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Preface to the Second Edition

In this second edition, several major changes have been made to the structure of
the book. A new chapter on orthogonal polynomials in two variables has been
added to provide a more convenient source of information for readers concerned
with this topic. The chapter collects results previously scattered in the book, spe-
cializing results in several variables to two variables whenever necessary, and
incorporates further results not covered in the first edition. We have also added
a new chapter on orthogonal polynomials on the unit sphere, which consolidates
relevant results in the first edition and adds further results on the topic. Since
the publication of the first edition in 2001, considerable progress has been made
in this research area. We have incorporated several new developments, updated
the references and, accordingly, edited the notes at the ends of relevant chapters.
In particular, Chapter 5, “Examples of Orthogonal Polynomials in Several Vari-
ables”, has been completely rewritten and substantially expanded. New materials
have also been added to several other chapters. An index of symbols is given at
the end of the book.

Another change worth mentioning is that orthogonal polynomials have been
renormalized. Some families of orthogonal polynomials in several variables have
expressions in terms of classical orthogonal polynomials in one variable. To pro-
vide neater expressions without constants in square roots they are now given in
the form of orthogonal rather than orthonormal polynomials as in the first edition.
The L2 norms have been recomputed accordingly.

The second author gratefully acknowledges support from the National Science
Foundation under grant DMS-1106113.

Charles F. Dunkl
Yuan Xu





Preface to the First Edition

The study of orthogonal polynomials of several variables goes back at least as
far as Hermite. There have been only a few books on the subject since: Appell
and de Fériet [1926] and Erdélyi et al. [1953]. Twenty-five years have gone by
since Koornwinder’s survey article [1975]. A number of individuals who need
techniques from this topic have approached us and suggested (even asked) that
we write a book accessible to a general mathematical audience.

It is our goal to present the developments of very recent research to a readership
trained in classical analysis. We include applied mathematicians and physicists,
and even chemists and mathematical biologists, in this category.

While there is some material about the general theory, the emphasis is on clas-
sical types, by which we mean families of polynomials whose weight functions
are supported on standard domains such as the simplex and the ball, or Gaus-
sian types, which satisfy differential–difference equations and for which fairly
explicit formulae exist. The term “difference” refers to operators associated with
reflections in hyperplanes. The most desirable situation occurs when there is a
set of commuting self-adjoint operators whose simultaneous eigenfunctions form
an orthogonal basis of polynomials. As will be seen, this is still an open area of
research for some families.

With the intention of making this book useful to a wide audience, for both ref-
erence and instruction, we use familiar and standard notation for the analysis on
Euclidean space and assume a basic knowledge of Fourier and functional analy-
sis, matrix theory and elementary group theory. We have been influenced by the
important books of Bailey [1935], Szegő [1975] and Lebedev [1972] in style and
taste.

Here is an overview of the contents. Chapter 1 is a summary of the key one-
variable methods and definitions: gamma and beta functions, the classical and
related orthogonal polynomials and their structure constants, and hypergeometric
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and Lauricella series. The multivariable analysis begins in Chapter 2 with some
examples of orthogonal polynomials and spherical harmonics and specific two-
variable examples such as Jacobi polynomials on various domains and disk
polynomials. There is a discussion of the moment problem, general properties
of orthogonal polynomials of several variables and matrix three-term recurrences
in Chapter 3. Coxeter groups are treated systematically in a self-contained way,
in a style suitable for the analyst, in Chapter 4 (a knowledge of representation
theory is not necessary). The chapter goes on to introduce differential–difference
operators, the intertwining operator and the analogue of the exponential function
and concludes with the construction of invariant differential operators. Chapter 5
is a presentation of h-harmonics, the analogue of harmonic homogeneous poly-
nomials associated with reflection groups; there are some examples of specific
reflection groups as well as an application to proving the isometric properties
of the generalized Fourier transform. This transform uses an analogue of the
exponential function. It contains the classical Hankel transform as a special case.
Chapter 6 is a detailed treatment of orthogonal polynomials on the simplex, the
ball and of Hermite type. Then, summability theorems for expansions in terms of
these polynomials are presented in Chapter 7; the main method is Cesàro (C,δ )
summation, and there are precise results on which values of δ give positive or
bounded linear operators. Nonsymmetric Jack polynomials appear in Chapter
8; this chapter contains all necessary details for their derivation, formulae for
norms, hook-length products and computations of the structure constants. There
is a proof of the Macdonald–Mehta–Selberg integral formula. Finally, Chapter 9
shows how to use the nonsymmetric Jack polynomials to produce bases associ-
ated with the octahedral groups. This chapter has a short discussion of how these
polynomials and related operators are used to solve the Schrödinger equations
of Calogero–Sutherland systems; these are exactly solvable models of quantum
mechanics involving identical particles in a one-dimensional space. Both Chap-
ters 8 and 9 discuss orthogonal polynomials on the torus and of Hermite type.

The bibliography is intended to be reasonably comprehensive into the near
past; the reader is referred to Erdélyi et al. [1953] for older papers, and Inter-
net databases for the newest articles. There are occasions in the book where we
suggest some algorithms for possible symbolic algebra use; the reader is encour-
aged to implement them in his/her favorite computer algebra system but again the
reader is referred to the Internet for specific published software.

There are several areas of related current research that we have deliber-
ately avoided: the role of special functions in the representation theory of
Lie groups (see Dieudonné [1980], Hua [1963], Vilenkin [1968], Vilenkin
and Klimyk [1991a, b, c, 1995]), basic hypergeometric series and orthogo-
nal polynomials of q-type (see Gasper and Rahman [1990], Andrews, Askey
and Roy [1999]), quantum groups (Koornwinder [1992], Noumi [1996],
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Koelink [1996] and Stokman [1997]), Macdonald symmetric polynomials (a gen-
eralization of the q-type) (see Macdonald [1995, 1998]). These topics touch on
algebra, combinatorics and analysis; and some classical results can be obtained as
limiting cases for q→ 1. Nevertheless, the material in this book can stand alone
and ‘q’ is not needed in the proofs.

We gratefully acknowledge support from the National Science Foundation over
the years for our original research, some of which is described in this book. Also
we are grateful to the mathematics departments of the University of Oregon for
granting sabbatical leave and the University of Virginia for inviting Y. X. to visit
for a year, which provided the opportunity for this collaboration.

Charles F. Dunkl
Yuan Xu





1

Background

The theory of orthogonal polynomials of several variables, especially those of
classical type, uses a significant amount of analysis in one variable. In this chapter
we give concise descriptions of the needed tools.

1.1 The Gamma and Beta Functions
It is our opinion that the most interesting and amenable objects of consideration
have expressions which are rational functions of the underlying parameters. This
leads us immediately to a discussion of the gamma function and its relatives.

Definition 1.1.1 The gamma function is defined for Re x > 0 by the integral

Γ(x) =
∫ ∞

0
tx−1e−t dt.

It is directly related to the beta function:

Definition 1.1.2 The beta function is defined for Rex > 0 and Rey > 0 by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt.

By making the change of variables s = uv and t = (1− u)v in the integral
Γ(x)Γ(y) =

∫ ∞
0

∫ ∞
0 sx−1ty−1e−(s+t)dsdt, one obtains

Γ(x)Γ(y) = Γ(x+ y)B(x,y).

This leads to several useful definite integrals, valid for Rex > 0 and Rey > 0:

1.
∫ π/2

0
sinx−1 θ cosy−1 θ dθ = 1

2 B
(

x
2 , y

2

)
=

1
2Γ
(

x
2

)
Γ
( y

2

)
Γ
( x+y

2

) ;
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2. Γ
(

1
2

)
=
√
π (set x = y = 1 in the previous integral);

3.
∫ ∞

0
tx−1 exp(−at2)dt = 1

2 a−x/2Γ
(

x
2

)
, for a > 0;

4.
∫ 1

0
tx−1(1− t2)y−1dt = 1

2 B
(

x
2 ,y
)

=
1
2Γ
(

x
2

)
Γ(y)

Γ
(

x
2 + y

) ;

5. Γ(x)Γ(1− x) = B(x,1− x) =
π

sinπx
.

The last equation can be proven by restricting x to 0 < x < 1, making the substi-
tution s = t/(1− t) in the beta integral

∫ 1
0 [t/(1− t)]x−1(1− t)−1dt and computing

the resulting integral by residues. Of course, one of the fundamental properties
of the gamma function is the recurrence formula (obtained from integration by
parts)

Γ(x+1) = xΓ(x),

which leads to the fact that Γ can be analytically continued to a meromorphic
function on the complex plane; also, 1/Γ is entire, with (simple) zeros exactly at
{0,−1,−2, . . .}. Note that Γ interpolates the factorial; indeed, Γ(n + 1) = n! for
n = 0,1,2, . . .

Definition 1.1.3 The Pochhammer symbol, also called the shifted factorial, is
defined for all x by

(x)0 = 1, (x)n =
n

∏
i=1

(x + i−1) for n = 1,2,3, . . .

Alternatively, one can recursively define (x)n by

(x)0 = 1 and (x)n+1 = (x)n(x+n) for n = 1,2,3, . . .

Here are some important consequences of Definition 1.1.3:

1. (x)m+n = (x)m(x+m)n for m,n ∈ N0;
2. (x)n = (−1)n(1−n− x)n (writing the product in reverse order);
3. (x)n−i = (x)n(−1)i/(1−n− x)i.

The Pochhammer symbol incorporates binomial-coefficient and factorial
notation:

1. (1)n = n!, 2n
(

1
2

)
n = 1×3×5×·· ·× (2n−1);

2. (n+m)! = n!(n+1)m;

3.

(
n
i

)
= (−1)i (−n)i

i! , where
(n

i

)
is the binomial coefficient;

4. (x)2n = 22n
(

x
2

)
n

(
x+1

2

)
n, the duplication formula.
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The last property includes the formula for the gamma function:

Γ(2x) =
22x−1
√
π

Γ(x+ 1
2 )Γ(x).

For appropriate values of x and n, the formula Γ(x +n)/Γ(x) = (x)n holds, and
this can be used to extend the definition of the Pochhammer symbol to values of
n /∈ N0.

1.2 Hypergeometric Series
The two most common types of hypergeometric series are (they are convergent
for |x|< 1)

1F0(a;x) =
∞

∑
n=0

(a)n

n!
xn,

2F1

(
a,b
c

;x

)
=

∞

∑
n=0

(a)n(b)n

(c)nn!
xn,

where a and b are the “numerator” parameters and c is the “denominator” param-
eter. Later we will also use 3F2 series (with a corresponding definition). The 2F1

series is the unique solution analytic at x = 0 and satisfying f (0) = 1 of

x(1− x)
d2

dx2 f (x)+ [c− (a+b+1)x]
d
dx

f (x)−ab f (x) = 0.

Generally, classical orthogonal polynomials can be expressed as hypergeo-
metric polynomials, which are terminating hypergeometric series for which a
numerator parameter has a value in −N0. The two series can be represented
in closed form. Obviously 1F0(a;x) = (1− x)−a; this is the branch analytic in
{x ∈ C : |x|< 1}, which has the value 1 at x = 0. The Gauss integral formula for

2F1 is as follows.

Proposition 1.2.1 For Re(c−b) > 0, Re b > 0 and |x|< 1,

2F1

(
a,b
c

;x

)
=

Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−a dt.

Proof Use the 1F0 series in the integral and integrate term by term to obtain a
multiple of

∞

∑
n=0

(a)n

n!
xn
∫ 1

0
tb+n−1(1− t)c−b−1dt =

∞

∑
n=0

(a)nΓ(b+n)Γ(c−b)
n!Γ(c+n)

xn,

from which the stated formula follows.
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Corollary 1.2.2 For Re c > Re(a + b) and Re b > 0 the Gauss summation
formula is

2F1

(
a,b
c

;1

)
=

Γ(c)Γ(c−b−a)
Γ(c−a)Γ(c−b)

.

The terminating case of this formula, known as the Chu–Vandermonde sum, is
valid for a more general range of parameters.

Proposition 1.2.3 For n ∈ N0, any a,b, and c �= 0,1, . . . ,n− 1 the following
hold:

n

∑
i=0

(a)n−i(b)i

(n− i)!i!
=

(a+b)n

n!
and 2F1

(−n,b
c

;1

)
=

(c−b)n

(c)n
.

Proof The first formula is deduced from the coefficient of xn in the expression
(1− x)−a(1− x)−b = (1− x)−(a+b). The left-hand side can be written as

(a)n

n!

n

∑
i=0

(−n)i(b)i

(1−n−a)ii!
.

Now let a = 1 − n − c; simple computations involving reversals such as
(1−n− c)n = (−1)n(c)n finish the proof.

The following transformation often occurs:

Proposition 1.2.4 For |x|< 1,

2F1

(
a,b
c

;x

)
= (1− x)−a

2F1

(
a,c−b

c
;

x
x−1

)
.

Proof Temporarily assume that Re c > Re b > 0; then from the Gauss integral
we have

2F1

(
a,b
c

;x

)
=

Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−adt

=
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
sc−b−1(1− s)b−1(1−x)−a

(
1− xs

x−1

)−a

ds,

where one makes the change of variable t = 1− s. The formula follows from
another application of the Gauss integral. Analytic continuation in the parameters
extends the validity to all values of a,b,c excluding c ∈ N0. For this purpose we
tacitly consider the modified series

∞

∑
n=0

(a)n(b)n

Γ(c+n)n!
xn,

which is an entire function in a,b,c.
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Corollary 1.2.5 For |x|< 1,

2F1

(
a,b
c

;x

)
= (1− x)c−a−b

2F1

(
c−a,c−b

c
;x

)
.

Proof Using Proposition 1.2.4 twice,

2F1

(a,b
c

;x
)

= (1− x)−a
2F1

(a,c−b
c

;
x

x−1

)
= (1− x)−a

(
1− x

x−1

)b−c

2F1

(
c−a,c−b

c
;x

)
and 1− x/(x−1) = (1− x)−1 .

Equating coefficients of xn on the two sides of the formula in Corollary 1.2.5
proves the Saalschütz summation formula for a balanced terminating 3F2 series.

Proposition 1.2.6 For n = 0,1,2, . . . and c,d �= 0,−1,−2, . . . ,−n with
−n+a+b+1 = c+d (the “balanced” condition), we have

3F2

(−n,a,b
c,d

;1

)
=

(c−a)n (c−b)n

(c)n (c−a−b)n
=

(c−a)n (d−a)n

(c)n (d)n
.

Proof Considering the coefficient of xn in the equation

(1− x)a+b−c
2F1

(
a,b
c

;x

)
= 2F1

(
c−a,c−b

c
;x

)
yields

n

∑
j=0

(c−a−b)n− j (a) j (b) j

(n− j)! j! (c) j
=

(c−a)n (c−b)n

n! (c)n
,

but
(c−a−b)n− j

(n− j)!
=

(c−a−b)n (−n) j

n!(1−n− c +a+b) j
;

this proves the first formula with d = −n + a + b − c + 1. Further,
(c− b)n = (−1)n(1− n− c + b)n = (−1)n(d − a)n and (−1)n (c−a−b)n =
(1−n− c+a+b)n = (d)n, which proves the second formula.

1.2.1 Lauricella series

There are many ways to define multivariable analogues of the hypergeometric
series. One straightforward and useful approach consists of the Lauricella gen-
eralizations of the 2F1 series; see Exton [1976]. Fix d = 1,2,3, . . . vector
parameters a,b,c ∈ Rd , scalar parameters α,γ and the variable x ∈ Rd . For
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concise formulation we use the following: let m ∈ Nd
0, m! = ∏d

j=1 (m j)!, |m| =
∑d

j=1 m j, (a)m = ∏d
j=1 (a j)m j

and xm = ∏d
j=1 x

m j
j .

The four types of Lauricella functions are (with summations over m ∈ Nd
0):

1. FA(α,b;c;x) =∑
m

(α)|m| (b)m

(c)m m!
xm, convergent for

d

∑
j=1

|x j|< 1;

2. FB(a,b;γ ;x) =∑
m

(a)m (b)m

(γ)|m|m!
xm, convergent for max

j
|x j|< 1;

3. FC(α,β ;c;x) =∑
m

(α)|m|(β )|m|
(c)mm!

xm, convergent for
d

∑
j=1

|x j|1/2 <1;

4. FD (α,b;γ;x) =∑
m

(α)|m| (b)m

(γ)|m|m!
xm, convergent for max

j
|x j|< 1.

There are integral representations of Euler type (the following are subject to
obvious convergence conditions; further, any argument of a gamma function must
have a positive real part):

1. FA(α,b;c;x) =
d

∏
j=1

Γ(c j)
Γ(b j)Γ(c j−b j)

×
∫

[0,1]d

d

∏
j=1

(
u

b j−1
j (1−u j)

c j−b j−1
)(

1−
d

∑
j=1

u jx j

)−α
du;

2. FB(a,b;γ ;x) =
d

∏
j=1

Γ(aj)
−1 Γ(γ)

Γ(δ )

×
∫

T d

d

∏
j=1

(
u

a j−1
j (1−u jx j)

−b j
)(

1−
d

∑
j=1

u j

)δ−1

du,

where δ = γ−∑d
j=1 a j and T d is the simplex {u ∈ Rd : u j ≥ 0 for all j, and

∑d
j=1 u j ≤ 1};

3. FD(α,b;γ;x) =
Γ(γ)

Γ(α)Γ (γ−α)

×
∫ 1

0
uα−1 (1−u)γ−α−1

d

∏
j=1

(1−ux j)
−b j du,

a single integral.

1.3 Orthogonal Polynomials of One Variable
1.3.1 General properties

We start with a determinant approach to the Gram–Schmidt process, a method for
producing orthogonal bases of functions given a linearly (totally) ordered basis.
Suppose that X is a region in Rd (for d ≥ 1), μ is a probability measure on X
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and { fi(x) : i = 1,2,3 . . .} is a set of functions linearly independent in L2(X ,μ).
Denote the inner product

∫
X f gdμ as 〈 f ,g〉 and the elements of the Gram matrix

〈 fi, f j〉 as gi j, i, j ∈ N.

Definition 1.3.1 For n ∈ N let dn = det(gi j)
n
i, j=1 and

Dn(x) = det

⎡⎢⎢⎢⎣
g11 g12 . . . g1n

...
... . . .

...
gn−1,1 gn−1,2 . . . gn−1,n

f1(x) f2(x) . . . fn(x)

⎤⎥⎥⎥⎦.

Proposition 1.3.2 The functions {Dn(x) : n ≥ 1} are orthogonal in L2(X ,μ),
span{D j(x) : 1≤ j ≤ n}= span{ f j(x) : 1≤ j ≤ n} and 〈Dn,Dn〉= dn−1dn.

Proof By linear independence, dn > 0 for all n; thus Dn(x) = dn−1 fn(x) +
∑ j<n c j f j(x) for some coefficients c j (where d0 = 1) and span{D j : j ≤ n} =
span{ f j : j≤ n}. The inner product 〈 f j,Dn〉 is the determinant of the matrix in the
definition of Dn with the last row replaced by (gj1,g j2, . . . ,g jn) and hence is zero
for j < n. Thus 〈D j,Dn〉= 0 for j < n and 〈Dn,Dn〉= dn−1〈 fn,Dn〉= dn−1dn.

There are integral formulae for dn and Dn(x) which are interesting fore-
shadowings of multivariable weight functions Pn involving the discriminant, as
follows.

Definition 1.3.3 For n ∈ N and x1,x2, . . . ,xn ∈ X let

Pn(x1,x2, . . . ,xn) = det( f j(xi))n
i, j=1.

Proposition 1.3.4 For n ∈N and x1,x2, . . . ,xn ∈ X,∫
Xn

Pn(x1,x2, . . . ,xn)2 dμ(x1) · · ·dμ(xn) = n!dn,

and∫
Xn

Pn(x1,x2, . . . ,xn)Pn+1(x1,x2, . . . ,xn,x)dμ(x1) · · ·dμ(xn) = n!Dn+1(x).

Proof In the first integral, make the expansion

Pn(x1,x2, . . . ,xn)2 =∑
σ
∑
τ
εσετ

n

∏
i=1

fσ i(xi) fτ i(xi),

where the summations are over the symmetric group Sn (on n objects); εσ ,σ i
denote the sign of the permutation σ and the action of σ on i, respectively. Inte-
grating over Xn gives the sum ∑σ ∑τ εσ ετ ∏n

i=1 gσ i,τi = n!∑τ ετ ∏n
i=1 gτi,i = n!dn.
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The summation over σ is done by first fixing σ and then replacing i by σ−1i and
τ by τσ−1. Similarly,

Pn(x1,x2, . . . ,xn)Pn+1(x1,x2, . . . ,xn,x)

=∑
σ
∑
τ
εσετ

n

∏
i=1

fσ i(xi) fτi(xi) fτ(n+1)(x),

and the τ-sum is over Sn+1. As before, the integral has the value

∑
σ
∑
τ
εσετ

n

∏
i=1

gσ i,τ i fτ(n+1)(x),

which reduces to the expression n!∑τ ετ ∏n
i=1 gτ i,i fτ(n+1)(x) = n!Dn+1(x).

We now specialize to orthogonal polynomials; let μ be a probability mea-
sure supported on a (possibly infinite) interval [a,b] such that

∫ b
a |x|n dμ < ∞ for

all n. We may as well assume that μ is not a finite discrete measure, so that
{1,x,x2,x3, . . .} is linearly independent in L2(μ); it is not difficult to modify the
results to the situation where L2(μ) is of finite dimension. We apply Proposition
1.3.2 to the basis f j(x) = x j−1; the Gram matrix has the form of a Hankel matrix
gi j = ci+ j−2, where the nth moment of μ is

cn =
∫ b

a
xn dμ(x)

and the orthonormal polynomials {pn(x) : n≥ 0} are defined by

pn(x) = (dn+1dn)−1/2Dn+1(x);

they satisfy
∫ b

a pm(x)pn(x)dμ(x) = δmn, and the leading coefficient of pn is
(dn/dn+1)1/2 > 0. Of course this implies that

∫ b
a pn(x)q(x)dμ(x) = 0 for any poly-

nomial q(x) of degree ≤ n−1. The determinant Pn in Definition 1.3.3 is exactly
the Vandermonde determinant det(x j−1

i )n
i, j=1 = ∏1≤i< j≤n(x j− xi).

Proposition 1.3.5 For n≥ 0,∫
[a,b]n

∏
1≤i< j≤n

(x j− xi)2 dμ(x1) · · ·dμ(xn) = n!dn,

∫
[a,b]n

n

∏
i=1

(x− xi) ∏
1≤i< j≤n

(x j− xi)2 dμ(x1) · · ·dμ(xn) = n!(dndn+1)1/2 pn(x).

It is a basic fact that pn(x) has n distinct (and simple) zeros in [a,b].
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Proposition 1.3.6 For n ≥ 1, the polynomial pn(x) has n distinct zeros in the
open interval (a,b).

Proof Suppose that pn(x) changes sign at t1, . . . ,tm in (a,b). Then it follows
that ε pn(x)∏m

i=1(x− ti) ≥ 0 on [a,b] for ε = 1 or −1. If m < n then
∫ b

a pn(x)
∏m

i=1(x− ti)dμ(x) = 0, which implies that the integrand is zero on the support of
μ , a contradiction.

In many applications one uses orthogonal, rather than orthonormal, polyno-
mials (by reason of their neater notation, generating function and normalized
values at an end point, for example). This means that we have a family of
nonzero polynomials {Pn(x) : n≥ 0} with Pn(x) of exact degree n and for which∫ b

a Pn(x)x j dμ(x) = 0 for j < n.
We say that the squared norm

∫ b
a Pn(x)2 dμ(x) = hn is a structural con-

stant. Further, pn(x) =±h−1/2
n Pn(x); the sign depends on the leading coefficient

of Pn(x).

1.3.2 Three-term recurrence

Besides the Gram matrix of moments there is another important matrix associated
with a family of orthogonal polynomials, the Jacobi matrix. The principal minors
of this tridiagonal matrix provide an interpretation of the three-term recurrence
relations. For n≥ 0 the polynomial xPn(x) is of degree n+1 and can be expressed
in terms of {Pj : j ≤ n+1}, but more is true.

Proposition 1.3.7 There exist sequences {An}n≥0,{Bn}n≥0,{Cn}n≥1 such that

Pn+1(x) = (Anx+Bn)Pn(x)−CnPn−1(x),

where

An =
kn+1

kn
, Cn =

kn+1kn−1hn

k2
nhn−1

, Bn =−kn+1

knhn

∫ b

a
xPn(x)2 dμ(x),

and kn is the leading coefficient of Pn(x).

Proof Expanding xPn(x) in terms of polynomials Pj gives∑n+1
j=0 ajPj(x) with a j =

h−1
j

∫ b
a xPn(x)Pj(x)dμ(x). By the orthogonality property, aj = 0 unless |n− j| ≤ 1.

The value of an+1 = A−1
n is obtained by matching the coefficients of xn+1. Shifting

the label gives the value of Cn.

Corollary 1.3.8 For the special case of monic orthogonal polynomials, the
three-term recurrence is

Pn+1(x) = (x+Bn)Pn(x)−CnPn−1(x),
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where

Cn =
dn+1dn−1

d2
n

and Bn =− dn

dn+1

∫ b

a
xPn(x)2 dμ(x).

Proof In the notation from the end of the last subsection, the structure constant
for the monic case is hn = dn+1/dn.

It is convenient to restate the recurrence, and some other, relations for orthog-
onal polynomials with arbitrary leading coefficients in terms of the moment
determinants dn (see Definition 1.3.1).

Proposition 1.3.9 Suppose that the leading coefficient of Pn(x) is kn, and let
bn =

∫ b
a xpn(x)2 dμ(x); then

hn = k2
n

dn+1

dn
,

xPn(x) =
kn

kn+1
Pn+1(x)+bnPn(x)+

kn−1hn

knhn−1
Pn−1(x).

Corollary 1.3.10 For the case of orthonormal polynomial pn,

xpn(x) = an pn+1(x)+bn pn(x)+an−1 pn−1(x),

where an = kn/kn+1 = (dndn+2/d2
n+1)

1/2.

With these formulae one can easily find the reproducing kernel for polynomials
of degree ≤ n, the Christoffel–Darboux formula:

Proposition 1.3.11 For n≥ 1, if kn is the leading coefficient of pn then we have
n

∑
j=0

p j(x)p j(y) =
kn

kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)
x− y

,

n

∑
j=0

p j(x)2 =
kn

kn+1

[
p′n+1(x)pn(x)− p′n(x)pn+1(x)

]
.

Proof By the recurrence in the previous proposition, for j ≥ 0,

(x− y)p j(x)pj(y) =
k j

k j+1

[
pj+1(x)p j(y)− pj(x)p j+1(y)

]
+

k j−1

k j

[
p j−1(x)p j(y)− p j(x)pj−1(y)

]
.

The terms involving b j arising from setting n = j in Corollary 1.3.10 cancel out.
Now sum these equations over 0 ≤ j ≤ n; the terms telescope (and note that
the case j = 0 is special, with p−1 = 0). This proves the first formula in the
proposition; the second follows from L’Hospital’s rule.
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The Jacobi tridiagonal matrix associated with the three-term recurrence is the
semi-infinite matrix

J =

⎡⎢⎢⎢⎢⎢⎢⎣

b0 a0 ©
a0 b1 a1

a1 b2 a2

a2 b3
. . .

© . . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎦
where an−1 =

√
Cn =

√
dn+1dn−1/dn (an−1 is the same as the coefficient an in

Corollary 1.3.10 orthonormal polynomials). Let Jn denote the left upper subma-
trix of J of size n× n, and let In be the n× n identity matrix. Then det(xIn+1−
Jn+1) = (x−bn)det(xIn− Jn)−a2

n−1 det(xIn−1− Jn−1), a simple matrix identity;
hence Pn(x) = det(xIn−Jn). Note that the fundamental result regarding the eigen-
values of symmetric tridiagonal matrices with all superdiagonal entries nonzero
shows again that the zeros of Pn are simple and real. The eigenvectors of Jn have
elegant expressions in terms of p j and provide an explanation for the Gaussian
quadrature.

Let λ1,λ2, . . . ,λn be the zeros of pn(x).

Theorem 1.3.12 For 1≤ j ≤ n let

v( j) = (p0(λ j), p1(λ j), . . . , pn−1(λ j))T;

then Jnv( j) = λ jv( j). Further,

n

∑
j=1

γ j pr(λ j)ps(λ j) = δrs

where 0≤ r,s≤ n−1 and γ j =
(
∑n−1

i=0 pi(λ j)2
)−1

.

Proof We want to show that the ith entry of (Jn−λ jIn)v( j) is zero. The typical
equation for this entry is

ai−2 pi−2(λ j)+(bi−1−λ j)pi−1(λ j)+ai−1 pi(λ j)

=
(

ai−2− ki−2

ki−1

)
pi−2(λ j)+

(
ai−1− ki−1

ki

)
pi(λ j)

= 0,

because ki = (di/di+1)1/2 and ai−1 = (di+1di−1/d2
i )1/2 = ki−1/ki for i ≥ 1,

where ki is the leading coefficient of pi. This uses the recurrence in Propo-
sition 1.3.9; when i = 1 the term p−1(λ j) = 0 and for i = n the fact that
pn(λ j) = 0 is crucial. Since Jn is symmetric, the eigenvectors are pairwise orthog-
onal, that is, ∑n

i=1 pi−1(λ j)pi−1(λr) = δ jr/γ j for 1 ≤ j,r ≤ n. Hence the matrix
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γ1/2

j pi−1(λ j)
)n

i, j=1 is orthogonal. The orthonormality of the rows of the matrix
is exactly the second part of the theorem.

This theorem has some interesting implications. First, the set {pi(x) : 0 ≤
i ≤ n− 1} comprises the orthonormal polynomials for the discrete measure
∑n

j=1 γ jδ (λ j), where δ (x) denotes a unit mass at x. This measure has total mass 1

because p0 = 1. Second, the theorem implies that ∑n
j=1 γ jq(λ j) =

∫ b
a qdμ for any

polynomial q(x) of degree ≤ n−1, because this relation is valid for every basis
element pi for 0≤ i≤ n−1. In fact, this is a description of Gaussian quadrature.
The Christoffel–Darboux formula, Proposition 1.3.11, leads to another expression
(perhaps more concise) for the weights γ j.

Theorem 1.3.13 For n ≥ 1 let λ1,λ2, . . . ,λn be the zeros of pn(x) and let γ j =
(∑n−1

i=0 pi(λ j)2)−1. Then

γ j =
kn

kn−1 p′n(λ j)pn−1(λ j)
,

and for any polynomial q(x) of degree ≤ 2n−1 the following holds:∫ b

a
qdμ =

n

∑
j=1

γ jq(λ j).

Proof In the Christoffel–Darboux formula for y = x, set x = λ j (thus pn(λ j) = 0).
This proves the first part of the theorem (note that 0 < γ j ≤ 1 because p0 = 1).
Suppose that q(x) is a polynomial of degree 2n− 1; then, by synthetic division,
q(x) = pn(x)g(x)+r(x) where g(x),r(x) are polynomials of degree≤ n−1. Thus
r(λ j) = q(λ j) for each j and, by orthogonality,

∫ b

a
qdμ =

∫ b

a
pngdμ +

∫ b

a
r dμ =

∫ b

a
r dμ =

n

∑
j=1

γ jr(λ j).

This completes the proof.

One notes that the leading coefficients ki (for orthonormal polynomials, see
Corollary 1.3.10) can be recovered from the Jacobi matrix J; indeed ki =
∏i

j=1 c−1
j and k0 = 1, that is, p0 = 1. This provides the normalization of the asso-

ciated discrete measures ∑n
j=1 γ jδ (λ j). The moment determinants are calculated

from di =∏i−1
j=1 k2

j .
If the measure μ is finite with point masses at {t1,t2, . . . ,tn} then the Jacobi

matrix has the entry cn = 0 and Jn produces the orthogonal polynomials
{p0, p1, . . . , pn−1} for μ , and the eigenvalues of Jn are t1,t2, . . . , tn.
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1.4 Classical Orthogonal Polynomials
This section is concerned with the Hermite, Laguerre, Chebyshev, Legendre,
Gegenbauer and Jacobi polynomials. For each family the orthogonality measure
has the form dμ(x) = cw(x)dx, with weight function w(x) > 0 on an interval and
normalization constant c = [

∫
R w(x)dx]−1. Typically the polynomials are defined

by a Rodrigues relation which easily displays the required orthogonality prop-
erty. Then some computations are needed to determine the other structures: hn

(which is always stated with respect to a normalized μ), the three-term recur-
rences, expressions in terms of hypergeometric series, differential equations and
so forth. When the weight function is even, so that w(−x) = w(x), the coefficients
bn in Proposition 1.3.9 are zero for all n and the orthogonal polynomials satisfy
Pn(−x) = (−1)nPn(x).

1.4.1 Hermite polynomials

For the Hermite polynomials Hn(x), the weight function w(x) is e−x2
on x ∈ R

and the normalization constant c is Γ( 1
2 )−1 = π−1/2.

Definition 1.4.1 For n≥ 0 let Hn(x) = (−1)nex2
(

d
dx

)n

e−x2
.

Proposition 1.4.2 For 0≤m < n,∫
R

xmHn(x)e−x2
dx = 0

and

hn = π−1/2
∫

R
[Hn(x)]2e−x2

dx = 2nn!

Proof For any polynomial q(x) we have∫
R

q(x)Hn(x)e−x2
dx =

∫
R

( d
dx

)n
q(x)e−x2

dx

using n-times-repeated integration by parts. From the definition it is clear that the
leading coefficient kn = 2n, and thus hn = π−1/2 ∫

R 2nn!e−x2
dx = 2nn!

Proposition 1.4.3 For x,r ∈ R, the generating function is

exp(2rx− r2) =
∞

∑
n=0

Hn(x)
rn

n!

and

Hn(x) = ∑
j≤n/2

n!
(n−2 j)! j!

(−1) j(2x)n−2 j,

d
dx

Hn(x) = 2nHn−1(x).
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Proof Expand f (r) = exp[−(x−r)2] in a Taylor series at r = 0 for fixed x. Write
the generating function as

∞

∑
m=0

1
m!

m

∑
j=0

(
m
j

)
(2x)m− j rm+ j(−1) j,

set m = n+ j and collect the coefficient of rn/n! Now differentiate the generating
function and compare the coefficients of rn.

The three-term recurrence (see Proposition 1.3.7) is easily computed using
kn = 2n, hn = 2nn! and bn = 0:

Hn+1(x) = 2xHn(x)−2nHn−1(x)

with an =
√

1
2 (n+1). This together with the fact that H′

n(x) = 2nHn−1(x), used
twice, establishes the differential equation

H′′
n (x)−2xH ′

n(x)+2nHn(x) = 0.

1.4.2 Laguerre polynomials

For a parameter α > −1, the weight function for the Laguerre polynomials is
xαe−x on R+ = {x : x≥ 0} with constant Γ(α +1)−1.

Definition 1.4.4 For n≥ 0 let Lαn (x) =
1
n!

x−αex

(
d
dx

)n

(xn+αe−x).

Proposition 1.4.5 For n≥ 0,

Lαn (x) =
(α +1)n

n!

n

∑
j=0

(−n) j

(α +1) j

x j

j!
.

Proof Expand the definition to

Lαn (x) =
1
n!∑

n
j=0

(
n
j

)
(−n−α)n− j(−1)nx j

(with the n-fold product rule) and write (−n− α)n− j = (−1)n− j(α + 1)n/

(α+1) j .

Arguing as for Hermite polynomials, the following hold for the Laguerre
polynomials:

1.
∫ ∞

0
q(x)Lαn (x)xαe−x dx =

(−1)n

n!

∫ ∞

0

(
d
dx

)n

q(x)xα+ne−x dx

for any polynomial q(x);

2.
∫ ∞

0
xmLαn (x)xαe−x dx = 0 for 0≤ m < n;
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3. the leading coefficient is kn =
(−1)n

n!
;

4. hn =
1

Γ(α+1)

∫ ∞

0
[Lαn (x)]2xαe−x dx

=
1

Γ(α +1)n!

∫ ∞

0
xα+ne−x dx =

(α +1)n

n!
.

Proposition 1.4.6 The three-term recurrence for the Laguerre polynomials is

Lαn+1(x) =
1

n+1
(−x+2n+1+α)Lαn (x)− n+α

n+1
Lαn−1(x).

Proof The coefficients An and Cn are computed from the values of hn and kn (see
Proposition 1.3.7). To compute Bn we have that

Lαn (x) =
(−1)n

n!

[
xn−n(α +n)xn−1]+ terms of lower degree;

hence

1
Γ(α+1)

∫ ∞

0
xLαn (x)2xαe−x dx

=
1

n!Γ(α +1)

∫ ∞

0
[(n+1)x−n(α +n)]xα+ne−x dx

=
1

n!Γ(α +1)
[(n+1)Γ(α +n+2)−n(α +n)Γ(α +n+2)]

=
1
n!

(α +1)n(2n+1+α).

The value of Bn is obtained by multiplying this equation by −kn+1/(knhn) =
n!/[(n+1)(α+1)n].

The coefficient an =
√

(n+1)(n+1+α). The generating function is

(1− r)−α−1 exp

( −xr
1− r

)
=

∞

∑
n=0

Lαn (x)rn, |r|< 1.

This follows from expanding the left-hand side as

∞

∑
j=0

(−xr) j

j!
(1− r)−α− j−1 =

∞

∑
j=0

(−xr) j

j!

∞

∑
m=0

(α +1+ j)m

m!
rm,

and then changing the index of summation to m = n− j and extracting the coeffi-
cient of rn; note that (α+1+ j)n− j = (α+1)n/(α+1) j . From the 1F1 series for
Lαn (x) the following hold:

1. Lαn (0) =
(α +1)n

n!
;
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2.
d
dx

Lαn (x) =−Lα+1
n−1 (x);

3. x
d2

dx2 Lαn (x)+(α +1− x)
d
dx

Lαn (x)+nLαn (x) = 0.

The Laguerre polynomials will be used in the several-variable theory, as func-
tions of |x|2. The one-variable version of this appears for the weight function

|x|2μe−x2
for x ∈ R, with constant Γ

(
μ + 1

2

)−1
. Orthogonal polynomials for this

weight are given by P2n(x) = Lμ−1/2
n (x2) and P2n+1(x) = xLμ+1/2

n (x2). This fam-
ily is discussed in more detail in what follows. In particular, when μ = 0 there
is a relation to the Hermite polynomials (to see this, match up the leading coeffi-
cients): H2n(x) = (−1)n22nn!L−1/2

n (x2) and H2n+1(x) = (−1)n22n+1n!xL1/2
n (x2).

1.4.3 Gegenbauer polynomials

The Gegenbauer polynomials are also called ultraspherical polynomials. For a
parameter λ > − 1

2 their weight function is (1− x2)λ−1/2 on −1 < x < 1; the
constant is B( 1

2 ,λ + 1
2)−1. The special cases λ = 0,1, 1

2 correspond to the Cheby-
shev polynomials of the first and second kind and the Legendre polynomials,
respectively. The usual generating function does not work for λ = 0, neither
does it obviously imply orthogonality; thus we begin with a different choice of
normalization.

Definition 1.4.7 For n≥ 0, let

Pλ
n (x) =

(−1)n

2n(λ + 1
2 )n

(1− x2)1/2−λ dn

dxn (1− x2)n+λ−1/2.

Proposition 1.4.8 For n≥ 0,

Pλ
n (x) =

(
1+ x

2

)n

2F1

(−n,−n−λ + 1
2

λ + 1
2

;
x−1
x +1

)
= 2F1

(−n,n+2λ
λ + 1

2
;

1− x
2

)
.

Proof Expand the formula in the definition with the product rule to obtain

Pλ
n (x) =

(−1)n

2n(λ + 1
2 )n

n

∑
j=0

[(
n
j

)
(−n−λ + 1

2 )n− j(−n−λ + 1
2 ) j

× (−1) j(1− x) j(1+ x)n− j
]
.

This produces the first 2F1 formula; note that (−n−λ+ 1
2 )n− j =(−1)n− j(λ + 1

2 )n/

(λ + 1
2 ) j. The transformation in Proposition 1.2.4 gives the second

expression.
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As before, this leads to the orthogonality relations and structure constants.

1. The leading coefficient is kn =
(n+2λ )n

2n(λ +1/2)n
=

2n−1(λ +1)n−1

(2λ +1)n−1
,

where the second equality holds for n≥ 1;

2.
∫ 1

−1
q(x)Pλ

n (x)(1− x2)λ−1/2 dx=
2−n

(λ + 1
2)n

∫ 1

−1

dn

dxn q(x)(1− x2)n+λ−1/2dx,

for any polynomial q(x);

3.
∫ 1

−1
xmPλ

n (x)(1− x2)λ−1/2 dx = 0 for 0≤m < n;

4. hn =
1

B( 1
2 ,λ + 1

2 )

∫ 1

−1
[Pλ

n (x)]2(1− x2)λ−1/2 dx =
n!(n+2λ )

2(2λ +1)n(n+λ )
;

5. Pλ
n+1(x) =

2(n+λ )
n+2λ

xPλ
n (x)− n

n+2λ
Pλ

n−1(x),

where the coefficients are calculated from kn and hn;

6. an =
(

(n+1)(n+2λ )
4(n+λ)(n+1+λ )

)1/2

.

Proposition 1.4.9 For n≥ 1,

d
dx

Pλ
n (x) =

n(n+2λ )
1+2λ

Pλ+1
n−1 (x)

and Pλ
n (x) is the unique polynomial solution of

(1− x2) f ′′(x)− (2λ +1)x f ′(x)+n(n+2λ ) f (x) = 0, f (1) = 1.

Proof The 2F1 series satisfies the differential equation

d
dx 2F1

(a,b
c

;x
)

=
ab
c 2F1

(a+1,b+1
c+1

;x
)

;

applying this to Pλ
n (x) proves the first identity. Similarly, the differential equation

satisfied by 2F1

(−n,n+2λ
λ + 1

2
;t
)

leads to the stated equation, using t = 1
2 (1− x),

and d/dt =−2d/dx.

There is a generating function which works for λ > 0 and, because of its
elegant form, it is used to define Gegenbauer polynomials with a different
normalization. This also explains the choice of parameter.

Definition 1.4.10 For n≥ 0, the polynomial Cλ
n (x) is defined by

(1−2rx+ r2)−λ =
∞

∑
n=0

Cλ
n (x)rn, |r|< 1, |x| ≤ 1.
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Proposition 1.4.11 For n≥ 0 and λ > 0, Cλ
n (x) =

(2λ )n

n!
Pλ

n (x) and

Cλ
n (x) =

(λ )n2n

n!
xn

2F1

(− n
2 , 1−n

2
1−n−λ

;
1
x2

)
.

Proof First, expand the generating function as follows:

[1+2r(1− x)−2r + r2]−λ = (1− r)−2λ
(

1− 2r(x−1)
(1− r)2

)−λ
=

∞

∑
j=0

(λ ) j

j!
2 jr j(x−1) j(1− r)−2λ−2 j

=
∞

∑
i, j=0

(λ ) j(2λ +2 j)i

j!i!
2 jr j+i(x−1) j

=
∞

∑
n=0

rn (2λ )n

n!

n

∑
j=0

(−n) j(2λ +n) j

(λ + 1
2 ) j j!

(
1− x

2

) j

,

where in the last line i has been replaced by n − j, and (2λ + 2 j)n− j =
(2λ )2 j(2λ +2 j)n− j/(2λ )2 j = (2λ )n(2λ +n) j/[22 j(λ ) j(λ + 1

2) j].
Second, expand the generating function as follows:

[1− (2rx− r2)]−λ =
∞

∑
j=0

(λ ) j

j!
(2rx− r2) j

=
∞

∑
j=0

j

∑
i=0

(λ ) j

( j− i)!i!
(−1) j(2x) j−iri+ j

=
∞

∑
n=0

rn ∑
i≤n/2

(λ )n−i

i!(n−2i)!
(−1)i(2x)n−2i,

where in the last line j has been replaced by n− i. The latter sum equals the stated
formula.

We now list the various structure constants for Cλ
n (x) and use primes to

distinguish them from the values for Pλ
n (x):

1. k′n =
(λ )n2n

n!
;

2. h′n =
λ (2λ )n

(n+λ )n!
=

λ
n+λ

Cλ
n (1);

3. Cλ
n+1(x) =

2(n+λ )
n+1

xCλ
n (x)− n+2λ −1

n+1
Cλ

n−1(x);

4.
d
dx

Cλ
n (x) = 2λCλ+1

n−1 (x);

5. Cλ
n (1) =

(2λ )n

n!
.
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There is another expansion resembling the generating function which is used
in the Poisson kernel for spherical harmonics.

Proposition 1.4.12 For |x| ≤ 1 and |r|< 1,

1− r2

(1−2xr + r2)λ+1
=

∞

∑
n=0

n+λ
λ

Cλ
n (x)rn

=
∞

∑
n=0

1
hn

Pλ
n (x)rn.

Proof Expand the left-hand side as ∑∞
n=0

[
Cλ+1

n (x)−Cλ+1
n−2 (x)

]
rn. Then

Cλ+1
n (x)−Cλ+1

n−2 (x) = ∑
i≤n/2

(λ +1)n−i

i!(n−2i)!
(−1)i(2x)n−2i

− ∑
j≤n/2−1

(λ +1)n−2− j

j!(n−2−2 j)!
(−1) j(2x)n−2−2 j

= ∑
i≤n/2

(λ +1)n−1−i

i!(n−2i)!
(−1)i(2x)n−2i(λ +n).

In the sum for Cλ+1
n−2 (x) replace j by i− 1, and combine the two sums. The end

result is exactly [(n+λ/λ )]Cλ
n (x). Further,

(n+λ )(2λ )n

λn!
= h−1

n

(the form for hn given in the list before Proposition 1.4.9 avoids the singularity at
λ = 0).

Legendre and Chebyshev polynomials
The special case λ = 1

2 corresponds to the Legendre polynomials, often denoted

by Pn(x) = P1/2
n (x) = C1/2

n (x) (in later discussions we will avoid this notation
in order to reserve Pn for general polynomials). Observe that these polynomials
are orthogonal for dx on −1 ≤ x ≤ 1. Related formulae are for the Legendre
polynomials hn = 1/(2n+1) and

(n+1)Pn+1(x) = (2n+1)xPn(x)−nPn−1(x).

The case λ = 0 corresponds to the Chebyshev polynomials of the first kind
denoted by Tn(x) = P0

n (x). Here h0 = 1 and hn = 1
2 for n > 0. The three-term

recurrence for n≥ 1 is

Tn+1(x) = 2xTn(x)−Tn−1(x)
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and T1(x) = xT0. Of course, together with the identity cos(n + 1)θ =
2cosθ cos nθ − cos(n− 1)θ for n ≥ 1, this shows that Tn(cosθ) = cosnθ .

Accordingly the zeros of Tn are at

cos
(2 j−1)π

2n

for j = 1,2, . . . ,n. Also, the associated Gaussian quadrature has equal weights at
the nodes (a simple but amusing calculation).

The case λ = 1 corresponds to the Chebyshev polynomials of the second kind
denoted by Un(x) = (n+1)P1

n (x) = C1
n(x). For this family hn = 1 and, for n≥ 0,

Un+1(x) = 2xUn(x)−Un−1(x).

This relation, together with

sin(n+2)θ
sinθ

= 2cosθ
sin(n+1)θ

sinθ
− sinnθ

sinθ
for n≥ 0, implies that

Un(cosθ ) =
sin(n+1)θ

sinθ
.

1.4.4 Jacobi polynomials

For parameters α,β > −1 the weight function for the Jacobi polynomials is
(1− x)α(1+ x)β on −1 < x < 1; the constant c is 2−α−β−1B(α +1,β +1)−1.

Definition 1.4.13 For n≥ 0, let

P(α ,β )
n (x) =

(−1)n

2nn!
(1− x)−α(1+ x)−β

dn

dxn

[
(1− x)α+n(1+ x)β+n

]
.

Proposition 1.4.14 For n≥ 0,

P(α ,β )
n (x) =

(α +1)n

n!

(
1+ x

2

)n

2F1

(−n,−n−β
α +1

;
x−1
x+1

)
=

(α +1)n

n! 2F1

(−n,n+α +β +1
α +1

;
1− x

2

)
.

Proof Expand the formula in Definition 1.4.13 with the product rule to obtain

P(α ,β )
n (x) =

(−1)n

2nn!

n

∑
j=0

[(
n
j

)
(−n−α)n− j(−n−β ) j(−1) j

× (1− x) j(1+ x)n− j
]
.

This produces the first 2F1 formula (note that (−n−α)n− j = (−1)n− j(α + 1)n/

(α + 1) j . The transformation in Proposition 1.2.4 gives the second
expression.
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The orthogonality relations and structure constants for the Jacobi polynomials
are found in the same way as for the Gegenbauer polynomials.

1. The leading coefficient is kn =
(n+α +β +1)n

2nn!
;

2.
∫ 1

−1
q(x)P(α,β)

n (x)(1− x)α(1+ x)βdx

=
1

2nn!

∫ 1

−1

(
d
dx

)n

q(x)(1− x)α+n(1+ x)β+n dx

for any polynomial q(x);

3.
∫ 1

−1
xmP(α,β)

n (x)(1− x)α(1+ x)βdx = 0 for 0≤m < n;

4. hn =
1

2α+β+1B(α +1,β +1)

∫ 1

−1
P(α ,β)

n (x)2(1− x)α(1+ x)β dx

=
(α+1)n(β +1)n(α +β +n+1)
n!(α +β +2)n(α +β +2n+1)

;

5. P(α,β )
n (−x) = (−1)nP(β ,α)

n (x) and P(α,β)
n (−1) = (−1)n(β +1)n/n!.

The differential relations follow easily from the hypergeometric series.

Proposition 1.4.15 For n≥ 1,

d
dx

P(α ,β)
n (x) =

n+α +β +1
2

P(α+1,β+1)
n−1 (x)

where P(α,β )
n (x) is the unique polynomial solution of

(1− x2) f ′′(x)− (α−β +(α +β +2)x) f ′(x)+n(n+α +β +1) f (x) = 0

with f (1) = (α +1)n/n!.

The three-term recurrence calculation requires extra work because the weight
lacks symmetry.

Proposition 1.4.16 For n≥ 0,

P(α ,β )
n+1 (x) =

(2n+α +β +1)(2n+α +β +2)
2(n+1)(n+α +β +1)

xP(α ,β )
n (x)

+
(2n+α +β +1)(α2−β 2)

2(n+1)(n+α +β +1)(2n+α+β )
P(α,β)

n (x)

− (α +n)(β +n)(2n+α +β +2)
(n+1)(n+α+β +1)(2n+α +β )

P(α,β )
n−1 (x).



22 Background

Proof The values of An = kn+1/kn and Cn = kn+1kn−1hn/k2
nhn−1 (see Propo-

sition 1.3.7) can be computed directly. To compute the Bn term, suppose
that

q(x) = v0

(
1− x

2

)n

+ v1

(
1− x

2

)n−1

;

then

2−α−β−1B(α +1,β +1)−1
∫ 1

−1
xq(x)P(α,β )

n (x)(1− x)α(1+ x)β dx

= (−1)n2−α−β−2n−1 1
n!

B(α+1,β +1)−1

×
∫ 1

−1
[−(n+1)v0(1− x)+(v0−2v1)](1− x)n+α(1+ x)n+β dx

=
(−1)n(α +1)n(β +1)n

(α +β +2)2n
v0

(−2(n+1)(α +n+1)
α +β +2n+2

+1−2
v1

v0

)
.

From the series for P(α,β)
n (x) we find that

v0 = (−2)nkn,
v1

v0
=− n(α +n)

α +β +2n

and the factor within large parentheses evaluates to

β 2−α2

(α +β +2n)(α +β +2n+2)
.

Multiply the integral by −kn+1/(knhn) to get the stated result.

Corollary 1.4.17 The coefficient for the corresponding orthonormal polynomi-
als (and n≥ 0) is

an =
2

α+β +2n+2

(
(α +n+1)(β +n+1)(n+1)(α+β +n+1)

(α +β +2n+1)(α+β +2n+3)

)1/2

.

Of course, the Jacobi weight includes the Gegenbauer weight as a special case.
In terms of the usual notation the relation is

Cλ
n (x) =

(2λ )n(
λ + 1

2

)
n

P(λ−1/2,λ−1/2)
n (x).

In the next section we will use the Jacobi polynomials to find the orthogonal
polynomials for the weight |x|2μ(1− x2)λ−1/2 on −1 < x < 1.

1.5 Modified Classical Polynomials
The weights for the Hermite and Gegenbauer polynomials can be modified
by multiplying them by |x|2μ . The resulting orthogonal polynomials can be
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expressed in terms of the Laguerre and Jacobi polynomials. Further, there is an
integral transform which maps the original polynomials to the modified ones.
We also present in this section a limiting relation between the Gegenbauer and
Hermite polynomials.

Note that the even- and odd-degree polynomials in the modified families have
separate definitions. For reasons to be explained later, the integral transform is
denoted by V (it is an implicit function of μ).

Definition 1.5.1 For μ ≥ 0, let cμ =
[
22μB(μ,μ+1)

]−1
(see Definition 1.1.2)

and, for any polynomial q(x), let the integral transform V be defined by

V q(x) = cμ

∫ 1

−1
q(tx)(1− t)μ−1(1+ t)μ dt.

Note that∫ 1

−1
(1− t)μ−1(1+ t)μ dt = 2

∫ 1

0
(1− t2)μ−1dt = B( 1

2 ,μ);

thus cμ can also be written as B
( 1

2 ,μ
)−1

(and this proves the duplication formula
for Γ, given in item 5 of the list after Definition 1.1.2). The limit

lim
λ→0

cλ

∫ 1

−1
f (x)(1− x2)λ−1dx = 1

2 [ f (1)+ f (−1)] (1.5.1)

shows that V is the identity operator when μ = 0.

Lemma 1.5.2 For n≥ 0,

V (x2n) =

( 1
2

)
n(

μ + 1
2

)
n

x2n and V (x2n+1) =

(
1
2

)
n+1(

μ+ 1
2

)
n+1

x2n+1.

Proof For the even-index case

cμ

∫ 1

−1
t2n(1− t)μ−1(1+ t)μdt = 2cμ

∫ 1

0
t2n(1− t2)μ−1dt

=
B
(
n+ 1

2 ,μ
)

B
( 1

2 ,μ
) =

(
1
2

)
n(

μ + 1
2

)
n

,

and for the odd-index case

cμ

∫ 1

−1
t2n+1(1− t)μ−1(1+ t)μdt = 2cμ

∫ 1

0
t2n+2(1− t2)μ−1dt

=
B
(
n+ 3

2 ,μ
)

B
(

1
2 ,μ
) =

(
1
2

)
n+1(

μ + 1
2

)
n+1

.
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1.5.1 Generalized Hermite polynomials

For the generalized Hermite polynomials Hμ
n , the weight function is |x|2μe−x2

on

x ∈ R and the constant is Γ
(
μ+ 1

2

)−1
. From the formula∫

R
f (x2)|x|2μe−x2

dx =
∫ ∞

0
f (t)tμ−1/2e−tdt,

we see that the polynomials {Pn(x) : n ≥ 0} given by P2n(x) = Lμ−1/2
n (x2) and

P2n+1(x) = xLμ+1/2
n (x2) form an orthogonal family. The normalization is chosen

so that the leading coefficient becomes 2n.

Definition 1.5.3 For μ ≥ 0 the generalized Hermite polynomials Hμ
n (x) are

defined by

Hμ
2n(x) = (−1)n22nn!Lμ−1/2

n (x2),

Hμ
2n+1(x) = (−1)n22n+1n!xLμ+1/2

n (x2).

The usual computations show the following (for n≥ 0):

1. kn = 2n;
2. h2n = 24nn!

(
μ + 1

2

)
n and h2n+1 = 24n+2n!

(
μ + 1

2

)
n+1 ;

3. Hμ
2n+1(x) = 2xHμ

2n(x)−4nHμ
2n−1(x),

Hμ
2n+2(x) = 2xHμ

2n+1(x)−2(2n+1+2μ)Hμ
2n(x).

The integral transform V maps the Hermite polynomials H2n and H2n+1 onto
this family:

Theorem 1.5.4 For n≥ 0 and μ > 0,

V H2n =

(
1
2

)
n(

μ + 1
2

)
n

Hμ
2n and V H2n+1 =

( 1
2

)
n+1(

μ+ 1
2

)
n+1

Hμ
2n+1.

Proof The series for the Hermite polynomials can now be used. For the even-
index case,

V H2n(x) =
n

∑
j=0

(2n)!
(2n−2 j)! j!

(−1) j(2x)2n−2 j

( 1
2

)
n− j(

μ+ 1
2

)
n− j

= 22n(−1)n( 1
2 )

n

∑
ni=0

(−n)i

i!
(
μ + 1

2

)
i

x2i

= 22n(−1)n

(
1
2

)
n n!(

μ+ 1
2

)
n

Lμ−1/2
n (x2).
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For the odd-index case,

V H2n+1(x) =
n

∑
j=0

(2n+1)!
(2n+1−2 j)! j!

(−1) j(2x)2n+1−2 j

( 1
2

)
n− j+1(

μ + 1
2

)
n− j+1

= (−1)n (2n+1)!
n!

x
n

∑
i=0

(−n)i

i!
(
μ + 1

2

)
i+1

x2i

= (−1)n (2n+1)!(
μ + 1

2

)
n+1

xLμ+1/2
n (x2),

where we have changed the index of summation by setting i = n− j and used the
relations (2n)! = 22nn!

(
1
2

)
n and (2n+1)! = 22n+1n!

(
1
2

)
n+1.

1.5.2 Generalized Gegenbauer polynomials

For parameters λ ,μ with λ > − 1
2 and μ ≥ 0 the weight function is |x|2μ(1−

x2)λ−1/2 on −1 < x < 1 and the constant c is B
(
μ + 1

2 ,λ + 1
2

)−1
. Suppose that

f and g are polynomials; then∫ 1

−1
f (x2)g(x2)|x|2μ(1− x2)λ−1/2dx

= 2−μ−λ
∫ 1

−1
f

(
1+ t

2

)
g

(
1+ t

2

)
(1+ t)μ−1/2(1− t)λ−1/2 dt

and ∫ 1

−1
(x f (x2))(xg(x2))|x|2μ(1− x2)λ−1/2 dx

= 2−μ−λ−1
∫ 1

−1
f

(
1+ t

2

)
g

(
1+ t

2

)
(1+ t)μ+1/2(1− t)λ−1/2 dt.

Accordingly, the orthogonal polynomials {Pn : n ≥ 0} for the above weight
function are given by the formulae

P2n(x)=P(λ−1/2,μ−1/2)
n (2x2−1) and P2n+1(x)=xP(λ−1/2,μ+1/2)

n (2x2−1).

As in the Hermite polynomial case, we choose a normalization which corresponds
in a natural way with V .

Definition 1.5.5 For λ > − 1
2 , μ ≥ 0, n ≥ 0, the generalized Gegenbauer

polynomials C(λ ,μ)
n (x) are defined by

C(λ ,μ)
2n (x) =

(λ +μ)n(
μ+ 1

2

)
n

P(λ−1/2,μ−1/2)
n (2x2−1),
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C(λ ,μ)
2n+1 (x) =

(λ +μ)n+1(
μ+ 1

2

)
n+1

xP(λ−1/2,μ+1/2)
n (2x2−1).

The structural constants are as follows (for n≥ 0):

1. k(λ ,μ)
2n =

(λ +μ)2n(
μ + 1

2

)
n n!

and k(λ ,μ)
2n+1 =

(λ +μ)2n+1(
μ+ 1

2

)
n+1 n!

;

2. h(λ ,μ)
2n =

(
λ + 1

2

)
n (λ +μ)n (λ +μ)

n!
(
μ+ 1

2

)
n (λ +μ+2n)

,

h(λ ,μ)
2n+1 =

(
λ + 1

2

)
n (λ +μ)n+1 (λ +μ)

n!
(
μ + 1

2

)
n+1 (λ +μ+2n+1)

;

3. C(λ ,μ)
2n+1 (x) =

2(λ +μ+2n)
2μ +2n+1

xC(λ ,μ)
2n (x)− 2λ +2n−1

2μ+2n+1
C(λ ,μ)

2n−1 (x),

C(λ ,μ)
2n+2 (x) =

λ +μ+2n+1
n+1

xC(λ ,μ)
2n+1 (x)− λ +μ+n

n+1
C(λ ,μ)

2n (x);

4. C(λ ,μ)
n (1) =

n+λ +μ
λ +μ

h(λ ,μ)
n .

The modified polynomials C(λ ,μ)
n are transforms of the ordinary Gegenbauer

polynomials C(λ+μ)
n .

Theorem 1.5.6 For λ >− 1
2 , μ ≥ 0, n≥ 0,

VCλ+μ
n (x) = C(λ ,μ)

n (x).

Proof We use the series found in Subsection 1.4.3. In the even-index case,

VCλ+μ
2n (x) =

n

∑
j=0

(λ +μ)2n− j

j!(2n−2 j)!
(−1) j(2x)2n−2 j

(
1
2

)
n− j(

μ+ 1
2

)
n− j

= (−1)n (λ +μ)n

n! 2F1

(−n,n+λ +μ
μ + 1

2
;x2
)

=
(−1)n (λ +μ)n(

μ+ 1
2

)
n

P(μ−1/2,λ−1/2)
n (1−2x2)

=
(λ +μ)n(
μ+ 1

2

)
n

P(λ−1/2,μ−1/2)
n (2x2−1),
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and in the odd-index case

VCλ+μ
2n+1(x) =

n

∑
j=0

(λ +μ)2n+1− j

j!(2n+1−2 j)!
(−1) j(2x)2n+1−2 j

( 1
2

)
n+1− j(

μ + 1
2

)
n+1− j

= (−1)nx
(λ +μ)n+1

n!
(
μ + 1

2

) 2F1

(−n,n+λ +μ+1
μ+ 3

2
;x2
)

=
x(−1)n (λ +μ)n+1(

μ+ 1
2

)
n+1

P(μ+1/2,λ−1/2)
n (1−2x2)

=
x (λ +μ)n+1(
μ + 1

2

)
n+1

P(λ−1/2,μ+1/2)
n (2x2−1).

Note that the index of summation was changed to i = n− j in both cases.

1.5.3 A limiting relation

With suitable renormalization the weight
(
1− x2/λ

)λ−1/2
tends to e−x2

. The
effect on the corresponding orthogonal polynomials is as follows.

Proposition 1.5.7 For μ ,n ≥ 0, lim
λ→∞

λ−n/2C(λ ,μ)
n (x/

√
λ ) = snHμ

n (x), where

s2n =
[
22nn!

(
μ + 1

2

)
n

]−1
, s2n+1 =

[
22n+1n!

(
μ+ 1

2

)
n+1

]−1
.

Proof Replace x by x/
√
λ in the 2F1 series expressions (with argument x2) found

above. Observe that limλ→∞λ− j(λ +a) j = 1 for any fixed a and any j = 1,2, . . .

By specializing to μ = 0 the following is obtained.

Corollary 1.5.8 For n≥ 0, limλ→∞ λ−n/2Cλ
n

( x√
λ

)
=

1
n!

Hn(x).

1.6 Notes
The standard reference on the hypergeometric functions is the book of Bai-
ley [1935]. It also contains the Lauricella series of two variables. See also the
books Andrews, Askey and Roy [1999], Appell and de Fériet [1926], and Erdélyi,
Magnus, Oberhettinger and Tricomi [1953]. For multivariable Lauricella series,
see Exton [1976].

The standard reference for orthogonal polynomials in one variable is the book
of Szegő [1975]. See also Chihara [1978], Freud [1966] and Ismail [2005].
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Orthogonal Polynomials in Two Variables

We start with several examples of families of orthogonal polynomials of two vari-
ables. Apart from a brief introduction in the first section, the general properties
and theory will be deferred until the next chapter where they will be given in
d variables for all d ≥ 2. Here we focus on explicit constructions and concrete
examples, most of which will be given explicitly in terms of classical orthogonal
polynomials of one variable.

2.1 Introduction
A polynomial of two variables in the variables x,y is a finite linear combination
of the monomials x jyk. The total degree of x jyk is defined as j + k and the total
degree of a polynomial is defined as the highest degree of the monomials that
it contains. Let Π2 = R[x,y] be the space of polynomials in two variables. For
n ∈ N0, the space of homogeneous polynomials of degree n is denoted by

P2
n := span{x jyk : j + k = n, j,k ∈N0}

and the space of polynomials of total degree n is denoted by

Π2
n := span{x jyk : j + k ≤ n, j,k ∈N0}.

Evidently, Π2
n is a direct sum of P2

m for m = 0,1, . . . ,n. Furthermore,

dimP2
n = n+1 and dimΠ2

n =
(

n+2
2

)
.

Let 〈·, ·〉 be an inner product defined on the space of polynomials of two
variables. An example of such an inner product is given by

〈 f ,g〉μ =
∫

R2
f (x)g(x)dμ(x),
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where dμ is a positive Borel measure on R2 such that the integral is well defined
on all polynomials. Mostly we will work with dμ = W(x,y)dxdy, where W is a
nonnegative function called the weight function.

Definition 2.1.1 A polynomial P is an orthogonal polynomial of degree n with
respect to an inner product 〈·, ·〉 if P ∈Π2

n and

〈P,Q〉= 0 ∀Q ∈Π2
n−1. (2.1.1)

When the inner product is defined via a weight function W , we say that P is
orthogonal with respect to W .

According to the definition, P is an orthogonal polynomial if it is orthogonal to
all polynomials of lower degree; orthogonality to other polynomials of the same
degree is not required. Given an inner product one can apply the Gram–Schmidt
process to generate an orthogonal basis, which exists under certain conditions to
be discussed in the next chapter. In the present chapter we deal with only specific
weight functions for which explicit bases can be constructed and verified directly.

We denote by V 2
n the space of orthogonal polynomials of degree n:

V 2
n := span{P ∈Π2

n : 〈P,Q〉= 0, ∀Q ∈Π2
n−1}.

When the inner product is defined via a weight function W , we sometimes write
V 2

n (W ). The dimension of V 2
n is the same as that of P2

n :

dimV 2
n = dimP2

n = n+1.

A basis of V 2
n is often denoted by {Pn

k : 0≤ k ≤ n}. If, additionally, 〈Pn
k ,Pn

j 〉= 0
for j �= k then the basis is said to be mutually orthogonal and if, further, 〈Pn

k ,Pn
k 〉=

1 for 0≤ k ≤ n then the basis is said to be orthonormal.
In contrast with the case of one variable, there can be many distinct bases for

the space V 2
n . In fact let Pn := {Pn

k : 0≤ k ≤ n} denote a basis of V 2
n , where we

regard Pn both as a set and as a column vector. Then, for any nonsingular matrix
M ∈ Rn+1,n+1, MPn is also a basis of V 2

n .

2.2 Product Orthogonal Polynomials
Let W be the product weight function defined by W(x,y) = w1(x)w2(y), where w1

and w2 are two weight functions of one variable.

Proposition 2.2.1 Let {pk}∞k=0 and {qk}∞k=0 be sequences of orthogonal poly-
nomials with respect to w1 and w2, respectively. Then a mutually orthogonal basis
of V 2

n with respect to W is given by

Pn
k (x,y) = pk(x)qn−k(y), 0≤ k ≤ n.

Furthermore, if {pk} and {qk} are orthonormal then so is {Pn
k }.
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Proof Verification follows from writing∫
R2

Pn
k (x,y)Pm

j (x,y)W (x,y)dxdy

=
∫

R
pk(x)p j(x)w1(x)dx

∫
R

qn−k(y)qm− j(y)w2(y)dy

and using the orthogonality of {pn} and {qn}.

Below are several examples of weight functions and the corresponding classi-
cal orthogonal polynomials.

Product Hermite polynomials

W (x,y) = e−x2−y2

and

Pn
k (x,y) = Hk(x)Hn−k(y), 0≤ k ≤ n. (2.2.1)

Product Laguerre polynomials

W (x,y) = xαyβ e−x−y,

and

Pn
k (x,y) = Lαk (x)Lβn−k(y), 0≤ k ≤ n. (2.2.2)

Product Jacobi polynomials

W (x,y) = (1− x)α(1+ x)β (1− y)γ(1+ y)δ ,

and

Pn
k (x,y) = P(α ,β )

k (x)P(γ,δ)
n−k (y), 0≤ k ≤ n. (2.2.3)

There are also mixed-product orthogonal polynomials, such as the product of
the Hermite polynomials and the Laguerre polynomials.

2.3 Orthogonal Polynomials on the Unit Disk
The unit disk of R2 is defined as B2 := {(x,y) : x2 +y2≤ 1}, on which we consider
a weight function defined as follows:

Wμ(x,y) :=
μ+ 1

2

π
(1− x2− y2)μ−1/2, μ >− 1

2 ,

which is normalized in such a way that its integral over B2 is 1. Let

〈 f ,g〉μ :=
∫

B2
f (x,y)g(x,y)Wμ(x,y)dxdy

in this section. There are several distinct explicit orthogonal bases.
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First orthonormal basis This basis is given in terms of the Gegenbauer
polynomials.

Proposition 2.3.1 Let μ > 0. For 0≤ k ≤ n define the polynomials

P n
k(x,y) = C k+μ+1/2

n−k (x)(1− x2)k/2Cμ
k

(
y√

1− x2

)
, (2.3.1)

which holds in the limit limμ→0 μ−1Cμ
k (x) = (2/k)Tk(x) if μ = 0. Then {Pn

k :
0≤ k ≤ n} is a mutually orthogonal basis for V 2

n (Wμ). Moreover,

〈Pn
k ,Pn

k 〉μ =
(2k +2μ+1)n−k(2μ)k(μ)k(μ+ 1

2)
(n− k)!k!(μ+ 1

2 )k(n+μ+ 1
2 )

, (2.3.2)

where, when μ = 0, we multiply (2.3.2) by μ−2 and set μ→ 0 if k≥ 1 and multiply
by an additional 2 if k = 0.

Proof Since the Gegenbauer polynomial Cμ
k is even if k is even and odd if k is

odd, it follows readily that Pk,n is a polynomial of degree at most n. Using the
integral relation∫

B2
f (x,y)dxdy =

∫ 1

−1

∫ √1−x2

−
√

1−x2
f (x,y)dxdy

=
∫ 1

−1

∫ 1

−1
f
(

x, t
√

1− x2
)

dt
√

1− x2 dx

and the orthogonality of the Gegenbauer polynomials, we obtain

〈Pm
j ,Pn

k 〉μ =
μ+ 1

2

π
hk+μ+1/2

n−k hμk δn,mδ j,k, 0≤ j ≤ m, 0≤ k ≤ n,

where hμk =
∫ 1
−1

[
Cμ

k (x)
]2 (1−x2)μ−1/2 dx, from which the constant in (2.3.2) can

be easily verified.

In the case μ = 0, the above proposition holds under the limit relation
limμ→0 μ−1Cμ

k (x) = (2/k)Tk(x), where Tk is the Chebyshev polynomial of the
first kind. We state this case as a corollary.

Corollary 2.3.2 For 0≤ k ≤ n, define the polynomials

Pn
k (x,y) = Ck+1/2

n−k (x)(1− x2)k/2Tk

(
y√

1− x2

)
. (2.3.3)

Then {Pn
k : 0 ≤ k ≤ n} is a mutually orthogonal basis for V 2

n (W0). Moreover,
〈Pn

0 ,Pn
0 〉0 = 1/(2n+1) and, for 0 < k ≤ n,

〈Pn
k ,Pn

k 〉0 =
(2k +1)n−kk!

2(n− k)!( 1
2 )k(2n+1)

. (2.3.4)
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Second orthonormal basis The basis is given in terms of the Jacobi polynomi-
als in the polar coordinates (x,y) = (r cosθ ,r sinθ), 0≤ r ≤ 1 and 0≤ θ ≤ 2π .

Proposition 2.3.3 For 1≤ j ≤ n
2 , define

Pj,1(x,y) = [h j,n]−1P(μ−1/2,n−2 j)
j (2r2−1)rn−2 j cos(n−2 j)θ ,

Pj,2(x,y) = [h j,n]−1P(μ−1/2,n−2 j)
j (2r2−1)rn−2 j sin(n−2 j)θ ,

(2.3.5)

where the constant is given by

[h j,n]2 =
(μ+ 1

2 ) j(n− j)!(n− j +μ+ 1
2 )

j!(μ+ 3
2)n− j(n+μ+ 1

2 )

{
×2 n �= 2 j,

×1 n = 2 j.
(2.3.6)

Then {Pj,1 : 0≤ j ≤ n
2}∪{Pj,2 : 0≤ j < n

2} is an orthonormal basis of the space
V 2

n (W (μ).

Proof From Euler’s formula (x+ iy)m = rm(cosmθ + i sinmθ ), it follows readily
that rm cosmθ and rm sinmθ are both polynomials of degree m in (x,y). Conse-
quently, Pj,1 and Pj,2 are both polynomials of degree at most n in (x,y). Using the
formula ∫

B2
f (x,y)dxdy =

∫ 1

0
r
∫ 2π

0
f (r cosθ ,r sinθ)dr dθ ,

that Pj,1 and Pk,2 are orthogonal to each other follows immediately from the fact
that sin(n− 2k)θ and cos(n− 2k)θ ) are orthogonal in L2([0,2π]). Further, we
have

〈Pj,1,Pk,1〉μ = A j
μ+ 1

2

π
[h j,n]−2

∫ 1

0
r2n−2 j+1P(μ−1/2,n−2 j)

j (2r2−1)

×P(μ−1/2,n−2 j)
k (2r2−1)(1− r2)μ−1/2 dr,

where Aj = π if 2 j �= n and 2π if 2 j = n. Make the change of variables t �→ 2r2−1,
the orthogonality of Pj,1 and Pk,1 follows from that of the Jacobi polynomials. The
orthogonality of Pj,2 and Pk,2 follows similarly.

Orthogonal polynomials via the Rodrigues formula Classical orthogonal
polynomials of one variable all satisfy Rodrigues’ formula. For polynomials in
two variables, an orthogonal basis can be defined by an analogue of the Rodrigues
formula.

Proposition 2.3.4 For 0≤ k ≤ n, define

Uμ
k,n(x,y) = (1− x2− y2)−μ+1/2 ∂ n

∂xk∂yn−k

[
(1− x2− y2)n+μ−1/2

]
.

Then {Uμ
k,n : 0≤ k ≤ n} is a basis for V 2

n (Wμ).
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Proof Let Q ∈Π2
n−1. Directly from the definition,

〈Uμ
k,n,Q〉μ =

μ + 1
2

π

∫
B2

∂ n

∂xk∂yn−k

[
(1− x2− y2)n+μ−1/2

]
Q(x,y)dxdy,

which is zero after integration by parts n times and using the fact that the nth-order
derivative of Q is zero.

This basis is not mutually orthogonal, that is, 〈Uμ
k,n,U

μ
j,n〉μ �= 0 for j �= k. Let

V μ
m,n be defined by

V μ
m,n(x,y) =

�m/2�
∑
i=0

�n/2�
∑
j=0

(−m)2i(−n)2 j(μ+ 1
2 )m+n−i− j

22i+2 ji! j!(μ+ 1
2)m+n

xm−2iyn−2 j.

Then Vm,n is the orthogonal projection of xmyn in L2(B2,Wμ) and the two families
of polynomials are biorthogonal.

Proposition 2.3.5 The set {V μ
k,n−k : 0 ≤ k ≤ n} is a basis of V 2

n (Wμ) and, for
0≤ j,k ≤ n,

〈Uμ
k,n,V

μ
j,n− j〉μ =

(μ+ 1
2 )k!(n− k)!

n+μ + 1
2

δ j,k.

The proof of this proposition will be given in Chapter 4 as a special case of
orthogonal polynomials on a d-dimensional ball.

An orthogonal basis for constant weight In the case of a constant weight
function, say W1/2(x) = 1/π, an orthonormal basis can be given in terms of the
Chebyshev polynomials Un of the second kind; this has the distinction of being
related to the Radon transform. Let � denote the line �(θ ,t) = {(x,y) : xcosθ +
ysinθ = t} for −1≤ t ≤ 1, which is perpendicular to the direction (cosθ ,sinθ ),
|t| being the distance between the line and the origin. Let I(θ ,t) = �(θ ,t)∩B2,
the line segment of � inside B2. The Radon projection Rθ ( f ;t) of a function f in
the direction θ with parameter t ∈ [−1,1] is defined by

Rθ ( f ;t) :=
∫

I(θ ,t)
f (x,y)d�

=
∫ √1−t2

−
√

1−t2
f (t cosθ − ssinθ ,t sinθ + scosθ )ds, (2.3.7)

where d� denotes the Lebesgue measure on the line I(θ ,t).

Proposition 2.3.6 For 0≤ k ≤ n, define

Pn
k (x,y) = Un

(
x cos

kπ
n+1

+ y sin
kπ

n+1

)
. (2.3.8)

Then {Pn
k : 0≤ k ≤ n} is an orthonormal basis of V 2

n (W1/2).
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Proof For θ ∈ [0,π] and g : R �→ R, define gθ (x,y) := g(xcosθ + ysinθ). The
change of variables t = xcosφ + y sinφ and s = −x sinφ + ycosφ amounts to a
rotation and leads to

〈 f ,gθ 〉 :=
1
π

∫
B2

f (x,y)gθ (x,y)dxdy =
1
π

∫ 1

−1
Rθ ( f ;t)g(t)dt. (2.3.9)

Now, a change of variable in (2.3.7) gives

Rθ ( f ;t) =
√

1− t2

×
∫ 1

−1
f
(

t cosθ − s
√

1− t2 sinθ , t sinθ + s
√

1− t2 cosθ
)

ds.

If f is a polynomial of degree m then the last integral is a polynomial in t
of the same degree, since an odd power of

√
1− t in the integrand is always

companied by an odd power of s, which has integral zero. Therefore, Q(t) :=
Rθ ( f ; t)/

√
1− t2 is a polynomial of degree m in t for every θ . Further, the inte-

gral also shows that Q(1) = 2 f (cosθ ,sinθ). Consequently, by the orthogonality
of Uk on [−1,1], (2.3.9) shows that 〈 f ,Pn

k 〉= 0 for all f ∈ Π2
m whenever m < n.

Hence Pn
k ∈ V 2

n (W1/2).
In order to prove orthonormality, we consider Rθ (Pn

j ;t). By (2.3.9) and the
fact that Pn

j ∈ V 2
n (W1/2),∫ 1

−1

Rθ (Pn
j ;t)√

1− t2
Um(t)

√
1− t2 dt =

∫
B2

Pn
j (x,y)(Um)θ (x,y)dxdy = 0,

for m = 0,1, . . . ,n−1. Thus the polynomial Q(t) = Rθ (Pn
j ;t)/

√
1− t2 is orthog-

onal to Um for 0 ≤ m ≤ n− 1. Since Q is a polynomial of degree n, it must be
a multiple of Un; thus Q(t) = cUn(t) for some constant independent of t. Setting
t = 1 and using the fact that Un(1) = n+1, we have

c =
Pn

j (cos θ , sin θ)
n+1

=
2Un(cos θ − jπ

n+1)
(n+1)

.

Consequently, we conclude that

〈Pn
k ,Pn

j 〉=
2
π

Un
(

cos (k− j)π
n+1

)
n+1

∫ 1

−1
[Un(t)]2

√
1− t2 dt = δk, j,

using the fact that Un
(

cos (k− j)π
n+1

)
= sin(k− j)π/sin (k− j)π

n+1 = 0 when k �= j.

Since Pn
j is a basis of V 2(W1/2), the proof of the proposition immediately

implies the following corollary.

Corollary 2.3.7 If P ∈ V 2
n (W1/2) then for each t ∈ (−1,1), 0≤ θ ≤ 2π ,

Rθ (P;t) =
2

n+1

√
1− t2 Un(t)P(cosθ ,sinθ ).
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2.4 Orthogonal Polynomials on the Triangle
We now consider the triangle T 2 := {(x,y) : 0≤ x,y,x+y≤ 1}. For α ,β ,γ >−1,
define the Jacobi weight function on the triangle,

Wα,β ,γ(x,y) =
Γ(α +β + γ +3)

Γ(α+1)Γ(β +1)Γ(γ +1)
xαyβ (1− x− y)γ , (2.4.1)

normalized so that its integral over T 2 is 1. Define, in this section,

〈 f ,g〉α ,β ,γ =
∫

T 2
f (x,y)g(x,y)Wα ,β ,γ(x,y)dxdy.

An orthonormal basis An orthonormal basis can be given in the Jacobi
polynomials.

Proposition 2.4.1 For 0≤ k ≤ n, define

Pn
k (x,y) = P(2k+β+γ+1,α)

n−k (2x−1)(1− x)kP(γ,β)
k

(
2y

1− x
−1

)
. (2.4.2)

Then {Pn
k : 0≤ k≤ n} is a mutually orthogonal basis of V d

n (Wα ,β ,γ) and, further.

〈Pn
k ,Pn

k 〉α ,β ,γ =
(α +1)n−k(β +1)k(γ +1)k(β + γ +2)n+k

(n− k)!k!(β + γ +2)k(α+β + γ +3)n+k

× (n+ k +α +β + γ +2)(k +β + γ +1)
(2n+α +β + γ +2)(2k +β + γ +1)

. (2.4.3)

Proof It is evident that Pn
k ∈Π2

n. We need the integral relation∫
T 2

f (x,y)dxdy =
∫ 1

0

∫ 1−x

0
f (x,y)dxdy

=
∫ 1

0

∫ 1

0
f (x,(1− x)t))(1− x)dtdx. (2.4.4)

Since Pn
k (x,(1− x)y) = P(2k+β+γ+1,α)

n−k (2x− 1)(1− x)kP(γ ,β )
k (2y− 1) and, more-

over, Wα,β ,γ(x,(1−x)y) = cα ,β ,γx
α(1−x)β+γyβ (1−y)γ , where cα ,β ,γ denotes the

normalization constant of Wα ,β ,γ , we obtain from the orthogonality of the Jacobi

polynomials P(a,b)
n (2u−1) on the interval [0,1] that

〈Pm
j ,Pn

k 〉α,β ,γ = cα,β ,γh
(2k+β+γ+1,α)
n−k h(γ ,β )

k δ j,kδm,n,

where h(a,b)
k =

∫ 1
0 |P(a,b)

k (2t − 1)|2(1− t)atb dt and the constant (2.4.3) can be
easily verified.

The double integral over the triangle T 2 can be expressed as an iterated integral
in different ways. This leads to two other orthonormal bases of V 2(Wα,β ,γ).
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Proposition 2.4.2 Denote by Pα,β ,γ
k,n the polynomials defined in (2.4.2) and by

hα ,β ,γ
k,n the constant (2.4.3). Define the polynomials

Qn
k(x,y) := Pβ ,α,γ

k,n (y,x) and Rn
k(x,y) := Pγ,β ,α

k,n (1− x− y, y).

Then {Qn
k : 0 ≤ k ≤ n}and {Rn

k : 0 ≤ k ≤ n} are also mutually orthogonal bases
of V d

n (Wα ,β ,γ), and, furthermore,

〈Qn
k ,Q

n
k〉α ,β ,γ = hβ ,α ,γ

k,n and 〈Rn
k,R

n
k〉α ,β ,γ = hγ ,β ,α

k,n .

Proof For Qn
k , we exchange x and y in the integral (2.4.4) and the same proof

then applies. For Rn
k , we make the change of variables (x,y) �→ (s,t) with x =

(1− s)(1− t) and y = (1− s)t in the integral over the triangle T 2 to obtain∫
T 2

f (x,y)dxdy =
∫ 1

0

∫ 1

0
f ((1− s)(1− t),(1− s)t)(1− s)dsdt.

Since Pγ ,β ,α
k,n (1 − x − y,y) = Pγ ,β ,α

k,n (s,(1 − s)t) and Wα ,β ,γ(x,y) = cα ,β ,γ

(1− s)α+β sγ(1− t)α tβ , the proof follows, again from the orthogonality of the
Jacobi polynomials.

These bases illustrate the symmetry of the triangle T 2, which is invariant under
the permutations of (x,y,1− x− y).

Orthogonal polynomials via the Rodrigues formula The Jacobi polynomials
can be expressed in the Rodrigues formula. There is an analogue for the triangle.

Proposition 2.4.3 For 0≤ k ≤ n, define

Uα,β ,γ
k,n (x,y) :=

[
Wα,β ,γ(x)

]−1 ∂ n

∂xk∂yn−k

[
xk+αyn−k+β (1− x− y)n+γ

]
.

Then the set {Uα ,β ,γ
k,n (x,y) : 0≤ k ≤ n} is a basis of V 2

n (Wα ,β ,γ).

Proof For Q ∈ Π2
n−1, the proof of 〈Ukn ,Q〉α ,β ,γ = 0 follows evidently from

integration by parts and the fact that the nth derivative of Q is zero.

Just as for the disk, this basis is not mutually orthogonal. We can again
define a biorthogonal basis by considering the orthogonal projection of xmyn onto
V 2

n (Wα ,β ,γ). Let Vα ,β ,γ
m,n be defined by

V (α,β ,γ)
m,n (x,y) =

m

∑
i=0

n

∑
j=0

(−1)n+m+i+ j
(

m
i

)(
n
j

)

× (α + 1
2 )m(β + 1

2 )n(α +β + γ+ 1
2 )n+m+i+ j

(α + 1
2 )i(β + 1

2 ) j(α+β + γ + 1
2 )2n+2m

xiy j.



2.5 Orthogonal Polynomials and Differential Equations 37

Proposition 2.4.4 The set {Vα,β ,γ
k,n−k : 0 ≤ k ≤ n} is a basis of V 2

n (Wα,β ,γ) and,
for 0≤ j,k ≤ n,

〈Uα,β ,γ
k,n ,Vα ,β ,γ

j,n− j 〉α ,β ,γ =
(α + 1

2 )k(β + 1
2 )n−k(γ + 1

2)nk!(n− k)!
(α +β + γ + 3

2 )2n
δk, j.

The proof of this proposition will be given in Chapter 4, as a special case of
orthogonal polynomials on a d-dimensional simplex.

2.5 Orthogonal Polynomials and Differential Equations
The classical orthogonal polynomials in one variable, the Hermite, Laguerre
and Jacobi polynomials, are eigenfunctions of second-order linear differential
operators. A similar result also holds in the present situation.

Definition 2.5.1 A linear second-order partial differential operator L defined by

Lv := A(x,y)vxx +2B(x,y)vxy +C(x,y)vyy +D(x,y)vx +E(x,y)vy,

where vx := ∂v/∂x and vxx := ∂ 2v/∂x2 etc., is called admissible if for each
nonnegative integer n there exists a number λn such that the equation

Lv = λnv

has n+1 linearly independent solutions that are polynomials of degree n and no
nonzero solutions that are polynomials of degree less than n.

If a system of orthogonal polynomials satisfies an admissible equation then all
orthogonal polynomials of degree n are eigenfunctions of the admissible differen-
tial operator for the same eigenvalue λn. In other words, the eigenfunction space
for each eigenvalue is V 2

n . This requirement excludes, for example, the product

Jacobi polynomial P(α ,β)
k (x)P(γ,d)

n−k , which satisfies a second-order equation of the
form Lu = λk,nu, where λk,n depends on both k and n.

Upon considering lower-degree monomials, it is easy to see that for L to be
admissible it is necessary that

A(x,y) = Ax2 +a1x +b1y+ c1, D(x,y) = Bx+d1,

B(x,y) = Axy+a2x+b2y+ c2, E(x,y) = By+d2,

C(x,y) = Ay2 +a3x+b3y+ c3,

and, furthermore, for each n = 0,1,2, . . . ,

nA+B �= 0, and λn =−n[A(n−1)+B].

A classification of admissible equations is to be found in Krall and Shef-
fer [1967] and is given below without proof. Up to affine transformations, there
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are only nine equations. The first five are satisfied by orthogonal polynomials that
we have already encountered. They are as follows:

1. vxx + vyy− (xvx + yvy) =−nv;
2. xvxx + yvyy +(1+α− x)vx +(1+β − y)vy =−nv;
3. vxx + yvyy− xvx +(1+α− y)vy =−nv;
4. (1−x2)vxx−2xyvxy +(1−y2)vyy− (2μ+1)(xvx +yvy) =−n(n+2μ+2)v;
5. x(1− x)vxx−2xyvxy + y(1− y)vyy−

[
(α +β + γ + 3

2 )x− (α + 1
2 )
]

vx

−[(α +β + γ + 3
2 )y− (β + 1

2 )
]

vy =−n
(
n+α +β + γ+ 1

2

)
v.

These are the admissible equations for, respectively, product Hermite polyno-
mials, product Laguerre polynomials, product Hermite–Laguerre polynomials,
orthogonal polynomials on the disk V 2

n (Wμ) and orthogonal polynomials on
the triangle V 2

n (Wα ,β ,,γ). The first three can be easily verified directly from the
differential equations of one variable satisfied by the Hermite and Laguerre poly-
nomials. The fourth and the fifth equations will be proved in Chapter 7 as special
cases of the d-dimensional ball and simplex.

The other four admissible equations are listed below:

6. 3yvxx +2vxy− xvx− yvy = λv;
7. (x2 + y+1)vxx +(2xy+2x)vxy +(y2 +2y+1)vyy +g(xvx + yvy) = λv;
8. x2vxx +2xyvxy +(y2− y)vyy +g[(x−1)vx +(y−α)vy] = λv;
9. (x+α)vxx +2(y+1)vyy + xvx + yvy = λv.

The solutions for these last four equations are weak orthogonal polynomials, in
the sense that the polynomials, are orthogonal with respect to a linear functional
that is not necessarily positive definite.

2.6 Generating Orthogonal Polynomials of Two Variables
The examples of orthogonal polynomials that we have described so far are given
in terms of orthogonal polynomials of one variable. In this section, we consider
two methods that can be used to generate orthogonal polynomials of two variables
from those of one variable.

2.6.1 A method for generating orthogonal polynomials

Let w1 and w2 be weight functions defined on the intervals (a,b) and (d,c),
respectively. Let ρ be a positive function defined on (a,b) such that

Case I ρ is a polynomial of degree 1;

Case II ρ is the square root of a nonnegative polynomial of degree at most 2;
we assume that c =−d > 0 and that w2 is an even function on (−c,c).
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For each k ∈ N0 let {pn,k}∞n=0 denote the system of orthonormal polynomials
with respect to the weight function ρ2k+1(x)w1(x), and let {qn} be the system of
orthonormal polynomials with respect to the weight function w2(x).

Proposition 2.6.1 Define polynomials Pn
k of two variables by

Pn
k (x,y) = pn−k,k(x)[ρ(x)]kqk

(
y

ρ(x)

)
, 0≤ k ≤ n. (2.6.1)

Then {Pn
k : 0 ≤ k ≤ n} is a mutually orthogonal basis of V d

n (W ) for the weight
function

W (x,y) = w1(x)w2(ρ−1(x)y), (x,y) ∈ R, (2.6.2)

where the domain R is defined by

R = {(x,y) : a < x < b, dρ(x) < y < cρ(x)}. (2.6.3)

Proof That the Pn
k are polynomials of degree n is evident in case 1; in case 2

it follows from the fact that qk has the same parity as k, since w2 is assumed to
be even. The orthogonality of Pn

k can be verified by a change of variables in the
integral∫ ∫

R

Pn
k (x,y)Pm

j (x,y)W (x,y)dx dy

=
∫ b

a
pn−k,k(x)pm− j, j(x)ρk+ j+1(x)w1(x)dx

∫ d

c
qk(y)q j(y)w2(y)dy

= hk,nδn,mδk, j

for 0≤ j ≤ m and 0≤ k ≤ n.

Let us give several special cases that can be regarded as extensions of Jacobi
polynomials in two variables.

Jacobi polynomials on the square Let w1(x) = (1− x)α(1+ x)β and w2(x) =
(1− x)γ(1 + x)δ on [−1,1] and let ρ(x) = 1. Then the weight function (2.6.2)
becomes

W (x,y) = (1− x)α(1+ x)β (1− y)γ (1+ y)δ , α ,β ,γ,δ >−1,

on the domain [−1,1]2 and the orthogonal polynomials Pn
k in (2.6.1) are exactly

those in (2.2.3).

Jacobi polynomials on the disk Let w1(x) = w2(x) = (1− x2)μ−1/2 on [−1,1]
and let ρ(x) = (1− x2)1/2. Then the weight function (2.6.2) becomes
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Wμ(x,y) = (1− x2− y2)μ−1/2, μ >−1
2
,

on the domain B2 = {(x,y) : x2 + y2 ≤ 1}, and the orthogonal polynomials Pn
k in

(2.6.1) are exactly those in (2.3.1).

Jacobi polynomials on the triangle Let w1(x) = xα(1− x)β+γ and w2(x) =
xβ (1− x)γ , both defined on the interval (0,1), and ρ(x) = 1− x. Then the weight
function (2.6.2) becomes

Wα,β ,γ(x,y) = xαyβ (1− x− y)γ , α,β ,γ >−1,

on the triangle T 2 = {(x,y) : x ≥ 0,y ≥ 0,1− x− y ≥ 0}, and the orthogonal
polynomials Pn

k in (2.6.1) are exactly those in (2.4.2).

Orthogonal polynomials on a parabolic domain Let w1(x) = xa(1− x)b on
[0,1], w2(x) = (1− x2)a on [−1,1], and ρ(x) =

√
x. Then the weight function

(2.6.2) becomes

Wa,b(x,y) = (1− x)b(x− y2)a, y2 < x < 1, α,β >−1.

The domain R = {(x,y) : y2 < x < 1} is bounded by a straight line and a parabola.
The mutually orthogonal polynomials Pn

k in (2.6.1) are given by

Pn
k (x,y) = p(a,b+k+1/2)

n−k (2x−1)xk/2 p(b,b)
k (y/

√
x), n≥ k ≥ 0. (2.6.4)

The set of polynomials {Pk,n : 0 ≤ k ≤ n} is a mutually orthogonal basis of
V d

n (Wa,b).

2.6.2 Orthogonal polynomials for a radial weight

A weight function W is called radial if it is of the form W (x,y) = w(r), where
r =
√

x2 + y2. For such a weight function, an orthonormal basis can be given in
polar coordinates (x,y) = (r cosθ ,r sinθ ).

Proposition 2.6.2 Let p(k)
m denote the orthogonal polynomial of degree m with

respect to the weight function rk+1w(r) on [0,∞). Define

Pj,1(x,y) = p(2n−4 j)
2 j (r)rn−2 j cos(n−2 j)θ , 0≤ j ≤ n

2
,

Pj,2(x,y) = p(2n−4 j)
2 j (r)rn−2 j sin(n−2 j)θ , 0≤ j <

n
2
.

(2.6.5)

Then {Pj,1 : 0 ≤ j ≤ n/2}∪{Pj,2 : 0 ≤ j < n/2} is a mutually orthogonal basis
of V 2

n (W ) with W (x,y) = w(
√

x2 + y2).

The proof of this proposition follows the same line as that of Proposition 2.3.3
with an obvious modification. In the case of w(r) = (1− r2)μ−1/2, the basis
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(2.6.5) is, up to a normalization constant, that given in (2.3.5). Another exam-
ple gives the second orthogonal basis for the product Hermite weight function
W (x,y) = e−x2−y2

, for which an orthogonal basis is already given in (2.2.1).

Product Hermite weight w(r) = e−r2
The basis (2.6.5) is given by

Pj,1(x,y) = Ln−2 j
j (r2)r(n−2 j) cos(n−2 j)θ , 0≤ j ≤ n

2
,

Pj,2(x,y) = Ln−2 j
2 j (r2)r(n−2 j) sin(n−2 j)θ , 0≤ j <

n
2

(2.6.6)

in terms of the Laguerre polynomials of one variable.
Likewise, we call a weight function �1-radial if it is of the form W (x,y) =

w(s) with s = x + y. For such a weight function, a basis can be given in terms of
orthogonal polynomials of one variable.

Proposition 2.6.3 Let p(k)
m denote the orthogonal polynomial of degree m with

respect to the weight function sk+1w(s) on [0,∞). Define

Pn
k (x,y) = p(2k)

n−k(x + y)(x + y)kPk

(
2

x
x + y

−1

)
, 0≤ k ≤ n, (2.6.7)

where Pk is the Legendre polynomial of degree k. Then {Pn
k : 0 ≤ k ≤ n} is a

mutually orthogonal basis of V 2
n (W ) with W (x,y) = w(x+ y) on R2

+.

Proof It is evident that Pn
k is a polynomial of degree n in (x,y). To verify the

orthogonality we use the integral formula∫
R2

+

f (x,y)dxdy =
∫ ∞

0

(∫ 1

0
f (st,s(1− t))dt

)
sds

and the orthogonality of p(2k)
m and Pk.

One example of proposition 2.6.3 is given by the Jacobi weight (2.4.1) on the
triangle for α = β = 0, for which w(r) = (1− r)γ . Another example is given
by the product Laguerre weight function W (x,y) = e−x−y, for which a basis was
already given in (2.2.2).

Product Laguerre weight w(r) = e−r The basis (2.6.7) is given by

Pn
k (x,y) = L2k+1

n−k (x+ y)(x+ y)kPk

(
2

x
x+ y

−1

)
, 0≤ k ≤ n, (2.6.8)

in terms of the Laguerre polynomials and Legendre polynomials of one variable.

2.6.3 Orthogonal polynomials in complex variables

For a real-valued weight function W defined on Ω⊂R2, orthogonal polynomials
of two variables with respect to W can be given in complex variables z and z̄.
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For this purpose, we identify R2 with the complex plane C by setting z = x + iy
and regard Ω as a subset of C. We then consider polynomials in z and z̄ that are
orthogonal with respect to the inner product

〈 f ,g〉CW :=
∫
Ω

f (z, z̄)g(z, z̄)w(z)dxdy, (2.6.9)

where w(z) = W (x,y). Let V 2
n (W,C) denote the space of orthogonal polynomials

in z and z̄ with respect to the inner product (2.6.9). In this subsection we denote by
Pk,n(x,y) real orthogonal polynomials with respect to W and denote by Qk,n(z, z̄)
orthogonal polynomials in V 2

n (W,C).

Proposition 2.6.4 The space V 2
n (W,C) has a basis Qk,n that satisfies

Qk,n(z, z̄) = Qn−k,n(z, z̄), 0≤ k ≤ n. (2.6.10)

Proof Let {Pk,n(x,y) : 0 ≤ k ≤ n} be a basis of V 2
n (W ). We make the following

definitions:

Qk,n(z, z̄) :=
1√
2

[
Pk,n(x,y)− iPn−k,n(x,y)

]
, 0≤ k ≤

⌊n−1
2

⌋
,

Qk,n(z, z̄) :=
1√
2

[
Pn−k,n(x,y)+ iPk,n(x,y)

]
,

⌊n+1
2

⌋
< k ≤ n,

Qn/2,n(z, z̄) :=
1√
2

Pn/2,n(x,y) if n is even. (2.6.11)

If f and g are real-valued polynomials then 〈 f ,g〉CW = 〈 f ,g〉W . Hence, it is easy
to see that {Qk,n : 0 ≤ k ≤ n} is a basis of V 2

n (W,C) and that this basis satisfies
(2.6.10).

Conversely, given {Qk,n : 0≤ k≤ n} ∈ V 2
n (W,C) that satisfies (2.6.10), we can

define

Pk,n(x,y) :=
1√
2

[
Qk,n(z, z̄)+Qn−k,n(z, z̄)

]
, 0≤ k ≤ n

2
,

Pk,n(x,y) :=
1√
2i

[
Qk,n(z, z̄)−Qk−k,n(z, z̄)

]
,

n
2

< k ≤ n.

(2.6.12)

It is easy to see that this is exactly the converse of (2.6.11). The relation (2.6.10)
implies that the Pk,n are real polynomials. In fact Pk,n(x,y) = Re{Qk,n(z, z̄)} for
0 ≤ k ≤ n/2 and Pk,n(x,y) = Im{Qn

k(z, z̄)} for n/2 < k ≤ n. We summarize the
relation below.

Theorem 2.6.5 Let Pk,n and Qk,n be related by (2.6.11) or, equivalently, by
(2.6.12). Then:
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(i) {Qk,n : 0≤ k ≤ n} is a basis of V 2
n (W,C) that satisfies (2.6.10) if and only

if {Pk,n : 0≤ k ≤ n} is a basis of V 2
n (W );

(ii) {Qk,n : 0≤ k≤ n} is an orthonormal basis of V 2
n (W,C) if and only if {Pk,n :

0≤ k ≤ n} is an orthonormal basis of V 2
n (W ).

Expressing orthogonal polynomials in complex variables can often lead to for-
mulas that are more symmetric and easier to work with, as can be seen from the
following two examples.

Complex Hermite polynomials
These are orthogonal with respect to the product Hermite weight

wH(z) = e−x2−y2
= e−|z|

2
, z = x+ iy ∈ C.

We define these polynomials by

Hk, j(z, z̄) := (−1)k+ jezz̄
(
∂
∂ z

)k( ∂
∂ z̄

) j

e−zz̄, k, j = 0,1, . . . ,

where, with z = x+ iy,

∂
∂ z

=
1
2

(
∂
∂x
− i

∂
∂y

)
and

∂
∂ z̄

=
1
2

(
∂
∂x

+ i
∂
∂y

)
.

By induction, it is not difficult to see that the Hk, j satisfy an explicit formula:

Hk, j(z, z̄) = k! j!
min{k, j}
∑
ν=0

(−1)ν

ν!
z k−ν z̄ j−ν

(k−ν)!( j−ν)!
= z kz̄ j

2F0

(
−k,− j;

1
zz̄

)
from which it follows immediately that (2.6.10) holds, that is,

Hk, j(z, z̄) = Hj,k(z, z̄). (2.6.13)

Working with the above explicit formula by rewriting the summation in 2F0 in
reverse order, it is easy to deduce from (x) j−i = (−1)i(x) j/(1− j− x)i that Hk, j

can be written as a summation in 1F1, which leads to

Hk, j(z, z̄) = (−1) j j!zk− jLk− j
j (|z|2), k ≥ j, (2.6.14)

where Lαj is a Laguerre polynomial.

Proposition 2.6.6 The complex Hermite polynomials satisfy the following
properties:

(i)
∂
∂ z

Hk, j = z̄Hk, j−Hk, j+1,
∂
∂ z̄

Hk, j = zHk, j−Hk+1, j;

(ii) zHk, j = Hk+1, j + jHk, j−1, z̄Hk, j = Hk, j+1 + kHk−1, j;

(iii)
∫

C
Hk, j(z, z̄)Hm,l(z, z̄)wH(z)dxdy = j!k!δk,mδ j,l .
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Proof Part (i) follows from directly from the above definition of the polynomials.
Part (ii) follows from (2.6.14) and the identity Lαn (x) = Lα+1

n (x)−Lα+1
n−1 (x). The

orthogonal relation (iii) follows from writing the integral in polar coordinates and
applying the orthogonality of the Laguerre polynomials.

Disk polynomials
Let dσλ (z) := Wλ+1/2(x,y)dxdy and define

Pλ
k, j(z, z̄) =

j!
(λ +1) j

P(λ ,k− j)
j (2|z|2−1)zk− j, k > j, (2.6.15)

which is normalized by Pλ
k, j(1,1) = 1. For k ≤ j, we use

Pλ
k, j(z, z̄) = Pλ

j,k(z̄,z). (2.6.16)

Written in terms of hypergeometric functions, these polynomials take a more
symmetric form:

Pλ
k, j(z, z̄) =

(λ +1)k+ j

(λ +1)k(λ +1) j
zkz̄ j

2F1

( −k,− j
−λ − k− j

;
1
zz̄

)
, k, j ≥ 0.

To see this, write the summation in the 2F1 sum in reverse order and use (x) j−i =
(−1)i(x) j/(1− j− x)i, to get

Pλ
k, j(z, z̄) =

(k− j +1) j

(λ +1) j
(−1) j

2F1

(− j,k +λ +1
k− j +1

; |z|2
)

zk− j,

which is (2.6.15) by Proposition 1.4.14 and P(β ,α)
n (t) = (−1)nP(α ,β )

n (t).

Proposition 2.6.7 The disk polynomials satisfy the following properties:

(i) |Pλ
k, j(z, z̄)| ≤ 1 for |z| ≤ 1 and λ ≥ 0;

(ii) zPλ
k, j(z, z̄) =

λ + k +1
λ + k + j +1

Pλ
k+1, j(z, z̄)+

j
λ + k + j +1

Pλ
k, j−1(z, z̄)

with a similar relation for z̄Pλ
k, j(z) upon using (2.6.16);

(iii)
∫

D
Pλ

k, jP
λ
m,l dσλ (z) =

λ +1
λ + k + j +1

k! j!
(λ +1)k(λ +1) j

δk,mδ j,l .

Proof Part (i) follows on taking absolute values inside the 2F1 sum and using the

fact that |P(α ,β )
n (−1)| = (β + 1)n/n!; the condition λ ≥ 0 is used to ensure that

the coefficients in the 2F1 sum are positive. The recursive relation (ii) is proved
using the following formula for Jacobi polynomials:

(2n+α +β +1)P(α,β)
n (t) = (n+α +β +1)P(α ,β+1)

n (t)+(n+α)P(α ,β+1)
n−1 (t),
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which can be verified using the 2F1 expansion of Jacobi polynomials in Propo-
sition 1.4.14. Finally, the orthogonal relation (iii) is established using the polar
coordinates z = reiθ and the structure constant of Jacobi polynomials.

2.7 First Family of Koornwinder Polynomials
The Koornwinder polynomials are based on symmetric polynomials. Throughout
this section let w be a weight function defined on [−1,1]. For γ >−1, let us define
a weight function of two variables,

Bγ(x,y) := w(x)w(y)|x− y|2γ+1, (x,y) ∈ [−1,1]2. (2.7.1)

Since Bγ is evidently symmetric in x,y, we need only consider its restriction on
the triangular domain� defined by

� := {(x,y) :−1 < x < y < 1}.

Let Ω be the image of� under the mapping (x,y) �→ (u,v) defined by

u = x+ y, v = xy. (2.7.2)

This mapping is a bijection between� and Ω since the Jacobian of the change of
variables is dudv = |x− y|dxdy. The domain Ω is given by

Ω := {(u,v) : 1+u+ v > 0,1−u+ v > 0,u2 > 4v} (2.7.3)

and is depicted in Figure 2.1. Under the mapping (2.7.2), the weight function Bγ
becomes a weight function defined on the domain Ω by

Wγ (u,v) := w(x)w(y)(u2−4v)γ , (u,v) ∈Ω, (2.7.4)

where the variables (x,y) and (u,v) are related by (2.7.2).

�2 �1 1 2

�1.0

�0.5

0.5

1.0

Figure 2.1 Domains for Koornwinder orthogonal polynomials.
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Proposition 2.7.1 Let N = {(k,n) : 0 ≤ k ≤ n}. In N define an order ≺ as
follows: ( j,m) ≺ (k,n) if m < n or m = n and j ≤ k. Define monic polynomials

P(γ)
k,n under the order ≺,

P(γ)
k,n (u,v) = un−kvk + ∑

( j,m)≺(k,n)
a j,mum− jv j, (2.7.5)

that satisfy the orthogonality condition∫
Ω

P(γ)
k,n (u,v)um− jv jWγ (u,v)dudv = 0, ∀( j,m)≺ (k,n). (2.7.6)

Then these polynomials are uniquely determined and are mutually orthogonal
with respect to Wγ .

Proof It is easy to see that≺ is a total order, so that the monomials can be ordered
linearly with this order. Applying the Gram–Schmidt orthogonalization process

to the monomials so ordered, the uniqueness follows from the fact that P(γ)
k,n has

leading coefficient 1.

In the case γ = ± 1
2 , the orthogonal polynomials P(γ)

k,n can be given explic-
itly in terms of orthogonal polynomials of one variable. Let {pn}∞m=0 be the
sequence of monic orthogonal polynomials pn(x) = xn + lower-degree terms, with
respect to w.

Proposition 2.7.2 The polynomials P(γ)
k,n for γ =± 1

2 are given by

P(−1/2)
k,n (u,v) =

{
pn(x)pk(y)+ pn(y)pk(x), k < n,

pn(x)pn(y), k = n
(2.7.7)

and

P(1/2)
k,n (u,v) =

pn+1(x)pk(y)− pn+1(y)pk(x)
x− y

, (2.7.8)

where (u,v) are related to (x,y) by x = u+ v, y = uv.

Proof By the fundamental theorem of symmetric polynomials, each symmetric
polynomial in x,y can be written as a polynomial in the elementary symmetric
polynomials x+ y and xy. A quick computation shows that

xnyk + ynxk = un−kvk + lower-degree terms in (u,v),
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so that the right-hand sides of both (2.7.7) and (2.7.8) are of the form (2.7.5).
Furthermore, the change of variables (x,y) �→ (u,v) shows that∫

Ω
f (u,v)Wγ(u,v)dudv =

∫
�

f (x+ y,xy)Bγ (x,y)dxdy

=
1
2

∫
[−1,1]2

f (x + y,xy)Bγ(x,y)dxdy, (2.7.9)

where the second line follows since the integrand is a symmetric function of x
and y and where [−1,1]2 is the union of � and its image under (x,y) �→ (y,x).
Using (2.7.9), the orthogonality of P(−1/2)

k,n and P(1/2)
k,n in the sense of (2.7.6) can

be verified directly from the orthogonality of pn. The proof is then complete upon
using Proposition 2.7.1.

Of particular interest is the case when w is the Jacobi weight function w(x) =
(1− x)α(1+ x)β , for which the weight function Wγ becomes

Wα ,β ,γ(u,v) = (1−u+ v)α(1+u+ v)β (u2−4v)γ , (2.7.10)

where α,β ,γ >−1, α+γ+ 3
2 > 0 and β +γ+ 3

2 > 0; these conditions guarantee
that Wα ,β ,γ is integrable. The polynomials pn in (2.7.7) and (2.7.8) are replaced by

monic Jacobi polynomials P(α ,β )
n , and we denote the orthogonal polynomials P(γ)

k,n

in Proposition 2.7.1 by Pα ,β ,γ
k,n . This is the case originally studied by Koornwinder.

These polynomials are eigenfunctions of a second-order differential operator.

Proposition 2.7.3 Consider the differential operator

Lα,β ,γg =(−u2 +2v+2)guu +2u(1− v)guv +(u2−2v2−2v)gvv

+[−(α +β +2γ +3)u+2(β −α)]gu

+[−(β −α)u− (2α +2β +2γ +5)v− (2γ +1)]gv.

Then, for (k,n) ∈N ,

Lα,β ,γP
α ,β ,γ
k,n =−λα,β ,γ

k,n Pα,β ,γ
k,n , (2.7.11)

where λα,β ,γ
k,n := n(n+α +β +2γ +2)− k(k +α+β +1).

Proof A straightforward computation shows that, for 0≤ k ≤ n,

Lα ,β ,γun−kvk = λα ,β ,γ
k,n un−kvk + ∑

( j,m)≺(k,n)
b j,mum− jv j (2.7.12)

for some b j,m, which implies that Lα ,β ,γP
α,β ,γ
k,n is a polynomial of the same form

and degree. From the definition of Lα,β ,γ it is easy to verify directly that Lα,β ,γ is
self-adjoint in L2(Ω,Wα,β ,γ) so that, for ( j,m) ∈N with ( j,m)≺ (k,n),
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Ω

(
Lα ,β ,γP

α ,β ,γ
k,n

)
Pα ,β ,γ

j,m Wα,β ,γ dudv

=
∫
Ω

Pα ,β ,γ
k,n

(
Lα ,β ,γP

α,β ,γ
j,m

)
Wα ,β ,γ dudv = 0,

by (2.7.6). By the uniqueness referred to in Proposition 2.7.1, we conclude that
Lα ,β ,γP

α,β ,γ
k,n is a constant multiple of Pα ,β ,γ

k,n and that the constant is exactly λα,β ,γ
k,n ,

as can be seen from (2.7.12).

It should be noted that although Lα ,β ,γ is of the same type as the differen-

tial operator in Definition 2.5.1 it is not admissible, since the eigenvalues λα ,β ,γ
k,m

depend on both k and n.

2.8 A Related Family of Orthogonal Polynomials
We consider the family of weight functions defined by

Wα ,β ,γ(x,y) := |x− y|2α+1|x + y|2β+1(1− x2)γ(1− y2)γ (2.8.1)

for (x,y) ∈ [−1,1]2, where α,β ,γ >−1, α+ γ+ 3
2 > 0 and β + γ+ 3

2 > 0. These
weight functions are related to the Wα,β ,γ defined in (2.7.10). Indeed, let Ω in
(2.7.3) be the domain of Wα,β ,γ and define Ω∗ by

Ω∗ := {(x,y) :−1 <−y < x < y < 1},
which is a quadrant of [−1,1]2. We have the following relation:

Proposition 2.8.1 The mapping (x,y) �→ (2xy,x2 + y2− 1) is a bijection from
Ω∗ onto Ω, and

Wα,β ,γ(x,y) = 4γ |x2− y2|Wα,β ,γ(2xy,x2 + y2−1) (2.8.2)

for (x,y) ∈ [−1,1]2. Further,

4γ
∫
Ω

f (u,v)Wα ,β ,γ(u,v)dudv

=
∫

[−1,1]2
f (2xy,x2 + y2−1)Wα ,β ,γ(x,y)dxdy. (2.8.3)

Proof For (x,y) ∈ [−1,1]2, let us write x = cosθ and y = cosφ , 0 ≤ θ ,φ ≤ π .
Then it is easy to see that

2xy = cos(θ −φ )+cos(θ +φ), x2 + y2−1 = cos(θ −φ)cos(θ +φ ),

from which it follows readily that (2xy,x2 + y2 − 1) ∈ Ω. The identity (2.8.2)
follows from a straightforward verification. For the change of variable u = 2xy
and v = x2 + y2−1, we have dudv = 4|x2− y2|dxdy, from which the integration
relation (2.8.3) follows.
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An orthogonal basis for W can be given accordingly. Let Pα ,β ,γ
k,n , 0 ≤ k ≤ n,

denote a basis of mutually orthogonal polynomials of degree n for Wα ,β ,γ .

Theorem 2.8.2 For n ∈ N0, a mutually orthogonal basis of V2n(Wα ,β ,γ) is
given by

1Qα,β ,γ
k,2n (x,y) :=Pα ,β ,γ

k,n (2xy,x2 + y2−1), 0≤ k ≤ n,

2Qα,β ,γ
k,2n (x,y) :=(x2− y2)Pα+1,β+1,γ

k,n−1 (2xy,x2 + y2−1), 0≤ k ≤ n−1

and a mutually orthogonal basis of V2n+1(Wα ,β ,γ) is given by

1Qα ,β ,γ
k,2n+1(x,y) := (x+ y)Pα ,β+1,γ

k,n (2xy,x2 + y2−1), 0≤ k ≤ n,

2Qα ,β ,γ
k,2n+1(x,y) := (x− y)Pα+1,β ,γ

k,n (2xy,x2 + y2−1), 0≤ k ≤ n.

In particular, when γ = ± 1
2 the basis can be given in terms of the Jacobi

polynomials of one variable, upon using (2.7.7) and (2.7.8).

Proof These polynomials evidently form a basis if they are orthogonal. Let us
denote by 〈·, ·〉Wα,β ,γ

and 〈·, ·〉Wα,β ,γ
the inner product in L2(Ω,Wα,β ,γ) and in

L2([−1,1]2,Wα ,β ,γ), respectively. By (2.8.3), for 0≤ j ≤ m and 0≤ k ≤ n,〈
1Qα ,β ,γ

k,2n , 1Qα,β ,γ
j,2m

〉
Wα ,β ,γ

= 〈Pα ,β ,γ
k,n , Pα ,β ,γ

j,m 〉Wα ,β ,γ
= 0

for ( j,2m)≺ (k,2n) and, furthermore,〈
1Qα,β ,γ

k,2n , 2Qα ,β ,γ
j,2m

〉
Wα,β ,γ

=
∫

[−1,1]2
(x2− y2)Pα ,β ,γ

k,n (2xy,x2 + y2−1)

×Pα+1,β+1,γ
k−1,n (2xy,x2 + y2−1)Wα ,β ,γ(x,y)dxdy.

The right-hand side of the above equation changes sign under the change

of variables (x,y) �→ (y,x), which shows that
〈

1Qα ,β ,γ
k,2n , 2Qα,β ,γ

j,2m

〉
Wα,β ,γ

= 0.

Moreover, since (x2 − y2)2Wα,β ,γ(x,y)dx dy is equal to a constant multiple of
Wα+1,β+1,γ(u,v)dudv, we see that〈

2Qα ,β ,γ
k,2n , 2Qα ,β ,γ

j,2m

〉
Wα,β ,γ

=
〈

Pα+1,β+1,γ
k,n−1 , Pα+1,β+1,γ

j,m−1

〉
Wα+1,β+1,γ

= 0

for (k,2n) �= ( j,2m). Furthermore, setting F = P(γ)
k,n P(γ),0,1

k,n , we obtain〈
1Qα ,β ,γ

k,2n , 1Qα,β ,γ
j,2m+1

〉
Wα ,β ,γ

=
∫

[−1,1]2
(x+ y)Pα ,β ,γ

k,n (2xy,x2 + y2−1)

×Pα ,β+1,γ
k,n (2xy,x2 + y2−1)Wα ,β ,γ(x,y)dxdy,
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which is equal to zero since the right-hand side changes sign under (x,y) �→
(−x,−y). The same proof shows also that

〈
1Qα,β ,γ

k,2n , 2Qα ,β ,γ
j,2m+1

〉
Wα,β ,γ

= 0.

Together, these facts prove the orthogonality of 1Qα ,β ,γ
k,2n and 2Qα,β ,γ

k,2n .

Since (x− y)(x + y) = x2 − y2 changes sign under (x,y) �→ (y,x), the same

consideration shows that
〈

1Qα ,β ,γ
k,2n+1, 2Qα,β ,γ

j,2m+1

〉
Wα ,β ,γ

= 0. Finally,〈
1Qα,β ,γ

k,2n+1, 1Qα ,β ,γ
j,2m+1

〉
Wα,β ,γ

=
〈

Pα ,β+1,γ
k,n , Pα ,β+1,γ

j,m

〉
Wα,β ,γ+1

= 0,〈
2Qα,β ,γ

k,2n+1, 2Qα ,β ,γ
j,2m+1

〉
Wα,β ,γ

=
〈

Pα+1,β ,γ
k,n , Pα+1,β ,γ

j,m

〉
Wα+1,β ,γ

= 0

for (k,n) �= ( j,m), proving the orthogonality of iQ
α ,β ,γ
k,2n+1, i = 1,2.

The structure of the basis in Theorem 2.8.2 can also be extended to the more
general weight function Wγ(x,y) = |x2− y2|Wγ (2xy,x2 + y2− 1), with Wγ as in
(2.7.4).

2.9 Second Family of Koornwinder Polynomials
The second family of Koornwinder polynomials is based on orthogonal expo-
nentials over a regular hexagonal domain. It is convenient to use homogeneous
coordinates in

R3
H := {t = (t1,t2,t3) ∈R3 : t1 + t2 + t3 = 0},

in which the hexagonal domain becomes

Ω := {t ∈R3
H :−1≤ t1,t2,t3 ≤ 1},

as seen in Figure 2.2. In this section we adopt the convention of using bold face
letters, such as t and k, to denote homogeneous coordinates. For t ∈ R3

H and
k ∈ R3

H ∩Z3, define the exponential function

φk(t) := e2π ik·t/3 = e2πi(k1t1+k2t2+k3t3)/3.

(–1,1,0)

(–1,0,1) (1,0,–1)

(0,1,–1)

(0,–1,1) (1,–1,0)

O

Figure 2.2 A hexagonal domain in homogeneous coordinates.
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Proposition 2.9.1 For k, j ∈ R3
H ∩Z3,

1
3

∫
Ω
φk(t)φj(t)dt = δk,j.

Proof Using homogeneous coordinates, it is easy to see that∫
Ω

f (t)dt =
∫ 1

0
dt1

∫ 0

−1
f (t)dt2 +

∫ 1

0
dt2

∫ 0

−1
f (t)dt3 +

∫ 1

0
dt3

∫ 0

−1
f (t)dt1,

from which the orthogonality can be easily verified using the homogeneity of t,
k and j.

Evidently the hexagon (see Figure 2.2) is invariant under the reflection group
A2 generated by the reflections in planes through the edges of the shaded equilat-
eral triangle and perpendicular to its plane. In homogeneous coordinates the three
reflections σ1,σ2,σ3 are defined by

tσ1 :=−(t1,t3,t2), tσ2 :=−(t2,t1,t3), tσ3 :=−(t3,t2,t1).

Because of the relations σ3 = σ1σ2σ1 = σ2σ1σ2, the group G is given by

G = {1,σ1,σ2,σ3,σ1σ2,σ2σ1}.
For a function f in homogeneous coordinates, the action of the group G on f is
defined by σ f (t) = f (tσ), σ ∈ G . We define functions

TCk(t) := 1
6

[
φk1,k2,k3(t)+φk2,k3,k1(t)+φk3,k1,k2(t)

+φ−k1,−k3,−k2(t)+φ−k2,−k1,−k3(t)+φ−k3,−k2,−k1(t)
]
,

TSk(t) :=−1
6 i
[
φk1,k2,k3(t)+φk2,k3,k1(t)+φk3,k1,k2(t)

−φ−k1,−k3,−k2(t)−φ−k2,−k1,−k3(t)−φ−k3,−k2,−k1(t)
]
.

Then TCk is invariant under A2 and TSk is anti-invariant under A2; these
functions resemble the cosine and sine functions. Because of their invariance
properties, we can restrict them to one of the six congruent equilateral triangles
inside the hexagon. We will choose the shaded triangle in Figure 2.2:

� := {(t1, t2,t3) : t1 + t2 + t3 = 0,0≤ t1, t2,−t3 ≤ 1}. (2.9.1)

Since TCkσ (t) = TCk(tσ) = TCk(t) for σ ∈ A2 and t ∈ �, we can restrict the
index of TCk to the index set

Λ := {k ∈H : k1 ≥ 0,k2 ≥ 0,k3 ≤ 0}. (2.9.2)

A direct verification shows that TSk(t) = 0 whenever k has a zero component;
hence, TSk(t) is defined only for k ∈ Λ◦, where

Λ◦ := {k ∈H : k1 > 0,k2 > 0,k3 < 0},

the set of the interior points of Λ.
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Proposition 2.9.2 For k, j ∈ Λ,

2
∫
�

TCk(t)TCj(t)dt = δk,j

⎧⎪⎪⎨⎪⎪⎩
1, k = 0,
1
3 , k ∈ Λ\Λ◦, k �= 0,
1
6 , k ∈ Λ◦

(2.9.3)

and, for k, j ∈ Λ◦,
2
∫
�

TSk(t)TSj(t)dt = 1
6 δk,j. (2.9.4)

Proof If f g is invariant under A2 then

1
3

∫
Ω

f (t)g(t)dt = 2
∫
�

f (t)g(t)dt,

from which (2.9.3) and (2.9.4) follow from Proposition 2.9.1.

We can use these generalized sine and cosine functions to define analogues of
the Chebyshev polynomials of the first and the second kind. To see the polynomial
structure among the generalized trigonometric functions, we make a change of
variables. Denote

z := TC0,1,−1(t) = 1
3 [φ0,1,−1(t)+φ1,−1,0(t)+φ−1,0,1(t)]. (2.9.5)

Let z = x+ iy. The change of variables (t1,t2) �→ (x,y) has Jacobian∣∣∣∣ ∂ (x,y)
∂ (t1, t2)

∣∣∣∣= 16
27

π2 sinπt1 sinπt2 sinπ(t1 + t2) (2.9.6)

=
2

3
√

3
π
[−3(x2 + y2 +1)2 +8(x3−3xy2)+4

]1/2
,

and the region � is mapped onto the region �∗ bounded by −3(x2 + y2 +1)2 +
8(x3− 3xy2) + 4 = 0, which is called Steiner’s hypocycloid. This three-cusped
region is depicted in Figure 2.3.

Definition 2.9.3 Under the change of variables (2.9.5), define the generalized
Chebyshev polynomials

T m
k (z, z̄) : = TCk,m−k,−m(t), 0≤ k ≤m,

Um
k (z, z̄) : =

TSk+1,m−k+1,−m−2(t)
TS1,1,−2(t)

, 0≤ k ≤m.

Proposition 2.9.4 Let Pm
k denote either T m

k or Um
k . Then Pm

k is a polynomial of
total degree m in z and z̄. Moreover

Pm
m−k(z, z̄) = Pm

k (z, z̄), 0≤ k ≤ m, (2.9.7)

and the Pm
k satisfy the recursion relation

Pm+1
k (z, z̄) = 3zPm

k (z, z̄)−Pm
k+1(z, z̄)−Pm−1

k−1 (z, z̄), (2.9.8)
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Figure 2.3 The domain for the Koornwinder orthogonal polynomials of the second type.

for 0≤ k ≤ m and m≥ 1, where we use

T m
−1(z, z̄) = T m+1

1 (z, z̄), T m
m+1(z, z̄) = T m+1

m (z, z̄),

Um
−1(z, z̄) = 0, Um−1

m (z, z̄) = 0.

In particular, we have

T 0
0 (z, z̄) = 1, T 1

0 (z, z̄) = z, T 1
1 (z, z̄) = z̄,

U0
0 (z, z̄) = 1, U1

0 (z, z̄) = 3z, U1
1 (z, z̄) = 3z̄.

Proof Both (2.9.7) and (2.9.8) follow from a straightforward computation.
Together they determine all Pm

k recursively, which shows that both T m
k and Um

k
are polynomials of degree m in z and z̄.

The polynomials T m
k and Um

k are analogues of the Chebyshev polynomials of
the first and the second kind. Furthermore, each family inherits an orthogonal
relation from the generalized trigonometric functions, so that they are orthogonal
polynomials of two variables.

Proposition 2.9.5 Let wα(x,y) =
∣∣∣ ∂ (x,y)
∂(t1,t2)

∣∣∣2α as given in (2.9.6). Define

〈 f ,g〉wα
= cα

∫
Δ∗

f (x,y)g(x,y)wα(x,y)dxdy,
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where cα is a normalization constant; cα := 1/
∫
Δ wα(x,y)dxdy. Then

〈T m
k ,T m

j 〉w−1/2
= δk, j

⎧⎪⎪⎨⎪⎪⎩
1, m = k = 0,
1
3 , k = 0 or k = m, m > 0,
1
6 , 1≤ k ≤ m−1,m > 0

and

〈Um
k ,Um

j 〉w1/2
= 1

6δk, j, 0≤ j,k ≤m.

In particular, {T m
k : 0 ≤ k ≤ m} and {Um

k : 0 ≤ k ≤ m} are mutually orthogonal
bases of V 2

m (w−1/2) and V 2
m (w1/2), respectively.

Proof The change of variables (2.9.5) implies immediately that

2
∫
Δ

f (t)dt = c−1/2

∫
Δ∗

f (x,y)w−1/2(x,y)dxdy.

As a result, the orthogonality of the T m
k follows from that of TCj in Proposi-

tion 2.9.2. Further, using

TS1,1,−2(t) = 4
3 sinπt1 sinπt2 sinπt3

it is easily seen that the orthogonality of Um
k follows from that of TSj.

By taking the real and complex parts of T m
k or Um

k and using the relation (2.9.7),
we can also obtain a real orthogonal basis for V 2

m .

2.10 Notes
The book by Appell and de Fériet [1926] contains several examples of orthog-
onal polynomials in two variables. Many examples up to 1950 can be found in
the collection Erdélyi, Magnus, Oberhettinger and Tricomi [1953]. An influential
survey is that due to Koornwinder [1975]. For the general properties of orthogonal
polynomials in two variables, see the notes in Chapter 4.

Section 2.3 The disk is a special case (d = 2) of the unit ball in Rd . Con-
sequently, some further properties of orthogonal polynomials on the disk can be
found in Chapter 4, including a compact formula for the reproducing kernel.

The first orthonormal basis goes back as far as Hermite and was studied in
Appell and de Fériet [1926]. Biorthogonal polynomials were considered in detail
in Appell and de Fériet [1926]; see also Erdélyi et al. [1953]. The basis (2.3.8)
was first discovered in Logan and Shepp [1975], and it plays an important role in
computer tomography; see Marr [1974] and Xu [2006a]. For further studies on
orthogonal polynomials on the disk, see Waldron [2008] and Wünsche [2005] as
well as the references on orthogonal polynomials on the unit ball Bd for d ≥ 2
given in Chapters 5 and 8.

Section 2.4 The triangle is a special case of the simplex in Rd . Some further
properties of orthogonal polynomials on the triangle can be found in Chapter 5,
including a compact formula for the reproducing kernel.
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The orthogonal polynomials (2.4.2) were first introduced in Proriol [1957]; the
case α = β = γ = 0 became known as Dubiner’s polynomials in the finite ele-
ments community after Dubiner [1991], which was apparently unaware that they
had appeared in the literature much earlier. The basis Un

k was studied in detail in
Appell and de Fériet [1926], and the biorthogonal basis appeared in Fackerell and
Littler [1974]. The change of basis matrix connecting the three bases in Proposi-
tion 2.4.2 has Racah–Wilson 4F3 polynomials as entries; see Dunkl [1984b].

Section 2.5 The classification of all admissible equations that have orthogo-
nal polynomials as eigenfunctions was studied first by Krall and Sheffer [1967],
as summarized in Section 2.5. The classification in Suetin [1999], based on
Engelis [1974], listed 15 cases; some of these are equivalent under the affine
transforms in Krall and Sheffer [1967] but are treated separately because of other
considerations. The orthogonality of cases (6) and (7) listed in this section is
determined in Krall and Sheffer [1967]; cases (8) and (9) are determined in
Berens, Schmid and Xu [1995a]. For further results, including solutions of the
cases (6)–(9) and further discussion on the impact of affine transformations, see
Littlejohn [1988], Lyskova [1991], Kim, Kwon and Lee [1998] and references
therein. Classical orthogonal polynomials in two variables were studied in the
context of hypergroups in Connett and Schwartz [1995].

Fernández, Pérez and Piñar [2011] considered examples of orthogonal poly-
nomials of two variables that satisfy fourth-order differential equations. The
product Jacobi polynomials, and other classical orthogonal polynomials of two
variables, satisfy a second-order matrix differential equation; see Fernández,
Pérez and Piñar [2005] and the references therein. They also satisfy a matrix
form of Rodrigues type formula, as seen in de Álvarez, Fernández, Pérez, and
Piñar [2009].

Section 2.6 The method in the first subsection first appeared in Larcher
[1959] and was used in Agahanov [1965] for certain special cases. It was pre-
sented systematically in Koornwinder [1975], where the two cases of ρ were
stated. For further examples of explicit bases constructed in various domains,
such as {(x,y) : x2 + y2 ≤ 1,−a ≤ y ≤ b}, 0 < a,b < 1, see Suetin [1999].
The product formula for polynomials in (2.6.4) was given in Koornwinder and
Schwartz [1997]; it generates a convolution structure for L2(Wα,β ) and was used
to study the convergence of orthogonal expansions in zu Castell, Filbir and Xu
[2009]. The complex Hermite polynomials were introduced by Itô [1952]. They
have been widely studied and used by many authors; see Ghanmi [2008, 2013],
Intissar and Intissar [2006], Ismail [2013] and Ismail and Simeonov [2013] for
some recent studies and their references. Disk polynomials were introduced in
Zernike and Brinkman [1935] to evaluate the point image of an aberrated optical
system taking into account the effects of diffraction (see the Wikipedia article on
optical aberration); our normalization follows Dunkl [1982]. They were used in
Folland [1975] to expand the Poisson–Szegő kernel for the ball in Cd . A Banach
algebra related to disk polynomials was studied in Kanjin [1985]. For further
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properties of disk polynomials, including the fact that for λ = d−2, d = 2,3, . . .,
they are spherical functions for U(d)/U(d− 1), see Ikeda [1967], Koornwinder
[1975], Vilenkin and Klimyk [1991a, b, c], and Wünsche [2005]. The structure
of complex orthogonal polynomials of two variables and its connection to and
contrast with its real counterpart are studied in Xu [2013].

Section 2.7 The polynomials Pα,β ,γ
k,n were studied in Koornwinder [1974a],

which contains another differential operator, of fourth order, that has the
orthogonal polynomials as eigenfunctions. See Koornwinder and Sprinkhuizen-
Kuyper [1978] and Sprinkhuizen-Kuyper [1976] for further results on these
polynomials, including an explicit formula for Pα ,β ,γ

k,n in terms of power series,
and Rodrigues type formulas; in Xu [2012] an explicit formula for the repro-
ducing kernel in the case of Wγ in (2.7.4) with γ = ± 1

2 was given in terms of
the reproducing kernels of the orthogonal polynomials of one variable. The case
W±1/2 for general w was considered first in Schmid and Xu [1994] in connection
with Gaussian cubature rules.

Section 2.8 The result in this section was developed recently in Xu [2012],
where further results, including a compact formula for the reproducing kernel and
convergence of orthogonal expansions, can be found.

Section 2.9 The generalized Chebyshev polynomials in this section were
first studied in Koornwinder [1974b]. We follow the approach in Li, Sun and
Xu [2008], which makes a connection with lattice tiling. In Koornwinder [1974b]
the orthogonal polynomials Pα

k,n for the weight function wα , α >− 5
6 , were shown

to be eigenfunctions of a differential operator of third order. The special case Pα
0,n

was also studied in Lidl [1975], which includes an interesting generating function.
For further results, see Shishkin [1997], Suetin [1999], Li, Sun and Xu [2008] and
Xu [2010].

Other orthogonal polynomials of two variables The Berstein–Szegő two-
variable weight function is of the form

W (x,y) =
4
π2

√
1− x2

√
1− y2

|h(z,y)|2 , x =
1
2

(
z+

1
z

)
.

Here, for a given integer m and −1≤ y≤ 1,

h(z,y) =
N

∑
i=0

hi(y)zi, z ∈C,

is nonzero for any |z| ≤ 1 in which h0(y) = 1 and, for 1≤ i≤m, hi(y) are polyno-
mials in y with real coefficients of degree at most m

2 −|m2 − i|. For m≤ 2, complete
orthogonal bases for V 2

n (W ) are constructed for all n in Delgado, Geronimo, Iliev
and Xu [2009].

Orthogonal polynomials with respect to the area measure on the regular
hexagon were studied in Dunkl [1987], where an algorithm for generating an
orthogonal basis was given.
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General Properties of Orthogonal Polynomials in
Several Variables

In this chapter we present the general properties of orthogonal polynomials in
several variables, that is, those properties that hold for orthogonal polynomials
associated with weight functions that satisfy some mild conditions but are not
any more specific than that.

This direction of study started with the classical work of Jackson [1936] on
orthogonal polynomials in two variables. It was realized even then that the proper
definition of orthogonality is in terms of polynomials of lower degree and that
orthogonal bases are not unique. Most subsequent early work was focused on
understanding the structure and theory in two variables. In Erdélyi et al. [1953],
which documents the work up to 1950, one finds little reference to the general
properties of orthogonal polynomials in more than two variables, other than (Vol.
II, p. 265): “There does not seem to be an extensive general theory of orthogonal
polynomials in several variables.” It was remarked there that the difficulty lies
in the fact that there is no unique orthogonal system, owing to the many pos-
sible orderings of multiple sequences. And it was also pointed out that since
a particular ordering usually destroys the symmetry, it is often preferable to
construct biorthogonal systems. Krall and Sheffer [1967] studied and classified
two-dimensional analogues of classical orthogonal polynomials as solutions of
partial differential equations of the second order. Their classification is based on
the following observation: while the orthogonal bases of V d

n , the set of orthogo-
nal polynomials of degree n defined in Section 3.1, are not unique, if the results
can be stated “in terms of V d

0 ,V d
1 , . . . ,V d

n , . . . rather than in terms of a particular
basis in each V d

n , a degree of uniqueness is restored.” This is the point of view
that we shall adopt in much of this chapter.

The advantage of this viewpoint is that the result obtained will be basis inde-
pendent, which allows us to derive a proper analogy of the three-term relation
for orthogonal polynomials in several variables, to define block Jacobi matrices
and study them as self-adjoint operators and to investigate common zeros of
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orthogonal polynomials in several variables, among other things. This approach is
also natural for studying the Fourier series of orthogonal polynomial expansions,
since it restores a certain uniqueness in the expansion in several variables.

3.1 Notation and Preliminaries
Throughout this book we will use the standard multi-index notation, as follows.
We denote by N0 the set of nonnegative integers. A multi-index is usually denoted
by α , α = (α1, . . . ,αd)∈Nd

0. Whenever α appears with a subscript, it denotes the
component of a multi-index. In this spirit we define, for example, α! =α1! · · ·αd!
and |α|= α1 + · · ·+αd , and if α,β ∈Nd

0 then we define δα ,β = δα1,β1
· · ·δαd ,βd

.

For α ∈ Nd
0 and x = (x1, . . . ,xd), a monomial in the variables x1, . . . ,xd is a

product

xα = xα1
1 · · ·xαd

d .

The number |α| is called the total degree of xα . A polynomial P in d variables is
a linear combination of monomials,

P(x) =∑
α

cαxα ,

where the coefficients cα lie in a field k, usually the rational numbers Q, the real
numbers R or the complex numbers C. The degree of a polynomial is defined as
the highest total degree of its monomials. The collection of all polynomials in x
with coefficients in a field k is denoted by k[x1, . . . ,xd ], which has the structure of
a commutative ring. We will use the abbreviation Πd to denote k[x1, . . . ,xd ]. We
also denote the space of polynomials of degree at most n by Πd

n . When d = 1, we
will drop the superscript and write Π and Πn instead.

A polynomial is called homogeneous if all the monomials appearing in it have
the same total degree. Denote the space of homogeneous polynomials of degree
n in d variables by Pd

n , that is,

Pd
n =
{

P : P(x) = ∑
|α |=n

cαxα
}

.

Every polynomial in Πd can be written as a linear combination of homogeneous
polynomials; for P ∈Πd

n ,

P(x) =
n

∑
k=0

∑
|α |=k

cαxα .

Denote by rd
n the dimension of Pd

n . Evidently {xα : |α| = n} is a basis of Pd
n ;

hence, rd
n = #{α ∈ Nd

0 : |α|= n}. It is easy to see that
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1
(1− t)d =

d

∏
i=1

∞

∑
αi=0

tαi =
∞

∑
n=0

(
∑
|α |=n

1

)
tn =

∞

∑
n=0

rd
ntn.

Therefore, recalling an elementary infinite series

1
(1− t)d =

∞

∑
n=0

(d)n

n!
tn =

∞

∑
n=0

(
n+d−1

n

)
tn,

and comparing the coefficients of tn in the two series, we conclude that

rd
n = dimPd

n =
(

n+d−1
n

)
.

Since the cardinalities of the sets {α ∈ Nd
0 : |α| ≤ n} and {α ∈ Nd+1

0 : |α| = n}
are the same, as each α in the first set becomes an element of the second set upon
adding αd+1 = n−|α| and as this is a one-to-one correspondence, it follows that

dimΠd
n =
(

n+d
n

)
.

One essential difference between polynomials in one variable and polynomials
in several variables is the lack of an obvious natural order in the latter. The natural
order for monomials of one variable is the degree order, that is, we order mono-
mials in Π according to their degree, as 1,x,x2, . . . For polynomials in several
variables, there are many choices of well-defined total order. Two are described
below.

Lexicographic order We say that α �L β if the first nonzero entry in the
difference α−β = (α1−β1, . . . ,αd−βd) is positive.

Lexicographic order does not respect the total degree of the polynomials. For
example, α with α = (3,0,0) of degree 3 is ordered so that it lies in front of β
with β = (2,2,2) of degree 6, while γ with γ = (0,0,3) of degree 3 comes after
β . The following order does respect the polynomial degree.

Graded lexicographic order We say that α �glex β if |α|> |β | or if |α|= |β |
and the first nonzero entry in the difference α−β is positive.

In the case d = 2 we can write α = (n− k,k), and the lexicographic order
among {α : |α| = n} is the same as the order k = 0,1, . . . ,n. There are various
other orders for polynomials of several variables; some will be discussed in later
chapters.

Let 〈·, ·〉 be a bilinear form defined on Πd . Two polynomials P and Q are said to
be orthogonal to each other with respect to the bilinear form if 〈P,Q〉=0. A poly-
nomial P is called an orthogonal polynomial if it is orthogonal to all polynomials
of lower degree, that is, if

〈P,Q〉= 0, ∀Q ∈Πd with degQ < degP.
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If the bilinear form is given in terms of a weight function W ,

〈P,Q〉=
∫
Ω

P(x)Q(x)W (x)dx (3.1.1)

where Ω is a domain in Rd (this implies that Ω has a nonempty interior), we
say that the orthogonal polynomials are orthogonal with respect to the weight
function W .

For arbitrary bilinear forms there may or may not exist corresponding orthog-
onal polynomials. In the following we hypothesize their existence, and later we
will derive necessary and sufficient conditions on the bilinear forms or linear
functionals for the existence of such orthogonal polynomial systems.

Definition 3.1.1 Assume that orthogonal polynomials exist for a particular
bilinear form. We denote by V d

n the space of orthogonal polynomials of degree
exactly n, that is,

V d
n = {P ∈Πd

n : 〈P,Q〉= 0 ∀Q ∈Πd
n−1}. (3.1.2)

When the dimension of V d
n is the same as that of Pd

n , it is natural to use a
multi-index to index the elements of an orthogonal basis of V d

n . Thus, we shall
denote the elements of such a basis by Pα , |α| = n. We will sometimes use the
notation Pn

α , in which the superscript indicates the degree of the polynomial. For
orthogonal polynomials of two variables, instead of Pα with α = (k,n− k) the
more convenient notation Pk or Pn

k for 0≤ k ≤ n is often used, as in Chapter 2.

3.2 Moment Functionals and Orthogonal Polynomials
in Several Variables

We will use the standard multi-index notation as in the above section. Throughout
this section we write rn instead of rd

n whenever rd
n would appear as a subscript or

superscript.

3.2.1 Definition of orthogonal polynomials

A multi-sequence s : Nd
0 �→R is written in the form s = {sα}α∈Nd

0
. For each multi-

sequence s = {sα}α∈Nd
0
, let Ls be the linear functional defined on Πd by

Ls(xα) = sα , α ∈ Nd
0; (3.2.1)

call Ls the moment functional defined by the sequence s.
For convenience, we introduce a vector notation. Let the elements of the set

{α ∈ Nd
0 : |α|= n} be arranged as α(1),α(2), . . . ,α(rn) according to lexicograph-

ical order. For each n ∈ N0 let xn denote the column vector

xn = (xα)|α |=n = (xα
( j)

)rn
j=1.
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That is, xn is a vector whose elements are the monomials xα for |α|= n, arranged
in lexicographical order. Also define, for k, j ∈ N0 vectors of moments sk and
matrices of moments s{k}+{ j} by

sk = Ls(xk) and s{k}+{ j} = Ls(xk(x j)T). (3.2.2)

By definition s{k}+{ j} is a matrix of size rd
k × rd

j and its elements are Ls(xα+β )
for |α|= k and |β |= j. Finally, for each n ∈N0, the s{k}+{ j} are used as building
blocks to define a matrix

Mn,d = (s{k}+{ j})n
k, j=0 with Δn,d = det Mn,d. (3.2.3)

We call Mn,d a moment matrix; its elements are Ls(xα+β ) for |α | ≤ n and |β | ≤ n.
In the following we will write L for Ls whenever s is not explicit. If L is a

moment functional then L (PQ) is a bilinear form, so that we can define orthog-
onal polynomials with respect to L . In particular, P is an orthogonal polynomial
of degree n if L (PQ) = 0 for every polynomial of degree n− 1 or less. More
generally, we can put the monomials in the basis {xα : α ∈ Nd

0} of Πd in a linear
order and use Gram–Schmidt orthogonalization to generate a new basis whose
elements are mutually orthogonal with respect to L . However, since there is
no natural order for the set {α ∈ Nd

0 : |α| = n}, we may just as well consider
orthogonality only with respect to polynomials of different degree, that is, we
take polynomials of the same degree to be orthogonal to polynomials of lower
degree but not necessarily orthogonal among themselves. To make this precise,
let us introduce the following notation. If {Pn

α}|α |=n is a sequence of polynomials
in Πd

n , denote by Pn the (column) polynomial vector

Pn = (Pn
α)|α |=n = (Pn

α(1) · · · Pn
α(rn) )

T, (3.2.4)

where α(1), . . . ,α (rn) is the arrangement of elements in {α ∈Nd
0 : |α |= n} accord-

ing to lexicographical order. Sometimes we use the notation Pn to indicate the set
of polynomials {Pn

α}.

Definition 3.2.1 Let L be a moment functional. A sequence of polynomials
{Pn

α : |α|= n,n ∈ N0}, Pn
α ∈Πd

n , is said to be orthogonal with respect to L if

L (xmPT
n ) = 0, n > m, and L (xnPT

n ) = Sn, (3.2.5)

where Sn is an invertible matrix of size rd
n× rd

n (assuming for now that L permits
the existence of such Pn

α ).

We may also call Pn an orthogonal polynomial. We note that this definition
agrees with our usual notion of orthogonal polynomials since, by definition,

L (xmPT
n ) = 0 ⇐⇒ L (xβPn

α) = 0, |α|= n, |β |= m;
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thus (3.2.5) implies that the Pn
α are orthogonal to polynomials of lower degree.

Some immediate consequences of this definition are as follows.

Proposition 3.2.2 Let L be a moment functional and let Pn be the orthogonal
polynomial defined above. Then {P0, . . . ,Pn} forms a basis for Πd

n.

Proof Consider the sum aT
0 P0 + · · ·+aT

n Pn, where ai ∈Rri . Multiplying the sum
from the right by the row vector PT

k and applying L , it follows from the orthogo-
nality that aT

k L (PkP
T
k ) = 0 for 0≤ k≤ n, and this shows, by the orthogonality of

Pk to lower-degree polynomials, that aT
k ST

k = 0. Thus, ak = 0 since Sk is invertible.
Therefore {Pn

α}|α|≤n is linearly independent and forms a basis for Πd
n .

Using the vector notation, the orthogonal polynomial Pn can be written as

Pn = Gn,nxn +Gn,n−1xn−1 + · · ·+Gn,0x0, (3.2.6)

where Gn = Gn,n is called the leading coefficient of Pn and is a matrix of size
rd

n × rd
n .

Proposition 3.2.3 Let Pn be as in the previous proposition. Then the leading-
coefficient matrix Gn is invertible.

Proof The previous proposition implies that there exists a matrix G′n such that

xn = G′nPn +Qn−1,

where Qn−1 is a vector whose components belong to Πd
n−1. Comparing the

coefficients of xn gives G′nGn = I, which implies that Gn is invertible.

Proposition 3.2.4 Let Pn be as in the previous proposition. Then the matrix
Hn = L (PnPT

n ) is invertible.

Proof Since Hn = L (PnPT
n ) = GnL (xnPT

n ) = GnSn, it is invertible by Proposi-
tion 3.2.3.

Lemma 3.2.5 Let L be a moment functional and let Pn be an orthogonal
polynomial with respect to L . Then Pn is uniquely determined by the matrix Sn.

Proof Suppose, otherwise, that there exist Pn and P∗n both satisfying the orthog-
onality conditions of (3.2.5) with the same matrices Sn. Let Gn and G∗n denote
the leading-coefficient matrices of Pn and P∗n, respectively. By Proposition 3.2.2,
{P0, . . . ,Pn} forms a basis of Πd

n ; write the elements of P∗n in terms of this basis.
That is, there exist matrices Ck : rd

n × rd
k such that

P∗n = CnPn +Cn−1Pn−1 + · · ·+C0P0.
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Multiplying the above equation by PT
k and applying the moment functional

L , we conclude that CkL (PkP
T
k ) = 0, 0 ≤ k ≤ n − 1, by orthogonality.

It follows from Proposition 3.2.4 that Ck = 0 for 0 ≤ k ≤ n − 1; hence
P∗n = CnPn. Comparing the coefficients of xn leads to G∗n = CnGn. That is,
Cn = G∗nG−1

n and Pn = GnG∗−1
n P∗n, which implies by (3.2.5) that Sn = L (xnPT

n ) =
L (xnP∗Tn )(GnG∗−1

n )T = Sn(GnG∗−1
n )T. Therefore GnG∗−1

n = I and so Gn = G∗n
and Pn = P∗n.

Theorem 3.2.6 Let L be a moment functional. A system of orthogonal
polynomials in several variables exists if and only if

Δn,d �= 0, n ∈ N0.

Proof Using the monomial expression of Pn in (3.2.6) and the notation sk in
(3.2.2),

L (xkPT
n ) = L (xk(Gnxn +Gn,n−1xn−1 + · · ·+Gn,0x0)T)

= s{k}+{n}GT
n + s{k}+{n−1}GT

n,n−1 + · · ·+ s{k}+{0}GT
n,0.

From the definition of Mn,d in (3.2.3), it follows that the orthogonality condition
(3.2.5) is equivalent to the following linear system of equations:

Mn,d

⎡⎢⎣GT
n,0
...

GT
n,n

⎤⎥⎦=

⎡⎢⎢⎢⎣
0
...
0

ST
n

⎤⎥⎥⎥⎦ . (3.2.7)

If an orthogonal polynomial system exists then for each Sn there exists exactly
one Pn. Therefore, the system of equations (3.2.7) has a unique solution, which
implies that Mn,d is invertible; thus Δn,d �= 0.

However, if Δn,d �= 0 then, for each invertible matrix Sn, (3.2.7) has a unique
solution (G0,n · · · Gn,n)T. Let Pn = ∑Gk,nxk; then (3.2.7) is equivalent to
L (xkPT

n ) = 0, k < n, and L (xnPT
n ) = Sn.

Definition 3.2.7 A moment linear functional Ls is said to be positive definite if

Ls(p2) > 0 ∀p ∈Πd , p �= 0.

We also say that {sα} is positive definite when Ls is positive definite.

If p = ∑aαxα is a polynomial in Πd then Ls(p) = ∑aαsα . In terms of the
sequence s, the positive definiteness of Ls amounts to the requirement that

∑
α,β

aαaβ sα+β > 0,
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where α+β = (α1 +β1, . . . ,αd +βd), for every sequence a = {aα}α∈Nd
0

in which

aα = 0 for all but finitely many α . Hence it is evident that Ls is positive definite
if and only if for every tuple (β (1), . . . ,β (r)) of distinct multi-indices β ( j) ∈ Nd

0,
1≤ j ≤ r, the matrix (sβ (i)+β ( j) )i, j=1,...,r has a positive determinant.

Lemma 3.2.8 If Ls is positive definite then the determinant Δn,d > 0.

Proof Assume that Ls is positive definite. Let a be an eigenvector of the matrix
Mn,d corresponding to eigenvalue λ . Then, on the one hand, aTMn,da = λ‖a‖2.
On the other hand, aTMn,da = Ls(p2) > 0, where p(x) = ∑n

j=0 aT
j x j. It follows

that λ > 0. Since all the eigenvalues are positive, Δn,d = detMn,d > 0.

Corollary 3.2.9 If L is a positive definite moment functional then there exists
a system of orthogonal polynomials with respect to L .

Definition 3.2.10 Let L be a moment functional. A sequence of polynomials
{Pn

α : |α|= n,n ∈ N0}, Pn
α ∈Πd

n , is said to be orthonormal with respect to L if

L (Pn
αPm

β ) = δα ,β ;

in the vector notation, the above equations become

L (PmPT
n ) = 0, n �= m, and L (PnPT

n ) = Irn , (3.2.8)

where Ik denotes the identity matrix of size k× k.

Theorem 3.2.11 If L is a positive definite moment functional then there exists
an orthonormal basis with respect to L .

Proof By the previous corollary, there is a basis of orthogonal polynomials Pn

with respect to L . Let Hn = L (PnPT
n ). For any nonzero vector a, P = aTPn is

a nonzero polynomial by Proposition 3.2.2. Hence aHnaT = L (P2) > 0, which

shows that Hn is a positive definite matrix. Let H1/2
n be the positive square root

of H (the unique positive definite matrix with the same eigenvectors as H and
Hn = H1/2

n H1/2
n ). Define Qn = (H1/2

n )−1Pn. Then

L (QnQT
n ) = (H1/2

n )−1L (PnPT
n )(H1/2

n )−1 = (H1/2
n )−1Hn(H

1/2
n )−1 = I,

which shows that the elements of Qn consist of an orthonormal basis with
respect to L .

3.2.2 Orthogonal polynomials and moment matrices

Let L be a positive definite moment functional. For each n ∈ N0, let Mn,d

be the moment matrix of L as defined in (3.2.3). Then Mn,d has a positive
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determinant by Lemma 3.2.8. For α ∈ Nd
0 we denote by sk,α the column vec-

tor sα ,k := L (xαxk); in particular, sα ,0 = sα . We will define monic orthogonal
polynomials in terms of the moment matrix. For α ∈ {β : |β | = n}, define the
polynomial Pn

α by

Pn
α(x) :=

1
Δn−1,d

det

⎡⎢⎢⎢⎢⎢⎢⎣
Mn−1,d

sα ,0

sα ,1
...

sα ,n−1

1 xT · · ·(xn−1)T xα

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.2.9)

It is evident that the Pn
α are of degree n. Furthermore, they are orthogonal.

Theorem 3.2.12 The polynomials Pn
α defined above are monomial orthogonal

polynomials.

Proof Expanding the determinant in (3.2.9) by its last row, we see that Pn
α is

a monomial polynomial, Pα(x) = xα + · · · . Moreover multiplying Pα(x) by xβ ,
|β | ≤ n− 1, and applying the linear functional L , the last row of the deter-
minant detL [xβMα(x)] coincides with one of the rows above; consequently,
L (xβPn

α) = 0.

For d = 2, this definition appeared in Jackson [1936]; see also Suetin [1999]. It
is also possible to define a sequence of orthonormal bases in terms of moments.
For this purpose let L be a positive definite moment functional and define a
different matrix M̃α(x) as follows.

The rows of the matrix Mn,d are indexed by {α : |α| = n}. Moreover, the row
indexed by α is

(sT
α ,0 sT

α ,1 · · · sT
α ,n) = L

(
xα xαxT · · · xα(xn)T) .

Let M̃α(x) be the matrix obtained from Mn,d by replacing the above row, with
index α , by

(
xα xαxT · · · xα(xn)T

)
. Define

P̃α(x) :=
1

Δn,d
det M̃α(x), |α|= n, α ∈Nd

0 . (3.2.10)

Multiplying the polynomial P̃n
α by xβ and applying the linear functional L , we

obtain immediately

L (xβ P̃n
α) =

{
0 if |β | ≤ n−1,

δα ,β if |β |= n.
(3.2.11)

Thus {P̃n
α}∞|α|=nn=0

is a system of orthogonal polynomials with respect to L .
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Let adj Mn,d denote the adjoint matrix of Mn,d ; that is, its elements are the
cofactors of Mn,d (see, for example, p. 20 of Horn and Johnson [1985]). A
theorem of linear algebra states that

M−1
n,d =

1
Δn,d

adj Mn,d .

Let M−1
n,d(|α| = n) denote the submatrix of M−1

n,d = (mα,β )|α |,|β |≤n which con-
sists of those mα ,β whose indices satisfy the condition |α| = |β | = n; in other
words, M−1

n,d (|α| = n) is the principal minor of M−1
n,d of size rd

n × rd
n at the lower

right corner. The elements of M−1
n,d(|α| = n) are the cofactors of the elements of

L (xn(xn)T) in Mn,d . Since Mn,d is positive definite, so is M−1
n,d ; it follows that

M−1
n,d(|α|= n) is also positive definite.

Theorem 3.2.13 Let L be a positive definite moment functional. Then the
polynomials

Pn = (M−1
n,d(|α |= n))−1/2 P̃n = Gnxn + · · · (3.2.12)

are orthonormal polynomials with respect to L , and Gn is positive definite.

Proof By the definition of M̃α , expand the determinant along the row
(1 xT · · · (xn)T); then

det M̃α(x) = ∑
|β |=n

Cα ,β xβ +Qn−1
α , Qn−1

α ∈Πd
n−1,

where Cα ,β is the cofactor of the element L (xαxβ ) in Mn,d; that is, adjMn,d =
(Cβ ,α)|α |,|β |≤n. Therefore, since adjMn,d = Δn,dM−1

n,d , we can write

P̃n =
1

Δn,d
Δn,dM−1

n,d(|α|= n)xn +Qn−1

= M−1
n,d(|α |= n)xn +Qn−1.

From (3.2.11) we have that L (xnP̃T
n ) = Irn and L (Qn−1P̃T

n ) = 0; hence,

L (P̃nP̃T
n ) = M−1

n,d(|α|= n).

It then follows immediately that L (PnP
T
n ) = I; thus Pn is orthonormal. Moreover,

Gn = [M−1
n,d(|α|= n)]1/2. (3.2.13)

Clearly, Gn is positive definite.

As is evident from the examples in the previous chapter, systems of orthonor-
mal polynomials with respect to L are not unique. In fact, if Pn is orthonormal
then, for any orthogonal matrix On of size rd

n× rd
n , the polynomial components in

P∗n = OnPn are also orthonormal. Moreover, it is easily seen that if the components
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of Pn and P∗n are each a collection of orthonormal polynomials then multiplication
by an orthogonal matrix connects Pn and P∗n.

Theorem 3.2.14 Let L be positive definite and let {Qn
α} be a sequence of

orthonormal polynomials with respect to L . Then there is an orthogonal matrix
On such that Qn = OnPn, where Pn are the orthonormal polynomials defined in
(3.2.12). Moreover, the leading-coefficient matrix G∗n of Qn satisfies G∗n = OnGn,
where Gn is the positive definite matrix in (3.2.13). Furthermore,

(det Gn)2 =
Δn−1,d

Δn,d
. (3.2.14)

Proof By Theorem 3.2.13, Qn = OnPn +On,n−1Pn−1 + · · ·+On,0P0. Multiplying
the equation by Pk, 0≤ k ≤ n−1, it follows that On,k = 0 for k = 0,1, . . . ,n−1.
Hence, Qn = OnPn. Since both Pn and Qn are orthonormal,

I = L (QnQT
n ) = OnL (PnPT

n )OT
n = OnOT

n ,

which shows that On is orthonormal. Comparing the leading coefficients of
Qn = OnPn leads to G∗n = OnGn. To verify equation (3.2.14), use (3.2.13) and
the formula for the determinants of minors (see, for example, p. 21 of Horn and
Johnson [1985]):

det M−1
n,d(|α|= n) =

det Mn,d(1≤ |α| ≤ n−1)
Δn,d

=
Δn−1,d

Δn,d
,

from which the desired result follows immediately.

Equation (3.2.14) can be viewed as an analogue of the relation k2
n = dn/dn+1

for orthogonal polynomials of one variable, given in Section 1.4.

3.2.3 The moment problem

Let M = M (Rd) denote the set of nonnegative Borel measures on Rd having
moments of all orders, that is, if μ ∈M then∫

Rd
|xα |dμ(x) < ∞ ∀α ∈Nd

0 .

For μ ∈M , as in the previous section its moments are defined by

sα =
∫

Rd
xα dμ, α ∈Nd

0 . (3.2.15)

However, if {sα} is a multi-sequence and there is a measure μ ∈ M such
that (3.2.15) holds then sα is called a moment sequence. Two measures in M

are called equivalent if they have the same moments. The measure μ is called
determinate if μ is unique in the equivalence class of measures. If a sequence
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is a moment sequence of a determinate measure, we say that the sequence is
determinate.

Evidently, if μ ∈M then the moment functional L defined by its moments is
exactly the linear functional

L (P) =
∫

Rd
P(x)dμ(x), P ∈Πd .

Examples include any linear functional expressible as an integral with respect
to a nonnegative weight function W , that is for which dμ(x) = W (x)dx and∫ |xα |W (x)dx < ∞ for all α . Whenever W is supported on a domain with
nonempty interior, it is positive definite in the sense of Definition 3.2.7, that is,
L (P2) > 0 whenever P �= 0.

The moment problem asks the question when is a sequence a moment
sequence and, if so, when is the measure determinate? Like many other prob-
lems involving polynomials in higher dimensions, the moment problem in several
variables is much more difficult than its one-variable counterpart. The problem
is still not completely solved. A theorem due to Haviland gives the following
characterization (see Haviland [1935]).

Theorem 3.2.15 A moment sequence s can be given in the form (3.2.15) if
and only if the moment functional Ls is nonnegative on the set of nonnegative
polynomials Πd

+ = {P ∈Πd : p(x)≥ 0,x ∈Rd}.

The linear functional L is called positive if L (P) ≥ 0 on Πd
+. In one vari-

able, L being positive is equivalent to its being nonnegative definite, that is, to
L (p2) ≥ 0, since every positive polynomial on R can be written as a sum of
the squares of two polynomials. In several variables, however, this is no longer
the case: there exist positive polynomials that cannot be written as a sum of the
squared polynomials. Thus, Hamburger’s famous theorem that a sequence is a
moment sequence if and only if it is positive definite does not hold in several
variables (see Fuglede [1983], Berg, Christensen and Ressel [1984], Berg [1987]
and Schmüdgen [1990]). There are several sufficient conditions for a sequence to
be determinate. For example, the following result of Nussbaum [1966] extends
a classical result of Carleman in one variable (see, for example, Shohat and
Tamarkin [1943]).

Theorem 3.2.16 If {sα} is a positive definite sequence and if Carleman’s
condition for a sequence {an},

∞

∑
n=0

(a2n)−1/2n = +∞, (3.2.16)

is satisfied by each of the marginal sequences s{n,0,...,0},s{0,n,...,0}, . . . ,s{0,0,...,n}
then {sα} is a determinate moment sequence.
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This theorem allows us to extend some results for the moment problem of one
variable to several variables. For example, it follows that the proof of Theorem 5.2
in Freud [1966] in one variable can be extended easily to the following theorem.

Theorem 3.2.17 If μ ∈M satisfies∫
Rd

ec‖x‖ dμ(x) < ∞ (3.2.17)

for some constant c > 0 then μ is a determinate measure.

Evidently, we can replace ‖x‖ by |x|1. In particular, if μ ∈M has compact sup-
port then it is determinate. If K is a domain defined in Rd then one can consider
the K-moment problem, which asks when a given sequence is a moment sequence
of a measure supported on K. There are various sufficient conditions and results
for special domains; see the references cited above.

A related question is the density of polynomials in L2(dμ). In one variable
it is known that if μ is determinate then polynomials in L2(dμ) will be dense.
This, however, is not true in several variables; see Berg and Thill [1991], where
it is proved that there exist rotation-invariant measures μ on Rd which are deter-
minate but for which the polynomials are not dense in L2(dμ). For the study of
the convergence of orthogonal polynomial expansions in several variables in later
chapters, the following theorem is useful.

Theorem 3.2.18 If μ ∈M satisfies the condition (3.2.17) for some constant
c > 0 then the space of polynomials Πd is dense in the space L2(dμ).

Proof The assumption implies that polynomials are elements of L2(dμ). Indeed,
for each α ∈ Nd

0 and for every c > 0 there exists a constant A such that |xα |2 <

Aec‖x‖ for all sufficiently large ‖x‖.
If polynomials were not dense in L2(dμ), there would be a function f , not

almost everywhere zero, in L2(dμ) such that f would be orthogonal to all
polynomials: ∫

Rd
f (x)xαdμ(x) = 0, α ∈ Nd

0 .

Let dν = f (x)dμ . Then, since (
∫ | f |dμ)2 ≤ ∫ | f |2 dμ

∫
dμ , we can take the

Fourier–Stieltjes transform of dν , which is, by definition,

ν̂(z) =
∫

Rd
e−i〈z,x〉dν(x), z ∈Cd .

Let y = Im z. By the Cauchy–Schwarz inequality, for ‖y‖ ≤ c/2 we have

|ν̂(z)|2 =
∣∣∣∫

Rd
e−i〈z,x〉dν

∣∣∣2 ≤ ∫
Rd

e2‖y‖‖x‖dμ
∫

Rd
| f (x)|2 dμ < ∞,
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since |〈y,x〉| ≤ ‖y‖‖x‖. Similarly,∣∣∣∂ ν̂(z)
∂ zi

∣∣∣2 ≤ ∫
Rd
|xi|2e2‖y‖‖x‖dμ

∫
Rd
| f (x)|2 dμ < ∞

for ‖y‖ ≤ c/4. Consequently ν̂(z) is analytic in the set {z ∈ Cd : | Imz| ≤ c/4}.
For small ‖z‖, expanding ν̂(z) in a power series and integrating by parts gives

ν̂(z) =
∞

∑
n=0

(−i)n

n!

∫
Rd

f (x)〈x,z〉n dμ = 0.

Therefore, by the uniqueness principle for analytic functions, ν̂(z) = 0 for
‖y‖ ≤ c/4. In particular ν̂(z) = 0 for z ∈ Rd . By the uniqueness of the Fourier–
Stieltjes transform, we conclude that f (x) = 0 almost everywhere, which is a
contradiction.

This proof is a straightforward extension of the one-variable proof on p. 31 of
Higgins [1977].

3.3 The Three-Term Relation
3.3.1 Definition and basic properties

The three-term relation plays an essential role in understanding the structure
of orthogonal polynomials in one variable, as indicated in Subsection 1.3.2.
For orthogonal polynomials in several variables, the three-term relation takes a
vector–matrix form. Let L be a moment functional. Throughout this subsection,
we use the notation P̃n for orthogonal polynomials with respect to L and the
notation Hn for the matrix

Hn = L (P̃nP̃T
n ).

When Hn = I, the identity matrix, P̃n becomes orthonormal and the notation Pn is
used to denote orthonormal polynomials. Note that Hn is invertible by Proposition
3.2.4.

Theorem 3.3.1 For n ≥ 0, there exist unique matrices An,i : rd
n × rd

n+1,
Bn,i : rd

n × rd
n and CT

n,i : rd
n × rd

n−1 such that

xiP̃n = An,iP̃n+1 +Bn,iP̃n +Cn,iP̃n−1, 1≤ i≤ d, (3.3.1)

where we define P−1 = 0 and C−1,i = 0; moreover,

An,iHn+1 = L (xiP̃nP̃T
n+1),

Bn,iHn = L (xiP̃nP̃T
n ),

An,iHn+1 = HnCT
n+1,i.

(3.3.2)
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Proof Since the components of xiP̃n are polynomials of degree n + 1, they can
be written as linear combinations of orthogonal polynomials of degree n +1 and
less by Proposition 3.2.2. Hence, in vector notation, there exist matrices Mk,i such
that

xiP̃n = Mn,iP̃n+1 +Mn−1,iP̃n +Mn−2,iP̃n−1 + · · · .
However, if we multiply the above equation by P̃T

k from the right and apply the
linear functional L then Mk−1,iHk = L (xiP̃nP̃T

k ). By the orthogonality of P̃k and
the fact that Hk is invertible, Mk,i = 0 for k≤ n−2. Hence, the three-term relation
holds and (3.3.2) follows.

For orthonormal polynomials Pn, Hn = I; the three-term relation takes a simpler
form:

Theorem 3.3.2 For n≥ 0, there exist matrices An,i : rd
n× rd

n+1 and Bn,i : rd
n ×rd

n

such that

xiPn = An,iPn+1 +Bn,iPn +AT
n−1,iPn−1, 1≤ i≤ d, (3.3.3)

where we define P−1 = 0 and A−1,i = 0. Moreover, each Bn,i is symmetric.

The coefficients of the three-term relation satisfy several properties. First,
recall that the leading-coefficient matrix of P̃n (or Pn) is denoted by Gn.
Comparing the highest-coefficient matrices on each side of (3.3.3), it follows that

An,iGn+1 = GnLn,i, 1≤ i≤ d, (3.3.4)

where the Ln,i are matrices of size rd
n × rd

n+1, defined by

Ln,ixn+1 = xixn, 1≤ i≤ d. (3.3.5)

For example, for d = 2,

Ln,1 =

⎡⎢⎢⎣
1 M 0

. . .
...

M 1 0

⎤⎥⎥⎦ and Ln,2 =

⎡⎢⎢⎣
0 1 M
...

. . .

0 M 1

⎤⎥⎥⎦ .

We now adopt the following notation: if M1, . . . ,Md are matrices of the same
size p×q then we define their joint matrix M by

M = (MT
1 · · · MT

d )T, M : d p×q (3.3.6)

(it is better to write M as a column matrix of M1, . . . ,Md). In particular, both Ln

and An are joint matrices of size drd
n × rd

n+1. The following proposition collects
the properties of Ln,i.
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Proposition 3.3.3 For each i, 1 ≤ i ≤ d, the matrix Ln,i satisfies the equation
Ln,iLT

n,i = I. Moreover,

rankLn,i = rd
n , 1≤ i≤ d, and rankLn = rd

n+1.

Proof By definition, each row of Ln,i contains exactly one element equal to 1; the
rest of its elements are 0. Hence Ln,iLT

n,i = I, which also implies that rankLn,i = rd
n .

Moreover, let

Nn = {α ∈Nd
0 : |α|= n} and Nn,i = {α ∈Nd

0 : |α |= n,αi �= 0},
and let a = (aα)α∈Nn be a vector of size rd

n+1×1; then Ln,i can be considered as
a mapping which projects a onto its restriction on Nn+1,i, that is, Ln,ia = a|Nn+1,i .

To prove that Ln has full rank, we show that if Lna = 0 then a = 0. By definition,
Lna = 0 implies that Ln,ia = 0, 1≤ i≤ d. Evidently

⋃
i Nn,i = Nn. Hence Ln,ia = 0

implies that a = 0.

Theorem 3.3.4 For n≥ 0 and 1≤ i≤ d,

rank An,i = rank Cn+1,i = rd
n . (3.3.7)

Moreover, for the joint matrix An of An,i and the joint matrix CT
n of CT

n,i,

rank An = rd
n+1 and rank CT

n+1 = rd
n+1. (3.3.8)

Proof From the relation (3.3.4) and the fact that Gn is invertible, rank An,i = rd
n

follows from Proposition 3.3.3. Since Hn is invertible, it follows from the third
equation of (3.3.2) that rankCn+1,i = rd

n . In order to prove (3.3.8) note that (3.3.4)
implies that AnGn+1 = diag{Gn, . . . ,Gn}Ln, since Gn being invertible implies that
the matrix diag{Gn, . . . ,Gn} is invertible. It follows from Proposition 3.3.3 that
rankAn = rd

n+1. Furthermore, the third equation of (3.3.2) implies that AnHn+1 =
diag{Hn, . . . ,Hn}CT

n+1, and Hn is invertible; consequently, rankCn+1 = rankAn.

Since the matrix An has full rank, it has a generalized inverse DT
n , which we

write as follows:

DT
n = (DT

n,1 · · · DT
n,i), rd

n+1×drd
n ,

where DT
n,i : rd

n+1× rd
n , that is,

DT
n An =

d

∑
i=1

DT
n,iAn,i = I. (3.3.9)

We note that the matrix Dn that satisfies (3.3.9) is not unique. In fact, let A
be a matrix of size s× t, s > t, with rank A = t, and let the singular-value
decomposition of A be given by
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A = W T
[Λ

0

]
U,

where Λ : t × t is an invertible diagonal matrix and W : s× s and U : t × t are
unitary matrices. Then the matrix DT defined by

DT = UT(Λ−1,Λ1)W,

where Λ1 : s× t can be any matrix, satisfies DTA = I. The matrix DT is known
as the generalized inverse of A. If Λ1 = 0 then DT is the unique Moore–Penrose
generalized inverse, which is often denoted by A+.

Using the generalized matrix DT
n , we can deduce a recursive formula for

orthogonal polynomials in several variables.

Theorem 3.3.5 Let DT
n be a generalized inverse of An. There exist matrices

En : rd
n+1× rd

n and Fn : rd
n+1× rd

n−1 such that

P̃n+1 =
d

∑
i=1

xiD
T
n,iP̃n +EnP̃n +FnP̃n−1, (3.3.10)

where
d

∑
i=1

DT
n,iBn,i =−En,

d

∑
i=1

DT
n,iC

T
n,i =−Fn.

Proof Multiplying the three-term relation (3.3.3) by DT
n,i and summing over 1 ≤

i≤ d, we find that the desired equality follows from (3.3.9).

Equation (3.3.10) is an analogue of the recursive formula for orthogonal poly-
nomials in one variable. However, unlike its one-variable counterpart, (3.3.10)
does not imply the three-term relation; that is, if we choose matrices An,i, Bn,i

and Cn,i, and use (3.3.10) to generate a sequence of polynomials, in general the
polynomials do not satisfy the three-term relation. We will discuss the condition
under which equivalence does hold in Section 3.5.

3.3.2 Favard’s theorem

Next we prove an analogy of Favard’s theorem which states roughly that any
sequence of polynomials mich satisfies a three-term relation (3.3.1) whose coef-
ficient matrices satisfy the rank conditions (3.3.7) and (3.3.8) is necessarily a
sequence of orthogonal polynomials. We need a definition.

Definition 3.3.6 A linear functional L defined on Πd is called quasi-definite if
there is a basis B of Πd such that, for any P,Q ∈ B,

L (PQ) = 0 if P �= Q and L (P2) �= 0.
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From the discussion in Section 3.2 it is clear that if L is positive definite
then it is quasi-definite. However, quasi-definiteness may not imply positive
definiteness.

Theorem 3.3.7 Let {Pn}∞n=0 = {Pn
α : |α| = n,n ∈ N0}, P0 = 1, be an arbitrary

sequence in Πd. Then the following statements are equivalent.

(i) There exists a linear functional L which defines a quasi-definite linear
functional on Πd and which makes {Pn}∞n=0 an orthogonal basis in Πd.

(ii) For n≥ 0, 1≤ i≤ d, there exist matrices An,i, Bn,i and Cn,i such that

(a) the polynomials Pn satisfy the three-term relation (3.3.1),
(b) the matrices in the relation satisfy the rank conditions (3.3.7) and

(3.3.8).

Proof That statement (i) implies statement (ii) is contained in Theorems 3.3.1
and 3.3.4. To prove the other direction, we first prove that the polynomial
sequence {Pn} forms a basis ofΠd . It suffices to prove that the leading coefficient,
Gn, of Pn is invertible.

The matrix diag{Gn, . . . ,Gn} is of size drd
n ×drd

n and has copies of the matrix
Gn as diagonal entries in the sense of block matrices. Since the polynomial Pn

satisfies the three-term relation, comparing the coefficient matrices of xn+1 on
each side of the relation leads to An,iGn+1 = GnLn,i, 1 ≤ i ≤ d, from which it
follows that AnGn+1 = diag{Gn, . . . ,Gn}Ln. We now proceed with induction in n
to prove that each Gn is invertible. That P0 = 1 implies G0 = 1. Suppose that Gn

has been proved to be invertible. Then diag{Gn, . . . ,Gn} is invertible and from
the relation rank Ln = rd

n+1 we have

rank AnGn+1 = rank diag{Gn, . . . ,Gn}Ln = rd
n+1.

Therefore, by (3.3.8) and the rank inequality of product matrices (see, for
example, p. 13 of Horn and Johnson [1985]),

rank Gn+1 ≥ rank AnGn+1 ≥ rank An + rank Gn+1− rd
n+1 = rank Gn+1.

Thus, it follows that rank Gn+1 = rank AnGn+1 = rd
n+1. Hence Gn+1 is invertible

and the induction is complete.
Since {Pn

k } is a basis of Πd , the linear functional L defined on Πd by

L (1) = 1, L (Pn) = 0, n≥ 1,

is well defined. We now use induction to prove that

L (PkP
T
j ) = 0, k �= j. (3.3.11)

Let n≥ 0 be an integer. Assume that (3.3.11) hold for every k, j such that 0≤ k≤
n and j > k. Since the proof of (3.3.10) used only the three-term relation and the



3.3 The Three-Term Relation 75

fact that rank An = rd
n+1, it follows from (iia) and (iib) that (3.3.10) holds for Pn

under these considerations. Therefore, for � > n+1,

L (Pn+1P
T
� ) = L

( d

∑
i=1

xiDn,iPnPT
�

)
= L

( d

∑
i=1

Dn,iPn(A�,iP�+1 +B�,iP� +C�,iP�−1)T
)

= 0.

The induction is complete. Next we prove that Hn = L (PnPT
n ) is invertible.

Clearly, Hn is symmetric. From (iib) and (3.3.11), An,iHn+1 = HnCT
n+1,i; thus

AnHn+1 = diag{Hn, . . . ,Hn}CT
n+1. (3.3.12)

Since L (1) = 1, it follows that H0 = L (P0PT
0 ) = 1. Thus H0 is invertible.

Suppose that Hn is invertible. Then diag{Hn, . . . ,Hn} is invertible and, by
rankCn+1 = rd

n+1,

rank AnHn+1 = rank
(
diag{Hn, . . . ,Hn}CT

n+1

)
= rd

n+1.

However, rank An = rd
n+1 by (iia) and An : drd

n×rd
n+1, Hn+1 : rd

n+1×rd
n+1; we then

have

rank Hn+1 ≥ rank(AnHn+1)≥ rank An + rank Hn+1− rd
n+1 = rank Hn+1.

Therefore rank Hn+1 = rank AnHT
n+1 = rd

n+1, which implies that Hn+1 is invert-
ible. By induction, we have proved that Hn is invertible for each n≥ 0. Since Hn

is symmetric and invertible, there exist invertible matrices Sn and Λn such that
Hn = SnΛnST

n and Λn is diagonal. For Qn = S−1
n Pn it then follows that

L (QnQT
n ) = S−1

n L (PnPT
n )(S−1

n )T = S−1
n Hn(S−1

n )T = Λk.

This proves that L defines a quasi-definite linear functional in Πd ; L makes
{Pn}∞n=0 an orthogonal basis. The proof is complete.

If the polynomials in Theorem 3.3.7 satisfy (3.3.3) instead of (3.3.1) then they
will be orthogonal with respect to a positive definite linear functional instead of a
quasi-definite linear functional.

Theorem 3.3.8 Let {Pn}∞n=0 = {Pn
α : |α| = n,n ∈ N0}, P0 = 1, be an arbitrary

sequence in Πd. Then the following statements are equivalent.

(i) There exists a linear function L which defines a positive definite linear
functional on Πd and which makes {Pn}∞n=0 an orthonormal basis in Πd.

(ii) For n≥ 0, 1≤ i≤ d, there exist matrices An,i and Bn,i such that

(a) the polynomials Pn satisfy the three-term relation (3.3.3),
(b) the matrices in the three-term relation satisfy the rank conditions

(3.3.7) and (3.3.8).



76 General Properties of Orthogonal Polynomials in Several Variables

Proof As in the proof of the previous theorem, we only need to prove that state-
ment (ii) implies statement (i). By Theorem 3.3.7 there exists a quasi-definite
linear functional L which makes {Pn}∞n=0 orthogonal. We will prove that L is
positive definite. It is sufficient to show that the matrix Hn = L (PnP

T
n ) is the

identity matrix for every n ∈ N0. Indeed, since every nonzero polynomial P of
degree n can be written as P = aT

n Pn + · · ·+ aT
0 P0, it follows from Hn = I that

L (P2) = ‖an‖2 + · · ·+‖a0‖2 > 0. Since Cn+1 = AT
n , equation (3.3.12) becomes

AnHn+1 = diag{Hk, . . . ,Hk}An. Since P0 = 1 and L 1 = 1, H0 = 1. Suppose that
Hn is an identity matrix. Then diag{Hk, . . . ,Hk} is also an identity matrix. Thus,
it follows from the rank condition and the above equation that Hn+1 is an identity
matrix. The proof is completed by induction.

Both these theorems are extensions of Favard’s theorem for orthogonal poly-
nomials of one variable. Since the three-term relation and the rank condition
characterize the orthogonality, we should be able to extract the essential infor-
mation on orthogonal polynomials by studying the three-term relation; indeed,
this has been carried out systematically for orthogonal polynomials in one vari-
able. For several variables, the coefficients of (3.3.1) and (3.3.3) are matrices and
they are unique only up to matrix similarity (for (3.3.3), unitary similarity) since
an orthogonal basis is not unique and there is no natural order among orthogonal
polynomials of the same degree. Hence, it is much harder to extract information
from these coefficients.

3.3.3 Centrally symmetric integrals

In this subsection we show that a centrally symmetric linear functional can be
described by a property of the coefficient matrices of the three-term relation.

Let L be a positive definite linear functional. Of special interest are examples
of L expressible as integrals with respect to a nonnegative weight function with
finite moments, that is, L f =

∫
f (x)W (x)dx; in such cases we shall work with

the weight function W instead of the functional L .

Definition 3.3.9 Let Ω⊂Rd be the support set of the weight function W . Then
W is centrally symmetric if

x ∈Ω⇒−x ∈Ω and W (x) = W (−x).

We also call the linear functional L centrally symmetric if it satisfies

L (xα) = 0, α ∈Nd , |α| an odd integer.

It is easily seen that when L is expressible as an integral with respect to W ,
the two definitions are equivalent. As examples we mention the rotation invari-
ant weight function (1−‖x‖2)μ−1/2 on the unit ball Bd and the product weight
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function ∏d
i=1(1−xi)ai(1+xi)bi on the cube [−1,1]d , which is centrally symmet-

ric only if ai = bi. Weight functions on the simplex are not centrally symmetric
since the simplex is not symmetric with respect to the origin.

A centrally symmetric L has a relatively simple structure which allows us to
gain information about the structure of orthogonal polynomials. The following
theorem connects the central symmetry of L to the coefficient matrices in the
three-term relation.

Theorem 3.3.10 Let L be a positive definite linear functional, and let {Bn,i}
be the coefficient matrices in (3.3.3) for the orthogonal polynomials with respect
to L . Then L is centrally symmetric if and only if Bn,i = 0 for all n ∈ N0 and
1≤ i≤ d.

Proof First assume that L is centrally symmetric. From (3.3.2),

B0,i = L (xiP0PT
0 ) = L (xi) = 0.

Therefore from (3.3.10) P1 = ∑xiDT
0,i, which implies that the constant terms in

the components of P1 vanish. Suppose we have proved that Bk,i = 0 for 1 ≤ k ≤
n− 1. Then, by (3.3.10), since Ek = 0 for k = 0,1, . . . ,k− 1 we can show by
induction that the components of Pn are sums of monomials of even degree if n
is even and of odd degree if n is odd. By definition,

Bn,i = L (xiPnPT
n ) =

d

∑
j=0

d

∑
k=0

L
[
xiD

T
n−1, j(x jPn−1 +AT

n−2, jPn−2)

×(xkPn−1 +AT
n−2,kPn−2)TDn−1,k

]
.

Since the components of (x jPn−1 +AT
n−2, jPn−2)(xkPn−1 +AT

n−2,kPn−2)T are poly-
nomials that are sums of monomials of even degree, their multiples by xi are sums
of monomials of odd degree. Since L is centrally symmetric, Bn,i = 0.

However, assuming that Bn,i = 0 for all n ∈N0, the above proof shows that the
components of Pn are sums of monomials of even degree if n is even and sums
of monomials of odd degree if n is odd. From B0,i = L (xiP0PT

0 ) = L (xi) = 0 it
follows that L (xi) = 0. We now use induction to prove that

{Bk,i = 0 : 1≤ k ≤ n} ⇒ {L (xα1
1 · · ·xαd ) = 0 : α1 + · · ·+αd = 2n+1}.

Suppose that the claim has been proved for k ≤ n−1. By (3.3.3) and (3.3.2),

An−1, jBn,iA
T
n−1,k = L [xiAn−1, jPn(An−1,kPn)T]

= L [xi(x jPn−1−AT
n−2, jPn−2)(xkPn−1−AT

n−2,kPn−2)T]

= L (xix jxkPn−1PT
n−1)−L (xix jPn−1P

T
n−2)An−2,k

−AT
n−2, jL (xixkPn−1PT

n−2)+AT
n−2, jBn−2,iAn−2,k.
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Then L (xix jPn−1P
T
n−2) = 0 and L (xixkPn−1PT

n−2) = 0, since the elements of
these matrices are polynomials that are sums of odd powers. Therefore, from
Bn,i = 0 we conclude that L (xix jxkPn−1P

T
n−1) = 0. Multiplying the above matrix

from the left and the right by Al,p and AT
l,p, respectively, for 1 ≤ p ≤ d and l =

n− 2, . . . ,1 and using the three-term relation, we can repeat the above argument
and derive L (xα1

1 · · ·xαd
d ) = 0, α1 + · · ·+αd = 2n+1, in finitely many steps.

One important corollary of the above proof is the following result.

Theorem 3.3.11 Let L be a centrally symmetric linear functional. Then an
orthogonal polynomial of degree n with respect to L is a sum of monomials of
even degree if n is even and a sum of monomials of odd degree if n is odd.

For examples see various bases of the classical orthogonal polynomials on the
unit disk in Section 2.3.

If a linear functional L or a weight function W is not centrally symmetric
but becomes centrally symmetric under a nonsingular affine transformation then
the orthogonal polynomials should have a structure similar to that of the centrally
symmetric case. The coefficients Bn,i in the three-term relations, however, will not
be zero. It turns out that they satisfy a commutativity condition, which suggests
the following definition.

Definition 3.3.12 If the coefficient matrices Bn,i in the three-term relation
satisfy

Bn,iBn, j = Bn, jBn,i, 1≤ i, j ≤ d, n ∈N0, (3.3.13)

then the linear functional L (or the weight function W ) is called quasi-centrally-
symmetric.

Since the condition Bn,i = 0 implies (3.3.13), central symmetry implies quasi-
central symmetry.

Theorem 3.3.13 Let W be a weight function defined on Ω ⊂ Rd. Suppose that
W becomes centrally symmetric under the nonsingular linear transformation

u �→ x, x = Tu+a, detT > 0, x,u,a ∈Rd .

Then, W is quasi-centrally-symmetric.

Proof Let W ∗(u) = W (Tu + a) and Ω∗ = {u : x = Tu + a, x ∈ Ω}. Denote
by Pn the orthonormal polynomials associated to W ; then, making the change
of variables x �→ T x + a shows that the corresponding orthonormal polynomials
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for W ∗ are given by P∗n(u) =
√

detT Pn(Tu+a). Let Bn,i(W ) denote the matrices
associated with W . Then, by (3.3.2),

Bn,i(W ) =
∫
Ω

xiPn(x)PT
n (x)W (x)dx

=
∫
Ω∗

(
d

∑
j=1

ti ju j +ai

)
P∗n(u)P∗n

T(u)W ∗(u)du

=
d

∑
j=1

ti jBn, j(W ∗)+aiI.

By assumption W ∗ is centrally symmetric on Ω∗, which implies that Bn,i(W ∗)
= 0 by Theorem 3.3.10. Then Bn,i(W ) = aiI, which implies that Bn,i(W ) satisfies
(3.3.13). Hence W is quasi-centrally-symmetric.

How to characterize quasi-central symmetry through the properties of the linear
functional L or the weight function is not known.

3.3.4 Examples

To get a sense of what the three-term relations are like, we give several examples
before continuing our study. The examples chosen are the classical orthogonal
polynomials of two variables on the square, the triangle and the disk. For a more
concise notation, we will write orthonormal polynomials of two variables as Pn

k .
The polynomials Pn

k , 0 ≤ k ≤ n, constitute a basis of V 2
n , and the polynomial

vector Pn is given by Pn = (Pn
0 · · · Pn

n )T. The three-term relations are

xiPn = An,iPn+1 +Bn,iPn +AT
n−1,iPn−1, i = 1,2,

where the sizes of the matrices are An,i : (n + 1)× (n + 2) and Bn,i : (n + 1)×
(n+1). Closed formulae for the coefficient matrices are derived using (3.3.2) and
the explicit formulae for an orthonormal basis. We leave the verification to the
reader.

Product polynomials on the square
In the simplest case, that of a square, we can work with general product polyno-
mials. Let pn be the orthonormal polynomials with respect to a weight function w
on [−1,1]; they satisfy the three-term relation

xpn = an pn+1 +bn pn +an−1 pn−1, n≥ 0.

Let W be the product weight function defined by W (x,y) = w(x)w(y). One basis
of orthonormal polynomials is given by

Pn
k (x,y) = pn−k(x)pk(y), 0≤ k ≤ n.
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The coefficient matrices of the three-term relation are then of the following form:

An,1 =

⎡⎢⎢⎣
an M 0

. . .
...

M a0 0

⎤⎥⎥⎦ and An,2 =

⎡⎢⎢⎣
0 a0 M
...

. . .

0 M an

⎤⎥⎥⎦ ;

Bn,1 =

⎡⎢⎢⎣
bn M

. . .

M b0

⎤⎥⎥⎦ and Bn,2 =

⎡⎢⎢⎣
b0 M

. . .

M bn

⎤⎥⎥⎦ .

If w is centrally symmetric then bk = 0; hence Bn,i = 0.

Classical polynomials on the triangle
For the weight function

W (x,y) = xα−1/2yβ−1/2(1− x− y)γ−1/2,

with normalization constant given by (setting |κ|= α +β + γ)

wα ,β ,γ =
(∫

T 2
W (x,y)dxdy

)−1

=
Γ(|κ|+ 3

2 )
Γ(α + 1

2 )Γ(β + 1
2 )Γ(γ + 1

2 )
,

we consider the basis of orthonormal polynomials, see (2.4.2),

Pn
k (x,y) = (hk,n)−1P(2k+β+γ ,α−1/2)

n−k (2x−1)(1− x)kP(γ−1/2,β−1/2)
k

(
2y

1− x
−1

)
,

where

(hk,n)2 =
wα ,β ,γ

(2n+ |κ|+ 1
2 )(2k +β + γ)

× Γ(n+ k +β + γ +1)Γ(n− k +α+ 1
2)Γ(k +β + 1

2 )Γ(k + γ + 1
2 )

(n− k)!k!Γ(n+ k + |κ|+ 1
2 )Γ(k +β + γ)

.

The coefficient matrices in the three-term relations are as follows:

An,1 =

⎡⎢⎢⎢⎢⎣
a0,n M 0

a1,n 0
. . .

...

M an,n 0

⎤⎥⎥⎥⎥⎦ , Bn,1 =

⎡⎢⎢⎢⎢⎣
b0,n M

b1,n

. . .

M bn,n

⎤⎥⎥⎥⎥⎦ ,

where

ak,n =
hk,n+1

hk,n

(n− k +1)(n+ k + |κ|+ 1
2 )

(2n+ |κ|+ 1
2 )(2n+ |κ|+ 3

2 )
,

bk,n =
1
2
− (β + γ +2k)2− (α− 1

2 )2

2(2n+ |κ|− 1
2)(2n+ |κ|+ 3

2)
;
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An,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e0,n d0,n M 0

c1,n e1,n d1,n
...

. . .
. . .

. . .
...

cn−1,n dn−1,n 0

M cn,n en,n dn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

ck,n =
hk−1,n+1(n− k +1)(n− k +2)(k +β − 1

2 )(k + γ− 1
2 )

hk,n(2n+ |κ|+ 1
2 )(2n+ |κ|+ 3

2 )(2k +β + γ)(2k +β + γ−1)
,

ek,n =−
(

1+
(β − 1

2 )2− (γ− 1
2)2

(2k +β + γ +1)(2k +β + γ−1)

)an,k

2
,

dk,n =
hk+1,n+1(n+ k + |κ|+ 1

2)(n+ k + |κ|+ 3
2 )(k +1)(k +β + γ)

hk,n(2n+ |κ|+ 1
2 )(2n+ |κ|+ 3

2 )(2k +β + γ)(2k +β + γ +1)
;

and finally

Bn,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
f0,n g0,n M
g0,n f1,n g1,n

. . .
. . .

. . .

gn−2,n fn−1,n gn−1,n

M gn−1,n fn,n

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

fk,n =
(

1+
(β − 1

2 )2− (γ− 1
2 )2

(2k +β + γ +1)(2k +β + γ−1)

)1−bn,k

2
,

gk,n =−2
hk+1,n

hk,n

× (n− k +α− 1
2 )(n+ k + |κ|+ 1

2)(k +1)(k +β + γ)
(2n+ |κ|− 1

2 )(2n+ |κ|+ 3
2 )(2k +β + γ)(2k +β + γ +1)

.

Classical polynomials on the disk
With respect to the weight function W (x,y) = (1−x2−y2)μ−1/2, we consider the
orthonormal polynomials, see (2.3.1),

Pn
k (x,y) = (hk,n)−1Ck+μ+1/2

n−k (x)(1− x2)k/2Cμ
k

(
y√

1− x2

)
,

where

(hk,n)2 =
2π(2μ+1)

22k+4μ [Γ(μ)]2
Γ(n+ k +2μ+1)Γ(2μ+ k)

(2n+2μ+1)(k +μ)[Γ(k +μ+ 1
2 )]2(n− k)!k!

.
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If μ = 0, these formulae hold under the limit relation limμ→0 μ−1Cμ
n (x) =

(2/n)Tn(x). In this case Bn,i = 0, since the weight function is centrally symmet-
ric. The matrices An,1 and An,2 are of the same form as in the case of classical
orthogonal polynomials on the triangle, with ek,n = 0 and

ak,n =
hk,n+1

hk,n

n− k +1
2n+2μ +1

, dk,n =
hk+1,n+1

hk,n

(k +1)(2k +2μ+1)
2(k +μ)(2n+2μ+1)

,

ck,n =−hk−1,n+1

hk,n

(k +2μ−1)(n− k +1)(n− k +2)
2(k +μ)(2k +2μ−1)(2n+2μ+1)

.

3.4 Jacobi Matrices and Commuting Operators
For a family of orthogonal polynomials in one variable we can use the coeffi-
cients of the three-term relation to define a Jacobi matrix J, as in Subsection
1.3.2. This semi-infinite matrix defines an operator on the sequence space �2. It
is well known that the spectral measure of this operator is closely related to the
measure that defines the linear function L with respect to which the polynomials
are orthogonal.

For orthogonal polynomials in several variables, we can use the coefficient
matrices to define a family of tridiagonal matrices Ji, 1≤ i≤ d, as follows:

Ji =

⎡⎢⎢⎢⎢⎢⎣
B0,i A0,i M
AT

0,i B1,i A1,i

AT
1,i B2,i

. . .

M . . .
. . .

⎤⎥⎥⎥⎥⎥⎦ , 1≤ i≤ d. (3.4.1)

We call the Ji block Jacobi matrices. It should be pointed out that their entries
are coefficient matrices of the three-term relation, whose sizes increase to infinity
going down the main diagonal. As part of the definition of the block Jacobi matri-
ces, we require that the matrices An,i and Bn,i satisfy the rank conditions (3.3.7)
and (3.3.8). This requirement, however, implies that the coefficient matrices have
to satisfy several other conditions. Indeed, the three-term relation and the rank
conditions imply that the Pn are orthonormal, for which we have

Theorem 3.4.1 Let {Pn} be a sequence of orthonormal polynomials satis-
fying the three-term relation (3.3.3). Then the coefficient matrices satisfy the
commutativity conditions

Ak,iAk+1, j = Ak, jAk+1,i,

Ak,iBk+1, j +Bk,iAk, j = Bk, jAk,i +Ak, jBk+1,i,

AT
k−1,iAk−1, j +Bk,iBk, j +Ak,iA

T
k, j = AT

k−1, jAk−1,i +Bk, jBk,i +Ak, jA
T
k,i,

(3.4.2)

for i �= j, 1≤ i, j ≤ d, and k ≥ 0, where A−1,i = 0.
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Proof By Theorem 3.3.8 there is a linear functional L that makes Pk orthonor-
mal. Using the recurrence relation, there are two different ways of calculating
the matrices L (xix jPkP

T
k+2), L (xix jPkP

T
k ) and L (xix jPkP

T
k+1). These calcula-

tions lead to the desired matrix equations. For example, by the recurrence relation
(3.3.3),

L (xix jPkP
T
k+2) =L (xiPkx jP

T
k+2)

=L
[
(Ak,iPk+1 + · · ·)(· · ·+AT

k+1, jPk+1)T]= Ak,iAk+1, j

and

L (xix jPkP
T
k+2) = L (x jPkxiP

T
k+2) = Ak, jAk+1,i,

which leads to the first equation in (3.4.2).

The reason that the relations in (3.4.2) are called commutativity conditions will
become clear soon. We take these conditions as part of the definition of the block
Jacobi matrices Ji.

The matrices Ji can be considered as a family of linear operators which act
via matrix multiplication on �2. The domain of the Ji consists of all sequences
in �2 for which matrix multiplication yields sequences in �2. As we shall see
below, under proper conditions the matrices Ji form a family of commuting self-
adjoint operators and the spectral theorem implies that the linear functional L in
Theorem 3.3.7 has an integral representation. In order to proceed, we need some
notation from the spectral theory of self-adjoint operators in a Hilbert space (see,
for example, Riesz and Sz. Nagy [1955] or Rudin [1991]).

Let H be a separable Hilbert space and let 〈·, ·〉 denote the inner product in H.
Each self-adjoint operator T in H is associated with a spectral measure E on R

such that T =
∫

x dE(x); E is a projection-valued measure defined for the Borel
sets of R such that E(R) is the identity operator in H and E(B∩C) = E(B)∩E(C)
for Borel sets B,C⊆R. For any φ ∈H the mapping B→〈E(B)φ ,φ〉 is an ordinary
measure defined for the Borel sets B ⊆ R and denoted 〈Eφ ,φ〉. The operators in
the family {T1, . . . ,Td} in H commute, by definition, if their spectral measures
commute: that is, if Ei(B)E j(C) = Ei(C)Ej(B) for any i, j = 1, . . . ,d and any two
Borel sets B,C ⊆ R. If T1, . . . ,Td commute then E = E1⊗ ·· ·⊗Ed is a spectral
measure on Rd with values that are self-adjoint projections in H. In particular, E
is the unique measure such that

E(B1×·· ·×Bd) = E1(B1) · · ·Ed(Bd)

for any Borel sets B1, . . . ,Bd ⊆ R. The measure E is called the spectral measure
of the commuting family T1, . . . ,Td . A vector Φ0 ∈H is a cyclic vector in H with
respect to the commuting family of self-adjoint operators T1, . . . ,Td in H if the
linear manifold {P(T1, . . . ,Td)Φ0: P ∈ Πd} is dense in H. The spectral theorem
for T1, . . . ,Td states:
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Theorem 3.4.2 If {T1, . . . ,Td} is a commuting family of self-adjoint operators
with cyclic vector Φ0 then T1, . . . ,Td are unitarily equivalent to multiplication
operators X1, . . . ,Xd,

(Xi f )(x) = xi f (x), 1≤ i≤ d,

defined on L2(μ), where the measure μ is defined by μ(B) = 〈E(B)Φ0,Φ0〉 for
the Borel set B⊂Rd.

The unitary equivalence means that there exists a unitary mapping U : H→
L2(μ) such that UTiU−1 = Xi, 1 ≤ i ≤ d. If the operators in Theorem 3.4.2 are
bounded and their spectra are denoted by Si then the measure μ has support S⊂
S1×·· ·×Sd . Note that the measure μ satisfies

〈Φ0,P(J1, . . . ,Jd)Φ0〉=
∫

S
P(x) dμ(x).

We apply the spectral theorem to the block Jacobi operators J1, . . . ,Jd on
�2. Let {φα}α∈Nd

0
denote the canonical orthonormal basis for H = �2. Intro-

duce the notation Φk = (φα)|α |=k for the column vector whose elements are φα
ordered according to lexicographical order. Then each f ∈ H can be written as
f = ∑aT

kΦk. Let ‖ · ‖2 be the matrix norm induced by the Euclidean norm for
vectors. First we consider bounded operators.

Lemma 3.4.3 The operator Ji defined via (3.4.1) is bounded if and only if
supk≥0 ‖Ak,i‖2 < ∞ and supk≥0 ‖Bk,i‖2 < ∞.

Proof For any f ∈ H, f = ∑aT
kΦk, we have ‖ f ‖2

H = 〈 f , f 〉= ∑aT
k ak. It follows

from the definition of Ji that

Ji f =
∞

∑
k=0

aT
k (Ak,iΦk+1 +Bk,iΦk +AT

k−1,iΦk−1)

=
∞

∑
k=0

(aT
k−1Ak−1,i +aT

k Bk,i +aT
k+1AT

k,i)Φk,

where we define A−1,i = 0. Hence, if supk≥0 ‖Ak,i‖2 and supk≥0 ‖Bk,i‖2 are
bounded then it follows from

‖Ji f‖2
H =

∞

∑
k=0

‖aT
k−1Ak−1,i +aT

k Bk,i +aT
k+1AT

k,i‖2
2

≤ 3
(

2sup
k≥0
‖Ak,i‖2

2 + sup
k≥0
‖Bk,i‖2

2

)
‖ f‖2

H

that Ji is a bounded operator. Conversely, suppose that ‖Ak,i‖2, say, approaches
infinity for a subsequence of N0. Let ak be vectors such that ‖ak‖2 = 1 and
‖aT

k Ak,i‖2 = ‖Ak,i‖2. Then ‖akΦk‖= ‖ak‖2 = 1. Therefore, it follows from

‖Ji‖2
H ≥ ‖JiaT

kΦk‖2
H = ‖aT

k Ak,i‖2
2 +‖aT

k Bk,i‖2
2 +‖aT

k AT
k−1,i‖2

2 ≥ ‖Ak,i‖2
2

that Ji is unbounded.
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Lemma 3.4.4 Suppose that Ji, 1 ≤ i ≤ d, is bounded. Then J1, . . . ,Jd are self-
adjoint operators and they pairwise commute.

Proof Since Ji is bounded, it is self-adjoint if it is symmetric. That is, we need to
show that 〈Ji f ,g〉= 〈 f ,Jig〉. Let f =∑aT

kΦk and g =∑bT
kΦk. From the definition

of Ji,

〈Ji f ,g〉=∑aT
k−1(Ak−1,i +aT

k Bk,i +aT
k+1AT

k,i)bk

=∑bT
k (AT

k−1,iak−1 +Bk,iak +Ak,iak+1) = 〈 f ,Jig〉.
Also, since the Ji are bounded, to show that J1, . . . ,Jd commute we need only
verify that

JkJj f = JjJk f ∀ f ∈H.

A simple calculation shows that this is equivalent to the commutativity condi-
tions (3.4.2).

Lemma 3.4.5 Suppose that Ji, 1 ≤ i ≤ d, is bounded. Then Φ0 = φ0 ∈ H is a
cyclic vector with respect to J1, . . . ,Jd, and

Φn = Pn (J1 · · · Jd)Φ0 (3.4.3)

where Pn(x) is a polynomial vector as in (3.2.4).

Proof We need only prove (3.4.3), since it implies that Φ0 is a cyclic vector. The
proof uses induction. Clearly P0 = 1. From the definition of Ji,

JiΦ0 = A0,iΦ1 +B0,iΦ0, 1≤ i≤ d.

Multiplying by DT
0,i from (3.3.9) and summing over i = 1, . . . ,d, we get

Φ1 =
d

∑
i=1

DT
0,iJiΦ0−

d

∑
i=1

DT
0,iB0,iΦ0 =

( d

∑
i=1

DT
0,iJi−E0

)
Φ0,

where E0 = ∑D0,iB0,i. Therefore P1(x) = ∑d
i=1 xiDT

0,i−E0. Since DT
0,i is of size

rd
1 × rd

0 = d×1, P1 is of the desired form. Likewise, for k ≥ 1,

JiΦk = Ak,iΦk+1 +Bk,iΦk +AT
k−1,iΦk−1, 1≤ i≤ d,

which implies, by induction, that

Φk+1 =
d

∑
i=1

DT
k,iJiΦk−EkΦk−FkΦk−1

=

(
d

∑
i=1

DT
k,iJiPk(J)−EkPk(J)−FkPk−1(J)

)
Φ0,
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where J = (J1 · · · Jd)T and Ek and Fk are as in (3.3.10). Consequently

Pk+1(x) =
d

∑
i=1

xiD
T
k,iPk(x)−EkPk(x)−FkPk−1(x).

Clearly, every component of Pk+1 is a polynomial in Πd
k+1.

The last two lemmas show that we can apply the spectral theorem to the
bounded operators J1, . . . ,Jd . Hence, we can state the following.

Lemma 3.4.6 If Ji, 1 ≤ i ≤ d, is bounded then there exists a measure μ ∈M

with compact support such that J1, . . . ,Jd are unitarily equivalent to the multi-
plication operators X1, . . . ,Xd on L2(dμ). Moreover, the polynomials {Pn}∞n=0 in
Lemma 3.4.5 are orthonormal with respect to μ .

Proof Since μ(B) = 〈E(B)Φ0,Φ0〉 in Theorem 3.4.2,∫
Pn(x)PT

m(x)dμ(x) = 〈PnΦ0,P
T
mΦ0〉= 〈Φn,ΦT

m〉.

This proves that the Pn are orthonormal.

Unitary equivalence associates the cyclic vector Φ0 with the function P(x) = 1
and the orthonormal basis {Φn} in H with the orthonormal basis {Pn} in L2(dμ).

Theorem 3.4.7 Let {Pn}∞n=0, P0 = 1, be a sequence in Πd. Then the following
statements are equivalent.

(i) There exists a determinate measure μ ∈M with compact support in Rd

such that {Pn}∞n=0 is orthonormal with respect to μ .
(ii) The statement (ii) in Theorem 3.3.8 holds, together with

sup
k≥0
‖Ak,i‖2 < ∞ and sup

k≥0
‖Bk,i‖2 < ∞, 1≤ i≤ d. (3.4.4)

Proof On the one hand, if μ has compact support then the multiplication oper-
ators X1, . . . ,Xd in L2(dμ) are bounded. Since these operators have the Ji as
representation matrices with respect to the orthonormal basis Pn, (3.4.4) follows
from Lemma 3.4.3.

On the other hand, by Theorem 3.3.8 the three-term relation and the rank con-
ditions imply that the Pn are orthonormal; hence, we can define Jacobi matrices
Ji. The condition (3.4.4) shows that the operators Ji are bounded. The existence
of a measure with compact support follows from Lemma 3.4.6. That the measure
is determinate follows from Theorem 3.2.17.
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For block Jacobi matrices, the formal commutativity JiJj = JjJi is equivalent
to the conditions in (3.4.2), which is why we call them commutativity conditions.
For bounded self-adjoint operators, the commutation of the spectral measures is
equivalent to formal commutation. There are, however, examples of unbounded
self-adjoint operators with a common dense domain such that they formally com-
mute but their spectral measures do not commute (see Nelson [1959]). Theorem
3.4.7 shows that the measures with unbounded support set give rise to unbounded
Jacobi matrices. There is a sufficient condition for the commutation of opera-
tors in Nelson [1959], which turns out to be applicable to a family of unbounded
operators J1, . . . ,Jd that satisfy an additional condition. The result is as follows.

Theorem 3.4.8 Let {Pn}∞n=0, P0 = 1, be a sequence in Πd that satisfies the
three-term relation (3.3.3) and the rank conditions (3.3.7) and (3.3.8). If

∞

∑
k=0

1
‖Ak,i‖2

= ∞, 1≤ i≤ d, (3.4.5)

then there exists a determinate measure μ ∈M such that the Pn are orthonormal
with respect to μ .

The condition (3.4.5) is a well-known condition in one variable and implies the
classical Carleman condition (3.2.16) for the determinacy of a moment problem;
see p. 24 of Akhiezer [1965]. For the proof of this theorem and a discussion of
the condition (3.4.5), see Xu [1993b].

3.5 Further Properties of the Three-Term Relation
In this section we discuss further properties of the three-term relation. To
some extent, the properties discussed below indicate major differences between
three-term relations in one variable and in several variables. They indicate that
the three-term relation in several variables is not as strong as that in one variable;
for example, there is no analogue of orthogonal polynomials of the second kind.
These differences reflect the essential difficulties in higher dimensions.

3.5.1 Recurrence formula

For orthogonal polynomials in one variable, the three-term relation is equivalent
to a recursion relation. For any given sequence of {an} and {bn} we can use

pn+1 =
1
an

(x−bn)pn− an−1

an
pn−1, p0 = 1, p−1 = 0

to generate a sequence of polynomials, which by Favard’s theorem is a sequence
of orthogonal polynomials provided that an > 0.

In several variables, however, the recurrence formula (3.3.10) without
additional conditions is not equivalent to the three-term relation. As a
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consequence, although Theorem 3.3.8 is an extension of the classical Favard the-
orem for one variable, it is not as strong as that theorem. In fact, one direction of
the theorem says that if there is a sequence of polynomials Pn that satisfies the
three-term relation and the rank condition then it is orthonormal. But it does not
answer the question when and which Pn will satisfy such a relation. The condi-
tions under which the recurrence relation (3.3.10) is equivalent to the three-term
relation are discussed below.

Theorem 3.5.1 Let {Pk}∞k=0 be defined by (3.3.10). Then there is a linear func-
tional L that is positive definite and makes {Pk}∞k=0 an orthonormal basis for
Πd if and only if Bk,i are symmetric and Ak,i satisfy the rank condition (3.3.7) and
together they satisfy the commutativity conditions (3.4.2).

This theorem reveals one major difference between orthogonal polynomials of
one variable and of several variables; namely, the three-term relation in the case
of several variables is different from the recurrence relation. For the recurrence
formula to generate a sequence of orthogonal polynomials it is necessary that its
coefficients satisfy the commutativity conditions. We note that, even if the set
{Pn}∞n=0 is only orthogonal rather than orthonormal, S−1

n Pn will be orthonormal,
where Sn is a nonsingular matrix that satisfies SnST

n = L (PnPT
n ). Therefore, our

theorem may be stated in terms of polynomials that are only orthogonal. However,
it has to be appropriately modified since the three-term relation in this case is
(3.3.1) and the commutativity conditions become more complicated.

For the proof of Theorem 3.5.1 we will need several lemmas. One reason that
the recurrence relation (3.3.10) is not equivalent to the three-term relation (3.3.1)
lies in the fact that DT

n is only a left inverse of An; that is, DT
n An = I, but AnDT

n

is not equal to the identity. We need to understand the kernel space of I−AnDT
n ,

which is related to the kernel space of {An−1,i−An−1, j : 1≤ i, j ≤ n}. In order to
describe the latter object, we introduce the following notation.

Definition 3.5.2 For any given sequence of matrices C1, . . . ,Cd , where each Ci

is of size s× t, a joint matrix ΞC is defined as follows. Let Ξi, j , 1≤ i, j ≤ d, i �= j,
be block matrices defined by

Ξi, j = (· · · |0|CT
j | · · · |−CT

i |0| · · ·), Ξi, j : t×ds,

that is, the only two nonzero blocks are CT
j at the ith block and −CT

i at the
jth block. The matrix ΞC is then defined by using the Ξi, j as blocks in the
lexicographical order of {(i, j) : 1≤ i < j ≤ d},

ΞC = [ΞT
1,2|ΞT

1,3| · · · |ΞT
d−1,d ].

The matrix ΞC is of size ds×
(

d
2

)
t.
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For example, for d = 2 and d = 3, respectively, ΞC is given by[
C2

−C1

]
and

⎡⎣ C2 C3 0
−C1 0 C3

0 −C1 −C2

⎤⎦ .

The following lemma follows readily from the definition of ΞC.

Lemma 3.5.3 Let Y = (Y T
1 · · · Y T

d )T, Yi ∈ Rs. Then

ΞT
CY = 0 if and only if CT

i Yj = CT
j Yi, 1≤ i < j ≤ d.

By definition, ΞAn and ΞAT
n

are matrices of different sizes. Indeed,

ΞAn : drd
n ×
(

d
2

)
rd

n+1 and ΞAT
n

: drd
n+1×

(
d
2

)
rd

n .

We will need to find the ranks of these two matrices. Because of the relation
(3.3.4), we first look atΞLn andΞLT

n
, where the matrices Ln,i are defined by (3.3.5).

Lemma 3.5.4 For n ∈ N0 and 1≤ i < j ≤ d, Ln,iLn+1, j = Ln, jLn+1,i.

Proof From (3.3.5) it follows that, for any x ∈Rd ,

Ln,iLn+1, jxn+2 = xix jxn = Ln, jLn+1,ixn+2.

Taking partial derivatives, with respect to x, of the above identity we conclude
that (Ln,iLn+1, j−Ln, jLn+1,i)ek = 0 for every element ek of the standard basis of
Rrn+2 . Hence, the desired identity follows.

Lemma 3.5.5 For d ≥ 2 and n≥ 1, rankΞLT
n

= drd
n+1− rd

n+2.

Proof We shall prove that the dimension of the null space of ΞT
LT

n
is rd

n+2. Let Y =

(Y T
1 · · · Y T

d )T ∈Rdrn+1 , where Yi ∈Rrn+1 . Consider the homogeneous equation
in drd

n+1 variables ΞT
LT

n
Y = 0, which by Lemma 3.5.3, is equivalent to

Ln,iYj = Ln, jYi, 1≤ i < j ≤ d. (3.5.1)

There is exactly a single 1 in each row of Ln,i and the rank of Ln,i is rd
n .

Define Nn = {α ∈ Nd
0 : |α | = n} and, for each 1 ≤ i ≤ d, Nn,i = {α ∈ Nd

0 :
|α| = n and αi �= 0}. Let μ(N ) denote the number of elements in the set N .
Counting the number of integer solutions of |α| = n shows that μ(Nn) = rd

n ,
μ(Nn,i) = rd

n−1. We can consider the Ln,i as transforms from Nn to Nn,i. Fix a
one-to-one correspondence between the elements of Nn and the elements of a
vector in Rrn , and write Yi|Nn+1, j = Ln, jYi. The linear systems of equations (3.5.1)
can be written as

Yi|Nn+1, j = Yj|Nn+1,i , 1≤ i < j ≤ d. (3.5.2)
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This gives
(d

2

)
rd

n equations in drd
n+1 variables of Y , not all of which are

independent. For any distinct integers i, j and k,

Yi|Nn+1, j∩Nn+1,k
=Yj|Nn+1,i∩Nn+1,k

, Yi|Nn+1,k∩Nn+1, j = Yk|Nn+1,i∩Nn+1, j ,

Yj|Nn+1,k∩Nn+1,i = Yk|Nn+1, j∩Nn+1,i .

Thus, there are exactly μ(Nn+1, j ∩Nn+1,k) = rd
n−1 duplicated equations among

these three systems of equations. Counting all combinations of the three systems
generated by the equations in (3.5.2) gives

(d
3

)
rd

n−1 equations; however, among
them some are counted more than once. Repeating the above argument for the
four distinct systems generated by the equations in (3.5.1), we have that there
are μ(Nn,i ∩Nn, j ∩Nn,k) = rd

n−2 equations that are duplicated. There are
(d

4

)
combinations of the four different systems of equations. We then need to consider
five systems of equations, and so on. In this way, it follows from the inclusion–
exclusion formula that the number of duplicated equations in (3.5.2) is(

d
3

)
rd

n−1−
(

d
4

)
rd

n−2 + · · ·+(−1)d+1rd
n−d+2 =

d

∑
k=3

(−1)k+1
(

d
k

)
rd

n−k+2.

Thus, among the
(d

2

)
rd

n equations (3.5.1), the number that are independent is(
d
2

)
rd

n −
d

∑
k=3

(−1)k+1
(

d
k

)
rd

n−k+2 =
d

∑
k=2

(−1)k
(

d
k

)
rd

n−k+2.

Since the dimension of the null space is equal to the number of variables minus
the number of independent equations, and there are drd

n+1 variables, we have

dim ker ΞT
LT

n
= drd

n+1−
d

∑
k=2

(−1)k
(

d
k

)
rd

n−k+2 = rd
n+2,

where the last equality follows from a Chu–Vandermonde sum (see Proposi-
tion 1.2.3). The proof is complete.

Lemma 3.5.6 For d ≥ 2 and n≥ 1, rank ΞLn = drd
n − rd

n−1.

Proof We shall prove that the dimension of the null space of ΞT
Ln

is rd
n−1. Suppose

that Y = (Y T
1 · · · Y T

d )T ∈ Rdrn , where Yi ∈ Rrn . Consider the homogeneous
equation ΞT

Ln
Y = 0. By Lemma 3.5.3 this equation is equivalent to the system of

linear equations

LT
n,iYj = LT

n, jYi, 1≤ i < j ≤ d. (3.5.3)

We take Nn and Nn,i to be as in the proof of the previous lemma. Note that LT
n,iYj

is a vector in Rrn+1 , whose coordinates corresponding to Nn,i are those of Yj and
whose other coordinates are zeros. Thus, equation (3.5.3) implies that the ele-
ments of Yj are nonzero only when they correspond to Nn, j∩Nn,i being in LT

n,iYj,
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that is, (LT
n,iYj)|Nn,i∩Nn, j ; the nonzero elements of Yi are (LT

n, jYi)|Nn,i∩Nn, j . More-
over, these two vectors are equal. Since for any X ∈Rrn+1 we have Ln−1, jLn,iX =
X |Nn,i∩Nn, j , which follows from Ln−1,iLn, jxn+1 = xix jxn−1, from the fact that
Ln,iLT

n,i = I we have

(LT
n,iYj)|Nn,i∩Nn, j = Ln−1, jLn,i(LT

n,iYj) = Ln−1, jYj = Yj|Nn−1, j .

Therefore, the nonzero elements of Yi and Yj satisfy Yi|Nn−1,i = Yj|Nn−1, j , 1 ≤
i < j ≤ d. Thus there are exactly μ(Nn−1,i) = rd

n−1 independent variables in the
solution of (3.5.3). That is, the dimension of the null space of ΞT

Ln
is rd

n−1.

From the last two lemmas we can derive the ranks of ΞAn and ΞAT
n
.

Proposition 3.5.7 Let An,i be the matrices in the three-term relation. Then

rank ΞAn = drd
n − rd

n−1, and rank ΞAT
n

= drd
n+1− rd

n+2.

Proof By (3.3.4) and the definition of ΞC it readily follows that

ΞAn diag{Gn+1, . . . ,Gn+1}= diag{Gn, . . . ,Gn}ΞLn ,

where the block diagonal matrix on the left-hand side is of size
(d

2

)
rd

n+1×
(d

2

)
rd

n+1
and that on the right-hand side is of size drd

n ×drd
n . Since Gn and Gn+1 are both

invertible, so are these two block matrices. Therefore rank ΞAn = rank ΞLn . Thus,
the first equality follows from the corresponding equality in Lemma 3.5.6. The
second is proved similarly.

Our next lemma deals with the null space of I−AnDT
n .

Lemma 3.5.8 Let {An,i} be the coefficient matrices in the three-term rela-
tion (3.3.1), and let DT

n be the left inverse of An, defined in (3.3.9). Then
Y = (Y T

1 · · · Y T
d )T, Yi ∈ Rrn , is in the null space of I−AnDT

n if and only if
An−1,iYj = An−1, jYi, 1≤ i, j ≤ d, or, equivalently, ΞT

AT
n−1

Y = 0.

Proof Let the singular-value decompositions of An and DT
n be of the form given

in Subsection 3.3.1. Both An and Dn are of size drd
n × rd

n+1. It follows that

I−AnDT
n = W T

(
0 −ΣΣ1

0 I

)
W,

where W is a unitary matrix, Σ and Σ1 are invertible diagonal matrices and I is the
identity matrix of size drd

n − rd
n+1, from which it follows that rank(I−AnDT

n ) =
drd

n − rd
n+1. Hence

dim ker(I−AnDT
n ) = drd

n − rank(I−AnDT
n ) = rd

n+1.
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Since DT
n An = I, it follows that (I−AnDT

n )An = An−An = 0, which implies that
the columns of An form a basis for the null space of I − AnDT

n . Therefore, if
(I − AnDT

n )Y = 0 then there exists a vector c such that Y = Anc. But the first
commutativity condition in (3.4.2) is equivalent to ΞT

AT
n−1

An = 0; it follows that

ΞT
AT

n−1
Y = 0. This proves one direction. For the other direction, suppose that

ΞT
AT

n−1
Y = 0. By Proposition 3.5.7,

dim kerΞT
AT

n−1
= drd

n − rankΞT
AT

n−1
= rd

n+1.

From ΞT
AT

n−1
Y = 0 it also follows that the columns of An form a basis for kerΞT

AT
n−1

.

Therefore, there exists a vector c∗ such that Y = Anc∗, which, by DT
n An = I,

implies that (I−AnDT
n )Y = 0.

Finally, we are in a position to prove Theorem 3.5.1.

Proof of Theorem 3.5.1 Evidently, we need only prove the “if” part of the theo-
rem. Suppose that {Pn}∞n=0 is defined recursively by (3.3.10) and that the matrices
An,i and Bn,i satisfy the rank and commutativity conditions. We will use induction.
For n = 0, P0 = 1 and P−1 = 0; thus

P1 =
d

∑
i=1

DT
0,ixi−

d

∑
i=1

DT
0,iB0,i.

Since A0 and D0 are both d×d matrices and DT
0 A0 = I, it follows that A0DT

0 = I,
which implies that A0,iDT

0, j = δi, j. Therefore

A0, jP1 = x j−B0, j = x jP0−B0, jP0.

Assuming we have proved that

Ak, jPk+1 = x jPk−Bk, jPk−AT
k−1, jPk−1, 0≤ k ≤ n−1, (3.5.4)

we now show that this equation also holds for k = n. First we prove that

An, jPn+1 = x jPn−Bn, jPn−AT
n−1, jPn−1 +Qn−2, j, (3.5.5)

where the components of Qn−2, j are elements of the polynomial space Πd
n−2.

Since each component of Pn is a polynomial of degree at most n, we can write

Pn = Gn,nxn +Gn,n−1xn−1 +Gn,n−2xn + · · · ,
for some matrices Gn,k and also write Gn = Gn,n. Upon expanding both sides
of (3.5.5) in powers of xk, it suffices to show that the highest three coeffi-
cients in the expansions are equal. Since Pn+1 is defined by the recurrence
relation (3.3.10), comparing the coefficients shows that we need to establish that
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An, j∑d
i=1 DT

n,iXn,i = Xn, j, 1≤ j≤ d, where Xn, j is one of Qn, j, Rn, j and Sn, j, which
are as follows:

Qn, j = GnLn, j,

Rn, j = Gn,n−1Ln−1, j−Bn, jGn,

Sn, j = Gn,n−2Ln−2, j−Bn, jGn,n−1−AT
n−1, jGn−1;

(3.5.6)

see (3.3.5) for the Ln, j. Written in a more compact form, the equations that we
need to show are

AnDT
n Qn = Qn, AnDT

n Rn = Rn, AnDT
n Sn = Sn.

We proceed by proving that the columns of Qn, Rn and Sn belong to the null space
of I−AnDT

n . But, by Lemmas 3.5.8 and 3.5.3, this reduces to showing that

An−1,iQn, j = An−1, jQn,i, An−1,iRn, j = An−1, jRn,i,

An−1,iSn, j = An−1, jSn,i.

These equations can be seen to follow from Lemma 3.5.4, equations (3.4.2) and
the following:

Gn−1Ln−1,i = An−1,iGn,

Gn−1,n−2Ln−2,i = An−1,iGn,n−1−Bn−1,iGn−1,

Gn−1,n−3Ln−3,i = An−1,iGn,n−2−Bn−1,iGn−1,n−2−AT
n−2,iGn−2,

which are obtained by comparing the coefficients of (3.5.4) for k = n− 1. For
example,

An−1,iRn, j = An−1,i(Gn,n−1Ln−1, j−Bn, jGn)

= Gn−1,n−2Ln−2,iLn−1, j−Bn−1,iGn−1Ln−1, j−An−1,iBn, jGn

= Gn−1,n−2Ln−2,iLn−1, j− (Bn−1,iAn−1, j +An−1,iBn, j)Gn

= An−1, jRn,i.

The other two equations follow similarly. Therefore, we have proved (3.5.5). In
particular, from (3.5.4) and (3.5.5) we obtain

Ak,iGk+1 = GkLk,i, 0≤ k ≤ n, 1≤ i≤ d, (3.5.7)

which, since An,i satisfies the rank condition, implies that Gn+1 is invertible, as in
the proof of Theorem 3.3.7.

To complete the proof, we now prove that Qn−2,i = 0. On the one hand, mul-
tiplying equation (3.5.5) by DT

n,i and summing for 1 ≤ i ≤ d, it follows from the
recurrence formulae (3.3.10) and DT

n An = I that

d

∑
j=1

DT
n, jQn−2, j =

d

∑
j=1

DT
n, jAn, jPn+1−Pn+1 = 0. (3.5.8)
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On the other hand, it follows from (3.5.4) and (3.5.5) that

An−1,iQn−2, j =− xix jPn−1 +An−1,iAn, jPn+1

+(An−1,iBn, j +Bn−1,iAn−1, j)Pn

+(An−1,iA
T
n−1, j +Bn−1,iBn−1, j +AT

n−2,iAn−2, j)Pn−1

+(AT
n−2,iBn−2, j +Bn−1,iA

T
n−2, j)Pn−2 +AT

n−2,iA
T
n−3, jPn−3,

which implies by the commutativity conditions (3.4.2) that

An−1,iQn−2, j = An−1, jQn−2,i.

We claim that this equation implies that there is a vector Qn such that Qn−2,i =
An,iQn, which, once established, completes the proof upon using (3.5.8) and
the fact that DT

n An = I. Indeed, the above equation by (3.5.7), is equivalent to
Ln−1,iXj = Ln−1, jXi. Define Qn by Qn = G−1

n+1X , where X is defined as a vector
that satisfies Ln,iX = Xi, in which Xi = G−1

n,i Qn−2,i. In other words, recalling the
notations used in the proof of Lemma 3.5.5, X is defined as a vector that satisfies
X |Nn,i = Xi. Since N =

⋃
Nn,i and

X |Nn,i∩Nn, j = Ln−1,iLn, jX = Ln−1,iXj = Ln−1, jXi = X |Nn,i∩Nn, j ,

we see that X , and hence Qn, is well defined.

3.5.2 General solutions of the three-term relation

Next we turn our attention to another difference between orthogonal polynomials
of one and several variables. From the three-term relation and Favard’s theo-
rem, orthogonal polynomials in one variable can be considered as solutions of
the difference equation

akyk+1 +bkyk +ak−1yk−1 = xyk, k ≥ 1,

where ak > 0 and the initial conditions are y0 = 1 and y1 = a−1
0 (x−b0). It is well

known that this difference equation has another solution that satisfies the initial
conditions y0 = 0 and y1 = a−1

0 . The components of the solution, denoted by qk,
are customarily called associated polynomials, or polynomials of the second kind.
Together, these two sets of solutions share many interesting properties, and {qn}
plays an important role in areas such as the problem of moments, the spectral
theory of the Jacobi matrix and continuous fractions.

By the three-term relation (3.3.3), we can consider orthogonal polynomials in
several variables to be solutions of the multi-parameter finite difference equations

xiYk = Ak,iYk+1 +Bk,iYk +AT
k−1,iYk−1, 1≤ i≤ d, k ≥ 1, (3.5.9)

where the Bn,i are symmetric, the An,i satisfy the rank conditions (3.3.8) and
(3.3.7) and the initial values are given by

Y0 = a, Y1 = b, a ∈ R, b ∈ Rd. (3.5.10)
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One might expect that there would be other linearly independent solutions of
(3.5.9) which could be defined as associated polynomials in several variables.
However, it turns out rather surprisingly that (3.5.9) has no solutions other than
the system of orthogonal polynomials. This result is formulated as follows.

Theorem 3.5.9 If the multi-parameter difference equation (3.5.9) has a solution
P = {Pk}∞k=0 for the particular initial values

Y ∗0 = 1, Y ∗1 = A−1
0 (x−B0) (3.5.11)

then all other solutions of (3.5.9) and (3.5.10) are multiples of P with the
possible exception of the first component. More precisely, if Y = {Yk}∞k=0 is a
solution of (3.5.9) and (3.5.10) then Yk = hPk for all k ≥ 1, where h is a function
independent of k.

Proof The assumption and the extension of Favard’s theorem in Theorem 3.3.8
imply that P = {Pk}∞k=0 forms a sequence of orthonormal polynomials. Therefore,
the coefficient matrices of (3.5.9) satisfy the commutativity conditions (3.4.2).

Suppose that a sequence of vectors {Yk} satisfies (3.5.9) and the initial values
(3.5.10). From equation (3.5.9),

Ak,iYk+1 = xiYk−Bk,iYk−AT
k−1,iYk−1, 1≤ i≤ d.

Multiplying the ith equation by Ak−1, j and the jth equation by Ak−1,i, it follows
from the first equation of (3.4.2) that

Ak−1,i(x jYk−Bk, jYk−AT
k−1, jYk−1) = Ak−1, j(xiYk−Bk,iYk−AT

k−1,iYk−1), (3.5.12)

for 1 ≤ i, j ≤ d and k ≥ 1. In particular, the case k = 1 gives a relation between
Y0 and Y1, which, upon using the second equation of (3.4.2) for k = 1 and the fact
that A0,iAT

0, j and B0,i are numbers, we can rewrite as

(xi−B0,i)A0, jY1 = (x j−B0, j)A0,iY1.

However, xi and x j are independent variables; Y1 must be a function of x, and
moreover, has to satisfy A0,iY1 = (xi−bi)h(x), where h is a function of x. Substi-
tuting the latter equation into the above displayed equation, we obtain bi = B0,i.
The case h(x) = 1 corresponds to the orthogonal polynomial solution P. Since
DT

0 = A−1
0 , from (3.5.11) we have

Y1 =
d

∑
i=1

DT
0,i(xi−B0,i)h(x) = A−1

0 (x−B0)h(x) = h(x)P1.

Therefore, upon using the left inverse DT
k of Ak from (3.3.9) we see that every

solution of (3.5.9) satisfies

Yk+1 =
d

∑
i=1

DT
k,ixiYk−EkYk−FkYk−1, (3.5.13)
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where Ek and Fk are defined as in (3.3.10); consequently,

Y2 =
d

∑
i=1

DT
1,i(xiI−B1,i)h(x)P1−F1Y0 = h(x)P2 +F1(h(x)−Y0).

Since P is a solution of equation (3.5.9) with initial conditions (3.5.11), it follows
from (3.5.12) that

A1,i(x jP2−B2, jP2−AT
1, jP1) = A1, j(xiP2−B2,iP2−AT

1,iP1).

Multiplying this equation by h and subtracting it from (3.5.12) with k = 2, we
conclude from the formulae for Y1 and Y2 that

A1,i(x jI−B2, j)F1(h(x)−Y0) = A1, j(xiI−B2,i)F1(h(x)−Y0).

If Y0 = h(x) then it follows from (3.5.13) and Y1 = h(x)P1 that Yk = h(x)Pk for all
k ≥ 0, which is the conclusion of the theorem. Now assume that h(x) �= Y0. Thus,
h(x)−Y0 is a nonzero number so, from the previous formula,

A1,i(x jI−B2, j)F1 = A1, j(xiI−B2,i)F1.

However, since xi and x j are independent variables, we conclude that for this
equality to hold it is necessary that A1,iF1 = 0, which implies that F1 = 0 because
DT

n An = 1. We then obtain from the formula for Y2 that Y2 = h(x)P2. Thus, by
(3.5.13), Yk = h(x)Pk for all k ≥ 1, which concludes the proof.

3.6 Reproducing Kernels and Fourier Orthogonal Series
Let L ( f ) =

∫
f dμ be a positive definite linear functional, where dμ is a nonneg-

ative Borel measure with finite moments. Let {Pn
α} be a sequence of orthonormal

polynomials with respect to L ( f ). For any function f in L2(dμ), we can consider
its Fourier orthogonal series with respect to {Pn

α}:

f ∼
∞

∑
n=0

∑
|α |=n

an
α( f )Pn

α with an
α( f ) =

∫
f (x)Pn

α(x)dμ.

Although the bases of orthonormal polynomials are not unique, the Fourier series
in fact is independent of the particular basis. Indeed, using the vector notation Pn,
the above definition of the Fourier series may be written as

f ∼
∞

∑
n=0

aT
n ( f )Pn with an( f ) =

∫
f (x)Pn(x)dμ . (3.6.1)

Furthermore, recalling that V d
n denotes the space of orthogonal polynomials of

degree exactly n, as in (3.1.2), it follows from the orthogonality that the expansion
can be considered as

f ∼
∞

∑
n=0

projV d
n

f , where projV d
n

f = aT
n ( f )Pn.
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We shall denote the projection operator projV d
n

f by Pn( f ). In terms of an
orthonormal basis, it can be written as

Pn( f ;x) =
∫

f (y)Pn(x,y)dμ(y), Pn(x,y) = PT
n (x)Pn(y). (3.6.2)

The projection operator is independent of the particular basis. In fact, since two
different orthonormal bases differ by a factor that is an orthogonal matrix (The-
orem 3.2.14), it is evident from (3.6.2) that Pn( f ) depends on V d

n rather than a
particular basis of V d

n . We define the nth partial sum of the Fourier orthogonal
expansion (3.6.1) by

Sn( f ) =
n

∑
k=0

aT
k ( f )Pk =

∫
Kn(·,y) f (y)dμ, (3.6.3)

where the kernel Kn(·, ·) is defined by

Kn(x,y) =
n

∑
k=0

∑
|α |=k

Pk
α(x)Pk

α(y) =
n

∑
k=0

Pk(x,y) (3.6.4)

and is often called the nth reproducing kernel, for reasons to be given below.

3.6.1 Reproducing kernels

For the definition of Kn it is not necessary to use an orthonormal basis; any
orthogonal basis will do. Moreover, the definition makes sense for any moment
functional.

Let L be a moment functional, and let Pn be a sequence of orthogonal poly-
nomials with respect to L . In terms of Pn, the kernel function Kn takes the
form

Kn(x,y) =
n

∑
k=0

PT
k (x)H−1

k Pk(y), Hk = L (PkP
T
k ).

Theorem 3.6.1 Let V d
k , k ≥ 0, be defined by means of a moment functional L .

Then Kn(·, ·) depends only on V d
k rather than on a particular basis of V d

k .

Proof Let Pk be a basis of V d
k . If Qk is another basis then there exists an invert-

ible matrix Mk, independent of x, such that Pk(x) = MkQk(x). Let Hk(P) =
Hk = L (PkP

T
k ) and Hk(Q) = L (QkQ

T
k ). Then H−1

k (P) = (MT
k )−1H−1

k (Q)M−1
k .

Therefore PT
k H−1

k (P)Pk = QT
k H−1

k (Q)Qk, which proves the stated result.

Since the definition of Kn does not depend on the particular basis in which it is
expressed, it is often more convenient to work with an orthonormal basis when L

is positive definite. The following theorem justifies the name reproducing kernel.



98 General Properties of Orthogonal Polynomials in Several Variables

Theorem 3.6.2 Let L be a positive definite linear functional on all P in the
polynomial space Πd. Then, for all P ∈Πd

n,

P(x) = L
(
Kn(x, ·)P(·)).

Proof Let Pn be a sequence of orthogonal polynomials with respect to L

and let L (PnPT
n ) = Hn. For P ∈ Πd

n we can expand it in terms of the basis
{P0,P1, . . . ,Pn} by using the orthogonality property:

P(x) =
n

∑
k=0

[ak(P)]TH−1
k Pk(x) with ak(P) = L (PPk).

But this equation is equivalent to

P(x) =
n

∑
k=0

L (PPk)TH−1
k Pk(x) = L

[
Kn(x, ·)P(·)],

which is the desired result.

For orthogonal polynomials in one variable, the reproducing kernel enjoys
a compact expression called the Christoffel–Darboux formula. The following
theorem is an extension of this formula for several variables.

Theorem 3.6.3 Let L be a positive definite linear functional, and let {Pk}∞k=0
be a sequence of orthogonal polynomials with respect to L . Then, for any integer
n≥ 0, x,y ∈Rd,

n

∑
k=0

PT
k (x)H−1

k Pk(y)

=

[
An,iPn+1(x)

]T
H−1

n Pn(y)−PT
n (x)H−1

n

[
An,iPn+1(y)

]
xi− yi

, (3.6.5)

for 1≤ i≤ d, where x = (x1 · · · xd) and y = (y1 · · · yd).

Proof By Theorem 3.3.1, the orthogonal polynomials Pn satisfy the three-term
relation (3.3.1). Let us write

Σk =
[
Ak,iPk+1(x)

]T
H−1

k Pk(y)−Pk(x)TH−1
k

[
Ak,iPk+1(y)

]
.

From the three-term relation (3.3.1),

Σk =
[
xiPk(x)−Bk,iPk(x)−Ck,iPk−1(x)

]T
H−1

k Pk(y)

−PT
k (x)H−1

k

[
yiPk(y)−Bk,iPk(y)−Ck,iPk−1(y)

]
=(xi− yi)PT

k (x)H−1
k Pk(y)−PT

k (x)
(
BT

k,iH
−1
k −H−1

k Bk,i
)
Pk(y)

− [PT
k−1(x)C

T
k,iH

−1
k Pk(y)−PT

k (x)H−1
k Ck,iPk−1(y)

]
.
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By the definition of Hk and (3.3.2), both Hk and Bk,iHk are symmetric matrices;
hence Bk,iHk = (Bk,iHk)T = HkBT

k,i, which implies that BT
k,iH

−1
k = H−1

k Bk,i. There-
fore, the second term on the right-hand side of the above expression for Σk is zero.
From the third equation of (3.3.2), CT

k,iH
−1
k = H−1

k−1Ak−1,i. Hence, the third term
on the right-hand side of the expression for Σk is

−PT
k−1(x)H

−1
k−1Ak−1,iPk(y)+PT

k (x)AT
k−1,iH

−1
k−1Pk−1(y) =−Σk−1.

Consequently, the expression for Σk can be rewritten as

(xi− yi)PT
k (x)H−1

k Pk(y) = Σk−Σk−1.

Summing this identity from 0 to n and noting that Σ−1 = 0, we obtain the stated
equation.

Corollary 3.6.4 Let {Pk}∞k=0 be as in Theorem 3.6.3. Then

n

∑
k=0

PT
k (x)H−1

k Pk(x)

= PT
n (x)H−1

n

[
An,i∂iPn+1(x)

]− [An,iPn+1(x)
]T

H−1
n ∂iPn(x),

where ∂i = ∂/∂xi denotes the partial derivative with respect to xi.

Proof Since Pn(x)TH−1
n [An,iPn+1(x)] is a scalar function, it is equal to its own

transpose. Thus

Pn(x)TH−1
n

[
An,iPn+1(x)

]
=
[
An,iPn+1(x)

]T
H−1

n Pn(x).

Therefore the numerator of the right-hand side of the Christoffel–Darboux
formula (3.6.5) can be written as[

An,iPn+1(x)
]T

H−1
n

[
Pn(y)−Pn(x)

]−Pn(x)TH−1
n An,i

[
Pn+1(y)−Pn+1(x)

]
.

Thus the desired result follows from (3.6.5) on letting yi → xi.

If Pn are orthonormal polynomials then the formulae in Theorem 3.6.3 and
Corollary 3.6.4 hold with Hk = I. We state this case as follows, for easy reference.

Theorem 3.6.5 Let Pn be a sequence of orthonormal polynomials. Then

Kn(x,y) =

[
An,iPn+1(x)

]T
Pn(y)−PT

n (x)
[
An,iPn+1(y)

]
xi− yi

(3.6.6)

and

Kn(x,x) = PT
n (x)
[
An,i∂iPn+1(x)

]− [An,iPn+1(x)
]T∂iPn(x). (3.6.7)
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It is interesting to note that, for each of the above formulae, although the right-
hand side seems to depend on i, the left-hand side shows that it does not. By
(3.6.3), the function Kn is the kernel for the Fourier partial sum; thus it is impor-
tant to derive a compact formula for Kn, that is, one that contains no summation.
In the case of one variable, the right-hand side of the Christoffel–Darboux for-
mula gives the desired compact formula. For several variables, however, the
numerator of the right-hand side of (3.6.6) is still a sum, since PT

n (x)An,iPn+1(y) is
a linear combination of Pn

α(x)Pn+1
β (y). For some special weight functions, includ-

ing the classical orthogonal polynomials on the ball and on the simplex, we are
able to find a compact formula; this will be discussed in Chapter 8.

For one variable the function 1/Kn(x,x) is often called the Christoffel function.
We will retain the name in the case of several variables, and we define

Λn(x) =
[
Kn(x,x)

]−1
. (3.6.8)

Evidently this function is positive; moreover, it satisfies the following property.

Theorem 3.6.6 Let L be a positive definite linear functional. For an arbitrary
point x ∈ Rd,

Λn(x) = min{L [P2] : P(x) = 1, P ∈Πd
n};

that is, the minimum is taken over all polynomials P∈Πd
n subject to the condition

P(x) = 1.

Proof Since L is positive definite, there exists a corresponding sequence {Pk}
of orthonormal polynomials. If P is a polynomial of degree at most n, then P can
be written in terms of the orthonormal basis as follows:

P(x) =
n

∑
k=0

aT
k (P)Pk(x) where ak(P) = L (PPk).

From the orthonormal property of Pk it follows that

L (P2) =
n

∑
k=0

aT
k (P)ak(P) =

n

∑
k=0

‖ak(P)‖2.

If P(x) = 1 then, by Cauchy’s inequality,

1 = [P(x)]2 =

(
n

∑
k=0

aT
k (P)Pk(x)

)2

≤
(

n

∑
k=0

‖ak(P)‖‖Pk(x)‖
)2

≤
n

∑
k=0

‖ak(P)‖2
n

∑
k=0

‖Pk(x)‖2 = L (P2)Kn(x,x),

where equality holds if and only if ak(P) =
[
Kn(x,x)

]−1
Pk(x). The proof is

complete.
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Theorem 3.6.6 states that the function Λn is the solution of an extremum
problem. One can also take the formula in the theorem as the definition of the
Christoffel function.

3.6.2 Fourier orthogonal series

Let L be a positive definite linear functional, and let HL be the Hilbert space
of real-valued functions defined on Rd with inner product 〈 f ,g〉= L ( f g). Then
the standard Hilbert space theory applies to the Fourier orthogonal series defined
in (3.6.1).

Theorem 3.6.7 Let L be a positive definite linear functional, and f ∈ HL .
Then among all the polynomials P in Πd

n, the value of

L
( | f (x)−P(x)|2)

becomes minimal if and only if P = Sn( f ).

Proof Let {Pk} be an orthonormal basis of Vk. For any P ∈ Πd
n there exist bk

such that

P(x) =
n

∑
k=0

bT
k Pk(x),

and Sn( f ) satisfies equation (3.6.3). Following a standard argument,

0≤L
(| f −P|2)= L

(
f 2)−2∑bT

k L ( f Pk)+∑
k
∑

j
bT

k L
(
PkP

T
j

)
b j

= L
(

f 2)−2
n

∑
k=0

bT
k ak( f )+

n

∑
k=0

bT
k bk

= L
(

f 2)− n

∑
k=0

aT
k ( f )ak( f )+

n

∑
k=0

[aT
k ( f )ak( f )+bT

k bk−2bT
k ak( f )].

By Cauchy’s inequality the third term on the right-hand side is nonnegative;
moreover, the value of L (| f − P|2) is minimal if and only if bk = ak( f ), or
P = Sn( f ).

In the case when the minimum is attained, we have Bessel’s inequality
∞

∑
k=0

aT
k ( f )ak( f )≤L

(| f |2) .
Moreover, the following result holds as in standard Hilbert space theory.

Theorem 3.6.8 If Πd is dense in HL then Sn( f ) converges to f in HL , and we
have Parseval’s identity

∞

∑
k=0

aT
k ( f )ak( f ) = L

(| f |2) .
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The definition of the Fourier orthogonal series does not depend on the special
basis of V d

n . If Pn is a sequence of polynomials that are orthogonal rather than
orthonormal then the Fourier series will take the form

f ∼
∞

∑
n=0

aT
n ( f )H−1

n Pn, an( f ) = L ( f Pn) , Hn = L
(
Pn PT

n

)
. (3.6.9)

The presence of the inverse matrix H−1
k makes it difficult to find the Fourier

orthogonal series using a basis that is orthogonal but not orthonormal.
An alternative method is to use biorthogonal polynomials to find the Fourier

orthogonal series. Let Pn = {Pn
α} and Qn = {Qn

α} be two sequences of orthogonal

polynomials with respect to L . They are biorthogonal if L
(

Pn
αQn

β

)
= dαδα ,β ,

where dα is nonzero. If all dα = 1, the two systems are called biorthonormal. If
Pn and Qn are biorthonormal then the coefficients of the Fourier orthogonal series
in terms of Pn can be found as follows:

f ∼
∞

∑
n=0

aT
n ( f )Pn, an( f ) = L ( f Qn);

that is, the Fourier coefficient associated with Pn
α is given by L ( f Qn

α). The idea
of using biorthogonal polynomials to study Fourier orthogonal expansions was
first applied to the case of classical orthogonal polynomials on the unit ball (see
Section 5.2), and can be traced back to the work of Hermite; see Chapter XII in
Vol. II of Erdélyi et al. [1953].

We finish this section with an extremal problem for polynomials in several vari-
ables. Let Gn be the leading-coefficient matrix corresponding to an orthonormal
polynomial vector Pn as before. Denote by ‖Gn‖ the spectral norm of Gn; ‖Gn‖2

is equal to the largest eigenvalue of GnGT
n .

Theorem 3.6.9 Let L be a positive definite linear functional. Then

min{L (P2) : P = aTxn + · · · ∈Πd
n ,‖a‖= 1}= ‖Gn‖−2.

Proof Since {P0, . . . ,Pn} forms a basis of Πd
n , we can rewrite P as

P(x) = aTG−1
n Pn +aT

n−1Pn−1 + · · ·+aT
0 P0.

For ‖a‖2 = 1, it follows from Bessel’s inequality that

L (P2)≥ aTG−1
n (G−1

n )Ta+‖an−1‖2 + · · ·+‖a0‖2

≥ aTG−1
n (G−1

n )Ta≥ λmin

where λmin is the smallest eigenvalue of (GT
n Gn)−1, which is equal to the

reciprocal of the largest eigenvalue of GnGT
n . Thus, we have proved that

L (P2)≥ ‖Gn‖−2, P(x) = aTxn + · · · , ‖a‖= 1.
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Choosing a such that ‖a‖ = 1 and aTG−1
n (G−1

n )Ta = λmin, we see that the
polynomial P = aTG−1

n Pn attains the lower bound.

In Theorem 3.2.14, detGn can be viewed as an extension of the leading coeffi-
cient kn (see Proposition 1.3.7) of orthogonal polynomials in one variable in the
context there. The above theorem shows that ‖Gn‖ is also a natural extension of
γn. In view of the formula (3.3.4), it is likely that ‖Gn‖ is more important.

3.7 Common Zeros of Orthogonal Polynomials
in Several Variables

For polynomials in one variable the nth orthonormal polynomial pn has exactly
n distinct zeros, and these zeros are the eigenvalues of the truncated Jacobi
matrix Jn. These facts have important applications in quadrature formulae, as we
saw in Subsection 1.3.2.

A zero of a polynomial in several variables is an example of an algebraic
variety. In general, a zero of a polynomial in two variables can be either a sin-
gle point or an algebraic curve on the plane. The structures of zeros are far more
complicated in several variables. However, if common zeros of orthogonal poly-
nomials are used then at least part of the theory in one variable can be extended
to several variables.

A common zero of a set of polynomials is a zero for every polynomial in the
set. Let L be a positive definite linear functional. Let Pn = {Pn

α} be a sequence
of orthonormal polynomials associated with L . A common zero of Pn is a zero
of every Pn

α . Clearly, we can consider zeros of Pn as zeros of the polynomial
subspace V d

n .
We start with two simple properties of common zeros. First we need a defini-

tion: if x is a zero of Pn and at least one partial derivative of Pn at x is not zero
then x is called a simple zero of Pn.

Theorem 3.7.1 All zeros of Pn are distinct and simple. Two consecutive
polynomials Pn and Pn−1 do not have common zeros.

Proof Recall the Christoffel–Darboux formula in Theorem 3.6.3, which gives
n−1

∑
k=0

PT
k (x)Pk(x) = PT

n−1(x)An−1,i∂iPn(x)−PT
n (x)AT

n−1,i∂iPn−1(x),

where ∂i = ∂/∂xi denotes the partial derivative with respect to xi. If x is a zero of
Pn then

n−1

∑
k=0

PT
k (x)Pk(x) = PT

n−1(x)An−1,i∂iPn(x).

Since the left-hand side is positive, neither Pn−1(x) nor ∂iPn(x) can be zero.
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Using the coefficient matrices of the three-term relation (3.3.3), we define the
truncated block Jacobi matrices Jn,i as follows:

Jn,i =

⎡⎢⎢⎢⎢⎢⎢⎣
B0,i A0,i M
AT

0,i B1,i A1,i

. . .
. . .

. . .

AT
n−3,i Bn−2,i An−2,i

M AT
n−2,i Bn−1,i

⎤⎥⎥⎥⎥⎥⎥⎦ , 1≤ i≤ d.

Note that Jn,i is a square matrix of order N = dimΠd
n−1. We say that Λ =

(λ1 · · · λd)T ∈ Rd is a joint eigenvalue of Jn,1, . . . ,Jn,d if there is a ξ �= 0,
ξ ∈ RN , such that Jn,iξ = λiξ for i = 1, . . . ,d; the vector ξ is called a joint
eigenvector associated with Λ.

The common zeros of Pn are characterized in the following theorem.

Theorem 3.7.2 A point Λ = (λ1 · · · λd)T ∈ Rd is a common zero of Pn if
and only if it is a joint eigenvalue of Jn,1, . . . ,Jn,d; moreover, the joint eigenvectors
of Λ are constant multiples of (PT

0 (Λ) · · · PT
n−1(Λ))T.

Proof If Pn(Λ) = 0 then it follows from the three-term relation that

B0,iP0(Λ)+A0,iP1(Λ) = λiP0(Λ),

AT
k−1,iPk−1(Λ)+Bk,iPk(Λ)+Ak,iPk+1(Λ) = λiPk(Λ), 1≤ k ≤ n−2,

AT
n−2,iPn−2(Λ)+Bn−1,iPn−1(Λ) = λiPn−1(Λ),

for 1≤ i≤ d. From the definition of Jn,i it follows that, on the one hand,

Jn,iξ = λiξ , ξ =
(
PT

0 (Λ) · · · PT
n−1(Λ)

)T
.

Thus, Λ is the eigenvalue of Jn with joint eigenvector ξ .
On the other hand, suppose that Λ= (λ1 · · · λd) is an eigenvalue of Jn and

that Jn has a joint eigenvector ξ for Λ. Write ξ = (xT
0 · · · xT

n−1)
T, x j ∈ Rr j .

Since Jn,iξ = λiξ , it follows that {x j} satisfies a three-term relation:

B0,ix0 +A0,ix1 = λix0,

AT
k−1,ixk−1 +Bk,ixk +Ak,ixk+1 = λixk, 1≤ k ≤ n−2,

AT
n−2,ixn−2 +Bn−1,ixn−1 = λixn−1,

for 1 ≤ i ≤ d. First we show that x0, and thus ξ , is nonzero. Indeed, if x0 = 0
then it follows from the first equation in the three-term relation that A0,ix1 = 0,
which implies that A0x1 = 0. Since A0 is a d× d matrix and it has full rank, it
follows that x1 = 0. With x0 = 0 and x1 = 0, it then follows from the three-term
relation that A1,ix2 = 0, which leads to A1x2 = 0. Since A1 has full rank, x2 = 0.
Continuing this process leads to xi = 0 for i ≥ 3. Thus, we end up with ξ = 0,



3.7 Common Zeros of Orthogonal Polynomials in Several Variables 105

which contradicts the assumption that ξ is an eigenvector. Let us assume that
x0 = 1 = P0 and define xn ∈Rrn as xn = 0. We will prove that x j = P j(Λ) for all
1≤ j≤ n. Since the last equation in the three-term relation of x j can be written as

AT
n−2,ixn−2 +Bn−1,ixn−1 +An−1,ixn = λixn−1,

it follows that {xk}n
k=0 and {Pk(Λ)}n

k=0 satisfy the same three-term relation. Thus
so does {yk} = {Pk(Λ)− xk}. But since y0 = 0, it follows from the previous
argument that yk = 0 for all 1 ≤ k ≤ n. In particular, yn = Pn(Λ) = 0. The proof
is complete.

From this theorem follow several interesting corollaries.

Corollary 3.7.3 All the common zeros of Pn are real and are points in Rd.

Proof This follows because the Jn,i are symmetric matrices and the eigenvalues
of a symmetric matrix are real and hence are points in Rd .

Corollary 3.7.4 The polynomials in Pn have at most dimΠd
n−1 common zeros.

Proof Since Jn,i is a square matrix of size dimΠd
n−1, it can have at most that many

eigenvectors.

In one variable, the nth orthogonal polynomial pn has n = dimΠ1
n−1 distinct

real zeros. The situation becomes far more complicated in several variables. The
following theorem characterizes when Pn has the maximum number of common
zeros.

Theorem 3.7.5 The orthogonal polynomial Pn has N = dimΠd
n−1 distinct real

common zeros if and only if

An−1,iA
T
n−1, j = An−1, jA

T
n−1,i, 1≤ i, j ≤ d. (3.7.1)

Proof According to Theorem 3.7.2 a zero of Pn is a joint eigenvalue of
Jn,1, . . . ,Jn,d whose eigenvectors forms a one-dimensional space. This implies
that Pn has N = dimΠd

n−1 distinct zeros if and only if Jn,1, . . . ,Jn,d have N distinct
eigenvalues, which is equivalent to stating that Jn,1, . . . ,Jn,d can be simultaneously
diagonalized by an invertible matrix. Since a family of matrices is simultaneously
diagonalizable if and only if it is a commuting family,

Jn,iJn, j = Jn, jJn,i, 1≤ i, j ≤ d.

From the definition of Jn,i and the commutativity conditions (3.4.2), the above
equation is equivalent to the condition

AT
n−2,iAn−2, j +Bn−1,iBn−1, j = AT

n−2, jAn−2,i +Bn−1, jBn−1,i.

The third equation in (3.4.2) then leads to the desired result.
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The condition (3.7.1) is trivial for orthogonal polynomials in one variable, as
then Ai = ai are scalars. The condition is usually not satisfied, since matrix multi-
plication is not commutative; it follows that in general Pn does not have dimΠd

n−1
common zeros. Further, the following theorem gives a necessary condition for Pn

to have the maximum number of common zeros. Recall the notation ΞC for joint
matrices in Definition 3.5.2.

Theorem 3.7.6 A necessary condition for the orthogonal polynomial Pn to have
dimΠd

n−1 distinct real common zeros is

rank
(
ΞT

Bn
Bn
)

= rank
(
ΞT

An−1
An−1

)
=
(

n+d−2
n

)
+
(

n+d−3
n−1

)
.

In particular, for d = 2, the condition becomes

rank(Bn,1Bn,2−Bn,2Bn,1) = rank(AT
n−1,1An−1,2−AT

n−1,2An−1,1) = 2.

Proof If Pn has dimΠd
n−1 distinct real common zeros then, by Theorem 3.7.5,

the matrices An−1,i satisfy equation (3.7.1). It follows that the third commutativity
condition in (3.4.2) is reduced to

Bn,iBn, j−Bn, jBn,i = AT
n−1, jAn−1,i−AT

n−1,iAn−1, j,

which, using the fact that the Bn,i are symmetric matrices, can be written as
ΞT

Bn
Bn = −ΞT

An−1
An−1. Using the rank condition (3.3.8), Proposition 3.5.7 and

a rank inequality, we have

rank ΞT
Bn

Bn = rank ΞT
An−1

An−1

≥ rank An−1 + rank ΞAn−1 −drd
n−1

≥rd
n +drd

n−1− rd
n−2−drd

n−1 = rd
n − rd

n−2.

To prove the desired result, we now prove the reverse inequality. On the one hand,
using the notation ΞC the first equation in (3.4.2) can be written as ΞT

AT
n−1

An = 0.

By Proposition 3.5.7 and the rank condition (3.3.8), it follows that the columns
of An form a basis for the null space of ΞT

AT
n−1

. On the other hand, the condition

(3.7.1) can be written as ΞT
AT

n−1
(An−1,1 · · · An−1,d)T = 0, which shows that the

columns of the matrix (An−1,1 · · · An−1,d)T belong to the null space of ΞT
AT

n−1
.

So, there is a matrix Sn : rd
n+1×rd

n−1 such that (An−1,1 · · · An−1,d)T = AnSn. It
follows from

rd
n−1 = rank(An−1,1 · · · An−1,d)T = rank AnSn ≤ rank Sn ≤ rd

n−1

that rank Sn = rd
n−1. Using the condition (3.7.1) with n in place of n−1, we have

ΞT
Bn+1

Bn+1Sn =−ΞT
An

AnSn =−ΞT
An

(An−1,1 · · · An−1,d)T = 0,
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where the last equality follows from the first equation in (3.4.2). Hence

rank
(
ΞT

Bn+1
Bn+1

)
=rd

n+1−dimkerΞT
Bn+1

Bn+1

≤rd
n+1− rank Sn = rd

n+1− rd
n−1,

which completes the proof.

If L is a quasi-centrally-symmetric linear functional then rank[ΞT
Bn

Bn] = 0,
since it follows from Lemma 3.5.3 that

ΞT
Bn

Bn = 0 ⇐⇒ Bn,iBn, j = Bn, jBn,i,

where we have used the fact that the Bn,i are symmetric. Therefore, a immediate
corollary of the above result is the following.

Corollary 3.7.7 If L is a quasi-centrally-symmetric linear functional then Pn

does not have dimΠd
n−1 distinct common zeros.

The implications of these results are discussed in the following section.

3.8 Gaussian Cubature Formulae
In the theory of orthogonal polynomials in one variable, Gaussian quadrature
formulae played an important role. Let w be a weight function defined on R.
A quadrature formula with respect to w is a weighted sum of a finite number
of function values that gives an approximation to the integral

∫
f wdx; it gives

the exact value of the integral for polynomials up to a certain degree, which is
called the degree of precision of the formula. Among all quadrature formulae a
Gaussian quadrature formula has the maximum degree of precision, which is 2n−
1 for a formula that uses n nodes, as discussed in Theorem 1.3.13. Furthermore,
a Gaussian quadrature formula exists if and only if the nodes are zeros of an
orthogonal polynomial of degree n with respect to w. Since such a polynomial
always has n distinct real zeros, the Gaussian quadrature formula exists for every
suitable weight function.

Below we study the analogues of the Gaussian quadrature formulae for several
variables, called the Gaussian cubature formulae. The existence of such formulae
depends on the existence of common zeros of orthogonal polynomials in several
variables.

Let L be a positive definite linear functional. A cubature formula of degree
2n−1 with respect to L is a linear functional

In( f ) =
N

∑
k=1

λk f (xk), λk ∈ R, xk ∈ Rd,
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such that L ( f ) = In( f ) for all f ∈ Πd
2n−1 and L ( f ∗) �= L2n−1( f ∗) for at least

one f ∗ ∈Πd
2n. The points xk are called the nodes, and the numbers λk the weights,

of the cubature formula. Such a formula is called minimal if N, the number of
nodes, is minimal. If a cubature formula has all positive weights, it is called a
positive cubature.

We are interested in the minimal cubature formulae. To identify a cubature
formula as minimal, it is necessary to know the minimal number of nodes in
advance. The following theorem gives a lower bound for the numbers of nodes of
cubature formulae; those formulae that attain the lower bound are minimal.

Theorem 3.8.1 The number of nodes of a cubature formula of degree 2n− 1
satisfies N ≥ dimΠd

n−1.

Proof If a cubature formula Ln of degree 2n− 1 has less than dimΠd
n−1 nodes

then the linear system of equations P(xk) = 0, where the xk are nodes of the
cubature formula and P ∈ Πd

n−1, has dimΠd
n−1 unknowns that are coefficients of

P but fewer than dimΠd
n−1 equations. Therefore, there will be at least one nonzero

polynomial P ∈Πd
n−1 which vanishes on all nodes. Since the formula is of degree

2n−1, it follows that L (P2) = Ln(P2) = 0, which contradicts the fact that L is
positive definite.

For d = 1, the lower bound in Theorem 3.8.1 is attained by the Gaussian
quadrature formulae. As an analogy of this, we make the following definition.

Definition 3.8.2 A cubature formula of degree 2n− 1 with dimΠd
n−1 nodes is

called a Gaussian cubature.

The main result in this section is the characterization of Gaussian cubature
formulae. We start with a basic lemma of Mysovskikh [1976], which holds the
key to the proof of the main theorem in this section and which is of considerable
interest in itself. We need a definition: an algebraic hypersurface of degree m in
Rd is a zero set of a polynomial of degree m in d variables.

Lemma 3.8.3 The pairwise distinct points xk, 1 ≤ k ≤ N = dimΠd
n−1, on Rd

are not on an algebraic hypersurface of degree n−1 if and only if there exist rd
n

polynomials of degree n such that their nth degree terms are linearly independent,
for which these points are the common zeros.

Proof That the xk are not on a hypersurface of degree n−1 means that the N×N
matrix (xβk ), where the columns are arranged according to the lexicographical
order in {β : 0 ≤ |β | ≤ n− 1} and the rows correspond to 1 ≤ k ≤ N, is
nonsingular. Therefore, we can construct rd

n polynomials
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Qn
α = xα −Rα , |α|= n, Rα(x) = ∑

|β |≤n−1

Cα,β xβ ∈Πd
n−1 (3.8.1)

by solving the linear system of equations

Rn
α(xk) = xαk , 1≤ k ≤ N,

for each fixed α . Clearly, the set of polynomials Qn
α is linearly independent and

the conditions Qn
α(xk) = 0 are satisfied.

However, suppose that there are rd
n polynomials Qn

α of degree n which have xk

as common zeros and that their nth terms are linearly independent. Because of
their linear independence, we can assume that these polynomials are of the form
(3.8.1). If the points xk are on an algebraic hypersurface of degree n−1 then the
matrix Xn = (xβk ), where 1 ≤ k ≤ N and |β | ≤ n− 1, is singular. Suppose that
rank Xn = M− 1, M ≤ N. Assume that the first M− 1 rows of this matrix are
linearly independent. For each k define a vector Uk = (xβk )|β |≤n−1 in RN ; then
U1, . . . ,UM−1 are linearly independent and there exist scalars c1, . . . ,cM , not all
zero, such that ∑M

k=1 ckUk = 0. Moreover, by considering the first component of
this vector equation it follows that at least two c j are nonzero. Assume that c1 �= 0
and cM �= 0. By (3.8.1) the equations Qn

α(xk) = 0 can be written as

xαk − ∑
|β |≤n−1

Cα ,β xβk = 0, |α|= n, k = 1, . . . ,N.

Since the summation term can be written as CT
αUk, with Cα a vector in RN , it

follows from ∑M
k=1 ckUk = 0 that ∑M

k=1 ckxαk = 0, |α| = n. Using the notation for
the vectors Uk again, it follows from the above equation that ∑M

k=1 ckxk,iUk =
0, 1 ≤ i ≤ d, where we have used the notation xk = (xk,1, . . . ,xk,d). Multiplying
the equation ∑M

k=1 ckUk = 0 by xM,i and then subtracting it from the equation
∑M

k=1 ckxk,iUk = 0, we obtain

M−1

∑
k=1

ck(xk,i− xM,i)Uk = 0, 1≤ i≤ d.

Since U1, . . . ,UM−1 are linearly independent, it follows that ck(xk,i− xM,i) = 0,
1 ≤ k ≤M− 1, 1 ≤ i ≤ d. Since c1 �= 0, x1,i = xM,i for 1 ≤ i ≤M− 1, which is
to say that x1 = xM , a contradiction to the assumption that the points are pairwise
distinct.

The existence of a Gaussian cubature of degree 2n− 1 is characterized by
the common zeros of orthogonal polynomials. The following theorem was first
proved by Mysovskikh [1970]; our proof is somewhat different.

Theorem 3.8.4 Let L be a positive definite linear functional, and let Pn be
the corresponding orthogonal polynomials. Then L admits a Gaussian cubature
formula of degree 2n−1 if and only if Pn has N = dimΠd

n−1 common zeros.
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Proof Suppose that Pn has N common zeros. By Theorem 3.7.1 and Corollary
3.7.3, all these zeros are real and distinct. Let us denote these common zeros by
x1,x2, . . . ,xN . From the Christoffel–Darboux formula (3.6.5) and the formula for
Kn(x,x), it follows that the polynomial �k(x) = Kn(x,xk)/Kn(xk,xk) satisfies the
condition �k(x j) = δk, j, 1 ≤ k, j ≤ N. Since the �k are of degree n− 1 they serve
as fundamental interpolation polynomials, and it follows that

Ln( f ,x) =
N

∑
k=1

f (xk)
K(x,xk)
K(xk,xk)

, Ln( f ) ∈Πd
n−1, (3.8.2)

is a Lagrange interpolation based on xk, that is, Ln( f ,xk) = f (xk), 1 ≤ k ≤ N.
By Lemma 3.8.3 the points xk are not on an algebraic hypersurface of degree
n−1. Therefore, it readily follows that Ln( f ) is the unique Lagrange interpolation
formula. Thus the formula

L [Ln( f )] =
N

∑
k=1

Λk f (xk), Λk = [Kn(xk,xk)]−1, (3.8.3)

is a cubature formula for L which is exact for all polynomials in Πd
n−1. However,

since Pn is orthogonal to Πd
n−1 and the nodes are zeros of Pn, it follows that, for

any vector a ∈Rrn ,

L (aTPn) = 0 =
N

∑
k=1

ΛkaTPn(xk).

Since any polynomial P ∈ Πd
n can be written as P = aTPn + R for some a with

R ∈Πd
n−1,

L (P) = L (R) =
N

∑
k=1

ΛkR(xk) =
N

∑
k=1

ΛkP(xk) ∀P ∈Πd
n. (3.8.4)

Thus, the cubature formula (3.8.3) is exact for all polynomials in Πd
n . Clearly, we

can repeat this process. By orthogonality and the fact that Pn(xk) = 0,

L (xiaTPn) = 0 =
N

∑
k=1

Λkxk,iaTPn(xk), 1≤ i≤ d,

which, by the recurrence relation (3.3.10) and the relation (3.8.4), implies that
L (aTPn+1) =∑N

k=1ΛkaTPn+1(xk). Therefore, it readily follows that the cubature
formula (3.8.3) is exact for all polynomials in Πd

n+1. Because Pn is orthogonal to
polynomials of degree less than n, we can apply this process on xα , |α| ≤ n−2,
and conclude that the cubature formula (3.8.3) is indeed exact for Πd

2n−1.
Now suppose that a Gaussian cubature formula exists and it has xk, 1 ≤ k ≤

N = dimΠd
n−1, as its nodes. Since L is positive definite, these nodes cannot all

lie on an algebraic hypersurface of degree n−1. Otherwise there would be a Q ∈
Πn−1, not identically zero, such that Q vanished on all nodes, which would imply



3.8 Gaussian Cubature Formulae 111

that L (Q2) = 0. By Lemma 3.8.3 there exist linearly independent polynomials
Pn

j , 1 ≤ j ≤ rd
n , which have the xk as common zeros. By the Gaussian cubature

formula, for any R ∈Πn−1,

L (RPn
j ) =

N

∑
k=1

Λk(RPn
j )(xk) = 0.

Thus, the polynomials Pn
j are orthogonal to Πd

n−1 and we can write them in the
form (3.8.1).

It is worthwhile mentioning that the above proof is similar to the proof for the
Gaussian quadrature formulae. The use of interpolation polynomials leads to the
following corollary.

Corollary 3.8.5 A Gaussian cubature formula takes the form (3.8.3); in
particular, it is a positive cubature.

In the proof of Theorem 3.8.4, the Gaussian cubature formula (3.8.3) was
derived by integrating the Lagrange interpolation polynomial Ln f in (3.8.2). This
is similar to the case of one variable. For polynomial interpolation in one vari-
able, it is known that the Lagrange interpolation polynomials based on the distinct
nodes always exist and are unique. The same, however, is not true for polynomial
interpolation in several variables. A typical example is that of the interpolation of
six points on the plane by a polynomial of degree 2. Assume that the six points lie
on the unit circle x2 + y2 = 1; then the polynomial p(x,y) = x2 + y2−1 will van-
ish on the nodes. If P is an interpolation polynomial of degree 2 on these nodes
then so is P +ap for any given number a. This shows that the Lagrange interpo-
lation polynomial, if it exists, is not unique. If the nodes are zeros of a Gaussian
cubature formula then they admit a unique Lagrange interpolation polynomial.

Theorem 3.8.6 If xk, 1≤ k ≤ dimΠd
n−1, are nodes of a Gaussian cubature for-

mula then for any given {yi} there is a unique polynomial P ∈ Πd
n−1 such that

P(xi) = yi, 1≤ i≤ dimΠd
n−1.

Proof The interpolating polynomial takes the form (3.8.2) with yk = f (xk). If all
f (xi) = 0 then P(xi) = 0 and the Gaussian cubature formula shows that L (P2)
= 0, which implies P = 0.

Theorem 3.8.4 characterizes the cubature formulae through the common zeros
of orthogonal polynomials. Together with Theorem 3.7.5 we have the following.

Theorem 3.8.7 Let L be a positive definite linear functional, and let Pn be
the corresponding orthonormal polynomials, which satisfy the three-term relation
(3.3.3). Then a Gaussian cubature formula exists if and only if (3.7.1) holds.



112 General Properties of Orthogonal Polynomials in Several Variables

Since Corollary 3.7.7 states that (3.7.1) does not hold for a quasi-centrally-
symmetric linear functional, it follows that:

Corollary 3.8.8 A quasi-centrally-symmetric linear functional does not admit
a Gaussian cubature formula.

In particular, there is no Gaussian cubature formula for symmetric classical
weight functions on the square or for the classical weight function on the unit
disk, or for their higher-dimensional counterparts. An immediate question is
whether there are any weight functions which admit a Gaussian cubature formula.
It turns out that there are such examples, as will be shown in Subsection 5.4.2.

3.9 Notes
Section 3.2 The general properties of orthogonal polynomials in several vari-
ables were studied in Jackson [1936], Krall and Sheffer [1967], Bertran [1975],
Kowalski [1982a, b], Suetin [1999], and a series of papers of Xu [1993a,
b, 1994a–e] in which the vector–matrix notion is emphasized.

The classical references for the moment problems in one variable are Shohat
and Tamarkin [1943] and Akhiezer [1965]. For results on the moment problem
in several variables, we refer to the surveys Fuglede [1983] and Berg [1987],
as well as Putinar and Vasilescu [1999] and the references therein. Although
in general positive polynomials in several variables cannot be written as sums
of squares of polynomials, they can be written as sums of squares of rational
functions (Hilbert’s 17th problem); see the recent survey Reznick [2000] and the
references therein.

Section 3.3 The three-term relation and Favard’s theorem in several variables
were first studied by Kowalski [1982a, b], in which the vector notation was used
in the form xPn = (x1PT

n · · · xdPT
n ) and Favard’s theorem was stated under an

additional condition that takes a rather complicated form. The additional condi-
tion was shown to be equivalent to rank Ck = rd

k , where Ck = (Ck,1 · · · Ck,d)
in Xu [1993a]. The relation for orthonormal polynomials is stated and proved in
Xu [1994a]. The three-term relations were used by Barrio, Peña and Sauer [2010]
for evaluating orthogonal polynomials. The matrices in the three-term relations
were computed for further orthogonal polynomials of two variables in Area,
Godoy, Ronveaux and Zarzo [2012]. The structure of orthogonal polynomials
in lexicographic order, rather than graded lexicographic order, was studied in
Delgado, Geronimo, Iliev and Marcellán [2006].

Section 3.4 The relation between orthogonal polynomials of several variables
and self-adjoint commuting operators was studied in Xu [1993b, 1994a]; see also
Gekhtman and Kalyuzhny [1994]. An extensive study from the operator theory
perspective was carried out in Cichoń, Stochel and Szafraniec [2005].
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Sections 3.7 and 3.8 The study of Gaussian cubature formulae started with
the classical paper of Radon [1948]. Mysovskikh and his school continued the
study and made considerable progress; Mysovskikh obtained, for example, the
basic properties of the common zeros of Pn and most of the results in Section
3.8; see Mysovskikh [1981] and the references therein. The fact that the com-
mon zeros are joint eigenvalues of block Jacobi matrices and Theorem 3.7.5 were
proved in Xu [1993a, 1994b]. Mysovskikh [1976] proved a version of Theorem
3.7.5 in two variables without writing it in terms of coefficient matrices of the
three-term relation. A different necessary and sufficient condition for the exis-
tence of the Gaussian cubature formula was given recently in Lasserre [2012].
There are examples of weight functions that admit Gaussian cubature formulae
for all n (Schmid and Xu [1994], Berens, Schmid and Xu [1995b]).

Möller [1973] proved the following important results: the number of nodes, N,
of a cubature formula of degree 2n−1 in two variables must satisfy

N ≥ dimΠ2
n−1 + 1

2 rank(An−1,1AT
n−1,2−An−1,2AT

n−1,1), (3.9.1)

which we have stated in matrix notation; moreover, for the quasi-centrally-
symmetric weight function, rank(An−1,1AT

n−1,2−An−1,2AT
n−1,1) = 2[n/2]. Möller

also showed that if a cubature formula attains the lower bound (3.9.1) then its
nodes must be common zeros of a subset of orthogonal polynomials of degree n.
Similar results hold in the higher dimensional setting. Much of the later study in
this direction has been influenced by Möller’s work. There are, however, only
a few examples in which the lower bound (3.9.1) is attained; see, for exam-
ple, Möller [1976], Morrow and Patterson [1978], Schmid [1978, 1995], and
Xu [2013]. The bound in (3.9.1) is still not sharp, even for radial weight func-
tions on the disk; see Verlinden and Cools [1992]. For cubature formulae of
even degree, see Schmid [1978] and Xu [1994d]. In general, all positive cuba-
ture formulae are generated by common zeros of quasi-orthogonal polynomials
(Möller [1973], Xu [1994f, 1997a]), which are orthogonal to polynomials of a
few degrees lower, a notion that can also be stated in terms of the m-orthogonality
introduced by Möller. A polynomial p is said to be m-orthogonal if

∫
pqdμ = 0

for all q ∈ Πd such that pq ∈ Πd
m. The problem can be stated in the language

of polynomial ideals and varieties. The essential result says that if the variety of
an ideal of m-orthogonal polynomials consists of only real points and the size of
the variety is more or less equal to the codimension of the ideal then there is a
cubature formula of degree m; see Xu [1999c]. Concerning the basic question of
finding a set of orthogonal polynomials or m-orthogonal polynomials with a large
number of common zeros, there is no general method yet. For further results in
this direction we refer to the papers cited above and to the references therein. Puti-
nar [1997, 2000] studied cubature formulae using an operator theory approach.
The books by Stroud [1971], Engels [1980] and Mysovskikh [1981] deal with
cubature formulae in general.



4

Orthogonal Polynomials on the Unit Sphere

In this chapter we consider orthogonal polynomials with respect to a weight
function defined on the unit sphere, the structure of which is not covered by
the discussion in the previous chapter. Indeed, if dμ is a measure supported on
the unit sphere of Rd then the linear functional L ( f ) =

∫
f dμ is not positive def-

inite in the space of polynomials, as
∫
(1−‖x‖2)2 dμ = 0. It is positive definite in

the space of polynomials restricted to the unit sphere, which is the space in which
these orthogonal polynomials are defined.

We consider orthogonal polynomials with respect to the surface measure on
the sphere first; these are the spherical harmonics. Our treatment will be brief,
since most results and proofs will be given in a more general setting in Chap-
ter 7. The general structure of orthogonal polynomials on the sphere will be
derived from the close connection between the orthogonal structures on the
sphere and on the unit ball. This connection goes both ways and can be used
to study classical orthogonal polynomials on the unit ball. We will also discuss
a connection between the orthogonal structures on the unit sphere and on the
simplex.

4.1 Spherical Harmonics
The Fourier analysis of continuous functions on the unit sphere Sd−1 := {x : ‖x‖=
1} in Rd is performed by means of spherical harmonics, which are the restrictions
of homogeneous harmonic polynomials to the sphere. In this section we present a
concise overview of the theory and a construction of an orthogonal basis by means
of Gegenbauer polynomials. Further results can be deduced as special cases of
theorems in Chapter 7, by taking the weight function there as 1.

We assume d ≥ 3 unless stated otherwise. Let Δ= ∂ 2
1 + · · ·+∂ 2

d be the Laplace
operator, where ∂i = ∂/∂xi.
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Definition 4.1.1 For n = 0,1,2, . . . let H d
n be the linear space of harmonic

polynomials, homogeneous of degree n, on Rd , that is,

H d
n =

{
P ∈Pd

n : ΔP = 0
}

.

Theorem 4.1.2 For n = 0,1,2, . . .

dimH d
n = dimPd

n −dimPd
n−2 =

(
n+d−1

d−1

)
−
(

n+d−3
d−1

)
.

Proof Briefly, one shows that Δ maps Pd
n onto Pd

n−2; this uses the fact that
Δ
[‖x‖2P(x)

] �= 0 whenever P(x) �= 0.

There is a “Pascal triangle” for the dimensions. Let ad,n = dimH d
n ; then ad,0 =

1,a2,n = 2 for n ≥ 1 and ad+1,n = ad+1,n−1 + ad,n for n ≥ 1. Note that a3,n =
2n+1 and a4,n = (n+1)2. The basic device for constructing orthogonal bases is
to set up the differential equation Δ

(
g(xm+1, . . . ,xd) f (∑d

j=m x2
j ,xm)

)
= 0, where g

is harmonic and homogeneous and f is a polynomial.

Proposition 4.1.3 For 1≤m < d, suppose that g(xm+1, . . . ,xd) is harmonic and
homogeneous of degree s in its variables, and that f (∑d

j=m x2
j ,xm) is homogeneous

of degree n in x; then Δ(g f ) = 0 implies that (see Definition 1.4.10)

f = c

( d

∑
j=m

x2
j

)n/2

Cλ
n

(
xm

( d

∑
j=m

x2
j

)−1/2)
for some constant c and λ = s+ 1

2 (d−m−1).

Proof Let ρ2 =∑d
j=m x2

j and apply the operator Δ to gxn−2 j
m ρ2 j. The product rule

gives

Δ
(
gxn−2 j

m ρ2 j)= xn−2 j
m ρ2 jΔg+gΔ

(
xn−2 j

m ρ2 j)+2
d

∑
i=m+1

∂g
∂xi

∂ρ2 j

∂xi
xn−2 j

m

= 4gs jxn−2 j
m ρ2 j−2 +g

[
2 j(d−m−1+2n−2 j)xn−2 j

m ρ2 j−2

+(n−2 j)(n−2 j−1)xn−2 j−2
m ρ2 j].

Set Δ
(
g∑ j≤n/2 c jx

n−2 j
m ρ2 j

)
= 0 to obtain the recurrence equation

2( j +1)(d−m+2n+2s−3−2 j)c j+1 +(n−2 j)(n−2 j−1)c j = 0,

with solution

c j =

(− n
2

)
j

(
1−n

2

)
j

j!
(
1−n− d−m−1

2 − s
)

j

c0.
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Now let f (x) = ∑ j≤n/2 c jx
n−2 j
m ρ2 j = c′ρnCλ

n ( xm
ρ ), with λ = s + (d−m− 1)/2,

for some constant c′; then Δ(g f ) = 0. This uses the formula in Proposition 1.4.11
for Gegenbauer polynomials.

The easiest way to start this process is with the real and imaginary parts of
(xd−1 +

√−1xd)s, which can be written in terms of Chebyshev polynomials of
first and second kind, that is, gs,0 = ρsTs(

xd−1
ρ ) and gs−1,1 = xdρs−1Us−1(

xd−1
ρ ),

where ρ2 = x2
d−1 + x2

d , for s ≥ 1 (and g0,0 = 1). Then Proposition 4.1.3, used
inductively from m = d− 2 to m = 1, produces an orthogonal basis for H d

n : fix
n = (n1,n2, . . . ,nd−1,0) or (n1,n2, . . . ,nd−1,1) and let

Yn(x) = gnd−1,nd (x)
d−2

∏
j=1

[
(x2

j + · · ·+ x2
d)n j/2C

λ j
n j

(
x j(x2

j + · · ·+ x2
d)−1/2)] ,

with λ j =∑d
i= j+1 ni + 1

2(d− j−1). Note that Yn(x) is homogeneous of degree |n|
and that the number of such d-tuples is

(n+d−2
d−2

)
+
(n+d−3

d−2

)
=
(n+d−1

d−1

)−(n+d−3
d−1

)
=

dimH d
n . The fact that these polynomials are pairwise orthogonal follows easily

from their expression in spherical polar coordinates. Indeed, let

x1 = r cosθd−1,

x2 = r sinθd−1 cosθd−2,

...

xd−1 = r sinθd−1 · · ·sinθ2 cosθ1,

xd = r sinθd−1 · · ·sinθ2 sinθ1,

(4.1.1)

with r≥ 0, 0≤ θ1 < 2π and 0≤ θi ≤ π for i≥ 2. In these coordinates the surface
measure on Sd−1 and the normalizing constant are

dω =
d−2

∏
j=1

(
sinθd− j

)d− j−1
dθ1dθ2 · · ·dθd−1, (4.1.2)

σd−1 =
∫

Sd−1
dω =

2πd/2

Γ( d
2 )

, (4.1.3)

where σd−1 is the surface area of Sd−1.

Theorem 4.1.4 In the spherical polar coordinate system, let

Yn(x) = r|n|g′(x)
d−2

∏
j=1

[
(sinθd− j)β jC

λ j
n j (cosθd− j)

]
,

where β j = ∑d
i= j+1 ni, g′(x) = cos nd−1θ1 for nd = 0 and sin(nd−1 + 1)θ1 for

nd = 1. Then {Yn} is a mutually orthogonal basis of H d
n and the L2 norms of the

polynomials are
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σ−1
d−1

∫
Sd−1

Y 2
n dω = an

d−2

∏
j=1

λ j (2λ j)n j

( d− j
2

)
β j

n j!
( d− j+1

2

)
β j

(n j +λ j)
,

where an = 1
2 if nd−1 +nd > 0, else an = 1.

The calculation of the norm uses the formulae in Subsection 1.4.3. We also
note that in the expansion of Yn(x) as a sum of monomials the highest term in
lexicographic order is (a multiple of ) xn.

It is an elementary consequence of Green’s theorem that homogeneous har-
monic polynomials of differing degrees are orthogonal with respect to the surface
measure. In the following ∂/∂n denotes the normal derivative.

Proposition 4.1.5 Suppose that f ,g are polynomials on Rd; then∫
Sd−1

(
∂ f
∂n

g− ∂g
∂n

f

)
dω =

∫
Bd

(gΔ f − fΔg)dx

and if f ,g are homogeneous then

(deg f −degg)
∫

Sd−1
f g dω =

∫
Bd

(gΔ f − fΔg)dx.

Proof The first statement is Green’s theorem specialized to the ball Bd and its
boundary Sd−1. The normal derivative on the sphere is ∂ f /∂n =∑d

i=1 xi∂ f/∂xi =
(deg f ) f .

Clearly, if f ,g are spherical harmonics of different degrees then they are
orthogonal in L2

(
Sd−1,dω

)
. There is another connection to the Laplace oper-

ator. For x ∈ Rd , consider the spherical polar coordinates (r,ξ ) with r > 0 and
ξ ∈S d−1 defined by x = rξ .

Proposition 4.1.6 In spherical coordinates (r,ξ1, . . . ,ξd−1), the Laplace oper-
ator can be written as

Δ =
∂ 2

∂ r2 +
d−1

r
∂
∂ r

+
1
r2Δ0, (4.1.4)

where the spherical part Δ0 is given by

Δ0 = Δ(ξ )−〈ξ ,∇(x)〉2− (d−2)〈ξ ,∇(ξ )〉;

here Δ(ξ ) and ∇(ξ ) denote the Laplacian and the gradient with respect to
(ξ1, . . . ,ξd−1), respectively.
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Proof Write r and ξi in terms of x by the change of variables x �→ (r,ξ1, . . . ,ξd)
and compute the partial derivatives ∂ξi/∂yi; the chain rule implies that

∂
∂xi

= ξi
∂
∂ r

+
1
r

( ∂
∂ξi

−ξi〈ξ ,∇(ξ )〉
)
, 1≤ i≤ d,

where for i = d we use the convention that ξ 2
d = 1− ξ 2

1 − ·· ·− ξ 2
x−1 and define

∂/∂ξd = 0. Repeating the above operation and simplifying, we obtain the second-
order derivatives after some tedious computation:

∂ 2

∂ξ 2
i

= ξ 2
i
∂ 2

∂ r2 +
1−ξ 2

i

r
∂
∂ r

+
1
r2

( ∂ 2

∂ξ 2
i

− (1−ξ 2
i )〈ξ ,∇(ξ )〉−ξi〈ξ ,∇(ξ )〉 ∂

∂ξi

)
+
(
ξi

∂
∂ξi

−ξ 2
i 〈ξ ,∇(ξ )〉

)(1
r
∂
∂ r
− 1

r2

)
−
(
ξi

∂
∂ξi

−ξ 2
i 〈ξ ,∇(ξ )〉

)
〈x,∇(x)〉.

Adding these equations for 1≤ i≤ d, we see that the last two terms become zero,
since ξ 2

1 + · · ·+ξ 2
d = 1, and we end up with the equation

Δ =
∂ 2

∂ r2 +
d−1

r
∂
∂ r

+
1
r2

(
Δ(ξ )− (d−1)〈ξ ,∇(ξ )〉−

d−1

∑
i=1

ξi〈ξ ,∇(ξ )〉 ∂
∂ξi

)
.

The term with the summation sign can be verified to be 〈ξ ,∇(ξ )〉2−〈ξ ,∇(ξ )〉,
from which the stated formula follows.

The differential operator Δ0 is called the Laplace–Beltrami operator.

Theorem 4.1.7 For n = 0,1,2, . . . ,

Δ0Y =−n(n+d−2)Y ∀Y ∈H d
n . (4.1.5)

Proof Let Y ∈H d
n . Since Y is homogeneous, Yn(x) = r nYn(x′). As Y is harmonic,

(4.1.4) shows that

0 = ΔY (x) = n(n−1)rn−2Yn(x′)+(d−1)nrn−2Yn(x′)+ rn−2Δ0Yn(x′),

which is, when restricted to the sphere, equation (4.1.5).

For a given n, let Pn(x,y) be the reproducing kernel for H d
n (as functions on

the sphere); then

Pn(x,y) =∑
n
‖Yn‖−2Yn(x)Yn(y), |n|= n, nd = 0 or 1.

However the linear space H d
n is invariant under the action of the orthogonal

group O(d) (that is, f (x)→ f (xw) where w ∈ O(d)); the surface measure is also
invariant, hence Pn(xw,yw) = Pn(x,y) for all w ∈ O(d). This implies that Pn(x,y)
depends only on the distance between x and y (both points being on the sphere)
or, equivalently, on 〈x,y〉 = ∑d

i=1 xiyi, the inner product. Fix y = (1,0, . . . ,0);
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the fact that Pn(x,y) = f (〈x,y〉) = f (x1) must be the restriction of a harmonic
homogeneous polynomial to the sphere shows that

Pn(x,y) = an‖x‖n‖y‖nC(d−2)/2
n

(〈x,y〉/‖x‖‖y‖)
for some constant an. With respect to normalized surface measure on Sd−1

we have σ−1
d−1

∫
Sd−1 Pn(x,x)dω(x) = dimH d

n , but Pn(x,x) is constant and thus

anC(d−2)/2
n (1) = dimH d

n . Hence an = (2n + d − 2)/(d − 2). Thus, we have
proved the following:

Theorem 4.1.8 The reproducing kernel Pn(x,y) of H d
n satisfies

Pn(x,y) =
n+λ
λ

‖x‖n‖y‖nCλ
n

( 〈x,y〉
‖x‖‖y‖

)
, λ =

d−2
2

. (4.1.6)

The role of the generic zonal harmonic Pn in the Poisson summation kernel will
be addressed in later chapters. Applying the reproducing kernel to the harmonic

polynomial x �→ ‖x‖nC(d−2)/2
n (〈x,z〉/‖x‖) for a fixed z ∈ Sd−1 implies the so-

called Funk–Hecke formula

σ−1
d−1

2n+d−2
d−2

∫
Sd−1

C(d−2)/2
n (〈x,y〉) f (x)dω(x) = f (y),

for any f ∈H d
n and y ∈ Sd−1.

4.2 Orthogonal Structures on Sd and on Bd

Our main results on the orthogonal structure on the unit sphere will be deduced
by lifting those on the unit ball Bd to the unit sphere Sd , where Bd := {x ∈ Rd :
‖x‖ ≤ 1} and Sd ⊂ Rd+1. We emphasize that we shall work with the unit sphere
Sd instead of Sd−1 in this section, since otherwise we would be working with
Bd−1.

Throughout this section we fix the following notation: for y ∈ Rd+1, write
y = (y1, . . . ,yd ,yd+1) = (y′,yd+1) and use polar coordinates

y = r(x,xd+1), where r = ‖y‖, (x,xd+1) ∈ Sd. (4.2.1)

Note that (x,xd+1) ∈ Sd implies immediately that x ∈ Bd . Here are the weight
functions on Sd that we shall consider:

Definition 4.2.1 A weight function H defined on Rd+1 is called S-symmetric
if it is even with respect to yd+1 and centrally symmetric with respect to the
variables y′, that is, if

H(y′,yd+1) = H(y′,−yd+1) and H(y′,yd+1) = H(−y′,yd+1).

We further assume that the integral of H over the sphere Sd is nonzero.
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Examples of S-symmetric functions include H(y) = W (y2
1, . . . ,y

2
d+1), which

is even in each of its variables, and H(y) = W (y1, . . . ,yd)h(yd+1), where W is
centrally symmetric on Rd and h is even on R. Note that the weight function
∏i< j |yi−y j|α is not an S-symmetric function, since it is not even with respect to
yd+1. Nevertheless, this function is centrally symmetric. In fact, it is easy to see
that:

Lemma 4.2.2 If H is an S-symmetric weight function on Rd+1 then it is
centrally symmetric, that is, H(y) = H(−y) for y ∈ Rd+1.

In association with a weight function H defined on Rd+1, define a weight
function W B

H on Bd by

W B
H (x) = H(x,

√
1−‖x‖2), x ∈ Bd.

If H is S-symmetric then the assumption that H is centrally symmetric with
respect to the first d variables implies that W B

H is centrally symmetric on Bd .
Further, define a pair of weight functions on Bd ,

W B
1 (x) = 2W B

H (x)
/√

1−‖x‖2 and W B
2 (x) = 2W B

H (x)
√

1−‖x‖2,

respectively. We shall show that orthogonal polynomials with respect to H on
Sd are closely related to those with respect to W B

1 and W B
2 on Bd . We need the

following elementary lemma.

Lemma 4.2.3 For any integrable function f defined on Sd,∫
Sd

f (y)dωd =
∫

Bd

[
f

(
x,
√

1−‖x‖2

)
+ f

(
x,−
√

1−‖x‖2

)] dx√
1−‖x‖2

.

Proof For y ∈ Sd write y = (
√

1− t2x,t), where x ∈ Sd−1 and −1 ≤ t ≤ 1. It
follows that

dωd(y) = (1− t2)(d−2)/2 dt dωd−1(x).

Making the change of variables y �→ (
√

1− t2x, t) gives∫
Sd

f (y)dωd =
∫ 1

−1

∫
Sd−1

f
(√

1− t2x, t
)

dωd−1(1− t2)(d−2)/2dt

=
∫ 1

0

∫
Sd−1

[
f
(√

1− t2x,t
)

+ f
(√

1− t2x,−t
)]

dωd−1(1− t2)(d−2)/2dt

=
∫ 1

0

∫
Sd−1

[
f (rx,

√
1− r2)+ f

(
rx,−

√
1− r2

)]
dωd−1rd−1 dr√

1− r2
,

from which the stated formula follows from the standard parameterization of the
integral over Bd in spherical polar coordinates y = rx for y ∈ Bd , 0 < r ≤ 1 and
x ∈ Sd−1.
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Recall the notation V d
n (W ) for the space of orthonormal polynomials of degree

n with respect to the weight function W . Denote by {Pα}|α|=n and {Qα}|α |=n

systems of orthonormal polynomials that form bases for V d
n (W B

1 ) and V d
n (W B

2 ),
respectively. Keeping in mind the notation (4.2.1), define

Y (1)
α (y) = rnPα(x) and Y (2)

β (y) = rnxd+1Qβ (x), (4.2.2)

where |α| = n, |β | = n − 1 and α,β ∈ Nd
0. These functions are, in fact,

homogeneous orthogonal polynomials on Sd .

Theorem 4.2.4 Let H be an S-symmetric weight function defined on Rd+1. Then
Y (1)
α and Y (2)

β in (4.2.2) are homogeneous polynomials of degree |α| on Rd+1, and
they satisfy ∫

Sd
Y (i)
α (y)Y ( j)

β (y)H(y)dωd = δα,β δi, j, i, j = 1,2,

where if i = j = 1 then |α|= |β |= n and if i = j = 2 then |α|= |β |= n−1.

Proof Since both W B
1 and W B

2 are centrally symmetric, it follows from Theo-
rem 3.3.11 that Pα and Qα are sums of monomials of even degree if |α| is even
and sums of monomials of odd degree if |α| is odd. This allows us to write, for
example,

Pα(x) =
n

∑
k=0

∑
|γ|=n−2k

aγx
γ , aγ ∈R, x ∈ Bd ,

where |α|= n, which implies that

Y (1)
α (y) = rnPα(x) =

n

∑
k=0

r2k ∑
|γ |=n−2k

aγy′γ .

Since r2 = y2
1 + · · ·+y2

d+1 and y′ = (y1, . . . ,yd), this shows that Y (1)
α (y) is a homo-

geneous polynomial of degree n in y. Upon using rxd+1 = yd+1, a similar proof

shows that Y (2)
α is homogeneous of degree n.

Since Y (1)
α , when restricted to Sd , is independent of xd+1 and since Y (2)

α contains

a single factor xd+1, it follows that Y (1)
α and Y (2)

β are orthogonal with respect to

H(y)dωd on Sd for any α and β . Since H is even with respect to its last variable,
it follows from Lemma 4.2.3 that∫

Sd
Y (1)
α (x)Y (1)

β (x)H(x)dωd =2
∫

Bd
Pα(x)Pβ (x)

H(x,
√

1−‖x‖2)√
1−‖x‖2

dx

=
∫

Bd
Pα(x)Pβ (x)W B

1 (x)dx = δα ,β

and, similarly, using the fact that x2
d+1 = 1−‖x‖2, we see that the polynomials

Y (2)
α are orthonormal.
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In particular, ordinary spherical harmonics (the case H(y) = 1) are related to
the orthogonal polynomials with respect to the radial weight functions W0(x) =
1/
√

1−‖x‖2 and W1(x) =
√

1−‖x‖2 on Bd , both of which are special cases of
the classical weight functions Wμ(x) = wμ(1−‖x‖2)μ−1/2; see Subsection 5.2.
For d = 2, the spherical harmonics on S1 are given in polar coordinates (y1,y2) =
r(x1,x2) = r(cosθ ,sinθ) by the formulae rn cosnθ and rn sinnθ , which can be
written as

Y (1)
n (y1,y2) = rnTn(x1) and Y (2)

n (y1,y2) = rnx2Un−1(x1),

where, with t = cosθ , Tn(t) = cosnθ and Un(t) = sin(n +1)θ/sinθ are Cheby-
shev polynomials of the first and the second kind and are orthogonal with respect
to 1/

√
1− t2 and

√
1− t2, respectively; see Subsection 1.4.3.

Theorem 4.2.4 shows that the orthogonal polynomials with respect to an
S-symmetric weight function are homogeneous. This suggests the following
definition.

Definition 4.2.5 For a given weight function H, denote by H d+1
n (H) the space

of homogeneous orthogonal polynomials of degree n with respect to H dω on Sd .

Using this definition, Theorem 4.2.4 can be restated as follows: the rela-
tion (4.2.2) defines a one-to-one correspondence between an orthonormal basis
of H d+1

n (H) and an orthonormal basis of V d
n (W B

1 )⊕ xd+1V
d

n−1(W
B
2 ). Conse-

quently, the orthogonal structure on Sd can be studied using the orthogonality
structure on Bd .

Theorem 4.2.6 Let H be an S-symmetric function on Rd+1. For each n ∈N0,

dimH d+1
n (H) =

(
n+d

d

)
−
(

n+d−2
d

)
= dimPd+1

n −dimPd+1
n−2 .

Proof From the orthogonality in Theorem 4.2.4, the polynomials in {Y (1)
α ,Y (2)

β }
are linearly independent. Hence, it follows that

dimH d+1
n (H) = rd

n + rd
n−1 =

(
n+d−1

n

)
+
(

n+d−2
n−1

)
,

where we use the convention that
(k

j

)
= 0 if j < 0. Using the identity

(n+m
n

)−(n+m−1
n

)
=
(n+m−1

n−1

)
, it is easy to verify that dimH d+1

n (H) is given by the formula
stated in Proposition 4.1.2.

Theorem 4.2.7 Let H be an S-symmetric function on Rd+1. For each n ∈N0,

Pd+1
n =

[n/2]⊕
k=0

‖y‖2kH d+1
n−2k(H);
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that is, if P ∈Pd+1
n then there is a unique decomposition

P(y) =
[n/2]

∑
k=0

‖y‖2kPn−2k(y), Pn−2k ∈H d+1
n−2k(H).

Proof Since P is homogeneous of degree n, we can write P(y) = rnP(x,xd+1),
using the notation in (4.2.1). Using x2

d+1 = 1−‖x‖2 whenever possible, we further
write

P(y) = rnP(x) = rn[p(x)+ xd+1q(x)], x ∈ Bd,

where p and q are polynomials of degree at most n and n−1, respectively. More-
over, if n is even then p is a sum of monomials of even degree and q is a sum
of monomials of odd degree; and if n is odd, then p is a sum of monomials of
odd degree and q is a sum of monomials of even degree. Since both {Pα} and
{Qα} form bases for Πd

n and since the weight functions W B
1 and W B

2 are centrally
symmetric, we have the unique expansions

p(x) =
[n/2]

∑
k=0

∑
|α |=n−2k

aαPα(x) and q(x) =
[(n−1)/2]

∑
k=0

∑
|β |=n−2k−1

bβQβ (x).

Therefore, by the definitions of Y (1)
α and Y (2)

β ,

P(y) =
[n/2]

∑
k=0

r2k ∑
|α|=n−2k

aαY (1)
α (y)+yd+1

[(n−1)/2]

∑
k=0

r2k ∑
|β |=n−2k−1

bβY (2)
β (y),

which is the desired decomposition. The uniqueness of the decomposition of P(y)
follows from the orthogonality in Theorem 4.2.4.

Let H be an S-symmetric weight function and let Y (1)
α and Y (2)

α be orthonor-
mal polynomials with respect to H such that they form an orthonormal basis of
H d+1

n (H). For f ∈ L2(H,Sd), its Fourier orthogonal expansion is defined by

f ∼∑
α

[
a(1)
α ( f )Y (1)

α +a(2)
α ( f )Y (2)

α

]
,

where a(i)
α ( f ) =

∫
Sd f (x)Y (i)

α (x)H(x)dω . We define the nth component by

Pn( f ;x) = ∑
|α |=n

[
a(1)
α ( f )Y (1)

α (x)+a(2)
α ( f )Y (2)

α (x)
]
. (4.2.3)

The expansion f ∼ ∑∞
n=0 Pn( f ) is also called the Laplace series. As in the case

of orthogonal expansions for a weight function supported on a solid domain, the
component Pn( f ;x) can be viewed as the orthogonal projection of f on the space
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H d+1
n (H) and, being so, it is independent of the choice of basis of H d+1

n (H).
Define

Pn(H;x,y) = ∑
|α|=n

[
Y (1)
α (x)Y (1)

α (y)+Y (2)
α (x)Y (2)

α (y)
]
; (4.2.4)

this is the reproducing kernel of H d+1
n (H) since it evidently satisfies∫

Sd
Pn(H;x,y)Y (y)H(y)dω(y) = Y (x), Y ∈H d+1

n (H),

which can be taken as the definition of Pn(H;x,y). For ordinary spherical har-
monic polynomials, Pn is a so-called zonal polynomial; see Section 4.1. The
function Pn(H) does not depend on the choice of a particular basis. It serves as an
integral kernel for the component

Sn( f ;x) =
∫

Sd
f (y)Pn(H;x,y)H(y)dω(y). (4.2.5)

As a consequence of Theorem 4.2.4, there is also a relation between the repro-
ducing kernels of H d+1

n (H) and V d
n (W B

1 ). Let us denote the reproducing kernel
of V d

n (W ) by Pn(W ;x,y); see (3.6.2) for its definition.

Theorem 4.2.8 Let H be an S-symmetric function and let W B
1 be associated

with H. Recall the notation (4.2.1). Then

Pn(W B
1 ;x,y) = 1

2

[
Pn

(
H;(x,xd+1),

(
y,
√

1−‖y‖2

))
+Pn

(
H;(x,xd+1),

(
y,−
√

1−‖y‖2

))]
, (4.2.6)

where xd+1 =
√

1−‖x‖ and ‖x‖ is the Euclidean norm of x.

Proof From Theorem 4.2.4 and (4.2.4), we see that for z = r(x,xd+1)∈Rd+1 and
y ∈ Bd with yd+1 =

√
1−‖x‖2,

Pn
(
H;z,(y,yd+1)

)
= rnPn(W B

1 ;x,y)+ zd+1yd+1rn−1Pn−1(W B
2 ;x,y),

from which the stated equation follows on using

rnPn(W B
1 ;x,y)=

1
2

[
Pn

(
H;z,

(
y,
√

1−‖y‖2

))
+Pn

(
H;z,

(
y,−
√

1−‖y‖2

))]
with r = 1.

In particular, as a consequence of the explicit formula of the zonal harmonic
(4.1.6), we have the following corollary.
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Corollary 4.2.9 Let W0(x) := 1/
√

1−‖x‖2, x ∈ Bd. The reproducing kernel
Pn(W0; ·, ·) of V d

n (W0) satisfies

Pn(W0;x,y) =
n+ d−1

2

d−1

[
Cd/2

n

(
〈x,y〉+

√
1−‖x‖2

√
1−‖y‖2

)
+Cd/2

n

(
〈x,y〉−

√
1−‖x‖2

√
1−‖y‖2

)]
.

Moreover, by Theorem 4.2.4 and (4.2.2), the spherical harmonics in H d+1
n that

are even in xd+1 form an orthogonal basis of V d
n (W0). In particular, an orthonor-

mal basis of V d
n (W0) can be deduced from the explicit basis given in Theorem

4.1.4. The weight function W0, however, is a special case of the classical weight
functions on the unit ball to be discussed in the next chapter.

4.3 Orthogonal Structures on Bd and on Sd+m−1

We consider a relation between the orthogonal polynomials on the ball Bd and
those on the sphere Sd+m−1, where m≥ 1.

A function f defined on Rm is called positively homogeneous of order σ if
f (tx) = tσ f (x) for t > 0.

Definition 4.3.1 The weight function H defined on Rd+m is called admissible if

H(x) = H1(x1)H2(x2), x = (x1,x2) ∈Rd+m, x1 ∈Rd , x2 ∈Rm,

where we assume that H1 is a centrally symmetric function, and that H2 is
positively homogeneous of order 2τ and even in each of its variables.

Examples of admissible weight functions include H(x) = c∏d+m
i=1 |xi|κi for

κi ≥ 0, in which H1 and H2 are of the same form but with fewer variables, and
H(x) = cH1(x1)∏ |x2

i − x2
j |βi, j , where d +1≤ i < j ≤ d +m and 2τ = ∑i, j βi j.

Associated with H, we define a weight function W m
H on Bd by

W m
H (x) = H1(x)(1−‖x‖2)τ+(m−2)/2, x ∈ Bd . (4.3.1)

For convenience, we assume that H has unit integral on Sd+m−1 and W m
H has unit

integral on Bd . We show that the orthogonal polynomials with respect to H and
W m

H are related, using the following elementary lemma.

Lemma 4.3.2 Let d and m be positive integers and m≥ 2. Then∫
Sd+m−1

f (y)dω =
∫

Bd
(1−‖x‖2)(m−2)/2

∫
Sm−1

f (x,
√

1−‖x‖2η)dω(η)dx.
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Proof Making the change of variables y �→ (x,
√

1−‖x‖2η), x ∈ Bd and
η ∈ Sm−1, in the integral over Sd+m−1 shows that dωd+m(y)
= (1−‖x‖2)(m−2)/2 dxdωm(η).

When m = 1, the lemma becomes, in a limiting sense, Lemma 4.2.3.
In the following we denote by {Pα(W m

H )} a sequence of orthonormal polyno-
mials with respect to W m

H on Bd . Since H1, and thus W m
H , is centrally symmetric, it

follows from Theorem 3.3.11 that Pα(W m
H ) is a sum of monomials of even degree

if |α| is even and a sum of monomials of odd degree if |α| is odd. These polyno-
mials are related to homogeneous orthogonal polynomials with respect to H on
Sd+m−1.

Theorem 4.3.3 Let H be an admissible weight function. Then the functions

Yα(y) = ‖y‖|α|Pα(W m
H ;x1), y = r(x1,x2) ∈ Rd+m, x1 ∈ Bd ,

are homogeneous polynomials in y and are orthonormal with respect to H(y)dω
on Sd+m−1.

Proof We first prove that Yα is orthogonal to polynomials of lower degree. It is
sufficient to prove that Yα is orthogonal to gγ(y) = yγ for γ ∈ Nd+m

0 and |γ| ≤
|α|−1. From Lemma 4.3.2,∫
Sd+m−1

Yα(y)gγ(y)H(y)dω

=
∫

Bd
Pα(W m

H ;x1)
[∫

Sm−1
gγ

(
x1,
√

1−|x1|2 η
)

H2(η)dω(η)
]

W m
H (x1)dx1.

If gγ is odd with respect to at least one of its variables yd+1, . . . ,yd+m+1 then
we can conclude, using the fact that H2 is even in each of its variables, that the
integral inside the square bracket is zero. Hence, Yα is orthogonal to gγ in this
case. If gγ is even in every variable of yd+1, . . . ,yd+m then the function inside the
square bracket will be a polynomial in x1 of degree at most |α|− 1, from which
we conclude that Yα is orthogonal to gγ by the orthogonality of Pα with respect
to W m

H on Bd . Moreover,∫
Sd+m−1

Yα(y)Yβ (y)H(y)dω =
∫

Bd
Pα(W m

H ;x1)Pβ (W m
H ;x1)W m

H (x1)dx1,

which shows that {Yα} is an orthonormal set. The fact that Yα is homogeneous of
degree n in y follows as in the proof of Theorem 4.2.4.

If in the limiting case m = 1, the integral over Sm−1 is taken as point evaluations
at 1 and −1 with weights 1

2 for each point, then we recover a special case of
Theorem 4.2.4. In this case W m

H (x) = H(x,
√

1−‖x‖2)/
√

1−‖x‖2.
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In the following we show that an orthogonal basis of H m+d
k (H) can be derived

from orthogonal polynomials on Bd and on Sm. Let H2 be defined as in Definition
4.3.1. Then, by Theorem 4.2.4, the space H m

k (H2) has an orthonormal basis {Sk
β}

such that each Sk
β is homogeneous, and Sk

β is even in each of its variables if k is
even and odd in each of its variables if k is odd.

For x ∈ Rd , we write |x| := x1 + · · ·+ xd in the following.

Theorem 4.3.4 Let {Sk
β} be an orthonormal basis of H m

k (H2) as above, and

let {Pn−k
α (W m+2k

H )} be an orthonormal basis for V d
n−k(W

m+2k
H ) with respect to the

weight function W m+2k
H on Bd, where 0≤ k ≤ n. Then the polynomials

Y n
α,β ,k(y) = rnAm,kPn−k

α (W m+2k
H ;y′1)S

k
β (y′2), y = r(y′1,y

′
2), r = ‖y‖,

where y′1 ∈ Bd, y′2 ∈ Bm and [Am,k]−2 =
∫

Bd W m
H (x)(1−‖x‖2)kdx, are homoge-

neous of degree n in y and form an orthonormal basis for H d+m
n (H).

Proof Since the last property of Sk
β in Theorem 4.2.4 implies that it has the same

parity as n, and Pn−k
α (W m+2k

H ) has the same parity as n− k, the fact that Y n
α ,β ,k is

homogeneous of degree n in y follows as in the proof of Theorem 4.3.3.
We prove that Y n

α ,β ,k is orthogonal to all polynomials of lower degree. Again,
it is sufficient to show that Y n

α,β ,k is orthogonal to gγ(y) = yγ , |γ|1 ≤ n−1. Using
the notation y = r(y′1,y

′
2), we write gγ as

gγ(y) = r|γ|1y′γ1
1 y′γ2

2 , |γ1|1 + |γ2|1 = |γ|1 ≤ n−1.

Using the fact ‖y′2‖2 = 1−‖y′1‖2 and the integral formula in Lemma 4.3.2, we
conclude that∫

Sd+m−1
Y n
α ,β ,k(y)gγ(y)H(y)dωd+m

= [Am,k]−1
∫

Bd
Pn−k
α (W m+2k

H ;y′1)y
′γ1
1 (1−‖y′1‖2)(|γ2|1−k)/2

×W m+2k
H (y′1)dy′1

(∫
Sm−1

Sk
β (η)ηγ2H2(η)dωm(η)

)
,

where we have used the fact that W m+2k
H (x) = W m

H (x)(1−‖x‖2)k. We can show
that this integral is zero by considering the following cases. If |γ2|1 < k then the
integral in the square brackets is zero because of the orthogonality of Sk

β . If |γ2|1
≥ k and |γ2|1− k is an odd integer then |γ2|1 and k have different parity; hence,
since Sk

β is homogeneous, a change of variable η �→ −η leads to the conclu-
sion that the integral in the square brackets is zero. If |γ2|1 ≥ k and |γ2|1 − k
is an even integer then y′γ1

1 (1 − ‖y′1‖2)(|γ2|1−k)/2 is a polynomial of degree
|γ1|1 + |γ2|1− k ≤ n− 1− k; hence, the integral is zero by the orthogonality of
Pn−k
α (W m+2k

H ). The same consideration also shows that the polynomial Y n
α ,β ,k has

norm 1 in L2(H,Sd+m), since Pn−k
α (W m+2k

H ) and Sn
β are normalized.
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Finally, we show that {Y n
α ,β ,k} forms a basis of H m+d

n (H). By orthogonality,

the elements of {Y n
α ,β ,k} are linearly independent; since dimH m

k (H) = rm−1
k +

rm−1
k−1 , their cardinality is equal to

n

∑
k=0

rd
n−k(r

m−1
k + rm−1

k−1 ) =
n

∑
k=0

rd
n−krm−1

k +
n−1

∑
k=0

rd
n−1−krm−1

k ,

which is the same as the dimension of H m+d−1
n (H), as can be verified by the

combinatorial identity

n

∑
k=0

rd
n−krm−1

k =
n

∑
k=0

(
n− k +d−1

n− k

)(
k +m−2

k

)
=
(

n+d +m−2
n

)
= rd+m−1

n .

This completes the proof.

There is also a relation between the reproducing kernels of H d+m+1
n (H) and

V d
n (W m

H ), which we now establish.

Theorem 4.3.5 Let H be an admissible weight function defined on Rd+m+1 and
W m

H be the associated weight function on Bd. Then

Pn(W m
H ;x1,y1) =

∫
Sm

Pn

(
H;x,

(
y1,
√

1−‖y1‖2η
))

H2(η)dωm(η)

where x = (x1,x2) ∈ Sd+m with x1 ∈ Bd, y = (y1,y2) ∈ Sd+m with y1 ∈ Bd and
y2 = ‖y‖η ∈ Bm+1 and η ∈ Sm.

Proof Since Pn(H) is the reproducing kernel of H d+m+1
n (H), we can write it in

terms of the orthonormal basis {Y n
α,β ,k} in Theorem 4.3.4:

Pn(H;x,y) =∑
k
∑
α
∑
β

Y n
α ,β ,k(x)Y

n
α ,β ,k(y).

Integrating Pn(H;x,y) with respect to H2(y2) over Sm, we write ‖y2‖2=1−‖y1‖2

and use the fact that Sβ is homogeneous and orthogonal with respect to
H2(y2)dωm to conclude that the integral of Y n

α ,β ,k on Sm results in zero for all
k �= 0, while for k = 0 we have that β = 0 and Y n

α ,0,0(y) are the polynomials
Pn
α(W m

H ;y1). Hence, we conclude that∫
Sm

Pn

(
H;x,

(
y1,
√

1−‖y‖2η
))

H2(η)dωm(η)

=∑
α

Pn
α(W m

H ;x1)Pn
α(W m

H ;y1) = Pn(W m
H ;x1,y1),

by the definition of the reproducing kernel.
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In the case that H, H1 and H2 are all constants, W m
H (x) becomes the case μ =

m−1
2 of the classical weight function Wμ on the ball Bd ,

Wμ(x) := (1−‖x‖2)μ−1/2, x ∈ Bd. (4.3.2)

As a consequence of the general result in Theorem 4.3.3, we see that, for
m = 1,2, . . . , the orthogonal polynomials in V d

n (W(m−1)/2) can be identified with
the spherical harmonics in H d+m

n . In particular, it is possible to deduce an orthog-
onal basis of V d

n (W(m−1)/2) from the basis of H d+m
n , which can be found from

Theorem 4.1.4. Since the orthogonal polynomials for the classical weight func-
tion Wμ will be studied in the next chapter, we shall not derive this basis here.
One consequence of this connection is the following corollary of Theorem 4.3.5
and the explicit formula of the zonal harmonic (4.1.6):

Corollary 4.3.6 For m = 1,2,3, . . ., the reproducing kernel of V d
n (Wμ) with

μ = m
2 satisfies

P(Wμ ;x,y) =
n+λ
λ

cμ

∫ 1

−1
Cλ

n

(
〈x,y〉+

√
1−‖x‖2

√
1−‖y‖2 t

)
× (1− t2)μ−1 dt,

where λ = μ + d−2
2 and cμ = Γ(μ + 1

2 )/(
√
πΓ(μ)).

This formula holds for all μ > 0, as will be proved in Chapter 8. When μ = 0,
the reproducing kernel for W0 is given in Corollary 4.2.9, which can be derived
from the above corollary by taking the limit μ→ 0.

4.4 Orthogonal Structures on the Simplex
In this section we consider the orthogonal polynomials on the simplex

T d := {x ∈ Rd : x1 ≥ 0, . . . ,xd ≥ 0,1−|x|1 ≥ 0},
where |x|1 = x1 + · · ·+ xd . The structure of the orthogonal polynomials can be
derived from that on the unit sphere or from that on the unit ball. The connection
is based on the following lemma.

Lemma 4.4.1 Let f (x2
1, . . . ,x

2
d) be an integrable function defined on Bd. Then∫

Bd
f (y2

1, . . . ,y
2
d)dy =

∫
T d

f (x1, . . . ,xd)
dx√

x1 · · ·xd
.

Proof Since f (x2
1, . . . ,x

2
d) is an even function in each of its variables, the left-

hand side of the stated formula can be written as 2d times the integral over Bd
+ =

{x ∈ Bd : x1 ≥ 0, . . . ,xd ≥ 0}. It can be seen to be equal to the right-hand side
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upon making the change of variables y1 = x2
1, . . . ,yd = x2

d in the integral over Bd
+,

for which the Jacobian is 2−d(y1, . . . ,yd)−1/2.

Definition 4.4.2 Let W B(x) =W (x2
1, . . . ,x

2
d) be a weight function defined on Bd .

Associated with W B define a weight function on T d by

W T (y) = W (y1, . . . ,yd)
/√

y1 · · ·yd , y = (y1, . . . ,yd) ∈ T d .

Evidently, the weight function W B is invariant under the group Zd
2, that is,

invariant under sign changes. If a polynomial is invariant under Zd
2 then it is

necessarily of even degree since it is even in each of its variables.

Definition 4.4.3 Define V d
2n(W

B,Zd
2) = {P ∈ V d

2n(W
B) : P(x) = P(xw), w ∈

Zd
2}. Let P2n

α be the elements of V d
2n(W

B,Zd
2); define polynomials Rn

α by

P2n
α (x) = Rn

α(x2
1, . . . ,x

2
d). (4.4.1)

Theorem 4.4.4 Let W B and W T be defined as above. The relation (4.4.1) defines
a one-to-one correspondence between an orthonormal basis of V d

n (W T ) and an
orthonormal basis of V2n(W B,Zd

2).

Proof Assume that {Rα}|α|=n is a set of orthonormal polynomials in V d
n (W T ).

If β ∈ Nd
0 has one odd component then the integral of Pα(x)xβ with respect to

W B over Bd is zero. If all components of β are even and |β | < 2n then it can be
written as β = 2τ with τ ∈Nd

0 and |τ| ≤ n−1. Using Lemma 4.4.1, we obtain∫
Bd

Pα(x)xβW B(x)dx =
∫

T d
Rα(y)yτW T (y)dy = 0,

by the orthogonality of Rα . This relation also shows that Rα is orthogonal to
all polynomials of degree at most n− 1, if Pα is an orthogonal polynomial in
V d

n (W B,Zd
2). Moreover, Lemma 4.4.1 also shows that the L2(W B;Bd) norm of

Pα is the same as the L2(W T ;T d) norm of Rα .

The connection also extends to the reproducing kernels. Let us denote by
Pn(WΩ; ·, ·) the reproducing kernel of V d

n (WΩ,Ωd) for Ω = B or T .

Theorem 4.4.5 For n = 0,1,2, . . . and x,y ∈ T d,

Pn(W T ;x,y) = 2−d ∑
ε∈Zd

2

P2n(W B;
√

x,ε
√

y), (4.4.2)

where
√

x := (
√

x1, . . . ,
√

xd) and εu := (ε1u1, . . . ,εdud).
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Proof Directly from the definition of the reproducing kernel, it is not difficult to
see that

P(x,y) := 2−d ∑
ε∈Zd

2

P2n(W B;x,εy), x,y ∈ Bd ,

is the the reproducing kernel of V d
2n(W

B,Zd
2) and, as such, can be written as

P(x,y) = ∑
|α|=2n

P2n
α (W B;x)P2n

α (W B;y)

in terms of an orthonormal basis of V d
2n(W

B,Zd
2). The polynomial P2n

α (W B;x) is
necessarily even in each of its variables, so that (4.4.2) follows from Theorem
4.4.4 and the definition of the reproducing kernel with respect to W T .

As a consequence of this theorem and Theorem 4.2.4, we also obtain a rela-
tion between the orthogonal polynomials on T d and the homogeneous orthogonal
polynomials on Sd . Let H(y) = W (y2

1, . . . ,y
2
d+1) be a weight function defined on

Rd+1 and assume its restriction to Sd is not zero. Then H is an S-symmetric
weight function; see Definition 4.2.1. Associated with H define a weight function
W T on the simplex T d by

W T
H (x) = 2W (x1, . . . ,xd ,1−|x|1)

√
x1 · · ·xd(1−|x|1), x ∈ T d .

Let Rα be an element of V d
n (W T

H ). Using the coordinates y = r(x,xd+1) for y ∈
Rd+1, define

S2n
α (y) = r2nRn

α(x2
1, . . . ,x

2
d). (4.4.3)

By Theorems 4.2.4 and 4.4.4, we see that S2n
α is a homogeneous orthogonal

polynomial in H d
2n(H) and is invariant under Zd+1

2 . Denote the subspace of
Zd+1

2 invariant elements of H d
2n(H) by H d

2n(H,Zd+1
2 ). Then S2n

α is an element
of H d

2n(H,Zd+1
2 ), and we conclude:

Theorem 4.4.6 Let H and W T
H be defined as above. The relation (4.4.3) defines

a one-to-one correspondence between an orthonormal basis of V2n(W B,Zd
2) and

an orthonormal basis of V d
n (W T ).

As an immediate consequence of the above two theorems, we have

Corollary 4.4.7 Let H and W B be defined as above. Then

dimV d
2n(W

B,Zd
2) =

(
n+d

n

)
and dimH d

2n(H,Zd+1
2 ) =

(
n+d−1

n

)
.

Working on the simplex T d , it is often convenient to use homogeneous
coordinates x = (x1, . . . ,xd+1) with |x|1 = 1; that is, we identify T d with

T d
hom := {x ∈ Rd+1 : x1 ≥ 0, . . . ,xd+1 ≥ 0, |x|1 = 1}
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in Rd+1. This allows us to derive a homogeneous basis of orthogonal polynomi-
als. Indeed, since H is even in each of its variables, the space H d

2n(H,Zd+1
2 ) has

a basis that is even in each of its variables and whose elements can be written in
the form Sn

α(x2
1, . . . ,x

2
d+1).

Proposition 4.4.8 Let H be defined as above and {Sn
α(x2

1, . . . ,x
2
d+1) : |α| =

n, α ∈ Nd
0} be an orthonormal homogeneous basis of H d

2n(H,Zd+1
2 ). Then

{Sn
α(x1, . . . ,xd+1) : |α| = n, α ∈ Nd

0} forms an orthonormal homogeneous basis
of V d

n (W T
H ).

Proof It follows from Lemmas 4.2.3 and 4.4.1 that∫
Sd

f (y2
1, . . . ,y

2
d+1)dω = 2

∫
|x|1=1

f (x1, . . . ,xd+1)
dx√

x1 · · ·xd+1
, (4.4.4)

where we use the homogeneous coordinates in the integral over T d and write
the domain of integration as {|x|1 = 1} to make this clear. This formula can also
be obtained by writing the integral over Sd as 2d+1 times the integral over Sd

+
and then making the change of variables xi �→ y2

i , 1 ≤ i ≤ d + 1. The change of
variables gives the stated result.

For reproducing kernels, this leads to the following relation:

Theorem 4.4.9 For n = 0,1,2, . . . and x,y ∈ T d
hom,

Pn(W T ;x,y) = 2−d−1 ∑
ε∈Zd+1

2

P2n(H;
√

x,ε
√

y), (4.4.5)

where
√

x := (
√

x1, . . . ,
√

xd+1) and εu := (ε1u1, . . . ,εdud+1).

In particular, for H(x) = 1 the weight function W T
H becomes

W0(x) =
1√

x1 . . .xd(1−|x|1)
, x ∈ T d.

Moreover, by Definition 4.4.2 this weight is also closely related to W B
0 (x) =

1/
√

1−‖x‖2 on the unit ball. In particular, it follows that the orthogonal poly-
nomials with respect to W0 on T d are equivalent to those spherical harmonics on
Sd that are even in every variable and, in turn, are related to the orthogonal poly-
nomials with respect to W B

0 that are even in every variable. Furthermore, from
the explicit formula for the zonal harmonic (4.1.6) we can deduce the following
corollary.

Corollary 4.4.10 For W0 on T d, the reproducing kernel Pn(W0; ·, ·) of V d
n (W0)

satisfies, with λ = (d−1)/2,
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Pn(W0;x,y) =
(2n+λ )(λ )n

λ ( 1
2 )n

1
2d+1 ∑

ε∈Zd+1
2

Pλ−1/2,−1/2
n

(
2z(x,y,ε)2−1

)
for x,y ∈ T d, where z(x,y,ε) =

√
x1y1ε1 + · · ·+√xd+1yd+1εd+1 with xd+1=

1−|x|1 and yd+1=1−|y|.

Proof Taking W T = W0 in (4.4.5) and using (4.1.6), we conclude that

Pn(W0;x,y) =
2n+λ
λ

1
2d+1 ∑

ε∈Zd+1
2

Cλ
2n (z(x,y,ε)) ,

which gives, by the relation Cλ
2n(t) = (λ )n

( 1
2 )n

P(λ−1/2,−1/2)
n (2t2 − 1), the stated

formula.

4.5 Van der Corput–Schaake Inequality
Just as there are Bernstein inequalities relating polynomials of one variable and
their derivatives, there is an inequality relating homogeneous polynomials and
their gradients. The inequality will be needed in Chapter 6. For n = 1,2, . . . and
p ∈Pd

n , we define a sup-norm on Pd
n by

‖p‖S := sup{|p(x)| : ‖x‖= 1},
and a similar norm related to the gradient:

‖p‖∂ =
1
n

sup{|〈u,∇p(x)〉| : ‖x‖= 1 = ||u||}.

Because ∑d
i=1 xi∂ p(x)/∂xi = np(x) it is clear that ‖p‖S ≤ ||p||∂ . The remarkable

fact, proven by van der Corput and Schaake [1935], is that equality always holds
for real polynomials. Their method was to first prove it in R2 and then extend it
to any Rd . The R2 case depends on polar coordinates and simple properties of
trigonometric polynomials. In this section all polynomials are real valued. The
maximum number of sign changes of a homogeneous polynomial on S1 provides
a key device.

Lemma 4.5.1 Suppose that p ∈P2
n ; then p can be written as

c
n−2m

∏
j=1
〈x,u j〉

m

∏
i=1

(‖x‖2 + 〈x,vi〉2) ,
for some m, c∈R and u1, . . . ,un−2m ∈ S1,v1, . . . ,vm ∈R2. The trigonometric poly-
nomial p̃(θ) = p(cosθ ,sinθ ) has no more than 2n sign changes in any interval
θ0 < θ < θ0 +2π when p̃(θ0) �= 0.
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Proof By rotation of coordinates if necessary, we can assume that p(1,0) �= 0;
thus p̃(θ ) = (sinθ )ng(cotθ) where g is a polynomial of degree n. Hence g(t) =
c0∏n−2m

j=1 (t−r j)∏m
i=1(t

2 +bit +ci) with real numbers c0,r j,bi,ci and b2
i −4ci < 0

for each i (and some m). This factorization implies the claimed expression for p
and also exhibits the possible sign changes of p̃.

Theorem 4.5.2 Let p(x1,x2) ∈P2
n and M = sup |p(x)| for x2

1 + x2
2 = 1; then

|〈u,∇p(x)〉| ≤Mn‖u‖(x2
1 + x2

2)
(n−1)/2 for any u ∈ R2.

Proof Since ∇p is homogeneous of degree n− 1, it suffices to prove the claim
for ‖x‖ = 1. Accordingly, let x0 = (cosθ0,sinθ0) for an arbitrary θ0 ∈ (−π,π]
and make the change of variables

y = (r cos(θ −θ0) ,r sin (θ −θ0))

= (x1 cosθ0 + x2 sinθ0,−x1 sinθ0 + x2 cosθ0) ,

where x = (r cosθ ,r sinθ ). Clearly ( ∂ p
∂y1

)2 +( ∂ p
∂y2

)2 = ( ∂ p
∂x1

)2 +( ∂ p
∂x2

)2 = ‖∇p‖2,
all terms being evaluated at the same point. Express p in terms of y1,y2 as
∑n

j=0 a jy
n− j
1 y j

2; then (∂ p/∂y1)2 + (∂ p/∂y2)2 all terms being evaluated at y =
(1,0), corresponding to x = x0, equals n2a2

0 + a2
1. If a1 = 0 then ‖∇p(x0)‖2 =

n2a2
0 = n2 p(x0)

2 ≤ n2M2, as required. Assume now that a1 �= 0 and, by way of
contradiction, assume that n2a2

0 +a2
1 > n2M2. There is an angle φ �= 0,π such that

a0 cosnφ +
a1

n
sinnφ =

√
a2

0 +
a2

1

n2 .

Let f (θ) = a0 cosnθ +(a1/n)sinnθ −∑n
j=0 a j (cosθ)n− j (sinθ) j . Denote by [x]

the integer part of x ∈ R. Because

cosnθ = cosn θ +
[n/2]

∑
1

(
n
2 j

)
(−1) j (cosθ)n−2 j(sinθ )2 j,

sinnθ = ncosn−1 θ sinθ +
[(n−1)/2]

∑
1

(
n

2 j +1

)
(−1) j(cosθ)n−1−2 j(sinθ )2 j+1,

it follows that f (θ) = (sinθ )2 g(cosθ ,sinθ), where g is a homogeneous polyno-
mial of degree n−2. Consider the values

f
(
φ +

jπ
n

)
= (−1) j

√
a2

0 +
a2

1

n2 − p(y j),

where y j = (cosφ j,sinφ j) and φ j = φ + jπ/n − θ0,0 ≤ j ≤ 2n − 1. Since∣∣p(y j)
∣∣≤M, we have (−1) j f (φ + jπ/n)≥

√
a2

0 +a2
1/n2−M > 0. This implies

that g(cosθ ,sinθ) changes sign 2n times in the interval φ < θ < φ + 2π. This
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contradicts the fact that g ∈P2
n−2 and can change its sign at most 2(n−2) times

by the lemma. Thus
√

a2
0 +a2

1/n2 ≤M.

Van der Corput and Schaake proved a stronger result: if
√

a2
0 +a2

1/n2 = M for

some particular x0 then |a0| = |p(x0)| = M (so that ‖∇p‖ is maximized at the
same point as |p|) or ‖∇p(x)‖ is constant on the circle, and p(cosθ ,sinθ) =
M cos n(θ −θ0) for some θ0.

Theorem 4.5.3 Let p ∈ Pd
n ; then |〈u,∇p(x)〉| ≤ ‖p‖S‖u‖‖x‖n−1 for any

u ∈ Rd.

Proof For any x0 ∈ Rd with ‖x0‖ = 1 there is a plane E through the origin con-
taining both x0 and ∇p(x0) (it is unique, in general). By rotation of coordinates
transform x0 to (1,0, . . .) and E to {(x1,x2,0, . . .)}. In this coordinate system
∇p(x0) = (v1,v2,0, . . .) and, by Theorem 4.5.2, (v2

1 + v2
2)

1/2 ≤ nsup{|p(x)| :
‖x‖= 1 and x ∈ E} ≤ n‖p‖S.

Corollary 4.5.4 For p ∈Pd
n and n≥ 1, ‖p‖S = ‖p‖∂ .

There is another way of defining ||p||∂ .

Proposition 4.5.5 For p ∈Pd
n ,

‖p‖∂ =
1
n!

sup

{
n

∏
j=1

∣∣∣〈y( j),∇〉p(x)
∣∣∣ : x ∈ Sd−1,y( j) ∈ Sd−1 for all j

}
.

Proof The claim is true for n = 1. Assume that it is true for some n, and let p ∈
Pd

n+1; for any y(n+1) ∈ Sd−1 the function g(x) = 〈y(n+1),∇〉p(x) is homogeneous
of degree n. Thus

sup{|〈y(n+1),∇〉p(x)| : x ∈ Sd−1}= ‖g‖∂

=
1
n!

sup

{
n

∏
j=1
〈y( j),∇〉g(x) : x ∈ Sd−1,y( j) ∈ Sd−1 for all j

}
,

by the inductive hypothesis. But

‖p‖∂ =
1

n+1
sup{|〈y(n+1),∇〉p(x)| : x,y(n+1) ∈ Sd−1},

and this proves the claim for n+1.
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4.6 Notes
There are several books that have sections on classical spherical harmon-
ics. See, for example, Dunkl and Ramirez [1971], Stein and Weiss [1971],
Helgason [1984], Axler, Bourdon and Ramey [1992], Groemer [1996] and
Müller [1997]. Two recent books that contain the development of spherical har-
monics and their applications are Atkinson and Han [2012], which includes
application in the numerical analysis of partial differential equations, and Dai
and Xu [2013], which addresses approximation theory and harmonic analy-
sis on the sphere. The Jacobi polynomials appear as spherical harmonics with
an invariant property in Braaksma and Meulenbeld [1968] and Dijksma and
Koornwinder [1971].

A study of orthogonal structures on the sphere and on the ball was carried out
in Xu [1998a, 2001a]. The relation between the reproducing kernels of spherical
harmonics and of orthogonal polynomials on the unit ball can be used to relate the
behavior of the Fourier orthogonal expansions on the sphere and those on the ball,
as will be discussed in Chapter 9. The relation between orthogonal polynomials
with respect to 1/

√
1−‖x‖2 on Bd and ordinary spherical harmonics on Sd , and

more generally Wμ with μ = (m−1)/2 on Bd and spherical harmonics on Sd+m,
is observed in the explicit formulae for the biorthogonal polynomials (see Section
5.2) in the work of Hermite, Didon, Appell and Kampé de Fériet; see Chapter XII,
Vol. II, of Erdélyi et al. [1953].

The relation between the orthogonal structures on the sphere, ball and simplex
was studied in Xu [1998c]. The relation between the reproducing kernels will be
used in Chapter 8 to derive a compact formula for the Jacobi weight on the ball
and on the simplex. These relations have implications for other topics, such as
cubature formulae and approximations on these domains; see Xu [2006c].



5

Examples of Orthogonal Polynomials
in Several Variables

In this chapter we present a number of examples of orthogonal polynomials in
several variables. Most of these polynomials, but not all, are separable in the
sense that they are given in terms of the classical orthogonal polynomials of one
variable. Many of our examples are extensions of orthogonal polynomials in two
variables to more than two variables. We concentrate mostly on basic results in
this chapter and discuss, for example, only classical results on regular domains,
leaving further results to later chapters when they can be developed and often
extended in more general settings.

One essential difference between orthogonal polynomials in one variable and
in several variables is that the bases of V d

n are not unique for d ≥ 2. For d = 1,
there is essentially one element in V 1

n since it is one dimensional. For d ≥ 2, there
can be infinitely many different bases. Besides orthonormal bases, several other
types of base are worth mentioning. One is the monic orthogonal basis defined by

Qα(x) = xα +Rα(x), |α|= n, Rα ∈Πd
n−1; (5.0.1)

that is, each Qα of degree n contains exactly one monomial of degree n. Because
the elements of a basis are not necessarily orthogonal, it is sometimes useful to
find a biorthogonal basis, that is, another basis Pα of V d

n such that 〈Qα ,Pβ 〉= 0
whenever α �= β . The relations between various orthogonal bases were discussed
in Section 3.2.

5.1 Orthogonal Polynomials for Simple Weight Functions
In this section we consider weight functions in several variables that arise from
weight functions of one variable and whose orthogonal polynomials can thus be
easily constructed. We consider two cases: one is the product weight function and
the other is the radial weight function.
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5.1.1 Product weight functions

For 1≤ j≤ d, let w j be a weight function on a subset Ij of R and let {p j,n}∞n=0 be
a sequence of polynomials that are orthogonal with respect to wj . Let W be the
product weight function

W (x) := w1(x1) · · ·wd(xd), x ∈ I1×·· ·× Id .

The product structure implies immediately that

Pα(x) := p1,α1(x1) · · · pd,αd (xd), α ∈ Nd
0 ,

is an orthogonal polynomial of degree |α| with respect to W on I1× ·· · × Id .
Furthermore, denote by V d

n (W ) the space of orthogonal polynomials with respect
to W . We immediately have the following:

Theorem 5.1.1 For n = 0,1,2, . . . , the set {Pα : |α| = n} is a mutually
orthogonal basis of V d

n (W ).

If the polynomials p j,n are orthonormal with respect to w j for each j then the
polynomials Pα are also orthonormal with respect to W . Furthermore, the poly-
nomial Pα is also a constant multiple of monic orthogonal polynomials. In fact,
a monic orthogonal basis, up to a constant multiple, is also an orthonormal basis
only when the weight function is of product type. As an example we consider the
multiple Jacobi weight function

Wa,b(x) =
d

∏
i=1

(1− xi)ai(1+ xi)bi (5.1.1)

on the domain [−1,1]d . An orthogonal basis Pα for the space V d
n (Wa,b) is given

in terms of the Jacobi polynomials P
(a j ,b j)
α j by

Pα(Wa,b;x) = P(a1,b1)
α1 (x1) · · ·P(ad ,bd)

αd
(xd), |α|= n, (5.1.2)

where, to emphasize the dependence of the polynomials Pα on the weight
function, we include Wa,b in the notation.

The product Hermite and Laguerre polynomials are two other examples. They
are given in later subsections.

5.1.2 Rotation-invariant weight functions

A rotation-invariant weight function W on Rd is a function of ‖x‖, also called
a radial function. Let w be a weight function defined on [0,∞) such that it is
determined by its moments. We consider the rotation-invariant weight function

Wrad(x) = w(‖x‖), x ∈Rd .
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An orthogonal basis for V d
n (W ) can be constructed from the spherical harmonics

and orthogonal polynomials of one variable.
For 0≤ j ≤ n/2, let {Y n−2 j

ν : 1≤ ν ≤ ad
n−2 j} denote an orthonormal basis for

the space H d
n−2 j of spherical harmonics, where ad

n = dimH d
n . Fix j and n with

0≤ j ≤ n/2, and let

w j,n(t) := |t|2n−4 j+d−1w(|t|), t ∈ R.

Denote by p(2n−4 j+d−1)
m the polynomials orthogonal with respect to w j,n.

Theorem 5.1.2 For 0≤ j ≤ n/2 and 1≤ ν ≤ ad
n−2 j, define

Pn
j,ν(x) := p(2n−4 j+d−1)

2 j (‖x‖)Y n−2 j
ν (x). (5.1.3)

Then the Pn
j,ν form an orthonormal basis of V d

n (Wrad).

Proof Since the weight function |t|2n−4 j+d−1w(|t|) is an even function, the poly-

nomial p(2n−4 j+d−1)
2 j (t) is also even, so that Pj,ν(x) is indeed a polynomial

of degree n in x. To prove the orthogonality, we use an integral with polar
coordinates, ∫

Rd
f (x)dx =

∫ ∞

0
rd−1

∫
Sd−1

f (rx′)dω(x′)dr. (5.1.4)

Since Y n−2 j
ν (x) = rn−2 jY n−2 j

ν (x′), it follows from the orthonormality of the
Y n−2 j
ν that ∫

Rd
Pn

j,ν(x)P
m
j′,ν ′(x)Wrad(x)dx = δn−2 j,m−2 j′δν ,ν ′σd−1

×
∫ ∞

0
r2n−4 j+d−1 p(2n−4 j+d−1)

2 j (r)p(2n−4 j+d−1)
2 j′ (r)w(r)dr.

The last integral is 0 if j �= j′ by the orthogonality with respect to w j,n. This estab-
lishes the orthogonality of the Pn

j,ν . To show that they form a basis of V d
n (Wrad),

we need to show that

∑
0≤ j≤n/2

dimH d
n−2 j = dimV d

n (Wrad) = dimPd
n ,

which, however, follows directly from Theorem 4.2.7.

5.1.3 Multiple Hermite polynomials on Rd

The multiple Hermite polynomials on Rd are polynomials orthogonal with
respect to the classical weight function

W H(x) = e−‖x‖2
, x ∈Rd .
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The normalization constant of W H is π−d/2, determined by using (5.1.4):

∫
Rd

e−‖x‖2
dx =

d

∏
i=1

∫
R

e−x2
i dxi = πd/2.

The Hermite weight function is both a product function and a rotationally
invariant function. The space V d

n (W H) of orthogonal polynomials has, therefore,
two explicit mutually orthogonal bases.

First orthonormal basis Since W H is a product of Hermite weight functions
of one variable, the multiple Hermite polynomials defined by

Pα(W H ;x) = Hα1(x1) · · ·Hαd (xd), |α |= n, (5.1.5)

form a mutually orthogonal basis for V d
n with respect to W H , as shown in

Theorem 5.1.1. If we replace Hαi by the orthonormal Hermite polynomials, then
the basis becomes orthonormal.

Second orthonormal basis Since W H is rotationally invariant, it has a basis
given by

Pj,ν(W H ;x) = [hH
j,n]
−1Ln−2 j+(d−2)/2

j (‖x‖2)Y n−2 j
ν (x), (5.1.6)

where La
j is a Laguerre polynomial and the constant hH

j,n is given by the formula

[hH
j,n]

2 =
(

d
2

)
n−2 j

/
(2 j)!.

That the Pj,ν are mutually orthogonal follows from Theorem 5.1.2, since, by

the orthogonality of the Lαm, the polynomials Ln−2 j+(d−2)/2
m (t2) can be seen to

be orthogonal with respect to |t|2n−2 j+d−1e−t2
upon making the change of vari-

able t �→ √
t. Since the Y n−2 j

ν are orthonormal with respect to dω/σd−1, the
normalization constant is derived from(

hH
j,n

)2
=

σd−1

πd/2

∫ ∞

0

(
Ln−2 j+(d−2)/2

j (t)
)2

e−t tn−2 j+(d−2)/2 dt

and the L2 norm of the Laguerre polynomials.
The orthogonal polynomials in V d

n (W H) are eigenfunctions of a second-order
differential operator: for n = 0,1,2 . . .,(

Δ−2
d

∑
i=1

xi
∂
∂xi

)
P =−2nP ∀P ∈ V d

n (W H). (5.1.7)

This fact follows easily from the product structure of the basis (5.1.5) and the
differential equation satisfied by the Hermite polynomials (Subsection 1.4.1).
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5.1.4 Multiple Laguerre polynomials on Rd
+

These are orthogonal polynomials with respect to the weight function

W L
κ (x) = xκ1

1 · · ·xκd
d e−|x|, κi >−1, x ∈Rd

+,

which is a product of Laguerre weight functions in one variable. The normaliza-
tion constant is

∫
Rd

+
W L
κ (x)dx = ∏d

i=1Γ(κi +1).
The multiple Laguerre polynomials defined by

Pα(W L
κ ;x) = Lκ1

α1(x1) · · ·Lκd
αd

(xd), |α|= n, (5.1.8)

are polynomials that are orthogonal with respect to W L
κ and, as shown in Theorem

5.1.1, the set {Pα(W L
κ ) : |α|= n} is a mutually orthogonal basis for V d

n (W L
κ ), and

it becomes an orthonormal basis if we replace Lαi by the orthonormal Laguerre
polynomials.

The orthogonal polynomials in V d
n (W L

κ ) are eigenfunctions of a second-order
differential operator. For n = 0,1,2, . . .,

d

∑
i=1

xi
∂ 2P

∂x2
i

+
d

∑
i=1

(κi +1− xi)
∂P
∂xi

=−nP. (5.1.9)

This fact follows from the product nature of (5.1.8) and the differential equation
satisfied by the Laguerre polynomials (Subsection 1.4.2).

5.2 Classical Orthogonal Polynomials on the Unit Ball
The classical orthogonal polynomials on the unit ball Bd of Rd are defined with
respect to the weight function

W B
μ (x) = (1−‖x‖2)μ−1/2, μ >− 1

2 , x ∈ Bd . (5.2.1)

The normalization constant of W B
μ is given by

wB
μ =
(∫

Bd
W B
μ (x)dx

)−1
=

2
σd−1

Γ(μ + d+1
2 )

Γ(μ + 1
2 )Γ( d

2 )
=

Γ(μ + d+1
2 )

πd/2Γ(μ + 1
2 )

.

The value of wB
μ can be verified by the use of the polar coordinates x = rx′,

x′ ∈ Sd−1, which leads to the formula∫
Bd

f (x)dx =
∫ 1

0
rd−1

∫
Sd−1

f (rx′)dω(x′)dr (5.2.2)

and a beta integral. The polynomials P in V d
n with respect to W B

μ are eigenfunc-
tions of the second-order differential operator Dμ , that is,

DμP =−(n+d)(n+2μ−1)P, (5.2.3)
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where

Dμ := Δ−
d

∑
j=1

∂
∂x j

x j

(
(2μ−1)+

d

∑
i=1

xi
∂
∂xi

)
.

This fact will be proved in Subsection 8.1.1. In the following we will give sev-
eral explicit bases of V d

n with respect to W B
μ . They all satisfy the differential

equation (5.2.3).

5.2.1 Orthonormal bases

We give two explicit orthonormal bases in this subsection.

First orthonormal basis Since the weight function W B
μ is rotationally invariant,

it has a basis given explicitly in terms of spherical polar coordinates, as in (5.1.3).

Proposition 5.2.1 For 0≤ j ≤ n
2 and {Y n−2 j

ν : 1≤ ν ≤ ad
n−2 j} an orthonormal

basis of H d
n−2 j, the polynomials

Pn
j,ν(W

B
μ ;x) = (h j,n)−1P(μ−1/2,n−2 j+(d−2)/2)

j (2‖x‖2−1)Y n−2 j
ν (x), (5.2.4)

(cf. (5.1.2)) form an orthonormal basis of V d
n (W B

μ ); the constant is given by

(h j,n)2 =
(μ+ 1

2 ) j( d
2 )n− j(n− j +μ+ d−1

2 )

j!(μ + d+1
2 )n− j(n+μ+ d−1

2 )
.

Proof The orthogonality of the Pn
j,i follows easily from Theorem 5.1.2 and the

orthogonality of the Jacobi polynomials (Subsection 1.4.4). The constant, using
(5.2.2) and the orthonormality of the Y n−2 j

ν , comes from(
hB

j,n

)2 = wB
μσd−1

∫ 1

0

[
P(μ−1/2,n−2 j+(d−2)/2)

j (2r2−1)
]2

× r2n−4 j+d−1(1− r2)μ−1/2 dr,

which can be evaluated, upon changing the variable 2r2 − 1 to t, from the L2

norm of the Jacobi polynomial P(a,b)
n (t) and the properties of the Pochhammer

symbol.

Second orthonormal basis We need the following notation. Associated with
x = (x1, . . . ,xd) ∈Rd , for each j define by x j a truncation of x, namely

x0 = 0, x j = (x1, . . . ,x j), 1≤ j ≤ d.

Note that xd = x. Associated with α = (α1, . . . ,αd), define

α j := (α j, . . . ,αd), 1≤ j ≤ d, and αd+1 := 0.
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Recall that Cλ
k denotes the Gegenbauer polynomial associated with the weight

function (1− x2)λ−1/2 on [−1,1]; see Subsection 1.4.3.

Proposition 5.2.2 Let μ > 0. For α ∈Nd
0 , the polynomials Pα given by

Pα(W B
μ ;x) = (hα)−1

d

∏
j=1

(1−‖x j−1‖2)α j/2C
λ j
α j

(
x j√

1−‖x j−1‖2

)
,

where λ j = μ + |α j+1|+ d− j
2 , form an orthonormal basis of V d

n (W B
μ ); the

constants hα are defined by

(hα)2 =
(μ+ d

2 )|α|
(μ+ d+1

2 )|α|

d

∏
j=1

(μ + d− j
2 )|α j |(2μ +2|α j+1|+d− j)α j

(μ + d− j+1
2 )|α j |α j!

.

If μ = 0, the basis comes from limμ→0 μ−1Cμ
n (x) = 2

n Tn(x) and the constant needs
to be modified accordingly.

Proof The orthonormality and the normalization constants can both be verified
by the use of the formula∫

Bd
f (x)dx =

∫
Bd−1

∫ 1

−1
f

(
xd−1,

√
1−‖xd−1‖2y

)
dy
√

1−‖xd−1‖2 dxd−1,

which follows from the simple change of variable xd �→ y
√

1−‖xd−1‖2. Using
this formula repeatedly to reduce the number of iterations of the integral, that is,
by reducing the dimension d by 1 at each step, we end up with

wB
μ

∫
Bd

Pα(W B
μ ;x)Pβ (W B

μ ;x)W B
μ (x)dx

= (hα)−2wB
μ

d

∏
j=1

∫ 1

−1

(
Cμ+|α j+1|+(d− j)/2
α j (t)

)2

× (1− t2)μ+|α j+1|+(d− j−1)/2 dt δα ,β ,

where the last integral can be evaluated by using the normalization constant of
the Gegenbauer polynomials.

5.2.2 Appell’s monic orthogonal and biorthogonal polynomials

The definition of these polynomials can be traced back to the work of Her-
mite, Didon, Appell, and Kampé de Fériet; see Appell and de Fériet [1926] and
Chapter XII, Vol. II, of Erdélyi et al. [1953]. There are two families of these
polynomials.
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Monic orthogonal Appell polynomials Vα The first family of polynomials,
Vα , is defined by the generating function

(1−2〈a,x〉+‖a‖2)−μ−(d−1)/2 = ∑
α∈Nd

0

aαVα(x), (5.2.5)

where a ∈ Bd . We prove two properties of Vα in the following.

Proposition 5.2.3 The polynomials Vα are orthogonal with respect to W B
μ

on Bd.

Proof From the generating function of the Gegenbauer polynomials and (5.2.5),

(1−2〈a,x〉+‖a‖2)−μ−(d−1)/2 =
∞

∑
n=0
‖a‖nCμ+(d−1)/2

n (〈a/‖a‖,x〉).

Replacing a by at and comparing the coefficients of tn gives

‖a‖nCμ+(d−1)/2
n (〈a/‖a‖,x〉) = ∑

|α|=n

aαVα(x).

Hence, in order to prove that Vα is orthogonal to polynomials of lower degree, it
is sufficient to prove that∫

Bd
‖a‖nCμ+(d−1)/2

n (〈a/‖a‖,x〉)xβW B
μ (x)dx = 0

for all monomials xβ with |β | ≤ n− 1. Since W B
μ is rotation invariant, we

can assume that a = (0, . . . ,0,c) without loss of generality, which leads to

Cμ+(d−1)/2
n (〈a/‖a‖,x〉) = Cμ+(d−1)/2

n (xd); making the change of variables xi =

yi

√
1− x2

d for i = 1, . . . ,d−1, the above integral is equal to

∫ 1

−1
Cμ+(d−1)/2

n (xd)xβd
d (1− x2

d)
μ+(|β |−βd)/2+(d−2)/2 dxd

×
∫

Bd−1
yβ1

1 · · ·yβd−1
d−1 (1−‖y‖2)μ−1/2 dy.

If any βi for 1≤ i≤ d−1 is odd then the second integral is zero. If all βi for 1≤
i≤ d−1 are even then xβd

d (1−x2
d)
|β |/2−βd/2 is a polynomial of degree |β | ≤ n−1;

hence, the first integral is equal to zero by the orthogonality of the Gegenbauer
polynomials.

Proposition 5.2.4 The polynomials Vα are constant multiples of monic orthog-
onal polynomials; more precisely,

Vα(x) =
2|α |

α!

(
μ+

d−1
2

)
|α |

xα +Rα(x), Rα ∈Πd
n−1.
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Proof Let λ = μ+(d−1)/2 in this proof. We use the multinomial and negative
binomial formulae to expand the generating function as follows:

(1−2〈a,x〉+‖a‖2)−λ = [1−a1(2x1−a1)−·· ·−ad(2xd−ad)]−λ

=∑
β

(λ )|β |
β !

aβ (2x1−a1)β1 · · ·(2xd−ad)βd

=∑
β

(λ )|β |
β ! ∑

γ

(−β1)γ1 · · ·(−βd)γd

γ!
2|β |−|γ|xβ−γaγ+β .

Therefore, upon making the change in summation indices βi + γi = αi and com-
paring the coefficients of aα on both sides, we obtain the following explicit
formula for Vα(x):

Vα(x) = 2|α |xα∑
γ

(λ )|α|−|γ|(−α1 + γ1)γ1 · · ·(−αd + γd)γd

(α− γ)!γ!
2−2|γ |x−2γ ,

from which the fact that Vα is a constant multiple of a monic orthogonal
polynomial is evident.

Moreover, using the formulae

(λ )m−k =
(−1)k(λ )m

(1−λ −m)k
and

(−m+ k)k

(m− k)!
=

(−1)k(−m)2k

m!

as well as

2−2k(−m)2k =
(
− m

2

)
k

(1−m
2

)
k
,

which can all be verified directly from the expression for the Pochhammer symbol
(a)b, given in Definition 1.1.3, we can rewrite the formula as

Vα(x) =
2|α|xα

α!

(
μ+

d−1
2

)
|α |

×FB

(
− α

2
,

1−α
2

;−|α|−μ− d−3
2

;
1

x2
1

, . . . ,
1

x2
d

)
,

where 1−α = (1−α1, . . . ,1−αd) and FB is the Lauricella hypergeometric series
of d variables defined in Section 1.2.

Biorthogonal Appell polynomials Uα The second family of polynomials, Uα ,
can be defined by the generating function[

(1−〈a,x〉)2 +‖a‖2(1−‖x‖2)
]−μ = ∑

α∈Nd
0

aαUα(x). (5.2.6)

An alternative definition is given by the following Rodrigues-type formula.
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Proposition 5.2.5 The polynomials Uα satisfy

Uα(x) =
(−1)|α|(2μ)|α |

2|α |(μ + 1
2 )|α|α!

× (1−‖x‖2)−μ+1/2 ∂ |α |

∂xα1
1 · · ·∂xαd

d

(1−‖x‖2)|α |+μ−1/2.

Proof Let 〈a,∇〉 = ∑d
i=1 ai∂/∂xi, where ∇ denotes the gradient operator. The

following formula can be easily verified by induction:

〈a,∇〉n(1−‖x‖2)b = ∑
0≤ j≤n/2

n!2n−2 j(−b)n− j

j!(n−2 j)!
〈a,x〉n−2 j(1−‖x‖2)b−n+ j‖a‖2 j.

Putting b = n + μ − 1
2 and multiplying the above formula by (1−‖x‖2)−μ+1/2

gives

(1−‖x‖2)−μ+1/2〈a,∇〉n(1−‖x‖2)n+μ−1/2

= ∑
0≤ j≤n/2

(−1)n− j n!2n−2 j( j +μ+ 1
2 )n− j

j!(n−2 j)!
〈a,x〉n−2 j‖a‖2 j(1−‖x‖2) j,

where we have used (−n− μ + 1
2)n− j = (−1)n− j( j + μ + 1

2 )n− j. However,
expanding the generating function shows that it is equal to

(1−〈a,x〉)−2μ
(

1+
‖a‖2(1−‖x‖2)
(1−〈a,x〉)2

)−μ
=

∞

∑
i=0

∞

∑
j=0

(−1) j (μ) j(2μ +2 j)i

i! j!
‖a‖2 j〈a,x〉i(1−‖x‖2) j.

Making use of the formula

(μ) j(2μ +2 j)i =
(μ) j(2μ)i+2 j

(2μ)2 j
=

(2μ)i+2 j

22 j(μ + 1
2 ) j

,

and setting i+2 j = n, we obtain[
(1−〈a,x〉)2 +‖a‖2(1−‖x‖2)

]−μ
=

∞

∑
n=0

(
(2μ)n(−1)n

n!(μ + 1
2 )n2n

× ∑
0≤ j≤n/2

(−1)n− j n!2n−2 j( j +μ+ 1
2)n− j

j!(n−2 j)!
〈a,x〉n−2 j‖a‖2 j(1−‖x‖2) j

)
.

Comparing these formulae gives

[(1−〈a,x〉)2 +‖a‖2(1−‖x‖2)]−μ

=
∞

∑
n=0

(2μ)n(−1)n

n!(μ+ 1
2)n2n

(1−‖x‖2)−μ+1/2〈a,∇〉n(1−‖x‖2)n+μ−1/2.
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Consequently, comparing the coefficients of aα in the above formula and in
(5.2.6) finishes the proof.

The most important property of the polynomials Uα is that they are biorthogo-
nal to Vα . More precisely, the following result holds.

Proposition 5.2.6 The polynomials {Uα} and {Vα} are biorthogonal:

wB
μ

∫
Bd

Vα(x)Uβ (x)W B
μ (x)dx =

μ+ d−1
2

|α|+μ+ d−1
2

(2μ)|α|
α!

δα,β .

Proof Since the set {Vα} forms an orthogonal basis, we only need to consider
the case |β | ≥ |α|, which will also show that {Uβ} is an orthogonal basis. Using
the Rodrigues formula and integration by parts,

wB
μ

∫
Bd

Vα(x)Uβ (x)W B
μ (x)dx

= wB
μ

(2μ)|α|
2|α|(μ+ 1

2 )|α |α!

∫
Bd

[
∂ |β |

∂xβ1
1 · · ·∂xβd

d

Vα(x)

]
(1−‖x‖2)|α|+μ−1/2 dx.

However, since Vα is a constant multiple of a monic orthogonal polynomial and
|β | ≥ |α|,

∂ |β |

∂xβ1
1 · · ·∂xβd

d

Vα(x) = 2|α |
(
μ + d−1

2

)
|α | δα ,β ,

from which we can invoke the formula for the normalization constant wB
μ of W B

μ
to conclude that∫

Bd
Vα(x)Uβ (x)W B

μ (x)dx =
wB
μ

w|α |+μ

(2μ)|α|(μ+ d−1
2 )|α |

(μ+ 1
2 )|α |α!

δα ,β .

The constant can be simplifed using the formula for wB
μ .

We note that the biorthogonality also shows that Uα is an orthogonal polyno-
mial with respect to W B

μ . However, Uα is not a monic orthogonal polynomial. To
see what Uα is, we derive an explicit formula for it.

Proposition 5.2.7 The polynomial Uα is given by

Uα(x) =
(2μ)|α |
α! ∑

β

(−1)|β |(−α1)2β1
· · ·(−αd)2βd

22|β |β !(μ+ 1
2 )|β |

xα−2β (1−‖x‖2)|β |.

Proof Let φ : R �→ R be a real differentiable function. Using the chain rule and
induction gives
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dn

dxn φ(x2) =
[n/2]

∑
j=0

(2x)n−2 j (−n)2 j

j!
φ (n− j)(x2),

where φ (m) denotes the mth derivative of φ . Hence, for a function Φ : Rd → R,
we have

∂ |α |

∂xα1
1 · · ·∂xαd

d

Φ(x2
1, . . . ,x

2
d)

= 2|α|∑
β

(−α1)2β1
. . .(−αd)2βd

22|β |β !
xα−2β (∂α−βΦ)(x2

1, . . . ,x
2
d),

where ∂α−βΦ denotes the partial derivative of (|α| − |β |)th order of Φ. In
particular, applying the formula to Φ(x) = (1− x1−·· ·− xd)|α |+μ−1/2 gives

∂ |α |

∂xα1
1 · · ·∂xαd

d

(1−‖x‖2)|α|+μ−1/2

= (−1)|α|2|α |
(
μ + 1

2

)
|α| (1−‖x‖2)μ−1/2

×∑
β

(−1)|β |(−α1)2β1
. . .(−αd)2βd

22|β |β !(μ + 1
2 )|β |

xα−2β (1−‖x‖2)|β |.

The stated formula follows from the Rodrigues–type formula for Uα .

Using the definition of the Lauricella hypergeometric series FB (see Subsec-
tion 1.2.1), we can rewrite the above formula as

Uα(x) =
(2μ)|α |xα

α!
FB

(
− α

2
,

1−α
2

;μ+
1
2

;
1−‖x‖2

x2
1

, . . . ,
1−‖x‖2

x2
d

)
.

There are a great number of formulae for both Appell polynomials, Vα and Uα ;
we refer to Appell and de Fériet [1926] and Erdélyi et al. [1953].

5.2.3 Reproducing kernel with respect to W B
μ on Bd

Let Pn(W B
μ ; ·, ·) denote the reproducing kernel of V d

n (W B
μ ) as defined in (3.6.2).

This kernel satisfies a remarkable and concise formula.

Theorem 5.2.8 For μ > 0, x,y ∈ Bd,

Pn(W B
μ ;x,y) = cμ

n+λ
λ

∫ 1

−1
Cλ

n

(
〈x,y〉+ t

√
1−‖x‖2

√
1−‖y‖2

)
× (1− t2)μ−1 dt, (5.2.7)

where λ = μ+ d−1
2 and cμ = Γ(μ + 1

2 )/[
√
πΓ(μ)].

In the case μ = m/2 and m = 1,2,3, . . . this expression was established in
Corollary 4.3.6. For μ > 0, the proof will appear as a special case of a more
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general result in Theorem 8.1.16. When μ = 0, the formula for P(W0;x,y) is
found in Corollary 4.2.9.

It is worth mentioning that the kernel Pn(W B
μ ;x,y) is rotation invariant, in the

sense that Pn(W B
μ ;x,y) = Pn(W B

μ ;xσ ,yσ) for each rotation σ ; this is obviously a
consequence of the rotation invariance of W B

μ .
For the constant weight W1/2(x) = 1, there is another formula for the reproduc-

ing kernel. Let P(x,y) = Pn(W1/2;x,y).

Theorem 5.2.9 For n = 1,2,3, . . . ,

Pn(x,y) =
n+ d

2
d
2

∫
Sd−1

Cd/2
n (〈x,ξ 〉)Cd/2

n (〈ξ ,y〉)dω(ξ ). (5.2.8)

Proof Using the explicit orthonormal basis of Pn
j := Pn

j,β (W1/2) in Proposi-

tion 5.2.1, with μ = 1
2 , we obtain on the one hand

Pn(x,y) = ∑
0≤2 j≤n

∑
β

Pn
j,β (x)Pn

j,β (y). (5.2.9)

On the other hand, by (5.2.7) we have for ξ ∈ Sd−1

Pn(x,ξ ) =
n+ d

2
d
2

Cd/2
n (〈x,ξ 〉), ξ ∈ Sd−1, x ∈ Bd . (5.2.10)

Furthermore, when restricted to Sd−1, Pn
j,β becomes a spherical harmonic,

Pn
j,β (ξ ) = HnYj,n−2k(ξ ), ξ ∈ Sd−1,

where, using the fact that P(0,b)
k (1) = 1, we see that the formula

Hn = (h j,n)−1P(0,n−2 j+(d−2)/2)
j (1) =

√
n+ d

2
d
2

,

is independent of j. Consequently, integrating over Sd−1 we obtain

σ−1
d

∫
Sd−1

Pn
j,β (ξ )Pn

j′,β ′(ξ )dω(ξ ) = H2
nδ j, j′δβ ,β ′ =

n+ d
2

d
2

δ j, j′δβ ,β ′ .

Multiplying the above equation by Pn
j,β (x) and Pn

j′,β (y) and summing over all
j, j′,β ,β ′, the right-hand side becomes Pn(x,y), by (5.2.9), whereas the left-
hand side becomes, by (5.2.9) and (5.2.10), the right-hand side of (5.2.8). This
completes the proof.
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5.3 Classical Orthogonal Polynomials on the Simplex
Let T d denote the simplex in the Euclidean space Rd ,

T d = {x ∈ Rd : x1 ≥ 0, . . . ,xd ≥ 0,1− x1−·· ·− xd ≥ 0}.
For d = 2, the region T 2 is the triangle with vertices at (0,0), (0,1) and (1,0).
The classical orthogonal polynomials on T d are orthogonal with respect to the
weight function

W T
κ (x) = xκ1−1/2

1 · · ·xκd−1/2
d (1−|x|)κd+1−1/2, κi >− 1

2 , (5.3.1)

where x ∈ T d and |x|= x1 + · · ·+ xd is the usual �1 norm for x ∈ T d . Upon using
the formula∫

T d
f (x)dx =

∫
T d−1

∫ 1

0
f (xd−1,(1−|xd−1|)y)dy(1−|xd−1|)dxd−1, (5.3.2)

which follows from the change of variables xd �→ y(1− |xd−1|), we see that the
normalization constant wT

κ of W T
κ is given by the Dirichlet integral

(wT
κ )−1 =

∫
T d

xκ1−1/2
1 · · ·xκd−1/2

d (1−|x|)κd+1−1/2 dx

=
Γ(κ1 + 1

2 ) · · ·Γ(κd+1 + 1
2)

Γ(|κ|+ d+1
2 )

, (5.3.3)

where |κ| = κ1 + · · · + κd+1. The orthogonal polynomials in V d
n (W T

κ ) are
eigenfunctions of a second-order differential operator. For n = 0,1,2, . . . ,

d

∑
i=1

xi(1− xi)
∂ 2P

∂x2
i

−2 ∑
1≤i< j≤d

xix j
∂ 2P

∂xi∂x j

+
d

∑
i=1

[(
κi + 1

2

)−(|κ|+ d+1
2

)
xi
] ∂P
∂xi

= λnP, (5.3.4)

where λn = −n(n + |κ|+ d−1
2 ) and κi > − 1

2 for 1 ≤ i ≤ d + 1. The proof of
equation (5.3.4) will be given in Subsection 8.2.1. For this weight function, we
give three explicit orthogonal bases.

An orthonormal basis To state this basis we use the notation of x j and α j as
in the second orthonormal basis on Bd (Subsection 5.2.1). For κ = (κ1, . . . ,κd+1)
and 0≤ j ≤ d +1, let κ j := (κ j, . . . ,κd+1).

Proposition 5.3.1 For α ∈Nd
0 and |α|= n, the polynomials

Pα(W T
κ ;x) = (hα)−1

d

∏
j=1

(1−|x j−1|)α j P
(a j ,b j)
α j

( 2x j

1−|x j−1| −1
)
,
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where a j = 2|α j+1|+ |κ j+1|+ d− j−1
2 and b j = κ j− 1

2 , form an orthonormal basis
of V d

n (W T
κ ), in which the constant is given by

(hα)2 =
1(|κ|+ d+1

2

)
2|α|

d

∏
j=1

(a j +b j +1)2α j(a j +1)α j(b j +1)α j

(a j +b j +1)α jα j!
.

Proof Using the second expression of the Jacobi polynomial as a hypergeometric
function in Proposition 1.4.14, we see that Pα(W T

κ ;x) is indeed a polynomial of
degree |α| in x. To verify the orthogonality and the value of the constant we use
the formula (5.3.2), which allows us to reduce the integral over T d to a multiple
of d integrals of one variable, so that the orthogonality will follow from that of
the Jacobi polynomials. Indeed, using the formula (5.3.2) repeatedly gives

wT
κ

∫
T d

Pα(W T
κ ;x)Pβ (W T

κ ;x)W T
κ (x)dx

= wT
κ (hα)−2

d

∏
j=1

∫ 1

0
[P(a j ,b j)
α j (2t−1)]2(1− t)a j tb j dt δα,β .

Hence, using the norm for the Jacobi polynomials, we obtain that

[hα ]2 = wT
κ

d

∏
j=1

Γ(a j +1)Γ(bj +1)
Γ(aj +b j +2)

(a j +1)α j(b j +1)α j(a j +b j +α j +1)
(a j +b j +2)α j(a j +bj +2α j +1)α j!

,

which simplifies, using ad = κd+1, a j−1 + 1 = aj + b j + 2α j + 2, and a1 + b1 +
2α1 +2 = |κ |+2|α|+ d+1

2 , to the stated formula.

Next we give two bases that are biorthogonal, each of which has its own dis-
tinguished feature. The first is the monic orthogonal basis and the second is given
by the Rodrigues formulas.

Monic orthogonal basis For α ∈ Nd
0 and |α|= n, we define

V T
α (x) = ∑

0≤β≤α
(−1)n+|β |

d

∏
i=1

(
αi

βi

)
(κi + 1

2 )αi

(κi + 1
2 )βi

(|κ|+ d−1
2 )n+|β |

(|κ|+ d−1
2 )n+|α|

xβ ,

where β ≤ α means β1 ≤ α1, . . . ,βd ≤ αd .

Proposition 5.3.2 For V T
α as defined above, the set {V T

α : |α| = n} forms a
monic orthogonal basis of V d

n with respect to W T
κ .

Proof The fact that V T
α (x) equals xα plus a polynomial of lower degree is evident.

We will prove that V T
α is orthogonal to polynomials of lower degree with respect

to W T
κ , for which a different basis for the space Πd

n is used. Let

Xγ(x) = xγ1
1 · · ·xγd

d (1−|x|)γd+1 ,
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where γ ∈Nd+1
0 . Then the Xγ with |γ|= n form a basis of Πd

n; that is,

Πd
n = span{xα : α ∈ Nd

0, |α| ≤ n}= span{Xγ : γ ∈Nd+1
0 , |γ |= n}.

This can be seen easily from applying the binomial theorem to (1−|x|)γd+1 . Thus,
to prove the orthogonality of V T

α it is sufficient to show that V T
α is orthogonal to

Xγ for all γ ∈ Nd+1
0 satisfying |γ | = n−1. Using (5.3.3) and the formula for V T

α ,

it follows for |γ|= n−1 and |α|= n that

wT
κ

∫
T d

V T
α (x)Xγ(x)W T

κ (x)dx

= ∑
β≤α

(
(−1)n+|β |

d

∏
i=1

(
αi

βi

)
(κi + 1

2 )αi

(κi + 1
2 )βi

(|κ|+ d−1
2 )n+|β |

(|κ|+ d−1
2 )n+|α |

×∏d
i=1Γ(βi + γi +κi + 1

2)Γ(γd+1 +κd+1 + 1
2 )

Γ(|γ|+ |β |+ |κ|+ d+1
2 )

)

= (−1)n∏
d
i=1Γ(αi +κi + 1

2 )Γ(γi +1)Γ(γd+1 +κd+1 + 1
2)

Γ(2n+ |κ|+ d+1
2 )

×
d

∏
i=1

αi

∑
βi=0

(−1)βi

(
αi

βi

)(
βi + γi +κi− 1

2
γi

)
.

A Chu–Vandermonde sum shows that, for m,n ∈ N and a ∈ R,

n

∑
k=0

(−1)k
(

n
k

)(
a+ k

m

)
=

(−1)m(−a)m

m! 2F1

(−n,1+a
1+a−m

;1
)

=
(−1)m(−a)m(−m)n

m!(1+a−m)n
=

(−m)n

m!(1+a)n−m
.

In particular, the sum becomes zero, because of the factor (−m)n, if m < n. Since
|γ| = n− 1, there is at least one i for which γi < αi; consequently, with n = αi,
m = γi and a = γi +κi− 1

2 , we conclude that V T
α is orthogonal to Xγ .

Further results on V T
α , including a generating function and its L2 norm, will be

given in Subsection 8.2.3.

Rodrigues formula and biorthogonal basis It is easy to state another basis,
UT
α , that is biorthogonal to the basis V T

α . Indeed, we can define UT
α by

UT
α (x) = x−κ1+1/2

1 · · ·x−κd+1/2
d (1−|x|)−κd+1+1/2

× ∂ |α |

∂xα1
1 · · ·∂xαd

d

xα1+κ1−1/2
1 · · ·xαd+κd−1/2

d (1−|x|)|α|+κd+1−1/2.

These are analogues of the Rodrigues formula for orthogonal polynomials on the
simplex. For d = 2 and up to a constant multiple, the Uα are also called Appell
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polynomials; see Appell and de Fériet [1926] and Chapter XII, Vol. II, of Erdélyi
et al. [1953].

Proposition 5.3.3 The polynomials UT
α are orthogonal polynomials and they

are biorthogonal to the polynomials V T
α :∫

T d
V T
β (x)UT

α (x)W T
κ (x)dx =

∏d
i=1(κi + 1

2)αi(κd+1 + 1
2 )|α |

(|κ|+ d+1
2 )|α |

α! δα ,β .

Proof It is evident from the definition that UT
α is a polynomial of degree n.

Integrating by parts leads to

wT
κ

∫
T d

V T
β (x)UT

α (x)W T
κ (x)dx

= wT
κ

∫
T d

(
∂ |α |

∂xα1
1 . . .∂xαd

d

Vβ (x)

)
d

∏
i=1

xαi+κi−1/2
i (1−|x|)|α |+κd+1−1/2 dx.

Since V T
β is an orthogonal polynomial with respect to W T

κ , the integral on the

left-hand side is zero for |β | > |α|. For |β | ≤ |α| the fact that V T
β is a monic

orthogonal polynomial gives

∂ |α|

∂xα1
1 · · ·∂xαd

d

V T
β (x) = α! δα ,β ,

from which the stated formula follows. The fact that the UT
α are biorthogonal to

V T
β shows that they are orthogonal polynomials with respect to W T

κ .

Reproducing kernel with respect to Wκ on T d Let Pn(W T
κ ; ·, ·) denote the

reproducing kernel of V d
n (Wκ) as defined in (3.6.2). This kernel satisfies a

remarkable and concise formula.

Theorem 5.3.4 For κi > 0, 1≤ i≤ d, x,y ∈ T d, and λk := |κ|+ d−1
2 ,

Pn(W T
κ ;x,y) =

(2n+λκ)(λκ)n

λκ( 1
2 )n

cκ (5.3.5)

×
∫

[−1,1]d+1
P(λκ−1/2,−1/2)

n
(
2z(x,y,t)2−1

)d+1

∏
i=1

(1− t2
i )κi−1 dt,

where z(x,y, t) =
√

x1y1 t1 + · · ·+√xdyd td +
√

1−|x|√1−|y|td+1 and [cκ ]−1 =∫
[−1,1]d+1 ∏d+1

i=1 (1− t2
i )κi−1dt. If some κi = 0 then the formula holds under the

limit relation (1.5.1).

This theorem will be proved in Subsection 8.2.2. We note that when κ = 0 we
have the limiting case P(W0;x,y), which was given in Corollary 4.4.10.
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5.4 Orthogonal Polynomials via Symmetric Functions
We now present a non-classical example, two families of orthogonal polynomials
derived from symmetric polynomials.

5.4.1 Two general families of orthogonal polynomials

These orthogonal polynomials are derived from symmetric and antisymmetric
polynomials. Although they are orthogonal with respect to unusual measures,
they share an interesting property, that of having the largest number of distinct
common zeros, which will be discussed in the next subsection.

We recall some basic facts about symmetric polynomials. A polynomial f ∈Πd

is called symmetric if f is invariant under any permutation of its variables. The
elementary symmetric polynomials in Πd

k are given by

ek = ek(x1, . . . ,xd) = ∑
1≤i1<...<ik≤d

xi1 . . .xik , k = 1,2, . . . ,d,

and they satisfy the generating function

d

∏
i=1

(1+ rxi) =
d

∑
k=0

ek(x1, . . . ,xd)rk.

The polynomials ek form a linear basis for the subspace of symmetric polynomi-
als. Hence, any symmetric polynomial f can be uniquely represented in terms of
elementary symmetric polynomials. Consider the mapping

u : x = (x1, . . . ,xd) �→ (e1(x), . . . ,ed(x)), (5.4.1)

where the ei are elementary symmetric polynomials in x, which is one-to-one on
the region S = {x ∈Rd : x1 < x2 < · · ·< xd}; denote the image of S by R, that is,

R = {u ∈Rd : u = u(x), x1 < x2 < · · ·< xd , x ∈Rd}. (5.4.2)

Let D(x) denote the Jacobian of this mapping. We claim that

D(x) = det

[( ∂ei

∂x j

)
i, j

]
= ∏

1≤i< j≤d

(xi− x j). (5.4.3)

To prove this equation we use the following identities, which follow from the
definition of the elementary symmetric functions:

∂ek

∂x j
= ek−1(x1, . . . ,x j−1,x j+1, . . . ,xd)

and

ek−1(x1, . . . ,x j−1,x j+1, . . . ,xd)− ek−1(x2, . . . ,xd)

= (x1− x j)ek−2(x2, . . . ,x j−1,x j+1, . . . ,xd).
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Subtracting the first column from the other columns in the determinant, using the
above two identities and taking out the factors, we obtain

D(x) =
d

∏
i=2

(x1− xi)D(x2, . . . ,xd−1),

from which the formula (5.4.3) follows.
Since the square of the Jacobian is a symmetric polynomial in x, under the

mapping (5.4.1), it becomes a polynomial in u, which we denote by Δ(u), that is,

Δ(u) = ∏
1≤i< j≤d

(xi− x j)2, u ∈ R.

Let dμ be a nonnegative measure on R. Define a measure ν on R as the image
of the product measure dμ(x) = dμ(x1) · · ·dμ(xd) under the mapping (5.4.1),
that is,

dν(u) = dμ(x1) · · ·dμ(xd), u ∈ R.

Our examples are orthogonal polynomials with respect to the measures

[Δ(u)]1/2 dν and [Δ(u)]−1/2 dν,

denoted by Pn,1/2
α and Pn,−1/2

α , respectively.
The explicit formulae for these polynomials are given below. Let {pn} be

orthonormal polynomials with respect to dμ on R. For α = (α1, . . . ,αd), n ≥
α1 ≥ ·· · ≥ αd ≥ 0 and n ∈N0, set

Pn,−1/2
α (u) = ∑

β∈Sd

pα1(xβ1
) · · · pαd (xβd

), u ∈ R, (5.4.4)

where Sd denotes the symmetric group on d objects, so that the summation is
performed over all permutations β of {1,2, . . . ,d}. By the fundamental theorem

on symmetric functions, Pn,−1/2
α is a polynomial in u of degree n.

We now define the second set of orthogonal polynomials. For α = (α1, . . . ,αd),
0≤ α1 ≤ ·· · ≤ αd = n and n ∈ N0, set

Pn,1/2
α (u) =

En
α(x)

D(x)
, where En

α(x) = det(pαi+d−i(x j))d
i, j=1. (5.4.5)

Since En
α(x) vanishes for xi = x j , i �= j, and since D(x) = ∏1≤i< j≤d (xi− x j) is

a factor of En
α(x), permutation of the variables in En

α and D can only change the
signs. This happens to both En

α and D, so En
α/D is a symmetric polynomial. Since

the polynomial D is of degree d−1 in each of its variables xi and the polynomial
En
α is of degree n + d− 1 in xi, it follows that En

α/D is a symmetric polynomial
of degree n in xi or, equivalently, a polynomial in u of degree n.

Let us now verify that the systems {Pn,−1/2
α } and {Pn,1/2

α } are orthogonal on
R with respect to Δ−1/2 dν and Δ1/2 dν , respectively. For any polynomial f in u,
that is, for any symmetric polynomial in x, changing variables gives
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R

f (u)[Δ(u)]−1/2 dν(u) =
∫

S
f (u(x))dμ(x) =

1
d!

∫
Rd

f (u(x))dμ(x),

and, similarly, ∫
R

f (u)[Δ(u)]1/2 dν(u) =
∫

S
f (u(x))Δ2(x)dμ(x).

In particular, it follows that∫
R

Pn,−1/2
α (u)Pm,−1/2

β (u)[Δ(u)]−1/2 dν(u)

=
1
d!

∫
Rd

Pn,−1/2
α (u(x))Pm,−1/2

β (u(x))dμ(x).

From the last expression and (5.4.4) we see that the polynomials of the system
{Pn,−1/2

α } are mutually orthogonal: the above integral is nonzero only when n = m
and α = β . Moreover, if α ′1, . . . ,α ′d′ , 1 ≤ d′ ≤ d, are the distinct elements in α ,
and mi is the number of occurrences of α ′i , then∫

R

[
Pn,−1/2
α (u)

]2[Δ (u)]−1/2 dν(u) = m1! · · ·md′!

Hence,
{

1/
√

m1! · · ·md′!P
n,−1/2
α

}
forms an orthonormal family on R.

Similarly, for the system {Pn,1/2
α },∫

R
Pn,1/2
α (u)Pm,1/2

β (u)[Δ(u)]1/2 dν(u) =
∫

S
En
α(x)Em

β (x)dμ(x)

=
1
d!

∫
Rd

En
α(x)Em

β (x)dμ(x),

from which we can proceed as above. The system {Pn,1/2
α } is orthonormal.

In the case d = 2, the mapping (5.4.1) takes the form

u = (u1,u2) : u1 = x+ y, u2 = xy,

and the function Δ takes the form Δ(u1,u2) = (x− y)2 = u2
1− 4u2. The orthog-

onal polynomials (5.4.4) are exactly the Koornwinder polynomials, discussed in
Section 2.7, on the domain bounded by two lines and a parabola.

5.4.2 Common zeros and Gaussian cubature formulae

The orthogonal polynomials with respect to Δ±1/2 have the maximal number of

common zeros. Let P
(±1/2)
n denote orthogonal bases of degree n with respect to

[Δ(u)]±1/2 dν , respectively.

Theorem 5.4.1 The orthogonal polynomials in P
(1/2)
n or P

(−1/2)
n with respect to

the measures [Δ (u)]1/2 dν or [Δ(u)]−1/2 dν , respectively, have dimΠd
n common

zeros.
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Proof Let pn(x) be orthonormal polynomials with respect to dμ(x) on R, as in
Subsection 5.4.1. Let {xk,n}n

k=1 be the zeros of pn, ordered by x1,n < · · · < xn,n.

From the formula (5.4.4) it follows that Pn,−1/2
α vanishes on all uα,n, which is

the image of (xα1,n, . . . ,xαd ,n) under the map (5.4.1), where the xαi,n are the
zeros of pn. Using the symmetric mapping (5.4.1) and taking into account the
restriction x1 ≤ x2 ≤ ·· · ≤ xd in the definition of R, we see that the num-
ber of distinct common zeros of P

(−1/2)
n is equal to the cardinality of the set

{γ ∈Nd : 0≤ γd ≤ ·· · ≤ γ1 ≤ n−1}. Denote the cardinality by Nn−1,d . It follows
by setting γd = k that

Nn−1,d =
n−1

∑
k=0

#{γ ∈ Nd : γ1 ≤ ·· · ≤ γd−1 ≤ k}=
n−1

∑
k=0

Nk,d−1,

which is the same as the equation dimΠd
n−1 = ∑rd

k , and induction shows that

Nn,d = dimΠd
n−1. Therefore, P

(−1/2)
n has dimΠd

n−1 distinct common zeros.
Similarly, let tk,n+d−1 be the zeros of the orthogonal polynomial pn+d−1. From

the formula (5.4.5) it follows that Pn,1/2
α vanishes on all uγ ,n, which are the

images of (tγ1,n+d−1, . . . , tγd ,n+d−1) under the mappings (5.4.1). The number of

distinct common zeros of P
1/2
n is equal to the cardinality of the set {γ ∈Nd : 0≤

γd < · · · < γ1 ≤ n + d− 2}, which is easily seen to be equal to the cardinality

of the set defined in the previous paragraph. Hence, P
(1/2)
n has dimΠd

n−1 distinct
common zeros.

Together with Theorem 3.8.4, this shows that Gaussian cubature formulae exist
for all weight functions Δ(u)±1/2 dν . Moreover, we can write down the cubature
formulae explicitly. Let us recall from Subsection 5.4.1 that pn is the nth orthog-
onal polynomial with respect to dμ on R and that the set {xk,n}n

k=1 contains the
zeros of pn. The Gaussian quadrature formula with respect to dμ takes the form∫

R
f (x)dμ =

n

∑
k=1

f (xk,n)λk,n, f ∈Πd
2n−1. (5.4.6)

Let uγ,n denote the image of xγ,n = (xγ1,n, . . . ,xγd ,n) under the map (5.4.1).

Theorem 5.4.2 Using the notation in Subsection 5.4.1, both the measures
[Δ(u)]1/2 dν and [Δ(u)]−1/2dν admit Gaussian cubature formulae. Moreover, the
formulae of degree 2n−1 take the form∫

R
f (u)[Δ(u)]−1/2 dν(u) =

n

∑
γ1=1

γ1

∑
γ2=1

· · ·
γd−1

∑
γd=1

Λ−1/2
γ ,n f (uγ,n)

and ∫
R

f (u)[Δ(u)]1/2dν(u) =
n+d−1

∑
γ1=1

γ1−1

∑
γ2=1

· · ·
γd−1−1

∑
γd=1

Λ1/2
γ,n f (uγ ,n+d−1),
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where

Λ−1/2
γ,n =

λm1
γ1,n · · ·λmd′

γd′ ,n

m1! · · ·md′!
and Λ1/2

γ ,n = J(xγ,n)2λγ1,n · · ·λγd ,n

and where, for a given multi-index γ ∈ Nd
0 , γ ′1, . . . ,γ ′d′ are its distinct elements

and m1, . . . ,md′ their respective multiplicities.

Proof We need only determine the weights {Λ1/2
α,n} and {Λ−1/2

α,n } in the two
formulae.

First notice that by changing variables the first cubature formula can be
rewritten as

1
d!

∫
Rd

f (x)dμ(x) =
n

∑
γ1=1

γ1

∑
γ2=1

· · ·
γd−1

∑
γd=1

Λ−1/2
γ,n f (xγ,n),

which is exact for symmetric polynomials f whose degree in each variable is at
most 2n− 1. Let �k,n be the polynomial of degree n− 1 uniquely determined by
�k,n(x j,n) = δk, j , 1≤ j ≤ n. Let

f (x) = ∑
β∈Sd

�α1,n(xβ1
) · · ·�αd ,n(xβd

),

which is symmetric with degree n−1 in each of its variables. There are d! sum-
mands in the definition of f . On the one hand we can write the integration on the
left-hand side of the first cubature formula as a sum of products of one-variable
integrals. Using (5.4.6) the integral is equal to λα1,n · · ·λαd ,n. On the other hand,

the right-hand side of the first cubature formula equals m1! · · ·md′!Λ
−1/2
α,n , since

only those terms with γ = α count.
In the same way as above, the second cubature formula can be rewritten as

1
d!

∫
Rd

f (x)J(x)2 dμ(x) =
n+d−1

∑
γ1=1

γ1−1

∑
γ2=1

· · ·
γd−1−1

∑
γd=1

Λ1/2
γ ,n f (xγ ,n),

which is exact for symmetric polynomials f whose degree in each variable is at
most n−1. Now let

f (x) =
[
det(�αi(x j))d

i, j=1

]2/
D(x)2

which is a symmetric polynomial with degree 2n − 1 in each of its vari-
ables. Clearly, the right-hand side of the second cubature formula is simply
Λ1/2
α,n/D(xα ,n)2, while, using the Lagrange expansion of a determinant,

det(�αi(x j))d
i, j=1 = ∑

β∈Sd

sign(β )�α1(xβ1
) · · ·�αd (xβd

),

we see that the left-hand side of the formula is equal to λ 2
α1,n . . .λ 2

αd ,n, which
proves the theorem.
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5.5 Chebyshev Polynomials of Type Ad

The Chebyshev polynomials of type Ad are orthogonal polynomials derived from
orthogonal exponential functions that are invariant under the reflection group Ad ,
just as the Chebyshev polynomials are derived from eiθ ± e−iθ , which is invari-
ant or skew-invariant under Z2. They are the d-variable extension of the second
family of Koornwinder polynomials, discussed in Section 2.9.

The space Rd can be identified with the hyperplane

Rd+1
H := {t ∈Rd+1 : t1 + · · ·+ td+1 = 0} ⊂Rd+1.

In this section we shall adopt the convention of using a bold letter, such as
t = (t1, . . . , td+1), to denote the homogeneous coordinates in Rd+1

H that satisfy
t1 + · · ·+ td+1 = 0. The root lattice of the group Ad is generated by reflections
σi j, defined by, in homogeneous coordinates,

tσi j := t−2
〈t,ei, j〉
〈ei, j,ei, j〉ei, j = t− (ti− t j)ei, j, where ei, j := ei− e j.

This group can be identified with the symmetric group of d + 1 elements. The
fundamental domain Ω of Ad is defined by

Ω=
{

t ∈ Rd+1
H :−1≤ ti− t j ≤ 1, 1≤ i < j ≤ d +1

}
,

which is the domain that tiles Rd+1
H under Ad in the sense that

∑
k∈Zd+1

H

χΩ(t+k) = 1, for almost all t ∈Rd+1
H . (5.5.1)

The dual lattice of Zd+1
H is given by {k/(d +1) : k ∈H}, where

H := {k ∈ Zd+1∩Rd+1
H : k1 ≡ ·· · ≡ kd+1 mod d +1}.

There is a close relation between tiling and exponential functions. We define the
exponential functions

φk(t) := exp

(
2πi

d +1
kTt
)

, k ∈H.

It is easy to see that these functions are periodic in the sense that φk(t) = φk(t+ j)
∀j ∈ Zd+1∩Rd+1

H . Furthermore, they are orthogonal:

1√
d +1

∫
Ω
φk(t)φj(t)dt = δk,j. (5.5.2)

This orthogonality can be deduced by taking the Fourier transform of (5.5.1) and
using the Poisson summation formula. For d = 2 the orthogonality is verified
directly in Proposition 2.9.1. However, the choice of Ω is different from that of
Section 2.9, which is the reason for the different normalization of the integral
over Ω.
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Define the invariant operator P+ and the skew-invariant operator P− by

P± f (t) :=
1

(d +1)!

[
∑

σ∈A +
f (tσ)± ∑

σ∈A −
f (tσ)

]
,

where A + (A −) contains even (odd) elements in Ad . The invariant and skew-
invariant functions defined by, respectively,

TCk(t) := P+φk(t), k ∈ Λ, and TSk(t) :=
1
i
P−φk(t), k ∈ Λ0,

are analogues of cosine and sine functions; here

Λ :={k ∈H : k1 ≥ k2 ≥ ·· · ≥ kd+1},
Λ0 :={k ∈H : k1 > k2 > · · ·> kd+1}.

The fundamental domain Ω of the Ad lattice is the union of congruent simplexes
under the action of the group Ad . We fix one simplex as

� :=
{

t ∈Rd+1
H : 0≤ ti− t j ≤ 1, 1≤ i≤ j ≤ d +1

}
and define an inner product on� by

〈 f ,g〉� :=
1
|�|

∫
�

f (t)g(t)dt =
(d +1)!√

d +1

∫
�

f (t)g(t)dt.

Proposition 5.5.1 For k, j ∈ Λ, we have

〈TCk,TCj〉� =
δk,j

|kAd| and 〈TSk,TSj〉� =
δk,j

(d +1)!
, k, j ∈ Λ0,

where |kAd| denotes the cardinality of the orbit kAd := {kσ : σ ∈ Ad}.

Proof Both these relations follow from the fact that if f (t)g(t) is invariant under
Ad then

1√
d +1

∫
Ω

f (t)g(t)dt = 〈 f ,g〉�
and from the orthogonality of φk(t) over Ω.

The Chebyshev polynomials of type Ad are images of the generalized cosine
and sine functions under the change of variables t �→ z, where z1, . . . ,zd denote the
first d elementary symmetric functions of e2πit1 , . . . ,e2π itd+1 and are defined by

zk :=
(

d +1
k

)−1

∑
J⊂Nd+1
|J|=k

e2πi∑ j∈J t j , (5.5.3)

where Nd+1 = {1,2, . . . ,d + 1}. Let vk :=
({d + 1− k}k,{−k}d+1−k

)
with {t}k

means that t is repeated k times. Then vk/(d +1), k = 1,2, . . . ,d, are
vertices of the simplex � and zk equals TCvk(t), as can be seen from
(vk)Tt = (d +1)(t1 + · · ·+ tk), by the homogeneity of t. Thus TCk is a symmetric
polynomial in e2π it1 , . . . ,e2πitd+1 and hence a polynomial in z1, . . . ,zd . For TSk we
need the following lemma:
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Lemma 5.5.2 Let

v◦ :=
(

d(d +1)
2

,
(d−2)(d +1)

2
, . . . ,

(2−d)(d +1)
2

,
−d(d +1)

2

)
.

Then

TSv◦(t) =
(2i)d(d+1)/2

(d +1)! ∏
1≤μ<ν≤d+1

sinπ(tμ − tν). (5.5.4)

Proof Let β := (d,d−1, . . . ,1,0) ∈ Nd+1
0 . Then

exp

(
2πi

d +1
v◦ · t

)
= exp[−πid(t1 + · · ·+ td+1)]exp(2πiβ · t) = exp(2πiβ · t).

Using the Vandermonde determinant (see, for example, p. 40 of Macdon-
ald [1992]),

∑
σ∈Sd+1

ρ(σ)σ(xβ ) = det
(

xd+1− j
i

)
1≤i, j≤d+1

= ∏
1≤i< j≤d+1

(xi− x j)

and setting x j = e2πit j , we obtain

TSv◦(t)=
1
|G | ∑σ∈G

ρ(σ)exp

(
2πi

d +1
v◦ · t

)
=

1
(d +1)! ∏

1≤μ<ν≤d+1

(
e2iπtμ − e2iπtν

)
=

1
(d +1)! ∏

1≤μ<ν≤d+1

(
eiπtμ−ν −eiπtν−μ

)
,

where the second equality follows from t1 + · · · + td+1 = 0; from this we
have (5.5.4).

The same argument that proves (5.5.4) also shows that

TSk+v◦(t) = det
(

x
λ j+β
i

)
1≤i, j≤d+1

∀k ∈ Λ,

where xi = e2πiti and λ := (k1− kd+1,k2− kd+1, . . . ,kd− kd+1,0). Since λ ∈ Λ is
a partition, TSk+v◦(t) is divisible by TSv◦ in the ring Z[x1, . . . ,xd] (cf. p. 40 of
Macdonald [1995]) and the quotient

sλ (x1, . . . ,xd) = TSk+v◦(t)/TSv◦(t)

is a symmetric polynomial in x1, . . . ,xd , which is the Schur function in the
variables x1, . . . ,xd corresponding to the partition λ . In particular, sλ is a poly-
nomial in the elementary symmetric polynomials z1, . . . ,zd ; more precisely, it is
a polynomial in z of degree (k1− kd+1)/(d + 1), as shown by formula (3.5) in
Macdonald [1995]. This is our analogue of the Chebyshev polynomials of the
second kind.
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Definition 5.5.3 Define the index mapping α : Λ→Nd
0 by

αi = αi(k) :=
ki− ki+1

d +1
, 1≤ i≤ d. (5.5.5)

Under the change of variables t �→ z = (z1, . . . ,zk) in (5.5.3), define

Tα(z) := TCk(t) and Uα(z) :=
TSk+v◦(t)
TSv◦(t)

, α ∈ Nd
0.

The polynomials Tα(z) and Uα(z) are called the Chebyshev polynomials type Ad ,
of the first and the second kind, respectively.

The polynomials Tα and Uα are of degree |α| in z. They are analogues of the
classical Chebyshev polynomials of the first kind and the second kind, respec-
tively. In particular, we shall show that they are respectively orthogonal on the
domain �∗, the image of � under t �→ z. We need the Jacobian of the change of
variables. Let us define

w(x) = w(x(t)) := ∏
1≤μ<ν≤d+1

sin2π(tμ − tν)

under this change of variables.

Lemma 5.5.4 The Jacobian of the change of variables t �→ x is given by

det
∂ (z1,z2, . . . ,zd)
∂ (t1,t2, . . . , td)

=
d

∏
k=1

2πi(d+1
k

) ∏
1≤μ<ν≤d+1

|sinπ(tμ − tν)|.

Proof Regarding t1,t2, . . . , td+1 as independent variables, one sees that

∂ zk

∂ t j
=

2πi(d+1
k

) ∑
j∈I⊆Nd+1,|I|=k

e2πi∑ν∈I tν .

For each fixed j, let N
( j)
m denote the set of Nm ⊂ { j} and split I ⊂ Nd+1 into two

parts, one containing { j,d +1} and the other not. We then obtain, after canceling
the common factor,

∂ zk

∂ t j
− ∂ zk

∂ td+1
=

2πi(d+1
k

)
⎛⎜⎝ ∑

j∈I⊆N
{d+1}
d+1 ,|I|=k

− ∑
d+1∈I⊆N

{ j}
d+1,|I|=k

⎞⎟⎠e2πi∑ν∈I tν

=
2πi(d+1

k

)(e2πit j − e2πitd+1
)

∑
I⊆N

{ j}
d ,|I|=k−1

e2π i∑ν∈I tν .

Hence, setting f d
j,k := ∑

I⊆N
{ j}
d ,|I|=k−1

e2π i∑ν∈I tν and defining the matrix Fd :=(
f d

j,k

)
1≤ j,k≤d , we have
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det
∂ (z1,z2, . . . ,zd)
∂ (t1,t2, . . . , td)

=
d

∏
k=1

2πi(d+1
k

) d

∏
j=1

(
e2π it j − e2πitd+1

)
det Fd .

By definition f d
j,1 = 1; splitting N{ j} into a part containing d and a part not

containing d, it follows that

f d
j,k− f d

d,k =
(
e2πitd − e2π it j

)
∑

I⊆N
{ j,d}
d ,|I|=k−2

e2πi∑ν∈I tν

=
(
e2πitd − e2π it j

)
f d−1

j,k−1,

which allows us to use induction and show that

det Fd = ∏
1≤μ<d−1

(
e2πitμ − e2πitd

)
det Fd−1 = · · ·

= ∏
1≤μ<ν≤d

(
e2πitμ − e2π itν

)
.

The use of (5.5.4) now proves the lemma.

From the homogeneity of t, the zk in (5.5.3) satisfy zk = zd+1−k. Hence, we can
define real coordinates x1, . . . ,xd by

xk =
zk + zd+1−k

2
, xd+1−k =

zk− zd+1−k

2i
for 1≤ k ≤ �d

2
�,

and we define x(d+1)/2 = 1√
2

z(d+1)/2 when d is odd. Instead of making the change

of variables t �→ z, we consider t �→ x of Rd+1
H �→ Rd . The image of the simplex

� under this mapping is

�∗ :=
{

x = x(t) ∈Rd : t ∈ Rd+1
H , ∏

1≤i< j≤d+1

sinπ(ti− t j)≥ 0

}
.

For d = 2, this is the second family of Koornwinder polynomials, presented in
Section 2.9, and�∗ is the region bounded by the hypercycloid.

The Chebyshev polynomials are orthogonal with respect to the weight func-
tions W−1/2 and W1/2, respectively, on�∗, where

Wα(z) := ∏
1≤μ<ν≤d+1

|sinπ(tμ − tν)|2α .

We will need the cases α =− 1
2 and α = 1

2 of the weighted inner product

〈 f ,g〉Wα
:= cα

∫
Δ∗

f (z)g(z)Wα(z)dz,

where cα is a normalization constant, cα := 1/
∫
Δ∗Wα(z)dz.

The orthogonality of Tκ and Uκ , respectively, then follows from the orthog-
onality of TCk and TSk with the change of variables. More precisely,
Proposition 5.5.1 leads to the following theorem:
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Theorem 5.5.5 The polynomials Tα and Uα are orthogonal polynomials with
respect to W−1/2 and W1/2, respectively, and

〈Tα ,Tβ 〉W−1/2
=

δα ,β

|kAd | and 〈Uα ,Uβ 〉W1/2
=

δα ,β

(d +1)!

for α,β ∈Nd
0 , where k is defined by α = α(k).

Both Tα(z) and Uα(z) are polynomials of degree |α| = α1 + · · ·+ αd in z.
Moreover, they both satisfy a simple recursion relation.

Theorem 5.5.6 Let Pα denote either Tα or Uα . Then

Pα(z) = Pαd ,αd−1,...,α1(z), α ∈ Nd
0, (5.5.6)

and Pα satisfies the recursion relation(
d +1

i

)
ziPα(z) = ∑

j∈viAd

Pα+α(j)(z), α ∈ Nd
0 , (5.5.7)

in which the components of α(j), j ∈ viAd, have values in {−1,0,1}, Uα(z) = 0
whenever α has a component αi =−1 and

T0(z) = 1, Tεk(z) = zk, 1≤ k ≤ d,

U0(z) = 1, Uεk(z) =
(

d +1
k

)
zk, 1≤ k ≤ d.

Proof The relation (5.5.6) follows readily from the fact that −(ki− k j) = k j− ki

and (5.5.5). For a proof of the recursion relations we need

TCj(t)TCk(t) =
1
|Ad| ∑σ∈Ad

TCk+jσ (t), j,k ∈ Λ, (5.5.8)

TCj(t)TSk(t) =
1
|Ad| ∑σ∈Ad

TSk+jσ (t), j,k ∈ Λ, (5.5.9)

which follow, using simple computation, from the definitions of TCk and TSk.
The relation (5.5.7) follows immediately from (5.5.8) and (5.5.9). Further, using
(5.5.9) it is not difficult to verify that

zkTSv◦(t) =
k!(d +1− k)!

(d +1)!
TSv◦+vk(t), 1≤ k ≤ d,

from which the values of P0 and Pεk are obtained readily. If α has a component
αi =−1 then, by (5.5.5), ki(α) = ki+1(α)− (d +1). A quick computation shows
that then ki(α) + v◦i = ki+1(α) + v◦i+1, which implies that k + v◦ ∈ ∂Λ, so that
TSk+v◦(t) = 0 and Uα(z) = 0.

By (5.5.6) together with zk = zd−k+1 we can derive a sequence of real
orthogonal polynomials from either {Tα} or {Uα}.
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5.6 Sobolev Orthogonal Polynomials on the Unit Ball
Sobolev orthogonal polynomials are orthogonal with respect to an inner prod-
uct that involves derivatives. In this section we consider two types of Sobolev
orthogonal polynomials on the unit ball Bd .

5.6.1 Sobolev orthogonal polynomials defined via the gradient operator

In this subsection we consider the inner product defined by

〈 f ,g〉∇ :=
λ
σd

∫
Bd
∇ f (x) ·∇g(x)dx+

1
σd

∫
Sd−1

f (x)g(x)dω(x), (5.6.1)

where λ is a fixed positive number and x ·y stands for the inner product of vectors
x and y. Since the positive definiteness of the bilinear form (5.6.1) can be easily
verified, it is an inner product and consequently polynomials orthogonal with
respect to 〈 f ,g〉∇ exist. Let V d

n (∇) denote the space of orthogonal polynomials
of degree n with respect to (5.6.1).

In analogy to (5.2.4), a basis of V d
n (∇) can be given in terms of polynomials

of the form

Qn
j,ν(x) := q j(2‖x‖2−1)Y n−2 j

ν (x), 0≤ 2 j ≤ n, (5.6.2)

where {Y n−2 j
ν : 0 ≤ ν ≤ ad

n−2 j}, with ad
m := dimH d

m , is an orthonormal basis of

H d
n−2 j and q j is a polynomial of degree j in one variable. We need the following

lemma.

Lemma 5.6.1 Let Qn
j,ν be defined as above. Then

Δ
[
(1−‖x‖2)Qn

j,ν(x)
]
= 4
(
Jβq j

)
(2r2−1)Y n−2 j

ν (x),

where Δ is the Laplacian operator, β = n−2 j + d−2
2 and

(Jβq j)(s) = (1− s2)q′′j (s)+ [β −1− (β +3)s]q′j(s)− (β +1)q j(s).

Proof Using spherical polar coordinates, it follows from (4.1.4) and (4.1.5) that

Δ
[
(1−‖x‖2)Qn

j,ν(x)
]
= Δ
[
(1− r2)q j(2r2−1)rn−2 jY n−2 j

ν (x′)
]

= 4rn−2 j [4r2(1− r2)q′′j (2r2−1)

+2((β +1)− (β +3)r2)q′j(2r2−1)

−(β +1)q j(2r2−1)
]
Y n−2 j
ν (x′).

Setting s �→ 2r2−1 gives the stated result.

It is interesting that λ does not appear in the Qn
j,ν .
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Theorem 5.6.2 For 0≤ j≤ n/2, let {Y n−2 j
ν : 1≤ ν ≤ ad

n−2 j} be an orthonormal

basis of H d
n−2 j. Then a mutually orthogonal basis {Qn

j,ν : 0 ≤ j ≤ n
2 ,1 ≤ ν ≤

ad
n−2 j} for V d

n (∇) is given by

Qn
0,ν(x) = Y n

ν (x),

Qn
j,ν(x) = (1−‖x‖2)P(1,n−2 j+(d−2)/2)

j−1 (2‖x‖2−1)Y n−2 j
ν (x)

(5.6.3)

for 0 < j ≤ n/2. Furthermore, the norms of these polynomials are

〈Qn
0,ν ,Q

n
0,ν〉∇ = nλ +1, 〈Qn

j,ν ,Q
n
j,ν〉∇ =

2 j2

n+ d−2
2

λ . (5.6.4)

Proof As in Proposition 5.2.1, we only need to prove the orthogonality. We start
with Green’s identity∫

Bd
∇ f (x) ·∇g(x)dx =

∫
Sd−1

f (x)
d
dr

g(x)dω−
∫

Bd
f (x)Δg(x)dx,

where d/dr is the normal derivative, which coincides with the derivative in the
radial direction. The above identity can be used to rewrite the inner product
〈·, ·〉∇ as

〈 f ,g〉∇ =
1
σd

∫
Sd−1

f (x)
[
λ

d
dr

g(x)+g(x)
]

dω− λ
σd

∫
Bd

f (x)Δg(x)dx.

First we consider the case j = 0, that is, the orthogonality of Qn
0,ν = Y n

ν . Setting

j = 0 in (5.2.4) shows that Y n
ν is an orthogonal polynomial in V d

n (W B
μ ). Since

Qn
j,ν(x)|r=1 = 0,

d
dr

Qn
j,ν(x)|r=1 =−2P(1,n−2 j+(d−2)/2)

j−1 (1)Y n−2 j
ν (x′)

and ΔQm
j,ν ∈ Πd

m−2, it follows from the above expression for 〈 f ,g〉∇ that, for
m < n, j > 0 and 0≤ μ ≤ σm−2 j ,

〈Qn
0,ν ,Q

m
j,μ〉∇ =−2P(1,n−2 j+(d−2)/2)

j−1 (1)
λ
σd

∫
Sd−1

Y n
ν (x′)Y m

μ (x′)dω(x′) = 0.

Furthermore, using the fact that (d/dr)Y n
ν (x)|r=1 = nY n

ν (x′), the same considera-
tion shows that

〈Qn
0,ν ,Q

m
0,ν〉∇ = (λn+1)

1
σd

∫
Sd−1

[
Y n
ν (x′)

]2
dω(x′)δn,m = (λn+1)δn,m.

Next we consider Qn
j,ν for j ≥ 1. In this case Qn

j,ν(x)|r=1 = 0 since it contains the

factor 1−‖x‖2, which is zero on Sd−1. Consequently, the first term in



5.6 Sobolev Orthogonal Polynomials on the Unit Ball 167

〈Qn
j,ν ,Q

m
l,μ〉∇ =

1
σd

∫
Sd−1

Qn
j,ν(x

′)
(
λ

d
dr

Qm
l,μ +Qm

l,μ

)
(x′)dω(x′)

− λ
ωd

∫
Bd

Qn
j,ν(x)ΔQm

l,μ(x)dx

is zero. For the second term, we use Lemma 5.6.1 to derive a formula for ΔQn
j,ν .

The formula in the lemma gives

ΔQn
j,ν(x) = 4

(
JβP(1,β)

j−1

)
(2r2−1)Y n−2 j

ν (x), β = n−2 j + d−2
2 .

On the other hand, the differential equation satisfied by the Jacobi polynomial

becomes, for P(1,β)
j−1 ,

(1− s2)y′′ − [1−β +(3+β )s]y′+( j−1)( j +β +1)y = 0,

which implies that (JβP(1,β )
j−1 )(s) =− j( j +β )P(1,β )

j−1 (s). Consequently, denoting

by Pn
j,ν(W

B
μ ;x) the polynomials in (5.2.4) without their normalization constant,

we obtain

ΔQn
j,ν(x) = −4 j( j +β )P(1,β )

j−1 (2r2−1)Y n−2 j
ν (x)

= −4 j(n− j + d−2
2 )Pn−2

j−1,ν(W1;x). (5.6.5)

Hence, using the fact that Qm
l,μ(x) = (1−‖x‖2)Pm−2

l−1,μ(W3/2;x), we derive from
(5.6.5) that∫

Bd
Qm

l,μ(x)ΔQn
j,ν(x)dx

=−4 j(n− j + d−2
2 )
∫

Bd
Pm−2

l−1,μ(W3/2;x)Pn−2
j−1,ν(W3/2;x)(1−‖x‖2)dx

=−4 j(n− j + d−2
2 )
∫

Bd

[
Pn−2

j−1,ν(W3/2;x)
]2

(1−‖x‖2)dxδn,mδ j,lδν,μ .

Using the norm of Pn
j,ν(W

B
μ ;x) computed in the proof of Proposition 5.2.1, we can

then verify (5.6.4) for j ≥ 1.

From the explicit form of the basis (5.6.3) it follows that Qn
j,ν is related to

polynomials orthogonal with respect to W3/2(x) = 1−‖x‖2. In fact, we have

Qn
j,ν(x) = (1−‖x‖2)Pn−2

j−1,ν(W3/2;x), j ≥ 1,

which has already been used in the above proof. An immediate consequence is
the following corollary.

Corollary 5.6.3 For n≥ 1,

V d
n (∇) = H d

n ⊕ (1−‖x‖2)V d
n−2(W3/2).
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Recall that the classical orthogonal polynomials in V d
n (W B

μ ) are eigenfunctions

of a second-order differential operator Dμ for μ > − 1
2 ; see (5.2.3). Usng the

relation (5.6.5), we can deduce the following result.

Corollary 5.6.4 The polynomials P in V d
n (∇) are eigenfunctions of D−1/2, and

D−1/2P =−(n+d)(n−2)ΔP ∀P ∈ V d
n (∇).

5.6.2 Sobolev orthogonal polynomials defined via the Laplacian operator

We consider the inner product defined by

〈 f ,g〉Δ := ad

∫
Bd
Δ[(1−‖x‖2) f (x)]Δ[(1−‖x‖2)g(x)]dx,

where ad = (4dσd−1)−1 so that 〈1,1〉Δ = 1. To see that it is an inner product, we
need to show only that 〈 f , f 〉Δ > 0 if f �= 0. However, if Δ(1−‖x‖2) f (x) = 0
then (1−‖x‖2) f (x) is a solution of the Dirichlet problem with zero boundary
condition for the Laplace operator on the unit ball, so that by the uniqueness of
the Dirichlet problem f must be the zero function. Let V d

n (Δ) denote the space
of orthogonal polynomials of degree n with respect to (5.6.1).

As in the case of 〈·, ·〉, a basis of V d
n (Δ) can be given in terms of polynomials

of the form

Rn
j,ν(x) := q j(2‖x‖2−1)Y n−2 j

ν (x), 0≤ 2 j ≤ n, (5.6.6)

where {Y n−2 j
ν : 0 ≤ ν ≤ ad

n−2 j}, with ad
m := dimH d

m , is an orthonormal basis of

H d
n−2 j and q j is a polynomial of degree j in one variable. We need the following

lemma, in which Jβ is defined as in Lemma 5.6.1.

Lemma 5.6.5 Let β >−1. The polynomials pβj defined by

pβ0 (s) = 1, pβj (s) = (1− s)P(2,β )
j−1 (s), j ≥ 1,

are orthogonal with respect to the inner product ( f ,g)β defined by

( f ,g)β :=
∫ 1

−1
(Jβ f )(s)(Jβg)(s)(1+ s)βds, β >−1.

Proof The three-term relation of the Jacobi polynomials gives

(1− s)P(2,β )
j−1 (s) =

2
2 j +β +1

[
( j +1)P(1,β)

j−1 (s)− jP(1,β )
j (s)

]
and the differential equation satisfied by P(1,β )

j−1 is

(1− s2)y′′+[−1+β − (3+β )s]y′+( j−1)( j +β +1)y = 0.
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Using these two facts, we easily deduce that

1
2
(2 j +β +1)Jβ

[
(1− s)P(2,β )

j−1 (s)
]

= ( j +1)JβP(1,β )
j−1 (s)− jJβP(1,β)

j−1 (s)

= ( j +1)
(
[−( j−1)( j +β +1)− (β +1)]P(1,β)

j−1 (s)

− j[− j( j +β +2)− (β +1)]P(1,β)
j (s)

)
=− j( j +1)

[
( j +β )P(1,β)

j−1 (s)− ( j +β +1)P(1,β )
j (s)

]
.

We need one more formula for the Jacobi polynomials (p. 782, formula (22.7.8)
in Abramowitz and Stegun [1970]):

(2 j +β +1)P(0,β )
j (s) = ( j +β +1)P(1,β )

j (s)− ( j +β )P(1,β )
j−1 (s),

which implies immediately that

Jβ

[
(1− s)P(2,β)

j−1 (s)
]

= 2 j( j +1)P(0,β)
j (s).

Hence, for j, j′ ≥ 1, we conclude that

(pβj , pβj′)β =
∫ 1

−1
Jβ

[
(1− s)P(2,β)

j−1 (s)
]
Jβ

[
(1− s)P(2,β )

j′−1 (s)
]
(1+ s)βds

=4 j( j +1) j′( j′+1)
∫ 1

−1
P(0,β)

j (s)P(0,β)
j′ (s)(1+ s)βds = 0

whenever j �= j′. Furthermore, for j ≥ 1 we have

(pβ0 , pβj )β =−2 j( j +1)(β +1)
∫ 1

−1
P(0,β)

j (s)(1+ s)βds = 0,

since (Jβ pβ0 )(s) = (Jβ1)(s) =−(β +1).

Theorem 5.6.6 A mutually orthogonal basis for V d
n (Δ) is given by

Rn
0,ν(x) = Y n

ν (x),

Rn
j,ν(x) = (1−‖x‖2)P(2,n−2 j+(d−2)/2)

j−1 Y n−2 j
ν (x), 1≤ j ≤ n

2 ,
(5.6.7)

where {Y n−2 j
ν : 1≤ ν ≤ σn−2 j} is an orthonormal basis of H d

n−2 j. Furthermore

〈Rn
0,ν ,R

n
0,ν〉Δ =

2n+d
d

, 〈Rn
j,ν ,R

n
j,ν〉Δ =

8 j2( j +1)2

d(n+ d
2 )

. (5.6.8)

Proof First we show that Rn
j,ν ∈ V d

n (Δ). Let pβj be defined as in the previous

lemma. Set q j := p
βn−2 j
j with βk = k+(d−2)/2. Using (5.2.2), Lemma 5.6.1 and

the orthonormality of Y n−2 j
ν , we obtain
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〈Rn
j,ν ,R

n′
j′,ν ′ 〉Δ =δν,ν ′δn−2 j,n′−2 j′

1
4d

∫ 1

0
rd+2(n−2 j)−142

× (Jβn−2 j
q j)(2r2−1)]2(Jβn′−2 j′ q j′)(2r2−1)dr.

The change of variable r �→
√

1
2(1+ s) shows then that

〈Rn
j,ν ,R

n′
j′,ν ′ 〉Δ = δν,ν ′δn−2 j,n′−2 j′

1

2βn−2 j d
(q j,q j′)βn−2 j

, (5.6.9)

which proves the orthogonality by Lemma 5.6.5. To compute the norm of Qn
0,ν

we use the fact that

Δ[(1−‖x‖2)Y n−2 j
ν (x)] =−2dY n

ν (x)−4〈x,∇〉Y n
ν =−2(d +2n)Y n

ν (x),

by Euler’s formula on homogeneous polynomials, which shows that

〈Qn
0,ν ,Q

n
0,ν〉Δ =

(2n+d)2

ωd−1d

∫ 1

0
rd−1+2n dr

∫
Sd−1

[Y n
ν (x)]2 dx =

2n+d
d

.

Furthermore, using equation (5.6.9), the proof of Lemma 5.6.5 shows that

〈Qn
j,ν ,Q

n
j,ν〉Δ =

1

2β j d
(pj, p j′)β j

=
4 j2( j +1)2

2β j d

∫ 1

−1

[
P

(0,β j)
j (s)

]2
(1+ s)β j ds

=
8 j2( j +1)2

(β j +2 j +1)d
=

8 j2( j +1)2

(n+ d
2 )d

using the expression for the norm of the Jacobi polynomial.

From the explicit formula for the basis (5.6.7) it follows that Rn
j,ν is related to

the polynomials orthogonal with respect to W5/2(x) = (1−‖x‖2)2 on Bd . In fact
we have

Rn
j,ν(x) = (1−‖x‖2)Pn−2

j−1,ν(W5/2;x), j ≥ 1,

which leads to the following corollary.

Corollary 5.6.7 For n≥ 1,

V d
n (Δ) = H d

n ⊕ (1−‖x‖2)V d
n−2(W5/2).

This corollary should be compared with Corollary 5.6.3. The polynomials
in V d

n (Δ), however, are not all eigenfunctions of a second-order differential
operator.
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5.7 Notes
By the classical orthogonal polynomials we mean the polynomials that are
orthogonal with respect to the Jacobi weight functions on the cube, ball or sim-
plex in Rd , the Laguerre weight function on Rd

+, and the Hermite weight on Rd .
These polynomials are among the first that were studied.

The study of the Hermite polynomials of several variables was begun by Her-
mite. He was followed by many other authors; see Appell and de Fériet [1926]
and Chapter XII, Vol. II, of Erdélyi et al. [1953]. Analogues of the Hermite
polynomials WH can be defined more generally for the weight function

W (x) = (det A)1/2π−d/2 exp
(−xTAx

)
, (5.7.1)

where A is a positive definite matrix. Since A is positive definite it can be written
as A = BTB. Thus the orthogonal polynomials for W in (5.7.1) can be derived
from the Hermite polynomials for WH by a change of variables. One interesting
result for such generalized Hermite polynomials is that two families of general-
ized Hermite polynomials, defined with respect to the matrices A and A−1, can be
biorthogonal.

For the history of the orthogonal polynomials Vα and Uα on Bd , we refer to
Chapter XII, Vol. II of Erdélyi et al. [1953]. These polynomials were studied in
detail in Appell and de Fériet [1926]. They are sometimes used to derive explicit
formulae for Fourier expansions. Rosier [1995] used them to study Radon trans-
forms. Orthogonal bases for ridge polynomials were discussed in Xu [2000b],
together with a Funk–Hecke type formula for orthogonal polynomials. Compact
formulae (5.2.7) for the reproducing kernels were proved in Xu [1999a] and used
to study expansion problems. The formula (5.2.8) was proved in Petrushev [1999]
in the context of approximation by ridge functions and in Xu [2007] in con-
nection with Radon transforms. The orthogonal polynomials for the unit weight
function on Bd were used in Maiorov [1999] to study questions related to neural
networks.

The orthogonal polynomials Uα on T d were defined in Appell and de
Fériet [1926] for d = 2. The polynomials Vα on T d are extensions of those for
the unit weight function on T d defined in Grundmann and Möller [1978]. The
formula (5.3.5) for the reproducing kernel appeared in Xu [1998d]. A product for-
mula for orthogonal polynomials on the simplex was established in Koornwinder
and Schwartz [1997]. The orthogonal polynomials on the simplex also appeared
in the work of Griffiths [1979], Griffiths and Spanò [2011, 2013] and Rosen-
gren [1998, 1999]. A basis for the orthogonal polynomials on the simplex can
be given in terms of Bernstein polynomials, as shown in Farouki, Goodman and
Sauer [2003] and Waldron [2006]. Further properties of the Rodrigues formulae
on the simplex were given in Aktaş and Xu [2013]. A probability interpretation
of these and other related polynomials was given in Griffiths and Spanò [2011].
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The orthogonal polynomials defined via symmetric functions were studied
in Berens, Schmid and Xu [1995b]. The family of Gaussian cubature formulae
based on their common zeros is the first family for all n and in all dimen-
sions to be discovered. The polynomials En

α(x) were studied in Karlin and
McGregor [1962, 1975].

The Chebyshev polynomials of type Ad were studied systematically by
Beerends [1991]. They are generalizations of the Koornwinder polynomials
for d = 2 and of the partial results in Eier and Lidl [1974, 1982], Dunn and
Lidl [1982], Ricci [1978] and Barcry [1984]. We have followed the presenta-
tion in Li and Xu [2010], who studied these polynomials from the point of view
of tiling and discrete Fourier analysis and also studied their common zeros. It
turned out that the set of orthogonal polynomials {Uα : |α| = n} of degree n has
dimΠd

n−1 distinct real common zeros in�∗, so that the Gaussian cubature formu-
lae exist for W1/2 on�∗ by Theorem 3.8.4. Gaussian cubature, however, does not
exist for W−1/2. For further results and references, we refer to Beerends [1991]
and Li and Xu [2010].

The symmetric orthogonal polynomials associated with Ad are related to
the BCn-type orthogonal polynomials in several variables; see, for example,
Vretare [1984], Beerends and Opdam [1993] and van Diejen [1999]. They are
special cases of the Jacobi polynomials for root systems studied in Opdam [1988].
The Chebyshev polynomials in the form of symmetric trigonometric orthogonal
polynomials have also been studied recently for compact simple Lie groups; see
Nesterenko, Patera, Szajewska and Tereszkiewicz [2010] and Moody and Pat-
era [2011], and the references therein, but only a root system of the Ad type leads
to a full basis of algebraic orthogonal polynomials.

For the Sobolev orthogonal polynomials on the unit ball, the orthogonal basis
for the inner product 〈·, ·〉� was constructed in Xu [2006b], in response to a prob-
lem in the numerical solution of a Poisson equation on the disk raised by Atkinson
and Hansen [2005]. The orthogonal basis for 〈·, ·〉∇ was constructed in Xu [2008],
in which an orthogonal basis was also constructed for a second inner product
defined via the gradient,

〈 f ,g〉∇,II :=
λ
σd

∫
Bd
∇ f (x) ·∇g(x)dx+ f (0)g(0).

As shown in Corollary 5.6.4, orthogonal polynomials with respect to 〈·, ·〉∇ are
eigenfunctions of the differential operator Dμ in the limiting case μ =− 1

2 . Eigen-
functions of Dμ for further singular cases, μ =− 3

2 ,− 5
2 , . . ., were studied in Piñar

and Xu [2009].
Despite extensive research into the Sobolev orthogonal polynomials in one

variable, study of the Sobolev polynomials in several variables started only
recently. We refer to Lee and Littlejohn [2005], Bracciali, Delgado, Fernández,
Pérez and Piñar [2010], Aktaş and Xu [2013], and Pérez, Piñar and Xu [2013].
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Besides the unit ball, the only other case that has been studied carefully is that
of the simplex. Let Dκ denote the differential operator on the right-hand side of
(5.3.4). Then the orthogonal polynomials in V d

n (Wκ) on the simplex are eigen-
functions of Dκ for κi − 1

2 , 1 ≤ i ≤ d. The limiting cases where some, or all,
κi = −1 are studied in Aktaş and Xu [2013]. In each case a complete basis was
found for the differential equation and an inner product of the Sobolev type was
constructed such that the eigenfunctions are orthogonal with respect to the inner
product.



6

Root Systems and Coxeter Groups

There is a far reaching extension of classical orthogonal polynomials that uses
finite reflection groups. This chapter presents the part of the theory needed for
our analysis. We refer to the books by Coxeter [1973], Grove and Benson [1985]
and Humphreys [1990] for the algebraic structure theorems. We will begin with
the orthogonal groups, definitions of reflections and root systems and descrip-
tions of the infinite families of finite reflection groups. A key part of the chapter
is the definition and fundamental theorems for the differential–difference (Dunkl)
operators.

6.1 Introduction and Overview
For x,y ∈ Rd the inner product is 〈x,y〉 = ∑d

j=1 x jy j and the norm is ‖x‖ =
〈x,x〉1/2. A matrix w = (wi j)

d
i, j=1 is called orthogonal if wwT = Id , where wT

denotes the transpose of w and Id is the d × d identity matrix. Equivalent
conditions for orthogonality are the following:

1. w is invertible and w−1 = wT;
2. for each x ∈ Rd,‖x‖= ‖xw‖;
3. for each x,y ∈ Rd,〈x,y〉= 〈xw,yw〉;
4. the rows of w form an orthonormal basis for Rd .

The set of orthogonal matrices is closed under multiplication and inverses
(by condition (2), for example) and forms the orthogonal group, denoted
O(d). Condition (4) shows that O(d) is a closed bounded subset of all d × d
matrices and hence is a compact group. If w ∈ O(d) then detw = ±1. The
subgroup SO(d) = {w ∈ O(d) : detw = 1} is called the special orthogonal
group.
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Definition 6.1.1 The right regular representation of O(d) is the homomorphism
w �→ R(w) of linear maps of Πd to itself (endomorphisms), given by R(w)p(x) =
p(xw) for all x ∈Rd , p ∈Πd .

Further, R(w) is an automorphism of Pd
n for each n,w ∈ O(d). Note that

R(w1w2) = R(w1)R(w2) (by the homomorphism property of R). The Laplacian Δ
commutes with each w ∈O(d), that is, Δ(R(w)p)(x) = (Δp)(xw) for any x ∈Rd .
In the present context the basic tool for constructing orthogonal transformations
is the reflection.

Definition 6.1.2 For a nonzero u ∈Rd , the reflection along u, denoted by σu, is
defined by

xσu = x−2
〈x,u〉
‖u‖2 u.

Writing σu = Id−2
(
uuT
)−1

uTu shows that σu = σT
u and σuσu = Id (note that

uuT = ‖u‖2 while uTu is a matrix). The matrix entries of σu are (σu)i j = δi j −
2uiu j/‖u‖2. It is clear that xσu = x exactly when 〈x,u〉= 0, that is, the invariant
set for σu is the hyperplane u⊥ = {x : 〈x,u〉= 0}. Also, uσu =−u and any nonzero
multiple of u determines the same reflection. Since σu has one eigenvector for the
eigenvalue −1 and d− 1 independent eigenvectors for the eigenvalue +1 (any
basis for u⊥), it follows that detσu =−1.

Proposition 6.1.3 Suppose that x(i), y(i) ∈Rd , ‖x(i)‖2 = ‖y(i)‖2 = 1 for i = 1,2,
and 〈x(1),y(1)〉 = 〈x(2),y(2)〉; then there is a product w of reflections such that
x(1)w = x(2) and y(1)w = y(2).

Proof If x(1) = x(2) then put y(3) = y(1), else let u = x(1) − x(2) �= 0, so that
x(1)σu = x(2), and let y(3) = y(1)σu. If y(3) = y(2) then the construction is finished.
Otherwise, let v = y(3)−y(2); then y(3)σv = y(2) and x(2)σv = x(2) since 〈x(2),v〉=
〈x(2),y(3)〉−〈x(2),y(2)〉= 〈x(1),y(1)〉−〈x(2),y(2)〉= 0. One of σu, σv and σuσv is
the desired product.

The following is crucial for analyzing groups generated by reflections.

Proposition 6.1.4 Suppose that u,v are linearly independent in Rd, and set
cosθ = 〈u,v〉/(‖u‖‖v‖); then σuσv is a plane rotation in span{u,v} through an
angle 2θ .

Proof Assume that ‖u‖= ‖v‖= 1; thus cosθ = 〈u,v〉 and ‖v−〈u,v〉u‖= sinθ ,
where 0 < θ < π . Let v′ = (sinθ )−1 (v−〈u,v〉u), so that {u,v′} is an orthonormal
basis for span{u,v}. With respect to this basis σu,σv, and σuσv have the matrix
representations
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σu =
[−1 0

0 1

]
,

σv =
[−cos2θ −sin2θ
−sin2θ cos2θ

]
,

σuσv =
[

cos2θ sin2θ
−sin2θ cos2θ

]
,

and σuσv is a rotation.

For two nonzero vectors u,v, denote cos�(u,v) = 〈u,v〉/(‖u‖‖v‖). Conse-
quently, for a given m = 1,2,3, . . . ,(σuσv)

m = Id if and only if cos�(u,v) =
cos(π j/m) for some integer j. Since (σuσv)

−1 = σvσu for any two reflections σu

and σv we see that σu and σv commute if and only if 〈u,v〉= 0. The conjugate of
a reflection is also a reflection:

Lemma 6.1.5 Let u ∈ Rd ,u �= 0, and let w ∈O(d); then w−1σuw = σuw.

Proof For x ∈Rd ,

xw−1σuw = x− 2〈xw−1,u〉
‖u‖2 uw = x− 2〈x,uw〉

‖u‖2 uw.

6.2 Root Systems
The idea of a root system seems very simple, yet in fact it is a remarkably deep
concept, with many ramifications in algebra and analysis.

Definition 6.2.1 A root system is a finite set R of nonzero vectors in Rd such
that u,v ∈ R implies that uσv ∈ R. If, additionally, u,v ∈ R and v = cu for some
scalar c ∈R implies that c =±1 then R is said to be reduced.

Clearly u ∈ R implies that −u = uσu ∈ R for any root system. The set{
u⊥ : u ∈ R

}
is a finite set of hyperplanes; thus there exists u0 ∈ Rd such that

〈u,u0〉 �= 0 for all u ∈ R. With respect to u0 define the set of positive roots

R+ = {u ∈ R : 〈u,u0〉> 0} ,
so that R = R+∪ (−R+).

Definition 6.2.2 The Coxeter group W = W (R) generated by the root system R
is the subgroup of O(d) generated by {σu : u ∈ R}.

Note that for the purpose of studying the group W one can replace R by
a reduced root system (for example {u/‖u‖ : u ∈ R}). There is a very useful
polynomial associated with R.
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Definition 6.2.3 For any reduced root system R, the discriminant, or alternating
polynomial, is given by

aR(x) =∏u∈R+
〈x,u〉 .

Theorem 6.2.4 For v ∈ R and w ∈W (R),

aR(xσv) =−aR(x) and aR(xw) = det waR(x).

Proof Assume that v ∈ R+; by definition R+\{v} is a disjoint union E1 ∪E2,
where E1 = {u ∈ R+ : uσv = u} and u ∈ E2 implies that uσv = cuu′ for some u′ ∈
E2 and u′ �= u and cu =±1. Thus u′σv = cuu and so 〈x,u〉〈x,u′〉 is invariant under
σv (note that 〈xσv,u〉= 〈x,uσv〉 because σT

v = σv). Then aR (xσv) = 〈x,−v〉π1π2,
where π1 = ∏u∈E1

〈x,u〉 and π2 = ∏u∈E2
〈x,uσv〉. The second product is a per-

mutation having an even number of sign changes of ∏u∈E2
〈x,u〉. This shows that

aR(xσv) = −aR(x). Let w = σu1σu2 · · ·σun be a product of n reflections, where
u1, . . . ,un ∈ R+; then aR(xw) = (−1)n aR(x). Obviously det w = (−1)n.

There is an amusing connection with harmonic polynomials: a product
∏v∈E 〈x,v〉 is harmonic exactly when the elements of E are nonzero multiples
of some system R+ of positive roots.

Lemma 6.2.5 Suppose that u is a nonzero vector in Rd and p(x) is a polynomial
such that p(xσu) =−p(x) for all x ∈ Rd; then p(x) is divisible by 〈x,u〉.

Proof The divisibility property is invariant under O(d), so one can assume that
u = (1,0, . . . ,0) . Any polynomial p can be written as ∑n

j=0 x j
1 p j (x2, . . . ,xd); then

p(xσu) = ∑n
j=0 (−x1)

j p j (x2, . . . ,xd). Thus p(xσu) =−p(x) implies that pj = 0
unless j is odd.

Theorem 6.2.6 Suppose E is a finite set of nonzero vectors in Rd; then
Δ∏v∈E 〈x,v〉= 0 if and only if there are scalars cv,v ∈ E such that {cvv : v ∈ E}
= R+ for some reduced root system and such that no vector in E is a scalar
multiple of another vector in E.

Proof First we show ΔaR = 0 for any reduced root system. The polynomial p =
ΔaR satisfies p(xσu) = −p(x) for any u ∈ R+ because Δ commutes with R(σu).
By Lemma 6.2.5 p(x) is divisible by 〈x,u〉, but deg p≤ degaR−2 and thus p = 0.

Now suppose that Δp = 0 for p(x) = ∏v∈E 〈x,v〉, for a set E. Assume that
‖v‖ = 1 for every v ∈ E. Let u be an arbitrary element of E. Without loss of
generality assume that u = (1,0, . . . ,0) and expand p(x) as ∑n

j=0 x j
1 p j (x2, . . . ,xd)

for some n. Then Δp(x) =∑n
j=0 x j

1[Δp j +( j+2)( j+1)pj+2]. Since p is a multiple
of 〈x,u〉, p0 = 0. This implies that p2 j = 0 for each j = 0,1,2, . . . and thus that
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p(x)/〈x,u〉 is even in x1. Further, p1 �= 0 or else p = 0; thus x1 = 〈x,u〉 is not a
repeated factor of p. The product ∏{〈x,v〉 : v ∈ E,v �= u} is invariant under σu.
This shows that the set {vσu : v ∈ E} has the same elements as {±v : v ∈ E} up
to multiplication of each by ±1. Hence E ∪ (−E) satisfies the definition of a root
system.

Theorem 6.2.7 For any root system R, the group W (R) is finite; if also R is
reduced then the set of reflections contained in W (R) is exactly {σu : u ∈ R+}.

Proof Let E = span(R) have dimension r, so that W can be considered as a
subgroup of O(r) and every element of E⊥ is invariant under W . The definition
of a root system shows that uw ∈ R for every u ∈ R and w ∈W. Since R con-
tains a basis for E, this shows that any basis element v of E has a finite orbit
{vw : w ∈W} , hence W is finite. If w = σv ∈W is a reflection then detw = −1
and so aR(xw) = −aR(x). By Lemma 6.2.5, aR(x) is divisible by 〈x,v〉. But lin-
ear factors are irreducible and the unique factorization theorem shows that some
multiple of v is an element of R.

Groups of the type W (R) are called finite reflection groups or Coxeter groups.
The dimension of span(R) is called the rank of R. If R can be expressed as a dis-
joint union of non-empty sets R1∪R2 with 〈u,v〉= 0 for every u∈ R1,v∈ R2 then
each Ri (i = 1,2) is itself a root system and W (R) = W (R1)×W (R2), a direct
product. Further, W (R1) and W (R2) act on the orthogonal subspaces span(R1)
and span(R2), respectively. In this case the root system R and the reflection group
W (R) are called decomposable. Otherwise the system and group are indecompos-
able on irreducible. There is a complete classification of indecomposable finite
reflection groups. Some more concepts are now needed for the discussion.

Assume that the rank of R is d, that is, span(R) = Rd . The set of hyperplanes
H =

{
v⊥ : v ∈ R+

}
divides Rd into connected open components called cham-

bers. A theorem states that the order of the group equals the number of chambers.
Recall that the positive roots are defined in terms of some vector u0 ∈ Rd . The
connected component of the complement of H which contains u0 is called the
fundamental chamber. The roots corresponding to the bounding hyperplanes of
this chamber are called simple roots, and they form a basis of Rd . The (“sim-
ple”) reflections corresponding to the simple roots are denoted si, i = 1, . . . ,d. Let
mi j be the order of sis j (clearly mii = 1 and mi j = 2 if and only if sis j = sis j,
for i �= j). The following is the fundamental theorem in this topic, proved by
H. S. M. Coxeter; see Coxeter and Moser [1965, p. 122].

Theorem 6.2.8 The group W (R) is isomorphic to the abstract group generated
by {si : 1≤ i≤ d} subject to the relations (sis j)

mi j = 1.
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The Coxeter diagram is a graphical way of displaying the above relations: it is a
graph with d nodes corresponding to simple reflections; nodes i and j are joined
with an edge when mi j > 2; an edge is labeled by mi j when mi j > 3. The root
system is indecomposable if and only if the Coxeter diagram is connected. We
proceed to the description of the infinite families of indecomposable root systems
and two exceptional cases. The systems are named by a letter and a subscript
indicating the rank. It is convenient to introduce the standard basis vectors εi =(
0, . . . ,0,

i
1,0, . . . ,0

)
for Rd , 1 ≤ i ≤ d; the superscript i above the element ‘l’

indicates that it occurs in the ith position.

6.2.1 Type Ad−1

For a type Ad−1 system, the roots are given by R =
{

v(i, j) = εi− ε j : i �= j
} ⊂

Rd . The span is exactly (1,1, . . . ,1)⊥ and thus the rank is d − 1. The reflec-
tion σi j = σv(i, j) interchanges the components xi and x j of each x ∈ Rd and is
called a transposition, often denoted by (i, j) . Thus W (R) is exactly the sym-
metric or permutation group Sd on d objects. Choose u0 = (d,d−1, . . . ,1); then
R+ = {v(i, j) = εi−ε j : i > j} and the simple roots are {εi− εi+1 : 1≤ i≤ d−1}.
The corresponding reflections are the adjacent transpositions (i, i+1). The
general fact about reflection groups, that simple reflections generate W (R),
specializes to the well-known statement that adjacent transpositions generate
the symmetric group. Since (i, i+1)(i+1, i+2) is a permutation of period 3,
the structure constants satisfy mi,i+1 = 3 and mi j < 3 otherwise. The Coxeter
diagram is

It is clear that for any two roots u,v there is a permutation w ∈W (R) such that
uw = v; hence any two reflections are conjugate in the group, w−1σuw = σuw.
The alternating polynomial is

aR(x) =∏u∈R+
〈x,u〉= ∏

1≤i< j≤d

(xi− x j) .

The fundamental chamber is {x : x1 > x2 > · · ·> xd}; if desired, the chambers
can be restricted to span(R) =

{
x : ∑d

i=1 xi = 0
}

.

6.2.2 Type Bd

The root system for a type Bd system is R = {v(i, j) = εi− ε j : i �= j}∪{u(i, j) =
sign( j− i)(εi + ε j) : i �= j}∪ {±εi} . The reflections corresponding to the three
different sets of roots are
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xσi j =
(

x1, . . . ,
i

x j, . . . ,
j

xi, . . .
)
,

xτi j =
(

x1, . . . ,− i
x j, . . . ,

j−xi, . . .
)
,

xσi =
(

x1, . . . ,
i−xi, . . .

)
,

for v(i, j),u(i, j) and εi respectively. The group W (R) is denoted Wd ; it is the
full symmetry group of the hyperoctahedron {±ε1,±ε2, . . . ,±εd} ⊂ Rd (also
of the hypercube) and is thus called the hyperoctahedral group. Its elements
are exactly the d × d permutation matrices with entries ±1 (that is, each row
and each column has exactly one nonzero element ±1). With the same u0 =
(d,d−1, . . . ,1) as in the previous subsection, the positive root system is R+ ={
εi− ε j,εi + ε j : i < j

}∪{εi : 1≤ i≤ d} and the simple roots are to be found in
{εi− εi+1 : i < d}∪{εd}. The order of σd−1,dσd is 4. The Coxeter diagram is

4

This group has two conjugacy classes of reflections,
{
σi j,τi j : i < j

}
and {σi :

1≤ i≤ d}. The alternating polynomial is

aR(x) =
d

∏
i=1

xi ∏
1≤i< j≤d

(
x2

i − x2
j

)
.

The fundamental chamber is {x : x1 > x2 > · · ·> xd > 0}.

6.2.3 Type I2(m)

The type I2(m) systems are dihedral and correspond to symmetry groups of reg-
ular m-gons in R2 for m ≥ 3. Using a complex coordinate system z = x1 + ix2

and z̄ = x1− ix2, a rotation through the angle θ can be expressed as z �→ zeiθ , and
the reflection along (sinφ ,−cosφ) is z �→ z̄e2iφ . Now let ω = e2πi/m; then the
reflection along

v( j) =
(

sin
π j
m

,−cos
π j
m

)
corresponds to σ j : z �→ z̄ω j for 1≤ j ≤ 2m; note that v(m+ j) =−v( j). Choose

u0 =
(

cos
π

2m
,sin

π
2m

)
;

then the positive roots are
{

v( j) : 1≤ j ≤ m
}

and the simple roots are v(1),v(m).

Then σmσ1 maps z to zω and has period m. The Coxeter diagram is � �
m

. A
simple calculation shows that σ jσnσ j = σ2 j−n for any n, j; thus there are two
conjugacy classes of reflections {σ2i} ,{σ2i+1} when m is even but only one class
when m is odd. There are three special cases for m: I2(3) is isomorphic to A2;
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I2(4) = B2; and I2(6) is called G2 in the context of Weyl groups. To compute the
alternating polynomial, note that

x1 sin
π j
m
− x2 cos

π j
m

=
1
2

[
exp

(
iπ
(

1
2
− j

m

))](
z− z̄ω j)

for each j = 1, . . . ,m; thus

aR(x) = 2−mi−1 (zm− z̄m) .

The fundamental chamber is {(r cosθ ,r sinθ) : r > 0,0 < θ < π/m}.

6.2.4 Type Dd

For our purposes, the type Dd system can be considered as a special case
of the system for type Bd ,d ≥ 4. The root system is a subset of that for
Bd , namely R =

{
εi− ε j : i �= j

}∪{sign( j− i)(εi + ε j) : i �= j
}

. The associated
group is the subgroup of Wd of elements with an even number of sign changes
(equivalently, the subgroup fixing the polynomial ∏d

j=1 x j). The simple roots are
{εi− εi+1 : i < d}∪{εd−1 + εd} and the Coxeter diagram is

…

The alternating polynomial is

aR(x) = ∏
1≤i< j≤d

(
x2

i − x2
j

)
and the fundamental chamber is {x : x1 > x2 > · · ·> |xd |> 0} .

6.2.5 Type H3

The type H3 system generates the symmetry group of the regular dodecahe-
dron and of the regular icosahedron. The algebraic number (the “golden ratio”)
τ = 1

2 (1 +
√

5), which satisfies τ2 = τ + 1, is crucial here. Note that τ−1 =
τ − 1 = 1

2 (
√

5− 1). For the choice u0 = (3,2τ,τ) the positive root system
is R+ = {(2,0,0),(0,2,0),(0,0,2),(τ,±τ−1,±1),(±1,τ,±τ−1),(τ−1,±1,τ),
(−τ−1,1,τ),(τ−1,1,−τ)}, where the choices of signs in ± are indepen-
dent of each other. The full root system R = R+ ∪ (−R+) is called the
icosidodecahedron as a configuration in R3. Thus there are 15 reflec-
tions in the group W (R). It is the symmetry group of the icosahe-
dron Q12 = {(0,±τ,±1) ,(±1,0,±τ) ,(±τ,±1,0)} (which has 12 vertices
and 20 triangular faces) and of the dodecahedron Q20 = {(0,±τ−1,±τ) ,(±τ ,0,±τ−1

)
,
(±τ−1,±τ,0) ,(±1,±1,±1)} (which has 20 vertices and 12

pentagonal faces); see Coxeter [1973] for the details.
To understand the geometry of this group, consider the spherical Coxeter

complex of R, namely the great circles on the unit sphere which are intersections
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with the planes
{

v⊥ : v ∈ R+
}

. There are fivefold intersections at the vertices of
the icosahedron (so the subgroup of W(R) fixing such a vertex, the so-called sta-
bilizer, is of the type I2(5)), and there are threefold intersections at the vertices
of the dodecahedron (with stabilizer group I2 (3)). The fundamental chamber
meets the sphere in a spherical triangle with vertices at (τ + 2)−1/2(τ,1,0),
3−1/2(1,1,1), 2−1(1,τ,τ−1) and the simple roots are v1 = (τ,−τ−1,−1), v2 =
(−1,τ,−τ−1) and v3 = (τ−1,−1,τ). The angles between the simple roots are cal-
culated as cos�(v1,v2) =− 1

2 = cos 2
3π,cos�(v1,v3) = 0,cos�(v2,v3) =− 1

2τ =

cos 4
5π . Thus the Coxeter diagram is � � �

5
. The alternating polynomial can

be expanded, by computer algebra for instance, but we do not need to write it
down here.

6.2.6 Type F4

For a type F4 system the Coxeter diagram is � � � �

4
. The group contains

W4 as a subgroup (of index 3). One conjugacy class of roots consists of R1 =
{εi−ε j : i �= j}∪{sign ( j− i)(εi + ε j) : i �= j} and the other class is R2 = {±2εi :
1 ≤ i ≤ 4}∪ {±ε1± ε2± ε3± ε4}. Then R = R1 ∪R2 and there are 24 positive
roots. With the orthogonal coordinates y1 = (−x1 + x2)/

√
2,y2 = (x1 + x2)/

√
2,

y3 = (−x3 + x4)/
√

2,y4 = (x3 + x4)/
√

2, the alternating polynomial is

aR(x) = 26 ∏
1≤i< j≤4

(x2
i − x2

j)(y
2
i − y2

j).

6.2.7 Other types

There is a four-dimensional version of the icosahedron corresponding to the

root system H4, with diagram � � � �
5 ; it is the symmetry group of the

600 cell (Coxeter [1973]) and was called the hecatonicosahedroidal group by
Grove [1974]. In addition there are the exceptional Weyl groups E6,E7,E8, but
they will not be studied in this book.

6.2.8 Miscellaneous results

For any root system, the subgroup generated by a subset of simple reflections
(the result of deleting one or more nodes from the Coxeter diagram) is called a
parabolic subgroup of W(R). For example, the parabolic subgroups of the type
Ad−1 diagram are Young subgroups, with Sm× Sd−m maximal for each d with
1≤m≤ d. Removing one interior node from the Bd diagram results in a subgroup
of the form Sm×Wd−m.

As mentioned before, the number of chambers of the Coxeter complex (the
complement of

{
v⊥ : v ∈ R+

}
) equals the order of the group W(R). For each
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chamber C there is a unique w ∈W(R) such that C0w = C, where C0 is the fun-
damental chamber. Thus for each v ∈ R there exists w ∈W(R) such that vw is a
simple root, assuming that R is reduced, and so each σv is conjugate to a simple
reflection. (Any chamber could be chosen as the fundamental chamber and its
walls would then determine a set of simple roots.) It is also true that the positive
roots when expressed as linear combinations of the simple roots (recall that they
form a basis for span(R)) have all coefficients nonnegative.

The number of conjugacy classes of reflections equals the number c of con-
nected components of the Coxeter diagram after all edges with an even label have
been removed. Also, the quotient G = W/W ′ of W by the commutator subgroup
W ′, that is, the maximal abelian image, is Zc

2. The argument is easy: G is the group
subject to the same relations but now with commuting generators. Denote these
generators by s′1,s

′
2, . . . , so that (s′i)

2 = 1 and G is a direct product of Z2 factors.
Consider two reflections s1,s2 linked by an edge with an odd label 2m+1 (recall
that the label “3” is to be understood when no label is indicated); this means that
(s1s2)

2m+1 = 1 and thus s2 = w−1s1w with w = (s2s1)
m; also (s′1)

2m+1 (s′2)
2m+1 =

s′1s′2 = 1. This implies that s′1 = s′2 and thus that s1,s2 are conjugate in W . Rela-
tions of the form (s2s3)

2m = 1 have no effect on s′2,s
′
3. Thus simple reflections in

different parts of the modified diagram have different images in G and cannot be
conjugate in W. By the above remarks it suffices to consider the conjugacy classes
of simple reflections.

There is a length function on W(R): for any w in the group it equals both
the number of factors in the shortest product w = si1 si2 · · ·sim in terms of sim-
ple reflections and the number of positive roots made negative by w, that is,
|R+w ∩ (−R+)|. For the group Sd it is the number of adjacent transpositions
required to express a permutation; it is also the number of inversions in a per-
mutation considered as a listing of the numbers 1,2, . . . ,d. For example, the
permutation (4,1,3,2) has length 3 +0 +1 +0 = 4 (the first entry is larger than
the three following entries, and so on), and (1,2,3,4) ,(4,3,2,1) have lengths 0
and 6 respectively.

6.3 Invariant Polynomials
Any subgroup of O(d) has representations on the spaces of homogeneous polyno-
mials Pd

n of any given degree n. These representations are defined as w �→ R(w)
where R(w)p(x) = p(xw); sometimes this equation is written as wp(x), when
there is no danger of confusion. The effect on the gradient is as follows: let ∇p(x)
denote the row vector (∂ p/∂x1 · · · ∂ p/∂xd); then

∇ [R(w)p] (x) =
(∂ p(xw)

∂x1
· · · ∂ p(xw)

∂xd

)
wT = R(w)∇p(x)wT.
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Definition 6.3.1 For a finite subgroup W of O(d), let ΠW denote the space
of W -invariant polynomials {p ∈ Πd : R(w)p = p for all w ∈ W} and set
PW

n = Pd
n ∩ΠW , the space of invariant homogeneous polynomials of degree

n = 0,1,2, . . .

There is an obvious projection onto the space of invariants:

πw p =
1
|W | ∑w∈W

R(w)p.

When W is a finite reflection group, ΠW has a uniquely elegant structure; there
is a set of algebraically independent homogeneous generators whose degrees are
fundamental constants associated with W . The following statement is known as
Chevalley’s theorem.

Theorem 6.3.2 Suppose that R is a root system in Rd and that W = W (R); then
there exist d algebraically independent W-invariant homogeneous polynomials{

q j : 1≤ j ≤ d
}

of degrees n j, such that ΠW is the ring of polynomials generated
by
{

q j
}

, |W |= n1n2 · · ·nd and the number of reflections in W is ∑d
j=1 (n j−1).

Corollary 6.3.3 The Poincaré series for W has the factorization
∞

∑
n=0

(
dimPW

n

)
tn =

d

∏
j=1

(1− tn j)−1 .

Proof The algebraic independence means that the set of homogeneous polynomi-
als {qm1

1 qm2
2 · · ·qmd

d :∑d
j=1 n jm j = k} is linearly independent for any k = 0,1,2, . . .;

thus it is a basis for PW
k . The cardinality of the set equals the coefficient of tk in

the product.

It suffices to study the invariants of indecomposable root systems; note that
if dimspan(R) = m < d then the orthogonal complement of the span provides
d−m invariants (the coordinate functions) of degree 1. When the rank of R is d
and R is indecomposable, the group W(R) is irreducibly represented on Rd; this is
called the reflection representation. The numbers

{
n j : 1≤ j ≤ d

}
are called the

fundamental degrees of W(R) in this situation. The coefficient of tk in the product
∏d

j=1 [1+(nj−1)t] is the number of elements of W(R) whose fixed-point set is
of codimension k (according to a theorem of Shephard and Todd [1954]).

Lemma 6.3.4 If the rank of a root system R is d then the lowest degree of a non-
constant invariant polynomial is 2, and if R is indecomposable then there are no
proper invariant subspaces of Rd.

Proof Identify Rd with Pd
1 , and suppose that E is an invariant subspace. Any

polynomial in E has the form p(x) = 〈x,u〉 for some u ∈ Rd . By assumption
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R(σv) p(x) = 〈xσv,u〉 = 〈x,uσv〉 ∈ E for any v ∈ R; thus p(x)−R(σv) p(x) =
〈x,u−uσv〉 ∈ E and 〈x,u−uσv〉 = 2〈x,v〉〈u,v〉/‖v‖2. If p is W -invariant then
this implies that 〈u,v〉= 0 for all v ∈ R, but span(R) = Rd and so u = 0.

However, if R is indecomposable and u �= 0 then there exists v∈ R with 〈u,v〉 �=
0 and the equation for 〈x,u−uσv〉 shows that 〈x,v〉 ∈ E. Let

R1 = {v1 ∈ R : 〈x,v1〉 ∈ E} .

Any root v2 ∈ R satisfies either v2 ∈ R1 or 〈v2,v1〉 = 0 for any v1 ∈ R1. By
definition R1 = R and E = Pd

1 .

Clearly q(x) = ∑d
j=1 x2

j is invariant for any subgroup of O(d). Here is another
general theorem about the fundamental invariants.

Theorem 6.3.5 Let
{

qj : 1≤ j ≤ d
}

be fundamental invariants for the root sys-

tem R, and let J(x) be the Jacobian matrix
(
∂qi(x)/∂x j

)d

i, j=1
; then det J(x) =

caR(x) (see Definition 6.2.3) for some scalar multiple c.

Proof The algebraic independence implies that det J �= 0. For any invariant q
and v ∈ R, ∇q(xσv) =∇q(x)σv; thus any row in J(xσv) equals the corresponding
row of J(x) multiplied by σv. Now det J (xσv) = det J(x)detσv =−det J(x), and
so det J(x) has the alternating property. By Lemma 6.2.5, det J is a multiple of
aR. Further, det J is a homogeneous polynomial of degree ∑d

j=1 (nj−1), which
equals the number of reflections in W(R), the degree of aR.

6.3.1 Type Ad−1 invariants

The type Ad−1 invariants are of course the classical symmetric polynomials. The
fundamental invariants are usually taken to be the elementary symmetric poly-
nomials e1,e2, . . . ,ed , defined by ∑d

j=0 e j(x)t j = ∏d
i=1 (1+ txi). Restricted to the

span (1,1, . . . ,1)⊥ of the root system e1 = 0, the fundamental degrees of the group
are 2,3, . . . ,d; by way of verification note that the product of the degrees is d!
and the sum ∑d

j=2 ( j−1) = 1
2 d (d−1), the number of transpositions. In this case

det J(x) = ∏i< j (xi− x j), the Vandermonde determinant. To see this, argue by
induction on d; (this is trivial for d = 1). Let e′i denote the elementary symmetric
function of degree i in (x1 x2 · · · xd−1); then ei = e′i + xde′i−1. The ith row
of J(x) is (

· · · ∂
∂x j

e′i + xd
∂
∂x j

e′i−1 · · · e′i−1

)
.

The first row is (1 1 · · · 1) and the terms e′d in the last row are 0. Now subtract xd

times the first row from the second row, subtract xd times the resulting second row
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from the third row and so on. The resulting matrix has ith row (for 1≤ i≤ d−1
with e′0 = 1) equal to(

· · · ∂
∂x j

e′i · · ·
i−1

∑
j=0

e′i−1− j (−xd) j
)
,

and last row equal to
(

0 · · · 0 ∑d−1
j=0 e′d−1− j (−xd)

j
)

. The last entry is

∏d−1
j=1 (x j− xd), and the proof is complete by induction.

6.3.2 Type Bd invariants

The type Bd invariants are generated by the elementary symmetric functions q j in
the squares of xi, that is, ∑d

j=0 q j(x)t j =∏d
i=1

(
1+ tx2

i

)
. The fundamental degrees

are 2,4,6, . . . ,2d, the order of the group is 2dd! and the number of reflections is

∑d
j=1 (2 j−1) = d2. Also, det J(x) = 2d ∏d

j=1 x j∏i< j

(
x2

i − x2
j

)
. To see this, note

that ∂/∂xi = 2xi∂/∂
(
x2

i

)
for each i, and use the result for Ad−1.

6.3.3 Type Dd invariants

The system with type Dd invariants has all but one of the fundamental invariants
of the type Bd system, namely q1,q2, . . . ,qd−1, and it also has ed = x1 · · ·xd . The
fundamental degrees are 2,4,6, . . . ,2d−2,d, the order of the group is 2d−1d! and
the number of reflections is ∑d−1

j=1 (2 j−1)+(d−1) = d2−d.

6.3.4 Type I2 (m) invariants

For a system with type I2(m) invariants, in complex coordinates Z and z̄ for R2,
where z = x1 + ix2, the fundamental invariants are zz̄ and zm + z̄m. The funda-
mental degrees are 2 and m, the order of the group is 2m and the number of
reflections is m.

6.3.5 Type H3 invariants

The fundamental invariants for a type H3 system are

q1(x) =
3

∑
j=1

x2
j ,

q2(x) =∏{〈x,u〉 : u ∈Q12,〈(3,2τ,τ),u〉> 0},
q3(x) =∏{〈x,u〉 : u ∈Q20,〈(3,2τ,τ),u〉> 0}.

That is, the invariants q2,q3 are products of inner products with half the vertices of
the icosahedron Q12 or of the dodecahedron Q20, respectively. The same argument
used for the alternating polynomial aR shows that the products of q2(xσv) and
q3(xσv) for any v ∈ R have the same factors as q2(x), q3(x) (respectively) with an
even number of sign changes. By direct verification, q2 is not a multiple of q1 and
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q3 is not a polynomial in q1 and q2. Thus the fundamental degrees are 2,6,10, the
order of the group is 120 and there are 2+6+10−3 = 15 reflections.

6.3.6 Type F4 invariants

For a type F4 system, using the notation from type B4 (in which qi(x) denotes
the elementary symmetric function of degree i in x2

1, . . . ,x
2
4), a set of fundamental

invariants is given by

g1 = q1,

g2 = 6q3−q1q2,

g3 = 24q4 +2q2
2−q2

1q2,

g4 = 288q2q4−8q3
2−27q3

1q3 +12q2
1q2

2.

These formulae are based on the paper by Ignatenko [1984]. The fundamental
degrees are 2,6,8,12 and the order of the group is 1152.

6.4 Differential–Difference Operators
Keeping in mind the goal of studying orthogonal polynomials for weights which
are invariant under some finite reflection group, we now consider invariant dif-
ferential operators. This rather quickly leads to difficulties: it may be hard to
construct a sufficient number of such operators for an arbitrary group (although
this will be remedied), but the biggest problem is that they do not map poly-
nomials to polynomials unless the polynomials are themselves invariant. So, to
deal with arbitrary polynomials a new class of operators is needed. There are two
main concepts: first, the reflection operator p �→ [p(x)− p(xσv)]/〈x,v〉 for a given
nonzero v ∈ Rd , the numerator of which is divisible by 〈x,v〉 because it has the
alternating property for σv (see Lemma 6.2.5); second, the reflection operators
corresponding to the positive roots of some root system need to be assembled in
a way which incorporates parameters and mimics the properties of derivatives. It
turns out that this is possible to a large extent, except for the customary product
rule, and the number of independent parameters equals the number of conjugacy
classes of reflections.

Fix a reduced root system R, with positive roots R+ and associated reflection
group W =W (R). The parameters are specified in the form of a multiplicity func-
tion (the terminology comes from analysis on homogeneous spaces formed from
compact Lie groups).

Definition 6.4.1 A multiplicity function is a function v �→ κv defined on a root
system with the property that κu = κv whenever σu is conjugate to σv in W , that is,
when there exists w ∈W such that uw = v. The values can be numbers or formal
parameters (“transcendental extensions” of Q).
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Definition 6.4.2 The first-order differential–difference operators Di are defined,
in coordinate form for 1 ≤ i ≤ d and in coordinate-free form for u ∈ Rd by, for
p ∈Πd ,

Di p(x) =
∂ p(x)
∂xi

+ ∑
v∈R+

κv
p(x)− p(xσv)

〈x,v〉 vi,

Du p(x) = 〈u,∇p(x)〉+ ∑
v∈R+

κv
p(x)− p(xσv)

〈x,v〉 〈u,v〉 .

Clearly, Di = Dεi and Du maps Pd
n into Pd

n−1 for n ≥ 1; that is, Du is a
homogeneous operator of degree −1. Under the action of W , Du transforms like
the directional derivative.

Proposition 6.4.3 For u ∈ Rd and w ∈W, DuR(w) p = R(w)Duw p for p ∈Πd.

Proof It is convenient to express Du as a sum over R and to divide by 2; thus

DuR(w)p(x) = 〈uw,∇p(xw)〉+ 1
2 ∑

v∈R
κv

p(xw)− p(xσvw)
〈x,v〉 〈u,v〉

= 〈uw,∇p(xw)〉+ 1
2 ∑

v∈R
κv

p(xw)− p(xwσvw)
〈xw,vw〉 〈uw,vw〉

= 〈uw,∇p(xw)〉+ 1
2 ∑

z∈R
κzw−1

p(xw)− p(xwσz)
〈xw,z〉 〈uw,z〉

= R(w)Duw p(x).

In the third line we changed the summation variable from v to z and then used the
property of κ from Definition 6.4.1 giving κzw−1 = κz.

The important aspect of differential–difference operators is their commutativ-
ity. Some lemmas will be established before the main proof. An auxiliary operator
is convenient.

Definition 6.4.4 For v ∈Rd and v �= 0 define the operator ρv by

ρv f (x) =
f (x)− f (xσv)

〈x,v〉 .

Lemma 6.4.5 For u,v ∈Rd and v �= 0,

〈u,∇〉ρv f (x)−ρv〈u,∇〉 f (x) =
〈u,v〉
〈x,v〉

(
2〈v,∇ f (xσv)〉

〈v,v〉 − f (x)− f (xσv)
〈x,v〉

)
.

Proof Recall that 〈u,∇R(σv) f 〉= 〈uσv,R(σv)∇ f 〉; thus
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〈u,∇〉ρv f (x) =
〈u,∇ f (x)〉−〈uσv,∇ f (xσv)〉

〈x,v〉
− 〈u,v〉 [ f (x)− f (xσv)]

〈x,v〉2
and

ρv〈u,∇〉 f (x) =
〈u,∇ f (x)〉−〈u,∇ f (xσv)〉

〈x,v〉 .

Subtracting the second quantity from the first gives the claimed equation since
u−uσv = (2〈u,v〉/〈v,v〉)v.

In the proof below that DuDz = DzDu, Lemma 6.4.5 takes care of the inter-
action between differentiation and differencing. The next lemma handles the
difference parts. Note that the product of two reflections is either the identity
or a plane rotation (the plane being the span of the corresponding roots).

Lemma 6.4.6 Suppose that B(x,y) is a bilinear form on Rd such that
B(xσv,yσv) = B(y,x) whenever v ∈ span(x,y), and let w be a plane rotation in
W; then

∑
{κuκvB(u,v)
〈x,u〉〈x,v〉 : u,v ∈ R+,σuσv = w

}
= 0, x ∈ Rd,

∑{κuκvB(u,v)ρuρv : u,v ∈ R+,σuσv = w}= 0,

where the two equations refer to rational functions and operators, respectively.

Proof Let E be the plane of w (the orthogonal complement of E is pointwise
fixed under w); thus σuσv = w implies that u,v ∈ E. Let R0 = R+ ∩E and let
W0 = W (R0), the reflection group generated by R0. Because W0 is a dihedral
group, σvwσv = w−1 for any v ∈ R0. Denote the first sum above by s(x). We will
show that s is W0-invariant. Fix z ∈ R0; it suffices to show that s(xσz) = s(x).
Consider the effect of σz on R0: the map σv → σzσvσz is an involution and so
define τv = ε(v)vσz for v∈R0, where τv∈R0 and ε(v)=±1. Then σzσvσz =στv,
also τ2v = v and ε(τv) = ε(v). Then

s(xσz) =∑
{ κuκvB(u,v)
〈xσz,u〉〈xσz,v〉 : u,v ∈ R0,σuσv = w

}
=∑

{ κτuκτvB(τu,τv)
〈xσz,τu〉〈xσz,τv〉 : u,v ∈ R0,στuστv = w

}
=∑

{κuκvB(ε (u)uσz,ε(v)vσz)
〈x,ε (u)u〉〈x,ε (v)v〉 : u,v ∈ R0,σzσuσvσz = w

}
=∑

{κuκvB(v,u)
〈x,u〉〈x,v〉 : u,v ∈ R0,σuσv = σzwσz = w−1

}
= s(x).
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The second line follows by a change in summation variables and the third line
uses the multiplicity function property that κτu = κu because στu = σzσuσz and
also 〈xσz,τu〉 = 〈x,(τu)σz〉; the fourth line uses the assumption about the form
B and also (σuσv)

−1 = σvσu. Now let q(x) = s(x)∏v∈R0
〈x,v〉; then q(x) is a

polynomial of degree |R0| − 2 and it has the alternating property for W0. Thus
q(x) = 0.

Let f (x) be an arbitrary polynomial and, summing over u,v ∈ R0,σuσv = w,
consider

∑κuκvB(u,v)ρuρv f (x)

=∑κuκvB(u,v)
(

f (x)− f (xσv)
〈x,u〉〈x,v〉 − f (xσu)− f (xw)

〈x,u〉〈x,vσu〉
)

.

The coefficient of f (x) in the sum is 0 by the first part of the lemma. For
a fixed z ∈ R0 the term f (xσz) appears twice, for the case σuσz = w with
coefficient κuκzB(u,z)/(〈x,u〉〈x,z〉) and for the case σzσv = w with coefficient
κzκvB(z,v)/(〈x,z〉〈x,vσz〉). But σv = σzσuσz and thus v = τu (using the notation
of the previous paragraph), and so the second coefficient equals

κzκuB(z,τu)
〈x,z〉〈x,ε (u)u〉 =

κzκuB((τu)σz,zσz)
〈x,z〉〈x,ε (u)u〉 =

κzκuB(ε (u)u,−z)
〈x,z〉〈x,ε (u)u〉 ,

which cancels out the first coefficient. To calculate the coefficient of f (xw) we
note that, for any z ∈ R0, σzσv = w if and only if στvσz = w; thus

κzκvB(z,v)
〈x,z〉〈x,vσz〉 =

κzκτvB(z,(τv)σz)
〈x,z〉〈x,τv〉 =

κzκτvB(τv,−z)
〈x,z〉〈x,τv〉 ,

which shows that the coefficient is −s(x) and hence 0.

Corollary 6.4.7 Under the same hypotheses,

∑{κuκvB(u,v)ρuρv : u,v ∈ R+}= 0.

Proof Decompose the sum into parts σuσv = w for rotations w ∈W and a part
σuσv = 1 (that is, u = v). Each rotation contributes 0 by the lemma, and ρ2

u = 0
for each u because ρu f (xσu) = ρu f (x) for any polynomial f .

Theorem 6.4.8 For t,u ∈Rd , DtDu = DuDt .

Proof For any polynomial f , the action of the commutator can be expressed as
follows:
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(DtDu−DuDt) f

= (〈t,∇〉〈u,∇〉−〈u,∇〉〈t,∇〉) f

+ ∑
v∈R+

κv [〈u,v〉(〈t,∇〉ρv−ρv 〈t,∇〉)−〈t,v〉(〈u,∇〉ρv−ρv 〈u,∇〉)] f

+ ∑
v,z∈R+

κvκz (〈t,v〉〈u,z〉−〈u,v〉〈t,z〉)ρvρz f .

The first line of the right-hand side is trivially zero, the second line vanishes by
Lemma 6.4.5 and the third line vanishes by Lemma 6.4.6 applied to the bilinear
form B(x,y) = 〈t,x〉〈u,y〉−〈u,x〉〈t,y〉. To see that B satisfies the hypothesis, let
v = ax+by with a,b ∈R and v �= 0; then B(v,y) = aB(x,y),B(x,v) = bB(x,y) and

B(xσv,yσv) = B(x,y)
(

1− 2a〈x,v〉
〈v,v〉 − 2b〈y,v〉

〈v,v〉
)

= B(x,y)(1−2) = B(y,x) .

The norm ‖x‖2 is invariant for every reflection group. The corresponding
invariant operator is called the h-Laplacian (the prefix h refers to the weight
function ∏v∈R+ |〈x,v〉|κv , discussed later on in this book) and is defined as
Δh = ∑d

i=1 D2
i . The definition is independent of the choice of orthogonal basis;

this is a consequence of the following formulation (recall that εi denotes the ith
unit basis vector).

Theorem 6.4.9 For any polynomial f (x),

d

∑
i=1

D2
i f (x) = Δ f (x)+ ∑

v∈R+

κv

(
2〈v,∇ f (x)〉
〈v,x〉 −‖v‖2 f (x)− f (xσv)

〈v,x〉2
)

.

Proof Write ∂i for ∂/∂xi; then

D2
i f (x) = ∂ 2

i f (x)+ ∑
v∈R+

κvvi(∂iρv +ρv∂i) f (x)+ ∑
u,v∈R+

κuκvuiviρuρv f (x).

The middle term equals

∑
v∈R+

κvvi

(
2∂i f (x)
〈v,x〉 − vi

f (x)− f (xσv)
〈v,x〉2 − 〈εi + εiσv,∇f (xσv)〉

〈v,x〉
)

.

Summing the first two parts of this term over 1≤ i ≤ d clearly yields the reflec-
tion part (the sum over R+) of the claim. Since vσv = −v, the third part sums to
∑v∈R+ κv〈v+ vσv,∇f (xσv)〉

/〈v,x〉= 0.
Finally, the double sum that is the last term in D2

i f (x) produces
∑u,v∈R+ κuκv 〈u,v〉ρuρv f (x), which vanishes by Lemma 6.4.6 applied to the
bilinear form B(x,y) = 〈x,y〉.
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The product rule for Du is more complicated than that for differentiation. We
begin with a case involving a first-degree factor.

Proposition 6.4.10 Let t,u ∈ Rd; then

Du (〈·,t〉 f )(x)−〈x,t〉Du f (x) = 〈u,t〉 f (x)+2 ∑
v∈R+

κv
〈u,v〉〈t,v〉
‖v‖2 f (xσv).

Proof This is a routine calculation which uses the relation 〈x,t〉 − 〈xσv,t〉 =
2〈x,v〉〈v,t〉/‖v‖2.

Proposition 6.4.11 If W acts irreducibly on Rd (span(R) = Rd and R is
indecomposable) then Du 〈x,t〉=

(
1+ 2

d ∑v∈R+ κv
)〈u,t〉 for any t,u ∈ Rd.

Proof From the product rule it suffices to consider the bilinear form B(t,u) =
∑v∈R+ κv〈u,v〉〈t,v〉/‖v‖2. This is clearly symmetric and invariant under W ,
since B(tσv,uσv) = B(t,u) for each v ∈ R+. Suppose that positive values
are chosen for κv; then the form can be diagonalized so that B(t,u) =
∑d

i=1λi 〈t,ε ′i 〉〈u,ε ′i 〉 for some orthonormal basis {ε ′i} of Rd and numbers λi. But
the subspace {x : B(x,x) = λ1 〈x,x〉} is W -invariant since it includes ε ′1; by the
irreducibility assumption it must be the whole of Rd . Thus B(t,u) = λ1 〈t,u〉
for any t,u ∈ Rd . To evaluate the constant, consider ∑d

i=1 B(εi,εi) = dλ1 =
∑d

i=1∑v∈R+ κvv2
i /‖v‖2 = ∑v∈R+ κv.

Here is a more general product rule, which is especially useful when one of the
polynomials is W -invariant.

Proposition 6.4.12 For polynomials f ,g and u ∈ Rd,

Du ( f g)(x) = g(x)Du f (x)+ f (x)〈u,∇g(x)〉
+ ∑

v∈R+

κv f (xσv)〈u,v〉 g(x)−g(xσv)
〈v,x〉 .

For conciseness in certain proofs, the gradient corresponding to Du is use-
ful: let ∇κ f (x) = (Di f (x))d

i=1, considered as a row vector. Then ∇κR(w) f (x) =
∇κ f (xw)w−1 for w ∈W , and Du f = 〈u,∇κ f 〉.

6.5 The Intertwining Operator
There are classical fractional integral transforms which map one family of orthog-
onal polynomials onto another. Some of these transforms can be interpreted as
special cases of the intertwining operator for differential–difference operators.
Such an object should be a linear map V on polynomials with at least the property
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that DiV p(x) = V (∂/∂xi)p(x) for each i; it turns out that it is uniquely defined
by the additional assumptions V 1 = 1 and VPd

n ⊂ Pd
n , that is, homogeneous

polynomials are preserved. It is easy to see that the formal inverse always exists,
that is, an operator T such that TDi = (∂/∂xi)T .

Heuristically, let T p(x) = exp
(
∑d

i=1 xiD
(y)
i

)
p(y)|y=0. Now apply the formal

series to a polynomial, where D
(y)
i acts on y; then set y = 0, obtaining a

polynomial in x. Here is the precise definition.

Definition 6.5.1 For n = 0,1,2, . . . define T on Pd
n by

T p(x) =
1
n!

( d

∑
i=1

xiD
(y)
i

)n
p(y)

for p ∈Pd
n . Then T is extended to Πd by linearity.

Of course, the commutativity of {Di} allows us to write down the nth power
and to prove the intertwining property.

Proposition 6.5.2 For any polynomial p and 1≤ i≤ d,

∂
∂xi

T p(x) = TDi p(x).

Proof It suffices to let p ∈Pd
n . Then

∂
∂xi

T p(x) =
n
n!

D
(y)
i

( d

∑
j=1

x jD
(y)
j

)n−1

p(y) = TDi p(x),

because D
(y)
i commutes with multiplication by x j.

Note that the existence of T has been proven for any multiplicity function, but
nothing has been shown about the existence of an inverse. The situation where
T has a nontrivial kernel was studied by Dunkl, de Jeu and Opdam [1994]. The
κv values which occur are called singular values; they are related to the structure
of the group W and involve certain negative rational numbers. We will show that
the inverse exists whenever κv ≥ 0 (in fact, for values corresponding to integrable
weight functions). The construction depends on a detailed analysis of the oper-
ator ∑d

j=1 x jD j = 〈x,∇κ〉. A certain amount of algebra and group theory will be
required, but nothing really more complicated than the concepts of group algebra
and some matrix theory. The following is a routine calculation.

Proposition 6.5.3 For any smooth function f on Rd,

d

∑
j=1

x jD j f (x) =
d

∑
j=1

x j
∂
∂x j

f (x)+ ∑
v∈R+

κv [ f (x)− f (xσv)] .
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Note that if f ∈Pd
n then ∑d

j=1 x jD j f (x) = (n+∑vκv) f (x)−∑vκv f (xσv). We
will construct functions cn(w) on W with the property that

∑
w∈W

cn(w)〈xw,∇κ f (xw)〉= f (x),

for n≥ 1. This requires the use of (matrix) exponentials in the group algebra.
Let K be some extension field of the rational numbers Q containing at least

{κv}; then KW is the algebra {∑w a(w)w : a(w)∈K} with the multiplication rule
∑w a(w)w∑w′ b(w′)w′ = ∑w

(
∑z a(z)b

(
z−1w

))
w. The center of KW is the span

of the conjugacy classes ξ (a conjugacy class is a subset of W with the following
property: w,w′ ∈ ξ if and only if there exists z∈W such that w′ = z−1wz). We use
ξ as the name of both the subset of W and the element of KW . Since z−1σvz =σvz

for v ∈ R+, the reflections are in conjugacy classes by themselves. Label them
ξ1,ξ2, . . . ,ξr (recall that r is the number of connected components of the Coxeter
diagram after all edges with an even label have been removed); further, let κ ′i = κv

for any v with σv ∈ ξi,1≤ i≤ r.
The group algebra KW can be interpreted as an algebra of |W | × |W | matri-

ces ∑w a(w)M (w), where M(w) is a permutation matrix with M(w)y,z = 1 if
y−1z = w, else M(w)y,z = 0, for y,z ∈ W . On the one hand, a class ξi corre-
sponds to ∑{M (σv) : σv ∈ ξi}, which has integer entries; thus all eigenvalues
of ξi are algebraic integers (that is, the zeros of monic polynomials with inte-
ger coefficients). On the other hand, ξi is a (real) symmetric matrix and can be
diagonalized. Thus there is an orthogonal change of basis of the underlying vec-
tor space, and R|W | =

⊕
λ Eλ where ξi acts as λ1 on each eigenspace Eλ . Since

each σv commutes with ξi, the transformed matrices for σv have a corresponding
block structure (and we have σvEλ = Eλ , equality as spaces). Further, since all
the group elements commute with ξi, the projections of σv onto Eλ for σv ∈ ξi

are all conjugate to each other. Hence each projection has the same multiplic-
ities of its eigenvalues, say 1 with multiplicity n0 and −1 with multiplicity n1

(the projections are certainly involutions); thus λ (n0 +n1) = |ξi|(n0−n1), tak-
ing the trace of the projection of ξi to Eλ . This shows that λ is rational, satisfies
|λ | ≤ |ξi| and is an algebraic integer, and so all the eigenvalues of ξi are inte-
gers in the interval [−|ξi| , |ξi|]. Note that this is equivalent to the eigenvalues of
∑{1−σ : σ ∈ ξi}= |ξi|1−ξi being integers in [0,2 |ξi|].

Definition 6.5.4 For s ∈ R and 1≤ i≤ r, the functions qi(w;s) are defined by

exp[s(|ξi|1−ξi)] = ∑
w∈W

qi(w;s)w.

Proposition 6.5.5 For 1≤ i≤ r and w ∈W:

(i) qi (1;0) = 1 and qi (w;0) = 0 for w �= 1;
(ii) s < 0 implies qi (w;s)≥ 0;



6.5 The Intertwining Operator 195

(iii) qi(w;s) is a linear combination of the members of {esλ : λ is an eigenvalue
of |ξi|1−ξi};

(iv) ∂qi(w;s)/∂ s = ∑σ∈ξi
[qi(w;s)−qi (wσ ;s)];

(v) ∑w qi(w;s) = 1.

Proof The values qi (w;0) are determined by exp(0) = 1 ∈ QW . For s < 0,

∑w qi(w;s)w = exp(s |ξi|)exp (−sξi). The matrix for−sξi has all entries nonneg-
ative, and the product of any two conjugacy classes is a nonnegative integer linear
combination of other classes; thus qi(w;s)≥ 0. Part (iii) is a standard linear alge-
bra result (and recall that ξi corresponds to a self-adjoint matrix). For part (iv),

∂
∂ s∑w

qi(w;s)w =(exp [s(|ξi|1−ξi)]) (|ξi|1−ξi)

=∑
w
∑
σ∈ξi

[qi(w;s)w−qi(w;s)wσ ]

= ∑
σ∈ξi

∑
w

[qi(w;s)w−qi(wσ ;s)w],

replacing w by wσ in the last sum. Finally, the trivial homomorphism w �→ 1
extended to KW maps |ξi|1−ξi to 0, and exp(0) = 1.

The classes of reflections are combined in the following.

Definition 6.5.6 The functions qκ(w;s) are given by

∑
w∈W

qκ(w;s)w =
r

∏
i=1

(
∑
w

qi
(
w;sκ ′i

)
w
)
.

Since the classes ξi are in the center of KW , this is a product of commuting
factors. Proposition 6.5.5 shows that qκ(w;s) is a linear combination of products
of terms like exp(κ ′iλ s), where λ is an integer and 0≤ λ ≤ 2 |ξi|. Also,

∑
w∈W

qκ(w;s)w = exp

(
s ∑

v∈R+

κv (1−σv)

)
and

∂
∂ s

qκ(w;s) = ∑
v∈R+

κv[qκ(w;s)−qκ (wσv;s)] .

Definition 6.5.7 For κv ≥ 0, n≥ 1 and w ∈W , set

cn(w) =
∫ 0

−∞
qκ(w;s)ens ds.

Proposition 6.5.8 With the hypotheses of Definition 6.5.7 we have

(i) cn(w)≥ 0;
(ii) ncn(w)+∑v∈R+ κv[cn(w)− cn (wσv)] = δ1,w (1 if w = 1, else 0);

(iii) ∑w∈W cn(w) = 1/n.
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Proof The positivity follows from that of qκ(w;s). Multiply both sides of the
differential relation just before Definition 6.5.7 by ens and integrate by parts over
−∞< s≤ 0, obtaining

qκ (w;0)− lim
s→−∞ensqκ(w;s)−ncn(w) = ∑

v∈R+

κv [cn(w)− cn (wσv)] .

Since qκ(w;s) is a sum of terms eλ s with λ ≥ 0 and n ≥ 1, the integral
for cn is absolutely convergent and the above limit is zero. From Proposi-
tion 6.5.5 qκ (w;0) = 1 if w = 1, else qκ(W ;0) is 0. Finally, ∑w cn(w) =∫ 0
−∞∑w qκ(w;s)ensds =

∫ 0
−∞ ensds = 1/n (Proposition 6.5.5, part (v)).

Proposition 6.5.9 For n≥ 1 let f ∈Pd
n ; then

∑
w∈W

cn(w)〈xw,∇κ f (xw)〉= f (x).

Proof Indeed,

∑
w∈W

cn(w)〈xw,∇κ f (xw)〉

= ∑
w∈W

cn(w)

(
n f (xw)+ ∑

v∈R+

κv [ f (xw)− f (xwσv)]

)
= ∑

w∈W
cn(w)n f (xw)+ ∑

v∈R+

κv ∑
w∈W

f (xw) [cn(w)− cn(wσv)]

= ∑
w∈W

qκ(w;0) f (xw) = f (x).

The last line uses (ii) in Proposition 6.5.8.

Corollary 6.5.10 For any polynomial f ∈Πd,

∑
w∈W

∫ 0

−∞
qκ(w;s)〈xw,∇κ f (esxw)〉es ds = f (x)− f (0).

Proof Express f as a sum of homogeneous components; if g is homogeneous of
degree n then ∇κg(esxw) = e(n−1)s ∇κg(xw).

The above results can be phrased in the language of forms.

Definition 6.5.11 An Rd-valued polynomial f(x) = ( fi(x))d
i=1 (with each fi ∈

Πd) is a κ-closed 1-form if Di f j = D j fi for each i, j or a κ-exact 1-form if there
exists g ∈Πd such that f = ∇κg.

The commutativity of {Di} shows that each κ-exact 1-form is κ-closed. The
corollary shows that g is determined up to a constant by ∇κg. The construction of
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the intertwining operator depends on the fact that κ-closed 1-forms are κ-exact.
This will be proven using the functions cn(w).

Lemma 6.5.12 If f is a κ-closed 1-form and u ∈ Rd then

Du 〈x, f(x)〉=
(

1+
d

∑
i=1

xi
∂
∂xi

)
〈u, f(x)〉+ ∑

v∈R+

κv 〈u, f(x)− f(xσv)σv〉 .

Proof Apply the product rule (Proposition 6.4.10) to xi fi (x) to obtain

Du〈x, f(x)〉=
d

∑
i=1

(
xiDu fi(x)+ui fi(x)

)
+2 ∑

v∈R+

κv
〈u,v〉〈v, f(xσv)〉

‖v‖2

= 〈u, f(x)〉+2 ∑
v∈R+

κv
〈u,v〉〈v, f(xσv)〉

‖v‖2 +
d

∑
i, j=1

xiu jDi f j(x)

=
(

1+
d

∑
i=1

xi
∂
∂xi

)
〈u, f(x)〉+2 ∑

v∈R+

κv
〈u,v〉〈v, f (xσv)〉

‖v‖2

+ ∑
v∈R+

κv 〈u, f(x)− f(xσv)〉 .

In the third line we replaced D j fi by Di f j (employing the κ-closed hypothesis).
The use of Proposition 6.5.3 produces the fourth line. The terms involving f (xσv)
add up to ∑v∈R+ κv 〈u,−f (xσv)σv〉.

Theorem 6.5.13 Suppose that f is a homogeneous κ-closed 1-form with each
fi ∈Pd

n for n≥ 0; then the homogeneous polynomial defined by

F(x) = ∑
w∈W

cn+1(w)〈xw, f(xw)〉

satisfies ∇κF = f, and f is κ-exact.

Proof We will show that DuF(x) = 〈u, f(x)〉 for any u ∈ Rd . Note that

Du [R(w)〈x, f(x)〉] = R(w) [Duw 〈x, f(x)〉] ;
thus

∑
w∈W

cn+1(w)Du [〈xw, f(xw)〉]

= ∑
w∈W

cn+1(w)

(
(n+1)〈uw, f(xw)〉+ ∑

v∈R+

κv 〈uw, f(xw)− f(xwσv)σv〉
)

= ∑
w∈W

〈uw, f(xw)〉
(

cn+1(w)(n+1)+ ∑
v∈R+

κv [cn+1(w)− cn+1 (wσv)]

)
= ∑

w∈W

〈uw, f(xw)〉qκ (w;0) = 〈u, f(x)〉 .
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The second line comes from the lemma, then in the sum involving f(xwσv) the
summation variable w is replaced by wσv.

Corollary 6.5.14 For any κ-closed 1-form f the polynomial F defined by

F(x) = ∑
w∈W

∫ 0

−∞
qκ (w;s)〈xw, f(esxw)〉es ds

satisfies ∇κF = f, and f is κ-exact.

In the following we recall the notation ∂i f (x) = ∂ f (x)/∂xi; ∂i f (xw) denotes
the ith derivative evaluated at xw.

Definition 6.5.15 The operators Vn : Pd
n → Pd

n are defined inductively by
V0 (a) = a for any constant a ∈R and

Vn f (x) = ∑
w∈W

cn(w)

(
d

∑
i=1

(xw)iVn−1 [∂i f (xw)]

)
, n≥ 1, f ∈Pd

n .

Theorem 6.5.16 For f ∈ Pd
n , n ≥ 1 and 1 ≤ i ≤ d, DiVn f = Vn−1∂i f ; the

operators Vn are uniquely defined by these conditions and V01 = 1.

Proof Clearly DiV0a = 0. Suppose that the statement is true for n−1; then g =
(Vn−1∂i f )d

i=1 is a κ-closed 1-form, homogeneous of degree n−1 because D jgi =
Vn−2∂ j∂i f = Dig j . Hence the polynomial

F(x) = ∑
w∈W

cn(w)〈xw,g(xw)〉

is homogeneous of degree n and satisfies DiF = gi =Vn−1∂i f for each i, by Theo-
rem 6.5.13. The uniqueness property is also proved inductively: suppose that Vn−1

is uniquely determined; then by Proposition 6.5.9 there is a unique homogeneous
polynomial F such that DiF = Vn−1∂i f for each i.

Definition 6.5.17 The intertwining operator V is defined on Πd as the linear
extension of the formal sum

⊕∞
n=0 Vn; that is, if f = ∑m

n=0 fn with fn ∈Pd
n then

V f = ∑m
n=0Vn fn.

The operator V , as expected, commutes with each R(w).

Proposition 6.5.18 Let f ∈Πd and w ∈W; then V R(w) f = R(w)V f .

Proof For any u ∈ Rd , DuV f (x) = V 〈u,∇ f (x)〉. Substitute uw for u and xw for
x to obtain on the one hand
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R(w)(DuwV f )(x) =V 〈uw,∇ f (xw)〉
=V 〈uw,∇ [R(w) f ] (x)w〉
=V 〈u,∇ [R(w) f ] (x)〉
=DuV [R(w) f ] (x);

on the other hand, Du [R(w)V f ] (x) = R(w)(DuwV f )(x). Therefore

∇κ [R(w)V f ] = ∇κ [V R(w) f ] ,

which shows that V R(w) f −R(w)V f is a constant by Proposition 6.5.9. In the
homogeneous decomposition of f , the constant term is clearly invariant under V
and R(w); thus V R(w) f = R(w)V f .

The inductive type of definition used for V suggests that there are bounded-
ness properties which involve similarly defined norms. The following can be
considered as an analogue of power series with summable coefficients.

Definition 6.5.19 For f ∈ Πd let ‖ f‖A = ∑∞
n=0 ‖ fn‖S, where f = ∑∞

n=0 fn with
each fn ∈Pd

n and ‖g‖S = sup‖x‖=1 |g(x)|. Let A(Bd) be the closure of Πd in the
A-norm.

Clearly A
(
Bd
)

is a commutative Banach algebra under pointwise operations
and is contained in C

(
Bd
) ∩C∞({x : ‖x‖< 1}). Also, ‖ f‖S ≤ ‖ f‖A. We will

show that V is bounded in the A-norm. The van der Corput–Schaake inequality
(see Theorem 4.5.3) motivates the definition of a gradient-type norm associated
with ∇κ .

Definition 6.5.20 Suppose that f ∈Pd
n ; for n = 0 let ‖ f‖κ = f , and for n≥ 1 let

‖ f‖κ =
1
n!

sup

{∣∣∣∣ n

∏
i=1
〈y(i),∇κ〉 f (x)

∣∣∣∣ : y(1), . . . ,y(n) ∈ Sd−1

}
.

Proposition 6.5.21 For n≥ 0 and f ∈Pd
n , ‖ f‖S ≤ ‖ f‖κ .

Proof Proceeding inductively, suppose that the statement is true for Pd
n−1 and

n≥ 1. Let x ∈ Sd−1 and, by Proposition 6.5.9, let

f (x) = ∑
w∈W

cn(w)〈xw,∇κ f (xw)〉 .

Thus | f (x)| ≤ ∑w cn(w)| 〈xw,∇κ f (xw)〉 |; cn (w) ≥ 0 by Proposition 6.5.8. For
each w, | 〈xw,∇κ f (xw)〉 | ≤ sup‖u‖=1 | 〈u,∇κ f (xw)〉 |. But, for given u and w,

let g(x) = 〈u,∇κ f (xw)〉 =
〈
uw−1,∇κR(w) f (x)

〉 ∈ Pd
n−1, and the inductive

hypothesis implies that
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|g(x)| ≤ 1
(n−1)!

sup

{∣∣∣∣n−1

∏
i=1
〈y(i),∇κ〉g(x)

∣∣∣∣ : y(1), . . . ,y(n−1) ∈ Sd−1

}

=
1

(n−1)!
sup

{∣∣∣∣n−1

∏
i=1
〈y(i),∇κ〉〈uw−1,∇κ〉R(w) f (x)

∣∣∣∣ :

y(1), . . . ,y(n−1) ∈ Sd−1

}
≤ n‖R(w) f‖κ = n‖ f‖κ .

Note that ‖R(w) f‖κ = ‖ f ‖κ for any w ∈W , because

∇κR(w) f (x) = R(w)∇κ f (x)w−1.

Thus | f (x)| ≤ ∑w cn(w)n‖ f‖κ and ∑w cn(w) = 1/n by Proposition 6.5.8.

The norm ‖ f ‖∂ was defined in van der Corput and Schaake [1935]; it is the
same as ‖ f‖κ but with all parameters 0.

Proposition 6.5.22 For n≥ 0 and f ∈Pd
n , ‖V f‖κ = ‖ f ‖∂ .

Proof For any y(1), . . . ,y(n) ∈ Sd−1,

n

∏
i=1
〈y(i),∇κ〉V f (x) = V

n

∏
i=1
〈y(i),∇〉 f (x) =

n

∏
i=1
〈y(i),∇〉 f (x);

the last equation follows from V 1 = 1. Taking the supremum over {y(i)} shows
that ‖V f‖κ = ‖ f‖∂ .

Corollary 6.5.23 For f ∈Πd and x∈Bd, we have |V f (x)| ≤ ‖ f‖A and ‖V f‖A≤
‖ f‖A.

Proof Write f = ∑∞
n=0 fn with fn ∈Pd

n ; then ‖V fn‖κ = ‖ fn‖∂ = ‖ fn‖S by The-
orem 4.5.3 and |V fn(x)| ≤ ‖V fn‖κ for ‖x‖ ≤ 1 and each n ≥ 0. Thus ‖V fn‖S ≤
‖ fn‖S and ‖V f‖A ≤ ‖ f ‖A.

It was originally conjectured that a stronger bound held: namely, |V f (x)| ≤
sup{| f (y)| : y∈ co(xW )}, where co(xW ) is the convex hull of {xw : w∈W}. This
was later proven by Rösler [1999].

6.6 The κ-Analogue of the Exponential
For x,y∈Cd the function exp(〈x,y〉) has important applications, such as its use in
Fourier transforms and as a reproducing kernel for polynomials (Taylor’s theorem
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in disguise): for f ∈ Πd , the formal series exp
(
∑d

i=1 xi∂/∂yi

)
f (y)|y=0 = f (x).

Also (∂/∂xi) exp(〈x,y〉) = yi exp(〈x,y〉) for each i. There is an analogous func-
tion for the differential–difference operators. In this section κv ≥ 0 is assumed
throughout. A superscript such as (x) on an operator refers to the Rd variable on
which it acts.

Definition 6.6.1 For x,y ∈ Rd let K(x,y) = V (x) exp(〈x,y〉) and Kn (x,y) =
(1/n!)V (x) (〈x,y〉n) for n≥ 0.

It is clear that for each y ∈ Rd the function fy (x) = exp(〈x,y〉) is in A
(
Bd
)

and that ‖ fy‖A = exp (‖y‖); thus the sum K(x,y) =∑∞
n=0 Kn(x,y) converges abso-

lutely, and uniformly on closed bounded sets. Here are the important properties
of Kn(x,y). Of course, K0(x,y) = 1.

Proposition 6.6.2 For n≥ 1 and x,y ∈Rd:

(i) Kn(x,y) = ∑w∈W cn(w)〈xw,y〉Kn−1 (xw,y);
(ii) |Kn(x,y)| ≤ 1

n! maxw∈W | 〈xw,y〉 |n;
(iii) Kn (xw,yw) = Kn(x,y) for any w ∈W;
(iv) Kn (y,x) = Kn(x,y);
(v) D

(x)
u Kn(x,y) = 〈u,y〉Kn−1(x,y) for any u ∈Rd.

Proof Fix y ∈ Rd and let gy(x) = 〈x,y〉n. By the construction of V we have

Kn(x,y) =
1
n!

V gy(x) =
1
n! ∑w∈W

cn(w)
d

∑
i=1

(xw)iV∂igy(xw)

and ∂igy(x) = nyi〈x,y〉n−1; thus V∂igy(xw) = n(n− 1)!yiKn−1 (xw,y) , implying
part (i). Part (ii) is proved inductively using part (i) and the facts that cn(w) ≥ 0
and ∑w cn(w) = 1/n.

For part (iii),

Kn (xw,yw) =
1
n!

R(w)V gyw (x) =
1
n!

V R(w)gyw(x)

and R(w)gyw(x) = 〈xw,yw〉n = 〈x,y〉n, hence Kn(xw,yw) = Kn(x,y).
Suppose that Kn−1 (y,x) = Kn−1(x,y) for all x,y; then, by (i) and (iii),

Kn (y,x) = ∑
w∈W

cn(w)〈yw,x〉Kn−1(yw,x)

= ∑
w∈W

cn(w)
〈
xw−1,y

〉
Kn−1(xw−1,y)

= ∑
w∈W

cn(w−1)〈xw,y〉Kn−1(xw,y)

=Kn(x,y).
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Note that ∑w qκ(w;s)w = exp
(
s∑v∈R+(1−σv)

)
is in the center of the group alge-

bra KW and is mapped onto itself under the transformation w→ w−1 (because
each σ−1

v = σv); hence qκ
(
w−1;s

)
= qκ(w;s) for each w,s, which implies that

cn
(
w−1
)

= cn(w).
Let u ∈ Rd; then

D
(x)
u Kn(x,y) =

1
n!

DuV gy (x) =
1
n!

V 〈u,∇〉gy(x)

by the intertwining of V , so that

D
(x)
u Kn(x,y) =

n
n!
〈u,y〉V (x)(〈x,y〉n−1)= 〈u,y〉Kn−1(x,y).

Corollary 6.6.3 For x,y,u ∈ Rd the following hold:

(i) |K(x,y)| ≤ exp (maxw∈W | 〈xw,y〉 |);
(ii) K (x,0) = K(0,y) = 1;

(iii) D
(x)
u K(x,y) = 〈u,y〉K(x,y).

Observe that part (iii) of the corollary can be given an inductive proof:

Kn (xw,yw) = ∑
z∈W

cn(z)〈xwz,yw〉Kn−1(xwz,yw)

= ∑
z∈W

cn(z)
〈
xwzw−1,y

〉
Kn−1

(
xwzw−1,y

)
= ∑

z∈W
cn
(
w−1zw

)〈xz,y〉Kn−1(xz,y),

and cn
(
w−1zw

)
= cn(z) because ∑w qκ(w;s)w is in the center of KW .

The projection of K(x,y) onto invariants is called the κ-Bessel function for the
particular root system and multiplicity function.

Definition 6.6.4 For x,y ∈Rd let

KW (x,y) =
1
|W | ∑w∈W

K(x,yw).

Thus KW (x,0) = 1 and KW (xw,y) = KW (x,yw) = KW (x,y) for each w ∈W .
The name “Bessel” stems from the particular case W = Z2, where KW is expressed
as a classical Bessel function.

6.7 Invariant Differential Operators
This section deals with the large class of differential–difference operators of arbi-
trary degree as well as with the method for finding certain commutative sets of
differential operators which are related to the multiplicity function κv. Since the
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operators Du commute, they generate a commutative algebra of polynomials in
{Di : 1≤ i≤ d} (see Definition 6.4.2 for Du and Di).

Definition 6.7.1 For p ∈ Πd set p(D) = p(D1,D2, . . . ,Dd); that is, each xi is
replaced by Di.

For example, the polynomial ‖x‖2 corresponds to Δh. The action of W on these
operators is dual to its action on polynomials.

Proposition 6.7.2 Let p ∈Πd and w ∈W; then

p(D)R(w) = R(w)
[
R(w−1)p(D)

]
.

If p ∈ΠW , the algebra of invariant polynomials, then p(D)R(w) = R(w)p(D).

Proof Each polynomial is a sum of terms such as q(x) = ∏n
i=1〈u(i),x〉, with

each u(i) ∈ Rd . By Proposition 6.4.3, q(D)R(w) = R(w)∏n
i=1〈u(i)w,∇κ〉. Also,

R(w−1)q(x) = ∏n
i=1〈u(i),xw−1〉 = ∏n

i=1〈u(i)w,x〉. This shows that q(D)R(w) =
R(w)

[
R(w−1)q(D)

]
. If a polynomial p is invariant then R(w−1)p = p, which

implies that p(D)R(w) = R(w)p(D).

The effect of p(D) on K(x,y) is easy to calculate:

p
(
D (x))K(x,y) = p(y)K(x,y), x,y ∈Rd .

The invariant polynomials for several reflection groups were described in Sub-
sections 4.3.1–4.3.6. The motivation for the rest of this section comes from the
observation that Δh restricted to ΠW acts as a differential operator:

Δh p(x) = Δp(x)+ ∑
v∈R+

κv
2〈v,∇p(x)〉
〈v,x〉 , for p ∈ΠW .

It turns out that this holds for any operator q(D) with q ∈ ΠW . However,
explicit forms such as that for Δh are not easily obtainable (one reason is
that there are many different invariants for different groups; only ‖x‖2 is
invariant for each group). Heckman [1991a] proved this differential operator
result. Some background is needed to present the theorem. The basic prob-
lem is that of characterizing differential operators among all linear operators on
polynomials.

Definition 6.7.3 Let L
(
Πd
)

be the set of linear transformations of Πd → Πd

(“endomorphisms”). For n ≥ 0 let L∂ ,n
(
Πd
)

= span{a(x)∂α : a ∈ Πd,α ∈
Nd

0 , |α| ≤ n}, where ∂α = ∂α1
1 · · ·∂αd

d , the space of differential operators of degree
≤ n with polynomial coefficients. Further, let L∂

(
Πd
)

=
⋃∞

n=0 L∂ ,n

(
Πd
)
.
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Definition 6.7.4 For S,T ∈L (Πd) define an operator ad(S)T ∈L (Πd) by

ad(S)T f = (ST −T S) f for f ∈Πd .

The name ad refers to the adjoint map from Lie algebra theory. The elements
of L∂ ,0 are just multiplier operators on Πd : f �→ p f for a polynomial p ∈ Πd;
we use the same symbol (p) for this operator. The characterization of L∂ (Πd)
involves the action of ad(p) for arbitrary p ∈Πd.

Proposition 6.7.5 If T ∈L (Πd) and ad(xi)T = 0 for each i then T ∈L∂ ,0(Πd)
and T f = (T 1) f for each f ∈Πd.

Proof By the hypothesis, xiT f (x) = T (xi f )(x) for each i and f ∈ Πd . The set
E = { f ∈ Πd : T f = (T 1) f} is a linear space, contains 1 and is closed under
multiplication by each xi; hence E =Πd .

The usual product rule holds for ad: for S,T1,T2 ∈L (Πd), a trivial verification
shows that

ad(S)T1T2 = [ad(S)T1]T2 +T1 [ad(S)T2] .

There is a commutation fact:

S1S2 = S2S1 implies that ad(S1)ad(S2) = ad(S2)ad(S1).

This holds because both sides of the second equation applied to T equal S1S2T −
S1T S2−S2T S1 +T S2S1. In particular, ad(p)ad(q) = ad(q)ad(p) for multipliers
p,q ∈Πd . For any p ∈Πd , ad(p)∂i =−∂i p ∈L∂ ,0(Πd), a multiplier.

It is not as yet proven that L∂ (Πd) is an algebra; this is a consequence of the
following.

Proposition 6.7.6 Suppose that m,n≥ 0 and α,β ∈ Nd
0 , with |α| = m, |β | = n

and p,q ∈Πd; then p∂αq∂β = pq∂α+β +T , with T ∈L∂ ,m+n−1(Πd).

Proof Proceed inductively with the degree-1 factors of ∂α ; a typical step uses
∂iqS = q∂iS +(∂iq)S for some operator S.

Corollary 6.7.7 Suppose that n ≥ 1 and T ∈ L∂ ,n(Πd); then ad(p)T ∈
L∂ ,n−1(Πd) and ad(p)n+1T = 0, for any p ∈Πd.

In fact Corollary 6.7.7 contains the characterization announced previously. The
effect of ad(xi) on operators of the form q∂α can be calculated explicitly.

Lemma 6.7.8 Suppose that α ∈ Nd
0,q ∈Πd and 1≤ i≤ d; then

ad(xi)q∂α = (−αi)q∂α1
1 · · ·∂αi−1

i · · ·∂αd
d .
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Proof Since xi commutes with q and ∂α j
j for j �= i, it suffices to find ad(xi)∂αi

i .

Indeed, by the Leibniz rule, xi∂αi
i f − ∂αi

i (xi f ) = −∑αi
j=1

(αi
j

)
∂ j

i (xi)∂αi− j
i ( f ) =

−αi∂αi−1
i ( f ) for any f ∈Πd .

Theorem 6.7.9 For n≥ 1,T ∈L (Πd) the following are equivalent:

(i) T ∈L∂ ,n(Πd);
(ii) ad(p)n+1T = 0 for each p ∈Πd;

(iii) ad(x1)α1 ad(x2)
α2 · · ·ad(xd)αd T = 0 for each α ∈ Nd

0 with |α|= n+1.

Proof We will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The part (i) ⇒ (ii) is already
proven. Suppose now that (ii) holds; for any y∈Rd let p =∑d

i=1 yixi. The multino-

mial theorem applies to the expansion of
(
∑d

i=1 yi ad (xi)
)n+1

because the terms
commute with each other. Thus

0 = ad(p)n+1T = ∑
|α|=n+1

(|α|
α

)
yα ad(x1)α1ad (x2)α2 · · ·ad(xd)αd T.

Considering this as a polynomial identity in the variable y, we deduce that each
coefficient is zero. Thus (ii)⇒ (iii).

Suppose that (iii) holds. Proposition 6.7.5 shows that (i) is true for n = 0. Pro-
ceed by induction and suppose that (iii) implies (i) for n− 1. Note that Lemma
6.7.8 shows that there is a biorthogonality relation

ad(x1)
α1 ad(x2)

α2 · · ·ad(xd)
αd
(

q∂β
)

=
d

∏
i=1

(−βi)αi
q∂β−α ,

where ∂β−α = ∏d
i=1 ∂

βi−αi
i and negative powers of ∂i are considered to be zero

(of course, the Pochhammer symbol (−βi)αi
= 0 for αi > βi). For each α ∈ Nd

0
with |α|= n, let

Sα = (−1)n
d

∏
i=1

(αi!)−1ad(x1)
α1 ad(x2)

α2 · · ·ad(xd)αd T.

By hypothesis, ad(xi)Sα = 0 for each i and, by Proposition 6.7.5, Sα is a
multiplier, say, qα ∈ Πd. Now let Tn = ∑|α |=n qα∂α . By construction and the
biorthogonality relation, we have

ad(x1)
α1 ad(x2)

α2 · · ·ad(xd)αd (T −Tn) = 0

for any α ∈Nd
0 with |α|= n. By the inductive hypothesis, T −Tn ∈L∂ ,n−1(Πd);

thus T ∈L∂ ,n(Πd) and (i) is true.

We now apply this theorem to polynomials in {q j : 1 ≤ j ≤ d}, the funda-
mental invariant polynomials of W (see Chevalley’s theorem 6.3.2). Let L∂ (ΠW )
denote the algebra generated by

{
∂/∂qi : 1 ≤ i ≤ d

}
∪ΠW , where the latter are

considered as multipliers.
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Theorem 6.7.10 Let p ∈ ΠW ; then the restriction of p(D) to ΠW coincides
with an operator Dp ∈ L∂ (ΠW ). The correspondence p → Dp is an algebra
homomorphism.

Proof By the previous theorem we need to show that there is a number n such that
ad(g)n+1 p(D) f = 0 for each f ,g∈ΠW . Let n be the degree of p as a polynomial
in x; then p is a sum of terms such as ∏m

i=1〈u(i),x〉 with u(i) ∈ Rd and m≤ n. By
the multinomial Leibniz rule,

ad(g)n+1
m

∏
i=1
〈u(i),∇κ〉

=∑
{(

n+1
β

) m

∏
i=1

(
ad(g)βi〈u(i),∇κ〉

)
: β ∈ Nm

0 , |β |= n+1

}
.

For any β in the sum there must be at least one index i with βi≥ 2, since n+1 > m.
But if g ∈ ΠW and q ∈ Πd then 〈u,∇κ〉(gq) = Du (gq) = gDuq + q〈u,∇〉g; that
is, ad(g)〈u,∇κ〉 is the same as multiplication by 〈u,∇〉g and ad(g)2 〈u,∇κ〉 =
0. Thus Dp ∈ L∂ (ΠW ). Furthermore, if p1, p2 ∈ ΠW then the restriction of
p1(D)p2(D) to ΠW is clearly the product of the respective restrictions, so that
Dp1 p2 = Dp1 Dp2 .

This shows that Dp is a sum of terms such as

f (q1,q2, . . . ,qd)
d

∏
i=1

(
∂
∂qi

)αi

with α ∈ Nd
0 and |α| ≤ n. This can be expressed in terms of x. Recall the

Jacobian matrix J(x) =
(
∂qi(x)/∂x j

)d

i, j=1
with det J(x) = caR(x), a scalar mul-

tiple of the alternating polynomial aR(x) (see Theorem 6.3.5). The inverse of
J(x) exists for each x such that 〈x,v〉 �= 0 for each v ∈ R+, and the entries
are rational functions whose denominators are products of factors 〈x,v〉. Since

∂/∂q j = ∑d
i=1

(
J(x)−1

)
i, j
∂/∂xi, we see that each Dp can be expressed as a dif-

ferential operator on x ∈ Rd with rational coefficients (and singularities on {x :
∏v∈R+〈x,v〉= 0}, the union of the reflecting hyperplanes). This is obvious for Δh.

The κ-Bessel function is an eigenfunction of each Dp, p ∈ ΠW ; this implies
that the correspondence p→ Dp is one to one.

Proposition 6.7.11 For x,y ∈Rd , if p ∈ΠW then

D(x)
p KW (x,y) = p(y)KW (x,y).

Proof It is clear that KW is the absolutely convergent sum over n ≥ 0 of the

sequence |W |−1∑w∈W Kn (x,yw) and that p
(
D (x)

)
can be applied term by term.

Indeed,
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D(x)
p KW (x,y) = p

(
D (x))KW (x,y) =

1
|W | ∑w∈W

p
(
D (x))K (x,yw)

=
1
|W | ∑w∈W

p(yw)K (x,yw) =
1
|W | p(y) ∑

w∈W
K (x,yw)

= p(y)KW (x,y).

The third equals sign uses (iii) in Corollary 6.6.3.

Opdam [1991] established the existence of KW as the unique real-entire joint
eigenfunction of all invariant differential operators commuting with Dp p(x) =
‖x‖2, that is, the differential part of Δh, the eigenvalues specified in Proposition
6.7.11.

6.8 Notes
The fundamental characterization of reflection groups in terms of generators and
relations was established by Coxeter [1935]. Chevalley [1955] proved that the
ring of invariants of a finite reflection group is a polynomial ring (that is, it is iso-
morphic to the ordinary algebra of polynomials in d variables). It is an “heuristic
feeling” of the authors that this is the underlying reason why reflection groups
and orthogonal polynomials go together. For background information, geomet-
ric applications and proofs of theorems about reflection groups omitted in the
present book, the reader is referred to Coxeter and Moser [1965], Grove and
Benson [1985] and Humphreys [1990].

Historically, one of the first results that involved reflection-invariant operators
and spherical harmonics appeared in Laporte [1948] (our theorem 6.2.6 for the
case R3).

Differential–difference operators, intertwining operators and κ-exponential
functions were developed in a series of papers by Dunkl [1988, 1989a, 1990,
1991]. The construction of the differential–difference operators came as a result
of several years of research aimed at understanding the structure of non-invariant
orthogonal polynomials with respect to invariant weight functions. Differential
operators do not suffice, owing to their singularities on the reflecting hyperplanes.

Subsequently to Dunkl’s 1989 paper, Heckman [1991a] constructed operators
of a trigonometric type, associated with Weyl groups. There are similar oper-
ators in which elliptic functions replace the linear denominators (Buchstaber,
Felder and Veselov [1994]). Rösler [1999] showed that the intertwining opera-
tor can be expressed as an integral transform with positive kernel; this was an
existence proof, so the finding of explicit forms is, as of the time of writing, an
open problem. In some simple cases, however, an explicit form is known; see the
next chapter and its notes.
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Spherical Harmonics Associated with
Reflection Groups

In this chapter we study orthogonal polynomials on spheres associated with
weight functions that are invariant under reflection groups. A theory of homo-
geneous orthogonal polynomials in this setting, called h-harmonics, can be
developed in almost complete analogy to that for the ordinary spherical harmon-
ics. The results include several inner products under which orthogonality holds,
explicit expressions for the reproducing kernels given in terms of the intertwin-
ing operator and an integration which shows that the average of the intertwining
operator over the sphere removes the action of the operator. As examples, we dis-
cuss the h-harmonics associated with Zd

2 and those in two variables associated
with dihedral groups. Finally, we discuss the analogues of the Fourier transform
associated with reflection groups.

7.1 h-Harmonic Polynomials
We use the notation of the previous chapter and start with definitions.

Definition 7.1.1 Let R+ be the system of positive roots of a reflection group W
acting in Rd . Let κ be a multiplicity function as in Definition 6.4.1. Associated
with R+ and κ we define invariant weight functions

hκ(x) := ∏
v∈R+

|〈v,x〉|κv , x ∈Rd .

Throughout this chapter we use the notation γκ and λκ as follows:

γκ := ∑
v∈R+

κv and λκ := γκ +
d−2

2
. (7.1.1)

Sometimes we will write γ for γκ and λ for λκ , and particularly in the proof
sections when no confusion is likely. Note that the weight function hκ is positively
homogeneous of degree γκ .
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Recall that the operators Di, 1≤ i≤ d, from Definition 6.4.2 commute and that
the h-Laplacian is defined by Δh = ∑d

i=1 D2
i .

Definition 7.1.2 A polynomial P is h-harmonic if ΔhP = 0.

We split the differential and difference parts of Δh, denoting them by Lh and
Dh, respectively; that is, Δh = Lh +Dh with

Lh f =
Δ( f hκ)− fΔhκ

hκ
,

Dh f (x) =−2 ∑
v∈R+

κv
f (x)− f (xσv)
〈v,x〉2 ‖v‖2.

(7.1.2)

Lemma 7.1.3 Both Lh and Dh commute with the action of the reflection
group W.

Proof We have Lh f = Δ f + 2〈∇hκ ,∇ f 〉/hκ . We need to prove that R(w)Lh f =
LhR(w) f for every w ∈W . The Laplacian commutes with R(w) since W is a sub-
group of O(d). Every term in 2〈∇hκ ,∇ f 〉/hκ = 1

2 [Δ(h2
κ f )− fΔ(h2

κ)−h2
κΔ f ]/h2

κ
commutes with R(w) since h2

κ is W -invariant. Since Δh commutes with R(w) and
Dh = Δh−Lh, Dh commutes with the action of W .

In the proof of the following lemmas and theorem assume that κv ≥ 1. Analytic
continuation can be used to extend the range of validity to κv ≥ 0. More-
over, we will write dω for dωd−1 whenever no confusion can result from this
abbreviation.

Lemma 7.1.4 The operator Dh is symmetric on polynomials in L2(h2
κ dω).

Proof For any polynomial f , Dh f ∈ L2(h2
κ dω) since each factor 〈x,v〉2 in the

denominators of the terms of Dh f is canceled by h2
κ(x) = ∏v∈R+ |〈x,v〉|2κv for

each κv ≥ 1. For polynomials f and g,∫
Sd−1

f Dhḡh2
κ dω

=− ∑
v∈R+

κv

(∫
Sd−1

f (x)ḡ(x)〈x,v〉−2h2
κ(x)dω

−
∫

Sd−1
f (x)ḡ(xσv)〈x,v〉−2hκ(x)2 dω

)
‖v‖2 =

∫
Sd−1

(Dh f )ḡh2
κ dω ,

where in the second integral in the sum we have replaced x by xσv; this step
is valid by the W -invariance of h2

κ under each σv and the relation 〈xσv,v〉 =
〈x,vσv〉=−〈x,v〉.
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Lemma 7.1.5 For f ,g ∈C2(Bd),∫
Sd−1

∂ f
∂n

gh2
κ dω =

∫
Bd

(gLh f + 〈∇ f ,∇g〉)h2
κ dx,

where ∂ f/∂n is the normal derivative of f .

Proof Green’s first identity states that∫
Sd−1

∂ f1

∂n
f2 dω =

∫
Bd

( f2Δ f1 + 〈∇ f1,∇ f2〉)dx

for f1, f2 ∈C2(Bd). In this identity, first put f1 = f hκ and f2 = ghκ to get∫
Sd−1

(
f g
∂hκ
∂n

+ghκ
∂ f
∂n

)
hκ dω =

∫
Bd

[
ghκΔ( f hκ)+ 〈∇( f hκ),∇(ghκ)〉]dx

and then put f1 = hκ and f2 = f ghκ to get∫
Sd−1

f g
∂hκ
∂n

dω =
∫

Bd

[
f ghκΔhκ + 〈∇( f ghκ),∇hκ〉

]
dx.

Subtracting the second equation from the first, we obtain∫
Sd−1

g
∂ f
∂n

h2
κ dω =

∫
Bd

(
ghκ [Δ( f hκ)− fΔhκ ]+h2

κ〈∇ f ,∇g〉)dx

by using the product rule for ∇ repeatedly.

Theorem 7.1.6 Suppose that f and g are h-harmonic homogeneous polynomi-
als of different degrees; then

∫
Sd−1 f (x)g(x)h2

κ(x)dω = 0.

Proof Since f is homogeneous, by Euler’s formula, ∂ f/∂n = (deg f ) f . Hence,
by Green’s identity in Lemma 7.1.5,

(deg f −degg)
∫

Sd−1
f gh2

κ dω =
∫

Bd
(gLh f − f Lhg)h2

κ dx

=
∫

Bd
(gDh f − f Dhg)h2

κ dx = 0,

using the symmetry of Dh from Lemma 7.1.4.

Hence, the h-harmonics are homogeneous orthogonal polynomials with
respect to h2

κ dω . Denote the space of h-harmonic homogeneous polynomials of
degree n by

H d
n (h2

κ) = Pd
n ∩kerΔh,

using notation from Section 4.2. If h2
κ is S-symmetric then it follows from Theo-

rem 4.2.7 that Pd
n admits a unique decomposition in terms of H d

j (h2
κ). The same

result also holds for the general h-harmonic polynomial hκ from Definition 7.1.1.
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Theorem 7.1.7 For each n ∈ N0, Pd
n =

⊕[n/2]
j=0 ‖x‖2 jH d

n−2 j(h
2
κ); that is, there

is a unique decomposition P(x) = ∑[n/2]
j=0 ‖x‖2 jPn−2 j(x) for P ∈Pd

n with Pn−2 j ∈
H d

n−2 j(h
2
κ). In particular,

dimH d
n (h2

κ) =
(

n+d−1
n

)
−
(

n+d−3
n−2

)
.

Proof We proceed by induction. From the fact that ΔhP
d
n ⊂ Pd

n−2 we obtain
Pd

0 = H d
0 , Pd

1 = H d
1 and dimH d

n (h2
κ) ≥ dimPd

n − dimPd
n−2. Suppose

that the statement is true for m = 0,1, . . . ,n− 1 for some n. Then ‖x‖2Pd
n−2

is a subspace of Pd
n and is isomorphic to Pd

n−2, since homogeneous poly-
nomials are determined by their values on Sd−1. By the induction hypothe-

sis ‖x‖2Pd
n−2 =

⊕[n/2]−1
j=0 ‖x‖2 j+2H d

n−2−2 j(h
2
κ), and by the previous theorem

H d
n (h2

κ) ⊥ H d
n−2−2 j(h

2
κ) for each j = 0,1, . . . , [n/2]− 1. Hence H d

n (h2
κ) ⊥

‖x‖2Pd
n−2 in L2(h2

κ dω). Thus dimH d
n (h2

κ) + dimPd
n−2 ≤ dimPd

n , and so
dimH d

n (h2
κ)+dim(‖x‖2Pd

n−2) = dimPd
n .

Corollary 7.1.8 Pd
n ∩ (Pd

n−2)
⊥ = H d

n (h2
κ); that is, if p ∈Pd

n and p ⊥ Pd
n−2

then p is h-harmonic.

A basis of H d
n (h2

κ) can be generated by a simple procedure. First, we state

Lemma 7.1.9 Let s be a real number and g ∈Pd
n . Then

Di(‖x‖sg) = sxi‖x‖s−2g+‖x‖sDig,

Δh(‖x‖sg) = 2s

(
d
2

+
s
2
−1+n+ γκ

)
‖x‖s−2g+‖x‖sΔhg,

(7.1.3)

where, if s < 2, both these identities are restricted to Rd \{0}.

Proof Since ‖x‖s is invariant under the action of the reflection group, it follows
from the product formula in Proposition 6.4.12 that

Di(‖x‖sg) = ∂i(‖x‖s)g+‖x‖sDig,

from which the first identity follows. To prove the second identity, use the split
Δh = Lh + Dh. It is easy to see that Dh(‖x‖sg) = ‖x‖sDhg. Hence, using the fact
that Lh f = Δ f +2〈∇hκ ,∇ f 〉/hκ , the second identity follows from

Δ(‖x‖sg) = 2s

(
d
2

+
s
2
−1+n

)
‖x‖s−2g+‖x‖sΔg

and

〈∇(‖x‖sg),∇hκ〉= s‖x‖s−2〈g,∇hκ〉+‖x‖s〈∇g,∇hκ〉,
where we have used the relation ∑(xi∂hκ/∂xi) = γκhκ .
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Lemma 7.1.10 For 1≤ i≤ d, Δh[xi f (x)] = xiΔh f (x)+2Di f (x).

Proof By the product rules for Δ and for ∇,

Δh[xi f (x)] = xiΔ f (x)+2
∂ f
∂xi

+ ∑
v∈R+

κv

[2〈v,∇ f 〉xi

〈v,x〉 +
2 f (x)vi

〈v,x〉 −‖v‖
2 xi f (x)− (xσv)i f (xσv)

〈v,x〉2
]
,

which, upon using the identities

xi f (x)− (xσv)i f (xσv) = xi[ f (x)− f (xσv)]+(xi− (xσv)i) f (xσv)

and

xi− (xσv)i =
2〈x,v〉vi

‖v‖2 ,

is seen to be equal to xiΔh f (x)+2Di f (x).

Definition 7.1.11 For any α ∈Nd
0, define homogeneous polynomials Hα by

Hα(x) := ‖x‖2λκ+2|α |Dα‖x‖−2λκ , (7.1.4)

where Dα = Dα1
1 · · ·Dαd

d and λκ is as in (7.1.1).

Recall that εi = (0, . . . ,1, . . . ,0), 1≤ i≤ d, denotes the standard basis elements
of Rd . In the following proof we write λ for λκ .

Theorem 7.1.12 For each α ∈ Nd, Hα is an h-harmonic polynomial of degree
|α|, that is, Hα ∈H d

|α |(h
2
κ). Moreover, the Hα satisfy the recursive relation

Hα+εi(x) =−2(λκ + |α|)xiHα(x)+‖x‖2DiHα(x). (7.1.5)

Proof First we prove that Hα is a homogeneous polynomial of degree |α|, using
induction on n = |α|. Clearly H0(x) = 1. Assume that Hα has been proved to be
a homogeneous polynomial of degree n for |α| = n. Using the first identity in
(7.1.3) it follows that

DiHα =(2λ +2|α|)xi‖x‖2λ−2+2|α |Dα(‖x‖−2λ )

+‖x‖2λ+2|α |DiD
α(‖x‖−2λ ),

from which the recursive formula (7.1.5) follows from the definition of Hα .
Since Di : Pd

n �→ Pd
n−1, it follows from the recursive formula that Hα+εi is a

homogeneous polynomial of degree n+1 = |α|+1.
Next we prove that Hα is an h-harmonic polynomial, that is, that ΔhHα = 0.

Setting a =−2n−2λ in the second identity of (7.1.3), we conclude that

Δh(‖x‖−2n−2λg) = ‖x‖−2n−2λΔhg,
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for g ∈Pd
n . In particular, for g = 1 and n = 0, Δh(‖x‖−2λ ) = 0 for x ∈ Rd \{0}.

Hence, setting g = Hα and |α| = n and using the fact that D1, . . . ,Dd commute,
it follows that

ΔhHα = ‖x‖2n+2λDαΔh(‖x‖−2λ ) = 0,

which holds for all x ∈Rd since Hα is a polynomial.

The formula (7.1.4) defines a one-to-one correspondence between xα and Hα .
Since every h-harmonic in H d

n (h2
κ) can be written as a linear combination of xα

with |α| = n, the set {Hα : |α| = n} contains a basis of H d
n (h2

κ). However, the
h-harmonics in this set are not linearly independent since there are dimPd

n of
them, which is more than dimH d

n (h2
κ). Nevertheless, it is not hard to derive a

basis from them.

Corollary 7.1.13 The set {Hα : |α| = n} contains bases of H d
n (h2

κ); one
particular basis can be taken as {Hα : |α|= n,αd = 0,1}.

Proof The linear dependence relations among the members of {Hα : |α|= n} are
given by

Hβ+2ε1
+ · · ·+Hβ+2εd

= ‖x‖2n+2λDβΔh(‖x‖−2λ ) = 0

for every β ∈ Nd such that |β | = n − 2. These relations number exactly
dimPd

n−2 = #{β ∈ Nd : |β | = n − 2}. For each relation we can exclude
one polynomial from the set {Hα : |α | = n}. The remaining dimH d

n (h2
κ)

(= dimPd
n −dimPd

n−2) harmonics still span H d
n (h2

κ); hence they form a basis
for H d

n (h2
κ). The basis is not unique, since we can exclude any of the polyno-

mials Hβ+2ε1
, . . . ,Hβ+2εd

for each dependent relation. Excluding Hβ+2εd
for all

|β | = n− 2 from {Hα : |α| = n} is one way to obtain a basis, and it generalizes
the spherical harmonics from Section 4.1.

The polynomials in the above basis are not mutually orthogonal, however. In
fact, constructing orthonormal bases with explicit formulae is a difficult problem
for most reflection groups. At the present such bases are known only in the case of
abelian groups Zd

2 (see Section 7.5) and the dihedral groups acting on polynomials
of two variables (see Section 7.6).

Since (7.1.4) defines a map which takes xα to Hα , this map must be closely
related to the projection operator from Pd

n to H d
n (h2

κ).

Definition 7.1.14 An operator projn,h is defined on the space of homogeneous
polynomials Pd

n by

projn,h P(x) =
(−1)n

2n(λκ)n
‖x‖2λκ+2|α |P(D){‖x‖−2λκ },

where (λκ)n is a Pochhammer symbol.
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Theorem 7.1.15 The operator projn,h is the projection operator from Pd
n to

H d
n (h2

κ), and it is given by

projn,h P(x) =
[n/2]

∑
j=0

1
4 j j!(−λκ −n+1) j

‖x‖2 jΔ j
hP; (7.1.6)

moreover, every P ∈Pd
n has the expansion

P(x) =
[n/2]

∑
j=0

1
4 j j!(λκ +1+n−2 j) j

‖x‖2 j projn−2 j,hΔ
j
hP(x). (7.1.7)

Proof Use induction on n = |α|. The case n = 0 is evident. Suppose that the
equation has been proved for all α such that |α| = n. Then, with P(x) = xα and
|α|= n,

Dα‖x‖−2λ = (−1)n2n(λ )n‖x‖−2λ−2n

×
[n/2]

∑
j=0

1
4 j j!(−λ −n+1) j

‖x‖2 jΔ j
h(x

α).

Applying Di to this equation and using the first identity in (7.1.3) with g =
Δ j

h(x
α), we conclude, after carefully computing the coefficients, that

DiD
α‖x‖−2λ = (−1)n2n(λ )n(−2λ −2n)‖x‖−2λ−2n−2

×
[(n+1)/2]

∑
j=0

1
4 j j!(−λ −n) j

‖x‖2 j
[
xiΔ j

h(x
α)+2 jΔ j−1

h Di(xα)
]
,

where we have also used the fact that Di commutes with Δh. Now, using the
identity

Δ j
h[xi f (x)] = xiΔ

j
h f (x)+2 jDiΔ

j−1
h f (x), j = 1,2,3, . . . ,

which follows from Lemma 7.1.10, and the fact that (−1)n2n(λ )n(−2λ −2n) =
(−1)n+12n+1(λ )n+1, we conclude that equation (7.1.6) holds for P(x) = xixα ,
which completes the induction.

To prove (7.1.7), recall that every P ∈Pd
n has a unique decomposition P(x) =

∑[n/2]
j=0 ‖x‖2 jPn−2 j by Theorem 7.1.7, where Pn−2 j ∈H d

n−2 j(h
2
κ). It follows from

the second identity of (7.1.3) that

Δ j
hP =

[n/2]

∑
i= j

4 j(−i) j(−λ +n+ i) j‖x‖2i−2 jPn−2i, (7.1.8)



7.1 h-Harmonic Polynomials 215

from which we obtain that

projn,h P =
[n/2]

∑
j=0
‖x‖2 j

[n/2]

∑
i= j

4 j(−i) j(−λ −n+ i) j

4 j j!(−λ −n+1) j
‖x‖2i−2 jPn−2i

=
[n/2]

∑
i=0

‖x‖2iPn−2i

i

∑
j=0

(−i) j(−λ −n+ i) j

j!(−λ −n+1) j

=
[n/2]

∑
i=0

‖x‖2iPn−2i 2F1

(−i,−λ −n+ i
−λ −n+1

;1
)
.

By the Chu–Vandermonde identity the hypergeometric function 2F1 is zero except
when i = 0, which yields projn,h P = Pn. Finally, using Δ j

hP in place of P and
taking into account (7.1.8), we conclude that

projn−2 j,hΔ
j
hP = (− j) j(−λ −n+ j) jPn−2 j;

a simple conversion of Pochhammer symbols completes the proof.

An immediate consequence of this theorem is the following corollary.

Corollary 7.1.16 For each α ∈Nd
0 ,

Hα(x) = (−1)n2n(λκ)n projn,h(x
α).

The projection operator turns out to be related to the adjoint operator D∗
i of Di

in L2(h2
κ dω). The adjoint D∗

i on H d
n (h2

κ) is defined by∫
Sd−1

p(Diq)h2
κ dω =

∫
Sd−1

(D∗
i p)qh2

κ dω, p ∈H d
n (h2

κ), q ∈H d
n+1(h

2
κ).

It follows that D∗
i is a linear operator that maps H d

n (h2
κ) into H d

n+1(h
2
κ).

Theorem 7.1.17 For p ∈H d
n (h2

κ),

D∗
i p = 2(n+λκ +1)

[
xi p− (2n+2λκ)−1‖x‖2Di p

]
.

Proof First assume that |α|= |β |= n. It follows from (7.1.5) that

(2λ +2n)
∫

Sd−1
xiHαHβh2

κ dω

=
∫

Sd−1
(DiHα)Hβh2

κ dω−
∫

Sd−1
Hα+εi Hβh2

κ dω = 0.

Since {Hα : |α|= n} contains a basis for H d
n (h2

κ), it follows that∫
Sd−1

xi pqh2
κ dω = 0, 1≤ i≤ d, p,q ∈H d

n (h2
κ). (7.1.9)



216 Spherical Harmonics Associated with Reflection Groups

Using this equation and the recursive relation (7.1.5) twice we conclude that, for
|α|= n and |β |= n+1,∫

Sd−1
Hα(DiHβ )h2

κ dω = (2λ +2n+2)
∫

Sd−1
xiHαHβh2

κ dω

=−2λ +2n+2
2λ +2n

∫
Sd−1

Hα+εi Hβh2
κ dω ,

which gives, using the definition of D∗
i ,

D∗
i Hα =−n+λ +1

n+λ
Hα+εi .

Using the recurrence relation (7.1.4) again, we obtain the desired result for
p = Hα , which completes the proof by Corollary 7.1.13.

We can also obtain a formula for the adjoint operator defined on L2(h2dμ ,Rd),
where we define the measure μ by

dμ = (2π)−d/2e−‖x‖2/2 dx.

Let V d
n (h2

κ dμ) denote the space of orthogonal polynomials of degree n with
respect to h2

κ dμ . An orthogonal basis of V d
n (h2

κ dμ) is given by

Pn
ν , j(x) = Ln−2 j+λκ

j

(
1
2
‖x‖2

)
Y h

n−2 j,ν(x), (7.1.10)

where Y h
n−2 j,ν ∈H d

n−2 j(h
2
κ) and 0≤ 2 j ≤ n. Its verification follows as in (5.1.6).

We introduce the following normalization constants for convenience:

ch = ch,d =
(∫

Rd
h2
κ(x)dμ

)−1
,

c′h = c′h,d = σd−1

(∫
Sd−1

h2
κ dω

)−1
.

(7.1.11)

Using polar coordinates we have for p ∈P2m that∫
Rd

p(x)h2
κ(x)dμ =

1

(2π)d/2

∫ ∞

0
r2γκ+2m+d−1e−r2/2 dr

∫
Sd−1

ph2
κ dω

= 2m+γκ Γ(λκ +m+1)
Γ( d

2 )
1

σd−1

∫
Sd−1

ph2
κ dω ,

which implies, in particular, that

c′h,d = 2γκ
Γ(λκ +1)
Γ( d

2 )
ch,d .

We denote the adjoint operator of Di on L2(h2
κ dμ ,Rd) by D̃∗

i , to distinguish it
from the L2(h2

κ dω,Sd−1) adjoint D∗
i .
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Theorem 7.1.18 The adjoint D̃∗
i acting on L2(h2

κ dμ,Rd) is given by

D̃∗
i p(x) = xi p(x)−Di p(x), p ∈Πd.

Proof Assume that κv ≥ 1. Analytic continuation can be used to extend the range
of validity to κv ≥ 0. Let p and q be two polynomials. Integrating by parts, we
obtain∫

Rd

[
∂i p(x)

]
q(x)h2

κ(x)dμ =−
∫

Rd
p(x)
[
∂iq(x)

]
h2
κ(x)dμ

+
∫

Rd
p(x)q(x)

[−2hκ(x)∂ihκ(x)+h2
κ(x)xi

]
dμ .

For a fixed root v,∫
Rd

p(x)− p(xσv)
〈x,v〉 q(x)h2

κ(x)dμ

=
∫

Rd

p(x)q(x)
〈x,v〉 h2

κ(x)dμ−
∫

Rd

p(xσv)q(x)
〈x,v〉 h2

κ(x)dμ

=
∫

Rd

p(x)q(x)
〈x,v〉 h2

κ(x)dμ+
∫

Rd

p(x)q(xσv)
〈x,v〉 h2

κ(x)dμ ,

where in the second integral we have replaced x by xσv, which changes 〈x,v〉 to
〈xσv,v〉=−〈x,v〉 and leaves h2

κ invariant. Note also that

hκ(x)∂ihκ(x) = ∑
v∈R+

κv
vi

〈x,v〉h2
κ(x).

Combining these ingredients, we obtain∫
Rd

Di p(x)q(x)h2
κ(x)dμ

=
∫

Rd

[
p(x)
[
xiq(x)−∂iq(x)

]
+ ∑

v∈R+

(
κvvi p(x)

[−2q(x)+q(x)+q(xσv)
]/〈x,v〉)]h2

κ(x)dμ ;

the term inside the large square brackets is exactly p(x)
[
xiq(x)−Diq(x)

]
.

7.2 Inner Products on Polynomials
For polynomials in Πd , a natural inner product is 〈p,q〉∂ = p(∂ )q(0), p,q ∈Pd

n ,
where p(∂ ) means that xi has been replaced by ∂i in p(x). The reproducing ker-
nel of this inner product is 〈x,y〉n/n!, since (〈x,∂y〉n/n!)q(y) = q(x) for q ∈Pd

n

and x ∈ Rd . With the goal of constructing the Poisson kernel for h-harmonics,
we consider the action of the intertwining operator V (Section 6.5) on this inner
product. As in the previous chapter, a superscript such as (x) on an operator refers
to the Rd variable on which it acts.
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Proposition 7.2.1 If p ∈Pd
n then Kn(x,D (y))p(y) = p(x) for all x ∈Rd, where

Kn(x,D (y)) is the operator formed by replacing yi by Di in Kn(x,y).

Proof If p ∈ Pd
n then p(x) = (〈x,∂ (y)〉n/n!)p(y). Applying V (x) leads to

V (x)p(x) = Kn(x,∂ (y))p(y). The left-hand side is independent of y, so applying
V (y) to both sides gives V (x)p(x) = Kn(x,D (y))V (y)p(y). Thus the desired iden-
tity holds for all V p with p ∈ Pd

n , which completes the proof since V is one
to one.

Definition 7.2.2 The bilinear form 〈p,q〉h (known as an h inner product) equals
p(D (x))q(x) for p,q ∈Pd

n and n ∈ Nd
0 and, since homogenous polynomials of

different degrees are orthogonal to each other, this extends by linearity to all
polynomials.

We remark that if κ = 0, that is, hκ(x) = 1, then 〈p,q〉h is the same as 〈p,q〉∂ .

Theorem 7.2.3 For p,q ∈Pd
n ,

〈p,q〉h = Kn(D (x),D (y))p(x)q(y) = 〈q, p〉h.

Proof By Proposition 7.2.1, p(x) = Kn(x,D (y))p(y). The operators D (x) and D (y)

commute and thus

〈p,q〉h = Kn(D (x),D (y))p(y)q(x) = Kn(D (y),D (x))p(y)q(x)

by part (iv) of Lemma 6.6.2. The latter expression equals 〈q, p〉h.

Theorem 7.2.4 If p ∈Pd
n and q ∈H d

n (h2
κ) then

〈p,q〉h = ch

∫
Rd

pqh2
κ dμ = 2n

(
γκ + d

2

)
n

c′h
∫

Sd−1
pqh2

κ dω.

Proof Since p(D)q(x) is a constant, it follows from Theorem 7.1.18 that

〈p,q〉h = ch

∫
Rd

p(D)q(x)h2
κ(x)dμ

= ch

∫
Rd

q(x)
[
p(D̃∗)1

]
h2
κ(x)dμ

= ch

∫
Rd

q(x)
[
p(x)+ s(x)

]
h2
κ(x)dμ

for a polynomial s of degree less than n, where using the relation D̃∗
i g(x) =

xig(x)−Dig(x) repeatedly and the fact that the degree of Dig is lower than that
of g shows that p(D̃∗)1 = p(x) + s(x). But since q ∈H d

n (h2
κ), it follows from

the polar integral that
∫
Rd q(x)s(x)h2

κ(x)dμ = 0. This gives the first equality in the
statement. The second follows from the use of polar coordinates as in the formula
below equations (7.1.11).
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Thus 〈p,q〉h is positive definite. We can also give an integral representation of
〈p,q〉h for all p,q ∈Πd . We need two lemmas.

Lemma 7.2.5 Let p,q ∈Pd
n and write

p(x) =
�n/2�
∑
j=0
‖x‖2 j pn−2 j(x) and q(x) =

�n/2�
∑
j=0
‖x‖2 jqn−2 j(x),

with pn−2 j,qn−2 j ∈H d
n−2 j(h

2
κ). Then

〈p,q〉h =
�n/2�
∑
j=0

4 j j!(n−2 j +λκ +1) j〈pn−2 j,qn−2 j〉h.

Proof The expansions of p and q in h-harmonics are unique by Theorem
7.1.7. Using the definition of Δh (see the text before Definition 7.1.2) and
〈pn−2 j,qn−2 j〉h,

〈p,q〉h =
�n/2�
∑
j=0

�n/2�
∑
i=0

Δi
h pn−2i(D)

[‖x‖2 jqn−2 j(x)
]
.

By the second identity of (7.1.3),

Δi
h

(‖x‖2 jqn−2 j(x)
)

= 4i(− j)i(−n−λ + j)i‖x‖2 j−2iqn−2 j(x),

which is zero if i > j. If i < j then 〈‖x‖2 jqn−2 j(x),‖x‖2i pn−2i(x)〉h = 0 by the
same argument and the fact that the pairing is symmetric (Theorem 7.2.3). Hence,
the only remaining terms are those with j = i, which are given by 4 j j!(−n−λ +
j) j pn−2 j(D)qn−2 j(x).

Lemma 7.2.6 Let p ∈H d
n (h2

κ), n,m ∈ Nd
0; then

e−Δh/2‖x‖2m p(x) = (−1)mm!2mLn+λκ
m

(
1
2
‖x‖2

)
p(x).

Proof We observe that, for p ∈Pd
n , e−Δh/2 p is a finite sum. From (7.1.3),

e−Δh/2‖x‖2m p(x) =
m

∑
j=0

(−1) j2 j

j!
(−m) j(−n−m−λ ) j‖x‖2m−2 j p(x).

Using the fact that (−1) j(1− m − a) j = (a)m/(a)m− j with a = n + λ + 1,
the stated identity follows from the expansion of the Laguerre polynomial in
Subsection 1.4.2.

Theorem 7.2.7 For polynomials p,q

〈p,q〉h = ch

∫
Rd

(
e−Δh/2 p

)(
e−Δh/2q

)
h2
κ dμ.
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Proof By Lemma 7.2.5, it suffices to establish this identity for p,q of the form

p(x) = ‖x‖2 j pm(x), q(x) = ‖x‖2 jqm(x), with pm,qm ∈H d
m (h2

κ).

By the second identity of (7.1.3),

〈p,q〉h = 4 j j!
(

m+ γ + d
2

)
j
〈pm,qm〉h

= 4 j j!(m+λ +1) j 2m(λ +1) jc
′
h

∫
Sd−1

pmqmh2
κ dω

= 2m+2 j j!(λ +1)m+ jc
′
h

∫
Sd−1

pmqmh2
κ dω.

The right-hand side of the stated formula, by Lemma 7.2.6, is seen to equal

ch

∫
Rd

( j!2 j)2[Lm+λ
j

(
1
2
‖x‖2

)
]2 pm(x)qm(x)h2

κ(x)dμ

= 2−γ
Γ
(

d
2

)
Γ(λ +1)

c′h( j!)2 2m+γ+2 j Γ(λ +1+m+ j)
j!Γ
(

d
2

) ∫
Sd−1

pmqmh2
κ dω

upon using polar coordinates in the integral and the relation between ch and c′h.
These two expressions are clearly the same.

As an application of Theorem 7.2.4, we state the following result.

Proposition 7.2.8 For p∈Pd
n and q∈H d

n , where H d
n is the space of ordinary

harmonics of degree n, we have

c′h
∫

Sd−1
pV qh2

κ dω =

(
d
2

)
n(

γκ + d
2

)
nσd−1

∫
Sd−1

pqdω .

Proof Since ΔhV = VΔ, q ∈H d
n implies that V q ∈H d

n (h2
κ). Apply Theorem

7.2.4 with V q in place of q; then

2n
(
γ + d

2

)
n
c′h
∫

Sd−1
pV qh2

κ dω = p(D)V q(x)

= V p(∂ )q(x) = p(∂ )q(x)

= 2n
(

d
2

)
n
σd−1

∫
Sd−1

pqdω ,

where the first equality follows from Theorem 7.2.4, the second follows from
the intertwining property of V , the third follows from the fact that p(∂ )q(x) is a
constant and V1 = 1 and the fourth follows from Theorem 7.2.4 with κ = 0.

An immediate consequence of this theorem is the following biorthogonal
relation.

Corollary 7.2.9 Let {Sα} be an orthonormal basis of H d
n . Then {V Sα} and

{Sα} are biorthogonal; more precisely,
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∫
Sd−1

(V Sα)Sβh2
κ dω =

(
d
2

)
n(

γκ + d
2

)
nc′hσd−1

δα,β .

In particular, {V Sα} is a basis of H d
n (h2

κ).

The corollary follows from setting p = Sα and q = Sβ in the proposition. It
should be pointed out that the biorthogonality is restricted to elements of H d

n

and H d
n (h2

κ) for the same n. In general Sα is not orthogonal to V Sβ with respect
to h2

κ dω if |β |< |α|.

7.3 Reproducing Kernels and the Poisson Kernel
If f ∈ L2(h2

κdω) then we can expand f as an h-harmonic series. Its nth component
is the orthogonal projection defined by

Sn(h2
κ ; f ,x) := c′h

∫
Sd−1

Pn(h2
κ ;x,y) f (y)h2

κ(y)dω(y), (7.3.1)

where Pn(h2
κ ;x,y) denotes the reproducing kernel of H d

n (h2
κ) and is consistent

with the notation (4.2.4). Recall Kn(x,y) defined in Definition 6.6.1.

Theorem 7.3.1 For n ∈ N0 and for x,y ∈Rd,

Pn(h2
κ ;x,y) = ∑

0≤ j≤n/2

(λκ +1)n2n−2 j(
1−n−λκ) j j!

‖x‖2 j‖y‖2 jKn−2 j(x,y).

Proof The kernel Pn(h2
κ ;x,y) is uniquely defined by the fact that it repro-

duces the space H d
n (h2

κ). Let f ∈H d
n (h2

κ). Then by Proposition 7.2.1 f (y) =
Kn(D (x),y) f (x). Fix y and let p(x) = Kn(x,y), so that f (y) = 〈p, f 〉h. Expand
p(x) as p(x) = ∑0≤ j≤n/2 ‖x‖2 j pn−2 j(x) with pn−2 j ∈H d

n−2 j(h
2
κ); it then follows

from Theorem 7.2.4 that

f (y) = 〈p, f 〉h = 〈pn, f 〉h = 2n(λ +1)n c′h
∫

Sd−1
pn f h2

κ dω.

Thus, by the reproducing property, Pn(h2
κ ;x,y) = 2n(λ + 1)n pn(x) with pn =

projn,h p. Hence, the stated identity follows from Theorem 7.1.15 and the fact

that Δ j
h p(x) = Δ j

hKn(x,y) = ‖y‖2 jKn−2 j(x,y); see (v) in Proposition 6.6.2.

Corollary 7.3.2 For n ∈ N0 and ‖y‖ ≤ ‖x‖= 1,

Pn(h2
κ ;x,y) =

n+λκ
λκ

V
[
Cλκ

n

(〈
·, y
‖y‖
〉)]

(x)‖y‖n.

Proof Since the intertwining operator V is linear and 〈·,y〉m is homogeneous of
degree m in y, for ‖x‖= 1 write
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Pn(h2
κ ,x,y) = V

{
[n/2]

∑
j=0

(λ )n2n−2 j

(1−n−λ ) j j!(n−2 j)!

〈
·, y
‖y‖
〉n−2 j

}
(x)‖y‖n.

Set t = 〈·,y/‖y‖〉 and denote the expression inside the braces by Ln(t). Since
(1− n− λ ) j = (−1) j(λ )n/(λ )n− j, the proof of Proposition 1.4.11 shows that
Ln(t) = [(λ +1)n/(λ )n]Cλ

n (t), which gives the stated formula.

The Poisson or reproducing kernel P(h2
κ ;x,y) is defined by the property

f (y) = c′h
∫

Sd−1
f (x)P(h2

κ ;x,y)h2
κ(x)dω(x)

for each f ∈H d
n (h2

κ), n ∈ N0 and ‖y‖< 1.

Theorem 7.3.3 Fix y ∈ Bd; then

P(h2
κ ;x,y) = V

(
1−‖y‖2

(1−2〈·,y〉+‖y‖2)λκ+1

)
(x)

for ‖y‖< 1 = ‖x‖.

Proof Denote by fy the function which is the argument of V in the state-
ment. We claim that fy ∈ A(Bd) (see Definition 6.5.19) with ‖ f ‖A = (1−‖y‖2)
(1−‖y‖)−2−2λ . Indeed,

fy(x) = (1−‖y‖2)(1+‖y‖2)−1−λ
(

1− 2〈x,y〉
1+‖y‖2

)−d/2−γ

= (1−‖y‖2)(1+‖y‖2)−1−λ
∞

∑
n=0

(1+λ )n2n

n!(1+‖y‖2)n 〈x,y〉n.

But ‖〈x,y〉n‖∞ = ‖y‖n and 0≤ 2‖y‖< 1+‖y‖2 for ‖y‖< 1, so that

‖ fy‖A = (1−‖y‖2)(1+‖y‖2)−1−λ
(

1− 2‖y‖
1+‖y‖2

)−1−λ

= (1−‖y‖2)(1−‖y‖)−2−2λ .

Thus, V fy is defined and continuous for ‖x‖ ≤ 1. Since ‖y‖< 1, the stated iden-
tity follows from P(h2

κ ;x,y) = ∑∞
n=0 Pn(h2

κ ;x,y), Corollary 7.3.2 and the Poisson
kernel of the Gegenbauer polynomials.

The Poisson kernel P(h2
κ ;x,y) satisfies the following two properties:

0≤ P(h2
κ ;x,y), ‖y‖ ≤ ‖x‖= 1,

c′h
∫

Sd−1
P(h2

κ ;x,y)h2
κ(y)dω(y) = 1.

The first follows from the fact that V is a positive operator (Rösler [1998]), and
the second is a consequence of the reproducing property.
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The formula in Corollary 7.3.2 also allows us to prove a formula that is the
analogue of the classical Funk–Hecke formula for harmonics. Denote by wλ the
normalized weight function

wλ (t) = B(λ + 1
2 , 1

2 )−1(1− t2)λ−1/2, t ∈ [−1,1],

whose orthogonal polynomials are the Gegenbauer polynomials. Then the Funk–
Hecke formula for h-harmonics is as follows.

Theorem 7.3.4 Let f be a continuous function on [−1,1]. Let Y h
n ∈H d

n (h2
κ).

Then

c′h
∫

Sd−1
V f (〈x, ·〉)(y)Y h

n (y)h2
κ(y)dω = τn( f )Y h

n (x), x ∈ Sd−1,

where τn( f ) is a constant defined by

τn( f ) =
1

Cλκ
n (1)

∫ 1

−1
f (t)Cλκ

n (t)wλκ (t)dt.

Proof First assume that f is a polynomial of degree m. Then we can write f in
terms of the Gegenbauer polynomials as

f (t) =
m

∑
k=0

ak
λ + k
λ

Cλ
k (t) =

m

∑
k=0

akC̃
λ
k (1)C̃λ

k (t),

where C̃λ
k stands for a Gegenbauer polynomial that is orthonormal with respect

to wλ . Using this orthonormality of the C̃λ
k , the coefficients ak are given by the

formula

ak =
1

Cλ
k (1)

∫ 1

−1
f (t)Cλ

k (t)wλ (t)dt,

where we have used the fact that [C̃λ
k (1)]2 = [(k +λ )/λ ]Cλ

k (1). For x,y∈ Sd−1, it
follows from the formula for Pn(h2

κ) in Corollary 7.3.2 that

V f (〈x, ·〉)(y) =
m

∑
k=0

ak
λ + k
λ

VCλ
k (〈x, ·〉)(y) =

m

∑
k=0

akPh
k (x,y).

Since Ph
n is the reproducing kernel of the space H d

n (h2
κ) we have, for any Y h

n ∈
H d

n (h2
κ), ∫

Sd−1
V f (〈x, ·〉)(y)Y h

n (y)h2
κ(y)dω = λnY h

n (x), x ∈ Sd−1,

where if m < n then λn = 0, so that both sides of the equation become zero.
Together with the formula for τn( f ) this gives the stated formula for f a
polynomial.

If f is a continuous function on [−1,1] then choose Pm to be a sequence of
polynomials such that Pm converges to f uniformly on [−1,1]. The intertwin-
ing operator V is positive and |V (g)(x)| ≤ sup{g(y) : |y| ≤ 1} for |x| ≤ 1. Let
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gx(y) = f (〈x,y〉)−Pm(〈x,y〉). It follows that, for m sufficiently large, |gx(y)| ≤ ε
for |y| ≤ 1 and |V (gx)(y)| ≤ ε for all x ∈ Sd−1, from which we deduce from the
dominated convergence theorem that the stated result holds for f .

If κ = 0 then V = id and the theorem reduces to the classical Funk-Hecke
formula.

7.4 Integration of the Intertwining Operator
Although a compact formula for the intertwining operator is not known in the
general case, its integral over Sd−1 can be computed. This will have several
applications in the later development. We start with

Lemma 7.4.1 Let m≥ 0 and Sm ∈H d
m be an ordinary harmonic. Then

c′h
∫

Sd−1
V (‖ · ‖2 jSm)(x)h2

κ(x)dω =
( d

2 ) j

(λκ +1) j
δm,0.

Proof Since ‖x‖2 jSm is a homogeneous polynomial of degree m + 2 j, so is
V (‖ · ‖2 jSm). Using the projection operator projk,h : Pd

k �→H h
k (h2

κ) and (7.1.7),
we obtain

V (‖ · ‖2 jSm) =
[m/2]+ j

∑
i=0

(
‖x‖2i 1

4ii!
1

(λ +m+2 j−2i+1)i

×projm+2 j−2i,h[Δ
i
hV (‖ · ‖2 jSm)]

)
.

Since H d
k (h2

κ) ⊥ 1 for k > 0 with respect to h2
κ dω , it follows that the integral

of the function projm+2 j−2i,hΔi
hV (‖ ·‖2 jSm) is zero unless m+2 j−2i = 0, which

shows that m is even. In the case where 2i = m+2 j, we have∫
Sd−1

V (‖ · ‖2 jSm)(x)h2
κ(x)dω

=
1

4 j+m/2( j + m
2 )!

(λ +1) j+m/2

∫
Sd−1

Δ j+m/2
h V (‖ · ‖2 jSm)h2

κ(x)dω,

since now proj0,h = id. By the intertwining property of V , it follows that

Δ j+m/2
h V (‖ · ‖2 jSm) = VΔ j+m/2(‖ · ‖2 jSm).

Using the identity

Δ(‖x‖2 jgm) = 4 j(m+ j−1+ d
2 )‖x‖2 j−2gm +‖x‖2 jΔgm

for gm ∈Pd
m, m = 0,1,2, . . . and the fact that ΔSm = 0, we see that

Δ j+m/2(‖ · ‖2 jSm)(x) = 4 j j!
(

d
2

)
j
Δm/2Sm(x),

which is zero if m > 0. For m = 0, use the fact that S0(x) = 1 and put the constants
together to finish the proof.
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Recall from Section 5.2 the normalized weight function Wμ on the unit ball Bd

and the notation V d
n (Wμ) for the space of polynomials orthogonal with respect to

Wμ on Bd .

Lemma 7.4.2 For Pn ∈ V d
n (Wγ−1/2), γ = γκ and n ∈ N0 and P0(x) = 1,

c′h
∫

Sd−1
V (Pn)(x)h2

κ(x)dω = δ0,n.

Proof Recall that an orthonormal basis for the space V d
n (Wγ−1/2) was given in

Proposition 5.2.1; it suffices to show that

c′h
∫

Sd−1
V
(
P(γ−1,n−2 j+(d−2)/2)

j (2‖ · ‖2−1)Yn−2 j,ν
)
(x)h2

κ(x)dω = δ0,n

for 0≤ 2 j≤ n and Yn−2 j,ν ∈H d
n−2 j. If 2 j < n, this follows from Lemma 7.4.1. For

the remaining case, 2 j = n, use the fact that P(a,b)
j (−t) = (−1) jP(b,a)

j (t), together
with

(−1) jP((d−2)/2,γ−1)
j (1−2t2) = (−1) j (

d
2 ) j

j! 2F1

(− j, j +λ
d
2

;t2
)
,

and the expansion of 2F1 to derive that

c′h
∫

Sd−1
V
(

P(γ−1,n−2 j+(d−2)/2)
j (2‖ · ‖2−1)Sn−2 j,β

)
(x)h2

κ(x)dω

= (−1) j (
d
2 ) j

j!

j

∑
i=0

(− j)i( j +λ )i

( d
2 )i

∫
Sd−1

V (‖ · ‖2 j)h2
κ dω

= (−1) j (
d
2 ) j

j! 2F1

(− j, j +λ
λ +1

;1
)

= (−1) j (
d
2 ) j(1− j) j

j!(λ +1) j
,

by the Chu–Vandermonde identity. This is zero if j > 0 or n = 2 j > 0. For n = 0

use the facts that P(a,b)
0 (x) = 1 and V 1 = 1.

Theorem 7.4.3 Let V be the intertwining operator. Then∫
Sd−1

V f (x)h2
κ(x)dω = Aκ

∫
Bd

f (x)(1−‖x‖2)γκ−1 dx

for f ∈ L2(hκ ;Sd−1) such that both integrals are finite; here Aκ = wγκ/c′h and wγ
is the normalization constant of Wγ−1.
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Proof Expand f into an orthogonal series with respect to the orthonormal basis
Pn

j,β (Wγ−1/2) in Proposition 5.2.1. Since V is a linear operator,∫
Sd−1

V f (x)h2
κ(x)dω =

∞

∑
n=0
∑
β , j

an
j,β ( f )

∫
Sd−1

V
[
Pn

j,β (Wγ−1/2)
]
(x)h2

κ(x)dω.

By Lemma 7.4.2, only the constant term is nonzero; hence

c′h
∫

Sd−1
V f (x)h2

κ(x)dω = a0
0,0( f ) = wγ

∫
Bd

f (x)(1−‖x‖2)γ−1 dx,

which is the stated result.

Lemma 7.4.4 For an integrable function f : R �→ R,∫
Sd−1

f (〈x,y〉)dω(y) = σd−2

∫ 1

−1
f (s‖x‖)(1− s2)(d−3)/2 ds, x ∈ Rd.

Proof The left-hand side is evidently invariant under rotations, which means that
it is a radial function, that is, a function that depends only on r = ‖x‖. Hence, we
may assume that x = (r,0, . . . ,0), so that∫

Sd−1
f (〈x,y〉)dω(y) = σd−2

∫ π

0
f (r cosθ )(sinθ )d−2 dθ

where y = (cosθ ,sinθ y′), y′ ∈ Sd−2, which gives the stated formula.

The following special case of Theorem 7.4.3 is of interest in itself.

Corollary 7.4.5 Let g : R �→ R be a function such that all the integrals below
are defined. Then∫

Sd−1
V g(〈x, ·〉)(y)h2

κ(y)dω(y) = Bκ

∫ 1

−1
g(t‖x‖)(1− t2)λκ−1 dt,

where Bκ = [B(λκ + 1
2 , 1

2)c′h]
−1.

Proof Using the formulae in Lemma 7.4.4 and Theorem 7.4.3,

I(x) =
∫

Sd−1
V g(〈x, ·〉)(y)h2

κ(y)dω = Aκ

∫
Bd

g(〈x,y〉)(1−‖y‖2)γ−1dy

= Aκσd−2

∫ 1

0
rd−1

∫
Sd−1

g(r〈x,y′〉)dω(y′)(1− r2)γ−1dr

= Aκσd−2

∫ 1

0
rd−1

∫ 1

−1
g(sr‖x‖)(1− s2)(d−3)/2 ds(1− r2)γ−1dr.

Making the change of variable s �→ t/r in the last formula and interchanging the
order of the integrations, we have
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I(x) = Aκσd−2

∫ 1

−1
g(t‖x‖)

∫ 1

|t|
(r2− t2)(d−3)/2r(1− r2)γ−1dr dt

= Aκσd−2× 1
2

∫ 1

0
u(d−3)/2(1−u)γ−1du

∫ 1

−1
g(t‖x‖)(1− t2)γ+(d−3)/2dt,

where the last step follows from setting u = (1− r2)/(1− t2). This is the stated
formula. Instead of keeping track of the constant, we can determine it by setting
g = 1 and using the fact that V 1 = 1.

These formulae will be useful for studying the convergence of the h-harmonic
series, as will be seen in Chapter 9. The integration formula for V in Theorem
7.4.3 also implies the following formula.

Theorem 7.4.6 Suppose that f is a polynomial and φ is a function such that
both the integrals below are finite. Then∫

Rd
V f (x)φ(‖x‖)h2

κ(x)dx = Aκ

∫
Rd

f (x)ψ(‖x‖)dx,

where ψ(t) =
∫ ∞

t r(r2− t2)γκ−1φ(r)dr and Aκ is as in Theorem 7.4.3.

Proof Write f in terms of its homogeneous components, f = ∑∞
n=0 fn, where

fn ∈Pd
n . Then, using polar coordinates x = rx′,∫

Rd
V f (x)φ(‖x‖)h2

κ(x)dx

=
∞

∑
n=0

∫ ∞

0
rd−1+2γ+nφ(r)dr

∫
Sd−1

V fn(x′)h2
κ(x

′)dω

= Aκ
∞

∑
n=0

∫ ∞

0
rd−1+2γ+nφ(r)dr

∫
Bd

fn(x)(1−‖x‖2)γ−1dx

= Aκ

∫ ∞

0
rd−1+2γφ(r)

∫
Bd

f (rx)(1−‖x‖2)γ−1dxdr,

where we have used the integral formula in Theorem 7.4.3. Using the polar coor-
dinates x = ρx′ in the integral over Bd and setting t = rρ , we see that the last
integral is equal to

Aκ

∫ ∞

0
rφ (r)

∫ r

0
td−1(r2− t2)γ−1

∫
Sd−1

f (tx′)dω dt dr

= Aκ

∫ ∞

0
td−1

∫
Sd−1

f (tx′)dω
(∫ ∞

t
r(r2− t2)γ−1φ(r)dr

)
dt,

which can be seen to be the stated formula upon using the polar coordinates again.

Corollary 7.4.7 Let f be a polynomial. Then∫
Rd

V f (x)h2
κ(x)e−‖x‖

2/2 dx = bκ

∫
Rd

f (x)e−‖x‖
2/2 dx,

where bκ = 2γκ−1Γ(γκ)Aκ .
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Proof Taking φ(t) = e−t2/2 in Theorem 7.4.3 we have

ψ(t) =
∫ ∞

t2/2
(u− 1

2 t2)γ−1e−u du = 2γ−1e−t2/2
∫ ∞

0
vγ−1e−v dv,

from which the stated formula follows.

7.5 Example: Abelian Group Zd
2

Here we consider h-harmonics for the abelian group Zd
2, the group of sign

changes. The weight function is defined by

hκ(x) =
d

∏
i=1
|xi|κi , κi ≥ 0, x ∈Rd , (7.5.1)

and it is invariant under the sign changes of the group Zd
2. This case serves as an

example of the general results. Moreover, its simple structure allows us to make
many results more specific than those available for a generic reflection group.
This is especially true in connection with an orthogonal basis and the intertwining
operator.

For the weight function hκ defined in (7.5.1), we have

γκ = |κ| := κ1 + · · ·+κd and λκ = |κ|+ d−2
2 .

The normalization constant c′h,d defined in (7.1.11) is given by

c′h =
πd/2

Γ( d
2 )

Γ(|κ|+ d
2 )

Γ(κ1 + 1
2 ) · · ·Γ(κd + 1

2 )

which follows from∫
Sd−1

|x1|2κ1 · · · |xd|2κd dω = 2
Γ(κ1 + 1

2 ) · · ·Γ(κd + 1
2 )

Γ(|κ|+ d
2 )

.

7.5.1 Orthogonal basis for h-harmonics

Associated with h2
κ in (7.5.1) are the Dunkl operators, given by

D j f (x) = ∂ j f (x)+κ j
f (x)− f (x1, . . . ,−x j, . . . ,xd)

x j
(7.5.2)

for 1≤ j ≤ d and the h-Laplacian, given by

Δh f (x) = Δ f (x)+
d

∑
j=1

κ j

(
2
x j

∂ f
∂x j

− f (x)− f (x1, . . . ,−x j, . . . ,xd)
x2

j

)
. (7.5.3)

We first state an orthonormal basis for H d
n (h2

κ) in terms of the general-

ized Gegenbauer polynomials C(λ ,μ)
n defined in Subsection 1.5.2. For d = 2, the

orthonormal basis is given as follows.
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Theorem 7.5.1 Let d = 2 and hκ(x1,x2) = c′2,h|x1|κ1 |x2|κ2 . A mutually orthog-

onal basis for H 2
n (h2

κ) is given by

Y 1
n (x) = rnC(κ2,κ1)

n (cosθ),

Y 2
n (x) = rn sinθC(κ2+1,κ1)

n−1 (cosθ),
(7.5.4)

where we use the polar coordinates x = r(cosθ ,sinθ ) and set Y 2
0 (x) = 0.

Proof Since Y 1
n is even in x2 and Y 2

m is odd in x2, we see that Y 1
n and Y 2

n are
orthogonal. The integral of a function f (x1,x2) can be written as∫

S1
f (x1,x2)dω =

∫ π

−π
f (cosθ ,sinθ )dθ ,

which can be converted to an integral over [−1,1] if f (x1,x2) is even in x2.
Clearly, Y 1

n Y 1
m is even in x2 and so is Y 2

n Y 2
m. The orthogonality of Y 1

n and Y 2
m follows

from that of C(κ2,κ1)
n (t) and C(κ2+1,κ1)

n (t), respectively.

To state a basis for d ≥ 3, we use the spherical coordinates in (4.1.1) and the
notation in Section 5.2. Associated with κ = (κ1, . . . ,κd), define

κ j = (κ j, . . . ,κd), 1≤ j ≤ d.

Since κ d consists of only the last element of κ , write κ d = κ d . Define α j for
α ∈ Nd−1

0 similarly.

Theorem 7.5.2 For d > 2 and α ∈ Nd
0 , define

Yα(x) := (hα)−1r|α |gα(θ1)
d−2

∏
j=1

(sinθd− j)|α
j+1|C(λ j ,κ j)

α j (cosθd− j); (7.5.5)

gα(θ) equals C
(κd ,κd−1)
αd−1

(cosθ ) for αd =0 and sinθC
(κd+1,κd−1)
αd−1−1 (cosθ) forαd =1;

|α j|= α j + · · ·+αd, |κ j|= κ j + · · ·+κd, λ j = |α j+1|+ |κ j+1|+ d− j−1
2 and

[hn
α ]2 =

aα
(|κ|+ d

2 )n

d−1

∏
j=1

h
(λ j ,κ j)
α j (κ j +λ j)α j , aα =

{
1 if αd = 0,

κd + 1
2 if αd = 1.

Here h(λ ,μ)
n denotes the normalization constant of C(λ ,μ)

n . Then {Yα : |α|= n,αd =
0,1} is an orthonormal basis of H d

n (h2
κ).

Proof These formulae could be verified directly by the use of the spherical coor-
dinates. We choose, however, to give a different proof, making use of Δh. We start
with the following decomposition of Pd

n :

Pd
n =

n

∑
l=0

xn−l
1 H d−1

l (h2
κ ′)+ r2Pd

n−2,
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where κ ′ = (κ2, . . . ,κd). This follows from the fact that f ∈Pd
n can be written as

f (x) = ‖x‖2F(x)+ x1φ1(x′)+φ2(x′), x = (x1,x
′),

where F ∈Pd
n−2, φ1 ∈Pd

n−1 and φ2 ∈Pd
n . We then apply the canonical decom-

position in Theorem 7.1.7 to φi and collect terms according to the power of
x1, after replacing ‖x′‖2 by ‖x‖2− x2

1. For any p ∈H d
n (h2

κ), the decomposition
allows us to write

p(x) =
n

∑
l=0

xn−l
1 pl(x′)+‖x‖2q(x), q ∈Pd

n−2.

Therefore, using the formula for the harmonic projection operator projn,h in
(7.1.6), it follows that

p(x) =
n

∑
l=0

projn,h[x
n−l
1 pl(x′)] =

n

∑
l=0

[n/2]

∑
j=0

‖x‖2 jΔ j
h[x

n−l
1 pl(x′)]

4 j j!(−λκ −n+1) j
.

Write Δh,d for Δh to indicate the dependence on d. Since our hκ is a product
of mutually orthogonal factors, it follows from the definition of Δh that Δh,d =
D2

1 +Δh,d−1, where Δh,d−1 acts with respect to x′ = (x2, . . . ,xd). Therefore, since
pl ∈H d−1

l (h2
κ ′), we have that

Δh,d [xn−l
1 pl(x′)] = D2

1 (xn−l
1 )pl(x′).

By the definition of D1, see (7.5.2), it follows easily that

D2
1 (xm

1 ) =
(
m+[1− (−1)m]κ1

)(
m−1+[1− (−1)m−1]κ1

)
xm−2

1 .

Using this formula repeatedly, for m = n− l even we obtain

Δ j
h,d(xn−l

1 pl(x′)) = 22 j
(
− n−l

2

)
j

(
− n−l−1

2 −κ1

)
j
xn−l−2 j

1 pl(x′).

Therefore, for n− l even,

projn,h(x
n−l
1 pl(x′))

=
[n−l/2]

∑
j=0

(− n−l
2 ) j(− n−l−1

2 −κ1) j

(−n−λκ +1) j j!
‖x‖2 jxn−l−2 j

1 pl(x′)

= pl(x′)xn−l
1 2F1

(− n−l
2 ,− n−l−1

2 −κ1

−n−λκ +1
;
‖x‖2

x2
1

)

=
(

n+ |κ|−2+ d
2

n−l
2

)−1

pl(x′)‖x‖n−lP(l+λκ−κ1−1/2,κ1−1/2)
(n−l)/2

(
2

x2
1

‖x‖2 −1

)
.

A similar equation holds for n− l odd. By the definition of the generalized
Gegenbauer polynomials,

projn,h[x
n−l
1 pl(x′)] = cpl(x′)‖x‖n−lC(l+|κ |−κ1+(d−2)/2,κ1)

n−l (cosθ1),
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where c is a constant; since pl ∈H d
l (h2

κ ′) it admits a similar decomposition to F�.
This process can be continued until we reach the case of h-harmonic polynomials
of two variables, x1 and x2, which can be written as linear combinations of the
spherical h-harmonics in (7.5.4). Therefore, taking into account that in spherical
coordinates x j/r j = cosθd− j and r j+1/r j = sinθ j−1 where r2

j = x2
j + · · ·+x2

d , we

conclude that any polynomial in H d
n (h2

κ) can be uniquely presented as a linear
combination of functions of the form ‖x‖nYα . The value of hα is determined by

h2
α = c′h

∫
Sd−1

(
gα(θ1)

d−2

∏
j=1

(sinθd− j)|α
j+1|C(λ j ,κ j)

α j (cosθd− j)

)2

h2
κ(x)dω ,

where the integrand is given in spherical coordinates; this allows us to convert

into a product of integrals, which can be evaluated by the L2 norm of C(λ ,μ)
n in

Subsection 1.5.2 and gives a formula for the constant hα .

Let us look at the case d = 2 again. According to Theorem 7.5.1, both the

functions rnC(κ1,κ2)
n (cosθ ) and rn sinθC(κ1+1,κ2)

n−1 (cosθ ) are h-harmonic polyno-
mials. Hence, they satisfy the same second order differential–difference equation,

Δh f (x) = 0. Furthermore, since rnC(κ1,κ2)
2n (cosθ ) is even in both x1 and x2 it is

invariant under Z2
2; it follows that the equation when applied to this function

becomes a differential equation,

Δ f +
2κ1

x1

∂ f
∂x1

+
2κ2

x2

∂ f
∂x2

= 0.

Changing variables to polar coordinates by setting x1 = r cosθ and x2 = r sinθ
leads to

∂ f
∂x1

=cosθ
∂ f
∂ r
− sinθ

r
∂ f
∂θ

,
∂ f
∂x1

= sinθ
∂ f
∂ r

+
cosθ

r
∂ f
∂θ

,

Δ f =
1
r2

∂ 2 f
∂θ 2 +

1
r
∂
∂ r

(
r
∂ f
∂ r

)
,

from which we conclude that the differential equation takes the form

1
r2

∂ 2 f
∂θ 2 +

1
r
∂
∂ r

(
r
∂ f
∂ r

)
+

2(κ1 +κ2)
r

∂ f
∂ r

+
2
r2

(
κ2

cosθ
sinθ

−κ1
sinθ
cosθ

) ∂ f
∂θ

= 0.

Consequently, applying this equation to f = r2ng(cosθ) we end up with a dif-

ferential equation satisfied by the polynomial C(κ1,κ2)
2n (cosθ ), which is a Jacobi

polynomial by definition. We summarize the result as the following.

Proposition 7.5.3 The Jacobi polynomial P(κ1−1/2,κ2−1/2)
n (cos2θ ) satisfies the

differential equation

d2g
dθ 2 +2

(
κ2

cosθ
sinθ

−κ1
sinθ
cosθ

) dg
dθ
−4n(n+κ1 +κ2)g = 0.
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The idea of deriving a differential equation in this manner will be used in the
case of several variables in Section 8.1, where the differential equations satisfied
by the orthogonal polynomials on the ball will be derived from the eigenequations
of the h-Laplace–Beltrami operator.

7.5.2 Intertwining and projection operators

For the weight function hκ invariant under Zd
2 in (7.5.1), the intertwining operator

V enjoys an explicit formula, given below:

Theorem 7.5.4 For the weight function hκ associated with Zd
2 ,

V f (x) =
∫

[−1,1]d
f (x1t1, . . . ,xdtd)

d

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt,

where cλ = [B( 1
2 ,λ )]−1. If any κi = 0, the formula holds under the limit (1.5.1).

Proof The facts that V 1 = 1 and that V : Pd
n �→Pd

n are evident from the defi-
nition of V in Section 6.5. Thus, we need only verify that DiV = V∂i. From the
definition of Di, write

Di f = ∂i f + D̃i f , D̃i f (x) = κi
f (x)− f (x−2xiεi)

xi
.

Taking i = 1, for example, we consider

D̃1V f (x) = κ1

∫
[−1,1]d

f (x1t1, . . . ,xdtd)− f (−x1t1,x2t2, . . . ,xdtd)
x1

×
d

∏
i=1

(1+ ti)
d

∏
i=1

cκi(1− t2
i )κi−1dt.

Since the difference in the integral is an odd function of t1, it follows from
integration by parts that

D̃1V f (x) =
2κ1

x1

∫
[−1,1]d

f (x1t1, . . . ,xdtd)t1
d

∏
i=2

(1+ ti)
d

∏
i=1

cκi(1− t2
i )κi−1dt

=
∫

[−1,1]d
∂1 f (x1t1, . . . ,xdtd)(1− t1)

d

∏
i=1

(1+ ti)
d

∏
i=1

cκi(1− t2
i )κi−1dt.

Furthermore, directly from the definition of V , we have

∂1V f (x) =
∫

[−1,1]d
∂1 f (x1t1, . . . ,xdtd)t1

d

∏
i=1

(1+ ti)
d

∏
i=1

cκi(1− t2
i )κi−1dt.

The stated result follows from adding the last two equations together.
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As an immediate consequence of the explicit formula for V in Theorem 7.5.4
and of Corollary 7.3.2, we obtain an integral formula for the reproducing kernel
of H d

n (h2
κ) when hκ is invariant under Zd

2.

Theorem 7.5.5 For h2
κ dω on Sd−1 and λκ = |κ|+ d−2

2 ,

Pn(h2
κ ;x,y) =

n+λκ
λκ

∫
[−1,1]d

Cλκ
n (x1y1t1 + · · ·+ xdydtd)

×
d

∏
i=1

(1+ ti)
d

∏
i=1

cκi(1− t2
i )κi−1dt.

In the case d = 2, the dimension of H 2
n (h2

κ) is 2 and the orthonormal basis is
that given in (7.5.4). The theorem when restricted to polynomials that are even in
x2 gives

Corollary 7.5.6 For λ ,μ ≥ 0,

C(λ ,μ)
n (cosθ)C(λ ,μ)

n (cosφ )

=
n+λ +μ
λ +μ

C(λ ,μ)
n (1)cλ cμ

∫ 1

−1

∫ 1

−1
Cλ+μ

n (t cosθ cosφ + ssinθ sinφ)(1+ t)

× (1− t2)μ−1(1− s2)λ−1dt ds.

In particular, as μ → 0 the above equation becomes the classical product
formula for the Gegenbauer polynomials,

Cλ
n (x)Cλ

n (y)
Cλ

n (1)
= cλ

∫ 1

−1
Cλ

n (xy+ s
√

1− x2
√

1− y2)(1− s2)λ−1ds.

As another consequence of the corollary, set θ = 0 in the formula to conclude that

C(λ ,μ)
n (x) =

n+λ +μ
λ +μ

cμ

∫ 1

−1
Cλ+μ

n (xt)(1+ t)(1− t2)μ−1dt.

Comparing with the formulae in Subsection 1.5.2, we see that the above expres-

sion is the same as VCλ+μ
n (x) = C(λ ,μ)

n (x), and this explains why we denoted the
integral transform in Subsection 1.5.2 by V .

Many identities and transforms for Jacobi and Gegenbauer polynomials can be
derived from these examples. Let us mention just one more. By Proposition 7.2.8
and Corollary 7.2.9,

rnC(κ1,κ2)
n (cosθ) = const×V

[
(x2

1 + x2
2)

nTn

(
x1/
√

x2
1 + x2

2

)]
,

since V maps ordinary harmonics to h-harmonics; here Tn is a Chebyshev
polynomial of the first kind. Using the formula for V , the above equation becomes
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C(κ1,κ2)
n (cosθ)

= const×
∫ 1

−1

∫ 1

−1
(t2

1 sin2 θ + t2
2 cos2 θ)n/2

×Tn

(
t2 cosθ

(t2
2 cos2 θ + t2

1 sin2 θ )1/2

)
(1+ t2)(1− t2

1 )κ1−1(1− t2
2)κ2−1dt1 dt2,

where the constant can be determined by setting θ = 0. In particular, for κ2 = 0
this formula is a special case of an integral due to Feldheim and Vilenkin (see, for
example, Askey [1975, p. 24]).

The integral formula for V in Theorem 7.5.4 also gives an explicit formula for
the Poisson kernel, which can be used to study the Abel means defined by

S( f ,rx′) = c′h
∫

Sd−1
f (y)P(h2

κ ;rx′,y)h2
κ(y)dω(y), x = rx′, x′ ∈ Sd−1,

where r < 1 for integrable functions f on Sd−1. We have the following theorem.

Theorem 7.5.7 If f is continuous on Sd−1 then

lim
r→1−

S( f ,rx′) = f (x′), x = rx′, x′ ∈ Sd−1.

Proof Let Aδ = {y ∈ Sd−1 : ‖x′ − y‖< δ} in this proof. Since P(h2
κ)≥ 0 and its

integral over Sd−1 is 1,

|S( f ,rx′)− f (x′)|= c′h
∫

Sd−1

[
f (x)− f (y)

]
P(h2

κ ;rx′,y)h2
κ(y)dω(y)

≤ c′h

(∫
Aδ

+
∫

Sd−1\Aδ

)
| f (x)− f (y)|P(h2

κ ;rx′,y)h2
κ(y)dω(y)

≤ sup
‖x′−y‖≤δ

| f (rx)− f (y)|+2‖ f‖∞c′h
∫

Sd−1\Aδ
Ph(h2

κ ;rx′,y)h2
κ(y)dω(y),

where ‖ f‖∞ is the maximum of f over Sd−1. Since f is continuous over Sd−1,
we need to prove only that the last integral converges to zero when r→ 1. By the
explicit formula for P(h2

κ) in Theorem 7.3.3, it suffices to show that

limsup
r→1

∫
Sd−1

∫
[0,1]d

1

[1−2r(x′1y1t1 + · · ·+ x′dydtd)+ r2]|κ|+d/2

×
d

∏
i=1

cκi(1− t2
i )κi−1 dt h2

κ(y)dy

is finite for every x′ ∈ Sd−1. Let Bσ = {t = (t1, . . . , td) : ti > 1−σ ,1≤ i≤ d} with
σ = 1

4δ
2. For y ∈ Sd−1 \Aδ and t ∈ Bσ , use the fact that 〈x′,y〉= 1− 1

2‖x′ − y‖2

to get

|x′1y1t1 + · · ·+ x′dydtd |= |〈x′,y〉− x′1y1(1− t1)−·· ·− x′dyd(1− td)|
≤1− 1

2δ
2 +max

i
(1− ti)≤ 1− 1

4δ
2,
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from which it follows readily that

1−2r(x′1y1t1 + · · ·+x′dydtd)+r2≥ 1+r2−2r
(

1− 1
4δ

2
)

= (1−r)2 + 1
2 rδ 2≥ 1

4δ
2.

For t ∈ [0,1]d \Bσ , we have that ti ≤ 1−σ for at least one i. Assume that t1 ≤
1−σ . We can assume also that x′1 �= 0, since otherwise t1 does not appear in
the integral and we can repeat the above argument for (t2, . . . , td) ∈ [0,1]d−1. It
follows that

1−2r(x′1y1t1 + · · ·+ x′dydtd)+ r2 = r2x′21(1− t2
1 )+

d

∑
i=1

(yi− rx′iti)
2

+ r2
(

1− x′21−
d

∑
i=2

x′2i t2
i

)
≥ r2x′21(1− t2

1 )≥ r2σx′21 > 0.

Therefore, for each x = rx′ the denominator of the integrand is nonzero and the
expression is finite as r→ 1.

7.5.3 Monic orthogonal basis

Our definition of the monomial orthogonal polynomials is an analogue of that
for the generating function of the Gegenbauer polynomials, and it uses the
intertwining operator V .

Definition 7.5.8 Define polynomials R̃α(x) by

V

(
1

(1−2〈b, ·〉+‖b‖2‖x‖2)λκ

)
(x) = ∑

α∈Nd
0

bα R̃α(x), x ∈ Rd.

Let FB be the Lauricella hypergeometric series of type B defined in Section 1.2.
Write 1 = (1, . . . ,1). We derive the properties of R̃α in what follows.

Proposition 7.5.9 The polynomials R̃α satisfy the following properties:

(i) R̃α ∈Pd
n and

R̃α(x) =
2|α|(λκ)|α|

α! ∑
γ

(−α
2 )γ (−α+1

2 )γ
(−|α|−λκ +1)|γ|γ!

‖x‖2|γ |Vκ(xα−2γ),

where the series terminates, as the summation is over all γ such that
γ ≤ α

2 ;
(ii) R̃α ∈H d

n (h2
κ) and

R̃α(x) =
2|α|(λκ)|α|

α!
Vκ [Sα(·)](x) for ‖x‖= 1,
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where

Sα(y) = yαFB

(
−α

2 , −α+1
2 ;−|α|−λκ +1;

1

y2
1

, . . . ,
1

y2
d

)
.

Furthermore,

∑
|α |=n

bα R̃α(x) =
λκ

n+λκ
Pn(h2

κ ;b,x), ‖x‖= 1,

where Pn(h2
κ ;y,x) is the reproducing kernel of H d

n (h2
κ).

Proof Using the multinomial and binomial formulae, we write

(1−2〈a,y〉+‖a‖2)−λ = [1−a1(2y1−a1)−·· ·−ad(2yd−ad)]−λ

=∑
β

(λ )|β |
β !

aβ (2y1−a1)β1 · · ·(2yd−ad)βd

=∑
β

(λ )|β |
β ! ∑

γ

(−β1)γ1 · · ·(−βd)γd

γ!
×2|β |−|γ |yβ−γaγ+β .

Changing summation indices according to βi + γi = αi and using the expressions

(λ )m−k =
(−1)k(λ )m

(1−λ −m)k
and

(−m+ k)k

(m− k)!
=

(−1)k(−m)2k

m!

as well as 2−2k(−m)2k = (−m
2 )k( 1

2(1−m))k, we can rewrite the formula as

(1−2〈a,y〉+‖a‖2)−λ

=∑
α

aα
2|α |(λ )|α |

α! ∑
γ

(−α
2 )γ (−α+1

2 )γ
(−|α|−λ +1)|γ|γ!

yα−2γ

=∑aα
2|α |(λ )|α |

α!
yαFB

(
− α

2 , 1−α
2 ;−|α|−λ +1;

1

y2
1

, . . . ,
1

y2
d

)
.

Using the left-hand side of the first equation of this proof with the function

(1−2〈b,y〉+‖x‖2‖b‖2)−λ = (1−2〈‖x‖b,y/‖x‖〉+∥∥‖x‖b∥∥2)−λ

and applying V with respect to y gives the expression for R̃α in (i). If ‖x‖ = 1
then the second equation gives the expression for R̃α in (ii). We still need to
show that R̃α ∈H d

n (h2
κ). Let ‖x‖= 1. For ‖y‖ ≤ 1 the generating function of the

Gegenbauer polynomials gives

(1−2〈b,y〉+‖b‖2)−λ =
∞

∑
n=0

‖b‖nCλ
n (〈b/‖b‖,y〉).

Applying Vκ to y in the above equation gives

∑
|α |=n

bα R̃α(x) = ‖b‖nVκ [Cλ
n (〈b/‖b‖, · 〉)](x), ‖x‖= 1.
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Using Corollary 7.3.2 we can see that ∑|α |=n bα R̃α(x) is a constant multiple

of Pn(h2
κ ;x,b). Consequently, for any b, ∑bα R̃α(x) is an element in H d

n (h2
κ);

therefore, so is R̃α .

In the following let �α2 � denote (�α1
2 �, . . . ,�αd

2 �) for α ∈Nd
0.

Proposition 7.5.10 For α ∈Nd
0 , let β := α−�α+1

2 �. Then

R̃α(x) =
2|α |(λκ)|α |

α!

( 1
2)α−β

(κ+ 1
2)α−β

Rα(x),

where Rα is given by

Rα(x) = xαFB

(
−β ,−α +β −κ + 1

2 ;−|α|−λκ +1;
‖x‖2

x2
1

, . . . ,
‖x‖2

x2
d

)
.

In particular, Rα(x) = xα +‖x‖2Qα(x) for Qα ∈Pd
n−2.

Proof By considering m even and m odd separately, it is easy to verify that

cκ

∫ 1

−1
tm−2k(1+ t)(1− t2)κ−1 dt =

( 1
2 )�(m+1)/2�

(κ + 1
2 )�(m+1)/2�

(−�m+1
2 �−κ + 1

2 )k

(−�m+1
2 �+ 1

2 )k

for κ ≥ 0. Hence, again using the explicit formula for V , the formula for R̃α in
part (i) of Proposition 7.5.9 becomes

R̃α(x) =
2|α|(λ )|α |

α!

( 1
2 )�(α+1)/2�

(κ + 1
2 )�(α+1)/2�

×∑
γ

(−α
2 )γ(−α+1

2 )γ
(−|α |−λ +1)|γ |γ!

(−�α+1
2 �−κ+ 1

2)γ
(−�α+1

2 �+ 1
2 )γ

‖x‖2|γ|xα−2γ .

Using the fact that(
− α

2

)
γ

(
−α+1

2

)
γ
=
(
−α +

⌊
α+1

2

⌋)
γ

(
−
⌊
α+1

2

⌋
+ 1

2

)
γ
,

the above expression for R̃α can be written in terms of FB as stated in the propo-
sition. Note that the function FB is a finite series, since (−n)m = 0 if m > n, from
which the last assertion of the proposition follows.

If all components of α are even then we can write Rα using a Lauricella
function of type A, denoted by FA(c,α;β ;x) in Section 1.2.
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Proposition 7.5.11 Let β ∈Nd
0 . Then

R2β (x) =(−1)|β |
(κ + 1

2 )β
(n+λκ)|β |

‖x‖|2β |

×FA

(
−β , |β |+λκ ;κ + 1

2 ;
x2

1

‖x‖2 , . . . ,
x2

d

‖x‖2

)
.

Proof For α = 2β the formula in terms of FB becomes

R2β (x) = ∑
γ≤β

(−β )γ(−β −κ + 1
2 )γ

(−2|β |−ρ +1)|γ|γ!
‖x‖2|γ |x2β−2γ ,

where γ ≤ β means that γ1 < β1, . . . ,γd+1 < βd+1; note that (−β )γ = 0 if γ > β .
Changing the summation index according to γi �→ βi− γi and using the formula
(a)n−m = (−1)m(a)n/(1− n− a)m to rewrite the Pochhammer symbols, so that
we have, for example,

(κ + 1
2 )β−γ =

(−1)γ (κ + 1
2 )β

(−β −κ+ 1
2)γ

, (β − γ)! = (1)β−γ =
(−1)|γ|β !
(−β )γ

,

we can rewrite the summation as the stated formula in FA.

The restriction of Rα on the sphere is monic: Rα(x) = xα +Qα(x). Recall the
h-harmonics Hα defined in Definition 7.1.11.

Proposition 7.5.12 The polynomials Rα satisfy the following:

(i) Rα(x) = projn,h xα , n = |α| and Rα(x) =
(−1)n

2n(λκ)n
Hα(x);

(ii) ‖x‖2DiRα(x) =−2(n+λκ) [Rα+ei(x)− xiRα(x)] ;
(iii) {Rα : |α|= n,αd = 0,1} is a basis of H d

n (h2
κ).

Proof Since Rα ∈ H d
n (h2

κ) and Rα(x) = xα −‖x‖2Q(x), where Q ∈ Pd
n−2, it

follows that Rα(x) = projn xα . The relation to Hα follows from Definition 7.1.14.
The second and third assertions are reformulations of the properties of Hα .

In the following we compute the L2 norm of Rα . Let

‖ f ‖2,κ :=
(

c′h
∫

Sd−1
|Rα(x)|2 dω

)1/2

.

Theorem 7.5.13 For α ∈ Nd
0 , let β = α−�α + 1

2�. Then

‖Rα‖2
2,κ =

ρ
(
κ + 1

2

)
α

(λκ)|α |
∑
γ

(−β )γ
(−α+β −κ + 1

2

)
γ(−α−κ+ 1

2

)
γ γ!(|α|− |γ|+λκ)

= 2λκ
β !
(
κ + 1

2

)
α−β

(λκ)|α|

∫ 1

0

d

∏
i=1

C(1/2,κi)
αi (t)t |α |+2λκ−1 dt. (7.5.6)
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Proof Using a beta-type integral,

c′h
∫

Sd
x2σh2

κ(x)dω =
Γ(λκ +1

Γ(|σ |+λκ +1)

d+1

∏
i=1

Γ(σi +κi + 1
2 )

Γ(κi + 1
2)

=
(κ+ 1

2)σ
(λ +1)|σ |

,

it follows from the explicit formula for Rα in Proposition 7.5.10 that

c′h
∫

Sd
|Rα(x)|2h2

κ(x)dω = c′h
∫

Sd
Rα(x)xαh2

κ(x)dω

=∑
γ

(−β )γ(−α +β −κ + 1
2 )γ(κ+ 1

2)α−γ
(−|α|−λ +1)|γ|γ!(λ +1)|α|−|γ|

.

Now using (a)n−m =(−1)m(a)n/(1−n−a)m and (−a)n/(−a+1)n =a/(a−n) to
rewrite the sum gives the first equation in (7.5.6). To derive the second equation,
we show that the sum in the first equation can be written as an integral. We define
a function

F(r) = ∑
γ≤β

(−β )γ(−α +β −κ+ 1
2 )γ

(−α−κ + 1
2 )γ γ!(|α|− |γ |+λ )

r|α |−|γ |+λ .

Evidently, F(1) is the sum in the first equation in (7.5.6). Moreover, the latter
equation is a finite sum over γ ≤ β as (−β )γ = 0 for γ > β ; it follows that
F(0) = 0. Hence the sum F(1) is given by F(1) =

∫ 1
0 F ′(r)dr. The derivative

of F can be written as

F ′(r) =∑
γ

(−β )γ (−α +β −κ + 1
2 )γ

(−α−κ + 1
2 )γ γ!

r|α |−|γ |+λ−1

= r|α |+λ−1
d

∏
i=1
∑
γi

(−βi)γi(−αi +βi−κi + 1
2 )γi

(−αi−κi + 1
2 )γiγi!

r−γi

= r|α |+λ−1
d

∏
i=1

2F1

(−βi,−αi +βi−κi + 1
2

−αi−κi + 1
2

;
1
r

)
.

The Jacobi polynomial P(a,b)
n can be written in terms of the hypergeometric series

2F1, (4.22.1) of Szegő [1975]:

P(a,b)
n (t) =

(
2n+a+b

n

)( t−1
2

)n
2F1

(−n,−n−a
−2n−a−b

;
2

1− t

)
.

Using this formula with n = βi, a = αi−2βi +κi− 1
2 , b = 0 and r = 1

2 (1− t), and

then using P(a,b)
n (t) = (−1)nP(b,a)

n (−t), we conclude that

F ′(r) =
(κ + 1

2 )α−β β !

(κ + 1
2 )α

r|α |−|β |+λ−1
d

∏
i=1

P(0,αi−2βi+κi−1/2)
βi

(2r−1).
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Consequently, it follows that

F(1) =
(κ+ 1

2)α−β β !

(κ + 1
2 )α

∫ 1

0

d

∏
i=1

P(0,αi−2βi+κi−1/2)
βi

(2r−1)r|α |−|β |+λ−1 dr.

By the definition of C(λ ,μ)
n (see Definition 1.5.5), P(0,αi−2βi+κ1−1/2)

βi
(2t2− 1) =

C(1/2,κi)
α (t) if αi is even and tP(0,αi−2βi+κ1−1/2)

βi
(2t2−1) =C(1/2,κi)

α (t) if αi is odd.

Hence, making the change of variables r �→ t2 in the above integral leads to the
second equation in (7.5.6).

Since Rα is monic, xα −Rα(x) = Qα is a polynomial of lower degree when
restricted to the sphere, and Rα is orthogonal to lower-degree polynomials, it
follows from standard Hilbert space theory that Qα is the best approximation to
xα among all polynomials of lower degree. In other words Rα has the smallest L2

norm among all polynomials of the form xα −P(x), P ∈Πd
n−1 on Sd−1:

‖Rα‖2 = min
P∈Πd+1

n−1

‖xα −P‖2, |α|= n.

Corollary 7.5.14 Let α ∈ Nd
0 and n = |α|. Then

inf
P∈Πd

n−1

‖xα −P(x)‖2
2 =

2ρ
(
κ + 1

2

)
α

(ρ)|α|

∫ 1

0

d

∏
i=1

C(1/2,κi)
αi (t)

k(1/2,κi)
αi

t |α |+2ρ−1 dt,

where k(λ ,μ)
n is the leading coefficient of C(λ ,μ)

n (t).

7.6 Example: Dihedral Groups
We now consider the h-harmonics associated with the dihedral group, denoted
by Ik, k ≥ 2, which is the group of symmetries of the regular k-gon with root
system I2(k) given in Subsection 6.3.4. We use complex coordinates z = x1 + ix2

and identify R2 with C. For a fixed k, define ω = eiπ/k. Then the rotations in Ik

consist of z �→ zω2 j and the reflections in Ik consist of z �→ z̄ω2 j , 0 ≤ j ≤ k−1.
The associated weight function is a product of powers of the linear functions
whose zero sets are the mirrors of the reflections in Ik. For parameters α,β ≥ 0,
or α ≥ 0 and β = 0 when k is odd, define

hα ,β (z) =
∣∣∣ zk− z̄k

2i

∣∣∣α ∣∣∣∣ zk + z̄k

2

∣∣∣∣β .

As a function in (x1,x2), this is positively homogeneous of degree γ = k(α +β ).
Since zk − z̄k = ∏k−1

j=0(z− z̄ω2 j) and zk + z̄k = ∏k−1
j=0(z− z̄ω2 j+1), the reflection

in the line z− z̄ω j = 0 is given by z �→ z̄ω j, 0 ≤ j ≤ 2k−1. The corresponding
group is I2k when β > 0 and Ik when β = 0.
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The normalization constant of h2
α,β is determined by

cα,β

∫ π

−π
h2
α ,β (eiθ )dθ = 1 with cα ,β =

[
2B
(
α + 1

2 ,β + 1
2

)]−1
.

From z = x1 + ix2, it follows that

∂
∂ z

=
1
2

(
∂
∂x1

− i
∂
∂x2

)
,

∂
∂ z̄

=
1
2

(
∂
∂x1

+ i
∂
∂x2

)
.

Definition 7.6.1 For a dihedral group W on R2 ∼= C and associated weight func-
tion hα,β , let D = 1

2 (D1− iD2) and D = 1
2 (D1 + iD2). Also, let Kh denote the

kernel of D .

Note that Δh = D2
1 +D2

2 = (D1 + iD2)(D1− iD2) = 4DD .

Lemma 7.6.2 For ω ∈ C, |ω | = 1, let v = (− Imω,Reω) ∈ R2; then, for a
polynomial in x or z,

1
2

f (x)− f (xσv)
〈x,v〉 (− Imω + iεReω) =

f (z)− f (z̄ω2)
z− z̄ω2 ξ ,

where ξ = 1 for ε = 1 and ξ =−ω2 for ε =−1.

Proof An elementary calculation shows that 2〈x,v〉(− Imω + iReω) = z− z̄ω2

and xσv = x−2〈x,v〉v = z̄ω2, which yields the stated formula.

As a consequence of the factorization of zk± z̄k and Lemma 7.6.2, we have

D f (z) =
∂ f
∂ z

+α
k−1

∑
j=0

f (z)− f (z̄ω2 j)
z− z̄ω2 j +β

k−1

∑
j=0

f (z)− f (z̄ω2 j+1)
z− z̄ω2 j+1 ,

D f (z) =
∂ f
∂ z
−α

k−1

∑
j=0

f (z)− f (z̄ω2 j)
z− z̄ω2 j ω2 j−β

k−1

∑
j=0

f (z)− f (z̄ω2 j+1)
z− z̄ω2 j+1 ω2 j+1.

We denote the space of h-harmonics associated with h2
α ,β by Hn(h2

α ,β ).

7.6.1 An orthonormal basis of Hn(h2
α ,β )

Let Qh denote the closed span of of kerD∩Π2 in L2(h2
α ,β (eiθ )dθ ). For α = β =

0, the usual orthogonal basis for Hn(h2
α ,β ), n ≥ 1, is {zn, z̄n}; the members of

the basis are annihilated by ∂/∂ z̄ and ∂/∂ z, respectively. This is not in general
possible for α > 0. Instead, we have

Proposition 7.6.3 If φn ∈Hn(h2
α ,β )∩Qh, n≥ 0, then z̄φ̄n(z)∈Hn+1(h2

α ,β ) and

z̄φ̄n(z) is orthogonal to kerD in L2(h2
α ,β (eiθ )dθ).
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Proof By the above definition of D and Theorem 7.1.17, the adjoint D
∗

satisfies

D
∗

f (z) = (1+n+ γ)
[
z̄ f (z)− (n+ γ)−1|z|2D f (z)

]
if f ∈Hn(h2

α ,β ) and D
∗

f ∈Hn+1(h2
α ,β ). Since D φ̄n(z) =

(
Dφn(z)

)− = 0, this

shows that D
∗φ̄n(z) = (1+n+ γ)z̄φ̄n(z). By the definition of an adjoint, the latter

function is orthogonal to kerD .

Corollary 7.6.4 If φn ∈Hn(h2
α,β )∩Qh then {φn(z), z̄φ̄n(z) : n = 0,1,2 . . .} is

an orthogonal basis for L2(h2
α ,β (eiθ )dθ).

Proof This follows from the facts that dimH0(h2
α ,β ) = 1, dimHn(h2

α,β ) = 2,

n≥ 1 and L2(h2
α ,β (eiθ )dθ ) =

⊕∞
n=0 Hn(h2

α ,β ).

Since D p = 0 implies that Δh p = 0, the corollary shows that we only need to
find homogeneous polynomials in Kh = kerD . Most of the work in describing
Kh reduces to the case k = 1; indeed, we have

Proposition 7.6.5 Let f (z) = g(zk) and ξ = zk. Then

D f (z) = kzk−1
( ∂g
∂ξ

+α
g(ξ )−g(ξ̄ )

ξ − ξ̄
+β

g(ξ )−g(−ξ̄ )
ξ + ξ̄

)
,

D f (z) = kz̄ k−1
( ∂g

∂ ξ̄
−α

g(ξ )−g(ξ̄ )
ξ − ξ̄

+β
g(ξ )−g(−ξ̄ )

ξ + ξ̄

)
.

Proof Substituting g into the formulae for D f (z) and D f (z) and making use of(
z̄ω2 j)k = z̄ k = ξ̄ ,

(
z̄ω2 j+1)k =−ξ̄ ,

we use the following two formulae to evaluate the sum of the resulting equations:

k−1

∑
j=0

1
t−ω2 j =

ktk−1

tk−1
,

k−1

∑
j=0

ω2 j

t−ω2 j =
k

tk−1
, t ∈C.

These formulae can be verified as follows. Multiplying the first formula by tk−1,
the sum on the left-hand side becomes the Lagrange interpolation polynomial of
ktk−1 based on the points ω2 j, 0 ≤ j ≤ k− 1, which is equal to the expression
ktk−1 on the right-hand side by the uniqueness of the interpolation problem. The
second formula follows from the first on using ω2 j = t− (t−ω2 j). We then use
these formulae with t = z/z̄ and t = z/(z̄ω), respectively, to finish the proof.

Moreover, the following proposition shows that if g(zk) ∈Kh then z jg(zk) ∈
Kh for 0 ≤ j < k, which allows the complete listing of the homogeneous
polynomials in Kh.
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Proposition 7.6.6 If Dg(zk) = 0 then D
[
z jg(zk)

]
= 0 for 0≤ j ≤ k−1.

Proof We use induction, based on the formula

D [z f (z)] = zD f (z)−α
k−1

∑
j=0

ω2 j f (z̄ω2 j)−βω
k−1

∑
j=0

ω2 j f (z̄ω2 j+1),

which is verified by noting that a typical term in D is of the form

ω
z f (z)− z̄ f (z̄ω j)

z− z̄ω j = zω j f (z)− f (z̄ω j)
z− z̄ω j +ω j f (z̄ω j).

Let f (z) = z jg(zk) with 0 ≤ j ≤ k−2 and assume that D f = 0. Then the above
formula becomes

D [z j+1g(zk)] = zD f (z)− (αz jg(zk)+βωz jg(−zk)
) k−1

∑
l=0

ω2l( j+1).

The latter sum is zero if 0 ≤ j + 1 ≤ k− 1 since ω2 is a kth root of unity. Thus,
D(z j+1g(zk)) = 0 by the induction hypothesis.

We are now ready to state bases for Kh, and thus bases for H (h2
α ,β ).

The groups I1 = Z2 and I2 = Z2
2

Set k = 1 and α,β ≥ 0. In polar coordinates the corresponding measure on the
circle is (sin2 θ)α(cos2 θ)βdθ , associated with the group I2. If β = 0 then the
measure is associated with the group I1.

The basis of Hn(h2
α,β ) is given in Theorem 7.5.1 in terms of the generalized

Gegenbauer polynomials defined in Subsection 1.5.2. For each n, some linear
combination of the two elements of the basis is in Kh. Define

fn(z) = rn
(n+2α +δn

2α +2β
C(α,β )

n (cosθ )+ i sinθC(α+1,β)
n−1 (cosθ )

)
, (7.6.1)

where δn = 2β if n is even and δn = 0 if n is odd, and z = reiθ . We will show that
fn is in Kh. For this purpose it is convenient to express fn in terms of products of
powers of 1

2 (z+ z̄) and 1
2 (z− z̄).

Proposition 7.6.7 Let ξ = 1
2 (z+ z̄), η = 1

2 (z− z̄) and let

g2n =
(β + 1

2 )n

(α +β +1)n
f2n and g2n+1 =

(β + 1
2 )n+1

(α +β +1)n
f2n+1.

Then, for n≥ 0,

g2n(z) =(−1)n
n

∑
j=0

(−n+ 1
2 −α

)
n− j

(−n+ 1
2 −β

)
j

(n− j)! j!
ξ 2n−2 jη2 j

+(−1)n−1
n−1

∑
j=0

(−n+ 1
2 −α

)
n−1− j

(−n+ 1
2 −β

)
j

(n−1− j)! j!
ξ 2n−1−2 jη2 j+1
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and

g2n+1(z) =(−1)n+1
n

∑
j=0

(−n− 1
2 −α

)
n+1− j

(−n− 1
2 −β

)
j

(n− j)! j!
ξ 2n+1−2 jη2 j

+(−1)n+1
n

∑
j=0

(−n− 1
2 −α

)
n− j

(−n− 1
2 −β

)
j+1

(n− j)! j!
ξ 2n−2 jη2 j+1.

Proof By the definition of generalized Gegenbauer polynomials, write gn in
terms of Jacobi polynomials. Recall from the proof of Proposition 1.4.14 that

P(a,b)
n (t) = (−1)n

n

∑
j=0

(−n−a)n− j (−n−b) j

(n− j)! j!

(
1+ t

2

)n− j( t−1
2

) j

.

Set t = (z2 + z̄2)/(2zz̄); then

1+ t
2

=
1
zz̄

( z+ z̄
2

)2
and

t−1
2

=
1
zz̄

(z− z̄
2

)2
.

Hence, for parameters a,b and z = reiθ ,

r2nP(a,b)
n (cos2θ ) = (−1)n

n

∑
j=0

(−n−a)n− j(−n−b) j

(n− j)! j!

(z+ z̄
2

)2n−2 j( z− z̄
2

)2 j
.

Writing g2n and g2n+1 in terms of Jacobi polynomials and applying the above
formula gives the stated results.

From Proposition 7.6.5 with k = 1 we have

D [(z+ z)n(z− z̄)m] =[n+β (1− (−1)n)] (z+ z̄)n−1(z− z̄)m

+[m+α(1− (−1)m)] (z+ z̄)n(z− z̄)m−1;

D [(z+ z̄)n(z− z̄)m] =[n+β (1− (−1)n)] (z+ z̄)n−1(z− z̄)m

− [m+α(1− (−1)m)] (z+ z̄)n(z− z̄)m−1.

Thus D +D and D −D have simple expressions on these basis elements (indi-
cating the abelian nature of the group I2). We can now prove some properties of
fn, (7.6.1).

Proposition 7.6.8 Let α,β ≥ 0. Then we have the following.

(i) D fn(z) = 0, n = 0,1, . . . .

(ii) D f2n(z) = 2
(α +β +1)n

(β + 1
2 )n

f2n−1(z) and

D f2n+1(z) = 2(n+α + 1
2)

(α +β +1)n

(β + 1
2 )n

f2n(z).
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(iii) Let hn =
[
2B(α+ 1

2 ,β + 1
2 )
]−1
∫ π

−π
| fn(eiθ )|2(sin2θ )α(cos2 θ )βdθ ; then

h2n =
[α +β +1]n (α + 1

2 )n

n!(β + 1
2)n

and h2n+1 =
(α +β +1)n(α + 1

2)n+1

n!(β + 1
2 )n+1

.

Proof Observe that the symbolic involution given by α↔ β ,z+ z̄↔ z− z̄ leaves
each fn invariant and interchanges D + D with D −D . We will show that(
D +D

)
g2n = 2g2n−1, apply the involution to show that

(
D−D

)
g2n = 2g2n−1

also and then use the same method for g2n+1. This will prove (i) and (ii). Thus we
write(

D +D
)

g2n(z)

= (−1)n
n

∑
j=0

[(−n+ 1
2 −α

)
n− j

(−n+ 1
2 −β

)
j

(n− j)! j!
(2n−2 j)

×
(

z+ z̄
2

)2n−1−2 j( z− z̄
2

)2 j ]
+(−1)n−1

n−1

∑
j=0

[(−n+ 1
2 −α

)
n−1− j

(−n+ 1
2 −β

)
j

(n−1− j)! j!
(2n−1−2 j +2β )

×
(

z+ z̄
2

)2n−2−2 j( z− z̄
2

)2 j+1 ]
= 2g2n−1(z).

The first sum loses the j = n term; in the second sum we use(
−n+ 1

2 −β
)

j
(2n−1−2 j +2β ) =−2

(
−n+ 1

2 −β
)

j+1
.

Now we have(
D +D

)
g2n+1(z)

= (−1)n+1
n

∑
j=0

[(−n− 1
2 −α

)
n+1− j

(−n− 1
2 −β

)
j

(n− j)! j!

× (2n+1−2 j +2β )
(

z+ z̄
2

)2n−2 j( z− z̄
2

)2 j ]
+(−1)n+1

n

∑
j=0

[(−n− 1
2 −α

)
n− j

(−n− 1
2 −β

)
j+1

(n− j)! j!

× (2n−2 j)
(

z+ z̄
2

)2n−1−2 j( z− z̄
2

)2 j+1 ]
= 2
(

n+α + 1
2

)(
n+β + 1

2

)
g2n.



246 Spherical Harmonics Associated with Reflection Groups

Here the second sum loses the j = n term, and we used(
−n− 1

2 −α
)

n− j

(
−n− 1

2 −β
)

j+1

=
(

n+α+ 1
2

)(
n+β + 1

2

)(
−n+ 1

2 −α
)

n−1− j

(
−n+ 1

2 −β
)

j
.

In the first sum we used
(−n− 1

2 −β
)

j (2n+1−2 j+2β )=−2
(−n− 1

2 −β
)

j+1.

Like the second sum, the first sum equals 2
(
n+α + 1

2

)(
n+β + 1

2

)
times the

corresponding sum in the formula for g2n.

The proof of (iii) follows from the formula∫ π

−π
g(cosθ)(sin2 θ)α(cos2 θ)β dθ = 2

∫ 1

−1
g(t)|t|2α(1− t2)β−1/2 dt,

and the norm of the generalized Gegenbauer polynomials.

Note that if α = β = 0 then fn(z) = zn, which follows from using the for-
mula for the generalized Gegenbauer polynomials and taking limits after setting
(α+β +1)n/(α +β +n) = (α +β )n/(α +β ).

The real and imaginary parts of fn comprise an orthogonal basis for Hn(h2
α,β ).

That they are orthogonal to each other follows from their parity in x2. However,
unlike the case of α = β = 0, fn(z) and f̄n(z) are not orthogonal. Corollary 7.6.4
shows that in fact fn(z) and z̄ f̄n are orthogonal.

Proposition 7.6.9 For n≥ 0,

z̄ f̄2n−1(z) =−1
2

α +β
n+α +β

f2n(z)+
1
2

2n+α +β
n+α +β

f̄2n(z),

z̄ f̄2n(z) =
1

2n+2β +1

[
(β −α) f2n+1(z)+(2n+α +β +1) f̄2n+1(z)

]
.

Proof By Corollary 7.6.4 we can write z̄ f̄n−1(z) as a linear combination of fn(z)
and f̄n(z). From the formula in Proposition 7.6.7, it follows that the leading
coefficients of zn and z̄n are given by

f2n(z) =
(α +β +1)2n−1

22n(β + 1
2 )nn!

[
(2n+α +β )z2n− (α +β )z̄2n]+ · · · ,

f2n+1(z) =
(α +β +1)2n

22n+1(β + 1
2 )n+1n!

[
(2n+α +β +1)z2n+1 +(α−β )z̄2n+1]+ · · · ,

where the rest of the terms are linear combinations of powers of z and z̄, each
homogeneous of degree n in z and z̄. Using these formulae to compare the coeffi-
cients of zn and z̄n in the expression z̄ f̄n−1(z) = a fn(z)+b f̄n(z) leads to the stated
formulae.
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These relations allow us to derive some interesting formulae for classical
orthogonal polynomials. For example, the coefficient fn satisfies the following
integral expression.

Proposition 7.6.10 For n≥ 0,

cαcβ

∫ 1

−1

∫ 1

−1

(
scosθ + it sinθ

)n(1+ s)(1+ t)(1− s2)β−1(1− t2)α−1dsdt

= an fn(eiθ ) = an

[n+2α +δn

2α +2β
C(α,β )

n (cosθ)+ i sinθC(α+1,β)
n−1 (cosθ )

]
,

where

a2n =
(2n)!

22n(α +β +1)n(α + 1
2 )n

,

a2n+1 =
(2n+1)!

22n+1(α +β +1)n(α + 1
2 )n+1

.

Proof Let V denote the intertwining operator associated with h2
α,β . Since the real

and imaginary parts of zn are ordinary harmonics, the real and imaginary parts
of V (zn) are elements of Hn(h2

α,β ). It follows that V (zn) = an fn(z)+bnz̄ f̄n−1(z).
Since fn(z) and z̄ f̄n(z) are orthogonal,

anhn =
∫ π

−π
(V zn)(eiθ ) f̄n(eiθ )dμα ,β =

n!
(α +β +1)n

2π
∫

S1
fn(z)z̄n dω,

where hn is as in part (iii) of Proposition 7.6.8 and we have used Proposition
7.2.8 in the second equation. Using Theorem 7.2.4 and the expression for 〈p,q〉h
in Definition 7.2.2, we conclude that

anhn =
1

2n(α +β +1)n

( ∂
∂x1

− i
∂
∂x2

)n
fn(z)

=
1

2n(α +β +1)n

(
2
∂
∂ z

)n
fn(z).

The value of (∂/∂ z)n fn(z)[n!]−1 is equal to the coefficient of zn in fn, which is
given in the proof of Proposition 7.6.9. This gives the value of an. In a similar way
we can compute bn: it is given by a constant multiple of (∂/∂ z)nz̄ f̄n(z). Hence,
we conclude that V zn = an fn(z). The stated formula then follows from the closed
formula for V in Theorem 7.5.4.

In particular, if β → 0 then the formula in Proposition 7.6.10 becomes a
classical formula of the Dirichlet type:

cα

∫ 1

−1

(
cosθ + it sinθ

)n(1+ t)(1− t2)α−1dt

=
n!

(2α)n
Cα

n (cosθ)+ i
n!

(2α +1)n
sinθCα+1

n−1 (cosθ )

for n = 1,2, . . . This is a result of Erdélyi [1965] for functions that are even in θ .
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The group Ik

If k is an odd integer then the weight function hα associated with the group Ik is
the same as the weight function hα ,β associated with the group I2k with β = 0.
Thus, we only need to consider the case of Ik for even k.

Set k = 2m. By Proposition 7.6.6, the homogeneous polynomials of degree
mn + j in Kh are given by z j fn(zm), 0 ≤ j ≤ m− 1. Their real and imaginary
parts comprise an orthogonal basis of Hmn+ j(h2

α ,β ); that is, if we define

pmn+ j(θ ) =
n+2α +δn

2α +2β
cos jθC(α ,β)

n (cosmθ)− sinθ sin jθC(α+1,β )
n−1 (cosmθ),

qmn+ j(θ ) =
n+2α +δn

2α +2β
sin jθC(α ,β )

n (cosmθ )+ sinθ cos jθC(α+1,β )
n−1 (cosmθ),

where δn = 2β if n is even and δ = 0 if n is odd, then

Yn,1(x1,x2) = rmn+ j pmn+ j(θ ) and Yn,2(x1,x2) = rmn+ jqmn+ j(θ),

with polar coordinates x1 = r cosθ and x2 = r sinθ , form an orthogonal basis
for the space Hmn+ j(h2

α,β ), 0 ≤ j ≤ m− 1. The two polynomials are indeed
orthogonal since Yn,1 is even in x2 and Yn,2 is odd in x2.

Let us mention that in terms of the variable t = cosθ , the restriction of h2
α ,β

associated with the group I2m on the circle can be transformed into a weight
function

wα ,β (t) =
∣∣sinmθ |2α |cosmθ |2β =

∣∣Um−1(t)
√

1− t2
∣∣2α |Tm(t)|2β (7.6.2)

defined on [−1,1], where Tm and Um are Chebyshev polynomials of the first and
the second kind, respectively. In particular, under the map cosθ �→ t, pmn+ j is the
orthogonal polynomial of degree mn+ j with respect to wα ,β .

7.6.2 Cauchy and Poisson kernels

Let {φn, z̄φ̄n}n≥0 denote an orthonormal basis for L2(h2
α ,β (eiθ )dθ) associated

with the group Ik; see Corollary 7.6.4. The Cauchy kernel is related to the
projection onto a closed span of {φn : n≥ 0}. It is defined by

C(Ik;z,w) =
∞

∑
n=0

φn(z)φn(w), |zw|< 1.

For any polynomial f ∈Kh = kerD ,

f (z) = cα ,β

∫ π

−π
f (eiθ )C(Ik;z,eiθ )h2

α,β (eiθ )dθ , |z|< 1.
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The Poisson kernel which reproduces any h-harmonics in the disk was defined in
Section 7.3. In terms of φn it is given by

P(Ik;z,w) =
∞

∑
n=0

φn(z)φn(z)+
∞

∑
n=0

z̄φn(z)wφn(w)

= C(Ik;z,w)+ z̄wC(Ik;w,z).

The following theorem shows that finding closed formulae for these kernels
reduces to the cases k = 1 and k = 2.

Theorem 7.6.11 For each weight function hα,β associated with the group I2k,

P(I2k;z,w) =
1−|z|2|w|2

1− z̄w
C(I2k;z,w).

Moreover

P(I2k;z,w) =
1−|z|2|w|2

1−|zk|2|w̄k|2
|1− zkw̄k|2
|1− z̄w|2 P(I2;zk,wk), (7.6.3)

where the Poisson kernel P(I2;z,w) associated with h(x + iy) = |x|α |y|β is
given by

P(I2;z,w) = (1−|zw|2)cαcβ

×
∫ 1

−1

∫ 1

−1

[
1+2(Imz)(Imw)s+2(Rez)(Rew)t + |zw|2]−α−β−1

× (1+ s)(1+ t)(1− s2)β−1(1− t2)α−1dsdt.

Proof Let C(Ik;z,w) =CRe(z,w)+ iCIm(z,w) with CRe and CIm real and symmet-
ric. Then

Re P(Ik;z,w) = (1+Re zw̄)CRe(z,w)− Im z̄wCIm(z,w),

Im P(Ik;z,w) = Im z̄wCRe(z,w)− (1−Re z̄w)CIm(z,w).

Since Im P(z,w) = 0, we have CIm(z,w) = [(Im z̄w)/(1−Re z̄w)]×CRe(z,w) and
thus P(Ik;z,w) = [(1−|z|2|w|2)/(1− z̄w)]C(Ik;z,w).

Now let {ψn : n ≥ 0} be an orthonormal basis of kerD associated with
h(x+ iy) = |x|α |y|β . By Proposition 7.6.6 we conclude that the polynomials
z jψn(zk) are in Kh and, in fact, are orthonormal h-harmonics in Hn(h2

α,β ). Thus

C(Ik;z,w) =
∞

∑
n=0

ψn(zk)ψ̄n(wk)
k−1

∑
j=0

z jw̄ j =
1− zkw̄k

1− zw̄
C(I2;zk,wk).

Hence, using P(I2;z,w) = [(1−|z|2|w|2)/(1−zw̄)]C(I2;z,w) and these formulae,
the relation (7.6.3) between P(I2k;z,w) and P(I2;z,w) follows. The integral rep-
resentation of P(I2;z,w) follows from Theorem 7.3.3 and the explicit formula for
the intertwining operator V for I2 = Z2

2 in Theorem 7.5.4.
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In particular, if β = 0 then the kernel P(I2;z,w) becomes the kernel P(I1;z,w)
for the weight function |x|α associated with I1 = Z2:

P(I1;z,w)

= cα

∫ 1

−1

1−|zw|2
(1+2(Imz)(Imw)+2(Rez)(Rew)t + |zw|2)α+1 (1+ t)(1− t2)α−1dt.

For the general odd-k dihedral group, we can use the formula

P(Ik;z,w) =
1−|z|2|w|2

1−|zk|2|w̄k|2
|1− zkw̄k|2
|1− zw̄|2 P(I1;zk,wk)

to write down an explicit formula for P(Ik;z,w).
In terms of the Lauricella function FA of two variables (also called Appell’s

function),

FA

(a1,a2

b1,b2
;c;x,y

)
=

∞

∑
m=0

∞

∑
n=0

(c)m+n(a1)m(a2)n

(b1)m(b2)nm!n!
xmyn

(see Section 1.2), the Poisson kernel P(I2;w,z) can be written as

P(I2;w,z) =
1

|1+ zw̄|2(α+β+1)

×FA

( α +1,β +1
2α +1,2β +1

;α +β +1;
4(Imz)(Imw)
|1+ zw̄|2 ,

4(Rez)(Rew)
|1+ zw̄|2

)
.

This follows from a formula in Bailey [1935, p. 77].
On the one hand the identity (7.6.3) gives an explicit formula for the Poisson

kernel associated with the dihedral groups. On the other hand, the Poisson kernel
is given in terms of the intertwining operator V in Theorem 7.3.3; the two for-
mulae taken together suggest that the intertwining operator V might constitute an
integral transform for any dihedral group.

7.7 The Dunkl Transform
The Fourier transform plays an important role in analysis. It is an isometry of
L2(Rd ,dx) onto itself. It is a remarkable fact that there is a Fourier transform for
reflection-invariant measures which is an isometry of L2(Rd ,h2

κ dx) onto itself.
Recall that K(x,y) = V (x)e〈x,y〉. Since V is a positive operator, |K(x, iy)| ≤ 1. It

plays a role similar to that of ei〈x,y〉 in classical Fourier analysis. Also recall that
dμ(x) = (2π)−d/2e−‖x‖2/2 dx.

Definition 7.7.1 For f ∈ L1(h2
κ dx), y ∈Rd , let

f̂ (y) = (2π)−d/2ch

∫
Rd

f (x)K(x,−iy)h2
κ(x)dx

denote the Dunkl transform of f at y.
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By the dominated convergence theorem f̂ is continuous on Rd . Definition 7.7.1
was motivated by the following proposition.

Proposition 7.7.2 Let p be a polynomial on Rd and ν(y) =∑d
j=1 y2

j for y ∈Cd;
then

ch

∫
Rd

[
e−Δh/2 p(x)

]
K(x,y)h2

κ(x)dμ(x) = eν(y)/2 p(y).

Proof Let m be an integer larger than the degree of p, fix y ∈ Cd and let
qm(x) = ∑m

j=0 Kj(x,y). Breaking p up into homogeneous components, it follows
that 〈qm, p〉h = p(y). By the formula in Theorem 7.2.7,

〈qm, p〉h = ch

∫
Rd

(
e−Δh/2 p

)(
e−Δh/2qm

)
h2
κ dμ .

However, Δ(x)
h Kn(x,y) = ν(y)Kn−2(x,y) and so

e−Δh/2qm(x) =
m

∑
j=0

∑
l≤ j/2

1
l!

(−ν(y)
2

)l
Kj−2l(x,y)

= ∑
l≤m/2

1
l!

(−ν(y)
2

)l m−2l

∑
s=0

Ks(x,y).

Now let m → ∞. The double sum converges to e−ν(y)/2K(x,y) since it is
dominated termwise by

∞

∑
l=0

‖y‖2l

l!2l

∞

∑
s=0

‖x‖s‖y‖s

s!
= exp

(‖y‖2

2
+‖x‖‖y‖

)
,

which is integrable with respect to dμ(x). By the dominated convergence
theorem,

p(y) = eν(y)/2ch

∫
Rd

[e−Δh/2 p(x)]K(x,y)hκ(x)2 dμ(x).

Multiplying both sides by e−ν(y) completes the proof.

An orthogonal basis for L2(Rd,h2
κ dx) is given as follows (compare with

(7.1.10)).

Definition 7.7.3 For m,n = 0,1,2, . . . and p∈H d
n (h2

κ), let λκ = γκ + d−2
2 . Then

φm(p;x) = p(x)Ln+λκ
m (‖x‖2)e−‖x‖

2/2, x ∈ Rd .

Proposition 7.7.4 For k, l,m,n ∈ N0, p ∈H d
n (h2

κ) and q ∈H d
l (h2

κ),

(2π)−d/2ch

∫
Rd
φm(p;x)φk(q;x)h2

κ(x)dx

= δmkδnl2
−λκ−1 (λκ +1)n+m

m
c′h
∫

Sd−1
pqh2

κ dω.
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Proof Using spherical polar coordinates and Definition 7.7.3, the integral on the
left-hand side equals

ch

∫ ∞

0
Ln+λκ

m (r2)Ll+λκ
k (r2)e−r2

rn+l+2γκ+d−1 dr
21−d/2

Γ( d
2 )

∫
Sd−1

pqh2 dω.

The integral on the right-hand side is zero if n �= l. Assume n = l and make
the change of variable r2 = t. The first integral then equals 1

2δmkΓ(n +λκ +1 +
m)/m!.

By Theorem 3.2.18 the linear span of {φm(p) : m,n≥ 0, p∈H d
n (h2

κ)} is dense
in L2(Rd,h2

κ dx). Moreover, {φm(p)} is a basis of eigenfunctions of the Dunkl
transform.

Theorem 7.7.5 For m,n = 0,1,2, . . . , p ∈H d
n (h2

κ) and y ∈ Rd,[
φ̂m(p)

]
(y) = (−i)n+2mφm(p;y).

Proof For brevity, let A = n+λκ . By Proposition 7.7.2 and Lemma 7.2.6,

(2π)−d/2ch

∫
Rd

LA
j (

1
2‖x‖2)p(x)K(x,y)h2

κ(x)e−‖x‖
2/2 dx

= (−1) j( j!2 j)−1eν(y)/2ν(y) j p(y), y ∈ C.

We can change the argument in the Laguerre polynomial by using the identity

LA
m(t) =

m

∑
j=0

2 j (A+1)m

(A+1) j

(−1)m− j

(m− j)!
LA

j (
t
2 ), t ∈ R,

which can be proved by writing the generating function for the Laguerre
polynomials as

(1− r)−A−1 exp
( −xr

1− r

)
= (1− r)−A−1 exp

(− 1
2 xt

1− t

)
with t = 2r/(1+r). Use this expression together with the above integral to obtain

(2π)−d/2ch

∫
Rd

LA
m(‖x‖2)p(x)e−‖x‖

2/2K(x,y)h2
κ(x)dx

= eν(y)/2 p(y)(−1)m (A+1)m

m!

m

∑
j=0

(−m) j

(A+1) j

[−ν(y)] j

j!
.

Now replace y by −iy with y ∈ Rd ; then ν(y) becomes −‖y‖2 and p(y) becomes
(−1)m(−i)n p(y), and the sum yields a Laguerre polynomial. The integral equals
(−1)m(−i)n p(y)LA

m(‖y‖2)e−‖y‖2/2.

Since the eigenvalues of the Dunkl transform are powers of i, this proves its
isometry properties.
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Corollary 7.7.6 The Dunkl transform extends to an isometry of L2(Rd ,h2
κ dx)

onto itself. The square of the transform is the central involution; that is, if
f ∈ L2(Rd ,h2

κ dx), f̂ = g, then ĝ(x) = f (−x) for almost all x ∈Rd.

The following proposition gives another interesting integral formula, as well
as a method for finding the eigenfunctions of Δh. First, recall the definition of the
Bessel function of index A >−1/2:

JA(t) =
( t

2 )A

√
πΓ(A+ 1

2)

∫ 1

−1
eits(1− s2)A−1/2 ds

=
( t

2 )A

Γ(A+1)

∞

∑
m=0

1
m!(A+1)m

(− 1
4 t2)m, t > 0.

Proposition 7.7.7 Let f ∈H d
n (h2

κ), n = 0,1,2, . . . and y ∈Cd; then

c′h
∫

Sd−1
f (x)K(x,y)h2

κ(x)dω = f (y)
∞

∑
m=0

ν(y)m

2m+nm!(λκ +1)m+n
.

Moreover, if y ∈Rd, ρ > 0, then the function

g(y) = c′h
∫

Sd−1
f (x)K(x,−iyρ)h2

κ(x)dω(x)

satisfies Δhg =−ρ2g and

g(y) = (−i)nΓ(λκ +1)
(ρ‖y‖

2

)−λκ
f
( y
‖y‖
)

Jn+λκ (ρ‖y‖).

Proof Since f is h-harmonic, e−Δh/2 f = f . In the formula of Proposition 7.7.2,

ch

∫
Rd

f (x)K(x,y)h2
κ(x)dμ(x) = eν(y)/2 f (y),

the part homogeneous of degree n+2m in y, m = 0,1,2, . . ., yields the equation

ch

∫
Rd

f (x)Kn+2m(x,y)h2
κ(x)dμ(x) =

ν(y)m

2mm!
f (y).

Then, using the integral formula in Theorem 7.2.4 and the fact that∫
Sd−1

f (x)Kj(x,y)h2
κ(x)dω(x) = 0

if j < n or j �≡ n modulo 2, we conclude that

c′h
∫

Sd−1
f (x)K(x,y)h2

κ(x)dω(x)

=
∞

∑
m=0

1

2n+m( d
2 + γ)n+m

ch

∫
Rd

f (x)Kn+2m(x,y)h2
κ(x)dμ(x),

which gives the stated formula.
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Now replace y by −iρy for ρ > 0, y ∈ Rd . Let A = n + λκ . This leads to
an expression for g in terms of the Bessel function JA. To find Δhg we can

interchange the integral and Δ(y)
h , because the resulting integral of the series

∑∞
n=0Δ

(y)
h Kn(x,−iy) converges absolutely. Indeed,

Δ(y)
h K(x,−iρy) = Δ(y)

h K(−iρx,y)

=
N

∑
j=1

(−iρx j)2K(−iρx,y) =−ρ2‖x‖2K(x,−iρy);

but ‖x‖2 = 1 on Sd−1 and so Δhg =−ρ2g.

Proposition 7.7.8 Suppose that f is a radial function in L1(Rd,h2
κ dx); f (x) =

f0(‖x‖) for almost all x ∈ Rd. The Dunkl transform f̂ is also radial and has the
form f̂ (x) = F0(‖x‖) for all x ∈Rd, with

F0(‖x‖) = F0(r) =
1

σd−1rλκ

∫ ∞

0
f0(s)Jλκ (rs)sλκ+1ds.

Proof Using polar coordinates and Corollary 7.4.5 we get

f̂ (y) =
ch

(2π)d/2

∫ ∞

0
f0(r)rd−1+2γ

∫
Sd−1

K(rx′,y)h2
κ(x′)dω(x′)dr

=
ch

(2π)d/2
Bκ

∫ ∞

0
f0(r)r2λκ+1

∫ 1

−1
eir‖y‖t(1− t2)λκ−1/2 dt dr,

from which the stated result follows from the definition of JA(r) and putting the
constants together.

The Dunkl transform diagonalizes each Di (just as the Fourier–Plancherel
transform diagonalizes ∂/∂xi). First we prove a symmetry relation with some
technical restrictions.

Lemma 7.7.9 Let f Dig and gDi f be in L1(Rd,h2
κ), and suppose that f g tends

to zero at infinity. Then∫
Rd

(D j f )gh2
κ dx =−

∫
Rd

f (D jg)h2
κ dx, j = 1, . . . ,d.

Proof The following integration by parts is justified by the assumption on f g at
infinity. We also require κv ≥ 1 for each v ∈ R+ so that 1/〈x,v〉 is integrable for
h2
κ dx. After the formula is established, it can be extended to κi ≥ 0 by analytic

continuation. Now
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∫
Rd

(D j f )gh2
κ dx =−

∫
Rd

f (x)
∂
∂x j

[g(x)hκ(x)2]dx

+ ∑
v∈R+

κ j(v)
∫

Rd

f (x)− f (xσv)
〈x,v〉 g(x)h2

κ(x)dx

=−
∫

Rd

[
f (x)

∂
∂x j

g(x)+2 f (x) ∑
v∈R+

κv
v j

〈x,v〉g(x)

]
h2
κ(x)dx

+ ∑
v∈R+

κvv j

∫
Rd

f (x)
g(x)+g(xσv)

〈x,v〉 h2
κ(x)dx

=−
∫

Rd
f (D jg)h2

κ dx.

In the above the substitution x �→ xσv, for which 〈x,v〉 becomes 〈xσv,v〉 =
〈x,vσv〉=−〈x,v〉, was used to show that∫

Rd

f (xσv)g(x)
〈x,v〉 h2

κ(x)dx =−
∫

Rd

f (x)g(xσv)
〈x,v〉 h2

κ(x)dx

since h2
κ dx is W -invariant.

Theorem 7.7.10 For f ,D j f ∈ L1(Rd ,h2
κ dx) and y ∈ Rd, we have D̂ j f (y) =

iy j f̂ (y) for j = 1, . . . ,d. The operator −iD j is densely defined on L2(Rd ,h2
κdx)

and is self-adjoint.

Proof For fixed y ∈ Rd put g(x) = K(x,−iy) in Lemma 7.7.9. Then D jg(x) =
−iy jK(x,−iy) and D̂ j f (y) = (−1)(−iy j) f̂ (y). The multiplication operator
defined by Mj f (y) = y j f (y), j = 1, . . . ,d, is densely defined and self-adjoint
on L2(Rd ,h2

κ dx). Further, −iD j is the inverse image of Mj under the Dunkl
transform, an isometric isomorphism.

Corollary 7.7.11 For f ∈ L1(Rd), j = 1, . . . ,d and g j(x) = x j f (x), the trans-
form ĝ j(y) = iD j f̂ (y), y ∈Rd.

Let us consider the example of Z2
2 on R2, for which the weight function is

hα,β = |x|α |y|β . Recall the formula for the intertwining operator V in Theorem
7.5.4. Let us define

Eα(x) = cα

∫ 1

−1
e−isx(1+ s)(1− s2)α−1ds

for α > 0. Integrating by parts,

Eα(x) = cα

∫ 1

−1
e−isx(1− s2)α−1ds− ix

2α
cα

∫ 1

−1
e−isx(1− s2)αds

= Γ(α + 1
2 )
(

1
2 |x|
)−α+1/2[

Jα−1/2(|x|)− i sign(x)Jα+1/2(|x|)
]
.
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Using the definition of K and the formula for V , we then obtain

K(x,−iy) = Vei〈x,y〉 = Eα(x1y1)Eβ (x2y2).

If β = 0, so that we are dealing with the weight function hα(x) = |x|α associated
with Z2, then K(x,−iy) = Eα(x1y1). In particular, recall the κ-Bessel function
defined by

KW (x,y) =
1
|W | ∑w∈W

K(x,yw).

Then, in the case of Z2, we obtain

KW (x,−iy) = 1
2

[
K(x,−iy)+K(x, iy)

]
= Γ(α + 1

2 )
(

1
2 |x1y1|

)−α+1/2
Jα−1/2(|x1y1|),

so that the transform f̂ specializes to the classical Hankel transform on R+.
Let us mention one interesting formula that follows from this set-up. By

Corollary 7.4.5,

c′h
∫

S1
K(x,−iy)hα ,β (y)dω(y) = cα+β+1/2

∫ 1

−1
e−i‖x‖s(1− s2)α+β−1/2 ds.

Using the definition of the Bessel function and verifying the constants, we end up
with the following formula:(‖x‖

2

)−(α+β+1/2)

Jα+β+1/2(‖x‖) =
1
2

∫
S1

Eα(x1y1)Eβ (x2y2)hα ,β (y1,y2)dω,

which gives an integral transform between Bessel functions.

7.8 Notes
If γκ = ∑κv = 0, h-harmonics reduce to ordinary harmonics. For ordinary har-
monics, the definition of Hα in (7.1.4) is called Maxwell’s representation (see, for
example, Müller [1997, p. 69]). For h-harmonics, (7.1.4) is studied in Xu [2000a].
The proofs of Theorems 7.1.15 and 7.1.17 are different from the original proof in
Dunkl [1988].

A maximum principle for h-harmonic polynomials was given in Dunkl [1988]:
if f is a real non-constant h-harmonic polynomial then it cannot have an abso-
lute minimum in Bd ; if, in addition, f is W -invariant then f cannot have a local
minimum in Bd .

The inner products were studied in Dunkl [1991]. The idea of using eΔh/2 given
in Theorem 7.2.7 first appeared in Macdonald [1982] in connection with 〈p,q〉∂ .

The integration of the intertwining operator in Section 7.4 was proved and
used in Xu [1997a] to study the summability of orthogonal expansions; see
Chapter 9.
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The Zd
2 case was studied in Xu [1997b]. The explicit expression for the inter-

twining operator V in Theorem 7.5.4 is essential for deeper analysis on the sphere;
see Dai and Xu [2013] and its references. It remains essentially the only case for
which a useful integral expression is known. The monic h-harmonics were studied
in Xu [2005c].

An interesting connection with the orthogonal polynomials of the Zd
2 case

appears in Volkmer [1999]. See also Kalnins, Miller and Tratnik [1991] for
related families of orthogonal polynomials on the sphere.

The dihedral case was studied in Dunkl [1989a, b]. When β = 0, the polynomi-
als fn in Section 7.6 are a special case (β = α+1) of the Heisenberg polynomials

E(α,β )
n (z), defined in Dunkl [1982] through the generating function

∞

∑
n=0

E(α ,β )
n (z)tn = (1− tz̄)−α(1− tz)−β .

Many properties of the polynomials fn can be derived using this generating
function, for example, the properties in Proposition 7.6.8.

The weight functions in (7.6.2) are special cases of the so-called gener-
alized Jacobi polynomials; see Badkov [1974] as well as Nevai [1979]. The
dihedral symmetry allows us to write down explicit formulae for the orthogo-
nal polynomials, which are available only for some generalized Jacobi weight
functions.

The Dunkl transform for reflection-invariant measures was defined and stud-
ied in Dunkl [1992]. The positivity of V is not necessary for the proof. When
the Dunkl transform is restricted to even functions on the real line, it becomes
the Hankel transform. For the classical result on Fourier transforms and Hankel
transforms, see Stein and Weiss [1971] and Helgason [1984]. One can define a
convolution structure on the weighted space L2(h2,Rd) and study harmonic anal-
ysis in the Dunkl setting; most deeper results in analysis, however, have been
established only the case of Zd

2 using the explicit integral formula of V ; see
Thangavelu and Xu [2005] and Dai and Wang [2010].

The only other case for which an explicit formula for the intertwining operator
V is known is that for the symmetric group S3, discovered in Dunkl [1995]. It is
natural to speculate that V is an integral transform in all cases. However, even in
the case of dihedral groups we do not know the complete answer. A partial result
in the case of the dihedral group I4 was given in Xu [2000e]. For the case B2,
partial results can be found in Dunkl [2007].
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Generalized Classical Orthogonal Polynomials

In this chapter we study orthogonal polynomials that generalize the classical
orthogonal polynomials. These polynomials are orthogonal with respect to weight
functions that contain a number of parameters, and they reduce to the classical
orthogonal polynomials when some parameters go to zero. Further, they satisfy
a second-order differential–difference equation which reduces to the differential
equation for the classical orthogonal polynomials. The generalized orthogonal
polynomials that we consider are those on the unit ball and the simplex and the
generalized Hermite and Laguerre polynomials.

8.1 Generalized Classical Orthogonal Polynomials
on the Ball

The classical orthogonal polynomials on the ball Bd were discussed in Sec-
tion 5.2. We study their generalizations by multiplying the weight function by
a reflection-invariant function.

8.1.1 Definition and differential–difference equations

Definition 8.1.1 Let hκ be a reflection-invariant weight function as in Definition
7.1.1. Define a weight function on Bd by

W B
κ,μ(x) = h2

κ(x)(1−‖x‖2)μ−1/2, μ >− 1
2 .

The polynomials that are orthogonal to W B
κ ,μ are called generalized classical

orthogonal polynomials on Bd .

Recall that c′h is the normalization constant for h2
κ over Sd−1; it can be seen by

using polar coordinates that the normalization constant of W B
κ,μ is given by

wB
κ ,μ =

(∫
Bd

W B
κ,μ(x)dx

)−1
=

2c′h
σd−1B(γκ + d

2 ,μ + 1
2 )

,
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where σd−1 is the surface area of Sd−1 and γκ = ∑v∈R+ κv is the homogeneous
degree of hκ .

If κ = 0, i.e., W is the orthogonal group then hκ(x) = 1 and the weight func-
tion W B

κ,μ(x) is reduced to W B
μ (x) = (1−‖x‖2)μ−1/2, the weight function of the

classical orthogonal polynomials on the ball.
We will study these polynomials by relating them to h-harmonics. Recall The-

orem 4.2.4, which gives a correspondence between orthogonal polynomials on
Bd and those on Sd; using the same notation for polar coordinates,

y = r(x,xd+1) where r = ‖y‖, (x,xd+1) ∈ Sd ,

we associate with W B
κ ,μ a weight function

hκ ,μ(x,xd+1) = hκ(x)|xd+1|μ = ∏
v∈R+

|〈x,v〉|κv |xd+1|μ (8.1.1)

defined on Sd , which is invariant under the reflection group W ×Z2. Throughout
this section we shall set

λκ ,μ = γk +μ+
d−1

2
(8.1.2)

and will write γ and λ for γκ and λκ ,μ in the proof sections.
The weight function hκ ,μ is homogeneous and is S-symmetric on Rd+1

(Definition 4.2.1). By Theorem 4.2.4 the orthogonal polynomials

Yα(y) = rnPα(x), Pα ∈ V d
n (W B

κ ,μ)

(denoted Y (1)
α in Section 4.2) are h-harmonics associated with hκ ,μ . Conse-

quently they satisfy the equation ΔW×Z2
h Yα = 0, where we denote the h-Laplacian

associated with hκ ,μ by ΔW×Z2
h to distinguish it from the usual h-Laplacian Δh.

For v ∈ R+ (the set of positive roots of W ), write ṽ = (v,0) ∈Rd+1, which is a
vector in Rd+1. By Theorem 6.4.9, for y ∈Rd+1,

ΔW×Z2
h f (y) = Δ f (y)+ ∑

v∈R+

kv

(2〈∇ f (y), ṽ〉
〈y, ṽ〉 − f (y)− f (yσv)

〈y, ṽ〉2 ‖ṽ‖2
)

+μ
( 2

yd+1

∂ f (x)
∂yd+1

− f (y)− f (y1, . . . ,yd ,−yd+1)
y2

d+1

)
(8.1.3)

for hκ,μ , where ∇ = (∂1 · · · ∂d+1)T is the gradient operator and the reflection

σv acts on the first d variables of y. We use ΔW×Z2
κ ,μ to derive a second-order

differential–difference equation for polynomials orthogonal with respect to Wκ,μ ,
by a change of variables.

Since the polynomials Yα defined above are even in yd+1, we need to deal only
with the upper half space {y ∈ Rd+1 : yd+1 ≥ 0}. In order to write the operator
for Pn

α(W B
κ ,μ) in terms of x ∈ Bd , we choose the following mapping:

y �→ (r,x) : y1 = rx1, . . . ,yd = rxd , yd+1 = r
√

1− x2
1−·· ·− x2

d ,
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which is one-to-one from {y ∈ Rd+1 : yd+1 ≥ 0} to itself. We rewrite the
h-Laplacian Δh in terms of the new coordinates (r,x).

Proposition 8.1.2 Acting on functions on Rd+1 that are even in yd+1, the
operator ΔW×Z2

h takes the form

ΔW×Z2
h =

∂ 2

∂ r2 +
2λκ ,μ +1

r
∂
∂ r

+
1
r2Δ

W×Z2
h,0

in the coordinates (r,x) in {y∈Rd+1 : yd+1≥ 0}, where the spherical part ΔW×Z2
h,0 ,

acting on functions in the variables x, is given by

ΔW×Z2
h,0 = Δ(x)

h −〈x,∇(x)〉2−2λκ,μ〈x,∇(x)〉,

in which Δh denotes the h-Laplacian for hκ in W B
κ ,μ .

Proof We make the change of variables y �→ (r,x) on {y ∈ Rd+1 : yd+1 ≥ 0}.
Then, by Proposition 4.1.6, we conclude that

Δ =
∂ 2

∂ r2 +
d
r
∂
∂ r

+
1
r2Δ0,

where the spherical part Δ0 is given by

Δ0 = Δ(x)−〈x,∇(x)〉2− (d−1)〈x,∇(x)〉; (8.1.4)

here Δ(x) and ∇(x) denote the Laplacian and the gradient with respect to x,
respectively. As shown in the proof of Proposition 4.1.6, the change of variables
implies that

∂
∂yi

= xi
∂
∂ r

+
1
r

( ∂
∂xi

− xi〈x,∇(x)〉
)
, 1≤ i≤ d +1,

with ∂/∂d+1 = 0. Since we are assuming that the operator acts on functions that
are even in yd+1, it follows from (8.1.1) that the last term in ΔW×Z2

h , see (8.1.3),
becomes

2μ
1

yd+1

∂
∂yd+1

= 2μ
(1

r
∂
∂ r
− 1

r2 〈x,∇x〉
)
,

where we have used the fact that yd+1 = rxd+1 and x2
d+1 = 1− x2

1 − ·· · − x2
d .

Moreover, under the change of variables y �→ (r,x) we can use (8.1.1) to verify that

〈ṽ,∇〉
〈y, ṽ〉 =

1
r
∂
∂ r

+
1
r2

〈v,∇(x)〉
〈x,v〉 − 1

r2 〈x,∇(x)〉.

Since σv acts on the first d variables of yd+1, the difference part in the sum in
equation (8.1.3) becomes r−2(1− σv)/〈x,v〉. Upon summing over v ∈ R+, we
conclude from (8.1.3) that ΔW×Z2

h takes the stated form, with ΔW×Z2
0,h given by
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ΔW×Z2
h,0 = Δ0−2(γ +μ)〈x,∇(x)〉+ ∑

v∈R+

κv

(2〈v,∇(x)〉
〈x,v〉 − 1−σv

〈x,v〉2 ‖v‖
2
)
.

The desired formula for ΔW×Z2
0,h then follows from the formula for Δ0 in (8.1.4)

and from the formula for the h-Laplacian in Theorem 6.4.9.

Recall that V d
n (W B

κ ,μ) stands for the space of orthogonal polynomials of degree
n with respect to the weight function W B

κ ,μ on Bd .

Theorem 8.1.3 The orthogonal polynomials in the space V d
n (W B

κ ,μ) satisfy the
differential–difference equation(

Δh−〈x,∇〉2−2λκ ,μ〈x,∇〉
)

P =−n(n+2λκ,μ)P,

where ∇ is the ordinary gradient operator acting on x ∈ Rd.

Proof Let Pα be an orthogonal polynomial in V d
n (W B

κ,μ). The homogeneous

polynomial Yα(y) = rnPα(x) satisfies the equation ΔW×Z2
h Yα = 0. Since Yα is

homogeneous of degree n, using Proposition 8.1.2 we conclude that

0 = ΔW×Z2
h Yα(y) = rn−2[n(n+d +2γ +2μ−1)Pα(x)+ΔW×Z2

h,0 Pα(x)
]

and the stated result follows from the formula for ΔW×Z2
h,0 .

Written explicitly, the equation in Theorem 8.1.3 takes the form

ΔhP−
d

∑
j=1

∂
∂x j

x j

(
(2γκ +2μ−1)P+

d

∑
i=1

xi
∂P
∂xi

)
=−(n+d)(n+2γκ +2μ−1)P.

In particular, if W is the rotation group O(d) or hκ(x) = 1 then Δh = Δ and
the difference part in the equation disappears. In that case the weight function
W B
κ,μ becomes the classical weight function Wμ(x) = (1−‖x‖2)μ−1/2, and the

differential–difference equation becomes the second-order differential equation
(5.2.3) satisfied by the classical orthogonal polynomials in Section 5.2.

Corollary 8.1.4 Under the correspondence Y (y) = rnP(x), the partial differen-
tial equation satisfied by the classical orthogonal polynomials on Bd is equivalent
to ΔhY = 0 for hκ(y) = |yd+1|μ .

The weight function given below is invariant under an abelian group and is
more general than Wμ .

The abelian group Zd
2 The weight function is

W B
κ,μ(x) =

d

∏
i=1
|xi|2κi(1−‖x‖2)μ−1/2. (8.1.5)
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The normalization constant of this weight function is given by∫
Bd

W B
κ ,μ(x)dx =

Γ(κ1 + 1
2) · · ·Γ(κd + 1

2 )Γ(μ+ 1
2)

Γ(|κ|+μ+ d+1
2 )

.

The h-Laplacian associated with h2
κ(x) :=∏d

i=1 |xi|κi is given by

Δh = Δ+
d

∑
i=1

κi

( 2
xi
∂i− 1−σi

x2
i

)
, (8.1.6)

where σi is defined by xσi = x−2xiεi and εi is the ith coordinate vector. We just
give Δh here, since the differential–difference equation can be easily written down
using Δh.

Two other interesting cases are the symmetric group Sd and the hyperoctahe-
dral group Wd . We state the corresponding operators and the weight functions
below.

The symmetric group Sd The weight function is

W B
κ,μ(x) = ∏

1≤i< j≤d

|xi− x j|2κ(1−‖x‖2)μ−1/2 (8.1.7)

and the corresponding h-Laplacian is given by

Δh = Δ+2κ ∑
1≤i< j≤d

1
xi− x j

(
(∂i−∂ j)− 1− (i, j)

xi− x j

)
, (8.1.8)

where (i, j) f (x) means that xi and x j in f (x) are exchanged.

The hyperoctahedral group Wd The weight function is

W B
κ ,μ(x) =

d

∏
i=1
|xi|2κ ′ ∏

1≤i≤ j

|x2
i − x2

j |2κ(1−‖x‖2)μ−1/2, (8.1.9)

where κ and κ ′ are two nonnegative real numbers.
Since the group Wd has two conjugacy classes of reflections, see Subsec-

tion 6.2.2, there are two parameters for hκ . The corresponding h-Laplacian is
given by

Δh = Δ+κ ′
d

∑
i=1

(
2
xi
∂i− 1−σi

x2
i

)
+2κ ∑

1≤i< j≤d

(
∂i−∂ j

xi− x j
− 1−σi j

(xi− x j)2

)
+2κ ∑

1≤i< j≤d

(
∂i +∂ j

xi + x j
− 1− τi j

(xi + x j)2

)
, (8.1.10)

where σi, σi j and τi j denote the reflections in the hyperoctahedral group Wd

defined by xσi = x−2xiεi, xσi j = x(i, j) and τi j = σiσi jσi, and the same notation
is used to denote the operators defined by the action of these reflections.
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Note that the equations on Bd are derived from the corresponding h-Laplacian
in a similar way to the deduction of Proposition 7.5.3 for Jacobi polynomials.

8.1.2 Orthogonal basis and reproducing kernel

Just as in Section 5.2 for the classical orthogonal polynomials, an orthonormal
basis of V d

n (W B
κ,μ) can be given in terms of the h-harmonics associated with hκ

on Sd−1 and the generalized Gegenbauer polynomials (Subsection 1.5.2) using
polar coordinates. Let

λκ = γκ + d−1
2 , so that λκ ,μ = λk +μ .

Proposition 8.1.5 For 0≤ j ≤ n
2 let {Y h

ν,n−2 j} denote an orthonormal basis of

H d
n−2 j(h

2
κ); then the polynomials

Pn
β , j(W

B
κ,μ ;x) = (cB

j,n)
−1P(μ−1/2,n−2 j+λκ−1/2)

j (2‖x‖2−1)Y h
ν ,n−2 j(x)

form an orthonormal basis of V d
n (W B

κ ,μ); the constant is given by

[cB
j,n]

2 =
(μ + 1

2 ) j(λk + 1
2 )n− j(n− j +λκ,μ)

j!(λκ ,μ +1)n− j(n+λκ ,μ)
.

The proof of this proposition is almost identical to that of Proposition 5.2.1.
Using the correspondence between orthogonal polynomials on Bd and on Sd

in (4.2.2), an orthogonal basis of V d
n (W B

κ,μ) can also be derived from the h-
harmonics associated with hκ,μ on Sd+1. For a general reflection group, however,
it is not easy to write down an explicit orthogonal basis. We give one explicit
basis in a Rodrigues-type formula where the partial derivatives are replaced by
Dunkl operators.

Definition 8.1.6 For α ∈Nd
0, define

Uμ
α (x) := (1−‖x‖2)−μ+1/2Dα(1−‖x‖2)|α |+μ−1/2.

When all the variables in κ are 0, Dα = ∂α and we are back to orthogonal
polynomials of degree n in d variables, as seen in Proposition 5.2.5.

Proposition 8.1.7 Let α ∈ Nd
0 and |α|= n. Then Uμ

α is a polynomial of degree
n, and we have the recursive formula

Uμ
α+ei

(x) =−(2μ+1)xiU
μ+1
α (x)+(1−‖x‖2)DiU

μ+1
α (x).

Proof Since (1−‖x‖2)a is invariant under the reflection group, a simple compu-
tation shows that
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DiU
μ+1
α (x) =∂i

[
(1−‖x‖2)−μ−1/2

]
Dα(1−‖x‖2)|α |+μ+1/2

+(1−‖x‖2)−μ−1/2Dα+ei(1−‖x‖2)|α|+μ+1/2

=(2μ+1)xi(1−‖x‖2)−1Uμ+1
α (x)+(1−‖x‖2)−1Uμ

α+ei
(x),

which proves the recurrence relation. That Uμ
α is a polynomial of degree |α| is a

consequence of this relation, which can be proved by induction if necessary.

The following proposition plays a key role in proving that Uα is in fact an
orthogonal polynomial with respect to Wκ,μ on Bd .

Proposition 8.1.8 Assume that p and q are continuous functions and that p
vanishes on the boundary of Bd. Then∫

Bd
Di p(x)q(x)h2

κ(x)dx =−
∫

Bd
p(x)Diq(x)h2

κ(x)dx.

Proof The proof is similar to the proof of Theorem 7.1.18. We shall be brief.
Assume that κv ≥ 1. Analytic continuation can be used to extend the range of
validity to κv ≥ 0. Integration by parts shows that∫

Bd
∂i p(x)q(x)h2

κ(x)dx =−
∫

Bd
p(x)∂i[q(x)h2

κ(x)]dx

=−
∫

Bd
p(x)∂iq(x)h2

κ(x)dx

−2
∫

Bd
p(x)q(x)hκ(x)∂ihκ(x)dx.

Let Di denote the difference part of Di: Di = ∂i +Di. For a fixed root v, a simple
computation shows that∫

Bd
Di p(x)q(x)h2

κ(x)dx =
∫

Bd
p(x) ∑

v∈R+

κivi
q(x)+q(xσv)

〈x,v〉 h2
κ(x)dx.

Adding these two equations and using the fact that

hκ(x)∂ihκ(x) = ∑
v∈R+

κvvi
1
〈v,x〉h2

κ(x)

completes the proof.

Theorem 8.1.9 For α ∈ Nd
0 and |α| = n, the polynomials Uμ

α are elements of
V d

n (Wκ,μ).

Proof For each β ∈ Nd
0 and |β |< n, we claim that

Dβ (1−‖x‖2)n+μ−1/2 = (1−‖x‖2)n−|β |+μ−1/2Qβ (x) (8.1.11)

for some Qβ ∈ Πd
n . This follows from induction. The case β = 0 is trivial, with

Q0(x) = 1. Assume that (8.1.11) holds for |β |< n−1. Then
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Dβ+ei(1−‖x‖2)n+μ−1/2 = Di

[
(1−‖x‖2)n−|β |+μ−1/2Qβ (x)

]
= ∂i

[
(1−‖x‖2)n−|β |+μ−1/2

]
Qβ (x)+(1−‖x‖2)n−|β |+μ−1/2DiQβ (x)

= (1−‖x‖2)n−|β |+μ−3/2 [−2(n−|β |+μ− 1
2 )xiQβ (x)+(1−‖x‖2)DiQβ (x)

]
= (1−‖x‖2)n−|β+ei|+μ−1/2Qβ+ei

(x),

where Qβ+ei
, as defined above, is clearly a polynomial of degree |β |+ 1, which

completes the inductive proof. The identity (8.1.11) shows, in particular, that
Dβ (1−‖x‖2)n+μ−1/2 is a function that vanishes on the boundary of Bd if |β |< n.
For any polynomial p ∈Πd

n−1, using Proposition 8.1.8 repeatedly gives∫
Bd

Uμ
α (x)p(x)h2

κ(x)(1−‖x‖2)μ−1/2 dx

=
∫

Bd
Dα
[
(1−‖x‖2)n+μ−1/2

]
p(x)h2

κ(x)dx

= (−1)n
∫

Bd
Dα p(x)(1−‖x‖2)n+μ−1/2h2

κ(x)dx = 0,

since Di : Pd
n �→Pd

n−1, which implies that Dα p(x) = 0 since p ∈Πd
n−1.

There are other orthogonal bases of V d
n (Wκ ,μ), but few can be given explicitly

for a general reflection group. For d ≥ 2, the only exceptional case is Zd
2, which

will be discussed in the next subsection.
The correspondence in (4.2.2) allows us to state a closed formula for the repro-

ducing kernel Pn(W B
κ ,μ) of V d

n (W B
κ,μ) in terms of the intertwining operator Vκ

associated with hκ .

Theorem 8.1.10 Let Vκ be the intertwining operator associated with hκ . Then,
for the normalized weight function W B

κ ,μ in Definition 8.1.1,

Pn(W B
κ,μ ;x,y)

=
n+λκ,μ

λκ,μ
cμVκ

[∫ 1

−1
C
λκ ,μ
n

(
〈x, ·〉+ t

√
1−‖x‖2

√
1−‖y‖2

)
(1− t2)μ−1dt

]
(y),

where cμ = [B( 1
2 ,μ)]−1.

Proof The weight function hκ,μ in (8.1.1) is invariant under the group W ×Z2.

Its intertwining operator, denoted by Vκ,μ , satisfies the relation Vκ ,μ = Vκ ×V Z2
μ ,

where Vκ is the intertwining operator associated with hκ and V Z2
μ is the intertwin-

ing operator associated with hμ(y) = |yd+1|μ . Hence, it follows from the closed

formula for V Z2
μ in Theorem 7.5.4 that

Vκ ,μ f (x,xd+1) = cμ

∫ 1

−1
Vκ [ f (·,xd+1t)](x)(1+ t)(1− t2)μ−1dt.
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Using the fact that Pn(W B
κ,μ) is the kernel corresponding to h-harmonics that are

even in yd+1, as in Theorem 4.2.8, the formula follows from Corollary 7.3.2.

8.1.3 Orthogonal polynomials for Zd
2-invariant weight functions

In this subsection we consider the orthogonal polynomials associated with the
weight function W B

κ ,μ defined in (8.1.5), which are invariant under Zd
2. Here

λκ = |κ|+ d−1
2

and λκ,μ = λκ +μ .

We start with an orthonormal basis for V d
n (W B

κ ,μ) derived from the basis of h-
harmonics in Theorem 7.5.2. Use the same notation as in Section 5.2: associated
with x = (x1, . . . ,xd)∈Rd define x j = (x1, . . . ,x j) for 1≤ j≤ d and x0 = 0. Asso-
ciated with κ = (κ1, . . . ,κd) define κ j = (κ j, . . . ,κd), and similarly for α ∈ Nd

0.

Theorem 8.1.11 For d ≥ 2, α ∈Nd
0 and |α|= n, define

Pn
α(W B

κ,μ ;x) = (hB
α ,n)

−1
d

∏
j=1

[
(1−‖x j−1‖2)α j/2C

(μ+λ j ,κ j)
α j

(
x j√

1−‖x j−1‖2

)]
,

where |κ j|= κ j + · · ·+κd, λ j = |α j+1|+ |κ j+1|+ d− j
2 and[

hB
α ,n

]2 =
1

(|κ|+ d+1
2 )n

d

∏
j=1

h
(μ+λ j ,κ j)
α j (κ j +λ j)α j ,

h(λ ,μ)
n being the normalization constant of C(λ ,μ)

n . Then {Pn
α(W B

κ ,μ) : |α| = n} is
an orthonormal basis of Vn(W B

κ,μ) for W B
κ ,μ in (8.1.5).

Proof Using the correspondence in (4.2.2), the statement follows from Theorem
7.5.2 if we replace d by d +1 and take κd+1 = μ ; we need only consider αd+1 =0.

In particular, when κ = 0 this basis reduces to the basis in Proposition 5.2.2 for
classical orthogonal polynomials.

The correspondence in Theorem 4.2.4 can also be used for defining monic
orthogonal polynomials. Since x2

d+1 = 1−‖x‖2 for (x,xd+1) ∈ Sd , the monic h-

harmonics R̃α(y) in Definition 7.5.8, with d replaced by d + 1, become monic
polynomials in x if α = (α1, . . . ,αd ,0) and y = r(x,xd+1) by the correspondence
(4.2.2). This suggests the following definition:

Definition 8.1.12 For b∈Rd such that max j |b j| ≤ 1, define polynomials R̃B
α(x),

α ∈ Nd
0 and x ∈ Bd by

cκ

∫
[−1,1]d

1

[1−2z(b,x,t)+‖b‖2]λκ

d

∏
i=1

(1+ ti)(1− t2
i )κi−1 dt = ∑

α∈Nd
0

bα R̃B
α(x),

where z(b,x,t) = (b1x1t1 + · · ·+bdxdtd).
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The polynomials R̃B
α with |α| = n form a basis of the subspace of orthogonal

polynomials of degree n with respect to W B
κ . It is given by an explicit formula, as

follows.

Proposition 8.1.13 For α ∈Nd
0 , let β = α−�α+1

2 �. Then

R̃B
α(x) =

2|α |(λκ,μ)|α |
α!

( 1
2)α−β

(κ+ 1
2)α−β

RB
α(x),

where Rα(x) is defined by

Rα(x) = xαFB

(
−β ,−α +β −κ+ 1

2 ;−|α|−λκ,μ +1;
1

x2
1

, . . . ,
1

x2
d

)
.

In particular, RB
α(x) = xα −Qα(x), Qα ∈Πd

n−1, is the monic orthogonal polyno-
mial with respect to W B

κ on Bd.

Proof Setting bd+1 = 0 and ‖x‖= 1 in the generating function in Definition 7.5.8
shows that the generating function for R̃B

α is the same as that for R̃(β ,0)(x). Conse-

quently R̃B
α(x) = R̃(α ,0)(x,xd+1) for (x,xd+1)∈ Sd . Since R̃(α ,0)(x,xd+1) is even in

its (d + 1)th variable, the correspondence in (4.2.2) shows that R̃B
α is orthogonal

and that its properties can be derived from those of R̃α .

In particular, if κi = 0 for i = 1, . . . ,d and κd+1 = μ , so that W B
κ becomes the

classical weight function (1−‖x‖2)μ−1/2, then the limit relation (1.5.1) shows
that in the limit the generating function becomes the generating function (5.2.5),
so that RB

α coincides with Appell’s orthogonal polynomials Vα .
The L2 norm of RB

α can also be deduced from the correspondence (4.2.2).
Recall that wB

κ ,μ is the normalization constant of the weight function W B
κ ,μ in

(8.1.5). We denote the normalized L2 norm with respect to W B
κ ,μ by

‖ f‖2,B =
(

wB
κ,μ

∫
Bd
| f (x)|2W B

κ ,μ(x)dx
)1/2

.

As in the case of h-spherical harmonics, the polynomial xα −RB
α = Qα is the

best approximation to xα from the polynomial space Πd
n−1 in the L2 norm. A

restatement is the first part of the following theorem.

Theorem 8.1.14 The polynomial RB
α has the smallest ‖ f‖2,B norm among all

polynomials of the form xα −P(x), P ∈Πd
n−1. Furthermore, for α ∈ Nd

0 ,

‖RB
α‖2

2,B =
2λκ ∏d

i=1

(
κi + 1

2

)
αi

(λκ ,μ)|α |

∫ 1

0

d

∏
i=1

C(1/2,κi)
αi (t)

k(1/2,κi)
αi

t |α |+2λκ ,μ−1 dt.

Proof Since the monic orthogonal polynomial RB
α is related to the h-harmonic

polynomial R(α ,0) in Subsection 7.5.3 by the formula RB
α(x) = R(α ,0)(x,xd+1),
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(x,xd+1) ∈ Sd , it follows readily from Lemma 4.2.3 that the norm of Rα can be
deduced from that of R(α ,0) in Theorem 7.5.13 directly.

For the classical weight function Wμ(x) = (1−‖x‖2)μ−1/2, the norm of Rα can

be expressed as the integral of the product Legendre polynomials Pn(t) = C1/2
n (t).

Equivalently, as the best approximation in the L2 norm, it gives the following:

Corollary 8.1.15 Let λμ = μ + d−1
2 > 0 and n = |α| for α ∈ Nd

0 . For the
classical weight function Wμ(x) = (1−‖x‖2)μ−1/2 on Bd,

min
Q∈Πd

n−1

‖xα −Q(x)‖2
2,B =

λμ α!
2n−1(λμ)n

∫ 1

0

d

∏
i=1

Pαi(t)t
n+2λμ−1 dt.

Proof Set κi = 0 for 1≤ i ≤ d and μ = κd+1 in the formula in Theorem 8.1.14.
The stated formula follows from (1)2n = 22n( 1

2 )n(1)n, n! = (1)n and the fact that

C(1/2,0)
m (t) = C1/2

m (t) = Pm(t).

8.1.4 Reproducing kernel for Zd
2-invariant weight functions

In the case of the space V d
n (W B

κ ,μ) associated with Zd
2, we can use the explicit

formula for V in Theorem 7.5.4 to give an explicit formula for the reproducing
kernel.

Theorem 8.1.16 For the normalized weight function W B
κ ,μ in (8.1.5) associated

with the abelian group Zd
2 ,

Pn(W B
κ,μ ;x,y)

=
n+λκ,μ

λκ ,μ

∫ 1

−1

∫
[−1,1]d

C
λκ ,μ
n

(
t1x1y1 + · · ·+ tdxdyd + s

√
1−‖x‖2

√
1−‖y‖2

)
×

d

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt cμ (1− s2)μ−1ds.

Proof This is a consequence of Theorem 4.2.8 and the explicit formula in
Theorem 7.5.5, in which we again replace d by d +1 and let κd+1 = μ .

In particular, taking the limit κi → 0 for i = 1, . . . ,d and using (1.5.1) repeat-
edly, the above theorem becomes Theorem 5.2.8, which was stated without proof
in Section 5.2.

In the case of Zd
2, we can also derive an analogue of the Funk–Hecke formula

for W B
κ ,μ on the ball. Let us first recall that the intertwining operator associated

with the weight function hκ ,μ(x) =∏d
i=1 |xi|κi |xd+1|μ is given by

V f (x) =
∫

[−1,1]d+1
f (t1x1, . . . , td+1xd+1)

d+1

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt,
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with μ = κd+1. Associated with this operator, define

VB f (x) =
∫

[−1,1]d
f (t1x1, . . . , tdxd)

d

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt.

Then the Funk–Hecke formula on the ball Bd is given by

Theorem 8.1.17 Let W B
κ ,μ be defined as in (8.1.5). Let f be a continuous

function on [−1,1] and Pn ∈ V d
n (W B

κ ,μ). Then

wB
κ,μ

∫
Bd

VB f (〈x, ·〉)(y)Pn(y)W B
κ ,μ(y)dy = τn( f )Pn(x), ‖x‖= 1,

where τn( f ) is the same as in Theorem 7.3.4 with λκ replaced by λκ ,μ .

Proof From the definition of VB f and the definition of V f with κd+1 = μ , it
follows that

VB f
(〈x, · 〉)(y) = V f

(〈(x,xd+1), · 〉
)
(y,0) = V f

(〈(x,0), ·〉)(y,yd+1),

where we take x ∈ Bd and xd+1 =
√

1−‖x‖2 so that (x,xd+1) ∈ Sd . In the fol-
lowing we also write y ∈ Bd and (y,yd+1) ∈ Sd . Then, using the relation between
Pn and the h-harmonic Yn in (4.2.2) and the integration formula in Lemma 4.2.3,
it follows that∫

Bd
VB f (〈x, ·〉)(y)Pn

k (y)W B
κ ,μ(y)dy

=
∫

Sd
V f (〈(x,0), ·〉)(y,yd+1)Yn(y,yd+1)h2

κ(y,yd+1)dω

= τn( f )Yn(x,0) = τn( f )Pn(x),

where the second equality follows from the Funk–Hecke formula of Theo-
rem 7.3.4, which requires that ‖(x,0)‖= ‖x‖= 1.

The most interesting case of the formula occurs when κ = 0, that is, in the
case of the classical weight function W B

μ on Bd . Indeed, taking the limit κi → 0,
we have that VB = id for W B

μ . Hence, we have the following corollary, in which

λμ = μ + d−1
2 .

Corollary 8.1.18 Let f be a continuous function on [−1,1]. For W B
μ (x) = (1−

‖x‖2)μ−1/2, let Pn ∈ V d
n (W B

μ ). Then

wB
μ

∫
Bd

f (〈x,y〉)Pn(y)W B
μ (y)dy = τn( f )Pn(x), ‖x‖= 1,

where τn( f ) is the same as in Theorem 7.3.4 but with λκ replaced by λμ .

An interesting consequence of this corollary and Theorem 5.2.8 is the follow-
ing proposition.
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Proposition 8.1.19 Let η satisfy ‖η‖ = 1; then C
λμ
n (〈x,η〉) is an element of

V d
n (W B

μ ). Further, if ξ also satisfies ‖ξ‖= 1 then∫
Bd

C
λμ
n (〈x,ξ 〉)Cλμ

n (〈x,η〉)W B
μ (x)dx =

λμ
n+λμ

C
λμ
n (〈η ,ξ 〉).

Proof Taking y = η in the formula of Theorem 5.2.8 gives

Pn
(
W B
μ ;x,η

)
=

n+λμ
λμ

C
λμ
n (〈x,η〉),

which is an element of V d
n (W B

μ ) since Pn(W B
μ ) is the reproducing kernel.

The displayed equation follows from choosing f (x) = C
λμ
n (〈x,ξ 〉) and Pn(x) =

C
λμ
n (〈x,η〉) in Corollary 8.1.18. The constant is

τn =
[
C
λμ
n (1)

]−1
∫ 1

−1

[
C
λμ
n (t)

]2
wλμ (t)dt,

which can be shown from the structure constants for Cλ
n in Subsection 1.4.3 to

equal λμ/(n+λμ).

One may ask how to choose a set {ηi} ⊂ Sd such that the polynomials
Cλmu

n (〈x,ηi〉) form a basis for V d
n (W B

μ ) for a given n.

Proposition 8.1.20 The set {Cλμ
n (〈x,ηi〉) : |ηi| = 1,1 ≤ i ≤ rd

n} is a basis for

V d
n (W B

μ ) if the matrix Aμ
n =

(
C
λμ
n (〈ηi,η j〉)

)rd
n

i, j=1 is nonsingular.

Proof This set is a basis for Vn(W B
μ ) if and only if {Cλμ

n (〈x,η〉)} is linearly inde-

pendent. If Aμ
n is nonsingular then ∑k ckC

λμ
n (〈x,ηi〉) = 0, obtained upon setting

x = η j, implies that ck = 0 for all k.

Choosing ηi such that Aμ
n is nonsingular has a strong connection with the dis-

tribution of points on the sphere, which is a difficult problem. One may further
ask whether it is possible to choose ηi such that the basis is orthonormal. Propo-

sition 8.1.20 shows that the polynomials C
λμ
n (〈x,ηi〉), 1 ≤ i ≤ N, are mutually

orthogonal if and only if C
λμ
n (〈ηi,η j〉) = 0 for every pair of i, j with i �= j, in other

words, if the 〈ηi,η j〉 are zeros of the Gegenbauer polynomial C
λμ
n (t). While it is

unlikely that such a system of points exists in Sd for d > 2, the following special
result in d = 2 is interesting. Recall that Un(t) denotes the Chebychev polyno-
mial of the second kind, which is the Gegenbauer polynomial of index 1; see
Subsection 1.4.3.

Proposition 8.1.21 For the Lebesgue measure on B2, an orthonormal basis for
the space V 2

n is given by the polynomials
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Un
k (x1,x2) =

1√
π

Un

(
x1 cos

kπ
n+1

+ x2 sin
kπ

n+1

)
, 0≤ k ≤ n.

Proof Recall that Un(t) = sin(n + 1)θ/sinθ with t = cosθ ; the zeros of Un

are tk = coskπ/ (n + 1) for k = 1, . . . ,n. Let ηi = (cosφi,sinφi) with φi = iπ/

(n + 1) for i = 0,1, . . . ,n. Then 〈ηi,η j〉 = cos(φi − φ j) and φi − φ j = φi− j for
i > j. Hence, by Proposition 8.1.19, {Un(〈x,ηi〉)} is orthogonal with respect to
the weight function W1/2(x) = 1/π.

The same argument shows that there does not exist a system of points {ηi : 1≤
i ≤ n + 1} on S1 such that the polynomials Cμ+1/2

n (〈x,ηi〉) are orthonormal for
μ �= 1

2 .

8.2 Generalized Classical Orthogonal Polynomials
on the Simplex

As was shown in Section 4.4, the orthogonal polynomials on the simplex are
closely related to those on the sphere and on the ball. The classical orthogonal
polynomials on the simplex were discussed in Section 5.3.

8.2.1 Weight function and differential–difference equation

Here we consider orthogonal polynomials with respect to weight functions
defined below.

Definition 8.2.1 Let hκ be a reflection-invariant weight function and assume
that hκ is also invariant under Zd

2. Define a weight function on T d by

W T
κ,μ(x) := h2

κ(
√

x1, . . . ,
√

xd)(1−|x|)μ−1/2/
√

x1 . . .xd , μ >− 1
2 .

We call polynomials that are orthogonal to W T
κ ,μ generalized classical orthogonal

polynomials on T d .

In Definition 4.4.2 the weight function W T = W T
κ,μ corresponds to the weight

function W B
κ,μ in Definition 8.1.1. Let the normalization constant of W T

κ ,μ be
denoted by wT

κ ,μ . Then Lemma 4.4.1 implies that wT
κ,μ = wB

κ ,μ .
The requirement that hκ is also Zd

2-invariant implies that the reflection group G,
under which hκ is defined to be invariant, is a semi-product of another reflection
group, G0, and Zd

2. Essentially, in the indecomposable case this limits G to two
classes, Zd

2 itself and the hyperoctahedral group. We list the corresponding weight
functions below.

The abelian group Zd
2 The weight function is

W T
κ,μ(x;Zd

2) = xκ1−1/2
1 · · ·xκd−1/2

d (1−|x|)μ−1/2, (8.2.1)
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where κi ≥ 0 and μ ≥ 0. The orthogonal polynomials associated with W T
κ ,μ

are the classical orthogonal polynomials in Section 5.3. This weight function
corresponds to W B

κ,μ in (8.1.5).

The hyperoctahedral group The weight function is

W T
κ,μ(x) =

d

∏
i=1

xκ
′−1/2

i ∏
1≤i< j≤d

|xi− x j|κ(1−|x|)μ−1/2, (8.2.2)

where κ ′ ≥ 0 and κ ≥ 0. This weight function corresponds to W B
κ,μ(x) in (8.1.9).

The relation described in Theorem 4.4.4 allows us to derive differential–
difference equations for orthogonal polynomials on T d . Denote the orthogonal
polynomials with respect to W T

κ ,μ by Pn
α(W T

κ,μ ;x). By (4.4.1) these polynomials
correspond to the orthogonal polynomials P2n

α (W B
κ ,μ ;x) of degree 2n on Bd , which

are even in each of their variables. Making the change of variables xi �→√
zi gives

∂
∂xi

= 2
√

zi
∂
∂ zi

and
∂ 2

∂x2
i

= 2

(
∂
∂ zi

+2zi
∂ 2

∂ z2
i

)
.

Using these formulae and the explicit formula for the h-Laplacian given in Sub-
section 8.1.1, we can derive a differential–difference equation for the orthogonal
polynomials on T d from the equation in Theorem 8.1.3.

In the case of Zd
2, the Dunkl operator D j , see (7.5.2), takes a particularly sim-

ple form; it becomes a purely differential operator when acting on functions that
are even in each of their variables. Hence, upon making the change of variables
xi �→ √

xi and using the explicit formula for Δh in (7.5.3), we can derive from
the equation in Theorem 8.1.3 a differential equation for orthogonal polynomials
with respect to W T

κ ,μ .

Theorem 8.2.2 The classical orthogonal polynomials in V d
n (W T

κ ,μ) satisfy the
partial differential equation

d

∑
i=1

xi(1− xi)
∂ 2P

∂x2
i

−2 ∑
1≤i< j≤d

xix j
∂ 2P

∂xi∂x j

+
d

∑
i=1

[
(
κi + 1

2

)
−
(
|κ|+μ+ d+1

2

)
xi]

∂P
∂xi

= λnP, (8.2.3)

where λn =−n(n+ |κ|+μ+ d−1
2 ) and κi ≥ 0, μ ≥ 0 for 1≤ i≤ d.

This is the same as the equation, (5.3.4), satisfied by the classical orthogonal
polynomials on the simplex. Although the above deduction requires κi ≥ 0 and
μ ≥ 0, the analytic continuation shows that it holds for all κi >− 1

2 and μ >− 1
2 .

The above derivation of (8.2.3) explains the role played by the symmetry of T d .
In the case of the hyperoctahedral group, we use the explicit formula for Δh given
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in (8.1.10). The fact that the equation in Theorem 8.1.3 is applied to functions
that are even in each variable allows us to drop the first difference part in Δh and
combine the other two difference parts. The result is as follows.

Theorem 8.2.3 The orthogonal polynomials in V d
n (W T

κ ,μ) associated with the
hyperoctahedral group satisfy the differential–difference equation[

d

∑
i=1

xi(1− xi)
∂ 2

∂x2
i

−2 ∑
1≤i< j≤d

xix j
∂ 2

∂xi∂x j

+
d

∑
i=1

(
κ ′+1−2(2γκ +2μ +d)xi

) ∂
∂xi

+κ ∑
1≤i< j≤d

1
xi− x j

(
2
(

xi
∂
∂xi

− x j
∂
∂x j

)
− xi + x j

xi− x j

(
1−σi, j

))]
P

=−n(n+ γκ +μ+ d−1
2 )P,

where γκ =
(d

2

)
κ +dκ ′.

8.2.2 Orthogonal basis and reproducing kernel

According to Theorem 4.4.6 the orthogonal polynomials associated with W T
κ ,μ are

related to the h-harmonics associated with hκ ,μ in (8.1.1) as shown in Proposition
4.4.8. In the case of the classical weight function W T

κ ,μ in (8.2.1) the orthonormal
basis derived from Theorems 4.4.4 and 8.1.11 turns out to be exactly the set of
the classical orthogonal polynomials given in Section 5.3. There is another way
of obtaining an orthonormal basis, based on the following formula for changing
variables.

Lemma 8.2.4 Let f be integrable over T d. Then∫
T d

f (x)dx =
∫ 1

0
sd−1

∫
|u|=1

f (su)duds.

The formula is obtained by setting x = su, with 0≤ s≤ 1 and |u|= 1; these can
be called the �1-radial coordinates of the simplex. Let us denote by {Qm

β }|β |=m a
sequence of orthonormal homogeneous polynomials of degree m associated with
the weight function h2(

√
u1, . . . ,

√
ud)/

√
u1 . . .ud on the simplex in homogeneous

coordinates, as in Proposition 4.4.8.

Proposition 8.2.5 Let Qm
β be defined as above. Then the polynomials

Pn
β ,m(x) = bm,n p(γκ+2m+(d−2)/2,μ−1/2)

n−m (2s−1)Qm
β (x)
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for 0≤ m≤ n and |β |= m, where

[bm,n]2 = (γκ + d
2 )2m/(γκ + d

2 +μ+ 1
2 )2m,

form an orthonormal basis of V d
n (W T

κ ,μ) and the Pn
β ,m are homogeneous in the

homogeneous coordinates of T d.

Proof For brevity, let λ = γ + d−2
2 . It follows from Lemma 8.2.4 that∫

T d
Pn
β ,m(x)Pn

β ′,m′(x)h
2
κ(
√

x1, . . . ,
√

xd)(1−|x|)μ−1/2 dx√
x1 · · ·xd

= c
∫ 1

0
p(λ+2m,μ−1/2)

n−m (2s−1)p(λ+2m′,μ−1/2)
n−m′ (2s−1) sλ+m+m′(1− s)μ−1/2 ds

×
∫
|u|=1

Qm
β (u)Qm′

β ′ (u)h2
κ(
√

u1, . . . ,
√

ud)
du√

u1 · · ·ud
,

where c = bm,nbm′,n, from which the pairwise orthogonality follows from that
of Qm

β and of the Jacobi polynomials. It follows from Lemma 8.2.4 that the

normalization constant wT
κ,μ of W T

κ ,μ is also given by

1
wT
κ ,μ

=
∫

T d
Wκ ,μ(x)dx

= 1
2 B
(
λ +1,μ+ 1

2

)∫
|u|=1

h2
κ(
√

u1, . . . ,
√

ud)
du√

u1 · · ·ud
.

Hence, multiplying the integral of [Pn
β ,m(x)]2 by wT

κ ,μ , we can find bm,n from the

equation 1 = b2
m,nB(λ +1,μ + 1

2 )/B(λ +2m+1,μ+ 1
2 ).

Using the relation to orthogonal polynomials on Bd and Theorem 4.4.4, an
orthonormal basis of V d

n (W T
κ ,μ) can be derived from those given in Proposition

8.1.5, in which λκ = γκ + d−1
2 .

Proposition 8.2.6 For 0 ≤ j ≤ 2n let {Y h
ν ,2n−2 j} denote an orthonormal basis

of H d
2n−2 j(h

2
κ ,Z

d
2); then the polynomials

Pn
β , j(W

T
κ ,μ ;x) =[cT

j,n]
−1P(μ−1/2,n−2 j+λκ−1/2)

j (2|x|−1)

×Y h
ν ,2n−2 j(

√
x1, . . . ,

√
xd)

form an orthonormal basis of V d
n (W T

κ ,μ), where cT
j,n = cB

j,2n.

The relation between the orthogonal polynomials on Bd and those on T d also
allows us to derive an explicit formula for the reproducing kernel Pn(W T

κ ,μ) of

V d
n (W T

κ,μ). Let us introduce the notation {x}1/2 = (
√

x1, . . . ,
√

xd) for x ∈ T d .

Theorem 8.2.7 Let Vκ be the intertwining operator associated with hκ and
λ = γκ +μ+ d−1

2 . Then
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Pn(W T
κ,μ ;x,y)

=
2n+λ
λ

cμVκ
[∫ 1

−1
Cλ

2n

(〈{x}1/2, ·〉+ t
√

1−|x|
√

1−|y| )(1− t2)μ−1dt
]
({y}1/2).

Proof Using Theorem 4.4.4, we see that the reproducing kernel Pn(W T
κ ,μ) is

related to the reproducing kernel Pn(W B
κ ,μ) on the unit ball by

Pn(W T
κ ,μ ;x,y) =

1
2d ∑

ε∈Zd
2

P2n
(
W B
κ ,μ ;(ε1

√
x1, . . . ,εd

√
xd ),{y}1/2 ).

In fact, since the reproducing kernel on the left-hand side is unique, it is sufficient
to show that the right-hand side has the reproducing property; that is, if we denote
the right-hand side temporarily by Qn(x,y) then∫

T d
P(y)Qn(x,y)W T

κ ,μ(y)dy = P(x)

for any polynomial P ∈ V d
n (W T

κ ,μ). We can take P = Pn
β , j(W

T
κ ,μ) in Proposition

8.2.6. Upon making the change of variables yi �→ y2
i , 1≤ i≤ d, and using Lemma

4.4.1 it is easily seen that this equation follows from the reproducing property
of P2n(W B

κ,μ). Hence, we can use Theorem 8.1.10 to get an explicit formula for
Pn(W T

κ,μ). Since the weight function is invariant under both the reflection group
and Zd

2, and Vκ commutes with the action of the group, it follows that R(ε)Vκ =
VκR(ε) for ε ∈ Zd

2, where R(ε) f (x) = f (xε). Therefore the summation over Zd
2

does not appear in the final formula.

In the case of Zd
2, we can use the formula for the intertwining operator V = Vκ

in Theorem 7.5.4 to write down an explicit formula for the reproducing kernel.
The result is a closed formula for the classical orthogonal polynomials on T d .

Theorem 8.2.8 For the classical orthogonal polynomials associated with the
normalized weight function W T

κ,μ in (8.2.1) with λκ ,μ = |κ|+μ+ d−1
2 ,

Pn(W T
κ,μ ,x,y)

=
2n+λκ ,μ

λκ,μ

∫ 1

−1

∫
[−1,1]d

C
λκ,μ
2n (z(x,y,t,s))

d

∏
i=1

cκi(1− t2
i )κi−1dt(1− s2)μ−1ds,

(8.2.4)

where z(x,y, t,s) =
√

x1y1 t1 + · · ·+√xdydtd + s
√

1−|x|√1−|y|, and if a par-
ticular κi or μ is zero then the formula holds under the limit relation (1.5.1).

Using the fact that Cλ
2n(t) = [(λ )n/( 1

2 )n]P
λ−1/2,−1/2
n (2t2− 1) and setting μ =

κd+1, the identity (8.2.4) becomes (5.3.5) and proves the latter. Some applica-
tions of this identity in the summability of orthogonal expansions will be given in
Chapter 9.



276 Generalized Classical Orthogonal Polynomials

8.2.3 Monic orthogonal polynomials

The correspondence between the orthogonal polynomials on the simplex and
those on the sphere and on the ball can be used to define monic orthogonal poly-
nomials on the simplex. In this subsection we let μ = κd+1 and write W T

κ ,μ as W T
κ .

In particular, λκ ,μ becomes λκ defined by

λk = |κ|+ d−1
2 , |κ|= κ1 + · · ·+κd+1.

Since the simplex T d is symmetric in (x1, . . . ,xd ,xd+1), xd+1 = 1−|x|, we use
the homogeneous coordinates X := (x1, . . . ,xd,xd+1). For the monic h-harmonics
defined in Definition 7.5.8, with d replaced by d + 1 the polynomial R̃2α is even
in each of its variables, and this corresponds to, using (4.4.1), monic orthogonal
polynomials R̃T

α in V d
n (W T

κ ) in the homogeneous coordinates X . This leads to the
following definition.

Definition 8.2.9 For b ∈ Rd with max j |b j| ≤ 1 and α ∈ Nd+1
0 , define polyno-

mials R̃T
α(x) by

cκ

∫
[−1,1]d+1

1

[1−2(b1x1t1 + · · ·+bd+1xd+1td+1)+‖b‖2]λκ

×
d+1

∏
i=1

(1− t2
i )κi−1 dt = ∑

α∈Nd+1
0

b2α R̃T
α(x), x ∈ T d .

The main properties of R̃T
α are given in the following proposition.

Proposition 8.2.10 For each α ∈ Nd+1
0 with |α |= n, the polynomials

R̃T
α(x) =

22|α|(λκ)2|α|
(2α)!

( 1
2 )α

(κ + 1
2 )α

RT
α(x),

where

RT
α(x) = XαFB

(
−α,−α−κ+ 1

2 ;−2|α|−λκ +1;
1
x1

, . . . ,
1

xd+1

)
= (−1)n (κ + 1

2 )α
(n+ |κ|+ d−1

2 )n
FA

(
|α|+ |κ|+ d−1

2 ,−α;κ + 1
2 ;X
)

are polynomials orthogonal with respect to W T
κ on the simplex T d. Moreover,

RT
α(x) = Xα −Qα(x), where Qα is a polynomial of degree at most n− 1 and
{RT

α ,α = (α ′,0), |α|= n} is a basis for V d
n (W T

κ ).

Proof We return to the generating function for the h-harmonics R̃α in Defini-
tion 7.5.8, with d replaced by d + 1. The explicit formula for R̃α(x) shows that
it is even in each variable only if each αi is even. Let ε ∈ {−1,1}d+1. Then
R̃α(xε) = R̃α(ε1x1, . . . ,εd+1xd+1) = εα R̃α(x). It follows that on the one hand



8.2 Generalized Classical Orthogonal Polynomials on the Simplex 277

∑
β∈Nd+1

0

b2β R̃2β (x) =
1

2d+1 ∑
α∈Nd+1

0

bα ∑
ε∈{−1,1}d+1

R̃α(xε).

On the other hand, using the explicit formula for Vκ , the generating function gives

1
2d+1 ∑

ε∈{−1,1}d+1
∑

α∈Nd+1
0

bα R̃α(xε)

= cκ

∫
[−1,1]d+1

∑
ε∈{−1,1}d+1

∏d+1
i=1 (1+ ti)(1− t2

i )κi−1

[1−2(b1x1t1ε1 + · · ·+bd+1xd+1td+1εd+1)+‖b‖2]λκ
dt

for ‖x‖= 1. Making the change of variables ti �→ tiεi in the integral and using the
fact that ∑ε ∏d+1

i=1 (1+εiti) = 2d+1, we see that the generating function for R̃2β (x)
agrees with the generating function for R̃T

β (x2
1, . . . ,x

2
d+1) in Definition 8.2.9. Con-

sequently, the formulae for RT
α follow from the corresponding ones for R2α in

Propositions 7.5.10 and 7.5.11, both with d replaced by d + 1. The polynomial
RT
α is homogeneous in X . Using the correspondence between the orthogonal poly-

nomials on Sd and on T d , we see that the RT
α are orthogonal with respect to

W T
κ . If αd+1 = 0 then RT

α(x) = xα −Qα , which proves the last assertion of the
proposition.

In the case αd+1 = 0, the explicit formula of RT
α shows that RT

(α,0)(x) = xα −
Qα(x), so that it agrees with the monic orthogonal polynomial V T

α in Section 5.3.
Setting bd+1 = 0 in Definition 8.2.9 gives the generating function of RT

(α ,0) =
V T
α (x).
In the case of a simplex, the polynomial RT

α is the orthogonal projection of
Xα = xα1

1 · · ·xαd
d (1−|x|)αd+1 . We compute its L2 norm. Let

‖ f‖2,T :=
(

wT
κ

∫
T d
| f (x)|2W T

κ (x)dx
)1/2

.

Theorem 8.2.11 Let β ∈ Nd+1
0 . The polynomial RT

β has the smallest ‖ · ‖2,T

norm among all polynomials of the form Xβ −P, P ∈ Πd
|β |−1, and the norm is

given by

‖Rβ‖2,T =
λκ
(
κ + 1

2

)
2β

(λκ)2|β |
∑
γ

(−β )γ
(−β −κ + 1

2

)
γ(−2β −κ + 1

2

)
γ γ!(2|β |− |γ|+λκ)

=
λκβ !

(
κ + 1

2

)
β

(λκ)2|β |

∫ 1

0

d+1

∏
i=1

P(0,κi−1/2)
βi

(2r−1)r|β |+λκ−1 dr.

Proof By (4.4.4) the norm of RT
α is related to the norm of the h-harmonic Rα on

Sd . Since RT
α(x2

1, . . . ,x
2
d+1) = R2α(x1, . . . ,xd+1), the norm of RT

α can be derived

from the norm of R2α . Using the fact that C(1/2,κi)
2βi

(t) = P(0,κi−1/2)
βi

(2t2− 1), the
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norm ‖RT
α‖2,T follows from making the change of variable t2 �→ r in the integral

in Theorem 7.5.13 and replacing d by d +1.

In particular, if βd+1 = 0 then the norm of R(β ,0)(x) is the smallest norm among

all polynomials of the form xβ −P, P ∈Πd
n−1.

Corollary 8.2.12 Let α ∈ Nd
0 and n = |α|. Then

inf
Q∈Πd

n−1

‖xα −Q(x)‖2
2,T =

λκα!∏d
i=1

(
κi + 1

2

)
αi

(λκ)2|α |

×
∫ 1

0

d

∏
i=1

P(0,κi−1/2)
αi (2r−1)r|α|+λκ−1 dr.

We note that this is a highly nontrivial identity. In fact, even the positivity of
the integral on the right-hand side is not obvious.

8.3 Generalized Hermite Polynomials
The multiple Hermite polynomials are discussed in Subection 5.1.3.

Definition 8.3.1 Let hκ be a reflection-invariant weight function. The general-
ized Hermite weight function is defined by

W H
κ (x) = h2

κ(x)e−‖x‖
2
, x ∈ Rd .

Again recall that c′h is the normalization constant of h2
κ over Sd−1. Using polar

coordinates, it follows that the normalization constant of W H
κ is given by

wH
κ =

(∫
Rd

W H
κ (x)dx

)−1
=

2c′h
σd−1Γ(γκ + d

2 )
.

If κ = 0 or W is the orthogonal group then hκ(x) = 1 and the weight function
W H
κ (x) reduces to the classical Hermite weight function e−‖x‖2

.
An orthonormal basis for the generalized Hermite weight function can be given

in terms of h-harmonics and the polynomials Hλ
n on R in Subsection 1.5.1. We

call it the spherical polar Hermite polynomial basis. Denote by H̃λ
n the normalized

Hλ
n and again let λκ = γκ + d−1

2 .

Proposition 8.3.2 For 0≤ 2 j≤ n, let {Y h
ν ,n−2 j} denote an orthonormal basis of

H d
n−2 j(h

2
κ); then the polynomials

Pn
ν , j(W

H
κ ;x) = [cH

j,n]
−1H̃n−2 j+λκ

2 j (‖x‖)Y h
ν ,n−2 j(x)

form an orthonormal basis of V d
n (W H

κ ), where [cH
j,n]

2 = (λκ + 1
2 )n−2 j.
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In the case where hκ is invariant under Zd
2, an orthonormal basis is given by the

product of the generalized Hermite polynomials. We call it the Cartesian Hermite
polynomial basis.

Proposition 8.3.3 For W H
κ,μ(x) = wH

κ ,μ ∏d
i=1 |xi|2κie−‖x‖2

, an orthonormal basis

of V d
n (W H

κ ) is given by Hκ
α (x) = H̃κ1

α1 (x1) · · · H̃κd
αd

(xd) for α ∈ Nd
0 and |α|= n.

In particular, specializing to κ = 0 leads us back to the classical multiple
Hermite polynomials.

There is a limit relation between the polynomials in V d
n (W H

κ ) and the
generalized classical orthogonal polynomials on Bd .

Theorem 8.3.4 For Pn
ν , j(W

B
κ ,μ) in Proposition 8.1.5 and Pn

ν , j(W
H
κ ) in Proposi-

tion 8.3.2,

lim
μ→∞

Pn
ν , j

(
W B
κ ,μ ;x/

√
μ
)

= Pn
ν , j(W

H
κ ;x).

Proof First, using the definition of the generalized Gegenbauer polynomials, we
can rewrite Pn

ν , j(W
B
κ,μ) as

Pn
β , j(W

B
κ ,μ ;x) = [bB

j,n]
−1C̃ (μ ,n−2 j+λκ )

2 j (‖x‖)Y h
ν,n−2 j(x),

where C̃2 j
(μ,τ) are the orthonormal polynomials and

[bB
j,n]
−1 =

(λκ + 1
2 )n−2 j

(λκ +μ+1)n−2 j
.

Using the limit relation in Proposition 1.5.7 and the normalization constants of

both Hλ
n and C(λ ,μ)

n , we obtain

H̃λ
n (x) = lim

μ→∞
C̃(μ,λ )

n (x/
√
μ). (8.3.1)

Since h-harmonics are homogeneous, Y h
ν, j(x/

√μ) = μ− j/2Y h
ν, j(x). It can also be

verified that μ−(n−2 j)/2bB
j,n → cH

j,n as μ→∞. The stated result follows from these
relations and the explicit formulae for the bases.

In the case where hκ is invariant under Zd
2, a similar limit relation holds for the

other orthonormal basis, see Theorem 8.1.1. The proof uses (8.3.1) and will be
left to the reader.

Theorem 8.3.5 For Pn
α(W B

κ ,μ) in Theorem 8.1.11,

lim
μ→∞

Pn
α
(
W B
κ,μ ;x/

√
μ
)

= H̃κ1
α1 (x1) · · · H̃κd

αd
(xd).
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As a consequence of the limiting relation, we can derive a differential–
difference equation for the polynomials in V d

n (W H
κ ) from the equation satisfied

by the classical orthogonal polynomials on Bd .

Theorem 8.3.6 The polynomials in V d
n (W H

κ ) satisfy the differential–difference
equation

(Δh−2〈x,∇〉)P =−2nP. (8.3.2)

Proof Since the polynomials Pn
ν, j(W

H
κ ) form a basis for V d

n (W H
κ ), it suffices to

prove that these polynomials satisfy the stated equation. The proof is based on the
limit relation in Theorem 8.3.4. The Pn

ν , j(W
B
κ,μ) satisfy the equation in Theorem

8.1.3. Making the change of variables xi �→ xi/
√μ , it follows that Δh becomes

μΔh and the equation in Theorem 8.1.3 becomes[
μΔh−

d

∑
i=1

d

∑
j=1

xix j∂i∂ j− (2γ +2μ +d)〈x,∇〉
]

P(x/
√
μ)

=−n(n+d +2γ +2μ−1)P(x/
√
μ).

Taking P = Pn
ν , j(W

B
κ,μ) in the above equation, dividing the equation by μ and

letting μ → ∞, we conclude that Pn
ν, j(W

H
κ ) satisfies the stated equation.

Several special cases are of interest. First, if hκ(x) = 1 then Δh reduces to the
ordinary Laplacian and equation (8.3.2) becomes the partial differential equation
(5.1.7) satisfied by the multiple Hermite polynomials. Two other interesting cases
are the following.

The symmetric group The weight function is

W H
κ (x) = ∏

1≤i< j≤d

|xi− x j|2κe−‖x‖
2
. (8.3.3)

The hyperoctahedral group The weight function is

W B
κ (x) =

d

∏
i=1

|xi|2κ ′ ∏
1≤i≤ j≤d

|x2
i − x2

j |κe−‖x‖
2
. (8.3.4)

These weight functions should be compared with those in (8.1.7) and (8.1.9). In
the case of the hyperoctahedral group, equation (8.3.2) is related to the Calogero–
Sutherland model in mathematical physics; see the discussion in Section 11.6.

The limiting relation also allows us to derive other properties of the generalized
Hermite polynomials, for example, the following Mehler-type formula.

Theorem 8.3.7 Let {Pn
α(W H

κ )}, |α| = n and n ∈ N0, denote an orthonormal
basis with respect to W H

κ on Rd. Then, for 0 < z < 1 and x,y ∈Rd,
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∞

∑
n=0

∑
|α |=n

Pn
α(W H

κ ;x)Pn
α(W H

κ ;y)zn

=
1

(1− z2)γκ+d/2
exp
[
− z2(‖x‖2 +‖y‖2)

1− z2

]
Vκ
[

exp
(2z〈x, ·〉

1− z2

)]
(y).

Proof The inner sum over α of the stated formula is the reproducing kernel of
V d

n (W H
κ ), which is independent of the particular basis. Hence, we can work with

the basis Pn
β , j(W

H
κ ) in Proposition 8.3.2. Recall that λ = λκ ,μ = γ + μ + d−1

2 .

Then the explicit formula for the reproducing kernel Pn(W B
κ,μ) in Theorem 8.1.10

can be written as

Pn(W B
κ,μ ;x,y) =

n+λ
λ

cμ

∫ 1

−1
Cλ

n (z)Vκ [Eμ(x,y, ·,z)](y)(1− z2)λ−1/2 dz,

where z = 〈x, ·〉+ t
√

1−‖x‖2
√

1−‖y‖2 and Eμ is defined by

Eμ(x,y,u,v)

=
(

1− (v−〈x,u〉)2

(1−‖x‖2)(1−‖y‖2)

)μ−1 1√
1−‖x‖2

√
1−‖y‖2(1− v2)λ−1/2

if v satisfies (v−〈x,u〉)2 ≤ (1−‖x‖2)(1−‖y‖2) and Eμ(x,y,u,v) = 0 otherwise.
In particular, expanding Vκ [Eμ(x,y, ·,z)] as a Gegenbauer series in Cλ

n (z), the
above formula gives the coefficients of the expansion. Taking into consideration
the normalization constants,

cλ+1/2

cμ

∞

∑
n=0

Γ(2λ )Γ(n+1)
Γ(n+2λ )

Pn(W B
κ ,μ ;x,y)Cλ

n (z) = Vκ [Eμ(x,y,(·),z)].

Replace x and y by x/
√μ and y/

√μ , respectively, in the above equation. From
the fact that cλ+1/2/cμ → 1 as μ → ∞ and that μ−nCμ

n (z) → 2nzn/n!, we can
use the limit relation in Theorem 8.3.4 to conclude that the left-hand side of the
formula displayed above converges to the left-hand side of the stated equation.
Moreover, from the definition of Eμ we can write

Eμ

( x√μ ,
y√μ ,

u√μ ,z
)

= (1− z2)−γ−d/2
(

1− ‖x‖
2

μ

)−μ+1

×
(

1− ‖y‖
2

μ

)−μ+1 [
1− ‖x‖

2 +‖y‖2−2z〈x,u〉
μ(1− z2)

+O(μ−2)
]μ−1

,

which implies, upon taking limit μ→ ∞, that

lim
μ→∞

Eμ

(
x√μ ,

y√μ ,
u√μ ,z

)
=

1

(1− z2)γ+d/2
exp
[
− z2(‖x‖2 +‖y‖2)

1− z2

]
exp
(2z〈x,u〉

1− z2

)
.
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Since Vκ is a bounded linear operator, we can take the limit inside Vκ . Hence,
using

Vκ

[
Eμ

(
x√μ ,

y√μ , ·,z
)](

y√μ
)

= Vκ

[
Eμ

(
x√μ ,

y√μ ,
(·)√μ ,z

)]
(y),

it follows that Vκ [Eμ ] converges to the right-hand side of the stated formula, which
concludes the proof.

In particular, if hκ(x) = 1 then Vκ = id and the formula reduces to

∞

∑
n=0

∑
|α |=n

H̃κ
α (x)H̃κ

α (y)zn =
d

∏
i=1

1

(1− z2)1/2
exp
[2xiyiz− z2(x2

i + y2
i )

1− z2

]
,

which is a product of the classical Mehler formula.
In the case of the Cartesian Hermite polynomials Hκ

α , we can derive an explicit
generating function. Let us define bκα = bκ1

α1 · · ·bκd
αd

, where bλn is the normalization
constant of Hλ

n , which was defined in Subsection 1.5.1.

Theorem 8.3.8 For all x ∈ Bd and y ∈Rd,

∑
|α|=n

Hκ
α (y)
bκα

xα =
1√
π2nn!

∫ ∞

−∞

∫
[−1,1]d

Hn(z(x,y, t,s))

×
d

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt e−s2

ds,

where z(x,y,t,s) = t1x1y1 + · · ·+ tdxdyd + s
√

1−‖x‖2.

Proof We use the limit relation in Theorem 8.3.5 and the relation

lim
μ→∞

μ−n/2C̃(μ ,λ)
n (x) = 2n[bλn ]−1/2x n,

which can be verified by using Definition 1.5.5 of C(λ ,μ)
n (x), the series expansion

in terms of the 2F1 formula for the Jacobi polynomial, and the formula for the
structure constants. Using the formula for Pn

α(W B
κ,μ) in Theorem 8.1.11 and the

fact that hB
α ,n → 1 as μ → ∞, we obtain

lim
μ→∞

μ−n/2Pn
α(W B

κ ,μ ;x) = 2n[bκα ]−1/2xα ,

which implies, together with Theorem 8.3.5, the limit relation

lim
μ→∞

μ−n/2 ∑
|α |=n

Pn
α(W B

κ ,μ ;x)Pn
α(W B

κ ,μ ;y/
√
μ) = 2n ∑

|α |=n

Hκ
α (y)

xα

bκα
.

The sum on the left-hand side is Pn(W B
κ ,μ ,x,y/

√μ), which satisfies the explicit
formula in Theorem 8.1.16. Now, multiply the right-hand side of the explicit
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formula by μ−n/2, replace y by y/
√μ and then make the change of variables

t �→ s/
√μ; its limit as μ → ∞ becomes, using Proposition 1.5.7, the right-hand

side of the stated formula.

In the case κ = 0, Theorem 8.3.8 yields the following formula for the classical
Hermite polynomials:

∑
|α |=n

Hα(y)
α!

xα =
1

n!
√
π

∫ ∞

−∞
Hn(x1y1 + · · ·+ xdyd + s

√
1−‖x‖2)e−s2

ds

for all x ∈ Bd and y ∈ Rd . Furthermore, it is the extension of the following well-
known formula for the classical Hermite polynomials (Erdélyi et al. [1953, Vol.
II, p. 288]):

∑
|α|=n

Hα(y)
α!

xα =
1
n!

Hn(x1y1 + · · ·+ xdyd), ‖x‖= 1.

In general, in the case ‖x‖= 1 we have

Corollary 8.3.9 For ‖x‖= 1 and y ∈ Rd,

∑
|α |=n

Hκ
α (y)
bκα

xα =
1

2nn!

∫
[−1,1]d

Hn(t1x1y1 + · · ·+ tdxdyd)

×
d

∏
i=1

cκi(1+ ti)(1− t2
i )κi−1dt.

8.4 Generalized Laguerre Polynomials
Much as for the relation between the orthogonal polynomials on T d and those on
Bd (see Section 4.4), there is a relation between the orthogonal polynomials on
Rd

+ and those on Rd . In fact, since∫
Rd

f (y2
1, . . . ,y

2
d)dy =

∫
Rd

+

f (x1, . . . ,xd)
dx√

x1 · · ·xd

in analogy to Lemma 4.4.1, the analogue of Theorem 4.4.4 holds for W H(x) =
W (x2

1, . . . ,x
2
d) and W L(y) = W (y1, . . . ,yd)/

√
y1 · · ·yd . Let V2n(W H ,Zd

2) be the
collection of all elements in V2n(W H) that are invariant under Zd

2.

Theorem 8.4.1 Let W H and W L be defined as above. Then the relation
(4.4.1) defines a one-to-one correspondence between an orthonormal basis of
V2n(W H ,Zd

2) and an orthonormal basis of V d
n (W L).

Hence, we can study the Laguerre polynomials via the Hermite polynomials
that are invariant under Zd

2. We are mainly interested in the case where H is a
reflection-invariant weight function.
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Definition 8.4.2 Let hκ be a reflection-invariant weight function and assume
that hκ is also invariant under Zd

2. Define a weight function on Rd
+ by

W L
κ (x) = h2

κ(
√

x1, . . . ,
√

xd)e−|x|/
√

x1 · · ·xd , x ∈Rd
+.

The polynomials orthogonal to W L
κ are called generalized Laguerre polynomials.

An orthonormal basis can be given in terms of Zd
2-invariant general Hermite

polynomials; see Proposition 8.3.2.

Proposition 8.4.3 For 0≤ j ≤ n let {Y h
ν ,2n−2 j} denote an orthonormal basis of

H d
2n−2 j(h

2
κ); then the polynomials

Pn
ν, j(W

L
κ ;x) = [cL

j,n]
−1H̃2n−2 j+λκ

2 j (
√
|x|)Y h

ν ,2n−2 j(
√

x1, . . . ,
√

xd),

where cL
j,n = cH

j,n from Proposition 8.3.2, form an orthonormal basis of V d
n (W L

κ ).

Just as in the case of the orthogonal polynomials on the simplex, in the inde-
composable case the requirement that hκ is also invariant under Zd

2 limits us to
essentially two possibilities:

The abelian group Zd
2 The weight function is

W L
κ (x;Zd

2) = xκ1
1 · · ·xκd

d e−|x|. (8.4.1)

The orthogonal polynomials associated with W L
κ are the classical orthogonal

polynomials from Subsection 5.1.4.

The hyperoctahedral group The weight function is

W L
κ (x) =

d

∏
i=1

xκ
′

i ∏
1≤i< j≤d

|xi− x j|κe−|x|. (8.4.2)

Note that the parameters κ in the two weight functions above are chosen
so that the notation is in line with the usual multiple Laguerre polynomials.
They are related to W H

κ+1/2(x) = ∏d
i=1 |xi|2κi+1e−‖x‖2

and to W H
κ+1/2(x) in (8.3.4),

respectively, where we define κ + 1
2 = (κ1 + 1

2 , . . . ,κd + 1
2 ).

Another approach to the generalized Laguerre polynomials is to treat them as
the limit of the orthogonal polynomials on the simplex. Indeed, from the explicit
formulae for orthonormal bases in Proposition 8.2.6, the limit relation (8.3.1)
leads to the following.

Theorem 8.4.4 For the polynomials Pn
ν, j(W

T
κ ,μ) defined in Proposition 8.2.5 and

the polynomials Pn
ν , j(W

L
κ ) defined in Proposition 8.4.3,

lim
μ→∞

Pn
ν, j(W

T
κ+1/2,μ ;x/μ) = Pn

ν , j(W
L
κ ;x).
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In the case where hκ is invariant under Zd
2, the multiple Laguerre polynomials

are also the limit of the classical orthogonal polynomials on T d . The verification
of the following limit is left to the reader.

Theorem 8.4.5 For the classical orthogonal polynomials Pn
α(W T

κ+1/2) defined
in Proposition 5.3.1 with μ = κd+1,

lim
μ→∞

Pα(W T
κ+1/2,μ ;x/μ) = L̃κ1

α1(x1) · · · L̃κd
αd

(xd).

From the relation in Theorem 8.4.1, we can derive the differential–difference
equations satisfied by the generalized Laguerre polynomials from those satisfied
by the generalized Hermite polynomials, in the same way that the equation sat-
isfied by the orthogonal polynomials on T d is derived. We can also derive these
equations from the limit relation in Theorem 8.4.4 in a similar way to the equa-
tion satisfied by the generalized Hermite polynomials. Using either method, we
have a proof of the fact that the multiple Laguerre polynomials satisfy the partial
differential equation (5.1.9). Moreover, we have

Theorem 8.4.6 The orthogonal polynomials of V d
n (W L

κ ) associated with the
hyperoctahedral group satisfy the differential–difference equation[

d

∑
i=1

(
xi
∂ 2

∂x2
i

+(κ ′+1− xi)
∂
∂xi

)
+κ ∑

1≤i< j≤d

1
xi− x j

(
2
(

xi
∂
∂xi

− x j
∂
∂x j

)
− xi + x j

xi− x j
[1− (i j)]

)]
P =−nP.

As in the Hermite case, this equation is an example of the Calogero–Sutherland
model in physics; see the discussion in Section 11.6.

There is another way of obtaining an orthonormal basis for the generalized
Laguerre polynomials, using orthogonal polynomials on the simplex. In fact, as
in Lemma 8.2.4, the following formula holds:∫

Rd
+

f (x)dx =
∫ ∞

0
sd−1

∫
|u|=1

f (su)duds (8.4.3)

for an integrable function f on Rd
+. Denote by {Rm

β }|β |=m a sequence of
orthonormal homogeneous polynomials of degree m in the homogeneous coor-
dinates from Proposition 4.4.8 associated with the weight function W (u) =
h2(
√

u1, . . . ,
√

ud)/
√

u1 · · ·ud on the simplex.

Proposition 8.4.7 Let the Rm
β be defined as above. Then an orthonormal basis

of V d
n (W L

κ ) consists of

Pn
β ,m(x) = bm,nL2m+λκ

n−m (s)Rm
β (x), 0≤ m≤ n, |β |= m,

where x = su, |u|= 1 and [bm,n]2 = Γ(λκ +2m+ 1
2 )/Γ(λκ + 1

2 ).
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The verification of this basis is left to the reader.
From the limit relation in Theorem 8.4.4, we can also derive a Mehler-type

formula for the Laguerre polynomials.

Theorem 8.4.8 Let {Pn
α(W L

κ ) : |α| = n, n ∈ N0}, denote an orthonormal basis
with respect to W L

κ on Rd. Then, for 0 < z < 1 and x,y ∈Rd
+,

∞

∑
n=0

∑
|α|=n

Pn
α(W L

κ ;x)Pn
α(W L

κ ;y)zn

=
1

(1− z)γκ+d/2
exp
[
− z(|x|+ |y|)

1− z

]
Vκ
[

exp
(2
√

z〈{x}1/2, ·〉
1− z

)]
({y}1/2).

Proof The proof follows the same lines as that of Theorem 8.3.7, using the
explicit formula for the reproducing kernel of V d

n (W T
κ,μ) in Theorem 8.2.7.

We will merely point out the differences. Let Kμ be defined from the formula
for the reproducing kernel in Theorem 8.2.7, in a similar way to the kernel
Vκ [Eμ(x,y, ·,z)](y) in the proof of Theorem 8.3.7. Since we have Cλ

2n in the
formula of Theorem 8.2.7, we need to write

K̃μ(x,y,u,z) = 1
2 [Kμ(x,y,u,z)+Kμ(x,y,u,−z)]

in terms of the Gegenbauer series. Since K̃μ is even in z, the coefficients of C(λ )
2n+1

in the expansion vanish. In this way K̃μ can be written as an infinite sum in z2n

with coefficients given by Pn(W T
κ ,μ ;x,y). The rest of the proof follows the proof

of Theorem 8.3.7. We leave the details to the reader.

In the case of the classical multiple Laguerre polynomials, the Mehler formula
can be written out explicitly, using the explicit formula for the intertwining oper-
ator in Theorem 7.5.4. Moreover, in terms of the modified Bessel function Iτ of
order τ ,

Iτ(x) =
1√

πΓ(τ + 1
2 )

( x
2

)τ ∫ 1

−1
e−xt(1− t2)τ−1/2 dt.

This can be written as Iτ(x) = e−τπi/2Jτ(xeπi/2), where Jτ is the standard Bessel
function of order τ . The formula then becomes

∞

∑
n=0

∑
|α|=n

L̃κα(x)L̃κα(x)zn

=
d

∏
i=1

Γ(κi +1)
1− z

exp
[
− z(xi + yi)

1− z

]
(xiyiz)−κi/2Iκi

(2
√

zxiyi

1− z

)
,

which is the product over i of the classical Mehler formula for the Laguerre
polynomials of one variable (see, for example, Erdélyi et al. [1953, Vol. II,
p. 189]).
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8.5 Notes
The partial differential equations satisfied by the classical orthogonal polyno-
mials were derived using the explicit formula for the biorthonormal basis in
Sections 5.2 and 5.3; see Chapter XII of Erdélyi et al. [1953]. The deriva-
tion of the differential–difference equation satisfied by the generalized classical
orthogonal polynomials was given in Xu [2001b].

The Uμ
α basis defined by the Rodrigues-type formula is not mutually orthogo-

nal. There is a biorthogonal basis defined by the projection operator projn(W
B
κ ,μ)

onto Vn(W B
κ,μ): for α ∈Nd

0, define

Rα(x) := projn(W
B
κ,μ ;Vκ{·}α ,x),

where Vκ is the intertwining operator associated with hκ . Then {Uμ
α : |α| = n}

and {Rβ : |β | = n} are biorthogonal with respect to W B
κ ,μ on Bd . These bases

were defined and studied in Xu [2005d], which contains further properties of Uμ
a .

The monic orthogonal polynomials in the case of Zd
2 were studied in Xu [2005c].

The explicit formulae for the reproducing kernel in Theorems 8.1.10 and 8.2.8
were useful for a number of problems. The special case of the formula in Theo-
rem 5.2.8 was first derived by summing up the product of orthogonal polynomials
in Proposition 5.2.1, and making use of the product formula of Gegenbauer
polynomials, in Xu [1999a]; it appeared first in Xu [1996a]. The connection
to h-harmonics was essential in the derivation of Theorem 8.2.8 in Xu [1998d].
They have been used for studying the summability of orthogonal expansions, see
the discussion in the next chapter, and also in constructing cubature formulae in
Xu [2000c].

The orthonormal basis in Proposition 8.1.21 was first discovered in Logan and
Shepp [1975] in connection with the Radon transform. The derivation from the
Funk–Hecke formula and further discussions were given in Xu [2000b]. This
basis was used in Bojanov and Petrova [1998] in connection with a numerical
integration scheme. More recently, it was used in Xu [2006a] to derive a recon-
struction algorithm for computerized tomography. In this connection, orthogonal
polynomials on a cylinder were studied in Wade [2010].

The relation between h-harmonics and orthogonal polynomials on the simplex
was used in Dunkl [1984b] in the case d = 2 with a product weight function. The
general classical orthogonal polynomials were studied in Xu [2001b, 2005a].

In the case of symmetric groups, the differential–difference equation for the
generalized Hermite polynomials is essentially the Schrödinger equation for a
type of Calogero–Sutherland model. See the discussion in Section 11.6. The
equation for the general reflection group was derived in Rösler [1998] using a
different method. The derivation as the limit of the h-Laplacian is in Xu [2001b].

Hermite introduced biorthonormal polynomials for the classical Hermite
weight function, which were subsequently studied by many authors; see Appell



288 Generalized Classical Orthogonal Polynomials

and de Fériet [1926] and Erdélyi et al. [1953, Vol. II, Chapter XII]. Making
use of the intertwining operator V , such a basis can be defined for the general-
ized Hermite polynomials associated with a reflection group, from which follows
another proof of the Mehler-type formula for the generalized Hermite polyno-
mials; see Rösler [1998]. Our proof follows Xu [2001b]. In the case where hκ
is associated with the symmetric groups, the Mehler-type formula was proved
in Baker and Forrester [1997a]. For the classical Mehler formula, see Erdélyi
et al. [1953, Vol. II, p. 194], for example.



9

Summability of Orthogonal Expansions

The basics of Fourier orthogonal expansion were discussed in Section 3.6. In
the present chapter various convergence results for orthogonal expansions are
discussed. We start with a result on a fairly general system of orthogonal polyno-
mials, then consider the convergence of partial-sum operators and Cesàro means
and move on to the summability of the orthogonal expansions for h-harmonics
and the generalized classical orthogonal polynomials.

9.1 General Results on Orthogonal Expansions
We start with a general result about the convergence of the partial sum of an
orthogonal expansion, under a condition on the behavior of the Christoffel func-
tion defined in (3.6.8). In the second subsection we discuss the basics of Cesàro
means.

9.1.1 Uniform convergence of partial sums

Recall that M was defined in Subsection 3.2.3 as the set of nonnegative Borel
measures on Rd with moments of all orders. Let μ ∈ M satisfy the condi-
tion (3.2.17) in Theorem 3.2.17 and let it have support set Ω ∈ Rd . For f ∈
L2(dμ), let En(dμ ; f )2 be the error of the best L2(dμ) approximation from Πd

n;
that is,

En(dμ ; f )2 = inf
P∈Πd

n

∫
Ω
| f (x)−P(x)|2 dμ(x).

Note that En(dμ , f )2 → 0 as n→ ∞ according to Theorem 3.2.18. Let Sn(dμ ; f )
denote the partial sum of the Fourier orthogonal expansion with respect to
the measure dμ , as defined in (3.6.3), and let Λn(dμ;x) denote the Christoffel
function as defined in (3.6.8).
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Lemma 9.1.1 Let μ ∈M satisfy (3.2.17). If, for x ∈Rd,
∞

∑
m=0

E2m(dμ ; f )2√
Λ2m+1(dμ,x)

< ∞, (9.1.1)

then Sn(dμ; f ) converges at the point x. If (9.1.1) holds uniformly on a set E in
Ω then Sn(dμ) converges uniformly on E.

Proof Since Sn(dμ ; f ) is the best L2(dμ) approximation of f ∈ L2(dμ) from
Πd

n , using (3.6.3) and the Parseval identity in Theorem 3.6.8 as well as the
orthogonality,

En(dμ ; f )2
2 =

∫
Rd

[ f −Sn(dμ; f )]2 dμ

=
∫

Rd

(
∞

∑
k=n+1

aT
k ( f )Pk(x)

)2

dμ =
∞

∑
k=n+1

‖ak( f )‖2
2.

Therefore, using the Cauchy–Schwarz inequality, we obtain(
2m+1

∑
k=2m+1

|aT
k ( f )Pk(x)|

)2

≤
2m+1

∑
k=2m+1

‖aT
k ( f )‖2

2

2m+1

∑
k=2m+1

‖Pk(x)‖2
2

≤
∞

∑
k=2m+1

‖aT
k ( f )‖2

2

2m+1

∑
k=0

‖Pk(x)‖2
2

= [E2m(dμ ; f )2]2[Λ2m+1(dμ ;x)]−1.

Taking the square root and summing over m proves the stated result.

Proposition 9.1.2 Let μ ∈M satisfy (3.2.17). If

[ndΛn(dμ ;x)]−1 ≤M2 (9.1.2)

holds uniformly on a set E with some constant M > 0 then Sn(dμ; f ) is uniformly
and absolutely convergent on E for every f ∈ L2(dμ) such that

∞

∑
k=1

Ek(dμ ; f )2 k(d−2)/2 < ∞. (9.1.3)

Proof Since En(dμ ; f )2 is nonincreasing,

E2m(dμ; f )2√
Λ2m+1(dμ ,x)

≤M2(m+1)d/2 1
2m−1

2m

∑
k=2m−1+1

Ek(dμ ; f )2

= M2d/2+12m(d−2)/2
2m

∑
k=2m−1+1

Ek(dμ ; f )2

≤ c
2m

∑
k=2m−1+1

Ek(dμ; f )2 k(d−2)/2.

Summing over m, the stated result follows from Lemma 9.1.1.



9.1 General Results on Orthogonal Expansions 291

Corollary 9.1.3 Let μ ∈M and suppose that μ has a compact support set Ω
in Rd. Suppose that (9.1.2) holds uniformly on a subset E ⊂ Ω. If f ∈C[d/2](Ω)
and each of its [ d

2 ]th derivatives satisfies

|D[d/2] f (x)−D[d/2] f (y)| ≤ c‖x− y‖β2 ,

where, for odd d, β > 1
2 and, for even d, β > 0 then Sn(dμ; f ) converges uniformly

and absolutely to f on E.

Proof For f satisfying the above assumptions, a standard result in approximation
theory (see, for example, Lorentz [1986, p. 90]) shows that there exists P ∈ Πd

n

such that

En(dμ , f )2 ≤ ‖ f −P‖∞ ≤ cn−([d/2]+β).

Using this estimate, our assumption on β implies that (9.1.3) holds.

Since there are
(n+d

d

)
= O(nd) terms in the sum of [Λn(dμ;x)]−1 = Kn(x,x),

the condition (9.1.2) appears to be a reasonable assumption. We will show that
this condition often holds. In the following, if dμ is given by a weight function
dμ(x) = W (x)dx then we write Λn(W ;x). The notation A ∼ B means that there
are two constants c1 and c2 such that c1 ≤ A/B≤ c2.

Proposition 9.1.4 Let W, W0 and W1 be weight functions defined on Rd.
If c1W0(x) ≤ W (x) ≤ c2W1(x) for some positive constant c2 > c1 > 0 then
c1Λn(W0;x)≤ Λn(W ;x)≤ c2Λn(W1;x).

Proof By Theorem 3.6.6, Λn satisfies the property

Λn(W ;x) = min
P(x)=1,P∈Πd

n

∫
Rd
|P(y)|2W (y)dy;

the stated inequality follows as an easy consequence.

We will establish (9.1.2) for the classical-type weight functions. The proposi-
tion allows us an extension to more general classes of weight functions.

Proposition 9.1.5 Let W (x) = ∏d
i=1 wi(xi), where wi are weight functions

defined on [−1,1]. Then Λn(W ;x)∼ n−d for all x in the interior of [−1,1]d.

Proof Let pm(wi) denote orthonormal polynomials with respect to wi. The
orthonormal polynomials with respect to W are Pn

α(x)= pα1(w1;x1) · · · pαd (wd ;xd).
Let λn(wi; t) be the Christoffel function associated with the weight function wi

on [−1,1]. It is known that λn(wi;t) ∼ n−1 for t ∈ (−1,1); see for example
Nevai [1986]. Hence, on the one hand,
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Λn(W ;x) =

(
n

∑
m=0

∑
|α|=m

[Pn
α(x)]2

)−1

≥
(

n

∑
k1=0

. . .
n

∑
kd=0

p2
k1

(w1;x1) · · · p2
kd

(wd;xd)

)−1

=
d

∏
i=1

λn(wi;xi)∼ n−d .

On the other hand, since {α : |α | ≤ n} contains {α : 0 ≤ αi ≤ [n/d]},
the inequality can be reversed to conclude that Λn(W ;x) ≤ ∏d

i=1λ[n/d]
(wi;xi)∼ n−d .

Proposition 9.1.6 For the weight function W = W B
κ ,μ in (8.1.5) on Bd or the

weight function W = W T
κ ,μ in (8.2.1) on T d, [ndΛn(W ;x)]−1 ≤ c for all x in the

interior of Bd or T d, respectively.

Proof We prove only the case of T d ; the case of Bd is similar. In the formula
for the reproducing kernel in Theorem 8.2.8, let κi → 0 and μ → 0 and use the
formula (1.5.1) repeatedly to obtain

Pn(W T
0,0;x,x) =

2n+ d−1
2

2d(d−1) ∑
ε∈Zd+1

2

C(d−1)/2
2n (x1ε1 + · · ·+ εd+1xd+1),

where xd+1 = 1 − x1 − ·· · − xd . Hence, using the value of C(d−1)/2
n (1) =

(d− 1)n/n! ∼ nd−2 and the fact that C(d−1)/2
n (x) ∼ n(d−3)/2 (see, for example,

Szegő [1975, p. 196]), we have Pn(W T
0,0;x,x) ∼ nd−1. Consequently, we obtain

Λn(W T
0,0;x) ∼ n−d since Λn(W T

0,0;x) = [Kn(W T
0,0;x,x)]−1. Now, if all the param-

eters κi and μ are even integers then the polynomial q defined by q2(x) =
W T
κ ,μ(x)/W T

0,0(x) is a polynomial of degree m = 1
2(|κ|+μ). Using the property of

Λn in Theorem 3.6.6, we obtain

Λn(W T
κ ,μ ;x) = min

P(x)=1,P∈Πd
n

∫
T d

[P(y)]2W T
κ ,μ(y)dy

= q2(x) min
P(x)=1,P∈Πd

n

∫
T d
|P(y)q(y)/q(x)|2W0(y)dy

≥ q2(x)Λn+m(W0,0;x).

This shows that n−dΛn(W T
κ ,μ ;x) = O(1) holds for every x in the interior of T d

when all parameters are even integers. For the general parameters, Proposition
9.1.4 can be used to finish the proof.

In fact the estimate Λn(W ;x)∼ n−d holds for W B
κ,μ and W T

κ,μ . Furthermore, the
asymptotics of Λn(W ;x) are known in some cases; see the notes at the end of the
chapter.
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9.1.2 Cesàro means of the orthogonal expansion

As in classical Fourier analysis, the convergence of the partial-sum operator for
the Fourier orthogonal expansion requires that the function is smooth. For func-
tions that are merely continuous, it is necessary to consider summability methods.
A common method is the Cesàro (C,δ )-mean.

Definition 9.1.7 Let {cn}∞n=0 be a given sequence. For δ > 0, the Cesàro (C,δ )-
means are defined by

sδn =
n

∑
k=0

(−n)k

(−n−δ )k
ck.

The sequence {cn} is (C,δ )-summable, by Cesàro’s method of order δ , to s if sδn
converges to s as n→ ∞.

It is a well-known fact that if sn converges to s then sδn converges to s. The
reverse, however, is not true. For a sequence that does not converge, sδn may still
converge for some δ . We note the following properties of sδn (see, for example,
Chapter III of Zygmund [1959]).

1. If sn is the nth partial sum of the series ∑∞
k=0 ck then

sδn =
δ

δ +n

n

∑
k=0

(−n)k

(1−δ −n)k
sk.

2. If sk = 1 for all k then sδn = 1 for all n.
3. If sδn converges to s then sσn converges to s for all σ > δ .

For a weight function W and a function f , denote the nth partial sum of the
Fourier orthogonal expansion of f by Sn(W ; f ), which is defined as in (3.6.3).
Its Cesàro (C,δ )-means are denoted by Sδn (W ; f ) and are defined as the (C,δ )-
means of the orthogonal expansion ∑∞

n=0 aT
n ( f )Pn. Since Sn(W ;1) = 1, property

(2) shows that Sδn (W ;1) = 1.
One important property of the partial-sum operator Sn(W ; f ) is that it is a pro-

jection operator onto Πd
n; that is, Sn(W ; p) = p for any polynomial p of degree n.

This property does not hold for the Cesàro means. However, even if Sn(W ; f ) does
not converge, the operator σn(W ; f ) = 2S2n−1(W ; f )−Sn−1(W ; f ) may converge
and, moreover, σn(p) = p holds for all p∈Πd

n−1. In classical Fourier analysis, the
σn( f ) are called the de la Vallée–Poussin means. The following definition gives
an analogue that uses Cesàro means of higher order.

Definition 9.1.8 For an integer m≥ 1, define

σm
n (W ; f ) =

1
nm

m

∑
j=0

(2 jn)m

m

∏
i=0,i�= j

1
2 j−2i Sm

2 jn−1(W ; f ).
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Note that when m = 1, σm
n is precisely the de la Vallée–Poussin mean σn. The

main properties of the means σm
n are as follows.

Theorem 9.1.9 The means σm
n (W ; f ) satisfy the following properties:

σm
n (W ; p) = p for all p ∈ Πd

n−1 and the σm
n (W ; ·) are uniformly bounded in n

whenever the Sm
n (W ; ·) are uniformly bounded.

Proof The proof will show how the formula for σm
n (W ; f ) is determined.

Consider

m

∑
j=0

a jS
m
2 jn−1(W ; f ) =

m

∑
j=0

aj(2 jn+m−1
m

) 2 j(n−1)

∑
k=0

(
2 jn− k +m−2

2 jn−1− k

)
Sk(W ; f ).

We will choose a j so that the terms involving Sk(W ; f ) become 0 for 0≤ k≤ n−1
and

σm
n (W ; f ) =

m

∑
j=1

a∗j
2 jn−1

∑
k=n

(
2 jn− k +m−2

2 jn−1− k

)
Sk(W ; f ),

where a∗j = aj/
(2 jn+m−1

m

)
; this will show that σm

n (W ; p) = p for all p ∈Πd
n−1.

That is, together with σm
n (W ;1) = 1, we choose a j such that

m

∑
j=0

a∗j

(
2 jn− k +m−2

2 jn−1− k

)
= 0, k = 0,1, . . . ,n−1 and

m

∑
j=0

a j = 1.

Since m is an integer, it follows that(
2 jn− k +m−2

2 jn−1− k

)
=

(2 jn− k +m−2) · · ·(2 jn− k)
(m−1)!

=
m−1

∑
s=0

ps(2 jn)ks,

where the ps(t) are polynomials of degree m−1− s. The leading term of ps(t) is
a constant multiple of tm−1−s. Similarly,(

2 jn+m−1
m

)
=

(2 jn)m

m!
+ lower-degree terms.

Hence, it suffices to choose a∗j such that

m

∑
j=0

a∗j2
js = 0, s = 0,1, . . . ,m−1 and

m

∑
j=0

2 jma∗j =
m!
nm .

To find such a∗j , consider the Lagrange interpolation polynomial Lm of degree m
defined by

Lm( f ;t) =
m−1

∑
j=0

f (2 j)� j(t) with � j(t) =
m−1

∏
i=0,i�= j

t−2i

2 j−2i ,

which satisfies Lm( f ;2 j) = f (2 j) for j = 0,1, . . . ,m−1, and

f (t)−Lm( f ;t) =
f (m)(ξ )

m!

m−1

∏
i=0

(t−2i), ξ ∈ (1,2n−1).
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By the uniqueness of the interpolating polynomial, Lm( f ) = f whenever f is a
polynomial of degree at most m−1. Set f (t) = ts with s = m,m−1, . . . ,0 in the
above formulae and let t = 2m; then

2m2 −
m−1

∑
j=0

2 jm� j(2m) =
m−1

∏
i=0

(2m−2i) and 2sm−
m−1

∑
j=0

2s j� j(2m) = 0.

Hence, the choice a∗m = m!/[nm∏m−1
j=0 (2m − 2 j)] and a∗j = −� j(2m)a∗m for

j = 0,1, . . . ,m− 1 gives the desired result. The definition of � j leads to the
equation a∗j = m!/[nm∏m

i=0,i�= j(2
j − 2i)], which agrees with the definition of

σm
n (W ; f ).
Since

n−m
(

2 jn+m
m

)
=

m

∏
i=1

(2 j + i/n)≤ (2 j +1)m,

it follows that
m

∑
j=0

|a j| ≤
m

∑
j=0

[
2 j +1)m/

m

∏
i=0,i�= j

|2 j−2i|]= Am,

which is independent of n. Consequently, |σm
n (W ; f ,x)| ≤ Am supn |Sm

n (W ; f ,x)|.

Let the weight function W be defined on the domain Ω. For a continuous func-
tion f on the domain Ω, define the best approximation of f from the space Πd

n of
polynomials of degree at most n by

En( f )∞ = min
P∈Πd

n

‖ f −P‖= min
P∈Πd

n

max
x∈Ω

| f (x)−P(x)|.

Corollary 9.1.10 Suppose that the Cesàro means Sm
n (W ; f ) converge uniformly

to a continuous function f . Then

|σm
n (W ; f )− f (x)| ≤ BmEn( f ),

where Bm is a constant independent of n.

Proof Since Sm
n (W ; f ) converges uniformly, there is a constant cm independent

of n such that ‖Sm
n (W ; f )‖ ≤ cm‖ f ‖ for all n. Let P be a polynomial of degree n

such that En( f ) = ‖ f −P‖. Then, since σm
n (W ;P) = P, the stated result follows

from the triangle inequality

‖σm
n (W ; f )− f ‖ ≤ Am sup

n
‖Sm

n (W ; f −P)‖+‖ f −P‖ ≤ (Amcm +1)En( f ),

where Am =∑m
j=0

[
(2 j +1)m/∏m

i=0,i�= j |2 j−2i|] as in the proof of Theorem 9.1.9.
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9.2 Orthogonal Expansion on the Sphere
Any f ∈ L2(h2

κdω) can be expanded into an h-harmonic series. Let {Sα ,n} be an
orthonormal basis of H d

n (h2
κ). For f in L2(h2

κ dω), its Fourier expansion in terms
of {Sα ,n} is given by

f ∼
∞

∑
n=0
∑
α

an
α( f )Sα ,n, where an

α( f ) =
∫

Sd−1
f Sα ,nh2

κ dω.

For the ordinary harmonics, this is usually called the Laplace series. The nth com-
ponent of this expansion is written, see (7.3.1), as an integral with reproducing
kernel Pn(h2

κ ;x,y):

Sn(h2
κ ; f ,x) = c′h

∫
Sd−1

f (y)Pn(h2
κ ;x,y)h2

κ(y)dω.

It should be emphasized that the nth component is independent of the particular
choice of orthogonal basis. Many results on orthogonal expansions for weight
functions whose support set has a nonempty interior, such as those in Section 9.1,
hold also for h-harmonic expansions. For example, a standard L2 argument shows
that:

Proposition 9.2.1 If f ∈ L2(h2
κ dω) then Sn(h2

κ ; f ) converges to f in L2(h2
κ dω).

For uniform convergence or Lp-convergence for p �= 2, it is necessary to con-
sider a summability method. It turns out that the formula for Pn(h2

κ ;x,y) in
Corollary 7.3.2 allows us to show that the summability of h-harmonics can be
reduced to that of Gegenbauer polynomials.

In the following, we denote by Lp(h2
κ dω) the space of Lebesgue-measurable

functions f defined on Sd−1 for which the norm

‖ f‖p,h =
(

c′h
∫

Sd−1
| f (x)|ph2

κ dω
)1/p

is finite. When p = ∞, we take the space as C(Sd−1), the space of continuous
functions with uniform norm ‖ f ‖∞. The essential ingredient is the explicit for-
mula for the reproducing kernel in Corollary 7.3.2. Denote by wλ the normalized
weight function

wλ (t) = B(λ + 1
2 , 1

2 )−1(1− t2)λ−1/2, t ∈ [−1,1],

whose orthogonal polynomials are the Gegenbauer polynomials (Subsection
1.4.3). A function f ∈ L2(wλ , [−1,1]) can be expressed as a Gegenbauer
expansion:

f ∼
∞

∑
k=0

bk( f )C̃λ
n with bk( f ) :=

∫ 1

−1
f (t)C̃λ

n (t)wλ (t)dt,
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where C̃λ
n denotes the orthonormal Gegenbauer polynomial. A summability

method for the Gegenbauer expansion is a sum in the form φn( f ,wλ ;t) =
∑n

k=0 ck,nbk( f )C̃λ
k (t), where the ck,n are given constants such that ∑n

k=0 ck,n → 1
as n→ ∞. Evidently the sum can be written as an integral:

φn( f ,wλ ;t) =
∫ 1

−1
pφn (wλ ;s,t) f (s)wλ (s)ds,

with pφn (wλ ;s, t) = ∑n
k=0 ck,nC̃λ

k (s)C̃λ
k (t).

Proposition 9.2.2 For p = 1 and p = ∞, the operator norm is given by

sup
‖ f‖p≤1

‖φn( f ,wλ )‖p = max
t∈[−1,1]

∫ 1

−1
|pφn (wλ ;s,t)|wλ (s)ds,

where ‖g‖ is the L1(wλ , [−1,1]) norm of g.

Proof An elementary inequality shows that the left-hand side is no greater than
the right-hand side. For p =∞ and fixed t, the choice f (s) = sign[pφn (s, t)] is then
used to show that the equality holds. For p = 1, consider a sequence sn( f ) defined
by sn( f , t) =

∫ 1
−1 f (u)qn(u,t)wλ (u)du which converges uniformly to f whenever

f is continuous on [−1,1] (for example, the Cesàro means of sufficiently high
order). Then choose fN(s) = qN(s,t∗), where t∗ is a point for which the maximum
in the right-hand side is attained, such that

φn( fN ,wλ ;t) =
∫ 1

−1
qN(s,t∗)pφn (wλ ;s,t)wλ (s)ds = sN(pφn (wλ ; ·,t);t∗),

which converges to pφn (wλ ;t∗,t) as N → ∞. The dominated convergence theorem
shows that ‖φn( fN ,wλ )‖→ ∫ 1

−1 |pφn (wλ ;t,t∗)|wλ (t)dt as N →∞, which gives the
stated identity for p = 1.

Theorem 9.2.3 Let λ = γκ + d−2
2 . If φn(·,wλ ;t) = ∑n

k=0 ck,nbk(·)C̃λ
k (t) defines

a bounded operator on Lp(wλ , [−1,1]) for 1 ≤ p ≤ ∞ then Φn(·) =
∑n

k=0 ck,nSk(·,h2
κ) defines a bounded operator on Lp(h2

κ dω). More precisely, if(∫ 1

−1

∣∣φn( f ,wλ ;t)
∣∣pwλ (t)dt

)1/p ≤C
(∫ 1

−1
| f (t)|pwλ (t)dt

)1/p

for f ∈ Lp(wλ , [−1,1]), where C is a constant independent of f and n, then(∫
Sd−1

∣∣Φn(g;x)
∣∣ph2

κ(x)dω
)1/p ≤C

(∫
Sd−1

|g(x)|ph2
κ(x)dω

)1/p

for g∈ Lp(h2
κ dω) with the same constant. In particular, if φn( f ,wλ ) converges to

f in Lp(wλ , [−1,1]) then the means Φn(g) converge to g in Lp(h2
κ dω).



298 Summability of Orthogonal Expansions

Proof Like φn, the means Φn can be written as integrals:

Φn(g;x) = c′h
∫

Sd−1
PΦ

n (x,y)g(y)h2
κ(y)dω

with PΦ
n (x,y) = ∑n

k=0 ck,nPk(h2
κ ;x,y). Since C̃λ

k (t)C̃λ
k (1) = [(n + λ )/λ ]Cλ

k (t), it
follows from the explicit formula for Pn(h2

κ ;x,y) given by Corollary 7.3.2 and
(7.3.1) that

PΦ
n (x,y) = V

[
pφn (wλ ;〈x, ·〉,1)

]
(y).

Since V is positive,∣∣V[pφn (wλ ;〈x, ·〉,1)
]
(y)
∣∣≤V

[|pφn (wλ ;〈x, ·〉,1)|](y).
Consequently, for p = ∞ and p = 1, applying Corollary 7.4.5 gives

‖Φn(g)‖p,h ≤‖g‖p,hc′h
∫

Sd−1

∣∣V[pφn (wλ ;〈x, ·〉,1)
]
(y)
∣∣h2

κ(y)dω(y)

≤‖g‖p,h

∫ 1

−1
|pφn (wλ ;1,t)|wλ (t)dt

≤C‖g‖p,h

by Proposition 9.2.2. The case 1 < p < ∞ follows from the Riesz interpolation
theorem; see Rudin [1991].

Note that the proof in fact shows that the convergence of the Φn means depends
only on the convergence of φn at the point t = 1.

Let Sδn (h2
κ ; f ) denote the nth Cesàro (C,δ ) mean of the h-harmonic expansion.

It can be written as an integral,

Sδn (h2
κ ; f ,x) = c′h

∫
Sd−1

f (y)Pδ
n (hκ ;x,y)h2

κ(y)dω,

where Pδ
n (hκ ;x,y) is the Cesàro (C,δ )-mean of the sequence of reproducing ker-

nels as in Definition 9.1.7. As an immediate corollary of Theorem 9.2.3, we
have

Corollary 9.2.4 Let f ∈ Lp(h2
κ dω), 1 ≤ p < ∞, or f ∈ C(Sd−1). Then the

h-harmonic expansion of f with respect to h2
κ is (C,δ )-summable in Lp(h2

κ dω)
or C(Sd−1) provided that δκ > γκ + d−2

2 .

Proof The (C,δ )-means of the Gegenbauer expansion with respect to wλ
converge if and only if δ > λ ; see Szegő [1975, p. 246, Theorem 9.1.3].

Corollary 9.2.5 The (C,δ )-means of the h-harmonic expansion with respect to
h2
κ define a positive linear operator provided that δ ≥ 2γκ +d−1.
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Proof According to an inequality due to Kogbetliantz [1924], see also
Askey [1975, p. 71], the (C,δ )-kernel of the Gegenbauer expansion with respect
to wλ is positive if δ ≥ 2λ +1.

Note that for κ = 0 these results reduce to the classical results of ordinary
harmonics. In that case, the condition δ > d−2

2 is the so-called critical index (see,
for example, Stein and Weiss [1971]), and both corollaries are sharp.

We conclude this section with a result on the expansion of the function
V f (〈x,y〉) in h-harmonics. It comes as an application of the Funk–Hecke for-
mula in Theorem 7.3.4. Let us denote by sδn (wλ ; )̇ the Cesàro (C,δ )-means of the
Gegenbauer expansion with respect to wλ .

Proposition 9.2.6 Let f be a continuous function on [−1,1]. Then

Sδn (h2
κ ;V f (〈x, ·〉),y) = V [sδn (wγκ+(d−2)/2; f ,〈x, ·〉)](y).

Proof Let λ = γκ + d−2
2 . For each fixed x ∈ Sd−1, Pn(h2

κ ;x,y) is an element in
H d

n (h2
κ) and it follows from the Funk–Hecke formula that

Sn(h2
κ ;V f (〈x, ·〉),y) =

∫
Sd−1

V f (〈x,u〉)Pn(h2
κ ;y,u)h2

κ(u)dω(u)

= τn( f )
n+λ
λ

V
[
Cλ

n (〈x, ·〉)
]
(y)

by Corollary 7.3.2. Hence, by the formula for τn( f ) in Theorem 7.3.4,

Sn(h2
κ ;V f (〈x, ·〉),y) =

∫ 1

−1
f (t)C̃λ

n (t)wλ (t)dt V [C̃λ
n (〈x, ·〉)](y).

Taking the Cesàro means of this identity gives the stated formula.

9.3 Orthogonal Expansion on the Ball
For a weight function W defined on the set Ω of Rd , denote by Lp(W,Ω) the
weighted Lp space with norm defined by

‖ f‖W,p =
(∫

Ω
| f (x)|pW (x)dx

)1/p

for 1 ≤ p < ∞. When p = ∞, take the space as C(Ω), the space of continuous
functions on Ω with uniform norm.

Recall that V d
n (W ) denotes the space of orthogonal polynomials of degree n

with respect to W and Pn(W ;x,y) denotes the reproducing kernel of V d
n (W ).

Denote by Pn( f ;x) the nth component of the orthogonal expansion which has
Pn(W ;x,y) as the integral kernel. Let H be an admissible function defined on
Rd+m+1, as in Definition 4.3.1. Denote the weighted Lp space by Lp(H,Sd+m) to
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emphasize the dependence on Sd+m. The orthogonal polynomials with respect
to the weight function W m

H defined in (4.3.1) are related to the orthogonal
polynomials with respect to H dωd+m on Sd+m, as discussed in Section 4.3.

Theorem 9.3.1 Let H be an admissible weight function and W H
m be defined as

in (4.3.1). Let p be fixed, 1 ≤ p≤ ∞. If the means Φn(·) = ∑n
k=0 ck,n Sk(·) define

bounded operators on Lp(H, Sd+m) then the means Ψn(·) =∑n
k=0 ck,nPk(·) define

bounded operators on Lp(W m
H ,Bd). More precisely, if(∫

Sd+m

∣∣Φn(F;x)
∣∣pH(x)dω

)1/p ≤C
(∫

Sd+m
|F(x)|pH(x)dω

)1/p

for F ∈ Lp(H,Sd+m), where C is a constant independent of F and n, then(∫
Bd

∣∣Ψn( f ;x)
∣∣pW m

H (x)dx
)1/p ≤C

(∫
Bd
| f (x)|pH(x)dx

)1/p

for f ∈ Lp(W m
H ,Bd). In particular, if the means Φn(F) converge to F in

Lp(H,Sd+m) then the means Ψn( f ) converge to f in Lp(W m
H ,Bd).

Proof For f ∈ Lp(W m
H ,Bd), define a function F on Sd+m by F(x) = f (x1), where

x = (x1,x2) ∈ Sd+m, x1 ∈ Bd . By Lemma 4.3.2 it follows that∫
Sd+m

|F(x)|pH(x)dω = C
∫

Bd
| f (x)|pW m

H (x)dx;

hence, F ∈ Lp(H,Sd+m). Using Theorem 4.3.5 and the notation y = (y1,y2) ∈
Sd+m and y2 = |y2|η , η ∈ Sm, the sums Pn(F) and Pn( f ) are seen to be related as
follows:

Pn( f ;x1) =
∫

Bd
Pn(W m

H ;x1,y1) f (y1)W m
H (y1)dy1

=
∫

Bd

[∫
Sm

Pn(H;x,

(
y1,
√

1−|y1|2η
)

)H2(η)dω(η)
]

f (y1)W m
H (y1)dy1

=
∫

Sd+m
Pn(H;x,y)F(y)H(y)dy = Pn(F;x),

where we have used Lemma 4.3.2. Using the same lemma again,∫
Bd

∣∣Φn( f ;x1)
∣∣pW m

H (x1)dx1 =
∫

Sd+m

∣∣Φn( f ;x1)
∣∣pH(x)dω(x)

=
∫

Sd+m

∣∣Ψn(F ;x)
∣∣pH(x)dω(x).

Hence, the boundedness of the last integral can be used to conclude that∫
Bd

∣∣Φn( f ;x1)
∣∣pW m

H (x1)dx1 ≤Cp
∫

Sd+m
|F(x)|pH(x)dω

= Cp
∫

Bd
| f (x)|pW m

H (x)dx.
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This completes the proof for 1 ≤ p < ∞. In the case p = ∞, the norm becomes
the uniform norm and the result follows readily from the fact that Pn( f ;x1) =
Pn(F;x). This completes the proof for m > 0. In the case m = 0, we use Theorem
4.2.8 instead of Theorem 4.3.5.

Theorem 9.3.1 shows that, in order to study the summability of the Fourier
orthogonal expansion on the unit ball, we need only study the summability on the
unit sphere. In particular, in the limiting case m = 0 we can use Theorem 9.2.3
with d replaced by d +1 to obtain the following result for the reflection-invariant
weight function W B

κ ,μ defined in Definition 8.1.1.

Theorem 9.3.2 Let λ = γκ + d−2
2 . If the expression φn(·) = ∑n

k=0 ck,nbk(·)C̃λ
k

defines bounded operators on Lp(wλ , [−1,1]), 1 ≤ p ≤ ∞, then the expres-
sion Ψn(·) = ∑n

k=0 ck,nPk(·) defines bounded operators on Lp(W B
κ ,μ ,Bd). More

precisely, if(∫ 1

−1

∣∣φn( f ; t)
∣∣pwλ (t)dt

)1/p ≤C
(∫ 1

−1
| f (t)|pwλ (t)dt

)1/p

for f ∈ Lp(wλ , [−1,1]), where C is a constant independent of f and n, then(∫
Bd

∣∣Ψn(g;x)
∣∣pW B

κ ,μ(x)dx
)1/p ≤C

(∫
Bd
|g(x)|pW B

κ ,μ(x)dx
)1/p

for g ∈ Lp(W B
κ,μ ,Bd) with the same constant. In particular, if the means φn( f )

converge to f in Lp(wλ , [−1,1]), then the means Φn(g) converge to g in
Lp(W B

κ ,μ ,Bd).

For δ > 0, let Sδn ( f ;W B
κ ,μ) denote the Cesàro (C,δ ) means of the orthogonal

expansion with respect to W B
κ ,μ . As a corollary of the above theorem and the

results for Gegenbauer expansions, we can state analogues of Corollaries 9.2.4
and 9.2.5.

Corollary 9.3.3 Let W B
κ ,μ be as in Definition 8.1.1 with μ ≥ 0 and let λκ ,μ :=

γκ + μ + d−1
2 . Let f ∈ Lp(W B

κ,μ ,Bd). Then the orthogonal expansion of f with
respect to W B

κ ,μ is (C,δ )-summable in Lp(W B
κ ,μ ,Bd), 1 ≤ p ≤ ∞, provided that

δ > λκ,μ . Moreover, the (C,δ )-means define a positive linear operator if δ ≥
2λκ,μ +1.

For the classical weight function W B
μ (x) = (1 − ‖x‖2)μ−1/2 (κ = 0), the

condition for (C,δ )-summability in Corollary 9.3.3 is sharp.

Theorem 9.3.4 The orthogonal expansion of every continuous function f with
respect to Wμ , with μ ≥ 0, is uniformly (C,δ )-summable on Bd if and only if
δ > μ + d−1

2 .
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Proof We only need to prove the necessary condition. Let ‖x‖= 1. Let Kδ
n (W B

μ )
denote the (C,δ )-means of the reproducing kernel of the orthogonal expansion.
We need to show that

I μ
n (x) =

∫
Bd

∣∣∣Kδ
n (W B

μ ;x,y)
∣∣∣(1−‖y‖2)μ−1/2 dy

is unbounded when δ = μ + d−1
2 . By Theorem 5.2.8, Pn(W B

μ ;x,y) =

C̃μ+(d−1)/2
n (1)C̃μ+(d−1)/2

n (〈x,y〉), where we use the normalized Gegenbauer
polynomials. Therefore Kδ

n (W B
μ ;x,y) = Kδ

n (wμ+(d−1)/2;1,〈x,y〉), where Kδ
n (wλ )

denotes the (C,δ ) means of the Gegenbauer expansion with respect to wλ . Using
the polar coordinates and Lemma 7.4.4,

I μ
n =σd−2

∫ 1

0
rd−1

∫ 1

−1

∣∣∣Kδ
n (wμ+(d−1)/2;rs,1)

∣∣∣(1−s2)(d−3)/2 ds(1−r2)μ−1/2 dr.

Making the change of variables s �→ t/r and exchanging the order of integration,
use of a beta integral shows that

I μ
n = σd−2

∫ 1

−1

∣∣∣Kδ
n (wμ+(d−1)/2;t,1)

∣∣∣∫ 1

|t|
(r2− t2)(d−3)/2 r(1− r2)μ−1/2 dr dt

= σd−2Aμ

∫ 1

−1

∣∣∣Kδ
n (wμ+(d−1)/2;t,1)

∣∣∣(1− t2)μ+(d−2)/2 dt

where Aμ is a constant. Therefore, the (C,δ )-summability of the orthogonal
expansion with respect to W B

μ on the boundary of Bd is equivalent to the (C,δ )-
summability of the Gegenbauer expansion with index μ+ d−1

2 at the point x = 1.
The desired result follows from Szegő [1975, Theorem 9.1.3, p. 246], where the
result is stated for the Jacobi expansion; a shift of 1

2 on the index is necessary for
the Gegenbauer expansion.

The proof in fact shows that the maximum of the (C,δ )-means with respect to
W B
μ is attained on the boundary of the unit ball.
Since the weight function on the sphere requires all parameters to be nonnega-

tive, we need to assume μ ≥ 0 in the above results. The necessary part of the last
theorem, however, holds for all μ >− 1

2 .
For the weight function W B

κ ,μ defined in (8.1.5), further results about orthogo-

nal expansions can be derived. Let Sδn (W B
κ ,μ ; f ) denote the Cesàro (C,δ )-means

of the orthogonal expansion with respect to W B
κ ,μ and let P(W B

κ,μ ; f ) denote the

nth component of the expansion as in (3.6.2). Recall that sδn (w; f ) denotes the
nth (C,δ )-mean of the orthogonal expansion with respect to w. Let wa,b(t) =
|t|2a(1− t2)b−1/2 denote the generalized Gegenbauer weight function.

Proposition 9.3.5 Let W B
κ ,μ(x) = ∏d

i=1 |xi|κi(1−‖x‖2)μ−1/2. Let f0 be an even
function defined on [−1,1] and f (x) = f0(‖x‖); then
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Sδn (W B
κ ,μ ; f ,x) = sδn (w|κ|+(d−1)/2,μ ; f0,‖x‖).

Proof The formula for the intertwining operator V in Theorem 7.5.4 shows that,
for y = sy′ with |y′| = 1, V [g(〈x, ·〉)](y) = V [g(〈sx, ·〉)](y′). Hence, using polar
coordinates, the formulae for the reproducing kernel in Theorem 8.1.10 and
Corollary 7.4.5, we obtain, with λ = |κ|+ d−1

2 ,

Pn(W B
κ ,μ ; f ,x) = wB

κ ,μcμ
n+λ +μ
λ +μ

∫ 1

0
f0(s)sd−1(1− s2)μ−1/2

×
∫

Sd−1
V
(∫ 1

−1
Cλ+μ

n

(
〈sx, ·〉+

√
1−‖x‖2

√
1− s2 t

)
(1− t2)μ−1dt

)
(y′)

×h2
κ(y

′)dω(y′)ds

= cμwB
κ ,μ

n+λ +μ
λ +μ

Bκ

∫ 1

0
f0(s)sd−1(1− s2)μ−1/2

×
∫ 1

−1

∫ 1

−1
Cλ+μ

n

(
s‖x‖u+

√
1− s2

√
1−‖x‖2 t

)
(1− t2)μ−1dt

× (1−u2)λ−1duds.

Upon using Corollary 7.5.6 we conclude that

Pn(W B
κ,μ ; f ,x) = c C̃(μ ,λ )

n (‖x‖)
∫ 1

0

[
C̃(μ ,λ )

n (s)+C̃(μ,λ )
n (−s)

]
f0(|s|)

× sd−1(1− s2)μ−1/2 ds

= c C̃(μ ,λ )
n (‖x‖)

∫ 1

−1
C̃(μ,λ )

n (s) f0(s)|s|d−1(1− s2)μ−1/2 ds,

where {C̃(μ,λ )
n (t)} are the normalized generalized Gegenbauer polynomials and

c is the normalization constant of wλ ,μ , as can be seen by setting n = 0. Taking
Cesàro (C,δ )-means proves the stated result.

Proposition 9.3.5 states that the partial sum of a radial function is also a radial
function. It holds, in particular, for the classical weight function W B

μ . For W B
μ ,

there is another class of functions that are preserved in such a manner. A function
f defined on Rd is called a ridge function if f (x) = f0(〈x,y〉) for some f0 : R �→R

and y ∈ Rd . The next proposition states that the partial sum of a ridge function is
also a ridge function.

Proposition 9.3.6 Let f : R �→ R. For ‖y‖= 1 and n≥ 0,

Sδn (W B
μ ; f (〈x, ·〉),y) = sδn (wμ+(d−1)/2; f ,〈x,y〉).

In fact, using the the Funk–Hecke formula in Theorem 8.1.17 and following
the proof of Proposition 9.2.6, such a result can be established, for functions of
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the form VB f (〈x, ·〉), for the weight function W B
κ,μ in Proposition 9.3.5. The most

interesting case is the result for the classical weight function. The proof is left to
the reader.

9.4 Orthogonal Expansion on the Simplex
Although the structures of the orthogonal polynomials and the reproducing kernel
on T d follow from those on Bd , the summability of orthogonal expansions on
T d does not follow in general as a consequence of the summability on Bd . To
state the result, let us denote by w(a,b)(t) = (1− t)a(1 + t)b the Jacobi weight

function and by p(a,b)
n the orthonormal Jacobi polynomials with respect to w(a,b).

In the following theorem, let Pn( f ) denote the nth component of the orthogonal
expansion with respect to W T

κ ,μ .

Theorem 9.4.1 Let λ = γκ +μ+ d−2
2 . If φn(·) =∑n

k=0 ck,nbk(·)p(λ ,−1/2)
k defines

bounded operators on Lp(w(λ ,−1/2), [−1,1]), 1≤ p≤ ∞, then the means Φn(·) =
∑n

k=0 ck,nPk(·) define bounded operators on Lp(W T
κ ,μ ,T d). More precisely, if(∫ 1

−1

∣∣φn( f ;t)
∣∣pw(λ ,−1/2)(t)dt

)1/p
≤C
(∫ 1

−1
| f (t)|pw(λ ,−1/2)(t)dt

)1/p

for f ∈ Lp(w(λ ,−1/2), [−1,1]), where C is a constant independent of f and n, then(∫
T d

∣∣Φn(g;x)
∣∣pW T

κ ,μ(x)dx
)1/p ≤C

(∫
T d
|g(x)|pW T

κ ,μ(x)dx
)1/p

for g ∈ Lp(W T
κ ,μ ,T d) with the same constant. In particular, if the means φn( f )

converge to f in Lp(w(λ ,−1/2), [−1,1]) then the means Φn(g) converge to g in
Lp(W T

κ,μ ,T d).

Proof We follow the proof of Theorem 9.2.3. The means Φn can be written as
integrals,

Φn(g;x) = wT
κ,μ

∫
T d

PΦ
n (x,y)g(y)W T

κ ,μ(y)dy,

with PΦ
n (x,y) = ∑n

k=0 ck,nPk(W T
κ ,μ ;x,y). Likewise, write φn( f ) as an integral with

kernel pφn (wλ ,−1/2;s,t) = ∑n
k=0 ck,n p(λ ,−1/2)

k (s)p(λ ,−1/2)
k (t). Thus, following the

proof of Theorem 9.2.3, the essential part is to show that

In(Φ;x) =
∫

T d

∣∣PΦ
n (x,y)

∣∣W T
κ ,μ(y)dy =

∫
Sd

∣∣PΦ
n (x,{y}2)

∣∣h2
κ ,μ(y′)dω(y′)

with y′ = (y,yd+1) uniformly bounded for x ∈ T d , where the second equality fol-
lows from Lemmas 4.4.1 and 4.2.3. Let V be the intertwining operator associated
with hκ,μ and the reflection group W = W0 ×Z2. From the proof of Theorem
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8.1.10, we see that the formula for the reproducing kernel Pk(W T
κ ,μ) in Theorem

8.2.7 can be written as

Pk(W T
κ ,μ ;x,y) =

2n+λ + 1
2

λ + 1
2

V
[
Cλ+1/2

2n (〈{x′}1/2, ·〉)
]
({y′}1/2),

where x′ = (x,xd+1) and |x′| = 1. Using the relation between the Jacobi and
Gegenbauer polynomials (Definition 1.5.5 with μ = 0), we have

2n+λ + 1
2

λ + 1
2

Cλ+1/2
2n (t) = p(λ ,−1/2)

n (1)p(λ ,−1/2)
n (2t2−1).

Hence the kernel can be written in terms of Jacobi polynomials as

PΦ
n (x,{y}2) = 2−d ∑

ε∈Zd
2

V
[
pφn (w(λ ,−1/2);1,2〈·,z(ε)〉2−1)

]
(y′)

where z(ε) = {x′}1/2ε . We observe that |z(ε)|2 = |x′| = 1. Hence, since V is a
positive operator, we can use Corollary 7.4.5 to conclude that

In(Φ;x) ≤ 2−d ∑
ε∈Zd

2

∫
Sd

V
[|pφn (w(λ ,−1/2);1,2〈·,z(ε)〉2−1)|](y′)h2

κ(y′)dω

= Bκ

∫ 1

−1
|pφn (w(λ ,−1/2);1,2t2−1)|(1− t2)λ dt

=
∫ 1

−1
|pφn (w(λ ,−1/2);1,u)|w(λ ,−1/2)(u)du,

where the last step follows from a change of variables, and the constant in front
of the integral becomes 1 (on setting n = 0). This completes the proof.

As a corollary of the above theorem and the results for the Jacobi expansion,
we can state an analogue of Corollary 9.3.3.

Corollary 9.4.2 Let W T
κ ,μ be as in Definition 8.2.1 with μ ,κ ≥ 0 and f ∈

Lp(W T
κ ,μ ,T d). Then the orthogonal expansion of f with respect to W T

κ ,μ is (C,δ )-
summable in Lp(W T

κ ,μ ,T d), 1≤ p≤∞, provided that δ > γκ +μ+ d−1
2 . Moreover,

the (C,δ )-means are positive linear operators if δ ≥ 2γκ +2μ +d.

In particular, these results apply to the classical orthogonal polynomials on T d .
In this case, it should be pointed out that the condition δ > γκ +μ+ d−1

2 is sharp
only when at least one κi = 0. For sharp results and further discussion, see the
notes at the end of the chapter.

For δ > 0, let Sδn (W T
κ,μ ; f ) denote the Cesàro (C,δ )-means of the orthogonal

expansion with respect to W T
κ ,μ . Let us also point out the following analogue of

Proposition 9.3.5.
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Proposition 9.4.3 Let w(a,b)(t) = (1− t)a(1+ t)b be the Jacobi weight function.
Let f (x) = f0(2|x|−1). Then

Sδn (W T
κ ,μ ; f ,x) = sδn (w(γκ+(d−2)/2,μ−1/2); f0,2|x|−1).

Proof Let Pn
β ,m denote the orthonormal basis in Proposition 8.2.5. By definition,

Pn(W T
κ ,μ ;x,y) =

n

∑
m=0

∑
|β |=m

Pβ ,m(x)Pβ ,m(y).

Since Pn
β ,m(x) = bm,n p(γ+2m+(d−2)/2,μ−1/2)

n−m (2s−1)Rm
β (x) and Rm

β is homogeneous

in the homogeneous coordinates of T d , using the �1-radial coordinates for the
simplex, x = su, we obtain

wT
κ,μ

∫
T d

f (x)Pn(W T
κ,μ ;x,y)W T

κ,μ(y)dy

= wT
κ,μ

∫ 1

0
f0(2s−1)sγ+d−1

× (1− s)μ−1/2
∫
|u|=1

Pn(W T
κ,μ ;x,su)h(

√
u1, . . . ,

√
ud)

du√
u1 · · ·ud

ds

= c
∫ 1

0
f0(2s−1)p(γ+(d−2)/2,μ−1/2)

n (2t−1)p(γ+(d−2)/2,μ−1/2)
n (2s−1)

× sγ+d−1(1− s)μ−1/2 ds,

where t = |x| and c = B(γ + d
2 ,μ+ 1

2 )−1.

9.5 Orthogonal Expansion of Laguerre and Hermite
Polynomials

For the multiple Laguerre polynomials with respect to the weight function
W L
κ (x) = xκe−|x| with xκ = ∏d

i=1 |xi|κi , we start with

Theorem 9.5.1 If f is continuous at the origin and satisfies∫
x∈Rd

+,|x|≥1
| f (x)|xκ |x|−δ−1/2e−|x|/2 dx < ∞

then the Cesàro (C,δ )-means of the multiple Laguerre expansion of f converge
at the origin if and only if δ > |κ|+d− 1

2 .

Proof The generating function of the Laguerre polynomials (Subsection 1.4.2)
can be written as

∞

∑
n=0

L̃αn (0)L̃αn (x)rn = (1− r)−α−1e−xr/(1−r), |r|< 1.
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Summing the above formula gives a generating function for Pn(W L
κ ;x,0):

∞

∑
n=0

Pn(W L
κ ;x,0)rn =

∞

∑
n=0

∑
|k|=n

L̃κk(0)L̃κk(x)rn

= (1− r)−|κ|−de−|x|r/(1−r),

which implies that Pn(W L
κ ;x,0) = L|κ |+d−1

n (|x|). Multiplying the last expression
by the power series of (1− r)−δ−1 shows that

Pδ
n (W L

κ ;x,0) =
n!

(δ +1)n
L|κ |+δ+d

n (|x|).

Therefore, we conclude that

Sδn (W L
κ ; f ,0) =

n!
(δ +1)n

wL
κ

∫
Rd

+

f (x)L|κ |+d+δ
n (|x|)W L

κ (x)dx.

Using �1 radial coordinates as in (8.4.3), it follows that

Sδn (W L
κ ; f ,0) = wL

κ
n!

(δ +1)n

∫ ∞

0

(∫
|y|=1

f (ry)yκdy
)

×L|κ|+d+δ
n (r)r|κ |+d−1e−rdr.

The right-hand side is the (C,δ )-mean of the Laguerre expansion of a one-
variable function. Indeed, define F(r) = cd

∫
|y|=1 f (ry)yκdy, where the constant

cd = Γ(|κ|+d)/∏d
i=1Γ(κi +1); then the above equation can be written as

Sδn (W L
κ ; f ,0) = sδ (w|α |+d−1;F,0),

where wa(t) = tae−t is the usual Laguerre weight function for one variable.
Note that cd = 1/

∫
|y|=1 yκdy, so that F is just the average of f over the simplex

{y : |y|=1}. This allows us to use the summability theorems for the Laguerre
expansion of one variable. The desired result follows from Szegő [1975, p. 247,
Theorem 9.1.7]. The condition of that theorem is verified as follows:∫ ∞

1
|F(r)|r|κ |+d−1−δ−1/2e−r/2 dr

≤ cd

∫ ∞

1

∫
|y|=1

| f (ry)yκ |dy r|κ |+d−δ−3/2e−r/2 dr

≤ cd

∫
x∈Rd

+,|x|≥1
| f (x)xκ | |x|−δ−1/2e−|x|/2 dx,

which is bounded under the given condition; it is evident that F is continuous at
r = 0 if f is continuous at the origin.

The result can be extended to R+ by using a convolution structure of the
Laguerre expansion on R+. The convolution is motivated by the product formula
of Laguerre polynomials,
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Lλn (x)Lλn (y) =
Γ(n+λ +1)2λ

Γ(n+1)
√

2π

∫ π

0
Lλn (x + y+2

√
xy cosθ)e−

√
xycosθ

× jλ−1/2(
√

xy sinθ)sin2λ θ dθ ,

where jμ is the Bessel function of fractional order (see, for example, Abramowitz
and Stegun [1970]). For a function f on R+ define the Laguerre translation
operator T λ

x f by

T λ
x f (y) =

Γ(λ +1)2λ√
2π

∫ π

0
f (x + y+2

√
xy cosθ)e−

√
xycosθ

× jλ−1/2(
√

xysinθ)sin2λ θ dθ .

The product formula implies that Lλn (x)Lλn (y) = Lλn (0)T λ
x Lλn (y). The convolution

of f and g is defined by

( f ∗g)(x) =
∫ ∞

0
f (y)T λ

x g(y)yλ e−y dy.

It satisfies the following property due to Görlich and Markett [1982].

Lemma 9.5.2 Let λ ≥ 0 and 1 ≤ p ≤ ∞. Then, for f ∈ Lp(wλ ,R+) and g ∈
L1(wλ ,R+),

‖ f ∗g‖p,wλ ≤ ‖ f‖p,wλ ‖g‖1,wλ .

For the proof we refer to the paper of Görlich and Markett or to the mono-
graph by Thangavelu [1993, p. 139]. The convolution structure can be extended
to multiple Laguerre expansions and used to prove the following result.

Theorem 9.5.3 Let κi ≥ 0, 1 ≤ i ≤ d, and 1 ≤ p ≤ ∞. The Cesàro (C,δ )-
means of the multiple Laguerre expansion are uniformly bounded as operators
on Lp(Wκ ,Rd

+) if δ > |κ|+d− 1
2 . Moreover, for p = 1 and ∞, the (C,δ )-means

converge in the Lp(Wκ ,Rd
+) norm if and only if δ > |κ|+d− 1

2 .

Proof The product formula of the Laguerre polynomials and the definition of the
reproducing kernel gives

Pδ
n (Wκ ;x,y) = T κ1

x1
· · ·T κd

xd
Pδ

n (Wκ ;0,y)

where Txi acts on the variable yi. Therefore, it follows that

Sδn (Wκ ; f ,x) =
∫

Rd
+

f (y)T κ1
x1
· · ·T κd

xd
Pδ

n (Wκ ;0,y)Wκ(y)dy,

which can be written as a d-fold convolution in an obvious way. Therefore,
applying the inequality in Lemma 9.5.2 d times gives

‖Sδn (Wκ ; f )‖p,Wκ ≤ ‖Pδ
n (Wκ ;0, ·)‖1,Wκ ‖ f ‖p,Wκ .
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The norm of Pδ
n (Wκ ,0,x) is bounded if and only if δ > |κ|+d− 1

2 by the Theo-
rem 9.5.1. The convergence follows from the standard density argument.

The following result states that the expansion of an �1-radial function is also
an �1-radial function.

Proposition 9.5.4 Let wa(t) = tae−t denote the Laguerre weight function. Let f0

be a function defined on R+ and f (x) = f0(|x|). Then, for the multiple Laguerre
expansion,

Sn(W L
κ ; f ,x) = sδn (w|κ|+d−1; f0, |x|).

Proof The proof is based on Proposition 8.4.7. Using (8.4.3) and the orthogonal-
ity of Rm

β , we obtain∫
Rd

+

f0(|y|)Pn(W L
κ ;x,y)yκe−|y| dy

=
∫ ∞

0
f (r)r|κ |+d−1e−r

∫
|u|=1

Pn(Wκ ;x,ru)uκ dudr

= c
∫ ∞

0
f (r)r|κ |+d−1e−rL̃|κ |+d−1

n (r)dr L̃|κ |+d−1
n (|x|),

where the constant c can be determined by setting n = 0. Taking the Cesàro means
gives the desired result.

For the summability of the multiple Hermite expansion, there is no special
boundary point for Rd or convolution structure. In this case the summability often
involves techniques from classical Fourier analysis.

Proposition 9.5.5 Let W H
κ be as in Definition 8.3.1. Let fμ(x) = f (

√μx). Then,
for each x ∈ Rd,

lim
μ→∞

Sδn (W B
κ ,μ ; fμ ,x/

√
μ) = Sδn (W H

κ ; f ,x).

Proof We look at the Fourier coefficient of fμ . Making the change of variables
x �→ y/

√μ leads to

an
α(W B

κ ,μ ; f ) = wB
κ ,μ

∫
Bd

f (
√
μx)Pn

α(W B
κ,μ ;x)W B

κ ,μ(x)dx

= wB
κ ,μμ

−(γ+d)/2
∫

Rd
f (y)χμ(y)Pn

α(W B
κ ,μ ;y/

√
μ)h2

κ(y)(1−‖y‖2/μ)μ−1/2 dy,

where χμ is the characteristic function of the set {y : ‖y‖ ≤ √μ}. Using the
fact that wB

κ,μμ−(γ+d)/2 → wH
κ as μ → ∞ and Theorem 8.3.4, the dominated

convergence theorem shows that

lim
μ→∞

an
α(W B

κ ,μ ; f ) = wH
κ

∫
Rd

f (y)Pn
α(W H

κ ;y)h2
κ(y)e−‖y‖2

dy,
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which is the Fourier coefficient an
α(W H

κ ; f ); the stated equation follows from
Theorem 8.3.4.

A similar result can be seen to hold for the Laguerre expansion by using the
limit relation in Theorem 8.4.4. We leave it to the reader. As an application of this
limit relation we obtain

Proposition 9.5.6 Let wa(t) = |t|2ae−t2
. Let f0 be an even function on R and

f (x) = f0(‖x‖). Then, for the orthogonal expansion with respect to W H
κ (x) =

∏d
i=1 x2κi

i e−‖x‖2
,

Sδn (W H
κ ; f ,x) = sδn (w|κ|+(d−1)/2; f0,‖x‖).

Proof In the identity of Proposition 9.3.5 set f (x) = f (
√μx) and replace

x by x/
√μ ; then take the limit μ → ∞. The left-hand side is the limit in

Proposition 9.5.5, while the right-hand side is the same limit as that for d = 1.

Furthermore, for the classical multiple Hermite polynomials there is an
analogue of Proposition 9.3.6 for ridge functions.

Proposition 9.5.7 Let W H(x) = e−‖x‖2
and w(t) = e−t2

. Let f : R �→ R. For
‖y‖= 1 and n≥ 0,

Sδn (W H ; f (〈x, ·〉),y) = sδn (w; f ,〈x,y〉).

The proof follows by taking the limit μ → ∞ in Proposition 9.3.6.

Corollary 9.5.8 Let f (x) = f0(‖x‖) be as in Proposition 9.5.6. Let f ∈
Lp(W H ;Rd), 1≤ p <∞. Then Sδn (W H ; f ) converges to f in the Lp(W H ;Rd) norm
if δ > d−1

2 .

Proof Using polar coordinates, we obtain

π−d/2
∫

Rd
|Sδn (W H ; f ,x)|pe−‖x‖

2
dx = π−d/2σd−1

∫ ∞

0
sδn (w(d−1)/2; f0,r)rd−1e−r2

dr.

Hence, the stated result follows from the result for the Hermite expansion on the
real line; see Thangavelu [1993].

For general results on the summability of multiple Hermite expansion, we
again refer to Thangavelu [1993].
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9.6 Multiple Jacobi Expansion
Multiple Jacobi polynomials are orthogonal with respect to the weight function

Wα,β (x) = ∏d
i=1(1− xi)αi(1 + xi)βi ; see Subsection 5.1.1. Recall that p(a,b)

n (t)
denotes an orthonormal Jacobi polynomial with respect to (1− t)a(1 + t)b.
There is a convolution structure for the Jacobi polynomials, discovered by
Gasper [1972].

Lemma 9.6.1 Let α,β >−1. There is an integral representation of the form

p(α ,β )
n (x)p(α ,β )

n (y) = p(α ,β)
n (1)

∫ 1

−1
p(α,β)

n (t)dμ(α ,β )
x,y (t), n≥ 0,

where the real Borel measure dμ (α ,β )
x,y on [−1,1] satisfies∫ 1

−1
|dμ (α ,β )

x,y (t)| ≤M, −1 < x,y < 1,

for some constant M independent of x,y if and only if α ≥ β and α + β ≥ −1.

Moreover, the measures are nonnegative, that is, dμ (α ,β )
x,y (t) ≥ 0 if and only if

β ≥− 1
2 or α+β ≥ 0.

The product in Lemma 9.6.1 gives rise to a convolution structure of multiple
Jacobi polynomials, which allows us to reduce the summability on [−1,1]d to the
summability at the point ε = (1, . . . ,1), just as in the Laguerre case. The Jacobi
polynomials have a generating function (Bailey [1935, p. 102, Ex. 19])

G(α ,β )(r;x) =
∞

∑
k=0

p(α ,β )
k (1)p(α,β)

k (x)rn

=
1− r

(1+ r)α+β+2 2F1

(α+β+2
2 , α+β+3

2
β +1

;
2r(1+ x)
(1+ r)2

)
, 0≤ r < 1.

Multiplying this formula with different variables gives a generating function for
the multiple Jacobi polynomials,

∞

∑
n=0

rn ∑
|k|=n

P(α,β)
k (x)P(α ,β )

k (1) =
d

∏
i=1

G(αi,βi)(r;xi) := G(α,β )
d (r;x),

where 1 = (1,1, . . . ,1). Further multiplication, by

(1− r)−δ−1 =
∞

∑
n=0

(δ +1)nrn

n!
,

gives
∞

∑
n=0

(δ +1)n

n!
Kδ

n,d(Wα,β ;x,1)rn = (1− r)−δ−1G(α ,β )
d (r;1) (9.6.1)

for the Cesàro (C,δ )-means of the multiple Jacobi polynomials.
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Theorem 9.6.2 Let α j ≥ − 1
2 and β j ≥ − 1

2 for 1 ≤ j ≤ d. Then the Cesàro
(C,δ )-means Sδn,d(Wα ,β ; f ) of the product Jacobi expansion define a positive

approximate identity on C([−1,1])d if δ ≥ ∑d
i=1(αi + βi) + 3d − 1; moreover,

the order of summability is best possible in the sense that (C,δ )-means are not
positive for 0 < δ < ∑d

i=1(αi +βi)+3d−1.

Proof Let ρ(α) = ∑d
i=1αi; if all αi ≥ 0 then ρ(α) = |α |. Lemma 9.6.1 shows

that it is sufficient to prove that, for α j ≥ β j , the kernel Kδ
n,d(Wα ,β ;x,1) ≥ 0 if

and only if δ ≥ ρ(α) + ρ(β ) + 3d − 1. For d = 1, the (C,α + β + 2)-means

Kα+β+2
n,1 (wα,β ;x,1) are nonnegative for −1≤ x≤ 1, as proved in Gasper [1977].

Hence, by (9.6.1) with d = 1, the function (1− r)−α−β−3G(α ,β )(r;x) is a com-
pletely monotone function of r, that is, a function whose power series has all
nonnegative coefficients. Since multiplication is closed in the space of completely
monotone functions, it follows that

(1− r)−ρ(α)−ρ(β)−3dG(α,β)
d (r;x) =

d

∏
j=1

(1− r)−α j−β j−3G
(α j ,β j)
d (r;x j)

is a completely monotone function. Consequently, by (9.6.1) we conclude that

the means Kρ(α)+ρ(β )+3d−1
n,d (Wα,β ;x,1) ≥ 0. We now prove that the order of

summation cannot be improved. If the (C,δ0)-means are positive then (C,δ )-
means are positive for δ ≥ δ0. Hence, it suffices to show that the (C,ρ(α) +
ρ(β ) + 3d− 1−σ)-means of the kernel are not positive for 0 < σ < 1. From
the generating function and the fact that 2F1(a,b;c;0) = 1, we conclude that, for
δ = ρ(α)+ρ(β)+3d−2,

(1− r)−δ−1G(α,β )
d (r;−1) = (1− r)(1− r2)−ρ(α)−ρ(β )−2d

=
∞

∑
k=0

(ρ(α)+ρ(β )+2d)k

k!

(
r2k− r2k+1).

Hence, setting

Ak =
(ρ(α)+ρ(β )+3d−1)k

k!
Kρ(α)+ρ(β )+3d−2

k,d (Wα,β ;−1,1)

and comparing with (9.6.1), we conclude that

A2k =−A2k+1 =
(ρ(α)+ρ(β )+2d)k

k!
≥ 0.

Therefore, it follows that

(ρ(α)+ρ(β )+3d−σ +2)2n−1

(2n−1)!
Kρ(α)+ρ(β )+3d−1−σ

2n+1,d (Wα,β ;−1,1)

=
2n+1

∑
k=0

(−σ)2n+1−k

(2n+1− k)!
Ak =−σ

n

∑
k=0

1
2n−2k +1

(1−σ)2n−2k

(2n−2k)!
A2k.

Since 0 < σ < 1, we conclude that the (C,ρ(α)+ρ(β )+3d−1−σ)-means are
not positive.



9.6 Multiple Jacobi Expansion 313

The positivity of these Cesàro means implies their convergence, since it shows
that the uniform norm of Sδn (Wα,β ; f ) is 1. The explicit formula for the reproduc-
ing kernel is known only in one special case, namely, the case when αi = βi =− 1

2
for all i; see Xu [1995] or Berens and Xu [1996]. This formula, given below, is
nonetheless of interest and shows a character different from the explicit formu-
lae for the reproducing kernel on the ball and on the simplex. Denote the weight
function by W0(x), that is,

W0(x) = (1− x2
1)
−1/2 · · ·(1− x2

d)
−1/2, x ∈ [−1,1]d .

We also need the notion of divided difference. The divided difference of a func-
tion f : R → R at the pairwise distinct points x0,x1, . . . ,xn in R, is defined
inductively by

[x0] f = f (x0) and [x0, . . . ,xn] f =
[x0, . . . ,xn−1] f − [x1, . . . ,xn] f

x0− xn
.

The difference is a symmetric function of the coordinates of the points.

Theorem 9.6.3 Let 1 = (1,1, . . .1). Then

Pn(W0;x,1) = [x1, . . . ,xd ]Gn

with

Gn(t) = (−1)[(d+1)/2]2(1− t2)(d−1)/2

{
Tn(t) for d even,

Un−1(t) for d odd.

Proof The generating function of the Chebyshev polynomials Tn and Un, given
in Proposition 1.4.12, implies that

(1− r2)d

∏d
i=1(1−2rxi + r2)

=
∞

∑
n=0

P(W0;x,1)rn.

The left-hand side can be expanded as a power series using the formula

[x1, . . . ,xd]
1

a−b(·) =
bd−1

∏d
i=1(a−bxi)

,

which can be proved by induction on the number of variables; the result is

(1− r2)d

∏d
i=1(1−2rxi + r2)

=
(1− r2)d

(2r)d−1 [x1, . . . ,xd ]
1

1−2r(·)+ r2

=
(1− r2)d

(2r)d−1 [x1, . . . ,xd ]
∞

∑
n=d−1

Un(·)rn

= 21−d [x1, . . . ,xd ]
∞

∑
n=0

rn
d

∑
k=0

(
d
k

)
(−1)kUn−2k+d−1(·),
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where the second equation uses the generating function of the Chebyshev poly-
nomials of the second kind, given in Definition 1.4.10, and the third equation uses
the fact that [x1, . . . ,xd ]p = 0 whenever p is a polynomial of degree at most d−2.
Using Um+1(t) = sinmθ/sinθ and sinmθ = (eimθ −e−imθ )/(2i), with t = cosθ ,
as well as the binomial theorem, we obtain

d

∑
k=0

(
d
k

)
(−1)kUn−2k+d−1(t)

=
1

sinθ

d

∑
k=0

(
d
k

)
(−1)k(sinθ )n−2k+d

=
1

2isinθ

[
ei(n+d)θ (1− e−2iθ )d + e−i(n+d)θ (1− e2iθ )d

]
= (2i)d(sinθ)d−1 einθ (−1)d− e−inθ

2i
= 2d−1Gn(t),

from which the stated formula follows on comparing the coefficients of rn in the
two power expansions.

Proposition 9.6.4 Define x = cosΘ = (cosθ1, . . . ,cosθd) and y = cosΦ =
(cosφ1, . . . ,cosφd). For τ ∈Zd

2 , denote by Φ+τΘ the vector that has components
φi + τiθi. Then

Pn(W0;x,y) = ∑
τ∈Zd

2

Pn(W0;cos(Φ+ τΘ),1).

Proof With respect to the normalized weight function π−1(1− t2)−1/2, the
orthonormal Chebyshev polynomials are T̃0(t) = 1 and T̃n(t) =

√
2 cos nθ . Hence

Pn(W0;x,y) = 2d ∑′

|α |=n

cosα1θ1 cosα1φ1 · · ·cosαdθd cosαdφd ,

where α ∈Nd
0 and the notation∑′ means that whenever αi = 0 the term containing

cosαiθi is halved. Then the stated formula is seen to be merely a consequence of
the addition formula for the cosine function.

The multiple Chebyshev expansion is related to the multiple Fourier series on
Td . In fact, Pn(W0;x,1) is the Dirichlet kernel in the following sense:

Pn(W0;x,1) = ∑
|α|=n

ei〈α ,Θ〉, x = cosΘ.

The corresponding summability of the multiple Fourier series is called �1 summa-
bility; it has a completely different character to the usual spherical summability
(in which the summation of the kernel is taken over multi-indices in {α ∈ Nd

0 :
‖α‖ = n}); see, for example, Stein and Weiss [1971], Podkorytov [1981] or
Berens and Xu [1997].
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9.7 Notes
Section 9.1 Proposition 9.1.2 and its proof are extensions of the one-variable
results; see Freud [1966, p. 139]. The properties of best polynomial approx-
imations can be found in books on approximation theory, for example,
Lorentz [1986], Cheney [1998] or DeVore and Lorentz [1993].

For d = 1, the asymptotics of the Christoffel function are known for general
weight functions. It was proved in Máté, Nevai and Totik [1991] that

lim
n→∞

nλn(dμ ,x) = πμ ′(x)
√

1− x2 for a.e. x ∈ [−1,1]

for measures μ belonging to the Szegő class (that is, logμ ′(cost)∈ L1[0,2π]). For
orthogonal polynomials of several variables, we may conjecture that an analogous
result holds:

lim
n→∞

(
n+d

d

)
Λn(W ;x) =

W (x)
W0(x)

,

where W0 is the analogue of the normalized Chebyshev weight function for the
given domain. This limit relation was established for several classical-type weight
functions on the cube [−1,1]d with W0(x) = π−d(1− x2

1)
−1/2 · · ·(1− x2

d)−1/2,
on the ball Bd with W0(x) = wB(1− ‖x‖2)−1/2 and on the simplex T d with

W0(x) = wT x−1/2
1 · · ·x−1/2

d (1−|x|)−1/2, where wB and wT are normalization con-
stants, so that W0 has unit integral on the corresponding domain; see Xu [1995],
Bos [1994] and Xu [1996a, b], The above limit was also studied for a central
symmetric weight function in Bos, Della Vecchia and Mastroianni [1998]. More
recently, fairly general results on the asymptotics of the Christoffel function were
established in Kroó and Lubinsky [2013a, b]; their results were motivated by the
universality limit, a concept originating in random matrix theory.

Section 9.2 Kogbetliantz’s inequality on the positivity of the (C,δ )-means
of Gegenbauer polynomials is a special case of a much more general positiv-
ity result on Jacobi polynomials due to Askey and to Gasper (see, for example,
Askey [1975] and Gasper [1977]). These inequalities also imply other positivity
results for h-harmonics.

For the weight function hκ(x) = ∏d
i=1 |xi|κi , which is invariant under Zd

2, the
result in Corollary 9.2.4 can be improved as follows.

Theorem 9.7.1 The (C,δ )-means of the h-harmonic expansion of every con-
tinuous function for hκ(x) = ∏d

i=1 |xi|κi converge uniformly to f if and only if
δ > d−2

2 + |κ |−min1≤i≤d κi.

A further result shows that the great circles defined by the intersection of Sd−1

and the coordinate planes form boundaries on Sd−1. Define
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S d−1
int = S d−1

∖ d⋃
i=1

{x ∈ Sd−1 : xi = 0},

which is the interior region bounded by these boundaries on Sd−1. Then, for con-
tinuous functions, Sδn (h2

κ , f ;x) converges to f (x) for every x ∈ Sd−1
int provided that

δ > d−2
2 , independently of κ . The proof of these results is in Li and Xu [2003],

which uses rather involved sharp estimates of the Cesàro means of the repro-
ducing kernels given in Theorem 7.5.5. For Lp convergence with 1 < p < ∞, a
sharp critical index for the convergence of Sδn (h2

κ , f ) was established in Dai and
Xu [2009b].

Section 9.3 The summability of the expansion in classical orthogonal poly-
nomials on the ball can be traced back to the work of Chen, Koschmieder, and
several others, where the assumption that 2μ is an integer was imposed; see Sec-
tion 12.7 of Erdélyi et al. [1953]. Theorem 9.3.4 was proved in Xu [1999a].
The general relation between summability of orthogonal expansion on the sphere
and on the ball is studied in Xu [2001a]. For the weight function W B

κ ,μ(x) =
∏d

i=1 |xi|κi(1−‖x‖2)μ−1/2, which is invariant under Zd
2, Corollary 9.3.3 can be

improved to a sharp result: Sδn (W B
κ ,μ , f ) converges to f uniformly for continuous

functions f if and only if δ > d−1
2 + |κ| −min1≤i≤d+1κi, with κd+1 = μ as in

Theorem 9.7.1; further, pointwise convergence holds for x inside Bd and x not
on one of the coordinate hyperplanes, provided that δ > d−1

2 . The proof uses
Theorem 9.3.1.

Section 9.4 A result similar to that in Theorem 9.7.1 also holds for classical
orthogonal polynomials on the simplex. The proof requires a sharp estimate for
the Cesàro means of the reproducing kernels given in Theorem 8.2.7. The esti-
mate is similar to that for the kernel in the case of Zd

2-invariant h2
κ , but there are

additional difficulties. A partial result appeared in Li and Xu [2003]; a complete
analogue to the result on the ball was proved in Dai and Xu [2009a], that is, that
Sδn (W T

κ,μ , f ) converges to f uniformly for continuous functions f if and only if

δ > d−1
2 + |κ|−min1≤i≤d+1κi with κd+1 = μ . The pointwise convergence in the

interior of T d holds if δ > d−1
2 . Furthermore, a sharp result for convergence in

Lp, 1 < p < ∞, was established in Dai and Xu [2009b].
Section 9.5 For Laguerre expansions, there are several different forms of

summability, depending on the L2 spaces under consideration. For example,
considering the Laguerre functions L α

n (x) = Lαn (x)e−x/2x−α/2 and their other
varieties, L α

n ( 1
2 x2)x−α or L α

n (x2)(2x)1/2, one can form orthogonal systems in
L2(dx,R+) and L2(x2α+1dx,R+). Consequently, there have been at least four
types of Laguerre expansion on R+ studied in the literature and each has its
extension in the multiple setting; see Thangavelu [1992] for the definitions. We
considered only orthogonal polynomials in L2(xα dx;R+), following Xu [2000d].
For results in the multiple Hermite and Laguerre expansions, see the monograph
by Thangavelu [1993].
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Section 9.6 For multiple Jacobi expansions the order of δ can be reduced if
we consider only convergence without positivity. However, although their product
nature leads to a convolution structure, which allows us to reduce the summability
to the point x = 1, convergence at the point 1 no longer follows from the product
of the results for one variable.

Theorem 9.7.2 Let α j,β j ≥ − 1
2 . The Cesàro (C,δ ) means of the multiple

Jacobi expansion with respect to Wα,β are uniformly convergent in the norm of
C([−1,1]d) provided that δ > ∑d

j=1 max{α j,β j}+ d
2 .

Similar results also hold for the case where α j > −1, β j > −1 and α j +β j ≥
−1, 1≤ j≤ d, with a properly modified condition on δ . In particular, if α j = β j =
− 1

2 then convergence holds for δ > 0. This is the order of the �1 summability
of the multiple Fourier series. The proof of these results was given in Li and
Xu [2000], which uses elaborate estimates of the kernel function that are written
in terms of the integral of the Poisson kernel of the Jacobi polynomials.

Further results The concise formulae for the reproducing kernels with
respect to the h2

κ associated with Zd
2 on the sphere, W B

κ,μ on the unit ball and
W T
κ,μ on the simplex open the way for in-depth study of various topics in approx-

imation theory and harmonic analysis. Many recent advances in this direction
are summed up in the book Dai and Xu [2013]. These kernels are also useful
in the construction of highly localized bases, called needlets, a name coined
in Narcowich, Petrushev, and Ward [2006], where such bases were constructed
on the unit sphere. These bases were constructed and studied by Petrushev and
Xu [2008a] for W B

μ on the ball; by Ivanov, Petrushev and Xu [2010], [2012] for
W T
κ,μ on the simplex and on product domains, respectively; by Kerkyacharian,

Petrushev, Picard and Xu [2009] for the Laguerre weight on Rd
+; and by Petrushev

and Xu [2008b] for the Hermite weight on Rd .
The Cesàro-summability of orthogonal expansions on a cylindrical domain was

studied by Wade [2011].



10

Orthogonal Polynomials Associated with
Symmetric Groups

In this chapter we consider analysis associated with symmetric groups. The
differential–difference operators for these groups, called type A in Weyl group
nomenclature, are crucial in this theory. The techniques tend to be algebraic,
relying on methods from combinatorics and linear algebra. Nevertheless the
chapter culminates in explicit evaluations of norm formulae and integrals of
the Macdonald–Mehta–Selberg type. These integrals involve the weight function
∏1≤i< j≤d

∣∣xi− x j
∣∣2κ on the torus and the weight function on Rd equipped with the

Gaussian measure. The fundamental objects are a commuting set of self-adjoint
operators and the associated eigenfunction decomposition. The simultaneous
eigenfunctions are certain homogeneous polynomials, called nonsymmetric Jack
polynomials. The Jack polynomials are a family of parameterized symmetric
polynomials, which have been studied mostly in combinatorial settings.

The fact that the symmetric group is generated by transpositions of adja-
cent entries will frequently be used in proofs; for example, it suffices to prove
invariance under adjacent transpositions to show group invariance. Two bases of
polynomials will be used, not only the usual monomial basis but also the p-basis;
these are polynomials, defined by a generating function, which have convenient
transformation formulae for the differential–difference operators. Also, they pro-
vide expressions for the nonsymmetric Jack polynomials which are independent
of the number of trailing zeros of the label α ∈ Nd

0. The chapter concludes with
expressions for the type-A exponential-type kernel and the intertwining operators
and an algorithm for the nonsymmetric Jack polynomials labeled by partitions.
The algorithm is easily implementable in a symbolic computation system. There
is a brief discussion of the associated Hermite-type polynomials.

10.1 Partitions, Compositions and Orderings
In this chapter we will be concerned with the action of the symmetric group
Sd on Rd and on polynomials. Some orderings of Nd

0 are fundamental and are
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especially relevant to the idea of expressing a permutation as a product of adjacent
transpositions.

Consider the elements of Sd as functions on {1,2, . . . ,d}. For x ∈ Rd and
w ∈ Sd let (xw)i = xw(i) for 1 ≤ i ≤ d; extend this action to polynomials by writ-
ing w f (x) = f (xw). This has the effect that monomials transform to monomials,
w(xα) = xwα , where (wα)i = αw−1(i) for α ∈ Nd

0. (Consider x as a row vector
α as a column vector and w as a permutation matrix, with 1s at the (w( j) , j)
entries.) The reflections in Sd are transpositions interchanging xi and x j , denoted
by (i, j) for i �= j. The term composition is a synonym for multi-index; it is com-
monly used in algebraic combinatorics. The basis polynomials (some orthogonal)
that will be considered have composition labels and are contained in subspaces
invariant under Sd . In such a subspace the “standard” composition label will be
taken to be the associated partition. We recall the notation εi for the unit label:
(εi) j = δi, j. This will be used in calculations of quantities such as α − εi (when

α ∈ Nd
0 and αi ≥ 1).

Definition 10.1.1 A partition (with no more than d parts) is a composition λ ∈
Nd

0 such that λ1 ≥ λ2 ≥ ·· · ≥ λd . The set of all such partitions is denoted by N
d,P
0 .

For any α ∈ Nd
0, let α+ be the unique partition such that α+ = wα for some

w ∈ Sd . The length of a composition is �(α) := max{i : αi > 0}.

There is a total order on compositions, namely, lexicographic order (“lex order”
for short) (see also Section 3.1), defined as follows: α �L β means that αi = βi

for 1 ≤ i < m and αm > βm for some m ≤ d (α,β ∈ Nd
0); but there is a partial

order better suited for our purposes, the dominance order.

Definition 10.1.2 For α,β ∈ Nd
0, say, α dominates β , that is, α " β , when

∑ j
i=1αi ≥ ∑ j

i=1βi for 1≤ j ≤ d. Also, α � β means α " β with α �= β . Further,
α � β means that |α|= |β | and either α+ � β+ or α+ = β+ and α � β .

Clearly the relations" and � are partial orderings (α � β means α � β or α =
β ). Dominance has the nice property of “reverse invariance”: for α ∈Nd

0 let αR =
(αd ,αd−1, . . . ,α1); then, for α,β ∈ Nd

0, |α| = |β | and α " β implies that βR "
αR. In our applications dominance order will be used to compare compositions
α,β having α+ = β+ and partitions λ ,μ having |λ |= |μ |. The following lemma
shows the effect of two basic operations.

Lemma 10.1.3 Suppose that α ∈ Nd
0 and λ ∈N

d,P
0 ; then

(i) if αi > α j and i < j then α � (i, j)α;
(ii) if λi > λ j +1 (implying i < j) then λ � μ+, where μi = λi−1,μ j = λ j +1

and μk = λk for k �= i, j;
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(iii) α+ " α;

(iv) if λi > λ j +1 and 1 ≤ s < λi−λ j then λ �
(
μ(s)
)+

where μ (s)
i = λi− s,

μ(s)
j = λ j + s and μ (s)

k = λk for k �= i, j (that is, μ (s) = λ − s(εi− ε j)).

Proof For part (i) let β = (i, j)α; then ∑m
k=1αk =∑m

k=1βk +(αi−α j) for i≤m <

j, otherwise ∑m
k=1α j = ∑m

k=1β j . For part (ii) assume (by relabeling if necessary)
that λi > λi+1 ≥ ·· · ≥ λ j−1 > λ j ≥ λ j+1 (possibly j = i+1) and that now μk = λk

for all k except i, for which μi = λi−1 and j, for which μ j = λ j +1. By construc-
tion μi ≥ μi+1 and μ j−1 ≥ μ j, so μ = μ+ (this is the effect of the relabeling) and
clearly λ � μ+. For part (iii) note that α+ can be obtained by applying a finite
sequence of adjacent transpositions (apply (i, i+1) when αi < αi+1).

For part (iv), note that
(
μ(λi−λ j−s)

)+
=
(
μ(s)
)+

. Part (ii) shows that λ �(
μ(1)
)+

�
(
μ(2)
)+

� ·· · �
(
μ(t)
)+

for t = [ 1
2 (λi−λ j)], and this proves

part (iv).

10.2 Commuting Self-Adjoint Operators
The differential–difference operators of Chapter 4 for the group Sd allow one
parameter, denoted by κ , and have the formula, for f ∈Πd and 1≤ i≤ d,

Di f (x) =
∂ f (x)
∂xi

+κ
d

∑
j=1, j �=i

f (x)− f (x(i, j))
xi− x j

,

often abbreviated as ∂i +κ ∑ j �=i

[
1− (i, j)

]
/(xi− x j).

Lemma 10.2.1 The following commutants hold for 1≤ i, j ≤ d:

(i) xiDi f (x)−Dixi f (x) =− f (x)−κ ∑ j �=i (i, j) f (x);
(ii) x jDi f (x)−Dix j f (x) = κ (i, j) f (x) for i �= j.

Proof In Proposition 6.4.10 set u = εi,t = ε j; then

x jDi f (x) = Dix j f (x)−〈ε j,εi
〉

f (x)−κ∑
k �=i

〈
ε j,εi− εk

〉
(i,k) f (x) .

Only the positive roots v =±(εi− εk) appear in the sum (the inner product is the
usual one on Rd).

Lemma 10.2.2 For m,n ∈ N0,

xm
1 xn

2− xn
1xm

2

x1− x2
= sign(m−n)

max{m,n}−1

∑
i=min{m,n}

xm+n−1−i
1 xi

2.
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We will describe several inner products 〈·, ·〉 on Πd with the following
properties; such inner products are called permissible.

1. if p ∈Pd
n and q ∈Pd

m then n �= m implies that 〈p,q〉= 0;
2. for p,q ∈Πd and w ∈ Sd , 〈wp,wq〉= 〈p,q〉;
3. for each i, the operator Dixi is self-adjoint, that is,
〈Di (xi p(x)) ,q(x)〉= 〈p(x) ,Di (xiq(x))〉 .

One such inner product has already been defined, in Definition 7.2.2, namely
〈p,q〉 = p(D1,D2, . . . ,Dd)q(x) |x=0. Here D∗

i = xi (a multiplication factor) and
so Dixi is self-adjoint for each i. These operators do not commute, but a sim-
ple modification provides sufficient commuting self-adjoint operators that the
decomposition of Πd into joint eigenfunctions provides an orthogonal basis.

Recall that for two linear operators A,B, operating on the same linear space,
the commutant is [A,B] = AB−BA.

Lemma 10.2.3 For i �= j, [Dixi,D jx j] = κ (Dixi−D jx j)(i, j); moreover,
[Dixi,D jx j−κ (i, j)] = 0.

Proof By part (ii) of Lemma 10.2.1, x jDi = Dix j +κ (i, j). Since DiD j = D jDi,
we have

DixiD jx j−D jx jDixi =Di [D jxi +κ (i, j)]x j−D j (Dix j +κ (i, j))xi

=κ (Dixi−D jx j)(i, j) .

Also, κ (Dixi−D jx j)(i, j) = κ [Dixi (i, j)− (i, j)Dixi].

Definition 10.2.4 For 1≤ i≤ d define the self-adjoint operators Ui on Πd by

Ui = Dixi +κ−κ
i−1

∑
j=1

( j, i) .

Note that each Ui preserves the degree of homogeneity; that is, it maps Pd
n

to Pd
n for each n. The transpositions are self-adjoint because 〈(i, j)p,q〉 =

〈p,(i, j)−1q〉= 〈p,(i, j)q〉 by the hypothesis on the inner product.

Theorem 10.2.5 For 1≤ i < j ≤ d, UiU j = U jUi.

Proof Write Ui = Dixi + κ − κA and U j = D jx j + κ − κ (i, j)− κB, where
A = ∑k<i (k, i) and B = ∑k< j,k �=i (k, j). Then [Ui,U j] = [Dixi,D jx j − κ (i, j)]−
κ[Dixi,B]−κ [A,D jx j]+κ2[A,B+(i, j)]. The first term is zero by Lemma 10.2.3,
and the middle two are zero because the transpositions in A,B individually



322 Orthogonal Polynomials Associated with Symmetric Groups

commute with the other terms; for example Dixi (k, j) = (k, j)Dixi for k �= i.
Further,

[A,B+(i, j)] =
i−1

∑
k=1

j−1

∑
s=1

[(k, i) ,(s, j)]

=
i−1

∑
k=1

([(k, i)(k, j)− (i, j)(k, i)]− [(k, j)(k, i)− (k, i)(i, j)]) .

Each bracketed term is zero since (k, i)(k, j) = (i, j)(k, i) in the sense of
multiplication in the group Sd .

We consider the action of Ui on a monomial xα . For any i, by Lemma 10.2.2
we have

Dixix
α = (αi +1)xα +κ ∑

β∈A

xβ −κ ∑
β∈B

xβ

where

A =
⋃
j �=i

{α + k (ε j− εi) : (αi ≥ α j) ,0≤ k ≤ αi−α j},

B =
⋃
j �=i

{α + k (εi− ε j) : (αi < α j−1) ,1≤ k ≤ α j−αi−1}.

The combined coefficient of xα is (αi +1)+κ#{ j : α j ≤ αi, j �= i}. Monomials
with coefficient κ are of the form xβ , where

β = (α1, . . . ,αi− k, . . . ,α j + k, . . .) for 1≤ k ≤ αi−α j;

in each case α+ � β+, by part (iv) of Lemma 10.1.3, except for β = (i, j)α
(for k = αi−α j). Monomials with coefficient −κ have the form xβ , where β =
(α1, . . . ,αi + k, . . . ,α j− k, . . .) for 1≤ k ≤ α j−αi−1. Again by Lemma 10.1.3,
α+ � β+. When the remaining terms of Ui are added, the effect is to remove the
terms κ ( j, i)xα with j < i and α j < αi, for which ( j, i)α � α . Thus

Uix
α = (κ(d−#{ j : α j > αi}−#{ j : j < i and α j = αi})+αi +1)xα +qα ,i,

where qα ,i is a sum of terms ±κxβ with α � β . This shows that Ui is repre-
sented by a triangular matrix on the monomial basis (triangularity with respect to
the partial order �). It remains to study the simultaneous eigenfunctions, called
nonsymmetric Jack polynomials, in detail.

10.3 The Dual Polynomial Basis
There is a basis of homogeneous polynomials which has relatively tractable
behavior under the actions of Di and Ui and also provides an interesting inner
product. These polynomials are products of analogues of xn

i .
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Definition 10.3.1 For 1≤ i≤ d define the homogeneous polynomials pn (xi;x),
n ∈ N0, by logarithmic differentiation applied to the generating function:

∞

∑
n=0

pn (xi;x)yn = (1− xiy)
−1

d

∏
j=1

(1− x jy)
−κ ,

valid for |y|< min j
(
1/
∣∣x j
∣∣) .

We will show that Di pn (xi;x) = (dκ +n) pn−1 (xi;x) and D j pn (xi;x) = 0 for
j �= i, using an adaptation of logarithmic differentiation. Let f0 = (1− xiy)

−1 and
f1 = ∏d

j=1 (1− x jy)
−κ (the latter is Sd-invariant); then

Di ( f0 f1)
f0 f1

− y2∂ ( f0 f1)/∂y
f0 f1

=
(1+κ)y
1− xiy

+κ∑
j �=i

1
xi− x j

(
1− 1− xiy

1− x jy

)
− y2xi

1− xiy
−κ

d

∑
j=1

y2x j

1− x jy

= (1+κ)y+κ∑
j �=i

y− y2x j

1− x jy
= (dκ +1)y.

In the generating function,
∞

∑
n=0

Di pn (xi;x)yn =
∞

∑
n=0

pn (xi;x)(n+dκ +1)yn+1,

as claimed. For j �= i,

D j ( f0 f1)
f0 f1

= κ
y

1− x jy
+κ

1
x j− xi

(
1− 1− xiy

1− x jy

)
= 0.

These polynomials are multiplied together (over i) to form a basis.

Definition 10.3.2 For α ∈Nd
0 let pα (x) = ∏d

i=1 pαi (xi;x); alternatively, set

∑
α∈Nd

0

pα (x)yα =
d

∏
i=1

(
(1− xiyi)−1

d

∏
j=1

(1− x jyi)−κ
)
,

valid for maxi |yi|< mini (1/ |xi|).

The polynomials pα(x) transform like monomials under the action of Sd;
indeed, if w ∈ Sd then wpα (x) = pα (xw) = pwα (x); this can be proved using
the generating function.

Denote the generating function by F(x,y). The value of Di pα will be derived
from the equation

DiF
F

=
y2

i

F
∂F
∂yi

+(dκ +1)yi +κ ∑
j �=i

yiy j
[
F− (y j,yi)F

]
(yi− y j)F

,
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where (yi,y j) denotes the interchange of the variables yi,y j in F . A typical term
in the difference part has the form

1
xi− x j

(
1− (1− xiyi)(1− x jy j)

(1− xiy j)(1− x jyi)

)
=

yi− y j

(1− xiy j)(1− x jyi)
.

Using similar methods as for pn (xi;x) we obtain

1
F

(
DiF− y2

i
∂F
∂yi

)
=

yi− y2
i xi

1− xiyi
+κ

d

∑
j=1

( y j

1− xiy j
− y2

i x j

1− x jyi

)
+κ∑

j �=i

yi− y j

(1− xiy j)(1− x jyi)

= (dκ +1)yi +κ ∑
j �=i

[
yi− y j

(1− xiy j)(1− x jyi)
+

y j

1− xiy j
− yi

1− x jyi

]
= (dκ +1)yi +κ ∑

j �=i

yiy j (xi− x j)
(1− xiy j)(1− x jyi)

;

the sum in the last line equals

κ∑
j �=i

yiy j (F− (y j,yi)F)
(yi− y j)F

.

As before, if the superscript (x) refers to the variable being acted upon then

D
(x)
i xiF(x,y) = D

(y)
i yiF(x,y) for each i. Indeed,

1
F

D
(x)
i xiF =1+

xiyi

1− xiyi
+κ

d

∑
j=1

xiy j

1− xiy j

+κ ∑
j �=i

1
xi− x j

(
xi− x j (1− xiyi)(1− x jy j)

(1− xiy j)(1− x jyi)

)
=1+

(1+κ)xiyi

1− xiyi
+κ∑

j �=i

1− x jy j

(1− xiy j)(1− x jyi)
,

which is symmetric in x,y (as is F , of course).

Proposition 10.3.3 For α ∈Nd
0 and 1≤ i≤ d, Di pα = 0 if αi = 0, else

Di pα = [κ (1+#{ j : α j < αi})+αi] pα−εi +κ ∑
β∈A

pβ −κ ∑
β∈B

pβ ,

where

A =
⋃
j �=i

{α + kεi− (k +1)ε j : max
{

0,α j−αi
}≤ k ≤ α j−1},

B =
⋃
j �=i

{α− (k +1)εi + kε j : max
{

1,αi−α j
}≤ k ≤ αi−1}.
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Proof We have that Di pα is the coefficient of yα in(
y2

i
∂
∂yi

+(dκ +1)yi

)
F +κ∑

j �=i

yiy j

(yi− y j)
[F− (y j,yi)F] .

The first term contributes (dκ +αi) pα−εi . For any j �= i let β ∈Nd
0 satisfy βk =αk

for k �= i, j. Then pβ appears in the sum with coefficient κ when there is a solution
to βi− s = αi, β j + 1 + s = α j , 0 ≤ s ≤ βi− β j − 1 (this follows from Lemma
10.2.2), that is, for 0≤ β j ≤min

{
αi−1,α j−1

}
and βi +β j = αi +α j−1, and

pβ appears in the sum with coefficient −κ when there is a solution to the same
equations but with βi and β j interchanged. In the case α j ≥αi the values βi =αi−
1, β j = α j appear (so that β = γ). These are deleted from the set B and combined
to give the coefficient of pγ ; the total is κ (d−#{ j : j �= i and α j ≥ αi}).

A raising operator for the polynomials pα is useful, as follows.

Definition 10.3.4 For α ∈ Nd
0 and 1 ≤ i ≤ d let ρi pα = pα+εi , and extend by

linearity to span{pβ : β ∈Nd
0}.

Proposition 10.3.5 For 1≤ i≤ d the operator Diρi satisfies

Diρi pα = [κ (d−#{ j : α j > αi})+αi +1] pα +κ ∑
β∈A

pβ −κ ∑
β∈B

pβ ,

where α ∈ Nd
0 and

A =
⋃
j �=i

{α + k (εi− ε j) : max
{

1,α j−αi
}≤ k ≤ α j},

B =
⋃
j �=i

{α + k (ε j− εi) : max
{

1,αi−α j +1
}≤ k ≤ αi}.

Proof This is a consequence of Proposition 10.3.3 with α replaced by α + εi.
The sets A,B used before are reformulated, setting β j =α j−k in A and βi =αi−k
in B.

Corollary 10.3.6 For α ∈ Nd
0 and 1≤ i≤ d,

Diρi pα = [κ (d−#{ j : α j > αi})+αi +1] pα +κ ∑
α j>αi

p(i, j)α +κqα ,i,

where qα,i is a sum of terms of the form ±pβ with |β | = |α| and β+ � α+ and
α j = 0 implies that β j = 0.

Proof Suppose that β ,γ ∈ Nd
0 with |β | = |γ| and βk = γk for all k �= i, j (for any

i, j with i �= j); then part (iv) of Lemma 10.1.3 implies that β+ � γ+ if and only
if min

{
βi,β j

}
< min

{
γi,γ j

}≤max
{
γi,γ j

}
< max

{
βi,β j

}
; of course the latter
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inequality is redundant since βi + β j = γi + γ j. Then any β ∈ A∪B (the sets in
Proposition 10.3.5) satisfies the condition min

{
βi,β j

}
< min

{
αi,α j

}
for some

j; the exceptions β = (i, j)α occur in A when αi ≤ α j−1.

It remains to show that {pα : α ∈ Nd
0} is actually a basis for Πd for all but

a discrete set of negative values of κ; further, Diρi = Dixi + κ , as one might
already suspect from the coefficient of pα in Diρi pα . The following is valid for
span{pα} ⊆Πd , which in fact is an apparent restriction, only.

Proposition 10.3.7 For 1≤ i≤ d, Diρi = Dixi +κ .

Proof The generating function for pn(xi;x) is (1− xiy)−1
d
∏
j=1

(1− x jy)
−κ . Let

∏d
j=1 (1− x jy)

−κ = ∑∞
n=0πn(x)yn, where πn is a homogeneous Sd-invariant

polynomial; thus

pn+1(xi;x) =
n+1

∑
j=0

x j
i πn+1− j(x) = πn+1(x)+ xi pn(xi;x).

Also, ∂πn+1 (x)/∂xi = κ pn (xi;x) because

∞

∑
n=0

∂
∂xi

πn(x)yn =
κy

1− xiy

d

∏
j=1

(1− x jy)
−κ .

Let α ∈ Nd
0 and write pα(x) = pαi(xi;x)g(x), where g(x) = ∏

j �=i
pα j(x j;x). Then

Diρi pα −Dixi pα = Di [(p1+αi (xi;x)− xi pαi (xi;x))g(x)]

= Di [π1+αi(x)g(x)]

=
( ∂
∂xi

π1+αi(x)
)

g(x)+π1+αi(x)Dig(x)

= κ pαi(xi;x)g(x) = κ pα(x).

This uses the product rule for Di with one factor invariant and the fact that
Dig(x) = 0 (Proposition 10.3.3).

Proposition 10.3.8 For 1≤ i≤ d and κ ≥ 0, the linear operator Diρi is one to
one on span{pα : α ∈Nd

0}.

Proof Because Diρi = (1, i)D1ρ1(1, i) it suffices to show that D1ρ1 is one to
one. The effect of D1ρ1 on {pα : α ∈ Nd

0 , |α| = n} respects the partial order
� because D1ρ1 pα = [κ (d−#{ j : α j > α1})+α1 +1] pα + κ ∑α j>α1

p(1, j)α +
κqα ,1 (Corollary 10.3.6), where each term pβ in qα,1 satisfies β+ � α+ and
(1, j)α � α when α j > α1 (part (i) of Lemma 10.1.3).
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To show that {pα : α ∈ Nd
0} is a basis we let

V m
n = span{pα : α ∈ Nd

0 , |α|= n,αi = 0 for i > m}
and demonstrate that dimV m

n = dimPm
n , where Pm

n are the homogeneous
polynomials in m variables, by a double induction argument for 1≤ m≤ d.

Proposition 10.3.9 For n ∈ N0, 1≤m≤ d and κ ≥ 0,

dimV m
n =

(
m+n−1

n

)
with V m

n = {p ∈Pd
n : Di p = 0, for i > m}.

Proof The boundary values are dimV m
0 = 1 and

dimV 1
n = dim [cpn (x1;x) : c ∈ R] = 1;

the latter holds because pn (1;(1,0, . . .)) = (κ +1)n /n! �= 0. Suppose that
dimV m

n =
(m+n−1

n

)
for all pairs (m,n) with m+n = s and 1≤m≤ d; this implies

that the associated {pα} are linearly independent. For m < d and m + n = s we
have

V m+1
n = span{pα : |α |= n,αi = 0 for i > m+1,αm+1 ≥ 1}+V m

n

= ρm+1V
m+1

n−1 +V m
n .

This is a direct sum because Dm+1ρm+1 is one to one on V m+1
n−1 and Dm+1V m

n =
{0}, which shows that dimV m+1

n = dimV m+1
n−1 +dimV m

n =
(m+n−1

n−1

)
+
(m+n−1

n

)
=(m+n

n

)
by the inductive hypothesis. Further, V m

n = {p ∈ V m+1
n : Dm+1 p = 0};

together with V 1
n ⊂ V 2

n ⊂ ·· · ⊂ V d
n this proves the remaining statement.

We now discuss the matrices of Ui with respect to the basis
{

pα : α ∈ Nd
0

}
;

their triangularity is opposite to that of the basis {xα : α ∈ Nd
0}. The eigenvalues

appear in so many calculations that they deserve a formal definition. There is an
associated rank function r.

Definition 10.3.10 For α ∈ Nd
0 and 1≤ i≤ d let

rα (i) = #
{

j : α j > αi
}

+#
{

j : 1≤ j ≤ i,α j = αi
}

,

ξi (α) = (d− rα (i)+1)κ +αi +1.

For a partition λ ∈ N
d,P
0 , one has rλ (i) = i and ξi (λ ) = κ (d− i+1)+λi +1.

Thus rα is a permutation of {1, . . . ,N} for any α ∈ Nd
0.

Proposition 10.3.11 For α ∈Nd
0 and 1≤ i≤ d, Ui pα = ξi (a) pα +κqα ,i, where

qα,i is a sum of ±pβ with β � α; also, if α j = 0 for each j ≥ m then β j = 0 for
j ≥ m, with 2≤ m < d.
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Proof By Corollary 10.3.6 and Proposition 10.3.7,

Ui pα =
[
κ (d−#{ j : α j > αi})+αi +1

]
pα

+κ ∑
α j>αi

p(i, j)α −κ∑
j<i

p(i, j)α +κqα,i

= ξi(a)pα +κ∑{p(i, j)α : j > i;α j > αi}
−κ∑{p(i, j)α : j < i;α j < αi}+κqα ,i,

where qα ,i is a sum of ±pβ with β+ � α+ and |β | = |α|. Also, (i, j)α � α in
the two cases j > i,α j > αi and j < i,α j < αi; that is, (i, j)α � α .

Corollary 10.3.12 For α ∈ Nd
0 and 2 ≤ m < d, if α j = 0 for all j ≥ m then

Ui pα = [κ (d− i+1)+1] pα = ξi(α)pα for all i≥ m.

Proof Suppose that α satisfies the hypothesis and i ≥ m; then, by Proposi-
tion 10.3.5,

Diρi pα = [κ (d−#{ j : α j > 0})+1] pα +κ ∑
α j>0

(i, j) pα ,

and κ ∑ j<i (i, j) pα = κ ∑α j>0 (i, j) pα +κ [#{ j : j < i;αi = 0}] pα . Thus Ui pα =
[κ(d−#{ j : α j > 0}−#{ j : j < i;α j = 0})+1]pα = [κ(d− i+1)+1]pα .

The set of values {ξi (α)} determines α+, provided that κ > 0: arrange the
values in decreasing order, so that if αi > α j then ξi (α) > ξ j (α) and if αi = α j

and i < j then ξi (α)− ξ j (α) = mκ for some m = 1,2, . . . It is now easy to see
that the list {ξ1 (α) , . . . ,ξd (α)} determines α and thus a uniquely defined set of
joint eigenvectors of {Ui}. The following are the nonsymmetric Jack polynomials
normalized to be monic in the p-basis.

Theorem 10.3.13 For α ∈Nd
0 let ζα be the unique polynomial of the form

ζα = pα +∑{B(β ,α)pβ : β � α}
which satisfies Uiζα = ξi(α)ζα for 1 ≤ i ≤ d. The coefficients B(β ,α) are in
Q(κ) and do not depend on the number d of variables provided that α j = 0 for
all j > m for some m and d≥m. For any permissible inner product, α �= β implies
that

〈
ζα ,ζβ

〉
= 0.

Proof The existence of the polynomials in the stated form follows from the self-
adjointness of the operators Ui and their triangular matrix action on the p-basis
ordered by �. Suppose that α j = 0 for all j > m, with some fixed m. Because
each Ui with i≤m has span{pβ : β j = 0 for all j > m} as an invariant subspace,
this space contains the joint eigenvectors of {Ui : 1 ≤ i ≤ m}. In the action of
Ui the value of d appears only on the diagonal, so that Ui− (dκ)1 has the same
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eigenvectors as Ui and the eigenvectors have coefficients that are rational in Q(κ)
with respect to the p-basis. By Corollary 10.3.12 any polynomial in span{pβ :
β j = 0 for all j > m} is an eigenfunction of Ui with eigenvalue κ (d− i+1)+1
when i > m (as was shown, this agrees with ξi(α) when α j = 0 for all j > m).

If α,β ∈ Nd
0 and α �= β then ξi(α) �= ξi(β ) for some i; thus

〈
ζα ,ζβ

〉
= 0 for

any inner product for which Ui is self-adjoint.

10.4 Sd-Invariant Subspaces
Using only the properties of permissible inner products (that they are Sd-invariant
and that each Diρi or Dixi is self-adjoint), many useful relations can be estab-
lished on the subspaces span{ζα : α+ = λ} for any partition λ ∈ N

d,P
0 . We will

show that 〈ζα ,ζα〉 is a multiple of 〈ζλ ,ζλ 〉 which is independent of the choice
of inner product. Of course,

〈
ζα ,ζβ

〉
= 0 if α �= β because ξi(α) �= ξi(β ) for

some i. It is convenient to have a basis which transforms like xα or pα (where
(xw)α = xwα for w ∈ Sd), and this is provided by the orbit of ζλ . In fact the
action of Sd on the eigenfunctions ζα is not conveniently expressible, but adja-
cent transpositions (i, i+1) not only have elegant formulations but are crucial in
the development.

Lemma 10.4.1 For 1 ≤ i ≤ d the commutant [Ui,( j, j +1)] = 0 for j > i or
j < i−1 and (i, i+1)Ui = Ui+1 (i, i+1)+κ .

Proof First, [Diρi,( j, j + 1)] = 0 if j < i− 1 or j > i. Also, ( j,k)(m, j)( j,k) =
(m,k) provided that j,k,m are all distinct. This shows that [∑k<i(k, i),( j, j+1)] =
0 under the same conditions on j, when j < i−1 the key fact is ( j, j +1){( j, i)+
( j + 1, i)} = {( j + 1, i) + ( j, i)}( j, j + 1). For i = j, we have (i, i+1)Ui =
Di+1ρi+1(i, i + 1) − κ ∑m<i(m, i + 1)(i, i + 1) = Ui+1(i, i + 1) + κ(i, i + 1)
(i, i+1).

Proposition 10.4.2 For α ∈Nd
0 , if αi = αi+1 for some i < d then (i, i+1)ζα =

ζα ; if λ ∈ N
d,P
0 and wλ = λ then wζλ = ζλ with w ∈ Sd.

Proof Let g = (i, i+1)ζα − ζα . By the lemma, U jg = ξ j(α)g when j < i
or j > i + 1, while Ui+1g = ξi (α)(i, i+1)ζα − (ξi+1 (α)+κ)ζα = ξi (α)g
and similarly Uig = ξi+1(α)(i, i + 1)ζα − (ξi(α)− κ)ζα = ξi+1(α)g. Conse-
quently, either g = 0 or it is a joint eigenfunction of the U j with eigenvalues
(ξ1(α), . . . ,ξi+1(α),ξi(α), . . .). This is impossible by the definition of ξ j.

For a partition λ , the permutations which fix λ are generated by adjacent
transpositions (for example, suppose that λ j−1 > λ j = · · · = λk > λk+1 for some
0 < j < k < d; then (i, i+1)λ = λ for j ≤ i < k). Thus wλ = λ implies
wζλ = ζλ .
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With this, one can define a “monomial”-type basis for span{ζα : α+ = λ} for
each λ ∈N

d,P
0 (the term monomial refers to the actions wxα = xwα or wpα = pwα

for w ∈ Sd and α ∈Nd
0).

Definition 10.4.3 For λ ∈ N
d,P
0 let ωλ = ζλ and for α ∈ Nd

0 with α+ = λ let
ωα = wωλ , where wλ = α .

Proposition 10.4.2 shows that ωα is well defined, for if w1λ = α = w2λ
then w−1

2 w1λ = λ and w2ωλ = w2
(
w−1

2 w1ωλ
)

= w1ωλ . We now collect some
properties of ωα .

Proposition 10.4.4 For α ∈Nd
0 and w ∈ Sd the following hold:

(i) wωα = ωwα ;
(ii) ωα = pα +∑{B(β ,α) pβ : β+ � α+,αi = 0 implies βi = 0}, where the

coefficients B(β ,α) ∈Q(κ) and are independent of d;
(iii) Diρiωα = [κ (d−#{ j : α j > αi})+αi +1]ωα + κ ∑α j>αi

ω(i, j)α for 1 ≤
i≤ d.

Proof Let λ = α+. Part (i) follows from the basic property that wλ = λ implies
wωλ = ωλ . Theorem 10.3.13 shows that ωλ satisfies part (ii) because λ is maxi-
mal for the dominance ordering " on {β : β+ = λ}, that is, β " λ and β+ = λ
implies that β = λ . The equation in (ii) transforms under w ∈ Sd with wλ = α to
the claimed expression.

The fact that ωλ = ζλ is an eigenfunction of Ui implies that

Diρiωλ = [κ (d− i+1)+λi +1]ωλ +κ ∑
j<i

(i, j)ωλ

= [κ (d−#{ j : λ j > λi})+λi +1]ωλ +κ ∑
λ j>λi

ω(i, j)λ ,

where the terms in the sum in the first line which correspond to values of j sat-
isfying j < i and λ j = λi have been added into the first part of the second line.
Again apply w to this formula with wλ = α (the index i is changed also, but this
does not matter because i is arbitrary).

A few more details will establish that span{ωα : α+ = λ}= span{ζα : α+ =
λ}. The important thing is to give an explicit method for calculating ζα from ζλ ,
for α+ = λ . Adjacent transpositions are the key.

Proposition 10.4.5 Suppose that α ∈Nd
0 and αi >αi+1; then, for c = κ[ξi(α)−

ξi+1(α)]−1 and σ = (i, i+1),

ζσα = σζα − cζα , σζσα = (1− c2)ζα − cζσα

and span{ζα ,ζσα} is invariant under σ .
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Proof Note that ξi (α) = ξi+1 (σα) ,ξi+1 (α) = ξi (σα) and ξi (α)−ξi+1 (α) ≥
αi−αi+1 +κ; thus 0 < c < 1. Let g =σζα−cζα ; then U jg = ξ j (α)g = ξ j (σα)g
for j < i or j > i+1 (by Lemma 10.4.1). Further, Uig = ξi+1 (α)g and Ui+1g =
ξi (α)g, because σUiσ = Ui+1 + κσ . This shows that g is a scalar multiple of
ζσα , having the same eigenvalues. The coefficient of pσα in g is 1 (coming from
σζα because pσα does not appear in the expansion of ζα since α � σα).

Thus σζα = cζα + ζσα . To find σζσα , note that σζσα = ζα − cσζα =(
1− c2

)
ζα − cζσα .

Now, for λ ∈N
d,P
0 let

Eλ = span{ωα : α+ = λ}.
Since Eλ is closed under the action of Sd , the proposition shows that span{ζα :
α+ = λ} = Eλ . The set {ζα} forms an orthogonal basis and Eλ is invariant
under each Diρi,1≤ i≤ d. The next task is to determine the structural constants
〈ζα ,ζα〉 and ζα

(
1d
)

in terms of 〈ζλ ,ζλ 〉 and ζλ
(
1d
)
, respectively.

Proposition 10.4.6 Suppose that α ∈Nd
0 and αi > αi+1,σ = (i, i+1), and c =

κ[ξi(α)−ξi+1(α)]−1. Then:

(i) 〈ζσα ,ζσα〉=
(
1− c2

)〈ζα ,ζα〉;
(ii) ζσα

(
1d
)

= (1− c)ζα
(
1d
)
;

(iii) f0 = (1+ c)ζα +ζσα satisfies σ f0 = f0;
(iv) f1 = (1− c)ζα −ζσα satisfies σ f1 =− f1.

Proof Because 〈ζα ,ζσα〉= 0 and σ is an isometry we have

〈ζα ,ζα〉= 〈σζα ,σζα〉= c2 〈ζα ,ζα〉+ 〈ζσα ,ζσα〉 ;
thus 〈ζσα ,ζσα〉 =

(
1− c2

)〈ζα ,ζα〉. The map of evaluation at 1d is invariant
under σ ; thus ζσα

(
1d
)

= σζα
(
1d
)− cζα

(
1d
)

= (1− c)ζα
(
1d
)
. Parts (iii) and

(iv) are trivial calculations.

Aiming to use induction on adjacent transpositions, we introduce a function
which measures (heuristically speaking) how much α is out of order.

Definition 10.4.7 Functions on α ∈Nd
0 for 1≤ i, j≤ d and ε =± are given by:

(i) τεi, j (α) = 1+
εκ

ξ j (α)−ξi (α)
if i < j and αi < α j, else τεi, j (α) = 1,

(ii) Eε (α) = ∏i< j τεi, j (α) (Eε (λ ) = 1 for λ ∈ N
d,P
0 ).

Theorem 10.4.8 For α ∈Nd
0 and λ = α+,

(i) 〈ζα ,ζα〉= E+ (α)E− (α)〈ζλ ,ζλ 〉,
(ii) ζα

(
1d
)

= E− (α)ζλ
(
1d
)
.
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Proof First, suppose that β+ = λ , βi > βi+1 and σ = (i, i+1); then

Eε (σβ )/Eε (β ) = 1+ εκ[ξi (β )−ξi+1 (β )]−1.

Indeed, τεk, j (σβ ) = τεk, j (β ) for all values of j,k �= i, i + 1. Also, τεi, j (σβ ) =
τεi+1, j (β ) and τεi+1, j(σβ ) = τεi, j(β ) for j > i + 1; τεj,i(σβ ) = τεj,i+1(β ) and
τεj,i+1 (σβ ) = τεj,i (β ) for j < i. The claim is now proven from the special values

τεi,i+1 (β ) = 1 and τεi,i+1 (σβ ) = 1 + εκ[ξi (β )−ξi+1 (β )]−1 (recall that ξi (β ) =
ξi+1 (σβ ) and ξi+1 (β ) = ξi (σβ)).

By part (i) of Proposition 10.4.6,〈
ζσβ ,ζσβ

〉〈
ζβ ,ζβ

〉 = 1− c2 =
E+ (σβ )E− (σβ )

E+ (β )E− (β )

(recall that c = κ[ξi (β )−ξi+1 (β )]−1. Similarly,

ζσβ
(
1d
)

ζβ (1d)
= 1− c =

E− (σβ )
E− (β )

.

Since α is obtained from λ by a sequence of adjacent transpositions satisfying
this hypothesis, the proof is complete.

The last results of this section concern the unique symmetric and skew-
symmetric polynomials in Eλ (which exist if λ1 > · · · > λd). Recall that λR =
(λd ,λd−1, . . . ,λ1); the set of values {ξi

(
λR
)} is the same as {ξi (λ )} but not

necessarily in reverse order. For example, suppose that λ j−1 > λ j = · · · = λk >

λk+1 for some 0 < j < k < d; then the list {ξi (λ ) : i = j, . . . ,k} agrees with
{ξd−k−i+1

(
λR
)

: i = j, . . . ,k} (in that order). Thus

Eε (λR) =∏
{

1+
εκ

ξi (λ )−ξ j (λ )
: λi > λ j

}
.

Definition 10.4.9 For λ ∈ N
d,P
0 let

jλ = E+
(
λR) ∑

α+=λ

1
E+ (α)

ζα

and, if λ1 > · · ·> λd , let

aλ = E−
(
λR) ∑

w∈Sd

sign(w)
E− (wλ )

ζwλ .

Recall that sign(w) = (−1)m, where w can be expressed as a product of m
transpositions. For λ ∈ N

d,P
0 we use the notation #Sd(λ ) = #{α ∈ Nd

0 : α+ = λ}
for the cardinality of the Sd-orbit of λ .

Theorem 10.4.10 For λ ∈N
d,P
0 , the polynomial jλ has the following properties:

(i) jλ = ∑α+=λ ωα ;
(ii) w jλ = jλ for each w ∈ Sd;
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(iii) jλ
(
1d
)

= #Sd (λ )ζλ
(
1d
)
;

(iv) 〈 jλ , jλ 〉= #Sd (λ )E+
(
λR
)〈ζλ ,ζλ 〉.

Proof It suffices to show that (i, i + 1) jλ = jλ for any i < d. Indeed, with σ =
(i, i+1),

jλ = E+(λR)
[
∑
{ ζα

E+(α)
: α+ = λ ,αi = αi+1

}
+∑

{ ζα
E+ (α)

+
ζσα

E+ (σα)
: α+ = λ ,αi > αi+1

}]
.

Each term in the first sum is invariant under σ . By part (iii) of Proposition 10.4.6,
each term in the second sum is invariant because

E+(σα)/E+(α) = 1+κ[ξi (α)−ξi+1(α)]−1.

Thus jλ is invariant under Sd and is a scalar multiple of ∑α+=λ ωα . Since λR is
minimal for" in {α : α+ = λ} and, by the triangularity for ζα in the p-basis, the
coefficient of pλR in jλ is 1, part (i) holds. Part (iii) is an immediate consequence
of (i).

By the group invariance of the inner product,

〈 jλ , jλ 〉= ∑
α+=λ

〈 jλ ,ωα〉= #{α : α+ = λ}〈 jλ ,ζλ 〉

= #Sd (λ )E+
(
λR)〈ζλ ,ζλ 〉 .

Note that ωλ = ζλ and E+ (λ ) = 1.

Theorem 10.4.11 For λ ∈ N
d,P
0 with λ1 > · · ·> λd, the polynomial aλ has the

following properties:

(i) aλ = ∑w∈Sd
sign(w)ωwλ ;

(ii) waλ = sign(w)aλ for each w ∈ Sd ;
(iii) 〈aλ ,aλ 〉= d!E−

(
λR
)〈ζλ ,ζλ 〉.

Proof The proof is similar to the previous one. To show part (ii) it suffices to
show that σaλ =−aλ for σ = (i, i+1) and for each i < d. As before, each term
in the sum is skew under σ :

aλ = E−(λR)∑
{

sign(w)
[ ζwλ
E−(wλ )

− ζσwλ
E−(σwλ )

]
: w ∈ Sd ,(wλ )i > (wλ )i+1

}
.

Both aλ and ∑w∈Sd
sign(w)ωwλ have the skew property and coefficient sign(w)

for pλR , where wλ = λR. Thus part (i) holds. Finally,

〈aλ ,aλ 〉= ∑
w1∈Sd

∑
w2∈Sd

sign(w1)sign(w2)
〈
ωw1λ ,ωw2λ

〉
= d! ∑

w∈Sd

sign(w)〈ωλ ,ωwλ 〉= d!〈ζλ ,aλ 〉

= d!E−
(
λR)〈ζλ ,ζλ 〉 ,
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and this proves part (iii) (in the first line we change the variable of summation,
letting w2 = w1w).

The polynomial jλ is a scalar multiple of the Jack polynomial Jλ (x;1/κ). The
actual multiplying factor will be discussed later.

10.5 Degree-Changing Recurrences
In this section the emphasis will be on the transition from ζλ−εm to ζλ , where λ ∈
N

d,P
0 and λm > λm+1 = 0 for some m≤ d. By use of the defining properties we will

determine the ratios 〈ζλ ,ζλ 〉/
〈
ζλ−εm ,ζλ−εm

〉
for each of three permissible inner

products. This leads to norm and 1d evaluation formulae in terms of hook-length
products. A certain cyclic shift is a key tool.

Definition 10.5.1 For 1 < m ≤ d, let θm = (1,2)(2,3) · · ·(m−1,m) ∈ Sd , so
that θmλ = (λm,λ1,λ2, . . . ,λm−1,λm+1, . . .) for λ ∈ N

d,P
0 .

Suppose that λ ∈N
d,P
0 satisfies m = �(λ ), and let

λ̃ = (λm−1,λ1,λ2, . . . ,λm−1,0, . . .) = θm (λ − εm) .

We will show that Dmζλ = [(d−m+1)κ+λm]θ−1
m ζλ̃ , which leads to the desired

recurrences. The idea is to identify Dmζλ as a joint eigenfunction of the operators
θ−1

m Uiθm and match up the coefficients of the p λ̃ .

Lemma 10.5.2 Suppose that λ ∈ N
d,P
0 and m = �(λ ); then the following hold:

(i) xmDmζλ = [κ (d−m)+λm]ζλ −κ ∑ j>m (m, j)ζλ ;

(ii) xmDmζλ
(
1d
)

= λmζλ
(
1d
)
;

(iii) 〈xmDmζλ ,ζλ 〉=
λm

κ +λm
[κ (d−m+1)+λm]〈ζλ ,ζλ 〉;

(iv) 〈xmDmζλ ,xmDmζλ 〉=
λm

κ+λm
[κ (d−m+1)+λm]

× [κ (d−m)+λm]〈ζλ ,ζλ 〉.

Proof By part (i) of Lemma 10.2.1,

xmDmζλ =
(
Dmxm−1−κ ∑

j �=m

(m, j)
)
ζλ

= (Um−κ−1)ζλ −κ ∑
j>m

(m, j)ζλ

= [ξm(λ )−κ−1]ζλ −κ ∑
j>m

(m, j)ζλ

= [κ(d−m)+λm]ζλ −κ ∑
j>m

(m, j)ζλ .
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This proves parts (i) and (ii). Next, observe that 〈ζλ ,(m, j)ζλ 〉 = 〈ζλ ,(m,m +
1)ζλ 〉 for j > m; by Proposition 10.4.5, σζλ = ζσλ + cζλ where σ =
(m,m+1) and c = κ[ξm(λ )−ξm+1(λ )]−1 = κ(κ +λm)−1 (recall that ξi (λ ) =
κ (d− i+1)+λi +1 for each λ ∈N

d,P
0 ). Thus

〈xmDmζλ ,ζλ 〉= [κ (d−m)+λm]〈ζλ ,ζλ 〉−κ (d−m)〈ζλ ,(m, j)ζλ 〉

=
(

[κ (d−m)+λm]− κ2 (d−m)
κ +λm

)
〈ζλ ,ζλ 〉

=
λm

κ +λm
[κ (d−m+1)+λm]〈ζλ ,ζλ 〉 .

For part (iv), let a = κ (d−m)+λm; the group invariance properties of the inner
product are now used repeatedly:

〈xmDmζλ ,xmDmζλ 〉
= a2 〈ζλ ,ζλ 〉−2aκ ∑

j>m

〈ζλ ,(m, j)ζλ 〉

+κ2
(
∑
j>m

〈(m, j)ζλ ,(m, j)ζλ 〉+2 ∑
m< j<k

〈(m, j)ζλ ,(m,k)ζλ 〉
)

=
(
a2−2acκ (d−m)+κ2 (d−m)(1+ c (d−m−1))

)〈ζλ ,ζλ 〉

=
λm

κ +λm
[κ (d−m)+λm] [κ (d−m+1)+λm]〈ζλ ,ζλ 〉 .

Next, we consider the behavior of Dmζλ under Diρi, with the aim of identify-
ing it as a transform (θ−1

m ) of a joint eigenfunction. The cyclic shift θm satisfies
θ−1

m (1) = m and θ−1
m (i) = i−1 for 2≤ i ≤ m. Recall the commutation relations

for Diρi,(i, j) and w ∈ Sd :

1. wDiρi = Dw(i)ρw(i)w;
2. w

(
w−1 (i) ,w−1 ( j)

)
= (i, j)w.

Lemma 10.5.3 Suppose that λ ∈ N
d,P
0 and m = �(λ ); then

(i) DiρiDmζλ =
(
ξi(λ )+κ[∑ j<i( j, i)+(i,m)]

)
Dmζλ for i < m;

(ii) DmρmDmζλ = [ξm (λ )−1]Dmζλ ;
(iii) UiθmDmζλ = [κ (d− i+1)+1]θmDmζλ for i > m;
(iv) UiθmDmζλ = ξi−1 (λ )θmDmζλ for 1 < i≤ m;
(v) U1θmDmζλ = [ξm (λ )−1]θmDmζλ .

Proof By Proposition 10.3.7 and Lemma 10.2.1, DiρiDm = κDm + Di[Dmxi +
κ(i,m)] for i < m; thus

DiρiDmζλ = DmDiρiζλ +κ (i,m)Dmζλ

= Dm

(
ξi (λ )+κ∑

j<i
( j, i)

)
ζλ +κ (i,m)Dmζλ ,
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which proves part (i), since Di (i,m) = (i,m)Dm and Dm ( j, i) = ( j, i)Dm for j <

i < m. Next, DmρmDm = κDm +Dm[Dmxm−1−κ ∑ j �=m( j,m)], so that

DmρmDmζλ = Dm

(
Um−1−κ ∑

j>m

( j,m)
)
ζλ

= [ξm (λ )−1]Dmζλ −κ ∑
j>m

( j,m)D jζλ .

However, D jζλ = 0 for j > m because the expansion of ζλ in the p-basis (see
Definition 10.3.2 and Proposition 10.3.9) contains no pβ with β j > 0. Also, Dmζλ
has the latter property, which shows that UiDmζλ = [κ (d− i+1)+ 1]Dmζλ for
each i > m (Corollary 10.3.12). Thus part (iii) follows from θmUi = Uiθm for
i > m.

Apply θm to both sides of the equation in (i):(
Diρi−κ

[
∑
j<i

( j, i)+(i,m)
])

Dmζλ = ξi(λ )Dmζλ ,

and obtain equation (iv) with index i + 1 (so that 2 ≤ i + 1 ≤ m). A similar
operation on equation (ii) proves equation (v).

Consider the multi-index λ̃ = (λm − 1,λ1,λ2, . . . ,λm−1,0, . . .); clearly the
eigenvalues are given by ξ1(λ̃ ) = [κ(d −m) + λm] = ξm(λ )− 1 and ξi(λ̃ ) =
ξi−1(λ ) for 2 ≤ i ≤ m, because λm− 1 < λm−1. The remaining eigenvalues are
trivially ξi(λ̃ ) = ξi(λ ) = κ (d− i+1)+1 for i > m. Thus θmDmζλ is a multiple
of ζλ̃ ; the value of the multiple can be determined from the coefficient of p λ̃
in θmDmζλ , that is, the coefficient of pλ−εm in Dmζλ . As usual, this calculation
depends on the dominance ordering.

Lemma 10.5.4 Suppose that λ ∈ N
d,P
0 , m = �(λ ) and pλ−εm appears with a

nonzero coefficient in Dm pα ; then one of the following holds:

(i) α = λ , with coefficient κ (d−m+1)+λm;
(ii) α = λ + k (ε j− εm), where j > m, 1≤ k < λm, with coefficient κ;

(iii) α = λ + k (εm− ε j) , where j < m, 1≤ k ≤ λ j−λm, with coefficient −κ .

Proof By Proposition 10.3.3, when α = λ the coefficient of pλ−εi
in Dm pα is

κ (1+#{ j : λ j < λm}) + λm = κ (d−m+1) + λm. The two other possibilities
correspond to sets A,B with α differing from λ in two entries. In the case of set
A, for some j �= m we have α j = λ j + k,αm = λm− k and λ j ≤ λm− k−1. Since
λm is the smallest nonzero part of λ this implies that j > m and λ j = 0. In the case
of set B, for some j �= m we have α j = λ j−k,αm = λm +k and λm ≤ λ j−k < λ j

(and λ j > λm implies j < m).
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Theorem 10.5.5 Suppose that λ ∈ N
d,P
0 and m = �(λ ); then

Dmζλ = [κ (d−m+1)+λm]θ−1
m ζλ̃ .

Proof In Lemma 10.5.3 it was established that Dmζλ is a scalar multiple of
θ−1

m ζλ̃ . The multiple equals the coefficient of pλ−εm in Dmζλ (because the coef-
ficient of p λ̃ in ζλ̃ is 1). But pλ−εm only arises from Dm pλ in the expansion of
Dmζλ , by Lemma 10.5.4: case (i) is the desired coefficient; case (ii) cannot occur
because if pβ appears in the expansion of ζλ then β j = 0 for all j > m; case (iii)
cannot occur because λ � λ + k (εm− ε j) for j < m,1≤ k ≤ λ j−λm.

Because θm is an isometry we can now assert that

〈Dmζλ ,Dmζλ 〉= [κ (d−m+1)+λm]2 E+(λ̃ )E−(λ̃ )
〈
ζλ−εm ,ζλ−εm

〉
and

Dmζλ (1d) = [κ (d−m+1)+λm]E−(λ̃ )ζλ−εm(1d).

10.6 Norm Formulae
10.6.1 Hook-length products and the pairing norm

The quantities (functions on N
d,P
0 ) which have the required recurrence behavior

(see Lemma 10.5.2 and Theorem 10.5.5) are of two kinds: the easy one is the
generalized Pochhammer symbol, and the harder one comes from hook length
products.

Definition 10.6.1 For a partition λ ∈ N
d,P
0 and implicit parameter κ, the

generalized Pochhammer symbol is defined by

(t)λ =
d

∏
i=1

(t− (i−1)κ)λi
.

For example, in the situation described above,

(dκ +1)λ
(dκ +1)λ−εm

=
(κ (d−m+1)+1)λm

(κ (d−m+1)+1)λm−1
= κ (d−m+1)+λm.

Next, we calculate Eε (λ̃ ): indeed,

Eε(λ̃ ) =
m

∏
j=2

(
1+

εκ
ξ j(λ̃ )−ξ1(λ̃ )

)
=

m

∏
j=2

(
1+

εκ
ξ j−1 (λ )− [ξm (λ )−1]

)
=

m−1

∏
j=1

(κ (m− j + ε1)+λ j−λm +1
κ (m− j)+λ j−λm +1

)
.
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Recall that ξ j (λ ) = κ (d− j +1)+λ j +1. It turns out that the appropriate device
to handle this factor is the hook-length product of a tableau or of a composition.
Here we note that a tableau is a function whose domain is a Ferrers diagram and
whose values are numbers or algebraic expressions. The Ferrers diagram of α ∈
Nd

0 is the set {(i, j) : 1≤ i≤ d,1≤ j ≤ αi}: for each node (i, j) with 1 ≤ j ≤ αi

there are two special subsets, the arm

{(i, l) : j < l ≤ αi}
and the leg

{(l, j) : l > i, j ≤ αl ≤ αi}∪{(l, j) : l < i, j ≤ αl +1≤ αi}
(when j = αl + 1 the point is outside the diagram). The node itself, the arm
and the leg make up the hook. The definition of hooks for compositions is from
[160, p. 15]. The cardinality of the leg is called the leg length, formalized by the
following:

Definition 10.6.2 For α ∈ Nd
0,1≤ i≤ d and 1≤ j ≤ αi the leg length is

L(α; i, j) := #{l : l > i, j ≤ αl ≤ αi}+#{l : l < i, j ≤ αl +1≤ αi} .

For t ∈Q(κ) the hook length and the hook-length product for α are given by

h(α ,t; i, j) = αi− j + t +κL(α; i, j)

h(α,t) =
�(α)

∏
i=1

αi

∏
j=1

h(α,t; i, j) .

For the special case κ = 1 and α ∈ N
d,P
0 , this goes back to the beginnings of

the representation theory for the symmetric group Sd (due to Schur and to Young
in the early twentieth century); for arbitrary parameter values the concept is due
to Stanley (1989), with a more recent modification by Knop and Sahi (1997).

Here is an example. Below, we give the tableau (Ferrers diagram) for λ =
(5,3,2,2) with the factors of the hook-length product h(λ , t) entered in each cell:

4+ t +3κ 3+ t +3κ 2+ t +κ 1+ t t
2+ t +2κ 1+ t +2κ t
1+ t +κ t +κ

1+ t t

Compare this with the analogous diagram for α = (2,3,2,5):

1+ t +κ t +κ
2+ t +2κ 1+ t +2κ 1+ t

1+ t t
4+ t +3κ 3+ t +3κ 2+ t +3κ 1+ t +κ t

There is an important relation between h(α,t), for the values t = 1,κ +1, and
Eε (α). We will use the relation ξi (α)−ξ j (α) = κ [rα ( j)− rα (i)]+αi−α j:
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Lemma 10.6.3 For α ∈ Nd
0 , we have

h(α,κ +1) = h
(
α+,κ+1

)
E+ (α)

and

h(α,1) =
h(α+,1)
E− (α)

.

Proof We will use induction on adjacent transpositions. The statements are true
for α = α+. Fix α+ and suppose that αi > αi+1 for some i. Let σ = (i, i+1).
Consider the ratio h(σα,t)/h(α,t). The only node whose hook length changes
(in the sense of an interchange of rows i and i + 1 of the Ferrers diagram)
is (i,αi+1 +1). Explicitly, h(σα,t;s, j) = h(α,t;s, j) for s �= i, i + 1 and 1 ≤
j ≤ αs, h(σα,t; i, j) = h(α, t; i+1, j) for 1 ≤ j ≤ αi+1 and h(σα,t; i+1, j)
= h(α, t; i, j) for 1 ≤ j ≤ αi except for j = αi+1 + 1. Thus h(σα,t)/h(α, t) =
h(σα, t; i+1,αi+1 +1)/h(α,t; i,αi+1 +1). Note that L(σα; i+1,αi+1 +1)
= L(α; i,αi+1 +1)+1 (since the node (i,αi+1 +1) is adjoined to the leg). Let

E1 = {s : s≤ i,αs ≥ αi}∪{s : s > i,αs > αi} ,

E2 = {s : s≤ i+1,αs ≥ αi+1}∪{s : s > i+1,αs > αi+1} ;

thus, by definition, rα (i) = #E1 and rα (i+1) = #E2. Now, E1 ⊂ E2 so that
rα (i+1)− rα (i) = #(E2\E1) and

E2\E1 = {s : s < i,αi > αs ≥ αi+1}∪{i}∪{s : s > i+1,αi ≥ αs > αi+1} .

This shows that #(E2\E1) = 1+L(α ; i,αi+1 +1) and

h(α,t; i,αi+1 +1) = κ [rα (i+1)− rα (i)−1]+ t +αi−αi+1−1,

h(σα, t; i+1,αi+1 +1) = κ [rα (i+1)− rα (i)]+ t +αi−αi+1−1.

Thus

h(σα,κ +1; i+1,αi+1 +1)
h(α,κ +1; i,αi+1 +1)

=
κ [rα (i+1)− rα (i)+1]+αi−αi+1

κ (rα (i+1)− rα (i))+αi−αi+1

= 1+
κ

κ [rα (i+1)− rα (i)]+αi−αi+1

=
E+ (σα)
E+ (α)

(the last equation is proven in Theorem 10.4.8) and

h(σα,1; i+1,αi+1 +1)
h(α,1; i,αi+1 +1)

=
κ [rα (i+1)− rα (i)]+αi−αi+1

κ [rα (i+1)− rα (i)−1]+αi−αi+1

=
(

1− κ
κ [rα (i+1)− rα (i)]+αi−αi+1

)−1

=
E− (α)

E− (σα)
.
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Thus h(α,κ +1) and h(α+,κ +1)E+ (α) have the same transformation prop-
erties under adjacent transpositions and hence are equal. Similarly, h(α,1) =
h(α+,1)/E− (α).

Next we consider the ratio h(λ ,t)/h(λ − εm,t). Each cell above (m,λm)
changes (the leg length decreases by 1) and each entry in row m changes. Thus

h(λ , t)
h(λ − εm,t)

=
m−1

∏
i=1

λi−λm + t +κ (m− i)
λi−λm + t +κ (m− i−1)

(λm−1+ t) .

The following relates this to Eε (λ̃ ).

Lemma 10.6.4 Suppose that λ ∈ N
d,P
0 and λ̃ = (λm−1,λ1, . . . ,λm−1,0, . . .)

with m = �(λ ); then

(κ +λm)E+(λ̃ ) =
h(λ ,κ +1)

h(λ − εm,κ+1)
and

1
λm

E−(λ̃ ) =
h(λ − εm,1)

h(λ ,1)
.

Proof For the first equation,

E+(λ̃) =
m−1

∏
i=1

(κ (m− i+1)+λi−λm +1
κ (m− i)+λi−λm +1

)
=

h(λ ,κ +1)
h(λ − εm,κ +1)(κ +λm)

by use of the above formula for h(λ , t)/h(λ−εm,t) with t = κ+1. For the second
equation,

E−(λ̃ ) =
m−1

∏
i=1

(κ (m− i−1)+λi−λm +1
κ (m− i)+λi−λm +1

)
= λm

h(λ − εm,1)
h(λ ,1)

by the same formula with t = 1.

The easiest consequence is the formula for ζλ (1d); the proof of Lemma 10.6.4
illustrates the ideas that will be used for the norm calculations.

Proposition 10.6.5 For α ∈Nd
0 and λ = α+ ∈ N

d,P
0 ,

ζα(1d) = E−(α)
(dκ +1)λ

h(λ ,1)
=

(dκ +1)λ
h(α,1)

.

Proof From Theorem 10.4.8 we have ζα(1d) = E− (α)ζλ
(
1d
)
. Suppose that

m = �(λ); then, by part (ii) of Lemma 10.5.2 and Theorem 10.5.5, ζλ
(
1d
)

=
λ−1

m Dmζλ
(
1d
)

= λ−1
m [κ (d−m+1)+λm]E−(λ̃ )ζλ−εm(1d); thus

ζλ
(
1d
)

ζλ−εm (1d)
= [κ (d−m+1)+λm]

h(λ − εm,1)
h(λ ,1)

.
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Clearly ζ0
(
1d
)

= 1 (the trivial 0 = (0, . . . ,0) ∈Nd
0) and

(dκ +1)λ
(dκ +1)λ−εm

= κ (d−m+1)+λm.

An obvious inductive argument finishes the proof.

We now specialize to the permissible inner product 〈 f ,g〉h = f (D)g(x) |x=0.
In this case Dm is the adjoint of multiplication by xm, and we use part (iii) of
Lemma 10.5.2.

Theorem 10.6.6 For α ∈Nd
0 and λ = α+ ∈N

d,P
0 ,

〈ζα ,ζα〉h = E+ (α)E− (α)(dκ +1)λ
h(λ ,κ +1)

h(λ ,1)
.

Proof From Theorem 10.4.8, 〈ζα ,ζα〉h = E+ (α)E− (α)〈ζλ ,ζλ 〉h. From the def-
inition of the inner product, 〈xmDmζλ ,ζλ 〉h = 〈Dmζλ ,Dmζλ 〉h. Suppose that
m = �(λ ); then, again by part (iii) of Lemma 10.5.2 and Theorem 10.5.5,

〈ζλ ,ζλ 〉h =
κ +λm

λm [κ (d−m+1)+λm]
〈Dmζλ ,Dmζλ 〉h

=
κ +λm

λm
[κ (d−m+1)+λm]

〈
ζ λ̃ ,ζ λ̃

〉
h

=
κ +λm

λm
[κ (d−m+1)+λm]E+(λ̃ )E−(λ̃)

〈
ζλ−εm ,ζλ−εm

〉
h .

Thus
〈ζλ ,ζλ 〉h〈

ζλ−εm ,ζλ−εm

〉
h

=
(dκ +1)λ h(λ ,κ +1)h(λ − εm,1)

(dκ +1)λ−εm
h(λ − εm,κ +1)h(λ ,1)

.

Induction finishes the proof.

Corollary 10.6.7 For α ∈ Nd
0 ,

〈ζα ,ζα〉h = (dκ +1)α+
h(α,κ +1)

h(α,1)
.

10.6.2 The biorthogonal-type norm

Recall the generating function

F (x,y) = ∑
α∈Nd

0

pα (x)yα =
d

∏
i=1

(1− xiyi)
−1

d

∏
j,k=1

(1− x jyk)
−κ .

Because F is symmetric in x,y, the matrix A given by

∑
α∈Nd

0

pα (x)yα =
∞

∑
n=0

∑
|α |=|β |=n

Aβαxβ yα ,
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expressing pα (x) in terms of xβ , is symmetric (consider the matrix A, which is
locally finite, as a direct sum of ordinary matrices, one for each degree n = |α|=
|β | ∈ N). The matrix is invertible and thus we can define a symmetric bilinear
form onΠd (in the following sum the coefficients have only finitely many nonzero
values): 〈

∑
α∈Nd

0

aαxα , ∑
β∈Nd

0

bβ xβ
〉

p

= ∑
α,β

aαbβ
(
A−1)

αβ ,

that is, 〈
pα ,xβ

〉
p
= δα ,β .

From the transformation properties of pα it follows that 〈w f ,wg〉p = 〈 f ,g〉p

for f ,g ∈ Πd and w ∈ Sd . We showed that D
(x)
i xiF(x,y) = D

(y)
i yiF(x,y), which

implies that D
(x)
i xi is self-adjoint with respect to the form defined above (1≤ i≤

d). To see this, let D
(x)
i xixα = ∑γ Bγαxγ ; then BA = ABT (T denotes the trans-

pose). Thus 〈·, ·〉p is a permissible inner product. To compute 〈ζλ ,ζλ 〉p we use

the fact that 〈xi f ,ρig〉p = 〈 f ,g〉p for f ,g ∈Πd , 1≤ i≤ d.

Lemma 10.6.8 Suppose that λ ∈ N
d,P
0 and m = �(λ ); then

ρmDmζλ = [κ (d−m+1)+λm]ζλ + f0,

where Dm f0 = 0 and 〈wζλ , f0〉= 0 for any w ∈ Sd.

Proof Let f0 = ρmDmζλ − [κ (d−m+1)+λm]ζλ ; by part (ii) of Lemma 10.5.3,
Dm f0 = 0. Further, the basis elements pβ which appear in the expansions of Dmζλ
and ζλ satisfy β j = 0 for all j > m. By Proposition 10.3.9, if pβ appears in f0 then
β j = 0 for all j > m. The expansion of f0 in the orthogonal basis {ζβ} involves
only compositions β with the same property, β j = 0 for all j > m. Thus 〈 f0,g〉= 0
for any g ∈ Eλ (note that λm > 0). Since Eλ is closed under the action of Sd , this
shows that 〈 f0,wζλ 〉= 0 for all w ∈ Sd.

The statement in Lemma 10.6.8 applies to any permissible inner product.

Theorem 10.6.9 For α ∈ Nd,

〈ζα ,ζα〉p =
h(α,κ+1)

h(α,1)
, λ = α+ ∈ N

d,P
0 .

Proof Let λ = α+ ∈ N
d,P
0 . From Theorem 10.4.8 we have

〈ζα ,ζα〉p = E+(α)E−(α)〈ζλ ,ζλ 〉p.
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From the definition of the inner product,

〈xmDmζλ ,ρmDmζλ 〉p = 〈Dmζλ ,Dmζλ 〉p.

Suppose that m = �(λ ); then, by parts (i) and (iii) of Lemma 10.5.2 and Lemma
10.6.8,

〈Dmζλ ,Dmζλ 〉p = 〈xmDmζλ , [κ (d−m+1)+λm]ζλ + fm〉p

= [κ (d−m+1)+λm]〈xmDmζλ ,ζλ 〉p

+[(d−m)κ +λm]〈ζλ , fm〉p−κ ∑
j>m
〈(m, j)ζλ , fm〉p

=
λm

κ +λm
[κ (d−m+1)+λm]2 〈ζλ ,ζλ 〉p .

But, as before (by Theorem 10.5.5),

〈Dmζλ ,Dmζλ 〉p = [κ (d−m+1)+λm]2
〈
ζλ̃ ,ζλ̃

〉
p

= [κ (d−m+1)+λm]2 E+(λ̃ )E−(λ̃ )〈ζλ−εm ,ζλ−εm〉p

and so

〈ζλ ,ζλ 〉p〈
ζλ−εm ,ζλ−εm

〉
p

=
κ +λm

λm
E+(λ̃ )E−(λ̃ ) =

h(λ ,κ +1)h(λ − εm,1)
h(λ − εm,κ +1)h(λ ,1)

.

As before, induction on n = |λ | finishes the proof (〈1,1〉p = 1).

Considering the generating function in Definition 10.3.2 as a reproducing
kernel for 〈·, ·〉p establishes the following.

Corollary 10.6.10 For κ > 0,maxi |xi| < 1,maxi |yi| < 1, the following expan-
sion holds:

d

∏
i=1

(1− xiyi)
−1

d

∏
j,k=1

(1− x jyk)
−κ = ∑

α∈Nd
0

h(α,1)
h(α,κ +1)

ζα(x)ζα(y).

Later we will consider the effect of this corollary on the determination of the
intertwining operator.

10.6.3 The torus inner product

By considering the variables xi as coordinates on the complex d-torus, one can
define an L2 structure which provides a permissible inner product. Algebraically
this leads to ‘constant-term’ formulae: the problem is to determine the constant
term in a Laurent polynomial (in x1,x

−1
1 ,x2,x

−1
2 , . . .) when κ ∈ N.
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Definition 10.6.11 The d-torus is given by

Td = {x : x j = exp(iθ j) ;−π < θ j ≤ π;1≤ j ≤ d}.
The standard measure m on Td is

dm(x) = (2π)−d dθ1 · · ·dθd

and the conjugation operator on polynomials (with real coefficients) is

g∗(x) = g
(
x−1

1 ,x−1
2 , . . . ,x−1

d

)
, g ∈Πd .

The weight function is a power of

k (x) = ∏
1≤i< j≤d

(xi− x j)(x−1
i − x−1

j );

thus k (x)≥ 0 since (xi− x j)(x−1
i −x−1

j ) =
[
2 sin 1

2 (θi−θ j)
]2

for x∈Td . For now

we do not give the explicit value of the normalizing constant cκ , where c−1
κ =∫

Td kκ dm. The associated inner product is

〈 f ,g〉T = cκ

∫
Td

f g∗kκ dm, f ,g ∈Πd .

For real polynomials 〈 f ,g〉T = 〈g, f 〉T, since kκ dm is invariant under inversion,
that is, x j → x−1

j for all j. Also, 〈w f ,wg〉T = 〈 f ,g〉T for each w ∈ Sd by the
invariance of k.

The fact that k (x) is homogeneous of degree 0 implies that homogeneous poly-
nomials of different degrees are orthogonal for 〈·, ·〉T, when κ > 0. The next
theorem completes the proof that 〈·, ·〉T is a permissible inner product. Write

∂i :=
∂
∂xi

and δi :=∑
j �=i

1
xi− x j

[1− (i, j)]

in the next proof.

Theorem 10.6.12 For κ > 0, polynomials f ,g ∈Πd and 1≤ i≤ d,

〈Dixi f ,g〉T = 〈 f ,Dixig〉T ;

if f ,g are homogeneous of different degrees then 〈 f ,g〉T = 0.

Proof Since (∂/∂θi) f (x) = i exp(iθi)∂i f (x) = ixi∂i f (x), integration by parts
shows that

∫
Td xi∂ih(x)dm(x) = 0 for any periodic differentiable h. Also, note

that xi∂ig∗(x) =−x−1
i (∂ig)∗ =−(xi∂ig)∗. Thus the Euler operator ψ = ∑d

i=1 xi∂i

is self-adjoint for 〈·, ·〉T (observe that ψ (kκ) = κkκ−1ψk = 0 for any κ > 0).
Suppose that f ,g are homogeneous of degrees m,n, respectively; then m〈 f ,g〉T =
〈ψ f ,g〉T = 〈ψ f ,ψg〉T = n〈 f ,g〉T; so m �= n implies 〈 f ,g〉T = 0. Next,
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Td

(
Dixi f (x)g∗(x)− f (x) [Dixig(x)]∗

)
k(x)κ dm(x)

=
∫

Td

(
f g∗+ xi (∂i f )g∗ − f g∗+ xi f ∂ig

∗+ xi f g∗κ
1
k
∂ik

)
kκ dm(x)

+κ
∫

Td

(
−xi f g∗

1
k
∂ik +(δixi f )g∗ − f (δixig)∗

)
kκ dm(x) .

This equation results from integration by parts, and the first part is clearly zero.
The integrand of the second part equals

κ∑
j �=i

[
− f g∗xi

( 1
xi− x j

+
−x−2

i

x−1
i − x−1

j

)
+

xi f − x j (i, j) f

xi− x j
g∗ − f

x−1
i g∗ − x−1

j (i, j)g∗

x−1
i − x−1

j

]
= κ∑

j �=i

1
xi− x j

[− f g∗ (xi + x j)+ xi f g∗ − x jg
∗ (i, j) f

+ x j f g∗ − xi f (i, j)g∗
]
.

For each j �= i the corresponding term is skew under the transposition (i, j) and
the measure kκ dm is invariant, and so the second part of the integral is also zero,
proving the theorem.

Theorem 10.6.13 For α ∈ Nd
0 ,

〈ζα ,ζα〉T =
(dκ +1)λ h(α,κ +1)

((d−1)κ +1)λ h(α,1)
.

Proof From Theorem 10.4.8 we have 〈ζα ,ζα〉T = E+ (α)E− (α)〈ζλ ,ζλ 〉T. By
the definition of the inner product 〈xmDmζλ ,xmDmζλ 〉T = 〈Dmζλ ,Dmζλ 〉T (that
is, multiplication by xi is an isometry). Suppose that m = �(λ ); then by part (iv)
of Lemma 10.5.2 and Theorem 10.5.5

〈ζλ ,ζλ 〉T =
κ+λm

λm[κ (d−m+1)+λm][κ (d−m)+λm]
〈Dmζλ ,Dmζλ 〉T

=
(κ +λm) [κ (d−m+1)+λm]

λm [κ (d−m)+λm]

〈
ζ λ̃ ,ζ λ̃

〉
T

=
(κ +λm) [κ (d−m+1)+λm]

λm [κ (d−m)+λm]
E+(λ̃ )E−(λ̃ )

〈
ζλ−εm ,ζλ−εm

〉
T
.

Thus

〈ζλ ,ζλ 〉T〈
ζλ−εm ,ζλ−εm

〉
T

=
(dκ +1)λ ((d−1)κ +1)λ−εm

h(λ ,κ +1)h(λ − εm,1)
(dκ +1)λ−εm

((d−1)κ+1)λ h(λ − εm,κ +1)h(λ ,1)
.

Induction on n = |λ | finishes the proof.
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10.6.4 Monic polynomials

Another normalization of nonsymmetric Jack polynomials is such that they are
monic in the x-basis; the polynomials are then denoted by ζ x

α . For α ∈ Nd
0,

ζ x
α (x) = xα +∑{B(β ,α)xβ : α � β},

with coefficients in Q(κ). Note that the triangularity in the x-basis is in the
opposite direction to that in the p-basis. Since this polynomial has the same
eigenvalues for {Ui} as ζα , it must be a scalar multiple of the latter. The value
of this scalar multiple can be obtained from the fact that 〈ζα ,ζ x

α〉p = 1 (since
〈pα ,xα〉p = 1 and the other terms appearing in ζα ,ζ x

α are pairwise orthogonal,
owing to the �-ordering). Let ζ x

α = cαζα ; then 1 = cα 〈ζα ,ζα〉p and thus

cα =
h(α,1)

h(α,κ +1)
.

The formulae for norms and value at 1d imply the following (where λ = α+):

1. ζ x
α
(
1d
)

=
(dκ +1)λ

h(α,κ +1)
;

2. 〈ζ x
α ,ζ x

α〉h = (dκ +1)λ
h(α,1)

h(α,κ +1)
;

3. 〈ζ x
α ,ζ x

α〉T =
(dκ +1)λ

((d−1)κ+1)λ

h(α,1)
h(α,κ +1)

;

4. 〈ζ x
α ,ζ x

α〉p =
h(α ,1)

h(α,κ +1)
.

10.6.5 Normalizing constants

The alternating polynomial for Sd , namely

a(x) = ∏
1≤i< j≤d

(xi− x j) ,

has several important properties relevant to these calculations. For an inner prod-
uct related to an L2 structure, the value of 〈a,a〉 shows the effect of changing κ to
κ+1. Also, a is h-harmonic because Δha is a skew polynomial of degree

(d
2

)−2,
hence 0. Let

δ = (d−1,d−2, . . . ,1,0) ∈ N
d,P
0 ;

then a is the unique skew element of Eδ (and a = aδ , cf. Definition 10.4.9).
The previous results will thus give the values of 〈a,a〉 in the permissible inner
products.

Theorem 10.6.14 The alternating polynomial satisfies

a(x) = ∑
w∈Sd

sign(w)xwδ = ∑
w∈Sd

sign(w)pwδ = ∑
w∈Sd

sign(w)ωwδ .
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Proof The first equation for a is nothing other than the Vandermonde deter-
minant. By Proposition 10.4.4, ωδ = pδ +∑{B(β ,δ ) pβ : β+ � δ ; |β | = |δ |}.
But β+ � δ and |β | = |δ | =

(d
2

)
implies that β j = βk for some j �= k;

in turn this implies that ∑w∈Sd
sign(w)pwβ = 0. Thus ∑w∈Sd

sign(w)ωwδ =
∑w∈Sd

sign(w)pwδ . To compute this we use a determinant formula of Cauchy:

for 1≤ i, j ≤ d let Ai j = (1− xiy j)
−1; then

det A =
a(x)a(y)

∏d
i, j=1 (1− xiy j)

.

To prove this, use row operations to put zeros in the first column (below the first
row): let B1 j = A1 j and Bi j = Ai j−Ai1A1 j/A11 for 2≤ i≤ d and 1≤ j ≤ d; thus
Bi1 = 0 and

Bi j =
(x1− xi)(y1− y j)

(1− x1y j)(1− xiy1)(1− xiy j)
.

Extracting the common factors from each row and column shows that

det A = det B =
∏d

i=2 (x1− xi)∏d
j=2 (y1− y j)

(1− x1y1)∏d
i=2 (1− xiy1)∏d

j=2 (1− x1y j)
det(Ai j)

d
i, j=2 ,

which proves the formula inductively.
Now apply the skew operator to the generating function for {pα}:

∑
w∈Sd

sign(w) ∑
α∈Nd

0

pwα (x)yα

= ∑
w∈Sd

sign(w)
d

∏
i=1

[1− (wx)i yi]
−1

d

∏
j,k=1

(1− x jyk)
−κ

= a(x)a(y)
d

∏
j,k=1

(1− x jyk)
−κ−1 .

This holds by the Cauchy formula, since the second part of the product is Sd-
invariant. The coefficient of yδ in a(y) is 1 since the rest of the product does not
contribute to this exponent, and thus ∑w∈Sd

sign(w)pwδ (x) = a(x).

Proposition 10.6.15 In the pairing norm, 〈a,a〉p = d!; also,

E−
(
δR)h(δ ,κ +1)/h(δ ,1) = 1.

Proof By the norm formula in Theorem 10.4.11,

〈a,a〉p = d!E−(δR)〈ζδ ,ζδ 〉p = d!E−(δR)h(δ ,κ+1)/h(δ ,1);

but 〈a,a〉p = ∑w1,w2∈Sd
sign(w1w2)

〈
pw1δ (x) ,xw2δ

〉
p = d!, by definition.
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The second part of the proposition can be proved by a direct calculation
showing that

E−
(
δR)= ∏

1≤i< j≤d

( j− i−1)κ+( j− i)
( j− i)(κ +1)

=
h(δ ,1)

h(δ ,κ +1)
.

Theorem 10.6.16 The torus norm for a is 〈a,a〉T = d!
(dκ +1)δ

((d−1)κ +1)δ
, and for

κ > 0 the normalizing constant is

cκ =
(∫

Td
kκ dm

)−1
=

Γ(κ +1)d

Γ (κd +1)

for κ ∈ N,cκ = (κ!)d/(κd)!.

Proof By the norm formula and Proposition 10.6.15,

〈a,a〉T = d!E−
(
δR) (dκ +1)δ

((d−1)κ +1)δ

h(δ ,κ+1)
h(δ ,1)

= d!
(dκ +1)δ

((d−1)κ +1)δ
.

Further, c−1
κ+1 =

∫
Td aa∗kκ dm = c−1

κ 〈a,a〉T and so

cκ
cκ+1

= d!
(dκ +1)δ

((d−1)κ +1)δ
=

(dκ +1)d

(κ +1)d .

Analytic function theory and the asymptotics for the gamma function are used
to complete the proof. Since k ≥ 0, the function

φ (κ) =
Γ(κ +1)d

Γ(κd +1)

∫
Td

kκ dm

is analytic on {κ : Reκ > 0}; additionally, the formula for cκ/cκ+1 shows that
φ (κ +1) = φ (κ) . Analytic continuation shows that φ is the restriction of an
entire function that is periodic and of period 1. We will show that φ (κ) =
O
(|κ|(d−1)/2

)
, implying that φ is a polynomial and periodic, hence constant; of

course, φ(0) = 1. Restrict κ to a strip, say {κ : 1 ≤ Reκ ≤ 2}. On this strip
|∫Td kκ dm| ≤ ∫Td kReκ dm ≤ M1 for some M1 > 0. By the Gauss multiplication
formula, we have

Γ(κ +1)d

Γ (κd +1)
= (2π)(d−1)/2 d−dκ−1/2

d−1

∏
j=1

Γ (κ +1)
Γ(κ + j/d)

.

The asymptotic formula Γ(κ+a)/Γ(κ +b) = κa−b
(
1+O(κ−1)

)
, valid on

Reκ ≥ 1, applied to each factor yields∣∣∣∣∣Γ(κ+1)d

Γ(κd +1)

∣∣∣∣∣= M2

∣∣∣d−dκ
∣∣∣ |κ|(d−1)/2

[
1+O

( 1
κ

)]
.

Extend this bound by periodicity. Hence φ = 1.
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Recall that, for f ,g ∈Πd (Theorem 7.2.7),

〈 f ,g〉h = (2π)−d/2 bκ

∫
Rd

(
e−Δh/2 f

)(
e−Δh/2g

)
|a(x)|2κ e−‖x‖

2/2 dx,

where the normalizing constant bκ satisfies 〈1,1〉h = 1. Since e−Δh/2a = a, the
following holds.

Theorem 10.6.17 For κ > 0,

〈a,a〉h = d! (dκ +1)δ and bκ =
d

∏
j=2

Γ(κ +1)
Γ( jκ +1)

.

Proof Using the method of the previous proof,

〈a,a〉h = d!E−(δR)
(dκ +1)δ h(δ ,κ +1)

h(δ ,1)
= d! (dκ +1)δ .

Further,

b−1
κ+1 = (2π)−d/2

∫
Rd
∏
i< j

∣∣xi− x j
∣∣2κ+2

e−||x||
2/2 dx = b−1

κ 〈a,a〉h .

Also, d!(dκ +1)δ = d!∏d
j=2 ( jκ +1) j−1 = (κ +1)1−d ∏d

j=2 ( jκ+1) j; thus

d

∏
j=2

Γ( jκ+1)
Γ(κ +1)

d!(dκ +1)δ =
d

∏
j=2

Γ( jκ + j +1)
Γ(κ+2)

.

We will use the same technique as for the torus, first converting the integral to
one over the sphere Sd−1, a compact set. Let γ = 1

2κd(d−1), the degree of h. In
spherical polar coordinates,

(2π)−d/2
∫

Rd
∏
i< j

∣∣xi− x j
∣∣2κ e−||x||

2/2 dx

= 2γσd
Γ
(

d
2 + γ

)
Γ
(

d
2

) ∫
Sd−1

∏
i< j

∣∣xi− x j
∣∣2κ dω (x) ;

the normalizing constant (see (4.1.3)) satisfies σd−1 =
∫

Sd−1 dω = 1. Define the
analytic function

φ(κ) = Γ
(

d
2 + d(d−1)

2 κ
) d

∏
j=2

[
Γ(κ +1)
Γ( jκ+1)

2κd(d−1)/2

Γ( d
2 )σd−1

×
∫

Sd−1
∏
i< j

∣∣xi− x j
∣∣2κ dω(x)

]
.

The formula for bκ/bκ+1 shows that φ(κ +1) = φ(κ). By analytic continuation,
φ is entire and periodic. On the strip {κ : 1≤Reκ ≤ 2} the factors of φ excluding
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the gamma functions in κ are uniformly bounded. From the asymptotic formulae
(valid in −π < argz < π and a,b > 0),

logΓ(z) =
(

z− 1
2

)
logz− z+ 1

2 log(2π)+O
( 1
|z|
)
,

logΓ (az+b) =
(

az+b− 1
2

)
(logz+ loga)−az+ 1

2 log(2π)+O
( 1
|z|
)

;

the second formula is obtained from the first by the use of log(az+b) = logaz+
b/(az) + O

(|z|−2
)

(see Lebedev [1972], p. 10). Apply this to the first part of
logφ :

logΓ
(

d
2 + d(d−1)

2 κ
)

+(d−1) logΓ(κ +1)−
d

∑
j=2

logΓ( jκ +1)

= d−1
2 (1+dκ) log d(d−1)

2 −
d

∑
j=2

(
jκ + 1

2

)
log j + 1

2 log(2π)

+
(

d−1
2 + d(d−1)

2 κ +(d−1)
(
κ + 1

2

)
−

d

∑
j=2

(
jκ+ 1

2

))
logκ

+
(
− d(d−1)

2 − (d−1)+
d

∑
j=2

j
)
κ +O

(
|κ|−1

)
= C1 +C2κ + d−1

2 logκ +O
(
|κ|−1

)
,

where C1 and C2 are real constants depending only on d. Consequently, φ (κ) =
O
(
|κ|(d−1)/2

)
in the strip {κ : 1 ≤ Reκ ≤ 2}. By periodicity the same bound

applies for all κ , implying that φ is a periodic polynomial and hence constant.
This proves the formula for bκ .

10.7 Symmetric Functions and Jack Polynomials
In the present context, a symmetric function is an element of the abstract ring
of polynomials in infinitely many indeterminates e0 = 1,e1,e2, . . . with coeffi-
cients in some field (an extension of Q). Specialized to Rd , the generators ei

become the elementary symmetric functions of degree i (and e j = 0 for j > d).
For fixed α ∈Nd

0 a polynomial pα can be expressed as a polynomial in x1, . . . ,xd

and the indeterminates ei (involving an arbitrary unbounded number of variables)
as follows. Let n≥maxiαi; then pα is the coefficient of yα in

d

∏
i=1

(1− xiyi)
−1

d

∏
j=1

[
1− e1y j + e2y2

j + · · ·+(−1)n enyn
j

]−κ
.

When ei is evaluated at x ∈ Rd the original formula is recovered. As remarked
before, the polynomials ζβ have expressions in the p-basis with coefficients



10.7 Symmetric Functions and Jack Polynomials 351

independent of the number d of underlying variables provided that d ≥m, where
β j = 0 for any j > m. Thus the mixed {x j,ei} expression for pα provides a similar
one for ζβ which is now meaningful for any number (≥m) of variables.

The Jack polynomials are parametrized by 1/κ and the original formulae
(Stanley [1989]) use two hook-length products h∗,h∗, called upper and lower,
respectively. In terms of our notation:

Definition 10.7.1 For a partition λ ∈N
d,P
0 , with m = �(λ ) and parameter κ , the

upper and lower hook-length products are

h∗(λ ) = κ−|λ |h(λ ,1) =
m

∏
i=1

λi

∏
j=1

[
κ−1(λi− j +1)+#{k : k > i; j ≤ λk}

]
,

h∗(λ ) = κ−|λ |h(λ ,κ) =
m

∏
i=1

λi

∏
j=1

[
κ−1(λi− j)+1+#{k : k > i; j ≤ λk}

]
.

There is a relationship between h
(
λR,κ+1

)
and h(λ ,κ), which is needed

in the application of our formulae. The quantity #Sd (λ ) = #{α : α+ = λ} =
dim Eλ appears because of the symmetrization.

Let m j (λ ) = #{i : 1≤ i≤ d,λi = j} (zero for j > λ1) for j ≥ 0. Then

#Sd (λ ) = d!/∏λ1
j=0 m j (λ )!.

Lemma 10.7.2 For a partition λ ∈N
d,P
0 ,

h
(
λR,κ +1

)
= #Sd (λ )

(dκ +1)λ
(dκ)λ

h(λ ,κ) .

Proof We will evaluate the ratios (dκ +1)λ /(dκ)λ and h
(
λR,κ +1

)
/h(λ ,κ).

Clearly,

(dκ +1)λ
(dκ)λ

=
1

κdd!∏
d
i=1 [(d +1− i)κ+λi]

=
[d− �(λ )]!
κ�(d)d! ∏�(λ)

i=1 [(d +1− i)κ +λi] .

If the multiplicity of a particular λi is 1 (in λ ) then

L
(
λR;d +1− i, j +1

)
= L(λ ; i, j)

for 1 ≤ j < λi. To account for multiplicities, let w be the inverse of rλR , that is,
rλR (w(i)) = i for 1≤ i≤ d. Then λR

w(i) = λi (for example, suppose that λ1 > λ2 =
λ3 > λ4; then w(1) = d,w(2) = d−2,w(3) = d−1). As in the multiplicity-1 case
we have

L
(
λR;w(i) , j +1

)
= L(λ ; i, j) , 1≤ j < λi.
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Then h
(
λR,κ+1;w(i) , j +1

)
= [λi− j +κ (L(λ ; i, j)+1)], which is the same

as h(λ ,κ; i, j) for 1≤ j < λi. Thus

h
(
λR,κ+1

)
h(λ ,κ)

=
�(λ )

∏
i=1

h
(
λR,κ +1;w(i) ,1

)
h(λ ,κ; i,λi)

.

By the construction of w, h
(
λR,κ +1;w(i) ,1

)
= (λi +κ (d +1− i)). Suppose

that λi has multiplicity m (that is, λi−1 > λi = · · · = λi+m−1 > λi+m); it then
follows that L(λ ; i+ l−1,λi) = m− l for 1≤ l ≤ m and

m

∏
l=1

h(λ ,κ; i+ l−1,λi) =
m

∏
l=1

[(m− l +1)κ] = κmm!.

Thus

h
(
λR,κ +1

)
h(λ ,κ)

=
∏�(λ )

i=1 [λi +κ (d +1− i)]

κ�(λ)∏λ1
j=1 mλ ( j)!

.

Combining the ratios, we find that

h
(
λR,κ +1

)
=

(dκ +1)λ
(dκ)λ

d!

[d− �(λ )]!∏λ1
j=1 mλ ( j)!

h(λ ,κ) .

Since mλ (0) = d− �(λ ), this completes the proof.

There is another way to express the commuting operators, formulated by
Cherednik [1991] for f ∈Πd:

Xi f =
1
κ

xi
∂ f
∂xi

+ xi∑
j<i

f − (i, j) f
xi− x j

+∑
j>i

x j [ f − (i, j) f ]
xi− x j

+(1− i) f ;

it is easy to check that κXi f −Dixi f =−κ ∑ j<i(i, j) f − [1+κ(d−1)] f , so that
κXi f = Ui f − (1+κd) f . Another definition of nonsymmetric Jack polynomials
is as the simultaneous eigenfunctions of {Xi}, normalized to be monic in the x-
basis. Another notation for these in the literature is Eα

(
x;κ−1

)
; this is the same

polynomial as ζ x
α .

Previously, we defined symmetric (that is, Sd-invariant) elements jλ of the
spaces Eλ for each λ ∈ N

d,P
0 . An alternative approach to jλ is to regard them as

the simultaneous eigenfunctions of d algebraically independent symmetric differ-
ential operators. These eigenfunctions can be taken as restrictions of elementary
symmetric functions of {Ui}; subsequently to the definition we will prove their
Sd-invariance.

Definition 10.7.3 For 0≤ i ≤ d, let Ti be the linear operator on Πd defined by
(for indeterminate t)

d

∑
i=0

tiTi =
d

∏
j=1

(1+ tU j) .

The definition is unambiguous since {Ui} is a commutative set.
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Theorem 10.7.4 For 1 ≤ i ≤ d and w ∈ Sd, wTi = Tiw. Further, Ti coincides
with a differential operator when restricted to ΠW (the symmetric polynomials).

Proof It suffices to show that ( j, j +1)Ti = Ti ( j, j +1) for 1≤ j < d. Let σ =
( j, j +1) . By Lemma 10.4.1 σUk = Ukσ for each k �= j, j + 1, so it remains to
prove that σ (1+ tU j)

(
1+ tU j+1

)
σ = (1+ tU j)

(
1+ tU j+1

)
. Again by Lemma

10.4.1, σ
(
U j +U j+1

)
σ =

(
U j+1 +κσ

)
+(U j−κσ), implying that U j +U j+1

commutes with σ . Also, σU jU j+1 =
(
U j+1σ +κ

)
U j+1 = U j+1 (U jσ −κ) +

κU j+1 = U jU j+1σ . Thus σTi = Tiσ .
This shows that q ∈ ΠW implies Tiq ∈ ΠW . The same proof as that used for

Theorem 6.7.10 (which depended on the Leibniz rule) can be used to show that
Ti is consistent with a differential operator of degree ≤ i on ΠW , provided that
ad(q)2 Uk = 0 for each q ∈ ΠW and 1 ≤ k ≤ d. But, for any f ∈ Πd , we have

qUk f = Uk (q f )−
(

xk∂q/∂xk

)
f , so that ad(q)Uk = −xk∂q/∂xk (a multiplier)

and [ad (q)]2Uk = 0.

The eigenvalue of Ti acting on ζλ is the coefficient of ti in ∏d
j=1 [1+ tξ j (λ )];

define
d

∑
i=0

νi (λ )t i =
d

∏
j=1

(1+ t [κ (d− i+1)+λi +1]) .

The values {νi (λ ) : 1≤ i≤ d} determine λ ∈N
d,P
0 uniquely. For any w∈ Sd , wζλ

is an eigenfunction of Ti with eigenvalue νi (λ ). The following is now obvious.

Theorem 10.7.5 For each λ ∈ N
d,P
0 there is a unique (up to scalar multiplica-

tion) symmetric polynomial q such that Tiq = νi (λ )q, for each i with 1≤ i ≤ d
and q = b jλ for some b ∈Q(κ).

The Jack polynomials Jλ
(
x;κ−1

)
(in d variables, thus labeled by partitions

with no more than d nonzero parts) were defined to be an orthogonal fam-
ily for an algebraically defined inner product on symmetric functions (see
Jack [1970/71], Stanley [1989] and Macdonald [1995]) and for the torus
(Beerends and Opdam [1993]). The polynomials with κ = 1

2 are called zonal
spherical functions in statistics (James and Constantine [1974]). Bergeron and
Garsia [1992] showed that these are spherical functions on a certain finite homo-
geneous space. Beginning with a known coefficient, on the one hand we can
express Jλ in terms of jλ , indeed the coefficient of xλ in Jλ

(
x;κ−1

)
is h∗ (λ ) =

κ−|λ |h(λ ,κ). On the other hand,

jλ = E+
(
λR) ∑

α+=λ

1
E+ (α)

ζα ,

and the expansion of ζα in the x-basis shows that xλ only occurs in ζλ .

But Eλ
(
x;κ−1

)
is monic in xλ and thus the coefficient of xλ in jλ is

h
(
λR,κ +1

)
/h(λ ,1).
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Proposition 10.7.6 For λ ∈ N
d,P
0 ,

Jλ
(·;κ−1)=

(dκ)λ h(λ ,1)
(dκ+1)λ κ |λ |#Sd (λ )

jλ .

Proof Let Jλ
(·;κ−1

)
= b jλ and match up the coefficients of xλ . This implies

that

b =
h(λ ,κ)h(λ ,1)
k|λ |h(λR,κ +1)

,

and Lemma 10.7.2 finishes the calculation.

Corollary 10.7.7 For λ ∈N
d,P
0 the following hold:

(i) Jλ
(
1d ;κ−1

)
= κ−|λ | (dκ)λ ;

(ii)
〈
Jλ
(·;κ−1

)
,Jλ
(·;κ−1

)〉
h = (dκ)λ h∗ (λ )h∗ (λ );

(iii)
〈
Jλ
(·;κ−1

)
,Jλ
(·;κ−1

)〉
p =

(dκ)λ
(dκ +1)λ

h∗ (λ )h∗ (λ );

(iv)
〈
Jλ
(·;κ−1

)
,Jλ
(·;κ−1

)〉
T

=
(dκ)λ

((d−1)κ +1)λ
h∗ (λ )h∗ (λ ).

Proof This involves straightforward calculations using the norm formulae from
the previous section, Theorem 10.4.10 and Lemma 10.7.2.

For their intrinsic interest as well as for applications to Calogero–Sutherland
models we derive the explicit forms of the two operators, ∑d

i=1 Ui and ∑d
i=1 U 2

i
(actually, we will use a convenient shift of the second). Recall the notation ∂i =
∂/∂xi for 1≤ i≤ d.

Proposition 10.7.8 We have ∑d
i=1 Ui = ∑d

i=1 xi∂i +d + 1
2κd(d +1).

Proof For 1≤ i≤ d, by Lemma 10.2.1

Ui = xiDi +κ+1+κ∑
j �=i

(i, j)−κ∑
j<i

(i, j)

= xiDi +κ+1+κ∑
j>i

(i, j)

and
d

∑
i=1

Ui =
d

∑
i=1

xi∂i +κ ∑
1≤i< j≤d

[1− (i, j)]+κ ∑
1≤i< j≤d

(i, j)+d(1+κ)

=
d

∑
i=1

xi∂i +d(1+κ)+ 1
2κd(d−1).

We used here the general formula for ∑d
i=1 xiDi (see Proposition 6.5.3).
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Theorem 10.7.9 An invariant operator commuting with each U j is given by

d

∑
i=1

(Ui−1−κd)2

=
d

∑
i=1

(xi∂i)2 +2κ ∑
1≤i< j≤d

xix j

[∂i−∂ j

xi− x j
− 1− (i, j)

(xi− x j)2

]
+ 1

6κ
2d(d−1)(2d−1).

Proof For i �= j, let φi j = [1− (i, j)]/(xi − x j), an operator on polynomials.
From the proof of the preceding proposition, Ui−1−κd = xi∂i +κ ∑ j �=i xiφi j−
κ(d−1)+κ∑ j>i(i, j), and we write

d

∑
i=1

(Ui−1−κd)2 =
d

∑
i=1

(xi∂i)2 +κ(E1 +E2)+κ2(E3 +E4)

−2κ(d−1)
d

∑
i=1

(Ui−1−κ)+κ2d(d−1)2,

where

E1 = ∑
i �= j

(xi∂ixiφi j + xiφi jxi∂i),

E2 = ∑
i< j

[xi∂i(i, j)+(i, j)xi∂i] =∑
i�= j

(i, j)xi∂i,

E3 = ∑
i �= j

(
∑
k �=i

xiφi jxiφik +∑
k>i

[xiφi j(i,k)+(i,k)xiφi j]
)

,

E4 =
d−1

∑
i=1
∑
j>i
∑
k>i

(i, j)(i,k)

=
d−1

∑
i=1

(
d− i+ ∑

i< j<k

[(i, j)(i,k)+(i,k)(i, j)]
)

.

The argument depends on the careful grouping of terms and permuting the
indices of summation. Fix a pair (i, j) with i < j and combine the corresponding
terms in E1 +E2 to obtain

xi
1− (i, j)
xi− x j

+ x2
i
∂i−∂i(i, j)

xi− x j
− x2

i
1− (i, j)
(xi− x j)2

+ xi
xi∂i− (i, j)xi∂i

xi− x j
+(i, j)xi∂i + x j

1− (i, j)
x j− xi

+ x2
j
∂ j−∂ j(i, j)

x j− xi

− x2
j

1− (i, j)
(xi− x j)2 + x j

x j∂ j− (i, j)x j∂ j

x j− xi
+(i, j)x j∂ j;

the second line comes from interchanging i and j. The coefficient of (i, j)∂i is
−xix j +x2

j/(xi− x j)+x j = 0, and similarly the coefficient of (i, j)∂ j is zero. The
nonvanishing terms are
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2
x2

i ∂i− x2
j∂ j

xi− x j
−2

xix j[1− (i, j)]
(xi− x j)2

= 2xix j

[
∂i−∂ j

xi− x j
− 1− (i, j)

(xi− x j)2

]
+2(xi∂i + x j∂ j).

Summing the last term over all i < j results in 2(d−1)∑d
i=1 xi∂i.

There are terms in E3 with only two distinct indices: for any pair {i, j} with
i < j one has

xiφi jxiφi j + x jφ jix jφ ji + xiφi j(i, j)+(i, j)xiφi j = [1− (i, j)]− [1− (i, j)] = 0,

because (i, j)φi j = φi j so that

xiφi jxiφi j = xi/xi− x j(xiφi j− x jφi j) = xiφi j,

which combines with x jφ jix jφ ji to produce 1− (i, j). Also,

xiφi j(i, j)+(i, j)xiφi j = xi(i, j)−1/xi− x j + x j(i, j)−1/x j− xi =−[1− (i, j)].

For any triple (i, j,k) (all distinct, and the order matters), the first part of E3 (in
the second term interchange j and k) contributes

x2
i [1− (i,k)]

(xi− x j)(xi− xk)
− xixk[(i,k)− (i,k)(i, j)]

(xi− xk)(xk− x j)

and the second part of E3 contributes (but only for k > i)

xi[p(i,k)− (i, j)(i,k)]
xi− x j

+
xk[(i,k)− (i,k)(i, j)]

xk− x j
;

however, this is symmetric in i,k since (k, j)(k, i) = (i,k)(i, j) (interchanging i
and k in the first term). Fix a triple (p,q,s) with p < q, and then the transposition
(p,q) appears in the triples (p,s,q),(q,s, p) with coefficient

−x2
p

(xp− xs)(xp− xq)
+

−x2
q

(xq− xs)(xq− xp)
− xpxq

(xp− xq)(xq− xs)

− xpxq

(xq− xp)(xp− xs)
+

xp

xp− xs
+

xq

xq− xs
= 0.

Finally we consider the coefficient of a given 3-cycle (of permutations), say,
(p,q)(p,s) = (q,s)(q, p) = (s, p)(s,q), which arises as follows:

xpxq

(xp− xq)(xq− xs)
− xq

xq− xs
+

xqxs

(xq− xs)(xs− xp)
− xs

xs− xp

+
xsxp

(xs− xp)(xp− xq)
− xp

xp− xq
=−1.

This is canceled by the corresponding 3-cycle in E4. It remains to find the coef-
ficient of 1 (the identity operator) in E3 and E4. The six permutations of any
triple p < q < s correspond to the six permutations of x2

p/(xp − xq)(xp − xs),
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and these terms add to 2. Thus E3 and E4 contribute 2
(d

3

)
+ ∑d−1

i=1 (d − i) =
1
6 d(d−1)(2d−1). Further,

2κ(d−1)
d

∑
i=1

[xi∂i− (Ui−1−κ)]+κ2d(d−1)2 = 0

and this finishes the proof.

Corollary 10.7.10 For λ ∈N
d,P
0 and α+ = λ ,[

d

∑
i=1

(xi∂i)2 +2κ ∑
i< j

xix j

(∂i−∂ j

xi− x j
− 1− (i, j)

(xi− x j)2

)]
ζα =

d

∑
i=1

λi[λi−2κ(i−1)]ζα .

Proof The operator is ∑d
i=1(Ui−1−κd)2− 1

6κ
2d(d−1)(2d−1). Because of its

invariance, the eigenvalue for ζα is the same as that for ζλ , namely, ∑d
i=1[κ(d−

i+1)+λi−κd]2−κ2∑d
i=1(i−1)2.

The difference part of the operator vanishes for symmetric polynomials.

Corollary 10.7.11 For λ ∈N
d,P
0 ,(

d

∑
i=1

(xi∂i)2 +2κ∑
i< j

xix j
∂i−∂ j

xi− x j

)
jλ =

d

∑
i=1

λi[λi−2κ(i−1)] jλ .

This is the second-order differential operator whose eigenfunctions are Jack
polynomials.

10.8 Miscellaneous Topics
Recall the exponential-type kernel K (x,y), defined for all x,y∈Rd , with the prop-

erty that D
(x)
i K(x,y) = yiK(x,y) for 1 ≤ i ≤ d. The component Kn (x,y) that is

homogeneous of degree n in x (and in y) has the reproducing property for the

inner product 〈·, ·〉h on Pd
n , that is, Kn

(
x,D (y)

)
q(y) = q(x) for q ∈Pd

n . So, the

orthogonal basis can be used to obtain the following:

Kn (x,y) = ∑
|α |=n

h(α,1)
h(α,κ +1)(dκ +1)α+

ζα (x)ζα (y) .

The intertwining map V can also be expressed in these terms. Recall its defining
properties: VPd

n ⊆Pd
n ,V 1 = 1 and DiV q(x) =V∂q(x)/∂xi for every q∈Πd,1≤

i≤ d. The homogeneous component of degree n of V−1 is given by

V−1q(x) =
1
n! ∑|α |=n

(
n
α

)
xα
(
D (y))αq(y).
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Define a linear map ξ on polynomials by ξ pα = xα/α!; then ξ−1V−1q(x)
= ∑|α|=n pα(x)(D (y))αq(y) = 〈Fn(x, ·),q〉h, the pairing of the degree-n homoge-
neous part of F (x,y) (the generating function for pα and the reproducing kernel
for 〈·, ·〉p) with q in the h inner product (see Definition 7.2.2).

Write q = ∑|β |=n bβ ζβ (expanding in the ζ -basis); then, with |α|= n = |β |,

〈Fn(x, ·),q〉h = ∑
α ,β

1
〈ζα ,ζα〉p

ζα(x)bβ 〈ζα ,ζβ 〉h =∑
α

(dκ+1)α+bαζα(x).

Thus ξ−1V−1 acts as the scalar (dκ +1)λ 1 on the space Eλ ; hence Vξ =
(dκ +1)−1

λ 1 on Eλ . From the expansion

ζα = pα +∑{Bβα pβ : β � α},
the matrix Bβ ,α can be defined for all α,β ∈ Nd

0 with |α| = n = |β |, for fixed n,
such that Bα ,α = 1 and Bβα = 0 unless β � α . The inverse of the matrix has the
same triangularity property, so that

pα = ζα +∑
{(

B−1)
βαζβ : β � α

}
and thus

V xα = α!Vξ pα =
α!

(dκ+1)α+
ζα +∑

{ α!
(dκ +1)β+

(B−1)βαζβ : β � α
}
.

Next, we consider algorithms for pα and ζα . Since pα is a product of poly-
nomials pn (xi;x) only these need to be computed. Further, we showed in the
proof of Proposition 10.3.7 that pn (xi;x) = πn (x)+ xi pn−1 (xi;x) (and also that
∂πn+1(x)/∂xi = κ pn (xi;x)), where πn is generated by

∞

∑
n=0

πn (x)tn =
d

∏
i=1

(1− xit)
−κ =

(
d

∑
j=0

(−1) j e jt
j

)−κ
,

in terms of the elementary symmetric polynomials in x (e0 = 1,e1 = x1 +x2 + · · · ,
e2 = x1x2 + · · · , . . . ,ed = x1x2 · · ·xd).

Proposition 10.8.1 For κ > 0, the polynomials πn are given by the recurrence
(with π j = 0 for j < 0)

πn =
1
n

d

∑
i=1

(−1)i−1 (n− i+ iκ)eiπn−i.

Proof Let g = ∑d
j=0 (−1) j e jt j and differentiate both sides of the generating

equation:

∞

∑
n=1

nπn (x)tn = t
∂
∂ t

g−κ =−κ
(

d

∑
j=1

(−1) j je jt
j

)
g−κ−1;
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thus
∞

∑
n=1

nπn (x) tn
d

∑
j=0

(−1) j e jt
j =−κ

d

∑
j=1

(−1) j je jt
j

∞

∑
n=0

πn (x) tn.

The coefficient of tm in this equation is

d

∑
j=0

(−1) j (m− j)e jπm− j =−κ
d

∑
j=1

(−1) j je jπm− j,

which yields mπm =−∑d
j=1 (−1) j (m− j +κ j)e jπm− j.

It is an easy exercise to show that πn is the sum over distinct γ ∈ Nd
0, with

γ1 +2γ2 + · · ·+dγd = n, of (κ)|γ |(−1)n−|γ |∏d
j=1

(
e
γ j
j /γ j!

)
.

The monic polynomials ζ x
α can be computed algorithmically by means of a

kind of Yang–Baxter graph. This is a directed graph, and each node of the graph
consists of a triple (α,ξ (α) ,ζ x

α) where α ∈ Nd
0 and ξ (α) denotes the vector

(ξi (α))d
i=1. The latter is called the spectral vector because it contains the {Ui}-

eigenvalues. The node can be labeled by α for brevity. The adjacent transpositions
are fundamental in this application and are denoted by si = (i, i+1), 1 ≤ i < d.
One type of edge in the graph comes from the following:

Proposition 10.8.2 Suppose that α ∈Nd
0 and αi < αi+1; then(

1− c2)ζ x
α = siζ x

siα − cζ x
siα ,

where

c =
κ

ξi+1(α)−ξi (α)
ζ x

siα = siζ x
α + cζ x

α

and the spectral vector ξ (siα) = siξ (α).

Proof The proof is essentially the same as that for Proposition 10.4.5. In the
monic case the leading term of siζ x

α + cζ x
α is xsiα , because every monomial xβ in

ζ x
α satisfies β � α � siα .

The other type of edge is called an affine step and corresponds to the map
Φα = (α2,α3, . . . ,αd ,α1 +1) for α ∈Nd

0.

Lemma 10.8.3 For α ∈ Nd
0 the spectral vector ξ (Φα) =Φξ (α).

Proof For 2≤ j ≤ d, let ε j = 1 if α1 ≥ α j (equivalently, α1 +1 > α j) and ε j = 0
otherwise. Then, for 1≤ i < d,

rΦα (i) = εi+1 +#{l : 2≤ l ≤ i+1,αl ≥ αi+1}
+#{l : i+1 < l ≤ d,αl > αi+1}

= rα (i+1) ;
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see Definition 10.3.10. Thus ξΦα(i) = κ [d− rα(i+1)+1] + αi+1 + 1 =
ξα(i+1). Similarly, rΦα(d) = rα(1) and ξΦα(d) = ξα(1)+1.

From the commutation relations in Lemma 10.2.1 we obtain

Uixd f = xd [Ui−κ (i,d)] f , 1≤ i < d,

Udxd f = xd (1+Ddxd) f .

Let θd = s1s2 . . .sd−1; thus θd (d) = 1 and θd (i) = i + 1 for 1 ≤ i < d (a cyclic
shift). Then, by the use of Ui+1 = siUisi−κsi and s jUis j = s jUis j for j < i−1
or j > i,

Uixd f = xd
(
θ−1

d Ui+1θd
)

f , 1≤ i < d,

Udxd f = xd
(
1+θ−1

d U1θd
)

f .

If f satisfies Ui f = λi f for 1≤ i≤ d then Ui
(
xdθ−1

d f
)
= λi+1

(
xdθ−1

d f
)

for 1≤
i < d and Ud

(
xdθ−1

d f
)

= (λ1 +1)
(
xdθ−1

d f
)
. Note that θ−1

d f (x) = f
(
xθ−1

d

)
=

f (xd ,x1, . . . ,xd−1).

Proposition 10.8.4 Suppose that α ∈Nd
0; then

ζ x
Φα (x) = xdζ x

α (xd ,x1, . . . ,xd−1) .

Proof The above argument shows that xdζ x
α
(
xθ−1

d

)
has spectral vector ξ (Φα).

The coefficient of xΦα in xdζ x
α
(
xθ−1

d

)
is the same as the coefficient of

xα in ζ x
α .

The Yang–Baxter graph is interpreted as an algorithm as follows:

1. the base point is
(

0d,((d− i+1)κ+1)d
i=1 ,1

)
,

2. the node (α,ξ (α) , f ) is joined to (Φα,Φξ (α) ,xd f (xd ,x1, . . . ,xd−1)) by
a directed edge labeled S;

3. if αi < αi+1 then the node (α,ξ (α) , f ) is joined to(
siα,siξ (α) ,

(
si +

κ
ξi+1 (α)−ξi (α)

)
f

)
by a directed edge labeled Ti.

A path in the graph is a sequence of connected edges (respecting the directions)
joining the base point to another node. By Propositions 10.8.4 and 10.8.2 the end
result of the path is a triple (α,ξ (α) ,ζ x

α).
For example, here is a path to the node labeled (0,1,0,2): (0,0,0,0) S→

(0,0,0,1)
T3→ (0,0,1,0)

T2→ (0,1,0,0) S→ (1,0,0,1)
T3→ (1,0,1,0) S→ (0,1,0,2).
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All paths with the same end point have the same length. To show, this intro-
duce the function τ (t) = 1

2 (|t|+ |t +1|−1) for t ∈ Z; then τ (t) = t for t ≥ 0
and = −t − 1 for t ≤ −1, also τ (−t−1) = τ (t). For α ∈ Nd

0, define τ ′ (α) =
∑1≤i< j≤d τ (αi−α j).

Proposition 10.8.5 For α ∈Nd
0 , the number of edges in a path joining the base

point to the node (α,ξ (α) ,ζ x
α) is τ ′ (α)+ |α|.

Proof Argue by induction on the length. The induction starts with τ ′
(
0d
)
+∣∣0d

∣∣ = 0. Suppose that the claim is true for some α . Consider the step to Φα .
It suffices to show that τ ′ (Φα) = τ ′ (α), since |Φα|= |α|+1. Indeed,

τ ′ (Φα)− τ ′ (α) =
d−1

∑
i=1

τ (αi+1− (α1 +1))−
d

∑
i=2

τ (α1−αi)

=
d

∑
i=2

[τ (−(α1−αi)−1)− τ (α1−αi)] = 0.

Now, suppose that αi < αi+1 (that is, αi−αi+1 ≤−1); then |siα|= |α| and

τ ′ (siα)− τ ′ (α) = τ (αi+1−αi)− τ (αi−αi+1)

= (αi+1−αi)− (αi+1−αi−1)

= 1.

This completes the induction.

In the above example

τ ′ ((0,1,0,2)) = τ (−1)+τ (−2)+ τ (1)+ τ (−1)+ τ (−2) = 3.

Recall that e−Δh/2 is an isometric map on polynomials from the inner prod-

uct 〈·, ·〉h to H = L2
(

Rd;bκ ∏i< j

∣∣xi− x j
∣∣2κ e−||x||2/2 dx

)
. The images of {ζα :

α ∈ Nd
0} under e−Δh/2 form the orthogonal basis of nonsymmetric Jack–Hermite

polynomials. By determining e−Δh/2Ui eΔh/2, we will exhibit commuting self-
adjoint operators on H whose simultaneous eigenfunctions are exactly these
polynomials.

Proposition 10.8.6 For 1≤ i≤ d, the operator

U H
i = e−Δh/2Ui eΔh/2 = Dixi +κ−D2

i −κ ∑
j<i

( j, i)

is self-adjoint on H .
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Proof The self-adjoint property is a consequence of the isometric transformation.
Since Δh commutes with each transposition ( j, i), it suffices to show that

e−Δh/2Dixi =
(
Dixi−D2

i

)
e−Δh/2.

Use the relation (Lemma 7.1.10) Δhxi = xiΔh +2Di to show inductively that

Δn
hDixi−DixiΔn

h = 2nD2
i Δ

n−1
h ;

now apply Δh to both sides of the equation to obtain

Δn+1
h Dixi−ΔhDixiΔn

h = 2nD2
i Δ

n
h

= Δn+1
h Dixi−DixiΔn+1

h −2D2
i Δ

n
h.

Multiply the equation for n by
(− 1

2

)n
/n! and sum over n = 0,1,2, . . .; the result

is e−Δh/2Dixi−Dixie−Δh/2 =−D2
i e−Δh/2.

The nonsymmetric Jack–Hermite polynomials {e−Δh/2ζα} are not homoge-
neous; the norms in H are the same as the 〈·, ·〉h norms for {ζα}.

10.9 Notes
The forerunners of the present study of orthogonal polynomials with finite
group symmetry were the Jack polynomials and also the Jacobi polynomials of
Heckman [1987], Heckman and Opdam [1987] and Opdam [1988]. These are
trigonometric polynomials periodic on the root lattice of a Weyl group and are
eigenfunctions of invariant (under the corresponding Weyl group) differential
operators (see, for example, Section 5.5 for an example in the type-A category).
Beerends and Opdam [1993] found an explicit relationship between Jack poly-
nomials and the Heckman–Opdam Jacobi polynomials of type A. Okounkov
and Olshanski [1998] studied the asymptotics of Jack polynomials as d → ∞.
It seems clear now that the theory of orthogonal polynomials with respect
to invariant weight functions requires the use of differential–difference opera-
tors. Differential operators do not suffice. After Dunkl’s [1989a] construction of
rational differential–difference operators, Heckman 1991a] defined trigonomet-
ric ones; the connection between the two is related to the change of variables
x j = exp(iθ j), at least for Sd. Heckman’s operators are self-adjoint but not com-
muting; later, Cherednik [1991] found a modification providing commutativity.
Lapointe and Vinet [1996] introduced the explicit form of Ui used in this chap-
ter to generate Jack polynomials by a Rodrigues-type formula. Opdam [1995]
constructed orthogonal decompositions for polynomials associated with Weyl
groups in terms of commuting self-adjoint differential–difference operators. Sev-
eral details and formulae in this chapter are special cases of Opdam’s results;
because we considered only symmetric groups, the formulae are a good deal more
accessible.
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Dunkl [1998b] introduced the p-basis, partly for the purpose of analyzing the
intertwining operator. The algorithm for ζλ in terms of ζλ−εm (when m = �(λ ))
was taken from this paper. Sahi [1996] computed the norms of the nonsymmetric
Jack polynomials for the inner product 〈·, ·〉p, that is, the formal biorthogonal-

ity
〈

pα ,xβ
〉

p = δαβ . Knop and Sahi [1997] developed a hook-length product
associated with tableaux of compositions (the row lengths were not in mono-
tone order). Baker and Forrester, in a series of papers ([1997a,b, 1998]) studied
nonsymmetric Jack polynomials for their application to Calogero–Moser sys-
tems (see Chapter 11) and also exponential-type kernels. Baker and Forrester
and also Lassalle [1991a] studied the Hermite polynomials of type A. Some tech-
niques involving the p-basis and the symmetric and skew-symmetric polynomials
appeared in Dunkl [1998a] and in Baker, Dunkl and Forrester [2000]. The evalu-
ation of the pairing ∏i< j (Di−D j)∏i< j (xi− x j), used here in norm calculations,
was used previously in Dunkl and Hanlon [1998].

Proposition 10.8.5 was proved in Dunkl and Luque [2011, Proposition 2.13].
Etingof [2010] gave a proof for the explicit evaluation integrals of Macdonald–
Mehta–Selberg type for all the irreducible groups except type BN .
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Orthogonal Polynomials Associated with
Octahedral Groups, and Applications

11.1 Introduction
The adjoining of sign changes to the symmetric group produces the hyperoctahe-
dral group. Many techniques and results from the previous chapter can be adapted
to this group by considering only functions that are even in each variable. A sec-
ond parameter κ ′ is associated with the conjugacy class of sign changes. The
main part of the chapter begins with a description of the differential–difference
operators for these groups and their effect on polynomials of arbitrary parity (odd
in some variables, even in the others). As in the type-A case there is a fundamen-
tal set of first-order commuting self-adjoint operators, and their eigenfunctions
are expressed in terms of nonsymmetric Jack polynomials. The normalizing
constant for the Hermite polynomials, that is, the Macdonald–Mehta–Selberg
integral, is computed by the use of a recurrence relation and analytic-function
techniques. There is a generalization of binomial coefficients for the nonsym-
metric Jack polynomials which can be used for the calculation of the Hermite
polynomials. Although no closed form is as yet available for these coefficients,
we present an algorithmic scheme for obtaining specific desired values (by sym-
bolic computation). Calogero and Sutherland were the first to study nontrivial
examples of many-body quantum models and to show their complete integra-
bility. These systems concern identical particles in a one-dimensional space, the
line or the circle. The corresponding models have been extended to include non-
symmetric wave functions by allowing the exchange of spin values between two
particles. We give a concise description of the Schrödinger equations for the
models and of the construction of wave functions and commuting operators,
using type A and type B operators. Type A operators belong to the symmetric
groups; see Section 6.2 for a classification of reflection groups. The chapter con-
cludes with notes on the research literature in current mathematics and physics
journals.
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11.2 Operators of Type B
The Coxeter groups of type B are the symmetry groups of the hypercubes
{(±1,±1, . . . ,±1)} ⊂Rd and of the hyperoctahedra {±εi : 1≤ i≤ d}. For given
d, the corresponding group is denoted Wd and is of order 2dd!. For compatibility
with the previous chapter we use κ,κ ′ for the values of the multiplicity function,
with κ assigned to the class of roots {±εi±ε j : 1≤ i < j≤ d} and κ ′ assigned to
the class of roots {±εi : 1≤ i≤ d}. For i �= j the roots εi− ε j, εi + ε j correspond
to reflections σi j,τi j respectively, where, for x ∈ Rd ,

xσi j = (x1, . . . ,
i

x j, . . . ,
j

xi, . . . ,xd),

xτi j = (x1, . . . ,− i
x j, . . . ,− j

xi, . . . ,xd).

As before, the superscripts above a symbol refer to its position in the list of
elements. For 1≤ i≤ d the root εi corresponds to the reflection (sign change)

xσi = (x1, . . . ,− i
xi, . . . ,xd).

Note that σiσi jσi = σ jσi jσ j = τi j. The associated Dunkl operators are as follows.

Definition 11.2.1 For 1≤ i≤ d and f ∈Πd the type-B operator Di is given by

Di f (x) =
∂
∂xi

f (x)+κ ′
f (x)− f (xσi)

xi

+κ∑
j �=i

(
f (x)− f (xσi j)

xi− x j
+

f (x)− f (xτi j)
xi + x j

)
.

Most of the work in constructing orthogonal polynomials was done in the
previous chapter. The results transfer, with these conventions: the superscript A
indicates the symmetric-group operators and, for x ∈ Rd , let

y = (y1, . . . ,yd) = (x2
1, . . . ,x

2
d),

DA
i g(y) =

∂
∂yi

g(y)+κ∑
j �=i

g(y)− (i, j)g(y)
yi− y j

,

U A
i g(y) = DA

i ρig(y)−κ∑
j<i

(i, j)g(y);

note that both σi j and τi j induce the transposition (i, j) on y and recall that DA
i ρi =

DA
i yi +κ . To keep the numerous inner products distinct, we use 〈·, ·〉B for the h

inner product, that is, for f ,g ∈Πd let

〈 f ,g〉B = f (D1, . . . ,Dd)g(x1, . . . ,xd)|x=0.

As in the type A case, we construct commuting self-adjoint operators whose
simultaneous eigenfunctions can be expressed in terms of the nonsymmetric Jack
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polynomials. If two polynomials have opposite parities in the same variables then,
by a simple argument, they are orthogonal.

Definition 11.2.2 For any subset E ⊆ {i : 1≤ i≤ d}, let

xE =∏
i∈E

xi.

Suppose that g1,g2 are polynomials in y and E,F are sets with E �= F; then,
for any suitable inner product (specifically, one that is invariant under the sign-
change group Zd

2), one has 〈xEg1(y),xF g2(y)〉= 0. Applying Di to a polynomial
xEg(y) gives two qualitatively different formulae depending on whether i ∈ E.

Proposition 11.2.3 Let g(y) be a polynomial and E ⊆ { j : 1 ≤ j ≤ d}. Then,
for 1≤ i≤ d, if i /∈ E,

DixE g(y) = 2xixEDA
i g(y);

if i ∈ E,

DixE g(y) = 2
xE

xi

(
(κ ′ − 1

2 +DA
i yi)g(y)−κ ∑

j∈E, j �=i

(i, j)g(y)

)
.

Proof We use the product rule, Proposition 6.4.12, specialized as follows:

DixE g(y) = xEDig(y)+g(y)
∂xE

∂xi
+κ ′g(y)

xE −σixE

xi

+κ ∑
j �=i

(i, j)g(y)
(xE −σi jxE

xi− x j
+

xE − τi jxE

xi + x j

)
.

Considering the first term, we obtain

Dig(y) = 2xi
∂
∂yi

g(y)+κ ∑
j �=i

[g(y)− (i, j)g(y)]
( 1

xi− x j
+

1
xi + x j

)
= 2xi

(
∂
∂yi

g(y)+κ∑
j �=i

g(y)− (i, j)g(y)
yi− y j

)
= 2xiD

A
i g(y).

Next, if i /∈ E then xE −σixE = 0 and xE −σi jxE = 0 = xE − τi jxE for j /∈ E. If
i /∈ E and j ∈ E then

xE −σi jxE

xi− x j
+

xE − τi jxE

xi + x j
=

xE

x j

(
x j− xi

xi− x j
+

x j + xi

xi + x j

)
= 0.

This proves the first formula.
If i ∈ E then xE−σixE = 2xE and xE−σi jxE = 0 = xE−τi jxE for j ∈ E , while

for j /∈ E we have

xE −σi jxE

xi− x j
+

xE − τi jxE

xi + x j
=

xE

xi

(
xi− x j

xi− x j
+

xi + x j

xi + x j

)
= 2

xE

xi
.
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Thus, for i ∈ E,

DixEg(y) = 2
xE

xi

(
yiD

A
i g(y)+( 1

2 +κ ′)g(y)+κ∑{(i, j)g(y) : j /∈ E}
)
.

The commutation yiDA
i g(y) = DA

i yig(y)− g(y)−κ ∑ j �=i(i, j)g(y) established in
Lemma 10.2.1 finishes the proof.

Lemma 11.2.4 For i �= j, the commutant

[Dixi,D jx j] = κ(Dixi−D jx j)(σi j + τi j) = κ(Dixi,σi j + τi j).

Proof By Proposition 6.4.10, D jxi− xiD j =−κ(σi j− τi j) (as operators on Πd);
thus

Dixi D jx j− D jx jDixi

= Di[D jxi +κ(σi j− τi j)]x j−D j[Dix j +κ(σi j− τi j)]xi

= κDi(σi j− τi j)x j−κD j(σi j− τi j)xi

= κ(Dixi−D jx j)(σi j + τi j),

because σi jx j = xiσi j and τi jx j = −xiτi j. The remaining equation follows from
(σi j + τi j)Dixi = D jx j(σi j + τi j).

Definition 11.2.5 For 1 ≤ i ≤ d, the self-adjoint (in 〈·, ·〉B) operators Ui are
given by

Ui = Dixi−κ ∑
j<i

(σi j + τi j).

Theorem 11.2.6 For 1≤ i, j ≤ d, UiU j = U jUi.

Proof Assume that i < j and let ψrs = σrs +τrs for r �= s. Further, let Ui = Dixi−
κA, U j = D jx j−κψi j−κB, where A = ∑k<iψki and B = ∑k< j,k �=iψk j. Then

[Ui,U j] = [Dixi,D jx j−κψi j]−κ[Dixi,B]−κ[A,D jx j]+κ2[A,ψi j +B].

The first term is zero by Lemma 11.2.4 and the next two are zero by the
transformation properties of Dixi and D jx j. The last term reduces to

κ2
i−1

∑
k=1

([ψki,ψk j]+ [ψki,ψi j]) = κ2
i−1

∑
k=1

(
(ψkiψk j−ψi jψki)+(ψkiψi j−ψk jψki)

)
.

Each bracketed term is zero; to see this, start with the known (from Sd) relation
σkiσk j −σi jσki = 0 and conjugate it by σ j,σi,σk to obtain σkiτk j − τi jσki = 0,
τkiσk j − τi jτki = 0, τkiτk j −σi jτki = 0 respectively. (Replacing i,k by k, i shows
that the second term is zero.)
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11.3 Polynomial Eigenfunctions of Type B
The nonsymmetric Jack polynomials immediately provide simultaneous eigen-
functions which are even in each variable.

Proposition 11.3.1 For α ∈Nd
0 and 1≤ i≤ d,

Uiζα(y) =
[
ξi(α)−κ +κ ′ − 1

2

]
ζα(y).

Proof By Proposition 11.2.3,

Dixiζα(y)− κ∑
j<i

(σi j + τi j)ζα(y)

= 2(κ ′ − 1
2 +DA

i yi)ζα(y)−2κ∑
j<i

(i, j)ζα(y)

= 2(κ ′ −κ− 1
2 +U A

i )ζα(y)

= 2(ξi(α)−κ+κ ′ − 1
2 )ζα(y).

Recall that DA
i yi = DA

i ρi−κ .

For mixed parity, the simplest structure involves polynomials of the form
x1x2 · · ·xkg(y); this is a corollary, given below, of the following.

Lemma 11.3.2 Let E ⊆ { j : 1≤ j ≤ d}; then, for i /∈ E,

UixEg(y) = 2xE

(
(U A

i −κ+κ ′ − 1
2 )−κ ∑

j>i, j∈E

(i, j)

)
g(y),

and, for i ∈ E,

UixEg(y) = 2xE

(
DA

i yi−κ ∑
j<i, j∈E

(i, j)

)
g(y).

Proof For any j �= i note that (σi j +τi j)xEg(y) = 0 if #({i, j}∩E) = 1, otherwise
(σi j + τi j)xE g(y) = 2xE(i, j)g(y). For i /∈ E, by the second part of Proposition
11.2.3,

UixEg(y) = 2xE

(
(DA

i yi +κ ′ − 1
2 )−κ ∑

j∈E
(i, j)

)
g(y)−2κxE ∑

j<i, j/∈E

(i, j)g(y),

which proves the first part. For i ∈ E, note that xixE = xE yi/xi and, by the first
part of Proposition 11.2.3,

UixEg(y) = DixixEg(y)−2κxE ∑
j<i, j∈E

(i, j)g(y)

= 2xE

(
DA

i yig(y)−κ ∑
j<i, j∈E

(i, j)g(y)

)
.

This completes the proof.
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Corollary 11.3.3 For 1≤ k ≤ d and α ∈ Nd
0 , let E = { j : 1≤ j ≤ k}; then, for

1≤ i≤ k,

UixEζα(y) = 2[ξi(α)−κ]xEζα(y)

and, for k < i≤ d,

UixEζα(y) = 2[ξi(α)−κ +κ ′ − 1
2 ]xEζα(y).

It is clear from Sd theory that {xEζα(y) : α ∈Nd
0} is a complete set of simulta-

neous eigenfunctions for {Ui} of this parity type. To handle arbitrary subsets
E one uses a permutation which preserves the relative order of the indices
corresponding to even and odd parities, respectively. For given k, we consider per-
mutations w ∈ Sd with certain properties; the set w(E) = {w(1),w(2), . . . ,w(k)}
will be the set of indices having odd parities, that is, wxE =∏k

i=1 xw(i).

Proposition 11.3.4 For 1≤ k < d, let E = { j : 1≤ j ≤ k},α ∈Nd
0 , and let w ∈

Sd with the property that w(i) < w( j) whenever 1≤ i < j≤ k or k+1≤ i < j≤ d;
then, for 1≤ i≤ k,

Uw(i)wxEζα(y) = 2[ξi(α)−κ]wxEζα(y)

and, for k < i≤ d,

Uw(i)wxEζα(y) = 2[ξi(α)−κ+κ ′ − 1
2 ]wxEζα(y).

Proof The transformation properties wDA
i yi = DA

w(i)yw(i)w and

(r,s)w = w(w−1(r),w−1(s)), for r �= s

will be used. When 1≤ i≤ k, by Lemma 11.3.2 we have

Uw(i)wxEζα(y) = 2xw(E)w

(
DA

i yi−κ ∑
j<w(i), j∈w(E)

(w−1( j), i)

)
ζα(y)

but the set {w−1( j) : j < w(i), j ∈w(E)} equals {r : 1≤ r < i} by the construction
of w. Thus Uw(i)wxEζα(y) = 2xw(E)w(U A

i −κ)ζα(y) = 2[ξi(α)−κ]wxEζα(y).
When k < i≤ d, we express the first part of Lemma 11.3.2 as

Uw(i)wxEζα(y) = 2xw(E)w

(
DA

i yi +κ ′ − 1
2

−κ ∑
j∈w(E)

(w−1( j), i)−κ ∑
j<w(i), j/∈w(E)

(w−1( j), i)
)
ζα(y)

= 2xw(E)w(U A
i −κ +κ ′ − 1

2 )ζα(y).

The set {r : 1 ≤ r < i} equals E ∪{r : k < r < i} and, again by the construction
of w, {r : k < r < i}= {w−1( j) : j < w(i), j /∈ w(E)}.
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To restate the conclusion: the space of polynomials which are odd in the
variables xw(i), 1 ≤ i ≤ k, is the span of the {Ui} simultaneous eigenfunctions
wxEζα(y).

To conclude this section, we compute the 〈·, ·〉B norms of xEζα(y) for E = {r :
1≤ r ≤ k}. By group invariance the norm of wxEζα(y) has the same value. First
the Sd-type results will be used for the all-even case ζα(y); this depends on the
use of permissible (in the sense of Section 10.3) inner products.

Proposition 11.3.5 The inner product 〈·, ·〉B restricted to polynomials in y =
(x2

1, . . . ,x
2
d) is permissible.

Proof Indeed, for f ,g ∈Πd the value of this inner product is given by

〈 f ,g〉B = f (D2
1 , . . . ,D2

d )g(x2
1, . . . ,x

2
d)|x=0.

The invariance 〈w f ,wg〉B = 〈 f ,g〉B for w ∈ Sd is obvious. By the second part
of Proposition 11.2.3, DA

i yi f (y) = ( 1
2Dixi + 1

2 − κ ′) f (y); the right-hand side is
clearly a self-adjoint operator in 〈·, ·〉B.

By Theorem 10.4.8 the following holds.

Corollary 11.3.6 For α ∈Nd
0 and λ = α+,

〈ζα(y),ζα(y)〉B = E+(α)E−(α)〈ζλ (y),ζλ (y)〉B .

As in Section 10.6, the calculation of 〈ζλ (y),ζλ (y)〉B for λ ∈ N
d,P
0 depends

on a recurrence relation involving DA
mζλ , where m = �(λ). We recall some key

details from Section 10.6. For 1 < m≤ d let θm = (1,2)(2,3) · · ·(m−1,m) ∈ Sd .
When m = �(λ ), let λ̃ = (λm− 1,λ1,λ2, . . . ,λm−1,0 . . .); then DA

mζλ = [κ(d−
m+1)+λm]θ−1

m ζλ̃ . This fact will again be used for norm calculations. For such
λ , for conciseness in calculations set

aλ = (d−m)κ +κ ′+λm− 1
2 ,

bλ = (d−m+1)κ+λm.

Lemma 11.3.7 Suppose that λ ∈ N
d,P
0 and m = �(λ ). Then

D2
mζλ (y) = 4aλDA

mζλ (y) = 4aλbλ θ−1
m ζλ̃ (y).

Proof By Proposition 11.2.3,

D2
mζλ (y) = Dm[2xmDA

mζλ (y)] = 4[(κ ′ − 1
2 )DA

mζλ (y)+DA
mymDA

mζλ (y)].

By Lemma 10.5.3, DA
mymDA

mζλ (y) = [ξm(λ )−κ −1]DA
mζλ (y) because DA

mym =
DA

mρm−κ . Since ξm(λ ) = (d−m+1)κ +λm +1, we obtain

D2
mζλ (y) = 4[κ ′ − 1

2 +ξm(λ )−κ−1]DA
mζλ (y) = 4aλDA

mζλ (y).

Finally, DA
mζλ (y) = bλθ−1

m ζ λ̃ (y).
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Theorem 11.3.8 Suppose that λ ∈ N
d,P
0 . Then

〈ζλ (y),ζλ (y)〉B = 22|λ |(dκ+1)λ ((d−1)κ+κ ′+ 1
2 )λ

h(λ ,κ +1)
h(λ ,1)

.

Proof Suppose that m = �(λ ). By the defining property of 〈·, ·〉B we have on the
one hand 〈

D2
mζλ (y),D2

mζλ (y)
〉

B =
〈
x2

mD2
mζλ (y),ζλ (y)

〉
B

= 4aλ
〈
x2

mDA
mζλ (y),ζλ (y)

〉
B

= 4aλ
〈
ymDA

mζλ (y),ζλ (y)
〉

B

= 4aλbλ
λm

κ +λm
〈ζλ (y),ζλ (y)〉B ,

because
〈
ymDA

mζλ (y),ζλ (y)
〉

B = [λm/(κ+λm)]bλ 〈ζλ (y),ζλ (y)〉B by part (iii) of
Lemma 10.5.2. On the other hand,〈

D2
mζλ (y),D2

mζλ (y)
〉

B = (4aλbλ )2
〈
θ−1

m ζλ̃ (y),θ−1
m ζλ̃ (y)

〉
B

= (4aλbλ )2
〈
ζλ̃ (y),ζλ̃ (y)

〉
B

= (4aλbλ )2E+(λ̃ )E−(λ̃ )
〈
ζλ−εm(y),ζλ−εm(y)

〉
B .

Combining the two displayed equations shows that

〈ζλ (y),ζλ (y)〉B = 4aλbλ
κ +λm

λm
E+(λ̃ )E−(λ̃ )

〈
ζλ−εm(y),ζλ−εm(y)

〉
B .

From Lemma 10.6.4,

κ +λm

λm
E+(λ̃ )E−(λ̃ ) =

h(λ ,κ+1)h(λ − εm,1)
h(λ − εm,κ+1)h(λ ,1)

.

Moreover,

(dκ+1)λ
(dκ+1)λ−εm

= (d−m+1)κ+λm = bλ

and

((d−1)κ +κ ′+ 1
2 )λ

((d−1)κ +κ ′+ 1
2)λ−εm

= (d−m)κ +κ ′+λm− 1
2

= aλ .

The proof is completed by induction on |λ |.

When κ = 0 = κ ′ these formulae reduce to the trivial identity
〈
xλ ,xλ

〉
=

∏d
i=1λi!, because 22n(1)n( 1

2 )n = (2n)! for n∈N0. It remains to compute the quan-
tity 〈xEζα(y),xEζα(y)〉B for E = { j : 1 ≤ j ≤ k} and α ∈ Nd

0. The following is
needed to express the result. Let �r� denote the largest integer ≤ r.
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Definition 11.3.9 For β ∈ Nd
0 let e(β ),o(β ) ∈ Nd

0 with e(β )i = �βi/2� and
o(β )i = βi− e(β )i for 1≤ i≤ d.

(Roughly, e(β ) and o(β ) denote the even and odd components of β .) We start
with β ∈ Nd

0 such that βi is odd exactly when 1 ≤ i ≤ k and consider the {Ui}
simultaneous eigenfunctions indexed by β , which are given by xEζα(y) where
α = e(β ).

Theorem 11.3.10 Suppose that 1 ≤ k ≤ d and β ∈ Nd
0 satisfies the condition

that βi is odd for 1≤ i ≤ k and βi is even for k < i, and let E = { j : 1 ≤ j ≤ k}.
Then 〈

xEζe(β)(y),xEζe(β )(y)
〉

B

= 2|β |(dκ +1)e(β )+((d−1)κ +κ ′+ 1
2 )o(β)+

h(e(β ),κ+1)
h(e(β ),1)

.

Proof For any α ∈ Nd
0 and 1≤ m≤ k, by Proposition 11.2.3 we have

Dmx1x2 · · ·xmζα(y) = 2x1x2 · · ·xm−1

(
κ ′ − 1

2 +DA
mym−κ ∑

j<m
( j,m)

)
ζα(y)

= 2x1x2 · · ·xm−1(κ ′ −κ− 1
2 +U A

m )ζα(y)

= 2[ξm(α)−κ+κ ′ − 1
2 ]x1x2 · · ·xm−1ζα(y).

Let α = e(β ); then, using this formula inductively, we obtain〈
xEζe(β)(y),xEζe(β )(y)

〉
B

=
〈
D1 · · ·DkxEζe(β)(y),ζe(β)(y)

〉
B

= 2k
k

∏
i=1

[ξi(α)−κ +κ ′ − 1
2 ]
〈
ζe(β )(y),ζe(β )(y)

〉
B
.

The last inner product has already been evaluated (and 22|e(β)|2k = 2|β |), so it
remains to show that

k

∏
i=1

[ξi(α)−κ +κ ′ − 1
2 ]((d−1)κ +κ ′+ 1

2 )e(β )+ = ((d−1)κ +κ ′+ 1
2 )o(β )+ .

Let α = e(β ) and λ =α+ and let w∈ Sd be such that αi = λw(i) and if αi =α j for
some i < j then w(i) < w( j). This implies that μ = o(β )+ satisfies o(β )i = μw(i),

specifically that μw(i) = αi +1 for 1≤ i≤ k and μw(i) = αi for k < i. This shows

that μ ∈ N
d,P
0 ; indeed by construction w(i) < w( j) implies that λw(i) ≥ λw( j) and

μw(i) ≥ μw( j). The latter could only be negated if αi = λw(i) = μw(i) and μw( j) =
α j + 1 (so that j ≤ k < i), but α j + 1 > αi ≥ α j implies that αi = α j and j < i
implies that w( j) < w(i), a contradiction.
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For 1≤ i≤ k, we have ξi(α) = κ[d−#{ j : α j > αi}−#{ j : j < i;α j = αi}]+
αi +1 = [d−w(i)+1]κ +λw(i) +1 = [d−w(i)+1]κ+μw(i). Thus

k

∏
i=1

[ξi(α)−κ +κ ′ − 1
2 ]((d−1)κ+κ ′+ 1

2 )λ

=
k

∏
i=1

(
[d−w(i)]κ +κ ′+μw(i)− 1

2

) d

∏
i=1

(
[d−w(i)]κ +κ ′+ 1

2

)
λw(i)

=
k

∏
i=1

(
[d−w(i)]κ +κ ′+ 1

2

)
μw(i)

d

∏
i=k+1

(
[d−w(i)]κ +κ ′+ 1

2

)
λw(i)

= ((d−1)κ +κ ′+ 1
2)μ .

This completes the proof.

Example 11.3.11 To illustrate the construction of w in the above proof, let β =
(7,5,7,2,6,8); then α = e(β ) = (3,2,3,1,3,4), λ = α+ = (4,3,3,3,2,1), μ =
o(β )+ = (4,4,4,3,3,1) and

w =
(

1 2 3 4 5 6
2 5 3 6 4 1

)
,

using the standard notation for permutations.

We turn now to the Selberg–Macdonald integral and use the same techniques
as in the type-A case. The alternating polynomial for Sd , namely

aB (x) = ∏
1≤i< j≤d

(
x2

i − x2
j

)
= a(y),

plays a key role in these calculations. For the type-B inner product the value of
〈aB,aB〉B shows the effect of changing κ to κ+1. Also, aB is h-harmonic because
ΔhaB is (under the action of σi j or τi j) a skew polynomial of degree 2

(d
2

)− 2,
hence 0 (note that Δh = ∑d

i=1 D2
i ). As before, let

δ = (d−1,d−2, . . . ,1,0) ∈ N
d,P
0 ;

then aB is the unique skew element of span{wζδ : w ∈ Wd} and a = aδ in
Definition 10.4.9). Thus the previous results will give the values of 〈aB,aB〉B.

Recall that, for f ,g ∈Πd (Theorem 7.2.7),

〈 f ,g〉B = (2π)−d/2 b
(
κ,κ ′

)
×
∫

Rd

(
e−Δh/2 f

)(
e−Δh/2g

) d

∏
i=1
|xi|2κ

′ |aB (x)|2κ e−‖x‖
2/2 dx,

where the normalizing constant b(κ,κ ′) satisfies 〈1,1〉B = 1. Since e−Δh/2aB = aB

the following holds (note that 2 |δ |= d(d−1)).
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Theorem 11.3.12 We have 〈aB,aB〉B = 2d(d−1)d! (dκ +1)δ ((d − 1)κ + κ ′ +
1
2 )δ and, for κ,κ ′ ≥ 0,

b(κ,κ ′)−1 = (2π)−d/2
∫

Rd

d

∏
i=1

|xi|2κ
′
∏

1≤i< j≤d

|x2
i − x2

j |2κe−‖x‖2/2 dx

= 2d[(d−1)κ+κ ′] Γ(κ ′+ 1
2 )

πd/2Γ(κ +1)d−1

d

∏
j=2

Γ( jκ +1)Γ(( j−1)κ+κ ′+ 1
2 ).

Proof Using the same method as in the proof of Theorem 10.6.17, and by
Theorem 11.3.8,

〈aB,aB〉B = 2d(d−1)d!E−
(
δR)(dκ +1)δ ((d−1)κ +κ ′+ 1

2 )δ
h(δ ,κ +1)

h(δ ,1)

= 2d(d−1)d! (dκ +1)δ ((d−1)κ +κ ′+ 1
2)δ .

Further,

b(κ +1,κ ′)−1 = (2π)−d/2
∫

Rd

d

∏
i=1

|xi|2κ
′
∏
i< j

∣∣x2
i − x2

j

∣∣2κ+2
e−‖x‖

2/2 dx

= b(κ,κ ′)−1 〈aB,aB〉B .

From the proof of Theorem 10.6.17 we have

d

∏
j=2

Γ( jκ +1)
Γ(κ+1)

d!(dκ+1)δ =
d

∏
j=2

Γ( jκ + j +1)
Γ(κ +2)

.

Also,

d

∏
j=2

Γ(( j−1)κ +κ ′+ 1
2 )((d−1)κ +κ ′+ 1

2 )δ =
d

∏
j=2

Γ(( j−1)(κ +1)+κ ′+ 1
2 )

and

b(0,κ ′)−1 = (2π)−d/2
∫

Rd

d

∏
i=1
|xi|2κ

′
e−‖x‖

2/2 dx =
(

2κ
′ Γ
(
κ ′+ 1

2

)
Γ( 1

2 )

)d
,

by an elementary calculation. We will use the same technique as in the type A
case, first converting the integral to one over the sphere Sd−1, a compact set. Let
γ = κd (d−1)+κ ′d. Using spherical polar coordinates,

(2π)−d/2
∫

Rd

d

∏
i=1

|xi|2κ
′
∏
i< j

∣∣x2
i − x2

j

∣∣2κ e−‖x‖
2/2 dx

= 2γσ−1
d−1

Γ
(

d
2 + γ

)
Γ
(

d
2

) ∫
Sd−1

d

∏
i=1
|xi|2κ

′
∏
i< j

∣∣x2
i − x2

j

∣∣2κ dω(x);
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the normalizing constant (see (4.1.3)) satisfies σ−1
d−1

∫
Sd−1 dω = 1. Fix κ ′ ≥ 0 and

define the analytic function

φ (κ) = Γ
(
d[(d−1)κ +κ ′+ 1

2 ]
) d

∏
j=1

(
Γ(κ +1)Γ( 1

2 )
Γ( jκ +1)Γ(( j−1)κ +κ ′+ 1

2 )

× σ−1
d−1

Γ
(

d
2

) ∫
Sd−1

d

∏
i=1
|xi|2κ

′
∏
i< j

∣∣x2
i − x2

j

∣∣2κ dω(x)

)
.

The formula for b(κ,κ ′)/b(κ +1,κ ′) shows that φ(κ +1) = φ(κ) and also, that
φ(0) = 1. By analytic continuation φ is entire and periodic. On the strip {κ : 1≤
Reκ ≤ 2} the factors of φ in the second line are uniformly bounded. Apply the
asymptotic formula (from the proof of Theorem 10.6.17), valid in−π < argκ < π
and a,b > 0,

logΓ(aκ +b) = aκ (logκ + loga−1)

+
(
b− 1

2

)
(logκ + loga)+ 1

2 log(2π)+O
( |z|−1 )

to the first line of the expression for φ(κ):

logΓ
(
d[(d−1)κ +κ ′+ 1

2 ]
)
+(d−1) logΓ(κ +1)

−
d

∑
j=2

logΓ( jκ +1)+d logΓ( 1
2)−

d−1

∑
j=0

logΓ( jκ +κ ′+ 1
2 )

= [d(d−1)κ +dκ ′+ d−1
2 ] log [d (d−1)]−

d

∑
j=2

( jκ + 1
2 ) log j

−
d−1

∑
j=1

(
jκ +κ ′

)
log j− d−2

2 log (2π)− logΓ(κ ′+ 1
2 )+ d

2 logπ

+κ

(
d(d−1)+(d−1)−

d

∑
j=2

j−
d−1

∑
j=1

j

)
(logκ−1)

+
(
dκ ′+ d−1

2 + d−1
2 − d−1

2 − (d−1)κ ′
)

logκ +O
( |κ|−1 )

= C1(d,κ ′)+C2(d)κ+(κ ′+ d−1
2 ) logκ +O

(|κ|−1),
where C1,C2 are real constants depending on d,κ ′. Therefore, in the strip {κ :
1≤ Reκ ≤ 2}, we have φ(κ) = O(|κ|κ ′+(d−1)/2). By periodicity the same bound
applies for all κ , implying that φ is a periodic polynomial and hence constant.
This proves the formula for b(κ,κ ′).

Note that the most important part of the above asymptotic calculation was
to show that the coefficient of κ logκ is zero. The value of the integral in
Theorem 11.3.12 is the type B case of a general result for root systems of Mac-
donald [1982]; it was conjectured by Mehta [1991] yet turned out to be a limiting
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case of Selberg’s integral (an older result, Selberg [1944]). The proof given here
could be said to be almost purely algebraic but, of course, it does use asymptotics
for the gamma function and some elementary entire-function theory.

11.4 Generalized Binomial Coefficients
The use of generalized binomial coefficients exploits the facts that the vector
(1,1, . . . ,1) ∈Rd is invariant under Sd , or equivalently, orthogonal to all the roots
εi− ε j, i < j, and that ∑d

i=1 DA
i = ∑d

i=1 ∂/∂yi. For consistency, we will continue
to use y as the variable involved in type-A actions. Baker and Forrester [1998]
introduced the concept, motivated by the binomial coefficients previously defined
in connection with the Jack polynomials.

Definition 11.4.1 For α,β ∈ Nd
0 and parameter κ ≥ 0, the binomial coefficient(α

β
)
κ

is defined by the expansion

ζα(y+1d)
ζα(1d)

=∑
β

(
α
β

)
κ

ζβ (y)
ζβ (1d)

.

We will show that
(α
β
)
κ

= 0 unless α+ ⊇ β+ (this ordering on partitions means

the inclusion of Ferrers diagrams, that is, α+
i ≥ β+

i for 1 ≤ i ≤ d). Also, there
is a recurrence relation which needs only the values of

(α
β
)
κ

at |β | = |α| − 1 at
the start (however, even these are complicated to obtain; no general formula is
as yet available). Ordinary calculus and homogeneity properties provide some
elementary identities. Of course, when κ = 0 the polynomials ζα reduce to yα

and
(α
β
)

0
=∏d

i=1

(αi
βi

)
, a product of ordinary binomial coefficients.

Proposition 11.4.2 For α ∈Nd
0 and κ ≥ 0,s ∈R, j ∈ N0,

ζα(y+ s1d)
ζα(1d)

=∑
β

(
α
β

)
κ

s|α|−|β |
ζβ (y)
ζβ (1d)

and (
d

∑
i=1

DA
i

) j

ζα(y) = j! ∑
|β |=|α|− j

(
α
β

)
κ

ζα(1d)
ζβ (1d)

ζβ (y).

Proof For the first part, suppose s �= 0; then s−|α|ζα(y+s1d) = ζα(s−1y+1d). In
Definition 11.4.1 replace y by s−1y and observe that ζβ is homogeneous of degree
|β |. Consider the first equation as a Taylor’s series in s at s = 0; then

∂
∂ s

=
d

∑
i=1

∂
∂yi

=
d

∑
i=1

DA
i .
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Proposition 11.4.3 For α,β ∈ Nd
0 ,κ ≥ 0 and |β |< m < |α|,(

α
β

)
κ

(|α|− |β |
m−|β |

)
= ∑
|γ|=m

(
α
γ

)
κ

(
γ
β

)
κ
.

Proof For arbitrary s,t ∈R,

∑
β

(
α
β

)
κ
(s+ t)|α |−|β |

ζβ (y)
ζβ (1d)

=
ζα(y+(s+ t)1d)

ζα(1d)

=∑
γ

(
α
γ

)
κ
t |α|−|γ|

ζγ (y+ s1d)
ζγ(1d)

=∑
γ
∑
β

(
α
γ

)
κ

(
γ
β

)
κ
t |α |−|γ|s|γ|−|β |

ζβ (y)
ζβ (1d)

.

The coefficient of sm−|β |t |α|−m in the equations gives the claimed formula.

This shows that the investigation of
(α
β
)
κ

begins by setting |β |= |α|−1, that is,

by using the expansion of ∑d
i=1 DA

i ζα . The relevance of the binomial coefficients
lies in the computation of the type B Hermite polynomials e−Δh/2xEζλ (y) (where
E = { j : 1≤ j ≤ k} for some k).

Proposition 11.4.4 For α ∈Nd
0 and κ ≥ 0, j ∈N0,(

d

∑
i=1

yi

) j

ζα(y) = j! ∑
|β |=|α |+ j

(
β
α

)
κ

E+(α)h(α+,κ +1)
E+(β )h(β+,κ+1)

ζβ (y).

Proof The adjoint of multiplication by (∑d
i=1 yi) j in the h inner product is

(∑d
i=1 DA

i ) j. In an abstract sense, if T is a linear operator with matrix Mαβ , where
Tζα = ∑β Mβαζβ , then the adjoint T ∗ has matrix

M∗
αβ = Mβα

〈
ζβ ,ζβ

〉
h

〈ζα ,ζα〉h
.

By Proposition 10.6.5 and Theorem 10.6.6, ζγ(1d) = E−(γ)(dκ +1)γ+/h(γ+,1)
and
〈
ζγ ,ζγ

〉
h = E+(γ)E−(γ)(dκ+1)γ+h(γ+,κ+1)/h(γ+,1) for any γ ∈Nd

0.

In the B inner product the adjoint of multiplication by (∑d
i=1 yi) j = (∑d

i=1 x2
i )

j

is Δ j
h. For γ ∈ Nd

0 and 0≤ k ≤ d, let

Ek = { j : 1≤ j ≤ k},

ηk =
k

∑
i=1

εi = (1,1, . . . ,1,0, . . . ,0).
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Proposition 11.4.5 For α ∈Nd
0 and κ ≥ 0, j ∈ N0, 0≤ k ≤ d,

(4 j j!)−1Δ j
hxEkζα(y)

= ∑
|β |=|α |− j

[(
α
β

)
κ

(dκ+1)α+((d−1)κ +κ ′+ 1
2 )(α+ηk)+ h(β ,1)

(dκ+1)β+((d−1)κ +κ ′+ 1
2 )(β+ηk)+ h(α,1)

xEkζβ (y)
]
.

Proof We use the adjoint formula from Proposition 11.4.4. From Theorem
11.3.10, for any γ ∈ Nd

0,〈
xEkζγ(y),xEkζγ (y)

〉
B

= 22|γ|+k(dκ+1)γ+((d−1)κ +κ ′+ 1
2 )(γ+ηk)+

h(γ ,κ +1)
h(γ ,1)

.

This proves the formula.

Corollary 11.4.6 For α ∈ Nd
0 and |α| = m, the lowest-degree term in the

expression e−Δh/2xEkζα(y) is

(− 1
2Δh)m

m!
xEkζα(y)

= (−2)m(dκ +1)α+
((d−1)κ+κ ′+ 1

2 )(α+ηk)+

((d−1)κ +κ ′+ 1
2 )ηk

E−(α)
h(α+,1)

xEk

= (−2)m ((d−1)κ+κ ′+ 1
2 )(α+ηk)+

∏k
i=1[(d− i)κ+κ ′+ 1

2 ]
xEkζα(1d).

Proof It is clear from the definition that
(α

0

)
κ = 1, where 0 ∈ Nd

0. Further,
ζα(1d) = E−(α)(dκ+1)α+/h(α+,1).

We turn to the problem posed by ∑d
i=1 DA

i ζα . Recall from Chapter 8 the def-
inition of the invariant subspace Eλ associated with λ ∈ N

d,P
0 , namely, Eλ =

span{wζλ : w ∈ Sd} = span{ζα : α+ = λ}. This space is invariant under Sd and
the operators DA

i yi. Also recall, from Section 10.8, the intertwining operator V ,
with DA

i V = V∂/∂yi, and the utility operator ξ , where ξ pα = yα/α!.

Theorem 11.4.7 For λ ∈ N
d,P
0 , if q(y) ∈ Eλ and 1≤ i≤ d then

DA
i q = ∑

λ j>λ j+1

((d− j +1)κ +λ j)q j,

where q j ∈ Eλ−ε j
and DA

i ρiq j = (ξ j(λ )−1)q j, for j such that λ j > λ j+1.

Proof Expand q in the p-basis; then q = ρig + q0, where DA
i q0 = 0. This is

obtained by setting q0 as the part of the expansion in which all appearing pα
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have αi = 0 (and in ρig each term pα has αi ≥ 1, by the definition of ρi). Expand
g as a sum Σμgμ of projections onto Eμ with |μ |= |λ |−1, that is,

q = ρi∑
μ

gμ +q0, DA
i q = DA

i ρi∑
μ

gμ .

Apply Vξ to both sides of the first equation. It was shown in Section 10.8 that
Vξ is scalar on each Eμ with eigenvalue 1/(dκ +1)μ . Also, (∂/∂yi)ξ pα(y) = 0
if αi = 0 and (∂/∂yi)ξ pα(y) = ξ pα−εi if αi ≥ 1. Thus [1/(dκ + 1)λ ]DA

i q =
DA

i Vξq = V (∂/∂yi)ξ (ρi∑μ gμ +q0) = Vξ ∑μ gμ = ∑μ [1/(dκ+1)μ ]gμ , and so

DA
i q =∑

μ

(dκ +1)λ
(dκ +1)μ

gμ =∑
μ

DA
i ρigμ .

Since each Eμ is invariant under DA
i ρi, this shows that gμ is an eigenfunc-

tion of DA
i ρi with eigenvalue (dκ +1)λ/(dκ +1)μ . The eigenvalues of DA

i ρi =
(1, i)DA

1 ρ1(1, i) are the same as those of U A
1 = DA

1 ρ1, namely, ξ1(α) for α ∈Nd
0;

additionally, each eigenvalue is a linear polynomial in d (and for fixed ζα ∈ Eμ ,
that is, α+ = μ , the coefficients of ζα in the p-basis are independent of d, where
αs = 0 for all s > k and d ≥ k), so we conclude that (dκ + 1)μ is a factor of
(dκ + 1)λ as a polynomial in d. This implies that μ j ≤ λ j for each j. Combine

this with the restriction that μ ∈ N
d,P
0 and |μ | = |λ |−1 to show that μ = λ − ε j

for some j with λ j > λ j+1; this includes the possibility that λd > 0. Also,

(dκ +1)λ
(dκ +1)λ−ε j

= (d− j +1)κ +λ j = ξ j(λ )−1.

Corollary 11.4.8 For α,β ∈Nd
0 and κ ≥ 0,

(α
β
)
κ
�= 0 implies that α+ ⊇ β+.

Proof Theorem 11.4.7 shows that
(α
β
)
κ
�= 0 and |β |= |α|−1 implies that β+ =

α+− ε j for some j with α+
j > α+

j+1, that is, α+ ⊇ β+. Propositions 11.4.2 and
11.4.3 and an inductive argument finish the proof.

Next we consider a stronger statement that can be made about the expression
∑d

i=1 DA
i ζλ for λ ∈N

d,P
0 . The following is a slight modification of Lemma 10.5.3.

Lemma 11.4.9 For α ∈ Nd
0 and 1≤ i,k ≤ d the following hold:

if i < k then (
DA

i ρi−κ ∑
j<i

( j, i)−κ(i,k)
)

DA
k ζα = ξi(α)DA

k ζα ;

if i > k then

U A
i DA

k ζα = ξi(α)DA
k ζα +κ(k, i)DA

i ζα .
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Further,

DA
k ρkD

A
k ζα = [ξk(α)−1]DA

k ζα −κ ∑
j>k

(k, j)DA
j ζα .

Proof The case i < k is part (i) of Lemma 10.5.3. For i > k, we have

DA
i ρiD

A
k ζα = DA

k DA
i ρiζα +κ(i,k)DA

k ζα

and

−κ∑
j<i

( j, i)DA
k ζα =−κDA

k ∑
j<i, j �=k

( j, i)ζα −κ(k, i)DA
k ζα .

Add the two equations to obtain

U A
i DA

k ζα = DA
k

(
DA

i ρi−κ ∑
j<i, j �=k

( j, i)
)
ζα

= DA
k U A

i ζα +κDA
k (k, i)ζα .

This proves the second part.
Finally, DA

k ρkD
A
k ζα = DA

k [DA
k ρk − κ ∑ j �=k( j,k)− 1]ζα = DA

k (U A
k − 1)ζα −

κDA
k ∑ j>k( j,k)ζα and DA

k ( j,k) = ( j,k)DA
j .

It is convenient in the following to have a notation for projections. For μ ∈
N

d,P
0 , denote the orthogonal projection of f (y) ∈Πd onto Eμ by π(μ) f , so that

f =∑
μ
π(μ) f and π(μ) f ∈ Eμ .

The formulae in Lemma 11.4.9 can be applied to the projections π(λ − ε j) of
DA

k ζα , for λ = α+ and λ j > λ j+1, because Eλ−ε j
is invariant under DA

i ρi and
elements of Sd.

Proposition 11.4.10 For λ ∈ N
d,P
0 , if 1 ≤ j < k and λ j > λ j+1 then we have

π(λ − ε j)DA
k ζλ = 0.

Proof Let g = π(λ − ε j)DA
k ζλ . By Lemma 11.4.9, [DA

i ρi − κ ∑ j<i( j, i) −
κ(i,k)]g = ξi(λ )g for all i < k. The operators on the left-hand side can be
expressed as w−1U A

i+1w for the cyclic permutation w = (1,2, . . . ,k) ∈ Sd, with
eigenvalues drawn from {ξs(λ − ε j) : 1 ≤ s ≤ d} on the space Eλ−ε j

. These
eigenvalues are ξ1(λ ),ξ2(λ ), . . . ,ξ j(λ )−1, . . . ,ξk(λ ), . . .; ξ j(λ ) does not appear
in this list, hence g = 0.

Note that this argument uses the fact that λ is a partition in a crucial way.

Lemma 11.4.11 For λ ∈ N
d,P
0 , λ j > λ j+1 and k ≤ j, let gk = π(λ − ε j)DA

k ζλ .
Then
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DA

i ρi−κ∑
s<i

(s, i)− κ(i,k)
)

gk = ξi(λ )gk for i < k;

DA
k ρkgk = [ξk(λ )−1]gk−κ

j

∑
i=k+1

(k, i)gi;

U A
i gk = ξi(λ )gk +κ(k, i)gi for k < i≤ j;

U A
i gk = ξi(λ )gk for i > j.

Proof This proceeds by an application of the projection π(λ − ε j) to each for-
mula in Lemma 11.4.9 in combination with the fact that π(λ − ε j)DA

i ζλ = 0 for
j < i (Proposition 11.4.10).

As in Definition 10.5.1, let θ j = (1,2)(2,3) · · ·( j− 1, j) ∈ Sd . The following
has almost the same proof as Theorem 10.5.5.

Proposition 11.4.12 For λ ∈ N
d,P
0 and λ j > λ j+1, set

λ̃ = (λ j−1,λ1, . . . ,λ j−1,λ j+1, . . .);

then

π(λ − ε j)DA
j ζλ = [(d− j +1)κ +λ j]θ−1

j ζλ̃ .

Proof Let g = π(λ − ε j)DA
j ζλ . By Lemma 11.4.11, g satisfies the following:(

DA
i ρi−κ∑

s<i
(s, i)−κ(i,k)

)
g = ξi(λ )g, for i < j;

DA
j ρ jg = [ξ j(λ )−1]g,

U A
i g = ξi(λ )g for i > j.

Just as in Lemma 10.5.3, these equations show that θ jg is a scalar multiple of ζλ̃ ,
where the multiple is the coefficient of pλ−ε j

in DA
j ζλ . Use Lemma 10.5.4 (the

hypothesis m = �(λ ) can be replaced by λ j > λ j+1), which implies that pλ−ε j

appears with a nonzero coefficient in DA
j pα if one of the following holds: (1)

α = λ , with coefficient (d− j +1)κ+λ j; (2) α = λ + k(ε j− εi) with coefficient
−κ where 1≤ k≤ λi−λ j (this implies that i > j and λ � λ +k(ε j−εi) or, more
precisely, for k < λi−λ j,λ � [λ +k(ε j−εi)]+ and for k = λi−λ j,λ � (i, j)λ =
λ + k(ε j− εi), so this case cannot occur); (3) α = λ + k(εi− ε j) with coefficient
κ and 1≤ k ≤ λ j−λi−1, thus λi ≤ λ j−2 and i > j, but this case cannot occur
either, because λ � λ + k(εi− ε j) when i > j.

The part of Lemma 11.4.11 dealing with DA
k ρkgk actually contains more

information than appears at first glance. It was shown in Theorem 11.4.7 that
π(λ − ε j)DA

k ζλ is an eigenfunction of DA
k ρk with eigenvalue ξ j(λ )− 1. Thus
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the lemma implies that [ξk(λ )− ξ j(λ )]gk = κ ∑ j
i=k+1(k, i)gi; but this provides

an algorithm for computing g j−1,g j−2, . . . ,g1 from gj , which was obtained in
Proposition 11.4.12.

Algorithm 11.4.13 For λ ∈N
d,P
0 and λ j > λ j+1,

π (λ − ε j)
d

∑
i=1

DA
i ζλ = [(d− j +1)κ +λ j]φ j−1

where

φ1− j = ζλ−ε j
,

φ1−i =
(
(i, i+1)− κ

ξi(λ )−ξ j(λ )+1

)
φ−i for i = j−1, j−2, . . . ,1,

φi =
(
(i, i+1)+

κ
ξi(λ )−ξ j(λ )

)
φi−1 for i = 1,2, . . . , j−1.

Proof Let gi = [(d− j + 1)κ + λ j]−1π(λ − ε j)DA
i ζλ ; then gi = 0 for i > j (by

Proposition 11.4.10), so we require to show that φ j−1 = ∑ j
i=1 gi. Note that these

polynomials have been rescaled from those in Lemma 11.4.11, but the same equa-
tions hold. For convenience let bi = ξi(λ )−ξ j(λ ) = λi−λ j +κ( j− i),1≤ i < j.
Then the lemma shows that

bigi = κ
j

∑
s=i+1

(i,s)gs.

By Proposition 11.4.12,

g j =
(

1− κ(1, j)
b1 +1

)(
1− κ(2, j)

b2 +1

)
· · ·
(

1− κ( j−1, j)
b j−1 +1

)
ζλ−ε j

.

Next we show that

gi =
κ
bi

(
1+

κ
b j−1

( j−1, j)
)
· · ·
(

1+
κ

bi+1
(i+1, j)

)
(i, j)g j,

j

∑
s=i

gs =
(

1+
κ

b j−1
( j−1, j)

)(
1+

κ
b j−2

( j−2, j)
)
· · ·
(

1+
κ
bi

(i, j)
)

gj,

arguing inductively for i = j − 1, j − 2, . . . ,1. The first step, i = j − 1, fol-
lows immediately from Lemma 11.4.11. Suppose that the formulae are valid for
gi+1, . . . ,g j; then

gi =
κ
bi

j

∑
s=i+1

(i,s)gs

=
κ
bi

j

∑
s=i+1

(
1+

κ
b j−1

( j−1, j)
)
· · ·
(

1+
κ

bs+1
(s+1, j)

) κ
bs

(i,s)(s, j)g j
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=
κ
bi

j

∑
s=i+1

(
1+

κ
b j−1

( j−1, j)
)
· · ·
(

1+
κ

bs+1
(s+1, j)

) κ
bs

(s, j)(i, j)g j

=
κ
bi

(
1+

κ
b j−1

( j−1, j)
)
· · ·
(

1+
κ

bi+1
(i+1, j)

)
(i, j)g j.

This uses (s, i)(s, j) = (s, j)(i, j); the last step follows using simple algebra (for
example, (1+ t1)(1+ t2)(1+ t3) = 1 + t1 +(1 + t1)t2 +(1 + t1)(1 + t2)t3 ). The
formula for ∑ j

s=i gs follows easily from that for gi.
To obtain the stated formulae, replace g j by θ−1

j (θ jg j). Then

θ jg j =
(
(1,2)− κ

b1 +1

)(
(2,3)− κ

b2 +1

)
· · ·
(
( j−1, j)− κ

b j−1 +1

)
ζλ−ε j

,

and the remaining factors are transformed as follows:(
1+

κ
b j−1

( j−1, j)
)(

1+
κ

b j−2
( j−2, j)

)
· · ·
(

1+
κ
b1

(1, j)
)

× ( j−1, j) . . .(2,3)(1,2)

=
(
( j−1, j)+

κ
b j−1

)(
( j−2, j−1)+

κ
b j−2

)
· · ·
(
(1,2)+

κ
b1

)
.

This completes the proof.

To compute the expansion of π(λ − ε j)∑d
i=1 DA

i ζλ in terms of ζα with α+ =
λ −ε j, the algorithm can be considered to have the starting point φ0 = ζ λ̃ . Each
step involves an adjacent transposition which has a relatively simple action on
each ζα (recall Proposition 10.4.5). Indeed, let σ = (i, i+1). Then: σζα = ζα if
αi = αi+1; σζα = ζσα +cζα if αi > αi+1; σζα = (1−c2)ζσα +cζα if αi < αi+1,
where c = κ [ξi(α)− ξi+1(α)]−1. So, in general (with distinct parts of λ ), the
expansion consists of 2 j−1 distinct ζα .

11.5 Hermite Polynomials of Type B
In this section we examine the application of the operator exp(−uΔh) to produce
orthogonal polynomials for weights of Gaussian type, namely,

w(x)2e−v‖x‖2
, x ∈ Rd

where

w(x) =
d

∏
i=1
|xi|κ

′
∏
j<k

∣∣x2
j − x2

k

∣∣κ
and uv = 1

4 , v > 0. In the following let γ = degw(x) = dκ ′+d(d−1)κ.

Lemma 11.5.1 Suppose that f ∈Pd
m, g ∈Pd

n for some m,n ∈ N0,v > 0 and
u = 1/(4v); then
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〈 f ,g〉B = (2v)γ+(m+n)/2
( v
π

)d/2
b
(
κ,κ ′

)
×
∫

Rd

(
e−uΔh f

)(
e−uΔhg

)
w(x)2e−v‖x‖2

dx.

Proof In the formula to be proved, with v = 1
2 , make the change of variables

x = (2v)1/2z, that is, set xi = (2v)1/2zi for each i. Then dx = (2v)d/2 dz, and the
weight function contributes the factor (2v)γ . For j ≤ n

2 let f j(x) = Δ j
h f (x); then

e−Δh/2 f (x) = ∑ j
1
j!(− 1

2 ) j f j(x), which transforms to

∑
j

1
j!

(−1
2

) j
(2v)n/2− j f j(z) = (2v)n/2∑

j

1
j!

(−1
4v

) j
f j(z) = (2v)n/2e−uΔh f .

A similar calculation for g finishes the proof.

Of course, it is known that 〈 f ,g〉B = 0 for m �= n.
As in Section 10.9, the commuting self-adjoint operators Ui can be transformed

to commuting self-adjoint operators on L2(Rd ;w2e−v‖x‖2
dx). For v > 0 and u =

1/(4v),1≤ i≤ d, let

U v
i = e−uΔhUie

uΔh .

Proposition 11.5.2 For 1≤ i≤ d,

U v
i = Dixi−2uD2

i −κ∑
j<i

(σ ji + τ ji).

Proof Because Δh commutes with each w ∈ Wd it is clear that e−uΔh(σ ji +
τ ji)euΔh = σ ji +τ ji for j < i. From the commutation Δhxi−xiΔh = 2Di, we argue
inductively that Δn

hxi− xiΔn
h = 2nDiΔn−1

h for n ∈ N0. By summing this equation
(multiplying it by (−u)n/n!) we obtain

e−uΔh xi = (xi−2uDi)e−uΔh .

Finally, apply Di to the left-hand side of this equation to prove the stated formula.

The construction of an orthogonal basis labeled by Nd
0 in terms of the

nonsymmetric Jack polynomials proceeds as follows. For α ∈Nd
0,

1. let E = {i : αi is odd};
2. if E is empty let w = 1, otherwise let k = #(E),Ek = {i : 1 ≤ i ≤ k} and let

w be the unique permutation (∈ Sd) such that w(Ek) = E and w(i) < w( j)
whenever 1≤ i < j ≤ k or k +1≤ i < j ≤ d;

3. let β = w−1(α), that is, βi = αw(i) for each i;
4. let Hα(x;κ,κ ′,v) = e−uΔh wxEkζe(β )(y) (recall that e(β )i =

⌊
1
2βi
⌋
).
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By Propositions 11.3.4 and 11.5.2, Hα(x) is a {U v
i } simultaneous eigenfunc-

tion such that

U v
w(i)Hα(x) = 2[ξi(β )−κ]Hα(x) for 1≤ i≤ k,

U v
w(i)Hα(x) = 2[ξi(β )−κ +κ ′ − 1

2 ]Hα(x) for k < i≤ d.

Since w acts isometrically, we have

(2v)γ
( v
π

)d/2
b
(
κ,κ ′

)∫
Rd

Hα(x;κ,κ ′,v)2w2(x)e−v‖x‖2
dx

= (2v)−|α |
〈
xEkζe(β )(y),xEkζe(β)(y)

〉
B

= v−|α |(dκ +1)e(α)+((d−1)κ +κ ′+ 1
2)o(α)+

×E+(e(β ))E−(e(β ))
h(e(α)+,κ +1)

h(e(α)+,1)
.

The substitutions e(β )+ = e(α)+,o(β )+ = o(α)+ are valid since α = w(β ). The
most common specializations of v are v = 1

2 and v = 1 (when the polynomials
Hα(x) reduce to the products of ordinary Hermite polynomials for κ = 0 = κ ′).

11.6 Calogero–Sutherland Systems
We begin with the time-independent Schrödinger wave equation for d particles
in a one-dimensional space: particle i has mass mi, coordinate xi and is subject to
an external potential Vi(xi) and the interaction between particles i, j is given by
Vi j(xi− x j), i < j. The force acting on i due to j is Fi j = −(∂/∂xi)Vi j(xi− x j),
which equals −Fji =−(∂/∂x j)Vi j(xi− x j) according to Newton’s third law. The
Hamiltonian of the system is

H =− h̄2

2

d

∑
i=1

1
mi

( ∂
∂xi

)2
+

d

∑
i=1

Vi (xi)+ ∑
1≤i< j≤d

Vi j(xi− x j),

and the Schrödinger equation is

H ψ(x) = Eψ(x),

where the eigenvalue E is the energy level associated with the wave function ψ .
The quantum mechanical interpretation of ψ is that |ψ(x)|2 is the probability
density function for the location of the particles (which is independent of time by
hypothesis). This interpretation requires that the integral of |ψ(x)|2 over the state
space must be 1 (this is one reason for the importance of computing L2-norms
of orthogonal polynomials!). Planck’s constant is used in the form h̄ = h/(2π).
We will consider only systems for which the Hamiltonian is invariant under the
action of the symmetric group Sd and the interactions are multiples of

∣∣xi− x j
∣∣−2

(called 1/r2 interactions, where r denotes the distance between two particles). For
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systems on the line R the external potential which we will consider is that corre-
sponding to harmonic confinement (producing a simple harmonic oscillator). In
the mathematical analysis of H it is customary to change the scales and units
in such a way that the equations have as few parameters as possible. The term
complete integrability refers to the existence of d independent and commuting
differential operators, one of which is H . The relevance to orthogonal poly-
nomials is that Calogero–Sutherland systems with 1/r2 interactions have wave
functions of the form p(x)ψ0(x), where p is a polynomial and ψ0(x) is the base
state (the state of lowest energy). This situation can be illustrated by the harmonic
oscillator.

11.6.1 The simple harmonic oscillator

Consider a particle of mass m moving on a line subject to the restoring force
F(x) =−kx or, equivalently, with potential V (x) = kx2/2, x∈R. The Schrödinger
wave equation is

− h̄2

2m
d2

dx2ψ(x)+
kx2

2
ψ(x) = Eψ(x).

Write the equation as

H1ψ(x) =− d2

dx2ψ(x)+v2x2ψ(x) = λψ(x),

where v is a positive constant and λ denotes the rescaled energy level. Ignoring
the question of normalization for now, let the base state be ψ0(x) = exp(−vx2/2);
then by an easy calculation it can be shown that

H1(p(x)ψ0(x)) = ψ0(x)[−(d/dx)2 +2xvd/dx+ v]p(x).

For each n ∈ N0 let p(x) = Hn(
√

vx); then by using the corresponding differen-
tial equation for the Hermite polynomials, Subsection 1.4.1, namely −H ′′

n (x)+
2xH ′

n(x) = 2nHn(x), we obtain

H1[Hn(
√

vx)ψ0(x)] = (2n+1)vHn(
√

vx)ψ0(x).

This shows that the energy levels are evenly spaced and

{(2nn!
√
π/v)−1/2Hn(

√
vx)exp(−vx2/2) : n ∈ N0}

is a complete set of wave functions, an orthonormal basis for L2(R).
The machinery of Section 11.5 for the case d = 1,κ ′ = 0 asserts that the

appropriately scaled Hermite polynomials are obtained from exp{[−u(d/dx)2]xn}
(with u = 1/(4v),n ∈ N0); indeed

exp

{
− 1

4v

(
d
dx

)2

xn

}
= 2−nv−n/2Hn(

√
vx),

using the formula in Proposition 1.4.3.
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11.6.2 Root systems and the Laplacian

The following calculation is useful for any root system related to a Calogero
model. Recall the notation of Section 4.4, with a multiplicity function κv defined
on a root system R.

Lemma 11.6.1 Let ψ(x) = ∏v∈R+ |〈x,v〉|κv and let f be a smooth function on
Rd; then

ψ(x)−1Δ[ψ(x) f (x)]

= Δ f (x)+2 ∑
v∈R+

κv
〈∇ f (x),v〉
〈x,v〉 + ∑

v∈R+

κv(κv−1)‖v‖2

〈x,v〉2 f (x).

Proof From the product rule for Δ we have

ψ−1Δψ = Δ+2
d

∑
i=1

1
ψ
∂ψ
∂xi

∂
∂xi

+
1
ψ
Δψ.

The middle term follows from

1
ψ
∂ψ
∂xi

= ∑
v∈R+

κv
vi

〈x,v〉 .

It remains to compute Δψ/ψ . Indeed,

1
ψ

(
∂
∂xi

)2

ψ =
(
∑

v∈R+

κv
vi

〈x,v〉
)2

− ∑
v∈R+

κv
v2

i

〈x,v〉2

and
1
ψ
Δψ =− ∑

v∈R+

κv
〈v,v〉
〈x,v〉2 + ∑

u,v∈R+

κuκv
〈u,v〉

〈x,u〉〈x,v〉 .

In the second sum the subset of terms for which σuσv = w for a fixed rotation
�= 1 adds to zero, by Lemma 6.4.6. This leaves the part with u = v and thus
Δψ/ψ = ∑v∈R+

[
κv(κv−1)〈v,v〉/〈x,v〉2]. The proof is complete.

Lemma 11.6.1 will be used here just for operator types A and B.

11.6.3 Type A models on the line

Suppose that there are d identical particles on the line R, each subject to an
external potential v2x2 (the simple harmonic oscillator potential), with 1/r2

interactions and with parameter κ . The Hamiltonian is

H =−Δ+ v2‖x‖2 +2κ ∑
1≤i< j≤d

κ−1
(xi− x j)2 .

The base state is ψ0(x) = exp(−v‖x‖2/2)∏i< j |xi− x j|κ for x ∈ Rd . Let a(x) =
∏i< j(xi− x j). To facilitate the computations we will introduce two commutation
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rules (the second is the type A case of Lemma 11.6.1; f (x) is a smooth function
on x ∈ Rd). The commutation rules are as follows:

exp(v‖x‖2/2)Δ(exp(−v‖x‖2/2) f (x))

=
(
Δ−2v

d

∑
i=1

xi
∂
∂xi

+ v(v‖x‖2−d)
)

f (x), (11.6.1)

|a(x)|−κ Δ[|a(x)|κ f (x)]

=
(
Δ+2κ ∑

i< j

1
xi− x j

(
∂
∂xi

− ∂
∂x j

)
+2κ(κ−1)∑

i< j

1
(xi− x j)2

)
f (x).

Combining the two equation (and noting that ∑d
i=1 xi(∂/∂xi) |a(x)|κ =

[ 1
2κd(d−1) |a(x)|κ ], we obtain

ψ0(x)−1H [ψ0(x) f (x)] =
[
−Δ−2κ ∑

1≤i< j≤d

1
xi− x j

(
∂
∂xi

− ∂
∂x j

)

+2v
d

∑
i=1

xi
∂
∂xi

+dv[1+κ(d−1)]
]

f (x).

We recall the type-A Laplacian

Δh =
d

∑
i=1

(DA
i )2 = Δ+2κ ∑

1≤i< j≤d

[
1

xi− x j

( ∂
∂xi

− ∂
∂x j

)
− 1− (i, j)

(xi− x j)2

]
,

and observe its close relationship to ψ−1
0 H ψ0; for symmetric polynomials the

terms 1− (i, j) vanish. Further (Proposition 6.5.3),

d

∑
i=1

xiD
A
i f (x) =

d

∑
i=1

xi
∂
∂xi

f (x)+κ∑
i< j

[1− (i, j)] f (x).

It was shown (Section 10.8) that e−uΔhU A
i euΔh = U A

i − 2u(DA
i )2, so that, with

uv = 1
4 ,

2ve−uΔh
d

∑
i=1

U A
i euΔh = −Δh +2v

d

∑
i=1

U A
i

= −Δh +2v

(
d

∑
i=1

xi
∂
∂xi

+d +
κ
2

d(d +1)

)
.

Thus, when restricted to symmetric polynomials the conjugate of the Hamiltonian
can be expressed as

ψ−1
0 H ψ0 = 2ve−uΔh

d

∑
i=1

U A
i euΔh −dv(1+2κ).

For any partition λ ∈ N
d,P
0 there is an invariant eigenfunction jλ of ∑d

i=1 U A
i

with eigenvalue ∑d
i=1 ξi(λ ) = d + κ

2 d(d + 1)+ |λ | (where |λ | = ∑i λi). Further,
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in Definition 10.7.3 we constructed invariant differential operators commuting
with ∑d

i=1 U A
i by restricting T j to symmetric polynomials, where ∑d

j=1 t jT j =
∏d

i=1(1 + t U A
i ) (with a formal variable t). Thus T ′

j = e−uΔhT jeuΔh is the ele-

mentary symmetric polynomial of degree j in {e−uΔhU A
i euΔh : 1 ≤ i ≤ d}; each

e−uΔhU A
i euΔh is a second-order differential–difference operator and T ′

j maps
symmetric polynomials onto themselves. By the same proof as that of Theo-
rem 10.7.4, T ′

j when restricted to symmetric polynomials acts as a differential
operator of degree 2 j. This shows the complete integrability of H ; each operator
ψ0T ′

j ψ
−1
0 commutes with it.

Given λ ∈ N
d,P
0 , let ψλ = (e−uΔh jλ )ψ0; then H ψλ = v[2 |λ |+ d + κd(d−

1)]ψλ . This provides a complete orthogonal decomposition of the symmetric
wave functions for indistinguishable particles.

Next we consider a simple modification to the Hamiltonian to allow non-
symmetric wave functions. The physical interpretation is that each particle has
a two-valued spin, which can be exchanged with another particle. Refer to the
expression for Δh, and add

2κ ∑
i< j

1− (i, j)
(xi− x j)2

to the potential. The modified Hamiltonian is

H ′ =−Δ+ v2‖x‖2 +2κ ∑
1≤i< j≤d

κ− (i, j)
(xi− x j)2 .

This operator has the same symmetric eigenfunctions as H and in addition has
eigenfunctions (e−uΔhζα)ψ0, where ζα is the nonsymmetric Jack polynomial for
α ∈Nd

0; the eigenvalues are given by v[2 |α|+d +κd(d−1)]. The transpositions
(i, j) are called exchange operators in the physics context, since they exchange
the spin values of two particles.

This establishes the complete integrability of the linear Calogero–Moser sys-
tem with harmonic confinement, 1/r2 interactions and exchange terms. The wave
functions involve Hermite polynomials of type A. The normalizations can be
determined from the results in Section 10.7.

11.6.4 Type A models on the circle

Consider d identical particles located on the unit circle at polar coordinates
(θ1,θ2, . . . ,θd), with no external potential and inverse-square law (1/r2) inter-
actions. The chordal distance between particles j and k is 2

∣∣sin[ 1
2 (θ j−θk)]

∣∣. The
unique nature of the 1/r2 interaction is illustrated by the identity

1

4sin2 1
2θ

= ∑
n∈Z

1
(θ −2πn)2 ,
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which shows that the particles can be considered to be on a line. They can be con-
sidered as the countable union of copies of one particle; these copies are located
in 2π-periodically repeating positions on the line and they all interact according
to the 1/r2 law. The coupling constant in the potential is written as 2κ(κ − 1),
and κ > 1. The Hamiltonian is

Hθ =−
d

∑
i=1

( ∂
∂θi

)2
+
κ
2 ∑

1≤i< j≤d

κ−1

sin2[ 1
2 (θi−θ j)]

.

Now change the coordinate system to x j = exp(iθ j) for 1≤ j≤ d; this transforms
trigonometric polynomials to Laurent polynomials in x (polynomials in x±1

i ), and
we have −(∂/∂θi)2 = (xi∂i)2. Further, sin2[ 1

2 (θi− θ j] = 1
4 (xi− x j)(x−1

i − x−1
j )

for i �= j. In the x-coordinate system the Hamiltonian is

H =
d

∑
i=1

(xi∂i)2−2κ(κ−1) ∑
1≤i< j≤d

xix j

(xi− x j)2 .

The (non-normalized) base state is

ψ0(x) = ∏
1≤i< j≤d

∣∣∣(xi− x j)(x−1
i − x−1

j )
∣∣∣κ/2

= ∏
1≤i< j≤d

∣∣xi− x j
∣∣κ d

∏
i=1

|xi|−κ(d−1)/2 .

Even though |xi| = 1 on the unit torus, the function ψ0 is to be interpreted as a
positively homogeneous function of degree 0 on Cd .

Proposition 11.6.2 For any smooth function f on Cd,

ψ0(x)−1
d

∑
i=1

(xi∂i)2[ψ0(x) f (x)]

=
d

∑
i=1

(xi∂i)2 f (x)+2κ ∑
1≤i< j≤d

xix j

(
∂i−∂ j

xi− x j
− κ−1

(xi− x j)2

)
f (x)

+κ(d−1)
d

∑
i=1

xi∂i f (x)+
κ2

12
d(d2−1) f (x).

Proof Define the operator δi = ψ−1
0 xi∂iψ0; then, by logarithmic differentiation,

δi = xi∂i +
κ
2 ∑j �=i

xi + x j

xi− x j

and so

δ 2
i = (xi∂i)2 +2κ∑

j �=i

xix j∂i

xi− x j
+κ(d−1)xi∂i

−κ ∑
j �=i

xix j

(xi− x j)2 +
κ2

4

(
∑
j �=i

xi + x j

xi− x j

)2

.
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Now sum this expression over 1≤ i≤ d. Expand the squared-sum term as follows:

d

∑
i=1
∑

j,k �=i

(
x2

i

(xi− x j)(xi− xk)
+

xix j + xixk + x jxk

(xi− x j)(xi− xk)

)
.

When j = k, the sum contributes d(d−1)+8∑i< j xix j/(xi−x j)2 (each pair {i, j}
with i < j appears twice in the triple sum, and (xi + x j)2 = (xi− x j)2 + 4xix j).
When i, j,k are all distinct, the first terms each contributes 2

(d
3

)
and the second

terms cancel out (the calculations are similar to those in the proof of Theorem
10.7.9). Finally,

κ2

4
(d(d−1)+

1
3

d(d−1)(d−2)) = 1
12κ

2d(d2−1).

Using Proposition 10.7.8 and Theorem 10.7.9 the transformed Hamiltonian can
be expressed in terms of {U A

i }. Indeed,

d

∑
i=1

[
U A

i −1− 1
2κ(d +1)

)2

=
d

∑
i=1

(xi∂i)2 +2κ ∑
1≤i< j≤d

xix j

(
∂i−∂ j

xi− x j
− 1− (i, j)

(xi− x j)2

)

+κ(d−1)
d

∑
i=1

xi∂i + 1
12κ

2d(d2−1).

To show this, write

d

∑
i=1

[U A
i −1− 1

2κ(d +1)]2

=
d

∑
i=1

(U A
i −1−κd)2 +κ(d−1)

d

∑
i=1

(U A
i −1−κd)+d[ 1

2κ(d−1)]2

and use Proposition 10.7.8. As for the line model, the potential can be modi-
fied by exchange terms (interchanging spins of two particles). The resulting spin
Hamiltonian is

H ′ =
d

∑
i=1

(xi∂i)2−2κ ∑
1≤i< j≤d

xix j

(xi− x j)2 [κ− (i, j)]

and, for a smooth function f (x),

ψ0(x)−1H ′[ψ0(x) f (x)] =
d

∑
i=1

[
U A

i −1− 1
2κ(d +1)

]2
f (x).

This immediately leads to a complete eigenfunction decomposition for H ′

in terms of nonsymmetric Jack polynomials. Let ed = ∏d
i=1 xi (where ed is an
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elementary symmetric polynomial); then U A
i [em

d f (x)] = em
d (U A

i +m) f (x) for any
m ∈ Z (see Proposition 6.4.12) and the eigenvalue is shifted by m.

Lemma 11.6.3 Let α ∈ Nd
0 and m ∈ N0; then em

d ζα is a scalar multiple of ζβ ,
where β = α +m1d.

Proof Both em
d ζα and ζβ are eigenfunctions of U A

i with eigenvalue ξi(α)+ m,
for 1≤ i≤ d.

Corollary 11.6.4 The Laurent polynomials em
d ζα with m ∈ Z and α ∈ Nd

0 with
miniαi = 0 form a basis for the set of all Laurent polynomials.

Proof For any Laurent polynomial g(x) there exists m ∈ Z such that em
d g(x)

is a polynomial in x1, . . . ,xd . Lemma 11.6.3 shows that there are no linear
dependences in the set.

This leads to the determination of the energy levels.

Theorem 11.6.5 Let λ ∈ N
d,P
0 ,λd = 0,m ∈ Z and α+ = λ ; then

ψ(x) = ψ0(x)em
d ζα(x)

is a wave function for H ′, and

H ′ψ =
d

∑
i=1

[
λi +m+ 1

2κ(d +1−2i)
]2
ψ.

The normalization constant for ψ was found in Theorems 10.6.13 and 10.6.16.
The eigenvalues can also be expressed as ∑d

i=1(λi +m)[λi +m+κ(d +1−2i)]+
1
2κ

2d(d2 − 1). The complete integrability of H (as an invariant differential
operator) is a consequence of Theorem 10.7.4

11.6.5 Type B models on the line

Suppose that there are d identical particles on the line at coordinates x1,x2, . . . ,xd ,
subject to an external harmonic confinement potential, with 1/r2 interactions
between both the particles and their mirror images; as well, there is a barrier
at the origin, and spin can be exchanged between particles. The Hamiltonian with
exchange terms for this spin type-B Calogero model is

H = −Δ+ v2‖x‖2 +
d

∑
i=1

κ ′(κ ′ −σi)
x2

i

+2κ ∑
1≤i< j≤d

( κ−σi j

(xi− x j)2 +
κ− τi j

(xi + x j)2

)
,
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where v,κ,κ ′ are positive parameters. The base state is

ψ0(x) = e−v‖x‖2/2 ∏
1≤i< j≤d

∣∣x2
i − x2

j

∣∣κ d

∏
i=1
|xi|κ

′
.

By Lemma 11.6.1 specialized to type-B models, and the commutation for
e−v‖x‖2/2 from equation (11.6.1), we have

ψ0(x)−1H ψ0(x) =−Δ−κ ′
d

∑
i=1

(
2
xi
∂i− 1−σi

x2
i

)
−2κ ∑

1≤i< j≤d

(
∂i−∂ j

xi− x j
− 1−σi j

(xi− x j)2 +
∂i +∂ j

xi + x j
− 1− τi j

(xi + x j)2

)

+2v
d

∑
i=1

xi∂i + v[d +2κd(d−1)+2κ ′d]

=−Δh +2v
d

∑
i=1

xi∂i + vd[1+2κ(d−1)+2κ ′].

Using Propositions 6.4.10 and 6.5.3 we obtain

d

∑
i=1

Dixi−κ ∑
1≤i< j≤d

(σi j + τi j)

=
d

∑
i=1

xi∂i +d[1+κ ′+κ(d−1)]+κ ′
d

∑
i=1

σi.

Let u = 1/(4v). Then, by Proposition 11.5.2,

2ve−uΔh
d

∑
i=1

Uie
uΔh =−Δh +2v

d

∑
i=1

xi∂i +2vd[1+κ ′+κ(d−1)]+2vκ ′
d

∑
i=1

σi.

Thus

ψ0(x)−1H ψ0(x) = ve−uΔh

(
2

d

∑
i=1

Ui−d−2κ ′
d

∑
i=1

σi

)
euΔh .

Apply this operator to the Hermite polynomial Hα(x;κ,κ ′,v), α ∈ Nd
0, con-

structed in Section 11.5; thus

H (ψ0Hα) = 2v(|α|+d[ 1
2 +(d−1)κ +κ ′)]ψ0Hα .

The normalization constants were obtained in Section 11.5. The type-B version of
Theorem 10.7.4 is needed to establish the complete integrability of this quantum
model. As in Definition 10.7.3, define the operators T j by
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d

∑
i=1

tiTi =
d

∏
j=1

(1+ tU j).

Theorem 11.6.6 For 1≤ i≤ d, the operators Ti commute with each w ∈Wd.

Proof We need only consider the reflections in Wd . Clearly σ jUi = Uiσ j for each
j. It now suffices to consider adjacent transpositions σ j, j+1, since σiσi jσi = τi j.

Fix j and let σ = σ j, j+1; then σUi = Uiσ whenever i �= j, j + 1. Also, σU j =
U j+1σ + κ(σ + τ j, j+1). It is now clear that σ(U j +U j+1)σ = U j +U j+1 and
σ(U jU j+1)σ = U jU j+1 (note that στi jσ = τi, j+1 for i �= j, j +1).

The operators ψ0e−uΔhTieuΔhψ−1
0 commute with the Hamiltonian H . When

restricted to Wd-invariant functions they all coincide with invariant differential
operators.

11.7 Notes
Symmetries of the octahedral type have appeared in analysis for decades, if not
centuries. Notably, the quantum mechanical descriptions of atoms in certain crys-
tals are given as spherical harmonics with octahedral symmetry (once called
“cubical harmonics”). Dunkl [1984c, 1988] studied the type-B weight functions
but only for invariant polynomials, using what is now known as the restriction
of the h-Laplacian. Later, in Dunkl [1999c] most of the details for Sections 9.2
and 9.3 were worked out. The derivation of the Macdonald–Mehta–Selberg inte-
gral in Section 9.3 is essentially based on the technique in Opdam [1991], where
Opdam proved Macdonald’s conjectures about integrals related to the crystallo-
graphic root systems and situated on the torus (more precisely, Euclidean space
modulo the root lattice). The original proof for the type-B integral used a lim-
iting argument on Selberg’s integral (see Askey [1980]). For the importance of
Selberg’s integral and its numerous applications, see the recent survey by For-
rester and Warnaar [2008]. Generalized binomial coefficients for nonsymmetric
Jack polynomials were introduced by Baker and Forrester [1998], but Algorithm
11.4.13 is new. There is a connection between these coefficients and the the-
ory of shifted, or nonhomogeneous, Jack polynomials. The Hermite polynomials,
which are called Laguerre polynomials by some authors in cases where the par-
ities are the same for all variables, have appeared in several articles. The earlier
articles, by Lassalle [1991a, b, c], Yan [1992] and Baker and Forrester [1997a],
dealt with the invariant cases only. Later, when the nonsymmetric Jack polyno-
mials became more widely known, the more general Hermite polynomials were
studied, again by Baker and Forrester [1998], Rösler and Voit [1998] and Ujino
and Wadati [1995, 1997], who called them “Hi-Jack” polynomials. The idea of
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using e−uΔh to generate bases for Gaussian-type weight functions appeared in
Dunkl [1991].

The study of Calogero–Sutherland systems has been carried on by many
authors. We refer to the book Calogero–Moser–Sutherland models, edited by van
Diejen and Vinet [2000] for a more comprehensive and up-to-date bibliography.
We limited our discussion to the role of the type-A and type-B polynomi-
als in the wave functions and did not attempt to explain the physics of the
theory or physical objects which can be usefully modeled by these systems.
Calogero [1971] and Sutherland [1971, 1972] proved that inverse square poten-
tials for identical particles in a one-dimensional space produce exactly solvable
models. Before their work, only the Dirac-delta interaction (collisions) model
had been solved. Around the same time, the Jack polynomials were constructed
(Jack [1970/71], Stanley [1989]). Eventually they found their way into the Suther-
land systems, and Lapointe and Vinet [1996] used physics concepts such as
annihilation and creation operators to prove new results on the Jack polynomials
and also applied them to the wave function problem. Other authors whose papers
have a significant component dealing with the use of orthogonal polynomials are
Kakei [1998], Ujino and Wadati [1999], Nishino, Ujino and Wadati [1999] and
Uglov [2000]. The type-B model on the line with spin terms was first studied by
Yamamoto [1995]. Kato and Yamamoto [1998] used group-invariance methods
to evaluate correlation integrals for these models.

Genest, Ismail, Vinet and Zhedanov [2013] analyzed in great detail the
Hamiltonians associated with the differential–difference operators for Z2

2 with
weight function |x1|κ1 |x2|κ2 . This work was continued by Genest, Vinet and
Zhedanov [2013]. The generalized Hermite polynomials appear in their analyses
of the wave functions.

The theory of nonsymmetric Jack polynomials has been extended to the family
of complex reflection groups named G(n,1,d), that is, the group of d×d permu-
tation matrices whose nonzero entries are the nth roots of unity (so G(1,1,d) is
the same as the symmetric group Sd and G(2,1,d) is the same as Wd) in Dunkl
and Opdam [2003].
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weighted Lp space on the unit sphere, Trans. Amer. Math. Soc. 361, 3189–3221.

Dai, F. and Xu, Y. (2013). Approximation Theory and Harmonic Analysis on Spheres and
Balls, Springer, Berlin–NewYork.

Debiard, A. and Gaveau, B. (1987). Analysis on root systems, Canad. J. Math. 39, 1281–
1404.

Delgado, A. M., Fernández, L, Pérez, T. E., Piñar, M. A. and Xu, Y. (2010). Orthogonal
polynomials in several variables for measures with mass points, Numer. Algorithm 55,
245–264.

Delgado, A., Geronimo, J. S., Iliev, P. and Marcellán, F. (2006). Two variable orthogonal
polynomials and structured matrices, SIAM J. Matrix Anal. Appl. 28, 118–147.

Delgado, A. M., Geronimo, J. S., Iliev, P. and Xu, Y. (2009). On a two variable class of
Bernstein–Szego measures, Constr. Approx. 30, 71–91.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation, Grundlehren der
Mathematischen Wissenschaften 303, Springer, Berlin.

van Diejen, J. F. (1999). Properties of some families of hypergeometric orthogonal
polynomials in several variables, Trans. Amer. Math. Soc. 351, no. 1, 233–270.

van Diejen, J. F. and Vinet, L. (2000). Calogero–Sutherland–Moser models, CRM Series
in Mathematical Physics, Springer, New York.
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Kroó, A. and Lubinsky, D. (2013a). Christoffel functions and universality on the boundary
of the ball, Acta Math. Hungarica 140, 117–133.
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Cichoń, D., 112, 398
Connett, W. C., 55, 398
Constantine, A. G., 353, 403
Cools, R., 113, 409
van der Corput, J. G., 133, 398
Coxeter, H. S. M., 174, 178, 207, 398

Dai, F., 136, 257, 316, 317, 398, 399
Debiard, A, 399
Delgado, A. M., 56, 112, 172, 398, 399
Della Vecchia, B., 315, 398
DeVore, R. A., 315, 399
Didon, F., 136, 143
van Diejen, J. F., 172, 395, 399
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