
Understanding
Structural
Engineering
F r o m  T h e o r y  t o  P r a c t i c e



Understanding
Structural
Engineering

Wai-Fah Chen
Salah El-Din E. El-Metwally

F r o m  T h e o r y  t o  P r a c t i c e

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-2710-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been 
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the 
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the 
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to 
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let 
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, 
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written 
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com 
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, 
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety 
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment 
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for 
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Chen, Wai-Fah, 1936-
Understanding structural engineering : from theory to practice / by Wai-Fah Chen and 

Salah El-Din E. El-Metwally.
p. cm.

Summary: “From science to engineering and from theory to practice, it illustrates different 
breakthroughs, traced back to their origin and placed into prospective. First, the text presents 
the fundamental laws of mechanics, the theory of elasticity, and the development of the 
generalized stress-generalized strain concept. Next, it details the era of plasticity. The finite 
element method comes as an offspring of the generalized stress generalized strain concept. 
Finally, the authors explore the era of computer simulation to offer a glimpse into the future”-- 
Provided by publisher.

Includes bibliographical references and index.
ISBN 978-1-4398-2710-9 (hardback)
1.  Structural engineering.  I. El-Metwally, Salah El-Din E. II. Title.

TA633.C26 2011
624.1--dc22 2010048441

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 



v

Contents
Preface.................................................................................................................... xiii
Authors......................................................................................................................xv

Chapter 1	 From Science to Engineering................................................................1

1.1	 Historical Sketch........................................................................1
1.2	 The Fundamentals of Structural Analysis..................................2
1.3	 Elastic Analysis as a Start..........................................................3
1.4	 Plastic Analysis as a Further Progress.......................................5
1.5	 Finite Element Analysis as a Logical Extension........................7
1.6	 STM as a Powerful Tool.............................................................8
1.7	 Advanced Analysis for Steel Frame Design as the 

Current Progress.........................................................................9
1.8	 Computer-Based Simulation as the Future Trend.................... 11
1.9	 Summary.................................................................................. 12
References........................................................................................... 15

Chapter 2	 The Era of Elasticity............................................................................ 17

2.1	 Fundamentals of Elasticity....................................................... 17
2.1.1	 Basic Field Equations.................................................. 17

2.1.1.1	 Equilibrium.................................................. 17
2.1.1.2	 Compatibility............................................... 17
2.1.1.3	 Constitutive Relations.................................. 19

2.1.2	 Solution Process: An Illustration................................. 19
2.2	 The Concept of Generalized Stress and Generalized Strain.....20

2.2.1	 Introduction.................................................................20
2.2.2	 Bar Element as a Start................................................. 21

2.2.2.1	 Axially Loaded Element.............................. 21
2.2.2.2	 Flexural Element..........................................22

2.2.3	 Plate Element as a Next Step.......................................23
2.2.3.1	 Compatibility...............................................23
2.2.3.2	 Constitutive Relations..................................24
2.2.3.3	 Equilibrium..................................................24

2.2.4	 Shell Element as a Further Extension.........................25
2.2.4.1	 Equilibrium..................................................25
2.2.4.2	 Kinematics for Membrane Action...............26
2.2.4.3	 Constitutive Relations..................................27
2.2.4.4	 Kinematics for Bending Action...................28
2.2.4.5	 Constitutive Relations.................................. 29
2.2.4.6	 Equilibrium.................................................. 29



vi Contents

2.2.5	 Finite Element as a Recent Progress........................... 29
2.2.5.1	 Kinematics................................................... 29
2.2.5.2	 Equilibrium..................................................30
2.2.5.3	 Constitutive Relations..................................30

2.3	 Theory of Structures................................................................. 31
2.3.1	 Generalized Stress–Generalized Strain Relations 

of a Beam Member...................................................... 31
2.3.1.1	 No Sway....................................................... 31
2.3.1.2	 Sway............................................................. 33

2.3.2	 Single Span Beam Problems....................................... 33
2.3.3	 Slope-Deflection Method for Simple Structures......... 35
2.3.4	 Moment Distribution Method for Frame Structures...... 35
2.3.5	 Structural Design........................................................36

2.4	 Theory of Structural Stability.................................................. 37
2.4.1	 Generalized Stress–Generalized Strain Relations 

of a Beam-Column Member........................................ 37
2.4.2	 Buckling Analysis of Structural Members.................. 38

2.4.2.1	 Euler Load................................................... 43
2.4.3	 The K Factor and the Alignment Charts..................... 43

2.4.3.1	 K Factor........................................................ 43
2.4.3.2	 Alignment Charts........................................44

2.4.4	 Stability Analysis of Framed Structures.....................46
2.4.5	 Amplification Factors for Second-Order Effects........50

2.4.5.1	 P–Δ Effect.................................................... 51
2.4.5.2	 P–δ Effect.................................................... 52

2.5	 Theory of Plates....................................................................... 55
2.6	 Theory of Shells....................................................................... 58
2.7	 Finite Element.......................................................................... 61
2.8	 The Allowable Stress as a Basis for Design............................. 63
2.9	 Historical Sketch......................................................................68
References........................................................................................... 70

Chapter 3	 The Era of Plasticity............................................................................ 71

3.1	 Fundamentals of Plasticity....................................................... 71
3.1.1	 Introduction................................................................. 71
3.1.2	 Basic Field Equations in Plasticity.............................. 72
3.1.3	 Yield Criteria Independent of Hydrostatic Pressure...... 72
3.1.4	 Yield Criteria for Pressure-Dependent Materials........ 75
3.1.5	 Incremental Strain....................................................... 76
3.1.6	 Constitutive Equations for Perfectly Plastic 

Materials.................................................................... 78
3.1.7	 Constitutive Equations for Work-Hardening 

Materials....................................................................79
3.1.7.1	 Material Hardening..................................... 79
3.1.7.2	 Incremental Plastic Strain............................ 82



viiContents

3.1.8	 Solution Process: An Illustration................................. 83
3.1.8.1	 Basic Equations...........................................84
3.1.8.2	 Elastic Solution............................................85
3.1.8.3	 Elastic–Plastic Expansion............................86

3.2	 Limit Theorems of Perfect Plasticity.......................................88
3.2.1	 Introduction.................................................................88
3.2.2	 Why Limit Analysis?................................................... 89
3.2.3	 Basic Assumptions......................................................90
3.2.4	 Lower-Bound Theorem...............................................90
3.2.5	 Upper-Bound Theorem................................................93

3.3	 Bar Element as a Start..............................................................98
3.3.1	 Generalized Stress–Generalized Strain Relation........98

3.3.1.1	 Assumptions................................................98
3.3.1.2	 Material........................................................98
3.3.1.3	 Moment–Curvature Relation.......................98
3.3.1.4	 The Plastic Moment................................... 100

3.3.2	 Simple Plastic Hinge as Further Simplification........ 101
3.3.2.1	 Idealization................................................ 101
3.3.2.2	 Concept...................................................... 102
3.3.2.3	 Effect of Axial Force................................. 103

3.3.3	 Elastic–Plastic Hinge-by-Hinge Analysis................. 104
3.3.4	 Plastic-Hinge Analysis by Equilibrium Method....... 105

3.3.4.1	 Case 1: Plastic Hinges at B and C............. 105
3.3.4.2	 Case 2: Plastic Hinges at C and D............. 106
3.3.4.3	 Case 3: Plastic Hinges at B and D............. 106

3.3.5	 Plastic-Hinge Analysis by Mechanism Method........ 106
3.3.6	 Refined Plastic Hinge toward Advanced Analysis...... 109

3.4	 Concrete Plate Element as a Next Step................................... 111
3.4.1	 Generalized Stress–Generalized Strain Relation...... 111

3.4.1.1	 Typical Moment–Curvature Relation........ 111
3.4.1.2	 Assumptions and Idealization.................... 111

3.4.2	 Yield Line Theory as a Logical Extension of 
Plastic-Hinge Analysis.............................................. 112
3.4.2.1	 Concept...................................................... 112
3.4.2.2	 The Plastic Moment, Mp............................ 113
3.4.2.3	 Yield Criterion........................................... 114

3.4.3	 Yield-Line Analysis for Concrete Slab Design......... 114
3.4.3.1	 Yield Criterion of Yield Line..................... 114
3.4.3.2	 Axes of Rotations and Yield Lines............ 115
3.4.3.3	 Application................................................ 117

3.5	 Strut-and-Tie Model as a Recent Progress............................. 119
3.5.1	 Introduction............................................................... 119
3.5.2	 Concept...................................................................... 120
3.5.3	 Strut-and-Tie Modeling............................................. 121
3.5.4	 Elements of Strut-and-Tie Model.............................. 123
3.5.5	 Failure Criteria.......................................................... 125



viii Contents

3.5.5.1	 Struts.......................................................... 125
3.5.5.2	 Ties............................................................ 127
3.5.5.3	 Nodal Zones............................................... 127

3.5.6	 An Illustrative Example............................................ 128
3.6	 Historical Sketch.................................................................... 131
References......................................................................................... 135

Chapter 4	 The Era of Finite Element................................................................. 139

4.1	 Introduction............................................................................ 139
4.2	 Fundamentals of Finite Element............................................ 139

4.2.1	 Kinematics Conditions (Shape Function).................. 139
4.2.2	 Equilibrium Conditions (Principle of 

Virtual Work)............................................................142
4.2.3	 Constitutive Conditions (Incremental/Iterative 

Formulation).............................................................. 143
4.2.4	 Illustrative Examples................................................. 144

4.3	 Application for Structural Steel Member Design................... 146
4.3.1	 Column Design Equations......................................... 146
4.3.2	 Beam Design Equations............................................ 150

4.3.2.1	 For Strong Axis Bending........................... 153
4.3.2.2	 For Weak Axis Bending............................ 154

4.3.3	 Beam-Column Design Equations.............................. 154
4.4	 Application for Structural System Design.............................. 156

4.4.1	 Advanced Analysis for Steel Design......................... 156
4.4.2	 FE Analysis of Offshore Concrete Structures........... 157

4.4.2.1	 Research behind the Success of the 
Offshore Structures.................................... 157

4.4.2.2	 Failure Experience, the Problem............... 157
4.4.2.3	 Lessons Learned........................................ 158
4.4.2.4	 Concluding Remarks................................. 158

4.4.3	 A Glance to the Future.............................................. 158
4.5	 Load and Resistance Factor Design for Structural Steel 

Buildings................................................................................. 159
4.5.1	 Reliability-Based LRFD Code as a Start.................. 159
4.5.2	 Load Factors.............................................................. 160
4.5.3	 Resistance Factors..................................................... 160
4.5.4	 Performance-Based Design as a Current 

Progress................................................................162
4.6	 Historical Sketch.................................................................... 162
References......................................................................................... 163

Chapter 5	 Strut-and-Tie Model for Design of Structural Concrete 
Discontinuity Regions....................................................................... 165

5.1	 Introduction............................................................................ 165



ixContents

5.2	 D-Regions versus B-Regions.................................................. 166
5.2.1	 Introduction............................................................... 166
5.2.2	 B-Regions.................................................................. 166
5.2.3	 D-Regions.................................................................. 167
5.2.4	 Defining the Boundaries of D-Regions..................... 168

5.3	 Strut-and-Tie Model as a Solution.......................................... 170
5.3.1	 Safe Solution Based on Equilibrium Approach........ 170
5.3.2	 Basic Discontinuous Stress Fields............................. 172

5.4	 Selected Discontinuous Stress Fields..................................... 172
5.4.1	 Local Pressure........................................................... 172
5.4.2	 Dapped Beam............................................................ 172
5.4.3	 Beam with Recess..................................................... 178
5.4.4	 Walls with Openings................................................. 179
5.4.5	 Deep Beam with Eccentric Large Opening.............. 179
5.4.6	 Knee Corner Joints under Opening Moments........... 182
5.4.7	 Knee Corner Joints under Closing Moments............ 182
5.4.8	 Exterior Beam-Column Connections........................ 182
5.4.9	 Tee Beam-Column Connections............................... 183
5.4.10	 Interior Beam-Column Connections......................... 184

5.5	 An Illustrative Design Example............................................. 184
5.5.1	 Reactions and Straining Actions............................... 184
5.5.2	 D- and B-Regions...................................................... 187
5.5.3	 Dimensioning of B-Region....................................... 187
5.5.4	 Establish an STM...................................................... 188
5.5.5	 Effective Concrete Strength for the Struts................ 189
5.5.6	 Effective Concrete Strength for the Nodes............... 189
5.5.7	 Node A...................................................................... 189
5.5.8	 Node B....................................................................... 190
5.5.9	 Node C....................................................................... 191
5.5.10	 Node D...................................................................... 191
5.5.11	 Node E....................................................................... 192
5.5.12	 Strut C2...................................................................... 193
5.5.13	 Strut C3...................................................................... 194
5.5.14	 Strut C3...................................................................... 194
5.5.15	 Strut C5...................................................................... 194
5.5.16	 Checking the Strength of the B-Region and Tie T1...... 194
5.5.17	 Tie T2......................................................................... 195
5.5.18	 Tie T3......................................................................... 195
5.5.19	 Reinforcement........................................................... 195

5.6	 Historical Sketch.................................................................... 195
References......................................................................................... 197

Chapter 6	 Toward Advanced Analysis for Steel Frame Design......................... 199

6.1	 The Role of the Effective Length Factor K in Design............ 199
6.1.1	 General...................................................................... 199



x Contents

6.1.2	 Elastic Structural Analysis and K Factor..................200
6.1.3	 Design with K factor.................................................. 201
6.1.4	 Limitations................................................................202

6.2	 Methods of Advanced Analysis..............................................204
6.2.1	 Definitions.................................................................204
6.2.2	 Elastic–Plastic-Hinge Method...................................205
6.2.3	 Refined Plastic-Hinge Method..................................205
6.2.4	 Plastic-Zone Method.................................................206
6.2.5	 Verification of Plastic-Zone Method.........................208
6.2.6	 Practicality of the Plastic-Zone Method.................... 211

6.3	 Simplifications for Advanced Analysis.................................. 211
6.3.1	 Introduction............................................................... 211
6.3.2	 Stability Effects......................................................... 212
6.3.3	 Residual Stresses....................................................... 212
6.3.4	 Initial Geometric Imperfection................................. 212
6.3.5	 Inelasticity................................................................. 214
6.3.6	 Joint Flexibility......................................................... 215

6.4	 Practical Advanced Analysis.................................................. 215
6.4.1	 Introduction............................................................... 215
6.4.2	 Stability Effects......................................................... 215
6.4.3	 Residual Stresses....................................................... 217
6.4.4	 Initial Geometric Imperfection................................. 217
6.4.5	 Inelasticity................................................................. 217
6.4.6	 Incremental Force–Displacement Relationship........ 219
6.4.7	 Joint Flexibility.........................................................220

6.5	 Application Examples............................................................. 222
6.5.1	 Verification Example (Vogel’s Six-Story Frame)...... 222
6.5.2	 Design Example for Calibration against LRFD 

Code..........................................................................224
6.5.3	 Comparison with the LRFD Design Method............ 227
6.5.4	 Semi-Rigid Frame Design Example.......................... 227

6.6	 Performance-Based Design.................................................... 229
6.7	 Historical Sketch.................................................................... 232
References......................................................................................... 233

Chapter 7	 The Era of Model-Based Simulation................................................. 235

7.1	 The Era of Computer Simulation........................................... 235
7.2	 Model-Based Simulation in Structural Engineering.............. 236
7.3	 MBS System Integration........................................................ 237

7.3.1	 Mathematical Modeling............................................ 237
7.3.2	 Solution Algorithm.................................................... 238
7.3.3	 Software Development.............................................. 238

7.4	 Material Modeling.................................................................. 239
7.5	 Integration of Heterogeneous Models....................................240
7.6	 Representation and Propagation of Uncertainty....................242



xiContents

7.7	 Model Synthesis..................................................................... 243
7.8	 Computing..............................................................................244
7.9	 Scientific Visualization...........................................................245
7.10	 Model Updating and Validation.............................................246
7.11	 Summary................................................................................ 247
Selected Relevant References............................................................ 247

Index.......................................................................................................................249



xiii

Preface
This book grew out of the keynote lecture the senior author, Wai-Fah Chen, deliv-
ered at the 11th East Asia-Pacific Conference on Structural Engineering and 
Construction (EASEC-11) from November 19 to 21, 2008, in Taipei, Taiwan. The 
full-length paper based on this lecture entitled “Seeing the Big Picture in Structural 
Engineering” was subsequently published in the Proceedings of the Institution of 
Civil Engineers, May 2009, United Kingdom. The book, as in the paper, sets out 
to provide “the big picture” guide to the major advances in structural engineering 
design that have taken place over the last seven decades.

In structural engineering, elasticity and plasticity, mechanics of materials, and 
continuum mechanics are studied, employed, idealized, simplified, and implemented 
into engineering practice. The magnitude of difference between the actual perfor-
mance of a real structure in the real world and the performance predicted on the 
basis of this drastically simplified theory can only be ascertained by long-term expe-
rience and observation, as realistically reflected in building codes supplemented 
with a variety of safety factors to account for differences.

In this book, we focus on the theories that have stood the test of time and have 
been widely used in the actual design of structural-engineering solutions. We do not, 
however, cover historical feats or provide detailed analysis on the design process. 
Rather, we focus on the way structural engineers deal with ideal material models, 
ideal structural elements, and systems, and how they apply these simplifications to 
the formulation of the basic equations of equilibrium and compatibility of a real 
structural system thereby achieving successful design solutions. We have deliber-
ately omitted any discussion on the theory of structural dynamics, because a pal-
atable treatment of structural dynamics theory in connection with its application 
to earthquake-engineering designs cannot be accommodated within the space and 
scope of this book.

These breakthroughs and success stories in the application of mechanics to the 
design of engineering structures are covered in chronological order: first the funda-
mental laws of mechanics and materials, then the theory of elasticity, followed by 
the development of the generalized stress–generalized strain concept, and, finally, 
the effect of this concept in making the theory of elasticity more practical, which 
resulted in the adoption of the allowable stress design method in specifications 
worldwide with undue emphasis on safety based on linear elastic analysis.

Like the theory of elasticity in earlier eras, the theory of plasticity with its drastic 
idealization and simplification provides another success story of applied mechanics, 
which leads to the powerful limit analysis with lower- and upper-bound theorems for 
the determination of the load-carrying capacity of structures through the application 
of the simple plastic-hinge concept, leading to the adoption of the plastic design 
method in steel as well as the yield line theory and strut-and-tie model in reinforced 
concrete design codes worldwide.
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In recent years, rapid advances in computer technology have spurred the develop-
ment of structural calculations. There are several numerical analysis approaches to 
the estimation of stresses, strains, and displacements, but the finite element method 
is certainly the most versatile and popular. This method is an offspring of the gen-
eralized stress–generalized strain concept, which expresses the elastic or plas-
tic relations in terms of structural elements from which the parts of the structure 
are composed rather than the material treated as a mathematical point, as defined 
elegantly in the concept of continuum mechanics. The generalized stress–general-
ized strain concept connects the conventional strength-of-materials approach to the 
continuum-mechanics-based theory of plasticity, leading to the modern development 
of finite element solutions in structural engineering. This has allowed to solve almost 
any structural engineering problem under any condition. As a result of this suc-
cess, design specifications around the world are being revolutionized, from allow-
able stress design, to plastic design, to load-resistance-factor design, to the more 
recent performance-based design—as exemplified by the new Eurocode, American 
Institute of Steel Construction, and American Concrete Institute codes.

We are now in an age of unlimited desktop computing. Computer simulation has 
now joined theory and experimentation as a third path for engineering design and 
performance evaluation and provides us a glance to the future trend of structural 
engineering in the new century.

Seeing the big picture will enable structural engineers to deal with future theory 
with idealizations of idealizations and to make it work in the real world of engineer-
ing. To help the reader see the big picture of structural engineering, this book con-
sists of the following features:

•	 It illustrates the key breakthroughs in concept in structural engineering 
over the last 70 years in a unified manner.

•	 It presents the science of structural engineering from basic mechanics of 
materials, to computing, and to the ultimate process of engineering design.

•	 It shows how we are gaining ground on implementing theory into engineer-
ing practice through idealizations and simplifications.

•	 It explains that seeing the big picture will enable structural engineers to 
make a difference in the further advancement of the art in the years to 
come.

•	 It indicates the modern and future trends in structural engineering and pre-
dicts what is to come.

We would like to acknowledge the efforts of Dr. H. M. Nada and Dr. M. M. Gad in 
preparing the finite element solutions for the problems in Chapters 2 and 4. We are 
grateful to the sincere efforts of A. A. Khorshed, engineer, who prepared most of the 
drawings in this book.

Wai-Fah Chen
Salah El-Din E. El-Metwally
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1

1 From Science to 
Engineering

1.1  Historical Sketch

The master builders, the designers, and the constructors of the Gothic cathedrals 
of the Middle Ages used intuition and experience to develop design rules based 
on simple force equilibrium and treated the material as rigid. This solution pro-
cess provided the equivalent of what is now known as the lower-bound theorem of 
plastic limit analysis. This theorem was not proved until more than 500 years later. 
Modern lower-bound theorem shows that these design rules are safe. These simple 
design rules have existed from the earliest times for building Greek temples, Roman 
aqueducts and arch bridges, and domes and vaults. However, tests on real structures 
showed that the stresses calculated by designers with these rules could not actually 
be measured in practice.

Galileo, in the seventeenth century, was the first to introduce recognizably mod-
ern science into the calculation of structures; he determined the breaking strength 
of beams but he was way ahead of his time in engineering application. In the eigh-
teenth century, engineers moved away from his proposed “ultimate load” approach, 
and, until early in the nineteenth century, a formal philosophy of design had been 
established: a structure should remain elastic, with a safety factor on stress built into 
the analysis. It was an era of great advancement and a milestone in structural design 
but one that placed too much emphasis on the undue safety concern based on elastic 
response under working loads.

Galileo Galilei (1564–1642) was the first to use mathematics in order to describe 
the law of nature, which is based on observation from his experiments. Isaac Newton 
(1642–1727) discovered the basic laws of physics in terms of equilibrium condi-
tion (or equation of equilibrium) and equation of motion. Robert Hooke (1635–1703) 
described, in mathematical form, the material response to stress, which he observed 
in tests. He stated the linear relationship between stress and strain (Hooke’s law or 
constitutive law) as a function of a material constant (elasticity modulus or Young’s 
modulus).

Material continuity without discontinuities or cracks is a logical assumption in 
solid mechanics. This assumption leads to a mathematical description of geometric 
relations of a continuous medium known as continuum expressed in the form now 
known as compatibility conditions. For a continuum, the conditions of equilibrium 
(physics), constitutive (materials), and continuity (geometry) furnish the three sets of 
basic equations necessary for solutions in any solid mechanics problem in which struc-
tural engineering is one of its applications. In short, the mechanics analysis of a given 
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structural problem or a proposed structural design must involve the mathematical 
formulation of the following three sets of equations and solutions:

•	 Equilibrium equations or motion reflecting laws of physics (e.g., Newton’s 
laws)

•	 Constitutive equations or stress–strain relations reflecting material behav-
ior (experiments)

•	 Compatibility equations or kinematical relations reflecting the geometry or 
continuity of materials (logic)

The interrelationship of these three sets of basic equations is shown in Figure 1.1 for 
the case of static analysis.

1.2  The Fundamentals of Structural Analysis

The basic step of structural analysis is the application of these three sets of equations 
of equilibrium, compatibility, and constitutive laws. They are the fundamentals for 
all methods of structural analysis. In general, the three sets of basic conditions are 
expressed in terms of 15 equations: 3 equilibrium, 6 compatibility, and 6 constitutive 
equations. The solution of these 15 simultaneous equations should provide solutions 
of 6 stresses, 6 strains, and 3 displacements at a point in the structure system under 
consideration. It is the role of mathematics to achieve the solutions of these equations 
(Sokolnikoff, 1956).

In principle, the solution of the 15 equations for 15 unknowns is possible from a 
mathematical point of view. However, for real-world applications, a structural engi-
neer must operate with ideal material models and ideal structural systems to reduce 
drastically the 15 unknowns. The theories of reinforced concrete design, for exam-
ple, do not deal with real reinforced concrete. They operate with an ideal composite 
material consisting of concrete and steel, the design properties of which have been 
approximated from those of real reinforced concrete by a process of drastic ideal-
ization and simplification. The same process of simplification and idealization also 
applies to the formulation of the basic equations of equilibrium and compatibility of 
a real structural system. This process of simplification and idealization is described 
in more detail in the chapters that follow.

External forces Fi, Ti

σij εij

ui

Equilibrium
equations

Stresses

Constitutive laws

Strains

Compatibility
equations

Displacements

Figure 1.1  Interrelationship of the three sets of basic field equations.
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The first three chapters that follow—The Era of Elasticity (Chapter 2), The Era of 
Plasticity (Chapter 3), and The Era of Finite Element (Chapter 4)—highlight several 
key breakthroughs in concepts and simplifications in each era to reach the pres-
ent state of analysis that is now familiar to structural engineers. These three chap-
ters are essential to the understanding of the remaining chapters—Strut-and-Tie 
Model (Chapter 5), Advanced Analysis (Chapter 6), and Model-Based Simulation 
(Chapter 7)—which can be read independently of one another. The breakthroughs 
described in the first three chapters include, most notably, the following concepts 
and theorems:

•	 The generalized stress-generalized strain concept connects the conven-
tional strength-of-materials approach to a continuum-mechanics-based the-
ory of elasticity and plasticity, leading to the modern development of finite 
element (FE) solutions in structural engineering (Chapter 4).

•	 The proof of the limit theorems of perfect plasticity provides rational princi-
ples for preliminary structural design via simple equilibrium or kinematical 
processes consistent with engineers’ intuitive approaches to design, leading 
to the modern development of strut-and-tie models (STMs) for structural 
design in reinforced concrete in particular (Chapter 5).

•	 The simple plastic-hinge concept enables the direct application of simple 
plastic theory to steel-frame design in particular, leading to the modern 
development of advanced analysis for structural design in steel (Chapter 6).

Computer simulation has now combined theory and experimentation as a third path 
for engineering design and performance evaluation. Simulation is computing, the-
ory is modeling, and experimentation is validation. The major challenges for future 
structural engineers are the integration and simplification of materials science, struc-
tural engineering, and computation and then making them work and applicable for 
the real world of engineering. The emerging areas of model-based simulation (MBS) 
in structural engineering are described briefly in Chapter 7.

1.3  Elastic Analysis as a Start

To simplify the field equations for a realistic engineering solution, it is more conve-
nient to formulate the elastic or plastic relations in terms of elements from which the 
parts of the structure are composed rather than the material treated as a mathemati-
cal point as defined elegantly in the concept of continuum mechanics. For example, 
for a structural member such as a beam in a building framework, the basic element or 
segment can be obtained by cutting through the entire thickness of the beam section. 
Thanks to this approach, it is then possible to replace the six stress components act-
ing on the cross section of the element by one dominant normal stress resultant—the 
bending moment, M (generalized stress). Similarly, the corresponding six deforma-
tional components can be reduced to one dominant strain resultant—the angle of 
relative rotation or curvature, φ (generalized strain).

This concept of using the generalized stresses and generalized strains for inelas-
tic structural analysis and design was employed for the first time in 1952 by Prager 
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in establishing his general theory of limit design, and, later in 1959, it was utilized 
prominently by Hodge in his popular text on the plastic analysis of structures (Hodge, 
1959; Prager, 1952). It took great insight to fully understand the impact by unifying 
the conventional strength-of-materials approach and the modern theory of plasticity 
and limit design in a consistent manner.

The relationship between the value of the bending moment M and the angle of 
relative rotation φ for the ends of the section represents the material behavior of 
that structural element (generalized stress–generalized strain relation, Figure 1.2b). 
The relationship is linear and reversible for a linear elastic material, as observed 
by Hooke, before yielding or crack or under working load condition. With this 
simplification, it has become possible to develop solutions for structural members 
and frames. These solutions so obtained are called strength-of-material solutions. 
Thanks to this simplification, the complex local stress and strain states in a real siz-
able element of a real structure are avoided and the field of application of the theory 
of elasticity, described in Chapter 2, and that of plasticity, described in Chapter 3, 
can be broadened significantly. This expansion and generalization resulted in the 
development of modern structural theories, among them several structural elements 
including bar elements, plate elements, shell elements, and FEs (Chapter 4).

This study and mathematical formulation of engineering structures have led to 
a formal three-stage process in mechanics operation, which can be summarized as 
follows:

•	 First, the relationships between stresses in a structural element and the gen-
eralized stresses acting on the surface of the element are determined by 
using equilibrium equations.

•	 Second, the relationships between deformations of the material in the 
element and the generalized strains on the surface of the element are 

M

(a) (b)

(c) (d)

M

M

MpMp

σ

ε

θ

Figure 1.2  Development of plastic-hinge concept: (a) elastic–perfectly plastic stress–
strain relation, (b) moment–curvature relation, (c) idealized moment–curvature relation, and 
(d) idealized moment–rotation relation.
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established through a kinematical assumption such as “plane section before 
bending remains plane after bending.”

•	 Finally, the generalized stress–generalized strain relations are derived 
through the use of stress–strain relations of the material.

This mechanics operation becomes particularly clear when this process is applied to a 
particular structural element and material model under consideration. Chapter 2 shows 
the application for a linear elastic material along with its many engineering solutions 
suitable for use in allowable stress design code in earlier years, while Chapter 3 
shows its companion application for a plastic material along with its further develop-
ment and simplification leading to plastic-hinge concept with the subsequent devel-
opment of simple plastic theory used widely in plastic design code in steel in later 
years.

Chapter 4 shows this formulation process along with how it can be developed 
naturally for modern FE analysis. Since the solution for the simultaneous FE equa-
tion must be carried out numerically in an incremental form by computer, many 
numerical procedures were developed in the period from 1970 to the 1980s includ-
ing the necessity of developing an efficient iterative process to deal with load-path 
dependency of the inelastic material behavior. As a result of this progress, together 
with the rapid advancement in computer power, large amount of numerical data 
were generated in a variety of structural engineering applications during this period. 
With this large amount of database generated, the probability theory was utilized to 
analyze these results leading to the development of reliability-based code in recent 
years. It was an era of great advancement.

1.4  Plastic Analysis as a Further Progress

The idealization of elastic–perfectly plastic behavior of material beyond the elastic 
range opened the door to a new era of mechanics. Introducing this idealization in 
the formulation of the generalized stress–generalized strain relation led to several 
advanced relations of structure elements. For instance, the elastic–perfectly plastic 
uniaxial stress–strain relation in Figure 1.2a leads to the generalized stress–general-
ized strain relation (moment–curvature relation) of cross section shown in Figure 1.2b. 
This moment–curvature relationship must be further idealized in order to develop 
simple plastic theory for engineering practice. This leads, for example, to ignoring 
strain-hardening and also to eliminating entirely the effect of time from the calcula-
tions. This further idealization is illustrated in Figure 1.2c, leading to the concept 
of plastic hinge, Figure 1.2d, by ignoring further the relatively small elastic strains 
near collapse of a structure. This further idealization of perfect plasticity to deal with 
the complex plastic behavior of the structural element gives powerful limit theorems 
of plasticity (Drucker et al., 1952), which made it possible to estimate the collapse 
load of a variety of structure systems including beams, plates, and shells in a direct 
manner.

The upper- and lower-bound theorems of limit analysis of perfect plasticity pro-
vide an excellent guide for preliminary design as well as for analysis of structures.
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•	 Lower-bound theorem. If an equilibrium distribution of moment can be 
found, which balances the applied loads, and is everywhere below the plas-
tic moment or at the plastic moment value, the structure will not collapse or 
will be just at the point of collapse.

•	 Upper-bound theorem. The structure will collapse if there is a compatible 
pattern of plastic failure mechanism for which the rate at which the external 
forces work equals or exceeds the rate of internal dissipation.

The lower-bound theorem states that the structure will adjust itself to carry the 
applied load if at all possible. It gives lower-bound or safe values of the collapse 
loading. The maximum lower bound is the collapse load itself. The upper-bound 
theorem states that if a plastic failure mechanism exists, the structure will not stand 
up. It gives upper-bound or unsafe values of the collapse loading. The minimum 
upper bound is the collapse load itself.

Historically, engineers in the past, based on intuition, developed many solutions 
for weak-tension material (based on equilibrium only) and for ductile materials 
(based on kinematics only), which have now been justified by the rigorous theorems 
of limit analysis. The theorems of limit analysis thus represent a very powerful tool 
nowadays to estimate the collapse load of structures or structural members without 
having to go through a very tedious calculation procedure. Further discussions on 
the development and applications of the theory of plasticity and limit analysis to 
structural design are given in more detail in Chapter 3.

In the case of lower-bound solution of limit analysis, only equilibrium and yield 
criterion are satisfied; equilibrium is satisfied for stress or generalized stress. The 
crude solution so obtained represents a good and quick guidance for the structural 
engineer. It can be used to verify some refined solutions from other methods. The 
lower-bound method is especially useful for application to tension-weak material, 
for example, stones or concrete. Hence, the safety of monumental structures such as 
cathedral can be checked very well with such a method.

In the case of upper-bound solution only kinematics and yield criterion are 
satisfied. The method is very powerful for ductile materials and even applicable 
to materials with limited ductility but with some modification to the solution pro-
cedure. The quick estimate of the collapse load of a structure is of great value, not 
only as a simple check for a more refined computer analysis but also as a basis for 
preliminary engineering design. The method, for example, can be used to make 
a quick check to verify solutions obtained from some sophisticated FE analysis 
in particular.

The structural applications of the limit theorems started with the development of 
the simple plastic theory for steel building design (Neal, 1957) and were extended 
to the development of yield line theory for reinforced concrete slab design (Nielsen, 
1964). Limit theorems have been explored carefully for applications to stability prob-
lems in soil mechanics (Chen, 2007), complemented by applications to the metal-
forming process (Johnson, 1986) and studied thoroughly in metal-matrix-composites 
applications (Dvorak and Bahei-El-Din, 1982), among others.
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1.5  Finite Element Analysis as a Logical Extension

The development of the FE analysis was a logical extension of the mechanics anal-
ysis involving mathematical formulation of the three sets of basic equations and 
solutions as described previously. First, the concept of generalized stress and gen-
eralized strain allowed dealing with a FE instead of a material point in a structure. 
Second, the principle of virtual work was utilized for the formulation of equilibrium 
instead of force balance, which simplified the solution process significantly. Third, 
by assuming an appropriate shape function of an element, compatibility between 
strains in the element and its nodal displacements was conveniently justified. These 
simplifications made it possible to obtain engineering solutions of almost any struc-
ture of any geometry and of any material model.

The FE method with powerful computers enabled engineers to implement real-
istic geometry and accurate material models into the analysis. Hence, it has become 
possible to obtain not only the collapse load of a structure but also the deformations 
under any loading level including even the post-peak behavior. As a result, it has 
become possible to apply the theory of stability with the theory of plasticity to simu-
late the actual behavior of structural members and frames with great confidence. It 
was the first time we were able to replace the costly full-scale tests with computer 
simulation. As a result of such progress, together with a rapid advancement in com-
puting power, large amounts of numerical data were generated in a variety of struc-
tural engineering applications during this era.

The following is a brief summary of the kind of numerical data that were gener-
ated through the FE analysis for structural members and frames in the 1970s. As a 
result of these data, the limit-state approach to design was advanced and new speci-
fications in steel design were issued in the 1980s. More complete description of these 
advancements is given in Chapter 4.

1970s—Numerical studies of member-strength equations:

•	 Beam strength equation leading to beam design curve
•	 Column strength equation leading to column design curve
•	 Beam-column-strength equation leading to beam-column interaction 

design curve
•	 Biaxially loaded column strength equation for plastic design in steel build-

ing frames

These developments were summarized in the two-volume treatise by Chen and 
Atsuta (2007a,b).

1980s—Limit states to design:

•	 Development of reliability-based codes
•	 Publication of 1986 AISC/LRFD specification in the United States (AISC, 

1986) and Europe (ECCS, 1984, 1991)
•	 Introduction of second-order elastic analysis to design codes
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•	 Explicit consideration of semirigid connections in frame design (now 
known as “partially restrained construction”) in the United States (Chen 
and Kim, 1998) and Europe (ECCS, 1992)

These developments were summarized in the book by Chen and Lui (1992).

1.6  StM as a Powerful Tool

With the advancement in material modeling and FE idealization, the computational 
process has not only become more powerful but also more complicated and time 
consuming. For daily practice it is necessary to rely on simplified analysis but with 
adequate accuracy. The lower-bound and upper-bound solutions of limit analysis 
serve this purpose realistically and conveniently. The equilibrium method has been 
used since ancient times as in the Egyptian pyramids, structures of arched form, and 
monumental structures. The recent proof of this method supports the ancient engi-
neering practice and helps expand the method to modern applications of reinforced 
concrete structures.

One of the most important advancements in reinforced concrete in recent years is 
the extension of lower-bound-limit-theorem-based design procedures to shear, tor-
sion, bearing stresses, and the design of structural discontinuities such as joints and 
corners. The STM is developed for such a purpose and is based on the lower-bound 
theorem of limit analysis. In this model, the complex stress distribution in the struc-
ture is idealized as a truss carrying the imposed loading through the structure to its 
supports. Like a real truss, an STM consists of compression struts and tension ties 
interconnected at nodes. Using the stress legs similar to those shown in Figure 1.3, a 
lower-bound stress field that satisfies equilibrium and does not violate failure criteria 
at any point can be constructed easily to provide a safe estimate of load-carrying 
capacity on the reinforced concrete structures (Chen and Han, 1988).

The STM has been well developed over the last two decades and it was presented 
in several texts (see for example Schlaich and Schäfer, 1991) as a standard method 
for shear, joints, and support bearing design. The STM method was also introduced 
in the AASHTO LRFD Specifications (ASCE, 1998; AASHTO, 1998) as well as in 

A
A

B B

C
C

Figure 1.3  Using stress legs as truss members to produce a stress field at a stress joint.
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the ACI 318 building code (ACI 318-08). A typical example of STM for a common 
structural joint design is shown in Figure 1.4.

STMs are derived from the flow of forces within structural concrete regions, 
namely, those of high shear stresses, where Bernoulli hypothesis of flexure, plane 
sections before bending remain plane after bending, does not apply. Those regions 
are referred to as discontinuity or disturbance regions (or simply D-regions), in con-
trast to those regions where Bernoulli hypothesis is valid, and are referred to as 
Bernoulli or bending regions (or simply B-regions). The flow of forces in D-regions 
can be traced through the concept of truss, thus named truss model or STM, which 
is a generalization of the truss model. The concept of STM as a lower-bound solution 
is illustrated in Chapter 3. More discussions on the applications of the method to a 
variety of different D-regions in reinforced concrete design are given in Chapter 5.

1.7  �Advanced Analysis for Steel Frame 
Design as the Current Progress

In current engineering practice, there is a fundamental two-stage process in the 
design operation:

•	 The forces acting on the structural members are determined by conducting 
an elastic structural system analysis.

•	 The sizes of various structural members are selected by checking against 
the ultimate strength equations specified in design codes.

Strut

Tie

Node

Figure 1.4  Application of the STM to reinforced concrete joint design.
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The interaction behavior between individual members and their structural system is 
accounted for approximately by the use of the effective length factor K concept as illus-
trated schematically in Figure 1.5. However, despite its popular use in current practice 
as a basis for design, the effective length approach has the following major limitations:

•	 It cannot reflect the inelastic distributions of internal forces in a structural 
system.

•	 It cannot provide information on the failure mechanisms of a structural 
system.

•	 It is not easy to implement in an integrated computer design application.
•	 It is a time-consuming process by calculating every K factor for each sepa-

rate member capacity check.

Furthermore, some of these difficulties are more so on seismic designs since addi-
tional questions are frequently asked:

•	 How is the structure going to behave during an earthquake?
•	 Which part of the structure is the most critical area?
•	 What will happen if part of the structure yields or fails?
•	 What might happen if forces greater than the code has specified occur?

Considering these limitations and drawbacks and the rapid advancement of comput-
ing power, the second-order inelastic analysis approach or the so-called advanced 

Framed
member

Effective
length
factor

Structural
system

Figure 1.5  Interaction between a structural system and its component members using the 
K factor concept.
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analysis approach provides an alternative approach to structural analysis and design. 
Nevertheless, this approach consumes tremendous computation efforts, and in order 
to overcome such a demand the practical advanced analysis has been developed 
(Chen, 2009a). The practical advanced analysis as presented in Chapter 6 is an 
elastic-plastic-hinge-based analysis, modified to include the geometry imperfec-
tions, gradually yielding and residual stress effects, and semirigid connections. In 
this approach, all those aforementioned drawbacks associated with using K factor 
are overcome. There is no need to compute the effective length factor, yet it will 
produce almost identical member sizes as those of the LRFD method (Chen and 
Kim, 1997).

1.8  Computer-Based Simulation as the Future Trend

We are now in a desktop environment for unlimited computing. Computer simu-
lation has now combined theory and experimentation as a third path to scientific 
knowledge. Simulation plays an increasing critical role in all areas of science and 
engineering. Exciting examples of these simulations are occurring in areas such 
as automotive crashworthiness for component design in auto industry, Boeing 777 
for system design and manufacturing in aerospace, and the next generation Space 
Telescope (Hubble II) for system design, assembly, and operation in space engineer-
ing. One key branch of this new discipline is MBS, whose objective is to develop 
the capability for realistically simulating the behavior of complex systems under the 
loading and environmental conditions that the systems may experience during their 
lifetimes.

Simulation does not replace observation and physical experimentation but com-
plements and enhances their value in the synthesis of analytical models. It provides 
a framework for combining theory and experimentation with advanced computation. 
Besides massive numerical computations, high-performance computers permit the 
use of other tools, such as visualization and global communications using advanced 
networks, all of which contribute to the ability to understand and control the physical 
processes governing complex systems.

MBS is based on the integration of mechanics, computing, physics, and materi-
als science for predicting the behavior of complex engineering and natural systems. 
MBS allows engineers and researchers to investigate the entire life cycle of engi-
neered systems and assists in decisions on the design, construction, and performance 
in civil and mechanical systems. Reliable and accurate MBS tools will permit the 
design of engineering systems that cost less and perform better. MBS promises to 
reduce design cycle times while increasing system life span.

The emerging areas of MBS in structural engineering will notably include the 
following topics:

	 1.	From the present structural system approach to the life-cycle structural 
analysis and design covering construction sequence analysis during con-
struction, performance analysis during service, and degradation and dete-
rioration analysis during maintenance, rehabilitation, and demolition
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	 2.	From the present FE modeling for continuous media to the finite block 
types of modeling for tension-weak materials, which will develop cracks 
and subsequently change the geometry and topology of the structure

	 3.	From the present time-independent elastic and inelastic material modeling 
to the time-dependent modeling reflecting material degradation and dete-
rioration science

These emerging areas of research and application are inherently interdisciplinary in 
science and engineering, where computation plays the key role. Scientists provide 
a consistent theory for application, and structural engineers must continue to face 
the reality of dealing with idealizations of idealizations of these theories in order to 
make them work and applicable to the real world of engineering. A brief description 
of the MBS to structural engineering applications is presented in Chapter 7.

1.9  Summary

Over the last few decades, remarkable developments have occurred in computer 
hardware and software. Advancement in computer technology has spurred the 
development of structural calculations ranging from the simple strength-of-materials 
approach in early years, to the FE type of structural analysis for design in recent 
years, and to the modern development of scientific simulation and visualization for 
structural problems in the years to come.

Table 1.1 summarizes briefly the “major advances” of structural engineering that 
can be attributed to the “breakthroughs” of mechanics formulation, material modeling, 
or computing power where new knowledge has been implemented in structural engi-
neering and, in some measure, the structural engineering practice has been fundamen-
tally changed. These “success stories” fall into one of the following three categories: 
mechanics, materials, and computing as tabulated briefly in Table 1.1 (Chen, 2009b).

A topic on which significant progress has been made in recent years is the deter-
mination of the load-carrying capacity of structures through the application of the 
theory of plasticity. This is in contrast to the earlier era design with undue emphasis 
on linear elastic analysis. Engineering specifications contained rules that help engi-
neers avoid most of the errors of overdesign or under-design with guidelines derived 
from experience and tests. However, rules based on past experience work well only 
for designs lying within the scope of that range. They cannot be relied on outside 
of that range. Ideally, the design guidelines and rules should be derived from sound 
physical and mathematical principles.

Similar to the theory of elasticity in earlier eras, the theory of plasticity in later 
years provides one of these success stories of applied mechanics that leads to the 
development of modern design guidelines and rules. The mathematical theory of 
plasticity enables us to go beyond the elastic range in a time-independent but theo-
retically consistent way for inelastic structural analysis and design.

The introduction of the concept of generalized stresses and generalized strains for 
structural elements and the establishment of the general theory of limit analysis and 
design in the 1950s laid the foundation for the revolution in structural engineering 
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Table 1.1
The Interaction of Mechanics, Materials, and Computing and the 
Advancement of Structural Engineering Practice

Mechanics Materials Computing Structural Analysis and Design

Strength-of-materials 
formulation: closed 
form solutions by 
series expansion, 
numerical solutions 
by finite difference

Linear 
elasticity

Slide rule and 
calculator 
environment

Strength-of-materials approach to 
structural engineering in the early 
years:

•	 Allowable stress design with K 
factor

•	 Amplification factor for second-
order effect

•	 Moment distribution or slope 
deflection methods for load 
distribution in framed structures

•	 Member by member design 
process

•	 Design rules based on allowable 
strength of members from tests 
with built-in safety factors

Limit analysis 
methods: mechanism 
method and 
equilibrium method, 
plastic-hinge concept

Perfect 
plasticity

Slide rule and 
calculator 
environment

Simple plastic analysis method for steel 
frame design in the early years:

•	 Plastic analysis and design with K 
factor

•	 Amplification factor for second-
order effects

•	 Upper- and lower-bound methods 
for frame design

•	 Member by member design process
•	 Design rules based on ultimate 

strength of members from tests

FE formulation using 
shape function and 
virtual work 
equation: generalized 
stresses and 
generalized strains 
concept

General 
plasticity

Mainframe 
computing 
environment

FE approach to structural engineering 
in recent years:

•	 Development of member-strength 
equations with probability and 
reliability theory

•	 Development of reliability-based 
codes

•	 Limit states to design with K factor
•	 Direct calculation of second-order 

effect
•	 Member by member design 

approach
•	 Design rules based on load factor 

and resistance factor concept by 
mathematical theory

(continued)
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in subsequent years. The adoption of plastic analysis methods in steel specifications 
started the revolution in the 1960s. Thanks to the rapid advancement of computing 
power beginning in the 1970s, the study of mechanics and mathematical formulation 
subsequently focused on the study of structural elements from which the parts of the 
structure are composed rather than the material itself. Thanks to this approach, the 
field of application on the theory of plasticity to structural engineering has broad-
ened appreciably.

Table 1.1 (continued)
The Interaction of Mechanics, Materials, and Computing and the 
Advancement of Structural Engineering Practice

Mechanics Materials Computing Structural Analysis and Design

Advanced analysis: 
combining theory of 
stability with theory 
of plasticity

General 
plasticity

Desktop 
computing with 
object-oriented 
programming

Second-order inelastic analysis for direct 
frame design as the current progress:

•	 Structural system approach to 
design without K factor and 
amplification factor

•	 Explicit consideration of the 
influence of structural joints in the 
analysis/design process

•	 Development of performance-
based codes

•	 Consideration of “structural fuse” 
concept in design

•	 Design based on maximum 
strength of the structural system 
without having to carry out 
member by member strength check

MBS based on the 
integration of 
mechanics, 
computing, physics, 
and materials science

Deterioration 
science or 
aging

High-
performance 
computing

Large-scale simulation of structural 
system over its life-cycle performance 
analysis:
•	 Numerical challenges: proper 

modeling of discontinuity and 
fracture or crack for tension-weak 
materials

•	 Software challenges: radically 
different scales in time and/or space

•	 Material challenges: from 
time-independent elastic and 
inelastic material model to 
time-dependent modeling 
reflecting material degradation and 
deterioration science

•	 Design process includes modeling 
(physics), simulation (computing), 
visualization (software), and 
verification (experiment)
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In the more recent years, various analysis approaches to the estimation of 
stress, strain, and displacement including analytical, numerical, physical, and 
analog techniques have advanced and are readily available to the engineering 
profession. In particular, the FE technique is most versatile and popular. As a 
result of this success, design specifications around the world have been undergo-
ing several stages of revolutionary changes from the allowable stress design, to 
plastic design, to load-resistance factor design, and to the more recent perfor-
mance-based design.

We are now in a desktop environment for unlimited computing. Computer simu-
lation has now combined the theory and experimentation as a third path for engi-
neering design and performance evaluation. Simulation is computing, theory is 
modeling, and experimentation is validation of the results. As a structural engineer, 
we must continue to face the reality of dealing with idealizations of idealizations of 
these science-based theories in order to make them work and applicable to the real 
world of engineering. Seeing the big picture of our past achievements in structural 
engineering will enable us to make a difference in the further advancement of struc-
tural engineering in the years to come. This is described in this book.
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2 The Era of Elasticity

2.1  Fundamentals of Elasticity

2.1.1  Basic Field Equations

In order to establish a solution in continuum mechanics, three basic sets of rela-
tions have to be fulfilled: (1) equilibrium conditions, which guarantee that the body 
is always in equilibrium; (2) compatibility conditions, which guarantee that the 
body remains continuous; and (3) constitutive relations, which connect stresses and 
strains of a material behavior. These relations can be expressed in tensor notations 
as follows.

2.1.1.1  Equilibrium
The equilibrium conditions for an arbitrary volume, V, Figure 2.1, are

	

( ),σij j i

V

F dV+ =∫ 0 	 (2.1)

where
σij is the stress tensor
Fi is the body force

Equation 2.1 may be written in the usual (X, Y, and Z) notation as
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	 (2.2)

where
σx, σy, and σz represent the normal stress components
τxy, τyz, … represent the shear stress components

2.1.1.2  Compatibility
The compatibility conditions (or conditions of body continuity) can be expressed as

	
ε ε ε εij kl kl ij ik jl jl ik, , , ,+ − − = 0 	 (2.3)
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Upon expanding these expressions, the following can be obtained with respect to the 
usual (X, Y, and Z) notation:
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where
εx, εy, and εz represent the normal strain components
εxy, εyz, … represent the shear strain components

For a material element in volume, V, the three equations of equilibrium, Equation 
2.2 and the six equations of compatibility, Equation 2.4, give a sum of nine equa-
tions. On the other hand, the total number of unknowns is 15 (6 stress components, 
6 strain components, and 3 displacement components). The remaining six equations 
necessary to obtain a solution are the material-dependent equations (constitutive 
relations). The interrelations between the three sets of relations are schematically 
illustrated in Figure 2.2.

x

y

dV

ds
n

n

z

F

T

Figure 2.1  Equilibrium of a material body.
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2.1.1.3  Constitutive Relations
The constitutive relations can be expressed in tensor notation as follows:

	
σij ijkl klC= ε

	 (2.5)

where Cijkl is the material elastic constant tensor. Equation 2.5 is a simple generaliza-
tion of Hooke’s law experiment in a simple tension test, and, therefore, it is referred 
to as the generalized Hooke’s law. This equation can be written in matrix form for an 
isotropic linear elastic material as follows:

	 { } [ ]{ }σ ε= C 	 (2.6)

where the matrix [C] is called the elastic constitutive or elastic moduli matrix and 
is given by
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(2.7)

where
E is Young’s modulus
ν is Poisson’s ratio

2.1.2  Solution Process: An Illustration

Linear elasticity is based on two fundamental assumptions: the stress–strain rela-
tion is linear and is reversible. The first assumption allows for the application of 

External forces Fi, Ti

σij εij

ui Displacements

Compatibility
equations

Strains

Constitutive laws

Equilibrium
equations

Stresses

Figure 2.2  Interrelations between mechanics variables.
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the principle of superposition. The second assumption means that the material is 
load-path independent, which permits for total load application, that is, no need to 
go to incremental solution or follow load history. This leads to a simple and direct 
formulation of the equations of mechanics at a point in a body. Nevertheless, the 
solution of the 15 equations, except in very special cases, represents a great math-
ematical challenge, and in some cases is impossible to achieve without exploring 
nontraditional thinking. Figure 2.3 shows the solution of the problem of half-space 
under concentrated load, one of the few problems that can be handled from a direct 
solution of the 15 equations.

2.2  �The Concept of Generalized Stress 
and Generalized Strain

2.2.1  Introduction

In the concept of continuum mechanics, the field relations derived at a material 
point can be used to establish solutions for limited applications. In order to widen 
the scope of applications, these field relations should be formulated in terms of ele-
ments from which the structure is composed, for example, bar, plate, shell, and 
finite element (FE). For example, for a bar element instead of the six stress compo-
nents, σij, at a point one can deal with the bending moment (generalized stress), M. 
Correspondingly, the six strain components, εij, are replaced with the angle of rela-
tive rotation or curvature (generalized strain), φ. The same concept applies to other 
structure elements such as plate, shell, FE, etc.

One may ask how to decide on which variable a generalized stress or general-
ized strain is. Bending moment in a beam can be considered as a generalized stress, 
whereas other variables, such as shear, cannot be considered as generalized stresses 
because the deformations associated with their correspondent strains are negligible. 
In a beam, for example, the curvature signifies the dominant deformation (bending 
deformation), and therefore it is considered as a generalized strain and its correspon-
dent stress variable (moment) is considered as a generalized stress.

P (force/unit length)

M

θa

y

x

at M

sinθ cos3θτxz= –2P
πa

sin2θ cos2θσy= –2P
πa

cos4θσx= –2P
πa

Figure 2.3  Half-space problem.
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Another question may arise about the significance of this concept and its impact. 
The answer is very simple; for example, in a beam problem with continuum mechan-
ics approach, the solution searches for 15 variables (15 equations in 15 unknowns). 
On the other hand, in a beam analogy (bending theory) the solution searches for one 
variable. The reduction in the effort is thus very obvious when using this concept 
since the effort is an exponential function of the number of variables. In this regard, 
Einstein was asked once why he would use one type of soap instead of two as other 
people do. He replied: two soaps are too many variables, one is enough and much 
simpler.

In the following sections, equilibrium is utilized to develop the generalized 
stress in terms of the stress tensor. Compatibility is utilized to derive the general-
ized strain in terms of the strain tensor. The constitutive relations are employed to 
connect the generalized stresses and the generalized strains. These developments 
are given for different structure elements, for example, bar, plate bending, shell ele-
ment, and FE.

2.2.2  Bar Element as a Start

2.2.2.1  Axially Loaded Element
For a bar element subjected to an axial force (generalized stress), P, causing a uni-
form axial stress, σ, equilibrium leads to

	 P A= σ 	 (2.8)

where A is the cross-sectional area of the bar. The stress, σ, causes an axial strain, 
ε, which is associated with a change in bar length (generalized strain), Δ. Based on 
compatibility the generalized strain is related to the strain as follows:

	
ε = ∂

∂
∆
x

	 (2.9)

Upon integration of the previous equation

	 ∆ = εL 	 (2.10)

where L is the bar length. The generalized stress, P, can be related to the generalized 
strain, Δ, upon employing Hooke’s law:

	 σ ε= E 	 (2.11)

where E is Young’s modulus. This leads to

	
P A E A E

L
A= = =σ ε ∆
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or

	
P

EA

L
= 



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∆ 	 (2.12)

The term (EA/L) connecting the two variables P and Δ is the bar axial stiffness.

2.2.2.2  Flexural Element
The same simple and systematic steps followed for a bar under axial force can be 
followed for the development of the variables of a bar under pure bending. Consider 
a bar element of length ΔS subjected to end moments, M, such that the element 
deforms as shown in Figure 2.4. Upon applying equilibrium at the end section of 
the element

	
M ydA= ∫σ 	 (2.13)

The generalized strain (or curvature), φ, can be related to the strain in a beam, ε, 
upon the adoption of linear strain distribution within the section depth according to 
Bernoulli’s hypothesis (plane sections perpendicular to the neutral axis before bend-
ing remain plane and perpendicular to the neutral axis after bending). Thus,

	 ε ϕ= y 	 (2.14)

The generalized stress, M, is related to the generalized strain, φ, through the applica-
tion of the stress–strain relation σ = Eε:

	 M ydA E ydA E y dA E y dA= ∫ = ∫ = ∫ = ∫σ ε ϕ ϕ2 2

or

	 M EI= ϕ 	 (2.15)

where I is the moment of inertia of the beam cross section. It should be noted that 
only the bending moment can be considered as a generalized stress, whereas other 

M M

dA

∆S

dy
y

∆θ =   ∆S

Figure 2.4  Bar element under pure bending.
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parameters such as shear or torsion cannot be, since the deformations associated 
with their correspondent stresses are negligible.

2.2.3  Plate Element as a Next Step

2.2.3.1  Compatibility
For a plate element in Cartesian coordinates, the thickness is denoted as h and the 
deflection as w. Since there is no normal force applied to the end sections of the 
plate segment shown in Figure 2.5, the neutral surface is assumed to coincide with 
the middle surface of the plate. Based on Kirchhoff’s hypothesis for thin plates with 
small deflection (plane sections perpendicular to the neutral surface before bending 
remain plane and perpendicular to the neutral surface after bending), the elonga-
tion of a fiber parallel to the x- or y-axis is proportional to its distance z from the 
middle surface. The generalized strains (curvature of the deflection in the x- and 
y- directions, φx and φy, respectively) can be taken as
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w
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= = − ∂

∂
1 2

2 	 (2.16a)
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w

y
= = − ∂

∂
1 2

2 	 (2.16b)

where rx and ry are the radii of curvatures in the x- and y-directions, respectively. 
From kinematics, the strains at a distance z from the middle surface in the x- and 
y-directions, εx and εy, respectively, are
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Figure 2.5  Plate bending element.
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where u and v are the displacement components in the x- and y-directions, respectively.

2.2.3.2  Constitutive Relations
From the generalized Hooke’s law
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where ν is Poisson’s ratio. This leads to
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Upon substitution of Equation 2.17 into Equation 2.19
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2.2.3.3  Equilibrium
From equilibrium, the generalized stresses Mx and My are related to the stresses σx 
and σy as follows:
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In this regard, the twisting moments, Mxy and Myx, and shearing forces, Qx and Qy, 
cannot be considered as generalized stresses since the deformations associated with 
their correspondent stresses are negligible. Upon substituting Equation 2.20 into 
Equation 2.21 and integrating
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where

	
D

Eh=
−

3

212 1( )ν
	 (2.23)

The generalized stresses, Mx and My, can be related to the generalized strains (curva-
tures), φx and φy, by solving Equations 2.16 and 2.22:
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	 (2.24b)

2.2.4  Shell Element as a Further Extension

The most common shell structures are thin cylindrical shells under axisymmetric 
loading, as in water tanks, towers, etc. Therefore, they are taken as an example of 
shell structures to show how generalized stresses and generalized strains are derived 
and related.

For this element, Figure 2.6, there are three generalized strains and three corre-
sponding generalized stresses: (1) the radial strain (which is the tangential strain of 
the middle surface), εθ, and its corresponding tangential force, Nθ; (2) the curvature 
of the cylinder wall in the x-direction, φx, and the corresponding moment, Mx; and 
(3) the curvature of the cylinder wall in the tangential direction, φθ, and the corre-
sponding moment, Mθ.

2.2.4.1  Equilibrium
Upon considering the equilibrium of the shell element in Figure 2.6 in the x- and 
y-directions and the moment about the y-axis (and neglecting higher-order terms), 
the following relations can be obtained:
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Equation 2.25 means that Nx should be equal to either a constant value or zero; in 
this derivation, it is considered equal to zero. Upon differentiating Equation 2.27 
with respect to x and substituting from Equation 2.26, the following can be obtained:
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2.2.4.2  Kinematics for Membrane Action
The kinematical relations and constitutive relations are discussed for membrane 
action first and later for bending behavior. Define the membrane strains in the x- and 
radial directions as εx and εθ, respectively, and the displacements in the x- and radial 
directions as u and w, respectively (Figure 2.7). Then,
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= 	 (2.29)

QX

MX
NX NX

r

r

+

+

+

QX dX

MX
Mθ

Mθ

x

y
z

Nθ

Nθ

Nθ

Nθ dx Nθ dx

dθ
r r

dx dθ

dθ

dMX
dX

dX

dX

dQX
dX

dX

dNX

Figure 2.6  Element of a circular cylindrical shell.
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εθ = w

r
	 (2.30)

2.2.4.3  Constitutive Relations
From the generalized Hooke’s law,
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From Equations 2.31 and 2.32, the following values of Nx and Nθ in terms of εx and 
εθ can be obtained:
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For an open cylinder, Nx = 0, that is,

	 ε νεθx = − 	 (2.35)

Then,

	 N Etθ θε= 	 (2.36)

r

r+w

w

Figure 2.7  Radial deformation of a circular cylindrical shell element.
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2.2.4.4  Kinematics for Bending Action

For bending strain, define the strains in the x- and radial directions as εx
b and εθ

b, and 

their corresponding stresses as σx
b
 and σθ

b, respectively. Based on Kirchhoff hypoth-

esis the strains εx
b and εθ

b are linear functions of the distance z from the neutral axis, 
Figure 2.8; that is,

	 ε ϕx xzb = 	 (2.37)

The notation φx, Figure 2.8, is used here for the curvature of the cylinder in the 
x-direction; however, other notations such as kx may be commonly used in text books:
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In order to assess εθ
b refer to Figure 2.8,
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Since (z/r) ≪ 1, it can be neglected in the above equation; hence,

	 εθ
b ≈ 0 	 (2.40)

This will also lead to
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Figure 2.8  Bending deformation of a circular cylindrical shell element.
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2.2.4.5  Constitutive Relations
From the generalized Hooke’s law,

	
σ

ν
ε νε

ν
ϕθx x x

E E
zb b b=

−
+( ) =

−1 12 2 ( ) 	 (2.42)

2.2.4.6  Equilibrium
Thus, the generalized stress Mx is
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The stress σθ
b can be obtained from Hooke’s law as follows:
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Hence, the moment Mθ is
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In summary, the generalized stresses, Nθ and Mx, and the generalized strains, εθ and 
φx, are related as follows:

	 N Etθ θε= 	 (2.46)

	 M Dx x= ϕ 	 (2.47)

The curvature φθ ≈ 0; therefore, the moment Mθ = νMx cannot be considered a gener-
alized stress.

2.2.5  Finite Element as a Recent Progress

2.2.5.1  Kinematics
In the FE method, Figure 2.9, formulation starts with the kinematical (compatibil-
ity) conditions. In this step, the generic displacements of an element (internal dis-
placements within an element), {u}, are related to the generalized strains (the nodal 
displacements of the element), {q}, by means of assumed shape functions, [N]. 
This assumption is equivalent to Bernoulli’s assumption in beams under bending 
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(plane sections perpendicular to the neutral axis before bending remain plane and 
perpendicular to the neutral axis after bending) or Kirchhoff’s hypothesis in plates 
under bending:

	 { } [ ]{ }u N q= 	 (2.48)

With the displacement within the element, the strain vector, {ε}, at any point within 
the element can be obtained by differentiation of {u} in Equation 2.48

	 { } [ ]{ }ε = B q 	 (2.49)

where [B] is composed of the derivatives of the shape function, [N].

2.2.5.2  Equilibrium
The next step is to impose the equilibrium condition in order to obtain the relation 
between the generalized stresses (nodal force vector), {F}, and the internal stress 
vector at any point, {σ}. This step can be achieved upon the application of the prin-
ciple of virtual work. This demonstrates the fact that the principle of virtual work is 
nothing other than a principle of equilibrium. Thus,

	
{ } [ ] { }F B dVt= ∫ σ 	 (2.50)

2.2.5.3  Constitutive Relations
The third step is to impose the constitutive relations that can be expressed in the fol-
lowing general form:

	 { } [ ]{ }σ ε= C 	 (2.51)

where [C] is called the elastic constitutive or elastic moduli matrix. Upon substitu-
tion of (2.49) and (2.51) into (2.50)

	 { } [ ]{ }F k q= 	 (2.52)

v1 = q2
v2 = q4

v3 = q6

u1 = q1

u2 = q3

u3 = q5
3

21

y, v

x, u

(c)(b)(a)

Figure 2.9  Sample finite element: (a) structural element; (b) discretization; and (c) finite 
element.
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where

	
[ ] [ ] [ ][ ]k B C B dVt= ∫ 	 (2.53)

Thus, the formulation of generalized stresses and generalized strains and their rela-
tion in the FE is the same as other structure elements such as bars or plates, except in 
the application of equilibrium and compatibility. Equilibrium is justified through the 
principle of virtual displacement and compatibility is achieved through the assumed 
shape function.

2.3  Theory of Structures

2.3.1  �Generalized Stress–Generalized Strain 
Relations of a Beam Member

In the preceding section it was illustrated how the generalized stress (moment), M, 
and generalized strain (curvature), φ, of a beam element are related. This relation is 
utilized to develop the relation between the generalized stress (end moment), M, and 
the generalized strain (end rotation), θ, of a beam member.

2.3.1.1  No Sway
Figure 2.10a illustrates a beam member AB with two end moments (generalized 
stresses), MA and MB, associated with end rotations (generalized strains), θA and θB. 
The moment at a section located at a distance x from the origin of coordinates, M(x), 
can be written as

	
M x M

M M

L
x( ) = − + +



A

A B 	 (2.54)

LA
MA

MB
B

(c)

θA

θB ∆

LL AA
MA θA

θB

MB B
B

Q
(a) (b)

∆

Figure 2.10  Beam member subjected to end moments and sway: (a) end moments; (b) 
sway; and (c) end moments and sway.
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From the generalized stress–generalized strain relation of a beam element, the cur-
vature at a section x, φ(x), is

	
ϕ( )

( )
x

M x

EI EI

M M

L
x M= = +





−








1 A B
A 	 (2.55)

The curvature, φ(x), is related to the deflection, v(x), and hence the moment as follows:

	

d v x

dx
x

EI

M M

L
x M

2

2

1( )
( )= = +



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−








ϕ A B
A 	 (2.56)

Upon integrating Equation 2.56 twice, and introducing the boundary conditions, 
v||x=0 = 0 and v||x=L = 0, the integration constants can be determined. Then, the equation 
of deflection will be

	
v x

EI

M M

L
x

M
x

M M
Lx( ) = +





− + −
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
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







1
6 2

2
6

3 2A B A A B 	 (2.57)

The equation of rotation, θ(x), will be

	
θ( )x

EI

M M

L
x M x

M M
L= +



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
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

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2A B
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A B 	 (2.58)

Applying Equation 2.58 at member ends A and B

	
θA A B= −L

EI
M M

6
2( ) 	 (2.59a)

and

	
θB A B= − +L

EI
M M

6
2( ) 	 (2.59b)

Solving Equations 2.59a and b in terms of MA and MB leads to

	
M

EI

L
A A B= +( )4 2θ θ 	 (2.60a)

	
M

EI

L
B B A= +( )4 2θ θ 	 (2.60b)



33The Era of Elasticity

Equations 2.60a and b represent the generalized stress–generalized strain relation of 
a beam member with no sway.

2.3.1.2  Sway
If the beam member experiences sway only, Figure 2.10b, the generalized stress 
will be the shear, Q, and the corresponding generalized strain will be the vertical 
displacement (sway), Δ. For this case, it can be easily proven, as derived for the case 
of no sway, that

	
Q

EI

L
= 12

3 ∆ 	 (2.61)

The shear, Q, will be associated with two end moments, MA = MB = −QL/2; hence,

	
M M

EI

L
A B= = −6

2 ∆ 	 (2.62)

The relation in Equation 2.62 is advantageous in limiting the number of variables 
to one generalized stress. Thus, Equations 2.60a and b and 2.62 can be combined to 
give the following generalized stress–generalized strain relations for the case of a 
beam member with sway (Figure 2.10c):

	
M

EI

L L
A A B= + −





4 2 6θ θ ∆
	 (2.63a)

	
M

EI

L L
B B A= + −





4 2 6θ θ ∆
	 (2.63b)

Equations 2.60a and b or 2.63a and b are commonly known as the slope-deflection 
equations.

The concept of generalized stresses and generalized strains has been widely used 
along with the principle of superposition to develop many successful methods of 
structural analysis such as the slope-deflection method and the moment distribution 
method. In addition, it has been used to solve many mechanics problems such as 
column buckling. Such a contribution is illustrated in the following sections.

2.3.2  Single Span Beam Problems

The solution of single span beam problems can be obtained from the direct applica-
tion of the slope-deflection equations and with the enforcement of the appropriate 
boundary conditions. Examples of these problems are given in Figure 2.11, along 
with their solutions. For the problem in Figure 2.11c, the end moment at A is set 
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equal to zero in Equation 2.60a leading to θA = −θB/2, which upon substitution in 
Equation 2.60b gives the illustrated result. The moment at the fixed end of the beams 
in Figure 2.11a and b is the carryover moment, which is half the moment applied at 
the other end (the end free to rotate), that is, the carryover factor in this case is equal 
to 0.5. On the other hand, in the beam of Figure 2.11c the carryover moment and 
hence the carryover factor are equal to zero.

For the simply supported beam subjected to uniform load in Figure 2.12a, the end 
rotation can be obtained by following the same solution procedure in the previous 
section for obtaining the slope-deflection equations. The solution of the beam sub-
jected to two end moments in Figure 2.12b can be obtained from the slope-deflection 
equations. Upon using the principle of superposition, the solutions of the previous 
two beams can be used to obtain the fixed end moments of the beam in Figure 2.12c 
through the enforcement of the boundary conditions. The same procedure can be 
followed to obtain the fixed end moments for other cases.

L

(a) (b)

L

A AB B

L θB
2EI

L θB
4EI

L θA
4EI

L θA
2EI

θB

θB

(c)

L

A B L θB
3EI

L θB
3EI

θB

MA = 0.0, θA = – 1
2 θB, MB =

Figure 2.11  Examples of single span beam problems: (a) carryover to fixed end A, (b) 
carryover to fixed end B, and (c) carryover to hinged end A.
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Figure 2.12  Fixed end moments: (a) uniform load, (b) equal end moments, and (c) using 
the principle of superposition.
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2.3.3  Slope-Deflection Method for Simple Structures

The slope-deflection method is one of the successful methods used for the analysis 
of statically indeterminate skeletal structures and for other applications. It is a form 
of the stiffness method where the unknowns are the displacements of the joints, that 
is, the size of the problem depends on the number of unspecified degrees of freedom 
(degree of kinematic indeterminacy). The application of the method is illustrated in 
the following example.

The continuous beam shown in Figure 2.13 has two degrees of freedom (the 
rotations at B and C), which means that the solution leads to the formation of two 
simultaneous linear equations in θB and θC. The solution starts with writing the 
slope-deflection equations of each span as an isolated beam. In these equations, we 
write the moment at each joint of the span, which is the summation of the fixed 
end moment due to applied loads and the moment associated with the end rotations 
or sway (or settlement). Then, we apply equilibrium at joints B and C (summation 
of end moments at each joint is equal to the external moment applied at the joint, 
which is zero in this case). Thus, two simultaneous linear equations in θB and θC 
are derived, and, hence, these joint rotations are obtained. Consequently, the end 
moments can be calculated followed by the end shear.

The same procedure of slope-deflection method used in beams applies to frames 
except in those with sway where equilibrium equation(s) is written for the sway. For 
example, for the frame in Figure 2.14 the number of degrees of freedom is 3 (the rota-
tions at B and C and the lateral sway, ΔB or Δ C). The sway equation is obtained from the 
equilibrium of the forces in the direction of the sway; in this case, the external horizon-
tal loads and the shear at A and D. The shear is obtained from member equilibrium.

In this method, it is obvious that the equations of the individual spans are devel-
oped from the three basic conditions, equilibrium, compatibility, and constitutive 
relations, as illustrated earlier. Also, in the complementary steps of the solution, 
compatibility is the initiation of the solution, the rotation at any joint is controlled, 
and the formation of the slope-deflection equations is obtained by applying the same 
three sets of conditions. In addition, equilibrium is enforced in order to obtain the 
simultaneous linear equations of the unknown rotations. Nevertheless, as a result of 
adopting the generalized stress and generalized strain concept, the solution is much 
easier here in comparison with the continuum mechanics approach.

2.3.4  Moment Distribution Method for Frame Structures

The moment distribution method is another successful method for the analysis of 
statically indeterminate beams and frames. It is a form of the displacement method in 

A B W C DP

6000 5000 5000 6000

Figure 2.13  Example of a continuous beam.



36 Understanding Structural Engineering: From Theory to Practice

which equilibrium, compatibility, and constitutive conditions are used to obtain the 
properties of individual members with the aid of the generalized stress–generalized 
strain concept. These properties include the fixed end moments, stiffness, and car-
ryover factor, as illustrated in the preceding section. The rigid joints are assumed to 
be locked and the corresponding moments (fixed end moments) are calculated. Then, 
the out-of-balance moment at each joint is calculated and distributed between the 
members connected to the joint according to their stiffness. This step is followed by 
transferring a percentage of the correction moment between the joints of each mem-
ber according to the carryover factor. Subsequently, the joints’ balance is checked 
and another adjustment of the moments connected to the joints is achieved followed 
by the carryover moment. This last iterative procedure is repeated until convergence 
takes place.

2.3.5  Structural Design

It has been illustrated how the three sets of conditions, equilibrium, compatibility, 
and constitutive conditions, are utilized to develop successful methods for structural 
analysis. With the introduction of the concept of the generalized stress and gen-
eralized strain, the effort of analysis has been remarkably reduced. Two variables 
replaced the continuum mechanics stress and strain tensors and the constitutive rela-
tions with the implementation of Bernoulli’s hypothesis. The solution will always 
search for one unknown, M, and the other unknown comes from the generalized 
stress–generalized strain relation.

After performing structural analysis and obtaining the internal forces, the stress, 
σ, can be calculated and checked against the allowable value, σall:

	
σ σ= ≤M

I
y all 	 (2.64)

W

C

D

A

B

Figure 2.14  Example of a frame with a sway.
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The allowable value is provided by the code and is based on real tests. This value 
should guarantee safety and in order to do so it accounts for residual stresses and 
other environmental factors. The code is meant by other issues such as how to avoid 
local buckling, bracing, etc.

2.4  Theory of Structural Stability

2.4.1  �Generalized Stress–Generalized Strain 
Relations of a Beam-Column Member

Similar to the case of beam member, the relation between generalized stress (end 
moment), M, and generalized strain (end rotation), θ, of a beam-column member can 
be developed. For the framed member in Figure 2.15a, upon writing the equilibrium 
relations in the deformed geometry, the following relations can be obtained for the 
case of no sway:

	
M

EI

L
s sii ijA A B= +( )θ θ 	 (2.65a)

	
M

EI

L
s sji jjB A B= +( )θ θ 	 (2.65b)

where the stability functions, sii, sij, sji, and sjj, are as given in Table 2.1. In case there 
is a sway of value Δ, Figure 2.15b, the generalized stress–generalized strain relations 
will be

	
M

EI

L
s s s s

L
ii ij ii ijA A B= + − +



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∆

	 (2.66a)
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Figure 2.15  Beam-column member subjected to end moments and sway: (a) no sway and 
(b) sway.
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L
s s s s
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ji jj ji jjB A B= + − +



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θ θ ( )
∆

	 (2.66b)

Equations 2.65a and b or 2.66a and b are commonly referred to as the slope-deflec-
tion equations.

2.4.2  Buckling Analysis of Structural Members

The generalized stress–generalized strain relations of a beam-column member (or 
slope-deflection equations) are the analytical tool of a beam-column. This is illus-
trated by the following three examples.

Example 2.1

This example, Figure 2.16a, describes a beam-column with one fixed end and one 
hinged end. In this member, the rotation at end A is zero, and, therefore, the slope-
deflection equations at ends A and B are

	
M

EI
L
sijA B= ( )θ 	 (2.67a)

	
M

EI
L
sijB B= ( )θ 	 (2.67b)

The moment at joint B, MB = 0; hence, from Equation 2.67b and since θB ≠ 0

	 sjj = 0

Table 2.1
Stability Functions for a Beam-Column

Function

Condition of Axial Load, P

Compression Tension Zero

sii = sjj
kL kL kL kL

kL kL kL

sin ( ) cos
cos sin

−
− −
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2 2
( ) cosh sinh

cosh sinh
kL kL kL kL

kL kL kL
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2 2
−
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4

sij = sji
( ) sin

cos sin
kL kL kL

kL kL kL

2

2 2
−

− −
kL kL kL

kL kL kL

sinh ( )
cosh sinh

−
− +

2

2 2
2

Note:	 k
P

EI
=
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or

	

kL kL kL kL
kL kL kL

sin ( ) cos
cos sin

−
− −

=
2

2 2
0 	 (2.68)

Since kL ≠ 0, Equation 2.68 is simplified to the following characteristic equation 
of the beam-column

	 tankL kL− = 0 	 (2.69)

The value of kL that satisfies Equation 2.69 is

	 kL = 4 4934.

Thus,

	
k L

PL
EI

2 2
2

20 19= =. 	 (2.70)

that is, the critical load of the beam-column is
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cr = =20 19
0 72
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π 	 (2.71)
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Figure 2.16  Beam-column with one fixed end and one hinged end: (a) beam-column with 
fixed-hinged ends, (b) forces and moments, and (c) a free body.
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The critical load of this member could have been obtained by solving the dif-
ferential equation of equilibrium. The equilibrium equation of the segment AC, 
Figure 2.16c, of this member is

	
− + − −



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=M Py M
x
L

int F 1 0 	 (2.72)

Since

	 M EIyint = − ″ 	 (2.73)

the equilibrium equation can be written as

	
y k y

M
EI

x
L

″ + − −



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=2 1 0F 	 (2.74)

which has a general solution of the form

	
y x C kx C kx

M
P

x
L

( ) sin cos= + + −



1 2 1F 	 (2.75)

After imposing the boundary conditions, Equation 2.75 would lead to the same 
characteristic equation of the member, Equation 2.69.

Example 2.2

This example, Figure 2.17, describes a beam-column with one fixed end and one 
guided end. In this member, the rotation at both ends A and B is zero, and, there-
fore, the slope-deflection equations at ends A and B are

	
M M

EI
L

s s
L

EI
L

s sii ij ii ijA B= = − + −





= +( ) ( )
∆ ∆

2
	 (2.76)

From the member equilibrium

	 M M PA B+ = ∆ 	 (2.77)

Substituting Equation 2.76 into Equation 2.77 and simplifying

P

P
A B ∆

L

Figure 2.17  Beam-column with one fixed end and one guided end.
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PL
EI

s sii ij

2

2
= +

or

	

k L
s sii ij

2 2

2
= + 	 (2.78)

Upon substitution of the stability functions into Equation 2.78 and simplifica-
tion, the following is obtained:

	 kL kLsin = 0 	 (2.79)

The lowest value of kL that satisfies Equation 2.79 is

	 kL = π

Then,

	
k L

PL
EI

2 2 2
2

= =π 	 (2.80)

that is, the critical load of the beam-column is

	
P

EI
L

cr = π2

2 	 (2.81)

The critical load of this member can be obtained by solving the differential 
equation of equilibrium. The equilibrium equation of one segment of this mem-
ber is

	
M

P
Pyint − + =∆

2
0 	 (2.82)

Since

	 M EIyint = ″ 	 (2.83)

thus, the equilibrium equation can be written as

	
y k y

P
EI

″ + =2

2
∆ 	 (2.84)

which has a general solution of the form

	
y x C kx C kx( ) sin cos= + +1 2

2
∆

	 (2.85)

After imposing the boundary conditions, Equation 2.85 would lead to the same 
characteristic equation of the member, Equation 2.79.
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Example 2.3

This example, Figure 2.18, describes a continuous beam-column with two outer 
ends fixed and an interior joint that prevents lateral displacement. Both column 
spans have the same flexural rigidity, EI, but are of different lengths, 0.5L and L. 
The rotations at ends A and C are zero; therefore, the slope-deflection equations 
of the moments at B are

	
M

EI
L
s

EI
L

sii iiBA
BA

B
BA

B= ( ) = ( )
0 5

2
.

θ θ 	 (2.86a)

	
M

EI
L

siiBC
BC

B= ( )θ 	 (2.86b)

From equilibrium at joint B

	 M MBA BC+ = 0 	 (2.87)

Equations 2.86a and b and 2.87 yield the following relation:

	 2 0s sii ii
BA BC+ = 	 (2.88)

From Table 2.1

	
s

kL kL kL kL
kL kL

ii
BA = −

− −
0 5 0 5 0 5 0 5
2 2 0 5 0 5 0

2. sin . ( . ) cos .
cos . . sin .55kL

	 (2.89a)

	
s

kL kL kL kL
kL kL kL

ii
BC = −

− −
sin ( ) cos
cos sin

2

2 2
	 (2.89b)

Upon substitution of siiBA  and siiBC  into Equation 2.88 and simplification the charac-
teristic equation can be obtained, which upon solution yields

	 kL = 5 412.

This gives the critical load of this continuous beam-column

	
P

EI
L

cr = 2 97 2

2

. π 	 (2.90)
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C
B

Figure 2.18  Continuous beam-column example.
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2.4.2.1  Euler Load
The critical load of any beam-column of different boundary conditions can be 
determined by following the previous procedure using the slope-deflection equa-
tions. Alternatively, a solution can be obtained by forming the differential equation 
of equilibrium and then solving the equation imposing the appropriate boundary 
conditions. One of the interesting cases is a column of two hinged ends, Figure 2.19, 
for which the critical load is

	
P

EI

L
cr = π2

2
	 (2.91)

The critical load of a column with two hinged ends is called Euler load, PE, that is,

	
P

EI

L
E = π2

2 	 (2.92)

2.4.3  The K Factor and the Alignment Charts

2.4.3.1  K Factor
The critical load of any beam-column of any boundary condition, Pcr, can be written 
in a unified form as follows:

	
P

EI

L
cr

b

= π2

2
	 (2.93)

where Lb is the buckling length of the column, which is the distance between the 
inflection points of the beam-column in its deformed shape as a pin-pin column. 
From Equations 2.92 and 2.93, the column critical load, Pcr, can be related to Euler 
load, PE, as follows:

	
P
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L L

P

K
cr

E

b

E= =
( / ) 2 	 (2.94)

where the factor K is the ratio between the column buckling length, Lb, and its length, 
L. The value of K of the beam-column in Figure 2.16a is 0.7 (Pcr = 2.041PE = PE/(0.7)2 
or Lb = 0.7L), while K is equal to 1.0 for the beam-column in Figure 2.17 and of course 
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PθB
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Figure 2.19  Pin-ended column.
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for the pin-ended column. Different values of K, Table 2.2, are given for beam-
columns of different boundary conditions, and the values range from 0.5 for a braced 
fixed ended column to 2.0 for a column of one fixed end and one free end. The value 
of K of the continuous beam-column in Figure 2.18 is 0.58 (Pcr = 2.97PE = PE/(0.58)2 or 
Lb = 0.58L), which is approximately the average value of cases (a) and (b) in Table 2.2.

In the design of a structural system, where columns are not isolated members, the 
assessment of the critical load should follow a different approach. For instance, the 
critical load of a system can be determined by the slope-deflection equations or a sec-
ond-order analysis. On the other hand, the value of the K factor can be assessed with 
the aid of the alignment charts that are derived from the slope-deflection method.

2.4.3.2  Alignment Charts
The alignment charts have been developed by Julian and Lawrence (1959) for a sim-
plified assessment of the K factor. In the development of the charts the two models 
in Figure 2.20 are used for a system that is braced against side sway and an unbraced 
system. In both models, the following assumptions are adopted:

	 1.	All columns are prismatic and behave elastically.
	 2.	The axial forces in the beams are negligible.
	 3.	All columns in a story buckle simultaneously.

Table 2.2
Theoretical K Values of Idealized Columns

(a) (b) (c) (d) (e) (f)

0.5 0.7 1.0 1.0 2.0 2.0

Note: 	 Buckled shape of column is shown by dashed line
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	 4.	At a joint, the restraining moment provided by the beams is distributed 
among the columns in proportion to their stiffnesses.

	 5.	At buckling the girders are bent as shown in the models.

In both models in Figure 2.20, column c2 (member AB) is the column in question. 
After writing the slope-deflection equations of either model and applying equilib-
rium at joints A and B, a relation of K is obtained in terms of two end stiffness 
parameters of the column, GA and GB, where
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of beam stiffnesses meeting at joint B

∑
∑

	 (2.95b)

The indices b and c stand for beam and column, respectively, and the indices 
A and B stand for joints A and B, respectively. The obtained relation of K is 
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Figure 2.20  Subassemblage models: (a) subassemblage model for braced frame and 
(b) subassemblage model for unbraced frame.
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expressed in a monograph form (alignment chart) for both cases of bracing condi-
tions (Figure 2.21).

2.4.4  Stability Analysis of Framed Structures

The application of the slope-deflection method for stability analysis of a framed 
system is illustrated by the following two examples (Figure 2.22). The first exam-
ple is a frame where sway is not allowed and the second example is a frame where 
sway is allowed.

Example 2.4

In this example it is required to determine the collapse load of the portal frame 
shown in Figure 2.22a, where sway is assumed to be prevented. The deflected 
shape of the frame is assumed as illustrated by the dashed lines. Upon writing the 
slope-deflection equations for the column joints A and B and eliminating θA since 
MA = 0, the following equation is obtained:
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s
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ij

ii
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c
c
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B= −











2

θ 	 (2.96)

The index c stands for column. Writing the slope-deflection equations for the 
beam joints B and C and eliminating θC since θC = −θB, the following equation is 
obtained:
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b b B= −( )θ 	 (2.97)

The index b stands for beam. Assuming that the axial force in the beam is so small 
that it can be neglected, siib = 4 and sijb = 2; that is,
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Upon applying equilibrium at joint B,
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Figure 2.21  Alignment charts: (a) braced system and (b) unbraced system.
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This equation is the characteristic equation of the frame. For the special case Ic = Ib 
and Lc = Lb, Equation 2.99 becomes
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s
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ij

ii
c

c

c

− + =
2

2 0 	 (2.100)

By trial and error the value of kL that satisfies Equation 2.100 is

	
kL

P
EI

L= = 3 59.

which gives a value of the critical load

	
P

EI
L

cr = 12 9 2. 	 (2.101)

Example 2.5

In this example it is required to determine the collapse load of the portal frame 
shown in Figure 2.22b, where sway is allowed. The deflected shape of the frame 
is assumed as illustrated by the dashed lines. Upon writing the slope-deflection 
equations for the column joints A and B and eliminating θA since MA = 0, the fol-
lowing equation is obtained:
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	 (2.102)

Writing the slope-deflection equations for the beam joints B and C and after 
eliminating θC, since the beam is in double curvature θC = θB, the following equa-
tion is obtained:

P PP

B BC C

A DA D

(a) (b)

P

Figure 2.22  Examples of framed systems: (a) no side-sway and (b) side-sway allowed.
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Assuming that the axial force in the beam is so small that it can be neglected, 
siib = 4 and sijb = 2; that is,
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Upon applying equilibrium at joint B,
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From the story shear equilibrium of the frame

	

M M P
L

M M P
L

AB BA

c

CD DC

c

+ + + + + =∆ ∆
0 	 (2.106)

It should be noted that

	 M MAB DC hinged= = 0 ( ) 	 (2.107a)

	 M MCD BA antisymmetry= ( ) 	 (2.107b)

Upon substitution from the last equation in the shear equation in terms of MBA 
and substitution of MBA from Equation 2.102 and simplification, the following can 
be obtained:
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Equations 2.105 and 2.108 are the frame equilibrium equations and can be written 
in matrix form as follows:
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where
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For the special case Ic = Ib = I and Lc = Lb = L, Equation 2.109 becomes
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where k2 = P/EI. At bifurcation, both θB and Δ increase without bound and there-
fore in order for Equation 2.111 to be valid
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S S k L
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02 2 	 (2.112)

Equation 2.112 is the characteristic equation of the frame. By trial and error the 
value of kL that satisfies this equation is

	
kL

p
EI

L= = 1 35.

which gives a value of the critical load

	
P

EI
L

cr = 1 82 2. 	 (2.113)

In the preceding examples, the slope-deflection method has been used to deter-
mine the critical load of a framed system. In case this calculation regime is difficult 
to perform as in the case of large structures, codes of practice adopt approximate 
methods in order to account for the second-order stability effects. These methods 
are commonly known as the amplification (or magnification) methods, which are 
presented next.

2.4.5  Amplification Factors for Second-Order Effects

With reference to Figure 2.23, structural stability has two fundamental effects: the 
first is the P–Δ effect and the second is the P–δ effect. The first effect may have a 
softening or stiffening effect on structural members; nevertheless, such an effect is 
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generally detrimental for columns. With reference to Figure 2.23a, the P–Δ effect is 
associated with additional loads on columns due to the interaction between the load 
and nodal displacements (the shift of the load from its original position because of 
structural deformations). The lateral force, H, acting on the frame alone causes a 
lateral drift, Δ; however, with the presence of vertical forces, ΣP, this drift and the 
overturning moment will increase further as a result of the interaction between the 
vertical forces and the lateral drift.

The member stability (P–δ effect), Figure 2.23b, will have a softening effect on 
a slender member if P is compression, and a stiffening effect if P is tension. The 
softening effect arises from the additional moments due to the interaction between 
the axial compressive force and the lateral deflection of the member, δ. If the axial 
force is tension, the interaction between this force and the member lateral deflection 
will reduce the moments along the column span. Usually columns are subjected to 
compression rather than tension and therefore the P–δ effect is critical.

In order to approximately assess the stability effects without having to carry out 
a slope-deflection analysis or a second-order analysis, the moment amplification (or 
magnification) has been developed. In this method, the P–Δ effect and the P–δ effect 
are estimated independently as illustrated in the following sections.

2.4.5.1  P–Δ Effect
When the lateral forces ΣH act on a frame and cause a primary lateral deflection, 
Δi, which can be obtained from a first-order analysis, the vertical forces will inter-
act with this deflection. As a result, additional lateral deflection and additional 
moments take place, which is called the P–Δ effect. This effect can be estimated 
by different methods such as the story magnifier method and the multiple-column 
magnifier method (Chen and Lui, 1991). In the former method, it is assumed that 
each story behaves independently of other stories and that the additional moment 
in the columns caused by the P–Δ effect is equivalent to that caused by a lateral 
force of ΣPΔ/h (h is the story height). Hence, the sway stiffness of the story can be 
determined as

P
H

P
P

δ

(a) (b)

∆

P

Figure 2.23  (a) P–Δ effect and (b) P–δ effect.
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∆
Σ Σ ∆

∆
/ 	 (2.114)

where
ΣH is the sum of all story horizontal forces producing Δi which is the first-order 

translational deflection of the story under consideration
ΣP is the axial load on all columns in that story

Solving Equation 2.114 for the total deflection Δ,
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Since every story is assumed to behave independently of other stories, the sway 
moment as a result of the story swaying is proportional to the lateral deflection of the 
story. Therefore, the total moment due to sway and second-order effect (in terms of 
the primary story moment, Misway) is
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P Hh
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i
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−


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1
1 Σ ∆ Σ/

sway 	 (2.116)

2.4.5.2  P–δ Effect
In order to estimate the P–δ effect, the beam-column in Figure 2.24 is considered. 
The vertical loads and end moments produce primary moment, Mi, and primary 
deflection, vi. As a result of the interaction between the axial force, P, and the pri-
mary deflection, additional moment, Mii, and additional deflection, vii, which is called 
the P–δ effect, take place. The total moment, M, and the total deflection, v, are thus,

Deflected shape

MB
MA

MA

θA θB

Mi

Mii = Pv

MB

L

M

y

x

x

x
PP

A B

Figure 2.24  P–δ effect.
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	 M M Mi ii= + 	 (2.117a)

	 v v vi ii= + 	 (2.117b)

For an approximate assessment of this effect (Chen and Lui, 1991), assume that Mii 
has the shape of half sine wave and that vmax (= δ = δi + δii) occurs at midspan:

	
M P

x

L
ii = δ sin

π
	 (2.118)

The moment Mii is related to the second derivative of vii by
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EI
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ii
″ = − 	 (2.119)

The negative sign in Equation 2.119 is because the moment increases while the slope 
decreases and vice versa. From Equations 2.118 and 2.119,
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″ π= − δ

sin 	 (2.120)

Upon double integrating Equation 2.120 and introducing the boundary conditions 
(vii = 0 at x = 0, L) and calculating δii = vii at midspan,

	
δ δ
ii
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P
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E

	 (2.121)

Since

	 δ δ δ= +i ii 	 (2.122)

substituting Equation 2.121 into Equation 2.122 and solving for δ,
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/ E

	 (2.123)

If the maximum primary moment is assumed to take place in the midspan, the fol-
lowing equation for the maximum moment can be obtained:
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where

	
ψ = δi

i

P

M
E

max

	 (2.125)

Equation 2.124 can be written in the following form:
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P P
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where
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P
m

E

= +1
ψ

	 (2.127)

It should be mentioned that the value of Cm in Equation 2.127 is applicable only when 
the maximum primary moment, Mimax, takes place at or near midspan.

Example 2.6

For demonstration, the amplification factor methods are applied to the frame 
shown in Figure 2.25. The axial rigidity and flexural rigidity of all frame members 
have the same values, EA = 2.619 × 106 kN and EI = 3.852 × 104 kN m4, respec-
tively. From first-order analysis, the lateral displacements of joints B and C are 
ΔB = 26.41 mm and ΔC = 26.22 mm, respectively, and the maximum deflection of 
member AB is δiAB = 7.33 mm and of member DC is δiDC = 10.373 mm.

For the P–Δ effect, ΣPΔi/ΣHh = 0.05263. From Equation 2.116, M = 1.056Misway; 
that is, the end moment of column AB at B is M = 1.056 × 115.3 = 121.76 kN m, 
and the end moment of column DC at C is M = 1.056 × 249.8 = 263.8 kN m.

For the P–δ effect, PE = 152.2 × 102 kN for either column AB or column DC. 
For column AB, P/PE = 0.0123 and Mimax ≃ 90.4 kN m. From Equation 2.125, 
ψAB = 1.234; thus, from Equation 2.124, Mmax = 1.028Mimax. For column DC, 
P/ PE = 0.014 and Mimax ≃ 125.0 kN m, ψDC = 1.263 and Mmax = 1.0282Mimax.
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Figure 2.25  Frame Example 2.6: (a) dimensions and loads and (b) deformed shape and 
straining actions.
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2.5  Theory of Plates

The generalized stress–generalized strain relations of the thin plate element under 
bending have been derived from the three sets of conditions: equilibrium, compat-
ibility, and constitutive law. By this, a major simplification has been introduced to the 
solution of the bending problem: dealing with 2 variables instead of 15 and treating 
a whole element instead of a field point. Expanding the discussion of this topic by 
considering the equilibrium of the element shown in Figure 2.26, the following dif-
ferential equation of equilibrium can be derived:
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	 (2.128)

where p is the load intensity.
In this section, the concept of generalized stress and generalized strain with the 

three sets of conditions is employed to derive different solutions of thin plate bend-
ing problems.
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Figure 2.26  (a) Plate element equilibrium and (b) stress resultants.
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The simply supported plate shown in Figure 2.27 is subjected to a sinusoidal load 
given by

	
p x y p
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b
o( , ) sin sin= π π

	 (2.129)

where a and b are the plate dimensions in the x and y directions, respectively. Upon 
substitution of the load formula in the differential equation of equilibrium,
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From kinematics,
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In order to solve this plate problem, the deflection expression must satisfy the afore-
mentioned kinematic relations and should have the same form as the load expression. 
Hence, the deflection should have the following form:
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b
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π π
	 (2.132)

where C is a constant that can be obtained upon substitution of Equation 2.132 into 
Equation 2.130:
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b

Figure 2.27  Simply supported plate.
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or
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The stress resultants, Qx, Qy, Mx, My, Mxy, and Myx can be obtained from
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Of course, the strains and stresses at any point can be obtained if needed:
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Let us examine the same simply supported plate in Figure 2.27 if subjected to a 
general distributed load p(x,y). The load can be represented by double Fourier series 
(Navier) as follows:
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In order to obtain pmn, both sides of Equation 2.137 are multiplied by sin(m′πx/a)
sin(n′πy/b); then, both sides of the equation are integrated, which leads to
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From the previous solution of the plate under sinusoidal load and upon applying the 
principle of superposition, a solution of a simply supported plate under general load-
ing condition can be obtained:
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If p(x,y) = po, then
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and
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m, n = 1,3,5,… since the terms of equations vanish for even values of m or n.

2.6  Theory of Shells

The generalized stress–generalized strain relations of thin cylindrical shells under 
axisymmetric loading have been derived from the three sets of conditions: equilib-
rium, compatibility, and constitutive law. Thus, the number of variables is reduced 
from 15 to 3, which is a remarkable simplification. In addition, a solution of a whole 
structural element or structure can be obtained at once. The discussion is extended 
in this section in order to show how the concept of generalized stress–generalized 
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strain along with the three basic sets of conditions are employed to obtain solutions 
of different problems of thin cylindrical shells under axisymmetric loading. The 
discussion starts with the derivation of the general solution of this class of problems.

The following equilibrium equations have been derived earlier in Section 2.2.4:
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Upon differentiating Equation 2.143 with respect to x, and substituting for dQx/dx 
from (2.142), the following equation can be obtained:
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Upon substitution from Equation 2.46 for Nθ, from Equation 2.47 for Mx and 
φx = ∂2w/∂x2 into Equation 2.144, the following differential equation of equilibrium 
can be obtained:
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Define
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Then, Equation 2.145 can be written as follows:
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Equation 2.147 is the differential equation of equilibrium of thin cylindrical shells 
subjected to axisymmetric loading. The general solution of this equation has the 
form

	 w e C x C x e C x C x f xx x= + + + +−β ββ β β β( cos sin ) ( cos sin ) ( )1 2 3 4 	 (2.148)

The term f(x) is the particular solution and the constants C1 to C4 can be obtained 
from the boundary conditions.



60 Understanding Structural Engineering: From Theory to Practice

In the following, the concept of generalized stress–generalized strain along with 
the three basic sets of conditions is used to obtain solutions for long thin cylindrical 
shells under different loading conditions. In the following example, a long cylinder 
is solved for a shear force at the edge, Figure 2.28a, and for a bending moment at 
the edge, Figure 2.28b. For both problems, the function f(x) is set equal to zero since 
there is no applied pressure. In addition, the deflection associated with the term eβx 
tends to approach infinity as x tends to a large value. This contradicts the real behav-
ior of the cylinder under the shown edge load, in which the deflection and moments 
dissipate as x increases. Therefore, the constants C1 and C2 of Equation 2.148 should 
vanish; thus, the equation reduces to

	 w e C x C xx= +−β β β( cos sin )3 4 	 (2.149)

In order to obtain the constants C3 and C4, the boundary conditions for each problem 
are introduced. For the problem in Figure 2.28a, the conditions are

	 M xx( )= =0 0 	 (2.150a)
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For the problem in Figure 2.28b, the conditions are

	 M x Mx o( )= =0 	 (2.151a)
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Figure 2.28  Example of a long circular cylindrical shell: (a) shear at the edge and (b) 
moment at the edge.
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The solution of the problem in Figure 2.28a is
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The solution of the problem in Figure 2.28b is
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2.7  Finite Element

The FE method is based on three concepts: (1) the concept of generalized stresses 
and generalized strains; (2) equilibrium is justified through the principle of virtual 
displacement; and (3) compatibility is achieved through the assumed shape function. 
As a consequence, it has become possible to analyze any structure of any geometry 
and of different materials.

In this section, the solution of a few examples are presented in order to show (1) 
the level of accuracy that can be reached using the FE method and (2) how struc-
tural behavior can be reflected in the FE solution and thus to verify some mechanics 
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assumptions. In all examples, the elasticity modulus, E = 25,000 MPa, and Poisson’s 
ratio, ν = 0.2, are used.

The first example is a cantilever beam subjected to an end moment, Figure 2.29, 
where the exact solution can be obtained from mechanics (Section 2.3.1). The rota-
tion, θ(x), is

	
θ( ) ( )x

M

EI
x= 	 (2.154)

and the deflection, v(x), is

	

v x
M

EI

x
( ) =







2

2
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The moment M = 1.44 × 108 N mm and the flexural rigidity EI = 9 × 1012 N mm2; thus, 
θ(x = L) = 0.0384 rad and v(x = L) = 46.08 mm. Hence, the vertical deflection at 1 and 2 
is, v1 = v2 = 46.08 mm upward, and the horizontal displacement at 1 is u1 = 0, while the 
horizontal displacement at 2 is calculated from the rotation as u2 = −11.52 mm. From 
the FE solution of this problem it is found that, u1 = 0, u2 = −11.51 mm, v1 = 46.12 mm, 
and v2 = 45.98 mm. When these FE results are compared with the exact values, it is 
evident how much accurate the FE results are when using proper meshing and mod-
eling. Also, from the FE results the strain distribution at section 3 is almost linear, 
which conforms to the simplification of Bernoulli’s hypothesis of beams.

The second example, Figure 2.30, is a beam with different values of shear span to 
depth ratio, a/d. In this example, the division line between a deep beam and a short 
beam can be noticed from the strain distribution. From the FE results in Table 2.3, 
for a shear span to depth ratio a/d ≤ 2.0, the beam behaves as a deep beam, which 
agrees with St. Venant’s principle. Also, the stress trajectories show the arch action 
in deep beams and the truss model in ordinary beam.

The third example is a simply supported rectangular plate, Figure 2.27, with 
dimensions a = 4.00 m, b = 3.00 m, and t = 100 mm. The plate is subjected to a uni-
form load p = 10.0 kN/m2. The exact value of maximum deflection obtained from 
mechanics (Section 2.5) was w = 2.54 mm and from FE was 2.50 mm.

It should be mentioned that FE is advantageous not only in analyzing any problem 
of any shape but also in handling discontinuity problems, for example, openings, 
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Figure 2.29  Example of a cantilever beam.
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bends and stress concentration, and irregular boundary conditions. The fourth exam-
ple shown in Figure 2.31 is a deep beam with a central opening. From the FE results 
illustrated in the figure, the stress distribution at the central section (section 1) is 
nonlinear and the stress trajectories agree with the logical flow of forces. The same 
observations are valid for the deep beam with an eccentric opening (Figure 2.32). 
Another example shown in Figure 2.33 is a cantilever with a dapped end, where the 
illustrated FE results reflect the behavior of such a discontinuity region.

In conclusion, the FE can analyze any structure of any shape and of any bound-
ary condition. If the FE can be considered “exact,” which means the best possible 
solution, it can be used for calibration and verification, for instance, verification of 
kinematic assumptions such as Bernoulli’s assumption. It can illustrate the limits of 
simplified models, for example, beam model, and the reliability of simplification, for 
example, Bernoulli’s hypothesis. The FE can handle those problems where simpli-
fied models are not valid, for example, openings in beams, abrupt change of thick-
ness, and discontinuity in general.

2.8  The Allowable Stress as a Basis for Design

There is a fundamental two-stage process in structural design operation: first, the 
forces acting on each structural member must be defined, and second, the load-
carrying capacity of each member must be determined. The first stage involves an 
analysis of the stresses acting within the structural members and the second involves 
knowledge of the load-carrying capacity of the structural members. In allowable 
stress design, the first stage is based on a linear elastic analysis while the second 
stage is based on full-scale tests of structural members reduced by an acceptable 
safety factor to the allowable stress level as specified by specifications.

This was the era of great advancement in the use of the mathematical theory of 
elasticity for structural design, but one that placed too much emphasis on the elastic 
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Figure 2.30  Example of a beam of different shear span to depth ratios.
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response of an idealized version of the real structure to normal working loads. It 
turned the engineers so far toward the analysis of the working load range that the 
much more important task of insuring the safety of a design against collapse or 
failure was submerged till the emerging development of the theory of plasticity in 
the 1950s.

In order to arrive at a reasonable estimate of the safety factor, SF, the two dia-
grams in Figure 2.34 are examined; one diagram is the idealized stress–stress rela-
tion based on linear elasticity theory and the other is the actual behavior of the 
material. However, at the time of the design method initiation, the material curve 

Table 2.3
FE Results of the Example Beam of Different Shear Span to Depth Ratios 
(Figure 2.30)

a/d

Strain 
Distribution at 

Section 1

Strain 
Distribution at 

Section 2 Stress Trajectories

1.0

2.0

3.0

4.0
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could be measured up to the first yield point, while the strength beyond this point 
was not possible to be predicted and therefore was neglected. Hence, safety would 
have been related to this first yield point; that is, the allowable stress, σall, would have 
been a fraction of this yield stress, σy:

	
σ

σ
all

y=
SF

	 (2.156)

The value of the safety factor would be based on the type of material (steel, con-
crete, etc.), type of straining action (flexure, axial, shear, etc.), type of load and load 
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Figure 2.31  Example of a deep beam with a central opening: (a) beam; (b) stress trajec-
tories; and (c) stress distribution at section 1.
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combination, type of structure, etc. The values of safety factor were defined through 
time with the accumulation of practical experience.

The allowable stress design method had been employed reasonably well in tradi-
tional structures as a result of the accumulative experience particularly under normal 
loading conditions. However, safety rules based on experience work well only for 
designs lying within the scope of that experience. They cannot be relied on outside 
of that range, for example, for the case of nontraditional structures, for example, off-
shore structures, poles, and nuclear facilities. In other words, structures susceptible 
to abnormal loads, for example, extreme wind, major earthquakes, and explosive 
loads, could not be handled properly with this method. Therefore, it was a logical 
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Figure 2.32  Example of a deep beam with an eccentric opening: (a) beam; (b) stress tra-
jectories; and (c) stress distribution at section 1.
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Figure 2.33  Example of a cantilever with a dapped end: (a) cantilever; (b) stress trajecto-
ries; (c) strain distribution at section 1; and (d) strain distribution at section 2.
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future development to establish more reliable and more rational inelastic second-
order analysis methods for design that can avoid the drawbacks of the allowable 
stress design method. This further development of analysis and design methods is 
described in Chapter 3.

2.9  Historical Sketch

Modern theory of elasticity began when the French mathematician Jacob Bernoulli 
combined equilibrium equations with Hooke’s law (1678) to obtain the differential 
equation of the elastica, in 1705, that is, the curve assumed by the deformed axis 
of the beam. In 1821, 116 years after Bernoulli, the general equations of equilib-
rium and vibration of elastic solids were formulated by Navier, which led to the 
formulation of the linear theory of elasticity by A.L. Cauchy in 1822. This linear 
theory of elasticity remains virtually unchanged to the present day. During this 
period, following the discovery of Hooke’s law, the growth of the science of elas-
ticity proceeded from the synthesis of solutions of special problems. This began 
the development of flexural theory of beams, theory of torsion, theory of stability 
of columns, and some results on bending and vibration of plates in the early nine-
teenth century.

This chapter represents an attempt to present concisely several aspects of the 
theory of elasticity from a unified point of view and to indicate those familiar meth-
ods of solution of the field equations of elasticity that are familiar to structural engi-
neers in particular. To this end, we must single out and stress the contributions to the 
engineering theory by the Russian elastician, S. P. Timoshenko, a great teacher, and 
whose work was widely known for its elegance and importance.

It was during his years in the United States that Timoshenko made the major 
part of his contributions and writings to the theory of elasticity and to its applica-
tion to the design of engineering structures and components. Timoshenko, his col-
leagues, and his students became internationally known for their pioneering work in 
elasticity, especially those classical textbooks used widely in engineering practice 
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Figure 2.34  Idealized and actual material stress–strain relation: (a) idealized and (b) 
actual.
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and university teaching in particular. Timoshenko’s unparalleled monographs on the 
applications of elasticity to engineering structures include

	 1.	Applied Elasticity, D. Van Nostrand Company, Inc., New York, 1925 (with 
J. M. Lessells).

	 2.	Vibration Problems in Engineering, D. Van Nostrand Company, Inc., New 
York, 1928, 1937 and 1955 (with D. H. Young).

	 3.	Strength of Materials, Part I, Elementary Theory and Problems, D. Van 
Nostrand Company, Inc., Princeton, NJ, 1930, 1940, and 1955.

	 4.	Strength of Materials, Part II, Advanced Theory and Problems, D. Van 
Nostrand Company, Inc., Princeton, NJ, 1930, 1941, and 1956.

	 5.	Theory of Elasticity, McGraw-Hill Book Company, New York, 1934 and 
1951 (with J. N. Goodier).

	 6.	Elements of Strength of Materials, D. Van Nostrand Company, Inc., 
Princeton, NJ, 1935, 1940 and 1949 (with G. H. McCullough), 1962 (with 
D. H. Young).

	 7.	Theory of Elastic Stability, McGraw-Hill Book Company, New York, 1936 
and 1961 (with J. M. Gere).

	 8.	Engineering Mechanics, McGraw-Hill Book Company, New York, 1937, 
1940, 1951 and 1956 (with D. H. Young).

	 9.	Theory of Plates and Shells, McGraw-Hill Book Company, New York, 
1940, 1959 (with S. Woinowsky-Krieger).

	 10.	Theory of Structures, McGraw-Hill Book Company, New York, 1945 and 
1965 (with D. H. Young).

	 11.	Advanced Dynamics, McGraw-Hill Book Company, New York, 1948 (with 
D. H. Young).

	 12.	History of Strength of Materials, McGraw-Hill Book Company, New York, 
1953.

	 13.	Engineering Education in Russia, McGraw-Hill Book Company, New 
York, 1959.

	 14.	The Collected Papers of Stephen P. Timoshenko, 1953, McGraw-Hill Book 
Company, New York.

	 15.	As I Remember, D. Van Nostrand Company, Inc., Princeton, NJ, 1968.
	 16.	Stephen Timoshenko 60th Anniversary Volume, Contributions to the 

Mechanics of Solids Dedicated to Stephen Timoshenko by His Friends, The 
MacMillan Company, New York, 1938.

S. P. Timoshenko was born on December 22, 1878 in Ukraine to parents who took 
great care of their children. He was self-motivated and since his childhood had a 
dream to become a structural engineer. After his graduation from Realgymnasium 
at the age of 18, Timoshenko obtained most of his early education and practical 
experience in Russia. In his early life he had two trips to western Europe, which had 
a great influence on his life and career. In his 1900 trip he visited Germany, Belgium, 
France, and Switzerland, where he realized how these countries were ahead of Russia 
in both culture and industrial development. During his 1904 trip he was very much 
impressed with August Föppl at Munich Polytechnical Institute.
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In the academic year 1903–1904 he read English Love’s Theory of Elasticity and 
Lord Rayleigh’s Theory of Sound. These two books impressed him immensely and 
had a considerable influence on his scientific work. Timoshenko went twice to the 
University of Göttingen in Germany for a few months in 1905 and 1906, where he 
took some courses in mathematics and mechanics and investigated the problem of 
lateral buckling of I-beams. Timoshenko had his first teaching opportunity at Kiev 
Polytechnicum, where he commenced lecturing in January 1907. During his whole 
teaching career, and different from what was followed at his time, he used to start 
with the simplest problems and move gradually to the more complicated ones, which 
was much appreciated by his students.

In 1920, Timoshenko escaped to Zagreb because of the long suffering for many 
years under the Bolshevik regime and the World War I and because he was politi-
cally in danger. In Zagreb, he was satisfied with his scientific achievements; however, 
he decided to start his academic life in the United States in 1922. Nevertheless, he 
had only a chance to work in industry, first in a vibration company in Philadelphia 
for a few months and afterward in Westinghouse Company in Chicago. With many 
research accomplishments he stayed in Westinghouse for 5 years until he had the 
opportunity to return to academic work as he always hoped. In 1927, he joined the 
University of Michigan where he achieved teaching and research work of excep-
tional level such that his ideas and attitude toward mechanics became widespread 
throughout the United States. In 1936, he joined Stanford University until his formal 
retirement in 1944; however, he continued his academic activities at Stanford but 
with a reduced scale and with concentration on writing and revision of text books.
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3 The Era of Plasticity

3.1  Fundamentals of Plasticity

3.1.1  Introduction

Similar to the theory of elasticity, the theory of plasticity was founded on bold 
assumptions based on observations of experiments followed with idealizations and 
simplifications. The early experiments of Tresca (1870) in the 1860s established 
the concept that large plastic deformation is shear deformation governed primarily 
by shear stress. It took a great insight to ignore the time effects to start the math-
ematical theory of plasticity. The choice of maximum shear stress as the critical 
shear stress for the Tresca yield criterion for metallic material started the develop-
ment of the theory of metal plasticity. Similarly, the choice of a normal-stress-
dependent maximum shear stress as a failure criterion for granular media laid the 
foundation of Coulomb’s (1773) failure criterion, proposed much earlier for soils, 
for the subsequent development of the lateral earth pressure theory in 1776 by the 
French physicist Charles-Augustin de Coulomb who began the modern theory of 
soil mechanics.

As a result, a yield or failure criterion combined with the equations of equilibrium 
has been used to solve some useful and interesting “statically determinate” types of 
structure problems. In soil mechanics, this type of solution is known as the “limit 
equilibrium” solution (Sokolovsky, 1946). However, the more recent development 
of the theory of elasticity has made it clear that plastic stress–strain relations are 
required for a complete continuum-mechanics solution in which structural engineer-
ing is a branch of its application. The plastic stress–strain relations proposed by 
St. Venant (1870) and Levy (1870) represented such a giant step forward in con-
tinuum mechanics. For real-world applications, however, we needed further simplifi-
cation and idealization including in some cases to ignore the relatively small elastic 
strain increments and consider only the plastic-strain increments and also to ignore 
the initial state of the material.

In the following, we use the customary subscript notations for rectangular 
Cartesian coordinates to introduce the subject of the conventional theory of plastic-
ity. The key features of the plastic behavior of ductile metals to be captured in the 
mathematical theory of plasticity include irreversibility, time independence, very low 
stiffness of resistance to further plastic deformation when compared with its resis-
tance to elastic deformation, and large ductility itself. The general form of plastic 
stress–strain relations to describe these key features accurately can be very compli-
cated, and drastic idealizations of plastic behavior must be made before they can be 
placed on the most powerful computer for solutions of interesting problems. These 
idealizations and simplifications leading to the development of simple plastic theory 
are presented in the following including their applications to engineering design.
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3.1.2  Basic Field Equations in Plasticity

Employing either the elasticity theory or the plasticity theory in continuum mechan-
ics requires three basic sets of relations to be fulfilled in order to obtain a solution: (1) 
equilibrium conditions, (2) compatibility conditions, and (3) constitutive relations. 
The first two sets of relations are identical in both elasticity and plasticity. Only the 
constitutive relations are different in the two theories.

Since the plastic deformations are highly irreversible and load-path dependent, 
the constitutive relations for an elastic–plastic material should be written in incre-
mental form as

	
d C dij ijkl klσ ε= ep 	 (3.1)

where
dσij and dεkl are stress and strain increment tensors, respectively

Cijkl
ep  is the response tensor or the tangent stiffness of the material

This tensor can be expressed as

	
C C Cijkl ijkl ijkl

ep p= + 	 (3.2)

where
Cijkl represents the elastic response of the material

Cijkl
p  accounts for the difference between the elastic–plastic response and the elas-
tic response (plasticity influence)

The plasticity response tensor Cijkl
p  is a function of the current state of stress and strain 

and the yield function; that is, it is load-path dependent, as will be illustrated later.
Equations 3.1 and 3.2 provide the most general formulation of the constitutive 

relations for an elastic–plastic material. From these relations, it is clear that the stress 
increments dσij can be uniquely determined in terms of the yield function and the 
strain increments dεij. However, the strain increments dεij cannot be defined in terms 
of the current state of stress and stress increments dσij.

The different aspects of plasticity, yield criteria (or failure criteria), incremental 
strain, and constitutive relations are illustrated in the following subsections for an 
elastic–plastic material.

3.1.3  Yield Criteria Independent of Hydrostatic Pressure

The elastic limit of a material is defined as yielding and is determined under the 
combined state of stresses by a yield criterion. For a simple tension test, this limit is 
the yield stress, σo, while in shear test it is the yield shear stress, τo. For the general 
state of stress, this limit can be expressed as

	
f k kij( , , , )σ 1 2 0… = 	 (3.3)

where k1, k2, … are material constants to be determined experimentally.
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For isotropic materials, the orientation of the principal stresses is immaterial, 
and the values of the three principal stresses suffice to describe the state of stress 
uniquely. A yield criterion therefore consists in a relation of the form

	 f k k( , , , , , )σ σ σ1 2 3 1 2 0… = 	 (3.4)

Since the principal stresses can be expressed in terms of combinations of stress 
invariants, I1, J2, and J3, where I1 is the first invariant of the stress tensor σij, (I1 = σkk), 
and J2 and J3 are, respectively, the second and third invariants of deviatoric stress 
tensor sij, sij = σij − (1/3)σkkδij. Thus, Equation 3.4 can be replaced with

	 f I J J k k( , , , , , )1 2 3 1 2 0… = 	 (3.5)

For isotropic materials independent of hydrostatic pressure, such as metals, the 
influence of hydrostatic pressure on yielding is not appreciable; therefore, the yield 
criterion can be reduced to

	 f J J k k( , , , , )2 3 1 2 0… = 	 (3.6)

This criterion can still be simplified further as in the von Mises and Tresca yield 
criteria.

The von Mises yield criterion states that yielding begins when the octahedral 
shearing stress reaches a critical value k:

	
τoct = =2

3
2
3

2J k 	 (3.7)

which reduces to the simple form

	 f J J k( )2 2
2= − 	 (3.8)

or in terms of the principal stresses σ1, σ2, and σ3

	 ( ) ( ) ( )σ σ σ σ σ σ1 2
2

2 3
2

3 1
2 26− + − + − = k 	 (3.9)

The constant k is the yield stress in pure shear, which can be simply determined by 
applying Equation 3.9 to uniaxial test

	
k o= σ

3
	 (3.10)

where σo is the material yield stress. Equation 3.9 can be represented geometrically 
by an ellipse for the case of biaxial state of stress, Figure 3.1a, and by a cylinder in 



74 Understanding Structural Engineering: From Theory to Practice

the principal stress space as shown in Figure 3.1b. In relation with Equation 3.8, the 
von Mises criterion is often referred to as the J2-theory. This equation also represents 
the simplest mathematical expression of the yield criterion for hydrostatic pressure–
independent material, Equation 3.6.

The Tresca yield criterion states that yielding would occur when the maximum 
shearing stress at a point reaches a critical value k. In terms of principal stresses, 
the maximum shear stress is the maximum value of half the difference between the 
principal stresses taken in pairs; that is,

	
max | , ,

1
2

1
2

1
2

1 2 2 3 3 1σ σ σ σ σ σ− − −





=|  | |  | | k 	 (3.11)

von Mises ellipse
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Tresca yield surface
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σ1

σ3

von Mises yield surface

Hydrostatic axis

Figure 3.1  Geometric representation of von Mises and Tresca yield criteria: (a) yield cri-
teria in the coordinate plane σ3 = 0 and (b) yield surfaces in principal stress space.
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The material constant k can be determined from the simple tension test

	
k o= σ

2
	 (3.12)

The Tresca yield criterion can be represented geometrically by a hexagon for the 
case of biaxial state of stress, Figure 3.1a, and by a regular hexagonal prism in the 
principal stress space, as shown in Figure 3.1b. In this criterion, yielding is governed 
by the maximum and minimum principal stresses, while in the von Mises criterion, 
the three principal stresses have a role in the yield criterion.

3.1.4  Yield Criteria for Pressure-Dependent Materials

The yielding of most metals is hydrostatic pressure independent. On the other hand, 
the behavior of many nonmetallic materials, such as soil, rock, and concrete, is char-
acterized by its hydrostatic pressure dependence. Therefore, the stress invariant I1 
should not be omitted from Equation 3.5. The well known are the Mohr–Coulomb 
and Drucker–Prager criteria, among others, which describe the failure surface of a 
pressure-dependent material.

Mohr’s criterion is a generalized version of the Tresca criterion; in both crite-
ria, the maximum shear stress is the only decisive measure of impending failure. 
However, while the Tresca criterion assumes that the critical value of the shear stress 
is a constant, Mohr’s failure criterion considers the limiting shear stress τ in a plane 
to be a function of the normal stress σ in the same plane at a point; that is,

	 | |τ σ= f ( ) 	 (3.13)

where f(σ) is an experimentally determined function.
The simplest form of the Mohr envelope f(σ) is a straight line as illustrated in 

Figure 3.2. The equation of this line, which is known as Coulomb’s equation, is

|τ| = c – σ tan

c cos

c

c

2

2

σ1σ3
σ

σ1 + σ3

σ1 – σ3

τ

Figure 3.2  Mohr–Coulomb criterion with straight lines as the failure surface.
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	 | |τ σ φ= −c tan 	 (3.14)

where
c is the cohesion
ϕ is the angle of internal friction

Both are material constants to be determined experimentally. The failure criterion 
associated with Equation 3.14 is referred to as the Mohr–Coulomb criterion. In the 
special case of frictionless materials, for which ϕ = 0, Equation 3.14 reduces to the 
maximum-shear-stress criterion of Tresca, τ = c = k.

The Drucker–Prager criterion is a simple modification of the von Mises criterion, 
where the influence of the hydrostatic stress component is introduced as follows:

	 f I J I J k( , )1 2 1 2 0= + − =α 	 (3.15)

Equation 3.15 can be represented geometrically for the case of biaxial state of stress 
as an off-center ellipse, Figure 3.3, and in a principal stress space it is a right-circular 
cone. Both Mohr–Coulomb and Drucker–Prager criteria are shown in principal 
stress space in Figure 3.4.

3.1.5  Incremental Strain

It has been stated before that the constitutive relations of elastic–plastic materials 
have to be expressed in an incremental form. The total strain increment tensor can be 

45°
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σ1
f ć f t́

√3 k

√3 k

1 + √12 α

1 – √3 α

√3 k
1 – √12 α

√3 k
1 + √3 α

Figure 3.3  Drucker–Prager criterion in the coordinate plane σ3 = 0.
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decomposed into two component tensors: one is the elastic strain increment tensor, 

d ijεe, and the second is the plastic strain increment tensor, d ijεp:

	
d d dij ij ijε ε ε= +e p 	 (3.16)

The elastic strain increment tensor can be obtained from Hooke’s law (Chapter 2):

	
d D dij ijkl klε σe = 	 (3.17)

or

	
d

dI

K

ds

G
ij ij

ijε δe = +1

9 2
	 (3.18)

where
Dijkl is the elastic compliance tensor, which is the inverse of Cijkl

I1 is the first stress invariant
K is the bulk modulus
δij is Kronecker’s delta
sij is the deviatoric stress tensor
G is the shear modulus

Hence, the stress–strain relation for a plastic material reduces essentially to a relation 
involving the current state and the incremental changes of stress and plastic strain. 
This latter relationship is discussed in the following subsection.

Mohr–Coulomb

–σ3

–σ2

–σ1
Drucker–Prager

Figure 3.4  Mohr–Coulomb and Drucker–Prager criteria in principal stress space.
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3.1.6  Constitutive Equations for Perfectly Plastic Materials

Based on the von Mises potential function, the plastic flow equations can be written 
in the form

	
d d

g
ij

ij

ε λ
σ

p = ∂
∂

	 (3.19)

where dλ is a scalar factor of proportionality, which is nonzero only when plastic 
deformations occur. The equation g(σij) = constant defines a surface (hyper-surface) 
of plastic potential in a nine-dimensional stress space. The direction cosines of the 
normal vector to this surface at the point σij on the surface are proportional to the 
gradient ∂g/∂σij.

If the yield function and the plastic potential function coincide, f = g, then

	
d d

f
ij

ij

ε λ
σ

p = ∂
∂

	 (3.20)

and plastic flow develops along the normal to the yield surface ∂f/∂σij. Equation 3.20 
is called the associated flow rule because the plastic flow is connected or associated 
with yield criterion, while Equation 3.19 with f ≠ g is called a nonassociated flow 
rule.

If the von Mises yield function is taken as the plastic potential

	
f J kij( )σ = − =2

2 0 	 (3.21)

Then, the flow rule has the simple form

	
d d

f
d sij

ij
ijε λ

σ
λp = ∂

∂
= 	 (3.22)

where sij is the deviatoric stress tensor and the factor of proportionality dλ has the 
value

	
d

f f df

f df
λ

= < = <
> = =

0 0 0 0

0 0 0

wherever or but

wherever or                





	 (3.23)

In the same manner, other flow rules can be associated with other yield functions 
such as Tresca and Mohr–Coulomb.

In order to determine the factor of proportionality, dλ, the consistency condition 
which ensures that the stress state (σij + dσij) existing after the incremental change 
dσij has taken place still satisfies the yield function f:

	
f d f df fij ij ij ij( ) ( ) ( )σ σ σ σ+ = + = 	 (3.24)
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From this condition,

	
df

f
d

ij
ij= ∂

∂
=

σ
σ 0 	 (3.25)

Implementing Equation 3.22 in the relation of the stress increment tensor and elastic 
strain increment tensor gives

	
d C d C d d C d C d

f
ij ijkl kl ijkl kl kl ijkl kl ijkl

ij

σ ε ε ε ε λ
σ

= = −( ) = − ∂
∂

e p 	 (3.26)

Upon substituting Equation 3.26 into Equation 3.25

	
d

f C d

f C f
ij ijkl kl

rs rstu tu

λ
σ ε

σ σ
=

∂ ∂
∂ ∂ ∂ ∂

( )

( ) ( )

/

/ /
	 (3.27)

From Equations 3.26 and 3.27, the incremental stress–strain relation can be expressed 
explicitly as follows:

	
d C

C f f C

f C f
ij ijkl

ijmn mn pq pqkl

rs rstu

σ
σ σ

σ
= −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
( )( )

( ) (

/ /

/ / σσ
ε

tu
kld

)









 	 (3.28a)

that is, the elastic–plastic tensor of tangent moduli for an elastic-perfectly plastic 
material is

	
C C

C f f C

f C
ijkl ijkl

ijmn mn pq pqkl

rs rstu

ep / /

/
= −

∂ ∂ ∂ ∂
∂ ∂ ∂
( )( )

( ) (

σ σ
σ ff tu/∂σ )

	 (3.28b)

3.1.7  Constitutive Equations for Work-Hardening Materials

3.1.7.1  Material Hardening
The phenomenon whereby yield stress increases with further plastic straining is 
known as work-hardening or strain-hardening (Figure 3.5). The subsequent yield 
surface for an elastic–plastic material, which defines the boundary of the current 
elastic region, is the loading surface (Figure 3.5b). Thus, the loading surface may be 
generally expressed as a function of the current state of stress (or strain) and some 

hidden variables, expressed in terms of εijp and a hardening parameter k. Hence,

	
f kij ij( , , )σ εp = 0 	 (3.29)

Determining the nature of the subsequent loading surfaces is one of the major prob-
lems in the work-hardening theory of plasticity. For a uniaxial behavior, the concepts 
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of “loading” and “unloading” are self-evident (Figure 3.5a); however, this is not the 
case under a multiaxial stress state. In order to define the modification of the sub-
sequent yield surface during the process of plastic flow, there have been many rules 
of work-hardening. The most widely used rules are isotropic hardening, kinematic 
hardening, and a combination of both (mixed hardening).

For clarity, the general form of the loading function, Equation 3.29, can be writ-
ten as

	
f k F kij ij ij ijσ ε σ ε ε, , , ( )p p

p( ) = ( ) − =2 0 	 (3.30)

in which the hardening parameter k2 represents the size of the yield surface, while the 

function F ij ij( , )σ εp  defines the shape of that surface. The parameter k2 is expressed as 
a function of the effective plastic strain, εp, which is an integrated increasing func-
tion of the plastic strain increments but not the plastic strain itself:

	
ε ε εp

p p= 2
3

ij ij 	 (3.31)

For the case of uniaxial tension, ε1
p reduces to εp. The value of εp depends on the load-

ing history or the plastic strain path.
For a perfectly plastic material, the equation of the fixed yield surface has the 

form F(σij) = k2, where k is a constant. The simplest hardening rule, isotropic hard-
ening, is based on the assumption that the initial yield surface expands uniformly 
without distortion or translation as plastic flow occurs (Figure 3.6). The size of the 
yield surface is now governed by the value k2, which depends upon the plastic strain 
history. The equation for the subsequent yield surface or loading surface can be writ-
ten in the general form

	
F kij( ) ( )σ ε= 2

p 	 (3.32)

Loading

Unloading

(a) (b)
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σ2

Natural loading

nt
nt

ijdσij = 0

nt
ij dσij > 0

nt
ij dσt

ij < 0

Loading

Unloading

Loading surface

σ1

ε

Figure 3.5  Loading criterion for a work-hardening material: (a) uniaxial case and (b) 
multiaxial case.
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In the case of von Mises initial yield function, for example, F = J2, Equation 3.32 
becomes

	
J s s kij ij2

21
2

= = ( )εp 	 (3.33)

When the effective stress σe = 3 2J  is introduced in Equation 3.33 as a hardening 
parameter, the isotropic-hardening von Mises model takes the form

	
f k s sij ij ij( , ) ( )σ σ ε= −3

2
2
e p 	 (3.34)

where the hardening parameter σe(εp) is related to the effective strain εp through an 
experimental uniaxial stress–strain curve.

On the other hand, in kinematic hardening, the loading surface is assumed to 
translate during plastic flow as a rigid body in stress space, while maintaining the 
size, shape, and orientation of the initial yield surface. As illustrated in Figure 3.7 
as the point moves along its loading path from point A to point B, the yield surface 
translates (no rotation) as a rigid body. Thus, the subsequent yield surface will wind 
up in the position indicated in the figure when the stress point has reached position B. 
The new position of yield surface represents the most current yield function, whose 
center is denoted by αij. For unloading along the initial path of loading, path BAO, 
for example, the material behaves elastically from point B to point C and then begins 
to flow again before the stresses are completely relieved.

Subsequent yield surface,
F = k 2

1 > k2

F = k2

Initial yield surface,
B

A

O

C

D

σ1

σ2

Figure 3.6  Subsequent yield surface for an isotropic-hardening material.
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For kinematic hardening, the equation of loading surface has the general form

	
f F kij ij ij ij( , ) ( )σ ε σ αp = − − =2 0 	 (3.35)

where
k is a constant
αij are the coordinates of the center of the loading surface (or the vector OO1 in 

Figure 3.7), which changes with plastic deformation

3.1.7.2  Incremental Plastic Strain
As discussed before, the general expression of a yield surface for work-hardening 
material has the form

	
f kij ijσ ε, ,p( ) = 0 	 (3.36)

The plastic strain can be generally expressed by a nonassociated flow rule in the 
form

	
d d

g
ij

ij

ε λ
σ

p = ∂
∂

	 (3.37)

where g g kij ij= ( , , )σ εp , as for f kij ij( , , )σ εp , is a known plastic potential as discussed 
before, and dλ is a scalar function to be determined consistency condition, df = 0.

Following the same procedure as for perfectly plastic material, the following rela-
tion can be obtained (details in Chen and Han, 1988):

	
d C dij ijkl klσ ε= ep 	 (3.38a)

C

A
O1 (αij)

F (σij) = k2

F (σij – αij ) = k2

B
Loading and unloading path

Subsequent yield surface

Initial yield surface

0

σ2

σ1

Figure 3.7  Subsequent yield surface for a kinematic-hardening material.
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where
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	 (3.38b)

where
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Equation 3.38 is valid only for the case of plastic loading; therefore, it is necessary 
to have a loading criterion in terms of the given strain increment instead of the stress 
increment since the stress increment is unknown. This criterion can be expressed as 
follows:

	

∂
∂

>
=
<

f
C d

mn
ijkl klσ

ε
0

0

0

,

,

,

loading            

neutral loading

unnloading        






	 (3.39)

For the case of neutral loading d ijεp = 0 or dλ = 0, and for the case of unloading, the 
elastic stress–strain relationship dσij = Cijkldεkl should be used.

3.1.8  Solution Process: An Illustration

In order to illustrate some basic features and useful concepts of elastic–plastic 
deformation of a structure, the following example is presented. The example illus-
trates a thick-walled tube with closed ends under internal pressure, and, for sim-
plicity, it is made of an elastic–perfectly plastic material. The tube cross section is 
shown in Figure 3.8 with an internal radius a and an external radius b. It is assumed 

b

a
p

dr

σr

σr + dσr

σθσθ

Figure 3.8  Cross section of a thin-walled tube under interior pressure.
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that the tube is sufficiently long for end effects not to be felt in the zone under 
consideration.

Since the tube structure is axisymmetric, radial coordinates are more appropriate 
to use; the radial distance from the tube axis is r, the angular circumferential coordi-
nate measured from an arbitrary datum is θ, and the axial distance from an arbitrary 
plane parallel to the radial axis is z.

3.1.8.1  Basic Equations
The only nontrivial equilibrium equation is

	

d

dr r
r rσ σ σθ− − = 0 	 (3.40)

With the assumption of a small displacement, if u is the radial displacement of a 
point at radius r, the compatibility equations are

	
εr

du

dr
= 	 (3.41)

and with the assumption of symmetrical deformation,

	
εθ = u

r
	 (3.42)

	 εz = 0 	 (3.43)

The compatibility relations are purely geometric and therefore they hold irrespective 
of whether the material is elastic or plastic.

The material tube is assumed elastic–perfectly plastic. In the elastic range, the 
behavior is described in terms of two elastic constants, Young’s modulus E and 
Poisson’s ratio ν. Since r, θ, and z are, by symmetry, the principal stress directions, 
the elastic constitutive relations are

	

E

E

E

r r z

r z

z z r

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

θ

θ θ

θ

= − +

= − +

= − +

( )

( )

( )

	 (3.44)

Since εz = 0 (plane strain problem),

	 σ ν σ σθz r= +( ) 	 (3.45)



85The Era of Plasticity

Thus, Equations 3.44 are modified to
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r r
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ε ν σ ν ν σ

ε ν σ ν ν σ
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θ θ
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2

	 (3.46)

The yield condition of Tresca is adopted, and the flow rule is associated with it by 
means of the normality condition.

The boundary conditions are

	

σ

σ

r

r

r b

p r a

= =

= − =

0 at

at
	 (3.47)

where p is the interior pressure. In the axial direction, overall equilibrium requires

	

p a rdr
a

b

zπ πσ2 2= ∫ 	 (3.48)

3.1.8.2  Elastic Solution
Upon elimination of u from Equations 3.41 and 3.42,

	
ε εθr

d

dr
r= ( ) 	 (3.49)

After substituting εr and εθ in terms of σr and σθ from Equations 3.46 into Equation 
3.49, and eliminating σθ with the aid of Equation 3.40, the following differential 
equation can be obtained:

	

d

dr r

d

dr
r r

2

2

3
0

σ σ+ = 	 (3.50)

The solution of Equation 3.50 is

	
σr

c

r
c= +1

2 2

where c1 and c2 are the integration constants. Upon introducing the boundary condi-
tions from Equation 3.47 and solving for c1 and c2, the following equation for σr can 
be obtained:

	
σr

pa r b

r b a
= −

−

2 2 2

2 2 2

( )
( )

	 (3.51)
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Substitution into Equation 3.40 gives

	
σθ = +

−
pa r b

r b a

2 2 2

2 2 2

( )
( )

	 (3.52)

Equations 3.45 and 3.48 give a value of ν = 0.5 and σ σ σθz r= ( ) +1 2 ( ).

The radial displacement is obtained from Equations 3.42 with the use of the sec-
ond relation of (3.46):

	
u r

a b p

E b a r
= =

−
εθ

1 5 2 2

2 2

.
( )

	 (3.53)

The elastic stress distribution applies as long as the pressure p is small enough so that 
yield does not take place.

Since σ σ σθz r= ( ) +1 2 ( ), σz is the intermediate stress; that is,

	 σ σ σθ > >z r 	 (3.54)

and hence the yield criterion of Tresca is

	 σ σ σθ − =r o 	 (3.55)

where σθ − σr = σo is the yield stress in simple tension. Substitution of Equations 3.51 
and 3.52 into (3.55) leads to

	
σ σ σθ − =

−
=r op

b r

b a
2

1

2 2

2 2

/
/( )

	 (3.56)

From Equation 3.56, it is obvious that if the pressure is increased steadily, yield 
occurs at the inner surface first at a pressure

	

p p
a

b
o= = −





e

σ
2

1
2

2 	 (3.57)

which is a function of (b/a) and not the size of the tube.

3.1.8.3  Elastic–Plastic Expansion
If the internal pressure is increased beyond the value of the first yield (at inner 
surface), an enlarging plastic zone spreads outward from the inner surface; that 
is, the outer part of the tube remains elastic and the inner part becomes plastic 
(Figure 3.9).
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Suppose that the elastic–plastic boundary is at radius r = c (a ≤ c ≤ b), as shown in 
Figure 3.9. For this boundary, the pressure from the inner part of the tube (plastic 
part) on the outer part, q, can be obtained from Equation 3.56 but with substituting 
for r and a with c,

	

q
c

b
o= −





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σ
2

1
2

2 	 (3.58)

For the plastic zone, using Equation 3.55 to eliminate σθ from Equation 3.40, then 
integrating and introducing the boundary condition, σr = −q at r = c, gives

	
σ σr oq

r

c
= − + ln 	 (3.59)

Substituting Equation 3.58 into (3.59) and (3.55) gives the stresses in the yield zone
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	 (3.60)

Employing the boundary condition σr = −p at r = a, we obtain

	

p q
c

a

c

b

c

a
o

o
o= + 





= −






+ 





σ σ σln ln
2

1
2

2 	 (3.61)
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Figure 3.9  Plastic zone combined with an elastic zone of the thin-walled tube.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10914-4&iName=master.img-005.jpg&w=151&h=160
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Hence, for any value of c between a and b, the corresponding pressure may be calcu-
lated, and also σθ and σr are determined throughout the tube. Figure 3.10 shows the 
results of a tube with b/a = 2 for different values of c/a.

Following the same thinking, the elastic–plastic deformation can be determined 
and the unloading behavior can be predicted as well.

3.2  Limit Theorems of Perfect Plasticity

3.2.1  Introduction

In order to carry out plastic analysis and design effectively in the real world of 
engineering, herein, we shall deal with idealizations of idealizations. As we have 
observed previously, once the material is well into the plastic range, it exhibits 
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Figure 3.10  Successive distributions of circumferential and radial stresses in the elastic–
plastic expansion of a tube; b/a = 2.
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relatively low additional resistance to increasing load. This feature can be simply 
captured by ignoring the small resistance in the plastic range and idealize the mate-
rial as perfectly plastic. The consequence of such an idealization and the selection of 
proper flow strength depends on the problem to be solved as on the material itself. 
For example, for moderate plastic strain range in most structural engineering design, 
the flow strength to be chosen for the perfect plasticity idealization should be the 
average strength of the applicable range of the strains of the nonlinear stress–strain 
behavior as represented by the horizontal solid line in Figure 3.11a.

3.2.2  Why Limit Analysis?

In order to obtain a valid solution in continuum mechanics, three conditions should 
be satisfied: equilibrium, compatibility, and constitutive relations. For some cases, 
it is difficult to satisfy all three conditions. For simplicity, in limit analysis instead, 
only two conditions of the three are necessary for a simpler solution. Historically, 
engineers, based on intuition, developed many simple solutions for weak-tension 
materials (based on equilibrium) and for ductile materials (from kinematics), which 
have now been justified by limit analysis. The theorems of limit analysis give us a 
very powerful tool to estimate the upper and lower bounds of the collapse load of 
structures or structural members without having to go through a very tedious calcu-
lation procedure. In both theorems, strain-hardening of the material is ignored but its 
effect can be reflected realistically in the selection of a proper level of flow strength 
as illustrated in the preceding section, which is acceptable from a practical point of 
view. This further idealization of perfect plasticity enables the proof of the powerful 
limit theorems, which provide an excellent guide for preliminary design as well as 
analysis of structure. The development of the limit theorems and their illustrative 
engineering applications are described in the following.

In case of a lower-bound solution of the collapse load, only equilibrium and yield 
criterion are satisfied; equilibrium is satisfied for stress or generalized stress. The 
solution so obtained represents a good safe guidance for the structural engineer and 
can be used to verify solutions from other methods quickly. The method is useful 
for application to different materials especially that of a tension-weak material, for 
example, stones or concrete. Hence, the safety of monumental structures such as 
cathedrals can be checked very well with such a simple equilibrium method follow-
ing the flow of forces using simple hand calculations.

Idealized
actual

Loading

Unloading

Crush(a) (b)

σ
σo

σ

ε ε

σo

Figure 3.11  Uniaxial stress–strain relationship of an elastic–perfectly plastic material: 
(a) material with limited plastic strain and (b) highly ductile material.
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In upper-bound solutions of the collapse load, only kinematics and yield criterion 
are satisfied. The method is especially good for ductile materials and even applicable 
to some materials with limited ductility but with modifications. The method uses 
the engineer’s physical intuition on failure modes and their corresponding collapse 
analysis can be made by hand calculations. Thus, it gives the engineer enough clarity 
of his or her vision to produce a structure that is understandable and works well with 
the force of nature.

3.2.3  Basic Assumptions

The collapse load obtained from limit analysis is different from the actual plastic 
collapse load since it is calculated for an ideal structure in which the deformation 
is assumed to increase without limit while the load is held constant. Of course, this 
assumption is not expected to happen in real structures but only in idealized struc-
tures in which neither work-hardening of the material nor significant changes in 
geometry of the structure occur. However, the limit load still represents a good esti-
mate of the real collapse load.

The idealization of a structure analyzed using the limit analysis theorems comes 
from the following two basic assumptions:

	 1.	Perfectly plastic material: The material of the structure is assumed to be 
perfectly plastic with associated flow rule without strain-hardening or soft-
ening (Figure 3.11b). In this simplification, many effects are ignored; for 
instance, effect of time is eliminated from calculations; effect of residual 
stresses on initial yielding and effect of local buckling on maximum plastic 
moment capacity of steel sections are ignored. In addition, the complex 
states of stresses and strains in reinforced concrete as a result of bond and 
cracks are very much simplified.

	 2.	Small deformation of the structure: The changes in geometry of the body or 
the structure, which may occur at limit load, are negligible; hence, the geo-
metric description of the body or structure remains unchanged during the 
deformation at the limit load. This assumption allows the use of the prin-
ciple of virtual work, which is the key to the proof of the limit theorems.

3.2.4  Lower-Bound Theorem

This theorem states that “if an equilibrium distribution of stress can be found which 
balances the applied loads, and is everywhere below yield or at yield, the structure 
will not collapse or will be just at the point of collapse.”

Hence, the lower-bound theorem requires the justification of only two of the three 
sets of conditions necessary for solution in continuum mechanics, that is, equilibrium 
and yield condition (material law). This theory therefore expresses the ability of an 
ideal body to adjust itself to carry the applied loads if at all possible. In practice, 
the application of the lower-bound theorem has different versions depending on the 
structural material of the system. For example, in steel frames the method is called 
the statical method while in concrete there is the strut-and-tie model (STM) method.
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In order to illustrate the application of the lower-bound theorem, the following 
two examples are discussed. In the first example, Figure 3.12, a long prismatic bar of 
a rectangular cross section with one hole is subjected to an axial force P. If the yield 
stress of the bar material is σo, the simple two discontinuous stress fields shown in 
the figure can be assumed. In the two stress fields the bar is divided into strips, the 
continuous strips have simple tension σo and the discontinuous strips are stress free. 
Then, the lower-bound load of this bar is

	 P b d to
L = −σ ( ) 	 (3.62)

The second example is a rigid punch indentation into a half-space of a perfectly 
plastic material (Figure 3.13). Assume that the width of punch in the direction per-
pendicular to the plane of paper is so large that this is a plane strain problem.

As a first attempt consider the simple discontinuous stress field shown in Figure 
3.13a, which yields a lower bound on the limit load:

	 P b kbo1 2L = =σ 	 (3.63)

This is of course not a good lower bound because the load is considered to be carried 
only by a single vertical strip of material directly beneath the punch. To improve 
the answer, consider adding a horizontal pressure field as shown in Figure 3.13b. 
In the overlapping region, the material is subjected to a biaxial compression so that 
the vertical stress can be increased to 2σo without violating the yield condition. The 
improved lower bound obtained is

Stress
free

b

d

σoσo

PL

PL

Figure 3.12  Lower-bound solution of a bar with a hole.
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	 P b kbo2 2 4L = =σ 	 (3.64)

Alternatively, the concept of truss-action approach can be assumed. The load P is 
carried by two inclined truss bars as shown in Figure 3.14a, and further, a vertical 
leg of amount 2 k is added directly below the punch area AA to give the stress field 
shown in Figure 3.14b. In this case, the stress discontinuities are admissible. It is 
noted that the yield condition is violated in regions I and II. In region I, for example, 
the difference between the greatest and the least principal stress is 4 k. This viola-
tion can be accommodated by introducing at the free surface a horizontal strip in 
which there is a horizontal compressive stress 2 k. The width of this strip is as shown 
in Figure 3.15. Using this stress field, a better lower-bound solution can be obtained:

	 P kb3 5L = 	 (3.65)

Stress
free

Stress
freeb

(a)

P1
L = 2 kb P2

L = 4 kb

(b)

b

σo

σo σo

2σo

σo= 2 k

Figure 3.13  Stress fields for punch indentation in plane strain: (a) simple compression and 
(b) biaxial compression.
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Figure 3.14  Load P carried by truss bars: (a) two-leg stress field and (b) three-leg stress 
field.
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3.2.5  Upper-Bound Theorem

This theorem states that “the structure will collapse if there is a compatible pattern 
of plastic failure mechanism for which the rate of work of the external forces equals 
or exceeds the rate of internal dissipation.”

The upper-bound theorem thus requires the justification of only two of the three 
sets of conditions necessary for solution in continuum mechanics, that is, kinemat-
ics and yield criterion. The theory therefore states that if a path of failure exists, the 
ideal body will not stand up. In practice, the mechanism method of steel beams and 
frames and the yield line theory of concrete slabs are two different versions of appli-
cations of the upper-bound theorem.

In order to illustrate the application of the upper-bound theorem, the following 
two examples are discussed. The first example is the bar with one hole, Figure 3.12, 
which was solved using the lower-bound theorem. For this bar, three different com-
patible discontinuous failure modes are shown in Figure 3.16. In mode 1, Figure 
3.16a, the upper and lower parts of the bar move as rigid bodies relative to each other 
by sliding along planes AB and CD perpendicular to the face of the bar and making 
an angle α as shown in the figure. If the relative tangential velocity of separation is 
�δ, the velocity of separation is �δ αsin  and the rate of external work is then P1

U �δ αsin . 

The rate of energy dissipation over the whole sliding surface is k b d t�δ α( ) cos− / . 
Hence,

	
P

k b d t
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2

U = −( )
sin α
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Figure 3.15  Combined stress field.
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For a minimum value of P1
U, sin 2α is set equal to 1 (α = 45°). This gives

	 P k b d t1 2U = −( ) 	 (3.66)

where k is the yield shear stress, which is equal to ( )σo/ 3  according to von Mises 
and (σo/2) according to Tresca. Based on the von Mises yield criterion,

	
P b d t Po

1 1
3

1 15U L= − =σ
( ) . 	 (3.67a)

Based on the Tresca yield criterion,

	
P b d t Po

1 1
2

U L= − =σ
( ) 	 (3.67b)

Mode 2, if the bar is assumed very thin (i.e., it is assumed plate), and mode 3 will 
give the same results as mode 1.

The second example is a rigid punch indentation into a half-space of a perfectly 
plastic material, Figure 3.17, for which a lower-bound solution was derived in the pre-
ceding section. Since the punch is assumed to be rigid, the geometric boundary con-
dition requires that the movement of the contact plane must always remain plane. Two 
types of mechanisms, rotational and translational, are discussed in the following.

The simple rigid-body rotational mechanism about O, Figure 3.17b, is considered 
geometrically admissible if there are no constraints to hold the punch vertical. The 
block of material B rotates as a rigid body about O with an angular velocity �α, and 
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Figure 3.16  Kinematically admissible velocity fields of a bar with a hole: (a) in-plane 
shearing, mode 1, (b) out-of-plane shearing, mode 2, and (c) symmetric shearing, mode 3.
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there is a semicircular transition layer between the rotating material and the remain-
der of the body. Since the angular velocity is �α, the rate of work done by the external 
force P is the downward velocity at the center of the punch, �αb/2, multiplied by P, 
while the total rate of energy dissipation is along the semicircular discontinuity sur-
face and is found by multiplying the length of this discontinuity, πb, by the yield 
stress in pure shear, k, times the velocity across the surface b �α. Equating the rate of 
external work to the rate of total internal energy dissipation gives

	
P b k b bU 1

2
� �α α π





= ( )( )

or

	 P kb kbU = =2 6 28π . 	 (3.68)

It is noted that the upper-bound solution is independent of the magnitude of the 
angular velocity �α, which means that �α can be assumed to be sufficiently small not 
to disturb the overall geometry. In other words, the proofs of the limit theorems can 
carry through using the initial geometry of the problem.

The rotational mechanism of Figure 3.17b may be generalized by taking the 
radius and the position of the center of the circle as two independent variables, aim-
ing to obtain a better upper-bound estimate. If the center is shifted to O′, as shown in 

Figure 3.18a, the rate of external work is P r bU /( cos )θ α− 2 � , where r is the radius of 
the surface of discontinuity and θ is the angle between the face of the half-space and 
the line AO′. The rate of energy dissipation is given as kr r( )π θ α− 2 � , and the resulting 
upper-bound solution is
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Figure 3.17  (a) Punch indentation problem and (b) rotational mechanism.
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The obtained result may be optimized by minimization with respect to r and θ, 
which leads to the shape illustrated in Figure 3.18b and a better estimate of PU,

	 P kbU = 5 53. 	 (3.69)

The mechanisms involving only rigid-body translations, shown in Figures 3.19 and 
3.20, involve rigid-block sliding separated by plane velocity discontinuities. The 
mechanism of Figure 3.19a represents a rough punch, which requires the punch and 
the triangular block ABC have the same velocity and therefore move together. On 
the other hand, the mechanism of Figure 3.20a is referred to as a smooth punch, for 
it allows a relative sliding between the punch and the triangle ABC along the surface 
AB. It is noted that both the mechanisms are symmetrical about the center line and 
therefore only the right half of each is examined for kinematics.
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Figure 3.18  Rotating block with center at O′ for the purpose of minimizing the upper-
bound estimate: (a) arbitrary rotational center and (b) optimal rotational center.
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Figure 3.19  Simple rigid-block translation and the associated velocity diagram for a 
rough punch: (a) five-block mechanism and (b) velocity diagram.
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For a rough punch, the triangular region ABC in Figure 3.19a moves downward 
with a punch as a rigid body; that is, both have the same velocity, v1 = vo. However, for 
a smooth punch, the rigid block ABC would move with a different velocity v1, Figure 
3.20a, which has a horizontal component in addition to the vertical component vo. 
The two triangular regions of the material BCD and BDE move as rigid bodies in 
the directions parallel to CD and DE, respectively. The velocity of the triangle BCD 
is determined by the condition that the relative velocity v12 between this triangle and 
the triangle in contact with punch must have the same direction BC. The velocity 
of the third triangle is determined in a similar manner. The information regard-
ing velocities is represented by the velocity diagrams (or hodographs) as shown in 
Figures 3.19b and 3.20b.

From Figure 3.19b, the velocities of the rough punch mechanism of Figure 3.19a 
are

	
v v v

v vo
2 3 23

12

2 3
= = = =

and the work equation is

	 P v k bv bv bv bvo
U = + + +2 12 2 23 3( )

Thus,

	 P kbU = 5 78. 	 (3.70)

From Figure 3.20b, the velocities of the smooth punch mechanism of Figure 3.20a 
are
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Figure 3.20  Rigid-block translation and the associated velocity diagram for a smooth 
punch: (a) six-block mechanism and (b) velocity diagram.
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and the work equation is

	 P v kb v v v v vo
U = + + + +( )1 12 2 23 3

Thus,

	 P kbU = 5 78. 	 (3.71)

which is the same result as the that of the rough punch. It is noted that the best upper-
bound estimate is that of the mechanism in Figure 3.18b, PU = 5.53 kb, while the best 
lower-bound estimate from the preceding section was PL = 5.0 kb. The correct limit 
load for this problem is P = 5.14 kb.

3.3  Bar Element as a Start

3.3.1  Generalized Stress–Generalized Strain Relation

In this section, we shall formulate the plastic stress–strain relations in terms of a 
bar element from which the parts of a framework are composed. The bar element 
described here is an element or segment of a beam.

3.3.1.1  Assumptions
In the development of the generalized stress–generalized strain relation of a bar ele-
ment, it is assumed that the element cross section has one axis of symmetry, which is 
in the plane of loading. The plastic deformation due to shear forces is neglected and 
that due to normal forces can be neglected too if the magnitude of the axial force is 
small. Consequently, the simple plastic theory is concerned with the development 
of the relationship between the bending moment and the curvature of a bar element.

3.3.1.2  Material
The uniaxial stress–strain relationship of a bar element in tension and in compres-
sion is a bilinear relation, elastic up to the yield stress, σo, and then perfectly plas-
tic, as shown in Figure 3.11b. From this relationship, the cross section in Figure 
3.21a with different strain profiles in Figure 3.21b will have the stress distributions 
in Figure 3.21c.

3.3.1.3  Moment–Curvature Relation
The elastic–plastic behavior of a bar element can be typically illustrated in the form 
of its moment–curvature relation illustrated in Figure 3.22. The relation is elastic 
(part OA—state (i) in Figure 3.21) until the most stressed outer fibers attain a yield 
strain (stress), and then the corresponding sectional moment is the yield moment. 
When the bending moment is further increased, the curvature begins to increase 
with a higher rate along AB. This corresponds to the spread of the yield from the 
most strained outer fibers inward toward the neutral axis of the cross section (state 
(ii) in Figure 3.21), which is known as the plastification of the contained plastic flow. 
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Finally, the curvature tends to infinitely increase as the limiting value of the bending 
moment is approached (state (iii) in Figure 3.21). This limiting bending moment is 
called the fully plastic moment, Mp, or limit moment of the cross section.

The initial yield point in Figure 3.22 is defined by the yield moment, My, and the 
corresponding curvature, ϕy. The yield moment can be obtained from the elastic 
stress formula
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N.A.

ε < εy ε > εy ε >> εy

εy

εy

(i)
(a) (b)

(ii)

σo σo

–σo –σo

(c) (i) (ii)

– –
–

+
++

(iii)

Figure 3.21  Section plastification: (a) cross section; (b) strain distribution; and (c) stress 
distribution.
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Figure 3.22  Typical moment–curvature relation.
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M Zoy e= σ 	 (3.72)

where Ze is the elastic section modulus. For a rectangular section of thickness h and 
width b, Ze = bh2/6, and, therefore, My = σobh2/6. The yield curvature

	
φ

ε
y

y=
y

	 (3.73)

where y is the larger distance from the neutral axis to the most outer fibers. The slope 
of the elastic part OA can then be determined as (My/ϕy).

In this presentation, the effects of factors such as residual stresses in steel or 
localized crack or bond slip in reinforced concrete are ignored. Such a simplification 
affects the value of the yield moment; however, it does not affect the value of the 
plastic moment. Hence, for upper-bound or lower-bound solution, this simplification 
does not affect the collapse load estimates. 

3.3.1.4  The Plastic Moment
For a bar cross section and segment in Figure 3.23, the plastic moment, Mp, can have 

a lower-bound value, Mp
L, and an upper-bound value, Mp

U, as follows. The lower-
bound value can be obtained from the stress field in Figure 3.23d. The material 
above the plane of N.A. is in simple compression and below this plane, in simple 
tension, in both cases at yield σo. Equilibrium requires

	 ΣH A A= =0 1 2or 	 (3.74)
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Figure 3.23  Section plastic moment: (a) cross section; (b) segment; (c) strain distribution; 
and (d) stress distribution.
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In order to obtain the upper-bound value of plastic moment, Mp
U, the dissipated 

energy of the segment is

	

W dV
yd

dx
dV

y d

dx
dV y dI
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o
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o
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o
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= = 
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
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The external work is W M dE p
U= θ, which upon equating with the dissipated energy 

gives

	

M ydA ydAo

A

o

A

P
U = −∫ ∫σ σ

1 2

	 (3.76)

which is the same as Mp
L; thus,

	

M ydA ydAo

A

o

A

p = −∫ ∫σ σ
1 2

	 (3.77)

For a rectangular section of thickness h and width b, Mp = σobh2/4 while My = σobh2/6. 
The ratio between the plastic moment, Mp, and the yield moment, My, for this section 
is 1.5. This ratio is called the shape factor, which varies for different cross-sectional 
shapes.

Tracing the generalized stress–generalized strain relation (moment–curvature 
relation) is thus a straightforward matter. By calculating My and ϕy the elastic part is 
determined. The elastic–plastic part is derived by assuming different values of cur-
vature, ϕ, calculating the corresponding strain profile and hence the corresponding 
stress distribution. The moment corresponding to the assumed curvature can be cal-
culated from equilibrium. As for the plastic part, which is not a real horizontal line, it 
can be approximated as a horizontal line with the plastic moment as a limiting value.

3.3.2  Simple Plastic Hinge as Further Simplification

3.3.2.1  Idealization
A typical generalized stress–generalized strain relation (moment–curvature relation) 
has been illustrated in Figure 3.22 and its derivation has been covered in the preced-
ing section. This relation is based on idealized stress–strain relationship of the mate-
rial (elastic–perfectly plastic). It is illustrated again in Figure 3.24 with and without 
consideration of residual stresses. It is realized that residual stresses have no effect 
on the value of plastic moment, Mp.

The moment–curvature relation in Figure 3.24 can be further simplified as a bilin-
ear relation, which consists of an elastic part and a perfectly plastic part (the hori-
zontal line), as shown in the figure. The slope of the elastic part can be obtained as 
explained in the preceding section (My/ϕy) and the plastic part is determined by the 
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plastic moment, Mp. This idealized relation is derived from three quantities (My, ϕy, 
and Mp); that is, it can be obtained independently from the moment–curvature rela-
tion of the element.

Unloading from a plastic state to an elastic state is assumed to follow the path 
parallel to the elastic curve. As a result of this assumption for unloading, the elas-
tic relationship between stress and strain is no longer unique in the sense that the 
behavior of the material may follow any elastic curve if the material unloads from a 
plastic state to an elastic state. Therefore, to perform an elastic–plastic analysis, it is 
necessary to follow an incremental procedure for a given history of loading in order 
to trace the unique states of moment and curvature in the cross section.

3.3.2.2  Concept
According to the bilinear idealization of the typical generalized stress–generalized 
strain relation of a bar element, Figure 3.24, a section attaining its plastic moment 
capacity undergoes plastic rotation without any further increase in bending moment. 
However, the state of bar plastification in the longitudinal direction is as illustrated 
in Figure 3.25, where plastic flow is contained except at the section of Mp. In other 
words, the section behaves like a real hinge while possessing a fully plastic moment. 
Thus, this idealized moment–curvature relation represents the generalized stress–
generalized strain relation of what is known as “simple plastic hinge.” This plastic-
hinge behavior enables a structure to be analyzed continuously by inserting a plastic 
hinge at any section reaching its plastic moment.
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Figure 3.24  Generalized stress–generalized strain relation of a simple plastic hinge.
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Figure 3.25  Bar plastification in the longitudinal direction.
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In tracing the formation of the plastic hinges the structure becomes increasingly 
flexible until its stiffness is reduced to such a small value that imminent collapse 
occurs. In order to visualize the application of simple plastic hinge in the elastic–
plastic analysis of framed systems, the beam of two fixed ends shown in Figure 3.26a 
is considered. The collapse mechanism of the beam requires the formation of three 
plastic hinges at the two ends A and C and under the point load, at B. The variation 
of the load P with vertical deflection at a point, point B for example, is plotted in 
Figure 3.26b, from which the following can be noted. The stiffness degradation of 
the beam as a result of the formation of plastic hinges is obvious and at collapse the 
structure stiffness is zero. The structure is elastic before the formation of any plastic 
hinges, plastic after the formation of the mechanism, and elastic–plastic between the 
two states. The behavior of a structure between the formations of any two consecu-
tive plastic hinges is elastic and can be analyzed elastically.

3.3.2.3  Effect of Axial Force
The presence of axial force of large value noticeably reduces the plastic moment 
capacity of the bar element. For illustration, consider the rectangular section with the 
stress distributions shown in Figure 3.27. The stress distribution due to the bending 
moment, M, and normal force, N, is split into two parts: one due to M and the other 
due to N. From the figure,
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Figure 3.26  Elastic–plastic analysis of a beam example: (a) fixed-ended beam and (b) 
load–deflection relation.
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N bh

N
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N
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= = =βσ β
σ
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p

	 (3.78)

where Np is the squash force of the section and hence the value of β can be consid-
ered as the magnitude of the axial force relative to the squash force, β < 1.0. Then, 
the total compressive force C, equal to the total tensile force T due to moment only is

	
C T bho= = −





1
2

β σ 	 (3.79)

Hence, the reduced plastic moment, Mpr, is

	

M C h bhopr = +



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= −



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1
2

1
4

2
2β β σ 	 (3.80)

or

	
M Mpr p= −( )1 2β 	 (3.81)

where Mp is the plastic moment of the section under pure bending. The relation in 
Equation 3.81 is derived for a rectangular section and other formulas can be derived 
for sections of different shapes.

In elastic–plastic analysis of structures, the consideration of the axial force in 
reducing the plastic moment capacity requires an iterative procedure and can be 
reasonably accounted for from a few iterations.

3.3.3  Elastic–Plastic Hinge-by-Hinge Analysis

In order to determine the collapse load of large-scale steel frames, the lower- or 
upper-bound methods, as illustrated in the subsequent subsections, may not be 
practical. An incremental elastic–plastic analysis, referred to as the hinge-by-hinge 
method, which is based on the plastic-hinge concept, is the appropriate tool. In this 
analysis (Wong, 2009), the load–deformation relation can be traced for increasing 
proportional loading until collapse, thus giving, in addition to the collapse load, a 
prediction of the deflection values at different loading levels.

The method consists of a series of elastic analyses, each of which represents the 
formation of a plastic hinge in the structure. The results for each elastic analysis are 
transferred to a spreadsheet from which the location for the formation of a plastic 
hinge and the corresponding load increment can be obtained. The method starts 
with the linear elastic stiffness matrix of the structure, and under proportional load-
ing, the first plastic hinge to form is determined from moment checks and hence the 
first load increment is calculated. For the next load increment, the stiffness matrix 
is modified in order to account for the formation of the first plastic hinge and the 
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analysis is performed to determine the second plastic hinge and the correspond-
ing load factor. The procedure is repeated in this manner until the formation of the 
collapse mechanism and hence the final load increment and the collapse load are 
determined (Figure 3.26).

If the equilibrium equations, from which the structure stiffness matrix is derived, 
are written for undeformed geometry, the analysis is a first-order elastic–plastic 
analysis. On the other hand, if these equations are written for deformed geometry 
or the slope-deflection equations of a beam-column are used in the formulation, the 
analysis is a second-order elastic–plastic analysis.

3.3.4  Plastic-Hinge Analysis by Equilibrium Method

The plastic-hinge concept can be used to obtain either a lower-bound or an upper-
bound estimate of the collapse load of framed systems. The lower-bound solution 
is obtained from the equilibrium method, which is discussed in this section. On 
the other hand, the upper-bound solution is obtained from the mechanism method, 
which will be discussed in the following section. In addition, the concept can be used 
to perform an elastic–plastic analysis of framed systems, which will be discussed in 
a subsequent section.

In the equilibrium method (or lower-bound theorem) the solution procedure is 
simplified since it is required to satisfy only two of the three sets of conditions neces-
sary for solution in continuum mechanics, that is, equilibrium and yield criterion. The 
solution starts with assuming a suitable bending moment diagram of the structure, 
which satisfies both equilibrium and the yield criterion (M ≤ Mp), formally called 
admissible stress field. Since the structure is statically indeterminate, the moment 
diagram can be easily constructed by superposing the free bending moment diagram 
(from a determinate system) upon reactant bending moment diagram(s) (from redun-
dant force(s)). Different moment diagrams lead to different lower-bound estimates 
of the collapse load. The highest value of these estimates is the best lower-bound 
solution. It is noted that the bending moment diagram leading to the best estimate of 
collapse load will lead to the best collapse mechanism. The solution procedure using 
this method is illustrated by the following examples.

In the first example, the beam in Figure 3.28a is once statically indeterminate 
and the free moment and redundant moment diagrams are illustrated in Figure 3.28b 
and c, respectively, where the redundant is the moment at D, MD. Upon superposing 
the two diagrams the final bending moment diagram is obtained as shown in Figure 
3.28d. For the beam to reach the collapse load two plastic hinges should form. There 
are three possibilities for this: to have plastic hinges at B and C, at C and D, or at B 
and D. The three cases are examined in the following.

3.3.4.1  Case 1: Plastic Hinges at B and C
For this case and with reference to Figure 3.28d, upon equating the moments at B 

and C with Mp and solving for P1
L and MD, it is found that P M L1

L
p /=  and MD = 0.5Mp. 

This obtained value of MD means that the yield condition is satisfied and hence this 
solution is valid.
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3.3.4.2  Case 2: Plastic Hinges at C and D
For this case and with reference to Figure 3.28d, upon equating the moments at C 

and D with Mp and solving for P2
L, it is found that P M L2 1 25L

p /= . . When check-
ing the value of the moment at B it is found that MB = 1.125Mp, that is, the yield 
criterion is violated. For this solution to be valid, the collapse load has to be 
lowered in order to have MB = Mp. Hence, the valid collapse load for this case is 

P M L M L2 1 25 1 125 1 11L
p p/ /= ÷ =( . ) . . , and of course the moments at C and D should 

be adjusted subsequently.

3.3.4.3  Case 3: Plastic Hinges at B and D
Upon following the previous procedure and equating the moments at B and D with 

Mp and solving for P3
L, it is found that P M L3 1 14L

p /= . . When checking the value of 
the moment at C it is found that MC = 0.857Mp; that is, the yield criterion is satisfied 
and this solution is valid. From the solution of the three cases it is found that case 
3 gives the highest value. Therefore, the best lower-bound solution is PL = 1.14Mp/L.

The second example is the portal frame shown in Figure 3.29a. For simplicity the 
final moment is split into two diagrams: one due to the vertical load, Figure 3.29b, and 
the other due to the lateral load, Figure 3.29c. By superposing the two diagrams and 
obtaining the final diagram, Figure 3.29d, it is realized that the moments at C, D, and E 
can be equated with Mp. Hence, from equilibrium, the reactions at A can be calculated 
leading to MA = 5Mp − 10PLL and MB = − 3Mp + 6PLL. To determine PL, assume MA and 
check MB and vice versa; values of Mp, −Mp, and 0 can be used for either MA or MB. From 
the obtained valid results it is found that the best lower-bound solution is PL = 0.6Mp/L.

3.3.5  Plastic-Hinge Analysis by Mechanism Method

In the mechanism method (or upper-bound theorem), the solution procedure is sim-
plified since it is required to satisfy only two of the three sets of conditions necessary 
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Figure 3.28  Lower-bound solution of a beam example: (a) beam; (b) free moment; 
(c) redundant moment; and (d) final moment.
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for solution in continuum mechanics, that is, kinematics and yield criterion. The 
solution starts with identifying all possible collapse mechanisms; then, the virtual 
work equation for each mechanism is established and the collapse load is obtained. 
The best upper-bound solution is the lowest estimate of the collapse loads of all 
mechanisms. The method is illustrated by the following examples.

The first example is the beam shown in Figure 3.30, which was solved for lower-
bound collapse load, and the three possible mechanisms of the beam are illus-
trated in the figure. For the first mechanism, Figure 3.30b, the dissipated energy 

is {Mp (2θ + 3θ) = 5Mpθ} and the external work is { ( ) . ( ) }.P L P L P L1 1 11 5 2 4U U Uθ θ θ+ =  
Upon equating the dissipated energy with the external work, the collapse load 
for this mechanism is P M Lp1 1 25U /= . . For the second mechanism, Figure 
3.30c, the dissipated energy is {Mp(θ + 3θ) = 4Mpθ} and the external work is 

{ ( ) . ( ) . },P L P L P L2 2 22 1 5 3 5U U Uθ θ θ+ =  thus, the collapse load is P M L2 1 14U
p /= . . The 

collapse load of the third mechanism is P M L3 3 0U
p /= . . From the obtained results the 

best upper-bound solution is PU = 1.14Mp/L, which is equal to the lower-bound solu-
tion, which means that the obtained solution is the unique solution. It is noted that 
the best moment diagram of the best lower-bound solution and the best mechanism 
are the same.

The second example is the portal frame shown in Figure 3.31a, which was solved 
for lower-bound collapse load, and the three possible mechanisms are illustrated 
in the figure. For the first mechanism (the beam mechanism), Figure 3.31b, the 
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Figure 3.29  Lower-bound solution of a portal frame example: (a) frame; (b) assumed 
moment due to vertical load; (c) assumed moment due to lateral load; and (d) assumed final 
moment.
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dissipated energy is 4Mpθ and the external work is 6 1P LU θ; hence, the collapse load 
for this mechanism is P M L1 0 67U

p /= . . For the second mechanism (the sway mecha-

nism), Figure 3.31c, the collapse load is calculated from M L P Lp
U( ) ( )4 42θ θ= , giving 

P M L2
U

p /= .. For the third mechanism, Figure 3.31d, which is a combination of the 
beam and sway mechanism, the dissipated energy is Mp(6Lθ) and the external work 
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Figure 3.30  Upper-bound solution of a beam example: (a) beam; (b) mechanism 1; 
(c) mechanism 2; and (d) mechanism 3.
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Figure 3.31  Upper-bound solution of a portal frame example: (a) frame; (b) beam mech-
anism (mechanism 1); (c) sway mechanism (mechanism 2); and (d) combined mechanism 
(mechanism 3).
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is P L3 10U( )θ ; hence, the collapse load for this mechanism is P M L3 0 6U
p /= . . From 

the obtained results, the best upper-bound solution is that of the third mechanism, 
PU = 0.6Mp/L, which is equal to the lower-bound solution; that is, the obtained solu-
tion is the unique solution. It is noted that the best moment diagram of the best lower-
bound solution and the best mechanism are the same.

In the solution of the previous examples, it was assumed that the plastic moment 
of a member is a constant value and does not change because of the normal force. 
This simplification is acceptable for small normal force; otherwise, an iterative pro-
cedure should be adopted in order to account for the effect of normal force on plastic 
moment. It should also be noted that in the case of local mechanism there is no 
guarantee that the yield criterion is satisfied in the non-collapse part, and, therefore, 
it has to be checked in those regions.

With the introduction of the plastic-hinge concept, the simple plastic methods 
of structural analysis and design as described herein were rapidly developed in the 
1960s for the purpose of calculating the plastic collapse loads of frame structures. 
It was a remarkable achievement that it was possible to calculate the collapse load 
directly without considering the intervening elastic–plastic range. Thanks to the 
simple plastic-hinge concept, the plastic methods of analysis may now be said to be 
fully developed as a sequence of elastic analysis. The plastic methods of analysis 
have since become an important part of the modern theory of structures for practic-
ing structural engineers. It has become an integral part of our undergraduate teach-
ing curriculum.

3.3.6  Refined Plastic Hinge toward Advanced Analysis

The simple plastic hinge used in Section 3.3.2 may be called concentrated plastic 
hinge where the zero-length plastic hinge can form suddenly from the limit of elas-
ticity of a member. This concentrated plastic-hinge concept accounts for inelasticity 
but not the spread of yielding or plasticity at sections, or the influence of the residual 
stresses.

Depending on the geometry used to form the equilibrium equations, the elastic-
plastic hinge method may be divided into first-order and second-order plastic analy-
ses. For the first-order elastic–plastic analysis, the undeformed geometry is used, 
and nonlinear geometry effects are neglected. As a result, the predicted collapse is 
the same as the simple plastic analysis or rigid plastic analysis. In the second-order 
elastic–plastic-hinge analysis, the deformed shape is considered, and geometry non-
linearities can be included with the use of stability functions for a beam-column 
element to capture the second-order effect. Load–displacement curves for various 
analysis methods are shown in Figure 3.32. With reference to this figure, these meth-
ods are

	 1.	First-order linear elastic analysis
	 2.	Elastic buckling analysis
	 3.	Second-order elastic analysis
	 4.	Rigid plastic load analysis (lower-bound and upper-bound solutions)
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	 5.	First-order elastic–plastic analysis
	 6.	Second-order elastic–plastic analysis
	 7.	Second-order inelastic analysis (advanced analysis)

Desktop computing has now made it possible to combine the theory of stability and 
the theory of plasticity and apply them directly to frame design. This is known as the 
second-order inelastic analysis for frame design, or simply, the advanced analysis 
for frame design. The 2005 AISC LRFD specifications were issued to permit the use 
of this new analysis procedure for structural design.

Various methods have been proposed in literature in order to make this advanced 
analysis applicable to engineering practice. Among them, the notational-load plas-
tic hinge is one of the most widely known. The notional-load plastic-hinge method 
is achieved by applying additional fictitious equivalent lateral loads to account for 
the influences of residual stresses, member imperfections, and distributed plasticity 
that are not included in the elastic-plastic-hinge method (Liew et al., 1994). With 
certain modifications, this method is accepted in the European Convention for 
Constructional Steelwork (ECCS, 1991).

To account for the spread of plasticity, a refined plastic-hinge method has been 
proposed to improve the accuracy of the notional-load plastic-hinge method. In the 
United States, to meet the current specification requirements, further modifications 
and calibration of the refined plastic hinge are made against the current AISC LRFD 
codes. A simple, concise, and reasonably comprehensive introduction to some of 
the advanced analysis methods developed in recent years is presented in Chapter 6. 
Details of this development can be found in Chen and Kim (1997).
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3.4  Concrete Plate Element as a Next Step

3.4.1  Generalized Stress–Generalized Strain Relation

Here, as in the bar element, the rectangular plate element is obtained by cutting 
through the entire thickness of a concrete slab. The relations between the values 
of bending moments and their respective rotations or curvatures for the ends of the 
sections represent the material behavior of the element. In what follows it will be 
necessary to define what is meant to be the state of initial yield, subsequent yield, 
and plastic collapse of the element in a two-dimensional space and of the structure 
as a whole. As we mentioned previously, the theories of reinforced concrete design 
do not deal with real reinforced concrete. We operate instead with an ideal composite 
material consisting of concrete and steel, the design properties of which have been 
approximated from those of real reinforced concrete by a process of drastic idealiza-
tion and simplification.

3.4.1.1  Typical Moment–Curvature Relation
Reinforced concrete plates usually have light reinforcement and low shear stresses. 
The flexural behavior of such a structural member is typically illustrated in Figure 
3.33 (generalized stress–strain relation). The behavior is linear until cracking takes 
place at a relatively small moment, point A. Then, the plate flexural stiffness is 
reduced; however, the behavior of cracked section is almost linear until the tension 
reinforcement yields, point B. At this point, the stiffness is greatly reduced and the 
change in curvature becomes relatively very large for a slight increase in the bending 
moment until failure takes place at a very large curvature, point C (nearly elastic–
perfectly plastic relation).

3.4.1.2  Assumptions and Idealization
In the development of the generalized stress–generalized strain relation (or moment–
curvature relation) of reinforced concrete plates, it is assumed that the reinforcement 
ratio is small (a fraction of the balanced reinforcement ratio) and the shear stresses 
are very low. Hence, the plate exhibits pure flexural behavior and very high ductility. 
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Figure 3.33  Typical moment–curvature relation.
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It is also assumed that the tension reinforcement has an elastic–perfectly plastic 
stress–strain relationship, that is, no strain-hardening.

The generalized stress–generalized strain relation (or the moment–curvature rela-
tion) of a reinforced concrete plate can be idealized as a trilinear curve. The curve is 
defined by three generalized stresses (cracking moment, yield moment, and ultimate 
moment at points A, B, and C, respectively) and their corresponding generalized 
strains (curvatures).

In reality, of course, the stresses and strains in the plate element are much more 
complicated. As the loading increases, the concrete in the tension side of the segment 
starts to crack, progressively opens up, and moves upward diminishing the compres-
sion zone. When the loading increases further, more cracks develop, while the bond-
ing between the reinforcing steel and its surrounding concrete starts to deteriorate. 
Finally, the reinforcement starts to yield resulting in an almost constant moment 
capacity with nearly an unlimited rotational deformation. Thanks to this approach, 
the complex local stress and strain states in the element are avoided and the field of 
application of the theory of plasticity to reinforced concrete structures can be real-
ized and implemented in practice.

3.4.2  Yield Line Theory as a Logical Extension of Plastic-Hinge Analysis

3.4.2.1  Concept
Under overload conditions of a plate in flexure, the reinforcement will yield in a 
region of high moment. Consequently, this portion of the plate acts as a plastic hinge, 
with its ability to rotate but without any appreciable increase in its moment capacity. 
When the load is increased further, the hinging region rotates plastically, and the 
moment due to additional loads is redistributed to adjacent sections causing them to 
yield as shown in Figure 3.34. The bands in which yielding has occurred are referred 
to as yield lines, which divide the slab into a series of elastic plates. Eventually, 
enough yield lines exist to form a plastic mechanism in which the slab deforms plas-
tically without an increase in the applied load.

Upon writing the equation of virtual work for this formed mechanism, an upper-
bound estimate of the collapse load can be obtained. In this solution, only two sets 
of conditions are satisfied: kinematics and yield criterion.

Yield line due to –ve moment

Yield line due to +ve moment

Figure 3.34  Yield lines in a plate fixed at four edges.
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3.4.2.2  The Plastic Moment, Mp

The plastic moment (or nominal moment) of a slab cross section with a reinforcement 
As per unit length can be determined as follows (Figure 3.35). The compression stress 
resultant, C, is given as

	 C f ab f a= =0 85 0 85. .c c
′ ′ 	 (3.82)

where

fc
′ is the concrete cylinder strength

a is the height of the compression stress block
b is the section width, which is equal to unit length

The tension in reinforcement, T is

	 T A o= sσ 	 (3.83)

where σo is the reinforcement yield stress. Equilibrium in the horizontal direction 
leads to

	 C T=

or

	 0 85. f a A oc s
′ = σ

This gives

	
a

A

f
o= s

c

σ
0 85. ′ 	 (3.84)

Moment equilibrium leads to
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np = = −


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2

	 (3.85)
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Figure 3.35  Equilibrium of a plate cross section.
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Substituting Equations 3.83 and 3.84 into Equation 3.85 leads to

	
M A d

A

f
o

o
p s

s

c

= −






σ σ
1 7. ’ 	 (3.86)

3.4.2.3  Yield Criterion
The idealized moment–curvature relation of a plate section with bending moment 
uniformly distributed along the section width has been discussed in the preceding 
section. This relation is illustrated by the trilinear curve in Figure 3.36. In the gen-
eral case of a plate, the bending moment reaches its limit value at the most stressed 
regions first. Nevertheless, no rotation takes place until the moment spreads along a 
line, causing the two plates connected to this line to rotate.

Based on the deformation sequence of reinforced concrete slabs, the moment–
curvature relation of a slab section can be further simplified by assuming a rigid 
plastic model. In this model, it is assumed that the slab does not exhibit elastic defor-
mation and the limiting strength of the model is the plastic moment (Figure 3.36). 
This perfectly plastic behavior of the slab does not deviate much from reality since 
strain-hardening of reinforcement reduces the gap between the strength of the rigid 
model and that of the idealized model. In addition, elastic deformation is very small 
in comparison with measured or calculated maximum deformation.

3.4.3  Yield-Line Analysis for Concrete Slab Design

3.4.3.1  Yield Criterion of Yield Line
Consider that the orthogonal reinforcement of a slab lays in the x- and y-directions as 
shown in Figure 3.37a. If yielding occurs along a line at an angle α to the x-direction, 
as shown in Figure 3.37b, the bending and twisting moments are assumed to be uni-
formly distributed along the yield line and are the maximum values provided by the 
flexural capacities of the reinforcement layers crossed by the yield line. The plastic 
moments as a result of the reinforcement in the x- and y-directions are Mpx and Mpy 
per unit length. The bending moment Mpb and the twisting moment Mpt per unit length 
of the yield line in Figure 3.37b can be calculated from the moment equilibrium of 
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Figure 3.36  Yield criterion of a reinforced concrete plate.
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the element (MacGregor and Wight, 2005). The angle α is measured counterclock-
wise from the x-axis, and the bending moments Mpx, Mpy, and Mpb are positive if they 
cause tension in the bottom of the slab and the twisting moment Mpt is positive if its 
vector points away from the section as shown in the figure. From equilibrium,

	
M L M L M Lx ypb p p= +sin cos2 2α α

or

	
M M Mx ypb p p= +sin cos2 2α α 	 (3.87)

and

	
M L M L M Lx ypt p p= −sin cos sin cosα α α α

or

	
M

M Mx y
pt

p p=
−( )sin 2

2

α
	 (3.88)

In case the orthogonal reinforcement results in Mpx = Mpy, Equations 3.87 and 3.88 
will be reduced to Mpb = Mpx = Mpy and Mpt = 0 regardless of the value of the angle of 
the yield line.

3.4.3.2  Axes of Rotations and Yield Lines
As mentioned before, yield lines form regions of maximum moment and divide the 
plate into a series of elastic plate segments. When the yield lines have formed, any 
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Figure 3.37  Yield criterion of a yield line: (a) reinforcement pattern and (b) moments of 
an element.
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additional deformation concentrates in yield lines, and the slab deflects as a series of 
stiff plates joined together by long hinges, as shown in Figure 3.38. The pattern of 
deformation is controlled by axes that pass along line supports and over columns, as 
shown in Figure 3.39, and by the yield lines. Since the individual plates rotate about 
the axes and/or yield lines, these lines must be straight. To satisfy the compatibility 
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Figure 3.38  Deformations of a slab with yield lines.
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of deformations at points such as A and B in Figure 3.38, the yield line dividing 
two plates must intersect the intersection of the axes about which those plates are 
rotating. Figure 3.39 shows the locations of axes and yield lines in a number of slabs 
subjected to uniform loads.

3.4.3.3  Application
The application of the yield line theory to reinforced concrete slab is illustrated by the 
following three examples. The first example is the simply supported triangular slab 

shown in Figure 3.40a. It has a thickness of 200 mm, concrete strength fc MPa′ = 30 , 
and is reinforced with a bottom mesh of bars of diameter 16 mm every 125 mm in the 
x- and y-directions. The steel yield stress is σo = 360 MPa. It is required to calculate 
an upper-bound estimate of a uniformly distributed collapse load.

For simplicity it is assumed that the effective depth of reinforcement in both the 
x- and y-directions is 165 mm, which gives a plastic moment in both directions, 
88.7 kN m/m. In this case, the plastic bending moment at any section will be 88.7 kN 
m/m and the twisting moment will be zero. The yield lines of the slab are shown with 
dashed lines for the positive moment, which divide the slab into three symmetric 
plates. Assume a vertical displacement δ at the slab center O. For the yield line AO 
the angles of rotation, Figure 3.40b, are

	
θ θ δ

1 1
2 667

= =
.

The total rotation of the positive moment at the yield line AO is (θ1 + θ2) and the total 
dissipated energy for the three lines is

	
Mp

+ve ∗ ∗



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.
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Denoting the collapse load wu
L, the external work of the three plates is
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Figure 3.40  Triangular slab example.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10914-4&iName=master.img-060.jpg&w=87&h=76


118 Understanding Structural Engineering: From Theory to Practice

Upon equating the dissipated energy and the external work,

	 wu
L kN/m= 99 8 2.

The second example is the same slab in the previous example but with top reinforce-
ment of bars of diameter 16 mm every 125 mm perpendicular to the slab edge in 
order to allow for continuity with adjacent panels. The negative moment in this case 
will be 88.7 kN m/m about a section parallel to the edge beams. The collapse mecha-
nism in this case will be the same as before but with additional yield lines adjacent 
to the edge beams, as shown in Figure 3.40c. The angle of rotation at this negative 
moment lines will be θ2 = δ/2.309. The total dissipated energy for the six lines is
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The external work will be the same as in the previous example. The collapse loads 
is then,

	 wu
L kN/m= 199 62 2.

The third example is the same slab discussed before but subjected to a concentrated 
load placed at the center and it is required to obtain an upper-bound estimate of this 

load, Pu
L. As a result of this applied load, the slab will have both radial and tangential 

moments, which are expected to cause tension in the bottom in the neighborhood of 
the load and to some distance where the radial moment will reverse and cause ten-
sion in the top while the tangential moments will decay. Hence, the yield line pattern 
is expected to be as shown in Figure 3.41a. For simplicity, the bearing area of the 
load can be considered equal to zero, thus simplifying the mechanism to the shape 
in Figure 3.41b.
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Figure 3.41  Example of a triangular slab under concentrated load.
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Assume a vertical displacement δ under the load giving an external work Pu
Lδ. In 

order to calculate the dissipated energy, consider the segment OAB. For the negative 
plastic moment at AB, the angle of rotation is θ = δ/r and the corresponding dissi-
pated energy associated with this moment is

	
M

r
r Mp

ve
p

ve− −∗



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∗ ∗ =δ α
α

πδ( )
2

2
π

For the positive moment the rotation at the line OA is calculated at the middle of 
the line as follows (Figure 3.41c). The virtual displacement of point C is δ/2 and 
the virtual displacement of point D is δ(1 − (1/2 cosα)). The relative displacement 
between C and D is (δ/2)((1 − cosα)/cosα), and, therefore, the rotation of line CD is 
(δ/r)((1 − cosα)/sinα) = (δ/r) tan(α/2) ≈ (δα/2r). The dissipated energy associated with 
positive moment is therefore
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The total dissipated energy is then 2πδ( )M Mp
ve

p
ve+ −+ . Hence, the collapse load is

	
P M Mu

L
p
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p

ve= ++ −2π( )

If the top reinforcement is zero, the same equation derived before applies with the 

substitution of Mp
ve− = 0.

It is worth repeating here that in the application of limit analysis to structural 
engineering, it is presupposed that, up to the instant of collapse, the deformation 
and the displacements remain sufficiently small so that one can ignore the change in 
the geometry of the deformed structure with the establishment and calculations of 
the equations of equilibrium on the element as well as its kinematical relationships. 
This restriction is not a problem for reinforced concrete structures since they are 
sufficiently rigid, but this may be an important limitation in the case of some thin-
walled metal structures. However, for reinforced concrete material, it is necessary to 
consider the possibility of brittle fractures prior to collapse due to excessive yielding 
of steel. Strengthening the elements and avoiding brittle fractures require individual 
testing and verification before design.

It should also be mentioned that flexure is not the only failure mode but there are 
other modes as well such as failure by punching shear.

3.5  Strut-and-Tie Model as a Recent Progress

3.5.1  Introduction

The upper-bound techniques of limit analysis, for example, the yield-line theory for 
slab design, as described in the preceding section, has long been used in engineering 



120 Understanding Structural Engineering: From Theory to Practice

practice; however, the application of stress fields to reinforced concrete design based 
on the concept of lower-bound theorem of limit analysis is of more recent develop-
ment. One of the most important advances in reinforced concrete in recent years is 
the extension of lower-bound-limit-theorem-based design procedures to shear, torsion, 
bearing stresses, and the design of structural discontinuities such as joints and corners.

The STM is based on the lower-bound theorem of limit analysis. In this model, 
the complex stress distribution in the structure is idealized as a truss carrying the 
imposed loading through the structure to its supports. Similar to a real truss, an STM 
consists of compression struts and tension ties interconnected at nodes. Using stress 
legs similar to those sketched in Figure 1.3, a lower-bound stress field that satisfies 
equilibrium and does not violate yield criteria at any point can be constructed to 
provide a safe estimate of capacity of reinforced concrete structures with disconti-
nuities. As will be illustrated in the following examples, these techniques will have 
the advantage of allowing a designer to follow the forces through a structure with 
discontinuities, which formerly were beyond the scope of engineering practice.

The STM has been well developed in the United States over the last two decades 
and the subject was presented in several texts (Schlaich and Schäfer, 1991) as a stan-
dard method for shear, joints, and support bearing design. The STM method was 
also introduced in the AASHTO LRFD Specifications (1998) as well as in the ACI 
318 building codes (2002, 2008). Chapter 5 attempts to make a simple, concise, and 
reasonably comprehensive introduction of this new theory for analysis and design of 
structural discontinuities in reinforced concrete structures.

3.5.2  Concept

The STM is an idealization of the stress resultants derived from the flow of forces 
within a region of structural concrete. The successful model should satisfy two con-
ditions: equilibrium and failure criteria. The solution so obtained is a safe or lower-
bound solution.

The STMs are derived from the flow of forces within structural concrete regions, 
namely, those of high shear stresses, where Bernoulli hypothesis of flexure (plane 
sections before bending remain plane after bending) does not apply. Those regions 
are referred to as discontinuity or disturbance regions (or simply D-regions), in con-
trast to those regions where Bernoulli hypothesis is valid, and are referred to as 
Bernoulli or bending regions (or simply B-regions). The flow of forces in B-regions 
can be traced, of course, but in this case the model will yield to as the special case 
of the STM.

Discontinuity (which is associated with high shear stresses) is either static (as a 
result of concentrated loads) or geometric (as a result of abrupt change of geometry) 
or both. Examples of D-regions are illustrated in Figure 3.42. The dividing sec-
tions between B- and D-regions can be assumed to lie approximately at a distance 
h from the geometric discontinuity or the concentrated load, where h is equal to 
the thickness of the adjacent B-region (Figure 3.42). This assumption is justified by 
St. Venant’s principle.

In an STM, a strut represents a concrete stress field with prevailing compres-
sion in the direction of the strut. On the other hand, a tie represents one or several 
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layers of tension reinforcement. However, concrete ties may exist in models where no 
reinforcement is available and reliance is on the concrete tensile strength. Examples 
where tensile stress fields are necessary for equilibrium can be traced in members 
such as slabs where no web reinforcement is used or in bar anchorage with no trans-
verse reinforcement. Meanwhile, compression reinforcement is represented by a 
strut in case the need arises.

3.5.3  Strut-and-Tie Modeling

Before modeling a D-region the boundary forces acting from attached B-region 
or supports or external forces should be determined (Figure 3.43a). The stress dia-
grams of all forces applied to the D-region boundaries are subdivided in such a way 
that the individual stress resultants on opposite sides of the D-region correspond 
in magnitude and can be connected by streamlines that do not cross each other 
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Figure 3.42  D-regions (shaded areas) with nonlinear strain distribution due to (a) geo-
metric discontinuity, (b) static discontinuity, and (c) geometric and static discontinuities. 
(Adapted from Schlaich, J. et al., J. Prestressed Concr. Inst., 32(3), 74, 1987; Schlaich, J. 
and Schäfer, K., J. Struct. Eng., 69(6), 113, 1991; Schlaich, J. and Schäfer K., The design of 
structural concrete, IABSE Workshop, New Delhi, India, 1993.)
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(Figure 3.43b). Then, the flow of forces through the region can be traced using the 
load-path method, Figure 3.43b, which are smoothly curved. Next, the load paths 
are replaced by polygons as shown in Figure 3.43c, and additional struts or ties are 
added for equilibrium, such as the transverse strut and tie in the figure. In some 
cases the stress diagrams or forces are not completely balanced with forces on the 
opposite side; for this, the load path of the remaining forces enters the structure and 
leaves it on the same side after a U turn within the region (Figure 3.44).

The development of an STM can be simplified if an elastic finite element (FE) 
analysis is performed to obtain the elastic stresses and principal stress directions 
(Schlaich and Schäfer, 1991). The location and direction of struts and ties can then 
be located at the center of stress diagrams (Figure 3.45). The orientation of struts 
and ties based on results from the theory of elasticity may not be the best choice 
in some cases where the profile and distribution of stresses may be altered as the 
load increases from working load level to collapse load with the associated nonlin-
ear behavior of structural concrete. However, ductility of structural concrete may 
account for such a deviation. Also, the ties and hence the reinforcement may be 
arranged according to practical considerations; that is, the structure adapts itself to 
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Figure 3.43  The load-path method (Schlaich and Schäfer, 1991): (a) the region and bound-
ary loads, (b) the load paths through the region, and (c) the corresponding STM.
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the assumed internal structural system. Nevertheless, modeling requires good design 
experience in order to set up proper design objectives such as safety and economy, 
and come up with a design that fulfills such objectives.

3.5.4  Elements of Strut-and-Tie Model

An STM consists of three types of elements: struts, ties, and the connecting nodes 
or nodal zones (Figure 3.46). In the following, these elements are described in 
more details.

Strut: A strut is a compression member in an STM, which represents the resultant of 
a parallel or a fan-shaped compression field. In design, struts are usually idealized as 
prismatic compression members, as shown by the straight line outlines of the struts 
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in Figure 3.46. If the effective compression strength (or failure criterion) fcu differs at 
the two ends of a strut, due either to different nodal zone strengths at the two ends, 
or to different bearing lengths, the strut is idealized as a uniformly tapered compres-
sion member.

Bottle-shaped strut: It is a strut that is wider at mid-length than at its ends, and it is 
located in a part of a member where the width of the compressed concrete at mid-
length of the strut can spread laterally. The curved dashed outlines of the struts in 
Figure 3.46 and the curved solid outlines in Figure 3.47 approximate the boundaries 
of bottle-shaped struts. The internal lateral spread of the applied compression force 
in this stress field is similar to that of a split cylinder test. To simplify design, bottle-
shaped struts are idealized either as prismatic or as uniformly tapered, and crack 
control reinforcement is provided to resist the transverse tension. The amount of 
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strut

P

Figure 3.46  Description of STM.
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Figure 3.47  Bottle-shaped strut: (a) cracking of strut and (b) STM for transverse 
reinforcement.
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confining transverse reinforcement can be computed using the STM shown in Figure 
3.47, with the struts that represent the spread of the compression force acting at a 
slope of 1:2 to the axis of the applied compressive force. The cross-sectional area Ac 
of a bottle-shaped strut is taken as the smaller of the cross-sectional areas at the two 
ends of the strut. See Figure 3.47a.

Tie: It is a tension member in an STM where the force is resisted by normal reinforce-
ment, prestressing, or concrete tensile strength. Within the scope of this discussion, 
only ties that represent normal reinforcement are considered. The reinforcement may 
consist of one or more layers and the force is always at the center of these layers.

Node: It is the point in a joint in an STM where the axes of the struts, ties, and con-
centrated forces acting on the joint intersect. For equilibrium, at least three forces 
should act on a node, as shown in Figure 3.48. Nodes are classified according to the 
signs of these forces. A C-C-C node resists three compressive forces; a C-C-T node 
resists two compressive forces and one tensile force, and so on.

Nodal zone: The volume of concrete around a node that is assumed to transfer strut-
and-tie forces through the node is the nodal zone. Different types of nodal zones are 
illustrated in Figure 3.49 (ACI 318-08).

3.5.5  Failure Criteria

The different elements of an STM have to be checked or dimensioned according to 
the material failure criterion of the element. In literature there have been different 
assessments and different approaches for calculating strength values for elements of 
STMs. However, there is a noticeable variation and inconsistency between reported 
values and therefore the failure criteria adopted by the ACI 318-08 is adopted in this 
presentation.

3.5.5.1  Struts
The failure criterion of concrete in struts is denoted as fcu, which is defined next. 
Therefore, the nominal strength of a strut is fcuAc, where Ac is the cross-sectional area 
at strut end. Hence, the smaller value of fcuAc at the two ends of strut will control the 
design. In calculating Ac, the strut width ws is measured perpendicular to the strut 
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Figure 3.48  Nodes classification: (a) C-C-C node; (b) C-C-T node; (c) C-T-T node; and 
(d) T-T-T node.
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axis at its end (Figure 3.49). fcu shall not exceed the failure criterion of the node at 
the strut end into consideration:

	 f fcu s c= 0 85. β ′ 	 (3.89)

where
βs is an effectiveness factor, which accounts for the shape of stress field and the 

associated conditions as will be illustrated in the following

fc
′ is the concrete cylinder strength

βs = 1.00 for strut of uniform cross-sectional area over its length
βs = 0.75 for bottle-shaped strut when providing transverse reinforcement to resist 

the lateral tension according to the model in Figure 3.47, or if fc MPa′ ≤ 44  and 
the reinforcement crossing the strut, Figure 3.50, satisfy Σ(Asi

/bsi )sin γi ≥ 0.003, 
where Asi

 is the total area of reinforcement at spacing si in a layer of reinforcement 
with bars at an angle γi to the axis of the strut and the other parameters are as 
illustrated in the figure
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βs = 0.60 for bottle-shaped strut when the transverse reinforcement does not sat-
isfy the requirement of the model in Figure 3.47. This value is assigned to 
normal strength concrete

βs = 0.40 for struts in tension members or the tension flanges of members
βs = 0.60 for all other cases, for example, struts in a beam web compression field 

in the web of a beam where parallel diagonal cracks are likely to divide the 
web into struts, and struts are likely to be crossed by cracks at an angle to the 
struts (Figure 3.51)

3.5.5.2  Ties
The failure criterion of ties representing normal reinforcement is the steel yield 
stress, σo. Therefore, the nominal strength of a tie is σo As, where As is the cross-
sectional area of the reinforcing steel.

3.5.5.3  Nodal Zones
The failure criterion of concrete in nodal zones is denoted as fcu, which is defined 
next. Hence, the nominal strength of a nodal zone is fcuAn, where An is the area of the 
face of the nodal zone that Fu acts on, taken perpendicular to the line of action of Fu, 
where Fu is the factored force acting at the nodal zone section. Alternatively, An is 
the area of a cross section through the nodal zone, taken perpendicular to the line of 
action of the resultant force on that section:

	 f fcu n c= 0 85. β ′
	 (3.90)
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Figure 3.50  Reinforcement crossing a strut.
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where βn is a factor, which reflects the increasing degree of disruption of the nodal 
zones due the incompatibility of tension strains in the struts.

βn = 1.00 for nodal zones bounded by struts or bearing areas or both
βn = 0.80 for nodal zones anchoring one tie
βn = 0.60 for nodal zones anchoring two or more ties

3.5.6  An Illustrative Example

It is required to determine the reinforcement for the simply supported transfer girder 
shown in Figure 3.52. The single column at the mid-span carries a factored load 

2800 kN. The concrete cylinder strength is fc MPa′ = 32  and the steel yield stress is 
σo = 420 MPa. Neglect the beam’s own weight. The strength reduction factor for the 
effective concrete of struts and nodes and for ties yield stress is 0.75. The solution is 
given by the following steps.

Reactions

	 R RA B kN= = 1400

Establish an STM

In this beam, the shear span to depth ratio is less than 2; therefore, the beam is 
considered a D-region, that is, deep beam. The appropriate STM is shown in Figure 
3.53, in which the lower nodes are assumed to coincide with the centerlines of the 
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StrutCracks

(b)

(a)
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Figure 3.51  Types of struts in a beam web: (a) struts in a beam web with inclined cracks 
parallel to struts and (b) struts crossed by skew cracks.
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supporting columns and all nodes are located 120 mm from the upper and lower 
edges of the beam as shown in the figure.

With reference to Figure 3.53a, the length of the diagonal strut is given by

	 ( ) ( )1260 2000 125 22592 2+ − = mm

The force in strut C1 is 1400
2259
1260

2510× = kN

The force in tie T is 1400
2000 125

1260
2083× − = kN

The force in strut C2 is 2083 kN

The angle between C1 and T, θA =
−

= ° > °−tan . .1 1260
2000 125

33 9 30 0 , O.K.
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Figure 3.52  Transfer girder example.
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Effective concrete strength for the struts

For strut C1, f fcu c MPa= × × =0 85 0 75 20 40. . * .′

For strut C2, f fcu c MPa= × × =0 85 1 0 27 20. . .′

Effective concrete strength for the nodes

For Node A, f fcu c MPa= × × =0 85 0 80 21 76. . .′

For Node C, f fcu c MPa= × × =0 85 1 0 27 20. . .′

Node C

The bearing stress = 
1400 10
250 500

11 20 0 75 27 20 20 40
3×

×
= < × =. . . ( . )MPa MPa MPa†

The required width of strut C2, wC2

2083 10
500 0 75 27 20

204
3

= ×
× ×

=
( . . )

mm

The difference between the assumed width (240 mm) and the required width 
(204 mm) is on the safe side and it is not significant; therefore, the solution will pro-
ceed without modifying the dimensions of the STM. Since node C is under hydro-
static pressure and two sides are safe, the third side of the node (the side of strut 
C1) will also be safe. However, for illustration it is checked here. With reference to 
Figure 3.53b, the width of strut C1 is

	 wC1 250 240 339= + =sin cosθ θA A mm

which corresponds to a stress equal to

	

2510 10
339 500

14 81 0 75 27 20 20 40
3×

×
= < × =. . . ( . )MPa MPa MPa

Node A

The bearing stress is equal to

	

1400 10
400 500

7 00 0 75 21 76 16 32
3×

×
= < × =. . . ( . )MPa MPa MPa

The width of strut C1 is

	 wC1 240 400 422= + =cos sinθ θA A mm

which corresponds to a stress equal to

	

2510 10
422 500

11 90 0 75 21 76 16 32
3×

×
= < × =. . . ( . )MPa MPa MPa

*	Transverse reinforcement to resist the lateral tension will be provided.
†	 The strength reduction factor.



131The Era of Plasticity

Strut C1

The width of the strut at the end A is 422 mm and at the end C is 339 mm; the smaller 
value is considered in checking the safety of the strut. The stress in the strut is there-
fore equal to

	

2510 10
500 339

14 82 0 75 20 40 15 30
3×

×
= < × =. . . ( . )MPa MPa MPa

The transverse reinforcement of the strut is required to resist a total force TC1. From 
the STM of Figure 3.47,

	
T

C C
C1

1
2 2

2
2

2510
2

12551 1= ×



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× = = = kN

Thus, the total required reinforcement in perpendicular to the strut is 1255 × 103/0.
75 × 420 = 3984 mm2. The length of the strut is 2259 mm; hence, the required trans-
verse reinforcement is 1.764 mm2/mm, in perpendicular to the strut. This can be 
covered with a skin reinforcement of vertical bars of diameter 16 mm every 200 mm 
and horizontal bars of diameter 12 mm every 200 mm, on each side, in addition 
to interior open stirrups of diameter 10 mm every 400 mm. The larger diameter is 
assigned to the vertical bars since they are more effective in substituting for the 
inclined reinforcement because the angle θA is less than 45°. With reference to Figure 
3.50, the used transverse steel is equivalent to inclined reinforcement ΣAsi sin γi/

bsi = 0.0046 > 0.003 (the ACI minimum value for fc MPa′ ≤ 44 ).

Strut C2

Since the effective concrete strength of this strut is the same as the end node and the 
node is safe, the strut is safe.

Tie T

The reinforcement required to resist the force of this tie is 2083 × 103/0.75 × 420 = 
6613 mm2, which can be covered with 14 bar of diameter 25 mm. This reinforcement 
should be extended in the node and beyond the anchorage length required to develop 
the force in the tie.

3.6  Historical Sketch

The theory of plasticity began when the experiments of Tresca (1870) in the 1860s 
established the concept that a large plastic deformation is shear deformation gov-
erned primarily by shear stress. It took great insight and a giant step forward by 
St. Venant (1870) and Levy (1870) to propose their plastic stress–strain relations 
by ignoring the relatively small elastic strain increments and considering only the 
plastic strain increments. Also, the initial state of the material was ignored in this 
simplest perfectly plastic idealization. Much later, Prandtl (1924) and Reuss (1930) 
added an isotropic elastic response to the St. Venant–Levy equations to produce the 
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simplest incremental stress–incremental strain relations for an isotropic elastic–plas-
tic material.

Meanwhile, and subsequently, many experimenters and those who analyzed 
their results attempted to refine and understand the yield criterion or the commonly 
called failure criterion at the time. These new refined theories or criteria include, 
for example, maximum strain energy theory, maximum shear strain energy theory, 
and maximum tensile strain theory, among others. von Mises (1913) accepted the 
Tresca criterion and proposed a simple mathematical function called octahedral 
shear stress, or shear strain energy, or J2, to represent the von Mises criterion for 
mathematical convenience. Nowadays, the von Mises yield criterion also bears the 
names of Huber and Hencky. Subsequently, von Mises (1928) proposed a general 
normality rule for the plastic increment of strain with any choice of smooth isotropic 
or anisotropic function of stress called potential function, which could be but was not 
necessarily identical to or even similar to the yield function of the material.

Once the beginning of a mathematically attractive and physically admissible base 
had been established for the idealization of stress–strain relations in the plastic range, 
it is natural to extend these relations to include the major physical feature of work-
hardening of the material as a logical next step. A J2 or von Mises isotropic harden-
ing rule proposed by Odqvist (1933) did just that. The subsequent generalization of 
isotropic stress hardening by Melan (1938) to include the third invariant of the stress 
deviation tensor, J3, represented a further step forward in continuum mechanics.

The modern approach to the mathematical theory of plasticity was best described 
by the two survey papers by Prager (1948, 1955). The surveys introduced many con-
cepts now familiar in plasticity theory, most notably to structural engineers in par-
ticular, including the concept of generalized stresses and generalized strains, the 
principle of maximum plastic work, the equivalent convexity for yield function and 
normality condition for plastic strain rates at yield, the description of kinematic hard-
ening for the yield surface in stress space to exhibit Bauschinger and allied effects, 
and the proof of the theorems of limit analysis, among others. The great outpouring 
of these theoretical works at Brown University under the leadership of Prager in the 
1950s, and the subsequent development of plastic design methods for steel frames at 
Cambridge University (J. F. Baker) and Lehigh University (L. S. Beedle) in the 1960s 
started the revolutions. Many useful results, many ways of thinking about machines, 
structures, and materials as continua have come out of the plastic analysis and limit 
theorems.

Structural applications of plastic analysis and limit design in steel (Chen and 
Atsuta, 2007, Chen and Toma, 1994, Chen and Sohal, 1995; Chen et al., 1996), in 
soils (Chen, 1975; Chen and Baladi, 1985; Chen and Liu, 1990; Chen and Mizuno, 
1990) and in concrete (Chen, 1982, 1994) are complemented by applications to 
metal forming processing (Johnson, 1986) in recent decades. Chen has been par-
ticularly active in the development of constitutive equations for engineering materi-
als suitable for FE types of applications (Chen, 1994); especially the publication of 
Plasticity for Structural Engineers by Chen and Han in 1988 made the highly math-
ematical theory of plasticity easy for structural engineers to understand and master. 
These equations are useful for determining the history of the stress and the strain 
in a structure when the history of loading and constraint is known for the problem.
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In the following, we give a very abbreviated version of a long story of great leaps 
forward of the development of the modern theory of plasticity by focusing on the 
introduction of the life and career of two pioneering giants in plasticity at Brown 
University, William Prager and his close associate Daniel C. Drucker to whom the 
senior author, W. F. Chen, had the great fortune to be his graduate student during the 
period 1963–1966 and later to be associated with him professionally until his death 
in 2001.

The Brown group in solid mechanics was founded by William Prager, and through 
his leadership, the group became internationally known for its pioneering work in 
plasticity. It was at Brown University that Prager and Drucker made the major part 
of their contributions to the theory of plasticity and to its application to the design 
of engineering structures and components. They were the coauthors of the current 
classical paper in which the limit load was clearly defined and the theorems of limit 
analysis were established (Drucker et al., 1952). The theorems led directly to limit 
design—a technique to predict the load-carrying capacity of engineering structures 
and components such as bridges, pressure vessels, and machine parts. The theorems 
had immediate applications to problems, which formerly were beyond the scope of 
engineering practice.

William Prager (O’Connor and Robertson, 2005) was born in Karlsruhe in 
Germany in 1903 and obtained his Dipl. Ing. degree in 1925 and doctorate in 
engineering in 1926 from the Technical University of Darmstadt. He remained at 
Darmstadt as an instructor and in 1929 he was appointed to act as director of the 
Institute of Applied Mathematics at Göttingen. As a result of his leading interna-
tional reputation, with over 30 papers and a book already showing the depth of his 
contributions to applied mathematics, Prager was appointed as professor of technical 
mechanics at Karlsruhe in 1932, to become the youngest professor in Germany.

In 1934, Prager left Germany for Turkey because of the Nazi regime, where he 
was appointed as professor of theoretical mechanics at the University of Istanbul. In 
Turkey he continued to produce research at the highest level, publishing articles in 
German, Turkish, French, and English. The outbreak of war in 1939 was distressing 
to Prager and the German advances by 1940 made him decide that he would be best 
placed if he could emigrate to the United States. In 1941, Brown University took the 
opportunity to expand its graduate program by offering Prager the position of direc-
tor of Advanced Instruction and Research in Mechanics.

Prager established the Division of Applied Mathematics at Brown in 1946, served 
as its first chairman, and guided its research and teaching by gathering around him 
younger people in a wide variety of fields of applied mechanics, applied mathemat-
ics, physics, and engineering. His research during this period covered an enormous 
diversity of topics in the mechanics of continua of all types, problems of traffic flow, 
and applications of computers to problems in economics and engineering. J. L. Synge 
was a visiting professor at Brown University in 1941 when Prager arrived there. 
They soon began collaborating and publishing papers in the Quarterly of Applied 
Mathematics, which Prager founded in April 1943 and edited for over 20 years. In 
the Walker-Ames Lectures, Prager developed the hypercircle method, applying it 
to statically indeterminate structures and to the equilibrium of elastic solids; the 
lectures were published as the extremum principles of the mathematical theory of 
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elasticity and their use in stress analysis in 1950. An important monograph at that 
time, which Prager wrote jointly with P. G. Hodge, was Theory of Perfectly Plastic 
Solids (1951).

In November and December 1954 Prager gave a series of lectures at the Polytechnic 
Institute in Zurich. These were published in the following year as Probleme der 
Plastizitätstheorie. E. T. Onat reviewing the book writes:

The book constitutes a clear and penetrating exposition of the concepts and applica-
tions of the theory of plasticity. The author is one of the principal contributors in the 
field and his book provides the reader with indications of the impending developments 
of the theory.

Prager further developed the material given in these lectures and presented it in an 
English version in an Introduction to Plasticity published in 1959. A review of this 
book, this time by J. Heyman, again gives Prager high praise:

There are no spare lines and there is no padding; the author has considered every 
word, and thought deeply on every aspect of plastic theory. … the author is completely 
master of this, his main field of study, and he communicates this sense of mastery to 
the reader.

In 1961 Prager published a German and an English version of the same work.
Prager retired from Brown University in 1973 and moved to Savignon, Switzerland, 

where he continued to undertake research, write books, give lecture tours, and edit 
journals. In particular, he gave six lectures at the International Centre for Mechanical 
Sciences in Udine in 1974, which he wrote up and published as Introduction to 
Structural Optimization (1974). His first three lectures considered the derivation of 
necessary and sufficient conditions for global optimality from extremum principles, 
while the final three lectures looked at the optimization of the structural layout.

His outstanding contributions to applied mathematics led to Prager receiving 
many honors and awards. He was elected to the National Academy of Engineering, 
the National Academy of Sciences, the American Academy of Arts and Sciences, the 
Polish Academy of Sciences, and the French Académie des Sciences. He received 
the Worcester Reed Warner medal and the Timoshenko medal from the American 
Society of Mechanical Engineers and the von Karman medal from the American 
Society of Civil Engineers. Many universities awarded him honorary degrees includ-
ing Liege, Poitiers, Milan, Waterloo, Stuttgart, Hannover, Brown, Manchester, and 
Brussels.

Dan Drucker was born in New York City in 1918, attended Columbia University, 
where he earned three degrees, including a PhD at the age of 21. His doctoral thesis 
on three-dimensional photo-elastic methods was under the supervision of Professor 
R. D. Mindlin. He went on to teach at Cornell University and worked at the Armour 
Research Foundation before spending a year in the U.S. Army Air Corps during 
World War II.

In 1947, Drucker went to Brown University where for two decades he helped build 
one of the best programs in the country in materials engineering and solid mechan-
ics. He is best known for his pioneering work in the theory of plasticity and its 
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applications to analysis and design of metal structures. For almost half a century, the 
advances in the theory of plasticity and the work of Drucker were intimately linked. 
The familiar terms such as stability postulate, stable materials, limit theorems, limit 
analysis, plastic design, Drucker–Prager model, and soil plasticity come to mind 
immediately, among others. He introduced the concept of material stability, now 
known as “Drucker’s Stability Postulate,” which provided a unified approach for the 
derivation of stress–strain relations for the plastic behavior of metals. The simple fact 
that his name is attached to it and that it has survived for half century is indicative of 
the significance of the person.

Drucker was the first to show how limit analysis could be used in the design of 
cylindrical shells, and later he applied it effectively to the design of pressure vessels. 
His plasticity work also extended to include soil mechanics, metal working, and 
metal cutting. In his later years at Brown, he became active in the field sometimes 
known as micro-mechanics, which attempts to bridge the gap between the material 
scientists who study material behavior at the atomic level and the engineers who 
work with real materials modeled by theories of continuum mechanics.

In 1968, Drucker became the dean of engineering at the University of Illinois, 
where he is credited with improving the quality of the faculty. In 1984, Drucker left 
Illinois to become a graduate research professor at the University of Florida, where 
he was a kind of senior statesman on campus and was always available to help, espe-
cially the younger faculty members.

Among his life achievements, Drucker was honored with almost every major 
award given by major engineering societies including the von Karman medal from 
ASCE, Timoshenko medal from ASME, and Lamme medal from ASEE. He was 
a member of the National Academy of Engineering, received honorary doctorates 
from five different universities, and served as president of five U.S. and international 
societies. One of Drucker’s most prestigious honors was given by a U.S. President—
the National Medal of Science.
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4 The Era of Finite Element

4.1  Introduction

Modern computational techniques, and, in particular, the finite element method 
(FEM) have been well developed and used widely in nonlinear analysis of structures 
since the 1970s. Thanks to this success, we were able to apply the theory of stability 
and the theory of plasticity to simulate the actual behavior of structural members 
and frames with great confidence. It was the first time we were able to replace the 
costly full-scale tests with computer simulation. As a result, the limit state approach 
to design was advanced and new specifications were issued. The state of the art in 
finite element (FE) modeling of structural elements with properties of materials and 
kinematic assumptions is examined in this chapter along with a brief description of 
the impacts of the applications of this method on structural engineering practice.

4.2  Fundamentals of Finite Element

4.2.1  Kinematics Conditions (Shape Function)

In the FEM, formulation starts with the kinematical (compatibility) conditions. In 
this step, the generic displacements of an element (internal displacements within an 
element), {u}, are related to the generalized strains (the nodal displacement of the 
element), {q}, by means of assumed shape function, [N]. This assumption is equiva-
lent to Bernoulli’s assumption in beams under bending (plane sections perpendicular 
to the neutral axis before bending remain plane and perpendicular to the neutral axis 
after bending) or Kirchhoff’s hypothesis in plates under bending:

	 { } [ ]{ }u N q= 	 (4.1)

With the displacement within the element, the strain vector, {ε}, at any point within 
the element can be obtained by differentiation of {u} in Equation 4.1

	 { } [ ]{ }ε = B q 	 (4.2)

where [B] is composed of derivatives of the shape function, [N].
The development of matrices [N] and [B] is illustrated here for the constant strain 

triangle element. Consider the cantilever plate in Figure 4.1a subjected to an in-plane 
load, and, therefore, it is in a state of plane stress. The plate can be idealized as an 
assemblage of two-dimensional plane stress FEs, as shown in Figure 4.1b. In order to 
develop the matrix [N] of an element, it is assumed that the element-generic displace-
ments (referred to sometimes as element-local displacements), u and v, are given in 
the form of polynomials in the local coordinate variables x and y (Yang, 1986):
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	 u x y c c x c y( , ) = + +1 2 3 	 (4.3a)

	 v x y c c x c y( , ) = + +4 5 6 	 (4.3b)

One of the reasons for assuming such displacement functions is that six constants 
c1,...c6 can be determined uniquely by using the six nodal displacements {q}, Figure 
4.1c, where

	 { } { } { }q u v u v u v q q q q q qt = =1 1 2 2 3 3 1 2 3 4 5 6 	 (4.4)

From Equations 4.3 and 4.4, and with reference to Figure 4.1c,

	

{ }q

q

q

q

q

q

q

x y

x y

x y
=





























=

1

2

3

4

5

6

1 1

1 1

2 2

1 0 0 0

0 0 0 1

1 0 0 00

0 0 0 1

1 0 0 0

0 0 0 1

2 2

3 3

3 3

1

2

3

4

5

6

x y

x y

x y

c

c

c

c

c

c























































	 (4.5)

or

	 { } [ ]{ }q A c= 	 (4.6)

The constant matrix can then be derived:

	 { } [ ] { }c A q= −1 	 (4.7)

The generic displacement will be
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Figure 4.1  Plane stress problem: (a) structural element; (b) discretization; and (c) finite 
element.
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or
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For the derivation of matrix [B] recall the strain–displacement relation
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From Equations 4.2, 4.9, and 4.11,

	 [ ] [ ][ ]B d N= 	 (4.12)

where [d] is the differential operator given by
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Thus,
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It is noted that the elements of matrix [B] are constant terms. With reference to 
Equation 4.2, this means that any strain component will be a constant value through-
out the element.

In order to guarantee compatibility in small, the interpolation function of the 
generic displacement should always be assumed polynomial with a form that 
depends on the element type. For instance, for a bilinear strain rectangle element, 
the displacements u and v are assumed as

	 u x y c c x c y c xy( , ) = + + +1 2 3 4 	 (4.15a)

	 v x y c c x c y c xy( , ) = + + +5 6 7 8 	 (4.15b)

For plate bending, the displacement w of the ACM (Adini, Clough, and Melosh) ele-
ment (Desai and Abel, 1972) is
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The assumption of the interpolation function in the form of a polynomial guarantees 
that compatibility within the element (compatibility in small) is satisfied. However, 
inter-element compatibility (compatibility in large) may not be satisfied as in the 
ACM element.

4.2.2  Equilibrium Conditions (Principle of Virtual Work)

Equilibrium conditions are imposed in order to obtain the relation between the gen-
eralized stresses (nodal force vector), {F}, and the internal stress vector at any point, 
{σ}. This can be achieved upon the application of the principle of virtual work.

In the principle of virtual work, it is assumed that the virtual displacements are so 
small that there will be no significant change in geometry. Thus, the forces may also 
be assumed to remain unchanged during the virtual displacements. For an element 
subjected to a system of loads {P} and undergoing virtual nodal displacements {δq}, 
the external work done δW* is

	 δ δW q Pt* { } { }= 	 (4.17)

The applied loads result in a stress vector {σ} and the virtual displacements {δq} are 
associated with virtual strains {δε} by the equation

	 { } [ ]{ }δε δ= B q 	 (4.18)

The virtual strain energy density is {δε}t {σ} and hence the virtual strain energy 
δU* is
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According to the principle of virtual work, δW* = δU*; hence, from Equations 4.17 
and 4.19,

	

{ } [ ] { }P B dVt

V

= ∫ σ 	 (4.20)

Equation 4.20 provides the relation between the element stresses and the element-
generalized stresses (nodal loads).

In achieving equilibrium condition, the principle of virtual work has been uti-
lized, which demonstrates the fact that the principle of virtual work is nothing other 
than a principle of equilibrium. In this regard, equilibrium is satisfied in large but 
not in small. In other words, the overall element equilibrium is satisfied but a tiny 
portion of the element may not be in equilibrium. It is also realized that equilibrium 
along the boundaries between elements may not be satisfied.

4.2.3  Constitutive Conditions (Incremental/Iterative Formulation)

The final step in the formulation of the FE equilibrium equations is to impose the 
constitutive conditions. This is illustrated next for linear elastic analysis followed by 
nonlinear analysis.

For linear elastic analysis, the constitutive relations can be expressed in the fol-
lowing general form:

	 { } [ ]{ }σ ε= C 	 (4.21)

where [C] is called the elastic constitutive or elastic moduli matrix. Upon substitut-
ing (4.2) and (4.21) into (4.20),

	 { } [ ]{ }P k q= 	 (4.22)

where

	
[ ] [ ] [ ][ ]k B C B dVt= ∫ 	 (4.23)

The matrix [k] is the element stiffness matrix.
For nonlinear analysis, the relation (4.22) should be written in an incremen-

tal form; in addition, an iterative procedure should be adopted in the solution of 
the structure equilibrium equations. Nonlinearity arises from material inelasticity 
that is irreversible and load-path dependent, large deformation effects (geometric 
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nonlinearity), or both. Therefore, an incremental formulation is necessary in order 
to implement the material behavior while iterations are essential in order to update 
geometry. Hence, the relation (4.22) will have the form

	 { } [ ]{ }∆ ∆P k qt= 	 (4.24)

where
{ΔP} and {Δq} are the incremental load and displacement vectors, respectively
[kt] is the tangent stiffness matrix

The tangent stiffness matrix of a nonlinear material is derived from the incremental 
constitutive relations (Chen and Han, 1988), as illustrated in Chapter 3:

	
d C dij ijkl klσ ε= ep 	 (4.25)

where
dσij and dεkl are the stress and strain increment tensors, respectively

Cijkl
ep  is the elastic–plastic tensor of tangent moduli

Thus,

	
[ ] [ ] [ ][ ]k B C B dVt

t
ijkl= ∫ ep 	 (4.26)

4.2.4  Illustrative Examples

The cantilever beams shown in Figure 4.2, with span to depth ratios, L/H = 10 and 
L/H = 5, have been analyzed using the FEM with two options of material behavior: 
(1) elastic–perfectly plastic (with Young’s modulus, E = 203.9 × 103 MPa and yield 
stress, fy = 240 MPa) and (2) elastic–linear work-hardening model (with E and fy as 
in option (1), ultimate stress, fu = 370 MPa and ultimate strain, εu = 0.12). For both 
material models, von Mises failure criterion has been adopted. Geometric nonlin-
earity has been accounted for in the analysis. The analysis has been performed for 
two cases: (1) beam with no opening and (2) beam with opening as illustrated in 
the figure.

The results of the analysis are illustrated in the form of load–displacement rela-
tion, Figure 4.3, and strain profile at section 1, near the support, Table 4.1.

The strain profiles of the beam with L/H = 10 and with no opening are almost 
linear for the load up to the start of the yield and well near failure for either mate-
rial option (elastic–perfectly plastic or elastic–linear work-hardening model). This 
validates Bernoulli’s hypothesis, a drastic simplification that leads to the simple 
beam theory. On the other hand, for the beam with opening, Bernoulli’s hypoth
esis  is not valid, even before yielding, due to discontinuity. Note that the non-
linearity of strain profile near yield is higher than that near failure. This will be 
explained later.
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The strain profiles of the beam with L/H = 5 and with no opening are almost linear 
for the load up to the start of yield but not beyond yield. The nonlinearity of strain 
profile beyond yield is a direct result of the significant shear contribution in such a 
case. As for the beam with opening, the strain distribution is highly nonlinear as a 
result of discontinuity caused by the opening.

For the beam with L/H = 5 and with opening, the nonlinearity of the strain profile 
at yield is higher than that of the strain profile near failure. This behavior occurs 
because the shear strain contribution before yield has a significant effect on beam 
deformation. Once the section has plasticized, the increase in shear level occurs 
at a smaller rate compared with the displacement, where the longitudinal strains’ 
contribution has a higher effect on beam deformation. The same behavior could 
also be observed where opening exists for L/H = 10 due to the fact that the opening 
causes nonlinear strain distribution in the region where strains are measured.

The bazaar strain profile at yield for both material models where opening exists 
for L/H = 5 occurs due to the aforementioned behavior in addition to the nonlinear-
ity imposed by the existence of the opening as described. Once yielding occurs, the 
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Figure 4.2  Examples of cantilever beams: (a) longitudinal sections of cantilever beams 
with L/H = 10; (b) longitudinal sections of cantilever beams with L/H = 5; and (c) cross section.
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shear strain contribution is reduced versus the normal strain contribution and the 
strain diagrams show less nonlinearity.

With the FEM it is possible to solve these problems with different options: material 
inelasticity, geometric nonlinearity, imperfection, residual stresses, etc. However, this 
may not be possible by other means. For instance, simplified solutions may be obtained 
for beams without opening but not for beams with opening; the capacity of beams with 
L/H = 10 and with no opening can be estimated using the plastic-hinge concept. The 
FEM enables us to perform sophisticated analysis and accounts for various factors in 
any type of structure including the regions of discontinuity. However, in these regions, 
mesh refinement and adjustment are the key for obtaining accurate results.

4.3  Application for Structural Steel Member Design

4.3.1  Column Design Equations

The axial capacity of an axially loaded column can be determined from either an 
eigenvalue approach or the load-deflection concept. The use of load-deflection analy-
sis of a geometrically imperfect column, which is the practical case, allows tracing 
the load-deflection response of the member from the start of loading to failure. In 
this analysis, geometric and material nonlinearity are accounted for explicitly, and, 
hence, the assessment of column strength is more realistic.

Based on the load-deflection concept (Johnston, 1976), the 1986 American 
Institute of Steel Construction-Load and Resistance Factor Design (AISC-LRFD) 
column curve was developed, which has the form

	

P

P
n

y
c

c for= ≤( . ) .0 658 1 5
2λ λ 	 (4.27a)
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Figure 4.3  Load–displacement relation of the example cantilever beams.
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Table 4.1
Strain Distribution at Section 1 of the Example Cantilever Beams (Figure 4.2)

Beam with L/H = 10 Beam with L/H = 5

Near Yield Near Failure Near Yield Near Failure

Beam with 
no opening +

–

+

–

+

–

+

–

Beam with 
opening +

–

+

–
–

+

–

+

Note:	 — elastic–perfectly plastic material; - - - bilinear material.
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where FE is the critical flexural buckling stress and is given by π2 E/(KL/r)2. Equation 
4.27 was obtained from the curve-fitting of available analytical and experimental 
data on column strength as well as calibration against Allowable Stress Design 
(ASD) curve with a live load to dead load ratio of 3. The equation is plotted in Figure 
4.4 along with the Column Research Council (CRC) column curve and American 
Institute of Steel Construction-Allowable Stress Design (AISC-ASD) curve, which 
were derived from eigenvalue solutions.

Based on rigorous FE analysis of centrally loaded columns with geometric and 
material imperfections (Bjorhovde, 1972), the variation of maximum strength of 
steel columns is illustrated in Figure 4.5, where 112 computed maximum strength 
curves are plotted for a wide range of column shapes and types. Each curve is based 
on an actual residual stress distribution and an assumed initial out-of-straightness at 
a mid-height of 0.001 of column length (L/1000). The spread or scatter of computed 
critical load curves of initially straight columns would be much greater for the same 
112 shapes. In order to reduce uncertainty about column strength three subgroups 
are defined, each of which is represented by a single “average” curve. The three 
curves, shown in Figures 4.6 through 4.8 and given in Table 4.2, are recommended 
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by the Structural Stability Research Council (SSRC) to be used for representing 
the basic column strength. For comparison, the three curves are plotted in Figure 
4.4 along with the AISC-LRFD, CRC, and AISC-ASD curves. From the obtained 
results, it can be concluded that the FE analysis can account for any variables into 
consideration; however, a reliability analysis of the obtained results is essential in 
order to derive design equations.

Based on an extensive analytical and probabilistic study of the experimental 
strength of centrally loaded columns, the European Convention for Constructional 
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Figure 4.5  Maximum strength curves for a number of different column types computed 
by Bjorhovde (1972).
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Steel (ECCS) adopted a set of five column curves to represent the basic column 
strength. These curves are illustrated in Figure 4.9.

4.3.2  Beam Design Equations

Based on the concept of limit states, three types of strength limits can be identified 
for flexural members: (1) formation of plastic hinge, (2) lateral torsional instability, 
and (3) local instability (flange local buckling or web local buckling). The moment 
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capacity, according to the LRFD, is obtained as the lowest value considering all 
these limit states.

For λ ≤ λp

For limit state of formation of plastic hinge,

	
M Mn p= 	 (4.28)

For λp < λ ≤ λr

For limit state of inelastic lateral torsional buckling,
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	 (4.29a)

where Cb is the moment enhancement factor of the beam, which accounts for 
the moment gradient. Defining the ratio of the numerically smaller to larger end 
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moments of the beam as MA/MB, which is positive if the beam is in double curvature 
and negative otherwise,
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For limit state of flange and web buckling,
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( )
λ λ
λ λ

	 (4.30)

For λ > λr

For limit state of elastic lateral torsional buckling,

	 M SFn cr= 	 (4.31)

where S is the section modulus.
The slenderness parameters λ, λp, and λr, the limiting buckling moment Mr, and 

the elastic buckling stress Fcr are defined as follows for an I-section.
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4.3.2.1  For Strong Axis Bending
For limit state of lateral torsional buckling,

	
λ = L

r
b

y

	 (4.32)

where Lb is the laterally unbraced length of beam
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where
Fyf is the flange yield stress
Fyw is the web yield stress
Fr is the compressive residual stress in the flange
Sx is the section modulus about the x-axis
Iy is the moment of inertia about the y-axis
ry is the radius of gyration about the y-axis
E is the modulus of elasticity
G is the shear modulus
J is the torsion constant
Cw is the warping constant

	
M F F Sxr yw r= −( ) 	 (4.36)
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For limit state of flange local buckling,

	
λ = b

t
f
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	 (4.38)
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For limit state of web local buckling,

	
λ = h

t
c

w

	 (4.43)
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M F Sxr yf= 	 (4.46)

In Equation 4.43, hc is the clear distance between flanges minus the fillet or corner 
radius at each flange.

4.3.2.2  For Weak Axis Bending
For weak axis bending, the only applicable limit states are the formation of plastic 
hinge and web local buckling. Thus, Mn = Mp if λ ≤ λp. If λ > λp, Mn is obtained from 
Equation 4.30 with λ, λp, and λr as defined by Equations 4.43 through 4.45 and 
Mr = FywSy.

4.3.3  Beam-Column Design Equations

Based on the analytical solution of 82 inelastic beam-columns (Chen and Lui, 1991), 
the 1986 AISC-LRFD Specifications recommends the following interaction equa-
tions for the design of beam-columns:
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For Pu/ϕc Pn ≥ 0.2
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where
Pn is the axial compression capacity of the axially loaded column, Equation 4.2.1
Mnx and Mny are the moment resisting capacities of the laterally unsupported beam 

bent about the x- and y-axes, respectively
ϕc is the column resistance factor (= 0.85)
ϕb is the beam resistance factor (= 0.90)
Pu is the required axial strength
Mux and Muy are the required flexural strengths of the members about the x- and 

y-axes, respectively, calculated as

	 M B M B Mu nt lt= +1 2 	 (4.48)

where
Mnt is the moment in the member assuming that there is no lateral translation in 

the frame, obtained from first-order elastic analysis (Figure 4.10b)
Mlt is the moment in the member as a result of lateral translation of the frame only, 

obtained from first-order elastic analysis (Figure 4.10c)
B1 and B2 are the P−δ and P−Δ effects (Section 2.4.5)
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Figure 4.10  Determination of Mnt and Mlt for beam-column design: (a) original frame; 
(b) nonsway frame analysis for Mnt; and (c) sway frame analysis for Mlt.
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The Cm value used is the same as that in ASD except that the limit Cm ≥ 0.4 for 
members braced against joint translation and not subjected to transverse loading is 
removed.

4.4  Application for Structural System Design

4.4.1  Advanced Analysis for Steel Design

The FEM was a logical extension of the concept of generalized stress and generalized 
strain. Thus, with the development of FE formulation and with structure discretiza-
tion, the era of FEM started. It has become possible to analyze a structure member or 
an entire structure system with any geometry, any loading, and any boundary condi-
tion. Moreover, with incremental formulation of the system equilibrium equations 
and the development of powerful solution strategies in addition to the advancement 
of material modeling, it has become possible to perform advanced structural analy-
sis, for example, plastic-zone analysis.

In the plastic-zone analysis method of steel frames, members are discretized into 
FEs, and the cross section of each FE is subdivided into many fibers as shown in 
Figure 4.11. The deflection at each division point along a member is obtained by 
numerical integration. The incremental load-deflection response at each loading step, 
which updates the geometry, captures the second-order effects. The residual stress 
in each fiber is assumed constant since the fibers are very small. The stress state at 
each fiber can be explicitly traced, so the gradual spread of yielding can be captured. 
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Figure 4.11  Model of plastic-zone analysis: (a) cross-section discretization and (b) mem-
ber division.
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The plastic-zone analysis eliminates the need for separate member capacity checks 
since it explicitly accounts for second-order effects, spread of plasticity, and residual 
stresses. As a result, the plastic-zone solution is known as an “exact solution.”

The plastic-zone analysis may be performed by using either three-dimensional 
finite shell elements or the beam-column theory (Chen and Kim, 1997). In the three-
dimensional finite shell elements, the elastic constitutive matrix in the usual incre-
mental stress–strain relations is replaced by an elastic–plastic constitutive matrix 
when yielding is detected. Based on the deformation theory of plasticity, the effects 
of combined normal and shear stresses may be accounted for. This analysis requires 
modeling of structures using a large number of three-dimensional finite shell ele-
ments and numerical integration for the evaluation of the elastic–plastic stiffness 
matrix. The three-dimensional spread-of-plasticity analysis, when combined with 
second-order theory, which deals with frame stability, is computationally inten-
sive. Therefore, it is best suited for analyzing small-scale structures and providing 
detailed solutions for local instability and yielding behavior of members, if required. 
Moreover, it can be used to provide solutions for benchmark problems; that is, it can 
be used to provide benchmark models, as illustrated in Chapter 6, or replace physi-
cal testing.

4.4.2  FE Analysis of Offshore Concrete Structures

In spite of the success of the FEM when applied to steel structures, there are still 
several open questions and some difficulties in the prediction of the ultimate behav-
ior of reinforced concrete structures. The FEM is most successful when dealing with 
composite structures with a perfect bond between steel and concrete, without tensile 
cracks and without the localization of discrete failure zones or strain softening. In 
the following, we shall show the experience learned from the application of FEM to 
offshore structures in earlier years as an illustrative example.

4.4.2.1  Research behind the Success of the Offshore Structures
The offshore concrete structures constructed in the 1970s for the North Sea oil devel-
opment were analyzed extensively using the FEM. Some of the highlights of the 
analysis process are summarized in the following (Chen, 2000):

•	 Solve 100,000 simultaneous equations
•	 Designed for a 30 m wave with the platform in a 300 m or 1000 ft deep water
•	 Consider 25,000 load combinations
•	 Use supercomputer for computing
•	 Assume the material to be linearly elastic
•	 Cost $7 M to develop the computer program
•	 Require 250 engineers to input the data

4.4.2.2  Failure Experience, the Problem
Although applying the FE in this mega project was successful, the offshore concrete 
platform Sleipner A was totally lost in the North Sea during the installation process. 



158 Understanding Structural Engineering: From Theory to Practice

Failure was due to poor detailing essentially reflecting deficiencies of basic nature in 
codes as well as in practice (Schlaich and Reineck, 1993). The reasons for the failure 
of the analysis are as follows:

•	 It was not considered that the concrete will crack after overloading and 
redistribution of the stresses.

•	 The anchorage of the reinforcing bars was found to be inadequate in the 
tension zone after the crack of concrete.

•	 Failure cost exceeded $0.5B for the structure and $1B for the overall 
economy.

•	 The computed shear force by the FEM was about 60% of simple beam hand 
calculations.

4.4.2.3  Lessons Learned
The subsequent analysis and design for a successful construction of the platform 
considered the following improvements:

•	 Improve the model on strength and deformation of reinforced concrete ele-
ment under all possible load combinations and torsion.

•	 Carry out large-scale element tests for both strength and fatigue.
•	 Conduct biaxial compression/tension tests; compressive strength increases 

by lateral compression and decreases by every cycle of tension.
•	 Much more steel is necessary in the shells.
•	 Use concrete with a slump of 260 mm (10 in.) instead of 120 mm (4.7 in.) to 

get through.
•	 Shells are too heavy for installation; use light-weight concrete to reduce 

weight.

4.4.2.4  Concluding Remarks
•	 Engineers need to develop a good material model for a heavily reinforced 

concrete plate element.
•	 Need to carry out simple hand calculations to check the computer solutions.
•	 Need experienced engineers to do hand calculation check.
•	 Need to consider partial failure analysis, like cracks, to see possible 

redistribution.

4.4.3  A Glance to the Future

With the exponential growth of computer speed and capacity the implementation of 
model-based design is emerging. Model-based simulation has been implemented in 
aerospace for system design and manufacturing of Boeing 777, in auto industry for 
component design for crashworthiness and for system design of the next generation 
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Space Telescope (Hubble II). This emerging area of model-based simulation in 
structural engineering is illustrated in Chapter 7.

4.5  �Load and Resistance Factor Design 
for Structural Steel Buildings

4.5.1  Reliability-Based LRFD Code as a Start

Design methods have developed since the era of elasticity from working-stress 
design to plastic design to limit-state design or load-resistance-factor design. The 
FE has not only provided remarkable flexibility or increased capability of struc-
tural analysis but also influenced the design methodology. With the aid of the FE, 
numerous data related to the performance of different structural elements can be 
generated, for example, the case of column under axial force. On one side, the 
analysis of the generated data in order to obtain design information necessitated 
the implementation of stochastic analysis. On the other, the uncertainty about 
environmental conditions requires stochastic models for realistic assessment and 
implementation of these conditions in design. With regard to structure safety, for 
example, the introduction of partial safety factors was a natural development for 
more rational design.

The load that a structure may experience during its design life, S, and the 
strength, R, involve degrees of uncertainty and randomness. Structure safety can 
be identified in a simple manner by S and R; that is, if R > S the structure is safe, and 
if R < S the structure will fail. For simplicity, S and R can be assumed independent, 
which is a correct assumption for the usual cases of static and quasi-static loading. 
The probability density functions of S and R are defined as f(S) and g(R), respec-
tively, and are illustrated in Figure 4.12. The probability of failure, probability that 
R < S, is
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and the structure reliability is (1 − PF).
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Figure 4.12  Load and resistance probability functions.



160 Understanding Structural Engineering: From Theory to Practice

In order to ensure an acceptable structure reliability, the structure has to be 
designed for load greater than the nominal value and strength smaller than the nomi-
nal value, that is,

	 φ γR Sn n≥ 	 (4.50)

where
ϕ is the strength-reduction factor and is less than 1.0
γ is the load factor and is greater than 1.0
Rn and Sn are the nominal strength and nominal load, respectively

For load combination, Equation 4.50 takes the form
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where
i is the load type (e.g., dead load or live load)
m is the number of load types
γi is load factor corresponding to type i

4.5.2  Load Factors

LRFD uses different load factors for each load type in order to reflect the degree 
of uncertainty of this load. The load factors were developed from statistical analy-
sis, and the strength reduction factors were initially derived from calibration with 
the ASD. Nevertheless, these factors were decided in order to guarantee that the 
design satisfies certain safety (or reliability) of structural members. In other words, 
the design guarantees that the probability of exceeding a limit state of the structural 
member (e.g., yielding, fracture, or buckling) is less than certain limit. The factors 
and load combinations used by LRFD are summarized in Table 4.3.

4.5.3  Resistance Factors

For safety, all codes adopted the partial safety factors with difference in the applica-
tion of the concept. In the LRFD or the ACI, the partial strength reduction factors are 
applied to the nominal strength, for example, the nominal moment or nominal shear. 
In the Eurocode, these factors are applied to the material strength, for example, con-
crete characteristic strength or steel yield stress, and the reduced material strengths 
are used in the calculation of the design of section or member strength. The strength-
reduction factors used by LRFD are given in Table 4.4.

In ASD, the stresses in a structure under working or service loads should not 
exceed the designated allowable values. The allowable values are obtained by 



161The Era of Finite Element

dividing the yield stress or material strength by a factor of safety. The general form 
of this concept is
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where F.S. is the factor of safety, which is greater than 1.0 (e.g., 1.5 for beams and 
1.67 for tension members). The left-hand side of Equation 4.52 represents the allow-
able stress of the structural member or component under a given loading condition 
(e.g., tension, compression, and bending). The right-hand side of the equation rep-
resents the combined stress produced by various load combinations (e.g., dead, live, 
and wind). It is noted that the factor of safety is applied only to the strength term, 
and safety is evaluated at the service load, with all load types given the same weight 
regardless of their uncertainty.

Table 4.3
Load Factors and Load Combinations
1.4D

1.2D + 1.6L + 0.5(Lr or S or R)

1.2D + 1.6(Lr or S or R) + 0.5(L or 0.8W)

1.2D + 1.3W + 0.5 L + 0.5(Lr or S or R)

1.2D ± 1.0E + 0.5L + 0.2S

0.9D ± (1.3W or 1.0E)

D, dead load; L, live load; Lr, roof load; W, wind 
load; S, snow load; E, earthquake load; R, nomi-
nal load due to initial rainwater on ice exclusive 
of the ponding contribution.

Table 4.4
Strength-Reduction Factors

Member type and limit state ϕ
Tension member, limit state: yielding 0.90

Tension member, limit state: fracture 0.75

Pin-connected member, limit state: tension 0.75

Pin-connected member, limit state: shear 0.75

Pin-connected member, limit state: bearing 0.75

Column; compression 0.85

Beams; flexure 0.90

High-strength bolts, limit state: tension 0.75

High-strength bolts, limit state: shear 0.75
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4.5.4  Performance-Based Design as a Current Progress

During its design life, a structure should fulfill its function. This dictates the con-
sideration of all possible environmental conditions, misuse or possible change of 
use, possible deterioration of structure components, etc. Along this line came per-
formance-based design, which is an engineering approach to structural design that 
is based on agreed-upon performance goals and objectives. Examples of these are 
serviceability performance, structure response against earthquakes, and fire resis-
tance of structures. In order to achieve any of these goals, performance criteria are 
established and are required to be satisfied by the structure design.

Serviceability performance is a state in which the function of a building, its 
appearance, maintainability, durability, and comfort of its occupants are preserved 
under normal usage. Limiting values of structural behavior for serviceability (e.g., 
maximum deflection, camber, drift, acceleration, vibration, wind-induced motion, 
expansion, and contraction) are decided with due regard to the intended function of 
the structure.

Design for earthquakes is governed by the desired structure performance against 
an earthquake. For instance, for minor and moderate earthquakes, the structure is 
required to respond elastically. On the other hand, for major earthquakes, the struc-
ture is required to perform in the inelastic or plastic range with some minimum 
requirement of energy dissipation, however, with plastic deformations desired in cer-
tain locations.

Structural components, members, and building systems shall be designed so 
as to maintain their load-bearing function during the design-basis fire and to sat-
isfy other performance requirements specified for building occupancy. Three limit 
states existing for elements serving as fire barriers (compartment walls and floors) 
shall be considered in design. These states are (1) heat transmission leading to 
unacceptable temperature rise on the unexposed surface, (2) breach of barrier due 
to cracking or loss of integrity, and (3) loss of load-bearing capacity. Deterioration 
shall be applied where the means of providing structural fire resistance, or the 
design criteria for fire barriers, require consideration of the deterioration of load-
carrying structure.

With the development and advancement of the FEM, a performance-based design 
has become within the capability of the designer. Either simplified analysis or rig-
orous analysis can be performed in order to do the necessary design adjustments, 
which meet the designated design criterion.

4.6  Historical Sketch

The FEM is a computer-based numerical analysis technique for obtaining approxi-
mate solution to a wide variety of engineering problems. It was originally devel-
oped to study stresses in complex airframe structures, but it has now been extended 
and applied to a variety of continuum mechanics problems including structural 
engineering.

The term FEM was first used by Clough in his 1960 paper on plane elasticity prob-
lems. However, the concept of FE analysis could trace back much early depending 
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on whether one asks an applied mathematician, a physicist, or an engineer. In the 
field of applied mathematics, Courant in 1943 was the first to use an assemblage of 
triangular elements and the principle of minimum potential energy to study the St. 
Venant torsion problem. In the meantime, physicists were also busy developing simi-
lar ideas. For example, the work of Prager and Synge (1947) led to the development 
of the hypercircle method, which can be applied to continuum problems in much the 
same way as FE is applied.

Faced with increasing complex problems in aerospace structures, structural engi-
neers with their physical intuition used the truss concept to treat a structure as an 
assemblage of a finite number of interconnected nodal points with rod-like structural 
elements to replace the real structure. Under this discretization process, the problem 
has now reduced to that of the conventional old structural analysis. As a result of this 
success, the seed to FE techniques began to germinate in the structural engineering 
community.

With the advent of digital computers at that time, the actual solution of plane 
stress problems by means of triangular elements whose properties were derived from 
the theory of elasticity was first given in the now classical paper of Turner et al. 
(1956). In a 1980 paper, Clough gives his personal account of the origins of the 
method describing the sequence of the events. In the years after 1960, the FEM was 
received widely in all fields of engineering. By 1972, the FEM had become the most 
active field of interest in the numerical solution of continuum problems. It remains 
the dominant method in developing advanced analysis methods and design specifica-
tions for structural engineering community today.
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5 Strut-and-Tie Model 
for Design of 
Structural Concrete 
Discontinuity Regions

5.1  Introduction

The significance of this new conceptual change in the design of reinforced con-
crete structures can be best described by an observation made in 1984 by Professor 
MacGregor of Canada:

One of the most important advances in reinforced concrete design in the next decade 
will be the extension of plasticity based design procedures to shear, torsion, bearing 
stresses, and the design of structural discontinuities such as joints and corners. These 
will have the advantage of allowing a designer to follow the forces through a structure.

The strut-and-tie model (STM) is a logical extension of the truss model and the 
major difference between the two methods is that the STM is a set of forces in equi-
librium but do not form a stable truss system. Thus, the STM is a generalization of 
the truss model. The truss model has been recognized in academia and practice to 
be the most reliable tool for the treatment of shear and torsion in structural concrete 
B-regions. The STM is currently recognized as the most reliable tool for the treat-
ment of D-regions.

The basic concept of the STM is based on the lower-bound theorem of limit anal-
ysis of perfect plasticity. It visualizes a truss-like system in the structure or its com-
ponents to transfer load to the supports where

•	 Compression forces are resisted by concrete “struts”
•	 Tensile forces are resisted by steel “ties”
•	 Struts and ties meet at “nodes”

For best serviceability, the model should follow the elastic flow of forces. The merit 
of limit analysis in terms of STM procedures to design lies in the fact that engineers 
can make practical and safe decisions on the detailing of complex structural discon-
tinuities in reinforced concrete on the basis of relatively simple calculations.

The concept of STM has been illustrated and explained in Section 3.5 within 
the scope of limit analysis applications. In addition, the failure criteria of the STM 
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elements and an illustrative design example have been presented. This chapter is 
devoted for in-depth understanding of this powerful procedure for engineering prac-
tice. The definition of B- and D-regions is elaborated, and basic D-regions along 
with their appropriate models are illustrated. Some common D-regions, for example, 
local pressure, beams with dapped end, beams with recess, deep beams with large 
openings, corner joints, and exterior and interior beam-column connections, are 
examined and modeled. Finally, a detailed illustrative design example is presented 
followed by a historical sketch.

5.2  D-Regions versus B-Regions

5.2.1  Introduction

A concrete structure can be subdivided into two types of regions based on the 
strain distribution within a cross section, which is an influential factor in the design 
approach of these regions. Those regions where Bernoulli’s hypothesis of flexure 
(plane sections before bending remain plane after bending) can be assumed valid are 
referred to as Bernoulli or bending regions (or simply B-regions). The other regions 
where Bernoulli’s hypothesis does not apply are referred to as discontinuity or dis-
turbance regions (or simply D-regions).

B-regions have been successfully treated using the truss model. On the other hand, 
this truss model has been extended and generalized leading to the STM method for 
the treatment of D-regions. With this, the entire structure is treated in a consistent 
manner. The concept of STM with its different elements has been introduced in 
Section 3.5 as a class of lower-bound solutions of limit analysis. The validity and 
success of the method had been proven in academia and in practice.

D-regions are usually the most critical regions in structural concrete since they 
are, by nature, most vulnerable to environmental loading conditions. STM as a 
transparent and translucent tool represents a rational approach to understanding the 
behavior of such regions. This chapter aims to view the topic of STM from a design 
standpoint and to deepen the understanding of the behavior and design of D-regions 
in structural concrete.

5.2.2  B-Regions

B-regions are found in plates and beams where the depth is either constant or changes 
gradually, and loads are continuously distributed. The state of stress at any section of 
a B-region can be adequately derived from sectional effects (bending, torsion, shear, 
and normal force).

The solution of uncracked B-regions can be satisfactorily formulated based on 
the theory of elasticity as in standard mechanics books. On the other hand, if the 
tensile stresses in B-regions exceed the tensile strength of concrete, the truss model 
will apply instead of the elasticity-based solutions. In addition to the truss model, 
codes of practice (ACI 318-08, Eurocode 2, and ECP 203-2006, among others) per-
mit other standard methods that have passed the test of experiment.
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5.2.3  D-Regions

In D-regions, the strain distribution is significantly nonlinear as a result of discon-
tinuity, which results from a sudden change of geometry (geometric discontinuity) 
or concentrated loads (static discontinuity). Examples of geometric discontinuity are 
recesses in beams, frame corners, bends, and openings (Figure 5.1a and c). Examples 
of static discontinuity are the regions of concentrated loads, reactions, and local 
pressure (such as prestressing anchorage zones; Figure 5.1b and c). Structures such as 
deep beams, where the strain distribution is significantly nonlinear, are considered 
as one entire D-region (Figure 5.1b).

Uncracked D-regions can be satisfactorily analyzed based on the theory of elas-
ticity by using, for instance, finite element codes. Nevertheless, this is not the case in 
most practical applications even under service loads. Once cracks form in a D-region 
and bond stresses between reinforcement and concrete develop significantly, linear 
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Figure 5.1  D-regions (shaded areas) with nonlinear strain distribution due to (a) geo-
metric discontinuity; (b) static discontinuity; and (c) geometric and static discontinuities. 
(Adapted from Schlaich, J. et al., J. Prestressed Concr. Inst., 32(3), 74, 1987; Schlaich, J. 
and Schäfer, K., J. Struct. Eng., 69(6), 113, 1991; Schlaich, J. and Schäfer K., The design of 
structural concrete, IABSE Workshop, New Delhi, India, 1993.)
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elastic analysis is not applicable any more. On the other hand, a complete nonlinear 
analysis may turn out to be uneconomical, especially in the early stages of design; 
besides, it does not help in the development of the right detailing. Moreover, if struc-
ture behavior is not precisely simulated, the results may be a cause of poor perfor-
mance or future failure. With this in mind, the STM method represents the rational 
approach for the treatment of D-regions (Schlaich and Schäfer, 1991, 1993).

In B-regions, the state of stress may be derived from sectional effects, whereas 
in D-regions this is not the case. Nevertheless, conventional structural analysis is 
essential, and with the division of a structure into B- and D-regions, the boundary 
forces of D-regions can be identified. These boundary forces come from the effect of 
attached B-regions and other external forces and reactions (Figure 5.2).

5.2.4  Defining the Boundaries of D-Regions

In contrary to D-regions, the stresses and stress trajectories in B-regions are smooth 
(Figure 5.3). In D-regions, stress intensities decrease rapidly with the distance from 
the origin of the stress concentration. Such behavior is the key in the identification of 
B- and D-regions of a structure.

In order to illustrate how the division lines between B- and D-regions are defined, 
two illustrative examples shown in Figure 5.4 are considered. The common prin-
ciple is to subdivide the real structure in Figure 5.4(i) into the state of stress, which 
satisfies Bernoulli’s hypothesis, Figure 5.4(ii), and the compensating state of stress, 
Figure 5.4(iii). Upon applying the principle of St. Venant, Figure 5.5, it is assumed 
that the nonlinear stresses in Figure 5.4(iii) are negligible at a distance that is approx-
imately equal to the maximum distance between the equilibrating forces themselves. 
The distance defines the range of the D-regions, Figure 5.4(iv), as illustrated in the 
examples in Figure 5.4. It should be noted that for most cases of beams, this distance 
is practically equal to the height of the cross section of adjacent B-regions attached 
to the D-region.
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Figure 5.2  A frame structure containing a substantial part of B-regions: its statical sys-
tem and bending moments. (Adapted from Schlaich, J. et al., J. Prestressed Concr. Inst., 
32(3), 74, 1987.)
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D DB

Figure 5.3  Stress trajectories in a B-region and near discontinuities (D-regions).
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Figure 5.4  Two examples of subdivision of structures into their B- and D-regions using 
St. Venant’s principle (a) column or wall with concentrated loads and (b) beam with recess: 
(i) structure with real load; (ii) loads and support reactions applied in accordance with the 
Bernoulli hypothesis; (iii) self-equilibrating state of stress; and (iv) real structure with B- and 
D-regions. (Adapted from Schlaich, J. et al., J. Prestressed Concr. Inst., 32(3), 74, 1987; 
Schlaich, J. and Schäfer K., The design of structural concrete, IABSE Workshop, New Delhi, 
India, 1993.)
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In cracked concrete members, the stiffnesses in different directions may alter 
as a result of cracking; consequently, the boundaries of D-regions may change as 
well. Nevertheless, the preceding approach for the determination of the division lines 
between B- and D-regions, which was based on elastic material behavior, is still 
applicable. This is due to the fact that the principle of St. Venant itself is not precise 
and the dividing lines between B- and D-regions serve only as a qualitative aid in 
the development of STMs.

5.3  Strut-and-Tie Model as a Solution

5.3.1  Safe Solution Based on Equilibrium Approach

As explained in Section 3.5, the STM is an idealization of the stress resultants derived 
from the flow of forces within a region of structural concrete. For the D-region in 
Figure 5.6a, the boundary forces acting on the region are determined and the stress 
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diagrams of these forces are subdivided in such a way that the individual stress resul-
tants on opposite sides of the region correspond in magnitude and can be connected 
by streamlines that do not cross each other (Figure 5.6b). Then, the flow of forces 
through the region can be traced using the load-path method or the stress trajectories 
from linear elastic analysis (Figure 5.6b). The flow of forces, which are smoothly 
curved, are replaced by polygons as shown in Figure 5.6c, and additional struts and 
ties are added for equilibrium such as the tie T and the strut C.
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Figure 5.5  The principle of St. Venant: (a) zone of a body affected by self-equilibrating 
forces at the surface and (b) application to a prismatic bar (beam) loaded at one face.
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The successful model should satisfy two conditions: equilibrium and failure crite-
ria. Since compatibility conditions are omitted from this method, the obtained solu-
tion is a lower-bound or safe estimate. Hence, the STM method always provides a 
safe solution.

The method of STM with its different elements and failure criteria has been dis-
cussed in Section 3.5. Only new complementary thoughts, applications, illustrative 
points, and examples are presented in the following sections.

5.3.2  Basic Discontinuous Stress Fields

D-regions with their respective boundary conditions can be looked at as isolated dis-
continuous stress fields. Many of these fields are basic (or standard) stress fields and 
hence have standard STM solutions. These regions are designated by Sclaich and 
Schäfer (1993) as D1, D2, … D12; nevertheless only D1 to D10 are the important basic 
D-regions and are illustrated in Figure 5.7.

5.4  Selected Discontinuous Stress Fields

5.4.1  Local Pressure

The problem of local pressure, Figure 5.8, is simulated as D1-region for the case of con-
centric load, Figure 5.7a, and D2-region for the case of eccentric load, Figure 5.7b. The 
amount of necessary transverse reinforcement and its position can be determined from 
the respective STM. It is noted that this reinforcement has to be closed stirrups for 
either case. Nevertheless, the location of these stirrups is at the edge of the D-region for 
the case of eccentric load and moves inward for the case of concentric load. In the case 
of eccentric load, longitudinal reinforcement is required, as illustrated by the model.

5.4.2  Dapped Beam

In order to hang the reaction of a dapped beam, two possible models are shown in 
Figure 5.9 (Schäfer and El-Metwally, 1994). The first model, Figure 5.9a, illustrates 
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Figure 5.6  Development of an STM (Schlaich and Schäfer, 1991): (a) the region and 
boundary loads; (b) the load paths through the region; and (c) the corresponding STM.
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that in addition to the shear reinforcement, T3, and the reinforcement necessary for 
hanging the reaction, T1, an additional reinforcement is necessary for a safe transfer 
of the forces within the D-region, that is, tie TA and the increase in the magnitude of 
tie T2 above the shear requirement.

The second alternative, Figure 5.9b, requires lesser reinforcement; nevertheless, 
anchorage of the inclined reinforcement at the upper nodes may become a problem in 
case of thick bars. In practice, some reinforcement is always detailed as indicated by 
the first model, which is necessary for keeping the integrity of the D-region. Hence, 
though the two presented models are correct, a more efficient detailing can be 
achieved by a combination of the two models. The combined model shown in Figure 
5.9c leads to a more efficient detailing with the inclined reinforcement assigned at 
most 70% of the load and the first model assigned at least 30% of the load. While the 
anchoring of the inclined reinforcement is difficult in the second model, this problem 
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Figure 5.7 (continued)  (i) D9-region; and (j) D10-region. (Modified from Schlaich, J. and 
Schäfer K., The design of structural concrete, IABSE Workshop, New Delhi, India, 1993.)
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is relieved by the combined model. The reinforcement layout for the combined model 
is shown in Figure 5.9d.

If a horizontal reaction force H exists, the model shown in Figure 5.9e can be used 
for the evaluation of the required additional reinforcement.

5.4.3  Beam with Recess

The beam in Figure 5.10a shows the shaded D-region as a result of the recess shown. 
For illustration, the D-region is assumed to be subjected to two cases of constant 
moment (no shear), positive and negative moments, Figure 5.10b, and the moment 
lever arm on the left end of the D-region is assumed to be one-half of that on the 
right end.

Upon examination of all possible load paths for either case of end moment, 
the appropriate STMs can be derived as shown in Figure 5.10c (Schäfer and 
El-Metwally, 1994). From the obtained models it is noted that anchoring the 
curtailed longitudinal reinforcement should start at a distance beyond what is 
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Figure 5.10  Beam with recess: (a) D-region; (b) moments applied to the D-region; 
(c) STMs; and (d) appropriate reinforcement detailing.
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required by the sectional design. In addition, for the safety of the D-region, trans-
verse reinforcement in the shape of closed stirrups is necessary in order to carry 
the transverse tension 1 2/ T tan θ.

5.4.4  Walls with Openings

In Figure 5.11a and b, the STMs of a wall with rectangular opening are given for two 
cases of uniform compression and uniform tension applied to two opposite boundar-
ies of the wall (Schlaich and Schäfer, 1991). It is obvious from Figure 5.11a that the 
tie T1 would require a reinforcement parallel to and near the edge of the opening, 
which agrees in principle with the normal practice. The quantification of this tie 
force and hence the amount of the required reinforcement are given by the STM 
shown in the figure. On the other hand, for a wall under tension the model in Figure 
5.11b reveals that reinforcement would be required along the edges parallel to the 
load to carry tie, T2, which also agrees with the normal practice. Nevertheless, the 
reinforcement of tie T1, which is parallel to the edges perpendicular to the load direc-
tion, has to be placed at a distance from these edges and not along the edges, which 
may not be satisfied in normal practice. In addition, the anchorage of the reinforce-
ment of ties T2 and T3 has to be checked considering the additional length due to the 
lateral shift of the respective forces as shown by the model.

5.4.5  Deep Beam with Eccentric Large Opening

Due to the applied concentrated load, the deep beam with an eccentric large opening 
shown in Figure5.12a has the stress trajectories shown in Figure5.12b. Two differ-
ent STMs are combined together for rational representation of the beam behavior 
(Schlaich et al., 1987). The simple STM shown in Figure 5.12c for the right part 
of the beam can be refined in order to account for the transverse stresses in the 
strut. The refined model is shown in Figure 5.12d, which apparently conforms bet-
ter with the stress trajectories. As for the left part of the beam, either one of the two 
models shown in Figure 5.12f and g is justifiable by the stress trajectories. In both 
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T2

(a) (b)

T3 T1

hT2 =T3

Figure 5.11  Walls with openings: (a) wall under uniform compression and (b) wall under 
uniform tension.
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models, the support reaction A is transferred vertically until a level above the open-
ing by axial action through the B1-region rather than horizontally by bending action 
through the B2-region. This approach is justified by the fact that the axial stiffness of 
the B1-region is much greater than the bending stiffness of the B2-region.

The second model, Figure 5.12g, requires a lesser reinforcement than the first 
model, Figure 5.12f. Nevertheless, the inclined reinforcement may have an anchor-
age problem at the upper left node; in addition, some reinforcement has to be detailed 
according to the first model for keeping the integrity of the concrete material around 
the opening. A combination of the two models would lead to the most efficient detail-
ing, for example, by assigning 50% of the load to every model. The combined model 
is shown in Figure 5.12h with the corresponding tension reinforcement layout shown 
in Figure 5.12i. Of course, web reinforcement and a minimum reinforcement of the 
B2-region would still be required.

5.4.6  Knee Corner Joints under Opening Moments

In the design of a reinforced concrete moment-resisting frame structure, the corner 
geometry can be defined from the dimensions of the structural elements meeting at 
the joint, beam, and column. The first step in the design of connection using STM 
method is to identify all forces acting on the D-region (connection). Based on the 
observed joint behavior and the proposed reinforcement detailing, the appropriate 
STM can be derived.

The different STMs shown in Figure 5.13a were suggested by Schlaich et al. 
(1987) for frame joints under opening moments. In order to circumvent the tensile 
chord reinforcement and prevent cracking of the compression chord due to radial 
tensile stresses, either the chord reinforcement must be extended as a loop around the 
corner or inclined stirrups must be adequately arranged. Other STMs are suggested 
in order to explain the joint behavior as illustrated in Figure 5.13b.

5.4.7  Knee Corner Joints under Closing Moments

Different STMs that were suggested by Schlaich and Schäfer (1991) are shown in 
Figure 5.14a. Other STMs, illustrated in Figure 5.14b, are suggested to explain the 
joint behavior.

5.4.8  Exterior Beam-Column Connections

The simple STM shown in Figure 5.15a suggests that the shearing and compression 
forces resulting from the particular load pattern are largely transmitted by a diagonal 
strut across the joint. In fact, there are several struts separated by diagonal cracks. 
It would be extremely optimistic to assume that the full compression strength could 
be approached in these struts. Not only are they subjected to indeterminate eccen-
tricities, but they are also exposed to transverse tensile strains. In this biaxial state 
of stress, a considerable reduction of compressive strength ensues (Park and Paulay, 
1975). In Figure 5.15b and c, different STMs for exterior beam-column connections 
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are shown. These STMs are related to different stiffnesses of the adjacent members 
connected with the joint.

5.4.9  Tee Beam-Column Connections

Figure 5.16a shows the appropriate STM for the case of gravity load. In a laterally 
loaded frame, the forces acting on a T-joint can be idealized as shown by the simple 
STM in Figure 5.16b (or Figure 5.16c). This model suggests that the internal forces 
resulting from the particular load pattern are largely transmitted by a diagonal strut 
across the joint.

Additional STMs of tee beam-column connections for different geometry and 
detailing of the adjacent members connected with the joint are shown in Figure 5.16d 
and e.

(a)

(b)

Figure 5.13  Strut-and-tie modeling of opening corner joint: (a) models proposed by 
Schlaich et al. (1987). (Adapted from Schlaich, J. et al., J. Prestressed Concr. Inst., 32(3), 74, 
1987.) (b) Additional suggested models.
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5.4.10  Interior Beam-Column Connections

The appropriate STM for the case of gravity load is shown in Figure 5.17a. For a 
laterally loaded connection, the simple STM shown in Figure 5.17b suggests that the 
shearing and compression forces resulting from the particular load pattern are largely 
transmitted by a diagonal strut across the joint. The STM shown in Figure 5.17c con-
siders both the strut and truss mechanisms’ contribution in transferring shear.

5.5  An Illustrative Design Example

In this section, the design procedure of a beam with an abrupt change in thickness, 
Figure 5.18, is illustrated. The width of the beam b = 300 mm and the other dimen-
sions (in mm) are shown in the figure. The factored design value of the applied 
force is Fu = 1200 kN. The concrete cylinder strength is fc MPa′ = 30  and the steel 
yield stress is σo = 460 MPa. The failure criteria adopted by the ACI 318-08 (2008), 
as illustrated in Chapter 3, is adopted in the design procedure of this example. The 
strength reduction factor for the effective concrete of struts and nodes and for ties’ 
yield stress is 0.75. The design procedure is given in the following steps.

5.5.1  Reactions and Straining Actions

	 R RA B kN= = 1200

The bending moment and shearing force diagrams are shown in Figure 5.18.

(a)

(b)

Figure 5.14  Strut-and-tie modeling of a closing corner joint: (a) models proposed by 
Schlaich and Schäfer (1991). (Adapted from Schlaich, J. and Schäfer, K., J. Struct. Eng., 
69(6), 113, 1991.) (b) Additional suggested models.
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(a) (b)

(c)

Figure 5.15  Suggested STMs and corresponding detailings for exterior beam-column 
connections with beam to column thickness: (a) between 0.67 to 1.5, (b) less than 0.67, and 
(c) greater than 1.5.

(a)

(d) (e)

(b)

(c)

Figure 5.16  Suggested STMs and corresponding detailings for tee beam-column connec-
tions: (a) due to gravity loads and (b) through (e) due to lateral loads.
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(a)

(b)

(c)

Figure 5.17  Suggested STMs and corresponding detailings for interior beam-column 
connections: (a) due to gravity loads and (b) and (c) due to lateral loads.
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Figure 5.18  Transfer girder example: (a) dimensions and (b) straining actions.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10914-6&iName=master.img-087.jpg&w=210&h=277


187Strut-and-Tie Model for Design of Structural Concrete Discontinuity Regions

5.5.2  D- and B-Regions

Based on St. Venant’s principle the D-regions are determined. Figure 5.19 illustrates 
both D- and B-regions.

5.5.3  Dimensioning of B-Region

The bending moment of the B-region is a constant value of Mu = 3600 kN m and 
the shear is zero. If the contribution of compression reinforcement is neglected 
(Figure 5.20),
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Since the moment is a constant value, the dividing section between the B- and 
D-regions requires the use of the strength reduction factor of the STM, that is, 
ϕ = 0.75 instead of 0.9 (the value used in flexure). When substituting b = 300 mm, 

d ≈ 1900 mm, and fc MPa′ = 30 , the value of a obtained is 365 mm. The lever arm is 
YCT = d − a/2 = 1718 mm. From moment equilibrium, Figure 5.20,
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Figure 5.19  D- and B-regions of the transfer girder example.
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5.5.4  Establish an STM

The load path and the corresponding STM are shown in Figure 5.21. The compres-
sion block at the dividing section between the B- and D-regions is subdivided into 
two parts: one to balance the force C3 and the other to balance the horizontal compo-
nent of the force C4. From equilibrium of the D-region, Figure 5.21, and with the aid 
of the geometric relations in Figure 5.22,
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Figure 5.21  Load path and STM of the transfer girder.
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	 T C3 3 1091= = kN

	 C2
2 21200 1091 1622= + =( ) ( ) kN

If the angle α is assumed equal to 45°, then, the force T2 will be

	 T T2 3 1091= = kN

which leads to

	 C T T5 2
2

3
2 1543= + = kN

	 C C C T4 1 3
2

2
2 1483= − + =( ) kN

5.5.5  Effective Concrete Strength for the Struts

	 f fcu c= 0 85. βs
′

Struts C1 and C3 are prismatic stress fields for which βs = 1.0; hence, 
fcu = 25.50 MPa

Struts C2, C4, and C5 are bottle-shaped stress fields for which βs = 0.75*; hence, 
fcu = 19.13 MPa

5.5.6  Effective Concrete Strength for the Nodes

	 f fcu n c= 0 85. β ′

Node A is a C-C-T node; therefore, βn = 0.8; hence, fcu = 20.4 MPa
Node B is a C-C-C node; therefore, βn = 1.0; hence, fcu = 25.5 MPa
Node C is a C-T-T node; therefore, βn = 0.6; hence, fcu = 15.3 MPa
Node D is a C-C-T node; therefore, βn = 0.8; hence, fcu = 20.4 MPa
Node E is a C-C-T node; therefore, βn = 0.8; hence, fcu = 20.4 MPa

5.5.7  Node A

The bearing plate length, a* = RA/ϕfcub = 1200 × 103/0.75 × 20.4 × 300 = 261 mm. Use a 
bearing plate of the dimension 300 × 300 mm. With reference to Figure 5.23, if two lay-
ers of reinforcement are used, then, u = 150 mm, and from Figure 5.22 tanθA = (3.3/3.0), 
which gives θA = 47.7°. The width of strut C2 at node A, Figure 5.23, is

	 w a uC2 323= + =*sin cosθ θA A mm

*	Transverse reinforcement to resist the lateral tension will be provided.
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The stress in the strut is

	
σ φC

C

C

w b2

2

2 1622
323 300

16 74 15 3= =
×

= =. ( .MPa > MPa)cuf

Either increase u or use a larger bearing plate. Upon using a bearing plate 
400 × 300 mm and redoing the calculations, it is found that wC2 397= mm  and 
σ φC2 13 62= . MPa < cuf ; the bearing plate size is adequate.

5.5.8  Node B

Try a bearing plate with dimension 300 × 300 mm (Figure 5.24). The bearing stress 
is 1200 × 103/300 × 300 = 13.33 MPa, which is less than ϕfcu(= 19.13). The depth of the 
compression block of strut C3 is

WC2

θA

σCA

σC2

1200 = Bearing force

T3

a*

c

≥2c

La

a* s
in θ Au cos θ A

U

C2

Figure 5.23  Node A.
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Figure 5.24  Node B.
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w

C

b
C3

3
31091 10

0 75 25 5 300
190= = ×

× ×
=

φfcu

mm
. .

The width of strut C2 will be (Figure 5.24) (300 sinθB + 190 cosθB = 350 mm, 
θB = θA = 47.7°). The stress of the node at the interface of strut C2 is

	
σ φC

C

C

w b2

2

2
31622 10

350 300
15 45 19 13= = ×

×
= =. ( .MPa < MPa)cuf

5.5.9  Node C

The width of strut C5, Figure 5.25, is

	
w

C

b
C5

5
31543 10

0 75 15 3 300
448 45= = ×

× ×
= = °

φf
x x

cu
2mm  = 

. .
sin sinα 2

which results in x2 = 634 mm. The reinforcement resisting T2 should be closed stir-
rups and placed within a distance at least equal to x2.

5.5.10  Node D

The depth of the compression block of (C1 − C3) is x13, Figure 5.26, given by

	
x

f
13 = − =C C

b
1 3 219
φ cu

mm

The width of strut C4, Figure 5.26, is

	
w

C

b
C4

4
31483 10

0 75 20 4 300
323= = ×

× ×
= +

φ
β β

f
x x

cu
13mm = 

. .
sin cos22

T2

T3

C5

σC5

X2

WC 5

Figure 5.25  Node C.
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From geometry, Figure 5.22, the angle β = tan−1 (160/150) = 46.85°, which gives 
x22 = 237 mm. x22 is the minimum distance within which the closed stirrups resisting 
T2 should be placed. Since x22 < x2, the value of x2 should be used, which increases 
the width of strut C4 to 612 mm.

5.5.11  Node E

The widths of struts C4 and C5 at the node, Figure 5.27, can be calculated in the same 
manner as before based on the design strength of the node. However, the design 
strength of strut C5, fcu = 19.13 MPa, is less than the design strength of the node, 

X22

X13 cos β

X 1
3
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WC4

C4

X22 sin β

β

Figure 5.26  Node D.
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Figure 5.27  Node E.
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fcu = 20.4 MPa; therefore, for strut safety the lower value should be used in dimen-
sioning the node. The width of strut C5 should therefore be C5/(ϕfcub) = 359 mm, 
which gives a projection in the direction of T1, xE = 507 mm.

For checking the node with regard to C4, the width of the strut is xE sin 
β = 370 mm, and the corresponding stress is C4/(370×300) = 13.36 MPa < ϕfcu 
(= 0.75 × 20.4 = 15.3 MPa). The anchorage of the reinforcement resisting T1 should 
be extended to the largest of anchorage length or xE, from the beginning of the node 
(Figure 5.27).

5.5.12  Strut C2

The width of the strut at end A is 397 mm and at end B is 350 mm; the smaller value 
is considered for checking the safety of the strut. The stress in the strut is therefore

	

1622 10
350 300

15 45 0 75 19 13 14 35
3×

×
= > × =. ( . . . )MPa MPacuφf

The width of the strut at end B should be increased to 377 mm, which can be achieved 
by increasing the length of the bearing plate to 337 mm. Therefore, the length of 
the bearing plate at node B, Figure 5.24, should be increased to 350 mm instead of 
300 mm.

The transverse reinforcement of the strut is required to resist a total force TC2. 
From the STM of Figure 5.28,

	
T

C C
C1

1
2 2

2
2

1622
2

8111 1≈ ×





× = = = kN

Thus, the total reinforcement required perpendicular to the strut is 811×103/
(0.75 × 460) = 2351 mm2. The length of the strut is 4460 mm; hence, the required 
transverse reinforcement perpendicular to the strut is 0.527 mm2/mm. This can be 
covered with a skin reinforcement of vertical bars of diameter 12 mm every 200 mm 
and horizontal bars of diameter 12 mm every 200 mm, on each side, in addition to 
interior open stirrups of diameter 10 mm every 400 mm. The larger reinforcement 

F

F/2

TC2

F/2

F

F/2 F/2

TC2

Figure 5.28  Stress deviation in a bottle-shaped stress field.
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is assigned to the vertical direction since it is more effective in substituting for the 
inclined reinforcement because the angle θA is less than 45°. With reference to Figure 
3.50, the used transverse steel is equivalent to inclined reinforcement ΣAsi sin γi/bsi = 

0.0053 > 0.003 (the ACI minimum value for fc MPa′ ≤ 44 ).

5.5.13  Strut C3

Since this strut is a prismatic stress field, it is adequate to check the nodes only.

5.5.14  Strut C3

The width of the strut at nodes D and E is 612 and 370 mm, respectively. The smaller 
width is used in checking the strut, which gives a stress

	

C4

370 300
13 36 0 75 19 13 14 35

×
= × =. ( . . . )MPa < MPacuφf

The transverse reinforcement of the strut is required to resist a total force 
C4/2 = 741.5 kN, which requires a total reinforcement equal to 2149 mm2, perpen-
dicular to the strut. The length of the strut is 2193 mm; hence, the required transverse 
reinforcement is 0.98 mm2/mm, perpendicular to the strut. This is covered with the 
predetermined skin reinforcement of vertical bars of diameter 12 mm every 200 mm 
and horizontal bars of diameter 12 mm every 200 mm, on each side. Also, the used 
transverse steel is equivalent to inclined reinforcement ΣAsi sin γi/bsi = 0.00532 > 0.003 

(the ACI minimum value for fc MPa′ ≤ 44 ).

5.5.15  Strut C5

The width of the strut at nodes C and E is 448 and 359 mm, respectively. The smaller 
width is used in checking the strut, which gives a stress

	

C5

359 300
14 33 0 75 19 13 14 35

×
= × =. ( . . . )MPa < MPacuφf

The transverse reinforcement of the strut is required to resist a total force 
C4/2 = 771.5 kN, which requires a total reinforcement equal to 2236 mm2, perpen-
dicular to the strut. The length of the strut is 2121 mm; hence, the required transverse 
reinforcement is 1.05 mm2/mm, perpendicular to the strut. This is covered with the 
predetermined skin reinforcement of vertical bars of diameter 12 mm every 200 mm 
and horizontal bars of diameter 12 mm every 200 mm, on each side. Also, the used 
transverse steel is equivalent to inclined reinforcement ΣAsi sin γi/bsi = 0.00533 > 0.003 

(the ACI minimum value for fc MPa′ ≤ 44 ).

5.5.16  Checking the Strength of the B-Region and Tie T1

φM C d C C d Mn kN m <= −

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+ − − −













 =3 1 3

190
2

190
219
2

3576( ) uu kN m( )= 3600



195Strut-and-Tie Model for Design of Structural Concrete Discontinuity Regions

The slight difference between Mu and ϕMn can be covered by additional compression 
and tension reinforcement of an area 38 mm2 on each side. Still, the value of 16D22 
is adequate as a tension reinforcement of T1.

5.5.17  Tie T2

The reinforcement required to resist this force is T2/(0.75 × 460) = 3162 mm2, which 
can be covered with two-branches closed stirrups 14D12.

5.5.18  Tie T3

The reinforcement required to resist this force is T3 /(0.75 × 460) = 3162 mm2, which 
can be covered with 10D20.

5.5.19  Reinforcement

The used skin reinforcement D12 at 200 mm on both sides in the vertical and hori-
zontal directions gives a ratio of 0.38% both vertically and horizontally, which is 
adequate. The final beam reinforcement is illustrated in Figure 5.29.

5.6  Historical Sketch

With the extension of the limit design theorems to continuous media by Drucker, 
Greenberg, and Prager in 1952, applications of the powerful limit analysis techniques 
were expanded to plates and shells for both metal and reinforced concrete materials 
as well as soil mechanics. The yield line theory for flexure analysis of reinforced 
concrete slabs is the most successful application of upper-bound method of perfect 
plasticity to structures. Also, for flexure analysis of reinforced concrete beams and 
frames, the limit analysis has become standard since the 1950s. Considering shear 
problems, however, very few theoretical advances had been made before the 1970s. 
The application of the theory of plasticity to the design of members under shear and 
torsion began in the 1970s, especially by Thürlimann et al. (1975), Thürlimann et al. 
(1983), Nielsen et al. (1978), and Nielsen (1984). This also formed the basis for the 
method of STMs after the work of Schlaich et al. (1987) and Schlaich and Schäfer 
(2001), which formed the basis for the contents of this chapter.
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Figure 5.29  Reinforcement layout.
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The development of the STM method has brought a major breakthrough in 
designing a consistent theory in the design concept covering both the D-regions and 
the B-regions with similar models. The method provides a formal design procedure 
for detailing in design in particular. All these developments were brought out in the 
state-of-the-art report on shear by the ASCE-ACI Committee 445 in 1998. The ACI 
Committee 318 introduced the method of STMs into its 2002 ACI code. Appendix A 
of the ACI-318-2002 documented this international development in research, which 
formed the basis for other codes around the world. This step is an important mile-
stone in the direction toward the development of a more consistent design concept. It 
triggered the acceptance and wide use of STMs for daily use.

The concept of using the method of STMs to inelastic-reinforced concrete analy-
sis was introduced and illustrated for the first time in 1961 by Drucker in his estimate 
of the load-carrying capacity of a simply support ideal reinforced concrete beam. It 
took a great physical insight to fully understand the fundamental difference between 
a tension-weak material like concrete or soils in its load-carrying capacity through 
arching compared to that of a ductile material like metal through flexure or bending. 
Thanks to this revolutionary thinking, the concept of STM was born. The subse-
quent development, refinement, and expansion resulted in the modern techniques of 
STMs for detailing design of shear, torsion, joints, and bearing in structural concrete 
in a consistent manner.

In the following, we shall present Drucker’s original simple beam model (1961) 
to illustrate his concept of lower- and upper-bound techniques of limit analysis as 
applied to a reinforced concrete beam in Figure 5.30. For simplicity, he assumed the 
concrete beam to have negligible weight and zero-tensile strength, so that it acts as a 
very flat arch. The outward thrust of the arch is shown in Figure 5.30a as being taken 
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Figure 5.30  Drucker’s simple beam model: (a) lower-bound or equilibrium picture of arch 
action and (b) kinematical picture of collapse mechanism. (Modified from Drucker, D.C., 
Publ. IABSE, 21, 45, 1961.)
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by a steel tension tie between two end plates bearing on the concrete. The steel was 
assumed unbonded. Efficient use of material would seem to dictate at first that, at the 
ultimate or collapse load both steel and concrete should be at their yield and failure 
stresses, respectively.

Since the equilibrium distribution of stress in the concrete and the steel as shown 
in Figure 5.30a was nowhere tensile in the concrete and was everywhere at or below 
yield, the beam would not collapse at this load or would be just at the point of collapse, 
according to the lower-bound theorem. This approach so far focused on the lower-
bound equilibrium technique and thus it might underestimate the strength of the beam.

Figure 5.30b shows a kinematical picture associated with an assumed plastic 
failure mechanism, which gave an upper bound on the collapse load. The assumed 
failure mechanism as drawn showed the stretching or yielding of the steel tie and 
the crushing plastically of the shaded areas of concrete at the ends as well as at the 
center. This failure mechanism resulted in an upper-bound solution, which turned 
out to be equal to the lower-bound solution of Figure 5.30a. Thus, Drucker obtained 
the correct answer for the idealized beam according to the limit theorem despite the 
fact that either the stress field as constructed in Figure 5.30a or the plastic collapse 
mechanism as assumed in Figure 5.30b was the real stress distribution or the real 
failure mechanism, respectively. This simple example clearly illustrated Drucker’s 
basic concept and power of limit analysis as applied to reinforced concrete struc-
tures. It also physically showed how the load was carried in a composite structure 
through arching for tension-weak concrete and stretching for tension-strong steel to 
its supports or foundations.

Professor J. Schlaich and his colleagues and students at the Institute of Structural 
Design, University of Stuttgart, had worked for decades on the application of the 
method of STM for a uniform treatment to all D-regions in order to achieve a consis-
tent treatment of B- and D-regions. Their contributions have been greatly influential, 
particularly in exploring and identifying all different D-regions based on geometry 
and boundary conditions for a uniform treatment of these regions. In addition, they 
illustrated, based on logic and transparency or from mechanics, how D-regions can 
be modeled. Besides, they set simple, but reliable, failure criteria of STM elements. 
The paper by Schlaich, Schäfer, and Jennewein is a landmark in this area (Schlaich 
et al., 1987). The efforts of Professor J. Schlaich and his group from the University 
of Stuttgart have made the method of STM widely recognized in the academia and 
widely adopted in practice.
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6 Toward Advanced 
Analysis for Steel 
Frame Design

6.1  The Role of the Effective Length Factor K in Design

6.1.1  General

The purpose of structural design is to produce a physical structure capable of with-
standing the environmental conditions to which it may be subjected. Many factors 
affect the design process, from loading to foundation to dimensions of layout to 
risk and cost, but basically the ultimate design is a reflection of the properties of 
the structural material and the geometrical imperfection of its structural members 
and in particular its mechanical properties and its residual stresses induced in the 
structural members during the manufacture and fabrication processes, which define 
the characteristic response of the material and the member of the force field of its 
environment.

In the present engineering design practice, there is a fundamental two-stage pro-
cess in the design operation: first, the forces acting on each structural member in the 
structure must be calculated and second, the load-carrying capacity of each of these 
structural members to those forces acting on it must be determined. The first stage 
involves an analysis of the distribution of forces and moments acting on each of these 
structural members and the second stage involves knowledge of the load-carrying 
capacity of these members to resist these forces and moments acting on them. The 
more comprehensive this knowledge is, the more exact will be the design and the 
more reliable will be the structure.

Since the load-carrying capacity of structural members depends on the type of 
load acting on the member, geometrical imperfections, properties of material, and 
residual stresses, the knowledge of load-carrying capacity of these structural mem-
bers has been determined mostly on the basis of full-scale tests in the form of pin-
ended column strength curves for axially loaded members, simply supported beam 
strength curves for bending dominated members, and beam-column interaction 
curves for members under combined axial force and bending moment. These mem-
ber strength curves are formally coded as the member strength curves or equations 
for design practice.

Having divided the structural members in a framed structure into three classes, 
namely, columns, beams, and beam-columns, and determined their respective 
strengths by full-scale tests with ideal end or boundary conditions, the next stage 
must be to drastically simplify the material behavior under stresses in such a way 
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as to readily assist the professional engineer to analyze the stress distribution in 
the structure in order to size up the structural members in a framed structure. At 
present, the practicing engineer bases design primarily on the simple model of lin-
ear elasticity of the material for those early designs based on the allowable stress 
method.

In this process, time-dependent effects of material are assumed insignificant. 
This is indeed a drastic simplification of material properties over long-term behav-
ior. Therefore, with this time-independent simplification, the design process is now 
focused on reducing the level of stresses or the structure is loaded only in the work-
ing load level. A large safety factor is therefore used to adjust the design to take 
account of inelastic features in the material to avoid failure. Linear elastic analy-
sis has been predominantly used in engineering practice. First-order linear elastic 
analysis has been the hallmark of structural engineering in early years, while the 
second-order linear elastic analysis for a structural system has been developed and 
increasingly utilized in recent years.

6.1.2  Elastic Structural Analysis and K Factor

The boundary conditions of a framed member in a frame structure are quite differ-
ent from those of an isolated member that are used as the basis for the development 
of column strength curves (pin–pin end conditions) or beam strength curves (simply 
supported end conditions). In order to size up frame members, the members’ bound-
ary conditions must be adjusted to the equivalent pin–pin end conditions for the case 
of column design, for example, so that the column strength curves can be properly 
used in determining the required size of the framed member under consideration 
(Figure 6.1).

To achieve this equivalency, the effective length factor or the K factor has been 
widely used in the past to relate the pin-ended column strength curves to the framed 
member design in a structural system. The effective length method is a good method 
for the design of framed structures. This method has been widely used for the devel-
opment of modern steel design codes, including the allowable stress design (ASD) 
and the plastic design (PD) in early years and the load-and-resistance-factor design 
in more recent years (Salmon and Johnson, 1990).

The critical load of any beam-column of any boundary conditions, Pcr, can be 
written in a unified form as follows:

	
P

EI

L
cr

b

= π2

2 	 (6.1)

where Lb is the buckling length of the column, which is the distance between the two 
inflection points of the beam-column in its deformed shape. The critical load of a 
two-hinged-ends column is the Euler load, PE, given by
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Thus, the critical load, Pcr, can be related to the Euler load, PE, as follows:
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where the factor K is the ratio between the column buckling length, Lb, and its origi-
nal length, L. The K factor values for standard cases of boundary conditions are 
given in Table 2.2, and for a column in a framed system, it can be assessed with 
the aid of alignment charts based on the bracing condition of the structural system 
(Figure 2.21).

The adoption of elastic structural analysis with K factor for steel design may be 
divided into two stages of progress. The simpler first stage of progress with K factor 
in the design process is the first-order elastic analysis with amplification factors to 
include the second-order effects as generally provided by the specifications (LRFD, 
1986). The next logical stage of progress is a direct second-order elastic analysis 
without the use of amplification factors for second-order effects (AISC-LRFD, 
2005). Both methods are based on the formation of the first plastic hinge defined as 
the failure of the system.

6.1.3  Design with K factor

In the allowable stress design method, a first-order elastic analysis is performed to 
obtain the member forces. The second-order effects, the P–Δ effect and the P–δ 

Framed
member

Effective
length
factor

Structural
system

Figure 6.1  Interaction between a structural system and its component member.
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effect, are considered in the design stage through the amplification factors. In order 
to carry out member design, the influence of the structural system on member capac-
ity has to be introduced with the aid of the effective length factor K (Figure 6.1). The 
value of K factor for the sizing of different members can be obtained with the aid of 
alignment charts.

For the plastic design method, a first-order elastic–plastic analysis is performed 
in order to obtain the internal forces. In this analysis, inelasticity is accounted 
for through the simple plastic-hinge concept. Hence, inelastic force redistribution 
throughout the structural system is achieved; however, the spread of yielding is 
not considered. In addition, stability effects and geometric nonlinearity, are not 
accounted for in this analysis and are implemented in the member design through 
the amplification factors. This means that this analysis is superior only to the lin-
ear elastic analysis in the force redistribution. In this design method, the K factor 
still has to be implemented in the design of members. The value of K for the dif-
ferent members can be determined with the aid of alignment charts or any other 
method.

In the LRFD design method, the designer has the option to carry out a first-order 
elastic analysis and use the amplification factors to account for the stability effects, 
or carry out a second-order elastic analysis in which the stability effects are imple-
mented. The ultimate strength of beam-column members considering gradual yield-
ing is implicit in the design interaction equations. For member design, the effective 
length factor K has to be determined with the aid of alignment charts.

6.1.4  Limitations

Despite the popularity of the K factor method in the past decades, the approach has 
several major limitations and shortcomings.

The first of these limitations is that the K factor method does not give an accurate 
indication of the safety factor against failure because it does not consider the inter-
action of strength and stability between the member and the structural system in a 
direct manner. It is a well-recognized fact that the actual failure mode of the struc-
tural system often does not have any resemblance whatsoever to the elastic buckling 
mode of the structural system, which is the basis for the determination of the effec-
tive length factor K.

The second and perhaps the most serious limitation is probably the rationale of 
the current two-stage process in design: elastic analysis is used for the determina-
tion of distribution of forces acting on each member of a structural system, whereas 
the member ultimate strength curves are developed for design either on the basis of 
full-scale tests or by inelastic analysis with each member being treated as an isolated 
component (Chen and Atsuta, 2007a,b). There is no verification of the compatibility 
between the isolated member and the member as part of a frame. The individual 
member strength equations as specified in specifications are not concerned with 
system compatibility. As a result, there is no explicit guarantee that all members 
will sustain their design loads under the geometric configuration imposed by the 
framework.
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The other limitations of the effective length method include the difficulty in com-
puting a K factor, which is not user friendly for computer-based design, and the 
inability of the method to predict the actual strength of a framed member, among 
others. To this end, there is an increasing tendency of the need for practical analysis/
design methods that can account for the compatibility between the member and the 
system. With the rapid development of computing power and the availability of desk-
top computers and user-friendly software, the development of an alternative method 
to a direct design of structural system without the use of K factors becomes more 
attractive and realistic.

As mentioned previously, the effective length factor will generally yield good 
designs for framed structures, but it does have the following drawbacks:

	 1.	 It cannot capture accurately the interaction between the structural members 
and the structural system behavior and strength.

	 2.	 It cannot reflect the proper inelastic redistributions of internal forces in a 
structural system.

	 3.	 It cannot predict the failure modes of a structural system.
	 4.	 It is not easy to be implemented in an integrated computer design applica-

tion with the use of alignment charts in the K factor calculation process.
	 5.	 It is generally a time-consuming process requiring separate member capac-

ity checks with different K factors for different framed members.

Even for the most recent AISC-LRFD procedures, similar difficulties are encoun-
tered when performing a seismic design because the checks of the same strength 
interaction equations must be performed (AISC-LRFD, 2005). Some of the difficul-
ties are even more so on the seismic designs since additional questions such as the 
following are raised:

	 1.	How is the structure going to behave during the earthquake?
	 2.	Which part of the structure is the most critical area?
	 3.	What will happen if part of the structure yields or fails?
	 4.	What might happen if forces greater than the code has specified occur?

None of these questions can be answered by the conventional load-resistance-factor 
design (LRFD) method with K factors. With the rapid advancement of comput-
ing power, the second-order inelastic analysis approach or the so-called advanced 
analysis provides an alternative approach to structural analysis and design with-
out the K factor. Nevertheless, this approach consumes tremendous computation 
efforts, and in order to overcome such a demand, the practical advanced analy-
sis has been developed. The practical advanced analysis method presented in this 
chapter is an elastic-plastic-hinge-based analysis, modified to include the effects 
of geometry imperfections, spread of plasticity, residual stresses, and semi-rigid 
connections (Chen, 2009). In this approach, all these aforementioned drawbacks 
of design using the effective length factor K are overcome and there is no need to 
compute this factor.
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6.2  Methods of Advanced Analysis

6.2.1  Definitions

Advanced analysis refers to any method that captures the strength and stability of 
a structural system and its individual members in such a way that separate member 
capacity checks are not required. Further, advanced analysis accounts for (1) material 
inelasticity, (2) stability effects, (3) residual stresses, (4) geometric imperfections, 
(5) local buckling, (6) connection behavior, (7) end restraint, and (8) interaction 
with the foundations. Usually, these analyses are also referred to more formally as 
the second-order inelastic analysis for frame design. In this direct approach, there 
is no need to compute the effective length factor K since separate member capacity 
checks encompassed by the specification equations are not required. This design 
approach is illustrated in Figure 6.2 and marked as the direct analysis and design 
method.

With the present computing power, it is a rather straightforward process to com-
bine the theory of stability (Chen and Lui, 1986) with the theory of plasticity (Chen 
and Han, 2007) for a structural system analysis (Chen and Toma, 1994). The real 
challenge is therefore to make this type of new approach to design work and com-
pete with the current methods in engineering practice (Chen and Lui, 1991, 2005). 
The main distinction between advanced analysis and conventional methods is that 
advanced analysis can predict the structural system strength, whereas others predict 
the member strengths. Advanced analysis uses a format associated with the struc-
tural system rather than individual members.

Since advanced analysis provides the most benefit in modern frame design, 
specification provisions of this type are required for practical use. The provisions 
for advanced analysis in some codes, such as the Eurocode and Australian limit 
state specifications, postulate that if all the significant planar behavioral effects are 
modeled properly in the analysis, the checking of conventional beam-column equa-
tions is not required. Advanced analysis uses the same resistance factors and load 
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Figure 6.2  Indirect and direct analyses and design methods.
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factors as those of the LRFD method. In this manner, a uniform reliability can be 
achieved by reflecting the degree of uncertainty of different loads and combinations 
of loads.

6.2.2  Elastic–Plastic-Hinge Method

The elastic–plastic-hinge method is the simplest approximation of inelastic behavior 
of a material by assuming all its inelastic effects concentrated at the plastic-hinge 
locations. In this idealization, it is assumed that the element remains elastic except 
at the ends where zero-length plastic hinges can form. This method accounts for 
inelasticity but not the spread of yielding or plasticity at sections, or the influence of 
residual stresses.

Here, as discussed in previous sections for elastic analysis, the elastic–plastic hinge 
method may be divided into first-order and second-order plastic analyses depending 
on the geometry used to form the equilibrium equations. For the first-order elastic-
plastic-hinge analysis, the undeformed geometry is used, and nonlinear geometric 
effects are neglected. As a result, the predicted ultimate load is the same as conven-
tional rigid-plastic analysis. In the second-order elastic–plastic analysis, the deformed 
shape is considered and geometric nonlinearities can be included using stability func-
tions, which enables the use of only one beam-column element per member to cap-
ture the second-order effects. A comprehensive presentation of the plastic design and 
second-order analysis method can be found in Chen and Sohal (1995).

The second-order elastic–plastic-hinge analysis is only an approximate method 
(Liew, 1992; White, 1993). For slender members whose dominant failure mode 
is elastic instability, the method provides a good approximation; but for stocky 
members as well as for beam-column elements subjected to combined axial load 
and bending moment, this method overestimates the actual strength and stiffness 
in the inelastic range due to spread of yielding effects. This method is therefore a 
good first approximation of the second-order inelastic analysis for frame design 
within the applicable range described above. It requires further refinement before 
it can be recommended for analysis of a wide range of framed structures (White 
and Chen, 1993).

6.2.3  Refined Plastic-Hinge Method

The refined plastic-hinge methods are based on some simple modifications of the 
elastic–plastic-hinge method described in the preceding section. The notional load 
concept is first introduced in the conventional elastic–plastic-hinge method by apply-
ing additional fictitious equivalent lateral loads to account for the influence of resid-
ual stresses, member imperfections, and distributed plasticity that are not included 
in the conventional procedures. With certain modifications, this refined approach is 
accepted by the European Convention for Constructional Steelwork (ECCS, 1991), 
the Canadian Standard Association (1989, 1994), and the Australian Standard (1990). 
However, Liew’s research (1992) shows that this method under-predicts the strength 
in the various leaning column frames by more than 20% and overpredicts the strength 
up to 10% in the isolated beam-columns subject to axial forces and bending moments.
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6.2.4  Plastic-Zone Method

The plastic-zone method is considered to be the “exact” method since it is based on 
the most refined finite element (FE) analysis for a structural system. This plastic-
zone analysis has been well developed and documented by a research team at Cornell 
University over two decades under the leadership of Professor McGuire (1992). The 
team members included R. D. Ziemian (1992), D. W. White (1993), M. N. Attala, and 
G. G. Deierlein (1994), among others. As a comparison, the elastic–plastic-hinge 
model is considered to be the simplest, while the elastic–plastic-zone model exhib-
its the greatest refinement. The exact solutions were verified with some benchmark 
beam-column tests. This method is ideal for the verification of other simplified 
methods developed for engineering practice.

In the plastic-zone method, frame members are discretized into FEs, and the cross 
section of each FE is subdivided into many fibers as shown in Figure 6.3. The deflec-
tion at each division point along a member is obtained by numerical integration. The 
incremental load-deflection response at each loading step, which updates the geom-
etry, captures the second-order effects. The residual stress in each fiber is assumed 
constant since the fibers are very small. The stress state at each fiber can be explicitly 
traced, so the gradual spread of yielding can be captured. The plastic-zone analysis 
eliminates the need for separate member capacity checks since it explicitly accounts 
for the second-order effects, spread of plasticity, and residual stresses. As a result, 
the plastic-zone solution is known as an “exact solution.” A schematic comparison 
between the plastic-zone method and the other methods is given in Figure 6.4.
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Figure 6.3  Model of plastic-zone analysis: (a) cross-sectional discretization and (b) mem-
ber division.
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There are two types of plastic-zone analyses (Chen and Kim, 1997). The first 
involves the use of three-dimensional finite shell elements in which the elastic con-
stitutive matrix in the usual incremental stress–strain relations is replaced by an 
elastic–plastic constitutive matrix when yielding is detected. Based on the deforma-
tion theory of plasticity, the effects of combined normal and shear stresses may be 
accounted for. This analysis requires modeling of structures using a large number of 
finite three-dimensional shell elements and numerical integration for the evaluation 
of the elastic–plastic stiffness matrix. The three-dimensional spread-of-plasticity 
analysis, when combined with second-order theory, which deals with frame stabil-
ity, is computationally intensive. Therefore, it is best suited for analyzing small-scale 
structures and providing the detailed solutions for member local instability and 
yielding behavior if required. Since a detailed analysis of local effects in realistic 
building frames is not a common practice in engineering design, this approach is 
considered highly expensive for practical use.

The second approach for second-order plastic-zone analysis is based on the use of 
beam-column theory in which the member is discretized into line segments and the 
cross section of each segment is subdivided into FEs. Inelasticity is modeled consid-
ering normal stress only. When the computed stress at the center of any fiber reaches 
the uniaxial normal strength of the material, the fiber is considered to have yielded. 
Also, compatibility is treated by assuming that full continuity is retained throughout 
the volume of the structure in the same manner as in elastic range calculations. In 
the plastic-zone analysis, the calculation of forces and deformations in the structure 
after yielding requires an iterative trial-and-error process because of the nonlinearity 
of the load–deformation response and the change in cross-section-effective stiffness 
in inelastic regions associated with the increase in the applied loads and the change 
in structural geometry.

A plastic-zone analysis that includes the spread of plasticity, residual stresses, 
initial geometric imperfections, and any other significant second-order effects 
would eliminate the need for checking individual member capacities in the frame. 

Plastic mechanism load

First-order elastic–plastic

First-order 
plastic
analysis

Second-order elastic–plastic

Plastic zone or refined plastic hinge

Characteristic deformation

Lo
ad

 in
te

ns
tiy

Second-
order
plastic
analysis

Figure 6.4  Load–deformation characteristics of plastic analysis methods.
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Therefore, this type of method is classified as advanced inelastic analysis in which 
the checking of beam-column interaction equations is not required. In fact, the 
member interaction equations in modern limit state specifications were developed, 
in part, by curve fit to results from this type of analysis. In reality, some significant 
behaviors such as joint’s and connection’s performances tend to defy precise numer-
ical and analytical modeling. In such cases, a simpler method of analysis, which 
adequately represents the significant behavior, would be sufficient for engineering 
applications.

6.2.5  Verification of Plastic-Zone Method

Two full-size specimens of portal frame, Figure 6.5a, were tested for monotonic 
loading by Wakabayashi (Chen and Toma, 1994). The member sizes are summarized 
in Table 6.1, and the measured sectional and material properties are as given in 
Tables 6.2 and 6.3. The panels of the connections between columns and beams are 
stiffened with horizontal and diagonal plates to prevent shear buckling so that the 
bending of the members controls the ultimate strength of the frame. The specimens 
are supported in the out-of-plane direction at four equal points of the beam and at the 
midpoint of the columns by a hinge device that can rotate in the plane of the frame 
but is fixed out of the plane.

In the two specimens, all columns had section H − 175 × 175 × 7.5 × 11 mm and all 
beams had section H − 250 × 125 × 6 × 9 mm. The span length is 500 cm and the height 
is 260 cm. P is the column load, Pe is the elastic buckling load of loaded frame, Py is 
the column yield load, h is the column height (260 cm), L is the beam length (500 cm), 
Ib and Ic are the moments of inertia of the beam and column, respectively, and r is the 
radius of gyration of the column.

In testing the specimens, no vertical load was applied to specimen FM0, but 
for specimen FM5, a constant vertical load was first applied on the top of the 
columns, after which the horizontal load at the top of the frame was increased 
gradually. The measured load-deflection curves are shown in Figure 6.5b 
and c for the two specimens, and some measured values are given in Table 6.4. 
The specimens contained imperfections, which caused early yielding, and the 
stiffness decreased at an early stage of horizontal loading. While specimen FM0, 
after reaching the mechanism, showed a gradual increase in horizontal load due 
to strain hardening, specimen FM5 showed stiffness degradation as the lateral 
deflection increased. The local buckling appeared not to affect much the horizon-
tal load-carrying capacity.

The test results are compared in Figure 6.5b and c with the plastic-zone method 
and the plastic-hinge method. It is assumed in these analyses that both local buckling 
and lateral buckling do not occur and the displacements are small. In the plastic-zone 
method, the portal frame is assumed to be composed of two L-shaped frames by 
antisymmetry. Furthermore, the L-shaped frames are separated into two members, 
that is, a beam and a column. Applying the equilibrium and compatibility condi-
tions at the joint of the beam and the column, the load–deformation relations are 
obtained. The members are divided into 25 segments. The rotation of the members 
is calculated by integrating the curvature along the length. The effects of shear force 
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and stiffness of the joint panel are considered. In Figure 6.5b, the yielded segments 
are indicated: for example, C1 or B2 means that yielding occurs in the first column 
segment or the second beam segment, respectively, from the member end. From the 
obtained sample results and from many other test results (Chen and Toma, 1994), it 
is obvious how the plastic-zone method can accurately predict the behavior of steel 
frames.

Table 6.1
Member Sizes and Test Program of the 
Full-Size Frames

Specimen 
Name P (ton)

P
Py

P
Pe

h
r

I h
I L
b

c

¥
¥

FM0 0 0 0 34.7 0.768

FM5 70 0.489 0.12 34.7 0.742

Table 6.2
Actual Section Properties of the Full-Size Portal Frames

Specimen 
Name

Column Beam

A (cm2) I (cm4) Z (cm3) Zp (cm3) A (cm2) I (cm4) Z (cm3) Zp (cm3)

FM0 48.8 2740 314 351 37.9 4050 325 367

FM5 50.6 2840 323 363 37.3 4050 322 363

Note:	 A is the cross-sectional area, I is the sectional inertia, Z is the section modulus, and Zp is the plastic 
section modulus.

Table 6.3
Material Properties of the Full-Size Portal Frames

Specimen 
Name

Column Beam

σy 
(ton/
cm2)

σu 
(ton/
cm2)

εu 
(%)

e
e
st

y

E
E
st

σy 
(ton/
cm2)

σu 
(ton/
cm2)

εu 
(%)

e
e
st

y

E
E
st

FM0 2.70 4.42 29.3 14.0 0.016 2.70 4.23 26.5 15.7 0.013

FM5 2.78 4.44 32.2 13.7 0.014 2.88 4.35 30.5 14.9 0.013

Note:	 σy is the yield stress, σu is the ultimate strength, εu is the maximum elongation, εy is the yield 
strain, εst is the strain at start of strain hardening, E is the modulus of elasticity, and Est is the 
strain-hardening modulus.
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6.2.6  Practicality of the Plastic-Zone Method

Whereas the plastic-zone solution is regarded as an exact solution, the method may 
not be used in daily engineering design because it requires very intensive computa-
tion efforts. Its application is limited to

	 1.	Study detailed structural behavior
	 2.	Verify the accuracy of simplified methods
	 3.	Provide comparison with experimental results
	 4.	Derive design methods or generate charts for practical use
	 5.	Apply for special design problems

The AISC-LRFD beam-column equations were established in part based on a 
curve fit to the exact strength curves obtained from the plastic-zone analysis by 
Kanchanalai (Liew et al., 1993). The plastic-zone method will be used in this chap-
ter as a benchmark for the development of the practical advanced analysis methods.

6.3  Simplifications for Advanced Analysis

6.3.1  Introduction

Due to the difficulty of applying the plastic-zone method in daily practice, the elas-
tic–plastic hinge-by-hinge method, explained in Chapter 3, can be advanced in order 
to perform simplified advanced analysis. This can be achieved by accounting for 
the stability second-order effects, residual stresses, initial imperfection of members, 
inelasticity, and joint flexibility. In the following sections, simplified concepts are 
introduced in order to account for the aforementioned parameters in the elastic–
plastic hinge-by-hinge method. These concepts are formulated in the next section in 
order to achieve a practical advanced analysis.

Table 6.4
Test Results of Full-Size Portal Frames

Specimen 
Name

Test Results

Hpc (ton)Hf (ton)
H
H

f

pc

D f

h
D
D

f

fy

FM0 15.8 1.03 0.059 4.04 15.30

FM5 8.5 0.89 0.015 2.20 9.59

Note:	 H is the maximum horizontal force, Hf is the experi-
mental, Hpc is the rigid plastic, Δf is the maximum dis-
placement, and Δfy is the displacement at yield.
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6.3.2  Stability Effects

The stability effects can be considered by writing the equilibrium equations of 
members in the deformed geometry, that is, by using the slope-deflection equations 
of beam-column to express member equilibrium. In these equations, the stability 
functions, as explained in Chapter 2, account for these second-order effects. This 
approach leads to significant saving in modeling and solution efforts by using one or 
two elements per member.

6.3.3  Residual Stresses

The tangent modulus concept of the Column Research Council (CRC) can be 
employed to capture the effect of residual stresses along the member between the 
plastic hinges. In this concept, the elastic modulus E, instead of the moment of iner-
tia, is reduced to account for the reduction of the elastic portion of the cross section 
since the reduction of elastic modulus is easier to implement than that of moment of 
inertia for different sections. The reduction rate in stiffness between weak and strong 
axes is different, but this is not considered here. This is because a rapid degradation 
in stiffness in the weak-axis strength is compensated well by the stronger weak-
axis plastic strength. As a result, this simplification will make the present method 
practical.

6.3.4  Initial Geometric Imperfection

There are two types of initial geometric imperfections of steel members: out-of-
straightness and out-of-plumbness. These imperfections create additional moments 
in the column members, causing the member bending stiffness to be further reduced. 
Any of the following three methods can be used to model geometric imperfection: 
explicit imperfection modeling method, equivalent notional load method, and the 
further reduced tangent modulus method (Figure 6.6).

The ECCS (1984, 1991), AS (1990), and CSA (1989, 1994) specifications recommend 
the out-of-straightness varying in parabolic shape with a maximum in-plane deflec-
tion at the mid-height. It is noted that this explicit modeling method in braced frames 
requires the inconvenient imperfection modeling at the center of columns, although it 
is much lighter than that of the conventional LRFD method for frame design.

The ECCS (1984, 1991) and CSA (1989, 1994) also introduced the equivalent 
load concept (notional load concept), which accounts for the geometric imperfec-
tions in unbraced frames, but not in braced frames. The notional load method uses 
equivalent lateral loads to approximate the effect of member initial imperfection 
and distributed plasticity. This technique is similar to the concept of the “enlarged” 
geometric imperfection approach of the EC3 (2005), which is also allowed by the 
CSA (1994) and the AS (1990). In the ECCS, the exaggerated notional loads of 0.5% 
times the gravity loads are used to avoid overprediction of the strength of members 
as does the elastic–plastic-hinge method. The application of these notional loads is 
illustrated in Figure 6.7 to several frame examples. In the Eurocode 3, the equiva-
lent notional load concept may also be used for braced frames, where this load may 
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be applied at mid-height of a column since the ends of the column are braced. For 
unbraced frames, the geometric imperfections of a frame may be replaced by the 
equivalent notional lateral loads expressed as a fraction of the gravity loads acting on 
the story. The drawback of this method for braced frames is that it requires a tedious 
input of notional loads at the center of each column, whereas the drawback of this 
method for unbraced frames is that the axial forces in the columns must be known 
in advance to determine the notional loads before analysis, which is often difficult to 
calculate for large structures subject to lateral wind loads.

In order to avoid the drawbacks of the previous two methods, it is recommended 
that the further reduced tangent modulus method be used. The idea of using the 
reduced tangent modulus concept is to further reduce the tangent modulus, Et, to 
account for further stiffness degradation due to geometric imperfection (Figure 6.6c).

6.3.5  Inelasticity

Material inelasticity can be simply introduced in the advanced analysis through the 
plastic-hinge concept. For cases with small axial forces and large bending moments, 
a gradual stiffness degradation of plastic hinge is required to represent the distributed 
plasticity effects associated with bending actions. Therefore, the work-hardening 
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plastic-hinge model is adopted to represent the gradual transition from elastic stiff-
ness to zero stiffness associated with a fully developed plastic hinge.

6.3.6  Joint Flexibility

Connections in real structures do not possess the idealized characteristics typically 
used in design codes around the world of being fully restrained (rigid) or simple (pin 
ended). The most commonly used connections in steel buildings are semi-rigid par-
tial strength connections (partially restrained). Several studies have demonstrated 
the potential for improving stability, strength, and serviceability of structures with 
semi-rigid partial strength connections (Chen, 1993; Chen and Kim, 1998).

Connections may be modeled as a rotational spring with the appropriate moment–
rotation relationship where an appropriate joint model can be adopted and the stiff-
ness matrix of the member attached to the semi-rigid joint is modified accordingly. A 
comprehensive handbook on semi-rigid connections edited by Chen et al., including 
a list of collected connection test data in tabular form with illustrative figures for 
implementation, is available for engineering practice (Chen et al., 2011).

6.4  Practical Advanced Analysis

6.4.1  Introduction

Since the plastic-zone method is not practical for everyday practice, the simplifica-
tions presented in the previous section are adopted in order to perform a practical 
advanced analysis for daily usage. In the following sections, we shall make further 
modifications and simplifications of the elastic–plastic-hinge method to improve 
its performance and at the same time to make it practical and work in engineering 
practice. These modifications are grouped into three categories: geometry, material, 
and connection. Details of these modifications can be found in the two doctoral the-
ses (Liew, 1992; Kim, 1996) and their subsequent papers (see, e.g., Kim and Chen, 
1996; Liew et al., 1993). This refined plastic-hinge method will be called the practical 
advanced method for frame design in what follows. In the following sections, the dif-
ferent parameters of this analysis are formulated based on these simplified concepts.

6.4.2  Stability Effects

In order to capture second-order stability effects, the conventional stability func-
tions are used since they lead to a large saving in modeling and solution efforts by 
using one or two elements per member. With reference to Figure 6.8, the incremental 
force–displacement relationship of member ends may be written as:

A B
P

θA
θB

MBMA

P

Figure 6.8  Force–displacement of a beam-column element.



216 Understanding Structural Engineering: From Theory to Practice

	

�

�

�

�

�

�

M

M

P

EI

L

S S

S S

A I e

A

B

A

B

/

















=





















1 2

2 1

0

0

0 0

θ
θ











	 (6.4)

where
S1 and S2 are the stability functions
ṀA and ṀB are the incremental end moments
Ṗ is the incremental axial force
�θA and �θB are the incremental joint rotations
ė is the incremental axial displacement
A, I, and L are the area, moment of inertia, and length of the beam-column ele-

ment, respectively
E is the modulus of elasticity

The stability functions for in-plane bending of a prismatic beam-column, as illus-
trated in Chapter 2, are
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For simplicity in computation, Lui and Chen (1987) proposed approximate expres-
sions for the stability functions S1 and S2 if −2.0 ≤ kL ≤ 2.0:
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where the nondimensional axial force P is defined as
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6.4.3  Residual Stresses

The CRC tangent modulus concept is employed to account for the gradual yielding 
effect due to residual stresses along the length of members under axial loads between 
two plastic hinges. Based on the CRC column strength formulas (Galambos, 1988), 
the tangent modulus can be written as

	

E

E
P Pt

yfor= ≤1 0 0 5. . 	 (6.7a)
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P

P
P Pt

y y
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where Py is the squash load. Equations 6.7a and b are shown in Figure 6.6c.

6.4.4  Initial Geometric Imperfection

The further reduced tangent modulus method is based on further reducing the 
tangent modulus, Et, to account for further stiffness degradation due to geometric 
imperfection. The further reduced tangent modulus approach was proposed by Chen 
and Kim (1997) to account for a geometric imperfection of 1/500 of the column 
length or story height. A reduction factor of 0.85 was determined from calibration 
with the almost exact plastic-zone solutions. The same reduction factor is used for 
both braced and unbraced structures, including both the out-of-straightness and the 
out-of-plumbness. It is used to further reduce the CRC–Et value as given in the fol-
lowing equations, and as shown in Figure 6.6c in solid curve marked with imperfec-

tion, or simply E Et t0.85′ = :

	
E E P Pt y0.85 for′ = > 0 5.

	 (6.8a)
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6.4.5  Inelasticity

Inelasticity is accounted for through the work-hardening plastic hinge. The tangent 
modulus model in Equation 6.8 is suitable for P/Py > 0.5, but is not sufficient to rep-
resent the stiffness degradation for cases with small axial forces and large bending 
moments. A gradual stiffness degradation of plastic hinge is required to represent 
the distributed plasticity effects associated with bending actions. Therefore, the 
work-hardening plastic-hinge model is introduced to represent the gradual transi-
tion from elastic stiffness to zero stiffness associated with a fully developed plastic 
hinge.
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To represent a gradual transition from the elastic stiffness at the onset of yielding 
to the stiffness associated with a full plastic hinge at the end, a parabolic model sim-
ulating the gradual degradation of the element stiffness due to the plastification of 
the steel section is used as shown in Figure 6.9. The factor η, representing a gradual 
stiffness reduction associated with flexure, was proposed by Liew et al. (1993):

	 η α= ≤1 0 5for . 	 (6.9a)

	 η α α α= − >4 1 0 5( ) .for 	 (6.9b)

In this model, α is the force state parameter obtained from the limit state surface cor-
responding to the member ends. The term α is based on the AISC-LRFD sectional 
strength curve and is expressed as
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where
P and M are the second-order axial force and bending moment at the cross section
MP is the plastic moment capacity

Fully plastic

Elastic

0 0.5

0.5

1.0
M/Mp

P/
P y

1.0

P/Py = 2M/9Mp
α = P/Py + 8M/9Mp

α = P/2Py + M/Mp

Partially yield

LRFD plastic strength
(α = 1.0)

(α = 0.5)o

Initial yield

Figure 6.9  Smooth stiffness degradation for a work-hardening plastic hinge based on 
LRFD sectional strength curve as the limit or fully yielded surface.
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Initial yielding is assumed to occur at α = 0.5, and the yield surface function cor-
responding to α = 1.0 represents the state of forces where the cross section has fully 
yielded and their corresponding state of forces (P, M) can move only along the yield 
surface under continuous loading condition.

6.4.6  Incremental Force–Displacement Relationship

In advanced analysis, the incremental load concept is applied to trace the 
force–displacement relationship of the structure and its components. When the 
work-hardening plastic hinges are introduced at both ends of a beam-column ele-
ment, the incremental force–displacement relationship can be expressed as, in the 
usual notations,
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where
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S Sjj = η ηA B 2 	 (6.14)

where ηA and ηB are the stiffness reduction factors at ends A and B, respectively. 
Note that the modulus of elasticity E in Equation 6.11 is replaced by the tangent 
modulus Et to account for the effects of residual stresses.

The parameter η represents a gradual stiffness reduction associated with flex-
ures at sections. The partial plastification of cross sections at the end of elements 
is denoted by 0 < η < 1. The parameter η may be assumed to vary according to the 
parabolic expression

	 η α α α= − >4 1 0 5( ) .for 	 (6.15)

The refined plastic-hinge analysis implicitly accounts for the effects of both residual 
stresses and spread of yielded zones. To this end, refined plastic-hinge analysis may 
be regarded as equivalent to the plastic-zone analysis.
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6.4.7  Joint Flexibility

A connection may be modeled as a rotational spring with the appropriate moment–
rotation relationship. Figure 6.10 shows a beam-column element with spring semi-
rigid connections at both ends. If the effect of connection flexibility is incorporated 
into the member stiffness, the incremental element force–displacement relationship 
of Equation 6.11 should be modified as
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where
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where RktA and RktB are the tangent stiffness of connections A and B, respectively.
For modeling the connection, different models can be found in literature; however, 

one successful model is presented here, that is, the three-parameter power model by 
Kishi and Chen (1990). The model is expressed in terms of three parameters: (1) the 
initial connection stiffness Rki; (2) the ultimate moment capacity of connection Mu; 
and (3) a shape parameter n. With reference to Figure 6.11,

Uniform EI

MA MBθrA

θrB
θA

θBP P

L

Figure 6.10  Beam-column element with semi-rigid connections.
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where
m = M/Mu

θ = θr/θo, where θo is the reference plastic rotation (= Mu/Rki)
Mu is the ultimate moment capacity of the connection
Rki is the initial connection stiffness
n is the shape parameter

When the connection is loaded, its tangent stiffness Rkt at an arbitrary relative rota-
tion θr can be derived by simply differentiating Equation 6.21
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Also, from Equation 6.21,
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M
M = Rki θr

θo= Mu/Rki θr

n = ∞

n = 2
n = 4

n = 1

Mu

0

Rki θr

{1 + (θr/θo)n}
M = 1/n

Figure 6.11  Moment–rotation behavior of semi-rigid connection three-parameter power 
model. (Modified from Kishi, N. and Chen, W.F., J. Struct. Eng., ASCE, 116(7), 1813, 1990.)
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When the connection is unloaded, its tangent stiffness is equal to the initial 
stiffness:
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It is noted that Rkt and the relative rotation θr can be determined directly from 
Equations 6.22 and 6.23 without iteration, which makes the model an effective tool 
in design.

If the reader is interested in the semi-rigid frame design with LRFD using the 
advanced analysis method, the book by Chen et al. (1996) and Chen (2000) pro-
vide an in-depth coverage of the recent developments in the design of these frames. 
It also provides computer software that will enable the reader to perform planar 
frame analysis in a direct manner for a better understanding of behavior and a more 
realistic prediction of a system’s strength and stability. Practical, analytical methods 
for evaluating connection flexibility and its influence on the stability of the entire 
framework are also described. These methods range from simplified member-by-
member technique to more sophisticated computer-based advanced analysis and 
design approaches, including many example problems and detailed design proce-
dures for each type of method.

6.5  Application Examples

6.5.1  Verification Example (Vogel’s Six-Story Frame)

Vogel (1985) presented the load–displacement relationship of a six-story frame, 
Figure 6.12a, using plastic-zone analysis. The stress–strain relationship is elastic–
plastic with linear strain hardening, Figure 6.12b, the residual stresses are as shown 
in Figure 6.12c, and the geometric imperfection in all columns is Lc/450, where Lc 
is the column length.

Vogel’s frame has been analyzed using three different methods: the explicit mod-
eling method, the notional load method, and the further reduced tangent modulus 
method. For comparison, an out-of-plumbness of Lc/450 is used in the explicit mod-
eling method. A notional load factor of 1/450 expressed as a fraction of the gravity 
loads acting on the story, and the reduced tangent modulus factor of 0.85 are used. 
Since the further reduced tangent modulus is equivalent to a geometric imperfection 
of Lc/500, an additional geometric imperfection of Lc/4500 is modeled in the fur-
ther reduced tangent modulus method, where Lc/4500 is the difference between the 
Vogel’s geometric imperfection of Lc/450 and the proposed geometric imperfection 
of Lc/500.

The load–displacement curves of the three methods together with the Vogel’s 
second-order plastic-zone analysis are compared in Figure 6.12d. The error in 
strength prediction by the three methods is less than 1%. Under service load, the 
three methods predict the lateral displacements within less than 3% of Vogel’s exact 
solution, with the best prediction by the further reduced tangent modulus method. 
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Thus, Vogel’s frame is a good example of how the reduced tangent modulus method 
predicts well the frame response.

6.5.2  Design Example for Calibration against LRFD Code

Figure 6.13a shows a fixed-supported two-bay portal frame subjected to gravity and 
lateral loads with the critical load combination (Chen and Kim, 1997). All mem-
bers are assumed to be laterally braced and are of A36 steel with preliminary sizes 
W16 × 89 used for beams and W14 × 68 for columns.

Each column is modeled as one element; the left beam has three elements whereas 
the right beam has two. In the equivalent notional load model, the notional load 
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Figure 6.12 (continued)  (c) residual stresses; and (d) comparison of displacement.
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of 0.0306 kips results from 0.2% times the total gravity load of 153 kips and is 
added to the lateral load. In the further reduced tangent modulus model, the practical 
advanced analysis accounts for initial geometric imperfection by reducing the tan-
gent modulus as explained in the previous section. The incremental load correspond-
ing to each method is shown in Figure 6.13b and c; a scaling factor of 25.5 is used.

The load-carrying capacity from advanced analysis is shown in Table 6.5 for the 
two methods of initial member imperfection modeling. If the load-carrying capacity 
corresponding to the formation of the first plastic hinge is adopted, the preliminary 
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Figure 6.13  Two-bay frame example: (a) configuration and load condition of unbraced 
two-bay frame; (b) incremental load for the equivalent notional load model; (c) incremental 
load for the further reduced tangent modulus model;

(continued) 
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member sizes are suitable. On the other hand, if the ultimate state is selected, the 
member sizes can be reduced. However, other checks such as serviceability and duc-
tility have to be carried out.

For design according to the AISC-LRFD method, the results of the first-order 
elastic analysis for the cases of non-sway and sway are shown in Figure 6.13d and e, 
respectively. Upon carrying out the design, it is found that the preliminary section 
sizes (W16 × 89 for beams and W14 × 68 for columns) are adequate.

When the load-carrying capacity corresponding to the formation of the first plas-
tic hinge is considered to signify failure, the advanced analysis and the conven-
tional LRFD method predict the same member sizes. On the other hand, if inelastic 
moment redistribution is considered (i.e., failure is characterized by the ultimate 
state), the method of advanced analysis may result in some saving in member sizes.

Table 6.5
Load-Carrying Capacity of Two-Bay Frame 
Example

Imperfection Modeling
First Plastic 

Hinge
Ultimate 

State

Equivalent notional load 51.96 63.68

Further reduced tangent modulus 50.35 63.60
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Figure 6.13 (continued)  (d) member forces from first-order analysis for non-sway case; 
and (e) member forces from first-order analysis for sway case.



227Toward Advanced Analysis for Steel Frame Design

6.5.3  Comparison with the LRFD Design Method

The key considerations of the conventional LRFD method and the practical advanced 
analysis method are compared in Table 6.6. While the LRFD method accounts for 
key behavioral effects implicitly in its column strength and beam-column interaction 
equations, the advanced analysis method, as described previously, accounts for these 
effects explicitly in the form of stability function, stiffness degradation function, and 
stiffness reduction factor for geometric imperfections.

6.5.4  Semi-Rigid Frame Design Example

Connections in real structures do not possess the idealized characteristics typically 
used in design codes around the world of being fully restrained (rigid) or simple (pin 
ended). The most commonly used connections in steel buildings are semi-rigid par-
tial strength connections (partially restrained). Several studies have demonstrated 
the potential for improving stability, strength, and serviceability of structures with 
semi-rigid partial strength connections.

Figure 6.14a shows a semi-rigid frame of two stories, each 12 ft high and one bay 
25 ft wide. The frame is subjected to two loading conditions of distributed gravity 
and concentrated lateral loads, which are modeled as shown in Figure 6.14a (Chen 
and Kim, 1997). The roof beam connections are top- and seat-L6 × 4 × 3/8 × 7 angle 
with double web angles of L4 × 3.5 × 1/4 × 5.5 made of A36 steel. The floor beam 
connections are top- and seat-angles L6 × 4 × 9/16 × 7 with double web angles of 
L4 × 3.5 × 5/16 × 8.5. All fasteners are A3253/4″ diameter bolts. The initial member 

Table 6.6
Comparison of LRFD Method with Practical Advanced Analysis Method

Key Consideration LRFD Advanced Analysis

Second-order effects Column curve,
B1, B2 amplification 
factors

Stability function
Necessary number of elements:

•	 Beam with uniform load—2
•	 Column in braced frame—2
•	 Column in unbraced frame —1

Geometric 
imperfections

Column curve Further reduced tangent modulus method

•	 Reduction factor ′ =E Et t850.
•	 See Figure 6.6c

Stiffness degradation 
associated with 
residual stresses

Column curve CRC tangent modulus curve
•	 See Equations 6.7a and b

Stiffness degradation 
associated with flexure

Column curve,
Beam-column 
interaction 
equations

Parabolic degradation function:
•	 Refined plastic hinge concept 

(work-hardening plastic hinge)
•	 See Equations 6.9 and 6.10 and Figure 6.9

Connection nonlinearity No procedure Power model/rotational spring
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sizes are selected as W8 × 28, W16 × 40, and W12 × 22 for columns, floor beams, and 
roof beams, respectively.

Each column is modeled by one element and the beams are modeled by two ele-
ments. In the further reduced tangent modulus, the factor of 0.85 is used. The loads 
are divided into 20 increments. The joints are modeled by the three-parameter power 
model of Kishi and Chen. The parameters of the model are calculated, which are 
given in Table 6.7.

Upon performing the practical advanced analysis for load combinations 1 and 
2, it was found that the ultimate load carrying at node 4, Figure 6.14b, is 44.8 and 
39.2 kips, respectively. Compared to the applied loads of 45.5 and 31.75 kips, Figure 
6.14a, the initial member sizes are adequate. However, when checking serviceability 
requirements, the drift due to lateral loads is found to be equal to 0.972 in., that is, 
span/296, which is greater than the limit, span/400. Therefore, the initial member 
sizes should be increased.

From the design according to the AISC-LRFD method, the column and roof 
beams remained the same as in advanced analysis. However, the floor beam is one 
size larger from the AISC-LRFD design since advanced analysis allows for inelas-
tic moment redistribution, which results in smaller sections. The results from both 
methods are illustrated in Figure 6.14c.

6.6  Performance-Based Design

Some drawbacks and limitations of the concept of effective length factor have 
been stated in Section 6.1.4. Aside from time saving and easiness in implementa-
tion in computer programming, a reliable representation of the interaction between 
the structural system and its members in a large structural system is guaranteed in 
advanced analysis. In addition, material saving, as a result of inelastic redistribu-
tion of internal forces in a structural system, can be achieved. Moreover, advanced 
analysis provides important information such as the failure mechanisms and prog-
ress of yielding of a structural system, which is critical in certain applications such 
as design for earthquakes.

In some applications such as performance-based design or design for earthquakes, 
the effective length factor is difficult to employ and it does not provide answer to 
some critical questions. On the other hand, advanced analysis is the solution in 
such a design. Besides, it can provide important information about which part of 

Table 6.7
Estimated Parameters of Connections

Parameters
Connection at 

Roof Level
Connection at 

Floor Level

Initial stiffness Rki 90 887 kip-in./rad 607 384 kip-in./rad

Ultimate moment Mu 446 kip-in. 1 361 kip-in.

Shape parameter n 1.403 0.927
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the structure is the most critical, and what will happen if part of the structure yields 
or fails. In addition, it illustrates how a structure will behave during an earthquake 
and what might happen if forces exceed the code limits. Moreover, it has become 
practical to design according to certain criterion such as the structure fuse concept, 
where failure is controlled at preselected locations, Figure 6.15, or performance-
based design for different performances of structural components (Chen, 1999). In 
the preselected locations, section capacity is reduced, for example, by eliminating 
parts of the section flanges, such that yielding initiates at these sections. In this man-
ner, plastic hinges are imposed at desired locations in order to avoid excessive cost 
and difficult repair of joints (Chen and Yamaguchi, 1996). With reference to Figure 
6.15, it is realized that the preselected locations are easier to access and repair than 
joints in case of damage.

One of the applications of advanced analysis in performance-based design is the 
assessment of structure performance against fire. The failure mode of steel frames 
under fire and the length of time between initial introduction of fire and collapse 
can be determined from such an analysis (Hwa, 2003). From the standard fire curve, 

Special segment

Panels

Chord members

Figure 6.15  Special truss moment frame—an example of structural fuse concept.
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for instance, the ASTM E119 (1998) curve shown in Figure 6.16, and based on the 
design fire duration, the design temperature is determined. Accordingly, the material 
properties, for example, elasticity modulus and yield stress, Figure 6.17, are modified 
for those members or parts of the structure affected by fire. Then, advanced analysis 
is performed under factored applied loads. Alternatively, the applied loads can be 
used in the analysis with the material properties of the zones affected by fire being 
modified due to increasing temperature values until collapse takes place. Then, the 
corresponding fire duration is determined.
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Figure 6.16  Time–temperature curve of standard fire.
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6.7  Historical Sketch

For decades, structural engineers and researchers have been exploring various 
approaches for assessing the structural behavior for the analysis and design of steel 
structures. The assessment methods, accordingly, have evolved over time, from hand 
calculation approach based on member capacity checks to computer-based approach 
based on advanced analysis to consider the interdependent effects between members 
and frame stability. The strength and stability of a structural system and its members 
are related, but this interaction has been treated separately in the current engineer-
ing practice by the popular effective length factor method. These indirect analysis 
and design methods include historically the ASD, PD, and LRFD. All these design 
approaches require an elastic analysis and separate specification member capacity 
checks including the calculation of the effective length factor, commonly known as 
the K factor.

With the present development of computer technology, two aspects, the stability 
of separate individual members and the stability of their structural frameworks as a 
whole, can be treated rigorously for the determination of the maximum strength of 
the structures. The development of this direct approach to design is called “advanced 
analysis” or more specifically, “second-order inelastic analysis for frame design.” In 
this direct approach, there is no need to compute the effective length factor since 
separate member capacity checks encompassed by the specification equations are 
not required.

In the United States, the term “advanced analysis” strictly means “second-order 
inelastic analysis” for frame designs without the use of the effective length factor (K 
factor). There are three stages of progress to achieve the advanced analysis for frame 
design at present:

Stage 1: Direct second-order elastic analysis eliminating the use of amplifica-
tion factors. This direct computation of second-order forces was encour-
aged in the AISC-LRFD (1986) specifications. This is LRFD design but not 
advanced analysis for design.

Stage 2: Direct second-order plastic analysis with the use of K factor to do 
member-by-member capacity checks with code requirements. This is a 
transition to advanced analysis, but it is still not advanced analysis because 
the K factor is still needed in the design process.

Stage 3: Direct second-order inelastic analysis for frame design without the use 
of K factor to do member-by-member capacity checks with code require-
ments. The code requirements are met automatically in the advanced analy-
sis for the structural system. This is called advanced analysis.

The purpose of this chapter is to present a simple, concise, and reasonably com-
prehensive introduction to a practical, direct method of steel frame design, using 
advanced analysis that will produce almost identical member sizes as those of the 
traditional LRFD method. The direct method described herein is limited to two-
dimensional steel frames, so the spatial behavior is not considered. Lateral torsional 
buckling is assumed to be prevented by adequate lateral braces. Compact plastic W 
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sections are assumed so that sections can develop their full plastic moment capacity 
without buckling locally. All loads are statically applied.

Will the advanced methods result in buildings built with light members? Not 
necessarily. Will buildings cost less to design or build? Not likely. Will it be more 
complicated to design than LRFD? No! What it will do then? The advanced methods 
described here will encourage engineers to use more accurate analysis methods and 
computer programs. The advanced analysis can predict more accurately the possible 
failure modes of a structure, exhibit a more uniform level of safety, and provide a 
better long-term serviceability and maintainability. It is the state-of-the-art design 
methods for the structural engineers for the twenty-first century.
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7 The Era of Model-
Based Simulation

7.1  The Era of Computer Simulation

In the past two decades, remarkable developments have occurred in the field of com-
puter hardware and software. Advancements in computer technology have spurred 
the development of scientific simulation and visualization of problems, which tra-
ditionally have been addressed via experimentation and theoretical models. Such 
capabilities now offer the solution of problems thought “unsolvable” before, and are 
consequently, the reason behind the progress made in a number of areas in civil 
engineering. As a result of these rapid advances, a revolution has occurred in civil 
engineering research and practice. A third aspect, computing, has been added to 
the theoretical and experimental aspects of the field to form the basis of new civil 
engineering. Simulation plays an increasing critical role in all areas of science and 
engineering. Exciting examples of these simulations are occurring in areas such as 
automotive crashworthiness for component design in the auto industry, and Boeing 
777 for system design and manufacturing in aerospace.

The ongoing projects in space engineering include system design, assembly, and 
operation of the next generation Space Telescope (Hubble II), and the Accelerated 
Strategic Computing Initiative for system and component verification of selected 
focused applications for the U.S. Department of Defense, among others. In civil engi-
neering, the U.S. National Science Foundation started an exploratory research pro-
gram on model-based simulation (MBS) in 2000 and provided major funding for the 
establishment of the Network for Earthquake Engineering Simulation (NEES). The 
NEES is an interconnected system of earthquake engineering physical experimental 
facilities (e.g., shake tables, tsunami wave tanks, geotechnical centrifuges, reaction 
wall systems, and structural and geotechnical field facilities) in the United States. 
These component facilities distributed geographically around the nation will be net-
worked to form a virtual integrated experimental facility, so that they can be used 
directly by the researchers in various locations to conduct large-scale experiments.

The exponential growth of computer speed and capacity has led to the develop-
ment of computational science and engineering as a unique and powerful tool for 
scientific discovery. One key branch of this new discipline is model-based simula-
tion, the objective of which is to develop the capability for realistically simulating 
the behavior of complex systems under loading and environmental conditions the 
systems may experience during their lifetime. Simulation does not replace observa-
tion and physical experimentation but complements and enhances their value in the 
synthesis of analytical models.
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MBS is creating a new window into the natural and technological worlds. MBS 
is as valuable as theory and experimentation is for scientific discovery and techno-
logical innovation in that it provides a framework for combining theory and experi-
mentation with advanced computation. Besides massive numerical computations, 
high-performance computers permit the use of other tools, such as visualization 
and global communications using advanced networks, all of which contribute to 
the ability to understand and to control the physical processes governing complex 
systems.

The engineering of civil and mechanical systems stands to benefit immensely 
from MBS because of their intrinsically complex nature, which involves materi-
als that exhibit nonlinear behavior, multiple spatial and temporal scales, and dif-
ferent types of components whose behavior is governed by different physics. It is 
fascinating to envision that with the aid of MBS, it might be possible to understand 
from first principles phenomena, that today we can explain only crudely, the pro-
cess by which a building or bridge collapses or how soil liquefies during an earth-
quake. This will naturally lead to improved design methodologies that are based 
on realistic simulations of performance, as compared with the current procedures 
in which performance is implicit and poorly understood. With designs based upon 
models, engineers can run high-fidelity simulations to evaluate new materials, com-
ponents, and systems during the design stages before investing valuable resources 
in construction.

Moreover, civil and mechanical systems, in general, and structural and geotech-
nical systems, in particular, are associated with large uncertainties concerning their 
material properties and applied loads. By monitoring the system behavior, MBS can 
be used in conjunction with inverse methods to reduce the level of uncertainty by 
better identifying the material characteristics, the loading environment, and even 
adapting the model itself, thereby allowing designers to considerably increase the 
reliability of the system to achieve specified performance goals. In addition, MBS 
and the monitoring of the behavior of a complex system during construction, such 
as a large airport facility or a building complex, can guide the engineer in making 
real-time decisions concerning changes in the design or construction process. One 
can project that in the future, models will live concurrently with the systems they 
represent to provide owners and operators ongoing information that can be used in 
increasing operations and future performance.

7.2  Model-Based Simulation in Structural Engineering

Computer simulation has now joined theory and experimentation as a third path for 
engineering design and performance evaluation. Simulation is computing, theory is 
modeling, and experimentation is validation of the result. MBS is based on the inte-
gration of mechanics, computing, physics, and materials science for predicting the 
behavior of complex engineering and natural systems. MBS allows engineers and 
researchers to investigate the entire life cycle of engineered systems and to assist in 
decisions on the design, construction, and performance in civil and mechanical sys-
tems. Reliable and accurate MBS tools will permit the design of engineering systems 
that cost less and perform better. MBS promises to reduce design-cycle times while 
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increasing system life span. MBS is currently being used effectively in some sectors 
of the engineering profession, notably in aerospace and automotive applications. The 
challenge is to make MBS a reality in other engineering fields.

The emerging areas of MBS in structural engineering will include, most notably, 
the following topics:

	 1.	From the present structural system approach to the life-cycle structural 
analysis and design covering construction sequence analysis during con-
struction, performance analysis during service, and degradation and dete-
rioration analysis during maintenance, rehabilitation, and demolition

	 2.	From the present finite element (FE) modeling for continuous media to 
the finite block types of modeling for tension-weak materials that will 
develop cracks, and subsequently, change the geometry and topology of the 
structure

	 3.	From the present time-independent elastic and inelastic material modeling 
to the time-dependent modeling reflecting material degradation and dete-
rioration science

A busy, productive, and exciting future lies ahead for all who wish to participate 
in these emerging areas of research and application. These areas are inherently 
interdisciplinary in science and engineering, where computation plays the key role. 
Scientists provide a consistent theory for application, and structural engineers must 
continue to face the reality dealing with these theories in order to make them work 
and applicable to the real world of engineering.

7.3  MBS System Integration

The development of MBS for any civil engineering facility must involve the follow-
ing steps: mathematical modeling, solution algorithm, and software development. 
These steps are illustrated in the following sections.

7.3.1  Mathematical Modeling

These models must be developed on the basis of mechanics or physics, and materi-
als science based on the observation of experimental testing. The level of refine-
ment for a mathematical model depends on its application. For example, to model a 
reinforced concrete column subject to an earthquake loading in a highway bridge, 
a plastic-damage continuum mechanics representation of damage at a macroscale 
may be adequate for a representation of the state of concrete material prior to the 
peak load under multiaxial stress conditions. However, in the post-peak load range 
near failure, the concrete material enters the strain-softening state, and localization 
occurs. The application of fracture mechanics to concrete, including the bond slip 
between rebars, and concrete at a microscale is necessary for an accurate repre-
sentation of the failure process in the reinforced concrete column during its entire 
service life.
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7.3.2  Solution Algorithm

As mentioned previously, for an integrated life-cycle simulation of constructed facil-
ities, it is not uncommon for realistic simulations to require the mathematical model-
ing of radically distinct scales, in time and/or space. For example, in the analysis of a 
reinforced concrete bridge system under seismic loading, a macroscale is necessary 
to model the overall behavior of the structure–soil system, whereas a microscale 
is needed for the fracture mechanics analysis at the local level in order to trace 
the development and propagation of microcracks and bond slip between rebars and 
concrete material. Therefore, for a realistic simulation of the behavior of these struc-
tures, the microcracking and bond slip must be treated at a microlevel. This behavior 
must then be “translated” to the level of the structure or the macrolevel. To this end, 
parallel numerical algorithms must be used, and a suitable interface algorithm for 
different scales must be developed.

In using parallel FE analyses for the structural system or parallel fracture mechan-
ics analyses for the local microdamages of materials, a single initial partition of the 
physical domain is usually not sufficient to provide a good load balance in the paral-
lel computations. This is because, in these analyses, some parts of the mesh behave 
nonlinearly, while others remain predominantly in the linear range. The computa-
tional effort involved in each of these parts of the mesh may be significantly differ-
ent. Major improvements in computational efficiency can be gained in these cases 
by repartitioning the domain during the analysis to ensure that the workload in each 
processor remains roughly the same. Therefore, to successfully realize these simula-
tions, proper algorithm design and analysis in a parallel or distributed environment 
must be carried out.

7.3.3  Software Development

To bring advanced computing and simulation capabilities to civil engineering appli-
cations, it is necessary to develop a domain-specific software development envi-
ronment to support these types of focused engineering applications. A software 
development environment is a compatible set of tools, usually based on a specific 
software development methodology that can be employed for several phases of soft-
ware and operation. There are hundreds of such systems on the market, and more are 
becoming available each year.

The key to domain-specific software development environments is software reuse. 
Software reuse enables the knowledge obtained from the solution of a particular 
problem to be accumulated and shared in the solution of other problems. If software 
accumulated from previous software development can be utilized in the development 
of new applications, substantial applications can be built more efficiently. This is an 
ideal environment for university research and education. Software reuse promises 
substantial improvement in several aspects: software productivity, maintainability, 
portability, standardization, and general quality. A flexible software development 
environment for a specific domain is essential to the sharing of software as well as to 
the proper adaptation of existing software to the new hardware environment.



239The Era of Model-Based Simulation

Changes in computer hardware have spurred the investigation of new algorithms 
for engineering computation. For example, much research is currently being con-
ducted on algorithms, which take advantage of parallel computing architectures. An 
ideal software development environment should facilitate the incorporation and test-
ing of new algorithms in different application areas. The envisioned environment 
has a potential to greatly increase the rate of technology assessment and assimilation 
by automating parallel programming practices as well as software engineering that 
facilitates reuse.

Also, the envisioned software development environment is essential to permit the 
rapid prototyping of algorithms and the approaches needed for effective research. 
Parallel and distributed computing, computing graphics, advanced user-interface, 
and intelligent database should not only be investigated in fundamental research but 
should also be used as tools by researchers.

7.4  Material Modeling

In order to model failure and limit states, models of materials must represent a broad 
range of conditions. There are three “multi” axes on which research issues connected 
with material modeling can be identified: multiconstituent, multiscale, and multi-
physics. These are characterized by the following:

•	 Multiconstituent material modeling recognizes that many substances of 
engineering importance possess complex heterogeneous component struc-
tures. This includes the aggregation of multiple components into an inho-
mogeneous form as well as the more well-understood cases of anisotropy 
and the nonlinear behavior of materials modeled as homogeneous.

•	 Multiscale material modeling recognizes that the behavior of a real mate-
rial is governed by physical phenomena that arise from a wide range of 
geometric and temporal scales, ranging from atomic-force interactions in 
molecular dynamics to microstructural effects in localization, to the large-
scale continuum response generally considered in the current MBS efforts 
in engineering. Similarly, different timescales are needed to represent 
material failure, which may initiate in microseconds, the overall system 
behavior under severe dynamic loads on the order of minutes, to a timescale 
of decades when simulating aging and deterioration of materials or earth-
quake processes. Finally, different scales may be necessary when integrat-
ing model simulation with advanced visualization aided by haptic devices. 
(Force feedback with haptic devices must be scaled to provide a meaning-
ful interpretation of forces.) The consideration of time, length, and force 
scales in simulation models also provides a useful framework for conduct-
ing scaled model experiments on components and systems. Since full-scale 
testing is impractical, scaled experiments must satisfy the laws of simili-
tude. When developing advanced models, it is advantageous to consider the 
scale issues not only for the simulation but also for designing experiments 
to validate the models.
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•	 Multiphysics material modeling recognizes that it is no longer sufficient to 
merely characterize the single-physics response of an engineering material. 
Instead, the full web of interacting responses must be identified and reli-
ably characterized if a fully coupled multiphysics simulation of a complex 
engineering system is to be resolved.

An additional issue alluded to the earlier issues is that of modeling interfaces between 
components. The most important physical behavior that affects the performance of 
engineered systems occurs at the interfaces between different components. The 
components may have very different physics, and the model of the interfaces must 
account for proper conservation laws and relationships between the components. 
There are numerous examples, but one particularly complex one is the representa-
tion of the flow of a liquefied soil around a large embedded foundation of a structure. 
In addition to modeling liquefaction, the flow-induced forces at the interface of the 
foundation must be coupled with a structural model.

7.5  Integration of Heterogeneous Models

High-fidelity simulations of civil and mechanical systems require the integration of 
different types of models, as discussed before. In civil engineering, an example is 
that of modeling a structure and its foundation and their surrounding environment 
that imposes loads and deformations on the structure. Depending on the context, the 
environmental loading may be wind, modeled as a fluid domain, or an earthquake 
propagating through the soil, modeled as a solid or solid–fluid domain. Another 
example is that of simulating the deformation capacity of a ductile connection in a 
steel-framed building subjected to low-cycle fatigue. The representation of the fail-
ure mechanism begins by modeling the fatigue processes at the microscopic scale. 
The results of these simulations are then used to determine the effects on the struc-
tural performance and safety at the macroscopic scale.

There are many other examples that illustrate the need for heterogeneous mod-
els. One such example is the wind, seismic, and life-cycle (e.g., traffic) simulation 
of a large bridge, which involves a plethora of materials, structural and geotech-
nical aspects, and seismological aspects, such as spatially variable seismic exci-
tation, uncertainty, etc. Another example is the construction of a large building 
with a deep excavation in which MBS can play an important role in design and in 
speeding up construction. A different kind of application is the simulated cyclic 
testing of a steel-moment frame joint, the failure of which is not yet possible 
to predict reliably. Such a simulation world requires a multiscale modeling and 
probabilistic approach and could well serve as a benchmark for an experiment 
design within NEES. The output of the said simulation would be a distribution 
of failure modes. These examples, which are neither prescriptive nor exhaustive, 
are cited as a way of illustrating the range of applications that could benefit from 
MBS and to indicate that most of them require the participation of interdisciplin-
ary teams.

In general, advanced simulation models share certain characteristics and differ in 
others, as detailed in the following:
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•	 The three “multis,” perhaps at different levels of abstraction and compli-
cated interfaces, are inherent characteristics of advanced simulation mod-
els. After synthesizing and validating individual models, the challenge 
in computing with such heterogeneous models is to integrate them into a 
global model for the simulation of a complete system. The current com-
puter software for simulation is typically “closed” in the sense that indi-
vidual models that are available are contained within the software (“the 
code”) and are implemented to be internally consistent. Simulation models 
of interest to CMS systems are partially based on the finite element method 
(FEM) and the boundary element method (BEM) spatial discretization. 
However, there may be other suitable modeling approaches, particularly for 
different length scales.

•	 The deployment of commercial software, coupled to improve pre- and post-
processors, has considerably simplified the specification of complicated 
geometries. However, work remains to be done in robust 3D mesh genera-
tion and especially with regard to linkage to CAD/CAM. There is substan-
tial ongoing research and development in geometric modeling and mesh 
generation. Integration of geometric models with other activities, such as 
prototyping, design, and manufacturing, is ongoing in both industrial and 
laboratory settings.

•	 The simulation is less clear as regards models, loads, and environment. For 
marketing reasons, commercial FEM and BEM software address lowest 
denominator “generic” needs. Their black box nature can make it difficult 
to find out what is actually implemented, hampering credibility and authen-
tication. Most FEM and BEM programs allow inclusion of additional ele-
ments or materials. However, this is too low level for effective integration 
of heterogeneous models. With traditional software architecture, it is nearly 
impossible to integrate different models of subsystems and components, 
particularly if specialized solution strategies are needed for the models.

In order to advance MBS, there is an urgent research need for an open, integrative 
approach to modeling. The research issues are to define the inherent characteristics 
of simulation models and agree upon definitions of software interfaces for models. 
The software interfaces would include the physical interfaces of the models, with 
appropriate physics requirements that must be satisfied at the interface. The soft-
ware is to be enriched by information about scale, complexity and level of abstrac-
tion, computational demands, and communication needs (including response data 
and visualization) for utilizing the models. In information technology terms, the 
characterization of a simulation model is meta-model (information about the model). 
With a flexible standard for meta-models, it is possible to build simulation frame-
works with interchangeable parts. An engineer conducting a simulation within such 
a framework can draw upon a variety of very different models because the frame-
work can obtain information about the models and compute with models through the 
meta-model description and software interfaces.

With the concept of meta-models, the use of configurable, distributed simula-
tions using Internet technology becomes a possibility. Simulation frameworks would 
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allow engineers to select appropriate models from the Internet (perhaps with Web 
site providing parameterized models) based on credibility requirements, the design 
stage of the system, and the computational resources available. Within the distrib-
uted framework, the component and material models are integrated into a system 
model. Computing resources available on the network (in the form of a computa-
tional grid) are used to perform the simulation. Finally, visualization and data min-
ing (possibly distributed) technology would be used to interpret and interrogate the 
simulation.

The vision of MBS is radically different from the current use of simulation 
“codes.” The development of all-encompassing codes that are accessible and usable 
by engineers has probably reached a limit. The future of MBS lies in research to 
move to a true distribution of not only equation solving but also model-building, 
simulation, and visualization interpretation. This will provide much more flexibility 
and room for innovation in using models for simulation that is possible with current 
codes.

Achieving flexible integration requires the development of standards for the meta-
models and the interoperability of models. Emerging standards on meta-data (such 
as XML) and data exchange for scientific application and application interoperabil-
ity (such as COM and CORBA) must be pursued for MBS. Ultimately, we envision 
that industry-wide standards will lead to open frameworks for exchanging and syn-
thesizing simulation models and allow the selection of computational resources on 
a “computational grid.” Civil and mechanical researchers should be cognizant of 
standardization efforts in other fields so as to accelerate the integration of simulation 
models with emerging technology.

7.6  Representation and Propagation of Uncertainty

The models of civil systems must represent the large uncertainty entitled in charac-
terizing the models, material parameters, and the environmental loads. Uncertainty 
arises from a number of sources: lack of data on material properties, particularly for 
soils; inherent material variability, both initially and due to deterioration over time; 
construction processes; and the randomness of the loading environment. There is 
additional uncertainty associated with the selection of a particular model for a physi-
cal process. Since perfect models do not exist, there is an error associated with the 
model itself. Finally, in dealing with civil systems, the uncertainty in human deci-
sion making must be recognized. There are numerous cases in which the failure of 
a system could be traced to decisions concerning design, construction, or operation.

The challenge in MBS is the representation of uncertainty in a complete and con-
sistent manner within a simulation. The modeling of uncertainty and propagation 
of uncertainty from model parameters to a probabilistic estimate of performance 
involves research challenges when dealing with complex systems of different mate-
rials and components. Research needs include efficient methods for computing the 
sensitivity of system performance to changes in model parameters, probabilistic 
characterization of model properties, methods for updating models with new data 
to reduce uncertainty, and integrating component reliability to provide estimates of 
system reliability. It should be noted that sensitivity of simulated responses is an 
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important ingredient for optimization and model updating, in addition to evaluat-
ing system reliability. Finally, there is a research need to represent human decision-
making processes, and attendant uncertainties in those processes, on system 
performance. A complete simulation of performance needs to include human factors.

7.7  Model Synthesis

The choice of analytical and numerical models of an engineering system is an essen-
tial part of MBS. Such a decision represents a delicate balancing act. The model must 
be able to capture the essential physics while deliberately ignoring aspects irrelevant 
to engineering decisions. Models may be distinguished by their level of abstrac-
tion of the physics in the system. An engineer may wish to consider several models 
simultaneously, each at a different level of abstraction. High-level abstractions may 
be appropriate for exploring alternative designs and strategies early in the process. 
The models become progressively refined as design decisions harden. Moreover, the 
models may exist over the life of the system, for monitoring and retrofit purposes, 
in which case the models are updated using actual performance and response data. 
Ultimately, simulation models must be properly verified to serve a credible design 
and decision tool.

The synthesis of a simulation model requires selection, parameter identification, 
updating, and validation. Selection requires decisions about modeling approach, 
level of abstraction, and computational requirements. Parameter selection must 
deal with the use of experimental data and its uncertainty. Model updating involves 
reducing the uncertainty of the simulations either by reduced uncertainty in the data 
or by improving the model itself. Validation is the process of confirming that the 
model provides a reasonably complete and accurate picture of the actual physical 
behavior of the system.

There is a vast array of analytical models that have been developed over the past 
two centuries to represent material behavior and loads on civil systems. Their acces-
sibility status for MBS use varies from immediate to difficult. At the easy-access end 
lie the classical macroscopic models of continuum mechanics of common structural, 
nonstructural, and geotechnical materials. Some programs include digitized tables 
in terms of important constitutive variables, such as temperature, stress level, and 
age, which are simply accessible on giving a name. It is relatively easy to incorporate 
this type of data into a simulation and to account for uncertainty.

Model synthesis is more difficult for more complex materials, for example, aniso-
tropic media, composites, aggregates, foams, granular, and multiphase media. There 
are also phenomenological models that represent discrete components, such as joints 
and interfaces as well as localization, aging, fatigue, and progressive damage. Going 
down the length scale, there is increasing knowledge of material behavior at the 
meso- and microscale derived from discrete particle, crystal, and molecular models. 
In geotechnical applications, the selection of soil models is strongly linked to site 
characterization as well as (for seismic analysis) geophysical data. A similar knowl-
edge fragmentation is evident for the load model.

The criteria for an acceptable model may depend on the simulation application. In 
some cases, system constraints may dictate that the system remains within its linear 



244 Understanding Structural Engineering: From Theory to Practice

range of behavior under operating conditions. For instance, a facility designed for 
the fabrication of highly precise components with small tolerances, such as computer 
chips, requires that the maximum vibrations of the structure and its foundation be 
severely restricted. On the other hand, other CMS systems, such as building struc-
tures or dams designed to resist earthquakes, allow a certain amount of damage. For 
breakthroughs to occur in the MBS of systems that can be expected to behave non-
linearly under their design loads, the models should be able to simulate limit states 
and failure. Other characteristics that models should possess are

•	 Ability to support simulation of fabrication and construction processes with 
“what if” scenarios. Use of MBS for such purposes is routine in aerospace 
projects, such as ongoing Space Station assembly, but less common in CMS.

•	 Incorporation of uncertainty.

7.8  Computing

With the aid of high-performance computing, future structural analysis should be 
able to simulate the whole life cycle of structures through design, construction, ser-
vice, degradation, and failure. An integrated life-cycle simulation of constructed 
facilities should be a focused and interesting topic for the development of the needed 
technologies for the MBS effort in civil engineering applications. The visualization 
of the virtual construction process of an oil and gas offshore platform, the modeling 
of an entire life cycle of a tall building, or the simulation of a bridge collapse during a 
strong earthquake are just a few examples of the potential impact that MBS develop-
ment might have on civil engineering practice.

Advanced computer technology provides the possibility of speeding up the pace 
and widening the range of civil engineering research on simulations. However, the 
tremendous increase in computing power offered by modern high-performance 
computing cannot be fully and readily utilized by engineers due to the difficulties 
encountered in maintaining existing software and developing new software. Efforts 
on software development cannot be accumulated, which represents a great waste 
of specific and research resources, especially for upcoming MBS developments for 
large-scale civil engineering applications. Software development and maintenance 
are the main barriers, among others, in the infusion of advanced computer tech-
nology in civil engineering applications. Research is, therefore, urgently needed to 
apply the principles and methodologies of software engineering to civil engineer-
ing computing to overcome these barriers and to meet the increasing simulation 
demands of civil engineering research and instruction on software. An integrated 
domain-specific software development environment may provide the solution.

There is considerable room for improvement in the integration of computer sci-
ence techniques and information technology into the computational models used in 
mechanical and civil engineering practice. These proven technologies include the 
following:

•	 Better use of parallelization for achieving scalable performance gains with 
parallel computing architectures. Most current commercial applications 
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used in the profession are still serial, and, hence, cannot solve many impor-
tant problems with the desired level of resolution. Using proven existing 
and feasible near-term software engineering techniques for shared- and 
distributed-memory computer architectures will substantially broaden the 
scope of civil and mechanical engineering problems that are amenable to 
computational simulation.

•	 Adaptive refinement of computed solutions, using a posteriori error measure, 
promises the dual reward of more rational use of computational resources 
(by only improving the computed solution where underlying physics war-
rants increased effort) as well as a more information-rich model-generated 
output stream for visualization and postprocessing. Further research on 
adaptivity, load balancing, and error-estimate-driven solution techniques 
pertinent for use in these professions is a key component for realizing these 
twin goals.

•	 Improved analytic formulations will be needed for handling the full com-
plexity of multiphysics simulations in engineering. Research will be needed 
on techniques, such as arbitrary Lagrangian–Eulerian (ALE) discretiza-
tion, unconditionally stable temporal operators for nonlinear formulations, 
and other new computational and analytic technologies for handling the full 
range of complex physical response found in engineering practice.

•	 Support of distributed computing architectures (e.g., distance computing, 
geographically disparate research teams, and network and communications 
infrastructure issues) is essential to support future needs of the civil and 
mechanical engineering professions.

•	 Data management and abstraction tools, such as data mining, will be 
required to wade through the immense volumes of data generated by large-
scale simulation techniques, especially when those techniques are used in 
a design–analysis cycle with iterations required to handle the complex con-
straints of typical engineering practice.

7.9  Scientific Visualization

Humans have five senses, but only the sense of sight has sufficient bandwidth to 
permit conveyance and interpretation of the immense amount of data obtained from 
large-scale simulation applications. This simple physiological constraint naturally 
leads to the use of scientific visualization tools to help sort through the bewildering 
amounts of data resulting from typical MBSs.

The full gamut of visualization tools are required for the complete integration of 
computational simulation into engineering practice, including animation for time-
dependent (or other parametric) results; field-based display schemes for the usual 
scalar-/vector-/tensor-valued solution fields generally found in engineering analyses, 
and the use of color and other cues to add further dimensions to the resulting dis-
plays. Windowed and immersive virtual-reality techniques can aid engineers during 
the various components of the design-analysis cycle, and are naturally seen as the 
visual adjunct of the larger virtual physics setting that underlies the use of MBS in 
the mechanical and civil engineering disciplines.
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Visualization methods must allow engineers not only to investigate the simula-
tion of one model but also to compare multiple simulations for different models. An 
engineer or researcher would typically use several models to investigate the perfor-
mance of a system, with different choices of parameters (or distributions), modeling 
techniques, or level of modeling abstraction. Visualization is the key mechanism to 
exploring behavior represented by a model and to identifying differences between 
models.

7.10  Model Updating and Validation

Analytical models generally contain parameters in the material and load models as 
well as variances in geometric dimensions. Since the parameters may have large 
uncertainties, as discussed before, the usefulness of a simulation may depend on 
the ability to update the model with measured or experimental data. Model updat-
ing encompasses methods that use sensitivity and optimization techniques to adjust 
those parameters and sizes so that the discrete model matches the observed proper-
ties, such as mode shapes and vibration frequencies. Those properties are obtained 
by measurements of the nondestructive type.

Model updating is a restricted form of the inverse problem, also called system 
identification. When applied over the lifetime of a system, it can become a technique 
for damage or failure detection (sometimes referred to system as “health monitor-
ing”). This aspect is gaining increasing attention because of concern over the main-
tenance and repair of the aging U.S. infrastructure. Note that model updating only 
changes free parameters but not the model selection.

Model updating should not be confused with model validation, which involves 
a more comprehensive and critical study of the predictive capability of different 
models. Validation addresses the credibility of model predictions. It is done by com-
paring the simulated physical behavior against a comprehensive set of experiments 
on, or observation of, actual systems. The notion of MBS-predictive credibility is 
one of the key barriers that needs to be to overcome in the use of MBS techniques 
by practicing engineers, particularly in civil systems and geotechnical applications. 
Consequently, model validation is likely to emerge as a key research issue.

A logical approach to dealing with model validation is a tight linkage between 
simulation research and experimental research. Simulation models may be used to 
design experiments needed to validate the simulations. In a well-coordinated pro-
gram, key simulations are used to identify experiments needed to test hypothesis 
revealed in the simulations, and experiments are then used to validate the models and 
hypotheses. Whenever possible, this process ought to be ultimately supplemented by 
comparing predictions from the simulations with observations of the response of 
actual systems.

For model verification, it will be essential that researchers have access to com-
prehensive (raw) measurements, interpolated as necessary to collocate with discrete 
model locations (such as node points in an FEM or BEM model) as well as documen-
tation and authentication of the experimental method. This is particularly important 
for model updating and life-cycle system identification. For geotechnical applica-
tions, new satellite-based remote-sensing technology can provide outstanding ability 
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to collect large amounts of geophysical data for validating models of soil and geo-
technical systems.

7.11  Summary

MBS is inherently interdisciplinary in science and engineering, in which computa-
tion plays a fundamental role. The process of integration involves several basic steps 
starting with physical measurements or experiments as the basis for the develop-
ment of relevant mathematical models for a physical system followed by the design 
of a proper algorithm for its numerical solution implementing the procedure with 
the necessary coding and software interface development, selecting a proper hard-
ware to run the computer simulation of the physical system, validating the com-
puter model with physical testing, providing graphical visualization of the simulated 
results, and sharing the simulation model with others through high-speed network 
communication.

The benefits of MBS development for engineering practice are as follows:

	 1.	Simulation enables a more thorough exploration of design space at a much 
lower cost.

	 2.	Simulation is an efficient tool to reduce product cost.
	 3.	Simulation provides a faster turnaround of a product cycle.
	 4.	Simulation is interdisciplinary and is good for a broad-based engineering 

education for lifelong learning.

MBS certainly cannot replace tests completely, but at least can minimize the use of 
physical tests. In fact, it can best be used to maximize the value of physical tests with 
computer simulation.
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Advanced analysis
refined plastic hinge, 109–110
steel frame design

vs. conventional LRFD method, 227
vs. conventional methods, 204
definition, 204–205
direct second-order inelastic analysis, 232
elastic–plastic-hinge method, 205
indirect and direct analyses, 204
inelasticity, 214–215
initial geometric imperfections, 212–214
joint flexibility, 215
plastic-zone method (see Plastic-zone 

method)
refined plastic-hinge methods, 205
residual stresses, 212
resistance and load factors, 204–205
specification provisions, 204
stability effects, 212
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Load and Resistance Factor Design 
(AISC-LRFD), 146

Amplification factors for second-order effects
P-D effect, 50–52
P-δ effect, 50–54

Associated flow rule, 78

B

Bar element
axially loaded element, 21–22
elastic–plastic hinge-by-hinge analysis, 

103–105
flexural element, 22–23
generalized stress and generalized strain 

relation
assumptions, 98
material, 98
moment–curvature relation, 98–100
plastic moment, 100–101

plastic-hinge analysis
by equilibrium method, 105–107
by mechanism method, 106–109

refined plastic hinge, 109–110
simple plastic hinge

axial force effect, 103–104
concept, 102–103
idealization, 101–102

Beam–column member, 37–38
Beam member

no sway, 31–33
sway, 33

Bernoulli/bending regions (B-regions)
definition, 166
vs. D-regions, 166–170
force equilibrium, 187–188
strength, 194–195
uncracked B-regions, 166

Buckling analysis
beam–column with one fixed end and one 

guided end, 40–41
beam–column with one fixed end and one 

hinged end, 38–40
continuous beam–column example, 42
Euler load, 43

C

Compatibility conditions, 1
Computer-based simulation, 235–236; see also 

Model-based simulation (MBS)
Concrete plate element, see Plate element
Constitutive equations

for perfectly plastic materials, 78–79
for work-hardening materials

incremental plastic strain, 82–83
material hardening, 79–82

Continuum, 1
Continuum mechanics, 20–21

D

Differential equation of elastica, 68
Discontinuity or disturbance regions (D-regions)

vs. B-regions, 166–170
definition, 167–168
nonlinear strain distribution, 167
St. Venant’s principle, 187
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Discontinuous stress fields
beam with recess, 178–179
dapped beam, 172, 177–178
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179, 180
stress trajectories, 179, 180
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local pressure, 172, 177
nonlinear strain distribution, 167
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Drucker, Daniel C., 133–135
Drucker–Prager criterion, 76–77
Drucker’s simple beam model, 196–197

E

Elasticity
allowable stress, 63–68
basic field equations

compatibility conditions, 17–19
constitutive relations, 19
equilibrium conditions, 17, 18

finite element method, 61–67
generalized stress and generalized strain

bar element, 21–23
continuum mechanics, 20–21
finite element, 29–31
plate element, 23–25
shell element, 25–29

history, 68–69
plates theory

differential equation of equilibrium, 55
general distributed load, 58
simply supported plate, 56
stress resultants, 57

shells theory, 58–61
solution process, 19–20
structural stability theory

alignment charts, 44–47
amplification factors for second-order 

effects, 50–54
buckling analysis, 38–43
generalized stress and generalized strain 

relations, beam–column member, 
37–38

K factor, 43–44
stability analysis of framed structures, 

46–50

structures theory
generalized stress and generalized strain 

relations, beam member, 31–33
moment distribution method, 35–36
single span beam problems, 33–34
slope-deflection method, 35, 36
structural design, 36–37

Elastic limit, definition, 72
Elastic-linear work-hardening model, 144
Elastic-perfectly plastic model, 144
Elastic-perfectly plastic stress–strain 

relation, 4, 5
Elastic–plastic deformation

basic equations, 84–85
elastic solution, 85–86
expansion, 86–88
thin-walled tube under interior pressure, 83

Elastic–plastic hinge-by-hinge analysis
bar element, 103–105
initial geometric imperfections

drawbacks, 214
explicit imperfection modeling, 213
further reduced tangent modulus method, 

213, 214
notional load method, 212–214
out-of-straightness and plumbers, 212

joint flexibility, 215
material inelasticity, 214–215
practical advanced method

incremental force-displacement 
relationship, 219

initial geometric imperfections, 217
joint flexibility, 220–222
material inelasticity, 217–219
residual stresses, 217
stability effects, 215–216

residual stresses, 212
stability effects, 212

Euler load, 43
European Convention for Constructional Steel 

(ECCS), 149
Exterior beam–column connections, 182–183, 185

F

Failure criteria, see Yield criteria
Field equations

compatibility conditions, 17–19
constitutive relations, 19
equilibrium conditions, 17, 18
plasticity, 72

Finite element (FE)
constitutive relations, 30–31
equilibrium, 30
generalized stress and generalized strain

beam of different shear span, 62–64
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cantilever beam, 62
cantilever with dapped end, 63, 67
constitutive relations, 30–31
deep beam with central opening, 63, 65
equilibrium, 30
kinematics, 29–30
simply supported rectangular plate, 

62–63
kinematics, 29–30

Finite element method (FEM)
cantilever beams

beam with no opening, 144, 146
beam with opening, 144, 146
load–displacement relation, 144, 146
material models, 144
plastic-hinge concept, 146
strain profiles, 144–147

constitutive conditions (incremental/iterative 
formulation), 143–144

elasticity, 61–67
equilibrium conditions (principle of virtual 

work), 142–143
kinematics conditions (shape function)

generic displacement, 140–142
Kirchhoff’s hypothesis, 139
plane stress problem, 139–140
strain–displacement relation, 141
strain vector, 139

as logical extension, 7–8
LRFD, structural steel buildings

load factors and combinations, 160, 161
performance-based design, 162
reliability-based, 159–160
strength reduction factors, 160–161

structural steel member design
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154–156
beam design equations, 150–154
column design equations, 146–150

structural system design
advanced analysis, 156–157
future aspects, 158–159
offshore concrete structures, 157–158
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assumptions, 98
axially loaded element, 21–22
flexural element, 22–23
material, 98
moment–curvature relation, 98–100
plastic moment, 100–101

beam–column member, 37–38
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no sway, 31–33
sway, 33

continuum mechanics, 20–21
finite element

beam of different shear span, 62–63
cantilever beam, 62
cantilever with dapped end, 63, 67
constitutive relations, 30–31
deep beam with central opening, 63, 65
equilibrium, 30
kinematics, 29–30
simply supported rectangular plate, 62–63

plate element
assumptions and idealization, 111–112
compatibility, 23–24
constitutive relations, 24
equilibrium, 24–25
moment–curvature relation, 111

shell element
constitutive relations, 27, 29
elasticity, 58–61
equilibrium, 25–26, 29
kinematics for bending action, 28
kinematics for membrane action, 26–27

H

Half-space problem, 20
Hinge-by-hinge analysis, see Elastic–plastic 

hinge-by-hinge analysis

I

Idealized moment–curvature relation, 4, 5
Idealized moment–rotation relation, 4, 5
Incremental elastic–plastic analysis, see Elastic–

plastic hinge-by-hinge analysis
Incremental plastic strain, 82–83
Incremental strain, 76–77
Interior beam–column connections, 184, 186
Isotropic hardening, 80–81

K

K factor method
and alignment charts, 43–44
interaction between structural system and its 

component members, 10
steel frame design

allowable stress design method, 201–202
critical load, 200–201
elastic structural analysis, 200–201
limitations, 202–203
linear elastic analysis, 200
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load-carrying capacity, 199
LRFD design method, 202
plastic design method, 202
stress distribution, 199–200
structural members, 199
structural system and component 

member, 201
time-dependent effects, 200

Kinematic hardening, 81–82

L

Limit equilibrium solution, 71
Limit theorems, plasticity

basic assumptions, 90
limit analysis, 89–90
lower-bound theorem, 90–93
uniaxial stress–strain relationship, 88–89
upper-bound theorem, 93–98

Linear elasticity, 19–20
Load and resistance-factor design (LRFD) 

method
steel frame design, 201–203
structural steel buildings

load factors and combinations, 160, 161
performance-based design, 162
reliability-based, 159–160
strength reduction factors, 160–161

Load-path method, 122
Lower-bound theorem, 1, 6, 90–93, 105, 120, 165

M

Material hardening, 79–82
MBS, see Model-based simulation (MBS)
Mechanics, materials, and computing 

interactions, 12–14
Model-based simulation (MBS), 236–237

benefits, 247
civil and mechanical systems, 236
emerging areas, 11–12
heterogeneous models

characteristics and differences, 240–242
deformation capacity simulation, 240
large building construction, 240
loads and deformations, 240
wind, seismic, and life-cycle simulation, 

240
high-performance computing, 244–245
material modeling

components, 240
multiconstituent material, 239
multiphysics material, 240
multiscale material, 239

mathematical modeling, 237
model synthesis, 243–244
software development, 238–239

solution algorithm, 238
uncertainty, 242–243
updation and validation, 246–247
visualization tools and methods, 245–246

Mohr–Coulomb criterion, 75–77
Moment–curvature relation, 4, 5, 111
Moment distribution method, 35–36
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Network for Earthquake Engineering Simulation 
(NEES), 235

Nonassociated flow rule, 78, 82
Notational-load plastic hinge, 110

P

P-D effect, 50–52
P-δ effect, 50–54
Perfectly plastic material, 90
Pin-ended column, 43
Plastic-hinge analysis

concept, 3–5
by equilibrium method, 105–107
by mechanism method, 106–109
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bar element

elastic–plastic hinge-by-hinge analysis, 
104–105

generalized stress and generalized strain 
relation, 98–101

plastic-hinge analysis by equilibrium 
method, 105–107

plastic-hinge analysis by mechanism 
method, 106–109

refined plastic hinge, 109–110
simple plastic hinge, 101–104

basic field equations, 72
concrete plate element

generalized stress and generalized strain 
relation, 111–112

yield-line analysis for concrete slab 
design, 114–119

yield line theory, 112–114
constitutive equations

for perfectly plastic materials, 78–79
for work-hardening materials, 79–83

elastic–plastic deformation
basic equations, 84–85
elastic solution, 85–86
expansion, 86–88
thin-walled tube under interior pressure, 83

history, 131–135
incremental strain, 76–77
limit theorems

basic assumptions, 90
limit analysis, 89–90
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lower-bound theorem, 90–93
uniaxial stress–strain relationship, 88–89
upper-bound theorem, 93–98

strut-and-tie model
concept, 120–121
elements, 123–125
example, 128–131
failure criteria, 125–128
modeling, 121–123

yield criteria
independent of hydrostatic pressure, 

72–75
for pressure-dependent materials, 75–77

Plastic moment, 113–114
Plastic potential, 78
Plastic-zone method

cross-sectional discretization, 206
vs. elastic–plastic-zone model, 206
full-size portal frames, 208

actual section properties, 210
frame configuration, 209
horizontal force–displacement relation, 

208–210
material properties, 210
member sizes and test program, 210
test results, 211

inelastic analysis, 207–208
load–deformation characteristics, 206–207
member division, 206
practical analysis, 211
second-order plastic-zone analysis, 207
steel frames, 156–157
three-dimensional finite shell elements, 207

Plate element
compatibility, 23–24
constitutive relations, 24
equilibrium, 24–25
generalized stress and generalized strain

assumptions and idealization, 111–112
differential equation of equilibrium, 55
general distributed load, 58
moment–curvature relation, 111
simply supported plate, 56
stress resultants, 57

yield-line analysis for concrete slab design
application, 117–119
axes of rotations and yield lines, 115–117
yield criterion, 114–115

yield line theory
concept, 112
plastic moment, 113–114
yield criterion, 114

Prager, William, 133–134

R

Refined plastic-hinge method, 109–110, 205

S

Second-order elastic–plastic analysis, 109
Second-order inelastic analysis, 110
Shell element

constitutive relations, 27, 29
equilibrium, 25–26, 29
generalized stress and generalized strain 

relations, 58–61
kinematics

for bending action, 28
for membrane action, 26–27

Simple plastic hinge
axial force effect, 103–104
concept, 102–103
idealization, 101–102

Single span beam problems, 33–34
Slope-deflection equations, 33, 38
Small deformation, 90
Stability analysis

of framed structures, 46–50
fundamentals, 2–3

Steel frame design
advanced analysis

vs. conventional LRFD method, 227
vs. conventional methods, 204
definition, 204–205
direct second-order inelastic 

analysis, 232
elastic–plastic-hinge method, 205
indirect and direct analyses, 204
inelasticity, 214–215
initial geometric imperfections, 212–214
joint flexibility, 215
plastic-zone method (see Plastic-zone 

method)
refined plastic-hinge methods, 205
residual stresses, 212
resistance and load factors, 204–205
specification provisions, 204
stability effects, 212

K factor method
allowable stress design method, 201–202
critical load, 200–201
elastic structural analysis, 200–201
interaction between structural system and 

its component members, 9–11
limitations, 202–203
linear elastic analysis, 200
load-carrying capacity, 199
LRFD design method, 202
plastic design method, 202
stress distribution, 199–200
structural members, 199
structural system and component 

member, 201
time-dependent effects, 200



254 Index

performance-based design, earthquakes
effective yield stress and modulus of 

elasticity, 231
structure performance, 230
time–temperature curve, 230–231
truss moment frame, 230

semi-rigid frame design
AISC-LRFD method, 229
estimated parameters of connections, 229
loadings, 227, 229
section sizes, 228, 229
ultimate stak, 228, 229

two-bay portal frame
configuration and load condition, 225
incremental load, 225
load-carrying capacity, 225–226
member forces, 226

Vogel’s six-story frame
configuration and load condition, 222, 223
explicit modeling method, 222
further reduced tangent modulus, 222
load–displacement curves, 224
notional load factor, 222
residual stresses, 224
stress–strain relationship, 222, 223

STM, see Strut-and-tie model (STM)
Strain hardening, see Work-hardening
Strength-of-material solutions, 4
Structural design, 36–37
Structural Stability Research Council (SSRC), 

148–151
Structural stability theory; see also Structures 

theory
alignment charts, 44–47
amplification factors for second-order effects

P-D effect, 50–52
P-δ effect, 50–54

buckling analysis
beam–column with one fixed end and one 

guided end, 40–41
beam–column with one fixed end and one 

hinged end, 38–40
continuous beam–column example, 42
Euler load, 43

generalized stress and generalized strain 
relations, beam–column member, 
37–38

K factor, 43–44
stability analysis of framed structures, 46–50

Structural steel member design, FEM
advanced analysis, 156–157
beam–column design equations

interaction equations, 154–155
nonsway frame analysis, 155
sway frame analysis, 155

beam design equations
flange/web local buckling, 152–154

formation of plastic hinge, 151
lateral torsional instability, 151–153

column design equations
AISC and SSRC curves, 148
European multiple column curves, 

150, 152
load-deflection concept, 146
maximum strength curves, 148, 149
SSRC column strength curves, 

148–151
future aspects, 158–159
offshore concrete structures

failure, 157–158
improvements, 158
research, 157

Structures theory; see also Structural stability 
theory

generalized stress and generalized strain 
relations, beam member

no sway, 31–33
sway, 33

moment distribution method, 35–36
single span beam problems, 33–34
slope-deflection method, 35, 36
structural design, 36–37

Strut-and-tie model (STM); see also 
Discontinuous stress fields

basic discontinuous stress fields, 172, 173
B-regions, 166
concept, 120–121
D-regions vs. B-regions

boundaries, 168–170
conventional structural analysis, 168
cracking, 170
geometric and static discontinuities, 167
nonlinear strain distribution, 167
static discontinuity, 167
stress trajectories, 168, 169
St. Venant’s principle, 169–171
uncracked D-regions, 167–168

elements
bottle-shaped strut, 124–125
nodal zone, 125, 126
node, 125
strut, 123–124
tie, 125

example, 128–131
failure criteria

nodal zones, 127–128
struts, 125–128
ties, 127

limit analysis techniques
applications, 165
Drucker’s simple beam model, 

196–197
flexure analysis, 195
shear problems, 195
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state-of-the-art report, 196
theory of plasticity, 195

modeling, 121–123
using stress legs, 8–9
stress resultants, flow of forces, 170–172
transfer girder

B-region and tie T1, 194–195
B-regions, 187–188
concrete strength, 188–189
dimensions and straining actions, 

184, 186
D-regions, 187
geometric relations, 188–189
load path and STM, 188
node A, 189–190
node B, 190–191
node C, 191
node D, 191–192
node E, 192–193
reinforcement layout, 195
strut C2, 193–194
strut C3, 194
strut C5, 194
tie T2, 195
tie T3, 195

truss model, 165
St. Venant’s principle, 169–171
Subassemblage models, 44–45

T

Tee beam–column connections, 183, 185
Tresca yield criterion, 74–75, 94

U

Ultimate load approach, 1
Upper-bound theorem, 6, 93–98

V

Vogel’s six-story frame
configuration and load condition, 222, 223
explicit modeling method, 222
further reduced tangent modulus, 222
load–displacement curves, 224
notional load factor, 222
residual stresses, 224
stress–strain relationship, 222, 223

von Mises yield criterion, 73–74

W

Work-hardening, 79

Y

Yield criteria
for concrete slab design, 114–115
independent of hydrostatic pressure

elastic limit, 72
isotropic materials, 73
Tresca yield criterion, 74–75
von Mises yield criterion, 73–74

for pressure-dependent materials
Drucker–Prager criterion, 76
Mohr–Coulomb criterion, 75–76

yield line theory, 114
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