the summation term can be written as C&Uk, with C, a vector in RV, it
follows from Y3, c Uy = 0 that 3| crxyf =0, || = n. Using the notation for
the vectors U, again, it follows from the above equation that 224:, kX iUy =
0, 1 <i<d, where we have used the notation x; = (x 1,...,%4). Multiplying
the equation ZQ’I:] cUx = 0 by xp; and then subtracting it from the equation
22’1:1 cxXi,iUx = 0, we obtain

M—1
2 ck(xkyi —XMJ')U]( = O, 1 S i § d.
k=1
Since Uy, ..., Uy are linearly independent, it follows that ci(xg; — xpr,i)) = O,

1<k<M-1,1<i<d. Since c; #0, x1; =xpy,; for 1 <i <M — 1, which is
to say that x; = x)y, a contradiction to the assumption that the points are pairwise
distinct. O

The existence of a Gaussian cubature of degree 2n — 1 is characterized by
the common zeros of orthogonal polynomials. The following theorem was first
proved by Mysovskikh [1970]; our proof is somewhat different.

Theorem 3.8.4 Let £ be a positive definite linear functional, and let P, be
the corresponding orthogonal polynomials. Then .£ admits a Gaussian cubature
Sformula of degree 2n — 1 if and only if P,, has N = diml‘[ﬁfﬁl common zeros.
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Proof Suppose that P, has N common zeros. By Theorem 3.7.1 and Corollary
3.7.3, all these zeros are real and distinct. Let us denote these common zeros by
X1,X2,...,Xxy. From the Christoffel-Darboux formula (3.6.5) and the formula for
K, (x,x), it follows that the polynomial ¢;(x) = K, (x,xx ) /Ky (xg,xx) satisfies the
condition £ (x;) = & j, 1 <k,j < N. Since the {; are of degree n — 1 they serve
as fundamental interpolation polynomials, and it follows that

K(x,xe)
en? . 3.8.2
Zf Koo)' €M (3.8.2)
is a Lagrange interpolation based on xg, that is, L,(f,xx) = f(x), 1 <k < N.
By Lemma 3.8.3 the points x; are not on an algebraic hypersurface of degree
n— 1. Therefore, it readily follows that L, (f) is the unique Lagrange interpolation
formula. Thus the formula

N
L] =X Mef (), Ax=Knlxex)] (3.8.3)
k=1
is a cubature formula for . which is exact for all polynomials in Hg_l. However,
since PP, is orthogonal to ng and the nodes are zeros of P,,, it follows that, for
any vector a € R,

N
Z(@"P)=0=" Aa'P,(x)
=1

Since any polynomial P € I1¢ can be written as P = a'IP,, + R for some a with
Rell?

N N
L(P)=ZL[R)=Y MR(xe) =Y MP(xy)  VPeTIL. (3.8.4)
k=1 k=1
Thus, the cubature formula (3.8.3) is exact for all polynomials in l'[;f . Clearly, we
can repeat this process. By orthogonality and the fact that P, (x;) = 0,

N
g(xiaT]P)n) =0= Z AkxktiaTPn(xk)a 1<i<d,

k=1
which, by the recurrence relation (3.3.10) and the relation (3.8.4), implies that
ZL(@"P,y ) = Zk | AxaTP, | (x;). Therefore, it readily follows that the cubature
formula (3.8.3) is exact for all polynomials in Hn 1 Because P, is orthogonal to
polynomials of degree less than n, we can apply this process on x%, |a| < n—2,

and conclude that the cubature formula (3.8.3) is indeed exact for H‘zlnfr

Now suppose that a Gaussian cubature formula exists and it has xz, 1 <k <
N = dlmHn |» as its nodes. Since . is positive definite, these nodes cannot all
lie on an algebraic hypersurface of degree n — 1. Otherwise there would be a Q €
IT,_1, not identically zero, such that Q vanished on all nodes, which would imply
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that .Z(Q?%) = 0. By Lemma 3.8.3 there exist linearly independent polynomials
Pl,1<j< r4, which have the x; as common zeros. By the Gaussian cubature
formula, for any R € I1,,_1,
N
Z(RP}!) = 2 Ak(RP})(xi) = 0.

Thus, the polynomials P} are orthogonal to Hfhl and we can write them in the
form (3.8.1). O]

It is worthwhile mentioning that the above proof is similar to the proof for the
Gaussian quadrature formulae. The use of interpolation polynomials leads to the
following corollary.

Corollary 3.8.5 A Gaussian cubature formula takes the form (3.8.3); in
particular, it is a positive cubature.

In the proof of Theorem 3.8.4, the Gaussian cubature formula (3.8.3) was
derived by integrating the Lagrange interpolation polynomial L, f in (3.8.2). This
is similar to the case of one variable. For polynomial interpolation in one vari-
able, it is known that the Lagrange interpolation polynomials based on the distinct
nodes always exist and are unique. The same, however, is not true for polynomial
interpolation in several variables. A typical example is that of the interpolation of
six points on the plane by a polynomial of degree 2. Assume that the six points lie
on the unit circle x*> +y? = 1; then the polynomial p(x,y) = x> +y? — 1 will van-
ish on the nodes. If P is an interpolation polynomial of degree 2 on these nodes
then so is P+ ap for any given number a. This shows that the Lagrange interpo-
lation polynomial, if it exists, is not unique. If the nodes are zeros of a Gaussian
cubature formula then they admit a unique Lagrange interpolation polynomial.
Theorem 3.8.6 Ifx;, 1 <k< dimHZﬁl, are nodes of a Gaussian cubature for-
mula then for any given {y;} there is a unique polynomial P € Hil such that
Plx))=y, 1 <i< diml'[ﬁfl.

Proof The interpolating polynomial takes the form (3.8.2) with y; = f(xy). If all
f(x;) = 0 then P(x;) = 0 and the Gaussian cubature formula shows that .#(P?)
= 0, which implies P = 0. O

Theorem 3.8.4 characterizes the cubature formulae through the common zeros
of orthogonal polynomials. Together with Theorem 3.7.5 we have the following.

Theorem 3.8.7 Let £ be a positive definite linear functional, and let P, be
the corresponding orthonormal polynomials, which satisfy the three-term relation
(3.3.3). Then a Gaussian cubature formula exists if and only if (3.7.1) holds.
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Since Corollary 3.7.7 states that (3.7.1) does not hold for a quasi-centrally-
symmetric linear functional, it follows that:

Corollary 3.8.8 A quasi-centrally-symmetric linear functional does not admit
a Gaussian cubature formula.

In particular, there is no Gaussian cubature formula for symmetric classical
weight functions on the square or for the classical weight function on the unit
disk, or for their higher-dimensional counterparts. An immediate question is
whether there are any weight functions which admit a Gaussian cubature formula.
It turns out that there are such examples, as will be shown in Subsection 5.4.2.

3.9 Notes

Section 3.2 The general properties of orthogonal polynomials in several vari-
ables were studied in Jackson [1936], Krall and Sheffer [1967], Bertran [1975],
Kowalski [1982a, b], Suetin [1999], and a series of papers of Xu [1993a,
b, 1994a—e] in which the vector—matrix notion is emphasized.

The classical references for the moment problems in one variable are Shohat
and Tamarkin [1943] and Akhiezer [1965]. For results on the moment problem
in several variables, we refer to the surveys Fuglede [1983] and Berg [1987],
as well as Putinar and Vasilescu [1999] and the references therein. Although
in general positive polynomials in several variables cannot be written as sums
of squares of polynomials, they can be written as sums of squares of rational
functions (Hilbert’s 17th problem); see the recent survey Reznick [2000] and the
references therein.

Section 3.3 The three-term relation and Favard’s theorem in several variables
were first studied by Kowalski [1982a, b], in which the vector notation was used
in the form xP,, = (x;PT ... x,Pl) and Favard’s theorem was stated under an
additional condition that takes a rather complicated form. The additional condi-
tion was shown to be equivalent to rank C, = r,‘f , where C, = (Ck71 o Cra)
in Xu [1993a]. The relation for orthonormal polynomials is stated and proved in
Xu [1994a]. The three-term relations were used by Barrio, Pefia and Sauer [2010]
for evaluating orthogonal polynomials. The matrices in the three-term relations
were computed for further orthogonal polynomials of two variables in Area,
Godoy, Ronveaux and Zarzo [2012]. The structure of orthogonal polynomials
in lexicographic order, rather than graded lexicographic order, was studied in
Delgado, Geronimo, Iliev and Marcelldn [2006].

Section 3.4 The relation between orthogonal polynomials of several variables
and self-adjoint commuting operators was studied in Xu [1993b, 1994a]; see also
Gekhtman and Kalyuzhny [1994]. An extensive study from the operator theory
perspective was carried out in Cichon, Stochel and Szafraniec [2005].
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Sections 3.7 and 3.8 The study of Gaussian cubature formulae started with
the classical paper of Radon [1948]. Mysovskikh and his school continued the
study and made considerable progress; Mysovskikh obtained, for example, the
basic properties of the common zeros of PP, and most of the results in Section
3.8; see Mysovskikh [1981] and the references therein. The fact that the com-
mon zeros are joint eigenvalues of block Jacobi matrices and Theorem 3.7.5 were
proved in Xu [1993a, 1994b]. Mysovskikh [1976] proved a version of Theorem
3.7.5 in two variables without writing it in terms of coefficient matrices of the
three-term relation. A different necessary and sufficient condition for the exis-
tence of the Gaussian cubature formula was given recently in Lasserre [2012].
There are examples of weight functions that admit Gaussian cubature formulae
for all n (Schmid and Xu [1994], Berens, Schmid and Xu [1995b]).

Moller [1973] proved the following important results: the number of nodes, N,
of a cubature formula of degree 2n — 1 in two variables must satisfy

N > dimIT, | + drank(A,—11A) |2 —An124, 1), (3.9.1)

which we have stated in matrix notation; moreover, for the quasi-centrally-
symmetric weight function, rank(An,l_ylAI_l_2 _Anfl,ZAI—l,l) = 2[n/2]. Moller
also showed that if a cubature formula attains the lower bound (3.9.1) then its
nodes must be common zeros of a subset of orthogonal polynomials of degree n.
Similar results hold in the higher dimensional setting. Much of the later study in
this direction has been influenced by Moller’s work. There are, however, only
a few examples in which the lower bound (3.9.1) is attained; see, for exam-
ple, Moller [1976], Morrow and Patterson [1978], Schmid [1978, 1995], and
Xu [2013]. The bound in (3.9.1) is still not sharp, even for radial weight func-
tions on the disk; see Verlinden and Cools [1992]. For cubature formulae of
even degree, see Schmid [1978] and Xu [1994d]. In general, all positive cuba-
ture formulae are generated by common zeros of quasi-orthogonal polynomials
(Moller [1973], Xu [1994f, 1997a]), which are orthogonal to polynomials of a
few degrees lower, a notion that can also be stated in terms of the m-orthogonality
introduced by Moller. A polynomial p is said to be m-orthogonal if [ pgdu =0
for all ¢ € T1? such that pg € T1%. The problem can be stated in the language
of polynomial ideals and varieties. The essential result says that if the variety of
an ideal of m-orthogonal polynomials consists of only real points and the size of
the variety is more or less equal to the codimension of the ideal then there is a
cubature formula of degree m; see Xu [1999c]. Concerning the basic question of
finding a set of orthogonal polynomials or m-orthogonal polynomials with a large
number of common zeros, there is no general method yet. For further results in
this direction we refer to the papers cited above and to the references therein. Puti-
nar [1997, 2000] studied cubature formulae using an operator theory approach.
The books by Stroud [1971], Engels [1980] and Mysovskikh [1981] deal with
cubature formulae in general.
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Orthogonal Polynomials on the Unit Sphere

In this chapter we consider orthogonal polynomials with respect to a weight
function defined on the unit sphere, the structure of which is not covered by
the discussion in the previous chapter. Indeed, if du is a measure supported on
the unit sphere of R then the linear functional . (f) = [ fdu is not positive def-
inite in the space of polynomials, as [ (1 — ||x||*)?du = 0. It is positive definite in
the space of polynomials restricted to the unit sphere, which is the space in which
these orthogonal polynomials are defined.

We consider orthogonal polynomials with respect to the surface measure on
the sphere first; these are the spherical harmonics. Our treatment will be brief,
since most results and proofs will be given in a more general setting in Chap-
ter 7. The general structure of orthogonal polynomials on the sphere will be
derived from the close connection between the orthogonal structures on the
sphere and on the unit ball. This connection goes both ways and can be used
to study classical orthogonal polynomials on the unit ball. We will also discuss
a connection between the orthogonal structures on the unit sphere and on the
simplex.

4.1 Spherical Harmonics

The Fourier analysis of continuous functions on the unit sphere S~ ! := {x: ||x| =
1} in R? is performed by means of spherical harmonics, which are the restrictions
of homogeneous harmonic polynomials to the sphere. In this section we present a
concise overview of the theory and a construction of an orthogonal basis by means
of Gegenbauer polynomials. Further results can be deduced as special cases of
theorems in Chapter 7, by taking the weight function there as 1.

We assume d > 3 unless stated otherwise. Let A = 912 +- 83 be the Laplace
operator, where d; = d/dx;.
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Definition 4.1.1 For n =10,1,2,... let jfjld be the linear space of harmonic
polynomials, homogeneous of degree 7, on R, that is,

:%f:{PeﬁﬂzAP:O}

Theorem 4.1.2 Forn=20,1,2,...

d—1 d—3
dim%,ddimﬂffdimﬂ,fzc; | )(”; 1 )

Proof Briefly, one shows that A maps 22¢ onto 229 ,; this uses the fact that
A[|x|[*P (x)] # O whenever P(x) # 0. O

There is a “Pascal triangle” for the dimensions. Let az , = dim jfjld ;thenag o=
l,ap, =2 forn > 1 and ag41, = dg414—1 +aq, for n > 1. Note that a3, =
2n+1landas, = (n+ 1)2. The basic device for constructing orthogonal bases is
to set up the differential equation A(g(Xim1, ... ,Xa) f (£, X3,Xm)) = 0, where g
is harmonic and homogeneous and f is a polynomlal.

Proposition 4.1.3  For 1 <m < d, suppose that g(xm+1, ,X4) is harmonic and
homogeneous of degree s in its variables, and that f (Z i=m %,xm) is homogeneous
of degree n in x; then A(gf) = 0 implies that (see Definition 1.4.10)

d n/2 d —-1/2
r=(25) al=(29) )
Jj=m j=m

for some constant ¢ and A = s+ %(d —m—1).

Proof Let p? =¥%_, x% and apply the operator A to gx;, %/ p2J  The product rule
gives
& dgad /
(gxn 2jp2]) Y ijszg+gA(Aﬂ 2}p2])+2 Z g op
i=m+1 ax‘ ax’

= dgsjuty Yp* 4 g[2j(d—m—142n— 2j>x::7?fp2ff2
+(n—2j)(n—2j—1)x, 2 2p*].

4 p ) = 0 to obtain the recurrence equation

Set A(gXj<n/aCiXm
2(j+1)(d—m—+2n+25—3-2j)cjir1+(n—2j)(n—2j—1)c; =0,
with solution
l—n
e

KA, (l—n

2
m—
2

CQ-
s);
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Now let f(x) = Ejg,,/zcjxfn_szzj = c’p”Cﬁ(%), withA =s+(d—m—1)/2,
for some constant ¢’; then A(gf) = 0. This uses the formula in Proposition 1.4.11
for Gegenbauer polynomials. [

The easiest way to start this process is with the real and imaginary parts of
(xa_1 ++v/—1x4)*, which can be written in terms of Chebyshev polynomials of
first and second kind, that is, gs0 = p T( L) and gs—11 = x4p° 1Us_l()%),
where p2 = xfi_l +x[21, for s > 1 (and goo = 1). Then Proposition 4.1.3, used
inductively from m = d — 2 to m = 1, produces an orthogonal basis for .7¢: fix
n=(ny,ny,...,n4_1,0) or (n1,ny,...,n4_1,1) and let

d—2
Vo) = gy g 06) [T {054+ +23Y572C07 (5503 -+ +)712)]
J

I
_

with A; = 2?:,41 ni+ %(d — j—1). Note that ¥, (x) is homogeneous of degree |n|

and that the number of such d-tuples is ("ZSZ) + (";i?) = (";i]l) - ("Ziﬁ) =

dim %’j,d. The fact that these polynomials are pairwise orthogonal follows easily
from their expression in spherical polar coordinates. Indeed, let

X1 ZFCOSQd_l,
Xy =rsinB;_1cos6,_»,
4.1.1)
Xg_1 =rsin6;_1---sinBcos Oy,
Xy =rsin@;_;---sin6,sin Oy,

with r > 0,0 < 6; <2m and 0 < 6; < & for i > 2. In these coordinates the surface
measure on S~! and the normalizing constant are

d-2 X

do = H (sin6y ;)" 7" d6,d6,---d6, 1, (4.12)
27rd/2

Oy4— 1—/ d s (4.1.3)
5

where o, is the surface area of $¢~.

Theorem 4.1.4  In the spherical polar coordinate system, let

Ya(x) = g/ H { sin6,_;) BJC 7(cos0y_j) |,
=1

where B; = Z?ZHI ni, g (x) = cosng_10; for ng =0 and sin(ny_1 + 1)6; for
ng = 1. Then {Yy} is a mutually orthogonal basis of % and the L?> norms of the
polynomials are
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A (2),, (515,
i 1) +)L )

5 d—2
—1

o Yodow =a

d=1 feq1 ™M

ni! (5

where ap = % ifng_1+ng >0, else ap = 1.

The calculation of the norm uses the formulae in Subsection 1.4.3. We also
note that in the expansion of ¥,(x) as a sum of monomials the highest term in
lexicographic order is (a multiple of ) x™.

It is an elementary consequence of Green’s theorem that homogeneous har-
monic polynomials of differing degrees are orthogonal with respect to the surface
measure. In the following d /dn denotes the normal derivative.

Proposition 4.1.5  Suppose that f,g are polynomials on R?; then

Jaf  dg [
L (an —anf> do= [ (sAf ~rg)ds

and if f, g are homogeneous then
(degf—degg) [ fedo— [ (sAf~fBg)dr
gd—1 Bd

Proof The first statement is Green’s theorem specialized to the ball BY and its
boundary S?~!. The normal derivative on the sphere is d f/dn = Y%, x,0 f /0x; =

(degf)f. 0

Clearly, if f,g are spherical harmonics of different degrees then they are
orthogonal in L? (Sd_l,da)). There is another connection to the Laplace oper-
ator. For x € R, consider the spherical polar coordinates (,&) with » > 0 and
& € 7971 defined by x = ré.

Proposition 4.1.6  In spherical coordinates (r,&y,...,E; 1), the Laplace oper-
ator can be written as

> d-19 1
A= 2 1.
8r2+ r c?r—‘_r2A07 “.14

where the spherical part Ay is given by
= A8 (£, V)2~ (d-2)(5, V));

here AG) and V&) denote the Laplacian and the gradient with respect to
(&1,...,&4-1), respectively.
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Proof Write r and ; in terms of x by the change of variables x — (r,&;,...,&y)
and compute the partial derivatives d&;/dy;; the chain rule implies that

7=ty (5 -EEV),  1<isa

where for i = d we use the convention that £7 = 1 — &7 —--- — 2 | and define
d/d&; = 0. Repeating the above operation and simplifying, we obtain the second-
order derivatives after some tedious computation:
92 9? 1 —E20 1/ 0? 0
2 i 2 (&)
(L gy e v V! )
e =Gt gt (Ga 1Y) - s Ve 5
10 1

(a3 -8V (G5 - 2) - (B3p - & V) VW)

Adding these equations for 1 <i < d, we see that the last two terms become zero,
since 512 4+ 4 édz =1, and we end up with the equation

2 d-19 1

A:arz+rar+r2<A<‘5>—( —1)(g,V©) 2§,§V 8‘2)

The term with the summation sign can be verified to be (&,V(5))2 — (& V(©)),
from which the stated formula follows. O

The differential operator Ay is called the Laplace—Beltrami operator.

Theorem 4.1.7 Forn=0,1,2,...,
AoY = —n(n+d—-2)Y VY ex (4.1.5)
Proof LetY € 5. Since Y is homogeneous, ¥, (x) = r"Y, (x'). As ¥ is harmonic,
(4.1.4) shows that
0=AY (x) =n(n—1)r"2Y,(x) + (d — Dnr" Y, (x) + "2 MY, (¥),
which is, when restricted to the sphere, equation (4.1.5). O

For a given n, let P,(x,y) be the reproducing kernel for .7 (as functions on
the sphere); then

y) =X IYall 2Ya(¥)Ya(y), [n|=n,ng=0 or L.
n

However the linear space %ﬁd is invariant under the action of the orthogonal
group O(d) (that is, f(x) — f(xw) where w € O(d)); the surface measure is also
invariant, hence B, (xw,yw) = P,(x,y) for all w € O(d). This implies that P, (x,y)
depends only on the distance between x and y (both points being on the sphere)

or, equivalently, on (x,y) = ¥4 | x;y;, the inner product. Fix y = (1,0,...,0);
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the fact that P,(x,y) = f({x,y)) = f(x1) must be the restriction of a harmonic
homogeneous polynomial to the sphere shows that

Pa(x,y) = a Xl V1" (e ) /1l 1311

for some constant a,. With respect to normalized surface measure on S9!
we have 0!, [oa-1 P (x,x)do(x) = dim £, but P,(x,x) is constant and thus
anC P2 (1) = dim.#?. Hence a, = (2n+d —2)/(d — 2). Thus, we have
proved the following:

Theorem 4.1.8  The reproducing kernel B, (x,y) of ¢ satisfies

n+A ;L( (x,y) ) d—2
Pu(x,y) = 222 x| =42 416

The role of the generic zonal harmonic P, in the Poisson summation kernel will
be addressed in later chapters. Applying the reproducing kernel to the harmonic
polynomial x — |\xH"C,<,d72)/2(<x,z>/||x||) for a fixed z € S7~! implies the so-
called Funk—Hecke formula

_1 2n+d-2 C(d_z)/z
d—1 d—2 d—1 n

forany f € % andy € §¢71.

(e )f (x) do(x) = f(y),

4.2 Orthogonal Structures on S and on B¢

Our main results on the orthogonal structure on the unit sphere will be deduced
by lifting those on the unit ball B to the unit sphere S¢, where B := {x € R¢ :
[|x[| < 1} and §¢ C R¥*!. We emphasize that we shall work with the unit sphere
59 instead of S9! in this section, since otherwise we would be working with
Bl

Throughout this section we fix the following notation: for y € RY*!, write
y=1,---,Ya,Ya+1) = (', ¥a+1) and use polar coordinates

y=r(xxgp1),  where r=|lyll, (x,xs41) €S 4.2.1)
Note that (x,x;,1) € S¢ implies immediately that x € B?. Here are the weight

functions on ¢ that we shall consider:

Definition 4.2.1 A weight function H defined on R?*! is called S-symmetric
if it is even with respect to y;41 and centrally symmetric with respect to the
variables y', that is, if

HY yar1) =H(Y',—yar1) and  HQ,yay1) = H(—Y ,Yat+1).

We further assume that the integral of H over the sphere S¢ is nonzero.
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Examples of S-symmetric functions include H(y) = W(y{,...,y3, ), which
is even in each of its variables, and H(y) = W(y1,...,y4)h(y4+1), where W is
centrally symmetric on R? and & is even on R. Note that the weight function
[Ti<j [yi —y;|* is not an S-symmetric function, since it is not even with respect to
va+1. Nevertheless, this function is centrally symmetric. In fact, it is easy to see
that:

Lemma 4.2.2 If H is an S-symmetric weight function on R4 then it is
centrally symmetric, that is, H(y) = H(—y) for y € R¢*+1,

In association with a weight function H defined on R?*!, define a weight
function WZ on B by

Wi (x) = H(x,\ /1= |x]?),  xeB?.

If H is S-symmetric then the assumption that H is centrally symmetric with
respect to the first d variables implies that W5 is centrally symmetric on B
Further, define a pair of weight functions on B,

WP (x m,/mww and  WAG) = 2WE /1 [P,

respectively. We shall show that orthogonal polynomials with respect to H on
54 are closely related to those with respect to W and W2 on BY. We need the
following elementary lemma.

Lemma 4.2.3  For any integrable function f defined on %,
dx
dw:/ A/ 1= 2)+<,— 1— 2)~
Jr00u= [ [r (s /1=s12) 41 (- I?) ] ==

Proof For y € S write y = (V1 —1%x,1), where x € Sl and —1<r<1. It
follows that

day(y) = (1-13)“22drdwy (x).
Making the change of variables y — (v/1 —£2x,1) gives

/f dwd*/ /d 1 1—t2x t) dowg_1(1—1t )(d—2)/2dt
_/ / V1—12x t) +f<mx) —t)}da)d,l(l )22,
gd—1

- /sm VT (T Jaog ot

from which the stated formula follows from the standard parameterization of the
integral over B¢ in spherical polar coordinates y = rx for y € B, 0 < r < 1 and
xesit O
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Recall the notation ”Vnd (W) for the space of orthonormal polynomials of degree
n with respect to the weight function W. Denote by {Py}|q—n and {Qu }|a|=n
systems of orthonormal polynomials that form bases for 7,¢(WE) and #,¢(W§),
respectively. Keeping in mind the notation (4.2.1), define

Y (0) = r"Po(x) and YD (y) = "xa1Qp (), (4.2.2)

where || = n, |B| =n—1 and «, € N&. These functions are, in fact,
homogeneous orthogonal polynomials on S¢.

Theorem 4.2.4 Let H be an S-symmetric weight function defined on R**!. Then
Yo(cl) and Y[g2> in (4.2.2) are homogeneous polynomials of degree |ct| on R+ and
they satisfy

LN 0RO d0s = apiy ij=1.2

where ifi=j=1then|a|=|B|=nandifi=j=2then |a|=|B|=n—1.

Proof Since both W and W are centrally symmetric, it follows from Theo-
rem 3.3.11 that P, and Q, are sums of monomials of even degree if || is even
and sums of monomials of odd degree if |¢t| is odd. This allows us to write, for
example,

n
Py(x) = z 2 apx’, ayeR, xe B,
k=0y|=n—2k

where |ot| = n, which implies that

n
0 =rra@ =Y ¥ ap.
k=0 |y|=n—2k

Since r* =y} +---+y5,, andy = (y1,...,y4), this shows that ¥V (y) is a homo-
geneous polynomial of degree n in y. Upon using rx; | = y;+1, a similar proof
shows that Yéz) is homogeneous of degree n.

Since YO(,] ), when restricted to $¢, is independent of x, | and since Yf) contains
a single factor x4, 1, it follows that Yo(,l) and Yéz) are orthogonal with respect to
H(y)dw, on S? for any o and 3. Since H is even with respect to its last variable,
it follows from Lemma 4.2.3 that

X —||lx 2
Yo(,l)(X)Y(U(x)H(x) dawy :2/Bd Pa(x)PB (x)li(’li|x||||2|)dx

sd ﬁ
= [ PalORs IWE ()0 = 3
and, similarly, using the fact that xJ, , = 1 — ||x||*, we see that the polynomials

Yo(cz) are orthonormal. O
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In particular, ordinary spherical harmonics (the case H(y) = 1) are related to

the orthogonal polynomials with respect to the radial weight functions Wy(x) =

1 — [|x[|? and W; (x) = /1 — ||x||* on B¢, both of which are special cases of

the classical weight functions W (x) = wy (1 — ||x||>)*~!/2; see Subsection 5.2.

For d = 2, the spherical harmonics on S' are given in polar coordinates (y,y,) =

r(x1,x2) = r(cos 6,sin 0) by the formulae 7" cosn6 and " sinnf, which can be
written as

Yn(l)(YIayZ) =7"T,(x1) and ¥ O1,y2) = 'xU,—1 (x1),

where, with 7 = cos 0, T,,(¢t) = cosnf and U,(t) = sin(n+ 1)6/sin 0 are Cheby-
shev polynomials of the first and the second kind and are orthogonal with respect
to 1/v/1 —12 and v/1 — 12, respectively; see Subsection 1.4.3.

Theorem 4.2.4 shows that the orthogonal polynomials with respect to an
S-symmetric weight function are homogeneous. This suggests the following
definition.

Definition 4.2.5 For a given weight function H, denote by .72+ (H) the space
of homogeneous orthogonal polynomials of degree n with respect to H dw on S¢.

Using this definition, Theorem 4.2.4 can be restated as follows: the rela-
tion (4.2.2) defines a one-to-one correspondence between an orthonormal basis
of s¢"1(H) and an orthonormal basis of #,4(WE) & x,117% (WE). Conse-
quently, the orthogonal structure on S¢ can be studied using the orthogonality
structure on BY.

Theorem 4.2.6 Let H be an S-symmetric function on R4, For each n € Ny,

d d—2
mm;ﬁ”%H)("Z )<”+d )dmu@f4mm9ﬁ3.

Proof From the orthogonality in Theorem 4.2.4, the polynomials in {Yél),Yéa}
are linearly independent. Hence, it follows that

—1 d—2
dim 2 (H) =rd 477, = (n—i—d >+ <n+ ),
n

n—1

where we use the convention that (];) = 0 if j < 0. Using the identity (

(”*’:l’*l) = (’“;’f;l), itis easy to verify that dim .sZ%*!(H) is given by the formula

stated in Proposition 4.1.2. O

n-;m) o

Theorem 4.2.7 Let H be an S-symmetric function on R4, For each n € Ny,
d+1 n 2k sppd+1
2 = D I A (H);
k=0



4.2 Orthogonal Structures on S and on B¢ 123

that is, if P € 95“ then there is a unique decomposition

[n/2]
P(y)= Y, 911 Pk (), P € AT (H).
k=0

Proof Since P is homogeneous of degree n, we can write P(y) = r'"P(x,x4+1),
using the notation in (4.2.1). Using x5 | = 1 —||x||* whenever possible, we further
write

P(y)=r"P(x) = /"[p(x) +x4414(x)],  xeB,

where p and g are polynomials of degree at most n and n — 1, respectively. More-
over, if n is even then p is a sum of monomials of even degree and ¢ is a sum
of monomials of odd degree; and if n is odd, then p is a sum of monomials of
odd degree and ¢ is a sum of monomials of even degree. Since both {P,} and
{Qq} form bases for I1¢ and since the weight functions W and W) are centrally
symmetric, we have the unique expansions

[n/2] [(n-1)/2]
p(x) = z 2 g Py () and q(x) = 2 2 bgQp (x).
k=0 |ot|=n—2k k=0 |B|=n—2k—1

Therefore, by the definitions of Yo(,l) and Y (2) s

B
b2l 2k (1) Q72 2k (2)
P(y)= 2 r" ¥ aa¥e () +yarr 2, Y Yo (),
k=0  |a|=n—2k k=0 |B|=n—2k—1

which is the desired decomposition. The uniqueness of the decomposition of P(y)
follows from the orthogonality in Theorem 4.2.4. U

Let H be an S-symmetric weight function and let Yo(zl) and Yézz) be orthonor-
mal polynomials with respect to H such that they form an orthonormal basis of
A (H). For f € L*(H,S?), its Fourier orthogonal expansion is defined by

F~ 3 e (e +af (v,

o

where a\/ (f)=Jsa f (x)Yo(f) (x)H (x) dw. We define the nth component by

P(fi)=Y W( NP @) +d2 )y (x)]. 4.2.3)

|or|=n

The expansion f ~ Y~ P,(f) is also called the Laplace series. As in the case
of orthogonal expansions for a weight function supported on a solid domain, the
component P,(f;x) can be viewed as the orthogonal projection of f on the space
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A1 (H) and, being so, it is independent of the choice of basis of £+ (H).
Define

W(Hixy) = 3 {Y Diy) +¥P (x )Y(z)(y)}; (4.2.4)

lo|=n

this is the reproducing kernel of /¢! (H) since it evidently satisfies
| B Y OHG)dol) =Y (), ¥ € A5,

which can be taken as the definition of P,(H;x,y). For ordinary spherical har-
monic polynomials, P, is a so-called zonal polynomial; see Section 4.1. The
function P, (H) does not depend on the choice of a particular basis. It serves as an
integral kernel for the component

Su(f3x) = /S SO)P(H:x,y)H (y)do(y). (4.2.5)

As a consequence of Theorem 4.2.4, there is also a relation between the repro-
ducing kernels of 7" (H) and #,%(WE). Let us denote the reproducing kernel
of 74(W) by P,(W;x,y); see (3.6.2) for its definition.

Theorem 4.2.8 Let H be an S-symmetric function and let WlB be associated
with H. Recall the notation (4.2.1). Then

P #ix) = |1 (H: o), (3 1- D12 )
w, (HiGan), (n1-DE) )| a2

where xg11 = /1 — ||x|| and ||x|| is the Euclidean norm of x.

Proof From Theorem 4.2.4 and (4.2.4), we see that for z = r(x,x441) € R+ and

y € B with yg 1 = /1 [|x]]%,
Py(H:z, (v,ya+1)) = PPu(WEix,) + zas1yas17” Pt (W3, y),

from which the stated equation follows on using

1
PR, = B (#iz (5 1= I012) ) 42 (52, (5112 ) )|

withr = 1. O]

In particular, as a consequence of the explicit formula of the zonal harmonic
(4.1.6), we have the following corollary.
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Corollary 4.2.9 Let Wy(x) := 1/\/1—[[x|%, x € B. The reproducing kernel
Pn(WO; " ) Of%,d(Wo) satisﬁes

d

n4 41
O (il (U RRVER MV

+0i () = 1= Iy 1= IR )

Moreover, by Theorem 4.2.4 and (4.2.2), the spherical harmonics in %ﬂ”l that
are even in x4, form an orthogonal basis of “//nd(Wg). In particular, an orthonor-
mal basis of #,¢(Wj) can be deduced from the explicit basis given in Theorem
4.1.4. The weight function Wy, however, is a special case of the classical weight
functions on the unit ball to be discussed in the next chapter.

4.3 Orthogonal Structures on B¢ and on $¢*"~!

We consider a relation between the orthogonal polynomials on the ball BY and
those on the sphere Sdtm=1 where m > 1.

A function f defined on R™ is called positively homogeneous of order o if
f(tx) =1° f(x) for ¢ > 0.

Definition 4.3.1 The weight function H defined on R4 is called admissible if
H(x) =Hi(x1)H(x2),  x=(x1,%) eRT™™, xR’ x;eR",

where we assume that H; is a centrally symmetric function, and that Hj is
positively homogeneous of order 27 and even in each of its variables.

Examples of admissible weight functions include H(x) = ¢TI |x;|% for
K; > 0, in which H; and H; are of the same form but with fewer variables, and
H(x) = cHy (x1) T |x? —xﬂﬁw‘, whered +1<i< j<d-+mand2t=3,; ;B

Associated with H, we define a weight function W' on B? by

Wi (x) = Hy(x)(1 = ||x||>)TF=272 0 xe B9 (43.1)

For convenience, we assume that H has unit integral on Sd+m=1 and W has unit
integral on BY. We show that the orthogonal polynomials with respect to H and
Wy are related, using the following elementary lemma.

Lemma 4.3.2 Let d and m be positive integers and m > 2. Then

Joew 70200 = [0l 16 /1= ) don) o
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Proof Making the change of variables y +— (x,1/1— [|x]|?n), x € B¢ and
n € S™!, in the integral over ST~ shows that dayi.(y)
= (1= |lx»)"2/2 dxd, (). O

When m = 1, the lemma becomes, in a limiting sense, Lemma 4.2.3.

In the following we denote by {Py(W/}')} a sequence of orthonormal polyno-
mials with respect to Wy} on B9 Since H, and thus Wi, is centrally symmetric, it
follows from Theorem 3.3.11 that P, (W}}') is a sum of monomials of even degree
if || is even and a sum of monomials of odd degree if |¢| is odd. These polyno-

mials are related to homogeneous orthogonal polynomials with respect to H on
Sd+m—1 .

Theorem 4.3.3 Let H be an admissible weight function. Then the functions
Ya(y):HyH‘a‘Pa(Wlfln’xl)a y:r(xl7X2)€Rd+ma X EBd7

are homogeneous polynomials in y and are orthonormal with respect to H(y)d®
on Sderfl.

Proof We first prove that Y, is orthogonal to polynomials of lower degree. It is
sufficient to prove that Y, is orthogonal to gy(y) = y¥ for y € Ng*’" and |y <
|a| — 1. From Lemma 4.3.2,

\/Sderfl Yo (y)gy()H(y)do

R B RV AT I L

If gy is odd with respect to at least one of its variables yg41,...,Y44m+1 then
we can conclude, using the fact that H, is even in each of its variables, that the
integral inside the square bracket is zero. Hence, Y, is orthogonal to gy in this
case. If gy is even in every variable of yg1,...,Y4+n then the function inside the
square bracket will be a polynomial in x; of degree at most || — 1, from which
we conclude that Yy, is orthogonal to gy by the orthogonality of P, with respect
to Wi on B“. Moreover,

[ YaOWsOIH() doo = [ Pa(Wyix)) Py (Wi Wi () dxa,

which shows that {¥ } is an orthonormal set. The fact that Y, is homogeneous of
degree n in y follows as in the proof of Theorem 4.2.4. O

If in the limiting case m = 1, the integral over §”'~! is taken as point evaluations
at 1 and —1 with weights % for each point then we recover a special case of
Theorem 4.2.4. In this case W}y’ (x (x, /1= [Ix]12) /+/1 = [|x]]2.
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In the following we show that an orthogonal basis of %’j(m” (H) can be derived
from orthogonal polynomials on B? and on ™. Let H, be defined as in Definition
4.3.1. Then, by Theorem 4.2.4, the space .7, (H) has an orthonormal basis {S’é}
such that each S’B is homogeneous, and Sk is even in each of its variables if k is
even and odd in each of its variables if & is odd.

For x € R?, we write |x| := x| + - -- + x4 in the following.

Theorem 4.3.4 Let {SE} be an orthonormal basis of 7" (H,) as above, and

let {Pi=K (W} "2*)} be an orthonormal basis for ¥, , (Wi ) with respect to the
weight function WITI”H]‘ on B¢, where 0 < k < n. Then the polynomials

o gk (¥) = APy (Wi 25 y1)SE (vh), y=r(y,¥4), =yl

where ¥, € BY, yy € B" and [Ap i)~ = [pa Wi(x)(1 — ||x]|*)*dx, are homoge-
neous of degree n in'y and form an orthonormal basis for e%”nd“" (H).

Proof Since the last property of S’l§ in Theorem 4.2.4 implies that it has the same

parity as n, and P % (W 2k) has the same parity as n — k, the fact that Y, 0 f i 1S
homogeneous of degree n in y follows as in the proof of Theorem 4.3.3.

We prove that Y 0Bk is orthogonal to all polynomials of lower degree. Again,
it is sufficient to show that Y}, 0Bk is orthogonal to g,(y) =y, [y[1 <n— 1. Using
the notation y = r(y},y5), we write gy as

gy(y) ="y Ty, vl +1rh=rh <n-1.

Using the fact |y} 2 I”?

conclude that

/SMH Yo 5 x(¥)8y(¥)H(y) d0a

= )" [ PRy T (1= )2

=1—||y}||* and the integral formula in Lemma 4.3.2, we

W (y)) dy ( s (n)n”Hz(n)dwm(n)> ,

1P
where we have used the fact that W/ (x) = W/ (x)(1 — ||x||?)¥. We can show
that this integral is zero by considering the following cases. If ||} < k then the
integral in the square brackets is zero because of the orthogonality of S’B. If |9
>k and |p|; — k is an odd integer then ||, and k have different parity; hence,
since S’B is homogeneous, a change of variable 1 — —n leads to the conclu-
sion that the integral in the square brackets is zero. If ||} > k and |p|1 —k
is an even integer then y'7' (1 — ||y;[?)(2=%)/2 is a polynomial of degree
I711 + |%2|1 —k < n—1—k; hence, the integral is zero by the orthogonality of
Pg’k(W,’,"*zk ). The same consideration also shows that the polynomial Y/ B, D

norm 1 in L2(H,$4™), since P&~ % (W k) and Sjg are normalized.
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Finally, we show that {Y 8 ) forms a basis of A" (H). By orthogonality,
the elements of {Y 8 .} are linearly independent; since dim 7" (H) = r}'~ .
r’k":ll, their cardinality is equal to

n
Z L = ZVZ—krk Z i
k=0

which is the same as the dimension of #"+4~1(H), as can be verified by the
combinatorial identity

Z n i(n—k—kd—l) <k+m—2)
. —
€ S\ n—k k
<”+d+m—2) d-+m—1
= =r, .

n

This completes the proof. O

There is also a relation between the reproducing kernels of 74"+ (H) and
#,4(Wr), which we now establish.

Theorem 4.3.5 Let H be an admissible weight function defined on R4+ and
Wy be the associated weight function on B®. Then

P, ugixn) = [ 2 (tsx (31T P ) ) () o)

where x = (x1,%) € S with x| € BY, y = (y1,y2) € S with y\ € B! and
y2=|lyln € B""' and n € S™

Proof Since B,(H) is the reproducing kernel of 74"+ (H), we can write it in
terms of the orthonormal basis {Y B ) in Theorem 4.3.4:

Pi(H:x,y) ZZZ )Y 5.0

Integrating P, (H;x,y) with respect to Hy(y2) over S, we write ||y2||*=1—||y1 ||?
and use the fact that Sy is homogeneous and orthogonal with respect to
H;(y2)dw, to conclude that the integral of Y] xon S™ results in zero for all
k # 0, while for k = 0 we have that § =0 and Y} 00(y) are the polynomials
P (W[, y1). Hence, we conclude that

Jo (3 (/1= 1P ) ) () )

= D Py (Wi sx1) Py (Wi y1) = Pu(Wii'sx1,y1),
o

by the definition of the reproducing kernel. O
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In the case that H, H; and H, are all constants, W/} (x) becomes the case =
’"T’l of the classical weight function W), on the ball B?,

Wy (x):= (1= |lx|)* 12, xe B (432)

As a consequence of the general result in Theorem 4.3.3, we see that, for
m=1,2,..., the orthogonal polynomials in %, (Wm—1),2) can be identified with
the spherical harmonics in %’jﬂ*’”. In particular, it is possible to deduce an orthog-
onal basis of V,f(W(m_l) /2) from the basis of H4+™M  which can be found from
Theorem 4.1.4. Since the orthogonal polynomials for the classical weight func-
tion Wy, will be studied in the next chapter, we shall not derive this basis here.
One consequence of this connection is the following corollary of Theorem 4.3.5
and the explicit formula of the zonal harmonic (4.1.6):

Corollary 4.3.6 For m = 1,2,3,..., the reproducing kernel of ”f/nd(Wu) with
U = % satisfies

I’l+)L 1 /1< >
PW;,:—/CH V) 44/ —||x][24 /1= [|y||2¢
Winy) =" [ €l () /1= Iy /1= I

x (1—£2)*1ar,

where A =+ %2 and ¢y =T (u+ %)/ (VAT (1))

This formula holds for all y > 0, as will be proved in Chapter 8. When y = 0,
the reproducing kernel for Wy is given in Corollary 4.2.9, which can be derived
from the above corollary by taking the limit u — 0.

4.4 Orthogonal Structures on the Simplex
In this section we consider the orthogonal polynomials on the simplex
T9:={xeR?:x; >0,...,x5 >0,1—|x|; >0},

where |x|; = x; + -+ + x4. The structure of the orthogonal polynomials can be
derived from that on the unit sphere or from that on the unit ball. The connection
is based on the following lemma.

Lemma 4.4.1 Let f(x2,... ,xﬁ) be an integrable function defined on B®. Then

dx
/df(yi...,yﬁ)dy:/df(xl,...,xd>
JB T

xl...xd.

Proof Since f (x?, .. ,xﬁ,) is an even function in each of its variables, the left-
hand side of the stated formula can be written as 2¢ times the integral over BY =
{x€B?:x;>0,...,x; > 0}. It can be seen to be equal to the right-hand side
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upon making the change of variables y; = x%, e Yd = xf, in the integral over BY,
for which the Jacobian is 2% (y1,...,v4) /2. O

Definition 4.4.2 Let W2(x) =W (x3,...,x3) be a weight function defined on B,
Associated with W2 define a weight function on 7¢ by

WT(y) Wyla 7yd /\/yl Yd y:(yla"'vyd)ETd'

Evidently, the weight function W# is invariant under the group Zg, that is,
invariant under sign changes. If a polynomial is invariant under Zg then it is
necessarily of even degree since it is even in each of its variables.

Definition 4.4.3 Define 75 (W5, Z$) = {P € 7 (WB) : P(x) = P(xw), w €
Z4}. Let P2 be the elements of 75 (W5, Z4); define polynomials R, by

P(x) =RL(x3,...,x3). (4.4.1)

Theorem 4.4.4 Let W8 and WT be defined as above. The relation (4.4.1) defines
a one-to-one correspondence between an orthonormal basis of ¥;*(WT) and an
orthonormal basis of Va,(W58,Z4).

Proof Assume that {Rq }|o|—, is a set of orthonormal polynomials in 7 d(WT).
If B Ng has one odd component then the integral of Py (x)xP with respect to
W2 over BY is zero. If all components of 8 are even and |B| < 2n then it can be
written as 8 = 27 with 7 € Nd and |7| <7 — 1. Using Lemma 4.4.1, we obtain

/Pa JBWE (x) dx = /R W (y)dy =0,

by the orthogonality of R,. This relation also shows that R, is orthogonal to
all polynomials of degree at most n — 1, if Py is an orthogonal polynomial in
7,4(WB,Z4). Moreover, Lemma 4.4.1 also shows that the L?(W5;B4) norm of
Py, is the same as the L2(WT; T%) norm of Ry,. O

The connection also extends to the reproducing kernels. Let us denote by
P, (W;-,-) the reproducing kernel of 7¢(W Q) for Q=Bor T.

Theorem 4.4.5 Forn=0,1,2,... and x,y € T?,

P,(Wix,y) =271 Py (W5 Vxeyy), (4.4.2)

d
€EZS

where \/X 1= (\/X1,...,\/Xq) and €u := (€yuy,...,Equq).
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Proof Directly from the definition of the reproducing kernel, it is not difficult to
see that
P(x,y):=2" Y Pu(Wixey), xyeB’

eezd
is the the reproducing kernel of 7, (W5, Z4) and, as such, can be written as

P(xy)= Y P (WEx)P (Whiy)
|o|=2n
in terms of an orthonormal basis of 75 (W5, Z4). The polynomial P2"(W?;x) is
necessarily even in each of its variables, so that (4.4.2) follows from Theorem
4.4.4 and the definition of the reproducing kernel with respect to W7 . O

As a consequence of this theorem and Theorem 4.2.4, we also obtain a rela-
tion between the orthogonal polynomials on 7¢ and the homogeneous orthogonal
polynomials on S%. Let H(y) = W(y3,...,y3 +1) be a weight function defined on
R+ and assume its restriction to S¢ is not zero. Then H is an S-symmetric
weight function; see Definition 4.2.1. Associated with H define a weight function
WT on the simplex T¢ by

WL (x) =2W (x1, ..., xg, 1 = |x|1)v/x1 - xg (1= [x[1), xeTq.

Let R, be an element of #,¢(W}). Using the coordinates y = r(x,xg4) for y €
Rt define

SZ(y) = r*"RE (x1, ..., x5). (4.4.3)
By Theorems 4.2.4 and 4.4.4, we see that Sé” is a homogeneous orthogonal
polynomial in %”z‘fl(H ) and is invariant under Zg“. Denote the subspace of

747" invariant elements of 4% (H) by s (H,Z4t"). Then S%' is an element
of 741 (H,Z4%"), and we conclude:

Theorem 4.4.6 Let H and W}, be defined as above. The relation (4.4.3) defines
a one-to-one correspondence between an orthonormal basis of %,,(WB , Zg) and
an orthonormal basis of V,¢(WT).

As an immediate consequence of the above two theorems, we have

Corollary 4.4.7 Let H and W8 be defined as above. Then

d d—1
dim%”,’l(WB,Zg):<n:) and dim%‘fl(H,Zg“):<n+n )

Working on the simplex T¢, it is often convenient to use homogeneous
coordinates x = (x1,...,xg41) with |x|; = 1; that is, we identify T¢ with

T ={x €RM i x; >0,... x4 >0,[x; =1}
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in R4*1. This allows us to derive a homogeneous basis of orthogonal polynomi-

als. Indeed, since H is even in each of its variables, the space 4% (H,Z4*") has

a basis that is even in each of its variables and whose elements can be written in
2 2

the form S7, (x{,...,x5, )

Proposition 4.4.8 Let H be defined as above and {St,(xi,..., x5, ) : o =
n, o € N&} be an orthonormal homogeneous basis of % (H,Z5™"). Then
{S%(x1,...,X441) : |&t| = n, o € N&} forms an orthonormal homogeneous basis
of 7 (Wi )

Proof 1Tt follows from Lemmas 4.2.3 and 4.4.1 that

dx
/gdf(y%7vy(%i+1>dw:2 f(x17-~~;xd+l)7, 4.4.4)

Ix|1=1 X1 Xd+1
where we use the homogeneous coordinates in the integral over 7 and write
the domain of integration as {|x|; = 1} to make this clear. This formula can also
be obtained by writing the integral over ¢ as 2¢*! times the integral over Si
and then making the change of variables x; — yl?, 1 <i < d+1. The change of
variables gives the stated result. O

For reproducing kernels, this leads to the following relation:

Theorem 449 Forn=0,1,2,...and x,y € T¢

hom’

P,(Whix,y) =271 3 Py (H:vxe\y), (4.4.5)

eczg™!
where \/X := (\/X1,...,\/Xa+1) and €u := (€yuy,...,Equq11).

In particular, for H(x) = 1 the weight function W/ becomes

1
Va1 xg(U=x[1)

Moreover, by Definition 4.4.2 this weight is also closely related to W(f (x) =

1 — ||x||? on the unit ball. In particular, it follows that the orthogonal poly-
nomials with respect to Wy on T¢ are equivalent to those spherical harmonics on
S? that are even in every variable and, in turn, are related to the orthogonal poly-
nomials with respect to WOB that are even in every variable. Furthermore, from
the explicit formula for the zonal harmonic (4.1.6) we can deduce the following
corollary.

Wo(x) = xeT?.

Corollary 4.4.10  For Wy on T, the reproducing kernel P,(Wo;-,-) of %;4(Wp)
satisfies, with A = (d —1)/2,
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2n+A)(A), 1 A—1/2,-1/2
T, T X BT e )
2/n SGZgH

P’l(Wo;xay) =

for x;y € T, where z(x,y,€) = \/Xiy181 + -+ + /Xay 1Var1€d+1 With xq11=
1—|x|1 and y411=1-|y|.

Proof Taking WT =W, in (4.4.5) and using (4.1.6), we conclude that
2n+A 1
A 2dil 2 C%n (z(x,y,€)),

d+1
€€Zy

P”(Wo;xvy) =

which gives, by the relation C% (1) = Ei; PAED (22 1), the stated
formula. i O

4.5 Van der Corput-Schaake Inequality

Just as there are Bernstein inequalities relating polynomials of one variable and
their derivatives, there is an inequality relating homogeneous polynomials and
their gradients. The inequality will be needed in Chapter 6. For n = 1,2,... and
p € 24, we define a sup-norm on 2¢ by

1Plls == sup{[p(x)[ - [lx]| = 1},

and a similar norm related to the gradient:

Iplly = supfl (Vo ()] < il = 1 =l .

Because Y4, x;dp(x)/dx; = np(x) it is clear that ||p||s < ||p||5. The remarkable
fact, proven by van der Corput and Schaake [1935], is that equality always holds
for real polynomials. Their method was to first prove it in R? and then extend it
to any R?. The R? case depends on polar coordinates and simple properties of
trigonometric polynomials. In this section all polynomials are real valued. The
maximum number of sign changes of a homogeneous polynomial on S' provides
a key device.

Lemma 4.5.1 Suppose that p € P2, then p can be written as

m

n—2m
c l_[1 (e ) TT (I + (1))
j=

i=1

forsomem, c €Randu',...,u""?"cS' v ... V" € R% The trigonometric poly-
nomial p(0) = p(cos 0,sin 0) has no more than 2n sign changes in any interval
60 < 6 < 6+ 21 when p(6y) # 0.
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Proof By rotation of coordinates if necessary, we can assume that p(1,0) # 0;
thus p(0) = (sinB)"g(cot 6) where g is a polynomial of degree n. Hence g(¢) =
co H;?;f’”(t —rj) I, (t> 4 b;t +¢;) with real numbers c, rj,bi,ciand bi2 —4¢; <0
for each i (and some m). This factorization implies the claimed expression for p
and also exhibits the possible sign changes of p. [

Theorem 4.5.2 Let p(x1,x2) € % and M = sup |p(x)| for x3 +x5 = 1; then
[{u, V()| < Mnl|ul| (f +23) D72 for any u € R*.

Proof Since Vp is homogeneous of degree n — 1, it suffices to prove the claim
for ||x|| = 1. Accordingly, let xo = (cos 6p,sin 6y) for an arbitrary 6y € (—rx, 7]
and make the change of variables

y=(rcos(6—6p),rsin(6 — 6))
= (x1 cos By +x2 sin By, —x sin Oy + xp cos 6p) ,
where x = (rcos 0, rsin8). Clearly (52)2+ (52)? = (522 + (52)* = |Vp|],
all terms being evaluated at the same point. Express p in terms of yj,y; as
Z;?Zoajyrfﬁyé; then (dp/dy1)* + (dp/dy>)?* all terms being evaluated at y =
(1,0), corresponding to x = xo, equals n’a +aj. If a; = 0 then ||Vp (xo) ||* =
nza(z) =n? p (x0)2 < n*M?, as required. Assume now that a; # 0 and, by way of
contradiction, assume that nza(z) + a% > n*M?. There is an angle ¢ # 0, 7w such that

ap .
apcosng + —sinng = a(2)+ —=.
n

Let f(8) = agcosn® + (a1 /n)sinn® — 3 _a;(cos )"/ (sin®)’. Denote by [x]
the integer part of x € R. Because

e |
n n=2j (i @\2J
cosnB = cos" O + 21: (2]') (—1)’ (cos0)" %/ (sin@)~,
[(n—1)/2] ) ) _
sinn® = ncos" ! Bsin + D < ) )(—l)j(COS 6)" 1% (sin9)> "1,
: 2j+1

it follows that £(6) = (sin8)” g(cos ,sin @), where g is a homogeneous polyno-
mial of degree n — 2. Consider the values

. 2
jr ; a ;
f(¢>+—n ) = (=y/a5+ -3 =p(),
where y/ = (cos¢;,sing;) and ¢; = ¢ + jm/n— 6p,0 < j < 2n — 1. Since

|p(»/)| <M, we have (—1)! f (¢ + jm/n) > /a2 + a3 /n® — M > 0. This implies
that g (cos 0,sin 0) changes sign 2n times in the interval ¢ < 6 < ¢ + 2x. This



4.5 Van der Corput—Schaake Inequality 135

contradicts the fact that g € 922, and can change its sign at most 2 (n — 2) times

by the lemma. Thus 4 /a(z) + a%/n2 <M. O

Van der Corput and Schaake proved a stronger result: if 4 /ag + a% /n? = M for
some particular xo then |ag| = |p(x0)| = M (so that ||Vp|| is maximized at the
same point as |p|) or |Vp(x)|| is constant on the circle, and p (cos6,sin0) =
Mcos n (6 — 6y) for some 6.

Theorem 4.53 Let p € 29 then |(u,Vp(x))| < |Ipllsllull|lx|[*"" for any
ueRd

Proof For any xo € R with ||xo|| = 1 there is a plane E through the origin con-
taining both xo and Vp(xp) (it is unique, in general). By rotation of coordinates
transform xg to (1,0,...) and E to {(x},x2,0,...)}. In this coordinate system
Vp(x0) = (v1,v2,0,...) and, by Theorem 4.5.2, (v} +v3)"/2 < nsup{|p(x)| :
|lx|| =1 and x € E} <nl|p]ls. O

Corollary 4.54 Forpec 2% andn> 1,

pls=lplls-

There is another way of defining ||p||;.

Proposition 4.5.5 For p ¢ 29,

n

1
Ipllo = n!sup{]_[

OV, V)p()| v e 77131 € 57! forall j}.
j=1

Proof The claim is true for n = 1. Assume that it is true for some #n, and let p €

24, | for any y"+1) € §9-1 the function g(x) = (y"+1), V) p(x) is homogeneous

of degree n. Thus
sup{| 0", V) p()] s x € U1} = gl

1 no .
= msup{H(y(f),V>g(x) xe 84y e §41 for all j},
! i

by the inductive hypothesis. But

Ipllo = sup{| (Y, V) p(x)] : 2,y € 5917,

n+1

and this proves the claim for n+ 1. O
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4.6 Notes

There are several books that have sections on classical spherical harmon-
ics. See, for example, Dunkl and Ramirez [1971], Stein and Weiss [1971],
Helgason [1984], Axler, Bourdon and Ramey [1992], Groemer [1996] and
Miller [1997]. Two recent books that contain the development of spherical har-
monics and their applications are Atkinson and Han [2012], which includes
application in the numerical analysis of partial differential equations, and Dai
and Xu [2013], which addresses approximation theory and harmonic analy-
sis on the sphere. The Jacobi polynomials appear as spherical harmonics with
an invariant property in Braaksma and Meulenbeld [1968] and Dijksma and
Koornwinder [1971].

A study of orthogonal structures on the sphere and on the ball was carried out
in Xu [1998a, 2001a]. The relation between the reproducing kernels of spherical
harmonics and of orthogonal polynomials on the unit ball can be used to relate the
behavior of the Fourier orthogonal expansions on the sphere and those on the ball,
as will be discussed in Chapter 9. The relation between orthogonal polynomials
with respect to 1/+/1 — ||x||> on B¢ and ordinary spherical harmonics on S, and
more generally W, with it = (m — 1)/2 on B¢ and spherical harmonics on S,
is observed in the explicit formulae for the biorthogonal polynomials (see Section
5.2) in the work of Hermite, Didon, Appell and Kampé de Fériet; see Chapter XII,
Vol. I, of Erdélyi et al. [1953].

The relation between the orthogonal structures on the sphere, ball and simplex
was studied in Xu [1998c]. The relation between the reproducing kernels will be
used in Chapter 8§ to derive a compact formula for the Jacobi weight on the ball
and on the simplex. These relations have implications for other topics, such as
cubature formulae and approximations on these domains; see Xu [2006c].
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Examples of Orthogonal Polynomials
in Several Variables

In this chapter we present a number of examples of orthogonal polynomials in
several variables. Most of these polynomials, but not all, are separable in the
sense that they are given in terms of the classical orthogonal polynomials of one
variable. Many of our examples are extensions of orthogonal polynomials in two
variables to more than two variables. We concentrate mostly on basic results in
this chapter and discuss, for example, only classical results on regular domains,
leaving further results to later chapters when they can be developed and often
extended in more general settings.

One essential difference between orthogonal polynomials in one variable and
in several variables is that the bases of ”I/nd are not unique for d > 2. For d = 1,
there is essentially one element in ”I/nl since it is one dimensional. For d > 2, there
can be infinitely many different bases. Besides orthonormal bases, several other
types of base are worth mentioning. One is the monic orthogonal basis defined by

Qo (x) =x% + Ry (x), la| =n, Ry el ; (5.0.1)

that is, each Q, of degree n contains exactly one monomial of degree n. Because
the elements of a basis are not necessarily orthogonal, it is sometimes useful to
find a biorthogonal basis, that is, another basis Py of %, such that (Qy,Pg) =0
whenever o # 3. The relations between various orthogonal bases were discussed
in Section 3.2.

5.1 Orthogonal Polynomials for Simple Weight Functions

In this section we consider weight functions in several variables that arise from
weight functions of one variable and whose orthogonal polynomials can thus be
easily constructed. We consider two cases: one is the product weight function and
the other is the radial weight function.



138 Examples of Orthogonal Polynomials in Several Variables

5.1.1 Product weight functions

For 1 < j <d, let w; be a weight function on a subset /; of R and let {p; , }_, be
a sequence of polynomials that are orthogonal with respect to w;. Let W be the
product weight function

W(x) Z=W1(X1)---Wd(xd), xel x---x1y.
The product structure implies immediately that

Pa(x) = Pl,al(xl)"'Pd.ad(xd)a O!GNf)l,

is an orthogonal polynomial of degree || with respect to W on I} X --+ X I,.
Furthermore, denote by “//nd (W) the space of orthogonal polynomials with respect
to W. We immediately have the following:

Theorem 5.1.1 For n = 0,1,2,..., the set {Py : |a| = n} is a mutually
orthogonal basis of ¥,*(W).

If the polynomials p;, are orthonormal with respect to w; for each j then the
polynomials Py, are also orthonormal with respect to W. Furthermore, the poly-
nomial P, is also a constant multiple of monic orthogonal polynomials. In fact,
a monic orthogonal basis, up to a constant multiple, is also an orthonormal basis
only when the weight function is of product type. As an example we consider the
multiple Jacobi weight function

d
Wab(x) = [T(1—x:)“ (1 +2;)" (5.1.1)

i=1

on the domain [—1,1]¢. An orthogonal basis Py, for the space #,¢(W, ) is given

in terms of the Jacobi polynomials Pégj i) by

b 2.b
Po(Wap:x) = PSP (x1) - P (xg), o] =, (5.1.2)
where, to emphasize the dependence of the polynomials P, on the weight
function, we include W, , in the notation.
The product Hermite and Laguerre polynomials are two other examples. They
are given in later subsections.

5.1.2 Rotation-invariant weight functions

A rotation-invariant weight function W on R is a function of |x||, also called
a radial function. Let w be a weight function defined on [0,e) such that it is
determined by its moments. We consider the rotation-invariant weight function

Weaa (1) = w(llx])),  xeR"
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An orthogonal basis for #,¢(W) can be constructed from the spherical harmonics
and orthogonal polynomials of one variable.
For 0 < j <n/2,let {Y\f‘_zj 1<v< aff_zj} denote an orthonormal basis for

the space L%’jld_ 2 of spherical harmonics, where aZ = dim jfnd. Fix j and n with

0<j<n/2 and let
wjn(t) i= [t (1)), reR.

Denote by pff"%j 41 the polynomials orthogonal with respect to w; .

Theorem 5.1.2  For0< j<n/2and 1 <v <dj ,; define
2n—4j+d—1 —2j
Pl = pa D (e (). (5.13)

Then the P}, form an orthonormal basis of V4 (Wrag).

Proof Since the weight function |¢|**~#*4=1y(|¢|) is an even function, the poly-

nomial p§§"74j+d71)(t) is also even, so that P;,(x) is indeed a polynomial

of degree n in x. To prove the orthogonality, we use an integral with polar
coordinates,

[ r@a= [o [ o) dow)ar (5.1.4)

Since Yy “2(x) = 2y} 2 (x'), it follows from the orthonormality of the
Y% that
L B P (6 Wiaa ()4 = 8,-2j1-2761,611

* on—djrd—1 (2n—4j+d—1 2n—4jt+d—1
X/O r2n 4j+d lpgjn J+ )(I’)p;;’ J+ )(r)w(r)dr.

The last integral is 0 if j # j’ by the orthogonality with respect to w; ,. This estab-
lishes the orthogonality of the P}, . To show that they form a basis of V4 (Wrag)s
we need to show that

D dim%’jﬁzj = dim #¢ (W) = dim 229,
0<j<n/2

which, however, follows directly from Theorem 4.2.7. O

5.1.3 Multiple Hermite polynomials on R’

The multiple Hermite polynomials on R? are polynomials orthogonal with
respect to the classical weight function

wh (x) :e_HXHZ, xeR9.
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The normalization constant of W is 774/2, determined by using (5.1.4):

/ eIl ae [T [ ey =t
R R T

The Hermite weight function is both a product function and a rotationally
invariant function. The space %4 (W) of orthogonal polynomials has, therefore,
two explicit mutually orthogonal bases.

First orthonormal basis Since W# is a product of Hermite weight functions
of one variable, the multiple Hermite polynomials defined by

Po(WHx) = Hey (x1) -+ Heyy (xa), lat| = n, (5.1.5)

form a mutually orthogonal basis for #/¢ with respect to W, as shown in
Theorem 5.1.1. If we replace Hy, by the orthonormal Hermite polynomials, then
the basis becomes orthonormal.

Second orthonormal basis Since W# is rotationally invariant, it has a basis
given by

Py (WHx) = [ )12 D2 (e )y (), (5.1.6)

where Lf is a Laguerre polynomial and the constant h7 . 1s given by the formula

= (5) /e

That the P;, are mutually orthogonal follows from Theorem 5.1.2, since, by

L2 @=D/22) can be seen to

the orthogonality of the LY, the polynomials
be orthogonal with respect to |t|2”’2j+‘1’1e”2 upon making the change of vari-
able ¢ — /1. Since the Y, ~2/ are orthonormal with respect to dw/o,_1, the
normalization constant is derived from

00 ) 2 '
(h?n)Z _ %/ (LI;—ZJ-‘F(d—Q)/Q(I)) efttn72]+(d72)/2dt
) e 0 :

and the L? norm of the Laguerre polynomials.
The orthogonal polynomials in #,¢(W*) are eigenfunctions of a second-order
differential operator: forn =0,1,2...,

d
(A—Zzix,-ai)Pz—ZnP vP e A (wh). (5.1.7)

1

This fact follows easily from the product structure of the basis (5.1.5) and the
differential equation satisfied by the Hermite polynomials (Subsection 1.4.1).
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. . d
5.1.4 Multiple Laguerre polynomials on R¢

These are orthogonal polynomials with respect to the weight function
W,f(x):xfl---xgdef‘x‘, K>—1, xeR%,
which is a product of Laguerre weight functions in one variable. The normaliza-

tion constant is g4 WE(x)dx =TI, T(x; + 1).
The multiple Laguerre polynomials defined by

Po(Wesx) = Loy (x1) Lo (xa), | =n, (5.1.8)

are polynomials that are orthogonal with respect to WX and, as shown in Theorem
5.1.1, the set {Py(WE) : || = n} is a mutually orthogonal basis for #,¢(Wk), and
it becomes an orthonormal basis if we replace Ly, by the orthonormal Laguerre
polynomials.

The orthogonal polynomials in 7#,¢(WL) are eigenfunctions of a second-order
differential operator. Forn =0,1,2,...,

d 32P d aP
ZX[W-FZ(]Q—F]—X[)%:—”P. (519)
i=1 i i=1 !

This fact follows from the product nature of (5.1.8) and the differential equation
satisfied by the Laguerre polynomials (Subsection 1.4.2).

5.2 Classical Orthogonal Polynomials on the Unit Ball

The classical orthogonal polynomials on the unit ball B¢ of R? are defined with
respect to the weight function

WEx) = (1—|x|H* 2 pu>-L xeB (5.2.1)
The normalization constant of Wf is given by

-2 T(u+h) | T(u+)
Ou1 T(u+3)0(5)  m2T(u+3%)

wi= (], Witd)

The value of wﬁ can be verified by the use of the polar coordinates x = rx/,
x' € 891 which leads to the formula

ﬂ@mz/ﬂf* f(rx)doo(x') dr (5.22)
B4 0 gd—1

and a beta integral. The polynomials P in #/¢ with respect to Wlf are eigenfunc-
tions of the second-order differential operator @“, that is,

PP = —(n+d)(n+2u—1)P, (5.2.3)
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where
9 )
= ;T (2/.1—1 +zix,aXi>.

This fact will be proved in Subsection 8.1.1. In the following we will give sev-
eral explicit bases of 7/¢ with respect to Wff . They all satisfy the differential
equation (5.2.3).

5.2.1 Orthonormal bases

We give two explicit orthonormal bases in this subsection.

First orthonormal basis  Since the weight function Wf is rotationally invariant,
it has a basis given explicitly in terms of spherical polar coordinates, as in (5.1.3).

Proposition 5.2.1 For 0 < j <% and {Yé’_zj 1<v<ad j} an orthonormal
basis of %‘jfiz It the polynomials

P! (WEx) = (hj) PV )2 1y (), (5.2.4)

(cf. (5.1.2)) form an orthonormal basis of ¥, (W, ) the constant is given by

2 (#+ )j ( In—j(n— J+H+dTl)
(hjy”) - d+1 .

Ju+ 2 )nfj(n""'.u"" T)
Proof The orthogonality of the P}; follows easily from Theorem 5.1.2 and the
orthogonality of the Jacobi polynomials (Subsection 1.4.4). The constant, using
(5.2.2) and the orthonormality of the ¥, -/, comes from

1 . 2
(hﬁn)z = Wﬁ Oy_1 / {P<y71/2’"72]+<d72)/2)(2r2 —1)
: Jo

J
w 2= (g rz)u—1/2 dr,

which can be evaluated, upon changing the variable 272 — 1 to ¢, from the L?

norm of the Jacobi polynomial P,§“*”> (¢) and the properties of the Pochhammer

symbol. O
Second orthonormal basis We need the following notation. Associated with
X=(X1,...,%4) € R4, for each J define by x; a truncation of x, namely

x9 =0, Xj=(x1,...,x;), 1<j<d.
Note that x; = x. Associated with & = (o, ..., ¢ty), define

ol = (),...,0q), 1<j<d, and a®tl:=0.
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Recall that C,? denotes the Gegenbauer polynomial associated with the weight
function (1 —x?)*~1/2 on [—1,1]; see Subsection 1.4.3.

Proposition 5.2.2 Let u > 0. For oo € N&, the polynomials Py given by

d
N
PalWfi) = (ha) ™ 10~ I P)°C3 ( )
H ANV

where A; = W+ |/t + %, form an orthonormal basis of %ld(Wf); the
constants hgy are defined by

U+ D)o & (Wt 55 g 2+ 2|0 +d — ),

(ha)z = d+1 d— j+1 |
M+ 5 ) =i (u+ )i 045!

If w =0, the basis comes from limy_o .~ 'C}f (x) = %T,, (x) and the constant needs
to be modified accordingly.

Proof The orthonormality and the normalization constants can both be verified
by the use of the formula

1
= fo [ (o=l ) 1= s,
JBd=1.J-1

which follows from the simple change of variable x; — y+/1 — ||x4_1]||2. Using
this formula repeatedly to reduce the number of iterations of the integral, that is,
by reducing the dimension d by 1 at each step, we end up with

u

d 2
)20 T / CHMO)

Jj=

x (1 — 2l +Hd=j=1/2 4, 8o

/ Po,(W:x)Pg (W x) W7 (x) dx

where the last integral can be evaluated by using the normalization constant of
the Gegenbauer polynomials. O

5.2.2 Appell’s monic orthogonal and biorthogonal polynomials
The definition of these polynomials can be traced back to the work of Her-
mite, Didon, Appell, and Kampé de Fériet; see Appell and de Fériet [1926] and
Chapter XII, Vol. II, of Erdélyi er al. [1953]. There are two families of these
polynomials.
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Monic orthogonal Appell polynomials V;;, The first family of polynomials,
Vo, is defined by the generating function

(1=2{a,x)+[la|?) * V2= % a®V(x), (5.2.5)

d
oeNg

where a € B?. We prove two properties of Vj, in the following.

Proposition 5.2.3 The polynomials V, are orthogonal with respect to Wf
on B¢

Proof From the generating function of the Gegenbauer polynomials and (5.2.5),

(1—2(a,x) + [|al)#= @2 = 3 Ja)"chi 2 ((a/||al|, %))

n=0
Replacing a by at and comparing the coefficients of t" gives

lal"ch V2 (aflal|x) = Y, a®Va().

loxf=n

Hence, in order to prove that V,, is orthogonal to polynomials of lower degree, it
is sufficient to prove that

[ lalr e (af )P W () dx = 0

for all monomials x# with || < n— 1. Since W,f is rotation invariant, we
can assume that a = (0,...,0,c) without loss of generality, which leads to
Cﬁ‘+(d_1)/2(<a/||a\|,x>) = C#+(d_1)/2(xd); making the change of variables x; =

1 —x{% fori=1,...,d — 1, the above integral is equal to

/ L AN/ ) By 2 (BB 24D 2 gy

<[ = Ry 2y

If any B; for 1 <i <d — 1 is odd then the second integral is zero. If all §; for 1 <
i <d—1 are even then xg"(l _xfi)\ﬁ\/2—[3d/2 is a polynomial of degree |B| <n—1;
hence, the first integral is equal to zero by the orthogonality of the Gegenbauer

polynomials. O

Proposition 5.2.4 The polynomials V,, are constant multiples of monic orthog-
onal polynomials; more precisely,
Wk d—1

W@ZET-%EﬁMﬂ+mm, Reell .
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Proof Let A =+ (d —1)/2 in this proof. We use the multinomial and negative
binomial formulae to expand the generating function as follows:

(1*2<CWC>+||¢1||2)_/1:[1*01(2%1*al)*"'*61[1(21601*61[1)]_/1
= ﬁlm aP (2x) —an)Pt - (22 — ag)P
[
-y ﬁlﬁlz —BOv - (ZB)wa 1B v B
B Y

Therefore, upon making the change in summation indices f8; + % = o; and com-
paring the coefficients of a”* on both sides, we obtain the following explicit
formula for Vg (x):

_olal, az Ay a1+y1)71"'(_ad+’}/d)yd272\y\x72y
(e =7)'y! ’

from which the fact that V, is a constant multiple of a monic orthogonal
polynomial is evident. O

Moreover, using the formulae

(=D*(M)m and MR (=D (=m)a
(I=A—m); (m—k)! m!

= (-2),(152),

which can all be verified directly from the expression for the Pochhammer symbol
(a)p, given in Definition 1.1.3, we can rewrite the formula as

V() = 2o (u+ - 1)

(/’L)m—k =

as well as

ol 2
><F< o l-a o -3 1 1)
B 27 9 u ) ’X%7...’x3 ’
where 1 —a = (1—ay,...,1 — 0y) and Fp is the Lauricella hypergeometric series

of d variables defined in Section 1.2.

Biorthogonal Appell polynomials U, The second family of polynomials, Uy,
can be defined by the generating function

(1= (@) + al> (1= [Ix})] " = ¥ a®Un(x). (5.2.6)

d
aeNj

An alternative definition is given by the following Rodrigues-type formula.
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Proposition 5.2.5 The polynomials Uy, satisfy

Uax) = (=D)(2p) a
T2 (] 0!
olol

w (1= lxlI? —u+1/2

(1= [Pyl a1,

Proof Let (a,V) = Y% ,a;0/dx;, where V denotes the gradient operator. The
following formula can be easily verified by induction:

n n!2n—2j(7b)n7 j n—2j —n+j j
(@ V) (== % W«m (= [|x]2)>" a2
0<;j<n/2 : '

Putting b = n+ g — 1 and multiplying the above formula by (1 — x[|)~#+1/2
gives
(1= [e[[P) #4172 (a, V)" (1= [l 2ymre 12
S (A A )
= 2 (="

L{a,x)" =2 a2 (1 - ||x|2)’,
0<j<n/2 JHn=2j)t

where we have used (—n— @+ 3),—; = (=1)"7(j+ p + 3),—,;. However,
expanding the generating function shows that it is equal to

- Jlal|> (1 = [1x[[*) \ —+
(1— {a,x)) 2ﬂ(1+ (12_<a2x>)2 )
722 ,LJL;L])H 1%/ (@, x) (1 — [|x[|*)”.

i=0 j=0
Making use of the formula

(w);(2u+2j); = (W);2W)iva;  (2W)it2;

2u)2;  22(u+d);’

and setting i +2j = n, we obtain

[(1=a))? + flal (1 = [lx[)]

:owm4>
n=0 n'(u—*—%) 2"

niln!2n72j( .+nu+l)n7' n—2j i j
XOSJZS‘”/;_]) : ]'(;11—2])‘2 ]<a’x> 2]||d||2](1—|x||2)1>_

Comparing these formulae gives

1l T
= 3 T ) 2 = Py
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Consequently, comparing the coefficients of a% in the above formula and in
(5.2.6) finishes the proof. O

The most important property of the polynomials Uy, is that they are biorthogo-
nal to V. More precisely, the following result holds.

Proposition 5.2.6  The polynomials {Uy } and {Vy} are biorthogonal:

_ ot )
o +u+45 o

wh /B Va(x)Up (X)W, (x) dx o -

Proof Since the set {V} forms an orthogonal basis, we only need to consider
the case |B| > ||, which will also show that {Ug } is an orthogonal basis. Using
the Rodrigues formula and integration by parts,

ﬁém@%@W@w

2 1B
:Wﬁ ( .u)lod / ﬁ() ; Vo ()
2‘“‘(u+§)|a\a! B Oxyt - 0xy?

(1= Py et dx,

However, since V,, is a constant multiple of a monic orthogonal polynomial and
Bl = |od,
9Bl

PR SREW A 2+ 45) 4 B
1 d

from which we can invoke the formula for the normalization constant Wﬁ of Wff
to conclude that

Wi Que(u+ 45
/W@%@W@a: u i LY
B! Wal+p (M4 3)j0!
The constant can be simplifed using the formula for wﬁ. O

We note that the biorthogonality also shows that Uy, is an orthogonal polyno-
mial with respect to Wf. However, Uy, is not a monic orthogonal polynomial. To
see what Uy, is, we derive an explicit formula for it.

Proposition 5.2.7 The polynomial Uy, is given by

(W) ¥ (=1)Pl(—an)yp, o (Z0)apy oap

1= )P
T Dy (1= %)

Proof Let ¢ : R — R be a real differentiable function. Using the chain rule and
induction gives
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a" 2 _Wz] n—2; (=n)2j (n—j) (12
200 = X (e,

where ¢(’”) denotes the mth derivative of ¢. Hence, for a function @ : RY - R,
we have

ol o 5
——— P, x
ax(l)q “.axscd (( 1 ) d)( )
_alaly AT )2y - (028, o 2B Hap 2 2
=24y 22B1p] X (0¥ P®)(x1,...,x7),
B
where 9% P® denotes the partial derivative of (|| — |B|)th order of ®. In
particular, applying the formula to ®(x) = (1 —x; — - - - — xg)|*FH#=1/2 gives
glol

1 — |lxl2y el +u—1/2
St (1= 1P

= (=1)/120% (o 3) g (1= )2

(—l)lm(—a])zﬁl...(—ad)zﬁd oy "
* 5 2BIB1(+ 1) g XA ()

The stated formula follows from the Rodrigues—type formula for Uy,. [

Using the definition of the Lauricella hypergeometric series Fp (see Subsec-
tion 1.2.1), we can rewrite the above formula as

(2p4) ) x* al-o 11— |2 1—|x||2
Ua(x):¢F8<_7 R O el x| )

a! 272 7 2 T4
There are a great number of formulae for both Appell polynomials, V,, and Uy;
we refer to Appell and de Fériet [1926] and Erdélyi ez al. [1953].

5.2.3 Reproducing kernel with respect to Wlf on B¢

Let P,(W?:-,-) denote the reproducing kernel of ¥,/ (W?) as defined in (3.6.2).
This kernel satisfies a remarkable and concise formula.

Theorem 5.2.8 For u >0, x,y € B,

B. o n+)t 1 A
Pn(Wu vxvy)_cﬂ A llcﬂ (x7y)+t\/1—||x||2\/1—HyH2
x (1—12)*1ar, (5.2.7)

where A =+ and ¢y =T(u+3)/[v/aAT()].

In the case 4 = m/2 and m = 1,2,3,... this expression was established in
Corollary 4.3.6. For u > 0, the proof will appear as a special case of a more
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general result in Theorem 8.1.16. When u = 0, the formula for P(Wp;x,y) is
found in Corollary 4.2.9.

It is worth mentioning that the kernel P,l(Wf;x, y) is rotation invariant, in the
sense that P, (W7 x,y) = P,(W};x0,yo) for each rotation o; this is obviously a
consequence of the rotation invariance of Wf .

For the constant weight W; ;(x) = 1, there is another formula for the reproduc-
ing kernel. Let P(x,y) = P, (W, 2;x,y).

Theorem 5.2.9 Forn=1,2,3,...,

n+4d 2 2
Pu(ry) = 52 [ G (&) (E0)) dad). (5.28)
2
Proof Using the explicit orthonormal basis of P} := P]'.'ﬂ W /2) in Proposi-
tion 5.2.1, with it = 5, we obtain on the one hand
P,(x,y)= Y Z (5.2.9)
0<2j<n B

On the other hand, by (5.2.7) we have for £ € §d-1

Pn(x,é)zﬂCg/z(@,é)L Eest! xeB (5.2.10)

[S1SW

Furthermore, when restricted to S9!, Pj’.’ B becomes a spherical harmonic,

jnﬁ(é) = Han,n—Zk(€)7 5 S Sdi],

where, using the fact that Pk(o’b) (1) = 1, we see that the formula

1 (0n—2j+(d—2)/2 n+4
Hy = (hj) ' P22 ) = 22
2

is independent of j. Consequently, integrating over S¢~! we obtain

n+d
5} /’5ﬂ B’

~1 —

o] /S[F1 Prg(E)P) 5 (E)der(&) = H2S; 83 5y =
Multlplymg the above equation by P” ﬁ(x) and P’} ﬁ( y) and summing over all
J,i',B,B’, the right-hand side becomes P,(x,y), by (5.2.9), whereas the left-
hand side becomes, by (5.2.9) and (5.2.10), the right-hand side of (5.2.8). This
completes the proof. O
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5.3 Classical Orthogonal Polynomials on the Simplex
Let T¢ denote the simplex in the Euclidean space RY,
Td:{xERd ix1 20,04 >0,1—x;—---—x45 >0}

For d = 2, the region T2 is the triangle with vertices at (0,0), (0,1) and (1,0).
The classical orthogonal polynomials on 7¢ are orthogonal with respect to the
weight function

W (x) = xR V22 et 12 g s L (5.3.1)

where x € T¢ and |x| = x| + - - - + x4 is the usual £! norm for x € T¢. Upon using
the formula

f /Td 1/ F(Xa—1, (1= [xg-1])y) dy(1 = [xg-1])dxg—1, (5.3.2)

which follows from the change of variables x4 — y(1 — |x4_1|), we see that the
normalization constant w’. of W[ is given by the Dirichlet integral

Wl = /delxlfl/Z,,,derl/%l )12 gy

_ T(k+3) - T(kgs1 + 5)
T(Jx|+ 41 7

(5.3.3)

where |k| = ki + -+ + Kkz.1. The orthogonal polynomials in %4(W[) are
eigenfunctions of a second-order differential operator. Forn =0,1,2,...,

d 0%p 22p
xi(l=xj)=— —2 XiX
z; ( )8 7 1<i<z;‘<d ! 0xi0x;
S 1 d+1 P
+ 2 [(k+3) = (Il + ) 6] 5= = AP, (53.4)

where A, = —n(n+ |k| + %5') and k; > —4 for 1 <i < d+ 1. The proof of
equation (5.3.4) will be given in Subsection 8.2.1. For this weight function, we
give three explicit orthogonal bases.

An orthonormal basis To state this basis we use the notation of x; and o/ as
in the second orthonormal basis on B¢ (Subsection 5.2.1). For k = (x1,...,%g41)

and 0 < j<d+1,let k/ := (kj,...,Kqs1)-

Proposition 5.3.1 For a € N¢ and |ot| = n, the polynomials

Pa(W]2) 1H1—|x, P (25 ),

1—[xj-1]
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where aj =2|o/ 1| +|K/ T + =L and b; = Kj— 3, form an orthonormal basis
of ”//,ld (WI), in which the constant is given by

1 d (aj+b;j +1)2a (a]+l) (b +1)

M+ 500 B @by Dagy!

(ha)z =

Proof Using the second expression of the Jacobi polynomial as a hypergeometric
function in Proposition 1.4.14, we see that P, (W[ ;x) is indeed a polynomial of
degree || in x. To verify the orthogonality and the value of the constant we use
the formula (5.3.2), which allows us to reduce the integral over 7% to a multiple
of d integrals of one variable, so that the orthogonality will follow from that of
the Jacobi polynomials. Indeed, using the formula (5.3.2) repeatedly gives

wE [ PaWE0 R (WEWE (x)d

d 1 o
:wﬁ(ha)*]'[/o [Pg;]’b’)(Zt— D2(1—1)%1% dt 8 p.

Hence, using the norm for the Jacobi polynomials, we obtain that

4 T(aj+1)I(bj+1) (aj+1)a;(bj+ 1)a;(aj+bj+0;+1)

W )
C(aj+bj+2) (aj+bj+2)a;(aj+bj+2a;+1)0;!

j=1

which simplifies, using ag = K441, aj—1+1=a;+b;+20a;+2, and a; + by +
201 42 = |k|+2|ar| + 4EL, to the stated formula. O

Next we give two bases that are biorthogonal, each of which has its own dis-
tinguished feature. The first is the monic orthogonal basis and the second is given

by the Rodrigues formulas.

Monic orthogonal basis For o € Nd and |o/| = n, we define

T () — 1)r+18l Ve (K1 + 43 Iz D)t B N
Vel = 2 | H( )( Ki+ 1), ’

0<B<a (x| +4 = )n+\a\

where B < oo means 1 < «y,...,Bs < ay.

Proposition 5.3.2 For VI as defined above, the set {VI : |a| = n} forms a
monic orthogonal basis of ¥, with respect to W\

Proof The fact that VI (x) equals x* plus a polynomial of lower degree is evident.
We will prove that V' is orthogonal to polynomials of lower degree with respect
to W, for which a different basis for the space T1¢ is used. Let

Xy(x) =" oyt (1= [ o1,



152 Examples of Orthogonal Polynomials in Several Variables

where y € N¢™!. Then the X, with |y| = n form a basis of I1¢; that is,
¢ = span{x® : o € N, |t| < n} = span{Xy: y € N&™ |y| = n}.

This can be seen easily from applying the binomial theorem to (1 — |x|)%+1. Thus,
to prove the orthogonality of VI it is sufficient to show that V. is orthogonal to
Xy forall ye Ng“ satisfying |y| = n— 1. Using (5.3.3) and the formula for V[,
it follows for |y| =n— 1 and |ot| = n that

W [ VE X W (o
d 41 d—1
=2 ((—1)”*‘3]‘[ (O‘f) (Kl+%)°‘i (|K|+d3])n+|/3|
pa =t \Bi/ (ki 2)p; (1K + G )nsjoq
LT+ 1 Kt DT (s + Kagr +3)
T(71+1BI+ x|+ 55)
_ (_l)nﬂiilr(oc,»Jr K+ DT+ DT (Jagr + kg +2)
C(2n+ ||+ 4L

A2

i=1 f=0 Yi

A Chu—Vandermonde sum shows that, for m,n € Nand a € R,

SR - G
(=D"(=@m(=m)n _ (=m)n
m!(1+a—m), m(1+a)y—m

In particular, the sum becomes zero, because of the factor (—m),, if m < n. Since
|Y] = n— 1, there is at least one i for which ¥; < o; consequently, with n = a;,
m=7Yanda="7y+K — % we conclude that V' is orthogonal to Xy. O

Further results on VI, including a generating function and its > norm, will be
given in Subsection 8.2.3.

Rodrigues formula and biorthogonal basis It is easy to state another basis,
UL, that is biorthogonal to the basis V. Indeed, we can define UL by

UG () = oy 2 S )12

olel —1 —1 _
mei’”“‘ P2 2 () ]l =12,
x o x
1 d

These are analogues of the Rodrigues formula for orthogonal polynomials on the
simplex. For d = 2 and up to a constant multiple, the U are also called Appell
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polynomials; see Appell and de Fériet [1926] and Chapter XII, Vol. II, of Erdélyi
etal [1953].

Proposition 5.3.3 The polynomials UL are orthogonal polynomials and they

are biorthogonal to the polynomials V. :

H?:1(Ki + %)ai(’(dﬂ + %)W
(1%l + 41

/T VI QUL W] (x) de = ol 8, 5.

Proof 1t is evident from the definition that UL is a polynomial of degree n.
Integrating by parts leads to

wE [ VUL WT () ax

olel d e
_ T oj+Ki—1/2 o] +xg41—1/2
=w Vg (x I Ix- I—|x d+1 dx.
K/Td <8x‘f‘1...ax§" Bl i =k
Since VBT is an orthogonal polynomial with respect to W/, the integral on the

left-hand side is zero for || > |ot|. For |B] < |a| the fact that VﬁT is a monic
orthogonal polynomial gives

gl r
mVﬁ ()C) =aq! 605713,

from which the stated formula follows. The fact that the UL are biorthogonal to
VﬁT shows that they are orthogonal polynomials with respect to W,I'. O

Reproducing kernel with respect to Wy on 7¢ Let P,(W/[;-,-) denote the
reproducing kernel of #4(Wy) as defined in (3.6.2). This kernel satisfies a
remarkable and concise formula.

Theorem 5.3.4 Fork; >0,1<i<d, x,y€ T and X := ||+ %

P, (Wsx,y) :—(ZHA’Z)M’()%K (5.3.5)
Ac(3)n
+
(A—1/2,~1/2) K',fl
8 /[71,1]:1“ Ba (22(x,3,1)" = 1) 1:[ d,

where 2(x,y,1) = /X111 + -+ /XaVata + /1= [x[\/T—=Vtar1 and [ex] ' =
Ji1 qjen H;-ijll (1 —t2)<i~1ds. If some &; = O then the formula holds under the
limit relation (1.5.1).

This theorem will be proved in Subsection 8.2.2. We note that when k¥ = 0 we
have the limiting case P(Wp;x,y), which was given in Corollary 4.4.10.
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5.4 Orthogonal Polynomials via Symmetric Functions

We now present a non-classical example, two families of orthogonal polynomials
derived from symmetric polynomials.

5.4.1 Two general families of orthogonal polynomials

These orthogonal polynomials are derived from symmetric and antisymmetric
polynomials. Although they are orthogonal with respect to unusual measures,
they share an interesting property, that of having the largest number of distinct
common zeros, which will be discussed in the next subsection.

We recall some basic facts about symmetric polynomials. A polynomial f € IT¢
is called symmetric if f is invariant under any permutation of its variables. The
elementary symmetric polynomials in HZ are given by

ex = er(x1,...,xq) = Z Xiy - Xig k=1,2,....d,
1§i1<.‘.<ik§d

and they satisfy the generating function

d
H 1+rx;)= Zek X1, - k.
i=1

The polynomials e; form a linear basis for the subspace of symmetric polynomi-
als. Hence, any symmetric polynomial f can be uniquely represented in terms of
elementary symmetric polynomials. Consider the mapping

w: x=(x1,...,x3) — (e1(x),...,eq(x)), (54.1)

where the ¢; are elementary symmetric polynomials in x, which is one-to-one on
theregion S = {x cR?: x; <xp <--- < X4 }; denote the image of S by R, that is,

R={ucR?: u=u(x), x; <xy <--- <xg, x € R?}. (5.4.2)

Let D(x) denote the Jacobian of this mapping. We claim that

D(x):det{(gj;)i’j]z I —x). (5.4.3)

1<i<j<d

To prove this equation we use the following identities, which follow from the
definition of the elementary symmetric functions:

8ek

S =1 (X1 X1 X 1y -+, Xd)
8xj
and

ek*l(-xlw"7-xj—l7xj+17"'axd) —ek,](x27...,.x¢1)

= (X1 —xj)ek_z(xz,...,xj,l,xjH, e ,xd).
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Subtracting the first column from the other columns in the determinant, using the
above two identities and taking out the factors, we obtain

d

D(x) = H()q —x,-)D(xz, e ,xdfl),

i=2
from which the formula (5.4.3) follows.
Since the square of the Jacobian is a symmetric polynomial in x, under the
mapping (5.4.1), it becomes a polynomial in u, which we denote by A (), that is,

Aw = ] (xi —x)%, ueR.
1<i<j<d

Let du be a nonnegative measure on R. Define a measure v on R as the image
of the product measure du(x) = du(xy)---du(x,) under the mapping (5.4.1),
that is,

dv(u) =du(xy)---du(xg), u€eR.
Our examples are orthogonal polynomials with respect to the measures
[A()]'?dv  and  [A)]"/?dv,
denoted by P'/? and P ~1/2, respectively.
The explicit formulae for these polynomials are given below. Let {p,} be

orthonormal polynomials with respect to di on R. For o = (a,...,0), n >
ap>--- >0y > 0andn € Ny, set
—~1/2
Py / (u) = Z Do, (xﬁl)---pad (xﬁd), u€ER, 5.4.4)
BeSq
where S; denotes the symmetric group on d objects, so that the summation is
performed over all permutations f3 of {1,2,...,d}. By the fundamental theorem

on symmetric functions, Pg’fl/ “isa polynomial in u of degree n.
We now define the second set of orthogonal polynomials. For oo = (et ..., 0),
0<og <---<oay=nandn € Ny, set

. E™(x n
P2 (0) = D“(SC)), where  Ef(x) = det(pora—i(x)))¢ oy, (5.4.5)

Since Eg(x) vanishes for x; = x;, i # j, and since D(x) = [1j<;cj<q (x;i —X;) is
a factor of E}(x), permutation of the variables in E, and D can only change the
signs. This happens to both E. and D, so EJ, /D is a symmetric polynomial. Since
the polynomial D is of degree d — 1 in each of its variables x; and the polynomial
El is of degree n+d — 1 in x;, it follows that E. /D is a symmetric polynomial
of degree n in x; or, equivalently, a polynomial in u of degree n.

Let us now verify that the systems {ch'*l/ 2} and {ng]/ 2} are orthogonal on
R with respect to A~'2dv and A'/2dv, respectively. For any polynomial f in u,
that is, for any symmetric polynomial in x, changing variables gives
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[l avi) = [ ra)aue =4 [ 7)),

and, similarly,
/ F@)[Au)]Y?dv (u) / f(u du(x).

In particular, it follows that

[P P ry A @) P avi)
R

=%@%“Www%mwmw@.

From the last expression and (5.4.4) we see that the polynomials of the system
{Py,~ 1/ 2} are mutually orthogonal: the above integral is nonzero only whenn =m
and o = fB. Moreover, if o, ..., o, 1 <d' < d, are the distinct elements in o,
and m; is the number of occurrences of (xi’ , then

/R[P&””z(u)]2[A(u)r1/2dv(u) Loy

Hence, {l/w/ml Peemg 'P"’fl/z} forms an orthonormal family on R.

Similarly, for the system { P’ 1/2}

i1,1/2u m,1/2 /2 ”
[ ra a0y ] v = [ E20ER (@) du)
:a@%@%mww

from which we can proceed as above. The system {P;’l/ 2} is orthonormal.
In the case d = 2, the mapping (5.4.1) takes the form

u=(u,uz): w=x+y, up=xy,

and the function A takes the form A(uj,uz) = (x —y)? = u? — 4u. The orthog-
onal polynomials (5.4.4) are exactly the Koornwinder polynomials, discussed in
Section 2.7, on the domain bounded by two lines and a parabola.

5.4.2 Common zeros and Gaussian cubature formulae

The orthogonal polynomials with respect to A*1/2 have the maximal number of

(£1/2
common Zeros. Let]P’ /2)

[A(u)]F'/2dv, respectively.

denote orthogonal bases of degree n with respect to

Theorem 5.4.1 The orthogonal polynomials in ]P’f,l/ D or ]P’Sfl/ 2 with respect to

the measures [A(u)]'/2dv or [A(u)]~'/?dv, respectively, have dimT1¢ common
zZeros.
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Proof Let p,(x) be orthonormal polynomials with respect to du(x) on R, as in
Subsection 5.4.1. Let {x;,}}_, be the zeros of p,, ordered by xj, < - < X, .
From the formula (5.4.4) it follows that Pg’_l/ 2 vanishes on all Uq,n, Which is
the image of (xg, ,...,Xq,,,) under the map (5.4.1), where the x4, , are the
zeros of p,. Using the symmetric mapping (5.4.1) and taking into account the
restriction x; < xp < --- < x4 in the definition of R, we see that the num-
ber of distinct common zeros of ]P’Sl_l/ 2 s equal to the cardinality of the set
{yeN?:0<y <---<y <n—1}. Denote the cardinality by N,_; 4. It follows
by setting y; = k that

n—1

n—1
Nita= 2 #yeN iy < <y <kb =Y Neaot,
k=0

which is the same as the equation diml'[ﬁ_1 = er, and induction shows that
Ny = dimI1¢_,. Therefore, P12 has dim I1¢_, distinct common zeros.
Similarly, let # ,+4—1 be the zeros of the orthogonal polynomial p,4—1. From
the formula (5.4.5) it follows that Pg’l/ 2 vanishes on all uy,, which are the
images of (ty, y+d—1,- -ty nt+d—1) under the mappings (5.4.1). The number of
distinct common zeros of IP’,I/ s equal to the cardinality of the set {y € N¢: 0 <
Ya < -+ <y <n+d—2}, which is easily seen to be equal to the cardinality

of the set defined in the previous paragraph. Hence, ]P’,Sl/ %) has dim Hﬁ,l distinct
common zeros. O

Together with Theorem 3.8.4, this shows that Gaussian cubature formulae exist
for all weight functions A (1)*'/2dv. Moreover, we can write down the cubature
formulae explicitly. Let us recall from Subsection 5.4.1 that p, is the nth orthog-
onal polynomial with respect to di on R and that the set {x; ,}}_, contains the
zeros of p,. The Gaussian quadrature formula with respect to du takes the form

n
JRICETED WICHV NS (5.4.6)
k=1
Let uy,, denote the image of xy, = (xy, n,...,Xy,») under the map (5.4.1).

Theorem 5.4.2 Using the notation in Subsection 5.4.1, both the measures
[A(u)]'/?dv and [A(u)]~'/?dv admit Gaussian cubature formulae. Moreover; the
formulae of degree 2n — 1 take the form

1 no N Yd—1
JI@BE@ Pave = 3 3 X A lwa)

n=lp=1 y=I

and
ntd—1n—-1  Y-1—1

Jr@B@ v =" YT Y A i),

n=1 p=I1 Ya=1
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where
Am . Amdl
-1/2 i Yol 1 1/2
Ayn' ™ = il my! and Ayn = J(xYn) A Ay
and where, for a given multi-index y € Ng, Y'1,...,Y & are its distinct elements
and my,...,my their respective multiplicities.

Proof We need only determine the weights {A,lx/. ﬁ} and {A&}n/ 2

formulae.
First notice that by changing variables the first cubature formula can be
rewritten as

} in the two

1 LU 1/2 ¢
e =3 3 S A )
n=lp=1py=I1
which is exact for symmetric polynomials f whose degree in each variable is at
most 2n — 1. Let £; , be the polynomial of degree n — 1 uniquely determined by

Ek.n(xj’n) = 51(11‘, 1<j<n Let

x) = Z fal ,n(x[il ) e 'eocd,n(xﬁd)a
BeSq
which is symmetric with degree n — 1 in each of its variables. There are d! sum-
mands in the definition of f. On the one hand we can write the integration on the
left-hand side of the first cubature formula as a sum of products of one-variable

integrals. Using (5.4.6) the integral is equal to Ay, - - Ag,,». On the other hand,
1/2

the right-hand side of the first cubature formula equals m;!---mgy!Ag, ~, since
only those terms with ¥ = o count.
In the same way as above, the second cubature formula can be rewritten as

1 nt+d—1y—-1  Ya—1—

1/2
d' f< ) 2 z 2 A / f XY”
R4
n=1 p=I1 Ya=
which is exact for symmetric polynomials f whose degree in each variable is at
most n— 1. Now let

£(x) = [det(Co, (x)d =) >/ D(x)?

which is a symmetric polynomial with degree 2n — 1 in each of its vari-
ables. Clearly, the right-hand side of the second cubature formula is simply
A(lx/ z /D(x.n)?, while, using the Lagrange expansion of a determinant,

det (goci (xj))zd,jzl = ﬁz Slgn(B) eOtl (xﬁ1 ) o '806{1 (xﬂd)v
=y

we see that the left-hand side of the formula is equal to la. e Al ,.n» Which

proves the theorem. O
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5.5 Chebyshev Polynomials of Type .<7;

The Chebyshev polynomials of type 27; are orthogonal polynomials derived from
orthogonal exponential functions that are invariant under the reflection group <7,
just as the Chebyshev polynomials are derived from e’® 4+ e~ which is invari-
ant or skew-invariant under Z,. They are the d-variable extension of the second
family of Koornwinder polynomials, discussed in Section 2.9.

The space R? can be identified with the hyperplane

RS = {te R ity 4o 4140 =0} CRITL

In this section we shall adopt the convention of using a bold letter, such as
t=(11,...,14+1), to denote the homogeneous coordinates in Rl‘fl“ that satisfy
t1 + -+ +1t441 = 0. The root lattice of the group <7; is generated by reflections
0;;j, defined by, in homogeneous coordinates,

<t,e,-,j>
(€i i)
This group can be identified with the symmetric group of d + 1 elements. The
fundamental domain Q of <7, is defined by

tGl‘j =t-2 e,-,j:t—(ti—tj)ei,j, wheree,-yj =ei—ej.

Q:{teRﬁl:—lgn—I,g], 1§i<j§d+l},

which is the domain that tiles R%,"" under A, in the sense that

Y xa(t+k)=1, for almost all t € R4 (5.5.1)
kez4H

The dual lattice of Z¢;™" is given by {k/(d +1) : k € H}, where
H:={kecZ ™ NR! i ky=--=kyy modd+1}.

There is a close relation between tiling and exponential functions. We define the
exponential functions

27
= = kT k € H.
oult) em<wH Q, e

It is easy to see that these functions are periodic in the sense that ¢k (t) = ¢ (t+j)
Vj € Z4+ NRYEL. Furthermore, they are orthogonal:

1 ' —
g KGOS N (552)

This orthogonality can be deduced by taking the Fourier transform of (5.5.1) and
using the Poisson summation formula. For d = 2 the orthogonality is verified
directly in Proposition 2.9.1. However, the choice of Q is different from that of
Section 2.9, which is the reason for the different normalization of the integral
over Q.
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Define the invariant operator 7T and the skew-invariant operator &2~ by

PEf(t) = Y, flto)+£ Y, f(to)],

(d+1 ocd/t oed~

where o/t (o7 7) contains even (odd) elements in 7. The invariant and skew-
invariant functions defined by, respectively,

TCk(t):= ZT¢(t), k€A, and  TSk(t):= %@‘q)k(t), ke A
are analogues of cosine and sine functions; here
AN={keH: ki >k > >ksi1},
AV i={keH:ky >k > - >kgi1}.

The fundamental domain Q of the .27, lattice is the union of congruent simplexes
under the action of the group 27;. We fix one simplex as

n={tergi0<h-n<11<i<j<d 1)

and define an inner product on A by

d—|—1 /
8= [ 00— [ 50
Proposition 5.5.1 Fork,j € A, we have
6kd 5k.l 0
TCk, TG TSk, T k,jeA
< Ck7 CJ> |kJZ{‘ and < Sk7 S; > (d+1) 5J S )

where |ka;| denotes the cardinality of the orbit keZy .= {ko : ¢ € Ay}.

Proof Both these relations follow from the fact that if f(t)g(t) is invariant under
2y then

g dt=(f.g
m o (.80
and from the orthogonality of ¢k (t) over Q. O

The Chebyshev polynomials of type .7; are images of the generalized cosine

and sine functions under the change of variables t — z, where z1, ..., z; denote the
first d elementary symmetric functions of 2™ ... e*™+1 and are defined by
d+1\ "
= ( ' ) Y emiesti (5.5.3)
TCNg 11
VI=k

where Ny = {1,2,...,d +1}. Let vF := ({d + 1 — k}¥, {—k}9+'*) with {r}*
means that ¢ is repeated k times. Then v¥/(d+1), k = 1,2,....d, are
vertices of the simplex A and zx equals TCx(t), as can be seen from
(vi)Tt = (d+1)(t; +--- + 1), by the homogeneity of t. Thus TCy is a symmetric
polynomial in e*™1 ... e?™"d+1 and hence a polynomial in z1, ... ,z4. For TSy we
need the following lemma:
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Lemma 5.5.2 Let
v <d<d+1) (d-2)d+1)  (2-d)(d+1) —d(d—i—l))'

2 2 T 2 ’ 2
Then
TSy (t) = @z sinz(ty —1y). (5.5.4)
@+ Svzan

Proof Let B :=(d,d—1,...,1,0) € Nd*! Then

i
exp <d—7|fll v t) =exp[—nid(t; + - +1441)]exp(2nif - t) = exp(27mif - t).

Using the Vandermonde determinant (see, for example, p. 40 of Macdon-
ald [1992]),

z p(o det( d+1- ]>1§i,j§d+1: H (% —x;)

0ES 41 1<i<j<d+1

and setting x; = e2™itj we obtain

2ni 1 i i
o (t)= plo ( v t> ( o _e2lmv)
Sy |g| o_; d+1 (d+ 1) 1</J,<1_[V<d+1
1 ( it int )
elMu—v _ olftly—p s
(d+1) ]<,u<1_[v<d+l

where the second equality follows from # 4 --- +#;4; = 0; from this we
have (5.5.4). O

The same argument that proves (5.5.4) also shows that

TSk (1) = det( Aj +B) VK € A,
1<i,j<d+1
where x; = €™ and A := (ky — kg 1,k2 —kai1,- ., kq—kai1,0). Since A € A is
a partition, TSk o (t) is divisible by TSye in the ring Z[x|,...,x4] (cf. p. 40 of
Macdonald [1995]) and the quotient

$3 (X1, yXg) = TSkpye () /TSye (1)

is a symmetric polynomial in xi,...,x4, which is the Schur function in the
variables xj,...,x; corresponding to the partition A. In particular, s, is a poly-
nomial in the elementary symmetric polynomials z;,...,z4; more precisely, it is
a polynomial in z of degree (k; —kg441)/(d + 1), as shown by formula (3.5) in
Macdonald [1995]. This is our analogue of the Chebyshev polynomials of the
second kind.
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Definition 5.5.3 Define the index mapping ¢ : A — Ng by

ki — kit .
= oK) i= ——— 1<i<d. 5.
o; = o;(k) FEREE <i<d (5.5.5)
Under the change of variables t — z = (zy,...,2) in (5.5.3), define
TSkve (t)
Ta(Z) = TCk(t) and Uoc(Z) = #ov(t), o e Ng

The polynomials Ty (z) and Uy (z) are called the Chebyshev polynomials type <7,
of the first and the second kind, respectively.

The polynomials T, and Uy, are of degree || in z. They are analogues of the
classical Chebyshev polynomials of the first kind and the second kind, respec-
tively. In particular, we shall show that they are respectively orthogonal on the
domain A*, the image of A under t — z. We need the Jacobian of the change of
variables. Let us define

wx) =wx(t) =[] sin® 7r(ty —ty)

I<p<v<d+1

under this change of variables.

Lemma 5.5.4 The Jacobian of the change of variables t — x is given by

2(z1,22,...,24) % 2mi
det —————= = |sin 7ty —1y)].
d(t1,12,. -, 1a) /g (i 1§/,L<l_[v§d+1

Proof Regarding #1,1,,...,t;41 as independent variables, one sees that

azk . 2mi

th - (d+1

Q2 Sverty
k ) JEIEN 41, 1|=k

For each fixed j, let N denote the set of N,, C {j} and split I C N, into two
parts, one containing {j,d + 1} and the other not. We then obtain, after canceling
the common factor,

Iz Jn _ 2xi v B 3 2T Ser iy
I Ot (U | e U}
jeleNY =k av1ereNi 1=k
2T o , .
_ 2mit; 2Tty 2WiYyerty
=@ (e™i—e ) Z e .
k 1N r)=k—1

Hence, setting ff.l_k =3 e?™2ver’v and defining the matrix F; :=

(fjd,k)lgj,kgd’ we have

1N |r=k—1
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denzania) _pp 20

At .. sta) (d;:l) j=1

det (2™l — e?Mla+1) det Fy.
By definition fj‘.{l = 1; splitting NU} into a part containing d and a part not
containing d, it follows that
f]{%k *fjk —_ (e2ﬂi1‘d 7627[“-/) z ezn’izveltv
1N j1|=k—2

__ (2Tt 2rit;\ pd—1

= (™ —e j)fj,kfh
which allows us to use induction and show that

detFy = [ (¥ —e*™d)detFyy=---
1<u<d-1

_ H ( ezmzy _ ezmzv ) )

1<u<v<d

The use of (5.5.4) now proves the lemma. O

From the homogeneity of t, the z; in (5.5.3) satisfy zx = zz+1—«. Hence, we can
define real coordinates xi,...,x; by
 ZktZavi-k Zk — Zd+1—k dJ
= N b

Xk Y xd-s—l—k:T for ISkSLE

and we define x4, 1)/2 = % Z(4+1)/2 When d is odd. Instead of making the change

of variables t — z, we consider t — x of R‘ZIH — R?. The image of the simplex
A\ under this mapping is

N = {x =x(t) eRI:teRET [ sinm(ti—t;) > O}.
1<i<j<d+1
For d = 2, this is the second family of Koornwinder polynomials, presented in
Section 2.9, and A* is the region bounded by the hypercycloid.
The Chebyshev polynomials are orthogonal with respect to the weight func-
tions W_ s, and Wy 5, respectively, on A", where

. 2
Wo(z):= [ Isinm(ty —1,)]**
I<u<v<d+l
We will need the cases o = —% and o = % of the weighted inner product

<f>g>wa = Cq /A* f(Z)@Wa(Z)dza

where ¢, is a normalization constant, ¢ := 1/ [, Wy (z) dz.

The orthogonality of Ty and Uy, respectively, then follows from the orthog-
onality of TCkx and TSk with the change of variables. More precisely,
Proposition 5.5.1 leads to the following theorem:



164 Examples of Orthogonal Polynomials in Several Variables
Theorem 5.5.5 The polynomials T,, and U, are orthogonal polynomials with
respect to W_y j, and Wy 5, respectively, and

Ou.p
Ty, T, = :
o Tsr2 = f

Ou,
and <UocaUB>W1/2: (d+1)!

for o, B € N, where k is defined by e = o(K).

Both Ty(z) and Ugy(z) are polynomials of degree |ot| = o + -+ + 0y in z.
Moreover, they both satisfy a simple recursion relation.

Theorem 5.5.6 Let P, denote either Ty, or Uy. Then

Pa(2) = Pogy 1n0q (2); @ €N, (5.5.6)
and P, satisfies the recursion relation
d+1
< , >z,-Pa (D)= Poraj) aeNd, (5.5.7)
! jevie

in which the components of a(j), j € v'.<7y, have values in {—1,0,1}, Uy (z) =0
whenever o has a component o; = —1 and

To(z) =1, Tg(2) =2z, 1<k<d,

d+1
Uo(z) =1, ng(z)=< ' >zk, 1<k<d.

Proof The relation (5.5.6) follows readily from the fact that —(k; —k;) =k; —k;
and (5.5.5). For a proof of the recursion relations we need

1

TG (H)TCk(t) = 7 Y TCiijs(t), jkeA, (5.5.8)
ocedy
1 .
TG () TSk(t) = 7 Y TSkijs(t), jkeA, (5.5.9)
ocaly

which follow, using simple computation, from the definitions of TCy and TSk.
The relation (5.5.7) follows immediately from (5.5.8) and (5.5.9). Further, using
(5.5.9) it is not difficult to verify that

_ k{(d+1-k)!

ZkTSvo (t) = WTSVOJFVA (t), 1 S k S d,

from which the values of Fy and P, are obtained readily. If o has a component
o; = —1 then, by (5.5.5), ki(a) = kiy1(a) — (d+1). A quick computation shows
that then k;(or) +v§ = ki1 (&) 4+ V7, |, which implies that k 4+ v° € JA, so that
TSkive(t) =0and Uy(z) = 0. O

By (5.5.6) together with z; = z4_;4; we can derive a sequence of real
orthogonal polynomials from either {7y} or {Uq }.
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5.6 Sobolev Orthogonal Polynomials on the Unit Ball

Sobolev orthogonal polynomials are orthogonal with respect to an inner prod-
uct that involves derivatives. In this section we consider two types of Sobolev
orthogonal polynomials on the unit ball BY.

5.6.1 Sobolev orthogonal polynomials defined via the gradient operator

In this subsection we consider the inner product defined by

Favi= 2 [ Vi) Ve@aer = [ Wwaow), 661
Oy B4 Oy . gd—1
where A is a fixed positive number and x - y stands for the inner product of vectors
x and y. Since the positive definiteness of the bilinear form (5.6.1) can be easily
verified, it is an inner product and consequently polynomials orthogonal with
respect to (f,g)y exist. Let % (V) denote the space of orthogonal polynomials
of degree n with respect to (5.6.1).
In analogy to (5.2.4), a basis of #,¢(V) can be given in terms of polynomials
of the form

n @) =g 2P - Yy (), 0<2j<n, (5.62)

where {Y; 2.o<v< ad i}, with ad := dim.#2¢, is an orthonormal basis of
. .

Sy

lemma.

and g, is a polynomial of degree j in one variable. We need the following

Lemma 5.6.1 Ler Q;?’V be defined as above. Then

A[(1= X124 @)] = 4(Fpaj) (277 = DV (x),
where A is the Laplacian operator, B =n—2j+ % and
(7p4i)(s) = (1=5°)d(s) +[B— 1= (B +3)sld(s) = (B+1);(s)-
Proof Using spherical polar coordinates, it follows from (4.1.4) and (4.1.5) that
A[(1= X)€% ()] = A (1 = )g; 2 = 1)/ 2y ()
=47 42 (1- ) g (2" — 1)

+2((B+1) = (B+3)r*)gj(2r* — 1)
~(B+1)g; (2 1] vy V).

Setting s — 21> — 1 gives the stated result. U

It is interesting that A does not appear in the (O
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Theorem 5.6.2 For0< j<n/2, let {Yf_zj 1<v< ad L .} be an orthonormal
basis of %”d 2; Then a mutually orthogonal basis { 0<j<5,1<v<

a,_ 2j}for“)’/ (V) is given by

QO V(%) =17 (%),

; (5.6.3)
Q) = (1= [P B e 1)1y ()
for 0 < j <n/2. Furthermore, the norms of these polynomials are
A n U 71 2j2
<QO’V’ QO*V>V =ni+1, ( j,Van,v>V = ﬁl- (5.6.4)
n+=

Proof As in Proposition 5.2.1, we only need to prove the orthogonality. We start
with Green’s identity

[ Vi@ Vewac= [ j@1edo— [ o

where d/dr is the normal derivative, which coincides with the derivative in the
radial direction. The above identity can be used to rewrite the inner product

<'> '>V as

(F.ghy = f()[ d <>+g<>}dw— FAg)

Oy sd—1

First we consider the case j = 0, that is, the orthogonality of Qf , = Y;/. Setting
Jj =01n (5.2.4) shows that Y} is an orthogonal polynomial in “I/”d(Wf). Since
@)1 =0,

d n n—2j+(d— n—2j
an,v(x)|r=1=—2P}ll 2j+( 2)/2)(1)Yv ZJ(x/)

and AQ7, € 114, it follows from the above expression for (f,g)y that, for

m<n,j'>0and0§u§6m,2j,

n n n— A n m
(@6 Qu)y =281 = /S ) do) =o0.

Furthermore, using the fact that (d/dr)Y{(x)|,=1 = n¥Y(x’), the same considera-
tion shows that

1 / /
(08,08 v = Ant D) [ (W) d0() = (A +1)3,.

Next we consider Q' , for j > 1. In this case Q% ,(x)|,=1 = 0 since it contains the
2, which is zero on §?~!. Consequently, the first term in
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1
<Q;€,v7QTy>V

Sdl

01,) (230 + 01 ) ) dol)

" /Bd 0}, (9807, ()8

is zero. For the second term, we use Lemma 5.6.1 to derive a formula for A ’j’v
The formula in the lemma gives

8, @) =4 (P ) P -, B=n—2j+ 42

On the other hand, the differential equation satisfied by the Jacobi polynomial

becomes, for Pj(if3 ),

(1= —[1=B+B+B)sly + (=i +B+1)y=0,

which implies that (¢, ﬁP (1,B) Y(s) = —j(j+ ﬁ)Pl(ifj )(s). Consequently, denoting
by P; (WB x) the polynomials in (5.2.4) without their normalization constant,
we obtaln

AQ},(x) = —4j(j+B)PY (22 = 1Yy (x)
= —4j(n— +dT)P" 2 (Wisx). (5.6.5)

Hence, using the fact that Q7 (x) = (1 — [[x)|%) P IZH(W3/2;x), we derive from
(5.6.5) that

1,0 (080; () x
= = 452) [P (W) PR, (W i) (1= )
= —4jn—j+2) [ [P, W) (1= 1) 2B

Using the norm of P}, (Wf;x) computed in the proof of Proposition 5.2.1, we can
then verify (5.6.4) for j > 1. U

From the explicit form of the basis (5.6.3) it follows that Q" is related to
polynomials orthogonal with respect to W3 5 (x) = 1 — [[x[|. Tn fact we have

Gy () = (1= [l)PE, (Wi, =1,

which has already been used in the above proof. An immediate consequence is
the following corollary.

Corollary 5.6.3 Forn>1,

L(V) =27 @ (1= 5] 7L, (W ).
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Recall that the classical orthogonal polynomials in #,¢ (Wf ) are eigenfunctions
of a second-order differential operator &, for u > —%; see (5.2.3). Usng the
relation (5.6.5), we can deduce the following result.

Corollary 5.6.4 The polynomials P in ¥,(V) are eigenfunctions of D_, /2, and

D_1pP=—(n+d)(n—2)AP VPV (V).

5.6.2 Sobolev orthogonal polynomials defined via the Laplacian operator
We consider the inner product defined by
(f.8)a=aq /BdA[(l =[xl £ T AL(T = [lx]*)g (x)] d,

where a; = (4do;_1)~! so that (1,1), = 1. To see that it is an inner product, we
need to show only that {f,f), > 0 if f # 0. However, if A(1 — ||x||?)f(x) =0
then (1 — ||x||?)f(x) is a solution of the Dirichlet problem with zero boundary
condition for the Laplace operator on the unit ball, so that by the uniqueness of
the Dirichlet problem f must be the zero function. Let #,%(A) denote the space
of orthogonal polynomials of degree n with respect to (5.6.1).

As in the case of (-,-), a basis of #,7(A) can be given in terms of polynomials
of the form

RY,(x) == q; x> - 1)Yy ¥ (x), 0<2j<n, (5.6.6)
where {Y,/ Hio<v< ad i} with ad, := dim ¢, is an orthonormal basis of

%’j{’_z ; and g, is a polynomial of degree j in one variable. We need the following
lemma, in which /ﬁ is defined as in Lemma 5.6.1.

Lemma 5.6.5 Let B > —1. The polynomials p? defined by

=1, PP =01-9P0), j>1,

are orthogonal with respect to the inner product (f,g) p defined by

1
(f,8)p = /_l(fﬁf)(s)(fﬁg)(s)(l +5)Pds, B> —1.
Proof The three-term relation of the Jacobi polynomials gives

@By = 2 1P () — ipltB)
(=982 0) = 557 [+ DB () - P 6]

and the differential equation satisfied by P](l? )is

(1=s")"+[-14+B=B+B)shy +(j—D(j+B+1)y=0.
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Using these two facts, we easily deduce that
SCi+B+1) g5 [(1-9P2P(5)] = (4 1) /ﬁP@F)(s) — i 7P D)
=G+ (FG-DG+B+1) =B+ (s)
—jl=iG+B+2)— (B+DIPP(s)
—iG+ D [G+BP ()= (+B+ 1P ().

We need one more formula for the Jacobi polynomials (p. 782, formula (22.7.8)
in Abramowitz and Stegun [1970]):

2j+B+ 1P (s) = (j+ B+ )PP (5)— (j+ B)P (),

which implies immediately that
I [(1=9PPP )] =2i(+ )PP s).
Hence, for j, j/ > 1, we conclude that
b= [ [0 -9PP )] A [(1-9PED 0] (14 9Pas
=4j(j+1)j'(j/+1) /_ 1P;0’ﬁ)(s)P},0’ﬁ>(s)(1—|—s)ﬁds:0
whenever j # j'. Furthermore, for j > 1 we have
Whopp =20+ 1B +1) [ PP s)(1+9Pas=o,

since (75p0)(s) = (Fp1)(s) = —(B+1). 0
Theorem 5.6.6 A mutually orthogonal basis for V2 (A) is given by

Ro,v (x) = Yy (x),

(2,n=2j+(d—2)/2) y,n—2j .
R, () = (1— [xP)PRy 22y <<

(5.6.7)

where {Y"" % 1 < v < 0, 2;}is an orthonormal basis of 7%, .. Furthermore
v J n—2j

2n+d 872(j+1)2
,R , R ,,R" T
< 0,v > d < A% /v> d(n—i—%)

(5.6.8)

Proof First we show that R} |, € 74(A). Let p? be defined as in the previous

Pri ith Br =k+(d—2)/2. Using (5.2.2), Lemma 5.6.1 and
n—2j

lemma. Setg; := p;

the orthonormality of ¥;, ~/, we obtain
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/ 1 /! e
<R?,vvR'}',v/>A :év,v’an—Zj,n’—Zj’@ A FAH2(n=2j)~142

x (/ﬁufzjqj)(zrz - 1)}2(//3,/72]%/)(2”2 —1)dr.

The change of variable r — %(1 +5) shows then that

/ 1
(R}, Ry yi)a=6yy 6n72j,n’72j’m(‘]jaqj’)ﬂn,zjv (5.6.9)

which proves the orthogonality by Lemma 5.6.5. To compute the norm of O ,,
we use the fact that

A[(1 = %P7 ()] = =2d¥3 (x) = 4(x, V)Y = =2(d +2m)¥) (x),

by Euler’s formula on homogeneous polynomials, which shows that

(2n+d)2 1 Ad—142 2 2n+d
n n _ n n —
<Q0,w QO,V>A - wy1d /0 r dr[gd—l [Yv (x)] dx = d

Furthermore, using equation (5.6.9), the proof of Lemma 5.6.5 shows that

1

= m(ﬁj,l?j’)ﬁj

ARG 080,012 8;

—WLI[PJ (S):| (1+S)st
8/°(j+1)* _ 8/(j+1)

(Bi+2j+1)d  (n+4)d

< ?,va?,vM

using the expression for the norm of the Jacobi polynomial. O

From the explicit formula for the basis (5.6.7) it follows that R} ,, is related to
the polynomials orthogonal with respect to Ws (x) = (1 — [[x[|*)? on BY. In fact
we have

Ry (x) = (1= x|?)P, (Wsposx),  j2 1,
which leads to the following corollary.
Corollary 5.6.7 Forn>1,
118) = 7 @ (1= |32 4L (Ws ).

This corollary should be compared with Corollary 5.6.3. The polynomials
in 7¢(A), however, are not all eigenfunctions of a second-order differential
operator.
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5.7 Notes

By the classical orthogonal polynomials we mean the polynomials that are
orthogonal with respect to the Jacobi weight functions on the cube, ball or sim-
plex in R?, the Laguerre weight function on R? , and the Hermite weight on R?.
These polynomials are among the first that were studied.

The study of the Hermite polynomials of several variables was begun by Her-
mite. He was followed by many other authors; see Appell and de Fériet [1926]
and Chapter XII, Vol. II, of Erdélyi er al. [1953]. Analogues of the Hermite
polynomials Wy can be defined more generally for the weight function

W (x) = (det A)' 2= exp (—xTAx) , (5.7.1)

where A is a positive definite matrix. Since A is positive definite it can be written
as A = BTB. Thus the orthogonal polynomials for W in (5.7.1) can be derived
from the Hermite polynomials for Wy by a change of variables. One interesting
result for such generalized Hermite polynomials is that two families of general-
ized Hermite polynomials, defined with respect to the matrices A and A=, can be
biorthogonal.

For the history of the orthogonal polynomials V,, and Uy on B¢, we refer to
Chapter XII, Vol. II of Erdélyi er al. [1953]. These polynomials were studied in
detail in Appell and de Fériet [1926]. They are sometimes used to derive explicit
formulae for Fourier expansions. Rosier [1995] used them to study Radon trans-
forms. Orthogonal bases for ridge polynomials were discussed in Xu [2000b],
together with a Funk—Hecke type formula for orthogonal polynomials. Compact
formulae (5.2.7) for the reproducing kernels were proved in Xu [1999a] and used
to study expansion problems. The formula (5.2.8) was proved in Petrushev [1999]
in the context of approximation by ridge functions and in Xu [2007] in con-
nection with Radon transforms. The orthogonal polynomials for the unit weight
function on B¢ were used in Maiorov [1999] to study questions related to neural
networks.

The orthogonal polynomials U, on T were defined in Appell and de
Fériet [1926] for d = 2. The polynomials V,, on T¢ are extensions of those for
the unit weight function on 7¢ defined in Grundmann and Moller [1978]. The
formula (5.3.5) for the reproducing kernel appeared in Xu [1998d]. A product for-
mula for orthogonal polynomials on the simplex was established in Koornwinder
and Schwartz [1997]. The orthogonal polynomials on the simplex also appeared
in the work of Griffiths [1979], Griffiths and Spano [2011, 2013] and Rosen-
gren [1998, 1999]. A basis for the orthogonal polynomials on the simplex can
be given in terms of Bernstein polynomials, as shown in Farouki, Goodman and
Sauer [2003] and Waldron [2006]. Further properties of the Rodrigues formulae
on the simplex were given in Aktas and Xu [2013]. A probability interpretation
of these and other related polynomials was given in Griffiths and Spano [2011].
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The orthogonal polynomials defined via symmetric functions were studied
in Berens, Schmid and Xu [1995b]. The family of Gaussian cubature formulae
based on their common zeros is the first family for all » and in all dimen-
sions to be discovered. The polynomials EJ(x) were studied in Karlin and
McGregor [1962, 1975].

The Chebyshev polynomials of type ; were studied systematically by
Beerends [1991]. They are generalizations of the Koornwinder polynomials
for d = 2 and of the partial results in Eier and Lidl [1974, 1982], Dunn and
Lidl [1982], Ricci [1978] and Barcry [1984]. We have followed the presenta-
tion in Li and Xu [2010], who studied these polynomials from the point of view
of tiling and discrete Fourier analysis and also studied their common zeros. It
turned out that the set of orthogonal polynomials {Uy, : || = n} of degree n has
dim HfFI distinct real common zeros in A*, so that the Gaussian cubature formu-
lae exist for W; , on A* by Theorem 3.8.4. Gaussian cubature, however, does not
exist for W_y . For further results and references, we refer to Beerends [1991]
and Li and Xu [2010].

The symmetric orthogonal polynomials associated with .7, are related to
the BC,-type orthogonal polynomials in several variables; see, for example,
Vretare [1984], Beerends and Opdam [1993] and van Diejen [1999]. They are
special cases of the Jacobi polynomials for root systems studied in Opdam [1988].
The Chebyshev polynomials in the form of symmetric trigonometric orthogonal
polynomials have also been studied recently for compact simple Lie groups; see
Nesterenko, Patera, Szajewska and Tereszkiewicz [2010] and Moody and Pat-
era [2011], and the references therein, but only a root system of the .7 type leads
to a full basis of algebraic orthogonal polynomials.

For the Sobolev orthogonal polynomials on the unit ball, the orthogonal basis
for the inner product (-,-) o was constructed in Xu [2006b], in response to a prob-
lem in the numerical solution of a Poisson equation on the disk raised by Atkinson
and Hansen [2005]. The orthogonal basis for (-, -)y was constructed in Xu [2008],
in which an orthogonal basis was also constructed for a second inner product
defined via the gradient,

ishyni= 2 [ V709 Vea)dx+£(0)¢(0)

As shown in Corollary 5.6.4, orthogonal polynomials with respect to (-,-)y are
eigenfunctions of the differential operator &y, in the limiting case yt = — % Eigen-
functions of %, for further singular cases, u = —%, —%, ..., were studied in Pifar
and Xu [2009].

Despite extensive research into the Sobolev orthogonal polynomials in one
variable, study of the Sobolev polynomials in several variables started only
recently. We refer to Lee and Littlejohn [2005], Bracciali, Delgado, Fernandez,
Pérez and Pifiar [2010], Aktas and Xu [2013], and Pérez, Pifiar and Xu [2013].
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Besides the unit ball, the only other case that has been studied carefully is that
of the simplex. Let 2\ denote the differential operator on the right-hand side of
(5.3.4). Then the orthogonal polynomials in “//nd (Wy) on the simplex are eigen-
functions of & for x; — %, 1 <i < d. The limiting cases where some, or all,
K; = —1 are studied in Aktas and Xu [2013]. In each case a complete basis was
found for the differential equation and an inner product of the Sobolev type was
constructed such that the eigenfunctions are orthogonal with respect to the inner
product.



6

Root Systems and Coxeter Groups

There is a far reaching extension of classical orthogonal polynomials that uses
finite reflection groups. This chapter presents the part of the theory needed for
our analysis. We refer to the books by Coxeter [1973], Grove and Benson [1985]
and Humphreys [1990] for the algebraic structure theorems. We will begin with
the orthogonal groups, definitions of reflections and root systems and descrip-
tions of the infinite families of finite reflection groups. A key part of the chapter
is the definition and fundamental theorems for the differential-difference (Dunkl)
operators.

6.1 Introduction and Overview

For x,y € R the inner product is (x,y) = Z?:,xjyj and the norm is ||x|| =
(x,x)!/2. A matrix w = (w; j)ﬁl_j:] is called orthogonal if wwT = I;, where wT
denotes the transpose of w and I; is the d x d identity matrix. Equivalent

conditions for orthogonality are the following:

w is invertible and w—! = wT;

for each x € RY, ||x|| = ||xw]|;
for each x,y € RY, (x,y) = (xw,yw);
the rows of w form an orthonormal basis for R¢.

b=

The set of orthogonal matrices is closed under multiplication and inverses
(by condition (2), for example) and forms the orthogonal group, denoted
O(d). Condition (4) shows that O(d) is a closed bounded subset of all d x d
matrices and hence is a compact group. If w € O(d) then detw = +1. The
subgroup SO(d) = {w € O(d) : detw = 1} is called the special orthogonal

group.
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Definition 6.1.1 The right regular representation of O(d) is the homomorphism
w = R (w) of linear maps of TT¢ to itself (endomorphisms), given by R(w)p(x) =
p(xw) forall x € RY, p € TT9.

Further, R (w) is an automorphism of &¢ for each n,w € O(d). Note that
R (wiw2) =R (w1) R (w2) (by the homomorphism property of R). The Laplacian A
commutes with each w € O(d), that is, A(R(w)p)(x) = (Ap)(xw) for any x € R.
In the present context the basic tool for constructing orthogonal transformations
is the reflection.

Definition 6.1.2 For a nonzero u € R?, the reflection along u, denoted by o, is
defined by
frou)

X0, =x—2
2™

Writing o,=1;— Z(uuT)_lu u shows that ¢, = ¢} and 6,0, = I, (note that
uu” = ||u||> while u"u is a matrix). The matrix entries of o, are (Ou)ij = 6ij —
2ujuj/||ul|*. Tt is clear that xcru = x exactly when (x,u) = 0, that is, the mvariant
set for o, is the hyperplane u™ = {x: (x,u) = 0}. Also, uo,, = —u and any nonzero
multiple of # determines the same reflection. Since ¢, has one eigenvector for the
eigenvalue —1 and d — 1 independent eigenvectors for the eigenvalue +1 (any
basis for ul), it follows that deto,, = —1.

Proposition 6.1.3  Suppose that x| y) ¢ R ||xD]]2 = ||yD||> =1 fori=1,2,
and (x1V) yMy = (x) y2)) then there is a product w of reflections such that
xWyw =x@ and yWyw =y,

Proof 1If xV) = x® then put y(3) =y, else let u = x1) — x(? # 0, so that

WMo, =x3, and let y®) =y g, If yO) = (@) then the construction is finished.
Otherwise, let v = y(3) — (2 ) ; then y< >G ( ) and x®) 6, = x() since (x(?),v) =
(x?) yB)y — (x(®) y2)y = <x<'>,y )Y — (x),y@)) = 0. One of 6,, 6, and 6,0, is
the desired product. O

The following is crucial for analyzing groups generated by reflections.

Proposition 6.1.4 Suppose that u,v are linearly independent in R?, and set
cos 8 = (u,v)/( ); then 0,0, is a plane rotation in span{u,v} through an
angle 26.

Proof Assume that ||u|| = ||v|| = 1; thus cos @ = (u,v) and ||v — (u,v) u|| = sin 0,
where 0 < 6 < 7. LetV/ = (sin8) " (v — (u,v) u), so that {u,V'} is an orthonormal
basis for span{u,v}. With respect to this basis o,, 0, and 0,0, have the matrix
representations



176 Root Systems and Coxeter Groups

o _[10
u — I O l b
o — [—cos20 —sin26
" [ —sin20  cos26 |’
S [ cos26  sin260
weve | —sin26 cos26|’
and 0,0, is a rotation. O

For two nonzero vectors u,v, denote cos £ (u,v) = (u,v) / (||lu||||v]]). Conse-
quently, for a given m = 1,2,3,...,(0,0,)" = I, if and only if cos £ (u,v) =
cos (1j/m) for some integer j. Since (6,0,)”" = 6,0, for any two reflections 6,
and o, we see that ¢, and ¢, commute if and only if (u,v) = 0. The conjugate of
a reflection is also a reflection:

Lemma 6.1.5 Letu € R? u#0, and let w € O(d); then w™'o,w = Oy

Proof Forx e ]Rd,

20w u) 2(x, uw)

-1
W oWw=X———F5—"UW=X— ——"F7"UW.
! [Jul[ [Jul[ O

6.2 Root Systems

The idea of a root system seems very simple, yet in fact it is a remarkably deep
concept, with many ramifications in algebra and analysis.

Definition 6.2.1 A root system is a finite set R of nonzero vectors in R? such
that u,v € R implies that uo, € R. If, additionally, u,v € R and v = cu for some
scalar ¢ € R implies that ¢ = %1 then R is said to be reduced.

Clearly u € R implies that —u = uo, € R for any root system. The set
{uL uc R} is a finite set of hyperplanes; thus there exists ug € R¢ such that
(u,up) # 0 for all u € R. With respect to ug define the set of positive roots

Ry ={u€R: (uup) >0},
so that R=R, U (—R;).

Definition 6.2.2 The Coxeter group W = W (R) generated by the root system R
is the subgroup of O(d) generated by {0, : u € R}.

Note that for the purpose of studying the group W one can replace R by
a reduced root system (for example {u/||u|| : u € R}). There is a very useful
polynomial associated with R.
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Definition 6.2.3 For any reduced root system R, the discriminant, or alternating
polynomial, is given by

ag(x) = l_[ueR+ (o u) .

Theorem 6.2.4 ForveRandw € W(R),

agr(xo,) = —ag(x) and  ag(xw) = det wag(x).

Proof Assume that v € Ry; by definition Ry\{v} is a disjoint union E; U E;,
where E; = {u € R, : uo, = u} and u € E, implies that uc, = c,u’ for some u’ €
E; and v’ # u and ¢, = +1. Thus «'6, = c,u and so {x,u)(x,u’) is invariant under
o, (note that (xo,,u) = (x,uc,) because 6] = 6,). Then ag (xo,) = (x, V) 7 72,
where 1 = [1,eg, (x,u) and m = [1,cg, (x,u0,). The second product is a per-
mutation having an even number of sign changes of [],cg, (x,u). This shows that
ag(xo,) = —ag(x). Let w = 0,, 0y, - - - 04, be a product of n reflections, where
u,...,uy € Ry; then ag(xw) = (—1)" ag(x). Obviously det w = (—1)". O

There is an amusing connection with harmonic polynomials: a product
[T, (x,v) is harmonic exactly when the elements of E are nonzero multiples
of some system R of positive roots.

Lemma 6.2.5 Suppose that u is a nonzero vector in R? and p(x) is a polynomial
such that p(xc,) = —p(x) for all x € RY, then p(x) is divisible by (x,u).

Proof The divisibility property is invariant under O (d), so one can assume that
u=(1,0,...,0). Any polynomial p can be written as Zyzox{pj (x2,...,x4); then
pxow) =35 (—x1)’ pj(x2,...,xq). Thus p(x0,) = —p(x) implies that p; =0
unless j is odd. O

Theorem 6.2.6 Suppose E is a finite set of nonzero vectors in R%: then
ATl,ck (x,v) = 0 if and only if there are scalars c,,v € E such that {c,v:v € E}
= R, for some reduced root system and such that no vector in E is a scalar
multiple of another vector in E.

Proof First we show Aag = 0 for any reduced root system. The polynomial p =
Aag satisfies p (xo,) = —p(x) for any u € R, because A commutes with R(o;,).
By Lemma 6.2.5 p(x) is divisible by (x,u), but deg p < degag — 2 and thus p =0.

Now suppose that Ap = 0 for p(x) = [, (x,V), for a set E. Assume that
|[v]| =1 for every v € E. Let u be an arbitrary element of E. Without loss of
generality assume that u = (1,0,...,0) and expand p(x) as Z'j’-zox{pj (x2,...,Xq)
for some n. Then Ap(x) = Zﬂzox{ [Apj+(j+2)(j+1)pjs2]. Since p is a multiple
of (x,u), po = 0. This implies that p>; = 0 for each j =0,1,2,... and thus that
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p(x)/{x,u) is even in x;. Further, p; # 0 or else p = 0; thus x; = (x,u) is not a
repeated factor of p. The product [T{(x,v) : v € E,v # u} is invariant under o,,.
This shows that the set {vo, : v € E} has the same elements as {+v:v € E} up
to multiplication of each by +1. Hence E U (—E) satisfies the definition of a root
system. [

Theorem 6.2.7 For any root system R, the group W (R) is finite; if also R is
reduced then the set of reflections contained in W (R) is exactly {0, : u € R} }.

Proof Let E = span(R) have dimension r, so that W can be considered as a
subgroup of O(r) and every element of E* is invariant under W. The definition
of a root system shows that uw € R for every u € R and w € W. Since R con-
tains a basis for E, this shows that any basis element v of E has a finite orbit
{vw:w € W}, hence W is finite. If w = 0, € W is a reflection then detw = —1
and so ag(xw) = —ag(x). By Lemma 6.2.5, ag(x) is divisible by (x,v). But lin-
ear factors are irreducible and the unique factorization theorem shows that some
multiple of v is an element of R. O

Groups of the type W (R) are called finite reflection groups or Coxeter groups.
The dimension of span(R) is called the rank of R. If R can be expressed as a dis-
joint union of non-empty sets Ry UR, with (u,v) = 0 for every u € Ry, v € R, then
each R; (i = 1,2) is itself a root system and W(R) = W(R;) X W(R,), a direct
product. Further, W(R;) and W(R;) act on the orthogonal subspaces span(R;)
and span(R;), respectively. In this case the root system R and the reflection group
W (R) are called decomposable. Otherwise the system and group are indecompos-
able on irreducible. There is a complete classification of indecomposable finite
reflection groups. Some more concepts are now needed for the discussion.

Assume that the rank of R is d, that is, span(R) = R?. The set of hyperplanes
H= {vL 1V E R+} divides R? into connected open components called cham-
bers. A theorem states that the order of the group equals the number of chambers.
Recall that the positive roots are defined in terms of some vector ug € R?. The
connected component of the complement of H which contains u is called the
fundamental chamber. The roots corresponding to the bounding hyperplanes of
this chamber are called simple roots, and they form a basis of R¢. The (“sim-
ple”) reflections corresponding to the simple roots are denoted s;,i = 1,...,d. Let
m;; be the order of s;5; (clearly m; = 1 and m;; = 2 if and only if s;5; = s;5;,
for i # j). The following is the fundamental theorem in this topic, proved by
H. S. M. Coxeter; see Coxeter and Moser [1965, p. 122].

Theorem 6.2.8 The group W (R) is isomorphic to the abstract group generated
by {si: 1 <i<d} subject to the relations (s;s;)"" = 1.
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The Coxeter diagram is a graphical way of displaying the above relations: itis a
graph with d nodes corresponding to simple reflections; nodes i and j are joined
with an edge when m;; > 2; an edge is labeled by m;; when m;; > 3. The root
system is indecomposable if and only if the Coxeter diagram is connected. We
proceed to the description of the infinite families of indecomposable root systems
and two exceptional cases. The systems are named by a letter and a subscript
indicating the rank. It is convenient to introduce the standard basis vectors & =

l
(O,...,O7 1,0,...,0) for R?, 1 < i < d; the superscript i above the element ‘I’
indicates that it occurs in the ith position.

6.2.1 Type Ag

For a type Ay_1 system, the roots are given by R = {v(,-,j) =&—¢€ i j} C
R, The span is exactly (1, 1,...,1)L and thus the rank is d — 1. The reflec-
tion 0;; = O, interchanges the components x; and x; of each x € R? and is
called a transposition, often denoted by (i, ). Thus W(R) is exactly the sym-
metric or permutation group Sy on d objects. Choose ug = (d,d —1,...,1); then
Ry ={v( ;) =& —¢€;:i> j} and the simple roots are {& — &1 : 1 <i<d—1}.
The corresponding reflections are the adjacent transpositions (i,i+ 1). The
general fact about reflection groups, that simple reflections generate W(R),
specializes to the well-known statement that adjacent transpositions generate
the symmetric group. Since (i,i+1)(i+1,i+2) is a permutation of period 3,
the structure constants satisfy m;;,1 = 3 and m;; < 3 otherwise. The Coxeter
diagram is

It is clear that for any two roots u,v there is a permutation w € W(R) such that

uw = v; hence any two reflections are conjugate in the group, w™'o,w = 0.
The alternating polynomial is

aR(x):Hu€R+<x,u>= IT Gi—x)).

1<i<j<d

The fundamental chamber is {x:x; > x; > --- > x4}; if desired, the chambers
can be restricted to span(R) = {x: >4 x= 0}.

6.2.2 Type B,
The root system for a type By system is R = {v(; jj = & — € 1 i # jyU{u;j =
sign(j—i)(&+¢;) i # jtU{+£g}. The reflections corresponding to the three
different sets of roots are
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i J
X0jj = (xl,...,xj,...,xi,...>,

i J
XTij = (xl,...,ij,...,fx,-,...>,

i
X0; = (xl,...,—x,-,...),

for v(; jy,u(; j and & respectively. The group W(R) is denoted Wy; it is the
full symmetry group of the hyperoctahedron {+e&;,+¢,...,+¢,} C R? (also
of the hypercube) and is thus called the hyperoctahedral group. Its elements
are exactly the d x d permutation matrices with entries 1 (that is, each row
and each column has exactly one nonzero element £1). With the same uy =
(d,d—1,...,1) as in the previous subsection, the positive root system is R, =
{ei—¢€j,ei+€:i< j}U{g:1<i<d} and the simple roots are to be found in
{&i— €11 i <d}U{eq}. The order of 6,41 404 is 4. The Coxeter diagram is
4

This group has two conjugacy classes of reflections, {G,’j, Tj i< j} and {o; :
1 <i < d}. The alternating polynomial is

d
ar(@) =[]~ [I ()ct2 —x?) .
=1 1<i<j<d

The fundamental chamber is {x:x; > x; > -+ > x4z > 0}.

6.2.3 Type I,(m)
The type I>(m) systems are dihedral and correspond to symmetry groups of reg-
ular m-gons in R? for m > 3. Using a complex coordinate system z = x| + ixa
and Z = x| — ixy, a rotation through the angle 6 can be expressed as z — z¢', and
the reflection along (sin@, —cos ) is z — ze%?. Now let @ = e>™/™; then the

reflection along
. Ty j
V) = (smj7 —cos J)
: m m

corresponds to 0 : Z Zw/ for 1 < j < 2m; note that V(m+j) = —V(j)- Choose
( T . T )
up = | cos —,sin— | ;
0 2m’" " 2m

then the positive roots are {v( Hprl<j< m} and the simple roots are v(1), V().

Then 0,01 maps z to zw and has period m. The Coxeter diagram is oﬂo A
simple calculation shows that 6;0,0; = 63;, for any n, j; thus there are two
conjugacy classes of reflections {0»;} ,{0»;+1 } when m is even but only one class
when m is odd. There are three special cases for m: I;(3) is isomorphic to Ap;
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I (4) = By; and I, (6) is called G, in the context of Weyl groups. To compute the
alternating polynomial, note that

wj nj 1 1 j ;
X1 sinzjfxzcosgj =5 {exp (in (2151))] (Z*Zaﬂ)

for each j=1,...,m; thus
ag(x)=2""i"t("—zm).

The fundamental chamber is {(rcos 0,rsin0) : r > 0,0 < 6 < w/m}.

6.2.4 Type D,

For our purposes, the type D, system can be considered as a special case
of the system for type B;,d > 4. The root system is a subset of that for
By, namely R = {& —¢g;:i# j} U {sign(j—i)(&+¢j):i+# j}. The associated
group is the subgroup of W, of elements with an even number of sign changes
(equivalently, the subgroup fixing the polynomial H‘;Zl x;). The simple roots are
{ei— €41 :i<d}U{es_1+ &4} and the Coxeter diagram is

The alternating polynomial is

ag(x) = H (x,z—x?)
1<i<j<d

and the fundamental chamber is {x:x; >x, > --- > |x4| > 0}.

6.2.5 Type H;

The type Hz system generates the symmetry group of the regular dodecahe-
dron and of the regular icosahedron. The algebraic number (the “golden ratio”)
T= %(1 + \@), which satisfies 72 = T + 1, is crucial here. Note that 77! =
T—1= 5(v/5—1). For the choice uy = (3,27,7) the positive root system
is Ry = {(2,0,0),(0,2,0),(0,0,2), (7, £t~ 1, +1),(£1,7, £t ), (t7 1, £1,7),
(-t ',1,7),(z7',1,—1)}, where the choices of signs in + are indepen-
dent of each other. The full root system R = Ry U (—Ry) is called the
icosidodecahedron as a configuration in R3. Thus there are 15 reflec-
tions in the group W(R). It is the symmetry group of the icosahe-
dron Qpp = {(0,£7,£1),(£1,0,£7),(£7,£1,0)} (which has 12 vertices
and 20 triangular faces) and of the dodecahedron Q9 = ~{(0,j:‘L"1,:i:‘c)7
(£7,0,+£771), (771, £7,0), (£1,£1,£1)} (which has 20 vertices and 12
pentagonal faces); see Coxeter [1973] for the details.

To understand the geometry of this group, consider the spherical Coxeter
complex of R, namely the great circles on the unit sphere which are intersections
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with the planes {v* : v € Ry }. There are fivefold intersections at the vertices of
the icosahedron (so the subgroup of W(R) fixing such a vertex, the so-called sta-
bilizer, is of the type L (5)), and there are threefold intersections at the vertices
of the dodecahedron (with stabilizer group I (3)). The fundamental chamber
meets the sphere in a spherical triangle with vertices at (7 +2)~/2(1,1,0),

3-1/2(1,1,1), 27'(1,7,77") and the simple roots are vi = (7,—7~', —1), v, =
(—1,7,—7 " and v3 = (7!, —1, 7). The angles between the simple roots are cal-
culatedascosi(vl,vz):—%:cos%n,cosi(vl,w):O,COSL(\/Z,\@):—%T:

. . 5 . .
cos %n. Thus the Coxeter diagram is o— oo . The alternating polynomial can
be expanded, by computer algebra for instance, but we do not need to write it
down here.

6.2.6 Type Fy4

For a type F4 system the Coxeter diagram is 0_0_40_0 . The group contains
W, as a subgroup (of index 3). One conjugacy class of roots consists of Rj =
{ei—¢j:i# j}U{sign(j—i)(&+¢;):i# j} and the other class is Ry = {£2¢; :
1 <i<4}U{te te +e3te}. Then R = Ry UR; and there are 24 positive
roots. With the orthogonal coordinates y; = (—x; +x2)/v2,v2 = (x1 +x2)/V/2,
y3 = (—x3 +x4)/v/2,y4 = (x3 +x4)/+/2, the alternating polynomial is

ag(x) =2° ] & —x)07 ).

1<i<j<4

6.2.7 Other types

There is a four-dimensional version of the icosahedron corresponding to the

root system Hy, with diagram o_o_o_so; it is the symmetry group of the
600 cell (Coxeter [1973]) and was called the hecatonicosahedroidal group by
Grove [1974]. In addition there are the exceptional Weyl groups Eg, E7, Eg, but
they will not be studied in this book.

6.2.8 Miscellaneous results

For any root system, the subgroup generated by a subset of simple reflections
(the result of deleting one or more nodes from the Coxeter diagram) is called a
parabolic subgroup of W(R). For example, the parabolic subgroups of the type
A, diagram are Young subgroups, with S, x S;_,, maximal for each d with
1 <m < d.Removing one interior node from the B, diagram results in a subgroup
of the form S,, x W;_,,.

As mentioned before, the number of chambers of the Coxeter complex (the
complement of {vl 1V E R+}) equals the order of the group W(R). For each
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chamber C there is a unique w € W(R) such that Cow = C, where Cy is the fun-
damental chamber. Thus for each v € R there exists w € W(R) such that vw is a
simple root, assuming that R is reduced, and so each o, is conjugate to a simple
reflection. (Any chamber could be chosen as the fundamental chamber and its
walls would then determine a set of simple roots.) It is also true that the positive
roots when expressed as linear combinations of the simple roots (recall that they
form a basis for span(R)) have all coefficients nonnegative.

The number of conjugacy classes of reflections equals the number ¢ of con-
nected components of the Coxeter diagram after all edges with an even label have
been removed. Also, the quotient G = W /W' of W by the commutator subgroup
W', that is, the maximal abelian image, is Z. The argument is easy: G is the group
subject to the same relations but now with commuting generators. Denote these
generators by s,s5,..., so that (s;)2 = 1 and G is a direct product of Z, factors.
Consider two reflections sy, 52 linked by an edge with an odd label 2m 4 1 (recall
that the label “3” is to be understood when no label is indicated); this means that
(s152)*" ! Lsrw with w = (s251)™; also (s})*" ! (s5)*"H =
s)s5 = 1. This implies that s = s} and thus that s1,s, are conjugate in W. Rela-
tions of the form (S2S3)2m = 1 have no effect on s, s5. Thus simple reflections in
different parts of the modified diagram have different images in G and cannot be

=1landthuss, =w™

conjugate in W. By the above remarks it suffices to consider the conjugacy classes
of simple reflections.

There is a length function on W(R): for any w in the group it equals both
the number of factors in the shortest product w = s; s;, -+ -s;, in terms of sim-
ple reflections and the number of positive roots made negative by w, that is,
|[R-wN (—R4)|. For the group S, it is the number of adjacent transpositions
required to express a permutation; it is also the number of inversions in a per-
mutation considered as a listing of the numbers 1,2,...,d. For example, the
permutation (4,1,3,2) has length 3+ 0+ 1 +0 = 4 (the first entry is larger than
the three following entries, and so on), and (1,2,3,4),(4,3,2,1) have lengths 0
and 6 respectively.

6.3 Invariant Polynomials

Any subgroup of O(d) has representations on the spaces of homogeneous polyno-
mials ¢ of any given degree n. These representations are defined as w — R(w)
where R(w)p(x) = p(xw); sometimes this equation is written as wp(x), when
there is no danger of confusion. The effect on the gradient is as follows: let V p(x)

denote the row vector (dp/dx; -+ dp/dxa); then
d d
VIROP] (0) = ( Z(JZW) I;gdw))WT — ROwW)Vp(x)wT.
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Definition 6.3.1 For a finite subgroup W of O(d), let TT" denote the space
of W-invariant polynomials {p € T1¢ : R(w)p = p for all w € W} and set
PV = 9,‘5 NTIV, the space of invariant homogeneous polynomials of degree
n=0,1,2,...

There is an obvious projection onto the space of invariants:

Twp = ﬁ >, Rw)p.

weWw
When W is a finite reflection group, IT" has a uniquely elegant structure; there
is a set of algebraically independent homogeneous generators whose degrees are
fundamental constants associated with W. The following statement is known as

Chevalley’s theorem.

Theorem 6.3.2  Suppose that R is a root system in RY and that W = W (R); then
there exist d algebraically independent W -invariant homogeneous polynomials
{qj 1< < d} of degrees nj, such that 11V is the ring of polynomials generated
by {q;}, |W|=niny---nq and the number of reflections in W is Z‘;zl (nj—1).

Corollary 6.3.3 The Poincaré series for W has the factorization
oo d

> (dimZ) ) =T (1 —rm)~".

n=0 j=1

Proof The algebraic independence means that the set of homogeneous polynomi-
als {¢}" g5 -- .qg’d : zle njmj =k} is linearly independent for any k =0,1,2,.. ;
thus it is a basis for ,@,ZV . The cardinality of the set equals the coefficient of ¢* in

the product. O

It suffices to study the invariants of indecomposable root systems; note that
if dimspan(R) = m < d then the orthogonal complement of the span provides
d — m invariants (the coordinate functions) of degree 1. When the rank of R is d
and R is indecomposable, the group W(R) is irreducibly represented on R?; this is
called the reflection representation. The numbers {n i:1<j<d } are called the
fundamental degrees of W(R) in this situation. The coefficient of ¥ in the product
H?:] [1+ (nj—1)t] is the number of elements of W(R) whose fixed-point set is
of codimension k (according to a theorem of Shephard and Todd [1954]).

Lemma 6.3.4 [f the rank of a root system R is d then the lowest degree of a non-
constant invariant polynomial is 2, and if R is indecomposable then there are no
proper invariant subspaces of RY.

Proof Identify R with 3”{1, and suppose that E is an invariant subspace. Any
polynomial in E has the form p(x) = (x,u) for some u € R?. By assumption
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R(0y) p(x) = (x0,,u) = (x,uc,) € E for any v € R; thus p(x) —R(0,) p(x) =
(x,u—uoc,) € E and (x,u—uoc,) = 2(x,v)(u,v)/||v||>. If p is W-invariant then
this implies that (u,v) = 0 for all v € R, but span (R) = R? and so u = 0.

However, if R is indecomposable and u # 0 then there exists v € R with (u,v) #
0 and the equation for (x,u —uo,) shows that (x,v) € E. Let

Ry :{V1 ER: (x,v1> GE}.

Any root v, € R satisfies either v, € R or (v,v;) = 0 for any v; € R;. By
definition R; = R and E = 2¢. O

Clearly g(x) = Z?: 1x§ is invariant for any subgroup of O(d). Here is another
general theorem about the fundamental invariants.

Theorem 6.3.5 Let {q i1<j<d } be fundamental invariants for the root sys-
d

tem R, and let J(x) be the Jacobian matrix <8qi(x) / 8xj)' ) then det J(x) =
L]=

cag(x) (see Definition 6.2.3) for some scalar multiple c.

Proof The algebraic independence implies that detJ # 0. For any invariant g
and v € R, Vg (x0,) = Vq(x)0,; thus any row in J(x0,) equals the corresponding
row of J(x) multiplied by o,. Now det J (xo,) = det J(x)deto, = —det J(x), and
so det J(x) has the alternating property. By Lemma 6.2.5, detJ is a multiple of
ag. Further, det J is a homogeneous polynomial of degree Z?:l (nj—1), which
equals the number of reflections in W(R), the degree of ag. O

6.3.1 Type A;_; invariants

The type A4 invariants are of course the classical symmetric polynomials. The
fundamental invariants are usually taken to be the elementary symmetric poly-
nomials ey, es, ..., ey, defined by 27:0 e j(x)tj = Hj’zl (1+1x;). Restricted to the
span (1,1,..., 1)J‘ of the root system e; = 0, the fundamental degrees of the group
are 2,3,...,d; by way of verification note that the product of the degrees is d!
and the sum 2?:2 (j—1) = 3d(d — 1), the number of transpositions. In this case
detJ(x) = [I;<; (x; —x;), the Vandermonde determinant. To see this, argue by

induction on d; (this is trivial for d = 1). Let ¢} denote the elementary symmetric

function of degree i in (x; xp -+ x4—1); then ¢; = e;» +xde§_1. The ith row
of J(x) is
T
8)6]' i 8)61' i—1 i—-1)-
The first row is (1 1 --- 1) and the terms ¢/, in the last row are 0. Now subtract x4

times the first row from the second row, subtract x; times the resulting second row
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from the third row and so on. The resulting matrix has ith row (for 1 <i<d—1
with e, = 1) equal to

( ai,-eﬁ ;z;eﬁ_l_j(—xd)j),

and last row equal to (O - 0 Z;t(} e&f,f j(—xd)j ) The last entry is

H‘j;ll (xj —x4), and the proof is complete by induction.

6.3.2 Type B, invariants

The type B, invariants are generated by the elementary symmetric functions ¢g; in
the squares of x;, that is, Z?:o q; (xX)t/ = Hflzl (1 + txiz). The fundamental degrees
are 2,4,6,...,2d, the order of the group is 2¢d! and the number of reflections is

>4 (2j—1) =d>. Also, det J(x) = 29T1%, x; [T, : (x* —x%). To see this, note
j=1 J=177 i<\~ J

that d/dx; = 2x;0 /9 (x7) for each i, and use the result for As_;.

6.3.3 Type D, invariants

The system with type D, invariants has all but one of the fundamental invariants
of the type B, system, namely ¢1,¢>,...,q4_1, and it also has e; = x1 - - -x4. The
fundamental degrees are 2,4,6, . ..,2d —2,d, the order of the group is 2¢~'d! and
the number of reflections is 2?;11 2j—1)+(d—1)=d>—d.

6.3.4 Type I, (m) invariants

For a system with type I»(m) invariants, in complex coordinates Z and Z for R?,
where 7z = x| + ixp, the fundamental invariants are zZ and z” + ™. The funda-
mental degrees are 2 and m, the order of the group is 2m and the number of
reflections is m.

6.3.5 Type H; invariants

The fundamental invariants for a type Hz system are
>
q1(x) = Y x,
j=1

g2 (x) = H{<x7u> ‘u € Q012,((3,27,7),u) > 0},
q3(x) = H{<x>u> u € 020,((3,27,7),u) > 0}.

That is, the invariants ¢, g3 are products of inner products with half the vertices of
the icosahedron Q1 or of the dodecahedron Oy, respectively. The same argument
used for the alternating polynomial ag shows that the products of ¢,(xo,) and
g3(xo,) for any v € R have the same factors as g2 (x), g3(x) (respectively) with an
even number of sign changes. By direct verification, ¢, is not a multiple of ¢; and
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g3 is not a polynomial in g; and ¢,. Thus the fundamental degrees are 2,6, 10, the
order of the group is 120 and there are 246+ 10 — 3 = 15 reflections.

6.3.6 Type F; invariants

For a type Fy system, using the notation from type By (in which ¢;(x) denotes
the elementary symmetric function of degree i in x3,...,x3), a set of fundamental
invariants is given by

81 =41,

82 =693 —q192,

83 =24q4+ 245 — 4142,

24 = 2884294 — 843 — 27q1q3 + 124745

These formulae are based on the paper by Ignatenko [1984]. The fundamental
degrees are 2,6, 8,12 and the order of the group is 1152.

6.4 Differential-Difference Operators

Keeping in mind the goal of studying orthogonal polynomials for weights which
are invariant under some finite reflection group, we now consider invariant dif-
ferential operators. This rather quickly leads to difficulties: it may be hard to
construct a sufficient number of such operators for an arbitrary group (although
this will be remedied), but the biggest problem is that they do not map poly-
nomials to polynomials unless the polynomials are themselves invariant. So, to
deal with arbitrary polynomials a new class of operators is needed. There are two
main concepts: first, the reflection operator p — [p(x) — p(x0,)]/(x,v) for a given
nonzero v € R?, the numerator of which is divisible by (x,v) because it has the
alternating property for o, (see Lemma 6.2.5); second, the reflection operators
corresponding to the positive roots of some root system need to be assembled in
a way which incorporates parameters and mimics the properties of derivatives. It
turns out that this is possible to a large extent, except for the customary product
rule, and the number of independent parameters equals the number of conjugacy
classes of reflections.

Fix a reduced root system R, with positive roots R and associated reflection
group W = W(R). The parameters are specified in the form of a multiplicity func-
tion (the terminology comes from analysis on homogeneous spaces formed from
compact Lie groups).

Definition 6.4.1 A multiplicity function is a function v — &, defined on a root
system with the property that k,, = k;, whenever ¢, is conjugate to ¢, in W, that is,
when there exists w € W such that uw = v. The values can be numbers or formal
parameters (“transcendental extensions” of Q).
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Definition 6.4.2 The first-order differential-difference operators &; are defined,
in coordinate form for 1 < i < d and in coordinate-free form for u € R¢ by, for
pel,

Gy = 220 | 3\ PO = p o))

VER <‘x7 V>

Dup(x) = (0, V() + 3 12D PEO)

VER L <.X, V>

Vi,

Clearly, 9; = %, and %, maps 335 into ,@f_l for n > 1; that is, 9, is a
homogeneous operator of degree —1. Under the action of W, 2, transforms like
the directional derivative.

Proposition 6.4.3  Foru € R and w € W, Z,R(w) p = R(W) Dy p for p € TIV.
Proof 1t is convenient to express Z, as a sum over R and to divide by 2; thus

FuR6)p(x) = (Vo) + T, PO LI g

(xw) — p (xwoyy)
(xw,vw)

= (uw, Vp(ow)) + 1 3 1,2
VER

= (uw,Vp(xw)) + 3 213 L W (uw, z)

(uw, vw)

=RW)Duwp(x).

In the third line we changed the summation variable from v to z and then used the
property of k from Definition 6.4.1 giving -1 = ;. O

The important aspect of differential-difference operators is their commutativ-
ity. Some lemmas will be established before the main proof. An auxiliary operator
is convenient.

Definition 6.4.4 For v € R and v # 0 define the operator p, by

f)—f (x03).

pvf(x) = <x7 V>

Lemma 6.4.5 Foru,v € R andv #0,

(@) (2nV[ o) S-S0,

(x,v) -

(v,v) (x,v)

Proof Recall that (u, VR (0,) f) = (uo,,R(0,) Vf); thus

(0, V)puf (x) = pu{u, V) f (x) =
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(u, Vf(x)) — (uo,,Vf(xo,))
{x,v)
<u7v> [f(x) — f()CGv>]
(x,v)?

(u, V)puf(x) =

and

(,Vf(x)) = (u,Vf(x0,))
\Y% = .

Pv(u, V) f(x) o)

Subtracting the second quantity from the first gives the claimed equation since

u—ucy, = (2{u,v)/{v,v))v. O

In the proof below that 9,9, = 2,9,, Lemma 6.4.5 takes care of the inter-
action between differentiation and differencing. The next lemma handles the
difference parts. Note that the product of two reflections is either the identity
or a plane rotation (the plane being the span of the corresponding roots).

Lemma 6.4.6 Suppose that B(x,y) is a bilinear form on RY such that

B(x0,,y0,) = B(y,x) whenever v € span(x,y), and let w be a plane rotation in
W, then

K.k, B (u,v)

z{ (o, ) (x,v)

Z{KMKVB (u,v) pupy i u,v € Ry, 0,0, =w} =0,

:u,v€R+,GL,O'v:w}:0, xeR?,

where the two equations refer to rational functions and operators, respectively.

Proof Let E be the plane of w (the orthogonal complement of E is pointwise
fixed under w); thus o,0, = w implies that u,v € E. Let Rp = Ry NE and let
Wo = W(Ry), the reflection group generated by Ry. Because W, is a dihedral
group, 6,wo, = w™! for any v € Ry. Denote the first sum above by s(x). We will
show that s is Wy-invariant. Fix z € Ry; it suffices to show that s (xo;) = s(x).
Consider the effect of o, on Ry: the map ¢, — 0,0,0; is an involution and so
define Tv=¢€(v) vo, for v € Ry, where v € Ry and £(v) = 1. Then 0,0,0; = Oy,
also 72v = v and £(7v) = &(v). Then
K. KyB(u,v
s(xoy) = Z{W ‘u,v € Ry,0,0, = w}
KruKevB(Tu, Tv)
(x0,, Tu) (x0,, TV)

‘u,v € Ry, 07,07, = w}

:u,v € Ry, 0,0,0,0; = w}
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The second line follows by a change in summation variables and the third line
uses the multiplicity function property that x;, = k;, because 6, = 0,0,0; and
also (xo;, Tu) = (x, (tu)o;); the fourth line uses the assumption about the form

B and also (0,0,)"" = 6,0,. Now let g(x) = s(x) Tver, (x,v); then g(x) is a
polynomial of degree |Ry| —2 and it has the alternating property for Wy. Thus
q(x) =0.

Let f(x) be an arbitrary polynomial and, summing over u,v € Ry, 0,0, = w,
consider

ZKM B (u,v) Pquf (x)
= kKB (u,) <f(x) —f(xa,)  f(xou) f(xw)> |

(o, u) (x,v) (x,u) (x,voy)

The coefficient of f(x) in the sum is O by the first part of the lemma. For
a fixed z € Ry the term f(xo;) appears twice, for the case 0,0, = w with
coefficient x,x;B(u,z)/({x,u){x,z)) and for the case 0,0, = w with coefficient
K. %,B(z,v)/({x,z){x,v0;)). But 0, = 0,0,0; and thus v = Tu (using the notation
of the previous paragraph), and so the second coefficient equals
K KuB (2, Tu) K.KuB ((Tu) 05,20;)  KoKuB (€ (u)u, —2)

x,2) (x,e(wu)  (x2)(xe@u)  (x,z2)(xew)u) ’

which cancels out the first coefficient. To calculate the coefficient of f(xw) we
note that, for any z € Ry, 0,0, = w if and only if 0,0, = w; thus

K KB(z,v)  KknB(z,(1v)0;)  KkeB(Tv,—2)

(x,2) (x,vo;) x,2) (o) (x,z) (x,Tv)

which shows that the coefficient is —s(x) and hence 0. O

Corollary 6.4.7 Under the same hypotheses,
E{KMKVB(u,v) pupv:u,v ERL}=0.
Proof Decompose the sum into parts 6,0, = w for rotations w € W and a part

0,0, = 1 (that is, u = v). Each rotation contributes 0 by the lemma, and p,f =0
for each u because p, f(xo,) = p,.f(x) for any polynomial f. O

Theorem 6.4.8 Fort,ucR? 9,9, = 2,%,.

Proof For any polynomial f, the action of the commutator can be expressed as
follows:
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(@t-@u - @u-@t)f
= (<t7V> <uvv> - <M7V> <I,V>)f
+ 2, K [{uv) (1Y) py = o (6, V) = (6,v) ((u, V) py — py (u, V)] f

VERL

+ 2 Ky Kz (<tav> <”’Z> — (u,v) <faZ>)Pvaf~

V,ZER 4

The first line of the right-hand side is trivially zero, the second line vanishes by
Lemma 6.4.5 and the third line vanishes by Lemma 6.4.6 applied to the bilinear
form B(x,y) = (¢t,x) (u,y) — (u,x) (t,y). To see that B satisfies the hypothesis, let
v=ax+by witha,b € R and v # 0; then B(v,y) = aB(x,y),B(x,v) = bB(x,y) and

2a(x,v)  2b(y,v)
B(xo-v’y()'v):B(x,y)<17 <V,V> a <V’V>)

=B(x,y) (1-2) = B(y,x). O

The norm ||x||? is invariant for every reflection group. The corresponding
invariant operator is called the h-Laplacian (the prefix h refers to the weight
function [T,cg, |(x,v)|™, discussed later on in this book) and is defined as
Ap =Y¢ | 2?. The definition is independent of the choice of orthogonal basis;
this is a consequence of the following formulation (recall that &; denotes the ith
unit basis vector).

Theorem 6.4.9 For any polynomial f(x),

S 92 F(x) = Af(x 20 V@) e fE) — fxo)
S92 = s+ 3, (TH - p L0

i=1 V€R+
Proof Write 0; for d/dx;; then

-@zzf(x) = aizf(x) + Z vai(aipv +Pvai)f(x) + Z Ky KvuiViPMPVf(x)~

VER u,vER

The middle term equals

y vai(Zaif(X) ) — f(xoy) (85+£iGV,Vf(xcyv)>>.

xy (a2 ()

Summing the first two parts of this term over 1 < i < d clearly yields the reflec-
tion part (the sum over R ) of the claim. Since vo, = —v, the third part sums to
Soer, K (v+vo,,Vf(x0,))/ (v,x) =0.

Finally, the double sum that is the last term in Qizf (x) produces
Yuver, Kuky (u,v) pupyf(x), which vanishes by Lemma 6.4.6 applied to the
bilinear form B (x,y) = (x,y). O

VER
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The product rule for &, is more complicated than that for differentiation. We
begin with a case involving a first-degree factor.

Proposition 6.4.10 Let t,u € R, then

D (1)) () — () Zuf(6) = () f) 42 Y, 0 LY oy

|| ||2

Proof This is a routine calculation which uses the relation (x,t) — (xo,,7) =
2 (x,v) wr) /vl u

Proposition 6.4.11 If W acts irreducibly on RY (span(R) = R¢ and R is
indecomposable) then Z, (x,t) = (1+ %ZVER+ k) (u,t) for any t,u € RY.

Proof From the product rule it suffices to consider the bilinear form B(r,u) =
Soer, Ko (u,v) (,v)/|[V|[*. This is clearly symmetric and invariant under W,
since B(to,,u0,) = B(t,u) for each v € R;. Suppose that positive values
are chosen for k; then the form can be diagonalized so that B(t,u) =
>4 2 (t,€!) (u,€!) for some orthonormal basis {&/} of R? and numbers A;. But
the subspace {x: B(x,x) = A; (x,x)} is W-invariant since it includes &{; by the
irreducibility assumption it must be the whole of RY. Thus B(t,u) = A; {t,u)
for any t,u € RY. To evaluate the constant, consider Y¢ | B(g, &) = dA; =
Sl Sver, 857 /Y = Soer, - O

Here is a more general product rule, which is especially useful when one of the
polynomials is W-invariant.

Proposition 6.4.12  For polynomials f,g and u € R?,
Du(f8) (x) = 8(x)Zuf (x) + f(x) (u, Vg (x))
£ wflro) () S8,

VER | <V7x>

For conciseness in certain proofs, the gradient corresponding to &, is use-
ful: let Vi f(x) = (Zif(x ))l 1» considered as a row vector. Then Vi R(w)f(x) =
Vif cew)w™! forw € W, and 9, f = (u, Vi f).

6.5 The Intertwining Operator

There are classical fractional integral transforms which map one family of orthog-
onal polynomials onto another. Some of these transforms can be interpreted as
special cases of the intertwining operator for differential-difference operators.
Such an object should be a linear map V on polynomials with at least the property
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that 2,V p(x) = V(d/dx;)p(x) for each i; it turns out that it is uniquely defined
by the additional assumptions V1 = 1 and ng,‘f C 9,‘,’, that is, homogeneous
polynomials are preserved. It is easy to see that the formal inverse always exists,
that is, an operator T such that T%; = (d/dx;)T.

Heuristically, let Tp(x) = exp (Zﬁl:lxi@i(”) P()|y=0. Now apply the formal

series to a polynomial, where @i(y ) acts on y; then set y = (0, obtaining a
polynomial in x. Here is the precise definition.

Definition 6.5.1 Forn=0,1,2,... define T on 9,‘;’ by

1 /¢ n
= ( Zx,-%(”) p(y)
CNi=1
forp e 3”,21 . Then T is extended to T1¢ by linearity.

Of course, the commutativity of {2} allows us to write down the nth power
and to prove the intertwining property.

Proposition 6.5.2 For any polynomial p and 1 <i <d,
d
ETP(X) =T%ip(x).
1

Proof Tt suffices to let p € 2¢. Then

0 n—1
ox; (Z,xj ) p(y) =T%Zip(x),
because %(y ) commutes with multiplication by x;. O

Note that the existence of T has been proven for any multiplicity function, but
nothing has been shown about the existence of an inverse. The situation where
T has a nontrivial kernel was studied by Dunkl, de Jeu and Opdam [1994]. The
K, values which occur are called singular values; they are related to the structure
of the group W and involve certain negative rational numbers. We will show that
the inverse exists whenever &, > 0 (in fact, for values corresponding to integrable

eight functions). The construction depends on a detailed analysis of the oper-
ator 3¢ i—1Xj9j = {x, V). A certain amount of algebra and group theory will be
required, but nothing really more complicated than the concepts of group algebra
and some matrix theory. The following is a routine calculation.

Proposition 6.5.3  For any smooth function f on R?,

Zx]@f sza Z Ky [f(X)—f(va)]-

VER
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Note that if f € 2 then $9_, x,2;f(x) = (n+ X, k) f(x) = 3, K. f (x5, ). We
will construct functions ¢, (w) on W with the property that

> cn(w) (ow, Vief (aw)) = f(x),
weWw
for n > 1. This requires the use of (matrix) exponentials in the group algebra.

Let K be some extension field of the rational numbers Q containing at least
{x,}; then KW is the algebra {3, a(w)w : a(w) € K} with the multiplication rule
Swaw)w,, b(w)w' =3, (X.a(z)b (z"'w)) w. The center of KW is the span
of the conjugacy classes & (a conjugacy class is a subset of W with the following
property: w,w’ € £ if and only if there exists z € W such that w' =z~ 'wz). We use
& as the name of both the subset of W and the element of KW. Since 7~ !0,z = 0,
for v € R, the reflections are in conjugacy classes by themselves. Label them
&1,&, ..., & (recall that r is the number of connected components of the Coxeter
diagram after all edges with an even label have been removed); further, let Ki/ =K
for any v with o, € &, 1 <i<r.

The group algebra KW can be interpreted as an algebra of |W| x |W/| matri-
ces Y,,a(w)M (w), where M(w) is a permutation matrix with M(w),, = 1 if
ylz=w, else M(w),, =0, for y,z € W. On the one hand, a class &; corre-
sponds to Y{M (0,) : 0, € &}, which has integer entries; thus all eigenvalues
of & are algebraic integers (that is, the zeros of monic polynomials with inte-
ger coefficients). On the other hand, &; is a (real) symmetric matrix and can be
diagonalized. Thus there is an orthogonal change of basis of the underlying vec-
tor space, and RWI = D, E; where & acts as A1 on each eigenspace E; . Since
each o, commutes with &;, the transformed matrices for ¢, have a corresponding
block structure (and we have ¢, E) = Ej, equality as spaces). Further, since all
the group elements commute with &;, the projections of 6, onto E, for o, € &
are all conjugate to each other. Hence each projection has the same multiplic-
ities of its eigenvalues, say 1 with multiplicity nyp and —1 with multiplicity n;
(the projections are certainly involutions); thus A (ng +n;) = |&]| (no — n1), tak-
ing the trace of the projection of &; to E; . This shows that A is rational, satisfies
|A| < |&]| and is an algebraic integer, and so all the eigenvalues of &; are inte-
gers in the interval [— |&;], |&;|]. Note that this is equivalent to the eigenvalues of
S{1—0:0¢€&}=|&|1—E& being integers in [0,2|&]].

Definition 6.5.4 For s € R and 1 <i < r, the functions g;(w;s) are defined by

expls (€] 1- &) = D qi(wis)w.

wew

Proposition 6.5.5 For1 <i<randweW:

(i) ¢i(1;0) =1 and q; (w;0) =0 forw # 1;
(ii) s <0 implies q; (w;s) > 0;
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(i) gi(w;s) is a linear combination of the members of {e** : A is an eigenvalue
of [§[1—&};

(iv) dq;(w:s)/ds = Loeg [9i(w:s) — qi(woss));

V) Xy qi(wss) =1.

Proof The values g;(w;0) are determined by exp(0) = 1 € QW. For s < 0,
S qi(w;s)w =exp (s|&|) exp (—s&;). The matrix for —s&; has all entries nonneg-
ative, and the product of any two conjugacy classes is a nonnegative integer linear
combination of other classes; thus ¢;(w;s) > 0. Part (iii) is a standard linear alge-
bra result (and recall that &; corresponds to a self-adjoint matrix). For part (iv),

23 gy =(expls (&1~ &) (1511-E)
:Z Z [qi(w;)w — gi(w; s)wo|

w oeg;

= Z Z[‘Zi(W§S)W —qi(wo;s)w],

oeg w

replacing w by wo in the last sum. Finally, the trivial homomorphism w +— 1
extended to KW maps |&;|1—&; to 0, and exp(0) = 1. O

The classes of reflections are combined in the following.

Definition 6.5.6 The functions g, (w;s) are given by

2 ax(wis)w = 11 (g,Qi(W;SKiI) w).

wew i=

Since the classes &; are in the center of KW, this is a product of commuting
factors. Proposition 6.5.5 shows that ¢, (w;s) is a linear combination of products
of terms like exp(k/As), where A is an integer and 0 < A < 21&;|. Also,

Y qK(w;s)w:exp<s Y K (1 —GV)>

wew VER
and

2 gelwis) = 3 wlaaw:s) —gx Owiis)).

VER

Definition 6.5.7 Forx, >0,n>1andw e W, set
0
cn(w) :/ qic(w;s)e™ ds.

Proposition 6.5.8 With the hypotheses of Definition 6.5.7 we have

(i) cp(w) >0;
(i) nep(w) +Xyer, Kolea(w) —cn(woy)] =61  (Lif w=1, else0);
(111) ZWEW Cn (W) = l/n
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Proof The positivity follows from that of g (w;s). Multiply both sides of the
differential relation just before Definition 6.5.7 by ¢ and integrate by parts over
—oo < 5 < 0, obtaining

g (w;0) — lim e g (w;s) —ncy(w) = 2 Ky [cn(W) — ey (Wwoy)] .
o VER

Since gi(w;s) is a sum of terms e* with A > 0 and n > 1, the integral
for ¢, is absolutely convergent and the above limit is zero. From Proposi-
tion 6.5.5 g (w;0) =1 if w =1, else gx(W;0) is 0. Finally, ¥, c,(w) =
10,3, ax(wis)e™ds = [°_e™ds = 1/n (Proposition 6.5.5, part (v)). O

Proposition 6.5.9 Forn>1let f € 29, then

z Cn (W) <XW7VKf(XW)> = f(x)

wew

Proof Indeed,
Y cn(w) (ow, Vi f (xw))

wew

=Y culw) <nf<xw> + Y K [faw) —f(chv)]>
wew VER

= 2 ca(w)nf(xw) + 2 Ky 2 fOw) [en(w) —ca(woy)]
weWw VER weWw

=, ax(w;0)f(xw) = f(x).
wew

The last line uses (ii) in Proposition 6.5.8. L]

Corollary 6.5.10 For any polynomial f € 1%,

0
D /qu(W;S) (ow, Ve f(e*xw)) e’ ds = f(x) — £(0).

wew ' —

Proof Express f as a sum of homogeneous components; if g is homogeneous of
degree n then Vg (e*xw) = e 13 Vg (xw). O

The above results can be phrased in the language of forms.
Definition 6.5.11 An R?-valued polynomial f(x) = (fi(x))%, (with each f; €
I1%) is a x-closed 1-form if Pifj = 2;fi for each i, j or a k-exact 1-form if there

exists g € IT? such that f = V .g.

The commutativity of {Z;} shows that each k-exact 1-form is k-closed. The
corollary shows that g is determined up to a constant by V.g. The construction of
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the intertwining operator depends on the fact that x-closed 1-forms are x-exact.
This will be proven using the functions ¢, (w).

Lemma 6.5.12 Iffis a k-closed 1-form and u € RY then

Dy (x,1(x) <1—|—2xl i) () + z K, (u,f(x) — f(xo,)0,) .

VER |

Proof Apply the product rule (Proposition 6.4.10) to x; f; (x) to obtain

d
@“<x’f(x)>:z<xz'%ﬁ()+ulﬁ )42 3 et letlocs)
i=1 VER. (vl
f(xo,
NN+2 Y K Véw+2mw%mm
VERL ij=1

(v,f(x0,))

4 9
_<1+i_ZIXiaxi) +2v€z,;‘+ —||v||2
+ Z K (u,f(x) — f(x0,)) .

VER

In the third line we replaced ¥, f; by Z, f; (employing the k-closed hypothesis).
The use of Proposition 6.5.3 produces the fourth line. The terms involving f (xo,)
add up to X,cg, & (u,—f(x0,) 0,). O

Theorem 6.5.13 Suppose that f is a homogeneous x-closed 1-form with each
fi€ 32,‘11 for n > 0; then the homogeneous polynomial defined by

x) =3, cnp1(w) (ow f(xw))

wew
satisfies Vi F = £, and f is k-exact.
Proof We will show that 2, F (x) = (u,f(x)) for any u € R?. Note that
Du[R(w) (x,£(x))] = R(W) [ Do (x,£(x))];
thus

2 Cnt1 (W) Dy [(xw, E(axw))]

weWw

= car1(w) ((n+ 1) (uw, £oow)) + Y i, (uw, £(xw) — £ (xwo,) Gv>>

wew VER
=%ywww@mmwm+§mMMMwmwm0

Z (uw, £(xw)) gic (w;0) = (u, £(x)) .

weWw



198 Root Systems and Coxeter Groups

The second line comes from the lemma, then in the sum involving f(xwo,) the
summation variable w is replaced by wo,,. O

Corollary 6.5.14 For any k-closed 1-form f the polynomial F defined by
0
Flx)= 3 / qic (wss) (ow, f(eSxw)) e ds
weWw v —=

satisfies Vi F = £, and f is k-exact.

In the following we recall the notation d;f(x) = d f(x)/dx;; dif (xw) denotes
the ith derivative evaluated at xw.

Definition 6.5.15 The operators V, : #¢ — 22¢ are defined inductively by
Vo (a) = a for any constant a € R and

d
an(x) = Z cn(W) (Z(XW),'V,,] [aif(xw)]>’ n>1, f € ‘@ff

weWw i=1

Theorem 6.5.16 For f € 2 n>1and 1 <i<d, DVof = Vo 10:if; the
operators V,, are uniquely defined by these conditions and Vo1 = 1.

Proof Clearly 2;Vpa = 0. Suppose that the statement is true for n —1; then g =
(vn,la,-f)j’zl is a k-closed 1-form, homogeneous of degree n — 1 because Z;g; =
Va—20j0;f = Z;g;. Hence the polynomial
F(x)= 3, ca(w) (xw,g(xw))
wew
is homogeneous of degree n and satisfies Z;F = g; =V,,_1 9, for each i, by Theo-
rem 6.5.13. The uniqueness property is also proved inductively: suppose that V,,_1

is uniquely determined; then by Proposition 6.5.9 there is a unique homogeneous
polynomial F such that Z;F =V,,_,0;f for each i. O

Definition 6.5.17 The intertwining operator V is defined on I1¢ as the linear
extension of the formal sum @;_,V,; thatis, if f =X, f, with f, € 24 then
Vf = Z’y?:o ann'

The operator V, as expected, commutes with each R(w).
Proposition 6.5.18 Let f € T1¢ and w € W; then VR(w)f = R(w)V f.

Proof Forany u € RY, 9,V f(x) =V (u,Vf(x)). Substitute uw for u and xw for
X to obtain on the one hand
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RW) (ZunV ) (x) =V (uw, V£ (xw))
=V (uw, VIR(wW)f] (x)w)
=V (u, VIR(wW)f] (x))
=2V [R(w)f] (x);
on the other hand, Z, [R(w)V f] (x) = R(W) (ZuV f) (x). Therefore

Vi [RW)Vf] =V [VR(w)f],

which shows that VR(w)f — R(w)V f is a constant by Proposition 6.5.9. In the
homogeneous decomposition of f, the constant term is clearly invariant under V
and R(w); thus VR(w)f = R(w)V f. O

The inductive type of definition used for V suggests that there are bounded-
ness properties which involve similarly defined norms. The following can be
considered as an analogue of power series with summable coefficients.

Definition 6.5.19 For f € T let || f||a = X0 || fulls, where f =¥ f, with
each f, € 2% and ||g||s = Sup|y =1 1g(x)]. Let A(B?) be the closure of T in the
A-norm.

Clearly A(Bd ) is a commutative Banach algebra under pointwise operations
and is contained in C(BY) NC=({x: [|x|| < 1}). Also, [|f|ls < [[flla. We will
show that V is bounded in the A-norm. The van der Corput—Schaake inequality
(see Theorem 4.5.3) motivates the definition of a gradient-type norm associated

with V.

Definition 6.5.20  Suppose that f € 2¢; forn=0let||f||x = f, and for n > 1 let
l —
|f||r<=n,SUP{ oy e st ‘}.

Proposition 6.5.21 Forn>0and f € 2, ||flls < || fll«-

n

H<y(i)’ Vi) f(x)

i=1

Proof Proceeding inductively, suppose that the statement is true for 3” _; and
n>1.Letx € $?! and, by Proposition 6.5.9, let

x) =3, ea(w) (ow, Vief (aw)).

wew
Thus |f(x)] < X, cn(W)| (xw, Vief (xw)) |5 ¢, (w) > 0 by Proposition 6.5.8. For
each w, | (ow, Vief(xw)) | < supj 1 | (u, Ve f(xw)) |. But, for given u and w,
let g(x) = (u,Vif(xw)) = (uw 1,V R(w)f(x)) € 29 |, and the inductive
hypothesis implies that
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n—1

[T/

=

)] < — sup{

(n—
i=1

1
(e sup
NORNCE) GSdl}

< nl[Rw)fllx = nll £«
Note that ||[R(w) f]|x = ||f]|x for any w € W, because
ViR(w)f(x) = R(w) Vi ()w™!
Thus |f(x)| < X, co(wW)n||fllx and ¥, c,(w) = 1/n by Proposition 6.5.8. O

:y(]),...,y('“]) € Sdl}

n—

H w L ViR(w) f(x)| -

The norm ||f||; was defined in van der Corput and Schaake [1935]; it is the
same as || f||x but with all parameters 0.

Proposition 6.5.22 Forn>0and f € 2%, ||V £« = |Iflls-
Proof Forany y!) ... y(") e g¢-1,
n n n

167, V0v s = VI V) /) = [T0Y. V) f):

i=1 i=1 i=1

the last equation follows from V1 = 1. Taking the supremum over {y<i>} shows
that [[V f1[x = || fll5- O

Corollary 6.5.23 For f € T1? and x € B, we have |V f(x)| < || f||a and ||V f||a <
1/ la-

Proof Write f =¥ f, with f, € 2 then ||V fu[|« = || fullg = || fulls by The-
orem 4.5.3 and |V f,,(x)| < ||V fu|l« for ||x]] < 1 and each n > 0. Thus ||V fi||s <
[1fulls and [V fla < [fla- O

It was originally conjectured that a stronger bound held: namely, |V f(x)| <
sup{|f(¥)| : y € co(xW)}, where co(xW) is the convex hull of {xw : w € W}. This
was later proven by Rosler [1999].

6.6 The x-Analogue of the Exponential

For x,y € C¢ the function exp ({x,y)) has important applications, such as its use in
Fourier transforms and as a reproducing kernel for polynomials (Taylor’s theorem
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in disguise): for f € T, the formal series exp (Z?zlx,a/&yi)f(y)b:o = f(x).
Also (d/0dx;) exp({x,y)) = yiexp({x,y)) for each i. There is an analogous func-
tion for the differential-difference operators. In this section x, > 0 is assumed
throughout. A superscript such as (x) on an operator refers to the R? variable on
which it acts.

Definition 6.6.1 For x,y € RY let K(x,y) = VWexp((x,y)) and K, (x,y) =
(1/n YV ((x,y)") for n > 0.

It is clear that for each y € R? the function f, (x) = exp({x,y)) is in A (B¢)
and that || fy||4 = exp (||y||); thus the sum K (x,y) = ¥~ K, (x,y) converges abso-
lutely, and uniformly on closed bounded sets. Here are the important properties
of K, (x,y). Of course, Ko(x,y) = 1.

Proposition 6.6.2 Forn > 1and x,y € R¢:

(1) Kaul(x,y) = zweW cn(w) Qow, y) Kn 1 (ow,y);
(i) |Ky(x,y)| < n, max,ew | (xow, y) ",
(iii) K, (xw,yw) = Ky (x,y) foranyw € W;
(iv) K, (y,x) =Ky(x,y);

) _@L(,X)Kn(x,y) = (u,y) Ky_1(x,y) for any u € R%.

Proof Fixy € R? and let gy(x) = (x,y)". By the construction of V we have
1 d
K, (x,y) = —ng — z cn(w z xw);V digy(xw)
! wew i=1
and d;gy(x) = ny;(x,y)"1; thus Vd;gy(xw) = n(n — 1)1y;K,—1 (xw,y), implying
part (i). Part (ii) is proved inductively using part (i) and the facts that ¢,(w) > 0
and Y, c,(w) =1/n.
For part (iii),
1 1
Ky (xw,yw) = ;R(W)ngw (x) = ;VR(W)gyw(x)
and R(w)gyw(x) = (xw,yw)" = (x,y)", hence K, (xw,yw) = K, (x,).
Suppose that K;,_ (y,x) = K,_1(x,y) for all x,y; then, by (i) and (iii),

z cn(w) w, x) Ky—1 (yw, x)

wew

= calw) <xw*1,y> Ko (ow™'y)
weWw

=D, caw™) (ow,y) Kyt (2w, )
wew

=K, (x,y).
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Note that ¥, g (w:s)w = exp(s X,eg, (1 — 6)) is in the center of the group alge-
bra KW and is mapped onto itself under the transformation w — w~! (because
each 6,' = 6,); hence g (W™ ';5) = g (wss) for each w,s, which implies that
Cn (w’l) =cp(w).

Letu e Rd; then

1 1
DKalx.3) = DV gy () = —V (1,V) gy (x)
by the intertwining of V, so that

2 Kae.3) = 2 VO ()" ) = ,3) K1 (5,9):

Corollary 6.6.3 For x,y,u € R? the following hold:

)i

() ‘K X,y | <e P(maxweW | <XW y>
(i) K (x, )= K(0,y) =
(i) 27K (x,y) = (u,) K(x,y>.

Observe that part (iii) of the corollary can be given an inductive proof:

(xw,yw) z cn(2) (owz, yw) K1 (xwz, yw)

zeW

= culz) Cowzw ™ y) Ky (xwzw ™! y)
zeW

= ca(w'zaw) (xz,y) K1 (x2,y),
zeW

and ¢, (w™'zw) = c4(z) because ¥, g (w;s)w is in the center of KW.
The projection of K(x,y) onto invariants is called the k-Bessel function for the
particular root system and multiplicity function.

Definition 6.6.4 For x,y € R let

Y K(x,yw).

wew

K (x,y) =
IWI

Thus Ky (x,0) = 1 and Ky (xw,y) = Kw (x,yw) = Ky (x,y) for each w € W.
The name “Bessel” stems from the particular case W = Z,, where Ky is expressed
as a classical Bessel function.

6.7 Invariant Differential Operators

This section deals with the large class of differential-difference operators of arbi-
trary degree as well as with the method for finding certain commutative sets of
differential operators which are related to the multiplicity function k. Since the
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operators &, commute, they generate a commutative algebra of polynomials in
{9, : 1 <i<d} (see Definition 6.4.2 for 9, and 2)).

Definition 6.7.1 For p € 11¢ set p(2) = p(Z1,D»,...,%); that is, each x; is
replaced by Z;.

For example, the polynomial ||x||> corresponds to Ay,. The action of W on these
operators is dual to its action on polynomials.

Proposition 6.7.2 Let p € [1¢ and w € W, then
P(2)R(w) =R(w) [R(w™)p(2)] .

If p e 1Y, the algebra of invariant polynomials, then p(2)R(w) = R(w)p(2).
Proof Each polynomial is a sum of terms such as g(x ) H" L x), with
each u) € R, By Proposition 6.4.3, g(2)R(w) = R(w) T (uDw, V). Also,
Rw™ Ng(x) = T, D xw™ 1) = 17, (uDw,x). This shows that g (Z)R(w) =
R(w) [R(w™")q(2)]. If a polynomial p is invariant then R(w™')p = p, which
implies that p (2)R(w) = R(w)p (2). O

The effect of p(Z) on K(x,y) is easy to calculate:

p(Z2)K(x,y) =p()K(x,y), xyeR.

The invariant polynomials for several reflection groups were described in Sub-
sections 4.3.1-4.3.6. The motivation for the rest of this section comes from the
observation that Ay, restricted to IT" acts as a differential operator:

2(v,Vp(x
App(x) = Ap(x) + z KvM

, for p € V.
vER <V’x>

It turns out that this holds for any operator ¢(2) with g € TI". However,
explicit forms such as that for A, are not easily obtainable (one reason is
that there are many different invariants for different groups; only ||x||* is
invariant for each group). Heckman [1991a] proved this differential operator
result. Some background is needed to present the theorem. The basic prob-
lem is that of characterizing differential operators among all linear operators on
polynomials.

Definition 6.7.3 Let . (I1?) be the set of linear transformations of I — TT¢
(“endomorphisms”). For n > 0 let %, (I19) = span{a(x)9* : a € 1¥, a0 €
Ng ,Ja| <n}, where 0% = 81“ L 8:"’ , the space of differential operators of degree
< n with polynomial coefficients. Further, let £ (I1?) = Uy %5, (T19).
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Definition 6.7.4 For S,T € Z(I1%) define an operator ad(S)T € Z(I1%) by
ad(S)Tf = (ST —TS)f  for f e TI%.

The name ad refers to the adjoint map from Lie algebra theory. The elements
of £} are just multiplier operators on 1 : f +— pf for a polynomial p € I1¢;
we use the same symbol (p) for this operator. The characterization of %5 (I1¢)
involves the action of ad(p) for arbitrary p € T1¢.

Proposition 6.7.5 IfT € Z(11¢) and ad(x;)T =0 for each i then T € £} o(T1%)
and Tf = (T1) f for each f € TT%.

Proof By the hypothesis, x;T f(x) = T (x;f)(x) for each i and f € T1¢. The set
E={fel?:Tf=(T1)f} is a linear space, contains 1 and is closed under
multiplication by each x;; hence E = IT¢. O

The usual product rule holds for ad: for S, T}, T, € ¥ (Hd), a trivial verification
shows that

ad(S)T1T2 = [ad(S)Tl] L+T [ad(S) T2] .
There is a commutation fact:
S$18, = 8,81 implies that  ad(S))ad(S,) = ad(S>)ad(Sy).

This holds because both sides of the second equation applied to 7 equal S1S27 —
S1TS2 — 82T S +T8,S;. In particular, ad(p) ad(q) = ad(q) ad(p) for multipliers
p,q €14, For any p € 11¢, ad(p)d; = —d;p € fap(ﬂd), a multiplier.

It is not as yet proven that %5 (I1%) is an algebra; this is a consequence of the
following.

Proposition 6.7.6 Suppose that m,n > 0 and o, B € N¢, with |a| = m,|B| =n
and p,q € T1%; then pd®qdP = pqd®P + T, with T € £y 11 (1I19).

Proof Proceed inductively with the degree-1 factors of d%; a typical step uses
0:9S = q09;S + (diq)S for some operator S. O

Corollary 6.7.7 Suppose that n > 1 and T € % ,(11?); then ad(p)T €
Ly n1(1%) and ad(p)"™'T =0, for any p € 114

In fact Corollary 6.7.7 contains the characterization announced previously. The
effect of ad(x;) on operators of the form gd“ can be calculated explicitly.

Lemma 6.7.8 Suppose that o € Nf)l g€ and 1 <i<d; then
ad(x;)) gd% = (—oq) qd -3 .95,
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Proof Since x; commutes with ¢ and Hfj for j # i, it suffices to find ad(x;) 9.
Indeed, by the Leibniz rule, 0 f — 9% (xif) = =X, (4)d (x) 97/ (f) =
— ;0% (f) for any f e T4, O

Theorem 6.7.9 Forn > 1,T € Z(T1) the following are equivalent:

() T €.2,(I%;
(i) ad(p)"™'T =0 for each p € T1%;
(i) ad(x1)®ad(x2)® - ad(xs)* T = 0 for each o € Nd with |ot| = n+ 1.

Proof We will show that (i) = (ii) = (iii) = (i). The part (i) = (ii) is already
proven. Suppose now that (ii) holds; for any y € R? let p = Zl 1 vix;. The multino-
mial theorem applies to the expansion of (Zizl yiad (xi)) because the terms
commute with each other. Thus

0=uad(p)"'T = D <a|)ya ad(x1)*ad (x2)* - ad(xg)™T.
lot|=n+1
Considering this as a polynomial identity in the variable y, we deduce that each
coefficient is zero. Thus (ii) = (iii).
Suppose that (iii) holds. Proposition 6.7.5 shows that (i) is true for n = 0. Pro-
ceed by induction and suppose that (iii) implies (i) for n — 1. Note that Lemma
6.7.8 shows that there is a biorthogonality relation

d
ad ()" ad () -+ ad (x0)* (997 ) =TT (~B1) 4, 99,
i=1
where 98- =12, 8? "% and negative powers of d; are considered to be zero
(of course, the Pochhammer symbol (— ﬁ,-)a’_ =0 for o; > f3;). For each o € Ng
with || = n, let

d
—1)"T (s “lad(x))* ad(x2)® ---ad(x)*™ T.
=1

By hypothesis, ad(x;)Sy, = 0 for each i and, by Proposition 6.7.5, Sy is a
multiplier, say, g, € I1?. Now let T, = 2lof=n qod%. By construction and the
biorthogonality relation, we have

ad(x))* ad(xy)* - ad(xg)™ (T —T,) =0

for any o € N¢ with |o| = n. By the inductive hypothesis, T — T, € % ,_; (I19);
thus T € % ,(I19) and (i) is true. O

We now apply this theorem to polynomials in {g; : 1 < j < d}, the funda-
mental invariant polynomials of W (see Chevalley’s theorem 6.3.2). Let %5 (ITV)
denote the algebra generated by {8 /dgi 1 <i< d} UTIY, where the latter are
considered as multipliers.
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Theorem 6.7.10 Let p € T1V; then the restriction of p(2) to IV coincides
with an operator D, € Zy(TY). The correspondence p — D, is an algebra
homomorphism.

Proof By the previous theorem we need to show that there is a number n such that
ad(g)"™ p(2) f =0 foreach f,g € 1" Let n be the degree of p as a polynomial
in x; then p is a sum of terms such as [T/, <u(i),x> with u') € R and m <n.By
the multinomial Leibniz rule,

ad(g)n+1 H(“(i) ) VK>
i=1

=Z{(n;;1)lm[(ad(g)"%u("),va) ;B e N |B| :n+1}.

=1
For any f3 in the sum there must be at least one index i with §; > 2, since n+1 > m.
But if g € TV and ¢ € TI then (1, V) (g9) = %4 (2q) = 82uq+ q(u,V)g; that
is, ad(g)(u,Vy) is the same as multiplication by (u,V)g and ad(g)* (u,V,) =
0. Thus D, € Z,(IT"). Furthermore, if pi,p, € TV then the restriction of
P1(2)p2(2) to TV is clearly the product of the respective restrictions, so that
Dy py = Dp Dp,. O

This shows that D), is a sum of terms such as

d 0 0
f(QI7q27"‘7qd)H(aq)

i=1
with o € N’é and |a| < n. This can be expressed in terms of x. Recall the

d
Jacobian matrix J(x) = (8qi(x) /dx j) - with det J(x) = cagr(x), a scalar mul-
i,j=
tiple of the alternating polynomial ag(x) (see Theorem 6.3.5). The inverse of
J(x) exists for each x such that (x,v) # 0 for each v € R, and the entries
are rational functions whose denominators are products of factors (x,v). Since

d/dq; =3¢, (J(x)’1>ij¢9/8x,~, we see that each D), can be expressed as a dif-

ferential operator on x € RY with rational coefficients (and singularities on {x :
[Tyer, (x,v) =0}, the union of the reflecting hyperplanes). This is obvious for Ay.

The k-Bessel function is an eigenfunction of each D,,p € I1Y; this implies
that the correspondence p — D), is one to one.

Proposition 6.7.11 Forx,y € R¢, if p € TV then
DY K (x,y) = p(v)Kw (x,).

Proof 1t is clear that Ky is the absolutely convergent sum over n > 0 of the
sequence |W|~!'Y,,cw K, (x,yw) and that p (.@(x)> can be applied term by term.
Indeed,
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D;X)KW(xay) = p(g( ))KW )C y |W| z P( ) ,yw)

WEW

W Z pOw) K (x,yw) y) >, K (x,yw)
| ‘WGW wew

= p(y)Kw(x,y).

The third equals sign uses (iii) in Corollary 6.6.3. O

Opdam [1991] established the existence of Ky as the unique real-entire joint
eigenfunction of all invariant differential operators commuting with D, p(x) =
||x[|%, that is, the differential part of A, the eigenvalues specified in Proposition
6.7.11.

6.8 Notes

The fundamental characterization of reflection groups in terms of generators and
relations was established by Coxeter [1935]. Chevalley [1955] proved that the
ring of invariants of a finite reflection group is a polynomial ring (that is, it is iso-
morphic to the ordinary algebra of polynomials in d variables). It is an “heuristic
feeling” of the authors that this is the underlying reason why reflection groups
and orthogonal polynomials go together. For background information, geomet-
ric applications and proofs of theorems about reflection groups omitted in the
present book, the reader is referred to Coxeter and Moser [1965], Grove and
Benson [1985] and Humphreys [1990].

Historically, one of the first results that involved reflection-invariant operators
and spherical harmonics appeared in Laporte [1948] (our theorem 6.2.6 for the
case R?).

Differential-difference operators, intertwining operators and k-exponential
functions were developed in a series of papers by Dunkl [1988, 1989a, 1990,
1991]. The construction of the differential-difference operators came as a result
of several years of research aimed at understanding the structure of non-invariant
orthogonal polynomials with respect to invariant weight functions. Differential
operators do not suffice, owing to their singularities on the reflecting hyperplanes.

Subsequently to Dunkl’s 1989 paper, Heckman [1991a] constructed operators
of a trigonometric type, associated with Weyl groups. There are similar oper-
ators in which elliptic functions replace the linear denominators (Buchstaber,
Felder and Veselov [1994]). Rosler [1999] showed that the intertwining opera-
tor can be expressed as an integral transform with positive kernel; this was an
existence proof, so the finding of explicit forms is, as of the time of writing, an
open problem. In some simple cases, however, an explicit form is known; see the
next chapter and its notes.
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Spherical Harmonics Associated with
Reflection Groups

In this chapter we study orthogonal polynomials on spheres associated with
weight functions that are invariant under reflection groups. A theory of homo-
geneous orthogonal polynomials in this setting, called A-harmonics, can be
developed in almost complete analogy to that for the ordinary spherical harmon-
ics. The results include several inner products under which orthogonality holds,
explicit expressions for the reproducing kernels given in terms of the intertwin-
ing operator and an integration which shows that the average of the intertwining
operator over the sphere removes the action of the operator. As examples, we dis-
cuss the h-harmonics associated with Z4 and those in two variables associated
with dihedral groups. Finally, we discuss the analogues of the Fourier transform
associated with reflection groups.

7.1 h-Harmonic Polynomials

We use the notation of the previous chapter and start with definitions.

Definition 7.1.1 Let R be the system of positive roots of a reflection group W
acting in RY. Let k be a multiplicity function as in Definition 6.4.1. Associated
with Ry and k we define invariant weight functions

he(x) = ] [(mx)]*, xeRY,

VER

Throughout this chapter we use the notation ¥, and A as follows:
d—2
Y= D Ky and A=Y+ ——. (7.1.1)
VER 2
Sometimes we will write y for ¥ and A for A, and particularly in the proof
sections when no confusion is likely. Note that the weight function % is positively

homogeneous of degree Y.
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Recall that the operators Z;, 1 <i < d, from Definition 6.4.2 commute and that
the h-Laplacian is defined by A, = ¥4, 272.

Definition 7.1.2 A polynomial P is A-harmonic if AP = 0.
We split the differential and difference parts of Ay, denoting them by L, and

Dy, respectively; that is, Ay, = Ly + Dy, with

A(fhk') B fAhK
hy ’

Dyf(x)=-2 Kv

vER v, X >

Lyf =
_ fxo) (7.12)

2
v~

Lemma 7.1.3 Both L, and D;, commute with the action of the reflection
group W.

Proof We have L, f = Af +2(Vhy,Vf)/hc. We need to prove that R(w)L;,f =
LyR(w)f for every w € W. The Laplacian commutes with R(w) since W is a sub-
group of O(d). Every term in 2(Vhy, Vf)/he = $[A(hEf) — fA(hE) — h2Af] /W%
commutes with R(w) since h2 is W-invariant. Since A;, commutes with R(w) and
Dy, = A, — Ly, Dj, commutes with the action of W. O]

In the proof of the following lemmas and theorem assume that x, > 1. Analytic
continuation can be used to extend the range of validity to x, > 0. More-
over, we will write dw for dw,_; whenever no confusion can result from this
abbreviation.

Lemma 7.1.4  The operator Dy, is symmetric on polynomials in L*(h% dw).

Proof For any polynomial f, Dy,f € L?>(h%dw) since each factor (x,v)? in the
denominators of the terms of D, f is canceled by hi(x) = [Tyer, |{x,v)[* for
each x, > 1. For polynomials f and g,

/S  IDwghido
—— 3 x ([, SWE ) ko

VER
_/d—l f(x)g(xov)<x7v)th(x)2d0>> IvlI> = /d—1(th)gh12<d0)7
g s

where in the second integral in the sum we have replaced x by xo,; this step
is valid by the W-invariance of 42 under each o, and the relation (xo,,v) =
(x,vo,) = —(x,v). O
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Lemma 7.1.5 For f,g € C*(BY),

Cdf 2
L Shstido = [ (sLus+ (Vs V) ias
where d f /dn is the normal derivative of f.

Proof Green’s first identity states that

/;, . aj,:'fzdw / (FoAfi+ (V1,V f3)) dx

for f1, f» € C>(B%). In this identity, first put fi = fhy and f> = gh, to get

Jdhy d
L (fg % +gh,<af:)h,<dw = [ [ehA(fhe) + V(o). ¥ (ghe))] d

and then put f| = h and f, = fghy to get
8h
fe5do = [ [fghebinc-+ (V(Fehy), V)] dr

,Su’l

Subtracting the second equation from the first, we obtain

0
[ 85h a0 = [ (ehelathg) - Ay + 120V 1,Vg)) an

by using the product rule for V repeatedly. O

Theorem 7.1.6  Suppose that [ and g are h-harmonic homogeneous polynomi-
als of different degrees; then [sa—1 f(x)g(x)h%(x)dew = 0.

Proof Since f is homogeneous, by Euler’s formula, d f/dn = (deg f) f. Hence,
by Green’s identity in Lemma 7.1.5,

(deg f —degg) /S L fehido = /B (gLnf — fLyg)hydx

= /Bd(gth—thg)hZde: 0,

using the symmetry of Dy, from Lemma 7.1.4. O

Hence, the h-harmonics are homogeneous orthogonal polynomials with
respect to 42 dw. Denote the space of 4-harmonic homogeneous polynomials of
degree n by

H(hE) = 29 Nker Ay,
using notation from Section 4.2. If k2 is S-symmetric then it follows from Theo-

rem 4.2.7 that 22¢ admits a unique decomposition in terms of %”jd (h2). The same
result also holds for the general h-harmonic polynomial 4, from Definition 7.1.1.
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Theorem 7.1.7 For each n € Ny, ¢ = WZ] Htzjjfjfizj (h2); that is, there
is a unique decomposition P(x) = [n/2 ||x||2/P,, 2j(x) for P € 2% with P,_»; €

%’jizj (h2). In particular,
+d—1 n+d-3
dim 2 (n2) = (" - .
im 7 02) = ( e

n

Proof We proceed by induction. From the fact that A, 2¢ C @d , we obtain
P8 =47, ¢ = A and dim%ld(hz) > dim 22¢ — dim 9"1 . Suppose
that the statement is true for m = 0,1,...,n — 1 for some n. Then ||x||?24_,
is a subspace of 2¢ and is 1somorph1c to 92 _,» since homogeneous poly—
nomials are determined by their values on S?~!. By the induction hypothe-
sis ||x[|2224_, = 69["/2] 1||x|\2/'+21%’j1d7272].(h,2(), and by the previous theorem
AL Lo, 2](hz) for each j = 0,1,...,[n/2] — 1. Hence % (h%) L

[x|I*?22¢_, in L?(hidw). Thus dimsZ¢(h%) + dim ¢ , < dim 2, and so
dim 24 (h2) +dim(||x|>22¢_,) = dim 24, O

Corollary 7.1.8 24N (2% )t = #4(h2); that is, if p € 2% and p L P,
then p is h-harmonic.

A basis of %‘jld (h2) can be generated by a simple procedure. First, we state

Lemma 7.1.9 Let s be a real number and g € 2¢. Then

Zi(|Ix|I*g) = sxi|lx[|* g+ [|x|* Zig,
(7.1.3)

d s _ ,
Mu(lr1%e) =25 (G +5 = 1k g ) IolP 2+ [l v

where, if s < 2, both these identities are restricted to RY\ {0}.

Proof Since ||x||* is invariant under the action of the reflection group, it follows
from the product formula in Proposition 6.4.12 that

Zi|lxl°g) = ailllxl[*)g + X[ Zis,

from which the first identity follows. To prove the second identity, use the split
A = Ly + Dy, 1t is easy to see that Dy (||x||*¢) = ||x||*Drng. Hence, using the fact
that L, f = Af +2(Vhy,V f)/h, the second identity follows from

d s _
A1) =25 5+~ 1) Il 2+ o

and
(V(|Ix][°g), Vix) = s[|x||*"*(g, Vix) + |Ix[|*(Vg, Vi),
where we have used the relation Y (x;0hy/dx;) = Yichx. O
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Lemma 7.1.10 For 1 <i<d, Ayxif (x)] = xiAnf (x) + 29, f (x).

Proof By the product rules for A and for V,

Ml ()] =5 () + 22

by [0 2

Z 5T T e

it (x) = (x0))if (x0y)

v
v o),

which, upon using the identities

x6if (x) = (x0y)if (x0y) = xi[f (x) = f(x0))] + (xi = (x0v)i) f(x00)

and
2(x,v)v;
vl

is seen to be equal to x;Ay, f(x) + 29, f(x). O

Xi— (XGV),' =

Definition 7.1.11 For any o € Ng , define homogeneous polynomials Hy, by
He (x) := ||| Aol % || x| =, (7.1.4)
where 2% = _@f” -~~_@;d and A, is asin (7.1.1).

Recall that g = (0,...,1,...,0), 1 <i<d, denotes the standard basis elements
of R¥. In the following proof we write A for A.

Theorem 7.1.12  For each oo € N, Hy, is an h-harmonic polynomial of degree

||, that is, Hy € ‘%’ﬂ\ (h%). Moreover, the Hy, satisfy the recursive relation

Hyve,(x) = —2(Ag + |0|)xiHy (x) + ||x]|* ZiHg (x). (7.1.5)

Proof First we prove that H,, is a homogeneous polynomial of degree |a|, using
induction on n = |a|. Clearly Hy(x) = 1. Assume that H, has been proved to be
a homogeneous polynomial of degree n for |o¢| = n. Using the first identity in
(7.1.3) it follows that

DiHo =22+ 2| ot| il x| 4221 2% (1] 24)
+ [P g2 (|1x) ),
from which the recursive formula (7.1.5) follows from the definition of H,,.
Since Z; : 2% — 29 |, it follows from the recursive formula that Hy ¢, is a
homogeneous polynomial of degree n+ 1 = |ot| + 1.

Next we prove that Hy, is an h-harmonic polynomial, that is, that AyHy = 0.
Setting a = —2n — 2A in the second identity of (7.1.3), we conclude that

(x| 7 g) = Ixl| 7> Mg,
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for g € 27¢. In particular, for g = 1 and n = 0, Ay (||x||~**) = 0 for x € RY\ {0}.
Hence, setting g = Hy, and |ot| = n and using the fact that 2, ..., %,; commute,
it follows that

ApHo = |lx| P24 2% A (|12l 7*) = 0,

which holds for all x € R? since Hy, is a polynomial. O

The formula (7.1.4) defines a one-to-one correspondence between x* and H,,.
Since every h-harmonic in .74 (h%) can be written as a linear combination of x*
with |et| = n, the set {Hy : |ot| = n} contains a basis of 7 (h2). However, the
h-harmonics in this set are not linearly independent since there are dim 22¢ of
them, which is more than dim .74 (h%). Nevertheless, it is not hard to derive a
basis from them.

Corollary 7.1.13 The set {Hy, : |&t| = n} contains bases of H(hZ); one
particular basis can be taken as {Hy, : |o| =n, 03 =0,1}.

Proof The linear dependence relations among the members of {H,, : |a| = n} are
given by

Hpy o, ++ 4 Hp e, = KP4 2P 8y (|x] 74) =0

for every B € N¢ such that || = n — 2. These relations number exactly
dim2? , = #{B € N? : |B| = n —2}. For each relation we can exclude
one polynomial from the set {Hy : || = n}. The remaining dim.Z¢(h%)
(=dim 2 —dim 2¢_,) harmonics still span 2 (h%); hence they form a basis
for % (hZ). The basis is not unique, since we can exclude any of the polyno-
mials Hg o, ,...,Hp 2¢, for each dependent relation. Excluding Hg 5, for all
|B| =n—2 from {Hy : || = n} is one way to obtain a basis, and it generalizes
the spherical harmonics from Section 4.1. U

The polynomials in the above basis are not mutually orthogonal, however. In
fact, constructing orthonormal bases with explicit formulae is a difficult problem
for most reflection groups. At the present such bases are known only in the case of
abelian groups thi (see Section 7.5) and the dihedral groups acting on polynomials
of two variables (see Section 7.6).

Since (7.1.4) defines a map which takes x* to Hy, this map must be closely
related to the projection operator from ¢ to % (h%.).

Definition 7.1.14  An operator proj, , is defined on the space of homogeneous
polynomials 2¢ by

. —1)" _
proj P(9) = 55 P 2 (2) ] ),

where (Ag), is a Pochhammer symbol.
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Theorem 7.1.15  The operator proj, j, is the projection operator from @,‘f to
A4 (h2), and it is given by

[n/2]

innP(x) = . A P,
Proj, » (x) Z‘B 41‘]‘(_}/ —n+ 1)] ”x” h

(7.1.6)

moreover, every P € @,‘f has the expansion

[n/2] 1
P(x)= 3

4 (At T+n—2j),

Hx||2jpr0jn72j,hA;];P(X)- (7.1.7)

Proof Use induction on n = |¢t|. The case n = 0 is evident. Suppose that the
equation has been proved for all o such that |a| = n. Then, with P(x) = x* and
ol =n,

Pl = (=12 (A 22

n/2) i

25 Ad (52
jg(‘)4jj!(*;t—n+1)j“x‘| h(x )

Applying %; to this equation and using the first identity in (7.1.3) with g =
A{l (x*), we conclude, after carefully computing the coefficients, that

2,9 ||x||*21 = (_l)nzn(ﬂ,)n(—ZA _ 2n) HfozManz

TV I o g
X gy P ) 28 ),
j=0 : J

where we have also used the fact that &; commutes with A;. Now, using the
identity

Afef (0] = 5] () +2jZ8] f(x). =123,

which follows from Lemma 7.1.10, and the fact that (—1)"2"(1),(—24 —2n) =
(=112 1(2),1, we conclude that equation (7.1.6) holds for P(x) = x;x%,
which completes the induction.

To prove (7.1.7), recall that every P € 22¢ has a unique decomposition P(x) =
2

x
ZB"Z/O} [|x||>/ P,—2; by Theorem 7.1.7, where P,_»; € f/jl‘l_zj(h,z(). It follows from
the second identity of (7.1.3) that

) /2] .
NP=Y &(=i)j(—A+n+i)jllx|* ¥ P s,
=

(7.1.8)
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from which we obtain that

(/2] [n/2] 4 (=i)i(=A —n+1i); o
. _ 2j J J 2i—2j i
pro]n,hP Z(,) ||)CH 122; 4{]'(*1*”4’1)1 ||X|| Pu—ai

- [nf] ”xHZiPnfz,' zl: (_.i)/(_l —n+i);
=0 Jj=0 ]!(_)’_n‘i‘l)j

[2/2]

N i A —nti )
= Py oFi 1),
Z(,)HXH n2i2Fi (T

By the Chu—Vandermonde identity the hypergeometric function £} is zero except
when i = 0, which yields proj, , P = F,. Finally, using A{IP in place of P and
taking into account (7.1.8), we conclude that

proj, o p AP = (=) j(=A —n+j)jPu2js

a simple conversion of Pochhammer symbols completes the proof. O
An immediate consequence of this theorem is the following corollary.
Corollary 7.1.16  For each o € N¢,
Ho (x) = (=1)"2" (A )n Proj,, j,(x%).

The projection operator turns out to be related to the adjoint operator &;" of ;
in L*(h2dw). The adjoint 27 on % (h%) is defined by

|, p@amdo= | (Zipaido,  peslR), ae AL 0.
It follows that & is a linear operator that maps 7 (h%) into £, (h%).
Theorem 7.1.17  For p € 4 (h2),

D p=2(n+Ae+1) [xip— 2n+24¢) x> Zip)].
Proof First assume that |a| = |B| = n. It follows from (7.1.5) that
(2A +2n) /S | XiHoHp hdw
- /S | (ZiHo)Hyh-do ~ /S | Horye Hghdo =0,
Since {Hy : || = n} contains a basis for 7% (h%), it follows that

/S‘Hxipqh,z(da)zo, 1<i<d, pqe) (7.1.9)
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Using this equation and the recursive relation (7.1.5) twice we conclude that, for
|| =nand |B|=n+1,

Ho(ZiHg)12 do = (2 + 20+ 2) / | wHoHgl do
JSad—

Jsd—1
24 +2n+2

2
T /S[H He o Hgh% do,
which gives, using the definition of 7,

n+A+1

ZiHa =~ n+A

o+g;-

Using the recurrence relation (7.1.4) again, we obtain the desired result for
p = Hy, which completes the proof by Corollary 7.1.13. O

We can also obtain a formula for the adjoint operator defined on L?(h*du, R¢),
where we define the measure p by

du = (2m)~4/2eIH7/2 gy

Let “//nd(h,z( du) denote the space of orthogonal polynomials of degree n with
respect to 42 du. An orthogonal basis of 7/ (h2.du) is given by

—2j4a [ 1
P i(x)=L7H" (2|x2)Ynh2j’v(x), (7.1.10)

where Y,,h_zj’v € %jld_zj(h,z() and 0 < 2j < n. Its verification follows as in (5.1.6).

We introduce the following normalization constants for convenience:

Ch = Cha = (/Rdh;zc(x)dli)il,

~1
c;lzc}l‘dzod,l(/ thda)) .
’ sd—1

Using polar coordinates we have for p € &, that

1 ° 2
2 _ 2Ye+2m+d—1,—r"/2 2
/Rd p(xX)hi(x)du = 7(2@‘1/2 /0 r e dr/Sd?l phido

(7.1.11)

F(%) O4—1 Jsd-1

= QmtYe phido,

which implies, in particular, that
C(Ac+1)
r4)

We denote the adjoint operator of &; on L*(hZdu,R?) by .@i*, to distinguish it
from the L2 (h dw,S~!) adjoint Z; .

/
Cha = 2% Chd-
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Theorem 7.1.18  The adjoint .@l* acting on L>(hZdu,RY) is given by
7 p(x) =xip(x) — Zip(x),  pen’.
Proof Assume that x;, > 1. Analytic continuation can be used to extend the range

of validity to x, > 0. Let p and g be two polynomials. Integrating by parts, we
obtain

/R [0p ()] q(x) i (x) dp = — P [9iq ()] i () dpa
P(0)q(x) [ = 2 (x) I (x) + hig (x)x:] dp.

For a fixed root v,

P()q(x) o p(x0v)q(x)

= —h du— ——h d

L e du— [ PR ) du

p(x)q(xoy)

(rv) F RO (x,V)
where in the second integral we have replaced x by xo,, which changes (x,v) to
(xo,,v) = —(x,v) and leaves hZ invariant. Note also that
Vi 2

he(0)dhe(x) = Y K62 (x).

vER <x7 V> )

hg(x) g,

Combining these ingredients, we obtain
[, 2w@atori(odu

= [ [P [xia(x) - diq(x)]

R4
+ X (i p0) [~ 2900 + g(x) +q(x6)] /e,v)) |2 () ds;
VER
the term inside the large square brackets is exactly p(x) [xig(x) — Z;q(x)]. O

7.2 Inner Products on Polynomials

For polynomials in T1¢, a natural inner product is (p,q)y = p(2)q(0), p,q € 24,
where p(d) means that x; has been replaced by d; in p(x). The reproducing ker-
nel of this inner product is {x,y)"/n!, since ({x,d,)"/n!)q(y) = q(x) for g € 2¢
and x € R, With the goal of constructing the Poisson kernel for i-harmonics,
we consider the action of the intertwining operator V (Section 6.5) on this inner
product. As in the previous chapter, a superscript such as (x) on an operator refers
to the R? variable on which it acts.
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Proposition 7.2.1  If p € P then K, (x, 2" p(y) = p(x) for all x € R, where
K, (x, 2PV)) is the operator formed by replacing y; by Z; in K, (x, ).

Proof If p € 2% then p(x) = ({(x,0")"/n!)p(y). Applying V¥ leads to
V¥ p(x) = Ky(x,0%)p(y). The left-hand side is independent of y, so applying
V) to both sides gives V¥ p(x) = K, (x, 2%))V ) p(y). Thus the desired iden-
tity holds for all Vp with p € 229, which completes the proof since V is one
to one. O

Definition 7.2.2  The bilinear form {p,q), (known as an h inner product) equals
p(2W)q(x) for p,q € 2¢ and n € N¢ and, since homogenous polynomials of
different degrees are orthogonal to each other, this extends by linearity to all
polynomials.

We remark that if k = 0, that is, i (x) = 1, then (p,q), is the same as (p,q).

Theorem 7.2.3 For p,q € &<,
(@) = Ka(2™,2Y))p(x)q(y) = (4, P)-

Proof By Proposition 7.2.1, p(x) = K, (x, 2%)) p(y). The operators 2*) and 2)
commute and thus

(p.a)n = Ka( 2,2 p(y)q(x) = Ka( 2V, 2V p(y)g(x)
by part (iv) of Lemma 6.6.2. The latter expression equals (g, p)j. O

Theorem 7.2.4 [f p € 29 and q € 7% (h%) then
(p.a)n=cn /Rd pakdp =2+ )n C /S{H pahido.
Proof Since p(Z)q(x) is a constant, it follows from Theorem 7.1.18 that
o =cn [, p(Z)alR(x)du
= o [, a0 [p(Z)1] ) dn
= o [ ) [p() + 5] x) d

for a polynomial s of degree less than n, where using the relation @i*g(x) =
x;ig(x) — Z;g(x) repeatedly and the fact that the degree of Z;g is lower than that
of g shows that p(Z*)1 = p(x) + s(x). But since ¢ € 529 (h%), it follows from
the polar integral that [zs g(x)s(x)h%(x)du = 0. This gives the first equality in the
statement. The second follows from the use of polar coordinates as in the formula
below equations (7.1.11). O
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Thus (p, ) is positive definite. We can also give an integral representation of
{p,q);, for all p,q € T1¢. We need two lemmas.

Lemma 7.2.5 Let p,q € 2% and write

[n/2]

n/2] _
= 2 5l pu2jlx)  and Z el g2 (x
Jj=0

With pu_2j,qn—2; € %‘izj(h,zc). Then

[n/2]
(P, a)n = 2 49 j1(n—2j+ A+ 1) j(Pu—2jr dn2j)n-
ji

Proof The expansions of p and ¢ in A-harmonics are unique by Theorem
7.1.7. Using the definition of Aj, (see the text before Definition 7.1.2) and
<pn72ja5]n72j>h,

ln/2] |n/2]
pa h— z 2 Ahpn 21 [HXH an 2]( )]

By the second identity of (7.1.3),
A (11 gn—2;(x)) = 4 (= )i(=n— A+ )il lxl* > gu25(x),

which is zero if i > j. If i < j then {(|[x||*/gu—2;(x), ||X||*Pn—2i(x))n = O by the
same argument and the fact that the pairing is symmetric (Theorem 7.2.3). Hence,
the only remaining terms are those with j = i, which are given by 4/ j!(—n—A +
1)iPn-2j(D)qn-2(x)- -

Lemma 7.2.6 Let p € 7 (h%), n,m € N&; then
_ 1
e 212 = (-1 m2n s (S ) o),

Proof We observe that, for p € 24, e=1/2p is a finite sum. From (7.1.3),
) . (—1)i2)
e M2|[x|Pmp(x) = Y,

>, i i me 2P ()

Using the fact that (—1)/(1 —=m —a); = (a@)m/(@)m—j; With a =n+ A+ 1,
the stated identity follows from the expansion of the Laguerre polynomial in
Subsection 1.4.2. O

Theorem 7.2.7 For polynomials p,q

(P:@)n = cn /Rd (e 2/2p) (e~/2q) K2 dp.
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Proof By Lemma 7.2.5, it suffices to establish this identity for p, g of the form

p(x) = ||x||2jpm(x)7 Q(X) = ||xH2qu(x), with  py,qm € %g(hi)
By the second identity of (7.1.3),

<p q>h 74] (erYJr ) _<Pm»qm>h
:NﬂW+l+UﬂW1+UNAAAM@M%W
2m+2j (;LJrl)mﬂch/ pmth do.

The right-hand side of the stated formula, by Lemma 7.2.6, is seen to equal

on [ 2RI (IR ) o ()10

r(4) C(A+1+m+ )
=277 =20 (]! 22’"”“’—/ b do
ra+ntY JIr(4) pmd
upon using polar coordinates in the integral and the relation between ¢;, and c),.
These two expressions are clearly the same. O

As an application of Theorem 7.2.4, we state the following result.

Proposition 7.2.8 Forp € @,‘f and q € L%”n , Where ¢, d is the space of ordinary
harmonics of degree n, we have

(5),

—=n dw.
(%c+ %)ncd—l §d-1 P

c;,/ quh,2< do =
sd—1

Proof Since A,V = VA, q € 5% implies that Vg € 2% (hZ). Apply Theorem
7.2.4 with Vg in place of g; then

2(v+4) ¢ [, pVarido = p(@)Ve()
=Vp(d)q(x) = p(d)q(x)
=2" (%)ncd71 ./S.dil pqdo,

where the first equality follows from Theorem 7.2.4, the second follows from
the intertwining property of V, the third follows from the fact that p(d)g(x) is a
constant and V1 = 1 and the fourth follows from Theorem 7.2.4 with k =0. [

An immediate consequence of this theorem is the following biorthogonal
relation.

Corollary 7.2.9 Let {Sy} be an orthonormal basis of . Then {VSy} and
{Sa} are biorthogonal; more precisely,
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2
/S (VSa)Sphder =
In particular, {VSq} is a basis of 7% (h2).

The corollary follows from setting p = S and g = Sg in the proposition. It
should be pointed out that the biorthogonality is restricted to elements of ¢
and % (h%) for the same n. In general Sy, is not orthogonal to VSp with respect
to h2dw if |B| < ||

7.3 Reproducing Kernels and the Poisson Kernel

If f € L*(hZdw) then we can expand f as an h-harmonic series. Its nth component
is the orthogonal projection defined by

Sulls fx) = ¢y | Pallisey) f) () doo(y), (7.3.1)

where P,(hZ;x,y) denotes the reproducing kernel of .7 (h%) and is consistent
with the notation (4.2.4). Recall K,(x,y) defined in Definition 6.6.1.

Theorem 7.3.1 For n € Ny and for x,y € R4,

(A +1),2" 2 oo
Pihgxy) = Y, o Il Iyl K2ji(x, ).
) o<jons2 (1 =1=A) !

Proof The kernel P,(h%;x,y) is uniquely defined by the fact that it repro-
duces the space % (hZ). Let f € #(h%). Then by Proposition 7.2.1 f(y) =

K, (29 y)f(x). Fix y and let p(x) = K, (x,y), so that f(y) = (p, f)4. Expand
p(x) as p(x) = Xo<jens2 X% pu—2j(x) with p,—a; € 7, (h3); it then follows
from Theorem 7.2.4 that

S0) = (0= pns £ =2t ) [ pufiido.

Thus, by the reproducing property, P, (h%;x,y) = 2"(A 4 1),pn(x) with p, =
proj, , p- Hence, the stated identity follows from Theorem 7.1.15 and the fact
that A} p(x) = A} Ky (x,y) = ||y]|*Ku—2;(x,y); see (v) in Proposition 6.6.2. O

Corollary 7.3.2 Forn e Ny and |)y| <|x]| =1,

Ptny) =52V ck ()] @b

Proof Since the intertwining operator V is linear and (-, y)" is homogeneous of
degree m in y, for ||x|| = 1 write
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(/2] n=2j —2j
2 _ (A)n2""~ R & X "

Set t = (-,y/||y||) and denote the expression inside the braces by L,(z). Since

(1—=n—2); = (=1)/(A)s/(A)n—j, the proof of Proposition 1.4.11 shows that
La(t) = [(A 4 1), /(A)a]C* (1), which gives the stated formula. O

The Poisson or reproducing kernel P(h2;x,y) is defined by the property

10)=6, [ FOPOR xR dot)
for each f € 74 (h%), n € Np and ||y|| < 1.

Theorem 7.3.3 Fixy € B¢, then

P(h%:x.y) = V( L= Il )(x)
(1=2(y) + [lyl?)A+1
Jor |Iyll < 1= lx]|.

Proof Denote by f, the function which is the argument of V in the state-

ment. We claim that f, € A(B?) (see Definition 6.5.19) with || f]la = (1 — [|y[|*)
(1—|[y|)~22*. Indeed,

) o 2<x,y> —d/2—y
70 = (1= BIE+ I (1= 2525)

= (= IR+ S e

Iyl and 0 < 2[y]l < 1+ {12 for [y < 1. so that
S 2yl 1A

fA=1—y21+y2'l(l— )

[ fylla = (L= lyIIF) (X +1¥]7) T b
222

= (L=[yI») =y~

Thus, V f, is defined and continuous for ||x|| < 1. Since ||y|| < 1, the stated iden-
tity follows from P(hZ;x,y) =

=Y, P.(h%;x,y), Corollary 7.3.2 and the Poisson
kernel of the Gegenbauer polynomials. [

But [|(x,5)" [l =

The Poisson kernel P(hZ;x,y) satisfies the following two properties:
2.
0 < P(hy;x ) Iy[F < [lxll =1,
ch/ P(R2x, )R (y) doo(y) = 1.

The first follows from the fact that V is a positive operator (Rosler [1998]), and
the second is a consequence of the reproducing property.
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The formula in Corollary 7.3.2 also allows us to prove a formula that is the
analogue of the classical Funk—Hecke formula for harmonics. Denote by w), the
normalized weight function

walt) =B(A+3,3) (1= rel-11],

whose orthogonal polynomials are the Gegenbauer polynomials. Then the Funk—
Hecke formula for #-harmonics is as follows.

Theorem 7.3.4 Let f be a continuous function on [—1,1]. Let Y € 74 (h2).
Then

ch [ VDO do = 5,()Y)(x),  xesT,

sd—1

where T,(f) is a constant deﬁned by
w(f) = CM / FOCH W, ()

Proof First assume that f is a polynomial of degree m. Then we can write f in
terms of the Gegenbauer polynomials as

m A«"’k

2 ay z aka

where 5,? stands for a Gegenbauer polynomial that is orthonormal with respect
to w) . Using this orthonormality of the C}, the coefficients a;, are given by the

formula
__ 2
a= i [ o om0,

where we have used the fact that [E,ﬁ“ (1)]? = [(k+21)/AJC}(1). For x,y € $471, it
follows from the formula for B, (h2) in Corollary 7.3.2 that

o 7L+k

Vf 2 ay

Since 2! is the reproducing kernel of the space 7 (h%) we have, for any Y €
A,

L VDO OB do = 2510, xes,

where if m < n then A, = 0, so that both sides of the equation become zero.
Together with the formula for 7,(f) this gives the stated formula for f a
polynomial.

If f is a continuous function on [—1, 1] then choose P, to be a sequence of
polynomials such that P, converges to f uniformly on [—1,1]. The intertwin-
ing operator V is positive and |V (g)(x)| < sup{g(y) : |y| < 1} for |x| < 1. Let

V(e NO) = 3 aPl(x.y).
k=0
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&x(y) = f({(x,y)) — Bu({x,y)). It follows that, for m sufficiently large, |g«(y)| < €
for [y| < 1 and |V (g)(y)| < € for all x € $¢~!, from which we deduce from the
dominated convergence theorem that the stated result holds for f. [

If kK =0 then V = id and the theorem reduces to the classical Funk-Hecke
formula.

7.4 Integration of the Intertwining Operator

Although a compact formula for the intertwining operator is not known in the
general case, its integral over S~ can be computed. This will have several
applications in the later development. We start with

Lemma7.4.1 Letm>0andS, € ffj,f be an ordinary harmonic. Then

i [ VO 5,06 0 = 2]
sd—1

_2M s .
A+ 1); ™0

Proof Since |x||*/S,, is a homogeneous polynomial of degree m +2j, so is
V(|| - ||*/S). Using the projection operator projy j, : &¢ +— ;" (h%) and (7.1.7),
we obtain

g [m/2]+j 5 1 1
147 = —
(RN Eo (lel 4l (A +m+2j—2i+1);

X POl 2;- 2l ALV (] ||2fsm>1) .

Since % (h%) L 1 for k > 0 with respect to h2dew, it follows that the integral
of the function proj,,,»; i ALV (|| - I?/S) is zero unless m+2j — 2i = 0, which
shows that m is even. In the case where 2i = m+ 2, we have

[ VS0 0) ) do

_ 1 Jj+m/2 2j 2

= g D [ VAP0 ) do,
since now projg , = id. By the intertwining property of V, it follows that

/2 ‘ . ,
APV 1PI8m) = VAT (- PIS).
Using the identity
Al gm) = 4jm+ j = 1+ ) 3% g+ [|x]1 g
for g, € 24, m=0,1,2,... and the fact that AS,, = 0, we see that
AP PIS) () = 401 (%) APS(2).

which is zero if m > 0. For m = 0, use the fact that Sp(x) = 1 and put the constants
together to finish the proof. O
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Recall from Section 5.2 the normalized weight function W;; on the unit ball B¢

and the notation ”I/”d(W,l) for the space of polynomials orthogonal with respect to
W), on B,

Lemma 7.4.2 For P, € V0 (W, _1/2), Y=Y« and n € Ng and Py(x) = 1,

ch [ V(B () He(x)doo = Gy

gd—1

Proof Recall that an orthonormal basis for the space “// (W. -1 /2) was given in
Proposition 5.2.1; it suffices to show that

C;'/Sd,lv(Pj(y 1,n— 2]+(d 2/2 (ZH ||271) ” 2]‘/)( )h?{(x)dw:éojn

for0<2j<nandY, ,jy € ji’jl‘fzj. If 2j < n, this follows from Lemma 7.4.1. For

the remaining case, 2j = n, use the fact that P](a’b) (=)= (fl)ij(b"a) (1), together
with

day.
(— 1)’P (@22 1)(1—2t2)=(—1)j(j")JzF1( ]’{;Aﬁz)’
. 2

and the expansion of » F] to derive that
1,n—2j+(d—2)/2)
[ V(BRI P 1), ) () 0

cJ (= , .
')jz( J)t(]i"l)z /Sd_lv(”'llzj)h’zfdw

by the Chu—Vandermonde identity. This is zero if j >0orn=2j>0.Forn=0
use the facts that Pémb) (x)=1andV1=1. O

Theorem 7.4.3 LetV be the intertwining operator. Then

VIR do = Ax [ F0(1= [P ds

sd—1

for f € L*(hy; S such that both integrals are finite; here A = wy, /c}, and wy
is the normalization constant of Wy_1.
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Proof Expand f into an orthogonal series with respect to the orthonormal basis
ﬁ( - 1/2) in Proposition 5.2.1. Since V is a linear operator,

nOﬁ/

By Lemma 7.4.2, only the constant term is nonzero; hence

ch o Vf(x)h(x)do = agvo(f) = WY/Bdf(x)(l — x|} dx,

which is the stated result. O
Lemma 7.4.4 For an integrable function f : R — R,

| f(xa))doly) = 04 / Fslx (1 —s2)d2ds, xeRY

Proof The left-hand side is evidently invariant under rotations, which means that
it is a radial function, that is, a function that depends only on r = ||x||. Hence, we
may assume that x = (,0,...,0), so that

/4
S dol) = ous [ flreoss)(in6)! a8
- 0
where y = (cos 0,sin0y'), y' € 472, which gives the stated formula. O
The following special case of Theorem 7.4.3 is of interest in itself.

Corollary 7.4.5 Let g: R +— R be a function such that all the integrals below
are defined. Then

[ Ve DO R0 o) = By [ gl -2,
where B = [B(A + 1, 3)c}] 7L
Proof Using the formulae in Lemma 7.4.4 and Theorem 7.4.3,
10 = [, Vel )00 do = Ac [ g1 =y "dy
—avo [ [ ]g<r<x7y’>>dw<y’><1—rzv—ldr
— Aoy 2/ 4 1/ g(srxl) (1 = 2@ 2ds(1 — ).

Making the change of variable s +— ¢ /r in the last formula and interchanging the
order of the integrations, we have
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1 1
1) =Avois [ () [ (7 =212 aras
-1 ¢
1
=Ax0g—2 X %/0 ”<d_3)/2( u)’~ 1du/ g(t]lx|( )y+d 3)/2dt

where the last step follows from setting u = (1 —r2)/(1 —¢). This is the stated
formula. Instead of keeping track of the constant, we can determine it by setting
g = 1 and using the fact that V1 = 1. O

These formulae will be useful for studying the convergence of the ~-harmonic
series, as will be seen in Chapter 9. The integration formula for V in Theorem
7.4.3 also implies the following formula.

Theorem 7.4.6 Suppose that f is a polynomial and ¢ is a function such that
both the integrals below are finite. Then

L VI@o(Ee)de = s [ o)
where y(t) = [ r(r2 )%~ (r)dr and A is as in Theorem 7.4.3.

Proof Write f in terms of its homogeneous components, f = Y~ f,, where
f € 2. Then, using polar coordinates x = rx/,

LV (vds
_ gb /O IR () dr /SH V£ ()2 () doo
= 3 [0 |- ) ax
A [0 [ ) (1= )7 axar

where we have used the integral formula in Theorem 7.4.3. Using the polar coor-
dinates x = px’ in the integral over B? and setting = rp, we see that the last
integral is equal to

AK/Omr‘P(r)/Ortd*](ﬂ*tz)yfl/Sd*lf(tx’)dwdtdr
:‘L"c/()mt£171/S{Hf(tx’)dw(/[mi’(i’z—t2)7/71(])(r)dr>dl‘7

which can be seen to be the stated formula upon using the polar coordinates again.
O

Corollary 7.4.7 Let f be a polynomial. Then
/ V F()R2 (x)e W72 gy = b,c/df(x)e’”x“z/zdx,
R
where by = 2% T (y)Ax.
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Proof Taking ¢ () = ¢*/2 in Theorem 7.4.3 we have
12/2 0

from which the stated formula follows. O]

7.5 Example: Abelian Group 74

Here we consider h-harmonics for the abelian group Zg, the group of sign
changes. The weight function is defined by

d
) =[]kl% >0, xeR (7.5.1)

and it is invariant under the sign changes of the group Z‘zi. This case serves as an
example of the general results. Moreover, its simple structure allows us to make
many results more specific than those available for a generic reflection group.
This is especially true in connection with an orthogonal basis and the intertwining
operator.

For the weight function 4 defined in (7.5.1), we have

Ye=Ixl=x1++x4 and ),K:‘K-H_%.
The normalization constant c;h 4 defined in (7.1.11) is given by

nd/2 (x| +49)
F(4) Tk +3)T(ki+3)

¢h=
which follows from

Dk + )T+ )
Tikl+9)

7.5.1 Orthogonal basis for #-harmonics
Associated with 42 in (7.5.1) are the Dunkl operators, given by
f(x) _f(xla"'7_xj7°"7xd)

Xj

(7.5.2)

2;f(x) =0, f(x)+K;
for 1 < j < d and the h-Laplacian, given by
d -
<2 8f f() f('xla"'7 xjw"axd)). (753)

A K;
nf (x x)+ z / 8xJ x%

We first state an orthonormal basis for /7 (hZ) in terms of the general-
ized Gegenbauer polynomials C,(,)L’” ) defined in Subsection 1.5.2. For d = 2, the
orthonormal basis is given as follows.
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Theorem 7.5.1 Let d =2 and hi(x1,x2) = c’27h\x1 |1 |x2]*2. A mutually orthog-
onal basis for 7*(h2%) is given by
Y, (x) = ™ (cos 6),
1 (7.5.4)
Y?(x) = #"sin BC,(EI+ ’Kl)(cos 0),

where we use the polar coordinates x = r(cos 0,sin 0) and set Y (x) = 0.

Proof Since Y,! is even in x, and Y2 is odd in xp, we see that ¥,! and ¥? are
orthogonal. The integral of a function f (x1 ,X2) can be written as

/ Sx1,x)do = f(cos@ sin6)do,

-
which can be converted to an integral over [—1,1] if f(x,xz) is even in x;.
Clearly, Y'Y is even in x, and so is Y,>Y2. The orthogonality of ¥,! and Y2 follows
from that of C,SKZ’KI)(t) and C,SKZH'K”(I), respectively. O

To state a basis for d > 3, we use the spherical coordinates in (4.1.1) and the

notation in Section 5.2. Associated with k¥ = (k{,..., Ky), define
KjZ(Kj,...,Kd)7 1<j<d.
Since k¢ consists of only the last element of x, write ke = Kk 4. Define o/ for

o € N§~! similarly.

Theorem 7.5.2 Ford >2and o € N‘Oi, define

d-2
Ya(x) := (ha) "' r¥lgq(61) [T (sin )"l (cos 04y (1.5.5)
j=1
2a(0) equalscgzd - ')(COS9)f0rOCd=0andsinOC(K"H’]K"‘I)(COSe)forad:1;
o] =0+t o K/ |—1c]+ Ky Aj= \oc/+1|+|1<1+1|+d =1 und
T 1 l.fO!d = 07
Kd"‘% l'fOCd =1.

[n]Z lh()L Kj
(Ix[+9)n |+ =

+2'j)0(j7 Ao = {

(A1)

Here h,(f‘“ ) denotes the normalization constant of Cy,
0,1} is an orthonormal basis of 7% (hZ.).

.Then{Yy :|ot| =n,0y =

Proof These formulae could be verified directly by the use of the spherical coor-
dinates. We choose, however, to give a different proof, making use of A;,. We start
with the following decomposition of Z2¢:

= St 0+,
=0
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where K’ = (k2,.. ., K;). This follows from the fact that f € 229 can be written as
F@) = IXPF (o) +xdi () + o (x),  x= (x,),

where F € 29, ¢; € 2? | and ¢, € F2¢. We then apply the canonical decom-
position in Theorem 7.1.7 to ¢; and collect terms according to the power of
x1, after replacing ||x'||? by ||x||*> — x}. For any p € 4 (h2), the decomposition
allows us to write

n

p(x) =Y 1 pi) + xlPg(x), g€ P,
=0
Therefore, using the formula for the harmonic projection operator proj, , in
(7.1.6), it follows that

: o I Il b ()
p(x) =" proj, , [} pi(xX)] = - hTl .

Write A 4 for A, to indicate the dependence on d. Since our Ay is a product
of mutually orthogonal factors, it follows from the definition of A that A, 4 =
.@12 +Ap -1, where Ay, 41 acts with respect to X' = (xa,...,x4). Therefore, since
DI € :%’jdfl (h2,), we have that
Ana@ pi()] = 2 (4 pu(¥).
By the definition of 21, see (7.5.2), it follows easily that
) = (m+[1 = (=1)"1) (m = 1+ [1 = (=)™ o )2,

Using this formula repeatedly, for m = n — [ even we obtain
. B , B o ey
Aabe ) =27 (=5t (=2t ) ),

Therefore, for n — [ even,

n—I

proj, , (x1 ' pi(x'))
n A (—nghy (2= )

' i n—1-2j
P p ()

n—I n—I[—1

2

_ /N, n—l 2 2 Kl,Hx”
F Ll

pr(x)x "2 1( n— Aot 1 x%

-1
n+|K‘|f2+% —1 p(lH+A—K1—1/2,51—-1/2) x%
(L) e e e (o ),

A similar equation holds for n — [ odd. By the definition of the generalized
Gegenbauer polynomials,

Proj, , 0 pi ()] = epi () eI KRR (o 0y,



7.5 Example: Abelian Group Z‘ZI 231

where c is a constant; since p; € L%’jd (th,) it admits a similar decomposition to F;.
This process can be continued until we reach the case of #-harmonic polynomials
of two variables, x| and x,, which can be written as linear combinations of the
spherical h-harmonics in (7.5.4). Therefore, taking into account that in spherical
coordinates x;/r; = cos8;_; and r;;/rj = sin6;_| where rjz = x? 4o+ x5, we
conclude that any polynomial in .7£%(hZ) can be uniquely presented as a linear

combination of functions of the form ||x||"Y,,. The value of A, is determined by

2
d-2
. i+ (4K
W =c, /S o <ga(91) [T (sin64— )" 1ci™ (cos 6 ,)) 12 (x) do,
j=1
where the integrand is given in spherical coordinates; this allows us to convert
into a product of integrals, which can be evaluated by the L?> norm of C,(,)L’“ )in
Subsection 1.5.2 and gives a formula for the constant /. O

Let us look at the case d = 2 again. According to Theorem 7.5.1, both the
functions FC.1"*?) (cos6) and r"sin GC}(:IIJr 1’KZ)(cos 0) are h-harmonic polyno-
mials. Hence, they satisfy the same second order differential-difference equation,
Anf(x) = 0. Furthermore, since r”CéZ"KZ)(cos 0) is even in both x; and x; it is
invariant under Z%; it follows that the equation when applied to this function
becomes a differential equation,

2K 5f 2K 8f o

Af+51 2+

— =0.
X1 8x1 X2 8)@

Changing variables to polar coordinates by setting x; = rcos 6 and x, = rsin 6
leads to

ﬁfcoseﬁ_sineﬂ ﬂisineﬁ_‘_coseaif
ox; ar r 06’ ox1 r 00"
C19*% 19 0f
A‘f_riﬁ+;5(r5)’

from which we conclude that the differential equation takes the form

19%f 19/ df\ 2Kx+1)df 2/ cosO sinf\ df
Tzwﬁa(”w)*fmﬁ(%ne"“@)%*0

Consequently, applying this equation to f = r*"g(cos ) we end up with a dif-

ferential equation satisfied by the polynomial Cé:l”q)(cos 0), which is a Jacobi
polynomial by definition. We summarize the result as the following.

Proposition 7.5.3  The Jacobi polynomial pira—l/zR=1/2) (cos20) satisfies the
differential equation

d’g N (K cos 0 sine) dg

dez 2sinG_chosG do

—4n(n+x+K2)g=0.
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The idea of deriving a differential equation in this manner will be used in the
case of several variables in Section 8.1, where the differential equations satisfied
by the orthogonal polynomials on the ball will be derived from the eigenequations
of the h-Laplace—Beltrami operator.

7.5.2 Intertwining and projection operators

For the weight function /4 invariant under Z‘ZI in (7.5.1), the intertwining operator
V enjoys an explicit formula, given below:

Theorem 7.5.4  For the weight function h, associated with 7.,

d
Vfx) = /[_1 l]df(x‘”""vxd’d)ncm(l 1) (1—2)5 gy,

i=1

where ¢;, = [B(3,A1)]71. If any «; = 0, the formula holds under the limit (1.5.1).

Proof The facts that V1 = 1 and that V : 22¢ — 22 are evident from the defi-
nition of V in Section 6.5. Thus, we need only verify that Z;V = Vg;. From the
definition of %;, write

fx) = f(x—2x;&) '

Xi

Dif = Oif + Dif, Zif(x) = &

Taking i = 1, for example, we consider

~ X111, Xqlg) — f(—=X1t1,X202, ..., Xqlq
G =x [ L )= £ )
[~1,1]4 X1
d d
< [T +8) [T ex (1 -1 .
i=1 i=1

Since the difference in the integral is an odd function of 7, it follows from
integration by parts that

2 d d
DV F(x) = i} et xat)n [T +6) [T e (1 —£7)5 "t

X1 J=1,0) i=2 i=1

d d
= ]d(ylf(xltl,--wxdtd )(1—1) H 1—|—l‘l‘)HCKi(1—tl-2)Ki_ldl.
1

[—1, i=1 i=1

Furthermore, directly from the definition of V, we have

91Vf(X):/[ 11V&f(xm, Xty le (1+1) ch )i ldr.

The stated result follows from adding the last two equations together. O
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As an immediate consequence of the explicit formula for V in Theorem 7.5.4
and of Corollary 7.3.2, we obtain an integral formula for the reproducing kernel
of 7 (h%) when hy is invariant under Z4.

Theorem 7.5.5 For h2dw on %! and A = ||+ 452,

n+A
Pn(h)z(;xvy) = l -
K

/[71 Hdcﬁ“(xmh + -+ Xgyala)

d d

< [T +t) [Tex (1 =) dr.

i=1 i=1
In the case d = 2, the dimension of .7#%(h%) is 2 and the orthonormal basis is
that given in (7.5.4). The theorem when restricted to polynomials that are even in
X gives

Corollary 7.5.6 For A,u >0,

C,(f’“)(cos G)C,(,l’“)(cos o)

1l
= Wcﬁl’“)(l)clcu/ / CHH(tcos@cos ¢ +ssinOsing)(1+1)
-1J-1

x (1= (1 —s»)*dr ds.

In particular, as ¢ — O the above equation becomes the classical product
formula for the Gegenbauer polynomials,

C’%(x)(c’i(” — /711 Ch(y+5v/T—2/T—)2)(1 —52)*ds.

Ci (1
As another consequence of the corollary, set 8 = 0 in the formula to conclude that

_ n+A+pu

A
R

1
cy/4c,%ﬂf(xt)(l+t)(1ft2)ﬂ—1dt.

Comparing with the formulae in Subsection 1.5.2, we see that the above expres-
sion is the same as VC,r T (x) = () (x), and this explains why we denoted the
integral transform in Subsection 1.5.2 by V.

Many identities and transforms for Jacobi and Gegenbauer polynomials can be
derived from these examples. Let us mention just one more. By Proposition 7.2.8

and Corollary 7.2.9,
r”Cf,K"Kz)(cos 0) = const xV [(x% + X3)"T, (xl/ x2 +x%)} ,

since V maps ordinary harmonics to h-harmonics; here 7, is a Chebyshev
polynomial of the first kind. Using the formula for V, the above equation becomes
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M) (cos 0)

1l
:constx/ / (7 sin @ + 13 cos> )"/
—1J-1

12cos 6 2y —1 2vky—1
x T, L4+6)(1 =) (1 —15)"2" de dey,
"((tzzcosze tfsin26)1/2>( 2)( i) ( 7) 1di2

where the constant can be determined by setting 0 = 0. In particular, for k; =0
this formula is a special case of an integral due to Feldheim and Vilenkin (see, for
example, Askey [1975, p. 24]).

The integral formula for V in Theorem 7.5.4 also gives an explicit formula for
the Poisson kernel, which can be used to study the Abel means defined by

S =i [ SOP(r IR0 do),  x=rd, fest,
Jisd-
where r < 1 for integrable functions f on S~!. We have the following theorem.
Theorem 7.5.7 If f is continuous on S~ then

lirln S(f,rx') = f('), x=rd, xesi .

Proof LetAs={yc S¢!:|x¥ —y| < 8} in this proof. Since P(hZ) > 0 and its
integral over S9! is 1,

IS(f.rd) = f(X)| = ¢, /S [£(x) = FO)] PR y)h(y) doo ()

<a ([ 4o, ) 01O R 0)d00)
< sup [7(0) = )]+ 20 fllech / P I () doo(y),
[l —yll<é \As

where || f||« is the maximum of f over S¢~!. Since f is continuous over S9!,
we need to prove only that the last integral converges to zero when » — 1. By the
explicit formula for P(hZ) in Theorem 7.3.3, it suffices to show that

1
limsu / /
o Ja 0,14 [1 = 2r(X{ y1ty + - - + X, yata) + r2]Il+d/2

d
x [Tew(1=22)5" dr hg(y)dy
i=1
is finite for every x' € $4~!. Let B = {t = (t1,...,t4) :t; > 1 — 0,1 <i < d} with
0 = 16% Fory € $971\ A5 and t € B, use the fact that (x/, > =1—3[l¥ —y|I?
to get

Wyt + - A xgyatal = (X, y) = xiyi (1 =11) =+ = xgya (1 —14)]
<1- %52+miax(1 —1) <1182,
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from which it follows readily that
1=2r(Xyyit +- -+ Xyyatg) +17 > 1417 — ( —18° ) (1-r)?+1r6%*> 182

For 7 € [0, l]d\Bg, we have that ; < 1 — o for at least one i. Assume that 1; <
1 — 0. We can assume also that x| # 0, since otherwise #; does not appear in
the integral and we can repeat the above argument for (1,...,27) € [0,1]97 1. Tt
follows that

2 .72

1—2r(xiyity +---+x&ydtd)+r =r xl(l—tlz)+ (y —rxﬁt,-)2

N H'Mm

(1 —x 1 — Zx’2 2)

2 /2(1

>rx1 t1)>r6x1>0

Therefore, for each x = rx’ the denominator of the integrand is nonzero and the
expression is finite as r — 1. O

7.5.3 Monic orthogonal basis

Our definition of the monomial orthogonal polynomials is an analogue of that
for the generating function of the Gegenbauer polynomials, and it uses the
intertwining operator V.

Definition 7.5.8 Define polynomials Ry (x) by

1 ) = op X X d'
(e e R R CINE

d
aeNj

Let Fp be the Lauricella hypergeometric series of type B defined in Section 1.2.
Write 1 = (1,...,1). We derive the properties of R, in what follows.

Proposition 7.5.9 The polynomials Rq satisfy the following properties:

@) ﬁa IS 3”,‘11 and

" oc ( oz+l)

2 M e )
7] -2y
Ry (x) = 2 |OC| e _|_1) W, [lx[| =7 Vic (¢ )

where the series terminates, as the summation is over all y such that

Y< 3
(ii) Ry € A (H2) and

= VS ON®  for e =1,
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where
1 1
Sa(y) =y"Fp (—‘%‘, —ot: o —AK+1;2,...,2> .
Y1 Ya
Furthermore,
~ A
Y, bRy (x) = ﬁﬂ,(ki;b,x), [Ix|l =1,

|orl=n

where P, (hZ;y,x) is the reproducing kernel of % (h.).
Proof Using the multinomial and binomial formulae, we write
(1-2(a, y> +lal?) ™ =1 —ai 2y —a1) = —aa(2va —aq)]

_2 \13\ aP (291 —ay)Pr- - (2yq —aq)Pe

-y ﬁlﬁ\z “BOn - Bu i1t 8,
B Y

Changing summation indices according to f§; + % = o; and using the expressions
(=D A)m (=m+Kkx _ (=D (=m)x

—i—m; ™ oo - om

as well as 272 (—m)y = (=% )k(5 (1 —m))k, we can rewrite the formula as

(1—2{a,y) +|lal*)~*

Z az\ (A \alz oc ( a+1)y
=da
a —|0¢| A+ D!

alad(p, 1 1
:Za"‘—(,)‘a'y“FB(—%,I—T“;—\a\ At ).
o! i yi

Using the left-hand side of the first equation of this proof with the function
.y 2\
(1=2(b,y) + xlP1617)~* = (1 =2(|Ixll, v/ llx]l) + [} lx/16]])

and applying V with respect to y gives the expression for Ry in (i). If lx]| =1
then the second equation gives the expression for ﬁa in (ii). We still need to
show that Ry, € #¢(h%). Let ||x|| = 1. For ||y|| < 1 the generating function of the
Gegenbauer polynomials gives

(A’)mfk =

oa—2y

k
(1=2(b,y) +[1b]I%) Z 161" Cy (B/ 11, 37)-
Applying Vi to y in the above equation gives

Y, b%Ra(x) = |BII"Vi[Cy ((B/IIBll,- )]0, el =1.

lo|=n
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Using Corollary 7.3.2 we can see that Z‘G‘:nb"‘ﬁa(x) is a constant multiple
of P,(h2;x,b). Consequently, for any b, ¥ bRy (x) is an element in .2Z9(h%);
therefore, so is Ry,. O]

In the following let | 4 | denote (| % ],...,[%]) for o € N,

Proposition 7.5.10  For a € N{, let B := ot — | %5 |. Then

where Ry, is given by

o 1 I
R(x(.x):x FB —ﬁ,—a+ﬁ—K+§,_|a|—lK+l,77,XT .
1 d

In particular, Ry (x) = x* + ||x||>Qq (x) for Qo € 22¢_,.

Proof By considering m even and m odd separately, it is easy to verify that

1 1 _|mtl
CK/ (1 4 1) (1 =) g = — Doy (L s«
-1 (K+3)(meny2) (L") + 2k

for ¥ > 0. Hence, again using the explicit formula for V, the formula for R in
part (i) of Proposition 7.5.9 becomes

2 ()2

Ro(x) =
" al (k4 3)|@n)
2 (7%))/(_0?_1)7 (7L%J*K+%)Y ||x||2\y\x0¢*27’_
(lal =2+ Dyt (=125 + 1)y
Using the fact that

(-9),(5),= (mer[22]), (-2 +3),

the above expression for R can be written in terms of Fj as stated in the propo-
sition. Note that the function Fp is a finite series, since (—n), = 0 if m > n, from
which the last assertion of the proposition follows. O

If all components of o are even then we can write R, using a Lauricella
function of type A, denoted by Fj(c, o; B;x) in Section 1.2.
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Proposition 7.5.11 Let 3 € N&. Then

(k+3)p
N \mggggf 128

1 x% xzzz
Fa (‘B’ﬁ'”’“”f T ||x||2> '

Proof For oo = 23 the formula in terms of Fz becomes

Rop(x) = 3, PP 2K i o 221
Z (2B p+ 7!
where y < B means that y1 < fB1,..., %41 < Bay1; note that (—f8), =0if y > B.
Changing the summation index according to ¥ — f; — ¥; and using the formula
(@)p—m = (=1)™(a)n/(1 —n— a),, to rewrite the Pochhammer symbols, so that
we have, for example,

(~1)7(x+ 1) (-t
(K+3)py=—"—"25,  (B-M'=)p_y=
2/B—y (7[37’(4»%)7 B—vy ( )
we can rewrite the summation as the stated formula in Fj. O

The restriction of R, on the sphere is monic: Ry (x) = x* + Qg /(x). Recall the
h-harmonics H defined in Definition 7.1.11.

Proposition 7.5.12  The polynomials R, satisfy the following:

(_l)ll
2"(Ax)n
(i) [|X]>ZiRo(x) = =2(n+ Ax) [Rate; (%) — XiRo (%))
(iil) {Rq :|ot| =n, 05 = 0,1} is a basis of % (h%.).

(i) Rq(x) = proj, ,x% n=|a| and Ry (x) = Hy(x);

Proof Since Ry € H#,%(h%) and Ry (x) = x* — ||x]|?Q(x), where Q € 229 ,, it
follows that Ry (x) = proj, x*. The relation to Hy, follows from Definition 7.1.14.
The second and third assertions are reformulations of the properties of Hy,. [

In the following we compute the L> norm of R,,. Let

1/2
Ifi= ([, IRatPd0)
gd—1

Theorem 7.5.13  For a € Ng, let B =o—|o+ %J. Then
, _P(xtY)y  CPh(ca+p-x+3),
1Ral3 = «y ,
(Ao G (—a—rx+3) Yol = |yI+Ax)

ﬁ! (K+ o—f (1/2,%;)
_— Co' 7 o221 gy 7.5.6
o /II (1)t (75.6)

= 2)(4(
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Proof Using a beta-type integral,

A, +1 d+1 61+Kl ) (K+l)0
/ 20'h2 dw_ K = 2 ?
Ch/S X7 e (x) T(|o]+Ac+1) U (1 + 1) A+ 1o

it follows from the explicit formula for R, in Proposition 7.5.10 that

ch /Sd |Rq (x)|*h%(x)do = ¢} /Sd R (x)x%h2(x) dew

_ 2 (—B)y(—a+B—k+1)y(k+ 1oy
Y (_|a|—7L+1)|y|)/!(l+1)‘a|7w|

Now using (@) = (~1)"(@),/ (1 —n—a), and (~a),/(~a+1)s=a/(a—n) to
rewrite the sum gives the first equation in (7.5.6). To derive the second equation,
we show that the sum in the first equation can be written as an integral. We define
a function

r) = CRA—OFB =Kt 3]y jotpia
F()_yszﬁ(—O‘—H%)w!(lal—\ylﬂ) o

Evidently, F(1) is the sum in the first equation in (7.5.6). Moreover, the latter
equation is a finite sum over y < f8 as (—f8)y = 0 for y > B; it follows that
F(0) = 0. Hence the sum F(1) is given by F(1) = fol F'(r)dr. The derivative
of F can be written as

Z(*ﬁ)( o+B—K+3)y ol —ly+a-1

F%ﬁ:y o=+ D

|a‘+)L IHZ ﬁz y, az+B1 Kl )7’1 7%

i=1 % — 0 — Ki+ 3 )y !
1
— ,Ia\+/1—1H2F1 (—Bi,—oc,~+ﬁi— 'fﬂrz.l)
i=1 —0i—Kit3 r

The Jacobi polynomial P,Sa’b) can be written in terms of the hypergeometric series

L Fy, (4.22.1) of Szegt [1975]:

= (M) (S ()

Using this formula withn = f8;, a = o; —23; + & — l ,b=0andr= 7(1 —1), and
then using pl?) (t)=(-1)" P )( 1), we conclude that

'y (K+ )a—pB! o= |Bla-1 (0,06 —2Br+x;—-1/2)
F()_i(m) + HP (2r—1).
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Consequently, it follows that

1 d
F(l) _ (K'-l- 2)olzfﬁﬁ! /' HPéQ’ai_Zﬁi+m_l/2)(zr_ l)r‘o“flﬁHl” dr.

By the definition of C,(ll‘“) (see Definition 1.5.5), Pé?‘ai*wﬁkl*l/z) (212 - 1) =
C&l/z"{’)( t) if o is even and tP[gO 0= 2Pt = 1/2)(2t2 —1)= C&1/2’Ki>(t) if oy is odd.

Hence, making the change of variables r — > in the above integral leads to the
second equation in (7.5.6). O]

Since Ry is monic, x* — Ry (x) = Qg is a polynomial of lower degree when
restricted to the sphere, and R, is orthogonal to lower-degree polynomials, it
follows from standard Hilbert space theory that Q, is the best approximation to
x® among all polynomials of lower degree. In other words Ry, has the smallest L?
norm among all polynomials of the form x* — P(x), P € Hi L on §d-1.

— i o _
IIRallz—Pénlglllx Pll2, o =n.

n—1

Corollary 7.5.14 Let o € Nd and n = |ct|. Then

1/2.9)

inf |x*—P)|}= )‘a\“P-ldt,

d
PeTT_, |oc

) 2pK+ ldc
| | /2’(1

where kgl’” ) is the leading coefficient of C,(ll’” ) (2).

7.6 Example: Dihedral Groups

We now consider the h-harmonics associated with the dihedral group, denoted
by I, k > 2, which is the group of symmetries of the regular k-gon with root
system I (k) given in Subsection 6.3.4. We use complex coordinates z = x| +ixp
and identify R2 with C. For a fixed k, define @ = ¢/ Then the rotations in I
consist of z — zw?>/ and the reflections in I consist of z — Zw*,0< j <k—1.
The associated weight function is a product of powers of the linear functions
whose zero sets are the mirrors of the reflections in . For parameters o, § > 0,
or oo > 0 and B = 0 when k is odd, define

sk o | gk sk B
hapl®) =[5

2

Asa function in (x1 ,xz) this is positively homogeneous of degree y=k(a+ f3).
Since X —zF = HJ o(z—z@?) and 2 + 2 = [T}Z((z — 20> "), the reflection
in the line z — Zw/ = 0 is given by z + Zw’, 0 < j < 2k — 1. The corresponding
group is Iy when 8 > 0 and [ when 8 = 0.
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The normalization constant of hé B is determined by

caﬁ/;hgﬁ(eie)dezl with ca7,3:[23(a+%,[3+%)}71.

From z = x; +1ixy, it follows that
9 _1(9 .9 9 _1(d 9
dz 2 0x1 oxy )’ 7 2 0x1 oxy )’

Definition 7.6.1 For a dihedral group W on R? 2 C and associated weight func-
tion hy, g, let 7 = 1D —1D) and D = $(21 +12). Also, let %, denote the
kernel of 2.

Note that A, = 2% + 22 = (D1 +1D) (D1 —1D>2) =49 9.

Lemma 7.6.2 For o € C,
polynomial in x or z,

lf(X) — f(xoy)
2 (x,v)

where E =1 fore =1 and & = —o” fore = —1.

ol =1 let v=(—Imw,Rew) € R2; then, for a

f(z) —f(fwz)é

—Imo +ieRew) =
(—Imw +ieRew) p———

Proof An elementary calculation shows that 2(x,v)(—Im® +iRe ®) = z — Z0?
and xo, = x — 2(x,v)v = Z®?, which yields the stated formula. O

As a consequence of the factorization of ZX+ 7% and Lemma 7.6.2, we have

_9f k‘lf(Z)*f(szj)+ﬁ"§f(2)*f(2w2j“)

= 1—Iw¥ A S A
= of K fl2)—fEe™) o K f2) = fze¥ ™) 5
7/ = 9z S —Iw¥ o =P Zg) ey

We denote the space of #-harmonics associated with hé B by %’i,(héﬁ)

7.6.1 An orthonormal basis of 7, (12, ﬁ)

Let 2, denote the closed span of of ker ZNTI? in Lz(héﬁ (e'®)d@). Fora = =

0, the usual orthogonal basis for %(hé 13)’ n>1,is {z*,7'}; the members of
the basis are annihilated by d/dz and d/dz, respectively. This is not in general
possible for o > 0. Instead, we have

Proposition 7.6.3  If ¢, € #;(hy, 5) N2y, n > 0, then 2y (2) € Hyr1(hy, 5) and
Z0n(2) is orthogonal to ker 7 in L* (2, 5 (e'9)de).
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Proof By the above definition of & and Theorem 7.1.17, the adjoint 9" satisfies
7 f(@) = (1+n+7)[2f(2) = (n+7) 1221 (2)]

if £ € Ho(h% g) and T f € Aoy 1(HL ). Since D, (z) = (Za(2))” = 0, this
shows that Z ¢, (z) = (1-+n47)Za(z). By the definition of an adjoint, the latter
function is orthogonal to ker 2. O

Corollary 7.64 If ¢, € ji‘il(hfw) N2y, then {Py(2),20,(z) :n=10,1,2...} is
an orthogonal basis for L? (hfxﬁ (') de).

Proof This follows from the facts that dim 5% (h? g) =1 dim%l(hfw) =2,
n>1and L*(hy, 5(e'%)d6) = @y_o a(h7, ).

Since Zp = 0 implies that A, p = 0, the corollary shows that we only need to
find homogeneous polynomials in ./}, = ker 2. Most of the work in describing
&, reduces to the case k = 1; indeed, we have

Proposition 7.6.5 Let f(z) = g(z*) and & = z*. Then

1008, g&)—g&) 88 —s(=E)
Pf() =k <a§+°‘ o S )
(08 g8)—s()  .8(&)—g(=E)
P1(z) =k <aé - +B it )
Proof Substituting g into the formulae for Zf(z) and Z f(z) and making use of
(Za)Zj)k:zk:E, (Zw2j+1)k:_€"

we use the following two formulae to evaluate the sum of the resulting equations:

k—1 1 kl‘k71 k—1 a)Zj k
) —ol -1 —ov -1 '€C
=0 — — =0 — @ —

These formulae can be verified as follows. Multiplying the first formula by ¥ — 1,
the sum on the left-hand side becomes the Lagrange interpolation polynomial of
kt*~1 based on the points w?*/, 0 < j < k— 1, which is equal to the expression
kt*=1 on the right-hand side by the uniqueness of the interpolation problem. The
second formula follows from the first on using ®* = ¢ — (t — ®*/). We then use
these formulae with 7 = z/Z and ¢t = z/(Zw), respectively, to finish the proof. [

Moreover, the following proposition shows that if g(z*) € %, then z/g(Z*) €
J for 0 < j < k, which allows the complete listing of the homogeneous
polynomials in .
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Proposition 7.6.6 If Zg(z*) =0 then 9 [z/g(*)] =0for0< j<k—1.

Proof We use induction, based on the formula
k=1
D1f(2)] =22f(z) — Z 0¥ f(z0%) — B Y 0¥ fE¥ ),
Jj= j=0

which is verified by noting that a typical term in Z is of the form

—7f(7w! . — (7’ . .
W& o) 1) - [Ee) + ol fza),
7—Zw/ z7— 7w/
Let f(z) = z/g(zF) with 0 < j < k — 2 and assume that Z f = 0. Then the above
formula becomes

Dl g()) =221 (z) — (0z/g(Z) + Bwz/g(—")) 2 @2 U+,

The latter sum is zero if 0 < j+ 1 < k— 1 since ®? is a kth root of unity. Thus,
9(z7t'g(zF)) = 0 by the induction hypothesis. O

We are now ready to state bases for ., and thus bases for J# (h? ﬁ)

The groups I} = Zp and I, = Z%
Set k =1 and o, > 0. In polar coordinates the corresponding measure on the
circle is (sin® 0)%(cos 8)Pd6, associated with the group L. If B = 0 then the
measure is associated with the group /.

The basis of %‘il(ha [5) is given in Theorem 7.5.1 in terms of the generalized
Gegenbauer polynomials defined in Subsection 1.5.2. For each n, some linear
combination of the two elements of the basis is in .#},. Define

n+20+6,
fulz) = ( 20+2p
where 8, = 28 if n is even and 8, = 0 if n is odd, and z = re'®. We will show that
fn is in JZ;,. For this purpose it is convenient to express f, in terms of products of
powers of 1(z+2) and }(z—2).

C,Sa’ﬁ)(cose) —HsmGC((H1 B)(COSQ))7 (7.6.1)

Proposition 7.6.7 Let & = 3(z+2), N = 3(z—Z) and let
(B+3)n (B4 3)nt1

= and = T .
82n (OC+B+ l)ann 82n+1 (a+ﬁ+1)nf2n+l

Then, for n > 0,
=i CTH st
=0 (n—j)J!

I
- i —nt 1 _a)n—l—j (—n+§—ﬁ)j 212241
(n—1-=j)!

j€2n—2jn2j
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and

! I
g (2) =(=1)""" 2 Sl _a)"H*j (n=3 A, g2 H1-2j 2]

n (—p—1_ a1
1)”“2( n—3 a)nfj( n—3 ﬁ)j+1 2202+,

Proof By the definition of generalized Gegenbauer polynomials, write g, in
terms of Jacobi polynomials. Recall from the proof of Proposition 1.4.14 that

re) = -y et O (L) (1),

Sett = (2% +2%)/(222); then

1+t__l<z+2)2 and t—l__l(zfz)2
2 zZ\ 2 oz '

Hence, for parameters a,b and z = re'?,

n

a n —n—a),—j(—n—>b); T\ (2 =T\
PP (c0s26) = (—1) Z(,) ( (n)—;')(!j! ) (Z;Z) j(%) :

Writing g2, and g, in terms of Jacobi polynomials and applying the above
formula gives the stated results. O

From Proposition 7.6.5 with k = 1 we have

2z +2)"(z=9)" =+ B - (=1)") (Z+Z)"_1(Z—Z)"’

]
)
Z(+2)"(z=2"] =[n+B(1—(=1)")]

)

Thus 2 + 2 and 2 — 2 have simple expressions on these basis elements (indi-

cating the abelian nature of the group ;). We can now prove some properties of

fu (7.6.1).

Proposition 7.6.8 Ler o, > 0. Then we have the following.

(i) Zfu(z) =0,n=0,1,..

.. (a+B+1>
i) Dfo, =2—
(i) 2 fon(2) B+

D foni1(z) =2(n+a+3)

fon—1(z) and

B+, @



7.6 Example: Dihedral Groups 245

(iii) Let hy = [2B(a+ 1, B+ 1)] ‘l/f |2(e')[? (sin? )% (cos® 0)P d6; then
o+ B +1], (0t +3) (04 B+ Da(0+ 3)ut
n!(B+3)n n!(B+ 3 )nt1 ‘

and  hyppq =

h2n =

Proof Observe that the symbolic involution given by o < f3,z+7 < z— 7 leaves
each f, invariant and interchanges 2 + 2 with 2 — %. We will show that
(.@ —l—@) &2n = 2g2n—1, apply the involution to show that (.@ — @) & = 28m-1
also and then use the same method for g;,,+1. This will prove (i) and (ii). Thus we
write

(.@%—@)gzﬂz)
I T s I
=D ,20[ (=) (2n=2J)

2\ -2\ Y
X —_— —_—
2 2

n=ir(—n+d—0a)  (—n+1-pB).
+(_1)n_1,§a[( 2 (Z)—nll—]j()!j! 2 >J(2”_1_2j+2ﬁ)

§ N S N
2 2

The first sum loses the j = n term; in the second sum we use

(—n+%—[3)j(2n—1—2j+2[3) :—2(—n+%—ﬁ>

= 2g2n71(Z)~

J+

Now we have
(24 2) g2n11(2)
nf(-n—3-a),, (-n-3-B),
_ (_1\n+1 n+l—j J
=D ZJ (n—j)\!

X (2n+1-2j+2p) <Z;Z)2n—2j (Z;Z>2/}

n(-n—1— i —n—1-B).
H_l)m,zo[( 2 afn’fw —

-\ 2n—1-2j -\ 2j+1
~[Z2tZ 72—
e () (5]

:2<n+a+%> (n+ﬁ+%)g2n.

1
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Here the second sum loses the j = n term, and we used

(zn-i-a), (cn-i-p)
= (e i) () (crri=e), (i),

1 : _ 1
In the first sum we used (—n — 5 — B)J (2n+1-2j+2B)=—-2(-—n—3 fﬁ)jﬂ.
Like the second sum, the first sum equals 2 (n+ o+ l) (n+ B+ %) times the
corresponding sum in the formula for g5,.

The proof of (iii) follows from the formula

/” g(cos 0)(sin? 8)%(cos® 0)P dg = 2/ 0)[tP*(1—>)B=12a,

-7

and the norm of the generalized Gegenbauer polynomials. O

Note that if & = = 0 then f,(z) = 7", which follows from using the for-
mula for the generalized Gegenbauer polynomials and taking limits after setting
(0+B+1)n/(a+B+n) = (a4 B)n/(c+B).

The real and imaginary parts of £, comprise an orthogonal basis for .7, (h? ﬁ)
That they are orthogonal to each other follows from their parity in x,. However,
unlike the case of o« = 8 =0, f,(z) and f,(z) are not orthogonal. Corollary 7.6.4
shows that in fact f;,(z) and Zf, are orthogonal.

Proposition 7.6.9 Forn > 0,

zf_anl(Z)— ;n_(:;_fﬁon( ) ;mon( )
Zfon(2) = : [(B— ) fans1(z) + (2n+a+B+1) fant1(2)].

2n+2B+1

Proof By Corollary 7.6.4 we can write 7,1 (z) as a linear combination of f;,(z)
and f,(z). From the formula in Proposition 7.6.7, it follows that the leading
coefficients of 7" and Z" are given by

(Ot-i-ﬁ—l— 1)2n—1

20+ L)l
(ot+B+1)2

22n+1(ﬁ+ )n+ln!

Ful(z) = [2n+a+B)2" — (o +B)Z" ]+,

Jans1(2) = [(Cn+a+B+ 12"+ (a—B)z" ]+,

where the rest of the terms are linear combinations of powers of z and Z, each
homogeneous of degree n in z and Z. Using these formulae to compare the coeffi-
cients of " and z" in the expression Zf,_1(z) = af,(z) +bfu(z) leads to the stated
formulae. O
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These relations allow us to derive some interesting formulae for classical
orthogonal polynomials. For example, the coefficient f, satisfies the following
integral expression.

Proposition 7.6.10 Forn >0,

1l
Cacﬁ/l/l (SCOSO—HtsinO)"(l—|—s)(1+t)(1_sz)ﬁ*l(l_tz)afldsdt

[n+2a+5n
n|l = A - . ~An

:anfn(eie): 206+2ﬁ

ciP )(cos9)+1sm6C( +1B)(cose)},

where
(2n)!

20 (a4 B+ 1)p(a+3)n
(2n+1)!

220+ (o4 B+ 1)n(0+ 3)ng1

axy =

An+1 =

Proof LetV denote the intertwining operator associated with hé B Since the real
and imaginary parts of 7" are ordinary harmonics, the real and imaginary parts
of V(") are elements of %’i,(hfx ﬂ). It follows that V(") = a, f(z) + buZfu1(2).

Since f,(z) and Zf,(z) are orthogonal,

anhn:/_”(Vz”)(eie)fn(ew)d#a,ﬁ WM/ fn(2)7" do,

where &, is as in part (iii) of Proposition 7.6.8 and we have used Proposition
7.2.8 in the second equation. Using Theorem 7.2.4 and the expression for (p,q);
in Definition 7.2.2, we conclude that

1 Jd .d
(o — i) 1)
(a4 B+1), \dx; "o

1
C2(a+B 1), ( az) fa(2)

The value of (9/9z)"f,(z)[n!]~! is equal to the coefficient of " in f,, which is
given in the proof of Proposition 7.6.9. This gives the value of a,,. In a similar way
we can compute b,: it is given by a constant multiple of (d/dz)"Zf,(z). Hence,
we conclude that V7" = a,, f,,(z). The stated formula then follows from the closed
formula for V in Theorem 7.5.4. O

azh, =

In particular, if § — O then the formula in Proposition 7.6.10 becomes a
classical formula of the Dirichlet type:

1
Ca/ (cos@+itsin9)"(1 T (1= ) dr
—1

n! n!
- 2a), (a+1),
forn=1,2,... This is a result of Erdélyi [1965] for functions that are even in 6.

*(cosB)+i sin @ C**/ (cos )
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The group I
If k is an odd integer then the weight function h, associated with the group I is
the same as the weight function hy g associated with the group I, with B =0.
Thus, we only need to consider the case of I; for even k.
Set k = 2m. By Proposition 7.6.6, the homogeneous polynomials of degree
mn+ j in J¢, are given by z/f,(z"), 0 < j < m — 1. Their real and imaginary
parts comprise an orthogonal basis of 77, ; (hlzx ﬁ); that is, if we define

Pmn+j(6) = ’m stC,(la’ﬁ)(cosmO) —sinesianC,(ng’m(cosme),
2 n . .
Gmn+j(0) = nt20+0, sin jO C,(la’ﬁ)(cosme) +sin6cos jO C,(ﬁTl‘ﬁ)(cosmG),

20042

where 8, = 2 if nis even and 6 = 0 if n is odd, then
Yn,l (xl ,xz) = rmn+jpmn+j(9) and Yn,2(xl ,xz) = rmn+qun+j(9)v

with polar coordinates x; = rcos @ and x; = rsin 6, form an orthogonal basis
for the space 7%, j(hé’ﬁ), 0 < j < m—1. The two polynomials are indeed
orthogonal since Y, 1 is even in x; and Y, 5 is odd in x;.

Let us mention that in terms of the variable 1 = cos 8, the restriction of hlzx B
associated with the group I, on the circle can be transformed into a Weight
function

Wep(t) = | sinmB>*|cosm8*P = |Uy1 (6)V1 = 2| T()P (7.6.2)
defined on [—1, 1], where T,, and U,, are Chebyshev polynomials of the first and

the second kind, respectively. In particular, under the map cos 6 — t, p,, ; is the
orthogonal polynomial of degree mn + j with respect to w, g.

7.6.2 Cauchy and Poisson kernels
Let {¢n,Z¢,}n>0 denote an orthonormal basis for L2 (h%uﬁ (') dB) associated

with the group I; see Corollary 7.6.4. The Cauchy kernel is related to the
projection onto a closed span of {¢, : n > 0}. It is defined by

Ik <, W z ¢n ¢n |ZW‘ <1.

For any polynomial f € %}, = ker 2,

1@ =cap [ FEICUz I 5(e®)d0, i <1,
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The Poisson kernel which reproduces any A-harmonics in the disk was defined in
Section 7.3. In terms of ¢, it is given by

Ik W z (Pn ¢11 + z Z(Pn W(Pn

=C(Ix;z,w) +sz(1k;W,Z)~

The following theorem shows that finding closed formulae for these kernels
reduces to the cases k =1 and k = 2.

Theorem 7.6.11  For each weight function hy g associated with the group Iy,

1—|z]*|w|?
P(ly;z,w) = 1|—7|Z‘W‘C(12k;z’w)'
Moreover
1— [z |w]? |1 -5k ko k
P(IZk,Za ) 1— ‘Zk|2|Wk|2 |17— |2 P(IQ;Z W )7 (763)

where the Poisson kernel P(ly;z,w) associated with h(x+iy) = |x|%|y|P is
given by

P(hL;z,w) = (1— |ZW|2)Cacl;
X /jl [11 [1 +2(Imz)(Imw)s + 2(Rez)(Rew)t + ‘ZW|2]7OF[3*1

X (145)(1+1)(1—s)B~1(1 = 2% dsdr.

Proof Let C(Ii;z,w) = Cre(z,w) +1Cim(z,w) with Cge and Ciy, real and symmet-
ric. Then

Re P(Ix;z,w) = (1 +Re 2w)Cre(z,w) — Im 2w Cim (z, W),
Im P(Iy;z,w) = Im ZwCre(z,w) — (1 —Re Zw)Cim (z, w).

Since Im P(z,w) = 0, we have Ci(z,w) = [(Im Zw) /(1 —Re Zw)] x Cre(z,w) and
thus P(I;z,w) = [(1— |2)2|w[*) /(1 — z2w)]C(Lk; 2, w).

Now let {w, : n > 0} be an orthonormal basis of kerZ associated with
h(x+iy) = |x|%|y|®. By Proposition 7.6.6 we conclude that the polynomials
2y, (2¥) are in %, and, in fact, are orthonormal h-harmonics in .7, (h?, ﬁ) Thus

k ok

—Z'w
C(I;z,w) z W, (7 ZZJW] s C(b;z wk)

Hence, using P(L;z,w) = [(1 — |z|]*|w|*) /(1 —2%)]C(L2; z,w) and these formulae,
the relation (7.6.3) between P(Ip;z,w) and P(Ip;z,w) follows. The integral rep-
resentation of P(Ip;z,w) follows from Theorem 7.3.3 and the explicit formula for
the intertwining operator V for I, = Z% in Theorem 7.5.4. O
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In particular, if = 0 then the kernel P(I»;z,w) becomes the kernel P(I};z,w)
for the weight function |x|* associated with I} = Z;:

P(Il;va)
. /‘ 1—|zw]?
— %11 +2(Imz) (Imw) 4+ 2(Rez) (Rew)r + [zw?) ¢+

For the general odd-k dihedral group, we can use the formula

(1+0)(1 =13 tdr.

L=z wl? 1=
L= |42 |1 —2m)?
to write down an explicit formula for P(I;;z,w).

In terms of the Lauricella function F4 of two variables (also called Appell’s
function),

P(li;z,w) = P(I; 25 wh)

a mna (Cl) n
Fy (bl,bz ny) z Z + 1 2 xmy

In!
m=0n=| nfm:n:

(see Section 1.2), the Poisson kernel P(I;w, z) can be written as

1
Plliw2) = e
( o+1,8+1 at Bl 4(Imz)(Imw) 4(Rez)(Rew)>
2004128+ 1 M+zw> 7 [1+z2w)?

This follows from a formula in Bailey [1935, p. 77].

On the one hand the identity (7.6.3) gives an explicit formula for the Poisson
kernel associated with the dihedral groups. On the other hand, the Poisson kernel
is given in terms of the intertwining operator V in Theorem 7.3.3; the two for-
mulae taken together suggest that the intertwining operator V might constitute an
integral transform for any dihedral group.

7.7 The Dunkl Transform

The Fourier transform plays an important role in analysis. It is an isometry of
L*(R9,dx) onto itself. It is a remarkable fact that there is a Fourier transform for
reflection-invariant measures which is an isometry of L?(R?, 12 dx) onto itself.

Recall that K (x,y) = V@et)_ Since V is a positive operator, |K (x,iy)| < 1.1t
plays a role similar to that of ¢! in classical Fourier analysis. Also recall that
du(x) = (2m)~4/2e=IKP/2 gy,

Definition 7.7.1 For f € L' (h2dx), y € RY, let

F) = 2mRa, [ F@K (i)

denote the Dunkl transform of f at y.
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By the dominated convergence theorem fis continuous on R?. Definition 7.7.1
was motivated by the following proposition.

Proposition 7.7.2  Let p be a polynomial on R and v(y) = >4 1Y % fory e CY;
then

h /R [e72/2 p(x)] K (x, ) (x) da (x) = e"0)/ 2 p(y).

Proof Let m be an integer larger than the degree of p, fix y € C¢ and let
gm(x) = X Kj(x,y). Breaking p up into homogeneous components, it follows
that (g, p), = p(y). By the formula in Theorem 7.2.7,

{Gm>PIn = ch /R L (e72p) (€72 g, ) g du.
However, A< 'K, (x,y) = v(y)Kn—2(x,y) and so
_ < 1/ —v(y)\!
e 1/2g,,(x) = 2 > F( 2( )) Kj2(x,y)

jm=2l

)Zny

Now let m — oo. The double sum converges to e V()/ 2K (x,y) since it is
dominated termwise by

Y R MR I
> o 2 =oxp (150 + Il 1)

which is integrable with respect to du(x). By the dominated convergence
theorem,

ply) =00, [ [ 2p(a) K)ol dua ().

Multiplying both sides by e V) completes the proof. O

An orthogonal basis for L>(R? hZdx) is given as follows (compare with
(7.1.10)).

Definition 7.7.3 Form,n=0,1,2,...and p € % (h%), let Ax = Y + %. Then
On(pix) = P (e 2, xR,

Proposition 7.7.4  For k,l,m,n € Ny, p € 7 (h’) and q € % (h2.),
) e, [ 0ulpin) (i) () d

Act+1
— ’nkSnIZ_AK_lmcz/ pqh’zcda).
m gd—1
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Proof Using spherical polar coordinates and Definition 7.7.3, the integral on the
left-hand side equals

pl—d/2
(%)

The integral on the right-hand side is zero if n # [. Assume n = [ and make

the change of variable r> = ¢. The first integral then equals %Smkl"(n +Ae+1+
m)/m). O

i 2
Ch/ L;’zl+7t,<(r2)Li+7L;< (rZ)e—r rn+l+27,<+d—1 dr - pth do
0 _

By Theorem 3.2.18 the linear span of {¢,(p) : m,n >0, p € S£%(h%)} is dense
in L*(R9, h2.dx). Moreover, {¢,(p)} is a basis of eigenfunctions of the Dunkl
transform.

Theorem 7.7.5 Form,n=0,1,2,..., p € #%(h’) andy € R?,
[60(1)] ) = (=026, (p:):
Proof For brevity, let A = n+ A,. By Proposition 7.7.2 and Lemma 7.2.6,
r) e, [ LI ploK (e 1 dx

= (=1)/(j12)) "2 ()p(y),  yeC.
We can change the argument in the Laguerre polynomial by using the identity
(A+ 1) (—1)" 4
21 L (1), t €R,
Z (A+1), (—ﬁ!lb)

which can be proved by writing the generating function for the Laguerre
polynomials as

1

_ —axt
1 — A1 ( xr): | —p)-A-l ( 2")
(-0 exp (0 ) = (1) texp (12

withr =2r/(1+r). Use this expression together with the above integral to obtain
(2m) %, | 1Lﬁ(\|x||2>p<x>e—”x”Z”K(x,y)h,%(x)dx
R{

A+1 [—v(y))/
2 A+l gl

=02 p(y) (-1

Now replace y by —iy with y € R?; then v(y) becomes —||y||* and p(y) becomes
(=1)™(—=i)"p(y), and the sum yields a Laguerre polynomial. The integral equals

(— 1) (1) pO)LA (ly2)e T2 h

Since the eigenvalues of the Dunkl transform are powers of i, this proves its
isometry properties.
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Corollary 7.7.6  The Dunkl transform extends to an isometry of L*(R?, hZ dx)
onto itself. The square of the transform is the central involution; that is, if
feL?(RY, h2dx), f = g, then g(x) = f(—x) for almost all x € R,

The following proposition gives another interesting integral formula, as well
as a method for finding the eigenfunctions of A. First, recall the definition of the
Bessel function of index A > —1/2:

_ (L)A ! its -1/
JA(t)—m/le (1= 2)A 12 g

_ & i ! (—1e2ym t>0
FA+1) &2 ml(A+1), * 77 ’

Proposition 7.7.7 Let f € #%(h%), n=0,1,2,... andy € C?; then

V)"
‘()vk‘ + 1)m+n '

/ 2 <
b Jour TOR (40 = 10) 3 m
Moreover, if y € R, p > 0, then the function
80) =i [, SR (. ~iyp)hE(x) do()

satisfies Apg = —p>g and

) = e+ D (2P0 (2 )bl

Proof Since f is h-harmonic, e /2 f = f. In the formula of Proposition 7.7.2,

ch / FEOK (6, )R (x)d (x) = e*O)/2f (y),

the part homogeneous of degree n+2miny, m =0,1,2,..., yields the equation

i [ Koo (2 2) i) = S0 £0)

Then, using the integral formula in Theorem 7.2.4 and the fact that

S)K;(x,y) ki (x) doo(x) = 0

§d—1

if j < nor j# n modulo 2, we conclude that

FOOK (x,y)h (x) doo(x)

gd—1
- 1

:m02”+’”(‘§+7)n+mch/wf( %) Ky 2m (2, y)h2(x) du (x),

which gives the stated formula.
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Now replace y by —ipy for p > 0, y € R?. Let A = n+ A,. This leads to
an expression for g in terms of the Bessel function J4. To find A,g we can

interchange the integral and Azy ), because the resulting integral of the series

= 0 Agly) K, (x,—iy) converges absolutely. Indeed,

—

AV (x,~ipy) = AV K (~ipx.y)

(—ipx))*K (—ipx,y) = —p [P K (x, —ipy);

M= =

1

~.
Il

but |[x||> = 1 on S~ and so A,g = —p2g. O

Proposition 7.7.8  Suppose that f is a radial function in L'(R?, h.dx); f(x) =
fo(||lx|)) for almost all x € RY. The Dunkl transform f is also radial and has the
form f(x) = Fy(||x||) for all x € R¢, with

1

F(llx||) = Fy(r) =
o) = For) =

/w fo(s)n, (rs)s™+ds.
0

Proof Using polar coordinates and Corollary 7.4.5 we get

N Ch - d—142 I N2 /
J0)= e f) R0 [ K i) doo ) ar
o 1
___Cn 2e+1 irlylle (1 2 Ae—1/2
f(zn)d/zB,(/O e B (e S L T

from which the stated result follows from the definition of J4 () and putting the
constants together. O

The Dunkl transform diagonalizes each &; (just as the Fourier—Plancherel
transform diagonalizes d/dx;). First we prove a symmetry relation with some
technical restrictions.

Lemma 7.7.9 Let f ;¢ and gZ;f be in L' (R?, hZ), and suppose that fg tends
to zero at infinity. Then

L @neiar=— [ r@gman  j=1...d

Proof The following integration by parts is justified by the assumption on fg at
infinity. We also require k;, > 1 for each v € R, so that 1/(x,v) is integrable for
h2 dx. After the formula is established, it can be extended to k; > 0 by analytic
continuation. Now
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| @ipeia=- [ f(X)(;ij[g(X)hK(X)Z] &
+ 3 0 [ L i

VER

=L [f<x>£g<x>+2f<x> S, 5l i

VER <x7 V>

3wy [ 1SS g 0

VER >
— - [ S @gia
R4
In the above the substitution x — xo,, for which (x,v) becomes (xo,,v) =
(x,v0,) = —(x,v), was used to show that
f(‘xo—v)g(x) h,zc(x)dx — _ f( ) (XGV) hK-(.x)dx
R4 <X,V> R4 <x v>

since 12 dx is W-invariant. O

Theorem 7.7.10 For f,2;f € L'(R?,h2dx) and y € R?, we have J;f(y) =
iy;f(y) for j = 1,....d. The operator —i%; is densely defined on L*(RY, h%.dx)
and is self-adjoint.

Proof For fixed y € RY put g(x) = K(x,—iy) in Lemma 7.7.9. Then Z;g(x) =
—iy;K(x,—iy) and éj\f(y) = (—1)(—iyj)f(y). The multiplication operator
defined by M;f(y) = y;f(y), j=1,...,d, is densely defined and self-adjoint
on L*(R9 hZdx). Further, —i%; is the inverse image of M; under the Dunkl
transform, an isometric isomorphism. O

Corollary 7.7.11 For f € L'(RY), j=1,...,d and g;(x) = x,f(x), the trans-
formg;(y) =iZ;f(y), y € RY.

Let us consider the example of Z2 on R2, for which the weight function is
hop = lx|%|y|P. Recall the formula for the intertwining operator V in Theorem
7.5.4. Let us define

1 .
Ea(x):ca/ e (1 45)(1— ) \ds
-1

for o > 0. Integrating by parts,
ix

. ro
Eq(x) = ca/ e (1 —s%)* lds — —ca/ e (1 —5?)%ds
-1 2a -1

—T(a+3) (L) o a(x]) —isign(x) Jo 12 ()]
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Using the definition of K and the formula for V, we then obtain
K(x,—iy) = Ve''™) = Eq (x1y1)Eg(x2y2).

If B = 0, so that we are dealing with the weight function i (x) = |x|* associated
with Z,, then K(x,—iy) = E4(x1y1). In particular, recall the x-Bessel function
defined by

1

KW(xay) - |W|

Z K(x,yw).

weWw

Then, in the case of Z,, we obtain
K (x,—1y) = %[K(x,—iy) +K(x,iy)}
—o+1/2
= (o +5) (S )2 o gp (b ).

so that the transform fspecializes to the classical Hankel transform on R ..
Let us mention one interesting formula that follows from this set-up. By
Corollary 7.4.5,

1 .
c;z /S| K'()(7 —ly)haﬁ(y)da)(y) = Ca+ﬁ+l/2[] e*IHX“S(l _S2)06+,B*1/2ds'

Using the definition of the Bessel function and verifying the constants, we end up
with the following formula:

||x|| —(o+B+1/2) 1
(2> Jorrp12([1x])) = 5/51 Eo(x1y1)Eg(x2y2)he p(y1,y2) do,

which gives an integral transform between Bessel functions.

7.8 Notes

If v« =Y K, = 0, h-harmonics reduce to ordinary harmonics. For ordinary har-
monics, the definition of Hy, in (7.1.4) is called Maxwell’s representation (see, for
example, Miiller [1997, p. 69]). For h-harmonics, (7.1.4) is studied in Xu [2000a].
The proofs of Theorems 7.1.15 and 7.1.17 are different from the original proof in
Dunkl [1988].

A maximum principle for h-harmonic polynomials was given in Dunkl [1988]:
if f is a real non-constant #-harmonic polynomial then it cannot have an abso-
lute minimum in BY; if, in addition, f is W-invariant then f cannot have a local
minimum in BY.

The inner products were studied in Dunkl [1991]. The idea of using e given
in Theorem 7.2.7 first appeared in Macdonald [1982] in connection with (p,q),.

The integration of the intertwining operator in Section 7.4 was proved and
used in Xu [1997a] to study the summability of orthogonal expansions; see
Chapter 9.

Ap/2
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The Z‘zj case was studied in Xu [1997b]. The explicit expression for the inter-
twining operator V in Theorem 7.5.4 is essential for deeper analysis on the sphere;
see Dai and Xu [2013] and its references. It remains essentially the only case for
which a useful integral expression is known. The monic s-harmonics were studied
in Xu [2005c].

An interesting connection with the orthogonal polynomials of the Z‘zi case
appears in Volkmer [1999]. See also Kalnins, Miller and Tratnik [1991] for
related families of orthogonal polynomials on the sphere.

The dihedral case was studied in Dunkl [1989a, b]. When 8 = 0, the polynomi-
als f,, in Section 7.6 are a special case (§ = o+ 1) of the Heisenberg polynomials
E\%P) (), defined in Dunkl [1982] through the generating function

S BB @ = (1—12) (1 —12) P,
n=0

Many properties of the polynomials f, can be derived using this generating
function, for example, the properties in Proposition 7.6.8.

The weight functions in (7.6.2) are special cases of the so-called gener-
alized Jacobi polynomials; see Badkov [1974] as well as Nevai [1979]. The
dihedral symmetry allows us to write down explicit formulae for the orthogo-
nal polynomials, which are available only for some generalized Jacobi weight
functions.

The Dunkl transform for reflection-invariant measures was defined and stud-
ied in Dunkl [1992]. The positivity of V is not necessary for the proof. When
the Dunkl transform is restricted to even functions on the real line, it becomes
the Hankel transform. For the classical result on Fourier transforms and Hankel
transforms, see Stein and Weiss [1971] and Helgason [1984]. One can define a
convolution structure on the weighted space L?(h?,R?) and study harmonic anal-
ysis in the Dunkl setting; most deeper results in analysis, however, have been
established only the case of thi using the explicit integral formula of V; see
Thangavelu and Xu [2005] and Dai and Wang [2010].

The only other case for which an explicit formula for the intertwining operator
V is known is that for the symmetric group S3, discovered in Dunkl [1995]. It is
natural to speculate that V is an integral transform in all cases. However, even in
the case of dihedral groups we do not know the complete answer. A partial result
in the case of the dihedral group I3 was given in Xu [2000e]. For the case B,
partial results can be found in Dunkl [2007].
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Generalized Classical Orthogonal Polynomials

In this chapter we study orthogonal polynomials that generalize the classical
orthogonal polynomials. These polynomials are orthogonal with respect to weight
functions that contain a number of parameters, and they reduce to the classical
orthogonal polynomials when some parameters go to zero. Further, they satisfy
a second-order differential-difference equation which reduces to the differential
equation for the classical orthogonal polynomials. The generalized orthogonal
polynomials that we consider are those on the unit ball and the simplex and the
generalized Hermite and Laguerre polynomials.

8.1 Generalized Classical Orthogonal Polynomials
on the Ball

The classical orthogonal polynomials on the ball B? were discussed in Sec-
tion 5.2. We study their generalizations by multiplying the weight function by
a reflection-invariant function.

8.1.1 Definition and differential-difference equations

Definition 8.1.1 Let /i be a reflection-invariant weight function as in Definition
7.1.1. Define a weight function on B¢ by

WEL () =R (L=l 2, > -4,

The polynomials that are orthogonal to W,ﬁ y are called generalized classical
orthogonal polynomials on B,

Recall that C;l is the normalization constant for 11,2< over S9! it can be seen by
using polar coordinates that the normalization constant of W,g u 1s given by

b= () =
w = X = ,
K1 Bd K, U O'd—lB(VK+%7.U+%)
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where 0,_; is the surface area of $¢~! and y, = Yver. Ky is the homogeneous
degree of h.

If x =0, i.e., W is the orthogonal group then A, (x) = 1 and the weight func-
tion W2 , (x) is reduced to W£ (x) = (1 —||x||*)*~1/2, the weight function of the
classical orthogonal polynomials on the ball.

We will study these polynomials by relating them to s-harmonics. Recall The-
orem 4.2.4, which gives a correspondence between orthogonal polynomials on
B? and those on §¢; using the same notation for polar coordinates,

y=rlxxgp1)  where r=|lyll, (xxa41) €57,
we associate with W,ﬁ y @ weight function

e (%,%a11) = hie () [xg 1 [* = [T 166 g [ (8.1.1)
vER |
defined on $¢, which is invariant under the reflection group W x Z,. Throughout
this section we shall set

d—1
Ay = Vet it —— (8.1.2)

and will write y and A for %, and A, in the proof sections.
The weight function hy, is homogeneous and is S-symmetric on RI+1
(Definition 4.2.1). By Theorem 4.2.4 the orthogonal polynomials

Yo(y) = r"Pa(x), Pae%zd(Wf,ﬂ)

(denoted Yo(tl) in Section 4.2) are h-harmonics associated with hy . Conse-
quently they satisfy the equation AZVXZz Yy, =0, where we denote the s-Laplacian
associated with &, ;, by AZVXZZ to distinguish it from the usual s-Laplacian Ay,.

For v € R, (the set of positive roots of W), write ¥ = (v,0) € R?*!, which is a
vector in R?*!. By Theorem 6.4.9, for y € R4+1,

AV *22 W+ Yk Vi), _f(Y)—{(va) 512
1) =870+ 3 ( 5 TEEL )
Y+l 3)’d+1 Vit
for hyy, where V.= (d; -+ dy41)" is the gradient operator and the reflection

o, acts on the first d variables of y. We use AYK,TZZ to derive a second-order
differential-difference equation for polynomials orthogonal with respect to Wy,
by a change of variables.

Since the polynomials Y, defined above are even in y, |, we need to deal only
with the upper half space {y € R¢*!:y,,; > 0}. In order to write the operator
for P}, (W,g IJ) in terms of x € BY, we choose the following mapping:

. _ _ _ / 2 2
yH(V,X>. Y1 =FX1,...,Yd = X4, Yd+1 =T l_xl_"'_-xda
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which is one-to-one from {y € RI*! : y,,| > 0} to itself. We rewrite the
h-Laplacian Ay, in terms of the new coordinates (7,x).

Proposition 8.1.2 Acting on functions on R*! that are even in vy, i, the
operator AhWXZ2 takes the form

NEZ 9*  2utl19 1 WxZ,
h or? r or h,0

in the coordinates (r,x) in {y € R4y, | >0}, where the spherical part AWXZZ,

acting on functions in the variables x, is given by
WXZ
AV = A — (2, V)2 2, VI,

in which Ay, denotes the h-Laplacian for hy in W,

Proof We make the change of variables y +— (r,x) on {y € R¥*! :y,. 1 > 0}.
Then, by Proposition 4.1.6, we conclude that
9> do 1

A= -
(9r2+r8r+r2

where the spherical part Ag is given by
Ag =AW — (x, V)2 — (d —1)(x,V)); (8.1.4)

here A®) and V@ denote the Laplacian and the gradient with respect to x,
respectively. As shown in the proof of Proposition 4.1.6, the change of variables
implies that

ERNCIRTE.
ady; _xlé?r r

2 (x) <i<
gy xi(x,V )), 1<i<d+1,

with d/d;+1 = 0. Since we are assuming that the operator acts on functions that
WXZZ

are even in yg 1, it follows from (8.1.1) that the last term in A, , see (8.1.3),
becomes
1 d 10 1
w—— zu(ff - —2(x,Vx>>7
Ya+1 9Ya+1 ror r
where we have used the fact that y;. | = rx;,; and x[21 =1 fx% — fxlzi.
Moreover, under the change of variables y — (r,x) we can use (8.1.1) to verify that

VY 1ad 1 (V) 1

= - — _ —_—— _x’
3% radr 2 {(x,v) r?
Since o, acts on the first d variables of y,. 1, the difference part in the sum in

equation (8.1.3) becomes r~2(1 — 6,)/(x,v). Upon summing over v € R, we
conclude from (8.1.3) that A}Vlvxzz takes the stated form, with A(v)‘f hx = given by

VY,
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20, VWY  1—o
AV — Ay 2 v (2 — 2 vI?).
0™ = o2k m V- 3w (Spt - )

The desired formula for AWXZ2 then follows from the formula for Ay in (8.1.4)
and from the formula for the h-Laplacian in Theorem 6.4.9. O

Recall that 7/¢ (W,f, u) stands for the space of orthogonal polynomials of degree
n with respect to the weight function W,ﬁ u on B

Theorem 8.1.3 The orthogonal polynomials in the space ”V,ﬂ(Wg H) satisfy the
differential—difference equation

(A,, — (V)= 20 <x,v>)P = —n(n+2Ae )P,

where V is the ordinary gradient operator acting on x € R%.

Proof Let P, be an orthogonal polynomial in % (W,g u). The homogeneous

polynomial Y (y) = r"Py(x) satisfies the equation AhWXZZYa = 0. Since Yy is

homogeneous of degree n, using Proposition 8.1.2 we conclude that
0=A)"PYo(y) = "2 [n(n+d +2y+2u — 1)Po(x) + Ay 7 Po ()]

and the stated result follows from the formula for AWXZz. O

Written explicitly, the equation in Theorem 8.1.3 takes the form

AP — 2 aa ( (2%c+2u—1)P+ Zx, gi)- —(n+d)(n+2yc+2u—1)P.
=1 1

In particular, if W is the rotation group O(d) or he(x) = 1 then A, = A and

the difference part in the equation disappears. In that case the weight function

we u becomes the classical weight function Wy (x) = (1 — x[|2)#=1/2, and the

differential-difference equation becomes the second-order differential equation

(5.2.3) satisfied by the classical orthogonal polynomials in Section 5.2.

Corollary 8.1.4 Under the correspondence Y (y) = r" P(x), the partial differen-
tial equation satisfied by the classical orthogonal polynomials on B¢ is equivalent
to AyY =0 for hye(y) = |yar1|*

The weight function given below is invariant under an abelian group and is
more general than W),.

The abelian group Z4 The weight function is

d
=TT el (1 = x| )12, (8.1.5)
i=1
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The normalization constant of this weight function is given by

D(+ )Tk + DT +3)
I(jx|+p+ ) '

/BdW,gu(x)dx:

The h-Laplacian associated with h2(x) := [T%_, |x;|" is given by

d 2 1—o;
Ah:A+i=§‘11<,~(x—ia,~—72), (8.1.6)

X

where 0; is defined by x0; = x — 2x;¢&; and ¢&; is the ith coordinate vector. We just
give Ay, here, since the differential-difference equation can be easily written down
using Ay,.

Two other interesting cases are the symmetric group S; and the hyperoctahe-
dral group W,. We state the corresponding operators and the weight functions
below.

The symmetric group S; The weight function is

WE ) =TI bi—xP(1—|xl?)»"/2 (8.1.7)

1<i<j<d
and the corresponding h-Laplacian is given by

1

— xj

A, =A+2K

1-(i,))
ai_a‘ Y A 8.1.8
1<i<j<d i <( ) Xi—X;j ) (8.1.8)

where (i, j) f(x) means that x; and x; in f(x) are exchanged.

The hyperoctahedral group W; The weight function is

d
B 2k’ 2 22 2\u—1/2
W) = [Tk TT W =3P =2, @8.1.9)
i=1 1<i<j
where Kk and k' are two nonnegative real numbers.
Since the group W; has two conjugacy classes of reflections, see Subsec-
tion 6.2.2, there are two parameters for /. The corresponding /-Laplacian is

given by
d
2 1—-o0; di— 9, 1—o0;;
wesedf () 3, 02 25)
i=1 \Xi X 1<i<j<d \Xi —AXj (; —x;)
d;+0; 1—1;;
+2k Y ('+ L — ”2>, (8.1.10)
I<icj<a \Xi TXj (xi +x;)

where o;, 0;; and 7;; denote the reflections in the hyperoctahedral group W,
defined by xo; = x — 2x;€;, x0;; = x(i, j) and 7;; = 0;0;;0;, and the same notation
is used to denote the operators defined by the action of these reflections.
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Note that the equations on B? are derived from the corresponding h-Laplacian
in a similar way to the deduction of Proposition 7.5.3 for Jacobi polynomials.

8.1.2 Orthogonal basis and reproducing kernel

Just as in Section 5.2 for the classical orthogonal polynomials, an orthonormal
basis of ”I/nd(W,g “) can be given in terms of the h-harmonics associated with &,
on $?~! and the generalized Gegenbauer polynomials (Subsection 1.5.2) using
polar coordinates. Let

k,c:)/,(—i-%, so that A = M+ 1.

Proposition 8.1.5  For 0 < j <4 let {Y}!

2 j} denote an orthonormal basis of
ji‘jl”iz ; (h2); then the polynomials

1 p(U—1/2,n—2j4+Ac—1/2 2 h
By W) = () BT R R P — 1)y, ()
form an orthonormal basis of V% (W,f Ii)" the constant is given by

[CB ]2 _ (1+ %)/()Lk"' %)n—j(”_j‘f')tk,u)
J' e+ Dn—j(n+ A )

i

The proof of this proposition is almost identical to that of Proposition 5.2.1.

Using the correspondence between orthogonal polynomials on B¢ and on §¢
in (4.2.2), an orthogonal basis of #/¢ (W,ﬁ#) can also be derived from the A-
harmonics associated with A, on §9+1_ For a general reflection group, however,
it is not easy to write down an explicit orthogonal basis. We give one explicit
basis in a Rodrigues-type formula where the partial derivatives are replaced by
Dunkl operators.

Definition 8.1.6 For o € N¢, define

Ug(x) = (1 _ ||x||2)—u+1/2_@0((1 _ ||x||2)\a|+u—1/2.

When all the variables in k are 0, % = d* and we are back to orthogonal
polynomials of degree n in d variables, as seen in Proposition 5.2.5.

Proposition 8.1.7 Ler o € Ng and |o| = n. Then UY is a polynomial of degree
n, and we have the recursive formula

Ul o () = —u+ DUl () + (1= x|H 208 (3).

Proof Since (1 — |x||*)* is invariant under the reflection group, a simple compu-
tation shows that
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G (x) =0, [ (1= [l Y2] (1 = ) me /2
+(1- |‘x||2)7p71/2@a+e,-(1 _ ”tz)\aHuH/z
= 2+ (1= [P) U )+ (1= [x2) U (),
which proves the recurrence relation. That U} is a polynomial of degree |af is a

consequence of this relation, which can be proved by induction if necessary. [

The following proposition plays a key role in proving that Uy is in fact an
orthogonal polynomial with respect to Wy ;, on B

Proposition 8.1.8 Assume that p and q are continuous functions and that p
vanishes on the boundary of BY. Then

/Bd @ip(x)q(x)h,z((x) dx=— /;d p(x)@iq(x)hi(x) dx.

Proof The proof is similar to the proof of Theorem 7.1.18. We shall be brief.
Assume that x, > 1. Analytic continuation can be used to extend the range of
validity to x, > 0. Integration by parts shows that

[ ow@aridr=— | px)alanie)as
—— [, Po)agx) ) dx
~2 [ pWg(he(0)he(r)dx

Let D; denote the difference part of Z;: 9; = 9; + D;. For a fixed root v, a simple
computation shows that

[ pwaim@ar= [ pt) 3 xR0 g ax

VER < ’ >

Adding these two equations and using the fact that
1

hK(x>3th(x) = z KVV[W

completes the proof. O

Theorem 8.1.9 For o € Ng and |ol| = n, the polynomials Ul are elements of

L (Wie)-

Proof Foreach B € N¢ and |B| < n, we claim that
PP (1 — ||x|[?)" 12 = (1= x| Py PR 12 0 (x) 8.1.11)

for some Qg € T1¢. This follows from induction. The case 8 = 0 is trivial, with
Qo(x) = 1. Assume that (8.1.11) holds for |3| < n— 1. Then
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G (1= [Py Y2 = 2, [ (1= 2y 2 g ()
31| (1= eI~ PHA=Y2] Qg () + (1 = x|~ PH4 =120 (1

L [y P32 (20— B+ pt = $)xiQp () + (1 = [|x]*) Z:Qp ()]
L |l 2y Prel=t 20, (),

(
(

where Qg , .., as defined above, is clearly a polynomial of degree |B|+ 1, which
completes the inductive proof. The identity (8.1.11) shows, in particular, that
2P (1 —||x||?)"#1/2 is a function that vanishes on the boundary of BY if |B| < n.
For any polynomial p € TI¢_,, using Proposition 8.1.8 repeatedly gives

n—1°

/u“ R2(0)(1 = x|/ dx
- /B L7 [ Py 2 pla i ()
= (-1)" / 2% p(x)(1 — [lx|2)"H 2R (x) dx = 0,

since 9; : ﬁzd — P4

n—1°

which implies that 2% p(x) = 0 since p € I1¢_,. O

There are other orthogonal bases of ”f/,f(WK#), but few can be given explicitly
for a general reflection group. For d > 2, the only exceptional case is Z‘zl, which
will be discussed in the next subsection.

The correspondence in (4.2.2) allows us to state a closed formula for the repro-
ducing kernel P,(Wg,) of #,¢(Wg ) in terms of the intertwining operator Vi
associated with /.

Theorem 8.1.10 Let Vi be the intertwining operator associated with hy. Then,
for the normalized weight function W5 u in Definition 8.1.1,

Pn(Wvgy;xvy)

n+A M

where ¢y = [B(3,1)] 1.

Proof The weight function Ay in (8.1.1) is invariant under the group W x Zo.
Its intertwining operator, denoted by Vi ;, satisfies the relation Vi, = Vi X VuZ 2

where Vi is the intertwining operator associated with A, and VMZ 2 is the intertwin-
ing operator associated with f (y) = |ys+1|*. Hence, it follows from the closed
formula for VuZ 2 in Theorem 7.5.4 that

VoS en) = ey [ Vi G140 -2 v,
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Using the fact that Pn(W,g ,) is the kernel corresponding to -harmonics that are
even in y4.1 1, as in Theorem 4.2.8, the formula follows from Corollary 7.3.2. [

8.1.3 Orthogonal polynomials for Z‘Zi-invariant weight functions

In this subsection we consider the orthogonal polynomials associated with the
weight function W,g u defined in (8.1.5), which are invariant under Zg . Here

d—1
)LK:|K|+T and AK,H:)‘K—"_M'

We start with an orthonormal basis for “Vnd(W,g H) derived from the basis of A-
harmonics in Theorem 7.5.2. Use the same notation as in Section 5.2: associated
with x = (x1,...,x7) € R? define x; = (x1,...,x;) for 1 < j <d and xo = 0. Asso-
ciated with k¥ = (ki,..., k) define ¥/ = (k;,...,K;), and similarly for @ € Ng.

Theorem 8.1.11 Ford > 2, o € Nd and || = n, define

7 B . -1 2 06/2 H+}L]7Kj) Xj
PL(W 5x) = H (1—|x,— i12Cy, |
VI=IIxjl

where || = K+ + kg, A; = |0t + [+ S and

[ — ﬁhw”-f*"f)(;«u»)
o,n (|K’| + %)n i o J ]/ 0>
hﬁ,/l’”) being the normalization constant OfC,(,k"“). Then {Pg(W,gy) o) =n}is
an orthonormal basis ofV,,(W,f:#)for W,g“ in (8.1.5).

Proof Using the correspondence in (4.2.2), the statement follows from Theorem
7.5.2 if we replace d by d + 1 and take k;1| = U; we need only consider ¢ty =0.
O

In particular, when x = 0 this basis reduces to the basis in Proposition 5.2.2 for
classical orthogonal polynomials.

The correspondence in Theorem 4.2.4 can also be used for defining monic
orthogonal polynomials. Since x5, | = 1 — ||x||? for (x,x411) € §%, the monic A-
harmonics Ry (y) in Definition 7.5.8, with d replaced by d + 1, become monic
polynomials in x if @ = (e, ..., ;,0) and y = r(x,x441) by the correspondence
(4.2.2). This suggests the following definition:

Definition 8.1.12  For b € R? such that max |b;| < 1, define polynomials R (x),
o € N¢ and x € BY by
1 d

L+4) (1=t} tdr = b*RE (x),
[,y T am T o L0 -0 =) 2 VRal)
0

where z(b,x,t) = (b1x1t] + -+ +baxtq).
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The polynomials RZ with || = n form a basis of the subspace of orthogonal
polynomials of degree n with respect to W2. It is given by an explicit formula, as
follows.

Proposition 8.1.13  For o € Ng, let = ot — | %5 |. Then

s 2 Dap
B _ H 2 B
Ral) = = TR

where Ry, (x) is defined by

1 1
Ry (x) = x“Fp (-ﬁ,—a+ﬁ — K+ 5—la) = Ay + 1;2,...,2> .
X Xd
In particular, RE (x) = x* — Qq/(x), Qo € 1_,, is the monic orthogonal polyno-
mial with respect to W5 on BY.

Proof Setting by,1 =0 and ||x|| = 1 in the generating function in Definition 7.5.8
shows that the generatlng function for RB is the same as that for R( g.0)(x). Conse-
quently R (x) = R<a70) (x,x441) for (x,x441) € 8¢. Since R(a,o) (x,x4+1) is even in
its (d + 1)th variable, the correspondence in (4.2.2) shows that Eg is orthogonal
and that its properties can be derived from those of Ry,. [

In particular, if x; =0fori=1,...,d and K;4| = U, so that W,f becomes the
classical weight function (1 — |x||?)*~1/2, then the limit relation (1.5.1) shows
that in the limit the generating function becomes the generating function (5.2.5),
so that RE coincides with Appell’s orthogonal polynomials V.

The L? norm of Rg can also be deduced from the correspondence (4.2.2).
Recall that wﬁ# is the normalization constant of the weight function W,g g in
(8.1.5). We denote the normalized L? norm with respect to W,g u by

1/2
71 = (Wi [ 1FOPWE () ax)

As in the case of h-spherical harmonics, the polynomial x* — R = Q% is the
best approximation to x* from the polynomial space I1¢_, in the L* norm. A
restatement is the first part of the following theorem.

Theorem 8.1.14  The polynomial R has the smallest || f||2.5 norm among all
polynomials of the form x* — P(x), Pe H“L . Furthermore, for a € Ng,

/219

K‘Hz 1 Kl / CO(,

)t\awzx,ﬂuq dr.
(A1) o

IREIR.n = P

Proof Since the monic orthogonal polynomial R is related to the h-harmonic
polynomial R4 ) in Subsection 7.5.3 by the formula REB(x) = R(,0)(X,%a11)s
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(x,x441) € 8¢, it follows readily from Lemma 4.2.3 that the norm of R, can be
deduced from that of R, o) in Theorem 7.5.13 directly. O

For the classical weight function Wy (x) = (1—[|x||*)*~!/2, the norm of Ry, can

be expressed as the integral of the product Legendre polynomials P, (¢) = C, 1 2( t).
Equivalently, as the best approximation in the L? norm, it gives the following:

Corollary 8.1.15 Let Ay = pu+ %51 > 0 and n = || for o € N{. For the
classical weight function Wy (x) = (1 —||x[|>)*~1/2 on B9,

Ay 0!
. o 2 u )21
Jmin 2= Q)35 = 5,77 / HPa d.

n—1

Proof Set x; =0 for 1 <i<d and 4 = K44 in the formula in Theorem 8.1.14.
The stated formula follows from (1), = 22"($),(1)s, n! = (1), and the fact that

0y = ) (1) = Pa(e). O

8.1.4 Reproducing kernel for Zg-invariant weight functions

In the case of the space 7,4 (W,f: u) associated with 74, we can use the explicit
formula for V in Theorem 7.5.4 to give an explicit formula for the reproducing
kernel.

Theorem 8.1.16 For the normalized weight function W,g u in (8.1.5) associated
with the abelian group 74,

P, (W 5x,y)
_n+A

= 2 R / / o (nxly1+~~-+rdxdyd+s¢1—||x||2¢1—||y2)
JLKM 1,14

chK +1)(1 =) dt ¢y (1 —s)H1ds.

Proof This is a consequence of Theorem 4.2.8 and the explicit formula in
Theorem 7.5.5, in which we again replace d by d + 1 and let k7| = U. O

In particular, taking the limit x; — O for i = 1,...,d and using (1.5.1) repeat-
edly, the above theorem becomes Theorem 5.2.8, which was stated without proof
in Section 5.2.

In the case of thl , we can also derive an analogue of the Funk—Hecke formula
for W,g . on the ball. Let us first recall that the intertwining operator associated
with the weight function Ay (x) = [T¢, |x;|% |xa+1|* is given by

d+1

Vf(x)z/[ 1WHf(tlxl,...,tdﬂde)Hc,q(l+t,»)(1—tiz)’(i*'dt,
JI-1, i=1
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with 4 = x;41. Associated with this operator, define
d
Vpf(x) = /[ 1 l]df(tm, cstaxg) [Tew (T4 8) (1 —17)5 dr.
-1 i=1
Then the Funk—Hecke formula on the ball B¢ is given by

Theorem 8.1.17 Let WB be defined as in (8.1.5). Let f be a continuous
function on [—1,1] and P, € “//d(WB ). Then

Wiy [ Vef () OPOIWE O Ay =1 (D), el =1,

where T,(f) is the same as in Theorem 7.3.4 with A replaced by Ay

Proof From the definition of Vpf and the definition of V f with x| = U, it
follows that

Vaf((x,)) () =V ({(x.xa41),7)) (0,0) = V£ (((x,0),)) (3, ya1),

where we take x € B¢ and x4, = /1 — ||x|]? so that (x,x;,) € S. In the fol-
lowing we also write y € B¢ and (y,y441) € S?. Then, using the relation between
P, and the h-harmonic Y, in (4.2.2) and the integration formula in Lemma 4.2.3,
it follows that

| VB () OBy Wiy (v)dy

—/ V({(2,0),0) (0, Ya+1) Y (3. Yas1 ) g (v, yar1) do
= Tn(f) n(xa O) = Tn(f)Pn(x)y

where the second equality follows from the Funk-Hecke formula of Theo-

rem 7.3.4, which requires that ||(x,0)|| = ||x|| = 1. O

The most interesting case of the formula occurs when x = 0, that is, in the
case of the classical weight function Wf on B?. Indeed, taking the limit x; — 0,
we have that Vp = id for Wf . Hence, we have the following corollary, in which

Ay =p+ %51

Corollary 8.1.18 Let f be a continuous function on [—1,1]. For Wf (x)=(1-
[x[%)4=1/2, let P, € 4, (WE). Then

v [ )P d = (PG, = 1.
where T,(f) is the same as in Theorem 7.3.4 but with Ay replaced by Ay,.

An interesting consequence of this corollary and Theorem 5.2.8 is the follow-
ing proposition.
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Proposition 8.1.19 Ler 1 satisfy |n|| = 1; then C,f“((x,m) is an element of
¥, (WB). Further, if € also satisfies ||&|| = 1 then

A Ay TR
[ G (e C (W W) d= G (1,8))

Proof Taking y = 1 in the formula of Theorem 5.2.8 gives

n+Ay 2
)‘ ”Cnﬂ(<x7n>)’
u

P, (Wf;xvn) =

which is an element of ”f/nd(Wlf) since Pn(Wf) is the reproducing kernel.

The displayed equation follows from choosing f(x) = C,/}” ({x,&)) and P,(x) =
C,),L“ ({x,n)) in Corollary 8.1.18. The constant is

T = ,’#‘(1)}‘1/_11[ (1)) P, (1) dr,

which can be shown from the structure constants for C* in Subsection 1.4.3 to
equal Ay /(n+Ay). O

One may ask how to choose a set {n;} C S¢ such that the polynomials
CH((x,m;)) form a basis for ”f/nd(Wf) for a given n.

Proposition 8.1.20 The set {C,/}“((x7 n)) il = 1,1 <i <r?} is a basis for
¥, (WE) if the matrix Al = (Cj“ (M nj>))f‘;:1 is nonsingular.

Proof This set is a basis for ”I/n(Wf ) if and only if {C,},L” ({(x,n))} is linearly inde-

pendent. If A} is nonsingular then Y ckC,;L“ ({x,m;)) = 0, obtained upon setting
x = n;, implies that ¢; = 0 for all k. O

Choosing 7; such that A} is nonsingular has a strong connection with the dis-
tribution of points on the sphere, which is a difficult problem. One may further
ask whether it is possible to choose 7; such that the basis is orthonormal. Propo-
sition 8.1.20 shows that the polynomials C,%“ ((x,mi)), 1 <i <N, are mutually
orthogonal if and only if C,/}“ ({ni,n;)) = 0 for every pair of i, j with i # j, in other

words, if the (1;,1;) are zeros of the Gegenbauer polynomial C,}:” (¢). While it is
unlikely that such a system of points exists in S for d > 2, the following special
result in d = 2 is interesting. Recall that U, () denotes the Chebychev polyno-
mial of the second kind, which is the Gegenbauer polynomial of index 1; see
Subsection 1.4.3.

Proposition 8.1.21  For the Lebesgue measure on B>, an orthonormal basis for
the space 7/,12 is given by the polynomials
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km . T
X1€0S —— + xp sin ), 0<k<n.
n

Ui (i, x2) = 1 n+1

1
7
Proof Recall that Uy,(f) = sin(n+ 1)0/sin@ with r = cos 6; the zeros of U,
are t = coskn/ (n+1) for k=1,...,n. Let n; = (cos ¢,sin¢;) with ¢; = i/
(n+1) for i =0,1,...,n. Then (n;,n;) = cos(¢; — ¢;) and ¢; — ¢; = ¢;_; for
i > j. Hence, by Proposition 8.1.19, {U,({x,n;))} is orthogonal with respect to
the weight function W »(x) = 1/7. O

The same argument shows that there does not exist a system of points {7; : 1 <
i <n-+1} on S' such that the polynomials Cl 1/ 2(<x, 7)) are orthonormal for

w# 3.

8.2 Generalized Classical Orthogonal Polynomials
on the Simplex

As was shown in Section 4.4, the orthogonal polynomials on the simplex are
closely related to those on the sphere and on the ball. The classical orthogonal
polynomials on the simplex were discussed in Section 5.3.

8.2.1 Weight function and differential-difference equation

Here we consider orthogonal polynomials with respect to weight functions
defined below.

Definition 8.2.1 Let &, be a reflection-invariant weight function and assume
that & is also invariant under Zg . Define a weight function on 7% by

L) = RE(VAT, - a) (L= DRV a g, > -1
We call polynomials that are orthogonal to W,g u generalized classical orthogonal
polynomials on T,

In Definition 4.4.2 the weight function W7 = WT corresponds to the weight
function W, in Definition 8.1.1. Let the normahzatlon constant of W/, be
denoted by wK - Then Lemma 4.4.1 implies that wl = wB

The requirement that 4 is also Zd-lnvarlant implies that the reﬂection group G,
under which A is defined to be invariant, is a semi-product of another reflection
group, Gy, and thi . Essentially, in the indecomposable case this limits G to two
classes, Z‘ZJ itself and the hyperoctahedral group. We list the corresponding weight
functions below.

The abelian group Z§ The weight function is

W (e Zd) =22 P (1 a2, 8.2.1)
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where k; > 0 and u > 0. The orthogonal polynomials associated with W,g I
are the classical orthogonal polynomials in Section 5.3. This weight function
corresponds to W, in (8.1.5).

The hyperoctahedral group The weight function is

d
WL =TT T b=l = xr172, (8.2.2)

i=1 1<i<j<d
where K’ > 0 and k > 0. This weight function corresponds to W,g u (x) in (8.1.9).

The relation described in Theorem 4.4.4 allows us to derive differential—
difference equations for orthogonal polynomials on T¢. Denote the orthogonal
polynomials with respect to WK by P (W, ﬂ; x). By (4.4.1) these polynomials
correspond to the orthogonal polynomlals P(WB '13%) of degree 2n on BY, which
are even in each of their variables. Making the change of variables x; — ,/z; gives

d d 92 d J?
a)q:Z\/zT-a—Zi and 8)612:2(8—’—21!82)
Using these formulae and the explicit formula for the #-Laplacian given in Sub-
section 8.1.1, we can derive a differential-difference equation for the orthogonal
polynomials on T¢ from the equation in Theorem 8.1.3.

In the case of Z‘zi , the Dunkl operator Z;, see (7.5.2), takes a particularly sim-
ple form; it becomes a purely differential operator when acting on functions that
are even in each of their variables. Hence, upon making the change of variables
x; — +/x; and using the explicit formula for A in (7.5.3), we can derive from
the equation in Theorem 8.1.3 a differential equation for orthogonal polynomials
with respect to W,. .

Theorem 8.2.2 The classical orthogonal polynomials in “I/,,d(W,g u) satisfy the
partial differential equation

d 9P 9P
i(l=xi))=—= —2 i
2oll=wga =2 2 %wigoos

1<i<j<d

+Z (K ) (IKI+#+"“)xl] 35 =P, (8.2.3)

1

whereln:—n(n+\K|+/.L+%)andK,-ZO,/.1ZOforlSigd.

This is the same as the equation, (5.3.4), satisfied by the classical orthogonal
polynomials on the simplex. Although the above deduction requires k; > 0 and
u > 0, the analytic continuation shows that it holds for all x; > f% and y > f%.

The above derivation of (8.2.3) explains the role played by the symmetry of 7.
In the case of the hyperoctahedral group, we use the explicit formula for Ay, given
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in (8.1.10). The fact that the equation in Theorem 8.1.3 is applied to functions
that are even in each variable allows us to drop the first difference part in A, and
combine the other two difference parts. The result is as follows.

Theorem 8.2.3 The orthogonal polynomials in ¥, (WKT u) associated with the
hyperoctahedral group satisfy the differential-difference equation

d 5
Xi 1—x z -2 XiXi
ZI ( a i 1<l<zj<d ]Qx,axj
S 2
+ 20 (K 12020+ 21+ d)i) 5
i=1 :
! J J Xi+Xx;j
" Klgi%‘gdxi—xj <2(x’(97xi _ijxj) T xi—x; (1 _Gt,J)) P

—n(n+ e+ p+ SHP,

where Y = (‘21) K+dx'.

8.2.2 Orthogonal basis and reproducing kernel

According to Theorem 4.4.6 the orthogonal polynomials associated with W,g y are
related to the ~-harmonics associated with hy  in (8.1.1) as shown in Proposition
4.4.8. In the case of the classical weight function W,Z 1 in (8.2.1) the orthonormal
basis derived from Theorems 4.4.4 and 8.1.11 turns out to be exactly the set of
the classical orthogonal polynomials given in Section 5.3. There is another way
of obtaining an orthonormal basis, based on the following formula for changing
variables.

Lemma 8.2.4 Let f be integrable over T¢. Then
1
:/ sd1 f(su)duds.
0 |uj=1

The formula is obtained by setting x = su, with 0 <s < 1 and |u| = 1; these can
be called the ¢'-radial coordinates of the simplex. Let us denote by {Q%’}‘ Bl=m @
sequence of orthonormal homogeneous polynomials of degree m associated with

the weight function /% (\/u7, ..., \/ug)/ /1 - - - ig on the simplex in homogeneous
coordinates, as in Proposition 4.4.8.

Proposition 8.2.5 Let Qg’ be defined as above. Then the polynomials

Pl () = b ap 2 DD (05 1y g (x)
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for0<m <nand |B| =m, where
[bmﬂ’l}z = (YK + %)2m/(’y1<+ % +.u + %)Zma

form an orthonormal basis of ”Vnd(WKT, IJ) and the Pg_m are homogeneous in the

homogeneous coordinates of T*.

Proof For brevity, let A = y+ 452. It follows from Lemma 8.2.4 that

P"’m(x)Pg@m/(X)h,zc(\/)Tl, cev/Xa) (1= |x|)“*1/2 dx

ra NoRDT
1 / /
— C/ pgfi;zmnu*]/z) (2S— l)pfl{ﬁ:n%m ,;171/2)(23‘_ 1) Sl+m+m (1 _S)H*I/st
0
m . du
X lu‘zlQﬁ(u)Qﬁ’(“)h?c(\/av"'v\/@)m’

where ¢ = by nbyy . from which the pairwise orthogonality follows from that
of Q’[; and of the Jacobi polynomials. It follows from Lemma 8.2.4 that the

. . T T . .
normalization constant w;. ,, of W , is also given by
1

= W, dx
W?u ra M (x)
du
- lB(AH, +l)/ W2, i)
2 H+3 i1 (VL. Vua) N
Hence, multiplying the integral of [Pg.m (x))? by w?y u» we can find by, , from the
equationl:bzmmB(l—}—l,u—f—%)/B(?L-kzm-q-17“+%)_ ]

Using the relation to orthogonal polynomials on B¢ and Theorem 4.4.4, an
orthonormal basis of ”Vnd(W,z ,) can be derived from those given in Proposition
8.1.5, in which A, = yc + 451,

Proposition 8.2.6 For 0 < j < 2n let {Y\f’Qn_2 j} denote an orthonormal basis
of%Z_zj(hi, 74); then the polynomials

— —1/2,n—2j+Ac—1/2
(W) =[e], )P A AT g )

h
X Yv¢2n—2j(\/xilv ] \/)Td)

form an orthonormal basis of ¥,%(WI u)» where ch N cﬁzn.

The relation between the orthogonal polynomials on B¢ and those on 7 also
allows us to derive an explicit formula for the reproducing kernel P, (W, u) of
#d(WL ). Let us introduce the notation {x}'/? = (\/x7,..., /xg) forx € T%.

Theorem 8.2.7 Let Vi be the intertwining operator associated with hy and
A =Yc+u+%L Then
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P(Wix.y)

= 2 v [ G+ TRV (=2 ) ),

Proof Using Theorem 4.4.4, we see that the reproducing kernel P,(W, u)
related to the reproducmg kernel P,,(WB ) on the unit ball by

PAW ) = 50 X Pou(Whys (61 v/ ), ()17
eczd
In fact, since the reproducing kernel on the left-hand side is unique, it is sufficient
to show that the right-hand side has the reproducing property; that is, if we denote
the right-hand side temporarily by O, (x,y) then

/Td P(y)Qu(x,y)W, , (y)dy = P(x)

for any polynomial P € 7,/(W/ ). We can take P = P§ (W, ,) in Proposition
8.2.6. Upon making the change of variables y; — y?, 1 <i<d, and using Lemma
4.4.1 it is easily seen that this equation follows from the reproducing property
of Py, (We u)- Hence, we can use Theorem 8.1.10 to get an explicit formula for
Pn(W€ u). Since the weight function is invariant under both the reflection group
and Zg, and Vi commutes with the action of the group, it follows that R(€)Vy =
ViR(¢) for € € Z4, where R(g)f(x) = f(xe). Therefore the summation over Z4
does not appear in the final formula. O

In the case of Zg , we can use the formula for the intertwining operator V = V.
in Theorem 7.5.4 to write down an explicit formula for the reproducing kernel.
The result is a closed formula for the classical orthogonal polynomials on 7.

Theorem 8.2.8 For the classical orthogonal polynomials associated with the
normalized weight function WKT_# in (8.2.1) with Ay y = |x| + 1+ %

P, (W, ,,x,)

2n+ Ay, _
- /l;cuw/ / 1,1)4 2n z(x,3,1,5) HCK i) de(1 = s?)H " ds,
(8.2.4)
where z(x,y,t,8) = /X111 + -+ EaVata + 51— |x[y/1 =y if a par-

ticular K; or W is zero then the formula holds under the limit relation (1.5.1).

Using the fact that C2 (1) = [(/l)n/(%)n}P,flfl/z’*l/z(th — 1) and setting yu =
Kq+1, the identity (8.2.4) becomes (5.3.5) and proves the latter. Some applica-
tions of this identity in the summability of orthogonal expansions will be given in
Chapter 9.
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8.2.3 Monic orthogonal polynomials

The correspondence between the orthogonal polynomials on the simplex and
those on the sphere and on the ball can be used to define monic orthogonal poly-
nomials on the simplex. In this subsection we let 4 = x4 and write W,£ uas wr.
In particular, A, becomes A, defined by

d—1
M= |Kk|+ 5, |K| =K1+ + Kay1-
Since the simplex 7¢ is symmetric in (x1,...,Xg,X411), X411 = | — |x|, we use
the homogeneous coordinates X := (xj,...,X4,X%;41). For the monic A-harmonics

defined in Definition 7.5.8, with d replaced by d + 1 the polynomial Ro is even
in each of its variables, and this corresponds to, using (4.4.1), monic orthogonal
polynomials ﬁg in #,4(W[') in the homogeneous coordinates X. This leads to the
following definition.

Definition 8.2.9 For b € R? with max;|b;| < 1 and & € Ng*', define polyno-
mials R, (x) by

1
C
K/[—l,l]‘”‘ [1—=2(bixity + -+ bar1Xa+1tasr) + || b 2]
di1
<[T(1=H ' de= Y b*RL(x), xeT’
=1

oeNd*H!
The main properties of EE are given in the following proposition.

Proposition 8.2.10  For each o € N&™! with |at| = n, the polynomials

ST . 22W|O~K)2\a| (%)a RT
a\X) = 20)! 1 Ot(x)7
( OC). (K'“v‘ j)a
where
T o 1 1 1
R,(x)=X FB(fa,fafK+§;72|(x\71K+1;—,...,—)
X1 Xd+1
(K'Jr%)a

=(-1)" )nFA(|a\+|K|+%7—a;K+%;X)

o el L d=1y
(n+ K[+ 5
are polynomials orthogonal with respect to WL on the simplex T¢. Moreover,
RT (x) = X* — Qu(x), where Qq is a polynomial of degree at most n— 1 and
{RY o= (o,0),|0t| = n} is a basis for V¢ (W]).

Proof We return to the generating function for the A-harmonics ﬁa in Defini-
tion 7.5.8, with d replaced by d + 1. The explicit formula for Ry (x) shows that
it is even in each variable only if each o is even. Let € € {—1,1}¥*!. Then
Rq, (xe) = ﬁa(elxl sy Edr1Xdyl) = €%Ry, (x). It follows that on the one hand
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S P Ryp(x) 2d+1 > b* Y Ralxe).
ﬂeNdH aENdﬂ ee{—1,1}d+!
On the other hand, using the explicit formula for V., the generating function gives
1

a1 Y Y b*Ry (xe)
86{—1,1}d+1(x€Ng+1

—eef T (1 0)(1 =)
[ 1 1] +1

dr
[L—2(b1x1t1€1 + - -+ bar1Xag1tav1€a+1) + ||B]*]Px

! ee{—1,1}d+!
for ||x|| = 1. Making the change of variables t; — 7;€; in the integral and using the
fact that ¥ TT¢F! (1 +&1;) = 27!, we see that the generating function for ﬁzﬁ (x)
agrees with the generating function for RB (x%,...,x3, ) in Definition 8.2.9. Con-
sequently, the formulae for R? follow from the corresponding ones for Ry in
Propositions 7.5.10 and 7.5.11, both with d replaced by d + 1. The polynomial
R! is homogeneous in X. Using the correspondence between the orthogonal poly-
nomials on ¢ and on T9, we see that the RY are orthogonal with respect to
WL If 0441 = 0 then R] (x) = x* — Q,, which proves the last assertion of the
proposition. O

In the case 01 = 0, the explicit formula of Rf, shows that R{,  (x) = x* —
Qq(x), so that it agrees with the monic orthogonal polynomial V/ in Section 5.3.
Setting by = 0 in Definition 8.2.9 gives the generating function of R<Ta70) =
VI (x).

In the case of a simplex, the polynomial RY, is the orthogonal projection of
X =x{" x4 (1 — |x])%+1. We compute its L* norm. Let

I fll2,r == (wi/ﬂ ‘f(x)|2WKT(x)dx)1/2

Theorem 8.2.11 Let B € Ni'. The polynomial RE has the smallest || - ||2,7

norm among all polynomials of the form XP — P, P € HIdBI— \» and the norm is
given by

IRs| 77“((’(*%)2/3 (*ﬁ)y(*ﬁ*"+%)y
AlBT = (Mm 7 (=28 —x+ 1), 'IBI 1 + )

B (
= B / Py (01— 1/2 — )BT gy,
M )28 H )

Proof By (4.4.4) the norm of Rg is related to the norm of the A-harmonic R, on

8. Since RY(x1,...,x3. ) = Raa(x1,...,X4+1), the norm of RY, can be derived

from the norm of Ry. Using the fact that 2}3/ 2xi) (t) = PI(;)’K"fl/ 2)(2t2 —1), the
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norm ||RY ||2.7 follows from making the change of variable #2 + r in the integral
in Theorem 7.5.13 and replacing d by d + 1. O

In particular, if ;11 = O then the norm of R (g ¢)(x) is the smallest norm among
all polynomials of the form B—p Pecrl 1

Corollary 8.2.12 Let o € N& and n = |a|. Then

Ao TIL (15+ 3)
inf [|x*—0(x = — G
L =0y =

n—1

/ H OK', 1/2 l)r\a\MK—ldK

We note that this is a highly nontrivial identity. In fact, even the positivity of
the integral on the right-hand side is not obvious.

8.3 Generalized Hermite Polynomials

The multiple Hermite polynomials are discussed in Subection 5.1.3.

Definition 8.3.1 Let i, be a reflection-invariant weight function. The general-
ized Hermite weight function is defined by

WH(x) = 2 (x)e P xeR?

Again recall that ¢}, is the normalization constant of /% over §%~!. Using polar
coordinates, it follows that the normalization constant of W/ is given by

-1 2c!
= wWH(x)dx) =—"0
(fumwm) = s

If Kk =0 or W is the orthogonal group then /,(x) = 1 and the weight function
WH (x) reduces to the classical Hermite weight function e~ I,

An orthonormal basis for the generalized Hermite weight function can be given
in terms of h-harmonics and the polynomials H,f” on R in Subsection 1.5.1. We
call it the spherical polar Hermite polynomial basis. Denote by Ifl,f“ the normalized
H} and again let A, = ¥ + d%l.

Proposition 8.3.2 For0<2;j<n, let {Y" Vn—2;} denote an orthonormal basis of
A, j(hK), then the polynomials

1 pn—2j+Ax
Py j(Wilsx) = [eff, ] Hy T (2D o (%)

form an orthonormal basis of ¥, (W), where [ ]* = (Ax + 5 Dn—2j-
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In the case where A is invariant under Z¢, an orthonormal basis is given by the
product of the generalized Hermite polynomials. We call it the Cartesian Hermite
polynomial basis.

Proposition 8.3.3  For W! (%) = wlg“ e, \xi|2’("e’”xH2, an orthonormal basis
of ¥4 (WH) is given by HK( ) HO(1 (x1) - Hgl (x4) for o € Nd and |ot| = n.

In particular, specializing to ¥ = 0 leads us back to the classical multiple
Hermite polynomials.

There is a limit relation between the polynomials in 7¢(WH) and the
generalized classical orthogonal polynomials on B.

Theorem 8.3.4  For P} (WB ) in Proposition 8.1.5 and Py (WH ) in Proposi-
tion 8.3.2,
hm Py ( Kﬂ,x/f) (WH X).

Proof First, using the definition of the generalized Gegenbauer polynomials, we
can rewrite P, (WB ) as

1~ (Wn—=2j4A)
n (WEix) = 08,1 CE A (Y, (),

where C, ;i (#:7) are the orthonormal polynomials and

(AK )n 2j

pB 1l = K T2
5l (A +1+1),0;

Using the limit relation in Proposition 1.5.7 and the normalization constants of
both H,% and Cf,x’“ ), we obtain

H(x) = Jim, CHM (x/ /). (8.3.1)
Since h-harmonics are homogeneous, Y, J(x/ VH) = i/ 2Yvh7 ;(x). It can also be
verified that u_("_zj )/ zbﬁ N clj‘fn as L — oo, The stated result follows from these
relations and the explicit formulae for the bases. O

In the case where /i is invariant under Z‘zi , a similar limit relation holds for the
other orthonormal basis, see Theorem 8.1.1. The proof uses (8.3.1) and will be
left to the reader.

Theorem 8.3.5 For Pg(W,gu) in Theorem 8.1.11,

Jim Py (Wieyus/ V) = Hag (x1) -+ Ha (xa).
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As a consequence of the limiting relation, we can derive a differential—
difference equation for the polynomials in #,%(W) from the equation satisfied
by the classical orthogonal polynomials on BY.

Theorem 8.3.6 The polynomials in "//nd(Wf ) satisfy the differential-difference
equation

(A —2(x,V))P = —2nP. (8.3.2)

Proof Since the polynomials Py (W) form a basis for %, (W[), it suffices to
prove that these polynomials satisfy the stated equation. The proof is based on the
limit relation in Theorem 8.3.4. The P",’h]-(W,g u) satisfy the equation in Theorem
8.1.3. Making the change of variables x; — x;/\/H, it follows that A; becomes
UA;, and the equation in Theorem 8.1.3 becomes

d d
UAR — 2 2 xixjal-&j —2y+2u+d){x, V) P(x/\/‘lj)

i=1j=1
=—n(n+d+2y+2u—1)P(x/VR).

Taking P = Paj(W,g u) in the above equation, dividing the equation by u and
letting pt — o, we conclude that P j(W,fI ) satisfies the stated equation. O

Several special cases are of interest. First, if 4,(x) = 1 then A, reduces to the
ordinary Laplacian and equation (8.3.2) becomes the partial differential equation
(5.1.7) satisfied by the multiple Hermite polynomials. Two other interesting cases
are the following.

The symmetric group The weight function is

a2
Wiy = [ |i—xj)*e W (8.3.3)

1<i<j<d

The hyperoctahedral group The weight function is

d
WE) =TTk’ TT ke —23e W (83.4)
i=1 1<i<j<d

These weight functions should be compared with those in (8.1.7) and (8.1.9). In
the case of the hyperoctahedral group, equation (8.3.2) is related to the Calogero—
Sutherland model in mathematical physics; see the discussion in Section 11.6.

The limiting relation also allows us to derive other properties of the generalized
Hermite polynomials, for example, the following Mehler-type formula.

Theorem 8.3.7 Let {P2(WH)}, || = n and n € Ny, denote an orthonormal
basis with respect to W on R?. Then, for 0 < z < 1 and x,y € R,
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Y, P (W) Py (Wiliy)e"

n=0|a|=n

S S N IIyHZ)]VK[eXp (2Z<x,~>>} o).

(1—2ynra2 P 122 1-22

Proof The inner sum over o of the stated formula is the reproducing kernel of
#,4(WH), which is independent of the particular basis. Hence, we can work with
the basis PI’;’)J.(W,'?) in Proposition 8.3.2. Recall that A = A = 7+ + 4.
Then the explicit formula for the reproducing kernel P, (W,g #) in Theorem 8.1.10
can be written as

n+A 1 _
PWE,ix) ="y [ chwdm e 0000 - 2P e

where z = (x,) +11/1 —[[x]|2y/1 —||y||? and E, is defined by
EIJ (xa y, u, V)
_ (1 (v—<x7u>)2 )”71 1
(=[P A=1¥11P) 7 /TPy /T=[lylP(1 = v2)A-1/2

if v satisfies (v — (x,u))? < (1 —||x]|?)(1 — ||y[|*) and Ey (x,y,u,v) = 0 otherwise.
In particular, expanding Vi[Ej (x,y,-,z)] as a Gegenbauer series in C}(z), the
above formula gives the coefficients of the expansion. Taking into consideration
the normalization constants,

Ci+1/2 i remrin+1)

cu 5 T(n+21)

P (WE 5, 9)Cr (2) = Vie[Eu (%3, (+),2)].

Replace x and y by x/,/fl and y/,/IL, respectively, in the above equation. From
the fact that ¢y //cy — 1 as i — oo and that u"CH(z) — 2" /n!, we can
use the limit relation in Theorem 8.3.4 to conclude that the left-hand side of the
formula displayed above converges to the left-hand side of the stated equation.
Moreover, from the definition of £, we can write

(Ve v
= (1-2)772 (1 - ”x|2> .

u
2\ —H+1 2 2 _
-2 u—1
< <1_Ilyll> R A T B
H u(l—z%)
which implies, upon taking limit gt — oo, that
. X y u
lim E 77,Z>
umes ”(W VE

1
T2y P -

211512 2 X, u
PP+ ) 2l
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Since Vi is a bounded linear operator, we can take the limit inside V. Hence,
using

o G ) )l o o

it follows that V¢ [E, ] converges to the right-hand side of the stated formula, which
concludes the proof. O

In particular, if /,(x) = 1 then V). = id and the formula reduces to

oo d 20,2 142
e~ 1 2x;yiz — 2 (x; +y7)
H (x)Hg (y)2" = exp | = i,
2 2 fe =1 =
which is a product of the classical Mehler formula.
In the case of the Cartesian Hermite polynomlals , we can derive an explicit

generating function. Let us define b = b.’f}l o bpd ’n Where b’l is the normalization
constant of H,%, which was defined in Subsection 1.5.1.

Theorem 8.3.8 Forall x € B and y € R,

Zano’Ecy) fZ"n'/ / L1 z2(x,y,1,5))

lor

d
X Hc,q(l +1)(1 _tiz)Kiildt eﬂvzds,
i=1

where 7(x,y,t,8) = t1x1y1 + -+ - +taxgya + 51/ 1 — ||x]|%.

Proof We use the limit relation in Theorem 8.3.5 and the relation

lim p="2C (x) = 27 (b},

L—so0

which can be verified by using Definition 1.5.5 of C,(/l‘“ ) (x), the series expansion

in terms of the »F; formula for the Jacobi polynomial, and the formula for the
structure constants. Using the formula for P, (W,g y) in Theorem 8.1.11 and the
fact that hgyn — 1 as I — oo, we obtain

lim u™"/?PL(WE :x) = 2" [bK] 1/ 2x?,

p—eo ot
which implies, together with Theorem 8.3.5, the limit relation
lim p " ¥ PAWE,oPAWE, v/ V) =2 % HE(y
H—o0 >
loe|=n loe|=n be

The sum on the left-hand side is P, (W2 u»%,y/\/IL), which satisfies the explicit
formula in Theorem 8.1.16. Now, multiply the right-hand side of the explicit
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formula by p~"/2, replace y by y/+/H and then make the change of variables
t+— s/\/H; its limit as 1 — oo becomes, using Proposition 1.5.7, the right-hand
side of the stated formula. O

In the case k¥ = 0, Theorem 8.3.8 yields the following formula for the classical
Hermite polynomials:

H, 1 i
2 Zc(!y)xa:n!\/ﬁ/—an(xly1+"-+xdyd+S 1= [lx|2)e ™ ds

lo|=n

for all x € B? and y € R?. Furthermore, it is the extension of the following well-
known formula for the classical Hermite polynomials (Erdélyi er al. [1953, Vol.
11, p. 288]):

Hy(y 1
Zz(! ) o = Syt xaya), =1

|at|=n

In general, in the case ||x|| = 1 we have

Corollary 8.3.9 For ||x| =1 and y € R,

5 HE0) o 1

bE = 2”n'/[ 1l]dHn(llxlyl+"'+l‘dxdyal)
o . b

o[ =n

d
x [Tew(1+8)(1 =) dr.
i=1

8.4 Generalized Laguerre Polynomials
Much as for the relation between the orthogonal polynomials on 7¢ and those on
B? (see Section 4.4), there is a relation between the orthogonal polynomials on
Ri and those on RY. In fact, since

dx
o1 ya)dy = / f(x1,. . xa)
JRd .Ri

X1+ Xg

in analogy to Lemma 4.4.1, the analogue of Theorem 4.4.4 holds for W# (x) =

W(x%...,xfi) and WE(y) = W(y1,...,y4)/ /Y1 ya. Let %n(WH,Z‘ZI) be the
collection of all elements in #3,(W) that are invariant under Z4.

Theorem 8.4.1 Let WX and WL be defined as above. Then the relation
(4.4.1) defines a one-to-one correspondence between an orthonormal basis of
Vou(WH Z8) and an orthonormal basis of ¥,¢ (W*).

Hence, we can study the Laguerre polynomials via the Hermite polynomials
that are invariant under Z‘zi. We are mainly interested in the case where H is a
reflection-invariant weight function.
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Definition 8.4.2 Let s, be a reflection-invariant weight function and assume
that h is also invariant under Z¢. Define a weight function on RY by

WE(x) = B2(Va1, ..., Xa)e M /ya—xg,  xeRZL

The polynomials orthogonal to W/ are called generalized Laguerre polynomials.

An orthonormal basis can be given in terms of Z‘zl-invariant general Hermite
polynomials; see Proposition 8.3.2.

Proposition 8.4.3 For0 < j<nlet {Y"
AL, i(h 2 then the polynomials

Pl (WEix) = [ch, )7 H 2 ()Y, (VAT /),

L
where ¢},

Von—2 ]} denote an orthonormal basis of

=cf | .nfrom Proposition 8.3.2, form an orthonormal basis of v d(WE).

Just as in the case of the orthogonal polynomials on the simplex, in the inde-
composable case the requirement that % is also invariant under Z‘zi limits us to
essentially two possibilities:

The abelian group Zg The weight function is
WE(x;Z4) = xf - xde . (8.4.1)

The orthogonal polynomials associated with WX are the classical orthogonal
polynomials from Subsection 5.1.4.

The hyperoctahedral group The weight function is

Hx IT  lxi—xj%e . (8.4.2)

=1 1<i<j<d
Note that the parameters K in the two weight functions above are chosen
so that the notation is in line with the usual multiple Laguerre polynomials.

They are related to W, | ,(x) = Hd i |2'ﬂ+‘e*”xll and to W, | (x) in (8.3.4),

respectively, where we define kK + 1 = (k1 +1,..., K+ 1).

Another approach to the generalized Laguerre polynomials is to treat them as
the limit of the orthogonal polynomials on the simplex. Indeed, from the explicit
formulae for orthonormal bases in Proposition 8.2.6, the limit relation (8.3.1)
leads to the following.

Theorem 8.4.4  For the polynomials P}, ( ) defined in Proposition 8.2.5 and
the polynomials P}, (WL) defined in Proposztlon 8.4.3,

JE‘}QPC,,j(chTJrl/z,u;x/N) = P\r/l,j(W;&x)-
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In the case where A, is invariant under Z¢, the multiple Laguerre polynomials
are also the limit of the classical orthogonal polynomials on T¢. The verification
of the following limit is left to the reader.

Theorem 8.4.5 For the classical orthogonal polynomials Pli(
in Proposition 5.3.1 with L = K441,

Jim Pa(Wiey 05/ 1) = Lo () -+ L (xa)-

KJrl/z) defined

From the relation in Theorem 8.4.1, we can derive the differential-difference
equations satisfied by the generalized Laguerre polynomials from those satisfied
by the generalized Hermite polynomials, in the same way that the equation sat-
isfied by the orthogonal polynomials on 7¢ is derived. We can also derive these
equations from the limit relation in Theorem 8.4.4 in a similar way to the equa-
tion satisfied by the generalized Hermite polynomials. Using either method, we
have a proof of the fact that the multiple Laguerre polynomials satisfy the partial
differential equation (5.1.9). Moreover, we have

Theorem 8.4.6 The orthogonal polynomials of ¥, (Wk) associated with the
hyperoctahedral group satisfy the differential-difference equation
2

d
9 NS
|J=21 (XITXI'Z—F(K +1 —x,) aXi>

+K Y ! (Z(Xi;xi_xjcjcj) Xl+xj[1—(ll)]>

1<i<j<d X TXj Xi—Xj

P = —nP.

As in the Hermite case, this equation is an example of the Calogero—Sutherland
model in physics; see the discussion in Section 11.6.

There is another way of obtaining an orthonormal basis for the generalized
Laguerre polynomials, using orthogonal polynomials on the simplex. In fact, as
in Lemma 8.2.4, the following formula holds:

_ [T a
/Rif(X)dx—/O s /Ml:lf(su)duds (8.4.3)

for an integrable function f on RZ. Denote by {Rﬁn}lﬁlzm a sequence of
orthonormal homogeneous polynomials of degree m in the homogeneous coor-
dinates from Proposition 4.4.8 associated with the weight function W (u) =

hz(\/ﬂ,...,\/@)/ﬂ/ul ~~~ug on the simplex.
Proposition 8.4.7 Let the Rk” be defined as above. Then an orthonormal basis
of V4(WE) consists of
g,m( ) ban2m+lK( )Rgl<x)’ OSmSVZ, |ﬁ‘ =m,
[bm,n] = F(;LK +2m+ %)/F(AK + %)
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The verification of this basis is left to the reader.
From the limit relation in Theorem 8.4.4, we can also derive a Mehler-type
formula for the Laguerre polynomials.

Theorem 8.4.8 Let {PL(WL) : |a| =n, n € Ny}, denote an orthonormal basis
with respect to WE on RY. Then, for 0 < z < 1 and x,y € R4,

2 S Pa(WEx)Py(WEiy)"
n=0|a|=n

<> oo - LD o (D)

Proof The proof follows the same lines as that of Theorem 8.3.7, using the
explicit formula for the reproducing kernel of "//nd(W,Z y) in Theorem 8.2.7.
We will merely point out the differences. Let K, be defined from the formula
for the reproducing kernel in Theorem 8.2.7, in a similar way to the kernel
VielEyu(x,y,-,2)](y) in the proof of Theorem 8.3.7. Since we have C}, in the
formula of Theorem 8.2.7, we need to write

I?l—l (x,y,u,z) = %[Kll(xa%uvz) +I(Ivl (xayaua *Z)]

in terms of the Gegenbauer series. Since I?“ is even in z, the coefficients of Cénjrl
in the expansion vanish. In this way K, can be written as an infinite sum in 2"
with coefficients given by P,I(W,g X y). The rest of the proof follows the proof

of Theorem 8.3.7. We leave the details to the reader. O]

In the case of the classical multiple Laguerre polynomials, the Mehler formula
can be written out explicitly, using the explicit formula for the intertwining oper-
ator in Theorem 7.5.4. Moreover, in terms of the modified Bessel function I; of

order 7,
I:(x) = ;<{)1/] e (1 —tz)f’l/zdt.
VAD(T+ %) \2/ )

This can be written as I;(x) = e~ 7"/2J (xe™/?), where J; is the standard Bessel
function of order 7. The formula then becomes

io 3 L5 (0IX ()2

d
FK+1 2(xi +yi - 2/z2X2i
[ i [_ (llizyl)}(xiyiz) K’/zlk,( i )

1—2z

i=1

which is the product over i of the classical Mehler formula for the Laguerre
polynomials of one variable (see, for example, Erdélyi er al. [1953, Vol. II,
p. 189]).
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8.5 Notes

The partial differential equations satisfied by the classical orthogonal polyno-
mials were derived using the explicit formula for the biorthonormal basis in
Sections 5.2 and 5.3; see Chapter XII of Erdélyi er al. [1953]. The deriva-
tion of the differential-difference equation satisfied by the generalized classical
orthogonal polynomials was given in Xu [2001b].

The U} basis defined by the Rodrigues-type formula is not mutually orthogo-
nal. There is a biorthogonal basis defined by the projection operator projn(W,f: )
onto ¥,(Wg,): for o € N, define

Ro(x) :== projn(ng,u;VK{'}aax)u

where Vi is the intertwining operator associated with . Then {Uk : |o| = n}
and {Rg : |B| = n} are biorthogonal with respect to W, u on BY. These bases
were defined and studied in Xu [2005d], which contains further properties of UX.
The monic orthogonal polynomials in the case of Zg were studied in Xu [2005c].

The explicit formulae for the reproducing kernel in Theorems 8.1.10 and 8.2.8
were useful for a number of problems. The special case of the formula in Theo-
rem 5.2.8 was first derived by summing up the product of orthogonal polynomials
in Proposition 5.2.1, and making use of the product formula of Gegenbauer
polynomials, in Xu [1999a]; it appeared first in Xu [1996a]. The connection
to h-harmonics was essential in the derivation of Theorem 8.2.8 in Xu [1998d].
They have been used for studying the summability of orthogonal expansions, see
the discussion in the next chapter, and also in constructing cubature formulae in
Xu [2000c].

The orthonormal basis in Proposition 8.1.21 was first discovered in Logan and
Shepp [1975] in connection with the Radon transform. The derivation from the
Funk—Hecke formula and further discussions were given in Xu [2000b]. This
basis was used in Bojanov and Petrova [1998] in connection with a numerical
integration scheme. More recently, it was used in Xu [2006a] to derive a recon-
struction algorithm for computerized tomography. In this connection, orthogonal
polynomials on a cylinder were studied in Wade [2010].

The relation between h-harmonics and orthogonal polynomials on the simplex
was used in Dunkl [1984b] in the case d = 2 with a product weight function. The
general classical orthogonal polynomials were studied in Xu [2001b, 2005a].

In the case of symmetric groups, the differential-difference equation for the
generalized Hermite polynomials is essentially the Schrodinger equation for a
type of Calogero—Sutherland model. See the discussion in Section 11.6. The
equation for the general reflection group was derived in Rosler [1998] using a
different method. The derivation as the limit of the A#-Laplacian is in Xu [2001b].

Hermite introduced biorthonormal polynomials for the classical Hermite
weight function, which were subsequently studied by many authors; see Appell
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and de Fériet [1926] and Erdélyi er al. [1953, Vol. II, Chapter XII]. Making
use of the intertwining operator V, such a basis can be defined for the general-
ized Hermite polynomials associated with a reflection group, from which follows
another proof of the Mehler-type formula for the generalized Hermite polyno-
mials; see Rosler [1998]. Our proof follows Xu [2001b]. In the case where A
is associated with the symmetric groups, the Mehler-type formula was proved
in Baker and Forrester [1997a]. For the classical Mehler formula, see Erdélyi
et al. [1953, Vol. 11, p. 194], for example.



9

Summability of Orthogonal Expansions

The basics of Fourier orthogonal expansion were discussed in Section 3.6. In
the present chapter various convergence results for orthogonal expansions are
discussed. We start with a result on a fairly general system of orthogonal polyno-
mials, then consider the convergence of partial-sum operators and Cesaro means
and move on to the summability of the orthogonal expansions for 4-harmonics
and the generalized classical orthogonal polynomials.

9.1 General Results on Orthogonal Expansions

We start with a general result about the convergence of the partial sum of an
orthogonal expansion, under a condition on the behavior of the Christoffel func-
tion defined in (3.6.8). In the second subsection we discuss the basics of Cesaro
means.

9.1.1 Uniform convergence of partial sums

Recall that .# was defined in Subsection 3.2.3 as the set of nonnegative Borel
measures on RY with moments of all orders. Let u € .# satisfy the condi-
tion (3.2.17) in Theorem 3.2.17 and let it have support set Q € R¢. For f €
L?(du), let E,(du; f), be the error of the best L?(du) approximation from IT¢;
that is,

Endyif) = inf [ 500 P3P dp().

Note that E,(du, f), — 0 as n — oo according to Theorem 3.2.18. Let S, (du; f)
denote the partial sum of the Fourier orthogonal expansion with respect to
the measure dy, as defined in (3.6.3), and let A, (d;x) denote the Christoffel
function as defined in (3.6.8).
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Lemma 9.1.1 Let u € ./ satisfy (3.2.17). If, for x € R,
o Ea(du;f) <
A2m+1 (d[,L,x)

9.1.1)

then S,(du; f) converges at the point x. If (9.1.1) holds uniformly on a set E in

Q then S, (di) converges uniformly on E.

Proof Since S,(du; f) is the best L?>(du) approximation of f € L?(du) from
¢, using (3.6.3) and the Parseval identity in Theorem 3.6.8 as well as the

orthogonality,

En(dusf 3= [ I =S,(au: f)Pau

=W<i£m<>w—zmkh

k=n+1 k=n+1

Therefore, using the Cauchy—Schwarz inequality, we obtain

2m+l 2m+1 2m+1
( D, lag(f)Pi(x ) < X a0z X Pl

k=274 1 k=2m 4 1 k=2my 1
o om+1
< Y lag ()13 Z P ()13

k=2m+1
= (e (A1t £)2 [y (i) .

Taking the square root and summing over m proves the stated result.

Proposition 9.1.2  Let u € # satisfy (3.2.17). If
A, (dusx)] 7! < M?

9.1.2)

holds uniformly on a set E with some constant M > 0 then S, (d; f) is uniformly

and absolutely convergent on E for every f € L*(du) such that

Y, Ex(dus f)a k2 < eo
k=1

Proof Since E,(du; f), is nonincreasing,

Eom (d,usf)Z < MZ(m-ﬁ-l)d/ZL 22‘ Ek(dll;f)2

Agmpi(dp,x) — 2l

om

M2/ 1ym(d=2) /2 2 E(d; f)a

k=2m=141

2m
<c Y Ex(dusf)akl 42
k=2m=141

Summing over m, the stated result follows from Lemma 9.1.1.

9.1.3)
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Corollary 9.1.3 Let u € .4 and suppose that L has a compact support set
in RY. Suppose that (9.1.2) holds uniformly on a subset E C Q. If f € Cl4/2] (Q)
and each of its [4]th derivatives satisfies

D4 £(x) — DI/ ()] < ell— 5.

where, for odd d, B > % and, forevend, B > 0then S,(du; f) converges uniformly
and absolutely to f on E.

Proof For f satisfying the above assumptions, a standard result in approximation
theory (see, for example, Lorentz [1986, p. 90]) shows that there exists P € HZ
such that

En(dpt, )2 < ||f =Pl < cn” 14/21HP),

Using this estimate, our assumption on f3 implies that (9.1.3) holds. O

Since there are ("Zd) = 0(n?) terms in the sum of [A,(du;x)]~! = K, (x,x),
the condition (9.1.2) appears to be a reasonable assumption. We will show that
this condition often holds. In the following, if dut is given by a weight function
du(x) = W(x)dx then we write A,(W;x). The notation A ~ B means that there

are two constants ¢ and ¢; such that c; <A/B < ¢;.

Proposition 9.1.4 Ler W, Wy and W, be weight functions defined on R,
If ciWo(x) < W(x) < oWy (x) for some positive constant ¢y > ¢y > 0 then
1A (Wosx) < Ap(Wix) < coAp(Whsx).

Proof By Theorem 3.6.6, A, satisfies the property

MW= min [ PO)PWE) by
P(x)=1,Pclld JRY

the stated inequality follows as an easy consequence. O

We will establish (9.1.2) for the classical-type weight functions. The proposi-
tion allows us an extension to more general classes of weight functions.

Proposition 9.1.5 Let W(x) = [T, wi(x;), where w; are weight functions
defined on [—1,1]. Then A,(W;x) ~ n=¢ for all x in the interior of [—1,1]¢.

Proof Let pp(w;) denote orthonormal polynomials with respect to w;. The
orthonormal polynomials with respect to W are Py, (x) = po, (W13X1) - - Po, (WaiXa)-
Let A,(w;;t) be the Christoffel function associated with the weight function w;
on [—1,1]. It is known that A, (w;;t) ~ n~! for t € (—1,1); see for example
Nevai [1986]. Hence, on the one hand,
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An(W3x) = (Z )y [Pﬁ(x)P)

m=0|a|=m

-1
n n
DI (Wl;xl)'“pﬁd(wd;xd))

[=0 k;=0

IV
N

—d

|
—

An(Wisxi) ~n
1

On the other hand, since {a : || < n} contains {a : 0 < o; < [n/d]},
the inequality can be reversed to conclude that A,(W;x) < H?ZI)L[,, /d)
(wisx;) ~n~4. O

Proposition 9.1.6  For the weight function W = W2, in (8.1.5) on BY or the
weight function W = WKT# in (8.2.1) on T, [nA,(W;x)]™! < ¢ for all x in the
interior of BY or T¢, respectively.

Proof We prove only the case of T9; the case of B is similar. In the formula
for the reproducing kernel in Theorem 8.2.8, let x; — 0 and yt — 0 and use the
formula (1.5.1) repeatedly to obtain

T 2n+ 45 (@-1)/2
Pn(Wo 0§x,x) = z C2n (x181 + - "JrSd_de_H),
' 2d(d_ 1) d+1
SEZZ
. (d-1)/2
where x;.1 = 1 —x; — -+ — x4. Hence, using the value of C, (1) =

(d—1),/n! ~ n?=2 and the fact that C,Sdfl)/z(x) ~ n@=3)/2 (see, for example,
Szegd [1975, p. 196]), we have Pn(WOTO;x,x) ~ n?=1. Consequently, we obtain
An(Wgg3x) ~ n=4 since Ay(Wg:x) = [Ka(Wgg:x,%)] . Now, if all the param-
eters k; and U are even integérs then the polynomial ¢ defined by ¢*(x) =
W[, (x) /Wy (x) is a polynomial of degree m = (| |+ ). Using the property of
A,, in Theorem 3.6.6, we obtain

T ..\ _ : 2w T
Wiz = min [ PGP 0)ay

=¢*(x) min | |P(y)q(y)/q(x)*Wo(y)dy
P(x)=1,Peld JT

> qz (x)An+rn (W0,0§x)-

This shows that n_dA”(W,£ %) = O(1) holds for every x in the interior of T

when all parameters are even integers. For the general parameters, Proposition
9.1.4 can be used to finish the proof. O

In fact the estimate A, (W;x) ~ n~? holds for W2 y and wl u- Furthermore, the
asymptotics of A,(W;x) are known in some cases; see the notes at the end of the
chapter.
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9.1.2 Cesaro means of the orthogonal expansion

As in classical Fourier analysis, the convergence of the partial-sum operator for
the Fourier orthogonal expansion requires that the function is smooth. For func-
tions that are merely continuous, it is necessary to consider summability methods.
A common method is the Cesaro (C, 6 )-mean.

Definition 9.1.7 Let {c,};;_, be a given sequence. For § > 0, the Cesaro (C,d)-
means are defined by

s e
ﬂfggpm_ank'

The sequence {c,} is (C,§)-summable, by Cesaro’s method of order 8, to s if s
converges to s as n — oo

It is a well-known fact that if s, converges to s then s,‘? converges to s. The
reverse, however, is not true. For a sequence that does not converge, s,f may still
converge for some 8. We note the following properties of sf (see, for example,
Chapter III of Zygmund [1959]).

1. If s, is the nth partial sum of the series Y;”_, ¢k then

o_ 9 i (—n)k

[ N

2. If s; = 1 for all k then s® = 1 for all n.
3. If s converges to s then s converges to s for all & > §.

For a weight function W and a function f, denote the nth partial sum of the
Fourier orthogonal expansion of f by S,(W; f), which is defined as in (3.6.3).
Its Cesaro (C,8)-means are denoted by S (W; f) and are defined as the (C,§)-
means of the orthogonal expansion ¥~ al (f)P,. Since S,(W;1) = 1, property
(2) shows that S3(W;1) = 1.

One important property of the partial-sum operator S, (W f) is that it is a pro-
jection operator onto Hi’l; that is, S,(W; p) = p for any polynomial p of degree n.
This property does not hold for the Cesaro means. However, even if S, (W f) does
not converge, the operator 6,(W; f) = 255,—1(W; f) — S,—1(W; f) may converge
and, moreover, ¢, (p) = p holds for all p € ij_l. In classical Fourier analysis, the
0,(f) are called the de la Vallée—Poussin means. The following definition gives
an analogue that uses Cesaro means of higher order.

Definition 9.1.8 For an integer m > 1, define

i/ (R i 4 1
ol'(W;f)= o > @n)m ] T Sy (Wi f).
j=0 i=0,i#j
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Note that when m = 1, 6 is precisely the de la Vallée—Poussin mean o,,. The
main properties of the means o;" are as follows.

Theorem 9.1.9 The means o' (W;f) satisfy the following properties:
o(W;p) = p for all p € I?_, and the o"(W;-) are uniformly bounded in n
whenever the S (W) are uniformly bounded.

Proof The proof will show how the formula for o)'(W;f) is determined.
Consider

n aj Y(no1) (Zjn—k+m—2

Zaf St f):zm > in—1—k )Sk(W;f).

k=0

We will choose a; so that the terms involving Sk(W; f) become O for0 <k <n-—1
and

B ia*zjfl 2in—k+m—2
=1 2in—1—k

k=n

)Sk(W;f%

where a’ = a; /(Zm=1 this will show that o (W3 p) = p for all p € T,
That is, together with 6)(W;1) = 1, we choose a; such that

n 2jn—k+m—2> =

Za*» ‘ =0, k=0,1,...,n—1 and Zajzl.

) j( 2in—1—k =
Since m is an integer, it follows that

2in—k+m—-2\ (2n—k+m—-2)---2/n—k) "I .
. = == 2] kS
( 2in—1—k ) (m—1)! 2, ps(2n)

where the p;(¢) are polynomials of degree m — 1 — s. The leading term of p,(¢) is
a constant multiple of #"~! =%, Similarly,

(21n+m - 1) (2fn')

m n.

+ lower-degree terms.
Hence, it suffices to choose a;‘. such that

m . m. m!

z‘a*p”:o7 s=0,1,...,m—1 and 22/’"61;‘-:—.

_— ) . nm

j=

To find such aj, consider the Lagrange interpolation polynomial L, of degree m
defined by

m—1 . m—1 _0i
H=Y FeNG@  with () = L
Jj=0 i=0,i#j 2-2
which satisfies L, (f;2/) :f(Zj) forj: 0,1,...,m—1, and
mfl
70 =Ll i) = S TR - fe (1,2

i=0
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By the uniqueness of the interpolating polynomial, L,,(f) = f whenever f is a
polynomial of degree at most m — 1. Set f(¢r) =¢* with s =m,m—1,...,0 in the
above formulae and let r = 2"; then

m—1 m—1 m—1
o Y 2me2m) =] @"-2) and 27— 29¢;(2") =0.
j=0 i=0 j=0
Hence, the choice a, = m!/[n’"]'[;f‘;o1 (2™ —2J)] and a; = —L;(2")ay, for
Jj=20,1,...,m—1 gives the desired result. The definition of ¢; leads to the
equation @} = m!/[n"TI1L, ;. ;(2/ —2')], which agrees with the definition of
oM (W f).
Since

n" (Zjn +m> “T1Q +im) < @i+ 1y,

m i=1
it follows that
m m m
Dl <Y R7+0)"/ IT 127 -21] = An,
=0 =0 i=0,i£)

which is independent of n. Consequently,

o' (W f,x)| < Apsup, Sy (W; f,x)].
0

Let the weight function W be defined on the domain €. For a continuous func-
tion f on the domain Q, define the best approximation of f from the space I¢ of
polynomials of degree at most n by

Eu(f) = min | — Pl| = min max|(x) — P()|.
Pelld Pellg xe

Corollary 9.1.10 Suppose that the Cesaro means S''(W; f) converge uniformly
to a continuous function f. Then

|0, (Wsf) = ()] < BuEn(f),
where B, is a constant independent of n.
Proof Since SI'(W; f) converges uniformly, there is a constant ¢, independent
of n such that ||SI"(W; f)|| < cul|f]| for all n. Let P be a polynomial of degree n

such that E,(f) = ||f — P||- Then, since ¢."(W;P) = P, the stated result follows
from the triangle inequality

lon' (W5 f) = fIl S Amsup IS, (W f = P)[| + [|f = Pll < (Amem + 1)En(f),

where A,, =37 [(27+ D™/ T iz |2/ — 2] as in the proof of Theorem 9.1.9.
O
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9.2 Orthogonal Expansion on the Sphere

Any f € L?(h2dw) can be expanded into an A-harmonic series. Let {Sq, } be an
orthonormal basis of .74 (h%). For f in L?>(hZdw), its Fourier expansion in terms
of {S¢.} is given by

F~ Y Y d(f)San,  where  dl(f) = /S - fSanhido.
n=0 o

For the ordinary harmonics, this is usually called the Laplace series. The nth com-

ponent of this expansion is written, see (7.3.1), as an integral with reproducing

kernel P, (h%;x,y):

S0 = ¢l [, S0P R do,

It should be emphasized that the nth component is independent of the particular
choice of orthogonal basis. Many results on orthogonal expansions for weight
functions whose support set has a nonempty interior, such as those in Section 9.1,
hold also for -harmonic expansions. For example, a standard L? argument shows
that:

Proposition 9.2.1 If f € L*(hZdw) then S,(h%; f) converges to f in L*(hdw).

For uniform convergence or LP-convergence for p # 2, it is necessary to con-
sider a summability method. It turns out that the formula for B,(h%;x,y) in
Corollary 7.3.2 allows us to show that the summability of A-harmonics can be
reduced to that of Gegenbauer polynomials.

In the following, we denote by L?(h%dw) the space of Lebesgue-measurable
functions f defined on $¢~! for which the norm

1= (e [, 1r@PHa0)”

is finite. When p = oo, we take the space as C(S9~!), the space of continuous
functions with uniform norm || f||-.. The essential ingredient is the explicit for-
mula for the reproducing kernel in Corollary 7.3.2. Denote by w, the normalized
weight function

wi(t) =BA+ 1, D7 (1 =) rel-1,1],

whose orthogonal polynomials are the Gegenbauer polynomials (Subsection
1.4.3). A function f € L*(w;,[—1,1]) can be expressed as a Gegenbauer
expansion:

f~ibk<f>5£ with  bi(f) = / L O ()
k=0 -1
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where 6,% denotes the orthonormal Gegenbauer polynomial. A summability
method for the Gegenbauer expansion is a sum in the form ¢,(f,wy;t) =

Yo Crnbi(f )C,ﬁ(r), where the ¢y, are given constants such that 3} _cx, — 1
as n — oo. Evidently the sum can be written as an integral:

1
ou(fowast) = [ pEOwassa)f(wa(s)ds
with p) (wy3s,1) = o cknCl (s)CE(2).
Proposition 9.2.2 For p = 1 and p = oo, the operator norm is given by

1
sup || @n(fswa)llp = max/ |p$(W;L;s,t)\w,l(s)ds7
Ifllp<1 rel-1,1]J-1

where ||g|| is the L' (w,[—1,1]) norm of g.

Proof An elementary inequality shows that the left-hand side is no greater than
the right-hand side. For p = o and fixed ¢, the choice f(s) = sign[p} (s,)] is then
used to show that the equality holds. For p = 1, consider a sequence s, (f) defined
by s,(f,1) = 1, f(u)gu(u,)w; (1) du which converges uniformly to f whenever
f is continuous on [—1,1] (for example, the Cesaro means of sufficiently high
order). Then choose fy(s) = gn(s,t*), where t* is a point for which the maximum
in the right-hand side is attained, such that

1
On(fv, wist) = /71 an(s,°)p) (wass,t)wy (s) ds = sy (p§ (wys -, 1);t"),

which converges to pf,) (wy;t*,1) as N — oo. The dominated convergence theorem
shows that ||¢, (fx,wy )| — f_ll |p$(wk;t,t*)\wl (t)dr as N — o, which gives the
stated identity for p = 1. O

Theorem 9.2.3 Let A = Y + 552 If ¢u(-,wist) = Sh_ocunbi(-)C} (1) defines
a bounded operator on LP(wy,[—1,1]) for 1 < p < o then ®,(-) =
SH_oCknSk(-,h%) defines a bounded operator on LP (h%dw). More precisely, if
1/p

([ 1outrmanw ) <c( [ irapwoa)

for f € LP(wy,,[—1,1]), where C is a constant independent of f and n, then
1/p

([, Jontenl iwan) " <c( [, lsliido)

or g € LP(h:dw) with the same constant. In particular, if o, ,wy ) converges to
forg P p ) g
fin LP(wy,[—1,1]) then the means ®,(g) converge to g in LP(h%dw).
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Proof Like ¢,, the means @, can be written as integrals:
D, (g5x) = ¢, /S PP y)g)k(y) do

with P2 (x,y) = S¢_ocknPr(h2;x,y). Since C}(1)C}(1) = [(n+ 4)/A]CL (1), it
follows from the explicit formula for P,(h%;x,y) given by Corollary 7.3.2 and
(7.3.1) that

P:lb(x,y) = V[pf(w;t;@c,-), l)] )

Since V is positive,

V[P0 (was (x, ), D] )] < V[P (was (x,), D] ()

Consequently, for p =0 and p = 1, applying Corollary 7.4.5 gives

104 ()11 SIL@Ilp,hCi./Sg,_1 [V [P (w2 (), D] ) [ (v) deo()

1
<lgllpa [ 1§ 00s L0 () dr
<Cllglp

by Proposition 9.2.2. The case 1 < p < o follows from the Riesz interpolation
theorem; see Rudin [1991]. O]

Note that the proof in fact shows that the convergence of the @, means depends
only on the convergence of ¢, at the point # = 1.
Let S (h2; f) denote the nth Cesaro (C,§) mean of the 4-harmonic expansion.
It can be written as an integral,
Sp (s f.x) = ¢ i (V)P (s x,y) g (v) do,
where P2 (/;x,y) is the Cesaro (C,§)-mean of the sequence of reproducing ker-

nels as in Definition 9.1.7. As an immediate corollary of Theorem 9.2.3, we
have

Corollary 9.24 Let f € LP(hZdw), 1 < p < o, or f € C(S¢7"). Then the
h-harmonic expansion of f with respect to hZ is (C,8)-summable in LP (h2dw)

or C(S4~1) provided that 8¢ > 7y + 42

Proof The (C,8)-means of the Gegenbauer expansion with respect to w;
converge if and only if & > A; see Szegd [1975, p. 246, Theorem 9.1.3]. O

Corollary 9.2.5 The (C,8)-means of the h-harmonic expansion with respect to
h2 define a positive linear operator provided that § > 2¥c +d — 1.
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Proof According to an inequality due to Kogbetliantz [1924], see also
Askey [1975, p. 71], the (C, §)-kernel of the Gegenbauer expansion with respect
to wy, is positive if 6 > 24 + 1. O

Note that for k¥ = 0 these results reduce to the classical results of ordinary
harmonics. In that case, the condition 6 > % is the so-called critical index (see,
for example, Stein and Weiss [1971]), and both corollaries are sharp.

We conclude this section with a result on the expansion of the function
Vf((x,y)) in h-harmonics. It comes as an application of the Funk—Hecke for-
mula in Theorem 7.3.4. Let us denote by 58 (w; ;) the Cesaro (C, 8)-means of the
Gegenbauer expansion with respect to wy, .

Proposition 9.2.6 Let f be a continuous function on [—1,1]. Then
Sg(h%(’vf«xa >)7y) = V[SE(WYK—F(d—Z)/Z;fa <x7 >)](y)

Proof Let A = ¥+ 452, For each fixed x € S%~1, P,(h2;x,y) is an element in
4 (h2) and it follows from the Funk-Hecke formula that

SulhsV f((x,),y) = - Vf (e, 1)) P (b v, u) i (1) dao (u)

- Tn(f)”j{kv [C,%((x, ~>)} ()

by Corollary 7.3.2. Hence, by the formula for 7, (f) in Theorem 7.3.4,

S0V S Do) = [ FOG w VI ()0,

Taking the Cesaro means of this identity gives the stated formula. [

9.3 Orthogonal Expansion on the Ball

For a weight function W defined on the set Q of R, denote by L”(W,Q) the
weighted L? space with norm defined by

wo=( [ 1rerwear) "’

for 1 < p < eo. When p = oo, take the space as C(£2), the space of continuous
functions on € with uniform norm.

171

Recall that ”//nd(W) denotes the space of orthogonal polynomials of degree n
with respect to W and P, (W;x,y) denotes the reproducing kernel of 7/4(W).
Denote by P,(f;x) the nth component of the orthogonal expansion which has
P,(W;x,y) as the integral kernel. Let H be an admissible function defined on
R4+m+1 a5 in Definition 4.3.1. Denote the weighted L” space by L? (H,S%*™) to
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emphasize the dependence on S¢*”. The orthogonal polynomials with respect
to the weight function Wy defined in (4.3.1) are related to the orthogonal
polynomials with respect to H da,.,, on S+, as discussed in Section 4.3.

Theorem 9.3.1 Let H be an admissible weight function and W be defined as
in (4.3.1). Let p be fixed, 1 < p < oo, If the means ®,(-) = Y}_ cinSk(-) define
bounded operators on L (H, S4™) then the means V,,(+) = 0_q i ,Pi(+) define
bounded operators on LP(W}?, BY). More precisely, if

([ lenForawe) " <c( [, Fopawee)”

forF e LP(H 7S‘”’”), where C is a constant independent of F and n, then

([ mapgers) " <c( [, rpma)

for f € LP(Wr BY). In particular;, if the means ®,(F) converge to F in
LP(H,S4%™) then the means W, (f) converge to f in LP(W/?, BY).

Proof For f € LP(W}' B), define a function F on S*+" by F(x) = f(x;), where
x = (x1,X2) € 847" x; € BY. By Lemma 4.3.2 it follows that

Lo Fore e =c [ 17wy wa:

hence, F € LP(H,S%"™). Using Theorem 4.3.5 and the notation y = (y;,y») €
894%™ and y, = |y2|n, n € S™, the sums B, (F) and P,,(f) are seen to be related as
follows:

Pa(fix) = [ PV, 30) £ () Wy (1) dyy

= Po(Hsx, | y1,0/1=[y11*n | )H2(n) do(n) | f(y1)W (y1) dys
Jo Lt (/1= in) |

= Py(H;x,y)F (y)H (y) dy = By (F;x),

sd+m

where we have used Lemma 4.3.2. Using the same lemma again,
/Bd 1@, (f3x1) W (x1) dx, :/Sm |@,(f3x1)|"H (x) doo(x)

= \‘Pn(F;x)]pH(x)dw(x).

sd+m

Hence, the boundedness of the last integral can be used to conclude that

L lenrxo wioan <cr [P do

= [ 1wy ) d.
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This completes the proof for 1 < p < co. In the case p = oo, the norm becomes
the uniform norm and the result follows readily from the fact that P,(f;x;) =
P,(F;x). This completes the proof for m > 0. In the case m = 0, we use Theorem
4.2.8 instead of Theorem 4.3.5. O

Theorem 9.3.1 shows that, in order to study the summability of the Fourier
orthogonal expansion on the unit ball, we need only study the summability on the
unit sphere. In particular, in the limiting case m = 0 we can use Theorem 9.2.3
with d replaced by d + 1 to obtain the following result for the reflection-invariant
weight function W,g y defined in Definition 8.1.1.

Theorem 9.3.2 Let A = ¥+ %. If the expression ¢,(-) = X7, c;{7,,l7;€(-)6,§l
defines bounded operators on LP(w;,[—1,1]), 1 < p < oo, then the expres-
sion W, (-) = X¢_ocknPi(-) defines bounded operators on LP(W£u7Bd). More
precisely, if

-1

(/;11 ]‘P"(f;’)\pwx(z)d,)l/" SC(/A |f(t)|pwl(t)dl)l/l7

for f € LP(wy,[—1,1]), where C is a constant independent of f and n, then

([ Feafweama)” <c( [ swpwe,ea)”

forgeL? (W,g M,Bd) with the same constant. In particular, if the means ¢,(f)
converge to f in LP(w,,[—1,1]), then the means ®,(g) converge to g in
L (WE,,BY).

For § > 0, let SS(f; W2 u) denote the Cesaro (C, ) means of the orthogonal
expansion with respect to W,f: u- As a corollary of the above theorem and the
results for Gegenbauer expansions, we can state analogues of Corollaries 9.2.4

and 9.2.5.

Corollary 9.3.3 Let W,g u be as in Definition 8.1.1 with i > 0 and let Ay =
Ye + U+ %. Let f € L”(W,gu,Bd). Then the orthogonal expansion of f with

respect to W,ﬁu is (C,0)-summable in LP(W,E_#,B‘]), 1 < p < oo, provided that
0 > Axy. Moreover, the (C,8)-means define a positive linear operator if & >

2y +1.

For the classical weight function W2 (x) = (1 — [[x[|*)*~1/2 (k = 0), the
condition for (C, 0)-summability in Corollary 9.3.3 is sharp.

Theorem 9.3.4 The orthogonal expansion of every continuous function f with
respect to Wy, with i > 0, is uniformly (C,8)-summable on B¢ if and only if
§>u+5L



302 Summability of Orthogonal Expansions

Proof We only need to prove the necessary condition. Let ||x| = 1. Let K¢ W)
denote the (C, &)-means of the reproducing kernel of the orthogonal expansion.
We need to show that

S| (1= b2~ 2ay

is unbounded when 6 = u + %. By Theorem 5.2.8, PH(Wf;x,y) =
C~‘#+(d_1)/2(1)6#+(d_1)/2((x,y>), where we use the normalized Gegenbauer
polynomials. Therefore KE(Wf;Ly) = K9 (Wut(a—1)/2; 1, (x,)), where K2 (wy)
denotes the (C,d) means of the Gegenbauer expansion with respect to w; . Using
the polar coordinates and Lemma 7.4.4,

fH_Gdz/d]/

Making the change of variables s — 7 /r and exchanging the order of integration,
use of a beta integral shows that

1
rﬂn” = O-d—Z/l

1
:Gdszufl

where Ay is a constant. Therefore, the (C,d)-summability of the orthogonal
expansion with respect to WB on the boundary of BY is equivalent to the (C,6)-

W,Lt+d l/z,rS 1)’(]_SZ)(df?’)/st(l_r2)/,1_—1/2dr.

5(wu+(d 128, 1) ‘/ -t )(d_3>/2 r(l—rz)“_l/zdrdt

Kr?(wuﬂdq)/z;t, (1 — P)RHE=2)/2 g

summability of the Gegenbauer expansion with index u + 451 at the point x = 1.

The desired result follows from Szeg6 [1975, Theorem 9.1.3, p- 246], where the
result is stated for the Jacobi expansion; a shift of % on the index is necessary for
the Gegenbauer expansion. O

The proof in fact shows that the maximum of the (C, §)-means with respect to
Wlf is attained on the boundary of the unit ball.

Since the weight function on the sphere requires all parameters to be nonnega-
tive, we need to assume U > 0 in the above results. The necessary part of the last
theorem, however, holds for all u > —%.

For the weight function W,f, y defined in (8.1.5), further results about orthogo-
nal expansions can be derived. Let S¢ (We 3 f) denote the Cesaro (C,8)-means
of the orthogonal expansion with respect to W,g u and let P(W,ﬁ wf ) denote the
nth component of the expansion as in (3.6.2). Recall that sf (w; f) denotes the
nth (C,8)-mean of the orthogonal expansion with respect to w. Let w, (1) =
|t]2*(1 —2)P=1/2 denote the generalized Gegenbauer weight function.

Proposition 9.3.5 Let ngu (x) = TT%, x| (1 = ||x]| )= 1/2. Let fy be an even
function defined on [—1,1] and f(x) = fo(||x||); then
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SOWE 5 £.x) = s (Wil (a1 2,03 oo 1)

Proof The formula for the intertwining operator V in Theorem 7.5.4 shows that,
for y = sy’ with |y/| = 1, V[g({x,-)](y) = V[g({(sx,-))](/). Hence, using polar
coordinates, the formulae for the reproducing kernel in Theorem 8.1.10 and
Corollary 7.4.5, we obtain, with A = |k| + %,

n+A+u _
( fv) gu# 7L—|—/.1/f d] s)y1/2

X/SJ(/,F?*“(<SX~>+ 1—||x\2m) Pytan) ()

x hA(y')do(y')ds

n—|—7L+u _
— et [ ot -

></ / Cchru <s\|x|\u+\/l—s2 l—\|x||2t)(l—t2)“’1dt
—-1J-1

x (1 —u?)*~'duds.

Upon using Corollary 7.5.6 we conclude that

~ ] ~ ~
Py WE .20 = e O (Ial) [ G4 (5)+ E 2 (=5)] o)
x s471(1 = s2)R12 ds

1
~(uA ~(w,A - _
=Gl [ EEP (o lst (1= s,

where {5,(,“ ’M(t)} are the normalized generalized Gegenbauer polynomials and
c is the normalization constant of w, ,, as can be seen by setting n = 0. Taking
Cesaro (C, d)-means proves the stated result. O

Proposition 9.3.5 states that the partial sum of a radial function is also a radial
function. It holds, in particular, for the classical weight function Wff . For Wff s
there is another class of functions that are preserved in such a manner. A function
f defined on R is called a ridge function if f(x) = fo((x,y)) for some fy: R — R
and y € RY. The next proposition states that the partial sum of a ridge function is
also a ridge function.

Proposition 9.3.6 Let f:R+— R. For ||y||=1andn >0,
Sy Wit £((.)),9) = 50 W gy i/ (0,3).

In fact, using the the Funk—Hecke formula in Theorem 8.1.17 and following
the proof of Proposition 9.2.6, such a result can be established, for functions of
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the form Vi f((x,-)), for the weight function W, in Proposition 9.3.5. The most
interesting case is the result for the classical weight function. The proof is left to
the reader.

9.4 Orthogonal Expansion on the Simplex

Although the structures of the orthogonal polynomials and the reproducing kernel
on T follow from those on B?, the summability of orthogonal expansions on
T¢ does not follow in general as a consequence of the summability on B¢. To
state the result, let us denote by w(@?)(r) = (1 —£)?(141)" the Jacobi weight
function and by pﬁ,“’b) the orthonormal Jacobi polynomials with respect to w(@?),
In the following theorem, let P, (f) denote the nth component of the orthogonal

expansion with respect to W,<T7 i

Theorem 9.4.1 Let A = Y+ + 2. If $u(-) = Xh_o cnbi (- )pk ~1/2) defines
bounded operators on LP (w*~1/2) [ 1,1]), 1 < p < oo, then the means @, (-) =

Yi—oknPi(-) define bounded operators on L? wl " T%). More precisely, if

([ lotsrwtna)” <c( [ o o)™

for felL? (W(A*l/z), [—1,1]), where C is a constant independent of f and n, then

([ Joutewhuwa) " <c( [ lewpwd )"

for g € LP(W] wTd) with the same constant. In particular, if the means ¢,(f)
converge to f in LP(w*~1/2) [=1,1]) then the means ®,(g) converge to g in
LP (Wi, TY).

Proof We follow the proof of Theorem 9.2.3. The means ®,, can be written as
integrals,

D, (g:x) = Wi, / PR, y)g (Wi, (v) dy,

with P2 (x,y) = 32_o cknPr(W, Ky,x v). Likewise, write ¢,(f) as an integral with

kernel pg (wWh1250) =30 cx ’np,(( ~1/2) (s)p,(( 1/2)( t). Thus, following the
proof of Theorem 9.2.3, the essential part is to show that

T (D;x) / |P¢ (x,y) |W,(T )dy = /d \PE’(L {y}z)’hzx,u(}’/) do(y)

with y = (¥,441) uniformly bounded for x € T, where the second equality fol-
lows from Lemmas 4.4.1 and 4.2.3. Let V be the intertwining operator associated
with Ay, and the reflection group W = Wy X Z,. From the proof of Theorem
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8.1.10, we see that the formula for the reproducing kernel Pk(W,Z u) in Theorem
8.2.7 can be written as

n 1
%V G P2 [ (),

P (W 5x,y) = o
2

where X' = (x,xz41) and || = 1. Using the relation between the Jacobi and
Gegenbauer polynomials (Definition 1.5.5 with u = 0), we have

20+ A+3 as1p

(A,—-1/2) (A,=1/2) (5,2
1) = pn 1)px 2t —1).

Hence the kernel can be written in terms of Jacobi polynomials as

PP (1) =27 X V[ph vt 1,2( a(e))? - 1] ()

d
e€Zf

where z(g) = {x'}'/?¢. We observe that |z(&)|*> = |x'| = 1. Hence, since V is a
positive operator, we can use Corollary 7.4.5 to conclude that

2@ <270 % [ Vet 1,20 (0 - D) 0 do

d
€EZS

1
=B [ IS 22 S (1P
-1
1
= [ 1 o) ) ),
—1

where the last step follows from a change of variables, and the constant in front
of the integral becomes 1 (on setting n = 0). This completes the proof. O

As a corollary of the above theorem and the results for the Jacobi expansion,
we can state an analogue of Corollary 9.3.3.

Corollary 9.4.2 Let WKT,p be as in Definition 8.2.1 with u,x > 0 and f €
LP(W,E”, T%). Then the orthogonal expansion of f with respect to WKT# is (C,0)-

summable in L”(WKT’#, Td), 1 < p <o, provided that § > Y.+ 1L+ %. Moreover,

the (C,0)-means are positive linear operators if & > 2y + 21 +d.

In particular, these results apply to the classical orthogonal polynomials on 7.
In this case, it should be pointed out that the condition 8 > i+t + % is sharp
only when at least one x; = 0. For sharp results and further discussion, see the
notes at the end of the chapter.

For § > 0, let S3(W,! > f) denote the Cesaro (C, §)-means of the orthogonal
expansion with respect to W,{ u- Let us also point out the following analogue of

Proposition 9.3.5.
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Proposition 9.4.3  Let w(?) (1) = (1 —1)%(1 +1)? be the Jacobi weight function.
Let f(x) = fo(2|x| = 1). Then

SSWI i fx) = sS (wlet@=2/20=1/2) 915 — 1),

Proof Let Pg ., denote the orthonormal basis in Proposition 8.2.5. By definition,
P, (W, X 2 2 Pg.m m(¥)-
m=0|B|=m

Since Pgim(x) =by, np,<17+,3m+(d 2)/2u= 1/2)( 1)R’l§‘ (x) and Rj is homogeneous

in the homogeneous coordinates of 7¢, using the ¢!-radial coordinates for the
simplex, x = su, we obtain

wha [ SO WL )W () dy
*WK[J/ fO S)/+d 1

x (1—s)k1/2 Pn(WKT)“;x,su)h(\/ﬂ,...,\/@)diuds

Jul=1 TR
_C/ Fo(2s— 1)pirH@2/2012) g 1y lr@=2)/20-1/2) 50
o g1+ 1(1 fs)/’l_l/zds,
where r = |x| and ¢ = B(y+ ¢, u+ %) 7" O

9.5 Orthogonal Expansion of Laguerre and Hermite
Polynomials

For the multiple Laguerre polynomials with respect to the weight function
WE(x) = x*e M with x* = 1%, |x;|", we start with

Theorem 9.5.1 [f f is continuous at the origin and satisfies
o O 2 e e < oo
xeRi,le

then the Cesaro (C,8)-means of the multiple Laguerre expansion of f converge
at the origin if and only if § > |K|+d — %

Proof The generating function of the Laguerre polynomials (Subsection 1.4.2)
can be written as

> L)LY (x)r" = (1 —r) "% lemr/(=r) Irl < 1.
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Summing the above formula gives a generating function for P, (Wk; x,0):

oo

EP WLxOr—z ZLk

n=0 n=0|k|=n
= (1 = ) Iel—delalr/ 1),

which implies that P, (WE;x,0) = Lt (]x]). Multiplying the last expression
by the power series of (1 —r)~9~! shows that

n! S+d
PRWEx,0) = gy L
n

Therefore, we conclude that

SWES0) = (g [, FOLT G w ) a

Using ¢ ! radial coordinates as in (8.4.3), it follows that

SS(WE f,0 )—WK(3T1)}1 /:( ‘y‘:lf(ry)y’(dy>

(5+1

X LLKH‘HS (r)r‘KHd_le_rdr.

The right-hand side is the (C,§)-mean of the Laguerre expansion of a one-
variable function. Indeed, define F(r) = ¢4 szl Sf(ry)y*dy, where the constant

cq =T(|x|+d)/TI%, T(x; + 1); then the above equation can be written as

Sa (W5 £,0) = 5° (Wiog 113 F,0),
where w,(¢) = t% " is the usual Laguerre weight function for one variable.
Note that ¢; = 1/ J;;_; y*dy, so that F is just the average of f over the simplex
{y : [y]=1}. This allows us to use the summability theorems for the Laguerre

expansion of one variable. The desired result follows from Szeg6 [1975, p. 247,
Theorem 9.1.7]. The condition of that theorem is verified as follows:

ot
1
SCd/l /I\ () | dy O e 2
y|=

Scaf o UGS e g,
x€RY,[x[>1

which is bounded under the given condition; it is evident that F' is continuous at
r =0if f is continuous at the origin. O

The result can be extended to R, by using a convolution structure of the
Laguerre expansion on R . The convolution is motivated by the product formula
of Laguerre polynomials,
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A
Lﬁ(x)L%(y) (7(l+l+\/1272 / LA x+y+2\/>ycose) —y/Xycos 6
T

X ja_1/2(y/Ay sin8)sin?* 6.d6,

where j, is the Bessel function of fractional order (see, for example, Abramowitz
and Stegun [1970]). For a function f on R, define the Laguerre translation
operator Tx’l fby

(A +1)24

T
TAf ) = | fyr 2y cospevens

X ja_12(y/Xysin @) sin** 6d6.
The product formula implies that L* (x)L} (y) = L* (0)TAL? (y). The convolution
of f and g is defined by

(F+g)(x /f )T g(y)yte ™ dy.

It satisfies the following property due to Gorlich and Markett [1982].

Lemma 9.5.2 Let A > 0 and 1 < p < . Then, for f € LP(wy,R.) and g €
L' (W?LaR+)’

Hf*é’”p,m < ||f||p,w/1||g||1.wl-

For the proof we refer to the paper of Gorlich and Markett or to the mono-
graph by Thangavelu [1993, p. 139]. The convolution structure can be extended
to multiple Laguerre expansions and used to prove the following result.

Theorem 9.53 Let k; >0, 1 <i<d, and 1 < p < . The Cesaro (C,9)-
means of the multiple Laguerre expansion are uniformly bounded as operators
on LP (Wi, RY) if 8 > | k| +d — §. Moreover, for p =1 and =, the (C,8)-means
converge in the LP (Wi, R%) norm if and only if § > |k| +d — %

Proof The product formula of the Laguerre polynomials and the definition of the
reproducing kernel gives
Ps (WK;x7y) = T;c,fl e ];ZdPIf(WK’an)

where T, acts on the variable y;. Therefore, it follows that

SUWii fox) = [, SOITI - TSR (Wit 0, Wi() dy,

+

which can be written as a d-fold convolution in an obvious way. Therefore,
applying the inequality in Lemma 9.5.2 d times gives

157 (Wies )l < PR (Wis 0, 1w 111w
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The norm of P% (W, 0,x) is bounded if and only if § > || +d — 1 by the Theo-
rem 9.5.1. The convergence follows from the standard density argument. O

The following result states that the expansion of an ¢!-radial function is also
an /' -radial function.

Proposition 9.5.4 Letw,(t) =t%e™" denote the Laguerre weight function. Let fj
be a function defined on Ry and f(x) = fo(|x|). Then, for the multiple Laguerre
expansion,

Sn(WEi f,x) = SS(W\K|+d71;f0a |x]).

Proof The proof is based on Proposition 8.4.7. Using (8.4.3) and the orthogonal-
ity of R}, we obtain

/Rd Fo(y)Pa(Wix,y)y<e Pl dy
4
:/ fr)rEitaler P, (Wie;x, ru)u® dudr
0 =1

=c /0 SRt TR 0y g TR (),

where the constant ¢ can be determined by setting n = 0. Taking the Cesaro means
gives the desired result. O

For the summability of the multiple Hermite expansion, there is no special
boundary point for R¢ or convolution structure. In this case the summability often
involves techniques from classical Fourier analysis.

Proposition 9.5.5 Let W be as in Definition 8.3.1. Let f,(x) = f(,/fx). Then,
for each x € RY,

)

Jim ) WE s S 6/ V) = Sy (W3 ).
Proof We look at the Fourier coefficient of f,,. Making the change of variables
x—y/\/H leads to

A W) =iy [ PV PEOWE oWE ()

B2 [ )1 0IPROVE iy VEVRG) (L~ Iy /)

where y, is the characteristic function of the set {y: ||y|| < /f}. Using the
fact that wE  u~("*49)/2 — wH a5 11 — co and Theorem 8.3.4, the dominated
convergence theorem shows that

. _ 2
tim a(Wey: ) =l [ ORI M dy

IJ*}OO
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which is the Fourier coefficient a?,(WH; f); the stated equation follows from
Theorem 8.3.4. O

A similar result can be seen to hold for the Laguerre expansion by using the
limit relation in Theorem 8.4.4. We leave it to the reader. As an application of this
limit relation we obtain

Proposition 9.5.6 Let w,(t) = \t|2“e_‘2. Let fo be an even function on R and
f(x) = fo(llx||). Then, for the orthogonal expansion with respect to WH (x) =
H?,:l_xiz’(ie_”x” )

1 . 13 .
Sy (Wigljl’f’x) =S (W|K|+(dfl)/2’f0’ ||x||>
Proof In the identity of Proposition 9.3.5 set f(x) = f(y/Hx) and replace

x by x/,/i; then take the limit u — oo. The left-hand side is the limit in
Proposition 9.5.5, while the right-hand side is the same limit as that ford =1. [

Furthermore, for the classical multiple Hermite polynomials there is an
analogue of Proposition 9.3.6 for ridge functions.

Proposition 9.5.7 Let WH(x) = e MI* and w(r) = e, Let f: R — R. For
Iyl =L andn >0,

S . Sy
Sa(WHf((x,)),9) = sy (wi f, (x,)).
The proof follows by taking the limit tt — eo in Proposition 9.3.6.

Corollary 9.5.8 Let f(x) = fo(||x||) be as in Proposition 9.5.6. Let f €
LP(WH;RY), 1 < p < oo, Then SS(WH; f) converges to f in the LP(WH;RY) norm
ifé >4t

Proof Using polar coordinates, we obtain

2

_ lell? _ °° 1 —
n d/z/Rd|Sf(WH;f>x)|pe M dy = 7 d/zﬁdfl/o S W1y a3 fo,r)r* e .

Hence, the stated result follows from the result for the Hermite expansion on the
real line; see Thangavelu [1993]. O]

For general results on the summability of multiple Hermite expansion, we
again refer to Thangavelu [1993].
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9.6 Multiple Jacobi Expansion
Multiple Jacobi polynomials are orthogonal with respect to the weight function
We p(x) = T4 (1 —x,)%(1 +x,)P; see Subsection 5.1.1. Recall that pﬁ,a'm(t)
denotes an orthonormal Jacobi polynomial with respect to (1 —¢)4(1 +1)°.

There is a convolution structure for the Jacobi polynomials, discovered by
Gasper [1972].

Lemma 9.6.1 Let o, 3 > —1. There is an integral representation of the form

i P ) ph P () = pi P /paﬁ Oaus? @), nzo,

(o.B)

where the real Borel measure diiy"’ on [—1,1] satisfies

b (aB)
/71|d/ix,y (t)|SMa —1<x»)’<17

for some constant M independent of x,y if and only if o0 > B and o+ 3 > —1.

Moreover, the measures are nonnegative, that is, d,uxg’ (t) > 0 if and only if
B>-Ltora+p>o0.

The product in Lemma 9.6.1 gives rise to a convolution structure of multiple
Jacobi polynomials, which allows us to reduce the summability on [—1,1]¢ to the
summability at the point € = (1,...,1), just as in the Laguerre case. The Jacobi
polynomials have a generating function (Bailey [1935, p. 102, Ex. 19])

_ a+,3+2 a+ﬁ+3
:ém( , 2r<1+x>>’ 0<rel.
(14 r)a+p+2 B+1 (1+r)?

Multiplying this formula with different variables gives a generating function for
the multiple Jacobi polynomials,

ir” 2 PaB HGO‘lﬁ’ (r;x:) ((1‘J"'ﬁ)(r;x)7
n=0 |k|=n

where 1 = (1,1,...,1). Further multiplication, by

61w (641),"
(l—r) _YEZ)T’
gives
3 O Wy = (1) 26 mn) 06
n=0

for the Cesaro (C, 6)-means of the multiple Jacobi polynomials.
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Theorem 9.6.2 Let o > —% and B; > —% for 1 < j < d. Then the Cesaro
(C,d)-means Sl‘z 1(Weap: f) of the product Jacobi expansion define a positive
approximate identity on C([—1,1))4 if § > YL (04 + Bi) +3d — 1; moreover;
the order of summability is best possible in the sense that (C,8)-means are not
positive for 0 < 8§ < Y4 (o;+B;) +3d — 1.

Proof Let p(a) = X4, oy if all o > 0 then p(o) = |&|. Lemma 9.6.1 shows
that it is sufficient to prove that, for a;; > fB;, the kernel Kid(Wa7[3;x, 1) >0if
and only if § > p(a) + p(B)+3d — 1. For d = 1, the (C,a + B + 2)-means
KZTﬁH(waﬁ ;x, 1) are nonnegative for —1 < x < 1, as proved in Gasper [1977].
Hence, by (9.6.1) with d = 1, the function (1 —r)~* B3G(@B)(r.x) is a com-
pletely monotone function of r, that is, a function whose power series has all
nonnegative coefficients. Since multiplication is closed in the space of completely

monotone functions, it follows that
d
(1— r)—p(a)—p<ﬁ>—3ngavﬁ>(r; x) =[]0~ r)—aj_ﬁ_/—3G£1“.i=ﬁj)(r;xj)

is a completely monotone function. Consequently, by (9.6.1) we conclude that
the means KZEJO‘HP(IBHM_I(Waﬁ;X, 1) > 0. We now prove that the order of
summation cannot be improved. If the (C,&)-means are positive then (C,§)-
means are positive for 6 > d. Hence, it suffices to show that the (C,p(a) +
p(B)+3d —1— o)-means of the kernel are not positive for 0 < ¢ < 1. From
the generating function and the fact that »F (a, b;c;0) = 1, we conclude that, for

§=p(a)+p(B)+3d-2,
(1= 6P (1) = (1-r)(1 =) PP

_ 3 o) 2k iy

Hence, setting

4, = P +P(B)+3d— 1)’<K,g;a>+9<ﬁ>+3d*2(wmﬁ; 1,1

k!
and comparing with (9.6.1), we conclude that
o)+ +2d
Ay = Ay = P& f;{('ﬁ) 5o,

Therefore, it follows that

(p(a) +p(B)+3d—0+2)2-1 KP(@)+p(B)+3d-1-0

(2717 1); 2n+1,d (Wavﬁ;_l’l)
2n+1 n
—0 _ 1 1—0)
-2 (2 )2ln+lkk'A":_ DT 1( 2 )ék A
S 2n+1-k)! S 2n—2k+1 (2n—2k)!

Since 0 < ¢ < 1, we conclude that the (C,p(ct) +p(B) +3d — 1 — 0)-means are
not positive. O
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The positivity of these Cesaro means implies their convergence, since it shows
that the uniform norm of §9 (We,p: f) is 1. The explicit formula for the reproduc-
ing kernel is known only in one special case, namely, the case when o; = §; = —5
for all i; see Xu [1995] or Berens and Xu [1996]. This formula, given below, is
nonetheless of interest and shows a character different from the explicit formu-
lae for the reproducing kernel on the ball and on the simplex. Denote the weight
function by Wy (x), that is,

Wo(x) = (1—xD) V21— V2 xel-1,1)%

We also need the notion of divided difference. The divided difference of a func-

tion f : R — R at the pairwise distinct points xg,xy,...,x, in R, is defined
inductively by
X0y s Xn—1| f— X1, Xn] f
[X()]f = f(X()) and [XU,...,xn]fz [ i ] [ n} .
X0 — Xn

The difference is a symmetric function of the coordinates of the points.

Theorem 9.6.3 Ler1=(1,1,...1). Then
P,(Wo;x,1) = [x1,...,x4] Gy

with

G,(t) = (_1)[(d+1)/2]2(1 _t2)(d71)/2 T () for d even,
U,—1(t) Sord odd.

Proof The generating function of the Chebyshev polynomials 7,, and U,, given
in Proposition 1.4.12, implies that

U= S w1
Mo (-2m+r2) 5

The left-hand side can be expanded as a power series using the formula

1 bt
a=b()  TIL (a—bw)’

which can be proved by induction on the number of variables; the result is

[X1,. .., X4]

(/A el Y D B
H?:1(1—2rxi+r2) - (2,,)(171 X1y-e-yXd 1—2r(-)+72
(l—rz)d &
= ———[x1,. Un(+)
2y 2
__nl-—- d - P d d
=2 )617 z Z k Uy 2k+d— 1()
n=0 k=0
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where the second equation uses the generating function of the Chebyshev poly-
nomials of the second kind, given in Definition 1.4.10, and the third equation uses
the fact that [x),...,x4]p = 0 whenever p is a polynomial of degree at most d — 2.
Using Uy, 1(t) = sinm@/sin § and sinm@ = (el"® —e=1"9) /(21), with t = cos 0,
as well as the binomial theorem, we obtain

i (Z) (=) Un-kra-1(2)

k=0
1 i <;<l)(_l)k(sin0)n2k+d

sinf /=
= 1 - [ei(n+d)6(1 -~ e—2i9)d +e—i(n+d)e(1 -~ e2i0)d]
isin
in6 -1 d _ ,—in6
— i) (sing) T giig
i

from which the stated formula follows on comparing the coefficients of 7" in the
two power expansions. O

Proposition 9.6.4 Define x = cos® = (cos9y,...,cos0,) and y = cos® =
(cosdy,...,cosdy). For T € 74, denote by ® + O the vector that has components
¢; + 1;6;. Then

P,(Woix,y) = Y Pp(Wo;cos(®+10),1).

d
TELS

Proof With respect to the normalized weight function 7' (1 —2)~'/2, the
orthonormal Chebyshev polynomials are Ty(¢) = 1 and T},() = /2 cos n6. Hence

P,(Wo;x,y) = 24 z/ cos a1 01 cos o @y - - -cos 00, cos 0y Py,
lot|=n

where o € N g and the notation ¥’ means that whenever ¢; = 0 the term containing

cos ¢;0; is halved. Then the stated formula is seen to be merely a consequence of
the addition formula for the cosine function. U

The multiple Chebyshev expansion is related to the multiple Fourier series on
T<. In fact, P, (Wp;x,1) is the Dirichlet kernel in the following sense:

P,(Wo;x,1) = Z el O‘e x =cosO.
o} =n
The corresponding summability of the multiple Fourier series is called ¢; summa-
bility; it has a completely different character to the usual spherical summability
(in which the summation of the kernel is taken over multi-indices in {a € Ng :
|l = n}); see, for example, Stein and Weiss [1971], Podkorytov [1981] or
Berens and Xu [1997].
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9.7 Notes

Section 9.1 Proposition 9.1.2 and its proof are extensions of the one-variable
results; see Freud [1966, p. 139]. The properties of best polynomial approx-
imations can be found in books on approximation theory, for example,
Lorentz [1986], Cheney [1998] or DeVore and Lorentz [1993].

For d = 1, the asymptotics of the Christoffel function are known for general
weight functions. It was proved in Maté, Nevai and Totik [1991] that

lim nA, (du,x) =y’ (x) V1 —x2 forae. xe[-1,1]

for measures u belonging to the Szegd class (that is, log u’(cost) € L'[0,27x]). For
orthogonal polynomials of several variables, we may conjecture that an analogous

result holds:
. (n+d W(x)
1 A, (W;x) = ,
pim (7wt =

where Wy is the analogue of the normalized Chebyshev weight function for the
given domain. This limit relation was established for several classical-type weight
functions on the cube [—1,1]¢ with Wy(x) = 74(1 —x3)"1/2... (1 —x2)~1/2,
on the ball B¢ with Wy(x) = wP(1 — ||x]|*)~"/? and on the simplex T¢ with
Wo(x) = wafl/z - -x;/z(l — |x[)~"/2, where w? and w” are normalization con-
stants, so that Wy has unit integral on the corresponding domain; see Xu [1995],
Bos [1994] and Xu [19964a, b], The above limit was also studied for a central
symmetric weight function in Bos, Della Vecchia and Mastroianni [1998]. More
recently, fairly general results on the asymptotics of the Christoffel function were
established in Kro6 and Lubinsky [2013a, b]; their results were motivated by the
universality limit, a concept originating in random matrix theory.

Section 9.2 Kogbetliantz’s inequality on the positivity of the (C,8)-means
of Gegenbauer polynomials is a special case of a much more general positiv-
ity result on Jacobi polynomials due to Askey and to Gasper (see, for example,
Askey [1975] and Gasper [1977]). These inequalities also imply other positivity
results for ~A-harmonics.

For the weight function A, (x) = [T%, |xi|*, which is invariant under Zg, the
result in Corollary 9.2.4 can be improved as follows.

Theorem 9.7.1 The (C,0)-means of the h-harmonic expansion of every con-
tinuous function for hy(x) = T1%_, |xi| converge uniformly to f if and only if
S > % + |K| — minlgigd K;.

A further result shows that the great circles defined by the intersection of S9!
and the coordinate planes form boundaries on $¢~!. Define
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d
§at Sd_l\ Ufxres®:x =0},
i=1

which is the interior region bounded by these boundaries on $¢~ 1. Then, for con-
tinuous functions S (H2 <, [>x) converges to f(x) for every x € Slm provided that
8 > 452 independently of k. The proof of these results is in Li and Xu [2003],

Wthh uses rather involved sharp estimates of the Cesaro means of the repro-
ducing kernels given in Theorem 7.5.5. For L? convergence with 1 < p < o, a
sharp critical index for the convergence of SS (h2, f) was established in Dai and
Xu [2009b].

Section 9.3 The summability of the expansion in classical orthogonal poly-
nomials on the ball can be traced back to the work of Chen, Koschmieder, and
several others, where the assumption that 2 is an integer was imposed; see Sec-
tion 12.7 of Erdélyi et al. [1953]. Theorem 9.3.4 was proved in Xu [1999a].
The general relation between summability of orthogonal expansion on the sphere
and on the ball is studied in Xu [2001a]. For the weight function W2 u(x) =

4l (1— ||x]|*)#=1/2, which is invariant under Z¢, Corollary 9.3.3 can be
improved to a sharp result: S5 (W,f “, f) converges to f uniformly for continuous
functions f if and only if § > &1 + |x| — minj<j<g41 X;, with K741 = U as in
Theorem 9.7.1; further, p01ntW1se convergence holds for x inside B¢ and x not
on one of the coordinate hyperplanes, provided that § > 451, The proof uses
Theorem 9.3.1.

Section 9.4 A result similar to that in Theorem 9.7.1 also holds for classical
orthogonal polynomials on the simplex. The proof requires a sharp estimate for
the Cesaro means of the reproducing kernels given in Theorem 8.2.7. The esti-
mate is similar to that for the kernel in the case of Z‘Zi -invariant h,zc, but there are
additional difficulties. A partial result appeared in Li and Xu [2003]; a complete
analogue to the result on the ball was proved in Dai and Xu [2009a], that is, that
S‘S(WTﬂ, f) converges to f uniformly for continuous functions f if and only if
5>y || —minj<;<441 k; with k41 = . The pointwise convergence in the
mterior of T¢ holds if § > %. Furthermore, a sharp result for convergence in
LP, 1 < p < oo, was established in Dai and Xu [2009b].

Section 9.5 For Laguerre expansions, there are several different forms of
summability, depending on the L? spaces under consideration. For example,
considering the Laguerre functions 2% (x) = L%(x)e */2x~%/? and their other
varieties, .Z, O‘(1 K)x~% or L%(x*)(2x)!/2, one can form orthogonal systems in

L?(dx,R,) and L*(x***'dx,R,). Consequently, there have been at least four
types of Laguerre expansion on R studied in the literature and each has its
extension in the multiple setting; see Thangavelu [1992] for the definitions. We
considered only orthogonal polynomials in L?(x* dx; R, ), following Xu [2000d].
For results in the multiple Hermite and Laguerre expansions, see the monograph
by Thangavelu [1993].
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Section 9.6 For multiple Jacobi expansions the order of 6 can be reduced if
we consider only convergence without positivity. However, although their product
nature leads to a convolution structure, which allows us to reduce the summability
to the point x = 1, convergence at the point 1 no longer follows from the product
of the results for one variable.

Theorem 9.7.2 Let a;,3; > —%. The Cesaro (C,0) means of the multiple
Jacobi expansion with respect to Wy, g are uniformly convergent in the norm of
C([-1,1]%) provided that § > 2?:1 max{c;,B;} + 4.

Similar results also hold for the case where a;; > —1, 8; > —1 and o;; + 3; >
—1, 1< j <d, with a properly modified condition on §. In particular, if o = B =
—% then convergence holds for & > 0. This is the order of the ¢; summability
of the multiple Fourier series. The proof of these results was given in Li and
Xu [2000], which uses elaborate estimates of the kernel function that are written
in terms of the integral of the Poisson kernel of the Jacobi polynomials.

Further results The concise formulae for the reproducing kernels with
respect to the 42 associated with thi on the sphere, W,g w on the unit ball and
wl u on the simplex open the way for in-depth study of various topics in approx-
imation theory and harmonic analysis. Many recent advances in this direction
are summed up in the book Dai and Xu [2013]. These kernels are also useful
in the construction of highly localized bases, called needlets, a name coined
in Narcowich, Petrushev, and Ward [2006], where such bases were constructed
on the unit sphere. These bases were constructed and studied by Petrushev and
Xu [2008a] for Wf on the ball; by Ivanov, Petrushev and Xu [2010], [2012] for
W,g y on the simplex and on product domains, respectively; by Kerkyacharian,
Petrushev, Picard and Xu [2009] for the Laguerre weight on Ri; and by Petrushev
and Xu [2008b] for the Hermite weight on R4,

The Cesaro-summability of orthogonal expansions on a cylindrical domain was
studied by Wade [2011].
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Orthogonal Polynomials Associated with
Symmetric Groups

In this chapter we consider analysis associated with symmetric groups. The
differential-difference operators for these groups, called type A in Weyl group
nomenclature, are crucial in this theory. The techniques tend to be algebraic,
relying on methods from combinatorics and linear algebra. Nevertheless the
chapter culminates in explicit evaluations of norm formulae and integrals of
the Macdonald—Mehta—Selberg type. These integrals involve the weight function
Ili<icj<a |xi —X; |2K on the torus and the weight function on R? equipped with the
Gaussian measure. The fundamental objects are a commuting set of self-adjoint
operators and the associated eigenfunction decomposition. The simultaneous
eigenfunctions are certain homogeneous polynomials, called nonsymmetric Jack
polynomials. The Jack polynomials are a family of parameterized symmetric
polynomials, which have been studied mostly in combinatorial settings.

The fact that the symmetric group is generated by transpositions of adja-
cent entries will frequently be used in proofs; for example, it suffices to prove
invariance under adjacent transpositions to show group invariance. Two bases of
polynomials will be used, not only the usual monomial basis but also the p-basis;
these are polynomials, defined by a generating function, which have convenient
transformation formulae for the differential-difference operators. Also, they pro-
vide expressions for the nonsymmetric Jack polynomials which are independent
of the number of trailing zeros of the label o € Ng. The chapter concludes with
expressions for the type-A exponential-type kernel and the intertwining operators
and an algorithm for the nonsymmetric Jack polynomials labeled by partitions.
The algorithm is easily implementable in a symbolic computation system. There
is a brief discussion of the associated Hermite-type polynomials.

10.1 Partitions, Compositions and Orderings

In this chapter we will be concerned with the action of the symmetric group
S; on R and on polynomials. Some orderings of Ng are fundamental and are
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especially relevant to the idea of expressing a permutation as a product of adjacent
transpositions.

Consider the elements of S, as functions on {1,2,...,d}. For x € R and
w € Sy let (xw); = x,,;) for 1 <i < d; extend this action to polynomials by writ-
ing wf (x) = f (xw). This has the effect that monomials transform to monomials,
w(x%) = "%, where (wat); = @,,-1(; for o0 € N&. (Consider x as a row vector
o as a column vector and w as a permutation matrix, with Is at the (w(j), )
entries.) The reflections in Sy are transpositions interchanging x; and x;, denoted
by (i, j) for i # j. The term composition is a synonym for multi-index; it is com-
monly used in algebraic combinatorics. The basis polynomials (some orthogonal)
that will be considered have composition labels and are contained in subspaces
invariant under S;. In such a subspace the “standard” composition label will be
taken to be the associated partition. We recall the notation & for the unit label:
(&) = 0;,j- This will be used in calculations of quantities such as ¢t — & (when
oE Ng and o; > 1).

Definition 10.1.1 A partition (with no more than d parts) is a composition A €
Ng such that A; > A, > --- > A;. The set of all such partitions is denoted by Ng’P.
For any o € Ng, let o™ be the unique partition such that o = wer for some
w € S;. The length of a composition is £ (o) :== max {i : oz > 0}.

There is a total order on compositions, namely, lexicographic order (“lex order”
for short) (see also Section 3.1), defined as follows: o >, B means that o = f3;
for 1 <i<m and oy, > B, for some m <d (o, € Ng); but there is a partial
order better suited for our purposes, the dominance order.

Definition 10.1.2 For 8 € N¢, say, o dominates 8, that is, & > 3, when
S 0 >3! Biforl < j<d.Also, o - B means o = B with o # . Further,
o > B means that || = |B]| and either ™ = B+ or ot =1 and o >~ B.

Clearly the relations = and > are partial orderings (o > 3 means o/ > 3 or ot =
B). Dominance has the nice property of “reverse invariance”: for o« € Ng let of =
(0, 04-1,...,00); then, for o, B € N¢, |a| = |B| and o = B implies that ¥ =
o In our applications dominance order will be used to compare compositions
o, B having ot = B and partitions A, u having || = |u|. The following lemma
shows the effect of two basic operations.

Lemma 10.1.3  Suppose that o € N¢ and A € Ng’P; then
@) ifo; > ojandi < jthen o = (i, j)o;

(i) if 4 > Aj+1 (implying i < j) then A = u™, where y; = A; — 1, 1; = A;+ 1
and [y = A for k # 1, j;
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(i) ot = a;
+
@v) if i >Aj+1land 1 <s <A —Aj then A >~ (,u(s)) where ,J(S) =A—s,

i

W =2+ sand ul = A for k# i, j (that is, 1) = 4 —s (& —€;)).

Proof Forpart (i)let B = (i, ) o;then Y° o =250 B+ (i — ) fori <m <
J, otherwise 3" | o; = ¥}, B;. For part (ii) assume (by relabeling if necessary)
that A; > Aip1 > -+ > Aj_1 > A; > Ajqq (possibly j =i+ 1) and that now = A
for all k except i, for which p; = A; — 1 and j, for which u; = A;+ 1. By construc-
tion t; > pi and Wy > W, so u = pt (this is the effect of the relabeling) and
clearly A = u™. For part (iii) note that o™ can be obtained by applying a finite
sequence of adjacent transpositions (apply (i,i+ 1) when o; < @ 41).

T +
For part (iv), note that (,u(kiflffs)) = (/.L(S>) . Part (ii) shows that A >

(y(l))+ - <u<2>>+ e (u(’))+ for t = [% (Ai—A4;)], and this proves
part (iv). 0

10.2 Commuting Self-Adjoint Operators

The differential-difference operators of Chapter 4 for the group S, allow one
parameter, denoted by k, and have the formula, for f € M¢and 1 <i<d,
_9f(x) Ed: ) —f ()

9; = K
R

)

often abbreviated as d; + k'Y ;; [1 — (i, /)] / (xi — x;).
Lemma 10.2.1 The following commutants hold for 1 <i,j <d:

W) xiZif (x) — Dixif (x) = —f (x) =K Xj2i (i, ) f (x);
(i) x; Zif (x) — Dix; f (x) = k (i, ]) f (x) for i # j.

Proof In Proposition 6.4.10 set u = &;,t = €;; then
XiDif (x) = Dixif (x) — (g, &) f (x) =k Y (€j,€ — &) (i,k) f (x).
ki

Only the positive roots v = + (& — &) appear in the sum (the inner product is the
usual one on RY). O

Lemma 10.2.2 For m,n € Ny,

max{m,n}—1
=sign(m—n) Y, Pt
i=min{m,n}

m..n n
XXy — XXy
X1 —X2
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We will describe several inner products (-,-) on IT¢ with the following
properties; such inner products are called permissible.

1. if p € 2 and q € 2% then n # m implies that (p,q) = 0;
2. for p,q € TI¥ and w € Sy, (wp,wq) = (p,q);
3. for each i, the operator Z;x; is self-adjoint, that is,

(Zi(xip (%)) ,q (x)) = (p (%), Zi (xiq (x))) -

One such inner product has already been defined, in Definition 7.2.2, namely
(p,q) =p(D1,Dn,...,24)q(x)]|x=0. Here 2 = x; (a multiplication factor) and
so Z;x; is self-adjoint for each i. These operators do not commute, but a sim-
ple modification provides sufficient commuting self-adjoint operators that the
decomposition of TI¢ into joint eigenfunctions provides an orthogonal basis.

Recall that for two linear operators A, B, operating on the same linear space,
the commutant is [A, B] = AB — BA.

Lemma 10.2.3 For i # j, [Dixi,2xj] = K (Zixi — 2;x;) (i, ]); moreover,
[%xi,:@jxj — K(i,j)] =0.

Proof By part (ii) of Lemma 10.2.1, x;%; = Z;x; + k (i, j). Since 2,2 = 9%,
we have
%xi@jxj — @jxj%x,- =9, [@jxi+ K'(i,j)]x]' — @j (@,’Xj + K(i,j))xi
=K (Zixi— Djxj) (i, J).

Also, K (Zixi — Zjxj) (i, j) = x[ZDixi (i, j) — (i, ) Dixi]. O

Definition 10.2.4 For 1 < i < d define the self-adjoint operators %; on IT¢ by
i—1
U =Dxi+x—x Y, (j.i).
=1

j=

Note that each %; preserves the degree of homogeneity; that is, it maps 229
to 2¢ for each n. The transpositions are self-adjoint because ((i,)p,q) =
{p,(i,/)"'q) = (p, (i, j)q) by the hypothesis on the inner product.

Theorem 10.2.5 For 1 <i< j<d, UU; = UU.

Proof Write % = Zixi + K — kA and %; = Zx; + x — k (i, j) — KB, where
A =3 (k,i) and B = ¥y rzi (k, j). Then [%, %) = [Dixi, Djxj — x (i, ])] —
K[Zix;,B) — k[A, Zxj|+ k*[A, B+ (i, j)]. The first term is zero by Lemma 10.2.3,
and the middle two are zero because the transpositions in A,B individually
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commute with the other terms; for example Zx; (k,j) = (k,j) Zix; for k # i.
Further,

AB+G)] = Y (ki) (5.))]

s=1

~
I

1
1
= 2, (k1) (K, j) = (i,.J) (k, 0)] = [(k, j) (K, ) = (k1) (i, j)])

k

Each bracketed term is zero since (k,i)(k,j) = (i,j)(k,i) in the sense of
multiplication in the group S,;. O

We consider the action of %; on a monomial x*. For any i, by Lemma 10.2.2
we have

Dixix™ = (O!i-i—l)xa—l—K'ZXB—KZxﬁ
BeA BeB

where

A ZU{OC-i-k(Ej—Si) (o > 0)),0 <k <o— o},
J#
B=|J{a+k(ei—¢): (o <aj—1),1 <k<aj—o;—1}.
J#i
The combined coefficient of x* is (o; + 1) + k#{j : aj < 0, j # i}. Monomials
with coefficient x are of the form xB, where

B=(ou,...,0i—k,....0;+k,...) for1 <k<o—ay;

in each case ot = B, by part (iv) of Lemma 10.1.3, except for § = (i,j) &
(for k = o;; — ;). Monomials with coefficient —k have the form xP, where B=
(ar,...,0i+k,...,05—k,...)for 1 <k < oaj—o;—1. Again by Lemma 10.1.3,
ot = BT. When the remaining terms of %; are added, the effect is to remove the
terms K (j,7)x* with j <iand o;; < o, for which (j,i) o > o.. Thus

Uix® = (k(d—#{j:aj >0} —#{j: j<iand oj = 0;}) + i + 1) x* + qqi,

where g is a sum of terms +xxP with o > B. This shows that %; is repre-
sented by a triangular matrix on the monomial basis (triangularity with respect to
the partial order >). It remains to study the simultaneous eigenfunctions, called
nonsymmetric Jack polynomials, in detail.

10.3 The Dual Polynomial Basis

There is a basis of homogeneous polynomials which has relatively tractable
behavior under the actions of &; and %; and also provides an interesting inner
product. These polynomials are products of analogues of x!'.
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Definition 10.3.1 For 1 <i <d define the homogeneous polynomials pj, (x;;x),
n € Ny, by logarithmic differentiation applied to the generating function:

o d
S pu (i) y = (1—xy) " [T (1 —x9) 7%,
— j=1
valid for [y| < min; (1/|x;]).
We will show that Z;p, (xi;x) = (dk +n) pp—1 (xi;x) and Z;p, (x;;x) = 0 for

J # i, using an adaptation of logarithmic differentiation. Let fy = (1 —xiy)71 and
fi= H?Zl (1—x;y)~ " (the latter is Sy-invariant); then

Zi(fofi) y*(fof1)/dy _ (1+K)y+KZ 1 (1_ l—xiy)

Joh fofi I=xiy — Zxi— 1—xjy
2, d 2
A Kk Y Xj
1 —x;y = 1 —xjy
:(1—|—K)y+1czyl L = (dx+1)y.
JE T

In the generating function,
z-@lpﬂ xl’ y 7217" -xh l’l+dK+1) ’l+l’

as claimed. For j # i,
B L (1)
fofi I —xjy Xj—X I —xjy

These polynomials are multiplied together (over i) to form a basis.

Definition 10.3.2 For o € N¢ let py (x) = [T, pe, (xi3x); alternatively, set

d

d
z Po (x H( 1 —x;y;) ]H(lijyi)ik)v

aeNd i=1 J=1

valid for max; [y;| < min; (1/]x;]).

The polynomials pg(x) transform like monomials under the action of Sg;
indeed, if w € S; then wpg (x) = pg (xw) = pye (x); this can be proved using
the generating function.

Denote the generating function by F(x,y). The value of &;p,, will be derived
from the equation

DF yi2 JF

yivi [F = (v, 30)F]
== +(dxk+1)yi+x ,
F o Fon ’ ,z#, i —yj)F
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where (y;,y;) denotes the interchange of the variables y;,y; in F. A typical term
in the difference part has the form

! (1_(1—Xiyi)(1—xjyj)): Yi— Vi
Xi —X; (1—xiyj) (A =xjyi)/ (L =xiy) (1 —xjyi)

Using similar methods as for p, (x;;x) we obtain

1 oF
—(9F— 27)
F( ' Vi 8yl-
iy y,l i( Yixj )+K2 yi—y;
11— xlyl i=1 17xly] I*iji j;ﬁi(l*xiyj)(lixjyi)
Yi—Yj Yj Vi
=(dx+1)yi+x { + —
)% ,z#, (1 =xiyj) (L=xjyi)  1=xiy;  1=xpyi
yiyj (xi —x;j)

=(dxk+1)yi+x ;
A 8 T )

the sum in the last line equals

szlyj )’/7)’1)F).
i (y y])F

As before, if the superscript (x) refers to the variable being acted upon then
Y xF(x,y) = 2°)yiF (x,y) for each i. Indeed,

1 Xiyi L xiyj
— D F =14 —"— 4Kk Yy ——
F! ! 1 — Xiyi ]:2'1 1 —)Cl'yj

+KY

1 (x__xj(l—xz'yl')(l—xjy/))

Zixi— (1 —xiy;) (1= x;i)
SRS I /) S,
1—xy; 7 (L=axiyj) (1 =2xvi)

which is symmetric in x,y (as is F, of course).

Proposition 10.3.3 For o € Nd and 1 <i<d, Z;pa =0 if o; =0, else
Dipa =K (1+#{j: 0 < 0i}) + O] pa—e; + K Y, pp—K D, Pp:
BeA BeB
where
A=|Hoa+ke—(k+1)g; :max{0,0 — o} <k <o;—1},
J#i
B=J{a—(k+1)&+kej:max{1,0— 0} <k<o—1}.
J#i
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Proof We have that Z;p,, is the coefficient of y*

( l&a)}+(dK+1)yl)F+Kz Yiv [ 7(yj7yi)F].

i# VY i =)
The first term contributes (dk + &) pa—e,. For any j #ilet f € N¢ satisfy B = o
fork #1, j. Then pg appears in the sum with coefficient k when there is a solution
tofi—s=o04 Bj+1+s=a;, 0<s5s< B —p;—1 (this follows from Lemma
10.2.2), that is, for 0 < B; < min{oci— Lo — 1} and Bi+B; =0+ 0o;— 1, and
pp appears in the sum with coefficient —x when there is a solution to the same
equations but with ; and 3; interchanged. In the case o; > o; the values f8; = o; —

1, B; = oj appear (so that B = 7). These are deleted from the set B and combined
to give the coefficient of py; the total is k (d —#{j : j #iand a; > o}). O

A raising operator for the polynomials p,, is useful, as follows.

Definition 10.3.4 For o € Ng and 1 <i<d let pjpg = pa+e;» and extend by
linearity to span{pg : B € N3 }.

Proposition 10.3.5 For 1 <i <d the operator Z;p; satisfies

Dipipa =K (d—#{j: 0> 0})+ i+ 1]pa+K Y pp—K Y, pg,
BeA BeB

where o € N‘é and
A=|Ha+k(g—¢g) max{l,a;— o} <k <o},
J#
B=|J{a+k(ej—&) :max{1,06—oj + 1} <k < ot}
J#i
Proof This is a consequence of Proposition 10.3.3 with « replaced by o + ;.

The sets A, B used before are reformulated, setting Bj =oj—kinA and Bi=o0;—k
in B. O

Corollary 10.3.6 For o€ Ndand 1<i<d,
Dipire = [K(d—#{j: ;> 0i}) + i+ 1] pa+K Y, Piijyo+ Kqais

o> 0

where qq.; is a sum of terms of the form +pg with |B| = |ot| and BT ~ o and
o; = 0 implies that B; = 0.

Proof Suppose that B,y € Nd with |3 = |y| and B = ¥ for all k # i, j (for any
i, j with i # j); then part (iv) of Lemma 10.1.3 implies that 7+ = ¥ if and only
if min{B;,B;} <min{%,y;} <max{y,7;} <max{B;,B;}; of course the latter
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inequality is redundant since 8; + B; = ¥ + 7;. Then any 8 € AU B (the sets in
Proposition 10.3.5) satisfies the condition min {;, 8;} < min{0;,0;} for some
J; the exceptions B = (i, j) o occur in A when o; < aj — 1. O

It remains to show that {py : o0 € Nf)l } is actually a basis for T1¢ for all but
a discrete set of negative values of x; further, Z,p; = Z;x; + K, as one might
already suspect from the coefficient of p, in Z;p;po. The following is valid for
span{py } C I1¢, which in fact is an apparent restriction, only.

Proposition 10.3.7 For 1 <i<d, Zip; = Dixi + K.

d
Proof The generating function for p,(x;;x) is (1 —xy) ™' IT (1 —x;¥)"~. Let
Jj=1
H?Zl (1—xjy) © = ¥ o ma(x)y", where m, is a homogeneous Sy-invariant
polynomial; thus

n+1
Pn+1 xh zx To+1— j —nn+l(x)+xipn(xi;x)~

Also, 97,11 (x) /dx; = Kpy (xi;x) because
> d Ky &
2() ox; T (x)Y H —Xjy)

1 XY o

Let a € N¢ and write py(x) = pe, (x;;x)g(x), where g(x) = [1 Pao;(xj;x). Then
J#i

Dipipa — Dixipa = Zi[(P1+o; (xi3X) — Xipo; (xi3X)) 8 (x)]
= 7 [m1+0,(x)g (x)]

= (%nHai(x))g(X) + 140, () Zi8 (x)
= Kpo; (xi:x)g (x) = Kpe (x).

This uses the product rule for &; with one factor invariant and the fact that
2;8(x) = 0 (Proposition 10.3.3). O

Proposition 10.3.8 For 1 <i <d and x > 0, the linear operator Z;p; is one to
one on span{pg : o € N }.

Proof Because Z;p; = (1,i) Z1pi1(1,i) it suffices to show that Z;p, is one to
one. The effect of Z1p; on {pg : & € N&,|ot| = n} respects the partial order
< because Z1p1po = [k (d —#{j: ;> ou})+ou+1]po+ KXa>0 P(1j)a +
Kqq,1 (Corollary 10.3.6), where each term pg in gq, satisfies B+ >~ o and
(1,j) o = o when a; > oy (part (i) of Lemma 10.1.3). O
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To show that {py, : o € N&} is a basis we let
Y = span{pg : o0 € N, |ot| = n, 0= 0 for i > m}

and demonstrate that dim¥," = dim %), where 27" are the homogeneous
polynomials in m variables, by a double induction argument for 1 <m < d.

Proposition 10.3.9 Fornec Ny, 1 <m<dandx >0,

m+n—1
n

dim¥," = < > with ym={pe P Pp=0, fori>m}.

Proof The boundary values are dim 7" = 1 and
dim¥,' = dim[cp, (x1;x) : c €R] = 1;

the latter holds because p,(1;(1,0,...)) = (x+1),/n! # 0. Suppose that
dim¥," = (m+:l’_1) for all pairs (m,n) with m+n = s and 1 <m < d; this implies
that the associated {py } are linearly independent. For m < d and m+n = s we
have

Y = span{pg : || =n,0 =0fori >m+ 1,01 > 1} +#"
:pm+l%,'ZTl+%lm-

This is a direct sum because Z,,+1pPm+1 1S one to one on ”f/n"ﬁl and D V)" =
{0}, which shows that dim 7"+ = dim 7" }! +dim 7" = ("lrfffl) + ('”Z*l) =

(™) by the inductive hypothesis. Further, %" = {p € ¥ : P,.1p = 0};
together with ¥, C ¥;2 C --- C #,2 this proves the remaining statement. O

We now discuss the matrices of %; with respect to the basis { Po O E Ng};
their triangularity is opposite to that of the basis {x* : o € N‘Oi}. The eigenvalues
appear in so many calculations that they deserve a formal definition. There is an
associated rank function r.

Definition 10.3.10 For o € Nd and 1 <i < d let
ro(i)=#{j:a; >0} +#{j: 1< j<ia;j=0},
éi(a)=(d—rq()+1)k+a;+1.

For a partition A € Ng’P, onehasry (i)=iand & (A) =x(d—i+1)+ A+ 1.

Thus ry is a permutation of {1,...,N} for any o € Nd.

Proposition 10.3.11 Fora e N‘é and 1 <i<d, Upq =& (a) pa+Kqa,i, where
o is a sum of £pg with B > o also, if o; = 0 for each j > m then B; = 0 for
j>m, with2 <m<d.



328 Orthogonal Polynomials Associated with Symmetric Groups

Proof By Corollary 10.3.6 and Proposition 10.3.7,
Uipo = [K(d—#{j: 0 > 0}) + 0+ 1] pa
K Y, Plijje— KD Plij)a+ Kqai
>0 j<i
=&i(@)pa+ KD {Pijye > i05> 04}
- Kz{p(i,j)a D <i30 < 0} +Kqa,

where g ; is a sum of pg with B - a* and |B| = |a|. Also, (i, j) ot = o in
the two cases j > i,0; > o; and j < i,0; < o that s, (i, j) o > 0. O

Corollary 10.3.12 For oo € Nd and 2 <m < d, if aj = 0 for all j > m then
Uipo = [K(d—i+1)+1] pe = Ei(0) po for all i > m.

Proof Suppose that o satisfies the hypothesis and i > m; then, by Proposi-
tion 10.3.5,

Dipipe = [k (d—#{j: ;> 0})+ 1 pa+K Y, (i,))pas
(Xj>0
and KZj<i (i,0) po = K‘Zaj>0 (i,)) pa+x[#{j: j<i;o;=0}] po. Thus %pe =
[K(d—#{j:aj >0}—#{j:j<i;06j:0})+1]pa = [K(d—i—l—l)—kl}pa. ]

The set of values {& ()} determines o™, provided that x > 0: arrange the
values in decreasing order, so that if o; > ¢ then &; (o) > & () and if o; = @)
and i < j then & (o) — &; (o) = mxk for some m = 1,2,... It is now easy to see
that the list {&; (&) ,...,&s ()} determines o and thus a uniquely defined set of
joint eigenvectors of {%;}. The following are the nonsymmetric Jack polynomials
normalized to be monic in the p-basis.

Theorem 10.3.13 For o € Ng let §y be the unique polynomial of the form

Ca :Pa+z{3(ﬁva)pﬁ B> o}

which satisfies UGy = Ei(a) o for 1 < i < d. The coefficients B(f,0) are in
Q(x) and do not depend on the number d of variables provided that o.; = 0 for
all j > m for some m and d > m. For any permissible inner product, o # B implies

that (£q,Cg) = 0.

Proof The existence of the polynomials in the stated form follows from the self-
adjointness of the operators %; and their triangular matrix action on the p-basis
ordered by >. Suppose that o; = 0 for all j > m, with some fixed m. Because
each % with i <m has span{pg : B; = 0 for all j > m} as an invariant subspace,
this space contains the joint eigenvectors of {%; : 1 < i < m}. In the action of
%; the value of d appears only on the diagonal, so that %; — (dx) 1 has the same
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eigenvectors as %; and the eigenvectors have coefficients that are rational in Q (k)
with respect to the p-basis. By Corollary 10.3.12 any polynomial in span{pg :
B; = 0 for all j > m} is an eigenfunction of %; with eigenvalue k (d —i+1)+1
when i > m (as was shown, this agrees with ;(a) when o;j = 0 for all j > m).

If o, B € N§ and o0 # B then &(ax) # &(B) for some i; thus ({4, Eg) = 0 for
any inner product for which %; is self-adjoint. O

10.4 S;-Invariant Subspaces

Using only the properties of permissible inner products (that they are S,;-invariant
and that each Z;p; or Z;x; is self-adjoint), many useful relations can be estab-
lished on the subspaces span{{, : o™ = A} for any partition A € Ng"P. We will
show that ({y, ) is a multiple of (£, ,{;) which is independent of the choice
of inner product. Of course, ({o,lg) = 0 if o # B because & (o) # &i(B) for
some i. It is convenient to have a basis which transforms like x* or p, (where
(xw)* = x"* for w € Sy), and this is provided by the orbit of ;. In fact the
action of S, on the eigenfunctions ,, is not conveniently expressible, but adja-
cent transpositions (i,i + 1) not only have elegant formulations but are crucial in
the development.

Lemma 10.4.1 For 1 <i <d the commutant (%, (j,j+1)] =0 for j > i or
j<i—land (i,i+1)% = %+ (i,i+1)+ K

Proof First, [2ipi, (j,j+ 1) =01if j<i—1orj>i. Also, (j,k)(m,j)(j.k)=
(m, k) provided that j, k,m are all distinct. This shows that [Y;;(k,i),(j,j+1)] =
0 under the same conditions on j, when j < i— 1 the key factis (j, j+ 1){(j,i) +
G+ 1,0} ={(+Li)+ (j,)}(,j+1). For i = j, we have (i,i+1)% =
9i+1pi+l(iai + 1) - K2m<i(m’i + 1)(171 + 1) = %Jrl(i’i + 1) + K(i’i + 1)
(i,i+1). O

Proposition 10.4.2 For o € Ng, if 0; = 041 for some i < d then (i,i+1){y =
Cas ifA € Ng’P and wh = A then wg, = &) withw € S,.

Proof Let g = (i,i+1){y — {y. By the lemma, %;g = &;(a)g when j < i
or j > i+ 1, while %118 =& (a)(i,i+1)8q — (&1 () +K) 8y =& (a)g
and similarly %g = &1 () (i,i + 1)8o — (&i(ot) — K)8q = &i1(t)g. Conse-
quently, either g = 0 or it is a joint eigenfunction of the % with eigenvalues
(&i(a),...,Eix1(a), &), ..). This is impossible by the definition of &;.

For a partition A, the permutations which fix A are generated by adjacent
transpositions (for example, suppose that A;_ > A; = --- = A > A4 for some
0 < j<k<d;then (i,i+1)A = A for j <i < k). Thus wA = A implies
wl =Gy O
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With this, one can define a “monomial”-type basis for span{{, : ot = 1} for
each A € Ng’P (the term monomial refers to the actions wx* = x"* or wpy, = pya
forw € Sy and o € N9).

Definition 10.4.3 For 1 € Ni* let @y = {; and for o € N¢ with o™ = A let
Wy, = ww,,, where wd = «.

Proposition 10.4.2 shows that @, is well defined, for if wiA = o0 = wod
then w;lwll = A and wo), = wy (wglwla)k) = w1 ;. We now collect some
properties of @y.

Proposition 10.4.4 For oo € Nd and w € S, the following hold:

(1) wog = Wy
(i) wg = poa+X{B(B, o) pg: B+ = o, o; = 0 implies B; = 0}, where the
coefficients B(f, o) € Q(x) and are independent of d;
(iii) .@ip,-a)a = [K(d*#{] o> Oli}) + oG+ 1] Wy + K'zaj>ai A j)a for 1 <
i<d.

Proof Let A = . Part (i) follows from the basic property that wA = A implies
w; = ;. Theorem 10.3.13 shows that @, satisfies part (ii) because A is maxi-
mal for the dominance ordering = on {f : B = A}, thatis, = A and + = A
implies that B = A. The equation in (ii) transforms under w € S; with wA = o to
the claimed expression.
The fact that @ = §; is an eigenfunction of %; implies that
Dipio;, = [K(d*i+ 1) + A+ 1] W) + K'z (i,j) Wy,
J<i
=[x(d—#{j: lj >AH+A+1 o), +x z WG A
lj>)Ll‘

where the terms in the sum in the first line which correspond to values of j sat-
isfying j < i and A; = A; have been added into the first part of the second line.
Again apply w to this formula with wA = a (the index i is changed also, but this
does not matter because i is arbitrary). O

A few more details will establish that span{@y : ¢™ = A} = span{{y : ot =
A}. The important thing is to give an explicit method for calculating § from §,
for @™ = A. Adjacent transpositions are the key.

Proposition 10.4.5  Suppose that o € N and o; > 441 ; then, for c = k[&(a) —
554_1(06)]71 and o = (i,i+1),
Coa = 08a — Lo, GCca:(lfcz)Ca*CCGa

and span{{y, {so } is invariant under o.



10.4 Sqy-Invariant Subspaces 331

Proof Note that & (at) = &1 (0@), &1 (o) =& (o) and & (at) — &1 (o) >
oi— i1+ KithusO<c<l.Letg=08y—closthen Zig=&j(a)g =& (ca)g
for j <iorj>i+1(by Lemma 10.4.1). Further, g = &i+1 (a) g and %118 =
&i(a) g, because 6%0 = %41 + ko. This shows that g is a scalar multiple of
Csa» having the same eigenvalues. The coefficient of pgg in g is 1 (coming from
o, because pgsq does not appear in the expansion of {, since o = o).

Thus 6y = ¢y + 5q. To find 65, note that 6lsq = o — coly =
(l—cz) Co—cloa. O

Now, for A € Ng’P let
E) =span{wy : o7 = 1}.
Since E; is closed under the action of S, the proposition shows that span{ & :

ot = A} = E;. The set {{y} forms an orthogonal basis and Ej is invariant
under each Z;p;,1 <i <d. The next task is to determine the structural constants

(Ca, o) and G (19) in terms of ($;, &) and & (19), respectively.

Proposition 10.4.6  Suppose that o € N& and o > 01,0 = (i,i+ 1), and c =
k[&(at) = Eiv1 ()] 7L Then:

(i) (CoasCoa) = (] _C2) (Cas Car)s

(i) Coa (1) = (1) 8o (19)
(i) fo = (1+c¢)8a+ Coq satisfies o fo = fo;
(iv) fi= (1 _C) Co — Coa satisfies o fi = —f1.

Proof Because ({y,ls0) =0 and o is an isometry we have

<§O€aca> = <6Ca7GCa> = Cz <Ca7€oc> + <Ccma§croc>§

thus ({oasCoa) = (1—¢*) ({a,{x). The map of evaluation at 1 is invariant
under o thus {5 (19) = 0o (19) — 8o (19) = (1—¢) o (19). Parts (iii) and
(iv) are trivial calculations. O

Aiming to use induction on adjacent transpositions, we introduce a function
which measures (heuristically speaking) how much o is out of order.

Definition 10.4.7 Functions on o € Ng for 1 <i,j <d and € = % are given by:

€K
) ’L'fj(oc):1+6 ifi < jand oz < 0, else 7f; (o) = 1,
j

&)= &i(a)
(i) & (o) =TIlic; 7 () (Ee(A)=1ford e N&PY.

Theorem 10.4.8 For o € Nd and 2 = o,

() (Co,Ca) = &4 () & () (3, Ca)s
(i) Lo (19) = &= () G (19).
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Proof First, suppose that B =4, B; > Bi+1 and 6 = (i,i+ 1); then

S (0B)/& (B) = 1 +ex(& (B) — &t (B)] .
Indeed, ¢ ;(0f) = 7 ;(B) for all values of j,k # i,i+ 1. Also, 77; (o) =

T, (B) and 1, ;(0B) = TF;(B) for j > i+ 1; 1¢,(cB) = 7%, ,(B) and

¢:41 (0B) = 1%, (B) for j <i. The claim is now proven from the special values

T (B) =1 and 7, (0B) = 1+ex[& (B) — &1 (B)] ™" (recall that & (B) =
Siv1(oP) and Eiyy (B) = &i (o).
By part (i) of Proposition 10.4.6,

(Cop:Cop)

=1-c

(Cs,Cp) & (B)
(recall that ¢ = x[&; (B) — &1 (B)] . Similarly,
Cop1) | & (op)

2 _ 64 (0B)E (oB)
& (B)

=l—-c= .
Gp (19) & (B)

Since « is obtained from A by a sequence of adjacent transpositions satisfying

this hypothesis, the proof is complete. O

The last results of this section concern the unique symmetric and skew-
symmetric polynomials in E; (which exist if A; > --- > A4). Recall that AR =
(Ads Aa—1,--.,M); the set of values {& (AR)} is the same as {& (1)} but not
necessarily in reverse order. For example, suppose that ;| > 4; =--- = A, >
Axs1 for some 0 < j < k < d; then the list {&(A) :i=j,...,k} agrees with
{&—k—iv1 (A®) zi=j,...,k} (in that order). Thus

K

Ea(AR) :H{l+m i > A

Definition 10.4.9 For A € No¥ let

=& 2% Y L Ca

at=2L ng (Ol)
and,if A; > -+ > Ay, let
_ R sign(w)
ap, =& (/1 ) Z &z (WA,)CWA'

weSy

Recall that sign(w) = (—1)", where w can be expressed as a product of m
transpositions. For A € Ng’P we use the notation #S;(1) =#{o € Nd: at = 1}
for the cardinality of the S;-orbit of A.

Theorem 10.4.10 For A € Ng"P, the polynomial j, has the following properties:

(1) Jjo =XZa+r=1 Oa;
(il) wj, = jj for eachw € Sy;
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(i) ja (19) = #S4 (1) & (19);
(V) (ja,ia) = #Sa (A) & (AR) (En, Ca)-

Proof 1t suffices to show that (i,i+ 1)j3 = j, for any i < d. Indeed, with o =
(i,i+1),

Jr= ng(AR)[Z{nga) rat=24,05= Oli+1}

+Z{é‘f€‘a) * éaf(gc:oc) Hot=2,06> 0 H

Each term in the first sum is invariant under ¢. By part (iii) of Proposition 10.4.6,
each term in the second sum is invariant because

8 (0a) /& (o) = 1+ K[ (0) — &va ()] .

Thus jj is invariant under S, and is a scalar multiple of ¥, +_; @¢. Since A% is
minimal for = in {& : & = A} and, by the triangularity for {y, in the p-basis, the
coefficient of p,& in jj is 1, part (i) holds. Part (iii) is an immediate consequence
of (i).

By the group invariance of the inner product,

(arin) = 2 (o) =#a:a" =4} (i, G)

at=1
=#54(A) & (A7) (61, Ga) -
Note that wy = &3 and &4 (1) = 1. O

Theorem 10.4.11 For A € Ng"P with Ay > --- > Ay, the polynomial aj_has the
following properties:

1) ay = ZweSd Sign(w)wwk;
(ii) wa, = sign(w)ay, for each w € Sy;

(iii) (ay,an) =d'& (AR) ({3, )

Proof The proof is similar to the previous one. To show part (ii) it suffices to
show that 6a) = —ay for 6 = (i,i+ 1) and for each i < d. As before, each term
in the sum is skew under o:

R , Cwa Sowr 1.
ay =&-(A )Z{mgn(w) {é”,(v:v?u) - é’,(g'tvl)} twE Sy, (WA); > (WA); }
Both a; and ¥,,,cg, sign(w)®,; have the skew property and coefficient sign(w)
for p,&, where wAd = AR Thus part (i) holds. Finally,

(ar,ap) =Y, Y, sign(wi)sign(wa) (@2, Dy,2)
W1 ESyW2ES,

=d! 2 sign(w) (@, ®,2) = d!({,az)

wesSy

=d'& (A") (&, 6,
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and this proves part (iii) (in the first line we change the variable of summation,
letting wo = wyw). O]

The polynomial jj is a scalar multiple of the Jack polynomial J; (x;1/x). The
actual multiplying factor will be discussed later.

10.5 Degree-Changing Recurrences

In this section the emphasis will be on the transition from {; _, to {;, where A €
Ng’P and A,, > A,,.1 =0 for some m < d. By use of the defining properties we will
determine the ratios (§3,83) /(8 e, Ca e, ) for each of three permissible inner
products. This leads to norm and 1¢ evaluation formulae in terms of hook-length
products. A certain cyclic shift is a key tool.

Definition 10.5.1 For 1 <m <d, let 6,, = (1,2)(2,3)---(m—1,m) € Sy, so
that 0,4 = (Aons Ay A2, s A1, A1, .) for A € NOF.

Suppose that A € Ng’P satisfies m = ¢ (1), and let

A= (A= 1,A1,A2s Ae1,0,..) = B (A — &)

We will show that 2,5 = [(d —m+ 1) K+ A,] 6,,! &5 which leads to the desired
recurrences. The idea is to identify 9,,{; as a joint eigenfunction of the operators
0,,'%:06,, and match up the coefficients of the pj-

Lemma 10.5.2  Suppose that A € Ng’P and m = { (1), then the following hold:

() XDy = [k (d —m) +An] G — KZjom (m, ) Cas
() % DGy (19) = Anly (19);

(i) (on D, C) = . [k (d —m~+1)+ ] (G2, Ca)s
Am

(V) DGy, xm D)) = K+ A,

[K(d—m+1)+ Ay
X [ (d —m) + 2] (C1, Ga)-

Proof By part (i) of Lemma 10.2.1,
xm@mCA = <9mxm —-1-x 2 (m7])) C]L

J#Em
=(Un—x—-1)5 —K 2 (m, j) &,
j>m
=[En(V) =k =115 —x Y, (m,))E;

j>m

=[K(d —m)+ ]G —x Y, (m, j)E;.

j>m
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This proves parts (i) and (ii). Next, observe that (&, ,(m, j){) = (&, (m,m+
1)§,) for j > m; by Proposition 10.4.5, 6§ = {53 + ¢, where ¢ =
(mym+1) and ¢ = k[, (L) —Ens1(A)] 7! = k(K + Ap) ! (recall that & (1) =
K (d—i+1)+A;+1 foreach A € Ny™). Thus

(562} = [ (d = m) + 2] (G2, C2) — e (d = m) (G (m. ) 82)
2(d—m
= (Ie(@—m)+ 2] - S 0 )

K+ An
Mo e (d =m0+ ] (G )

T Kt Am
For part (iv), let a = Kk (d — m) + A,,; the group invariance properties of the inner
product are now used repeatedly:
<xm@mglaxm@m§t>
=a* ({3, 5) —2ax Y, (&, (m, j) &)
j>m
(X Am ) G )G +2 X (m)) G (m k) 6) )
j>m m<j<k
= (a* —2ack (d—m)+k*(d—m) (1 +c(d—m—1))) (5, 5)

= K—)‘:am [K(d_m)+/’lfm] [K(d—m+1)—|—),m] <C}wc&>-

O

Next, we consider the behavior of 2,,{, under Z;p;, with the aim of identify-

ing it as a transform (6,,!) of a joint eigenfunction. The cyclic shift 6,, satisfies

6,,! (1) =mand 6,,! (i) =i — 1 for 2 < i < m. Recall the commutation relations
for 2,p;, (i,j) and w € Sy:

1. W@'P:— P HWs
2. w(w™ (i) 1( )= (i, j)w

Lemma 10.5.3 Suppose that A € NS’P and m={(A); then

() 2ipiZny = (&Gi(A) +K[X<i(j,0) + (i,m)]) DGy fori <m;
(i1) -@mpmgmgk = [ém ()L) - 1} gmgl;
(i) %60nPm) =[x(d—i+1)+1]6,9,8, fori>m;
@iv) %Gm@mg = 5g',',] (/1) 9,,,9,,,@ forl <i<my
V) WO DnG = [Em () = 1] 00Dy

Proof By Proposition 10.3.7 and Lemma 10.2.1, 2;p; Dy = KD + Di| Dnxi +
Kk(i,m)] for i < m; thus
DiPi%DnCy = D 2ipiCy, + K (i,m) D,
= I (&) + KT (120) ) G + K (im) T

Jj<i
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which proves part (i), since Z; (i,m) = (i,m) Dy and Dy, (j,i) = (j,i) Dy, for j <
i < m. Next, DnpmPDm = K Dm~+ D[ DimXm — 1 — KX j2m(J,m)], so that

DniPm DGy = Dm (%m —1-x z (Jam))C)L

j>m
=[En(A) = 1] Dy — x z (j,m) @jgl-
j>m
However, 7;{; = 0 for j > m because the expansion of {; in the p-basis (see
Definition 10.3.2 and Proposition 10.3.9) contains no pg with ; > 0. Also, 2,,(;
has the latter property, which shows that %,2,,§; = [x (d —i+ 1) + 1]2,,{; for
each i > m (Corollary 10.3.12). Thus part (iii) follows from 6,,%; = %;6,, for
i>m.
Apply 6,, to both sides of the equation in (i):

(70~ S G0+ )| ) 208s =&V 7.
j<i

and obtain equation (iv) with index i+ 1 (so that 2 < i+ 1 < m). A similar

operation on equation (ii) proves equation (v). [

Consider the multi-index Z = (Am — LA, 425, An—1,0,...); clearly the
eigenvalues are given by &1(A) = [k(d —m) 4+ Ay) = En(A) — 1 and &(A) =
& 1(A) for 2 <i < m, because A, — 1 < A,,—1. The remaining eigenvalues are
trivially (1) = §i(A) = k(d —i+ 1) + 1 for i > m. Thus 6,,%,,{, is a multiple
of QX; the value of the multiple can be determined from the coefficient of p;
in 6,2,,C),, that is, the coefficient of py_, in Z,,{;. As usual, this calculation
depends on the dominance ordering.

Lemma 10.5.4 Suppose that A € NP m = L(A) and p;_, appears with a
nonzero coefficient in Dy, pq; then one of the following holds:

(i) o = A, with coefficient K (d —m+ 1) + Ay,
(i) a=A+k(ej—&n), where j >m, 1 <k < Ay, with coefficient k;
(i) a=A+k(en—¢j), where j <m, 1 <k < Aj— Ay, with coefficient —x.

Proof By Proposition 10.3.3, when o = A the coefficient of p; _, in Dy pg is
K(1+#{j:A; <An}) +An = K(d—m+1) + A,. The two other possibilities
correspond to sets A, B with ¢ differing from A in two entries. In the case of set
A, for some j # m we have oj = A+ k, 0, = A, —k and A; < A4, —k— 1. Since
A is the smallest nonzero part of A this implies that j > m and A; = 0. In the case
of set B, for some j # m we have o; = A; —k, 0, = Ay +kand A, <A —k < A
(and A; > A, implies j < m). O
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Theorem 10.5.5 Suppose that A € Ngf andm={(0); then

Il = [K(d—m+1)+2,]6,," 5.

Proof In Lemma 10.5.3 it was established that 2,,{; is a scalar multiple of
6, C}{- The multiple equals the coefficient of p,; . in %,,{; (because the coef-
ficient of p3 in C’;‘L is 1). But py_g, only arises from %, p; in the expansion of
P C),, by Lemma 10.5.4: case (i) is the desired coefficient; case (ii) cannot occur
because if pg appears in the expansion of {; then B; = 0 for all j > m; case (iii)
cannot occur because A > A +k (g, —€;) for j <m,1 <k < Aj— Ay O

Because 6, is an isometry we can now assert that

(D DnCa) = K (d = m A1)+ A E-(A)E-A) (Gt G )
and

Dnlp (1) = [k (d —m+ 1)+ A) - (M) G, (19).

10.6 Norm Formulae
10.6.1 Hook-length products and the pairing norm

The quantities (functions on Ng’P) which have the required recurrence behavior
(see Lemma 10.5.2 and Theorem 10.5.5) are of two kinds: the easy one is the
generalized Pochhammer symbol, and the harder one comes from hook length
products.

Definition 10.6.1 For a partition A € Ng’P and implicit parameter «k, the
generalized Pochhammer symbol is defined by

d

0 =TT~ =15y,

i=1
For example, in the situation described above,

(dx+1),  (Kd—m+1)+1),
wx+nﬁ;‘%xw—m+n+¢h =K(d=m+1)+An.

nl_1

Next, we calculate &z (A): indeed,

m

_ m €K €K
&(h) —E(HW) (e m-mm=1)

J=2

m_l (K(m—j+sl)+kj—7tm+1)
K(m—j)+ A — Am+ 1
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Recall that §; (A) = k (d — j+ 1)+ A; + 1. It turns out that the appropriate device
to handle this factor is the hook-length product of a tableau or of a composition.
Here we note that a tableau is a function whose domain is a Ferrers diagram and
whose values are numbers or algebraic expressions. The Ferrers diagram of o €
N¢ is the set {(i,j) : 1 <i<d,1 < j < o}: for each node (i, j) with 1 < j < ¢4
there are two special subsets, the arm
{(l,l) j<I< (Xi}
and the leg
{(17]) > la] <o < (X,}U{(l,]) < la.] < al‘i’1 < (Xi}

(when j = o + 1 the point is outside the diagram). The node itself, the arm
and the leg make up the hook. The definition of hooks for compositions is from

[160, p. 15]. The cardinality of the leg is called the leg length, formalized by the
following:

Definition 10.6.2 For o € N‘g, 1<i<dand 1< j< o the leg length is
L(osi,j):=#{l:1>i,j<oy<o;}+#{l:1<i,j<oy+1<a}.
For t € Q (k) the hook length and the hook-length product for « are given by
hia,t;i,j)=o0;— j+t+«L(0si, j)

o) o
CHES B LICARNE

i=1 j=1

For the special case k =1 and @ € Ng'P, this goes back to the beginnings of
the representation theory for the symmetric group S; (due to Schur and to Young
in the early twentieth century); for arbitrary parameter values the concept is due
to Stanley (1989), with a more recent modification by Knop and Sahi (1997).

Here is an example. Below, we give the tableau (Ferrers diagram) for A =
(5,3,2,2) with the factors of the hook-length product 4 (A,¢) entered in each cell:

Compare this with the analogous diagram for o = (2,3,2,5):

44143k | 34+1+3k | 2+1+x 1+: | & |
24142k | 1+142K t
1+1+K | 1+k

141 !

1+1+Kk | 1+k
24+1t4+2k | 14+1+2K 141

141 !
44143k | 3+43x [ 24143k | 1414k | ¢ |

There is an important relation between (o, 1), for the values t = 1,k + 1, and
& (o). We will use the relation &; (ot) — & (a0) = K [ro () —ro ()] + 06 — ot
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Lemma 10.6.3 For o € Ng, we have
h(o,k+1)=h(a",k+1) & ()

and
h(ot)1)

h(a,l):m.

Proof We will use induction on adjacent transpositions. The statements are true
for o = a*. Fix o™ and suppose that o; > ;1 for some i. Let ¢ = (i,i+1).
Consider the ratio h(co,t)/h(a,t). The only node whose hook length changes
(in the sense of an interchange of rows i and i+ 1 of the Ferrers diagram)
is (i,0441 +1). Explicitly, h(oa,t;s,j) = h(e,t;s,j) for s #ii+1 and 1 <
j <oy h(oa,t;i,j) = h(a,t;i+1,j) for 1 < j < o4y and h(oa,t;i+1,))
= h(a,t;i,j) for 1 < j < o; except for j = o411 + 1. Thus h(oo,t)/h(o,t) =
h(oa,t;i+ 1,001+ 1)/h(e,t;i,0601+1). Note that L(oosi+ 1,041 +1)
=L(a;i, 0441+ 1)+ 1 (since the node (i,0411 + 1) is adjoined to the leg). Let

Ey={s:s<i,o; > o }U{s:s>i,05 > 04},
Ex={s:s<it+l,a; >0 }U{s:s>i+1,05> 0s1};

thus, by definition, ry (i) = #E; and rq (i+ 1) = #E». Now, E; C Ej so that
ro (i+ 1) — Iy (l) = #(EZ\E]) and

E2\E1 :{SZS<i,OC,'> o > Oti+1}U{i}U{SZS>i+1,0£i ZOCX>OC,'+1}.
This shows that #(E;\E) = 1+ L(o;i, 0541+ 1) and

Bty 01 + 1) = Klrg (i41) = ra (i) = 1)1+ 04— 0y — 1,
h(oa,t;i+ 1,001+ 1) =x[rg (i+1)—rg ()] +1+ 06— aipg — 1.

Thus
h(oo,k+1i+ 1,041 +1)  K[re (i+1)—r (i) + 1]+ 0 — 04y 1
ha,x+ 10,0401+ 1) K(ra (i+1)—rg (i) + 0 — oty
K
= e G D= ra O] 06—
_ & (oa)
- & (a)

(the last equation is proven in Theorem 10.4.8) and

h(oo, i+ 1,061 +1) K[rg (i+1) —ro ()] + 04 — 0ty

h(os i o +1)  Kra (i4+1) —re (i) = 1]+ 0 — 0441
. 1
a (1_K[ra(i+1)—ra(i)]+a,-—ai+l>
&_(a)

& (oa)’
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Thus h(o,k+1) and A (™, k+1) &4 (o) have the same transformation prop-
erties under adjacent transpositions and hence are equal. Similarly, & (e, 1) =
h(a®,1)/&- (o). O

Next we consider the ratio h(A,7)/h(A — &4,t). Each cell above (m,A,,)
changes (the leg length decreases by 1) and each entry in row m changes. Thus

h(A,t) _’ﬁ Ai = A+t + K (m—i)
h(A—€n,t) 14 Ai—Am+i+K(m—i—1)

The following relates this to &z(4).

(A —1+1).

Lemma 10.6.4 Suppose that A € Ng’P and ) = (A — 1, A1, s Am—1,0,...)
withm = (L), then

S (A1) Lo gy hA—en 1)
(K+lm)éa+(l)—m an Tom TR

Proof For the first equation,

&.(A) =

m (K(m—i+1)+/l,~—/lm+1>
N K(m—i) 4+ A=A+ 1

B h(A,x+1)

(A —gn, k1) (K+Aw)
by use of the above formula for 2(A,¢) /h(A — &y,t) with t = K+ 1. For the second
equation,

~ _’”*l Km—i—1)+Ai—An+1\ . h(A—gy1)
5—@)—,1]1( K1)+ I+ 1 )= h(%,1)

by the same formula with # = 1. O
The easiest consequence is the formula for £, (1¢); the proof of Lemma 10.6.4
illustrates the ideas that will be used for the norm calculations.

Proposition 10.6.5 For o € N¢ and A = ot € Ny*,

B (dx+1),  (dx+1)
{a(1) = 6-(0) h(?L,l))L - h(a,l)l'

Proof From Theorem 10.4.8 we have {4 (1¢) = & () &3 (17). Suppose that
m = £(A); then, by part (ii) of Lemma 10.5.2 and Theorem 10.5.5, {; (ld) =

R DG (1) = 2 [ (d = m+ 1) + 4] - (R) G, (19); thus
& (19) h(A— 1)

Gy, (1)~ AT D Al =
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Clearly & (14) = 1 (the trivial 0 = (0,...,0) € N¢) and

(dx+1),
——=x(d-—m+1)+Apy.
(d K+1 ))L —&m ( ) "
An obvious inductive argument finishes the proof. O

We now specialize to the permissible inner product (f,g), = f(2) g (x) |x=o-
In this case %, is the adjoint of multiplication by x,,, and we use part (iii) of
Lemma 10.5.2.

Theorem 10.6.6 For o € N¢ and A = o € N2,

h(A,x+1)

<Ca7ca>h:é?+(a)g— (Ol) (dK+1)7L h(l 1)

Proof From Theorem 10.4.8, ({y, 8o}y, = &4 (o) &- () (5, C; ) .- From the def-
inition of the inner product, (x,yZmGy,81)n = (DmCy, Pms)n. Suppose that
m = {(A); then, again by part (iii) of Lemma 10.5.2 and Theorem 10.5.5,

K+ Am
(G, Can= T d—m+ )] (DnCrs DnCodn
Am

:Kj{m [K(d—m+1)+zm]<g1,gz>h

= R e 1)+ 2l 2 D (R (G
Thus

(Glids (et Dy h(Axt Dh(A— &)

<C)Lf£mvC7Lfsm>h (dK+1)17£mh(?L—Sm,K‘—i—l)h(),,l)'

Induction finishes the proof. O

Corollary 10.6.7 For o € NJ,

ho,k+1)

<Ca;§a>h:(d’<+1)a+ /’l(Oﬂ 1)

10.6.2 The biorthogonal-type norm

Recall the generating function

d d
Fxy)= Y pa(x)y* =TT —xy)™" TT (1—xm)~ .
oeNd i=1 Jk=1

Because F is symmetric in x,y, the matrix A given by

o

S pa@)y* =Y Y AgarPy®,

oend n=0|a|=[B|=n
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expressing pg (x) in terms of x#, is symmetric (consider the matrix A, which is
locally finite, as a direct sum of ordinary matrices, one for each degree n = || =
|B] € N). The matrix is invertible and thus we can define a symmetric bilinear
form on IT¢ (in the following sum the coefficients have only finitely many nonzero
values):

(5 o' 3 i) = S0 )y
p %

aeNd BeNd

that is,
<p(x,xﬁ>p = Oa B

From the transformation properties of p it follows that (wf,wg), = (f,8),

for f,g € 17 and w € S,;. We showed that Qi(x)x,-F (x,y) = @i(y)y,-F (x,y), which
implies that @i(x)xi is self-adjoint with respect to the form defined above (1 <i <
d). To see this, let _@i(x>x,~x“ = Yy Byox"; then BA = ABT (T denotes the trans-
pose). Thus (-,-) , is a permissible inner product. To compute (&3, (3), we use

the fact that (x;f,pig),, = (f,g), for f,g € 1%, 1 <i < d.

Lemma 10.6.8 Suppose that A € Ng’P and m = {(Q); then
PmImGy = [K(d —m+1)+Au| & + fo,
where Dy, fo =0 and (W&, fo) =0 forany w € S,.

Proof Let fo = puPmCy — [x(d —m—+ 1)+ Ay &, ; by part (i) of Lemma 10.5.3,
Dmfo = 0. Further, the basis elements pg which appear in the expansions of Z,,{;
and { satisfy B; =0 for all j > m. By Proposition 10.3.9, if pg appears in fj then
B; = 0 for all j > m. The expansion of f; in the orthogonal basis {{g} involves
only compositions 8 with the same property, 8; = 0 for all j > m. Thus (fy,g) =0
for any g € E, (note that A,, > 0). Since E,,_ is closed under the action of Sy, this
shows that (fo,w{,;) =0forallw € S,. O

The statement in Lemma 10.6.8 applies to any permissible inner product.

Theorem 10.6.9 For o € N¢,

s G, = LKD)

——o=T 2 A=ateNy”.
(1) * Mo

Proof LetA =at € Ng’P. From Theorem 10.4.8 we have

<C<x, Cot>p = &Ja)é’,(a)(éh Z;)L>l7'
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From the definition of the inner product,

X D> PmnDPnCi) p = (DmCas D) p-

Suppose that m = £(4); then, by parts (i) and (iii) of Lemma 10.5.2 and Lemma
10.6.8,

<~@mC)La-@mCl>p = (@t Dmy, [k (d—m+1)+ 1] §; Jrfm>p
= [k (d—m~+1)+ ] (xm )mg?uCﬁ
+[(d=m) K+ An) (Gas fon) p = 1 X, ((ms ) Gy fon)

j>m
Am

= [ (d —m+ 1)+ An]* (51, 62) , -
But, as before (by Theorem 10.5.5),
(T Inla)y = [k (d =m+ )+ 2 (G.57)
= [k (d —m+1)+ ) E M) E- M) (Gr e Gren)p

and so
(G180 Ktdm o~ o~ hA,k+1)h(A—gn1
p — 2 é‘;(l)éﬂ(l): (;L ) ( a )
<C)Lfemac7w£m>p m h(A—¢gn,k+1)h(A,1)
As before, induction on n = || finishes the proof ((1,1), = 1). O

Considering the generating function in Definition 10.3.2 as a reproducing
kernel for (-, ) , establishes the following.

Corollary 10.6.10 For k > 0,max; |x;| < 1,max;|y;| < 1, the following expan-
sion holds:

= [T G S L L R
E( _xt)h jl];[l _xj)’k _aeNdh(a . ) o ) a)’)-

Later we will consider the effect of this corollary on the determination of the
intertwining operator.

10.6.3 The torus inner product

By considering the variables x; as coordinates on the complex d-torus, one can
define an L? structure which provides a permissible inner product. Algebraically
this leads to ‘constant-term’ formulae: the problem is to determine the constant
term in a Laurent polynomial (in x; ,xfl ,xz,xgl, ...)when kK € N.



344 Orthogonal Polynomials Associated with Symmetric Groups

Definition 10.6.11 The d-torus is given by
T={x:x;=exp(i0;);—mw <0, <m1<j<d}
The standard measure m on T is
dm (x) = (27) 4 d6; ---db,

and the conjugation operator on polynomials (with real coefficients) is

g*(x):g(xl_l,xz_l,...,xgl), gell.

The weight function is a power of

k()= JI (i—x)@"=x");

i J
1<i<j<d

thus k (x) > 0 since (x; —x;) (x; ' —x; ") = [2'sin 5(6; — 6 )}2 for x € T¢. For now
we do not give the explicit value of the normalizing constant ¢, where ¢! =

Jpa k* dm. The associated inner product is

(f.8) / fgk"dm,  f,gell

For real po]ynomia]s (f.&)r = (g, f)p. since kX dm is invariant under inversion,
that is, x; — x; ! for all j. Also, (wf,wg)y = (f,g)y for each w € Sy by the
invariance of k
The fact that k (x) is homogeneous of degree 0 implies that homogeneous poly-
nomials of different degrees are orthogonal for (-,-)y, when k > 0. The next
theorem completes the proof that (-, ) is a permissible inner product. Write
d 1

0= — and 6=
8x,~ ' ]Zﬁxi—xj

in the next proof.

Theorem 10.6.12 For x > 0, polynomials f,g € M4 and1<i<d,

(Dixif,8)r = (fs Dixig)r;

if f,g are homogeneous of different degrees then (f,g)y = 0.

Proof Since (d/06;)f (x) = iexp(i6;) d;f (x) = ix;d;f (x), integration by parts
shows that [ja x,&h(x) m(x) = 0 for any periodic differentiable . Also, note
that x;0;¢" (x) = —x; ' (dig)" = — (x;dig)". Thus the Euler operator y = Y% | x;0;
is self-adjoint for (-,-); (observe that y (k*) = kk* !yk = 0 for any k > 0).
Suppose that f, g are homogeneous of degrees m, n, respectively; then m (f, g)g =
<ll/f7g>']1‘ = <ll/fa Wg>']l‘ = n<fag>’]l‘; som 7& n lmphes <f7g>']T =0. NeXt’
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[, (00 (98 ()~ £ () g ()] ) k() ()
- /Td (f g +xi(0:f) g — f§" +xifdg" +xi fg*Ki&,-k) K~ dm(x)

* 1 * *
+ K/Td (—xifg Lk +(8if) 8" — [ (8ixig) ) kS dm(x).
This equation results from integration by parts, and the first part is clearly zero.
The integrand of the second part equals

1 -2

—x
KZ[—fg*Xi(xA_xﬁ T 71)
J#i R
.. —1 _x —1 /s 5\ %
xXif—x;(i X g —x(i,))g
+ lf ](a])fg*_ft — J — i|
xiij X —X.

1

= K%x, [ ) aif g e )
JE
+xifgt —xif (i,j)g"]-

For each j # i the corresponding term is skew under the transposition (i, j) and
the measure k* dm is invariant, and so the second part of the integral is also zero,
proving the theorem. O

Theorem 10.6.13  For o € NJ,

(dx+1); h(o,x+1)
(d=1)k+1); h(a,1)

<Caa§a>’ﬂ‘ =

Proof From Theorem 10.4.8 we have (Co, o) = &4 (00) &- (o) (&3, §3) - By
the definition of the inner product (X, Z G, Xm ZmCi )1 = (DG, DmGy )T (that
is, multiplication by x; is an isometry). Suppose that m = £(A); then by part (iv)
of Lemma 10.5.2 and Theorem 10.5.5

K+ Am
(G2, 6n)r = [k (d —m+ 1)+ Ay [k (d — m) + Ay

(k) [Kd—mA ) F A
T Ak (d—m)+ Ay <CA’CA>T

- e e L e . (6 o G

<-@mCA>-@mCA>T

Thus
(GGl (dx+1);, (d=1)k+1); o h(A, K+ 1)h(A—&n,1)

(G Cren)p  (dr+1); ¢, (d=1D)K+1); h(A —&n, K+ 1)R(A,1)

Induction on n = || finishes the proof. O
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10.6.4 Monic polynomials

Another normalization of nonsymmetric Jack polynomials is such that they are
monic in the x-basis; the polynomials are then denoted by §}. For o € Ng,

(o (x) =x"+ Y {B(B,o)x" : > B},
with coefficients in Q (k). Note that the triangularity in the x-basis is in the
opposite direction to that in the p-basis. Since this polynomial has the same
eigenvalues for {%;} as {y, it must be a scalar multiple of the latter. The value
of this scalar multiple can be obtained from the fact that (o, (5), =1 (since
(Pa;x¥), =1 and the other terms appearing in (g, §; are pairwise orthogonal,
owing to the I>-ordering). Let {5 = ca Cy; then 1 = cq (o, Ca) , and thus

h(o,1)
h(o,k+1)

a =

The formulae for norms and value at 1¢ imply the following (where A = ar™):

d 1
LG (1) :m;
2. {8asCa)n = (drx+1); im;

(dx+1), ho,1)
(d=1)x+1); h(o,k+1)’

v orev  h(al)
4. <Ca7Ca>p_M'

3. <€())Cu€())(z>ﬂ‘ =

10.6.5 Normalizing constants
The alternating polynomial for S;, namely
a@)= J] x5,
1<i< j<d

has several important properties relevant to these calculations. For an inner prod-
uct related to an L? structure, the value of (a,a) shows the effect of changing k to
K+ 1. Also, a is h-harmonic because Aya is a skew polynomial of degree (‘21) -2,
hence 0. Let

§=(d-1,d-2,...,1,0) e N*;
then a is the unique skew element of Eg (and a = ag, cf. Definition 10.4.9).

The previous results will thus give the values of (a,a) in the permissible inner
products.

Theorem 10.6.14 The alternating polynomial satisfies
a(x) =Y, sign(w)x"® = Y sign(w)pus = Y, sign(w)o,s.

wesSy weSy weSy
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Proof The first equation for a is nothing other than the Vandermonde deter-
minant. By Proposition 10.4.4, ws = ps +>{B(B,0)pg : B+ = &;|B| = |6}
But B = & and [B| = |8 = (4) implies that B; = By for some j # k;
in turn this implies that ¥,,cg sign(w)p,g = 0. Thus ¥,,c¢ sign(w)o,s =
Ywes, sign(w)p,,s. To compute this we use a determinant formula of Cauchy:
for1 <i,j<dletA;;=(1 —xiyj)fl; then
a(x)a(y)
Hz J=1 ( xi)’j)
To prove this, use row operations to put zeros in the first column (below the first

row): let Bjj = Ay and B;; = A;j —AjA1j/A1 for2 <i<dand 1 < j <d;thus
B;1 =0 and

detA =

(x1 —xi) (1 — ;)

Bj; = .
T (T=xyj) (L—xiy1) (1 —xiy;)

Extracting the common factors from each row and column shows that
I, (1 —x) TS, (v —y;) d
(1—xiy) 14, (1 xzyl)H] » (1 —=x1y;)

which proves the formula inductively.
Now apply the skew operator to the generating function for {pg }:

Y, sign(w) Y, pua (x

weSy aeNd

d d
= Y sign(w) [[1 - (wx), ! IT —xm)*
=

wESy i=1

d
H lfx,yk l.

Jjk=1

detA = det B = et(Ay)! 5,

This holds by the Cauchy formula, since the second part of the product is Sy-
invariant. The coefficient of y5 ina(y) is 1 since the rest of the product does not
contribute to this exponent, and thus ¥,,cg, sign(w)p,s (x) = a(x). O

Proposition 10.6.15  In the pairing norm, (a,a), = d!; also,

& (") n(8,x+1)/h(8,1) =

Proof By the norm formula in Theorem 10.4.11,
(a,a), = d16-(8%) (85,Cs), = d1E- (8F) (8,k+1)/h(3,1);

but (a,a) , = Sy, wres, Sign(wiw2) (py, s (x) ,xwz5>p = d!, by definition. O
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The second part of the proposition can be proved by a direct calculation
showing that

& (0= TI (j—i-Dx+(—i)  h(8,1)

1<i<j<d (j_i)(K+1) _h(67K+1)-
dx+1
Theorem 10.6.16  The torus norm for a is (a,a)y = d!w, and for
((d=1)Kk+1);
K > 0 the normalizing constant is
-1 T(k+1)
— ([ x*a ) AR
“x (/w " T(kd+1)
forx e N,ce = (k1) /(xd)\.
Proof By the norm formula and Proposition 10.6.15,
dx+1) h(8,k+1) (dx+1)
—a1é (5%) J ’ =d! s
(a.a)z (5% (d=1)x+1); h(5,1) (d—1)Kk+1)
Further, cK+1 = [paaa*k®dm = c¢' (a,a)p and so

e _ g ldxHD)s  (dxtl),
Crt1 (d=Dx+1)s  (x+1)

Analytic function theory and the asymptotics for the gamma function are used
to complete the proof. Since k > 0, the function

C T(k+1)¢
P00 Fikat ) o

is analytic on {x : Re x > 0}; additionally, the formula for ¢y /cx+1 shows that
¢ (x+1) = ¢ (x). Analytic continuation shows that ¢ is the restriction of an
entire function that is periodic and of period 1. We will show that ¢ (k) =

(\ K'| (d=1)/ 2) implying that ¢ is a polynomial and periodic, hence constant; of
course, ¢(0) = 1. Restrict K to a strip, say {k : 1 < Rex < 2}. On this strip
| fra k¥dm| < [ra KR¥dm < M for some M; > 0. By the Gauss multiplication
formula, we have

k< dm

T (k+1) @02 ax12g7 LK+1)
— =2z d
I'(xd+1) (2m) ]I:IIF(K-i-]/d)

The asymptotic formula T'(k+a)/T(k+b) = k7 (1+0(x")), valid on

Rex > 1, applied to each factor yields

Ce+1)!| (d-1)/2 [ 1

e )
T(xkd+1)| el +

Extend this bound by periodicity. Hence ¢ = 1. O

’d—dk‘
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Recall that, for f,g € IT? (Theorem 7.2.7),

(gl = m) P [ (e72p) (%) faGo) e ax,

where the normalizing constant by satisfies (1,1), = 1. Since e M/2q = a, the
following holds.
Theorem 10.6.17 For x > 0,
d T(k+1)
(a,a),=d!(dx+1)s and b= gm
Proof Using the method of the previous proof,
a,ay, —die (6% DX VRO KED gy

h(6,1)

Further,

bl =) [ TP e 2 ar = b (a.a),
R

Kk+1
i<j
Also, d! (dx+1)5 =d!TT, (je+1);_; = (k+ 1) TI9, (jr+ 1) ;; thus
HF(jK—H) ) 7ﬁl"(j1<+j+l)
i De+1) ° i D(k+2)

We will use the same technique as for the torus, first converting the integral to
one over the sphere S¢~!, a compact set. Let y = %K‘d (d —1), the degree of h. In
spherical polar coordinates,

o4 -
R

i<j
r (4 + ’}/) 2K
:270'(127/ xi—xj|7 do(x);
r@ o
the normalizing constant (see (4.1.3)) satisfies 641 = [q-1dw = 1. Define the
analytic function
d xd(d—1)/2
- d(d—1) F(K‘-‘rl) 2
o(x 71~(4+ K) { -
(=TG5 ) e g

j=2
x /Sd?lH|x,-ij|2Kda)(x) .

i<j

The formula for b /by 1 shows that ¢(k+ 1) = ¢(x). By analytic continuation,
¢ is entire and periodic. On the strip {k : 1 <Re x <2} the factors of ¢ excluding
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the gamma functions in x are uniformly bounded. From the asymptotic formulae
(valid in —7 < argz < w and a,b > 0),

logT'(z) = (z—f>logz z+210g(2n)+ﬁ(| |)
logT (az+b) = (az+b—f)(10gz+loga)—az+ log(27r)+ﬁ(| ‘)

the second formula is obtained from the first by the use of log (az+ b) = logaz +
b/(az) + O (|z| ) (see Lebedev [1972], p. 10). Apply this to the first part of

log ¢:

d
1ogr(g + D) ;c) +(d—1)logT(k+1)— ¥ log['(jK+1)
=2

d
= 1 (1 +d)log 441 Z(jk+%)logj+%log(27r)
=

d(d—1) d

(s st () - 5, ()

+ (—d(‘iz_l)—(d—lH—Jizj)rc—s—O(ml)

=C+Cx+ %10g1€+0<\1€|_1>,

where C; and C; are real constants depending only on d. Consequently, ¢ (k) =
o (|K‘(d71)/2) in the strip {x : 1 < Rek < 2}. By periodicity the same bound
applies for all k, implying that ¢ is a periodic polynomial and hence constant.
This proves the formula for by. O

10.7 Symmetric Functions and Jack Polynomials

In the present context, a symmetric function is an element of the abstract ring
of polynomials in infinitely many indeterminates eg = 1,eq,ez,... with coeffi-
cients in some field (an extension of Q). Specialized to R4, the generators e;
become the elementary symmetric functions of degree i (and e; = 0 for j > d).
For fixed o € Ng a polynomial p, can be expressed as a polynomial in xp, ..., x4
and the indeterminates e; (involving an arbitrary unbounded number of variables)
as follows. Let n > max; oy; then py, is the coefficient of y*

< 1 -1 4 1 . 2 1" n] K

il:[l — X;Yi) JI;I][ *61y1+€2yj+”'+(* ) enyj]
When e; is evaluated at x € RY the original formula is recovered. As remarked
before, the polynomials {g have expressions in the p-basis with coefficients
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independent of the number d of underlying variables provided that d > m, where
B; =0 for any j > m. Thus the mixed {x;, e;} expression for p, provides a similar
one for {g which is now meaningful for any number (> m) of variables.

The Jack polynomials are parametrized by 1/x and the original formulae
(Stanley [1989]) use two hook-length products 4", h,, called upper and lower,
respectively. In terms of our notation:

Definition 10.7.1 For a partition A € Ng’P, with m = ¢ (1) and parameter x, the
upper and lower hook-length products are

&

n(2) =k Mr(a,1) =T] ' [k (= j+ 1) +#{k k> i j < LY,
J

_
)
-

i=

3
g

ho(2) =k Mh(A, k) = [ = J) Lk k> i < MY
i=1j

There is a relationship between & (AR, k4 1) and (A, ), which is needed
in the application of our formulae. The quantity #S; (A1) = #{a:at =1} =
dim E, appears because of the symmetrization.

Let mj(A) =#{i:1<i<d, A =j} (zero for j > A;) for j > 0. Then

A
#54 (A) = d [T gy (M)

Lemma 10.7.2  For a partition A € Ng’P7
d 1
WX+ Da 050,
(dK),

Proof We will evaluate the ratios (dk+ 1), /(dk); and h (A% k+1) /h(Z,K).
Clearly,

h(AR k+1) =#5,(1)

(d(,;:)i) Kdld, H [(d+1—i) K+ Al

If the multiplicity of a particular A; is 1 (in A) then
L(A®d+1—i,j+1) =L(Asi, )

for 1 < j < A;. To account for multiplicities, let w be the inverse of ry, that is,
rar (w(i)) =ifor1<i<d.Then lvf(i) = A; (for example, suppose that A; > A, =
A3 > Agsthenw (1) =d,w(2) =d —2,w(3) =d—1). As in the multiplicity-1 case
we have

L(A®w (i), j+1) =L(Asi, ), 1<j< A
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Then h (AR x4+ 1;w(i),j+1) = [ — j+ K (L(A;i, j) +1)], which is the same

as h(A,x;i, j) for 1 < j < A;. Thus
h(AR k+1) §

—

Y (AR + Lw (i), 1)

h(A,x) 1 h(A, K0, )
By the construction of w, i (AR, k+1;w(i),1) = (4 + k(d+1—1i)). Suppose
that A; has multiplicity m (that is, 4,1 > A; = -+ = Aj1pm_1 > Airm); it then
follows that L(A;i+1—1,A4;) =m—1for 1 <! <mand
m
[TrA xi+1—1,2 ]‘[ m—1+1)k] =k"m!.
I=1 I=1
Thus
h(AR k+1) 1'[, 1 [/1 +:<(d+1 —l
h(4,x) MITL my (j)!
Combining the ratios, we find that
dx+1 d!
h(/lR,K+1):( KtD; X h(A,x).
(80 [d— LTI} my ()
Since my (0) =d — ¢(A), this completes the proof. O

There is another way to express the commuting operators, formulated by
Cherednik [1991] for f € IT¢:

Xi.f:1,—+ oy LS SV G gy g,
Jj<i Xi—Xj J>i Xi—Xj
it is easy to check that kX;f — Zux;f = —x X ;(i, j) f — [1 +x(d — 1)]f, so that
kXif = %f — (1+ xd) f. Another definition of nonsymmetric Jack polynomials
is as the simultaneous eigenfunctions of {X;}, normalized to be monic in the x-
basis. Another notation for these in the literature is E, (x; K1 ); this is the same
polynomial as §}.

Previously, we defined symmetric (that is, Sy-invariant) elements j; of the
spaces E; for each A € N’(‘;’P. An alternative approach to jj is to regard them as
the simultaneous eigenfunctions of d algebraically independent symmetric differ-
ential operators. These eigenfunctions can be taken as restrictions of elementary
symmetric functions of {%;}; subsequently to the definition we will prove their
Sy-invariance.

Definition 10.7.3 For 0 <i < d, let .7; be the linear operator on 19 defined by
(for indeterminate 7)

M&

d
H (1+1%;).

The definition is unambiguous since {%;} is a commutative set.
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Theorem 10.7.4 For1<i<dandw € Sy, w9, = Jw. Further, ; coincides
with a differential operator when restricted to TIV (the symmetric polynomials).

Proof 1Tt suffices to show that (j,j+1) 7= 7 (j,j+1)for 1 <j<d.Leto =
(j,j+1). By Lemma 10.4.1 6% = %0 for each k # j, j+ 1, so it remains to
prove that & (1 +1%;) (1 +1%j41) 0 = (1+1%;) (1+1%;+1). Again by Lemma
10.4.1, 0 (% + 52/]“) = (%j+1 +x0) + (%; — ko), implying that %; + Uj+
commutes with 6. Also, O%;%j+1 = (?/j+16+ K) Uiy = Ui (W0 —x) +
KU1 = Ui%j10. Thus 0 7 = Jo.

This shows that g € ITV implies Z;q € ITV. The same proof as that used for
Theorem 6.7.10 (which depended on the Leibniz rule) can be used to show that
7} is consistent with a differential operator of degree < i on IT", provided that
ad(q)* %, = 0 for each g € TV and 1 < k < d. But, for any f € I, we have

qUf = U (qf) — (xkaq/axk)f, so that ad(q) % = —xxdq/dx; (a multiplier)
and [ad (q)]*%. = 0. O

The eigenvalue of .7; acting on {j is the coefficient of ¢/ in H?:l [14+1&; (L))
define

d d

Svity ' =] +t[k(@d—i+1)+2A+1]).
i=0 j=1

The values {v; (1) : 1 <i<d} determine A € Ng’P uniquely. For any w € Sy, w{j

is an eigenfunction of .7; with eigenvalue v; (1). The following is now obvious.

Theorem 10.7.5 For each A € Ng’P there is a unique (up to scalar multiplica-
tion) symmetric polynomial q such that J;q = v;(A)q, for each i with 1 <i<d
and q = bj, for some b € Q(x).

The Jack polynomials J), (x; K‘l) (in d variables, thus labeled by partitions
with no more than d nonzero parts) were defined to be an orthogonal fam-
ily for an algebraically defined inner product on symmetric functions (see
Jack [1970/71], Stanley [1989] and Macdonald [1995]) and for the torus
(Beerends and Opdam [1993]). The polynomials with x = % are called zonal
spherical functions in statistics (James and Constantine [1974]). Bergeron and
Garsia [1992] showed that these are spherical functions on a certain finite homo-
geneous space. Beginning with a known coefficient, on the one hand we can
express J;, in terms of j;, indeed the coefficient of x* in Jy(x; k1) is hy (1) =
x~1* 1 (A, x). On the other hand,

. 1
=& (AR) a;,:l mém

and the expansion of { in the x-basis shows that x* only occurs in ;.
But E;L(x; K‘l) is monic in x* and thus the coefficient of x* in j; is

h(AR k+1) [h(2,1).
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Proposition 10.7.6 For A € NS,P’

SPCSICAY
(di+1); k*#S, (1)

Jy, ('; K Ja-
Proof Let Jj, (.; K‘l) = bj, and match up the coefficients of x*. This implies

that
h(A,K)h(A,1)

KM (AR k+1)°
and Lemma 10.7.2 finishes the calculation. O]

b:

Corollary 10.7.7  For A € N&* the following hold:

() [(1% k™) = kM (dK),;

(i) (51 g (1)), = (@) he (R) B (A);

Git) ({1 o (1)) = (d(,‘jff)h ()R (A);

(iv) <J/1('§K_l) I <'§ K_1)>’]I‘ = mh* (A) R (R).

Proof This involves straightforward calculations using the norm formulae from
the previous section, Theorem 10.4.10 and Lemma 10.7.2. O

For their intrinsic interest as well as for applications to Calogero—Sutherland
models we derive the explicit forms of the two operators, Zl”.l:, U and Z;i:l @/12
(actually, we will use a convenient shift of the second). Recall the notation d; =
d/dx;for 1 <i<d.

Proposition 10.7.8  We have Y| % = Y| x;0; +d + S xd(d + 1).

Proof For 1 <i<d,byLemma 10.2.1
U =xiDi+ K+ 1+x (i, ) =k X, (i, )

J#i J<i
=xiZi+Kk+1+K (i,))
j>i
and
d d
Noti=Y xidi+x Y [1—(,)]+x D (i,j)+d(1+k)
i=1 i=1 1<i<j<d 1<i<j<d

d
=Y %0 +d(1+x) + Lxd(d—1).

i=1

We used here the general formula for 2?21 x;D; (see Proposition 6.5.3). O]
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Theorem 10.7.9  An invariant operator commuting with each %; is given by
d

S (% —1—xd)?

i=1

M=

R M L )

] + Li?d(d—1)(2d - 1).
1 1<i<j<d xi—xj (% —x;)? 6

Proof For i # j, let ¢;; = [1 — (i,)]/(x; —xj), an operator on polynomials.
From the proof of the preceding proposition, %; — 1 — kd = x;0; + KX j2; X;iij —
K(d—1)+ K3 ;;(i,j), and we write

M=
M=

(% —1—xd)?* =Y (x:0;)* + x(E1 + E2) + k> (E3 + Ey)
1

1

M=

—2x(d— 1) S (% —1— )+ 2d(d — 1),

i=1

where

E; = (xi0ixitij + Xi9;jxi0;),

i#]j

Ey = Y[ (i, j) + (i, j)xid] = 3 (i, j)xidh,
i<j 7

E; = z ( zxi(Pini(Pik + Z[xi(l)ij(i,k) + (l',k)xl'gbij]) ,
iZj \kZi i
d—1

E4= 21 > Y (i,))(ik)
=1 jiksi
d—1

=3 (a-i+ ¥ 6060+ 600

i=1 i<j<k

The argument depends on the careful grouping of terms and permuting the

indices of summation. Fix a pair (i, j) with i < j and combine the corresponding
terms in E; + E, to obtain

W) 23 0) a1 ()

Xi = X; xi—xj o (x—xp)?

x;i0; — (i, )xidi . . 1—(i,j d;—0;(i,j
+.Xi 1Y ( J) 1 l+(l,])xl‘ai+xj ( J) +x3, J ./( J)

x,‘—x]‘ xj—x,' )Cj—x,'

1= () 9= )nd; |

2 ) JZJ ’ ]~
— X5 +x; + (i, j)xid;;

Ti—xp)? 7 X G 7h)

the second line comes from interchanging i and j. The coefficient of (i, j)d; is

—XX; +x§ /(xi —x;) +x; =0, and similarly the coefficient of (i, j)d; is zero. The
nonvanishing terms are
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x70; —xiﬁj B zxixj[l —(i,.J)]
X —Xj (xl-ij')z
di—9d;  1-(i,j)

= Dxixs
vy T G2

+ 2()6,’(3,‘ +)Cj(9j).

Summing the last term over all i < j results in 2(d — 1) ¢, x;0;.
There are terms in E3 with only two distinct indices: for any pair {7, j} with
i < jone has

XiQijxiGij +x;95ix Qi +xiij (i, j) + (i, )xidij = [1— (i, /)] = [1 = (i, /)] =0,
because (i, j)¢;; = ¢i; so that
XiQijxi@ij = Xi /xi — xj(xi9ij — X i) = Xi@ij,
which combines with x;¢;x;¢;; to produce 1 — (i, j). Also,
xiQij (i, J) + (i, )xidij = xi (i, j) — /i —xj+x; (i, j) = 1/xj —x: = =[1 = (i, J)].

For any triple (i, j, k) (all distinct, and the order matters), the first part of E3 (in
the second term interchange j and k) contributes

2N=00)] xeullik) = (.K) (i, )
(i — x;) (i — xi) (i — xi) (o — x)
and the second part of E3 contributes (but only for k > i)
xi[p(i’k) — (l’])(lvk)] + xk[(i7k) — (lvk)(lv.])} .

x,-—xj xkij ’

however, this is symmetric in i,k since (k, j)(k,i) = (i,k)(i,j) (interchanging i
and k in the first term). Fix a triple (p,q,s) with p < g, and then the transposition
(p,q) appears in the triples (p,s,q), (¢,s, p) with coefficient

—%p —% *pXq
(xp —x5)(Xp —Xg) (g —x5)(xg —xp)  (xp —Xg) (g —x5)
XpX, X X
_ PXq I I —y

(Xg —xp)(Xp —%X5) ~ Xp—Xs  Xg—Xs
Finally we consider the coefficient of a given 3-cycle (of permutations), say,
(p,q)(p,s) =(q,5)(q,p) = (s,p)(s,q), which arises as follows:

XpXg Xg XgXs X5
(xpixq)(xqixs) Xg = Xs (xqfo)(xsfxp) Xs —Xp
N XgX) Xp o

(s =xp) (¥p —Xg)  Xp—24
This is canceled by the corresponding 3-cycle in Ey4. It remains to find the coef-
ficient of 1 (the identity operator) in E3 and E4. The six permutations of any
triple p < g < s correspond to the six permutations of x,z, [ (xp — xg) (xp — Xs),



10.8 Miscellaneous Topics 357

and these terms add to 2. Thus E3 and Ej contribute 2(‘31) +38 M d —i) =
td(d—1)(2d — 1). Further,

xidi — (% —1—x)|+x°d(d—1)>=0

M=

2K(d—1)'

and this finishes the proof. O

Corollary 10.7.10 For 2 € No* and ot = A,

d ). — (i d
pREVER R o B _(x’j’)l)] G = 3. A= 260 D

i=1 i<j i —Xj

Proof The operatoris ¥¢ | (% —1—«d)? — t k?d(d —1)(2d — 1). Because of its
invariance, the eigenvalue for { is the same as that for {3, namely, 2;1:1 [x(d—
i+1)+A—Kkd)?— 234 (i—1)% O

The difference part of the operator vanishes for symmetric polynomials.

Corollary 10.7.11  For A € N&7,

a a-9) . &
(Z(xi&)z—i—ZKinxjx x{)]’x = Y AilAi—2k(i—1)]jx.
=1

i=

i=1 i<j i—Xj

This is the second-order differential operator whose eigenfunctions are Jack
polynomials.

10.8 Miscellaneous Topics
Recall the exponential-type kernel K (x,y), defined for all x,y € R?, with the prop-
erty that @i(x) K(x,y) = yiK(x,y) for 1 <i < d. The component K, (x,y) that is
homogeneous of degree n in x (and in y) has the reproducing property for the
inner product (-,-), on 24, that is, K,, (x, @(y)) q(y) =q(x) forg € 24, So, the
orthogonal basis can be used to obtain the following:

B hia,l)
Ky (x,y) = MZ:n h(o,k+1)(dx+1),+

Car (%) G (v) -

The intertwining map V can also be expressed in these terms. Recall its defining
properties: V.24 C 224 V1= 1and 2,V q(x) =Vdq(x)/dx; forevery g € 14,1 <
i < d. The homogeneous component of degree n of V! is given by

Vel = a:n( >x“(9<>'))°‘q(y)~

Tl

n
o
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Define a linear map & on polynomials by &py = x*/a!; then £~ 'V~lg(x)
= Y| ¢|=nPa (x)(29%g(y) = (Fy(x,-),q)n the pairing of the degree-n homoge-
neous part of F (x,y) (the generating function for p,, and the reproducing kernel
for (-,-) ) with g in the & inner product (see Definition 7.2.2).

Write g = ¥,g|—, bp {p (expanding in the {-basis); then, with |a| =n = |B],

(Fae )y = 3 ﬁgx(x)bmca, Con = S (dic+ 1) b G (v):
ap \Sa 50/ p o

Thus £V~ acts as the scalar (dk+1), 1 on the space Ej; hence V& =
(dx+ 1);71 1 on E; . From the expansion

Co = Pa +2{Bﬁap[3 B> o,

the matrix Bg ,, can be defined for all o, B € N¢ with |o| = n = |B|, for fixed n,
such that By o = 1 and Bg,, = 0 unless 8 ™ ¢. The inverse of the matrix has the
same triangularity property, so that

Pa=Cat S{(B)puls B> )

and thus
1 .
vxa:azvgpa_( CﬁZ{ dK+1ﬁ (B~ )ﬁacﬁ.ma}.

Next, we consider algorithms for py and {,. Since py, is a product of poly-
nomials p, (x;;x) only these need to be computed. Further, we showed in the
proof of Proposition 10.3.7 that p, (x;;x) = m, (x) + x;pn—1 (x;;x) (and also that
M1 (x)/dx; = Kpy (x5x)), where T, is generated by

d d A
ZEH(X)I"—H(l—xit)_K—(2(—1)’ejtj> ,

Jj=0
in terms of the elementary symmetric polynomials inx (eg = 1,e; =x1+x2+- -,
e =X1X20+-,....,eq =X1X2 - Xq).

Proposition 10.8.1 For x > 0, the polynomials m, are given by the recurrence
(with t; =0 for j <0)
d

1 i
= > (=1 Yn—i+ix)eim, ;.
i=1

Proof Let g = Z o(— ) e jtf and differentiate both sides of the generating
equation:
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thus
d

i nt, (x)" Y (— ejtj =
n=1

Jj=0 Fl

M&

jejtj z T, (x) ¢
n=0

The coefficient of ™ in this equation is
d

(=1 (m—j)emn—j=—x ¥ (=1) jejmn—;,
j=0 =1
which yields mm,, = — 2 V(=D (m— 4 Kj) €. O

It is an easy exercise to show that 7, is the sum over distinct ¥ € N¢, with
N+2% -+ dyg =n, of () (—1)""MTIL, (7 /7;1).

The monic polynomials {¥ can be computed algorithmically by means of a
kind of Yang—Baxter graph. This is a directed graph, and each node of the graph
consists of a triple (o, & (&), %) where o € N¢ and & () denotes the vector
(& (o )) _ - The latter is called the spectral vector because it contains the {%;}-
eigenvalues. The node can be labeled by « for brevity. The adjacent transpositions
are fundamental in this application and are denoted by s; = (i,i+1), 1 <i<d.
One type of edge in the graph comes from the following:

Proposition 10.8.2  Suppose that o € N§ and o; < 01, then
(1 - c2> Cgc = siCs);oc _CCs);ow
where
c= —C =s5:0% 4L
Eisi(a) =& (o) ™% 7% 0 2
and the spectral vector £ (s;ct) = 5;€ (o).
Proof The proof is essentially the same as that for Proposition 10.4.5. In the

monic case the leading term of s;{% + c£2 is x%, because every monomial xP in
£y satisfies B < o < s;01. O

The other type of edge is called an affine step and corresponds to the map
Qo = (0, 04,...,04,01 + 1) for o € Nd.

Lemma 10.8.3 For o € N¢ the spectral vector & (®a) = ®E(a).
Proof For2 < j<d,letg; =1if o > o (equivalently, oy +1> ;) and €; =0
otherwise. Then, for 1 <i<d,
rog (i) = €41 +#{l:2§l§ i+1,04 > OCi+1}
+#{l:i+1 <l<d,oq > Ot,'+1}
=rg(i+1);
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see Definition 10.3.10. Thus Epu(i) = k[d—rq(i+1)+1] + o1 + 1 =
Eq(i+1). Similarly, req(d) =rg(1) and Epe(d) = Eq (1) + 1. O

From the commutation relations in Lemma 10.2.1 we obtain

Usaf =xal%—x(d)f,  1<i<d,
Uaxaf = x4 (1+ Daxa) f-
Let 65 = s152...54—1; thus 6;(d) =1 and 6, (i) =i+ 1 for | <i < d (a cyclic
shift). Then, by the use of %11 = s;%s; — Ks; and s;%s; = s ;s for j <i—1
or j > i,
%xdffxd( z+19d)f, 1<i<d,
%dxdf:xd(l—FGd 4 Gd) f.
If f satisfies % f = A;f for 1 <i<d then % (x40, ' f) = ,+1 ( 1 f) for 1
i <dand % (x40, f) = (A1 +1) (x40, ' f). Note that 6, ' f (x) = f (x6, ")
f(xd,xl,...,xd,l).

A

Proposition 10.8.4 Suppose that a € Ng; then
Coa (¥) = xaly (Xa,x1,- - Xa—1).

Proof The above argument shows that x; &% (xed_ 1) has spectral vector & (®a).
The coefficient of x®* in x5 (x0,"') is the same as the coefficient of
x%in &}, O

The Yang—Baxter graph is interpreted as an algorithm as follows:

1. the base point is (0" (d—i+1)k+1)2,, 1),

2. the node (o, & (), f) is joined to (®a, PE (o), x4 f (Xg,%1,...,%X4—1)) by
a directed edge labeled S;

3. if a; < o1 then the node (o, & (o), f) is joined to

(sest @) (54 gz )f)

by a directed edge labeled T;.

A path in the graph is a sequence of connected edges (respecting the directions)
joining the base point to another node. By Propositions 10.8.4 and 10.8.2 the end
result of the path is a triple (&, & (o), %).

For example here is a path to the node labeled (0,1,0, 2) (0,0,0,0) X
(0,0,0, 1) (0, 0,1,0) (0,1,0,0) = (1 0,0, 1) (1,0,1,0) = (0,1,0,2).
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All paths with the same end point have the same length. To show, this intro-
duce the function 7(t) = § (|t|+|t+1|—1) for t € Z; then 7(t) =1 for t >0
and = —¢— 1 fort < —1, also ©(—t—1) = 7(¢). For oo € N¢, define 7’ (ax) =
Yicicjca T(00— ).

Proposition 10.8.5 For oo € N¢, the number of edges in a path joining the base
point to the node (o, & (o), EY) is T’ (o) + |ot].

Proof Argue by induction on the length. The induction starts with 7’/ (Od) +
|Od | = 0. Suppose that the claim is true for some ¢. Consider the step to ®or.
It suffices to show that 7/ (@) = 7’ (t), since |@or| = |ot| + 1. Indeed,

-1 d
7 (o) — 7' (o) = Y, T(0ip1 — (a1 +1)) = Y, (o — o)
i—

Il
R

[t(—(oy—o)—1)—1(0y — 04)] = 0.

|
Ma

||
[N}

Now, suppose that ¢; < 0411 (thatis, o — 041 < —1); then |s;0¢| = || and

v (sio) — 7' (00) = T (0tis1 — 04) — T(04 — Ol 1)
= (0tiy1 — ) — (041 — 0 — 1)
=1.

This completes the induction. O

In the above example
7((0,1,0,2)) =7 (-1)+7(-2)+7(1)+7(~1)+7(-2) =3.

Recall that e 2+/2 is an isometric map on polynomials from the inner prod-
uct (+,-), to S = L2 (Rd;b;cHKj |Xi *X.;IZKG_HXHZ/de). The images of {, :
oc Ng} under e~24/2 form the orthogonal basis of nonsymmetric Jack—-Hermite
polynomials. By determining e 24/2% ¢®1/2, we will exhibit commuting self-

adjoint operators on .7 whose simultaneous eigenfunctions are exactly these
polynomials.

Proposition 10.8.6 For 1 <i <d, the operator

52/1%6 :e_Ah/zg% eAh/z = @ixi+ K_@lz_ KZ(.]7Z)

j<i

is self-adjoint on ¢ .
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Proof The self-adjoint property is a consequence of the isometric transformation.
Since A;, commutes with each transposition (j, i), it suffices to show that

e M2 G = (Dixi — DF) e /2,
Use the relation (Lemma 7.1.10) Apx; = x;Aj, + 29; to show inductively that
AL Dix; — DixiN} = 2 PPN
now apply Ay, to both sides of the equation to obtain
AT Dixi — My DixilNy = 2nDEA;,
=AM Dixi — D& — 292

Multiply the equation for n by (—1)" /n! and sum over n =0, 1,2, .. .; the result
is e*Ah/zg,-x,' — :@ixie*Ah/z = —_@ize*Ah/z_ 0

The nonsymmetric Jack—Hermite polynomials {e %+/2{,} are not homoge-
neous; the norms in . are the same as the (-,-), norms for {{,}.

10.9 Notes

The forerunners of the present study of orthogonal polynomials with finite
group symmetry were the Jack polynomials and also the Jacobi polynomials of
Heckman [1987], Heckman and Opdam [1987] and Opdam [1988]. These are
trigonometric polynomials periodic on the root lattice of a Weyl group and are
eigenfunctions of invariant (under the corresponding Weyl group) differential
operators (see, for example, Section 5.5 for an example in the type-A category).
Beerends and Opdam [1993] found an explicit relationship between Jack poly-
nomials and the Heckman—Opdam Jacobi polynomials of type A. Okounkov
and Olshanski [1998] studied the asymptotics of Jack polynomials as d — eo.
It seems clear now that the theory of orthogonal polynomials with respect
to invariant weight functions requires the use of differential-difference opera-
tors. Differential operators do not suffice. After Dunkl’s [1989a] construction of
rational differential-difference operators, Heckman 1991a] defined trigonomet-
ric ones; the connection between the two is related to the change of variables
x; =exp(i0)), at least for S;. Heckman’s operators are self-adjoint but not com-
muting; later, Cherednik [1991] found a modification providing commutativity.
Lapointe and Vinet [1996] introduced the explicit form of %; used in this chap-
ter to generate Jack polynomials by a Rodrigues-type formula. Opdam [1995]
constructed orthogonal decompositions for polynomials associated with Weyl
groups in terms of commuting self-adjoint differential-difference operators. Sev-
eral details and formulae in this chapter are special cases of Opdam’s results;
because we considered only symmetric groups, the formulae are a good deal more
accessible.
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Dunkl [1998b] introduced the p-basis, partly for the purpose of analyzing the
intertwining operator. The algorithm for {; in terms of {3 . (whenm ={(4))
was taken from this paper. Sahi [1996] computed the norms of the nonsymmetric
Jack polynomials for the inner product (-,-) p» that is, the formal biorthogonal-
ity (pg,xP >p = 8¢p. Knop and Sahi [1997] developed a hook-length product
associated with tableaux of compositions (the row lengths were not in mono-
tone order). Baker and Forrester, in a series of papers ([1997a,b, 1998]) studied
nonsymmetric Jack polynomials for their application to Calogero—Moser sys-
tems (see Chapter 11) and also exponential-type kernels. Baker and Forrester
and also Lassalle [1991a] studied the Hermite polynomials of type A. Some tech-
niques involving the p-basis and the symmetric and skew-symmetric polynomials
appeared in Dunkl [1998a] and in Baker, Dunkl and Forrester [2000]. The evalu-
ation of the pairing [1; ; (% — 2;)I1i<; (xi — x;), used here in norm calculations,
was used previously in Dunkl and Hanlon [1998].

Proposition 10.8.5 was proved in Dunkl and Luque [2011, Proposition 2.13].
Etingof [2010] gave a proof for the explicit evaluation integrals of Macdonald—
Mehta—Selberg type for all the irreducible groups except type By.
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Orthogonal Polynomials Associated with
Octahedral Groups, and Applications

11.1 Introduction

The adjoining of sign changes to the symmetric group produces the hyperoctahe-
dral group. Many techniques and results from the previous chapter can be adapted
to this group by considering only functions that are even in each variable. A sec-
ond parameter k' is associated with the conjugacy class of sign changes. The
main part of the chapter begins with a description of the differential-difference
operators for these groups and their effect on polynomials of arbitrary parity (odd
in some variables, even in the others). As in the type-A case there is a fundamen-
tal set of first-order commuting self-adjoint operators, and their eigenfunctions
are expressed in terms of nonsymmetric Jack polynomials. The normalizing
constant for the Hermite polynomials, that is, the Macdonald—Mehta—Selberg
integral, is computed by the use of a recurrence relation and analytic-function
techniques. There is a generalization of binomial coefficients for the nonsym-
metric Jack polynomials which can be used for the calculation of the Hermite
polynomials. Although no closed form is as yet available for these coefficients,
we present an algorithmic scheme for obtaining specific desired values (by sym-
bolic computation). Calogero and Sutherland were the first to study nontrivial
examples of many-body quantum models and to show their complete integra-
bility. These systems concern identical particles in a one-dimensional space, the
line or the circle. The corresponding models have been extended to include non-
symmetric wave functions by allowing the exchange of spin values between two
particles. We give a concise description of the Schrodinger equations for the
models and of the construction of wave functions and commuting operators,
using type A and type B operators. Type A operators belong to the symmetric
groups; see Section 6.2 for a classification of reflection groups. The chapter con-
cludes with notes on the research literature in current mathematics and physics
journals.
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11.2 Operators of Type B

The Coxeter groups of type B are the symmetry groups of the hypercubes
{(£1,£1,...,41)} C R and of the hyperoctahedra {+¢; : 1 <i < d}. For given
d, the corresponding group is denoted W, and is of order 2¢d!. For compatibility
with the previous chapter we use K, K’ for the values of the multiplicity function,
with Kk assigned to the class of roots {+¢; Teg:1<i<j< d} and k' assigned to
the class of roots {+¢; : 1 <i < d}. Fori# j the roots & — €j, & + €; correspond
to reflections o;;, 7;; respectively, where, for x € R4,
i J

xO','j = (xl,...,xj,...,xi,...,xd),

XTjj = (X],...,—xij,...,—)g,',...,xd).
As before, the superscripts above a symbol refer to its position in the list of
elements. For 1 < i <d the root & corresponds to the reflection (sign change)

xciz(xl,...,—)éi,...,xd).

Note that 0;0;;0; = 0;0;;0; = T;;. The associated Dunkl operators are as follows.

Definition 11.2.1 For 1 <i<d and f € I1¢ the type-B operator Z; is given by

Dif(x) = %f(X)JrKlw

+Kz< - X%)Jrf(x)—f(”ij)).

Fi —Xj x,-+xj

Most of the work in constructing orthogonal polynomials was done in the
previous chapter. The results transfer, with these conventions: the superscript A
indicates the symmetric-group operators and, for x € R?, let

y= (yl» 7yd) = (x%7 xczi)

J i,j)g(y)
Dig(y) = V) +K —,
g(y) o 80y ;l =

U'e(y) = Zpig(y) —x (i, ))g

Jj<i

note that both o;; and 7;; induce the transposition (i, j) on y and recall that @iA pi=
Py; + k. To keep the numerous inner products distinct, we use (-,-)p for the i
inner product, that is, for f,g € IT% let

<f7g>B:f(-@]a'"79d)g(x17-"7xd)|x:0-

As in the type A case, we construct commuting self-adjoint operators whose
simultaneous eigenfunctions can be expressed in terms of the nonsymmetric Jack
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polynomials. If two polynomials have opposite parities in the same variables then,
by a simple argument, they are orthogonal.

Definition 11.2.2 For any subset E C {i: 1 <i<d},let
XE = Hxi.
icE
Suppose that g1, g> are polynomials in y and E, F are sets with E # F; then,
for any suitable inner product (specifically, one that is invariant under the sign-
change group Z4), one has (xgg1 (),xrg2(y)) = 0. Applying Z; to a polynomial
xpg(y) gives two qualitatively different formulae depending on whether i € E.

Proposition 11.2.3  Let g(y) be a polynomial and E C {j: 1 < j < d}. Then,
for1<i<d ifi¢E,
Dixeg(y) = 2xe 78 ();
ificE,
XE ..
Dixeg(y) =2— ((K' —3+Zy)ely)—x Y, (17])8()’)> -
* JEE,j#i

Proof We use the product rule, Proposition 6.4.12, specialized as follows:

8xE XE — O XE
Ticpg(y) = xe 7ig(y) +8(0) 75— + K'g(y) =————
Xi Xi
.. XE — OjjXE = XE — TinE>
+K I, ( .
jzﬁ( NeW(~ - Py

Considering the first term, we obtain

9; (y)=2xi;yig(y)+1<2[g(y)—(l}j)g(y)}( - )

o Xi—Xj  Xi+Xxj

o ( aay g0) 4 xS 0= <i,j>g<y>>: 2 hel).

i Yi—Yj

Next, lfl§é E then xg — o;xg = 0 and XE — OijXE =0=uxg — TijXE fOI‘j¢ E.If
i ¢ E and j € E then

XE — OijXE  XE — TjjXE _XE [ Xj—Xi Xj+Xxi ~0
Xi—Xj Xi+Xx;j X;j \Xi—xj Xxi+x;j '
This proves the first formula.
If i € E then xg — 0;xg = 2xg and xg — 0;;xg = 0 = xg — 7;;xg for j € E, while
for j ¢ E we have

XE — OjjXE XE — TjXE _ X£ Xi —Xj +x,-+xj _2X7E
Xi —Xj Xi+Xj Xi \Xi—Xj XitXxj X



11.2 Operators of Type B 367
Thus, fori € E,
X .. .
Dixsg(y) =25 (37 g(r) + (3 +K)g () + Kk X {(i. )g0) 1 j £ E}).
1

The commutation y; Z4g(y) = 24yig(y) — g(y) — k4i(i,j)g(y) established in
Lemma 10.2.1 finishes the proof. O

Lemma 11.2.4 For i # j, the commutant
[.@ixi, _@jx]'] = K(.@l‘xi — .@ij)(Gij + Tl‘j) = K(.@ixi, Cij + T,‘j).

Proof By Proposition 6.4.10, Zx; — x;2; = —x(0;; — T;;) (as operators on I14);
thus

@ixi @jxj — @J'Xj@,’xi

= K@i(O'ij — T,'j)xj‘ — K@j(O'ij - Tij)xi
K(Dixi — .@]‘X./‘)(Gij + Tij)7

because 0;;x; = x;0;; and 7;;x; = —x;7T;;. The remaining equation follows from
(Gij+fij)@l‘xl‘ = @jx]'(O',‘jJrTij). O

Definition 11.2.5 For 1 <i < d, the self-adjoint (in (-,-);) operators %; are
given by
U = Dixi — K Y (0 + Tj).-

j<i
Theorem 11.2.6 For 1 <i,j <d, UU; = U;%.

Proof Assume thati < j and let Y, = Oy + Ty for r # s. Further, let % = Z;x; —
KA, % = Zjxj— KY;j — KB, where A = ¥ ; Wi; and B = ¥ j i Wkj. Then

(%, %) = |Dixi, Zjx; — kWij] — K[Dixi, B] — K[A, Zjx;] + K*[A, y;j + B].

The first term is zero by Lemma 11.2.4 and the next two are zero by the
transformation properties of Z;x; and ;x;. The last term reduces to

il i—1
K’ 2([Wkia Wiej] + (Wi, Wig]) = K 2 (Wi W) — Wi W) + (W Wiy — Wi Vi) -
k=1 k=1
Each bracketed term is zero; to see this, start with the known (from S,;) relation
O%iOkj — 0;jOki = 0 and conjugate it by 0j,0;,0 O obtain OkiTkj — TijOki = 0,
T4iOkj — TijTi = 0, T4iTj — 07T = O respectively. (Replacing i,k by k,i shows
that the second term is zero.) O
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11.3 Polynomial Eigenfunctions of Type B

The nonsymmetric Jack polynomials immediately provide simultaneous eigen-
functions which are even in each variable.

Proposition 11.3.1 For o € N‘é and 1 <i<d,
UCa(y) = [&i(0) =+ = 3] Caly).
Proof By Proposition 11.2.3,
Zxila(y) = x X,(01j+ 7)) Ca(y)

Jj<i

= 2( 2+@Ayl Ca(y) 27(2 i, j)Ca(y

Jj<i
= 2( — K= 3+ %) a )
= 2(&i(0) —k+ &' = 3)Ca(y)-
Recall that Zy; = P p; — k. O

For mixed parity, the simplest structure involves polynomials of the form
x1x2 - - - xxg(y); this is a corollary, given below, of the following.

Lemma 11.3.2 LetE C{j:1<j<d}; then, fori ¢ E,

Uxpg(y) = 2xg <(%A —Kk+K -3 -k (iyj)> g(y),

j>i,jeE
and, fori € E,

Uixpg(y) = 2xg (%Ayi D> (i,j)> 8()-
Jj<i,j€E
Proof For any j # i note that (0;;+ 7;;)xeg(y) = 0if #({i, j} NE) = 1, otherwise
(0ij+ 1ij)xe8(y) = 2x£ (i, j)g(y). For i ¢ E, by the second part of Proposition
11.2.3,

Uixpg(y) = 2xg <(@,-Ayi +x =) -k, w) —2kxg Y, (i,/)8(y),

JEE J<i,j¢E

which proves the first part. For i € E, note that x;xg = xgy;/x; and, by the first
part of Proposition 11.2.3,

Uxeg(y) = Dixixeg(y) —2kxg Y, (i,))g(y)
j<ijeE

:2xE<@y,g -k > ( )
Jj<i, /EE

This completes the proof. O
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Corollary 11.3.3 For1 <k<dand a € N, let E = {j: 1 < j <k}, then, for
1<i<k,
Uixe8a(y) = 2[&i(a) — K]xg L (y)
and, for k <i <d,

UxpCa(y) = 2[& () — K+ & = 31xea(y).

It is clear from S, theory that {xg{n(y) : @ € N&} is a complete set of simulta-
neous eigenfunctions for {%;} of this parity type. To handle arbitrary subsets
E one uses a permutation which preserves the relative order of the indices
corresponding to even and odd parities, respectively. For given k, we consider per-
mutations w € S; with certain properties; the set w(E) = {w(1),w(2),...,w(k)}
will be the set of indices having odd parities, that is, wxg = H{-‘Zl Xy(i)-

Proposition 11.3.4 For 1 <k<d,letE={j:1<j<k},o € N&, andletw €
Sq with the property that w(i) < w(j) whenever 1 <i< j<kork+1<i<j<d;
then, for 1 <i <k,

%w(i)wxECa () =2[&i(0) — K]wxe Ca(y)

and, for k < i <d,

Unpiywxe Lo (y) = 2[&i(t) — K+ K — Swxp u(y).

Proof The transformation properties w@f‘yi = 95:(1.) Yw(i)w and
(rs)w=ww L (r),w 1 (s)), forr=#£s

will be used. When 1 <i <k, by Lemma 11.3.2 we have

%w(i)wxECDc(y) :zxw(E)W<@iAyi_K 2 (Wl(.])vl)> Ca(y)
Jj<w(i),jew(E)

but the set {w=!(j) : j <w(i),j € w(E)} equals {r: 1 <r < i} by the construction
of w. Thus %,,;wxgCa(y) = 2xW(E>w(%iA — k)8 (y) =2[&i(0t) — K]wxgCu ().
When k < i < d, we express the first part of Lemma 11.3.2 as

%W(i)wxE Caly) = ZXW(E)W (.@f‘yi +x — %

I CAUTERED MU At

jew(E) J<w(i),j¢w(E)
= 2xw<E)W(9/iA —K+Kk — %)Coc(y)'

The set {r: 1 <r<i}equals EU{r:k <r < i} and, again by the construction
of w, {rik<r<i}={wl(j):j<w(i),j¢wkE)} O
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To restate the conclusion: the space of polynomials which are odd in the
variables x,,;), 1 <i <k, is the span of the {%;} simultaneous eigenfunctions

wxg G (¥)-

To conclude this section, we compute the (-, -) 5 norms of xg (o (y) for E = {r:
1 <r <k}. By group invariance the norm of wxg {y (y) has the same value. First
the S;-type results will be used for the all-even case {y(y); this depends on the
use of permissible (in the sense of Section 10.3) inner products.

Proposition 11.3.5 The inner product (-,-)p restricted to polynomials in 'y =
(x3,...,x3) is permissible.

Proof Indeed, for f,g € I1¢ the value of this inner product is given by

<fvg>3:f(@127 Qd) (xlv x[21)|x:0~

The invariance (wf,wg)g = (f,g)p for w € S; is obvious. By the second part
of Proposition 11.2.3, 24y, f(v) = (3Zixi + 5 — k') f(v); the right-hand side is
clearly a self-adjoint operator in (-, -) 5. O

By Theorem 10.4.8 the following holds.

Corollary 11.3.6 For o € Nd and 2 = o™,
(Ca(y): Ca(¥))p = &4 () () (Ca (), Ea () -

As in Section 10.6, the calculation of ({3 (v), 81 (y))g for A € Ng’P depends
on a recurrence relation involving Z4¢; , where m = £ (). We recall some key
details from Section 10.6. For 1 <m < d let 6, = (1,2)(2,3)---(m—1,m) € S,.
When m = £(1), let A = (A — 1,A1,A2,. .., Ap—1,0...); then Z2¢; = [k(d —
m+ 1)+ 4,10, & i This fact will again be used for norm calculations. For such
A, for conciseness in calculations set

a; = (d—m)K+ K/+)~m_%;
by = (d—m+ 1)K+ Ay

Lemma 11.3.7 Suppose that A € Ng’P and m={(A). Then
Dna () = 44, T 53 (y) = 443026, &5 ().
Proof By Proposition 11.2.3,

Ina () = Dl 25D 83 (0)] = 4(K' = ) D Ca () + Doy TG (0)]-

By Lemma 10.5.3, Ay, 248, () = [En(X) — kK — 1] 245 (v) because Ziy,, =
DApm — k. Since &, (L) = (d —m+ 1)K+ A, + 1, we obtain

Dn6n () = 41K = § +En(A) — k= 112553 (v) = 4a1 Zp 50 ()
Finally, 7,,5,.(v) = 616, §5 () O
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Theorem 11.3.8 Suppose that A € Ngf. Then

h(A,x+1)

(G 0)Ga0D)p = 24+ (= D+ 3),

Proof Suppose that m = ¢(A). By the defining property of (-,-), we have on the
one hand

(Dn&(0): Zn6a () = (mZna (), 62 ()
_4(11’ <.X29AC)L( )7C7L(y)>B
*451 <ym mgl( )7C7L(y)>8
— 4a; by, K+”’)Lm (G ()6 0))g>

because (Ym P81 (v); 63 () = [n/ (K + Am)1ba (G2 (), §i. () p by part (iii) of
Lemma 10.5.2. On the other hand,

(226 0): Z06 )y = (4arb)? (0, 500,65, 5;00)
= (4ab)* (G0).60))
= (4a26,)°EL (M) E-(A) (Gr-6, ) G () -

Combining the two displayed equations shows that

(G2 (3): 62 () = 4azby, lml Er(A)E-(A) (G600 Ga—e, ()5

From Lemma 10.6.4,

K+Am , 5 > WA, k+1)h(A — &y, 1)

Er(A)E-(A) = .
Dom +A)E- () h(A — &, K+ h(A,1)
Moreover,
(dK‘Fl))L
——=(d- 1 An=0b
(dK'-‘rl))L,g ( m—+ )K+ m A
and
d—1 '+
(( )K+/KJ:2)7L :(d*m)K+K/+Am**:al.
(d=1)K+K"+3)r-, 2
The proof is completed by induction on |A|. O

When x = 0 = x’ these formulae reduce to the trivial identity (x*,x*) =
T4, 4!, because 2%(1),,(3), = (2n)! for n € Ny. It remains to compute the quan-
tity (xe8a(y),xeCa(y))p for E={j: 1< j <k} and a € Nd. The following is
needed to express the result. Let | r| denote the largest integer < r.
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Definition 11.3.9 For 8 € N¢ let ¢(B),0(B) € N¢ with e(8); = [B;/2] and
O(ﬁ),’ = ﬁ,’ —€(ﬁ),' for 1 < i < d.

(Roughly, e(f3) and o(p) denote the even and odd components of 3.) We start
with B € N‘g such that f3; is odd exactly when 1 <i < k and consider the {%;}
simultaneous eigenfunctions indexed by 3, which are given by xg{y(y) where

o=e(B).

Theorem 11.3.10 Suppose that 1 <k <d and € Ng satisfies the condition
that B; is odd for 1 <i<kand B; is even for k < i, andlet E ={j: 1< j <k}
Then

(xe8ep) () xE8e(p) () 5

=2Pl(dK+ 1),y (d— D+ + %)Ww.

h(e(B),1)

Proof For any a € Ng and 1 < m <k, by Proposition 11.2.3 we have

Dx1%2 X (¥) = 2x1%0 - Xpy—1 (K/ - % + Dpym— K Z (Lm)) Ca(y)

j<m
=2x1x0 X1 (K — K — % + U al(y)
= 2[§m(a) — K+ K — %]x1x2 " 'xm—lga(y)'

Let o = ¢(f3); then, using this formula inductively, we obtain

(xE8e(g) ) X6 () (9)) g = (D1 -+ Daxe o) (), Sy (V)
[‘51( ) K+K _7]<Ce ( )’Ce(ﬁ)(y)>3

||’:|»

The last inner product has already been evaluated (and 22l¢(B)I2k — 2"3‘), S0 it
remains to show that

k

Hl[g,-( )—k+K = 3)((d =Dk +K +3)py = (d= D+ K +3) o)+

im
Leta=e(B)and A = ot and let w € S, be such that o; = A,,(;) and if o; = o; for
some i < j then w(i) < w(j). This implies that y = o(B)* satisfies o(B); = (),
specifically that ;) = o+ 1 for 1 <i <k and ;) = o for k < i. This shows
that u € Ng’P; indeed by construction w(i) < w(j) implies that 4,,; > 4,,;) and
Hy(i) = H(j)- The latter could only be negated if o; = lw() .uw(z) and /,LW( )=
o+ 1 (so that j < k < i), but o; +1 > o; > o; implies that o; = o¢j and j < i
implies that w(j) < w(i), a contradiction.
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For 1 <i<k,wehave §(a) =x[d—#{j:o; >0} —#{j:j<i;oj = o} +
o;+1=[d—w(i) + 1]k + Ay + 1 = [d —w(i) + 1]k + W,(;)- Thus

k

(& (o) = ' = 3)((d = e+ )

|
:?V‘

(ld=w@Dlk+ K+ po = ) [T ([ —w@DIk+ 6 +3),

1 i=1 v

d
([d—w(i)]x+ K"+ %)uw) IT (d—w()x+x"+3)
=kt 1

|
:?V‘

2’w(i)

—_

=((d=Dk+x+ %),

This completes the proof. O

Example 11.3.11 To illustrate the construction of w in the above proof, let f =
(7,5,7,2,6,8); then o = e(B) = (3,2,3,1,3,4), A = a™ = (4,3,3,3,2,1), u =
o(B)T =(4,4,4,3,3,1) and

using the standard notation for permutations.

We turn now to the Selberg—Macdonald integral and use the same techniques
as in the type-A case. The alternating polynomial for S;, namely
22
ap(x) = H (xi _xj) =a(y),
1<i< j<d
plays a key role in these calculations. For the type-B inner product the value of
(ap,ap)p shows the effect of changing k to kK + 1. Also, ag is h-harmonic because
Apap is (under the action of o;; or 7;;) a skew polynomial of degree 2(‘21) -2,
hence 0 (note that Ay, = 2?:1 @iz). As before, let

§=(d—1,d—2,...,1,0) e N*;

then ap is the unique skew element of span{w(s : w € W;} and a = ag in
Definition 10.4.9). Thus the previous results will give the values of (ag,ag)g.
Recall that, for f,g € TI¢ (Theorem 7.2.7),

<fag>3 = (Zﬂ)_d/zb (K, K'/)
d /
<L (e20) (¢ 2 TP an e 20,

where the normalizing constant b(, k') satisfies (1,1), = 1. Since e ~*#/2

the following holds (note that 2|§| = d(d — 1)).

ap —dap



374 Orthogonal Polynomials Associated with Octahedral Groups

Theorem 11.3.12 We have {(ap,ap)y = 24"Vl (dx+1)5((d — 1)k + K +
%)5 and, for x, k' >0,

b, )" = (27) d/2/ H| H ~—x§\2"e*”)‘”2/2dx

1<i<j<d

_ / T K/+l .
=27 I)HK]M [IrGx+ DG = Dx+ & +3).

Proof Using the same method as in the proof of Theorem 10.6.17, and by
Theorem 11.3.8,

h(8,x+1)

{(ap,ap)p =27 Dd1E_(8%) (dx +1)5((d — 1)x+ K + )5 Ch(8,1)

=2 Dgt(dx+1)5((d - )x+ K +1)s.

Further,

b(K‘—‘rl,K‘/) 1_ 271' d/2/ H|x |2K H‘x ’2K+2 *quz/zdx

i<j

= b(K,K )_1 <aB,aB>B.

From the proof of Theorem 10.6.17 we have

li[l“(j;c+l)d!(d’<+l) :ﬁr(j;c+j+1)

=2 T(+1) i T(k+2)
Also,
TTE(G— Dt 4 1)@ Dtk + D= [ITG - D+ 1) 4+ 1)
J=2 j=2
and

d / T (kK +1)\a
b(0.¢) " = @) [ TT e W 2ar— (2 M) ,
RYi (%)
by an elementary calculation. We will use the same technique as in the type A

case, first converting the integral to one over the sphere S?~!, a compact set. Let
vy = kd(d — 1) + k'd. Using spherical polar coordinates,

(2n) d/Z/ H‘ l|2;< 13- | o IKI2/2 g

i<j

SECTU o ) (i V R

i<j
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the normalizing constant (see (4.1.3)) satisfies Gd:ll Jsa-1dow = 1. Fix ¥’ > 0 and
define the analytic function

_ _ /1
0 () =Tl =+ | 5 R G - e v D)

Gdill 4 12
1“(‘2’)/sdllnl|xz| H|x *x| do(x ))

i<j

d ( T(x+1)T(})

The formula for b(k, k") /b(x + 1, k") shows that ¢ (x+ 1) = ¢(x) and also, that
¢(0) = 1. By analytic continuation ¢ is entire and periodic. On the strip {x : 1 <
Re k < 2} the factors of ¢ in the second line are uniformly bounded. Apply the
asymptotic formula (from the proof of Theorem 10.6.17), validin —w < argk < 7
and a,b > 0,
logT (ax+b) = ax (logk +loga—1)
+ (b — %) (logx +loga) + %10g (2n) + 0( \Z|_1 )

to the first line of the expression for ¢ (x):

1ogr(d[(d— D+ +1]) + (d— 1)10gT(K+ 1)

—Zlogr jk+1)+dlogT(3 ZIOgF jk+K+ 1)
j=2 J=

d
= [d(d— 1)k +dx' + 9 log[d (d—1)] - ¥ (jx + §)log j
=
-1
— Y (jx+«)logj— F2log(2m) —logl' (k' + 1)+ 4logm
=

+K<d(d—1 2]—2]> (logk —1)

+(d + G+ S - (a— 1)K ) logx +O(|x| )
= C(d, K’)+C2(d)1c+(K’+%)logx+0(|1€|’]),

where Cy,C, are real constants depending on d, k’. Therefore, in the strip {x :
1 <Rex <2}, we have ¢(x) = O(|x|¥ +(@=1)/2) By periodicity the same bound
applies for all x, implying that ¢ is a periodic polynomial and hence constant.
This proves the formula for b(x, k'). O

Note that the most important part of the above asymptotic calculation was
to show that the coefficient of xlogk is zero. The value of the integral in
Theorem 11.3.12 is the type B case of a general result for root systems of Mac-
donald [1982]; it was conjectured by Mehta [1991] yet turned out to be a limiting
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case of Selberg’s integral (an older result, Selberg [1944]). The proof given here
could be said to be almost purely algebraic but, of course, it does use asymptotics
for the gamma function and some elementary entire-function theory.

11.4 Generalized Binomial Coefficients

The use of generalized binomial coefficients exploits the facts that the vector
(1,1,...,1) € R? is invariant under S¢, or equivalently, orthogonal to all the roots
& —¢€j,i< j,and that 3¢, 74 = 3¢ | 9/dy;. For consistency, we will continue
to use y as the variable involved in type-A actions. Baker and Forrester [1998]
introduced the concept, motivated by the binomial coefficients previously defined
in connection with the Jack polynomials.

Definition 11.4.1 For o, € Ng and parameter k > 0, the binomial coefficient
(g)K is defined by the expansion

Lay+19) () S0
Ca (1) _2<B>KC;3(1“)'

We will show that (g)K =0 unless o™ D B (this ordering on partitions means
the inclusion of Ferrers diagrams, that is, aﬁ > Bﬁ for 1 <i <d). Also, there
is a recurrence relation which needs only the values of (g) at IB] =|o] — 1 at
the start (however, even these are complicated to obtain; no general formula is
as yet available). Ordinary calculus and homogeneity properties provide some
elementary identities. Of course, when k = 0 the polynomials {, reduce to y*
and (g)o =114, (g:)’ a product of ordinary binomial coefficients.

Proposition 11.4.2  For o € Nd and k >0,s €R, j € N,

M = (0‘) slol-IB] &)

(1) ~4\p £ (19)

and

« N, @\ Lu(1%)
(ZI 7 ) Sa(y) —J!w;l;,w (ﬁ);« CB(ld)Cﬁ(y)'

Proof For the first part, suppose s # 0; then s 71 ¢y, (y+514) = Lo (s 'y +19). In
Definition 11.4.1 replace y by s~'y and observe that {p is homogeneous of degree
|B]. Consider the first equation as a Taylor’s series in s at s = 0; then

0o < o d
= = =Y 94,
ds Z{ dyi 2.7

i=1
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.0 8)- £ (50,

Proof For arbitrary s,t € R,

o |ot|—|B| C[i( ) _ Ca(y—i—(s—i—t)ld)
% (), :

< BT L)
(0‘ ol S+ s19)
Y/« Cy(ld)
Y < >< ) = 181 SB0Y)
7B B Cp(19)
The coefficient of s~ IBl¢lel= in the equations gives the claimed formula. O

This shows that the investigation of (g) . begins by setting |B| = || — 1, that is,

by using the expansion of ¥, Z4¢,. The relevance of the binomial coefficients
lies in the computation of the type B Hermite polynomials e M/ 2x &5 (v) (where
E={j:1<j<k} for some k).

Proposition 11.4.4  For oo € Nd and k > 0, j € Ny,

B\ &r(a)h(ot,k+1)
(2”> o= % () Z e nrn @0

\ﬁ\=|a\+j

Proof The adjoint of multiplication by (Y% ,y;)/ in the h inner product is
(Z -1 QA)J In an abstract sense, if 7' is a linear operator with matrix M, g, where
T {o = Y3 Mp o Cp, then the adjoint T* has matrix

(8p.¢
Map = Mpa <§Z,ci§

By Proposition 10.6.5 and Theorem 10.6.6, §y(19) = &- (y)(dK+1)y+/h()/ ,1)
and (&, &y), = &L (VE-(y)(dx+ 1) h(yt, k+1)/h(yT,1) forany ye Ng. O

In the B inner product the adjoint of multiplication by (X2, ;)7 = (XL, x?)/
is A]. For y € N¢ and 0 < k < d, let

k
m= Y &= (1,1,...,1,0,...,0).
i=1
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Proposition 11.4.5 For o € Nd and k>0, j € Np, 0 <k < d,

(@)~ A Sa )
- [<a> (dKJrl)W((di1)K+K/+%)(a+nk)+h(ﬁa1)
B e L\B/ c(drc+ 1)ge((d— 1)K+ K + 1) gy Ao, 1)

XE; C/s |-

Proof We use the adjoint formula from Proposition 11.4.4. From Theorem
11.3.10, for any y € N¢,

<xEk &y(y),xE, C}'(y)>3
= 22k (g4 Dy ((d =D+ K+ %)(}'-Fﬂk)+ W

This proves the formula. O

Corollary 11.4.6 For a € N¢ and |a| = m, the lowest-degree term in the
expression e~/ 2xg, Co () is

_Laym
%x&ca()})
((d—l)K+K’+%)(a+nk)+ & (a) .
(d—Dk+K+1),  hlat, )™
(d=1)k+ K+ 3)(sn,
15 [(d— i)k + 1/ + 1]

= (<2)"(dK+ 1)

— (=2 " vk, Co(19).

Proof 1t is clear from the definition that (g)x =1, where 0 € Ng. Further,

La(1) = &-(a)(dx+ 1) /h(0%, 1), O

We turn to the problem posed by Zle 9;4 Co- Recall from Chapter 8 the def-
inition of the invariant subspace E, associated with A € Ng’P, namely, E; =
span{w{, : w € S;} = span{{, : " = A}. This space is invariant under S, and
the operators @iAy,-. Also recall, from Section 10.8, the intertwining operator V,
with ZV =V /dy;, and the utility operator &, where & py, = y* /ar!.

Theorem 11.4.7 For A € Nf)l’P, ifq(y) € E; and 1 <i<d then

Ziq= Y ((d—j+1)k+24))q;,

?Lj>lj+|

where q; € Ej_¢; and PZ4piq; = (&j(A) — 1)gj, for j such that ;> Aj41.

Proof Expand ¢q in the p-basis; then g = p;g + qo, where .@l‘f‘qo = 0. This is
obtained by setting go as the part of the expansion in which all appearing p,
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have o; =0 (and in p;g each term py, has ¢; > 1, by the definition of p;). Expand
g as a sum X, g, of projections onto £, with |u| = |A]— 1, that is,

q=piy8utqo.  Zita=2!piY gu
u m

Apply V& to both sides of the first equation. It was shown in Section 10.8 that
V& is scalar on each E,, with eigenvalue 1/(dx+1),. Also, (9/9yi)Epa(y) =0
if oy =0 and (9/3y)Epa(y) = Epa—g if &; > 1. Thus [1/(dx +1),]24q =
ZVEq=V (/)& (pi Ty gu+q0) =VETy gu = Tyu[1/(dx +1)u]gu, and so
A (dr+1), A
Z;q= %Mgu = %% Pi8u-

Since each E, is invariant under .@f‘pi, this shows that g, is an eigenfunc-
tion of 2 p; with eigenvalue (dk +1); /(dk+ 1),. The eigenvalues of %} p; =
(1,i)Z{p1(1,i) are the same as those of %{* = ' p;, namely, & () for o € N¢;
additionally, each eigenvalue is a linear polynomial in d (and for fixed o € Ey,
that is, o = p, the coefficients of {y in the p-basis are independent of d, where
oy =0 for all s >k and d > k), so we conclude that (dx + 1), is a factor of
(dx+ 1), as a polynomial in d. This implies that pt; < A; for each j. Combine
this with the restriction that y € Ng’P and || = |A| —1 to show that u = A —¢;
for some j with A; > A4;41; this includes the possibility that A; > 0. Also,

(dK'+ l)x

@x i Dy @I DREA =501

O
Corollary 11.4.8 For o, € Nd and x > 0, (g) _# 0 implies that o 2 B+

Proof Theorem 11.4.7 shows that (g)K #0and |B| = |a|— 1 implies that B+ =
ot —¢; for some j with o > o, |, thatis, o™ 2 B*. Propositions 11.4.2 and
11.4.3 and an inductive argument finish the proof. O

Next we consider a stronger statement that can be made about the expression
>4, DA ford € Ng’P. The following is a slight modification of Lemma 10.5.3.

Lemma 114.9 For o € Ng and 1 < i,k < d the following hold:
if i <kthen

(20X D00 K000 ) 70 = &) 2 s
Jj<i
if i >k then
YT b= 60) 7 o K67
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Further,
D ox D Co = [Ex(0) = 11D Co — 5 D (K, ) 77 o

j>k
Proof The case i < k is part (i) of Lemma 10.5.3. For i > k, we have
DD G = D2 D pia + x(i,k) Z¢ Co
and
_KZ(jai)@?Ca = —KQI? 2 (Jsi)Ca — K (K, i)@lﬁgm
J<i j<i,j#k

Add the two equations to obtain

WA=t (k3 (1))
J<i,jFk
U kT ki)

This proves the second part.
Finally, 7 pr 7 8o = D (D¢ pr — K Zjn (k) = 1o = Z( 2% — 1) o —
KD Lok (j k) Co and 2 (j,k) = (j. k) 277 O

It is convenient in the following to have a notation for projections. For u €
Ng’P, denote the orthogonal projection of f(y) € I1¢ onto E,, by m(ut)f, so that

f=XYru)f and  w(u)fE€Ey,.
u

The formulae in Lemma 11.4.9 can be applied to the projections m(A — €;) of
D8 » for A = o and A; > Aj41, because E;_, is invariant under Z;'p; and
elements of S;.

Proposition 11.4.10 For A € NO¥'| if 1 < j <k and A; > Aj.1 then we have
(A —£) 75 =0.

Proof Let g = m(A — €;)Z¢{,. By Lemma 1149, [Z8p; — k¥;:(j,i) —
k(i,k)]g = &i(A)g for all i < k. The operators on the left-hand side can be
expressed as w’l%iﬂlw for the cyclic permutation w = (1,2,...,k) € Sy, with
eigenvalues drawn from {{(A —¢€;) : 1 <s < d} on the space E; ... These
eigenvalues are §1(1),6(4),...,&j(A) —1,...,&(A),...; §;(A) does not appear

in this list, hence g = 0. O

Note that this argument uses the fact that A is a partition in a crucial way.

Lemma 11.4.11 For A € Ng’P, Aj>Ajpy and k < j, let g = (A — &) 20,
Then
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( pi— K (s,i)— )gk—él( Jar  fori<k

s<i
J
Zitpcgr = 1&A) — gk —x Y, (k,i)gs
i=k+1
UPg=EN) g+ x(k,i)gi  fork<i<j;

Ulg=ENge  fori>j.

Proof This proceeds by an application of the projection 7(A — €;) to each for-
mula in Lemma 11.4.9 in combination with the fact that 7(A —¢&;) 2, = 0 for
Jj < i (Proposition 11.4.10). U

As in Definition 10.5.1, let 8; = (1,2)(2,3)---(j — 1, ) € S4. The following
has almost the same proof as Theorem 10.5.5.

Proposition 11.4.12  For & € No¥ and A; > A1, set
I = (lj— 1,)‘1,...,2,j,1,),j+1,...);

then
A=)} =(d—j+1)k+ 2,16, '¢;.

Proof Letg=m(A— 8]-).@?(:,1. By Lemma 11.4.11, g satisfies the following:

(@;‘pi xS0~ v<<i,k>)g &g fori<;
Prpis = E(A)— 1ls,
Utg=&(A)g  fori>j.

Just as in Lemma 10.5.3, these equations show that 0;g is a scalar multiple of C)L,
where the multiple is the coefficient of p) _ ¢ in _@ ;.. Use Lemma 10.5.4 (the
hypothesis m = £(A) can be replaced by A; > lﬁ]) which implies that py
appears with a nonzero coefficient in @A P if one of the following holds: (1)
o = A, with coefficient (d — j+ 1)K+ kj, (2) a = A +k(gj — &) with coefficient
—x where 1 <k <A; — A (this implies that i > jand A > A +k(g; — &) or, more
precisely, for k < A; — ?LjJL = [A+k(ej—&)] T andfork=24;—A;,A = (i, j)A =
A +k(g; — &), so this case cannot occur); (3) a = A + k(& — €;) with coefficient
kand 1 <k <A;—A;—1,thus 4; < A;—2and i > j, but this case cannot occur
either, because A - A +k(&; — €;) when i > j. O

The part of Lemma 11.4.11 dealing with @,?pkgk actually contains more
information than appears at first glance. It was shown in Theorem 11.4.7 that
n(A —€;)Z¢, is an eigenfunction of Z{p; with eigenvalue &;(1) — 1. Thus
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the lemma implies that [&(4) — &;(A)]gx = K3/ w1 (k;0)gi; but this provides
an algorithm for computing g;_1,g;-2,...,&1 from g;, which was obtained in
Proposition 11.4.12.

Algorithm 11.4.13  For A € Ng¥ and A; > A1,
d
A—e)Y 71 =[d—j+1)k+A]9-1
i=1
where
$1-j = Cp e
K
= (i) — )b fori=j—1,j—-2,...,1,
o= (G gy gyer)e =il

.. K . .
¢i:((l7l+1)+m)¢i—l fori=1,2,...,j—1.

Proof Letgi=[(d—j+1)k+ ;] 'n(A —&)PA,; then g; =0 for i > j (by
Proposition 11.4.10), so we require to show that ¢;_; = le: 1 &i- Note that these
polynomials have been rescaled from those in Lemma 11.4.11, but the same equa-
tions hold. For convenience let b; = &;(1) —&;j(A) =Ai—Aj+k(j—i), 1 <i < j.
Then the lemma shows that

J
bigi =K Z (i7s)gi‘

s=i+1

By Proposition 11.4.12,

o= (-5 (-5 - (55 e

Next we show that

gi= g (145 G=10) o (14 10 g

ng = (15 G 1) (15 G=20) - (14560

arguing inductively for i = j—1,j —2,...,1. The first step, i = j — 1, fol-
lows immediately from Lemma 11.4.11. Suppose that the formulae are valid for
8i+1,---,&j; then

(5 10)) 95 )g
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K J K K "
= — 14+ — -71,' (14 S+1, ’ i j)ei
bis—i-H( bj—l (] ])) ( bs+1( ]))b( ])( ])g]
K K K
= —(1+—(@(—-1,j))---(1 1 D) (G e
bl-< +bj_1(J ,J)) ( o (i+ J))(la])gj

This uses (s,i)(s, /) = (s,/)(i, j); the last step follows using simple algebra (for
example, (1+#)(1+n)(1+65)=1+1+(1+1)+ (1 +1)(1 +1)t3 ). The
formula for Z_{:,'gs follows easily from that for g;.

To obtain the stated formulae, replace g; by 6]-_1 (6g;). Then

K K
Oigi=1((1,2)— 2,3)— (=10 -
i8j (( 2) b1+1)(( »3) b2+1) ((J ) b 1+1>(:’1 &’
and the remaining factors are transformed as follows:
K . . K . .
(1455 0=10) (145 50-2) - (14 5-0.0)

- ((j—l,j)+i) ((j—2,j—1)+?:> ((1,2)+b£1).
This completes the proof. O

To compute the expansion of (A —&;) X% | 24, in terms of {, with o =
A — g;, the algorithm can be considered to have the starting point ¢y = § 3 - Each
step involves an adjacent transposition which has a relatively simple action on
each { (recall Proposition 10.4.5). Indeed, let 0 = (i,i+ 1). Then: 0§y = &y if
o = 0it1; 68y = Lo+ if 0 > 04113 08 = (1 — ) oo+ if 04 < 041,
where ¢ = k[& (o) — & 1(a)]~!. So, in general (with distinct parts of 1), the
expansion consists of 2/~ distinct &,.

11.5 Hermite Polynomials of Type B

In this section we examine the application of the operator exp(—uAy,) to produce
orthogonal polynomials for weights of Gaussian type, namely,

w(x)ze_"”xuz, x € R?

where

d
:l_[l\xi|KlH|x ka|
i

j<k

and uv = 1,v > 0. In the following let y = degw(x) = dx’ +d(d — 1)k.

Lemma 11.5.1 Suppose that f € 2%, g € P¢ for some m,n € Ny,v > 0 and
u=1/(4v); then
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(F.8) = @) 2 (D) P ()

< [ () (e ng) wie 1 ar,

Proof In the formula to be proved, with v = % make the change of variables
x = (2v)!/2z, that is, set x; = (2v)!/?z; for each i. Then dx = (2v)*/? dz, and the
weight function contributes the factor (2v)?. For j < § let fj(x) = Aj f(x); then
e /2 f(x) = Y %(f%)jfj (x), which transforms to

S5(5) er e =S () ne =y

A similar calculation for g finishes the proof. U

Of course, it is known that (f,g) z = 0 for m # n.

Asin Section 10.9, the commuting self-adjoint operators %; can be transformed
to commuting self-adjoint operators on L? (Rd;wze’vHXHde). Forv>0and u =
1/(4v),1 <i<d,]let

%v — equh %e”Ah )

Proposition 11.5.2 For1 <i<d,

%V = Dix; —21/t@i2 - K‘Z(Gji-f— Tj,').

Jj<i

Proof Because A, commutes with each w € W, it is clear that e’“Ah(Gﬁ +
rj,-)e“Ah = 0ji + 7j; for j < i. From the commutation Apx; —x;A;, = 29;, we argue
inductively that Afx; — x;Af = 2n@,~AZ*1 for n € Ng. By summing this equation
(multiplying it by (—u)"/n!) we obtain

e "My, = (x; — 2uD;)e "M

Finally, apply Z; to the left-hand side of this equation to prove the stated formula.
O

The construction of an orthogonal basis labeled by Ng in terms of the
nonsymmetric Jack polynomials proceeds as follows. For o € N¢,

1. let E={i: o;isodd};

2. if E is empty let w = 1, otherwise let k = #(E),E; = {i: 1 <i <k} and let
w be the unique permutation (€ S;) such that w(Ey) = E and w(i) < w(})
whenever 1 <i< j<kork+1<i<j<d,

3. let B =w!(a), that is, B; = a,,(;) for each i;

4. let Hy (x; %, K’ ,v) = e “Mwxg, () (v) (recall that e(B); = |3Bi ).
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By Propositions 11.3.4 and 11.5.2, Hy(x) is a {%;"} simultaneous eigenfunc-
tion such that

oy Ha(x) = 2[&(B) — k]He(x) for 1 < i<k,
oy Ho (x) = 2[&i(B) — K + K — 3]Ho (x) fork<i<d.

Since w acts isometrically, we have

a2
(2v)7 (%) b (k. k') /RdHa(x; i, 1 v) 2w (x)e I dx

= (29) 1% (g, Gy (9) 35, L) ()
= Vﬁ‘al(d’(""_ l)e(ot)Jr ((d - 1)K+ K + %)o(oc)Jr

h(e(a)" kK +1)
& & —_—
< e(B)) - (e(B) T
The substitutions () =e(a)™,0(8)" = o(a)™ are valid since o = w(f3). The
most common specializations of v are v = % and v = 1 (when the polynomials
Hyg (x) reduce to the products of ordinary Hermite polynomials for k = 0 = «’).

11.6 Calogero—Sutherland Systems

We begin with the time-independent Schrodinger wave equation for d particles
in a one-dimensional space: particle i has mass m;, coordinate x; and is subject to
an external potential V;(x;) and the interaction between particles i, j is given by
Vij(xi —xj),i < j. The force acting on i due to j is F;; = —(d/dx;)Vij(xi — x;),
which equals —Fj; = —(d/dx;)Vij(x; — x;) according to Newton’s third law. The
Hamiltonian of the system is
2 d 2
H=— hz 2 ! (%) +ZV(xl)+ Y Vi

=1 i 1<i<j<d

and the Schrodinger equation is

Ay (x) = Ey(x),

where the eigenvalue E is the energy level associated with the wave function y.
The quantum mechanical interpretation of v is that |y(x)|? is the probability
density function for the location of the particles (which is independent of time by
hypothesis). This interpretation requires that the integral of |y (x)|* over the state
space must be 1 (this is one reason for the importance of computing L?-norms
of orthogonal polynomials!). Planck’s constant is used in the form i = h/(27).
We will consider only systems for which the Hamiltonian is invariant under the
action of the symmetric group S, and the interactions are multiples of |x,~ —X;j | -
(called 1/ % interactions, where r denotes the distance between two particles). For
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systems on the line R the external potential which we will consider is that corre-
sponding to harmonic confinement (producing a simple harmonic oscillator). In
the mathematical analysis of J¢ it is customary to change the scales and units
in such a way that the equations have as few parameters as possible. The term
complete integrability refers to the existence of d independent and commuting
differential operators, one of which is #. The relevance to orthogonal poly-
nomials is that Calogero—Sutherland systems with 1/r2 interactions have wave
functions of the form p(x)yp(x), where p is a polynomial and o (x) is the base
state (the state of lowest energy). This situation can be illustrated by the harmonic
oscillator.

11.6.1 The simple harmonic oscillator
Consider a particle of mass m moving on a line subject to the restoring force
F(x) = —kx or, equivalently, with potential V (x) = kx? /2, x € R. The Schrodinger
wave equation is
n* d2 kx?
*%@‘I/(X) + 7‘/’(’5) =Ey(x).

Write the equation as

& 2.2

A (x) = — 7 yl) +viyl) = Ay (),

where v is a positive constant and A denotes the rescaled energy level. Ignoring
the question of normalization for now, let the base state be y(x) = exp(—vx?/2);
then by an easy calculation it can be shown that

A (p(x)¥o(x)) = Yo (x)[—(d/dx)? +2xvd /dx+V]p(x).

For each n € Ny let p(x) = H,(/vx); then by using the corresponding differen-
tial equation for the Hermite polynomials, Subsection 1.4.1, namely —H,/(x) +
2xH}(x) = 2nH,(x), we obtain

S [Ha(Vvx) Yo (x)] = (204 1)vHL (Vvx) o (x).
This shows that the energy levels are evenly spaced and
{(2"n'\/7/v) "\ 2H,(v/vx) exp(—vx?/2) : n € N}

is a complete set of wave functions, an orthonormal basis for L?(RR).

The machinery of Section 11.5 for the case d = 1,k’ = 0 asserts that the
appropriately scaled Hermite polynomials are obtained from exp{[—u(d/dx)?]x"}
(with u = 1/(4v),n € Ny); indeed

1 /d\*
I __~n—n,—n/2
exp{ 4v( ) x"} =2"""""H,(/vx),

using the formula in Proposition 1.4.3.
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11.6.2 Root systems and the Laplacian

The following calculation is useful for any root system related to a Calogero
model. Recall the notation of Section 4.4, with a multiplicity function x, defined
on a root system R.

Lemma 11.6.1 Let y(x) = [1yer, |(x,v)|™ and let f be a smooth function on
R4 then

w(x)Aly () f ()]
=Af(x)+2 ) &

VER | <X, V> VER <xa V>

(Vf)v) ¥ Kv(val)IIVIIZf(x)
- :

Proof From the product rule for A we have

10y 0 1
—1 _ i o
% AIIJ_A+2;W8Xi BXi+wA1//.

The middle term follows from

181[/_2 Vi

—— = K .
Wa'xi v€R+ <x7v>

It remains to compute Ay /. Indeed,
(35) v= (3 ma) - 3 mg
i - l’/ — K,— — K,—
v (8xi VEZR‘+ " x,v) VEZR: | " x,v)?

iAw:_ z K, <V,V> + Z K, K, <M,V>

14 VER4 <x, V>2 u,veER <x7 u> <x7 V>

and

In the second sum the subset of terms for which 0,06, = w for a fixed rotation
= 1 adds to zero, by Lemma 6.4.6. This leaves the part with u = v and thus
Ay/y =3 ,cr, [k (K —1) (1,v)/(x,v)?]. The proof is complete. O

Lemma 11.6.1 will be used here just for operator types A and B.

11.6.3 Type A models on the line

Suppose that there are d identical particles on the line R, each subject to an
external potential v?x? (the simple harmonic oscillator potential), with 1/r?
interactions and with parameter k. The Hamiltonian is
K—1
H = —A+v*||x])> + 2K Z —.
e (xi—xj)?
1<i<j<d \™ J
The base state is yo(x) = exp(—v||x]|?/2) [Ti; |xi — x;|* for x € R?. Let a(x) =
[Ti< j(xi — x;). To facilitate the computations we will introduce two commutation
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rules (the second is the type A case of Lemma 11.6.1; f(x) is a smooth function
on x € R?). The commutation rules are as follows:

exp(v]|x[[*/2)A(exp(—v||x|*/2) £ (x))
d
- (A—Zvai%+v(vHxH2—d))f(x), (11.6.1)
i=1 4
\a(X)I_"A[Ia(X)IKf(X)]
<A+ ZKZ

i<j Xi—

' <;xl_(;9xj) +2K(k — l)ZW)f(X)

<j

Combining the two equation (and noting that Y% x;(d/dx;)|a(x)|" =
[3kd(d —1)|a(x)|¥], we obtain

‘Ifo(x)1%[W0(X)f(x)}:{_A_2Kl zd : <8&x ;x/)
<i<j< !

+2v2x,ai +dv[l+x(d— 1)]}]‘()6).
=1

We recall the type-A Laplacian
d ..
1 d d 1—(i,))
Ay = (.@A)Z:A+2K {()7 )
Z{ ! lggjgd Xi —Xj (9)6,‘ axj ()C,'—Xj)z

and observe its close relationship to v L yy; for symmetric polynomials the
terms 1 — (i, j) vanish. Further (Proposition 6.5.3),

zx,@A le )+ = ().
Xi i<j
It was shown (Section 10.8) that e "M% Ae® = YA —2u(24)?, so that, with
1
uy = 7>

J d
ve "4 Z%ACMA” = —M+2v) "

=1 =1
— —Ap+2v ix-i+d+5d(d+1)
N g i=1 l8x,~ 2 ’

Thus, when restricted to symmetric polynomials the conjugate of the Hamiltonian
can be expressed as

d
vy | Ay =2ve 2 U™ — dv(142k).
i=1

For any partition A € Ng’P there is an invariant eigenfunction j, of Zle ?/iA
with eigenvalue ¢ | &(1) = d + 5d(d + 1) + |A| (where [A| = ¥,; A;). Further,
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in Definition 10.7.3 we constructed invariant differential operators commuting
with 3¢, % by restricting .7} to symmetric polynomials, where 9_,1/.7; =
M, (1 +t%") (with a formal variable ¢). Thus T = e M e s the ele-
mentary symmetric polynomial of degree j in {e “**%Ae* : 1 <i < d}; each
e "M @/l-Ae”Ah is a second-order differential-difference operator and 3/ maps
symmetric polynomials onto themselves. By the same proof as that of Theo-
rem 10.7.4, ﬂj’ when restricted to symmetric polynomials acts as a differential
operator of degree 2 j. This shows the complete integrability of .7#’; each operator
Vo7 Wy ! commutes with it.

Given A € Ng’P, let yy = (e “*j; )yo; then Sy = v[2|A| +d + xd(d —
1)]w;. This provides a complete orthogonal decomposition of the symmetric
wave functions for indistinguishable particles.

Next we consider a simple modification to the Hamiltonian to allow non-
symmetric wave functions. The physical interpretation is that each particle has
a two-valued spin, which can be exchanged with another particle. Refer to the
expression for Ay, and add

1— (ia ] )
2 (xi —x;)?

i<j

to the potential. The modified Hamiltonian is

K—(i,J
H' = —A+V|x[P+2k Y 7(1)2
1§i<j§d( i —xj)

This operator has the same symmetric eigenfunctions as .7 and in addition has
eigenfunctions (e "“** ) o, where £, is the nonsymmetric Jack polynomial for
o € Ng; the eigenvalues are given by v[2|a| +d + kd(d — 1)]. The transpositions
(i,J) are called exchange operators in the physics context, since they exchange
the spin values of two particles.

This establishes the complete integrability of the linear Calogero—Moser sys-
tem with harmonic confinement, 1/ 2 interactions and exchange terms. The wave
functions involve Hermite polynomials of type A. The normalizations can be
determined from the results in Section 10.7.

11.6.4 Type A models on the circle

Consider d identical particles located on the unit circle at polar coordinates
(61,6,,...,6,), with no external potential and inverse-square law (1/r%) inter-
actions. The chordal distance between particles j and k is 2 |sin[$(6; — 6)]|. The
unique nature of the 1/72 interaction is illustrated by the identity

1 1
4sin* 10 =2, (6 —27n)?’

nez
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which shows that the particles can be considered to be on a line. They can be con-
sidered as the countable union of copies of one particle; these copies are located
in 2m-periodically repeating positions on the line and they all interact according
to the 1/r* law. The coupling constant in the potential is written as 2k(x — 1),
and x > 1. The Hamiltonian is
9\ « K—1
H=-X (36) *3 ISZM sin[L(6,— 0,)]

Now change the coordinate system to x; = exp(if j) for 1 < j <d,; this transforms
trigonometric polynomials to Laurent polynomials in x (polynomials in xiil), and
we have —(9/06;)* = (x;0;). Further, sin®[5(6; — 6;] = ;(x; —x;)(x; ' —x7 ")
for i # j. In the x-coordinate system the Hamiltonian is

d XiX

H=Y (x0) —2k(k—1) Y —.
i=1 1<i<j<d (% —x;)

The (non-normalized) base state is

_ LY
o) = T | =)
1<i<j<d
e —x(d—1)/2
S BT (T
1<i<j<d i=1

Even though |x;| = 1 on the unit torus, the function v is to be interpreted as a
positively homogeneous function of degree 0 on C¢.

Proposition 11.6.2  For any smooth function f on C4,

d
wo(x) ™! ;(Xiai)z[llfo(x)f(x)]

VN

a0 w2 3 (2 - ) i

i=1 1<i<j<d xi—xj (xi—

d K2
+x(d—1) zix,ﬂif(x) +3 (d*=1)f(x).

Proof Define the operator 6; = !X;0:w; then, by logarithmic differentiation,

K Xi+X;j
6i:xiai+*z :
2j7£ix,~—xj

and so

6,-2 = (xiﬁi)z + 21(2 ﬂ + k(d —1)x;0;

i Xi — Xj

- 2 . N 2
—KZX’x’ﬁ'Z(ZW)-

#i(x,'—xj) #ix,'—xj
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Now sum this expression over 1 <i <d. Expand the squared-sum term as follows:

z z ( 2 +xixj+xixk+xjxk).
S i \(xi—x; (X —x) (o —x) (i — xx)

When j = k, the sum contributes d(d — 1) +8 ¥, ;xix;/(x; — x;)* (each pair {i, j}

with i < j appears twice in the triple sum, and (x; +x;)? = (x; — x;)? + 4x;x;).

When i, j, k are all distinct, the first terms each contributes Z(g) and the second

terms cancel out (the calculations are similar to those in the proof of Theorem

10.7.9). Finally,

K 1 1,25/ 72
7 (Ad=1)+3d(d-1)(d-2)) = {Hd(@ - 1).

O

Using Proposition 10.7.8 and Theorem 10.7.9 the transformed Hamiltonian can
be expressed in terms of {%*}. Indeed,

i[%f‘—l—%x(eﬂ—l))z

i=1
(Xiai)z +2Kx 2 XiXj (ai —9; 1= (17])2>
1 1<i<j<d xi—xj (X —x;)

VN

L

d
K(d—1) Y x0; + {5 k2d(d* - 1).
i=1
To show this, write

iw—l—mdwz

(%" —1—xd)* +x(d — )

Ma
M=

(%* —1—xd)+d[Lx(d—1)]?

1 1

and use Proposition 10.7.8. As for the line model, the potential can be modi-
fied by exchange terms (interchanging spins of two particles). The resulting spin
Hamiltonian is

, d X'Xj L.
A= (xid) =2k Y, W[K* (i, )]
i=1 1<i<j<d J

and, for a smooth function f(x),

W) A 0] = 3 [0 1~ xta+ )] s ).

i=1

This immediately leads to a complete eigenfunction decomposition for J#”
in terms of nonsymmetric Jack polynomials. Let e; = Hf»’zlxi (where ¢4 is an
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elementary symmetric polynomial); then % e/} f(x)] = e/} (% 4+ m) f (x) for any
m € 7Z (see Proposition 6.4.12) and the eigenvalue is shifted by m.

Lemma 11.6.3 Let o € Ng and m € No; then €} {y, is a scalar multiple of CB,
where B = o+ m19.

Proof Both ¢/{, and (g are eigenfunctions of %" with eigenvalue &(ot) +m,
forl1 <i<d. O

Corollary 11.6.4 The Laurent polynomials €/} G, with m € Z and o € Ng with
min; ; = 0 form a basis for the set of all Laurent polynomials.

Proof For any Laurent polynomial g(x) there exists m € Z such that ¢/} g(x)
is a polynomial in xi,...,x;. Lemma 11.6.3 shows that there are no linear
dependences in the set. O

This leads to the determination of the energy levels.

Theorem 11.6.5 Let A € Ng’P,Ad =0,m€ Zand ot = A; then

W(x) = o (x)€ o (x)

is a wave function for F¢', and
d 2
VATEDY [/lierJr%K(dJr 1-20)| y.
i=1

The normalization constant for y was found in Theorems 10.6.13 and 10.6.16.
The eigenvalues can also be expressed as ¥, (A; +m)[A; +m+ x(d +1—2i)] +
%sz (d*> — 1). The complete integrability of . (as an invariant differential
operator) is a consequence of Theorem 10.7.4

11.6.5 Type B models on the line

Suppose that there are d identical particles on the line at coordinates x1,x2, ..., X4,
subject to an external harmonic confinement potential, with 1/r? interactions
between both the particles and their mirror images; as well, there is a barrier
at the origin, and spin can be exchanged between particles. The Hamiltonian with
exchange terms for this spin type-B Calogero model is

d e
K' (k' —o;
%: 7A+v2||x||2+2¥
i=1 X
K — Ojj K— T
+2k Y ( <+ ”2),
1<isiea N — X)) (xitx;))
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where v, K, K’ are positive parameters. The base state is
—vllx|I?/2 SCIES S T
vo(x) =e IT i —5| [Tl
I<i<j<d i=1

By Lemma 11.6.1 specialized to type-B models, and the commutation for
e IKI/2 from equation (11.6.1), we have

O;
Wo(x) ' Ay (x) = —A - KZ( x)
8,»—81-_ ]—()','j 8,-—1—8/-_ ]—Tij)

—2K
1<i<j<d<xixj (i=xj)? ity (i)

d
+2vY x;0;+v[d +2Kkd(d — 1) + 2Kd]
i=1

d
= —Ap+2v Y, x;0; +vd[l +2K(d — 1) 4 2K].
i=1

Using Propositions 6.4.10 and 6.5.3 we obtain

Z@x,—x Y, (oij+7))

1<i<j<d

d
= 2x,~8,~+d[1 +&'+Kkd—1)]+«"D o
i=1 i=1

Let u = 1/(4v). Then, by Proposition 11.5.2,
d d d
ve "y Yeth = —Ay+2v Y xi0;+2vd[1+ K + k(d — 1) +2vK" Y 6.
i=1 =1 =1
Thus
d d
vo(x) ' yo(x) =ve M (2N U —d -2k o; | M.
i=1 i=1

Apply this operator to the Hermite polynomial Hy(x; Kk, x',v), o € Ng, con-
structed in Section 11.5; thus

H(WoHe) = 2v(|a| +d[5 + (d — 1)k + k)| yoHq.

The normalization constants were obtained in Section 11.5. The type-B version of
Theorem 10.7.4 is needed to establish the complete integrability of this quantum
model. As in Definition 10.7.3, define the operators .7; by
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d d

> ig =Tl +1%)).

i=1 j=1
Theorem 11.6.6 For 1 <i < d, the operators J; commute with each w € W.

Proof We need only consider the reflections in W,. Clearly 6;%; = %;c; for each
J- It now suffices to consider adjacent transpositions 0; j11, since 0;0;;0; = T;j.
Fix j and let 6 = 0; j;1; then 6% = %0 whenever i # j,j+ 1. Also, c%; =
Uj+10 + k(0 + 7j j41). It is now clear that 6(%; + %j4+1)0 = U; + %+ and
G(%OZ/j+1)G = U+ (note that 67;;06 = 7, j1 fori # j, j+1). O

The operators ype “An Fen /% ! commute with the Hamiltonian .. When
restricted to Wy-invariant functions they all coincide with invariant differential
operators.

11.7 Notes

Symmetries of the octahedral type have appeared in analysis for decades, if not
centuries. Notably, the quantum mechanical descriptions of atoms in certain crys-
tals are given as spherical harmonics with octahedral symmetry (once called
“cubical harmonics”). Dunkl [1984c, 1988] studied the type-B weight functions
but only for invariant polynomials, using what is now known as the restriction
of the h-Laplacian. Later, in Dunkl [1999c] most of the details for Sections 9.2
and 9.3 were worked out. The derivation of the Macdonald-Mehta—Selberg inte-
gral in Section 9.3 is essentially based on the technique in Opdam [1991], where
Opdam proved Macdonald’s conjectures about integrals related to the crystallo-
graphic root systems and situated on the torus (more precisely, Euclidean space
modulo the root lattice). The original proof for the type-B integral used a lim-
iting argument on Selberg’s integral (see Askey [1980]). For the importance of
Selberg’s integral and its numerous applications, see the recent survey by For-
rester and Warnaar [2008]. Generalized binomial coefficients for nonsymmetric
Jack polynomials were introduced by Baker and Forrester [1998], but Algorithm
11.4.13 is new. There is a connection between these coefficients and the the-
ory of shifted, or nonhomogeneous, Jack polynomials. The Hermite polynomials,
which are called Laguerre polynomials by some authors in cases where the par-
ities are the same for all variables, have appeared in several articles. The earlier
articles, by Lassalle [1991a, b, c], Yan [1992] and Baker and Forrester [1997a],
dealt with the invariant cases only. Later, when the nonsymmetric Jack polyno-
mials became more widely known, the more general Hermite polynomials were
studied, again by Baker and Forrester [1998], Rosler and Voit [1998] and Ujino
and Wadati [1995, 1997], who called them “Hi-Jack™ polynomials. The idea of
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using e Y to generate bases for Gaussian-type weight functions appeared in
Dunkl [1991].

The study of Calogero—Sutherland systems has been carried on by many
authors. We refer to the book Calogero—Moser—Sutherland models, edited by van
Diejen and Vinet [2000] for a more comprehensive and up-to-date bibliography.
We limited our discussion to the role of the type-A and type-B polynomi-
als in the wave functions and did not attempt to explain the physics of the
theory or physical objects which can be usefully modeled by these systems.
Calogero [1971] and Sutherland [1971, 1972] proved that inverse square poten-
tials for identical particles in a one-dimensional space produce exactly solvable
models. Before their work, only the Dirac-delta interaction (collisions) model
had been solved. Around the same time, the Jack polynomials were constructed
(Jack [1970/71], Stanley [1989]). Eventually they found their way into the Suther-
land systems, and Lapointe and Vinet [1996] used physics concepts such as
annihilation and creation operators to prove new results on the Jack polynomials
and also applied them to the wave function problem. Other authors whose papers
have a significant component dealing with the use of orthogonal polynomials are
Kakei [1998], Ujino and Wadati [1999], Nishino, Ujino and Wadati [1999] and
Uglov [2000]. The type-B model on the line with spin terms was first studied by
Yamamoto [1995]. Kato and Yamamoto [1998] used group-invariance methods
to evaluate correlation integrals for these models.

Genest, Ismail, Vinet and Zhedanov [2013] analyzed in great detail the
Hamiltonians associated with the differential-difference operators for Z% with
weight function |x1| |x2|*2. This work was continued by Genest, Vinet and
Zhedanov [2013]. The generalized Hermite polynomials appear in their analyses
of the wave functions.

The theory of nonsymmetric Jack polynomials has been extended to the family
of complex reflection groups named G (n, 1,d), that is, the group of d x d permu-
tation matrices whose nonzero entries are the nth roots of unity (so G(1,1,d) is
the same as the symmetric group Sy and G(2,1,d) is the same as W) in Dunkl
and Opdam [2003].
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