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Preface

Tanta animorum imbecillitas est, ubi ratio decessit
L.A. Seneca (De Constantia Sapientis, XVII)

A common attitude among engineers and physicists is, loosely speaking, to
consider statistics as a tool in their toolbox. They know it is ‘there’, they are
well aware of the fact that it can be of great help in a number of cases and,
having a general idea of how it works, they ‘dust it off’ and use it whenever
the problem under study requires it.

A minor disadvantage of this pragmatic, and in many ways justifiable (after
all, statistics is not their main field of study) point of view is that one often
fails to fully appreciate its potential, its richness and the complexity of some
of its developments. A more serious disadvantage is the risk of improper use,
although it is fair to say that this is rarely the case in science when compared
with other fields of activity such as, for instance, politics, advertising and
journalism (even assuming the good faith of the individuals involved).

These general considerations aside, in the author’s mind the typical reader
of this book (whatever the term ‘typical reader’ may mean) is an engineer or
physicist who has a particular curiosity – personal and/or professional – for
probability and statistics. Although this typical reader is surely interested
in statistical techniques and methods of practical use, his/her focus is on
‘understanding’ rather than ‘information’ on this or that specific method,
and in this light he/she is willing to tackle some mathematical difficulties in
order to, hopefully, achieve this understanding. Since I found myself in this
same situation a few years ago and it is now my opinion that the reward is
well-worth the effort (this, however, in no way implies that I have reached
a full understanding of the subject-matter – unfortunately, I feel that it is
not so – it simply means that after a few years of study the general picture is
much clearer and many details are much sharper now than then), I decided
to write a book which would have fulfilled my needs at that time. It goes
without saying that there are many good books on the subject – a good
number of them are on my shelf and I have often referred to them either for
work or in writing this book – and this is why I included a rather detailed
list of references at the end of each chapter.



Preface xi

The book is divided into two main parts: Part 1 (Chapters 1–4) on prob-
ability theory and Part 2 (Chapters 5–7) on mathematical statistics. In
addition, three appendices (A, B and C) complement the book with some
extra material relevant to the ideas and concepts presented in the main text.

With regard to Part 1 on probability, some mathematical difficulties arise
from the circumstance that the reader may not be familiar with measure
theory and Lebesgue integration, but I believe that it would have been unfair
to the ‘typical reader’ to pretend to ignore that modern probability theory
relies heavily on this branch of mathematics. In Part 2, on the other hand, I
tried as much as possible to show the way in which, in essence, this part is a
logical – even if more application-oriented – continuation of the first; a fact
that, although obvious in general, is sometimes not clear in its details.

In all, my main goal has been to give a unified treatment in the hope of
providing the reader with a clear wide-angle picture where, in addition, some
important details are in good focus. On this basis, in fact, he/she will be able
to pursue the study of more advanced topics and understand the main ideas
behind the specific statistical techniques and methods – some of which are
rather sophisticated indeed – that he/she will encounter in this and/or other
texts.

Also, it is evident that in writing a book like this some compromise must
be made on the level of mathematical exposition and selection of topics.
In regard to the former I have striven for clarity rather than mathematical
rigor; in fact, there exist many excellent books written by mathematicians
(some of them are included in the references) where rigor is paramount and
all the necessary proofs are given in detail. For the latter, it is only fair to say
that many important topics, including probably at least one of everyone’s
favourites, have been omitted. Out of necessity, in fact, some choices had
to be made (a few of them have been made painfully along the way, leaving
some doubts that still surface now and then) and I tried to do so with the
intention of writing a not-too-long book without sacrificing the spirit of the
original idea that had me started in the first place. Only the readers will be
able to tell if I have been successful and faithful to this idea.

Finally, it is possible that, despite the attention paid to reviewing all the
material, this book will contain errors, omissions, oversights or misprints.
I will be grateful to the readers who spot any of the above or who have
any comments for improving the book. Any suggestion will be received and
considered.

Paolo L. Gatti
Milano

September 2004





Part I

Probability theory





1 The concept of probability

1.1 Different approaches to the idea of probability

Probabilistic concepts, directly or indirectly, pervade many aspects of human
activities, from everyday situations to more advanced and specific applica-
tions in natural sciences, engineering, economy and politics. It is the scope
of this introductory chapter to discuss the fundamental idea of probability
which, as we will see, is not so obvious and straightforward as it may seem.
In fact – in order to deal with practical problems in a first stage and to arrive
at a sound mathematical theory later – this concept has evolved through
the centuries, changing the theory of probability from an almost esoteric
discipline to a well-established branch of mathematics.

From a strict historical point of view, despite the fact that some general
notions have been common knowledge long before the seventeenth century
(e.g. Cardano’s treatise ‘Libel de Ludo Aleæ’ (Book of Dice Games) was
published in 1663 but written more than a century earlier), the official birth
of the theory dates back to the middle of the seventeenth century and its
early developments owe much to great scientists such as Pascal (1623–1662),
Fermat (1601–1665), Huygens (1629–1695), J. Bernoulli (1654–1705), de
Moivre (1667–1754), Laplace (1749–1827) and Gauss (1777–1855).

Broadly speaking, probability is a loosely defined term employed in every-
day conversation to indicate the measure of one’s belief in the occurrence of
a future event when this event may or may not occur. Moreover, we use this
word by indirectly making some common assumptions: probabilities near 1
(100%) indicate that the event is extremely likely to occur, probabilities near
zero indicate that the event is almost not likely to occur and probabilities
near 0.5 (50%) indicate a ‘fair chance’, that is, that the event is just as likely
to occur as not.

If we try to be more specific, we can consider the way in which we assign
probabilities to events and note that three main approaches have developed
through the centuries. Following the common terminology, we call them

(1) the classical approach,
(2) the relative frequency approach,
(3) the subjective approach.



4 Probability theory

This order agrees with the historical sequence of facts. In fact, the classical
definition of probability was the first to be given, followed by the relative fre-
quency definition and – not long before Kolmogorov’s axiomatic approach
was introduced in 1931 – by the subjective definition. Let us examine them
more closely.

1.2 The classical definition

The first two viewpoints mentioned in Section 1.1, namely the classical and
the relative frequency approaches, date back to a few centuries ago and
originate from practical problems such as games of chance and life insurance
policies, respectively. Let us consider the classical approach first.

In a typical gambling scheme, the game is set up so that there exists a
number of possible outcomes which are mutually exclusive and equally likely
and the gambler bets against the House on the realization of one of these
outcomes. The tossing of a balanced coin is the simplest example: there
are two equally likely possible outcomes, head or tail, which are mutually
exclusive (that is both faces cannot turn up simultaneously) and the bet is,
say, the appearance of a head.

More specifically, the classical (or the gambler’s) definition of probability
can be used whenever it can be reasonably assumed that the possible out-
comes of the ‘experiment’ are mutually exclusive and equally likely so that
one calculates the probability of a particular outcome A as

P(A) = n(A)

n(S)
(1.1)

where n(A) is the number of ways in which outcome A can occur and n(S)
is the total number of ways in which the experiment can proceed. Note
that with this definition we do not need to actually perform the experiment
because eq. (1.1) defines an ‘a priori’ probability. In tossing a fair coin, for
instance, this means that without even trying we can say that n(S) = 2 (head
or tail) and the probability of a head is P(A) ≡ P(head) = 1/2. Also, in
rolling a fair die – where six outcomes are possible, that is, n(S) = 6 – the
appearance of any one particular number can be calculated by means of
eq. (1.1) and gives 1/6 while, on the other hand, the appearance of, say, an
even number is 1/2.

1.2.1 Properties of probability on the basis of
the classical definition

In the light of the simple examples given in Section 1.2, the classical definition
can be taken as a starting point to give some initial definitions and determine
a number of properties which we expect a ‘probability function’ to have. This
will be of great help in organizing some intuitive notions in a more systematic
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manner – although, for the moment, in a rather informal way and on the
basis of heuristic considerations (the term ‘probability function’ itself is here
used informally just to point out that a probability is something that assigns
a real number to each possible outcome of an experiment). In order to do
so we must turn to the mathematical theory of sets (the reader may refer to
Appendix A for some basic aspects of this theory). First of all, we give some
definitions:

(a) we call event a possible outcome of a given experiment;
(b) among events, we distinguish between simple events, which can happen

only in one way, are mutually exclusive and equally likely;
(c) compound events, which can happen in more than one way.

Then,

(d) we call sample space (or event space) the set of all possible simple events.

Note that this definition justifies the fact that simple events are also often
called sample points. In the die-rolling experiment, for example, the sample
space is the set {1, 2, 3, 4, 5, 6}, a simple event is the observation of a six and
a compound event is the observation of an even number (2, 4, or 6).

Adopting the notations of set theory, we can view the sample space as a
set W whose elements Ej are the sample points. Then, any compound event
A is a subset of W and can be viewed as a collection of two or more sample
points, that is, as the union of two or more simple events. In the die-rolling
experiment above, for example, we can write

A = E2 ∪ E4 ∪ E6 (1.2)

where we called A the event ‘observation of an even number’, E2 the sample
point ‘observation of a 2’ and so on. In this case, it is evident that P(E2) =
P(E4) = P(E6) = 1/6 and, since E2, E4 and E6 are mutually exclusive we
expect an ‘additivity property’ of the form

P(A) = P(E2 ∪ E4 ∪ E6) = P(E2) + P(E4) + P(E6) = 1/2 (1.3a)

An immediate consequence of eq. (1.3a) is that

P(W) = P

⎛⎝ 6⋃
j=1

Ej

⎞⎠ =
6∑
j=1

P(Ej) = 1 (1.3b)

because it is clear that one of the six faces must necessarily show up.
Moreover, if we denote by AC the complement of set A (clearly W =

A∪AC: for example, in the die experiment if A is the appearance of an even
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number then the event AC represents the non-occurrence of A, that is, the
appearance of an odd number; therefore AC = E1 ∪ E3 ∪ E5), we have

P(AC) = 1 − P(A) (1.4)

If, on the other hand, we consider two events, say B and C, which are not
mutually exclusive, a little thought leads to

P(B ∪ C) = P(B) + P(C) − P(B ∩ C) (1.5a)

where P(B ∩ C) is called the compound probability of events B and C, that
is, the probability that B and C occur simultaneously.

An example will help clarify this idea: returning to our die-rolling experi-
ment, let, for example, B = E2 ∪E3 and C = E1 ∪E3 ∪E6, then B∩C = E3
and, as expected, P(B ∪ C) = (2/6) + (3/6) − (1/6) = (4/6).

For three non-mutually exclusive events, say B, C and D, eq. (1.5a)
becomes

P(B ∪ C ∪D) = P(B) + P(C) + P(D) − P(B ∩ C)

− P(B ∩D) − P(C ∩D) + P(B ∩ C ∩D) (1.5b)

as the reader is invited to verify. In general, the extension of eq. (1.5a) to n
events A1,A2, . . . ,An leads to the rather cumbersome expression

P

⎛⎝ n⋃
k=1

Ak

⎞⎠ =
n∑

k=1

P(Ak) −
∑
k1<k2

P(Ak1
∩ Ak2

) + · · · + (−1)m+1

×
∑

k1<k2<···<km
P(Ak1

∩ Ak2
∩ · · · ∩ Akm)

+ · · · + (−1)n+1P

⎛⎝ n⋂
k=1

Ak

⎞⎠ (1.5c)

of which eq. (1.5b) is just the special case n = 3. Also note that a similar
relation applies for the intersection of n events, that is,

P

⎛⎝ n⋂
k=1

Ak

⎞⎠ =
n∑

k=1

P(Ak) −
∑
k1<k2

P
(
Ak1

∪ Ak2

)+ · · · + (−1)m+1

×
∑

k1<k2<···<km
P
(
Ak1

∪ Ak2
∪ · · · ∪ Akm

)

+ · · · + (−1)n+1P

⎛⎝ n⋃
k=1

Ak

⎞⎠ (1.5d)
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which, for instance, in the case n = 3 (we call them again events B, C, D)
becomes

P(B ∩ C ∩D) = P(B) + P(C) + P(D) − P(B ∪ C)

− P(B ∪D) − P(C ∪D) + P(B ∪ C ∪D) (1.5e)

Now, the careful reader has probably noticed that so far we have not yet
expressed the notion of mutually exclusive events in set language. This is
done by writing that two events B and C are mutually exclusive if B∩C = ∅,
where ∅ is the empty set. In order to deal with this minor complication and
make complete sense of the equations above, we need to include the empty
set in the sample space and require

P(∅) = 0 (1.6)

In probability terminology, ∅ is called the impossible event.
Proceeding in our discussion, let us now introduce two other definitions

of practical importance – namely conditional probability and independent
events – together with the properties that follow from these definitions.

Intuitively, we can argue that the probability of an event can vary depend-
ing upon the occurrence or non-occurrence of one or more related events:
in fact, for instance, in the die-rolling experiment it is different to ask ‘what
is the probability of a 6?’ or ‘what is the probability of a 6 given that an
even number has fallen?’. The answer to the first question is 1/6 while the
answer to the second question is 1/3. This is the concept of conditional
probability, that is, the probability of an event A given that an event B has
already occurred. The symbol for conditional probability is P(A|B) and its
definition is

P(A|B) = P(A ∩ B)

P(B)
(1.7)

provided that P(B) �= 0. (As a side note on P(A ∩ B), the reader is invited
to verify that P(A ∩ B) ≥ P(A) + P(B) − 1, which is known as Bonferroni’s
inequality.)

Equation (1.7) yields immediately the multiplication rule for probabilities,
that is,

P(A ∩ B) = P(B)P(A|B) = P(A)P(B|A) (1.8a)

which can be generalized to a number of events A1,A2, . . . ,An as follows

P

⎛⎝ n⋂
j=1

Aj

⎞⎠ = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P
⎛⎝An| n−1⋂

j=1

Aj

⎞⎠ (1.8b)
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If the occurrence of event B has no effect on the probability of event A, then
A and B are said to be independent and we can express this fact in terms of
conditional probability as

P(A|B) = P(A) (1.9a)

or, equivalently, since we expect symmetry (if A is independent of B then B
is independent of A)

P(B|A) = P(B) (1.9b)

Clearly, two mutually exclusive events are not independent because, from
eqs (1.7) and (1.6), we have P(A|B) = 0 when A ∩ B = ∅. Also, if A and B
are two independent events, we get from eqs (1.7) and (1.9)

P(A ∩ B) = P(A)P(B) (1.10a)

which is referred to as the multiplication rule for independent events and
can be assumed as the definition of independent events. For n mutually (or
collectively) independent eventsA1,A2, . . . ,An one would expect the relation

P

⎛⎝ n⋂
j=1

Aj

⎞⎠ = P(A1)P(A2) · · ·P(An) =
n∏
j=1

P(Aj) (1.10b)

but it will be shown (Section 2.2.2) that eq. (1.10b) is not enough to define
collective independence. For the moment, we simply point out that three (or
more) random events can be independent in pairs without being mutually
independent. This is illustrated by the following example.

Example 1.1 Consider a lottery with 8 numbers (from 1 to 8) and
let E1,E2, . . . ,E8, respectively, be the simple events of extraction of 1,
extraction of 2, etc. Let

A1 = E1 ∪ E2 ∪ E3 ∪ E4

A2 = E3 ∪ E4 ∪ E5 ∪ E8

A3 = E1 ∪ E2 ∪ E3 ∪ E5 ∪ E6 ∪ E8

Now, P(A1) = P(A2) = 1/2 and P(A3) = 3/4. It is then easy to verify that
P(A1 ∩ A2) = 1/4 = P(A1)P(A2),P(A2 ∩ A3) = 3/8 = P(A2)P(A3) and
P(A3 ∩A1) = 3/8 = P(A3)P(A1), which means that the events are pairwise
independent. However, P(A1 ∩A2 ∩A3) = 1/8 �= P(A1)P(A2)P(A3) = 3/16
meaning that the three events are not mutually, or collectively, independent.
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Another important result is known as the total probability formula. Let
A1,A2, . . . ,An be n mutually exclusive events such that ∪nj=1Aj = W , where
W is the sample space (in set language this concept is expressed by saying that
the sets Aj form a finite partition of W ; see Appendix A, Section A.1). This
means that exactly one of the Aj will occur. Then, a generic event B ⊂ W
can be expressed as

B =
n⋃
j=1

(B ∩ Aj) (1.11)

where the n events (B ∩ Aj) are mutually exclusive because so are the Aj.
Owing to eq. (1.5c) we get

P(B) = P

⎛⎝ n⋃
j=1

(B ∩ Aj)
⎞⎠ =

n∑
j=1

P(B ∩ Aj)

so that using eq. (1.8a), we obtain the total probability formula

P(B) =
n∑
j=1

P(Aj)P(B|Aj) (1.12)

which can be interpreted by saying that P(B) is a weighted average of the
conditional probabilities P(B|Aj), each term being weighted by the proba-
bility of the event on which it is conditioned. Also, due to its importance and
in view of future developments, we anticipate here that eq. (1.12) remains
true for n → ∞, that is, when the sets A1,A2, . . . form a countable partition
of W .

With the same assumptions as above on the events Aj(j = 1, 2, . . . ,n),
let us now consider a particular event Ak; the definition of conditional
probability yields

P(Ak|B) = P(Ak ∩ B)

P(B)
= P(Ak ∩ B)∑n

j=1 P(Aj)P(B|Aj) (1.13)

where eq. (1.12) has been taken into account. By virtue of eq. (1.8a) we can
write P(Ak ∩ B) = P(Ak)P(B|Ak) so that substitution in eq. (1.13) yields

P(Ak|B) = P(Ak)P(B|Ak)∑n
j=1 P(Aj)P(B|Aj) (1.14)

which is known as Bayes’ formula and deserves some comments.
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First, as for the total probability formula, eq. (1.14) is true if n → ∞.
Second, eq. (1.14) is particularly useful for experiments consisting of stages.
Typically, the Ajs are events defined in terms of a first stage (or, otherwise,
the P(Aj) are known for some reason) while B is an event defined in terms
of the whole experiment including a second stage; asking for P(Ak|B) is
then, in a sense, ‘backward’, we ask for the probability of an event defined
at the first stage conditioned on what happens in a later stage. In Bayes’
formula this probability is given in terms of the ‘natural’ conditioning, that is,
conditioning on what happens at the first stage of the experiment. This is why
the P(Aj) are called the ‘a priori’ (or prior) probabilities whereas P(Ak|B) is
called ‘a posteriori’ (posterior or inverse) probability. The advantage of this
approach is to be able to modify the original predictions by incorporating
new data. Obviously, the initial hypotheses play an important role in this
case, if the initial assumptions are based on insufficient knowledge of the
process, the prior probabilities are no better than reasonable guesses.
Two examples will help clarify the use of Bayes’ formula.

Example 1.2 Among voters in a certain area, 40% support party 1 and
60% support party 2. Additional research indicates that a certain election
issue is favoured by 30% of supporters of party 1 and by 70% of supporters
of party 2. One person at random from that area – when asked – says that
he favours the issue in question. What is the probability that he/she is a
supporter of party 2? Now, let

• A1 be the event that a person supports party 1, so that P(A1) = 0.4;
• A2 be the event that a person supports party 2, so that P(A2) = 0.6;
• B be the event that a person at random in the area favours the issue in

question.

Prior knowledge (the results of the research) indicate that P(B|A1) = 0.3 and
P(B|A2) = 0.7. The problem asks for the ‘a posteriori’ probability P(A2|B),
that is, the probability that the person who was asked supports party 2 given
the fact that he/she favours that specific election issue. From Bayes’ formula
we get

P(A2|B) = P(A2)P(B|A2)

P(A1)P(B|A1) + P(A2)P(B|A2)
= 0.778

Then, obviously, we can also infer that P(A1|B) = 1 − P(A2|B) = 0.222.

Example 1.3 In order to detect a particular disease, assume that there is a
medical test which is 98% accurate, that is, if someone has the disease the
test will be positive 98% of the time and, conversely, if someone has not the
disease the test will be negative 98% of the time. Also, assume that medical
research has shown that – at any given time in a certain area – 0.5% of the
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population has the disease. Now, you live in that area, imagine that you
take the test and the test comes out positive. The question is: what is the
probability that you have the disease given the fact that you tested positive?
or, in less mathematical terms: how worried should you be? Surprisingly,
the answer is that you should be cautiously optimistic.

In fact, let A1 be the event that you have the disease and A2 be the event
that you do not have the disease. This implies that the prior probabilities are
P(A1) = 0.005 and P(A2) = 0.995. In addition to this, we must consider
the conditional probabilities on the accuracy of the test, namely

(a) P(p|A1) = 0.98, the probability of testing positive given that you
actually have the disease (the lowercase letter p is for positive test), and

(b) P(p|A2) = 0.02, the probability of testing positive given that you do not
have the disease.

Then, according to Bayes’ formula (1.14), the probability of having the
disease given a positive result of the test is

P(A1|p) = P(A1)P(p|A1)

P(A1)P(p|A1) + P(A2)P(p|A2)

= (0.005)(0.98)

(0.005)(0.98) + (0.995)(0.02)
= 0.198 ∼= 20%

The result is less surprising if we think that out of n administered tests we will
obtain 0.0248n positive results (the denominator of Bayes’ formula) which,
for the most part (0.0199n) are false positives. Then, since only 0.0049n are
real positive tests (the numerator of Bayes’ formula), the probability we are
looking for is precisely 0.0049/0.0248 = 0.198.

1.2.2 More on the classical definition: a short digression on
combinatorials

With the classical definition of probability in mind, one observation of prac-
tical nature is in order. Definition (1.1) requires counting, that is, in order to
determine the probability of an event A we need to enumerate the favorable
outcomes which contribute to A and the possible outcomes of the experi-
ment. Sometimes the counting may be easy, but for large sample spaces it
may not be an easy task. In fact, suppose we are given the following prob-
lem: if we choose three cards at random from a deck of 52 cards, what is
the probability of extracting at least one ace? Problems such as this one can
be answered perfectly well with definition (1.1), but it is evident that the
counting becomes soon impracticable. Before turning to this problem we
need some definitions.
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From combinatorial analysis we know that the number of permutations
(i.e. ordered arrangements) of n distinct objects taken r at a time (r ≤ n) is
given by

Pn,r = n(n− 1) · · · (n− r+ 1) = n!
(n− r)! (1.15)

(We recall that n! ≡ n(n−1)(n−2) · · · 1 so that, for example, 3! = 6, 4! = 24,
5! = 120 etc. Also, by definition, 0! = 1). Clearly, the number of per-
mutations of n distinct objects taken n at a time is simply the number of
ordered arrangements of the n objects and is Pn,n = n!. If, however, the
n objects are not all distinct but there are, say, k1 objects of a type, k2
objects of a second type different from the first, . . . and km of the mth
type different from the first, second , . . . , (m − 1)th type, we surely do
not expect to have n! permutations because some of these n! possibilities
will not be distinguishable. It is not difficult to determine that in this case
we have

Pn(k1,k2, . . . ,km) = n!
k1!k2! · · ·km! (1.16)

permutations (clearly k1 + k2 + · · · + km = n). A simple example will clarify
this assertion. Suppose we have the three letters a, b, b; this means that out
of these letters k1 = 1 are of one type (the letter a) and k2 = 2 are of a
second type (the two b’s, which are indistinguishable). Then we only have
three permutations, that is, the arrangements {a,b,b}, {b,b, a} and {b, a,b},
in agreement with eq. (1.16) which yields 3!/(2!1!) = 3.

When the order of the objects is not important we speak of combinations.
Specifically, the combinations of n distinct objects taken r at a time (r ≤ n) is

Cn,r =
(
n
r

)
≡ n!
r!(n− r)! = Pn,r

r! (1.17)

where we have Cn,r ≤ Pn,r because order is now irrelevant. For example,
if n = 3 (objects a, b and c) and r = 2, the fact that the number of com-
bination is less than the number of permutations is evident if one thinks
that in a permutation the arrangement {a,b} is considered different from
the arrangement {b, a}, whereas in a combination they count as one single
arrangement.

Incidentally, it should be noted that the calculations of factorials can be
often made easier by using Stirling’s formula, that is, n! ∼= nne−n√2πn,
which results in relative errors smaller that 1% for n ≥ 10 (note, however,
that absolute errors increase as n increases).
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Now, returning to the card problem, we can consider the event of
extracting at least one ace – event A – as the sum of three mutually
exclusive events:

• event A1 = extraction of one ace;
• event A2 = extraction of two aces;
• event A3 = extraction of three aces.

and we have, according to property (1.3a)

P(A) = P(A1) + P(A2) + P(A3)

The probability P(A1) can be calculated as follows: the possible combina-
tions of three cards out of a 52 card deck isC52,3. One ace can be extracted in
C4,1 different ways and other two cards (which are not aces) can be chosen
in C48,2 different ways. In other words, we have (C4,1)(C48,2) favourable
cases out of a total of C52,3 cases. Similarly, in obtaining P(A2) we have
(C4,2)(C48,1) favourable cases out of C52,3 cases and in calculating P(A3)

we have (C4,3)(C48,0) favourable cases out of C52,3 cases. Therefore

P(A) = (C4,1)(C48,2)

C52,3
+ (C4,2)(C48,1)

C52,3
+ (C4,3)(C48,0)

C52,3

= 0.20416 + 0.01303 + 0.00018 ∼= 0.217

Finally, let us see what happens when repetitions are allowed. If we denote
by P̂n,r the permutations with repetitions of n objects taken r at a time (note
that now it can be r > n) it is easy to determine that

P̂n,r = nr (1.18)

because all of the r objects to be taken can be chosen in n ways. As an
example we can determine how many two digits numbers we can form with
the three numbers 1, 2 and 3. Equation (1.18) yields P̂3,2 = 32 = 9; in fact,
in addition to the six arrangements of P3,2 we have the three arrangements
{1, 1}, {2, 2} and {3, 3}.

If now we denote by Ĉn,r the combinations with repetitions of n objects
taken r at a time (and here also it can be r > n) we have

Ĉn,r =
(
n+ r− 1

r

)
= n(n+ 1) · · · (n+ r− 1)

r! = Cn+r−1,r (1.19)

because two arrangements are now considered distinct if (i) they differ by
at least one object or (ii) they differ by the number of times that a given
object appears in the arrangement. So, for example, with the three numbers
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1, 2 and 3 we have, according to eq. (1.19), Ĉ3,2 = 12/2! = 6. These are
precisely the arrangements {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3} (and the
arrangements {2, 1}, {3, 1} and {3, 2} do not appear because – being order
irrelevant in a combination – they are the same as {1, 2}, {1, 3} and {2, 3}).

1.3 The relative frequency approach to probability

The classical definition (1.1) is frequently used and works well in many
circumstances, but has its limitations as well. First of all, even when the basic
assumptions of mutually exclusive and equally likely sample points is valid,
what do we do if the number of possible outcomes is infinite? For example,
we may ask: what is the probability that an integer drawn at random from
the set of all positive integers is even? The answer that comes natural is 1/2
because, intuitively, in the set of all positive integers there are just as many
even numbers as odd numbers and it could also be argued that any sufficiently
large set of the first N positive integers contains N/2 even numbers so that
the ratio (1.1) ‘tends’ to 1/2 asN → ∞. This sounds reasonable, but it seems
to depend on the natural ordering of integers, for example, if we order the
integers as 1, 3, 5, 2, 7, 9, 11, 4, . . . (i.e. three odd numbers followed
by an even number) the ‘limiting argument’ would lead us to believe that
the probability of drawing an even number is 1/4. Also, it is possible to
order the positive integers in such a way that the ratio (1.1) keeps oscillating
and never approaches a definite number as N increases indefinitely. Indeed,
some researchers in the past had tried to extend the classical definition of
probability to deal with an infinite number of events. Their approach led to
the concept of geometrical probability in which, typically, the probability is
calculated as the ratio of the measures (lengths, areas, etc.) of two regions of
space. This definition, however – although useful in many cases – ran into
some paradoxical results and was criticized to the point that some authors
were convinced that it was not possible to determine objectively – that is, in
a way independent on the method used to calculate it – a value of probability
in the case of an infinite number of outcomes (in the light of Kolmogorov’s
approach we will see that, in essence, the problem lies in the fact that not
all ‘regions of space’ – intended as subsets of the real line R, the plane R2,
etc. – are ‘measurable’). The following ‘meeting problem’ is a typical (and
not paradoxical) application of geometric probability. Two persons A and B
decide to meet at a given place between 2 and 3 p.m. The first to arrive must
wait 20 min and then leave. If the two arrival times tA and tB are independent
and random (between 2 p.m. and 3 p.m.) what is the probability that they
actually meet? We briefly sketch the solution inviting the reader to work out
the details. The meeting takes place if |tA − tB| ≤ 20; if we consider tA and
tB as the x–y coordinates in a plane, this condition delimitates an area S1
within a square of total area S2 = 602 (we assume the minute as our basic
unit). Then, the meeting probability is determined by the ratio S1/S2 and
yields S1/S2 = 5/9.
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Another serious drawback of the classical definition arises when its basic
assumptions are no longer valid; for example, we cannot say anything about
the probability of a head in the case of an unbalanced coin or the probability
of a six with a biased die; the mutually exclusive events are still there but they
are definitely not equally likely. In addition to this, we have no answer to
common questions such as: what is the probability of more than five defective
pieces out of a lot of 1000 pieces manufactured by such and such company?
or, what is the probability that an Italian male will live longer than the age
of 80? Intuition suggests that there must be an answer to questions like these
but the point is here that in many interesting cases it may not even be possible
to determine the set of mutually exclusive and equally likely outcomes.

The consequence of these observations is that we must somehow extend –
or change altogether – our definition of probability if we want a number of
interesting problems to fit into the theory. In this regard, in fact, it is known
that as early as the end of the seventeenth century insurance companies were
faced with the problem of determining the probability of death of their clients
according to age, gender, health condition, etc. Their solution was to start
keeping records, year after year, of the number of people in different age
groups and on the mortality rate in each group. Then, dividing this latter
quantity by the former, they were able to obtain a reliable estimate of the
probability they were looking for.

This procedure is nothing but an early example of the relative frequency
approach to probability, in which the probability of interest is obtained
as a ratio between two numbers: nA – the number of times an event
A occurs – and n, that is the total number of cases at our disposal. In formula
we write

P̃(A) = nA
n

(1.20)

and we call P̃(A) the statistical probability of occurrence of the event A. All
readers are probably well aware of the fact that this is a common way to
calculate probabilities in natural sciences and technological problems.

In this form, the relative frequency approach applies to cases in which we
have a ‘population’ or a ‘sample’ (these terms will become clearer in future
chapters) of n elements and we observe the occurrence of the event A in nA
elements out of the n at our disposal. Equivalently, we can say that eq. (1.20)
pertains to cases in which an ‘experiment’ can be repeated many times under
a given set of conditions and we observe the result.

At this point, a few remarks are in order. First of all, it is evident that
eq. (1.20) defines an a posteriori probability because we must actually per-
form the experiment in order to calculate the value of P̃(A). Second, this
calculated quantity P̃(A), in turn, is generally considered a reliable approx-
imation of the ‘whole picture’ – that is, the experiment of interest – on the
basis of the fact that past and present experience show that – for a given
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experiment – P̃(A) is almost constant for sufficiently large values of n. In
fact, for example, if we have the patience to roll a balanced die over and
over again (1000, 2000, 5000 times or more) we will obtain a value of, say,
P̃(six) close to 1/6, with smaller and smaller fluctuations as n increases.

Now, the facts that definition (1.20) can be calculated also in a number of
cases in which eq. (1.1) applies and that experimental evidence shows that
P̃(A) ∼= P(A) for sufficiently large ‘samples’ has led researchers to postulate
that – even in cases in which (1.1) does not apply – there exists an entity
P(A) called the ‘probability of event A’ with the following properties

(i) it does not depend on the observer,
(ii) it can be approximated with a higher and higher degree accuracy by

eq. (1.20) as we increase the number n at the denominator.

This last property deserves some comments. However, before doing this, let
us return for a moment to definition (1.20) itself. It is clear that this defini-
tion overcomes some of the limitations of the classical definition because, for
instance, it is now no longer necessary for the possible outcomes of the exper-
iment to be equally likely. So, for example, we can apply definition (1.20) to
determine the probability of a head in the case of an unbalanced coin; after
a sufficiently large number of trials we would find that the ratio on the r.h.s.
of eq. (1.20) is significantly different from 1/2. Conversely, a value of the
ratio on r.h.s. significantly different from 1/2 after a large number of trials
would lead us to suspect that the coin is unbalanced. In addition, with a
sufficiently large sample at our disposal, we can now answer the question on
the probability of an Italian male to live longer than eighty or the probability
of a defective item out of a production lot.

Let us now return to property (ii) above and note that the steps which
have brought us there are, in essence:

(a) the observation of long-term regularities (which have been known for
centuries) on the value of the ratio (1.20) when n becomes large (in other
words, this ratio ‘tends’ to become constant as n increases);

(b) the fact that, in cases when both definitions (1.1) and (1.20) apply, the
statistical probability gets closer and closer to the classical probability
as n increases.

These two facts support our intuitive beliefs that; first, there exists a def-
inite value of probability even for events for which the classical definition
does not apply and, second, that this (unknown) value can be approximated
reasonably well by the ratio (1.20) after a large number of trials.

At this point, anyone familiar with elementary calculus would be tempted
to define the probability of an event A – once postulated that this quantity
exists – as

P(A) = lim
n→∞ P̃(A) = lim

n→∞
nA
n

(1.21)
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which is called the Von Mises’ definition of probability (his point of view
was that any ‘a priori’ definition was meaningless and that only an empirical
definition could be useful in the field of natural sciences). However, if we
recall the notion of convergence which, in strict mathematical terms, reads:
the sequence of real numbers {xn}∞n=1 is said to converge to the real number
x if ∀ε > 0 ∃ N ∈ N : |xn − x| < ε ∀n ≥ N (or, in words: a sequence of real
numbers xn converges to a limit x whenever, for sufficiently large values of
n, the quantity |xn − x| becomes smaller than an arbitrarily chosen positive
number ε), we note that the limiting statement of eq. (1.21) is quite strong.

All we can say for the moment is that we probably need a different notion
of convergence which, in the light of the above considerations, will be weaker
than the usual definition of basic analysis.

We delay these mathematically issues to later chapters and close this
section with two final remarks. First, in Section 1.3.1 we have obtained
a number of properties satisfied by a ‘probability function’ (eq. (1.3a)
onwards) in the light of the classical definition; however, these same prop-
erties can be obtained by starting from the relative frequency definition. In
fact, after noting that the concept of mutually exclusive outcomes makes
perfect sense even in cases when the classical definition does not apply, let,
for example, A and B be two mutually exclusive outcomes of a given exper-
iment which is repeated n times. Then – out of the n repetitions – if event A
has occurred nA times and event B has occurred nB times, the event A ∪ B
has occurred nA + nB times. Therefore, from eq. (1.20) we get

P̃(A ∪ B) = nA + nB
n

= P̃(A) + P̃(B)

which is the additivity property for exclusive events. As another exam-
ple, consider n repetitions of an experiment where, given an event B with
non-zero probability, another event A will occur only if A∩B occurs. Then,
the relative frequency of occurrence of event A among those times in which
B has occurred is, by definition, the conditional probability P̃(A|B). This can
be obtained from (1.20) as

P(A|B) = nA∩B
nB

= nA∩B/n
nB/n

= P̃(A ∩ B)

P̃(B)

which is just the relative frequency counterpart of eq. (1.7). Clearly, the same
applies to all other properties given in Section 1.2.1.

The second remark considers the main limitation of this approach to prob-
ability, namely the requirement of a sufficiently large sample. In many real
world situations – for a number of reasons varying from the nature of the
problem under study to cost of the experiment, etc. – it is simply not possible
to fulfill this request. In addition, one is often faced with cases in which it is
not even feasible to repeat the experiment a second time. Think, for example,
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to the publisher of this book who may ask the perfectly reasonable question:
what is the probability of selling more than, say, 500 copies within the first
year? He/she is not at all interested in repeating the experiment many times –
which would be impossible anyway – but only in the result of the first, and
unique, trial.

It is in response to questions like these that the subjective approach was
introduced.

1.4 The subjective viewpoint

If one takes its name too literally, the subjective (or personal) approach
could be quickly dismissed by saying that, since it reflects a personal opin-
ion, it is always applicable because anyone can have a personal opinion
about anything. As it often happens, however, things are not so clear-cut.
This approach arose in the light of the practical difficulties – and the inap-
plicability altogether in many cases of interest – encountered by the classical
and relative frequency approaches. An example has been given above, but it
is not difficult to find many others. For instance, after an oil spill an expert
could be asked about the probability to contain the spill before it causes
widespread damage. Clearly, the answer can only be an informed personal
opinion because the factors into play – amount of oil spilled, sea and wind
conditions during clean-up, etc. – make this spill unique. So, according to the
subjective point of view, the probability of an event may vary from person
to person depending not only on the available information but also on the
importance given to this information. As a consequence, even two people
with the same amount of information may assign different probabilities to
a given event.

On a more practical side, those who favour this point of view also add
that in order to determine a value of probability we must somehow force the
interested person to take action – for instance, by betting a sum of money –
thus inferring his/her degree of belief by his/her actions. Without getting into
much detail, we may note that, in all, there exist a number of reasonable log-
ical justifications at the basis of this approach; however, there are also two
main serious drawbacks. First, in order to arrive at meaningful results, one
of the basic assumptions of the scientific community is that the probability
of an event is an ‘existing entity’ which must not depend on the person who
determines it. Second, a number of studies have shown that personal intu-
ition and judgment on specific probabilistic problems – compared to exact
statistical calculations when these are possible – often lead to wrong answers,
either because in complex situations reasonableness is sometimes mislead-
ing or because of some form of bias which, consciously or unconsciously,
may have a significant influence on our judgment. Despite these disadvan-
tages, however, one point should be made: even when we adopt a subjective
approach, we necessarily imply, implicitly or explicitly, some basic rules
that our probability must obey. A little thought on the problem shows that
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these rules, once organized and cast in mathematical form – are the same
rules given in Section 1.2.1. Moreover, since we drew a similar conclusion in
Section 1.3, it seems that the rules and properties of a ‘probability function’
are more important than the way in which we assign probabilities to events.
This final remark prepares the way to Kolmogorov’s axiomatic approach
which is at the basis of the modern mathematical theory of probability.

1.5 Summary

Although the term ‘probability’ is frequently used by each one of us in every-
day conversations, the idea of probability is not so obvious as it may seem. In
fact, the basic concept has evolved through the centuries – starting officially
from the seventeenth century, but, unofficially, much longer before this –
leading to three main viewpoints. Following the common terminology, we
called these, the classical approach, the relative frequency approach and
the subjective approach to probability. Historically, the classical definition
(Section 1.2) was the first to be given, originating mainly from the typical
scheme of games of chance (the tossing of a coin, the rolling of one or more
dice, the roulette, etc.) in which the gambler bets on the occurrence of a par-
ticular event chosen among a finite number of possible outcomes. The basic
assumption is that it must be possible to identify a finite set of ‘simple events’
which are mutually exclusive and equally likely. Only in this way, by means
of eq. (1.1), one can obtain an ‘a priori’ value for the probability of the event
of interest - where the term ‘a priori’ refers to the fact that this probability,
if the game is fair, can be known beforehand without even carrying out the
experiment (i.e. tossing a coin, rolling a die, etc.). On the basis of this defi-
nition – perhaps the most intuitive for all of us – and with the help of basic
mathematical notions borrowed from set theory, Section 1.2.1 is devoted
to an informal discussion of some fundamental properties which we expect
from a ‘probability function’, also introducing some important definitions
such as conditional probability and independent events. In addition, a short
digression on combinatorial analysis (Section 1.2.2) is given as an aid in the
calculation of classical probabilities when the sample space is large, that is,
when counting both the number of favorable cases and the total number of
possibilities is not an easy task.

The classical approach to probability applies to a variety of cases but
leaves many interesting questions unanswered. For example, what do we
do if the number of possible outcomes is not finite? or, what is the prob-
ability of a head with an unbalanced coin? or else, what is the probability
that my uncle will live longer than 80 given the facts that he is a male, lives
in a certain state, is 68 and in good health conditions? This and similar
problems, to which we all believe there is an answer, do not fit in the clas-
sical scheme because its basic assumption is no longer valid. We must then
introduce (Section 1.3) the concept of an ‘a posteriori’ probability, that is, a
probability calculated on the basis of the results of an experiment. This leads
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to the relative frequency definition of probability in which an experiment is
repeated many times – or, stated differently, we collect a large sample – and
we record the results counting the number of times that a given outcome
has actually occurred. The rationale behind this approach, once postulated
that a definite value probability exists for these kinds of problems, lies in
the long-term regularities of the relative frequency for a large number of
repetitions. These regularities have been known for centuries and lead to
the conclusion that, broadly speaking, there is some sort of ‘tendency’ of the
calculated relative frequency to the actual probability of the event of interest.
The term ‘tendency’, in turn, implies a limit – von Mises’ hypothesis - but
not necessarily the usual limit of sequences of elementary calculus that von
Mises had considered. An important point, however, is that the expected
properties of probability given in Section 1.2.1 can be re-obtained on the
basis of this strictly experimentally-based definition of probability.

One main problem with the relative frequency approach is the requirement
of a large sample because in real world problems, more often than not, we
will not be able to collect a large sample. Moreover, in some cases we will
not even be able to repeat the experiment a second time.

A tentative answer to these problems is given by the concept of subjective
probability, a value assigned to an event by individuals interested in this
event on the basis of the risk they are willing to accept by taking action in
favor of its occurrence. Clearly, this value reflects the belief of the individual,
his/her judgement being based, in general, on a number of factors: past
experience in similar situations, knowledge of the problem and, last but not
least, personal ‘gut-feelings’. This approach to probability has the advantage
of being practically applicable to any problem but its main drawback is the
lack of objectivity. Therefore, since we generally assume that the probability
of an event should not depend on the person who determines it, this is not
a widely accepted definition among the scientific community. Nonetheless,
even probabilities assigned on a subjective basis must have some properties,
and a little thought on the problem shows that, basically, they should be the
same as the ones given in Section 1.2.1.

On the basis of these considerations the conclusion of this chapter is that,
from a mathematical viewpoint, the properties of a ‘probability function’
seem to be more important than the way in which we assign probabilities
to this or that event. It is precisely this line of thinking that leads to the
formal axiomatic approach (due to the Russian mathematician Kolmogorov)
considered in the following chapters.
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2 Probability: the axiomatic
approach

2.1 Introduction

The key point of the previous chapter is that the properties of a ‘proba-
bility function’ seem to play a more important role than the definition of
probability itself. More specifically, from a mathematical point of view we
are led to the idea that the way in which we assign probabilities to events is
almost secondary with respect to the fact that these probabilities must satisfy
a number of well-defined properties. Therefore, by temporarily ignoring the
way in which we assign probabilities to events – but, at the same time, by
defining what exactly is meant by ‘event’ – we can simply define a ‘proba-
bility function’ as something that satisfies a given set of rules. By so doing,
each one of the definitions given in Chapter 1, the classical definition, the
relative frequency definition, etc., turns out to be just a special case of ‘prob-
ability function’ which works perfectly well in the appropriate context. So,
in fair games of chance (dice, roulette, lotteries, etc.) we adopt the classical
probability, in repeated experiments where the classical definition cannot be
used (mortality rates, measurement of a physical quantity, etc.), we turn to
the relative frequency definition of probability, etc.

This, in essence, is the idea at the basis of the axiomatic approach to
probability due to Kolmogorov: events are special subsets of a ‘universal’ set
and a probability is a non-negative, real-valued set function (see Appendix
A) which ‘measures’ events. We intentionally use the word ‘measure’ here
because the developments of this axiomatic approach parallel closely many
aspects of the branch of Mathematics known as ‘theory of measure and
integration’ in which an important role is played by the so-called Lebesgue
measure and Lebesgue integral. For a detailed discussion of this subject the
reader is referred, for example, to [4, 6–8, 10] or, for a more probabilistic
oriented treatment to [1, 2, 9, 12].

2.2 Probability spaces

In order to make more mathematically precise the concepts of Chapter 1 and
extend them to a broader class of problems, our first step is to introduce the
definition of elementary probability space.
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Definition 2.1 We call elementary probability space a triplet (W ,R,P)

whereW is a set,R is an algebra of subsets ofW andP is a set function defined
on R with values in the real interval [0, 1] – that is, P : R → [0, 1] – which
satisfies the following relations (called ‘elementary probability axioms’):

(EP1) P(W) = 1

(EP2) If A1,A2, . . . ,An ∈ R and Ai ∩ Aj = ∅ for i �= j then

P

⎛⎝ n⋃
k=1

Ak

⎞⎠ =
n∑

k=1

P(Ak) (2.1)

The members of the algebra R (the definition of algebra of sets is given
in Appendix A) are called events and axiom (EP2), in words, is phrased
by saying that the probability function P is finitely additive. For this rea-
son elementary probability spaces are sometimes called finitely-addititive
probability spaces.

With Definition 2.1 we are able to deal with all the situations which involve
the probabilities of only a finite number of events and it is important to note
that all the properties given in Chapter 1 (Section 1.2.1) descend from (EP1)
and (EP2). So, for instance, it is easy to show that

(a) P(∅) = 0;
(b) P(AC) = 1 − P(A) for every A ∈ R.

Less immediate are the properties

(c) P(A ∪ B) = P(A) + P(B) − P(A ∩ B) for all A,B ∈ R;
(d) monotonicity: A,B ∈ R and B ⊂ A implies P(B) ≤ P(A);
(e) finite subadditivity: if A1,A2, . . . ,An ∈ R, then

P

⎛⎝ n⋃
k=1

Ak

⎞⎠ ≤
n∑

k=1

P(Ak) (2.2)

The proofs of (c) and (d) are left to the reader (hint for (c): A = (A ∩ B) ∪
(A− B); hint for (d): A = B ∪ (A− B)) while (e) can be proven by writing

n⋃
k=1

Ak = A1 ∪
(
A2 ∩ AC

1

)
∪
(
A3 ∩ AC

2 ∩ AC
1

)
× ∪ · · · ∪

(
An ∩ AC

n−1 ∩ · · · ∩ AC
1

) (2.3)

and then noting that the sets on the r.h.s. of eq. (2.3) are disjoint (i.e. their
probabilities add according to eq. (2.1)). Property (e) then follows from the
inequalities P(A2 ∩ AC

1 ) ≤ P(A2),P(A3 ∩ AC
2 ∩ AC

1 ) ≤ P(A3), etc.
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Also, if the events A,B ∈ R and P(B) > 0 the conditional probability
P(A|B) of event A given B is defined by eq. (1.7), with the consequence
that all the considerations of Section 1.2.1 (specifically, the total probabi-
lity formula and Bayes’ rule) still apply. However, since the introduction
of conditional probability (with respect to an event B) implies the defini-
tion of the set function PB(A) = P(A|B) for every A ∈ R, the question
arises if, mathematically speaking, the triplet (W ,R,PB) is itself a probabi-
lity space. The answer is yes because properties (EP1) and (EP2) are satisfied.
In fact. PB(W) = P(W ∩ B)/P(B) = P(B)/P(B) = 1 and if A1,A2, . . . ,An
are mutually disjoint sets of R then

PB

⎛⎝⋃
k

Ak

⎞⎠ = 1
P(B)

P

⎡⎣⎛⎝⋃
k

Ak

⎞⎠ ∩ B
⎤⎦ = 1

P(B)
P

⎡⎣⋃
k

(Ak ∩ B)

⎤⎦
=
∑
k

P(Ak ∩ B)

P(B)
=
∑
k

PB(Ak)

Elementary probability spaces are the mathematical setting in which exper-
iments with a finite number of outcomes are formulated. In general, W is
taken as the set of all possible outcomes of the experiment and the algebra
R is the power set P(W), that is, the collection of all subsets of W which
is, indeed, an algebra of sets. Within this context, if – by any appropriate
means – we assign definite values of probability to the elements ofW (which
form a finite partition of W and are often called the simple events) it is pos-
sible to determine the probability of any event, that is of any member of
P(W). This possibility of ‘extending’ the probability from a smaller set to a
larger set – that is from W to P(W) in this case – is worthy of notice and we
will have more to say about it later (see Section 2.1.1). For the moment an
example will help clarify these ideas.

Example 2.1 In the light of Definition 2.1, let us reconsider the experiment
of rolling a fair die. Here W is the set {{1}, {2}, . . . , {6}} (although it may be
redundant in this case, for reasons that will become clearer as we progress it is
desirable to distinguish between the events {1}, . . . , {6} and the real numbers
1, . . . , 6) and probabilities are assigned according to the classical definition
on the basis of symmetry considerations, that is,

P({1}) = P({2}) = · · · = P({6}) = 1/6 (2.4)

However, the algebra R = P(W) is a collection of 26 = 64 sets and we
can determine the probabilities of all these events simply on the basis of
eq. (2.4). So, for example, one may ask for the probability of obtaining
an odd number, which we call, say, event A. Since A = {1} ∪ {3} ∪ {5}
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and these three events belong to R it follows that A ∈ R; then, noting that
the three events {1}, {3}, {5} are mutually disjoint, we use the finite addi-
tivity (EP2) to get P(A) = 1/6 + 1/6 + 1/6 = 1/2. By the same token it
is immediate to determine, for instance, the probability of a number less
than five, or the probability that a 6 or a 1 show up, etc., because all these
events belong to the algebra R. Also, note that the same line of reasoning
applies even if the die is not fair; the elementary probability space is now
(W , P(W),PU) where the only difference is the function PU (the subscript
U is for ‘unfair’). Clearly, PU �= P and we would probably have to adopt
a relative frequency approach in order to determine the basic probabili-
ties PU(1),PU(2), . . . ,PU(6) which, nonetheless, must satisfy the condition
(EP1), that is, PU(1) + · · · +PU(6) = 1.

The example above is intentionally simple because it shows clearly the
main idea behind the mathematical symbolism. Along the same line of rea-
soning, it will not be difficult for the reader to find many other examples.
In order to progress further, however, the notion of elementary probabil-
ity space may turn out to be inadequate. In fact, some applications require
a mathematical setting where it should be possible – at least in principle –
to perform an infinite number of operations on the elements of W which,
in turn, may not be a finite set itself. These considerations lead to another
definition:

Definition 2.2 We call probability space a triplet (W , S,P) where W is a
set, S is a σ -algebra of subsets of W (the definition of σ -algebra is given
in Appendix A) and P is a set function defined on S with values in the real
interval [0, 1] which satisfies the probability axioms

(P1) P(W) = 1

(P2) If A1,A2, . . . , ∈ S and Ai ∩ Aj = ∅ for i �= j then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An) (2.5)

Turning to terminology, property (P2) – which is clearly more general than
(EP2) – is called σ -additivity (or, often, countable additivity; note that the
fact that S is a σ -algebra implies that the countable union on the l.h.s. of
eq. (2.5) belongs to S) and now we call events all the members of S.

Starting from the probability axioms (P1) and (P2) it can be shown that
properties (a), (b) and (c) still hold while (d) and (e) can be written for a
countable collection of sets. The form of this generalization is straightfor-
ward for (e) but less obvious for (d) which now reads: (d′) if A1,A2, . . . , ∈ S
and A ⊂ ∪nAn then P(A) ≤ ∑

n P(An). This property is called countable
monotonicity.
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In addition, we also have an important continuity property of the
σ -additive function P:

Proposition 2.1 (a) If the sets A1,A2, . . . , ∈ S, A1 ⊃ A2 ⊃ · · · and An ↓ A
(i.e. {An} is a decreasing sequence and A = ∩nAn) then

P(A) = lim
n→∞P(An) (2.6a)

(b) If A1,A2, . . . , ∈ S, A1 ⊂ A2 ⊂ · · · and An ↑ A (i.e. {An} is an increasing
sequence and A = ∪nAn) then

P(A) = lim
n→∞P(An) (2.6b)

As an incidental remark note the following: since the hypotheses of Propo-
sition 2.1 (a) and (b) can be written in set notation as A = limn→∞ An (see
Appendix A), eqs (2.6a) and (2.6b) amount to the equality

P( lim
n→∞An) = lim

n→∞P(An) (2.6c)

thus meaning that the limit operation can be moved inside and outside the
probability sign (with the obvious understanding that we have a limit of sets
on the l.h.s. of (2.6c) and a limit of real numbers on the r.h.s.).

Another important point to be made is that σ -additivity implies finite
additivity but the reverse, in general, is not true. In this regard, however, it
can be shown that finite additivity plus continuity imply σ -additivity and,
in fact, some authors (see, for instance, [5]) replace axiom (P2) by (EP2)
plus continuity which, in turn, is sometimes stated as: (c) if {An} ∈ S is a
decreasing sequence such that An ↓ ∅, then P(limn→∞ An) = 0.

2.2.1 A digression on measure theory: the Lebesgue measure and
Caratheodory extension theorem

At this point the reader familiar with measure theory has already noted the
similarities between probability spaces and measure spaces, the former being
a special case of the latter because, in mathematical terms, the probability
function P is just a finite (meaning that P(W) is finite, that is, P(W) < ∞)
measure defined on a σ -algebra of sets (see Appendix B). In this light, an
important results in measure theory has to do with the possibility of extend-
ing a σ -additive measure from a limited collection of sets to a σ -algebra
of sets.

Without getting into strict mathematical details (which can be found in the
references), the general procedure can be outlined as follows. One starts with
a real, non-negative set function m defined on a semialgebra G of subsets of
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a set W (i.e. m :G→ R+ ∪ {0}). Then, a first theorem states that there is a
unique extension of m to the algebra R(G), that is, the algebra generated by
G. Let us denote this extension by the symbolm′. Clearly, for every setA ∈ G
we havem′(A) = m(A) butm′ is considered different fromm becauseR(G) ⊃
G and therefore its domain is different. Now, if the original measure m is
σ -additive it turns out that it can be extended to a σ -additive measure µ

whose domain is a collection of sets M which, in turn

(a) is a σ -algebra,
(b) is much larger than R(G), that is, M ⊃ R(G).

The construction of this ‘larger’ extension is accomplished by two interme-
diate stages in which one first introduces the so-called ‘outer measure’ µ∗
defined on the power set P(W) and then restricts this domain to all sets A
satisfying the following property: given any ε > 0 there is a set B ∈ R(G)

such that

µ∗(A�B) < ε (2.7)

The final result is that condition (2.7) defines a collection of sets M ⊂ P(W)

with the properties (a) and (b) above. The members ofM are calledmeasura-
ble sets (clearly, all sets of G and of R(G) turn out to be measurable) and
the set function µ∗ restricted to the domain M – and denoted by the symbol
µ – is called the Lebesgue extension of m. Then, the last step is the proof
that µ is, indeed, σ -additive on its domain M, that is, it is a measure.

In regard to this last statement it should be noted that the process of
extension cannot be terminated at the stage of the outer measure because it
is shown that µ∗ is not σ -additive on P(W). Therefore, since σ -additivity is
the key property we want to maintain in the extension, the outer measure
does not fit our needs until we take a further step and restrict its domain to
the collection M of measurable sets.

At this point the question could be asked ifM coincides with S(G), where
S(G) is the σ -algebra generated by the original collection of sets G.

The answer is negative and it turns out that M ⊃ S(G). However, the
following result holds: if A ∈ M then A can be expressed as B∪N where B ∈
S(G) and N is a subset of a set N′ ∈ S(G) with µ∗(N′) = 0. Mathematically
speaking – see Appendix B (proposition B.1) and the references for further
details – this means that the Lebesgue measure is the ‘completion’ of the
outer measure restricted to S(G), but for our purposes it simply means two
things

(a) M and S(G) are only slightly different,
(b) there is little loss of generality in saying that the original measure m can

be extended to the σ -algebra S(G).
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Now, since a probability is a special case of measure, the preceding discussion
on extension of measures has an important counterpart in probability theory.
This is the so-called Caratheodory extension theorem which can be stated
as follows:

Let G be an algebra (or, more generally, a semialgebra) of subsets of a set
W and let P be a set function P : G → [0, 1] satisfying (P1) and (P2) (clearly,
when (P2) makes sense, that is, if the union on the l.h.s. belongs toG). Then
there exists a unique σ -additive extension P of P to the σ -algebra S(G) such
that P(A) = P(A) for every set A ∈ G.

So, two points can be made at the end of this mathematical digression:

(1) the Caratheodory extension theorem motivates the fact that in Defini-
tion 2.2 the domain of the probability function P is, from the start,
chosen to be a σ -algebra of sets;

(2) we have the possibility of calculating the probability of any event (i.e. any
set of the σ -algebra) once the values of probability have been assigned
to a limited number of events.

Once again, however, we note that the theory does not say how to deter-
mine the ‘basic’ probabilities – except for the special cases P(W) = 1 and
P(∅) = 0. This is in no way a limitation of the theory, but, on the contrary,
is a circumstance which allows a high degree of flexibility and gives us the
possibility to deal with a large number of real-world situations.

Finally, the discussion of this section justifies the fact that from now on
we will often speak of ‘probability measures’, where this term refers to σ -
additive, finite measures with the property P(W) = 1.

2.2.2 Stochastic independence

In Chapter 1, we briefly introduced the notion of independent events. Since
this concept plays a central role in probability and is frequently used in
applications, it is useful to discuss it in more detail now that we have a
precise notion of event at our disposal.

As a preliminary remark, it is the author’s opinion that it is desirable to
distinguish between ‘physical independence’ and ‘stochastic independence’,
where the first term refers to the real-world situation and the second to its
mathematical counterpart in probability theory. As a matter of fact, we gen-
erally formulate the concept of independence on the basis of intuition: events
are considered independent when they seem to have no causal relation. This
idea, however, relies ultimately on our experience of the real world and repre-
sents a ‘physical (or logical) independence’ which – before being incorporated
in the theory – needs to be translated in probabilistic language. In order to do
so, we consider two events A and B and argue that we can call them mutu-
ally independent if the occurrence of one does not ‘condition’ the probability
of occurrence of the other. With this in mind we write P(A|B) = P(A) and
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P(B|A) = P(B) and using the definition of conditional probability (eq. (1.7))
we get the multiplication rule

P(A ∩ B) = P(A)P(B) (2.8)

with the assumption of symmetry, that is, if A is independent of B, then B is
independent of A.

Equation (2.8) expresses a so-called condition of ‘stochastic indepen-
dence’, where the term ‘stochastic’ emphasizes the mathematical concept
rather than a real-world situation of no causal relation between the two
events. Now, since, a priori, there is no necessary strict logical connec-
tion between the mathematical model and its real-world counterpart, we
should check eq. (2.8) against practical examples in which the classical
and/or relative frequency definition of probability applies; if the agreement
is satisfactory we can assume eq. (2.8) as a valid statement of independence.
We will not do it here and leave it to the reader, but a little thought shows
that this is, indeed, the case. In this light, we therefore accept the fact that
in order to establish the independence of two events in the probabilistic or
stochastic sense we must show that eq. (2.8) – or some mathematically equiv-
alent rule – holds. This is why it is worth investigating some consequences
and extensions of eq. (2.8).

Proposition 2.2 If any one of the pairs {A,B}, {A,BC}, {AC,B}, {AC,BC}
is an independent pair, then all the pairs are independent pairs.
We only prove one of the statements and leave the rest to the reader.

Noting, for instance, that A can be written as the union of two disjoint sets
as A = (A∩B)∪(A∩BC), from the independence of events A and B it follows

P(A ∩ BC) = P(A) − P(A ∩ B) = P(A) − P(A)P(B)

= P(A)[1 − P(B)] = P(A)P(BC)

meaning that events A,BC form an independent pair.

Proposition 2.3 Any event A is independent of the impossible event ∅ and
the sure event W (the proof is immediate).

The following proposition is given because the notions of indepen-
dent events and mutually exclusive (i.e. disjoint) events can sometimes be
confused.

Proposition 2.4 If two events A and B have positive probabilities and are
mutually exclusive, they cannot be independent. Conversely, if A and B
have positive probabilities and are independent, they cannot be mutually
exclusive.



30 Probability theory

The mathematical proof is immediate but the following remark may be
more appropriate: if two events A and B are mutually exclusive the occur-
rence of A implies the occurrence of BC and the occurrence of B implies the
occurrence of AC. Therefore, since one event ‘conditions’ the other, they
cannot be independent. On the other hand, if A and B are a stochastically
independent pair then (Proposition 2.2) A,BC and AC,B are independent
pairs and the occurrence of one event must have no effect on the occurrence
of the other. Since this is not true for mutually exclusive events, it follows
that A and B cannot be mutually exclusive.

We are now in a position to extend the definition of stochastic indepen-
dence to more than two events. A collection of events A = {An}, finite or
not, is called a collectively (or mutually) independent class if the product
rule holds for all finite subcollections of A, that is, if

P(Ak1
∩ Ak2

∩ · · · ∩ Akm) = P(Ak1
)P(Ak2

) · · ·P(Akm) (2.9)

for all collections of indices {k1,k2, . . . ,km}, with m finite (and clearly
m ≥ 2).

A few remarks on this definition are in order. First, we generalize
Proposition 2.2 and then we consider the relation – or lack thereof – between
independence of an entire class and independence of its subclasses. In the
spirit of the book not all proofs will be given but the interested reader can find
them in more mathematically oriented texts (for instance, see the references
at the end of this chapter).

Proposition 2.5 If the events An are collectively independent and one or
more events are replaced by their complement (or by ∅ or W), independence
is maintained.

Proposition 2.6 If A1,A2, . . . ,An are such that Ak1
,Ak2

, . . . ,Akm are inde-
pendent for all distinct indices {k1,k2, . . . ,km} with m = 2, 3, . . . ,n − 1 it
does not follow that A1,A2, . . . ,An are collectively independent. Stated dif-
ferently, Proposition 2.6 says that (n−1)-wise collective independence does
not imply n-wise independence. Note that this is a generalization of what
has been said in Chapter 1 (Example 1.1), namely that for n > 2 pairwise
independence does not imply collective independence.

Proposition 2.7 If P(A1 ∩A2 ∩· · ·∩An) = P(A1)P(A2) · · ·P(An) it does not
follow that P(Ak1

∩ Ak2
∩ · · · ∩ Akm) = P(Ak1

)P(Ak2
) · · ·P(Akm) for m < n;

As an example illustrating Proposition 2.7, consider tossing two dice
simultaneously and let:

• A be the event that the second die shows 1, 2 or 3;
• B be the event that the second die shows 3, 4 or 5;
• C be the event that the sum of the faces is 9.
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Now, P(A) = P(B) = 1/2 and P(C) = 4/36 = 1/9 and also – noting that
the event A ∩ B ∩ C = {6, 3} – we have

P(A ∩ B ∩ C) = 1/36 = P(A)P(B)P(C)

but the events are not pairwise independent; in fact

P(A ∩ B) = 1/6 �= P(A)P(B) = 1/4

P(B ∩ C) = 1/12 �= P(B)P(C) = 1/18

P(A ∩ C) = 1/36 �= P(A)P(C) = 1/18

showing that the validity of the product rule for an entire collection of events
does not imply that it holds for its subcollections.

Proposition 2.8 Let the events A1,A2, . . . ,An be collectively independent.
If we divide them in groups and for each groupwe form a new event bymeans
of unions, intersections and complementation, then these newly formed
events are mutually independent.

As an example of Proposition 2.8 consider three collectively independent
events A,B,C and consider, for instance, the two groups {A,B} and {C}.
Then we can prove that the two events A∪B and C are independent. In fact

P[(A ∪ B) ∩ C] = P[(A ∩ C) ∪ (B ∩ C)]
= P(A ∩ C) + P(B ∩ C) − P(A ∩ B ∩ C)

= P(A)P(C) + P(B)P(C) − P(A)P(B)P(C)

= P(C)[P(A) + P(B) − P(A)P(B)] = P(C)P(A ∪ B)

Similarly, it can be shown that, say, A ∪ B and CC are independent, that
A ∪ BC and C are independent, etc.

An important point to be made is that independence of events depends
on the probability function and is not an intrinsic characteristic of events
themselves. Therefore, a given collection of events {An} can be independent
with respect to a probability function P without being independent with
respect to P′ �= P. For example, having shown that the conditional probabil-
ity (given an event B with P(B) > 0) PB is a probability function in its own
right, it is evident that we can define two events A1,A2 to be conditionally
independent if

P(A1 ∩ A2|B) = P(A1|B)P(A2|B) (2.10)

or, equivalently, PB(A1 ∩ A2) = PB(A1)PB(A2) where this notation empha-
sizes that independence is meant with respect to the probabilityPB. However,
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in general, conditional independence does not imply ordinary independence
(i.e. with respect to the original function P), nor does ordinary independence
imply conditional independence.

In closing this section we make two final observations on independence,
one of practical nature and the other more theoretical.

The first is that one application (among many others) of independence
comes from reliability theory when one considers the probability of fail-
ure of an engineering system. The usual procedure is to (ideally) break up
the system under study in a number of, say, n subsystems with known relia-
bilities r1, r2, . . . , rn (rk = 1 − pk where pk is the probability of failure of the
kth subsystem). Then, if we call A the event that the system succeeds, Ak the
event that the kth subsystem succeeds and make the basic assumption that
A1,A2, . . . ,An is a collectively independent class, the two basic cases are as
follows:

(a) The subsystems are connected in series (i.e. the failure of any one sub-
system causes the whole system to fail). In this case A = ∩nk=1Ak and
the reliability P(A) of the entire system is given by

P(A) =
n∏

k=1

P(Ak) = r1r2 · · · rn
(2.11)

so that, for example, if we have three subsystems with reliability 0.85
each, the reliability of the whole system is P(A) = (0.85)3 ∼= 0.614.

(b) The subsystems are connected in parallel (i.e. the system works as long
as at least one of its subsystems works). Then A = ∪nk=1Ak and since by
de Morgan’s law

A =
n⋃

k=1

Ak =
⎛⎝ n⋂
k=1

AC
k

⎞⎠C

we can use the independence assumption to get

P(A) = P

⎛⎝ n⋂
k=1

AC
k

⎞⎠C

= 1 − P

⎛⎝ n⋂
k=1

AC
k

⎞⎠ = 1 −
n∏

k=1

P
(
AC
k

)

= 1 −
n∏

k=1

[1 − P(Ak)] = 1 − (1 − r1)(1 − r2) . . . (1 − rn)

(2.12)

so that, for example, a parallel system of three components with rk =
0.85 each has a total reliability P(A) = 0.997.

The second and final observation goes back to the beginning of this section,
and precisely to the reason why we said that the distinction between physical
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and stochastic independence is desirable. In the light of the product rule we
note that two or more events – simply because of the numerical values of
their probabilities – may turn out to be stochastically independent even when
physical independence may not seem fully justified. In general, this occur-
rence has no consequences in applications but is worthy of mention because
it represents a debated point in the philosophy of all scientific disciplines
where probability plays a part.

2.3 Random variables and distribution functions

In many experiments involving elements of randomness, we are often inter-
ested in some numerical quantity associated with the possible outcomes
rather than in the outcomes themselves. So, to each element in the sam-
ple space W we assign – in some convenient way – a real number with the
intention of making probability statements on this or that numerical value
or set of values. Mathematically, this process corresponds to defining a real-
valued function X : W → R which, when certain properties are satisfied,
is called a random variable. Before turning to these properties it is useful to
give some examples.

(i) In tossing two dice, for instance, a gambler may not be interested in
the individual outcomes {i, j}, i, j = 1, 2, . . . , 6, but in the sum i + j.
So, to each element in the sample space – that is, the 36 ordered pairs
{1, 1}, {1, 2}, . . . , {6, 6} – he/she assigns a number between 2 and 12 thus
defining the function X({i, j}) = i + j.

(ii) In a sequence of N shots to a target of diameter D the ballistic depart-
ment of the Army may be interested in the distance d between the impact
point and the bull’s eye. The function in this experiment is defined by
X(kth shot) = dk where 1 ≤ k ≤ N and 0 ≤ dk ≤ D (assuming that
each shot hits the target).

(iii) In the daily production of 500 lots of 100 pieces each, a company
is interested in the number of defective pieces in each lot, so that
X(kth lot) = nk where 1 ≤ k ≤ 500 and 0 ≤ nk ≤ 100.

Many other examples can be made, but the point is that in any case of
interest an appropriate real-valued function X is defined and we are faced
with the problem of extending the mathematical model to include numerical-
valued phenomena subjected to chance. In the light of the definitions of
Section 2.2, this means that two questions need to be answered: (a) what
kind of functions, mathematically speaking, qualify as random variables?
and (b) since the probabilityP is defined for events (i.e. subsets ofW), how do
we make probability statements on the values belonging to the range Rg(X) –
which is a subset of the real numbers R or R itself – of the function X?

In regard to the second question we first make a preliminary remark. If we
denote byw a point element of the sample spaceW , thenX(w) ∈ Rg(X) ⊂ R
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and, typically, we will be interested in the probability that:

(1) X(w) has a particular value a (a ∈ R), or
(2) X(w) lies in the range of values a < X(w) ≤ b (a,b ∈ R; a < b), or
(3) X(w) ≤ a.

Noting that the definition of X implies an ‘inverse’ relation between Rg(X)

and the original space W , conditions (1)–(3) are equivalent to saying that
we are interested in assigning probabilities to the subsets of W

(1′) X−1({a}) = {w ∈ W : X(w) = a}
(2′) X−1(a,b] = {w ∈ W : X(w) ∈ (a,b]}
(3′) X−1(−∞, a] = {w ∈ W : X(w) ∈ (−∞, a]}

respectively. Clearly, this can be done if and only if these sets are events, that
is, they are members of the σ -algebra S (or the algebra R if we are dealing
with an elementary probability space). So, in practice, the procedure works
if X−1{a},X−1(a,b],X−1(−∞, a] ∈ S and only in this case it makes sense to
speak of the probabilities P(X−1{a}), P(X−1(a,b]) and P(X−1(−∞, a]).

If, in addition, we consider that R is equipped with the ‘natural’ σ -algebra
B of Borel sets (see Appendix A, Section A3) and that the subsets {a}, (a,b]
and (−∞, a] are just special cases of Borel sets, we arrive at the formal
definition of random variable:

Definition 2.3 Given the probability space (W , S,P) we call random vari-
able (r.v. for short) a real-valued function X : W → R such that X−1(B) ∈ S
for every Borel set B ∈ B.

Definition 2.3 is the answer to the two questions (a) and (b) above; it
says which kind of functions are random variables and, at the same time,
automatically guarantees the possibility of making probability statements by
using subsets of Rg(X). (Remark: at this point one could ask the following
question: when W ⊆ R why not use the direct image of the function instead
of its inverse image in order to define a random variable? The reason lies in
the fact that the inverse image preserves set operations – see Appendix A,
eq. (A.14) and Proposition A.8 – while the direct image, in general, does
not. So, for example, given a function f , it is true that f−1(AC) = [f−1(A)]C
while, in general, f (AC) �= [f (A)]C.)

Now, besides the unfortunate terminology of calling ‘variable’ a function
(a usage, however, so widespread in literature that one has no choice but to
adhere to it), we may once again turn to the theory of measure and integra-
tion and note that in mathematical terms a r.v. is a so-called P-measurable
function. In fact (see, for example, [1] or [7]) the general definition is as
follows: if W is set with a σ -additive measure ν defined on a σ -algebra S
of subsets of W , a real-valued function f : W → R is called ν-measurable
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(or, for some authors, ‘S-measurable’ or simply ‘measurable’) if f−1(B) ∈ S
for every Borel set B ⊂ R. This fact is worthy of mention because it means
that all theorems and results on measurable functions can immediately be
taken over to probability theory. We will state and use these theorems if and
whenever needed in the course of the discussion; for the moment, however,
only one proposition will suffice.

Proposition 2.9 Let (W , S,P) be a probability space and let X be a real
valued function on W, that is, X : W → R. Then the following statements
are equivalent:

(a) X is a random variable
(b) X−1(−∞, a] ∈ S for every a ∈ R

(c) X−1(−∞, a) ∈ S for every a ∈ R

(d) X−1[a, +∞) ∈ S for every a ∈ R

(e) X−1(a, +∞) ∈ S for every a ∈ R

In particular, Proposition 2.9 justifies the fact that one often finds the fol-
lowing statement: a function X : W → R is a r.v. if and only if the set
X−1(−∞, a] = X−1{w ∈ W : X(w) ≤ a} belongs to the σ -algebra S (i.e.
is an event). Also, it should be added that one rarely needs to worry about
questions of measurability in applications because the definition of random
variable – although fundamental in the construction of a coherent picture –
is sufficiently general to cover most cases of practical interest.

With the notions given above we can now give the definition of probability
distribution function (of a r.v.). Before doing so, however, we make some
preliminary considerations.

Given a random variable X on a probability space (W , S,P) the preceding
discussion shows that we can make probability statements by considering
the inverse images (through X) of Borel sets because the quantity P(X−1(B))

is well-defined for every B ∈ B. Then, if we define the set function PX : B →
[0, 1] by means of the relation

PX(B) ≡ P(X−1(B)) = P{w ∈ W : X(w) ∈ B} (2.13)

it can be shown that PX is a σ -additive probability measure, that is, it satisfies
properties (P1) and (P2) given in Section 2.2 – as the reader is invited to verify.

This fact implies that the original probability space (W , S,P) ‘induces’ –
through X – a real probability space (R, B,PX) which, in turn, is completely
determined by (W , S,P). The reverse statement is not, in general, true, mean-
ing that the space (R, B,PX) does not determine uniquely the space (W , S,P).
However, in applications this is not a problem because the original space is
generally a tacitly implied notion of theoretical interest and (R, B,PX) is all
we need for most practical situations. In this light, therefore, it is common
usage to write P(X ∈ B) in place of PX(B) with the implicit understanding
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that the meaning of this notation – which refers to the ‘induced’ space – is
expressed by eq. (2.13).

Following this line of reasoning we note, in particular, that the quan-
tity P(X−1(−∞, a]) is well-defined for every real number a. Then, since
P(X−1(−∞, a]) = PX(−∞, a] = PX({w ∈ W : X ≤ a}) is written as
P(X ≤ a) in the notation introduced above, we can define the real function
FX : R → [0, 1]

FX(a) ≡ P(X ≤ a) (2.14)

which is called the probability distribution function (PDF for short) of the
random variable X. Also, since a is any real number we can replace it by x
and write FX(x) as it is customary in ordinary calculus.

The function FX(x) satisfies the following properties:

(D1) FX is non-decreasing, that is, a ≤ b implies FX(a) ≤ FX(b)
(D2) lim

x→−∞FX(x) = 0 and lim
x→+∞FX(x) = 1

(D3) FX is right-continuous at every point, that is,

FX(x+) ≡ lim
h→0+

FX(x+ h) = FX(x)

We only prove (D1) here but it is worth noting that the properties above
hold because PX is a σ -additive probability measure in its own right.

In fact, for example, the proof of (D1) is as follows: if a ≤ b then (−∞, a] ⊂
(−∞,b], therefore from the monotonicity property of probability measures
it follows PX(−∞, a] ≤ PX(−∞,b] and hence FX(a) ≤ FX(b).

A direct consequence of the definition of PDF is that

P(a,b] = FX(b) − FX(a) (2.15)

where once again we point out that by P(a,b] we mean the probability
PX(a,b] = PX(a < X ≤ b). So, since the interval (−∞,b] is the union of
the two disjoint sets (−∞, a] and (a,b], from the additivity of PX we get
PX(−∞,b] = PX(−∞, a] + PX(a,b]. Rearranging terms, eq. (2.15) follows.

In regard to property (D3) we may ask about the left limit. This limit
exists because FX is a monotone function (property (D1)) and therefore it
can only have discontinuities of the first kind (i.e. finite jumps, see Ref. [10]
for details). Left-continuity, however, is not in general guaranteed. In fact,
consider a point x = x0 on the real line; the set {w ∈ W : X = x0} or, for
short, {X = x0} can be expressed as

{X = x0} =
∞⋂
n=1

{x0 − 1/n < X ≤ x0}
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where the sets {x0 − 1/n < X ≤ x0} = (x0 − 1/n,x0] form a decreasing
sequence whose limit is {X = x0}. Then, from the continuity property (a) of
Proposition 2.1 we get

PX(X = x0) = lim
n→∞PX(x0 − 1/n,x0] = lim

n→∞(FX(x0) − FX(x0 − 1/n))

= FX(x0) − lim
n→∞FX(x0 − 1/n) = FX(x0+) − FX(x0−)

(2.16)

where in the last expression FX(x0+) = FX(x0) is the right limit and FX(x0−)

is the left limit. Equation (2.16), in essence, means that if P(X = x0) �= 0
then FX has a jump at x = x0, the magnitude of the jump being precisely
P(X = x0); if, on the other hand P(X = x0) = 0 then FX is continuous at
x = x0 because FX(x0+) = FX(x0−).

One word of caution is in order at this point: some authors define the dis-
tribution function as FX(a) ≡ P(X < a) instead of (2.14). As a consequence,
the roles of right- and left-continuity are interchanged, that is, property (D3)
is replaced by left-continuity and FX may not be right-continuous at some
points. Owing to Proposition 2.9, this is not a problem; nonetheless, some
attention should be paid because – once a definition is given – consistency
must be maintained throughout.

Now, in regard to random variables and their PDFs, the preceding dis-
cussion can be summarized as follows: starting from a probability space
(W , S,P) and given a r.v. X we can consider the ‘induced’ probability space
(R, B,PX) and determine the PDF of X by means of eq. (2.14). The distri-
bution function FX, in turn, satisfies properties (D1)–(D3). However, since
in many practical cases one specifies a r.v. X by simply giving its distribu-
tion function FX, the question can be asked if this procedure is justified. We
anticipate here that the answer is yes, but before tackling this problem we
give a preliminary definition:

Definition 2.4 We call probability distribution function (PDF) any function
F : R → [0, 1] satisfying properties (D1)–(D3).

With this definition the question above can be reformulated in more gen-
eral terms: given a PDF F, is there a probability measure P̂ defined on the
σ -algebra of Borel sets such that P̂(a,b] = F(b) − F(a)?

The answer is yes because for every a,b ∈ R, we can define – on the set
of all right-semiclosed intervals of R – the function P(a,b] ≡ F(b) − F(a).
Then, since P can be shown to be σ -additive on its domain, we are under
the hypothesis of Caratheodory theorem (Section 2.2.1). Therefore P can be
extended to a probability measure P̂ whose domain is the σ -algebra of Borel
sets B and, by construction, satisfies the requirement P̂(a,b] = F(b) − F(a).
Also, it is not difficult to show that P̂(−∞, a] = F(a) for every a ∈ R.
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This function P̂, in turn, is the probability measure of the ‘induced’ space
(i.e. the measurable space (R, B)) and one may ask if there is at least a
probability space (W , S,P) on which a r.v. X with distribution function F
can be defined so that P̂ = PX for some r.v.X. The answer is again affirmative
because we can always supply the probability space in a canonical way by
setting W = R, S = B and using the identity map as our random variable,
that is X(w) = w (w ∈ W) (as a matter of fact, this canonical way of
constructing the ‘original’ space (W , S,P) is the implicit assumption made in
almost all practical cases). Then, since PX(B) ≡ P{w : X(w) ∈ B} = P̂(B),
X has induced (working, so to speak, backwards) the probability measure
P and therefore the PDF F. The conclusion is that, summarizing, if F is a
PDF (in the sense of Definition 2.4) then it is the distribution function of
some random variable X. It should be noted, however, that while it is true
that a random variable defines uniquely its distribution function, the reverse
statement, in general, does not hold and a given PDF can correspond to many
different random variables. Nonetheless, as far as probability statements are
concerned, the PDF FX provides a complete description of the r.v.X. In other
words, given FX, we can calculate the probability that X takes on values in
B where B is any Borel set of the real line.

As a final remark to this section we can once again turn to the terminology
of measure theory and observe that, in mathematical terminology, PX is a
so-called Lebesgue–Stieltjes measure on the real line (see Appendix B). Prob-
ably, this remark does not say much to the reader who is not familiar with
measure theory but it may be helpful if one refers to more mathematically ori-
ented literature. As a matter of fact, any non-negative, σ -additive and finite
Lebesgue–Stieltjes measure µF on R can be defined by means of an appropri-
ate non-decreasing, right-continuous function Fwhich is bounded below and
above by the quantities F(−∞) ≡ limx→−∞ F(x) and F(∞) ≡ limx→∞ F(x),
respectively, where the two limits are assumed to be finite. Then µF is called
the Lebesgue–Stieltjes measure corresponding to F and F is said to be the
generating function of µF (incidentally, it is worth pointing out that if we
relax the assumption of finite limits and choose F(x) = x then µF = µx is
the Lebesgue measure on the real line).

Returning to probability theory, for any PDF FX we have, clearly,
FX(−∞) = 0 and FX(∞) = 1 and PX is the Lebesgue–Stieltjes mea-
sure corresponding to FX. Conversely, FX is the generating function of
PX. This fact sets up a one-to-one correspondence between PDFs and the
Lebesgue–Stieltjes measures on R satisfying µF(R) = 1.

2.3.1 Types of random variables and their distribution functions

Random variables can be classified as discrete or continuous depending
on the mathematical structure of their range (as a subset of R) or, alter-
natively, on the continuity properties of their distribution functions. This
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second classification is generally preferable for two reason: first, from a
probabilistic (and statistical) point of view, the actual random variable is
often less important than its PDF and, second, the PDF reflects the proper-
ties of the probability measure PX which, in turn, plays an important role
in the calculation of the (Lebesgue–Stieltjes) integrals used to obtain param-
eters such as the expected value, the variance and, in general, the so-called
‘moments’ of a random variable.

From the preceding section we know that a PDF is a real-valued function
defined on the real line and satisfying the properties (D1)–(D3). In this regard
we may recall two theorems from analysis stating that:

(i) any monotone function on the real line has at most a countable
number of discontinuities (and these are only discontinuities of the
first kind);

(ii) any monotone, right-continuous function can be written as the sum of
a continuous monotone function and a right-continuous jump function.
Moreover, this decomposition is unique.

So, by virtue of theorem (ii) we have a first classification of random vari-
ables in discrete, continuous and mixed, the mixed case being when both the
continuous and the jump function of the decomposition are different from
zero. If the continuous function of the decomposition is identically zero we
have the discrete case, that is, a PDF which increases only by finite ‘steps’ (the
discontinuities of the first kind) at the points x1,x2, . . . , ∈ R which, clearly,
form at most a countable set of points (theorem (i)) and are the values taken
on by the random variable. Therefore, we can call discrete all random vari-
ables which have an at most countably infinite set of possible values. Among
these, one sometimes distinguishes the subclass of simple random variables,
which can take on only finitely many possible values.

Example 2.2 Consider the experiment of rolling a fair die. The elemen-
tary probability space (W ,R,P) is W = {{1}, {2}, . . . , {6}}, R = P(W) and
P({j}) = 1/6 for every {j} = {1}, {2}, . . . , {6}. A ‘natural’ random variable
on this space is defined by X({j}) = j (note that we distinguish between the
event {j} – that is, the outcome of the experiment – and the real number
j) and it is clearly a simple random variable because its range is the set of
real numbers Rg(X) = {1, 2, . . . , 6}. Also, from the definition above we have
X−1( j) = {j} and PX( j) = P{X−1( j)} = 1/6 so that the PDF FX is the jump
function FX( j) = j/6 with discontinuities of magnitude 1/6 at the points
x1 = 1,x2 = 2, . . . ,x6 = 6.

(Note that we have tacitly implied the passage to the ‘induced’ probability
space whose elements are: (a) the subset of R W = {1, 2, . . . , 6}, (b) the
algebra R = P(W) and (c) the probability measure PX( j) = P{X−1( j)} =
1/6 for j = 1, 2, . . . , 6.)



40 Probability theory

This example illustrates what has been said above, if AX = {x1,x2, . . .} ⊂
R is the set of possible values of the discrete random variableX, then its PDF
FX is a jump function with a discontinuity at each xn of magnitude

pn ≡ P{X−1(xn)} = FX(xn) − FX(xn−) (2.17)

(see eq. (2.16)). Moreover, FX is constant between any two neighbouring
points xn and xn+1 (the reader is invited to prove it) and takes the upper
value at each discontinuity. From their definition, the quantities pn are clearly
non-negative and must satisfy the so-called ‘normalization condition’∑

n

pn = 1 (2.18)

Thus, in terms of probabilities, a discrete random variable can be com-
pletely specified by the (finite or countable) set of real numbers AX and the
probabilities pn. Moreover, if we introduce the Heaviside (or step) function

H(x) ≡
{

0, x < 0
1, x ≥ 0

(2.19)

we note that FX can be written as

FX(x) =
∑
n

pnH(x− xn) (2.20)

so that, in the case of Example 2.2, eq. (2.20) is FX(x) =∑6
j=1(1/6)H(x− j)

which, as expected, gives the value FX( j) = j/6 for each j = 1, 2, . . . , 6,
is zero for x < 1 and unity for x ≥ 6. If, for notational convenience, we
want to emphasize the fact that the quantities pn are relative to the random
variable X, we can formally introduce the function pX : AX → [0, 1] such
that pX(xn) ≡ pn for n = 1, 2, . . .. In this symbolism, the function pX is
often called the probability mass function (pmf) of the random variable X.

Example 2.3 Given a probability space (W , S,P) and a subset A ⊂ P(W)

the indicator function of A, denoted by IA (or by χA) is defined as

IA(w) ≡
{

0, w /∈ A
1, w ∈ A (2.21)

It is worth noting in passing that some authors call IA the characteristic
function of A. We will not follow this terminology because in probability
and statistics the term ‘characteristic function’ is widely used to denote a
different concept (see Section 2.4).
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The reader is invited to prove the following statements:

(a) IA is a (discrete) random variable if and only if A ∈ S, that is, if A is
an event (and therefore the quantities P(A) and P(AC) = 1 − P(A) are
well-defined);

(b) when A is an event, the distribution function FI of the random variable
IA can be written as

FI(x) = [1 − P(A)]H(x) + P(A)H(x− 1) (2.22)

where H is the Heaviside function of eq. (2.19). Other examples of discrete
random variables will be given later.

Returning to theorem (ii) at the beginning of this section we note that a
PDF FX is continuous on the real line if the jump function of the decom-
position is identically zero. This means that there are no points xn ∈ R,
n = 1, 2, . . ., such that P(X = xn) > 0 and we have P(X = x) = 0 for all
x ∈ R (which, clearly, implies FX(x) = FX(x−) for all x ∈ R). In this case
the random variable X is also called continuous. At this point, an interest-
ing question could be asked: since FX is continuous and on the real line we
have the notion of Lebesgue integral at our disposal (which generalizes and
extends the notion of Riemann integral known from elementary analysis,
see Appendix B), is it possible to represent FX as a Lebesgue integral of an
appropriate Lebesgue-integrable function fX? In other words, is it possible
to write

FX(x) =
x∫

−∞
fX(t) dt

(2.23)

(where the integral in intended in the Lebesgue sense) for some fX? Moreover,
is it true that the derivative of FX equals fX? The answer, in general, is no
but it is yes if FX is absolutely continuous (the definition can be found in
Appendix B). In this regard two comments are worthy of mention:

(1) the class of absolutely continuous functions is a proper subclass of
continuous functions and

(2) they are precisely the class of functions for which the second funda-
mental theorem of calculus (eq. (2.24), also known as Newton-Leibnitz
formula) applies: that is,

Proposition 2.10 If F is absolutely continuous on the interval [a,b] then
F′ = dF/dx is Lebesgue-integrable on [a,b] and

x∫
a

F′(t) dt = F(x) − F(a) (2.24)
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for all x ∈ [a,b]. In other words, only within the class of abso-
lutely continuous functions we can restore a function by integrating its
derivative.

Therefore, when a PDF FX is absolutely continuous eq. (2.23) holds and

dFX
dx

= fX (2.25a)

In this case the random variable associated with FX is also called absolutely
continuous and the derivative of FX – that is, the function fX – is called
the probability density function (pdf) of the random variable X. Also, from
the general properties of FX it is evident that the pdf fX must satisfy the
‘normalization’ condition

+∞∫
−∞

fX(t) dt = 1 (2.25b)

which is the absolutely continuous counterpart of eq. (2.18).
Now, although continuous PDFs which are not absolutely continuous are

very seldom encountered in applications, it is however worthwhile spending
a word on what happens in the general case. If a PDF F is continuous but
not absolutely continuous then mathematical analysis shows that F can be
represented as a sum F(x) = g(x) + s(x) where g is an absolutely contin-
uous function and s is a ‘singular’ function, where by ‘singular’ we mean
a continuous function whose derivative is zero a.e. (almost everywhere in
the sense of the Lebesgue measure on the real line, see Appendix B). Then,
F′(x) = g′(x) and integration of F′ does not restore F, but only its absolutely
continuous component.

At this point we can return to theorem (ii) at the beginning of this section
and see that the most general kind of PDF can be represented as the sum of
three components: a jump function, an absolutely continuous function and
a singular function (these two latter functions, when considered together,
form the continuous part of the decomposition of theorem (ii)). Integrating
the derivative of the PDF leaves only the absolutely continuous component,
while the other two functions ‘disappear without a trace’ (note that the
derivative of a jump function is zero a.e. where, again, a.e. is intended in
the sense of the Lebesgue measure on R). Now, as far as PDFs and their
classification are concerned, these comments are sufficient for our purposes.
However, the argument can be taken further when we note from the pre-
ceding discussion that any PDF is defined by means of a probability measure
which, in turn, is a finite measure defined on all Borel sets of the real line.
In this light, the above decomposition of a general PDF turns out to be
a particular case of a result of analysis on the decomposition of measures
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(see Appendix B). This result can be adapted to our present purposes and
stated as in the following Proposition 2.11 by first giving the preliminary
definitions:

(a) a measurem on R is continuous ifm({x}) = 0 for all x ∈ R and absolutely
continuous (with respect to the Lebesgue measure µ on R) if µ(A) = 0
implies m(A) = 0;

(b) a measure m on R is singular (with respect to the Lebesgue measure µ

on R) if there is a Borel set B with µ(B) = 0 and m(BC) = 0;
(c) a measure m on R is discrete if there is a countable (Borel) set D with

m(DC) = 0.

Proposition 2.11 Given a probabilitymeasure P onR there are three unique
probabilities Pac,Psc,Pd and three positive numbers a,b, c with a+b+c = 1
such that

P = aPac + bPsc + cPd (2.26)

where Pac is absolutely continuous (with respect to the Lebesgue measure µ

on R), Psc is singular (with respect to the Lebesgue measure on R) and con-
tinuous and Pd is discrete. It is then a consequence of the Radon–Nikodym
theorem (see Appendix B) that Pac can be expressed as the Lebesgue integral
of a non-negative integrable function f : R → R, that is,

Pac(B) =
∫
B

f dµ (2.27)

for all Borel sets B ⊂ R.
The connection between a probability measure P and the corresponding

PDF F is such that if we can decompose P as in eq. (2.26) then

F = aFac + bFsc + cFd (2.28)

where Fac(x) is an absolutely continuous function corresponding to Pac,
Fsc(x) is a singular continuous function corresponding to Psc and Fd(x) is a
jump (discrete) function corresponding to Pd. Clearly, the definition of abso-
lute continuity for measures and for functions are two distinct concepts, but
it can be shown that if Pac is an absolutely continuous probability measure
on R then Fac(x) = Pac(−∞,x] is an absolutely continuous function and
conversely. Also, with the appropriate definitions in mind, the same relation
exists between Psc and Fsc(x) and between Pd and Fd(x).

Example 2.4 Perhaps the most famous type of absolutely continuous ran-
dom variable is a random variable whose pdf is the so-called normal (or
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Gaussian) probability law: this is

fX(x) = 1

σ
√

2π
e−(x−x)2/2σ 2

(2.29a)

where x and σ (σ > 0) are two real parameters (whose meaning is probably
well known to the reader but will be shown later). The fact that the pdf
(2.29a) satisfies the normalization condition (eq. (2.25b)) can be verified by
writing

1

σ
√

2π

+∞∫
−∞

exp

(
− (t − x)2

2σ 2

)
dt = 1√

2π

+∞∫
−∞

e−(y2/2) dy

where the second integral is obtained by the change of variable y = (x−x̄)/σ .
Since from integrals tables we get

∫ +∞
−∞ exp(−ax2) dx = √

π/a, eq. (2.25b)
follows.

The PDF of eq. (2.29a) cannot be written in explicit analytical form but
it is given by

FX(x) = 1

σ
√

2π

x∫
−∞

exp

(
− (t − x̄)2

2σ 2

)
dt = 1√

2π

(x−x̄/σ)∫
−∞

e−(y2/2) dy

(2.29b)

where, again, the second integral is obtained by the same change of vari-
able as above and – due to its importance in statistics – can be easily
found in numerical table form. However, if tables are not available, the
approximation

F(z) ≡ 1
2π

z∫
−∞

exp(−y2/2) dy ∼= 1
1 + exp{−az(1 + bz2)} (2.29c)

with a = 1.5976 and b = 0.044715 is sufficiently accurate for most appli-
cations (the maximum absolute error is ≤ 2 × 10−4). Other examples of
absolutely continuous probability laws will be given later.

As remarked above, in almost all practical cases the continuous singu-
lar part of the decomposition is generally absent. As a consequence, it is
customary to speak of mixed random variables when neither the absolutely
continuous part nor the discrete part of the PDF function are identically zero.



Probability: the axiomatic approach 45

In this case there exist a number of points xn for which eq. (2.17) holds;
however eq. (2.18) is no longer true and we have

∑
n

pn =
∑
n

P{X−1(xn)} < 1 (2.30)

This means that there exist at least a pair of neighboring points xn and xn+1
such that F(xn) < F(xn+1−). In other words, F can be written as the sum
(called a ‘convex’ linear combination)

F(x) = αFac(x) + (1 − α)Fd(x) (2.31)

where 0 ≤ α ≤ 1, Fac is an absolutely continuous, monotonically increasing
function and Fd is a jump function of the type (2.20). Obviously, α = 1
corresponds to the absolutely continuous case and α = 0 to the discrete case.

In both cases – and, clearly, also in the mixed case – we will see in the
next section how the Lebesgue–Stieltjes integral is the appropriate tool used
to calculate important quantities such as the mean value, the variance and,
in general, many other parameters which describe in numerical form the
behavior of a random variable.

Example 2.5 Suppose a r.v. has the following PDF

F(x) =

⎧⎪⎨⎪⎩
0, x < 0
1/2 − e−x/4, x ∈ [0, 1)

1 − e−x/4, x ≥ 1

(it is evident that this function satisfies the properties (D1)–(D3) of
Section 2.3). Let us determine its decomposition according to eq. (2.28).
First of all

F′(x) =
{

0, x < 0
e−x/4, x ≥ 0,x �= 1

and therefore

F̂ac(x) =
x∫

−∞
F′(t) dt =

{
0, x < 0
1/4 − e−x/4, x ≥ 0

Second, the function has two jumps at the points x = 0 and x = 1 of
magnitude p(0) = F(0) − F(0−) = 1/4 and p(1) = F(1) − F(1−) = 1/2,
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respectively. Therefore

F̂d(x) =

⎧⎪⎨⎪⎩
0, x < 0
1/4, x ∈ [0, 1)

3/4, x ≥ 1

Then, by noting that F = F̂ac + F̂d we get Fsc = F − F̂ac − F̂d = 0, meaning
that the singular continuous component of the decomposition is absent and
eq. (2.28) reduces to eq. (2.31).

Now, when considered individually, the functions F̂ac and F̂d are not PDFs
because – although being nondecreasing and right-continuous – they do not
satisfy the limit condition at +∞ of property (D2). As a consequence, if we
want to write the decomposition of our PDF as in eq. (2.31) we have

F(x) = 3
4

(
1
3
H(x) + 2

3
H(x− 1)

)
+ 1

4
Fac(x)

where H(x) is the Heaviside function (eq. (2.19)), the function within
parenthesis is the discrete PDF and

Fac(x) =
{

0, x < 0
1 − e−x, x ≥ 0

is the absolutely continuous PDF (which could also be written as Fac(x) =
(1 − e−x)H(x)).

2.3.2 Numerical descriptors of random variables behaviour

From the discussion of the preceding sections it is evident that the complete
probabilistic description of a r.v. X is provided by its PDF FX. Alterna-
tively, we can use its mass distribution pX if X is discrete or the pdf fX
if X is absolutely continuous. However, a certain degree of information –
although incomplete in many cases – can be obtained by well-known numer-
ical descriptors such as the mean value, the variance, etc. These quantities
are special cases of a series of parameters called moments (of the r.v. X)
whose general definition is given in terms of abstract Lebesgue integrals on
(W , S,P), that is, the probability space on which X is defined. So, the mean
(or expectation) of X, denoted by E(X) or E[X], is defined as

E(X) ≡
∫
W

X dP
(2.32a)

and, for its importance in statistics, is also often indicated by the symbol µX.
Similarly, if k is any positive integer, the kth moment and the kth absolute
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moment of X are, respectively, the expectations of the random variables Xk

and |X|k, that is,

E(Xk) =
∫
W

Xk dP

E(|X|k) =
∫
W

|X|k dP

(2.32b)

Clearly E(Xk) = E(|X|k) if k is even. For odd values of k, on the other hand,
we have the inequality |E(Xk)| ≤ E(|X|k), which is a direct consequence of
the properties of the integral.

The kth central moment – which makes sense only when E(X) is finite –
is defined as

E[(X − E(X))k] =
∫
W

[X − E(X)]k dP
(2.32c)

while E[|X − E(X)|k] is called the kth absolute central moment. Clearly,
E(X) is just the first moment of X and the first central moment (if it exists)
is always zero because

∫
W dP = P(W) = 1. Also, it is common to call

variance the second central moment which is also frequently denoted by the
special symbol σ 2

X (or Var(X)), that is, σ 2
X = E[(X − E(X))2] = E[(X −

µX)2]. Its positive square root σX is called the standard deviation of X. The
interpretation of µX and σ 2

X – and of higher order moments in general –
is probably known to the reader and will not be considered here because,
in any case, it will become clearer as we proceed. Instead, we will turn to
some of their basic properties which, as might be expected, are for the most
part direct consequences of the properties of integrals (with respect to finite
measures).

Proposition 2.12 Liapunov inequality: E(|X|k)1/k ≤ E(|X|n)1/n for any
two integers k,n such that k ≤ n. More generally, if n > 1 and the nth
moment of X is finite – that is, E(Xn) < ∞ – then both E(Xk) and E(|X|k)
are finite for 1 ≤ k ≤ n.

Mathematically this proposition can be expressed by saying that if
X ∈ Ln(W , S,P) then X ∈ Lk(W , S,P) for k ≤ n and implies that
E(Xm+1),E(Xm+2), . . . are not finite whenever E(Xm) is not finite for some
integer m.

Proposition 2.13 (a) If a is a constant then E(a) = a.
(b) Let a be a constant and A an event, then – recalling that its indicator

function IA is a discrete random variable in its own right – E(aIA) =
aP(A). In particular E(IA) = P(A).
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(c) Linearity: Let aj (j = 1, 2, . . . ,n) be n constants and Xj n random
variables, then E(

∑n
j=1 ajXj) =∑n

j=1 ajE(Xj).
(d) Inequality preservation: If X1 ≤ X2 then E(X1) ≤ E(X2).
(e) E(X) exists if and only if E(|X|) does. Moreover, |E(X)| ≤ E(|X|).

Proposition 2.14 LetµX be the expectation ofX. Then the centralmoments
can be evaluated in terms of the ordinary moments by virtue of the binomial
expansion theorem, that is,

E[(X − µX)k] = E

⎡⎣ k∑
j=0

(−1)j
(
k
j

)
Xk−jµjX

⎤⎦
=

k∑
j=0

(−1)jk!
j!(k− j)!µ

j
XE(Xk−j)

(2.33)

A special case of eq. (2.33) is when k = 2; in this case we get the variance
σ 2
X as

σ 2
X = E(X2) − µ2

X = E(X2) − E2(X) (2.34)

Proposition 2.15 (a) if b is a constant then σ 2
b = 0.

(b) If X is a r.v. and b is a constant, then σ 2
bX = b2σ 2

X.
(c) Let X,Y be two random variables with finite mean and variance, then

σ 2
X±Y = σ 2

X + σ 2
Y ± 2(E(XY) − E(X)E(Y))

= σ 2
X + σ 2

Y ± 2Cov(X,Y)
(2.35a)

and also, if a,b are two constants

σ 2
aX±bY = a2σ 2

X + b2σ 2
Y ± 2abCov(X,Y) (2.35b)

where we introduced the so-called covariance of two r.v.s defined as
Cov(X,Y) ≡ E[(X − E(X))(Y − E(Y))] which, by the properties of
expectation, is equal to E(XY) − E(X)E(Y).

It is not difficult to obtain, for example, eq. (2.35a). In fact, from eq. (2.34)
we can write σ 2

X±Y = E[(X ± Y)2] − E2(X ± Y) and then note that the 1st
term on the r.h.s. equals E(X2) + E(Y2) ± 2E(XY) while the second term
equals E2(X) +E2(Y) ± 2E(X)E(Y); the difference of these two terms gives
the desired result. Also, the reader is invited to show that the generalization
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of eq. (2.35a) to the case of the sum of n random variables X1,X2, . . . ,Xn is

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(XiXj) (2.35c)

which, again, is obtained by repeatedly exploiting the properties of
expectation.

The next proposition states an important relation known as Chebyshev’s
(spelled variously in the literature as Tchebycheff or Tshebysheff) inequality
which expresses an upper bound for the values assumed by any r.v. on subsets
of the real line. Besides its importance in probability theory, the inequality
can also be used as an estimating tool – although rather conservative – in
many statistical applications.

Proposition 2.16 Let b be any positive number, then Chebyshev’s
inequality can be written equivalently in the two forms

P(|X| ≥ b) ≤ E(|X|k)
bk

P(|X| < b) ≥ 1 − E(|X|k)
bk

(2.36a)

Special cases of eq. (2.36a) are frequently found in other forms; for instance,
if X has a finite variance, then

P(|X − µX| ≥ b) ≤ σ 2
X

b2
= Var(X)

b2

P(|X − µX| ≥ rσX) ≤ 1
r2

(2.36b)

where in the second relation the constant b is expressed in standard deviation
units, that is, b = rσX. Alternatively, one also finds

P(|X − µX| < rσX) ≥ 1 − 1
r2

(2.36c)

Other properties of the moments will be given and considered whenever
needed in the course of the discussion.

Example 2.6 (Chebyshev’s inequality as an estimating tool) Suppose the
production of steel rods from a given industrial process is known to have
a mean diameter of 20 mm and a standard deviation of 0.2 mm. Suppose
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further that these are the only available data about the process in question.
For the future, the management decides that the production is consid-
ered satisfactory if at least 80% of the rods have diameters in the range
19.5–20.5 mm. Does the production process need to be changed?

Our r.v. X is the rod diameter and the question is whether P(19.5 < X <

20.5) ≥ 0.8. In this case we have r = 2.5 and Chebychev’s inequality in the
form of eq. (2.36c) leads to

P(19.5 < X < 20.5) ≥ 1 − 1
(2.5)2

= 0.84

so that, according to the management’s standards, the process can be
considered satisfactory.

As stated above, Chebychev’s inequality is rather conservative in the sense
that the actual probability that X is in the range µX ± rσX usually exceeds
the lower bound 1 − 1/r2 by a significant amount. For example, if it was
known that our r.v. follows a normal probability law (Example 2.4), then
we would have P(19.5 < X < 20.5) = 0.988.

If now we consider the problem of actually calculating the moments of a
random variable we note that it is not convenient to compute the abstract
integrals on W given in Definitions (2.32) because in many cases the proba-
bility space (W , S,P) – even if it is known – is generally of little practical
interest in applications. We then turn to the induced real probability space
(R, B,PX) introduced in Section 2.3 and observe that, since PX and P are
strictly related and provide a complete probabilistic characterization of the
random variable X, it should be possible to obtain its expectation, variance,
etc. by computing Lebesgue–Stieltjes integrals (on R) with respect to the
probability measure PX. In fact, we have the following result which can be
proven within the framework of measure theory:

Proposition 2.17 Let (W , S,P) be a probability space, X a r.v. on W and
g : R → R a Borel function. Then the composite function Z : W → R

defined by Z(w) ≡ g(X(w)) is itself a r.v. (i.e. measurable) and

E(Z) ≡
∫
W

ZdP =
∫
R

g(x) dFX (2.37)

where the second integral is a Lebesgue–Stieltjes integral which, by def-
inition, is an integral with respect to the measure PX. Equation (2.37)
is to be understood in the sense that if one of the two integrals exists,
so does the other and they are equal (in other words, using a nota-
tion introduced in Appendix B, Z ∈ L1(W , S,P) if and only if g ∈
L1(R, B,PX)).
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So, in particular, if g(x) = x we get

E(X) =
∫
R

xdFX (2.38a)

and, clearly if g(x) = xk

E(Xk) =
∫
R

xk dFX (2.38b)

Also note that in the light of eq. (2.38a) – which apply to any r.v. – one
can express the expectation of Z as E(Z) = ∫

R
z dFZ so that, by virtue of

eq. (2.37), we are led to the equality∫
R

z dFZ =
∫
R

g(x) dFX (2.39)

Which integral to use in order to calculate E(Z) is merely a matter of conve-
nience; in general the second integral is easier to use because it avoids having
to determine the PDF FZ, however, there may be cases in which the first inte-
gral is more efficient. Also, it is worth pointing out that these results imply
that the expectation of a function of a r.v. depends only on its probability
distribution: in other words, if the two r.v.s X,Y have the same PDF then
E[g(X)] = E[g(Y)] for all Borel functions g(x).

So, considering the two cases of most practical importance in applica-
tions – namely the discrete and the absolutely continuous case – the moments
of a r.v. X can be computed as

E(Xk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j

xkj pj∫
R

xkfX(x) dx
(2.40a)

respectively. Equations (2.40a) are, in fact, the explicit form taken on by the
Lebesgue–Stieltjes integral of eq. (2.38b) in the two cases; the integration in
dFX becomes a sum if FX is a jump function (clearly, the xj are the values
taken on by the discrete r.v. X) and a Lebesgue integral if FX is absolutely
continuous. In this latter case the pdf fX(x) is the Radon–Nikodym derivative
fX = dPX/dx of PX with respect to the Lebesgue measure on R which, in
turn, is denoted here by x instead of µ because in most practical cases the
integral reduces to the ordinary Riemann integral of the function xkfX(x).
Clearly, these same conclusions apply to the more general case (i.e. when the
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function g(x) is not equal to xk) because eqs (2.40a) are just special cases of
the relations

E[g(X)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j

g(xj)pj∫
R

g(x)fX(x)dx
(2.40b)

which represent the explicit form of eq. (2.39) in the discrete and absolutely
continuous case, respectively.

Example 2.7 Suppose that X is an absolutely continuous r.v. with pdf
fX(x) = e−x(x ≥ 0). Suppose further that we want to obtain the first moment
of the r.v. Z = √

X. Equation (2.39) for the absolutely continuous case
provides us with two options: we can either calculate

(a)
∫∞
0 zfZ(z) dz or

(b)
∫∞
0

√
xfX(x) dx = ∫∞

0
√
xe−x dx

We want to verify that these two integrals are, indeed, equal.

In case (a) we have to obtain the function fZ(z). Since it can be shown
(Section 2.5, Example 2.10) that fZ(z) = 2ze−z2

(z ≥ 0) the first integral
becomes

(a′) 2

∞∫
0

z2e−z2
dz

On the other hand, in order to compute the integral (b) we can make the
change of variable y = √

x so that x = y2, dx = 2ydy and the integration
limits remain unchanged. This way we get (b′) 2

∫∞
0 y2e−y2

dy, which, in fact,
is the same as (a′).

Example 2.8 A discrete and an absolutely continuous case.

(a) An important case of discrete r.v. frequently encountered in applica-
tions is the so-called binomial r.v. Its mass distribution pX(x) is given by

pX(x) =
(
n
x

)
px(1 − p)n−x = n!

x!(n− x)!p
xqn−x (2.41a)

where x = 0, 1, 2, . . . (we omit the index j) and 0 < p < 1. This r.v. applies
to all cases in which we perform a fixed (n) numbers of independent trials
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whose only possible outcomes are either a ‘success’ with probability p –
which does not change from trial to trial – or a ‘failure’ with probability
q = 1 − p (this type of experiment is often described by saying that we
are performing a series of n ‘Bernoulli trials’). The r.v. of interest X is the
number of successes in n trials and obeys the probability law (2.41a) (the
reader is invited to prove this by noting that p and q multiply because of
the assumption of independent trials). By using eq. (2.40a) we get the mean
E(X) = np. In fact,

E(X) =
n∑

x=0

xn!
x!(n− x)!p

xqn−x

= np
n∑

x=1

(n− 1)!
(x− 1)!(n− x)!p

x−1qn−x

= np
n∑

x=1

(n− 1)!
(x− 1)![(n− 1) − (x− 1)]!p

x−1q(n−1)−(x−1)

= np

(2.41b)

where the last equality holds because the sum is over all the ordinates of the
distribution and must be unity for the normalization condition (2.18).

In order to obtain the variance of X we can use eq. (2.34) so that we only
need the term E(X2). This is given by

E(X2) =
n∑

x=0

x2n!
x!(n− x)!p

xqn−x = np
n∑

x=1

[(x− 1) + 1](n− 1)!
(x− 1)!(n− x)! px−1qn−x

= np

(
(n− 1)p

n∑
x=2

(n− 2)!
(x− 2)![(n− 2) − (x− 2)]!p

x−2q(n−2)−(x−2)

+
n∑

x=1

(n− 1)!
(x− 1)![(n− 1) − (x− 1)]!p

x−1q(n−1)−(x−1)

)
= np[(n− 1)p+ 1]

Therefore

σ 2
X = E(X2) − n2p2 = np(1 − p) = npq (2.41c)

(b) For the absolutely continuous case we use the eq. (2.40b) to deter-
mine, for instance, the mean and variance of a normal (Gaussian) r.v.,
that is, a r.v. whose pdf is given by eq. (2.29a). By performing (as in



54 Probability theory

Example 2.4) the change of variable y = (x− x̄)/σ – so that x = σy+ x̄ and
dx = σdy – we get

E(X) = σ√
2π

∞∫
−∞

ye−y2/2 dy+ x̄√
2π

∞∫
−∞

e−y2/2 dy = x̄ (2.42a)

because the first integral on the r.h.s. is zero (y exp(−y2/2) is an odd
function) and

∫∞
−∞ e−y2/2 dy = √

2π .
By virtue of eq. (2.34) and with the same change of variable as above we

obtain

σ 2
X = σ 2 (2.42b)

where we took into account that
∫∞
−∞ y2e−y2/2 dy = √

2π . Equations (2.42a)
and (2.42b) express the well-known result that the parameters x̄ and σ

appearing in the pdf of a normally distributed r.v. are its mean and stan-
dard deviation. In this light, it is customary to consider a normal r.v. with
x̄ = 0 and σ = 1, which has a special name and is called a standardized
normal r.v. Clearly, all the odd moments of a standardized normal r.v. are
zero because its pdf is an even function (i.e. symmetrical about the ordinate
axis). The moments of even order, on the other hand, are not zero and are
given by

E(X2k) = (2k)!
2kk! (2.42c)

for k = 1, 2, . . .. Also, for a non-standard Gaussian r.v. it may be useful to
know that the central higher order moments satisfy the recursion relation

µk = (k− 1)σ 2µk−2 (2.42d)

so that µ2 = σ 2, µ4 = 3σ 4, µ6 = 5σ 2µ4 = 15σ 6, etc. Clearly, all the odd
central moments are zero because of the symmetry about the mean.

(c) In the case of a mixed r.v. (which, with applications in mind, we
assume without continuous singular component) we know from the previ-
ous section that the measure PX – and the PDF FX – is expressed as the
sum of an absolutely continuous part and a discrete part (eq. (2.31)). Then,
by the properties of the Lebesgue–Stieltjes integral we have

∫
xk dFX =

α
∫
xk dFac+(1−α)

∫
xk dFd and the same line of reasoning as above leads to

E(Xk) = α

∞∫
−∞

xkfX(x) dx+ (1 − α)
∑
j

xkj pj (2.43)
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(the reader is invited to use eq. (2.43) to obtain the mean of the r.v. whose
PDF is given in Example 2.5. The result is E(X) = 0 + 1/2 + 1/4 = 3/4).

2.4 Characteristic and moment-generating functions

In order to characterize completely the probabilistic behaviour of a random
variable X, the PDF is not the only possibility at the analyst’s disposal. In
fact, let u be a real variable and consider the expectation of the function eiuX

(where i is the imaginary unit: i = √−1), that is,

E(eiuX) =
∫
R

eiux dFX (2.44)

This is a (generally complex) function of u which is given the special name
of characteristic function (CF) of the r.v. X and it is usually denoted by the
symbol ϕX(u). By virtue of eq. (2.40b) we have

ϕX(u) =
⎧⎨⎩
∑

j e
iuxjpj∫

R
eiuxfX(x) dx (2.45)

in the discrete and absolutely continuous case, respectively. Most readers
will have probably noticed that the second of eq. (2.45) – besides the sign of
the exponential which is generally written e−iux in engineering and physics
literature – is just the Fourier transform of fX.

If, on the other hand, s is a real or complex variable the function MX(s)
defined by the relation MX(s) ≡ E(esX) is called the moment-generating
function (MGF) of X. If s is in the form s = iu then the MGF reduces to
the CF; otherwise, if s is complex and the r.v. X is absolutely continuous,
the MGF becomes the bilateral Laplace transform of the pdf fX (which,
again, in engineering literature is generally written with a minus sign in the
exponential). In many works on probability, however, it is not unusual to
consider s as a real variable.

For reasons of convergence, the CF is generally preferred. In fact, while
ϕX(u) exists for all values of u, the function MX(s) – where s is complex –
may exist only for s in a particular region of the complex plane, the so-called
region of convergence, which, in turn, is generally a vertical strip in the
complex plane. In special cases this may be the whole plane, in other cases
it is a proper strip (which, however, will always contains the imaginary
axis because ϕX(u) = MX(s) there) but sometimes it is the degenerate strip
consisting only of the imaginary axis. When the MGF exists, its properties
are similar to the properties of the CF; therefore we will mainly consider
characteristic functions with occasional remarks on MGFs.
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The importance of the CF lies in the fact that there is a one-to-one cor-
respondence between characteristic functions and probability distribution
functions so that, as stated at the beginning of this section, knowledge of
the CF of a random variable provides its complete probabilistic description.
However, before examining why it is so, let us consider the main properties
of characteristic functions.

Proposition 2.18 Let ϕX(u) be the CF of a r.v. X, then

(a) ϕX(0) = 1 and |ϕX(u)| ≤ 1 for all u;
(b) ϕX(−u) = ϕ∗

X(u) where ϕ∗
X(u) is the complex conjugate of ϕX(u);

(c) ϕX(u) is (uniformly) continuous on R;
(d) ϕX(u) is a non-negative definite function, meaning that for all n-tuples

(where n is an arbitrarily chosen integer) u1,u2, . . . ,un ∈ R and all
n-tuples of complex numbers a1, a2, . . . , an the quantity

n∑
j,k=1

aja∗
kϕX(uj − uk)

is real and non-negative (as above the asterisk denotes complex conjugation).

Properties (a), (c) and (d) together characterize a CF in the sense that a
function with these properties is necessarily the CF of some r.v. (this result is
also known as Bochner’s theorem). In this regard, however, given a function
ϕ(u), it may not be easy in practice to verify (d) in order to determine whether
ϕ(u) is a CF or not. This is why, in general, one usually checks properties
(a), (b) and (c) and concludes that ϕ(u) is not a CF if any one of them
fails. If all of them are satisfied then, by necessity, property (d) must be
considered.

The proofs of properties (a), (b) and (c) are not difficult. For property (d)
we have, skipping some easy intermediate steps,

n∑
j,k=1

aja∗
kϕX(uj − uk) = E

⎛⎝∑
j,k

aja∗
ke

iujxeiukx

⎞⎠

= E

⎛⎝∑
j

ajeiujx
∑
k

a∗
ke

iukx

⎞⎠ = E

⎛⎜⎝
∣∣∣∣∣∣
∑
j

ajeiujx

∣∣∣∣∣∣
2
⎞⎟⎠ ≥ 0

Also, a direct consequence of (b) is that the real part ϕRe of a CF ϕ is an even
function – that is ϕRe(−u) = ϕRe(u) – while its imaginary part ϕIm is odd,
that is, ϕIm(−u) = −ϕIm(u).
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Proposition 2.19 If E(|X|k) < ∞ for some positive integer k then the kth
derivative of ϕX(u) exists for all u, is continuous and

dkϕX(u)

duk
=
∫
R

(ix)keiux dFX (2.46)

Moreover, if for some even k the kth derivative of ϕX(u) exists in u = 0,
then E(|X|k) < ∞ and eq. (2.46) holds.

Note that the first part of Proposition 2.19, in essence, states that the
derivative can be taken under the integral sign or, in other words, that the
kth derivative operator and the expectation operator commute, that is,

dk

duk
E(eiux) = E

(
dk

duk
eiux

)

provided that the r.v. X has a finite kth absolute moment. We do not do it
here but only point out that the proof of this result is based on the dominated
convergence theorem (Appendix B). On the other hand, in the second part
of the proposition (in whose proof one exploits Fatou’s lemma) we cannot
omit the condition of even k (in particular the existence of dϕX/du|u=0 does
not imply E(X) < ∞).

In the light of these results let us now suppose that a r.v. has a finite kth
order moment E(Xk). Then by setting u = 0 in eq. (2.46) we get

ϕ
(k)
X (0) ≡ dkϕX(u)

duk

∣∣∣∣∣
u=0

= ikE(Xk) (2.47a)

which means that the moments of a r.v. (when they exist) can be obtained
by calculating the derivative of its CF in u = 0. In particular, we get

E(X) = ϕ
(1)

X (0)/i = −iϕ(1)

X (0)

E(X2) = −ϕ
(2)

X (0)
(2.47b)

As a side comment on the MGF of X it is not difficult to determine that the
counterpart of eq. (2.47) is

M(k)
X (0) = E(Xk) (2.48)

with the important difference now that the condition E(|X|k) < ∞ is no
longer necessary because it can be shown that ifMX(s) exists in some proper
strip of the complex plane, then it is analytic there. This implies that its
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derivatives in s = 0 exist for all k and eq. (2.48) holds, thus justifying the
name of MGF.

A direct consequence of the considerations above is that whenever X is
such that E(|X|k) < ∞ for all k then its CF can be expanded in Taylor series
about the origin and

ϕX(u) =
∞∑
k=0

(iu)k

k! E(Xk) = 1 +
∞∑
k=1

(iu)k

k! E(Xk) (2.49a)

within the interval of convergence of the series. For sake of completeness, it
should be added that an expansion similar to eq. (2.49) is sometimes used
for the function ηX(u) ≡ ln ϕX(u). This is written in the form

ηX(u) =
∞∑
k=0

(iu)k

k! Ck (2.49b)

where Ck is called the kth order cumulant, or semi-invariant, of X. It is
left to the reader to determine that the cumulants up to the third order are
expressed in terms of moments and central moments by the relations

C0 = 0

C1 = E(X) = µX

C2 = E(X2) − E2(X) = σ 2
X

C3 = 2E3(X) − 3E(X)E(X2) + E(X3) = E[(X − µX)3]

(2.49c)

Incidentally, we also note that the name ‘semi-invariants’ is due to the fact
that the Ck (k ≥ 2) are invariant under a translation of the random variable.
In other words, if we change our r.v. from X to X̂ = X+a then Ĉ1 = C1 +a
and Ĉk = Ck for all k ≥ 2, where Ĉ denotes the cumulants of X̂.

Similarly to eqs (2.49a)–(2.49c), we can consider the MGF; within the
proper strip of the complex plane where this function exists we can write
the expansion

MX(u) =
∞∑
k=0

sk

k!E(Xk) (2.50)

Example 2.9(a) Consider a binomial random variable (i.e. a r.v. whose
mass distribution is given by eq. (2.41a)). Using the first of eq. (2.45) we get

ϕX(u) =
n∑

x=0

(
n
x

)
(peiu)x(1 − p)n−x = (1 − p+ peiu)n (2.51)
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where in the last equality we used Newton’s expansion theorem. Then, by
calculating the derivatives of eq. (2.47) it is almost immediate to deter-
mine that E(X) = np and E(X2) = np[(n − 1)p + 1] (in agreement with
Example 2.8(a)).

(b) Consider now a Gaussian r.v. (its pdf is given in eq. (2.29a)). Its CF is
given by

ϕX(u) = 1

σ
√

2π

∞∫
−∞

eiuxe−(x−x̄)2/2σ 2
dx

In order to arrive to an explicit form we pass to the variable y = (x− x̄)/σ ,
so that skipping some easy intermediate steps we get

ϕX(u) = eiux̄
√

2π

∞∫
−∞

eiuσye−y2/2 dy = eiux̄
√

2π

∞∫
−∞

e−(y−iuσ)2/2e−(σu)2/2 dy

= eiux̄e−(σu)2/2
√

2π

∞∫
−∞

e−(y−iuσ)2/2dy = eiux̄−(1/2)σ 2u2

(2.52)

Then, using eq. (2.47) we obtain, as expected (Example 2.8(b)), E(X) = x̄.
Also, from the second derivative of ϕX(u) we get E(X2) = σ 2 + x̄2, which,
taking eq. (2.34) into account, agrees with the result of eq. (2.42b). Clearly,
the CF of a standardized normal r.v. can be obtained by setting x̄ = 0 and
σ = 1 in eq. (2.52). Moreover, since the moments of this r.v. are given by
eq. (2.42c) the series (2.49) converges for all u and we get

ϕX(u) =
∞∑
k=0

i2k
u2k

(2k)!
(2k)!
2kk! =

∞∑
k=0

(−u2/2)k

k! = e−u2/2

because i2k = (−1)k and in the last equality we used the well-known
expansion ex =∑∞

k=0 x
k/k! of the exponential function.

The problem of finding the PDF of a r.v. when its CF is known is addressed
by the so-called inversion formulas. In general, they may not be of easy use
in practice but their importance lies in the fact that they justify and prove the
statement that the CF provides a complete probabilistic description of the r.v.
under study. We give without proof (which can be found, for example, in
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Refs [1–3]) the following inversion formula:

Proposition 2.20 Let ϕ(u) and F(x) (we omit here the subscript X) be the
CF and PDF of a r.v. X, respectively. Then

F(b) − F(a) = lim
c→∞

1
2π

c∫
−c

e−iua − e−iub

iu
ϕ(u) du (2.53a)

for all points a,b (a < b) where F(x) is continuous.

This result implies that F(x) is uniquely determined by ϕ(u). In fact, if two
PDFs have the same CF then – by Proposition 2.20 – they agree for every
interval whose extremes are continuity points of F(x). Therefore, by virtue
of the characterizing properties of PDFs, the two PDFs must be identical.

For completeness, we give another inversion formula frequently found in
literature. This is due to Feller and states that for all a,b (a < b) where F(x)
is continuous

F(b) − F(a) = lim
c→0

1
2p

∫
R

e−iua − e−iub

iu
ϕ(u)e−c2u2

du (2.53b)

Things are easier if ϕ(u) is integrable on R because in this case we have

Proposition 2.21 If the CF ϕ(u) of a r.v. X is integrable on R then X is
absolutely continuous and the inversion formula reads

f (x) = 1
2π

∞∫
−∞

e−iuxϕ(u) du (2.54)

where f (x) is the pdf of X (or, in other words, F(x) = ∫ x
−∞ f (t) dt where

F(x) is the PDF of the r.v. X).

It is not difficult to see that eq. (2.54) expresses the fact that f (x) is just
the inverse Fourier transform of ϕ(u) and that the two functions f (x) and
ϕ(u) – owing to the second of eq. (2.45) – are a Fourier transform pair.

Now, in the light of the ‘moment-generating property’ of CFs expressed by
Proposition 2.19 and of eq. (2.49), the question could be asked if knowledge
of all moments (when they exist) of a r.v. X determines uniquely its PDF,
therefore allowing a complete probabilistic description of X. Similarly, one
may ask: if two r.v.s X,Y (defined on the same probability space) have the
same moments for all k = 1, 2, . . ., can we conclude that they have the same
PDF? This is, in general, a delicate problem which is beyond our scope; there-
fore we will limit ourselves to some general considerations. We noted above
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that the series expansion (2.49) determines the CF ϕX(u) within the interval
of convergence of the series on the r.h.s. However, since the knowledge of
this function over a finite interval is not sufficient for a unique determination
of F(x), it follows that if the series converges only for u = 0 (to E(X0) = 1)
the answer to the question above is negative. In other cases, provided that
some conditions are satisfied, the mathematical process of analytic contin-
uation (frequently used in complex analysis) leads, in general, to a positive
answer. In particular, we only state here the following results

Proposition 2.22 Let E(Xk), k = 0, 1, 2 . . ., be the (finite) moments of a
certain PDF F(x). Suppose that the series

∑∞
k=0 u

kE(Xk)/k! is absolutely
convergent for some u > 0. Then F(x) is the only PDF that has the moments
E(X0), E(X), E(X2), . . ..

Proposition 2.23 (a) If a r.v. X has finite moments of all order then a
sufficient condition in order that they identify its PDF is that there exists a
number c > 0 such that

lim
k→∞

c2kE(X2k)

(2k)! = 0 (2.55)

(b) If all moments of two r.v.s X,Y are finite, E(Xk) = E(Yk) for k =
0, 1, 2 . . . and eq. (2.55) holds, then FX(x) = FY (x) for all x ∈ R.

Incidentally, it should be noted that this equality, in general, does not
imply the equalityX = Y. In fact, consider for example the two r.v.sX = IA,
Y = IAC (i.e. the indicator functions of the sets A and AC) on a probability
space W such that P(A) = P(AC) = 1/2. Owing to eq. (2.22) we have
FX(x) = FY (x) for all x butX(w) �= Y(w) for allw ∈ W . On the other hand,
it is obvious that the equality X = Y necessarily implies FX(x) = FY (x).

A number of sufficient conditions other than (2.55) have been found for
the sequence of moments to identify the probability distribution and the
interested reader who desires to pursue this subject will find in literature the
‘Riesz criterion’, the ‘Carlemen criterion’ or the ‘Ghizzetti criterion’, just to
name a few. We do not consider them here and turn our attention to the
far-reaching concept of convergence in distribution.

Definition 2.5 Given the r.v.s Xn(n = 1, 2, . . .) and X with PDFs Fn(x)
and F(x), respectively, we say that Xn converges in distribution to X if
limn→∞ Fn(x) = F(x) at all points x where F(x) is continuous. In this case
we will write Xn → X[D].

A few remarks are in order. First, it is important to note that the definition
requires Fn to converge to a PDF. This is because there are cases in which
a sequence Fn may converge to a function G which is not a PDF (typically,
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G may fail to satisfy the conditions at infinity (D2) of Section 2.3). Second,
we did not distinguish between discrete and continuous PDFs because a
sequence of discrete PDFs may converge to a continuous PDF and con-
versely. Third, this type of convergence is also expressed by saying that
the sequence Fn converges weakly to F and writing Fn → F[w]. In the fol-
lowing, therefore, we will write indifferently Xn → X [D], Fn → F[w] or
Xn → X [w].

Now, although the convergence of random variables will be considered
in more detail in Chapter 4, Definition 2.5 has been given here in order to
state an important result on characteristic functions. In fact, we have the
following proposition:

Proposition 2.24 [Levy or Levy–Cramér theorem] Let Fn be a sequence of
PDFs and let ϕn be the sequence of their CFs. Then Fn → F[w] if and only if

lim
n→∞ ϕn(u) = ϕ(u) (2.56)

for all u, where F is a PDF whose CF is ϕ(u).

Three points are worthy of mention:

(i) the convergence in eq. (2.56) is the ordinary pointwise convergence
familiar from calculus;

(ii) Proposition 2.24 is a necessary and sufficient condition, that is, Fn →
F[w] implies ϕn(u) → ϕ(u) and ϕn(u) → ϕ(u) implies Fn → F[w];

(iii) in addition to the statement of the proposition, it can also be shown that
Fn → F[w] not only implies ϕn(u) → ϕ(u) but also that ϕn(u) → ϕ(u)
uniformly on any bounded interval of R.

As a final observation in this section one could ask if Xn →X [D]
implies the convergence of moments. In general the answer is negative
and some supplementary conditions are needed, as the following two
propositions show.

Proposition 2.25(a) Let Xn → X [D], then E[g(Xn)] → E[g(X)] for every
bounded continuous function g : R → R.

As a matter of fact, the condition
∫

R
g(x) dFn → ∫

R
g(x) dF – that is,

E[g(Xn)] → E[g(X)] for any continuous and bounded g(x) – is equiv-
alent to Definition 2.5 (see, for example, Ref. [1]) and it is sometimes
given as the definition of weak convergence while other authors [3] refer
to Proposition 2.25(a) as the ‘second generalized Helly’s theorem’.

Proposition 2.25(b) Let Xn → X[D]. If there exist an integer k > 0 and a
number C such that E(|Xn|k) ≤ C, then E(|X|k) < ∞ and E(Xj

n) → E(Xj)
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for 0 < j < k (where, clearly, this is the usual convergence of a sequence of
real numbers).

As anticipated above, more about convergence of random variables is
delayed to a later chapter.

2.5 Miscellaneous complements

In the light of the preceding developments it is our intention here to com-
plement those ideas and concepts by discussing a few topics which – being
worthy of attention in their own right – have only been considered briefly,
if at all, in order not to interrupt the main line of reasoning.

2.5.1 Almost-sure and almost-impossible events

We start by going back to the probability axioms introduced in Section 2.2.
Axiom (P1) states that P(W) = 1 for the sure event W ; then, since ∅ = WC

this implies P(∅) = 0 for the impossible event ∅. However, nothing is said
about the possible existence of other events with probability one (or zero).
Although this, at first sight, may seem in contrast with intuition, such events
do exist.

So, if A (A �= W) is an event with P(A) = 1 we say that A is an almost-
sure event; consequently P(AC) = 0 and we call AC an almost-impossible
event. The important point is that almost-sure and almost-impossible events
behave, respectively, as W and ∅ as far as probabilities are concerned; in
other words we can say that they are sure or impossible ‘in probability’. In
fact, we already know that given an (ordinary) event B then B ∪ ∅ = B and
P(B ∪ ∅) = P(B). If, on the other hand, A is an almost-impossible event the
equality B ∪ A = B no longer holds but P(B ∪ A) = P(B) remains valid.

In this light, it is evident that the main properties of these events are as
follows:

If A is an almost-impossible event, then

(a1) P(B ∩ A) = P(A) = 0 and

(a2) P(B ∪ A) = P(B)

for all B ⊂ W .
If C is an almost-sure event, then

(b1) P(B ∩ C) = P(B) and

(b2) P(B ∪ C) = P(C) = 1

for all B ⊂ W .

The proof is easy and we only consider (a1) and (a2). Property (a1) is
obtained by noting that B ∩ A ⊂ A which, by virtue of the monotonicity
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property, implies P(B∩A) ≤ P(A) = 0 and therefore P(B∩A) = 0. For (a2)
we have B ∪ A = B ∪ (BC ∩ A) and since the two events on the r.h.s. are
disjoint then P[B ∪ (BC ∩ A)] = P(B) + P(BC ∩ A) = P(B), where the last
equality holds because of (a1).

A consequence of the definitions above is that the equalities P(A) = 0 or
P(A) = 1 do not necessarily imply that A = ∅ or A = W , respectively. On
the other hand, the equalities A = ∅ or A = W do imply that P(A) = 0 or
P(A) = 1, respectively (clearly, this remark is true for any two setsA,B; while
A = B implies P(A) = P(B) the reverse statement, in general, is not true).

The considerations above may appear more familiar when considered
from the measure viewpoint. In fact, for example, if W = [0, 1] and S is
the σ -algebra of its Borel subsets, the classical probability concept that any
real number 0 ≤ a ≤ 1 picked at random has the same probability of being
chosen is obtained by assigning equal probabilities to all intervals of the same
length. In fact, the condition of equal probabilities implies that any individ-
ual real number has a probability zero (i.e. is an almost-impossible event) and
any countable union of such numbers has also probability zero by virtue of
σ -additivity. However, σ -additivity holds at most for countable unions and
an interval – an uncountable union of real numbers – may have a non-zero
probability. Therefore, assigning equal probabilities to intervals with the
same length determines uniquely a function P satisfying all the probability
axioms. It is not difficult to see that in this case P is the Lebesgue measure µ

on [0,1] which, as known from analysis, assigns zero measure to any individ-
ual point a (and to any finite or countable union of such points) and measure
β − α to any subinterval (α, β) – open, closed or semiclosed – of [0, 1].

Incidentally, we note that the probability P = µ considered here defines
the so-called uniform probability distribution on [0, 1]. More generally,
by assigning equal probabilities to subintervals (of equal length) of a
finite interval [a,b] it is not difficult to see that we determine the prob-
ability measure P = µ/(b − a) which in turn, leads to the distribution
function

F(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x ≤ a
x− a
b− a

, a < x ≤ b

1, x > b

(2.57a)

called the uniform PDF on [a,b]. This function is absolutely continuous and
its pdf is f (x) = 1/(b − a) for x ∈ (a,b) and zero elsewhere. Also, it is
immediate to determine that a r.v. X whose PDF is given by (2.57a) has
moments given by

E(Xk) =
b∫
a

xkf (x) dx = bk+1 − ak+1

(b− a)(k+ 1)
(2.57b)
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from which it follows E(X) = (a+b)/2 and, with a little algebra, Var(X) =
(b2 − a2)/12. The characteristic function is also obtained with little effort
and we get

ϕ(u) = eiub − eiua

iu(b− a)
(2.57c)

which gives an indeterminate form 0/0 for u = 0; however ϕ(u) → 1 as
u → 0. If a = −b the function F(x) is even, the CF is real and can be written
as ϕ(u) = sin(bu)/bu.

2.5.2 More on conditional probability

The second aspect we consider here deals with conditional probabilities. We
introduced the concept informally in Section 1.2.1 and made some further
comments in Section 2.2. There we pointed out that – given a probabil-
ity space (W , S,P) and a conditioning event G ∈ S with P(G) > 0 – the
set function PG :W → [0, 1] defined (for A ∈ S) by the relation PG(A) =
P(A ∩G)/P(G) is a probability function in its own right which, often, is
also denoted by P(A|G). Also, if X :W → R is a r.v. on (W , S,P) we observe
that X is a r.v. (i.e. measurable) on the space (W , S,PG) as well, because –
we recall from Definition 2.3 – the measurability of functions is independent
on the measure P.

We have now two probability measures on (W , S), that is, P and PG,
and the first thing to note is that PG is absolutely continuous with respect
to P because PG(A) = 0 whenever P(A) = 0. Then, the Radon–Nikodym
theorem states that there is an essentially unique function H : W → R

such that

PG(A) =
∫
A

H dP

This function is called the Radon–Nikodym derivative of PG with respect to
P and it often symbolically denoted by dPG/dP. We state now that

H = IG
P(G)

(2.58)

where IG is the indicator function of the set G. In fact, by the defining
properties of abstract Lebesgue integral we have

P(A ∩G) =
∫

A∩G
dP =

∫
W

IA∩G dP =
∫
W

IAIG dP =
∫
A

IG dP
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where the third equality holds because it is immediate to prove that IA∩G =
IAIG. Substituting this result into the definition of PG we get for every A ∈ S

PG(A) = 1
P(G)

∫
A

IG dP (2.59)

which, in the light of uniqueness of H, proves eq. (2.58).
Given a r.v. X on W , a more interesting – and useful in practice – case is

when the conditioning set G is the counterimage through X of a Borel set
C ⊂ R, that is, whenG = X−1(C). Then, calling PC the probability measure
defined by

PC(A) = P[A ∩X−1(C)]
P(X−1(C))

(2.60)

(Incidentally, this notation may seem strange because PC is a measure in
(W , S) but C is a Borel set in the domain of X; rigorously one should write
PX−1(C) but then the notation would become too heavy) we can consider
its image measure PX|C in R and note that it is absolutely continuous with
respect to PX (the image measure of P). By a similar argument as above,
the Radon–Nikodym theorem applies. So – recalling the relation between
the abstract Lebesgue integrals in dP and dPX and noting that X−1(B) ∩
X−1(C) = X−1(B ∩ C) – from the chain of equalities

PX|C(B) = PC[X−1(B)] = P[X−1(B ∩ C]
P(X−1(C))

= 1
P(X−1(C))

∫
X−1(B∩C)

dP

= 1
PX(C)

∫
B∩C

dPX = 1
PX(C)

∫
B

IC dPX (2.61)

it follows that the Radon–Nikodym derivative dPX|C/dPX is

dPX|C
dPX

= IC
PX(C)

(2.62)

If now we turn our attention to the conditional PDF defined as

FX|C(x) = PC[X−1( Jx)] (2.63)
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where Jx = (−∞,x], we can use the basic result of eq. (2.61) to get

FX|C(x) = 1
PX(C)

∫
Jx

IC dPX = 1
PX(C)

∫
Jx

IC dFX (2.64)

where the second integral is a Lebesgue–Stieltjes integral. If, in addition, the
function FX is absolutely continuous on R then the pdf fX exists and we can
take the derivative of both sides to obtain the conditional pdf in terms of the
unconditional one

fX|C(x) = ICfX(x)
PX(C)

= ICfX(x)∫
C
fX(x) dx

(2.65a)

On the other hand, if FX is discrete we have

pX|C(xk) = ICpX(xk)
PX(C)

= ICpX(xk)∑
xi∈C p(xi)

(2.65b)

Equations (2.65a) and (2.65b) show that fX|C (or pX|C) is zero outside the
setC while inC, besides the multiplicative constant 1/PX(C), coincides with
the unconditioned pdf (or pmf). The factor 1/PX(C) is necessary in order to
satisfy the normalization condition.

Using the conditional characteristics we can define and calculate the con-
ditional moments just as we did in the unconditioned case. So, we can
define

E(Xk|C) =
∫
W

Xk dPC =
∫
R

xk dPX|C =
∫
R

xk dFX|C (2.66a)

where the second equality holds because of the relation between PC and its
image measure PX|C and the third equality holds because of the definition of
Lebesgue–Stieltjes integral. Then, by virtue of eq. (2.62) we also have

E(Xk|C) = 1
PX(C)

∫
C

xk dFX (2.66b)

where the integral on the r.h.s. is a sum or a Lebesgue integral on R (which in
most practical cases coincides with an ordinary Riemann integral) depend-
ing on whether FX is discrete or absolutely continuous. Similarly, we can
define the conditional-CF as ϕX|C(u) = E(eiuX|C) and, more generally, the
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expectation of a (Borel) function g(X). In the absolutely continuous case,
for example, we get

E[g(X)|C] =
∫
C g(x)fX(x) dx∫
C fX(x) dx

(2.67)

Clearly, when all events B ⊂ R are independent of the conditioning event C
then the conditioned characteristics coincide with the unconditioned ones;
the simplest case of this situation is when C = R or, in the space (W , S),
when G = W .

We close this section with a final result regarding conditional expecta-
tions which is somehow a counterpart of the total probability formula of
eq. (1.12). This result is one form of the so-called total expectation theorem
and is given in the following proposition:

Proposition 2.27 (Total expectation theorem) Let the sets Gi ∈ S be such
thatW = ∪iGi, Gi∩Gj = ∅ for i �= j and P(Gi) > 0 for all i = 1, 2, . . . . Then

E(X) =
∑
i

P(Gi)E(X|Gi) (2.68)

In fact, as a consequence of the Radon–Nikodym theorem, we can write
E(X|Gi) = [P(Gi)]−1

∫
Gi
X dP but then, owing to the properties of the

abstract Lebesgue integral we get

E(X) =
∫
W

X dP =
∫

⋃
i Gi

X dP =
∑
i

∫
Gi

X dP

so that Proposition 2.26 follows from these two results.
For the moment, the considerations above suffice and we leave further

developments on conditional probability to future sections. In particular,
for continuous random variables we will show how one can condition on an
event with zero probability, that is an event of the form X = x0 where x0 is
a specified value and PX{x0} = P(X−1{x0}) = 0.

2.5.3 Functions of random variables

The third topic we consider here deals with random variables with a known
functional dependence on another random variable. So, let X be a r.v. with
known probability distribution FX and let g : R → R be a well-behaved Borel
function. Since we already know that the functionY(w) ≡ g(X(w)) : W → R

is itself a random variable, we may ask for its probability distribution.
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This is not always simple and we will consider only some frequently
encountered cases.

Suppose first that X is absolutely continuous with pdf fX and g is mono-
tonically increasing. Then, given a value y, we have that Y ≤ y whenever
X ≤ x (where y = g(x)) and Y is also absolutely continuous. Moreover,
in this case the inverse function g−1 exists is single-valued and g−1(y) = x;
therefore

FY (y) = P(Y ≤ y) = P[X ≤ g−1(y)] = FX(g−1(y)) (2.69a)

then, taking the derivative with respect to y we obtain the pdf of Y as

fY (y) = fX(g−1(y))
dg−1(y)

dy
(2.69b)

If, on the other hand, g is monotonically decreasing, then we have

FY (y) = P(Y ≤ y) = P[X > g−1(y)]
= 1 − P[X ≤ g−1(y)] = 1 − FX(g−1(y))

(2.70a)

and differentiating

fY (y) = −fX(g−1(y))
dg−1(y)

dy
(2.70b)

By noting that the derivative dg−1/dy is positive when g is monotonically
increasing and negative when g is monotonically decreasing, eqs (2.69b)
and (2.70b) can be combined into the single equation

fY (y) = fX(g−1(y))

∣∣∣∣∣dg−1(y)
dy

∣∣∣∣∣ (2.71)

Example 2.10(a) Let X be a r.v. with pdf fX = e−x(x ≥ 0) and let Y =
g(X) = √

X. Then x = g−1(y) = y2, fX(g−1(y)) = e−y2
and dg−1/dy = 2y,

so that, by eq. (2.69b), we get fY (y) = 2ye−y2
(y ≥ 0). Clearly, if we note

that FX(x) = 1−e−x we can use eq. (2.69a) to get the PDF FY (y) = 1−e−y2
,

which, as expected, can also be obtained by computing the integral FY (y) =∫ y
0 fY (t)dt. As an easy exercise, the reader is invited to sketch a graph of fX

and fY and note that they are markedly different.

Example 2.10(b) Let us now consider the linear case Y = g(X) = aX + b.
This is an increasing function for a > 0 and decreasing for a < 0. If fX(x)
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is the pdf of X, eq. (2.71) yields fY (y) = |a|−1fX((y − b)/a). Also, FY (y) =
FX((y− b)/a) if a > 0 and FY (y) = 1 − FX((y− b)/a) if a < 0.

So, for example, if the original r.v. X is normally distributed – that is, its
pdf is given by eq. (2.29a) – and a > 0 we get

fY (y) = 1

aσ
√

2π
exp

(
− (y− ax̄− b)2

2a2σ 2

)

meaning that Y is a Gaussian r.v. itself with mean ȳ = ax̄ + b and
variance σ 2

Y = a2σ 2.

Example 2.10(c) Starting again from the normal pdf of eq (2.29a) we can
obtain the pdf of the standardized normal r.v. Y = (X − x̄)/σ . Noting that
g−1(y) = σy+ x and dg−1/dy = σ we get

fY (y) = 1√
2π

exp(−y2/2)

which, as mentioned at the end of Example 2.8, is a normal r.v. with x̄ = 0
and σ = 1.

If g is not monotone, it can often be divided into monotone parts; the
considerations above then apply to each part and in the end the sum of the
various parts is taken. A simple example of this latter case is Y = g(X) = X2

which is decreasing for x < 0 and increasing for x > 0. Since g(x) is always
positive for all x (or, stated differently, g−1(y) = ∅ for y < 0) the r.v. Y
cannot take on negative values and therefore fY (y) = 0 for y < 0. For y > 0
it is left to the reader to determine that the sum of the two parts leads to
fY (y) = (2

√
y)−1(fX(−√

y) + fX(
√
y)).

Example 2.11 In applications it is often of interest to have a probabilistic
description of the maximum or minimum of a number n of r.v.s. As we will
see in later chapters, an important case is when the r.v.s X1,X2, . . . ,Xn are
independent and have the same PDF F(x). Now, first of all it can be shown
that the function Y = max{X1, . . . ,Xn} is itself a r.v. (as is the minimum).
Then, since FY (y) = P(max{X1, . . . ,Xn} ≤ y) = P(X1 ≤ y, . . . ,Xn ≤ y) the
assumption of independence leads to

FY (y) = P(X1 ≤ y, . . . ,Xn ≤ y) =
n∏
i=1

P(X1 ≤ y) = (F(y))n (2.72a)
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and therefore, if F is absolutely continuous

fY (y) = n(F(y))n−1f (y) (2.72b)

where f is the derivative of F. We note here that the expression P(X1 ≤
y, . . . ,Xn ≤ y) is written in the usual ‘shorthand’ notation of probabil-
ity theory; in rigorous mathematical symbolism, however, this probability

is written P
(
∩ni=1X

−1
i (−∞, y]

)
. The rigorous notation is useful when we

consider the minimum of the r.v.s X1,X2, . . . ,Xn. In fact, if Jy = (−∞, y]
we have

FY (y) = P(min{X1, . . . ,Xn}) = P

(⋃
i

X−1
i ( Jy)

)

= P

[⋂
i

(X−1( Jy))C
]C

= 1 − P

[⋂
i

(X−1( Jy))C
]

where in the third equality we used de Morgan’s law. Then, by virtue of

independence P
[
∩i(X−1

i ( Jy))C
]

= ∏
i P
[
X−1
i ( Jy)

]C = (1 − F(y))n, so that

putting the pieces together we finally get

FY (y) = 1 − (1 − F(y))n (2.73a)

and if F is absolutely continuous (F′ = f )

fY (y) = n(1 − F(y))n−1f (y) (2.73b)

So, for instance, if F is the uniform PDF (eq. (2.57a)) on the interval [a,b] =
[0, 1] then FY (y) = n(1 − y)n−1 where 0 ≤ y ≤ 1.

If X is a discrete r.v. whose range is the set AX = {x1,x2, . . .} = {xi} then
Y = g(X) is also a discrete r.v. because its range is the setAY = {y1, y2, . . .} =
{yk} (note that the elements of AX and AY are labelled by different indexes
because, in general, a given value yk may be the image – through g – of more
than one xi). In this case, in general, it is not convenient to go through the
PDF but it is better to determine the mass distribution pY by first identifying
the values yk and then using the relation

pY (yk) = P(Y = yk) = P(X = g−1(yk)) =
∑
xi

pX(g−1(yk)) (2.74)

where the sum is taken on all values xi (when there is more than one) which
are mapped in yk. So, for instance, let X be such that AX = {x1 = −1,
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x2 = 0,x3 = 1}, pX(−1) = pX(0) = 0.25 and pX(1) = 0.5 and let Y = X2.
Then AY = {y1, y2} = {0, 1} and g−1(y2) = −1 ∪ 1 = x1 ∪ x3 so that
in calculating pY (y2) we must sum the probabilities pX(x1) and pX(x3).
Therefore pY (y2) = 0.75. By contrast, the sum is not needed in calculating
pY (y1) = 0.25.

2.6 Summary and comments

This chapter introduces the axiomatic approach to probability by giving a
number of fundamental concepts and results which are at the basis of all
further developments in both fields of probability theory and statistics. In
essence, the axiomatic approach consists in calling ‘probability’ any set func-
tion that satisfies certain properties, together with the definition of what
exactly is meant by the term ‘event’. Clearly, in order to speak of proba-
bility this latter definition is a necessary prerequisite because probabilities
can only be assigned to events. Both definitions, probability and events, are
given in Section 2.2 by introducing the concepts of elementary probability
spaces – which apply to all cases with a finite number of possible outcomes –
and probability spaces, where the restriction of finiteness is relaxed. These
notions are sufficiently general to include as special cases all the definitions
of probability considered in Chapter 1.

In mathematical terms, a probability space is just a finite measure space
and a probability P is a σ -additive measure defined on a σ -algebra of sub-
sets (the events) of a ‘universal’ set W with the property P(W) = 1. The
domain of P is taken to be a σ -algebra because measure theory – by virtue of
the construction of the Lebesgue extension of measures – guarantees that a
knowledge of the values taken on by P on a limited number of ‘elementary’
events (which, in general, form a semialgebra of subsets of W) is suffi-
cient in order to determine uniquely P on a much broader class of events,
this class being, in fact, a σ -algebra. The extension procedure is outlined
in Section 2.2.1 and is summarized by the result known as Caratheodory
extension theorem.

A fundamental aspect of probability which distinguishes it from measure
theory is the notion of independent events. Due to its far-reaching con-
sequences in both the theory and real-word applications of statistics, this
concept is discussed in some detail in Section 2.2.2, where it is pointed
out that the intuitive idea of independence as the absence of causal rela-
tion between two (or more) events is translated into mathematical language
by a product rule between the probabilities of the events themselves.

At this point we consider the fact that in many applications the analyst
is mainly interested in assigning probabilities to numerical quantities asso-
ciated with the outcomes of an experiment rather than to the outcomes
themselves. This task is accomplished by introducing the concept of r.v.,
that is, a real-valued function defined on W and satisfying a ‘measurability’
condition with respect to the σ -algebra ofW and the σ -algebra of Borel sets
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of the real line R. The condition is formulated by requiring that the inverse
image of any Borel set (in the domain of the random variable) be an element
of the σ -algebra of W , thus allowing the possibility of assigning probabili-
ties to subsets of R (in the form of open, closed, semiclosed intervals or of
individual real numbers, just to mention the most frequently encountered
cases).

A r.v. X, in turn, induces a probability measure PX on the real line and
therefore a real probability space (R, B,PX). This space, in general, is all that
is needed in applications because, through the measure PX, the analyst can
obtain a complete probabilistic description of X by defining the so-called
PDF of X, usually denoted by FX(x). Clearly, PX and FX are strictly related;
in fact, mathematically speaking, PX is the Lebesgue–Stieltjes measure cor-
responding FX and FX is the generating function the measure PX (this name
comes from the fact that in analysis one usually defines a Lebesgue–Stieltjes
measure by means of its generating function and not the other way around
as it is done in probability).

With the concept of PDF at our disposal, Section 2.3.1 classifies the vari-
ous types of random variables according to the continuity properties of their
PDFs. A first classification distinguishes between discrete and continuous
r.v.s by also introducing the concept of probability mass distribution for
discrete r.v.s. Then, among continuous r.v.s a further classification distin-
guishes between absolutely continuous and singular continuous r.v.s, the
distinction being due to the fact that for the former type – by far the most
important in applications – it is possible to express their PDF by means of the
ordinary Lebesgue integral of an appropriate pdf fX(x) which, in turn, is the
derivative of FX(x). This possibility relies ultimately on an important result
of analysis (given in Appendix B) known as Radon–Nikodym theorem.

The conclusion is that the PDF of the most general type of r.v. can be
expressed as the sum of a discrete part, an absolutely continuous part and
a continuous singular part which, however, is generally absent in most
practical cases. Moreover, for the discrete and the absolutely continuous
case, respectively, the mass distribution and the pdf provide a complete
probabilistic description of the r.v. under study.

Proceeding in the discussion of fundamentals, Section 2.3.2 introduces
the most common numerical descriptors of r.v.s – the so-called moments
of a r.v. – which are defined by means of abstract Lebesgue integrals on
the space W . Special cases of moments – the first and second moment,
respectively – are the familiar quantities known as mean and variance. The
properties of moments are then considered together with the important result
of Chebychev’s inequality. Subsequently, the problem of actually calculating
moments is considered by first noting that it is generally not convenient to
compute abstract integrals on W . In this regard, in fact, it is shown that
moments can be obtained as Lebesgue–Stieltjes integrals on the real line and
that these integrals, in the most common cases of discrete and absolutely
continuous r.v.s respectively, reduce to a sum and to an ordinary Riemann
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integral. A few examples are then given in order to illustrate some frequently
encountered cases.

Besides the PDF, another way of obtaining a complete probabilistic
description of a r.v. X is its characteristic function ϕX(u). The concept is
introduced in Section 2.4 together with some comments on the ‘parallel’
notion of moment generating function (denoted MX(s)). The main proper-
ties of CFs are given by also showing how moments (when they exist) can
be easily computed by differentiating ϕX.

The fact that the CF provides a complete probabilistic description of a r.v.
is due to the existence of a one-to-one relationship between PDFs and CFs.
The problem of obtaining the CF from the PDF is given by the definition of
CF itself while the reverse problem is addressed by the so-called inversion
formulas which, in the general case, are important for their mere existence
but are of little practical use. In the particular case of absolutely continuous
r.v.s, however, things are easier because the correspondence reduces to the
fact that the pdf fX and the CF ϕX are a Fourier transform pair and the notion
of Fourier transform is well known and widely used in Engineering and
Physics literature. The section closes with a brief discussion of convergence in
distribution (or weak convergence) of sequences of r.v.s for its strict relation
with pointwise convergence of characteristic functions.

Finally, in Section 2.5 we consider a number of complementary ideas and
concepts which are worthy of mention in their own right but have been
delayed in order not to interrupt the main line of reasoning. Section 2.5.1
introduces the notion of almost-sure (and almost impossible) events by point-
ing out that there exist events with probability one (and zero) which are
different from W (and ∅). This is not surprising in the light of measure
theory when, for example, one considers the Lebesgue measure on a finite
interval of the real line. Subsequently (Section 2.5.2) we extend the notion
of conditional probability by showing how, in general – given an event with
strictly positive probability – there is no difficulty in defining such concepts
as the conditional PDF of a r.v., the conditional CF, etc. The chapter closes
with Section 2.5.3 where it is shown with some examples how to obtain the
PDF, pdf or mass distribution of a function g(X) when the PDF (pdf or mass
distribution) of the r.v. X is known.
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3 The multivariate case:
random vectors

3.1 Introduction

The scope of this chapter is to proceed along the line of reasoning of
Chapter 2 by turning our attention to cases in which two or more random
variables are considered together. With this in mind, we will introduce the
new concept of ‘random vector’ by considering measurable vector-valued
functions defined on probability spaces. The main mathematical aspects
parallel closely the one-dimensional case but it is worth pointing out that
now the notion of stochastic independence will play a major role. In fact,
this concept is peculiar to probability theory and distinguishes it from being
merely an application of analysis.

3.2 Random vectors and their distribution functions

The definition of random vector is a straightforward generalization of the
concept of random variable; in fact

Definition 3.1 Given a probability space (W , S,P), an n-dimensional
random vector is a function X: W → Rn such that X−1(B) ∈ S for every
Borel set B ∈ B(Rn) where, as customary, we denote by B(Rn) or Bn the
σ -algebra of all Borel sets of Rn. In this regard it is important to note that
the σ -algebra Bn is the cartesian product of the n terms B × B × · · · × B,
meaning, in other words, that every n-dimensional Borel set A ∈ Bn is of
the form A = A1 × A2 × · · · × An where A1, . . . ,An are one-dimensional
Borel sets.

So, in other words, a random vector is a measurable function from W
to Rn just as a random variable is a measurable function from W to the
real line R. In the present case, however, the vector-valued function X has
n components – that is, X = (X1,X2, . . . ,Xn) – and the question on the
measurability of each individual function Xi(i = 1, . . . ,n) arises. The main
result is that X is measurable if and only if each function Xi is measurable,
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or, equivalently:

Proposition 3.1 The vector-valued function X is a random vector if and
only if each one of its components Xi is a random variable.

As in the one-dimensional case, the original probability space (W , S,P) is
of little importance in applications and one should not worry too much about
measurability because the concept is sufficiently broad to cover almost all
cases of practical interest. Therefore, given a random vector X, the analyst’s
main concern is the (real) induced probability space (Rn, Bn,PX), where the
probability measure PX is defined by the relation

PX(B) ≡ P[X−1(B)] = P{w ∈ W : X(w) ∈ B} (3.1a)

for all B ∈ Bn (it is not difficult to show that PX is, indeed, a probability
measure). Again, we note that a common ‘shorthand’ notation is to write
P(X ∈ B) to mean the probability defined by eq. (3.1a). Also, in the light of
the fact thatB can be expressed as the cartesian product of n one-dimensional
Borel sets B1, . . . ,Bn, the explicit form of eq. (3.1a) is

PX(B) ≡ P[X−1(B)] = P[X−1(B1 × · · · × Bn)] = P

(
n⋂
i=1

X−1
i (Bi)

)
(3.1b)

By means of PX we can define the so-called joint probability distribution
function (joint-PDF) FX : Rn → [0, 1] as

FX(x) = PX{w ∈ W : X1(w) ≤ x1,X2(w) ≤ x2, . . . ,Xn(w) ≤ xn}
(3.2a)

where x ∈ Rn is the vector whose components are x1,x2, . . . ,xn and it is
understood that all the inequalities on the r.h.s. of eq. (3.2a) must hold
simultaneously. In rigorous (and rather cumbersome) notation it may be
worth noting that FX(x) can be expressed in terms of the original proba-
bility P as

FX(x) = P

(
n⋂
i=1

{X−1
i (−∞,xi]}

)
(3.2b)

(and probably this is why, in agreement with the ‘shorthand’ notation above,
one often finds the less intimidating FX(x) = P(X1 ≤ x1,X2 ≤ x2, . . . ,
Xn ≤ xn)).

The main properties of the joint-PDF are the natural extensions of
(D1)–(D3) given in Chapter 2 and can be summarized as follows:

(D1′) FX(x) = FX(x1,x2, . . . ,xn) is non-decreasing and continuous to the
right in each variable xi (i = 1, . . . ,n),
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(D2′) limxi→−∞ FX(X) = 0 and limX→∞ FX(x) = 1, where it should be
noted that the first limit holds for any particular xi tending to −∞
(with all other coordinates fixed) whereas the second property requires
that all xi tend to +∞. So, in a different notation, the two properties
can be expressed as

FX(−∞,x2, . . . ,xn) = FX(x1, −∞, . . . ,xn)
= · · · = FX(x1,x2, . . . , −∞) = 0; FX(+∞, +∞, . . . , +∞) = 1

respectively.

In mathematical terminology – as in the one-dimensional case
(Section 2.3) – one refers to PX as the Lebesgue–Stieltjes measure deter-
mined by FX and, conversely, to FX as the generating function of the (finite)
measure PX.

If now we turn our attention to the property expressed by eq. (2.15), we
find that its multi-dimensional generalization is a bit more involved. For sim-
plicity, let us consider the two-dimensional case first. The two-dimensional
counterpart of the half-open interval (a,b] is a rectangle R whose points
satisfy the inequalities a1 < x1 ≤ b1 and a2 < x2 ≤ b2; with this in mind it
is not difficult to determine that

P(X ∈ R) = FX(b1,b2) − FX(b1, a2) − FX(a1,b2) + FX(a1, a2) (3.3a)

and going over to the more complicated n-dimensional case we get

P(X ∈ R) =
∑

(−1)kFX(c1, c2, . . . , cn) (3.3b)

where now (i) R is the n-dimensional parallelepiped (a1,b1] × (a2,b2] ×
· · · × (an,bn], (ii) the sum is extended to all the 2n possible choices of the
ci’s being equal to ai or bi – that is, the vertexes of the parallelepiped – and
(iii) k represents the number of ci’s being equal to ai. For instance, if n = 3
we get

P(X ∈ R) = FX(b1,b2,b3) − FX(b1,b2, a3) − FX(b1, a2,b3)

− FX(a1,b2,b3) + FX(b1, a2, a3) − FX(a1,b2, a3)

+ FX(a1, a2,b3) − FX(a1, a2, a3)

So, to every random vector there corresponds a joint-PDF which satisfies
the properties above. The reverse statement, however, is not true in general
unless we add another property to (D1′) and (D2′): for a function F to be the
joint-PDF of some random vector the sum on the r.h.s. of eq. (3.3b) must be
non-negative for any ai,bi such that ai ≤ bi (i = 1, 2, . . . ,n). If a function
F satisfies these three properties, then it is the joint-PDF of some random
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vector although, as in the one-dimensional case, this vector is not uniquely
determined by F. This is only a minor inconvenience without significant
consequences in most practical cases.

If all the components of a random vector are discrete random variables,
we speak of discrete random vector. More specifically, a random vector
X = (X1,X2, . . . ,Xn) is discrete if there is a finite or countable set AX ⊂
Rn such that P[(X1,X2, . . . ,Xn) ∈ AX] = 1; in this case – besides being
understood that the set AX is the range of X – the function pX : Rn → [0, 1]
defined by

pX(x1,x2, . . . ,xn) ≡ P(X1 = x1,X2 = x2, . . . ,Xn = xn) (3.4)

is called the joint probability mass function (joint-pmf) of X and satisfies the
normalization condition∑

all x

pX =
∑
all x1

· · ·
∑
all xn

pX(x1, . . . ,xn) = 1 (3.5)

The other type of random vector commonly encountered in applications
is called jointly absolutely continuous. In this case there is a measurable
non-negative function fX on Rn such that for all B ∈ Bn we have

PX(B) =
∫
B

fX dµn (3.6)

where µn denotes here the n-dimensional Lebesgue measure. The function
fX(x1,x2, . . . ,xn) is called the joint probability density function (joint-pdf)
of X and its main properties are the generalization of the one-dimensional
case (eqs (2.23), (2.25a) and (2.25b)), that is

FX(x1,x2, . . . ,xn) =
x1∫

−∞

x2∫
−∞

· · ·
xn∫

−∞
fX(t1, t2, . . . , tn) dt1 dt2 · · · dtn

(3.7a)

fX(x1, . . . ,xn) = ∂FX(x1, . . . ,xn)
∂x1 · · · ∂xn (3.7b)

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞
fX(x1,x2, . . . ,xn) dx1 dx2 · · · dxn = 1 (3.7c)

As in the one-dimensional case, discrete and absolutely continuous ran-
dom vectors, or combinations thereof, are not the only possibilities because
Proposition 2.11 on the decomposition of measures still holds in Rn and the
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decomposition of a general PDF, in turn, reflects the decomposition of its
probability measure. The cases shown above, however, are by far the most
common in applications and there is generally no need – besides a specific
theoretical interest – to introduce further complications which, if and when-
ever necessary, will be considered in future discussions. So, we close this
section here and turn our attention, once again, to the important role of
stochastic independence.

3.2.1 Marginal distribution functions and independent
random variables

In the preceding section we pointed out that each individual componentXi of
a random vectorX = (X1, . . . ,Xn) is a random variable itself. Consequently,
it becomes important to examine the relation between the joint-PDF ofX and
the PDF of its components in order to answer the following two questions:

(i) given the joint-PDF of X is it possible to determine the PDF of each Xi
or the joint-PDF of some of theXi taken together and forming a random
vector with m(m < n) components?

(ii) given all the PDFs Fi(x) of each Xi is it possible to obtain the joint-PDF
FX(x1, . . . ,xn) of the random vector X?

Let us consider question (i) first. The answer is always yes because the
joint-PDF of X implicitly contains the joint-PDF of any vector obtained by
eliminating some of its components. This PDF can be determined from FX
by letting all the components to be eliminated tend to infinity; so, if we call
Y the vector obtained by eliminating the kth component of X we have

FY(x1, . . . ,xk−1,xk+1, . . . ,xn) = lim
xk→∞FX(x1, . . . ,xn) (3.8)

Similarly, if we eliminate any 2, 3, . . . ,n−1 components of X the PDF of the
new vector will be a function of the remaining n− 2,n− 3, . . . , 1 variables,
respectively, and the r.h.s. of eq. (3.8) will be a multiple limit where all the
variables to be eliminated tend to +∞. All the possible ‘sub-PDFs’, so to
speak, obtained like this are called marginal-PDFs of the original vector X.
Consider the two-dimensional case as an example; here we have a vector
X = (X,Y) whose joint-PDF is the function FX(x, y) (often also denoted by
FXY (x, y)) and the two marginal-PDFs are the one-dimensional PDFs of the
random variables X and Y, respectively, that is,

FX(x) = FXY (x, ∞) ≡ lim
y→∞FXY (x, y)

FY (y) = FXY (∞, y) ≡ lim
x→∞FXY (x, y)

(3.9)
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where, clearly, FX(x) is associated to the probability measure PX: B →
[0, 1] and FY (y) is associated to the probability measure PY : B → [0, 1]
(we recall that B is the collection of all Borel sets of the real line). So, the first
part of eq. (3.9) tells us that FX(x) is the probability that the r.v. X takes
on a value less than or equal to x when all the possible values of Y have
been taken into account and, similarly, the second part of eq. (3.9) states
that FY (y) is the probability that the r.v. Y takes on a value less than or
equal to y when all the possible values of X have been taken into account.
Therefore – continuing with the two-dimensional case for simplicity – it is
not difficult to see that the marginal-pmfs of a discrete random vector are
given by

pX(x) =
∑
all y

pXY (x, y)

pY (y) =
∑
all x

pXY (x, y)
(3.10a)

where pXY (x, y) is the joint-pmf of the two r.v.s X,Y forming the vector X.
Similarly, if X is a two-dimensional absolutely continuous random vector
with joint-pdf fXY (x, y) = ∂FXY/∂x∂y, the two marginal (one-dimensional)
pdfs are

fX(x) =
+∞∫

−∞
fXY (x, y) dy

fY (y) =
+∞∫

−∞
fXY (x, y)dx

(3.10b)

Example 3.1(a) Let X be a discrete two-dimensional random vector whose
joint-pmf is

pXY (x, y) = (1 − q)2qx+y (3.11)

where q is a constant 0 ≤ q < 1 and the variables x, y can only take on
natural values (i.e. 0, 1, 2, . . .). Then eq. (3.10a) yields for the marginal-pmfs

pX(x) = qx(1 − q)2
∑
all y

qy = (1 − q)qx

pY (y) = qy(1 − q)2
∑
all x

qx = (1 − q)qy
(3.12)

because the series
∑

n q
n converges to (1 − q)−1 whenever 0 ≤ q < 1. In

addition, the reader is invited to verify that the joint-pmf (3.11) satisfies the
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normalization condition of eq. (3.5) which, in this case, is written∑
all x

∑
all y

(1 − q)2qx+y = 1

Example 3.1(b) Let the two-dimensional absolutely continuous random
vector X have the joint-pdf

fX(x, y) = 1

2π
√

3
exp

{
−1

3
(x2 + xy+ y2)

}
(3.13a)

then, using the first of eqs (3.10b) we can obtain the marginal-pdf of the
r.v. X by integrating (3.13a) in dy over the entire real line. In order to do so
we start by rewriting fX(x, y) as

fX(x, y) = 1

2π
√

3
exp

(
−x

2

4

)
exp

(
−1

3

(
y+ x

2

)2
)

(3.13b)

so that the first exponential can be factored out of the integral in dy. Then,
by performing the change of variable t = y+ x/2 we get

fX(x) = 1

2π
√

3
exp(−x2/4)

∞∫
−∞

exp(−t2/3) dt

= 1
2
√

π
exp(−x2/4)

(3.14a)

where in the last equality we used the result
∫∞
−∞ exp(−ax2) dx = √

π/a
(which can easily be found in integral tables). Finally, by symmetry, it is
immediate to obtain

fY (y) = 1
2
√

π
exp(−y2/4) (3.14b)

If now we consider question (ii) posed at the beginning of this section it turns
out that its answer, in the general case, is no. More specifically, one cannot
determine the joint-PDF of the random vector X = (X1, . . . ,Xn) from the
PDFs of its components Xi unless they are independent. In mathematical
terms the following proposition holds

Proposition 3.2(a) Let X1, . . . ,Xn be random variables on the probability
space (W , S,P), let Fi(xi) be the PDF of Xi(i = 1, . . . ,n) and FX(x1, . . . ,xn)
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be the joint-PDF of the vector X = (X1, . . . ,Xn). Then X1, . . . ,Xn are
independent if and only if

FX(x1, . . . ,xn) = F1(x1)F2(x2) . . .Fn(xn) (3.15)

for all real x1, . . . ,xn.

It should be noted that Proposition 3.2(a) is an ‘if and only if’ statement;
this means that if X1, . . . ,Xn are independent then their joint-PDF can be
obtained by taking the product of the individual PDFs and, conversely, if the
joint-PDF of a random vector X is the product of n one-dimensional PDFs,
then the components X1, . . . ,Xn are independent random variables.

At this point, however, we must take a step back and return to the notion
of stochastic independence introduced in Chapter 2. In Section 2.2.2, in fact,
we discussed in some detail the notion of stochastic independence of events
but nothing has been said on independent random variables; we do it now
by giving the following definition

Definition 3.2 A collection of random variablesX1,X2, . . . is called an inde-
pendent collection if for any arbitrarily chosen class of Borel sets B1,B2, . . .
the events X−1

1 (B1),X
−1
2 (B2), . . . are collectively independent.

This definition means that the product rule (2.9) must apply. So, in parti-
cular, n random variablesX1, . . . ,Xn are called independent if for any choice
of Borel sets B1, . . . ,Bn we have

P

⎛⎝ n⋂
k=1

X−1
k (Bk)

⎞⎠ =
n∏

k=1

P[X−1
k (Bk)]

which, in turn, implies that PX(B1 × B2 × · · · × Bn) = PX1(B1)PX2(B2) · · ·
PXn(Bn). We have the following result:

Proposition 3.2(b) Let X1, . . . ,Xn be random variables on the probability
space (W , S,P), then they are independent if and only if the measure PX is
the product of the n individual PXi (i = 1, 2, . . . ,n).

In the light of the fact that the individual PDFs Fi(xi) are defined by the
probabilities PXi , it is not surprising that Proposition 3.2(a), as a matter of
fact, is a consequence of Proposition 3.2(b). Also – as it has been done for
events – one can introduce the concept of ‘collection of pairwise independent
random variables’ – that is, a set of r.v.s X1,X2, . . . where Xi is independent
of Xj for each pair of distinct indexes i, j – and note that pairwise indepen-
dence does not imply independence. The converse, however, is true and it is
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evident that these two statements parallel closely the remarks of Chapter 2
(Section 2.2.2).

For discrete and absolutely continuous random variables independence
can be characterized in terms of pmfs and pdfs, respectively, because the
product rule applies to these functions. More specifically, if X1, . . . ,Xn are
a set of independent random variables on a probability space (W , S,P) then,
with obvious meaning of the symbols,

pX(x1, . . . ,xn) = p1(x1)p2(x2) · · ·pn(xn) (3.16a)

in the discrete case and

fX(x1, . . . ,xn) = f1(x1)f2(x2) · · · fn(xn) (3.16b)

in the absolutely continuous case. Conversely, if – as appropriate –
eq. (3.16a) or (3.16b) applies then the random variables X1, . . . ,Xn are
independent. In this regard, for example, it may be worth noting that the
two random variables X,Y of Example 3.1(a) are independent because (see
eqs (3.11) and (3.12)) pXY (x, y) = pX(x)pY (y). On the other hand, the
random variables X,Y of Example 3.1(b) are not independent; in fact, in
this case the joint-pdf fX(x, y) cannot be factored as required in eq. (3.16b)
because of the cross-term xy in the exponential. One word of caution on
the absolutely continuous case is in order: if the random vector X has a
pdf fX then each Xi has a pdf fi and eq. (3.16b) holds if X1, . . . ,Xn are
independent. However, from the fact that each Xi has a density it does not
necessarily follow that X = (X1, . . . ,Xn) has a density; it does if X1, . . . ,Xn
are independent and this density fX is given – as shown by eq. (3.16b) – by
the product of the n pdfs fi.

As a final remark for this section we point out an important property of
independent random variables: measurable functions of independent r.v.s are
independent r.v.s. More specifically, we can state the following result whose
proof, using the definition of independence of the Xi, is almost immediate.

Proposition 3.3 Let X1, . . . ,Xn be a set of independent random variables
and g1, . . . , gn a set of Borel functions. Then the random variables Z1, . . . ,Zn
(we recall from Chapter 2 that Borel functions of r.v.s are r.v.s themselves)
defined by the relations Zi ≡ gi(Xi) (i = 1, 2, . . . ,n) are independent.

More generally, if Y1, . . . ,Ym are sub-vectors of a vector X such that
none of the components of X is a component of more that one of the Yj
and g1, . . . , gm are measurable functions, then Zi ≡ gi(Yi)(i = 1, 2, . . . ,m)

are independent. Also, one can proceed further. In fact, it is possible to
extend Definition 3.1 in order to define the independence of n random vectors
X1, . . . ,Xn and determine that also in this case the factorization property of
the PDFs is a necessary and sufficient condition for independence. For the
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moment, however, the results given here will suffice and we delay further
considerations on independence to later sections.

3.3 Moments and characteristic functions of
random vectors

For simplicity, let us first consider a two-dimensional random vector X =
(X,Y) defined on a probability space (W , S,P). This is a frequently encoun-
tered case in applications and it is worthy of consideration in its own right
before generalizing to higher dimensional vectors.

As in the one-dimensional case (Section 2.3.2), the moments are defined
as abstract Lebesgue integrals in dP. So, if i, j are two non-negative integers
the joint-moments of order i+ j – denoted by E(XiYj) ormij – are defined as

mij = E(XiYj) =
∫
W

XiYj dP (3.17a)

which, in the absolutely continuous case, becomes

mij =
∞∫

−∞

∞∫
−∞

xiyj f (x, y) dxdy (3.17b)

and the integrals are replaced by the appropriate sums in the discrete case.
In the light of eq. (3.10b) and their discrete counterparts (3.10a), it is then

clear that the first-order moments m10 and m01, respectively, are simply
µX = E(X) and µY = E(Y), that is, the mean values of the individual
random variables X and Y and, similarly, mi0 and m0j are the ith moment
of X and the jth moment of Y.

The central (joint) moments of order i+ j, in turn, are defined as (provided
that µX, µY < ∞)

µij = E[(X − µX)i(Y − µY )j] (3.18)

where, in the important case i + j = 2 (second-order central moments) we
have µ20 = σ 2

X = Var(X) and µ02 = σ 2
Y = Var(Y). The moment µ11 is given

a special name and is called the covariance of the two variablesX,Y. For this
reason µ11 is often denoted by Cov(X,Y) – although the symbols �XY , σXY
and KXY are also frequently found in literature. Besides the immediate rela-
tions Cov(X,X) = σ 2

X, Cov(Y,Y) = σ 2
Y and Cov(X,Y) = Cov(Y,X) it

should also be noted that the notion of covariance was mentioned in passing
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in Proposition 2.15 (Section 2.3.2) where, in addition, it was shown that

Cov(X,Y) = E(XY) − E(X)E(Y) = m11 − µXµY (3.19a)

This equation is, broadly speaking, the ‘mixed-variables’ counterpart of
eq. (2.34), which we rewrite here for the two individual r.v.s X,Y

σ 2
X = µ20 = E(X2) − E2(X) = m20 − µ2

X

σ 2
Y = µ02 = E(Y2) − E2(Y) = m02 − µ2

Y

(3.19b)

Some of the main properties of the abstract integral can be immediately be
re-expressed in terms of moments. We have already considered linearity for
n random variables (Proposition 2.13(c)) – which, in our present case of
two r.v.s reads E(aX + bY) = aE(X) + bE(Y) where a,b are any two real
or complex constants – but, in particular, we want to point out here the
following inequalities

(a) Holder’s inequality: let p,q be two numbers such that p > 1,q > 1 and
1/p+ 1/q = 1, then

E(|XY|) ≤ [E(|X|p)]1/p[E(|Y|q)]1/q (3.20)

(b) Cauchy–Schwarz inequality

E(|XY|) ≤
√
E(X2)

√
E(Y2) (3.21)

Both relations are well known to the reader who is familiar with the theory
of Lebesgue-integrable function spaces and, clearly, eq. (3.21) is a special
case of (3.20) when p = q = 2. In particular – since the Cauchy–Schwarz
inequality holds for any two r.v.s – there is no loss of generality in considering
the two centered r.v.s W = X − µX,Z = Y − µY and rewriting (3.21) as
E(WZ) = Cov(XY) ≤ σWσZ = σXσY , where the last equality holds because
the variance of a constant is zero. Therefore, if one defines the correlation
coefficient ρXY as

ρXY = Cov(XY)

σXσY
(3.22)

it is immediate to determine that −1 ≤ ρXY ≤ 1. The fact that when-
ever ρXY = −1 or ρXY = 1 there is a perfect linear relationship between
the two r.v.s X and Y (i.e. a relation of the type Y = aX + b, where a,b
are two constants) is not so immediate and requires some explanation. In
order to do this as an exercise, note that both equalities ρXY = ±1 imply
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E2(WZ)/E(W2)E(Z2) = 1, where W ,Z are the two centered r.v.s defined
above. This relation can be rewritten as

− E2(WZ)

E(W2)
= −E(Z2) or, equivalently

E2(WZ)

E2(W2)
E(W2) − 2

E(WZ)

E(W2)
E(WZ) + E(Z2) = 0

so that setting E(WZ)/E(W2) = awe get a2E(W2)−2aE(WZ)+E(Z2) = 0,
that is E[(aW − Z)2] = 0. This, in turn, means that aW − Z = const, that
is, that W and Z are linearly related. Then, since (by definition) there is
a linear relation between W and X and between Z and Y, it follows that
also X and Y must be linearly related. On the other hand, in order to prove
that Y = aX + b implies ρXY = 1 or ρXY = −1 (depending on whether
a > 0 or a < 0) it is sufficient to note that in this case Cov(XY) = aσX
and σY = |a|σX; consequently, ρXY = ±1 follows from the definition of
correlation coefficient.

The opposite extreme to maximum correlation occurs when ρXY = 0, that
is, when Cov(XY) = 0 (if, as always implicitly assumed here, both σX, σY are
finite and different from zero). In this case we say that X and Y are uncorre-
lated and then, owing to eq. (3.19a), we get E(XY) = E(X)E(Y). This form
of ‘multiplication rule’ for expected values may suggest independence of the
two random variables because the following proposition holds:

Proposition 3.4 If X,Y are two stochastically independent r.v.s then

E(XY) = E(X)E(Y) (3.23)

and therefore Cov(XY) = 0.

This result can be proven by using the factorization properties given in
eqs (3.15), (316a) and (3.16b), but the point here is that the reverse statement
of Proposition 3.4 is not, in general, true (unless in special cases which will be
considered in future sections). In fact, it turns out that uncorrelation – that
is, Cov(XY) = 0 – is a necessary but not sufficient condition for stochastic
independence. In other words, two uncorrelated r.v.s are not necessarily
unrelated (a term which, broadly speaking, is a synonym of independent)
because uncorrelation implies a lack of linear relation between them but not
necessarily a lack of relation in general. The following example illustrates
this situation.

Example 3.2 Consider a random vector (X,Y) which is uniformly dis-
tributed within a circle of radius r centered about the origin. This means
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that the vector is absolutely continuous with joint-pdf given by

fXY (x, y) =
{

1/πr2, x2 + y2 < r2

0, otherwise

so that, for instance, if X = 0 then Y can have any value between −r
and r but if X = r then Y can only be zero. Therefore, since knowl-
edge of X provides some information on Y, the two variables are not
independent. On the other hand, they are uncorrelated because the sym-
metry of the problem leads to the result Cov(XY) = 0. In fact, denoting
by C the domain where fXY �= 0, we can calculate the covariance as
(see eq. (3.44))

Cov(XY) =
∫
C

xy f (x, y) dxdy = 1
πr2

∫
C

xy dxdy

and all the integrals in the four quadrants have the same absolute value. How-
ever, the function xy under the integral sign is positive in the first and third
quadrant and negative in the second and fourth quadrant so that summing
all the four contributions yields Cov(XY) = 0.

As a simpler example consider a r.v. X with the following characteris-
tics: (a) its pdf (or pmf if it is discrete) is symmetrical about the ordinate
axis and (b) it has a finite fourth moment. Then, if we define the r.v.
Y = X2 it is immediate to determine that X and Y are uncorrelated but not
independent.

The definition of characteristic function (or, more precisely, joint-CF) for a
two-dimensional random vector is a simple extension of the one-dimensional
case of Section 2.4 and we have

φ(u, v) = E[ei(uX+vY)] (3.24a)

which, in view of generalization to higher dimensions, can be expressed
more synthetically with the aid of matrix algebra. We denote by u the vector
whose components are the two real variables u, v and write

ϕX(u) = E[exp(iuTX)] (3.24b)

where, following the usual matrix notation, two-dimensional vectors are
expressed as column matrices and their transpose (indicated by the upper T)
are therefore row matrices. So, in eq. (3.24b) it is understood that the matrix
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multiplication in the exponential reads

uTX = (u, v)
(
X
Y

)
= uX + vY

The properties of the CF of a random vector parallel closely the one-
dimensional case; in particular ϕX(u) is uniformly continuous on R2 and,
in addition

ϕX(0) = 1
|ϕX(u)| ≤ 1 for all u ∈ R2

ϕX(−u) = ϕ∗
X(u)

(3.25)

where 0 = (0, 0) is the zero vector and the asterisk denotes complex conju-
gation. Also, if we set n = j+k (where j,k are two integers) and the vectorX
has finite moments of order n, then ϕX(u, v) is j times derivable with respect
to u and k times derivable with respect to v and

inmjk = inE(XjYk) = ∂nϕX(u, v)

∂ ju∂kv

∣∣∣∣
u=v=0

(3.26)

which is the two-dimensional counterpart of eq. (2.47a). Equation (3.26)
shows that the moments of a random vector coincide – besides the multi-
plicative factor 1/in – with the coefficients of the MacLaurin expansion of
ϕX. This implies that the existence of all moments allows one to construct
the MacLaurin series of the CF although, as in the one-dimensional case, in
general it does not allow to reconstruct ϕX itself.

The marginal CFs of any ‘sub-vector’ ofX can be obtained from ϕX by sim-
ply setting to zero all the arguments corresponding to the random variable(s)
which do not belong to the sub-vector in question. This is an immediate con-
sequence of the definition of CF and in the two-dimensional case under study
we have

ϕX(u) = ϕX(u, 0)

ϕY (v) = ϕX(0, v)
(3.27)

As final remarks to this section, two results are worthy of notice. The first is
somehow expected and states:

Proposition 3.5 Two random variables X,Y forming a vector X are
stochastically independent if and only if

ϕX(u, v) = ϕX(u)ϕY (v) (3.28)

meaning that the product rule (3.28) is a necessary and sufficient condition
for independence.
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A word of caution is in order here because Proposition 3.5 should not be
confused with a different result (see also Example 3.3) which states that if
X,Y are independent, then

ϕX+Y (u) = ϕX(u)ϕY (u) (3.29)

In fact, the independence ofX and Y imply the independence of the r.v.s eiuX

and eiuY and consequently E(eiu (X+Y)) = E(eiuXeiuY ) = E(eiuX)E(eiuY )

by virtue of Proposition 3.4. Then, by the definition of CF we get
E(eiuX)E(eiuY ) = ϕX(u)ϕY (u). The converse of this result, however, is not
true in general and the equality (3.29) does not imply the independence of
X and Y. These same considerations, clearly, can be extended to the case of
more than two r.v.s.

The second remark – here already given in the n-dimensional case – has
to do with the important fact that the joint-CF ϕX provides a complete
probabilistic description of the random vector X = (X1, . . . ,Xn) because
the joint-PDF FX(x1, . . . ,xn) is uniquely determined by ϕX(u1, . . . ,un).
The explicit result, which we state here for completeness, is in fact the
n-dimensional counterpart of Proposition 2.20 and is expressed by the
relation

P(ak < Xk ≤ bk) = lim
c→∞

1
(2π)n

c∫
−c

· · ·
c∫

−c

×
n∏

k=1

(
eiukak − eiukbk

iuk

)
ϕX(u1, . . . ,un) du1 · · · dun

(3.30)

where the real numbers ak,bk(k = 1, . . . ,n) delimitate a bounded par-
allelepiped (i.e. an interval in Rn) whose boundary has zero probability
measure.

3.3.1 Additional remarks: the multi-dimensional case and the
practical calculation of moments

3.3.1.1 The multi-dimensional case

In the preceding section we have been mainly concerned with two-
dimensional random vectors but it is reasonable to expect that most of the
considerations can be readily extended to the n-dimensional case. We only
outline this extension here because it will not be difficult for the reader to
fill in the missing details. It is implicitly assumed, however, that the reader
has some familiarity with matrix notation and basic matrix properties (if
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not, one may refer, for example, to Chapter 11 of Ref. [3] at the end of this
chapter, to the excellent booklet [16] or to the more advanced text [8]).

Given a n-dimensional random vector X = (X1, . . . ,Xn) and a positive
integer k, the kth order moments are defined as

m(k1,k2, . . . ,kn) = E
(
Xk1

1 X
k2
2 . . .Xkn

n

)
(3.31)

where k1, . . . ,kn are n non-negative integers such that k = k1 +k2 +· · ·+kn.
This implies that we have now n first-order moments – which can be denoted
m1,m2, . . . ,mn – and n2 second-order ordinary and central moments. These
latter quantities are often conveniently arranged in the so-called covariance
matrix

K =

⎛⎜⎜⎜⎝
K11 K12 . . . K1n
K21 K22 . . . K2n
...

...
...

...
Kn1 Kn2 . . . Knn

⎞⎟⎟⎟⎠ = E[(X −m)(X −m)T] (3.32a)

where Kij = Cov(XiXj) with i, j = 1, . . . ,n and in the second expression
(X−m) is the n×1 column matrix whose elements areX1−m1, . . . ,Xn−mn,
that is, the difference of the two column matrices X = (X1, . . . ,Xn)T and
the first-order moments matrix m = (m1, . . . ,mn)

T. In this light, it is easy to
notice that the covariance matrix can be written as

K = E(XXT) −mmT (3.32b)

The matrix K is obviously symmetric (i.e. Kij = Kji or, in matrix symbolism,
K = KT) so that there are only n(n+1)/2 distinct elements; also it is evident
that the elements on the main diagonal are the variances of the individual
r.v.s – that is, Kii = Var(Xi). Similar considerations of symmetry and of
number of distinct elements apply to the correlation matrix R defined as

R =

⎛⎜⎜⎜⎝
1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n
...

...
...

...
ρn1 ρn2 . . . 1

⎞⎟⎟⎟⎠ (3.32c)

where (eq. (3.22)) ρij = Kij/σiσj and, for brevity, we denote by σi =√
Var(Xi) the standard deviation of the r.v. Xi (assuming that σi is finite

for each i = 1, . . . ,n). The relation between K and R – as it is immediately
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verified by using the rules of matrix multiplication – is

K = SR S (3.33)

where we called S = diag(σ1, σ2, . . . , σn) the matrix whose the only non-
zero elements are σ1, . . . , σn on the main diagonal. If the n r.v.s are pairwise
uncorrelated – or, which is a stronger condition, pairwise independent – then
both K and R are diagonal matrices and in particular R = I, where I is the
identity, or unit, matrix (its only non-zero elements are ones on the main
diagonal). Clearly, this holds true if the r.v.s Xi are mutually independent;
in this case we can also generalize Proposition 3.4 on first-order moments to
the multiplication rule

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi) (3.34)

If we pass from the random vector X to a m-dimensional random vector Y
by means of a linear transformation Y = AX – where A is a m × n matrix
of real numbers – we can use the second expression of (3.32a) to determine
the covariance matrix KY of Y in terms of KX. In fact, calling for brevity Ỹ
and X̃ the ‘centered’ matrices Y −mY and X −mX, respectively, we get

KY = E(ỸỸT) = E[(AX̃)(AX̃)T]
= E[AX̃X̃TAT] = AE(X̃X̃T)AT = AKXAT

(3.35)

where we used the well-known relation stating that the transpose of a prod-
uct of matrices equals the product of the transposed matrices taken in reverse
order – that is, in our case (AX̃)T = X̃TAT. We mention here in passing a
final property of the covariance and correlation matrices: both K and R are
positive semi-definite. As it is known from matrix theory, this means that

zTKz ≥ 0 (3.36)

where z is a column vector of n real or complex variables and xTKx is
the so-called quadratic form of the (symmetric) matrix K. Equation (3.36)
implies that det(K) – that is, the determinant of K, often also denoted by
|K| – is non-negative. Clearly, the same considerations apply to R.

The characteristic function of a n-dimensional random vector is the
straightforward extension of eq. (3.24b) and the generalization of eq. (3.26)
reads

ikm (k1, . . . ,kn) = ∂kϕX(u)

∂uk1
1 · · · ∂uknn

∣∣∣∣∣
u=0

(3.37)

provided that the moment of order k = k1 + k2 + · · · + kn exists.



The multivariate case 93

The marginal CFs can be obtained from ϕX(u1, . . . ,un) as stated in
Section 3.3. For example, ϕX(u1,u2, . . . ,un−1, 0) is the joint-CF of the vec-
tor (X1, . . . ,Xn−1), ϕX(u1, 0, . . . , 0) is the one-dimensional CF of the r.v.X1,
etc., and the multiplication rule

ϕX(u1, . . . ,un) =
n∏
i=1

ϕXi (ui) (3.38)

is a necessary and sufficient condition for the mutual independence of the
r.v.s Xi(i = 1, . . . ,n). Similarly, all the other considerations apply. In addi-
tion, we can determine how a joint-CF changes under a linear transformation
from X to a m-dimensional random vector Y. As above, the transformation
is expressed in matrix form as Y = AX and we assume here that ϕX(u) is
known so that

ϕY(v) = E[eivTY] = E[eivTAX]
= E[ei(ATv)TX] = ϕX(ATv)

(3.39a)

In the more general case Y = AX+b – where b = (b1, . . . ,bm)T is a column
vector of constants – then it is immediate to determine

ϕY(v) = ei vTbϕX(ATv) (3.39b)

In the preceding section nothing has been said about moment-generating
functions (MGFs) but by now it should be clear that the definition is

MX(s1, . . . , sn) = E[exp(sTX)] (3.40)

where s1, . . . , sn is a set of n variables. Within the limitations on the existence
ofMX outlined in Section 2.4 we have the n-dimensional version of eq. (2.48),
that is,

m(k1, . . . ,kn) = ∂kMX(s)

∂sk1
1 · · · ∂sknn

∣∣∣∣∣
s=0

(3.41)

3.3.1.2 The practical calculation of expectations

Many quantities introduced so far – moments in the first place but CFs and
MGFs as well – are defined as expectations, which means, by definition, as
abstract Lebesgue integral in dP. Therefore, the problem arises of how these
integrals can be calculated in practice. With the additional slight complica-
tion of n-dimensionality, the general line of reasoning parallels closely all
that has been said in Chapter 2. We will briefly repeat it here.
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Given a random vector X on the probability space (W , S,P) – that is, a
measurable function X :W → Rn – we can make probability statements
regarding any Borel set B ∈ Bn by considering the probability measure
PX defined by eq. (3.1) and working in the induced real probability space
(Rn, Bn,PX). This is the space of interest in practice, PX being a Lebesgue–
Stieltjes measure (on Rn) which, by virtue of eq. (3.2), can be associated
with the PDF FX. At this point we note that the n-dimensional version of
Proposition 2.17 applies, with the consequence that our abstract Lebesgue
integral onW can be calculated as a Lebesgue–Stieltjes integral on Rn. Then,
depending on the type of random vector under study – or, equivalently, on
the continuity properties of FX – this integral turns into a form amenable to
actual calculations. As in the one-dimensional case, there are three possible
cases: the discrete, the absolutely continuous and the singular continuous
case, the first two (or a mixture thereof) being by far the most important in
practice.

If X is a discrete random vector its range is a discrete subset AX ⊂ Rn and
its complete probabilistic description can be given in terms of the mass dis-
tribution pX(x) (see also eq. (3.4)) which, in essence, is a finite or countable
set of real non-negative numbers pi1,i2,...,in (the n indexes i1, . . . , in mean that
the ith r.v. Xi can take on the values xi1,xi2, . . .) such that the normalization
condition

∑
x∈AX

pX(x) =
∑
i1,...,in

pi1,...,in = 1 (3.42)

holds. In this light, given a Borel measurable function g(x) its expectation is
given by the sum

E[g(x)] =
∑
x∈AX

g(x)pX(x) (3.43)

Also, the marginal mass distribution of any group of any m(m < n) ran-
dom variables is obtained by summing the pi1,i2,...,in over all the n − m
remaining variables; so, for example, the marginal mass distribution of the
vector (X1, . . . ,Xn−1) is given by

∑
in pi1,i2,...,in . This is just a straightforward

generalization of eq. (3.10a).
If X is absolutely continuous there exists a density function fX(x) such

that eqs (3.7a–3.7c) hold. Then, the expectation of a measurable function
g(x) becomes a Lebesgue integral and reads

E[g(x)] =
∫
Rn

g(x)fX(x) dx (3.44)
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where dx is the Lebesgue measure on Rn. As one might expect – since
the Lebesgue integral is, broadly speaking, a generalization of the ordi-
nary Riemann integral of basic calculus – the integral (3.44) coincides with
Riemann’s (when this integral exists).

In the multi-dimensional case, however, a result of fundamental impor-
tance is Fubini’s theorem (Appendix B) which guarantees that a Lebesgue
multiple integral can be calculated as an iterated integral under rather mild
conditions on the integrand function. This theorem is the key to the practical
evaluation of multi-dimensional integrals.

Two final comments are in order before closing this section. First, we
recall eq. (3.10b) and note that their n-dimensional extension is immediate;
in fact, the marginal pdfs of any ‘subvector’ of X of m(m < n) components
is obtained by integrating fX with respect to the remaining n−m variables.
So, for instance, fX1(x1) = ∫

Rn−1 fX(x1, . . . ,xn) dx2 · · · dxn is the pdf of
the r.v. X1 and fY(x1, . . . ,xn−1) = ∫∞

−∞ fX(x1, . . . ,xn) dxn is the (n− 1)-
dimensional joint-pdf of the random vector Y = (X1,X2, . . . ,Xn−1).

The second comment has to do with the CF of an absolutely continuous
random vector X. Owing to eq. (3.44), in fact, ϕX(u) and fX(x) turn out to
be a Fourier transform pair so that we have

ϕX(u) =
∫
Rn

fX(x) eiuTx dx (3.45a)

with the inversion formula

fX(x) = 1
(2π)n

∫
Rn

ϕX(u) e−iuTx du (3.45b)

3.3.2 Two important examples: the multinomial distribution and
the multivariate Gaussian distribution

A multinomial trial with parameters p1,p2, . . .pn is a trial with n possible
outcomes where the probability of the ith outcome is pi (i = 1, 2, . . . ,n) and,
clearly, p1 +p2 + · · ·+pn = 1. If we perform an experiment consisting ofN
independent and identical multinomial trials (so that the pi do not change
from trial to trial) we may callXi the number of trials that result in outcome i
so that eachXi is a r.v. which can take on any integer value between zero and
N. Forming the vector X = (X1, . . . ,Xn), its joint-pmf is called multinomial
(it can be obtained with the aid of eq. (1.16)) and we have

p(x1, . . . ,xn) = N!
x1!x2! . . .xn!p

x1
1 ,px2

2 · · ·pxnn (3.46a)
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where, since each xi represents the number of times in which i occurs

n∑
i=1

xi = N (3.46b)

The name multinomial is due to fact that the expression on the r.h.s. of
(3.46a) is the general term in the expansion of (p1 + · · · + pn)N . If n = 2
eq. (3.46a) reduces to the binomial pmf considered in Examples 2.8 and 2.9
(a word of caution on notation: in eq. (2.41a) n is the total number of trials
while here n is the number of possible outcomes in each trial).

As an easy example we can consider three throws of a fair die. In this case
N = 3 and n = 6, xi is the number of times the face 1 shows up, x2 is the
number of times the face 2 shows up, etc. and p1 = · · · = p6 = 1/6. As a
second example we can think of a box with, say, 50 balls of which 10 are
white, 22 yellow and 18 are red. The experiment may consist in extracting
– with replacement – 5 balls from the box and then counting the extracted
balls of each color. In this case N = 5, n = 3 and p1 = 0.20, p2 = 0.44,
p3 = 0.36. Note that after each extraction it is important to replace the ball
in the box, otherwise the probabilities pi would change from trial to trial
and one of the basic assumptions leading to (3.46) would fail.

The joint-CF of the multinomial distribution is obtained from eq. (3.24b)
by noting that in this discrete case the Lebesgue–Stieltjes integral defining
the expectation becomes a sum on all the xis. Therefore

ϕX(u1, . . . ,un) =
∑ N!

x1! . . .xn!p
x1
1 · · ·pxnn ei(u1x1+···+unxn)

=
∑ N!

x1! . . .xn! (p1eiu1)x1 · · · (pneiun)xn

= (p1eiu1 + · · · + pneiun)N

(3.47)

As a second step, let us obtain now the marginal CF of one of the r.v.s Xi,
for example, X1. In order to do this (recall Sections 3.2 and 3.3) we must
set u2 = u3 = · · · = un = 0 in eq. (3.47) thus obtaining

ϕX1(u1) = (p1eiu1 + p2 + · · · + pn)N = (1 − p1 + p1eiu1)N (3.48)

which is the CF of a one-dimensional binomial r.v. (eq. (2.51)). Also, using
the first of (2.47b) we can obtain the first moment of X1, that is,

E(X1) = Np1 (3.49)

in agreement with eq. (2.41b) and with the result we would get by using
eq. (3.37a) and calculating the derivative ∂ϕX(u)/∂u1|u=0 of the joint-CF
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(3.47). Clearly, by substituting the appropriate index, both eqs (3.48)
and (3.49) apply to each one of the Xi.

At this point one may ask about the calculation of E(X1) by directly
using eq. (3.43) without going through the CF. This calculation is rather
cumbersome but we outline it here for the interested reader. We have

E(X1) =
∑
all xi

N!x1

x1! . . .xn! p
x1
1 · · ·pxnn = N(1 − p1)

N−1
N∑

x1=0

x1

x1! p
x1
1

= Np1(1 − p1)
N−1

N∑
x1=1

x1

x1! p
x1−1
1

(3.50)

where we first isolated the sum over x1, then used the multinomial theorem
for the indexes 2, 3, . . . ,N and took into account that p2 + p3 + · · · + pn =
1 − p1. Then, starting from the multinomial theorem

∑
all xi

N!
x1! · · ·xn! p

x1
1 · · ·pxnn = (p1 + p2 + · · · + pn)N

we can differentiate both sides with respect to p1 and then, on the l.h.s. of the
resulting relation, isolate the sum on x1. This procedure leads in the end to

(1 − p1)
N−1

N∑
x1=1

x1

x1! p
x1−1
1 = 1

which, in turn, can be substituted in the last expression of (3.50) to give the
desired result E(X1) = Np1.

After this, it is evident that the shortest way to determine the covariance
between any two r.v.sXk, Xm (where k,m are two integers < n with k �= m)
is by using the CF. If we recall that Cov(XkXm) = E(XkXm) −E(Xk)E(Xm)

then we only need to calculate the first term on the r.h.s. because, owing to
(3.49), the second term is N2pkpm. Performing the prescribed calculations
we get

E(XkXm) = − ∂2ϕX(u)

∂uk∂um

∣∣∣∣∣
u=0

= N(N − 1)pkpm (3.51)

and therefore the off-diagonal terms of the covariance matrix K are given by

Cov(XkXm) = −Npkpm (3.52)

By the same token, for any index 1 ≤ k ≤ n, it is not difficult to obtain
E(X2

k) = Npk[(N − 1)pk + 1] so that the elements on the main diagonal
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of K are

Var(Xk) = Npk(1 − pk) (3.53)

At first sight – since we spoke of independent trials – the fact that the vari-
ables Xi are correlated may seem a bit surprising. The correlation is due
to the ‘constraint’ eq. (3.46b) and the covariances are negative (eq. (3.52))
because an increase of any one xi tends to decrease the others. The fact that
there exists one constraint equation on the xi implies that K is singular (i.e.
det(K) = 0) and has rank n− 1 so that, in essence, the n-dimensional vector
X belongs to the (n− 1)-dimensional Euclidean space.

Let us consider now the multi-dimensional extension of the Gaussian (or
normal) probability law considered in Examples 2.4, 2.8 and 2.9(b). For sim-
plicity, we begin with the two-dimensional case. In the light of eq. (3.16b),
the joint-pdf of two independent and individually normal r.v.s X,Y forming
a vector X must be

fX(x, y) = 1
2πσ1σ2

exp

[
−1

2

(
(x−m1)

2

σ 2
1

+ (y−m2)
2

σ 2
2

)]
(3.54)

where m1 = E(X), σ 2
1 = Var(X) and m2 = E(Y), σ 2

2 = Var(Y). Also, using
the result of eqs (2.52) and (3.28) of Proposition 3.5, the joint-CF of X is

ϕX(u, v) = exp
[
i(um1 + vm2) − 1

2
(σ 2

1 u
2 + σ 2

2 v
2)

]
(3.55)

which is easy to cast in matrix form as

ϕX(u) = exp
(

iuTm − 1
2
uTKu

)
(3.56)

where, in the present case, it should be noted that K = diag(σ 2
1 , σ 2

2 ) because
of independence – and therefore uncorrelation – between X and Y. The
matrix form of the pdf (3.54) is a bit more involved but only a small effort
is required to show that we can write

fX(x) = 1

2π
√

det(K)
exp

(
−1

2
(x −m)TK−1(x −m)

)
(3.57)

where
√

det(K) = σ1σ2 and K−1 = diag(1/σ 2
1 , 1/σ 2

2 ).
From the vector X we can pass to the vector Z of standardized normal

r.v.s by means of the linear transformation Z = S−1(X −m), where S is the
diagonal matrix introduced in eq. (3.33). By virtue of eq. (3.39b) the CF
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of Z is

ϕZ(v) = e−1/2 vTRv = exp
[
−1

2
(v2

1 + v2
2)

]
(3.58)

where R is the correlation matrix which, in our case of independent r.v.s,
equals the identity matrix I = diag(1, 1). As expected, the CF (3.58) is the
product of two standardized one-dimensional CFs and, clearly, the joint-pdf
will also be in the form of product of two standardized one-dimensional
pdfs, that is,

fZ(z1, z2) = fZ1(z1)fZ2(z2) = 1
2π

exp
[
−1

2

(
z21 + z22

)]
(3.59)

If, on the other hand, the two normal variablesX,Y are correlated eqs (3.56)
and (3.57) are still valid but it is understood that now K – and therefore
K−1 – are no longer diagonal because K12 = Cov(X,Y) �= 0. So, the explicit
expression of the joint-CF becomes

ϕX(u, v) = exp
[
i(um1 + vm2) − 1

2

(
σ 2

1 u
2 + σ 2

2 v
2 + 2K12uv

)]
(3.60)

from which – by setting u = 0 or v = 0, as appropriate – it is evident that
both marginal distributions are one-dimensional CFs of Gaussian random
variables (see eq. (2.52)). Using eq. (3.57), the explicit form of the joint-pdf
is written

fX(x, y) = 1

2πσ1σ2
√

(1 − ρ2)
e−γ (x,y)/2 (3.61a)

where ρ = K12/σ1σ2 is the correlation coefficient between X and Y and the
function γ (x, y) in the exponential is

γ (x, y) = 1
1 − ρ2

[
(x−m1)

2

σ 2
1

− 2ρ
(x−m1)(y−m2)

σ1σ2
+ (y−m2)

2

σ 2
2

]
(3.61b)

From eqs (3.60) and/or (3.61) we note an important property of jointly
Gaussian random variables: the condition Cov(X,Y) = 0 – and therefore
ρ = 0 if both σ1, σ2 are finite and different from zero – is necessary and
sufficient for X and Y to be independent. In this case, in fact, the joint-
CF (pdf) becomes the product of two one-dimensional Gaussian CFs (pdfs).
The equivalence of uncorrelation and independence for Gaussian r.v.s is
noteworthy because – we recall from Section 3.3 – uncorrelation does not,
in general, imply independence.
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We consider now another important result for jointly Gaussian r.v.s.
Preliminarily, we notice that – referring to a three-dimensional system of
coordinate axes x, y, z – the graph of the pdf (3.61) is a bell-shaped sur-
face with maximum of height z = (2πσ1σ2

√
1 − ρ2)−1 above the point

x = m1, y = m2. If we cut the surface with a horizontal plane (i.e. parallel to
the x, y-plane), we obtain an ellipse whose projection on the x, y-plane has
equation

(x−m1)
2

σ 2
1

− 2ρ
(x−m1)(y−m2)

σ1σ2
+ (y−m2)

2

σ 2
2

= const. (3.62)

which, in particular, is a circle whenever ρ = 0 and σ1 = σ2. On the other
hand, as ρ approaches +1 or −1, the ellipse becomes thinner and thinner
and more and more needle-shaped until ρ = 1 or ρ = −1, when the ellipse
degenerates into a straight line. In these limiting cases det(K) = 0, K−1 does
not exist and one variable depends linearly on the other. In other words,
we are no longer dealing with a two-dimensional random vector but with a
single random variable and this is why one speaks of degenerate or singular
Gaussian distribution.

Returning to our main discussion, the important result is the following:
when the principal axes of the ellipse are parallel to the coordinate axes, then
ρ = 0 and the two r.v.s are uncorrelated – and therefore independent. In
other words, by means of a rotation of the coordinate axes x, y it is always
possible to pass from a pair of dependent Gaussian variables – whose pdf
is in the form (3.61) – to a pair of independent Gaussian variables. This
property can be extended to n dimensions and is frequently used in statistical
applications (see the following chapters).

Let us examine this property more closely. Given the ellipse (3.62), it is
known from analytic geometry that the relation

tan 2α = 2ρσ1σ2

σ 2
1 − σ 2

2

(3.63)

determines the angles α between the x-axis and the principal axes of the
ellipse (eq. (3.63) leads to two values α, namely α1, α2 where α1, α2 differ by
π/2). If we rotate the x, y-plane through an angle α, the new coordinate axes
are parallel to the ellipse principal axes and the cross-product term in (3.62)
vanishes. If, in addition to this rotation, we perform now a rigid translation
of the coordinate system which brings the origin to the point (m1,m2), the
ellipse will also be centered in the origin. At this point, the original pdf (3.61)
has transformed into

f (p,q) = 1
2πσpσq

exp

(
− p2

2σ 2
p

− q2

2σ 2
q

)
(3.64a)
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where we call p,q the final coordinate axes obtained by first rotating and
then rigidly translating the original axes x, y. Moreover, it can be shown
that the new variances σ 2

p , σ 2
q are expressed in terms of the original variances

by the relations

σ 2
p = σ 2

1 cos2 α + ρσ1σ2 sin 2α + σ 2
2 sin2 α

σ 2
q = σ 2

1 sin2 α − ρσ1σ2 sin 2α + σ 2
2 cos2 α

(3.64b)

from which it follows σpσq = σ1σ2
√

1 − ρ2. Equation (3.64b) is obtained
by noticing that the (linear, since α is fixed) relation between the x, y and the
p,q axes – and therefore between the original random vector X = (X,Y)T

and the new random vector P = (P,Q)T – is

(
p
q

)
=
(

cos α sin α

− sin α cos α

)(
x
y

)
−
(
m1
m2

)
(3.65)

so that eq. (3.64b) follows by virtue of eq. (3.35). As a side comment,
eqs (3.64b) represent the diagonal terms of the covariance matrix of the two-
dimensional vector P. By using eqs (3.35) and (3.63) the reader is invited to
determine that, as expected, Cov(P,Q) = 0, that is, that the off-diagonal
terms of the ‘new’ covariance matrix are zero.

From (3.64a), if needed, it is then possible to take a further step and pass
to the standardized Gaussian random vector Z whose pdf and CF are given
by eqs (3.59) and (3.58), respectively.

At this point we can consider a frequently encountered problem and deter-
mine the probability Pk that a point falls within the ellipse whose principal
axes are k times the standard deviations σp, σq of the two variables. Calling
Ek this ellipse (centered in the origin), the probability we are looking for is

Pk = P[(P,Q) ∈ Ek] =
∫
Ek

f (p,q) dpdq (3.66a)

where f (p,q) is given by eq. (3.64a). Passing to the standardized variables
z1 = p/σp and z2 = q/σq the ellipse Ek becomes a circle Ck of radius k and

Pk = P
[
Z2

1 + Z2
2 ≤ k2

]
= 1

2π

∫
Ck

dz1 dz2 exp

(
−z

2
1

2
− z22

2

)
(3.66b)

The integral on the r.h.s. can now be calculated by turning to the polar
coordinates z1 = r cos θ , z2 = r sin θ (recall from analysis that the Jacobian
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determinant of this transformation is |J| = r) and we finally get

Pk = 1
2π

2π∫
0

k∫
0

r e−(r2/2)drdθ =
k∫

0

r e−(r2/2)dr = 1 − exp(−k2/2)

(3.66c)

so that, for instance, we have the probabilities P1 = 0.393, P2 = 0.865 and
P3 = 0.989 for k = 1, k = 2 and k = 3, respectively. This result is the two-
dimensional counterpart of the well-known fact that for a one-dimensional
Gaussian variable X the probability of obtaining a value within k standard
deviations is

P[|X − µX| ≤ kσX] =

⎧⎪⎨⎪⎩
0.683 for k = 1
0.954 for k = 2
0.997 for k = 3

(3.67)

Equation (3.67), in addition, can also be used to calculate the two-
dimensional probability to obtain a value of the vector (P,Q) within the
rectangle Rk of sides 2kσp, 2kσq centered in the origin. In fact, since P and
Q are independent, the two-dimensional probability P[(P,Q) ∈ Rk] is given
by the product of the one-dimensional probabilities (3.67); consequently
P[(P,Q) ∈ R1] = (0.683)2 = 0.466, P[(P,Q) ∈ R2] = (0.954)2 = 0.910,
etc. and it should be expected that P[(P,Q) ∈ Rk] > P[(P,Q) ∈ Ek] because
the ellipse Ek is inscribed in the rectangle Rk.

We close this rather lengthy section with a few general comments on
Gaussian random vectors in any number of dimensions:

(i) The property of being Gaussian is conserved under linear transfor-
mations (as the discussion above has shown more than once in the
two-dimensional case).

(ii) The marginal distributions of a jointly-Gaussian are individually
Gaussian. However, the reverse may not be true and examples can
be given of individually Gaussian r.v.s which, taken together, do not
form a Gaussian vector.

(iii) The CF and pdf of a jointly-Gaussian n-dimensional vector are writ-
ten in matrix form as in eqs (3.56) and (3.57); in this latter equation,
however, the factor 2π at the denominator becomes (2π)n/2. In other
words, at the denominator of (3.57) there must be a factor

√
2π for

each dimension.
(iv) Let us examine in the general case the possibility of passing from

a Gaussian vector of correlated random variables (i.e. with a non-
diagonal covariance matrix) to a Gaussian vector of independent – or
even standardized – random variables (that is with a diagonal covariance
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matrix). In two-dimensional this was accomplished by first rotating the
coordinate axes and then translating the origin to the point (m1,m2)

but it is evident that we can first translate the axes and then rotate them
without changing the final result. So, starting from a n-dimensional
Gaussian vector X of correlated r.v.s X1, . . . ,Xn whose pdf is

fX(x) = 1

(2π)n/2
√

det(K)
exp

(
−1

2
(x −m)TK−1(x −m)

)
(3.68a)

we can translate the axes and consider the new ‘centered’ vector X̂ =
X −m with pdf

fX̂(x̂) = 1

(2π)n/2
√

det(K)
exp

(
−1

2
x̂TK−1x̂

)
(3.68b)

Now, since K is symmetric and positive definite (i.e. the Gaussian vector
is assumed to be non-degenerate), a theorem of matrix algebra states that
there exists a non-singular matrix H such that HHT = K. From this relation
we get HHTK−1 = I and then HHTK−1H = H which, in turn, implies
HTK−1H = I. Using this same matrix H let us now pass to the new random
vector Z = (Z1, . . . ,Zn)T defined by the relation X̂ = HZ. The term at the
exponential of (3.68b) becomes

x̂TK−1x̂ = (Hz)TK−1Hz = zTHTK−1Hz = zTIz = zTz

which is the sum of squares z21 + z22 + · · · + z2n. Moreover, the Jacobian
determinant of the transformation to Z is det(H) so that the multiply-
ing factor before the exponential becomes det(H)/

√
(2π)n det(K); however,

from HTK−1H = I we get (detH)2 det(K−1) = 1 and since det(K−1) =
[det(K)]−1, then det(H) = √det(K). Consequently, our final result is

fZ(z) = 1
(2π)n/2

exp
(

−1
2
zTz
)

(3.69)

which, as expected, is the pdf of a standardized Gaussian vector whose
covariance matrix is I. Also, it is now clear that the matrix H represents a
n-dimensional rotation of the coordinate axes.

3.4 More on conditioned random variables

The subject of conditioning has been discussed in both Chapters 1 and 2
(see, in particular, Section 2.5.2). Here we return on the subject for two
main reasons: first, because some more remarks are worthy of mention in
their own right and, second, because a number of new aspects are due the
developments of the preceding sections of this chapter.
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Let us start with some additional results to what has been said in
Section 2.5.2 by working mostly in the real probability space (R, B,PX).
We do so because, as stated before, it is (R, B,PX) which is considered in
practice while the original space (W , S,P) is an entity in the background
with only occasional interest in applications.

Consider an absolutely continuous r.v. X defined on (W , S,P). This, we
recall, implies that the measure PX is absolutely continuous with respect to
the Lebesgue measure on the real line and there exists a function fX (the pdf
of X) such that

PX(B) = P(X−1(B)) =
∫
B

fX(x) dx

Then, although the set C = {x} is indeed a Borel set of R, we cannot – at
least in the usual way – define a conditional probability with respect to this
event because PX(x) = 0. However, for h > 0 consider the Borel set Bh
defined as Bh = (x − h,x + h]. Then PX(Bh) > 0 and we can condition on
this event by defining, for every A ∈ S, the measure PBh exactly as we did in
Section 2.5.2 (eq. (2.60); again with a slight misuse of notation because Bh
is not a set of S. Rigorously, we should write PX−1(Bh)).

Now, with a slight change of notation let us call PX(· |Bh) its image
measure in R instead of PX |Bh . Then, given B ∈ B we have

PX(B |Bh) = PX(B ∩ Bh)
PX(Bh)

(3.70)

and at this point we can try to define PX(B |x) as the limit of PX(B |Bh)
as h → 0. By virtue of Bayes’ theorem (eq. (1.14)) together with the total
probability formula of eq. (1.12) we can write PX(B |Bh) as

PX(B |Bh) = PX(B)
PX(Bh |B)

PX(Bh)

= PX(B)
FX |B(x+ h) − FX |B(x− h)
FX(x+ h) − FX(x− h)

(the second equality is due to the basic properties of the PDFs FX |B and FB),
then, dividing both the numerator and denominator by 2h and passing to
the limit we get the desired result

PX(B |x) = PX(B)
fX |B(x)
fX(x)

(3.71)

provided that the conditional density fX |B exists. The fact that PX(B |x) is
not defined whenever fX(x) = 0 is not a serious limitation because the set
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N = {x : fX(x) = 0} has probability zero, meaning that, in practice, it is
unimportant as far as probability statements are concerned. In fact

PX(N) =
∫
N

fX(x) dx = 0

If now in eq. (3.71) we move the factor fX(x) to the left-hand side and
integrate both sides over the real line we get (since fX |B is normalized
to unity)

PX(B) =
∞∫

−∞
fX(x)PX(B |x) dx (3.72)

which, because of its analogy with eq. (1.12), is the continuous version of
the total probability formula (see also eq. (3.80b)); the sum becomes now
an integral and the probabilities of the conditioning events Aj are now the
infinitesimal probabilities fX(x) dx.

In the case of discrete r.v.s the complications above do not exist. If AX is
the (discrete) set of values taken on by the r.v. X and xi ∈ AX is such that
PX{xi} = pX(xi) > 0, then the counterpart of eq. (3.71) is

PX(B |xi) = PX(B)
pX |B(xi)
pX(xi)

(3.73)

and it is not defined if p(xi) = 0. On the other hand, the total probability
formula reads

PX(B) =
∑
xi∈AX

pX(xi)PX(B |xi) (3.74)

We turn now to some new aspects of conditional probability brought about
by the discussion of the previous sections. Consider a two-dimensional abso-
lutely continuous random vector X = (X,Y) with joint-PDF FXY (x, y) and
joint-pdf fXY (x, y); we want to determine the statistical description of, say,
Y conditioned on a value taken on by the other variable, say X = x.

We have now three image measures, PX, PY in R and the joint measurePXY
(or PX) in R2; all of them, however, originate from P in W . Therefore, if we
look for a probabilistic description of an event relative to Y conditioned on
an event relative toX it is reasonable to consider – in (W , S) – the conditional
probability (where Jy = (−∞, y] and Bh is as above)

P[Y−1( Jy) |X−1(Bh)] = P[Y−1( Jy) ∩X−1(Bh)]
P(X−1(Bh))

= PXY ( Jy ∩ Bh)
PX(Bh)
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and define the conditional PDF FY |X(y |x) as the limit of this probability as
h → 0. As before, we divide both the numerator and denominator by 2h
and pass to the limit to get

FY |X(y |x) =
(

1
fX(x)

)
∂FXY (x, y)

∂x
(3.75a)

Then, taking the derivative of both sides with respect to y we obtain the
conditional pdf

fY |X(y |x) =
(

1
fX(x)

)
∂2FXY (x, y)

∂y∂x
= fXY (x, y)

fX(x)
(3.75b)

A few remarks are in order:

(a) the function fY |X is not defined at the points x where fX(x) = 0;
however, as noticed above, this is not a serious limitation;

(b) fY |X is a function of y alone and not a function of the two variables x, y.
In this case x plays the role of a parameter: for a given value, say x1, we
have a function fY |X(y |x1) and we have a different function fY |X(y |x2)

for x2 �= x1;
(c) being a pdf in its own right, fY |X is normalized to unity. In fact, recalling

eq. (3.10b) we get

∞∫
−∞

fY |X(y |x) dy = 1
fX(x)

∞∫
−∞

fX(x, y) dy = 1

For the same reason it is clear that the usual relation between pdf and
PDF holds, that is

FY |X(y |x) =
y∫

−∞
fY |X(t |x) dt

(d) the symmetry between the two variables leads immediately to the
conditional-pdf fX |Y (x | y) of X given Y = y, that is,

fX |Y (x | y) = fX(x, y)
fY (y)

(3.76)

(e) if X is discrete and AX = {x1,x2, . . .}, AY = {y1, y2, . . .} are the ranges
of X and Y, respectively, then the joint-pmf takes on values in AX ×AY
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and the counterpart of (3.76) can be written as

pX |Y (xi | yk) = P(X = xi |Y = yk) = pX(xi, yk)
pY (yk)

(3.77)

where it is assumed that pY (yk) �= 0.

In the light of the considerations above, we can now obtain some rela-
tions which are often useful in practical cases. We do so for the absolutely
continuous case leaving the discrete case to the reader. First, by virtue of
eqs (3.75b) and (3.76) we note that it is possible to express the joint-pdf of
X in the two forms

fXY (x, y) = fY |X(y |x)fX(x)

fXY (x, y) = fX |Y (x | y)fY (y)
(3.78)

Then, combining these two results we get

fX |Y (x | y) = fY |X(y |x) fX(x)
fY (y)

(3.79)

and a similar equation for fY |X. Next, in order to obtain the counterpart
of the total probability expression of eq. (3.72), we can go back to the
probability P by letting B be the event Y−1( Jy); then P(Y−1( Jy)) = FY (y)
and we obtain the marginal-PDF of Y in terms of the conditional-PDF FY |X
and of the pdf of the conditioning variable, that is,

FY (y) =
∞∫

−∞
FY |X(y |x)fX(x) dx (3.80a)

Differentiating with respect to y on both sides leads to the total probability
formula

fY (y) =
∞∫

−∞
fY |X(y |x)fX(x) dx (3.80b)
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(which could also be obtained from the second of (3.10b) using (3.79)). By
symmetry, it is then evident that

FX(x) =
∞∫

−∞
FX |Y (x | y)fY (y) dy

fX(x) =
∞∫

−∞
fX |Y (x | y)fY (y) dy

(3.81)

If the expression (3.80b) for fY is inserted at the denominator of eq. (3.79)
we note a formal analogy with Bayes’ theorem of eq. (1.14); for this reason
eq. (3.79) – and its counterpart for fY |X – is also called Bayes’ formula (in
the continuous case).

In Section 3.2.1 we pointed out that two variables X,Y are independent
if and only if fXY (x, y) = fX(x)fY (y). Therefore, by virtue of eq. (3.78),
independence implies

fY |X(y |x) = fY (y)

fX |Y (x | y) = fX(x)
(3.82)

as it might be expected considering that knowledge of a specific outcome,
say X = x, gives no information on Y.

At this point, the extension to more than two r.v.s is immediate and we
only mention it briefly here, leaving the rest to the reader. If we call �X a multi-
dimensional vector of components X1, . . . ,Xm,Y1, . . . ,Yn with joint-pdf f�X
then, for example,

fX |Y(x1, . . . ,xm | y1, . . . , yn) = f�X(x1, . . . ,xm, y1, . . . , yn)
fY(y1, . . . , yn)

(3.83)

where we denoted by fY the marginal-pdf relative to the n Y-type variables.
Similarly, the generalization of eq. (3.80b) becomes

fY(y) =
∫
Rm

fY |X(y |x)fX(x) dx (3.84)

where fX the marginal-pdf of the X variables and dx = dx1 · · · dxm.
As an exercise to close this section, we also invite the reader to examine

the case of a two-dimensional vector X = (X,Y) where X is absolutely
continuous with pdf fX(x) and Y is discrete with pmf defined by the values
pY (yi).



The multivariate case 109

3.4.1 Conditional expectation

As noted in Section 2.5.2, the theory defines conditional expectations as
abstract Lebesgue integrals in W with respect to an appropriate conditional
measure which, in turn, depends on the conditioning event and is ultimately
expressed in terms of the original measure P. In practice, however, owing
to the relation between measures in W and their image measures (through
a random variable or a random vector), expectations become in the end
Lebesgue–Stieltjes integrals on R, R2 or Rn, whichever is the case. These inte-
grals, in turn, are sums or ordinary Lebesgue integrals (i.e. Riemann integrals
in most applications) depending on the type of distribution function.

Owing to the developments of the preceding section, it should be expected
that the conditional expectation of X given the event Y = y is expressed as

E(X | y) =
∫
R

xdFX |Y (3.85)

which, in the absolutely continuous case becomes

E(X | y) =
∞∫

−∞
xfX |Y (x | y) dx = 1

fY (y)

∞∫
−∞

xfX(x, y) dx (3.86)

where in the second equality we took eq. (3.76) into account. It is understood
that analogous relations hold for E(Y |x). On the other hand, in the discrete
case (conditioning on the event Y = yk) we have

E(X | yk) =
∑
all i

xipX |Y (xi | yk) = 1
pY (yk)

∑
i

xipX(xi, yk) (3.87)

More generally, if g is a measurable function of both X and Y we have the
fundamental relations (their discrete counterparts are left to the reader)

E[g(X,Y) | y] =
∞∫

−∞
g(x, y)fX |Y (x | y) dx

E[g(X,Y) |x] =
∞∫

−∞
g(x, y)fY |X(y |x) dy

(3.88)

It is evident that eq. (3.86) coincides with the first of (3.88) when g(x, y) = x
and also that the expressions for all conditional moments can be obtained
as special cases of eq. (3.88), depending on which one of the two variables
is the conditioning one.
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Being based on the properties of the integral, conditional expectations
satisfy all the properties of expectation given in Chapter 2. In particular we
mention, for example

(i) the conditional expectation of a constant is the constant itself;
(ii) if a,b are two constants and X,Y1,Y2 are random variables then

linearity holds, that is, E(aY1 + bY2 |x) = aE(Y1 |x) + bE(Y2 |x);
(iii) if Y1 ≤ Y2 then E(Y1 |x) ≤ E(Y2 |x).

Now, so far we have spoken of conditional expectations of, say, X given
Y = y by tacitly assuming that y is a given, well-specified value. If we adopt
a more general point of view we can look at expectations as functions of
the values taken on by the random variable Y. In other words since, in
general, we have a value of E(X | y) for every given y we may introduce
the real-valued function g(Y) ≡ E(X |Y) defined on the range of Y. This
function – which, clearly, takes on the value E(X | y) when Y = y – can be
shown to be measurable and therefore it is a random variable itself. In this
light it is legitimate to ask about its expectation E[g(Y)] = E[E(X |Y)]. The
interesting result is that we get

E[E(X |Y)] = E(X) (3.89a)

and, by symmetric arguments

E[E(Y |X)] = E(Y) (3.89b)

In fact, in the absolutely continuous case, for example,

E[E(X |Y)] =
∫
E(X |Y)fY (y) dy =

∫ (∫
xfX |Y (x | y) dx

)
fY (y) dy

=
∫ ∫

xfX(x, y) dxdy =
∫
x
(∫

fX(x, y) dy
)

dx

=
∫
xfX(x) dx = E(X)

(all integrals are from −∞ to +∞ and eqs (3.76) and (3.10b) have been
taken into account).

Equations (3.89) – which are sometimes useful in practice – may appear
confusing at first sight but they state a reasonable fact: for instance,
eq. (3.89a) shows that E(X) can be calculated by taking a weighted average
on all the expected values of X given Y = y, each term being weighted by
the probability of that particular conditioning event Y = y.
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Equation (3.89a) can be generalized to

E[g(X)] = E[E(g(X) |Y)] (3.90)

where g(X) is a (measurable) function of X. With the appropriate modifi-
cations, the same obviously applies to (3.89b). By similar arguments, the
reader is invited to prove that

Var(X) = E[Var(X |Y)] + Var[E(X |Y)]
Var(Y) = E[Var(Y |X)] + Var[E(Y |X)]

(3.91)

(Hint: to prove the first of (3.91) start from Var(X |Y) = E(X2 |Y) −
E2(X |Y) and use eq. (3.90).

For our purposes, the discussion above suffices. However, for the inter-
ested reader we close this section with some additional remarks of theoretical
nature on the function E(X |Y). We simply outline the general ideas and
more details can be found in the references at the end of the chapter.

Consider an event G ∈ S. As a consequence of eq. (2.58), the expectation
of a r.v. X conditioned on G can be written as

E(X |G) =
∫
W

X dPG = 1
P(G)

∫
W

IGX dP = 1
P(G)

∫
G

XdP (3.92a)

which leads to

P(G)E(X |G) =
∫
G

X dP (3.92b)

This last expression makes no reference to the conditional measure PG and
can be assumed to be the defining relation of E(X |G). Clearly, in the same
way one can define E(X |GC). Then, noting that G̃ = {∅,G,GC,W} is a
σ -algebra G̃ ⊂ S (the σ -algebra generated by G) one can define a function
E(X | G̃) on G̃ as

E(X | G̃) = E(X |G)IG + E(X |GC)IGC (3.93)

E(X | G̃) is a simple function (see the definition of simple function in
Appendix B) which is measurable – and therefore a random variable – with
respect to both S and G̃ and it is such that, for every set A ∈ G̃∫

A

E(X | G̃) dP =
∫
A

X dP (3.94)
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(in this case A can only be one of the four sets ∅,G,GC,W ; using the defini-
tion of integral for simple functions, the reader is invited to verify eq. (3.94)).
If, in particularX = IF (where F ∈ S) then the r.h.s. of (3.94) equals P(F∩A).
Setting PF(A) = P(F ∩ A) for every A ∈ G̃ then by virtue of the Radon–
Nikodym theorem we can define the conditional probability as a special
case of conditional expectation, that is,

P(F | G̃) = E(IF | G̃) (3.95)

which agrees with the fact that the measure of a set is the expectation of its
indicator function.

Now, besides this illustrative example, it can be shown that this same
line of reasoning extends to any σ -algebra S̃ ⊂ S and the resulting function
E(X | S̃) is called the conditional expectation of X given S̃. In particular, if
S̃ is the σ -algebra generated by a collection of sets G1,G2, . . . ,Gn ∈ S such
that W = ∪ni=1Gi, then E(X | S̃) is a r.v. on (W , S̃,P) which takes on the
value E(X |Gi) on Gi and satisfies eq. (3.94) for every A ∈ S̃. Also, one can
define P(F | S̃) as above. However, it is not necessary for S̃ to be determined
by a finite collection of sets. Therefore, if Y is another r.v. defined on the
space (W , S,P), for every Borel set B ⊂ R one can consider the σ -algebra Ỹ
generated by the inverse images Y−1(B) and introduce the function E(X | Ỹ)

which satisfies the counterpart of (3.94), that is,∫
Y−1(B)

E(X | Ỹ) dP =
∫

Y−1(B)

X dP (3.96)

Since it can be shown that E(X | Ỹ) is constant on every set of the form
Y−1(y) (where y is a fixed value in R), then it follows that E(X | Ỹ) is a
function of Y which takes on the value E(X | y) for all the elements w ∈ W
such that w ∈ Y−1(y). Equation (3.96) then shows that E[E(X | Ỹ)] = E(X)

which, on more theoretical grounds, justifies eq. (3.89a).

3.4.2 Some examples and further remarks

In order to illustrate with an example the considerations of the preceding two
sections we start with the bivariate Gaussian distribution. If the two vari-
ables X,Y are correlated their joint-pdf is given by eqs (3.61a) and (3.61b).
We could obtain the marginal-pdfs by using eq. (3.10b) but it is quicker to
consider the joint-CF of eq. (3.60) and note that the marginal CFs are both
one-dimensional Gaussian. It follows that fX(x) and fY (y) are Gaussian pdfs
with parameters E(X) = m1, Var(X) = σ 2

1 and E(Y) = m2, Var(Y) = σ 2
2 ,

respectively. For the conditional pdfs we can use eq. (3.78) so that, say,
fY |X(y |x) is given by fY |X(y |x) = fXY (x, y)/fX(x). Explicitly, after some
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manipulations we get

fY |X(y |x) = 1

σ2
√

2π(1 − ρ2)
exp[−h(x, y)] (3.97a)

where the function in the exponential is

h(x, y) = 1
2(1 − ρ2)

(
y−m2

σ2
− ρ

x−m1

σ1

)2

(3.97b)

and can be rewritten in the form

h(x, y) = 1

2σ 2
2 (1 − ρ2)

(
y−m2 − ρ

σ2

σ1
(x−m1)

)2

(3.97c)

from which it is evident that the conditional expectation and variance are

mY |X = E(Y |X) = m2 + ρ
σ2

σ1
(x−m1)

σ 2
Y |X = Var(Y |X) = σ 2

2 (1 − ρ2)

(3.98)

Equation (3.98) show that (i) as a function of x, the conditional expecta-
tion of Y given x is a straight line (which is called the regression line of Y on
X) and (ii) the conditional variance does not depend on x.

With the obvious modifications, relations similar to (3.97) and (3.98)
hold for fX |Y (x | y),E(X |Y) and Var(X |Y). If the two variables are inde-
pendent – which, we recall, is equivalent to uncorrelated for the Gaussian
case – then the conditional-pdfs coincide with the marginal pdfs and the
conditional parameters coincide with the unconditioned ones.

Equations (3.97) and their counterparts for fX |Y (x | y), in addition, show
that the conditional-pdfs of jointly Gaussian r.v.s are Gaussian themselves.
We do not prove it here but it can be shown that this is an important property
which extends to the n-dimensional case: all the conditional pdfs that can
be obtained from a jointly Gaussian vector are Gaussian.

If now, as another example, we consider the joint-pdf of Example 3.1(b)
(eq. (3.13a)), the reader is invited to determine that

fX |Y (x | y) = 1√
3π

exp
(

−1
3

(x+ y/2)2
)

E(X |Y) = −y/2
(3.99)

and also that E(XY) = −1. So, if we note from the marginal-pdfs (3.14a)
and (3.14b) that E(X) = E(Y) = 0 and Var(X) = Var(Y) = 2, it follows
from eqs (3.19a) and (3.22) that Cov(X,Y) = −1 and ρXY = −1/2.
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In the bivariate Gaussian case above we spoke of regression line of Y on
X. In the general case of a non-Gaussian pdf E(Y |X) – as a function of x –
may not be a straight line and then one speaks of regression curve of Y on
X. For some non-Gaussian pdfs, however, it may turn out that E(Y |X) is a
straight line, that is, that we have

E(Y |X) =
∫
y fY |X(y |x) dy = a+ bx (3.100)

where a and b are two constants. Now, since E[E(Y |X)] = E(Y) we can
take eq. (3.100) into account to get

E(Y) =
∫ ∫

y fXY (x, y) dxdy =
∫
fX(x)

(∫
y fY |X(y |x) dy

)
dx

=
∫
fX(x)(a+ bx) dx = a+ bE(X) (3.101)

showing that the regression line passes through the point (E(X),E(Y)).
By similar arguments, we also obtain (the easy calculations are left to the

reader)

E(XY) = aE(X) + bE(X2) (3.102)

so that, in the end, the slope and intercept of the straight line are given by

b = E(XY) − E(X)E(X)

E(X2) − E2(X)
= Cov(X,Y)

Var(X)

a = E(Y) − bE(X)

(3.103a)

where eqs (3.19a) and (3.19b) have been taken into account in the second
equality for b. By substituting eqs (3.103a) in (3.100) and recalling eq. (3.22)
we see that in all cases where E(Y |X) is a linear function of x the first of
eq. (3.98) holds. On the other hand, now the second of (3.98) may no longer
hold and

σ 2
Y |X =

∫
{y− E(Y |X)}2f (y |x) dy

is, in general, a function of x. Nonetheless, the quantity σ 2
2 (1 − ρ2) still has

a meaning: it represents a measure of the average variability of Y around the
regression line on X. In fact, it is left to the reader to show that by defining
σ 2
Y(avg)

as the weighted (with the probability density of the x-values) average
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of σ 2
Y |X, then

σ 2
Y(avg) ≡

∫
σ 2
Y |X fX(x) dx = σ 2

2 (1 − ρ2)

(Hint: use (3.100) and the second of (3.103a) to determine that [y −
E(Y |X)]2 = (y−E(Y))2 + b2(x−E(X))2 − 2b(y−E(Y))(x−E(X)), insert
in the expression of σ 2

Y |X and then use eq. (3.75b) and the first of (3.103a).)

From the expression of σ 2
Y(avg)

we note, however, that the second of eq. (3.98)

holds whenever σ 2
Y |X does not depend on x. In all these particular cases we

have σ 2
Y(avg)

= σ 2
Y |X = σ 2

2 (1 − ρ2). The bivariate Gaussian – as we have
seen – is one of these cases.

If now, in addition to (3.100), we also assume that E(X |Y) = c+dy then

d = Cov(X,Y)

Var(Y)

a = E(X) − dE(Y)

(3.103b)

and the geometric mean of b and d is the correlation coefficient, that is,

√
bd = Cov(X,Y)

σXσY
= ρXY (3.104)

which, as noted in Section 3.3, is a measure of the extent of the linear rela-
tionship between the two variables. As a final remark we point out that the
fact that E(Y |X) is a linear function of x does not necessarily imply, in
general, that E(X |Y) is a linear function of y – and conversely; the bivari-
ate Gaussian distribution is, in this respect, an exception. More on linear
regression in statistical applications is delayed to Chapter 7.

3.5 Functions of random vectors

It often happens that we have some information on one or more random
variables but our interest – rather than in the variables themselves – lies in a
function of these variables. In Section 2.5.3, we already touched this subject
by considering mainly the one-dimensional case; we now move on from there
extending the discussion to random vectors.

Let X = (X1, . . . ,Xn) be a n-dimensional random vector and let Z =
(Z1, . . . ,Zn) be such that Z = g(X), where this symbol means that the
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function g : Rn → Rn has components g1, . . . , gn and

Z1 = g1(X1, . . . ,Xn)
Z2 = g2(X1, . . . ,Xn)

...
Zn = gn(X1, . . . ,Xn)

(3.105)

First of all we note that Z is a random vector if all the gk(k = 1, . . . ,n)
are Borel functions, a condition which is generally true in most practical
cases. If we suppose further that we are dealing with absolutely continuous
vectors and that the joint-pdf fX(x) is known, we can obtain fZ(z) by using
a well-known change-of-variables theorem of analysis. This result leads to
an equation formally similar to (2.71), that is,

fZ(z) = fX(g−1(z))| det(J)| (3.106a)

where J is the Jacobian matrix

J =

⎡⎢⎢⎢⎣
∂g−1

1 /∂z1 ∂g−1
1 /∂z2 . . . ∂g−1

1 /∂zn
∂g−1

2 /∂z1 ∂g−1
2 /∂z2 . . . ∂g−1

2 /∂zn
...

...
...

...
∂g−1

n /∂z1 ∂g−1
n /∂z2 . . . ∂g−1

n /∂zn

⎤⎥⎥⎥⎦ (3.106b)

The assumptions of the theorem require that

(a) g is one-to-one (so that X1 = g−1
1 (Z1, . . . ,Zn); X2 = g−1

2 (Z1, . . . ,Zn),
etc.);

(b) all the derivatives are continuous;
(c) det( J) �= 0.

If one (or more) of the gk (k = 1, . . . ,n) is not invertible (i.e. not one-to-
one), one needs to divide the domains ofX andZ in a sufficient number – say
p – of mutually disjoint subdomains in such a way that – in these subdo-
mains – there exists a one-to-one mapping between the two variables. Then
eq. (3.106a) holds in each subdomain and the final result fZ(z) is obtained
by summing the p contributions.

All the results above can also be used if Z is m-dimensional, with m < n.
In this case one introduces n–m auxiliary variables and proceeds as stated by
the theorem. Provided that the requirements of the theorem are satisfied, the
choice of the auxiliary variables is arbitrary; therefore it is understood that
one should choose them in a way that keeps the calculations as simple as
possible. So, for instance, if X = (X1,X2) is a two-dimensional vector and
Z = g(X1,X2) is one-dimensional, we can introduce the auxiliary variable
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Z2 = X2; then, the transformation (3.105) is

Z1 = g(X1,X2)

Z2 = X2
(3.107a)

and

det( J) = det
[
∂g−1/∂z1 ∂g−1/∂z2

0 1

]
= ∂g−1

∂z1
(3.107b)

Consequently, eq. (3.106) reads

fZ(z1, z2) = fX(g−1(z1),x2)

∣∣∣∣∣∂g−1

∂z1

∣∣∣∣∣ (3.107c)

and the desired result – that is, the marginal pdf of Z1 – is given by

fZ1(z1) =
∞∫

−∞
fZ(z1, z2) dz2 (3.107d)

Example 3.3 Let Z = X1 + X2. As above, we introduce the auxiliary
variable Z2 = X2. Then

X1 = Z1 − Z2
X2 = Z2

and det( J) = 1. Therefore fZ(z1, z2) = fX(z1 − z2, z2) and

fZ1(z1) =
∞∫

−∞
fX(z1 − z2, z2) dz2 =

∞∫
−∞

fX(z1 − x2,x2) dx2 (3.108)

If the two variables X1,X2 are independent with pdfs f1(x1), f2(x2), respec-
tively, then fX(x1,x2) = f1(x1)f2(x2) and (3.108) becomes

fZ1(z1) =
∞∫

−∞
f1(z1 − x2)f2(x2) dx2 (3.109)

which is called the convolution integral of f1 and f2; this is a frequently
encountered type of integral in applications of Physics and Engineering and
is often denoted by the symbol f1 ∗ f2. (Incidentally, we note that eq. (3.109)
is in agreement with eq. (3.29) on CFs; in fact the Fourier transform of a
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convolution integral is given by the product of the individual Fourier trans-
forms of the functions appearing in the convolution.) So, for instance, if
X1,X2 are independent and are both uniformly distributed in such a way
that

f1(x) = f2(x) =
{
1/(b− a), a < x ≤ b

0, otherwise

eq. (3.109) gives fZ1(z1) = (b−a)−1
∫ b
a f1(z1 −x2) dx2 where z1 ranges from

a minimum value of 2a to a maximum of 2b and is zero otherwise. The
integral can be divided into two parts considering that (i) if z1 −x2 > a then
x2 < z1 − a and (ii) if z1 − x2 < b then x2 > z1 − b. In the first case we have

fZ1(z1) = 1
(b− a)2

z1−a∫
a

dx2 = z1 − 2a
(b− a)2

(3.110a)

which holds for 2a < z1 ≤ a+b (the second inequality is due to the fact that
we must have z1 − a ≤ b, therefore z1 ≤ a+ b). In the second case

fZ1(z1) = 1
(b− a)2

b∫
z1−b

dx2 = 2b− z1
(b− a)2

(3.110b)

which holds for a + b < z1 ≤ 2b (z1 − b > a implies z1 > a + b).
The distribution given by eqs (3.110a) and (3.110b) is called Simpson’s
distribution.

If, turning to another case, X1,X2 are jointly-Gaussian and not indepen-
dent (eqs (3.61a) and (3.61b)) then it can be shown (Refs [3, 4, 6, 17]) that
the pdf of the r.v. Z = X1 +X2 is

fZ(z) = 1√
2π(σ 2

1 + 2ρσ1σ2 + σ 2
2 )

exp

(
− (z −m1 −m2)

2

2(σ 2
1 + 2ρσ1σ2 + σ 2

2 )

)
(3.111)

which is also Gaussian. The reverse statement, in general, is not true and the
fact that Z = X1 +X2 is Gaussian does not necessarily imply thatX1,X2 are
individually Gaussian. It does, however, ifX1,X2 are independent (Cramer’s
theorem). In this case, fZ(z) is obtained by simply setting ρ = 0 in eq. (3.111).
All these considerations on jointly-Gaussian vectors extend to n dimensions
and the sum Z = ∑n

i=1Xi of n Gaussian r.v.s is itself Gaussian with mZ =∑
i mi and Var(Z) = σ 2

Z = ∑
i σ

2
i if the Xi are independent and mZ =∑

i mi and σ 2
Z =∑i σ

2
i +2

∑
i<j ρijσiσj if they are not independent (ρij is the

correlation coefficient between Xi and Xj).
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Example 3.4(a) Consider the random variable Z1 = X1X2. If we define
Z2 = X2 then X1 = Z1/X2 and | det( J)| = 1/|x2|. Therefore

fZ1(z1) =
∞∫

−∞

1
|x2| fX(z1/x2,x2) dx2 (3.112)

Example 3.4(b) If, on the other hand, we consider the ratio Z1 = X1/X2 –
and, as above, we define Z2 = X2 – then X1 = Z1X2 and | det(J)| = |x2|.
Therefore

fZ1(z1) =
∞∫

−∞
|x2|fX(z1x2,x2) dx2 (3.113a)

In addition, if the two original r.v.s are independent with pdfs f1(x1), f2(x2)

fZ1(z1) =
∞∫

0

x2 f1(z1x2)f2(x2) dx2 −
0∫

−∞
x2f1(z1x2)f2(x2) dx2 (3.113b)

So, for instance, if X1,X2 are independent Gaussian r.v. with m1 = m2 = 0
and Var(X1) = σ 2

1 , Var(X2) = σ 2
2 then the term at the exponentials in both

integrals of eq. (3.113b) can be written as

−x
2
2

2

(
z21σ 2

2 + σ 2
1

σ 2
1 σ 2

2

)
= −x2

2
a
b

where we defined a = z21σ 2
2 + σ 2

1 and b = 2σ 2
1 σ 2

2 . Eq. (3.113b) then
becomes

fZ1(z1) = 1
2πσ1σ2

⎧⎨⎩
∞∫

0

x2 exp(−ax2
2/b) dx2 −

0∫
−∞

x2 exp(−ax2
2/b) dx2

⎫⎬⎭
and performing the change of variable t = ax2

2/b so that (b/2a) dt = x2 dx2
we get

fZ1(z1) = 2
2πσ1σ2

(
b
2a

) ∞∫
0

e−t dt = σ1σ2

π(z21σ 2
2 + σ 2

1 )
(3.114)

where we took into account that the two integrals within braces are equal to
twice the integral in dt from 0 to ∞ and we substituted the explicit expres-
sions for a and b to obtain the final term on the r.h.s. of (3.114). The
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pdf of eq. (3.114) is a form of the so-called Cauchy distribution. In par-
ticular, if X1,X2 are (independent) standardized r.v.s, then σ1 = σ2 = 1
and

fZ1(z1) = 1

π(z21 + 1)
(3.115)

which is the form of the Cauchy distribution commonly found in the
literature.

3.5.1 Numerical descriptors of functions of random variables

In the preceding section we determined how to obtain the probability distri-
bution of a random variable (vector) which is a function of another random
variable (vector) when we know the distribution of the original r.v. Depend-
ing on the functional relation between the two variables (vectors), this may
not always be an easy task. It often happens, however, that the analyst’s
interest lies in the numerical descriptors of Z = g(X) rather than in a com-
plete probabilistic description of Z (i.e. fZ or FZ). Moreover, in most cases
one is mainly interested in the first and second order moments of Z. These
quantities can be obtained – or, more generally, approximated – without
going through the determination of fZ or FZ.

Starting from the case in which Z is one-dimensional we have already
considered (Propositions 2.13 and 2.15; see also eq. (2.35c)) the situation
when Z is a linear function of X, that is, Z = aX + b where a,b are two
constants. Then E(Z) = aE(X)+b and Var(Z) = a2Var(X), which, in turn,
are special cases of the more general relations

E(Z) =
n∑
i=1

aiE(Xi) + b

Var(Z) =
n∑
i=1

a2
i Var(Xi) + 2

∑
i<j

aiajCov(Xi,Xj)

=
n∑
i=1

a2
i Var(Xi) +

∑
ij(i �=j)

aiajCov(Xi,Xj)

(3.116)

which occur whenever Z is a linear function of more than one r.v., that
is, when Z = ∑n

i=1 aiXi + b. If, in addition, the variables X1, . . . ,Xn are
pairwise uncorrelated (or, more strictly, independent), the second of (3.116)
becomes Var(Z) =∑i a

2
i Var(Xi).

Before turning to the general discussion, consider for instance the fre-
quently encountered non-linear case Z = XY. Then, by the properties of
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covariance (Proposition 2.15 or eq. (3.19a)) we have

mZ ≡ E(Z) = E(XY) = E(X)E(Y) + Cov(X,Y) (3.117)

which becomesE(Z) = E(XY) = E(X)E(Y) wheneverX,Y are uncorrelated
or independent. Moreover if X,Y are independent it is left to the reader to
show that the variance of Z is given by

Var(Z) = Var(X)Var(Y) + E2(X)Var(Y) + E2(Y)Var(X)

= σ 2
Xσ 2

Y +m2
Xσ 2

Y +m2
Yσ 2

X

(3.118)

(Hint: start from the definition Var(Z) = E[(Z −mZ)2] and then take into
account that X2,Y2 are also independent r.v.s.)

Let us now tackle the general problem. We will do so in three steps: in the
order (a) a one-dimensional variable function of another one-dimensional
variable, (b) a one-dimensional variable function of a random vector and
(c) a random vector function of another random vector.

Let now Z = g(X) where both X and Z are assumed to be absolutely
continuous. If the function g is invertible then we have

E(Z) =
∫
z fZ(z) dz =

∫
g(x)fX(x) dx (3.119)

because z = g(x), dz = g′(x) dx (the prime indicates the derivative) and,
from eq. (2.71), fZ(z) = fX(x)/g′(x) since dg−1(z)/dz = 1/g′(x). However,
we can expand g(x) in a Taylor series around mX as

z = g(x) = g(mX) + (x−mX)g′(mX) + 1
2

(x−mX)2g′′(mX) + · · ·
(3.120)

and insert this expression in (3.119) to get the approximate relation

E(Z) ∼= g(mX) + 1
2
g′′(mX) Var(X) (3.121)

because it is easily verified that the term with the first derivative yields zero
in the integration. The calculation of the variance is a bit more involved.
Similarly to eq. (3.119) we can write

Var(Z) =
∫

(z −mZ)2fZ(z) dz =
∫

[g(x) −mZ]2fX(x) dx (3.122)
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and use (i) the Taylor expansion (3.120) to approximate g(x) and (ii)
eq. (3.121) to approximate mZ = E(Z). After a few passages we arrive at

Var(Z) ∼= [ g′(mX)]2Var(X) + 1
4

[ g′′(mX)]2{M4 − Var2(X)}
+ g′(mX)g′′(mX)M3 (3.123a)

where we denoted byM3 andM4 the third and fourth-order central moments
of X, respectively (i.e. M3 = E[(X −mX)3] and M4 = E[(X −mX)4]; also,
using this notation note that Var(X) = M2).

If the pdf fX(x) is symmetric about the mean, then M3 = 0 and if, in
addition, it is Gaussian then (eq. (2.42d))M4 = 3M2

2 = 3 Var2(X); therefore

Var(Z) ∼= [g′(mX)]2Var(X) + 1
2

[g′′(mX)]2 Var2(X) (3.123b)

For approximation purposes, one may sometimes use mZ = g(mX) –
which is equivalent to interchanging the expectation operator with the
functional dependence, that is, E[g(X)] = g[E(X)] – for the mean and
σ 2
Z = [g′(mX)]2σ 2

X for the standard deviation; however, it should be kept in
mind that these relations are exact only in case of a linear relation between
X and Z.

Let now Z be a function of n random variables X1, . . . ,Xn, that is,
Z = g(X1, . . . ,Xn). In this case the linear approximation is frequently used;
in other words one assumes that (i) the mean of the function equals the
function of the X-means m1, . . . ,mm and (ii) the variance of the function
depends only on the first derivatives of g and on the variances σ 2

1 , . . . , σ 2
n of

X1, . . . ,Xn. Although this may seem a rather crude approximation, it gener-
ally leads to acceptable result and consequently – besides specific applications
where a higher accuracy is required – linearization is the main technique to
deal with the case Z = g(X1, . . . ,Xn). So, linearizing the function g in a
neighbourhood of m1, . . . ,mm we have

g(x) = g(m) +
n∑
i=1

∂g
∂xi

∣∣∣∣
x=m

(xi −mi) + · · · (3.124)

so that inserting this expression in

E(Z) =
∫
g(x) fX(x) dx (3.125)

all the terms with the first derivatives go to zero in the integration and

mZ = E(Z) ∼= g(m) = g(m1,m2, . . . ,mn) (3.126)
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Equation (3.126), in turn, can be used together with (3.124) in the expression

Var(Z) =
∫

[g(x) −mZ]2fX(x) dx (3.127)

to arrive at the (approximate) result

σ 2
Z = Var(Z) ∼=

n∑
i=1

[Dig(m)]2σ 2
i +

∑
i,j; i �=j

[Dig(m)][Djg(m)]Kij (3.128a)

where, for short, we denoted Dig(m) = ∂g/∂xi|x=m.
If the variables X1, . . . ,Xn are uncorrelated then

Var(Z) ∼=
n∑
i=1

[Dig(m)]2σ 2
i (3.128b)

which is, nonetheless, an approximation due to the fact that we retained
only the first-order terms in the Taylor expansion. Introducing the column
matrix D whose elements are the first-order derivatives of g calculated at
x = m, that is,

D =

⎡⎢⎢⎢⎣
D1g(m)

D2g(m)
...

Dng(m)

⎤⎥⎥⎥⎦
then eq. (3.128a) can be concisely written in matrix form as

Var(Z) ∼= DTKD (3.128c)

where K is the covariance matrix introduced in eq. (3.32a). If, in addition,
the variables X1, . . . ,Xn are uncorrelated then K = diag(σ 2

1 , . . . , σ 2
n ) and

eq. (3.128c) reduces to the sum of squares of eq. (3.128b).
A better approximation to E(Z) and Var(Z) than eqs (3.126) and (3.128),

respectively, can be obtained by retaining the next term in the Taylor expan-
sion (3.124). This term contains the second-order derivatives of g and can
be written as

1
2

n∑
i=1

D2
i g(m)(xi −mi)

2 + 1
2

∑
i,j; i �=j

D2
ijg(m)(xi −mi)(xj −mj)
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where D2
i g(m) = ∂2g/∂x2

i |x=m and D2
ijg(m) = ∂2g/∂xi∂xj|x=m. In this

approximation we are led to

mZ ∼= g(m) + 1
2

∑
i

D2
i g(m) σ 2

i + 1
2

∑
i,j; i �=j

D2
ijg(m)Kij (3.129a)

or, if the variables are uncorrelated

mZ ∼= g(m) + 1
2

∑
i

D2
i g(m) σ 2

i (3.129b)

For the variance we can limit the calculations to the independent (or
uncorrelated) case – although eq. (3.128b) will, in general, suffice in this
circumstance – and arrive at the rather lengthy relation

σ 2
Z

∼=
∑
i

[Dig(m)]2σ 2
i + 1

4

∑
i

[
D2
i g(m)

]2 {M4(Xi) − Var2(Xi)}

+
∑
i

[Dig(m)]
[
D2
i g(m)

]
M3(Xi) +

∑
i �=j

[
D2
ijg(m)

]
σ 2
i σ 2

j

(3.130)

where we denoted by M3(Xi),M4(Xi) the third and fourth-order central
moments of the variable Xi, respectively. As an example, we can return to
the case Z = XY (X and Y independent) considered above. The reader can
check that the approximation (3.128b) does not lead to the correct result
(3.118) while, on the other hand, eq. (3.130) does.

Finally, we examine now the most general case ofm r.v.sZ1, . . . ,Zm which
are functions of n r.v.s X1, . . . ,Xn. The situation is as follows

Z1 = g1(X1, . . . ,Xn)
Z2 = g2(X1, . . . ,Xn)

...
Zm = gm(X1, . . . ,Xn)

(3.131)

Denoting by �m1, . . . , �mm the means of Z1, . . . ,Zm, the linear approximation
immediately yields

�mk
∼= gk(m1, . . . ,mn), k = 1, 2, . . . ,m (3.132)

while the covariance matrix �K of the Z-variables is given by

�K ∼= DTKD (3.133a)
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where K is the covariance matrix of the X-variables and we denoted by D
the n×m matrix of derivatives

D =

⎡⎢⎢⎢⎣
∂g1/∂x1 ∂g2/∂x1 . . . ∂gm/∂x1
∂g1/∂x2 ∂g2/∂x2 . . . ∂gm/∂x2

...
...

...
...

∂g1/∂xn ∂g2/∂xn . . . ∂gm/∂xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
D11 D21 . . . Dm1
D12 D22 . . . Dm2

...
...

...
...

D1n D2n . . . Dmn

⎤⎥⎥⎥⎦
and it is understood that all derivatives are calculated at the point x = m.
So, the (i, j)th element of the matrix is

�Kij = Cov(Zi,Zj) ∼=
∑
k, l

Di kKk lDj l (3.133b)

and �K, being a covariance matrix, is clearly symmetric, that is, �Kij = �Kji.
Clearly, eq. (3.133b) could also be directly obtained from the definition of
covariance. In fact, for example, if Z1 = g1(X1,X2) and Z2 = g2(X1,X2)

we have

�K12 = Cov(Z1,Z2) =
∫

(z1 − �m1)(z2 − �m2) fZ(z) dz

and by a similar line of reasoning as above we can expand both g1, g2 in a
neighborhood of m and use this expansion together with eq. (3.132) to get

�K12 ∼=
∑
k,l

∂g1

∂xk

∂g2

∂xl
Kkl

which, as expected, is the same as eq. (3.133b).
As the next example will show, a final point worthy of notice is that

independence of the X-variables does not, in general, imply independence
of the Z-variables.

Example 3.5 LetX1,X2 be two uncorrelated r.v.s with variancesK11 = σ 2
1 ,

K22 = σ 2
2 . Also let Z1 = 2X1 +X2 and Z2 = 5X1 + 3X2. Then

DTKD =
[
2 1
5 3

][
σ 2

1 0

0 σ 2
2

][
2 5
1 3

]
=
[

4 σ 2
1 + σ 2

2 10 σ 2
1 + 3σ 2

2

10 σ 2
1 + 3σ 2

2 25 σ 2
1 + 9 σ 2

2

]

showing that Z1,Z2 are, as a matter of fact, correlated.

Example 3.6 Suppose that the coordinates x, y in a plane can be measured
with uncertainties σ1 = 0.2 cm for the x-coordinate and σ2 = 0.4 cm for the
y-coordinate. Assume further that the measured x, y values of a point in the
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plane are uncorrelated and they are considered the mean coordinates for that
point. Our measurement yields (x, y) = (1, 1); what are the uncertainties in
polar coordinates? Now, the functional relations for the problem are

r = √x2 + y2

θ = arctan(y/x)

and the derivative matrix is

D =
[
x/r −y/r2
y/r x/r2

]
(x,y)=(1,1)

=
[
1/

√
2 −1/2

1/
√

2 1/2

]

while K = diag(σ 2
1 , σ 2

2 ) = diag(0.04, 0.16). Therefore

�K ∼= DTKD =
[
0.100 0.042
0.042 0.050

]
and the uncertainties we are looking for are σr = √

0.1 = 0.32 cm and σθ =√
0.05 = 0.22 radians. Consequently, we will express our measurement

as x = 1.0 ± 0.2; y = 1.0 ± 0.4 cm in rectangular coordinates and r =
1.41 ± 0.32 cm; θ = π/4 ± 0.22 radians in polar coordinates. Note that
the transformation from rectangular to polar coordinates has introduced a
positive correlation between r and θ .

3.6 Summary and comments

This chapter continues along the line of Chapter 2 by extending the dis-
cussion to the so-called multivariate case, that is, the case in which two,
three, . . ., n random variable are considered simultaneously. In this light it is
useful to introduce the concept of random vector and – whenever convenient
– exploit the brevity and compactness of vector and matrix notation.

A n-dimensional random vector X is, in essence, a measurable function
from an abstract probability space (W , S,P) to Rn and this implies that each
one of its components must be a random variable. In this light, Section 3.2
shows that the familiar concepts of induced probability measure, PDF and
pdf (when it exists) can be readily extended to these vector-values functions.
A new aspect, which has no counterpart in the one-dimensional case, is
considered in Section 3.2.1 where the notion of marginal distribution func-
tions is introduced. These functions have to do with the ‘subvectors’ of a
given vector X and it is shown that the joint probability description of X
contains implicitly the probabilistic description of each one of its possible
‘subvectors’. In general, however, the reverse statement is not true unless its
components are independent. In this case, in fact, a number of important
‘product rules’ hold and one can obtain the joint-PDF (or pdf) of the vector
from the PDFs (pdfs) of its components.
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Similarly to the one-dimensional case, the moments of a random vector
are defined as abstract Lebesgue integrals in the probability space (W , S,P).
The most important moments in applications are the first- and second-order
moments which are given special names. So, in addition to the concepts
of mean values and variances of X, the notion of covariance is defined in
Section 3.3 and some properties of these numerical descriptors are given.
Particularly important in both theory and applications is the notion of uncor-
relation of random variables which, broadly speaking, is a weak form of
(pairwise) independence. Stochastic independence, in fact, implies uncor-
relation but the reverse, in general, is not true. Besides this, Section 3.3
introduces the concept of joint-characteristic function by generalizing the
one-dimensional case of Chapter 2; in particular, it is shown that indepen-
dence implies the validity of a ‘product rule’ also for characteristic functions.
Then, in Section 3.3.1 the discussion continues by noting the usefulness
of matrix notation and by considering the actual calculations of moments
and expectations in practice. In fact, mathematical analysis provides all the
necessary results to show that the abstract Lebesgue integrals with respect
to the measure P are evaluated as Lebesgue–Sieltjes integrals in Rn; these, in
turn, in most practical cases become either sums or ordinary Lebesgue integ-
rals depending on the type of PDF – that is, FX – induced by the random
vector X. Moreover, when the pdf exists the Lebesgue integrals coincide
with the familiar Riemann integrals (it should be remembered, however,
that Lebesgue integrals have a number of desirable properties which are not
satisfied by Riemann integrals).

Next, Section 3.3.2 is more application-oriented and gives two important
examples of multivariate distributions: a discrete one, the so-called multi-
nomial distribution, and a continuous one, the multivariate Gaussian (or
normal) distribution. This is done in order to show how the developments
considered so far are translated into practice.

For its importance in both theory and practice, Sections 3.4 and 3.4.1
return on the subject of conditional probability. Here we extend the notion
of conditioning to random variables by also considering, in the continuous
case, the possibility of conditioning on events of zero probability. Then,
since a conditional probability is a probability measure in its own right,
the concepts of conditional PDF and pdf are introduced in the multivariate
case and their relation to the joint and marginal functions is also shown. As
one might expect, conditional expectations satisfy all the main properties of
expectations. However, some additional properties are worthy of mention
and these are given in Section 3.4.1 together with further theoretical remarks
and examples.

Finally, the last two Sections 3.5 and 3.5.1, deal with the probabilis-
tic description of functions of a given random vector X, assuming that
some information on X is available. More specifically – limiting for the
most part the discussion to the continuous case – Section 3.5 considers the
general problem of obtaining the joint-pdf of a vector Z = g(X); then, in
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order to show practical cases, some examples are given. On the other hand,
Section 3.5.1 addresses the problem of obtaining some information on Z
without necessarily trying to describe it completely. The task is accomplished
by calculating the lowest-order moments – typically means, variances and
covariances – of Z only on the basis of the available information on X. In
most cases one only arrives at approximate relations because linearization
of the function g is often necessary. Nonetheless, this partial information –
obtained, in addition, by means of approximate equations – is sufficient and
sufficiently accurate in a large number of practical situations.
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4 Convergences, limit theorems
and the law of large numbers

4.1 Introduction

In most issues where chance plays a part, things seem to behave rather
erratically if one looks only at a few instances. On the other hand, this
type of behaviour seems to ‘smooth out’ in the long run. In other words,
as the number of observed instances – or trials or experiments – increases,
a more and more orderly pattern seems to ensue and certain regularities
become clearer and clearer. This is what happens, for example, when we
toss a coin; after 10 tosses we would not be surprised to have, say, eight
heads and two tails but we would surely be if we got 800 heads and 200
tails after 1000 tosses. In fact, in this case we would seriously suspect that
the coin is biased. This state of affair would be intriguing but not partic-
ularly interesting if it applied only to coins and dice. As a matter of fact,
however, a large number of experiences in many fields of human activities –
from birth and death rates to accidents, from measurements in science and
technology to the occurrence of hurricanes or earthquakes, just to name a
few – behave in a similar manner when measured, tabulated and/or assigned
numerical values. The appearance of long-term regularities as the number
of trials increases has been known for centuries and goes under the name
of ‘law of large numbers’. The great achievement of probability theory is in
having established the general conditions under which these regularities can
and do occur.

We open here a short parenthesis. Returning to the coin example for a
moment, it is worth pointing out that the law of large numbers does not
justify certain mistaken beliefs such as, say: I tossed a fair coin 15 times and
I got 14 heads, the next toss is very likely to result in a head. This is wrong
because the process has no memory and the probability of a head is 0.50
for each toss. In other words, the coin has no responsibility whatsoever to
‘make up’ for a past run of many heads in a row. This misinterpretation
(unfortunately, a rather common misinterpretation; consider, for example,
the habit of betting on ‘late’ numbers in lotteries) of the law of large numbers
is due to the fact that one fails to distinguish between a regularity ‘in the ratio
sense’ and a regularity in an ‘absolute sense’. The former concept refers to
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the number of heads (or tails) divided by the total number of tosses while
the latter refers to the number of heads (or tails) in excess over tails (heads);
as the number N of tosses increases, the above ratio tends to stabilize by
getting closer and closer to 0.50 while the difference between heads and tails
can become rather large (in fact, it generally increases).

So, returning to our main discussion, this chapter is intended to provide
the mathematical rationale behind the general term ‘law of large numbers’
and since the concept implies a tendency towards something, it is easily
guessed that its mathematical formalization entails some kind of limit. The
first step, therefore, is to consider which kind of limits are involved in the
long-term behaviour of experiments governed by chance.

4.2 Weak convergence

In the final part of Section 2.4 (Definition 2.5) we introduced the notion
of weak convergence of random variables. This type of convergence is also
known in probability theory as ‘convergence in distribution’ or ‘convergence
in law’ to mean that the probability law (i.e. the PDF) of Xn converges to
a function which is itself a probability law. We recall here some important
points:

(a) Fn → F[w] – or equivalently Xn → X[D] – means that limn→∞ Fn(x) =
F(x) at all points where F(x) is continuous (there is no ambiguity because
F(x), being a PDF, is right-continuous). Also, it is not difficult to see
that Definition 2.5 of weak convergence is equivalent to stating that
limn→∞ P(Xn ≤ x) = P(X ≤ x) whenever P(X = x) = 0;

(b) since weak convergence does not refer directly to the r.v.sXn and neither
it involves directly the probability space on which they are defined (weak
convergence is a property of the PDFs and not of theXn themselves), the
concept makes sense even if the Xn are defined on different probability
spaces;

(c) sequences of discrete r.v.s may converge (weakly) to a continuous r.v.s
and conversely. Moreover, the fact that a sequence Xn of absolutely
continuous r.v.s with pdfs fn = F′

n converges in distribution to an
absolutely continuous r.v. X whose pdf is f = F′ does not imply, in
general, that the sequence fn converges to f . It is worth noting, however,
that if fn → f pointwise (or even almost everywhere, see Section 4.3),
then Xn → X[D].

The extension to random vectors is rather straightforward: if (X(1)
n ,X(2)

n , . . . ,
X(m)
n ) converges weakly to the vector (X(1),X(2), . . . ,X(m)) then X(i)

n →
X(i)[D] for every i = 1, 2, . . . ,m. The reverse in general is not true and
weak convergence of every individual component does not imply the vec-
tor weak convergence. This result should be hardly surprising; in fact,
given F(1) and F(2) – we are considering the two-dimensional case for
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simplicity – there are infinite joint-PDFs for which F(1),F(2) are the marginal
PDFs and therefore F(i)

n → F(i)[w] for i = 1, 2 gives no information on the
convergence of FXn . In addition, FXn may not even converge at all. Also –
in the light of the definition of weak convergence – it should be noted that
Xn → X[D] does not imply Xn −X → 0[D], as it is customary for ordinary
convergence of real variables.

A fundamental result on D-convergence is given by Levy’s theorem of
Proposition 2.24 which brings into play pointwise convergence of charac-
teristic functions and is often used in probability theory. We use it, for
instance, to prove a first limit theorem:

Proposition 4.1 Let Xn be a sequence of binomial r.v.s with parameters
n and p = λ/n, where λ is a positive real number. Then, as n → ∞, Xn
converges in distribution to a Poisson r.v. of parameter λ.

Before proving this proposition, some preliminary comments on the
Poisson distribution are in order. As it is probably known to the reader,
we call Poisson r.v. with parameter λ a discrete r.v. X whose pmf is given by

pX(x) = e−λ λx

x! (x = 0, 1, 2, . . .) (4.1)

and it can be shown that E(X) = Var(X) = λ. In fact, for example,

E(X) =
∞∑
x=0

xe−λ λx

x! = λ

∞∑
x=1

λx−1

(x− 1)!e
−λ = λ (4.2a)

because on the r.h.s. we sum on all the ordinates of the distribution and
therefore the sum equals 1. In addition, the CF of the Poisson distribution is
easily obtained as

ϕ(u) = E(eiuX) = e−λ
∑
x

(λeiu)x

x!
= e−λ exp(λeiu) = exp[λ(eiu − 1)]

(4.2b)

from which, using eqs (2.47b) and (2.34), it is almost immediate to determine
that E(X2) = λ + λ2 and Var(X) = λ. For higher-order moments it may be
more convenient to use the recursion relation

E(Xk) = λ

(
d
dλ

+ 1
)
E(Xk−1) (4.2c)

with the starting assumption E(X0) = 1. Therefore E(X) = λ, E(X2) =
λ + λ2, E(X3) = λ + 3λ2 + λ3, E(X4) = λ + 7λ2 + 6λ3 + λ4, etc.
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A final remark on the Poisson distribution is as follows: let X,Y be two
independent Poisson r.v.s with parameters λ1, λ2, respectively. Independence
implies (eq. (3.29)) that the CF of the r.v. X + Y is

ϕX+Y (u) = {exp[λ1(eiu − 1)]}{exp[λ2(eiu − 1)]}
= exp[(λ1 + λ2)(eiu − 1)]

(4.3)

which is the CF of a Poisson r.v. with parameter λ1 + λ2. This property
of reproducing itself by addition of independent variables – possessed also
by the Gaussian distribution – is noteworthy and often useful in practice.
Moreover, a result by Rajkov shows that the reverse is also true: if the sum
of two independent r.v. has a Poisson distribution then each individual r.v.
is Poisson distributed. This, we recall (remark in Example 3.3) is true also
for Gaussian r.v.s.

Now, returning to our main discussion, we know from eq. (2.51) that the
CF of the binomial r.v. Xn is given by ϕn(u) = (1 − λ/n+ λeiu/n)n. Passing
to the limit as n → ∞ we get

lim
n→∞ ϕn(u) = lim

n→∞

(
1 + λ(eiu − 1)

n

)n
= exp[λ(eiu − 1)] (4.4)

which proves the assertion of Proposition 4.1. On the practical side, this
proposition is interpreted by saying that the Poisson distribution – besides
being often applicable in its own right – can be used as a valid approximation
of the binomial distribution when the probability of ‘success’ p is rather small
and n is sufficiently large. In fact it should be noted that all the binomial r.v.s
Xn have the same mean E(Xn) = pn = (λ/n)n = λ, thus implying that for
large values of n the probability p must be small (incidentally, it is for this
reason that the Poisson distribution is often called the distribution of rare
events). In this light, as Example 4.1 will show, the parameter λ represents
the average number of occurrences of the event under study per measurement
unit (of time, length, area, etc., depending on the case). As a general rule
of thumb one can use the Poisson distribution to approximate the binomial
when either n ≥ 20 and p ≤ 0.05 or when n ≥ 100 and np ≤ 10; this makes
calculations much easier because if we are interested in, say, the probability
of 9 successes out of n = 1000 trials in a binomial process with p = 0.006
(so that λ = np = 6) it is certainly easier to calculate (69e−6)/9! rather than

(
1000

9

)
(0.006)9(1 − 0.006)1000−9

(incidentally, the result of both expressions is 0.0688).
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Example 4.1 Two typical cases of Poisson r.v. are as follows. Consider the
number of car accidents per month at a given intersection where it is known
that, on average, there are 1.7 accidents per month. In this case the month is
our measurement unit and the Poisson law can be justified as follows. Divide
a month in n intervals, each of which is so small that at most one accident
can occur with a probability p �= 0. Then, since it is reasonable to assume
that the occurrence of accidents is independent from interval to interval, we
are in essence observing a Bernoulli trial where the probability of ‘success’
p is relatively small if n is large. Also we know that λ = np = 1.7 and
we can, for instance, obtain the probability of zero accidents in a month as
(1.70e−1.7)/0! = 0.183.

The second example arises from a ballistic problem rather common during
II World War. The probability of hitting an airplane in a vulnerable part
when shooting with a rifle – that is, a ‘success’ – is very low, say, p = 0.001.
However, if an entire military unit shoots, say, n = 4000 bullets, one can use
the Poisson distribution to determine that the probability of at least two hits
is (since λ = np = 4)

∑4000
x=2 4xe−4/x! = 1−(40e−4/0!)−(41e−4/1!) = 0.908

which is rather high and has been confirmed in practice.

Another important limit theorem – which involves D-convergence and
points in the direction of the central limit theorem to be considered in a later
section – was first partially obtained by deMoivre in the eighteenth century
and then completed by Laplace some 60–70 years later. Once again, one
considers a sequence of Bernoulli trials and defines the random variables
Xn(n = 1, 2, . . .) which take on the value 0 in case of ‘failure’ or the value 1
in case of ‘success’ (recall that the probability of ‘success’ p does not change
from trial to trial). In this light the r.v. Sn = X1 +X2 + · · · +Xn represents
the number of successes in n trials and is binomially distributed with mean
np and standard deviation

√
npq (Example 2.8a). With these assumptions

we have the deMoivre–Laplace theorem:

Proposition 4.2 Let Sn be the number of successes in a sequence of Bernoulli
trials, then

lim
n→∞P

(
a <

Sn − np√
npq

≤ b
)

= 1√
2π

b∫
a

exp(−z2/2) dz (4.5)

uniformly for all a,b (−∞ ≤ a < b ≤ ∞).

The proof is not given here because this proposition is just a particular case
of the central limit theorem which will be proven in a later section (Propo-
sition 4.22). Noting that the r.h.s. of eq. (4.5) is P(a ≤ Z < b) where Z is a
standard Gaussian r.v., we can state Proposition 4.2 in words by saying that
the sequence of r.v.s Yn = (Sn − np)/

√
npq – which, in turn, is obtained by
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‘standardizing’ the sequence of binomial r.v.s Sn – converges in distribution
to a standard Gaussian r.v. This result is also frequently expressed by saying
that the r.v. Yn is ‘asymptotically standard normal’ and sometimes written
Yn ≈ As−N(0, 1) whereN(0, 1) denotes the normal probability distribution
with zero mean and unit variance (i.e. the standard Gaussian distribution).

In the light of the considerations above, it turns out that – in the limit of
large n – the binomial distribution can be approximated either by a Poisson
distribution or by a standardized Gaussian. Which one of the two approx-
imations to use depends on the problem at hand; broadly speaking, the
Gaussian approximation works well even for moderately large values of n
(say n ≥ 20−25) as long as p is not too close to 0 or 1. If, on the other hand,
p is close to 0 or 1, nmust be rather large in order to obtain reasonably good
results and in these cases the Poisson approximation is preferred. General
rules of thumb are often given in textbooks and one finds, for example, that
the Gaussian approximation is appropriate whenever (i) p± 2

√
pq/n lies in

the interval (0, 1) or (ii) np ≥ 5 if p ≤ 0.5 or nq ≥ 5 if p > 0.5.
A third important and useful result considers the asymptotic behaviour

of Poisson r.v.s. The CF of a Poisson r.v. X is given by eq. (4.2b); as a
consequence the CF of the standardized Poisson r.v. Y = (X − λ)/

√
λ is

given by

ϕY (u) = exp[−iu
√

λ + λ(eiu/
√

λ − 1)] (4.6)

where eq. (4.6) – since Y and X are linearly related – is obtained by using
eq. (3.39b). As λ → ∞ we can expand the exponential in parenthesis as
exp(iu/

√
λ) = 1 + iu/

√
λ − u2/2λ + · · · and obtain

lim
λ→∞ ϕY (u) = exp(−u2/2) (4.7)

which, in other words, means that Y ≈ As − N(0, 1). In the light of
Propositions 4.1 and 4.2, this last result is hardly unexpected.

4.2.1 A few further remarks on weak convergence

It has been pointed out in the preceding section that weak convergence
(or convergence in distribution or in law) concerns the convergence of
PDFs and, in general, does not imply the convergence of pmfs or pdfs
(when they exist). However, in some cases there is the possibility of estab-
lishing ‘local’ limit theorems for these functions. An example is given by
the ‘local’ version of the DeMoivre–Laplace theorem (see e.g. [9] or [13])
stating that

lim
n→∞

√
npqBn(m)

(
√

2π)−1 exp(−x2/2)
= 1 (4.8a)
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where

Bn(m) =
(
n
m

)
pm(1 − p)n−m =

(
n
m

)
pmqn−m

x = (m− np)/
√
npq

(4.8b)

In words, the result of eq. (4.8a) is expressed by saying that, for any
given m, the binomial pmf (multiplied by its standard deviation

√
npq)

tends to a standardized Gaussian pdf as n gets larger and larger. As a
matter of fact, the approximation is rather good even for relatively small
values of n. So, for example, if n = 25, p = 0.2 and we are inter-
ested in m = 3, then

√
npqB25(3) = 0.2715 and since x = −1 in

this case, we get (
√

2π)−1 exp(−x2/2) = 0.2420. A graphical represen-
tation of this local theorem is given in Figures 4.1 (n = 25, p = 0.2)
and 4.2 (n = 100, p = 0.2) where one can immediately notice the
quality of the approximation: good in the first case and excellent in the
second case. The reader should check, however, that larger and larger val-
ues of n are needed for a good approximation as p gets close to either
0 or 1.

As stated in the preceding section, when p is close to either 0 or 1 (say
p < 0.1 or p > 0.9) the binomial pdf can be better approximated by a
Poisson density. In fact, if we let n → ∞ and p → 0 so that λ = pn is finite,
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Figure 4.1 Gaussian approx. to binomial (n = 25, p = 0.2).



136 Probability theory

0.00

0.07

0.14

0.21

0.28

0.35

0.42

–3.50 –2.50 –1.50 –0.50 0.50 1.50 2.50 3.50

x values

Binomial
Std. Gauss.

Figure 4.2 Gaussian approx. to binomial (n = 100, p = 0.2).

then for any fixed value of m

Bn(m) = n!
m!(n−m)!p

m(1 − p)n−m

= n(n− 1) · · · (n−m+ 1)
λm

m!nm
(

1 − λ

n

)n−m
= nm

(
1 − 1

n

)
· · ·
(

1 − m− 1
n

)
λm

m!nm
(1 − λ/n)n

(1 − λ/n)m

and therefore, since (1 − λ/n)n → exp(−λ) as n → ∞,

lim
n→∞Bn(m) = λm

m! e
−λ (4.9)

The approximations considered here, clearly, are not the only ones. So, for
example, it may be reasonable to expect that a distribution arising from
an experiment of sampling without replacement can be approximated by a
distribution of a similar experiment with replacement if the total number of
objects N from which the sample is taken is very large. In fact, as N → ∞
and we extract a finite sample, it no longer matters whether the extraction
is done with or without replacement because the probability of ‘success’ is
unaffected by the fact that we replace – or do not replace – the extracted
item. In mathematical terms these considerations can be expressed by saying
that, under certain circumstances, the so-called hypergeometric distribution
– which is relative to sampling without replacement – can be approximated
by a binomial distribution (see e.g. [18, Section 3.1.3] or [7, Appendix 1,
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Section 17]). However, we do not consider other cases here and, if needed,
postpone any further consideration.

4.3 Other types of convergence

Consider a sequence of r.v.s Xn defined on the same probability space
(W , S,P). We say thatXn converges in probability to the r.v.X – also defined
on (W , S,P) – if for every ε > 0 we have

lim
n→∞P{w ∈ W : |Xn(w) −X(w)| ≥ ε} = 0 (4.10a)

and in this case one often writes Xn → X[P] and speaks of P-convergence.
It is worth noting that convergence in probability is called ‘convergence in
measure’ in mathematical analysis.

In words, eq. (4.10a) states that the probability measure of the set where
Xn differs fromX by more than any prescribed positive number tends to zero
as n → ∞. This, we point out, does not assure that all the values |Xn(w) −
X(w)| will be smaller than ε for n larger than a certain N, but only that the
probability measure of the event (i.e. set) for which |Xn(w) −X(w)| ≥ ε is
very small (zero in the limit). Also, it may be noted that eq. (4.10) can be
expressed equivalently by writing

lim
n→∞P{w ∈ W : |Xn(w) −X(w)| ≤ ε} = 1 (4.10b)

and it is immediate to see that Xn → X[P] if and only if Xn − X → 0[P]
(remember that this is not true in general for convergence in distribution).

In the case of random vectors the condition (4.10a) – or (4.10b) – must
hold for all their components and it is understood that the sequence of vectors
Xn and the limitXmust have the same dimension. More specifically, it can be
shown thatXn → X[P] if and only ifX(k)

n → X(k)[P] for all k (where k is here
the index of component; so, for a m-dimensional vector k = 1, 2, . . . ,m).

We turn our attention now on some important results on convergence in
probability starting with the following two propositions:

Proposition 4.3 If Xn → X[P] and g : R → R is a continuous function,
then g(Xn) → g(X)[P].

Proposition 4.4(a) Convergence in probability implies convergence in
distribution.

In fact, we have

Fn(x) = P(Xn ≤ x) = P(Xn ≤ x ∩X > x+ ε) + P(Xn ≤ x ∩X ≤ x+ ε)

≤ P(|X −Xn| ≥ ε) + P(X ≤ x+ ε) = P(|X −Xn| ≥ ε) + F(x+ ε)
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where the inequality comes from two facts:

(a) P(Xn ≤ x ∩X ≤ x+ ε) ≤ P(X ≤ x+ ε) because of the straightforward
inclusion (Xn ≤ x ∩X ≤ x+ ε) ⊆ (X ≤ x+ ε), and

(b) P(Xn ≤ x ∩ X > x + ε) ≤ P(|X − Xn| ≥ ε) because (Xn ≤ x ∩ X >

x + ε) ⊆ (|X − Xn| ≥ ε). This inclusion is less immediate but the l.h.s.
event implies x < X− ε and, clearly, Xn ≤ x; consequently Xn < X− ε,
which, in turn, is included in the event |X − Xn| ≥ ε. By a similar line
of reasoning we get

F(x− ε) = P(X ≤ x− ε) = P(X ≤ x− ε ∩Xn > x)

+ P(X ≤ x− ε ∩Xn ≤ x)

≤ P(|X −Xn| ≥ ε) + P(Xn ≤ x) = P(|X −Xn| ≥ ε) + Fn(x)

Putting the two pieces together leads to

F(x− ε) − P(|X −Xn| ≥ ε) ≤ Fn(x) ≤ P(|X −Xn| ≥ ε) + F(x+ ε)

and since Xn → X[P] then Fn(x) is bracketed between two quantities that –
as ε → 0 – tend to F(x) whenever F is continuous at x. This, in turn, means
that Xn → X[D] and the theorem is proven.

The reverse statement of Proposition 4.4a is not true in general because –
we recall – convergence in distribution can occur for r.v.s defined on differ-
ent probability spaces, a case in which P-convergence is not even defined.
However, when the Xn are defined on the same probability space, a partial
converse exists:

Proposition 4.4(b) If Xn converges in distribution to a constant c then Xn
converges in probability to c.

We do not prove the proposition but only point out that:

(i) a r.v. which takes on a constant value c with probability one – that is,
such that PX(c) = 1 – is not truly random. Its PDF is F(x) = 0 for
x < c F(x) = 1 for x ≥ c and often one speaks of ‘degenerate’ or
‘pseudo’ random variable in this case;

(ii) when all the Xn and X are defined on the same probability space and
X is not a constant, there are special cases in which the converse of
Proposition 4.4 may hold (see [11, Chapter 4]).

The last result on P-convergence we give here is called Slutsky’s theorem and
its proof can be found, for example, in Ref. [1]
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Proposition 4.5 If Xn → X [D] and Yn → c [D] (and therefore Yn →
c [P]), then
(a) Xn + Yn → X + c [D]
(b) XnYn → cX [D]
(c) Xn/Yn → X/c [D] if c �= 0.

Turning now to another important notion of convergence, we say that
the sequence of r.v.s Xn converges almost-surely (some authors say ‘with
probability 1’) to X if

P
{
w ∈ W : lim

n→∞Xn(w) = X(w)
}

= 1 (4.11)

and we will write Xn → X [a.s.] or Xn → X[P − a.s.] if the measure
needs to be specified. Clearly, Xn → X [a.s.] if and only if Xn − X → 0
[a.s.]. Definition 4.11 implies that the set N of all w where Xn(w) fails
to converge to X(w) is such that P(N) = 0 and that, on the other hand,
Xn(w) → X(w) for all w ∈ Nc where, clearly, P(Nc) = 1. Given a measure
P – and a probability is a finite, non-negative measure – in mathematical
analysis one speaks of ‘convergence almost-everywhere’ (a.e.) when condi-
tion (4.11) holds; therefore a.s.-convergence is just the probabilistic name
given to the notion of a.e.-convergence of advanced calculus. In general,
there is no relation between a.e.-convergence and convergence in measure
(eq. (4.10)); however, the fact that P is a finite measure has an important
consequence for our purposes:

Proposition 4.6 Almost-sure convergence implies convergence in probabil-
ity (and therefore, by Proposition 4.4, convergence in distribution).

This result is a consequence of the following criterion for a.s.-convergence:
the sequence Xn converges almost surely to X if and only if for every ε > 0

lim
n→∞P

⎡⎣ ∞⋃
k=n

{|Xk −X| ≥ ε}
⎤⎦ = 0 (4.12a)

or, equivalently,

lim
n→∞P

⎡⎣ ∞⋂
k=n

{|Xk −X| < ε}
⎤⎦ = 1 (4.12b)

In fact, if (4.12a) holds then eq. (4.10) follows by virtue of the fact that the
probability of a union of events is certainly not less than the probability of
each one of the individual events in the union. The proof of the criterion
is more involved and is not given here; the interested reader may refer, for
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example, to [16] or [17]. Regarding the converse of Proposition 4.6 – which
is not, in general, true – a remark is worthy of notice: it can be shown that
if Xn → X[P] then there exists a subsequence Xnk of Xn such that Xnk → X
[a.s.] as k → ∞.

Proposition 4.7 If Xn → X [a.s.] and g is a continuous function, then
g(Xn) → g(X) [a.s.].

In fact, for every fixed w such that Xn(w) → X(w) then Yn(w) ≡
g(Xn(w)) → g(X(w)) ≡ Y(w) because of the continuity of g. Therefore
{w:Xn(w) → X(w)} ⊆ {w:Yn(w) → Y(w)} so that P{w:Yn(w) → Y(w)} ≥
P{w:Xn(w) → X(w)} and the theorem follows.

The last comment we make here on a.s.-convergence regards random
vectors. As for P-convergence, a sequence of m-dimensional random vec-
tors Xn = (X(1)

n , . . . ,X(m)
n ) converges a.s. to the m-dimensional vector

X = (X(1), . . . ,X(m)) if and only if X(k)
n → X(k) [a.s.] for all k = 1, 2, . . . ,m.

Before turning to the collection of results known as ‘law of large numbers’,
we close this section by introducing another type of convergence. A sequence
of r.v.s Xn is said to converge to X ‘in the kth mean’ (k = 1, 2, . . .) if

lim
n→∞E(|Xn −X|k) = lim

n→∞

∫
W

|Xn −X|k dP = 0 (4.13)

and we will write Xn → X [Mk]. In the above definition it is assumed that
all the Xn and X are such that E(Xk

n) < ∞ and E(Xk) < ∞ because these
conditions imply the existence of the expectation in eq. (4.13). In fact, from
the inequality |Xn − X|k ≤ 2k(|Xn|k + |X|k) we can pass to expectations
to get E(|Xn − X|k) ≤ 2kE(|Xn|k) + 2kE(|X|k) so that the l.h.s. is finite
whenever the r.h.s. is. Also, it is easy to see that Xn → X [Mk] if and only
if Xn −X → 0 [Mk].

The most important special cases of (4.13) in applications are k = 1 –
the so-called ‘convergence in the mean’ – and k = 2, called ‘convergence
in the quadratic mean’. This latter type plays a role in probability when
only ‘second-order data’ are available, that is, when the only information is
given by the means mn = E(Xn) and covariances Kij(i, j = 1, . . . ,n) and one
cannot determine whether the sequence converges in any one of the modes
considered before. However, the following result holds:

Proposition 4.8 If Xn → X[Mk] – with k being any one integer – then
Xn → X [P] and therefore (Proposition 4.4) Xn → X [D].
In fact, consider Chebyshev’s inequality (eq. (2.36a)) applied to the r.v. Xn−
X; for every ε > 0 we have P(|Xn − X| ≥ ε) ≤ E(|Xn − X|k)/εk and
therefore the l.h.s. tends to zero whenever the r.h.s. does. So, in particular, if
a sequence converges in the mean or in the quadratic mean then convergence
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in probability and convergence in distribution follow. Furthermore, by virtue
of Proposition 2.12, it is immediate to show that convergence in the quadratic
mean implies convergence in the mean or, more generally:

Proposition 4.9 Convergence in the kth mean implies convergence in the
jth mean for all integers j ≤ k.

4.3.1 Additional notes on convergences

In the preceding section we have determined the following relations:

(a) a.s.-convergence is stronger than P-convergence which, in turn, is
stronger than D-convergence unless the limit is a constant random
variable.

(b) Mk-convergence (for any one integer k) implies P-convergence and
therefore D-convergence.

At this point one may ask, for instance, about the relation between Mk
and a.s.-convergence. The answer is that, in general, without additional
assumptions, there are no relations other than the ones given above. An
example is given by the celebrated Lebesgue dominated convergence theorem
which, for our purposes, can be stated as follows

Proposition 4.10 Let Xn → X [a.s.] or Xn → X [P] and let Y be a r.v.
such that E(Y) < ∞ (i.e. with finite mean) and |Xn(w)| ≤ Y(w) for each n
and for almost all w ∈ W. Then Xn → X [M1]. (see Ref. [8] or [15]).

Note that the expression |Xn(w)| ≤ Y(w) for almost all w ∈ W brings
into play the measure P and means that the set N where the inequality does
not hold is such that P(N) = 0 (again, this is the ‘almost everywhere’ notion
of mathematical analysis).

Another important result establishes a relation between D- and a.s.-
convergence. This is due to Skorohod and, broadly speaking, states that
convergence in distribution can be turned into almost sure convergence by
appropriately changing probability space.

Proposition 4.11 (Skorohod’s theorem) Let Xn and X be r.v.s defined on
a probability space (W , S,P) and such that Xn → X [D]. Then, it is possible
to construct a probability space (Ŵ , Ŝ, P̂) and random variables X̂n and X̂
such that P̂(X̂ ≤ x) = P(X ≤ x), P̂(X̂n ≤ x) = P(Xn ≤ x) for n = 1, 2, . . .
(i.e. F̂(x) = F(x) and F̂n(x) = Fn(x) for all n) and X̂n → X̂ [̂P− a.s.].

We do not prove the theorem here but it is worth noting that, in essence,
Proposition 4.11 is due to the fact that any PDF F : R → [0, 1] can be
‘inverted’ to obtain a r.v. defined on the interval U = [0, 1] whose PDF
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is F. In this light, it turns out that (Ŵ , Ŝ, P̂) = (U, B(U), µ) – where µ is
the Lebesgue measure. For more details the interested reader can refer, for
example, to [1, 2] or [19].

A third remark of interest is that P-, a.s.- and Mk-convergence can all be
established by the well-known Cauchy criterion of mathematical analysis.
So, for example, if a sequenceXn satisfies the Cauchy criterion in probability,
that is,

lim
m,n→∞P(|Xm −Xn| ≥ ε) = 0 (4.14)

(which can also be written Xm − Xn → 0 [P] as m,n → ∞), then there
exists a r.v. X such that Xn → X [P]. The fact that Xn → X [P] implies
eq. (4.14) is clear; therefore it can be said that the Cauchy criterion (4.14)
is a necessary and sufficient condition for the sequence Xn to converge (in
probability) to a r.v. X defined on the same probability space. Similarly, it
can be shown that |Xm−Xn| → 0 [a.s.] implies that there exists X such that
Xn → X [a.s.]; consequently, by the same reasoning as above Xn → X [a.s.]
if and only if |Xm − Xn| → 0 [a.s.]. By the same token, Xn → X [Mk] if
and only if the Cauchy criterion E(|Xm −Xn|k) → 0(m,n → ∞) in the kth
mean holds. In mathematical terminology, these results can be expressed by
saying that the ‘space’ of random variables defined on a probability space
(W , S,P) is complete with respect to P, a.s. and Mk convergence. Moreover,
if we consider as equal any two r.v.s which are almost everywhere equal
(with respect to the measure P) the spaces of r.v.s. with finite kth order
moment (k = 1, 2, . . .) are the so-called Lk spaces of functional analysis. It
is well known, in fact, that defining the norm ‖X‖k = {E(|X|k)}1/k these are
Banach spaces (i.e. complete normed spaces) and, in particular, the space L2

is a Hilbert space. Although it is beyond our scopes, this aspect of probability
theory has far-reaching consequences in the light of the fact that the study of
Banach and Hilbert spaces is a vast and rich field of mathematical analysis
in its own right.

4.4 The weak law of large numbers (WLLN)

Broadly speaking, the so-called ‘law of large numbers’ (LLN) deals with
the asymptotic behaviour of the arithmetic mean of a sequence of random
variables. Since the term ‘asymptotic behaviour’ implies some kind of limit
and therefore a notion of convergence, it is customary to distinguish between
the ‘weak’ law of large numbers (WLLN) and ‘strong’ law of large numbers
(SLLN), where in the former case the convergence is in the probability sense
while in the latter almost sure convergence is involved. Clearly, the attributes
of ‘weak’ and ‘strong’ are due to the fact that a.s.-convergence is stronger
than P-convergence and therefore the SLLN implies the WLLN.

In order to cast these ideas in mathematical form, let us consider the WLLN
first and start with a general result which is a consequence of Chebychev’s
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inequality. For n = 1, 2, . . . consider a sequence {Yn} of r.v.s with finite means
E(Yn) and standard deviations σn = √

Var(Yn). Then our first statement is:

Proposition 4.12 If the numerical sequence of standard deviations is such
that σn → 0 as n → ∞, then for every ε > 0

lim
n→∞P(|Yn − E(Yn)| ≥ ε) = 0 (4.15)

By setting b = ε, the proof follows immediately from the first of
eq. (2.36b). Now, given a sequence of r.v.s Xk defined on a probability
space (W , S,P) we can define, for every n = 1, 2, . . ., the new r.v.

Sn = X1 +X2 + . . . +Xn (4.16)

with mean E(Sn) and variance Var(Sn). (Note that E(Sn) = ∑n
k=1 E(Xk)

while, in the general case, eq. (2.35b) gives Var(Sn) in terms of the variances
and covariances of the original variables Xk. If these variables are indepen-
dent or uncorrelated then Var(Sn) =∑n

k=1 Var(Xk).) With these definitions
in mind, the following propositions hold:

Proposition 4.13 (Markov’s WLLN) If Var(Sn)/n2 → 0 as n → ∞ then

lim
n→∞P

(∣∣∣∣Sn − E(Sn)
n

∣∣∣∣ ≥ ε

)
= 0 (4.17)

Proposition 4.14(a) (Chebychev’s WLLN) If the variables Xk are inde-
pendent or uncorrelated and there exists a finite, positive constant C such
that Var(Xk) < C for all k (in other words, this latter condition can be
expressed by saying that the variances Var(Xk) are ‘uniformly bounded’),
then eq. (4.17) holds.

The proof of Proposition 4.13 is almost immediate. If we set Yn = Sn/n then,
by hypothesis, Var(Yn) = Var(Sn)/n2 → 0 as n → ∞ and E(Yn) = E(Sn)/n.
In this light, Proposition 4.13 is a consequence of Proposition 4.12. For
Proposition 4.14 we note first that Var(Sn) = ∑n

k=1 Var(Xk) < nC,
where the equality holds because of independence (or uncorrelation). Con-
sequently, Var(Sn)/n2 < C/n, and since C/n → 0 as n → ∞ the result
follows by virtue of Proposition 4.13.

At this point, some remarks are in order. First of all, we note that
eq. (4.17) can be rewritten equivalently as (Sn − E(Sn))/n → 0[P]
or Sn/n → E(Sn)/n[P], where Sn/n is the arithmetic mean of the r.v.s
X1,X2, . . . ,Xn. So, if the Xk are such that E(Xk) = µ for all k, then
E(Sn) = nµ and

Sn/n → µ [P] (4.18)
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meaning that for large n the arithmetic mean of n independent r.v.s (each
with finite expectation µ and with uniformly bounded variances) is very
likely to be close to µ. This is what happens, for instance, when we repeat a
given experiment a large number of times. In this case we ‘sample’ n times a
given r.v. X – which is assumed to have finite mean E(X) = µ and variance
Var(X) = σ 2 – so that X1,X2, . . . ,Xn are independent r.v.s distributed as
X. Then, by calculating the arithmetic mean (X1 +X2 + · · · +Xn)/n of our
n observations we expect that

Sn
n

= X1 +X2 + · · · +Xn
n

∼= µ (4.19)

We will have more to say about this in future chapters but, for the moment,
we note that a typical example in this regard is the measuring process of an
unknown physical quantityQ: we make n independent measurements of the
quantity, calculate the mean of these observed values and take the result as
a good (if n is sufficiently large) estimate of the ‘true value’ Q. Note that
the assumptions of Proposition 4.14 are satisfied because all theXk have the
same distribution asX so that, in particular, E(Xk) = µ (if the measurements
have no systematic error) and Var(Xk) = σ 2 (and since σ is a finite number,
the variances are uniformly bounded).

The relative frequency interpretation of the probability of an event A
(recall Section 1.3) is also dependent on the LLN. In fact, by performing
n times an experiment in which A can occur, the relative frequency f (A)

of A is

f (A) = 1
n

n∑
k=1

Ik (4.20)

where Ik is the indicator function of event A in the kth repetition of the
experiment. As n gets larger and larger, it is observed that f (A) tends to
stabilize in the vicinity of a value – for example, 0.50 in the tossing of a
fair coin or, say, 0.03 for the fraction of defective items in the daily produc-
tion of a given industrial process – which, in turn, is postulated to be the
probability of A. In this light, it is clear that we cannot rigorously prove or
disprove the existence, in the real world, of such a limiting value because
an infinite number of trials is impossible. The best we can do is to build
up confidence in our assumptions and check them against real observations;
continued success tends to increase our confidence, thus leading us to believe
in the adequacy of the postulate.

Returning to our main discussion we note that a special case of
Proposition 4.14 is given by the celebrated Bernoulli theorem whose basic
assumption is that we perform a sequence of Bernoulli trials and p is the
probability of success in each trial. If Xk = Ik – the indicator function of
a success in the kth trial – the sum Sn is the total number of successes in
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n trials and is binomially distributed with (Example 2.8) E(Sn) = np and
Var(Sn) = np(1 − p) = npq. Then, Bernoulli’s theorem asserts:

Proposition 4.14(b) (Bernoulli’s WLLN) With the above assumptions

lim
n→∞P

(∣∣∣∣Snn − p

∣∣∣∣ < ε

)
= 1 (4.21)

or, equivalently, Sn/n → p[P].

The proof follows from Markov’s theorem (Proposition 4.13) once we note
that Var(Sn)/n2 = pq/n → 0 as n → ∞. Now, although the proof of
the theorem may seem almost trivial, we must keep in mind that it was the
first limit theorem to be proved (in the book Ars Conjectandi published in
1713), and therefore Bernoulli did not have the mathematical resources at
our disposal. Moreover, since the theorem states that the average number of
successes in a long sequence of trials is close to the probability of success on
any given trial, its historical importance lies in the fact that this is the first
step in the direction of removing the restriction of ‘equally likely outcomes’ –
necessary in the ‘classical’ notion of probability – in defining the probability
of an event. As a consequence, it provides mathematical support to the idea
that probabilities can be determined as relative frequencies in a sufficiently
long sequence of repeated trials.

The different forms of the WLLN given so far assume that all the variables
Xi have finite variance. Khintchine’s theorem shows that this is not necessary
if the variables are independent and have the same distribution.

Proposition 4.15 (Khintchine’s WLLN) If the r.v.s Xk are independent
and identically distributed (iid) with finite first moment E(Xk) = µ then
Sn/n → µ [P].

In order to prove the theorem we can use characteristic functions to show
that Sn/n → µ[D]. This, by virtue of Proposition 4.4(b), implies convergence
in probability. Let ϕ(u) be the common CF of the variables Xk, then we can
write the MacLaurin expansion ϕ(u) = ϕ(0)+ iuE(Xk)+· · · = 1+ iuµ+· · ·
(see Proposition 2.18(a) and the first of eq. (2.47b)) where the excluded terms
tend to zero as u → 0. Then, if we call ψ(u) = E[exp(iuSn)] the CF of Sn
we have

E[exp(iuSn/n)] = ψ(u/n) =
n∏

k=1

ϕ(u/n) = {ϕ(u/n)}n = (1 + iuµ/n+ · · · )n

where we used independence in the second equality. Now, as n → ∞,
the last expression on the r.h.s. tends to exp(iuµ) which, in turn, is
the CF of a pseudo-r.v. µ. Consequently, Sn/n → µ [D] and therefore



146 Probability theory

Sn/n → µ[P]. A different proof of this theorem is based on the so-called
‘method of truncation’ and can be found, for example, in [2] or [9].

At this point it could be asked if there is a necessary and sufficient condi-
tion for the WLLN to hold. In fact, all the results above provide sufficient
conditions and examples can be given of sequences which obey the WLLN
but do not verify the assumptions of any one of the theorems above. Such a
condition exists and is given in the next theorem due to Kolmogorov.

Proposition 4.16 (Kolmogorov’s WLLN) A sequence Xk of r.v.s with finite
expectations E(Xk) satisfies eq. (4.17) – that is, the WLLN – if and only if

lim
n→∞E

{
�2
n

1 + �2
n

}
= 0 (4.22)

where � = [Sn − E(Sn)]/n.

We do not prove this proposition here and the interested reader may refer,
for example, to [9]. However, it is worth noting that the theorem requires
neither independence nor the existence of finite second-order moments. Also,
since Kolmogorov’s theorem expresses an ‘if and only if’ statement, it can be
said that the various conditions of the propositions above are all sufficient
conditions for (4.22) to hold, meaning that they imply (but are not implied
by) eq. (4.22). In fact, for example, in case of finite variances we have

�2
n

1 + �2
n

≤ �2
n = 1

n2
(Sn − E(Sn))2

so that taking expectations on both sides it follows that (4.22) holds
whenever Markov’s condition on variances (Proposition 4.13) holds.

4.5 The strong law of large numbers (SLLN)

As stated in the preceding section, the type of convergence involved in the
different forms of the SLLN is a.s.-convergence, which, in turn, implies
P- and D-convergence. Being a stronger statement than the WLLN, the
mathematical proofs of the SLLN are generally longer and more intricate
than in the weak case; for this reason we will mainly limit ourselves to the
results. The reader interested in the proofs of the theorems can find them in
the references at the end of the chapter.

Historically, the first statement of SLLN is due to Borel and is somehow
a stronger version of Bernoulli’s theorem (Proposition 4.15):

Proposition 4.17 (Borel’s SLLN) Let Xk = Ik (k = 1, 2, . . .) be the indica-
tor function of a success in the kth trial in a sequence of independent trials
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and let p be the probability of success in each trial. Then Sn/n → p [a.s.],
where, as before, Sn = X1 +X2 + · · · +Xn.

Borel’s theorem, in turn, is a special case of the more general result due to
Kolmogorov:

Proposition 4.18 (Kolmogorov’s SLLN) Let Xk be a sequence of indepen-
dent r.v.s with finite variances Var(Xk) such that

∞∑
k=1

Var(Xk)
k2

< ∞ (4.23)

(i.e. the series on the l.h.s. converges). Then, as n → ∞, the SLLN holds,
that is,

Sn
n

→ E(Sn)
n

[a.s.] (4.24a)

or, equivalently, [Sn − E(Sn)]/n → 0 [a.s.].

Three corollaries to this proposition are:

(a) If the variables of the sequence are independent and have uniformly
bounded variances – that is, Var(Xk) < C for all k – then eq. (4.24)
holds.
In particular,

(b) If the variables of the sequence are independent and have the same mean
µ and variance σ 2 then

Sn/n → µ [a.s.] (4.24b)

In Ref. [3] one can find a slightly different version of this result stating
that if the variables are identically distributed with common finite mean
µ and variance σ 2 and are uncorrelated – that is, Cov(XiXj) = 0 for
i �= j – then eq. (4.24b) holds. The usefulness of this theorem lies in the
fact that non-correlation is generally easier to test than independence.

(c) If the Xk are independent and have uniformly bounded fourth central
moments – that is, for all k we have E[(Xk − µk)

4] ≤ C (where µk =
E(Xk)) for some positive constant C – then eq. (4.24) holds.

This last result is due to Cantelli and is a consequence of Liapunov’s
inequality (Proposition 2.12); in fact, setting Zk = Xk − µk for simplic-
ity of notation, we have Var(Xk) = E

(
Z2
k

)
, and the variances are uniformly
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bounded because{
E
(
Z2
k

)}1/2 ≤ {E(Z4
k

)}1/4 ≤ C1/4

As in the case of the WLLN, the condition of finite variances can be relaxed
if one considers a sequence of iid variables with finite mean µ. Moreover, it
is worth noting that we have an ‘if and only if’ statement

Proposition 4.19 Let Xk be a sequence of iid random variables. Then the
existence of finite first-ordermomentµ is a necessary and sufficient condition
for the SLLN (eq. (4.24b)) to hold.

Although not given here, the proofs of some of the theorems above use
two results which are worthy of mention in their own right because of their
importance in many aspects of probability theory. These results are known
as Kolmogorov’s inequality and the Borel–Cantelli lemma.

Proposition 4.20 (Kolmogorov’s inequality) Let Xi(i = 1, 2, . . . ,n) be a
finite collection of independent (not necessarily identically distributed) ran-
dom variables with finite variances and let Sk = X1 + X2 + · · · + Xk for
1 ≤ k ≤ n. Then, for each b > 0

P
(

max
1≤k≤n

|Sk − E(Sk)| ≥ b
)

≤ Var(Sn)
b2

(4.25)

Note that if n = 1 eq. (4.25) reduces to Chebishev’s inequality (2.36b).

Proposition 4.21 Borel–Cantelli lemma consists of two parts:

(a) Let (W , S,P) be a probability space and A1,A2, . . . be a sequence of
events (i.e. An ∈ S for all n = 1, 2, . . .). If

∑∞
n=1 P(An) < ∞, then

P
(

lim sup
n→∞

An

)
= 0 (4.26a)

where, we recall from Appendix A, lim supn→∞ An = ∩∞
n=1

(∪∞
k=nAk

)
is

itself an event which, by definition, occurs if and only if infinitely many
of the Ans occur.

(b) If A1,A2, . . . are mutually independent and
∑∞

n=1 P(An) = ∞, then

P
(

lim sup
n→∞

An

)
= 1 (4.26b)
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To prove the first part of the lemma, set En = ∪∞
k=nAk. Then E1 ⊃ E2 ⊃

E3 ⊃ · · · is a decreasing sequence of events and the theorem follows from
the chain of relations

P
(

lim sup
n→∞

An

)
= P

(
lim
n→∞En

)
= lim

n→∞P(En) ≤ lim
n→∞

∞∑
k=n

P(Ak) = 0

where we used the definition of limit of a decreasing sequence of sets (see
Appendix A, Section A1) first and then the continuity and subadditivity
properties of probability. For the second part of the lemma we can write

P(ECn ) = P

⎛⎝ ∞⋂
k=n

ACk

⎞⎠ = lim
m→∞P

⎛⎝ m⋂
k=n

ACk

⎞⎠ = lim
m→∞

m∏
k=n

P(ACk )

= lim
m→∞

m∏
k=n

[1 − P(Ak)] ≤ lim
m→∞

m∏
k=n

exp[−P(Ak)]

= lim
m→∞ exp

⎡⎣−
m∑
k=n

P(Ak)

⎤⎦ = 0

where we used, in the order, De Morgan’s law (i.e. eq. A.6), the independence
of the Ak and the inequality 1 + x ≤ ex (which holds for any real number
x). Moreover, the last equality holds because

∑∞
k=n P(Ak) = ∞. From the

relations above, part (b) of the lemma follows from the fact that P(En) =
1 − P(ECn ) = 1 for each n.

4.6 The central limit theorem

In problems where probabilistic concepts play a part it is often reasonable to
assume that the unpredictability may be due to the overall effect of many ran-
dom factors and that each one of them has only a small influence on the final
result. Moreover, these factors – being ascribable to distinct and logically
unrelated causes – can be frequently considered as mutually independent.
Since our interest lies in the final result and not in the individual factors them-
selves – which, often, are difficult or even impossible to identify – it becomes
important to study the existence of limiting probability distributions when
an indefinitely large number of independent random effects combine to yield
an observable outcome. Needless to say, the ubiquitous Gaussian distribu-
tion is one of these limits and the mathematical results formalizing this fact –
that is, convergence to a Gaussian distribution – go under the general name
of ‘central limit theorem’ (CLT). The various forms of the theorem differ in
the assumptions made on the probabilistic nature of the causes affecting the
final result.
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In order to cast the above ideas in mathematical form, we consider a
sequence X1,X2, . . . of independent random variables with finite means
E(X1) = m1,E(X2) = m2, . . . and variances Var(X1) = σ 2

1 , Var(X2) =
σ 2

2 , . . .; also, as in the previous sections, we denote by Sn the sum Sn =
X1 + X2 + · · · + Xn whose mean and variance are E(Sn) = ∑n

k=1mk and
Var(Sn) = ∑n

k=1 σ 2
k , respectively. The simplest case is when the variables

Xk are iid; then, by calling m ≡ m1 = m2 = · · · the common mean
and σ 2 ≡ σ 2

1 = σ 2
2 = · · · the common variance, we have E(Sn) = nm

and Var(Sn) = nσ 2. Since these quantities both diverge as n → ∞, it cannot
be expected that the sequence Sn can converge in distribution to a random
variable with finite mean and variance (unless, of course, the casem = 0 and
σ = 0). However, we can turn our attention to the ‘standardized’ sequence
Yn defined by

Yn = Sn − E(Sn)√
Var(Sn)

= Sn − nm
σ
√
n

(4.27)

whose mean and variance are, respectively, 0 and 1. In this light, the first
form of the CLT – also known as Lindeberg–Levy theorem – is as follows:

Proposition 4.22 (Lindeberg–Levy: CLT for iid variables) Let Xk(k =
1, 2, . . .) be iid random variables with finite mean m and variance σ 2; then
Yn → Z[D] as n → ∞, where the symbol Z denotes the standardized
Gaussian r.v. whose PDF is

FZ(x) = 1√
2π

x∫
−∞

exp(−t2/2) dt

The proposition can be proven by recalling Levy’s theorem (Proposi-
tion 2.24) and using characteristic functions. In fact, by introducing the iid
r.v.s (with zero mean and unit variance) Uj = (Xj −m)/σ for j = 1, 2, . . .,
we have

Yn = Sn − nm
σ
√
n

= 1√
n

n∑
j=1

Uj

Now, denoting by ϕ(u) the common CF of the variables Uj, the existence of
finite mean and variance allows one to write the MacLaurin expansion

ϕ(u) = ϕ(0) + uϕ′(0) + u2

2
ϕ′′(0) + · · · = 1 − u2

2
+ · · ·

where the dots indicate higher order terms that tend to zero more rapidly
than u2 as u → 0. Then, since by virtue of independence the CF ψn of Yn is
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given by ψn(u) = {ϕ(u/
√
n)}n, we have

ψn(u) = {ϕ(u/
√
n)}n =

(
1 − u2

2n
+ · · ·

)n

so that letting n → ∞ we get limn→∞ ψn(u) = exp(−u2/2) (the tech-
nicality of justifying the fact that we neglect higher order terms can be
tackled by passing to natural logarithms; for more details the reader can
refer to [19, Chapter VI, Section 7]). This limiting function is precisely
the CF of a standardized Gaussian r.v., therefore proving the assertion
Yn → Z ≈ N(0, 1)[D] which, more explicitly, can also be expressed as

lim
n→∞P(a < Yn ≤ b) = 1√

2π

b∫
a

exp(−x2/2) dx (4.28a)

for all a,b such that −∞ ≤ a < b ≤ ∞. Equivalently, by taking a = −1 and
b = 1 we can also write

lim
n→∞P

(∣∣∣∣Snn −m

∣∣∣∣ < σ√
n

)
=
√

2
π

1∫
0

exp(−x2/2) dx (4.28b)

which, for large n, can also be interpreted as an estimate on the probability
that the arithmetic mean Sn/n (see also the following remark (c)) takes values
within an interval of length 2σ/

√
n centered about the mean m.

At this point, a few remarks are in order:

(a) The DeMoivre–Laplace theorem (Proposition 4.2) is a special case
of CLT of Proposition 4.22. In DeMoivre–Laplace case, in fact, the
variables Xj are all binomially distributed with mean p and variance
pq = p(1−q). Consequently, the mean and variance of Sn – the number
of successes in n independent trials – are np and npq, respectively, so
that eq. (4.28) reduces to eq. (4.5).

(b) If the Xj are (independent) Poisson r.v.s with parameter λ, then – by
virtue of the ‘self-reproducing property’ of Poisson variables pointed out
in Section 4.2 – the variable Sn is also Poisson distributed with parameter
� = nλ and the CF ψn of the variable Yn is obtained by simply substitut-
ing � in place of λ in eq. (4.6). Then ψn(u) → exp(−u2/2) as n → ∞,
therefore leading to another important special case of Proposition 4.22.

(c) In different words, the statement of Proposition 4.22 can be expressed
by saying that the variable Sn is asymptotically Gaussian with mean nm
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and variance nσ 2. This, in turn, implies that the arithmetic mean

Xn = 1
n

n∑
k=1

Xk = Sn
n

(4.29)

is itself a r.v. which is asymptotically normal with mean E(Xn) = m,

variance Var(Xn) = σ 2/n and standard deviation
√

Var(Xn) = σ/
√
n.

This fact, we will see, often plays an important role in cases where a large
number of elements is involved. In particular, it is at the basis of Gauss’
theory of errors where the experimental value of the (unknown) quan-
tity, say Q, is ‘estimated’ by calculating the arithmetic mean of many
repeated measurements under the assumption that the errors are iid ran-
dom variables with zero mean and finite variance σ 2. Then – besides
relying on the SLLN stating thatXn → Q [a.s.] – if n is sufficiently large
we can also use the Gaussian distribution to make probability state-
ments regarding the accuracy of our result. More about these and other
statistical applications is delayed to later chapters.

(d) Berry–Esseen inequality: Since for large values of n the standardized
Gaussian can be considered as an approximation of the PDF of the
variable Yn, the question may arise on how good is this estimate as a
function of n. Now, besides the practical fact – also supported by the
results of many computer simulations – that the approximation is gen-
erally rather good for n ≥ 10, a more definite answer can be obtained if
one has some additional information on theX variables. If, for example,
it is known that these variables have a finite third-order absolute central
moment – that is, E(|X−m|3) < ∞ – a rather general result is given by
Berry–Esseen inequality which states that for all x

|Fn(x) − FZ(x)| ≤ C
E(|X −m|3)

σ 3
√
n

(4.30)

where we called Fn(x) = P(Yn ≤ x) the PDF of Yn, FZ(x), as above, is
the standardized Gaussian PDF and C is a constant whose current best
estimate is C = 0.798 (see Refs [11–14]).

Although Lindeberg–Levy theorem is important and often useful, the
requirement of iid random variables is too strict to justify all the cases in
which the Gaussian approximation seems to apply. In fact, other forms of
the CLT show that the assumption of identically distributed variables can
be relaxed without precluding the convergence to the Gaussian distribution.
Retaining the assumption of independence, a classical result in this direction
is Lindeberg’s theorem. We state it without proof and the interested reader
can refer, for instance, to [1, 9] or [19].
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Proposition 4.23 (Lindeberg’s CLT) Let X1,X2, . . . be a sequence of inde-
pendent random variables with finite means E(Xk) = mk and variances
Var(Xk) = σ 2

k (k = 1, 2, . . .) and let Fk(x) be the PDF of Xk. If, for every
ε > 0 (ε enters in the domain of integration, see eq. (4.31b)) the Lindeberg
condition

lim
n→∞

1
Var(Sn)

n∑
k=1

∫
Ck

(x−mk)
2 dFk(x) = 0 (4.31a)

holds, then Yn → Z ≈ N(0, 1)[D], that is, the variable Yn = [Sn −
E(Sn)]/√Var(Sn) converges in distribution to a standardizedGaussian r.v. Z.

Two remarks on notation:

(i) Clearly E(Sn) = ∑n
k=1mk, Var(Sn) = ∑n

k=1 σ 2
k and

√
Var(Sn) is the

standard deviation of Sn. In the following, for brevity these last two
parameters will often be denoted by V2

n and Vn, respectively.
(ii) The domain of integration Ck in condition (4.31) is the set defined by

Ck = {x : |x−mk| ≥ εVn} (4.31b)

Basically, the Lindeberg condition is an elaborate – and perhaps rather
intimidating-looking – way of requiring that the contribution of each indi-
vidual Xk to the total be small (recall the discussion at the beginning of this
section). In fact, since the variable Yn is the sum of n ratios, that is,

Yn = Sn − E(Sn)
Vn

=
n∑

k=1

Xk −mk

Vn

the condition expresses the fact that each individual summand must be
uniformly small or, more precisely, that for every ε > 0

lim
n→∞P

( |Xk −mk|
Vn

≥ ε

)
= 0 (4.32)

that is, V−1
n |Xk−mk| → 0[P], which holds whenever eq. (4.31a) holds since

ε2P(|Xk −mk| ≥ εVn) = ε2
∫
Ck

dFk ≤ 1
V2
n

∫
Ck

(x−mk)
2 dFk

≤ 1
V2
n

n∑
k=1

∫
Ck

(x−mk)
2 dFk → 0
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where the first inequality is due to the fact that the domain of integration Ck
includes only those x such that |x−mk| ≥ εVn, that is, (x−mk)

2 ≥ ε2V2
n .

Property (4.32) is sometimes called ‘uniform asymptotic negligibility’ (uan).
As it should be expected, the iid case of Lindeberg–Levy theorem is just

a special case of Proposition 4.23. In fact, if the Xk are iid variables with
finite means m and variances σ 2, then the sum in (4.31) is simply a sum of
n identical terms resulting in

1
σ 2

∫
{|x−m|≥εσ

√
n}

(x−m)2 dF

which, in turn, must converge to zero because
{
x : |x−mk| ≥ ε

√
n
} → ∅

as n → ∞. A second special case of Proposition 4.23 occurs when the Xk
are uniformly bounded – that is, |Xk| ≤ M for all k – and V2

n → ∞ as
n → ∞. Then∫

Ck

(x−mk)
2 dFk =

∫
R

ICk(x−mk)
2 dFk ≤ (2M)2P{|x−mk| ≥ εVn}

≤ (2M)2σ 2
k

ε2V2
n

where Chebyshev’s inequality (eq. (2.36b)) has been taken into account in
the second inequality. From the relations above the Lindeberg condition
follows because

1
V2
n

n∑
k=1

∫
Ck

(x−mk)
2 dFk ≤ (2M)2

ε2V2
n

→ 0

as n → ∞. A third special case of Lindeberg theorem goes under the name
of Liapunov’s theorem which can be stated as follows

Proposition 4.24(a) (Liapunov’s CLT) Let Xk be a sequence of indepen-
dent r.v.s with finite means mk and variances σ 2

k (k = 1, 2, . . .). If, for
some α > 0,

1

V2+α
n

n∑
k=1

E
(|Xk −mk|2+α

)→ 0 (4.33a)

as n → ∞, then Yn → Z[D].
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In fact, Lindeberg’s condition follows owing to the relations

1
V2
n

∑
k

∫
Ck

(x−mk)
2 dFk ≤ 1

εαV2+α
n

∑
k

∫
Ck

|x−mk|2+α dFk

≤
∑

k E(|Xk −mk|2+α)

εαV2+α
n

where the first inequality holds because |x−mk| ≥ εVn.
Liapunov’s theorem is sometimes given in a slightly less general form by

requiring that ρk = E(|Xk −mk|3) < ∞, that is, that all the Xk have finite
third-order central absolute moment. Then Yn → Z[D] if

lim
n→∞

1
Vn

⎛⎝ n∑
k=1

ρk

⎞⎠1/3

= 0 (4.33b)

At this point it is worth noting that eq. (4.31) is a sufficient but not necessary
condition for convergence in distribution to Z. This means that there exist
sequences of independent r.v.s which converge (weakly) to Z without satis-
fying Lindeberg’s condition. However, it turns out that for those sequences
Xk (of independent r.v.s) such that

lim
n→∞ max

k≤n
σ 2
k

V2
n

= 0 (4.34)

eq. (4.31) is a necessary and sufficient condition for weak convergence to Z.
This is expressed in the following proposition

Proposition 4.24(b) (Lindeberg–Feller CLT) Let X1,X2, . . . be as in
Proposition 4.23. Then the Lindeberg condition (4.31) holds if and only
if Yn → Z[D] and eq. (4.34) holds.

A slightly different version of this theorem replaces eq. (4.34) by the uan
condition of eq. (4.32). The interested reader can find both the statement
and the proof of this theorem in Ref. [1].

4.6.1 Final remarks

We close this chapter with a few complementary remarks which, although
outside our scopes, can be useful to the reader interested in further analy-
sis. The different forms of CLT given above consider D-convergence which,
we recall, is a statement on PDFs and, in general, implies nothing on the
convergence properties of pmfs or – when they exist – pdfs. However, in
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Section 4.2.1 we mentioned the local deMoivre–Laplace theorem where a
sequence of (discrete) Bernoulli pmfs converges to a standardized Gaussian
pdf. This is a special case of ‘lattice distributions’ converging to the stan-
dardized Gaussian pdf. Without entering into details we only say here that
a random variable is said to have a ‘lattice distribution’ if all its values can
be expressed in the form a + hk where a,h are two real numbers, h > 0
and k = 0, ±1, ±2,. . .. Bernoulli’s and Poisson’s distributions are just two
examples among others. Under the assumption of iid variables with finite
means and variances, a further restriction on h (the requirement of being
‘maximal’) provides a necessary and sufficient condition for the validity of
a ‘local’ version of the CLT. The definition of maximality for h, the theo-
rem itself and its proof can be found in Chapter 8 of [9]. Also, in the same
chapter, the following result for continuous variables is given:

Proposition 4.25 Let X1,X2, . . . be iid variables with finite means m and
variances σ 2. If, starting from a certain integer n = n0 the variable Yn =
(σ

√
n)−1[Sn − nm] has a density fn(x), then

fn(x) − 1√
2π

exp(−x2/2) → 0

uniformly for −∞ < x < ∞ if and only if there exists n1 such that fn1(x) is
bounded.

A second aspect to consider is whether the Gaussian is the only limiting
distribution for sums of independent random variables. The answer to this
question is no. In fact, a counterexample has been given in Proposition 4.1
stating that the Poisson distribution is a limiting distribution for binomial
r.v.s. Moreover, even in the case of iid variables the requirement of finite
means and variances may not be met. So, in the light of the fact that a
so-called Cauchy r.v., whose pdf is

f (x) = 1
π(1 + x2)

(4.35a)

has not a finite variance, one might ask, for example, if (4.35) could be
a limiting distribution or, conversely, what kind of distribution – if any –
is the limit of a sequence of independent r.v.s Xk distributed according to
(4.35a). Incidentally, we note that (i) the PDF and CF of a Cauchy r.v. are,
respectively

F(x) = 1
π

arctan x+ 1
2

φ(u) = exp(−|u|)
(4.35b)
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(ii) in (4.35a), failure to converge to the Gaussian distribution is due to the
presence of long ‘inverse-power-law’ tails as |x| → ∞. These broad tails,
however, do not preclude the existence of a limiting distribution.

Limiting problems of the types just mentioned led to the identification
of the classes of ‘stable’ (or Levy) distributions and of ‘infinitely divisible’
distributions, where the latter class is larger and includes the former. As it
should be expected, the Gaussian, the Poisson and the Cauchy distributions
are infinitely divisible (the Gaussian and Cauchy distributions, moreover,
belong to the class of stable distributions). For the interested reader, more
on this topic can be found, for example, in [1, 9, 10, 21].

The third and last remark is on the multi-dimensional CLT for iid
random vectors which, in essence, is a straightforward extension of the one-
dimensional case. In fact, just as the sum of a large number of iid variables is
approximately Gaussian under rather wide conditions, similarly the sum of a
large number of iid vectors is approximately Gaussian (with the appropriate
dimension). In more mathematical terms, we have the following proposition:

Proposition 4.26 Let X1 = (X(1)

1 , . . . ,X(k)
1 ),X2 = (X(1)

2 , . . . ,X(k)
2 ), . . . be

k-dimensional iid random vectors with finite meanm and covariance matrix
K. Denoting by Sn the vector sum

Sn =
n∑
j=1

Xj =
⎛⎝ n∑
j=1

X(1)

j ,
n∑
j=1

X(2)

j , . . . ,
n∑
j=1

X(k)
j

⎞⎠ (4.36)

then the sequence (Sn − nm)/
√
n converges weakly to Z, where Z is a

k-dimensional Gaussian vector with mean 0 and covariance matrix K.

4.7 Summary and comments

In experiments involving elements of randomness, long-term regularities
tend to become clearer and clearer as the number of trials increases and one
of the great achievements of probability theory consists in having established
the general conditions under which these regularities occur.

On mathematical grounds, a tendency towards something implies some
kind of limit, although – as is the case in probability – this is not neces-
sarily the familiar limit of elementary calculus. In this light, Sections 4.2
and 4.3 define a number of different types of convergence by also giving their
main individual properties and, when they exist, their mutual relations. Both
sections have a subsection – 4.2.1 and 4.3.1, respectively – where additional
remarks are made and further details are considered.

In essence, the main types of convergences used in probability theory
are: convergence in distribution (or weak convergence), convergence in
probability, almost-sure convergence and convergence in the kth median
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(k = 1, 2, . . .). Respectively, they are denoted in this text by the symbols
D,P, a.s. andMk convergence and the main mutual relations are as follows:

(i) Mk ⇒ Mj(j ≤ k), (ii) M1 ⇒ P ⇒ D, (iii) a.s. ⇒ P ⇒ D.

The relation between Mk- and a.s.-convergence is considered in Proposi-
tion 4.10 and partial converses of the implications above, when they exist,
are also given.

With these notions of convergence at our disposal, we then investigate
the results classified under the name LLN, which concern the asymptotic
behaviour of the arithmetic mean of a sequence of random variables. In
this regard, it is customary to distinguish between weak (WLLN) and strong
(SLLN) law of large numbers depending on the type of convergence involved
in the mathematical formulation – that is, P- or a.s.–convergence, respec-
tively. The names ‘weak’ and ‘strong’ follow from implication (iii) above
and the two laws are considered in Sections 4.4 (WLLN) and 4.5 (SLLN).

So, in Section 4.4 we find, for instance, Markov’s, Chebychev’s, Khint-
chine’s and Kolmogorov’s WLLN, the various form differing on the
conditions satisfied by the sequence of r.v.s involved (e.g. independence,
independence and equal probability distributions, finite variances, etc.).
Also, it is shown that Bernoulli’s WLLN – one of the oldest results of proba-
bility theory – is a consequence of the more general (and more recent) result
due to Markov. It should be noted that most of the above results provide
sufficient conditions for the WLLN to hold and only Kolmogorov’s theorem
is an ‘if and only if’ statement.

Section 4.5 on the SLLN is basically similar to Section 4.4; various forms
of SLLN are given and a noteworthy result is expressed by Proposition 4.19
which shows that for iid r.v.s (a frequently encountered case in applica-
tions) the existence of a finite first-order moment is a necessary and sufficient
condition for the WLLN to hold.

In Section 4.5, moreover, we also give two additional results: (a) Borel–
Cantelli lemma and (b) Kolmogorov’s inequality. These are two fundamental
results of probability theory in general. The main reason why they are
included in this section is because they play a key part in the proofs of
the theorems on the SLLN, but it must be pointed out that their importance
lies well beyond this context.

Having established the conditions under which the LLN holds, Section 4.6
turns to one of the most famous results of probability, the so-called CLT
which concerns the D-convergence of sequences of (independent) random
variables to the normal distribution. We give two forms of this result:
Lindeberg–Levy CLT and Lindeberg’s CLT, where this latter result shows
that – provided that the contribution of each individual r.v. is ‘small’ – the
assumption of identically distributed variables is not necessary. A number
of special cases of the theorem are also considered.
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The chapter ends with Section 4.6.1 including some additional remarks
worthy of mention in their own right. First, some comments are made on
‘local’ convergence theorems, where the term means the convergence of pdfs
(or pmfs for discrete r.v.s) to the normal pdf. We recall, in fact, that D-
convergence is a statement on PDFs and does not necessarily imply the
convergence of densities.

Second, owing to the popularity of the CLT, one might be tempted to think
that the normal distribution is the only limiting distribution of sequences of
r.v.s. As a matter of fact, it is important to point out that it is not so because
there exists a whole class of limiting distributions and the normal is just a
member of this class. The subject, however, is outside the scope of the book
and references are given for the interested reader. The third and final remark
is an explicit statement of the multi-dimensional CLT for iid random vectors.
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Part II

Mathematical statistics





5 Statistics: preliminary ideas and
basic notions

5.1 Introduction

With little doubt, the theory of probability considered in the previous chap-
ters is an elegant and consistent mathematical construction worthy of study
in its own right. However, since it all started out from the need to obtain
answers and/or make predictions on a number of practical problems, it is
reasonable to expect that the abstract objects and propositions of the theory
must either have their counterparts in the physical world or express relations
between real-world entities.

As far as our present knowledge goes, real-world phenomena are tested by
observation and experiment and these activities, in turn, produce a set – or
sets – of data. With the hope to understand the phenomena under investiga-
tion – or at least of some of their main features – we ‘manipulate’ these data
in order to extract the useful information. In experiments where elements
of randomness play a part, the manipulation process is the realm of ‘Statis-
tics’ which, therefore, is a discipline closely related to probability theory
although, in solving specific problems, it uses techniques and methods of
its own.

Broadly speaking, the main purposes of statistics are classified under three
headings: description, analysis and prediction. In most cases, clearly, the
distinction is not sharp and these classes are introduced mainly as a matter
of convenience. The point is that, in general, the individual data are not
important in themselves but they are considered as a means to an end: the
measure of a certain physical property of interest, the test of a hypothesis or
the prediction of future occurrences under given conditions.

Whatever the final objectives of the experiment, statistical methods are
techniques of ‘inductive inference’ in which a particular set (or sets) of
data – the so-called ‘realization of the sample’ – is used to draw inferences
of general nature on a ‘population’ under study. This process is intrinsically
different and must be distinguished from ‘deductive inference’ where con-
clusions based on partial information are always correct, provided that the
original information is correct. For example, in basic geometry the exami-
nation of particular cases leads to the deduction that the sum of the angles
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of a triangle equals 180 degrees, a conclusion which is always correct within
the framework of plane geometry. By contrast, inductive inferences drawn
from incomplete information may be wrong even if the original information
is not. In the field of statistics, this possibility is often related to the (fre-
quently overlooked) process of data collection on one hand – it is evident
that insufficient or biased data and/or the failure to consider an important
influencing factor in the experiment may lead to incorrect conclusions – and,
on the other hand, to the fact that in general we can only make probabilistic
statements and/or predictions. By their own nature, in fact, statements or
predictions of this kind always leave a ‘margin of error’ even if the data have
been properly collected. To face this problem, it is necessary to design the
experiment in such a way as to reduce this uncertainty to values which may
be considered acceptable for the situation at hand. Statistics itself, of course,
provides methods and guidelines to accomplish this task but the analyst’s
insight of the problem is, in this regard, often invaluable. Last but not least,
it should always be kept in mind that an essential part of any statistical anal-
ysis consists in a quantitative statement on the ‘goodness’ of our inferences,
conclusions and/or results.

A final remark is not out of place in these introductory notes. It is a
word of caution taken from Mandel’s excellent book [20]. In the light
of the fact that statistical results are often stated in mathematical lan-
guage, Mandel observes that ‘the mathematical mode of expression has
both advantages and disadvantages. Among its virtues are a large degree
of objectivity, precision and clarity. Its greatest disadvantage lies in its abil-
ity to hide some very inadequate experimentation behind a brilliant facade’.
In this regard, it is surely worth having a look at Huff’s fully enjoyable
booklet [15].

5.2 The statistical model and some notes on sampling

As explained in Chapter 4, the mathematical models of probability are based
on the notion of probability space (W , S,P), where W is a non-empty set,
S a σ -algebra of subsets of W (the ‘events’) and P is a probability function
defined on S. Moreover, an important point is that one generally considers –
more or less implicitly – P to be fully defined.

In practice, however, P is seldom known fully and there exists some degree
of uncertainty attached to it. Depending on the problem, the degree of uncer-
tainty may vary from a situation of complete indeterminacy – where P could
be any probability function that can be defined on S – to cases of partial
indeterminacy in which P is known to belong to a given class but we lack
some information which, were it available, would specify P completely. In
general terms, the goal of statistics is to reduce the uncertainty in order to
gain information and/or make predictions on the phenomena under investi-
gation. This task, as observed in the introduction, is accomplished by using
and ‘manipulating’ the data collected in experiment(s).
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In more mathematical terms, the general idea is as follows. We perform
an experiment consisting of n trials by assuming that the result xi(i =
1, 2, . . . ,n) of the ith trial is associated to a random variableXi. By so doing,
we obtain a set of n observations (x1,x2, . . . ,xn) – the so-called realization
of the sample – associated to the set of r.v.s (X1,X2, . . . ,Xn) which, in turn,
is called a random sample (of size n). Both quantities can be considered as
n-dimensional vectors and denoted by x and X, respectively. Also, we call
sample space the set � of all possible values of X and this, depending on X,
may be the whole Rn or part of it (if X is continuous) or may consist in a
finite or countable number of points of Rn (if X is discrete). With the gener-
ally implicit assumption that there exists a collection of subsets of � forming
a σ -algebra – which is always the case in practice – one defines (�, �) as the
statistical model of the experiment, where here � denotes the class of possi-
ble candidates of probability functions pertaining to the sample X. Clearly,
one of the elements of � will be the (totally or partially unknown) ‘true’
probability function PX.

Now, referring back for a moment to Chapters 2 and 3, we recall that a
random vector X on (W , S,P) defines a PDF FX which, in turn, completely
determines both the ‘induced’ probability PX and the original probability P.
Any degree of uncertainty on P, therefore, will be reflected on FX (or, as
appropriate, on the pmf pX or pdf fX, when they exist) so that, equivalently,
we can say that our statistical model is defined by (�, �), where � is a class
of PDFs such that FX(x) = PX(X1 ≤ x1, . . . ,Xn ≤ xn) ∈ �.

A particular but rather common situation occurs when the experiment
consists in n independent repetitions of the same trial (e.g. tossing a coin,
rolling a die, measuring n times a physical quantity under similar conditions,
etc.). In this case the components of the sampleX1,X2, . . . ,Xn are iid random
variables, that is, they are mutually independent and are all distributed like
some r.v. X so that FXi (xi) = FX(xi) for all i = 1, 2, . . . ,n. The variable X is
often called the parent random variable and the set RX of all possible values
of X is called the population; also, with this terminology, one can call X a
‘sample (of size n) from the population RX’. So, depending on the problem
at hand, there are two possibilities

(1) the PDF FX is totally unknown (and therefore, a priori, � may include
any PDF), or

(2) the general type of FX is known – or assumed to be known – but we
lack information on a certain parameter θ whose ‘true’ value may vary
within a certain set � (note that, in general, θ may be a scalar – then
� ⊆ R – or a k-dimensional vector (k = 2, 3, . . .), and then � ⊆ Rk).

In case (1) our interest may be (1a) to draw inferences on the type of PDF
underlying the phenomena under study or (1b) to draw inferences which
do not depend on the specific distribution of the population from which
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the sample is taken. Statistical techniques that are – totally or partially –
insensitive to the type of distribution and can be applied ignoring this aspect
are called non-parametric or distribution-free methods.

In case (2) we speak of parametric model and the class � is of the form

� = {F(x; θ) : θ ∈ �} (5.1)

where, for every fixed θ ∈ �, F(x; θ) is a well-defined PDF (the semicolon
between x and θ denotes that F is a function of x with θ as a parameter, and
not a function of two variables). Clearly, one denotes by Pθ the probability
function associated to F(x; θ). In most applications, parametric models are
either discrete of absolutely continuous, depending on the type of PDFs in
�. It is evident that in these cases the model can be specified by means of a
class of pmfs or pdfs, respectively.

Example 5.1 (Parametric models) Two examples may be of help to clarify
the theoretical discussion above.

(i) Consider the experiment of tossing n times a coin whose bias, if any, is
unknown. Assuming that we call a head a ‘success’, the natural parent r.v.
X associated with the experiment assigns the value 1 to a success and 0 to a
failure (tail). Since the experiment is a Bernoulli scheme, the distribution of
X will clearly be a binomial pmf (eq. (2.41a)) whose probability of success,
however, is not known. Then, our statistical model consists of two sets: �,
which includes any possible sequence (of n elements) of 1s and 0s, and �

which includes all the pmfs of the type

p(x; θ) =
(
n
x

)
θx(1 − θ)n−x (5.2)

where x denotes the number of successes (x = 0, 1, . . . ,n), and θ ∈ � = [0, 1]
because the probability of success can be any number between 0 and 1 (0
and 1 representing the case of totally biased coin). Performing the experiment
once leads to a realization of the sample – that is, one element of � – which
form our experimental data. Statistics, using these data, provides methods
of evaluating – estimating is the correct term – the unknown parameter θ ,
that is, to make inferences on how much biased is the coin.

(ii) From previous information it is known that the length of the daily
output – say, 5000 pieces – of a machine designed to cut metal rods in pieces
of nominal length = 1.00 m, follows a Gaussian distribution. The mean and
variance of the distribution, however, are unknown. In this case X is the
length of a rod and � consists of the density functions

f (x; θ1, θ2) =
(√

2πθ2

)−1
exp

[
− (x− θ1)

2/2θ2
2

]
(5.3)
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where, in principle, θ1 ∈ �1 = (−∞, ∞) and θ2 ∈ �2 = (−∞, ∞) but of
course – being θ1, θ2 the mean and standard deviation of the process – the
choice can in reality be restricted to much smaller intervals of possible values.
By selecting n, say n = 50, pieces of a daily production and by accurately
measuring their lengths we can estimate the two parameters, thus drawing
inferences on the population (the lengths of the 5000 daily pieces). The
realization of the sample are our experimental data, that is, the 50 numbers
(x1,x2, . . . ,x50) resulting from the measurement.

Although the type of parametrization is often suggested by the problem,
it should be noted that it is not unique. In fact, if h : � → � is a one-to-one
function, the model (5.1) can be equivalently written as

� = {F(x; ψ) : ψ ∈ �} (5.4)

where � = {ψ : ψ = h(θ), θ ∈ �} and the choice between (5.1) and (5.2)
is generally a matter of convenience. One word of caution, however, is in
order: some inferences are not invariant under a change of parametriza-
tion, meaning in other words that there are statistical techniques which are
affected by the choice of parametrization. This point will be considered in
due time if and whenever needed in the course of future discussions.

It is worth at this point to pay some attention to the process by which we
collect our data, that is, the so-called procedure of sampling. Its importance
lies in the fact that inappropriate sampling may lead to wrong conclusions
because our inferences cannot be any better than the data from which they
originate. If the desired information is not implicitly contained in the data, it
will never come out – no matter how sophisticated the statistical technique
we adopt. Moreover, if needed, a good set of data can be analysed more that
once by using different techniques, while a poor set of data is either hopeless
or leads to conclusions which are too vague to be of any practical use.

At the planning stage, therefore – after the goal of the experiment has
been clearly stated – there are a certain number of questions that need an
answer. Two of these, the most intuitive, are: ‘how do we select the sample?’
and ‘of what size?’. In regard to the first question the basic prerequisite is
that the sample must be drawn at random. A strict definition of what exactly
constitutes a ‘random sample’ is rather difficult to give but, luckily, it is often
easier to spot signs of the contrary and decide that a given procedure should
be discarded because of non-randomness. The main idea, clearly, is to avoid
any source of bias and make our sample, as it is often heard, ‘representative’
of the population under study. In other words, we must adopt a sampling
method that will give every element of the population an equal chance of
being drawn.

In this light, the two simplest sampling schemes are called ‘simple sampling
(with replacement)’ and ‘sampling without replacement’. In both cases the
sampling procedure is very much like drawing random tickets from an urn: in
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the first case we draw a ticket, note the value inscribed, and replace the ticket
in the urn while in the second case we do not replace the ticket before the
next drawing. It is worth noting that the main difference is that sampling
without replacement, in general, cannot be considered as a repetition of a
random experiment under uniform conditions because the composition of
the population changes from one drawing to another. However, if (i) the
population is infinite or (ii) very large and/or our sample consists in a small
fraction of it (as a rule of thumb, at most 5%), the two schemes are essentially
the same because removal of a few items does not significantly alter – case
(ii) – the composition of the population or – case (i) – does not alter it at all.

The two sampling schemes mentioned above are widely used although,
clearly, they are not the only ones and sometimes more elaborate techniques
are used in specific applications. For our purposes, we will generally assume
the case of simple sampling, unless otherwise explicitly stated in the course
of future discussions. In regard to random samples, a final point worthy of
mention is that, for finite populations, the use of (widely available) tables of
random numbers is very common among statisticians. The members of the
population are associated with the set of random numbers or some subset
thereof; then a sample is taken from this set – for example, by blindly putting
a pencil down on the table and picking n numbers in that section of the
table – and the corresponding items of the population are selected. In case
of sampling without replacement we must disregard any number that has
already appeared.

The number n is the size of the sample which, as noted above, is one of
the main points to consider at the planning stage because its value – directly
or indirectly – affects the quality and accuracy of our conclusions. However,
since the role of the sample size will become clearer as we proceed, further
considerations will be made in due time.

5.3 Sample characteristics

It often happens that an experiment consists in performing n independent
repetitions of a trial to which a one-dimensional parent r.v. X, with PDF FX,
is attached. Then, the sample is the sequence of iid r.v.s X1, . . . ,Xn and the
realization of the sample will be is a sequence x1,x2, . . . ,xn of n observed
values of X. Recalling from Section 2.3.2 the numerical descriptors of a
r.v. – that is, mean, variance, moments, central moments, etc. – we can
define the sample, or statistical, counterparts of these quantities. So, the
ordinary (i.e. non-central) sample moment and sample central moment of
order k (k = 1, 2, . . .) are

Ak = 1
n

n∑
i=1

Xk
i (5.5)

Ck = 1
n

n∑
i=1

(Xi − A1)
k (5.6)
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respectively, whereA1 is the sample mean andC2 is the sample variance. The
specific values of these quantities obtained from a realization of the sample
x1,x2, . . . ,xn will be denoted by the corresponding lowercase letters, that
is, ak and ck, respectively. So, for instance, if we repeat the experiment
(i.e. other n trials) a second time – thus obtaining a new set x′

1,x
′
2, . . . ,x

′
n of

observed values – we will have, in general a′
k �= ak and c′k �= ck(k = 1, 2, . . .).

At this point, in order not to get lost in symbols, a few comments on
notation are necessary:

(a) the sample characteristics are denoted by Ak and Ck to distinguish them
from their population (or theoretical) counterparts E(Xk) – with the
mean E(X) = µ as a special case – and E[(X − µ)k] – with the variance
E[(X−µ)2] = σ 2 (or Var(X)) as a special case. The parent r.v.X and the
sample size n to which Ak and Ck refer are often clear from the context
and therefore will be generally omitted unless necessary either to avoid
confusion or to make a point.

(b) Since some population characteristics are given special Greek symbols –
for example, µ, σ 2 and the standard deviation σ – it is customary to
indicate their sample counterparts by the corresponding uppercase italic
letters, that is, M, S2 and S, respectively. So, in the light of eqs (5.5)
and (5.6) we have

M = A1; S2 = C2 = n−1
∑
i

(Xi −M)2 and, clearly, S =
√
S2.

(c) Italic lowercase letters, m, s2 and s, denote the specific realization of the
sample characteristic obtained as a result of the experiment, that is:

m = n−1
∑
i

xi; s2 = c2 = n−1
∑
i

(xi −m)2 and s =
√
s2

(d) Greek letters will be often used for higher-order population characteris-
tics. So, αk and µk will denote respectively the (population) ordinary and
central moments of order k. In this light, clearly, α1 = µ and µ2 = σ 2

but for these lower-order moments the notation µ and σ 2 (or Var(X))
will generally be preferred.

The main difference to be borne in mind is that the population characteristics
are fixed (though sometimes unknown) constants while the sample charac-
teristics are conceived as random variables whose realizations are obtained
by actually performing the experiment. More generally, since Ak and Ck are
just special cases of (measurable) functions of X1, . . . ,Xn, the above consid-
erations apply to any (measurable) function G(X1, . . . ,Xn) of the sample.
Any function of this type which contains no unknown parameters is often
called a statistic. So, for instance, the Ck defined in (5.6) are statistics while
the quantities n−1∑

i(Xi − µ)k are not if µ is unknown.
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Returning to the main discussion, a first observation to be made is that the
relations between theoretical moments given in previous chapters still hold
true for their sample counterparts and for their realizations as well. Then,
for example, by appropriately changing the symbols, eq. (2.34) becomes

S2 = A2 − A2
1 = A2 −M2 (5.7)

or, more generally, the relation (2.33) between central and ordinary
moments is

Ck =
k∑
j=0

(−1)jk!
j!(k− j)!M

jAk−j (5.8)

and similar equations hold between ak and ck. Moreover, conceiving the
sample characteristics as random variables implies that they will have a prob-
ability distribution in their own right which, as should be expected, will be
determined by FX. Whatever these distributions may be, the consequence
is that it makes sense to speak, for instance, of the mean, variance and, in
general, of moments of the sampling moments. Let us start by considering
the mean E(M) of the sample mean M. Since E(Xi) = µ for all i = 1, . . . ,n,
the properties of expectation give

E(M) = 1
n
E

(∑
i

Xi

)
= 1
n

∑
i

E(Xi) = µ (5.9)

The variance of M, in turn, can be obtained by using eq. (3.116) and the
independence of the Xi. Therefore

µ2(M) = Var(M) = 1
n2

∑
i

Var(Xi) = 1
n2
nVar(X) = σ 2

n
(5.10)

and the standard deviation is σM = σ/
√
n. Similarly, it is left to the reader

to show that the third- and fourth-order central moments of M are given by

µ3(M) ≡ E
[
(M − µ)3

]
= µ3

n2

µ4(M) ≡ E
[
(M − µ)4

]
= µ4

n3
+ 3(n− 1)

n3
σ 4

(5.11a)

and so on, with more tedious calculations, for the fifth, sixth order, etc. It
is useful, however, to know the order of magnitude of the leading term in
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these central moments of M; for even and odd moments we have

µ2m(M) = O(n−m),
µ2m−1(M) = O(n−m),

m = 1, 2, . . . (5.11b)

respectively, where the symbol O(q) is well known from analysis and
means ‘of the same order of magnitude’ of the quantity q in parenthesis.
Equation (5.11b) can be checked by looking at (5.10) and (5.11a).

Next, turning our attention to the sample variance S2, eq. (5.7) gives
E(S2) = n−1E

(∑
i X

2
i

) − E(M2) = E(X2) − E(M2). Then, using eq. (2.34)
for both r.v.s X and M we get its mean as

E(S2) = σ 2 + µ2 − σ 2
M − µ2 = σ 2 − σ 2

n
= n− 1

n
σ 2 (5.12)

The calculation of the variance of S2 is a bit more involved. Defining Yi =
Xi − µ(i = 1, 2, . . . ,n) we get S2 = n−1∑

i(Yi − Ȳ)2, where Ȳ = n−1∑
j Yj.

Then we can write

S2 = 1
n

∑
i

(Yi − Ȳ)2 = 1
n

⎡⎣∑
i

Y2
i − 1

n

(∑
i

Yi

)2
⎤⎦

= 1
n

⎡⎣∑
i

Y2
i − 1

n

∑
i

Y2
i − 2

n

∑
i<j

YiYj

⎤⎦
= n− 1

n2

∑
i

Y2
i − 2

n2

∑
i<j

YiYj

Squaring this quantity and taking its expectation gives

E[(S2)2] =
(
n− 1
n2

)2

E

⎡⎣(∑
i

Y2
i

)2
⎤⎦

+ 4
n4
E

⎡⎢⎣
⎛⎝∑
i<j

YiYj

⎞⎠2
⎤⎥⎦− 4(n− 1)

n4
E

⎡⎣∑
r

Y2
r

∑
i<j

YiYj

⎤⎦
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Now, taking independence into account plus the fact that E(Yi) = 0 for all
i, the last term on the r.h.s. is zero while the first and second term lead to

(
n− 1
n4

)2

E

⎛⎝∑
i

Y4
i + 2

∑
i<j

Y2
i Y

2
j

⎞⎠
4
n4
E

⎛⎝∑
i<j

Y2
i Y

2
j

⎞⎠
respectively. Therefore

E[(S2)2] = E

⎛⎝ (n− 1)2

n4

∑
i

Y4
i + 2(n− 1)2 + 4

n4

∑
i<j

Y2
i Y

2
j

⎞⎠
= (n− 1)2

n3
µ4 + (n− 1)2 + 2

n3
(n− 1)σ 4

(5.13)

where the last equality holds because E(Y4
i ) = µ4, E(Y2

i ) = σ 2 and there
are n(n − 1)/2 combinations of n r.v.s taken two at a time. Finally, since
Var(S2) = E[(S2)2] − E2(S2), we use eqs (5.13) and (5.12) to get

µ2(S
2) = Var(S2) = (n− 1)2

n3

(
µ4 − n− 3

n− 1
σ 4
)

(5.14a)

So, in particular, if the original population is normal then the mean and
variance of S2 are given, respectively, by eq. (5.12) and by

Var(S2) = 2(n− 1)

n2
σ 4 (5.14b)

where this last result follows from (5.14a) by taking eq. (2.42d) into account.
With rather cumbersome calculations one could then go on to obtain

µ3(S2), µ4(S2), etc. We do not do it here but limit ourselves to two fur-
ther results worthy of mention: the first concerns the mean and variance of
the sample moments Ak and their covariances. It is rather easy to determine

E(Ak) = αk

Var(Ak) ≡ E
[
(Ak − αk)

2
]

= α2k − α2
k

n

Cov(AkAl) ≡ E
[
(Ak − αk)(Al − αl)

]
= αk+l − αkαl

n

(5.15)

where the first two equations are in agreement with the special cases (5.9)
and (5.10) when one notes that A1 = M, α1 = µ and α2 = σ 2 + µ2. For the



Preliminary ideas and notions 173

order of magnitude of even and odd central moments of the Ak we have

µ2m(Ak) ≡ E
[
(Ak − ak)2m

]
= O(n−m),

µ2m−1(Ak) ≡ E
[
(Ak − ak)2m−1

]
= O(n−m),

m = 1, 2, . . . (5.16)

and it is easily seen that eq. (5.11b) are the special case k = 1 of (5.16).
The second result gives the covariance between the sample mean and the

sample variance; it is left to the reader to show that

E
[
(M − µ)

(
S2 − n− 1

n
σ 2
)]

= E[(M − µ)S2] = n− 1
n2

µ3 (5.17)

which implies that for any symmetric distributionM and S2 are uncorrelated.
In fact, as it is probably known to the reader, µ3 is a measure of skewness –
or asymmetry or lopsidedness – of the distribution so that µ3 = 0 for any
symmetric distribution. More specifically, the (adimensional) coefficient of
skewness γ1 is often used, where by definition

γ1 = µ3

µ
3/2
2

= µ3

σ 3
(5.18)

With the above results at hand, one can determine the mean and variance
of a number of (well-behaved) functions of sample moments by using the
approximations given in Section 3.5.1. So, for example, if k, l ≥ 1 are
any two integers and g(Ak,Al) is a twice differentiable function in some
neighbourhood of (αk, αl), then eq. (3.126) gives

E[g(Ak,Al) ∼= g(αk, αl) (5.19a)

while eq. (3.128a) leads to

Var[g(Ak,Al)] ∼=
(

∂g
∂Ak

)2

Var(Ak) +
(

∂g
∂Al

)2

Var(Al)

+ 2
∂g
∂Ak

∂g
∂Al

Cov(AkAl)

(5.19b)

where it is understood that all derivatives are calculated at the point (αk, αl).
Note, in particular, that eqs (5.19a) and (5.19b) can be used to approximate
the mean and variance of the sample central moment Ck which, as shown
by eq. (5.8), is a polynomial in Ak,Ak−1, . . . ,A1.

Example 5.2(a) Consider the mean and variance of C2 = A2 − A2
1. From

eq. (5.19a) we get E(C2) = α2 − µ2 = σ 2, which is the leading term in the
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exact result (5.12). On the other hand, eq. (5.19b) yields

Var(C2) ∼= α4 − α2
2 + 8µ2α2 − 4µ4 − 4µα3

n
= µ4 − µ2

2

n

which, as it should be expected, is the leading term of eq. (5.14) (the second
equality is obtained by taking into account the relations between ordinary
and central moments).

It is evident that the method leading to eqs (5.19a) and (5.19b) is essentially
of analytical nature and, as such, it applies to all cases in which the assump-
tions of the relevant theorems are satisfied. These assumptions, in general,
have do with the behaviour of the function g and, for this point, the reader
is referred to books of mathematical analysis.

Example 5.2(b) As a second example, we calculate the variance of the so-
called (sample) ‘coefficient of variation’ V = S/M = √

C2/A1, provided that
this quantity is bounded. We have

∂V
∂C2

= 1
2µ

√
µ2

∂V
∂A1

= −
√

µ2

µ2

so that using eq. (5.19b) and retaining only the leading terms in Var(C2),
Var(A1) and Cov(C2A1) – see eqs (5.14), (5.10) and (5.17), respectively –
we get

Var(V) ∼= µ2(µ4 − µ2
2) − 4µ3µ2µ + 4µ3

2

4nµ2µ
4

(5.20)

By similar calculations one could obtain, for instance, the approximate mean
and variance of the sample counterpart of the coefficient of skewness (5.18).

5.3.1 Asymptotic behaviour of sample characteristics

The considerations of the preceding section readily extend to the multi-
dimensional case and the reader is invited to work out the details. Here
we turn our attention to another issue: the asymptotic behaviour of sam-
ple characteristics as n tends to infinity or, in practical applications, for
large samples.

Starting with the sample mean M, we can use Markov’s WLLN
(Proposition 4.13) to determine that M → E(M)[P]. In fact, since the Xi
are iid r.v.s and Sn = X1 +· · ·+Xn = nM, then Var(Sn) = n2Var(M) = nσ 2
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and Var(Sn)/n2 → 0 as n → ∞, showing that the assumptions of the the-
orem are all satisfied. Then, by virtue of eq. (5.9) we have M → µ[P].
Actually, by recalling the various form of SLLN given in Section 4.5, one
can state the stronger result M → µ[a.s.]. More generally, as a conse-
quence of Chebyshev’s inequality (see also Proposition 4.12) and the first
of eq. (5.15) we have Ak(n) → E(Ak) = αk[P] and, even more, by virtue
of Proposition 4.19 Ak(n) → αk[a.s.] whenever αk is finite. Note that here
the n in parenthesis stresses the fact that the moments Ak depend on the
sample size.

Clearly, similar statements are valid for the sample central moments and
for any sample characteristic which is a continuous function of a finite
number of the Ak. These convergence properties, in turn, imply that for
large values of n the quantities calculated using the data of the experiment
can be regarded as ‘estimates’ of the corresponding population characteris-
tics. However, according to certain criteria used to evaluate the quality of
the approximation, we will see in later sections that these may not always
be the ‘best’ estimates one can find.

A second aspect to consider is the fact that the quantity nAk =∑i X
k
i is a

sum of n independent variables – the Xk
i – which are independent by virtue

of Proposition 3.3 and all have the same distribution. As a consequence, it
follows that

Proposition 5.1(a) As n → ∞, the standardized variable

nAk − nαk√
n(α2k − α2

k)

=
√
n(Ak − αk)√
α2k − α2

k

tends in distribution to the standard Gaussian r.v.

In fact, since eq. (5.15) implyE(Xk
i ) = αk and Var(Xk

i ) = α2k − α2
k for all i =

1, . . . ,n, the result follows from Lindeberg–Levy CLT (Proposition 4.22).
Also, note that Proposition 5.1 can be stated in different words by saying
that Ak is asymptotically normal with mean αk and variance (α2k−α2

k)/n so
that, in particular, the sample mean M is asymptotically normal with mean
µ and variance σ 2/n (see also remark (c) after the proof of Proposition 4.22).
In this regard, moreover, when sampling from a normal population we have
the special result:

Proposition 5.1(b) If the parent r.v. X is normal with mean µ and variance
σ 2, M is exactly normal with mean µ and variance σ 2/n.
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The proof is immediate if we turn to CFs and note that

ϕM(u) = E{exp[iu(X1 + · · · +Xn)/n]}
= E[iuX1/n] · · ·E[iuXn/n] = [ϕX(u/n)]n

Then, since ϕX has the form given in (2.52), ϕM is the CF of a Gaussian r.v.
with mean µ and variance σ 2/n.

Continuing along the above line of reasoning, we can use Proposition 4.26
(the multi-dimensional CLT) to show that

Proposition 5.2 The joint distribution of any finite number of sample
moments is itself asymptotically normal.

In fact, considering the two-dimensional case for simplicity, let r, s ≥ 1 be
any two integers; the vector n(Ar,As)T can be written as

n
(
Ar
As

)
=
(∑

i X
r
i∑

i X
s
i

)
=
(
Xr

1
Xs

1

)
+ · · · +

(
Xr
n

Xs
n

)
where Xi = (Xr

i ,X
s
i )

T are n iid two-dimensional vectors such that for all
i = 1, . . . ,n we have the mean E(Xi) = (αr, αs)T and the covariance matrix

K =
(

Var(Xr
i ) Cov(Xr

iX
s
i )

Cov(Xs
iX

r
i ) Var(Xs

i )

)
=
(

α2r − α2
r αr+s − αrαs

αr+s − αrαs α2s − α2
s

)
where the proof of the relation Cov(Xr

iX
s
i ) = αr+s−αrαs is immediate. Then,

Proposition 4.26 states that, as n → ∞, the vector
√
n(Ar − αr,As − αs)

tends in distribution to a Gaussian two-dimensional vector with mean 0
and covariance matrix K. The extension to a higher dimensional case is
straightforward. Another important result is as follows:

Proposition 5.3 Let g(x, y) be a twice differentiable function in some neigh-
bourhood of (αr, αs). Then, as n → ∞, the r.v.

√
n[g(Ar,As)−g(αr, αs)] tends

in distribution to a normal variable with zero mean and variance DTKD,
where D is the vector

D =
(

∂g/∂Ar
∂g/∂As

)
and it is understood that all derivatives are calculated at the point (αr, αs).

In order to sketch the proof, set cr = ∂g/∂Ar and cs = ∂g/∂As. Since

g(Ar,As) − g(αr, αs) = cr(Ar − αr) + cs(As − αs) + · · ·
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the variable
√
n[g(Ar,As)−g(αr, αs)] is a sum of two r.v.s which, by virtue of

Proposition 5.2, tend in distribution to a normal r.v. with zero mean, vari-
ances c2r (α2r − αr) and c2s (α2s − αs) and covariance crcs(αr+s − αrαs). Then,
Proposition 5.3 follows from the fact that the sum of two dependent normal
r.v.s A,B with means a,b and variances σA, σB is itself normal with mean
a + b and variance σ 2

A + σ 2
B + 2Cov(A,B) (see eq. (3.60)). Also note that

one can equivalently state the theorem by saying that g(Ar,As) is asymp-
totically normal with mean g(αr, αs) and variance n−1DTKD where n−1K
is the covariance matrix of the sample moments Ar,As. The extension to
cases where g is a function of more than two moments is immediate and, by
appropriately defining D, the matrix notation DTKD still applies.

Example 5.3 The sample central moments Ck are functions of A1,A2, . . . ,
Ak and therefore Proposition 5.3 includes them as special cases. In fact, any
Ck is asymptotically normal with mean µk and variance

1
n

(
µ2k − 2kµk−1µk+1 − µ2

k + k2µ2µ
2
k−1

)
(5.21)

where eq. (5.21) can be obtained starting from eq. (5.8) and noting that the
central moments do not depend on where we take the origin. Therefore,
there is no loss of generality in assuming the origin at the population mean –
that is, setting µ = 0 – so that αk = µk and all derivatives ∂Ck/∂Aj are zero
except ∂Ck/∂Ak = 1 and ∂Ck/∂A1 = −kµk−1. Then, since

n−1DTKD = Var(Ak) + k2µ2
k−1Var(A1) − 2kµk−1Cov(AkA1)

the desired result follows by taking eq. (5.15) into account. So, for instance,
the asymptotic variance of C2 is n−1(µ4 −µ2

2) which, as expected, coincides
with the leading term of eq. (5.14a).

Returning to our main discussion, it is worth pointing out that the con-
siderations above do not imply that asymptotic normality – although rather
common – is a general rule. In order to give an example of sample charac-
teristics which show a different behaviour in the limit of n → ∞ , we must
first introduce the notion of ‘order statistics’.

Suppose, for simplicity, that we are sampling from a continuous popula-
tion; each realization of the sample x1, . . . ,xn can be arranged in increasing
order x(1) ≤ x(2) ≤ · · · ≤ x(n) where, clearly, x(1) = min(x1, . . . ,xn) and
x(n) = max(x1, . . . ,xn). Then, letting X(k), k = 1, . . . ,n, denote the r.v. that
has the value x(k) for each realization of the sample, we define a new sequence
X(1),X(2), . . . ,X(n) of random variables satisfying X(1) ≤ · · · ≤ X(n). This
new sequence is called the ordered series of the sample and X(k), in turn,
is called the kth order statistic where, in particular, X(1) and X(n) are the
extreme values of the sample. A first observation is that order statistics are
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not independent because information on one r.v. of the series provides infor-
mation on other r.v.s: in fact, for example, if X(k) ≥ x then we know that
X(k+1), . . . ,X(n) ≥ x. A second observation is that sampling from an abso-
lutely continuous populations prevents the possibility of two or more order
statistics being equal since the probability of, say, X(k) = X(k+1) is zero, thus
justifying the expression ‘for simplicity’ at the beginning of this paragraph.

The PDF of X(k) can be obtained by noting that the event X(k) ≤ x occurs
whenever at least k out of the n independent r.v.s X1, . . . ,Xn are ≤ x. Each
one of these events has probability F(x) – where F(x) is the PDF of the parent
r.v.X and f (x) = F′(x) is its pdf. Therefore we have a binomial PDF given by

F(k)(x) =
n∑
j=k

(
n
j

)
[F(x)]j[1 − F(x)]n−j (5.22a)

which is absolutely continuous if F(x) is. Taking the derivative with respect
to x leads to the pdf of X(k), that is,

F′
(k) =

n∑
j=1

(
n
j

)
jFj−1(1 − F)n−jf −

n∑
j=k+1

(
n

j − 1

)
(n− j + 1)Fj(1 − F)n−j−1f

=
(
n
k

)
kFk−1(1 − F)n−kf +

n∑
j=k+1

[(
n
j

)
j −
(

n
j − 1

)
(n− j + 1)

]
× Fj−1(1 − F)n−jf

and since the term within square brackets is zero we get

f(k)(x) =
(
n
k

)
k[F(x)]k−1[1 − F(x)]n−kf (x) (5.22b)

where it should be noted that in the extreme cases k = 1 and k = n, respec-
tively, eq. (5.22a) reduces to eqs (2.73a) and (2.72a) while (5.22b) agrees
with eqs (2.73b) and (2.72b).

In order to investigate the behaviour of order statistics as n → ∞ we must
distinguish between mid-terms and extremal terms of the ordered series. We
call mid-terms the elements whose index is of the form k = [pn] where p
is any fixed number 0 < p < 1 and the notation [a] indicates the integer
value of the number a. So, in these cases k depends on n and k/n → p as
n → ∞. On the other hand, we call extremal terms the elements of the series
whose ordinal index is considered fixed throughout the limiting process and
has either the form k = r or k = n − s + 1, where r, s are any two fixed
integers ≥1. Note that k = n− s+ 1 always indicates the sth element from
the top, irrespective of the sample size nwhich, in fact, is assumed to increase
indefinitely.
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Without entering into the details of the calculation, it can be shown (see,
for example, [3] or [19]) that the mid-terms are asymptotically normal. How-
ever, the extremal terms are not. In fact, for instance, considerX(r) and define
the new variable γ = nF(x), denoting by g(r)(γ ) its pdf. Since we must have
f(r)(x) dx = g(r)(γ ) dγ , we get from (5.22b)

g(r)(γ ) = r
n

(
n
r

)(γ

n

)r−1 (
1 − γ

n

)n−r = r
γ

(
n
r

)(γ

n

)r (
1 − γ

n

)n−r
(5.23)

and – being 0 ≤ γ /n ≤ 1 – we can use the limit (4.9) to obtain

lim
n→∞ g(r)(γ ) = γ r−1

(r− 1)!e
−γ = γ r−1

�(r)
e−γ (5.24)

where in the second expression we used the well-known ‘gamma function’
defined in Appendix C. Similarly, if for the sth statistic from the topX(n−s+1)

one defines g = n(1 − F(x)) it is easy to determine that g(s)(γ ) is again given
by (5.23), the only difference being the index s in place of r. Therefore
limn→∞ g(s)(γ ) = {γ s−1/�(s)}e−γ .

The above limiting functions are gamma distributions – �(γ ; 1, r) and
�(γ ; 1, s), respectively – which, however, represent the limit of a function
of the relevant order statistics and not of the order statistics themselves.
When F(x) is given, it may sometimes be possible to obtain the explicit
inverse relation, x = F−1(γ /n) or x = F−1(1 − γ /n) as appropriate, but
these cases are rather rare. It is worth noting, nonetheless, that considerable
work has been done in this direction and it has been found that the limiting
distributions of (appropriately standardized) extreme statistics are only of
three types, often denoted as Types I, II and III or EV1, EV2 and EV3 –
where EV is the acronym for extreme values. Convergence to type I, II or III
depends essentially on the ‘tail’ of the underlying distribution F(x) and the
rate of convergence is generally rather slow. For more details on this rich
and interesting topic the interested reader can refer to [5, 10, 11, 22].

We close this section with two additional comments relevant to the above
discussion. First, the sample counterpart of the p-quantile ζp – which is
defined implicitly by the equation F(ζp) = p(0 < p < 1) – is a mid-term
order statistic and therefore it is asymptotically normal. It can be shown
that its mean and variance are, respectively, ζp and

p(1 − p)
nf 2(ζp)

(5.25)

In particular, since ζ1/2 defines the median of the population, its sample coun-
terpart – X[n/2]+1 if n is odd or any value between X[n/2] and X[n/2]+1 if n is
even – is asymptotically normal with mean ζ1/2 and variance {4nf 2(ζ1/2)}−1.
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If, moreover, the parent r.v. is normal with parameters µ, σ 2, then the sample
median is asymptotically normal with parameters µ, (2n)−1πσ 2.

The second comment refers to the extremal variables X(r) and X(n−s+1); if
one considers their joint distribution it can be shown that they are asymp-
totically independent. Both results cited in these comments can be found in
[3] or [19].

5.4 Point estimation

As stated at the beginning of this chapter, experimental data are a means
to an end: to draw inferences on a population when, for whatever rea-
son, it is not possible to examine the population in its entirety. Clearly, the
type of inference – and therefore the desired final information – depends on
the problem at hand. Nonetheless, some classes of problems are frequently
encountered in practice and specific statistical methods have been devised to
address them.

Here we consider the parametric model of eq. (5.1) with the aim of ‘esti-
mating’ one or more unknown population parameters. This is one of the
typical inference problems and we can choose to give our estimate in one of
two distinct forms: (i) by assigning a specific value to the unknown parame-
ter or (ii) by specifying an interval which – with a given level of confidence –
includes the ‘true’ value of the parameter. One speaks of ‘point estimation’
in case (i) and of ‘interval estimation’ in case (ii) and it is understood that (i)
and (ii) refer to each one of the unknown parameters when these are more
than one. Point estimation is the subject of this and the following sections
(Section 5.5 included).

Given a sample X1, . . . ,Xn we have considered in the previous sections
a number of sample characteristics: each one has the form of a function
T(X) = T(X1, . . . ,Xn) and is a random variable which takes on the value t =
T(x) = T(x1, . . . ,xn) after the experiment has been performed and we have
obtained the realization x1, . . . ,xn. If, moreover, T(X) contains no unknown
quantities it is generally called a statistic. Intuitively, one would think of
estimating an unknown population parameter by using the corresponding
statistic so that, for instance, we could use M and S2 as estimators of the
population mean and variance µ and σ 2, respectively. As reasonable as this
may sound, things are not always so clear-cut because other statistics can be
used for the same purpose and, a priori, there seems to be no reason why
M and S2 should be preferred. In order to motivate our choice even in more
complex cases, we must first try to evaluate the ‘goodness’ of estimators.

Let us call θ the unknown parameter to be estimated and let T(X) – or,
often, Tn or simplyT, implicitly implying the dependence on the sample size –
be the statistic used to estimate it. A first desirable property for T is that

E(T) = θ for all θ ∈ � (5.26)
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which, in words, is phrased by saying that T is an unbiased estimator
(often we will write UE for short) of θ . Note that, strictly, one should write
Eθ (T) = θ because the Lebesgue–Stieltjies integral defining the expectation
is an integral in dF(x; θ). This fact, however, is often tacitly assumed for
parametric models of the type (5.1).

Defining the bias of Tn as b = E(Tn) − θ it is obvious that Tn is unbiased
whenever b = 0. Note that eq. (5.26) does not imply t = θ for every real-
ization of the sample; in fact some realizations will give t − θ > 0 and some
others will result in t − θ < 0, however, on average, eq. (5.26) guarantees
that there is no systematic error in the evaluation of θ . Also, if g is an arbi-
trary non-linear function, eq. (5.26) does not imply E[g(Tn)] = g(θ), this
meaning, for example, that if Tn is an UE of σ 2 not necessarily

√
Tn is an

UE of the standard deviation σ .
Besides the bias, another measure of ‘distance’ from the true value is the

mean square error (of Tn), defined as

Mse(Tn) = E[(Tn − θ)2] (5.27a)

which, using the identity T−θ = (T−E(T))+ (E(T)−θ) = (T−E(T))+b,
can be expressed as

Mse(T) = Var(T) + b2 (5.27b)

whereE[(T−E(T))2] = Var(T) by definition. Equation (5.27b), in addition,
shows that the mean square error of an UE coincides with its variance. So,
between any two estimators, say T,T ′, of the same parameter θ , it seems
logical to prefer T if Mse(T) < Mse(T ′) for all θ ∈ �. If, as it is often
the case, we limit our choice to the class of UEs – let us denote this class
by u(θ) – the ‘best’ estimator will be the one with minimum variance for
all θ ∈ �. This minimum-variance-unbiased-estimator (MVUE) T̄ is often
called an efficient (or optimum) estimator of θ and satisfies the condition

Var(T̄) = min
T∈u(θ)

{Var(T)} for all θ ∈ �. (5.28)

although the concepts are sometimes distinguished because the estimator
with minimum variance among all possible estimators (of a given parameter)
may not be unbiased.

Clearly, one can also speak of relative efficiency and compare two esti-
mators on the basis of the ratio of their variances by saying that – given
T,T ′ ∈u(θ) – T is more efficient than T ′ if Var(T) < Var(T ′) for all θ ∈ �.
In this regard, however, it should be noted that it may happen that Var(T) <

Var(T ′) for some values of θ but Var(T ′) < Var(T) for other values of θ .
Since the inequality must hold uniformly in θ – that is, for all θ ∈ � – and θ

is unknown, no efficiency comparison can be made in these cases. The same
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consideration applies to efficient estimators and (5.28) may hold for, say,
T1 for some θ and T2 for some other θ . Then, efficiency is not enough to
compare estimators. Within the class u(θ), the following results hold:

Proposition 5.4 If T1,T2 ∈ u(θ) are two efficient estimators, then T1 = T2
where the equality T1 = T2 is understood in a probability sense, that is, if T1
and T2 satisfy eq. (5.28) then Pθ (X ∈ {x : T1(x) �= T2(x)}) = 0 for all θ ∈ �.

In other words, an efficient estimator, when it exists, is unique. The following
proposition, on the other hand, states that efficiency is linear:

Proposition 5.5 If T1,T2, respectively, are efficient estimators of θ1, θ2,
then a1T1 + a2T2 is an efficient estimator of a1θ1 + a2θ2 for all a1, a2 ∈ R.

Both proofs can be found in Ref. [19].
A final remark is in order: in some cases an UE may not exist or, in other

cases, a slightly biased estimator Tb can be preferred to an unbiased one T
if Mse(Tb) < Mse(T) = Var(T) for all θ ∈ �.

Other desirable properties of estimators consider their behaviour as n →
∞ and not, as above, by regarding the sample size as fixed. These properties
are called asymptotic and one says, for instance, that an estimator T is
asymptotically unbiased if

lim
n→∞E(Tn) = θ (5.29)

or equivalently limn→∞ bn = 0, where we write bn because the bias generally
depends on the sample size. Clearly, an UE is asymptotically unbiased while
the reverse, however, is not true in general.

Another asymptotic property is as follows: an estimator Tn of θ is
consistent if limn→∞ P(|Tn − θ | < ε) = 1 for all ε > 0, that is, if (see
Section 4.3)

Tn → θ [P] (5.30)

Some authors speak of weakly consistent estimator in this case and use the
adjective ‘strong’ if Tn → θ [a.s.] or, sometimes, if Tn → θ [M2]. In any case
(see Propositions 4.6 and 4.8) strong consistency implies weak consistency
and, in most cases, the definition of ‘consistent’ is understood in the sense of
eq. (5.30). A useful sufficient condition to determine consistency is given by

Proposition 5.6 Tn is a consistent estimator if (a) it is asymptotically
unbiased and (b) limn→∞ Var(Tn) = 0.

In fact, if (a) and (b) hold then eqs (5.27b) and (5.27a) imply limn→∞ E[(Tn−
θ)2] = 0, that is, Tn → θ [M2] and therefore Tn → θ [P]. It is evident that
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(b) only must hold if Tn is unbiased. Note also that requirements (a) and (b)
are not necessary; in fact it can be shown that there are consistent estimators
whose variance is not finite.

Owing to the properties of P-convergence we have also:

Proposition 5.7 If Tn is a consistent estimator of θ and g is a continuous
function, then g(Tn) is a consistent estimator of g(θ).

All the definitions and considerations above extend readily to the case of
more than one unknown parameter θ1, θ2, . . . , θk(k > 1) which, as noted in
Section 5.2, can be considered as a k-dimensional vector.

To end this section, a final word of caution on asymptotic properties
of estimators is not out of place. In practical cases, these properties pro-
vide valid criteria of judgement for large samples but lose their meaning for
small samples. Unfortunately, the notions of ‘small’ or ‘large’ samples often
depend on the problem at hand and cannot be made more precise without
considering specific cases. A general rule of thumb requires n > 30 in order
to be able to speak of ‘large samples’; caution, however, must be exercised
because the exceptions to this ‘rule’ are not rare.

Example 5.4(a) Equation (5.9) and the first of (5.15) show that the statistics
M and Ak are UEs of the population parameters µ and αk, respectively.
Equation (5.12), however, shows that S2 is a biased estimator of σ 2, the bias
being b = −σ 2/n. Since b → 0 as n → ∞, S2 is an asymptotically unbiased
estimator of σ 2 (also, it is consistent because it satisfies the requirements of
Proposition 5.6). For finite samples, nonetheless, the bias can be removed
by considering the estimator

S̄2 = 1
n− 1

n∑
i=1

(Xi −M)2 = n
n− 1

S2 (5.31a)

which satisfies E(S̄2) = σ 2 (note that some authors use the name ‘sample
variance’ to denote the statistic S̄2). Also, for a normal population we have
from eqs (5.14b) and (5.31a)

Var(S̄2) = 2σ 4

n− 1
(5.31b)

The procedure of bias removal shown above can be generalized to all cases in
whichE(T) = c+dθ – where c, d are two known constants – by defining T̄ =
(T−c)/d. Then, the statistic T̄ is an UE of θ . Another example of this type is
the statistic C3 as an estimator of µ3 because E(C3) = n−2(n− 1)(n− 2)µ3
(the reader is invited to check this result).
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In cases where the population mean µ is known the quantity

Ŝ2 = 1
n

n∑
i=1

(Xi − µ)2 (5.32)

is a statistic in its own right. It is left to the reader to show that (i) Ŝ2 is an
UE of σ 2 and (ii) Var(Ŝ2) = n−1(µ4 − σ 4) = 2n−1σ 4 where the last equality
is due to the fact that, for a normal r.v., µ4 = 3σ 4 (see eq. (2.44d)).

Example 5.4(b) From the considerations above it is evident that, in general,
there exist many unbiased estimators of a given parameter. As a further
example of this, it is easy to show that any linear combination T̂ =∑n

i=1 ciXi
such that c1+c2+· · ·+cn = 1 is an UE of µ. Turning to its variance, however,
we have Var(T̂) = σ 2∑

i c
2
i and since

∑
i

c2i =
∑
i

(
ci − 1

n

)2

+ 1
n

it follows that the minimum value of the sum
∑

i c
2
i occurs when ci = 1/n

for all i = 1, . . . ,n. Consequently, the sample mean M is the most efficient
among all estimators (of µ) of the form T̂. If, in particular, the sample comes
from a normal population N(µ, σ 2), we noted at the end of the preceding
section that the sample median – let us denote it by Z – is asymptotically
normal with parameters µ and (2n)−1πσ 2. For large samples, therefore, Z
can be chosen as an estimator of µ but since (Proposition 5.1b) Var(M) <

Var(Z), the sample mean is more efficient than Z. We open here a short
parenthesis: the fact that the sample median is less efficient than M should
not lead the analyst to discard Z altogether as an estimator of µ. In fact, this
statistic is much more robust than M and this quality is highly desirable in
practice when the data may be contaminated by ‘outliers’. We do not enter
in any detail here but we only say that ‘robust’ in this context means that Z,
as an estimator of the mean, is much less sensitive than M to the presence of
outliers, where the term ‘outlier’ denotes an unexpectedly high or low value
which, at first sight, does not seem to belong to the sample. As a matter of
fact, this is often the case because outliers are generally due to recording,
transmission or copying errors; in some cases, however, they may be true
data of exceptional events. The interested reader can refer, for example, to
Chapter 16 of [27].

Example 5.4(c) Turning briefly to asymptotic properties it is immediate
to show, for instance, that M and Ak are consistent estimators of µ and αk,
respectively. In fact, they are unbiased and their variance – see eq. (5.10) and
the second of (5.15) – satisfy condition (b) of Proposition 5.6. Also, having
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already noted that S2 is an asymptotically unbiased estimator of σ 2 we can
use eq. (5.14) to determine that – if µ4 exists – then Var(S2) → 0 as n → ∞
and therefore S2 is a consistent estimator of σ 2 by virtue of Proposition 5.6.

Example 5.4(d) As a final example, let us suppose that the parent r.v. X of
the sample is distributed according to a Cauchy pdf of the form

f (x; θ) = 1
π [1 + (x− θ)2] (5.33)

which represents our parametric model. Suppose further that we consider
the sample meanM as an estimator of θ . Now, using characteristic functions
it is not difficult to show thatM has the same distribution asX and therefore
the probability P(|M − θ | ≥ ε) – being the same for all n – cannot tend to
zero as n → ∞. The conclusion is that M is not a consistent estimator of θ .

5.4.1 Cramer–Rao inequality

In the preceding section we defined the relative efficiency of estimators by
restricting our attention to the class u(θ) of UEs. Within this class, the
requirement of minimum variance – see eq. (5.28) – is the property of interest.
Suppose, however, that somehow (we will have to say more about this later)
we can find some unbiased estimators of a given parameter θ . Among these
estimators, we can select the most efficient, but how do we know that there
are no more efficient ones? In many cases, the Cramer–Rao inequality can
answer this question. In fact, provided that some ‘regularity conditions’ are
satisfied, it turns out that the variance of UEs is bounded from below; if we
find an estimator whose variance equals this lower bound then we also know
that this estimator – in the terms specified by Proposition 5.4 – is unique.

In order to keep things relatively simple, we consider the one-dimensional
continuous case and denote by f (x; θ) the pdf of the parent r.v. X of the
sample (X1, . . . ,Xn). Then the so-called likelihood function

L(x; θ) = L(x1, . . . ,xn; θ) =
n∏
i=1

f (xi; θ) (5.34)

is the pdf of the sample. We assume the following regularity conditions:

(a) the set {x : f (x; θ) >0} – that is, in mathematical terminology, the
support of the pdfs f (x; θ) – does not depend on θ ;

(b) the function f (x; θ) is differentiable with respect to θ ;
(c) ∂

∂θ

∫
f (x; θ) dx = ∫ ∂

∂θ
f (x; θ) dx

(d) ∂
∂θ

∫
T(x)L(x; θ) dx = ∫ T(x) ∂

∂θ
L(x; θ) dx

where all (Lebesgue) integrals are on all space (R in (c) and Rn in (d))
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(e) E[U2(X; θ)] < ∞ where the ‘score’ or ‘contribution’ function U(X; θ)

is defined as

U(X; θ) = ∂

∂θ
lnL(X; θ) =

n∑
i=1

∂

∂θ
ln f (Xi; θ) (5.35)

and the second equality descends from (5.34).

Proposition 5.8 (Cramer–Rao inequality) Under the above regularity con-
ditions, let T = T(X) ∈ u(θ). Then

Var(T) ≥ 1
E[U2(X; θ)] = 1

In(θ)
(5.36)

where the function E[U2(X; θ)], being important in its own right, is denoted
by In(θ) and called Fisher’s information (on θ ) contained in the sample X.

As a preliminary result, note that

E[U(X; θ)] = 0 (5.37)

In fact, since f (X; θ) = f (X1; θ) = · · · = f (Xn; θ), from (5.35) it follows

E[U(X; θ)] =
∑
i

E
(

∂

∂θ
ln f (Xi; θ)

)
= nE

(
∂

∂θ
ln f (X; θ)

)

= n
∫
f (x; θ)

∂

∂θ
[ln f (x; θ)] dx = n

∫
∂

∂θ
f (x; θ) dx

= n
∂

∂θ

∫
f (x; θ) dx = 0

where we used the relation ∂ ln f /∂θ = (1/f )(∂f /∂θ) in the fourth equality,
condition (c) in the fifth and the last equality holds because

∫
f (x; θ) dx = 1.

Now, in order to prove eq. (5.36) we apply Cauchy–Schwarz inequality
(eq. (3.21)) to the variables (T(X) − θ) and U(X; θ)

E2[(T − θ)U] ≤ E[(T − θ)2]E(U2) = Var(T)E(U2) (5.38)

Since E[(T − θ)U] = E(TU) − θE(U) = E(TU), we use the relation
∂ lnL/∂θ = (1/L)(∂L/∂θ) and condition (d) to get

E(TU) =
∫
T(x)L(x; θ)

∂

∂θ
[lnL(x; θ)] dx =

∫
T(x)

∂L(x; θ)

∂θ
dx

= ∂

∂θ

∫
T(x)L(x; θ) dx = ∂

∂θ
E(T) = ∂

∂θ
θ = 1
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so that the l.h.s of (5.38) is unity and Cramer–Rao inequality follows.
Furthermore, by considering the explicit form of U of eq. (5.35) we get

In(θ)=E(U2)=E

⎧⎨⎩
(∑

i

∂

∂θ
ln f (Xi; θ)

)2
⎫⎬⎭=

∑
i

E

{(
∂

∂θ
ln f (Xi; θ)

)2
}

+
∑
i �=j

E
{(

∂

∂θ
ln f (Xi; θ)

)(
∂

∂θ
ln f (Xj; θ)

)}

=nE

{(
∂

∂θ
ln f (X; θ)

)2
}

= nI(θ)

where (i) the sum on i �= j is zero because of independence and of eq. (5.37)
and (ii) I(θ) = E{(∂ ln f (X; θ)/∂θ)2} is called Fisher’s information and is
the amount of information contained in one observation; the fact that
In(θ) = nI(θ) means that the information of the sample is proportional to the
sample size.

In the light of these considerations we can rewrite (5.36) as

Var(T) ≥ 1
nI(θ)

(5.39)

If, in addition, f is twice θ -differentiable and we can interchange the signs of
integration and derivative twice we have yet another form of the inequality.
In fact, while proving eq. (5.37) we showed that

∫
(∂f /∂θ) dx = 0; under the

additional assumptions, we can differentiate with respect to θ to get

0 =
∫

∂2f
∂θ2

dx =
∫

1
f

(
∂2f
∂θ2

)
fdx = E

(
1
f

∂2f
∂θ2

)

and since we can use this last result to obtain

E

(
∂2 ln f
∂θ2

)
= E

(
∂

∂θ

(
1
f

∂f
∂θ

))
= −E

(
1
f 2

(
∂f
∂θ

)2
)

+ E

(
1
f

∂2f
∂θ2

)
= −E

((
∂ ln f
∂θ

)2
)

= −I(θ)

Cramer–Rao inequality can be written as

Var(T) ≥ −
[
nE

(
∂2f (X; θ)

∂θ2

)]−1

(5.40)
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A few remarks are in order:

(1) the equal sign in (5.36) holds if and only if the two r.v. in
Cauchy–Schwarz inequality are linearly related, that is, when

T(X) − θ = a(θ)U(X; θ) (5.41)

where a(θ) is some function of θ .
(2) if T is an UE of a (differentiable) function τ(θ) of θ , the

numerator of Cramer–Rao inequality becomes {τ ′(θ)}2 and eq. (5.41)
becomes T − τ(θ) = a(θ)U. Whenever this relation holds, then
Var(T) = a(θ)E(TU). Then, since the θ -derivative of τ(θ) = E(T) =∫
T(x)L(x;q) dx is τ ′(θ) = E(TU), it follows that

Var(T) = a(θ)τ ′(θ) (5.42)

which reduces to Var(T) = a(θ) if, as we considered above, τ(θ) = θ .
(3) Cramer–Rao inequality establishes a lower bound for the variance of an

UE; this does not imply that an estimator with such minimum variance
exists (when this is not the case, one may use Bhattacharya’s inequality;
for more details see for instance Ref. [17] or [19]).

(4) the ratio between the lower bound and Var(T) is called efficiency of the
estimator and denoted by eT , that is,

eT = 1
In(θ)Var(T)

= 1
nI(θ)Var(T)

(5.43)

where 0 ≤ eT ≤ 1 and eT = 1 indicates a MVUE estimator.
(5) The discrete case, with only minor modifications is analogous to the

continuous one.

Example 5.5(a) Consider a sample from a normal distribution with
unknown mean θ = µ and known variance σ 2. All regularity conditions are
met and f (x; θ) is given by eq. (2.29a). Then ∂ ln f (x; µ)/∂µ = (x − µ)/σ 2

and Fisher’s information is

I(µ) = E

([
∂

∂µ
ln f (x; µ)

]2
)

= 1
σ 4
E[(X − µ)2] = 1

σ 2

which, as expected, implies that a smaller variance corresponds to a higher
information. Now, considering M as an estimator of µ and knowing that
(eq. (5.10)) Var(M) = σ 2/nwe get eM = 1; thereforeM is a MVUE estimator
of µ. Also, eq. (5.41) must hold. In fact, using the expression of f (Xi; θ)
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pertinent to our case, we get from eq. (5.35)

U(X; µ) = 1
σ 2

n∑
i=1

(Xi − µ) = n
σ 2

(M − µ)

which, in fact, is eq. (5.41) where T − θ = M − µ and a(θ) = σ 2/n. Note
that, in agreement with eq. (5.42), a(θ) = Var(M).

Example 5.5(b) Turning to a discrete case, consider a sample from a parent
Poisson r.v. X with unknown parameter θ = λ. From the pmf of eq. (4.1)
we get the Fisher’s information I(λ) = λ−1 and since Var(X) = λ implies
Var(M) = λ/n, we have again eM = 1.

(Incidentally, it is not out of place to point out that examples (a) and (b)
must not lead to the (wrong) conclusion thatM – although always unbiased –
is always an efficient estimator of the mean.)

Example 5.5(c) Exponential Models. An important class of parametric
models has the general form

f (x; θ) = exp{A(θ)B(x) + C(θ) +D(x)} (5.44)

and is called exponential. Not all exponential models satisfy the regularity
conditions, but for the ones that do the following considerations apply.
Denoting by a prime the derivative with respect to θ , the score function is
easily obtained as

U(X; θ) = A′(θ)

n∑
i=1

B(Xi) + nC′(θ) = nA′(θ)

[
1
n

n∑
i=1

B(Xi) + C′(θ)

A′(θ)

]

which corresponds to eq. (5.41) once we set (see also remark (2))

T(X) = n−1
n∑
i=1

B(Xi)

τ (θ) = −C′(θ)/A′(θ)

a(θ) = [nA′(θ)]−1

(5.45)

from which it follows that for the exponential class the statistic T(X) is an
efficient estimator of τ(θ), where T(X) and τ(θ) are given by the first and
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second parts of eq. (5.45). This, by eq. (5.42), implies

Var(T) = τ ′(θ)

nA′(θ)
(5.46)

Also, only a small effort is required to show that

I(θ) = τ ′(θ)A′(θ) (5.47)

By appropriately identifying the functions A,B,C and D, many practical
models are, as a matter of fact, exponential. Examples (a) and (b), for
instance, are two such cases. In fact, if we set A(θ) = θ/σ 2, B(x) = x,
C(θ) = −θ2/2σ 2 and D(x) = −x2/2σ 2 we find example (a) and, as above,
we determine that M is an efficient estimator of µ with Var(M) = σ 2/n.
The Poisson example of case (b), on the other hand, is obtained by setting
A(θ) = ln θ , B(x) = x, C(θ) = −θ and D(x) = − ln x!.

Example 5.5(d) As a further special case of exponential model, the reader
is invited to consider a sample from a normal population with known mean
µ and unknown variance θ2 = σ 2. By setting A(θ) = −1/2θ2, B(x) =
(x− µ)2 and C(θ) = − ln(θ

√
2π) it turns out that T(X) = n−1∑(Xi − µ)2

is an efficient estimator of τ(θ) = θ2. Also, the reader should check that
eq. (5.41) for this case is n−1∑

i(Xi − µ)2 − θ2 = n−1θ3U(X; θ) and that
Var(T) = 2θ4/n, in agreement with result (ii) of Example 5.4(a).

The above examples show that for large samples the order of the variance
of UEs is n−1. This, as a matter of fact, is a general rule which applies to
regular models. It is worth pointing out that in some cases of non-regular
models it is possible to find UEs whose variance decreases more quickly than
n−1 as n increases – that is, we can find UEs with variances smaller than
the Cramer–Rao limit. Examples of these ‘superefficient’ estimators can be
found, for instance, in Chapter 32 of [3] or in Chapter 2 of [19].

In closing this section, we briefly outline the case of more than one
parameter, let us say k, so that q = (θ1, θ2, . . . , θk)T is a k-dimensional
vector. Then, the score function is itself a vector U = (U1, . . . ,Uk)T where
Ui(X;q) = ∂ lnL(X;q)/∂θi and one can form the k× k information matrix
of the sample as

In(q) = E(UUT) = nI(q) (5.48)

(the second equality is the vector counterpart of the one-dimensional relation
In(θ) = nI(θ), valid in our experiment of repeated independent trials). The
ijth element Iij(q) of I(q) – which, in turn, is the information matrix of one
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observation – is given by (i, j = 1, 2, . . . ,k)

Iij(q) = E
(

∂ ln f (X;q)

∂θi

∂ ln f (X;q)

∂θj

)
= −E

(
∂2 ln f (X;q)

∂θi∂θj

)
(5.49)

and the last relation holds if f (x;q) is twice differentiable with respect to the
parameters θ1, . . . , θk. Clearly, both In and I are symmetric, that is, In = ITn
and I = IT. Given these preliminary notions, let T(X) be an unbiased esti-
mator of some function τ(q) = τ(θ1, . . . , θk) of the unknown parameters;
then the Cramer–Rao inequality is now written

Var(T) ≥ dTI−1
n d = 1

n
dTI−1d (5.50)

where d = d(q) is the vector of derivatives d(q) = (∂τ/∂θ1, . . . , ∂τ/∂θk)
T

and, similarly to eq. (5.41), the equality holds if and only if

T(X) − τ(q) = [a(q)]TU(X;q) (5.51)

for some vector function a = (a1, . . . , ak)T of the parameters (note that, in
general, ai = ai(q) for all i = 1, . . . ,k). Moreover, as in the one-dimensional
case, one calls efficient an estimator of τ(q) whose variance coincides with
the r.h.s. of (5.50). Finally, since it is evident that eq. (5.50) holds only if
In(q) (and therefore I(q)) is non-singular for all q ∈ �, this assumption is
generally added to the other defining conditions of regularity.

5.4.2 Sufficiency and completeness of estimators

In order to evaluate the ‘goodness’ of an estimator, another desirable prop-
erty – besides the ones considered so far – is sufficiency. The definition is:
given an unknown parameter θ , an estimator T(X) of θ is sufficient (or
exhaustive for some authors) if the conditional likelihood L(x|T = t; θ) does
not depend on θ . Equivalently, T is sufficient if the conditional probability
Pθ (X ∈ A|T = t) does not depend on θ for any event A ⊂ �.

This definition is not self-evident and some further comments may help.
In essence, sufficiency requires that the values t = T(x1, . . . ,xn) taken on
by the statistic T must contain all the information we can get on θ . In other
words, suppose that two realizations of the sample x and x′ both lead to the
value t = T(x) = T(x′). If the function L(x|T = t; θ) depended on θ then
we would have, say, L(x|T = t) > L(x′|T = t) for θ ∈ �1 and L(x|T =
t) < L(x′|T = t) for θ ∈ �2, where �1 ∪ �2 = � and �1 ∩ �2 = ∅ (i.e. the
sets �1, �2 form a partition of the parameter space �). Therefore, knowing
which one of the two realization has occurred provides more information
than just the fact of knowing that T = t. So, for instance, if x has occurred,
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we would tend to think that, preferably, θ ∈ �1. If, on the other hand
L(x|T = t) = L(x′|T = t) for all θ ∈ � then the specific realization of the
sample leading to T = t is irrelevant and – for a fixed sample size n – the
equality T = t summarizes all that we can know in order to estimate θ . This
is why T is a ‘sufficient’ estimator of θ .

In practice, it may be difficult to determine sufficiency just by using the
definition above. Often, an easier way to do it is to use Neyman’s theorem
(which some authors give as the definition of sufficiency)

Proposition 5.9(a) (Neyman’s factorization theorem) A statistic T(X) is
sufficient for θ if and only if the likelihood function can be factorized into
the product of two functions g(T(x); θ) and h(x), that is,

L(x; θ) = g(T(x); θ)h(x) (5.52)

(where it should be noted that the factor g depends on x only through T(x)).

In fact, since

L(x|t; θ) = Pθ (X = x ∩ T = t)
Pθ (T = t)

= L(x; θ)∑
L(x′; θ)

(the sum at the denominator is over all realizations x′ giving T = t) if we
assume that the factorization (5.52) holds we get L(x|t; θ) = h(x)/

∑
h(x′)

and therefore, according to the definition above, T is sufficient (if x is such
that T(x) �= t then L(x|t; θ) = 0; consequently L(x|t; θ) does not depend on
θ for any realization of the sample). The proof of the reverse statement –
that is, if L(x|t; θ) does not depend on θ then eq. (5.52) holds – is left to the
reader.

Example 5.6(a) Let X be a sample from a Poisson variable (see eq. (4.1))
of unknown parameter θ . Then

L(x; θ) =
n∏
i=1

e−θ θxi

xi! = e−nθ θx1+···+xn
x1! · · ·xn! (5.53)

and eq. (5.52) holds with g = e−nθ θx1+···+xn and h = (x1! · · ·xn!)−1. It
follows that the statistic T(X) = X1 + · · · + Xn is a sufficient estimator
of θ . Alternatively, in this case we could also use the definition by noting
(Section 4.2) that T is itself a Poisson variable of parameter nθ . So, Pθ (T =
t) = {e−nθ (nθ)t}/t! and L(x|t; θ) is independent on θ because

L(x|t; θ) = e−nθ θ t

{Pθ (T = t)}x1! · · ·xn! = t!
nt(x1! · · ·xn!)
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Example 5.6(b) LetX be a sample from a Gaussian variable with unknown
mean µ = θ and known variance σ 2. Then, defining T(x) = x1 + · · · + xn
we have

L(x; θ) =
n∏
i=1

1√
2πσ

exp

(
− (xi − θ)2

2σ 2

)

=
(

1√
2πσ

)n
exp

(
− 1

2σ 2

(∑
i

x2
i − 2θT(x) + nθ2

)) (5.54)

and since Neyman’s theorem holds by choosing

g(T(x); θ) = exp
[
− 1

2σ 2
(2θT(x) + nθ2)

]

h(x) = (
√

2πσ)−n exp

(
− 1

2σ 2

∑
i

x2
i

)

the statistic T(X) = X1 + · · · +Xn is a sufficient estimator of θ .
A corollary to Proposition 5.9(a) is

Proposition 5.10 (i) If the function z is one-to-one and T is sufficient for
θ , then Z = z(T) is also a sufficient estimator of θ . Moreover, (ii) Z = z(T)

is a sufficient estimator of θ̂ = z(θ).

In fact, the relation L(x; θ) = g(z−1(Z); θ)h(x) = g1(Z; θ)h(x) proves part
(i) while part (ii) follows easily by also considering the relation θ = z−1(θ̂).
An immediate consequence of the corollary is that if T(X) = X1 + · · · +Xn
is a sufficient estimator for the mean µ of a population, so is M = T/n.

At this point, an important observation is that Neyman’s factorization
(5.52) implies eq. (5.41) which – as we have determined – characterizes
efficient (MVUE) estimators. In other words, this means that the class of
sufficient statistics (for the parameter θ ) includes the MVUE of θ when
this estimator exists (note, however, that sufficient statistics may exist even
when there is no MVUE). Moreover, Rao–Blackwell theorem states that the
following:

Proposition 5.11 (Rao–Blackwell) TheMVUE,when it exists, is a function
of a sufficient statistic.

In fact, let X be a sample from a population with an unknown parameter θ ,
T(X) a sufficient statistic for θ andT1(X) an arbitrary UE of θ . ThenE(T1|T)

(note that in strict symbolism we should write Eθ (T1|T)) is a function of the
form H(T) which takes on the value H(t) = E(T1|t) when T = t. Since
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T,T1 are random variables in their own right, we can use eq. (3.89a) to get
E[H(T)] = E[E(T1|T)] = E(T1) = θ where the last equality holds because
T1 is unbiased. The consequence is thatH(T) is itself an UE of θ . In addition
to this, eq. (3.91) shows that Var(T1) = E[Var(T1|T)]+Var[H(T)] which –
since E[Var(T1|T)] ≥ 0 – implies

Var[H(T)] ≤ Var(T1) (5.55)

(the equal sign holds if and only if E[Var(T1|T)] = E{[T1 −E(T1|T)]2} = 0,
that is, wheneverT1 = H(T) – or, more precisely, whenP{T1 = H(T)} = 1).
At this point one could conclude that H(T) is (i) an UE of θ and (ii) more
efficient than T1. Before doing this, however, one must show that H(T) is a
statistic, that is, does not depend on θ . By recalling eq. (3.88) we can write

H(t) = E(T1|t) =
∫
T1(x)L(x|t; θ) dx

and note that both L(x|t; θ) and T1(x) do not depend on θ because, respec-
tively, T is sufficient and T1 is a statistic. So, H(t) does not depend on θ ;
moreover, as t varies the r.v. H(T) takes on the values H(t) with a density
fT(t) which is itself independent on θ (T is a statistic). Consequently, as
desired, H(T) is a statistic.

Despite its intrinsic importance, Rao–Blackwell theorem is of little help
in explicitly finding the MVUE (assuming that it exists). In fact, given a
sufficient and an unbiased estimator, T andT1 respectively, we can construct
the UE H(T) which – although more efficient than T1 – may not be the
MVUE of θ . In principle, by using H(T) and another sufficient statistic, we
expect to be able to find an even more efficient (thanH(T)) UE. However, if
the original sufficient statistic is complete (see definition below), it turns out
that H(T) is the MVUE of the parameter θ . This is stated in the following
proposition:

Proposition 5.12 (Lehmann–Scheffé theorem) Let T(X) be a sufficient and
complete statistic for θ and T1(X) an UE of θ . Then H(T) = E(T1|T) is the
efficient estimator of θ .

Before showing why this is so, we give the definition of completeness: a
sufficient statistic T is complete if for any (bounded) function ϕ(T) the
relation

Eθ [ϕ(T)] = 0 for all θ ∈ �

implies ϕ(t) = 0 for almost all values t = T(x) (the term ‘almost all’ refers
to the measure Pθ and indicates that Pθ {ϕ(T(x)) = 0} = 1 for all θ ∈ �).
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Returning to Proposition 5.12, assume that there exists another UE K(T)

depending on T. Defining L(T) = H(T)−K(T), we have E[L(T)] = θ −θ =
0 for all θ and this, by completeness, implies H(t) = K(t) a.e. which, in
turn, shows that H(T) is the unique UE depending on T. Let now T̃ be
an arbitrary UE. By virtue of the considerations above J(T) = E(T̃|T) is
unbiased, Var[J(T)] ≤ Var(T̃) and the equality holds iff T̃ = J(T). Since
H(T) is the only UE depending on T, then we must have J(T) = H(T) and
this proves the theorem.

At this point, two closing remarks on sufficiency are worthy of mention.
First we outline the generalization to the case of k unknown parameters.

In this case the following definition applies: the vector T = (T1, . . . ,Tk)
is called a (jointly) sufficient statistic for q = (θ1, . . . , θk) if the function
L(x|t1, . . . , tk;q) does not depend on q. Neyman’s theorem, on the other
hand, becomes:

Proposition 5.9(b) The k-dimensional statisticT(X) = (T1(X), . . . ,Tk(X))

is (jointly) sufficient for q = (θ1, . . . , θk) if and only if the likelihood function
can be expressed as the product

L(x;q) = g(T1(x), . . . ,Tk(x);q)h(x) (5.56)

So, for example, it is easy to show that T = (T1,T2) – where T1 = ∑
i Xi

and T2 = ∑
i X

2
i – is a sufficient statistic for the two-dimensional Gaus-

sian model with unknown mean and variance. Using the sufficient statistic
T we can then construct the well-known estimators M = n−1T1 and
S̄2 = (n− 1)−1[T2 − n−1T2

1 ] (see eq. (5.31)) of µ and σ 2.
The second and final remark may appear rather obvious at first glance

but – we believe – deserves to be stated explicitly: sufficiency depends on
the adopted statistical model. In other words, if the model is changed, a
given sufficient statistic may no longer be sufficient in the new model. As
a consequence, we should never discard the raw data and replace them
with sufficient statistics. In fact, although the main advantage of sufficient
statistics is to reduce the dimensionality of the sample without losing any
information on the unknown parameter(s), it should also be kept in mind
that the sample itselfX = (X1, . . . ,Xn) is always a sufficient statistic irrespec-
tive of the adopted statistical model. Consequently – since the model may
always be changed in the light of new evidence or of new assumptions – it is
always good practice to preserve the original data. As an example, consider
a sequence of binomial trials with unknown probability of success θ = p.
The order of successes and failures is clearly unimportant in a model of inde-
pendent trials and the sufficient statistic T = X1 + · · · +Xn is equivalent to
the sample as far as the estimation of θ is concerned. However, it can be
shown [8] that it is not so if a new model of dependent trials is postulated.
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(Incidentally, under the assumption of binomial independent – that is,
Bernoulli – trials, the reader is invited to show that T = X1 + · · · + Xn is,
indeed, a sufficient statistic.)

5.5 Maximum likelihood estimates and some remarks on
other estimation methods

In regard to point estimation, not much has been said so far on the way
in which we can find ‘good’ estimators although, in the preceding section,
we have implicitly given a method of finding the MVUE of a parameter
θ by using an UE T1, a sufficient complete statistic T and calculating the
conditional expectation E(T1|T). This procedure, however, often involves
computational difficulties and is seldom used in practice. Other methods, in
fact, have been devised and the most popular by far is the so-called ‘method of
maximum likelihood’, introduced by Fisher in 1912 (although the definition
of likelihood, also due to Fisher, appeared later). Before considering this,
however, it is worth spending a few words on other methods with the main
intention of simply illustrating – without any claim of completeness – other
approaches to the problem.

One of the oldest estimation procedures is Pearson’s ‘methods of moments’
and consists in equating an appropriate number of sample moments to the
corresponding population moments which, in turn, depend on the unknown
parameters. By considering as many moments as there are parameters, say
k, one solves the resulting equations for θ1, . . . , θk thus obtaining the desired
estimates. In mathematical terms, if j = 1, . . . ,k and aj = Aj(x) are the
sample moments of the observed realization x = (x1, . . . ,xn), one must
solve the set of equations

αj(θ1, . . . , θk) = aj, j = 1, 2, . . . ,k (5.57a)

whose result is in the form

θj = tj(a1, . . . , ak), j = 1, 2, . . . ,k (5.57b)

where the tj’s – that is, the values taken on by the estimators Tj’s at X = x –
are obtained as functions of the sample moments. Recalling the developments
of Section 5.3.1, this last observation on the Tj implies, under fairly general
conditions, two desirable properties: for large samples the Tj are (i) con-
sistent and (ii) asymptotically normal. Often, however, they are biased and
their efficiency, as Fisher himself has pointed out [9] may be rather poor. For
small samples, moreover, it should be kept in mind that sample moments
may significantly differ from their population counterparts, thus leading to
poor estimates. This is especially true if higher-order moments must be used
because in these cases n < 100 is generally considered a small sample.
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As an example of the method, consider a sample X from a population
with unknown mean µ = α1 and variance σ 2 = α2 − α2

1. Equations (5.57a)
and (5.57b) are simply αj = aj (j = 1, 2), and since a1 = m = n−1∑

i xi and
a2 = n−1∑

i x
2
i , we get t1 = m and t2 = a2 −m2 = n−1∑

i(xi −m)2. The
desired estimators are therefore

T1 = M

T2 = A2 −M2 = 1
n

∑
i

(Xi −M)2

where we already know (eq. (5.12)) that T2 = S2 is a biased estimator of
σ 2. In all, however, the method has the advantage of simplicity and the
‘moments-estimates’ can be used as a first approximation in view of a more
refined analysis.

A second method of estimation is based on Bayes’ formula (eq. (3.79) in
the continuous case). If we consider the unknown parameter θ as a value
taken on by a r.v. Q with pdf fQ(θ) – which, somehow, must be known
by some prior information and for this reason is called ‘a priori’ density –
Bayes’ formula yields (taking eq. (3.80b) into account)

f (θ |x) = f (x|θ)fQ(θ)∫∞
−∞ f (x|θ)fQ(θ) dθ

(5.58)

Then, by defining Bayes’ estimator (of θ ) as TB ≡ E(Q|X), its value tB
corresponding to the realization x is taken as the estimate of θ , that is,

tB = E(Q|X = x) =
∞∫

−∞
θ f (θ |x) dθ (5.59)

A few additional comments on this method are worthy of mention. First, the
function f (x|θ) at the numerator of (5.58) is just the pdf f (x; θ) that specifies
the statistical model. However, the point of view is different; instead of seeing
θ as a deterministic quantity and postulating the existence of a ‘true’ value θ0
which – were it known – would provide the ‘exact’ probabilistic description
by means of f (x; θ0), the Bayesian approach considers θ as a random variable
and writes f (x|θ) to mean that the realization x is conditioned by the event
Q = θ . In this light, the ‘a posteriori’ density f (θ |x) provides information
on θ after the realization x has been obtained and consequently we can use
it to calculate the quantity E(Q|X = x) which, in turn – being the mean
value of Q given that the event X = x has occurred – is a good candidate
as an estimate of θ . Nonetheless, a key point of the method is how well we
know fQ(θ). This, clearly, depends on the specific case under study although
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it has been argued that a uniform distribution for Q may be used in cases
of no or very little prior information (a form of the so-called ‘principle of
indifference’). We do not enter into the details of this debated issue, which
is outside the scope of the book, and pass to the main subject of this section:
the method of maximum likelihood.

Consider the statistical model (5.1) with k unknown parameters q =
(θ1, . . . , θk). Once a realization of the sample x has been obtained, the like-
lihood L(x;q) is a function of q only; consequently, we can write L(q) and
note that this function expresses the probability (density) of obtaining the
result that, in fact, has been obtained, that is, x. In this light it is reason-
able to assume as ‘good’ estimates of the unknown parameters the values
q̂ = (θ̂1, . . . , θ̂k) that maximize L(q), that is,

L(q̂) = Max
q∈�

L(q) (5.60)

where it should be noted that the maximum is taken on the parameter space
and not on all the possible values that make mathematical sense for L(q).
Owing to (5.60), θ̂1, . . . , θ̂k are called maximum likelihood (ML) estimates
of θ1, . . . , θk. As x varies, we will obtain different values of q̂ and this corre-
spondence leads to the definition of ‘maximum likelihood estimators’ (MLE)
as those statistics T̂1(X), . . . , T̂k(X) which, respectively, take on the val-
ues θ̂1, . . . , θ̂k when X = x. In practice, the ML estimates are obtained by
finding the maximum of the log-likelihood function l(q) = lnL(q) (which
is equivalent to maximizing L(q)), that is, by first solving the likelihood
equations

∂l(θ1, . . . , θk)
∂θj

= 0, j = 1, 2, . . . ,k (5.61)

and then checking which solution is an absolute maximum (in fact, the
solutions of eq. (5.61) – if there are any – determine the stationary points of
l(q), which can be minima, maxima or saddle points). The whole procedure
is generally rather easy if we have one (or two) unknown parameter(s) but
it is evident that computational difficulties may arise for higher values of
k. In these cases one must resort to numerical techniques of solution of
eq. (5.61) and the Newton–Raphson iteration method is frequently used for
this task. The subject, however, is beyond our scope and the reader interested
in computational aspects may refer, for instance, to [29] (Incidentally, in
regard to the determination of the maximum among the solutions of (5.61),
it may be worth recalling a theorem of analysis which states the following: If
l(q) is twice differentiable and � is an open set of Rk, a maximum is attained
at q̂ if the quadratic form (q− q̂)TH(q̂)(q− q̂) defined by the Hessian matrix
H(q) = [∂2l/∂θi∂θj] (i, j = 1, . . . ,k) is negative definite).
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Example 5.7(a) Considering a sequence of n Bernoulli trials, the statistical
model is clearly given by (5.2). Then, the ML estimate of the parameter
θ = p is easily obtained by ignoring the terms with the factorials (which
do not involve θ ) and writing l(θ) = x ln θ + (n − x) ln(1 − θ). Taking the
derivative

∂l
∂θ

= x
θ

− n− x
1 − θ

= 0

we get the solution θ̂ = x/n, which is a maximum because ∂2l/∂θ2 is neg-
ative at the point θ = θ̂ . Also note that the ML estimate coincides with the
observed frequency of success. This specific example is one among many oth-
ers that, a posteriori, justifies the relative frequency approach to probability
discussed in Chapter 1.

Example 5.7(b) In the case of a sample from a normal population with
unknown mean µ = θ1 and variance σ 2 = θ2, the reader is invited to
determine that the ML estimates are θ̂1 = n−1∑

i xi = m and θ̂2 =
n−1∑

i(xi −m)2 = s2 so that the MLE are M and S2, respectively.

The examples above do not do justice to the ML method because the reader
can easily check that the method of moments yields the same estimators. In
general, however, this is not so and the reason why the ML method is so
widely adopted lies in the good properties of MLEs. The first can be called
the ‘covariance’ property with respect to parameter transformations; in fact,
referring to eq. (5.4) we have

Proposition 5.13 If q̂ = (θ̂1, . . . , θ̂k) is the MLE of q = (θ1, . . . , θk) and h a
one-to-one mapping from� to� (�, � ⊂ Rk), r̂ = h(q̂) is the MLE of h(q).

The proof is immediate because the function h−1 : � → � exists and

Max
q∈�

L(q) = Max
r∈�

L(h−1(r)) ≡ Max
r∈�

Lr(r)

(we note in passing that the explicit form of Lr is obtained by simply setting
h−1(r) in the original likelihood function L; the differential elements must
not be included because we transform the parameters and not the variables).

So, for instance, the fact that S2 is the MLE of σ 2 in a normal model with
known mean and unknown variance tells us that S = √{n−1

∑
(Xi − µ)2}

is the MLE of the standard deviation σ . A useful consequence of Proposi-
tion 5.13, moreover, is that some problems can be cast in a simpler form by
an appropriate change of parameters; in these cases we can solve the simpler
problem – thus finding the ML estimates r̂ = (r̂1, . . . , r̂k) – and then determine
q = (θ1, . . . , θk) by means of h−1. A nice example of this is given in Ref. [19]
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(Chapter 2, Example 2.22) where a bivariate normal model (see eqs (3.61a)
and (3.61b)) is considered and the ML estimates of σ 2 = θ1 and ρ = θ2 are
determined by introducing the new parameters r1 = −[2σ 2(1 − ρ2)]−1 and
r2 = ρ[σ 2(1 − ρ2)]−1. Then, the desired result

σ̂ 2 = (2n)−1
∑
i

(
x2
i + y2

i

)
ρ̂ = 2

∑
i

xiyi/
∑
i

(
x2
i + y2

i

) (5.62)

is obtained with a noteworthy simplification of the calculations.
A final remark on Proposition 5.13: some authors speak of ‘invari-

ance’ property. This term, however, would imply that the MLEs remain
unchanged; since, in fact, they do change according to the transformation
law h, we think that the term ‘covariance’ should be preferred.

Other properties concern the relation between MLEs, efficient estimators
and sufficient statistics, stated by the following two results, respectively.

Proposition 5.14 If a MVUE T(X) of θ exists, then T(X) = T̂(X).

For regular problems, in fact, if a MVUE of θ exists it satisfies eq. (5.41).
This, together with the likelihood equation (5.61) yields the desired result.

Proposition 5.15 If T(X) is a sufficient statistic for θ and the MLE T̂(X)

of θ exists and is unique, then T̂ is a function of T.

The proof is almost immediate: since T is sufficient, Neyman’s factorization
(5.52) holds and maximizing L is equivalent to maximizing g which, in turn,
depends on T. Consequently, the MLE itself will be a function of T.

Before turning to the asymptotic properties of MLEs – which will be the
subject of the next section – we point out two facts and state without proof
an interesting result worthy of mention. First, MLEs, although asymptoti-
cally unbiased (see the following section), are often biased. Second, the ML
method can be used in cases more general than the one considered here, that
is, independent drawings from a fixed distribution. For instance, the example
(taken from Ref. [19]) on parameter transformation and mentioned above
is a case in which, in fact, independence does not hold.

Finally, the following proposition [30] provides an interesting characteri-
zation of some probability distributions based on a ML estimate:

Proposition 5.16 For n ≥ 3, let X be a sample from a continuous pop-
ulation with pdf of the form f (x − θ) and let X(1) ≤ X(2) ≤ · · · ≤ X(n)

be the corresponding order statistics. If T̂ = ∑
i aiX(i) with ai ≥ 0 and

a1 + · · · + an = 1 is the MLE of θ , then
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(a) if a1 = · · · = an = 1/n, then f is a normal density;
(b) if a1 + an = 1; a1an > 0, then f is a uniform density;
(c) if aj + aj+1 = 1; ajaj+1 > 0 with j ∈ {1, 2, . . . ,n− 1}, then f is a Laplace

density.

In regard to point (c), we call a Laplace r.v. a continuous r.v. X whose pdf is

fX(x) = 1
2β

exp
(

−|x− α|
β

)
(5.63)

where x ∈ R and the two parameters are such that α ∈ R; β > 0. Its CF is

ϕX(u) = eiαu

1 + β2u2
(5.64)

while its mean and variance are, respectively

E(X) = α

Var(X) = 2β2
(5.65)

5.5.1 Asymptotic properties of ML estimators

As a matter of fact, some important properties of MLEs are asymptotic in
nature. Since their proofs, however, are generally rather lengthy, this section
is limited to the statement of the main results. For details, the interested
reader can refer to more specialized literature (see, for instance, [3, 17, 19,
26, 28]).

Assuming, as it is often the case, that we are dealing with a regular problem
(Section 5.4.1) and that the likelihood function Ln attains its maximum at
an interior point of � for all n (this, in other words, means that the MLE
exists for all n), then:

(1) T̂n → θ [P], that is, the MLE is (weakly) consistent;
(2) the r.v.

√
n(T̂n − θ) converges in distribution to a normal r.v. with zero

mean and variance 1/I(θ) or, equivalently, the MLE T̂n is asymptoti-
cally normal with mean θ and variance given by the Cramer–Rao limit
{nI(θ)}−1 (eq. (5.39)).

Although we do not provide the proofs of the above statements, some com-
ments are not out of place. First, it should be noted that result (1) can be
strengthened and strong consistency (in the sense of a.s. convergence) can
be proven (see, for instance, [1]). Second, we have noted in the preceding
section that the ML method does not always lead to unbiased estimators;
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they are, however, asymptotically unbiased because the bias – which, any-
way, can generally be removed for finite values of n – tends to zero as n−1

when we let n → ∞. Besides the minor inconvenience of bias for finite n,
a more important property is given in point (2) in regard to the variance
of MLEs. In fact, if we introduce the notion of asymptotic efficiency ēT of
an estimator T as eT = limn→∞ eT , then eT̂ = 1, meaning that MLEs are
asymptotically efficient.

Now, this fact does not imply that MLEs are the only asymptotically
normal and asymptotically efficient estimators but it has been shown that,
in general, MLEs have better efficiency properties for large values of n (Refs.
[23, 24]). In regard to this last observation, we note in passing that (2) does
not generally imply that Var(T̂n) → {nI(θ)}−1 as n → ∞ (D-convergence
does not imply convergence of the moments); however, for a large class of
asymptotically normal estimators the variance can be expressed as

Var(T) = 1
nI(θ)

+ a2(θ)

n2
+ · · ·

and the estimator with the minimum a2(θ) is to be preferred (second-order
efficiency). Quite often it turns out that MLEs are such estimators.

Another remark on result (2) is that cases where the asymptotic variance
depends on the unknown parameter are rather common. An appropriate
parameter transformation can fix the problem by maintaining, at the same
time, asymptotic normality. In fact, if h is a differentiable function with h′ �=
0 then it can be shown that the variable

√
n{h(T̂n) − h(θ)} is asymptotically

normal with zero mean and variance [h′(θ)]2/I(θ). Enforcing the condition
that this new variance equals a constant – say b2 – we get h′(θ) = b

√
I(θ)

and therefore

h(θ) = a+ b
∫ √

I(θ) dθ (5.66)

where both constants a,b can be chosen so that h(θ) is in simple form.

Example 5.8(a) Consider a sample from a Poisson variable (eq. (4.1)) with
unknown parameter λ = θ . Since ∂2f /∂θ2 = −x/θ2 then

I(θ) = E(x/θ2) = 1
θ2

∑
x

x
θxe−θ

x! = 1
θ

(5.67)

because the sum – being the mean of the parent r.v. X – equals θ . It follows
from (5.67) that the Cramer–Rao limit is θ/n. On the other hand, the MLE of
θ is obtained by taking the logarithm of eq. (5.53) and equating its derivative



Preliminary ideas and notions 203

to zero; the reader can easily check that the result is

T̂n = M = 1
n

∑
i

Xi (5.68)

whose variance is θ/n (eq. (5.10), taking into account that Var(X) = θ ).
So, as expected, the MLE is consistent and in this case it is also efficient
because (eq. (5.43)) eT̂ = 1. Moreover, from result (2) we know that√
n(T̂n − θ) is asymptotically normal with zero mean and a variance which

depends on the parameter, that is, 1/I(θ) = θ . Setting a = 0 and b = 1 in

eq. (5.66) we get h(θ) = 2
√

θ so that the new variable 2
√
n(
√
T̂n − √

θ) is
asymptotically standard-normal, that is, with zero mean and unit variance.

Alternatively, setting a = 0 and b = 1/2 we have that Yn = √
n(
√
T̂n − √

θ)

is asymptotically normal with zero mean and Var(Yn) = 1/4.

Example 5.8(b) When the model is non-regular, asymptotic normality may
not hold. As an example, in the uniform model f (x; θ) = 1/θ for 0 ≤ x ≤ θ

(and zero otherwise) the likelihood function is

L(x; θ) =
⎧⎨⎩1/θn, x(n) ≡ max

1≤i≤n
xi ≤ θ

0, otherwise

and T = X(n) – where X(n) is the nth order statistic – is a sufficient statistic
for θ . Also, the likelihood function is monotone decreasing for θ ≥ x(n)
and therefore it attains its maximum at θ = x(n) where, however, there is a
discontinuity. So, even if we can call T = X(n) the MLE of θ , this is not a
solution of the likelihood equation (5.61) and we may not expect property
(2) to hold. In fact, we already know from Section 5.3.1 that the extreme
value of the sample X(n) is not asymptotically normal.

The above results still hold in the case of several parameters. Explic-
itly, referring to the considerations at the end of Section 5.4.1, property
(2) becomes

(2′) the r.v.
√
n(T̂n − q) is asymptotically normal with zero mean and

variance {I(q)}−1

or, in case we are estimating a scalar function τ(q) = τ(θ1, . . . , θk) of
the unknown parameters:

(2′′) the r.v.
√
n{T̂n − τ(q)} is asymptotically normal with zero mean and

variance dT I−1d, where d(q) = (∂τ/∂θ1, . . . , ∂τ/∂θk)
T.
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5.6 Interval estimation

Within the framework of the statistical model (5.1), we have discussed in
the preceding sections the subject of ‘point estimation’ which, in essence,
consists in (a) finding a ‘good’ estimator T(X) of the unknown parameter θ

and (b) using the data from the experiment – that is, the realization of the
sample x – to calculate the numerical value t = T(x). Then, on the basis
of a number of considerations on what is meant by ‘good’, we expect t to
be a reliable estimate of θ (broadly speaking, we could call it our educated
‘best-guess’ on the true value of θ ).

The procedure above is well justified if the main question of the estimation
problem is ‘what value should I use for θ?’. If, however, one is more interested
in specifying a range of values within which he/she can confidently expect
θ to lie, then the method of ‘interval estimation’ provides a better way to
tackle the problem. In perspective, moreover, one should consider that a
point estimate is almost meaningless without a statement of its ‘reliability’.

So, still keeping the model (5.1) as our starting point, we now wish to
determine an interval which contains the true value of θ – though unknown –
at a specified ‘confidence level’ (CL for short) γ = 1−α (0 < γ < 1). This, in
other words, means that we have to find two statistics T1,T2, with T1 < T2,
such that

Pθ {T1(X) < θ < T2(X)} = γ (5.69a)

for all θ ∈ �. In this case we call (T1,T2) a γ -confidence interval (often γ -CI)
for θ and T1,T2, respectively, the lower and upper confidence limits. Note
that eq. (5.69a) defines a random interval which, on the one hand, depends
on the sample X but, on the other hand, does not depend on θ (because both
limits are statistics).

By carrying out an experiment we obtain a realization of the sample x and,
accordingly, the values t1 = T1(x) and t2 = T2(x) for the two statistics; the
interval (t1, t2) is then an estimate of the γ -CI. At this point, one could be
tempted to say that θ belongs to (t1, t2) with a probability γ . This statement,
however, is wrong because (t1, t2) is not a random interval and therefore the
true value of θ either belongs to it or it does not. The correct interpretation
must be given in terms of relative frequency of success: if the experiment
is repeated many times – thus obtaining many estimates of (T1,T2) – the
resulting estimated intervals will contain the true value of θ in 100γ% of the
cases. Conversely, in the long run we will be wrong in 100α% of the cases.
This, in essence, is the meaning of the term ‘confidence’ in this context.

Now, before showing how to determine the confidence limits, some
additional remarks on eq. (5.69a) are in order:

(i) If the population under study is discrete it may not be possible to meet
condition (5.69a) exactly; in this case we call γ -CL the smallest interval
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such that

Pθ {T1(X) < θ < T2(X)} ≥ γ (5.69b)

for all θ ∈ �.
(ii) The statistic Dγ (X) = T2 − T1 is the length of the CI. This quantity

can be considered as a measure of precision of our estimate: given, say,
two methods of interval estimation and a CL γ , the method leading
to the smaller Dγ is to be preferred. Whichever the adopted method,
however, it is reasonable to expect that there must be a relation between
D and γ because – for a fixed sample size n – a higher confidence level
(or, equivalently, a lower α) is paid at the price of a larger interval.
In fact, choosing an unreasonably high value of γ generally leads to a
CI which is too large to be of any practical use (and consequently to
almost no information on θ ). If we want a high CL and an interval of
acceptable length we can, of course, increase the sample size. Since this
operation is generally costly, it is evident that any procedure of interval
estimation implicitly implies a compromise between confidence level,
interval length and sample size.

(iii) Equation (5.69) defines a two-sided interval but in some applications
one-sided intervals are required; these intervals have the form (−∞,T2)

or (T1, ∞).
(iv) In case of several unknown parameters, the CI for an individual com-

ponent, say θi, is still given by (5.69) and the same applies in case
of a scalar function τ(q) of the unknown parameter(s). Clearly, θ is
replaced by θi in the former case and by τ(q) in the latter. More specif-
ically, a γ -confidence region for the vector parameter q = (θ1, . . . , θk)
is a random subset Cγ (X) ⊂ � such that for all q ∈ � we have

Pq{q ∈ Cγ (X)} ≥ γ (5.69c)

The general technique used to determine confidence intervals is based on the
search of a so-called pivot quantity. This is a r.v. of the form G(X; θ) – that
is, it depends on the sample and on the unknown parameter and therefore
it is not a statistic – such that (1) its distribution fG does not depend on θ

and (2) for every x the functionG(x; θ) is continuous and strictly monotone
in θ .

Then, given γ ∈ (0, 1) there are many ways in which we can choose
g1 < g2 so that the relation

Pθ {g1 < G(X; θ) < g2} =
∫ g2

g1

fG(g) dg = γ (5.70)
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holds. If, for every x, we define T1(x) and T2(x) – with T1 < T2 – as the
solutions (with respect to θ ) of the equationsG(x; θ) = g1 andG(x; θ) = g2,
respectively, eq. (5.70) is equivalent to eq. (5.69). Note that T1,T2 are well-
defined because they are obtained by means of the inverse (with respect to
θ ) function G−1, which, in turn, is well-defined by virtue of condition (2).
So, if G is monotonically increasing then T1(x) = G−1(x; g1) and T2(x) =
G−1(x; g2) while, on the other hand, T1(x) = G−1(x; g2) and T2(x) =
G−1(x; g1) if G is monotonically decreasing.

The question at this point is how to construct a pivot quantity. A number
of useful results given in Appendix C will be of help in this task (see also
the following examples) but here we outline a general procedure. Suppose
we are dealing with an absolutely continuous model; it can be shown that
if the parent r.v. X has a PDF FX(x; θ) which is continuous and strictly
monotone in θ then

G(X; θ) = −
n∑
i=1

ln F(Xi; θ) (5.71)

is a pivot quantity for the interval estimation of θ . The proof, which we only
outline here, is based on the fact if X has a continuous and monotonically
increasing PDF F(x) then the chain of equalities

FY (y) = P(Y ≤ y) = P{F(X) ≤ y} = P{X ≤ F−1(y)} = F[F−1(y)] = y

shows that the r.v. Y ≡ F(X) has a uniform distribution on the interval
(0, 1). Consequently, each r.v. F(Xi; θ) in (5.71) is uniformly distributed on
(0, 1), − ln F(Xi; θ) has a �(1, 1) distribution and G(X; θ) has a �(1,n) pdf,
that is,

fG(g) = gn−1e−g

�(n)
(5.72)

which does not depend on θ . Since G(X; θ) is evidently continuous and
monotone in θ , it follows that it is a pivot quantity. So, by taking (5.72)
into account and choosing g1, g2 such that eq. (5.70) holds, the solutions of
the equations −∑ ln F(xi; θ) = g1 and −∑ ln F(xi; θ) = g2 give the desired
confidence interval. This last step, in practice, is often the most difficult part.

Before giving some examples, we mention the following useful result
(whose proof is immediate):

Proposition 5.17 If (T1,T2) is a γ -CI for θ and h is a strictly monotone
function, then h(T1) and h(T2) are the limits of the γ -CI for h(θ). The
interval is (h(T1),h(T2)) if h is monotonically increasing and (h(T2),h(T1))

if h is monotonically decreasing.
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Example 5.9(a) LetX be a sample from a normal population with unknown
mean µ = θ and known variance. In this case only a small effort is required
to see that the r.v. G = √

n(M − θ)/σ is a pivot quantity (condition (1)
above follows from the fact that G ≈ N(0, 1) – see Section 5.3.1, Proposi-
tion 5.1(b) – and therefore its pdf does not depend on θ ). Consequently, our
γ -CI has the form

(T1,T2) =
(
M − g2σ√

n
,M − g1σ√

n

)
(5.73)

where g1, g2 are any two numbers such that g1 < g2 and �(g2)−�(g1) = γ

(where �(x) = (
√

2π)−1
∫ x
−∞ e−t2/2 dt is the PDF of a standard normal r.v.).

The shortest interval can be obtained by minimizing the function

Dγ (g1, g2) = σ√
n

(g2 − g1) (5.74)

under the constraint �(g2) − �(g1) = γ (we note in passing that this is a
rather rare case where Dγ does not depend on X). Using the well-known
method of Lagrange undeterminate multipliers and taking into account that
the standard normal pdf is an even function we get g1 = −g2. Then, since
�(−x) = 1 − �(x) it follows that �(g1) = (1 − γ )/2 = 1 − �(g2) and
�(g2) = (1+γ )/2. By calling c(1+γ )/2 the (1+γ )/2-quantile of the standard
normal distribution, that is, c(1+γ )/2 = �−1[(1+γ )/2] (this, in other words,
is that particular value of g2 that minimizes the interval length) the desired
γ -CI for the mean is

(T1,T2) =
(
M − c(1+γ )/2

σ√
n

,M + c(1+γ )/2
σ√
n

)
(5.75a)

where the values of c(1+γ )/2 can be found in statistical tables. The interval
length is in this case

Dγ = 2c(1+γ )/2
σ√
n

(5.75b)

So, for instance, if γ = 0.95 then (1 + γ )/2 = 0.975 and we find c0.975 =
1.960 while at a higher confidence level, say γ = 0.99, we get (1 + γ )/2 =
0.995 and c0.995 = 2.576. As noted in point (ii) eq. (5.75b) shows that a
higher CL, for a given sample size n, is paid at the price of a longer interval;
for a given confidence level, on the other hand, the interval length can only
be reduced by increasing n.

Suppose now that we had used the median Z instead of M. We have
pointed out at the end of Section 5.3.1 that Z is asymptotically normal with
mean µ and standard deviation σ

√
π/2n, that is, r = √π/2 times the stan-

dard deviation ofM. If, just for the sake of the argument, we suppose that the
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error of the approximation can be neglected (in other words, we pretend that
the distribution ofZ is exactly normal) we get the γ -CI (Z±c(1+γ )/2rσ/2

√
n),

which is longer than (5.75) although the risk of error is the same.

Example 5.9(b) Consider now the (more frequent) case in which the vari-
ance is not known. Since S̄2 (eq. (5.31)) is an unbiased estimator of σ 2 we
may think of using G = √

n(M − θ)/S̄ as a pivot quantity. In this case,
however, it can be shown that G ≈ St(n − 1) and therefore the quantiles
of the Student distribution (with n − 1 degrees of freedom) will have to be
used in specifying our confidence interval for the mean. The symmetry of the
distribution suggests that we can parallel the considerations above on g1, g2
and arrive at the CI

(T1,T2) =
(
M − t(1+γ )/2;n−1

S̄√
n

,M + t(1+γ )/2;n−1
S̄√
n

)
(5.76)

where, denoting by S(n−1) the Student PDF with n−1 degrees of freedom, we
have t(1+γ )/2;n−1 = S−1

(n−1)
[(1 + γ )/2]. The values of these quantiles are also

easily found on statistical tables for ν (the number of degrees of freedom) up
to 40–50. Tables for higher values of ν are not given because St(ν) → N(0, 1)

as ν → ∞ and the normal approximation is already rather good for ν ≥ 30.

Note that nowDγ depends on the sample (through S̄) and therefore the inter-
val length is a r.v. which can only be determined after we have carried out
our experiment. Nonetheless, also in this case we expect the considerations
of point (ii) to hold.

As a numerical example of cases (a) and (b) suppose that we test 20 similar
products and obtain an average weight of M = 100.2 g. If we know that
the population standard deviation is, say, σ = 4 g, the 95%-CI for M is
(eq. (5.75))(

100.2 − 1.96
4√
20

, 100.2 + 1.96
4√
20

)
= (98.45, 101.95)

If, on the other hand, we make no assumptions on the variance and calculate
it from the data obtaining, say, s̄ = 3.80 g, we use eq. (5.76) to get(

100.2 − 2.093
3.8√
20

, 100.2 + 2.093
3.8√
20

)
= (98.42, 101.98)

because for γ = 0.95, (1 + γ )/2 = 0.975 and we find from the tables
(for ν = 19) the quantile t0.975;19 = 2.093. Note that the second interval
is larger than the first even if the estimated standard deviation is smaller
than the true σ . This situation may occur in practice because in the second
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case the uncertainty on the standard deviation also plays a part. Moreover,
if we carried out another experiment on other 20 items giving, by chance,
M = 100.2, the first interval would not change while the second will because
of the new estimate of S̄.

A further consideration on example (a) is that eq. (5.75b) gives us the pos-
sibility to determine the minimum sample size needed to achieve a specified
‘precision’ of our estimate at a given CL. In fact, if the ‘precision’ is measured
byDγ , there may be cases in which we do not want our CI to exceed a given
length L. This condition is expressed by the relation 2c(1+γ )/2σ/

√
n ≤ L

which can be solved for n to give

n ≥
(

2c(1+γ )/2σ

L

)2

(5.77)

Example 5.10(a) Suppose that we are still dealing with a normal model;
now, however, we know the mean µ and the variance is unknown. Setting
θ = σ , this means that we are looking for a CI for the function τ(θ) = θ2. It
is not difficult to see that

G(X; θ) = 1
θ2

n∑
i=1

(Xi − µ)2 (5.78)

is a pivot quantity. Now, since (Xi − µ)/θ ≈ N(0, 1) it is known
(Appendix C) that (Xi − µ)2/θ2 ≈ χ2(1) from which it follows that
G(X; θ) ≈ χ2(n) by the reproducibility property of the χ2 distribution.
Solving the equationsG(x; θ) = g1 andG(x; θ) = g2 we get a CI of the form

(T1(X),T2(X)) =
(
g−1

2

∑
i

(Xi − µ)2, g−1
1

∑
i

(Xi − µ)2

)
(5.79)

where – denoting by Kn(x) the PDF of the distribution χ2(n) – g1, g2 must
satisfy the condition Kn(g2) − Kn(g1) = γ . A common choice is to select a
so-called ‘central’ interval, that is, to choose g1, g2 as the (1∓γ )/2 quantiles
of χ2(n), respectively. This gives

g1 = K−1
n [((1 − γ )/2] = χ2

(1−γ )/2;n

g2 = K−1
n [((1 + γ )/2] = χ2

(1+γ )/2;n
(5.80)

so that the CI (5.79) is explicitly written as

(T1,T2) =
(

nS2

χ2
(1+γ )/2;n

,
nS2

χ2
(1−γ )/2;n

)
(5.81)
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and the values of the quantiles can be found on statistical tables. So, for
instance, if we are looking for a 95%-CI and n = 20, then (1−γ )/2 = 0.025
and (1 + γ )/2 = 0.975. Since on tables of χ2 quantiles we find χ2

0.025;20 =
9.59 and χ2

0.975;20 = 34.17, our interval is (0.59S2, 2.09S2).
Two remarks on this example: first, it is a direct consequence of Proposi-

tion 5.17 that the interval (
√
T1,

√
T2) – where T1,T2 are as in (5.81) – is

a γ -CI for the standard deviation σ . Second, using Lagrange’s method one
can determine that the estimated interval (5.81) is not optimal, that is, is
not the shortest one. A quantitative evaluation, however, is not immediate
and requires a numerical solution. For a 95%-CI it can be shown that the
shortest interval involves two quantities α1, α2 such that α1 +α2 = 1−γ and
the corresponding quantiles are 9.96 and 35.23 (instead of 9.59 and 34.17).

Example 5.10(b) If, as it often happens, also the mean of the population
is not known, a pivot quantity is given by (5.78) by simply substituting M
in place of µ, that is, G(X; θ) = (n − 1)S̄2/θ2 = (n − 1)S̄2/τ (where, as
above, τ(θ) = θ2). In this case G(X; θ) ≈ χ2(n − 1) and we get the CI for
the variance

(T1,T2) =
(

n− 1

χ2
(1+γ )/2;n−1

S̄2,
n− 1

χ2
(1−γ )/2;n−1

S̄2

)
(5.82)

so that, for instance, for n = 20 and γ = 0.95 we find in tables the two
quantiles χ2

(1+γ )/2;n−1 = χ2
0.975;19 = 32.85 and χ2

(1−γ )/2;n = χ2
0.025;19 =

8.907. As above, the central CI (5.81) is not the shortest interval but it is the
most frequently used in practice. If, at this point we also want a CI for the
mean, we proceed exactly as in Example 5.9(b) thus obtaining the interval
(5.76) which – owing to the symmetry of the Student distribution – is the
shortest among all intervals of the form (M − a1S̄,M + a2S̄).

Example 5.11(a) From the preceding examples it appears that the deter-
mination of CIs for the (unknown) mean of a normal population involves
(i) standardized normal quantiles if the variance is known or (ii) Student
quantiles – with the appropriate number of degrees of freedom – if the vari-
ance is not known. Provided that collective independence of the r.v.s involved
in the estimation problem applies, this is a general fact. Suppose in fact, that
we want to find a CI for the difference µ1 − µ2 where µ1 = θ1, µ2 = θ2 are
the means of two normal populations with variances σ 2

1 , σ 2
2 , respectively.

Also, let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Ym) be the samples taken from
the two populations and M1,M2 the two sample means.

If the variances are known then we can exploit the fact that

G = M1 −M2 − (θ1 − θ2)√
n−1σ 2

1 +m−1σ 2
2

≈ N(0, 1) (5.83)
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and thereforeG is a pivot quantity. Proceeding exactly as in Example 5.9(a)
we obtain the CI⎛⎝M1 −M2 ± c(1+γ )/2

√
σ 2

1

n
+ σ 2

2

m

⎞⎠ (5.84)

If the variances are not known we use the estimators S̄2
1, S̄2

2 (or S2
1, S2

2)

instead of the population variances. Using these estimators, it is convenient
to introduce the ‘pooled’ variance

S2
p = (n− 1)S̄2

1 + (m− 1)S̄2
2

n+m− 2
= nS2

1 +mS2
2

n+m− 2
(5.85)

because it can be shown (Appendix C) that the r.v.

G = M1 −M2 − (θ1 − θ2)

Sp
√
n−1 +m−1

(5.86)

is distributed as a Student variable with n+m−2 degrees of freedom. This is
our pivot quantity for the case at hand and we can parallel Example 5.9(b)
to get the CI(

M1 −M2 ± t(1+γ )/2;n+m−2Sp
√
n−1 +m−1

)
=
(
M1 −M2 ± t(1+γ )/2;n+m−2

√
m+ n

mn(m+ n− 2)

(
nS2

1 +mS2
2

))
(5.87)

where the second expression has been written in terms of the sample
variances S2

1, S2
2.

Example 5.11(b) As above, let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Ym)

be independent samples from normal populations with unknown variances
σ 2

1 = θ2
1 , σ 2

2 = θ2
2 , respectively. Now we wish to determine a CI for the

ratio τ(θ1, θ2) = θ2
1 /θ2

2 . The pivot quantity for this problem is obtained
by noting that (Appendix C) Z1 = (n− 1)S̄2

1/σ 2
1 ≈ χ2(n− 1) and Z2 =

(m− 1)S̄2
2/σ 2

2 ≈ χ2(m− 1) so that the r.v.

G = S̄2
1/θ2

1

S̄2
2/θ2

2

= 1
τ

(
S̄2

1

S̄2
2

)
(5.88)
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has a Fisher distribution with n − 1 and m − 1 degrees of freedom.
Solving (5.88) for τ we get an interval of the form

(
g−1

2

S̄2
1

S̄2
2

, g−1
1

S̄2
1

S̄2
2

)
(5.89a)

so that denoting by F(1−γ )/2;n−1,m−1 and F(1+γ )/2;n−1,m−1, respectively, the
(1 − γ )/2 and (1 + γ )/2 quantiles of the distribution Fsh(n− 1,m− 1) the
desired CI for the variance ratio is

(
S̄2

1/S̄2
2

F(1+γ )/2;n−1,m−1
,

S̄2
1/S̄2

2

F(1−γ )/2;n−1,m−1

)

=
(

S̄2
1/S̄2

2

F(1+γ )/2;n−1,m−1
,F(1+γ )/2;m−1,n−1

S̄2
1

S̄2
2

)
(5.89b)

where in the second expression we took into account the property
F(1−γ )/2;n−1,m−1 = {F(1+γ )/2;m−1,n−1}−1. So, for instance, if γ = 0.90,
n = 20 and m = 15 we find F0.95;19,14 = 2.40 and F0.95;14,19 = 2.26
and our interval is (0.417S̄2

1/S̄2
2, 2.26/S̄2

1/S̄2
2).

Example 5.11(c) As an example of a non-normal model, consider a sample
taken from an exponential population with unknown mean (i.e. the statisti-
cal model is expressed in terms of the pdfs f (x; θ) = θ−1e−x/θ ). Now, since
Xi ≈ Exp(θ) it follows that (Appendix C) 2Xi/θ ≈ Exp(2) = χ2(2) and
therefore G = 2θ−1∑

i Xi ≈ χ2(2n). It is left to the reader to fill in the easy
details and arrive at the central CI

(
2
∑
Xi

χ2
(1+γ )/2;2n

,
2
∑
Xi

χ2
(1−γ )/2;2n

)
=
(

2nM

χ2
(1+γ )/2;2n

,
2nM

χ2
(1−γ )/2;2n

)
(5.90)

As a numerical example, let γ = 0.90 and n = 10. We find χ2
(1+γ )/2;2n =

χ2
0.95;20 = 31.41 and χ2

(1−γ )/2;2n = χ2
0.05;20 = 10.85; consequently

(0.64M, 1.84M).

At this point a remark on notation is in order: whenever we have spoken
of quantiles we meant lower quantiles. Some statistical tables report lower
quantiles, but some other tables do not. In other words, if FG is the PDF
under consideration (Gaussian, Student, χ2, Fisher, or else, depending on
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the problem) and fG its density, our convention so far is that

FG(g1) =
g1∫

−∞
fG(g) dg = (1 − γ )/2 = α/2

FG(g2) =
g2∫

−∞
fG(g) dg = (1 + γ )/2 = 1 − α/2

(5.91)

(we recall that γ = 1 − α by definition) so that the area under the pdf to the
left of g1 equals α/2 and we can say, equivalently, that g1 is the α/2-lower
quantile or, as we did, the (1 − γ )/2-lower quantile. Similarly, g2 is the
(1 − α/2)-lower quantile or, equivalently, the (1 + γ )/2-lower quantile. In
fact, for instance, one often finds – e.g. see [25] – the interval (5.81) written
as (nS2/χ2

1−α/2;n,nS
2/χ2

α/2;n).
From the first of eq. (5.91), however, it follows that the area to the right

of g1 is 1 − α/2, that is, P(G > g1) = ∫∞
g1
fG dg = 1 − α/2. Since the

value of the area to the right of a given point is used to define the so-called
‘upper quantile’ of a distribution, the other convention sees g1 is the upper
(1 − α/2)-upper quantile. By the same token, g2 is the upper α/2-upper
quantile. Obviously, nothing changes for the degrees of freedom.

So, for instance, one can find eq. (5.81) written in terms of upper quantiles
as (nS2/χα/2;n,nS2/χ1−α/2;n) and now, if we look for a 95%-CI with, say,
n = 20, we find (see, for instance, Table 4 on [4] or Table C in Appendix II of
[7]) χ2

α/2;n = χ2
0.025;20 = 34.17 and χ2

1−α/2;n = χ2
0.975;20 = 9.59. Obviously,

the resulting interval is the same as above. In the following, in order to
avoid confusion, we will explicitly state which type of quantile we are using;
it must be the analyst’s care to check the tables at his/her disposal.

Besides this observation on symbolism, it may also be worth spending a
few words on some other interesting aspects of interval estimation. We start
with the vector parameter case, which was briefly mentioned in remark (iv)
at the beginning of this section.

The general technique used to construct confidence regions is based on the
fact that eq. (5.69c) is equivalent to

Pq{X ∈ H(q)} ≥ γ (5.92)

where, for every q ∈ �, the setH(q) is the subset of the sample space � con-
taining all those realizations x (i.e. all those values taken on by X) such that
the confidence region constructed with these x will include q. So, the desired
confidence region is found by determining the setsH(q) satisfying inequality
(5.92). Since, for a given CL, the sets H(q) can be chosen in many ways, the
confidence region thus constructed is not unique and the problem remains
of finding a ‘minimal’ confidence region. In practice, one generally finds the
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sets H(q) with the help of some vector statistic T(X) with known distribu-
tion. As an example, we can reconsider Example 5.10(b) – normal model
with unknown mean and variance – where we determined separate CIs for
the mean and the variance. If, however, one considers the two-dimensional
vector parameter q = (µ, σ 2) = (θ1, τ), it is wrong to deduce that the rectan-
gle delimited by the intervals (5.76) and (5.82) is a γ -confidence region for
q. This is because the pivot quantities used to construct the CIs are related.
Since it can be shown [19] that for a normal population the components of
the two-dimensional statistic T = (M, S2) are independent, we can use the
results (5.76) and (5.82) to obtain the set

H(q) =
{
x :
√
n/τ |m− θ1| < a;b′ < ns2/τ < b′′} (5.93)

where a = t(1+γ1)/2;n−1, b′ = χ2
(1−γ2)/2;n−1 and b′′ = χ2

(1+γ2)/2;n−1. Moreover,

the quantities γ1, γ2 – owing to the independence ofM and S2 – must satisfy
the condition γ1γ2 = γ in order to have a γ -confidence region. Solving the
inequalities which define H(q) we find τ > n(m− θ1)

2/a and ns2/b′′ < τ <

ns2/b′. In the (θ1, τ)-plane, therefore, the confidence region is the part of the
plane bounded by the parabola τ = n(m− θ1)

2/a and the two straight lines
τ = ns2/b′′ and τ = ns2/b′.

Returning now to the one-dimensional case, a second consideration is the
answer to the question: given a point estimator T(X) (of θ ) with known
distribution FT(t; θ), can we construct a CI for θ? Intuitively, the answer
is yes and, in fact, it is so. Let us assume that FT(t; θ) is continuous and
monotone in θ . Then, for every value of θ ∈ � it is possible to define two
numbers t1, t2(t1 < t2) such that

Pθ {t1 < T(X) < t2} = FT(t2; θ) − FT(t1; θ) = γ (5.94)

Although they are not random quantities (because they are two realizations
of T(X)) , t1, t2 will be different for different values of θ ; consequently,
we can write t1(θ), t2(θ) and note that these two functions will generally be
monotonically increasing in θ (if t is any sort of reasonable estimate of θ , it
should increase as θ increases). Moreover, in order to uniquely define t1, t2
one generally seeks a central interval by choosing them so that

FT(t1; θ) = (1 − γ )/2

FT(t2; θ) = (1 + γ )/2
(5.95)

In the (θ , t)-plane we will therefore be able to identify a region bounded
by the two functions t1(θ), t2(θ). This region, by construction, is such that
eq. (5.94) holds for any fixed value of θ ∈ �; but the important point is
that for any fixed value of t it defines two values θ1(t), θ2(t) – that is, the
intersection of the horizontal line t with the curves t1(θ), t2(θ) – such that
the interval (θ1, θ2), in the long run, will bracket θ in γ% of the cases. This is
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precisely the notion of confidence interval for θ and therefore
(T1(X),T2(X)), where Ti(X) = θi(T(X)) for i = 1, 2, is the desired γ -CI. So,
under the assumptions above, we can in practice proceed as follows: given
T(X) we obtain the realization x and consequently the estimate t = T(x);
then, solving for θ the equations FT(t; θ) = (1−γ )/2 and FT(t; θ) = (1+γ )/2
we determine the extremes θ1 and θ2 of the γ -interval. By so doing, in the
long run, we will be wrong (1 − γ )% of the times.

We close this section with a final observation on the examples above
where, as the reader has probably noticed, we often assume a normal pop-
ulation as the starting statistical model. Although, clearly, the assumption
of normality is not always justified in practice, we just point out two facts
in its favour: (a) it has been shown that moderate and, sometimes, even sig-
nificant departures from normality lead to acceptable results in many cases
and (b) if we suspect serious departures from normality, there is always the
possibility of trying a transformation of the parent r.v. X (see, for instance,
Ref. [2]) because log(X),

√
X or some other function of it are often more

nearly normal.
Nonetheless, it goes without saying that in practical cases it is always

advisable to check the basic assumption itself by carrying out a preliminary
normality test on the data (this aspect is delayed to Chapter 6).

5.6.1 Asymptotic confidence intervals

Consider a point estimator Tn(X) of the unknown parameter θ such that
the r.v.

√
n(Tn − θ) is asymptotically normal with zero mean and variance

σ 2(θ). If σ 2(θ) is a continuous function then it can be shown [19] that√
n(Tn − θ)/σ (Tn) → N(0, 1) [D] as n → ∞. Consequently, for all θ

we have

Pθ

(√
n|Tn − θ |
σ(Tn)

< c
)

→ �(c) − �(−c) = 2�(c) − 1 = γ (5.96a)

where c ≡ c(1+γ )/2 is the (1 + γ )/2-quantile of the standard normal distri-
bution introduced in Example 5.9(a) and σ(Tn) is the standard deviation of
Tn. Since the relation above can be rewritten as

Pθ

(
Tn − c(1+γ )/2

σ(Tn)√
n

< θ < Tn + c(1+γ )/2
σ(Tn)√

n

)
→ γ (5.96b)

it follows that (Tn ± c(
1+γ
)
/2

σ(Tn)/
√
n) is an asymptotic γ -CI for θ , where

it is evident that the smaller is σ(Tn) the shorter is the interval. As a con-
sequence, asymptotically efficient estimators will give the asymptotically
shortest interval.

If we recall from Section 5.5.1 that for regular models maximum-
likelihood estimators are (i) asymptotically normal and (ii) asymptotically
efficient with variance 1/nI(θ) = 1/In(θ) – that is, the Cramer–Rao
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limit – then the interval

(
T̂n ± c(1+γ )/2√

nI(θ)

)
(5.97a)

(where T̂n is the ML estimator of θ ) is the asymptotically shortest γ -CI for
θ . Then, in order to ‘stablize’ the variance – that is, make it independent on
θ – one may proceed as in Section 5.5.1 (eq. (5.66) and Example 5.8(a)) to
obtain the confidence interval for h(θ)

(
h(T̂n) ± c(1+γ )/2b/

√
n
)

(5.97b)

where, for simplicity, we chose a = 0 in eq. (5.66). If h is a monotone
function we can then solve the resulting inequalities for θ to get the desired
asymptotic γ -CI for the parameter θ .

Owing to their nature, asymptotic CIs are exact only in the limit of n →
∞ but in common practice they are often used as approximate confidence
intervals when the sample is large – with the obvious understanding that
the larger is the sample, the better is the approximation. As it should be
expected, however, the notion of ‘large’ sample depends on the problem at
hand because the rate of convergence to the normal distribution is not the
same for all estimators. Nonetheless, it is a widely adopted rule of thumb
that n > 30 can be considered a large sample when estimating confidence
intervals for means while n > 100 is the ‘dividing line’ between small and
large samples when estimating confidence intervals for variances.

Example 5.12(a) In Example 5.8(a), we determined that the sample mean
M is the ML estimator of the parameter θ of a Poisson model. Also, we found
I(θ) = 1/θ and noted that – choosing a = 0 and b = 1/2 in eq. (5.66) – the
r.v.

√
n(

√
M − √

θ) is asymptotically normal with zero mean and variance
1/4. Then, it follows from eq. (5.97b) that (

√
M±c(1+γ )/2/2

√
n) is, for large

samples, an approximate γ -CI for
√

θ ; consequently

((√
M − c(1+γ )/2/2

√
n
)2, (√M + c(1+γ )/2/2

√
n
)2) (5.98)

is the approximate γ -CI for θ .

Example 5.12(b) For a sequence of n Bernoulli trials we have seen in Exam-
ple 5.7(a) that the ML estimate of the parameter θ = p is the observed
frequency of success x/n (which coincides with the sample mean M if 1
counts as a success and 0 counts as a failure). It is left to the reader to
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show that

I(θ) = 1
θ(1 − θ)

(5.99)

and therefore the approximate CI for θ is(
M ± c(1+γ )/2√

n

√
θ(1 − θ)

)
(5.100)

The stabilizing transformation can be obtained from eq. (5.66) which, setting
a = 0 and b = 1/2, yields

h(θ) = 1
2

∫
dθ√

θ(1 − θ)
= arcsin(

√
θ) (5.101)

so that (arcsin(
√
M) ± c(1+γ )/2/2

√
n) is the approximate CI for arcsin

√
θ .

5.7 A few notes on other types of statistical intervals

The somewhat detailed discussion of the preceding sections on confidence
intervals should not lead one to think that they are the only statistical inter-
vals used in practice. Besides CIs, in fact, it is rather common in many
applications to consider ‘tolerance intervals’ (TI) or ‘prediction intervals’
(PI), where the choice between the three types is dictated by the final scope
of the analysis. So, referring for the most part to Chapter 5 of [27], this
section is simply meant to outline the main ideas behind these different con-
cepts of statistical intervals. Before we do this, however, it is worth recalling
that (a) the basic assumption is to draw a random sample from some pop-
ulation and (b) the statistical inferences are only valid for the population
from which the sample was selected. In general, moreover, the assumption
of normality is often made even if it may not be strictly met in practice. In
this regard, the considerations at the end of Section 5.6 apply and in case of
strong evidence of non-normality, one may always consider the possibility
of using distribution-free methods (see, for instance, Ref. [13]).

Tolerance intervals are needed when we are interested in an interval which
will contain a certain percentage of the population. In this case, therefore,
we will have two percentages: the percentage of population included in the
interval and the confidence level – often, as for CIs, 90, 95 or 99% – associ-
ated to the interval. This second percentage is usually included in the name
and one speaks of 90%, 95% or 99%-TI, respectively.

Assuming a sample from a normal population, tolerance intervals are
generally given in the form (M±cT,R(n)S̄) and the values of cT,R – where the
subscript T is for ‘tolerance’ and R indicates the percentage of population
contained in the interval – can be found in statistical tables for different
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values of the sample size n. So, for instance, for n = 15 and a 95%-TI, we
find the values cT,90 = 2.48, cT,95 = 2.95 and cT,99 = 3.88.

As the name itself implies, prediction intervals have to do with future
observations. More specifically, a PI is needed when we are interested in an
interval which will contain a specified number k of future observations from
the population under study. So, for instance, given the population of daily
flights from, say, New York to Chicago, a pilot may not be interested in
the average delay of these flights, but in the delay of the next flight in which
he/she will be flying. Similarly, a customer purchasing a small number of
units of a given product is not interested in the long-run performance of the
process from which his/her units are a sample, but in the quality of those
particular units that he is buying.

As for the other types of intervals, we associate to a PI a confidence level but
now the second defining number is k, the number of future observations to be
included in the interval. Again, the interval is given in the form (M±cP,k(n)S̄)
where the subscript P is for ‘prediction’ and the values of cP,k can be found
in statistical tables. As a numerical example, suppose that we have n = 10
observations from a normal population and we are interested in the values
of k = 2 further randomly selected observations from that population. For
n = 10, at a 95% CI we find the value cP,2 = 2.79 so that our 95%-PI is
(M± 2.79S̄), whereM and S̄ are the mean and (unbiased) standard deviation
calculated on the basis of the ten observations at our disposal. An important
difference between the types of intervals is that CIs become smaller and
smaller as the sample size increases while it is not so for TIs and PIs.

Finally, it is worth noting that there exist other types of prediction intervals
such as, for instance, the PI to contain – at a given confidence level – the mean
of k future observations or the standard deviation of k future observations.
For more detailed information the interested reader can refer to [13 and 14].

5.8 Summary and comments

The theory of Probability is an elegant and elaborate construction well wor-
thy of study in its own right. Statistics, broadly speaking, is the other face
of the coin because it provides the methods and techniques by which – on
the basis of a limited number of observed data – we can make (inductive)
inferences and/or draw conclusions on specific real-word problems where
randomness is involved. In other words, one can safely say that Statistics
‘sees these problems from a different angle’, although it is evident that it
must necessarily rely on Probability theory in order to be effective. The
approach of Statistics is explained in Section 5.2, where the concept of
statistical model is introduced together with the definitions of ‘sample’,
‘realization of the sample’ and some notes on the important aspect of data
collection.

With Section 5.3 we turn to more practical considerations by noting that
one of the first step in every analysis is to use the experimental data to
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calculate the so-called ‘sample characteristics’ where, by analogy, each one
of them is generally the counterpart of a well-defined probabilistic quantity.
In this light, therefore, one speaks of sample mean, sample variance, kth
order (ordinary and central) sample moment, etc., and of their realizations
which, in turn, may change from experiment to experiment because the real-
ization of the sample, as a matter of fact, does change from experiment to
experiment. Being random variables themselves, moreover, it makes sense
to speak of mean, variance, etc. – and, more generally, of the probability
distribution – of sample characteristics. All these aspects are discussed in
Section 5.3 by implicitly assuming the sample size n as fixed. This, how-
ever, is not the whole story because another important issue is considered
in Section 5.3.1: the behaviour of sample characteristics as the sample size
increases indefinitely – that is, mathematically speaking, as n → ∞. In the
limit, in fact, some important properties of both theoretical and practical
interest show up: theoretical because an infinite sample is an evident impos-
sibility and consequently these asymptotic properties can never be realized
in full, but practical because it can often be assumed that they are, to a
certain extent, satisfied by large samples, thereby providing useful working
approximations in many cases.

Having introduced the concept of sample characteristic and, in particular,
of statistic – that is, a sample characteristic containing no unknown quanti-
ties – both Sections 5.4 and 5.5 and all their subsections are dedicated to the
subject of point estimation. In essence, the problem consists in estimating
one or more unknown parameters of a supposedly known type of distribu-
tion by means of an appropriate statistic. The type of distribution provides
the underlying statistical model while the observed data are used to calcu-
late the ‘appropriate’ statistic which, we hope, will estimate the unknown
parameter(s) within an acceptable degree of accuracy.

Since this kind of problem is fundamental in almost all statistical appli-
cations, the first step is to specify some criteria by which we may be able
to decide whether a given statistic can qualify as a ‘good’ – or even, if and
when possible, as the ‘best’ – estimator for the parameter under investiga-
tion. In this respect, in fact, it is not sufficient to rely solely on analogy –
that is, using the sample mean to estimate the mean, the sample variance
for the variance, etc. – because it can be shown that this intuitive approach,
although useful in some cases, may even be misleading in some other cases.
Among the most important criteria to judge an estimator, Section 5.4 con-
siders unbiasedness, asymptotic unbiasedness, efficiency and consistency.
Then, in regard to efficiency, Section 5.4.1 deals with a fundamental result
applying to the so-called regular problems: this is the Cramer–Rao inequal-
ity which, by establishing a lower limit for the variance of an estimator, can
indicate the best estimator – when it exists – in terms of efficiency. In the
process, the definition of Fisher’s information is given and all the concepts
above are generalized to the case of a k-dimensional (vector) parameter and
to a scalar function of a vector parameter.
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Another desirable property of estimators is sufficiency. The definition is
not self-evident and, often, is also of little practical use for the purpose
of identifying sufficient estimators. The required explanations are given in
Section 5.4.2, where it is also shown that Neyman’s factorization theorem
provides an easier way to assess sufficiency and that – Rao–Blacwell theo-
rem – the so-called MVUE (minimum variance unbiased estimator), when
it exists, is a function of a sufficient statistic. The property of complete-
ness, moreover, is introduced in order to state Lehmann–Scheffé theorem
which, in turn, specifies the general form of a MVUE as a function of a suf-
ficient and complete statistic and an unbiased estimator (for the unknown
parameter under study).

Finally, the way in which we can find estimators with the above proper-
ties – or at least some of them – is explained in Section 5.5. Although not the
only one, the most popular technique for this purpose is the so-called ML
method. The name itself is self-explanatory and consists in maximizing the
likelihood function (or, more often, its natural logarithm) with respect to
the unknown parameter(s). The ‘method of moments’ and ‘Bayes’ method’
are also briefly considered in Section 5.5 but it is noted that, in general, ML
estimators have a number of desirable properties and here, probably, lies the
reason for the method’s popularity. Particularly worthy of mention are the
asymptotic properties of ML estimators considered in Section 5.5.1.

The most appropriate solution to many problems is not in the form of a
point estimate because the main concern is often a range of values within
which we can confidently hope to find the true value of the unknown para-
meter. This is a so-called problem of interval estimation and is the subject
of Section 5.6. So, by first specifying a confidence level γ , our goal is to
determine two statistics T1,T2 such that eq. (5.69) holds; these statistics,
once we find them, are the lower and upper limit of the CI, respectively. At
this point we use the experimental data to calculate their realizations t1, t2
and say that (t1, t2) is the desired γ -CI.

The general technique by which the task of finding T1,T2 is accomplished
is explained in Section 5.6 and the many worked-out examples show that
confidence intervals are always specified in terms of quantiles of an appro-
priate distribution where, on the one hand, the ‘appropriate’ distribution
(frequently the Gaussian, the χ2 or the Fisher distribution) depend on the
parameter under study while, on the other hand, the quantiles to be used
in actually calculating the interval depend on the confidence level. In any
case, however, it is pointed out that we cannot say that the true value θ of
the parameter lies in the interval (t1, t2) with probability θ . This is because
(t1, t2) is a ‘deterministic’ interval with nothing random in it and therefore θ

either belongs to it or it does not. The correct statement is given in terms of
the long-run interpretation of confidence intervals: by repeating the estima-
tion procedure many times – thus obtaining many confidence intervals – θ

will fall in these intervals in 100γ% of the cases. Also, another general fact
is that the procedure of interval estimation must be based on a compromise
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between sample size and confidence level. For a given sample size, in fact,
a higher confidence level corresponds to a longer interval and therefore an
unreasonably high value of γ will lead to an interval which may be too large
to be of any practical use. The interval length, on the other hand, can be
decreased by either choosing a lower confidence level or by increasing the
sample size, or both. Increasing the sample size, however, is generally costly
and, in some cases, may not even be practicable. So, a correct balance of
these quantities must be agreed upon at the planning stage and, clearly, it is
the analyst’s responsibility – depending on the importance of the problem at
hand – to suggest a viable solution.

Finally, it is noted that cases in which finding a confidence interval turns
out to be a very difficult task are not rare. For large samples, however, a
practical solution is the use of asymptotic confidence intervals and this is
the subject of Section 5.6.1. In Section 5.7, moreover, we briefly introduce
the concepts of ‘tolerance intervals’ and ‘prediction intervals’ by also giving
a number of specific references for the reader interested in more details on
these further aspects of interval estimation.
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6 The test of statistical hypotheses

6.1 Introduction

Broadly speaking, any assumption on the distribution of one or more random
variables observed in an experiment is a statistical hypothesis. The hypothesis
may be based on theoretical considerations, on the analysis of other (similar)
experiments or it may just be an educated guess suggested by reasonableness
or common sense, whatever these terms mean. In any case, it must be checked
by actually performing the experiment and by devising some method which –
in the light of the acquired data – gives us the possibility to decide whether to
accept it or reject it. This, it should be clear from the outset, does not imply
that our decision will be right because, as in any procedure of statistical
inference, the best we can do (unless we examine the entire population) is
to reduce the probability of being wrong to an acceptable level, where the
term ‘acceptable’ generally depends on the problem at hand, the seriousness
of the consequences of being wrong and, last but not least, the cost of the
experiment. Consequently, we will not state our conclusions by saying ‘our
hypothesis is true (false)’ but ‘the observed data are in favour (against) our
hypothesis’, and we will continue our work behaving as if the hypothesis
were true (false).

The methods by means of which we make our decision are called statistical
tests and are the subject of this chapter. We will first illustrate the main ideas
from a general point of view and then turn to typical classes of problems and
specific examples.

6.2 General principles of hypotheses testing

Let us start with some definitions. The hypothesis to be tested, generally
denoted by H0, is called the null hypothesis and it is tested against an alter-
native hypothesis H1. The two hypotheses are regarded as mutually exclusive
and exhaustive. This is to say that if we accept H0 then we reject H1 and
conversely, but it does not mean that – given H0 – the hypothesis H1 is
the one and only alternative to H0. As a matter of fact, it is often possible
to conceive of several alternatives to H0, say H′

1,H
′′
1 and so on, but the
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point is that once H0 and H1 have been formulated, the test leading to the
acceptance/rejection of H0 necessarily leads to the rejection/acceptance of
H1. Clearly, it is the analyst’s responsibility to select the most appropriate
pair of hypotheses for the problem at hand.

So, givenH0 andH1, the experimental data form the evidence on the basis
of which we decide to accept or reject H0. Due to the intrinsic uncertainty
of any statistical inference, our decision may be right or wrong; however,
we may be wrong in two ways:

(a) by rejecting H0 when in fact it is true; or
(b) by accepting H0 when in fact it is false.

The common terminology defines (a) a type I error (or rejecting error) and
(b) a type II error (or acceptance error). Ideally, one would like both possi-
bilities of error to be as small as possible, but since it turns out that, for a
fixed sample size n, it is generally not possible to decrease one type without
increasing the other, some sort of compromising strategy must be adopted.
We will come to this point shortly.

In essence, any statistical test is a rule by which a realization x =
(x1, . . . ,xn) of the sampleX = (X1, . . . ,Xn) is used to make a decision about
the assumption H0. More specifically, this is done by dividing the sample
space � into two disjoint sets �0, �1 – called the acceptance region and the
rejection (or critical) region, respectively – such that �0 ∪ �1 = �. As the
names themselves imply, �0 contains all x which lead to the acceptance of
H0 while �1 contains all x which lead to the rejection of the null hypothesis.
In this light, the basic formulation of a statistical test is as follows:

Let x be a realization of the sample X. If x ∈ �0 we accept the null
hypothesis H0; if, on the other hand, x ∈ �1 we reject H0 (and therefore
accept H1). Then, the two possibilities of error correspond to the cases:
(a) x ∈ �1 when H0 is true and (b) x ∈ �0 when H0 is false.

The selection of the acceptance and rejection regions is strictly related
to two other aspects: the test chosen for a given null hypothesis and the
‘goodness’ of the test. In fact, since it is reasonable to expect that a given null
hypothesisH0 can be tested by different methods and that each method will
define its acceptance and rejection regions, the problem arises of which test
to choose among all possible tests on H0. The choice, we will see, depends
also on the alternative hypothesis H1 but for the moment we assume both
H0 and H1 as given. Now, an intuitive solution to this problem is, for a
specified sample size n, to call ‘best’ the test which makes the possibility of
error as small as possible and choose this one. This aspect, however, deserves
further consideration because – keeping in mind that we do not know if H0
is true or not – the two types of error must be considered simultaneously.

If, as it is customary, we denote by α and β the probabilities of committing
a type I and type II error respectively, it turns out that we cannot simulta-
neously make them as small as we wish. This fact is evident if we examine
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the two extreme cases. If we choose α = 0 we will never make a type I error
and this, in turn, means that � = �0 because we will always accept H0
regardless of the observed realization x. This is a correct decision if H0 is
true (which we do not know); if, however, H0 is false, our choice of accept-
ing it no matter what – since �1 = �C

0 = ∅ – implies β = 1. Conversely,
choosing β = 0 means that � = �1 and �0 = ∅; therefore we will always
rejectH0, a circumstance which prevents us from committing a type II error
ifH0 is false, but implies α = 1 ifH0 is true. Between the two extremes there
are many possible intermediate cases corresponding to different choices of
�0 and �1 but it is a general fact that reducing α tends to increase β and
viceversa.

The usually adopted strategy to overcome this difficulty is due to Neyman
and Pearson and is based on the consideration that in most cases one type
of error has more serious consequences than the other. Consequently, we
fix a value for the probability of the worst error and, among all possible
tests, we choose the one that minimizes the probability of the other error.
Since the problem is often formulated in such a way that the type I error
is the worst, the strategy consists in specifying a value for α and – if and
when possible – choosing the test with the smallest value of β (or, equiva-
lently, the maximum value of 1 − β) compatible with the prescribed value
of α. This specified value of α – which, clearly, depends on practical con-
siderations about the problem at hand – defines the significance level of
the test.

Before turning to other general aspects of hypothesis testing, we open a
short parenthesis on notation. Often one denotes the probabilities of type I
and type II errors by P(H1|H0) and P(H0|H1), respectively. This symbolism
does not mean that we are dealing with conditional probabilities in the strict
sense, but it is just a convenient way of indicating – in the two cases –
the accepted hypothesis (in the first ‘slot’ within parenthesis) and the true
hypothesis (in the second ‘slot’).

Returning to the main discussion, an observation of practical nature is that
the critical (rejection) region is frequently defined by means of a so-called
test function T(X), where T(X) is a statistic which must be appropriately
chosen for the problem at hand. Having chosen a test statistic, the critical
region will then be expressed in one of the following forms

�1 =

⎧⎪⎨⎪⎩
{x : T(x) ≥ c}
{x : T(x) ≤ c}
{x : |T(x)| ≥ c}

(6.1)

where c is a real number which depends on the significance level α. This, in
other words, means that for every α the set T = {t : t = T(x),x ∈ �} of all
possible values of T is divided into two subsets T0,T1, where T1 will include
all those realizations t = T(x) which lead to the rejection of H0.
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A second comment worthy of mention is that, for a fixed sample size n,
some problems of hypothesis testing do not lend themselves easily to a solu-
tion. Things, however, often get better if we adopt an asymptotic approach
by letting the sample size tend to infinity. This is a frequently adopted strat-
egy but it should be kept in mind that the final results are then valid only
for large samples. For moderate sample sizes, however, they can often be
considered as useful working approximations.

Having outlined the general philosophy of the statistical testing, it can be
of help at this point to have an idea of some typical of types of hypotheses
encountered in practice. The following is a short list:

(1) Hypothesis on the form of distribution: In this case we make n indepen-
dent observations of a r.v. X with unknown distribution FX(x) and use
the acquired data x to check if the distribution of X is, as we assume,
F(x). The null hypothesis is then written H0 : FX(x) = F(x). The func-
tion F(x), in turn, may be (a) completely defined or (b) may belong to
a certain class – for example, normal, Poisson, or else – the uncertainty
being on one (or more) parameter(s) θ of the distribution. An example
of this latter type can beH0 : FX(x) = N(µ, θ), meaning that we want to
test the hypothesis that X has a normal distribution with known mean
µ and unknown variance θ .

(2) Hypothesis of independence: In this case we have, for example, a two-
dimensional r.v. X = (X,Y) with unknown PDF FX(x, y) and we
have reasons to believe that X and Y are independent. Then, the null
hypothesis is symbolically expressed as H0 : FX(x, y) = FX(x)FY (y).

(3) Hypothesis of homogeneity: We carry out a series of m independent
experiments – each experiment consisting of n trials – obtaining the
results (x1i, . . . ,xni), where i = 1, . . . ,m. Our basic assumption in this
case is that these data are homogeneous, that is, they are all observations
of the same random variable. Then, since the null hypothesis is that the
distribution law is the same for all the experiments, we symbolically
express the problem as H0 : F1(x) = F2(x) = · · · = Fm(x), where we
denoted by Fi(x) the (unknown) distribution of the ith experiment.

Clearly, the types of hypothesis considered above do not cover all the possi-
bilities because the list has been given mainly for illustrative purposes. Other
specific cases will be examined in due time if and whenever needed in the
course of future discussions.

6.3 Parametric hypotheses

If the hypothesis to be tested concerns one or more unknown parameters of
a supposedly known type of probability distribution, one speaks of para-
metric hypotheses. The basic procedure is similar to what has been done in
Chapter 5 – that is, we start from the statistical model (5.1) and, on the
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basis of the acquired data, draw inferences on θ – but the details differ.
In Chapter 5, in fact, we did not formulate any hypothesis whatsoever on θ

and our main concern was simply to determine a reliable estimate of it, either
in the form of a numerical value or a confidence interval. Now we do formu-
late an hypothesis – the null hypothesis H0 – and the scope is to accept it or
reject it depending on whetherH0 is reasonably consistent with the observed
data or not. This kind of approach is generally more convenient when, fol-
lowing the experiment, we must make a ‘yes or no’ decision and take action
accordingly. For the moment we ignore the fact that the two problems –
parametric hypothesis testing and confidence interval estimation – are, in
fact, related and delay the discussion of this aspect to Section 6.3.4.

Denoting, as in Chapter 5, the parameter space by �, the general form of
the null and alternative hypotheses is

H0 : θ ∈ �0

H1 : θ ∈ �1
(6.2)

where �0, �1 are two subsets of � such that �0 ∩�1 = ∅ and �0 ∪�1 = �.
More specifically, we call simple any hypothesis which specifies the probabil-
ity distribution completely, otherwise we speak of composite (or compound)
hypothesis. So, for instance, H0 : θ = θ0 and H1 : θ = θ1 (where θ0 and
θ1 are given numerical values) are simple hypotheses while H0 : θ ≥ θ0,
H1 : θ �= θ0 or, say, H1 : θ < θ0 are composite hypotheses. Depending on
the problem at hand, we may have any one of the three possibilities (i) both
the null and alternative hypotheses are simple, (ii) one is simple and the other
is composite and (iii) both hypotheses are composite.

Before examining the various cases, we must return for a moment to the
discussion of Section 6.2 on how to select a ‘good’ test, a choice which – we
recall – requires a closer look at the two types of error. In case of parametric
hypotheses, they generally depend on θ and can be written as

α(θ) = Pθ (X ∈ �1| θ ∈ �0)

β(θ) = Pθ (X ∈ �0| θ ∈ �1)
(6.3)

If we define the so-called power function W(θ) as

W(θ) =
{
Pθ (X ∈ �1| θ ∈ �0) = α(θ)

Pθ (X ∈ �1| θ ∈ �1) = 1 − β(θ)
(6.4)

we recognize 1 − β as the probability of not making a type II error. Since an
ideal test will result in W(θ) = 0 if H0 is true (i.e. θ ∈ �0) and W(θ) = 1
if H0 is false (i.e. θ ∈ �1), the function W can be used to compare different
tests on a given pair of hypothesis H0, H1. In this light, in fact, we have the
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following definitions:

(i) we call size of a test the quantity

α = sup
θ∈�0

W(θ) (6.5)

(note that for parametric hypotheses the terms ‘size’ and ‘significance
level’ are interchangeable).

(ii) given a test T on a pair of hypotheses H0, H1, let α be its size and β(θ)

its probability of a type II error. Then T is called the uniformly most
powerful test if, for any other test T∗ (on H0,H1) of size α∗ ≤ α, we
have β∗(θ) ≥ β(θ) for all θ ∈ �1. This, in other words, means that the
uniformly most powerful test T – denoting byW(θ) its power function –
satisfies the inequality

W(θ) ≥ W∗(θ) for all θ ∈ �1 (6.6)

Also, a desirable property for a test is unbiasedness. A test T is called
unbiased if

W(θ) ≥ α for all θ ∈ �1 (6.7)

so that we have a higher probability of rejecting H0 when it is false than
rejecting it when it is true.

At this point, another word of caution is in order because mistakes and
misunderstandings are rather frequent: the power function considers the
probabilities of rejecting H0 when it is true and when it is false. This is, in
essence, the main idea of hypothesis testing and nothing can be said about
the probability ofH0 being true or false. So, ifH0 is accepted at, say, the 5%
significance level it does not mean that the probability of H0 being true is
95%. This distinction, as a matter of fact, is fundamental and should always
be kept in mind when reporting the results.

6.3.1 Simple hypotheses: Neyman–Pearson’s lemma

A uniform more powerful test does not always exist because uniformity, that
is, the condition ‘for all θ ∈ �1’, is rather strong and we may have cases in
which two tests, say T1,T2, cannot be compared because W1(θ) < W2(θ)

for some values of θ in �1 while W1(θ) > W2(θ) for some other values of
θ in �1. A most powerful test, however, always exists when we are dealing
with a pair of simple hypothesis, that is, the case in which eq. (6.2) have



The test of statistical hypotheses 229

the form

H0 : θ = θ0

H1 : θ = θ1
(6.8)

where θ0, θ1 are two specific numerical values for the unknown parameter.
Equation (6.8), in other words, imply that the parameter space consists of
only two points – that is, � = {θ0, θ1} – and that the distribution of the r.v.
X is either F0(x) = F(x; θ0) or F1(x) = F(x; θ1), where F is a known type
of PDF (normal, exponential, Poisson or else). Assuming that F0 and F1 are
both absolutely continuous with densities f0(x) and f1(x), respectively (with
f0, f1 > 0), the following theorem – known as Neyman–Pearson’s lemma –
holds.

Proposition 6.1 (Neyman–Pearson’s lemma) Let (6.8) be the null and
alternative hypotheses and x = (x1, . . . ,xn) be a realization of the sam-
ple X = (X1, . . . ,Xn). The most powerful test of size α is specified by the
critical region

�1 = {x : l(x) ≤ c} (6.9)

where c (c ≥ 0) is such that Pθ0 [l(X) ≤ c] = α and l(X) is a statistic called
the ‘likelihood-ratio’ and defined as

l(X) ≡ L(X; θ0)

L(X; θ1)
=
∏
i f0(Xi)∏
i f1(Xi)

(6.10)

In order to simplify the notation in the proof of the theorem let us call A the
rejection region (6.9) and let B be the rejection region of another test of size
α (on the hypotheses (6.8)). Then∫

A

L(x; θ0) dx =
∫
B

L(x; θ0) dx = α

because both tests have size α. Noting that both A and B can be expressed
as the union of two disjoint sets by writing A = (A ∩ B) ∪ (A ∩ BC) and
B = (A ∩ B) ∪ (B ∩ AC) respectively, the equality above implies∫

A∩BC

L(x; θ0) dx =
∫

B∩AC

L(x; θ0) dx (6.11)

By the definition of A, moreover, it follows that L(x; θ1) ≥ L(x; θ0)/c for
x ∈ A and, clearly, L(x; θ1) < L(x; θ0)/c for x ∈ AC. Using these inequalities,
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eq. (6.11) leads to the chain of relations∫
A∩BC

L(x; θ1) dx ≥
∫

A∩BC

L(x; θ0)

c
dx

=
∫

B∩AC

L(x; θ0)

c
dx >

∫
B∩AC

L(x; θ1) dx

which, in turn, are used to get∫
A

L(x; θ1) dx =
∫

A∩B
L(x; θ1) dx +

∫
A∩BC

L(x; θ1) dx

>

∫
A∩B

L(x; θ1) dx +
∫

B∩AC
L(x; θ1) dx

=
∫
B

L(x; θ1) dx (6.12)

meaning that the probability 1−β is higher for the test with rejection region
A = �1. In fact, since the quantity 1 − β (i.e. the probability of rejecting H0
whenH0 is false or, equivalently, of acceptingH1 whenH1 is true) of a given
test is obtained by integrating L(x; θ1) over its rejection region, eq. (6.12)
proves the theorem because the test corresponding to B is any test of size α

on the hypotheses (6.8).
In addition, we can show that the test is always unbiased. In fact, in the

rejection region A = �1 (eq. (6.9)) we have L(x; θ0) ≤ cL(x; θ1) which, if
c ≤ 1, implies L(x; θ0) ≤ L(x; θ1) and therefore

α =
∫
A

L(x; θ0) dx ≤
∫
A

L(x; θ1) dx = 1 − β = W(θ1)

On the other hand, in the acceptance region AC we have L(x; θ0) > cL(x; θ1)

and therefore L(x; θ0) > L(x; θ1) whenever c > 1. Consequently

1 − α =
∫
AC

L(x; θ0) dx >

∫
AC

L(x; θ1) dx = β = 1 −W(θ1)

thus showing that condition (6.7) holds in any case.

Example 6.1(a) As an application of Neyman–Pearson’s lemma, consider
a normal r.v. with known variance σ 2. On the basis of the random sampleX
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and the observed data x we want to test the pair of simple hypotheses (6.8)
on the unknown mean µ = θ where, for definiteness, we assume θ1 > θ0.

We have

l(x) = exp

(
− 1

2σ 2

n∑
i=1

[(xi − θ0)
2 − (xi − θ1)

2]
)

= exp
( n
2σ 2

(
θ2
1 − θ2

0

)
− nm

σ 2
(θ1 − θ0)

)
where m = ∑

xi is the realization of the sample mean calculated from the
data. The inequality defining the rejection region (6.9) holds if

m ≥ (θ1 + θ0)

2
− σ 2 log c
n(θ1 − θ0)

(6.13a)

or, equivalently, if

√
n(m− θ0)

σ
≥

√
n(θ1 − θ0)

2σ
− σ log c√

n(θ1 − θ0)
≡ t(c) (6.13b)

Now, noting that (Proposition 5.1(b)) the r.v. Z = √
n(M−θ0)/σ is standard

normal if H0 is true, we have Pθ0 [l(X) ≤ c] = Pθ0 [Z ≥ t(c)] = α and
therefore t(c) is the α-upper quantile of the standard normal distribution.
This quantity is found on statistical tables and is frequently denoted by the
special symbol zα (we find, for instance, for α = 0.05; 0.025; 0.01 – the
most commonly adopted values of α – the upper quantiles z0.05 = 1.645,
z0.025 = 1.960 and z0.01 = 2.326, respectively). Then, in agreement with
Neyman–Pearson’s lemma, it follows that the most powerful test for our
hypotheses is defined by the critical region

�1 =
{
x : m ≥ θ0 + zα

σ√
n

}
(6.14a)

and its power isW(θ1) = 1−β = Pθ1{M ≥ θ0 + zασ/
√
n}. This quantity can

be obtained by noting that under the alternative hypothesis the r.v.
√
n(M−

θ1)/σ is standard normal. Consequently, W(θ1) equals the r-upper quantile
of the standard normal distribution, where r = zα − √

n(θ1 − θ0)/σ . Since
r < zα the area (under the standard normal pdf) to the right of r is greater
than the area to the right of zα – which, by definition, equals α. This shows
that, as expected, the test is unbiased.

As a numerical example, suppose that we fix a significance level α = 0.025
and we wish to test the simple hypotheses H0 : θ = 15.0;H1 : θ = 17.0
knowing that the standard deviation of the underlying normal population is
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σ = 2.0. Suppose further that we carry out n = 20 measurements leading to
m = 16.2. Since the rejection region in this case is

�1 =
{
m ≥ 15.0 + 1.96

2.0√
20

}
= {m ≥ 15.88}

and m = 16.2 falls in it, we reject the null hypothesis and accept H1. More-
over, we can calculate the power of the test noting that r = −2.51 so that
the corresponding upper quantile is 0.994 = W(θ1) and the probability of a
type II error is β = 1 − 0.994 = 0.006.

Following the same line of reasoning as above, it is easy to determine that
the rejection region in the case θ1 < θ0 is

�1 =
{
x : m ≤ θ0 − zα

σ√
n

}
(6.14b)

because we get the conditionPθ0 [l(X) ≤ c] = Pθ0 [Z ≤ t(c)] = α thus implying
that now t(c) – where t(c) is as in eq. (6.13b) – is the α-lower quantile of the
standard normal distribution. Owing to the symmetry of the distribution,
this lower quantile is −zα and therefore eq. (6.14b) follows.

As a further development of the exercise, consider the following problem:
in the case θ1 > θ0 we have fixed the probability of a type I error to a value α,
what (minimum) sample size do we need to obtain a probability of type II
error smaller than a given value β? The probability of a type II error is

Pθ1(M < θ0 + zασ/
√
n) = Pθ1{Z < zα − √

n(θ1 − θ0)/σ }

where Z is the standard normal r.v. Z = √
n(M − θ1)/σ . The desired upper

limit β is obtained when zα − √
n(θ1 − θ0)/σ equals the β-lower quantile

of the standard normal distribution. If we denote this lower quantile by qβ

we get

n = σ 2(zα − qβ)2

(θ1 − θ0)
2

(6.15)

and consequently ñ = [n]+1 (the square brackets denote the integer part of
the number) is the minimum required sample size. So, for instance, taking the
same numerical values as above for α, θ0, θ1, σ , suppose we want a maximum
probability of type II error β = 0.001. Then, the minimum sample size
is ñ = 26 (because z0.025 = 1.96, q0.001 = −3.09 and eq. (6.15) gives
n = 25.5).

Example 6.1(b) Consider now a normal population with known mean µ

and unknown variance σ 2 = θ2. Somehow we know that the variance is
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either θ2
0 or θ2

1 (with θ2
1 > θ2

0 ) and the scope of the analysis is to test the pair
of simple hypotheses

H0 : θ2 = θ2
0

H1 : θ2 = θ2
1

(6.16)

Again, we use Neyman–Pearson’s lemma to obtain the most powerful test
for the case at hand. Since

l(x) =
(

θ1

θ0

)n
exp

(
−1

2

(
1

θ2
0

− 1

θ2
1

) n∑
i=1

(xi − µ)2

)

=
(

θ1

θ0

)n
exp

(
−θ2

1 − θ2
0

2θ2
1

n∑
i=1

(
xi − µ

θ0

)2
)

the inequality defining the rejection region (6.9) holds if

n∑
i=1

(
xi − µ

θ0

)2

≥ 2θ2
1

θ2
1 − θ2

0

[n log(θ1/θ0) − log c] ≡ t(c) (6.17)

Under the hypothesis H0, each one of the n independent r.v.s Yi = [(Xi −
µ)/θ0]2 is distributed according to the χ2 probability law with one degree
of freedom. Consequently, the sum Y = ∑

Yi has a χ2 distribution with n
degrees of freedom and the relationPθ0 [l(X) ≤ c] = Pθ0 [Y ≥ t(c)] = α means
that t(c) must be the α-upper quantile of this distribution. Then, denoting
this quantile by the symbol χ2

α;n, the rejection region for the test is

�1 =
{
x :

n∑
i=1

(xi − µ)2 ≥ θ2
0 χ2

α;n

}
(6.18a)

As a numerical example, suppose we fix a significance level α = 0.05 and
we wish to test the hypotheses H0 : θ2 = 3.0;H1 : θ2 = 3.7 for a normal
population with mean µ = 18. If we carry out an experiment consisting of,
say, 15 measurements x = (x1, . . . ,x15), our rejection region will be

�1 =
{
x :

15∑
i=1

(xi − 18)2 ≥ 3.0χ2
α;n

}
=
{
x :

15∑
i=1

(xi − 18)2 ≥ 74.988

}
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because from statistical tables we get the upper quantile χ2
0.05;15 = 24.996.

It is left to the reader to show that in the case θ2
1 < θ2

0 the rejection region is

�1 =
{
x :

n∑
i=1

(xi − µ)2 ≤ θ2
0 χ2

1−α;n

}
(6.18b)

where χ2
1−α;n is the (1 − α)-upper quantile (or, equivalently, the α-lower

quantile) of the χ2 distribution with n degrees of freedom.
So, the basic idea of Proposition 6.1 is rather intuitive: since the likelihood-

ratio statistics (6.10) can be considered as a relative measure of the ‘weight’ of
the two hypotheses , l(x) > 1 suggests that the observed data support the null
hypothesis while the relation l(x) < 1 tends to imply the opposite conclusion
and the specific value of l(x) – that is c in eq. (6.9) – below which we rejectH0
depends on α, that is, the risk we are willing to take of making a type I error.
In this light, therefore, it is evident that nothing would change if, as some
authors do, one defined the likelihood-ratio as l(X) = L(X; θ1)/L(X; θ0) and
considered the rejection region �1 = {l(x) ≥ c} with Pθ0 [l(X) ≥ c] = α.

When the probability distributions are discrete the same line of reasoning
leads to the most powerful test for the simple hypotheses (6.8). Discrete-
ness, however, often introduces one minor inconvenience. In fact, since the
likelihood-ratio statistic takes on only discrete values, say l1, l2, . . . , lk, . . ., it
may not be possible to satisfy the condition Pθ0 [l(X) ≤ c] = α exactly. The
following example will clarify this situation.

Example 6.2 At the significance level α, suppose that we want to test the
simple hypotheses (6.8) (with θ1 > θ0) on the unknown parameter p = θ of
a binomial model. Defining y =∑n

i=1 xi we have

l(x) =
(

θ0

θ1

)y (1 − θ0

1 − θ1

)n−y
and l(x) ≤ c if

y ≥
(

log
θ1

θ0
+ log

1 − θ0

1 − θ1

)−1 (
n log

1 − θ0

1 − θ1
− log c

)
≡ t(c)

Under the null hypothesis, the r.v. Y = X1 + · · · + Xn – being the sum of
n binomial r.v.s – is itself binomially distributed with parameter θ0, and in
order to meet the condition Pθ0 [l(X) ≤ c] = Pθ0 [Y ≥ t(c)] = α exactly there
should exist an (integer) index k = k(α) such that

n∑
m=k(α)

(
n
m

)
θm0 (1 − θ0)

n−m = α (6.19)
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If such an index does exist – a rather rare occurrence indeed – the test attains
the desired significance level and the rejection region is

�1 =
{
x : y =

n∑
i=1

xi ≥ k(α)

}
(6.20)

However, the most common situation by far is the case in which eq. (6.19)
is not satisfied exactly but we can find an index r = r(α) such that

α′ ≡
n∑

m=r(α)

(
n
m

)
θm0 (1 − θ0)

n−m < α <

n∑
m=r(α)−1

(
n
m

)
θm0 (1 − θ0)

n−m ≡ α′′

(6.21)

At this point we can define the rejection region as (a) �1 = {x : y ≥ r(α)}
or as (b) �1 = {x : y ≥ r(α) − 1}, knowing that in both cases we do not
attain the desired level α but we are reasonably close to it. In case (a), in fact,
the actual significance level α′ is slightly lower than α (r(α) is the minimum
index satisfying the left-hand side inequality of (6.21)) while in case (b) the
actual significance level α′′ is slightly greater than α (r(α)−1 is the maximum
index satisfying the right-hand side inequality of (6.21)). Also, in terms of
power we have

1 − β ′ =
n∑

m=r(α)

(
n
m

)
θm1 (1 − θ1)

n−m<

n∑
m=r(α)−1

(
n
m

)
θm1 (1 − θ1)

n−m= 1 − β ′′

and, as expected, β ′ > β ′′. In the two cases, respectively, Proposition 6.1
guarantees that these are the most powerful tests at levels α′ and α′′.

Besides the cases (a) and (b) – which in most applications will do – a
third possibility called ‘randomization’ allows the experimenter to attain
the desired level α exactly. Suppose that we choose the rejection region (b)
associated to a level α′′ > α and defined in terms of the index s(α) ≡ r(α)−1.
Under the null hypothesis, let us call P0 the probability of the eventY = s(α),
that is,

P0 ≡ Pθ0{Y = s(α)} =
(
n
s(α)

)
θ
s(α)

0 (1 − θ0)
n−s(α)

(which, on the graph of the PDF F0(x), is the jump F0(r) − F0(s)) and let us
introduce the ‘critical (or rejection) function’ g(x) defined as

g(x) =
⎧⎨⎩

1, y > s(α)

(P0 + α − α′′)/P0, y = s(α)

0, y < s(α)

(6.22)
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Then we reject H0 if y > s(α), we accept it if y < s(α) and, if y = s(α), we
reject it with a probability (P0 +α −α′′)/P0 – or, equivalently, accept it with
the complementary probability (α′′ − α)/P0. This means that if y = s(α) we
have to set up another experiment with two possible outcomes, one with
probability (P0 + α − α′′)/P0 and the other with probability (α′′ − α)/P0;
we reject H0 if the first outcome turns out, otherwise we accept it. The
probability of type I error of this randomized test (i.e. its significance level)
is obtained by taking the expectation of the critical function and we get, as
expected

P(H1|H0) = Eθ0 [g(x)] = Pθ0{y > s(α)}

+ P0 + α − α′′

P0
Pθ0{y = s(α)}

= α′′ − P0 + P0 + α − α′′

P0
P0 = α

The reader is invited to:

(a) show that the case θ0 > θ1 leads to the rejection region �1 = {x : y ≤
r(α)} where, taking r(α) as the maximum index satisfying the inequality

α′ ≡
r(α)∑
m=0

(
n
m

)
θm0 (1 − θ0)

n−m ≤ α (6.23)

the attained significance level α′ is slightly lower than α (unless we are
so lucky to have the equal sign in (6.23));

(b) work out the details of randomization for this case.

So, in the light of Example 6.2 we can make the following general
considerations on discrete cases:

(i) Carrying out a single experiment, discreteness generally precludes
the possibility of attaining the specified significance level α exactly.
Nonetheless we can find a most powerful test at a level α′ < α or
at a level α′′ > α.

(ii) At this point, we can either be content of α′ (or α′′, whichever is our
choice) or – if the experiment leads to a likelihood-ratio value on the
border between the acceptance and rejection regions – we can ‘random-
ize’ the test in order to attain α. In the first case we lack the probability
α − α′ while we have a probability α′′ − α in excess in the second case.
Broadly speaking, randomization compensates for this part by adding
a second experimental stage.
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(iii) This second stage can generally be carried out by looking up a table
of random numbers. So, referring to Example 6.2, suppose that we get
(P0 +α −α′′)/P0 = 0.65 and before the experiment we have arbitrarily
selected a certain position (say, 12th from the top) of a certain column
at a certain page of a two-digit random numbers table. If that number
lies between 00 and 64 we reject H0 and accept it otherwise. By so
doing, we have performed the most powerful test of size α on the simple
hypotheses (6.8).

6.3.2 A few notes on sequential analysis

So far we have considered the sample size n as a number fixed in advance.
Even at the end of Example 6.1(a), once we have chosen the desired values
of α and β, eq. (6.15) shows that n can be determined before the experi-
ment is carried out. A different approach due to Abraham Wald and called
‘sequential analysis’ leads to a decision on the null hypothesis without fixing
the sample size in advance but by considering it as a random variable which
depends on the experiment’s outcomes.

It should be pointed out that sequential analysis is a rather broad subject
worthy of study in its own right (see, for instance, Wald’s book [22]) but
here we limit ourselves to some general comments relevant to our present
discussion.

As in the preceding section, suppose that we wish to test the two simple
hypotheses (6.8). For k = 0, 1 let

Lkm ≡ L(x1, . . . ,xm; θk) =
m∏
i=1

fk(xi) (6.24)

be the two likelihood functions L0m,L1m under the hypothesis H0,H1,
respectively, after m observations (i.e. the realization x1, . . . ,xm). Then,
the general idea of Wald’s sequential test is as follows : (i) we appropri-
ately fix two positive numbers r,R (r < 1 < R), (ii) we continue testing as
long as the likelihood ratio lm ≡ L0m/L1m lies between the two limits r,R
and (iii) terminate the process for the first index which violates one of the
inequalities

r <
L0m

L1m
< R (6.25)

If we call n this stopping index, n is the realization of a r.v. N and we have
two possibilities (a) ln = L0n/L1n < r or (b) ln = L0n/Lln > R; in case (a) we
reject H0 (accept H1) while, on the contrary, we accept H0 in case (b). It is
evident at this point that the limit numbers r,R will be determined on the
basis of the risk we are prepared to take in coming to one decision or the other
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and this, in other words, means that they will depend on α = P(H1|H0)

and β = P(H0|H1). We will come to this point shortly; for the moment
we just say that if α and β are given, we speak of a test of strength (α, β).
Among all tests of strength (α, β) we will tend to prefer the one with the
smallest number of observations. In this light, a test which minimizes both
E0(N) and E1(N) – that is, the average number of observations underH0 or
H1, respectively – is called optimal and it can be shown (see Ref. [10]) that
Wald’s test is, in fact, optimal.

The considerations above imply in practice that r and R divide the sam-
ple space into three disjoint regions: the rejection region �1, the acceptance
region �0 and an intermediate region (we can call it the ‘doubtful’ or ‘indif-
ference’ region) D. As long as the values of the likelihood ratio fall in the
doubtful region – that is, between r and R – the experiment continues. For a
given strength (α, β), however, the problem remains of specifying the num-
bers r and R. It turns out that they cannot be determined exactly but we
can nonetheless obtain a lower limit r ′ for r and an upper limit R′ for R by
considering the two probabilities of making a correct decision. In fact, from
the relations

1 − α =
∫
�0

L0(x) dx ≥ R
∫
�0

L1(x) dx = βR

1 − β =
∫
�1

L1(x) dx ≥ 1
r

∫
�1

L0(x) dx = α

r

(6.26)

we get

r ≥ α

1 − β
≡ r′

R ≤ 1 − α

β
≡ R′

(6.27)

which, as noted above, do not specify r and R uniquely. The usual choice is
to take r′ and R′ as the two limiting boundaries and consider the resulting
test as a valid approximation of the desired test of strength (α, β). The choice
is satisfactory because, denoting by α′ and β ′ the probabilities of error of the
approximate test, we have

α′ + β ′ ≤ α + β (6.28)

In fact, writing the counterparts of eq. (6.26) for the primed quantities
α′, β ′, r ′,R′ and taking eq. (6.27) into account we get α′(1 − β) ≤ α(1 − β ′)
and β ′(1−α) ≤ β(1−α′). Adding these two inequalities leads to eq. (6.28).

Before closing this section, it is worth pointing out some specific features
of the sequential method as compared to the ‘standard’ Neyman–Pearson’s
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procedure. First of all, for a given statistical model, in Neyman–Pearson’s
approach we need to know the distribution of the test statistic – under H0
and underH1 – in order to define the critical region and calculate the power
the test. No such information is needed in Wald’s test because its strength is
decided beforehand and the values of the likelihood-ratio can be calculated
directly from the data without searching for any distribution.

Second, Wald’s test is economical in terms of number of trials performed
before taking a decision. In fact, for given values α and β it can be shown
([10] or [12]) that the ratios E0(N)/n and E1(N)/n – where n is here the
sample size of a Neyman–Pearson’s test – are generally less than unity, in
some cases even reaching values close to 0.5. This observation, by implicitly
implying that sooner or later we come to a decision, leads to a third note-
worthy feature of Wald’s test: the fact that it stops. This is established by
a theorem(see Ref. [10]) stating that Wald’s test will stop with probability
one after a finite number of steps, thus preventing the possibility of endless
sampling.

6.3.3 Composite hypotheses: the likelihood ratio test

Parametric testing problems with two simple hypotheses are rather rare in
applications and, in general, at least one hypothesis is composite. Typical
examples are the frequently encountered cases where the null hypothesisH0 :
θ = θ0 must be tested again one of the possible alternatives (a) H1 : θ > θ0,
(b) H1 : θ < θ0 or (c) H1 : θ �= θ0 and one speaks of one-sided alternative
in cases (a) and (b) – right- and left-sided, respectively – and of two-sided
alternative in case (c).

With composite hypotheses , a uniformly most powerful (ump) test exists
only for some special classes of problems but many of these, fortunately,
occur quite often in practice. So, for instance, many statistical models for
which there is a sufficient statistic T (for the parameter θ under test so
that eq. (5.52) holds) have a monotone (in T) likelihood ratio; for these
models it can be shown (see Ref. [10] or [15]) that a ump test to ver-
ify H0 : θ = θ0 against a one-sided alternative does exist. This ‘optimal’
test, moreover, coincides with the Neyman–Pearson’s test for H0 : θ = θ0
against an arbitrarily fixed alternative H1, where H1 is in the form (a) or
(b). Even more, the first test is also the ump test for the doubly compos-
ite case H0 : θ ≤ θ0;H1 : θ > θ0 while the second is the ump test for
H0 : θ ≥ θ0;H1 : θ < θ0.

In spite of all these interesting and important results , it is not our inten-
tion to enter into such details and we refer the interested reader to more
specialized literature. Here, after some examples of composite hypotheses
cases , we will limit ourselves to the description of the general method called
‘likelihood ratio test’ which – although not leading to ump tests in most
cases – has a number of other desirable properties.
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Example 6.3(a) If we wish to test the hypotheses H0 : θ = θ0;H1 : θ > θ0
for the mean of a normal model with known variance σ 2, we can follow
the same line of reasoning of Example 6.1(a) and obtain the rejection region
(6.14a). Since this rejection region does not depend on the specific value θ1
against which we compare H0 (provided that θ1 > θ0), it turns out that this
is the uniformly most powerful test for the case under investigation and, as
noted above, for the pair of hypotheses H0 : θ ≤ θ0;H1 : θ > θ0 as well.

Similar considerations apply to the problem H0 : θ = θ0;H1 : θ < θ0 and
we can conclude that the rejection region (6.14b) provides the ump test for
this case and for H0 : θ ≥ θ0;H1 : θ < θ0.

Example 6.3(b) Considering the normal model of Example 6.1(b) – that
is, known mean and unknown variance σ 2 = θ2 – it is now evident that
the rejection region (6.18a) provides the ump test for the problemH0 : θ2 ≤
θ2
0 ;H1 : θ2 > θ2

0 while (6.18b) applies to the caseH0 : θ2 ≥ θ2
0 ;H1 : θ2 < θ2

0 .

In all the cases above, the probability of a type II error β (and therefore
the power) will depend on the specific value of the alternative. Often, in
fact, one can find graphs of β plotted against an appropriate variable with the
sample size n as a parameter. These graphs are called operating characteristic
curves (OC curves ) and the variable on the abscissa axis depends on the type
of test. So, for instance, the OC curve for the first test of Example 6.3(a)
plots β versus (θ1 − θ0)/σ for some values of n. Fig. 6.1 is one such graph
for α = 0.05 and the three values of sample size n = 5, n = 10 and n = 15.
As it should be expected, β decreases as the difference θ1 − θ0 increases and,
for a fixed value of this quantity, β is lower for larger sample sizes.

Similar curves can generally be drawn with little effort for the desired sam-
ple size by using widely available software packages such as, for instance,
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Figure 6.1 One-sided test (size = 0.05 −H1 : θ > θ0).
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Excel®, Matlab® etc. The reader is invited to do so for the cases of
Example 6.3(b).

Example 6.3(c) Referring back to Example 6.3(a) – normal model with
known variance – let us make some considerations on the two-sided caseH0 :
θ = θ0;H1 : θ �= θ0. At the significance level α, the rejection regions for the
one-sided alternatives H1 : θ > θ0 and H1 : θ < θ0 are given by eqs (6.14a)
and (6.14b), respectively. If we conveniently rewrite these equations as

�+
1 = {x :

√
n(m− θ0)/σ ≥ zα}

�−
1 = {x :

√
n(m− θ0)/σ ≤ −zα}

(6.29)

we may think of specifying the rejection region �1 of the two-sided test (at
the level α) as �1,α = �−

1,a ∪ �+
1,b, where a,b are two numbers such that

a + b = α. Moreover, intuition suggests to take a ‘symmetric’ region by
choosing a = b = α/2 thus obtaining

�̃1 =
{
x :

√
n

σ
|m− θ0| ≥ zα/2

}
(6.30)

which, in other words , means that we reject the null hypothesis when θ0
is sufficiently far – on one side or the other – from the sample mean m. As
before, the term ‘sufficiently far’ depends on the risk involved in rejecting a
true null hypothesis (or, equivalently, accepting a false alternative).

We do not do it here but these heuristic considerations leading to (6.30)
can be justified on a more rigorous basis showing that, for the case at hand,
eq. (6.30) is a good choice because it defines the ump test among the class
of unbiased tests. In fact, it turns out that a ump test does not exist for this
case because (at the level α) the two tests leading to (6.29) can be considered
in their own right as tests for the alternative H1 : θ �= θ0. In this light, we
already know that (i) the �+

1 -test is the most powerful in the region θ > θ0 (ii)
the �−

1 -test is the most powerful for θ < θ0 and (iii) both their powers take on
the value α at θ = θ0. However, as tests againstH1 : θ �= θ0, they are biased.
In fact, the power W+(θ) of the first test is rather poor (i.e. low and such
thatW+(θ) < α) for θ < θ0 and the same holds true forW−(θ) when θ > θ0
so that, calling W̃(θ) the power of the test (6.30), we have the inequalities

W+(θ) < α < W̃(θ) < W−(θ), θ < θ0

W−(θ) < α < W̃(θ) < W+(θ), θ > θ0

while, clearly, W−(θ0) = W+(θ0) = W̃(θ0) = α. The fact that for two-sided
alternative hypothesis there is no ump test but there sometimes exists a ump
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unbiased test is more general than the special case considered here and the
interested reader can refer, for instance, to [15] for more details.

As pointed out above, the likelihood ratio method is a rather general pro-
cedure used to test composite hypotheses of the type (6.2). In general, it
does not lead to ump tests but gives satisfactory results in many practical
problems. As before, let X = (X1, . . . ,Xn) be a random sample and let the
(absolutely continuous) model be expressed in terms of the pdf f (x). The
likelihood ratio statistic is defined as

λ(X) = supθ∈�0
L(X; θ)

supθ∈�L(X; θ)
= L(θ̂0)

L(θ̂)
(6.31)

where θ̂0 is the maximum likelihood (ML) estimate of the unknown param-
eter θ when θ ∈ �0 and θ̂ is the ML estimate of θ over the entire parameter
space �. Definition 6.31 shows that 0 ≤ λ ≤ 1 because we expect λ to be
close to zero when the null hypothesis is false and close to unity when H0 is
true. In this light, the rejection region is defined by

�1 = {x : λ(x) ≤ c} (6.32)

where the number c is determined by the significance level α and it is such that

sup
θ∈�0

Pθ {λ(X) ≤ c} = α (6.33)

which amounts to the condition P(H1|H0) = Pθ {λ(X) ≤ c} ≤ α for all
θ ∈ �0 (recall the definition of power (6.4) and eq. (6.5)). It is clear at this
point that the likelihood ratio test generalizes Neyman–Pearson’s procedure
to the case of composite hypotheses and reduces to it when both hypotheses
are simple. If the null hypothesis is simple – that is, of the formH0 : θ = θ0 –
the numerator of the likelihood ratio is simply L(θ0) and, since �0 contains
only the single element θ0, no ‘sup’ appears both at the numerator of (6.31)
and in eq. (6.33).

Example 6.4(a) In Example 6.3(a) we have already discussed the normal
model with known variance when the test on the mean µ = θ is of the form
H0 : θ ≤ θ0;H1 : θ > θ0. Let us now examine it in the light of the likelihood
ratio method. For this case, clearly, � = R, �0 = (−∞, θ0] and �1 =
(θ0, ∞). The denominator of (6.31) is L(M) because the sample mean M is
the ML estimator of the mean (recall Section 5.5) over the entire parameter
space. On the other hand, it is not difficult to see that the numerator of
(6.31) is L(θ0) so that

λ(X) = exp
(
− n

2σ 2
(M − θ0)

2
)

(6.34)
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and the inequality in (6.32) is satisfied if

|m− θ0| ≥
√

2σ 2

n
log(1/c) = t(c)

where, as usual, m is the realization of M. Since m > θ0 in the rejection
region, the condition (6.33) reads

sup
θ≤θ0

P{M ≥ θ0 + t(c)} = sup
θ≤θ0

P
{√

n(M − θ)

σ
≥

√
n(θ0 − θ + t(c))

σ

}

= P
(
Z ≥

√
nt(c)
σ

)
= α

because in �1 the r.v. Z = √
n(M − θ)/σ is standard normal and the ‘sup’

of the probability above is attained when θ = θ0. The conclusion is that,
as expected, the rejection region is given by eq. (6.14), that is, the same as
for the simple case H0 : θ = θ0;H1 : θ = θ1 with θ1 > θ0. Also, from
the considerations above we know that eq. (6.14a) defines the ump for the
problem at hand.

Example 6.4(b) The reader is invited to work out the details of the like-
lihood ratio method for the normal case in which the hypotheses on the
mean are H0 : θ = θ0;H1 : θ �= θ0 and the variance is known. We
have in this case � = R, �0 = {θ0} and �1 = (−∞, θ0) ∪ (θ0, ∞) and,
as above, λ(X) = L(θ0)/L(M) so that eq. (6.34) still applies. Now, how-
ever, no ‘sup’ needs to be taken in eq. (6.33) which, in turn, becomes
P{|Z| ≥ √

n t(c)/σ } = α thus leading to the rejection region (6.30) where,
we recall, zα/2 denotes the α/2-upper quantile of the standard normal dis-
tribution. So, for instance, if α = 0.01 we have zα/2 = z0.005 = 2.576 while
for a 10 times smaller probability of type I error – that is, α = 0.001 – we
find in tables the value zα/2 = z0.0005 = 3.291.

The fact that

(a) testing hypotheses on the mean of a normal model with known variance
leads to rejection regions where the quantiles of the standard normal
distribution appear;

(b) testing hypotheses on the variance (Examples 6.1(b) and 6.3(b)) of
normal model with known mean brings into play the quantiles of the
χ2 distribution with n degrees of freedom

may suggest a connection between parametric hypothesis testing and interval
estimation problems (Section 5.6). The connection, in fact, does exist and is
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rather strong. Before considering the situation from a general point of view,
we give two more examples that confirm this state of affairs.

Example 6.5(a) Consider a normal model with the same hypotheses on
the mean as in Example 6.4(b) but with the important difference that the
variance σ 2 is now unknown (note that in this situation the null hypothesis
H0 : θ = θ0 is not simple because it does not uniquely determine the proba-
bility distribution). In this case, the parameter space � = R × R+ is divided
into the two sets �0 = {θ0} × R+ and �1 = [(−∞, θ0) ∪ (θ0, ∞)] × R+.
Under the null hypothesis θ = θ0 the maximum of the likelihood function is
attained when σ 2 = σ 2

0 = n−1∑
i(xi − θ0)

2 and the numerator of (6.31) is

L(θ0, σ 2
0 ) = (2πσ 2

0 e)−n/2

Similarly, the denominator of (6.31) is given by L(M, S2) = (2πS2e)−n/2
because M and S2 = n−1∑

i(Xi −M)2, respectively, are the ML estimators
of the mean and the variance. Consequently, if s2 is the realization of the
sample variance S2, we get

λ =
(

σ 2
0

s2

)−n/2
=
(

1 + t2

n− 1

)−n/2
(6.35)

where we set t = t(x) = √
n− 1(m− θ0)/s and the second relation is easily

obtained by noting that σ 2
0 = s2 + (m− θ0)

2. Equation (6.35) shows that
there is a one-to-one correspondence between λ and t2 and therefore the
inequality in (6.32) is equivalent to |t| ≥ c′ (where c′ is as appropriate).
Since the r.v. t(X) is distributed according to a Student distribution with n−1
degrees of freedom, the boundary c′ of the rejection region (at the significance
level α) must be the α/2-upper quantile of this distribution. Denoting this
upper quantile by tα/2;n−1 we have

�1 =
{
x :

√
n− 1
s

|m− θ0| ≥ tα/2;n−1

}
(6.36)

Alternatively, if one prefers to do so, �1 can be specified in terms of the
(1 − α/2)-lower quantile and/or using the unbiased estimator S̄2 instead of
S2 (and recalling that

√
n− 1/s = √

n/s̄). As a numerical example, suppose
we carried out n = 10 trials to test the hypotheses H0 : θ = 35;H1 : θ �= 35
at the level α = 0.01. The rejection region is then �1 = {x : (3/s)|m −
35| ≥ 3.25} because the 0.005-upper quantile of the Student distribution
with 9 degrees of freedom is t0.005; 9 = 3.250. So, if the experiment gives,
for instance, m = 32.6 and s = 3.3 we fall outside �1 and we accept the
null hypothesis at the specified significance level.
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In the lights of the comments above, the conclusion is as expected: testing
the mean of a normal model with unknown variance leads to the appearance
of the Student quantiles, in agreement with Example 5.9(b) where, for the
same model, we determined a confidence interval for the mean (eq. (5.76)).

Example 6.5(b) At this point it should not be surprising if we say that
testing the variance of a normal model with unknown mean involves the
quantiles of the χ2 distribution with n− 1 degrees of freedom (recall Exam-
ple 5.10(b)). It is left to the reader to use the likelihood ratio method to
determine that the rejection region for the hypotheses H0 : θ2 = θ2

0 ;H1 :
θ2 �= θ2

0 on the variance is

�1 =
{
x :

(
0 ≤

√
n− 1

s̄2

θ2
0

≤ χ2
1−α/2;n−1

)
∪
(√

n− 1
s̄2

θ2
0

≥ χ2
α/2;n−1

)}
(6.37)

where χ2
1−α/2;n−1 and χ2

α/2;n−1, respectively, are the (1−α/2)-upper quantile

and the α/2-upper quantile of the χ2 distribution with n − 1 degrees of
freedom. So, for instance, if n = 10 and we are testing at the level α = 0.05
we find χ2

1−α/2;n−1 = χ2
0.975;9 = 2.70 and χ2

α/2;n−1 = χ2
0.025;9 = 19.023.

Therefore, we will accept the null hypothesisH0 if 2.70 < 3s̄2/θ2
0 < 19.023.

6.3.4 Complements on parametric hypothesis testing

In addition to the main ideas of parametric hypotheses testing discussed in
the preceding sections, some further developments deserve consideration.
Without claim of completeness, we do this here by starting from where we
left off in Section 6.3.3: the relationship with confidence intervals estimation.

6.3.4.1 Parametric tests and confidence intervals

Let us fix a significance level α. If we are testing H0 : θ = θ0 against the
composite alternative H1 : θ �= θ0, the resulting rejection region �1 will
depend, for obvious reasons , on the value θ0 and so will the acceptance
region �0 = �C

1 . As θ0 varies in the parameter space we can define the
family of sets �0(θ) ⊂ �, where each �0(θ) corresponds to a value of θ . On
the other hand, a given realization of the sample x will fall – or will not fall –
in the acceptance region depending on the value of θ under test and those
values of θ such that x does fall in the acceptance region define a subset
G ⊂ � of the parameter space. By letting x free to vary in �, therefore,
we can define the family of subsets G(x) = {θ : x ∈ �0(θ)} ⊂ �. The
consequence of this (rather intricate at first sight) construction of subsets in
the sample and parameter space is the fact that the events {X ∈ H0(θ)} and
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{θ ∈ G(X)} are equivalent, and since the probability of the first event is 1−α

so is the probability of the second. Recalling Section 5.6, however, we know
that this second event defines a confidence interval for the parameter θ . By
construction, the confidence level associated to this interval is 1 − α = γ .

The conclusion, as anticipated, is that parametric hypothesis testing and
confidence interval estimation are two strictly related problems and the solu-
tion of one leads immediately to the solution of the other. Moreover, a
ump test – if it exists – corresponds to the shortest confidence interval and
vice versa.

Having established the nature of the connection between the two prob-
lems, we can now reconsider some of the preceding results from this point
of view. Let us go back to Example 6.3(c) where the rejection region is given
by eq. (6.30). This relation implies that the ‘acceptance’ subsets �0(θ) have
the form

�0(θ) =
{
x : m− σ√

n
zα/2 < θ < m+ σ√

n
zα/2

}
(6.38)

Those x such that x ∈ �0(θ) correspond to the values of θ which satisfy
the inequality in (6.38) and these θ , in turn, define the corresponding set
G(x). From the discussion above it follows that (M ± zα/2σ/

√
n) is a 1 − α

confidence interval for the mean of a normal model with known variance.
This is in agreement with eq. (5.75) of Example 5.9(a) because the α/2-upper
quantile zα/2 (of the standard normal distribution) is the (1 − α/2)-lower
quantile and, since 1 − α = γ , this is just the (1 + γ )/2-lower quantile
(which was denoted by the symbol c(1+γ )/2 in Example 5.9(a)).

Similarly, for the same statistical model we have seen that the rejection
region to test H0 : θ = θ0;H1 : θ > θ0 is given by (6.14a). This implies that
the acceptance sets are �0(θ) = {x : m < θ+zασ/

√
n} and the corresponding

setsG(x) are given byG(x) = {θ : θ > m− zασ/
√
n}. The conclusion is that(

M − zα
σ√
n

, +∞
)

(6.39a)

is a lower (1 − α)-confidence (one-sided) interval for the mean. The interval
(6.39a) is called ‘lower’ because only the lower limit for θ (recall eq. (5.69a))
is specified; by the same token, it is evident that we can use the rejection
region (6.14b) to construct the upper (1 − α)-confidence interval(

−∞,M + zα
σ√
n

)
(6.39b)

The argument, of course, works in both directions and we can, for instance,
start from the γ -CI (5.76) for the mean of a normal model with unknown
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variance towrite the acceptance region for the testH0 : θ = θ0;H1 : θ �= θ0 as

�0 =
{
x : −t(1+γ )/2;n−1 <

√
n(m− θ0)

s̄
< t(1+γ )/2;n−1

}
from which we get the rejection region �1 = �C

0 of eq. (6.36) by noting that
(i)

√
n− 1/s = √

n/s̄ and (ii) (1 + γ )/2 = 1 − α/2 so that the Student lower
quantiles of (5.76) are the 1 − (1 − α/2) = α/2 (Student) upper quantiles of
eq. (6.36).

At this point it is left to the reader to work out the details of the parametric
hypothesis counterparts of Examples 5.11 (a–c) by determining the relevant
acceptance and rejection regions.

6.3.4.2 Asymptotic behaviour of parametric tests

The second aspect we consider is the asymptotic behaviour of parametric
tests. As a first observation, we recall from Chapter 5 that a number of
important sample characteristics are asymptotically normal with means and
variances determined by certain population parameters. Consequently, when
the test concerns one of these characteristics the first thing that comes to
mind is, for large samples, to use the normal approximation by replacing
any unknown population parameter by its (known) sample counterpart thus
obtaining a rejection region determined by the appropriate quantile of the
standard normal distribution. This is a legitimate procedure but it should
be kept in mind that it involves two types of approximations (i) the normal
approximation for the distribution of the characteristic under test and (ii)
the use of sample values for the relevant unknown population parameters.
So, in practice, it is often rather difficult to know whether our sample is large
enough and our test has given a reliable result. As a rule of thumb, n > 30
is generally good enough when we are dealing with means while n > 100 is
advisable for variances, medians , coefficients of skewness and kurtosis. For
some other ‘less tractable’ characteristics, however, even samples as large as
300 or more do not always give a satisfactory approximation.

Let us now turn our attention to Neyman–Pearson’s lemma on simple
hypotheses (Proposition 6.1). The boundary value c in eq. (6.9) can only
be calculated when we know the distribution of the statistic l(X) under H0
(and, similarly, the probability β of a type II error can be calculated when we
know the distribution of l(X) under H1). Since this is not always possible,
we can proceed as follows. If we define the r.v.s

Yi = log
f0(Xi)
f1(Xi)

(6.40)

for i = 1, 2, . . . ,n then Sn = Y1 + Y2 + · · · + Yn is the sum of n iid vari-
ables. Depending on which hypothesis is true, its mean and variance are
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Eθ0(Sn) = na0 and Varθ0(Sn) = nσ 2
0 under H0 or Eθ1(Sn) = na1 and

Varθ1(Sn) = nσ 2
1 under H1, where we called a0, σ 2

0 and a1, σ 2
1 the mean

and variance (provided that they exist) of the variables Yi underH0 andH1,
respectively. At this point, the CLT (Proposition 4.22) tells us that, under
H0, the r.v. Z = (Sn − na0)/σ0

√
n is asymptotically standard normal and,

since definition (6.40) implies that the inequality in eq. (6.9) is equivalent to
Sn ≤ log c, for sufficiently large values of n we can write

Pθ0

{
Z ≤ log c − na0

σ0
√
n

}
= α (6.41)

which, on the practical side, implies that we have an approximate rejec-
tion region: we reject the null hypothesis if the realization of the sample is
such that

(y1 + y2 + · · · + yn) − na0

σ0
√
n

≤ cα (6.42)

where cα is the α-lower quantile of the standard normal distribution. Clearly,
the goodness of the approximation depends on how fast the variable Z con-
verges (in distribution) to the standard normal r.v.; if the rate of convergence
is slow, a rather large sample is required to obtain a reliable test.

In regard to the more general likelihood ratio method, it is convenient to
consider the monotone function �(X) = −2 log λ(X) of the likelihood ratio
λ(X). Provided that the regularity conditions for the existence, uniqueness
and asymptotic normality of the ML estimate θ̂ of the parameter θ are met
(see Sections 5.5 and 5.5.1), it can be shown that the asymptotic rejection
region for testing the null hypothesis H0 : θ = θ0 is given by

�1 = {x : �(x) ≥ χ2
1−α;1} (6.43)

where χ2
1−α;1 is the (1 − α)-lower quantile of the χ2 distribution with one

degree of freedom. We do not prove this assertion here but we note that
eq. (6.43) is essentially due to the fact that, under H0, we have

(i) �(X) → χ2(1)[D];
(ii) Pθ0{�(X) ≥ χ2

1−α; 1} → α

as n → ∞. The result can also be extended directly to the case of a vector, say
k-dimensional, parameter q = (θ1, . . . , θk) and it turns out that the rejection
region is defined by means of the (1−α)-lower quantile of the χ2 distribution
with k degrees of freedom. In addition, the procedure still applies if the
null hypothesis specifies only a certain number, say r, of the k components
of q. In this case the numerator of (6.31) is obtained by maximizing L with
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respect to the remaining k − r components and r is the number of degrees
of freedom of the asymptotic distribution. Also, another application of the
result stated by eq. (6.43) is the construction of confidence intervals for a
general parametric model. In fact, eq. (6.43) implies that the (asymptotic)
acceptance region is �0 = {x : �(x) < χ2

γ ;1}, where γ = 1 − α. In the light
of the relation between hypothesis testing and CIs we have thatG(X) = {θ :
�(X) < χ2

γ ;1} is an asymptotic γ -CI for the parameter θ because Pθ {θ ∈
G(X)} → γ as n → ∞. In practice G(X) – called a maximum likelihood
confidence interval – can be used as an approximate CI when the sample size
is large. All these further developments , however – together with the proof
of the theorem above – are beyond our scope. For more details the interested
reader may refer, for instance, to [1, 2, 10, 13, 19].

6.3.4.3 The p-value: significance testing

A third aspect worthy of mention concerns a slightly different implemen-
tation of the hypothesis testing procedure shown in the preceding sections.
This modified procedure is often called ‘significance testing’ and is becom-
ing more and more popular because it somehow overcomes the rigidity of
hypothesis testing. The main idea of significance testing originates from the
fact that the choice of the level α is, to a certain extent, arbitrary and the
common values 0.05, 0.025 and 0.01 are often used out of habit rather
than through careful analysis of the consequences of a type I error. So,
instead of fixing α in advance we perform the experiment, calculate the
value of the appropriate test statistic and report the so-called p-value (or
‘observed significance level’ and denoted by αobs), defined as the small-
est value of α for which we reject the null hypothesis. Let us consider
an example.

Example 6.6 Suppose that we are testing H0 : θ = 100 against H1 : θ <

100 where the parameter θ is the mean of a normally distributed r.v. with
known variance σ 2 = 25. Suppose further that an experiment on a sample of
n = 16 products gives the sample meanm = 97.5. Since the rejection region
for this case is given by eq. (6.14b), a test at level α = 0.05 (z0.05 = 1.645)
leads to rejectH0 in favour ofH1 and the same happens at the level α = 0.025
(z0.025 = 1.960). If, however, we choose α = 0.01 (z0.01 = 2.326) the
conclusion is that we must accept H0. This kind of situation is illustrative
of the rigidity of the method; we are saying in practice that we tolerate 1
chance in 100 of making a type I error but at the same time we state that 2.5
chances in 100 is too risky.

One way around this problem is, as noted above, to calculate the p-value
and move on from there. For the case at hand the relevant test statistic√
n(M − θ0)/σ is standard normal and attains the value 4(−2.5)/5 = −2.0

which, we find on statistical tables, corresponds to the level αobs = 0.0228.
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This is the p-value for our case, that is, the value of α that will just barely
cause H0 to be rejected. In other words, on the basis of the observed data
we would reject the null hypothesis for any level α ≥ αobs = 0.0228 and
accept it otherwise. Reporting the p-value, therefore, provides the necessary
information to the reader to decide whether to accept or reject H0 by com-
paring this value with his/her own choice of α: if one is satisfied with a level
α = 0.05 then he/she will not accept H0 but if he/she thinks that α = 0.01
is more appropriate for the case at hand, the conclusion is that H0 cannot
be rejected. (As an incidental remark, it should be noted that the calculation
of the p-value for this example is rather easy but it may not be so if the test
statistic is not standard normal and we must rely only on statistical tables.
However, the use widely available software packages has made things much
easier because p-values are generally given by the software together with all
the other relevant results of the test.)

The example clarifies the general idea. Basically, this approach provides
the desired flexibility; if an experiment results in a low p-value, say αobs <

0.01, then we can be rather confident in our decision of rejecting the null
hypothesis because – had we tested it at the ‘usual’ levels 0.05, 0.025 or
0.01 – we would have rejected it anyway. Similarly, if αobs > 0.1 any one
of the usual testing levels would have led to the acceptance of H0 and we
can feel quite comfortable with the decision of acceptingH0. A kind of ‘grey
area’, so to speak, is when 0.01 < αobs < 0.1 and, as a rule of thumb, we
may reject H0 for 0.01 < αobs < 0.05 and accept it for 0.05 < αobs < 0.1.
It goes without saying, however, that exceptions to this rule are not rare
and the specific case under study may suggest a different choice. In addition,
we must not forget to always keep an eye on the probability β of a type II
error.

6.3.4.4 Closing remarks

To close this section, a comment of general nature is not out of place:
in some cases , taking a too large sample size may be as bad an error
as taking a too small sample size. The reason lies in the fact as n
increases we are able to detect smaller and smaller differences from the
null hypothesis (this, in other words, means that that the ‘discriminat-
ing power’ of the test increases as n increases) and consequently we will
almost always reject H0 if n is large enough. In performing a test, there-
fore, we must keep in mind the difference between statistical significance
and practical significance, where this latter term refers to both reason-
ableness and to the nominal specifications , if any, for the case under
study. So, without loss of generality, consider the test of Example 6.6
and suppose that for all practical purposes it would not matter much
if the mean of the population were within ± 0.5 units from the value
θ0 = 100 under test. If we decided to take a sample of n = 1600
products obtaining, say, the sample mean m = 99.7, we would reject
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the null hypothesis at α = 0.05, α = 0.025 and α = 0.01 (inci-
dentally, the p-value in this case is αobs = 0.0082). This is clearly
unreasonable because the statistically significant difference detected by
the test (which leads to the rejection of H0) does not correspond to a
practical difference and we put ourselves in the same ironical situation
of somebody who uses a microscope when a simple magnifying glass
would do.

As stated at the beginning of this section, these complementary notes do
not exhaust the broad subject of parametric hypothesis testing. In partic-
ular, the various methods classified under the name ‘analysis of variance’
(generally denoted by the acronym ANOVA) have not been considered. We
just mention here that the simplest case of ANOVA consists in comparing
the unknown means µ1, µ2, . . . , µk of a number k > 2 of normal popu-
lations by testing the null hypothesis H0 : µ1 = µ2 = · · · = µk against
the alternative that at least one of the equalities does not hold. As we can
immediately see, this is an important case of parametric test where – it can
easily be shown – pair wise comparison is not appropriate. For a detailed
discussion of this interesting topic and of its ramifications the reader may
refer to [6, 7, 9, 12, 18].

6.4 Testing the type of distribution (goodness-of-fit tests)

In the preceding sections we concerned ourselves with tests pertaining to one
(or more) unknown parameter(s) of a known distribution law, thus tacitly
implying that we already have enough evidence on the underlying probability
distribution – that is, normal, Poisson, binomial or other – with which we
are dealing. Often, however, the uncertainty is on the type of distribution
itself and we would like to give more support to our belief that the sample
X = (X1, . . . ,Xn) is, in fact, a sample from a certain distribution law. In
other words, this means that on the basis of n independent observations of
a r.v. X with unknown distribution FX(x) we would like to test the null
hypothesis H0 : FX(x) = F(x) against H1 : FX(x) �= F(x), where F(x) is
a specified probability distribution. Two of the most popular tests for this
purpose are Pearson’s χ2-test and Kolmogorov–Smirnov test.

6.4.1 Pearson’s χ2-test and the modified χ2-test

Let us start with Pearson’s test by assuming at first that F(x) is completely
specified – that is, it is not of the form F(x; θ), where θ is some unknown
parameter of the distribution. Now, let D1,D2, . . . ,Dr be a finite partition
of the space D of possible values of X (i.e. D = ∪rj=1Dj and Di ∩Di = ∅ for
i �= j) and let pj = P(X ∈ Dj|H0) be the probabilities of the event {X ∈ Dj}
under H0. These probabilities – which can be arranged in a r-dimensional
vector p = (p1, . . . ,pr) – are known because they depend on F(x) which,



252 Mathematical statistics

in turn, is assumed to be completely specified. In fact, for j = 1, . . . , r we
have

pj =
∑

k :xk∈Dj

P(X = xk) (6.44a)

if X is discrete and

pj =
∫
Dj

f (x) dx (6.44b)

if X is absolutely continuous with pdf f (x) = F′(x). Turning now our atten-
tion to the sample X = (X1, . . . ,Xn), let Nj be the r.v. representing the
number of its elements falling inDj so that νj = Nj/n is a r.v. representing the
relative frequency of occurrence pertaining toDj. Clearly,N1 +· · ·+Nr = n
or, equivalently

r∑
j=1

νj = 1 (6.45)

With these definitions the hypotheses under test can be re-expressed as H0 :
pj = νj and H1 : pj �= νj for j = 1, . . . , r, thus implying that we should
acceptH0 when the sample frequenciesNj are in reasonable agreement with
the ‘theoretical’ (assumed) frequencies npj. It was shown by Pearson that an
appropriate test statistic for this purpose is

T ≡
r∑
j=1

(Nj − npj)2

npj
=

r∑
j=1

N2
j

npj
− n (6.46)

for which, under H0, we have

E(T) = r− 1

Var(T) = 2(r− 1) + 1
n

⎛⎝ r∑
j=1

1
pj

− r2 − 2r+ 2

⎞⎠ (6.47)

and, most important, as n → ∞

T → χ2(r− 1) [D] (6.48)

Equation (6.48) leads directly to the formulation of Pearson’s χ2 goodness-
of-fit test: at the significance level α, the approximate rejection region to test
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the null hypothesis H0 : pj = νj is given by

�1 = {x : t(x) ≥ χ2
α;r−1} (6.49)

where t(x) is the sample realization of the statisticT and χ2
α;r−1 is the α-upper

quantile of the χ2 distribution with r− 1 degrees of freedom.
Although we do not prove the results (6.47) and (6.48) – the interested

reader can refer to [4] or [10] – a few comments are in order:

(i) Explicitly, t(x) = ∑
j(nj − npj)2/npj where nj(j = 1, . . . , r) is the real-

ization of the r.v. Nj; in other words, once we have carried out the
experiment leading to the realization of the sample x = (x1, . . . ,xn),n1
is the number of elements of x whose values fall inD1,n2 is the number
of elements of x whose values fall in D2, and so on.

(ii) The rejection region (6.49) is approximate because eq. (6.48) is an
asymptotic relation; similarly, the equation P(T ∈ �1|H0) = α defin-
ing the probability of a type I error is strictly valid only in the limit of
n → ∞. However, the quality of the approximation is generally rather
good for n ≥ 50. For better results, many authors recommend to choose
the Dj so that npj ≥ 5 for all j, or, at least, for more than 80–85% of
all j (since we divide by npj in calculating T, we do not want the terms
with the smaller denominators to ‘dominate’ the sum(6.46)).

(iii) On the practical side, the choice of the Dj – which, for a one-
dimensional random variable, are non-overlapping intervals of the real
line – plays an important role. Broadly speaking, they should not be
too few and they should not be too many, that is, r should be neither
too small nor too large. A possible suggestion (although in no way a
strict rule) is to use the formula

r ∼= 2

(
2(n− 1)2

z2α

)0.2

(6.50)

where zα is the α-upper quantile of the standard normal distribution.
So, for the most common levels of significance 0.05, 0.025 and 0.01 we
have r ∼= 1.883(n− 1)0.4, r ∼= 1.755(n− 1)0.4 and r ∼= 1.639(n− 1)0.4,
respectively. Moreover, in order to comply with the indicative rule of
point (ii) – that is, npj ≥ 5 for almost all j – adjacent end intervals (which
cover the tails of the assumed distribution) are sometimes regrouped to
ensure that the minimum absolute frequency is 5 or, at least, not much
smaller than 5.

Regarding the width of the intervals, it is common practice to choose
equal-width intervals, although this requirement is not necessary. Some
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authors, in fact, prefer to select the intervals so that the expected frequencies
will be the same in each interval; excluding a uniform distribution hypothesis,
it is clear that this choice will result in different interval widths.

Example 6.7(a) Suppose that in n = 4000 independent trials the events
A1,A2,A3 have been obtained n1 = 1905, n2 = 1015 and n3 = 1080
times, respectively. At the level α = 0.05 we want to test the null hypothesis
H0 : p1 = 0.5;p2 = p3 = 0.25, where pj = P(Aj).

In this intentionally simple example the assumed distribution is discrete and
np1 = 2000, np2 = np3 = 1000. Since the sample realization of the statistic
T is t = 11.14 and it is higher than the 0.05-upper quantile χ2

0.05;2 = 5.99
we fall in the rejection region (6.49) and therefore, at the level α = 0.05, we
reject the null hypothesis.

Example 6.7(b) In n = 12000 tosses of a coin Pearson obtained n1 = 6019
heads and n2 = 5981 tails. Let us check at the levels 0.05 and 0.01 if this
result is consistent with the hypothesis that he was using a fair coin (i.e.
H0 : p1 = p2 = 0.5). We get now t = 0.120 and this value is lower than
both upper quantiles χ2

0.05;1 = 3.841 and χ2
0.01;1 = 6.635. Since we fall in

the acceptance region in both cases, we accept H0 and infer that the data
agree with the hypothesis of unbiased coin.

The study of the power W of Pearson’s χ2 test when H0 is not true is rather
involved, also in the light of the fact that W cannot be computed unless
a specified alternative H1 is considered. Nonetheless, an important result
is worthy of mention: for every fixed set of probabilities p̄ �= p the power
function W(p̄) tends to unity as n → ∞ [10]. This, in words, is expressed
by saying that the test is ‘consistent’ (not to be confused with consistency
for an estimator introduced in Section 5.4) and means that, under any fixed
alternative H1, the probability 1 − β of rejecting the null hypothesis when
it is false tends to 1 as n increases. It is evident that consistency, for any
statistical hypothesis test in general, is a highly desirable property.

A modified version of the χ2 goodness-of-fit test can be used even when
the assumed probability distribution F(x) contains some unknown param-
eters, that is, it is of the form F(x;q) where q = (θ1, . . . , θk) is a set of k
unknown parameters. In this case the null hypothesis is clearly composite –
in fact, it identifies a class of distributions and not one specific distribu-
tion in particular – and the statistic T itself will depend on q through the
probabilities pj, that is, T = T(q) where

T(q) =
r∑
j=1

[Nj − npj(q)]2
npj(q)

=
r∑
j=1

N2
j

npj(q)
− n (6.51)



The test of statistical hypotheses 255

So, if T is the appropriate test statistic for the case at hand – and it turns
out that, in general, it is – we must first eliminate the indeterminacy brought
about by q. One possible solution is to estimate the parameter(s) q by some
estimating method and use the estimate q̃ in eq. (6.51). At this point, how-
ever, two objections come to mind. First, by so doing the probabilities pj
are no longer constants but depend on the sample (in fact, no matter which
estimation method we choose, the sample must be used to calculate q̃), thus
implying that eq. (6.48) will probably no longer hold. Second, if eq. (6.48)
does not hold but there exists nonetheless a limiting distribution for T,
is this limiting distribution independent on the estimation method used to
obtain q̃?

The way out of this rather intricate situation was found in the 1920s by
Fisher who showed that for an important class of estimation methods the
χ2 distribution is still the asymptotic distribution of T but eq. (6.48) must
be modified to

T(q̃) → χ2(r− k− 1) [D] (6.52)

thus determining that the effect of the k unknown parameters is just a
decrease – of precisely k units, one unit for each estimated parameter – of
the number of degrees of freedom. Such a simple result does not correspond
to a simple proof and the interested reader is referred to Chapter 30 of [4]
for the details. There, the reader will also find the (rather mild) conditions
on the continuity and differentiability of the functions pj(q) for eq. (6.52)
to hold.

On the practical side, once we have obtained the estimate q̃ by means of an
appropriate method – we will come to this point shortly – eq. (6.52) implies
that the ‘large-sample’ rejection region for the test is

�1 = {x : t(x; q̃) ≥ χ2
α;r−k−1

}
(6.53)

and, as above, the probability of rejecting a true null hypothesis (type I
error) is approximately equal to α. In regard to the estimation method, we
can argue that a ‘good’ estimate of q can be obtained by making T(q) as
small as possible (note that the smaller is T, the better it agrees with the
null hypothesis) so that our estimate q̃ can be obtained by solving for the
unknowns θ1, . . . , θk the system of k equations

r∑
j=1

(
nj − npj
pj

− (nj − npj)2

2np2
j

)
∂pj
∂θi

= 0 (6.54a)

where it is understood that pj = pj(q) and i = 1, 2, . . . ,k. This is called the χ2

minimum method of estimation and its advantage is that, under sufficiently
general conditions, it leads to estimates that are consistent, asymptotically
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normal and asymptotically efficient. Its main drawback, however, is that
finding the solution of (6.54a) is generally a difficult task. For large values
of n, fortunately, it can be shown that the second term within parenthesis
becomes negligible and therefore the estimate q̃ can be obtained by solving
the modified, and simpler, equations

r∑
j=1

(
nj − npj
pj

)
∂pj
∂θi

=
r∑
j=1

(
nj
pj

)
∂pj
∂θi

= 0 (6.54b)

where the first equality is due to the condition
∑

j pj(q) = 1 for all q∈ �.
Equation (6.54b) express the so-called ‘modified χ2 minimum method’
which, for large samples, gives estimates with the same asymptotic proper-
ties as the χ2 method of eqs (6.54a) and (6.54b). This asymptotic behaviour
of the ‘modified χ2 estimates’ is not surprising if one notes that, for the
observations grouped by means of the partition D1,D2, . . . ,Dr, q̃ coincides
with the ML estimate q̂g (the subscript g is for ‘grouped’). In fact, once the
partition {Dj}rj=1 has been chosen, the r.v.s Nj are distributed according to
the multinomial probability law (eq. (3.46a)) because each observation xi
can fall in the interval Dj with probability pj. It follows that the likelihood
function of the grouped observations Lg(n1, . . . ,nr;q) is given by

Lg(N1 = n1, . . . ,Nr = nr;q) = n
n1! · · ·nr!

r∏
j=1

p
nj
j (q) (6.55)

and the ML estimate q̂g of q is obtained by solving the system of equations
∂ logLg/∂θi = 0 (i = 1, 2, . . . ,k) which, when written explicitly, coincides
with (6.54b).

At this point an interesting remark can be made. If we calculate the ML
estimate before grouping by maximizing the ‘ungrouped’ likelihood function
L(x;q) = f (x1;q) · · · f (xn;q) – which, we note, is different from (6.55) and
therefore leads to an estimate q̂ �= q̂g – then q̂ is probably a better estimate
than q̂g because it uses the entire information from the sample (grouping, in
fact, leads to a partial loss of information). Furthermore, maximizing L(x;q)

is often computationally easier than finding the solution of eq. (6.54b).
Unfortunately, while it is true that (eq. (6.52)) T(q̂g) → χ2(r−k−1) [D], it
has been shown that T(q̂) → χ2(r−k−1) [D] does not hold in general and
the asymptotic distribution of T(q̂) is more complicated than the χ2 distri-
bution with r−k−1 degrees of freedom. In conclusion, we need to group the
data first and then estimate the unknown parameter(s); by so doing, Cramer
[4] shows that the above results are valid for any set of asymptotically normal
and asymptotically efficient estimates of the parameters (however obtained,
that is, not necessarily by means of the modified χ2 method).
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Example 6.8 Suppose we want to test the null hypothesis that some
observed data come from a normal distribution with unknown mean µ = θ1
and variance σ 2 = θ2

2 so that q = (θ1, θ2) is the set of k = 2 unknown para-
meters. For j = 1, . . . , r let the grouping intervals be defined asDj = (xj−1,xj]
where, in particular, x0 = −∞,xr = ∞ and xj = x1 + (j − 1)d for
j = 1, . . . , r−1,x1 and d being appropriate constants (in other words, theDjs
are a partition of the real line in non-overlapping intervals which, except for
the first and the last, all have a constant width d). Also, in order to simplify
the notation, let

g(x;q) = 1√
2π

exp
(

− (x− θ1)
2

2θ2
2

)

With these definitions we have the ‘theoretical’ probabilities

pj(q) = 1
θ2

∫
Dj

g(x;q) dx (6.56)

so that, calculating the appropriate derivatives, the modified minimal χ2

estimate’ of q is obtained by solving the system of two equations

r∑
j=1

nj
pj(q)

∫
Dj

(x− θ1)g(x;q) dx = 0

r∑
j=1

nj
pj(q)

⎛⎜⎝∫
Dj

(x− θ1)
2g(x;q) dx− θ2

2

∫
Dj

g(x;q) dx

⎞⎟⎠ = 0

(6.57a)

which, after rearranging terms and taking
∑
nj = n into account, become

θ1 =
∑
j

(nj
n

) ∫ xg dx∫
g dx

θ2
2 =

∑
j

(nj
n

) ∫ (x− θ1)
2g dx∫

g dx

(6.57b)

where all integrals are onDj and, for brevity, we have omitted the functional
dependence of g(x;q). For small values of the interval width d and assuming
n1 = nr = 0 (i.e. the extreme intervals contain no data) we can find an
approximate solution of eq. (6.57b) by replacing each function under integral
by its corresponding value at the midpoint ξj of the interval Dj. This leads
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to the ‘grouped’ estimate q̂g = (θ̂1, θ̂2
2 ), where

θ̂1 ∼= 1
n

r−1∑
j=2

njξj

θ̂2
2

∼= 1
n

r−1∑
j=2

nj(ξj − θ̂1)
2

(6.58)

In general, the approximate estimates (6.58) are sufficiently good for practi-
cal purposes even if the extreme intervals are not empty but contain a small
part of the data. So, if y = (y1, . . . , yn) is the set of data obtained by the
experiment (we call the data yi, and not xi as usual, to avoid confusion with
the intervals extreme points defined above) we reject the null hypothesis of
normality at the level α if

t(q̂g) =
∑
j

[nj − npj(q̂g)]
npj(q̂g)

≥ χ2
α; r−3 (6.59)

where χ2
α; r−3 is the α-upper quantile of the distribution χ2(r− 3).

As a numerical example, suppose we have n = 1000 observations of a
r.v. which we suspect to be normal; also, let the minimum and maximum
observed values be ymin = 36.4 and ymax = 98.3, respectively.

Let us choose a partition of the real line in r = 9 intervals with d = 10
and D1 = (−∞, 35],D2 = (35, 45] etc. up to D8 = (95, 105] and D9 =
(105, ∞). With this partition, suppose further that our data give the absolute
frequencies

n = (n1, . . . ,n9) = (0, 5, 60, 233, 393, 254, 49, 6, 0) (6.60)

from which, since the intervals midpoints are ξ2 = 40, ξ3 = 50, . . . , ξ8 =
100, we calculate (eq. (6.58)) the grouped estimates m̂ = 70.02 and ŝ2 =
102.20 for the mean and the variance, respectively. A normal distribution
with this mean and variance leads to the (approximate) set of theoretical
frequencies

np = n(p2, . . . ,p8) ∼= (4.8, 55.5, 241.5, 394.6, 242.4, 56.0, 4.9) (6.61)

where the approximation lies in the fact that we calculated the integrals
(6.56) by using, once again, the value of the function at the midpoints ξj.

Finally, using the experimental and theoretical values of eqs. (6.60)
and (6.61) we get t(q̂g) = 2.36 which is less than χ2

0.05; 6 = 12.59 therefore
implying that we accept the null hypothesis of normality.
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This example is just to illustrate the method and in a real case we should
use a finer partition, say r ∼= 15. In this case we would probably have to
pool the extreme intervals to comply with the suggestion npj ≥ 5. So, for
instance if we choose d = 5 and the first two non-empty intervals have the
observed frequencies 1 and 4, we can pool these two intervals to obtain an
interval of width d′ = 10 with a frequency count of 5. In this case Cramer
[4] suggests to calculate the estimates with the original grouping (i.e. before
pooling), and then perform the test by using the quantiles of the distribution
χ2(r′ − 3), where r′ is the number of intervals after pooling.

6.4.2 Kolmogorov–Smirnov test and some remarks on the
empirical distribution function

Similarly to the χ2 goodness-of-fit test, the Kolmogorov–Smirnov test (KS
test) concerns the agreement between an empirical distribution and an
assumed theoretical one when this latter is continuous. The test is performed
by using the PDFs rather than – as the χ2 does – the pdfs. The relevant
statistic is

Dn = sup
−∞<x<∞

|Fn(x) − F(x)| (6.62)

where Fn(x) is the empirical (or sample) PDF, F(x) is the assumed PDF and
the subscript n refers, as usual, to the sample size.

Before considering the test itself, however, a few remarks on Fn(x) are in
order. Given a realization x = (x1, . . . ,xn) of a sample X = (X1, . . . ,Xn),
let X(1),X(2), . . . ,X(n) be its order statistics (see Section 5.3.1) so that x(1) ≤
x(2) ≤ · · · ≤ x(n). Then, the empirical PDF Fn(x) is constructed by setting

Fn(x) =
⎧⎨⎩

0, x < x(1)

k/n, x(k) ≤ x < x(k+1)

1, x ≥ x(n)

(6.63a)

and can be also expressed as

Fn(x) = 1
n

n∑
k=1

I{X(k) ≤ x} (6.63b)

where I{X(k) ≤ x} is the indicator function of the event {X(k) ≤ x} (recall
from Section 2.3.1, Example 2.3, that an indicator function is a r.v.). It is
immediate to see that Fn(x) has all the properties of a PDF (Section 2.3): that
is, it ranges from 0 to 1, is non-decreasing and right-continuous. Moreover,
it is a piecewise-constant step function which, if all the components of x are
distinct, has a step of height 1/n at each point x = x(k).
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Clearly, an empirical PDF can be constructed for any set of data but if –
as we assume – X is a random sample from a parent r.v. X with PDF F(x)
we expect Fn(x) to be a ‘statistical image’ of F(x) and, more important, we
expect Fn(x) to get closer and closer to F(x) as the sample size increases.
A direct consequence of Bernoulli WLLN (Section 4.4), in fact, is that the
relation

Fn(x) → F(x) [P] (6.64)

holds for all x ∈ R because Fn(x) is the relative frequency of the event
{X ≤ x} – defined as a ‘success’ – in n Bernoulli trials with probability of
success F(x). This last observation, in addition, tells us that the r.v. nFn(x)
is binomially distributed (with parameter F(x)) and consequently

E{Fn(x)} = F(x)

Var{Fn(x)} = F(x)[1 − F(x)]
n

(6.65)

thus implying that Fn(x) is both a consistent and an unbiased estimator of
F(x) for all x.

Returning now to K–S test, the above results fully justify the reason
why the statistic Dn is a very good candidate to test the null hypothesis
H0 : FX(x) = F(x). In fact, if H0 is true we expect Dn to be close to
zero. This is more so if one considers a further important result known
as Glivenko–Cantelli theorem which we state without proof (the interested
reader is referred, for instance, to [11]).

Proposition 6.2 (Glivenko–Cantelli theorem) Let X = (X1, . . . ,Xn) be a
random sample from a parent r.v. X with PDF F(x). Then, for all x ∈ R

P
{

lim
n→∞ sup

x
|Fn(x) − F(x)| = 0

}
= 1 (6.66a)

where Fn(x) is the empirical PDF of the sample. (Recalling Section 4.3, note
that eq. (6.66a) can be equivalently stated by writing

Dn → 0 [a.s.] (6.66b)

uniformly in x as n → ∞).

At this point it is clear that the rejection region for the test will be
of the form �1 = {x : Dn ≥ tα} where the number tα – for different values of
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the significance level α – can be determined once we know the distribution
of Dn. It was shown by Kolmogorov that for any fixed t > 0

lim
n→∞P(

√
nDn ≤ t) = K(t) ≡ 1 − 2

∞∑
j=1

(−1)j+1 exp(−2 j2t2) (6.67)

which, in words, means that
√
nDn tends in distribution to a r.v. whose PDF

is the function K(t) defined on the r.h.s. of (6.67). On the practical side,
therefore, one chooses the critical boundary tα in the form tα = uα/

√
n by

means of the relation 1 − K(uα) = α; in fact, by so doing, we have

P(Dn ≥ tα|H0) = P(
√
nDn ≥ uα|H0) ∼= 1 − K(uα) = α (6.68)

and the probability of a type I error is approximately equal to α. For the most
frequently adopted levels of significance α = 0.05 and α = 0.01 we have
u0.05 = 1.358 and u0.01 = 1.628 and these values can be used for samples
larger than 35–40 units. For smaller samples the relation (6.67) does not
provide a good approximation and values of uα can easily be found in table
form. So, for instance, we find the values u0.05 = 0.409 and u0.01 = 0.489
for n = 10 while u0.05 = 0.294 and u0.01 = 0.352 for n = 20.

The K–S test has the advantage of simplicity because the realizationDn(x)

of the statistic Dn is rather easy to calculate. Once this is done we reject the
null hypothesis at the level α if

√
nDn(x) ≥ uα.

A second useful application of the test is called ‘K–S two-sample test’ and it
is used to check whether two independent samples of different size come from
the same distribution . This is, in other words a so-called ‘homogeneity test’
because the null hypothesis is that the data are supposed to be homogeneous.
Let n and m be the sample sizes and let us denote the two samples by X =
(X1, . . . ,Xn) and Y = (Y1, . . . ,Ym), respectively. If we define the statistic

Dn,m = sup
−∞<x<∞

|Fn(x) − Fm(x)| (6.69)

it is due to Smirnov to have shown that for any fixed t > 0

lim
n,m→∞P

(√
nm
n+m

Dn,m ≤ t
)

= K(t) (6.70)

where K(t) is as in eq. (6.67). By the same line of reasoning as above, if H0
is true we expect Dn,m to be close to zero because the two empirical PDFs
Fn(x) and Fm(x) are estimating the same (generally unknown) continuous
distribution and therefore they should get closer and closer as the sample
sizes increase. So, since the expected rejection region will be �1 = {x, y :
Dn,m ≥ tα} for appropriate values of tα, we can choose the critical boundary
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in the form tα = uα

√
(n+m)/(nm) so that

P
(√

nm
n+m

Dn,m ≥ uα|H0

)
∼= 1 − K(uα) = α (6.71)

and the test can be formulated as follows: for sufficiently large sample sizes
we reject the null hypothesis of homogeneity if the realization Dn,m(x, y) of
Dn,m is such that

√
(nm)/(n+m)Dn,m(x, y) ≥ uα. As a numerical example

suppose that we construct the empirical PDFs for two samples of sizes n = 80
andm = 60 and we obtain a maximum absolute difference between the two
of Dn,m(x, y) = 0.12. Then, since

√
(nm)/(n+m)Dn,m(x, y) = 0.703 and

this is lower than u0.05 = 1.358, we do not reject the null hypothesis (at the
level α = 0.05).

For small sample sizes the approximation (6.70) is obviously not satis-
factory and values of the critical boundary for different values of n and m
can be found in statistical tables. Moreover, we point out that, as for K–S
goodness-of-fit test, the K–S homogeneity test applies only if the assumed
distribution is continuous.

In closing this section we make two final observation. The first regards
the answer to the question if, as for the χ2 test, the K–S goodness-of-fit
test can be used when the assumed distribution depends on some unknown
parameter, that is, when we wish to test the composite null hypothesis H0 :
FX(x) = F(x; θ). The answer is yes and for regular problems (Section 5.4.1)
it is possible to use the statistic

D̂n = sup
−∞<x<∞

|Fn(x) − F(x; θ̂ )| (6.72)

where θ̂ is the ML estimate of θ . The limiting distribution of D̂n is, as a matter
of fact, known but unfortunately it differs from (6.67) and the situation turns
out to be rather complicated. This is beyond our scopes and for more details
we refer the interested reader, for instance, to [20].

Another difficult issue is the study of the power of K–S test. For this
the reader can refer to Massey [16]. In this regard, however, an interesting
observation is that in some cases where a comparison has been possible,
the K–S test seems to be much more powerful than the χ2 test. This in
no way implies that we should discard the χ2 test because this test is more
advantageous in other respects (for instance, it can be used for discrete cases).

6.5 Miscellaneous complements

In the preceding section we have seen how the K–S test can be used to
test homogeneity of two sets of data from a continuous distribution. If
the underlying distribution is discrete or the observations are grouped there
exists – among others – a χ2 test for homogeneity. Furthermore, this test
can be extended to the case of more than two samples. This is where we
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start. Then, in the order, we will consider the χ2 test for independence
(Section 6.5.2), two tests for randomness (Section 6.5.3) and make a few
remarks on the identification of outliers (Section 6.5.4).

6.5.1 The χ2 test for homogeneity

Let Y1, . . . ,Yk be k (k ≥ 2) independent samples of n1, . . . ,nk observations
respectively – that is, Y1 = (Y11, . . . ,Y1n1), Y2 = (Y21, . . . ,Y2n2), etc. The
null hypothesis of homogeneity is that all the n = n1 +· · ·+nk observations
regard the same random variable whose possible values, for the purpose of
the test, must have been preliminarily partitioned r classes.

Now, let Nij be the r.v. representing the number of components of Yj
falling in the ith class so that for j = 1, . . . ,k we have

r∑
i=1

Nij = nj (6.73)

If we denote by pij the (unknown) probability of ith outcome in the jth
sample, our null hypothesis can be expressed as

H0 : (p1j, . . . ,prj) = (p1, . . . ,pr), j = 1, . . . ,k (6.74)

where p = (p1,· · ·,pr) is a vector of (unknown) probabilities such that p1 +
· · ·+pr = 1. In this light, since njpi is the expected (i.e. ifH0 is true) number
of data from the jth sample falling in the ith class, it is reasonable to take

T = T(p) =
r∑
i=1

k∑
j=1

(Nij − njpi)2

njpi
(6.75)

as the relevant statistic for the case at hand. The pi, however, are not
known and must be estimated from the data. Denoting by nij the realiza-
tions (obtained through the samples realizations y1, . . . , yk) of the r.v.s Nij,
it is not difficult to determine that the ‘grouped’ ML estimate of pi is its rel-
ative frequency p̂i = n−1∑k

j=1 nij = νi/n, where we denote by νi ≡∑k
j=1 nij

the total number of observations falling in the ith class. With these esti-
mates, a direct generalization of the theorem leading to eq. (6.52) shows
that under H0

T(p̂) → χ2{(r− 1)(k− 1)} [D] (6.76)

so that the critical boundary is defined in terms of the α-upper quan-
tiles χ2

α;(r−1)(k−1)
of the χ2 distribution with (r − 1)(k − 1) degrees

of freedom. In practice, with the observed data we calculate the
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realization t(p̂) of T(p̂) as

t(p̂) = n
r∑
i=1

k∑
j=1

(nij − njνi/n)2

njνi
= n

⎛⎝ r∑
i=1

k∑
j=1

n2
ij

njνi
− 1

⎞⎠ (6.77)

(the expression on the r.h.s. is due to the relations
∑

ij nij = n and
∑

ij njni =
n2) and, for sufficiently large samples, we reject the null hypothesis at the
significance level α if t(p̂) ≥ χ2

α;(r−1)(k−1)
. By so doing, the probability of a

type I error will be approximately equal to α.
For the interested reader, we mention that the result (6.76) is due to a

theorem stating that with k independent samples grouped into r classes the
limiting distribution of T is the χ2[(r − 1)k − m] distribution, where m is
the number of estimated parameters (by means of the modified χ2 minimum
method or the grouped ML method). Since in our case we had to estimate
m = r − 1 parameters – the remaining rth parameter is determined by the
‘constraint’ condition p1+· · ·+pr = 1 – we have (r−1)k−m = (r−1)(k−1)

degrees of freedom.
A slightly different situation arises if we have made some assumption on

the underlying common distribution of the k samples – for example, we
suspect it to be normal, or Poisson or other – and we must estimate some
unknown parameters q = (θ1, . . . , θs) of this assumed distribution. The rec-
ommended procedure in this case is to first find the grouped (multinomial,
see eq. (6.55)) ML estimate q̂g of q under H0, calculate the r probabilities
pi(q̂g) and use them in eq. (6.75). By so doing we estimate s parameters and
therefore, for sufficiently large samples, the test is carried out by using the
appropriate quantile of the distribution χ2[(r− 1)k− s].

Returning to the original test – that is, no assumption on the type of dis-
tribution – the case k = 2 implies a two-sample test which can be compared
to the K–S homogeneity test of Section 6.4.2 (if the underlying distribution
is continuous). It is left to the reader to check that now the t(p̂) of eq. (6.77)
can be more conveniently calculated as

t(p̂) = 1
R(1 − R)

(
r∑
i=1

ni1Qi − n1R

)
(6.78)

where R = n1/n = n1/(n1 + n2) and Qi = ni1/νi = ni1/(ni1 + ni2).

6.5.2 The χ2 test for independence

Turning now our attention to a different type of test, it often happens that we
are given a sample ((X1,Y1), . . . , (Xn,Yn)) from a bivariate population with
an unknown distribution F(x, y) and we wish to check the null hypothesis
of independence H0 : F(x, y) = FX(x)FY (y). A rather common test for
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this case is yet another version of the χ2 test. First, each component of the
observations is grouped in, say, r classes for the X variable and s classes for
the Y variable (if the variables are discrete one generally retains the ‘natural’
grouping due to the discreteness of the possible outcomes so that r and s
are the numbers of possible values for X and Y, respectively). Then, letting
a1, . . . , ar and b1, . . . ,bs denote the possible outcomes for X and Y, we have
rs (unknown) probabilities pij = P(X = ai,Y = bj) which, in turn, will
correspond to rs random variables Nij, where Nij is the number of times the
event (X = ai,Y = bj) occurs. IfH0 is true there will exist r+ s probabilities
p = (p1, . . . ,pr,q1, . . . ,qs) such that pij = piqj and

r∑
i=1

pi =
s∑
j=1

qj = 1 (6.79)

At this point it is not difficult to see that the relevant test statistic is

T(p) =
r∑
i=1

s∑
j=1

(Nij − npiqj)2

npiqj
(6.80)

where, however, the pi and qj must be estimated from the data. Denoting by
nij the realization of the r.v.sNij and letting Ai =∑s

j=1 nij and Bj =∑r
i=1 nij

(the so-called marginal frequencies) be the total number of times in which the
events ai and bj occur, respectively, the reader can check that under H0 the
grouped ML estimates are

p̂i = Ai/n

q̂j = Bj/n
(6.81)

so that the realization t(p̂) of T(p̂) is obtained by calculating

t(p̂) = n
r∑
i=1

s∑
j=1

(nij − AiBj/n)2

AiBj
= n

⎛⎝∑
i,j

n2
ij

AiBj
− 1

⎞⎠ (6.82)

which, in turn, must be compared to the α-upper quantiles of the χ2 distri-
bution with the appropriate number of degrees of freedom. Since we have a
total of rs groups and we have estimated r+ s−2 parameters (the subtracted
2 comes from the two constraint eq. (6.79)), the same theorem leading to
eq. (6.52) shows that this number is rs − (r + s − 2) − 1 = (r − 1)(s − 1).
The conclusion, therefore, is as follows: at (approximately) the significance
level α and for sufficiently large samples, we reject the null hypothesis of
independence if t(p̂) ≥ χ2

α;(r−1)(k−1)
and accept it otherwise.
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A few things about this test should be pointed out:

(i) Despite the similarities of notation and the fact that we have the same
numbers of degrees of freedom, it must not be confused with the χ2 test
for homogeneity discussed before. In fact the two tests refer to different
situations and even if some symbols may be in common, they generally
have different meanings in the two contexts.

(ii) The χ2 test for independence is often carried out with the aid of ‘con-
tingency tables’. These are tables with rs entries arranged in r rows
and s columns where the analyst enters the observed nij values. Then
Ai (i = 1, . . . , r) is obtained by summing horizontally along the ith row
and Bj (j = 1, . . . , s) is obtained by summing vertically along the jth
column.

(iii) This type of test is frequently used to determine whether two charac-
teristics X and Y can be considered independent. In this case n items –
individuals, objects, products or else – are classified according to two
attributes (the characteristics) and r, s are the ‘levels’ of the character-
istic X and Y, respectively. Moreover, X and Y are not necessarily
numerical characteristics but can be qualitative attributes. For exam-
ple, a sample of people may be classified by sex (X) and by opinion on
a certain political issue (Y) to test the null hypothesis that opinions on
that issue are independent of sex. In this case we would obtain a 2 × 2
contingency table, the X and Y levels being (a1 = female; a2 = male)
and (b1 = in favour;b2 = against), respectively.

(iv) A large value of t(p̂) tends to indicate that the hypothesis of inde-
pendence is false. This fact, however, does not provide any direct
information on the ‘degree of dependence’ (or association) between X
and Y. For discrete or grouped variables the so-called mean-square
contingency (introduced by Pearson) and defined as

φ2 =
∑
i,j

(pij − piqj)2

piqj
=
∑
i,j

p2
ij

piqj
− 1 (6.83)

(the meaning of the symbols is the same as in eq. (6.80)) is a measure of
this quantity because – letting u = min(r, s) or u = r = s if r = s – we
have 0 ≤ φ2 ≤ u−1 and φ2 = 0 if and only ifX and Y are independent.

Consequently, φ2/(u− 1) is one such measure on a scale from 0 to 1. Using
the estimates of eq. (6.81), the sample realization f 2 of φ2 is f 2 = t(p̂)/n so
that

0 ≤ f 2

u− 1
= t(p̂)

n(u− 1)
≤ 1 (6.84)

can be regarded as a measure of the degree of dependence indicated by
the observed data. In this regard, in Chapter 30 of Ref. [4] the reader
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can find an interesting example taken from data of the Swedish census:
although t(p̂) is about 20 times higher than the appropriate upper quantile
of χ2[(r− 1)(k− 1)] – and consequently H0 is rejected – the degree of
dependence between the relevant variables is rather low. In fact, the cal-
culations give (u−1)−1f 2 = 0.0075, thus showing that a value of t(p̂) much
higher than χ2

α;(r−1)(k−1)
is not necessarily an indication of strong dependence

between X and Y; it simply means that we should reject the null hypothesis.

6.5.3 Testing for randomness

In most cases considered so far we assumed that the sampleX = (X1, . . . ,Xn)
is a random sample from a parent random variable X, that is, that the
components Xi of X are iid variables. Denoting by F(x) the distribution
of X, this assumption can be expressed in mathematical terms by writing
FX(x) = F(x1) · · ·F(xn) and, in general, its validity is suggested by the nature
of the problem under study. There are cases, however, in which FX(x) =
F(x1) · · ·F(xn) is a (null) hypothesis that should be tested before proceeding
with further analysis. With this idea in mind, we can intuitively argue that
randomness is, to a certain extent, an index of disorder and that, under
H0, each component of the sample Xi should somehow ‘enjoy equal rights’.
Consequently, we would tend to rejectH0 if our data show ‘too much order’
of some kind. A test for randomness along this line of reasoning is as follows.

Let us arrange the components of the sample in increasing order; in the
ordered series we say that Xi and Xj form an ‘inversion’ if, for i < j, Xi
comes to the right of Xj. Then, if we let T(X) be the statistic representing
the number of inversions of the sample whereN1 is the number of inversions
formed byX1,N2 the number of inversions formed byX2, etc., we can write
T(X) = N1 + · · · + Nn−1. In the two extreme cases of ‘maximum order’
X1 < X2 < · · · < Xn and Xn < Xn−1 < · · · < X1 we have T(X) = 0 and
T(X) = n(n − 1)/2, respectively, and therefore we will reject H0 if T(X) is
either too high or too low. Since it can be shown that under H0 we have

E(T) = n(n− 1)/4

Var(T) = (2n3 + 3n2 − 5n)/72

E(T) is the midpoint of the intervalD = [0,n(n−1)/2] and we can assume as
our rejection region the set of all integers inD such that |t−n(n−1)/4| ≥ tα,
where t = T(x) is the observed value of T(X) and the critical boundary tα
must be determined, as usual, from the condition P(T ∈ �1|H0) ≤ α. For
small samples these values can generally be found on statistical tables. For
large samples, however, there is an asymptotic version of the test based on
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the fact that, under H0, the normalized statistic

T̃(X) =
(
T(X) − n(n− 1)

4

)
6√
n3

(6.85)

converges in distribution to a standard normal r.v. Since this version provides
an acceptable approximation already for n > 10 we can use the quantiles of
the standard normal distribution to obtain an approximate test for random-
ness. At the level α we reject H0 if |T̃(x)| ≥ zα/2 where zα/2 is the α/2-upper
quantile of the standard normal distribution.

A second test for randomness is based on the numberR of ‘runs’ of the sam-
ple. If, according to some criterion, we divide our sample into two classes,
say A and B, a ‘run’ is a sequence of data of one type preceded and followed
by a sequence of data of the second type (clearly, the first run is preceded by
no data and the last run is followed by no data). Denoting by NA and NB
(NA+NB = n) the r.v.s representing the number of sample components in A
and B, respectively, the test is based on the fact that, as n → ∞, the statistic
R(X) converges in distribution to a normal r.v. with mean and variance

µR = E(R) = 1 + 2NANB

n

σ 2
R = Var(R) = 2NANB(2NANB − n)

n2(n− 1)

(6.86)

So, if nA,nB are the sample realizations of NA,NB, we use them to calculate
the estimates mR and s2R of µR and σ 2

R and reject the null hypothesis if∣∣∣∣ r−mR

sR

∣∣∣∣ ≥ zα/2 (6.87)

where r = R(x) and, as above, zα/2 is the α/2-upper quantile of the standard
normal distribution.

A few remarks worthy of mention:

(i) The test is clearly approximate but can be used already for nA,nB ≥ 10.
(ii) If the data are numerical values the two classes A and B can be, for

instance, the number of observations below and above the sample
median. However the test can be used also with non-numerical values
when a twofold classification is possible; for example, when evaluating
the quality of a batch of products we can classify them as ‘acceptable’
and ‘unacceptable’.

(iii) The basic idea leading to eq. (6.87) is quite similar to the rationale of
the previous test: in a truly random sample the number of runs should
not be too low or too high. Too few runs may suggest a clustering
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or grouping of some kind while too many runs may indicate a high-
frequency oscillatory behaviour and in both cases the null hypothesis
of randomness is certainly questionable.

(iv) A simple example: in 25 tosses of a coin we obtain 10 tails and 15 heads
in the order T-HHHHH-T-H-T-H-TT-H-T-H-TTT-HHH-T-HHH and
we wish to test for randomness at the level α = 0.05. The sequence
shows r = 14 runs (runs are separated by a hyphen) and we calculate
from eq. (6.86) mR = 13 and s2R = 5.5. Since (r − mR)/sR = 0.42 <

z0.025 = 1.96, we cannot, at the stated significance level, reject the null
hypothesis.

6.5.4 Identification of outliers

At the end of Section 5.4 we briefly mentioned the fact that sometimes our
data may be contaminated by outliers. These, we recall, are unexpectedly
high or low values which, at first sight, do not seem to belong to the sam-
ple. In some cases they may be true data of exceptional events but the most
common situation by far is that they are ‘wrong’ data due to recording, trans-
mission or copying errors. In order to identify them, one possible solution
that comes to mind is to use the sample meanm and standard deviation s to
calculate the n standardized quantities

zi = xi −m
s

(6.88)

and consider as outliers those xi such that, say, |zi| ≥ 2.5 or |zi| ≥ 3 (the
choice of the cut-off value is, to a certain extent, arbitrary; the values 2.5 or
3 come from the assumption of normally distributed data because, if there
are no outliers, the probability that |zi| ≥ 2.5 or |zi| ≥ 3 is very small. These
indicative values, however, can be used even in cases of moderate departures
from normality). The problem is that the above argument is flawed if our
data do contain outliers. In fact, since both m and s are very sensitive to
outliers – or, in other words, are not robust estimators of ‘location’ and
‘spread’ – the method will generally find no outliers even when they are
there.

The problem can be fixed if, instead of m and s, we use the robust estima-
tors m̄ and s̄ in eq. (6.88), where m̄ is the sample median and s̄ is the so-called
‘median of absolute deviations from the median’ (MAD) and defined as

s̄ = 1.483 median
j=1,...,n

|xj − m̄| (6.89)

(1.483 is a correction factor for consistency with the usual ‘spread’ parameter
of a normal distribution and need not concern us here). In other words,
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calculating the quantities

z̄i = xi − m̄
s̄

(6.90)

and identify as outliers those xi such that |z̄i| ≥ 2.5 or |z̄i| ≥ 3 is a much
better method than the ‘wrong’ solution of eq. (6.88).

As a simple illustrative example, suppose that the original data are the set
of five measurements (2.30, 2.36, 2.37, 2.42, 2.44) but suppose further that a
misplaced decimal number in the second entry has transformed the data into
the ‘contaminated’ set (2.30, 23.6, 2.37, 2.42, 2.44). For the original data
we have m = 2.378; s = 0.055 and m̄ = 2.37; s̄ = 0.074. Correctly, both
criteria |zi| ≥ 2.5 and |z̄i| ≥ 2.5 do not identify any outliers.

For the contaminated data, however, we get m= 6.63; s= 9.489 and
m̄= 2.42; s̄= 0.074. Then, the zi set (eq. (6.88)) becomes (−0.46,
1.79, −0.45, −0.44, −0.44) and does not identify any outliers; on the
other hand, the z̄i set (eq. (6.90)) becomes (−1.62, 285.64,−0.67, 0.00,
0.27) and correctly identifies the second entry as an outlier.

At this point it should now be clear why the method of eq. (6.88) does not
work. Referring to the example, we can see that the presence of the outlier
has two effects: (a) movesm towards the outlier and (b) makes the standard
deviation ‘explode’ (i.e. it becomes unreasonably high), thereby preventing
the |zi| values from becoming too large. This is not the case for the robust
estimators m̄ and s̄which remain relatively – if not totally – unaffected by the
wrong reading 23.6. A useful concept in this respect is the ‘breakdown point’
of an estimator, defined as the smallest fraction of observations that have to
be replaced – generally in the least favourable way – to carry the estimator
over all bounds. The breakdown point of m and s is 1/n because, in order
to obtain this effect, it is enough to replace one observation by a large value.
Not so for m̄ and s̄ whose breakdown point is 50% because we have to
replace at least n/2 observations by outliers to be certain that the median is
among them. The simple and yet far-reaching idea of breakdown has many
important consequences and applications in many statistical procedures. For
more details the reader can refer to Chapter 16 of Ref. [21] on which we
based this short section on the identification of outliers.

We close this chapter with a final comment of general nature. The var-
ious tests – parametric and non-parametric – discussed in the present and
preceding sections are just a few of the many tests that have been devised
to cope with the wide variety of problems encountered in practice. With the
main intention to explain and illustrate the fundamental ideas of hypothesis
testing, it is evident that a number of widely adopted tests have not been
considered. So, in regard to goodness-of-fit, for instance, we did not men-
tion graphical methods or any of the many specific tests for normality. In
fact, besides being outside our scopes, a detailed list of the available choices
is, in any case, a rather difficult task (just to give a general idea, in a list
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of non-parametric tests classified according to (a) type of hypothesis to be
tested and (b) type of data, the author personally counted 52 tests). The
reader interested to this aspect will be able to find a sufficient number of
other possibilities in the references and suggested reading at the end of the
chapter.

6.6 Summary and comments

In practical cases the analyst is often faced with the problem of assessing
the validity of some assumption regarding the problem under investigation.
The usually adopted strategy in these cases is, in principle, quite easy: he/she
formulates a working hypothesis, collects the necessary data and then, by any
appropriate means, checks if the data are consistent with his/her hypothesis.
If so, the hypothesis is accepted and it is rejected otherwise.

A closer look at this procedure, however, shows that things are not so sim-
ple because a number of subtle questions must be answered in order to put it
into effect. Starting from the immediate consideration that, unless the entire
population is examined, he/she will never know if the hypothesis is true or
false, the consequences of a wrong decision must be taken into account. Also,
the working hypothesis must be checked against some alternative hypoth-
esis and the two hypotheses must be mutually exclusive in order to avoid
ambiguities and, whenever possible, obtain a ‘yes or no’ answer. Last but
not least, it should be specified what exactly is the ‘appropriate means’ by
which we decide that the observed data agree, or disagree, with the hypoth-
esis. The search for the answers to these and other questions brings us into
the realm of an important branch of statistics known as ‘hypothesis testing’
whose main definitions and ideas – null and alternative hypothesis, type I
and type II errors, rejection and acceptance regions, and so on – are given in
Section 6.2.

A first classification distinguishes between parametric and non-parametric
hypotheses and parametric hypotheses are the subject of all the Sections
(from 6.3.1 to 6.3.4) of Section 6.3, including – in Section 6.3.2 – some
remarks on a particular technique known as Wald’s sequential analysis.
Parametric hypotheses, moreover, can be simple or composite and the main
result for the former type is given by Neyman–Pearson’s lemma, which is
stated and proved in Section 6.3.1 together with some worked-out examples
on absolutely continuous and discrete distributions. For the latter type it
is generally not possible to find a ump test – the definition of power of a
parametric test is given in Section 6.3 – but the widely adopted technique
known as ‘likelihood ratio test’ leads to acceptable results in most practical
cases. Giving also a number of practical examples, the likelihood ratio test
is explained in Section 6.3.3.

Finally, Section 6.3.4 deals with some important complements which
should not be ignored by the reader willing to consider the subject in more
detail. They are, in the order: (a) the strict relation between parametric tests



272 Mathematical statistics

and confidence intervals, (b) the asymptotic behaviour of parametric tests
and (c) the notion of p-value which, somehow, provides more flexibility with
respect to the ‘standard’ procedure.

Turning to non-parametric tests, one of the most frequently encountered
situation occurs when we are not sure about the type of distribution underly-
ing a given phenomenon and we wish to check whether a given distribution –
normal, Poisson, or else – agrees with the observed data or, in other words,
we wish to test how well an assumed distribution fits the data. In this case
one speaks of goodness-of-fit tests and two important methods in this respect
are Pearson’s χ2 test and K–S test, considered in Sections 6.4.1 and 6.4.2,
respectively. The former is more general and, by comparing the appropriately
partitioned data with their theoretical (assumed) frequencies, can be applied
to both continuous and discrete distributions. The latter, on the other hand,
applies only to continuous distributions and uses a statistic based on the dif-
ference between the theoretical and empirical PDFs. In regard to empirical
PDFs, moreover, Section 6.4.2 includes a result known as Glivenko–Cantelli
theorem which, besides being theoretically important in its own right, is at
the basis of the idea behind the K–S test itself.

Section 6.5 closes the chapter by giving other types of tests which may often
be useful in practical situations. In this light, Sections 6.5.1 and 6.5.2 deal
with two more χ2 tests: one for homogeneity and one for independence and
it is pointed out that – in spite of the similarities – the two tests should not be
confused because they refer to different contexts. Subsequently, Section 6.5.3
provides two tests for randomness to be used whenever we have doubts
on the fact that our data are a random sample from a parent r.v., while
Section 6.5.4 warns against the possibility of having a set of data ‘contami-
nated’ by outliers. When in doubt, it is always wise to use robust statistics in
order to detect their presence because non-robust statistics as, for instance,
the mean and variance, are generally of limited use in these cases. Nonethe-
less, the decision as to whether an outlier is due to a mistake – for instance, a
recording or transcription error – or to the observation of a truly exceptional
event (a rather rare occurrence indeed, but not impossible) is the analyst’s
responsibility.
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7 Regression, correlation and
the method of least squares

7.1 Introduction

The study of relations between variables is fundamental in every branch of
science and, in this respect, Statistics is no exception. An important distinc-
tion, however, must be made from the outset: while in disciplines like, for
instance, Physics and Engineering these relations generally have an intrinsic
cause–effect meaning, it may not necessarily be so in Statistics. Let us con-
sider an example. When an engineer writes the equation F = kx for an elastic
spring of constant k, he/she is expressing a well-defined cause-effect linear
relation between the force F applied to the spring and its elongation x (with
respect to its rest position). If, however, we obtain a statistically satisfactory
linear relation between, say, the number of new-born babies in Italy and
the number of New Yorkers who quit smoking over the last 10 years, it
would be rather hard to believe that this linear relationship has some intrin-
sic meaning. If, nonetheless, somebody is willing to assume that a meaning
does exist, he/she must look for it outside the realm of Statistics.

This state of affair is due to the fact that, as we pointed out before, statis-
tical significance is different from real-world significance and only in some
cases the two concepts may coincide. So, before undertaking a study on the
functional relation between, say, two variablesX and Y we must answer the
basic question: what are we trying to accomplish by fitting the sets of X and
Y data by means of a mathematical function?

The answer, in fact, varies and depends on the objectives of the investiga-
tion. In some cases the type of functional relation is known from the theory
and the fitting is used to obtain numerical values for the parameters. For
example, by applying different forces to a spring and measuring its elon-
gation at each level of force, we may simply want to determine a reliable
value of the spring constant k in order to use it for further work. If, on
the other hand, even the parameters of an equation are known, the purpose
of the fit may be to confirm the theory from which the equation – and the
parameter(s) value(s) – have been derived. In other cases we may have no
a priori idea on the type of functional relation and a curve-fit – when, by
ingenuity and/or trial and error, we find a satisfactory one – may provide
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clues for a new theory or suggest the presence of a formerly unexpected
factor.

A third possibility is to fit the data merely to represent them by means
of an empirical relation, thus summarizing a large body of information in
a compact formula which is easily accessible at all times and readily com-
municable. Therefore, if we have an answer to the question above we are
ready to accept, in this last case, that even a high statistical significance – that
is a good fit – may not correspond to any relationship of cause and effect,
exactly as in the (rather extreme) example on new-born Italian babies and
no-longer-smoking New Yorkers.

A final word on terminology. The term ‘regression’, generally intended
in the sense of ‘average relationship’, dates back to the work of Sir Francis
Galton who, in the 1880s, plotted the average heights of children against the
average heights of their parents. He discovered that, on average, the offspring
of tall parents were not as tall as their parents while the offspring of short
parents were not as short as their parents, thereby concluding that human
height tends to ‘regress’ towards the average height of the population. The
term remained and, although outdated and mostly of historical significance
only, is still widely used when referring to statistical curve-fitting procedures.

7.2 The general linear regression problem

In practical situations we often have to study the behavior of a response
(random) variable Y which is assumed to depend on a number, say k, of
non-random predictor variables x1, . . . ,xk whose values, in turn, change
from trial to trial. For instance, the xj (j = 1, . . . ,k) may be the controlled
input characteristics of a device whose measured response Y (the output)
varies as the xj vary. The form of the functional relation between Y and
the xj is sometimes suggested by the problem under investigation but for a
number of reasons – convenience being often one of them – the assumption

Y =
k∑
j=1

βjxj (7.1a)

(where β1, . . . , βk is a set of k unknown parameters) is rather frequent in
practice. As it is written, eq. (7.1a) is a deterministic relation with noth-
ing random about it. The statistical nature of the problem, however, arises
through the presence of an ‘error term’ associated – in the case we are con-
sidering – with the response. In fact, even in the typical case of a laboratory
situation where we can control the x variables without appreciable error, the
response is measured with an experimental error ε which fluctuates unpre-
dictably from trial to trial. The fact that ε is a random variable makes the
response Y a random variable and we should rewrite (7.1a) in the form of
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the statistical linear model

Y =
k∑
j=1

βjxj + ε (7.1b)

On the basis of this model, an experiment consisting of n trials (n ≥ k) in
which we measure Y as a function of the xj leads to the n equations

Yi =
k∑
j=1

βjxij + εi (7.2a)

which, in turn, can be compactly arranged in matrix form by writing

Y = Xb+ e (7.2b)

where Y and e are the n× 1 response and error column vectors (Y1 . . .Yn)T

and (ε1 . . . εn)
T respectively, b is the k× 1 vector of parameters (β1 . . . βk)

T

and X is the n × k matrix whose ith row represents the x values in the ith
trial. The common assumptions on the model are as follows

(1) the errors are uncorrelated with E(εi) = 0 and Var(εi) = σ 2 for all
i = 1, . . . ,n, where σ 2 – often called the residual variance – is generally
unknown. These conditions are written in matrix form as E(e) = 0 and
K(ε) = E(eeT) = σ 2In where In = diag(1, . . . , 1) is the n × n identity
matrix and we denote by the symbolK(ε) the covariance matrix of the εi

(2) the matrix X is such that rank(X) = k.

The problem then consists in estimating the unknown k + 1 parameters
β1, . . . , βk, σ 2. Now, although the assumptions above give immediately
E(Y) = Xb and KY = σ 2In, we cannot use the maximum likelihood method
because nothing has been said about the distribution of Y and therefore we
cannot write its likelihood function. In order to avoid, for the moment, addi-
tional assumptions on the distribution of e or Y, a solution to the problem is
given by the method of least squares (LS method) which suggests to obtain
an estimate of b by minimizing the quadratic form

Q(b) = eTe = [Y − E(Y)]T[Y − E(Y)] = (Y −Xb)T(Y −Xb) (7.3)

thus meaning that we have to solve the system of the k so-called ‘normal’
equations ∂Q(b)/∂βj = 0. It is not difficult to show that these equations can
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be expressed in matrix form as

Ab = XTY (7.4)

where, for brevity, we defined A = XTX. A direct consequence of our
assumptions is thatA is a (symmetric) positive-definite k×kmatrix of rank k
and can be inverted to obtain the LS estimate b̂ of b as

b̂ = A−1XTY (7.5)

This solution is unique and the fact that it represents a minimum ofQ(b) can
be seen by noting that the matrix of second derivatives is 2A and therefore,
by the arguments above, is positive-definite.

The estimate (7.5) has an interesting geometric interpretation. If we denote
by x1, . . . ,xk the columns of X, the linear combination Xb = β1x1 + · · · +
βkxk spans a k-dimensional linear subspace of Rn as b varies in Rk. Let us
call this subspace S. Equation (7.2b) and assumption (1) imply E(Y) = Xb
and therefore E(Y) ∈ S which, in turn, means that the estimating procedure
of least squares selects that particular vector Xb̂ ∈ S which minimizes the
Euclidean distance between Y and the subspace S. Since it is known from the
geometry of finite dimensional vector spaces that this state of affairs implies
the orthogonality condition (Y − Xb̂)⊥S, it follows that (Y − Xb̂)TX = 0
(the columns of X form a basis of S) and this, in turn, shows that b̂ is in
fact a solution of eq. (7.4). In different words, this fact can be expressed by
saying that

Ŷ ≡ Xb̂ = (XA−1XT)Y ≡ PSY (7.6)

is the projection of Y on the subspace S. In fact, it is easy to show that the
n×nmatrix PS = XA−1XT is both symmetric (i.e. PT

S = PS) and idempotent
(i.e. P2

S = PS) and therefore is a projection matrix. Moreover, from these
considerations it follows that PS⊥ = In − PS is the projection matrix on the
(n− k)-dimensional subspace (of Rn) S⊥ orthogonal to S. The fact that the
squared lengths (‘norms’ in mathematical terminology) of the vectors PSY
and PS⊥Y sum up to give the length (norm) of Y is just a multi-dimensional
version of Pythagoras’ theorem.

Let us consider now the properties of the estimate b̂. We have:

Proposition 7.1 The LS estimate b̂ is unbiased and its covariance matrix
is K(b̂) = σ 2A−1. Moreover, b̂ is the estimate with the minimum variance
in the class of all unbiased estimates of b which depend linearly on Y (this
second part of the proposition is known as Gauss–Markov theorem).
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Unbiasedness is immediate, in fact from eq. (7.5) we get

E(b̂) = A−1XTE(Y) = A−1XTXb = A−1Ab = b (7.7)

On the other hand, using eq. (3.35) we get

K(b̂) = A−1XTKY(A−1XT)T = σ 2A−1XTXA−1 = σ 2A−1 (7.8)

In order to prove the minimum variance property, let a be a general linear (in
Y) unbiased estimate of b. Then a is of the form a = LY where L is a general
k× n matrix of constants. Since the unbiasedness relation E(a) = LE(Y) =
LXb = b must hold for all b, it follows LX = Ik. Moreover, eq. (3.35) gives
K(a) = LKYLT = σ 2LLT and we can use the identity

LLT = (A−1XT)(A−1XT)T + (L − A−1XT)(L − A−1XT)T

to determine that all the diagonal elements of LLT attain (simultaneously)
their minimum when L = A−1XT, that is, when the estimate a coincides
with b̂. This is due to the fact that all the matrices on the r.h.s. of the
identity have the form HHT and therefore (a) all their diagonal terms are
non-negative and (b) the minimum is forL = A−1XT because only the second
term depends on L.

In the light of eq. (7.8), we can make an observation on the consistency of
b̂. Recalling Proposition 5.6, consistency holds if Var(β̂j) → 0 as n → ∞ for
all j = 1, . . . ,k or, equivalently, if the diagonal elements of A−1 tend to zero
as n → ∞. This circumstance depends clearly on the nature of the matrix
X and, a priori, not much can be said without making any assumption on
its asymptotic behavior. For our purposes, however, it suffices to say that in
most practical cases it turns out that b̂ is also a consistent estimate of b.

At this point, the only problem left unanswered by the LS solution is
the estimate of the residual variance σ 2. Starting from the obvious relation
σ 2= Var(εi) = E(ε2

i ), uncorrelation (of the εi) gives

Var
(∑

εi

)
=
∑

Var(εi) =
∑

E
(
ε2
i

)
= E(eTe) = nσ 2 (7.9)

Since e = Y − Xb, the last equality on the r.h.s. suggests to use the residual
vector ê ≡ Y −Xb̂ and consider the estimate σ̂ 2 (of σ 2) given by

nσ̂ 2 = êTê = Q(b̂) = (Y −Xb̂)T(Y −Xb̂) = YT(In − PS)Y (7.10)

where we took eq. (7.6) into account in the last equality. The result

E{YT(In − PS)Y} = σ 2(n− k) (7.11)
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which we will prove shortly, shows that E(σ̂ 2) = n−1(n−k)σ 2 thus implying
that σ̂ 2 is a biased estimate (although asymptotically unbiased). The bias,
however, can be easily removed by taking

ŝ2 ≡ nσ̂ 2

n− k
= Q(b̂)

n− k
= êTê
n− k

(7.12a)

as the estimate of σ 2. This, in the end, shows that our unbiased estimate ŝ2

is given by the sum of squared residuals
∑

ε̂2
i divided by n − k. Also, for

computational purposes, note that eq. (7.12a) can be conveniently written as

ŝ2 = 1
n− k

(YTY − b̂TXTY) (7.12b)

In fact, from êTê = YTY − YTXb̂ − b̂TXTY + b̂TAb̂ eq. (7.12b) follows
because YTXb̂ = b̂TXTY and Ab̂ = XTY (eq. (7.4)).

Let us now turn to the proof of eq. (7.11). Starting from the general
relation E(YTBY) = mT

YBmY + tr(BKY) (whose proof is left to the reader),
where we denoted by B any k×k non-random matrix and by mY the vector
E(Y) = Xb, we get in our case

E{YT(In − PS)Y} = mT
YPS⊥mY + tr[(In − PS)KY]

The first term on the r.h.s. is zero because mY ∈ S and PS⊥ projects on the
space S⊥; the second term, in turn, becomes

tr(InKY ) − tr(PSKY) = nσ 2 − σ 2tr(XA−1XT)

and eq. (7.11) follows by virtue of a well-known property on the trace of
products of matrices which gives tr(XA−1XT) = tr(A−1XTX) = tr(A−1A) =k.

To close this section, four important remarks are in order:

(i) In the above scheme the variables xj may be functionally dependent. A
rather common case, for instance, is x1 = x,x2 = x2, . . . ,xk = xk and
the expressionXb = β1x+β2x2+· · ·+βkxk is a polynomial of degree k
in x. In the general linear model of eq. (7.2b), in fact, linearity is meant
in the parameters β1, . . . , βk, not in the variables.

(ii) Denoting by Y the mean of the Yi, that is, Y = n−1∑
i Yi, it is easy to

show that the total variability SYY of the Y variable can be written as

SYY ≡
∑
i

(Yi − Y)2 = YTY − nY
2

(7.13)
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Then, since êTê = YTY − b̂TXTY is the part of variability due to error
(and not ‘explained’, so to speak, by the regression), we can substitute
this equation into eq. (7.13) to get

SYY = êTê + b̂TXTY − nY
2

(7.14a)

where the quantity SSR = b̂TXTY − nY
2

is the part of variability due
to the regression. In many statistical books eq. (7.14a) is often written

SYY = SSE + SSR (7.14b)

thereby meaning that the total variability of Y is the sum of two terms:
(a) the sum of squared residuals SSE = êTê plus (b) the regression sum of
squares SSR. If the linear model provides a good fit of the data we expect
SSE to be small in comparison to SSR – and therefore in comparison to
SYY . In this regard, in fact, the quantity called the coefficient of multiple
regression (or of multiple determination) and defined as

R2 ≡ SSR
SYY

(7.15)

is a measure of the proportion of the Y variability explained by the LS
fitting procedure.

(iii) In certain problems we may be more interested in some linear combi-
nations t = (t1 . . . tm)T, m ≤ k, of the parameters rather than in the
parameters β1, . . . , βk themselves. Then t is of the form t = Tb, where
T is a given m × k matrix of constants. In this case the LS estimate t̂
of t is given by t̂ = Tb̂ = TA−1XTY and has the same properties of
unbiasedness and efficiency (in the class of linear unbiased estimates
of t) mentioned in Proposition 7.1. Moreover, its covariance matrix is
given by K(t̂) = σ 2TA−1TT.

(iv) Constrained estimates. In the case considered so far we found minQ(b)

by letting b free to vary in the entire space Rk. Then our solution b̂ is a
so-called unconstrained LS estimate of b. In some situations, however,
the possible values of b are restricted by linear constraints of the form

Cb = c (7.16)

where C is a givenm×k (m ≤ k) matrix of constants of rank k and c is
a givenm-dimensional vector. The LS solution to this problem is found
by searching for that vector b̂C (C is for constrained) which satisfies the
minimum condition

Q(b̂C) = min
b :Cb=c

Q(b) (7.17)
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Without getting into the details of the calculations (the method of
Lagrange multipliers is used in this case) the final result is

b̂C = b̂− A−1CTD−1(Cb̂− c) (7.18)

where D = CA−1CT (of size m × m) is positive definite and b̂ is the
unconstrained LS estimate of eq. (7.5).

7.2.1 Simple linear regression

An important special case of the general model (7.1b) is the simple linear
model Y = β1 + β2x + ε in which the underlying assumption is that the
response Y depends only on one predictor variable and the functional rela-
tion between E(Y) and x is a straight line with intercept β1 and slope β2. By
carrying out n trials (n > 2; n = 2 is a trivial case) in which we measure the
values Y1, . . . ,Yn in correspondence to x1, . . . ,xn, respectively, the explicit
form of eq. (7.2b) is⎛⎜⎜⎜⎝

Y1
Y2
...
Yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 x1
1 x2
...

...
1 xn

⎞⎟⎟⎟⎠
(

β1
β2

)
+

⎛⎜⎜⎜⎝
ε1
ε2
...
εn

⎞⎟⎟⎟⎠ (7.19)

while the (2 × 2) matrix A = XTX is

A =
(

n
∑

i xi∑
i xi

∑
i x

2
i

)
=
(
n nx̄
nx̄

∑
i x

2
i

)
(7.20)

where we denoted by x̄ the arithmetic mean of the xi, that is, x̄ =
n−1∑

i xi. Also,

A−1 = 1
det(A)

(∑
i x

2
i −nx̄

−nx̄ n

)
(7.21a)

where

det(A) = n
∑
i

x2
i −

(∑
i

xi

)2

= n
∑
i

(xi − x̄)2 (7.21b)

If, as in the preceding section, Y = n−1∑
i Yi is the mean of the observed

values Yi, eq. (7.5) gives the LS estimate of b as (we omit the summation
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index i for brevity)

b̂ =
(

β̂1

β̂2

)
= n

det(A)

(
Y
∑
x2
i − x̄

∑
xiYi∑

xiYi − nx̄Y

)
(7.22a)

For computational purposes, the two estimates can be more conveniently
expressed as

β̂2 =
∑

(xi − x̄)(Yi − Y)∑
(xi − x̄)2

, β̂1 = Y − β̂2x̄ (7.22b)

where it should be noted that the slope β̂2 comes first because we need it to
calculate the intercept β̂1.

Equation (7.8), in turn, gives the covariance matrix of b̂; its diagonal
elements are

Var(β̂1) = σ 2∑x2
i

n
∑

(xi − x̄)2
, Var(β̂2) = σ 2∑

(xi − x̄)2
(7.23a)

while we get for the off-diagonal terms

Cov(β̂1, β̂2) = Cov(β̂2, β̂1) = − σ 2x̄∑
(xi − x̄)2

(7.23b)

The last step consists in estimating the residual variance σ 2. Equation (7.12b)
with k = 2 gives

ŝ2 =
∑
Y2
i − β̂1Y − β̂2

∑
xiYi

n− 2
=
∑

(Yi − Y)2 − β̂2
2

∑
(xi − x̄)2

n− 2
(7.24)

where the last expression on the r.h.s. has been obtained by taking into
account the second of eqs (7.22b) and the second of (7.22a). This form
is more convenient for computation. Clearly, when σ 2 is not known and
we estimate it by means of ŝ2, the numerical values of Var(β̂1), Var(β̂2)

and Cov(β̂1, β̂2) are obtained by substituting ŝ2 in eqs (7.23a) and (7.23b),

respectively; the square roots
√

Var(β̂1),
√

Var(β̂2) are often referred to as
‘standard errors’ of the estimates.
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A few observations at this point can be useful. First, denoting by the special
symbols Sxx and SxY the two sums

Sxx ≡
∑
i

(xi − x̄)2

SxY ≡
∑
i

(xi − x̄)(Yi − Y)
(7.25)

then β̂2 = SxY/Sxx and the regression line can be compactly written as

Ŷ = Y + SxY
Sxx

(x− x̄) (7.26)

where Ŷ is the calculated value corresponding to x. If x were itself a r.v. –
and we should write X in this case – then SXY would be the sample counter-
part of nCov(X,Y) and eq. (7.26) would be the counterpart of the first of
eqs (3.98). In eq. (7.26) as it is, however, the analogy is only formal because
we assumed that x is a non-random variable. Some comments on the case
when x is a random variable in its own right are delayed to Section 7.3.2.
For the moment we limit ourselves to a remark taken from Chapter 13 of
[27]: ‘. . . there is general agreement that the classical regression approach
(note of the author: i.e. the one considered so far) can be used safely when
the variation in the X values is small relative to the variation in the Y
values’.

A second observation of more practical nature is as follows: for a fixed
residual variance σ 2, eqs (7.23a) show that both Var(β̂1) and Var(β̂2)

decrease as Sxx increases. Consequently, in a controlled experiment – that
is, an experiment in which the analyst has control on the x variable –
choosing the xi values far apart reduces the variances of the estimated regres-
sion parameters. When the fitting has been obtained, moreover, other two
practical recommendations are worthy of mention:

(i) It is always advisable not to extrapolate, that is, use the regression
beyond the range of values for which it was established. This is true
in general – not just for a straight line – because any inference we
can make on predicted values apply only within the region covered by
the experimental data. Unless there is strong evidence in its favor, any
extrapolation result is generally not justified and must be handled very
cautiously.

(ii) Always check the sequence of signs of the observed residuals ε̂i = Yi−Ŷi
(and, obviously, their values). If they follow a definite pattern there may
be evidence of the fact that a curve – rather than a straight line – could
provide a better model for the data. In addition, the type of curve is
often suggested by the pattern of residuals itself.
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The third and final point concerns the coefficient of determination of
eq. (7.15). It can be shown (the proof is rather cumbersome and we leave it
to the reader as an exercise) that

SYY ≡
∑

(Yi − Y)2 =
∑

(Yi − Ŷi)2 +
∑

(Ŷi − Y)2 (7.27)

where Ŷi = β̂1 + β̂2xi for i = 1, . . . ,n. Equation (7.27) is nothing but
eq. (7.14b) written in a different form. The fact that the second term is SSR
follows from the chain of equalities

∑
(Ŷi − Y)2 =

∑
Ŷ2
i + nY

2 − 2Y
∑

Ŷi =
∑

Ŷ2
i − nY

2

= ŶTŶ − nY
2 = b̂TAb̂− nY

2 = b̂TXTY − nY
2 = SSR

where we took into account: (a)
∑
Ŷi = nY in the second equality (this rela-

tion follows immediately by substituting the second of (7.22b) in
∑
Ŷi =

nβ̂1 + nβ̂2x̄), (b) Ŷ = Xb̂ in the fourth, (c) Ab̂ = XTY (eq. (7.4)) in the
fifth equality and, clearly, Ŷ = (Ŷ1, . . . , Ŷn)T. Owing to eq. (7.27) the
determination coefficient can be written as

R2 = SSR
SYY

=
∑

(Ŷi − Y)2∑
(Yi − Y)2

= β̂2
SxY
SYY

= S2
xY

SxxSYY
(7.28a)

where the last two expressions on the r.h.s. (the easy proof of the equalities
is left to the reader) are also often used for computation. It is evident that
0 ≤ R2 ≤ 1. The case R2 = 0 corresponds to Ŷi = Y for all i thus implying
that the role of the xi is irrelevant because all of them lead to the same
predicted value Y. Moreover, since in this case Ŷi = Ŷj for all i, j = 1, . . . ,n
the equality β̂1 + β̂2xi = β̂1 + β̂2xj for i �= j (assuming xi �= xj) gives
necessarily β̂2 = 0. In other words, in this case we do not need x in order to
‘explain’ Y. On the other extreme, R2 = 1 if and only if SSR = SYY , i.e. if
SSE = 0 and therefore Ŷi = Yi. This is an index of a perfect linear relation
between Y and x because all the Yi are perfectly predicted – through the xi –
by the regression line. Finally, note that the square root of the determination
coefficient, that is,

R = SxY√
SxxSYY

(7.28b)

is the sample counterpart of the correlation coefficient (3.22).
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7.3 Normal regression

In the general linear model considered in Section 7.2 – and consequently in
the special simple regression case of Section 7.2.1 – the only assumptions
on the errors εi were E(εi) = 0, Var(εi) = σ 2 for all i = 1, . . . ,n and
Cov(εi, εj) = 0 for i �= j. Stronger inferences on the estimated parameters,
however, can be made if we add a further assumption. The most common
assumption in this regard – and one speaks of normal regression in this case –
is that the errors are normally distributed, that is, εi ≈ N(0, σ 2) for all i or,
in matrix form, e ≈ N(0, σ 2In). This condition, in turn, clearly implies that
the Yi themselves are normally distributed as Y ≈ N(Xb, σ 2In).

In this light we can now consider the (joint) likelihood function of the Yi;
recalling the matrix expression of eq. (3.68a) we have

L(Y;q) = 1
(2πσ 2)n/2

exp
(

− 1
2σ 2

Q(Y,b)

)
(7.29)

where Q(Y,b) = (Y − Xb)T(Y − Xb) is the quadratic form of eq. (7.3)
and q denotes the (k + 1)-dimensional vector of unknown parameters q =
(β1, . . . , βk, σ 2). For any σ 2 > 0 it is evident that maximizing the likelihood
function (7.29) with respect to b is equivalent to minimizing Q(Y,b) and
therefore we can conclude that in case of normal regression the LS estimate
b̂ of b is the same as its ML (maximum likelihood) estimate.

This fact, in turn, leads to an immediate observation. Since (first part of
Proposition 7.1) we know that b̂ is an unbiased estimator, Gauss–Markov
theorem (i.e. the second part of Proposition 7.1) can be strengthened by
taking into account Proposition 5.2 on ML estimators: in the case of normal
regression not only b̂ is the minimum variance estimator of b in the class of
linear (in Y) unbiased estimators, but it is the minimum variance estimator
in the class of all (not only linear) unbiased estimators of b.

Turning now to the ML estimate of the residual variance σ 2 we can sub-
stitute b̂ in eq. (7.29) and maximize lnL with respect to σ 2. The result is the
biased estimator

σ̂ 2 = Q(b̂)

n
(7.30)

In fact, since from eqs (7.10) and (7.11) we get E{Q(b̂)} = σ 2(n − k), the
bias of σ̂ 2 is

E(σ̂ 2) − σ 2 = 1
n
E{Q(b̂)} − σ 2 = −k

n
σ 2 (7.31)

a result that shows – as it often happens with ML estimators – that σ̂ 2 is,
however, asymptotically unbiased.
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At this point, we are in a position to fully exploit the additional assumption
e ≈ N(0, σ 2In) – or, better, its direct consequence Y ≈ N(Xb, σ 2In) – well
beyond the fact of just determining that the LS estimate of b coincides with
its ML estimate. In fact, we can use a number of important results concerning
the distribution of functions of normal r.v.s (see Appendix C) to make more
stringent inferences on the point estimates b̂ and σ̂ 2.

Let us start with b̂: since b̂ given by eq. (7.5) is a linear function of a
normal vector, it is a normal vector itself (Section 3.3.2). This fact, together
with the results of Proposition 7.1, leads to b̂ ≈ N(b, σ 2A−1) so that, in par-
ticular, each individual β̂j is normally distributed with mean βj and variance
σ 2ajj – where we denoted by ajj the diagonal elements of the matrix A−1.
Consequently, for all j = 1, . . . ,k we have

β̂j − βj

σ
√
ajj

≈ N(0, 1) (7.32)

If, as it may happen in some cases, σ 2 is known, then (recall Example 5.9(a))
a γ -confidence interval for βj is (β̂j ± c(1+γ )/2σ

√
ajj) where c(1+γ )/2 is the

lower (1 + γ )/2-quantile of the standard normal distribution. More often,
however, σ 2 is not known and, as we did above, must be estimated from the
data. Using the unbiased estimate ŝ2 of σ 2 given by eq. (7.12) then ŝ2ajj is
the (unbiased) estimate of Var(β̂j) and

Tj ≡
√

n− k

ajjQ(b̂)
(β̂j − βj) ≈ St(n− k) (7.33)

(recall Section 5.6 and note that Tj is a pivot quantity for the case at
hand). Equation (7.33), in turn, implies that the confidence interval will
be expressed in terms of Student quantiles. In fact, the γ -CI for βj is in
this case⎛⎝β̂j ± t(1+γ )/2;n−k

√
ajjQ(b̂)

n− k

⎞⎠ =
(
β̂j ± t(1+γ )/2;n−kŝ

√
ajj
)

(7.34)

where t(1+γ )/2;n−k is the lower (1+γ )/2-quantile of the Student distribution
with n− k degrees of freedom.

Also, in regard to interval estimates of individual parameters, we can
obtain a γ -CI for the residual variance σ 2 (when it is unknown). The result is(

Q(b̂)

χ2
(1+γ )/2;n−k

,
Q(b̂)

χ2
(1−γ )/2;n−k

)
=
(

(n− k)ŝ2

χ2
(1+γ )/2;n−k

,
(n− k)ŝ2

χ2
(1−γ )/2;n−k

)
(7.35)
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where χ2
(1±γ )/2;n−k are, respectively, the lower (1 ± γ )/2 quantiles of the

distribution χ2(n − k). Although we do not prove eq. (7.35), it may be
worth noting that it is a consequence of the result

Q(b̂)

σ 2
≈ χ2(n− k) (7.36)

which, in turn, is proven by using a theorem on quadratic forms of normal
variables (see Ref. [12, Chapter 1]. The quadratic form in question here is
rTPS⊥r where r ≡ e/σ is the vector of normalized errors (r ≈ N(0, In) and
ri = εi/σ ≈ N(0, 1) for all i = 1, . . . ,n) and PS⊥ is the projection matrix on
S⊥ introduced in Section 7.2. The equality Q(b̂)/σ 2 = rTPS⊥r follows easily
if we substitute Y = Xb + σ r in Q(b̂) = YTPS⊥Y (third and fifth terms in
eq. (7.10)) and then note that (a) bTXTPS⊥r = rTPS⊥Xb and (b) PS⊥Xb = 0
because Xb ∈ S and PS⊥ projects on the (n− k)-dimensional space S⊥.

In the light of the above results, it may not be out of place at this
point to recall the interpretation of confidence intervals (Section 5.6). Equa-
tion (7.34), for instance, does not mean that the true value of βj belongs to
this interval – which has nothing random in it – with probability γ . Assum-
ing that our model is correct, eq. (7.34) means that by repeating the data
collection experiment and the fitting many times – thus obtaining many esti-
mates of βj and an equal number of CIs of the form (7.34) – these intervals
will contain the true value of βj in 100γ% of the cases. The same ‘long-
run interpretation’, clearly, applies to the true value of σ 2 and the CI of
eq. (7.35).

Now, for all j = 1, . . . ,k eq. (7.34) provides a γ -confidence interval for
each individual βj. A more general result, however, can be obtained if we
are interested in a γ -confidence region Cγ ⊂ Rk which concerns the whole
vector b, that is, all the k parameters βj simultaneously (in this regard note
that the pivot quantities Tj are not, in general, independent). The desired
result is

Cγ =
{
b : (b̂− b)TA(b̂− b) <

kQ(b̂)

n− k
Fγ ;k,n−k

}
(7.37a)

where Fγ ;k,n−k is the γ -lower quantile of the Fisher distribution Fsh(k,n−k).
The confidence region Cγ , therefore, is the inner side of an ellipsoid centered
in b̂ with boundary defined by the equation

(b̂− b)TA(b̂− b) = kQ(b̂)

n− k
Fγ ;k,n−k (7.37b)
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As we did for the CI (7.35), we do not prove rigorously eq. (7.37a) here;
nonetheless, for the interested reader a few comments on why we get this
result are worthy of mention. The main reason is that

n− k
k

(
U

Q(b̂)

)
≈ Fsh(k,n− k) (7.38)

where we defined U ≡ Q(b) − Q(b̂) and the proof of the relation U =
(b− b̂)TA(b− b̂) = (b̂−b)TA(b̂−b) is left to the reader. Since, in addition to
the result of eq. (7.36), it can be shown [12] that (a) the r.v.sQ(b̂) andU are
independent and (b) U/σ 2 ≈ χ2(k), eq. (7.38) – and consequently (7.37) –
descends from eq. (7.36) and the fact that the ratio of two independent χ2-
distributed r.v.s follows a Fisher distribution with the appropriate number
of degrees of freedom (which depend on the degrees of freedom of the two
variables in the ratio; see Appendix C).

On the basis of this last result, let us go back for a moment to remark
(iii) at the end of Section 7.2. There, the interest was on m (m ≤ k) linear
combinations t = Tb of the k parameters βj. We have already pointed out

that t̂ = Tb̂ is the desired estimate of t but now the assumption of normality
gives t̂ ≈ N(t, σ 2D), whereD = TA−1TT. Then, if we consider the quadratic
form UT = (t − t̂)TD−1(t − t̂), the counterparts of points (a) and (b) above
are (a′) the r.v.s Q(b̂) and UT are independent and (b′) UT/σ 2 ≈ χ2(m).
Consequently, we have

n− k
m

(
UT

Q(b̂)

)
≈ Fsh(m,n− k) (7.39)

which, in turn, is the counterpart of eq. (7.38) for the case at hand. The
conclusion is that the γ -confidence region CT;γ ⊂ Rm for t is

CT;γ =
{
t : (Tb̂− t)TD−1(Tb̂− t) <

mQ(b̂)

n− k
Fγ ;m,n−k

}
(7.40)

If m = k and T = Ik then Tb = b, D−1 = A and we obtain the γ -confidence
ellipsoid of eq. (7.37). If, on the other hand, m = 1 then T is a 1 × k
matrix of constants t1, . . . , tk which can be arranged in a k-dimensional
vector c = (t1 . . . tk)T. Then t = Tb = ∑

jtjβj = cTb is a single linear
combination of the parameters and the matrix D = cTA−1c reduces to a
scalar, which we will call d. With these definitions the region (7.40) becomes
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the γ -confidence interval

⎛⎝cTb̂±
√
dQ(b̂)

n− k
Fγ ; 1, n−k

⎞⎠ (7.41a)

Moreover, since Fisher’s distribution Fsh(1,n − k) is related to the square
of the Student distribution St(n− k) and the equality Fγ ;1,n−k = t2

(1+γ )/2;n−k
between their lower quantiles holds, eq. (7.41a) becomes

⎛⎝cTb̂± t(1+γ )/2;n−k

√
dQ(b̂)

n− k

⎞⎠ =
(
cTb̂± t(1+γ )/2;n−k ŝ

√
d
)

(7.41b)

which, in turn, reduces to (7.34) when cT = (0, . . . , 0, 1, 0, . . . , 0), with the
only non-zero element in the jth position. In this case, in fact, it is easy to
determine that cTb̂ = β̂j and d = ajj. Another special case with m = 1
occurs when c = x0, where x0 = (x01, . . . ,x0k)

T is a given set of values for
the predictor variables. Then Ŷ0 = xT

0 b̂ is an estimate of E(Y0) – that is, the
mean value of Y corresponding to X0 – and the γ -CI for E(Y0) is obtained
from eq. (7.41b) as

(
xT

0 b̂± t(1+γ )/2;n−k ŝ
√
xT

0A
−1x0

)
(7.42)

If, on the other hand, we are interested in a prediction interval on Y0 itself
and not, as above, on E(Y0), it only takes a small effort to determine

(
xT

0 b̂± t(1+γ )/2;n−k ŝ
√
xT

0A
−1x0 + 1

)
(7.43)

where it should be noted that this interval differs from (7.42) because it
regards a single future trial at the given value x0. The fact that the interval
(7.43) is wider than (7.42) reflects the circumstance that there is less precision
in predicting a particular value of Y than in estimating its mean.

At this point, if we wish to test a given null hypothesis on the estimated
regression parameters, we can recall the considerations at the beginning of
Section 6.3.4. Let us consider, for instance, the γ -CI (7.35) for σ 2. If we wish
to test H0 : σ 2 = σ 2

0 against H1 : σ 2 �= σ 2
0 (where σ 2

0 is a specified value),



290 Mathematical statistics

then the acceptance region at the significance level α = 1 − γ is given by

�0 =
{

σ 2
0

n− k
χ2

α/2;n−k < ŝ2 <
σ 2

0

n− k
χ2

1−α/2;n−k

}
(7.44)

therefore implying that the rejection region is �1 = �C
0 .

Similarly, when σ 2 is unknown we can use the CI (7.34) to test the pair of
hypotheses H0 : βj = β0j;H1 : βj �= β0j (a frequently performed test is with
β0j = 0). The acceptance region for the test is now

�0 =
{
β0j − t1−α/2;n−kŝ

√
ajj < β̂j < β0j + t1−α/2;n−kŝ

√
ajj
}

(7.45a)

and consequently the rejection region is

�1 =
{∣∣∣∣∣ β̂j − β0j

ŝ
√
ajj

∣∣∣∣∣ ≥ t1−α/2;n−k

}
(7.45b)

where t1−α/2;n−k is the (1−α/2)-lower quantile of St(n−k) (which, we note,
is the same as the α/2-upper quantile of the same distribution).

More generally, the null hypothesis H0 will be in the form of a linear
restriction which limits the values of the parameters β1, . . . , βk in a specified
subset B0 ⊂ Rk. Explicitly this means that we will have H0 : b ∈ B0 where
B0 = {b : Tb = t0}, t0 is a given vector andT is a non-randomm×k (m ≤ k)
restriction matrix of rankm. In generalH0 is a composite hypothesis because
σ 2 is not known.

Since the γ -confidence region for t = Tb is given by eq. (7.40) which, for
our present purposes can be rewritten as

CT;γ =
{
t :
UT(Y; t0)

Q(b̂)
<

m
n− k

F1−α;m,n−k

}
(7.46)

it follows that all realizations y of Y satisfying the inequality within brackets
lead to the acceptance of the null hypothesis. The conclusion, therefore is as
follows: at the significance level a the rejection region for the testH0 : b ∈ B0
is given by

�1 =
{
y :
(
n− k
m

)
UT(y; t0)

Q(b̂)
≥ F1−α;m,n−k

}
(7.47)

where F1 − α;m,n−k is the (1 − α)-lower quantile of the distribution
Fsh(m,n−k).
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By appropriately constructing the Y and X matrices, many problems can
be cast in the form of a normal regression scheme, thereby taking advan-
tage of the above considerations on confidence intervals and tests on linear
combinations of the estimated parameters. The following Examples 7.1(a)
and (b) illustrate this kind of situation.

Example 7.1(a) Suppose that we have r ≥ 2 groups of independent and
normally distributed Y-type observations. If each group is of size ni(i =
1, . . . , r) and the underlying model is such that, for j = 1, . . . ,ni

E
(
Y(i)
j

)
= β

(i)
1 + β

(i)
2 x(i)

j , i = 1, . . . , r

we may be interested, for instance, in testing the null hypothesis that the r
slopes β

(i)
2 are all equal, i.e. H0 : β

(1)

2 = β
(2)

2 = · · · = β
(r)
2 .

Let n = n1 +· · ·+nr; if we form (i) a collective n-dimensional vector YT =(
Y(1)

1 , . . . ,Y(1)
n1 ,Y(2)

1 , . . . ,Y(r)
nr

)
≡ (Y1, . . . ,Yn) whose first n1 elements are the

Y-observations of the first group followed by the n2 Y-observations of the
second group, etc., and (ii) a collective 2r-dimensional vector of parameters

bT =
(
β

(1)

1 , β(1)

2 , β(2)

1 , . . . , β(r)
2

)
≡ (β1, . . . , β2r) the model can be written

in the matrix form (7.2b) by forming the n × 2r matrix X whose first n1

rows are
(
1,x(1)

1 , 0, . . . , 0
)

, . . . ,
(
1,x(1)

n1 , 0, . . . , 0
)

followed by the n2 rows(
0, 0, 1,x(2)

1 , 0, . . . , 0
)

, . . . ,
(
0, 0, 1,x(2)

n2 , 0, . . . , 0
)
, etc., and the last nr rows

are
(
0, . . . , 0, 1, x(r)

1

)
, . . . ,

(
0, . . . , 0, 1, x(r)

nr

)
.

At this point the estimate of the parameters is given by eq. (7.5). Then,
noting that the null hypothesis can be rewritten asH0 : β4−β2 = 0, β6−β2 =
0, . . . , β2r − β2 = 0 and consequently cast in matrix form as Tb = 0 where
T is the (r − 1) × r matrix whose first column is (−1, −1, . . . , −1) and the
only non-zero element of the sth (2 ≤ s ≤ r) column is in the (s− 1)th place
from the top, the rejection region for the test is given by eq. (7.47) where,
for this case, m = r− 1 and k = 2r.

Example 7.1(b) Suppose that we have two samples (z1, . . . , zn) and
(t1, . . . , tm) from the distributions N(µ1, σ 2) and N(µ2, σ 2), respectively,
and we wish to test the null hypothesis H0 : µ1 = µ2 against H1 :
µ1 �= µ2. If we form the collective (n + m)-dimensional vector YT =
(z1, . . . , zn, t1, . . . , tm) and denote the two means by the symbols β1, β2
instead of µ1, µ2 we can (i) obtain the estimates of the unknown param-
eters b = (β1, β2)

T and σ 2 and (ii) find a rejection region for the test. The
problem, in fact, is in the form (7.2b) if we define the (n+m)×2 X matrix
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with (1, 0) in the first n rows and (0, 1) in the remainingm rows. Then, since

A = XTX =
(
n 0
0 m

)
XTY =

(∑
i zi∑
i ti

)
=
(
nz̄
mt̄

)

we use eqs (7.5) and (7.12b) to obtain the estimates b̂ = (z̄, t̄)T and

ŝ2 =
∑

i(zi − z̄)2 +∑i(ti − t̄)2

n+m− 2

At this point we rewrite the null hypothesis as H0 : β1 − β2 = 0 and cast it
in the matrix form Tb = 0 where T = (1, −1); then since D = TA−1TT =
n−1 + m−1, we recall eqs (7.41a) and (7.41b) and arrive at the γ -CI for
Tb̂ = z̄ − t̄

(
(z̄ − t̄) ± t(1+γ )/2;n+m−2 ŝ

√
n−1 +m−1

)
which, noting that z̄ = M1, t̄ = M2, is exactly the CI (5.87) of Exam-
ple 5.11(a) when the variances of the two normal populations are equal (i.e.
σ 2

1 = σ 2
2 ). On the basis of the γ -CI above, it is left to the reader to write

explicitly the acceptance and rejection region for H0 : β1 − β2 = 0 at the
significance level α = 1 − γ .

By a direct extension of this line of reasoning, it can be shown that the tech-
niques known as ‘analysis of variance’ (ANOVA, briefly mentioned at the
end of Section 6.3.4) can also be formulated in the form of linear regression
problems. For more details the reader can refer, for instance, to [12] or [2].

7.3.1 Back to simple linear regression

It is clear from the preceding section that the assumption of normality has
a number of interesting and far-reaching consequences. Under this assump-
tion, we can now go back to the simple one-predictor modelY = β1+β2x+ε

of Section 7.2.1 and consider the new developments in this specific setting.
The simple linear model, in fact, is so frequently used in practice that deserves
special attention.

The first general observation is that the LS estimates (7.22b) coincide with
the ML estimates of the slope and intercept, respectively and, as a conse-
quence, they have all the desirable properties of ML estimators considered
in Chapter 5. A second observation is that now we can use eq. (7.34), to
define individual γ -confidence intervals for the estimated parameters β1 and
β2. Assuming that σ 2 is unknown and this parameter too has been estimated
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by the data, we get⎛⎝β̂1 ± t(1+γ )/2;n−2
ŝ√
n

√ ∑
i x

2
i∑

i(xi − x̄)2

⎞⎠ (7.48)

for the intercept and(
β̂2 ± t(1+γ )/2;n−2 ŝ

√
1∑

i(xi − x̄)2

)
(7.49)

for the slope. In both (7.48) and (7.49) ŝ is the square root of the estimate
(7.24) and t(1+γ )/2;n−2 is the lower (1 + γ )/2-quantile of the distribution
St(n− 2). The above intervals, as we know, are strictly related to the accep-
tance and rejection regions (7.45a) and (7.45b) defined by statistical tests
on β1 and β2. In particular, when we obtain an estimate β̂2 close to zero, it
is always advisable to test whether the slope is significantly different from
zero because, if this is not the case, there is no linear relation between the
variables (which does not imply, however, that there is no relation at all) and
the assumed model should be changed. Owing to eq. (7.45b) the rejection
region for the test H0 : β2 = 0;H1 : β2 �= 0 is

�1 =

⎧⎪⎨⎪⎩y :

∣∣∣β̂2

∣∣∣√∑i(xi − x̄)2

ŝ
=
∣∣∣β̂2

∣∣∣√Sxx
ŝ

≥ t1−α/2;n−2

⎫⎪⎬⎪⎭ (7.50)

In other cases we may obtain an estimate β̂1 of the intercept close to zero
and then we should test the pair of hypotheses H0 : β1 = 0;H1 : β1 �= 0.
The rejection region for this test is

�1 =
⎧⎨⎩y :

∣∣∣β̂1

∣∣∣
ŝ

√
nSxx∑
i x

2
i

≥ t1−α/2;n−2

⎫⎬⎭ (7.51)

and if the result of the test is the acceptance of H0 it means that the original
model Y = β1 + β2x+ ε must be substituted by the new model Y = β2x+ ε

(or, equivalently, E(Y) = β2x). In this case we must recalculate the estimate
β̂2 of the slope by using the formula

β̂2 =
∑

i xiYi∑
i x

2
i

(7.52)

which is just the result of eq. (7.5) when X is a n× 1 matrix.
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In regard to the residual variance, the appropriate confidence interval is
obtained by simply setting k = 2 in eq. (7.35). Starting from this interval,
the rejection region to testH0 : σ 2 = σ 2

0 ;H1 : σ 2 �= σ 2
0 is given by eq. (7.44).

If, in addition, we are interested in estimating the mean E(Y0) by means of
the quantity Ŷ0 = β̂1 + β̂2x0 it suffices to note that in this case x0 = (1,x0)

T;
then, substituting in xT

0A
−1x0 the γ -CI of eq. (7.42) becomes

⎛⎝Ŷ0 ± t(1+γ )/2;n−2ŝ

√
1
n

+ (x0 − x̄)2

Sxx

⎞⎠ (7.53)

because xT
0A

−1x0 = (detA)−1
(∑

x2
i − 2nx̄x0 + nx2

0

)
and it is left to the

reader to show that this expression equals the quantity under square root
in (7.53). Using this relation it is immediate to explicitly write also the γ -
prediction interval (7.43) for Y0 itself. The point worthy of notice is that the
width of the interval (7.53) – and, similarly, of the interval corresponding to
(7.43) – increases as (x0 − x̄) increases, that is, as the distance of x0 from the
sample mean x̄ increases. This circumstance implies, as noted before, that
it is generally unwise to extrapolate and use the regression line outside the
x-values from which it has been obtained. By extrapolating, in fact, the
interval (7.53) may become so large that our inference (on E(Y0) or on Y0)
could turn out to be useless.

As noted in the preceding section, the intervals (7.48) and (7.49) apply
individually, that is, each interval concerns one parameter. However, the
two parameters β1, β2 are not necessarily independent (recall eq. (7.23b))
and we may be interested in the joint confidence region for β1, β2. Carrying
out the appropriate calculations on eq. (7.37) for the case at hand we obtain
the desired region as the interior of the ellipse

n(β̂1 − β1)
2 + 2nx̄(β̂1 − β1)(β̂2 − β2) + (β̂2 − β2)

2
∑
i

x2
i = 2ŝ2Fγ ; 2, n−2

(7.54)

which, solving for a sufficient number of β1, β2 can easily be drawn on a
graph with axes β1 and β2. In the general case the ellipse is slanted in such
a way that its major axis runs in the north-west to south-east direction (this
is reasonable because if another sample of size n leads to an estimate of the
slope β̂ ′

2 > β̂2 we should expect that β̂ ′
1 < β̂1, a circumstance which reflects –

eq. (7.23b) – the negative correlation between the estimates for the slope and
the intercept). If, before the regression procedure is carried out, we structure
our data so that x̄ = 0, it follows from eq. (7.23b) that Cov(β̂1, β̂2) = 0 and
(7.54) is an ellipse with its major axes parallel to the β1 and β2 axes.

Another point to be made concerns the quantity R of eq. (7.28b) which,
being the sample counterpart of ρ of eq. (3.22), is – we recall from
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Section 3.3 – a measure of the strength of the linear relation between the
variables Y and x (note that the term ‘linear model’ means linear in the
parameters but in simple linear regression the type of model itself implies
that the response variable Y depends linearly on the predictor variable x).
In this regard, therefore, one may be interested in testing the null hypothesis
H0 : ρ = 0 against H1 : ρ �= 0. The distribution of R is rather complicated
but we give without proof the following result: for large n the statistic

G = 1
2

ln
(

1 + R
1 − R

)
(7.55)

is approximately normal with mean and variance

E(G) = 1
2

ln
(

1 + ρ

1 − ρ

)
Var(G) = 1

n− 3
(7.56a)

thus implying that the r.v.

Z =
√
n− 3
2

ln
(1 + R)(1 − ρ)

(1 − R)(1 + ρ)
(7.56b)

is approximately standard normal. The consequence is that the rejection
region to test the pair of hypotheses H0 : ρ = ρ0;H1 : ρ �= ρ0 at
(approximately) the significance level α is

�1 =
{
y :

∣∣∣∣∣
√
n− 3
2

ln
(1 + R)(1 − ρ0)

(1 − R)(1 + ρ0)

∣∣∣∣∣ ≥ zα/2

}
(7.57a)

where zα/2 is the upper α/2-quantile of the standard normal distribution. In
the special (but of frequent practical interest) case ρ0 = 0 mentioned above,
the rejection region (7.57a) becomes

�1 =
{
y :

∣∣∣∣∣
√
n− 3
2

ln
1 + R
1 − R

∣∣∣∣∣ ≥ zα/2

}
(7.57b)

and the approximation is generally acceptable even for moderate sample
sizes (say, n ≥ 30).

7.3.2 Simple linear regression with two random variables

As a preliminary step, let us summarize the main ideas on simple linear
regression. In Section 7.2.1, by only making two basic assumptions on
the first and second moments of the ‘error’ ε, we considered the model
Y = β1 + β2x+ ε as a special case of the general model (7.1b). Then, in
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Section 7.3.1 we examined the same simple linear model with the additional
assumption of normality and pointed out that this circumstance allows the
analyst to determine confidence intervals and acceptance/rejection regions
for testing the regression parameters. In the course of the discussion, more-
over, we noted some formal similarities with the results of Section 3.4.2 (for
instance eq. (7.26) as compared to the first of eqs (3.98) and the parallel
between R and ρ). There, however, the context was different because we
were considering two random variables X and Y with a joint pdf fXY (x, y).
The point we want to make here is that the discussion of Sections 7.2.1
applies even when our data are n realizations of a two-dimensional random
vector (X, Y) and the conditional expectation E(Y|X = x) is a linear func-
tion of x. If, in addition, the vector (X, Y) is jointly normal or approximately
so, the inferences of Section 7.3.1 are also valid.

Example 7.2 Suppose that X and Y are jointly Gaussian with pdf given by
eqs (3.61a) and (3.61b). Then we have shown in Section 3.4.2 that E(Y|X =
x) is a linear function of x and eqs (3.98) hold.

As a particular example consider the joint pdf of eq. (3.13b). Since the
marginal pdf fX(x) is given by eq. (3.14a), it is rather easy to determine the
conditional pdf fY|X(y|x) = fXY (x, y)/fX(x) and show that E(Y|x) = −x/2,
that is, E(Y|X = x) is a linear function of x. This equation is nothing but
the explicit form of the first of (3.98) because we have E(X) = E(Y) = 0,
ρ = −1/2 and σX = σY = √

2. It is left to the reader to determine that in
this case we also get

σ 2
Y|X =

∫
{y− E(Y|X)}2f (y|x)dy = 3/2

and therefore, since the conditional variance σ 2
Y|X does not depend on x, the

second of (3.98) holds as well. In fact, using the values given above, we have
σ 2
Y (1 − ρ2) = 2(1 − 1/4) = 3/2.
Clearly, not all two-dimensional joint distributions lead to a linear (in x)

conditional expectation, but for those that do – that is, when eq. (3.100)
applies – eqs (3.103a) hold and consequently

E(Y|x) = E(Y) + Cov(X, Y)

Var(X)
(x− E(X))

= E(Y) + ρ
σY

σX
(x− E(X)) (7.58)

In regard to the second of eq. (3.98) we can recall the discussion near the end
of Section 3.4.2. Among all those bivariate distributions for which E(Y|X =
x) is linear in x, not all of them satisfy this equation because, in general, the
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conditional variance σ 2
Y|X, defined as

σ 2
Y|x ≡

∫
{y− E(Y|X)}2f (y|x) dy (7.59)

is a function of x. In the general case, therefore, the quantity σ 2
Y (1−ρ2) does

not equal σ 2
Y|X but it represents the weighted average

σ 2
Y(avg) ≡

∫
σ 2
Y|XfX(x) dx (7.60)

For those distributions for which σ 2
Y|X does not depend on x, however, we

have σ 2
Y|X = σ 2

Y (1 − ρ2) (i.e. the second of (3.98)). These particular dis-
tributions are called ‘homoscedastic’ (from Greek words meaning ‘equal
scattering’). As noted in Section 3.4.2 and in Example 7.2, the bivariate
Gaussian is one of them.

With the above considerations of probabilistic nature in mind, let us now
turn our attention to their statistical counterparts. The first immediate obser-
vation is that eq. (7.26) is the sample counterpart of (7.58) and that the point
estimates (7.22b) correspond to eq. (3.103a). In other words, whenever the
assumption that our data are a sample from a bivariate distribution such
that E(Y|x) = a + bx, we estimate this theoretical regression line of Y on
X (i.e. eq. (7.58)) by means of eq. (7.26). Moreover, it is also clear at this
point why we said that R = SXY/

√
SXXSYY is the sample quantity used to

estimate of the correlation coefficient ρ = Cov(X,Y)/σXσY .
In regard to the conditional variance, we have the relations

σ 2
Y(avg) = σ 2

Y (1 − ρ2) σ 2
Y|X = σ 2

Y (1 − ρ2) (7.61)

where the first is more general than the second and reduces to it for
homoscedastic distributions. In both cases, however, the quantity σ 2

Y (1−ρ2)

is a measure of the variability of Y about the regression line: a weighted aver-
age of this variability in the first case and the true (conditional) variability
in the second. Equations (7.61) show that, because of correlation, this vari-
ability is ≤ σ 2

Y , that is, less than or equal to the total variability of Y. In this
light, it is hardly surprising that the sample counterpart of (7.61) is

SSR = SYY (1 − R2) (7.62)

which, in turn, tells us that the part of variability (of the observed Y values)
explained by the estimated regression line is less than or equal to the total
(observed) variability SYY .
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Equation (7.62) is easily obtained. In fact, from eq. (7.14b) we get
SSR = SYY (1 − SSE/SYY ); then, noting that the same equation (7.14b) gives

SSR
SYY

= 1 − SSE
SYY

and that the term on the l.h.s. equals R2 (see eq. (7.28)), eq. (7.62) follows.
Clearly, the most common assumption on the underlying probabilistic

model is that of bivariate Gaussian population but the considerations above
show that the simple regression procedure applies even in more general con-
texts. Nonetheless, the assumption of normality – or, when not fully justified,
of moderate departures from normality – is necessary in order to ensure the
reliability of the inferences given in Section 7.3.1.

In case of two random variables, moreover, it makes sense to speak of
regression of X on Y and the above considerations – if fXY (x, y) is such that
E(X|Y = y) is linear in y – apply without changes by simply inverting the
roles of X and Y. Two points, however, are worthy of mention:

(i) The fact that E(Y|X = x) is a linear function of x does not necessarily
imply that E(X|Y = y) is a linear function of y. In the particular case of
a bivariate Gaussian distribution we already know, however, that both
E(X|Y = y) and E(Y|X = x) are straight lines.

(ii) Even when the two regression curves (ofY onX andX onY) are straight
lines they are, in general, different, although they both pass through the
point (E(X),E(Y)). In this regard, recall eqs (3.103a) and (3.103b).

7.4 Final remarks on regression

The considerations and results of the preceding sections by no means exhaust
such a vast subject as linear regression. This was not our intention from the
start because – as it can immediately be seen from the references – entire
books are dedicated to it. For the interested reader, nonetheless, we think it
may be useful to mention some further aspects that deserve due attention in
their own right.

Let us start with simple regression first. Referring specifically to the devel-
opments of Sections 7.2.1 and 7.3.1, it is not rare to find cases in which the
assumption of homoscedasticity – that is, that the variance of Y is a con-
stant – is not justified even when the simple linear model is correct. Often, the
nature of the problem itself may suggest this type of situation but even when it
is not so we can have an idea of this state of affairs by first carrying out a sim-
ple regression on the data and then plotting the ε̂i = Yi− Ŷi = Yi− β̂1 − β̂2xi
versus x. If, by visual inspection, there is evidence of definite pattern we can
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deduce that either

(i) the simple linear model is not appropriate (recall point (ii) at the end of
Section 7.2.1) or

(ii) the linear model is the right one but the assumption of homoscedasticity
is not valid.

Case (ii), in general, can be distinguished form case (i) because the emerging
pattern looks random in nature but shows that the residuals ε̂i increase (or
decrease) steadily with increasing x. The remedy to this kind of situation
is to perform a so-called ‘weighted’ simple linear regression in which the
underlying model is still E(Yi) = β1 − β2xi but, instead of Var(Yi) = σ 2,
we can write Var(Yi) = σ 2/wi(i = 1, . . . ,n), where the weights w1, . . . ,wn
are assumed to be known positive constants. It can be shown that the LS
estimates are in this case

β̂2 =
∑
wi
∑
wixiYi −∑wixi

∑
wiYi∑

wi
∑
wix2

i − (∑wixi
)2

β̂1 =
∑
wiYi − β̂2

∑
wixi∑

wi

(7.63)

and they reduce to their unweighted counterparts (eq. (7.22b)) whenever
w1 = w2 = · · · = wn. Two things should be noted in eq. (7.63). The first is
that they do not change if all the wi’s are multiplied by a constant a, thus
implying that is not necessary to know their absolute values but it is sufficient
to know their relative magnitudes. The second is that, as noted above, the
case in which Var(Yi) depends linearly (or approximately so) on xi is rather
frequent. Then, depending on whether Var(Yi) increases or decreases with
increasing x, we can choose the weights as wi = 1/xi or wi = xi and,
accordingly, we have Var(Yi) = σ 2xi or Var(Yi) = σ 2/xi. In this regard,
however, see for instance [8] for more details.

Another remark on the weighted method is that it is often needed when
the original variables are transformed in order to obtain a linear relation. In
Engineering and Physics practice, in fact, it is quite common to transform a
known physical law (relating the variables Y and x) into a linear equation.

Consider, for instance, the relation I(x) = I0 exp(−αx) which gives the
light intensity I(x) at a depth x into an absorbing medium with absorption
coefficient α (I0 is the intensity of light incident on the medium, i.e., at
x = 0). By taking logarithms on both sides we get the linear equation ln I =
ln I0−αx so that, by measuring I at different values of x, we can use the simple
regression procedure to obtain an estimate of α. If, however, the assumption
of homoscedasticity may be justified for the original Y-variable (I in our
case) it is not necessarily so for the transformed variable (ln I) and therefore
a weighted simple regression would be more appropriate. A simple strategy
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consists in performing an unweighted analysis first and then check the plot of
residuals ε̂i. If there are signs of a steadily increasing (or decreasing) pattern,
then a weighted analysis is required.

The second comment about simple regression is a word of caution on the
use of R – that is, the sample estimate of the correlation coefficient ρ – as
a measure of the strength of the linear relation between Y and x. For small
samples, in fact, it is not unusual to find high values of values of |R|, say
|R| ≥ 0.8, even when the variables are uncorrelated. It can be calculated (see,
for instance, [5]), that when the variables are uncorrelated, the probability of
obtaining |R| = 0.8 with n = 5 isP(n=5)

0.8 = 0.104. This, in other words means
that even with uncorrelated data we get |R| = 0.8 in approximately one trial
out of ten. Clearly, the above probability rapidly decreases as n increases
and P0.8 is already less than 0.05 for n = 7 (in fact P(n=7)

0.8 = 0.031, but note
that for |R| = 0.7 we must have at least n = 9 in order to have a probability
P0.7 < 0.05). Nonetheless, the conclusion is that, for small samples, the
coefficientR is not totally reliable and we should be very cautious in assigning
too much significance to it when (approximately) n ≤ 10.

A rather debated point is what to do when both variables are subject to
error and the error on the regressor variable is not negligible in comparison to
the error on the predicted variable. We do not address this problem here but
suggest to the interested reader to consult the Refs [10, 14, 17–21, 24, 25].

A connection between simple regression models and general models – or
between different general regression models – is easily established when we
have little or no a priori information on what model could be ‘the best’
for the data at our disposal. While, in general, it may not be difficult to
determine whether the two-predictor model E(Y) = β1 +β2x1 −β3x2 or the
second degree polynomial model E(Y) = β1 + β2x − β3x2 could be better
than the simple model E(Y) = β1 +β2x, it is evident that the choice becomes
rapidly very difficult as the number of β-parameters increases. So, in complex
cases where a number of variables can potentially have an influence on Y
the questions arise: which and how many predictors do we choose? are all
of them really influential or some can be neglected without an appreciable
loss in the quality of the fitted model? As it often happens, part of the
answer to these and similar questions comes from a close examination of
the nature of the problem and therefore it is outside the realm of statistics.
Non-statistical considerations, moreover, may also play a role in establishing
what the term ‘best model’ means for the specific problem at hand. If, for
instance, simplicity is paramount in a given situation, we may choose, say,
a two-regressor model leading to acceptable results even if we know that a
three or four-regressor model could be significantly better according to some
criterion of strict statistical nature.

A rather immediate idea that comes to mind when comparing two or
more regression models is to choose the one with the highest value of the
determination coefficient R2 which, we recall, represents the fraction of the
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Y variability explained by the fitted model. Regrettably, R2 always tends to
favour the equation with the greater number of parameters because it never
decreases as more variables are added to the model. In order to take the
number of parameters into account, the ‘adjusted’ coefficient R2

adj is often
used. Its definition is

R2
adj = (n− 1)R2 − (k− 1)

n− k
(7.64)

where k is the number of β-parameters and R2 is the ordinary determination
coefficient of eq. (7.15). As k increases, the terms k − 1 at the numerator
and n−k at the denominator compensate for the natural increase of R2 due
to a higher number of parameters. A similar approach consists in using the
Akaike information criterion (AIC, see Ref. [1]) where one calculates the
AIC parameter

AIC = SSE + 2k (7.65)

for the competing models and chooses the model with the smallest AIC. In
fact, the term SSE – the sum of squares of the ε̂i = Yi− Ŷi – tends to decrease
as k increases and consequently 2k is a ‘penalty’ term which increases by
two units for each additional β-parameter.

The R2
adj and AIC methods have the advantage of simplicity and immedi-

ateness but it is clear that more sophisticated techniques have been devised
to address the problem of model selection and adequacy. In case of nor-
mal regression, one of them is called ‘backward elimination’: we start with
a ‘full’ model by including all the relevant variables arranged in decreas-
ing order of importance and then – starting form the least important – we
delete any variable whose marginal contribution is not significant according
to a partial test of the type H0 : βj = 0 (see Section 7.3). Incidentally, we
note that this is equivalent to calculating the CI (7.34) at the desired value
of γ and delete the variable corresponding to that specific βj whenever the
resulting CI includes zero. It is evident, however, that in most cases both
the determination of the ‘full’ model and the order of importance in which
the variables enter the model are, to a certain extent, subjective and involve
an educated guess on the analyst’s part. The opposite of backward elimi-
nation is called ‘forward selection’ – the term is self-explanatory – and we
sequentially add one variable at a time until there is some evidence of no or
little improvement from one model to the next. Whatever method is used,
however, simultaneous tests on more than one βj as well as various forms of
plots (in particular, plots of the residuals ε̂i; see, for instance, Refs [7] and
[8]) are often of great help. In general, there is probably no ‘best’ method
and, as it virtually happens in most cases, it is always wise to analyze the
data in more than one way.
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Two final issues that deserve special attention are (1) the presence of
outliers (in this regard, recall also Section 6.5.4) and (2) a problem called
‘multicollinearity’, where the former may occur in both simple and general
linear regression while the latter is typical of general regression, that is, when
the number of predictor variables is at least two. Let us consider them briefly
by noting, however, that our scope here is merely to make the reader aware
of their existence and draw his/her attention to the fact that both prob-
lems (1) and (2) are potentially dangerous. For more details and/or remedial
measures, the interested reader can consult the references at the end of the
chapter.

An immediate idea of the effect of outliers can be had by comparing the
estimates β̂1, β̂2 from a ‘clean’ set of data with the same estimates from
a ‘contaminated’ sample, where the contaminated sample is obtained by
intentionally changing one of the original Yi to a much higher or much
lower value. Since both estimates may change dramatically, the seriousness
of the problem becomes evident. In simple regression, however, we have the
advantage of visual inspection but – owing to the higher dimensionality –
it is generally not so in more complex situations. Moreover, the common
belief that regression outliers can be identified by looking at the least-squares
residuals must be taken with a grain of salt because it is not difficult to
construct examples where a spurious datum has a smaller residual than some
of the ‘good’ data.

Even from these short notes, it is clear that the problem is rather delicate
and generally does not lend itself to an easy solution. This is more so in
the case of multiple outliers because there exists a so-called ‘masking effect’
where one outlier may mask another. Therefore, besides the use of specific
tests for outlier detection, if we suspect our data to be contaminated the
general suggestion is to resort to techniques of robust regression (see, for
instance, Refs [23] or [26]) which are often based on the minimization of
quantities other than the sum of squared errors

∑
ε2
i .

Multicollinearity, on the other hand, is a different problem and is lim-
ited to cases where we have two or more regressors. Its source lies in the
existence of near-linear dependencies among the regressor variables and its
main effect, in general, is that the results of the least-squares fit may turn
out to be unacceptable because the matrix A = XTX is ill-conditioned. Ill-
conditioning, in fact, implies that the LS estimates are not stable and this, in
turn, may cause some of the variances Var(β̂j) – or all of them – to be very
large, with ample variations between the estimates of different experiments.

In this light, it is clear that the analyst first task is to detect the pres-
ence of multicollinearity. Then, if this is the case, he/she is faced with the
problems of (i) assessing its extent and its possible effects on the problem
at hand and (ii) applying appropriate remedial measures whenever point
(i) indicates that multicollinearity can be harmful in his/her specific case.
Fortunately, a number of methods and techniques have been devised to
address all these aspects and a careful use of these techniques can be of
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great help in limiting – or even eliminating altogether in some cases – the
potential dangers of multicollinearity. Specific references in this regard are
[4, 9, 16].

7.5 Summary and comments

The study of relations between variables is fundamental in every branch of
science and Statistics, in this respect, is no exception. While in disciplines
like Physics and Engineering, however, these relations – in the form of math-
ematical equations – generally express a cause–effect relationship and reflect
laws of Nature, it is not necessarily so in Statistics. This circumstance, in
essence, is due to the fact that statistical significance and real-world signif-
icance are two distinct concepts which may coincide in some instances but
may not coincide in others. In any case, once the main scope of the investi-
gation is clear and we have reasons to believe that, on average, a ‘response’
r.v. Y depends on a number – say k – of ‘predictor’ variables x1, . . . ,xk, it
often turns out that a general linear model of the form (7.1b) is the appro-
priate relation that establishes a connection between Y and the xj. In this
context, however, it should be noted that the attribute ‘linear’ refers to the
parameters β1, . . . , βk and not to the predictors xj.

Then, the practical part of the analysis consists in (i) carrying out n ≥ k
trials in which we measure the response corresponding to specified values of
the predictor variables and (ii) use these observed data to estimate the k+ 1
parameters β1, . . . , βk, σ 2, where the residual variance σ 2 is assumed to be
the same for all errors εi (i = 1, . . . ,n) and these, in turn, are assumed to be
uncorrelated and with zero mean. Under the additional assumption of max-
imum rank for the n × k predictor matrix X, the so-called method of least
squares (LS method) leads to the LS estimates (7.5) for the β parameters while
the variance σ 2 must be estimated separately by means of eq. (7.12). The
whole procedure is explained in Section 7.2 where it is also shown (Propo-
sition 7.1) that the LS estimates have some desirable properties. In addition,
some further remarks introduce the concept of multiple-determination coef-
ficient and generalize the method to the case in which the β parameters must
satisfy a certain number m ≤ k of constraint equations.

Within the framework of the LS method, Section 7.2.1 considers the spe-
cial – and frequently encountered in applications – case of one predictor
variable, known as simple linear regression problem. Again, the term linear
refers to the (two) β parameters but it should be noted that now we have
linearity in the predictor variable as well.

If, in addition to zero mean and uncorrelation, we assume the errors
to be normally distributed, it is possible to make stronger inferences on
the estimated parameters. In this case one speaks of normal regression
and the first result worthy of notice is that the LS estimators coincide
with the ML estimators. Normal regression is the subject of Sections 7.3
and 7.3.1 where – somehow paralleling the developments of Sections 7.2 and
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7.2.1 – Section 7.3 considers the general case while Section 7.3.1 deals with
the simple one-predictor model. By virtue of a number of important results
on the distribution of functions of normally-distributed r.v.s, both sections
show how it is possible to determine confidence intervals for the individual
parameters and/or confidence regions regarding simultaneous inferences on
two or more parameters (or on linear combinations of them). These interval
estimates, in turn, are directly related to acceptance and rejection regions for
testing hypotheses on the parameters and in this light it is also drawn atten-
tion to the fact that the general normal regression scheme – by appropriately
setting up the relevant matrices involved in the calculations – can be used to
tackle a variety of problems such as, for instance, some problems generally
classified under the acronym ANOVA (analysis of variance).

In Section 7.3.2 it is shown that simple regression still applies if our data
are a sample from a bivariate distribution such that the conditional expec-
tation of Y given X is a linear function of x. In particular, the bivariate
Gaussian distribution – which is often assumed as the underlying proba-
bilistic model – satisfies this requirement and, in addition, is homoscedastic.
Along this line of reasoning, it shown that the statistical relations of simple
regression are the sample counterparts of the probabilistic relations given in
Section 3.4.2.

Finally, Section 7.4 draws attention to a number of topics which have
not been considered in the main discussion but are worthy of mention in
their own right. Besides briefly introducing the method of weighted simple
linear regression and making some specific remarks on various aspects of
both simple and general regression, the reader is particularly warned against
the harmful effects of (1) the presence of outliers in the data and (2) the
problem – in general regression – known as ‘multicollinearity’. These two
problems, in fact, are potentially very dangerous and may lead to highly
unreliable estimates of the regression parameters. Fortunately, many authors
have carefully studied them and the reader can easily find in current literature
a number of methods and techniques to detect their presence and, in case,
to adopt appropriate remedial measures.
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Appendix A
Elements of set theory

This appendix is intended as a refresher on a number of fundamental aspects
of set theory. For obvious reasons there is no claim of completeness, and we
will mainly focus our attention on notion and concepts which are used in
the main course of the book.

A.1 Basic definitions and properties

A set is any well-defined collection of objects. These objects are called ‘mem-
bers’, ‘elements’ or sometimes ‘points’ of the set. Following the customary
notation we indicate sets by capital letters and write x ∈ A when the object
x belongs to the set A, that is, x is an element of A. Similarly, x /∈ A means
that x is not an element of A, that is, it does not belong to the set A.

If A and B are two sets, we say that A is a subset of B – and write A ⊂ B
or, equivalently, B ⊃ A – if every element of A is an element of B; moreover,
we say that A is a proper subset of B if every element of A is an element of B
but, in addition, B also contains elements which do not belong to A. Two
sets A and B are equal, A = B in symbols, if they contain exactly the same
elements; clearly, A = B if and only if A ⊂ B and B ⊂ A.

In general, a set is defined by specifying its elements. If these elements
are few we can list them explicitly between braces: for example, the set
O of all possible outcomes of the rolling of a die is defined by writing O =
{1, 2, 3, 4, 5, 6} where it is understood that any integer between 1 and 6 (1 and
6 included) is a possible outcome of our die-rolling experiment. However,
we can also equivalently write O = {x ∈ N : 1 ≤ x ≤ 6} which reads ‘O
is the collection of all elements x belonging to the set of integers N such
that the property 1 ≤ x ≤ 6 applies’. This latter, in fact, is often a more
convenient way of defining sets: we consider the set of interest A as a subset
of a (usually large) set X and specify its elements by means of some property
P(x) that these elements must satisfy. Mathematically, this is done by writing
the general expression A = {x ∈ X : P(x)} of which the example above is
just a special case. As another example, if we write A = {x ∈ N : x2 < 7} it is
clear that A is the set whose only elements are the positive integers 1 and 2.
Also, in this symbolism we can express any open, closed and semi-closed
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interval of real numbers as, for instance (R is the set of real numbers),

(a,b) = {x ∈ R : a < x < b}
[a,b) = {x ∈ R : a ≤ x < b}
(−∞,b] = {x ∈ R : x ≤ b}
(a, ∞) = {x ∈ R : x > a}

etc. The set with no elements is denoted by ∅ and is called the empty or
null set.

Let us now turn our attention on the fundamental operations on sets. In
the following – as it is often the case in applications – we will assume that
all sets under consideration are subsets of some fixed ‘universal set’ W .

The set of all subsets of W is called the power set of W and is denoted by
P(W). Clearly, A ⊂ W if and only if A ∈ P(W).

The union of two sets A and B, written A ∪ B, is the set consisting of all
elements that belong to either A or B, that is,

A ∪ B = {x : x ∈ A or x ∈ B}

for example, if A = {1, 6, 8} and B = {1, 5} then A ∪ B = {1, 5, 6, 8}. More-
over, from its definition, it is obvious that commutativity applies for unions
of sets, that is A ∪ B = B ∪ A.

The intersection of two sets, written A ∩ B (however, note that some
authors write AB), is the set of all elements that belong to both A and B,
that is,

A ∩ B = {x : x ∈ A and x ∈ B}

so that, for example, if A and B are as above, then A ∩ B = {1}. Obviously,
also the intersection operation is commutative, that is, A ∩ B = B ∩ A.

If two sets A and B have no elements in common then A ∩ B = ∅ and we
say that A and B are disjoint.

Given a set A ∈ P(W), the complement of A – denoted AC – is the set of
all elements of W that do not belong to A, that is,

AC = {x ∈ W : x /∈ A}

As a consequence, we have that A ∪ AC = W , A ∩ AC = ∅, WC = ∅ and
(AC)C = A. Also, if A ⊂ B then BC ⊂ AC.
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Intersections and unions of sets satisfy the following distributive laws
whose proofs are left to the reader: if A,B,C are subsets of a set W , then

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(A.1)

Also, given the setsA,B,C it is immediate to prove the associativity property
of unions and intersections, that is (A∪B)∪C = A∪(B∪C) and (A∩B)∩C =
A∩ (B∩C). This implies that we can simply write A∪B∪C and A∩B∩C
without ambiguity.

The operation of complementation, in turn, obeys De Morgan’s laws: if
A and B are subsets of a set W , then

(A ∪ B)C = AC ∩ BC

(A ∩ B)C = AC ∪ BC
(A.2)

We prove here the first of (A.2) and leave the second to the reader. If x ∈
(A ∪ B)C then x /∈ A ∪ B and therefore x /∈ A and x /∈ B. This implies that
x ∈ AC and x ∈ BC and therefore x ∈ AC ∩ BC so that – having shown that
every element of (A ∪ B)C is also an element of AC ∩ BC – our first result is
that (a) (A ∪ B)C ⊂ AC ∩ BC. Conversely, if x ∈ AC ∩ BC then x ∈ AC and
x ∈ BC, so that x /∈ A and x /∈ B and therefore x /∈ A ∪ B, which, in turn,
implies x ∈ (A∪B)C. Thus, our second result is that (b) AC ∩BC ⊂ (A∪B)C.
By putting results (a) and (b) together we finally obtain (A∪B)C = AC ∩BC,
which is precisely the first of eq. (A.2).

Other operations on sets are the difference and symmetric difference. The
difference of two sets, written A − B, is the set of all elements of A that do
not belong to B. In symbols

A− B ≡ {x : x ∈ A,x /∈ B}

so that, for example, if A = {x ∈ N : 3 ≤ x ≤ 10} and B = {8, 9, 10} then
A − B = {x ∈ N : 3 ≤ x ≤ 7} and also, since in this case B ⊂ A, we have
B − A = ∅. (Note that the difference A − B is called by some authors the
‘complement of B relative to A’ and may be written as A\B.)

The symmetric difference of two sets, in turn, is written A�B and is the
set of all elements belonging to either A or B, but not to both. In symbols

A�B ≡ {x : x ∈ A or x ∈ B,x /∈ A ∩ B}

So, for example, if A = {1, 2, 3, 4} and B = {3, 4, 5, 6, 7}, then A�B =
{1, 2, 5, 6, 7}. We leave to the reader to show that (a) the symmetric difference
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is commutative and associative and (b) given two sets A and B, the following
relations hold

A�B = (A ∪ B) − (A ∩ B)

A�B = (A− B) ∪ (B− A)
(A.3)

where either one of the two eqs (A.3) is often given as the definition of A�B.
The last operation we define is the cartesian (or direct) product of two

sets: given two sets A and B, their cartesian product A × B is the set of all
ordered pairs (x, y) where x is an element of A and y is an element of B;
mathematically this is written

A× B ≡ {(x, y) : x ∈ A, y ∈ B}
and it should be noted that A × B is not the same as B × A unless
A = B.

If A = B, the product A×A is usually denoted A2 and a familiar example
from calculus is the ordinary two-dimensional space R2 = R × R, that is,
the set of all pairs (x, y) of real numbers which represent the coordinates of
a point in a plane. As an exercise it is left to the reader to show that

A× (B ∪ C) = (A× B) ∪ (A× C)

A× (B ∩ C) = (A× B) ∩ (A× C) (A.4)

Given a universal set W , in set theory one often has to deal with finite or
infinite collections of subsets (of W) labeled by an index. For our purposes
it is sufficient to consider finite and countably infinite collections, which will
be denoted by {An}Nn=1 and {An}∞n=1, respectively, or simply by {An} when it
is irrelevant whether the sequence is finite or not. Such collections are also
called sequences of sets. It is immediate to extend the operations of union
and intersection as follows⋃

n

An = {x : x ∈ An for some n}
⋂
n

An = {x : x ∈ An for all n}

so that, when B and {An} are subsets of W , the distributive laws (A.1) can
be written in the more general form

B ∩
(⋃

n

An

)
=
⋃
n

(B ∩ An)

B ∪
(⋂

n

An

)
=
⋂
n

(B ∪ An)
(A.5)
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and De Morgan’s laws (A.2) generalize to(⋃
n

An

)C

=
⋂
n

AC
n(⋂

n

An

)C

=
⋃
n

AC
n

(A.6)

Given a sequence of subsets {An}∞n=1 of W , we call it an increasing sequence
if A1 ⊂ A2 ⊂ A3 ⊂ · · · or, in other words if An ⊂ An+1 for every index n;
similarly, we speak of decreasing sequence if An ⊃ An+1 for every n. Both
types of sequences are calledmonotone. If {An}∞n=1 is an increasing sequence
as defined above the set

A =
∞⋃
n=1

An (A.7)

is called the limit of the sequence and one often finds the symbols A =
limn→∞ An or An ↑ A. Similarly, if {An}∞n=1 is decreasing the set

A =
∞⋂
n=1

An (A.8)

is the limit of the sequence and the symbols A = limn→∞ An or An ↓ A are
frequently encountered. With these definitions it is immediate to show that
(a) if An ↑ A then ACn ↓ AC and (b) if An ↓ A then ACn ↑ AC.

More generally, for an arbitrary sequence {An}∞n=1 of subsets of W we
define the set called limit superior of the sequence as

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak (A.9)

where a ∈ lim supAn if and only if a ∈ An for infinitely many n. Also, we
define the limit inferior as

lim inf
n→∞An =

∞⋃
n=1

∞⋂
k=n

Ak (A.10)

where a ∈ lim inf An if and only if a ∈ An for all but finitely many n. In
general lim inf An ⊂ lim supAn; however, if lim inf An = lim supAn = A
we say that the sequence converges to the set A – or, equivalently, A is the
limit of the sequence – and we simply write A = limn→∞ An. Note that the
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condition lim inf An = lim supAn always holds for monotone sequences.
As an example consider the sequence of real intervals An = (−∞,b− 1/n);
from the definitions (A.9) and (A.10) it is not difficult to determine that
lim inf An = lim supAn and that this common limit is the set A = (−∞,b).
Moreover, since the given sequence is increasing, the result A = (−∞,b)
can also be obtained directly from eq. (A.7).

In many situations one has to deal with pairwise disjoint sequences of
sets, where this term refers to any indexed collection of sets {An} such
that Ai ∩ Aj = ∅ whenever i �= j. In this regard the concept of parti-
tion of a set is particularly important: given a set B we call partition of
B any collection of sets {An} such that (i) Ai ∩ Aj = ∅ for i �= j and (ii)
∪nAn = B.

For our purposes the definition of partition will in general suffice. How-
ever, for the interested reader it may be worth noting that there exists a
close connection between partitions of a set and the so-called ‘equivalence
relations’ which can be introduced on the same set. In fact – given a set B – it
turns out that any equivalence relation on B determines a partition of B and
conversely.

Broadly speaking, a (binary) relation is a formalization of the notion that
some elements of B may be related to some other elements of B in a special
way, thus allowing us to specify the pairs of elements (a,b) ∈ B×B that are
related. For example, given a set B of 3 people: Mark, aged 36, George, aged
41 and Susy, aged 23, we may define a relation in B by saying ‘b1,b2 ∈ B
are related if b1 is older than b2’, thus immediately determining the related
(and ordered) pairs, that is (George, Susy), (George, Mark) and (Mark,
Susy).

In general, given a set B, we speak of a relation on B if there exist at
least a related pair (a,b) for every a ∈ B and the fact that two elements a
and b are related is indicated a ≈ b. Equivalence relations defined on a set B
are special types of relations which obey the three following conditions: for
every a,b, c ∈ B

(1) a ≈ a (reflexivity),
(2) if a ≈ b then b ≈ a (symmetry),
(3) if a ≈ b and b ≈ c, then a ≈ c (transitivity).

Clearly, the relation ‘older than’ given above is not an equivalence relation.
Conversely, given a set T of triangles t1, t2, . . . , tN , the specification ‘ti ≈ tj
if ti has the same area as tj’ defines an equivalence relation (on T) which, in
turn, decomposes T in a number of pairwise disjoint subsets (called equiva-
lence classes; in this case the sets made up of triangles with the same area)
whose union is T, that is, a partition of T. Since this latter comment on
the decomposition of a set is true in general, we note that, in practice, it is
often by specifying an equivalence relations on a set that we can construct
partitions of this same set.
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A.2 Functions and sets, equivalent sets and cardinality

Most readers are familiar with the notion of real-valued function, that is
a rule f which associates with each real number x another real number
f (x). This, however, is just a special case because the notion of function is
essentially a set-theoretic concept and applies in more general contexts.

Now, let X and Y be two sets; a rule f that assigns to every x ∈ X a
unique element y = f (x) ∈ Y is called a function (mapping, transformation
or operator) from X to Y. In this case one often writes f : X → Y and
speaks of a ‘Y-valued function defined on X’ or of a ‘function defined on X
with values in Y’. Also, the set X is called the domain of f – and sometimes
indicated D(f ) – while the set R(f ) ⊂ Y defined by

R(f ) = {y ∈ Y : y = f (x) for some x ∈ X}
is called the range of f . If x ∈ X, the element y = f (x) ∈ Y is called the
image of x (under the mapping f ) and we can call x a pre-image of y. Note
that we do not say ‘the’ pre-image of y because an element y may have more
than one pre-image. Moreover it may happen that Y contains elements with
no pre-image at all. This implies that R(f ) is a proper subset of Y and we
say in this case that f maps X into Y . Conversely, when every element y ∈ Y
has (at least) a pre-image x ∈ X (or, in other words, for every y ∈ Y there
is an x ∈ X such that y = f (x)) we say that f maps X onto Y or that f is
surjective. Clearly, this means that R(f ) = Y.

When f : X → Y maps distinct elements ofX into distinct elements of Y –
that is, if x1 �= x2 implies f (x1) �= f (x2) – the function f is called one-to-one
or injective.

If a function f : X → Y is one-to-one and onto (i.e. injective and surjective,
or, for short, bijective) then for every y ∈ Y there is a unique pre-image x ∈ X
such that y = f (x). In this case we say that f is invertible because we can
define the function f−1 : Y → X, called the inverse of f . Clearly, f−1(y) = x
whenever y = f (x). Note that if f : X → Y is one-to-one but not onto we can
nonetheless define an inverse f−1 provided that its domain is R(f ), that is,
f−1 : R(f ) → X. In fact, the function f : X → R(f ) is one-to-one and onto.

With the definitions above, given a set A ⊂ X it should be clear at this
point what we mean by f (A), namely

f (A) = {y ∈ Y : y = f (x) for some x ∈ A} ⊂ Y

which is called the image of set A under the mapping f . Similarly, given a
set B ⊂ Y, we call pre-image of B the subset of X

f−1(B) = {x ∈ X : f (x) ∈ B}
Note that this symbolism does not necessarily imply that f is invertible; here
we are just focusing our attention on the elements ofX which are pre-images
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of the elements of the set B regardless of the fact whether f is one-to one
and/or onto. In fact, if f is not surjective and B is a set whose elements have
no pre-image we write f−1(B) = ∅.

Given three sets X,Y,Z and two functions f : X → Y and g : Y → Z we
can consider the composition of g and f , that is, the function g ◦ f : X → Z
defined by

(g ◦ f )(x) = g(f (x))

where we note that this concept is meaningful only ifR(f ) ⊂ D(g), otherwise
one says that g◦ f does not exist. With this definition at our disposal we note
that, broadly speaking, a function f : X → Y is invertible if there exists
a mapping f−1 : Y → X which unravels f . Specifically, f−1(f (x)) = x for
every x ∈ X, and since we remarked that a function is invertible if and only
if it is one-to-one and onto, the relation f (f−1(y)) = y (for every y ∈ Y) also
holds.

At this point we can turn our attention to some important results which
will be stated as propositions without proofs. The interested reader can try
to work out the proofs or can find them, for instance, in Ref [1] at the end
of this appendix.

Proposition A.1 The pre-image of the union of two sets equals the union
of the two individual pre-images, that is,

f−1(A ∪ B) = f−1(A) ∪ f−1(B) (A.11)

Proposition A.2 The pre-image of the intersection of two sets equals the
intersection of the two individual pre-images, that is,

f−1(A ∩ B) = f−1(A) ∩ f−1(B) (A.12)

Proposition A.3 The image of the union of two sets equals the union of the
two individual images, that is,

f (A ∪ B) = f (A) ∪ f (B) (A.13)

Also, these results can be generalized to

f−1

(⋃
n

An

)
=
⋃
n

f−1(An)

f−1

(⋂
n

An

)
=
⋂
n

f−1(An) (A.14)

f

(⋃
n

An

)
=
⋃
n

f (An)



314 Appendix A

Note that nothing has been said about the image of the intersection of sets;
this is because, in general

f

(⋂
n

An

)
⊂
⋂
n

f (An) (A.15)

and the equality sign holds only if f is one-to-one. We close this section
with a few short comments on the cardinality (or power) of a set, a term
which, broadly speaking, refers to the number of elements in the set. As a
preliminary, we say that two setsA and B are equivalent if there is a bijective
mapping f : A → B between the elements of A and the elements of B. Two
equivalent sets are said to have the same cardinality and, by definition, we
say that the empty set ∅ contains zero elements.

If two sets are finite, that is, contain a finite number of elements, their
cardinality is simply the number of their elements and it is easy to determine
whether they are equivalent or not. Therefore, in this context, the concepts
of cardinality and equivalence have an immediate interpretation. For sets
with an infinite number of elements things are not so intuitive and it is here
that the notion of equivalence plays a fundamental role. In fact, we say
that a set A is countably infinite if there is a bijective mapping between
its elements and the set of natural numbers N = {1, 2, 3, . . .} or, in other
words, if A is equivalent to N. Also, as a side comment, note that the term
‘countable set’ is often used to refer both to finite and countably infinite sets
(a better definition is to call ‘countable’ an infinitely countable set and to
use the term ‘at most countable’ for sets that are either finite or infinitely
countable).

In regard to countable sets the following results are worthy of notice:

(1) any subset of a countable set is at most countable;
(2) a finite or countably infinite union of countable sets is itself a count-

able set;
(3) a countably infinite set is equivalent to one of its proper subsets;
(4) the set Z = {. . . , −2, −1, 0, 1, 2, . . .} of all integers is countably infinite;
(5) the set Q = {x : x = p/q,p,q ∈ Z,q �= 0} of rational numbers is

countably infinite.

All or most of the five statements above are probably known to the reader,
and their proofs can be found on almost any book of mathematical analysis;
however, an additional comment on statement (3) may not be out of place.
Statement (3) says that it is possible to construct a bijective mapping between
an infinite set and any one of its infinite proper subsets. As a matter of fact,
this is a distinguishing property of infinite sets and it turns out that a set
is infinite if and only if it is equivalent to one of its proper subsets. This is
true also for non-countable sets whose existence is guaranteed by a theorem
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stating that the set of real numbers in the closed interval [0, 1] is uncountable.
Furthermore, it can also be shown that the set of all real numbers in any
closed or open interval – respectively (a,b) or [a,b], with a < b – and the set
of all real numbers (the real line R) are equivalent to [0, 1] and are, therefore,
uncountable. Clearly, no uncountable set can be a subset of a countable set
because, broadly speaking, countable sets represent the ‘smallest’ type of
infinity while sets equivalent to [0, 1] – which are said to have the power of
the continuum – represent a ‘larger’ type of infinity.

A.3 Systems of sets: algebras and σ -algebras

The general phrase ‘system of sets’, or collection of sets, is used to indicate a
‘set of sets’, that is a set whose elements are themselves sets. More specifically,
we will be mainly interested in special collections of subsets of a given set
W , where the term ‘special’ refers to the fact that they must satisfy a number
of properties in order to qualify.

Let us start with the defining properties of an algebra of sets. A non-empty
system R of subsets of a set W is called an algebra of sets if

(1) A ∈ R implies AC ∈ R,
(2) A,B ∈ R implies A ∪ B ∈ R.

In words, the properties above are expressed by saying that an algebra is
closed with respect to the operations of complementation and union. Given
a set W , an immediate example of algebra is given by the collection of the
two sets {∅,W}, the so-called trivial algebra on W ; another example is the
power set P(W) and a third example is {∅,A,AC,W} whereA is a non-empty
proper subset of W .

Noteworthy consequences of the defining properties (1) and (2) are that

(i) an algebra is closed under the operation of intersection;
(ii) an algebra is closed under the operations of difference and symmetric

difference;
(iii) an algebra is closed under finite unions and intersections, i.e. if

A1,A2, . . . ,An ∈ R then ∪nk=1Ak ∈ R and ∩nk=1Ak ∈ R.

The proof of (i) is immediate; in fact, by virtue of De Morgan’s laws (A.2) we
have A∩B = (AC ∪BC)C, and since the set on the right-hand side belongs
to R whenever A,B ∈ R, it follows that A ∩ B ∈ R whenever A,B ∈ R.
Moreover, note that property (1) plus closure under intersection imply that
∅ ∈ R and W ∈ R. In regard to statement (ii), closure under symmetric
difference can be proven by means of the identityA�B = (A∩BC)∪(B∩AC)

and then closure under difference follows by virtue of the first of eq. (A.3).
Finally, the proof of (iii) is trivial.
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We can now make a side comment and note that, in the light of (i) and (ii),
it should be hardly surprising to find defining properties (of an algebra of
sets) other than (1) and (2); for example, one can define [1] an algebra as a
system of sets which is closed under the operations of symmetric difference
and intersection. Needless to say, this is equivalent to our definition.

Returning to our main discussion, it is useful to point out two theorems
which we state in the form of propositions without proof:

Proposition A.4 Any intersection (finite or not) of algebras of sets is itself
an algebra.

Proposition A.5 Given a non-empty collection M of subsets of W, there
exist a smallest algebra of subsets of W containing M. This algebra is called
the algebra generated by M and can be denoted by R(M). Also, it can be
shown that R(M) is obtained as the intersection of all algebras (on W) con-
taining M (the term ‘smaller’ above means that if R is an algebra on W
containing M, then R(M) ⊂ R).

We define now another special system of sets. A σ -algebra on W is a non-
empty collection S of subsets of W satisfying the conditions

(1′) A ∈ S implies AC ∈ S;
(2′) A1,A2, . . . ∈ S imply ∪∞

n=1An ∈ S

meaning that a σ -algebra is closed under complementation and countable
unions. It is left to the reader to show that a σ -algebra is also closed under
countable intersections.

Clearly, every σ -algebra is an algebra, but the converse is not true because
the conditions enforced on a σ -algebra are more restrictive. However, two
theorems which parallel A.4 and A.5 hold

Proposition A.6 Any intersection (finite or not) of σ -algebras is itself a
σ -algebra.

Proposition A.7 Given any non-empty collection M of subsets of W there
exist a smallest σ -algebra of subsets of W containing M. This σ -algebra is
called the σ -algebra generated byM and can be denoted by S(M). Also, it can
be shown that S(M) is the intersection of all σ -algebras (onW) containingM.

If we consider the special case of sets of real numbers, the so-called
Borel σ -algebra is particularly important in analysis. Specifically, the Borel
σ -algebra B on the real line R can be defined as the σ -algebra generated by
the collection of intervals I of the type I = {(−∞, a] : a ∈ R}. The members
of this σ -algebra are called Borel sets (or B-sets) and it can be shown that
every open, closed and semi-open set of R – that is, sets of the type (a,b),
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[a,b], [a,b) or (a,b] with a < b – are Borel sets. Also, degenerate intervals
of the type [a, a] are Borel sets.

(As a side remark for the more mathematically oriented reader we note
that B is the σ -algebra generated by the natural topology of open sets of R

and that, by extension, the name of Borel sets is used to denote the members
of the σ -algebra generated by a topology in a general set X.)

The last results we state in this section consider the way in which systems
of sets transform under mappings. Let X, Y be two sets, f : X → Y a
function and let M be a system of subsets of X. We denote by f (M) the
system of all images f (A) of sets A ∈ M; similarly, ifN is a system of subsets
of Y, f−1(N) denotes the system of all pre-images f−1(B) of sets B ∈ N.
In this light, the following proposition hold

Proposition A.8

(a) If N is an algebra (in Y) then f−1(N) is an algebra (in X),
(b) If N is a σ -algebra (in Y) then f−1(N) is a σ -algebra (in X).
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Appendix B
The Lebesgue integral – an overview

Our main purpose here is to introduce and briefly discuss a number of
concepts which are relevant to the main subject of the book. For this
reason, the exposition will necessarily be concise and limited to the essential
aspects of our interest. For a detailed treatment – and for the proof of most
theorems – a list of references is given at the end of this appendix.

B.1 Introductory remarks

The reader is probably familiar with the notion and properties of the
Riemann integral from fundamental calculus. Unfortunately, this integral
suffers from two main limitations: (a) it applies only to functions which
are either continuous or ‘essentially’ continuous and (b) it fails to satisfy
certain desirable convergence properties. In fact, in regard to statement
(b) it is known, for instance, that if a sequence {fn}∞n=1 of Riemann inte-
grable (R-integrable) functions on an interval [a,b] converges pointwise to
a R-integrable function f – that is, if limn→∞ fn(x) = f (x) – then, in general,
it is not true that

lim
n→∞

b∫
a

fn(x) dx =
b∫
a

f (x) dx (B.1)

meaning that the operations of limit and integral cannot in general be
interchanged. Moreover, this is true even if each fn and f are continuous
(incidentally, we recall that the set of continuous functions is not closed
under pointwise limits, that is, the facts that (i) fn(x) → f (x) pointwise and
(ii) each fn is continuous do not imply that f is continuous).

If, on the other hand, if the sequence {fn}∞n=1 of R-integrable functions on
[a,b] converges uniformly to f , then it can be shown that (i) f is R-integrable
and (ii) eq. (B.1) holds. Even so, however, uniform convergence is a sufficient
but not necessary condition. Now, since uniform convergence is a rather
strong requirement (especially when the common domain is the entire real
line R), we are led to the concept of Lebesgue integral which, besides allowing
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the possibility to integrating a larger class of functions, overcomes many of
the difficulties of the Riemann integral.

In addition to all this, the Lebesgue integral can be defined on abstract
measure spaces (where the Riemann integral does not make sense) and the
Lebesgue integral on the real line is just a special case of this general defini-
tion. In probability theory, in fact, we recall that expectations are defined as
abstract Lebesgue integral on a probability space. Then, mathematical anal-
ysis shows that these integrals turn into Lebesgue–Stieltjes integrals on R

and these, in turn, are calculated as sums or as ordinary Riemann integrals.

B.2 Measure spaces and the Lebesgue measure on
the real line

In Chapter 2 we have introduced the notion of probability space. Later in
the same chapter (Section 2.2.1) we pointed out that probability spaces are
special cases of measure spaces. By this term we mean the following:

Definition B.1 A measure space is a triplet (W , S, ν), where W is a set, S is
a σ -algebra of subsets of W and ν is a function ν : S → R satisfying

(M1) ν(A) ≥ 0 for all A ∈ S
(M2) σ -additivity: if A1,A2, . . . ∈ S and Ai ∩ Aj = ∅ (i �= j), then

ν

( ∞⋃
n=1

An

)
=

∞∑
n=1

ν(An)

The sets belonging to S are called measurable sets and ν is called a measure
on S. The peculiar characteristic of probability measures is the additional
requirement ν(W) = 1.

In Chapter 2 we also gave some important properties descending from
(M1) and (M2) – namely monotonicity, subadditivity and continuity – and
noted how a non-negative, σ -additive function defined on a semialgebra
G of subsets of a set W can be extended to a σ -algebra of subsets of W .
This possibility justifies the fact that, usually, the domain of a measure is a
σ -algebra of sets.

More specifically, the extension procedure is accomplished in two steps:
(a) for all subsets W , one first defines (in terms of the original set function
defined on G) the so-called ‘outer measure’ and then (b) restricts its domain
to all subsets which satisfy a certain ‘measurability’ criterion (eq. (2.7)). The
restriction of the domain is necessary because the outer measure defined in
(a) is not σ -additive on its domain (i.e. P(W); for details see, for instance,
Refs [2, 5] or [7]).
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Now, the ‘construction’ of a measure outlined above is a general abstract
mathematical procedure which applies to a large number of cases (this means
that the set W is not necessarily a set of real numbers). A special important
case, however, occurs when the set W is the real line R, a situation which
leads to the definition of the Lebesgue measure – usually denoted by µ.
This measure generalizes the notion of length (of an interval) to a broad
class M – the so-called class of ‘Lebesgue measurable’ sets – of subsets of R

while at the same time retaining the intuitive concept. Specifically, one starts
with the idea of length L of an interval [a,b] ⊂ R, where L[a,b] = b − a,
and then extends this notion to the class of ‘elementary sets’, that is, all
sets that can be represented as the finite or countable union of pairwise
disjoint intervals. At this point, for any subset A of R, one defines its outer
measure µ∗(A) which, indeed, does generalize the notion of length but lacks
the most important property of interest, that is, σ -additivity. In order to
retain σ -additivity one must restrict the domain of µ∗ to a proper subclass
M of P(R). Then it is shown that (i) M is a σ -algebra and, in particular
(ii) contains the σ -algebra B of all Borel sets of R. Clearly, all open, closed
and semiclosed intervals of R, by construction, turn out to be Lebesgue
measurable.

Thus, the triplet (R,M, µ) – where µ, the Lebesgue measure, denotes the
restriction of µ∗ to the domain M – is a measure space and, as a matter of
fact, it is the measure space which was initially used as a model to develop
the abstract concept defined at the beginning of this section. If one ignores,
as we did, the historical sequence of facts, the Lebesgue measure is just a
particular case of the abstract construction. In fact, it can be shown that our
starting point, that is, the collection I of all intervals of R (including intervals
of the form (a, a) and [a, a]), is a semialgebra of subsets of R and the length
L, in turn, is a non-negative, σ -additive function L : I → R. So, for our
purposes the point is that we are able to assign a measure to a large number
of subsets of R and that this class of sets – although being a proper subset
of P(R) – is much broader than the class of intervals of R and even broader
than the class B of Borel sets. As a side remark, it should be noted that,
starting from the set R, it is possible to define different measures other than
µ. This, in essence, is due to the generality of the basic requirements – that is,
properties (M1) and (M2). In their light, in fact, it would be rather surprising
if µ were the only possible measure on R.

Closing the parenthesis on the special case W = R, let us return to the
abstract setting (W , S, ν) with the final goal of defining an integral on this
measure space. The first step in this direction is the definition of measurable
function. Before doing this, however, a few further remarks and definitions
on measures – and on the Lebesgue measure µ in particular – are in order.

First of all, given a space (W , S, ν), a property is said to hold almost
everywhere (a.e. or ν-a.e. if the measure needs to be specified) if it holds
everywhere except on a set N such that ν(N) = 0. So, for example, if in
R equipped with the Lebesgue measure µ one says that a function f (x) is
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continuous a.e., it means that the setA ⊂ R of all xwhere f is not continuous
is such that µ(A) = 0.

A measure space (W , S, ν) is called complete if any subset B of a
measurable set A such that ν(A) = 0 is itself measurable, that is, B ∈ S (and,
clearly, ν(B) = 0). In this regard it can be shown that the measure space
(R,M, µ) is, indeed, complete. If a measure space (W , S, ν) is not complete
it can however be completed, as stated in the following proposition:

Proposition B.1 Let (W , S, ν) be a measure space and let S̄ be the class of
all sets of the form B ∪ A where B ∈ S and A ⊂ C for some C ∈ S such that
ν(C) = 0. Define ν̄(B∪A) = ν(B). Then S̄ is a σ -algebra, ν̄ is a measure on S̄
and (W , S̄, ν̄) is a complete measure space called the completion of (W , S, ν).
Clearly S ⊂ �S and the restriction of ν̄ to S is the original measure ν.

This result has been given because in the course of this and other books
one often considers the Lebesgue measure µ restricted to the domain B of
Borel sets of R; the measure space (R, B, µ) is not complete but it is important
to note that (R,M, µ) is its completion.

Another definition classifies measures in two classes: a measure ν is called
finite if ν(W) < ∞ (i.e. ν(W) is finite) and σ -finite if the set W can be
represented as the union W = ∪∞

n=1An where An ∈ S and ν(An) < ∞ for
all n. For the cases of our interest it is worth pointing out that

(a) any probability measure is finite,
(b) the Lebesgue measure µ is a σ -finite measure on the real line R (in fact,

consider the sets In = [−n.n], n = 1, 2, . . .. Then R = ∪∞
n=1In and

µ(In) < ∞ for all n. Clearly, µ(R) = ∞).

B.3 Measurable functions and their properties

The general definition of measurable function is as follows:

Definition B.2(a) LetW1,W2 be two sets in which, respectively, we identify
two σ -algebras S1, S2. Then the function f : W1 → W2 is called measurable
if f−1(A) ∈ S1 for every set A ∈ S2.

For our purposes it is often sufficient to consider real-valued set functions,
that is functions whose domain is a setWand whose range is a subset of R or
R itself. In this case, the collection B of Borel sets is considered the ‘natural’
σ -algebra in the range of the function and the definition is:

Definition B.2(b) Let W be a set, S be a σ -algebra of subsets of W and
f : W → R. The function f is measurable (or, sometimes, S-measurable if
the σ -algebra in the domain needs to be indicated) if f−1(B) ∈ S for every
Borel set B ⊂ R.
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In particular, if f : R → R two special cases arise:

(i) if f−1(B) is a Borel set for every Borel set B ⊂ R, f is called Borel
measurable, B-measurable or a Borel function;

(ii) if f−1(B) ∈ M for every Borel set B ⊂ R, f is called Lebesgue measurable
(L-measurable for short). In general, although for a function f : R → R it
is rarely necessary to replace B-measurability by the more general notion
of L-measurability, the two concepts need to be distinguished; in fact,
every Borel measurable function is L-measurable but not conversely.

Given the definition above (not be confused with the measurability of sets),
one should note that:

(a) For the concept of measurable function to make sense we only need to
identify two systems of sets, one within its domain (the σ -algebra S1)
and one within its range (the σ -algebra S2). So, strictly speaking, we do
not even need to introduce a measure ν on S1. However, the concept
is frequently used in the context of a measure space (W1, S1, ν) because
this is the situation of interest in most cases.

(b) In probability terminology (see Chapter 2) a measurable function f :
W → R is called random variable.

A first useful result is that a function f : W → R is measurable if and
only if the set f−1(−∞, a] = {w ∈ W : f (w) ≤ a} is measurable – that is,
belongs to S – for every a ∈ R (see also Proposition 2.9). A second result is
that, in general, all ordinary operations of analysis (including limit opera-
tions), when applied to measurable functions, lead to measurable functions;
in other words all functions that are ordinarily encountered in applications
are measurable. This is made more precise in the following propositions:

Proposition B.2 If f , g aremeasurable functions, then f + g, f − g, fg, f /g, αf
(where α ∈ R) and |f | are measurable (clearly, when these functions are well-
defined, that is, if f (x) + g(x) is never of the form +∞ − ∞ and f (x)/g(x) is
never of the form ∞/∞ or α/0).

In addition, a measurable function of a measurable function is itself
measurable and the limit of measurable functions is measurable, that is,

Proposition B.3 Let W1,W2,W3 be three sets in which, respectively, we
identify the σ -algebras S1, S2, S3. If f : W1 → W2 and g : W2 → W3 are
measurable then the function h : W1 → W3 given by h(x) = g(f (x)) is
measurable.

Proposition B.4 If {fn}∞n=1 is a sequence of measurable functions and
limn→∞ fn(x) = f (x), then f (x) is measurable (in other words, the class
of measurable functions is closed with respect to pointwise convergence).
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This last result is important because, as we noted in the introductory remarks,
the class of continuous functions is not closed under pointwise limits. It
is then evident (and it can be proven rigorously) that the class of continuous
functions is a proper subclass of measurable functions, that is, that every
continuous function is measurable.

We noted above that the notion of measurability of a function does not
require a measure to be defined; nevertheless, this is by far the most frequent
situation and the domain is generally a set with the structure of a measure
space, that is, a triplet (W , S, ν) which, by virtue of Proposition B.1, can be
considered a complete measure space without loss of generality (in fact, we
can always set ν(A′) = 0 for any subset A′ of a set A such that ν(A) = 0).
Unless otherwise stated, we will always assume completeness.

So, in all cases where a measure is defined the values taken on by a mea-
surable function on sets of zero measure can often be neglected by bringing
into play the concept of ‘almost everywhere’ properties introduced in the
previous section. In this light, two functions f , g defined on the same set
are called ‘equal almost everywhere’ (equal a.e. or, for some authors, equiv-
alent) if the set of values where f (x) �= g(x) has zero measure, that is if
ν{x : f (x) �= g(x)} = 0. From this it follows that a function f equal a.e. to
a measurable function g is itself measurable. The next definition proceeds
along this line of reasoning:

Definition B.3 A sequence of measurable functions {fn}∞n=1 is said to con-
verge a.e. to a function f if limn→∞ fn(x) = f (x) except on a set of measure
zero. In this case one often writes fn → f [a.e.] or fn → f [ν − a.e.] if the
measure needs to be specified.

In this regard, since pointwise limits of measurable functions are mea-
surable functions (Proposition B.4), it can be asked if this remains true for
convergence a.e. We have the following result:

Proposition B.5 If the sequence of measurable functions {fn}∞n=1 converges
a.e. to f , f itself is measurable.

A remark, however, is in order here. Proposition B.5 is not, in general, true
if the measure space (W , S, ν) is not complete. Therefore, in particular, if
fn : R → R are L-measurable functions and fn → f a.e., then f is
L-measurable but if the functions fn are B-measurable we cannot conclude
that f is B-measurable.

Another type of convergence used in probability theory is the so-called
‘convergence in probability’ which, in the context of measure theory, is
called by mathematicians ‘convergence in measure’.
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Definition B.4 A sequence {fn}∞n=1 of measurable functions converges in
measure to the measurable function f if for each ε > 0 we have

lim
n→∞ ν{x : |f (x) − fn(x)| ≥ ε} = 0

which, in words, means that the measure of the set where fn differs from f
by more than any prescribed positive number tends to zero as n → ∞. To
indicate convergence in measure one often finds the symbol fn → f [ν].

In general, there is no relationship between convergence a.e. and conver-
gence in measure. However, for finite measure spaces (hence for probability
spaces) convergence a.e. implies convergence in measure, i.e. the following
proposition holds:

Proposition B.6 Let (W , S, ν) be a finite measure space and let the sequence
of measurable functions {fn}∞n=1 converge a.e. to f . Then, fn → f [ν].

The converse statement is not true and convergence in measure does not
imply convergence a.e. There exists, however, a partial converse

Proposition B.7 Let the sequence of measurable functions {fn}∞n=1 con-
verge in measure to the measurable function f . Then, there is a subsequence
{fnk}∞k=1 such that fnk → f a.e.

B.4 The abstract Lebesgue integral

Among measurable functions it is useful to distinguish the class of simple
functions, that is functions whose range is a finite set. So, let (W , S, ν) be a
measure space:

Definition B.5 A measurable function s : W → R is called simple if it takes
on only finitely many distinct values a1, a2, . . . , an. Equivalently, σ is simple
if and only if it can be expressed as the sum

s =
n∑

k=1

akIAk (B.2)

where IAk is the indicator function (defined by eq. (2.21)) of the set Ak ≡
{w ∈ W : s(w) = ak}. The sets Ak, in turn, can be assumed to be disjoint
without loss of generality and, clearly, the function s is measurable if and
only if theAk are measurable. The Lebesgue integral is first defined for simple
functions:

Definition B.6 Let s be a measurable simple function on W of the form
(B.2). Then the abstract Lebesgue integral of s over W (with respect to ν) is
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defined by∫
W

sdν ≡
n∑

k=1

akν(Ak) (B.3a)

as long as +∞ and −∞ do not both appear in the sum on the r.h.s.; if
they do we say that the integral does not exist. Also, one adopts the usual
convention 0 ·∞ = 0 if ak = 0 and ν(Ak) = ∞ for some index k. As inciden-
tal remarks to notation and terminology we note that (i) other frequently
encountered symbols for

∫
W sdν are

∫
W s(w) dν(w) or

∫
W s(w)ν(dw) and

(ii) one sometimes speaks of ‘abstract Lebesgue integral’ if the setting is a
general measure space (W , S, ν) and of ‘Lebesgue integral’ in the special case
(W , S, ν) = (R,M, µ).

If A ∈ S the abstract Lebesgue integral of s over A is defined by∫
A

sdν ≡
∫
W

IAsdν (B.3b)

where the definition makes sense because if s is measurable and A ∈ S then
the product IAs is a measurable function.

With the integral of simple functions, we can now define the integral of
non-negative functions. In fact, by virtue of the following Proposition [9] we
determine that the non-negative, measurable functions can be approximated
by non-negative, measurable simple functions:

Proposition B.8 Let f be a measurable, real-valued function f : W →
[0, +∞]. Then there exist non-negative, measurable simple functions sn such
that

(i) 0 ≤ s1 ≤ s2 ≤ · · · ≤ f
(ii) the sequence {sn}∞n=1 converges pointwise to f .

Definition B.7 If f is a non-negative, measurable, real-valued function, its
(abstract) Lebesgue integral over W is defined by∫

W

f dν ≡ lim
n→∞

∫
W

sn dν (B.4a)

where the sequence of simple functions sn approximate f in the sense of
Proposition B.8. Equivalently, (B.4a) can be replaced by∫

W

f dν ≡ sup
∫
W

sdν (B.4b)

where the supremum is taken over all measurable simple functions such that
0 ≤ s ≤ f .
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Again, if A ∈ S, the Lebesgue integral over A is∫
A

f dν =
∫
W

IAf dν (B.4c)

It should be noted that the integral may have the value +∞.

Some properties of the integral of non-negative functions are as follows.

Proposition B.9 Let f , g be two non-negative, measurable, real-valued
functions on W , a ≥ 0 and A ∈ S. Then
(a) f ≤ g a.e. implies

∫
A f dν ≤ ∫A g dν;

(b) B ∈ S,B ⊂ A implies
∫
B f dν ≤ ∫A f dν;

(c) if f (w) = 0 for all w ∈ A then ∫A f dν = 0 even if ν(A) = ∞;
(d) if ν(A) = 0 then

∫
A f dν = 0 even if f (w) = ∞ for all w ∈ A;

(e)
∫
A af dν = a

∫
A f dν.

In addition to the above properties we can now state some of the key
results of Lebesgue integration.

Proposition B.10 (Monotone Convergence Theorem) Let {fn}∞n=1 be a
monotone nondecreasing sequence of measurable, non-negative functions
converging pointwise to f – that is, 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn(w) =
f (w). Then f is measurable and∫

A

f dν = lim
n→∞

∫
A

fn dν (B.5)

meaning that – under the assumptions of the theorem – the operations of
limit and integral can be interchanged.

Three corollaries to Proposition B.10 are worthy of mention:

Corollary 1 Under the assumptions of Proposition B.9 on f , g and A we
have∫

A

(f + g) dν =
∫
A

f dν +
∫
A

g dν (B.6)

Corollary 2 (B. Levi) If fn (n = 1, 2, . . .) are non-negative, measurable
functions and A ∈ S then∫

A

( ∞∑
n=1

fn

)
dν =

∞∑
n=1

∫
A

fn dν (B.7)
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Corollary 3 Let f be a measurable function andAn ∈ S such thatAi ∩ Aj =
∅ for i �= j. Then∫

⋃
n
An

f dν =
∑
n

∫
An

f dν (B.8)

Proposition B.11 Let f : W → [0, ∞] be measurable. The set function
defined by

ϕ(A) ≡
∫
A

f dν (B.9a)

for all A ∈ S is a σ -additive (see Corollary 3) measure on the σ -algebra S.
Moreover, for all measurable functions g : W → [0, ∞]∫

W

g dϕ =
∫
W

fg dν (B.9b)

As remarks to Proposition B.11 we note that:

(i) Equation (B.9b) is often expressed by writing dϕ = f dν, where
this equation simply indicates that (B.9b) holds for all measurable
functions g ≥ 0;

(ii) the inverse of Proposition B.11 – which will be considered later – is an
important result of mathematical analysis known as Radon–Nikodym
theorem.

Proposition B.12 (Fatou’s lemma) Let fn : W → [0, ∞] be measurable for
all n = 1, 2, . . .. Then, for all A ∈ S∫

A

(
lim inf

n→∞ fn
)

dν ≤ lim inf
n→∞

∫
A

fn dν (B.10)

where, we recall from basic analysis, the limit inferior of a sequence of real
numbers {xn}∞n=1 is defined as

lim inf
n→∞xn = sup

n
( inf
k≥n

xk)

and clearly for a sequence of functions fn we mean the function defined by
(lim infn→∞ fn)(x) = lim infn→∞(fn(x)).

At this point we can relax the restriction of non-negativity. Let f be a mea-
surable real-valued function on W , its positive and negative part, denoted
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by f+, f− respectively, and defined by

f+ ≡ max(f , 0)

f− ≡ − min(f , 0)

are two measurable, non-negative real-valued functions. Clearly, f = f+ −
f− and |f | = f+ + f−. We define the integral of f as∫

W

f dν ≡
∫
W

f+dν −
∫
W

f−dν (B.11)

if at least one of the integrals on the r.h.s. is finite; if both integrals are
finite then (B.11) is finite (one often writes

∫
W fdν < ∞ in this case) and we

say that f is L-integrable, or summable, onW . Also, if f is L-integrable over
W , then it is L-integrable over every A ∈ S.

Similarly, we have∫
W

|f |dν =
∫
W

f+dν +
∫
W

f−dν (B.12)

and it is evident that f is L-integrable if and only if |f | is L-integrable.
Now, since real-valued functions are special cases of complex-valued func-

tions – that is, they are complex-valued functions whose imaginary part is
zero – it is only a small step to turn to this more general setting and define the
integral of a measurable function f : W → C (where C is the set of complex
numbers) as∫

W

f dν ≡
∫
W

(Re f ) dν + i
∫
W

(Im f ) dν (B.13)

Clearly, f is measurable if and only if its real and imaginary part Re f and
Im f – which, in turn, are real-valued functions – are measurable.

If
∫
W |f |dν < ∞ (where |f | = √(Re f )2 + (Im f )2) then, as above, f is said

to be L-integrable and this is also stated in mathematical terms by writing
f ∈ L1(W , S, ν) where, by definition, L1(W , S, ν) is the set of all complex-
valued, measurable functions such that

∫
W |f |dν < ∞ and one does not

distinguish between functions that are a.e. equal (in fact, if f = g a.e., their
integrals are the same).

Proposition B.13 If f , g are two L-integrable functions and a,b ∈ C then
af + bg is L-integrable and∫

W

(af + bg) dν = a
∫
W

f dν + b
∫
W

g dν (B.14)

which, in other words, means that L1(W , S, ν) is a linear space.
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Corollary 4 If f : W → C is L-integrable then∣∣∣∣∣∣
∫
W

f dν

∣∣∣∣∣∣ ≤
∫
W

∣∣f ∣∣ dν (B.15)

Another fundamental result of Lebesgue integration is the so-called Lebesgue
dominated convergence theorem. We state the theorem in the setting of
complex-valued functions but it is evident that it remains valid in the
particular case of real-valued functions:

Proposition B.14 (Dominated convergence theorem) Let {fn}∞n=1 be a
sequence of measurable, complex-valued functions converging a.e. to a func-
tion f . If there exists a non-negative L-integrable function g such that |fn| ≤ g
a.e. for all n = 1, 2, . . . then f ∈ L1(W , S, ν) and∫

W

f dν = lim
n→∞

∫
W

fn dν (B.16)

Corollary 5 Let {fn}∞n=1 be a sequence of measurable, complex-valued func-
tions such that

∑∞
n=1

∫
W |fn|dν < ∞. Then the series

∑
n fn converges a.e.

to a L-integrable function and

∫
W

∞∑
n=1

fn dν =
∞∑
n=1

∫
W

fn dν (B.17)

which means that, under the assumptions of the corollary, a series of
measurable functions can be integrated term by term.

Another result worthy of notice is that the dominated convergence the-
orem remains true when a.e. convergence is replaced by convergence in
measure, in fact, we have

Proposition B.15 Let {fn}∞n=1 be a sequence of measurable, complex-valued
functions converging inmeasure to a function f . If there exists a non-negative
L-integrable function g such that |fn| ≤ g a.e. for all n = 1, 2, . . . then
f ∈ L1(W , S, ν) and∫

W

f dν = lim
n→∞

∫
W

fn dν (B.18)

which, as in Propositions B.10 and B.14, means that the operations of limit
and integral can be interchanged under reasonably mild conditions.
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All the above results are important in probability theory because of the
strict relation between the notion of abstract Lebesgue integral of a mea-
surable function and the so-called expected value of a random variable.
In fact – as it is shown in Chapter 2 and in the next section – if (W , S,P) is
a probability space and X is a random variable on W , then the expectation
(or mean, see Section 2.3.2) of X, denoted by E(X) or E[X], is given by

E(X) =
∫
W

X dP (B.19)

which is the abstract Lebesgue integral of X (over W) with respect to the
probability measure P. So, for the main purpose of the book, we note that
saying that ‘f is a measurable, L-integrable function’ translates in probability
terminology into the sentence ‘f is a random variable with finite expectation’,
or, in symbols, f ∈ L1(W , S,P).

As a final result in this section we may consider functions defined on
the real line and note that, as a matter of fact, the Lebesgue integral is a
generalization of the Riemann integral of basic calculus. This fact is formally
stated in the following proposition:

Proposition B.16 Suppose that f is a Riemann integrable function on an
interval [a,b] ⊂ R. Then f is Lebesgue integrable – that is, integrable with
respect to the Lebesgue measure µ – on [a,b] and the two integrals are equal.

The converse, however, is not true and there exist Lebesgue integrable
functions that are not Riemann integrable.

B.5 Further results in integration and measure theory and
their relation to probability

Let F : R → R be a finite, non-decreasing function with the property that it
is right-continuous at every point (from Chapter 2 we know that distribution
functions of random variables are functions of this type). If, on the collection
of half-open intervals (a,b] ⊂ R we define the set function m(a,b] = F(b) −
F(a) it can be shown that this set function has the characteristics of a measure
and can therefore be extended (Section 2.3) to a finite measure µF defined
on the σ -algebra of Borel sets of the real line. This measure is called the
Lebesgue–Stieltjes measure corresponding to F and it is finite because the
assumptions on F (monotonicity and finiteness) imply

µF(R) = lim
x→∞F(x) − lim

x→−∞F(x)

and both limits on the r.h.s. exist and are finite. The function F, in turn, is
called a generating function for µF. Note that we do not say ‘the’ genera-
ting function because we may add any real constant to F to obtain a new
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generating function which induces the same measure on the real line. If one
of the two limits at infinity is assigned a specific value (as it is the case in
probability) then the uniqueness of the generating function follows and there
exists a one-to-one correspondence between Lebesgue–Stieltjes measures and
generating functions.

The connection with probability is evident if one notes that a random
variable X defined on a probability space (W , S,P) induces a probability
measure PX on the Borel sets by means of the relation PX(B) = P(X−1(B))

(Chapter 2, eq. (2.13)). The measure PX – which is called in mathemat-
ical terms the image measure of P by X and often denoted by P ◦ X−1

– in turn defines a distribution function FX through the relation FX(x) =
PX(−∞,x]; this function is finite, non-decreasing and right-continuous at
every point. In addition, since PX is a probability measure, FX is sub-
jected to the conditions limn→−∞ F(x) = 0 and limn→∞ F(x) = 1 and
these requirements make it unique (in the sense above). In probability the-
ory, therefore, PX is the Lebesgue–Sieltjes measure corresponding to FX
and FX, in turn, is called distribution function (of X) instead of generating
function. So, while in analysis one generally starts from a function F with
certain characteristics and then obtains the measure µF, probability theory
proceeds, so to speak, backwards – that is, from the measure PX to the
function FX – with the random variable X being the starting point of the
chain.

In any case, once we have a Lebesgue–Stieltjes measure µF we can integrate
with respect to this measure.

Definition B.8 Let µF be a Lebesgue–Stieltjes measure corresponding
to the function F, f a Borel measurable function. Its integral with
respect to µF is called Lebesgue–Stieltjes integral and is generally denoted
by
∫
f dF.

The connection with probability theory is immediate because one can con-
sider integrals with respect to the measure PX, which – according to the
definition above – are written as integrals in dFX. In this regard, consider
the following problem: let (W , S,P) be a probability space, X a random
variable on W and g : R → R a Borel function. Then the composite func-
tion Z : W → R defined by Z(w) ≡ g(X(w)) is itself a random variable
(i.e. measurable) and, by definition, we know that its expectation E(Z) is
given by the abstract Lebesgue integral

E(Z) =
∫
W

Z dP

The question is, can we express E(Z) in terms of the measure PX, that is, as
an integral on the real line? The answer is yes and we have the result
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Proposition B.17 Let X, g and Z as above, then∫
W

Z dP =
∫
R

g(x) dFX (B.20a)

in the sense that if either of the two sides exists, so does the other and they are
equal (in other words Z ∈ L1(W , S,P) if and only if g ∈ L1(R, B(R),PX)).
So, in particular, if X(w) = x we get

E(X) ≡
∫
W

X dP =
∫
R

xdFX (B.20b)

Pushing the argument further, it is clear that eq. (B.20b) applies to any
random variable and therefore, if Z is as above – that is, Z(w) ≡ g(X(w)) –
then we have the possibility of calculating E(Z) as

E(Z) =
∫
R

z dFZ (B.21)

so that, owing to (B.21) and (B.20a), we have∫
R

z dFZ =
∫
R

g(x) dFX (B.22)

Which integral to use to calculate E(Z) is generally a matter of convenience.
Given a random variable X, the expectation (B.20b) is a special case of a

number of quantities called moments of X. In fact, if n = 1, 2, . . . we define
the nth moment of X as E(Xn), that is,

E(Xn) ≡
∫
W

Xn dP =
∫
R

xn dFX (B.23)

where the second equality is due to eq. (B.22). So, the expectation is just
the first moment of X. More about moments is in Chapter 2; here we limit
ourselves to the following proposition:

Proposition B.18 If n > 1 and the nth moment of the random variable
X is finite – that is, E(Xn) < ∞ – then E(Xk) < ∞ for 1 ≤ k ≤ n.
(Note that this result, for convenience, is also given in Chapter 2 as
Proposition 2.12.)
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Let us now return to analysis and give some more definitions:

Definition B.9 Let (W , S) be a measurable space and ν1, ν2 two measures
on the σ -algebra S. We say that ν2 is absolutely continuous with respect
to ν1 – and write ν2 � ν1 – if ν1(A) = 0 implies ν2(A) = 0 or, in other
words, ν2(A) = 0 whenever ν1(A) = 0. On the other hand the two measures
are mutually singular – denoted ν1⊥ν2 – if there is a set A ∈ S such that
ν1(A) = 0 and ν2(AC) = 0.

Owing to Propositions B.11 and B.9 (property (d)) we note that the mea-
sure ϕ defined by eq. (B.9a) is such that ϕ(A) = 0 whenever ν(A) = 0, so
that ϕ � ν. This means that ϕ � ν is a necessary condition in order for
the ‘integral representation’ of eq. (B.9a) to be possible. An important result
known as Radon–Nikodym theorem shows that (in σ -finite measure spaces)
this condition is also sufficient.

Proposition B.19 (Radon–Nikodym theorem) Let (W , S, ν) be a σ -finite
measure space and ϕ a measure on S. If ϕ � ν then there exists a non-
negative, measurable function f : W → [0, ∞] such that

ϕ(A) =
∫
A

f dν

(B.24)

for all A ∈ S. Moreover, f is unique in the sense that if ϕ(A) = ∫
A g dν for

all A ∈ S, then f = g a.e. (i.e. ν{w : f (w) �= g(w)} = 0).

The function f of eq. (B.19) is called the Radon–Nikodym derivative of ϕ

with respect to ν and one often finds the symbols dϕ = f dν or f = dϕ/dν.
Another result is the so-called Lebesgue decomposition of a measure ϕ

with respect to a given measure ν:

Proposition B.20 (Lebesgue decomposition theorem) Let (W , S, ν) be a
σ -finite measure space and ϕ a σ -finite measure on S. Then there exists a
unique decomposition ϕ = ϕ1 + ϕ2 where ϕ1, ϕ2 are two measures such that
ϕ1 � ν and ϕ2⊥n.
This result is very general and it is the first step leading to further decom-
position of measures. Without entering into details – which can be found,
for instance, in Chapter 6 of Ref. [7] – it is sufficient for our purposes to
recall that (i) PX is a finite measure defined on the Borel sets of R and (ii) the
Lebesgue measure µ is the ‘natural’ measure in R. In this light, an impor-
tant result is a theorem stating that any finite Borel measure on R can be
uniquely decomposed as the sum of three finite Borel measuresmac,msc and
md, where mac is absolutely continuous with respect to µ, msc is continuous
and singular with respect to µ and md is discrete. This result is given as
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Proposition 2.11 in Chapter 2 where it was also noted that this decompo-
sition reflects a decomposition of a general PDF into the sum of three parts
(eq. (2.28)). There, however, although we introduced the notions of contin-
uous and discrete PDFs in Section 2.3.1, we did not specify the meaning of
the terms ‘absolutely continuous’ and ‘singular’ functions. We give here the
appropriate definitions:

(i) F is called a singular PDF if F′ = 0 a.e. (with respect to the Lebesgue
measure µ);

(ii) F is an absolutely continuous PDF if F′ exists a.e. and it is Lebesgue
integrable on R, and

F(x) =
x∫

−∞
F′(t) dt (B.25)

for −∞ < x < ∞. Clearly, in this case F′ is the pdf associated to F.

By virtue of these definitions (plus the definition of discrete and continuous
PDFs), the decomposition (2.28) is the PDF counterpart of the decomposi-
tion (2.26) in the light of the fact that a finite Borel measure (on R) is singular
if and only if its distribution function is singular, discrete if and only if its
distribution function is a jump (discrete) function, etc.

In regard to the concept of absolute continuity – which, it should be noted,
is not limited to PDFs but applies to real-valued functions in general – some
important considerations are in order. If, as a particular case of the definition
above, a function f is defined on an interval [a,b] and its derivative f ′ exists
a.e. and is Lebesgue integrable on [a,b], then we say that f is absolutely
continuous on [a,b] if

f (x) = f (a) +
x∫
a

f ′(t) dt (B.26)

for a ≤ x ≤ b. Equation (B.26), in turn, brings back to mind the second fun-
damental theorem of calculus – and rightly so, because the class of functions
for which this theorem holds is precisely the class of absolutely continuous
functions. In most books of analysis, in fact (see, for instance, [2, 5] or [7]),
one generally finds the following definition of absolute continuity:

Definition B.10 A function f defined on [a,b] is absolutely continuous
on [a,b] if for each ε > 0 there is a δ > 0 such that for any finite
sequence (ai,bi) of disjoint subintervals of [a,b] with

∑
i(bi − ai) < δ, then∑

i |f (bi) − f (ai)| < ε. (Absolute continuity on the entire real line R in terms
of this definition is a bit more involved. However, a necessary and sufficient
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condition is that f is absolutely continuous on every finite closed interval, is
of bounded variation and limx→−∞ f (x) = 0. For more details the reader is
referred to Refs [5] or [7].)

Then, starting from this definition, it is then shown that eq. (B.26) or,
equivalently, the relation

x∫
a

f ′(t) dt = f (x) − f (a)

holds for all x ∈ [a,b] if and only if f is absolutely continuous on [a,b].
The above considerations suffice for our purposes but one final key result

in Lebesgue integration deserves to be mentioned for its importance in both
theory and applications. This is Fubini’s theorem which, under rather mild
conditions, allows to calculate multiple integrals as iterated integrals. In the
general setting of complex-valued measurable functions, the theorem can be
stated as follows:

Proposition B.21 Let (W , S, ν) and (U,T, τ) be σ -finite measure spaces.
Let f be a complex-values S × T-measurable function on W × U such that
at least one of the quantities

(i)
∫
W×U |f (x, y)| d(ν × τ)

(ii)
∫
W

{∫
U |f (x, y)| d τ

}
dν

(iii)
∫
U

{∫
W |f (x, y)| dν

}
dτ

is finite. Then

∫
W×U

∣∣f (x, y)∣∣ d(νxτ) =
∫
W

⎧⎨⎩
∫
U

|f (x, y)| dτ

⎫⎬⎭ dν

=
∫
U

⎧⎨⎩
∫
W

|f (x, y)| dν

⎫⎬⎭ dτ (B.27)

Clearly, in order to arrive at Proposition B.21, a number of preliminary
results are needed. In fact, one must, for instance, introduce the concept of
product measure space, show that we can appropriately define a measure
on a σ -algebra of subsets of this space in terms of the individual measures
of the one-dimensional spaces entering the product etc. All this is beyond
our scope although, in general, it should be noted that – besides some
minor complications due to the higher dimensionality – the main ideas are
direct generalizations of the one-dimensional case. The details, however, are
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worthy of study in their own right and the interested reader can refer, for
instance, to [2, 3, 5, 6, 7] or [9].
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Appendix C

As a complement to the main text, we give in this appendix a number of mis-
cellaneous definitions, results and remarks. Without claim of completeness,
we consider only a few selected topics which may be helpful in reading this
and/or other texts on probability and statistics. Theorems, in general, will
not be proven although we will make some occasional comments on some
of the proofs.

In regard to probability distributions we use the following notation: (a) we
write X ≈ PL(·) to mean that the r.v. X is distributed according to the
probability law PL(·), where we specify within parenthesis any parameter(s)
pertinent to PL. So, for instance, X ≈ N(0, 1) means thatX is standard nor-
mal (zero mean and unit variance) andX ≈ χ2(ν) means thatX is distributed
according to a Chi-square law (see below) with ν degrees of freedom.

The expression X ≈ As − PL(·), on the other hand, indicates that X is
asymptotically distributed according to the probability law PL(·).

C.1 The Gamma Function �(x)

The definition is

�(x) =
∞∫

0

tx−1e−t dt (x > 0) (C.1)

The function is continuous and has continuous derivatives of all orders
given by

�(m)(x) =
∞∫

0

tx−1(ln t)me−t dt (x > 0) (C.2)

and �(x) → ∞ as x → 0 or x → ∞. It has a minimum at x0 ∼= 1.4616 and
�(x0) = 0.8856. Its main properties are as follows: for any x > 0

�(x+ 1) = x�(x) (C.3)
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which can be obtained integrating (C.1) by parts. If x is equal to a positive
integer n we get from (C.3)

�(n+ 1) = n! (C.4)

since �(1) = 1. Also, �(2) = �(1) = 1, �(1/2) = √
π and the well-known

Stirling’s formula

n! ≈ nne−n√2πn (C.5)

is just a special case of the approximation

�(x) ∼=
√

2π xx−1/2e−x (C.6)

which is valid for large values of x. Moreover, for any x > 0 it can be shown
that

�(x) = lim
n→∞

n!nx
x(x+ 1) · · · (x+ n)

(C.7)

C.2 Gamma distribution

X ≈ �(a,b) if its pdf is

f (x; a,b) = �(a,b) = xb−1

ab�(b)
e−x/a (C.8)

for x > 0 (and zero otherwise). The quantities a,b are two (positive)
parameters. The CF of X is

ϕ(u) = 1

(1 − iau)b
(C.9)

from which it is easy to determine µ ≡ E(X) = ab, α2 ≡ E(X2) = a2b(1+b)
and Var(X) = a2b. Also, we have the recursion formulas for ordinary and
central moments

αk = a(k− 1 + b)αk−1

µk+1 = ak(µk + abµk−1)
(C.10)

respectively. An important property of the gamma distribution is easily
obtained from the CF (C.9): the sum of two independent gamma r.v.s with
parameters a,b1 and a,b2 is a gamma variable with parameters a,b1 + b2.
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C.3 The χ2 distribution

A r.v. distributed according to a χ2 distribution with ν degrees of freedom
(where ν is a positive integer) has a pdf

f (x) = x(ν/2)−1

2ν/2�(ν/2)
e−x/2 (C.11)

for x > 0 (and zero otherwise). For ν ≤ 2 the function is monotonically
decreasing while for ν > 2 it has a maximum at x = ν − 2.

The CF of a χ2 random variable is

ϕ(u) = 1
(1 − 2iu)ν/2

(C.12)

and taking its derivatives at u = 0 we get immediately E(X) = ν and α2 ≡
E(X2) = ν(ν + 2). More generally, the kth order (ordinary) moment can be
written in the form of product of k terms as

αk ≡ E(Xk) = ν(ν + 2) · · · (n+ 2k− 2) (C.13)

and therefore α3 = ν(ν +2)(ν +4), α4 = ν(ν +2)(ν +4)(ν +6), etc. For the
central moments we have µ2 ≡ Var(X) = 2ν, µ3 = 8ν and µ4 = 12ν(4+ ν)

so that, consequently, the coefficients of skewness and kurtosis are κ3 ≡
µ3/µ

3/2
2 = 2

√
2/ν and κ4 ≡ µ4/µ

2
2 = 3 + 12/ν, respectively.

Note that �(2, ν/2) = χ2(ν) and also χ2(2) = exp(2) where the expo-
nential distribution is defined below (eq. (C.33)).

The χ2 variables are strictly related to standard normal r.v.s. In fact

Proposition C.1 If X ≈ N(0, 1) then X2 ≈ χ2(1).

This theorem can be proven by using the considerations of Section 2.5.3
where, right before Example 2.11, the reader was invited to show that if fX
is the pdf of X and Y = X2 then (for y > 0)

fY (y) = fX(−√
y) + fX(

√
y)

2
√
y

In the special case in which fX is even then fY (y) = y−1/2fX(
√
y); if, more-

over, fX is the standard normal pdf we get fY (y) = (2πy)−1/2 exp(−y/2)

which, owing to �(1/2) = √
π , is precisely the distribution χ2(1).

Also, an important ‘reproducibility’ property is given by the following
result
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Proposition C.2 If X1,X2, . . . ,Xn are independent and χ2-distributed with
ν1, ν2, . . . , νn degrees of freedom, respectively, then

∑
i

Xi ≈ χ2(ν1 + ν2 + · · · + νn).

The proof is immediate if one notes that independence implies that the CF
of the r.v.

∑
i Xi is the product of the individual CFs of the Xi (see eq. (3.29)

and Example 3.3).
From Propositions C.1 and C.2 it follows

Proposition C.3 If X1,X2, . . . ,Xn are independent standard normal r.v.s,
then

∑
i X

2
i ≈ χ2(n).

Another result connecting normal and χ2 r.v.s is

Proposition C.4 Let X = (X1,X2, . . . ,Xn) be a sample of size n from
N(µ, σ 2) and let M, S̄2 be the sample mean and the unbiased sample variance
(see eq. (5.29)). Then

(i) M and S̄2 are independent;
(ii)

√
n(M − µ)/σ ≈ N(0, 1);

(iii) (n− 1)S̄2/σ 2 ≈ χ2(n− 1).

As an immediate remark, note that by choosing the (biased) estimator S2 for
the variance, result (iii) can be equivalently stated as nS2/σ 2 ≈ χ2(n− 1).

Finally, we consider an asymptotic result

Proposition C.5 Let X ≈ χ2(ν). Then, as n → ∞ the random variables
(X− ν)/

√
2ν and

√
2X−√

2ν tend in distribution to a standard normal r.v.

C.4 Student’s distribution

First introduced in 1908 in a paper by Gosset writing under the pen-name
of ‘Student’, it is also known as the t-distribution. A r.v. X is distributed
according to Student’s distribution with ν degrees of freedom – and we write
X ≈ St(ν) – if its pdf is

f (x) = �((ν + 1)/2)√
πν�(ν/2)

(
1 + x2

ν

)−(ν+1)/2

(C.14)
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where ν is a positive integer and −∞ < x < ∞. The mean E(X) is finite for
ν ≥ 2 and the variance is finite for ν ≥ 3 and we have

E(X) = 0

Var(X) = ν

ν − 2

(C.15)

where the first result is obvious because the distribution is symmetric about
x = 0. Consequently, all existing moments of odd order are zero; note that
we speak of ‘existing moments’ because the k-th order moment is finite for
k < ν. Provided that 2r < ν, setting k = 2r gives

µ2r = α2r = 1 · 3 · · · (2r− 1)νr

(ν − 2)(ν − 4) · · · (ν − 2r)
(C.16)

so that (for ν ≥ 5) the coefficient of kurtosis is κ4 = 3 + 6/(ν − 4).
Student’s distribution is also related to the standard normal distribution;

in fact

Proposition C.6 As ν → ∞, Student’s distribution tends to N(0, 1).

As a remark of practical nature, it turns out that the approximation to
N(0, 1) can be considered quite satisfactory for ν > 30; this is why tabulated
values of St(ν) are generally given only for ν ≤ 30 or ν ≤ 40.

Proposition C.7 Let X,Y be two independent r.v.s such that X ≈ N(0, 1)

and Y ≈ χ2(n). Then the r.v. T ≡ X/
√
Y/ν has a Student distribution with

ν − 1 degrees of freedom (i.e. T ≈ St(ν − 1)).

A typical case involving the Student distribution follows directly from
Propositions C.4 and C.7:

Proposition C.8 Let X = (X1,X2, . . . ,Xn) be a sample from N(µ, σ 2).
Then

√
n(M−µ)/S̄≈ St(n−1) or, equivalently,

√
n− 1(M−µ)/S≈ St(n−1).

With two independent samples, on the other hand, we have:

Proposition C.9 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Ym) be two inde-
pendent samples from the distribution N(µ, σ 2). Let M1, S2

1 be the sampling
mean and variance of the first sample and M2, S2

2 the sampling mean and
variance of the second sample. Then√

mn(m+ n− 2)

m+ n
M1 −M2√
nS2

1 +mS2
2

≈ St(m+ n− 2) (C.17)
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C.5 Fisher’s distribution

This distribution – sometimes also called Snedecor’s distribution – is char-
acterized by two (integer) parameters ν1, ν2 and we denote it by the symbol
Fsh(ν1, ν2). A continuous r.v. X is such that X ≈ Fsh(ν1, ν2) when its pdf is

f (x) = �((ν1 + ν2)/2)

�(ν1/2)�(ν2/2)

(
ν1

ν2

)ν1/2 x(ν1/2)−1

(1 + ν1x/ν2)
(ν1+ν2)/2

(C.18)

for x > 0 and zero otherwise. The two parameters ν1, ν2 are generally
referred to as the degrees of freedom of the Fisher distribution.

The mean and variance are defined for ν2 > 2 and ν2 > 4, respectively,
and they are

E(X) = ν2

ν2 − 2

Var(X) = 2ν2
2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)

(C.19)

while the ordinary k-th order moment, defined for 2k < ν2, is

αk = E(Xk) =
(

ν2

ν1

)k
�(ν1/2 + k)�(ν2/2 − k)

�(ν1/2)�(ν2/2)
(C.20a)

so, that, in particular, owing to (C.4) we get the first of eqs (C.19) and

α2 = ν2
2(ν1 + 2)

ν1(ν2 − 2)(ν2 − 4)
(C.20b)

for ν2 > 4. The mode (i.e. the x-value where f (x) has a maximum) of Fisher’s
distribution is at the point x = [ν2(ν1 −2)]/[ν1(ν2 +2)] which is always less
than 1 (in this regard note that the mean E(X), when it exists, is always
greater than 1).

A connection between Fisher’s r.v.s and χ2 variables is given by the
following theorem:

Proposition C.10 Let X1,X2 be two independent, χ2-distributed r.v.s with
ν1 and ν2 degrees of freedom, respectively. Then

X1/ν1

X2/ν2
≈ Fsh(ν1, ν2)
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In statistics, moreover, a typical situation involving Fisher’s distribution is
expressed by the following result:

Proposition C.11 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Ym) be indepen-
dent samples from the distributions N(µ1, σ 2

1 ) and N(µ2, σ 2
2 ), respectively

and let S2
1, S2

2 be the corresponding sample variances. Then for any µ1, µ2

n(m− 1)σ 2
2 S

2
1

m(n− 1)σ 2
1 S

2
2

≈ Fsh(n− 1,m− 1) (C.21a)

If, instead of the estimators S2
1, S2

2 we consider the unbiased estimators S
2
1, S

2
2,

eq. (C.21) turns into the equivalent result

S̄2
1/σ 2

1

S̄2
2/σ 2

2

≈ Fsh(n− 1,m− 1) (C.21b)

Noteworthy properties of Fisher’s distribution are given in Proposi-
tions C.12, C.13 and C.14.

Proposition C.12 If X ≈ Fsh(ν1, ν2) then 1/X ≈ Fsh(ν2, ν1).

This result is, in essence, a consequence of Proposition C.10. In fact, if
X ≈ Fsh(ν1, ν2) then there exist two independent, χ2-distributed r.v.sX1,X2
with ν1 and ν2 degrees of freedom, respectively, such that X = ν2X1/ν1X2.
Consequently, X−1 = ν1X2/ν2X1 and the theorem follows.

As a corollary, let F1−α; ν1,ν2 denote the (upper or lower) 1 − α quantile of
Fsh(ν1, ν2); then

F1−α; ν1,ν2 = 1
Fα; ν2,ν1

(C.22)

where, clearly, Fα; ν2,ν1 is the (upper or lower, in agreement with above) α

quantile of Fsh(ν2, ν1). This property is used, for instance, in Chapter 5,
Example 5.11(b).

Proposition C.13 Let X ≈ Fsh(ν1, ν2). Then ν1X → χ2(ν1)[D] as ν2 → ∞
(the meaning of limit in distribution, that is, D-limit, is explained in
Chapter 2, Section 2.4, and Chapter 4, Section 4.2).

Proposition C.14 Let X ≈ St(ν); then X2 ≈ Fsh(1, ν).

As in the proof of Proposition C.1, by setting Y = X2 we have fY (y) =
y−1/2fX(

√
y) for y > 0 (and fY (y) = 0 otherwise) because Student’s pdf is
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even. Substituting eq. (C.14) into this relation and noting that �(1/2) = √
π ,

we immediately get the pdf of the distribution Fsh(1, ν).
Also, this last proposition implies a connection between Student’s and

Fisher’s quantiles. The relation between lower quantiles is Fγ ; 1,ν = t2
(1+γ )/2; ν

and has been used in Chapter 7 to obtain eq. (7.41b) from eq. (7.41). In fact,
by temporarily omitting, for brevity, the degrees of freedom in the symbols
of quantiles, we have

γ = P(X2 ≤ Fγ ) = P
(

−
√
Fγ < X ≤

√
Fγ

)
=

√
Fγ∫

−√
Fγ

S(x) dx (C.23)

where we denoted by S(x) the pdf of St(ν). Owing to the symmetry (about
x = 0) of S(x), eq. (C.23) implies that the area to the right of

√
Fγ is (1−γ )/2

which, in other words, means that
√
Fγ is the upper (1 − γ )/2 quantile of

St (ν) or, equivalently, the lower 1 − (1 − γ )/2 = (1 + γ )/2 quantile. The
consequence, as we set out to prove, is that Fγ ; 1,ν = t2

(1+γ )/2; ν .

C.6 Some other probability distributions

The distributions considered in the preceding sections of this appendix are
frequently used in statistical applications. In addition, some other funda-
mental probability distributions have been introduced and discussed in the
main text and among these, just to name a few, we recall the uniform
distribution, the binomial, the multinomial, Poisson’s and the Gaussian (nor-
mal) distribution. However, since it is reasonable to expect that there exist
other important distributions, we mention here a few more among the most
common.

Considering a sequence of Bernoulli trials (see Example 2.8(a)), let us focus
our attention on the number of failures before the first success. Recalling that
the probability of success in each trial is usually denoted by p(0 < p < 1)

while q = 1−p is the probability of failure, the relevant (discrete) distribution
in this case is the so-called geometric distribution whose pmf is given by

pX(x) = p(1 − p)x = pqx (C.24)

where x = 0, 1, 2, . . . represents the number of failures before the first success
(in other words, pX(x) is the probability of obtaining the first success at the
(x+ 1)th trial). It is left to the reader to determine that

(i) ϕ(u) = p/(1 − qeiu) is the CF corresponding to (C.24);
(ii) the mean and variance of a geometric r.v. are E(X) = q/p and Var(X) =

q/p2, respectively.
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Note that some authors call geometric the distribution with pmf pX(x) =
pqx−1, where x = 1, 2, . . . is the number of trials at which the first success
occurs. With this definition pX(x) is the probability of obtaining the first
success at the xth trial after x− 1 failures.

An important property of the geometric distribution which distinguishes
it from other discrete distributions is its ‘lack of memory’, mathematically
expressed by the relation

P{X = n+ k|X ≥ n} = P{X = k} (C.25)

which, in words, means that the fact of having observed n failures has no
influence whatsoever on the number of (future) trials that we still have to
perform before obtaining the first success. In terms of waiting time before
the first success, the ‘memoryless property’ (C.25) states that the probability
of having to perform other k trials – resulting in failures – given the fact
that we have already observed n failures is the same as the initial probability
that we had of observing k failures in the first k trials. At first sight, this
property may appear counterintuitive because it seems that a long waiting
time without success should somehow reduce the remaining time left before
success (incidentally, the habit of playing ‘late numbers’ in a lottery is based
on this mistaken belief). If, however, one considers the fact that the various
Bernoulli trials are independent, the property is not surprising at all.

On the other hand, a r.v. with pmf

pX(x) =
(
x+ n− 1
n− 1

)
pn(1 − p)x =

(
x+ n− 1

x

)
pnqx (C.26a)

where x = 0, 1, 2, . . . is called Pascal’s (or negative binomial) r.v. In a scheme
of Bernoulli trials the r.v. X represents the number of failures before obtain-
ing the nth success. In other words X = x when we obtain a success at the
(x + n)th trial and we have observed n − 1 successes – in whatever order –
in the preceding (x + n − 1) trials. Clearly, (C.24) is the special case n = 1
of (C.26). The CF of a Pascal r.v. is

ϕ(u) =
(

p
1 − (1 − p)eiu

)n
=
(

p
1 − qeiu

)n
(C.27)

and its mean and variance are, respectively, E(X) = nq/p and Var(X) =
nq/p2. Moreover, by virtue of eq. (3.29) it is immediate to see that the sum
of two independent Pascal r.v.s with the same parameter p and indexes n1
and n2, respectively, is a Pascal r.v. with parameter p and index n1 + n2.
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As a word of caution, it should be noted that some authors call Pascal’s
(or negative binomial) a discrete r.v. Y with pmf

pY (y) =
(
y− 1
n− 1

)
pn(1 − p)y−n, y = n,n+ 1, . . . (C.26b)

where Y represents the total number of trials at which we achieve the nth
success. Stated differently, Y = y if we obtain the nth success at the yth
trial after having observed (n − 1) successes in the preceding (y − 1) trials.
According to this definition it is clear that (i) y ≥ n because we need at least
n trials to have n successes and (ii) being X = Y − n the number of failures
before the nth success, the pmf of X is given by (C.26a).

In the course of the main text we often considered sampling problems.
The typical situation is an urn containing N objects, m with a given desired
property andN−mwithout this property. If, without replacement, we draw
at random n objects (n ≤ N), the probability pX(x) of having x objects with
the desired property is given by the hypergeometric distribution

pX(x) =

(
m
x

)(
N −m
n− x

)
(
N
n

) , x = 0, 1, . . . ,k (C.28)

The pmf of (C.28) is easily justified if one considers that the numerator is
the number of ways in which we can get – in n draws – x successes (object
with the property) and n−x failures (object without the property) while the
denominator is simply the total number of equally likely samples of size n.
Starting from (C.28), some rather cumbersome calculations lead to

E(X) = n
m
N

Var(X) = nm(N −m)(N − k)
N2(N − 1)

(C.29)

Moreover, by indefinitely increasing both m and N in such a way that the
ratio p ≡ m/N remains constant, we have m = Np and N −m = N(1 − p)
and it is not difficult to show that

lim
N→∞

pX(x) =
(
n
x

)
px(1 − p)n−x (C.30)

that is, the hypergeometric distribution tends to a binomial distribution. In
the light of the fact that the binomial distribution can be associated to a
sampling scheme with replacement, eq. (C.30) is not surprising. In fact, if
the number of objects in the urn is very high the difference between sampling
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with replacement and sampling without replacement is negligible. In the limit
of N → ∞, clearly, there is no difference at all.

Turning to continuous distributions, let X be a normal r.v. with mean m
and variance σ 2. If we let Y = eX, Y is a so-called lognormal r.v. and its
pdf is

fY (y) = 1

yσ
√

2π
exp

(
− (ln y− µ)2

2σ 2

)
(C.31)

for y > 0 and zero otherwise. The kth order ordinary moment is

E(Yk) = exp

(
kµ + k2σ 2

2

)
(C.32a)

from which we get the mean and variance as

E(Y) = exp

(
µ + σ 2

2

)
Var(Y) = exp(2µ + 2σ 2) − exp(2µ + σ 2) = e2µ+σ 2

(eσ 2−1)

(C.32b)

Going back to the Gamma distribution (C.8), the particular case b = 1
deserves special attention because the pdf

f (x) = 1
a

exp(−x/a), x > 0 (C.33)

(f (x) = 0 otherwise) is frequently encountered in applications. A r.v. X with
pdf (C.33) is called exponential of parameter a and in this case one often
writes X ≈ Exp(a). In the light of the results of Section C.2 we have the
CF ϕ(u) = (1 − iau)−1 and the moments E(Xk) = k!ak(k = 1, 2, . . .). In
particular

E(X) = a

Var(X) = a2
(C.34)

and also µ3 = 2a3, µ4 = 9a4, etc.
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Noting that the exponential PDF (for x > 0) is F(x) = 1− exp(−x/a) and
therefore P{X > x} = 1 − F(x) = exp(−x/a), the equalities

P{X > t + s|X > s} = P{X > t + s}
P{X > s} = e−t/a = P{X > t}

(s, t > 0) show that the exponential distribution – like the geometric – is
memoryless. This, in words, can be expressed as follows: if, in order for an
event E to occur, I have already waited for a time s, the probability of having
to wait for a further time t is the same as if I started to wait right now.

As mentioned above, the distribution (C.33) is often used in applications,
the typical case being to model events that occur in sequence with random
(and independent) ‘arrival times’. These arrival times, in fact – for instance,
in the disintegration of radioactive particles, the sequence of seismic phenom-
ena, etc. – are adequately represented by means of an exponential model.
The consequence is, as it is generally observed in practice, that close events
are more likely than distant events (the adjectives ‘close’ and ‘distant’ refer
here to the distance in time on an appropriate scale) and we have clusters
of events separated by long waiting times. As a matter of fact, some rare
events like serious accidents or natural disasters do fit into this description
and therefore it is quite likely that two or more such events may be close
together. This is a law of nature and there is no need – as it is often heard –
to invoke mysterious correlations between calamities.

A final remark on the exponential distribution: we noted above that
�(a, 1) = exp(a); since, however, �(2, ν/2) = χ2(ν) it follows that
χ2(2) = exp(2). This fact had already been pointed out in Section C.3.

In Section 4.6.1 we introduced the Cauchy distribution which, in the form
of eq. (4.35), is a special case of the Student distribution (C.14) when ν = 1.
A more general form of Cauchy pdf is

f (x) = b
π [b2 + (x− a)2] (C.35)

for −∞ < x < ∞ and b > 0. The parameters a,b are called the ‘location’
parameter and the ‘scale’ parameter, respectively. Since the CF of (C.35) is
ϕ(u) = exp(iua − b|u|) and this function is not differentiable in u = 0, the
Cauchy distribution has no finite moments of any order. Finally, in regard
to this distribution, a noteworthy result (whose proof can be found at the
end of Section 3.5) is as follows:

Proposition C.15 Let X,Y be two independent r.v.s such that X ≈ N(0, 1)

and Y ≈ N(0, 1). Then, the r.v. X/Y is distributed according to a Cauchy
distribution with location parameter a = 0 and scale parameter b = 1.
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The last continuous distribution that we consider in this appendix is the
so-called beta distribution. Before this, however, we must introduce the beta
function B(p,q) defined as

B(p,q) =
1∫

0

xp−1(1 − x)q−1 dx (C.36)

where p,q are two positive real constants (which have nothing to do with
the probabilities appearing in Bernoulli trials). A first property is B(p,q) =
B(q,p), which can easily be obtained by performing the change of variable
y = 1 − x. A second property is the relation with the the gamma function;
in fact it can be shown that

B(p,q) = �(p)�(q)
�(p+ q)

(C.37)

A beta r.v. with parameters p and q is a variable with the pdf

f (x) = 1
B(p,q)

xp−1(1 − x)q−1 (C.38)

for 0 < x < 1 and zero otherwise. The kth order moment of this
distribution is

E(Xk) = B(p+ k,q)
B(p,q)

= �(p+ k) �(p+ q)
�(p)�(p+ q+ k)

= p+ k− 1
p+ q+ k− 1

E(Xk−1)

(C.39a)

where the last expression is a recursion formula. In particular, we have

E(X) = p
p+ q

Var(X) = pq
(p+ q)2(p+ q+ 1)

(C.39b)

Depending on the values of the two parameters, the pdf (C.38) varies;
more specifically

(a) if p > 1,q > 1 it is kind of bell-shaped with a maximum at x = (p−1)/

(p+ q− 2);
(b) if p < 1,q < 1 it is U-shaped with a minimum at x = (p−1)/(p+q−2);
(c) if p > 1,q ≤ 1 it is monotone increasing;
(d) if p ≤ 1,q ≥ 1 it is monotone decreasing with the special case p = q = 1

in which it becomes the uniform distribution on the interval (0, 1).
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C.7 A few final results

A first result of interest is of practical use in calculations and concerns the
standard normal PDF, often denoted by the symbol �(x). It is well known
that there is no explicit expression for

F(x) = 1√
2π

x∫
−∞

exp(−z2/2) dz

and this is why its values are extensively tabulated. Nonetheless, with a =
1.5976 and b = 0.044715, a sufficiently accurate approximation for most
applications is

�(x) ∼= 1
1 + exp{−ax(1 + bx2)} (C.40)

which leads to a maximum absolute error < 0.0002.
Now, let A be a square n × n symmetric matrix, that is, A = AT. It is

known from matrix theory that xTAx is the quadratic form associated to
A and one says that (i) A is positive semidefinite if xTAx ≥ 0 for all (non-
zero) n-dimensional vectors x and (ii) A is positive definite if xTAx > 0 for
all (non-zero) n-dimensional vectors x. For our purposes, let us consider a
sample X = (X1, . . . ,Xn)T from N(0, 1), the quadratic form Q ≡ XTAX
and the m linear forms

ti =
n∑
j=1

bijXj, j = 1, 2, . . . ,m

which, in turn, can also be written in matrix notation as t = BX where t
is a m × 1 column vector and B is the m × n matrix of coefficients. Then,
denoting by 0 the null matrix of the appropriate dimensions relevant to the
theorem being stated, we have

Proposition C.16 If BA = 0 then the functions Q and t are independent.

If now, on the other hand, we consider two quadratic forms Q1 = XTA1X
and Q2 = XTA2X, the following result applies

Proposition C.17 If AB = BA = 0 then Q1 and Q2 are independent.

Finally, the following two theorems concern the distribution of quadratic
forms of normal variables. Denoting, as it is customary, by trA the trace of
A and by rkA its rank, the first theorem is
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Proposition C.18 Let Q = XTAX and let rkA = r ≤ n. If A is idempotent
(i.e. A = A2) then

(i) r = trA and
(ii) Q ≈ χ2(r)

while the second asserts.

Proposition C.19 Let Y be a n-dimensional random vector distributed
according to the multivariate, non-degenerate, normal distribution with
mean m and covariance matrix K (in this regard, recall Section 3.3.2). Then

(Y −m)TK−1(Y −m) ≈ χ2(n)

For the interested reader, the proofs of Propositions C.16–C.19 can be found
in Ref [6]. All of them, however, are based on the fact that a for a real
symmetric matrix it is always possible to find an orthogonal matrix U such
that D ≡ UTAU is diagonal and its (of D) only non-zero elements are the
eigenvalues of A. We recall here that a matrix U is called orthogonal if
UT = U−1. Moreover, it turns out that the columns u1, . . . ,un of the matrix
U which ‘diagonalizes’ A are the eigenvectors of A. A detailed treatment of
these fundamental aspects of matrix analysis can be found in [2, 5, 10].
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total expectation 68
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Type I error 224
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Uan see uniform asimptotic negligibility
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349
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see random variable; response 275
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