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Preface to the Second Edition

In this second and enhanced edition of the book, we provide the readers with a detailed step-by-
step application of the finite element method to heat and mass transfer problems. In addition to
the fundamentals of the finite element method and heat and mass transfer, we have attempted
to take the readers through some advanced topics of heat and mass transfer. The first edition
of the book covered only the application of the finite element method to heat conduction and
flow aided laminar heat convection. The second edition of the book has been enhanced further
with turbulent flow and heat transfer, and mass transfer, in addition to advanced topics such
as fuel cells.We believe that the second edition provides a comprehensive text for students,
engineers and scientists who would like to pursue a finite element based heat transfer analysis.
This textbook is suitable for beginners, senior undergraduate students, postgraduate students,
engineers and early career researchers.

The first three chapters of the book deal with the essential fundamentals of both the heat
conduction and the finite element method. In the first chapter, the fundamentals of energy
balance and the standard derivations of relevant equations for the heat conduction analysis
are discussed. Chapter 2 deals with the basic discrete systems which provide a basis for the
finite element method formulations in the following chapters. The discrete system analysis
is demonstrated through a variety of simple heat transfer and fluid flow problems. The third
chapter gives a comprehensive account of the finite element method formulations and relevant
history. Several examples and exercises included in Chapter 3 give the readers a complete
overview of the theory and practice associated with the finite element method.

The application of the finite element method to heat conduction problems are discussed in
detail in Chapters 4, 5 and 6. The conduction analysis starts with a simple one-dimensional
steady-state heat conduction in Chapter 4 and is extended to multi-dimensions in Chapter 5.
Chapter 6 gives the transient solution procedures for heat conduction problems.

Chapters 7, 8 and 9 deal with heat transfer by convection. In Chapter 7, heat transfer aided
by the laminar motion of a single phase flow is discussed in detail. All the relevant differential
equations are derived from first principles. All the three types of convection modes; forced,
mixed and natural convection, are discussed in detail. Several examples and comparisons are
provided to support the accuracy and flexibility of the finite element procedures discussed. In
Chapter 8 the turbulent flow and heat transfer are discussed in some detail. Some examples
and comparisons provide the readers a chance to assess the accuracy of the methods employed.
Chapter 9 utilizes the finite element method developed in Chapters 1, 7 and 8 to provide a
solution approach to flow and heat transfer in compact heat exchangers. Chapter 10 provides
an introduction to the application of the finite element to problems of mass transfer. A detailed



PREFACE TO THE SECOND EDITION xiii

description of heat and mass transfer in porous media is then provide in Chapter 11. Two
important applications of the finite element method for heat and mass transfer are explained
in Chapters 12 and 13. Chapter 12 briefly introduces solidification problems using both heat
conduction and convection approaches. Simple examples of solidification in this chapter may
serve as a reference for students and researchers working in the area of solidification. In
Chapter 13, we introduced a finite element solution approach to studying heat and mass
transfer in fuel cells. Although the approach is only explained for solid oxide fuel cells, the
method can be easily generalized to other types of fuel cells. Chapter 14 gives the reader
sufficient information to understand the process of mesh generation. The main focus of this
chapter is automatic and unstructured mesh generation. Some aspects of the adaptive mesh
generation are also covered in this chapter. Finally, Chapter 15 briefly introduces the topic of
computer implementation. The readers will be able to download the two-dimensional source
codes and documentations from the website: www.zetacomp.com

Many people have assisted the authors either directly or indirectly during the preparation
of this textbook. In particular, the authors wish to thank Dr Alessandro Mauro, Universitá
degli Studi di Napoli Parthenope, for proofreading Chapter 13 and Dr Igor Sazonov, Swansea
University, for helping the authors to put together part of Chapter 14. We would also like thank
all our students, postdoctoral researchers and colleagues for providing help and support.

P. Nithiarasu, Swansea
R. W. Lewis, Swansea

K. N. Seetharamu, Bangalore

http://www.zetacomp.com


Series Editor’s Preface

It is known that heat transfer provides a good context for teaching finite element methods
and other computational mechanics topics. Fundamental concepts can be explained with such
simple examples as heat conduction in 1D, then in 2D and 3D, and convective terms can be
added to describe the special methods needed to deal with that class of partial differential
equations. This book in our series does that, and with its distinguished, experienced authors,
does it well. It not only teaches how to solve heat and mass transfer problems with finite
element methods, but it also serves the purpose of teaching many different concepts in finite
element methods. Readers from very diverse backgrounds will be able to benefit from this
book. The book can be used by engineering undergraduate students to learn the fundamentals
of heat and mass transfer and numerical methods, by graduate students in engineering and
sciences to learn the advanced topics they need to know, and by practicing engineers and
scientists as a good source and guide for research and development work in heat and mass
transfer.
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Introduction

1.1 Importance of Heat and Mass Transfer

The subject of heat and mass transfer is of fundamental importance in many branches of
engineering. A mechanical engineer may be interested to know the mechanisms of heat
transfer involved in the operation of equipment, for example, boilers, condensers, air pre-
heaters, economizers etc., in a thermal power plant in order to improve their performance.
Nuclear power plants require precise information on heat transfer as safe operation is an
important factor in their design. Refrigeration and air-conditioning systems also involve heat-
exchanging devices, which need careful design. Electrical engineers are keen to avoid material
damage in electric motors, generators and transformers due to hot spots, developed by improper
heat transfer design. An electronic engineer is interested in knowing efficient methods of heat
dissipation from chips and semi-conductor devices so that they function within safe operating
temperatures. A computer hardware engineer is interested to know the cooling requirements
of circuit-boards, as the miniaturization of computing devices is advancing at a rapid rate.
Chemical engineers are interested in heat and mass transfer processes in various chemical
reactions. A metallurgical engineer would be interested in knowing the rate of heat transfer
required for a particular heat treatment process, e.g. the rate of cooling in a casting process has
a profound influence on the quality of the final product. Aeronautical engineers are interested
in knowing the heat transfer rate in rocket nozzles and in heat shields used in re-entry vehicles.
An agricultural engineer would be interested in the drying of food grains, food processing and
preservation. A civil engineer would need to be aware of the thermal stresses developed in quick
setting concrete, the influence of heat and mass transfer on building and building materials as
well as the effect of heat on nuclear containment and buildings etc. An environmental engineer
is concerned with the effect of heat on dispersion of pollutants in air, transport of pollutants in
soils, lakes and seas and their impact on life. A bioengineer is often interested in the heat and
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2 INTRODUCTION

mass transfer processes, such as hypothermia and hyperthermia associated with the human
body.

The above-mentioned applications are only a sample of heat and mass transfer applications.
The solar system and the associated energy transfer from the sun are the principal factors for
existence of life on Earth. It is not untrue to say that it is extremely difficult, often impossible,
to avoid some form of heat transfer in any process on Earth.

The study of heat and mass transfer provides economical and efficient solutions for many
critical problems encountered in diverse engineering items of equipment. For example, we can
consider the development of heat pipes which can transport heat at a much greater rate than
that of copper or silver rods of the same dimensions and even at almost isothermal conditions.
The development of present-day gas turbine blades, where the gas temperature exceeds the
melting point of the blade material, is possible by providing efficient cooling systems. This
is another example of the success of heat transfer design methods. The design of computer
chips, which encounter heat flux of the order occurring in re-entry vehicles, especially when
the surface temperature of the chips is limited to less than 100 ◦C, is again a success story of
heat transfer design.

Although there are many successful heat transfer designs, further developments on heat
and mass transfer studies are necessary in order to increase the life span and efficiency of the
many devices discussed previously, which can lead to many more new inventions. Also, if we
are to protect our environment, it is essential to understand the many heat and mass transfer
processes involved and if necessary to take appropriate action.

1.2 Heat Transfer Modes

Heat transfer is that section of engineering science that studies the energy transport between
material bodies due to temperature difference (Bejan 1993; Holman 1989; Incropera and
Dewitt 1990; Sukhatme 1992). The three modes of heat transfer are:

(a) conduction

(b) convection and

(c) radiation.

The conduction mode of heat transport occurs either because of an exchange of energy
from one molecule to another without actual motion of the molecules, or is due to the motion
of free electrons if they are present. Therefore, this form of heat transport depends heavily
on the properties of the medium and takes place in solids, liquids and gases if a difference in
temperature exists.

Molecules present in liquids and gases have freedom of motion and by moving from a hot
to a cold region, they carry energy with them. The transfer of heat from one region to another
due to such macroscopic motion in a liquid or gas, added to the energy transfer by conduction
within the fluid, is called heat transfer by convection. Convection may be either free, forced or
mixed. When fluid motion occurs due to a density variation caused by temperature differences,
the situation is said to be a free or natural convection. When the fluid motion is caused by an
external force, such as pumping or blowing, the state is defined as being forced convection.
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A mixed convection state is one in which both natural and forced convection are present.
Convection heat transfer also occurs in boiling and condensation processes.

All bodies emit thermal radiation at all temperatures. This is the only mode which does not
require a material medium for heat transfer to occur. The nature of thermal radiation is such
that a propagation of energy, carried by electromagnetic waves, is emitted from the surface of
the body. When these electromagnetic waves strike other body surfaces, a part is reflected, a
part transmitted and the remaining part is absorbed.

All modes of heat transfer are generally present in varying degrees in a real physical
problem. The important aspects in solving heat transfer problems are to identify the significant
modes and to decide whether the heat transferred by other modes can be neglected.

1.3 The Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time and for that we
require the use of rate equations. For heat conduction, the rate equation is known as Fourier’s
law (Fourier 1955) which is expressed for one dimension, as

qx = −k
dT
dx

, (1.1)

where qx is the heat flux in the x direction (W/m2); k is the thermal conductivity (W/mK, a
property of the material, see Table 1.1) and dT∕dx the temperature gradient (K/m).

Table 1.1 Typical values of thermal conductivity of some materials in
W/mK at 20 ◦C.

Material Thermal conductivity, k

Metals:
Pure silver 410
Pure copper 385
Pure aluminium 200
Pure iron 73

Alloys:
Stainless steel (18% Cr, 8% Ni) 16
Aluminium alloy (4.5% Cr) 168

Non metals:
Plastics 0.6
Wood 0.2

Liquid:
Water 0.6

Gasses:
Dry air 0.025 (at atmospheric pressure)
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Table 1.2 Typical values of heat transfer coefficient in W/m2K

Gases (stagnant) 15
Gases (flowing) 15–250
Liquids (stagnant) 100
Liquids (flowing) 100–2000
Boiling liquids 2000–35 000
Condensing vapors 2000–25 000

For convective heat transfer, the rate equation is given by Newton’s law of cooling (Whewell
1866) as

q = h(Tw − Ta), (1.2)

where q is the convective heat flux; (W/m2); (Tw − Ta) the temperature difference between the
wall and the fluid and h is the convection heat transfer coefficient (W/m2K) (or film coefficient,
see Table 1.2).

The convection heat transfer coefficient frequently appears as a boundary condition in the
solution of heat conduction through solids, where h is often known (Table 1.2).

The maximum flux that can be emitted by radiation from a black surface is given by the
Stefan-Boltzmann Law (Boltzmann 1884; Stefan 1879), that is,

q = 𝜎Tw
4, (1.3)

where q is the radiative heat flux (W/m2); 𝜎 is the Stefan-Boltzmann constant (5.669 × 10−8),
in W/m2K4 and Tw is the surface temperature (K).

The heat flux emitted by a real surface is less than that of a black surface and is given by

q = 𝜖𝜎Tw
4, (1.4)

where 𝜖 is the radiative property of the surface and is referred to as the emissivity. The net
radiant energy exchange between any two surfaces 1 and 2 is given by

Q = F
𝜖
FG𝜎A1(T4

1 − T4
2 ), (1.5)

where F
𝜖

is a factor which takes into account the nature of the two radiating surfaces; FG a
factor which takes into account the geometric orientation of the two radiating surfaces and A1
is the area of surface 1.

When a heat transfer surface, at temperature T1, is completely enclosed by a much larger
surface at temperature T2, the net radiant exchange can be calculated by

Q = qA1 = 𝜖1𝜎A1(T4
1 − T4

2 ). (1.6)

With respect to the laws of thermodynamics, only the first law (Clausius 1850) is of
interest in heat transfer problems. The increase of energy in a system is equal to the difference
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between the energy transfer by heat to the system and the energy transfer by work done on the
surroundings by the system, that is,

dE = dQ − dW, (1.7)

where Q is the total heat entering the system and W is the work done by the system on the
surroundings. Since we are interested in the rate of energy transfer in heat transfer processes,
we can restate the first law of thermodynamics as:

“The rate of increase of the energy of the system is equal to the difference between the
rate at which energy enters the system and the rate at which the system does work on the
surroundings,” that is,

dE
dt

= dQ
dt

− dW
dt

, (1.8)

where t is the time.

1.4 Mathematical Formulation of Some Heat Transfer
Problems

In analyzing a thermal system, the engineer should be able to identify the relevant heat transfer
processes and only then can the system behavior be quantified properly. In this section, some
typical heat transfer problems are formulated by identifying the appropriate heat transfer
mechanisms.

1.4.1 Heat Transfer from a Plate Exposed to Solar Heat Flux

Consider a plate of size L x B x d exposed to the solar flux of intensity qs as shown in Figure
1.1. In many solar applications, such as a solar water heater, solar cooker etc., the temperature
of the plate is a function of time. The plate loses heat by convection and radiation to the
ambient air, which is at temperature Ta. Some heat flows through the plate and is convected

qs

d

B

L

Figure 1.1 Heat transfer from a plate subjected to solar heat flux.
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to the atmosphere from the bottom side. We shall apply the law of conservation of energy to
derive an appropriate equation, the solution of which gives the temperature of the plate with
respect to time.

Heat entering the top surface of the plate:

qsAT . (1.9)

Heat loss from the plate to the surroundings:
Top surface:

hAT (T − Ta) + 𝜖𝜎AT (T4 − T4
a ), (1.10)

Side surface:

hAS(T − Ta) + 𝜖𝜎AS(T4 − T4
a ), (1.11)

Bottom surface:

hAB(T − Ta) + 𝜖𝜎AB(T4 − T4
a ), (1.12)

where the subscripts T , S and B refer respectively to the top, side and bottom surface areas.
The topic of radiation exchange between a gas and a solid surface is not simple. Readers
are referred to appropriate texts for details (Holman 1989; Siegel and Howell 1992). Under
steady-state conditions, the heat received by the plate is lost to the surroundings, thus

qsAT = hAT

(
T − Ta

)
+ 𝜖𝜎AT

(
T4 − T4

a

)
+ hAS

(
T − Ta

)
+𝜖𝜎AS

(
T4 − T4

a

)
+ hAB

(
T − Ta

)
+ 𝜖𝜎AB

(
T4 − T4

a

)
. (1.13)

This is a nonlinear algebraic equation because of the presence of the T4 term. The solution
of this equation results in the steady-state temperature of the plate. If we want to calculate
the temperature of the plate as a function of time, t, then we have to consider the rate of rise
in the internal energy of the plate. Substituting E = volume × 𝜌 × cp × T into the LHS of the
Equation (1.8) gives

(volume) × 𝜌cp
dT
dt

= (LBd)𝜌cp
dT
dt

, (1.14)

where 𝜌 is the density and cp is the specific heat of the plate. Thus, at any instant of time, the
difference between the heat received and lost (work done on the surroundings) by the plate
will be equal to the rate of change in internal energy heat stored (Equation (1.8)). Thus,

(LBd)𝜌cp
dT
dt

= qsAT −
[
hAT (T − Ta) + 𝜖𝜎AT

(
T4 − T4

a

)
+

𝜖𝜎AS

(
T4 − T4

a

)
+ hAB(T − Ta) + 𝜖𝜎AB

(
T4 − T4

a

)]
. (1.15)

This is a first-order nonlinear differential equation, which requires an initial condition,
viz.,

at t = 0, T = Ta. (1.16)
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Gas

Glass bulb

Filament

Figure 1.2 Energy balance in an incandescent light source.

The solution is determined iteratively because of the nonlinearity of the problem. Equation
(1.15) can be simplified by substituting relations for the surface areas. It should be noted,
however, that this is a general equation, which can be used for similar systems.

It is important to note that the spatial variation of temperature within the plate is neglected
here. However, this variation can be included via Fourier’s law of heat conduction, Equation
(1.1). Such a variation is necessary if the plate is not thin enough to reach equilibrium instantly
(Section 1.5).

1.4.2 Incandescent Lamp

Figure 1.2 shows an idealized incandescent lamp. The filament is heated to a temperature Tf
by an electric current. Heat is convected to the surrounding gas and is radiated to the wall,
which also receives heat from the gas by convection. The wall in turn convects and radiates
heat to the ambient at Ta. A formulation of equations, based on energy balance, is necessary
in order to determine the temperature of the gas and the wall with respect to time.

1.4.2.1 Gas

Rise in internal energy of the gas:

𝜌gcpg

dTg

dt
. (1.17)

Convection from the filament to the gas:

hf Af (Tf − Tg). (1.18)

Convection from the gas to the wall:

hgAg(Tg − Tw). (1.19)

Radiation from the filament to the gas:

𝜖f Af𝜎

(
T4

f − T4
g

)
. (1.20)
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Now, the energy balance for the gas gives

𝜌gcpg

dTg

dT
= hf Af (Tf − Tg) − hgAg(Tg − Tw) + 𝜖f Af𝜎

(
T4

f − T4
g

)
. (1.21)

1.4.2.2 Wall

Rise in internal energy of the wall:

𝜌wcpw
dTw

dt
. (1.22)

Radiation from the filament to the wall:

𝜖f𝜎Af

(
T4

f − T4
w

)
. (1.23)

Convection from the wall to ambient:

hwAw(Tw − Ta). (1.24)

Radiation from the wall to ambient:

𝜖w𝜎Aw

(
T4

w − T4
a

)
. (1.25)

Energy balance for the wall gives

𝜌wcpw
dTw

dt
= hgAg(Tg − Tw) + 𝜖f𝜎Af

(
T4

f − T4
w

)
− hwAw(Tw − Ta) − 𝜖w𝜎Aw

(
T4

w − T4
a

)
,

(1.26)

where 𝜌g is the density of the gas in the bulb; cpg the specific heat of the gas; 𝜌w the density
of the wall of the bulb; cpw the specific heat of the wall; hf the heat transfer coefficient
between filament and gas; hg the heat transfer coefficient between gas and wall; hw the heat
transfer coefficient between wall and ambient and 𝜖 the emissivity. The subscripts f , w, g and
a respectively indicate the filament, wall, gas and ambient.

Equations (1.21) and (1.26) are first-order nonlinear differential equations. The initial
conditions required are

At t = 0,

Tg = Ta and Tw = Ta. (1.27)

The simultaneous solution of Equations (1.21) and (1.26), along with the above initial
condition, results in the temperatures of the gas and the wall as functions of time.

1.4.3 Systems with a Relative Motion and Internal Heat Generation

The extrusion of plastics, drawing of wires and artificial fiber (optical fiber), suspended
electrical conductors of various shapes, continuous casting etc. can be treated alike.

In order to derive an energy balance for such a system, we consider a small differential
control volume of length, Δx, as shown in Figure 1.3. In this problem, the heat lost to the
environment by radiation is assumed to be negligibly small. The energy is conducted, convected
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xΔ x

x + dx

me

u

me 

q

q

x + dx

x + dx

x

x

hPΔx (T - Ta)

Figure 1.3 Conservation of energy in a moving body.

and transported with the material in motion. With reference to Figure 1.3, we can write the
following equations of conservation of energy, that is,

Qx + mex + GAΔx = Qx+dx + mex+dx + hPΔx(T − Ta), (1.28)

where Q = Aq is the total heat; m is the mass flow 𝜌Au and is assumed to be constant; ex is
the specific energy; 𝜌 the density of the material; A the cross-sectional area; P the perimeter
of the control volume; G is the heat generated per unit volume and u is the velocity at which
the material is moving. Using the Taylor series of expansion we obtain

m(ex − ex+dx) = −m
dex

dx
Δx = −mcp

dT
dx

Δx. (1.29)

Note that dex = cpdT at constant pressure. Similarly, using Fourier’s law (Equation (1.1)),

Qx − Qx+dx = −
dQx

dx
= d

dx

[
kA

dT
dx

]
. (1.30)

On substituting Equations (1.29) and (1.30) into Equation (1.28), we obtain the following
conservation equation,

d
dx

[
kA

dT
dx

]
− hP(T − Ta) − 𝜌cpAu

dT
dx

+ GA = 0. (1.31)

In the above equation, the first term is derived from the heat diffusion (conduction) within
the material, the second term is due to convection from the material surface to ambient, the
third term represents the heat transport due to the motion of the material, and finally the last
term is added to account for heat generation within the body.
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1.5 Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or combination
of phases) is the main objective of a conduction analysis, that is, to know the temperature in
the medium as a function of space at steady state and as a function of time during the transient
state. Once this temperature distribution is known, the heat flux at any point within the medium,
or on its surface, may be computed from Fourier’s law, Equation (1.1). A knowledge of the
temperature distribution within a solid can be used to determine the structural integrity via
a determination of the thermal stresses and distortion. The optimization of the thickness of
an insulating material and the compatibility of any special coatings or adhesives used on the
material can be studied by knowing the temperature distribution.

We shall now derive the conduction equation in Cartesian coordinates by applying the
energy conservation law to a differential control volume as shown in Figure 1.4. The solution of
the resulting differential equation, with prescribed boundary conditions, gives the temperature
distribution in the medium.

The Taylor series expansion gives:

Qx+dx = Qx +
𝜕Qx

𝜕x
Δx

Qy+dy = Qy +
𝜕Qy

𝜕y
Δy

Qz+dz = Qz +
𝜕Qz

𝜕z
Δz. (1.32)

Q

Q

Q

z

y

x Qx+Δx

Qz+ΔzQy+Δy

x

y
z

Δy

Δz

Δx

Figure 1.4 A differential control volume for heat conduction analysis.
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Note that second and higher order terms are neglected in the above equation.The heat
generated in the control volume is GΔxΔyΔz and the rate of change in energy storage is given
as

𝜌cp(ΔxΔyΔz)
𝜕T
𝜕t
. (1.33)

Now, with reference to Figure 1.4, we can write the energy balance as

”energy inlet + energy generated = energy stored + energy exit”

that is:

(Qx + Qy + Qz) + G(ΔxΔyΔz) = 𝜌(ΔxΔyΔz)
𝜕T
𝜕t

+ Qx+dx + Qy+dy + Qz+dz. (1.34)

Substituting Equation (1.32) into the previous equation and rearranging results in;

−
𝜕Qx

𝜕x
Δx −

𝜕Qy

𝜕y
Δy −

𝜕Qz

𝜕z
Δz + G(ΔxΔyΔz) = 𝜌cp(ΔxΔyΔz)

𝜕T
𝜕t
. (1.35)

The total heat transfer Q in each direction can be expressed as (area perpendicular to heat
flux direction × heat flux):

Qx = (ΔyΔz)qx = −kx(ΔyΔz)
𝜕T
𝜕x

Qy = (ΔxΔz)qy = −ky(ΔxΔz)
𝜕T
𝜕y

Qz = (ΔxΔy)qz = −kz(ΔxΔy)
𝜕T
𝜕z
. (1.36)

Substituting Equation (1.36) into Equation (1.35) and dividing by the volume, ΔxΔyΔz,
we get

𝜕

𝜕x

[
kx
𝜕T
𝜕x

]
+ 𝜕

𝜕y

[
ky
𝜕T
𝜕y

]
+ 𝜕

𝜕z

[
kz
𝜕T
𝜕z

]
+ G = 𝜌cp

𝜕T
𝜕t
. (1.37)

Equation (1.37) is the transient heat conduction equation for a stationary system expressed
in Cartesian coordinates. The thermal conductivity, k, in the above equation is a vector. In its
most general form, the thermal conductivity can be expressed as a tensor, that is,

k =
⎡⎢⎢⎣

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

⎤⎥⎥⎦ . (1.38)

The preceding Equations (1.37) and (1.38) are valid for solving heat conduction problems
in anisotropic materials with directional variation in thermal conductivities. In many situations,
however, thermal conductivity can be taken as a nondirectional property, that is, the material
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is isotropic in nature. In such materials, the heat conduction equation is written as (constant
thermal conductivity):

𝜕
2T
𝜕x2

+ 𝜕
2T
𝜕y2

+ 𝜕
2T
𝜕z2

+ G
k
= 1
𝛼

𝜕T
𝜕t

, (1.39)

where 𝛼 = k∕𝜌cp is the thermal diffusivity, which is an important parameter in transient heat
conduction analyses. If the analysis is restricted only to steady-state heat conduction without
heat generation, the equation is reduced to

𝜕
2T
𝜕x2

+ 𝜕
2T
𝜕y2

+ 𝜕
2T
𝜕z2

= 0. (1.40)

For a one-dimensional case, the steady-state heat conduction equation is further reduced
to

d
dx

(
k

dT
dx

)
= 0. (1.41)

The heat conduction equation for a cylindrical coordinate system is given by

1
r
𝜕

𝜕r

[
krr

𝜕T
𝜕r

]
+ 1

r2

𝜕

𝜕𝜙

[
k
𝜙

𝜕T
𝜕𝜙

]
+ 𝜕

𝜕z

[
kz
𝜕T
𝜕z

]
+ G = 𝜌cp

𝜕T
𝜕t
. (1.42)

In cylindrical coordinates, the heat fluxes can be expressed as

qr = −kr
𝜕T
𝜕r

q
𝜙
= −

k
𝜙

r
𝜕T
𝜕𝜙

qz = −kz
𝜕T
𝜕z

, (1.43)

where r,𝜙 and z are the cylindrical coordinate directions. The heat conduction equation for a
spherical coordinate system is given by

1
r2

𝜕

𝜕r

[
krr2 𝜕T

𝜕r

]
+
( 1

r2sin2
𝜃

)
𝜕

𝜕𝜙

[
k
𝜙

𝜕T
𝜕𝜙

]
+( 1

r2sin𝜃

)
𝜕

𝜕𝜃

[
k
𝜃
sin𝜃

𝜕T
𝜕𝜃

]
+ G = 𝜌cp

𝜕T
𝜕t
. (1.44)

The heat fluxes in a spherical coordinate system can be expressed as

qr = −kr
𝜕T
𝜕r

q
𝜙
= −

k
𝜙

rsin𝜃
𝜕T
𝜕𝜙

q
𝜃
= −

k
𝜃

r
𝜕T
𝜕𝜃

, (1.45)
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where r,𝜙 and 𝜃 are the spherical coordinate directions. It should be noted that for both
cylindrical and spherical coordinate systems (Equations (1.42) and (1.44)) can be derived in a
similar fashion as for Cartesian coordinates by considering the appropriate differential control
volumes.

1.6 Mass Transfer

When a concentration gradient exists in a fluid mixture, mass transfer takes place from a higher
concentration to a lower concentration location. Such mass transport often takes place at the
molecular level in the form of mass diffusion. The mass transport at the macroscopic level is
referred to as mass convection. Thus, the modes of mass transfer are very similar to the first
two modes of heat transfer, that is, conduction (diffusion) and convection. Mass diffusion is
often described using Fick’s law of mass transport (Fick 1855). This states that the mass flux
of a constituent per unit area is proportional to the concentration gradient, that is,

JA =
ṁA

A
= −DAB

dCA

dx
, (1.46)

where ṁA is the mass flux per unit time, DAB is the diffusion coefficient and CA is the mass
concentration of the component A. As seen, this expression is very similar to Fourier’s law of
heat conduction (Equation (1.1)). The convective mass flux per unit area may be defined as

ṁA

A
= hA(CA − CA∞), (1.47)

where hA is the mass transfer coefficient and CA − CA∞ is the concentration difference through
which mass transfer occurs. Equation (1.47) is analogous to the Newton’s law of cooling for
heat transfer (Equation (1.2)). Further details on mass transfer are given in Chapter 10.

1.7 Boundary and Initial Conditions

The heat conduction equations discussed in Section 1.5 will be complete for any problem
only if the appropriate boundary and initial conditions are stated. With the necessary boundary
and initial conditions, a solution to the heat conduction equation is possible. The boundary
conditions for the conduction equation can be of two types or a combination of these: the
Dirichlet condition, in which the temperature on the boundaries is known and/or the Neumann
condition, in which the heat flux is imposed, that is (see Figure 1.5):

Dirichlet condition:

T = To on ΓT . (1.48)

Neumann condition:

q = −k
𝜕T
𝜕n

= q̄ on Γqf . (1.49)
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Γ

Ω

Γ

Γ

T

qc

q f

Figure 1.5 Boundary conditions.

In the above equations (Equations (1.48) and (1.49)), To is the prescribed temperature; Γ
the boundary surface; n is the outward direction normal to the surface and q̄ is the constant
flux given. The insulated, or adiabatic, condition can be obtained by substituting q̄ = 0. The
convective heat transfer boundary condition also falls into the Neumann category and can be
expressed as

− k
𝜕T
𝜕n

= h(Tw − Ta) on Γqc. (1.50)

It should be observed that the heat conduction equation has second-order terms and hence
faces two types of boundary conditions. Since the time appears as a first-order term, at least
one initial value (i.e., at some instant of time all temperatures must be known) is to be specified
for the entire body, that is,

T = T0 all over the domain Ω at t = t0, (1.51)

where t0 is a reference time.
The constant or variable temperature conditions are generally easy to implement as tem-

perature is a scalar. However, the implementation of surface fluxes is not as straightforward.
Equation (1.49) can be rewritten with direction cosines of the outward normals as

−
(

kx
𝜕T
𝜕x

l̃ + ky
𝜕T
𝜕y

m̃ + kz
𝜕T
𝜕z

ñ

)
= q̄ on Γqf . (1.52)

Similarly, Equation (1.50) can be rewritten as

−
(

kx
𝜕T
𝜕x

l̃ + ky
𝜕T
𝜕y

m̃ + kz
𝜕T
𝜕z

ñ

)
= h(T − Ta) on Γqc, (1.53)

where l̃, m̃ and ñ are the direction cosines of the appropriate outward surface normals.
In many industrial applications, for example, wire drawing, crystal growth, continuous

casting, etc., the material will have a motion in space and this motion may be restricted to one
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direction, as in the example (Section 1.4.3) cited previously. The general energy equation for
heat conduction, taking into account the spatial motion of the body, is given by

𝜕

𝜕x

(
kx
𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
ky
𝜕T
𝜕y

)
+ 𝜕

𝜕z

(
kz
𝜕T
𝜕z

)
+ G = 𝜌cp

(
𝜕T
𝜕t

+ u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

+ w
𝜕T
𝜕z

)
, (1.54)

where u, v and w are the components of the velocity in the three directions, x, y and z
respectively.

The governing equations for convection heat transfer are very similar to the above and will
be discussed in Chapter 7.

1.8 Solution Methodology

Although a number of analytical solutions for conduction heat transfer problems are available
(Carslaw and Jaeger 1959; Ozisik 1968), in many practical situations, the geometry and
the boundary conditions are so complex that an analytical solution is not possible. Even
if one could develop analytical relations for such complicated cases, these will invariably
involve complex series solutions and would thus be practically difficult to implement. In such
situations, conduction heat transfer problems do need a numerical solution. Some commonly
employed numerical methods are the Finite Difference (Ozisik and Czisik 1994), Finite Volume
(Patankar 1980), Finite Element and Boundary Element (Ibanez and Power 2002) techniques.
This text will address issues related to the Finite Element Method (FEM) only (Comini et al.
1994; Huang and Usmani 1994; Lewis et al. 1996, 2004; Reddy and Gartling 2000).

In contrast to an analytical solution, which allows for the temperature determination at any
point in the medium, a numerical solution enables the determination of temperature only at
discrete points. The first step in any numerical analysis must therefore be to select these points.
This is done by dividing the region of interest into a number of smaller regions. These regions
are bounded by points. These reference points are termed nodal points and their assembly
results in a grid or mesh. It is important to note that each node represents a certain region
surrounding it and its temperature is a measure of the temperature distribution in that region.
The numerical accuracy of these calculations depends strongly on the number of designated
nodal points, which control the number of elements generated. The accuracy approaches an
exact value as the mesh size (region size) approaches zero.

Further details on the numerical methods, mesh generation, accuracy and error are dis-
cussed in later chapters.

1.9 Summary

In this chapter, the subject of heat transfer was introduced and various modes of heat transport
were discussed. The fundamentals of energy conservation principles and the application of
such principles to some selected problems were also presented. Finally, the general heat
conduction equations in multi-dimensions were derived and the appropriate boundary and
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initial conditions were given. Although this chapter has been brief, we trust that it has given
the reader the essential fundamental concepts involved in heat transfer in general and some
detailed understanding of conduction heat transfer in particular.

1.10 Exercises

Exercise 1.10.1 Derive the energy balance equation for a rectangular fin of variable cross-
section as shown in Figure 1.6. The fin is stationary and is attached to a hot heat source. (Hint:
This is similar to the problem given in Section 1.4.3. but without relative motion.)

Exercise 1.10.2 The inner body temperature of a healthy person remains constant at 37 ◦C
while the temperature and humidity of the environment change. Explain, via heat transfer
mechanisms between the human body and the environment, how the human body keeps itself
cooler in summer and warmer in winter.

Exercise 1.10.3 Discuss the modes of heat transfer that determine the equilibrium tem-
perature of a space shuttle when it is in orbit. What happens when it reenters the Earth’s
atmosphere?

Exercise 1.10.4 A closed plastic container used to serve coffee in a seminar room is made
of two layers with an air gap placed between them. List all heat transfer processes associated
with the cooling of the coffee in the inner plastic vessel. What steps do you consider for a
better container design so as to reduce the heat loss to the ambient?

Exercise 1.10.5 A square chip of size 8 mm is mounted on a substrate with the top surface
being exposed to a coolant flow at 20 ◦C. All other surfaces of the chip are insulated. The chip
temperature must not exceed 80 ◦C in order for the chip to function properly. Determine the
maximum allowable power, which can be applied to the chip if the coolant is air with a heat

Figure 1.6 Rectangular fin.
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transfer coefficient of 250 W/m2K. If the coolant is a dielectric liquid with a heat transfer coef-
ficient of 2500 W/m2K, how much additional power can be dissipated compared to air cooling?

Exercise 1.10.6 Consider a person standing in a room, which is at a temperature of 21 ◦C.
Determine the total heat rate from this person if the exposed surface area of the person is
1.6 m2 and the average outer surface temperature of the person is 30 ◦C. The convection
coefficient from the surface of the person is 5 W/m2 ◦C. What is the effect of radiation if the
emissivity of the surface of the person is 0.90?

Exercise 1.10.7 A thin metal plate has one large insulated bottom surface and the top large
surface exposed to solar radiation at a rate of 600 W/m2. The surrounding air temperature
is 20 ◦C. Determine the equilibrium surface temperature of the plate if the convection heat
transfer coefficient from the plate surface is 20 W/m2K and the emissivity of the top surface of
the plate is 0.8.

Exercise 1.10.8 A long, thin copper wire of radius r and length L has an electrical resistance
of 𝜌 per unit length. The wire is initially kept at a room temperature of Ta and subjected to an
electric current flow of I. The heat generation due to the current flow is simultaneously lost to
the ambient by convection. Set up an equation to determine the temperature of the wire as a
function of time. Mention the assumptions made in the derivation of the equation.

Exercise 1.10.9 In a continuous casting machine, the billet moves at a rate of u m/s. The hot
billet is exposed to an ambient temperature of Ta. Set up an equation to find the temperature
of the billet as a function of time in terms of pertinent parameters. Assume that radiation also
plays a role in the dissipation of heat to ambient.

Exercise 1.10.10 In a double pipe heat exchanger, hot fluid (mass flow M kg/s and spe-
cific heat C kJ/kg ◦C) flows inside a pipe and cold fluid (mass flow m kg/s and specific heat c
kJ/kg ◦C) flows outside in the annular space. The hot fluid enters the heat exchanger at Th1 and
leaves at Th2 whereas the cold fluid enters at Tc1 and leaves at Tc2. Set up the differential equa-
tion to determine the temperature variation (along the heat exchanger) for hot and cold fluids.
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Some Basic Discrete Systems

2.1 Introduction

Many engineering systems may be simplified by subdividing them into components or ele-
ments. These elements can readily be analyzed from first principles and, by assembling these
together, the analysis of a full original system can be reconstructed. We refer to such systems as
discrete systems. In a large number of situations a reasonably adequate model can be obtained
using a finite number of well-defined components. This chapter discusses the application of
such techniques for the formulation of certain heat and fluid flow problems. The problems
presented here provide a valuable basis for the discussion of the finite element method (Bathe
1982; Huebner and Thornton 1982; Hughes 2000; Lewis et al. 2004; Reddy 1993; Segerlind
1984; Zienkiewicz et al. 2013a,b), which is presented in subsequent chapters.

In the analysis of a discrete system, the actual system response is described directly by the
solution of a finite number of unknowns. However, a continuous system is the one in which a
continuum is described by complex differential equations. In other words, the system response
is described by an infinite number of unknowns. It is often difficult to obtain an exact solution
for a continuum problem and therefore appropriate numerical methods are required.

If the characteristics of a problem can be represented by relatively simplified equations, it
may be analyzed by employing a finite number of components and simple matrices as shown
in the following sections of this chapter. Such procedures reduce the continuous system to
an idealization that can be analyzed as a discrete physical system. In reality, an important
preliminary study to be made by the engineer is whether an engineering system can be treated
as discrete or continuous.

If a system is to be analyzed using complex governing differential equations, then one has
to make a decision on how these equations can be discretized by an appropriate numerical
method. Such a system is a refined version of discrete systems and the solution accuracy can
be controlled by changing the number of unknowns and elements. The importance of the

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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finite element method finds a place here, that is, finite element techniques, in conjunction with
the digital computer, have enabled the numerical approximation and solution of continuous
systems in a systematic manner. This in effect has made possible the practical extension and
application of classical procedures to very complex engineering systems.

In this chapter we deal with some basic discrete or lumped-parameter systems, that is,
systems with a finite number of degrees of freedom. The steps in the analysis of a discrete
system are as follows:

� Step1: Approximation of system: System is idealized as an assembly of elements.

� Step2: Element characteristics: The characteristics of each element, or component, is
found in terms of the primitive variables.

� Step3: Assembly: A set of simultaneous equations is defined via the assembly of element
characteristics for the unknown state variables.

� Step4: Solution of equations: The simultaneous equations are solved to determine all
the primitive variables on a selected number of points.

We consider in the following sections some heat transfer and fluid flow problems. The
same procedure can be extended to structural, electrical and other problems.

2.2 Steady-state Problems

2.2.1 Heat Flow in a Composite Slab

Consider the heat flow through a composite slab under steady-state conditions as shown in
Figure 2.1. The problem is similar to that of a roof slab subjected to a solar flux on the left
hand face. This is subjected to a constant flux of q W/m2 and the right hand face is subjected
to a convection environment. We are interested in determining the temperatures T1, T2 and T3
at nodes 1, 2 and 3 respectively.

The steady-state heat conduction equation for a one-dimensional slab with a constant
thermal conductivity is given by Equation (1.41), that is,

d2T
dx2

= 0. (2.1)

Integration of the above equation yields the following temperature gradient and temperature
distribution

dT
dx

= a (2.2)

and

T = ax + b. (2.3)
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Figure 2.1 Heat transfer through a composite slab.

To determine the constants a and b, consider a homogeneous slab of thickness, L, with the
following boundary conditions (in one dimension):

At x = 0, T = T0 and At x = L, T = TL. (2.4)

The substitution of these boundary conditions into Equation (2.3) results in

b = T0 and a =
TL − T0

L
. (2.5)

The heat flux can be calculated from Equations (2.3) and (2.5) as

q = −dT
dx

= −k

(
TL − T0

L

)
; (2.6)

or, the total heat flow is expressed as

Q = qA = −kA

(
TL − T0

L

)
, (2.7)

where A is the area perpendicular to the direction of heat flow.
The total heat flow is constant at any section perpendicular to the heat flow direction

(conservation of energy). Applying the above principle to the composite slab shown in
Figure 2.1, we have the following heat balance equations at different nodes:

At node 1

qA = k1A

(
T1 − T2

L1

)
. (2.8)
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At node 2

k1A

(
T1 − T2

L1

)
= k2A

(
T2 − T3

L2

)
. (2.9)

At node 3

k2A

(
T2 − T3

L2

)
= hA(T3 − Ta), (2.10)

where h is the heat transfer coefficient and Ta is the ambient temperature. We can rearrange
the previous three nodal equations as follows:

k1A

L1
T1 −

k1A

L1
T2 = qA

−
k1A

L1
T1 +

[
k1A

L1
+

k2A

L2

]
T2 −

k2A

L2
T3 = 0

−
k2A

L2
T2 +

[
k2A

L2
+ hA

]
T3 = hATa. (2.11)

The above equation can be rewritten in matrix form as

⎡⎢⎢⎢⎢⎣

k1A
L1

−k1A
L1

0
−k1A

L1

[
k1A
L1

+ k2A
L2

]
−k2A

L2

0 −k2A
L2

[
k2A
L2

+ hA
]
⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

qA
0

hATa

⎫⎪⎬⎪⎭
(2.12)

or

[K]{T} = {f}, (2.13)

where

[K] =

⎡⎢⎢⎢⎢⎢⎣

k1A
L1

−k1A
L1

0

−k1A
L1

[
k1A
L1

+ k2A
L2

]
−k2A

L2

0 −k2A
L2

[
k2A
L2

+ hA
]
⎤⎥⎥⎥⎥⎥⎦

; {T} =
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
and {f} =

⎧⎪⎨⎪⎩
qA
0

hATa

⎫⎪⎬⎪⎭
.

(2.14)

The solution of Equation (2.13) gives the unknown temperatures T1, T2 and T3. In the case
of heat conduction there is only one degree of freedom at each node as temperature is a scalar.
The following important features of Equation (2.13) should be observed.

� The characteristics of each layer of the slab for heat conduction can be written as

kA
L

[
1 −1
−1 1

]{
Ti
Tj

}
=
{

Q
−Q

}
. (2.15)

where Q is the total heat flow and is constant and i and j are the two nodes on both ends
of an element (see Figure 2.1).
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Figure 2.2 Fluid flow network.

� The global stiffness matrix [K] can be obtained by assembling the stiffness matrices of
each layer and the result is a symmetric and positive definite matrix.

� The effect of the heat flux boundary condition appears only in the loading terms {f}.

� The convective heat transfer effect appears both in the stiffness matrix and the loading
vector.

� The thermal force vector consists of known values. The method of assembly can be
extended to more than two layers of the slab.

In summary, if [K] and {f} can be formed, the temperature distribution can be determined
by any standard solution procedure to a set of simultaneous equations.

2.2.2 Fluid Flow Network

Many practical problems require a knowledge of the flow in various circuits, for example
water distribution systems, ventilation ducts in electrical machines (including transformers),
electronic cooling systems, internal passages in gas turbine blades etc. In order to illustrate
the flow calculations in each circuit, laminar incompressible flow is considered in the network
of circular pipes1 as shown in Figure 2.2. If a quantity Q m3∕s of fluid enters and leaves the
pipe network, it is possible to compute the fluid nodal pressures and the volume flow rate in
each pipe. We shall make use of a four-element and three-node model as shown in Figure 2.2.

The fluid resistance for an element is written as (Poiseuille flow (Shames 1982))

Rk =
Δp

Q
= 128L𝜇

𝜋D4
, (2.16)

1It should be noted that we use the notation Q for both total heat flow and fluid flow rate.
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where L is the length of the pipe section; D the diameter of the pipe section, 𝜇 the dynamic
viscosity of the fluid, and subscript k indicates the element number. The volume flux rate
entering and leaving an element can be written as

qi =
1

Rk
(pi − pj) and qj =

1
Rk

(pj − pi), (2.17)

where p is the pressure, q is the volume flux rate and subscripts i and j indicate the two nodes
of an element.

The characteristics of the element can therefore be written as

1
Rk

[
1 −1
−1 1

]{
pi
pj

}
=
{

qi
qj

}
. (2.18)

Similarly, we can construct the characteristics of each element in Figure 2.2 as:
Element 1

1
R1

[
1 −1
−1 1

]{
p1
p3

}
=
{

q1
−q1

}
. (2.19)

Note that the mass flux rate entering an element is positive and leaving an element is negative.
Element 2

1
R2

[
1 −1
−1 1

]{
p1
p2

}
=
{

q2
−q2

}
. (2.20)

Element 3

1
R3

[
1 −1
−1 1

]{
p2
p3

}
=
{

q3
−q3

}
. (2.21)

Element 4

1
R4

[
1 −1
−1 1

]{
p2
p3

}
=
{

q4
−q4

}
. (2.22)

From the above element equations, it is possible to write the following nodal equations:

[
1

R1
+ 1

R2

]
p1 −

1
R2

p2 −
1

R1
p3 = q1 + q2 = Q

− 1
R2

p1 +
[

1
R2

+ 1
R3

+ 1
R4

]
p2 −

[
1

R3
+ 1

R4

]
p3 = q3 + q4 − q2 = 0

− 1
R1

p1 −
[

1
R3

+ 1
R4

]
p2 +

[
1

R1
+ 1

R3
+ 1

R4

]
p3 = −q1 − q3 − q4 = −Q. (2.23)
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Table 2.1 Details of pipe network

Component number Diameter, cm Length, m

1 2.50 30.00
2 2.00 20.00
3 2.00 25.00
4 1.25 20.00

Now the following matrix form can be written from the above equation.

⎡⎢⎢⎢⎢⎢⎢⎣

[
1

R1
+ 1

R2

]
− 1

R2
− 1

R1

− 1
R2

[
1

R2
+ 1

R3
+ 1

R4

]
−
[

1
R3

+ 1
R4

]
− 1

R1
−
[

1
R3

+ 1
R4

] [
1

R1
+ 1

R3
+ 1

R4

]

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩
p1
p2
p3

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩
q1 + q2

−q2 + q3 + q4
−q1 − q3 − q4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

Q
0
−Q

⎫⎪⎬⎪⎭
. (2.24)

Note that q1 + q2 = Q and q2 = q3 + q4.
In this fashion we can solve such problems as electric networks, radiation networks etc.

Let us consider a numerical example to illustrate the above.

Example 2.2.1 In a pipe network as shown in Figure 2.2, water enters the network at a rate
of 0.1 m3/s with a viscosity of 0.96 × 10−3 Ns/m2. The component details are given in Table
2.1. Determine the pressure and flow distributions.

On substitution of the various values, we get the following resistances from Equation
(2.16):

R1 = 0.3 × 107

R2 = 0.5 × 107

R3 = 0.6 × 107

R4 = 3.2 × 107
.

( N
M2

S
M3

)

Now Equation (2.24) can be formulated as

10−7
⎡⎢⎢⎣

5.33 −2.00 −3.33
−2.00 3.98 −1.98
−3.33 −1.98 5.31

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

p1
p2
p3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0.1
0.0

−0.1

⎫⎪⎬⎪⎭
. (2.25)

The reduction of the above simultaneous system of equations with p3 = 0.0 (assumed as
reference atmospheric pressure) results in

10−7
[

5.33 −2.00
−2.00 3.98

]{
p1
p2

}
=
{

0.1
0.0

}
. (2.26)
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The solution to the above set of simultaneous equations (see Appendix A) gives the relative
pressure (actual minus atmospheric pressure) as

p1 = 0.236 × 106 N∕m2

p2 = 0.110 × 106 N∕m2

From Equations (2.19), (2.20), (2.21) and (2.22) we can calculate the flow quantities as

q1 =
p1 − p2

R1
= 0.042 m3/s

q2 =
p1 − p3

R2
= 0.0472 m3/s

q3 =
p2 − p3

R3
= 0.0183 m3/s

q4 =
p2 − p3

R4
= 0.0034 m3/s. (2.27)

It is possible to take into account the entrance loss, exit loss, bend loss etc. in the calculation
of nodal pressures and flows in each circuit. If the fluid flow in the network is turbulent, it is
still possible to define an element but the element equations are no longer linear as can be seen
from an empirical relation governing fully developed turbulent pipe flow (Darcy-Weisbach
formula (Shames 1982)):

p1 − p2 =
8fLQ2

𝜌

𝜋
2D5

. (2.28)

where f is the Moody friction factor, which is a function of the Reynolds number and the pipe
roughness. The fluidity matrix would contain known functions of the flow rate Q instead of
constants. Hence, the problem becomes nonlinear.

2.2.3 Heat Transfer in Heat Sinks

In order to increase the heat dissipation by convection from a given primary surface, additional
surfaces may be added. The additional material added is either referred to as an “Extended
Surface” or a “Fin.” A familiar example is in motor cycles where fins extend from the outer
surface of the engine to dissipate more heat by convection. A schematic diagram of such a fin
array is shown in Figure 2.3. This is a good example of a heat sink.

We shall assume for simplicity that there is no variation in temperature along the thickness
and width of the fins. We will also assume that the temperature varies only along the longitu-
dinal direction of the fin and the height direction of the hot body to which the fin is attached.
We can then derive a simplified model as shown in Figure 2.4. A typical element in the fin
array is shown in Figure 2.5.

Assuming that the surface temperature is average temperature two nodes,

Qi =
kA
L

(Ti − Tj) +
hPL

2

[Ti + Tj

2
− Ta

]
(2.29)
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Figure 2.4 A simplified model of the rectangular fins of Figure 2.3.
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Figure 2.5 A typical component from the rectangular fin arrangement and conductive–
convective heat transfer mechanism. k – thermal conductivity, h – heat transfer coefficient,
Ta – atmospheric temperature.
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and

Qj =
kA
L

(Ti − Tj) −
hPL

2

[Ti + Tj

2
− Ta

]
, (2.30)

where Qi and Qj are the total heat flow associated with nodes i and j respectively, A is the cross
sectional area and P is the perimeter. The energy balance of the system can easily verified by
subtracting Equation (2.30) from Equation (2.29), that is,

Qi − Qj = hPL

[Ti + Tj

2
− Ta

]
. (2.31)

This clearly indicates that the difference in total heat flow between nodes i and j is equal
to the heat lost from the fin surface to the atmosphere.

Equations (2.29) and (2.30) may now be written in matrix form as

⎡⎢⎢⎢⎣
kA
L
+ hPL

4
− kA

L
+ hPL

4

− kA
L
+ hPL

4
kA
L
+ hPL

4

⎤⎥⎥⎥⎦
{

Ti
Tj

}
=

{
Qi +

hPLTa

2

−Qj +
hPLTa

2

}
. (2.32)

In the above equation, either Qi or Ti is often known and quantities such as Ta, h, k, L and
P are also generally known a priori. The above problem is therefore reduced to finding three
unknowns Qi or Qj and Ti, Tj. In addition to the above two equations, an additional equation
relating Qi and Qj as given by Equation (2.31) may also be used.

It is now possible to solve the system to find the unknowns. If there is more than one element,
then an assembly procedure is necessary as discussed in the previous section. Equation (2.32)
is reduced to (2.15) if surface convection is absent. Also, if the terms (Ti + Tj)∕2 in Equation
(2.32) is replaced by (2Ti + Tj)∕3, then we obtain the standard Galerkin weighted residual
form discussed in Chapter 3.

2.3 Transient Heat Transfer Problem

In a transient or propagation problem the response of a system changes with time. The same
methodology as used in the analysis of a steady-state problem is employed here, but the
temperature and element equilibrium relations depend on time. The objective of the transient
analysis is to calculate the temperatures with respect to time.

Figure 2.6 shows an idealized case of a heat treatment chamber. A metallic part is heated
to an initial temperature, Tp, and is placed in a heat treatment chamber where an inert gas,
such as nitrogen, is present. Heat is transferred from the metallic part to the gas by convection.
The gas in turn loses heat to the enclosure wall by convection and radiation. The wall also
receives heat by direct radiation from the metallic part as the gas is assumed to be transparent
to radiation. The wall loses heat to the atmosphere by radiation and convection.

The unknown variables in the present analysis are the temperature of the metallic part Tp;
the temperature of the gas Tg; and the temperature of the enclosure wall Tw. For simplicity,
we use a lumped parameter approach, that is, the temperature variations within the metal, gas
and wall are ignored.
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Figure 2.6 Heat treatment chamber and associated heat transfer processes.

Let Cp, Cg and Cw be the heat capacities of the metallic part, the gas and the wall respec-
tively. Neglecting radiation from and to the gas, the time-dependent heat balance equations
may be derived as follows.

For the metallic part:

Cp

dTp

dt
= −

{
hpAp(Tp − Tg) + 𝜖p𝜎Ap

(
T4

p − T4
w

)}
. (2.33)

For the gas component:

Cg

dTg

dt
= hpAp(Tp − Tg) − hgAg(Tg − Tw). (2.34)

For the furnace wall:

Cw
dTw

dt
= 𝜖p𝜎Ap

(
T4

p − T4
w

)
+ hgAg(Tg − Tw)

−hwAw(Tw − Ta) − 𝜖w𝜎Aw

(
T4

w − T4
a

)
. (2.35)

The heat balance for the whole system may be obtained by adding all three energy balance
equations. This results in the total rate of change of energy within the whole system being
equal to the heat exchanged by the external wall to the atmosphere, proving that the system is
in dynamic equilibrium with the atmosphere.

Equations (2.33), (2.34) and (2.35) can be recast in matrix form as

[C]
{
̇T
}
+ [K]{T} = {f} , (2.36)

where

[C] =
⎡⎢⎢⎣

Cp 0.0 0.0
0.0 Cg 0.0
0.0 0.0 Cw

⎤⎥⎥⎦ (2.37)
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{
̇T
}
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dTp

dt

dTg

dt

dTw

dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.38)

{T} =

⎧⎪⎪⎨⎪⎪⎩

Tp

Tg

Tw

⎫⎪⎪⎬⎪⎪⎭
(2.39)

[K] =

⎡⎢⎢⎢⎢⎢⎣

hpAp −hpAp 0.0

−hpAp hpAp + hgAg −hgAg

0.0 −hgAg hgAg + hwAw

⎤⎥⎥⎥⎥⎥⎦
(2.40)

and

{f} =

⎧⎪⎪⎨⎪⎪⎩

−𝜖p𝜎Ap(T4
p − T4

w)

0

hwAwTa + 𝜖p𝜎Ap

(
T4

p − T4
w

)
− 𝜖w𝜎Aw

(
T4

w − T4
a

)

⎫⎪⎪⎬⎪⎪⎭
. (2.41)

where hp is the heat transfer coefficient from the metallic part to the gas; Ap the surface area of
the metallic part in contact with the gas; hg the heat transfer coefficient of the gas to the wall;
Ag the surface area of the gas in contact with the wall; hw is the heat transfer coefficient from
wall to atmosphere; Aw is the wall area in contact with atmosphere; 𝜖p and 𝜖w emissivity of
the metallic part and the wall respectively and 𝜎 the Stefan-Boltzmann constant (Chapter 1).

Although we follow the SI system of units, it is essential to reiterate here that the temper-
atures Tp, Tg, Tw and Ta should be used in K (Kelvin) as radiation heat transfer is involved in
the given problem. In view of the radiation terms appearing in the governing equations (i.e.,
temperature to the power of 4), the problem is highly nonlinear and an iterative procedure is
necessary. An initial guess of the unknown temperature values is also essential to start any
iterative procedure.

In this example, if the time terms are neglected, we can recover the steady-state formulation.
However, the time-dependent load terms are necessary to carry out any form of transient
analysis. In practice, the reduction of an appropriate discrete system that contains all the
important characteristics of the actual physical system is usually not straightforward. In general
a different discrete model should be chosen for a transient response prediction than that chosen
for a steady-state analysis.
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The time derivative terms used in the above formulation have to be approximated in order
to obtain a temperature distribution. As discussed in later chapters, approximations such as
backward Euler, central difference etc. may well be employed.

2.4 Summary

In this chapter, we have discussed some basic discrete system analyses. The application of
such an analysis to a heat exchanger problem is provided in Chapter 9. It is important to
reiterate that this chapter gives only a brief discussion of the system analysis. We believe
that the material provided in this chapter is sufficient to give the reader a starting point. It
should be noted that the system analysis is straight forward and works for many simple heat
transfer problems. However for complex continuum problems, a standard discretization of the
governing equations and solution methodology is essential. We will discuss these problems in
detail in the following chapters.

2.5 Exercises

Exercise 2.5.1 Use the system analysis procedure described in this chapter and construct
the discrete system for heat conduction through the composite wall shown in Figure 2.7. Also,
from the following data, calculate the temperature distribution in the composite wall.

Areas: A1 = 2.0 m2, A2 = 1.0 m2 and A3 = 1.0 m2.
Thermal conductivity: k1 = 2.00 W∕mK, k2 = 2.5 W∕mK and k3 = 1.5 W∕mK.
Heat transfer coefficient: h = 0.1 W∕m2K.
Atmospheric temperature: Ta = 30 ◦C.
Temperature at the left face of wall: T1 = 75.0 ◦C.

q h, T

k

A1 k1

A2

A3 k

2

a

L1

3

L2

Figure 2.7 Heat transfer in a composite wall.
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Figure 2.8 Heat transfer through an insulating material.

Exercise 2.5.2 The cross-section of an insulated pipe carrying a hot fluid is shown in
Figure 2.8. The inner and outer radii of the pipe are r1 and r2 respectively. The thickness
of the insulating material is r3 − r2. Assume appropriate conditions and form the discrete
system equations.

Exercise 2.5.3 The pipe network used to circulate hot water in a domestic central heating
arrangement is shown in Figure 2.9. The flow rate at the entrance is Qm3∕s. Neglecting any loss
of mass, construct a system of simultaneous equations to calculate the pressure distribution at
selected points using a discrete system analysis. Assume laminar flow occurs in the system.

Exercise 2.5.4 A schematic diagram of a counter flow heat exchanger is shown in Figure 2.10.
The hot fluid enters the central, circular pipe from the left and exits at the right. The cooling fluid
is circulated around the inner tube to cool the hot fluid. Using the principles of heat exchanger

Figure 2.9 Pipe network for central heating.
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Figure 2.10 Counter flow heat exchanger.

system discussed in chapter 9, construct a discrete system to determine the temperature
distribution.

Exercise 2.5.5 A transient analysis is very important in the casting industry. In Figure 2.11,
a simplified casting arrangement is shown (without a runner or raiser). The molten metal is
poured into the mold and the metal loses heat to the mold and solidifies. It is often possible to
have a small air gap between the metal and mold. The figure shows an idealized system which
has a uniform gap all around the metal. Assume that heat is transferred from the metal to the
mold via radiation and conduction. Then heat is conducted through the mold and convected to
the atmosphere. Stating all assumptions, derive a system of equations to carry out a transient
analysis.

Exercise 2.5.6 Consider a 0.6 m high and 2 m wide double-pane window consisting of two
4 mm thick layers of glass (k = 0.80 W/m ◦C ) separated by a 8 mm wide stagnant air space

Mold
Metal

Air gap

Figure 2.11 Counter flow heat exchanger.
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Table 2.2 Details of the composite wall

Material Thermal conductivity, W/m ◦C Thickness, cm

Aluminium 200 5
Copper 400 15
Steel 50 20

(k = 0.025 W/m ◦C ). Determine the steady-state heat transfer through the double-pane window
and the temperature of the inner surface for a day when the outside air temperature is −15 ◦C
and the room temperature is 20 ◦C. The heat transfer coefficient on the inner and outer surface
of the window to be 10 W/m2 ◦C and 40 W/m 2◦C respectively. Note that these heat transfer
coefficients include the effect of radiation. If the air gap is not provided, what is the temperature
of the glass inside the room? Comment on the result.

Exercise 2.5.7 A simplified model can be applied to describe the steady-state temperature
distribution through the core region, muscle region and skin region of the human body. The
core region temperature Tc, is the mean operating temperature of the internal organs. The
muscle temperature, Tm is the operating temperature of the muscle layer of the human body.
Muscle is a shell tissue and can be either resting or actively working. The skin temperature,
Ts, is the operating temperature of the surface region of the body consisting of a subcutaneous
fat layer, the dermal layer and finally epidermal layer. If the metabolic heat rate of a common
man is 45 W/m2 and the skin temperature is 32.6 ◦C, calculate the core region temperature if
the thermal conductivity of the core, muscle and skin are 0.48 W/m ◦C and the thickness of the
layers are 4 cm, 2 cm and 1 cm respectively. Also calculate the muscle temperature.

Exercise 2.5.8 A composite wall consists of layers of aluminum, copper and steel. The steel
external surface is 350 ◦C and the external surface of the aluminum is exposed to an ambient
of 25 ◦C with a heat transfer coefficient of 5 W/m2 ◦C. Calculate the heat loss and interfacial
temperature using a three-element model using the data given in Table 2.2.

Exercise 2.5.9 An incompressible fluid flows through a pipe network of circular pipes as
shown in Figure 2.12. If 0.1 m3/s of fluid enters and leaves the piping network, using a 4-node
5-element model, calculate the nodal pressure and the volume flow in each pipe. If the nodes

221

1
QQ

4
4

5

3

3

Figure 2.12 Incompressible flow through a pipe network.
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Table 2.3 Pipe network element details

Element number Nodes Diameter, D(cm) Length, L(m)

1 1,2 5 25
2 2,3 5 25
2 1,4 5 25
4 4,3 5 25
5 2,4 10 90

1 and 3 are directly connected, in addition to the existing arrangement, what change takes
place in the nodal pressure and volume fluid in each pipe? The viscosity of the fluid is 1×10−2

N s/m2. For laminar flow, the resistance for the flow is given by 128𝜇L∕𝜋D4. The details of
the elements are given in Table 2.3.

Exercise 2.5.10 Figure 2.13 shows a direct current circuit. The voltage at the output terminals
are also shown in Figure 2.13. Calculate the voltage at each node and the current in each of
the branches using the finite element method.

Exercise 2.5.11 A cross-section of a heat sink used in electronic cooling is shown in Fig-
ure 2.14. All the fins are of the same size. Calculate the heat dissipating capacity of the heat
sink per unit length of heat sink.

Exercise 2.5.12 The details of a double pipe heat exchanger are given as: (a) cold fluid heat
capacity rate C1 = 1100 W/ ◦C; (b) Hot fluid heat capacity rate C2 = 734 W/ ◦C; (c) overall
heat transfer coefficient U = 600 W/m 2◦C (d) heat exchanger area A = 4 m2 (e) cold fluid
entry temperature Tci = 20 ◦C (f) hot fluid entry temperature Thi = 80 ◦C. Set up the stiffness
matrix and them solve for the outlet temperature and the effectiveness of the heat exchanger
by using 1 element, 2 elements and 4 elements for the heat exchanger. Also determine the
minimum number of elements required for converged solution (refer to Chapter 9).

Exercise 2.5.13 Figure 2.15 shows an arrangement for cooling of an electronic equipment
consisting of a number of printed circuit boards (PCB) enclosed in a box. Air is forced through
the box by a fan. Select a typical element and write down the stiffness matrix and show that this

3 10 Ω

5 Ω

5 Ω

5 Ω

2 41

V1 = 50 V V4 = 30 V

Figure 2.13 A direct current circuit.
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T∞ = 25 °C

100 °C

h = 100 W/m2K

k = 200 W/mK

2 mm

8 mm8 mm8 mm

8 mm

6 cm

Figure 2.14 A heat sink.

Air

Fan
PCB with heat generating
electronic components

Figure 2.15 A printed circuit board.

method can take care of nonuniform flow (by using the methodology similar to the problem 4,
the nonuniform flow in each channel can be determined) and nonuniform heat generation in
individual PCB.
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3

The Finite Element Method

3.1 Introduction

The finite element method is a numerical tool for determining approximate solutions to a large
class of engineering problems. The method was originally developed to study the stresses
in complex air-frame structures (Clough 1960) and was later extended to the general field of
continuum mechanics (Zienkiewicz and Cheung 1965). There have been many articles on the
history of finite elements written by numerous authors with conflicting opinions on the origins
of the technique (Gupta and Meek 1996; Oden 1996; Zienkiewicz 1996).

The finite element method has received considerable attention in engineering education
and in industry because of its diversity and flexibility as an analysis tool. It is often necessary to
obtain approximate numerical solutions for complex industrial problems where exact closed-
form solutions are difficult to obtain. An example of such a complex situation can be found
in the cooling of electronic equipment (or chips). Also, the dispersion of pollutants during
nonuniform atmospheric conditions, metal wall temperatures in the case of gas turbine blades
where the inlet gas temperatures exceed the melting point of the material of the blade, cooling
problems in electrical motors, various phase change problems etc., are many other examples
of such complex situations. Although it is possible to derive the governing equations and
boundary conditions from first principles, it is often difficult to obtain any form of analytical
solution to such problems. This is due to the fact that either the geometry is irregular or
boundary condition is complex.

Among the various numerical methods that have evolved over the years, the most com-
monly used techniques are the finite difference, finite volume and finite element methods.
The finite difference is a well-established and conceptually simple method, which requires a
pointwise approximation to the governing equations. The numerical model, formed by writing

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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the difference equations for an array of grid points, can be improved by increasing the number
of points. Although many heat transfer problems may be solved using the finite difference
method (Ozisik and Czisik 1994), as soon as irregular geometries or an unusual specification
of boundary conditions are encountered, then the finite difference technique becomes difficult
to use.

The finite volume method is a further refined version of the finite difference method and
has become popular in computational fluid dynamics (Patankar 1980). The vertex centered
finite volume technique is very similar to the linear finite element method (Malan et al. 2002;
Zienkiewicz et al. 2013).

The finite element method (Baker 1985; Bathe 1982; Chandrupatla and Belegundu 1991;
Huebner and Thornton 1982; Hughes 2000; Lewis et al. 1996; Rao 1989; Segerlind 1984;
Zienkiewicz and Morgan 1983; Zienkiewicz and Taylor 2000; Zienkiewicz et al. 2013a,b)
considers that the solution region comprises many small, interconnected, subregions or ele-
ments and gives a piecewise approximation to the governing equations, that is, the complex
partial differential equations are reduced to a set of either linear or nonlinear simultaneous
equations. Thus, the finite element discretization procedure (i.e., dividing the domain into
a number of smaller regions) reduces the continuum problem which has an infinite num-
ber of unknowns, to one with a finite number of unknowns at specified points, referred
to as nodes. Since the finite element method allows us to form the elements, or subre-
gions, in an arbitrary sense, a close representation of boundaries of complicated domains
is possible.

Most of the finite difference schemes used in fluid dynamics and heat transfer can be viewed
as special cases within a weighted-residual framework. For weighted residual procedures, the
error in the approximate solution of the conservation equations is not set to zero, but instead
its integral, with respect to selected “weights,” is required to vanish. Within this family, the
collocation method reproduces the classical finite difference equations, whereas the finite
volume algorithm is obtained by using constant weights.

In this book we intend to present a step-by-step procedure of the finite element method as
applied to heat transfer problems. In doing so, we intend to present the topic in as simplified
a form as possible so that both students and practicing engineers can benefit.

A numerical model for a heat transfer problem starts with the physical problem, an example
of which is shown in Figure 3.1. As can be seen one part of the model deals with the
discretization of the domain and the other carries out the discrete approximation of the partial
differential equations. Finally, by combining both, the numerical solution to the problem is
achieved.

The solution of a continuum problem by the finite element method is approximated by the
following step-by-step process.

1. Discretization of the continuum
Divide the solution region into nonoverlapping elements or subregions. The finite
element discretization allows a variety of element shapes, for example, triangles or
quadrilaterals. Each element is formed by the connection of a certain number of nodes
(Figure 3.2). The number of nodes employed to form an element depends on the type
of element (or interpolation function).
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Figure 3.1 Numerical model for heat transfer calculations.
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Figure 3.2 Typical finite element mesh. Elements, nodes and edges.
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2. Select interpolation or shape functions
The next step is to choose the type of interpolation function, which represents the
variation of the field variable over an element. The number of nodes to form an element,
the nature and number of unknowns at each node decide the variation of a field variable
within the element.

3. Form element equations (formulation)
Next, we have to determine the matrix equations, which express the properties of the
individual elements by forming an element Left Hand Side (LHS) matrix and load
vector. For example, a typical LHS matrix and a load vector can be written as

[Ke] = Ak
l

[
1 −1

−1 1

]
(3.1)

{fe} =
{

Qi
Qj

}
, (3.2)

where the subscript e represents an element; Q is the total heat transferred; k is the ther-
mal conductivity; l is the length of a one-dimensional linear element and i and j represent
the nodes forming an element. The unknowns are the temperature values on the nodes.

4. Assemble the element equations to obtain a system of simultaneous equations
To find the properties of the overall system, we must assemble all the individual element
equations, that is, combine the matrix equations of each element in an appropriate way
such that the resulting matrix represents the behaviour of the entire solution region of
the problem. The boundary conditions must be incorporated after the assemblage of the
individual element contributions, that is,

[K]{T} = {f}, (3.3)

where [K] is the global LHS matrix, which is the assemblage of the individual element
LHS matrices as given in Equation (3.1), {f} is the global load vector, which is the
assemblage of the individual element load vectors (Equation (3.2)) and {T} is the global
unknown vector.

5. Solve the system of equations
The resulting set of algebraic equations, Equation (3.3), may now be solved to obtain
the nodal values of the field variable, for example, temperature.

6. Calculation of the secondary quantities (post-processing)
From the nodal values of the field variables, for example, temperatures, we can then
calculate the secondary quantities, for example, the heat fluxes.

3.2 Elements and Shape Functions

As shown in Figure 3.1, the finite element method involves the discretization of both the
domain and governing equations. In this process, the variables are represented in a piecewise
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Figure 3.3 One-dimensional finite elements: (a) a linear element; (b) a quadratic element;
(c) linear; and (d) quadratic variation of temperature over an element.

manner over the domain. By dividing the solution region into a number of small regions, called
“elements” (refer to Chapter 14 for mesh generation), and approximating the solution over
each small region, or element, by a suitable known function, a relation between differential
equations and elements is established. The functions employed to represent the nature of the
solution within each element are called shape functions, or interpolating functions, or basis
functions. They are called interpolating functions as they are used to determine the value of the
field variable within an element by interpolating the nodal values. They are also known as “basis
functions” as they form the basis of the discretization method. Polynomial type functions have
been most widely used as they can be integrated, or differentiated, easily and the accuracy of
the results can be improved by increasing the order of the polynomial as shown in Figure 3.3.

3.2.1 One-dimensional Linear Element

Many industrial and environmental problems may be approximated using a one-dimensional
finite element model. For instance, pipe flow, river flow, heat conduction through a fin etc.
can be resolved approximately using a one-dimensional assumption. Figure 3.3 shows the
temperature profile in an element as represented by linear and quadratic polynomials. Let us
consider a typical linear element with end nodes i and j with the corresponding temperature
being denoted by Ti and Tj respectively (Figure 3.3a).
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The linear temperature variation in the element is represented by

T(x) = 𝛼1 + 𝛼2x, (3.4)

where T is the temperature at any location x and 𝛼1, and 𝛼2 are constants. Since there are two
arbitrary constants in the linear representation, it requires only two nodes to determine the
values of 𝛼1, and 𝛼2, viz.,

Ti = 𝛼1 + 𝛼2xi

Tj = 𝛼1 + 𝛼2xj. (3.5)

From the above equations, we get

𝛼1 =
Tixj − Tjxi

xj − xi

𝛼2 =
Tj − Ti

xj − xi
. (3.6)

On substituting the values of 𝛼1, and 𝛼2 into Equation (3.4) we get

T = Ti

[ xj − x

xj − xi

]
+ Tj

[
x − xi

xj − xi

]
(3.7)

or

T = NiTi + NjTj =
[

Ni Nj

]{Ti
Tj

}
, (3.8)

where Ni and Nj are called “Shape functions” or “Interpolation functions” or “Basis functions”
and defined as

Ni =
[ xj − x

xj − xi

]

Nj =
[

x − xi

xj − xi

]
. (3.9)

Equation (3.8) can be rewritten as

T = [N]{T}, (3.10)

where

[N] =
[

Ni Nj

]
(3.11)

is the shape function matrix and

{T} =
{

Ti
Tj

}
(3.12)

is the vector of unknown temperatures
Equation (3.8) shows that the temperature T at any location x can be calculated using the

shape functions Ni and Nj evaluated at x. The shape functions at different locations within an
element are tabulated in Table 3.1.
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Table 3.1 Properties of shape functions within an element

Item Node, i Node, j Arbitrary x

Ni 1 0 0 ≤ Ni ≤ 1
Nj 0 1 0 ≤ Nj ≤ 1
Ni + Nj 1 1 1

The shape function assumes a value of unity at the designated node and zero at all
other nodes. We also see that the sum of all the shape functions in an element is equal to
unity anywhere within the element including the boundaries. These are the two essential
requirements of the properties of the shape functions of any element in one, two or three
dimensions. Figure 3.4 shows the variation of the shape functions and their derivatives within
a linear element. A typical linear variation of temperature is also shown in this figure. As seen,
the derivatives of the linear shape functions are constant within an element.

From Equation (3.8) the temperature gradient is calculated as

dT
dx

=
dNi

dx
Ti +

dNj

dx
Tj = −

(
1

xj − xi

)
Ti +

(
1

xj − xi

)
Tj, (3.13)

or

dT
dx

=
[
− 1

l
1
l

]{Ti
Tj

}
, (3.14)

where l is the length of an element equal to (xj − xi).

1 1
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Shape function values
within an element

T

T

dN /dx

dN /dxi

j

i

j

i j

i j

i j

NjNi

within an element

Figure 3.4 Variation of shape functions, temperature and derivatives within a linear element.
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Thus, we observe that the temperature gradient is constant within an element as the
temperature variation is linear. We can rewrite Equation (3.14) as

g = [B]{T}, (3.15)

where g is the gradient of the field variable T , [B] is the derivative matrix, or strain matrix in
structural mechanics, which relates the gradient of the field variable to the nodal values and
{T} is the temperature vector.

The shape function matrix [N] and the derivative matrix [B] are the two important matrices
which are used in the determination of the element properties as we shall see later in this
chapter.

Example 3.2.1 Calculate the temperature of an 8 cm long bar at a distance of 5 cm from one
end where the temperature is 120 ◦C with the other end at a temperature of 200 ◦C. Assume a
linear temperature variation between the two end points.

From Equation (3.8), the temperature distribution over an element can be written as

T = NiTi + NjTj, (3.16)

where, at x = 5 m

Ni =
xj − x

xj − xi
= 3

8

Nj =
x − xi

xj − xi
= 5

8
. (3.17)

Substituting into Equation (3.16), we get T = 170 ◦C. Note that Ni + Nj = 1.

3.2.2 One-dimensional Quadratic Element

We can see from Figure 3.3(d) that a better approximation for the temperature profile could be
achieved if we use parabolic arcs over each element rather than linear segments. The function
T(x) would therefore be quadratic in x within each element and is of the form

T(x) = 𝛼1 + 𝛼2x + 𝛼3x2
. (3.18)

We now have three parameters to determine and hence we need the temperature value at
three points. We choose the mid point in addition to the end values to get three equations for
the temperature. Assuming xi is the origin in Figure 3.3(b) we obtain

Ti = 𝛼1

Tj = 𝛼1 + 𝛼2
l
2
+ 𝛼3

( l
2

)2

Tk = 𝛼1 + 𝛼2l + 𝛼3l2. (3.19)
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From the above three equations, we obtain the following values for the three constants 𝛼1,
𝛼2 and 𝛼3.

𝛼1 = Ti

𝛼2 = 1
l

(−3Ti + 4Tj − Tk)

𝛼3 = 2
l2

(Ti − 2Tj + Tk). (3.20)

Substituting the values of 𝛼1, 𝛼2 and 𝛼3, into Equation (3.18) and collating the coefficients
of Ti, Tj and Tk, we get

T = Ti

[
1 − 3x

l
+ 2x2

l2

]
+ Tj

[
4

x
l
− 4

x2

l2

]
+ Tk

[
2

x2

l2
− x

l

]
(3.21)

or

T = NiTi + NjTj + NkTk. (3.22)

Hence, the shape functions for a one-dimensional quadratic element are obtained from
Equation (3.21) as follows:

Ni =
[

1 − 3x
l
+ 2x2

l2

]

Nj =
[

4
x
l
− 4

x2

l2

]

Nk =
[

2
x2

l2
− x

l

]
. (3.23)

The variation of temperature and shape functions of a typical quadratic element is shown
in Figure 3.5. The first derivative of temperature can now be written as

dT
dx

=
dNi

dx
Ti +

dNj

dx
Tj +

dNk

dx
Tk (3.24)

or
dT
dx

=
[4x

l2
− 3

l

]
Ti +

[4
l
− 8x

l2

]
Tj +

[4x
l2

− 1
l

]
Tk. (3.25)

In matrix form

g = [B]{T}. (3.26)

The [B] matrix is given as

[B] =
[(4x

l2
− 3

l

) (4
l
− 8x

l2

) (4x
l2

− 1
l

)]
. (3.27)

The above relations show that Ni = 1 at i and 0 at j and k, Nj = 1 at j and 0 at i and k and
Nk = 1 at k and 0 at i and j.

It can be verified easily that within an element the summation over the shape functions is
equal to unity, that is,

3∑
i=1

Ni = 1. (3.28)
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Figure 3.5 Variation of shape functions and their derivatives over a one-dimensional quadratic
element.

For example the point at x = l∕4, the shape function values are

Ni = 1 − 3
4
+ 2

16
= 6

16

Nj = 1 − 4
16

= 12
16

Nk = 2
16

− 1
4
= − 2

16
, (3.29)

and it can be easily seen that the sum of the above three shape functions is equal to 1.
It can also be observed that even though the derivatives of the quadratic element are

functions of the independent variable x, they will not be continuous at the inter-element
nodes. The type of interpolation used here is known as Lagrangian (as they can be generated
by Lagrangian interpolation formulae) and it only guarantees the continuity of the function
across the inter-element boundaries. These types of elements are known as C◦ elements where
the superscript zero indicates that only the derivatives of zero order are continuous, that is,
only the function is continuous. The elements that also assure the continuity of derivatives
across inter-element boundaries, in addition to the continuity of functions, are known as C1

elements and such functions are known as Hermite polynomials.
The C◦ shape functions can be determined in a general way by using Lagrangian polyno-

mial formulae. The one-dimensional (n − 1) th order Lagrange interpolation polynomial is the
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Figure 3.6 A one-dimensional linear element represented by local coordinates.

ratio of two products. For an element with n nodes, (n − 1) order polynomial, the interpolation
function is

Ne
k (x) = Πn

i=1

x − xi

xk − xi
. (3.30)

Note that the above equation is only valid when k ≠ i. For a one-dimensional linear element,
the shape functions can be written using Equation (3.30), as (n = 2):

N1 =
x − x2

x1 − x2
and N2 =

x − x1

x2 − x1
. (3.31)

Note that N1 and N2 are the shape functions corresponding to the two nodes of a one-
dimensional linear element (Ni and Nj). If we use local coordinates, as shown in Figure 3.6,
with x1 = 0 and x2 = l, then the shape functions of the first and second node of an element
become

Ni =
(

1 − x
l

)
= Li and Nj =

(x
l

)
= Lj, (3.32)

where Li and Lj are the shape functions defined by local coordinate system. For a one-
dimensional quadratic element, the shape functions using Lagrangian multipliers are given as
follows:

N1 =
x − x2

x1 − x2

x − x3

x1 − x3

N2 =
x − x1

x2 − x1

x − x3

x2 − x3

N3 =
x − x1

x3 − x1

x − x2

x3 − x2
. (3.33)

If we substitute local coordinates, x1 = 0, x2 = l∕2 and x3 = l, in the above equation, we
can immediately verify that the resulting equations are identical to the one derived from
Equation (3.23).

Similarly, cubic elements, or any other one-dimensional higher order element shape func-
tions, can easily be derived using the Lagrangian interpolation formula.

3.2.3 Two-dimensional Linear Triangular Element

When one-dimensional approximations are insufficient, multi-dimensional solution proce-
dures need to be employed. In this section we introduce for the first time a two-dimensional
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Figure 3.7 A linear triangular element.

element. The simplest geometric shape that can be employed to approximate irregular surfaces
is the triangle and this is one of the popular elements currently used in finite element calcu-
lations. This is partly due to the fact that automatic mesh generation is direct and easy when
a domain is filled with triangles or tetrahedron elements (see Chapter 14) (Fry and George
2008; Thompson et al. 1999; Zienkiewicz et al. 2013a).

The temperature distribution in a two-dimensional linear triangular element, also known
as a simplex element, is represented by

T(x, y) = 𝛼1 + 𝛼2x + 𝛼3y, (3.34)

where the polynomial is linear in x and y and contains three coefficients. Since a linear triangle
has three nodes (Figure 3.7), the values of 𝛼1, 𝛼2 and 𝛼3 are determined from

Ti = 𝛼1 + 𝛼2xi + 𝛼3yi

Tj = 𝛼1 + 𝛼2xj + 𝛼3yj

Tk = 𝛼1 + 𝛼2xk + 𝛼3yk, (3.35)

which results in the following:

𝛼1 = 1
2A

[(xjyk − xkyj)Ti + (xkyi − xiyk)Tj + (xiyj − xjyi)Tk]

𝛼2 = 1
2A

[(yj − yk)Ti + (yk − yi)Tj + (yi − yj)Tk]

𝛼3 = 1
2A

[(xk − xj)Ti + (xi − xk)Tj + (xj − xi)Tk], (3.36)

where A is the area of the triangle given by

2A = det
⎡⎢⎢⎣

1 xi yi
1 xj yj
1 xk yk

⎤⎥⎥⎦ = (xiyj − xjyi) + (xkyi − xiyk) + (xjyk − xkyj). (3.37)
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Substituting the values of 𝛼1, 𝛼2 and 𝛼3 into Equation (3.35) and collating the coefficients
of Ti, Tj and Tk, we get

T = NiTi + NjTj + NkTk = [Ni Nj Nk]

⎧⎪⎨⎪⎩
Ti
Tj
Tk

⎫⎪⎬⎪⎭
, (3.38)

where

Ni =
1

2A
(ai + bix + ciy)

Nj =
1

2A
(aj + bjx + cjy)

Nk = 1
2A

(ak + bkx + cky) (3.39)

and

ai = xjyk − xkyj; bi = yj − yk; ci = xk − xj

aj = xkyi − xiyk; bj = yk − yi; cj = xi − xk

ak = xiyj − xjyi; bk = yi − yj; ck = xj − xi. (3.40)

If we evaluate Ni at node i, where the coordinates are (xi, yi), then we obtain

(Ni)i =
1

2A
[(xjyk − xkyj) + (yj − yk)xi + (xk − xj)yi] =

2A
2A

= 1. (3.41)

Similarly, it can readily be verified that (Nj)i = (Nk)i = 0.
Thus, we see that the shape functions have a value of unity at the designated vertex and

zero at all other vertices. It is possible to show that

Ni + Nj + Nk = 1 (3.42)

everywhere in the element, including the boundaries and zero elsewhere. The gradients of
temperature, T, is given by

𝜕T
𝜕x

=
𝜕Ni

𝜕x
Ti +

𝜕Nj

𝜕x
Tj +

𝜕Nk

𝜕x
Tk =

bi

2A
Ti +

bj

2A
Tj +

bk

2A
Tk

𝜕T
𝜕y

=
𝜕Ni

𝜕y
Ti +

𝜕Nj

𝜕y
Tj +

𝜕Nk

𝜕y
Tk =

ci

2A
Ti +

cj

2A
Tj +

ck

2A
Tk (3.43)

or

{g} =
⎧⎪⎨⎪⎩
𝜕T
𝜕x

𝜕T
𝜕y

⎫⎪⎬⎪⎭
= 1

2A

⎡⎢⎢⎣
bi bj bk

ci cj ck

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

Ti
Tj
Tk

⎫⎪⎬⎪⎭
= [B]{T}. (3.44)

It should be noted that both 𝜕T∕𝜕x and 𝜕T∕𝜕y are constants within an element as bi, bj, bk
and ci, cj, ck are constants for a given triangle. Hence, the heat fluxes qx and qy are also constants
within a linear triangular element. Since the temperature varies linearly within an element, it
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Table 3.2 Data for Example 3.2.2

Node x (cm) y (cm) T ◦C

i 0.0 0.0 50.0
j 4.0 0.0 70.0
k 0.0 2.5 100.0

is possible to draw the isotherms (constant temperature lines) within a linear triangle and this
is illustrated in the following example.

Example 3.2.2 As an illustration of the method of calculation, let us calculate the tempera-
ture, T at the point (2.0, 1.0) and heat fluxes qx and qy within an element for the data given in
Table 3.2. Calculate the temperature T, and the heat flux components qx and qy if the thermal
conductivity of the material is 2 W/cm K. Draw the isothermal line for 60 ◦C in the triangle.

The temperature at any location within the triangle is given by Equation (3.38). The shape
functions at the point (2.0, 1.0) are calculated using Equation (3.39) by substituting x and y
coordinates given in Table 3.2. The result is

Ni =
1

10

Nj =
5

10

Nk = 4
10
. (3.45)

The substitution of the nodal temperatures and the above shape function values into
Equation (3.38) results in the temperature of the point (2.0, 1.0) being,

T = NiTi + NjTj + NkTk = 1
10

(50) + 5
10

(70) + 4
10

(100) = 80 ◦C. (3.46)

The components of heat flux in the x and y directions are calculated as

{
qx
qy

}
= − k

2A

[
bi bj bk
ci cj ck

]⎧⎪⎨⎪⎩
Ti
Tj
Tk

⎫⎪⎬⎪⎭
= − 2

10

[
50

200

]
. (3.47)

The position of the 60 ◦C isotherm may be obtained from Figure 3.8. From the given
temperature values, it is clear that one 60 ◦C point lies on the side ij (point P) and another lies
on the side ik (point Q). It should be noted that the temperature varies linearly along these
sides, that is, temperature is directly proportional to distance.

In order to determine the location of P on ij, we have the following linear relation between
the distances and temperature values, viz.,

60.0 − 50.0
70.0 − 50.0

=
√

(xP − xi)2 + (yP − yi)2√
(xj − xi)2 + (yj − yi)2

. (3.48)
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Figure 3.8 Isotherm within a linear triangular element.

From the data given, it is clear that the y coordinate on the ij side are equal to zero and
thus the above equation is simplified to

10.0
20.0

=
(xP − xi)

(xj − xi)
, (3.49)

which results in xP = 2.0 cm. The location of Q along ik can be determined in a similar fashion
as

60.0 − 50.0
100.0 − 50.0

=
yQ − yi

yk − yi
, (3.50)

which gives yQ = 0.5 cm. The x coordinate of this point is zero.
The line joining P and Q will be the 60 ◦C isotherm (Figure 3.8). It should be noted that

the same principle can be used for arbitrary triangles.

3.2.4 Area Coordinates

An area, or natural, coordinate system will now be introduced for triangular elements in order
to simplify the solution process. Let us consider a point P (centroid or barycenter of the
triangle) within a triangle as shown in Figure 3.9. The local coordinates Li, Lj and Lk of this
point can be established by calculating appropriate nondimensional distances or areas. For
example, Li is defined as the ratio of the perpendicular distance from point P to the side jk
(OP) to the perpendicular distance of point i from the side jk (QR). Thus,

Li =
OP
QR

. (3.51)

Similarly, Lj and Lk are also defined. The value of Li is also equal to the ratio of the area
Ai (opposite to node i) to the total area of the triangle, that is,

Li =
Ai

A
=

0.5(OP)(jk)
0.5(QR)(jk)

= OP
QR

. (3.52)
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Figure 3.9 Area coordinates of a triangular element.

Thus, the local coordinates vary from 0 on the side jk to 1 at the node i (by moving point
P between points O and i respectively). From Figure 3.9 it is obvious that

Ai + Aj + Ak = A (3.53)

or

Ai

A
+

Aj

A
+

Ak

A
= 1; (3.54)

therefore

Li + Lj + Lk = 1. (3.55)

The relationship between the (x, y) coordinates and the natural, or area, coordinates are
given by

x = Lixi + Ljxj + Lkxk (3.56)

and

y = Liyi + Ljyj + Lkyk. (3.57)

From Equations (3.55), (3.56) and (3.57) the following relations for the local coordinates
can be derived:

Li =
1

2A
(ai + bix + ciy)

Lj =
1

2A
(aj + bjx + cjy)

Lk = 1
2A

(ak + bkx + cky), (3.58)

where the constants a, b and c are defined in Equation (3.40). Comparing the Equation (3.58)
with Equation (3.39) it is clear that

Li = Ni

Lj = Nj

Lk = Nk. (3.59)
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Thus, the local or area coordinates in a triangle are the same as the shape functions for a
linear triangular element. In general, the local coordinates and shape functions are the same
for linear elements irrespective of whether they are of one, two or three dimensions.

For a two-dimensional linear triangular element with local coordinates Li, Lj and Lk, we
have a simple formula for integration over the triangle, that is,

∫A
La

i Lb
j Lc

kdA = ∫A
Na

i Nb
j Nc

k dA = a!b!c!
(a + b + c + 2)!

2A, (3.60)

where A is the area of a triangle. Note that Li, Lj and Lk happen to be the shape functions for
a linear triangular element. Example 3.2.2 can also be solved using the local coordinates via
Equations (3.53), (3.56) and (3.57), that is, on substituting the x and y coordinates of the three
points (Table 3.2) of the triangle into Equation (3.56), we obtain

Lj =
x
4

(3.61)

and from Equation (3.57)

Lk =
y

2.5
. (3.62)

From Equation (3.55), we get

Li = 1 − x
4
−

y

2.5
. (3.63)

At (x, y) = (2,1), we have

Li = 0.1 = Ni

Lj = 0.5 = Nj

Lk = 0.4 = Nk. (3.64)

Note that these local coordinates are exactly the same as the shape functions calculated in
Example 3.2.2.

3.2.5 Quadratic Triangular Element

We can write a quadratic approximation over a triangular element as

T = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4x2 + 𝛼5y2 + 𝛼6xy. (3.65)

Since there are six arbitrary constants, the quadratic triangle will have six nodes
(Figure 3.10). The six constants 𝛼1, 𝛼2 ...... 𝛼6 can be evaluated by substitution of the nodal
coordinates and the corresponding nodal temperatures T1, T2....T6. For example, we can write
the following relationship for the first node:

T1 = 𝛼1 + 𝛼2x1 + 𝛼3y1 + 𝛼4x2
1 + 𝛼5y2

1 + 𝛼6x1y1. (3.66)

Once 𝛼1, 𝛼2......𝛼6 are determined, then the substitution of these parameters into Equation
(3.65) and collating the coefficients of T1, T2, ....T6, give relations for the shape functions.
The process is both tedious and unnecessary. A much superior and more general method of
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Figure 3.10 A quadratic triangular element.

establishing the shape functions exists, which is based on local coordinates. The rationale
behind this is given by Silvester (1969) and can also be used to find the shape functions for a
cubic triangular element.

Silvester introduced a triple-index numbering scheme 𝛼𝛽𝛾 , which satisfies the following
expression:

𝛼 + 𝛽 + 𝛾 = n, (3.67)

where n is the order of the interpolation polynomial used. We can write N
𝛼𝛽𝛾

to denote the
interpolation function for a node as a function of the area coordinates Li, Lj and Lk, viz.,

N
𝛼𝛽𝛾

(Li, Lj, Lk) = N
𝛼
(Li)N𝛽(Lj)N𝛾 (Lk), (3.68)

where

N
𝛼
(Li) = Π𝛼m=1

[
nLi − m + 1

m

]
if 𝛼 ≥ 1 (3.69)

N
𝛼
(Li) = 1 if 𝛼 = 0. (3.70)

Similarly, we can write relations for N
𝛽

and N
𝛾

in terms of Lj and Lk respectively. For a
quadratic triangular element shown in Figure 3.11, the shape functions are designated as

� Corner nodes: N1 = N200; N3 = N020; N5 = N002.

� Side nodes: N2 = N110; N4 = N011; N6 = N101.

For example N1 = N200 is calculated by substituting 𝛼 = 2, 𝛽 = 0 and 𝛾 = 0 into Equation
(3.68). Now, N

𝛼
may be calculated from Equation (3.69) as

N
𝛼
(Li) = Π2

m=1

[
nLi − m + 1

m

]
=
[

2Li − 1 + 1

1

] [
2Li − 2 + 1

2

]
= Li(2Li − 1) (3.71)

and similarly

N
𝛽
(Lj) = 1 and N

𝛾
(Lk) = 1. (3.72)
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Figure 3.11 Shape function designations of a quadratic triangular element.

Hence,

N200 = N2(Li)N0(Lj)N0(Lk) = Li(2Li − 1) = N1 (3.73)

is the shape function for the node 1. Similarly,

N3 = N020 = Lj(2Lj − 1) and N5 = N002 = Lk(2Lk − 1). (3.74)

For a middle node, with shape function N110, we have (𝛼 = 1, 𝛽 = 1, 𝛾 = 0)

N110 = N
𝛼
(Li)N𝛽(Lj)N𝛾 (Lk)

=
[
Π1

m=1

(
2Li − m + 1

m

)][
Π1

m=1

(2Lj − m + 1

m

)]

=
(

2Li − 1 + 1

1

)(2Lj − 1 + 1

1

)
. (3.75)

Thus,

N2 = N110 = 4LiLj. (3.76)

Similarly,

N4 = N011 = 4LjLk

N6 = N101 = 4LkLi. (3.77)

We can summarize the nodal shape functions for a quadratic triangle as follows:
For corner nodes,

Nm = Ln(2Ln − 1) with m = 1, 3, 5 and n = i, j, k (3.78)

and for nodes at centers,

N2 = 4LiLj

N4 = 4LjLk

N6 = 4LkLi. (3.79)
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Figure 3.12 Ten-node cubic triangular element.

In a similar way, we can show that the interpolation functions for a 10-node cubic triangle
are (see Figure 3.12):

For corner nodes

Nm = 1
2

Ln(3Ln − 1)(3Ln − 2) with m = 1, 4, 7 and n = i, j, k. (3.80)

Side ij

N2 = 9
2

LiLj(3Li − 1)

N3 = 9
2

LiLj(3Lj − 1). (3.81)

Side jk

N5 = 9
2

LjLk(3Lj − 1)

N6 = 9
2

LjLk(3Lk − 1). (3.82)

Side ki

N8 = 9
2

LkLi(3Lk − 1)

N9 = 9
2

LkLi(3Li − 1) (3.83)

and for the node at the center of the triangle

N10 = 27LiLjLk. (3.84)

It is possible to derive shape functions for even higher order elements using the same
procedure.

3.2.6 Two-dimensional Quadrilateral Elements

The quadrilateral element has four nodes located at the verticies as shown in Figure 3.13. Eight-
and nine-node quadrilaterals are also used in practice. The quadrilateral mesh resembles a finite
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Figure 3.13 A typical quadrilateral element.

difference mesh. However, for the case of a standard finite-difference mesh, the mesh must
be orthogonal, that is, all lines intersect at right angles to one another whereas in the finite
element mesh, each element can be unique in shape and each side may have a different slope.
In the simplest form, the quadrilateral element becomes a rectangular element (Figure 3.14)
with the boundaries of the element parallel to a coordinate system.

The temperature within a quadrilateral is represented by

T = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4xy (3.85)

and thus the temperature gradients may be written as

𝜕T
𝜕x

= 𝛼2 + 𝛼4y

𝜕T
𝜕y

= 𝛼3 + 𝛼4x. (3.86)

Therefore, the gradient varies within the element in a linear way. On substituting the
values of T1, T2, T3 and T4 into Equation (3.85) for the nodes (x1, y1)......(x4, y4) and solving,

1 2

(-b,a)

(-b,-a)

(b,a)

(b,-a)

(0,0)

y

x

b b

a

a

4 3

Figure 3.14 A simple rectangular element.
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Figure 3.15 Nondimensional coordinates of a rectangular element.

we obtain the values of 𝛼1, 𝛼2, 𝛼3 and 𝛼4. Substituting these relationships into Equation (3.85)
and collecting the coefficients of T1, T2, ....T4, we get

T = N1T1 + N2T2 + N3T3 + N4T4, (3.87)

where for a rectangular element (Figure 3.14),

N1 = 1
4ab

(b − x)(a − y)

N2 = 1
4ab

(b + x)(a − y)

N3 = 1
4ab

(b + x)(a + y)

N4 = 1
4ab

(b − x)(a + y). (3.88)

We can express these shape functions in terms of length ratios and x∕b and y∕a as

N1 = 1
4ab

(b − x)(a − y) = 1
4

(
1 − x

b

)(
1 −

y

a

)
= 1

4
(1 − 𝜁 )(1 − 𝜂), (3.89)

where

− 1 ≤ 𝜁 ≤ 1 and − 1 ≤ 𝜂 ≤ 1 (3.90)

are the nondimensional coordinates of an element (Figure 3.15). The shape functions can also
be obtained using Lagrange interpolation functions (Equation (3.30)) as

N1 =
(x − b)(y − a)

(−b − b)(−a − a)
= 1

4ab
(b − x)(a − y) = 1

4
(1 − 𝜁 )(1 − 𝜂)

N2 =
(x − (−b))(y − a)

(b − (−b))(−a − a)
= 1

4ab
(b + x)(a − y) = 1

4
(1 + 𝜁 )(1 − 𝜂)

N3 =
(x − (−b))(y − (−a))
(b − (−b))(−a − a)

= 1
4ab

(b + x)(a + y) = 1
4

(1 + 𝜁 )(1 + 𝜂)

N4 =
(x − b)(y − (−a))

(−b − b)(a − (−a))
= 1

4ab
(b − x)(a + y) = 1

4
(1 − 𝜁 )(1 + 𝜂). (3.91)
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In general, the shape functions can be written as

Ni = (1 + 𝜁𝜁i)(1 + 𝜂𝜂i), (3.92)

where (𝜁i, 𝜂i) are the coordinates of node i. Since the shape functions are linear in the x and y
directions, they are referred to as a “bilinear” configuration. The derivatives can be expressed
as follows:

𝜕T
𝜕x

=
𝜕N1

𝜕x
T1 +

𝜕N2

𝜕x
T2 +

𝜕N3

𝜕x
T3 +

𝜕T4

𝜕x
T4

= 1
4ab

[
−(a − y)T1 + (a − y)T2 + (a + y)T3 − (a + y)T4

]
. (3.93)

Similarly,

𝜕T
𝜕y

= 1
4ab

[
−(b − x)T1 − (b + x)T2 + (b + x)T3 + (b − x)T4

]
. (3.94)

The gradient matrix can be written as

{g} =
⎧⎪⎨⎪⎩
𝜕T
𝜕x

𝜕T
𝜕y

⎫⎪⎬⎪⎭
= 1

4ab

⎡⎢⎢⎣
−(a − y) (a − y) (a + y) −(a + y)

−(b − x) −(b + x) (b + x) (b − x)

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3
T4

⎫⎪⎬⎪⎭
= [B]{T}. (3.95)

The [B] matrix is written as

[B] = 1
4

[
−(1 − 𝜂) (1 − 𝜂) (1 + 𝜂) −(1 + 𝜂)
−(1 − 𝜁 ) −(1 + 𝜁 ) (1 + 𝜁 ) (1 − 𝜁 )

]
. (3.96)

Example 3.2.3 Determine the temperature and the heat fluxes at a location (2,1) in a
square plate (Figure 3.16) with the data shown in Table 3.3. Draw the isotherm for 125 ◦C
and determine the heat fluxes if kx = ky = 2 W/m ◦C.

34

21

(5,5)(0,5)

(5,0)(0,0)

(2,1)

Figure 3.16 Square plate.
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Table 3.3 Data for Example 3.2.3

Node no. x (cm) y (cm) Temperature ◦C

1 0.0 0.0 100.0
2 5.0 0.0 150.0
3 5.0 5.0 200.0
4 0.0 5.0 50.0

Note that the origin is at node 1. In order to use the shape functions already derived, we
can give the coordinates of the nodes with the origin at the center of the square plate.

Note that 2a = 2b = 5.0.
The temperature at any point within the element can be expressed as

T = N1T1 + N2T2 + N3T3 + N4T4. (3.97)

The location of the point (2,1), using the nondimensional coordinates and new origin at
the center, is (−0.5,−1.5).

The shape functions at this point are calculated by substituting the new coordinates of
point (2,1), that is,

N1 = 1
4ab

(b − x)(a − y) = 12
25

N2 = 1
4ab

(b + x)(a − y) = 8
25

N3 = 1
4ab

(b + x)(a + y) = 2
25

N4 = 1
4ab

(b − x)(a + y) = 3
25
. (3.98)

Note that N1 + N2 + N3 + N4 = 1.
Therefore, the temperature at the point (−0.5, −1.5) is

T(−0.5,−1.5) =
12
25

(100) + 8
25

(150) + 2
25

(200) + 3
25

(50) = 118 ◦C (3.99)

Table 3.4 Nondimensional coordinates for Example 3.2.3

1 −2.5 −2.5
2 2.5 −2.5
3 2.5 2.5
4 −2.5 2.5
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The heat fluxes can be calculated from Equation (3.95) as follows:

{
qx
qy

}
= −

⎧⎪⎨⎪⎩
kx
𝜕T
𝜕x

ky
𝜕T
𝜕y

⎫⎪⎬⎪⎭
= − 2

25

[
−4.0 4.0 1.0 −1.0
−3.0 −2.0 2.0 3.0

]⎧⎪⎨⎪⎩
100.0
150.0
200.0
50.0

⎫⎪⎬⎪⎭
(3.100)

=
{
−28.0

4.0

}
W/cm2

.

The isotherm of 125 ◦C will not normally be a straight-line due to the bilinear nature of
the elements. Thus, we need more than two points to represent an isotherm. It is certain that
one point on side 1–2 and one on 3–4 will contain a point with a temperature of 125 ◦C. We
know the y coordinates of both the sides 1–2 and 3–4. Thus, the x coordinate of the point
on side 1–2 which has a temperature of 125 ◦C is calculated by substituting y = 0.0 into the
temperature distribution of Equation (3.97), that is,

125.0 = 1
25

[(2.5 − x)(2.5 − 0.0)100.0 + (2.5 + x)(2.5 − 0.0)150

+(2.5 + x)(2.5 + 0.0)200.0 + (2.5 − x)(2.5 + 0.0)50.0. (3.101)

which gives x = 2.5 and similarly, if we substitute a value of y = 5.0 for the side 3–4 the results
is x = 2.5. These coordinates can be written in a nondimensional form as (0.0, −2.5) and (0.0,
2.5). From the two points found, it is clear that the 125 ◦C isotherm crosses all horizontal lines
between the bottom and top sides. Therefore, to determine another point, we can assume a y
value of 2.5 (0.0, in nondimensional form) and on substituting into Equation (3.97) results in
an x coordinate of 2.5 (0.0, in nondimensional form). Connecting all three points will generate
the 125 ◦C isotherm.

3.2.7 Isoparametric Elements

Many practical problems have curved boundaries, and it is often necessary to use a large
number of straight-sided elements along the curved boundaries in order to achieve a reasonable
geometric representation. The number of elements needed can be reduced considerably if
curved elements are used with a consequential reduction in the total number of variables in the
system. In the case of three-dimensional problems the total number of variables is inherently
large and a reduction in the total number of variables is very important, especially when
there is a limitation on the computer memory/cost involved. While there are many methods of
creating curved elements, the method most extensively used in practice involves isoparametric
mapping from regular elements (Figure 3.17). Since the shape functions of the regular parent
element are known in terms of a local coordinate system, those of the generated curvilinear
element can also be determined. The mapping is simple and straightforward.
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Figure 3.17 Isoparametric mapping of triangular and quadrilateral elements.

There are two sets of relations that must be defined when using the finite element method.
One set determines the shape of the element and the other set defines the order of the interpo-
lation function for the field variable. It is not necessary to use the same shape functions for the
coordinate transformation and the interpolation equation. Thus, two different sets of global
nodes can exist. Both sets of global nodes are identical in the case of isoparametric elements.

3.2.7.1 One-dimensional Elements

The natural coordinate system for the one-dimensional element is the length ratio defined
such that −1 ≤ 𝜁 ≤ 1, where 𝜁 is the natural coordinate. The origin of the coordinate is at
the mid-point of the line segment. For a one-dimensional linear element (substituting x = 𝜁 ,
x1 = −1 and x2 = 1 into Equation (3.31)), we obtain

Ni =
𝜁 − 1
−1 − 1

= 1
2

(1 − 𝜁 )

Nj =
𝜁 − (−1)
1 − (−1)

= 1
2

(1 + 𝜁 ), (3.102)

where i and j are the two nodes of a one-dimensional element. For a one dimensional quadratic
element, we have (Equation (3.33))

Ni =
(𝜁 − 0)(𝜁 − 1)

(−1 − 0)(−1 − 1)
= −𝜁

2
(1 − 𝜁 )

Nj =
(𝜁 − (−1))(𝜁 − 1)
(0 − (−1))(0 − 1)

= (1 − 𝜁2)

Nk = (𝜁 − (−1))
(1 − (−1))

(𝜁 − 0)
(1 − 0)

= 𝜁

2
(1 + 𝜁 ), (3.103)
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where i, j and k represent the three nodes of the quadratic element. In order to calculate the
stiffness matrix, we need the derivative of the shape functions with respect to the global
coordinate, that is, with regard to x in this case. Therefore, a coordinate transformation of the
type shown in Figure 3.17 should be determined. In either case the functions g(𝜁 ) and g(x) are
assumed to be one-to-one mappings.

The coordinate transformation can be written using the same functions as given in Equation
(3.103), but substituting the coordinate value for the nodal parameter. Thus, the coordinate
transformation becomes

x = Nixi + Njxj + Nkxk, (3.104)

where Ni, Nj and Nk are given by Equation (3.103). The derivative of Ni is

dNi

d𝜁
=

dNi

dx
dx
d𝜁

=
dNi

dx
[J], (3.105)

which gives

dNi

dx
= [J]−1 dNi

d𝜁
. (3.106)

The quantity (dx∕d𝜁 ) is called the Jacobian matrix of the coordinate transformation and is
denoted by [J]. For a one-dimensional coordinate transformation [J] is calculated using

[J] = dx
d𝜁

=
dNi

d𝜁
xi +

dNj

d𝜁
xj +

dNk

d𝜁
xk. (3.107)

Example 3.2.4 Derive the shape function derivatives for a one-dimensional quadratic
element that has nodal coordinates xi = 2, xj = 4 and xk = 6.

The Jacobian is written as

[J] = dx
d𝜁

=
dNi

d𝜁
xi +

dNj

d𝜁
xj +

dNk

d𝜁
xk

=
(
−1

2
+ 𝜁
)

2 + (−2𝜁 )4 +
(1

2
+ 𝜁
)

6 = 2.0; (3.108)

thus,

[J]−1 = 1
2
. (3.109)

The shape function derivatives are written as follows:

⎧⎪⎪⎨⎪⎪⎩

dNi

dx

dNj

dx

dNk

dx

⎫⎪⎪⎬⎪⎪⎭
= [J]−1

⎧⎪⎪⎨⎪⎪⎩

dNi

d𝜁

dNj

d𝜁

dNk

d𝜁

⎫⎪⎪⎬⎪⎪⎭
= 1

2

⎧⎪⎪⎨⎪⎪⎩

− 1
2
+ 𝜁

−2𝜁

1
2
+ 𝜁

⎫⎪⎪⎬⎪⎪⎭
. (3.110)
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3.2.7.2 Two-dimensional Elements

For two-dimensional cases, we may express x and y as functions of 𝜁 and 𝜂, that is,

x = x(𝜁 , 𝜂) and y = y(𝜁 , 𝜂). (3.111)

Since we deal with Cartesian derivatives for the calculation of the stiffness matrix, we
transform the derivatives of the shape functions using the chain rule as

𝜕Ni

𝜕𝜁

(x, y) =
𝜕Ni

𝜕x
𝜕x
𝜕𝜁

+
𝜕Ni

𝜕y

𝜕y

𝜕𝜁

𝜕Ni

𝜕𝜂

(x, y) =
𝜕Ni

𝜕x
𝜕x
𝜕𝜂

+
𝜕Ni

𝜕y

𝜕y

𝜕𝜂

, (3.112)

which can be written as

⎧⎪⎨⎪⎩
𝜕Ni

𝜕𝜁

𝜕Ni

𝜕𝜂

⎫⎪⎬⎪⎭
=

[
𝜕x
𝜕𝜁

𝜕y
𝜕𝜁

𝜕x
𝜕𝜂

𝜕y
𝜕𝜂

]⎧⎪⎨⎪⎩
𝜕Ni

𝜕x

𝜕Ni

𝜕y

⎫⎪⎬⎪⎭
= [J]

⎧⎪⎨⎪⎩
𝜕Ni

𝜕x

𝜕Ni

𝜕y

⎫⎪⎬⎪⎭
, (3.113)

where

[J] =
⎡⎢⎢⎣
𝜕x
𝜕𝜁

𝜕y
𝜕𝜁

𝜕x
𝜕𝜂

𝜕y
𝜕𝜂

⎤⎥⎥⎦ . (3.114)

Therefore, we can write

⎧⎪⎨⎪⎩
𝜕Ni

𝜕x

𝜕Ni

𝜕y

⎫⎪⎬⎪⎭
= [J]−1

⎧⎪⎨⎪⎩
𝜕Ni

𝜕𝜁

𝜕Ni

𝜕𝜂

⎫⎪⎬⎪⎭
. (3.115)

Note that the inverse of the Jacobian matrix [J]−1 is calculated as

[J]−1 = 1
det[J]

⎡⎢⎢⎣
𝜕y
𝜕𝜂

− 𝜕y
𝜕𝜁

− 𝜕x
𝜕𝜂

𝜕x
𝜕𝜁

⎤⎥⎥⎦ . (3.116)

The derivatives have to be numerically evaluated at each integration point, as a closed form
solution does not exist.
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Figure 3.18 Eight-node isoparametric element.

For an eight-node isoparametric element (Figure 3.18), the values of the temperature T at
any point are given by

T =
8∑

i=1

NiTi. (3.117)

The coordinate values of x and y at any point within an element are given by the following
expressions:

x(𝜁 , 𝜂) =
8∑

i=1

Ni(𝜁 , 𝜂)xi

y(𝜁 , 𝜂) =
8∑

i=1

Ni(𝜁 , 𝜂)yi, (3.118)

where (xi, yi) are the coordinates of the node i and the quadratic shape functions are given by

N1 = −1
4

(1 − 𝜁 )(1 − 𝜂)(1 + 𝜁 + 𝜂)

N2 = 1
2

(1 − 𝜁2)(1 − 𝜂)

N3 = 1
4

(1 + 𝜁 )(1 − 𝜂)(𝜁 − 𝜂 − 1)

N4 = 1
2

(1 + 𝜁 )(1 − 𝜂2)

N5 = 1
4

(1 + 𝜁 )(1 + 𝜂)(𝜁 + 𝜂 − 1)

N6 = 1
2

(1 − 𝜁2)(1 + 𝜂)

N7 = 1
4

(1 − 𝜁 )(1 + 𝜂)(−𝜁 + 𝜂 − 1)

N8 = 1
2

(1 − 𝜁 )(1 − 𝜂2). (3.119)
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The 𝜁 and 𝜂 variables are curvilinear coordinates and as such their direction will vary with
position. The nodes of the element are input in an anti-clockwise sequence starting from any
corner node. The directions of 𝜁 and 𝜂 are indicated on Figure 3.18 that is, positive 𝜁 in the
direction from nodes 1 to 3 and positive 𝜂 in the direction from nodes 3 to 5.

Example 3.2.5 Evaluate the partial derivatives of the shape functions at 𝜁 = 1/2, 𝜂 = 1/2 of a
quadrilateral element given in Example 3.2.3, assuming that the temperature is approximated
by (a) bilinear and (b) quadratic interpolating polynomials.

(a) Bilinear
The shape function derivatives in local coordinates are (Equation (3.91):

𝜕N1

𝜕𝜁

= −1 − 𝜂
4

;
𝜕N1

𝜕𝜂

= −1 − 𝜁
4

𝜕N2

𝜕𝜁

= 1 − 𝜂
4

;
𝜕N2

𝜕𝜂

= −1 + 𝜁
4

𝜕N3

𝜕𝜁

= 1 + 𝜂
4

;
𝜕N3

𝜕𝜂

= 1 + 𝜁
4

𝜕N4

𝜕𝜁

= −1 + 𝜂
4

;
𝜕N4

𝜕𝜂

= 1 − 𝜁
4

. (3.120)

The Jacobian matrix and its inverse are calculated from Equations (3.113) and (3.116),
that is,

[J] =
⎡⎢⎢⎣
∑4

i=1
𝜕Ni

𝜕𝜁

xi
∑4

i=1
𝜕Ni

𝜕𝜁

yi∑4
i=1

𝜕Ni

𝜕𝜂

xi
∑4

i=1
𝜕Ni

𝜕𝜂

yi

⎤⎥⎥⎦ =
1
8

[
20 0
0 20

]
. (3.121)

The determinant of the Jacobian matrix is

det[J] = 400
8
. (3.122)

Employing Equation (3.116)

[J]−1 = 8
400

[
20 0
0 20

]
. (3.123)

Substituting 𝜁 = 1∕2 and 𝜂 = 1/2 into Equation (3.120)

𝜕N1

𝜕𝜁

= −1
8

and
𝜕N1

𝜕𝜂

= −1
8
. (3.124)

Substituting into Equation (3.115)

⎧⎪⎨⎪⎩
𝜕N1
𝜕x

𝜕N1
𝜕y

⎫⎪⎬⎪⎭
= − 1

20

{
1

1

}
. (3.125)

In a similar fashion all other nodal derivatives can be calculated.
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Figure 3.19 Isoparametric transformation of a single triangular element: (a) global;
(b) local – linear; and (c) local – quadratic.

(b) Quadratic variation
The shape function at node 1 is

N1 = −1
4

(1 − 𝜁 )(1 − 𝜂)(𝜁 + 𝜂 + 1). (3.126)

The derivatives with respect to transformed coordinates are

𝜕N1

𝜕𝜁

= 3
16

and
𝜕N1

𝜕𝜂

= 3
16
. (3.127)

The derivatives with respect to global coordinates are

⎧⎪⎨⎪⎩
𝜕N1
𝜕x

𝜕N1
𝜕y

⎫⎪⎬⎪⎭
= 1

1120

{
3
6

}
. (3.128)

Other derivatives can be established in a similar manner.

It is a simple matter to transform the area coordinate system for triangular elements (Li,
i = 1, 2, 3) to the 𝜁 − 𝜂 coordinates. The shape functions for the three-node linear triangle can
be expressed in the 𝜁 and 𝜂 coordinate system as shown in Figure 3.19, that is,

N1 = L1 = 1 − 𝜁 − 𝜂
N2 = L2 = 𝜁 ; 0 ≤ 𝜁 ≤ 1

N3 = L3 = 𝜂; 0 ≤ 𝜂 ≤ 1. (3.129)

For a quadratic triangle with six nodes, the shape functions at the corner codes are

Ni = Li(2Li − 1) i = 1,3,5. (3.130)

Substituting Equation (3.129) into Equation (3.130),

N1 = [2(1 − 𝜁 − 𝜂) − 1](1 − 𝜁 − 𝜂)

N3 = 𝜁 (2𝜁 − 1)

N5 = 𝜂(2𝜂 − 1). (3.131)
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For the mid-side nodes,

Ni = 4LiLj. (3.132)

Therefore,

N2 = 4𝜁 (1 − 𝜁 − 𝜂)

N4 = 4𝜁𝜂

N6 = 4𝜂(1 − 𝜁 − 𝜂). (3.133)

Consider the linear triangular element shown in Figure 3.19(a) and express coordinates
as

x(L1, L2) = N1(L1, L2)x1 + N2(L1, L2)x2 + N3(L1, L2)x3

y(L1, L2) = N1(L1, L2)y1 + N2(L1, L2)y2 + N3(L1, L2)y3. (3.134)

Where x1, x2, x3, y1, y2 and y3 are the global coordinates of the three-noded triangular
element, which are used for representing the geometry. Replacing the shape functions by the
area coordinate gives

x(L1, L2) = x1L1 + x2L2 + x3(1 − L1 − L2)

y(L1, L2) = y1L1 + y2L2 + y3(1 − L1 − L2). (3.135)

The components of the Jacobian matrix are

[J] =
⎡⎢⎢⎣
𝜕x
𝜕L1

𝜕y
𝜕L1

𝜕x
𝜕L2

𝜕y
𝜕L2

⎤⎥⎥⎦ =
[

(x1 − x3) (y1 − y3)
(x2 − x3) (y2 − y3)

]
. (3.136)

The determinant of the Jacobian matrix is

det[J] = (x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3) = 2A, (3.137)

where A is the area of the element. The inverse of the Jacobian matrix is

[J]−1 = 1
det[J]

[
(y2 − y3) −(y1 − y3)
−(x2 − x3) (x1 − x3)

]
= 1

2A

[
(y2 − y3) −(y1 − y3)
−(x2 − x3) (x1 − x3)

]
. (3.138)

Finally the derivatives in global coordinates are written as

⎧⎪⎨⎪⎩
𝜕N1
𝜕x

𝜕N1
𝜕y

⎫⎪⎬⎪⎭
= [J]−1

⎧⎪⎨⎪⎩
𝜕N1
𝜕L1

𝜕N1
𝜕L2

⎫⎪⎬⎪⎭
. (3.139)

Example 3.2.6 Calculate 𝜕N4∕𝜕x and 𝜕N4∕𝜕y at a point (1, 4) for a quadratic triangle
element shown in Figure 3.20 using local coordinates.

The coordinates are expressed as

x = x1L1 + x2L2 + x3L3

y = y1L1 + y2L2 + y3L3. (3.140)
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Figure 3.20 Triangular elements.

After substituting the coordinates of the three points, we have

x = 3L2 + L3

y = 2L2 + 6L3. (3.141)

The determinant of the Jacobian matrix is (Equation (3.137)):

det[J] = (−1)(−4) − (2)(−6) = 16. (3.142)

The inverse of the Jacobian is therefore (Equation (3.138)):

[J]−1 = 1
16

[
−4 6
−2 −1

]
. (3.143)

The shape function N4 is given by 4 L2L3 = 4L2(1 − L1 − L2).

⎧⎪⎨⎪⎩
𝜕N4
𝜕x

𝜕N4
𝜕y

⎫⎪⎬⎪⎭
= [J]−1

⎧⎪⎨⎪⎩
𝜕N4
𝜕L1

𝜕N4
𝜕L2

⎫⎪⎬⎪⎭
=

{
−0.5L2 + 1.5L3

0.75L2 − 0.25L3

}
. (3.144)

To determine the local coordinates corresponding to (x, y) = (1, 4), we have the following
three equations (Eq. 3.141):

3L2 + L3 = 1

2L2 + 6L3 = 4

L1 + L2 + L3 = 1, (3.145)

which give

L1 = 1
4

L2 = 1
8

L3 = 5
8
. (3.146)
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Figure 3.21 Three-dimensional elements.

Substituting into Equation (3.144) gives

⎧⎪⎨⎪⎩
𝜕N4
𝜕x

𝜕N4
𝜕y

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

7
8

−1
16

⎫⎪⎬⎪⎭
. (3.147)

Similarly, other derivatives can also be calculated.

3.2.8 Three-dimensional Elements

The amount of data required to establish the computational domain and boundary conditions
become significantly greater in three dimensions than for two-dimensional problems. It is
therefore obvious that the amount of computational work/cost increases by a considerable
extent. Therefore, appropriate three-dimensional elements need to be used. The tetrahedron
and brick-shaped hexahedron elements are developed (Figure 3.21) in this section, which are
extensions of the linear triangle and quadrilateral elements in two dimensions.

The linear temperature representation for a tetrahedron element (three-dimensional linear
element) is given by

T = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4z. (3.148)

As discussed previously for 2D elements, the constants of Equation (3.148) can be deter-
mined and may be written in the following form:

T = N1T1 + N2T2 + N3T3 + N4T4, (3.149)

where

Ni =
1

6V
(ai + bix + ciy + diz) with i = 1, 2, 3, 4. (3.150)
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The volume of the tetrahedron is expressed as

6V = det

⎡⎢⎢⎢⎣
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎤⎥⎥⎥⎦
. (3.151)

Also, note that

𝜕N1

𝜕x
=

b1

6V
𝜕N1

𝜕y
=

c1

6V
𝜕N1

𝜕z
=

d1

6V
. (3.152)

Therefore, the gradient matrix of the shape functions can be written as

[B] = 1
6V

⎡⎢⎢⎣
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

⎤⎥⎥⎦ , (3.153)

where

a1 = det
⎡⎢⎢⎣

x2 y2 z2
x3 y3 z3
x4 y4 z4

⎤⎥⎥⎦ (3.154)

b1 = −det
⎡⎢⎢⎣

1 y2 z2
1 y3 z3
1 y4 z4

⎤⎥⎥⎦ (3.155)

c1 = −det
⎡⎢⎢⎣

x2 1 z2
x3 1 z3
x4 1 z4

⎤⎥⎥⎦ (3.156)

d1 = −det
⎡⎢⎢⎣

x2 y2 1
x3 y3 1
x4 y4 1

⎤⎥⎥⎦ . (3.157)

Similarly, other terms in Equation (3.153) can also be determined using cyclic permutation.
The a terms are seldom used in the calculations. We therefore summarize all the terms, except
the a terms, as follows:

b terms

b1 = −(y2 − y4)(z3 − z4) + (y3 − y4)(z2 − z4)

b2 = −(y3 − y4)(z1 − z4) + (y1 − y4)(z3 − z4)

b3 = −(y1 − y4)(z2 − z4) + (y2 − y4)(z1 − z4)

b4 = −(b1 + b2 + b3). (3.158)
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c terms

c1 = −(x3 − x4)(z2 − z4) + (x2 − x4)(z3 − z4)

c2 = −(x1 − x4)(z3 − z4) + (x3 − x4)(z1 − z4)

c3 = −(x2 − x4)(z1 − z4) + (x1 − x4)(z2 − z4)

c4 = −(c1 + c2 + c3). (3.159)

d terms

d1 = −(x2 − x4)(y3 − y4) + (x3 − x4)(y2 − y4)

d2 = −(x3 − x4)(y1 − y4) + (x1 − x4)(y3 − y4)

d3 = −(x1 − x4)(y2 − y4) + (x2 − x4)(y1 − y4)

d4 = −(d1 + d2 + d3). (3.160)

A volume coordinate system for the tetrahedron can be established in a similar manner as
were the area coordinates for a triangle. In the tetrahedron, four distance ratios are used, each
normal to a face L1, L2, L3 and L4.

Note that L1 + L2 + L3 + L4 = 1.
The linear shape functions are related to the volume coordinates as follows:

N1 = L1; N2 = L2; N3 = L3 and N4 = L4. (3.161)

The volume integrals can easily be evaluated from the relationship,

∫V
La

1Lb
2Lc

3Ld
4dV = a!b!c!d!

(a + b + c + d + 3)!
6V . (3.162)

For a quadratic tetrahedron,

T = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4z + 𝛼5x2 + 𝛼6y2 + 𝛼7z2 + 𝛼8xy + 𝛼9yz + 𝛼10zx. (3.163)

Therefore, ten nodes will exist in quadratic tetrahedron as shown in Figure 3.22. The ele-
ment may also have curved surfaces on the boundaries. As before, the temperature distribution

7
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6

3

2

8
9

10

Figure 3.22 Quadratic tetrahedral element.
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can be rewritten in terms of the shape functions as

T = N1T1 + N2T2 + N3T3 + N4T4 + N5T5

+N6T6 + N7T7 + N8T8 + N9T9 + N10T10. (3.164)

The shape functions can be expressed in terms of local coordinates as

N1 = L1(2L1 − 1)

N2 = L2(2L2 − 1)

N3 = L3(2L3 − 1)

N4 = L4(2L4 − 1)

N5 = 4L4L1

N6 = 4L3L4

N7 = 4L3L2

N8 = 4L1L2

N9 = 4L2L4

N10 = 4L1L3. (3.165)

The brick, or hexahedron element as shown in Figure 3.21(b), is a simple element, which
is easy to visualize when the domain is discretized. The bilinear interpolation function is

T = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4z + 𝛼5xy + 𝛼6yz + 𝛼7zx + 𝛼8xyz, (3.166)

which can be written as

T =
8∑

i=1

NiTi, (3.167)

where

Ni =
1
8

(1 + 𝜁𝜁i)(1 + 𝜂𝜂i)(1 + 𝜌𝜌i), (3.168)

where 𝜁i, 𝜂i and 𝜌i are the local coordinates.
For a quadratic 20-noded hexahedron, which can represent arbitrary solids with curved

surfaces as shown in Figure 3.23, the shape functions can be written as follows:

Corner nodes

Ni =
1
8

(1 + 𝜁𝜁i)(1 + 𝜂𝜂i)(1 + 𝜌𝜌i)(𝜁𝜁i + 𝜂𝜂i + 𝜌𝜌i − 1) with i = 1, 2, ..8. (3.169)

Mid-side nodes

Ni =
1
4

(1 − 𝜁2)(1 + 𝜂𝜂i)(1 + 𝜌𝜌i) with i = 9, 13, 15, 11

Ni =
1
4

(1 − 𝜂2)(1 + 𝜁𝜁i)(1 + 𝜌𝜌i) with i = 10, 14, 16, 12

Ni =
1
4

(1 − 𝜌2)(1 + 𝜁𝜁i)(1 + 𝜂𝜂i) with i = 18, 19, 20, 17. (3.170)
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Figure 3.23 Twenty-node hexahedral element.

The shape functions for a linear pentahedran element (which is used in cylindrical geome-
tries) can be generated from the product of triangular and one-dimensional interpolation
functions (refer to Figure 3.21(c)).

N1 = 1
2

L1(1 − w)

N2 = 1
2

L2(1 − w)

N3 = 1
2

L3(1 − w)

N4 = 1
2

L1(1 + w)

N5 = 1
2

L2(1 + w)

N6 = 1
2

L3(1 + w), (3.171)

where w = −1 at the bottom surface and 1 at the top surface. In conclusion, isoparametric
elements are very useful as they can be used for modelling irregular solids and the element
can be mapped to a unit cube.

3.3 Formulation (Element Characteristics)

After briefly describing the various elements used in the context of finite element analysis, we
shall now focus our attention on determining the element characteristics that is, the relation
between the nodal unknowns and the corresponding loads or forces in the form of the following
matrix equation, viz.,

[K]{T} = {f}, (3.172)
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Figure 3.24 A fin problem.

where [K] is the thermal stiffness matrix, {T} is the vector of unknown temperatures and {f}
is the thermal load, or forcing vector.

Several methods are available for the determination of the approximate solution to a given
problem. We shall consider three methods in the first instance. They are:

� Ritz method (Heat balance integral),

� Rayleigh Ritz (Variational) method and

� Weighted residual methods.

In order to illustrate the above methods, we shall consider a one-dimensional fin problem
as shown in Figure 3.24.

Heat balance on the differential volume of length dx as shown in Figure 3.24 gives;

− kA
dT
dx
|x = hPdx(T − Ta) − kA

dT
dx
|x+dx

= hPdx(T − Ta) − kA
dT
dx
|x − kA

d2T
dx2

dx, (3.173)

where k is the thermal conductivity, A is the cross-sectional area, h is the heat transfer
coefficient, P is the perimeter and the suffix a represents atmospheric condition. Simplifying,
the governing differential equation becomes

kA
d2T
dx2

− hP(T − Ta) = 0 (3.174)

and the boundary conditions are:

at x = 0, dT∕dx = 0 (tip) and at x = L, T = Tb (base). (3.175)

If we substitute (T − Ta) = 𝜃, 𝜁 = x∕L, hP∕kA = m2 and m2L2 = 𝜇
2 into Equation (3.174),

we obtain

d2
𝜃

d𝜁2
− 𝜇2

𝜃 = 0, (3.176)
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with the following new boundary conditions

At 𝜁 = 0, d𝜃∕d𝜁 = 0 and at 𝜁 = 1, 𝜃 = 𝜃b, (3.177)

We employ Equations (3.176) and (3.177) in the following sections.

3.3.1 Ritz Method (Heat Balance Integral Method – Goodman’s
Method)

An approximate solution of Equation (3.176) along with the appropriate boundary conditions,
may be found using the following function:

T ≈ T = T(x, a1, a2, ...an) =
n∑

i=1

aiNi(x), (3.178)

which has one or more unknown parameters a1, a2...an and functions Ni(x) that exactly satisfy
the boundary conditions given by Equation (3.177). The functions Ni(x) are referred to as trial
functions, which must be continuous and differentiable up to the highest order present in the
integral form of the governing equation

The approximations may be carried out using one, two or n terms as follows:

T = a1N1(x)

T = a1N1(x) + a2N2(x) (3.179)

or

T =
n∑

i=1

aiNi(x). (3.180)

When approximation T is substituted into the governing differential equation, it is not
satisfied exactly leaving a residual R. The exact solution results when the residual R is zero for
all points in the domain. In approximate solution methods the residual is not in general zero
everywhere in the domain even though it may be zero at some preferred points.

Let us select a profile which satisfies the boundary conditions (Equation (3.177)) in the
global sense. By inspection, we find that

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)B (3.181)

satisfies the boundary conditions where B is an unknown parameter to be determined.
In the Ritz method, we insert the approximate profile in the governing differential equation,

Equation (3.176), and then the integral of the residual R over the domain is equated to zero to
determine the constant B, that is,

∫
1

0

(
𝜕

2
𝜃(𝜁 )

𝜕𝜁
2

− 𝜇2
𝜃

)
d𝜁 = 0. (3.182)
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Differentiating Equation (3.181) gives

d2
𝜃(𝜁 )

d𝜁2
= 2B𝜃b. (3.183)

Substituting Equation (3.183) into Equation (3.182) we have

∫
1

0
[2B − 𝜇2(1 − {1 − 𝜁2}B)]𝜃bd𝜁 =

[
2𝜃bB𝜁 − 𝜇2

𝜃b

(
𝜁 − B𝜁 + B𝜁3

3

)]1

0

= 2B𝜃b −
(

1 − B + B
3

)
𝜇

2
𝜃b

= 0, (3.184)

which gives

B =
𝜇

2

2

1 + 𝜇
2

3

. (3.185)

Substituting Equation (3.185) into (3.181) gives following solution:

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)

𝜇
2

2

1 + 𝜇
2

3

. (3.186)

For the case of a stainless steel fin (k = 16.66 W/m ◦C of circular section with a diameter
of 2 cm and length of 10 cm exposed to a convection environment with h = 25 W/m2 ◦C and
𝜇

2 = 3.0 and m2 = 300, the approximate solution is

𝜃(𝜁 )
𝜃b

= 1 − 3
4

(1 − 𝜁2), (3.187)

where the exact solution is

𝜃(𝜁 )
𝜃b

= cosh[m(L − x)]
cosh(mL)

. (3.188)

Note that the x is taken from the tip of the fin as shown in Figure 3.24. The comparison
between the exact and approximate solutions is given in Figure 3.25. As may be seen the
temperatures match perfectly at the base at x = 1 but differ close to the insulated end at x = 0.

3.3.2 Rayleigh–Ritz Method (Variational Method)

In the case of the variational method we make use of an important theorem from the theory of
the calculus of variations which states that:

“The function T(x) that extremizes the variational integral corresponding to the governing
differential equation (called Euler or Euler-Lagrange equation) is the solution of the origi-
nal governing differential equation and boundary conditions.” This implies that the solution
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Figure 3.25 Comparison between Ritz method and exact solution.

obtained is unique, which is the case for well-posed problems. Thus, the first step is to deter-
mine the variational integral I, which corresponds to the governing differential equation and
its boundary conditions. The differential equation is Equation (3.176),

d2
𝜃

d𝜁2
− 𝜇2

𝜃 = 0, (3.189)

with the following boundary conditions:

d𝜃(0)
d𝜁

= 0 and 𝜃(1) = 𝜃b. (3.190)

Using the differential equation as the Euler-Lagrange equation, we can write

𝛿I = ∫
1

0

(
d2
𝜃

d𝜁2
− 𝜇2

𝜃

)
𝛿𝜃d𝜁 = 0. (3.191)

Integrating by parts gives[
d𝜃
d𝜁
𝛿𝜃

]1

0
− ∫

1

0

(
d𝜃
d𝜁

)
d

d𝜁
(𝛿𝜃)d𝜁 − 𝜇2 ∫

1

0
𝜃𝛿𝜃d𝜁 = 0. (3.192)

Using the relations

d
d𝜁

(𝛿𝜃) = 𝛿

(
d𝜃
d𝜁

)
d𝜃
d𝜁
𝛿

(
d𝜃
d𝜁

)
= 1

2
𝛿

(
d𝜃
d𝜁

)2

and 𝜃𝛿𝜃 = 1
2
𝛿𝜃

2, (3.193)

Equation (3.192) is simplified to the following;[
d𝜃
d𝜁
𝛿𝜃

]1

0
− 1

2
𝛿 ∫

1

0

[(
d𝜃
d𝜁

)2

+ 𝜇2
𝜃

2

]
d𝜁 = 0. (3.194)
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When we apply the boundary conditions (Equation (3.190)), the first term of the above
equation becomes zero. Thus, the variational formulation for the given problem is

𝛿 ∫
1

0

1
2

[(
d𝜃
d𝜁

)2

+ 𝜇2
𝜃

2

]
dx = 0 (3.195)

and the corresponding variational integral is given by

I = ∫
1

0

1
2

[(
d𝜃
d𝜁

)2

+ 𝜇2
𝜃

2

]
d𝜁. (3.196)

Now, the profile which minimizes the integral Equation (3.196) is the solution to the
differential Equation (3.189) with its boundary conditions given by Equation (3.190).

Let us assume the same profile as before (Equation (3.181)) and substitute into Equation
(3.196), that is,

I = ∫
1

0

1
2
𝜃

2
b{(2B𝜁 )2 + 𝜇2[1 − (1 − 𝜁2)B]2}d𝜁. (3.197)

After integration and substitution of limits, we have

I = 1
2
𝜃

2
b

{
B2
(4

3
+ 𝜇2 − 2

3
𝜇

2 + 1
5
𝜇

2
)
+ 𝜇2 + B

(
−2𝜇2 + 2

3
𝜇

2
)}

. (3.198)

For I to be minimum, 𝜕I
𝜕B

= 0, that is,

𝜕I
𝜕B

= 1
2
𝜃

2
b

{
2B
(4

3
+ 8

15
𝜇

2
)
+
(
−4

3
𝜇

2
)}

= 0, (3.199)

which gives

B =
𝜇

2

2

1 + 2
5
𝜇

2
. (3.200)

Substituting into Equation (3.181) gives the solution as

𝜃(𝜁 )
𝜃

= 1 − (1 − 𝜁2)

𝜇
2

2

1 + 2
5
𝜇

2
. (3.201)

For the fin problem of the previous subsection with 𝜇2 = 3 and m2 = 300, the comparison
between the variational method and the exact solution is shown in Figure 3.26. As seen the
agreement between the solutions is better than the agreement between the exact and Ritz
solutions.

It can be observed from the variational Integral Equation (3.196) that it contains only a first-
order derivative even though the original differential Equation (3.189) contains a second-order
derivative.
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Figure 3.26 Comparison between variational method and exact solution.

3.3.3 The Method of Weighted Residuals

For those differential equations for which we cannot write a variational formulation, there is a
need to find an alternative method of formulation. The method of weighted residual provides a
very powerful approximate solution procedure that is applicable to a wide variety of problems
and thus makes it unnecessary to search for variational formulations in order to apply the finite
element method for these problems.

Let the governing equations be represented by

L(T) = 0 in Ω. (3.202)

Let

T ≈ T =
n∑

i=1

aiNi(x). (3.203)

Substitution of the above equation into Equation (3.202) results in,

L(T) ≠ 0

= R (residual). (3.204)

The method of weighted residual requires that the parameters a1, a2...an be determined by
satisfying

∫Ω wi(x)Rdx = 0 with i = 1, 2....n, (3.205)

where the functions wi(x) are the n arbitrary weighting functions. There are an infinite number
of choices for wi(x) but four particular functions are most often used. Depending on the choice
of the weighting functions, different names are given

� Collocation: wi = 𝛿(x − xi), here 𝛿 is the Dirac delta function:

∫Ω R𝛿(x − xi)dx = Rx=xi
= 0. (3.206)
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� Subdomain: wi = 1 (Note the subdomain Ωi in the integration):

∫Ωi

Rdx = 0 with i = 1, 2, ...n. (3.207)

� Galerkin: wi(x) = Ni(x), that is, the same trial functions as used in T(x):

∫Ω RNi(x)dx = 0 with i = 1, 2, ..n. (3.208)

� Least Squares: wi = 𝜕R∕𝜕ai:

∫Ω R
𝜕R
𝜕ai

dx = 0 with i = 1, 2, .....n. (3.209)

For illustration purposes the fin problem is re-solved with each of the above methods.

3.3.3.1 Collocation Method

The weight is wi = 𝛿(x − xi). Let 𝜁i = 1/2 as there is only one unknown in the fin problem.
Rewriting the equation in collocation form in the nondimensional coordinates gives us the
following:

∫
1

0

[
d2
𝜃

d𝜁2
− 𝜇2

𝜃

]
𝛿(𝜁 − 𝜁i)d𝜁 = 0. (3.210)

From the above equation we can write[
d2
𝜃

d𝜁2
− 𝜇2

𝜃

]
𝜁i=

1
2

= 0. (3.211)

Substituting Equation (3.181) into (3.211), with 𝜁 = 1∕2, we have

2B − 𝜇2
[
1 − 3

4
B
]
= 0, (3.212)

which gives

B =

(
𝜇

2

2

)
1 + 3

8
𝜇

2
. (3.213)

Substituting into Equation (3.181), the solution is obtained as

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)

(
𝜇

2

2

)
1 + 3

8
𝜇

2
. (3.214)

For a problem with 𝜇2 = 3, then

𝜃(𝜁 )
𝜃b

= 1 − 12
17

(1 − 𝜁2). (3.215)
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3.3.3.2 Subdomain Method

The weighting function wi = 1 which results in the subdomain formulation being

∫
1

0
(1)

[
d2
𝜃

d𝜁2
− 𝜇2

𝜃

]
d𝜁 = 0. (3.216)

Substituting Equation (3.181) and integrating, we get

B =
𝜇

2

2

1 + 𝜇
2

3

. (3.217)

The solution becomes

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)

(
𝜇

2

2

)
1 + 𝜇

2

3

. (3.218)

For the particular case of 𝜇2 = 3

𝜃(𝜁 )
𝜃b

= 1 − 3
4

(1 − 𝜁2). (3.219)

The result from the subdomain method coincides with the heat balance integral solution
(Ritz method) as in the present case integration is carried out over the entire domain in view
of only one constant being involved.

3.3.3.3 Galerkin Method

This is one of the most important methods used in finite element analysis. The weight function
is Ni(x) = (1 − 𝜁2). The Galerkin formulation of the fin equation is

∫
1

0
Ni(x)

[
d2
𝜃

d𝜁2
− 𝜇2

𝜃

]
d𝜁 = 0. (3.220)

Substituting Equation (3.181) and integrating, we obtain

2B − 2B
3

+ 𝜇2
( 8

15
B
)
− 2𝜇2

3
= 0 (3.221)

and

B =
𝜇

2

2

1 + 2
5
𝜇

2
. (3.222)

Thus, the solution is

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)

(
𝜇

2

2

)
1 + 2

5
𝜇

2
. (3.223)
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It can be observed that the solution using Galerkin’s method is exactly the same as that
obtained by the variational method. It can also be shown that the variational and Galerkin
methods give the same results provided the problem has a classical variational statement. In
fact, when the finite element formulation is carried out on a quasi-harmonic equation using
both the variational and Galerkin methods, the same results are obtained since a classical
variational principle does exist for a quasi-harmonic equation.

3.3.3.4 Least-squares Method

In this case the minimization of the error is carried out in a least-squares sense, that is,

1
2
𝜕

𝜕B ∫Ω R2dx = 0, (3.224)

which can also be written as

∫Ω
𝜕R
𝜕B

Rdx = 0, (3.225)

where the weighting function here is

wi(x) = 𝜕R
𝜕B

(3.226)

From Equation (3.224), error E in the transformed coordinate is given by

E = ∫
1

0
R2d𝜁

= ∫
1

0

[
d2
𝜃

d𝜁2
− 𝜇2

𝜃

]2

d𝜁. (3.227)

Substituting Equation (3.181) into Equation (3.227) and integrating we have

E =
[
4B2 − 4B𝜇2

(
1 − 2

3
B
)
+ 𝜇4 − 2B𝜇4

(2
3

)
+ B2

( 8
15

)
𝜇

4
]
𝜃b. (3.228)

The error is minimized by satisfying 𝜕E∕𝜕B = 0, that is,

𝜕E
𝜕B

= 8B − 4𝜇4

3
+ 16B𝜇4

15
− 4𝜇2 + 16B𝜇2

3
= 0, (3.229)

which gives

B =
𝜇

2

2

(
1 + 𝜇

2

3

)
1 + 2𝜇2

(
1
3
+ 𝜇

2

15

) . (3.230)

Therefore, the solution is given by

𝜃(𝜁 )
𝜃b

= 1 − (1 − 𝜁2)

𝜇
2

2

(
1 + 𝜇

2

3

)
1 + 2𝜇2

(
1
3
+ 𝜇

2

15

) . (3.231)



86 THE FINITE ELEMENT METHOD

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

Distance from fin tip

Exact
Collocation
Subdomain

Galerkin
Least-squares

Figure 3.27 Comparison between various weighted residual methods and exact solution.

For the particular problem where 𝜇2 = 3, then

𝜃(𝜁 )
𝜃b

= 1 − 15
21

(1 − 𝜁2). (3.232)

Figure 3.27 shows the comparison between all the different weighted residual methods.
As can be seen, the Galerkin method is the most accurate method.

3.3.4 Galerkin Finite Element Method

We shall solve the fin problem shown in Figure 3.24 by using the Galerkin finite element
method and discretizing the domain into five linear elements with a total of six nodal points
as shown in Figure 3.28. Unlike the methods discussed in the previous sections, we need no a
priori assumption of temperature profile here.

For a linear element

𝜃 = Ni𝜃i + Nj𝜃j (3.233)

and the derivative in nondimensional coordinate may be written as

d𝜃
d𝜁

=
dNi

d𝜁
𝜃i +

dNj

d𝜁
𝜃j = − 1

𝜁e
𝜃i +

1
𝜁e
𝜃j, (3.234)
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Insulated

Constant temperature
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1 2 3 4 5

x

L = 10 cm

Figure 3.28 Heat dissipation from a fin (Figure 3.24). Spatial discretization. Nodes: 6;
Elements: 5.

where 𝜁e = l∕L is the nondimensional element length. The Galerkin method requires that

∫
𝜁

Nk

(
d2
𝜃

d𝜁2
− 𝜇2

𝜃

)
d𝜁 = 0, (3.235)

where the subscript k represents all the nodes in the domain. Integration of the above equation
by parts for one element, with the weight being the first node of the element, results in the
following: [

Ni
d𝜃
d𝜁

]
𝜁e

0
− ∫

𝜁e

0

dNi

d𝜁

[
dNi

d𝜁

dNj

d𝜁

]
d𝜁{𝜃} − ∫

𝜁e

o
Ni𝜇

2(Ni𝜃i + Nj𝜃j)d𝜁. (3.236)

In one dimension, the magnitude of ñ is unity but the sign changes appropriately. Note the
following (see Appendix C):

∫
𝜁e

0
N2

i d𝜁 =
2!0!𝜁e

(2 + 0 + 1)!
=
𝜁e

3

∫
𝜁e

0
NiNjd𝜁 =

1!1!𝜁e

(1 + 1 + 1)!
=
𝜁e

6
. (3.237)

For the first element, with Ni being the weight, Equation (3.236) simplifies to

1
𝜁e

[
1 −1

]{𝜃i
𝜃j

}
+
𝜇

2
𝜁e

6

[
2 1

]{𝜃i
𝜃j

}
−

{
d𝜃
d𝜁
0

}
. (3.238)

Note that the gradient terms of Equation (3.236) become zero at node j as Ni = 0 at j. Now
weighting the equation using Nj, we have

1
𝜁e

[
−1 1

]{𝜃i
𝜃j

}
+
𝜇

2
𝜁e

6

[
1 2

]{𝜃i
𝜃j

}
−

{
0

−d𝜃
d𝜁

}
. (3.239)

In this case the gradient term disappears for node i as Nj is zero at node i. The element
characteristics are given by combining Equation (3.238) and (3.239) as

{
1
𝜁e

[
1 −1
−1 1

]
+
𝜇

2
𝜁e

6

[
2 1
1 2

]}{
𝜃i
𝜃j

}
−
⎧⎪⎨⎪⎩

d𝜃
d𝜁

− d𝜃
d𝜁

⎫⎪⎬⎪⎭
. (3.240)
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For the given problem with 𝜁e = 0.2, which is a nondimensional element length, l∕L
(Figure 3.28), and 𝜇

2 = 3 the element characteristics for the first element are derived as
follows:

[
5.2 −4.9
−4.9 5.2

]{
𝜃i
𝜃j

}
−
⎧⎪⎨⎪⎩

d𝜃
d𝜁

− d𝜃
d𝜁

⎫⎪⎬⎪⎭
. (3.241)

In a similar fashion we can write the element characteristics equation for all the other four
elements. On assembling over all the five elements and making the resulting system equal to
zero, we obtain (see Appendix D)

⎡⎢⎢⎢⎢⎢⎢⎣

5.2 −4.9 0.0 0.0 0.0 0.0
−4.9 10.4 −4.9 0.0 0.0 0.0
0.0 −4.9 10.4 −4.9 0.0 0.0
0.0 0.0 −4.9 10.4 −4.9 0.0
0.0 0.0 0.0 −4.9 10.4 −4.9
0.0 0.0 0.0 0.0 −4.9 5.2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜃1
𝜃2
𝜃3
𝜃4
𝜃5
𝜃6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.0
0.0
0.0
0.0
0.0
− d𝜃

d𝜁

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (3.242)

where 𝜃1, 𝜃2,… 𝜃6 are the temperature values at all the six nodes. The assembly procedure
has already been discussed in the previous chapter. Further details on the assembly procedure
are given in Appendix D. Note that 𝜕𝜃∕𝜕𝜁 at node 1 is zero due to the zero flux boundary
condition (insulated) but we also have the boundary condition at 𝜁 = 1, as 𝜃 = 1. The resulting
nodal simultaneous equations can be written as

5.2𝜃1 − 4.9𝜃2 = 0.0

−4.9𝜃1 + 10.4𝜃2 − 4.9𝜃3 = 0.0

−4.9𝜃2 + 10.4𝜃3 − 4.9𝜃4 = 0.0

−4.9𝜃3 + 10.4𝜃4 − 4.9𝜃5 = 0.0

−4.9𝜃4 + 10.4𝜃5 − 4.9𝜃6 = 0.0

𝜃6 = 1.0. (3.243)

Note that the last equation arises due to the constant temperature boundary condition at
node 6. On solving the system of equations using Gaussian elimination (see Appendix A), we
finally obtain all the 𝜃 values. Table 3.5 shows the comparison between the exact result and
all the other computations from each of the different methods.

It can be observed from Table 3.5 that the methods used in conjunction with the assumed
profile satisfying the boundary conditions for the entire domain are less accurate compared to
the finite element method solution even with only five linear elements. It can also be observed
that the nodal values in the finite element method solution are very close to those of the exact
solution.
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Table 3.5 Comparison of solutions obtained from different methods

FEM
5 linear Variational Least

Location (𝜁 ) Exact elements Collocation Subdomain or Galerkin squares

0.0 0.343 0.340 0.294 0.250 0.318 0.375
0.1 0.348 – 0.301 0.258 0.325 0.381
0.2 0.364 0.361 0.322 0.280 0.345 0.400
0.3 0.390 – 0.358 0.316 0.380 0.431
0.4 0.429 0.426 0.407 0.370 0.427 0.475
0.5 0.480 – 0.471 0.438 0.490 0.531
0.6 0.546 0.543 0.548 0.520 0.563 0.600
0.7 0.628 – 0.640 0.618 0.652 0.681
0.8 0.729 0.727 0.746 0.730 0.755 0.755
0.9 0.851 – 0.866 0.858 0.870 0.881
1.00 1.00 1.00 1.00 1.00 1.00 1.00

The flux − d𝜃

d𝜁
at node 6 may now be calculated using the 615 equation in Equation (3.242) as 1.64.

3.4 Formulation for the Heat Conduction Equation

In many practical situations, finding the temperature in a solid body is of vital importance in
terms of the maximum allowable temperature, for example as in semiconductor devices. The
consequences of increase in temperature include structural displacements and development of
thermal stresses as in steam and gas turbines. In this section, we shall give the derivation of
the finite element equations, both by the variational method as well as the Galerkin method,
for the three-dimensional heat conduction equation of stationary systems under steady-state
conditions.

The governing differential equation, rewritten here as given in Chapter 2 is

𝜕

𝜕x

(
kx
𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
ky
𝜕T
𝜕y

)
+ 𝜕

𝜕z

(
kz
𝜕T
𝜕z

)
+ G = 0, (3.244)

with the following boundary conditions:

T = Tb on surface S1

kx
𝜕T
𝜕x

l̃ + ky
𝜕T
𝜕y

m̃ + kz
𝜕T
𝜕z

ñ + q = 0 on surface S2

kx
𝜕T
𝜕x

l̃ + ky
𝜕T
𝜕y

m̃ + kz
𝜕T
𝜕z

ñ + h(T − Ta) = 0 on surface S3, (3.245)

where l̃, m̃ and ñ are surface normals, h is the heat transfer coefficient, k is the thermal
conductivity and q is the heat flux.
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3.4.1 Variational Approach

The variational integral, I, corresponding to the above differential equation with its boundary
conditions is given by (see Section 3.3.2)

I(T) = 1
2 ∫Ω

[
kx

(
𝜕T
𝜕x

)2
+ ky

(
𝜕T
𝜕y

)2

+ kz

(
𝜕T
𝜕z

)2

− 2GT

]
dΩ

+ ∫S2

qTds + ∫S3

1
2

h(T − Ta)2ds, (3.246)

The given domain Ω is divided into n number of finite elements with each element having
r nodes. The temperature is expressed in each element by

Te =
r∑

i=1

NiTi = [N]{T}, (3.247)

where [N] = [Ni, Nj......Nr] = shape function matrix and

{T} =

⎧⎪⎪⎨⎪⎪⎩

Ti
Tj
.

.

Tr

⎫⎪⎪⎬⎪⎪⎭
(3.248)

is the vector of nodal temperatures.
The finite element solution to the problem involves selecting the nodal values of T so as to

make the function I(T) stationary. In order to make I(T) stationary, with respect to the nodal
values of T , we require that

𝛿I(T) =
n∑

i=1

𝜕I
𝜕Ti

= 0, (3.249)

where n is the total number of discrete values of T assigned to the solution domain. Since Ti
are arbitrary, Equation (3.249) holds only if

𝜕I
𝜕Ti

= 0 for i = 1, 2, ....n. (3.250)

The functional I(T) can be written as a sum of individual functions, defined for the
assembly of elements, only if the shape functions giving piecewise representation of T obey
certain continuity and compatibility conditions. These conditions will be discussed later in the
text.

I(T) =
M∑

e=1

Ie(Te), (3.251)
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where M is the total number of elements. Thus, instead of working with a functional defined
over the whole solution region, our attention is now focused on a functional defined for the
individual elements. Hence,

𝛿I =
M∑

e=1

𝛿Ie = 0, (3.252)

where the variation Ie is taken only with respect to the r nodal values associated with the
element e. that is, {

𝜕Ie

𝜕T

}
= 𝜕Ie

𝜕Tj
= 0 with j = 1, 2, ....r. (3.253)

Equation (3.253) comprises a set of r equations that characterize the behavior of the
element e. The fact that we can represent the functional for the assembly of elements as a
sum of the functional for all individual elements provides the key to formulating individual
element equations from a variational principle. The complete set of assembled finite element
equations for the problem is obtained by adding all the derivatives of I, as given by Equation
(3.253), for all the elements. We can write the complete set of equations as

𝜕I
𝜕Ti

=
M∑

e=1

𝜕Ie

𝜕Ti
= 0 with i = 1, 2, .....n. (3.254)

The problem is complete when the n set of equations are solved simultaneously for the
n nodal values of T . We now give the details for formulating the individual finite element
equations from a variational principle.

Ie = 1
2 ∫Ω

[
kx

(
𝜕Te

𝜕x

)2
+ ky

(
𝜕Te

𝜕y

)2

+ kz

(
𝜕Te

𝜕z

)2

− 2GTe

]
dΩ

+ ∫S2e

qTeds + ∫S3e

1
2

h(Te − Ta)2ds (3.255)

with

Te = [N]{T} = [N1, N2, ....Nr]

⎧⎪⎨⎪⎩
T1
T2
.....

Tr

⎫⎪⎬⎪⎭
= N1T1 + N2T2 + .....NrTr (3.256)

and

𝜕Te

𝜕T1
= N1

𝜕Te

𝜕T2
= N2

. .

. .

𝜕Te

𝜕Tr
= Nr (3.257)
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or

𝜕Te

𝜕{T}
=

⎧⎪⎪⎨⎪⎪⎩

N1
N2
.

.

Nr

⎫⎪⎪⎬⎪⎪⎭
= {N} = [N]T

. (3.258)

The gradient matrix is written as

{g}e =

⎧⎪⎪⎨⎪⎪⎩

𝜕Te

𝜕x
𝜕Te

𝜕y

𝜕Te

𝜕z

⎫⎪⎪⎬⎪⎪⎭
=

⎡⎢⎢⎢⎢⎣

𝜕N1
𝜕x

𝜕N2
𝜕x

.....
𝜕Nr

𝜕x
𝜕N1
𝜕y

𝜕N2
𝜕y

.....
𝜕Nr

𝜕y
𝜕N1
𝜕z

𝜕N2
𝜕z

.....
𝜕Nr

𝜕z

⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

T1
T2
.

.

Tr

⎫⎪⎪⎬⎪⎪⎭
= [B]e{T}e. (3.259)

Consider

{g}T
e [D]e{g}e =

{
𝜕Te

𝜕x
𝜕Te

𝜕y
𝜕Te

𝜕z

}⎡⎢⎢⎣
kx 0 0
0 ky 0
0 0 kz

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

𝜕Te

𝜕x
𝜕Te

𝜕y
𝜕Te

𝜕z

⎫⎪⎪⎬⎪⎪⎭
= kx

(
𝜕Te

𝜕x

)2
+ ky

(
𝜕Te

𝜕y

)2

+ kz

(
𝜕Te

𝜕z

)2

, (3.260)

substituting into Equation (3.255), we have

Ie = 1
2 ∫Ω

[
{g}T

e [D]e{g}e − 2GTe] dΩ + ∫S2e

qTeds + ∫S3e

1
2

h(Te − Ta)2ds. (3.261)

Extending Equation (3.259) for the entire domain, i.e., {g}T [D]{g} = {T}T [B]T [D][B]{T}
and minimizing the integral, we have

𝜕I
𝜕{T}

= ∫Ω[B]T [D][B]{T}dΩ − ∫Ω G[N]TdΩ

+ ∫S2e

q[N]Tds + ∫S3e

h[N]T [N]{T}ds

− ∫S3e

h[N]TTads = 0. (3.262)

The above equation can be written in a compact form as

[K]{T} = {f}, (3.263)
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where

[K] = ∫Ω[B]T [D][B]dΩ + ∫S3

h[N]T [N]ds

{f} = ∫Ω G[N]TdΩ − ∫S2

q[N]Tds + ∫S3

hTa[N]Tds. (3.264)

Equations (3.263) form the backbone of the calculation method for a finite element analysis
of heat conduction problems. It can be easily noted that when there is no heat generation within
an element (G = 0), the corresponding term disappears. Similarly, for an insulated boundary
(i.e., q = 0 or h = 0) the corresponding term again disappears. Thus, for an insulated boundary
we do not have to specify any contribution but leave it unattended. In this respect this is a great
deal more convenient as compared to the finite difference method, where nodal equations have
to be written for insulated boundaries.

3.4.2 The Galerkin Method

The method requires that the following expansion be satisfied,

∫Ω wk

(
L(T) + G

)
dΩ = 0, (3.265)

where L is the diffusion operator given as

L =
{
𝜕

𝜕x

(
kx
𝜕

𝜕x

)
+ 𝜕

𝜕y

(
ky
𝜕

𝜕y

)
+ 𝜕

𝜕z

(
kz
𝜕

𝜕z

)}
, (3.266)

T is the approximate temperature. The weight function wk is also spatially discretized using
the same trail functions used for the the temperature. After simplification,

∫Ω Nk

{
𝜕

𝜕x

(
kx
𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
ky
𝜕T
𝜕y

)
+ 𝜕

𝜕z

(
kz
𝜕T
𝜕z

)
+ G

}
dΩ = 0. (3.267)

Integration by parts is often essential when dealing with second-order derivatives. Using
Green’s lemma (see Appendix A), we can rewrite the second derivatives in two parts as

∫Ω Nk
𝜕

𝜕x

(
kx
𝜕T
𝜕x

)
dΩ = ∫S

Nk

(
kx
𝜕T
𝜕x

)
l̃ dS − ∫Ω

𝜕Nk

𝜕x
kx
𝜕Nm

𝜕x
{T}dΩ, (3.268)

where subscripts k and m represent the nodes. With the boundary conditions (3.245), we can
rewrite Equation (3.267) as

∫Ω
(

kx
𝜕Nk

𝜕x

𝜕Nm

𝜕x
+ ky

𝜕Nk

𝜕y

𝜕Nm

𝜕y
+ kz

𝜕Nk

𝜕z

𝜕Nm

𝜕z

)
{T}dΩ

−∫Ω GNkdΩ + ∫S2

NkqdS + ∫S3

hNkNm{T}dS − ∫S3

hTaNkdS = 0. (3.269)

Now collecting the coefficient of the nodal variables {T}, we get

[K]{T} = {f} (3.270)



94 THE FINITE ELEMENT METHOD

or

[Kkm]{Tm} = {fk}, (3.271)

where

Kkm = [K] = ∫Ω
(

kx
𝜕Nk

𝜕x

𝜕Nm

𝜕x
+ ky

𝜕Nk

𝜕y

𝜕Nm

𝜕y
+ kz

𝜕Nk

𝜕z

𝜕Nm

𝜕z

)
dΩ + ∫S3

hNkNmdS

fk = {f} = ∫Ω GNkdΩ − ∫S2

qNkdS + ∫S3

hTaNkdS. (3.272)

It may be observed that Equations (3.263) and (3.270) are identical, which substantiates
the fact that both the variational and Galerkin methods give the same result because there
exists a classical variational integral for the heat conduction equation.

3.5 Requirements for Interpolation Functions

The procedure for formulating the individual element equations from a variational principle
and the assemblage of these equations relies on the assumption that the interpolation functions
satisfy the following requirements. This arises from the need to ensure that Equation (3.251)
holds and that our approximate solution converges to the correct solution when we use an
increasing number of elements, that is, when we refine the mesh.

(a) Compatibility: At element interfaces the field variable T and any of its partial deriva-
tives up to one order less than the highest-order derivative appearing in I(T) must be
continuous

(b) Completeness: All uniform states of T and its partial derivatives up to the highest order
appearing in I(T) should have representation in T , when, in the limit the element size
decreases to zero.

If the field variables are continuous at the element interfaces, then we have C◦ continuity.
If, in addition, the first derivatives are continuous, we have C1 continuity and if the second
derivatives are continuous then we have C2 continuity etc. If the functions appearing in the
integrals of the element equations contain derivatives up to the (r + 1)th order, then to have a
rigorous assurance of convergence as the element size decreases, we must satisfy the following
requirements.

For compatibility: At the element interfaces we must have Cr continuity.

For completeness: Within an element we must have Cr+1 continuity.

These requirements will hold regardless of whether the element equations (integral expres-
sions) were derived using the variational method, the Galerkin method, the energy balance
methods, or any other method yet to be devised. These requirements govern the selection of
proper interpolation functions depending on the order of the differential equation. Thus, for a
conduction heat transfer problem, the highest derivative in I is of the first order. Thus, the shape
function selected should provide for the continuity of temperature at the interface between two
elements and also ensures the continuity of temperature and heat flux within each element.



THE FINITE ELEMENT METHOD 95

In addition to the requirements of continuity of the field variable and convergence to the
correct solution as the element size reduces, we require that the field variable representa-
tion (polynomials used) within an element remain unchanged under a linear transformation
from one Cartesian coordinate system to another. Polynomials, which exhibit this invariance
property are said to possess “Geometric Isotropy”. Clearly, we cannot expect a realistic approx-
imation if our field variable representation changes with respect to a movement in origin, or in
the orientation of the coordinate system. Hence, the need to ensure geometric isotropy in our
polynomial interpolation functions is apparent. Fortunately, we have two simple guidelines
that allow us to construct polynomial series with geometric isotropy. These are:

(i) Polynomials of order n that are complete, that is, those that contain all terms have
geometric isotropy. The triangle family satisfies this condition whether it be a linear,
quadratic or cubic form.

(ii) Polynomials of order n that are incomplete, yet contain the appropriate terms to pre-
serve “symmetry” have geometric isotropy We neglect only these terms that occur in
symmetric pairs, that is, (x3, y3), (x2y, xy2) etc.

Example: For an eight-node element the following polynomial, P, satisfies geometric isotropy,
that is,

P(x, y) = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4x2 + 𝛼5xy + 𝛼6y2 (3.273)

with either

𝛼7x3 + 𝛼8y3 (3.274)

or

𝛼7x2y + 𝛼8y2x (3.275)

added to it.

Example 3.5.1 Before concluding this chapter it is important to consider a numerical
problem for illustrating the theory presented. For this purpose we consider again a fin problem
as shown in Figure 3.29. The linear variation for the temperature within each finite element
is assumed. We shall derive the element equations from the most general formulation given

100 °C

Insulatedx
2cm

3 mm

2 mm

k = 200 W/m °C

h = 120 W/m2 °C;  Ta = 25 °C

Figure 3.29 Heat transfer from a rectangular fin.
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Table 3.6 Element and node numbers of linear
one-dimensional elements

Element no. Node i Node j

1 1 2
2 2 3
e i j
n n n + 1

in Section 3.4 and determine the temperature distribution, heat dissipation capacity and the
efficiency of the fin, assuming that the tip is insulated.

Since we are using linear elements, the element will only have two nodes. First we divide
the given length of the fin into number of divisions - say n elements. Therefore we will have
(n + 1) nodes to represent the fin (see Table 3.6).

The variation of temperature in the elements is linear. Hence,

T = NiTi + NjTj (3.276)

and the first derivative is given by

dT
dx

=
dNi

dx
Ti +

dNj

dx
Tj

= −1
l

Ti +
1
l

Tj; (3.277)

that is, the gradient matrix is

g = dT
dx

=
[
−1

l
1
l

]{Ti
Tj

}
= [B]{T}; (3.278)

where, l is the element length and

[B] = 1
l

[−1 1]. (3.279)

With the above relationships we can write the relevant element matrices as follows (Equa-
tion (3.264)):

[K]e = ∫l
[B]T [D][B]dΩ + ∫S

h[N]T [N]dS

= ∫l

1
l

[
−1

1

]
[kx]

1
l

[−1 1]Adx + ∫S
h

[
Ni
Nj

]
[Ni Nj]Pdx. (3.280)

where A is the cross-sectional area of the fin and P is the perimeter of the fin from which
convection takes place. Note that [D] = kx for one-dimensional problems, dΩ = Adx and
dS = Pdx.

Rearranging Equation (3.280), we have

[K]e = ∫l

Akx

l2

[
1 −1

−1 1

]
dx + ∫l

hP

[
N2

i NiNj
NiNj N2

j

]
dx. (3.281)
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Here Ni = Li and Nj = Lj, which is generally true for all linear elements. Hence, we can
make use of the formula (Appendix C):

∫l
La

i Lb
j dl = a!b!l

(a + b + 1)!
. (3.282)

For example,

∫l
N2

i dl = ∫l
L2

i dl = 2!0!l
(2 + 0 + 1)!

= l
3

(3.283)

and other terms can be similarly integrated.
If A, kx, P and h are all assumed to be constant throughout the element, we obtain the

following [K] matrix:

[K]e =
Akx

l

[
1 −1

−1 1

]
+ hPl

6

[
2 1
1 2

]
. (3.284)

Let us next consider the thermal loading. From Equation (3.264) we can write:

{f}e =
GAl

2

{
1
1

}
−

qPl

2

{
1
1

}
+

hTaPl

2

{
1
1

}
. (3.285)

Note that the heat flux (q) boundary is assumed along the surface. This is not necessarily
always the case. In the problem considered, no heat flux boundary condition exists. Thus, the
heat flux term (the second term) in Equation (3.285) is zero. Similarly no heat generation is
assumed and thus the first term in Equation (3.285) is also zero.

The solution of the given problem may be found by substitution of the numerical values.
(a) First let us consider a one-element solution for the case where l = 2 cm, as shown in
Figure 3.30. The element stiffness matrix is

[K]e =
Akx

l

[
1 −1

−1 1

]
+ hPl

6

[
2 1
1 2

]

=
[

0.06 −0.06
−0.06 0.06

]
+
[

0.008 0.004
0.004 0.008

]

=
[

0.068 −0.056
−0.056 0.068

]
(3.286)

and the loading term is given by

{f} =
hPlTa

2

{
1
1

}

=
{

0.30
0.30

}
. (3.287)

2

L = l = 2 cm

1

Figure 3.30 Heat transfer from a rectangular fin. One linear element.
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Since only one element is employed, no assemblage of element contribution is necessary.
Thus, the simultaneous equation system may be written as[

0.068 −0.056
−0.056 0.068

]{
T1
T2

}
=
{

0.30 + Q
0.30

}
, (3.288)

where Q is the total heat flow at node 1. We now incorporate the known base temperature of
100 ◦C at node 1. It is done in such a way that the symmetry of the [K] matrix is retained. This
essential if the symmetric matrix solution procedure is employed in the solution of simultaneous
equations. The following steps give a typical implementation procedure for the temperature
boundary condition.

(i) The diagonal element of the first row is assigned a value of 1 and the remaining
elements on that row are zero.

(ii) Replace the first row value of the loading vector f by the known value of T1, that is,
100.

(iii) In order to retain the symmetry, the first term of the second row in the [K] matrix is
transferred to the right-hand side and replace with a zero value as given below:

[
1.0 0.0
0.0 0.068

]{
T1
T2

}
=
{

100.0
0.30 + 0.056(100.0)

}
. (3.289)

The simultaneous equation to be solved is

0.068T2 = 0.3 + 0.056(100). (3.290)

Therefore the solution is T1 = 100 ◦C and T2 = 86.765 ◦C.
Heat dissipated is calculated using the nodal equation for the the node number 1 as given

in Equation (3.288), that is,

Q = 0.068T1 − 0.056T2 − 0.3 = 1.64W. (3.291)

The heat dissipated may also be determined by using the following convection condition,
that is,

Q =
M∑

e=1

hPl

(Ti + Tj

2
− Ta

)
= 1.64W, (3.292)

where M is the total number of elements (subscripts i and j indicate the two nodes of an
element). The maximum theoretically possible heat transfer is (when Ti = Tj)

Qmax =
M∑

e=1

hPl
(
Ti − Ta

)
= 1.8W. (3.293)
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The efficiency is defined as

𝜂f =
Q

Qmax
= 1.64

1.80
= 91.11%. (3.294)

The exact solution for this problem is

Qexact = kAm tan(kml) = 1.593W, (3.295)

where m =
√

hP∕kA = 31.62. Therefore, the exact fin efficiency is

(𝜂f )exact =
Qexact

Qmax
= 88.48%. (3.296)

(b) Let us consider a two-element solution of the same problem (3 nodes).
The length of the fin is divided equally into two elements, that is, l = 1.0 cm.
The stiffness matrix calculation is similar to the one for the single element case, that is,

[K1] = [K2] =
[

0.124 −0.118
−0.118 0.124

]
(3.297)

and the loading vectors are

{f1} = {f2} =
{

0.15
0.15

}
. (3.298)

On assembly we obtain

⎡⎢⎢⎣
0.124 −0.118 0.0
−0.118 0.124 + 0.124 −0.118

0.0 −0.118 0.124

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0.15
0.15 + 0.15

0.15

⎫⎪⎬⎪⎭
. (3.299)

Now we have to incorporate the known values of base temperature, that is, T1 = 100 ◦C.

⎡⎢⎢⎣
1.0 0.0 0.0
0.0 0.248 −0.118
0.0 −0.118 0.124

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

100.0
0.30 + 0.118(100)

0.15

⎫⎪⎬⎪⎭
. (3.300)

Therefore, the two equations to be solved are
0.248T2 −0.118T3 = 12.1
and
−0.118T2 + 0.124T3 = 0.15.
Solving these equations we get T2 = 90.209 ◦C, T3 = 87.057 ◦C.
Results, which have been generated using different number of elements, are tabulated in

Tables 3.7 and 3.8.
As can be seen, the two-element solution is very good and is further improved with the

use of four elements. As a first idealization even the one element solution is reasonably good
considering the small effort involved.
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Table 3.7 Summary of results – temperatures

x mm Exact 1 element 2 elements 4 elements

0.0 100.00 100.00 100.00 100.00
5.0 94.28 – – 94.26

10.0 90.28 – 90.209 90.25
15.0 87.93 – – 87.908
20.0 87.15 86.77 87.07 87.128

Table 3.8 Summary of results – heat dissipated
and efficiency

Case Q (W) 𝜂f

1 element 1.64 91.11
2 elements 1.60 89.11
4 elements 1.60 88.65
Exact 1.59 88.48

3.6 Summary

In this chapter, we have discussed the basic principles of the finite element method as applied
to heat conduction problems. Different types of elements have been discussed and various
examples presented. In the authors opinion, this is the most important chapter for beginners.
Readers already familiar with the topic of finite element may find it trivial to follow but it
would be beneficial for the novice to work out the exercises provided in the following section.

3.7 Exercises

Exercise 3.7.1 A one-dimensional linear element is used to approximate the temperature
variation in a fin. The solution gives the temperature at two nodes of an element as 100 ◦C
and 80 ◦C. The distances from the origin to node i is 6 cm and node j is 10 cm. Determine the
temperature at a point 9 cm from the origin. Also calculate the temperature gradient in the
elements. Show that the sum of the shape functions at the location 9 cm from origin is unity.

Exercise 3.7.2 A one-dimensional quadratic element is used to approximate the temperature
distribution in a long fin. The solution gives the temperature at three nodes as 100, 90, and
80 ◦C at distances of 10 cm, 15 cm and 20 cm respectively from the origin. Calculate the
temperature and temperature gradient at a location of 12 cm from the origin.
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Exercise 3.7.3 During the implementation of the finite element method, the evaluation of the
integrals that contain shape functions and their derivatives is required. Evaluate the following
integrals for a linear one-dimensional element

∫l
Nidl;∫l

N2
i dl;∫l

dNi

dx

dNj

dx
dl;∫l

N3
i dl;∫l

NiNjdl. (3.301)

Exercise 3.7.4 Derive the shape functions for a one-dimensional linear element in which
both the temperature and the heat fluxes should be continuously varying in the element. (Note
that degrees of freedom for a one-dimensional linear element are Ti, qi, Tj, qj.)

Exercise 3.7.5 The solution for temperature distribution in a linear triangle gives the nodal
temperature as Ti = 200 ◦C, Tj = 180 ◦C and Tk = 160 ◦C. The coordinates of i, j and k
are (xi = 2 cm, yi = 2 cm), (xj = 6 cm, yj = 4 cm) and (xk = 4 cm, yk = 6 cm). Calculate
the temperature at a location given by x = 3 cm and y = 4 cm. Calculate coordinates of the
isotherm corresponding to 170 ◦C. Calculate the heat flux in the x and y directions at (x =
3, y = 4 cm) if the thermal conductivity is 0.5 W/m ◦C. Also show that the sum of the shape
functions at (x = 3 cm, y = 4 cm) is unity.

Exercise 3.7.6 For a one-dimensional quadratic element evaluate the integrals. (Note: con-
vert Ni, Nj and Nk to local coordinates and then integrate.)

∫l
Nidl;∫l

Njdl;∫l
Nkdl;∫l

NiNjdl (3.302)

Exercise 3.7.7 The nodal values for a rectangular element is given as follows, xi = 0.25 cm,
yi = 0.20 cm, xj = 0.30 cm, ym = 0.25 cm, Ti = 150 ◦C, Tj = 120 ◦C, Tk = 100 ◦C, Tm = 110 ◦C
Calculate (a) The temperature at the point C(x = 0.27 cm, y = 0.22 cm). (b) x, y coordinates
of the isotherm 130 ◦C (c) Evaluate 𝜕T∕𝜕x and 𝜕T∕𝜕y at the point C.

Exercise 3.7.8 Calculate the shape functions for a six-noded rectangle shown in Figure 3.31.

Exercise 3.7.9 Evaluate the partial derivatives of shape functions at 𝜁 =1/4 and 𝜂 = 1/2 of
a quadrilateral element shown in Figure 3.32, assuming the temperature is approximated by
(a) bilinear, (b) quadratic interpolating polynomials.

Exercise 3.7.10 Calculate the derivatives 𝜕N6∕𝜕x and 𝜕N6∕𝜕y at a point (2,5) for a quadratic
triangle element shown in Figure 3.33 using local coordinates.

4

3 cm

3 cm 3 cm

1 2 3

5 6

Figure 3.31 Rectangular element.
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i (1,1)

m (2,3.5)

k (4,4)

j (5,2)

Figure 3.32 Quadrilateral element.

(2,7)

(4,3)

(1,1)

Figure 3.33 Triangular element.

Exercise 3.7.11 In a double pipe heat exchanger, hot fluid flows inside a pipe and cold fluid
flows outside in the annular space. The heat exchange between the two fluids is given by the
differential equations, (refer to Exercise 2.5.12)

C1
dTh

dA
= −U(Th − Tc)

C2
DTc

dA
= U(Th − Tc). (3.303)

Develop the stiffness matrix and forcing vector using (a) subdomain method (b) Galerkin
method.

Exercise 3.7.12 Calculate (using one, two and four elements) the temperature distribution
and the heat dissipation capacity of a fin of length 4 cm and cross-sectional dimensions of
6 mm × 4 mm with a heat transfer coefficient of 0.1 W/m2 ◦C and a thermal conductivity of the
material of the fin as 0.5 W/m ◦C. Base temperature is 90 ◦C, and the tip is insulated.
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4

Steady-State Heat Conduction
in One-dimension

4.1 Introduction

A one-dimensional approximation of the heat conduction equation is feasible for many
physical problems, e.g. plane walls, fins, etc. (Bejan 1993; Holman 1989; Incropera and
Dewitt 1990; Ozisik 1968). In these problems, any major temperature variation is in one
direction only and the variation in all other directions may be ignored. Other examples of
one-dimensional heat transfer occur in cylindrical and spherical solids where the temperature
variation takes place only in the radial direction. In this chapter, such one-dimensional problems
are considered for steady-state conditions, in which the temperature does not depend on time.
Time-dependent and multi-dimensional problems will be discussed in later chapters.

4.2 Plane Walls

4.2.1 Homogeneous Wall

The differential equations which govern the heat conduction through plane walls have already
been discussed in Chapter 1. The steady-state heat conduction equation for a plane wall, shown
in Figure 4.1, is

kA
d2T
dx2

= 0, (4.1)

where k is the thermal conductivity and A is the cross-sectional area perpendicular to the
direction of heat flow. The problem is complete with the following description of the boundary

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
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x = 0 x = L

T2T1

L

k

Figure 4.1 Heat conduction through a homogeneous wall.

conditions, that is,

at x = 0, T = T1; and at x = L, T = T2.

The exact solution to Equation (4.1) is

kAT = C1x + C2. (4.2)

On applying the appropriate boundary conditions to Equation (4.2), we obtain

C2 = kAT1 (4.3)

and

C1 = −
kA(T1 − T2)

L
. (4.4)

Therefore, substituting constants C1 and C2 into Equation (4.2) results in

T = −
(T1 − T2)

L
x + T1. (4.5)

The above equation indicates that the temperature distribution within the wall is linear.
The heat flow, Q, can be written as (from Equation (4.5))

Q = −kA
dT
dx

= −kA
L

(T2 − T1). (4.6)

It is easy to verify that heat, Q, flows in the positive x direction if T1 > T2 and
vice versa.
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Figure 4.2 Heat conduction in a composite wall.

4.2.2 Composite Wall

Even if more than one material is used to construct the plane wall, as shown in Figure 4.2, at
steady-state the heat flow will be constant (conservation of energy), that is,

Q = −
k1A

x1
(T2 − T1) = −

k2A

x2
(T3 − T2) = −

k3A

x3
(T4 − T3). (4.7)

Noting that

T1 − T2 = Q
k1A
x1

; T2 − T3 = Q
k2A
x2

; and T3 − T4 = Q
k3A
x3

, (4.8)

the total heat flow may be calculated as

Q =
(T1 − T4)[

x1
k1A

+ x2
k2A

+ x3
k3A

] (4.9)

The numerator in the above equation is often referred to as the thermal potential difference
and the denominator is known to as the thermal resistance. In general all x∕kA terms are called
thermal resistances (see Figure 4.2).

If there is a convective resistance, say on the right face as shown in Figure 4.2, then we
have

Q =
(T4 − Ta)

x1
k1A

+ x2
k2A

+ x3
k3A

+ 1
hA

, (4.10)

where h is the heat transfer coefficient between atmosphere and the left wall surface and Ta is
the atmospheric temperature. Let us now consider a finite element solution for Equation (4.1).
As shown in Equation (4.5) the temperature distribution is linear for a homogeneous material.
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i

l

Ti h, Ta

j

Figure 4.3 Heat conduction through a homogeneous wall subjected to heat convection on one
side and constant temperature on the other side. Approximation using a single linear element.

4.2.3 Finite Element Discretization

If we consider a typical homogeneous slab, with nodes i and j on either side (see Figure 4.3),
we can write

T = NiTi + NjTj, (4.11)

where

Ni =
xj − x

xj − xi
and Nj =

x − xi

xj − xi
. (4.12)

In local coordinates

Ni = 1 − x
l

and Nj =
x
l

(4.13)

and the temperature derivative is

dT
dx

= −1
l

Ti +
1
l

Tj =
[
− 1

l
1
l

]{Ti
Tj

}
= [B]e{T}e, (4.14)

where l is the length of the element.
The global stiffness matrix (Chapter 3) is given as

[K] = ∫Ω[B]T [D][B]dΩ + ∫Ar

h[N]T [N]dAr = ∫l
[B]T [D][B]Adx + ∫Ar

h[N]T [N]dAr,

(4.15)

where Ω is the volume integral; Ar here indicates convective surface area on the right or
left face of the wall; and h is the convective heat transfer coefficient. After integration (see
Figure 4.3),

[K]e =
Akx

l

[
1 −1
−1 1

]
+ hAr

[
0 0
0 1

]
. (4.16)

Note that the convective heat transfer boundary condition is assumed to act on the right face
where Ni = 0 and Nj = 1. This is nonzero only when the last element at the right face is
considered. This is the reason why we have hAr added to the last nodal equation in Equation
(4.16). In the composite wall problem considered here (Figure 4.2), the cross-sectional area A
and convective surface area Ar are equal.
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Figure 4.4 Heat conduction through a composite wall subjected to heat convection on one
side and constant heat flux on the other side. Approximation using three linear elements.

The global forcing vector can be written as

{f} = ∫Ω G[N]TdΩ − ∫As

qs[N]TdAs + ∫As

hTa[N]TdAs +

⎧⎪⎪⎨⎪⎪⎩

qlAl
...

...

...

−qrAr

⎫⎪⎪⎬⎪⎪⎭
, (4.17)

where G is the internal heat generation per unit volume, qs is the heat flux leaving the lateral
surface (if it exists), ql is the heat flux entering the wall at the left side and qr is the heat flux
leaving the right side, Ta is the atmospheric temperature and subscripts l and r respectively
indicate the left and right faces of the wall. If G = 0, then there is no heat generation inside
the slab. The zero heat flux boundary condition is denoted by q = 0. Since the lateral surface
effect is not important in plane walls, the global load vector may be reduced to

{f} = ∫Ω G[N]TdΩ +

⎧⎪⎪⎨⎪⎪⎩

qlAl
...

...

...

−qrAr

⎫⎪⎪⎬⎪⎪⎭
. (4.18)

If neither internal heat generation nor external heat flux boundary conditions exist, as
shown in Figure 4.3, then the finite element equation for a homogeneous slab with only one
element becomes {

kxA

l

[
1 −1
−1 1

]
+ hA

[
0 0
0 1

]}{
Ti
Tj

}
=
{

0
hTaA

}
. (4.19)

Note that qrAv = hA(T − Ta)
The element equations can now be separately written for each slab of the composite wall

shown in Figure 4.2 but now with a heat flux boundary condition at the left side and convection
boundary condition on the right side. If we assume a discrete system as shown in Figure 4.4,
we obtain the following element equations:

Element 1 (Slab 1):

[K]1 =
⎡⎢⎢⎣

k1A
x1

− k1A
x1

− k1A
x1

k1A
x1

⎤⎥⎥⎦ ; {f}1 =

{
qlA

0

}
. (4.20)
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Element 2 (Slab 2):

[K]2 =
⎡⎢⎢⎣

k2A
x2

− k2A
x2

− k2A
x2

k2A
x2

⎤⎥⎥⎦ ; {f}2 =
{

0
0

}
. (4.21)

Element 3 (Slab 3):

[K]3 =
⎡⎢⎢⎣

k3A
x3

− k3A
x3

− k3A
x3

k3A
x3

+ hA

⎤⎥⎥⎦ ; {f}3 =
{

0
hATa

}
. (4.22)

Note that qr = h(T − Ta) is substituted into the load vector, Equation (4.17), for the last
node at the right face of the slab 3. Since T in this relation is the unknown, this part of the
equation goes to the stiffness matrix as shown above in Equation (4.22). Assembly of all the
three elemental equations gives

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k1A
x1

− k1A
x1

0 0

− k1A
x1

(
k1A
x1

+ k2A
x2

)
− k2A

x2
0

0 − k2A
x2

(
k2A
x2

+ k3A
x3

)
k3A
x3

0 0 − k3A
x3

k3A
x3

+ hA

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

T1

T2

T3

T4

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

qlA

0

0

hATa

⎫⎪⎪⎬⎪⎪⎭
. (4.23)

A solution of the above system of simultaneous equations (Appendix A) will result in
the values of T1, T2, T3 and T4. In a similar way, we can extend this solution method to any
number of materials that might constitute a composite wall. Note that the heat flux imposed
on the left-hand face is ql.

4.2.4 Wall with Varying Cross-sectional Area

Let us now consider a case where the cross-sectional area varies linearly from node i to j
as shown in Figure 4.5. Let Ai and Aj be the areas of cross-section at distances xi and xj
respectively (l = xj − xi). Therefore, the area A at an intermediate distance x is given by

A = Ai −
x
l
(Ai − Aj). (4.24)

Rearranging, we obtain

A = Ai

(
1 − x

l

)
+ x

l
Aj = AiNi + AjNj. (4.25)

Thus, the linear variation of area with distance can be represented in terms of the areas at
the points i and j, using the same shape functions. The element stiffness matrix for the element



STEADY-STATE HEAT CONDUCTION IN ONE-DIMENSION 111

2b

t

t

b
1

L

Aj
Ai

x

0

Figure 4.5 Heat conduction through a wall with linearly varying area of cross-section.

connecting i and j can be written as

[K]e = ∫Ω[B]T
e [D]e[B]edΩ

= ∫l

k
l2

[
1 −1

−1 1

]
(NiAi + NjAj)dx

= k
l

(Ai + Aj

2

)[
1 −1

−1 1

]
, (4.26)

where l is the distance between nodes i and j (element length). In the above equation, it has
been assumed that convection is absent.

Thus, when the area varies linearly, we can substitute an average area value and use the
constant area formulation if there is no heat dissipation from the perimeter. This assumption
will not hold good if the body is circular in cross-section, in which case the cross-sectional
area varies quadratically with the axial distance. This case can be dealt with by the use of a
quadratic variation within the element.

Example 4.2.1 A composite wall, with three layers of different material as shown in
Figure 4.2, has the following properties for the different layers.

� Layer-1: Gypsum, k1 = 0.05 W∕m ◦C, x1 = 1 cm and ql = 15 W∕m2.

� Layer-2: Fiber-glass, k2 = 0.0332 W∕m ◦C and x2 = 5 cm.

� Layer-3: Concrete, k3 = 1.2 W∕m ◦C, x3 = 15 cm, h = 15 W∕m2 ◦C and Ta = 25 ◦C.

Calculate the temperatures T1, T2, T3 and T4 assuming a heat flow area of 1 m2.
On substituting the given parameter values into Equation (4.23), we obtain

⎡⎢⎢⎢⎣
5.0 −5.0 0.0 0.0

−5.0 5.66 −0.66 0.0
0.0 −0.66 8.66 −8
0.0 0.0 −8.0 23.0

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3
T4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

15
0.0
0.0
375

⎫⎪⎬⎪⎭
. (4.27)
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Figure 4.6 Plane wall with heat source.

The solution of the above simultaneous equations results in T1 = 53.6 ◦C, T2 = 50.60 ◦C,
T3 = 27.875 ◦C, and T4 = 26 ◦C. The balance of heat may be verified by computing the total
heat transfer at the right face as Qr = Arh(T4 − Ta) = 15 W. This should be equal to the heat
supplied at the left side Ql = Alql = 15 W. Thus, the system satisfies the equilibrium conditions.
In the above relationships, Ar and Al are respectively the surface areas at the right and left
face of the composite wall.

4.2.5 Plane Wall with a Heat Source: Solution by Linear Elements

Many examples of heat transfer problems involve internal heat generation, for example, in
nuclear reactors, electrical conductors, chemical and biological reactors etc. In this section,
the heat conduction through a wall is considered with internal heat generation as shown in
Figure 4.6. Let us assume that the one-dimensional approximation is valid and G W∕cm3

represents the quantity of heat generated per unit volume inside the wall. Therefore, under
steady-state conditions, the applicable differential equation is

d2T
dx2

+ G
k
= 0. (4.28)

The boundary conditions are

at x = ±L, T = Tw. (4.29)

Integrating twice, we get

T = −G
k

x2

2
+ C1x + C2. (4.30)

From the symmetry of the problem, we find at x = 0, dT∕dx = 0 and C1 = 0 and C2 = To.
Therefore, Equation (4.30) becomes

T = −G
k

x2

2
+ To. (4.31)
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Figure 4.7 Finite element discritization.

The temperature, Tw, at both ends can be obtained by substituting x = ±L, which results
in

Tw = −G
k

L2

2
+ To (4.32)

or

To = Tw + GL2

2k
. (4.33)

From Equations (4.31) and (4.32) we can write

T − To

Tw − To
=
( x

L

)2
(4.34)

which shows that the temperature distribution is parabolic.
In the case of a finite element formulation, we have to account for the heat generation in

the forcing vector such that (see Equation (4.17))

{f}e = ∫v
G[N]TdV = ∫l

G

{
Ni
Nj

}
Adx = GAl

2

{
1
1

}
. (4.35)

In the above equation, the heat generated is distributed equally between the two nodes i
and j. In all linear elements we observe that the heat generated, or any other type of load, is
equally distributed among the participating nodes. Because of the symmetry of the problem,
it is sufficient in this case if we consider only one half of the domain.

Example 4.2.2 Determine the temperature distribution in a plane wall of thickness 60 mm,
which has an internal heat source of 0.3 MW∕m3 and the thermal conductivity of the material
is 21 W∕m ◦C. Assume that the surface temperature of the wall is 40 ◦C.

Because of symmetry, we may consider only one half of the plane wall as shown in
Figure 4.7. Let us consider four elements, each of length 7.5 mm. Let the cross-sectional area
for heat flow, A = 1 m2.

The element stiffness matrix is

[K]e =
kA
l

[
1 −1

−1 1

]
=
[

2800 −2800
−2800 2800

]
, (4.36)
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Table 4.1 Summary of results – temperatures

T FEM (◦C) Exact (◦C)

T1 46.43 46.43
T2 46.03 46.03
T3 44.83 44.82
T4 42.82 42.81
T5 40.0 40.0

which is identical for every element and

{f}e =
GAl

2

{
1
1

}
=
{

1125
1125

}
, (4.37)

which also is identical for all elements. Assembly gives

⎡⎢⎢⎢⎢⎢⎣

2800 −2800 0.0 0.0 0.0
−2800 5600 −2800 0.0 0.0

0.0 −2800 5600 −2800 0.0
0.0 0.0 −2800 5600 −2800
0.0 0.0 0.0 −2800 2800

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

T1
T2
T3
T4
T5

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

1125
2250
2250
2250
1125

⎫⎪⎪⎬⎪⎪⎭
. (4.38)

Applying the boundary condition, T5 = 40 ◦, the modifications are necessary to retain the
symmetry of the stiffness matrix, as discussed in Chapter 3.

⎡⎢⎢⎢⎢⎢⎣

2800 −2800 0.0 0.0 0.0
−2800 5600 −2800 0.0 0.0

0.0 −2800 5600 −2800 0.0
0.0 0.0 −2800 5600 0.0
0.0 0.0 0.0 0.0 1

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

T1
T2
T3
T4
T5

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

1125
2250
2250

2250 + 2800 × 40
40

⎫⎪⎪⎬⎪⎪⎭
. (4.39)

Solving the above system of equations, we obtain the temperature distribution as shown in
Table 4.1.

We observe that the finite element method results are either very close or equal to the exact
solution. The method can be extended for the case of a known wall heat flux, or a convection
boundary condition at the wall, as shown in Example 4.2.3.

Example 4.2.3 In Example 4.2.2, the left-hand face is insulated and the right-hand face
is subjected to a convection environment at 93 ◦C with a surface heat transfer coefficient of
570 W∕m 2 ◦C (see Figure 4.8). Determine the temperature distribution within the wall.
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Figure 4.8 Finite element discritization for the example with convection.

Since there is no symmetry, we have to consider the entire domain. Let us subdivide the
domain into eight elements (Figure 4.8), each of 7.5 mm length. Then

[K]1 = [K]2 = .....[K]7 =
[

2800 −2800
−2800 2800

]
(4.40)

[K]8 =
[

2800 −2800
−2800 2800

]
+ 570

[
0 0
0 1

]
=
[

2800 −2800
−2800 3370

]
. (4.41)

The elemental forcing vectors are the same as for Example 4.2.2, except for the last
element, which is

{f}8 =
{

1125
1125

}
+ hATa

{
0
1

}
=
{

1125
54135

}
. (4.42)

Assembly may be carried out as in Example 4.2.2. The solution of the assembled equation
results in the temperature distribution within the wall. The FEM solution is compared with the
analytical1 results as shown in Table 4.2 and compare very favorably.

4.2.6 Plane Wall with Heat Source: Solution by Quadratic Elements

We have seen from the previous section that the analytical solution to the problem of a plane
wall with a heat source gives a quadratic temperature distribution. Thus, it is appropriate
to solve such a problem using quadratic elements. Let us consider the problem shown in
Figure 4.6. We require three nodes for each element in order to represent a quadratic variation
as discussed in Section 3.2.2, that is,

T = NiTi + NjTj + NkTk (4.43)

1Analytical solution is obtained by solving

d2T
dx2

+ G
k

= 0,

subjected to boundary conditions. The final exact relation is

T = G
2k

(L2 − x2) +
(GL

h
+ Ta

)
.
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Table 4.2 Summary of results – temperatures

T FEM ◦C Analytical ◦C

T1 150.28 150.29
T2 149.88 149.89
T3 148.68 148.68
T4 146.67 146.67
T5 143.86 143.86
T6 140.24 140.24
T7 135.82 135.83
T8 130.60 130.60
T9 124.59 124.59

with

Ni =
[

1 − 3x
l
+ 2x2

l2

]

Nj =
4x
l
− 4x2

l2

Nk = 2x2

l2
− x

l
. (4.44)

From Chapter 3, the stiffness matrix is defined as

[K]e = ∫l
[B]T

e [D]e[B]edΩ = Ak
6l

⎡⎢⎢⎣
14 −16 2
−16 32 −16

2 −16 14

⎤⎥⎥⎦ , (4.45)

where dΩ = Adx and

[B]e =
[(

4x
l2
− 3

l

) (
4
l
− 8x

l2

) (
4x
l2
− 1

l

)]
. (4.46)

The loading vector is

{f}e = ∫l
G[N]TdΩ = ∫l

G

⎧⎪⎨⎪⎩
Li(2Li − 1)

4LiLj
Lj(2Lj − 1)

⎫⎪⎬⎪⎭
Adx = GAl

6

⎧⎪⎨⎪⎩
1
4
1

⎫⎪⎬⎪⎭
. (4.47)

In the above equation, the shape functions Ni, Nj and Nk are expressed in terms of the local
coordinate system Li and Lj, the use of which will facilitate the integration process by using

∫l
La

i Lb
j dx = a!b!

(a + b + 1)!
l. (4.48)

Example 4.2.4 We shall now solve Example 4.2.2 using one quadratic element only as
shown in Figure 4.9. As before, we consider only one half of the wall, where L is equal to
30 mm.
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Figure 4.9 Quadratic finite element discretization.

Substituting values into Equations (4.45) and (4.47), we obtain

[K] =
⎡⎢⎢⎣

1633.33 −1866.66 233.33
−1866.66 3733.33 −1866.66

233.33 −1866.66 1633.33

⎤⎥⎥⎦ (4.49)

and

{f} =
⎧⎪⎨⎪⎩

1500
6000
1500

⎫⎪⎬⎪⎭
. (4.50)

Incorporating the boundary condition, that is, T3 = 40 ◦C, results in the following set of
equations,

⎡⎢⎢⎣
1633.33 −1866.66 0.0

−1866.66 3733.33 0.0
0.0 0.0 1.0

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

1500 − 233.33(40)
6000 + 1866.66(40)

40.0

⎫⎪⎬⎪⎭
. (4.51)

The solution to the above system gives, T1 = 46.43 ◦C and T2 = 44.82 ◦C, which are
identical to the exact solution.

4.2.7 Plane Wall with a Heat Source: Solution by Modified Quadratic
Equations (Static Condensation)

In many transient and nonlinear problems, it will be necessary to obtain the temperature
distribution several times. Hence, any possible reduction in the number of nodes, without
sacrificing accuracy, is important. For one-dimensional quadratic elements it is possible to
transfer the central node contribution to the side nodes. Thus, there will be only two nodes
but the influence of the quadratic variation is inherently present. This process is referred to as



118 STEADY-STATE HEAT CONDUCTION IN ONE-DIMENSION

static condensation and the procedure will be demonstrated by considering a typical quadratic
element equation, viz.,

⎡⎢⎢⎣
K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

f1
f2
f3

⎫⎪⎬⎪⎭
. (4.52)

In order to eliminate the middle node, that is, node 2, we transfer its contribution to
nodes 1 and 3. This is accomplished by expressing the temperature at node 2 in terms of the
temperatures at nodes 1 and 3, that is

T2 =
f2

K22
−
[

K21T1

K22
+

K23T3

K22

]
. (4.53)

Now, on substituting the above relation into the first and third nodal equations, we have[
K11 −

K21

K22
K12

]
T1 +

[
K13 −

K23

K22
K12

]
T3 =

[
f1 − f2

K12

K22

]
(4.54)

for the first node, and[
K31 −

K21

K22
K32

]
T1 +

[
K33 −

K23

K22
K32

]
T3 =

[
f3 − f2

K32

K22

]
(4.55)

for the second node. Now the matrix form of the equation can be rewritten as

⎡⎢⎢⎢⎣
(

K11 −
K21
K22

K12

) (
K13 −

K23
K22

K12

)
(

K31 −
K21
K22

K32

) (
K33 −

K23
K22

K32

)
⎤⎥⎥⎥⎦
{

T1

T3

}
=
⎧⎪⎨⎪⎩

f1 − f2
K12
K22

f3 − f2
K32
K22

⎫⎪⎬⎪⎭
. (4.56)

Note that the number of equations have been reduced, which leads to a small decrease in
computational cost. This procedure is therefore often employed when higher order approxi-
mations are used for temperature.

Example 4.2.5 Repeat Example 4.2.4 using the static condensation procedure.
Substituting all relevant values into Equation (4.56) and applying the boundary condition

(T3 = 40 ◦C), leads to the following[
700.0 0.0

0.0 1

]{
T1
T3

}
=
{

4499.89 + 700 × 40
40.0

}
. (4.57)

The solution to the above equation results in T1 = 46.43 ◦C, which is identical to the exact
solution.

4.3 Radial Heat Conduction in a Cylinder Wall

Many problems in industry, such as heat exchangers, crude oil transport etc., involve the flow of
hot fluids in very long pipes which have uniform boundary conditions along the circumference,
both inside and outside as shown in Figure 4.10. In such problems, the heat transfer mainly
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Figure 4.10 Radial heat conduction in an infinitely long cylinder.

takes place along the radial direction apart from the end effects. The governing differential
equation for heat flow in cylindrical geometries is

1
r

d
dr

(
rk

dT
dr

)
= 0 (4.58)

The boundary conditions are as follows:

At r = rin, T = Tw

and at r = ro,−k
dT
dr

= h(To − Ta)
, (4.59)

where Tw is the inside wall temperature, To is the outside wall temperature, k is the thermal
conductivity, h is the heat transfer coefficient at the outside surface and Ta is the atmospheric
temperature.

Integrating Equation (4.58) we obtain

kT = C1ln r + C2. (4.60)

Subjecting the above equation to the boundary conditions of Equation (4.59) results in

C1 = −hro(To − Ta) and C2 = kTw − C1ln rin. (4.61)

Substituting the constants and rearranging Equation (4.60), we obtain the exact solution
as

(T − Tw)

(To − Ta)
=

hro

k
ln

rin

r
. (4.62)

With the use of the finite element method and assuming a linear variation of temperature,
the resulting stiffness matrix is given by

[K]e = ∫Ω[B]T
e [D]e[B]edΩ + ∫As

h[N]T
e [N]edAs

= ∫
rj

ri

[
− 1

l
1
l

]
k
[
− 1

l
1
l

]
L(2𝜋r)dr + ∫

L

0
h

[
Ni
Nj

] [
Ni Nj

]
(2𝜋ro)dx

= 2𝜋kL
l

(ri + rj)

2

[
1 −1
−1 1

]
+ (2𝜋ro)Lh

[
0 0
0 1

]
. (4.63)
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In the above equation, L is the length of the cylinder and element length in the radial
direction is l = (rj − ri). The surface area per unit length is computed as As = 2𝜋ro. The load
vector is

{f}e = ∫As

hTa[N]TdAs = (2𝜋ro)hL

{
0
1

}
Ta. (4.64)

Example 4.3.6 Calculate the outer wall surface temperature and the temperature distribu-
tion in a thick wall cylinder with the following data: Tw = 100 ◦C, rin = 40 cm, ro = 60 cm,
k = 10 W∕m ◦C, ho = 10 W∕m2C, Ta = 30 ◦C. Consider a one element solution with an ele-
ment length of l = 60 − 40 = 20 cm. Assume a unit cylinder length.

The element stiffness matrix and the loading vectors are given by

[K]e =
2𝜋k

l

( ri + rj

2

)[
1 −1

−1 1

]
+ (2𝜋ro)h

[
0 0
0 1

]
= 𝜋

[
50 −50

−50 62

]
(4.65)

and

{f}e = 𝜋

{
0

360

}
. (4.66)

The complete system of equations can be written as

𝜋

[
50 −50

−50 62

]{
Ti
Tj

}
= 𝜋

{
0

360

}
. (4.67)

The solution to the above system, with Ti = 100 ◦C results in Tj = To = 86.45 ◦C, which
is greater than the analytical solution, that is 86.30 ◦C. A more accurate solution may be
obtained if two elements, each 10 cm long are employed. The assembled equation for the two
element system is

⎡⎢⎢⎣
90 −90 0
−90 200 −110

0 −110 122

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0
0

360

⎫⎪⎬⎪⎭
. (4.68)

The solution to the above equation, with boundary condition T1 = 100 ◦C, gives T2 =
92.46 ◦C and T3 = To = 86.35 ◦C. The accuracy of the outer wall temperature has been
greatly improved by using two elements.

4.4 Solid Cylinder with Heat Source

Consider a homogeneous solid cylinder of radius ro and length L with uniformly distributed
heat source. If we assume a very long cylinder, the temperature in the cylinder will be a
function of radius only. Thus,

k

(
d2T
dr2

+ 1
r

dT
dr

)
+ G

r
= 0. (4.69)
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The boundary conditions are:

at r = 0,
dT
dr

= 0 and r = ro, T = To (4.70)

and the heat generated will be equal to the heat lost at the surface, that is,

G(𝜋r2
o)L = −k(2𝜋ro)L

(dT
dr

)
ro

. (4.71)

Equation (4.69) can be rewritten as

k
r

d
dr

(
r

dT
dr

)
+ G = 0. (4.72)

The analytical solution for this problem is:

T − To = G
4k

(r2
o − r2). (4.73)

Substituting r = 0 and T = Tc (temperature at the center of the solid cylinder) gives

Tc − To =
Gr2

o

4k
. (4.74)

Thus,

T − To

Tc − To
= 1 −

(
r
ro

)2

(4.75)

and

dT
dr

= −Gr
2k
. (4.76)

Let us now consider a finite element solution employing linear elements. The stiffness
matrix is

[K]e =
2𝜋k

l

( ri + rj

2

)[
1 −1
−1 1

]
(4.77)

and the forcing vector is

{f}e = ∫r
G[N]T (2𝜋r)dr (4.78)

per unit length.
In cylindrical coordinates, r may be expressed as

r = Niri + Njrj. (4.79)

Substituting the above equation into Equation (4.78) and integrating between ri and rj we
obtain

{f}e =
2𝜋Gl

6

{
2ri + rj
ri + 2rj

}
, (4.80)

where the length of an element l is equal to (rj − ri).
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Example 4.4.1 Calculate the surface temperature in a circular solid cylinder of radius
25 mm with a volumetric heat generation of 35.3 MW/m3. The external surface of the cylinder
is exposed to a liquid at a temperature of 20 ◦C with a surface heat transfer coefficient of
4000 W/m 2 ◦C. The thermal conductivity of the material is 21 W/m ◦C.

Let us divide the region into four elements, each of width 6.25 cm.
On substituting the given data into Equation (4.77), the stiffness matrix of the four elements

may be calculated as follows:

[K]1 = 2𝜋

[
10.5 −10.5

−10.5 10.5

]
(4.81)

[K]2 = 2𝜋

[
31.5 −31.5

−31.5 31.5

]
(4.82)

[K]3 = 2𝜋

[
52.5 −52.5

−52.5 52.5

]
(4.83)

and

[K]4 = 2𝜋

[
73.5 −73.5

−73.5 73.5

]
+ 2𝜋

[
0 0
0 100

]
(4.84)

Similarly the forcing vectors for all the four elements can be calculated as

{f}1 = 2𝜋

{
229.82
459.63

}
(4.85)

{f}2 = 2𝜋

{
919.27

1149.09

}
(4.86)

{f}3 = 2𝜋

{
1608.18
1838.54

}
(4.87)

and

{f}4 = 2𝜋

{
2298.18
2528.00

}
+ 2𝜋

{
0

2000

}
(4.88)

Assembly gives

⎡⎢⎢⎢⎢⎢⎣

10.5 −10.5 0.0 0.0 0.0
−10.5 42.0 −31.5 0.0 0.0

0.0 −31.5 84.0 −52.5 0.0
0.0 0.0 −52.5 126.0 −73.5
0.0 0.0 0.0 −73.5 173.5

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

T1
T2
T3
T4
T5

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

229.82
1378.9
2757.81
4136.72
4528.00

⎫⎪⎪⎬⎪⎪⎭
. (4.89)

The solution obtained by solving the above system of equations is tabulated in Table 4.3
We can see that the surface temperature, T5, is predicted very well but the deviation

from the exact solution increases as we proceed towards the center. If two linear elements
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Table 4.3 Summary of results – temperatures

T FEM (◦C) Exact (◦C)

T1 = Tc 402.19 392.95
T2 380.28 376.54
T3 329.20 327.29
T4 246.02 245.22
T5 = To 130.32 130.31

replaces the one element near the center, then the solution for the maximum temperature is
improved to 398.43 ◦C. It is also possible to improve the accuracy of the temperature solution
by using quadratic elements. The analytical solution for the outer wall temperature To is
computed using the energy balance per unit cylinder length at the outer surface, that is,
−k(dT∕dr) = h(To − Ta) and Equation (4.76).

4.5 Conduction–convection Systems

Many physical situations involve the transfer of heat in a material by conduction and its sub-
sequent dissipation by exchange with a fluid or the environment by convection. The heat sinks
used in the electronic industry to dissipate heat from electronic components to the ambient

is an example of a conduction–convection system. Other examples include the dissipation of
heat in electrical windings to the coolant, the heat exchange process in heat exchangers, and
the cooling of gas turbine blades where the temperature of the hot gases are greater than the
melting point of the blade material. In Section 3.5 we have already demonstrated the appli-
cations of the finite element method for extended surfaces with rectangular cross-sections.
Also, the problems discussed in the previous section of this chapter include the influence of
convective boundary conditions. However, all the problems studied previously in this chapter
assumed that the domains were of infinite length.

Figure 4.11 shows various types of fins used in practice. Let us now consider the case of a
tapered fin (extended surfaces) with plane surfaces on the top and bottom. The fin also loses
heat to the ambient via the tip. The thickness of the fin varies linearly from t2 at the base to t1
at the tip as shown in Figure 4.12. The width, b, of the fin remains constant along the whole
length.

Let us consider a typical element e, with thicknesses ti and tj, areas Ai and Aj and perimeter
Pi and Pj at locations i, and j respectively, as shown in Figure 4.13.

Ai = bti; Aj = btj; Pi = 2(b + ti) and Pj = 2(b + tj). (4.90)

Since A varies linearly with x we can write

A = Ai −
(Ai − Aj

l

)
x, (4.91)
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Figure 4.11 Different types of fins.

1t

L

bt2

Figure 4.12 Tapered fin.

i j

t

l

bt

j

i

Figure 4.13 Tapered fin. Locations i and j.
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where l is the length of an element. Alternatively we can write

A = Ai

(
1 − x

l

)
+ Aj

x
l
= NiAi + NjAj. (4.92)

Similarly, P = NiPi + NjPj. The stiffness matrix is written as

[K]e = ∫l

[
− 1

l
1
l

]
[k]

[
− 1

l
1
l

]
Adx + ∫l

h

[
Ni
Nj

] [
Ni Nj

]
Pdx. (4.93)

After integration and rearrangement, we have

[K]e =
k
l

(Ai + Aj

2

)[
1 −1

−1 1

]
+ hl

12

[
3Pi + Pj Pi + Pj
Pi + Pj Pi + 3Pj

]
+ hAr

[
0 0
0 10

]
. (4.94)

The load vector for this problem is

{f}e = ∫l
G[N]TAdx − ∫As

q[N]TdAs + ∫As

hTa[N]TdAs, (4.95)

where G is the heat source per unit volume, q is the heat flux, h is the heat transfer coefficient
and Ta is the atmospheric temperature. Integrating we obtain

{f}e =
Gl
6

{
2Ai + Aj
Ai + 2Aj

}
−

ql

6

{
2Pi + Pj
Pi + 2Pj

}
+

hTal

6

{
2Pi + Pj
Pi + 2Pj

}
+ hTaAj

{
0
1

}
. (4.96)

The last contribution is valid only for the element at the end face. For all other elements
this last convective term is zero. Note that the general form of the load vector Equation (4.96)
includes the lateral surface heat loss due to heat flux q and convection heat transfer. In practice
only one of them is active if the lateral surface is not insulated. For the majority of the time
the surface heat loss is due to convection heat transfer.

Example 4.5.1 Let us consider an example with the fin tapering linearly from a thickness
of 2 mm at the base to 1 mm at the tip (see Figure 4.14). Also, the tip and lateral surfaces
lose heat to the ambient via convection, with a heat transfer coefficient, h,= 120 W∕m 2 ◦C
and atmospheric temperature, Ta,= 25 ◦C. Determine the temperature distribution if the base
temperature is maintained at 100 ◦C. The total length of the fin, L, is 20 mm, the width, b, is
3 mm and thermal conductivity is 200 W∕m ◦C.

2

10 mm10 mm

T TT 21 31

Figure 4.14 Tapered fin. Finite element discretization.
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Let us divide the region into two elements of equal length 10 mm each as shown in
Figure 4.14. Substituting the relevant data into Equation (4.94) we obtain the stiffness matrices
for both elements as follows:

[K]1 =
[

0.109 −0.103
−0.103 0.109

]
(4.97)

and

[K]2 =
[

0.079 −0.073
−0.073 0.079

]
. (4.98)

Similarly, the forcing vectors are calculated as

{f}1 =
{

0.145
0.140

}
(4.99)

and

{f}2 =
{

0.130
0.134

}
. (4.100)

Assembly of the above equations results in

⎡⎢⎢⎣
0.109 −0.103 0.0

−0.103 0.188 −0.073
0.0 −0.073 0.079

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0.145
0.140 + 0.13

0.134

⎫⎪⎬⎪⎭
. (4.101)

On applying the relevant boundary conditions and solving the above system we obtain
T1 = 100 ◦C, T2 = 88.83 ◦C and T3 = 83.96 ◦C.

The heat dissipation can be calculated from the following relationship:

Q = Σ2
e=1hPeLe

(Ti + Tj

2
− Ta

)
. (4.102)

Substituting the contribution from both elements results in a value of Q = 1.42 W.

4.6 Summary

In this chapter, examples of one-dimensional problems have been discussed in detail. In most
cases analytical solutions were available as benchmarks for the finite element solutions. There
are many other application problems which can be studied in one dimension. However, the
essential fundamentals of the finite element method for one dimensional heat conduction
problems have been given, which may easily be extended to other forms of one-dimensional
heat conduction problems.
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4.7 Exercises

Exercise 4.7.1 A composite wall with three different layers, as shown in Figure 4.2 generates
0.25 G W∕m3 of heat. Using the relevant data given in Example 4.2.1, determine the temper-
ature distribution across the wall using both linear and quadratic variations and compare the
results.

Exercise 4.7.2 An insulation system around a cylindrical pipe consists of two different layers.
The first layer immediately on the outer surface of the pipe is made of glass wool and
the second one is constructed using plaster of Paris. The pipe diameter is 10 cm and each
insulating layers is 1 cm thick. The thermal conductivity of the glass wool is 0.04 W∕m ◦C and
that of the plaster is 0.06 W∕m ◦C. The pipe carries hot oil at a temperature of 92 ◦C and the
atmospheric temperature, outside is 15 ◦C. If the heat transfer coefficient from the outer surface
of the insulation to the atmosphere is 15 W∕m 2 ◦C, calculate the temperature at the interface
between the two insulating materials and on the outer surface (neglect pipe wall thickness).

Exercise 4.7.3 A solid cylinder of 10 cm diameter generates 0.3 G W∕m3 of heat due to
nuclear reaction. If the outside temperature is 40 ◦C and the heat transfer coefficient from the
solid surface to the surrounding fluid is 30 W∕m 2 ◦C calculate the temperature distribution
using quadratic elements.

Exercise 4.7.4 A circular fin of inner diameter 20 cm and outer diameter of 26 cm transfers
heat from a small motor cycle engine. If the average engine surface temperature is 112 ◦C
determine the temperature distribution along the fin surface. The thermal conductivity of the
fin material is 21 W∕m ◦C and the convective heat transfer coefficient between the fin and
atmosphere is 120 W∕m ◦C. Assume a suitable atmospheric temperature.

Exercise 4.7.5 Consider a composite wall consisting of four different materials as shown
in Figure 4.15. Assuming one-dimensional heat flow, determine the heat flow through the
composite slab and the interfacial temperatures. kA = 200 W∕m ◦C, kb = 20 W∕m ◦C and

Area = 0.22 m

220 °C

20 °C

Q

2 cm 
5 cm 

3 cm

A
B

C
D

Figure 4.15 A composite wall.
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10 cm5 cm

1 cm 1 cm

5 cm

A

C
B

120 °C

20 °C

Figure 4.16 A composite wall.

kC = 40 W∕m ◦C and kD = 60 W∕m◦C. Assume areas of surfaces B and C are equal to
0.1 m2. All side surfaces are insulated.

Exercise 4.7.6 Consider a composite wall, which has one linearly varying cross-sectional
area as shown in Figure 4.16. Determine the heat flow and interfacial temperatures. Thick-
ness = 10 cm, kA = 200 W∕m ◦C, kB = 20 W∕m ◦C and kC = 40 W∕m ◦C. Assume top and
bottom surfaces are insulated.

Exercise 4.7.7 A plane wall (k = 20 W∕m ◦C) of thickness 40 cm has its outer surfaces
maintained at 30 ◦C. If there is uniform internal heat generation of 0.2 MW/m3 in the plane
wall, determine the temperature distribution in the plane wall. Solve this problem using
(a) four linear elements; (b) one quadratic element; (c) one modified quadratic element with
only two nodes. Compare the results with analytical solutions.

Exercise 4.7.8 A plane wall (k = 10 W∕m ◦C) of thickness 50 cm has its exterior surface
subjected to convection environment of 30 ◦C with a surface heat transfer coefficient of
600 W/m2 ◦C. Determine the temperature distribution in the plane wall using (a) four lin-
ear elements; (b) one quadratic element; (c) one modified quadratic element with only two
nodes. Compare the results with analytical solution. If the heat transfer coefficient increases
to 10,000 W/m2 ◦C, what happens to the temperature of the exterior surface?

Exercise 4.7.9 Calculate the outer wall surface temperature and the temperature distribution
in a thick walled hollow cylinder when the inner wall temperature is 120 ◦C and the outer
wall is exposed to a convection environment of 25 ◦C with a surface heat transfer coefficient of
20 W/m2 ◦C. The inner and outer radii of the hollow cylinder are 30 cm and 60 cm respectively.
The thermal conductivity of the material of the hollow cylinder is 20 W/m ◦C. Use one linear
element and two linear elements for solution. Compare the results with the analytical solution.

Exercise 4.7.10 Calculate the surface temperature in a circular solid cylinder (k =
20 W∕m2C) of radius 30 mm with a volumetric heat generation of 25 MW/m3. The exter-
nal surface of the cylinder is exposed to a liquid at 25 ◦C with a heat transfer coefficient of
5000 W/m 2 ◦C. Use (a) four linear elements; (b) two quadratic elements. Compare the solution
with analytical solution.
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Exercise 4.7.11 Consider a tapered fin of length 5 cm dissipating heat to an ambient at
30 ◦C. The heat transfer coefficient on the surface at the tip is 100 W/m2 ◦C. The fin tapers
from a thickness of 5 mm to a thickness of 2 mm at the tip. The thermal conductivity of the
material of the fin is 100 W/m ◦C. The width of the fin is constant along the length and equal
to 2 mm. Determine the heat dissipation from the fin for a base temperature of 100 ◦C. Use (a)
two linear elements; (b) one quadratic element. Also calculate the fin efficiency.
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5

Steady-state Heat Conduction
in Multi-dimensions

5.1 Introduction

As seen in the previous chapters, a one-dimensional approximation is easy to implement and
is also economical. However, the majority of heat transfer problems are multi-dimensional
in nature (Bejan 1993; Holman 1989; Incropera and Dewitt 1990; Ozisik 1968). For such
problems the accuracy of the solution can be improved using either a two- or three-dimensional
approximation. For instance, conduction heat transfer in an infinitely long hallow rectangular
tube, which is exposed to uniform but different boundary conditions inside and outside the
tube (Figure 5.1(a)), and heat conduction in a thin plate, which has negligible heat transfer in
the direction of the thickness, may be approximated as a two-dimensional problem.

In certain situations it is often difficult to simplify the problem to two dimensions without
sacrificing accuracy. Most complex industrial heat transfer problems are three-dimensional
in nature due to the complicated geometries involved. Heat transfer in aircraft structures and
heat shields used in space vehicles are examples of such problems. It is, however, important to
note that even simple geometries but which have complex boundary conditions become three-
dimensional in nature. For example, the same hollow rectangular tube mentioned previously,
but in this case having nonuniform conditions along the length, is a three-dimensional problem.
Also, if the hollow rectangular tube is finite, again it may be necessary to treat it as a three-
dimensional problem even if the boundary conditions are uniform along the length (Figure 5.1).
One typical and simple example of three-dimensional heat conduction is that of a solid cube
subjected to different boundary conditions on all six faces as shown in Figure 5.1(b).

Another approximation commonly employed in heat conduction studies is the axisymmet-
ric formulation. This type of problem is often considered as A two- and-a-half-dimensional

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
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T
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Figure 5.1 Examples of heat conduction in two-dimensional, three-dimensional and axisym-
metric geometries. (a) Two dimensional plane geometry; (b) Three dimensional domain;
(c) Axisymmetric configuration.

case as it has the features of both a two- and three-dimensional approximation. If a geometry
is generated by revolving a surface through 360◦ with reference to its axis, then it is referred
to as being axisymmetric. For instance, revolution of a rectangular surface through 360◦, with
respect to a vertical axis, produces a vertical cylinder as shown in Figure 5.1(c). Therefore, the
heat conduction equations need to be written in three-dimensional cylindrical coordinates for
such a system. However, if no significant variation in temperature is expected in the circum-
ferential direction (𝜃 direction), which is often the case, the problem can be reduced to two
dimensions and a solution based on the shaded rectangular plane in Figure 5.1(c) is sufficient.

Unlike one-dimensional problems, two- and three-dimensional situations are usually geo-
metrically complex and expensive to solve. The complexity of the problem is increased in
multi-dimensions by the occurrence of irregular geometry shapes and the appropriate imple-
mentation of boundary conditions on their boundaries. In the case of complicated geometries, it
is often necessary to use unstructured meshes (unstructured meshes are generated by employing
arbitrarily generated points in a domain, see Chapter 14) to divide the domain into finite ele-
ments. Fortunately, due to present day computing capabilities, even complex three-dimensional
problems can be solved on a standard personal computer (PC). In the following sections, we
demonstrate the solution of multi-dimensional steady-state problems with relevant examples.

5.2 Two-dimensional Plane Problems

5.2.1 Triangular Elements

The simplest finite element discretization which can be employed in two dimensions is by
using linear triangular elements. In Chapter 3, we discussed in detail the use of triangular
elements. These elements are employed here to solve two-dimensional conduction heat transfer
problems.
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Insulated

InsulatedInsulated

Exposed to boundary
conditions

Γ
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Γ

h

T
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k

Figure 5.2 Typical two-dimensional plane geometry and triangular element. Front view (left)
and side view (right).

In order to demonstrate the use of linear triangular elements, let us consider a general
problem as shown in Figure 5.2. As shown in the figure, the geometry is irregular and both
the flat faces of the plate are insulated. The surface in the thickness direction is exposed to
various boundary conditions. This is an ideal two-dimensional heat conduction problem with
no temperature variation allowed in the thickness direction. The final matrix form of the global
finite element equations, as given in Chapter 3, is

[K]{T} = {f}, (5.1)

where, the stiffness matrix is

[K] = ∫Ω[B]T [D][B]dΩ + ∫Γh

h[N]T [N]dΓ (5.2)

and the load vector is

{f} = ∫Ω G[N]TdΩ − ∫Γq

q[N]TdΓ + ∫Γh

hT∞[N]TdΓ. (5.3)

In the above equation, heat is assumed to leave the domain due to imposed heat flux and
convective boundary conditions.

For a linear triangular element, the temperature distribution can be written as

Te = NiTi + NjTj + NkTk. (5.4)

The element gradient matrix is given as

{g}e =

{
𝜕T
𝜕x
𝜕T
𝜕y

}
e

=
⎡⎢⎢⎣
𝜕Ni

𝜕x

𝜕Nj

𝜕x
𝜕Nk

𝜕x
𝜕Ni

𝜕y

𝜕Nj

𝜕y
𝜕Nk

𝜕y

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

Ti
Tj
Tk

⎫⎪⎬⎪⎭
= [B]e{T}e. (5.5)

where

[B]e =
⎡⎢⎢⎣
𝜕Ni

𝜕x

𝜕Nj

𝜕x
𝜕Nk

𝜕x
𝜕Ni

𝜕y

𝜕Nj

𝜕y
𝜕Nk

𝜕y

⎤⎥⎥⎦ =
1

2Ae

[
bi bj bk
ci cj ck

]
. (5.6)
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a
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Figure 5.3 Typical two-dimensional triangular element with heat generation and heat flux
and convection boundaries.

Note that G in Equation (5.3) is a uniform heat source. Assuming an anisotropic material,
we have

[D]e =
[

kx 0
0 ky

]
. (5.7)

Note that the off-diagonal terms are neglected from the above equation for the sake of
simplicity. Substituting [D]e and [B]e into Equation (5.2), we get, for a boundary element as
shown in Figure 5.3,

[K]e =
t

4Ae

⎧⎪⎨⎪⎩
kx

⎡⎢⎢⎣
b2

i bibj bibk
bibj b2

j bjbk

bibk bjbk b2
k

⎤⎥⎥⎦ + ky

⎡⎢⎢⎣
c2

i cicj cick
cicj c2

j cjck

cick cjck c2
k

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
+

htljk
6

⎡⎢⎢⎣
0 0 0
0 2 1
0 1 2

⎤⎥⎥⎦ . (5.8)

The subscript e in the above equation denotes a single element. It should be noted that dΩ
in the above equation is equal to tdxdy and dΓ is equal to tdx, where t is the thickness of the
plate and l is the length of an element side (or edge) on the domain boundary. In a similar
fashion, the forcing vector can be written as

{f}e =
GAet

3

⎧⎪⎨⎪⎩
1
1
1

⎫⎪⎬⎪⎭
+

qtlij
2

⎧⎪⎨⎪⎩
1
1
0

⎫⎪⎬⎪⎭
+

hTatljk
2

⎧⎪⎨⎪⎩
0
1
1

⎫⎪⎬⎪⎭
. (5.9)

Note that the heat flux term is positive in the above equation. This is due to the fact
that the heat flux is going into the element, that is, q = qy × ny. Although qy is positive,
the outward pointing normal, ny, on along the edge i − j in Figure 5.3 is −1. The inte-
gration formulae used in the derivation of stiffness matrix and loading vectors are sim-
ple, as indicated in Chapter 3. For convenience, we have listed the integration formulae in
Appendix C.

As seen in the previous equations, the effect of uniform heat generation contributes to
all three nodes of an element irrespective of its position. However, the convection and flux
boundary conditions are applicable only on the boundaries of the domain. If we need to have a
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“point source” G∗ instead of a “uniform source” G, the first term in Equation (5.9) is replaced
with

G∗t

⎧⎪⎨⎪⎩
Ni
Nj
Nk

⎫⎪⎬⎪⎭(xo,yo)

, (5.10)

where xo and yo are the coordinates of the point source. In the above equations, all the shape
function values must be evaluated at (xo, yo) (note that although G∗ is a point source, in
two dimensions, it is a line in the thickness direction and expressed in units of W/m). The
contribution from the point source is then appropriately distributed to the three nodes of the
element which contains the point source.

In order to demonstrate the characteristics of two dimensional steady-state heat transfer,
the temperature distribution in a flat plate having constant temperature boundary conditions is
considered in the following example.

Example 5.2.1 A square plate of unit thickness and size 1 m, as shown in Figure 5.4,
is subjected to isothermal boundary conditions of 100 ◦C on all sides except the top side
which is subjected to 500 ◦C. If the thermal conductivity of the material is constant and
equal to 10 W/m ◦C, determine the temperature distribution using linear triangular finite
elements.

The square domain is first divided into eight equal-sized linear triangular elements as
shown in Figure 5.5. Two sets of elemental [K] matrices exist due to the orientation of the
triangles. For elements 1, 3, 5 and 7 we have the following elements of the [K] matrix, if they
are numbered as shown in Figure 5.4.

b1 = y2 − y4 = −0.50; c1 = x4 − x2 = −0.50

b2 = y4 − y1 = 0.50; c2 = x1 − x4 = 0.00

b4 = y1 − y2 = 0.00; c4 = x2 − x1 = 0.50. (5.11)

1 m100 °C

500 °C

100 °C

100 °C

1 m

Figure 5.4 Square plate with different temperature boundary conditions.
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3

4

21 3

6

7 8 9

5 3−6−52−5−4

8

7
6

6−9−85−8−7

4

1

2

2−3−51−2−4

5
4−5−7 5−6−8

Figure 5.5 Discretization using triangular elements.

The elemental [K] matrices for elements 1, 3, 5 and 7 can be written as (refer to Equation
(5.8)):

[K]1 = tk
4Ae

⎡⎢⎢⎣
b2

1 + c2
1 b1b2 + c1c2 b1b4 + c1c4

b1b2 + c1c2 b2
2 + c2

2 b2b4 + c2c4
b1b4 + c1c4 b2b4 + c2c4 b2

4 + c2
4

⎤⎥⎥⎦ = [K]3 = [K]5 = [K]7, (5.12)

where the area of the elements can be written as

2Ae = det

|||||||
1.0 0.0 0.0
1.0 0.5 0.0
1.0 0.0 0.5

||||||| = 0.25 m2
. (5.13)

Substituting the area into Equation (5.12) we get the final form of the elemental stiffness
matrix as

[K]1 = [K]3 = [K]5 = [K]7 = tk
2

⎡⎢⎢⎣
2.0 −1.0 −1.0

−1.0 1.0 0.0
−1.0 0.0 1.0

⎤⎥⎥⎦ . (5.14)

Similarly, we can calculate elemental [K] matrices for elements 2, 4, 6 and 8 as

[K]2 = [K]4 = [K]6 = [K]8 = tk
2

⎡⎢⎢⎣
1.0 −1.0 0.0

−1.0 2.0 −1.0
0.0 −1.0 1.0

⎤⎥⎥⎦ . (5.15)

It is also easy to verify that if the connectivity of element 2 is changed to 5-4-2, the
element matrix (5.15) will be identical to Equation (5.14). Now, the assembled equations are
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(see Appendix D):

tk
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0 −1.0 0.0 −1.0 0.0 0.0 0.0 0.0 0.0
−1.0 4.0 −1.0 0.0 −2.0 0.0 0.0 0.0 0.0

0.0 −1.0 2.0 0.0 0.0 −1.0 0.0 0.0 0.0
−1.0 0.0 0.0 4.0 −2.0 0.0 −1.0 0.0 0.0

0.0 −2.0 0.0 −2.0 8.0 −2.0 0.0 −2.0 0.0
0.0 0.0 −1.0 0.0 −2.0 4.0 0.0 0.0 −1.0
0.0 0.0 0.0 −1.0 0.0 0.0 2.0 −1.0 0.0
0.0 0.0 0.0 0.0 −2.0 0.0 −1.0 4.0 −1.0
0.0 0.0 0.0 0.0 0.0 −1.0 0.0 −1.0 2.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1
T2
T3
T4
T5
T6
T7
T8
T9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.0 + Q1
0.0 + Q2
0.0 + Q3
0.0 + Q4

0.0
0.0 + Q6
0.0 + Q7
0.0 + Q8
0.0 + Q9

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(5.16)

where Q1 to Q4 and Q6 to Q9 are the heat flow at the corresponding nodes. The only
unknown temperature in the above equation is T5, which can be calculated from the equation
corresponding to the fifth node, that is, from

8T5 = 2T2 + 2T4 + 2T6 + 2T8. (5.17)

Substituting T2 = T4 = T6 = 100 ◦C and T8 = 500 ◦C, we get T5 = 200 ◦C. The heat flow at
different nodes may be computed using the nodal equations of the system 5.16. The calculated
heat flow values are Q1 = 0 W, Q2 = −1000 W, Q3 = 0 W, Q4 = −1000 W, Q6 = −1000 W,
Q7 = −2000 W, Q8 = 7000 W and Q9 = −2000 W. The negative sign indicates the heat leaving
the domain. As seen the heat entering the domain at node 8 balances the total heat leaving the
domain.

The analytical solution to this problem is given by Holman (1989).

T(x, y) = (Tmax − Tmin)
2
𝜋

∞∑
n=1

(−1)n+1 + 1
n

sin
(n𝜋x

w

) sinh
(

n𝜋y
w

)
sinh

(
n𝜋H

w

) + Tmin, (5.18)

where w is the width, H is the height of the plate, Tmax is the maximum temperature on the
boundary and Tmin is the minimum temperature on the boundary. Therefore,

T(0.5, 0.5) = 200.11 ◦C. (5.19)

As seen the finite element solution is in close agreement with the analytical solution. It is
interesting to note that the finite difference solution is given by

T5 =
T2 + T4 + T6 + T8

4
= 200 ◦C, (5.20)

which is identical to the finite element solution. Figure 5.6 shows the computer generated
solution on an unstructured mesh for this problem. As shown, the temperature at the center
is close to that obtained from regular mesh shown in Figure 5.5, and also to the analytical
solution. However, the unstructured mesh solution is not as accurate as that of the regular
mesh solution. This indicates, that the accuracy of a regular structured mesh is superior to
that of unstructured meshes. If a finer structured mesh as shown in Figure 5.7 is used, the
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(a) (b)

Figure 5.6 Solution for Example 5.6.1 on an unstructured mesh. The temperature obtained
at the center of the plate is 200.42 ◦C. (a) Finite element mesh; (b) Temperature contours.
Temperature varies between 100 ◦C and 500 ◦C. Interval between two contours is 25 ◦C.

temperature at the center is 199.99 ◦C. This is closer to the analytical solution than that of all
other solutions presented.

Using the nodal temperature values, the temperature at any other location within an
element can be determined using linear interpolation. The calculation of the temperature at
any arbitrary location has been demonstrated in Chapter 3. The following two-dimensional
example is given in order to further illustrate this point.

Example 5.2.2 Calculate the temperature at point 4 (40,40) shown in Figure 5.8. The
temperature values at nodes 1 2 and 3 are 100 ◦C, 200 ◦C and 100 ◦C respectively. The

Figure 5.7 Fine structured mesh.
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1 (50,0)

2(50,50)3(0,50)

4(40,40)

Figure 5.8 Interpolation into a triangular element.

coordinates of these points are (50,0), (50,50) and (0,50) respectively. All dimensions are in
cm. Also, calculate the heat flux in both the x and y directions. Assume a thermal conductivity
value of 10 W/cm ◦C.

The following expression can be used to describe the linear variation of temperature within
the element

T = N1T1 + N2T2 + N3T3. (5.21)

In order to calculate the temperature at node 4, the shape functions N1, N2 and N3 have
to be calculated at node 4. Therefore, for the first node

N1 = 1
2A

(a1 + b1x4 + c1y4), (5.22)

where

a1 = x2y3 − x3y2 = 2500.00

b1 = y2 − y3 = 0.0

c1 = x3 − x2 = −50.00. (5.23)

At point 4, (x = 40, y = 40), from Equation (5.22) we get

N1 = 1
5
. (5.24)

Similarly, it can be verified that N2 = 3/5 and N3 = 1/5. Note that N1 + N2 + N3 = 1. On
substituting these shape function values into Equation (5.21) results in a value of T4 = 160◦C.

The heat flux in the x and y directions are calculated as

qx = −k
𝜕T
𝜕x

= − k
2Ae

(b1T1 + b2T2 + b3T3)

= − 10
2500

(b1T1 + b2T2 + b3T3) = −20 W/cm2
. (5.25)
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5 cm

5 cm

h = 1.2 w/cm2 K,     = 30 °C 

 100 °C 

T
   = 1.2 w/cm3 G

      = 5 w/cm G*

   = 2 w/cm2q
(1,1)

Figure 5.9 A square domain with mixed boundary conditions.

Similarly, it can be shown that qy = −20 W/cm2. It should be noted that the flux is constant
over a linear triangular element.

From Examples 5.2.1 and 5.2.2, the demonstration of problems involving constant temper-
ature boundary conditions is clear. It is therefore essential to move on to an example with more
complicated boundary conditions. Thus, in the following example, a conduction problem is
considered, which has mixed boundary conditions.

Example 5.2.3 Determine the temperature distribution in a square plate of size 5 cm and
unit thickness as shown in Figure 5.9. The upper triangular half has an internal heat generation
of 1.2 W/cm3 while the lower half has a point source of 5 W/cm in the thickness direction
(point source on a two-dimensional plane) at the point (1,1) cm. In addition to the above
heat sources, the bottom side of the plate is insulated, the right vertical side is subjected to a
temperature of 100 ◦C, the top side is subjected to a convective heat heat transfer boundary
condition with a heat transfer coefficient of h = 1.2 W/cm2K and Ta = 30 ◦C and the left
vertical side is subjected to a uniform heat flux of 2 W/cm2 leaving the domain. Assume a
thermal conductivity of 2 W/cm ◦C.

To make the solution procedure simple, the plate is divided into two triangular elements
as shown in Figure 5.10. The elemental equations of both elements can be set up separately
using the formulation discussed (Equations (5.8) and (5.9)). For the first element, a1 = 25.0,
b1 = −5.0, c1 = −5.0, a2 = 0.0, b2 = 5.0, c2 = 0.0, a3 = 0.0, b3 = 0.0, c3 = 5.0.

1 2

3 4

1

2

Figure 5.10 Discretization using two triangular elements.
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The stiffness matrix for element 1 is

[K]1 = t
4Ae

⎧⎪⎨⎪⎩
kx

⎡⎢⎢⎣
b2

1 b1b2 b1b3
b1b2 b2

2 b2b3
b1b3 b2b3 b2

3

⎤⎥⎥⎦ + ky

⎡⎢⎢⎣
c2

1 c1c2 c1c3
c1c2 c2

2 c2c3
c1c3 c2c3 c2

3

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
. (5.26)

Substituting the values for a, b and c we obtain

[K]1 =
⎡⎢⎢⎣

2.0 −1.0 −1.0
−1.0 1.0 0.0
−1.0 0.0 1.0

⎤⎥⎥⎦ . (5.27)

The loading term for the element 1 is given by

{f}1 = −
tql31

2

⎧⎪⎨⎪⎩
1.0
0.0
1.0

⎫⎪⎬⎪⎭
+ G∗t

⎧⎪⎨⎪⎩
N1
N2
N3

⎫⎪⎬⎪⎭(1,1)

=
⎧⎪⎨⎪⎩
−2.0

1.0
−4.0

⎫⎪⎬⎪⎭
. (5.28)

Note that the shape functions evaluated at point (1,1) are N1 = 3∕5, N2 = 1∕5 and N3 =
1/5. In a similar way, the stiffness matrix and loading terms for the second element can be
calculated. They are

[K]2 =
⎡⎢⎢⎣

1.0 −1.0 0.0
−1.0 4.0 0.0

0.0 0.0 3.0

⎤⎥⎥⎦ (5.29)

and

{f}2 =
⎧⎪⎨⎪⎩

5.0
95.0
95.0

⎫⎪⎬⎪⎭
. (5.30)

On assembling the above contributions for the two elements, we obtain the following
system of simultaneous equations (see Appendix D), that is,

⎡⎢⎢⎢⎣
2.0 −1.0 −1.0 0.0

−1.0 2.0 0.0 −1.0
−1.0 0.0 4.0 0.0

0.0 −1.0 0.0 4.0

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3
T4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

−2.0
6.0 + Q2

91.0
95.0 + Q4

⎫⎪⎬⎪⎭
. (5.31)

In the above set of equations the temperature T2 and T4 are known and are equal to 100 ◦C.
The boundary conditions can be implemented as previously explained in Chapters 2

and 3. In order to fully appreciate the application of the boundary conditions, the reader is
refer to Appendix D.

Applying the boundary conditions, we get

⎡⎢⎢⎢⎣
2.0 −1.0 −1.0 0.0
0.0 1.0 0.0 0.0

−1.0 0.0 4.0 0.0
0.0 0.0 0.0 1.0

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3
T4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

−2.0
100.0
91.0

100.0

⎫⎪⎬⎪⎭
. (5.32)
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Therefore, the simultaneous equations to be solved are 2T1 − T3 = 98 and−T1 + 4T3 = 91.
The solution to these equations results in T1 = 69 ◦C and T3 = 40 ◦C. The heat flow at nodes
2 and 4 are calculated as Q2 = 25 W and Q4 = 205 W. The total heat flowing in is therefore is
230 W. The total heat of the system is calculated by adding the total heat flow into the domain
with any heat generation, that is, total heat of the system is Q2 + Q4 + G× volume of triangle
2-3-4 + G∗ × t = 250 W.

The heat flowing out of the plate may be computed by calculating the heat flow at edges
4-3 and 3-1 as

Qh = −htl43

(1
2

(T3 + T4) − Ta

)
= −240 W; and Qq = −qtl31 = −10 W (5.33)

respectively. As seen, the total heat flowing out of the domain is −250 W which is identical to
the total heat of the system.

If in the above example, there is an uniform heat generation of 1.2 W/cm3 throughout the
domain (no point heat source), then the loading term for the first element changes to

{f}1 = −
qtl31

2

⎧⎪⎨⎪⎩
1
0
1

⎫⎪⎬⎪⎭
+

GAet

3

⎧⎪⎨⎪⎩
1
1
1

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0
5
0

⎫⎪⎬⎪⎭
. (5.34)

The resulting simultaneous equations become 2T1 − T3 = 100 and −T1 + 4T3 = 95 and the
solution becomes T1 = 70.71 ◦C and T3 = 41.42 ◦C. We leave the heat balance calculations to
the readers. The total heat flow here is slightly increased due to the uniform heat generation
to approximately 255 W. This value is approximately equal to heat leaving the domain due to
convection and prescribed flux along sides 4-3 and 3-1 respectively.

5.3 Rectangular Elements

A typical rectangular element is shown in Figure 5.11 with mixed boundary conditions. The
temperature distribution in a rectangular element is written as

Te = NiTi + NjTj + NkTk + NlTl. (5.35)

2b

2a

a

1

h, T

q

T

i j

kl

Figure 5.11 Rectangular element with different boundary conditions.
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From Chapter 3 (Equation (3.91) with origin at node i), the shape functions for a rectangular
element are given as (replacing x with (x − b) and y with (y − a) in Equation 3.88)

Ni =
(

1 − x
2b

)(
1 −

y

2a

)
Nj =

x
2b

(
1 −

y

2a

)
Nk =

xy

4ab

Nl =
y

2a

(
1 − x

2b

)
. (5.36)

The element gradient matrix of the shape functions is

[B]e =
⎡⎢⎢⎣
𝜕Ni

𝜕x

𝜕Nj

𝜕x
𝜕Nk

𝜕x
𝜕Nl

𝜕x
𝜕Ni

𝜕y

𝜕Nj

𝜕y
𝜕Nk

𝜕y
𝜕Nl

𝜕y

⎤⎥⎥⎦ =
1

4ab

[
−(2a − y) (2a − y) y −y

−(2b − x) −x x (2b − x)

]
. (5.37)

The element stiffness matrix is given by

[K]e = ∫Ω[B]T
e [D]e[B]edV + ∫Γ h[N]T

e [N]edΓ, (5.38)

where

[D]e =
[

kx 0
0 ky

]
e

. (5.39)

Substituting, the [B]e and [D]e matrices into the above equation, results in a 4 × 4 matrix.
We leave the algebra to the readers to work out. A typical term in the matrix is

∫
2b

0 ∫
2a

0

kx

16a2b2
(2a − y)2tdxdy + ∫

2b

0 ∫
2a

0

ky

16a2b2
(2b − x)2tdxdy. (5.40)

After integration, the matrix [K] becomes

[K]e =
kxat

6b

⎡⎢⎢⎢⎣
2.0 −2.0 −1.0 1.0

−2.0 2.0 1.0 −1.0
−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0

⎤⎥⎥⎥⎦
+

kyat

6b

⎡⎢⎢⎢⎣
2.0 1.0 −1.0 −2.0
1.0 2.0 −2.0 −1.0

−1.0 −2.0 2.0 1.0
−2.0 −1.0 1.0 2.0

⎤⎥⎥⎥⎦
+ hbt

6

⎡⎢⎢⎢⎣
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 4.0 2.0
0.0 0.0 2.0 4.0

⎤⎥⎥⎥⎦
. (5.41)

The loading vector can be written as

{f}e = ∫Ω G[N]TdΩ = ∫
2b

0 ∫
2a

0
Gt

⎧⎪⎨⎪⎩
Ni
Nj
Nk
Nl

⎫⎪⎬⎪⎭
dxdy =

GAet

4

⎧⎪⎨⎪⎩
1
1
1
1

⎫⎪⎬⎪⎭
. (5.42)
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The heat flux and convective heat transfer boundary integrals are evaluated as for triangular
elements. In order to demonstrate the application of such elements, Example 5.2.3 will now
be reconsidered using a rectangular element.

Example 5.3.1 Determine the temperature distribution in the square plate of Example
5.2.3, using a single rectangular element. Now assume that the volumetric heat generation is
extended to throughout the domain and the point source is absent.

Substituting the relevant data into Equation (5.41) we get (see Figure 5.12)

[K]e =
5

15

⎡⎢⎢⎢⎣
2.0 −2.0 −1.0 1.0

−2.0 2.0 1.0 −1.0
−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0

⎤⎥⎥⎥⎦
+ 5

15

⎡⎢⎢⎢⎣
2.0 1.0 −1.0 −2.0
1.0 2.0 −2.0 −1.0

−1.0 −2.0 2.0 1.0
−2.0 −1.0 1.0 2.0

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 2.0 1.0
0.0 0.0 1.0 2.0

⎤⎥⎥⎥⎦
. (5.43)

Simplifying, this becomes

[K]e =
1
6

⎡⎢⎢⎢⎣
8.0 −2.0 −4.0 −2.0

−2.0 8.0 −2.0 −4.0
−4.0 −2.0 20.0 4.0
−2.0 −4.0 4.0 20.0

⎤⎥⎥⎥⎦
. (5.44)

The forcing vector is

{f}e =
30t
4

⎧⎪⎨⎪⎩
1
1
1
1

⎫⎪⎬⎪⎭
−

qtl14

2

⎧⎪⎨⎪⎩
1
0
0
1

⎫⎪⎬⎪⎭
+

hTatl31

2

⎧⎪⎨⎪⎩
0
0
1
1

⎫⎪⎬⎪⎭
; (5.45)

1 2

34

5 cm

5 cm

h = 1.2 w/cm2 °C, Ta = 30 °C 

q =
 2 w/cm2

 100 °C 

Figure 5.12 Heat conduction in a square plate. Approximated using a rectangular (square)
element.
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again, on simplifying we obtain

{f}e =
⎧⎪⎨⎪⎩

2.5
7.5 + Q2

97.5 + Q3
92.5

⎫⎪⎬⎪⎭
. (5.46)

Therefore, the final form of the set of simultaneous equations can be written as

1
6

⎡⎢⎢⎢⎣
8.0 −2.0 −4.0 −2.0

−2.0 8.0 −2.0 −4.0
−4.0 −2.0 20.0 4.0
−2.0 −4.0 4.0 20.0

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3
T4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

2.5
7.5 + Q2

97.5 + Q3
92.5

⎫⎪⎬⎪⎭
. (5.47)

The temperatures at points 2 and 4 are known. On substitution into the above system,
results in the following simultaneous equations:[

8 −2
−2 20

]{
T1
T4

}
=
{

615
555

}
. (5.48)

The solution of the above simultaneous equation gives T4 = 36.34 ◦C and T1 = 85.96 ◦C.
The energy balance between the heat inflow and out flow is easily verified. The heat inflow

is equal to G × volume + Q2 + Q3 = 240 W. The heat outflow is due to the heat convection
along side k − l and hear flux along side l − i. These together gives approximately −240 W.

5.4 Plate with Variable Thickness

The conduction heat transfer in a plate with variable thickness is essentially a three-dimensional
problem. However, if the thickness variation is small, then it is possible to express the thickness
as a linear variation in the discretized triangular element as shown in Figure 5.13. If the
thickness variation is assumed to be linear, we can write

t = Niti + Njtj + NkTk (5.49)

a

j i

k

k
i

j

h, T
q

t

t

t

Figure 5.13 A triangular plate with linearly varying thickness.
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Therefore, the element stiffness matrix can be rewritten as

[K]e = ∫V
[B]T

e [D]e[B]edV + ∫S
h[N]T

e [N]edS

= ∫A
[B]T

e [D]e[B]e(Niti + Njtj + Nktk)edA

+∫lij

h[N]T
e [N]e(Niti + Njtj + Nktk)edx. (5.50)

On substitution of the various matrices and integrating (see Appendix C), we finally obtain

[K]e =
( ti + tj + tk

12Ae

)⎧⎪⎨⎪⎩
kx

⎡⎢⎢⎣
b2

i bibj bibk
bibj b2

j bjbk

bibk bjbk b2
k

⎤⎥⎥⎦ + ky

⎡⎢⎢⎣
c2

i cicj cick
cicj c2

j cjck

cick cjck c2
k

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

+
hlij
12

⎡⎢⎢⎣
3ti + tj ti + tj 0.0
ti + tj ti + 3tj 0.0
0.0 0.0 0.0

⎤⎥⎥⎦ . (5.51)

The load term is calculated as

{f}e = ∫A
G[N]T

e (Niti + Njtj + Nktk)edA

−∫ljk

q[N]T
e (Niti + Njtj + Nktk)edx

+∫lij

hTa[N]T
e (Niti + Njtj + Nktk)edx. (5.52)

Again on integration we obtain,

GAe

12

⎧⎪⎨⎪⎩
2ti + tj + tk
ti + 2tj + tk
ti + tj + 2tk

⎫⎪⎬⎪⎭
−

qljk
6

⎧⎪⎨⎪⎩
0

2tj + tk
tj + 2tk

⎫⎪⎬⎪⎭
+

hTalij
6

⎧⎪⎨⎪⎩
2ti + tj
ti + 2tj

0

⎫⎪⎬⎪⎭
. (5.53)

If the thickness is constant, the above relations reduce to the same set of equations as in
Section 5.2.

5.5 Three-dimensional Problems

The formulation of a three-dimensional problem follows a similar approach, as explained
previously for two-dimensional plane geometries, but with an additional third dimension. The
finite element equation is the same as in Equation (5.1), that is,

[K]{T} = {f}. (5.54)
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i
j

k

l

Figure 5.14 A linear tetrahedral element.

For a linear tetrahedral element as shown in Figure 5.14, the temperature distribution over
an element can be written as

Te = NiTi + NjTj + NkTk + NlTl. (5.55)

The element gradient matrix is given as

{g}e =

⎧⎪⎪⎨⎪⎪⎩

𝜕T
𝜕x

𝜕T
𝜕y
𝜕T
𝜕z

⎫⎪⎪⎬⎪⎪⎭
=

⎡⎢⎢⎢⎢⎣

𝜕Ni

𝜕x

𝜕Nj

𝜕x
𝜕Nk

𝜕x
𝜕Nl

𝜕x
𝜕Ni

𝜕y

𝜕Nj

𝜕y
𝜕Nk

𝜕y
𝜕Nl

𝜕y
𝜕Ni

𝜕z

𝜕Nj

𝜕z
𝜕Nk

𝜕z
𝜕Nl

𝜕z

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩

Ti
Tj
Tk
Tl

⎫⎪⎬⎪⎭
= [B]e{T}e, (5.56)

The thermal conductivity matrix becomes

[D]e =
⎡⎢⎢⎣

kx 0 0
0 ky 0
0 0 kz

⎤⎥⎥⎦e

, (5.57)

where the off-diagonal terms are assumed to be zero for the sake of simplicity. On substituting
[D]e and [B]e into Equation (5.2), we obtain the necessary elemental [K]e equation. Similarly,
the elemental equation for {f}e can also be derived.

In Figure 5.15, an extension of Example 5.2.1 to three dimensions is given for demon-
stration purpose only. As seen, the geometry is extended in the third dimension by 1 m. The
corresponding boundary conditions are also given. The boundary conditions remain the same
but the boundary sides become boundary surfaces in 3D. Two extra surfaces, one in the front,
another at the back, are also introduced when the problem is extended to three dimensions.
These two extra surfaces are subjected to no heat flux conditions in order to preserve two
dimensionality of the problem.

The mesh generated and the solution to this problem are shown in Figure 5.16. As seen,
the solution in the plane perpendicular to the third dimension, x3, is identical to that of the
two-dimensional solution given in Figure 5.6(b). As mentioned previously, the variation of
the temperature in the third dimension is suppressed by imposing no heat flux conditions
on the front and back faces, perpendicular to x3, as shown in Figure 5.15.
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3

100 °C (side)

 100 °C (bottom)

1 m 1 m

1 m

100 °C (side)

Insulated

500 °C (top)

x1

x2

x

Figure 5.15 Representation of Example 5.2.1 in three dimensions.

5.6 Axisymmetric Problems

In many three-dimensional problems, there is often a geometric symmetry about a reference
axis, and such problems can be solved using two-dimensional elements, provided the boundary
conditions and all field functions are independent of the circumferential direction (𝜃 direction).
The domain can then be represented by axisymmetric ring elements and analysed in a similar

(a) (b)

Figure 5.16 Solution for the Example 5.2.1 on a three-dimensional mesh, temperature at the
center point, (0.5,0.5,0.5), of the cube is 200.66 ◦C. (a) Finite element mesh; (b) Temperature
contours. Temperature varies between 100 ◦C and 500 ◦C. Interval between two contours is
25 ◦C.
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z
θ

r

Figure 5.17 An axisymmetric problem.

fashion to that of a two-dimensional problem. Figure 5.17 shows an axisymmetric ring element
in which the nodes of the finite element model lie in the r − z plane.

The Galerkin formulation and the element equations are similar to those for two-
dimensional plane heat transfer problems but are different due to the ring nature of the
elements. The differential equation in a cylindrical coordinate system (r, z) for steady state is

kr
𝜕

2T
𝜕r2

+
kr

r
𝜕T
𝜕r

+ k
𝜃

𝜕T
𝜕𝜃

2
+ kz

𝜕
2T
𝜕z2

+ G = 0. (5.58)

An axisymmetric problem is independent of the angle 𝜃 and hence Equation (5.58) reduces
to

kr
𝜕

2T
𝜕r2

+
kr

r
𝜕T
𝜕r

+ kz
𝜕

2T
𝜕z2

+ G = 0. (5.59)

This can be rewritten, if the thermal conductivity in the radial direction, kr is constant, as

1
r

[
kr
𝜕

𝜕r

(
r
𝜕T
𝜕r

)]
+ kz

𝜕
2T
𝜕z2

+ G = 0. (5.60)

The boundary conditions are

T = Tb on ΓT

kr
𝜕T
𝜕r

l + kz
𝜕T
𝜕z

n + h(T − Ta) = 0 on Γh

kr
𝜕T
𝜕r

l + kz
𝜕T
𝜕z

n + q = 0 on Γq. (5.61)
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The temperature distribution is described as follows:

Te = NiTi + NjTj + NkTk, (5.62)

which is similar in form to that of a linear triangular plane element. The shape functions in the
above equation are defined as

Ni =
1

2Ae
(ai + bir + ciz)

Nj =
1

2Ae
(aj + bjr + cjz)

Nk = 1
2Ae

(ak + bkr + ckz). (5.63)

The area, A, of an axisymmetric element is calculated from

2Ae = det

|||||||
1 ri zi
1 rj zj
1 rk zk

||||||| . (5.64)

Other constants in Equation (5.63) are defined as

ai = rjzk − rkzj; bi = zj − zk; ci = rk − rj

aj = rkzi − rizk; bj = zk − zi; cj = ri − rk

ak = rizj − rjzi; bk = zi − zj; ck = rj − ri. (5.65)

5.6.1 Galerkin Method for Linear Triangular Axisymmetric Elements

The Galerkin method for the axisymmetric equations results in the following integral form

∫Ω Ni

[
kr

r
𝜕

𝜕r

(
r
𝜕T
𝜕r

)
+ kz

𝜕
2T
𝜕z2

+ G

]
dΩ = 0. (5.66)

The spatial approximation of the temperature is given by Equation (5.62). As in the previous
sections, the substitution of the spatial approximation will result in the familiar final form of
the matrix equation as

[K]{T} = {f}, (5.67)

where

[K] = ∫Ω[B]T [D][B]dΩ + ∫Γ h[N]T [N]dΓ. (5.68)

The elemental [B]e matrix may be defined as

[B]e =
⎧⎪⎨⎪⎩
𝜕T
𝜕x

𝜕T
𝜕y

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣
𝜕Ni

𝜕r

𝜕Nj

𝜕r
𝜕Nk

𝜕r
𝜕Ni

𝜕z

𝜕Nj

𝜕z
𝜕Nk

𝜕z

⎤⎥⎥⎦ =
1

2Ae

[
bi bj bk

ci cj ck

]
(5.69)
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and

[D]e =
[

kr 0
0 kz

]
e

. (5.70)

In Equation (5.68), the volume Ω and Γ are defined as

dΩ = 2𝜋rdA and dΓ = 2𝜋rdr respectively, (5.71)

where r is the radius, which varies and can be approximated by using linear shape functions
over an element as

re = Niri + Njrj + Nkrk. (5.72)

Substituting into Equation (5.68) and integrating, we obtain

[K]e =
2𝜋rkr

4Ae

⎡⎢⎢⎣
b2

i bibj bibk
bibj b2

j bjbk

bibk bjbk b2
k

⎤⎥⎥⎦ +
2𝜋rkz

4Ae

⎡⎢⎢⎣
c2

i cicj cick
cicj c2

j cjck

cick cjck c2
k

⎤⎥⎥⎦
+

2𝜋hlij
12

⎡⎢⎢⎣
3ri + rj ri + rj 0.0
ri + rj ri + 3rj 0.0

0.0 0.0 0.0

⎤⎥⎥⎦ , (5.73)

where

r =
ri + rj + rk

3
. (5.74)

Similarly,

{f}e = ∫Ω G[N]TredΩ − ∫Γq

q[N]TredΓ + ∫Γh

hTa[N]TredΓ

=
2𝜋GAe

12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

ri
rj
rk

⎫⎪⎬⎪⎭
−

2𝜋qljk
6

⎧⎪⎨⎪⎩
0

2rj + rk
rj + 2rk

⎫⎪⎬⎪⎭
+

2𝜋hTalij
6

⎧⎪⎨⎪⎩
2ri + rj
ri + 2rj

0

⎫⎪⎬⎪⎭
. (5.75)

It is possible to approximately recover the two-dimensional plane problem by substituting
a very high value for the radius r. In order to clarify the axisymmetric formulation, an example
problem is solved as follows.

Example 5.6.1 Calculate the temperature at the nodes of the axisymmetric element shown
in Figure 5.18 with heat generation of G = 1.2 W/cm3. The coordinates of the nodes are
given in cm as i(15,10), j(25,10) and k(20,12). The heat transfer coefficient on the side ij is
1.2 W/cm2K and the ambient temperature is 30 ◦C. The heat flux on the side jk is equal to
1 W/cm2. Assume the thermal conductivities kr = kz = 2 W/cm ◦C.
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a

i j

k
q

h, T

Figure 5.18 An axisymmetric triangular element.

The solution to this problem starts with the calculation of various terms in the stiffness
matrix (Equation (5.73)).

bi = zj − zk = −2.0

bj = zk − zi = 2.0

bk = zi − zj = 0.0

ci = rk − rj = −5.0

cj = ri − rk = −5.0

ck = rj − ri = 10.0. (5.76)

From Equation (5.64), the value of 2Ae is 20 cm2. Similarly, r from Equation (5.74) is
calculated as being 20 cm (a reference axis at r = 0.0 is assumed). Also, the coefficients used
in the stiffness matrix can be calculated as

2𝜋rkr

4Ae
=

2𝜋rkz

4Ae
= 2𝜋. (5.77)

Similarly,

2𝜋hlij
12

= 2𝜋. (5.78)

Note that length of the convective side lij is calculated as

lij =
√

(xi − xj)2 + (yi − yj)2 = 10 cm. (5.79)

Substituting into Equation (5.73) gives

[K]e = 2𝜋
⎡⎢⎢⎣

99 61 −50
61 119 −50

−50 −50 100

⎤⎥⎥⎦ . (5.80)

Now, to calculate the loading vector, we need to determine the relevant coefficients, that
is,

2𝜋hTalij
6

= 120𝜋. (5.81)
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Similarly,

2𝜋qljk
6

= 1.8𝜋. (5.82)

Substituting the coefficients and other values into Equation (5.75), we obtain

{f}e = 2𝜋

⎧⎪⎨⎪⎩
3375.0
3922.2
21.690

⎫⎪⎬⎪⎭
. (5.83)

The system of equation may be put together as

⎡⎢⎢⎣
99 61 −50
61 119 −50

−50 −50 100

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

Ti
Tj
Tk

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

3375.0
3922.2
21.690

⎫⎪⎬⎪⎭
. (5.84)

Application of Gaussian elimination gives Tk = 30.76 ◦C, Tj = 29.87 ◦C and Ti = 31.22 ◦C.
Total heat generated per unit thickness may be calculates as G × volume = 1.2 × Ae = 12 W.
The total heat flowing out of the element may be calculated by adding the heat leaving due
to convection along the side i − j (h × lij × t × [0.5 × (Ti + Tj) − Ta]) = −6.54 W, and heat
leaving the side along j − k due to the flux leaving this side (q × ljk × t) = −5.4 W. As seen the
total heat leaving the element is approximately −12 W, proving the energy balance.

5.7 Summary

In this chapter, an extension of the steady-state heat conduction analysis to multi-dimensions
has been given. All commonly encountered approximations, viz., two dimensional, three-
dimensional and axisymmetric have been discussed. Most of the boundary conditions have
also been implemented and explained via examples. We trust the reader will appreciate the
difficulties associated with such multi-dimensional calculations and that the exercises given
in this chapter will prove useful for further understanding of multi-dimensional steady-state
heat conduction.

5.8 Exercises

Exercise 5.8.1 A square plate size 100 cm × 100 cm is subjected to an isothermal boundary
condition of 500 ◦C on the top and to convection environment (on all the remaining three
sides) of 100 ◦C with a heat transfer coefficient of 10 W/m2K. The thermal conductivity of
the material of the plate is 10 W/m2K. Assume the thickness of the plate is 1 cm. Deter-
mine the temperature distribution in the plate using (a) two triangles; (b) eight triangles.
Calculate the temperature at a location (x = 30 cm, y = 30 cm) and heat fluxes in x and y
directions.
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G = 1 W/cm3

q = 0.5 W/cm2

h = 1W/cm2 K
T   = 25 °Ca

Figure 5.19 An axisymmetric element.

Exercise 5.8.2 If in Exercise 5.8.1, there is a uniform heat generation of 2 W/cm3 exists,
and a line source of 5 W/cm at a location of (x = 30 cm and y = 30 cm), calculate the new
temperature distribution using (a) two triangles; (b) eight triangles. Calculate the temperature
at the location (x = 40 cm, y = 40 cm) and heat fluxes in x and y directions.

Exercise 5.8.3 Repeat Exercise 5.8.1 using (a) one rectangle; (b) four rectangles.

Exercise 5.8.4 Repeat Exercise 5.8. using (a) one rectangle; (b) four rectangles.

Exercise 5.8.5 In Exercise 5.8.1, if the thickness increases uniformly from 1 cm from the bot-
tom edge to 3 cm at the top edge, rework the problem with (a) two triangles; (b) eight triangles.

Exercise 5.8.6 Calculate the stiffness matrix and loading vector for the axisymmetric element
shown in Figure 5.19 with heat generation of G = 1 W/cm3, the heat transfer coefficient on the
side ij is 1.0 W/cm2K and the ambient temperature is 25 ◦C. The heat flux on the side jk is equal
to 0.5 W/cm2. Assume the thermal conductivities kr = kz = 1.5 W/m ◦C and sike kj is insulated.

Exercise 5.8.7 An Internal Combustion (IC) engine cylinder is exposed to hot gases at
1000 ◦C on the inside wall with a heat transfer coefficient of 25 W/m2C as shown in Figure 5.20.

a
20 cm

20 cm
T  = 80 °C

T  = 100 °C

1000 °C

20 cm

h = 200 W/m2 °C

h = 100 W/m2 °C

a

Figure 5.20 Cylinder of an IC engine.
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On the external surface it is exposed to a coolant at 100 ◦C with a heat transfer coefficient of
100 W/m2 ◦C on the top half of the cylinder while the bottom half of the cylinder is exposed to
a coolant at 80 ◦C with a heat transfer coefficient of 200 W/m2 ◦C. Calculate the temperature
distribution in the cylinder wall with 4 axisymmetric elements. Assume a thermal conductivity
of 200 W/m ◦C.
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6

Transient Heat Conduction
Analysis

6.1 Introduction

In the previous chapters, we have discussed steady-state heat conduction in which the tem-
perature in a solid body was assumed to be invariant with respect to time. However, many
practical heat transfer applications are unsteady (transient) in nature and in such problems
the temperature varies with respect to time, in addition to space. For instance, in many com-
ponents of industrial plants such as boilers and refrigeration and air-conditioning equipment,
the heat transfer process is transient during the initial stages of operation. Other transient
processes include crystal growth, casting processes, drying, heat transfer associated with the
earth’s atmosphere and many more. It is therefore obvious that the analysis of transient heat
conduction is very important.

Analytical techniques such as variable separation, which are employed to solve transient
heat conduction problems, are of limited use (Ozisik 1968), and a solution for practical heat
transfer problems by these methods is difficult. Thus, it is essential to develop numerical
solution procedures to solve transient heat conduction problems. In the following section,
a simplified analytical method for the solution of transient problems is presented before
discussing the finite element solution for such problems in Section 6.3.

6.2 Lumped Heat Capacity System

In this section, we consider the transient analysis of a body in which the temperature is assumed
to be constant at any point (no spatial variation of the temperature) within and on the surface of
the body at any given instant of time. It is also assumed that the temperature of the whole body

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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T(t)

t = 0
T = T

o

o

aT < TLiquid,
Hot metal body

Figure 6.1 Lumped heat capacity system. A hot metal body is immersed in a liquid maintained
at a constant temperature.

changes uniformly with time. Such an analysis is called a “lumped heat capacity” method and
is a simple and approximate procedure in which no spatial variation in temperature is allowed
but temporal variation can take place. It is therefore obvious that the lumped heat capacity
analysis is limited to small-sized bodies and/or high thermal conductivity materials.

Consider a body at an initial temperature of To, immersed in a liquid maintained at a
constant temperature of Ta as shown in Figure 6.1. At any instant in time, the conduction
heat loss from the surface of the body is at the expense of the internal energy of the body.
Therefore, the internal energy of the body at any time will be equal to the heat convected to
the surrounding medium, that is,

−𝜌cpV
dT(t)

dt
= hA(T(t) − Ta), (6.1)

where 𝜌 is the density, cp is the specific heat, V is the total volume of the hot metal body, A is
the surface area of the body, h is the heat transfer coefficient between the body surface and
surrounding medium, t is the time and T(t) is the instantaneous temperature of the body. The
negative sign in Equation 6.1 indicates reduction in internal energy.

Equation (6.1) is a first-order ordinary differential equation in time, which requires an
initial condition to obtain a solution. As mentioned previously, the initial temperature of the
body at time t = 0, is To. Rearranging Equation (6.1), we get

dT
T(t) − Ta

= − hA
𝜌cpV

dt. (6.2)

Integrating between temperatures To and T(t), we obtain

∫
T(t)

To

dT
T(t) − Ta

= −∫
t

0

hA
𝜌cpV

dt. (6.3)
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Note that the temperature changes from To to T(t) as the time changes from 0 to t.
Integration of the above equation results in transient temperature distribution as follows:

ln

(
T − Ta

To − Ta

)
= − hAt

𝜌cpV
(6.4)

or

T − Ta

To − Ta
= e

[
− hA
𝜌cpV

]
t
. (6.5)

The quantity 𝜌CpV∕hA is referred to as the time constant of the system because it has the
dimensions of time. When t = 𝜌CpV∕hA, it can be observed that the temperature difference
(T(t) − Ta) has a value of 36.78% of the initial temperature difference (To − Ta).

The lumped heat capacity analysis gives results within an accuracy of 5% when

h(V∕A)

ks
< 0.1, (6.6)

where ks is the thermal conductivity of the solid. It should be observed that (V∕A) represents a
characteristic dimension of the body. The above nondimensional parameter can thus be rewrit-
ten as hL∕ks, which is known as the Biot number. The Biot number represents a ratio between
conduction resistance within the body and convection resistance at the surface of the hot body
(readers should consult Chapter 1 for the meaning of conduction and convection resistances).

Due to the high variability of the convection heat transfer coefficient, a lumped system
analysis is often considered as a realistic approximation even if the Biot number is as high as
0.1. However, for higher Biot numbers, this method is certainly not valid. In such situations,
numerical methods such as the finite element method, are ideal in obtaining solutions with a
better accuracy.

6.3 Numerical Solution

Heat conduction solutions for many geometric shapes of practical interest cannot be found
using the charts available for regular geometries. Because of the time-dependent boundary
or interface conditions, prevalent in many transient heat conduction problems, analytical or
lumped solutions are also difficult to obtain. In such complex situations, it is essential to develop
approximate time-stepping procedures to determine the transient temperature distribution.

6.3.1 Transient Governing Equations and Boundary
and Initial Conditions

The transient heat conduction equation for a stationary medium is given by (Chapter 1):

𝜕

𝜕x

[
kx(T)

𝜕T
𝜕x

]
+ 𝜕

𝜕y

[
ky(T)

𝜕T
𝜕y

]
+ 𝜕

𝜕z

[
kz(T)

𝜕T
𝜕z

]
+ G = 𝜌cp

𝜕T
𝜕t

, (6.7)
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where kx(T), ky(T) and kz(T) are the temperature dependent thermal conductivities in the x, y
and z directions respectively. The boundary conditions for this type of problem are

T = Tb on Γb (6.8)

kx(T)
𝜕T
𝜕x

l + ky(T)
𝜕T
𝜕y

m + kz(T)
𝜕T
𝜕z

n + q = 0 on Γq (6.9)

and

kx(T)
𝜕T
𝜕x

l + ky(T)
𝜕T
𝜕y

m + kz(T)
𝜕T
𝜕z

n + h(T − Ta) = 0 on Γh, (6.10)

where, Γ represents the boundary. In the above equation, l, m and n are direction cosines, h
is the heat transfer coefficient, Ta is the atmospheric temperature and q is the boundary heat
flux. The initial condition for the problem is

T = To at t = 0.0. (6.11)

It is now possible to solve the above system, providing that appropriate spatial and
temporal discretizations are available. Before dealing with the temporal discretization, we
introduce in the following subsection, the standard Galerkin weighted residual form for the
transient equations.

6.3.2 The Galerkin Method

In this subsection, the application of the Galerkin method for the transient equations subjected
to appropriate boundary and initial conditions is addressed. The temperature is approximated
over space as follows:

T̂ =
n∑

i=1

NiTi, (6.12)

where Ni are the shape functions, n is the number of nodes in a domain, and Ti are the
time-dependent nodal temperatures. The Galerkin representation of Equation (6.7) is

∫Ω Ni

[
𝜕

𝜕x

(
kx
𝜕T̂
𝜕x

)
+ 𝜕

𝜕y

(
ky
𝜕T̂
𝜕y

)
+ 𝜕

𝜕z

(
kz
𝜕T̂
𝜕z

)
+ G − 𝜌cp

𝜕T̂
𝜕t

]
dΩ = 0. (6.13)

Employing integration by parts on the first three terms of Equation (6.13), we get

−∫Ω
[
𝜕Ni

𝜕x

(
kx
𝜕T̂
𝜕x

)
+
𝜕Ni

𝜕y

(
ky
𝜕T̂
𝜕y

)
+
𝜕Ni

𝜕z

(
kz
𝜕T̂
𝜕z

)
− NiG + Ni

(
𝜌cp

𝜕T̂
𝜕t

)]
dΩ

+∫Γq+h

Ni

[(
kx
𝜕T̂
𝜕x

l

)
+
(

ky
𝜕T̂
𝜕y

m

)
+
(

kz
𝜕T̂
𝜕z

n

)]
dΓ = 0. (6.14)

Note that from Equation (6.9) (assuming heat leaving a domain),

∫Γq

Ni

[(
kx
𝜕T
𝜕x

l
)
+
(

ky
𝜕T
𝜕y

m

)
+
(

kz
𝜕T
𝜕z

n

)]
dΓ = −∫Γq

NiqdΓ

∫Γh

Ni

[(
kx
𝜕T
𝜕x

l
)
+
(

ky
𝜕T
𝜕y

m

)
+
(

kz
𝜕T
𝜕z

n

)]
dΓ = −∫Γh

Nih(T − Ta)dΓ. (6.15)
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On substituting the spatial approximation from Equation (6.12), then Equation (6.14)
finally becomes,

− ∫Ω
[
𝜕Ni

𝜕x

(
kx

𝜕Nj

𝜕x
Tj

)
+
𝜕Ni

𝜕y

(
ky

𝜕Nj

𝜕y
Tj

)
+
𝜕Ni

𝜕z

(
kz

𝜕Nj

𝜕z
Tj

)]
dΩ

+∫Ω
[

NiG − Ni

(
𝜌cp

𝜕Nj

𝜕t
Tj

)]
dΩ − ∫Γq

NiqdΓ − ∫Γh

Nih(T − Ta)dΓ = 0, (6.16)

where i and j are representing the nodes. Equation (6.16) can be written in a more convenient
form as

[C]
{dT

dt

}
+ [K]{T} = {f} (6.17)

or

Cij

{dT
dt

}
+ KijTj = fi, (6.18)

where

Cij = ∫Ω(𝜌cp)NiNjdΩ (6.19)

is the capacitance matrix,

Kij = ∫Ω
[
𝜕Ni

𝜕x

(
kx

𝜕Nj

𝜕x

)
+
𝜕Ni

𝜕y

(
ky

𝜕Nj

𝜕y

)
+
𝜕Ni

𝜕z

(
kz

𝜕Nj

𝜕z

)]
dΩ + ∫Γh

hNiNjdΓ (6.20)

is the stiffness matrix and

fi = ∫Ω NiGdΩ − ∫Γq

qNidΓ + ∫Γh

NihTadΓ (6.21)

is the load vector.
In matrix form,

[C] = ∫Ω 𝜌cp[N]T [N]dΩ (6.22)

[K] = ∫Ω[B]T [D][B]dΩ + ∫Γh

h[N]T [N]dΓ (6.23)

and

{f} = ∫Ω G[N]TdΩ − ∫Γq

q[N]TdΓ + ∫Γh

hTa[N]TdΓ. (6.24)

Since kx(T), ky(T) and kz(T) are functions of temperature, Equation (6.17) is nonlinear and
requires an iterative solution. If kx, ky and kz are independent of temperature, then Equation
(6.17) is linear in form.
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i j
l

x

Cross-sectional area, A

Figure 6.2 One-dimensional linear element.

6.4 One-dimensional Transient State Problem

The relation derived in Equation (6.17) is employed here locally on an element to illustrate
the application to a one-dimensional transient problem using a linear element as shown in
Figure 6.2.

The temperature T is represented in the element by

Te = NiTi + NjTj = [N]e{T}e. (6.25)

Note that i and j in the above equation represent the nodes i and j of the element shown in
Figure 6.2. The shape functions in Equation (6.25) are defined as

Ni = 1 − x
l

and Nj =
x
l
. (6.26)

The spatial derivative of temperature is given as

𝜕T
𝜕x

=
𝜕Ni

𝜕x
Ti +

𝜕Nj

𝜕x
Tj = −1

l
Ti +

1
l

Tj = [B]e{T}e. (6.27)

The relevant matrices, as discussed in the previous section (Equation (6.17)), are

[C]e = ∫Ω(𝜌cp)[N]T
e [N]edΩ = ∫l

(𝜌cp)A

[
N2

i NiNj
NiNj N2

j

]
dx. (6.28)

Note that dΩ is replaced by Adx in the above equation. Here A is the uniform cross-sectional
area of a one-dimensional body. The integration of Equation (6.28) results in (for details of
the integration, refer to Chapter 3 and Appendix C):

[C]e =
𝜌cplA

6

[
2 1
1 2

]
. (6.29)

Similarly, the elemental [K] matrix and load vector {f} can be written as

[K]e =
Akx

l

[
1 −1
−1 1

]
+ hPl

6

[
2 1
1 2

]
(6.30)

and

{f}e =
GAl

2

{
1
1

}
−

qPl

2

{
1
1

}
+

hTaPl

2

{
1
1

}
, (6.31)
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where P is the perimeter of the one-dimensional body. Substituting Equations (6.29) to (6.31)
into Equation (6.17), for a domain with only one element, gives (multiple elements require
assembly):

𝜌cplA

6

[
2 1
1 2

]⎧⎪⎨⎪⎩
dTi

dt

dTj

dt

⎫⎪⎬⎪⎭
+
(

Akx

l

[
1 −1
−1 1

]
+ hPl

6

[
2 1
1 2

]){
Ti
Tj

}

= GAl
2

{
1
1

}
−

qPl

2

{
1
1

}
+

hTaPl

2

{
1
1

}
. (6.32)

The above equation is a general representation of a one-dimensional problem with one
linear element. All the terms are included irrespective of whether or not boundary fluxes and
heat generation are present. We shall do appropriate modification to Equation (6.32), when
solving numerical problems.

Equation (6.32) is semi-discrete as it is discretized only in space. We now require a method
of discretizing the transient terms of Equation (6.32). The following subsections give the details
of how the transient terms will be discretized.

6.4.1 Time Discretization-Finite Difference Method (FDM)

As may be seen from the semi-discrete form of Equation (6.32) (or (6.17)), the differential oper-
ator involving the time-dependent term remains to be discretized. In this section, a numerical
approximation of the transient term, using the Finite Difference Method (FDM), is considered.

Figure 6.3 shows a model temperature variation in the time domain between the n and
(n + 1) time levels. Using a Taylor series, we can write the temperature at the (n + 1)th level
as

Tn+1 = Tn + Δt
dT
dt

n
+ Δt2

2
d2T
dt2

n

+⋯ (6.33)

t

Temperature variation

n+1
T

Δt

ΔT

t

nT

T

t1+nn

Figure 6.3 Temperature variation within a time step.
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Table 6.1 Different time steeping schemes

𝜃 Name of the scheme Comments

0.0 Fully explicit scheme Forward difference method.
1.0 Fully implicit scheme Backward difference method
0.5 Semi-implicit scheme Crank-Nicolson method

If the second- and higher-order terms in the above equation are neglected then

dT
dt

n
≈ Tn+1 − Tn

Δt
+ O(Δt), (6.34)

which is first-order accurate in time (forward difference). If we now introduce a parameter 𝜃
such that

Tn+𝜃 = 𝜃Tn+1 + (1 − 𝜃)Tn (6.35)

into Equation (6.17) then, along with Equation (6.34), we have

[C]

{
Tn+1 − Tn

Δt

}
+ [K]{T}n+𝜃 = {f}n+𝜃 (6.36)

or

[C]

{
Tn+1 − Tn

Δt

}
+ [K]

{
𝜃Tn+1 + (1 − 𝜃)Tn} = 𝜃{f}n+1 + (1 − 𝜃){f}n

. (6.37)

The above equation can be rearranged as follows:

([C] + 𝜃Δt[K]) {T}n+1 = ([C] − (1 − 𝜃)Δt[K]) {T}n + Δt
(
𝜃{f}n+1 + (1 − 𝜃){f}n)

. (6.38)

Equation (6.38) gives the nodal values of temperature at the (n + 1) time level. These
temperature values are calculated using the n time level values. However, both the (n + 1)
and n time level values of the forcing vector {f} must be known. By varying the parameter
𝜃, different transient schemes can be constructed, which are shown in Table 6.1 for varying
values of 𝜃.

In the following numerical example, we demonstrate how the Crank-Nicolson time-
stepping scheme can be used to solve a one-dimensional transient problem.

Example 6.4.1 In Example 3.5.1 let us assume that the initial temperature of the fin is
equal to the atmospheric temperature, 25 ◦C. If the base temperature is suddenly raised to
a temperature of 100 ◦C, and maintained at that value, determine the temperature distri-
bution in the fin with respect to time. Assume a heat capacity (𝜌cp) value of 2.42 × 107

W∕m 3 ◦C.
Let us assume that this problem is to be solved using the Crank-Nicolson method, where

𝜃 is equal to 0.5. Assume a time step, Δt, of 20 s. Equation (6.38) can be rewritten with the
given value for 𝜃 and Δt as

([C] + 0.5 × 20[K]){T}n+1 = ([C] − 0.5 × 20[K]){T}n + 20{f}. (6.39)
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h = 120 W/m2 °C  

32
Insulated

2 cm

T  = 25 °C 

100 °C 
1

x

Figure 6.4 One-dimensional transient heat transfer. Two elements and three nodes.

If we consider two elements, as shown in Figure 6.4, we have from Example 3.5.1(b),

[K]1 = [K]2 =
[

0.124 −0.118
−0.118 0.124

]
(6.40)

and

{f}1 = {f}2 =
{

0.15
0.15

}
. (6.41)

The [C] matrix can be calculated as

[C]1 = [C]2 =
𝜌cpAl

6

[
2 1
1 2

]
=
[

0.484 0.242
0.242 0.484

]
. (6.42)

On assembling the stiffness matrix and load vector we obtain

[K] =
⎡⎢⎢⎣

0.124 −0.118 0.00
−0.118 0.248 −0.118

0.00 −0.118 0.124

⎤⎥⎥⎦ (6.43)

and

{f} =
⎧⎪⎨⎪⎩

0.15
0.30
0.15

⎫⎪⎬⎪⎭
. (6.44)

The global capacitance matrix is

[C] =
⎡⎢⎢⎣

0.484 0.242 0
0.242 0.968 0.242

0 0.242 0.484

⎤⎥⎥⎦ . (6.45)

Substituting into Equation (6.39), we get at Δt = 20 s

⎡⎢⎢⎣
1.724 −0.938 0.0

−0.938 3.448 −0.938
0.0 −0.938 1.724

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣
−0.756 1.422 0.0

1.422 −1.512 1.422
0.0 1.422 −0.756

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

25.0
25.0
25.0

⎫⎪⎬⎪⎭
+
⎧⎪⎨⎪⎩

3.0
6.0
3.0

⎫⎪⎬⎪⎭
.

(6.46)
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Simplification and application of boundary condition lead to[
3.448 −0.938

−0.938 1.724

]{
T2
T3

}
=
{

133.4
19.6

}
. (6.47)

Solution to the above system gives T3 = 38.05 ◦C and T2 = 49.04 ◦C. Similarly at time
t = 40 s, we arrive at the following values:

⎡⎢⎢⎣
1.724 −0.938 0.0

−0.938 3.448 −0.938
0.0 −0.938 1.724

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣
−0.756 1.422 0.0

1.422 −1.512 1.422
0.0 1.422 −0.756

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

100.0
49.04
38.05

⎫⎪⎬⎪⎭
+
⎧⎪⎨⎪⎩

3.0
6.0
3.0

⎫⎪⎬⎪⎭
.

(6.48)

Solution of the above system results in T3 = 71.03 ◦C and T2 = 83.69 ◦C. The above
process of time stepping may be continued until desired time is reached.

In the above example, it has been demonstrated how the transient solution is calculated. In
the following example, a similar case is considered using an explicit computer program (see
Chapter 15).

Example 6.4.2 A rod of 1 unit width and 20 units in length is initially assumed to be at 0 ◦C.
The left-hand side of the domain is subjected to a uniform heat flux of 1 and all other sides are
assumed to be insulated as shown in Figure 6.5. Assume all other properties are equal to unity
and compute the temperature distribution and compare with a known analytical solution.

The analytical solution for this problem is given by Carslaw and Jaeger (1959) as

T(x, t) = 2(t∕𝜋)1∕2

[
exp(−x2∕4t) − (1∕2)x

√
𝜋

t
erfc

(
x

2
√

t

)]
. (6.49)

Figure 6.6 shows the two different meshes used in the calculations. Figure 6.6(a) is coarse
mesh with 122 nodes and 158 elements, and Figure 6.6(b) shows a mesh of 2349 nodes and
4276 elements. This is a one-dimensional problem, which is solved using a two-dimensional
forward difference (explicit) computer program.

Figure 6.7 shows the temperature contours at a time of unity. As seen, the results generated
from both meshes are very similar. The temperature variation along the length of the rod is
shown in Figure 6.8. The results of both meshes indicate excellent agreement with the analytical
solution.

insulated

oT  = 0

q = 1
1

20

Figure 6.5 One-dimensional transient heat conduction analysis in a rod.
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(a)

(b)

Figure 6.6 Linear triangular element meshes. (a) Coarse finite element mesh, 122 nodes and
158 elements. (b) Fine finite element mesh, 2349 nodes and 4276 elements.

(a)

(b)

Figure 6.7 Temperature distribution at t = 1. (a) Temperature distribution on the coarse mesh,
Tmax = 1.12 at the right-hand face. (b) Temperature distribution on the fine mesh, Tmax = 1.128
at the left hand face.
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Figure 6.8 Temperature distribution along the length of the rod at t = 1.
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6.4.2 Time Discretization-Finite Element Method (FEM)

In the previous subsection, the temporal term in the transient heat conduction equation has
been discretized using the finite difference method. Here, we concentrate on the use of the finite
element method to discretize the equation in the time domain. In order to derive the appro-
priate transient relations using the FEM, let us reconsider the semi-discrete, one-dimensional
Equation (6.17). In this equation, the temperature is now discretized over a time element as
(refer to Figure 6.9),

Te(t) = Nn(t)Tn(t) + Nn+1(t)Tn+1(T). (6.50)

where the linear shape functions Ni(t) and Nj(t) are given as

Nn(t) = 1 − t
Δt

; Nn+1(t) = t
Δt
. (6.51)

The time derivative of the temperature is thus written as

dT(t)
dt

= dNn(t)
dt

Tn(t) + dNn+1(t)
dt

Tn+1(t). (6.52)

Substituting Equation (6.51) into Equation (6.52) we get

dT(t)
dt

= − 1
Δt

Tn(t) + 1
Δt

Tn+1(t). (6.53)

Substituting Equations (6.50) and (6.53) into Equation (6.17) and applying the weighted
residual principle (Galerkin method), we obtain for a time interval of Δt,

∫Δt

{
Nn(t)

Nn+1(t)

}[
[C]

(
−Tn(t)

Δt
+ Tn+1(t)

Δt

)
+ [K]

(
Nn(t)Tn(t) + Nn+1(t)Tn+1(t)

)
− {f}

]
dt = 0. (6.54)

Employing (see Appendix C)

∫Δt
Nn(t)aNn+1(t)bdt = a!b!

(a + b + 1)!
Δt, (6.55)

we obtain the characteristic equation over the time interval Δt as

1
Δt

[C]

[
−1 1
−1 1

]{
Tn(t)

Tn+1(t)

}
+ 1

3
[K]

[
2 1
1 2

]{
Tn(t)

Tn+1(t)

}
=
{

f n

f n+1

}
+ 1. (6.56)

T n(t) T n+1(t)

Nn(t) Nn+1(t)
n+1n

Δt

Figure 6.9 Time discretization between nth and (n + 1)th time levels (time element).
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The above equation involves the temperature values at the nth and (n + 1)th level. A
quadratic variation of temperature with respect to time may be derived in a similar fashion. It
is also possible to take two time elements and assemble to obtain a different time discretization
to that shown in Equation (6.56).

6.5 Stability

The stability of a numerical scheme may be obtained using a Fourier analysis (Hirsch 1988;
Lewis et al. 2004). Here, we give a brief summary of the stability related issues of the
time-stepping schemes discussed in this chapter.

Backward Euler: This is an implicit scheme with a backward difference approximation
for the time term. This scheme is unconditionally stable and the accuracy of the scheme is
governed by the size of the time step.

Forward Euler: This is an explicit scheme with a forward difference approximation to
the time term. The scheme is conditionally stable and the stability limit for the time step is
given as

Δt ≤ l2

2𝛼
, (6.57)

where l is the element size and 𝛼 is the thermal diffusivity.
Central difference: The central difference approximation of the time term, with an explicit

treatment for the other terms, is unconditionally unstable and this scheme is not recommended.
Crank-Nicolson scheme (semi-implicit): Due to the oscillatory behavior of this semi-

implicit scheme at larger time steps, it is often termed as a marginally stable scheme.

6.6 Multi-dimensional Transient Heat Conduction

A finite element solution for Multi-dimensional problems follows the same procedure as that
for a one-dimensional case. However, the matrices [C], [K] and {f} are different because of
their multi-dimensional nature. For more details on the matrices, the reader should refer to
Chapter 3. A numerical problem, using a two- and three-dimensional approximation, is solved
in the following example.

Example 6.6.1 A square plate and a cube are subjected to different thermal boundary
conditions as shown in Figure 6.10. If the initial temperature of both the domains is 0 ◦C,
calculate the transient temperature distribution within these two geometries. Also, plot the
temperature change with respect to time at a point (0.5,0.5) in the 2D geometry and at
(0.5,0.5,0.5) in the three-dimensional geometry.

The results from both the two- and three-dimensional geometries should be identical
because of the insulated conditions on the two vertical sides of the cube.

Figure 6.11 shows the time evaluation of the temperature contours. The first two figures,
that is, Figure 6.11(a) and (b), show a zero temperature value at the center of the plate.
However, heat from the boundaries rapidly diffuses into the domain and the temperature
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Figure 6.10 Square and cubical domains with thermal boundary conditions.

(c) (d)

(a) (b)

Figure 6.11 Transient temperature distribution in a 2D plane geometry. (a) Temperature
distribution at t = 0.001 s, T(0.5, 0.5) = 0.0 ◦C. (b) Temperature distribution at t = 0.01 s,
T(0.5, 0.5) = 0.0 ◦C. (c) Temperature distribution at t = 0.1 s, T(0.5, 0.5) = 155.38 ◦C. (d)
Temperature distribution at t = 0.5 s, T(0.5, 0.5) = 200.40 ◦C.
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Figure 6.12 Temperature distribution at the center of square domain (cube in 3D) with respect
to time.

reaches a steady value of 200.4 ◦C at the center by the time t = 0.5 s. In Figure 6.12 we show
the temperature variation at the center point of both the two and three dimensional geometries
with respect to time. It may be seen that both the results are identical. It should be noted that
the temperature increases rapidly and reaches a value of 200.4 at about four seconds and
thereafter it remains constant.

6.7 Summary

In this chapter, we have introduced the transient heat conduction problems and demonstrated
solutions of such problems via many numerical examples. However, the problems discussed in
this chapter are only the “tip of the iceberg.” We recommend that the readers to formulate their
own transient heat conduction problems and solve them using the transient computer programs
available from the authors (see Chapter 15). For transient convection problems, readers should
refer to Chapters 7.

6.8 Exercises

Exercise 6.8.1 A large block of steel with a thermal conductivity of 40 W/m ◦C and a thermal
diffusivity of 1.5 × 10−5 m2∕s is initially at a uniform temperature of 25 ◦C. The surface is
exposed to (a) a heat flux of 3 × 105 W∕m2; (b) sudden rise in surface temperature of 200 ◦C
Calculate the temperature at a depth of 1 cm after a time of 10 seconds for both cases. Verify
the results with analytical results.
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T  = 30 °C  T = 100 °C  a a

h = 500 W/m2 °C   h = 400 W/m2 °C   

Figure 6.13 Plane wall discretization.

Exercise 6.8.2 A fin of length 1 cm is initially at the ambient temperature of 30◦C. If the
base temperature is suddenly raised to a temperature of 150 ◦C and maintained at that value,
determine the temperature distribution in the fin after 30 seconds if the thermal diffusivity of
the material of the fin is 1 × 10−5 m2∕s. The heat transfer coefficient between fin surface and
ambient is 100 W/m 2 ◦C. The cross-section of the fin is 6 mm × 5 mm.

Exercise 6.8.3 A short aluminum cylinder 2.5 cm in diameter and 5 cm long is initially at a
uniform temperature of 100 ◦C. It is suddenly subjected to a convection environment at 50 ◦C
and h = 400 W∕m 2◦C. Calculate the temperature at a distance of 0.5 cm from one end of the
cylinder 10 seconds after exposure to the environment.

Exercise 6.8.4 A plane wall of thickness 4 mm has internal heat generation of 25 MW/m3 with
thermal properties of k = 20 W∕m ◦C, p = 8000 kg∕m3 and specific heat Cp = 500 J∕kg ◦C.
It is initially at a uniform temperature of 50◦C and is suddenly subjected to heat generation
and convective boundary condition as shown in Figure 6.13. Calculate the temperature at a
location of 2 mm after 10 seconds.

Exercise 6.8.5 A stainless steel plate size 2 cm × 1 cm is surrounded by an insulating block
as shown in Figure 6.14 and is initially at a uniform temperature of 40 ◦C with a convection
environment at 40 ◦C. The top side of the plate is suddenly exposed to a radiant flux of
15 kW/m2. Calculate the temperature at the center of the top surface and bottom surface
after 10 s. Take the properties of the stainless steel as k = 18 W∕mK, p = 8000 kg∕m3, Cp =
0.46 kJ∕kg ◦C, and h = 30 W∕m2K.

2 cm

h, Ta
radq

1 cm

Figure 6.14 Stainless steel plate.
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7

Laminar Convection
Heat Transfer

7.1 Introduction

In the previous six chapters, the conduction mode of heat transfer has been discussed in detail.
Occasionally, convective heat transfer boundary conditions were discussed in these chapters
whenever appropriate. However, little information on fluid flow characteristics was given in
any of the previous chapters. In the present chapter, the heat transfer mechanism due to a fluid
motion is discussed in detail. This method of heat transfer, which is caused by fluid motion is
referred to as “heat convection.”

The study of fluid motion (fluid dynamics) is an important subject which has wide appli-
cation in many engineering disciplines. Several industries use computer-based fluid dynam-
ics analysis (Computational Fluid Dynamics or CFD) tools for both design and analysis.
For instance aerospace applications, turbo-machines, weather forecasting, electronic cooling
arrangements and flow in heat exchangers are merely a few examples. There has been a
vast increase in the use of CFD tools in engineering industries in the last two decades due
mainly to an ever-increasing computing power. In the 1980s a solution for a reasonably size
three-dimensional fluid dynamics problem was rarely possible on a personal computer (PC).
However, now it is very common for researchers to solve reasonably sized fluid dynamics
problems in three dimensions using such computers.

There are several books written on the topic of computational fluid dynamics, which include
texts explaining the basic solution scheme underlying a successful CFD software (Cheung,
2002; Donea and Huerta, 2003; Fletcher, 1988; Gresho and Sani 2000; Hirsch 1989; Lewis
et al. 1996; Pironneau 1989; Zienkiewicz et al. 2005), or books on practical fluid dynamics
calculations such as data structure and parallel computing (Lohner 2001). Several chapters
could be written on the topic of CFD alone. However, our main interest is to give a practical

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 7.1 Flow and heat transport in a channel.

introduction to the role of fluid dynamics in heat transport. It is intended that this chapter
will give a good starting point to pursue a further education and/or research in fluid dynamics
assisted heat transport.

7.1.1 Types of Fluid motion assisted heat transport

The fluid motion assisted heat transfer (heat convection) may be classified into three different
categories. In order to explain the different types, let us consider the fluid flow through a
two-dimensional channel as shown in Figure 7.1. The inlet to the channel is at the left side
and exit is at the right. Both the top and bottom walls of the channel are at higher temperatures
than the invading fluid. The mechanism here is that the fluid, which is at a temperature lower
than the wall temperature of the channel, comes into contact with the wall and removes heat
by convection. Although this process is termed as being convective, there are aspects of the
diffusion mode of heat transfer, which dominates very close to the hot walls.

It is obvious that flow with a higher incoming velocity will transport heat at a higher
rate. The flow rate is often characterized by a quantity called the Reynolds number, which is
defined as

Re =
𝜌auaL

𝜇a
, (7.1)

where ua is a reference velocity, for example average inlet velocity, L is a characteristic
dimension, for example the width or height of the channel, 𝜌a is a reference (inlet) density and
𝜇a is a reference (inlet) dynamic viscosity of the fluid. If the Reynolds number is small and
below a certain critical value, the flow is laminar and if above this critical number then, the flow
becomes turbulent. The critical Reynolds number for pipe and channel flows is approximately
2000, based on the diameter and height respectively.

In Figure 7.1, if the flow is forced into the channel by means of an external device, for
example pump, then the convection process is referred to as “forced convection,” and the
Reynolds number is normally high (Jaluria 1986; Lewis et al. 1996, 1995b; Massarotti et al.
1998; Patnaik et al. 2001; Srinivas et al. 1994). In such situations, the fluid motion created
by the density (or temperature) difference (buoyancy-driven motion) is negligibly small as
compared to the forced motion of the fluid. However, at low and moderate Reynolds numbers,
the motion created by the local density (or temperature) differences in the fluid is comparable
to that of the forced flow. A situation where the forced and density difference driven motions
are equally important is called “mixed convection” transport (Aung and Worku 1986a,b;
Gowda et al. 1998). If the forced flow is suddenly stopped and the fluid is stagnant inside the
channel, then the fluid motion will be entirely influenced by the local density (or temperature)
differences until an equilibrium state is reached, that is, no local differences in density or
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temperature are present. Such a flow is often referred to as “natural, free or buoyancy driven
convection” (de Vahl Davis 1983; Jaluria 1986; Jaluria and Torrance 1986; Nithiarasu et al.
1998; Zienkiewicz et al. 1996).

7.2 Navier-Stokes Equations

The mathematical model of any fundamental fluid dynamics problem is governed by the
Navier-Stokes equations. These equations are important and represent the fluid as a continuum.
The equations conserving mass, momentum and energy can be derived either following an
integral or a differential approach. The integral form of the equations is derived using Reynolds
Transport Theorem (RTT) and is discussed in many standard fluid mechanics texts (Shames
1982). The approach we follow in this book is the differential approach in which a differential
control volume is considered in the fluid domain and the Taylor expansion is used to represent
the variation of mass, momentum and energy.

7.2.1 Conservation of Mass or Continuity Equation

The conservation of mass equation ensures that the total mass is conserved, or in other words
the total mass of a fluid system is completely accounted for. In order to derive a general
conservation of the mass equation, consider the differential control volume as shown in
Figure 7.2. The reader can assume the control volume to be infinitesimal for a typical flow
problem, such as flow in a channel (Figure 7.1), flow over a flat plate or the temperature (or
density) difference driven circulation of air inside a room as shown in Figure 7.3.

Let us assume that the mass flux entering the control volume (Figure 7.2) is 𝜌u1 in the
x1 direction and 𝜌u2 in the x2 direction. It is also assumed that there is no reaction or mass
production within the fluid domain. The Taylor series expansion may be used to express the
mass flux exiting the control volume as (refer to Figure 7.2):

(𝜌u1)x1+Δx1
= (𝜌u1)x1

+
Δx1

1!
𝜕(𝜌u1)

𝜕x1
+

Δx1

2!

2
𝜕

2(𝜌u1)

𝜕x2
1

+ .... (7.2)

Δx1

ρu1 + Δx1
∂(ρu1)
∂x1

+ ....

ρu2 + Δx2
∂(ρu2)
∂x2

+ ....

ρu2

ρu1 Δx2

Figure 7.2 Infinitesimal control volume. Derivation of conservation of mass in a flow field.
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Figure 7.3 Forced flow over a flat plate and natural convection inside a room.

in the x1 direction and

(𝜌u2)x2+Δx2
= (𝜌u2)x2

+
Δx2

1!
𝜕(𝜌u2)

𝜕x2
+

Δx2

2!

2
𝜕

2(𝜌u2)

𝜕x2
2

+ .... (7.3)

in the x2 direction. From an inspection of the control volume shown in Figure 7.2, we can
write the difference between the total mass entering and exiting the control volume as

Δx2

[
(𝜌u1)x1

− (𝜌u1)x1+Δx1

]
= −Δx2

[
Δx1

1!
𝜕(𝜌u1)

𝜕x1
+

Δx1

2!

2
𝜕

2(𝜌u1)

𝜕x2
1

+ ....

]
. (7.4)

Similarly, in the x2 direction

Δx1

[
(𝜌u2)x2

− (𝜌u2)x2+Δx2

]
= −Δx1

[
Δx2

1!
𝜕(𝜌u2)

𝜕x2
+

Δx2

2!

2
𝜕

2(𝜌u2)

𝜕x2
2

+ ....

]
. (7.5)

Note that the total mass is calculated as being the mass flux times the perpendicular area to
the flow direction. For instance, the total mass entering the control volume in the x1 direction
is Δx2 × 1 × 𝜌u1. A unit thickness is assumed in the x3 direction.

Adding the Equations (7.4) and (7.5) gives the total mass stored inside the control volume.
Neglecting the second- and higher-order terms, the total mass stored inside the control volume
is

− Δx1Δx2

[
𝜕(𝜌u1)

𝜕x1
+
𝜕(𝜌u2)

𝜕x2

]
. (7.6)
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The above quantity, stored within the control volume, is equal to the rate of change of the
total mass within the control volume, which is given as

Δx1Δx2
𝜕𝜌

𝜕t
. (7.7)

We can therefore write

Δx1Δx2
𝜕𝜌

𝜕t
= −Δx1Δx2

[
𝜕(𝜌u1)

𝜕x1
+
𝜕(𝜌u2)

𝜕x2

]
(7.8)

or

𝜕𝜌

𝜕t
+
𝜕(𝜌u1)

𝜕x1
+
𝜕(𝜌u2)

𝜕x2
= 0. (7.9)

The above equation is known as the equation of conservation of mass, or the continuity
equation for two-dimensional flows. In three dimensions, the continuity equation is

𝜕𝜌

𝜕t
+
𝜕(𝜌u1)

𝜕x1
+
𝜕(𝜌u2)

𝜕x2
+
𝜕(𝜌u3)

𝜕x3
= 0. (7.10)

If the density is assumed to be constant then the above equation is reduced to

𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
+
𝜕u3

𝜕x3
= 0. (7.11)

Using vector notation, the above equation is written as (divergence free velocity field)

∇.u = 0 (7.12)

or, using an indicial notation

𝜕ui

𝜕xi
= 0, (7.13)

where i = 1, 2 for a two-dimensional case and i = 1, 2, 3 for three-dimensional flows.

7.2.2 Conservation of Momentum

The conservation of momentum equation can be derived in a similar fashion to the conservation
of mass equation. Here, the momentum equations are derived based on the conservation of
momentum principle, that is, the total force generated by the momentum transfer in each
direction is balanced by the rate of change of momentum in each direction. The momentum
equation has directional components and is therefore a vector equation. In order to derive the
conservation of momentum equation let us consider the control volume shown in Figure 7.4.

The momentum entering the control volume in the x1 direction is given as

(𝜌u1Δx2)u1 =
(
𝜌u2

1

)
Δx2. (7.14)

Since the momentum equation is a vector equation, the momentum in the x1 direction will
also have a contribution in the x2 direction. The momentum entering the bottom face in the x1
direction is

(𝜌u2Δx1)u1 = (𝜌u1u2)Δx1. (7.15)
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(ρu1)u1 + Δx1
∂[(ρu1)u1]

∂x1
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Δx1
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(ρu1)u1

(ρu2)u1 + Δx2
∂[(ρu2)u1]

∂x2
+ ....

Figure 7.4 Infinitesimal control volume in a flow field. Derivation of conservation of momen-
tum in x1 direction. Rate of change of momentum.

A Taylor expansion is employed to work out the x1 momentum leaving the control volume.
In the x1 direction we have

𝜌u2
1Δx2 + Δx2

𝜕

(
𝜌u2

1

)
𝜕x1

Δx1. (7.16)

Similarly, the x1 momentum leaving the x2 direction (top surface) is

𝜌u1u2Δx1 + Δx1
𝜕(𝜌u1u2)

𝜕x2
Δx2. (7.17)

Note that the second- and higher-order terms in the Taylor expansion are neglected. The
rate of change of momentum within the control volume due to the x1 component is written as

Δx1Δx2
𝜕(𝜌u1)

𝜕t
. (7.18)

The net momentum of the control volume is calculated as the “momentum exiting the
control volume − momentum entering the control volume + rate of change of the momentum”
which is

Δx1Δx2

[
𝜕

(
𝜌u2

1

)
𝜕x1

+
𝜕(𝜌u1u2)

𝜕x2
+
𝜕(𝜌u1)

𝜕t

]
. (7.19)

For equilibrium, the above net momentum should be balanced by the net force acting on
the control volume. In order to derive the net force acting on the control volume, refer to
Figure 7.5. From the figure, the total pressure force acting on the control volume in the x1
direction is written as (positive in the positive x1 direction and negative in the negative x1
direction)

pΔx2 −
[

p +
𝜕p

𝜕x1
Δx1

]
Δx2 = −

𝜕p

𝜕x1
Δx1Δx2. (7.20)

Similarly, the total force due to the deviatoric stress (viscosity or friction) acting on the
control volume in the x1 direction is written as (see Figure 7.5):[

𝜏11 +
𝜕𝜏11

𝜕x1
Δx1

]
Δx2 − 𝜏11Δx2 +

[
𝜏12 +

𝜕𝜏12

𝜕x2
Δx2

]
Δx1 − 𝜏12Δx1. (7.21)
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Figure 7.5 Infinitesimal control volume in a flow field. Derivation of conservation of momen-
tum in x1 direction. Viscous and pressure forces.

Simplifying, we obtain the net force due to the deviatoric stress as

𝜕𝜏11

𝜕x1
Δx1Δx2 +

𝜕𝜏12

𝜕x2
Δx2Δx2. (7.22)

The total force acting on the control volume in the x1 direction is

Δx1Δx2

[
−
𝜕p

𝜕x1
+
𝜕𝜏11

𝜕x1
+
𝜕𝜏12

𝜕x2

]
. (7.23)

As mentioned before, for equilibrium the net momentum in the x1 direction should be
equal to the total force acting on the control volume in the x1 direction, that is,

Δx1Δx2

[
𝜕

(
𝜌u2

1

)
𝜕x1

+
𝜕(𝜌u1u2)

𝜕x2
+
𝜕(𝜌u1)

𝜕t

]
= Δx1Δx2

[
−
𝜕p

𝜕x1
+
𝜕𝜏11

𝜕x1
+
𝜕𝜏12

𝜕x2

]
. (7.24)

Simplifying, we obtain

𝜕(𝜌u1)

𝜕t
+
𝜕

(
𝜌u2

1

)
𝜕x1

+
𝜕(𝜌u1u2)

𝜕x2
= −

𝜕p

𝜕x1
+
𝜕𝜏11

𝜕x1
+
𝜕𝜏12

𝜕x2
. (7.25)

Note that the external and body forces (buoyancy) are not included in the above force
balance. In the above equations, the deviatoric stresses 𝜏ij are expressed in terms of the
velocity gradients and dynamic viscosity as

𝜏ij = 𝜇

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi
− 2

3

𝜕uk

𝜕xk
𝛿ij

)
, (7.26)

where 𝛿ij is the Kroneker delta, which is equal to unity if i = j and equal to zero if i ≠ j. From
the previous expression 𝜏11 is expressed as

𝜏11 = 𝜇

(
𝜕u1

𝜕x1
+
𝜕u1

𝜕x1
− 2

3

𝜕u1

𝜕x1
− 2

3

𝜕u2

𝜕x2

)
. (7.27)

Note that i = j = 1 in the above equation and k = 1, 2 for two-dimensional flow. The above
equation may be simplified as follows:

𝜏11 = 𝜇

(
4
3

𝜕u1

𝜕x1
− 2

3

𝜕u2

𝜕x2

)
. (7.28)
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Similarly, 𝜏12 is

𝜏12 = 𝜇

(
𝜕u1

𝜕x2
+
𝜕u2

𝜕x1

)
. (7.29)

Substituting Equations (7.28) and (7.29) into Equation (7.25) we obtain the x1 component
of the momentum equation as

𝜕(𝜌u1)

𝜕t
+
𝜕

(
𝜌u2

1

)
𝜕x1

+
𝜕(𝜌u1u2)

𝜕x2
=

−
𝜕p

𝜕x1
+ 𝜕

𝜕x1

[
𝜇

(
4
3

𝜕u1

𝜕x1
− 2

3

𝜕u2

𝜕x2

)]
+ 𝜕

𝜕x2

[
𝜇

(
𝜕u2

𝜕x1
+
𝜕u1

𝜕x2

)]
. (7.30)

The momentum component in the x2 direction can be derived by the following steps,
which are similar to the derivation of the x1 component of the momentum equation. The x2
momentum equation is

𝜕(𝜌u2)

𝜕t
+
𝜕(𝜌u1u2)

𝜕x1
+
𝜕(𝜌u2

2)

𝜕x2
=

−
𝜕p

𝜕x2
+ 𝜕

𝜕x1

[
𝜇

(
𝜕u1

𝜕x2
+
𝜕u2

𝜕x1

)]
+ 𝜕

𝜕x2

[
𝜇

(
4
3

𝜕u2

𝜕x2
− 2

3

𝜕u1

𝜕x1

)]
. (7.31)

For a constant density flow (incompressible flow), the momentum equations can be further
reduced by taking the density term out of the differential signs. In addition, substitution of
the conservation of mass equation (Equation (7.11)) into the momentum equation leads to a
further simplification of the momentum equation. After simplification (see Appendix E for the
detailed derivation), the momentum equations are

𝜌

(
𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2

)
= −

𝜕p

𝜕x1
+ 𝜇

[
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

]
(7.32)

in the x1 direction and

𝜌

(
𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2

)
= −

𝜕p

𝜕x2
+ 𝜇

[
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

]
(7.33)

in the x2 direction. In vector notation, the momentum equations can be written as

𝜌

[
𝜕u
𝜕t

+ 𝛁.(u × u)
]
= ∇.[−pI + 𝝉] (7.34)

or, in indicial form,

𝜌

(
𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj

)
= −

𝜕p

𝜕xi
+ 𝜇

(
𝜕

2ui

𝜕x2
i

)
. (7.35)

Note that the above equation is applicable in any dimension.
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Figure 7.6 Infinitesimal control volume in a flow field. Derivation of conservation of energy.

7.2.3 Energy Equation

The energy equation can be derived by following a procedure, similar to the momentum
equation derivation. However, the difference here is that the temperature, or energy equation,
is a scalar equation. In order to derive this equation, let us consider the control volume as
shown in Figure 7.6. The energy convected into the control volume in the x1 direction is

𝜌cp(u1T)Δx2. (7.36)

Similarly, the energy convected into the control volume in the x2 direction is

𝜌cp(u2T)Δx1. (7.37)

As before, a Taylor series expansion may be used to express the energy convected out of
the control volume in both the x1 and x2 directions as

𝜌cp(u1T)Δx2 + 𝜌cp
𝜕(u1T)

𝜕x1
Δx1Δx2 (7.38)

and

𝜌cp(u2T)Δx1 + 𝜌cp
𝜕(u2T)

𝜕x2
Δx2Δx1. (7.39)

Note that the specific heat, cp, and density, 𝜌, are assumed to be constants in deriving the
above equation. The heat diffusion into and out of the control volume is also derived using the
above approach. The heat diffusing into the domain in the x1 direction (Fourier’s law of heat
conduction) is

q1Δx2 = −kx1

𝜕T
𝜕x1

Δx2 (7.40)

and the diffusion entering the control volume in the x2 direction is

q2Δx1 = −kx2

𝜕T
𝜕x2

Δx1. (7.41)

Using a Taylor series expansion, the heat diffusing out of the control volume can be written
as (see Figure 7.6):

− kx1

𝜕T
𝜕x1

Δx2 +
𝜕

𝜕x1

(
−kx1

𝜕T
𝜕x1

)
Δx2Δx1 (7.42)
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in the x1 direction and

− kx2

𝜕T
𝜕x2

Δx1 +
𝜕

𝜕x2

(
−kx2

𝜕T
𝜕x2

)
Δx1Δx2 (7.43)

in the x2 direction. Finally, the rate of change of energy within the control volume is

Δx1Δx2

(
𝜌cp

𝜕T
𝜕t

)
. (7.44)

Now, it is a simple matter of balancing the energy entering and exiting the control volume.
The energy balance can be obtained as

“heat entering the control volume by convection + heat entering the control volume
by diffusion = heat exiting the control volume by convection + heat exiting the control
volume by diffusion + rate of change of energy within the control volume”

Following the above heat balance approach and rearranging, we get

𝜕T
𝜕t

+
𝜕(u1T)

𝜕x1
+
𝜕(u2T)

𝜕x2
= 1
𝜌cp

[
𝜕

𝜕x1

(
kx1

𝜕T
𝜕x1

)
+ 𝜕

𝜕x2

(
kx2

𝜕T
𝜕x2

)]
. (7.45)

Differentiating the convection terms by parts and substituting Equation (7.11) (continuity)
into Equation (7.45) we obtain the simplified energy equation in two dimensions as

𝜕T
𝜕t

+ u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

= 1
𝜌cp

[
𝜕

𝜕x1

(
kx1

𝜕T
𝜕x1

)
+ 𝜕

𝜕x2

(
kx2

𝜕T
𝜕x2

)]
. (7.46)

If the thermal conductivity is assumed to be constant and k = kx1
= kx2

, the energy equation
is reduced to

𝜕T
𝜕t

+ u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

= 𝛼

(
𝜕

2T

𝜕x2
1

+ 𝜕
2T

𝜕x2
2

)
. (7.47)

where 𝛼 = k∕𝜌cp is called the thermal diffusivity. The energy equation in vector from is

𝜕T
𝜕t

+ u.𝛁T = 𝛼(𝛁2T) (7.48)

and in indicial form

𝜕T
𝜕t

+ ui
𝜕T
𝜕xi

= 𝛼

𝜕
2T
𝜕x2

i

. (7.49)

The above equation is applicable in any space dimension.

7.3 Nondimensional Form of the Governing Equations

In the previous section, we discussed the derivation of the Navier-Stokes equations for an
incompressible fluid. In many heat transfer applications, it is often easy to generate data
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by nondimensionalizing the equations using appropriate scales. To demonstrate the nondi-
mensional form of the governing equations, let us consider the following two-dimensional
incompressible flow equations in dimensional form

Continuity equation:

𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
= 0. (7.50)

x1 momentum equation:

𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2
= −1

𝜌

𝜕p

𝜕x1
+ 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)
. (7.51)

x2 momentum equation:

𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2
= −1

𝜌

𝜕p

𝜕x2
+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
. (7.52)

Energy equation:

𝜕T
𝜕t

+ u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

= 𝛼

(
𝜕

2T

𝜕x2
1

+ 𝜕
2T

𝜕x2
2

)
, (7.53)

where 𝜈 = 𝜇∕𝜌 is the kinematic viscosity. To obtain a set of nondimensional equations, let us
consider three different cases of convective heat transfer. We start with the forced convection
problem followed by the “natural” and “mixed” convection problems. For each case, we discuss
one set of nondimensional scales. There are several other ways of scaling the equations. Some
of them are discussed in the latter part of the chapter and others can be found in various other
publications listed at the end of this chapter.

Example 7.3.1 Nondimensional form – forced convection
In forced convection problems the following nondimensional scales are normally

employed.

x∗1 =
x1

L
; x∗2 =

x2

L
; t∗ =

tua

L
; u∗1 =

u1

ua
;

u∗2 =
u2

ua
; p∗ =

p

𝜌u2
a

; T∗ =
T − Ta

Tw − Ta
, (7.54)

where ∗ indicates a nondimensional quantity, L is a characteristic dimension (e.g., channel
height), the subscript a indicates a constant reference value and Tw is a constant reference
temperature, for example wall temperature. The density 𝜌 and viscosity 𝜇 of the fluid are
assumed to be constant everywhere.

Substitution of the above scales into the dimensional Equations (7.50) to (7.53) leads to
the following nondimensional form of the equations.

Continuity equation:

𝜕u∗1
𝜕x∗1

+
𝜕u∗2
𝜕x∗2

= 0. (7.55)
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x1 momentum equation:

𝜕u∗1
𝜕t∗

+ u∗1
𝜕u∗1
𝜕x∗1

+ u∗2
𝜕u∗1
𝜕x∗2

= −
𝜕p∗

𝜕x∗1
+ 1

Re

(
𝜕

2u∗1
𝜕x∗2

1

+
𝜕

2u∗1
𝜕x∗2

2

)
. (7.56)

x2 momentum equation:

𝜕u∗2
𝜕t∗

+ u∗1
𝜕u∗2
𝜕x∗1

+ u∗2
𝜕u∗2
𝜕x∗2

= −
𝜕p∗

𝜕x∗2
+ 1

Re

(
𝜕

2u∗2
𝜕x∗2

1

+
𝜕

2u∗2
𝜕x∗2

2

)
. (7.57)

Energy equation:

𝜕T∗

𝜕t∗
+ u∗1

𝜕T∗

𝜕x∗1
+ u∗2

𝜕T∗

𝜕x∗2
= 1

RePr

(
𝜕

2T∗

𝜕x∗2
1

+ 𝜕
2T∗

𝜕x∗2
2

)
. (7.58)

where Re is the Reynolds number defined as

Re =
uaL

𝜈

(7.59)

and Pr is the Prandtl number given as

Pr = 𝜈

𝛼

. (7.60)

Once again, note that the density, kinematic viscosity and thermal conductivity are assumed
to be constant in deriving the above nondimensional equations. Appropriate changes will be
necessary if an appreciable variation in these quantities occurs in a flow field. Another nondi-
mensional number, which is often employed in forced convection heat transfer calculations, is
the Peclet number and is given as Pe = RePr = uaL∕𝛼. For buoyancy-driven natural convec-
tion problems, a different type of scale is necessary if there are no reference velocity values
available. The following subsection gives the natural convection scales.

Example 7.3.2 Nondimensional form – natural convection (buoyancy-driven convection)
Natural convection is generated by the density difference induced by the temperature

differences within a fluid system. Because of the small density variations present in these
type of flows, a general incompressible flow approximation is normally adopted. In most
buoyancy-driven convection problems, flow is generated by either a temperature variation
or a concentration variation in the fluid system, which leads to local density differences.
Therefore, in such flows, a body force term needs to be added to the momentum equations to
include the effect of local density differences. For temperature driven flows, the Boussenesq
approximation is often employed, that is,

g(𝜌 − 𝜌a)

pa
= g𝛽(T − Ta), (7.61)

where g is the acceleration due to gravity (9.81 m/s2) and 𝛽 is the coefficient of thermal
expansion. The above body force term is added to the momentum equations in the gravity
direction. In a normal situation (refer to Figure 7.7), the body force is added to the x2
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Hot vertical plate

x2

x1

g

Fluid circulation

Figure 7.7 Natural convective flow near a hot vertical plate.

momentum (if the gravity direction is negative x2), that is,

𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2
= −1

𝜌

𝜕p

𝜕x2
+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
+ g𝛽(T − Ta). (7.62)

In practice, the following nondimensional scales are adopted for natural convection in the
absence of a reference velocity value.

x∗1 =
x1

L
; x∗2 =

x2

L
; t∗ = t𝛼

L2
; u∗1 =

u1L

𝛼

;

u∗2 =
u2L

𝛼

; p∗ =
pL2

𝜌𝛼
2

; T∗ =
T − Ta

Tw − Ta
. (7.63)

On introducing the above nondimensional scales into the governing equations we obtain
the nondimensional form of the equations as follows:

Continuity equation:

𝜕u∗1
𝜕x∗1

+
𝜕u∗2
𝜕x∗2

= 0. (7.64)

x1 momentum equation:

𝜕u∗1
𝜕t∗

+ u∗1
𝜕u∗1
𝜕x∗1

+ u∗2
𝜕u∗1
𝜕x∗2

= −
𝜕p∗

𝜕x∗1
+ Pr

(
𝜕

2u∗1
𝜕x∗2

1

+
𝜕

2u∗1
𝜕x∗2

2

)
. (7.65)

x2 momentum equation:

𝜕u∗2
𝜕t∗

+ u∗1
𝜕u∗2
𝜕x∗1

+ u∗2
𝜕u∗2
𝜕x∗2

= −
𝜕p∗

𝜕x∗2
+ Pr

(
𝜕

2u∗2
𝜕x∗2

1

+
𝜕

2u∗2
𝜕x∗2

2

)
+ GrPr2T∗

. (7.66)
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Energy equation

𝜕T∗

𝜕t∗
+ u∗1

𝜕T∗

𝜕x∗1
+ u∗2

𝜕T∗

𝜕x∗2
=

(
𝜕

2T∗

𝜕x∗2
1

+ 𝜕
2T∗

𝜕x∗2
2

)
, (7.67)

where Gr is the Grashof number given as

Gr =
g𝛽ΔTL3

𝜈
2

. (7.68)

Often, another nondimensional number, called the Rayleigh number, is used in the calcu-
lations. This is given as

Ra = GrPr =
g𝛽ΔTL3

𝜈𝛼

. (7.69)

On comparing the nondimensional equations of natural and forced convection, it is easy
to identify the differences. If we substitute 1∕Pr in place of the Reynolds number for the forced
convection equations, we revert to a natural convection scaling. Obviously, the extra buoyancy
term needs to be added to appropriate component(s) of the momentum equation for natural
convection flows.

Example 7.3.3 Nondimensional form – mixed convection
Mixed convection involves features from both forced and natural flow conditions. The

buoyancy effects become comparable to the forced flow effects at small and moderate Reynolds
numbers. Since the flow is partly forced, a reference velocity value is normally known (example:
velocity at the inlet of a channel). Therefore, nondimensional scales of forced convection can
be adapted here. However, in mixed convection problems, the buoyancy term needs to be
added to the appropriate component of the momentum equation. If we replace 1∕Pr with Re
in the nondimensional natural convection equations of the previous subsection, we obtain the
nondimensional equations for mixed convection flows. These equations are the same as for
the forced convection flow problem, except for the body force term, which will be added to the
momentum equation in the gravity direction. The body force term is

Gr
Re2

T∗
. (7.70)

Note that some times a nondimensional parameter referred to as the Richardson number
(Gr∕Re2) is also used in the literature. Note also that the Peclit member reappears in the
energy equation.

7.4 The Transient Convection-Diffusion Problem

An understanding of the fundamentals of the convection-diffusion equations is crucial in
studying fluid dynamics assisted heat transfer. The equations governing the combined fluid
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flow and heat transfer mainly involve the convection and diffusion components. A typical
scalar convection diffusion equation may be written as

𝜕𝜙

𝜕t
+ ui

𝜕𝜙

𝜕xi
+ 𝜙

𝜕ui

𝜕xi
− 𝜕

𝜕xi

(
k
𝜕𝜙

𝜕xi

)
+ Q = 0, (7.71)

where 𝜙 is a scalar variable, k is a diffusion coefficient (thermal conductivity if 𝜙 = T), ui are
the convection velocity components and Q is a source term. In the above equation, the first
term is a transient term, the second and third terms are convection terms and the fourth term
is the diffusion term. For a one-dimensional problem, the above equation is reduced to

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
+ 𝜙

𝜕u1

𝜕x1
− 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)
+ Q = 0. (7.72)

If the convection velocity u1 is assumed to be constant, we can rewrite Equation (7.72) as
follows:

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
− 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)
+ Q = 0. (7.73)

A one-dimensional convection equation without a source term is obtained by neglecting
the diffusion and source terms as follows,

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
= 0. (7.74)

Note that an appropriate solution for the above equation is valid for any similar equations
such as the energy equation.

7.4.1 Finite Element Solution to the Convection-Diffusion Equation

Unlike the conduction equation, a numerical solution for the convection equation has to
deal with the convection part of the governing equation in addition to diffusion. For most
of the conduction equations, the finite element solution is straightforward, as discussed in
the previous chapters. However, if a similar Galerkin type approximation was used in the
solution of convection equations, the results may be marked with spurious oscillations in
space (see the example discussed later in this section) if certain parameters exceed a critical
value (element Peclet number). This problem is not unique to finite elements as all other
spatial discretization techniques have the same difficulties. In a finite difference formulation,
the spatial oscillations are reduced, or suppressed, by a family of discretization methods called
upwinding schemes (Fletcher 1988; Spalding 1972). In the finite element method, procedures
such as Petrov-Galerkin (Zienkiewicz et al. 2005) and Streamline Upwind Galerkin (SUPG)
(Brooks and Hughes 1982) are equivalent upwinding schemes with the specific purpose of
eliminating spatial oscillations. In these methods, the basic shape function is modified to obtain
the upwinding effect.

For time dependent equations, however, a different kind of approach is followed. The
finite difference Lax-Wendroff (Hirsch 1989) scheme has an equivalent in the finite element
method, which is referred to as the Taylor Galerkin (TG) scheme (Donea 1984). Another
similar method, which is widely used, is known as the Characteristic Galerkin (CG) scheme
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(Zienkiewicz et al. 2005). For scalar variables the CG and TG methods are identical (Lohner
et al. 1984). In this book, we follow the Characteristic Galerkin (CG) approach to deal with
spatial oscillations due to the discretization of the convection transport terms. In order to
demonstrate the CG method, let us reconsider the simple convection diffusion equation in one
dimension, viz.

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
− 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)
= 0. (7.75)

With negligible diffusion, the equation may be reduced to

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
= 0. (7.76)

Following example explains how the characteristic speed, dx1∕dt, for the above equation
may be calculated.

Example 7.4.1 Characteristic speed
The total derivative of variable 𝜙 may be computed as

d𝜙 = 𝜕𝜙

𝜕x1
dx1 +

𝜕𝜙

𝜕t
dt. (7.77)

Rearranging,

d𝜙
dt

= 𝜕𝜙

𝜕x1

dx1

dt
+ 𝜕𝜙

𝜕t
. (7.78)

Comparison of Equations (7.78) and (7.76) gives

dx1

dt
= u1 (7.79)

is the characteristic speed. This speed can be represented in x1 − t plane as shown in Figure 7.8.
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1

Figure 7.8 Characteristic in a space–time domain.
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7.4.2 A Simple Characteristic Galerkin Method for
Convection-Diffusion Equation

Let us consider a characteristic of the flow as shown in Figure 7.8 in the one-dimensional,
time–space domain. The incremental time period covered by the flow is Δt from the nth time
level to the n + 1th time level and the incremental distance covered during this time period is
Δx1, that is, from (x1 − Δx1) to x1. If a moving coordinate is assumed along the path of the
characteristic wave with a speed of u1, the convection term of Equation (7.75) disappears (as
in a Lagrangian fluid dynamics approach). Although this approach eliminates the convection
term responsible for spatial oscillation when discretized standard Galerkin method in space,
the complication of a moving coordinate system x′1 is introduced, that is, Equation (7.75)
becomes

𝜕𝜙

𝜕t
(x′1, t) − 𝜕

𝜕x′1

(
k
𝜕𝜙

𝜕x′1

)
= 0. (7.80)

The semi-discrete form of the above equation can be written as

𝜙
n+1|x1

− 𝜙n|x1−Δx1

Δt
− 𝜕

𝜕x′1

(
k
𝜕𝜙

𝜕x′1

)n |x1−Δx1
= 0. (7.81)

Note that the diffusion term is treated explicitly (a definition of explicit schemes has been
given in Chapter 6 and later on in this chapter). It is possible to solve the above equation by
adapting a moving coordinate strategy. However, a simple spatial Taylor series expansion in
space avoids such a moving coordinate approach. With reference to Figure 7.8, we can write,
using a Taylor series expansion, as follows:

𝜙
n|x1−Δx1

= 𝜙
n|x1

− 𝜕𝜙

𝜕x1

nΔx1

1!
+ 𝜕

2
𝜙

𝜕x2
1

Δx2
1

2!
− ... (7.82)

Similarly, the diffusion term is expanded as

𝜕

𝜕x′1

(
k
𝜕𝜙

𝜕x′1

)n |x1−Δx1
= 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)n |x1
− 𝜕

𝜕x1

[
𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)n]
Δx. (7.83)

On substituting Equations (7.82) and (7.83) into Equation (7.81) we obtain (third- and
higher-order terms being neglected) the following expression:

𝜙
n+1 − 𝜙n

Δt
= −Δx

Δt
𝜕𝜙

𝜕x1

n

+ Δx2

2Δt
𝜕

2
𝜙

𝜕x2
1

n

+ 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)n

. (7.84)

In this case all the terms are evaluated at the position x1, and not at two positions as in
Equation (7.81). If the flow velocity is u1, we can writeΔx1 = u1Δt. Substituting into Equation
(7.84) we obtain the semi-discrete form as

𝜙
n+1 − 𝜙n

Δt
= −u1

𝜕𝜙

𝜕x1

n

+ u2
1
Δt
2
𝜕

2
𝜙

𝜕x2
1

n

+ 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)n

. (7.85)
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By carrying out a Taylor series expansion (see Figure 7.8), the convection term reappears
in the equation along with an additional second-order term. This second-order term acts as
a smoothing operator which reduces the oscillations arising from the Galerkin type spatial
discretization of the convection terms. The equation is now ready for the Galerkin spatial
approximation.

The following linear spatial approximation of the scalar variable 𝜙 in space is used to
approximate Equation (7.85).

𝜙̃ = N1𝜙1 + N2𝜙2 + ......Nn𝜙n =
[

N1 N2 ... Nn

]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜙1
𝜙2
...

...

...

𝜙n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [N]{𝝓}. (7.86)

where N1, N2...Nn are the shape functions, 𝜙1,𝜙2...𝜙n are the nodal values of 𝜙, n is the total
number of nodes and̃ indicates an approximate value. On employing the Galerkin weighting
to Equation (7.85), we obtain

∫Ω[N]T
(
𝜙̃

n+1 − 𝜙̃n

Δt

)
dΩ + ∫Ω[N]T

(
u1
𝜕𝜙̃

𝜕x1

)n

dΩ

−Δt
2 ∫Ω[N]T

(
u2

1
𝜕

2
𝜙̃

𝜕x2
1

)n

dΩ − ∫Ω[N]T 𝜕

𝜕x1

(
k
𝜕𝜙̃

𝜕x1

)
dΩ = 0, (7.87)

where

[N]T =

⎡⎢⎢⎢⎢⎢⎣

N1
...

...

...

Nn

⎤⎥⎥⎥⎥⎥⎦
. (7.88)

On substituting Equation (7.86) into (7.87), we get

∫Ω[N]T [N]
{𝝓n+1 − 𝝓n}

Δt
dΩ = −u1 ∫Ω[N]T 𝜕

𝜕x1
([N]{𝝓})ndΩ

+Δt
2

u2
1 ∫Ω[N]T 𝜕

2

𝜕x2
1

([N]{𝝓})ndΩ + ∫Ω[N]T 𝜕
2

𝜕x2
1

([N]{𝝓})ndΩ, (7.89)

where the definition of [N] and {𝝓} are given in Equation (7.86). Before utilizing the linear
integration formulae, we apply Green’s lemma to some of the integrals in the above equation.
Green’s lemma is given as follows:

∫Ω 𝛼
𝜕𝛽

𝜕x1
dΩ = −∫Ω

𝜕𝛼

𝜕x1
𝛽dΩ + ∫Γ 𝛼𝛽n1dΓ, (7.90)

where n1 is the direction cosine of the outward normal n, Ω is the domain and Γ is the domain
boundary. The second-order derivatives can also be similarly expressed (see Appendix B).
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j
l

i

Figure 7.9 One-dimensional linear element.

Applying Green’s lemma to the second-order terms of Equation (7.89) we obtain

∫Ω[N]T [N]
{𝝓n+1} − {𝝓n}

Δt
dΩ = −u1 ∫Ω[N]T 𝜕

𝜕x1
([N]{𝝓})ndΩ

−Δt
2

u2
1 ∫Ω

𝜕[N]T

𝜕x1

𝜕[N]
𝜕x1

{𝝓}dΩ + Δt
2

u2
1 ∫Γ[N]T 𝜕[N]

𝜕x1
{𝝓}n1dΓ

−∫Ω
𝜕[N]T

𝜕x1
k
𝜕[N]
𝜕x1

{𝝓}dΩ + ∫Γ[N]Tk
𝜕[N]
𝜕x1

{𝝓}n1dΓ. (7.91)

The first-order convection term can either be directly integrated or integrated via Green’s
lemma. In this section, the convection term is integrated directly without applying Green’s
lemma. However, integration of the first derivatives, by parts is useful for the solution of
Navier Stokes equations, as demonstrated in the Section 7.6. The integration of the above
equation can now be carried out locally element by element by introducing element matrices.
The element matrices and vectors for a linear element shown in Figure 7.9 may be written as

[N]e =
[

Ni Nj

]
and {𝝓}e =

{
𝜙i
𝜙j

}
. (7.92)

For one-dimensional linear elements of length l we may use the integration formula

∫Ωe

Na
i Nb

j dΩ = a!b!l
(a + b + 1)!

(7.93)

to derive the element matrices for all the terms in Equation (7.91). Note that Ωe here indicates
an element subdomain. The term on the left-hand side for a single element (see Figure 7.9) is

∫Ωe

[N]T
e [N]e

{𝝓n+1}e − {𝝓n}e

Δt
dΩ = ∫Ωe

[
Ni
Nj

] [
Ni Nj

] ⎧⎪⎨⎪⎩
𝜙

n+1
i −𝜙n

i

Δt

𝜙
n+1
j −𝜙n

j

Δt

⎫⎪⎬⎪⎭
dΩ

= ∫Ωe

[
N2

i NiNj
NjNi N2

j

]⎧⎪⎨⎪⎩
𝜙

n+1
i −𝜙n

i

Δt

𝜙
n+1
j −𝜙n

j

Δt

⎫⎪⎬⎪⎭
dΩ

= l
6

[
2 1
1 2

]⎧⎪⎨⎪⎩
𝜙

n+1
i −𝜙n

i

Δt

𝜙
n+1
j −𝜙n

j

Δt

⎫⎪⎬⎪⎭
= [M]e

Δ{𝝓}e

Δt
, (7.94)
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where [M]e is the mass matrix. For a single element, the mass matrix is given as

[M]e =
l
6

[
2 1
1 2

]
. (7.95)

The above mass matrix for a single element will have to be utilized in an assembly
procedure for a fluid domain containing many elements. In Equation (7.94)

Δ{𝝓}e =
⎧⎪⎨⎪⎩
𝜙

n+1
i −𝜙n

i

Δt

𝜙
n+1
j −𝜙n

j

Δt

⎫⎪⎬⎪⎭
. (7.96)

In a similar fashion all other terms can be integrated, for example, the convection term is
given by

u1 ∫Ωe

[N]T
e

𝜕[N]e

𝜕x1
{𝝓}n

edΩ = u1 ∫Ωe

[
Ni
Nj

] [
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

]{
𝜙i
𝜙j

}n

dΩ

= u1

⎡⎢⎢⎣
l
2
𝜕Ni

𝜕x1

l
2

𝜕Nj

𝜕x1

l
2
𝜕Ni

𝜕x1

l
2

𝜕Nj

𝜕x1

⎤⎥⎥⎦
{
𝜙i
𝜙j

}n

=
u1

2

[
−1 1
−1 1

]{
𝜙i
𝜙j

}n

= [C]e{𝝓}n
e , (7.97)

where [C]e is the elemental convection matrix, that is,

[C]e =
u1

2

[
−1 1
−1 1

]
. (7.98)

Note that the values of derivatives of the shape functions

dNi

dx1
= −1

l
; and

dNj

dx
= 1

l
(7.99)

are substituted to derive [C]e matrix. The diffusion term within an element subdomain Ωe is
integrated as

∫Ωe

𝜕[N]T
e

𝜕x1
k
𝜕[N]e

𝜕x1
{𝝓}n

edΩ = ∫Ωe

⎡⎢⎢⎣
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

⎤⎥⎥⎦ k
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

]{
𝜙i
𝜙j

}n

dΩ

= ∫Ωe

k
⎡⎢⎢⎣
𝜕Ni

𝜕x1

𝜕Ni

𝜕x1

𝜕Ni

𝜕x1

𝜕Nj

𝜕x1
𝜕Nj

𝜕x1

𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

𝜕Nj

𝜕x1

⎤⎥⎥⎦
{
𝜙i
𝜙j

}n

dΩ

= k
l

[
1 −1
−1 1

]{
𝜙i
𝜙j

}n

= [K]e{𝝓}n
e , (7.100)
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where [K]e is the elemental diffusion matrix and given as

[K]e =
k
l

[
1 −1
−1 1

]
. (7.101)

The characteristic Galerkin term within the element subdomain Ωe is integrated as

u2
1
Δt
2 ∫Ωe

𝜕[N]T
e

𝜕x1

𝜕[N]e

𝜕x1
{𝝓}ndΩ = u2

1
Δt
2 ∫Ωe

⎡⎢⎢⎢⎣
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

⎤⎥⎥⎥⎦
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

]{
𝜙i
𝜙j

}n

dΩ

= u2
1
Δt
2 ∫Ωe

⎡⎢⎢⎣
𝜕Ni

𝜕x1

𝜕Ni

𝜕x1

𝜕Ni

𝜕x1

𝜕Nj

𝜕x1
𝜕Nj

𝜕x1

𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

𝜕Nj

𝜕x1

⎤⎥⎥⎦
{
𝜙i
𝜙j

}
dΩ

= u2
1
Δt
2

1
l

[
1 −1
−1 1

]{
𝜙i
𝜙j

}n

= [Ks]e{𝝓e}n, (7.102)

where [Ks]e is a stabilization matrix,

[Ks]e = u2
1
Δt
2

1
l

[
1 −1
−1 1

]
. (7.103)

The boundary term from the diffusion operator is integrated by assuming that i is a boundary
node, as follows:

∫Γe

[N]T
e k
𝜕[N]e

𝜕x1
{𝝓}n

edΓ = ∫Γe

[
Ni
0

]
k
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

]{
𝜙i
𝜙j

}n

dΓ

= ∫Γe

k

[
Ni

𝜕Ni

𝜕x1
Ni

𝜕Nj

𝜕x1

0 0

]{
𝜙i
𝜙j

}n

dΓ

= k

[
− 1

l
1
l

0 0

]{
𝜙i
𝜙j

}n

= {f}e, (7.104)

where {f}e is the forcing vector due to the diffusion term, that is,

{f}e = k

{
𝜙j −𝜙i

l
0

}n

. (7.105)
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The boundary integral from the characteristic Galerkin term is integrated, again by assum-
ing that i is a boundary node, as

∫Γe

u2
1
Δt
2

[N]T
e

𝜕[N]e

𝜕x1
{𝝓}n

edΓ = u2
1
Δt
2 ∫Γe

[
Ni
0

] [
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

]{
𝜙i
𝜙j

}n

dΓ

= u2
1
Δt
2 ∫Γe

[
Ni

𝜕Ni

𝜕x1
Ni

𝜕Nj

𝜕x1

0 0

]{
𝜙i
𝜙j

}n

dΓ

= u2
1
Δt
2

[
− 1

l
1
l

0 0

]{
𝜙i
𝜙j

}n

= {fs}e, (7.106)

where {fs}e is the forcing vector due to the stabilization term,

{fs}e = u2
1
Δt
2

{
𝜙j −𝜙i

l

0

}n

. (7.107)

The forcing vectors are formulated by assuming that the node i is a boundary node. Because
of the opposite signs of the outward normals at the interface between any two elements within
the domain, these forcing vector terms vanish for all nodes other than the boundary nodes. The
remaining terms will have a value only at the domain boundaries. Also, the boundary terms
due to the CG stabilizing operator (Equation (7.107)) can be neglected during the calculations
without any loss in accuracy due to the fact that the residual vanishes on the boundaries.

For a one-dimensional domain with more than one element, all the matrices and vectors
need to be assembled in order to obtain the global matrices. Once assembled, the discretized
one-dimensional equation becomes

[M]
Δ{𝝓}
Δt

+ [C]{𝝓}n + [K]{𝝓}n + [Ks]{𝝓}n = {f}n
n1
+ {fs}

n
n1
. (7.108)

Note that all the matrices and vectors in the above equation are assembled.

Example 7.4.2 Convection-diffusion problem
Let us now consider a simple one-dimensional convection problem, as given in Figure 7.10

to demonstrate the effect of a discretization with and without CG scheme.

1

L

ϕ = 0
Inlet

ϕ = 1
Exit

u   = constant

Figure 7.10 Convection-diffusion of a scalar variable. Problem setup.
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(b) Pe = 1.5

Figure 7.11 Steady-state spatial variation of a function,𝜙, in one-dimensional space for
different element Peclet numbers.

The scalar variable value at the inlet is 𝜙 = 0 and at the exit its value is 1.0. This scalar
variable is transported in the direction of the velocity as shown in Figure 7.10. Note that the
convection velocity u1 is constant. The element Peclet number for this problem is defined as

Pe =
u1l

2k
, (7.109)

where l is the element size in the flow direction, which in one dimension is the local element
length. Figure 7.11 shows the comparison between a solution with the CG discretization scheme
and one without it. Only two Peclet numbers are shown in these diagrams to demonstrate the
spatial oscillations without the CG discretization. As seen, both discretizations give no spatial
oscillations at a Pe of unity. However, at a Pe value of 1.5, the CG discretization is accurate
and stable while the discretization without CG term becomes oscillatory. The exact solution
to this problem is given as follows (Brooks and Hughes 1982):

𝜙 = 1 − e
u1x1

k

1 − e
u1L

k

. (7.110)

In this equation, L is the total length of the domain and x1 is the local length of the domain.

7.4.3 Extension to Multi-dimensions

An approximate extension of the characteristic Galerkin scheme to a multi-dimensional scalar
convection-diffusion equation is straightforward and follows the previous procedure as dis-
cussed for a one-dimensional case. The two-dimensional convection-diffusion equation with-
out the source term is

𝜕𝜙

𝜕t
+ u1

𝜕𝜙

𝜕x1
+ u2

𝜕𝜙

𝜕x2
= 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)
+ 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x2

)
. (7.111)
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The convection velocity components u1 and u2 are assumed to be constant in deriving this
equation. Applying the characteristic procedure to the above equation, we obtain

𝜙
n+1 − 𝜙n

Δt
= −u1

𝜕𝜙

𝜕x1

n

− u2
𝜕𝜙

𝜕x2

n

+ 𝜕

𝜕x1

(
k
𝜕𝜙

𝜕x1

)n

+ 𝜕

𝜕x2

(
k
𝜕𝜙

𝜕x2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕𝜙

𝜕x1
+ u2

𝜕𝜙

𝜕x2

]n

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕𝜙

𝜕x1
+ u2

𝜕𝜙

𝜕x2

]n

. (7.112)

The standard Galerkin approximation can now be employed for solving the above equation.
Assuming a linear variation of 𝜙 within a domain we can express the variation of 𝜙 as

𝜙̃ = N1𝜙1 + N2𝜙2 + ....Nn𝜙n =
[

N1 N2 ...... Nn

]
⎧⎪⎪⎨⎪⎪⎩

𝜙1
𝜙2
...

...

𝜙n

⎫⎪⎪⎬⎪⎪⎭
= [N]{𝝓}. (7.113)

Employing the Galerkin weighting, we obtain the global system as

∫Ω[N]T 𝜙̃
n+1 − 𝜙̃n

Δt
dΩ = −∫Ω[N]Tu1

𝜕𝜙̃

𝜕x1

n

dΩ −∫Ω[N]Tu2
𝜕𝜙̃

𝜕x2

n

dΩ +∫Ω[N]T 𝜕

𝜕x1

(
k
𝜕𝜙̃

𝜕x1

)n

dΩ

+∫Ω[N]T 𝜕

𝜕x2

(
𝜕𝜙̃

𝜕x2

)n

dΩ + Δt
2

u1 ∫Ω[N]T 𝜕

𝜕x1

[
u1
𝜕𝜙̃

𝜕x1
+ u2

𝜕𝜙̃

𝜕x2

]n

dΩ

+Δt
2

u2 ∫Ω[N]T 𝜕

𝜕x2

[
u1
𝜕𝜙̃

𝜕x1
+ u2

𝜕𝜙̃

𝜕x2

]n

dΩ. (7.114)

The above equation is valid globally. On substituting the global spatial approximation for
the scalar variable 𝜙 into the above equation we obtain

∫Ω[N]T [N]
{𝝓}n+1 − {𝝓}n

Δt
dΩ = −u1 ∫Ω[N]T 𝜕[N]

𝜕x1
{𝝓}ndΩ − u2 ∫Ω[N]T 𝜕[N]

𝜕x2
{𝝓}ndΩ

+∫Ω[N]T 𝜕

𝜕x1

(
k
𝜕[N]
𝜕x1

)
{𝝓}ndΩ + ∫Ω[N]T 𝜕

𝜕x2

(
k
𝜕[N]
𝜕x2

)
{𝝓}ndΩ

+Δt
2

u1 ∫Ω
[
𝜕

𝜕x1

(
u1
𝜕[N]
𝜕x1

{𝝓}n + u2
𝜕[N]
𝜕x2

{𝝓}n
)]

dΩ

+Δt
2

u2 ∫Ω
[
𝜕

𝜕x2

(
u1
𝜕[N]
𝜕x1

{𝝓}n + u2
𝜕[N]
𝜕x2

{𝝓}n
)]

dΩ. (7.115)

The above global system can now be reduced to element systems by introducing the
approximation over an element as shown in Figure 7.12 as

𝜙e = Ni𝜙i + Nj𝜙j + Nk𝜙k =
[

Ni Nj Nk

] ⎧⎪⎨⎪⎩
𝜙i
𝜙j
𝜙k

⎫⎪⎬⎪⎭
= [N]e{𝝓}e. (7.116)
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k

j

i

Figure 7.12 Two-dimensional linear triangular element.

The elemental matrices should be assembled before the system of simultaneous equations
can be solved. The elemental matrices are derived by applying the following formula for
integration over linear triangular elements

∫Ω Na
i Nb

j Nc
k dΩ = a!b!c!2A

(a + b + c + 2)!
(7.117)

and for the line integral

∫Γ Na
i Nb

i Nc
k dΓ = a!b!c!l

(a + b + c + 1)!
, (7.118)

where A is the area of a triangular element and l is the length of a boundary edge. Applying
the above formulae along with the elemental approximations to Equation (7.115), we obtain
the element characteristic equations as follows.

The mass matrix is

[M]e = ∫Ωe

[N]T
e [N]edΩ = A

12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦ , (7.119)

The convection matrix is

[C]e = ∫Ωe

[N]T
e

(
u1
𝜕[N]e

𝜕x1
+ u2

𝜕[N]e

𝜕x2

)
dΩ

=
u1

6

⎡⎢⎢⎣
bi bj bk
bi bj bk
bi bj bk

⎤⎥⎥⎦ +
u2

6

⎡⎢⎢⎣
ci cj ck
ci cj ck
ci cj ck

⎤⎥⎥⎦ , (7.120)

where

bi = yj − yk; ci = xk − xj

bj = yk − yi; cj = xi − xk

bk = yi − yj; ck = xj − xi. (7.121)
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As before, the diffusion term can be integrated after applying Green’s lemma. The diffusion
matrix for the elements inside the domain is

[K]e = ∫Ωe

(
𝜕[N]T

e

𝜕x1
k
𝜕[N]e

𝜕x1
+
𝜕[N]T

e

𝜕x2
k
𝜕[N]e

𝜕x2

)
dΩ

= k
4A

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦ +
k

4A

⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ . (7.122)

The stabilization matrix is

[Ks]e = u1
Δt
2

[
u1 ∫Ω

𝜕[N]T
e

𝜕x1

𝜕[N]e

𝜕x1
dΩ + u2 ∫Ω

𝜕[N]T
e

𝜕x1

𝜕[N]e

𝜕x2
dΩ

]

+ u2
Δt
2

[
u1 ∫Ω

𝜕[N]T
e

𝜕x2

𝜕[N]e

𝜕x1
dΩ + u2 ∫Ω

𝜕[N]T
e

𝜕x2

𝜕[N]e

𝜕x2
dΩ

]

=
u1

4A
Δt
2

⎡⎢⎢⎣
u1b2

i + u2bici u1bibj + u2bicj u1bibk + u2bick
u1bjbi + u2bjci u1b2

j + u2bjcj u1bjbk + u2bjck

u1bkbi + u2bkci u1bkbj + u2bkcj u1b2
k + u2bkck

⎤⎥⎥⎦
+

u2

4A
Δt
2

⎡⎢⎢⎣
u1cibi + u2c2

i u1cibj + u2cicj u1cibk + u2cick
u1cjbi + u2cjci u1cjbj + u2c2

j u1cjbk + u2cjck

u1ckbi + u2ckci u1ckbj + u2ckcj u1ckbk + u2c3
k .

⎤⎥⎥⎦ . (7.123)

The forcing vectors along the boundary edges are (assuming ij as the boundary edge)

[f]e = k ∫Γe

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

𝜕Nk

𝜕x1

]
{𝝓}n

edΓn1

+ k ∫Γe

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x2

𝜕Nj

𝜕x2

𝜕Nk

𝜕x2

]
{𝝓}edΓn2

=
lij
4A

k
⎡⎢⎢⎣

bi𝜙i + bj𝜙j + bk𝜙k
bi𝜙i + bj𝜙j + bk𝜙k

0

⎤⎥⎥⎦ n1

+
lij
4A

k
⎡⎢⎢⎣

ci𝜙i + cj𝜙j + ck𝜙k
ci𝜙i + cj𝜙j + ck𝜙k

0

⎤⎥⎥⎦ n2. (7.124)

[fs]e = u1
Δt
2 ∫Γe

u1

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

𝜕Nk

𝜕x1

]
{𝝓}n

e

+ u1
Δt
2 ∫Γe

u2

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x2

𝜕Nj

𝜕x2

𝜕Nk

𝜕x2

]
{𝝓}n

edΓn1
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+ u2
Δt
2 ∫Γe

u1

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x1

𝜕Nj

𝜕x1

𝜕Nk

𝜕x1

]
{𝝓}n

edΓn2

+ u2
Δt
2 ∫Γe

u2

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦
[
𝜕Ni

𝜕x2

𝜕Nj

𝜕x2

𝜕Nk

𝜕x2

]
{𝝓}n

edΓn2

=
u1

2A
Δt
2

lij
2

⎡⎢⎢⎣
u1(bi𝜙i + bj𝜙j + bk𝜙k) + u2(ci𝜙i + cj𝜙j + ck𝜙k)
u1(bi𝜙i + bj𝜙j + bk𝜙k) + u2(ci𝜙i + cj𝜙j + ck𝜙k)

0

⎤⎥⎥⎦
n

n1

+
u2

2A
Δt
2

lij
2

⎡⎢⎢⎣
u1(bi𝜙i + bj𝜙j + bk𝜙k) + u2(ci𝜙i + cj𝜙j + ck𝜙k)
u1(bi𝜙i + bj𝜙j + bk𝜙k) + u2(ci𝜙i + cj𝜙j + ck𝜙k)

0

⎤⎥⎥⎦
n

n2. (7.125)

where lij is the length of edge ij. The assembled equation for a two-dimensional analysis takes
an identical form to the one-dimensional Equation (7.108). Once again, the boundary terms
from Equation (7.125) may be neglected in the calculations.

Example 7.4.3 Steady-state 2D convection-diffusion problem
The example considered here involves the convection of a discontinuous inlet data at

an angle 𝜃o to the horizontal axis, over a square domain as shown in Figure 7.13(a). The
convective velocity is unidirectional and constant, with a magnitude of unity in the direction
of the flow. The left and bottom sides make up the inlet boundary and are defined as shown in
Figure 7.13(a). On the outlet boundary (top and right sides), natural boundary conditions are
considered (Donea and Huerta 2003). For this example a skew angle 𝜃 = 45o is chosen and a
39×39 uniform-structured mesh is used. The results for this case are given in Figure 7.13(b).
The stabilized procedure used here is the characteristic Galerkin method.

1 m 

1 m 

ϕ

ϕ

 = 0 0.2 m

 = 1 

ϕ  = 0 

ϕ (x, t = 0) = 0  

u 

(a) Problem statement (b) Solution

θ°

Figure 7.13 Convection of discontinuous inlet data at at angle 𝜃o skew to the horizontal axis.
Problem statement and contours of the scalar variable distribution.
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7.5 Stability Conditions

The stability conditions for a given time discretization may be derived using a Von Neumann
or Fourier analysis for either the convection or the convection-diffusion equations. However,
for more complicated equations such as the Navier-Stokes equations, the derivation of the
stability limit is not straightforward. A detailed discussion on stability criteria is not within
the scope of this book and readers are asked to refer to the relevant text books and papers for
details (Hirsch 1989; Zienkiewicz and Codina 1995). A stability analysis will give some idea
about the time-step restrictions of any numerical scheme.

In general, for fluid dynamics problems the time-step magnitude is controlled by two
wave speeds. The first one due to the convection velocity and the second to the real diffusion
introduced by the equations. In the case of a convection diffusion equation, the convection

velocity is
√

uiui which is
√

u2
1 + u2

2 = |u|. The diffusion velocity is 2 k∕h where h is the local

element size. The time-step restrictions are calculated as the ratio of the local element size and
the local wave speed. It is therefore correct to write that the time step is calculated as

Δt = min(Δtc,Δtd), (7.126)

where Δtc and Δtd are the convection and diffusion time-step limits respectively, which are

Δtc = h
|u|

Δtd = h2

2k
. (7.127)

Often it may be necessary to multiply the time step Δt by a safety factor due to different
methods of element size calculations. A simple procedure to calculate the element size in two
dimensions is

h = min(
2Areai

li
), i = 1, number of elements connected to the node, (7.128)

where Areai are the area of the elements connected to the node and li are the length of the
opposite sides as shown in Figure 7.14. For the node shown in this figure, the local element
area is calculated as

h = min(A1∕l1, A2∕l2, A3∕l3, A4∕l4, A5∕l5). (7.129)

In three dimensions, the term 2Areai is replaced by 3Volumei and li is replaced by the
face area opposite the node in question. Although more expensive, element size calculated in
streamline direction gives a better accuracy to convection time step.

7.6 Characteristic Based Split (CBS) Scheme

It is essential to understand the approximate characteristic Galerkin (CG) procedure, discussed
in the previous section for the convection-diffusion equation, in order to apply the concept
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Figure 7.14 Two-dimensional linear triangular element.

to solve the real heat convection equations. Unlike the convection diffusion equation, the
momentum equation, which is part of a set of heat convection equations, is a vector equation.
A direct extension of the CG scheme to solve the momentum equation is difficult. In order to
apply the characteristic Galerkin approach to the momentum equations, we have to introduce
two steps. In the first step, the pressure term from the momentum equation will be dropped
and an intermediate velocity field will be calculated. In the second step, the intermediate
velocities will be corrected. This two-step procedure for the treatment of the momentum
equations has two advantages. The first advantage is that, without the pressure terms, each
component of the momentum equation is similar to that of a convection diffusion equation
and the CG procedure can be readily applied. The second advantage is that removing the
pressure term from the momentum equations enhances the pressure stability and allows the
use of arbitrary interpolation functions for both velocity and pressure. In other words, the well-
known Babuska-Brezzi condition is satisfied. Due to the split introduced in the equations, the
method is referred to as the Characteristic Based Split (CBS) scheme.

The CG procedure may be applied to the individual momentum components without
removing the pressure term provided the pressure term is treated as a source term. However,
such a procedure will lose the advantages mentioned in the previous paragraph.

For more mathematical details, readers are directed to earlier publications on the method
(Zienkiewicz and Codina 1995; Zienkiewicz et al. 2005) and for recent developments, refer-
ences (Nithiarasu 2003; Nithiarasu et al. 2006; Zienkiewicz et al. 2013) are recommended. In
order to apply the CG procedure, the governing equations in two dimensions (note that body
forces are not included for simplicity), may be written as follows:

Continuity equation:

𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
= 0. (7.130)

x1 momentum equation:

𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2
= −1

𝜌

𝜕p

𝜕x1
+ 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)
. (7.131)
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x2 momentum equation:

𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2
= −1

𝜌

𝜕p

𝜕x2
+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
. (7.132)

Energy equation:

𝜕T
𝜕t

+ u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

= 𝛼

(
𝜕

2T

𝜕x2
1

+ 𝜕
2T

𝜕x2
2

)
. (7.133)

From the governing equations, it is obvious that the application of the CG scheme is
not straightforward. However, by implementing the following steps, it is possible to obtain a
solution to the convection heat transfer equation.

Step 1 Intermediate velocity or momentum field: This step is carried out by removing the
pressure terms from Equations (7.131) and (7.132). The intermediate velocity component
equations, in their semi-discrete form, are:

Intermediate x1 momentum equation:

u∗1 − un
1

Δt
+ u1

𝜕u1

𝜕x1

n

+ u2
𝜕u1

𝜕x2

n

= 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)n

. (7.134)

Intermediate x2 momentum equation:

u∗2 − un
2

Δt
+ u1

𝜕u2

𝜕x1

n

+ u2
𝜕u2

𝜕x2

n

= 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)n

, (7.135)

where u∗1 and u∗2 are the intermediate momentum variables. It is obvious that the CG scheme can
now be applied as the above equations are very similar to the convection-diffusion equations
of the previous section. If the characteristic procedure is applied to the above equations, a
semi-discrete from of the equations is obtained, viz.

Intermediate x1 momentum equation:

u∗1 − u1
n

Δt
= −u1

𝜕u1

𝜕x1

n

− u2
𝜕u1

𝜕x2

n

+ 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u1

𝜕x1

n

+ u2
𝜕u1

𝜕x2

n]

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u1

𝜕x1

n

+ u2
𝜕u1

𝜕x2

n]
. (7.136)
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Intermediate x2 momentum equation:

u∗2 − u2
n

Δt
= −u1

𝜕u2

𝜕x1

n

− u2
𝜕u2

𝜕x2

n

+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u2

𝜕x1

n

+ u2
𝜕u2

𝜕x2

n]

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u2

𝜕x1

n

+ u2
𝜕u2

𝜕x2

n]
. (7.137)

Step 2 Pressure calculation: The pressure field is calculated from a pressure equation of the
Poisson type. The pressure equation is derived from the fact that the intermediate velocities at
the first step need to be corrected. If the pressure terms are not removed from the momentum
equations, then the correct velocities are obtained but with the loss of some advantages. If the
semi-discrete form of the momentum equations are written, without removing the pressure
terms, then,
Semi-discrete x1 momentum equation:

u1
n+1 − u1

n

Δt
= −u1

𝜕u1

𝜕x1

n

− u2
𝜕u1

𝜕x2

n

+ 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)n

− 1
𝜌

𝜕p

𝜕x1

n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u1

𝜕x1

n

+ u2
𝜕u1

𝜕x2

n

+ 1
𝜌

𝜕p

𝜕x1

n]

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u1

𝜕x1

n

+ u2
𝜕u1

𝜕x2

n

+ 1
𝜌

𝜕p

𝜕x1

n]
. (7.138)

Semi-discrete x2 momentum equation:

u2
n+1 − u2

n

Δt
= −u1

𝜕u2

𝜕x1

n

− u2
𝜕u2

𝜕x2

n

+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)n

− 1
𝜌

𝜕p

𝜕x2

n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u2

𝜕x1

n

+ u2
𝜕u2

𝜕x2

n

+ 1
𝜌

𝜕p

𝜕x2

n]

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u2

𝜕x1

n

+ u2
𝜕u2

𝜕x2

n

+ 1
𝜌

𝜕p

𝜕x2

n]
. (7.139)

The real velocity field may be directly obtained if the above equations are utilized. Sub-
tracting Equation (7.136) from (7.138) and (7.137) from (7.139) results in the following two
equations:

un+1
1 − u∗1
Δt

= −1
𝜌

𝜕p

𝜕x1

n

+ u1
Δt
2

𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
Δt
2

𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x1

)n

un+1
2 − u∗2
Δt

= −1
𝜌

𝜕p

𝜕x2

n

+ u1
Δt
2

𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
Δt
2

𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x2

)n

. (7.140)

It is obvious that if the pressure terms can be calculated from another source, the interme-
diate velocities of Step 1 can be corrected using Equation (7.140). However, an independent
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pressure equation is required in order to substitute the pressure values into the above equation.
In order to do this, let us introduce a relaxation parameter 𝜃 into the continuity equation, that is,

𝜕u1

𝜕x1

n+𝜃
+
𝜕u2

𝜕x2

n+𝜃
= 𝜃

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2

)n+1

+ (1 − 𝜃)

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2

)n

= 0. (7.141)

The relaxation parameter 𝜃 must be nonzero (less than unity) to ensure pressure stability
(Zienkiewicz et al. 2013). The numerical value option chosen is 0.5. Since n + 1 values are
not available at step 2, we require to eliminate these values in Equation (7.141) with step 3,
Equation (7.140), that is, Equation (7.141) becomes

𝜃

(
𝜕u∗1
𝜕x1

+
𝜕u∗2
𝜕x2

)
− 𝜃Δt

1
𝜌

(
𝜕

2p

𝜕x2
1

+
𝜕

2p

𝜕x2
2

)n

+ (1 − 𝜃)

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2

)n

= 0. (7.142)

Note that third- and higher-order terms are neglected. Substituting conservation of mass
(Equation 7.130) and simplifying,

1
𝜌

(
𝜕

2p

𝜕x2
1

+
𝜕

2p

𝜕x2
2

)n

= 1
Δt

(
𝜕u∗1
𝜕x1

+
𝜕u∗2
𝜕x2

)
. (7.143)

It should be noted that there are no transient or convection terms present in the above
equation. Although this equation does not require any special treatment in order to stabi-
lize the oscillations, the absence of a transient term makes it compulsory to build a matrix
and simultaneous solution. However, it is possible to introduce an artificial compressibility
formulation to avoid a full matrix. This is discussed in a later section.

Step 3 Velocity or momentum correction: The velocity correction has already been derived
in the previous step (Equation (7.140)). This involves the pressure and intermediate velocity
field and is written as

un+1
1 − u∗1
Δt

= −1
𝜌

𝜕p

𝜕x1

n

+ u1
𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x1

)n

un+1
2 − u∗2
Δt

= −1
𝜌

𝜕p

𝜕x2

n

+ u1
𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x2

)n

. (7.144)

Step 4 Temperature calculation: Applying the characteristic procedure to the temperature
equation, we get

Tn+1 − Tn

Δt
= −u1

𝜕T
𝜕x1

n
− u2

𝜕T
𝜕x2

n
+ 𝛼

(
𝜕

2T

𝜕x2
1

+ 𝜕
2T

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕T
𝜕x1

n
+ u2

𝜕T
𝜕x2

n
]

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕T
𝜕x1

n
+ u2

𝜕T
𝜕x2

n
]
. (7.145)

All four semi-discrete steps of the CBS scheme for convection heat transfer may now be
summarized
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Step 1: Intermediate velocity

Intermediate x1 momentum equation:

u∗1 − u1
n

Δt
= −u1

𝜕u1

𝜕x1

n

− u2
𝜕u1

𝜕x2

n

+ 𝜈

(
𝜕

2u1

𝜕x2
1

+
𝜕

2u1

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2

]n

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2

]n

. (7.146)

Intermediate x2 momentum equation:

u∗2 − u2
n

Δt
= −u1

𝜕u2

𝜕x1

n

− u2
𝜕u2

𝜕x2

n

+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2

]n

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2

]n

. (7.147)

Step 2: Pressure calculation

1
𝜌

(
𝜕

2p

𝜕x2
1

+
𝜕

2p

𝜕x2
2

)n

= 1
Δt

(
𝜕u∗1
𝜕x1

+
𝜕u∗2
𝜕x2

)
. (7.148)

Step 3: Velocity correction

un+1
1 − u∗1
Δt

= −1
𝜌

𝜕p

𝜕x1

n

+ u1
Δt
2

𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
Δt
2

𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x1

)n

un+1
2 − u∗2
Δt

= −1
𝜌

𝜕p

𝜕x2

n

+ u1
Δt
2

𝜕

𝜕x1

(
1
𝜌

𝜕p

𝜕x1

)n

+ u2
Δt
2

𝜕

𝜕x2

(
1
𝜌

𝜕p

𝜕x2

)n

. (7.149)

Step 4: Temperature calculation

Tn+1 − Tn

Δt
= −u1

𝜕T
𝜕x1

n
− u2

𝜕T
𝜕x2

n
+ 𝛼

(
𝜕

2T

𝜕x2
1

+ 𝜕
2T

𝜕x2
2

)n

+ u1
Δt
2

𝜕

𝜕x1

[
u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

]n

+ u2
Δt
2

𝜕

𝜕x2

[
u1
𝜕T
𝜕x1

+ u2
𝜕T
𝜕x2

]n

. (7.150)

The temporal discretization of the CBS scheme has now been completed and the following
subsection gives the spatial discretization procedure.
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7.6.1 Spatial Discretization

The Galerkin approximation and spatial discretization of the four steps discussed previously
follow the same procedure as given for the convection-diffusion equation in Section 7.4.3. On
assuming linear interpolation functions for all the variables, then the spatial variation for a
linear triangular element may be written as (refer to Figure 7.12):

u1e
= Niu1i + Nju1j + Nku1k = [N]e{u1}e

u2e
= Niu2i + Nju2j + Nku2k = [N]e{u2}e

pe = Nipi + Njpj + Nkpk = [N]e{p}e

Te = NiTi + NjTj + NkTk = [N]e{Te}. (7.151)

The elemental convection, diffusion and other matrices are very similar to the one discussed
for the convection-diffusion equation. However, the difference here is that the convection
velocities are not constant. Also, a nonlinearity is introduced in the convection terms of the
momentum equation. The following element matrices arose from the CBS scheme after spatial
discretization:

Elemental mass matrix

[M]e =
A
12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦ . (7.152)

Elemental convection matrix

[C]e = 1
24

⎡⎢⎢⎣
(usu + u1i)bi (usu + u1i)bj (usu + u1i)bk
(usu + u1j)bi (usu + u1j)bj (usu + u1j)bk
(usu + u1k)bi (usu + u1k)bj (usu + u1k)bk

⎤⎥⎥⎦
+ 1

24

⎡⎢⎢⎣
(vsu + u2i)ci (vsu + u2i)cj (vsu + u2i)ck
(vsu + u2j)ci (vsu + u2j)cj (vsu + u2j)ck
(vsu + u2k)ci (vsu + u2k)cj (vsu + u2k)ck

⎤⎥⎥⎦ , (7.153)

where

usu = u1i + u1j + u1k

vsu = u2i + u2j + u2k (7.154)

and definition of bi, bj, bk, ci, cj and ck are given in Equation (7.121) and in Chapter 3.
The differences in the above convection matrix from that of the convection matrix discussed

in the Section 7.4.3 are due to the variable and nonlinear velocity field. The diffusion matrix is
the same as the convection diffusion equation but k is replaced with the kinematic viscosity 𝜈
for the momentum equation. Two diffusion matrices are required for convection heat transfer
problems, one for the momentum equation and another for the temperature equation. These
are

[Km]e =
𝜈

4A

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦ +
𝜈

4A

⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ (7.155)
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for the momentum diffusion and

[Kt]e =
k

4A

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦ +
k

4A

⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ (7.156)

for the heat diffusion. The elemental stabilization matrix is

[Ks]e =
(u1av

48A

) ⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦ +
(u12av

48A

) ⎡⎢⎢⎣
bici bicj bick
bjci bjcj bjck
bkci bkcj bkck

⎤⎥⎥⎦
+
(u12av

48A

) ⎡⎢⎢⎣
cibi cibj cibk
cjbi cjbj cjbk
ckbi ckbj ckbk

⎤⎥⎥⎦ +
(u2av

48A

) ⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ , (7.157)

where u1av and u2av are given as

u1av = u1i(u1i + usu) + u1j(u1j + usu) + u1k(u1k + usu)

u12av = u1i(u2i + vsu) + u1j(u2j + vsu) + u1k(u2k + vsu)

u2av = u2i(u2i + vsu) + u2j(u2j + vsu) + u2k(u2k + vsu)

The discretization of the CBS steps requires three more matrices and four forcing vectors
to complete the process. The matrix from the discretized second-order terms for Step 2 is

[K]e =
1

4A𝜌

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦ +
1

4A𝜌

⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ . (7.158)

The first gradient matrix in the x1 direction is

[G1]e =
1
6

⎡⎢⎢⎣
bi bj bk
bi bj bk
bi bj bk

⎤⎥⎥⎦ (7.159)

and the second gradient matrix in the x2 direction is

[G2]e =
1
6

⎡⎢⎢⎣
ci cj ck
ci cj ck
ci cj ck

⎤⎥⎥⎦ . (7.160)

The forcing terms are the result of the application of Green’s lemma to the second-order
derivatives of the differential equations. This issue has been previously discussed in the context
of the discretization of the convection diffusion equations. However, one important change is
that it will be assumed that the boundary integral values of the stabilization terms are equal to
zero on the boundaries and will be ignored. This is an appropriate assumption as these terms
will be equal to zero because the residual of the discrete equations are zero on the boundaries
(Zienkiewicz et al. 2005). However, the forcing terms resulting from the discretization of the
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other second-order terms (and first-order terms, if integrated by parts) are important and need
to be taken into account. The forcing vector of the x1 component of momentum equation is

{f1}e =
lij
4A
𝜈

⎡⎢⎢⎣
biu1i + bju1j + bku1k
biu1i + bju1j + bku1k

0

⎤⎥⎥⎦
n

n1 +
lij
4A
𝜈

⎡⎢⎢⎣
ciu1i + cju1j + cku1k
ciu1i + cju1j + cku1k

0

⎤⎥⎥⎦
n

n2. (7.161)

Note that ij is assumed as being the boundary edge of an element. The forcing vector of
the x2 component of the momentum equation is

{f2}e =
lij
4A
𝜈

⎡⎢⎢⎣
biu2i + bju2j + bku2k
biu2i + bju2j + bku2k

0

⎤⎥⎥⎦
n

n1 +
lij
4A
𝜈

⎡⎢⎢⎣
ciu2i + cju2j + cku2k
ciu2i + cju2j + cku2k

0

⎤⎥⎥⎦
n

n2. (7.162)

The forcing vector from the discretization of the second-order pressure terms in Step 2 is

{f3}e =
lij

4A𝜌

⎡⎢⎢⎣
bipi + bjpj + bkpk
bipi + bjpj + bkpk

0

⎤⎥⎥⎦
n

n1 +
lij

4A𝜌

⎡⎢⎢⎣
cipi + cjpj + ckpk
cipi + cjpj + ckpk

0

⎤⎥⎥⎦
n

n2. (7.163)

The above forcing vector has often been ignored in the past, which is not an unreasonable
assumption. Finally, the forcing term due to the discretization of the second-order terms in the
energy equation is

{f4}e =
lij
4A

k
⎡⎢⎢⎣

biTi + bjTj + bkTk
biTi + bjTj + bkTk

0

⎤⎥⎥⎦
n

n1 +
lij
4A

k
⎡⎢⎢⎣

ciTi + cjTj + ckTk
ciTi + cjTj + ckTk

0

⎤⎥⎥⎦
n

n2. (7.164)

The four steps of the CBS scheme may now be written in matrix form. The above elemental
equations need to be assembled before they can be used in the steps. It will be assumed that
the matrices without the subscript e are already assembled and therefore the steps in terms of
the assembly (discrete form) can now be written as

Step 1: Intermediate velocity calculation x1 component

[M]
Δ{u1

∗}

Δt
= −[C]{u1}n − [Km]{u1}n − Δt

2
[Ks]{u1}n + {f1} (7.165)

and for the x2 component

[M]
Δ{u2

∗}

Δt
= −[C]{u2}n − [Km]{u2}n − Δt

2
[Ks]{u2}n + {f2}. (7.166)

Step 2: Pressure calculation

[K]{p}n = − 1
Δt

[
[G1]{u1

∗} + [G2]{u2
∗}
]
+ {f3}. (7.167)

Step 3: Velocity correction

[M]{u1}n+1 = [M]{u1
∗} − Δt[G1]{p}n

. (7.168)

[M]{u2}n+1 = [M]{u2
∗} − Δt[G2]{p}n

. (7.169)
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Step 4: Temperature calculation

[M]
Δ{T}
Δt

= −[C]{T}n − [Kt]{T}n − Δt
2

[Ks]{T}n + {f4}. (7.170)

The above four steps are the cornerstone of the CBS scheme for the solution of the heat
convection equations. An extension of the above steps for solving the conservation and three-
dimensional forms is straightforward. Interested readers should consult some of the appropriate
publications (Nithiarasu 2003; Zienkiewicz et al. 1999).

The mass matrix [M] used in the above steps may be “lumped” to simplify the solution
procedure. This is an approximation but a worth while and time-saving approximation. Mass
lumping will eliminate the need for the matrix solution procedure necessary for consistent
mass matrices. The lumped mass matrix for a linear triangular element is constructed by
summing the rows and placing on the diagonals. The elemental lumped mass matrix of a linear
triangular element is

[ML]e =
A
12

⎡⎢⎢⎣
4 0 0
0 4 0
0 0 4

⎤⎥⎥⎦ =
A
3

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ . (7.171)

If the above mass lumping procedure is introduced into the CBS steps, some small errors
may occur in the transient solution. For steady-state solutions, however, no errors are intro-
duced. However, for transient problems an accurate solution can still be obtained by appropriate
mesh refinement.

7.6.2 Time-step Calculation

The time-step restrictions are very similar to the convection-diffusion equation (Equation
(7.126)). The local time step at each and every node can be computed as follows:

Δt = min(Δtc,Δtd). (7.172)

The convection time step Δtc is identical to that of Equation (7.127). The diffusion time
steps contain two parts. One due to the kinematic viscosity and another to the thermal diffusivity
of the fluid. The diffusion time step may be expressed as

Δtd = min(
h2

2𝜈
,

h2

2𝛼
), (7.173)

where 𝜈 is the kinematic viscosity and 𝛼 is the thermal diffusivity. The local element size,
may be calculated using the same procedure as that discussed in Section 7.5. However, a
more advanced method of the calculation of element size, for example, an element size in
the streamline direction, is possible and readers are referred to the appropriate publication
(Tezduyar et al. 2000).

7.6.3 Boundary and Initial Conditions

The two main boundary conditions prevalent in heat convection problems are the prescribed
temperature, pressure and velocity (Dirichlet conditions) and flux boundary conditions (Neu-
mann conditions). Other possibilities may be derived from these conditions.

Prescribed values If a value of the velocity components, temperature or pressure is given at a
boundary node, the value will be “forced” at these nodes. To implement this the corresponding
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discrete nodal equations are removed and any associated load from the prescribed value is
moved to the load vector.

Flux conditions In a heat transfer calculation, it is possible to have prescribed heat flux
conditions, which are normally given as

− k
𝜕T
𝜕x1

n1 − k
𝜕T
𝜕x2

n2 = −k
𝜕T
𝜕n

= q, (7.174)

where n is the normal direction to the surface on which the prescribed flux boundary is imposed
and n1 and n2 are the components of outward pointing normals on a surface. The heat flux
condition is imposed by rearranging {f4} (Equation (7.164)) as follows:

{f4}e =
lij
2

q
⎡⎢⎢⎣

1
1
0

⎤⎥⎥⎦ , (7.175)

assuming that the flux is applied along the edge ij of an element e. In the above equation q is
assumed to be entering the domain. If the flux is leaving a domain then a negative q should be
used. Note that often, symmetry (or zero flux) boundary conditions are employed in convection
heat transfer calculations. In such cases, the forcing vector terms disappear.

In many industrial heat transfer applications, convection heat transfer boundary conditions
are common. If a boundary, as shown in Figure 7.15, is convecting to the atmosphere, then the

Hot fluid 
Heat convection 

Air flow T

hc

a

 Porous material

Figure 7.15 Example of a convection boundary condition.
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boundary condition on this wall can be expressed as

− k
𝜕T
𝜕x1

n1 − k
𝜕T
𝜕x2

n2 = −k
𝜕T
𝜕n

= hc(T − Ta), (7.176)

where the wall temperature T is unknown. The implementation along a side ij of an element
may be carried out for the CBS scheme as

{f4}e = ∫Γe

⎡⎢⎢⎣
Ni
Nj
0

⎤⎥⎥⎦ hc

(
Tn

e − Ta

)
dΓ, (7.177)

with Te = NiTi + NjTj + NkTk, integration of the above equation over edge ij becomes

{f4}e =
hclij

6

⎡⎢⎢⎣
2 1 0
1 2 0
0 0 0

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

Ti
Tj
0

⎫⎪⎬⎪⎭
n

−
hclij

2

⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ Ta. (7.178)

The initial conditions, which describe the initial state of the fluid (temperature, pressure,
velocity and properties), are employed at the onset of heat convection calculations. These
conditions are problem dependent and are discussed for various applications in the latter
sections of this chapter.

7.6.4 Steady and Transient Solution

A steady-state solution for a problem can be obtained, using the CBS scheme, by time stepping
to achieve a steady-state. This may be done by fixing a tolerance criteria as follows

no.nodes∑
i=1

𝜙
n+1
i − 𝜙n

i

Δt
≤ 𝜖. (7.179)

where 𝜙i is any heat convection variable at a node, nnodes is the total number of nodes and 𝜖
is a prescribed tolerance, which will tend toward zero as the solution approaches steady-state.

A transient solution can be of two types. The first type is the “real” time variation of the
solution for problems where a steady-state solution exists. The second category is one which
has no real steady-state, for example vortex shedding behind a cylinder or Rayleigh-Bénard
convection. In the first type, the calculations commence with prescribed initial conditions
and progress with a suitable time-stepping algorithm until a steady-state is reached. The time
history of the variables need to be stored and monitored as the transient solution progresses in
order to study the behavior of the solution. In the second type of problems, that is, Rayleigh-
Bénard convection and vortex shedding, the steady-state tolerance of Equation (7.179) is not
applicable and steady-state is never reached. The time history of these type of problems needs
to be followed as long as the user is interested in the solution.
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7.7 Artificial Compressibility Scheme

As mentioned before, convection heat transfer calculations can be carried out using a fully
explicit Artificial Compressibility (AC) scheme. In AC schemes an artificial compressibility
is introduced at Step 2 of the CBS scheme, that is,

1
𝛽

2
𝜌

𝜕p

𝜕t
− Δt

(
𝜕

2p

𝜕x2
1

+
𝜕

2p

𝜕x2
2

)
= −

𝜕u∗1
𝜕x1

−
𝜕u∗2
𝜕x2

, (7.180)

where 𝛽 is an artificial compressibility parameter. The above equation can be derived by
assuming a density variation in the continuity equation by substituting

𝜕𝜌

𝜕t
≈ 1

c2

𝜕p

𝜕t
, (7.181)

where c the speed of sound, which for incompressible flows approaches infinity. However,
c can be replaced by an artificial compressibility parameter 𝛽, as given in Equation (7.180),
for the purpose of introducing an explicit scheme. In the artificial compressibility based CBS
scheme, Step 2 will be replaced with

1
𝛽

2
𝜌

[M]
{𝚫p}
𝚫t

+ [K]{p}n = − 1
Δt

[
[G1]{u1

∗} + [G2]{u2
∗}
]
+ {f3}, (7.182)

where {Δp} = {pn+1 − pn}. The artificial compressibility parameter can be chosen as

𝛽 = max(co, uconv, udiff , utherm), (7.183)

where co is a small constant (between 0.1 to 0.5) and uconv, udiff and utherm are respectively the
convection, diffusion and thermal velocities, which may be defined as

uconv =
√

u2
1 + u2

2

udiff =
2𝜈
h

utherm = 2𝛼
h
. (7.184)

All other steps of the CBS scheme remain the same. However, for the solution of transient
problems, a dual time-stepping procedure has to be introduced. In this dual time-stepping
procedure, a transient problem is split into several instantaneous steady-states and integrated
via a real global time step (Malan et al. 2002a,b; Nithiarasu 2003; Zienkiewicz et al. 2013).
This can be achieved by adding a source term to step 3 of the CBS scheme, that is,

[M]{u1}n+1 = [M]{u1
∗} − Δt[G1]{p}n − Δt[M]

Δu1

2Δ𝜏
and

[M]{u2}n+1 = [M]{u2
∗} − Δt[G2]{p}n − Δt[M]

Δu2

2Δ𝜏
. (7.185)
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where 𝜏 is the real time and here t becomes an iterative pseudo time. For a second-order
real-time accuracy

Δu1 = 3u1
m+1 − 4u1

m + u1
m−1

Δu2 = 3u2
m+1 − 4u2

m + u2
m−1, (7.186)

with m being the real-time tag.

7.8 Nusselt Number, Drag and Stream Function

The two important quantities of interest in many heat transfer applications are the rate of
heat transfer (Nusselt number) and the flow resistance offered by a surface (drag). The stream
function is often used to draw streamlines in order to understand the flow pattern of a problem.
In this section a brief summary of how to calculate these quantities is given.

7.8.1 Nusselt Number

The Nusslet number is derived as follows. Let us assume that a hot surface is cooled by a cold
fluid stream. The heat from the hot surface, which is maintained at a constant temperature, is
diffused through a boundary layer and convected away by the cold stream. This phenomenon
is normally defined by Newton’s law of cooling per unit surface area as

hc(Tw − Tf ) = −k
𝜕T
𝜕n

, (7.187)

where hc is the heat transfer coefficient, k is an average thermal conductivity of the fluid, Tf
is the free stream temperature of the fluid and n is the normal direction to the heat transfer
surface. The above equation can be rewritten as

hcL

k
= −

(
1

Tw − Tf

)
𝜕T
𝜕n

L, (7.188)

where L is any characteristic dimension. The quantity on the left-hand side of the above
equation is the Nusselt number. If we apply nondimensional scales (T∗ = (T − Tf )∕(Tw − Tf )
and n∗ = n∕L), as discussed in Section 7.3, we can rewrite the above equation as

Nu =
hcL

k
= −𝜕T∗

𝜕n∗
, (7.189)

where Nu is the local Nusselt number. It should be observed that the local Nusselt number
is equal to the local, nondimensional, normal temperature gradient. The above definition of
the Nusselt number is valid for any heat transfer problem as long as the surface temperature
is constant, or the reference wall temperature is known. However, for prescribed heat flux
conditions, taking a different approach is required to derive the Nuselt number. Let us assume
a surface subjected to an uniform heat flux q. We can write locally

q = −k
𝜕T
𝜕n

= hc(Tw − Tf ), (7.190)
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where Tw is not a constant. The Nusselt number relation can be obtained by multiplying the
RHS of the previous equations by L∕k, that is,

hcL

k
(Tw − Tf ) =

qL

k
. (7.191)

Rearranging, we obtain

Nu =
qL
k

(Tw − Tf )
. (7.192)

When a wall is subjected to heat flux boundary conditions, the temperature scale is qL∕k
which nondimensionlises the temperature. Therefore, the above equation can be rewritten in
non-dimensional form as

Nu = 1
T∗

w − T∗
f

. (7.193)

The equation is simpler than that derived for a constant wall temperature and is limited to the
calculation of local nondimensional wall temperatures (assuming Tf is constant). Therefore, the
calculation of the Nusselt number on a wall subjected to a constant heat flux is straightforward
in any numerical method. However, in the Nusselt number calculation for a surface subjected
to a constant temperature, it is necessary to calculate the normal temperature gradient. This
calculation is simple using a finite element discretization, where the normal gradient can be
directly calculated from the boundary terms arising due to the discretization of the second-order
temperature terms, that is,

𝜕T
𝜕n

= 𝜕T
𝜕x1

n1 +
𝜕T
𝜕x2

n2 +
𝜕T
𝜕x3

n3, (7.194)

where n1, n2 and n3 are the direction cosines of the surface normal. All the above discussed
quantities are local (on the surface nodes or elements). However, it is often necessary to have
an average Nusselt number for a heat transfer problem. The average Nusselt number can be
easily calculated by integrating the local Nusselt number over a length (in two dimensions) or
over a surface (in three dimensions). For example, in two dimensions,

Nuav =
1
L ∫L

Nudl = 1
L

no. wall elements∑
i=1

Nui dli, (7.195)

where L is the total length of the wall, i indicates a single incremental length of a
one-dimensional element on the wall on which the Nusselt number is calculated and
no.wallelements indicates the total number of one-dimensional elements on the wall. In order
to use the above formula, the local Nusselt number over an incremental length (dli) is assumed
to be constant.

7.8.2 Drag Calculation

The drag force is the resistance offered by a body which is equal to the force exerted by the
flow on the body at equilibrium conditions. The drag force arises from two different sources.
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a

n

As

u

Figure 7.16 Normal gradient of velocity close to the wall.

One is from the pressure p acting in the flow direction on the surface of the body (form drag)
and the second is due to the force caused by effects of friction in the flow direction. In general
the drag force is characterized by a drag coefficient defined as

Cd = D

Af
1
2
𝜌au2

a

, (7.196)

where D is the drag force, Af is the frontal area in the flow direction and the subscript a
indicates the free stream value. The drag force D contains the contributions from both the
influence of pressure and friction, that is,

D = Dp + Df , (7.197)

where Dp is the pressure drag force and Df is the friction drag force in the flow direction.
The pressure drag, or form drag, is calculated from the nodal pressure values. For a two-
dimensional problem, the solid wall may be a curve or a line and the boundary elements on
the solid wall are one-dimensional with two nodes if linear elements are used. The pressure
may be averaged over each one-dimensional element to calculate the average pressure over the
boundary element. If this average pressure is multiplied by the length of the element, then the
normal pressure acting on the boundary element is obtained. If the pressure force is multiplied
by the direction cosine in the flow direction, we obtain the local pressure drag force in the
flow direction. Integration of these forces over the solid boundary gives the drag force due to
pressure Dp.

The viscous drag force Df is calculated by integrating the viscous traction in the flow
direction, over the surface area. The relation for the total drag force in x1 direction may be
written for a two-dimensional case as

Dx1
= ∫As

[(−p + 𝜏11)n1 + 𝜏12n2]dAs, (7.198)

where n1 and n2 are components of the surface normal n as shown in Figure 7.16.

7.8.3 Stream Function

In most fluid dynamics and convection heat transfer problems, it is often easier to understand
the flow results if the streamlines are plotted. In order to plot these streamlines, or flow pattern,
it is first necessary to calculate the stream function values at the nodes. A line with a constant
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stream function value is referred to as a streamline. The stream function is defined by the
following relationships:

u1 = 𝜕𝜓

𝜕x2

u2 = − 𝜕𝜓
𝜕x1

, (7.199)

where 𝜓 is the stream function. If we differentiate the first relation with respect to x2 and the
second with respect to x1 and then sum, we get the differential equation for the stream function
as

𝜕
2
𝜓

𝜕x2
2

+ 𝜕
2
𝜓

𝜕x2
1

=
𝜕u2

𝜕x1
−
𝜕u1

𝜕x2
. (7.200)

The solution to the above equation is straightforward for any numerical procedure. This
equation is similar to Step 2 of the CBS scheme and an implicit procedure immediately gives
the solution.

7.9 Mesh Convergence

All numerical schemes are, by their nature, approximate and the CBS scheme is no exception.
However, if a scheme is said to be convergent, the approximate solution should approach the
exact answer as the mesh is refined. A converged solution is one which is nearly independent
of meshing errors. A very coarse mesh would give a very approximate solution, which is far
from reality. As the mesh is refined by reducing the size of the elements, the solution slowly
approaches the exact solution. It should be noted that, in theory, the solution will not be exact
until the mesh size is zero, which is obviously impossible. However, it is possible to fix a
tolerance to the solution error and this can be achieved by solving the problem on several
meshes.

In order to insure that the solution obtained is as close as possible to reality, solutions
should be obtained from several meshes starting with a very coarse mesh and finishing with a
very fine mesh. Once these solutions are available, many key quantities can be compared and
plotted against mesh densities (or number of points) as shown in Figure 7.17. If the difference
between two consecutive meshes (or number of nodes) is less than a fixed tolerance (arrow
showing “converged” in Figure 7.17), the coarser mesh among the two is normally accepted
as a suitable mesh for the analysis.

For two-dimensional problems, it is not difficult to carry out a detailed mesh convergence
study for different parameters or cases. However, in large three-dimensional problems, it
is often difficult to carry out a complete mesh convergence study. In such situations, it is
customary to compare the results with analytical, or experimental, data if available. The past
experience of the user also helps in obtaining an accurate solution for complicated problems.
An adaptive refinement strategy is another way of obtaining better accuracy (see Chapter 14).
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Figure 7.17 Typical convergence study.

7.10 Laminar Isothermal Flow

In this section examples of a steady and unsteady-state isothermal flow problems are discussed.
The isothermal solution procedure is obtained by neglecting the temperature, or energy, equa-
tion from the governing set of equations. In other words, Step 4 of the CBS scheme is neglected
thereby assuming isothermal flow.

Example 7.10.1 Steady flow through a rectangular channel
The problem considered here is a simple two-dimensional developing flow in a rectangular

channel as shown in Figure 7.18. The “CBSflow” code is used to solve this problem. The steps
employed are as discussed in Section 7.6. However, the “CBSflow” code is written using a
nondimensional form of the governing equations. Therefore, the steps of the scheme have to
undergo appropriate changes. The nondimensional scaling, discussed in Section 7.3, should
be reflected in the geometry. The nondimensional geometry used is shown in Figure 7.18. The
defined inlet Reynolds number is based on the inlet height and is therefore equal to unity in
the nondimensional form. The length of the channel was assumed to be 15 times that of the
height.

Based on the characteristic analysis discussed in many books (e.g., Hirsch 1989), a
subsonic, incompressible two-dimensional isothermal flow problem requires two boundary
conditions at the inlet and one boundary condition at the exit. It is normal practice to impose
the velocity components at the inlet and pressure at the exit. In order that pressure may be

2

Inlet: u  = 1 2u   = ,

p = 0
Exit:Solid wall

Solid wall

01

1

15

1 u  = u   = 0

Figure 7.18 Flow through a two-dimensional rectangular channel. Geometry and boundary
conditions.
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Figure 7.19 Flow through a two-dimensional rectangular channel. Finite element mesh.

imposed at the exit, it is necessary that the flow does not undergo any appreciable variation
close to the exit. In other words, the channel length should be much greater than the height.

The boundary conditions may be summarized as follows:

� Inlet: uniform velocity component u1 of a nondimensional value of unity and the velocity
component u2 equal to zero.

� Exit: Nondimensional pressure value equal to constant. Here the value is prescribed as
being zero.

� Walls: Both velocity components are forced to zero (no-slip condition)

� Initial conditions: Zero velocities and pressure at all points within the domain.

Figure 7.19 shows the unstructured mesh used for the calculations. It is a uniform mesh
with 3242 linear triangular elements and 1782 nodes.

The inlet Reynolds number of the flow is assumed to be 100, which is well within the laminar
range. Figure 7.20 shows the velocity profiles along the length of the channel. This solution
is a steady-state solution generated by an artificial compressibility form of the CBS scheme.
The momentum boundary layer develops as the flow travels downstream. Figure 7.21 shows a
comparison of the velocity profiles for nondimensional distances between 0 and 6. It may be
seen that the parabolic profile is developed close to a distance of 4.0. The analytical solution
obtained from boundary layer theory (Schlichting 1968) gives an approximate relation for the
nondimensional developing length as

le = 0.04Re, (7.201)

which gives a le = 4.0 for a Reynolds number of 100. It should be noted that the velocity profile
is continuously changing in the downstream direction. A completely unchanged u1 velocity
profile can only be obtained by extending the length of the channel further (Schlichting 1968).
Also, more accurate velocity profiles can be obtained by either employing a structured mesh
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Figure 7.20 Flow through a two-dimensional rectangular channel. Velocity profiles at differ-
ent sections.
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Figure 7.21 Flow through a two-dimensional rectangular channel. Comparison of velocity
profiles at various distances.

or using a finer unstructured mesh. The interested reader is advised to carry out a mesh
convergence study on this type of a problem.

Example 7.10.2 Steady-flow inside a lid-driven cavity
Flow in a lid-driven cavity is one of the most widely used benchmark problems to test

steady-state incompressible fluid dynamics codes. Our interest will be to present this problem
as a benchmark problem for the steady-state solution. The definition of the problem is given
in Figure 7.22. The geometry is a simple square enclosure with solid walls on all four sides.
All the walls, except for the top one, are fixed. The top wall is assumed to be moving with a

p = 0

u 
 =

 u
  =

 0

u 
 =

 u
  =

 0

u  = u  = 0

u  = 1, u  = 0

1

21

1 2

1
2 2

Figure 7.22 Incompressible isothermal flow in a lid-driven cavity. Geometry and boundary
conditions.
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given velocity, therefore, the fluid attached to this wall also moves with the same velocity in
the direction shown in Figure 7.22. A pressure value of zero is forced at the node at the bottom
left corner of the cavity as shown.

In order to demonstrate the influence of mesh density on the solution procedure, six
different meshes were selected for this problem. We start with a very coarse mesh, as shown
in Figure 7.23 (a), and refine uniformly by increasing the number of elements as shown in
the fourth mesh (Figure 7.23(d)). The fifth mesh was generated by refining the mesh along the
cavity walls and coarsening at the center as shown in Figure 7.23(e). The meshes shown in
Figures 7.23(a) to (e) are all unstructured in nature. The sixth and final mesh is a structured
mesh of 100 × 100 uniform divisions as shown in Figure 7.23(f). At this point the readers are
reminded that an uniform structured mesh gives better accuracy as compared to an uniform
unstructured mesh for the same number of nodes.

A Reynolds number of 5000 is selected in order to demonstrate the influence of mesh
refinement. The initial values of the velocities at all inside nodes are taken as u1 = 1 and
u2 = 0. The pressure is assumed to be equal to zero at the beginning of the computation. The
semi-implicit form of the CBS scheme was used to calculate the solution in time for all the six
meshes. Nondimensional time-step values, ranging between 10−3 and 10−2, were employed
in the calculations. In order to achieve a steady-state solution, the calculation was continued
until the maximum difference of the variables u1, u2 and p between two consecutive time steps
became less than 10−6.

In Figure 7.24, the pressure contours generated from all meshes are shown. As seen, the
pressure contours are distinguished by large oscillations when the mesh was relatively coarse
(Figures 7.24(a) and (b)). These oscillations disappear from most of the domain as the mesh
was progressively refined. The last two meshes (Figure 7.24(e) and (f)) result in much smoother
contours than for the other meshes. However, even the fine meshes give oscillatory solution
close to the singular point at the top left corner of the cavity.

The stream traces of meshes five and six are shown in Figure 7.25. At a Reynolds number
of 5000, a secondary vortex appeared close to the bottom right-hand corner. In general it is
difficult to predict this vortex and very fine meshes are necessary if this is to be achieved. Due
to the small size of the secondary vortex, the first four meshes failed to produce its occurrence.
However, the last two meshes (Figures 7.24(e) and (f)) were capable of predicting the secondary
vortex as shown in Figure 7.25. In addition to this small secondary vortex, the figure also shows
the recirculating vortices at both bottom corners and close to the top-left corner.

The quantitative result selected for this study was the horizontal velocity component
distribution at the mid-vertical plane of the cavity. The horizontal velocity components of all
the meshes have been calculated and plotted as shown in Figure 7.26. It is obvious that the first
and second meshes result in inaccurate solutions due to insufficient mesh resolution. However,
from the third mesh onwards sensible solutions were obtained. The comparison of the computed
solution with the available benchmark data shows that the results obtained by the sixth mesh
agreed excellently with the fine mesh solution of Ghia et al. (1982). The third, fourth and fifth
meshes also give solutions which were close to that of Ghia et al. but were not identical.

The stream traces and pressure contours for Reynolds numbers of 400 and 1000 are shown
in Figure 7.27. These results were generated using the sixth mesh. A comparison of the velocity
profiles for the steady-state solution is shown in Figure 7.28. As seen, the comparison between
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(a)  Mesh1, Nodes:127, 
Elements:211

(c)  Mesh3, Nodes:2909, 
Elements:5163

(b)  Mesh2, Nodes:485
Elements:887

(d)  Mesh4, Nodes:5139
Elements:10008

(e)  Mesh5, Nodes:5515, 
Elements:10596

(f)  Mesh6, Nodes:10201
Elements:20000

Figure 7.23 Linear triangular element meshes, (a-e) unstructured meshes, (f) 100x100 struc-
tured mesh.
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

(e) Mesh 5 (f) Mesh 6

Figure 7.24 Isothermal flow in a lid-driven cavity. Pressure contours at Re = 5000.
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(a) Mesh 5 (b) Mesh 6

Figure 7.25 Isothermal flow in a lid-driven cavity. Stream traces at Re = 5000.

the present solution and the benchmark solution of Ghia et al. (1982) indicates excellent
agreement. Further details may be obtained from Lewis et al. (1995); Malan et al. (2002a,b);
Nithiarasu (2003) and the readers are encouraged to compute results for other Reynolds
numbers.

Example 7.10.3 Flow past a backward-facing step
Another typical benchmark example is the flow past a backward facing step which is widely

employed by researchers in validating flow solvers. In addition to the available numerical
solutions, experimental data is also available for flow past a backward facing step.

The problem definition is shown in Figure 7.29. The inlet is situated at a distance of 4L
upstream of the step, where L is the height of the step as shown in Figure 7.29. The inlet
section is twice as high as the step. The total length of the channel is taken to be equal to
40 times the height of the step. Apart from the inlet and exit, all the other boundaries are
assumed to be solid walls, where no slip boundary conditions are assumed to prevail. At the
inlet to the channel, a nearly parabolic velocity profile of u1 was assumed. The reason why a
perfect parabolic velocity profile was not taken is that the experimental data was not available
on a perfectly parabolic velocity profile. In order to compare the numerical results with the
available experimental data, we imposed the experimental inlet velocity profile from Denham
and Patrik (1974), which was not perfectly parabolic. The u2 velocity at the inlet was assumed
to be equal to zero at all times. The exit of the problem was situated at a distance of 36 times
the step height in order to make sure that the disturbance created by the recirculation in the
vicinity of the step was stabilized by the time flow reached the exit. At the exit, the pressure
was prescribed as being equal to zero.

The Reynolds number, based on the average inlet velocity and step height, was taken to be
equal to 229 in order to compare the velocity profiles with the available experimental velocity
profile. The flow was assumed to be laminar and the computation was started with an initial
value of u1 equal to unity and u2 equal to zero. In addition to the velocity values, an initial
pressure value of zero was assumed on all nodal points.
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(a) Mesh1 (b) Mesh2

(c) Mesh3 (d) Mesh4

(e) Mesh5 (f) Mesh6
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Figure 7.26 Incompressible isothermal flow in a lid-driven cavity. u1 velocity profile along
the mid-vertical line. Comparison with the benchmark steady-state results of Ghia et al.,
(1982). Source: Data from Ghia et al. 1982.
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(a) Stream traces, Re = 400 (b) Pressure contours, Re = 400

(c) Stream traces, Re = 1000 (d) Pressure contours, Re = 1000

Figure 7.27 Isothermal flow in a lid-driven cavity. Stream traces and pressure contours for
different Reynolds numbers.
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(b) Re = 1000

Figure 7.28 Isothermal flow in a lid-driven cavity. Comparison of mid-vertical plane u1
velocity profiles for different Reynolds numbers with Ghia et al., (1982). Source: Data from
Ghia et al. 1982.
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u1 = u2 = 0 p = 0

L
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4L 36L

21Parabolic u  and u  = 0

Figure 7.29 Incompressible isothermal flow past a backward facing step. Problem definition
and boundary conditions.

The unstructured mesh employed in the calculation is shown in Figure 7.30. In Figure 7.31
the results are shown, which are produced by the CBS scheme in its fully explicit form (artificial
compressibility form). Here, the use of local time-stepping techniques accelerated the solution
towards the steady-state as compared to a fixed global time step (Malan et al. 2002a,b;
Nithiarasu 2003). The u1 velocity contours and pressure contours generated are given in
Figures 7.31(a) and (b). In Figure 7.31 (c) the velocity profiles generated at different sections
of the geometry, are compared with the experimental data of Denham et al. (Denham and
Patrik 1974).

The u1 velocity contours (Figures 7.31(a) is marked with the recirculation pattern down-
stream of the step. This was the expected pattern in a problem of this nature. The pressure
contours are marked with minor oscillations, which was due to relatively coarse unstructured
mesh used.

Example 7.10.4 Transient flow past a circular cylinder
In this section, a widely used transient benchmark problem of periodic vortex shedding

behind a circular cylinder is briefly considered. The problem definition is simple and is shown
in Figure 7.32. A circular cylinder of diameter D is placed in a fluid stream with a uniform
approaching velocity. The computational domain inlet and exit are placed at lengths of 4D
upstream from the center of the cylinder and 12D downstream from the center of the cylinder
respectively. The top and bottom boundaries are situated at a distance of 4D from the center
of the cylinder.

The inlet velocity was assumed to be uniform with a prescribed nonzero value of u1 and
a zero value for the u2 velocity components. On both the bottom and top sides, the normal
velocity component, u2, was assumed to be equal to zero and u1 was not prescribed. On the
cylinder surface, the no-slip condition of zero velocity components was applied. At the exit,

Figure 7.30 Incompressible isothermal flow past a backward facing step. Finite element
mesh, Nodes:4656, Elements:8662.
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Figure 7.31 Incompressible isothermal flow past a backward facing step: (a) velocity con-
tours; (b) pressure contours; (c) comparison of velocity profiles with experimental data, Re =
229.

the pressure value was assumed to be constant. In this study, a zero value for pressure was
assumed at the exit. The inlet Reynolds number was defined based on the free stream inlet
velocity and the diameter D of the cylinder.

A three-dimensional mesh was used in the vortex shedding calculations. For three-
dimensional flow calculations, two additional boundary conditions are necessary on the two

u  =  0

D

8D

4D

16D

u  = 0
u  =  11

2
p = 0

2

u  = 02

Figure 7.32 Isothermal flow past a circular cylinder. Geometry and boundary conditions.
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(a)  Finite element surface mesh (b)  Instantaneous u1 velocity contours

Figure 7.33 Isothermal flow past a circular cylinder. Three dimensional finite element mesh
and an instantaneous u1 velocity contour, Re = 100.

additional surfaces at the front and back (see Figure 7.33). The two additional surfaces were
assumed to have no flow in the direction normal to the surfaces. Since the two-dimensional
problem was solved in three dimensions, by introducing a third dimension, the width of
the domain in the third dimension is arbitrary. The smaller the size of the domain in the
third dimension, then the smaller will be the number of elements in the mesh. For the
three-dimensional computations carried out here the length in the third dimension was
assumed to be equal to 0.5 D.

The three-dimensional surface mesh is shown in Figure 7.33(a). The volume mesh used
within the domain was generated using linear tetrahedral elements. A total number of approx-
imately 600 000 elements were used in the calculations. As may be observed, the mesh is very
fine behind the cylinder, along the expected von Karman vortex street. This is essential in order
to accurately predict the flow. A mesh convergence study in three dimensions is time-consuming
and difficult, and it is advisable to analyze many meshes in order to prove the convergence of
the results. Alternatively, if the problem has existing benchmark results then a comparison with
these will give confidence in the results generated. Here we chose the alternative approach
and compare our results with the existing data.

The calculation was carried out using the artificial compressibility form of the CBS scheme
(Nithiarasu 2003). The initial values of u1 and u2 were assumed to be equal to unity and zero
respectively. Note that these values are nondimensional. All the velocity values are nondimen-
sionalised using the reference inlet velocity value (see Section 7.3 for details). Similarly, the
distances are scaled with respect to the diameter of the cylinder. These scalings result in a
nondimensional inlet velocity value of unity and a cylinder diameter of unity in the nondimen-
sional space. The initial values of pressure were assumed to be zero everywhere in the domain.

As mentioned previously, the solution to this problem is known to be periodic with respect to
time. Once the solution reaches a steady periodic state, the periodic vortex shedding continues
indefinitely. This process consists of vortex formation behind the cylinder and shedding.
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Figure 7.34 Isothermal flow past a circular cylinder. Comparison of u1 velocity variation at
an exit point, Re = 100.

In Figure 7.33(b), we only show a “snapshot” of the u1 velocity distribution at a certain
nondimensional time. Several such “snapshots” can be plotted but for the sake of brevity only
one sample solution is given. We, however, provide the distribution of u1 with respect to time at
an exit point of the domain in Figure 7.34. The exit point is selected at the domain horizontal
center line on the exit plane. As anticipated, the velocity at the selected exit point undergoes a
steady periodic change with respect to time after establishing a steady periodic pattern. The
initial period of the solution process (up to a nondimensional time of about 20) is marked
with no sign of any periodic behavior of the velocity at the exit. The periodic behavior starts
between nondimensional times of 20 and 30 and establishes a steady periodic pattern between
the nondimensional time of 40 and 50. The peak values remain the same after establishing a
steady pattern. The initial flow pattern depends heavily on the initial values of the variables,
time steps and mesh used. However, once a steady periodic pattern is established the results
should agree with other solutions as shown in Figure 7.34. The solution used in the comparison
was generated from an adaptive analysis in two dimensions by de Sampaio et al. (de Sampaio
et al. 1993). We also show the drag and lift co-efficient distribution with time in Figure 7.35.
As seen, both conservation and nonconservation form of equations produce periodic patterns,
though the results differ slightly between the two formulations (Nithiarasu and Zienkiewicz
2006).

7.11 Laminar Nonisothermal Flow

In this section, some examples of nonisothermal flow problems are discussed. In the previous
section, the temperature effects are ignored, but they are included in this section in order to
study some heat convection problems. The categories of forced convection, buoyancy-driven
convection and mixed convection, are discussed in the following subsections.
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Figure 7.35 Isothermal flow past a circular cylinder. Drag and lift coefficients, Re = 100.

7.11.1 Forced Convection Heat Transfer

Forced convection heat transfer is induced by forcing a liquid, or gas, over a hot body or
surface. Three forced convection problems will be studied in this section. The first problem is
the extension of flow through a two-dimensional channel as discussed in the previous section,
second is the forced convection over a sphere and the third is the problem of a backward facing
step.

Example 7.11.1 Forced convection in a rectangular channel
The difference between the problem studied here and the one in the previous section is

that the top and bottom walls are at a higher temperature than that of the air flowing into the
channel. The nondimensional temperature scale employed is

T∗ =
T − Ta

Tw − Ta
. (7.202)

Since the CBSflow code is based on nondimensional governing equations, the above
nondimensional scaling needs to be employed. This scale will give a temperature value of
unity on the walls (T = Tw) and zero at the inlet (T = Ta). Dirichlet boundary conditions for
temperature are not necessary at the exit as the no-flux conditions are assume across exit. For
a steady-state solution, all four steps of the CBS scheme can either be solved simultaneously,
or, firstly a steady-flow solution is obtained, then using these results a temperature distribution
can be established independently. The Reynolds number is again assumed to be equal to
100, and the velocity distribution is the same as shown in Figure 7.20. The temperature
profile distribution is as shown in Figure 7.36. As may be seen, a parabolic temperature
profile is achieved at around the same distance from the entrance as that for the parabolic
velocity profile. It should also be noted that as the length of the channel increases, the average
temperature of the fluid also increases and approaches that of the wall temperature.
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Figure 7.36 Forced convection flow through a two-dimensional rectangular channel. Tem-
perature profiles at various distances.

Example 7.11.2 Forced convection from a hot sphere
The second problem considered is a three-dimensional flow over a hot sphere. The heat

transfer aspects of the hot sphere are studied as it is exposed to a cold air stream. The problem
definition is different from that of the channel flow, which is an internal flow but in the case of
flow past a sphere, the flow is external to the sphere as shown in Figure 7.37.

In the problem discussed here, an outer boundary is fixed in such a way that the inlet is at
a distance of five diameters from the center of the sphere and the exit is at 20 diameters from
downstream of the center of the sphere (Nithiarasu et.al. 2004). The side boundaries are also
at a distance of 5 diameters away from the center of the sphere. It is possible to imagine the
sphere being placed inside a three-dimensional channel, which is 25 diameters in length and
has 10 diameter long sides. However, the difference from the previous channel problem is that
there is no solid outer wall in this case.

The boundary conditions are simple as in the previous problem. The inlet has a nondimen-
sional velocity of unity and a nondimensional temperature of zero. The surface of the sphere
is subjected to a no-slip velocity boundary condition and a nondimensional temperature of
unity. All the side walls are subjected to a zero heat flux and a zero normal velocity value. At
the exit the insulated conditions are assumed.

It is obvious that a three-dimensional mesh is required and for the problem under consider-
ation linear tetrahedral elements were used. Three dimensional meshes were generated using
an efficient mesh generator as reported by Morgan et al. 1999. The total number of elements
used in the computation was approximately a million. The sphere and a cross-sectional side
view along the axis are shown in Figure 7.38.

Cold air stream

Hot sphere

Figure 7.37 Forced convection flow past a sphere.
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(a)  Sphere and two boundaries (b)  Cross-sectional view of the sphere

Figure 7.38 Forced convection heat transfer from a sphere. Three dimensional mesh.

The temperature contours in the vicinity of the sphere are shown in Figure 7.39 for inlet
Reynolds numbers of 100 and 200. As mentioned previously, the temperature on the surface of
the sphere is unity. This diagram shows a cut view along the axis in the direction of the flow.
Therefore, the temperature values close to the surface of the sphere are near to unity, which
reduce in value away from the sphere and finally reach zero value (except in the wake), in the
free air stream. In the downstream direction, however, the temperatures are greater than that
of the free stream temperature all the way to the exit (see Figure 7.40). This indicates that the
cold air stream removes heat from the sphere, which is then transported to the exit.

The values of drag coefficient and average Nusselt numbers are given in Tables 7.1 and
7.2 respectively. In Table 7.1, the quantity inside the brackets is the pressure drag coefficient.

(a) Re = 100 (b) Re = 200

Figure 7.39 Forced convection heat transfer from a sphere. Temperature distribution in the
vicinity of the sphere.
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Figure 7.40 Forced convection flow past a sphere. Temperature contours, Re = 100.

Example 7.11.3 Forced convection downstream of a backward facing step
The problem definition is similar to the isothermal flow past a backward facing step, as

discussed in the previous section. The difference being that additional boundary conditions
are prescribed for the temperature field. The boundary conditions discussed by (Kondoh et al.
1993) will be adopted. The solid bottom wall was assumed to be at a higher temperature than
the fluid (results presented here are for air with Pr = 0.71) entering the channel. All other
solid walls were assumed to be insulated. Zero flux conditions were prescribed at the exit. All
other boundary conditions for the velocity and pressure are the same as the ones discussed
for the isothermal problem in the previous section and are repeated in Figure 7.41.

Three different meshes have been employed to make sure that the solutions presented were
accurate. The first mesh used was the mesh shown in Figure 7.30. The second and third meshes
are finer than the first mesh and are shown in Figure 7.42.

Table 7.1 Comparison of coefficient of drag with existing literature

Author references 100 200

Clift et al. 1978 1.087 -
Lee 2000 1.096 (0.512) -
Gulcat and Aslan 1997 1.07 0.78
Rimon and Cheng 1969 1.014 0.727
Le Clair et al. 1970 1.096 (0.590) 0.772 (0.372)
Magnaudet et al. 1995 1.092 (0.584) 0.765 (0.368)
CBS 1.105 (0.564) 0.7708 (0.347)

Table 7.2 Comparison of average Nusselt number.

Re (Yuge 1960) (Whitaker 1983) (Feng et al. 2000) CBS

50 5.4860 5.1764 5.4194 5.2176
100 6.9300 6.6151 6.9848 6.6589
200 8.9721 8.7219 9.1901 8.7599



236 LAMINAR CONVECTION HEAT TRANSFER

T = 1

p = 0

L

2L

36L4L

u1 = u2 = 0

Parabolic u1 and u2 = 0, T = 0

Figure 7.41 Forced convection heat transfer downstream of a backward facing step. Geometry
and boundary conditions.

All three meshes were employed to study the heat transfer at a Reynolds number of 500.
The local Nusselt number distribution on the hot wall downstream of the step is shown in
Figure 7.43. As seen, the Nusselt number difference between all three meshes was very small.
Therefore, the second mesh was used in all the calculations in order to save computational
time, as the difference between the local Nusselt number distribution of the finest mesh (third
mesh) and the second was very small. The small oscillations in the local Nusselt number
distribution, especially on the first mesh, was generated by the coarseness of the unstructured
mesh.

Figure 7.44 shows the temperature contours for all the different Reynolds numbers consid-
ered. Previous studies indicate that the maximum heat transfer occurred close to the reattach-
ment point. The incompressible flow is attached to the wall from the inlet until it reaches the
step. The flow is detached from the bottom wall and recirculation develops downstream of the
step as shown previously for the nonisothermal case. The flow reattaches itself to the bottom
wall after the recirculation in the downstream portion of the step. The location at which the
reattachment takes place varies with the Reynolds number. The higher the Reynolds number,
then the farther will be the reattachment point from the step. The reattachment distances from
the step are given in Figure 7.44. These values are in close agreement with reported results
(Kondoh et al. 1993).

(a)  Mesh2, Nodes:8131, Elements:15410

(b)  Mesh3, Nodes:11659, Elements:22257

Figure 7.42 Forced convection heat transfer downstream of a backward facing step. Unstruc-
tured meshes.
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Figure 7.43 Forced convection heat transfer downstream of a backward facing step. Local
Nusselt number distribution on the hot wall for a Reynolds number of 500 on different meshes.

(a) Re = 100, flow reattachment length from the inlet = 10.23

(b) Re = 200, flow reattachment length from the inlet = 14.63

(c) Re = 300, flow reattachment length from the inlet = 18.12

(d) Re = 500, flow reattachment length from the inlet = 22.92

Figure 7.44 Forced convection heat transfer downstream of a backward facing step. Temper-
ature contours at different Reynolds numbers.
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Figure 7.45 Forced convection heat transfer downstream of a backward facing step. Local
Nusselt number distribution on the hot wall for different Reynolds numbers.

The thermal action predominantly takes place downstream of the step in the bottom portion
of the channel. It may be observed that as the flow approaches the reattachment point, the
thermal boundary layer shrinks indicating a stronger temperature gradient in the vicinity of
the reattachment point and thus a higher heat transfer rate taking place close to this point. This
is clearly demonstrated in Figure 7.45 where the local Nusselt number is plotted along the hot
wall downstream of the step. The local Nusselt number starts with an almost zero value at the
corner close to the step and increases smoothly to a maximum value close to the reattachment
point and then drops. It appears that the peak Nusselt number value is calculated close to,
but just after the reattachment point. After reaching the peak value, the local Nusselt number
drops as the flow approaches the exit.

7.11.2 Buoyancy-driven Convection Heat Transfer

Buoyancy-driven convection is created by the occurrence of local temperature differences in
a fluid. This type of convection can also be created by local concentration differences within a
fluid. Buoyancy-driven convection is present in most flow situations; however, its significance
can vary according to the situation. For instance in a situation where a hot surface and a
cold fluid interact, without any other external force, then buoyancy-driven convection will
develop. Examples include radiators inside a cold room, most solar appliances, some cooling
applications of electronic devices and finally phase change applications (Lewis et al. 1995a;
Ravindran and Lewis 1998; Usmani et al. 1992a,b).

The principles of buoyancy-driven convection are simple. A local temperature difference
creates a local density difference within the fluid resulting in fluid motion because of the
local density variation. Although the principles are simple, the development of an accurate
numerical solution for such buoyancy-driven flows is far from simple. This is mainly
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due to the very slow flow rates involved, which are often marked with turbulence, which again
complicates the numerical prediction.

Example 7.11.4 Buoyancy-driven flow in a square enclosure
In order to demonstrate buoyancy-driven convection, we shall consider the standard

benchmark problem of natural convection within a two-dimensional square enclosure, as
shown in Figure 7.46. The geometry is a two-dimensional square with a nondimensional size
of unity. The walls are solid and subjected to no slip velocity boundary conditions (zero velocity
components). One of the vertical walls is subjected to a higher temperature (T = 1) than the
other vertical wall (T = 0). Both the top and bottom walls are assumed to be insulated (zero
heat flux). The steady-state solution to this problem is sought herein.

In order to obtain a steady-state solution, the CBSflow is used in its semi-implicit form with
zero initial velocity and temperature values and a small constant value for of pressure (0.1).
A simple pressure boundary condition is essential in order to solve the pressure equations
implicitly. One of the corner points has a fixed pressure value of zero all the time. The parameter
varied in this problem is the Rayleigh number. The mesh employed in the calculations is a
structured mesh and is shown in Figure 7.47. Unstructured meshes are equally valid but require
a greater number of elements in order to obtain the same accuracy as structured meshes. The
mesh shown in Figure 7.47 contains 5000 elements and 2601 nodes.

Figures 7.48 shows the temperature contours and streamlines for different Rayleigh num-
bers. The flow raises along side of the hot left-side wall, taking the heat with it and losing it
along side of the right-side wall. As the Rayleigh number increases, the flow becomes stronger
and is marked with a thinner flow regime and thermal boundary layers close to the vertical
walls.

Table 7.3 reports various quantities, which has been calculated for the natural convection
in a square cavity (Massarotti et al. 1998). In Table 7.3, 𝜓 is the stream function, Nuav is the
average Nusselt number and u2max is the maximum vertical velocity component. These values
compare very well with the benchmark data available in the literature.

u1 = u2 = 0

u1 = u2 = 0

u 1
 =

 u
2 

=
 0

u 1
 =

 u
2 

=
 0

Insulated

Insulated

T = 0T = 1

Figure 7.46 Buoyancy-driven flow in a square enclosure. Geometry and boundary conditions.
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Figure 7.47 Buoyancy-driven flow in a square enclosure. Finite element mesh. Nodes: 2601,
Elements: 5000.

7.11.3 Mixed Convection Heat Transfer

A mixed convection heat transfer mode has features of both forced convection and natural
convection. The mixed convection solution to a heat transfer problem is necessary if the
Reynolds number is small and the importance of the buoyancy contribution is significant. The
equations solved are those of forced convection with an addition of a source term (Equation
(7.70)) in the gravitational direction. If the direction of gravity is not aligned with either of
the coordinate directions (x1 and x2), then appropriate components of the source term need
to be added to the momentum equations. The effect of mixed convection can be measured by
calculating the source term of Equation (7.70). If this term is close to zero then the buoyancy
effects can be ignored and a forced convection solution is sufficient. However, if the value of
the source term is far from being zero (either in the negative or positive sense), then a mixed
convection solution is essential.

Example 7.11.5 Mixed convection in a channel
Here, we consider a simple mixed convection problem in a rectangular vertical channel

as shown in Figure 7.49. In order to compare the results with the analytical solution for fully
developed flow in a channel as given by Aung and Worku (1986a), then the nondimensional
scales require changing. The scales used by Aung and Worku are

x∗2 =
x2

ReL
; u∗1 =

u1L

𝜈

. (7.203)

All other scales are the same as for the forced convection scale discussed in Section 7.3.
The above scales lead to some changes in the nondimensional form of the mixed convection
equation. The source term GrT∗∕Re2, in the mixed convection equation, will be GrT∕Re and
the Reynolds number at all other locations will disappear. The great advantage of applying
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(a) Streamlines (b) Temperature

Ra = 104

Ra = 106

Ra = 107

(c) Streamlines (d) Temperature

(e) Streamlines (f) Temperature

Figure 7.48 Natural convection in a square enclosure. Streamlines and temperature contours
for different Rayleigh numbers, Pr = 0.71.
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Table 7.3 Quantitative results for natural convection in a square cavity.

Ra Nuav 𝜓max u2max

103 1.116 1.175 3.692
104 2.243 5.075 19.63
105 4.521 9.153 68.85
106 8.806 16.49 221.6
107 16.40 30.33 702.3

this scale is that the nondimensional length of the channel can be considerably reduced. The
analytical solution for a fully developed mixed convection profile is given (Aung and Worku
1986b) as

u1 = Gr
Re

(1 − rT )

(
−x1

3

6
+

x1
2

4
−

x1

12

)
− 6x2

1 + 6x1. (7.204)
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Figure 7.49 Mixed convection in a vertical channel. Geometry and boundary conditions.
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where

rT =
Tc − Ta

Th − Ta
. (7.205)

Two vertical plates serve as the channel walls, one of them being at a higher temperature
(Th = 1) than that of the other wall. The temperature Tc of the cold wall is 0.5 and the cold fluid
entering the channel from the bottom is zero (Ta = 0). A uniform, nondimensional, vertical
velocity of unity is imposed at the entrance (u2 = 1). The direction of gravity is assumed to
act in the negative x2 direction. The inlet Reynolds number is 100 and the Grashof number
is assumed to be 250 000, which results in a Gr∕Re value of 250. At the exit, zero pressure
values are imposed. The total length of the channel is three times the width of the channel.
The Reynolds number is defined with respect to the width of the channel.

The problem defined here is the case of gravity opposing the forced flow from the bottom.
This is an example of buoyancy aided convective heat transfer as the buoyancy is helping the
flow to move quicker by creating a density driven upward flow close to the hot wall. However,
at very high Richardson numbers, flow reversal is possible in this type of problem, as shown
in Figure 7.49. It is quite possible in certain practical applications that the flow will be forced
from the top of the channel (in the negative x2 direction). Such a flow will be called “opposing”
flow in which the buoyancy-driven flow is in the opposite direction of the forced flow.

The mesh used in the computations was fully unstructured and is shown in Figure 7.50.
The mesh is fine close to the solid walls and a total number of 8956 elements and 4710 nodes
were employed. Figure 7.51 shows the velocity profile distributions at various heights. As
seen, the air flows upwards close to the inlet and flow reversal occurs somewhere between the
vertical distances of 0.5 and 1.0 from the inlet. The flow is nearly fully developed at a vertical
distance of 2 from the inlet. As mentioned previously, the ratio (GR∕Re) is 250 and a further
increase in this ratio will lead to a stronger flow reversal. Further details regarding this type
of problem may be found in Aung and Worku (1986a). A comparison of the fully developed
velocity profile with the analytical solution is given in Figure 7.52 (Aung and Worku 1986a)
and as may be seen the agreement is excellent.

7.12 Extension to Axisymmetric Problems

The axisymmetric formulation of the heat conduction equations has been discussed in many of
the earlier chapters. Here, an extension of the plane formulation to axisymmetric convection
heat transfer problems will be discussed. The governing equations in cylindrical coordinates
are given (Figure 7.53), as follows:

Conservation of mass:

1
r

𝜕(rur)

𝜕r
+
𝜕uz

𝜕z
= 0. (7.206)

r momentum component:

𝜕ur

𝜕t
+ ur

𝜕ur

𝜕r
+ uz

𝜕uz

𝜕z
= −1

𝜌
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𝜕r
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[

1
r
𝜕

𝜕r

(
r
𝜕ur

𝜕r

)
+
𝜕

2ur

𝜕z2
−

ur

r2

]
. (7.207)
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Figure 7.50 Mixed convection in a vertical channel. Unstructured finite element mesh.

z momentum component:
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Energy equation:

𝜌cp

(
𝜕T
𝜕t

+ ur
𝜕T
𝜕r

+ uz
𝜕T
𝜕z

)
= k

[
1
r
𝜕

𝜕r

(
r
𝜕T
𝜕r

)
+ 𝜕

2T
𝜕z2

]
. (7.209)

The CBS procedure follows the same steps as for the plane problem. However, the inte-
gration of the matrices will be different as the area of the element will no longer be two-
dimensional. For example, let us consider the diffusion matrix of the energy equation. The
temperature diffusion matrix for the plane problem is given by Equation (7.156). We can
rewrite this as

[Kt]e = k ∫Ω
(
𝜕NT

𝜕r
𝜕N
𝜕r

+ 𝜕NT

𝜕z
𝜕N
𝜕z

)
dΩ

= k ∫Ω
(
𝜕NT

𝜕r
𝜕N
𝜕r

+ 𝜕NT

𝜕z
𝜕N
𝜕z

)
2𝜋rdA, (7.210)



LAMINAR CONVECTION HEAT TRANSFER 245

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

V
er

tic
al

 v
el

oc
ity

Horizontal distance

Figure 7.51 Mixed convection in a vertical channel. Developing velocity profiles are various
vertical vertical sections.

where the radial coordinate r is expressed as

r = Niri + Njrj + Nkrk. (7.211)

The formula used in the integration is the same as for any linear triangular element
(Equation (7.117)). On applying Equation (7.117), then Equation (7.210) becomes

[Km]e = k
2𝜋

12A
(ri + rj + rk)

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦
+ k

2𝜋
12A

(ri + rj + rk)
⎡⎢⎢⎣

c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k

⎤⎥⎥⎦ . (7.212)

All the other terms of the axisymmetric equations may be discretized in a similar fashion.
In discretizing the r momentum diffusion terms, the term ur∕r2 can be approximated by
averaging r over an element.
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Figure 7.52 Mixed convection in a vertical channel. Comparison of velocity profile at exit
with fully developed analytical solution. Source: Data from Aung and Worku (1986b).
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Figure 7.53 Coordinate system for axisymmetric geometries.

7.13 Summary

In this chapter, we have given a brief overview of convection heat transfer. However, the subject
is vast in extent and it is difficult to cover all the aspects within a single chapter. Several details
have been neglected on purpose in order to keep the discussion brief. For instance, higher
order elements have not been discussed and few solution procedures have been touched upon.
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However, the CBS scheme for convection heat transfer has been discussed in detail for linear
triangular elements. A complete knowledge of such a single scheme will provide the reader
with a strong starting point for understanding other relevant fluid dynamics and convection
heat transfer solution procedures. In the following chapter the heat convection problems in the
turbulent regime are discussed.

7.14 Exercises

Exercise 7.14.1 Using a differential control volume approach, derive a three-dimensional
convection-diffusion equation for pollution transport in a river.

Exercise 7.14.2 Following the derivation of the CG method for a convection-diffusion equa-
tion discussed in this chapter, derive the CG method for a convection-diffusion equation with
a source term Q.

Exercise 7.14.3 Derive Navier-Stokes equations in cylindrical and spherical coordinates.

Exercise 7.14.4 Reduce the incompressible Navier-Stokes equations to solve a one-
dimensional time-dependent convection heat transfer problem.

Exercise 7.14.5 For natural convection problems, if 𝛼 is replaced by 𝜈 in the nondimensional
scaling, derive the new nondimensional form.

Exercise 7.14.6 Calculate laminar flow and heat transfer from a hot cylinder at Re = 40
placed inside a rectangular channel (assume the size) using the CBSflow code. Assume buoy-
ancy effect is negligible. Determine the influence of the distance between the cylinder and the
channel walls, inlet and exit.

Exercise 7.14.7 Write a program in any standard scientific language to calculate stream
functions from a computed velocity field.

Exercise 7.14.8 In this example, you are asked to make appropriate assumptions and model
flow past the heat exchanger tubes as shown in Figure 7.54.

A schematic diagram of a typical cross flow heat exchanger arrangement is shown in
Figure 7.54. As seen, the hot working fluid from the industry is passed through tubes and the
coolant is pumped from the bottom and used to cool the working fluid. In this particular heat
exchanger the tubes are arranged in a staggered style.

The flow and heat transfer analysis over these tubes is very important in determining an
optimal tube arrangement. Neglecting the outer wall effects carry out a heat transfer analysis
at a Reynolds number of 300. Assume that the flow is laminar and the buoyancy effects are
negligibly small.

Assume that the vortex shedding effects can be neglected and simplify the three-dimensional
problem to a two-dimensional problem. Set up the appropriate boundary conditions, generate
the mesh and carry out the analysis either using the CBSflow code or any other available
software.
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Figure 7.54 Schematic diagram of a cross flow heat exchanger, d = 1, B = 8, D = 6, pitch =
3, L = 42.

Exercise 7.14.9 In this exercise, you are asked to simulate the liquid flow through a liquid
processing plant as shown in Figure 7.55.

In the liquid processing industry, liquid is passed through several tanks as shown in Fig-
ure 7.55. The diagram shows a simplified model of such a plant. With appropriate assumptions,
simplify the problem further and determine the flow mechanism. The raw liquid is pumped into
the plant from the left-hand side at a Reynolds number of 400 which is based on the width of
the inlet channel and inlet velocity.
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Figure 7.55 Schematic diagram of water processing plant, inlet/exit channel height = 1,
L1 = 4, L2 = 5, L3 = 4, L4 = 6, L5 = 30.

Include appropriate assumptions and formulate a simplified physical problem. The sim-
plification should be in such a way that the model should not lose accuracy and at the same
time should not be very expensive to solve. Discuss the project and design the boundary limits
and conditions.

Once the problem has been simplified to two dimensions, generate a mesh and solve the
problem using the CBSflow solver. Determine the temperature distribution if the bottom surface
of the tank is hotter than the incoming fluid. Neglect the buoyancy effects and assume the liquid
is water in the heat transport problem.

Exercise 7.14.10 A two-dimensional square enclosure (all solid walls) filled with air is
subjected to a linearly varying temperature on one of its vertical walls (say T = (x2∕L)Tmax,
where L is the characteristic dimension) and a constant temperature on the other vertical wall,
which is less than that of Tmax. If the horizontal walls are assumed to be adiabatic, obtain
solutions for the flow and heat transfer inside the enclosure for different Rayleigh numbers.
Refer to Chapter 7 for nondimensional scales.

Exercise 7.14.11 In the above problem if the linear variation of temperature is replaced with
a constant heat flux, determine the temperature and flow patterns.
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8

Turbulent Flow and Heat Transfer

8.1 Introduction

Turbulent heat convection is defined as the flow and heat transfer, with random variation, of
various convection heat transfer quantities such as velocity, pressure and temperature. It is
important to note that turbulence is a property of the flow, not a property of the fluid. Despite
considerable progress on the topic of turbulence modeling over the last century, one has to
admit that molecular turbulence is still an unresolved problem and will remain so for several
more years. In this chapter, we will provide an overview of the numerical solution of turbulent
fluid dynamics and heat transfer equations, based upon existing turbulence models and the
CBS scheme that was discussed in the previous chapter.

Before going into such details, we have summarized some important fundamental prop-
erties of turbulence in the following paragraphs. At this stage, it is worth noting that a truly
turbulent flow is three-dimensional in nature and occurs at relatively high Reynolds numbers.
Thus, any two-dimensional study should only be treated as an approximation. A turbulent flow
is marked with random variation of quantities as shown in Figure 8.1.

The Navier-Stokes equations are sufficient to resolve all turbulent scales, if an adequate
mesh resolution is used. However, this requires extremely large computer resources. With
present day computers this is possible, within a reasonable amount of time, only for simple
problems at low and moderate Reynolds numbers. Until sufficiently fast computing power is
available, it is essential to employ Reynolds decomposition and turbulence models.

In a real turbulent flow scenarios, the kinetic energy is transferred from larger scales to
smaller scales. At the smallest scale, the kinetic energy is transformed into internal energy and
this process is called “dissipation” and the process of energy transfer between the scales is
called “the cascade process.” The smallest turbulent length scale is determined by the molecular

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
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Figure 8.1 Random variation of velocity in a turbulent flow with respect to time.

viscosity and dissipation rate. Such a length scale is often referred to as the Kolmogorov length
scale (Kolmogorov 1941) and is given as(

𝜈
3

𝜖

)1∕4

. (8.1)

Similarly the Kolmogorov velocity and time scales are determined as

v = (𝜈𝜖)1∕4 (8.2)

and

𝜏 =
(
𝜈

𝜖

)1∕2
(8.3)

respectively. The dissipation rate occurring at small scales can be linked to the energy of large
eddies as

𝜖 = U3

l
, (8.4)

where U is the large eddy velocity scale and l is the large eddy length scale. The turbulent
kinetic energy of a flow is defined as

𝜅 = 1
2

u′iu
′
i , (8.5)

where u′ is the fluctuating component of the velocity as shown in Figure 8.1. The above
relations are given in order to make the readers aware that the length scales, turbulent kinetic
energy and dissipation are closely related (see also Section 8.1.2). The turbulence modeling
procedures are developed based on these relationships.

8.1.1 Time Averaging

As mentioned previously, an extremely high mesh resolution is required to solve problems
with the smallest of turbulence scales. This is very expensive and presently not possible for
high Reynolds number flows and complex geometries within a reasonable period of time. It
is, therefore, obvious that other alternatives are necessary to obtain an approximate solution.
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The standard procedure is to employ time-averaged Navier-Stokes equations, along with a
turbulence modeling approach, to determine the essential time averaged quantities, which
reduces the excessive grid resolution otherwise needed. With reference to Figure 8.1, any
turbulence quantity of interest may be expressed as

u = u + u′. (8.6)

The time averaged quantity may be obtained as

u = 1
2T ∫

T

−T
u(t)dt. (8.7)

Let us consider the following one-dimensional steady-state incompressible momentum
equation to demonstrate the concept of time averaging

du2

dx
+ 1
𝜌

dp

dx
− d

dx

(
𝜈

du
dx

)
= 0 (8.8)

Substituting a variation of the form of Equation (8.6) for the velocity u and pressure p into
Equation (8.8), and time averaging, we obtain

d
dx

[
(u + u′)(u + u′)

]
+ 1
𝜌

d
dx

(p + p′) − d
dx

[
𝜈

d
dx

(u + u′)
]
= 0, (8.9)

where the overline indicates time averaging. In the above equation, the average of the fluctuat-
ing components u′ and p′ are equal to zero. Hence, the following simplified form of the above
equation may be written as

d
dx

[
(u2 + u′

2
)
]
+ 1
𝜌

dp

dx
− d

dx

[
𝜈

d
dx

(u)
]
= 0. (8.10)

Rearranging and rewriting the above momentum equation for incompressible flows in
multi-dimensions and including the time term, we have

𝜌

𝜕ūi

𝜕t
+ 𝜌 𝜕

𝜕xj
(ūjūi) = −

𝜕p̄

𝜕xi
+
𝜕𝜏ij

𝜕xj
− 𝜕

𝜕xj
(𝜌u′iu

′
i), (8.11)

where

𝜏ij = 𝜇

(
𝜕ūi

𝜕xj
+
𝜕ūj

𝜕xi

)
, (8.12)

is the time-averaged deviatoric stress and 𝜌uiui is a new unknown referred to as Reynolds
stress. The Boussinesq assumption gives the Reynolds stress as

𝜏ij
R = −𝜌u′iu

′
i = 𝜇T

(
𝜕ūi

𝜕xj
+
𝜕ūj

𝜕xi

)
. (8.13)

From Equation (8.13), it is clear that the additional unknown quantity to be modeled is
the turbulent kinematic viscosity 𝜇T (or 𝜈T = 𝜇T∕𝜌). In a similar fashion, the energy equation
may also be time averaged by writing the temperature in the form given in Equation (8.6),
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i.e., T = T̄ + T′. Following the procedure described above, the time-averaged energy equation
may be written as

𝜕T̄
𝜕t

+ 𝜕

𝜕xj

(
ūjT̄

)
= 𝜕

𝜕xj

(
𝛼

𝜕T̄
𝜕xj

− u′jT
′
)

, (8.14)

where 𝛼 is the thermal diffusivity. The turbulent heat diffusion u′jT
′ may be approximated as

u′jT
′ = −𝛼T

𝜕T̄
𝜕xj

, (8.15)

where 𝛼T is the turbulent thermal diffusivity. For a two-dimensional problem, with coordinates
x1 and x2, the equations may be summarized as

Continuity equation:

𝜕ū1

𝜕x1
+
𝜕ū2

𝜕x2
= 0. (8.16)

Momentum equation components:(
𝜕ū1

𝜕t
+ ū1

𝜕ū1

𝜕x1
+ ū2

𝜕ū1

𝜕x2

)
= −1

𝜌

𝜕p̄

𝜕x1
+ (𝜈 + 𝜈T )

(
𝜕

2ū1

𝜕x2
1

+
𝜕

2ū1

𝜕x2
2

)
(8.17)

and (
𝜕ū2

𝜕t
+ ū1

𝜕ū2

𝜕x1
+ ū2

𝜕ū2

𝜕x2

)
= −1

𝜌

𝜕p̄

𝜕x2
+ (𝜈 + 𝜈T )

(
𝜕

2ū2

𝜕x2
1

+
𝜕

2ū2

𝜕x2
2

)
. (8.18)

Energy equation:

𝜕T̄
𝜕t

+ ū1
𝜕T̄
𝜕x1

+ ū2
𝜕T̄
𝜕x2

=
[
𝛼 +

𝜈T

PrT

](
𝜕

2T̄

𝜕x2
1

+ 𝜕
2T̄

𝜕x2
2

)
. (8.19)

To solve the above set of incompressible Navier-Stokes equations, we now need some
additional information to compute the turbulent eddy viscosity.

8.1.2 Relationship between 𝜿, 𝝐, 𝝂T and 𝜶T

The turbulent kinematic viscosity, or turbulent eddy viscosity 𝜈T , has the same dimensions as
the physical kinematic viscosity. Thus, we can express the turbulent eddy viscosity in terms
of the velocity and length scales of a large eddy, that is,

𝜈T = c
𝜇

Ul, (8.20)

where c
𝜇

is a constant. The definitions of U and l are discussed in Section 8.1. In the

above equation, U may be replaced with
√
𝜅. With such a substitution, the turbulent eddy

viscosity may be determined by solving a scalar transport equation for 𝜅 and assuming
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an appropriate turbulent length scale l (𝜅 − l or “one-equation” models). However, a better
expression for the turbulent eddy viscosity may be obtained by substituting Equation (8.4) into
Equation (8.20) as

𝜈T = c
𝜇

𝜅
2

𝜖

. (8.21)

To employ the above equation, we need to solve two transport equations, one for 𝜅
and another for 𝜖 (𝜅 − 𝜖 or the “two-equation” models). Details of some one- and two-
equation models are provided in the following sections (Cebeci and Smith 1974; Launder and
Spalding 1972; Wilcox 1992). In addition to discussions on the Reynolds Averaged Navier-
Stokes (RANS) models, we also provide a brief summary of Large Eddy Simulation (LES)
and currently popular topics such as Detached Eddy Simulation (DES) and Monotonically
Integrated LES (MILES) approaches. Before introducing the RANS and other approaches,
the relationship between the eddy viscosity, 𝜈T , and eddy diffusivity, 𝛼T , are discussed here.
The ratio between the physical kinematic viscosity and the thermal diffusivity is referred to as
the Prandtl number (Pr = 𝜈∕𝛼). In a similar fashion, the turbulent Prandtl number, PrT may
be defined as

PrT =
𝜈T

𝛼T
(8.22)

or 𝛼T = 𝜈T∕PrT . The turbulent Prandtl number normally varies between values of 0.7
and 0.9.

8.2 Treatment of Turbulent Flows

8.2.1 Reynolds Averaged Navier-Stokes (RANS)

The equations derived in the previous section are summarized here for a general multi-
dimensional problem. The Reynolds averaged Navier-Stokes equations (RANS) of motion for
incompressible flows may be summarized as

Mean-continuity:

𝜕ūi

𝜕xi
= 0. (8.23)

Mean-momentum:

𝜌

(
𝜕ūi

𝜕t
+ ūj

𝜕ūi

𝜕xj

)
= −

𝜕p̄

𝜕xi
+
𝜕𝜏ij

𝜕xj
− 𝜕

𝜕xj
(𝜌u′iu

′
i), (8.24)

where ūi are the mean velocity components, p is the pressure, 𝜌 is the density, and 𝜏ij is the
laminar shear stress tensor given by Equation (8.12). The Reynolds stress tensor, 𝜏R

ij , is given
in Equation (8.13). As mentioned before, the extra variable to be modeled is the turbulent eddy



258 TURBULENT FLOW AND HEAT TRANSFER

viscosity 𝜇T or 𝜈T = 𝜇T∕𝜌. The energy equation, in terms of the turbulent Prandtl number and
eddy viscosity, may be written as

Energy:

𝜕T̄
𝜕t

+ ūj
𝜕T̄
𝜕xj

= 𝜕

𝜕xj

(
𝛼

𝜕T̄
𝜕xj

+
𝜈T

PrT

𝜕T̄
𝜕xj

)
. (8.25)

If the turbulent Prandtl number, PrT , is known, the additional variable to be determined
is again the turbulent eddy viscosity. In the following section we outline some very standard
models available to calculate 𝜈T .

8.2.2 One-equation Models

8.2.2.1 Wolfstein 𝜿 − l Model (Wolfstein 1970)

In this model the turbulent eddy viscosity is determined from a mixing length and turbulent
kinetic energy as

𝜈T = c1∕4
𝜇
𝜅

1∕2lm, (8.26)

where c
𝜇

is a constant equal to 0.09, 𝜅 is the turbulent kinetic energy and lm is a mixing length.
The mixing length lm is related to the length scale of the turbulence L as

lm =

(
c′3
𝜇

CD

)1∕4

L, (8.27)

where CD and c′
𝜇

are constants. The transport equation for turbulent kinetic energy 𝜅 is

𝜕𝜅

𝜕t
+ ūi

𝜕𝜅

𝜕xi
=
(
𝜈 +

𝜈T

𝜎
𝜅

)
𝜕

2
𝜅

𝜕x2
i

+ 𝜏R
ij

𝜕ūi

𝜕xj
− 𝜀, (8.28)

where 𝜎
𝜅

is the diffusion Prandtl number for turbulent kinetic energy. The dissipation, 𝜀, is
modeled as

𝜀 = CD
𝜅

3∕2

L
. (8.29)

Near solid walls, the Reynolds number tends to zero and the highest mean velocity gradient
occurs at the solid boundary. Thus, the one-equation model has to be used in conjunction with
empirical wall functions, that is, 𝜈T is multiplied by the damping function f

𝜇
= 1 − e−0.160R

𝜅

and 𝜀 is divided by fb = 1 − e−0.263R
𝜅 , where R

𝜅
=
√
𝜅y∕𝜈, where y is the shortest distance to

the nearest wall. The constants are 𝜎k = 1 and CD = 1.0.

8.2.2.2 Spalart-Allmaras (SA) Model (Spalart and Allmaras 1992)

The Spalart-Allmaras (SA) model was first introduced for aerospace applications and is now
adopted for incompressible flow calculations as well. This is another one equation model,
which employs a single scalar equation and several constants to model turbulence. Here we
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provide the model without a trip point or curve. The model, which includes a trip, may be
found in reference (Spalart and Allmaras 1992). The scalar transport equation used by this
model is

𝜕𝜈̂

𝜕t
+ ūj

𝜕𝜈̂

𝜕xj
= cb1Ŝ𝜈̂ + 1

𝜎

[
(𝜈 + 𝜈̂)

𝜕
2
𝜈̂

𝜕x2
i

+ cb2

(
𝜕𝜈̂

𝜕xi

)2
]
− cw1fw

[
𝜈̂

y

]2

, (8.30)

where

Ŝ = S + (𝜈̂∕k2y2)fv2 (8.31)

and

fv2 = 1 − X∕(1 + Xfv1). (8.32)

In Equation (8.31), S is the magnitude of the vorticity and y is the shortest distance from a
node to the nearest solid wall. The eddy viscosity is calculated as

𝜈T = 𝜈̂fv1, (8.33)

where

fv1 = X3∕
(
X3 + c3

v1

)
(8.34)

X = 𝜈̂∕𝜈. (8.35)

The parameter fw is given as

fw = g

[
1 + c6

w3

g6 + c3
w3

]1∕6

, (8.36)

where

g = r + cw2(r6 − r) (8.37)

r = 𝜈̂

Ŝk2y2
. (8.38)

The constants are cb1 = 0.1355, 𝜎 = 2∕3, cb2 = 0.622, k = 0.41, cw1 = cb1∕k2 + (1 +
cb2)∕𝜎, cw2 = 0.3, cw3 = 2 and cv1 = 7.1.

8.2.3 Two-equation Models

8.2.3.1 The Standard 𝜿 − 𝜺 Model

In this model, the transport equation for 𝜅 is the same as that in the one-equation model of
Section 8.2.2. The second transport equation for calculating the turbulence energy dissipation
rate 𝜀 is

𝜕𝜀

𝜕t
+ ūi

𝜕𝜀

𝜕xi
=
(
𝜈 +

𝜈T

𝜎
𝜀

)
𝜕

2
𝜀

𝜕x2
i

+ C
𝜀1
𝜀

𝜅

𝜏
R
ij

𝜕ūi

𝜕xj
− C

𝜀2
𝜀

2

𝜅

, (8.39)
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where C
𝜀1 = 1.44, C

𝜀2 = 1.92 and𝜎
𝜀

is the diffusion Prandtl number for an isotropic turbulence
energy dissipation rate and is equal to 1.3. These constants are proposed by Jones and Launder
(1972).

In addition, 𝜈T is evaluated by

𝜈T = c
𝜇

𝜅
2

𝜀

. (8.40)

For near-wall treatments, modifications to the source terms of the 𝜀 equation are needed in
the near-wall region. Multiplying the coefficients c

𝜇
, C

𝜀1 and C
𝜀2, by the turbulence damping

functions f
𝜇

, f
𝜀1 and f

𝜀2 then an appropriate low Reynolds number status is achieved near the
walls. Numerous wall damping functions have been proposed. The values suggested by Lam
and Bremhorst (1981) for steady flows are:

f
𝜇
= (1 − e−0.0165R

𝜅 )2
(

1 + 20.5
Rt

)
(8.41)

f
𝜀1 = 1 +

(
0.05
f
𝜇

)3

(8.42)

and

f
𝜀2 = 1 − e−R2

t , (8.43)

where Rt = 𝜅
2∕𝜈𝜀. The damping functions of Fan et al. (1993) are

f
𝜇
= 0.4

fw√
Rt

(
1 − 0.4

fw√
Rt

)[
1 − exp

(
−

Ry

42.63

)]3

, (8.44)

where

fw = 1 − exp

{
−
√

Ry

2.30
+

(√
Ry

2.30
−

Ry

8.89

)[
1 − exp

(
−

Ry

20

)]3
}

(8.45)

f
𝜀2 =

{
1 − 0.4

0.8
exp

[
−
(

Rt

6

)2
]}

f 2
w (8.46)

and f
𝜀1 = 1. Note that Ry = Rt (see Section 8.2.2.1). The constants are c

𝜇
= 0.09, 𝜎k = 1.0,

𝜎
𝜀
= 1.3, C

𝜀1 = 1.4 and C
𝜀2 = 1.8.

8.2.4 Nondimensional Form of the Governing Equations

A turbulent flow solution can be obtained by solving Equations (8.23) and (8.24) with appro-
priate boundary conditions along with one of the turbulence models. The following nondi-
mensional scales may be used in the calculations

ūi
∗ =

ūi

u∞
; x∗i =

xi

D
; p̄∗ =

p̄

𝜌∞u2
∞

; t∗ =
tu∞
D

𝜅
∗ = 𝜅

u2
∞

; 𝜀
∗ = 𝜀D

u3
∞

; 𝜈
∗
T =

𝜈T

𝜈∞
; 𝜈̂

∗ = 𝜈̂

𝜈∞
,

(8.47)
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where D is a characteristic dimension and the subscript ∞ indicates a reference value. Sub-
stituting the nondimensional scales into Equations (8.24) to (8.25) and dropping the asterisks
leads to

𝜕ūi

𝜕xi
= 0 (8.48)

and

𝜕ūi

𝜕t
+ ūj

𝜕ūi

𝜕xj
= −

𝜕p̄

𝜕xi
+
𝜕

(
𝜏ij + 𝜏R

ij

)
𝜕xj

(8.49)

with

𝜏ij + 𝜏R
ij =

(1.0 + 𝜈T )

Re

(
𝜕ūi

𝜕xj
+
𝜕ūj

𝜕xi

)
. (8.50)

The nondimensional density in Equation (8.50) is unity for incompressible flow problems
and the nondimensional form of the energy equation is

𝜕T̄
𝜕t

+ ūj
𝜕T̄
𝜕xj

= 1
Pe

𝜕

𝜕xj

(
𝜕T̄
𝜕xj

+
𝜈T

PrT

𝜕T̄
𝜕xj

)
, (8.51)

where Pe is the thermal Peclet number (Pe = RePr). The Reynolds number, Re, in the above
equations is defined as

Re =
ū∞D

𝜈∞
(8.52)

and the Prandtl number is

Pr = 𝜈

𝛼

. (8.53)

Note that the viscosity, 𝜈, is assumed to be constant and equal to 𝜈∞ in the above equations.
The thermal diffusivity 𝛼 is also assumed to be constant and equal to 𝛼∞. The nondimensional
form of the turbulence transport equations is given below.

8.2.4.1 One-equation Model

The nondimensional form of the 𝜅 equation is

𝜕𝜅

𝜕t
+ ūi

𝜕𝜅

𝜕xi
= 1

Re

(
1 +

𝜈T

𝜎
𝜅

)
𝜕

2
𝜅

𝜕x2
i

+ 𝜏R
ij

𝜕ui

𝜕xj
− 𝜀. (8.54)

The mixing length and the turbulence length scales are normalized using the characteristic
dimension D. Here we assume L = D. The nondimensional form of Rk is

√
𝜅yRe.

8.2.4.2 Spalart-Allmaras Model

The nondimensional form of the transport equation is

𝜕𝜈̂

𝜕t
+ ūj

𝜕𝜈̂

𝜕xj
= cb1Ŝ𝜈̂ + 1

Re𝜎

[
(1 + 𝜈̂)

𝜕
2
𝜈̂

𝜕x2
i

+ cb2

(
𝜕𝜈̂

𝜕xi

)2
]
−

cw1fw
Re

[
𝜈̂

y

]2

, (8.55)
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where

Ŝ = S + 1
Re

(𝜈̂∕k2y2)fv2 (8.56)

and Eq. 8.38 becomes

r = 1
Re

𝜈̂

Ŝk2y2
. (8.57)

The structures of all the remaining parameters are unchanged.

8.2.4.3 The 𝜿 − 𝜺 Model

The 𝜅 equation is identical to that of the one-equation model and the dissipation equation is
given as

𝜕𝜀

𝜕t
+ ūi

𝜕𝜀

𝜕xi
= 1

Re

(
1 +

𝜈T

𝜎
𝜀

)
𝜕

2
𝜀

𝜕x2
i

+ C
𝜀1
𝜀

𝜅

𝜏
R
ij

𝜕ūi

𝜕xj
− C

𝜀2
𝜀

2

𝜅

. (8.58)

The parameter Rt in its nondimensional form is 𝜅2Re∕𝜀.

8.3 Solution Procedure

The solution procedure follows the steps of the CBS scheme as discussed in the previous
chapter (Section 7.6, Equations (7.165)–(7.170)). If isothermal flow is of interest, then the
temperature equation is ignored and a solution to the turbulence model equation becomes the
fourth step. For nonisothermal problems, the temperature equation is solved at Step 4 (Equation
(7.170)) and the turbulence model equation is solved at Step 5. At each and every time step, the
turbulent eddy viscosity is calculated and substituted into the averaged momentum and energy
equations. For the sake of completeness, the characteristic procedure for theSpalart-Allmaras
model is presented here.

The temporal discretization of the Spalart-Allmaras (SA) model follows the characteristic
Galerkin discretization of the convection-diffusion equation as discussed in the previous
chapter (Section 7.4.1), that is,

𝜈̂
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]}n
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(8.59)

Spatial discretization of the individual terms in the above equation is identical to that of
the convection-diffusion equation as discussed in Chapter 7.
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8.4 Forced Convective Flow and Heat Transfer

This section provides some examples of forced flow and heat transfer in passages and also
flow over objects. The first example is the simple case of isothermal turbulent flow in a two-
dimensional rectangular channel. This problem is then extended to include heat transfer in the
second example. Other problems studied in this section include the backward facing step and
external flow problem of flow past a circular cylinder.

Example 8.4.1 Isothermal flow in a rectangular channel
Flow through a rectangular channel is often treated as a benchmark problem for turbulent

flows due to its simplicity. A number of isothermal experiments have been conducted on
channel flows and published by Laufer (1951). These experimental data may be used to check
the turbulent flow models. We have considered here a simple, moderate Reynolds number flow
problem through a rectangular channel. The channel is assumed to be 2 units wide and 40
units long. The Reynolds number is defined based on the half width of the channel. Several
structured meshes were tried and the results presented here are generated on a nonuniform
structured mesh with 6400 nodes and 12 446 elements. The first node from the wall is placed
at a nondimensional distance of 0.005. The results may be further improved by increasing the
resolution of the mesh.

A nondimensional horizontal velocity component of unity and vertical velocity component
of zero are assumed at the inlet. No slip conditions are applied on both walls of the channel.
For the one equation 𝜅 − l turbulence model, a fixed value of nondimensional 𝜅 = 0.05 is
assumed at the inlet. On the walls, zero value is assumed for the turbulent kinetic energy. For
the SA model, the nondimensional scalar variable 𝜈̂ is prescribed equal to 0.05 at the inlet and
zero on the walls. The boundary conditions for the two equation turbulence models are: inlet
values of both 𝜅 and 𝜀 are prescribed (𝜅 = 0.05 and 𝜀 = 0.05) based on the idea proposed in
Johansson et al., (1993). On the walls, 𝜅 = 0 and 𝜀 = (2∕Re)(d𝜅1∕2∕dy)2 are prescribed as
proposed in Yang and Shih (1993).

Figure 8.2 shows the comparison of fully developed velocity profiles obtained from all the
three turbulence models with the experimental data of Laufer (1951). A rapid convergence
to steady state was obtained using both one-equation and SA models. However, the two
equation model has difficulties in to converging and took a longer time. All the methods seem
to give solutions close to the experimental data. It may be possible to further improve the
solution by fine tuning the boundary conditions of the turbulence variables and damping
functions.

Often, engineering problems are quite complex and thus domain discretization is easy to
carry out if unstructured meshes are used. However, unstructured meshes in general are less
accurate than structured meshes. In order to estimate the accuracy of using an unstructured
mesh, we carried out a comparison between structured and unstructured mesh results of
flow through a rectangular channel. In general, agreement with the experimental average
velocity profile is close if the unstructured element size is comparable to the element size of a
structured mesh near the solid walls (Nithiarasu et al., 2007). In order to further estimate the
accuracy in terms of friction velocity or shear velocity, a comparison between the structured
and unstructured mesh results for flow through a rectangular channel is shown in Figure 8.3.
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Figure 8.2 Turbulent flow in a two-dimensional rectangular channel. Comparison of fully
developed velocity profiles at Re = 12 300.
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Figure 8.3 Turbulent incompressible flow in a rectangular channel using the matrix free
CBS-AC scheme with the Spalart-Allmaras model at Re=12 300. Logarithmic representation
of time-averaged velocity profile.
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The friction velocity is defined in dimensional form as

u
𝜏
=
√
𝜏w

𝜌

, (8.60)

where 𝜏w is the local wall shear stress and 𝜌 is the density. In nondimensional form, this may
be written as

u∗
𝜏
=

√
1

Re

𝜕ū∗t
𝜕n∗

(8.61)

where the superscript ∗ indicates a nondimensional quantity, subscript t indicates the tangen-
tial direction and n is the normal direction. For more details on the calculation of wall shear
stress, readers are referred to Chapter 7. The friction velocity is often normalized against the
average velocity as follows:

u+ =
u
𝜏

ū
, (8.62)

where both u
𝜏

and ū can be used either in a dimensional or nondimensional form to obtain the
above ratio, as long as the same scales are employed in nondimensionalising the velocities.
Equation (8.62) may be plotted against a nondimensional normal distance from the wall. The
non-dimensional distance is generally calculated as

y+ =
yu
𝜏

𝜈

(8.63)

or, in nondimensional form
y+ = Rey∗u∗

𝜏
. (8.64)

Figure 8.3 shows the variation of u+ against the logarithmic nondimensional distance
y+. This figure shows the experimental data, structured and unstructured mesh results for
the channel flow problem. As seen, only the SA model is used in the flow calculations. The
first node of the structured mesh was placed at a distance of 0.005 and the unstructured
mesh was placed roughly around 0.01. As seen, the logarithmic representation of the time
averaged velocity variation is close to the experimental data of Laufer (1951). The differences
between the structured and unstructured meshes are attributed to the larger element size of
the unstructured mesh used close to the wall.

Example 8.4.2 Nonisothermal flow in a rectangular channel
An extension of the channel flow to study the effect of constant wall temperature condi-

tions is straightforward. The solid walls of the channel may be assumed to be at a constant
higher temperature than that of the inlet fluid temperature. We leave this study of developing
temperature profile as an exercise for the readers. We provide here, a channel flow problem
with wall heat flux boundary conditions.

The problem definition is similar to the isothermal problem discussed in the previous
section. The differences here are that the Reynolds number is defined based on the full height
of the channel and the bottom wall of the channel is subjected to a constant heat flux boundary
condition entering the channel. All other flow boundary conditions are identical to the one
discussed in the previous section, except that the fluid approaching the channel inlet is at a
reference atmospheric temperature. The top wall is assumed to be adiabatic and zero heat
flux is assumed at the exit. Since the boundary condition applied is a flux condition, the
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nondimensional scaling used for temperature in this problem is redefined as

T∗ =
T − T∞

q̄L
k

, (8.65)

where T∞ is the reference temperature of the fluid approaching the inlet of the channel, q̄
is a reference constant heat flux applied, L is the height of the channel and k is the thermal
conductivity of the fluid. The nondimensional heat flux applied is q∗ = q∕q̄ assumed to be
unity. This nondimensional scale will result in a local Nusselt number relation of (refer to
Chapter 7, Section 7.4.1)

Nu = 1
T∗ . (8.66)

Figure 8.4 shows the flat turbulent velocity profile and other variable distributions close
the exit of the channel. To obtain a fully developed flow, the length of the channel needs to be
much longer than the one used in this study. To avoid very long domains, periodic boundary
conditions, in which the outlet solution is continuously fed into the inlet, are often preferred
(Patankar 1980). Figure 8.5 shows the local Nusselt number distribution along the length
of the channel. The Nusselt number is very large at the entrance of the channel due to very
small wall temperature that is close to the reference temperature of approaching fluid, T∞. As
the distance increases, the Nusselt number value drops exponentially and reaches an almost
constant valve, indicating that the temperature is approaching a fully developed value.

Example 8.4.3 Isothermal flow over a backward-facing step
Another standard test case, commonly employed for testing turbulent incompressible flow

models at moderate Reynolds numbers, is the recirculating flow past a backward facing

(a) (b)

(c) (d)

Figure 8.4 Forced convective turbulent flow and heat transfer in a rectangular channel. Hor-
izontal velocity, SA model turbulent variable and temperature distribution, Re = 5000, Pr =
0.71. (a) Velocity vectors; (b) Horizontal velocity; (c) SA model variable; (d) Temperature.
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Figure 8.5 Forced convective turbulent flow and heat transfer in a rectangular channel. Local
Nusselt number distribution along the hot wall, Re = 5000, Pr = 0.71.

step. Unlike the channel flow problem, the model here has to handle the recirculation region
immediately downstream of the step. The definition of the problem is shown in Figure 8.6. The
characteristic dimension of the problem is the step height. All other dimensions are defined
with respect to the characteristic dimension. The inlet is located at a distance of 4 times the
step height from the step. The inlet channel height is two times the step height. The total length
of the channel is 40 times the step height.

The inlet velocity profile is obtained from experimental data reported by Denham et al.
(1975). No slip conditions are applied at the solid walls. For the one-equation and two-
equation models the inlet 𝜅 and 𝜀 profiles are obtained by solving a channel flow problem. For
the SA model, a fixed value of 0.05 for the turbulent scalar variable at inlet was prescribed. On
the walls, 𝜅 was assumed to be equal to zero. The wall conditions for 𝜀 are the same as in the
previous problem. The scalar variable of the SA model was also assumed to be zero on the walls.

Both structured and unstructured meshes were employed in the calculation. Figure 8.7
shows the comparison of velocity profiles against the experimental data of Denham et al.

u1 = u2 = 0 p = 0

L

2L

4L 36L

experiment u1 and u2  = 0

Figure 8.6 Turbulent flow past a two-dimensional backward facing step. Problem definition.
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Figure 8.7 Incompressible turbulent flow past a backward-facing step. Velocity profiles at
various downstream sections at Re = 3025 (a) One-equation model; (b) SA model; (c) Two-
equation model.
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Figure 8.8 Turbulent incompressible flow past a backward-facing step. Unstructured mesh
used. Number of elements: 297 054; Number of nodes: 65 372.

(1975). Among the different models, the SA-model seems to predict the recirculation more
accurately. However, some differences between the experiment and the present SA model
predictions are noticed along the top wall. Figures 8.8 and 8.9 show the backward facing
problem demonstration in three dimensions. Figure 8.8 shows details of the unstructured mesh
close to the recirculation zone. As seen, the mesh is refined along the walls to capture high
gradients.

Example 8.4.4 Unsteady RANS (URANS) flow calculation past a circular cylinder
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Figure 8.9 Turbulent incompressible flow past a backward facing step. Comparison of the
velocity profile in the recirculation region, Re = 3025.
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Although the Reynolds averaged equations, discussed in the previous sections, are time-
averaged, these equations may be used in carrying out approximate transient calculations
if the transient time scales are really large compared with the turbulence scales. One such
problem is studied here. The problem considered is unsteady turbulent flow past a circular
cylinder.

The Spalart-Allmaras model with the matrix free CBS-AC scheme is used here to solve
three-dimensional turbulent flow past a stationary circular cylinder at a Reynolds number of
10 000. Both the top and bottom sides and inlet are placed at a distance of 4 times the diameter
of the cylinder from the center of the cylinder. The exit of the domain is assumed at a distance of
10 times the diameter of the cylinder from the center of the cylinder. The length of the cylinder
used is 0.5 times the diameter and the front and back surfaces of the domain are assumed to be
symmetric (no flow). Uniform velocity conditions in the x1 direction are assumed at the inlet.
The size of the real time step was set at 0.05. The turbulent scalar variable (modified turbulent
eddy kinematic viscosity) was assumed to be 10−8 at the inlet for the Spalart-Allmaras model.
On the top and bottom sides, slip conditions were assumed and no turbulence quantity was
prescribed. On the cylinder walls, no slip conditions were assumed and the turbulent scalar
variable of the Spalart-Allmaras model was assumed to be zero.

The dual time-stepping method was employed (see Section 7.7) with the matrix free CBS-
AC scheme. The local time step depends on each element size within every real time step. The
two different meshes used to test the flow past a three-dimensional circular cylinder problem
are shown in Figure 8.10. The fully unstructured mesh (mesh1) comprises 606 769 tetrahedral
elements and 115 035 nodes. The hybrid mesh (mesh2) consists of three structured layers close
to the cylinder surface and unstructured grid away from the wall. Figure 8.10(d) shows the
mesh in the vicinity of the cylinder. Both meshes are refined close to the wall and in the wake
region to predict the vortex shedding.

Figure 8.11 shows the time variation of the drag coefficient, lift coefficient and pressure
coefficient using the unstructured and hybrid meshes. The average drag coefficient obtained
is 1.311 from the unstructured mesh1. The Strouhal number is 0.152 (St = fL∕u∞, f is the
frequency of vortex shedding). The amplitude of lift coefficient is between 1 and −1. The
averaged drag coefficient obtained by the hybrid mesh2 is 1.239, which is more accurate
than the result of mesh1 in comparison with experimental data. The Strouhal number here is
around 0.144.

In Figure 8.11(c), the pressure coefficient values at Re=10 000 are compared with two
different turbulence procedures, one is the available LES modeling data (Lu et al., 1997) and
another is the numerical data from non-linear eddy viscosity modeling (Lu et al., 2003a,b).
As seen, the time-averaged pressure distribution on the hybrid mesh2 is in good agreement
with LES and nonlinear models, except near the stagnation point. This may be attributed to
turbulence modeling accuracy (Tutar and Hold, 2001).

In Figure 8.12 and Figure 8.13 the contours of horizontal velocity component, vertical
velocity component, pressure and modified turbulent eddy kinematic viscosity obtained from
mesh1 and mesh2 respectively are shown. Both results are almost identical. As seen, the origin
of the vortex street shifts between the areas above and below the central axis. The behavior
qualitatively confirms the periodic vortex shedding phenomenon.



TURBULENT FLOW AND HEAT TRANSFER 271

(a) (b)

(c) (d)

Figure 8.10 Turbulent incompressible flow over a circular cylinder at Re=10 000 using
the matrix free CBS-AC scheme with the Spalart-Allmaras model: (a) unstructured mesh1
(Elements: 606 769, Nodes: 115 035); (b) unstructured mesh1 of close to solid wall (0.038
distance); (c) hybrid mesh2 (Elements: 489 463, Nodes: 88 964); (d) hybrid mesh2 of close to
solid wall (0.01 distance).
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Figure 8.11 Turbulent incompressible flow over a circular cylinder at Re=10 000 using the
matrix free CBS-AC scheme with the Spalart-Allmaras model: (a) drag coefficient variation
with respect to real time; (b) lift coefficient variation with respect to real time; (c) pressure
coefficient distribution along the cylinder surface at real time = 100.

8.5 Buoyancy-driven Flow

In this section, the Spalrat-Allmaras (SA) model is used to solve buoyancy-driven natural
convection inside a square enclosure. The nondimensional form of the SA model for natural
convection may be obtained by replacing Re in Equation (8.55) with 1∕Pr. The remaining
equations are identical to those of laminar natural convection as discussed in Chapter 7,
except that the momentum and energy equations should include additional turbulence terms
to compute turbulent flows.

Example 8.5.1 Natural convection in a square enclosure
The problem definition is similar to the one discussed in Section 7.11.2. The difference

here is that turbulence is also modeled. No slip conditions are enforced on all the four walls
of the cavity. The left vertical wall of the cavity is assume to be at a higher temperature than
that of the right vertical wall. Both the top and bottom walls are assumed to be insulated.
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Figure 8.12 Turbulent incompressible flow over a circular cylinder at Re = 10 000 using the
matrix free CBS-AC scheme with the Spalart-Allmaras model on unstructured mesh1 (up) and
hybrid mesh2 (down). Real nondimensional time = 100. (a) ū1min

= −0.526, ū1max
= 1.928;

(b) ū3min
= −1.223, ū3max

= 1.437; (c) pmin = −1.090, pmax = 0.743; (d) ū1min
= −1.135,

ū1max
= 1.973; (e) ū3min

= −1.074, ū3max
= 1.136; (f) pmin = −0.967, pmax = 0.704.

The SA model used here needs at least one nonzero boundary to induce turbulence. For
example, in forced convective flow problems a small nonzero value was always prescribed
at the inlet to allow the variable to propagate into the domain and induce turbulence via
vorticity. In the natural convection problem studied here, all the solid walls of the cavity can
only be prescribed with a zero value for the SA turbulence parameter 𝜈̂. Thus, we need to find
a nonboundary location to prescribe a small nonzero value for this variable. Here, we follow
a simple physics based procedure. At higher Rayleigh numbers, the flow at the center of the
closed cavity is stratified and the flow is normally confined to the walls of the cavity. Due to this
reason, the point at the center of the domain is used to prescribe a very small nonzero value
of 0.001. This allows the turbulence variable to grow and distribute throughout the domain
depending on the vorticity generation. There may be alternative ways of developing the SA
model such as using a trip length, which needs to be investigated further.
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(a) ˆ contoursν (b) ˆ contoursν

Figure 8.13 Turbulent incompressible flow over a circular cylinder at Re = 10 000 using the
matrix free CBS-AC scheme with the Spalart-Allmaras model on unstructured mesh1 (left) and
hybrid mesh2 (right). Real nondimensional time = 100. (a) 𝜈̂min(red) = 0.0, 𝜈̂max = 368.329;
(b) 𝜈̂min(red) = 0.0, 𝜈̂max = 349.945.

The mesh used in the calculation is shown in Figure 8.14. This is a nonuniform structured
mesh of 100x100 size. As seen the mesh is finely refined close to the walls of the cavity in order
to capture the high temperature and velocity gradients.

Figures 8.15 and 8.16 show the results obtained for a buoyancy-driven flow in a square
cavity using the CBS scheme and SA model. As seen in the vector plots of Figure 8.15 the

Figure 8.14 Turbulent natural convection in a square cavity. Structured finite element mesh.
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(a) (b) (c)

Figure 8.15 Turbulent natural convection in a square cavity. Velocity vectors. (a) Ra = 108,
(b) Ra = 109; (c) Ra = 1010.

flow is generally confined to the walls of the cavity. Figure 8.16 shows the stream traces,
temperature and SA turbulent variable contours. The stream traces show very much a hori-
zontal flow pattern except near the top left and bottom right corners and at the center line.
The temperature contours clearly show the stratification with almost no temperature variation
along a horizontal plane. This is an expected pattern. The SA turbulent variable distribution is
symmetric and a strong variation in the variable is shown close to the top-left and bottom-right
corners of the cavity.

8.6 Other Methods for Turbulence

8.6.1 Large Eddy Simulation(LES)

The idea of LES is developed based on splitting large-scale motions from small scales using
a filtering operation such as

𝜙(x) = ∫Ω f (x′)G(x, x′)dx′. (8.67)

If the variables of the incompressible Newtonian equations are subjected to the above
filtering operation, we get

𝜕ui

𝜕xi
= 0 (8.68)

and

𝜕ui

𝜕t
+ 𝜕

𝜕xj
(uiuj) = −1

𝜌

𝜕p

𝜕xi
+
𝜕𝜏ij

𝜕xj
+
𝜕𝜏ij

𝜕xj

SGS

, (8.69)

where

𝜏
SGS
ij = uiuj − uiuj. (8.70)
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

Figure 8.16 Turbulent natural convection in a square cavity. Stream traces (top), temperature
contours (middle) and SA turbulence variable 𝜈̂ at different Rayleigh numbers. Average
Nusselt numbers at Ra = 108 is 30.67; at Ra = 108 is 55.21 and at Ra = 1010 is 103.84.
(a) Ra = 108, Stream traces; (b) Ra = 109, Stream traces; (c) Ra = 1010, Stream traces; (d)
Ra = 108, temperature; (e) Ra = 109, temperature; (f) Ra = 1010, temperature; (g) Ra = 108,
turbulence variable; (h) Ra = 109, turbulence variable; (i) Ra = 1010, turbulence variable.
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𝜏
SGS in the above equation is generally modeled using various subgrid scale (SGS) models. The

standard SGS models (Smagorinsky, 1963), dynamic models (Germano, 1992) and nonlinear
models are just a few that could be mentioned. This is a vast area of research and difficult to
cover all the theory behind these models in a single chapter. For the sake of completeness,
we provide the standard SGS model below. The SGS stress of Equation (8.70) is represented
exactly as Equation (8.13). However, the eddy viscosity is modeled differently here.

8.6.1.1 Standard SGS Model

The eddy viscosity here is defined as

𝜈T = (CΔ)2
𝜔̄. (8.71)

The most widely used eddy-viscosity model was proposed by the meteorologist Smagorin-
sky (1963). Smagorinsky was simulating a two-layer quasigeotrophic model in order to rep-
resent large (synoptic) scale atmospheric motions. He introduced an eddy viscosity that was
supposed to model three-dimensional turbulence in the subgrid scales.

In Smagorinsky’s model, a sort of mixing-length assumption is made, in which the eddy
viscosity is assumed to be proportional to the subgrid scale characteristic length Δ and to a
characteristic turbulent velocity based on the second invariant of the filtered field deformation
tensor (i.e. strain-rate tensor). In other words, the well-known Smagorinsky’s model, where the
SGS time scaling, 𝜔̄, in Equation (8.71) is set as the magnitude of the local resolved strain-rate
tensor, namely

𝜔̄ = |S̄| = (2S̄ijS̄ij)
1∕2 (8.72)

C = Cs. (8.73)

If one assumes that the cut off wave number in Fourier space, kc = 𝜋∕Δ, lies within a
k−5∕3 Kolmogorov cascade E(k) = CK𝜖

2∕3k−5∕3 (where CK is the Kolmogorov constant), one
can adjust the constant Cs so that the ensemble-averaged subgrid kinetic energy dissipation is
identical to 𝜖. An approximate value for the constant is

Cs ≈
1
𝜋

(
3CK

2

)−3∕4

. (8.74)

For a Kolmogorov constant of 1.4, which is obtained by measurements in the atmosphere
this yields Cs ≈ 0.18. Most workers prefer Cs = 0.1−a value for which Smagorinsky’s model
behaves reasonably well for free-shear flows and for channel flow. However, the Smagorinsky
constant Cs is required to have a sensible value to avoid excessive damping of resolved
structures. The grid size Δ, as an indication of characteristic length scale separates large and
small scale eddies from each other and is considered to be an average cell size. It is calculated
for two-dimensional elements as follows:

Δ = f (ΔxΔy)1∕2, (8.75)

Despite increasing interest in developing more advanced subgrid scale stress models,
Smagorinsky’s model is still successfully used (Nakayama and Vengadesan 2002).
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8.7 Detached Eddy Simulation (DES) and Monotonically
Integrated LES (MILES)

The Large Eddy Simulation (LES), despite using fewer empirical relations, needs a higher
computational overhead than the RANS models. Spalart et al. (1997) suggested an approach
which attempts to combine the best features of RANS and LES. This approach is referred to
as the Detached Eddy Simulation (DES). This hybrid method reduces to RANS near solid
boundaries and LES away from the wall. A minor modification to the SA model presented
previously achieves this. Such a model will take advantage of RANS in the thin shear layers
close to the walls where RANS models are calibrated. Away from the wall in the separated
regions large eddies are resolved.

The model used will be the same as the one in Section 8.2.2 except that the shortest distance
to the wall, y, is modified in such a way that the model calculates a RANS eddy viscosity close
to the walls and the SGS eddy viscosity away from the wall. The modification is simple and
given as

ỹ = min(y, CDESΔ). (8.76)

Δ has the same meaning as discussed in the previous section. The constant CDES was
calibrated for homogeneous turbulence as 0.65. It is now possible to see that close to the walls
Δ is larger than y and the model becomes a RANS model. However, away from the wall the
model becomes one for calculating the SGS eddy viscosity (Constantinescu et al. 2003).

The MILES approach (Boris et al. 1992; Rider and Margolin 2003; Tucker 2004) is very
similar to the DES approach but in the place of the LES eddy viscosity only the numerical
diffusion viscosity is added. This alternative approach to DES has been the subject of very
recent research and the people using this method believe that MILES eliminates some of the
drawbacks of the DES approach. However, further investigations and results are necessary to
further enhance the understanding of the DES and MILES approaches.

8.8 Direct Numerical Simulation (DNS)

The direct numerical simulation method can be used to solve all turbulence length scales
including Kolmogorov length scale given by Equation (8.1). The standard Navier-Stokes
equation without any modeling is adequate to compute all turbulence scales. The difficulty
here is the prohibitively expensive computing cost required to carry out a calculation even
at a very small Reynolds number. The enhanced computational over head is mainly due to
the extremely fine mesh necessary to carry out the calculation and the need for higher order
accurate numerical schemes. The number of nodes necessary to resolve all scales in a three
dimensional flow problem may be written in terms of the Reynolds number as (based on the
assumption that the Kolmogorov length scales are solved)

No.Nodes = Re9∕4
. (8.77)
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Similarly the time step in a calculation is limited by the Kolmogorov time scale in
Equation (8.3). The time-step size calculated from the time scale is (Kim et al. 1987)

Δt = 0.003H

uT

√
(ReT )

, (8.78)

where uT is the shear velocity and ReT = uTH∕2𝜈 is the turbulence Reynolds number (Kim
et al. 1987).

Although DNS can resolve all turbulence length scales, the currently available computing
facilities allow only very small Reynolds number turbulent flow calculations.

8.9 Summary

This chapter provided an introduction to using the finite element method to solve turbulent
flow and heat transfer problems. The intention here was not to provide an in-depth analy-
sis of turbulent heat transfer, rather to provide the basics of implementation. The problems
provided include isothermal two- and three-dimensional flow problems and nonisothermal
problems. Within nonisothermal problems, both forced and natural convection problems were
treated. Although mainly the Spalart-Allmaras model was highlighted, other Reynolds Aver-
aged Navier-Stokes (RANS) model implementation follows a similar route.
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9

Heat Exchangers

9.1 Introduction

A heat exchanger is a device built for heat transfer from one medium to another (generally
fluids). The compact heat exchangers (CHE) are often defined as heat exchangers with large
heat transfer surface area to volume ratio. In general, liquid heat exchangers with>400 m2/m3,
and, gas heat exchangers with >700 m2/m3 are referred to as compact heat exchangers. The
total heat transfer between two fluids in a heat exchanger may be written as

Q = UAΔT , (9.1)

where Q is the total heat transfer, U is the overall heat transfer coefficient, A is the heat transfer
area and ΔT is the average temperature difference between hot and cold fluids. Figure 9.1
shows the cross-sectional view along the length of a parallel flow tubular heat exchanger. As
seen, the hot fluid is allowed to flow through the inner tube and the cooling fluid is allowed to
pass through the outer tube. The heat transfer mechanism between the hot and cold fluid, in
this simple heat exchanger, involves convection on the hot fluid side, conduction through the
partitioning wall between the fluids and convection on the cold fluid side. Thus, the total heat
transfer across the partitioning wall between the hot and cold fluids may be written as

Q = Ahf
hh(Thf

− Ths
) = As

ks

𝛿

(Ths
− Tcs

) = Acf
hc(Tcs

− Tcf
), (9.2)

where h is the heat transfer coefficient, k is the thermal conductivity and 𝛿 is the thickness of
the partitioning wall between the two fluids. The subscripts h, c, f and s represent hot, cold,
fluid and solid respectively. As shown in Equation (9.2), the heat transfer takes place via three
zones. The first is a convective heat transfer zone between the hot fluid and the hot side of the

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



282 HEAT EXCHANGERS

o

Hot

T

T

Cold
T

Thi

c

h

i

co

Figure 9.1 Schematic diagram of a parallel flow, tubular heat exchanger.

partitioning wall. From this zone, the average temperature difference between the hot fluid
and the wall may be written as (refer to Equation (9.2)),

(Thf
− Ths

) = Q
Ahf

hh
. (9.3)

The average temperature difference in the second and third zones can also be determined
in a similar fashion to that of the Equation (9.3) as

(Ths
− Tcs

) = 𝛿Q
Asks

(9.4)

and

(Tcs
− Tcf

) = Q
Acf

hc
(9.5)

respectively. If we add all the average temperature differences in the three zones and simplify,
we obtain:

Thf
− Tcf

= Q
Ahf

hh
+ Q

Asks

𝛿

+ Q
Acf

hc
. (9.6)

Rearranging,

Q = 1[
1

Ahf
hh

+ 𝛿

Asks
+ 1

Acf
hc

] (Thf
− Tcf

). (9.7)

Comparing with Equation (9.1), we have

UA = 1[
1

Ahf
hh

+ 𝛿

Asks
+ 1

Acf
hc

] . (9.8)

The above equation clearly is simple and easy to use to calculate the total heat transfer, if
the overall heat transfer coefficient and average temperature difference between the hot and
cold fluids can be determined. However, for a given heat transfer load on complex geometries,
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the above relationship will be of little or no use and often more complex relationships are
essential. Before discussing the numerical modeling options, the following section provides
two other commonly employed heat exchanger design methods.

9.2 LMTD and Effectiveness-NTU Methods

Once again, we use the parallel flow heat exchanger shown in Figure 9.1 as an example for
demonstrating the so-called logarithmic mean temperature and effectiveness-NTU methods.
It is important to remark here that an exhaustive analysis of these methods is not within the
scope of this chapter. The readers are referred to dedicated heat exchanger books for a detailed
analysis (Kays and London 1998).

9.2.1 LMTD Method

Equation (9.7) makes no reference to inlet or exit temperature of either of the fluids. Often,
heat exchanger design depends on the exit temperature requirement of the hot fluid. In order to
incorporate the inlet and exit temperatures of the fluids in a design we should consider a part of
the parallel flow heat exchanger, as shown in Figure 9.2. In this figure, an infinitesimal control
volume is considered. The fraction of heat transfer taking place within this control volume
between the hot and cold fluids is dQ. The hot fluid temperature is decreased by dTh and the
cold fluid temperature is increased by dTc as the fluid passes through the control volume. The
fractional heat transfer dQ may be expressed as (refer to Equation (9.1))

dQ = UΔTdA. (9.9)

The fraction of heat transfer may also be expressed in terms of fluid properties as

dQ = −ṁhcph
dTh = ṁccpc

dTc, (9.10)

where ṁ is the mass flow rate in kg∕s and cp is the specific heat at constant pressure. Integration
of the above equation between the inlet and exit of the heat exchanger gives

Q = −ṁhcph
(Tho

− Thi
) = ṁccpc

(Tco
− Tci

), (9.11)

TCold

Hot

Cold

T

dQ

T +dThh h

cT T +dT

T +dTc

cc

cc

Figure 9.2 Local heat exchange in a parallel flow tubular heat exchanger.
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where subscripts i and o refer to inlet and outlet (exit) respectively. From Equation (9.10),
the change in incremental temperature difference between the hot and cold fluid may be
established as

dTh − dTc = d(ΔT) = −dQ

(
1

ṁhcph

+ 1
ṁccpc

)
. (9.12)

Substituting dQ from Equation (9.9), rearranging and integrating between inlet and exit,
that is,

∫
out

in

d(ΔT)
ΔT

= −U

(
1

ṁhcph

+ 1
ṁccpc

)
∫

out

in
dA. (9.13)

Integration gives

ln

(
ΔTout

ΔTin

)
= −UA

(
1

ṁhcph

+ 1
ṁccpc

)
, (9.14)

where ΔTout = Tho
− Tco

and ΔTin = Thi
− Tci

. Substituting Equation (9.11) into Equa-
tion (9.14) gives

ln

(
ΔTout

ΔTin

)
= −UA

(Thi
− Tho

Q
+

Tco
− Tci

Q

)
. (9.15)

This can be rearranged to obtain

ln

(
ΔTout

ΔTin

)
= −UA

Q
((Thi

− Tci
) − (Tho

− Tco
)) = −UA

Q
(ΔTin − ΔTout) (9.16)

or

Q = UAΔTm = UA
ΔTout − ΔTin

ln
(
ΔTout∕ΔTin

) , (9.17)

where

ΔTm =
ΔTout − ΔTin

ln
(
ΔTout∕ΔTin

) . (9.18)

ΔTm is referred to as the Log Mean Temperature Difference (LMTD). The LMTD method
is suitable for simple heat exchangers, such as the one shown in Figure 9.1, in which the inlet
and exit temperatures are known. If the configuration of the solid structure, LMTD and overall
heat transfer coefficient are known a priori, then Equation (9.17) can be used to determine
the surface area. For complex heat exchanger structures, and, in cases where the mentioned
parameters are not known, the LMTD method may not be a suitable method for design. This
is especially true for modern day compact heat exchangers which have restrictions on the
maximum space they can occupy.
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9.2.2 Effectiveness – NTU Method

Even in a simple heat exchanger, if the exit temperatures are not known, the LMTD method is
not applicable in computing the total heat transfer. For cases where only the inlet temperatures
are known (this is often the case), the so-called Effectiveness Method is often used. The
Effectiveness is defined as the ratio between the actual heat transfer and the maximum possible
heat transfer. The maximum possible heat transfer is proportional to the maximum possible
temperature difference, (Thi

− Tci
). In Equation (9.11), if ṁccpc

< ṁhcph
, then the cold fluid

must experience a higher temperature difference than the hot fluid in order to satisfy the heat
balance. If the opposite is true, the hot fluid experiences the higher temperature difference.
Thus, the maximum possible heat transfer may be expressed as

Qmax =
(
ṁcp

)
min

(Thi
− Tci

). (9.19)

Thus, the Effectiveness may be defined as

𝜖 = Q
Qmax

=
ṁhcph

(Thi
− Tho

)(
ṁcp

)
min

(Thi
− Tci

)
=

ṁccpc
(Tci

− Tco
)(

ṁcp

)
min

(Thi
− Tci

)
. (9.20)

If we assume (ṁcp)min = ṁhcph
, then

𝜖 =
Thi

− Tho

Thi
− Tci

. (9.21)

From Equation (9.14), we have (with (ṁcp)min = ṁhcph
)

ln

(
ΔTout

ΔTin

)
= ln

(
Tho

− Tco

Thi
− Tci

)
= − UA(

ṁcp

)
min

(
1 +

(
ṁcp

)
min(

ṁcp

)
max

)
. (9.22)

In the above equation, UA(
ṁcp

)
min

, is referred to as the number of transfer units or NTU. From

Equation (9.11):

ṁhcph
(Thi

− Tho
)

ṁccpc
(Tci

− Tco
)
= 1 (9.23)

or

ṁhcph

ṁccpc

=

(
ṁcp

)
min(

ṁcp

)
max

=
Tci

− Tco

Thi
− Tho

. (9.24)

Rearranging the above equation, we obtain

Tho
− Tco

Thi
− Tci

= 1 − 𝜖

(
1 −

(
ṁcp

)
min(

ṁcp

)
max

)
. (9.25)
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Substituting the above relation into Equation (9.22) and rearranging

𝜖 =
1 − exp

[
−NTU

(
1 +

(
ṁcp

)
min(

ṁcp
)

max

)]

1 −
(
ṁcp

)
min(

ṁcp
)

max

. (9.26)

This result is true for
(
ṁcp

)
min

= ṁhcph
. It is thus clear that the Effectiveness-NTU method

can be used for cases in which the exit temperature distribution is not known a priori. How-
ever, the overall heat transfer coefficient needs to be determined. For simple configurations,
determining the overall heat transfer coefficient is easy (see Equation (9.8)). For complex
geometries, however, computational and experimental methods are essential. For compact
heat exchanger configurations, the experimental results are available in terms of both the
friction factor and the so-called Colburn j factor. The Colburn j factor is defined as

j = StPr2∕3, (9.27)

where St is the Stanton number (h∕𝜌vmaxcp). Here, vmax is the maximum velocity. Once the
distributions of friction and j factors against Reynolds number are available, the heat transfer
coefficients can be obtained for use in the analysis using the LMTD or Effectiveness-NTU
method. Such an analysis of compact heat exchangers is limited to the available experimental
data. Thus, this method may not be completely useful in developing new compact designs.
During the development of new compact designs, the computational approaches can help to
reduce the number of prototypes necessary to carry out tests. In the following section, two
different finite element approaches are explained.

9.3 Computational Approaches

The finite element method is a useful tool to refine a heat exchanger design. Although the
accuracy of computational methods at high Reynolds numbers greatly depends on the tur-
bulence model employed, computational methods can provide approximate qualitative and
quantitative results of practical significance. Such results will be crucial in cutting down costs
and will be of great use in designing heat exchangers with important constraints such as space
occupied.

9.3.1 System Analysis

As discussed in the previous section, LMTD or Effectiveness-NTU method may be used
either in simple heat exchanger configurations or when experimental friction and j factors
are available (Holman 1989; Incropera and Dewitt 1990). The LMTD method requires the
exit temperatures of the hot and cold fluids. These temperatures are often not available. In
order to use the LMTD method for designing a heat exchanger, we have to calculate the outlet
temperatures of both the hot fluid and the cooling fluid for the given inlet temperatures. The
overall heat transfer coefficient may be a constant or could vary along the heat exchanger
length, depending on the heat transfer area, material properties and heat transfer coefficient. In
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Figure 9.3 Schematic diagram of a shell and tube heat exchanger.

this section, we provide a simple system analysis procedure that may be employed to determine
the temperature distribution in a heat exchanger.

For the purpose of illustration let us consider a shell and tube heat exchanger as shown in
Figure 9.3 (Ravikumar et al. 1984). In this type of heat exchanger, the hot fluid flows through
the tube and the tube is passed through the shell. The cooling fluid is pumped into the shell
and thus the hot fluid in the tube is cooled.

Let us divide the given heat exchanger into eight cells as shown in Figure 9.4. It is assumed
that both the hot and cold fluids will travel through the cell at least once. Let the overall heat
transfer coefficient be U and the surface area of the tubes be A. These are assumed to be
constant throughout the heat exchanger within each element. Let us assume that the hot and
cold fluid temperatures vary linearly along the flow.

Now, the heat leaving node 1 and entering element 1 (Figure 9.4b) is

Q1 = W1T1, (9.28)

where W1 is 𝜌cp times the volume flow rate. The heat leaving element 1 and entering node 2
is as follows (the energy balance is considered with respect to the element; heat entering is
taken as being positive and leaving the element is taken as negative):

Q2 = W1T1 − UA(T1,2 − T11,12), (9.29)

where

T1,2 =
T1 + T2

2
and T11,12 =

T11 + T12

2
. (9.30)

Similarly, the heat leaving node 11 and entering element 1 is

Q11 = W2T11 (9.31)

and the heat leaving element 1 and entering node 12 is

Q12 = W2T11 − UA(T11,12 − T1,2). (9.32)
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Figure 9.4 (a) Simplified model of a heat exchanger; (b) a single element within the mesh.

In this example the heat transfer between the fluids is given by UA(T11,12 − T1,2) whereas
some other models use UA(T12 − T2). The assumption in the present model is more logical in
view of the continuous variation (linear in our case) of the temperature difference between the
hot and cold fluids.

Equations (9.28), (9.29), (9.31) and (9.32) can be combined and recast in matrix form to
give the element characteristics, that is,

⎡⎢⎢⎢⎣
W1 0.0 0.0 0.0

W1 − C −C C C
0.0 0.0 W2 0.0
C C W2 − C −C

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

T1
T2
T11
T12

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

Q1
Q2
Q11
Q12

⎫⎪⎬⎪⎭
, (9.33)

where C = UA
2

.
Assembly of the element characteristics for elements 1 to 8 (see Figure 9.4(a)) will result

in the global stiffness matrix in which Q1, and Q10 are known (in other words T1, and T10
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are known). The solution of the remaining equations will give the temperature distribution
for both the fluids, that is, T2, T3, T4, T5, T6, T7, T8 and T9 for the incoming hot fluid and
T11, T12, T13, T14, T15, T16, T17 and T18 for the coolant. With the known exit temperatures T9
and T18, the LMTD method can be used as the design method.

9.3.2 Finite Element Solution to Differential Equations

The system analysis discussed in the previous section is simple but it has many restrictions. For
simple geometries, where the assumptions hold, the system analysis is one of the best ways of
obtaining the temperature distributions. The system analysis allows little manoeuvre to model
complex heat exchanger passages. Thus, a full numerical simulation becomes essential for
such complex geometries. A numerical simulation procedure may either be used in modeling
a whole heat exchanger (Ismail et al. 2009, 2010; Nithiarasu 2008) or used to analyse a part
of a heat exchanger (Atkinson et al. 1998; Ciofalo et al. 1996; Islamoglu and Parmaksizoglu
2004; Jang and Chen 1997; Saidi and Sunden 2001). The governing equations for a heat
exchanger analysis are normally the incompressible Navier-Stokes equations (including the
energy equation). Since the normal operating Reynolds numbers of heat exchangers are in the
moderate range, modeling turbulence may be required. All the governing equations should be
discretized using a numerical method to obtain an approximate solution. Such a finite element
discretization of the equations, both spatial and temporal, are presented in Chapters 3 and 7.
All the different options available for modeling turbulence in any heat transfer equipment are
discussed in detail in Chapter 8. In the following sections, a few examples of single phase flow
and heat transfer in heat exchangers are presented.

9.4 Analysis of Heat Exchanger Passages

As mentioned previously, heat exchanger parts or passages may be numerically analyzed to
determine the influence of various parameters. For example, Figure 9.5 shows the contours
of steady-state flow variables in a corrugated compact heat exchanger passage. With a forced
flow situation, the drag force due to the changes in passage shape can be investigated without
including the temperature. The figure shown is a result of a turbulent flow calculation using a
one-equation k − l model as discussed in Chapter 8. The inlet velocity in this case is assumed
to be uniform and the exit pressure is constant. The contours of all the four variables are plotted
in this figure. It may also be useful to plot stream lines to better understand the recirculation
regions. It is often the quantitative results, such as friction and j factors, which are sought
in a heat exchanger passage. Although the quantitative results are of ultimate interest, the
qualitative results, such as contour plots, help a researcher to make sure that the boundary
conditions are rightly applied and the variable is sensibly distributed. The following example
of flow through another corrugated passage gives a more elaborate flow and thermal analysis.

Example 9.4.1 Corrugated compact heat exchanger passage
Figure 9.6 shows a corrugated geometry considered for the finite element calculation. This

is one of the common geometrical shapes employed in compact heat exchangers (Islamoglu
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(a) (b)

(c) (d)

Figure 9.5 Flow through a corrugated compact heat exchanger passage. Contours of hori-
zontal velocity component, vertical velocity component, pressure and turbulent kinetic energy
at Re = 8280. (a) Horizontal velocity; (b) Vertical velocity; (c) Pressure; (d) Turbulent kinetic
energy.

and Parmaksizoglu 2004). The results obtained can be easily generalized to other similar
parts of the channel to understand the flow and heat transfer pattern. This geometry can
be studied using both two and three-dimensional approximations depending on the accuracy
requirement and conditions. The boundary conditions used include uniform velocity at inlet
(parallel to the walls), no-slip conditions on the walls, constant pressure at the exit and the

wall
Uniform
velocity

20°

L

L

5.5L

High temperature

Figure 9.6 Flow through a corrugated compact heat exchanger passage. Actual passage and
the simplified passage used in the analysis.
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(a) (b)

(c) (d)

Figure 9.7 Flow through a corrugated compact heat exchanger passage. Mesh, stream
lines, pressure and temperature at Re = 2000. (a) Mesh; (b) Stream lines; (c) Pressure;
(d) Temperature.

wall temperature higher than that of the inlet fluid temperature. The Prandtl number used is
0.72 and the equations used are nondimensionalized using standard scales (see Chapter 7).
Figure 9.7(a) shows the unstructured finite element mesh used. Although the mesh selected is
not fully converged for all Reynolds numbers, this is sufficient to demonstrate the procedure.
A reasonably converged mesh is essential for practical design and analysis calculations. The
results are generated for different Reynolds numbers and are shown in Figures 9.7, 9.8 and
9.10 using one-equation, Spalart-Allmaras turbulence model (see Chapter 8).

The sample contour plots in Figure 9.7 and 9.8 are given here to make sure that the results
show an anticipated pattern. The stream lines in Figures 9.7(b) and 9.8(b) clearly show a
recirculation immediately after the turn along the top wall. A small recirculating pattern is
also visible at the bottom turn. Since the flow separation takes place ahead of the turn along the
bottom surface, the flow slows down towards the turn. Thus, the heat transfer rate is expected to

(a) (b)

Figure 9.8 Flow through a corrugated compact heat exchanger passage. Mesh and stream
lines at Re = 5000. (a) Mesh; (b) Stream lines.
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Figure 9.9 Flow through a corrugated compact heat exchanger passage. Local Nusselt number
distribution for different Reynolds numbers. (a) Re = 2000; (b) Re = 5000.

drop significantly towards the turn along the bottom wall. However, the opposite is true along
the top wall before the turn. This is due to the fact that no flow separation exists along the top
wall ahead of the turn. Beyond the turn, presence of a strong recirculation and flow separation
along the top wall are expected to reduce the heat transfer rate. The heat transfer will recover
beyond the reattachment points along both walls. These flow trends clearly influence the
temperature distribution as shown in Figure 9.7(d). As seen, the temperature contours are
closely packed along the top wall all the way to the turn indicating a strong temperature
gradient and rapid heat transfer. However, the temperature gradient is not consistently high
all the way to the turn along the bottom wall. The temperature distribution along the bottom
wall indicates a stronger heat transfer rate in the vicinity of the inlet and it reduces towards
the turn. After the turn, the bottom wall recovers the high temperature gradient within a short
distance from the turn while the top wall requires a longer distance to recover a high gradient
in temperature. These trends are clearly shown by the local Nusselt number distribution in
Figure 9.9. It is also important to note the adverse pressure gradients in Figure 9.7(c) at both
the top and bottom recirculations.

The average Nusselt number and pressure drop variations with Reynolds number are
shown in Figure 9.10. As expected the Nusselt number increases with Reynolds numbers
on both walls. The value is almost identical on both walls to a Reynolds number of 1000.
Beyond Re = 1000, the average Nusselt number on the top wall is higher than at the bottom
wall. This is due to the fact that the recirculation zone at the top wall reduces in size with
increase in Reynolds number and allows the Nusselt number to recover back to a higher value
within a short distance from the turn as shown by the local Nusselt number distributions in
Figure 9.9. The Nusselt number variation with Reynolds number shows a nonlinear pattern.
The nondimensional pressure drop (Δp∕𝜌u2

∞) reduces as the Reynolds number is increased.

Example 9.4.2 Conjugate heat transfer in a model heat exchanger
To demonstrate the incompressible fluid dynamics and conjugate heat transfer, forced

convection flow and heat transfer in a model fin and tube heat exchanger are studied in this
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Figure 9.10 Flow through a corrugated compact heat exchanger passage. Average Nusselt
number and pressure drop distribution for different Reynolds numbers. (a) Average Nusselt
number; (b) Nondimensional pressure drop.

example (Nithiarasu 2008). Due to the low memory needs and easy implementation, the fully
explicit solution algorithm is chosen here (see Chapter 7) (Nithiarasu 2003). The comparison
of speed between the fully explicit method with local time stepping against other implicit
methods shows that the explicit method is robust and in some cases outperforms the other
methods (Codina et al. 2006; Massarotti et al. 2006).

Figure 9.11 shows a partial representation of a fin and tube heat exchanger model. The
fins are attached to the solid wall of the heat exchanger as shown in the figure. The outside
solid surface is assumed to be at a higher temperature than the air at the inlet to the heat
exchanger. Thus, the heat is expected to transfer through the solid wall and then dissipated

Hot solid wall

Fins

Flow
direction

Figure 9.11 Conjugate heat transfer in a model fin and tube heat exchanger. Part of the
geometry.
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to the fluid via the inside solid wall surface and the fin surfaces. The fluid side, bottom and
top boundaries are subjected to zero flux boundary conditions. The inlet velocity is assumed
to be constant and uniform. To demonstrate the method, an inlet Reynolds number of 200 and
thermal conductivity ratio between the solid and fluid of 10 are assumed.

The first step in the numerical modeling is generating a finite element mesh. We use
the simplest of all type of elements, tetrahedral elements, to discretize the domain. Since
unstructured meshing can be automated, we use a linear unstructured mesh. First, a sur-
face mesh is generated by defining different curves and surfaces of the geometry. Once a
surface mesh is available, a volume mesh is generated by filling the spaces between surfaces
using tetrahedrons. In the present case, the solid fins should also be meshed. More details on
the meshing methods is available in Chapter 14. Figure 9.12 shows the unstructured surface
mesh used in the calculations. The mesh is generated using the meshing tools available within
Swansea, Collage of Engineering (Morgan et al. 1999). As seen, the mesh is refined close to the

(a)

(b)

Figure 9.12 Conjugate heat transfer in a model fin and tube heat exchanger. Unstructured
mesh. (a) Full view; (b) Fins and surface of the solid wall.
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1

11

Interface
2

Figure 9.13 Conjugate heat transfer in a model fin and tube heat exchanger. Allocating
material code.

solid–fluid interface to have smooth change in the temperature distribution. The total number
of tetrahedron elements used is just over 1.7 million.

Once the mesh is generated, the solid and fluid elements should be labeled using appro-
priate material codes. In two-dimensional problems, the regions can be easily identified for
allocating material codes. In three-dimensional problems, however, a special and automatic
procedure may be used. This procedure is simple to implement. The procedure starts with zero
material code for all the nodes in a domain, except the surfaces surrounding the domain(s)
as shown in Figure 9.13. Once zero has been allocated to all the inside nodes, change the
material code of the partitioning surface between two domains to a number, say 2, as shown in
Figure 9.13. All the nodes on nonpartitioning surfaces should be labeled with the material code
that would be given to the nodes inside the domain (1 in Figure 9.13). Now, check the nodes
connected to the surface nodes labeled with 1 and if the nodes connected have a zero material
code, replace it with 1. Continue checking until all the zero material codes are replaced with
1. Note that this process of checking will stop automatically as soon as the process reaches
the surface nodes with label 2. This should be continued for all the different subdomains until
all the nodes are labeled with appropriate material codes. Figure 9.14 shows contours of
the material codes. As seen, the procedure outlined here easily identifies the solid and fluid
domains with different material codes.

Often the interface conditions between the fluid and solid needs to be addressed before
obtaining a solution. At the interface, both the temperature and flux should be continuous. Since
a linear approximation for the temperature is assumed throughout the domain, temperature
continuity across the interface is ensured. However, the heat flux is not continuous across the
interface. Special conditions may be applied to ensure flux continuity. However, such treatment
needs a solution to additional variables. The alternative is to approximate flux continuity by
introducing finer mesh along the interface. For the heat exchanger problem solved here, the
interface is treated using the latter approach.

Figures 9.15 to 9.17 show the results obtained. In Figure 9.15, the surface contours
of pressure, velocity components and temperature are presented. As seen, the contours are
generally smooth, including the pressure contours. In Figure 9.16 the temperature distribution
at different sections, along the length (x1 direction) of the heat exchanger, is presented. As
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(a) (b)

Figure 9.14 Conjugate heat transfer in a model fin and tube heat exchanger. Contours of
material code. (a) Side view; (b) Cross-sectional view.

seen, the transition of the temperature from solid to fluid is smooth without any noticeable
discontinuity.

Figure 9.17(a) shows the temperature distribution in the x2 direction along the lines at
the middle of the fins and Figure 9.17(b) shows the temperature distribution at x2 = 0.523
along the x3 direction. Figures 9.17 (c) and (d) show the temperature distributions along

(a)

(c)

(b)

(d)

Figure 9.15 Conjugate heat transfer in a model fin and tube heat exchanger. Pressure, velocity
and temperature contours. (a) Pressure; (b) u1 velocity; (c) u3 velocity; (d) Temperature
contours.
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(a) (b)

(c) (d)

Figure 9.16 Conjugate heat transfer in a model fin and tube heat exchanger. Temperature
contours at different sections. (a) x1 = 2; (b) x1 = 6; (c) x1 = 10; (d) x1 = 14.

x2 direction, at sections x3 = 0.407 and 1.064 respectively. As seen, a majority of the solid
wall portions show a linear variation of temperature. In the fluid region, including fins, the
temperature variation is nonlinear. It is also noticed that the no heat flux conditions at the
fluid side boundary is effectively captured. In Figures 9.17 (c) and (d), a rapid change in
temperature is clearly shown at the interface. In addition, the average temperature at section
x1 = 2 is much lower than at section x1 = 14 as expected. All the results shown in Figure 9.17
are consistent with the qualitative solution expected.

9.5 Challenges

Despite the fact that tremendous progress has been made in heat exchanger design and devel-
opment, computational methods have not been adopted for heat exchanger design as widely
as in other fields. In general, confidence in modeling among practicing engineers is low. This
is due to the expectation that the modeling should give precise answer to the design questions.
This would never be possible. All the computational modeling methods are here to help the



298 HEAT EXCHANGERS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

Nondimensional distance

Length = 2
Length = 14

Length = 2
Length = 14

Length = 2
Length = 14

Length = 2
Length = 14

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

Nondimensional distance

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

Nondimensional distance

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

Nondimensional distance

Figure 9.17 Conjugate heat transfer in a model fin and tube heat exchanger. Temperature
distributions (a) Along the mid-horizontal line of the fin in the x2 direction; (b) Along the
x3 direction, in the fluid section, at x2 = 0.523; (c) Along x3 = 0.407 below the fin in the x2
direction; (d) Along x3 = 1.064 above the fin in the x2 direction.

engineers to cut down cost at the preliminary stages of design. It is important to remember
that the prototype must be tested to make final adjustments to the design. The following are a
few challenges facing the heat exchanger modeling community.

� Although turbulence modeling has seen enormous growth over the last thirty years,
using state of the art turbulence modeling still remains expensive and time-consuming.

� Multi-phase flow modeling is also a challenge as the physical equation governing the
multi-phase transport vary depending on the problem studied.

� Integration of various processes into modeling of heat exchangers is still lacking
and needs further research. Integration of stress analysis and shape optimization
modules with flow solvers is possible but the amount of work done in this area is
negligible.
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9.6 Summary

In this chapter, simple methods of analysis were presented before giving an overview of using
modeling in heat exchanger design and analysis. The current state-of-the art in modeling clearly
shows that computational methods are capable of guiding heat exchanger design procedures.
Unlike other industries, such as the aerospace and car industries, the heat exchanger industry
is not completely accustomed to employing computational modeling on a regular basis. This
is slowly changing and hopefully, in the near future, computation will become an integral part
of any heat exchanger design, especially compact heat exchanger design.
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Mass Transfer

10.1 Introduction

Mass transfer is analogous to heat transport, as discussed in previous chapters. We know
that heat transfer is a result of temperature difference and similarly, mass transport is a result
of concentration difference. In other words, mass transfer is the transfer of mass from a
high species concentration domain to low concentration domain. Some common examples of
mass transfer processes are the evaporation of water into the atmosphere, the diffusion and
transport of pollution from industrial exhausts into the atmosphere, transport of pollution in
lakes, drying and processing of food, brick and other materials etc. (Bird et al. 1960; Comini
and Lewis 1976; Holman 1989; Lewis and Malan 2005; Murugesan et al. 2001; Nithiarasu
et al. 1996).

As mentioned previously, the driving force for mass transfer is the difference in concen-
tration. The random motion of molecules causes a net transfer of mass from an area of high
concentration to an area of low concentration. Mass transfer modes can also be classified under
the categories of diffusion and convection as in the case of heat transport. The diffusion mass
transport is described by Fick’s law of diffusion, which is very similar to Fourier’s law of heat
conduction, that is,

M
A

= jx = −D
𝜕c
𝜕x

, (10.1)

where M is the total mass transfer per unit time, A is the area across which mass transfer takes
place, D is the mass diffusion coefficient, c is the species concentration, x is the perpendicular
direction to the area A and jx is the mass transfer per unit time per unit area (mass flux). As
seen, Equation (10.1) is analogous to Fourier’s law of heat conduction, Equation (1.1).

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 10.1 Infinitesimal control volume in a flow field. Derivation of conservation of species
concentration.

The mass transfer coefficient, hm, may be defined using an equivalent form of Newton’s
law of cooling (Equation (1.2)) as

j = hm(cw − ca), (10.2)

where subscripts w and a represent the wall and atmosphere or free stream respectively.

10.2 Conservation of Species

The scalar species conservation equation may be derived in a similar fashion to the equation
of conservation of energy, as discussed in Section 7.2.3. However, the difference here is that
the concentration of a species replaces the temperature. In order to derive this equation, let us
consider a control volume as shown in Figure 10.1. The concentration of the species convected
into the control volume, in the x1 direction, is

u1cΔx2. (10.3)

Similarly, the concentration convected into the control volume, in the x2 direction, is

u2cΔx1. (10.4)

As in Chapter 7, a Taylor series expansion may be used to express the concentration
convected out of the control volume, in both the x1 and x2 directions, as

u1cΔx2 +
𝜕(u1c)

𝜕x1
Δx1Δx2 (10.5)

and

u2cΔx1 +
𝜕(u2c)

𝜕x2
Δx2Δx1 (10.6)
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respectively. The mass diffusion into and out of the control volume is also derived using the
above approach. The mass diffusing into the domain in the x1 direction (Fick’s law of mass
diffusion) is

j1Δx2 = −Dx1

𝜕c
𝜕x1

Δx2 (10.7)

and the diffusion entering the control volume in the x2 direction is

j2Δx1 = −Dx2

𝜕c
𝜕x2

Δx1. (10.8)

Using a Taylor series expansion , the mass diffusing out of the control volume may be
written as

− Dx1

𝜕c
𝜕x1

Δx2 +
𝜕

𝜕x1

(
−Dx1

𝜕c
𝜕x1

)
Δx2Δx1 (10.9)

in the x1 direction and

− Dx2

𝜕c
𝜕x2

Δx1 +
𝜕

𝜕x2

(
−Dx2

𝜕c
𝜕x2

)
Δx1Δx2 (10.10)

in the x2 direction.
Finally, the rate of change of concentration within the control volume is

Δx1Δx2
𝜕c
𝜕t
. (10.11)

Now, it is a simple matter of balancing the mass entering and exiting the control volume.
The mass balance may be obtained as

mass entering the control volume by convection +

mass entering the control volume by diffusion =
mass exiting the control volume by convection +

mass exiting the control volume by diffusion +

rate of change of mass within the control volume

Following the above mass balance approach and rearranging, we obtain

𝜕c
𝜕t

+
𝜕(u1c)

𝜕x1
+
𝜕(u2c)

𝜕x2
=
[
𝜕

𝜕x1

(
Dx1

𝜕c
𝜕x1

)
+ 𝜕

𝜕x2

(
Dx2

𝜕c
𝜕x2

)]
. (10.12)

On differentiating by parts the convection terms and substituting Equation (7.11) (continu-
ity) into Equation (10.12), we obtain the simplified concentration equation in two dimensions
as

𝜕c
𝜕t

+ u1
𝜕c
𝜕x1

+ u2
𝜕c
𝜕x2

=
[
𝜕

𝜕x1

(
Dx1

𝜕c
𝜕x1

)
+ 𝜕

𝜕x2

(
Dx2

𝜕c
𝜕x2

)]
. (10.13)

If the mass diffusivity D is assumed to be constant and D = Dx1
= Dx2

, the concentration
equation is reduced to

𝜕c
𝜕t

+ u1
𝜕c
𝜕x1

+ u2
𝜕c
𝜕x2

= D

(
𝜕

2c

𝜕x2
1

+ 𝜕
2c

𝜕x2
2

)
. (10.14)
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The concentration equation in vector form is

𝜕c
𝜕t

+ u.∇c = D∇2c (10.15)

and in indicial form

𝜕c
𝜕t

+ ui
𝜕c
𝜕xi

= D
𝜕

2c
𝜕x2

i

(10.16)

and finally in conservation form

𝜕c
𝜕t

+ 𝜕

𝜕xi
(uic) = D

𝜕
2c
𝜕x2

i

. (10.17)

The above equation is applicable in any space dimension. If the time-dependent term 𝜕∕𝜕t
is neglected, from Equation (10.17) we obtain a steady-state equation for the species transport.
A pure mass diffusion equation may be obtained by substituting the velocity components
ui = 0 in Equation (10.17). In problems with multiple species transport, each species should
be represented by a convection-diffusion equation of the type shown in Equation (10.17). In
some cases, the interaction between the species may be very complex. For incompressible
flow problems, either a conservative (Equation (10.17)) or nonconservative (Equation (10.16))
form of the concentration equation may be employed.

10.2.1 Nondimensional form

The nondimensional form of Equation (10.16) may be useful in carrying out some general
mass transfer calculations. The nondimensional scales may be different, depending on the type
of problem studied. For forced convective mass transfer with given Dirichlet conditions for
concentration, we recommend the following nondimensional scales.

c∗ =
c − c∞

cw − c∞
; t∗ = tL

u∞
; x∗i =

xi

L
; u∗i =

ui

u∞
, (10.18)

where L is a characteristic dimension, the subscript ∞ indicates a reference quantity and
subscript w indicates a wall. The above scales result in the following nondimensional equation.

𝜕c∗

𝜕t∗
+ u∗i

𝜕c∗

𝜕x∗i
=
(

D
u∞L

)
𝜕

2c∗

𝜕x∗2
i

. (10.19)

In the above equation

D
u∞L

=
(D
𝜈

)(
𝜈

u∞L

)
= 1

ScRe
, (10.20)

where Sc = 𝜈∕D is the Schmidt number and Re = u∞L∕𝜈 is the Reynolds number. A typical
example where the above formulation can be used is the case of a channel flow with a higher
concentration of species along the walls and a lower concentration in the fluid approaching
the channel. If the mass flux conditions are given, then the scales need to be redefined using
the given mass flux.
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10.2.2 Buoyancy-driven Mass Transfer

So far the mass transport has been discussed from a forced convection perspective. The mass
transport can also take place under the influence of pure buoyancy, or, in a mixed convective
form. This is very similar in nature to free and mixed convection heat transfer as discussed in
Chapter 7. Buoyancy-driven mass convection is generated by the density difference induced
by the concentration differences within a fluid system. Because of the small density variations
present in these type of flows, a general incompressible flow approximation is normally
adopted. To represent the variation in density, a body force term needs to be added to the
momentum equations to include the effect of local density differences, that is,

g(𝜌 − 𝜌a)

𝜌a
= g𝛽c(c − c∞), (10.21)

where g is the acceleration due to gravity (9.81 m/s2) and 𝛽c is the coefficient of solutal
expansion. The above body force term is added to the momentum equations in the gravity
direction. In a normal situation, the body force is added to the x2 momentum in 2D flows (if
the gravity direction x2 is negative), that is,

𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2
= −1

𝜌

𝜕p

𝜕x2
+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
+ g𝛽c(c − c∞). (10.22)

In practice, the following nondimensional scales are adopted for buoyancy-driven mass
convection in the absence of a reference velocity value.

x∗1 =
x1

L
; x∗2 =

x2

L
; t∗ = tD

L2
; u∗1 =

u1L

D
;

u∗2 =
u2L

D
; p∗ =

pL2

𝜌D2
; c∗ =

c − c∞
cw − c∞

. (10.23)

On introducing the above nondimensional scales into the governing equations, we obtain
nondimensional form of the equations as follows:

Continuity equation:

𝜕u∗1
𝜕x∗1

+
𝜕u∗2
𝜕x∗2

= 0. (10.24)

x1 momentum equation:

𝜕u∗1
𝜕t∗

+ u∗1
𝜕u∗1
𝜕x∗1

+ u∗2
𝜕u∗1
𝜕x∗2

= −
𝜕p∗

𝜕x∗1
+ Sc

(
𝜕

2u∗1
𝜕x∗2

1

+
𝜕

2u∗1
𝜕x∗2

2

)
. (10.25)

x2 momentum equation:

𝜕u∗2
𝜕t∗

+ u∗1
𝜕u∗2
𝜕x∗1

+ u∗2
𝜕u∗2
𝜕x∗2

= −
𝜕p∗

𝜕x∗2
+ Sc

(
𝜕

2u∗2
𝜕x∗2

1

+
𝜕

2u∗2
𝜕x∗2

2

)
+ GrcSc2c∗. (10.26)

Concentration equation:

𝜕c∗

𝜕t∗
+ u∗1

𝜕c∗

𝜕x∗1
+ u∗2

𝜕c∗

𝜕x∗2
=

(
𝜕

2c∗

𝜕x∗2
1

+ 𝜕
2c∗

𝜕x∗2
2

)
. (10.27)
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where Grc is the solutal Grashof number given as

Grc =
g𝛽cΔcL3

𝜈
2

. (10.28)

where Δc = cw − c∞. Often, another nondimensional number called the solutal Rayleigh
number is used in the calculations. This is given as

Rac = GrcSc =
g𝛽cΔcL3

𝜈D
. (10.29)

On comparing the nondimensional equations of natural and forced convection, it is easy to
identify the differences. If we substitute 1∕Sc in place of the Reynolds number for the forced
convection equations, we revert to a natural convection scaling. Obviously, the extra buoyancy
term needs to be added to appropriate component(s) of the momentum equation for natural
convection flows.

10.2.3 Double-diffusive Natural Convection

As mentioned in the previous section, buoyancy-driven mass convection is possible and has
been widely studied. In many application problems, mass transfer is very much influenced also
by the presence of energy transport. One such example is the so called double-diffusive natural
convection. This has been widely studied in many application areas, including saturated porous
media (see Chapter 11). In this section we explain this phenomenon briefly. Here, in addition
to buoyancy-driven mass convection, the buoyancy-driven heat convection is also important.
Thus, two body forces, one each for mass and energy, appear in the momentum equation, that
is, in addition to Equation (10.21),

g(𝜌 − 𝜌a)

𝜌a
= g𝛽(T − T∞) (10.30)

will also appear in the momentum equation in the gravity direction. Assuming, the gravity is
in a negative x2 direction, the dimensional form of the momentum equation may be written in
two dimension as

𝜕u2

𝜕t
+ u1

𝜕u2

𝜕x1
+ u2

𝜕u2

𝜕x2
= −1

𝜌

𝜕p

𝜕x2
+ 𝜈

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
+ g𝛽(T − T∞) + g𝛽c(c − c∞).

(10.31)

Using the standard nondimensional scales for buoyancy-driven heat convection (Chap-
ter 7), we obtain

𝜕u∗2
𝜕t∗

+ u∗1
𝜕u∗2
𝜕x∗1

+ u∗2
𝜕u∗2
𝜕x∗2

= −
𝜕p∗

𝜕x∗2
+ Pr

(
𝜕

2u∗2
𝜕x∗2

1

+
𝜕

2u∗2
𝜕x∗2

2

)
+ RaPrT∗ + BRaPrc∗,

(10.32)

where B is the buoyancy ratio, given as

B =
𝛽cΔc

𝛽ΔT
. (10.33)
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In addition to the continuity and momentum equations, double-diffusive convection
requires a solution to the natural convective heat and mass transport equations, that is,

𝜕T∗

𝜕t∗
+ u∗1

𝜕T∗

𝜕x∗1
+ u∗2

𝜕T∗

𝜕x∗2
=

(
𝜕

2T∗

𝜕x∗2
1

+ 𝜕
2T∗

𝜕x∗2
2

)
(10.34)

and

𝜕c∗

𝜕t∗
+ u∗1

𝜕c∗

𝜕x∗1
+ u∗2

𝜕c∗

𝜕x∗2
= 1

Le

(
𝜕

2c∗

𝜕x∗2
1

+ 𝜕
2c∗

𝜕x∗2
2

)
, (10.35)

where Le is the Lewis number defined as Le = 𝛼∕D.

10.3 Numerical Solution

The temporal and spatial discretizations of the conservation of species equation follows the
discretizations of the energy equation as given in Section 7.6. In the case of pure mass diffusion,
discretization of the diffusion equation follows the discretization used for heat conduction as
in Chapters 4, 5 and 6 depending on the type of diffusion required. For pure convective mass
transport, without the influence of temperature, step four of the algorithm described in Section
7.6 will be replaced with a concentration calculation using the species concentration Equation
(10.19). If the calculation involves the influence of temperature, the energy equation is solved
at step four as shown in Section 7.6 and the species concentration equation forms the fifth
step of the algorithm. This is the case for double-diffusive convection.

Example 10.3.1 Mass diffusion at steady state
Figure 10.2 shows the problem definition used here to study mass diffusion. The domain is

one unit high and ten units long. The bottom side is assumed to be at a higher concentration
than the top side. Both the vertical sides are assumed to have no flux exiting or entering the
domain to mimic a one-dimensional mass flow in the vertical direction. The mass diffusion
here is assumed to be time independent and thus the steady-state mass diffusion equation,

𝜕
2c

𝜕x2
1

+ 𝜕
2c

𝜕x2
2

= 0 (10.36)

is sufficient to determine the distribution of the species concentration. This equation can be
solved in a variety of ways as discussed in Chapter 5. The above equation can also be solved
using the time-dependent equation,

𝜕c
𝜕t

= D

(
𝜕

2c

𝜕x2
1

+ 𝜕
2c

𝜕x2
2

)
, (10.37)

flux

c = 0

c = 1

Zero
flux

Zero

Figure 10.2 Steady-state mass diffusion in a rectangular domain.
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(a)  Part of the unstructured mesh,
Nodes: 22437, Elements: 43988

(b)  Part of the concentration distribution

Figure 10.3 Steady-state diffusion of a species from the bottom side of a channel. Part of the
mesh and concentration distributions.

by iterating in time to steady state. Note that the mass diffusion in the above equation is
assumed to be isotropic, that is, the mass diffusion coefficient D is the same in both x1 and x2
directions. Although any method described in Chapters 5 and 6 can be used to solve the above
equations, an explicit scheme (Chapter 5) with mass lumping is employed here to obtain the
solution for the problem shown in Figure 10.2.

A uniform unstructured mesh as shown in Figure 10.3(a) is used in the calculations. Fig-
ure 10.3(b) shows the concentration distribution at steady state. As seen, the isoconcentration
lines are equally distanced and the difference between two consecutive isoconcentration lines
are the same throughout the domain. This indicates a linear decrease in concentration from a
nondimensional value of unity at the bottom wall to a nondimensional value of zero at the top
wall. This is not surprising as the equation solved is a linear Laplace equation and in one
dimension, it can easily be shown that the analytical solution is linear (Chapter 4). It should
be noted here that the solution for steady state is independent of the diffusion coefficient.
Irrespective of the media involved, the solution will be identical in steady state.

Example 10.3.2 Transient mass diffusion in one dimension
In the following problem, we demonstrate a model problem of time-dependent species

diffusion. For time-dependent diffusion, the solution depends heavily on all aspects of the
problem, including the diffusion coefficient D. To compare the finite element results with
analytical solution in one dimension, the following one-dimensional equation is considered.

𝜕c
𝜕t

= D

(
𝜕

2c
𝜕x2

)
. (10.38)

An analytical solution to this one-dimensional equation can be obtained for a simplified
problem, in a semi-infinite domain (Holman 1989; Schneider 1955). This solution is originally
derived for heat conduction and adopted here for mass diffusion. Imagine an infinitely long
rod maintained at a concentration of ci (e.g. moisture) and suddenly the concentration at one
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end of the rod is dropped down to a smaller value cw. The analytical solution to this problem
is given as

c(x, t) − cw

ci − cw
= erf

(
x

2
√

Dt

)
, (10.39)

where t is the time, x is the distance from the end where concentration is cw and the Gauss
error function is defined as

erf

(
x

2
√

Dt

)
= 2√

𝜋
∫

x

2
√

Dt

0
e−𝜁

2
d𝜁 , (10.40)

where 𝜁 here is a dummy variable. Thus, the space- and time-dependent species concentration
can be determined at any point at any time using Equation (10.39).

To compare the numerical solution with the analytical solution of Equation (10.39),
a two-dimensional domain of 1 cm hight and 100 cm length is considered. The concen-
tration through out the domain is assumed to be unity at t = 0 and the concentration
on the left vertical side of the domain is suddenly reduced to zero. All the other three
sides of the domain are assumed to have zero mass flux condition. A mass diffusivity of
D = 0.726 cm2/s is used (diffusion of H2 into CH4 with a diffusivity of 0.726 cm2/s). The
assumption here is that the domain is static and isothermal. This is not often the case in real
problems.

Figure 10.4 shows the concentration distribution with respect to time at a point 24.6686 cm
from the left vertical wall of the domain. As seen, a non-linear decay of concentration is
observed with respect to time. It is also shown that the analytical and numerical solutions
agree excellently.
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Figure 10.4 Unsteady-state mass diffusion in a rectangular domain.
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(4.91,0.494)

c = 0
Zero
flux

Zero
flux

c = 0

c = 1

Figure 10.5 Unsteady-state mass diffusion in a rectangular domain.

Example 10.3.3 Transient heat diffusion in two-dimension
The second problem of transient diffusion considered is mass diffusion from a point source.

Figure 10.5 shows the model problem used for the transient solution of the mass diffusion
equation in two dimension. As seen the domain is unchanged from the previous steady-
state problem but the boundary conditions are changed. As seen, a point source with a
nondimensional species concentration of unity is introduced near the center of the domain
in addition to zero concentration boundary conditions on both top and bottom horizontal
walls. The vertical walls are assumed to be imposed with zero mass flux conditions. The
mass diffusion coefficient is same as the previous problem and is equal to 0.726 cm2/s. The
initial concentration throughout the domain is assumed to be zero. The concentration at point
(4.91,0.494) is then suddenly increased to unity at t > 0. The distribution of the concentration
with respect to time is then monitored.

Figure 10.6 shows the concentration distribution with respect to time. The large value of
diffusion coefficient used here, and close vicinity of both the top and bottom walls (with zero
concentration) to the source, force the concentration to reach a steady-state very fast. From the

(a) t = 0.1s

(b) t = 0.5s

(c) t = 1.0s

Figure 10.6 Unsteady-state diffusion of gas H2 into CH4 with a diffusivity of 0.726 cm2/s
at 298 K. Top and bottom sides with zero concentration and both vertical sides insulated.
Concentration distribution at different time periods.
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(a) t = 0.1s (b) t = 0.5s

(c) t = 1.0s (d) t = 1.5s

(e) t = 2.0s (f) t = 2.5s

Figure 10.7 Unsteady-state diffusion of gas H2 into CH4 with a diffusivity of 0.726 cm2/s
at 298 K. Top and bottom sides insulated and both vertical sides with zero concentration.
Concentration distribution at different time periods.

figure, it is extremely difficult to distinguish between the results at 0.5s and 1s. This shows that
an equilibrium state has been reached between the source and the boundary conditions within
0.5 seconds. Since the vertical walls are far away from the source, the concentration reaches
a steady state equilibrium before any trace of the concentration from the source reaching the
vertical walls on either side.

In order to examine the effect of outer boundary conditions, the boundary conditions
between the vertical and horizontal walls in the previous problem are interchanged in the next
model problem, that is, the vertical walls are assumed to have zero concentration and the
horizontal walls are assumed to be prescribed with zero mass flux. All the other conditions
remain the same.

The results for the problem with rearranged boundary conditions are shown in Figure 10.7.
Since the zero concentration boundary condition now is not in the vicinity of the source, the
problem has not reached a steady-state equilibrium even at 2.5 s. This time is much higher
compared to the previous problem in which the steady state was reached before 0.5 s.

Example 10.3.4 Forced mass convection
All the problems discussed in the previous examples are on the topic of pure mass diffusion.

The medium into which the concentration of a species is allowed to diffuse was assumed to be
static, although this is not always true in real situations. In many industrial situations, such
as food, brick and certain kind of mold drying, controlling the drying process is essential to
obtain the required quality. In such situations, air is forced over the material. In this section,
one such model problem in two dimensions is considered.

Figure 10.8 shows the geometry and boundary conditions used in the study. As seen
the problem domain is unchanged from the previous example with one unit height and ten
units length. A fully developed parabolic velocity profile is assumed at the inlet and the
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p = 0 Zero
flux

Mass flux = jParabolic profile

Zero
flux

No slip

No slipc = 0

Figure 10.8 Forced convective mass transfer in a channel. Geometry and boundary conditions.

nondimensional concentration of species entering the domain is zero. At the top wall a mass
flux is assumed, that is, a flux boundary condition of the form

j̄ = −D
𝜕c
𝜕y

, (10.41)

where j̄ is the given mass flux. A nondimensional scale of the form

c∗ =
c − ca

j̄L
D

(10.42)

is used here. Thus, the nondimensional form of Equation (10.41) becomes

− 𝜕c∗

𝜕y∗
= 1. (10.43)

This relationship is easy to implement as discussed in Chapter 7. Apart from the flux
boundary condition on the top, all other boundaries are assumed to have a zero concentration
flux condition. A zero pressure boundary condition is prescribed at the exit.

Let us assume that the fluid flowing into the domain be air and the water vapour is
the species that is transported into the domain through the top wall via the constant mass
flux condition discussed above. Both the air and water vapor are assumed to be at the same
temperature. The diffusivity of the water vapor diffusing into the air is approximately 2.5× 10−5

m2/s and the kinematic viscosity of air is 1.0 × 10−5 m2/s at room temperature. This gives a
Schmidt number of approximately 0.4. This value is used here.

Figure 10.9 shows the isoconcentration lines at different inlet Reynolds numbers. The
Reynolds number here is defined based on the average inlet velocity and channel height. As
seen, the solutal boundary layer is becoming thinner as the Reynolds number is increased.

Figure 10.10 shows the local Sherwood number
(

sh = htL
D

)
distribution along the top side of

the channel. As seen, the Sherwood number increases as the Reynolds number is increased. It
is also important to note that the Sherwood number is very high near the inlet, indicating a
large mass transport. This is due to the fact that the air with zero concentration approaching
the channel will remove large quantities of mass at the entrance and the mass transfer reduces
as we move along the length of the channel.

Example 10.3.5 Double-diffusive convection in a square cavity
The double-diffusive convection is the convection that has both thermal and mass convec-

tion. The double-diffusive convection can be of forced and natural type. In this section, we
consider only the natural type to demonstrate the double-diffusive convection. As discussed
earlier, there are many nondimensional parameters involved in a double-diffusive natural
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(a) Re = 100

(b) Re = 200

(c) Re = 500

(d) Re = 1000

Figure 10.9 Forced convective mass transfer in a channel. Concentration distribution at
different Reynolds numbers, Sc = 0.4.

convection problem. They are Rayleigh number, Prandtl number, Lewis number and Buoyancy
ratio. Only small number of parameters are considered here to demonstrate the finite element
solver. The problem solved here is very similar to the natural convection solved in Chapter 7.
The difference here is that the additional variable of concentration is also solved. The problem
domain consists of a closed rectangular cavity with rigid walls. All the walls are subjected to
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Figure 10.10 Forced convective mass transfer in a channel. Local Sherwood number distri-
bution at different Reynolds numbers, Sc = 0.4.
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Figure 10.11 Buoyancy-driven convection in a cavity. Domain and boundary conditions and
meshes used.

no slip velocity boundary conditions. The top and bottom walls are assumed to have zero heat
and mass flux entering or exiting the domain. The left-side vertical wall is assumed to be at a
higher temperature and concentration than that of the right-side vertical wall. Figure 10.11(a)
shows the complete problem definition. For the sake of simplicity, the Prandtl number is fixed
as 0.72 and Lewis number is assumed to be unity in the first case studied. The aspect ratio
of the first case studied is unity (square cavity). The finite element meshes used are shown in
Figure 10.11(b) and (c).

Figure 10.12 shows the velocity vectors and contours of concentration distribution at
different buoyancy ratios. The temperature contours are identical to that of the concentration
contours and thus they are not presented here. Only one Rayleigh number solution is presented
here to demonstrate the problem. The Rayleigh number selected is 105. Figure 10.12(a) shows
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(a)  B = 1, velocity vectors (b)  B = 1, concentration

(c)  B = 3, velocity vectors (d)  B = 3, concentration

(e)  B = -5, velocity vectors (f)  B = -5, concentration

Figure 10.12 Double diffusive natural convection in a square cavity. Concentration and
velocity distributions at difference buoyancy rations, Ra = 105, Pr = 0.72, Le = 1.00.
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Figure 10.13 Double diffusive natural convection in a square cavity. Average Sherwood
number distribution at different buoyancy ratios, Ra = 105, Pr = 0.72, Le = 1.00.

the results at a buoyancy ratio of unity. This means the effect of Rayleigh number doubles and
results in a combined Rayleigh number of 2 × 105. As seen, the flow pattern is close to the
natural convective flow at a Rayleigh number of 105, given in Chapter 7. As the buoyancy
ratio is increased to 3 as shown in Figure 10.12(b), the combined Rayleigh number increases
to 4 × 105 and the effect on flow, concentration and temperature distributions are very similar
to the effect of increase in Rayleigh number discussed in Chapter 7. As the buoyancy ratio is
reduced to −1, the thermal and solutal buoyancies cancel each other and the temperature and
concentration transport will be through pure diffusion. Reduction of B below −1 will result
in a net negative buoyancy value in the upward direction and the flow direction reverses as
shown in Figure 10.12(c) at B = −5. At this B value, a combined Rayleigh number value of
−4 × 105 is obtained and results in a solution that is a mirror image of the solution at B = 3
as shown in Figures 10.12(b) and (c).

Figure 10.13 shows the average Sherwood number distribution at a Rayleigh number of 105

at different buoyancy ratios. The Nusselt number distribution is identical to the distribution
shown and thus not plotted separately. The Sherwood numbers calculated on both meshes
are plotted to show the effect of number of points. The mesh1 has a small number of points
compared to mesh2. Due to the small number of nodes and the orientation of triangles, the
average Sherwood number distribution is slightly unsymmetric with respect B = −1. When
the number of points are increased, as in mesh2, the birdseye view distribution of the average
Sherwood number as shown in Figure 10.13 is more or less symmetric. The birdseye view
distribution is typical in such applications.

Example 10.3.6 Double-diffusive convection in a rectangular cavity
The second double-diffusive natural convection problem studied here again is flow in a

rectangular cavity but now with an aspect ratio of 7. The number of nodes and elements used
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(a)
Stream traces

(b)
Temperature

(c)
Concentration

Figure 10.14 Double diffusive natural convection in a rectangular cavity with aspect ratio
7. Stream traces, temperature and concentration distributions at, Ra = 104, Pr = 0.72, Le =
0.857, B = 1.

are same as the problem studied previously but the meshes in Figure 10.11 are stretched here
to increase the aspect ratio to 7. The boundary conditions remain the same and to match the
conditions of Wee et al. (1989), a Lewis number of 0.857 is adopted here inline with the Prandtl
and Schmidt numbers of 0.7 and 0.6 used in the experiments of Wee et al. (1989). A thermal
diffusivity of air 2.216 × 10−5 is used to compute the Lewis number.

Figure 10.14 and 10.15 show the results for this problem. As seen, at Ra = 104 the flow
pattern is dominated by one large vortex. The important aspect here is that the temperature
and concentration patterns are not identical due to Lewis number being not unity. As seen,
the concentration distribution is convectively less dominated than that of isotherms. This is
indicated by isotherms with rapid change in structure at the center of the cavity. Figure 10.15
shows the average Sherwood number distribution with respect the combined Rayleigh number
(thermal plus solutal Rayleigh numbers). As seen the Sherwood number increases with the
Rayleigh number and the mesh with larger number of points give a better and more smoother
Sherwood number distribution. Although not shown, the Sherwood number distribution is in
close agreement with the experimental data provided by Wee et al. (1989).

10.4 Turbulent Mass Transport

We herein provide a brief summary of turbulent mass transport. Turbulent mass transport is
very similar to the turbulent heat transport discussed in Chapter 8. The time averaging, used
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Figure 10.15 Buoyancy ndriven convection in a cavity with aspect ratio 7. Average Sherwood
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in Chapter 8, can also be used here for averaging the concentration equation. For deriving a
time averaged equation, the concentration may be expressed as

c = c̄ + c′ (10.44)

where c̄ is an averaged field and c′ represents fluctuating part (refer to Figure 8.1). Substituting
Equation (10.44) into Equation (10.19) and time averaging (see Section 8.1) we obtain

𝜕c̄
𝜕t

+ 𝜕

𝜕xi
(uic) = D

𝜕
2c̄
𝜕x2

i

− 𝜕

𝜕xi
(u′ic

′) (10.45)

or

𝜕c̄
𝜕t

+ 𝜕

𝜕xi
(uic) = −

𝜕ji
𝜕xi

−
𝜕jti
𝜕xi

. (10.46)

where

ji = −D
𝜕c
𝜕xi

(10.47)

is the laminar mass flux and

jti = −u′ic
′ (10.48)

is the turbulent mass flux. In order to close the equation, the turbulent flux needs to be related
to the time-averaged concentration, that is,

jti = Dt
𝜕c̄
𝜕xi

, (10.49)
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where Dt is the turbulent eddy mass diffusivity. If we invoke the analogy with heat transfer,
we may be able write Dt∕𝛼t = 1. This ratio may be referred to as the turbulent Lewis number,
Let. Recollect that 𝛼t is calculated in Chapter 8.

10.5 Summary

In this chapter, we have provided brief, but sufficient information, on the finite element
solution of mass transport equations. The chapter explained both diffusion and convection
mass transport in addition to double-diffusive mass transport, in which both the mass and heat
transport influence each other. The numerical solution of the mass transport equation followed
the identical procedure followed in Chapters 4 to 7. Several sample examples are provided to
demonstrate the application of the finite element method to solving mass transport equations.
The chapter was concluded with a short description of how to incorporate turbulence into the
mass transport equation.
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11

Convection Heat and Mass
Transfer in Porous Media

11.1 Introduction

The phenomenon of fluid flow, heat and mass transfer in porous media has been recognized as
a separate engineering topic for the last few decades. Several books have been published on
this topic (Kaviany 1991; Lewis and Schrefler 1998; Nield and Bejan 1992; Zienkiewicz et al.
1999). Convection in porous media occurs in many engineering applications including packed
beds, thermal insulation, metal solidification and geothermal problems. Advanced applications
such as petroleum reservoirs, multi-phase flows and drying have also been studied using finite
elements (Lewis and Ferguson 1990; Lewis et al. 1983, 1989; Lewis and Sukirman 1993;
Murugesan et al. 2001; Pao et al. 2001). A wide variety of solution methodologies, both ana-
lytical and numerical, are available for solving porous media flow and heat transfer. Analytical
methods are limited by many factors and the solution of realistic field problems is normally
intractable by such techniques. With the advent of computing power in the last three decades,
solutions to many practical porous medium problems are feasible using numerical methods
(Lewis and Schrefler 1998; Zienkiewicz et al. 1999). Such numerical solution procedures have
their own limitations, such as accuracy, implementation difficulties etc. However, with a proper
combination of algorithms and discretization techniques, it is possible to obtain reasonably
accurate solutions for complex problems where analytical approaches would not be feasible.
In this chapter, the finite element modeling of incompressible flow, heat and transfer through
porous media will be outlined in some detail.

The flow of fluid in a saturated porous media was obtained by a simple, phenomenological,
linear relation by Darcy in the 19th century (Darcy 1856). Darcy’s law relates the pressure

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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drop (head) to the flow rate across a porous column. The following relation can be written
from such observations, that is,

ui = −𝜅
𝜇

𝜕p

𝜕xi
. (11.1)

Where ui are the seepage velocity components, 𝜅 (m2) is the permeability of the medium,
𝜇 is the dynamic viscosity of the fluid, p is the pressure and xi are the coordinate axes. For
two-dimensional flow, we can rewrite the velocity components as

u1 = −𝜅
𝜇

𝜕p

𝜕x1

u2 = −𝜅
𝜇

𝜕p

𝜕x2
. (11.2)

It is interesting to note that the above equation is very similar to Ohm’s law for the flow
of electricity, Fourier’s law of heat conduction and Fick’s law for mass diffusion. Substitution
of the Darcy’s law into the conservation of mass (divergence free velocity field) equation for
incompressible flow yields (without body forces)

𝜕

𝜕xi

(
−𝜅
𝜇

𝜕p

𝜕xi

)
= 0. (11.3)

This equation is often employed in problems with very low porosity (example: petroleum
reservoirs). However, simple relations such as Darcy’s law are not always applicable and
further modifications, or extensions, are necessary in order to accurately predict the flow field
in porous media.

Several years after the introduction of Darcy’s law, two major extensions to the model
have extended its use in many engineering disciplines including chemical, mechanical and
civil engineering. The first extension was due to Forchheimer in 1901 (Forchheimer 1901) and
this modification accounted for moderate and high Reynolds number effects with the addition
of a nonlinear term in the Darcy equation. A relation of the form

Dp = aui + bu2
i (11.4)

for drag force was introduced by Forchheimer (Figure 11.1), which is balanced by the pressure
force as follows:

aui + bu2
i = −

𝜕p

𝜕xi
. (11.5)

In the above equation, the first term on the left-hand side is, in essence, similar to the linear
drag term introduced by Darcy and the second term is the nonlinear drag term. The parameters
a and b are determined by empirical relations and one such correlation was given by Ergun
(Ergun 1952), that is,

a = 150
(1 − 𝜖2)

𝜖
3

𝜇f

dp
2

(11.6)
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Figure 11.1 Drag force on a porous medium grain.

and

b = 1.75
(1 − 𝜖)
𝜖

3

𝜌f

dp
. (11.7)

It should be noted, however, that other suitable correlations may also be employed in
different ranges of the bed porosity, 𝜖, to obtain the non-Darcian flow behavior inside a porous
medium. In the above equations, dp is the solid particle size in a porous medium and 𝜌f is
the fluid density. The above solid matrix drag relation can also be expressed in terms of the
medium permeability 𝜅 by defining

𝜅 =
𝜖

3dp
2

150(1 − 𝜖)2
. (11.8)

The flow relationship given by Equation (11.5) can be rewritten in terms of permeability
as

𝜇f ui

𝜅

+ 1.75√
150

𝜌f√
𝜅

|V|
𝜖

3∕2
ui = −

𝜕p

𝜕xi
(11.9)

Although the above equation gives an accurate solution at higher Reynolds numbers, it
is not accurate enough to solve flow in highly porous and confined media. In order to deal
with the viscous and higher porosity effects, Brinkman introduced an extension to the Darcy
model in 1947, which included a second-order viscous term with an equivalent viscosity for
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Velocity profile

Solid wall

Figure 11.2 Viscous forces on a bounding wall of a porous medium.

the porous medium (Brinkman 1947). The viscous extension as given by Brinkman can be
written as (Figure 11.2)

aui = −
𝜕p

𝜕xi
+ 𝜇e

𝜕
2ui

𝜕x2
i

, (11.10)

where𝜇e is the equivalent viscosity of the porous medium. This modification takes into account
the no-slip conditions,which exist on the confining walls (Tong and Subramanian 1985).

The Darcy model and the extensions discussed above have been widely used in the past.
However, a generalized model, incorporating the flow regimes covered by both Darcy’s model
and its extension, will have several advantages (Hsu and Cheng 1990; Massarotti et al. 2003;
Nithiarasu et al. 1997, 2002; Vafai and Tien 1981; Whitaker 1961). One of these is that the
generalized flow model approaches the standard incompressible Navier-Stokes equations when
porosity approaches a value of unity. The discussion on convection in porous media in this
chapter will be brief and based on the generalized porous medium approach. Readers should
be aware of the CBS scheme and the notations used in Chapter 7 before reading this chapter.

11.2 Generalized Porous Medium Flow Approach

In this section, a generalized model for solving porous medium flows will be presented. Let us
consider the balance of mass, momentum, energy and species for two dimensional flow in a
fluid saturated porous medium of variable porosity. The derivations are very similar to the one
discussed in Chapter 7. We shall assume the medium to be isotropic with constant physical
properties, except for the medium porosity. Let af be the fraction of area available for flow
per unit cross-sectional area (Figure 11.3), at a location in a given direction. In fact, af is an
averaged quantity, the average being taken over the length scale of the voids (or the length
scale of the particles, if the porous bed is made up of particles), in the flow direction. For an
isotropic porous bed, af will be identical in all directions and can also be equal to the local
bed porosity, 𝜖. In spite of averaging over the void length scale, the fractional area af may
vary from location to location on the macro-length scale ‘L’ of the physical problem, due to
the variation of the bed porosity.

The porosity, 𝜖, of the medium is defined as

𝜖 = void volume
total volume

=
afΔx1Δx2

Δx1Δx2
= af . (11.11)
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Figure 11.3 Fluid saturated porous medium. Infinitesimal control volume.

Now, the mass balance of an arbitrary control volume, as shown in Figure 11.3, gives (refer
to Chapter 7)

𝜕𝜌f

𝜕t
+
𝜕(𝜌f u1f )

𝜕x1
+
𝜕(𝜌f u2f )

𝜕x2
= 0, (11.12)

where the subscript f stands for fluid, 𝜌 is the density and u1 and u2 are the velocity components
in the x1 and x2 directions respectively. The volume averaged velocity components may be
defined as (Nield and Bejan 1992)

u1 = 𝜖u1f and u2 = 𝜖u2f . (11.13)

Equation (11.12) can be simplified for an incompressible flow (constant density) as
follows,

𝜕u1

𝜕x1
+
𝜕u2

𝜕x2
= 0. (11.14)

Similarly, the equation for momentum balance can be derived. For instance, in the x2
direction, the momentum balance gives

𝜌f

𝜖

[
𝜕u2

𝜕t
+ 𝜕

𝜕x1

(u1u2

𝜖

)
+ 𝜕

𝜕x2

(
u2

2

𝜖

)]

= −1
𝜖

𝜕

𝜕x2
(pf 𝜖) +

𝜇e

𝜖

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)
+ (𝜌ref − 𝜌f )g − Dx2

, (11.15)
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where 𝜇e is the equivalent viscosity; pf the fluid pressure; g the acceleration due to gravity
and Dx2

is the matrix drag per unit volume of the porous medium. The particle drag can be
expressed in the following form, as discussed in Section 11.1,

Dp = aV + bV2 (11.16)

for a one-dimensional flow with velocity V . For two-dimensional flow the drag in the x2
direction is given as

Dx2
= au2 + b(u2

1 + u2
2)1∕2u2 (11.17)

by resolving the vertical drag expression along the x2 direction. In the present formulation
Ergun’s correlation for the constants a and b, given in Equations (11.6) and (11.7), will be
used.

Now, the solid matrix drag component Dx2
can be written as

Dx2
=
𝜇f u2

𝜅

+ 1.75√
150

𝜌f√
𝜅

|V|
𝜖

3∕2
u2, (11.18)

where V is the velocity vector in the field. By substituting Equation (11.18) into Equation
(11.15) we obtain

𝜌f

𝜖

[
𝜕u2

𝜕t
+ 𝜕

𝜕x1

(u1u2

𝜖

)
+ 𝜕

𝜕x2

(
u2

2

𝜖

)]
= −1

𝜖

𝜕

𝜕x2
(pf 𝜖) +

𝜇e

𝜖

(
𝜕

2u2

𝜕x2
1

+
𝜕

2u2

𝜕x2
2

)

+(𝜌ref − 𝜌f )g −
𝜇f u2

𝜅

− 1.75√
150

𝜌f√
𝜅

|V|
𝜖

3∕2
u2. (11.19)

Similarly, other momentum components can also be derived and the final form of the
governing equations for incompressible flow through a porous medium in dimensional form
can be given in indicial notation as

Continuity:

𝜕ui

𝜕xi
= 0. (11.20)

Momentum:

𝜌f

𝜖

[
𝜕ui

𝜕t
+ 𝜕

𝜕xj

(uiuj

𝜖

)]
= −1

𝜖

𝜕

𝜕xi
(pf 𝜖) +

𝜇e

𝜖

𝜕
2ui

𝜕x2
i

+(𝜌ref − 𝜌f )g𝛾i −
𝜇f ui

𝜅

− 1.75√
150

𝜌f√
𝜅

|V|
𝜖

3∕2
ui. (11.21)

The previous equation can be simplified by substituting Equation (11.20) into Equation
(11.21). The energy conservation equation is also derived in a similar manner. The final form
of the energy equation is:
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Energy:

[
𝜖(𝜌cp)f + (1 − 𝜖)(𝜌cp)s

] 𝜕T
𝜕t

+ (𝜌cp)f ui
𝜕T
𝜕xi

= k

(
𝜕

2T
𝜕x2

i

)
. (11.22)

In the above equations, t is the time; cp is the specific heat; 𝛾i is an unit vector in the
buoyancy direction; T is the temperature and k is the equivalent thermal conductivity. The
subscripts f and s stand for the fluid and solid phases respectively.

Finally, the conservation of mass (species conservation) equation may be written as

𝜖

𝜕c
𝜕t

+ ui
𝜕c
𝜕xi

= D

(
𝜕

2c
𝜕x2

i

)
. (11.23)

It should be noted that the permeability and thermal conductivity values can be directional,
in which case they are tensors.

11.2.1 Nondimensional Scales

The nondimensional form of the equations simplify most of the calculations. The following
final form of the nondimensional equations may be obtained by suitable scaling.

Continuity equation:

𝜕u∗i
𝜕x∗i

= 0. (11.24)

Momentum equations:

1
𝜖

𝜕u∗i
𝜕t∗

+ 1
𝜖

u∗j
𝜕

𝜕x∗j

(
u∗i
𝜖

)
= −1

𝜖

𝜕

𝜕x∗i

(
𝜖p∗f

)
−

u∗i
ReDa

− 1.75√
150

|V∗|√
Da

u∗i
𝜖

3∕2
+ J

Re𝜖

(
𝜕

2u∗i
𝜕x∗i

2

)
+ 𝛾i

Gr
Re2

T∗
. (11.25)

Energy equation:

𝜎

𝜕T∗

𝜕t∗
+ u∗i

𝜕T∗

𝜕x∗i
= k∗

RePr

(
𝜕

2T∗

𝜕x∗i
2

)
. (11.26)

Species equation:

𝜖

𝜕c∗

𝜕t∗
+ u∗i

𝜕c∗

𝜕x∗i
= 1

ReSc

(
𝜕

2c∗

𝜕x∗2
i

)
. (11.27)

In the previous equations, the parameters governing the flow and heat transfer are the
Darcy number (Da), Reynolds number (Re), Prandtl number (Pr), Grashoff number (Gr), the
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ratio of heat capacities (𝜎), porosity of the medium (𝜖), conductivity ratio (k∗), viscosity ratio
(J), Schmidt number (Sc) and the anisotropic property ratios for the case of an anisotropic
medium. The definitions for the scales and nondimensional parameters are:

x∗i =
xi

L
; u∗i =

ui

ua
; t∗ =

tua

L
; p∗f =

pf

𝜌f ua
2

; T∗ =
T − Ta

Tw − Ta
;

J =
𝜇e

𝜇f
; 𝜎 =

𝜖(𝜌cp)f + (1 − 𝜖)(𝜌cp)s

(𝜌cp)f
; k∗ = k

kf
(11.28)

and the nondimensional numbers are given as

Re =
𝜌f uaL

𝜇f
; Pr =

𝜈f

𝛼f
; Da = 𝜅

L2
; Gr =

g𝛽ΔTL3

𝜈
2
f

; Sc =
𝜇f

𝜌f D
, (11.29)

where the subscript a in the above equations refers to free stream or atmosphere, f is for
fluid and s for solid. The above scales are suitable for most forced and mixed convection
problems. However, for buoyancy-driven flows, it is convenient to handle the equations using
the following definition of the Rayleigh number (Ra), that is,

Ra =
g𝛽ΔTL3

𝜈𝛼

, (11.30)

where the following different scales need to be employed in solving natural convection prob-
lems.

u∗i =
uiL

𝛼f
; t∗ =

t𝛼f

L2
; p∗ =

pL2

𝜌f 𝛼
2
f

. (11.31)

The nondimensional governing equations for natural convection are:

Continuity equation:

𝜕u∗i
𝜕x∗i

= 0. (11.32)

Momentum equations:

1
𝜖

𝜕u∗i
𝜕t∗

+ 1
𝜖

u∗j
𝜕

𝜕x∗j

(
u∗i
𝜖

)
= −1

𝜖

𝜕

𝜕x∗i
(𝜖p∗f ) −

Pru∗i
Da

− 1.75√
150

|V∗|√
Da

u∗i
𝜖

3∕2
+ JPr

𝜖

(
𝜕

2u∗i
𝜕x∗i

2

)
+ 𝛾iRaPrT∗

. (11.33)

Energy equation:

𝜎

𝜕T∗

𝜕t∗
+ u∗i

𝜕T∗

𝜕x∗i
= k∗

(
𝜕

2T∗

𝜕x∗i
2

)
. (11.34)
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Species equation:

𝜖

𝜕c∗

𝜕t∗
+ u∗i

𝜕c∗

𝜕x∗i
= 1

Le

(
𝜕

2c∗

𝜕x∗2
i

)
. (11.35)

where Le = 𝛼f ∕D is the Lewis number. Other alternative scales are possible depending of
the problem studied. In general any constant free stream quantity may be used as a scale.
In the above formulation, the buoyancy effects are incorporated by invoking the Boussinesq
approximation as discussed in Chapter 7. The kinematic viscosity 𝜈, used in the above scales,
is defined as

𝜈 = 𝜇

𝜌

(11.36)

and 𝛼 is the thermal diffusivity, given as

𝛼f =
kf

(𝜌cp)f
. (11.37)

It may be observed that the scales and nondimensional parameters are defined by using the
fluid properties. Often, a quantity called the Darcy-Rayleigh number is used in the literature as
a governing nondimensional parameter for Darcy flow. This is the product of the Darcy (Da)
and fluid Rayleigh (Ra) numbers as defined previously.

11.2.2 Limiting Cases

The equations discussed above represent a porous medium which tends to a solid as porosity,
𝜖 → 0. Thus, a conjugate problem, where part of the domain is completely solid, can be dealt
with by using the above equations.

Another limiting case of these equations is that they approach the incompressible Navier-
Stokes equations as 𝜖 → 1. Again, a very general problem where a porous medium and a
single phase fluid are part of a domain (porous-fluid interface (Massarotti et al. 2001)) can
be solved by using the above equations. Thus, many applications such as alloy solidification
(Sinha et al. 1992) and heat exchanger design can be analyzed via these equations.

11.3 Discretization Procedure

The CBS scheme will be employed to solve the porous medium flow equations. In this context
the same four steps, with minor modifications, will be utilized as discussed in Chapter 7.

In the following subsections, the temporal and spatial discretization scheme are given,
which will then be employed to solve the porous medium equations. Use will be made only
of simple, linear triangular elements to study porous medium flow problems.
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11.3.1 Temporal Discretization

Before going into the details of the CBS split, let us first consider the temporal discretization of
the governing equations. The momentum equation is subjected to the characteristic Galerkin
procedure, as discussed in the Chapter 7, viz.

un+1
i − un

i

𝜖Δt
=

− 1
𝜖

𝜕(p𝜖)
𝜕xi

n+𝜃
−
[uj

𝜖

𝜕

𝜕xj

(ui

𝜖

)]n+𝜃1

+

[
1
𝜖Re

𝜕
2ui

𝜕x2
i

]n+𝜃2

−

[
ui

ReDa
+ C

|V|√
Da

ui

𝜖
3∕2

]n+𝜃3

+ Δt
2

uk
𝜕

𝜕xk

(
1
𝜖

𝜕(p𝜖)
𝜕xi

+
[uj

𝜖

𝜕

𝜕xj

(ui

𝜖

)]
+

[
ui

ReDa
+ C

|V|√
Da

ui

𝜖
3∕2

])n

. (11.38)

The body force terms are neglected in the above equation in order to simplify the pre-

sentation. Equation (11.38), the parameter C is a constant equal to 1.75/
√

150 (see Equation
(11.18)). The parameters 𝜃, 𝜃1, 𝜃2 and 𝜃3 all vary between zero and unity and with appro-
priate values, different schemes of interest can be established. The superscript 𝜃 should be
interpreted as

f n+𝜃 = 𝜃f n+1 + (1 − 𝜃)f n, (11.39)

where the superscript n indicates the nth time iteration.
In the CBS scheme the velocities are calculated by splitting Equation (11.38) into two

parts as below. In order to simplify the presentation, 𝜃1, 𝜃2 and 𝜃3 are assumed to be equal
to zero. It is important to note, however, that such an assumption severely restricts the time
step which can be employed in the calculations. The semi- and quasi- implicit schemes, as
discussed in Section 11.3.3, are widely employed for porous medium flow calculations.

In Step 1, the pressure term is completely removed from Equation (11.38) and the inter-
mediate velocity components ũi are calculated (similar to Step 1 of the CBS scheme discussed
in Chapter 7), as
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ũi − un
i

𝜖Δt
= −

[uj

𝜖

𝜕

𝜕xj

(ui

𝜖

)]n

+

[
1
𝜖Re

𝜕
2ui

𝜕x2
i

]n

−

[
1

ReDa
ui + C

|V|√
Da

ui

𝜖
3∕2

]n

+ Δt
2

uk
𝜕

𝜕xk

(
1
𝜖

𝜕(p𝜖)
𝜕xi

+
[uj

𝜖

𝜕

𝜕xj

(ui

𝜖

)]
+

[
ui

ReDa
+ C

|V|√
Da

ui

𝜖
3∕2

])n

. (11.40)

The velocities can be corrected using the following equation which has been derived by
subtracting Equation (11.40) from Equation (11.38), that is,

Δui

𝜖Δt
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un+1
i − un

i

𝜖Δt
=

Δũi

𝜖Δt
− 1
𝜖

𝜕(p𝜖)
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n+𝜃
. (11.41)
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However, the value of the pressure in the above equation is not known. In order to establish
the pressure field, a pressure Poisson equation can be derived from the above equation and
may be written as (see Chapter 7, Section 7.6)

1
𝜖

𝜕
2

𝜕x2
i

(p𝜖)n+𝜃 =
𝜕ũi

𝜕xi
. (11.42)

The above simplified equation has been derived by substituting the equation of continuity.
Thus, the conservation of mass is satisfied indirectly without explicitly solving for the mass
conservation Equation (11.24).

We have a total of three steps to obtain a solution for the momentum and continuity
equations. As discussed in Chapter 7, Equation (11.40) is solved at the first step followed by
Equation (11.42) in the second step and Equation (11.41) in the third step. Additional steps,
such as temperature, or concentration calculations, can be added as an addition to the above
three steps.

In problems where nonisothermal and mass transfer effects are involved, then after velocity
correction, additional equations will be solved. If no coupling exists between the velocities
and the other variables, such as temperature and concentration and the steady-state solution
is only of interest, then the steady velocity and pressure fields can be established first and the
rest of the variables can be calculated using the steady-state velocity and pressure values.

11.3.2 Spatial Discretization

Once a temporal discretization of the equations has been achieved, then spatial discretization
may be carried out. In this text, the finite element discretization will be carried out using linear
triangular elements. Assuming a Galerkin approximation, the variables can be expressed as

ui = [N]{ui};Δui = [N]{Δui};Δũi = [N]{Δũi}; p = [N]{p}; 𝜖 = [N]{𝜖}, (11.43)

where [N] are the shape functions. We assume that the equations are solved in the order
mentioned before i.e. first, the intermediate velocity components, then the pressure field and,
finally, the velocity correction. On considering the intermediate velocity calculation, we have
the following weak form where porosity is assumed to be an averaged quantity over an element
and body forces are neglected for the sake of simplicity,
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The weak form of the Step 2, calculation for the pressure field can be written as (assuming
𝜃 = 1)

− 1
𝜖 ∫Ω

𝜕[N]T

𝜕xi

𝜕(𝜖p)
𝜕xi

n+1

dΩ = 1
Δt ∫Ω[N]T 𝜕ũi

𝜕xi
dΩ. (11.45)

Finally Step 3, can be written in a weak form as

∫Ω[N]TΔuidΩ = ∫Ω[N]TΔũidΩ − Δt ∫Ω[N]T 𝜕p

𝜕xi

n+1

dΩ. (11.46)

Other field variables, such as temperature and concentration, can be established in a similar
fashion via Step 1 and will be discussed later. For the integration and relevant matrices, refer
to Chapter 7.

11.3.3 Semi- and Quasi- Implicit Forms

Single phase incompressible fluid flow problems can be solved in a fully explicit form, which
is quite popular in fluid dynamics calculations (Malan et al. 2002; Nithiarasu 2003). However,
a solution for the generalized porous medium equations using a fully explicit form has been
less successful. This is mainly due to the large values of the solid matrix drag terms, especially
at smaller Darcy numbers. In order to eliminate some of the time-step restrictions imposed by
these terms, schemes other than the fully explicit forms are discussed below.

In the semi-implicit (SI) form (Nithiarasu and Ravindran 1998), the porous medium source
terms and pressure equation are treated implicitly. In other words, 𝜃 = 𝜃3 = 1 and 𝜃1 = 𝜃2 =
0. The split in the momentum equation (Equation (11.40)) will be different, that is,
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ũi
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Step 2, the pressure calculation becomes
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Step 3 is also different and is given as(
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Although extra complications were introduced in the semi-implicit form at Step 1, for steady-
state solutions, we can avoid simultaneous solution of the algebraic equations by taking the
coefficient

CO =

(
1
Δt𝜖

+ 1
ReDa

+ C√
Da

|V|
𝜖

3∕2

)
(11.51)

on to the RHS. Thus, the system can be enabled for the mass lumping procedure (Nithiarasu
and Ravindran 1998) when discretized in space.

The quasi-implicit (QI) form is very similar to that of the above scheme but now the
viscous, second-order terms are also treated implicitly (𝜃2 = 1) (Nithiarasu et al. 1997c). The
important difference, however, is that the quasi-implicit scheme does not benefit from mass
lumping when solving for the intermediate velocity values. A simultaneous solution of the
LHS matrices is essential here. It has been proven that both the QI and SI schemes generally
perform well (Nithiarasu 2001).

11.4 Nonisothermal flows

Several examples of porous medium flow problems are nonisothermal in nature. The main
focus in this case will be to demonstrate nonisothermal flow through a porous medium. As
mentioned previously, an energy equation needs to be solved, in addition to the momentum
and pressure equations if the flow is nonisothermal. For steady-state problems, if no coupling
exists between the momentum and energy equation, the temperature field can be established
after calculation of the velocity fields. The temporal discretization of the energy equation can
be written in a similar form to the momentum equation and is given (since element Peclet
number is expected to be below unity, the stabilization terms are neglected) as
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, (11.52)

where 𝜃1 and 𝜃2 have the same meaning as previously discussed in Section 11.3. The variable
involved in this case is temperature and can be spatially approximated as

T = [N]{T}. (11.53)

The weak form of the energy equation can be written (assuming 𝜃1 and 𝜃2 are both equal to
zero) as
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(11.54)

where

ΔT = Tn+1 − Tn
. (11.55)
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The substitution of Equation (11.53) into Equation (11.54) yields the final global matrix form
of the energy equation, that is,

𝜎[Mp]{ΔT} = −Δt
[
[Cp]{T} + [KT ]{T} − {f4}

]n
, (11.56)

where the elemental matrices are
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and the forcing vector is
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It should be noted that both the flux and convective heat transfer boundary conditions are
treated by using the boundary integral as discussed in the Chapter 7. In a similar fashion, the
species equation may also be discretized in time, that is,
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The spatial discretization procedure is identical to that of the energy equation starting with
spatial discretization of concentration similar to Equation (11.53). The rest of the procedure
also follows similar lines to that of the energy equation. For further details on discretization
and matrices, refer to Chapter 7.

Example 11.4.1 Forced convection
Flow through packed beds are important in many chemical engineering applications.

Generally, the grain size in the packed beds will vary depending on the application. As the
particle size increases, the packing close to the walls will become nonuniform thereby creating
a channeling effect close to the solid walls. In such cases, the porosity value can be close to
unity near the walls but will decrease to a free stream value away from the walls.

In such situations, the ability to vary the porosity within the domain itself is essential in
order to obtain a correct solution. Although, the theoretical determination of the near wall
porosity variation is difficult, there are some experimental correlations available to tackle this
issue. One such widely employed correlation, given by Benenati and Brosilow (1962) will be
used, that is,

𝜖 = 𝜖e

[
1 + exp

(
− cx

dp

)]
, (11.59)
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Figure 11.4 Forced convection in a channel filled with a variable porosity medium. Geometry
and boundary conditions.

where 𝜖e is the free stream bed porosity and taken to be equal to 0.39, c is an empirical constant
(c = 2 for dp = 5 mm). In general, the problem in this case is formulated based on the particle
size dp, that is, the Reynolds number is based on the particle size.

Figure 11.4 shows the problem definition of forced flow through a packed bed. The inlet
channel width is 10 times the size of the grain. The length of the channel is 6 times that of
the inlet width. Zero pressure conditions are assumed at the exit. The inlet velocity profile
is parabolic and no-slip boundary conditions apply on the solid side walls. Both the walls
are assumed to be at a higher, uniform temperature than that of the inlet fluid temperature.
The analysis is carried out for different particle Reynolds numbers ranging from 150 to 350.
The quasi-implicit (QI) scheme with 𝜃 = 1, 𝜃1 =0 and 𝜃2 = 𝜃3 = 1 has been employed to solve
this problem. A nonuniform mesh with triangular elements was also used in the analysis. The
mesh is fine close to the walls and coarse towards the center. The total number of nodes and
elements used in the calculation are 3003 and 5776 respectively.

Figure 11.5 shows a comparison of the calculated steady-state average Nusselt number
distribution on a hot wall with the available experimental and numerical data. The Nusselt
number is calculated as

Nu = hL
k

= ∫
L

0

𝜕T
𝜕x1

dx. (11.60)
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Figure 11.5 Forced convection in a channel. Comparison of Nusselt number with experi-
mental data for different particle Reynolds numbers. Points: experimental (Vafai et al. 1984);
dashed line: numerical (Vafai et al. 1984); solid: CBS. Source: Data from Vafai et al. 1984.

Figure 11.6 shows the difference between the generalized model and the Brinkman and
Forcheimmer extensions for the velocity profiles close to the wall in a variable porosity
medium at steady state. As may be seen the Forcheimmer and Brinkman extensions fail to
predict the channeling effect close to the wall. Whilst the Brinkman extension is insensitive
to porosity values, the Forcheimmer model does not predict the viscous effect close to the
channel walls.
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Figure 11.6 Forced convection in a channel. Comparison between the generalized model,
Forcheimmer and Brinkman extensions to Darcy’s law.
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Figure 11.7 Natural convection in a fluid saturated variable porosity medium. Problem bound-
ary conditions.

Example 11.4.2 Natural convection
The fluid flow in a variable porosity medium within an enclosed cavity under the influence of

buoyancy is another interesting and difficult problem to analyse. In order to study such a prob-
lem, an enclosure packed with a fluid saturated porous medium is considered. The aspect ratio
of the enclosure is 10 (ratio between height and width). All the enclosure walls are subjected
to “no slip” boundary conditions. The left vertical wall is assumed to be at a higher, uniform
temperature than that of the right-side wall. Both the horizontal walls are assumed to be
insulated (Figure 11.7). The properties of the saturating fluid are assumed to be constant other
than that of the density. The density variation is invoked by the Boussenesq approximation.

Table 11.1 shows the steady-state quantitative results and a comparison with the available
numerical and experimental data. These data were obtained on a nonuniform structured 61 ×
61 mesh. The accuracy of the prediction can be improved by further refinement of the mesh.

Table 11.1 Average hot wall Nusselt number distribution for natural convection in a
variable porosity medium, aspect ratio = 10

Fluid dp 𝜖e Pr k∗ Ra Experimental Numerical CBS

Water 5.7 0.39 7.1 1.929 1.830 × 107 2.595 2.405 2.684
3.519 × 107 3.707 3.496 3.892

Ethyl 5.7 0.39 2.335 15.4 2.270 × 108 12.56 13.08 12.17
alcohol 3.121 × 108 15.13 15.57 14.28
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An extremely fine mesh is essential near the cavity walls in order to predict the channeling
effect in this region. In Table 11.1, experimental data is obtained from reference (Inaba and
Seki 1981) and the numerical data for comparison is obtained from reference (David et al.
1991). The following Nusselt number relation is used for this problem.

Nu = 1
L ∫

L

0

𝜕T
𝜕x

dx. (11.61)

Example 11.4.3 Natural convection – constant porosity medium
The problems when the variation in porosity is of less significance are normally porous

media with small solid particle size. For instance, thermal insulation is one such example
where the variation in porosity near the solid walls is not important but the uniform free
stream porosity value can be very high. In order to investigate such media, a benchmark
problem involving buoyancy-driven convection in a square cavity has been solved.

The problem definition is similar to the one shown in Figure 11.7, the difference being that
the aspect ratio is unity. The square enclosure is filled with a fluid saturated porous medium
with constant and uniform properties except for the density which is again incorporated via
the Boussenessq approximation. A 51 × 51 nonuniform mesh (Figure 11.8) is employed for
this problem.

The Darcy and non-Darcy flow regime classifications and the Darcy number limits have
been discussed by many researchers. One important suggestion was given in the paper
by Tong and Subramanian (1985). In Figure 11.9, we show the velocity and temperature

Figure 11.8 Buoyancy-driven flow in a fluid saturated porous medium. Finite element mesh.
Nodes: 2601, Elements: 5000.
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(a) Vector plot (b) Temperature

Ra = 108, Da = 10−6

Ra = 106, Da = 10−4

Ra = 104, Da = 10−2

(c) Vector plot (d) Temperature

(e) Vector plot (f) Temperature

Figure 11.9 Natural convection in a fluid saturated porous, square enclosure. Vector plots
and temperature contours for different Rayleigh and Darcy numbers, Pr = 0.71.
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Table 11.2 Average Nusselt number comparison with analytical and
numerical results

Ra∗ = RaDa Nu

Analytical Numerical1 Numerical2 CBS

10 – 1.07 – 1.08
50 1.98 – 2.02 1.96
100 3.09 3.09 3.27 3.02
500 8.40 – – 8.38
1000 12.49 13.41 18.38 12.52

distribution at different Darcy and Rayleigh numbers. In this case the product of the Darcy
and Rayleigh numbers is kept at a constant value in order to bring out the non-Darcy effects.
It is clearly obvious that the maximum velocity in the Darcy flow regime, at a Darcy number
of 10−6, is located very close to the solid walls. The non-Darcy velocity profile, at a Darcy
number of 10−2, on the other hand looks very similar to that of a single phase fluid and the
maximum velocity is located away from the solid walls. At a Darcy number of 10−4 the flow
undergoes a transition from a Darcy flow regime to a non-Darcy flow regime. The tempera-
ture contours also undergo noticeable changes as the Darcy number increases from 10−6 to
10−2.

Both the scheme and the model implementation have been designed in such a way that as
the Darcy number increases, the flow approaches a single phase fluid flow, which is evident
from Figure 11.9.

In Table 11.2, the quantitative results obtained from the above analysis (only for the Darcy
flow regime, Da < 10−5) are compared with other available analytical and numerical results.
As seen the results are in excellent agreement with the reported results. In Table 11.2, analytical
solution has been obtained from reference (Walker and Homsy 1978), “Numerical1” and
“Numerical2” have been obtained from references (Lauriat and Prasad 1989) and (Trevisan
and Bejan 1985) respectively.

Example 11.4.4 Natural convection – axisymmetric problems
In order to compare the numerical results with experimental data, an axisymmetric model

was developed and a buoyancy-driven flow problem was studied. The boundary and ini-
tial conditions are the same as for the previous problem. The main difference being in the
definition of the geometry. In this case geometry is an annulus with a radius ratio (ratio
between outer and inner radii) of 5.338 (see Figure 11.10). The fluid used to saturate
the medium is water with a Prandtl number of 5. The results are generated for different
Grashof numbers (Ra/Pr) and compared with the experimental Nusselt number predictions as
shown in Figure 11.11. In general the comparison is excellent for the Grashof number range
considered.
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Figure 11.11 Natural convection in a fluid saturated constant porosity medium within an
annular enclosure. Comparison of hot wall steady-state Nusselt number with the experimental
and numerical data. Source: Data from Prasad et al. (1985).
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11.5 Porous Medium-Fluid Interface

The interface between free fluid and a porous medium saturated with the same free fluid is very
important in many industrial and real-life applications. Alloy solidification, heat exchanger
pipes, petroleum recovery, heat recovery systems, as well as thermal insulation and ground
water pollution, are just a few to mention. In these problems, the domain can be partly
filled with a saturated porous medium and the remaining part is left to a free fluid. The
solution of this type of problem can be obtained either using a single or multiple domain
approach. The former, which is probably easier to implement than the latter, is the one adopted
here and it is based on the property that the generalized porous medium model approaches
the Navier-Stokes equations as the Darcy number increases and the porosity approaches
unity.

When continuity of mass, momentum and energy is assumed, the following matching
conditions need to be satisfied at the interface:

(
up

i − uf
i

)
ni = 0(

𝜎
p
ij − 𝜎

f
ij

)
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𝜏
p
ij − 𝜏
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ij

)
nj = 0

TP − Tf = 0(
k∗p 𝜕T

𝜕xi

p
− kf 𝜕T

𝜕xi

f
)

ni = 0. (11.62)

where superscripts p and f indicate a porous medium and a free fluid respectively, 𝜎ij is
the total stress that includes the pressure and deviatoric stresses, 𝜏ij is the deviatoric stress,
ni is the normal and ti is the tangent. The continuity between the velocity components,
pressure and temperature are automatically enforced in using the finite element discretization.
Stress and flux continuity on the other hand is not automatic and thus this must be enforced
via discretization of appropriate equations or approximated via finer mesh resolution at the
interface. In the problem studied here, the approximate approach of refining the mesh at the
interface is followed.

With the above assumptions, the discretized generalized porous medium equations pre-
sented previously do not need any special treatment at the interface. The nodes placed along
the interface will get adequate contributions from elements placed in the fluid and in the porous
medium regions. In the free fluid domain, porosity is allowed to approach unity. Thus, the
Darcy number approaches infinity.

Example 11.5.1 Natural convection – vertically divided enclosure
In the first problem studied, the domain is divided vertically into two equal parts and one

part is filled with a free fluid and the other with a porous medium saturated by the same fluid
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Figure 11.12 Natural convective heat transfer in a square cavity equally and vertically divided
into saturated porous medium and free fluid. Problem domain, boundary conditions and the
finite element mesh used.

as shown in Figure 11.12(a). The vertical wall adjacent to the free fluid, on the left-hand side
of the cavity, is considered to be hot, while the opposite wall, adjacent to the porous matrix,
is cold.

Figure 11.12 shows the problem definition and the finite element mesh used. The mesh
is finely refined near all walls and along the interface of the problem which is at the
middle of the cavity. The mesh contains 4608 elements and 2401 nodes (Massarotti et al.
2001).

The stream lines and isotherm patterns obtained for the vertical interface are shown in
Figures 11.13(a) and (b) for the Darcy regime (Ra = 3.028 × 107, Da = 7.354 × 10−7, Pr =
6.97, 𝜖 = 0.36, k∗ = 1.397) (Massarotti et al. 2001). As seen, the CBS procedure predicts the
interface transition smoothly without any strong discontinueties. Since this figure corresponds
to the Darcy regime, the porous medium part is dominated mainly by the conduction mode of
heat transfer. The flow in the porous medium part is weaker than that in the free fluid region.
A maximum stream function value of |𝜓|max =15.38 is observed in the fluid region, while the
value obtained by Beckermann et al. (1987) is |𝜓|max =15.98.

Figure 11.13(c) shows the comparison of temperature distribution at different horizontal
sections across the cavity with available experimental and numerical data (Beckerman et al.
1987). The agreement is excellent, in particular it can be noticed that the change in the slope of
the isotherms at the interface, is well predicted. The results can be improved using the proper
value of the effective viscosity (Massarotti et al. 2001).
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Figure 11.13 Natural convective heat transfer in a square cavity equally and vertically
divided into saturated porous medium and free fluid. Streamlines, isotherms and tempera-
ture distribution.
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Figure 11.14 Natural convective heat transfer in a square cavity equally and horizontally
divided into saturated porous medium and free fluid. Problem domain, boundary conditions
and the finite element mesh used.

Example 11.5.2 Natural convection – horizontally divided cavity
The second type of porous-fluid interface problem considered is an enclosure divided

horizontally as shown in Figure 11.14(a). The bottom half is filled with the saturated solid
matrix. The mesh generated for this problem contains 2231 points and 4224 elements, is
nonuniform, and is presented in Figure 11.14(b) (Massarotti et al. 2001). All the walls are
assumed to obey no-slip conditions, and horizontal walls are insulated and vertical walls are
placed at two different temperatures which trigger the buoyant flow.

In order to compare the results obtained with the present CBS procedure with some
experiments, one case with a high Prandtl number was obtained run, and the results are
compared in Figure 11.15 with those presented by Nishimura et al. (1986) for silicon oil as
fluid and glass beads as solid matrix. The parameters used are: Ra = 105, Da = 10−3, Pr =
8000, 𝜖 = 0.4 and k∗ = 1.0. The temperature is evaluated at five different horizontal sections,
in the porous as well as in the fluid part of the cavity. The present results, in general, are in
excellent agreement with the experimental data.
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Figure 11.15 Natural convective heat transfer in a square cavity equally and horizontally
divided into saturated porous medium and free fluid. Temperature distribution.
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Figure 11.16 Double-diffusive natural convection in an axisymmetric, fluid saturated porous,
square enclosure. Geometry and boundary conditions.
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(b) Temperature or concentration

(d) Temperature or concentration(c) Stream lines, |ψmax| = 2.79,
Vmax = 148.92

(a) Stream lines, |ψmax| = 7.35,
Vmax = 101.03

r ∗ = 10

r ∗ = 1

Figure 11.17 Double-diffusive natural convection in an axisymmetric, fluid saturated porous,
square enclosure. Stream lines , isotherms and isoconcentration lines, Pr = 0.71, Da = 10−6,
Ra = 108, 𝜖 = 0.6, Le = 1, B = 1.

11.6 Double-diffusive Convection

A basic understanding of double-diffusive natural convection in a fluid saturated porous media
is important in many areas such as fibrous insulation, food processing and storage, contaminant
transport in ground water, geophysical systems, electro chemistry, metallurgy etc. (Nithiarasu
et al. 1996, 1997a,b).
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Figure 11.18 Double-diffusive natural convection in an axisymmetric, fluid saturated porous,
square enclosure. Average Sherwood number distribution against the radious ratio r∗.

Example 11.6.1 Double-diffusive convection – axisymmetric cavity
A model problem of double-diffusive natural convection in an axisymmetric enclosed is

discussed here. The geometry and boundary conditions for the problem are shown in Figure
11.16. A cavity filled with a saturated porous medium, whose inner vertical wall is maintained
at a constant higher temperature and concentration than the outer wall, is considered. The hor-
izontal walls are insulated. All the properties are assumed to be constant, except that of density.
The generalized governing equations for double-diffusive natural convection inside the axisym-
metric enclosure are used to obtain the solution here (Nithiarasu et al. 1997). The additional
nondimensional parameter needed here is the radius ration r∗ = ri∕ro (see Figure 11.10).
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Table 11.3 Average Nusselt and Sherwood number
distributions, Le = 2, B = 1.0, r∗ = 5, 𝜖 = 0.6

Ra∗ = RaDa Da Nu Sh

100 10−6 8.29 13.76
500 10−6 19.46 30.87
100 10−2 3.85 5.39
500 10−2 6.14 8.64

Figure 11.17 shows the flow, isothermal and iso-concentration patterns for different radius
ratios at a Darcy number of 10×10−6, Lewis number of 1 and Rayleigh number of 108. It is
observed from the flow pattern that with increase in radius ratio, the eye of the vortex shifts
towards the top-right corner of the cavity. Also, the isolines of temperature and concentration
accumulate near the bottom-left corner. This can be attributed to flow acceleration towards the
hot inner wall, due to reduction in the flow area. The crowded isotherms or iso-concentration
lines lead to a thin thermal or solutal boundary layer near the inner wall, thus causing more
heat and mass transfer. The packed stream lines near the top-right corner of the cavity also
indicate thin velocity layers in that region.

The variations of inner wall Sherwood number with radius ratio at different Da, Ra and
Le are shown in Figures 11.18(a) and (b). At low Darcy numbers the Sherwood number varies
approximately as r∗1∕2 with radius ratio. This feature can be attributed to the existence of thin
thermal and solutal boundary layers adjacent to the inner wall, at the low Da (see Figure
11.1(a)). The boundary layer flow is predominant only when Ra∗ = RaDa is large and Da
is very small. Therefore, the magnitude of the Sherwood number is high for the combination
of high Ra∗ and small Da values. Similar features are observed at different Lewis numbers,
except that Sherwood number increases with Le due to the occurrence of a thinner mass
transfer boundary layer. Table 11.3 shows the distribution of average Nusselt number (Nu)
and Sherwood number (Sh).

11.7 Summary

In this chapter a brief summary of convection in porous media has been discussed. It is impor-
tant to fully understand Chapter 7 before carrying out the porous medium flow calculations.
Several details have deliberately not been included in this chapter in order to keep the discus-
sion brief. It is important that readers who may be interested in carrying out further research
on the topic read the books and papers listed in the bibliography to further enhance their
knowledge.
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Solidification

12.1 Introduction

Solid–liquid phase change is one of the major topics of study in the heat and mass transfer
literature. This is due to the fact that materials processing, metallurgy, purification of metals,
growth of pure crystals from melts and solutions, solidification of casting and ingots, welding,
electroslag melting, zone melting, thermal energy storage using phase change materials etc.
involve melting and solidification. These phase change processes are accompanied by either
absorption or release of thermal energy. A moving boundary exists, which separates the two
thermo-physical states where the thermal energy is either absorbed or liberated. If we consider
the solidification of a casting or ingot, the super heat in the melt and the latent heat liberated
at the solid-liquid interface are transferred across the solidified metal, interface and the mold,
encountering at each of these stages a certain thermal barrier. In addition, the metal shrinks
as it solidifies and an air gap is formed between the metal and mold. Thus, additional thermal
resistance is encountered. The heat transfer processes, that occur are complex. The cooling rates
employed range from 10−5 to 1010 K/s and the corresponding solidification systems extend
from depths of several meters to a few micrometers. These various cooling rates produce
different micro structures and hence a variety of thermo-mechanical properties. During the
solidification of binary and multi-component alloys, the physical phenomena becomes more
complicated due to phase transformation taking place over a range of temperatures. During
the solidification of an alloy, the concentrations vary locally from the original mixture, as
material may have been preferentially incorporated, or rejected, at the solidification front.
This process is called macro-segregation. The material between the solidus and the liquidus
temperatures is partly solid and partly liquid and resembles a porous medium and is referred
to as a “mushy zone.” A complete understanding of the phase change phenomenon involves
an analysis of the various processes that accompany it. The most important of these processes,
from a macroscopic point of view, is the heat transfer process. This is complicated by the
release, or absorption, of the latent heat of fusion at the solid–liquid interface. Several methods

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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have been used to take into account the liberation of latent heat. The following section gives
a brief account of commonly employed methods, which deal with transient heat conduction
during a phase change. In the latter sections, more complex cases with fluid flow are discussed.
The topics covered in this chapter are meant to be an introduction to solidification. The readers
are referred to the recent works listed at the end of this chapter to learn more about the state
of the art in this area.

12.2 Solidification via Heat Conduction

12.2.1 The Governing Equations

The classical problem involves considering the conservation of energy in the domain, Ω, by
dividing this into two distinct domains, Ωl (liquid) and Ωs (solid), where Ωl + Ωs = Ω. The
energy conservation equation is written for the one dimensional case, for simplicity, as(

𝜌lcpl

)
𝜕T
𝜕t

= kl
𝜕

2T
𝜕x2

in Ωl, (12.1)

where the subscript l denotes the liquid. Note that in the above equation, the convective motion
is neglected. For details on convection, refer to latter sections of this chapter and Chapter 7.
Similarly, the equation for the solid portion is written as(

𝜌scps

)
𝜕T
𝜕t

= ks
𝜕

2T
𝜕x2

in Ωs, (12.2)

where the subscript s represents the solid. The problem will be complete only if the initial and
boundary conditions and the interface conditions are given. The interface conditions are

Tsl = Tf (12.3)

and

− ks

(
𝜕T
𝜕x

)
s
= 𝜌sL

ds
dt

− kl

(
𝜕T
𝜕x

)
l

on Γsl, (12.4)

where sl represents the position of the interface, L is the latent heat, ds∕dt the interface velocity
and Tf is the phase change temperature. Equation (12.4) states that the heat transferred by
conduction in the solidified portion is equal to the heat entering the interface by latent heat
liberation at the interface and the heat coming from the liquid by conduction. The main
complication in solving this classical problem lies in tracking the interface and applying the
interface conditions.

12.2.2 Enthalpy Formulation

In the enthalpy method, one single equation is used to solve both the solid and liquid domains
of the problem. A single energy conservation equation is written for the whole domain as

𝜕H
𝜕t

= k
𝜕

2T
𝜕x2

in Ω, (12.5)
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where H is the enthalpy function, or the total heat content, which is defined for an isothermal
phase change as

H(T) = ∫
T

Tr

𝜌cs(T)dT if (T ≤ Tf )

H(T) = ∫
Tf

Tr

𝜌cs(T)dT + 𝜌L + ∫
T

Tf

𝜌cl(T)dT in (T ≥ Tl) (12.6)

and, for a phase change over an interval of temperature Ts to Tl, that is, the solidus and the
liquidus temperatures respectively, we have the following

H(T) = ∫
Ts

Tr

𝜌cs(T)dT + ∫
T

Ts

[
𝜌

( dL
dT

)
+ 𝜌cf (T)

]
dT (Ts < T ≤ Tl)

H(T) = ∫
Ts

Tr

𝜌cs(T)dT + 𝜌L + ∫
Tl

Ts

𝜌cf (T)dT + ∫
T

Tl

𝜌cl(T)dT (T ≥ Tl), (12.7)

where cf is the specific heat in the freezing interval, L is the latent heat and Tr is a reference
temperature, which is below Ts. One of the earliest and most commonly used methods for
solving such problems has been the “effective heat capacity” method. This method is derived
from writing

𝜕H
𝜕t

= 𝜕H
𝜕T

𝜕T
𝜕t

= k
𝜕

2T
𝜕x2

in Ω, (12.8)

We can rewrite the above equation as

ceff
𝜕T
𝜕t

= k
𝜕

2T
𝜕x2

, (12.9)

where ceff = 𝜕H∕𝜕t is the effective heat capacity. This can be evaluated directly from Equa-
tion (12.7) as

ceff = 𝜌cs (T < Ts)

ceff = 𝜌cf +
L

Tl − Ts
(Ts < T < Tl)

ceff = 𝜌cl (T > Tl), (12.10)

Figure 12.1 shows the effective heat capacity variation with respect to temperature. As seen,
the effective heat capacity will become infinitely high if the liquidus and solidus temperatures
are close to each other. In order to demonstrate the effective heat capacity method discussed
above a one-dimensional phase change problem is considered in the following example.

Example 12.2.1 A phase change problem with an initial temperature of 0.0 ◦C as shown in
Figure 12.2 is subjected to a cooling temperature of −45.0 ◦C at the left face and the right-side
face is subjected to a liquidus temperature of −0.15 ◦C. The solidus temperature is −10.15 ◦C.
Determine the temperature distribution with respect to time if the latent heat of solidification
is 70.26, 𝜌cp = 1.0 and k = 1.0. Draw the temperature variation at a uint distance from the
left side with respect to time.
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Figure 12.1 Variation of effective heat capacity and enthalpy across the solid–liquid interface.

The unstructured mesh used to solve this problem is shown in Figure 12.3(a). The temper-
ature contours at a time of four units is shown in Figure 12.3(b) and the temperature variation
at a point of unit length from the left face is shown in Figure 12.3c. These results show a close
agreement with existing results (Lewis et al. 2004).

12.3 Convection During Solidification

For a rapid assessment of phase-change problems, the simplified, conduction procedure dis-
cussed in the previous section may be used. However, for a more precise analysis of a solidifi-
cation, or melting problem, including flow then the flow-driven heat transfer process inside a
mold is essential. Both forced and natural convection are possible in a solidification problem
but in general natural convection dominates the process. At the early stages of a solidification
process, the molten metal is poured into a mold to fill the mold before solidification starts
(Lewis et al. 1995, 1997; Ravindran and Lewis 1999; Usmani et al. 1992). At the mold filling
stage, the heat transfer is mainly forced or mixed convection in nature. However, once the
mold is filled and allowed to cool, the convection is dominated by buoyancy.

−45.0 °C
l

s

0.5

4

Insulated

T  = − 0.15 °C

T  = − 10.15 °C

T = 

Figure 12.2 A one-dimensional solidification problem.
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(a)  Unstructured mesh, nodes: 202, elements: 328

(b)Temperature distribution at t = 4
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Figure 12.3 Solution for the phase change problem using effective heat capacity method.
(a) Unstructured mesh, nodes: 202, elements: 328; (b) Temperature distribution at t = 4; (c)
Temperature distribution at point (1,0.25) with respect to time.

Figure 12.4 shows a model problem of solidification in which the molten metal alloy is
allowed to solidify by cooling along the right vertical side. As seen, at any instant during the
solidification process, the domain contains a solid and liquid region and a mushy region. The
physical process governing the heat transfer in the solid region is normally heat conduction
and it is often assumed to be linear isotropic or anisotropic. In the liquid region, the buoyancy-
driven convection dominates the heat transfer process. The properties of liquid and solid
regions are normally different. The third and more complex region is the mushy region that
lies between the solid and liquid regions. A variety of structures in the form of dendrites within
the mushy region are possible (Davis 2001; Xu 2004) and discussing this in detail is not within
the scope of this chapter. However, it is important to realize that this region resembles a porous
medium with nearly zero porosity at the solid surface to a porosity of nearly unity close to
the liquid surface. Due to the directional and complex nature of the dendrite growth from the
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Figure 12.4 Solidification in a square cavity. Geometry and boundary conditions.

solid surface, the mushy region is often treated as a highly anisotropic porous region. In the
example shown, in addition to heat loss through the right vertical wall, the mass transfer in
the form of macro-segregation is also possible. In this chapter we limit the discussions to only
heat transfer.

If the solidifying material is pure, then the interface between the solid and liquid is normally
sharp without a mushy region (Example: Freezing of pure water) although a dendrite structure
is possible (Davis 2001; Xu 2004).

12.3.1 Governing Equations and Discretization

As mentioned in the previous section, convection in a solidification problem is extremely com-
plex. Often precise modeling of mushy region can only be possible by including some experi-
mental measurements on porosity and permeability of the mushy region (Zabaras and Samanta
2004). Thus, the governing equations can be written with varying complexity depending on
the modeling precision required. However, the basic equilibrium equations of incompressible
Navier-Stokes equations are still valid. Before introducing the flow equations, let us introduce
the solid drag terms introduced in the previous chapter to represent the mushy region. Since
the flow speed is really small in the mushy region, it is assumed that the linear drag term or
Darcy term is sufficient to represent the resistance here.

−
𝜇f ui

𝜅

, (12.11)

where 𝜇f is the fluid viscosity, ui are the velocity components and 𝜅 is the permeability. The
above drag term forms part of the momentum equation as explained in the previous chapter.
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The permeability may be related to the porosity of the mushy region (liquid volume fraction),
𝜖 using

𝜅 =
𝜖

3dp
2

150(1 − 𝜖)2
, (12.12)

where dp is the representative solid dendrite size in the mushy region. Since the above rela-
tionship was developed for packed beds, a more appropriate Kozeny-Carman relationship for
the permeability is often preferred, that is,

𝜅(𝜖) =
𝜅o𝜖

3

(1 − 𝜖)2
, (12.13)

where 𝜅o = d2∕180 with d being the secondary dendrite arm spacing. The permeability in
the mushy region is directional and is often treated as a vector or tensor (Beckermann and
Viskanta 1993; Sinha et al. 1992). The permeability distribution can also be expressed using
experimental measurements (Incropera and Bennon 1987; Zabaras and Samanta 2004). A
much simplified form of the drag term can be constructed using liquid volume fraction 𝜖 (Kim
et al. 2002; Viswanath and Jaluria 1993) as

− C
(1 − 𝜖)2

(𝜖3 + b)
ui. (12.14)

where C is a very large constant and b is a very small number to avoid division by zero. The
simplest way of calculating the liquid volume fraction 𝜖 is

𝜖 =
T − Ts

Tl − Ts
. (12.15)

The liquid volume fraction in the mushy region can also be calculated iteratively using
more advanced models by computing the total enthalpy. Total enthalpy in the mushy region
may be expressed as

H
𝜌

= 𝜖cl(T − Ts) + (1 − 𝜖)cs(T − Ts) + csTs + 𝜖L. (12.16)

The enthalpy H should be obtained by solving the energy equation reformulated in terms
of enthalpy.

The equilibrium equations for solidification (or melting) may now be written as
Continuity:

𝜕ui

𝜕xi
= 0. (12.17)

Momentum:

𝜌

(
𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj

)
= −

𝜕p

𝜕xi
+ 𝜇

𝜕
2ui

𝜕x2
j

− 𝜌lgi𝛽(T − Tr) + Si. (12.18)
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Temperature:

Ce

[
𝜕T
𝜕t

+ uj
𝜕T
𝜕xj

]
= ke

𝜕
2T

𝜕x2
j

. (12.19)

where ui are the velocity components, t is the time, xi are the coordinate axes, p is the pressure,
𝜇 is the kinematic viscosity, 𝜌 is the density, Ce is the effective heat capacity including the
latent heat and ke is the effective thermal conductivity.

The expression for Ce may be written as

Ce = (𝜌cp)e +
L

Tl − Ts
, (12.20)

where the subscript e represents effective. The source term Si in Equation (12.18) may be rep-
resented either by Equation (12.11) or by Equation (12.14) depending on the details required.
In order to estimate the liquid fraction in the mushy region, for alloy solidification, Equa-
tion (12.16) should be used. To close the enthalpy equation, the enthalpy should be calculated
from a reformulated equation of energy in terms of the enthalpy, that is,

𝜕H
𝜕t

+ uj
𝜕H
𝜕xj

= ke
𝜕

2T
𝜕x2

i

. (12.21)

Along with the above equation and Equation (12.16), the liquid volume fraction 𝜖 may be
estimated iteratively. The nondimensional form of Equations (12.16)–(12.19) may be obtained
by using the following nondimensional scales.

x∗i =
xi

D
; u∗i =

ui

𝛼l∕D
; p∗ =

p

𝜌l𝛼
2
l ∕D

;

𝜌
∗ = 𝜌

𝜌l
; t∗ = t

D2∕𝛼l
; T∗ =

T − Tr

Ti − Tr
, (12.22)

where D is a characteristic dimension, 𝛼 is the thermal diffusivity, subscripts l, i and r represent
liquid, initial and reference respectively. Substituting the nondimensional scales into Equations
(12.16)–(12.19), we obtain

Continuity:

𝜕u∗i
𝜕x∗i

= 0. (12.23)

Momentum:

𝜌
∗

(
𝜕u∗i
𝜕t∗

+ u∗j
𝜕u∗i
𝜕x∗j

)
= −

𝜕p∗

𝜕x∗i
+ 𝜇∗Pr

𝜕
2u∗i
𝜕x∗2

j

+ 𝛾iRaPrT∗ + S∗i . (12.24)

Temperature:

𝜎

[
𝜕T∗

𝜕t∗
+ u∗j

𝜕T∗

𝜕x∗j

]
= k∗

𝜕
2T∗

𝜕x∗2
i

. (12.25)
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where

𝜇
∗ = 𝜇

𝜇l
; 𝜈 = 𝜇

𝜌

; Pr =
𝜈l

𝛼l
;

Ra =
gi𝛽(Ti − Tr)D3

𝜈l𝛼l
; 𝜎 =

Ce

(𝜌cp)l
; k∗ = k

kl
(12.26)

and 𝛾i is the unit vector in the buoyancy direction. In Equation (12.24), the source term Si takes
different forms. If the mushy region is ignored, or not important, the source term is equal to
zero. If Darcy’s term is used, the nondimensional form of the source term becomes

S∗i = −𝜇∗ Pr
Da

u∗i , (12.27)

where Da is the Darcy number ( 𝜅
D2 ). If Equation (12.14) is used for the source term, the

nondimensional source becomes

S∗i = −C∗ (1 − 𝜖)2

(𝜖3 + b)
u∗i . (12.28)

C∗ is a very large nondimensional constant. The finite element discretization of the conti-
nuity, momentum and energy equations follow the identical procedure discussed for natural
convection in Chapter 7.

Example 12.3.2 Solidification in a square cavity
The model problem shown in Figure 12.4 is used here to demonstrate the finite element

method. This is a simple problem and the finite element method discussed in Chapter 7 can
directly be used to solve this problem. More complex problems with appropriate changes to
the equations can also be solved using the algorithm discussed in Chapter 7. The objective of
the problem considered here is to find the solidification pattern in a square cavity filled with
a molten alloy with the simplest formulation possible with fluid flow. In this formulation, the
source term Si is assumed to be zero and the liquidus and solidus temperatures are predefined
for an alloy solidification. In addition, the mushy region is represented only by introducing
the latent heat in this region as discussed below. With these assumptions, the solidification is
simplified to a very basic model with fluid flow.

In the problem shown in Figure 12.4, both the horizontal walls and left vertical wall are
assumed to be insulated and the right vertical wall is assumed to be at a constant temperature
that is less than that of the initial molten metal and solidification temperatures. The Rayleigh
number is defined based on the temperature difference between the initial molten metal and the
right vertical wall. To obtain a model solution, the following values for different parameters
are used here. They are: Pr = 0.02; 𝜎 = 5 in the mushy region; 𝜎 = 1 in solid and fluid regions;
T∗

l = 0.5; T∗
s = 0.3; T∗

i = 1.0; T∗
c = 0.

Figure 12.5 shows the flow and isotherm patterns with at different instances during
the solidification process. The meshes used here are adaptively generated(Nithiarasu 2000;
Nithiarasu and Zienkiewicz 2000; Nithiarasu 2002) (see Chapter 14). As seen, the natural
convective flow is covering almost the whole part of the domain at the early stages of the
solidification and the flow region progressively shrinks with respect to increase in time. It is
also noticed that at the later stages of the solidification process, multi-cellular flow patterns
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(b)

(c)

(d)

(a)

Figure 12.5 Solidification in a square cavity. Flow and isotherm patterns at different nondi-
mensional times (a) t = 0.0305; (b) t = 0.1945; (c) t = 0.4815; (d) t = 0.9275.
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Figure 12.6 Solidification in a square cavity. Heat transfer rate variation with time.

are observed (Figure 12.5(d)) as the liquid region shrinks. The isotherms shown clearly shows
the dominant conduction mode in the solid region and convective mode with highly nonlinear
variation in the liquid part.

Figure 12.6 shows the rate of heat transfer through the cold wall (right wall) with respect to
nondimensional time. The following relation is used to find the average rate of heat transfer

1
D ∫

D

0

𝜕T
𝜕x

dy, (12.29)

where x is the direction normal to the wall, D is the height of the wall and y is the tangential
direction along the wall. As expected, the heat transfer rate is high at the beginning and
reduces exponentially with time to a more or less a fully conduction mode (heat transfer rate ≈
= 1). This is expected as the conduction mode becomes the predominant mode of heat transfer
when the majority part of the domain is solidified.

12.4 Summary

This chapter provided a brief introduction to the finite element solution of solidification
problems with only heat transfer aspects of the problem in mind. The amount of literature
available on the numerical modeling of flow and heat transfer needs a comprehensive book
to explain all aspects of solidification and melting. Some of the important topics not covered
herein are dendrite growth, macro-segregation and multi-scale approach. These subjects need
substantially more space to thoroughly explain them and this is not the objective of this chapter.
We believe that the brief introduction given in this chapter allows a student, or researcher, to
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obtain a sufficient introductory knowledge to progress towards more comprehensive modeling
of flow and heat transfer in solidification problems.
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13

Heat and Mass Transfer
in Fuel Cells

13.1 Introduction

Fuel cells are electrochemical devices that directly convert chemical energy of a fuel into
electrical energy. The advantages of such a nonconventional energy generation device include
better efficiency and pollutant free operation. Figure 13.1 shows a schematic diagram of
the operating principle of a typical fuel cell. As seen, a fuel cell consists of three major
compartments. They are: fuel side on the left, oxidant on the right and electrolyte in the
middle. The fuel side consists of an anode (negative electrode) and an appropriate passage for
supplying a gaseous fuel. The oxidant side consists of a cathode (positive electrode) and an
appropriate passage for the oxygen to flow. The middle part, the electrolyte layer, transports
ionic charge to the cathode, and thereby completes the cell electric circuit as illustrated in
Figure 13.1. It also provides a physical barrier between the fuel and oxidant to prevent direct
mixing. The electrolyte is normally coated with a catalyst (platinum) layer, which triggers
ionization of hydrogen.

In a typical fuel cell, a gaseous fuel (often hydrogen) is continuously supplied to the anode
compartment and an oxidant (i.e., oxygen from air) is supplied to the cathode compartment.
The hydrogen gas is ionized as soon as it is in contact with the catalyst, that is,

H2 → 2H+ + 2e−. (13.1)

The positively charged ions from the above reaction (protons), permeate through the
electrolyte towards the cathode side but the negatively charged electrons do not. As a result of
proton migration, a potential difference between the two electrodes is generated. This electrical
gradient drives the electrons through an external circuit between the two electrodes resulting in

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 13.1 A schematic diagram of the typical proton exchange fuel cell principle.

power generation. The H+ ions meet the electrons from the external circuit at the cathode. The
electrons, the ions from the electrolyte and the oxidant induce the following electrochemical
reaction at the cathode.

1
2

O2 + 2e− + 2H+ → H2O. (13.2)

Summing Equations (13.1) and (13.2), the global electrochemical reaction of a hydrogen
fuel cell is obtained as

H2 +
1
2

O2 → H2O. (13.3)

In addition to producing water (H2O), hydrogen fuel cells produce heat as another end
product. In summary, the processes of a typical fuel cell may be listed as (a) continuous electric
current is generated due to flow of electrons through the external circuit; (b) thermal energy is
generated by the two electrochemical reactions (Equations (13.1) and (13.2)) that are highly
exothermic; (c) water is produced at the cathode compartment as an end product. The perfor-
mance of a fuel cell is measured in terms of power generated. The power generation can be
obtained by multiplying the voltage generated and the current. A mathematical model of a fuel
cell should be aimed at predicting the power of a fuel cell, if the material properties of various
components of a fuel cell are provided. Before discussing the details of the mathematical
model, the following section provides a brief summary on different type of fuel cells.
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13.1.1 Fuel Cell Types

Fuel cells may be classified depending on the fuel-oxidant combination used, whether the fuel
is processed outside (external reforming) or inside (internal reforming) the cell, the type of
electrolyte employed, the operating temperature of the fuel cell, etc.

The most common classification of fuel cells is by the type of electrolyte used in the cells.
Currently, six such types of fuel cells are available (Kirubakaran et al. 2009; Mauro 2009,
2011).

(i) Proton exchange membrane fuel cell (PEMFC):

(a) Direct formic acid fuel cell (DFAFC)

(b) Direct Ethanol Fuel Cell (DEFC)

(ii) Alkaline fuel cell (AFC):

(a) Proton ceramic fuel cell (PCFC)

(b) Direct borohydride fuel cell (DBFC)

(iii) Phosphoric acid fuel cell (PAFC)

(iv) Molten carbonate fuel cell (MCFC)

(v) Direct methanol fuel cell (DMFC)

(vi) Solid oxide fuel cell (SOFC).

The classifications under operating temperatures may be divided into low temperature fuel
cells that operate in the temperature range of 50–250 ◦C and high temperature fuel cells that
have a temperature range of 650–1000 ◦C. Examples of low temperature fuel cells include
PEMFC, AFC and PAFC, while MCFC and SOFC are two good examples of high temperature
fuel cells. A brief description of some fuel cell types is given below.

(i). The first type of fuel cell, PEMFC, uses a solid polymer electrolyte (Teflon-like
membrane), which is an excellent conductor of protons and an insulator for electrons. The
operating temperature of this fuel cell is as low as 100 ◦C. The first sub-classification of
PEMFC is DFAFC, which uses formic acid (HCOOH) as the fuel. This fuel consists of small
organic molecules and it is directly fed to the anode. The second subcategory of PEMFC,
DEFC, uses nafion as a catalyst and ethanol as the fuel.

(ii). Alkaline Fuel Cells (AFC) were first employed in NASA’s space missions. This
fuel cell is also referred to as Bacon Fuel Cell, after its British inventor. It operates at low
temperatures around 100 ◦C and is capable of working at an efficiency range of 60–70%. It
uses an aqueous solution of potassium hydroxide (KOH) as the electrolyte, which transports
negatively charged ions from the cathode to the anode and releases water as its byproduct. The
water produced in the anode side migrates to the cathode to produce hydroxyl ions (OH−).
One of the advantages of this fuel cell is that it starts easily. Protonic ceramic fuel cell (PCFC)
is a relatively new fuel cell, which is developed basically with the ceramic electrolyte material.
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It can operate at temperatures as high as 750 ◦C and electrochemically oxidize gas molecules
of the hydrocarbon supplied to the anode, without the aid of an additional reformer. Sodium
borohydride (NaBH4) is a potential fuel, if mixed with water to generate hydrogen. After
releasing hydrogen, borohydride is oxidized at the cathode to produce NaBO2 or borax. The
second subclassification of AFC, DBFC fuel cell, operates at temperatures as low as 70 ◦C.
The main advantages of this type of fuel cell are higher power density, no need for an expensive
platinum catalyst and high open circuit cell voltage (about 1.64 V).

(iii). Phosphoric acid fuel cell (PAFC) operates at temperatures of about 175–200 ◦C. This
operating temperature is almost twice the temperature at which PEM fuel cells operate. PAFC
utilizes the liquid phosphoric acid as electrolyte. Unlike PEM and AFC, it is very tolerant to
impurities in reformed hydrocarbon fuels.

(iv). Molten carbonate fuel cells (MCFC) operate at temperatures of about 600–700 ◦C.
MCFC consists of two porous electrodes with good conductivity that are in contact with a
molten carbonate electrolyte. Due to its internal reforming capability, it separates the hydrogen
from unreformed fuel within the cell. The main advantages of MCFC are higher efficiency
of 50–60%, no need of a metal catalyst and a separate reformer is also not required as its
operating temperatures are quite high (Farooque and Maru 2001).

(v). DMFC technology is relatively new in comparison to the other type of fuel cells
described. DMFC uses a polymer electrolyte and liquid methanol or alcohol as fuel instead
of reformed hydrogen. At the anode, hydrogen is obtained by dissolving liquid methanol
(CH3OH) in water without the need for an external reformer. At the cathode, the recombination
of the positive and negative ions takes place and in the presence of the oxidant, water is produced
as a byproduct.

(vi). SOFCs belongs to the category of high temperature fuel cells. They use dense yttria
stabilized zirconia, which is a solid ceramic material, as an electrolyte. In SOFCs, oxygen ions
combine with hydrogen ions to generate water and heat. SOFCs produce electricity at a high
operating temperature of about 1000 ◦C. A number of researchers have started working with
Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs), which operate at a temperature
between 550 and 800 ◦C. The ITSOFCs offer cost effective fabrication and they are potentially
more reliable than very high temperature SOFCs. The main advantages of SOFCs are high
efficiency of about 50–60% and no need for an external reformer to extract hydrogen from the
fuel, thanks to its internal reforming capability. Waste heat can be recycled to make additional
electricity by cogeneration operation (Farooque and Maru 2001). The slow start up, high cost
and intolerance to sulphur content of the fuel cell are its main drawbacks.

In the following sections, the discussion of the mathematical models and numerical solution
procedures are presented for Solid Oxide Fuel Cells (SOFCs). The extension of the procedures
to other types of fuel cells is similar and the underlying numerical procedure can be employed
for all fuel cell types.

13.2 Mathematical Model

A simple solid oxide fuel cell consists of an anode, cathode and electrolyte. The planar
geometries of SOFCs are popular as they are easy to manufacture and they have the potential
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to generate higher power densities than tubular ones. Thus, the models presented here only
represent the planar fuel cell structures. The electrochemical reactions of an SOFC depends
on the fuel used. In general, the cathode and anode reactions may be written as:

O2 + 2e− → O= (13.4)

and

H2 + O= → H2O + 2e− (13.5)

respectively. The electrons emitted at the anode travel via the external circuit to the cathode
to produce O= ions. These ions are transported through the electrolyte towards the anode
to produce electrons and water. Unlike the reaction explained in Section 13.1, the oxide ion
travels across the electrolyte to complete the reaction and the water is produced as a product
at the anodic side.

The ideal electromotive force associated with the electrochemical reactions (Equations 13.4
and 13.5) may be represented by the Nernst equation (Singhal and Kendall, 2003), that is,

E = Eo −
RT
2F

ln

(
pH2O

pH2
p0.5

O2

)
, (13.6)

where Eo is the standard electrode potential (V), R is the universal gas constant (8.314
Jmol−1K−1), T is the temperature (K), F is the Faraday’s constant (96 487 Cmol−1) and
p is the partial pressure (Pa). The standard electrode potential is given as Eo = 1.2723 −
2.7645 × 10−4Ts. This is the ideal voltage for hydrogen oxidation at ambient pressure as a
function of temperature at the reaction sites.

Under normal operating conditions, the actual voltage of a fuel cell is lower than the
ideal one given by Equation (13.6) due to losses. The voltage losses are often caused by the
activation, concentration and ohmic over-potentials. Thus, the effective or corrected potential
may be calculated as:

V = E − 𝜂a − 𝜂c − 𝜂ohm, (13.7)

where 𝜂a is the activation over-potential, 𝜂c the concentration over-potential and 𝜂ohm the
ohmic over-potential. The activation losses are the result of activation energy required by
the chemical reactions, concentration losses are due to the concentration gradient across the
electrodes and ohmic losses are due to the resistance to electron flow in the electrodes and to
ion flow in the electrolyte. Equation (13.7) is the equation used in evaluating the performance
of SOFCs. Thus the remaining part of the mathematical model should be developed to address
the unknowns of Equations (13.6) and (13.7).

The activation over-potential 𝜂a in Equation (13.7) is related to the cell current density via
the Butler-Volmer equation (Singhal and Kendall 2003), that is,

i = io

[
exp

(
𝛼a

neF𝜂a

RT

)
− exp

(
−𝛼c

neF𝜂a

RT

)]
, (13.8)
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Table 13.1 Available models for exchange current density, io, estimation

ko Ea

Reference Anode Cathode Anode Cathode

Campanari and
Iora (2004)

7 × 109 pH2
pH2O

p2
ref

7 × 109 pO2
pref

110 120

Suwanwarangkul
et al. (2006)

RT
3F

6.2 × 1011

(
pH2O

Keq,H2
ph2

)0.266

0.25 × 1010 RTp0.5
O2

120 130

Aguiar et al.
(2004)

RT
2F

2.35 × 1011 RT
2F

6.54 × 1011 140 137

Suzuki et al.
(2005)

RT
2F

125.6 × 1010 p0.15
O2

RT
2F

62.7 × 106 p0.5
O2

138 136

where io is the exchange current density at the electrode-electrolyte interface. The Arrhenius
equation of the following type is often employed to compute io, that is,

io = koexp

(
−

Ea

RT

)
, (13.9)

where ko is a constant and Ea is the activation energy. Both these quantities are empirically
determined. Some of the models used in the literature are given in Table 13.1.

The remaining undefined parameters in Equation (13.8) are ne, the number of electrons
transferred and 𝛼a and 𝛼c the transfer coefficients for anode and cathode respectively. Both the
transfer coefficients are assumed to be 0.5. Equation (13.8) is used to calculate the activation
losses. This is normally calculated iteratively by prescribing an average operating current
density of the fuel cell.

The second loss, due to concentration gradient, is a result of varying concentration along
an electrode as the fuel/oxidant are consumed when they travel along the reaction site. The
difference in concentration between the flow channel and the reaction site is directly related to
the concentration losses. These losses can be evaluated as the difference between the Nernst
potential in the bulk flow of the channel and the reaction site, that is,

𝜂c = 𝜂
a
c + 𝜂c

c = RT
2F

ln

(
Xb

H2
Xr

H2O

Xr
H2

Xb
H2O

)
+ RT

4F
ln

(
Xb

O2

Xr
O2

)
, (13.10)

where X is the molar fraction. The third loss is a result of the resistance offered by the
electrolyte to the ion movement and resistance of the circuit connecting the electrodes. This
may be calculated as

𝜂ohm = IRi, (13.11)
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where I is the current and Ri is the resistivity. The main contribution to resistivity is from the
electrolyte which varies inversely with the operating temperature. The following relationship
is commonly used in determining the temperature dependent resistivity (Mauro et al. 2010).

Ri = Aexp
(B

T

)
. (13.12)

The constants A and B in the above equation are determined via experiments.
Thus, to calculate the fuel cell voltage from Equation (13.7) we require the temperature and

partial pressures of H2, O2 and H2O (Equation (13.6)), prescribe a current density (Equation
(13.8)) and determine the molar fractions of different species (Equation (13.10)). In order to
calculate the pressure, temperature and concentrations (molar fractions), appropriate governing
equations need to be solved throughout the domain. Such a thermofluid dynamic field in the
anodic and cathodic compartments is described by using a generalized porous medium model.
To make the presentation simple we may divide a fuel-cell domain into three compartments,
that is, (i) the anodic compartment, that includes the fuel channel, the porous anode and the
catalyst layer; (ii) the electrolyte; and (iii) the cathodic compartment, that includes the oxidant
channel, the porous cathode and the catalyst layer. The first and last compartment of the fuel
cell may be modeled using the generalized porous medium model and the second component,
electrolyte, is modeled using a Laplace equation for the electric potential and energy equation
with a source term generated by electric potential. The electrolyte part of the domain is often
simplified as the thickness of this part is often orders of magnitude smaller than the electrode.
In the following subsections, the equations governing the first and third part of the domain are
reviewed before discussing the electrolytic comportment.

13.2.1 Anodic and Cathodic Compartments

The flow, heat and mass transfer in these compartments are governed by conservation of the
mass, momentum and energy equations. They are:
Conservation of mass:

𝜕ui

𝜕xi
= 0. (13.13)

Momentum conservation:
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𝜖
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𝜕
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(
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𝜕xi
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𝜅

−
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𝜅

. (13.14)

Energy conservation:
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𝜕
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𝜕xj

)
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Species conservation:
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𝜕

𝜕xj

(
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𝜕xj

)
+ Sm

k , (13.16)
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where ui are the velocity components, xi coordinate axes, 𝜌 density, 𝜖 porosity, t time, 𝜇e
equivalent viscosity, 𝜇 fluid viscosity, 𝜅 permeability, Fo Forchheimer constant, cp specific
heat at constant pressure, ke equivalent thermal conductivity, Se energy source term, ck is the
concentration of species k, De

km equivalent mass transfer coefficient of species k and Sm
k is the

mass transfer source term for species k.
Note that Equations 13.13–13.16 are valid both for the electrodes and for the channels car-

rying the fuel and oxidant. Inside the electrodes, the porosity assumes the value corresponding
to the actual electrode type and microstructure (obtained through experiments), while in the
fuel and oxidant channels the porosity approaches unity to recover incompressible Navier-
Stokes equations. For more details on the generalized porous medium model, readers are
referred to Chapter 11.

The equivalent mass transfer diffusion coefficient De
km is a crucial parameter and its

calculation is important. In the absence of detailed experimental data, several models have
been employed in the literature, which are functions of pressure, temperature and species
concentration value. The most common method of theoretical estimation of gaseous diffusion
is the one developed by Chapman and Cowling (2004). The effect of porous electrodes are
taken into account through the Knudsen diffusion coefficient (Zho and Kee 2003) as

Dk = 4
3

rp

√
8RT
𝜋Mk

, (13.17)

where Mk is the molar weight of the kth species in kg mol−1. The effective species diffusion
coefficient may now be calculated as

1
De

km

=
𝜏g

𝜖

(
1

Dkm
+ 1

Dk

)
, (13.18)

where 𝜏g is the tortuosity which is often assumed to be a constant and Dkm is the multi-
component diffusion coefficient m2 s−1.

The source terms Se and Sm
k in Equations 13.13–13.16 need defining. The heat generation

term Se is defined as

Se =
Ti
2F

(
sH2O − sH2

− 1
2

sO2

)
+ i(𝜂a + 𝜂ohm). (13.19)

In the above equation, the first term on the RHS represents the anodic and cathodic
reversible heat generation per unit area and the second term represents the irreversible heat
flux due to electrochemical reactions. The letter s above represents the entropies and the
subscripts of s represent respective species (Mauro et al. 2011).

The source term Sm
k in the species equation is the result of electrochemical reactions at the

catalyst layer of the cell (see Figure 13.2). Thus the equation of the mass flux at the catalyst
layer is given as

Sm
k =

iMk

neF
, (13.20)

where ne is the number of transferred electrons.
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Figure 13.2 Heat and mass transfer in a planar SOFC. Schematic diagram and typical bound-
ary conditions for a single domain approach. Source: Mauro (2009). Reproduced with permis-
sion of Mauro.

13.2.2 Electrolyte Compartment

Under normal and steady-state operating conditions, the oxide ions O= migrate from the
cathode to the anode. As a result a static electric field is created which is governed by

∇.E = 0. (13.21)

The current flux E in the electrolyte may be expressed in terms of the static potential as
E = −𝜆∇𝜙 = 0, where 𝜆 is the electrical conductivity of the electrolyte and 𝜙 the electric
potential. Thus, Equation 13.21 may be rewritten as

𝜆∇2
𝜙 = 0. (13.22)

The above Laplace equation is the static potential equation. The generic energy equation
for an electrolyte placed in between two electrodes may be written as

𝜌cp

(
𝜕T
𝜕t

+ u.∇T
)
= ∇. (k∇T) + 𝜆|∇𝜙.∇𝜙|. (13.23)

If the electrolyte is static, the velocity u in the above equation becomes zero, which results
in the heat conduction equation with the heat generation term due to the static electric potential.

13.3 Numerical Solution Algorithms

There are a number of ways in which a finite element solution to the system of equations
can be obtained. We provide a summary of modeling flow, heat and mass transfer in an
anode supported SOFC below. The method explained below is derived from two distinctive
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approaches, multi domain (Arpino et al. 2008) and single domain (Mauro, 2009; 2011; Mauro
et al. 2011) approaches. Since the single domain approach is more comprehensive and easier
to implement, the approach provided below assumes a single domain with appropriate initial,
boundary and interface conditions. The solution to the differential equations may be obtained
using the CBS procedure discussed in Chapter 7.

13.3.1 Finite Element Modeling of SOFC

The device here is divided into three subdomains: (1) anodic compartment, including the fuel
channel, anode and catalyst layer, (2) electrolyte, and (3) cathodic compartment, including
oxidant channel, cathode and catalyst layer. These subdomains are combined into a single
composite domain for solving the governing equations. Since the thickness of the catalyst
layer, where chemical reactions take place, is at least two orders of magnitude smaller than
the other parts of the domain, this is simply assumed to be an interface between the porous
electrode and the electrolyte. This aspect allows us to model reactants and product consump-
tion/production, as well as the thermal energy generation associated with the device operation,
as Neumann boundary conditions are imposed at the interface between the porous electrode
and the electrolyte. At the interfaces, continuity of temperature, species concentration and
their fluxes should be maintained. The continuity in the concentration and temperature are
automatically satisfied. The flux continuity may be approximately satisfied by refining the
mesh at the interface. In addition, the following assumptions are also invoked:

� The flow is incompressible and laminar.

� The gases used are assumed to behave as ideas gases.

� The electrodes are assumed to be made of a homogeneous material with constant
porosity.

� Transient effects are negligible. Thus, only a steady-state solution is sought.

Since flow within the fuel cell subdomains is independent of transport, the momentum and
continuity equations may be solved independently of the temperature and species equations.
However, the strong coupling between energy and species equations demands an iterative
solution between them. The coupling between these two transport equations exists due to
the temperature dependent species diffusion coefficients (Equations (13.17) and (13.18)) and
source terms of the two equations (Equations (13.19) and (13.20)). Although only a steady-
state solution is sought, the time-stepping procedure of the CBS scheme acts as an excellent
iterative mechanism to balance the quantities. To obtain a satisfactory result, it is therefore
important to converge one or more of the important quantities that impose a strong cou-
pling between the two transport equations. The quantities of interest are the source terms,
different over potentials (linked to energy source), current density (if not prescribed) and the
diffusion coefficient. Bearing in mind all the assumptions and the coupling, the following
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solution sequence may be employed to obtain an approximate finite element solution to SOFC
performance.

� Assume appropriate initial conditions for velocity, temperature, species concentration,
average current density and diffusion coefficient.

� Solve continuity and momentum equations to steady state using the CBS method as
described in Chapter 7.

� Using the initial conditions, compute the source terms of the species and energy equa-
tions and use them as the interface condition between anode and electrolyte and cathode
and electrolyte respectively (see Figure 13.2).

� With the prescribed initial, boundary and interface conditions, obtain a steady-state
solution to the energy and species equations.

� Solve the Butler-Volmer equation using the given average current density to compute
activation losses.

� Compute the effective species diffusion coefficient.

� Check whether or not the diffusion coefficient value converges. If not, go to step 3 and
continue until convergence.

As a final step of the calculation procedure, the over potentials, the actual voltage of the
cell and other quantities required to estimate the performance of the cell are evaluated.

Restricting interest to planar solid oxide fuel cells, with particular reference to an anode
supported configuration, it can be pointed out that the thickness of electrolyte and cathode is
typically orders of magnitude smaller than that of the anode. As a consequence, the local current
density distribution can be assumed to vary only in the flow direction (parallel to the catalyst
layer) and not across the electrolyte. For the same reason, the temperature gradient across
the electrolyte can be assumed to be negligible. As a consequence, the anodic and cathodic
temperature distributions at the catalyst layer can be assumed to be identical, and the electrolyte
compartment can be excluded from calculations. A typical example of such an approach is
available in Figure 13.2, where domain definition and the boundary conditions employed are
reported for the case of a planar anode-supported SOFC. In fact, in this example, the influence
of the electrolyte is neglected as its thickness is several orders of magnitude smaller than the
anode (Arpino et al., 2008; Arpino and Massarotti, 2009; Mauro et al. 2011). The following
example will provide further details on the problem solved using the proposed finite element
approach.

Example 13.3.1 Anode supported SOFC – planar configuration
Figure 13.2 shows a schematic representation of an SOFC (not to scale) along with

the boundary and interface conditions. At the inlet sections of the anodic/cathodic domain,
a mixture of assigned species concentration values with given velocity and temperature is
assumed to enter the domain. At the exit of the domain, constant pressure boundary conditions
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Figure 13.3 A section of the three-dimensional finite element mesh. Source: Mauro (2009).
Reproduced with permission of Mauro.

are assumed and natural boundary conditions are applied for species and concentration
equations. No-slip velocity and adiabatic conditions are imposed on all other sides of the
domain, which are also considered to be impermeable to the species in the mixture. The device
is assumed to be supplied with hydrogen mixture and air. An example of computational grids
used in the simulations is available in Figure 13.3. As seen, the hydrogen mixture channel and
air channel are placed at the top and bottom of the domain respectively. All the interfaces
and walls are refined to capture rapid changes in the variables. All the different parameters
required to carryout the calculations are provided in Table 13.2.

To simulate a practical application of SOFC, heat and mass transfer in an anode supported
case with the parameters given in Table 13.2 has been studied. The experimental data for this
case are available in Yakabe et al. (2000). The fuel side in this case is supplied with a mixture
of H2, H2O and Ar.

Figure 13.4 shows a comparison of over-potentials against experimental values Yakabe
et al. (2000). The reference value 𝜂A

c0 is calculated at H2∕(H2 + H2O + Ar) = 0.8. Since the
ratio H2∕H2O is kept at 80/20, the reference value is calculated when no argon is added.
The results clearly indicate that need for 3D simulations. While the 3D simulation gives
results close to the experimental results, the 2D results are not very accurate (Mauro et al.
2011).
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Table 13.2 SOFC parameters used in the simulation (Mauro et al. 2011)

Parameter Symbol Value

Operating temperature (K) T 1023
Operating pressure (bar) p 1.0
Fuel inlet velocity (m/s) ufuel,in 2.0
Air inlet velocity (m/s) uair,in 2.0
Current density (A/cm2) i 0.30, 0.70
Porosity 𝜀 0.46
Average pore size (?m) rp 2.6
Tortuosity 𝜏g 4.5
Anode permeability (m2) 𝜇A 1.76 × 10−11

Cathode permeability (m2) 𝜇C 1.76 × 10−11

Anode thickness (mm) tA 2.0
Cathode thickness (mm) tC 0.050
Electrolyte thickness (mm) tE 0.050
Fuel channel height (mm) hF 1.0
Air channel height (mm) hA 1.0
Cell width (mm) w 1.0

Source: Mauro (2009). Reproduced with permission of Mauro.

Exp. Yakabe et al. iavg = 0.3A/cm2

Exp. Yakabe et al. iavg = 0.7A/cm2

Num. Yakabe et al. iavg = 0.3A/cm2

Num. Yakabe et al. iavg = 0.7A/cm2

2D AC-CBS iavg = 0.3A/cm2

2D AC-CBS iavg = 0.7A/cm2

3D AC-CBS iavg = 0.3A/cm2

3D AC-CBS iavg = 0.7A/cm2
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Figure 13.4 Concentration overpotentials for the H2-H2O-Ar fuel mixture, at iavg = 0.3A/cm2

and iavg = 0.7A∕cm2: comparison with the experimental and numerical data available in Yakabe
et al., 2000. Source: Data from Yakabe et al. (2000).
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13.4 Summary

This chapter is intended to provide a very brief overview on how to model heat and mass
transfer in fuel cells using the finite element method. Although the discussion was focused
around solid oxide fuel cells (SOFC), extending the procedure to other fuel cells may be carried
out by appropriately changing the electrochemistry and boundary conditions. The core finite
element procedure discussed in this chapter remains the same for different types of fuel cells.
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14

An Introduction to Mesh
Generation and Adaptive
Finite Element Methods

14.1 Introduction

It is important to realize that the finite element method is approximate and its accuracy
depends on several aspects including domain and equation discretizations (refer to Chapter 1).
In order to obtain an acceptable accuracy, the domain discretization, or mesh generation,
should be carefully carried out. The mesh convergence studies, discussed in Chapter 7 are
one way of improving confidence in the solution. Obtaining a mesh convergence is easy for
geometrically and physically simple problems and it is also possible to design an accurate
domain discretization a priori for such problems. For example, refining near a solid wall of a
forced convection problem to capture high gradients of velocity and temperature is a way of
increasing accuracy. Such intuition from the basic fluid dynamics and heat transfer knowledge
may not always be easy or possible. One can refine the mesh everywhere to a degree to obtain
a reasonably accurate solution, but this approach is not necessarily efficient and may not be
cheap. Thus, alternatives such as an adaptive mesh refinement scheme is often considered.
However, it is important to note here that the adaptive method can be more expensive than using
a uniform fine discretization if not carried out carefully. Thus, practitioners should be aware
of the available computing power and pros and cons of the adaptive strategies. The adaptive
strategies generally contain two parts. The first part is linked to the estimation of solution
error and the second part links the error indication to a mesh refinement strategy. Sometimes
the error estimation is the only interest. In such cases, focussing on the design of a good
error estimator is important. For geometrically and physically complex problems however, a
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mesh refinement strategy may be of prime importance. Our main interest here is the second
category of problems in which designing a suitable mesh for flow and heat transfer analysis is
of primary concern. Before discussing adaptive meshing capabilities, a brief introduction to
mesh generation is provided in the following sections.

14.2 Mesh Generation

In order to understand adaptive refinement, a fundamental understanding of mesh generation
procedures may be necessary. In this section we provide a brief introduction to mesh genera-
tion (Frey and George 2008; Löhner 2001; Zienkiewicz et al. 2013a). The mesh generation, or
domain discretization, may be classified under various categories such as topology, method of
generation, element type, conformity, body alignment etc. The classification based on topol-
ogy is shown in Figure 14.1. We classify the meshes under this category, in a broader sense,
as structured and unstructured meshes. Within the structured and unstructured mesh classifi-
cations, the methods may further be subdivided into uniform and nonuniform categories as

(a)  Uniform structured mesh (b)  Nonuniform structured mesh

(c)  Uniform unstructured mesh (d)  Nonuniformun structured mesh

Figure 14.1 Different type of meshes.
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shown in Figure 14.1. Mesh generation methods may vary from fully manual, semi-automatic
to fully automatic. The element types normally employed are triangles and quadrilaterals in
two dimensions and tetrahedra and hexahedra (or bricks) in three dimensions. In addition to
the shape of the elements, further classifications under the element type include the order of
polynomials used within an element. Element types with interpolating polynomials of first
order to very high orders are in use. The meshes may also be classified as conformal, or non-
conformal, depending on how the elements are conformed within a domain. A mesh is said
to be conformal if a perfect match between edges and nodes exist between two neighboring
elements, that is, no elements overlap and no space exists between the elements. Otherwise,
the mesh is a nonconformal one. Finally, a mesh may be classified as a body fitted mesh if
it is aligning with the given geometry boundaries. Occasionally, meshes with no boundary
alignment are used. In such cases, the solution algorithm need to make sure that the boundary
of the domain is appropriately identified.

Our interest in this chapter is only to employ automatically generated unstructured meshes.
Unstructured and automatic generation of meshes has been an active area of research since
the early eighties. Due to their flexibility for boundary fitting and the speed at which an
unstructured mesh can be generated, they are very popular for modeling complex problems.
If the problem of interest is geometrically unchallenging, a researcher may spend a significant
amount of time to generate a structured mesh. However, if the geometry involved is complex,
then generating a structured mesh such as a multi-block mesh may take months. Thus, if the
geometry is expected to change during an analysis and the geometry is complex in nature, then
automatic and unstructured meshes are recommended, as long as appropriate precautions are
taken to obtain a suitable mesh.

Most of the mesh generation methods require a discretization of the domain boundary
first. In 2D cases, this means inserting boundary nodes which connect the boundary edges,
that is, approximate the boundary by a polygon, or set of polygons if the domain is not simply
connected. In 3D cases, the corresponding boundary discretization requires building a surface
mesh, for example, a polyhedron with triangular faces on the surface. The two main automatic
mesh generation methods, advancing front technique and Delaunay triangulation methods,
start with such a boundary discretization. Both these methods are discussed in the following
subsections.

14.2.1 Advancing Front Technique (AFT)

The AFT is one of the first developed automatic methods for mesh generation. In this method,
a front is defined as a set of edges separating the existing mesh elements and a still nontrian-
gulated part of the domain (see Figure 14.2). Initially, this front coincides with the boundary
segments of the domain to be meshed or discretized. After defining the initial front, a new
point is inserted aside a front-edge at an ideal location so that the front-edge and the new point
form a triangle which is as close to being an equilateral triangle as possible. If the front-edge
is essentially longer or shorter than the locally prescribed element size h then the ideal point
location can be moved closer to or farther from the edge, respectively, along the normal pass-
ing through the edge mid-point (Löhner 2001; Peraire et. al. 1999). If other front nodes are
closer to that ideal node, it can be (a) shifted towards the selected front-edge or (b) removed
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Figure 14.2 Stages in the progression of an advancing front algorithm.

and replaced by a new closer node to the front-edge. In all the cases, a new element is built
and added to the set of elements as shown in Figure 14.2. Once a satisfactory new element
is constructed, the front-edge used to form the element is excluded from the front and new
edge/edges of the new element are added to the front. The selection of edges to build a new
element may be carried out by using the shortest edge (Löhner 2001; Peraire et. al. 1999) or
the oldest edge among the front edges. During triangulation, multiple fronts may be used to
accelerate the triangulation. The algorithm stops when the domain is completely filled with
triangles.

If the boundary of a 2D domain is smooth, the AFT produces a high quality mesh and a
proper element sizing. Some poor elements can appear in the area where two parts of the front
meet each other. These can be corrected by mesh cosmetic procedures (see below). The AFT
algorithm is slow due to the fact that, for every new point, it is necessary to compute the
distance between the point and all existing front points. In some versions, AFT is based on
an analysis of the angle formed by two adjacent front edges (Schoberl 1997). An analogous
technique to that of the 2D AFT may be applied for 3D mesh generation. Here, we have a
front of triangular faces with the initial front coinciding with the boundary surface grid. An
ideal position for a new point is along the normal passing through the centroid of a front-face
(triangular surface) such that the distances from the new point to the face vertices are as close
as possible to the prescribed local element size.

The AFT method requires multiple intersection and enclosure tests, especially when it
comes to opposing fronts approaching each other, to ensure that the integrity of the final
mesh is maintained. Although 2D AFT provides good quality meshes on simple geometries, a
standard 3D version of the AFT, that is, generalization of standard 2D AFT, does not guarantee
high quality elements, even near a smooth boundary with a high quality surface mesh (Sazonov
et al. 2006). To obtain good quality elements close to the boundaries, a nonstandard method,
or cosmetics, should be employed.

14.2.2 Delaunay Triangulation

A triangle in a triangulation is known as a Delaunay element if its circumcircle contains no
nodes in its interior (Dellaunay 1934) as shown in Figure 14.3(a). A Delaunay triangulation is
one in which every element is a Delaunay element. In two dimensions, a Delaunay triangulation
is optimal in the sense that it maximizes the minimum angle found over the entire mesh
(Weatherill 1992). Unfortunately, this property of a Delaunay mesh can not be extended to its
3D counterpart, that is, maximizing the minimum solid angle of the elements in the domain.
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(a) (b)

Figure 14.3 Delaunay triangulation: (a) Delaunay triangulation of a given set of points;
(b) constrained Delaunay element t: bold lines are the boundary edges, points 1,2 are within
its circumcircle but not seen from element t.

It should be noted that the Delaunay method provides an algorithm to form topology of
the mesh using existing nodes and does not supply any measure to position the nodes. Note
also that a Delaunay triangulation is the triangulation of the domain that is a convex hull
of the given set of points. Thus, if the domain boundary 𝜕Ω has concave parts, a Delaunay
triangulation may generate “out of the domain” triangles which can be easily found and
removed. If by chance four or more points lay on the same circumcircle, then we meet a
degenerated case. A rectangular grid of points is an example of such a degenerated point
set. In such a case, the connection is not unambiguous. However, an infinitesimally small
displacement of points can remove this degeneration. All these definitions are valid for 2D and
3D Delaunay triangulation. In three dimensional domains, a circumsphere is used in place of
a circumcircle for two-dimensional domain.

14.2.2.1 Delaunay Triangulation Algorithms

One of the simplest algorithms to make existing triangles Delaunay, or constrained Delaunay,
is via edge swapping. Figure 14.4 gives such an example. In this case, a simple swapping
of the diagonal makes the triangles Delaunay. This leads to a straightforward algorithm that
states “construct any triangulation on a given number of points and then swap edges until no
triangle is non-Delaunay”. Unfortunately, this does not extend to three dimensions. The mesh
thus obtained after the swapping algorithm is a Delaunay or constrained Delaunay mesh. The
latter is a triangulation that contains as many Delaunay triangle as possible and the rest are
constrained. The circumcircle of an element of a constrained Delaunay triangulation contains
in its interior no nodes visible from the element as shown in Figure 14.3(b).

An alternative and widely used algorithm is based on the Bowyer-Watson point insertion
algorithm (Bowyer 1981; Watson 1981). It works by adding points, one at a time, to a valid
initial Delaunay triangulation. After every insertion, any triangles whose circumcircles contain
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Figure 14.4 Edge swapping to obtain a Delaunay triangulation.

the new point are marked and their common edges are deleted to create a polygon. All the
vertices of this polygon are then connected to the new point as shown in Figure 14.5. To
make this procedure applicable to any domain, it starts with determining four auxiliary points
forming a rectangle aligned along the horizontal and vertical directions that completely enclose
the domain to be triangulated. This rectangular domain may be refereed to as the background
region. An initial triangulation is obtained by connecting all four points of the rectangle. Now,
the points are inserted one by one, first on the real boundaries of the domain and then the inner
regions, re-triangulating the domain in accordance with the Bowyer-Watson algorithm. This
gives a Delaunay triangulation with elements present both within and outside the real domain,
that is, in-between the real domain and the background region. The outside elements should
be detected and removed from the mesh along with the background region. Figure 14.6 shows
a typical example of generating a mesh on a concave domain.

The Bowyer-Watson algorithm can be readily generalized to 3D domains. It starts with
creating eight points constituting a hexahedron, that is, a right-angled parallelepiped aligned
to the x, y and z directions, which encloses the domain to be meshed. The background
parallelepiped region should be partitioned into 5 or 6 tetrahedra. This is an initial mesh into

(a) (b) (c)

Figure 14.5 The Bowyer-Watson method of point insertion for generating Delaunay
triangulation.
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Figure 14.6 a: concave domain to be triangulated and all data points; b: surrounding box and
initial mesh of 2 elements; c: one point is inserted; d: first 5 points are inserted; e: inserted
all boundary points; f: all the points have been inserted (one boundary edge is not in the
triangulation); g: boundary edge recovery by edge swapping; h: elements containing box
vertices are removed (result: convex domain); i: final mesh—all out-of-domain elements are
deleted.

which data points are inserted one-by-one, first on the boundaries of the real domain and then
inside the problem domain.

14.2.2.2 Automatic Point Creation

In contrast to the AFT, Delaunay triangulation does not indicate how to place inner points to
obtain a better element quality. However, it provides guidelines on how to optimally connect
such points. Therefore, different approaches to optimally place new points have been developed
to obtain good quality Delaunay triangulation.

One of the simplest approaches is to place a new point at the circumcenter of the element
with the poorest quality, in terms of shape and size, among all the elements in the mesh.
The process can be terminated when the size and quality have improved beyond a prescribed
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(a) (b)

Figure 14.7 (a) Quadtree grid structure; (b) Delaunay triangulation generated on its nodes.

threshold. Despite the fact that this approach improves element quality, the resulting mesh is
often not sufficiently of a high quality to carry out calculations. Thus, mesh cosmetics are used
to improve the mesh quality further. Another method for targeting element quality is to insert
a point at the middle of the longest edge, which is larger than the prescribed local element
size. Again, mesh cosmetic procedures may be employed to improve further the quality.

To produce graded meshes, some researchers have resorted to quadtrees. A quadtree
is a recursive data structure used to efficiently manipulate multiscale geometric objects in a
plane. Quadtrees recursively partition a region into axis-aligned squares. A top-level square
called the root encloses the entire input planar straight line graph. Each quadtree square can be
divided into four child squares, which can be divided in turn, as illustrated in Figure 14.7(a).
Octrees are the generalization of quadtrees to three dimensions; each cube in an octree can be
subdivided into eight cubes. The points generated by quadtrees and octrees may be used in a
Delaunay triangulation as shown in Figure 14.7(b).

14.2.2.3 Boundary Recovery

Delaunay triangulation guarantees a consistent mesh within the interior. However, it does not
guarantee to preserve the original boundary edges (2D) or faces (3D) in the final mesh. Hence,
it is necessary to check the mesh and, if necessary, modify the elements to ensure that the
elements conform to the boundary. In some cases for a planar triangulation, it is possible to
recover the boundary edge by simple edge swapping (see Figure 14.8).

For more general cases, edge recovery through node creation can be applied. In this
approach, an additional node/nodes should be added at points of intersection of a boundary
and triangulation edges (Weatherill 1990; Borouchaki and George 1997). If short boundary
edges and low quality boundary triangles are generated as shown in Figure 14.9(a-b), the new
node is moved to one of the end points of the recovered boundary edge and the corresponding
short edge is contracted as shown in Figure 14.9(c-d). This results in the same configuration as
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A

B

C

D

A

B

C

D

(b)(a)

Figure 14.8 Boundary recovery by swapping edge: (a) boundary edge AB is not in the
triangulation, (b) swapping edge CD → AB we recover the boundary edge but the triangulation
becomes not Delaunay (only constrained Delaunay).

obtained by an edge swap as shown in Figure 14.9(d) and Figure 14.8(b). Note that inserting
nodes and edge contraction is a more robust procedure than edge swapping.

In three dimensions, the existence of a constrained Delaunay triangulation that matches
with a prescribed surface triangulation is not guaranteed. There are many examples of surface
configurations, which cannot be triangulated without inserting an additional point. It is also not
clear whether a given triangulation can be transformed to another one using the same points by
a finite number of 3D flips. Thus, a robust procedure that works for the overwhelming majority
of configurations should be used (Weatherill and Hassan 1994). This procedure resembles that
described for 2D and comprises inserting additional points and edge/face contraction.

14.2.3 Mesh Cosmetics

14.2.3.1 Mesh Quality

Mesh quality can have a considerable impact on the computational analysis in terms of the
accuracy of the solution and the CPU time needed. A high quality mesh is one in which all edge
lengths are close to that of a prescribed value and the element shapes reflect the requirement.
This implies that the mesh does not contain elements which can cause large discretization
errors and at the same time the mesh should not be finer than the necessary requirement. The

A

B

C

D

A

B

C

D

F

A

B

C

D

F

A=F

B

C

D

(d)(c)(b)(a)

Figure 14.9 Boundary recovery by inserting additional node F in the intersection of AB and
CD (b) and forming boundary edges AF and FB. Contraction of edge AF (c) and obtaining
configuration shown in Figure 14.8(b).
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(d)(c)(b)(a)

Figure 14.10 Mesh cosmetics methods: (a) mesh smoothing, (b) edge swapping (2D), (c) edge
splitting, (d) edge contraction.

global mesh quality is defined through the quality of individual elements. Thus, histograms of
element qualities are often generated to compare the qualities of meshes.

There are several ways of computing the quality of individual elements and how to quantify
the overall quality of a mesh. For a triangular element, a ratio of geometrical characteristics
is taken which achieves a maximum for a perfect triangle. There are many ways to define
this ratio. It may be taken as the ratio of inscribed and circumscribed circles or the ratio of
the inscribed circle and perimeter. For three-dimensional problems more quality measures are
often used.

14.2.3.2 Mesh Smoothing

The smoothing of a mesh is achieved by displacing nodes in order to improve the element
quality without changing the connection between the nodes, that is, without changing the mesh
topology. One of the most popular methods is Laplace smoothing, in which every inner node
p is displaced to the centroid of its contiguous nodes pi : i ∈ p as shown in Figure 14.10(a).
Its smoother version reads as

pnew = (1 − 𝛼) p + 𝛼 1
dp

∑
i∈p

pi (14.1)

where p represents the coordinates of node p; 𝛼 is tuning parameter (𝛼 = 1 for the standard
Laplace smoothing); dp is the nodal index, that is, the number of contiguous nodes to node
p. The procedure can be applied to all inner nodes simultaneously or to some selected nodes.
The procedure can be repeated several times and in many cases five iterations are sufficient
to increase the quality of most of the elements of a planar mesh. If the initial mesh is highly
irregular and non-smooth, Laplace smoothing may result in entangled elements. This method
may also be applied to 3D meshes, but performance may not be as good as for 2D meshes.
Thus, element quality measures should be used to accept or reject Laplace smoothing results.

14.2.3.3 Edge Swapping

Swapping an edge, shared by two triangles, is often used to improve mesh quality. The
swapping criterion is based on an analysis of the angles of the triangles before and after
swapping. If the angles are greater after smoothing than before smoothing, the common edge
between two triangles is swapped to improve quality as shown in Figure 14.10(b). A better
approach to the angle based approach is a topology based technique. In this approach, a



MESH GENERATION AND ADAPTIVE FINITE ELEMENT METHODS 389

beneficial effect on the mesh quality over the angle based approach can be obtained if used in
conjunction with a smoothing procedure (Frey and Field 1991; Sazonov and Nithiarasu 2012).

In the topology based edge swapping method, in order to decide whether or not an edge
needs swapping, we should compute the change of the mesh relaxation index U caused by
swapping. Let 1 and 2 be the end points of an edge before swapping and d1 and d2 are then
respective nodal indices. Let 3 and 4 are end points of the edge after swapping and d3 and d4
are respective nodal indices of them. Now, the change in the mesh relaxation index ΔU, is
evaluated as

ΔU = [(m1−1)2 + (m2−1)2 + (m3+1)2 + (m4+1)2] −
[
m2

1 + m2
2 + m2

3 + m2
4

]
(14.2)

where mi = di − dopt is the deviation from the ideal nodal index (Frey and Field 1991). An
edge should be swapped if ΔU < 0. The optimal nodal index dopt = 6 for a 2D triangulation,
but it is smaller for boundary nodes (it depends on the angle formed by two boundary edges
sharing the node). This procedure can be applied to all edges in the mesh and repeated until
swapping cannot cause any further changes of ΔU (Sazonov and Nithiarasu 2012).

The relaxation method may be started based on some edge properties (Borouchaki and
George 1997). Topology based swapping may be started with an edge that induces a maximum
change in ΔU after swapping. Note that in a high quality mesh almost all inner nodes will
have a nodal index of 6 with a small percentage of nodes having indices 5 or 7. Nodes with
d > 7 or d < 5 can be corrected by swapping.

In 3D, swapping is used to improve the quality of the elements. In contrast to 2D mesh,
where there is a single swap transformation: 2 → 2 triangle, in 3D there are several such
transformations: 2 → 3, 3 → 2, 4 → 4 and so on. The optimal nodal index in a 3D situation is
14. This is the nodal index of a mesh of high quality with tetrahedra filing the space.

14.2.3.4 Edge Splitting/Contraction

To provide a proper element size edge splitting/contraction procedures can be applied both
in 2D and 3D triangulations. A short edge can be contracted, together with some elements
sharing it, to its midpoint. If one of the edge points is a boundary node then it should be
contracted to a boundary node. The edges that are longer than the prescribed element size can
be split by introducing a midpoint. This results in additional elements (Figures 14.10(c)-(d)).

After these transforms the quality of elements attached to the new node may not be
sufficient. Therefore, a local cosmetic procedure may be required. The mesh cosmetics may
first start with a swap of edges of all elements associated with the new node or contracted
point before a Laplace smoothing is applied.

14.2.3.5 Centroidal Voronoi Tesselation

Another cosmetic approach is based on the concept of Centroidal Voronoi tessellation (CVT).
If a mesh is Delaunay, then a polygon formed by connecting the circumcenters of elements
sharing node p is a boundary of a Voronoi cell of node p. These Voronoi cells are elements
of the Voronoi tessellation or diagram, which is the dual to the Delaunay triangulation, that
is, element circumcenters of Delaunay triangulation are vertices of the Voronoi diagram and
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Figure 14.11 Dual Voronoi diagram (gray) to a Delaunay triangulation.

generators of the Voronoi diagrams are nodes of the Delaunay triangulation, as shown in
Figure 14.11.

The Voronoi tessellation is called a Centroidal Voronoi if its every generator point coincides
with the centroid of the corresponding Voronoi cell. One of the methods to generate CVT is
to apply Lloyd’s iterations in which generator points are moved to barycenters of the Voronoi
cells as shown in Figure 14.12. If a Voronoi cell surrounding an inner point intersects a
boundary of the domain Ω then the barycenter of the polygon forming the intersection of the
domain and Voronoi cell should be used. The CVT method can convert an absolutely random
distribution of initial points into a high-quality mesh with a very good point distribution. The
method essentially improves mesh topology thus diminishing the mesh relaxation index. The
Laplace smoothing applied after Lloyd’s iteration may slightly improve the mesh quality in
2D. The method is easily generalized for three dimensions.

14.3 Boundary Grid Generation

For a computational domain Ω, the boundary 𝜕Ω should first be accurately defined. The
boundary of simple geometries may be described analytically or piecewise analytically using
cubic spline, Bezier curves/patches, or nonuniform rational basis splines (NURBS), etc.

14.3.1 Boundary Grid for a Planar Domain

If the object boundary contains corners, the nodes should be placed on them first. If the
boundary contains high curvature parts, then it is useful to place nodes at local places where
the curvature is greatest. Between these initial nodes, new nodes can be placed one by one in
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(b)(a)

(d)(c)

Figure 14.12 CVT: Lloyd’s iterations. Grey polygons indicate Voronoi cells for inner nodes,
grey circles – their centroids. (a): innitial mesh (inner nodes are placed randomly), (b): 1st
iteration, (c): 3rd iteration, (d): 20th iteration.

accordance with the locally prescribed element size. The prescribed local size, if not uniform,
can be described analytically or piecewise analytically using the so-called background mesh.
It may also be computed automatically based on boundary features such as local boundary
curvature or/and the local domain width or/and corner angles etc. After points are inserted
they should be connected one by one to form boundary edges to describe the geometry as a
closed polygon or several polygons if the domain is not simply connected.

14.3.2 NURBS Patches

The surfaces of turbine blades, car bodies and boat hulls, and other industrial objects designed
by CAD, are split by curvilinear quadrilateral patches matching each other at edges and vertices.
The surface of every patch is described analytically as a tensor product of Bezier curves or
nonuniform rational basis splines (NURBS). The latter ones allow an exact description of
cylindrical, conical and spherical surfaces. Due to high-order approximations, the number of
patches can be minimized for an accurate description of complicated objects.
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If an object boundary is set by such NURBS patches and the locally prescribed element
size is small compared to the patch size, then every patch can be triangulated independently
(but with the same patch border nodes). If the patch does not deviate too much from a 2D
plane, it can be simply projected onto the plane and triangulated by a 2D meshing technique.
For cases where the patch is not very close to a 2D plane, it can be projected using a metric
such a way that the distance between two closely located points in the plane approximately
equals the distance between the corresponding points on the surface. In this case, the local
prescribed element size should be adjusted to account for the local metric used.

The 2D mesh cosmetic methods can be applied directly to a 3D surface mesh if its surface
is well defined. The Laplace smoothing, or edge splitting/contraction, should be carried out
outside the surface and then projected back to the surface by the shortest path.

If a surface can be described analytically without dividing into patches, for example,
a sphere or ellipsoid, then it cannot be mapped on to a planar domain. To mesh such an
analytical surface, it may be (a) divided into patches, then meshed, or (b) AFT adopted for
surface meshing may be used for the whole surface.

14.4 Adaptive Refinement Methods

Any adaptive procedure needs a powerful refinement strategy to properly refine the mesh. Two
major classifications of adaptive refinement are: (1) that of p-refinement, in which the order of
interpolation is varied and the other is (2) h-refinement, in which the element sizes are varied.
Within h-refinement, three distinctive methods are possible. They are: (a) r-refinement, in
which the structure and connectivity of the mesh remain unaltered and so does the number of
nodes; (b) mesh enrichment (subdivision), where individual elements are subdivided without
altering their original position; and (c) complete regeneration by adaptive remeshing.

The order of the interpolation polynomial used to form the finite elements is used in a p-
adaptivity process to control the error measured by a suitable indicator. This process known as
p-refinement is often coupled with a h-refinement procedure. This method essentially increases
the order of the interpolation polynomial in order to reduce the error in the solution.

In the r-refinement method, the spring analogy is often used to redistribute the nodes in the
existing mesh. Mesh movement is accomplished by advancing the solution towards steady
state and, at certain stages, replacing the mesh sides by springs of a certain stiffness. This
stiffness is usually based on the local error in the solution. The nodes are moved until the
spring system is in equilibrium. Since new nodes are not added, the accuracy of the solution
derived by this method is limited by the initial number of nodes and elements.

The basic principle of mesh enrichment is that as the solution proceeds towards a steady
state, then the nodes are added locally based on an error indicator. The portion to be refined
is identified locally and the nodes are added in this region. The process of enrichment is
continued until the solution reaches the required accuracy. Even though this method can lead
to accurate solutions, the process can be tedious for complex problems. Further difficulties
arise in the coupling of refined and original elements.
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The above problems are avoided in adaptive remeshing, in which the whole domain is
remeshed in a manner based on the error indicator computed from the previous solution.
In this process, one can use directionally stretched elements wherever the one-dimensional
feature dominates and de-refinement can be introduced when the error is small. Obviously,
such a procedure will be more economical in the number of nodes used at the expense of
additional remeshing. Among the procedures discussed above, mesh enrichment and adaptive
remeshing are suitable for most heat transfer problems. When these procedures are coupled
with a powerful automatic mesh generator, they can yield excellent results.

14.5 Simple Error Estimation and Mesh Refinement

The error in a solution is the difference between the exact and approximate solutions, which
can be written for temperature as

eT = T − Th, (14.3)

where T is the exact value of the temperature and the superscript h represents a finite element
solution. In a similar fashion, the error in heat flux may be written as

eq = q − qh
. (14.4)

As in all problems requiring numerical analysis, since we do not know the exact solution,
we need an alternative approximation to represent the analytical solution. In the problems
considered here the trial functions (linear with C0 continuity) result in a discontinuous approx-
imation of the fluxes. The acceptable continuous solution can be obtained by an averaging or
projection process. In an averaging process, the element heat fluxes are averaged over a node
connected to a patch of elements. The projection process, on the other hand, assumes that the
flux is interpolated using the same function as the temperature. Now, the error indication in
the heat flux may be obtained as (Zienkiewicz and Zhu 1987):

eq ≈ q∗ − qh, (14.5)

where the superscript ∗ is the heat flux obtained via projection or averaging. Generally, we
write the errors in terms of some error norms. The energy and L2 norms are frequently used
as measures in the literature. Here, we use the L2 norm of the flux error measure for heat
conduction problems

‖eq‖ =
(
∫Ω eT

q eqdΩ
) 1

2

. (14.6)

The above error can be calculated by summing up all the elemental errors as

‖eq‖2 = Σm
i ‖eq‖2

i , (14.7)
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where m is the number of elements. It is convenient to express the error as a percentage,
that is,

𝜂 =
‖eq‖‖qh‖ × 100%. (14.8)

This percentage of error may be used in the refinement strategy. Using the error indicator,
the following form of refinement strategy may be used to refine and de-refine a mesh.

hnew = hold (aimed error)∕(element error indicator)

where hnew is the new element size and hold is the original element size. The above for-
mula gives a mesh with equal error over every element. The element error indicator may be
given by

E =
‖eq‖‖qh‖m1∕2 (14.9)

with m being the number of elements. Thus, hnew = hold𝜁∕E with 𝜁 being the target error.
If the new element size as predicted by the above procedure is bigger than the old element

size, then the new element size may be restricted to a prescribed maximum size. To avoid
very small elements, a minimum allowable size may also be given as input. An alternative
refinement procedure may also be written using the error calculated as

hnewEe = C (14.10)

with Ee =
√‖eq‖2. In the above equation, C is an equilibration constant. By changing C and

other allowable quantities a suitable adapted mesh may be generated.

14.5.1 Heat Conduction

In this section two simple examples of two-dimensional heat conduction are given. In both
examples an advancing front technique is employed to adaptively refine the mesh (Lewis et al.
1991; Nithiarasu and Zienkiewicz 2000; Peraire et al. 1987).

Example 14.5.1 A square plate size 100 cm, as shown in Figure 5.4, is subjected to
isothermal boundary conditions of 100 ◦C on all sides except the top side which is sub-
jected to 500 ◦C. If the thermal conductivity of the material is constant and equal to
10 W/m ◦C, implement the adaptive strategy explained in the previous section and refine/de-
refine the mesh for an error of 0.05. Control the element size to improve accuracy if
required.

To start the process of adaptive refinement, an initial mesh and initial solution should be
obtained first as shown in Figures 14.13(a) and 14.13(d) respectively. As seen, the initial mesh
is a uniform unstructured mesh and gives a central temperature value of 199.7 ◦C against
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(a)  Initial mesh (b)  Case 1: Error =
0.05, hmin = 0.005,
hmax = initial size

(c)  Case 2: Error =
0.05, hmin = 0.005,
hmax = initial size

(d)  Initial mesh, Tc = 199.70 (e)  Case 1: Tc = 204.56 (f)  Case 2: Tc = 199.62

Figure 14.13 Heat conduction in a square plate. Initial and adapted meshes and respective
solutions.

the analytical solution value of 200 ◦C (see Chapter 5). With the maximum and minimum
element sizes constrained at twice the initial mesh size and 0.005 respectively, the adaptive
meshes produced are shown in Figure 14.13(b) and (c). As seen the mesh is refined to a
very high degree at both top corners of the plate. This is due to the fact that heat flux at
these locations is very high due to the sudden temperature change at the boundaries from
500 to 100 ◦C. It is also noticed that the element size increases at locations away from these
two corners due to only moderate values of temperature gradient. This may have an adverse
effect on the solution away from the two corners as shown in Figure 14.13(e). As seen, the
temperature at the middle of the domain is increased to 204.56 ◦C when the maximum allowed
element size is twice as large as the original size. This indicates a dramatic decrease in
accuracy at the mid point of the domain. Although the adaptive refinement has increased
the accuracy of the calculations at the top corners of the domain, it decreased the accuracy
at the center of the domain due to the constraints placed on the maximum element size.
If this constraint is changed to the initial size of the elements, the error at the center is
reduced and the temperate values are reduced to 199.62, close to the analytical solution as



396 MESH GENERATION AND ADAPTIVE FINITE ELEMENT METHODS

A
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0.6 m
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0.2 m
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Convection

Figure 14.14 An example of heat conduction with convective heat transfer boundary
conditions.

shown in Figures 14.13(c) and (f). A further reduction in maximum element size will make
the solution even closer to the analytical solution at all points of the domain. This example
clearly demonstrates that some practice and experience is required to obtain an accurate
solution.

Example 14.5.2 Use adaptive refinement method to reduce the error step by step to 0.01
for the problem shown in Figure 14.14. The left vertical side of the wall is insulated with
a zero heat flux along this side. The bottom horizontal side is subjected to a temperature of
100 ◦C and the remaining sides are assumed to convect heat to the ambient maintained at a
temperature of 0 ◦C. The convective heat transfer coefficient is 750 W/m ◦C and the thermal
conductivity of the material is 52 W/m ◦C. The analytical solution to this problem is given by
Carslaw (1959) and computed value for the point A in Figure 14.14 is 18.2535 ◦C (Huang
and Usmani 1994).

Figure 14.15 shows the meshes and solutions for the step by step reduction in error. As seen
the initial mesh solution is uniform and reasonably accurate to produce temperature value of
18.32 ◦C against the analytical solution value of 18.2535 ◦C. The point A in Figure 14.14 is
chosen deliberately away from the corner. Since a very high value of flux is anticipated at the
bottom right corner due to the sudden change in temperature at the corner point, the adaptive
refinement is expected to be intensive in the vicinity of this corner to reduce the overall error
of the problem. As a result, element sizes away from this corner is expected to increase in
size. The idea here is to analyze the impact of such de-refinement. Figures 14.15 shows the
refinements and solutions with progressive decrease in error. Note that the constraints on the
element sizes are not changed here but the error is continuously decreased. As seen, for the
first and second refinements, the solution error against the analytical solution is increased.
This is due to the fact that the element sizes are increased away from the bottom right corner
of the plate. However, at the third refinement with 1% error the solution at point A reached a
value very close to the analytical solution.
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(a)  Initial mesh (b)  Case 1: Error
= 0.1, hmin=
0.005 hmax =
2  ×  initial size

(c)  Case 2: Error =
0.05, hmin = 0.005,
hmax = 2  ×  initial
size

(d)  Case 3: Error =
0.01, hmin = 0.005,
hmax = 2  ×  initial
size

(e)  Initial mesh, TA =
18.32 °C

(f)  Case 1, TA =
18.56 °C

(g)  Case 2, TA =
18.54 °C

(h)  Case 3, TA =
18.27 °C

Figure 14.15 Heat conduction in a rectangular plate. Initial and adapted meshes.

14.6 Interpolation Error Based Refinement

Another mesh refinement method that is more suitable for fluid flow problems is based upon
the interpolation error. The objective here is to reduce and equally distribute the interpola-
tion error throughout the domain. For one-dimensional problems, with linear finite element
approximations, the local interpolation error for a scalar variable 𝜙may be expressed in terms
of the second derivative as (Davies et al. 2007, 2008; Nithiarasu 2000, 2002; Nithiarasu and
Zienkiewicz 2000; Peraire et al. 1987; Zienkiewicz et al. 2013b,a)

e = 𝜙 − 𝜙h = ch2 d2
𝜙

dx2
, (14.11)
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where superscript h represents the finite element solution, h is the local element size and c is a
constant. As the exact value of 𝜙 is not available, the second derivative in the above equation
can be replaced by a recovered value from the finite element solution to approximate the error.
As shown in the above equation, the interpolation error is directly proportional to the local
second derivatives of the variable considered. In problems which involve several variables,
the interpolation error may very well depends on the second derivatives of all the variables.
Before developing a step by step procedure of mesh adaptivity, based on the interpolation
error, an extension of Equation (14.11), to multi dimensional problems is considered. In two
dimensions, the second derivatives of any variable is a 2 × 2 tensor (in 3D 3 × 3) is given as

⎡⎢⎢⎢⎢⎣
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. (14.12)

Thus, the error indicator based mesh refinement boils down to computing the second
derivatives of a variable.

14.6.1 Anisotropic Adaptive Procedure

Once the nodal values of the second derivative tensor (see Appendix F for calculating the
nodal values of second derivatives), Equation (14.12), are calculated, the local maximum and
minimum principle second derivatives can be calculated as

𝜕
2
𝜙

𝜕X2
1

= 1
2

[
𝜕

2
𝜙

𝜕x2
+ 𝜕

2
𝜙

𝜕y2

]
+

√[
1
2

(
𝜕

2
𝜙

𝜕x2
− 𝜕

2
𝜙

𝜕y2

)]2

+
[
𝜕

2
𝜙

𝜕x𝜕y

]2

(14.13)

and
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respectively. The direction of minimum principle value is

tan 2𝛾 = 2

(
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2
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)(
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2
𝜙

𝜕y2

)−1

, (14.15)

where 𝛾 is the angle between the x direction and the minimum principle direction. From the
above relations, for the equal distribution of interpolation error, the following condition needs
to be satisfied:

h2
min

|||||
𝜕

2
𝜙

𝜕X2
1

||||| = h2
max

|||||
𝜕

2
𝜙

𝜕X2
2

||||| = C. (14.16)

Thus, the maximum and minimum element sizes hmax and hmin can be calculated locally.
The two element sizes in the above equation indicate that the elements regenerated will not be
equilateral triangles in places where the minimum and maximum principal second derivatives
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are not equal. The mesh thus obtained is anisotropic. Although such an anisotropic mesh has
limited use in an incompressible flow context, it does reduce the total number of elements
when used. If an isotropic, unstructured mesh is of interest, only hmin needs to be calculated.
In both the isotropic and anisotropic cases, the value of the constant C needs to be established.

14.6.2 Choice of Variables and Adaptivity

In incompressible heat convection problems, strong discontinuities are rarely seen. Also, the
direction of rapid variation of the variables, temperature and velocity, is not always the same,
that is the thermal and momentum boundary layers do not necessarily coexist along the same
wall. In places where momentum boundary layers exist, the thermal boundary layer may be
absent and vice-versa. It is also important to note that high flux and hot spots can occur at
any arbitrary locations when complicated geometries are considered. It is thus obvious to
consider the variation of all influential variables together to generate an adapted mesh for heat
convection problems. Such a mesh will represent the physics of the problem and deliver an
accurate solution. The following procedure may be used for natural (and forced) convection
problems.

Step 1 Solve the natural convection heat transfer problem on a coarse, initial mesh for a fixed
number of time iterations (the solver used in the present study is based on the CBS algorithm
and is transient, see Chapter 7).

Step 2 Calculate the local second derivatives of variables at all nodes of the initial mesh and
normalize them using the corresponding maximum values calculated in the whole problem
domain. The normalized second derivatives of the variables ensure the use of common “equi-
libration” constant C for all variables. For example, consider two variables, temperature and
magnitude of total velocity, the maximum and minimum values of principal second derivatives
are

𝜕
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𝜕X2

1

,
𝜕

2T

𝜕X2
1

(14.17)

and
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respectively. Now the rule of “equilibration” of error can be applied to the first variable as

h2
min
𝜕

2|V|
𝜕

2X2
1

∗
= h2

max
𝜕

2|V|
𝜕X2

2

∗
= C, (14.19)

where the superscript ∗ indicates normalized second derivatives. The above rule is applied also
to the temperature and local maximum and minimum element sizes at nodes are calculated
for both variables and then stored. The local stretching ratios (ratio between local maximum
and minimum sizes) at nodes are also calculated from each variable and stored. Here the
calculation of C values need to be explained further. The procedure proposed relates C with
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(a)

(b)

(c)

(i) Ra = 104

(a)

(b)

(c)

(ii) Ra = 105

Figure 14.16 Adaptive finite element meshes for natural convection in a differentially heated
square cavity.
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the major governing nondimensional number of the problem. The procedure can be extended
to any number of nondimensional numbers but in the present study, only the Rayleigh number
(Ra) is considered. The following relation is successfully used to determine C:

C = 1
Ram

, (14.20)

where m is an index which is determined by solving natural convection in a square cavity
for which a benchmark solution is available. In the laminar range m values are found to vary
between 0.3 and 0.5.

Step 3 The minimum element sizes and the stretching ratios calculated from nodal temperatures
and velocities are compared locally at nodes and the minimum values among the variables
found are fixed as the new local element sizes and stretching ratios.

Step 4 The stretching direction of the strongest second derivatives among the second derivatives
of velocity and temperature (before normalizing) is taken as the local stretching direction of
the new mesh.

Step 5 From the new local element sizes, stretching ratios and directions a new mesh is gen-
erated. The variables are interpolated from the previous mesh and time stepping is continued.

Steps 2 to 5 are repeated until steady state. If no significant change in the total number
of nodes is observed between the two meshes, then mesh regeneration is stopped and time
stepping continued until steady state. For unstructured mesh generation, the advancing front
type of procedure based upon background mesh principle may be used.

Example 14.6.1 Natural convection in a cavity
Figure 14.16 shows the adaptive finite element meshes generated for natural convection

in a differentially heated square cavity. These meshes are generated using the interpolation
based error indicator. Both the temperature and velocity values are used in the calculation of
the error indicator.

14.7 Summary

This chapter provided a brief overview on finite element mesh generation and how to adapt
the meshes for specific heat transfer problems. We believe that the adaptive mesh procedure
has a role to play in heat transfer calculations. However, the ample availability of computing
power significantly reduces the need for adaptive meshing nowadays. The fast growth in
processor speed and parallel computing have reduced the need for adaptive meshing for heat
transfer problems. However, the ability of adaptive meshing in reducing computing costs for
a prescribed accuracy can be demonstrated in certain problems(Davies et al. 2008). Thus,
adaptive meshing may still play an important role in certain heat transfer problems as the
complexity of problems increase.
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15

Implementation of Computer
Code

15.1 Introduction

In this chapter a brief introduction to the implementation of computer code is given. It is
assumed that readers are familiar with Fortran programming (Smith and Griffiths 1998; Wille
1995). The whole chapter is based upon the CBS scheme and the time-stepping algorithm
discussed in the previous chapters. The discussion is limited to the essential aspects of CBSflow
code. However, discussion on pre- and post-processing technique is common to many other
schemes. Although CBSflow is a heat convection code, heat conduction may also be solved
if the velocity calculations are suppressed. The codes may be downloaded from the website,
www.zetacomp.com.

The following discussion will be limited to linear triangular elements, which has been
discussed in detail in Chapters 3 and 7. The basic source codes for simple mesh generation
and analysis are freely available for the readers to carry out two-dimensional studies.1

In general all the numerical programs contain three parts, that is, preprocessing, the main
processing unit and postprocessing. The preprocessing part includes mesh generation, data
structure and most of the element related data, which are constant for an element. The main pro-
cessing unit is responsible for the computational effort and often most of the computing (CPU)
time during a calculation. Efficient programming can reduce the CPU time, which is especially
important in three dimensions. The details of an efficient data structure are not discussed here

1All the source codes available from the authors are copyrighted to the authors who developed the code. None
of the material available within the code should be reproduced/copied in any form for commercial purposes without
the written permission of the authors of the source codes. Readers are expected to acknowledge by citing the book in
their publications if the full/part of the code is used for producing results

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition.
P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

www.zetacomp.com
www.zetacomp.com
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but readers may obtain information on such issues in various other relevant items of literature
(Löhner 2001). In this chapter the basic implementation procedure are given so that the readers
can understand the basics of the computer implementation of the finite element method.

The final part of a finite element code is the postprocessing unit. This unit can either
be a coupled postprocessor, which directly gives the solution in graphical form or may be
linked to an external postprocessor via an interface. The latter option is chosen in this text
and the readers can then prepare their own interface and link to a postprocessing unit. Often
it is necessary to extract data along a line within a domain. In such a situation one can either
use other available software or employ an interpolation routine to compute the data along an
arbitrary line or at a point.

The CBSflow code has been used for various applications in the past. The overall procedure
of time-stepping CBSflow code for thermal problems can be summarized as

call preprocessing ! preprocessing

do itime = 1,ntime ! time loop

call timestep ! time step calculation

call step1 ! intermediate momentum

call step2 ! pressure calculation

call step3 ! momentum(velocity) correction

call step4 ! temperature calculation

call check ! check for steady state

enddo !

call postprocessing !postprocessing (output)

More details are given in the following sections."

15.2 Preprocessing

As mentioned previously the preprocessing operation normally takes place before the main
solution unit. Often, the mesh generation solution is kept separately from the rest of the
routines in order to simplify the data preparation. Such an approach is followed here and the
mesh generation algorithm is kept separate from the rest of the program."

15.2.1 Mesh Generation

As mentioned in previous chapter, there are two main types of meshes, viz., structured and
unstructured meshes. Structured meshes are generally simple in form and follow a certain
pattern, which may either be uniform or nonuniform. Alternatively, unstructured meshes
follow no particular pattern and are generated by dividing a domain into an arbitrary number
of triangles or other finite element shapes. Since unstructured meshes follow no fixed pattern,
the control of the solution accuracy in those sections of the domain which are dominated
by high gradients is difficult. Structured meshes on the other hand results in more accurate
solutions. However, the generation of a structured mesh for a complex geometry, especially in
three dimensions, is both time-consuming and difficult. Therefore unstructured meshes, which
are generated by a suitable unstructured mesh generator will be used in this text.
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Figure 15.1 A typical unstructured mesh.

There are several methods available of generating unstructured meshes. Two of the most
prominent methods are the “advancing front” (Löhner 2001; Peraire and Morgan 1997; Peraire
et al. 1987) and “Delaunaly triangulation” (Kumar et al. 1997; Lewis et al. 1995; Thompson
et al. 1999; Weatherill et al. 1994) techniques. Most of the unstructured meshes used in this
book are generated by either one of these methods. Controlling the quality of elements, e.g,
aspect ratio, is much easier in the Delaunay approach than in the advancing front method
(chapter 14).

It is common practice to store finite element data in terms of the nodal coordinates
and element connectivity. In addition to these, some convenient form of boundary condition
specification is also necessary. It is therefore important that a mesh generator enables the
coordinates of discrete points, the nodal connectivity of the finite elements and some form of
boundary node/side information. A typical mesh is shown in Figure 15.1 and the typical input
from a mesh generator is given by:

no of nodes, no elements and no of boundary sides

9 9 7

Element number and connectivity

1 7 8 6

2 6 8 5

3 8 4 5

4 1 8 7

5 1 9 8

6 9 4 8

7 2 9 1

8 2 3 9

9 9 3 4

Node number and xy-coordinates

1 1.1 1.2

2 1.6 0.0

3 3.3 0.1

4 3.4 1.9
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5 2.1 3.3

6 0.4 3.0

7 0.0 1.0

8 1.8 2.1

9 2.3 1.1

Boundary side nodes and elements, boundary condition code

1 2 7 1

2 3 8 1

3 4 9 1

4 5 3 1

5 6 2 2

6 7 1 2

7 1 4 2

In the above mesh data, the total number of linear triangular elements is nine, the number
of nodes is also nine and the number of boundary sides is seven. The element connectivity of
all the elements is numbered in the anticlockwise direction. The node numbering follows no
particular pattern. For simply connected domains the outer boundary sides are numbered in the
anticlockwise direction and in a multiply connected domain the inner boundary is numbered
in the clockwise direction.

The above-mentioned data structure of the element connectivity and the boundary side
numbering are essential to make sure that the areas of the triangular elements are positive and
that the appropriate boundary normals are determined from the boundary side data.

Note that the boundary condition code, that is, last column in the boundary side data, is
used to represent an appropriate boundary condition on a side. For example, 1 in the above
data can be used to represent an inlet condition and 2 may be used to represent a solid wall
condition (no-slip). The third column in the boundary side data is the element to which the
corresponding side belongs. This information is useful in evaluating the boundary integral
terms and helpful in applying Neumann boundary conditions. The above data is normally
prepared by a mesh generator, and once available from the mesh generator, these data may be
read into the main analysis code by the following arrays

intma(i,j) - Connectivity array. i = 1,2,3

and j = 1,2...number of elements

coord(i,j) - Coordinates array. i = 1,2

and j = 1,2 ... number of nodes.

isido(i,j) - Boundary side array. i=1,2,3,4
and j = 1,2, ..number of boundary sides.

15.2.2 Linear Triangular Element Data

As mentioned before, only linear triangular elements will be considered in this chapter. The
essential data, including the mesh data and any other relevant data, are read from various
input files at the preprocessing stage. Once all the external data are available, the remaining
preprocessing procedure is carried out by the program. Some of the important preprocessing
aspects of the finite element program are given in the following subsections.
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Figure 15.2 A triangular element.

15.2.3 Element Area Calculation

The areas of the triangular elements are necessary for any finite element calculation and
these areas are constant if the mesh is unchanged throughout the analysis. With reference to
Figure 15.2, the area of an element may be determined from the following expressions:

A = ∫ dx1dx2 = 1
2

|||||||
1 x1i x2i
1 x1j x2j
1 x1k x2k

||||||| . (15.1)

Note that i, j and k are the nodes and the subscripts 1 and 2 indicate the coordinate
directions. A sample routine, which calculates the area of the elements and the derivatives of
the shape functions is given below

c-----------------------------------------------------------------

subroutine getgeo(mxpoi,mxele,npoin,nelem,coord,intma,geome)

c-----------------------------------------------------------------

c Derivatives of shape functions and 2A are calculated and

c stored in the array geome(7,mxele). First six entries are

c derivatives of the shape functions and the last one

c (seventh) is two times the area of an element

implicit none

integer mxpoi, mxele, npoin, nelem,ielem, inode, in

integer intma(3,mxele)

real*8 x21,x31,y21,y31,rj,rj1,xix,xiy,etx,ety

real*8 rnxi,rnet

real*8 geome(7,mxele), coord(2,mxpoi)
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real*8 x(3),y(3),pnxi(3),pnet(3) !local arrays

data pnxi/-1.0d00, 1.0d00, 0.0d00/

data pnet/-1.0d00, 0.0d00, 1.0d00/

do ielem = 1,nelem !loop over number of elements

do inode = 1,3

in = intma(inode,ielem)

x(inode) = coord(1,in)

y(inode) = coord(2,in)

enddo !inode

x21 = x(2)-x(1)

x31 = x(3)-x(1)

y21 = y(2)-y(1)

y31 = y(3)-y(1)

rj = x21*y31-x31*y21

rj1 = 1.0d+00/rj

xix = y31*rj1

xiy = -x31*rj1

etx = -y21*rj1

ety = x21*rj1

do in = 1,2

rnxi = pnxi(in)

rnet = pnet(in)

geome(in,ielem) = xix*rnxi + etx*rnet

geome(in+3,ielem) = xiy*rnxi + ety*rnet

enddo !in

geome(3,ielem) = -( geome(1,ielem) + geome(2,ielem) )

geome(6,ielem) = -( geome(4,ielem) + geome(5,ielem) )

geome(7,ielem) = rj ! two times area

enddo !ielem

end

!-----------------------------------------------------------------

As stated previously, if the mesh is unchanged during the analysis then the above calculation
is carried out once only and all the values are stored in the arrays for use in the main unit of
the program.

15.2.4 Shape Functions and Their Derivatives

For linear elements an explicit calculation of the shape functions is not necessary as these may
integrated directly. However, it is necessary to calculate the derivatives of the shape functions,
which are constant for a linear element. Therefore, these derivatives can be evaluated at the
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preprocessing stage and stored in an appropriate array. For a linear triangular element we
require six derivatives of the shape functions, that is,

𝜕Ni

𝜕x1
;
𝜕Nj

𝜕x1
;
𝜕Nk

𝜕x1
;
𝜕Ni

𝜕x2
;
𝜕Nj

𝜕x2
and

𝜕Nk

𝜕x2
. (15.2)

These derivatives are calculated and stored in the first six entries of an array

geome(7,mxele)

as mentioned in the previous subsection. Further details on the shape function derivatives are
given in Chapter 3. Once the derivatives of the shape functions are stored, a calculation of the
derivatives of any function/variable is straightforward. For example, the x1 and x2 derivatives
of a nodal variable,

unkno(2,ip)

within the elements are calculated as

do ie = 1,nelem !loop over elements

dpdx(ie) = 0.0d00 !x_1 derivative

dpdy(ie) = 0.0d00 !x_2 derivative

do i = 1,3

ip = intma(i,ie)

dpdx(ie) = dpdx(ie) + geome(i,ie)*unkno(2,ip)

dpdy(ie) = dpdy(ie) + geome(i+3,ie)*unkno(2,ip)

enddo !i

enddo !ie

These derivatives will be constant over an element for linear triangular elements.

15.2.5 Boundary Normal Calculation

The unit boundary outward normal, n is shown in Figure 15.3. The components n1 and n2 are
calculated and stored in an array at the preprocessing stage if the mesh is unchanged during the
calculation. In addition to the normal components the boundary side lengths are also computed

k

n

n1

2n

i
j

Figure 15.3 Outward normal from a boundary side.
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and stored in the same array. The sample routine, which calculates the normal components
and side lengths, is given below.

c------------------------------------------------------------------

subroutine getnor(mxpoi,mxbou,npoin,nboun,coord,isido,rsido)

c------------------------------------------------------------------

c Boundary normal calculation

implicit none

integer mxpoi, mxbou, npoin, nboun,ib,ipoi0,ipoi1

integer isido(4,mxbou)

real*8 dx,dy,rl

real*8 rsido(3,mxbou), coord(2,mxpoi)

call rfillm(rsido,3,nboun,0.0d00) !fill with zeros

do ib = 1, nboun !loop over boundary sides

ipoi0 = isido(1,ib) !first node of a side

ipoi1 = isido(2,ib) !second node of a side

dx = coord(1,ipoi1) - coord(1,ipoi0)

dy = coord(2,ipoi1) - coord(2,ipoi0)

rl = dsqrt(dx*dx+dy*dy) ! length of a side

rsido(1,ib) = dy/rl ! cos(theta)

rsido(2,ib) = -dx/rl ! sin(theta)

rsido(3,ib) = rl ! side length

enddo !ib

end

c-----------------------------------------------------------------

Readers are reminded that the above routine will be applicable only if the outer boundary
sides are numbered in an anticlockwise fashion for simply connected domains. For multiply
connected domains the inner boundary sides should be numbered in a clockwise direction in
order to ensure that the normals point outwards in the analysis domain as shown in Figure 15.4.

In the routine considered above, the term

rsido(3,mxbou)

is the array used to store the normal components and the side lengths. The first two entries are
the x1 and x2 components of the normals and the third entry is the side length.

15.2.6 Mass Matrix and Mass Lumping

The calculation of the mass matrices is requires at many stages during the solution of a heat
transfer problem. For example all the transient terms, if solved in an explicit mode, lead to
mass matrices after spatial and temporal discretizations . These mass matrices can be “lumped”
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Figure 15.4 Multiply connected domain. Outward normal.

using a standard row summing approach if the steady-state solution is only of interest. In such
situations, the mass matrix is lumped, inverted and stored in an array during the pre-processing
stage if the mesh is unchanged during the calculation. For details of mass matrices and the
lumping procedure, refer to Chapter 7. The following Fortran routine gives the details of how
the inverse of the mass matrix is calculated and then stored into an array.

!-----------------------------------------------------------------

subroutine getmat(mxpoi,mxele,npoin,nelem,intma,geome,dmmat)

!-----------------------------------------------------------------

c This routine calculates inverse lumped mass matrix

c and stores in an array dmmat(mxpoi)

implicit none

integer mxpoi, mxele, npoin, nelem,ielem,inode,i,in

integer intma(3,mxele)

real*8 rj,rj6

real*8 geome(7,mxele), dmmat(mxpoi)

call rfillv(dmmat, npoin, 0.0d00) !fill with zeros

do ielem = 1, nelem

rj = geome(7,ielem) ! 2A

rj6 = rj/6.0d+00 ! A/3

do inode = 1, 3

in = intma(inode,ielem)

dmmat(in) = dmmat(in) + rj6 ! assembly

enddo !inode

enddo !ielem

do i = 1, npoin
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dmmat(i) = 1.0d+00/dmmat(i) ! inverse

enddo !i

end

c-----------------------------------------------------------------

Note that

dmmat(mxpoi)

is the lumped and inverted mass matrix. Once stored, this may be used during the solution
update of an explicit solution procedure in the main program unit.

15.2.7 Implicit Pressure or Heat Conduction Matrix

Often the pressure calculation in fluid dynamics or pure heat conduction calculations are carried
out using implicit procedures. For instance the pressure Poisson equation of an incompressible
flow calculation may have the following form:

𝜕
2p

𝜕x2
1

+
𝜕

2p

𝜕x2
2

= 1
Δt

(
𝜕u∗1
𝜕x1

+
𝜕u∗2
𝜕x2

)
. (15.3)

If a standard Galerkin weighting procedure and linear triangular elements are used then
this will lead to the following discrete form of the LHS of the above equation (integration by
parts) for a triangular element:

1
4A

⎡⎢⎢⎣
b2

i bibj bibk
bjbi b2

j bjbk

bkbi bkbj b2
k

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

pi
pj
pk

⎫⎪⎬⎪⎭
+ 1

4A

⎡⎢⎢⎣
c2

i cicj cick
cjci c2

j cjck

ckci ckcj c2
k

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

pi
pj
pk

⎫⎪⎬⎪⎭
, (15.4)

where i, j and k are the three nodes of a triangle. The terms bi

2A
,

bj

2A
and bk

2A
are the x1 derivatives

of the shape functions and ci

2A
,

cj

2A
and ck

2A
are the x2 derivatives of the shape functions (see

Equation (15.2) and Chapters 3 and 7). The above equation needs to be assembled in order to
obtain a global LHS matrix. As mentioned previously, the derivatives of the shape functions
are constants and do not change if the mesh is fixed during the calculation. It is therefore
convenient to calculate the matrices of the above equation at the pre-processing stage so that
they may be used whenever necessary in the main unit of the code. A sample calculation of
the pressure matrix for a banded (direct) matrix solver is given below.

c-----------------------------------------------------------------

subroutine pstiff(mxpoi,mxele,mbw,npoin,nelem,nbw,intma,

& geome,theta,gsm)

c-----------------------------------------------------------------

c *** calculates global LHS matrix for pressure

implicit none

integer mxpoi,mxele,mbw,npoin,nelem,nbw,i
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integer ie,ip1,ip2,ip3,j,ielem,i3,j3,ii,i1,jj,i2,j1,j2

integer intma(3,mxele)

real*8 area,thett

real*8 geome(7,mxele), theta(2), gsm(mbw,mxpoi)

real*8 s(3,3) !local

do i = 1, npoin

do j = 1, nbw

gsm(j,i) = 0.0d00 !initialise

enddo !j

enddo !j

do ielem = 1, nelem

area = geome(7,ielem)*0.5d00 ! area of an element

thett = theta(1)*theta(2) ! theta parameters (see

! Chapter 7 for details)

do i = 1, 3

i3 = i + 3

do j = 1, 3

j3 = j + 3

c Element by element calculation of the shape function

c derivatives and summation

s(i,j) = thett*area*(geome(i,ielem)*geome(j,ielem)

& + geome(i3,ielem)*geome(j3,ielem))

enddo !j

enddo !i

do ii = 1, 3

i1 = intma(ii,ielem)

do jj = ii, 3

i2 = intma(jj,ielem)

if(i2.lt.i1) then !banded arrangement

j1 = i2

j2 = i1

j2 = j2 - j1 +1

gsm(j2,j1) = gsm(j2,j1) + s(jj,ii)!assembly

else

i2 = i2 - i1 + 1 !banded arrangement

gsm(i2,i1) = gsm(i2,i1) + s(jj,ii)!assembly

endif

enddo !jj
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enddo !ii

enddo !ielem

end

c-----------------------------------------------------------------

In this case, the term

gsm(mbw,mxpoi)

is the global LHS matrix, which is unchanged during the calculation if the mesh is unaltered.

15.3 Main Unit

The following important list of parameters and quantities are normally available from the
preprocessing unit.

intma(3,mxele) - connectivity; coord(2,mxpoi) - nodal coordinates;

isido(4,mxbou) - boundary side information; geome(7,mxele) -

derivatives of shape functions and element area; rsido(3,mxbou) -

boundary side normals and its length; dmmat(mxpoi) - lumped and

inversed mass matrix; gsm(mbw,mxpoi) - LHS matrix (only for

implicit solution); nelem - number of elements; npoin - number of

nodes, nboun - number of boundary sides

In addition to the above, several other quantities and parameters need to be either read
from an input file or developed within a the preprocessing unit. Readers are asked to consult
the source codes and manuals to understand these additional auxiliary parameters, which are
available to download.

The discussion on the main unit of the program is provided here by assuming that a time-
stepping approach is adopted for the solution of heat transfer problems and that the above
listed parameters are available from the preprocessing unit.

15.3.1 Time-step calculation

As stated previously if a steady-state solution is obtained, via a time-stepping approach, an
appropriate stable time step should be employed in the calculations. The time-step magnitude
for a convection heat transfer problem may be stated as

Δt = min

(
h|u| ,

h2

2𝜈
,

h2

2𝛼

)
, (15.5)

where h is the element size, u is the velocity, 𝜈 is the kinematic viscosity of the fluid and
𝛼 is the thermal diffusivity. For Prandtl numbers of unity, the time-step values due to the
kinematic viscosity and thermal diffusivity are equal. If the Prandtl number is greater than
unity, then the time step calculated using the thermal diffusivity is greater than that of the one
due to the kinematic viscosity. Assuming that the magnitude of the thermal time step, that is,
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h2∕2𝛼 is greater than that of the viscous time step then the following routine may be utilized
to calculate the value.

c-----------------------------------------------------------------

subroutine alotim( mxpoi, mxele, npoin, nelem, intma, geome,

& unkno, number, dtfix, ilots, csafm, ani , deltp,

& delte )

c-----------------------------------------------------------------

c calculates the critical time step for all the elements

c and nodes. iopt = -1 - fixed user specified global time step

c (dtfix). iopt = 0 - global time step calculated as minimum

c from all nodal values. iopt = 1 - local time step nodally

c varies

implicit none

integer mxpoi,mxele,npoin,nelem,ilots,ip,ie,ip1,ip2,ip3

integer intma(3,mxele), number(mxpoi)

real*8 u1,u2,u3,v1,v2,v3,vn1,vn2,vn3,veln,anx,any

real*8 alen1,alen2,alen3,alen,dm,dtfix,csafm

real*8 ani,aloti1,aloti2,tiny

real*8 geome(7,mxele), unkno(4,mxpoi), deltp(mxpoi)

real*8 delte(mxele)

c global user specified fixed time step

if(ilots.le.-1) then

call rfillv(deltp, npoin, dtfix) !fill with fixed value

call rfillv(delte, nelem, dtfix) !fill with fixed value

return

endif

tiny = 0.1d-05

do ip = 1, npoin

deltp(ip) = 1.0d06 !nodal value initialise

enddo !ip

do ie = 1, nelem !loop over elements
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ip1 = intma(1,ie) !node1

ip2 = intma(2,ie) !node1

ip3 = intma(3,ie) !node3

u1 = unkno(2,ip1) !u1 node1

u2 = unkno(2,ip2) !u1 node2

u3 = unkno(2,ip3) !u1 node3

v1 = unkno(3,ip1) !u2 node1

v2 = unkno(3,ip2) !u2 node2

v3 = unkno(3,ip3) !u2 node3

vn1 = dsqrt(u1**2 + v1**2) ! |V| node1

vn2 = dsqrt(u2**2 + v2**2) ! |V| node2

vn3 = dsqrt(u3**2 + v3**2) ! |V| node3

veln = max(vn1,vn2,vn3) ! Maximum |V|

anx = geome(1,ie)

any = geome(4,ie)

alen1 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h1)

anx = geome(2,ie)

any = geome(5,ie)

alen2 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h2)

anx = geome(3,ie)

any = geome(6,ie)

alen3 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h3)

alen = min(alen1,alen2,alen3) !mimimum h

c local time step

aloti1 = alen/(veln+tiny) ! convection limit

aloti2 = 0.5*alen**2/ani ! viscous limit

deltp(ip1) = min(deltp(ip1), aloti1,aloti2) !nodes

deltp(ip2) = min(deltp(ip2), aloti1,aloti2) !nodes

deltp(ip3) = min(deltp(ip3), aloti1,aloti2) !nodes

delte(ie) = min(deltp(ip3), aloti1,aloti2) !elements

enddo !ie

do ip = 1,npoin

deltp(ip) = csafm*deltp(ip) !multiply by safety factor

enddo !ip

do ie = 1,nelem

delte(ie) = csafm*delte(ie) !multiply by safety factor

enddo !ie

c global minimum time step

if(ilots.eq.0)then

dm = 5.0d03
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do ip = 1,npoin

dm = min(deltp(ip),dm)

enddo !ip

do ip = 1, npoin

deltp(ip) = dm

enddo !ip

do ie = 1, nelem

delte(ie) = dm

enddo!ie

endif

end

c-----------------------------------------------------------------

The element size at a node is calculated in the routine using the sizes represented by
Figure 15.5 as

hi = min(h1, h2, h3, h4, h5). (15.6)

Again the above element size will be unchanged if the mesh is unaltered during a cal-
culation. It is therefore possible to calculate and store the element sizes into an array at the
preprocessing stage. A more accurate representation of an element size is possible by deter-
mining the element size in the streamline direction. However, such a calculation will lead to a
variation in the element size at each time step, if a time-stepping scheme is employed, or it will
vary at each iteration if a steady-state equation system with an iterative procedure is employed.

15.3.2 Element Loop and Assembly

A loop over the number of elements is the commonly employed form of LHS matrix/RHS
vector construction in finite element codes. The assembly process is normally associated with
the element loop. An example of such a loop when assembling the full viscous terms of the
momentum equations is

do ia = 1, nelem !loop over number of elements

do lok = 1, 3!loop over three nodes of an element

in = intma(lok,ia) !nodes of an element

h h5

1i
2

3

4

h

h
h

Figure 15.5 Element size calculation.
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lok1 = lok + 3

velo1 = unkno(2,in) ! velocity component1

velo2 = unkno(3,in) ! velocity component2

sigxx(ia) = sigxx(ia) + ( ani )*

& ( geome(lok,ia)*2.0*velo1 ) !stress 11

sigyy(ia) = sigyy(ia) + ( ani )*

& ( geome(lok1,ia)*2.0*velo2 )!stress 22

sigxy(ia) = sigxy(ia) + ( ani )*

& ( geome(lok,ia)*velo2

& + geome(lok1,ia)*velo1 ) !stress 12

enddo !lok

do lok = 1, 3

lok1 = lok + 3

rh1p(1,lok) = -geome(7,ia)*( sigxx(ia)*geome(lok,ia)

& + sigxy(ia)*geome(lok1,ia) )*0.5d00

rh1p(2,lok) = -geome(7,ia)*( sigxy(ia)*geome(lok,ia)

& + sigyy(ia)*geome(lok1,ia) )*0.5d00

enddo !lok

do lok = 1, 3

in = intma(lok,ia)

do ja = 1, 2

ja1 = ja + 1

rhs0(ja1,in) = rhs0(ja1,in) + rh1p(ja,lok) !assembly

enddo !ja

enddo !lok

enddo !ia

The stress components, 𝜏11, 𝜏22 and 𝜏12 are determined element by element and assembled
into the RHS vector

rhs0(4,mxpoi)

Both the stress arrays

sigxx(mxele); sigyy(mxele); sigxy(mxele)

and the RHS vector array have to be initialized to a value of zero at every time step of the
calculation.

15.3.3 Updating Solution

Two types of solution updating are possible when a time-stepping procedure is employed. In
the first type, a solution is updated after solving a simultaneous system of equations. In the
second type, the solution is updated by multiplying a lumped and inverted mass matrix. In
the latter procedure, the lumped mass matrix is a diagonal matrix and requires no simulta-
neous equation solution, as shown in the following portion of the code for the momentum
equations.
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c add advection and diffusion RHS and multiply

c by inversed mass

do ip = 1, npoin ! nodal loop

dt = dmmat(ip)

rhs2(2,ip) = ( rhs2(2,ip) + rhs0(2,ip) )*dt

rhs2(3,ip) = ( rhs2(3,ip) + rhs0(3,ip) )*dt

enddo !ip

c update the solution.

do ip = 1, npoin

unkno(2,ip) = unkno(2,ip) + deltp(ip)*rhs2(2,ip) !update u_1

unkno(3,ip) = unkno(3,ip) + deltp(ip)*rhs2(3,ip) !update u_2

enddo !ip

Note that the time step is multiplied only at the end. The solution in the above part of the
routine is updated as follows:

un+1
1 = un

1 + Δt ∗ RHS ∗ dmmat. (15.7)

The matrix solution procedures for updating the analysis is carried out by either a direct
or iterative solver. Direct solvers, such as the Gausian elimination technique, are employed
when the simultaneous system is small and structured. However, for unstructured meshes and
large systems, it is difficult to employ such direct solvers. It is therefore necessary to employ
the iterative solvers, for example, conjugate gradient solver, in such situations. A typical LHS
matrix is discussed in Section 15.2.7 for a banded direct solver. A RHS vector needs to be
constructed before the solver can be used to obtain a solution. The RHS vector is constructed
at each time step and is subjected to boundary conditions during the simultaneous solution
procedure (see Chapter 3). The complete details of the solvers used are available along, with
the source codes, from www.zetacomp.com.

15.3.4 Boundary Conditions

The boundary conditions are imposed after each time step by allotting an appropriate boundary
condition code to a side (see mesh data). For instance the no velocity flux condition, or normal
velocity zero condition, is imposed using the following routine during an explicit calculation.
Note that the boundary code for such a condition is assumed to be 4.

c------------------------------------------------------------

subroutine corsym( mxpoi, mxbou, npoin, nboun, unkno,

& isido, rsido )

c------------------------------------------------------------

c *** Applies the zero velocity flux boundary conditions

implicit none

http://www.zetacomp.com
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integer mxpoi,mxbou,npoin,nboun,is,in,ip

integer isido(4,mxbou)

real*8 anx,any,us

real*8 unkno(4,mxpoi), rsido(3,mxbou)

do is = 1, nboun

if(isido(4,is).eq.4) then

anx = rsido(1,is) !boundary normal

any = rsido(2,is) !boundary normal

do in = 1, 2

ip = isido(in,is)

us = -unkno(2,ip)*any + unkno(3,ip)*anx

unkno(2,ip) = - us*any

unkno(3,ip) = us*anx

enddo !in

endif

enddo !is

end

c------------------------------------------------------------

Note that

unkno(4,mxpoi)

is the unknown array. The first entry is the temperature, the second is the velocity component
u1, the third is the velocity component u2 and fourth is the pressure. As seen in the above
routine, the “no mass flux” condition is applied only to the velocity components.

15.3.5 Monitoring Steady State

The steady-state may be monitored via a fixed prescribed tolerance of the difference in a
variable between two consecutive time steps. For example

max(𝜙n+1
i − 𝜙n

i ) ≤ 10−10, (15.8)

where 𝜙 is any variable such as velocity components, temperature etc. and the subscript i
varies from 1 to the total number of nodes. Other ways of monitoring whether the steady state
has been reached are discussed in Chapter 7. The following portion of the code explains how
such a steady-state check is carried out between two consecutive time steps. In addition to
screening the maximum difference, the following section of code stores the node at which
such a maximum occurs.

do ip = 1, npoin

adel1 = unkno(1,ip) - unkn1(1,ip) !temperature

adel2 = unkno(2,ip) - unkn1(2,ip) !u_1
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adel3 = unkno(3,ip) - unkn1(3,ip) !u_2

adel4 = pres1(ip) - pres(ip) !pressure

cder = dabs(adel1)

if(cder.gt.ha(1)) then

icount(1) = ip !node

ha(1) = cder !maximum value

endif

cder = dabs(adel2)

if(cder.gt.ha(2)) then

icount(2) = ip !node

ha(2) = cder !maximum value

endif

cder = dabs(adel3)

if(cder.gt.ha(3)) then

icount(3) = ip !node

ha(3) = cder !maximum value

endif

cder = dabs(adel4)

if(cder.gt.ha(4)) then

icount(4) = ip !node

ha(4) = cder !maximum value

endif

enddo !ip

print*, (ha(ia),ia = 1,4) !printing on screen

max value

print*, (icount(ia),ia = 1,4) !printing on screen

the node

Note that the array

unkn1(4,mxpoi)

stores the variables at the previous time step n. The array

unkno(4,mxpoi)

stores the variable values at the current time step of n + 1. The maximum difference between
these two time levels forms the criterion for the steady-state condition.

15.4 Postprocessing

The postprocessing unit is mainly employed after a solution to a problem has been achieved.
An interface to another graphical package may be linked to the main program unit so that the
output from the main unit can be directly loaded into a postprocessor to visualize the data.
For beginners it is important to asses the accuracy of the calculations by investigating the
qualitative distribution of any quantity. The choice of graphical package is left to the user. The
source code available on the web includes some standard packages.
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15.4.1 Interpolation of data

It is often necessary to plot the quantities along a straight line within a domain or at an
arbitrary point within a domain. If the nodes are not placed along the line of interest, or no
node coincides with the point of interest, the variable required has to be interpolated using the
shape functions. Such an interpolation routine may be used either as part of the main program
unit or may be employed externally.

Once the data is obtained via interpolation, the plots may be generated using any standard
package. Plots of interest can be of a spatial variation and or a temporal variation of the fluid
flow and heat transfer variables.

15.5 Summary

In this chapter we have provided the readers with a brief introduction to the computer imple-
mentation of the finite element method for heat and fluid flow applications. Several advanced
issues, such as the edge based data structure, parallel implementation and multi-grid accelera-
tion procedure have not been discussed in this chapter. However, some appropriate references
are provided for those who would like to read about such advanced topics. Further details on
the programming and how to use the source codes are available at www.zetacomp.com.
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Appendix A

Gaussian Elimination

A system of simultaneous equations may be given as

a11𝜙1 + a12𝜙2 + a13𝜙3 = f1
a21𝜙1 + a22𝜙2 + a23𝜙3 = f2
a31𝜙1 + a32𝜙2 + a33𝜙3 = f3

. (A.1)

In matrix form, this system of equations may be written as

⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦
⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

f1
f2
f3

⎫⎪⎬⎪⎭
. (A.2)

The set of simultaneous equations given in Equation (A.1) or (A.2) may be solved using
Gaussian elimination. The following step-by-step procedure may be followed for a 3 × 3
matrix. A similar procedure may be applied to larger matrices.

I. Eliminate 𝜙1 from second and third equations. (a) Multiply the first equation by a21∕a11
and subtract from the second equation, that is,

⎡⎢⎢⎢⎣
a11 a12 a13

0
(

a22 − a12
a21
a11

) (
a23 − a13

a21
a11

)
a31 a32 a33

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

f1
f2 −

(
f1

a21
a11

)
f3

⎫⎪⎬⎪⎭
(A.3)

and (b) now multiple first equation by a31∕a11 and subtract from the third equation, that
is,

⎡⎢⎢⎢⎣
a11 a12 a13

0
(

a22 − a12
a21
a11

) (
a23 − a13

a21
a11

)
0

(
a32 − a12

a31
a11

) (
a33 − a13

a31
a11

)
⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

f1
f2 −

(
f1

a21
a11

)
f3 −

(
f1

a31
a11

)
⎫⎪⎬⎪⎭
. (A.4)
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II. Eliminate 𝜙2 from third equation, that is, multiply second equation by

(
a32−a12

a31
a11

)
(

a22−a12
a21
a11

) and

subtract from the third equation, that is,

⎡⎢⎢⎢⎢⎢⎣

a11 a12 a13

0
(

a22 − a12
a21
a11

) (
a23 − a13

a21
a11

)
0 0

(
a33 − a13

a31
a11

)
−

[(
a23 − a13

a21
a11

) (
a32−a12

a31
a11

)
(

a22−a12
a21
a11

)
]
⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3

⎫⎪⎬⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩

f1
f2 −

(
f1

a21
a11

)
f3 −

(
f1

a31
a11

)
−
(

f2 − f1
a21
a11

)[
a32−a12

a31
a11

a22−a12
a21
a11

]
⎫⎪⎪⎬⎪⎪⎭
. (A.5)

III. Use back substitution to find the values of 𝜙3,𝜙2 and 𝜙1, i.e, 𝜙3 may be calculated as

𝜙3 =

f3 −
(

f1
a31
a11

)
−
(

f2 − f1
a21
a11

)[
a32−a12

a31
a11

a22−a12
a21
a11

]
(

a33 − a13
a31
a11

)
−

[(
a23 − a13

a21
a11

) (
a32−a12

a31
a11

)
(

a22−a12
a21
a11

)
] . (A.6)

The value of 𝜙3 can now be substituted into the second equation of Equation (A.5) to
compute 𝜙2. After computing 𝜙3 and 𝜙2 respectively from the third and second equations,
𝜙1 can be calculated from the first equation of Equation (A.5).

The above description of Gaussian elimination is useful for programming the method.

Reference

Hamming RW (1987) Numerical Methods for Scientists and Engineer. Dover Books on Mathematics,
New York.



Appendix B

Green’s Lemma

Green’s lemma states that, for differentiable functions 𝛼1 and 𝛼2, we can write (for a two-
dimensional problem)

∫Ω 𝛼1
𝜕𝛼2

𝜕x1
dΩ = −∫Ω

𝜕𝛼1

𝜕x1
𝛼2dΩ + ∫Γ 𝛼1𝛼2n1dΓ (B.1)

Similarly

∫Ω 𝛼1
𝜕𝛼2

𝜕x2
dΩ = −∫Ω

𝜕𝛼1

𝜕x2
𝛼2dΩ + ∫Γ 𝛼1𝛼2n2dΓ, (B.2)

where n1 and n2 are the components of the outward normals on the enclosed curve Γ (see
Figure B.1) and Ω is the two-dimensional domain. Let us consider the integration of a second-
order term weighted by the shape function. The following form is common in finite element
formulations:

∫Ω Nk
𝜕

2T

𝜕x2
1

dΩ. (B.3)

1

Ω

Γ

n

n2

Figure B.1 Domain, boundary and outward normals.
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Applying Green’s lemma, the above equation becomes

− ∫Ω
𝜕Nk

𝜕x1

𝜕T
𝜕x1

dΩ + ∫Γ Nk
𝜕T
𝜕x1

n1dΓ. (B.4)

In a similar fashion the x2 direction can also be simplified using Green’s lemma.



Appendix C

Integration Formulae

C.1 Linear Triangles

Let i, j and k be the nodes of a triangular element. Integrating over the triangular area gives

A = ∫ dx1dx2 = 1
2

|||||||
1 x1i x2i
1 x1j x2j
1 x1k x2k

||||||| , (C.1)

where A is the area of the triangle. For a linear triangular element, the integration of the shape
functions can be written as

∫Ω Na
i Nb

j Nc
k dΩ = a!b!c!2A

(a + b + c + 2)!
. (C.2)

On the boundaries

∫Γ Na
i Nb

j dΓ = a!b!l
(a + b + 1)!

. (C.3)

Note that i − j is assumed to be the boundary side. The above equation is identical to the
integration formula of a one-dimensional linear element. In the above equation l is the length
of a boundary side.

C.2 Linear Tetrahedron

Let i, j, k and m be the nodes of a linear tetrahedron element. Integrating over the volume gives

V = ∫ dx1dx2dx3 = 1
6

|||||||||
1 x1i x2i x3i
1 x1j x2j x3j
1 x1k x2k x3k
1 x1m x2m x3m

|||||||||
, (C.4)
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where V is the volume of a tetrahedron. For linear shape functions, the integration formula
can be written as

∫Ω Na
i Nb

j Nc
k Nd

mdΩ = a!b!c!d!6V
(a + b + c + 3)!

. (C.5)

On the boundaries

∫Γ Na
i Nb

j Nc
k dΓ = a!b!c!2A

(a + b + c + 2)!
. (C.6)

Note that the above formula is identical to the integration formula of triangular elements
within the domain. In the above equation A is the area of a triangular face.



Appendix D

Finite Element Assembly
Procedure

Consider the two-dimensional linear triangular elements shown in Figure D.1. Let us assume
the following elemental LHS matrix for the variable 𝜙:

For the element 1

K1 =
⎡⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦ (D.1)

and for the element 2

K2 =
⎡⎢⎢⎣

b22 b23 b24
b32 b33 b34
b42 b43 b44

⎤⎥⎥⎦ , (D.2)

where the subscripts indicate the node numbers.
The elemental RHS vectors are:
For the element 1

f1 =
⎧⎪⎨⎪⎩

c1
c2
c3

⎫⎪⎬⎪⎭
(D.3)

and for the element 2

f2 =
⎧⎪⎨⎪⎩

d2
d3
d4

⎫⎪⎬⎪⎭
. (D.4)
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1

2
2

1

3

4

Figure D.1 A domain with two linear triangular elements.

Assembling the above elemental contributions gives the global equations as

[K]{𝜙} = {f}, (D.5)

where [K] and {f} are the global LHS matrix and RHS vector respectively and the unknown
vector is {𝜙} is the unknown vector given for the system shown in Figure D.1 as follows:

{𝜙} =
⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3
𝜙4

⎫⎪⎬⎪⎭
. (D.6)

The global LHS matrix is assembled as follows. The entries with the same subscripts in
Equations (D.1) and (D.2) are added together to form an assembled global LHS matrix, that
is,

[K] =
⎡⎢⎢⎢⎣

a11 a12 a13 0
a21 a22 + b22 a23 + b23 b24
a31 a32 + b32 a33 + b33 b34
0 b42 b43 b44

⎤⎥⎥⎥⎦
. (D.7)

In a similar fashion, the RHS vector is assembled as

{f} =
⎧⎪⎨⎪⎩

c1
c2 + d2
c3 + d3

d4

⎫⎪⎬⎪⎭
. (D.8)

The global system of equations is written as follows:

⎡⎢⎢⎢⎣
a11 a12 a13 0
a21 a22 + b22 a23 + b23 b24
a31 a32 + b32 a33 + b33 b34
0 b42 b43 b44

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜙1
𝜙2
𝜙3
𝜙4

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

c1
c2 + d2
c3 + d3

d4

⎫⎪⎬⎪⎭
. (D.9)
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As seen, there are four simultaneous equations, each of them associated with a node. The
first equation, which is associated with node 1, is

a11𝜙1 + a12𝜙2 + a13𝜙3 = c1. (D.10)

In the above equation, the contributions are from node 1 and the nodes connected to node
1. As seen, node 1 receives contributions from 2 and 3. Similarly, the second nodal equation
receives contributions from all other nodes, which is obvious from Equation (D.9).





Appendix E

Simplified Form of the
Navier–Stokes Equations

To derive the Navier–Stokes equations in their nonconservative form, we start with the con-
servative form. Conservation of mass:

𝜕𝜌

𝜕t
+
𝜕(𝜌ui)

𝜕xi
= 𝜕𝜌

𝜕t
+ 𝜌

𝜕ui

𝜕xi
+ ui

𝜕𝜌

𝜕xi
= 0. (E.1)

Conservation of momentum:

𝜕(𝜌ui)

𝜕t
+
𝜕(uj𝜌ui)

𝜕xj
−
𝜕𝜏ij

𝜕xj
+
𝜕p

𝜕xi
= 0. (E.2)

Conservation of energy:

𝜕(𝜌E)
𝜕t

+
𝜕(uj𝜌E)

𝜕xj
− 𝜕

𝜕xi

(
k
𝜕T
𝜕xi

)
+
𝜕(ujp)

𝜕xj
−
𝜕(𝜏ijuj)

𝜕xj
= 0. (E.3)

Rewriting the momentum equation with terms differentiated as

𝜌

𝜕ui

𝜕t
+ ui

(
𝜕𝜌

𝜕t
+ 𝜌

𝜕uj

𝜕xj
+ uj

𝜕𝜌

𝜕xj

)
+ 𝜌uj

𝜕ui

𝜕xj
−
𝜕𝜏ij

𝜕xj
+
𝜕p

𝜕xi
= 0 (E.4)

and substituting the equation of mass conservation (Equation (E.1)) into the above equation
gives the reduced momentum equation

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
− 1
𝜌

𝜕𝜏ij

𝜕xj
+ 1
𝜌

𝜕p

𝜕xi
= 0. (E.5)
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436 SIMPLIFIED FORM OF THE NAVIER–STOKES EQUATIONS

The above momentum equation can be further simplified if the fluid is incompressible. For
an incompressible fluid, the conservation of mass equation becomes

𝜕ui

𝜕xi
= 0. (E.6)

The deviatoric stresses in Equation (E.5) are written as

𝜏ij = 𝜇

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi
− 2

3

𝜕uk

𝜕xk
𝛿ij

)
. (E.7)

Note that the last term in the above equation is zero from the continuity equation for
incompressible flows. The devitoric stresses become

𝜏ij = 𝜇

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)
. (E.8)

Substituting the above equation into Equation (E.5) we have (assuming 𝜇 is a constant)

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
− 𝜇

𝜌

𝜕

𝜕xj

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)
+ 1
𝜌

𝜕p

𝜕xi
= 0. (E.9)

If we substitute i = 1 and j = 1, 2 we get the x1 component of momentum equation as (in
two dimensions)

𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2
= −1

𝜌

𝜕p

𝜕x1
+ 2𝜈

𝜕
2u1

𝜕x2
1

+ 𝜈
𝜕

2u1

𝜕x2
2

+ 𝜈 𝜕

𝜕x2

(
𝜕u2

𝜕x1

)
. (E.10)

Rewriting the above equation as

𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2
= −1

𝜌

𝜕p

𝜕x1
+ 𝜈

𝜕
2u1

𝜕x2
1

+ 𝜈
𝜕

2u1

𝜕x2
2

+ 𝜈 𝜕

𝜕x1

(
𝜕u1

𝜕x1
+
𝜕u2

𝜕x2

)
. (E.11)

Applying the conservation of mass, we get

𝜕u1

𝜕t
+ u1

𝜕u1

𝜕x1
+ u2

𝜕u1

𝜕x2
= −1

𝜌

𝜕p

𝜕x1
+ 𝜈

𝜕
2u1

𝜕x2
1

+ 𝜈
𝜕

2u1

𝜕x2
2

. (E.12)

In a similar fashion other components of momentum and energy equations can be
simplified.



Appendix F

Calculating Nodal Values
of Second Derivatives

In this method we assume that the second derivative is interpolated in exactly the same way
as the main function and write the approximation as(

𝜕
2
𝜙

𝜕xi𝜕xj

)h

= N
(
𝜕

2
𝜙

𝜕xi𝜕xj

)∗
. (F.1)

This approximation is made to be a weighted residual approximation to the actual distri-
bution of curvatures, that is,

∫Ω NT

[
N
(
𝜕

2
𝜙

𝜕xi𝜕xj

)∗
− 𝜕

2
𝜙

h

𝜕xi𝜕xj

]
dΩ = 0 (F.2)

and integrating by parts to give(
𝜕

2
𝜙

𝜕xi𝜕xj

)∗
= M−1

(
∫Ω NT 𝜕

2
𝜙

h

𝜕xi𝜕xj

)
dΩ = −M−1

(
∫Ω

𝜕NT

𝜕xi

𝜕N
𝜕xj

dΩ
)
𝜙̃. (F.3)

where M is the mass matrix given by

M = ∫Ω NTN dΩ, (F.4)

which of course can be “lumped.”
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𝜅-𝜀 model, 259
eddy viscosity, 260

Rayleigh number, 188, 328,
401

Activation loss, 369
Activation over-potential, 369
Adaptive meshing, 379, 392

anisotropic, 398
choice of variables, 399
de-refinement, 393
error estimation, 393
error estimator, 379
error indicator, 392
flux averaging, 393
flux projection, 393
h-refinement, 392
heat conduction, 393, 394, 396
interpolation error, 397
mesh refinement, 379, 380
p-refinement, 392
r-refinement, 392
regeneration, 392
remeshing, 393
stretching direction, 401
stretching ratios, 401

Advancing front technique(AFT), 381, 392,
394, 407

front, 381
front-edge, 381
front-face, 382

poor elements, 382
quality, 382

Alkaline fuel cell (AFC), 367
Analytical method, 158, 166
Analytical solution, 15, 106, 115, 123, 137,

166, 308, 309
Anode, 365, 374
Anodic compartment, 371
Area coordinate, 53
Arrhenius equation, 370
Artificial compressibility method, 213

artificial compressibility parameter, 214
dual time-stepping, 214
real time solution, 214

Aspect ratio, 407
Assembly, 88, 122
Axisymmetric, 148

element radius, 151
gradient matrix, 150
load vector, 151
property matrix, 151
stiffness matrix, 150

Axisymmetric problems, 243, 340
conservation of energy, 244
conservation of mass, 243
conservation of momentum, 244

Backward Euler, 169
Backward facing step, 225, 235

forced convection, 235
turbulent flow, 266
turbulent velocity profiles, 267
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Benchmark solution, 401
Bezier curves, 390
Bilinear, 68
Bilinear element, 58, 142
Biot number, 159
Body force, 305
Boundary and initial conditions, 211
Boundary condition

heat flux, 160
Boundary conditions, 13, 98, 106, 134, 160,

407, 421
convective, 134, 146, 151, 160, 163
heat flux, 134, 146, 151, 163
convective, 109
heat flux, 109

Boundary mesh generation, 390
planar domain, 390

Boundary normal, 411
Boundary side, 408
Boussinesq assumption, 255
Bowyer-Watson algorithm, 383
Brinkman, 324
Buoyancy, 305, 306
Buoyancy-driven convection, 186
Buoyancy-driven flow

Nusselt number, 274
turbulent, 272

Buoyancy ratio, 316
Butler-Volmer equation, 369

Capacitance matrix, 161, 162, 164, 165
Catalyst, 365, 371, 374
Cathode, 365, 366, 369, 374
Cathodic compartment, 371
CBS algorithm, 399, 405
CBS procedure, 374
CBSFlow, 406
Central difference, 169
Centroidal Voronoi tessellation (CVT),

389
Lloyd’s iteration, 390

Channel flow, 219
forced convection, 232
turbulent velocity profile, 263
velocity profile, 219

Characteristic based split (CBS) method,
202

boundary conditions, 211
first step, 204
fourth step, 206
intermediate velocity, 210
pressure, 210
second step, 205
spatial discretization, 207
temperature calculation, 210
third step, 206
time-step calculation, 211
velocity correction, 210

Characteristic dimension, 176, 360
Characteristic Galerkin, 189, 330

convection-diffusion, 190
simple, 190
smoothing operator, 192

Circuit resistance, 370
Circular cylinder, 228, 269

flow past, 228
three-dimensional, 230

Circumcenter, 385
Colburn j-factor, 286
Collocation method, 83
Compact heat exchanger, 281
Composite slab, 20
Composite wall, 107, 108
Computational fluid dynamics (CFD), 175
Computer implementation, 405, 406

boundary condition, 421
element size, 419
mesh generation, 406

Concave domain, 384
Concentration, 307
Concentration loss, 369, 370
Concentration over-potential, 369
Conduction, 2, 6, 10, 26, 89, 105

analytical, 158
axisymmetric, 148
multi-dimensional, 131
three-dimensional, 169
transient, 157
two-dimensional, 131
unsteady, 157
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solidification, 354
steady-state, 105

Conduction-convection systems, 123
Conjuate gradient, 421
Conjugate heat transfer

identification of solid and fluid nodes,
295

Conservation of energy, 182, 371
Conservation of mass, 359, 371

derivation of, 177
mass flux, 177

Conservation of momentum, 179, 371
components, 182
indicial form, 182

Conservation of species, 371
Continuity equation, 179, 203, 324, 327,

328, 371
derivation of, 177
solidification, 359

Control volume, 302
Convection, 2, 6, 26, 28, 175

axisymmetric, 243
buoyancy-driven, 238, 356
forced, 231
mixed, 239
natural, 238, 356
porous media, 321
solidification, 356, 361

Convection heat transfer, 321
Convection matrix, 194, 208

one-dimensional, 194
Convection-diffusion

characteristic Galerkin, 189, 190
explicit, 192
Lax-Wendroff, 189
Multi-dimensions, 197
steady-state, 201
time-step restriction, 202
two-dimensional, 201

Convection-diffusion equation, 188
Coordinate transformation, 60
Corrugated passages, 289
CPU, 405
Crank-Nicolson, 169
Cubic spline, 390

Current, 371
Current density, 370
Cylindrical coordinates, 12, 121

heat source, 120
hollow cylinder, 118
one-dimensional, 118, 120
solid cylinder, 120

Darcy, 361
solidification, 358

Darcy number, 328
Darcy’s law, 322
De-refinement, 393
Delaunay triangulation, 381, 382, 407

background region, 384
boundary recovery, 386
Bowyer-Watson algorithm, 383
circumcircle, 383
circumsphere, 383
concave domain, 384
constrained, 383, 387
convex hull, 383
edge contraction, 386
edge recovery, 386
edge swapping, 383
initial triangulation, 383
minimum angle, 382
out of the domain triangles, 383
point creation, 385
quadtree, 386

Detached eddy simulation, 278
Deviotoric stress, 180, 255
Diffusion coefficient

mass, 372
Diffusion matrix, 195, 209

one-dimensional, 195
Direct borohydride fuel cell (DBFC), 367,

368
Direct Ethanol Fuel Cell (DEFC), 367
Direct formic acid fuel cell (DFAFC),

367
Direct methanol fuel cell (DMFC), 367,

368
Direct numerical simulation, 278
Dirichlet conditions, 304
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Discrete systems, 19
flow network, 23
heat sink, 26
matrix form, 22, 25
slab, 20
steady-state, 20
steps, 20
transient problem, 28

Divergence free velocity field, 179
Domain discretization, 379
Double diffusive, 306
Double-diffusive convection, 312, 347, 348

axisymmetric cavity, 348
square cavity, 347

Drag force, 215

Edge contraction, 389
Edge splitting, 389, 392
Edge swapping, 388

relaxation index, 389
Effective heat capacity, 360
Effective thermal conductivity, 360
Effectiveness-NTU method, 285
Electric potential, 371, 373
Electrochemical device, 365
Electrochemical reaction, 366, 372
Electrodes, 365
Electrokinetic, 373
Electrolyte, 365, 367, 369, 374
Electron, 365, 366, 370, 372
Element characteristics, 22, 24, 28, 76, 87
Element connectivity, 407
Element loop, 419
Element size

local maximum, 399
local minimum, 399
maximum, 398
minimum, 398

Element size calculation, 419
Elemental matrix, 162
Emissivity, 4
Energy

thermal, 366
Energy balance, 6, 8, 9, 11, 28, 89, 137,

141, 145

Energy conservation, 354
energy balance, 184
indicial form, 184

Energy equation, 204, 307, 326–328, 371,
373

solidification, 359
Enthalpy, 354, 360

total, 359
Enthalpy formulation, 354
Equilibrium, 311
Ergun, 322
Error (Gauss) function, 309
Error equilibration constant, 394
Error estimation, 393
Error estimator, 379
Error indicator, 392–394, 401
Error norms, 393
Exact solution, 106
Exercise, 16, 31, 100
Exothermic, 366
Experimental data

fuel cell, 376
Explicit scheme, 308
Extended surface, 123
External circuit, 366
External reforming, 367

Faraday’s constant, 369
Fick’s law, 13, 301
Fin, 123
Finite difference method, 39, 163
Finite element assembly, 419
Finite element method

assembly, 42
discretization, 40
domain, 40
element, 40
formulation, 42, 76
history, 39
identification of solid and fluid nodes,

295
linear element, 193
node, 40
numerical model, 40
porous media, 329
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post processing, 42
shape function, 42
simultaneous equations, 42
spatial discretization, 331
weighted residual form, 40

Finite element solution, 189
convection-diffusion, 189
fuel cell, 373
Navier-Stokes equations, 202

Finite volume method, 39
Fins, 26, 77, 96, 97

efficiency, 99
First law of thermodynamics, 5
Flow past sphere

forced convection, 233
Flow resistance, 23
Fluid dynamics, 175
Fluid flow

backward facing step, 225
circular cylinder, 228
isothermal, 218, 263, 266
laminar, 175, 218
lid-driven cavity, 221
nonisothermal, 265, 272
nonisothermal flow, 231
rectangular channel, 219
transient, 228

Flux boundary, 312
Force vector, 109, 120
Forced convection, 185, 305, 311, 334,

379
backward facing step, 235
channel, 232
Nusselt number, 235
sphere, 233

Forced mass convection, 311
Forchheimer, 322, 372
Forcing vector, 109, 115, 120, 122, 125,

195
element, 134

Formulation, 76
FORTRAN, 405
Forward difference, 166
Forward Euler, 169
Fourier’s law, 3, 301

Fuel cell, 365
Alkaline fuel cell (AFC), 367
anode, 365
catalyst, 365
cathode, 365
continuity, 371
current, 366
Direct borohydride fuel cell (DBFC), 367
Direct Ethanol Fuel Cell (DEFC), 367
Direct formic acid fuel cell (DFAFC), 367
Direct methanol fuel cell (DMFC), 367
electrolyte, 365
energy, 371
experimental, 376
fuel, 365
heat transfer, 365
hydrogen, 366
ions, 365
loss, 369
mass transfer, 365
material properties, 366
mathematical model, 366, 368
Molten carbonate fuel cell (MCFC), 367
momentum, 371
operating temperature, 367
Phosphoric acid fuel cell (PAFC), 367
power, 366
Proton ceramic fuel cell (PCFC), 367
Proton exchange membrane fuel cell

(PEMFC), 367
reaction, 365
Solid oxide fuel cell (SOFC), 367
species, 371
types, 366
voltage, 371
water, 366

Fuel cell types, 367

Galerkin method, 84, 86, 93, 150, 160, 168,
198, 330

Gauss error function, 309
Gaussian elimination, 421
Generalized porous medium flow approach,

324
Generalized porous medium model, 371
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Gradient, 46
Gradient matrix, 133, 162
Grashof number, 188, 328
Green’s lemma, 192

h-refinement, 392
Heat balance, 137, 141, 145
Heat conduction, 393, 394, 396, 414
Heat convection, 175, 401

adaptive meshing, 399
buoyancy-driven convection, 177, 186
forced convection, 177, 185
mixed convection, 177, 188
natural convection, 177, 186
types, 176

Heat dissipated, 98, 99
Heat dissipation, 123, 126
Heat exchangers, 281

challanges, 297
Colburn j-factor, 286
compact heat exchanger, 281
computational approach, 286
conjugate heat transfer, 292
corrugated passage, 289
effectiveness-NTU, 283
element characteristics, 288
finite element mesh, 295
finite element solution, 289
identification of solid and fluid nodes,

295
LMTD, 283
Nusselt number, 292
overall heat transfer coefficient, 281,

287
passages, 289
shell and tube heat exchanger, 287
Stanton number, 286
system approach, 286
temperature difference, 282
tubular heat exchanger, 281

Heat flow
radial, 118

Heat flux, 5, 52, 125, 393
element, 140

Heat generation, 8, 109, 112, 113, 121, 151,
372

Heat sink, 26, 123
Heat source, 112, 113, 117, 121, 125, 134,

146
Heat transfer

conduction, 2, 10, 105, 354
convection, 2, 175, 231, 356
forced convection, 231, 334
fuel cell, 365
importance, 1
laws, 3
mixed convection, 239
modes, 2
natural convection, 238, 337, 401
radiation, 3
solidification, 354, 361

Heat transfer coefficient, 115, 125, 158
Heat transfer devices, 1
Hexahedron, 75, 384
Hollow cylinder

conduction, 118
Horizontally divided enclosure, 345
Hydrogen, 366
Hydrogen fuel, 366
Hydrogen fuel cell, 366

Incompressible flow, 177, 182, 305, 325,
372, 374

Infinitesimal control volume, 177, 324
Initial conditions, 6, 13, 160
Integration by parts, 160
Interface, 354
Interface velocity, 354
Intermediate velocity, 210
Internal energy, 158
Internal reforming, 367
Interpolation error, 397, 398
Interpolation function, 94
Interpolation of data, 424
Isoconcentration lines, 308
Isoparametric element, 63

eight-node, 67
one-dimensional, 64
triangle, 69
two-dimensional, 66

Isotherm, 52
Isotropic, 308
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Jacobian, 70
Jacobian matrix, 65, 66

Kinematic viscosity, 329, 416
Knudsen diffusion coefficient, 372
Kolmogorov scale, 254
Kozeny–Carman relationship, 359
Kroneker delta, 181

Lagrange interpolation, 49
Laminar

backward facing step, 225
channel flow, 219
circular cylinder, 228
lid-driven cavity, 221
nonisothermal flow, 231

Lamp, 7
Laplace equation, 308, 373
Laplace smoothing, 388, 390, 392
Large eddy simulation (LES), 275

continuity, 275
filtration, 275
Kolmogorov constant, 277
momentum, 275
Smagorinsky model, 277
standard subgrid scale, 277
subgrid scale(SGS), 275

Latent heat, 354
Laws of heat transfer, 3

first law of thermodynamics, 5
Fourier’s law, 3
Newtons’s law of cooling, 4
Stefan-Boltzmann law, 4

Lax-Wendroff, 189
Least-squares method, 85
Lewis number, 329
Lid-driven cavity, 221

velocity distribution, 222
Linear element, 45, 50, 86, 96, 119, 161,

193
one-dimensional, 121, 193

Linear temperature, 150
Linear variation, 133
Liquid volume fraction, 359, 360
Liquidus, 355
Lloyd’s iteration, 390

LMTD method, 283
Load vector, 93, 120, 125, 133, 161, 162,

165
element, 134, 146

Local coordinate, 55, 108
Lumped heat capacity, 157

Main processing, 405, 416
Mass balance, 324
Mass diffusion, 303, 307
Mass diffusivity, 309
Mass flux, 13, 24, 304, 422
Mass lumping, 412
Mass matrix, 194, 208, 412

one-dimensional, 194
Mass transfer, 13, 301

buoyancy, 305
channel flow, 304
concentration, 301
conservation, 302
convection, 301, 302
diffusion, 301
Dirichlet conditions, 304
Fick’s law, 13, 301
forced convection, 304–306
fuel cell, 365
importance, 1
mixed convection, 305
multiple species, 304
porous media, 321, 347, 348
Sherwood number, 349

Material property matrix, 134
Mathematical model, 368
Melting, 356
Mesh convergence, 218
Mesh cosmetics, 387, 392
Mesh generation, 379, 406

advancing front, 381
automatic, 381, 393
body fitted, 381
boundary, 390
boundary discretization, 381
Centroidal Voronoi tessellation (CVT),

389
conformal, 381
cosmetics, 382
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Mesh generation (Continued)
Delaunay triangulation, 381, 382
edge contraction, 389
edge splitting, 389
edge swapping, 388
element sizing, 382
Laplace smoothing, 388
mesh smoothing, 388
nonconformal, 381
nonuniform mesh, 380
quality, 382
relaxation index, 389
structured, 380
triangulation, 382
uniform mesh, 379
unstructured mesh, 380

Mesh generator, 407
Mesh movement, 392
Mesh quality, 387
Mesh smoothing, 388
Mixed convection, 188, 239,

305
analytical solution, 242
channel, 240
velocity profile, 243

Mixing length, 258
Model heat exchanger, 292
Molar fraction, 370, 371
Molten carbonate fuel cell (MCFC), 367,

368
Momentum conservation, 255
Momentum equation, 204, 325, 327, 328,

371
solidification, 359

Moving body, 8
Multi-dimensional, 169
Multiply connected domain, 412
Mushy region, 358

Natural convection, 238, 313, 337, 401
adaptive meshing, 401
axisymmetric, 340
Nusselt number, 239
square cavity, 401
square enclosure, 239

Navier-Stokes equations, 177, 202, 372
artificial compressibility method, 213
Characteristic based split, 202
conservation of mass, 177
conservation of momentum, 179
differential approach, 177
nondimensional form, 184
post-processing, 215
Reynolds Averaged, 257
steady solution, 213
transient solution, 213
turbulence, 256

Negative buoyancy, 316
Nernst equation, 369
Neumann boundary, 374
New element size, 394
Newton’s law of cooling, 4, 302
Nodal coordinates, 407
Non-conventional energy, 365
Non-Darcy flow, 323, 338
Nondimensional form, 184, 304, 327

continuity, 360
continuity equation, 186, 187
energy, 360
energy equation, 186, 188
forced convection, 185
mixed convection, 188
momentum, 360
momentum equation, 186, 188
natural convection, 186
one-equation model, 261
solidification, 360
Spalart-Allmaras model, 261
turbulence, 260

Nondimensional scale, 312
Nonisothermal flow, 231, 333
NURBS, 390–392
Nusselt number, 215, 235, 239, 266, 292,

338, 340, 349

Ohmic loss, 369
Ohmic over-potential, 369
One-dimensional element, 43, 64
One-dimensional, 105
One-dimensional element, 161
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One-equation models, 258
Spalart-Allmaras model, 258

Ordinary differential equation, 158
Outward normal, 411
Overall heat transfer coefficient, 281
Oxygen, 365

p-refinement, 392
Peclet number, 186, 261
Percentage error, 394
Permeability, 322, 323, 359

fuel cell, 372
Kozeny–Carman relationship, 359
solidification, 358

Phase change, 353, 356
Phase change temperature, 354
Phosphoric acid fuel cell (PAFC), 367,

368
Planar configuration, 375
Plane wall, 105

composite, 107
heat source, 112, 115, 117
homogeneous, 105

Plate, 5
variable thikness, 145

Point source, 134
Porosity, 322, 374

constant, 338
fuel cell, 372
mushy region, 358
solidification, 358
variable, 337

Porous media, 321
axisymmetric, 340
Boussenessq approximation, 338
Brinkman extension, 324
Darcy number, 328
Darcy’s law, 322
double-diffusive convection, 347,

348
energy equation, 326
Ergun correlation, 322
finite element solution, 329
forced convection, 334
Forchheimer extension, 322

generalized approach, 324
interface problem, 342, 345
limiting cases, 329
mass balance, 324
momentum equation, 325
natural convection, 337
nondimensional form, 327
nonisothermal flow, 333
Nusselt number, 338
permeability, 322
Poisson equation, 330
porosity, 322
quasi-implicit, 332
reservoir simulation, 322
saturated, 322
semi-implicit, 332
solid matrix drag, 326
spatial discretization, 331
species equation, 327
square enclosure, 338
temporal discretization, 330

Porous medium-fluid interface, 342, 345
Postprocessing, 215, 405, 423

drag force, 216
Nusselt number, 215
stream function, 217

Potential difference, 365
Prandtl number, 186, 188, 261, 286, 328,

416
Preprocessing, 405, 406
Pressure calculation, 414
Pressure Poisson equation, 330
Property matrix, 143
Proton ceramic fuel cell (PCFC), 367
Proton exchange membrane fuel cell

(PEMFC), 367

Quadratic element, 46, 55, 69, 74, 115,
117

one-dimensional, 115, 117
Quadrilateral element, 58
Quadtree, 386

r-refinement, 392
Radial heat flow, 118
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Radiation, 3, 6, 28
emissivity, 4
shape factor, 4
solutal, 306

Rayleigh-Ritz method, 77, 79
Reaction, 365

anode, 369
cathode, 369

Rectangular channel, 232, 240
turbulent flow, 263
turbulent heat transfer, 265

Rectangular element, 142
gradient matrix, 143
load vector, 143
stiffness matrix, 143

Reference velocity, 176
Refinement strategy, 394
Remeshing, 393
Resistivity, 371
Reynolds Averaged Navier-Stokes

equations (RANS), 257
continuity equation, 257
energy equation, 258
momentum equation, 257

Reynolds number, 176, 186, 188, 261, 304,
312, 328

Reynolds stress, 255
Richardson number, 188
Ritz method, 77, 78

Scalar variable, 188, 196
Schmidt number, 304, 312, 328
Second derivative, 398, 399
Second derivatives

principle direction, 398
principle values, 398

Semi-implicit, 169
Shape function, 42, 44, 45, 47, 51, 56, 60,

74, 410
compatibility, 94
completeness, 94
requirement, 94

Shape function derivatives, 410
Shell and tube heat exchanger, 287
Sherwood number, 312, 349

Simultaneous equations, 8, 110, 166
Smoothing operator, 192
Solar, 2, 5
Solid cylinder, 122

analytical solution, 121
conduction, 120

Solid oxide fuel cell (SOFC), 367, 368,
374

planar, 375
solution procedure, 375

Solidification, 353
conduction, 354
continuity, 359
convection, 356, 361
energy equation, 359
enthalpy formulation, 354
equations, 358
interface, 354
latent heat, 354
momentum, 359
mushy region, 358
one-dimensional, 354
square cavity, 361

Solutal Rayleigh number, 306
Solution accuracy, 379
Solution update, 420
Spalart-Allmaras model, 258

eddy viscosity, 259
Spatial discretization, 307
Spatial discretization, 86, 160
Species, 307, 371
Species concentration, 310
Species diffusion, 308
Species equation, 327, 329, 371
Sphere, 233
Spherical coordinates, 12
Square cavity, 401

solidification, 361
turbulent natural convection, 272

Square enclosure, 338
Square plate, 135, 140, 144
Stabilization matrix, 195

one-dimensional, 195
Stability, 169, 201

von Neumann, 201
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Standard electrode potential, 369
Stanton number, 286
Static condensation, 117, 118
Static potential, 373
Steady state, 310, 374
Stefan-Boltzmann law, 4
Stiffness matrix, 93, 108, 110, 119, 121,

133, 161, 162, 165
element, 134, 146

Stream function, 215
Stretching ratio, 399
Structured mesh, 380, 406

multi-block, 381
Subdomain method, 83
Subdomain, 374
Symmetry, 113
System approach, 286

Target error, 394
Taylor expansion, 163, 302, 303
Taylor series, 10
Temperature, 307
Temperature distribution, 133
Temporal discretization, 307, 330,

412
Tetrahedron, 146

linear, 72
quadratic, 74

Thermal conductivity, 134
Thermal diffusivity, 184, 329, 416
Thermal potential, 107
Thermal resistance, 107
Thick wall cylinder, 120
Three-dimensional, 146
Three-dimensional element, 72

hexahedron, 75
tetrahedron, 72

Time averaging, 254
momentum equation, 255

Time constant, 159
Time-dependent, 309
Time discretization, 163

Crank-Nicolson, 164
explicit, 164
finite difference method, 163

finite element method, 166
first-order, 164
implicit, 164
Multi-dimensional, 169
semi-implicit, 164
stability, 169

Time-stepping, 416
Tortuosity, 372
Total enthalpy, 359
Transfer coefficient, 370
Transient, 157, 188, 309, 310

circular cylinder, 228
Transient problem, 28
Triangle, 49, 70

linear, 49
quadratic, 55

Triangular element, 132, 405, 408
linear, 132
area, 409
linear, 408

Triangulation, 382
Turbulence
𝜅-𝜀 model, 259
backward facing step, 266
channel, 263
circular cylinder, 269
dissipation, 256
eddy viscosity, 256, 259
finite element solution, 262
friction velocity, 265
isothermal flow, 263, 266
large eddy simulation (LES), 275
mixing length, 258
natural convection, 272
nondimensional distance, 265
nondimensional form, 260
nonisothermal flow, 265, 272
Nusselt number, 266
One-equation models, 258
Spalart-Allmaras model, 258
square cavity, 272
Two-equation models, 259
unsteady RANS, 269
wall shear stress, 265

Turbulent eddy viscosity, 255



450 INDEX

Turbulent flow, 253
Boussinesq assumption, 255
continuity equation, 256
decomposition, 255
energy equation, 256
fluctuating component, 255
Kolmogorov length scale, 254
momentum equation, 256
random variation, 253
Reynolds stress, 255
time averaging, 254
turbulent viscosity, 255

Turbulent heat transfer, 253
channel, 265
Prandtl number, 257
turbulent thermal diffusivity, 256

Turbulent kinematic viscosity, 255, 256
Turbulent mass transport, 317
Turbulent Prandtl number, 257
Turbulent thermal diffusivity, 256
Two-dimensional element, 49
Two-Equation models, 259

Universal gas constant, 369
Unsteady, 157
Unsteady RANS, 269
Unstructured mesh, 308, 380, 401, 406

Variable cross-section, 110
Variable porosity, 337
Variable thickness, 145
Variational method, 90
Vertically divided enclosure, 342
Voroni tessellation, 389

Wall shear stress, 265
Water vapor, 312
Weighted residual method, 77, 82

collocation, 83
Galerkin, 84
least-squares, 85
subdomain, 83

Zero flux, 307, 312
Zetacomp.com, 405
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