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Preface to the Third Edition

The first two chapters of this book have been thoroughly revised and sig-
nificantly expanded. Sections have been added on elementary methods of in-
tegration (on homogeneous and inhomogeneous first-order linear equations
and on homogeneous and quasi-homogeneous equations), on first-order linear
and quasi-linear partial differential equations, on equations not solved for the
derivative, and on Sturm’s theorems on the zeros of second-order linear equa-
tions. Thus the new edition contains all the questions of the current syllabus
in the theory of ordinary differential equations.

In discussing special devices for integration the author has tried through-
out to lay bare the geometric essence of the methods being studied and to
show how these methods work in applications, especially in mechanics. Thus
to solve an inhomogeneous linear equation we introduce the delta-function and
calculate the retarded Green’s function; quasi-homogeneous equations lead to
the theory of similarity and the law of universal gravitation, while the theorem
on differentiability of the solution with respect to the initial conditions leads
to the study of the relative motion of celestial bodies in neighboring orbits.

The author has permitted himself to include some historical digressions
in this preface. Differential equations were invented by Newton (1642-1727).
Newton considered this invention of his so important that he encoded it as an
anagram whose meaning in modern terms can be freely translated as follows:
“The laws of nature are expressed by differential equations.”

One of Newton’s fundamental analytic achievements was the expansion
of all functions in power series (the meaning of a second, long anagram of
Newton’s to the effect that to solve any equation one should substitute the
series into the equation and equate coefficients of like powers). Of particular
importance here was the discovery of Newton’s binomial formula (not with
integer exponents, of course, for which the formula was known, for example,
to Viete (1540-1603), but — what is particularly important — with fractional
and negative exponents). Newton expanded all the elementary functions in
“Taylor series” (rational functions, radicals, trigonometric, exponential, and
logarithmic functions). This, together with a table of primitives compiled by
Newton (which entered the modern textbooks of analysis almost unaltered),
enabled him, in his words, to compare the areas of any figures “in half of a
quarter of an hour.”
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Newton pointed out that the coefficients of his series were proportional
to the successive derivatives of the function, but did not dwell on this, since
he correctly considered that it was more convenient to carry out all the com-
putations in analysis not by repeated differentiation, but by computing the
first terms of a series. For Newton the connection between the coefficients of
a series and the derivatives was more a means of computing derivatives than
a means of constructing the series.

On of Newton’s most important achievements is his theory of the solar
system expounded in the Mathematical Principles of Natural Philosophy (the
Principia) without using mathematical analysis. It is usually assumed that
Newton discovered the law of universal gravitation using his analysis. In fact
Newton deserves the credit only for proving that the orbits are ellipses (1680)
in a gravitational field subject to the inverse-square law; the actual law of
gravitation was shown to Newton by Hooke (1635-1703) (cf. § 8) and seems
to have been guessed by several other scholars.

Modern physics begins with Newton’s Principia. The completion of the
formation of analysis as an independent scientific discipline is connected with
the name of Leibniz (1646-1716). Another of Leibniz’ grand achievements is
the broad publicizing of analysis (his first publication is an article in 1684)
and the development of its algorithms! to complete automatization: he thus
discovered a method of teaching how to use analysis (and teaching analysis
itself) to people who do not understand it at all - a development that has to
be resisted even today.

Among the enormous number of eighteenth-century works on differential
equations the works of Euler (1707-1783) and Lagrange (1736-1813) stand
out. In these works the theory of small oscillations is first developed, and
consequently also the theory of linear systems of differential equations; along
the way the fundamental concepts of linear algebra arose (eigenvalues and
eigenvectors in the n-dimensional case). The characteristic equation of a lin-
ear operator was long called the secular equation, since it was from just such
an equation that the secular perturbations (long-term, i.e., slow in comparison
with the annual motion) of planetary orbits were determined in accordance
with Lagrange’s theory of small oscillations. After Newton, Laplace and La-
grange and later Gauss (1777-1855) develop also the methods of perturbation
theory.

When the unsolvability of algebraic equations in radicals was proved, Li-
ouville (1809-1882) constructed an analogous theory for differential equations,
establishing the impossibility of solving a variety of equations (including such
classical ones as second-order linear equations) in elementary functions and
quadratures. Later S. Lie (1842-1899), analyzing the problem of integration
equations in quadratures, discovered the need for a detailed investigation of
groups of diffeomorphisms (afterwards known as Lie groups) - thus from the

! Incidentally the concept of a matrix, the notation a;;, the beginnings of the theory
of determinants and systems of linear equations, and one of the first computing
machines, are due to Leibniz.
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theory of differential equations arose one of the most fruitful areas of mod-
ern mathematics, whose subsequent development was closely connected with
completely different questions (Lie algebras had been studied even earlier by
Poisson (1781-1840), and especially by Jacobi (1804-1851)).

A new epoch in the development of the theory of differential equations
begins with the works of Poincaré (1854-1912), the “qualitative theory of
differential equations,” created by him, taken together with the theory of
functions of a complex variable, lead to the foundation of modern topology.
The qualitative theory of differential equations, or, as it is more frequently
known nowadays, the theory of dynamical systems, is now the most actively
developing area of the theory of differential equations, having the most im-
portant applications in physical science. Beginning with the classical works
of A. M. Lyapunov (1857-1918) on the theory of stability of motion, Russian
mathematicians have taken a large part in the development of this area (we
mention the works of A. A. Andronov (1901-1952) on bifurcation theory, A.
A. Andronov and L. S. Pontryagin on structural stability, N. M .Krylov (1879-
1955) and N. N. Bogolyubov on the theory of averaging, A. N. Kolmogorov
on the theory of perturbations of conditionally-periodic motions). A study
of the modern achievements, of course, goes beyond the scope of the present
book (one can become acquainted with some of them, for example, from the
author’s books, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, New York, 1983; Mathematical Methods of Clas-
stcal Mechanics, Springer-Verlag, New York, 1978; and Catastrophe Theory,
Springer-Verlag, New York, 1984).

The author is grateful to all the readers of earlier editions, who sent their
comments, which the author has tried to take account of in revising the book,
and also to D. V. Anosov, whose numerous comments promoted the improve-
ment of the present edition.

V. I Arnol’d



From the Preface to the First Edition

In selecting the material for this book the author attempted to limit the
material to the bare minimum. The heart of the course is occupied by two
circles of ideas: the theorem on the rectification of a vector field (equivalent
to the usual existence, uniqueness, and differentiability theorems) and the
theory of one-parameter groups of linear transformations (i.e., the theory of
autonomous linear systems).

The applications of ordinary differential equations in mechanics are stud-
ied in more detail than usual. The equation of the pendulum makes its ap-
pearance at an early stage,; thereafter efficiency of the concepts introduced is
always verified through this example. Thus the law of conservation of energy
appears in the section on first integrals, the “small parameter method” is de-
rived from the theorem on differentiation with respect to a parameter, and
the theory of linear equations with periodic coeficients leads naturally to the
study of the swing (“parametric resonance”).

The exposition of many topics in the course differs widely from the tradi-
tional exposition. The author has striven throughout to make plain the geo-
metric, qualitative side of the phenomena being studied. In accordance with
this principle there are many figures in the book, but not a single complicated
formula. On the other hand a whole series of fundamental concepts appears,
concepts that remain in the shadows in the traditional coordinate presenta-
tion (the phase space and phase flows, smooth manifolds and bundles, vector
fields and one-parameter diffeomorphism groups). The course could have been
significantly shortened if these concepts had been assumed to be known. Un-
fortunately at present these topics are not included in courses of analysis or
geometry. For that reason the author was obliged to expound them in some
detail, assuming no previous knowledge on the part of the reader beyond the
standard elementary courses of analysis and linear algebra.

The present book is based on a year-long course of lectures that the author
gave to second-year mathematics majors at Moscow University during the
years 1968-1970.

In preparing these lectures for publication the author received a great deal
of help from R. I. Bogdanov. The author is grateful to him and all the students
and colleagues who communicated their comments on the mimeographed text
of the lectures (MGU, 1969). The author is also grateful to the reviewers D.
V. Anosov and S. G. Krein for their attentive review of the manuscript.

1971 V. Arnol’d



Frequently used notation

R — the set (group, field) of real numbers.

C - the set (group, field) of complex numbers.

Z — the set (group, ring) of integers.

z € X CY — zis an element of the subset X of the set Y.

XNY, XUY - the intersection and union of the sets X and Y.

f:X =Y - fis a mapping of the set X into the set Y.

x — y — the mapping takes the point  to the point y.

f og - the composite of the mappings (g being applied first).

3, V - there exists, for all.

* — a problem or theorem that is not obligatory (more difficult).

R™ — a vector space of dimension n over the field R.

Other structures may be considered in ths set R™ (for example, an affine struc-
ture, a Euclidean structure, or the direct product of n lines). Usually this will be
noted specifically (“the affine space R"”, “the Euclidean space R™”, “the coordinate
space R*”, and so forth).

Elements of a vector space are called vectors. Vectors are usually denoted by bold
face letters (v, €, and so forth). Vectors of the coordinate space R" are identified
with n-tuples of numbers. We shall write, for example, v = (v1,...,vn) = 1181 +
-+ vpe,; the set of n vectors e; is called a coordinate basis in R™.

We shall often encounter functions a real variable ¢ called time. The derivative
with respect to t is called welocity and is usually denoted by a dot over the letter:
z = dz/dt.
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Chapter 1. Basic Concepts

§ 1. Phase Spaces

The theory of ordinary differential equations is one of the basic tools of math-
ematical science. This theory makes it possible to study all evolutionary pro-
cesses that possess the properties of determinacy, finite-dimensionality, and
differentiability. Before giving precise mathematical definitions, let us consider
several examples.

1. Examples of Evolutionary Processes

A process is called deterministic if its entire future course and its entire past
are uniquely determined by its state at the present time. The set of all states
of the process is called the phase space.

Thus, for example, classical mechanics considers the motion of systems
whose future and past are uniquely determined by the initial positions and
initial velocities of all points of the system. The phase space of a mechanical
system is the set whose elements are the sets of positions and velocities of all
points of the given system.

The motion of particles in quantum mechanics is not described by a de-
terministic process. The propagation of heat is a semideterministic process:
the future is determined by the present, but the past is not.

A process is called finite-dimensional if its phase space is finite-dimen-
sional, i.e., if the number of parameters needed to describe its states is finite.
Thus, for example, the Newtonian mechanics of systems consisting of a finite
number of material points or rigid bodies belongs to this class. The dimension
of the phase space of a system of n material points is 6n, and that of a system
of n rigid bodies is 12n. The motions of a fluid studied in fluid mechanics, the
vibrating processes of a string and a membrane, the propagation of waves in
optics and acoustics are examples of processes that cannot be described using
a finite-dimensional phase space.

A process is called differentiable if its phase space has the structure of
a differentiable manifold, and the change of state with time is described by
differentiable functions.

Thus, for example, the coordinates and velocities of the points of a me-
chanical system vary differentiably with time.
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The motions studied in impact theory do not possess the property of
differentiability.

Thus the motion of a system in classical mechanics can be described using
ordinary differential equations, while quantum mechanics, the theory of heat
transfer, fluid mechanics, elasticity theory, optics, acoustics, and impact theory
require other methods.

We now give two more examples of deterministic finite-dimensional and
differentiable processes: the process of radioactive decay and the process of
multiplication of bacteria in the presence of a sufficient quantity of nutrients.
In both cases the phase space is one-dimensional: the state of the process is
determined by the quantity of the substance or bacteria. In both cases the
process is described by an ordinary differential equation.

We remark that the form of the differential equation of the process, and
also the very fact of determinacy, finite-dimensionality, and differentiability of
a given process can be established only by experiment, and consequently only
with limited accuracy. In what follows we shall not emphasize this circum-
stance every time, and we shall talk about real processes as if they coincided
exactly with our idealized mathematical models.

2. Phase Spaces

A precise formulation of the general principles discussed above requires rather
abstract concepts: phase space and phase flow. To become familiar with these
concepts, let us consider an example where the mere introduction of the phase
space makes it possible to solve a difficult problem.

Problem 1. (N. N. Konstantinov). Two nonintersecting roads lead from city
A to city B (Fig. 1). It is known that two cars traveling from A to B over
different roads and joined by a cord of a certain length less than 2! were able
to travel from A to B without breaking the cord. Is it possible for two circular
wagons of radius | whose centers move over these roads toward each other to
pass without touching?

\\\
N
[, 8 N/ Tcars
A - { \
Fig. 1. The initial position of the wag- Fig. 2. The phase space of a pair of
ons vehicles

Solution. Consider the square (Fig. 2)

M ={zy,z5: 0 <z; <1},
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The position of two vehicles (one on the first road, the other on the second)
can be indicated by a point of the square M: it suffices to denote by z; the
portion of the distance from A to B on road ¢ contained between A and the
vehicle on that road.

The set of all possible positions of the vehicles corresponds to all possible
points of the square M. This square is called the phase space and its points
are the phase points. Thus each phase point corresponds to a definite position
of the pair of vehicles, and every motion of the vehicles is depicted by the
motion of a phase point in the phase space.

For example, the initial position of the cars (in city A) corresponds to the
lower left corner of the square (z; = 3 = 0), and the motion of the cars from
A to B is depicted by a curve leading to the opposite corner.

In exactly the same way the initial position of the wagons corresponds to
the lower right corner of the square (z7 = 1,22 = 0), and the motion of the
wagons is depicted by a curve leading to the opposite corner of the square.

But any two curves in the square joining different pairs of opposite vertices
must intersect. Therefore no matter how the wagons move there will come a
time at which the pair of wagons occupies a position at which the pair of cars
was located at some instant. At that instant the distance between the centers
of the wagons will be less than 2/. Hence they will not be able to pass.

In the example under consideration differential equations played no part
but the course of the reasoning is close to that which we shall study below:
the description of the states of the process as the points of a suitable phase
space often turns out to be extremely useful.

For example, in classical mechanics the state of a process consisting of
the motion of a system of n material points is described by the values of
the coordinates and velocities of all the material points. Consequently the
phase space of such a system has dimension 6n (three coordinates and three
components of velocity for each material point). The phase space of a system
of three points (the sun, Jupiter, and Saturn) is 18-dimensional. The phase
space of a system of n rigid bodies has dimension 12n (why?).

The motion of the entire system is described by the motion of a point over
a curve in the phase space. The velocity of the motion of the phase point over
this curve is defined by the point itself. Thus at each point of the phase space
a vector is given — it is called the phase velocity vector. The set of all phase
velocity vectors forms the phase velocity vector field in the phase space. This
vector field defines the differential equation of the process (the dependence of
the velocity of the motion of a phase point on its position).

The fundamental problem of the theory of differential equations is to de-
termine or study the motion of the system using the phase velocity vector
field. This involves, for example, questions about the form of phase curves
(the trajectories of the motion of the phase point): do the phase curves, say,
of a given vector field in phase space go to infinity or remain in a bounded
region?



16 Chapter 1. Basic Concepts

In general form this problem does not yield to the methods of modern
mathematics and is apparently unsolvable in a certain sense (this applies in
particular to the three-body problem mentioned above). In the simplest special
cases, with which we shall begin, the problem can be solved explicitly using the
operation of integration. Computers make it possible to find approximately
the solutions of differential equations on a finite interval of time, but do not
answer the qualitative questions about the global behavior of phase curves.
In what follows, along with methods for explicitly solving special differential
equations, we shall also present some methods for studying them qualitatively.

The concept of a phase space reduces the study of evolutionary processes
to geometric problems about curves defined by vector fields. We shall begin
our study of differential equations with the following geometric problem.

3. The Integral Curves of a Direction Field

Let us assume that at each point of a certain region of the plane a straight
line passing through this point has been chosen. In this case we say that a
direction field has been defined in the region (Fig. 3).

Remark. Two smooth curves passing through the same point define the same
direction at that point if they are tangent. Thus the straight lines in the
definition of a direction field can be replaced by arbitrary smooth curves: only
the tangent to the curve at the point matters. Figure 3 depicts only a small
piece of the line near each point.

Fig. 8. A direction field and one of its integral curves

Remark. Here and below all the objects encountered (functions, mappings,...)
are assumed smooth, i.e., continuously differentiable the necessary number of
times, unless otherwise stated. The direction field is called continuous (resp.
smooth) if the lines of the field depend continuously (resp. smoothly) on the
point of attachment.

Remark. A direction field (of lines) in n-dimensional space (and also on any
smooth manifold) is defined similarly.

Definition. A line that, at each of its points, is tangent to a vector field is
called an integral curve of the direction field.
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The name “integral curve” is motivated by the fact that in certain cases
these curves can be found using the operation of integration.

Ezample. Assume that a continuous direction field on a plane maps into itself
under all translations along a certain line and contains no directions parallel
to that line (Fig. 4).

T
X o, —— o
NS4
X - o
t

Fig.4. A field invariant with respect to vertical translations

Theorem. The problem of finding the integral curves of a field of this type 1is
precisely the problem of integrating a given continuous function.

Proof. We choose a system of coordinates in which the given line is the vertical
ordinate axis, and the axis of abscissas is horizontal. An integral curve of a
field without vertical directions is the graph of a function. The derivative of
this function is the slope of the graph. The graph is an integral curve if and
only if this slope is equal to the slope of the line of the given field. But this
last slope is a known function of the abscissa (since the field maps into itself
under translations along the axis of ordinates). Consequently a function whose
graph is an integral curve has a known function as derivative and hence is a
primitive of it, which was to be proved. O

Let us denote the abscissa by the letter ¢ and the ordinate by the letter
z. The slope of a line of the field is the known function v(¢), and an integral
curve is the graph of an unknown function ¢. The curve z = ¢(t) is an integral
de
dt

In the general case the problem of finding integral curves does not reduce
to the operation of integration: even for very simply defined direction fields in
the plane the equations of the integral curves cannot be represented by finite
combinations of elementary functions and integrals.?

curve if and only if — = v(¢). By Barrow’s theorem! ¢ = [ vdt + C.

4. A Differential Equation and its Solutions

The geometric problem of finding integral curves is written analytically as the
problem of finding the solutions of a differential equation. Assume that a field

! Isaac Barrow (1630-1677), Newton’s teacher, who devoted a book to the mutually
inverse relation between the tangent and area problems.

? Example: Such is the case for a field in which the tangent of the angle between
the line attached at the point (¢,z) and the z-axis is equal to 2* — ¢ (Liouville).
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in the (¢, z)-plane contains no vertical direction (is never parallel to the z-axis
(Fig. 5)). Then the slope v(t,z) of the field line attached at the point (¢,z) is
finite and the integral curves are the graphs of functions = = ().

Fig. 5. The graph of a solution of a differential equation

We shall assume that the domain of definition of the function ¢ is an
interval I of the t-axis. The following result is obvious.

Theorem. A necessary and sufficient condition for the graph of a function ¢
to be an integral curve is that the following relation hold for all t in I:

9 — ot m

Definition. The function ¢ is called a solution of the differential equation
& =v(t,z) (2)

if it satisfies relation (1) (i.e., if “the equation becomes an identity when the
function ¢ is substituted for z in the equation”).

Definition. The solution ¢ satisfies the initial condition (¢, o) if p(to) = 0.

Thus a solution is a function defined on the interval whose graph is an
integral curve; the solution satisfies the initial condition (¢q, zo) if the integral
curve passes through the given point (Fig. 5).

Ezample. The solution of the simplest equation £ = v(#) with initial condition
(to, o) is given by Barrow’s formula:

o(t) =z0 + /t v(T)dr.

to

Every differential equation (2) determines a direction field in the plane:
the line attached at the point (t,z) has slope v(t,z). This field is called the
direction field of v or the direction field of Eq. (2) for short.
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5. The Evolutionary Equation with a One-dimensional Phase
Space

Consider the equation
zt=v(z), z€R.

This equation describes an evolutionary process with a one-dimensional phase
space. The right-hand side defines a phase velocity vector field: a vector v(z)
is attached at the point z (Fig. 6, left-hand side). Such an equation, whose
right-hand side is independent of ¢, is called autonomous. The rate of evolution
of an autonomous system, i.e., a system not interacting with other systems,
is determined entirely by the state of the system: the laws of nature are time-
independent.

Z, Z

W

a 0| ~O= =wO= =0
v V| Tos ol ol g

Fig. 6. The vector field and the direction field for the equation z = v(z)

The points where v vanishes are called equilibrium positions (also station-
ary points or singular points) of the vector field. If a is an equilibrium position,
then ¢(t) = a is a solution of the equation (a process starting in state a always
remains in that state). Figure 6 shows an equilibrium position a. It can be
seen that this equilibrium position is unstable: if the initial condition deviates
by a small amount from the equilibrium position, the phase point moves away
from the equilibrium position as time goes on.

Figure 6 also depicts the direction field for this equation. Since v is inde-
pendent of ¢, the field maps into itself under translations along the ¢-axis.

According to the theorem of Sect. 3, the problem of constructing the in-
tegral curves of this equation can be solved by integration alone (in a region
where the field is not parallel to the t-axis, i.e., where there are no equilibria,
so that v(z) # 0). Assume that the function v(z) is continuous and never
vanishes. We shall write out an explicit formula that determines the integral
curves.

The tangent of the angle between our field and the z-axis equals 1/v(z).
Consequently the direction field of the equation dx/dt = v(z) coincides with
the direction field of the equation dt/dx = 1/v(z). Hence the integral curves
of these fields also coincide. But an integral curve of the second equation is
given by Barrow’s formula; in the present case it has the form

_ [7 e
t——to_/zo Gl (3)

Thus we have proved the following theorem.
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Theorem. The solution ¢ = ©(t) of the equation & = v(x) with a continuous
nonvanishing right-hand side which satisfies the initial condition (tg,zq) 43
given by formula (3). Conversely the function z = ¢(t) defined by formula (3)
1s a solution and satisfies this initial condition.

Remark. The following is a mnemonic device for remembering formula (3).
Write the original equation in the form dz /dt = v(z). Even though the student
is taught that dz/dt is a single symbol and not a fraction when the derivative
is introduced in courses of analysis, we shall operate with this symbol as if it
were a fraction and rewrite the equation, gathering all the z’s on the left-hand
side and all the ¢’s on the right, in the form dz/v(z) = dt. Integrating both
sides, we obtain the relation t = [ dz/v(z), i.e., (3).

Actually this device is of course more than a mnemonic rule. Leibniz would
not have introduced the complicated notation ‘;—f if he had not had in mind a real
fraction: dx divided by dt. The point is that dz and dt are not at all mysterious
“infinitely small” quantities, but perfectly finite numbers ~ functions of a vector, to
be more precise.

Consider (Fig. 7) a velocity vector A in the plane attached at some point in a
plane in which the coordinates (¢, x) are fixed. The rate of change of the ¢-coordinate
in this motion is a function of this vector. It is linear. It is this linear function of
the vector that is denoted dt. For example, the value of this function at the vector
A with components (10,20) is d¢(A) = 10. In exactly the same way one can define
dz(A) = 20, the rate of change of the z-coordinate under the motion with velocity
vector A, so that A has components dit(A),dz(A). The following proposition is
obvious.

Proposition 1. For any vector A tangent to the graph of a smooth function = (t)

the ratio dx(A)/di(A) is equal to the derivative dz/dt of the function ¢ at the
corresponding point.

z A >

r
A
dz(A) \
7E(A) I 4,
t —tesl
Fig. 7. The numerator and denomina- Fig. 8. The definition of the integral of
tor of the fraction dz/dt a 1-form

Thus the equation dz/v(z) = dt is a relation between two linear functions of a
vector tangent to an integral curve.

Functions of the attached vector that are linear at each given point where they
are attached are called differential 1-forms.

Every differential 1-form in the (¢,z)-plane can be written in the form w =
adt 4 bdx, where a and b are functions in the plane.

Differential forms can be integrated along oriented closed segments of curves.
On a segment I" of a curve in the plane we choose an orienting parameter u, i.e., we
represent I’ as the image of a smooth mapping v : I — R? from a segment of the
u-axis into the plane (Fig. 8). The integral of the form w along I’ is defined to be
the number
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/w = /w(y')du, where v’ = dvy/du.
r 1

In other words the integral is the limit of the integral sums Y w(A;), where A;
v'(ui)Ai; here u; are points that divide the interval I into intervals of length A;
ui+1 — ui. The vector A; is tangent to I' and differs from the chord joining the
successive points of division on I’ only by infinitesimals of higher order with respect
to A; (Fig. 8).

The following proposition is a consequence of the theorem on the change of
variable in a definite integral.?

Proposition 2. The integral of a 1-form over an oriented closed segment of a curve
1s independent of the parameter for parameters giving the same orientation. (When
the orientation is reversed, the integral changes sign.)

The following proposition is also obvious.

Proposition 3. The integral of a I-form f(z) dz over a segment of a curve on which
2 can be taken as parameter coincides with the usual definite integral of the function

f.

Let us now return to the proof of formula (3).

The values of the two differential forms dz/v(z) and dt coincide on vectors
tangent to an integral curve. Hence their integrals over a segment of the curve are
equal. According to Proposition 3 the integral of the first form is equal to the right-
hand side and that of the second is equal to the left-hand side of formula (3).

6. Example: The Equation of Normal Reproduction

Assume that the size of a biological population (for example the number of
bacteria in a Petri dish or fish in a pond) is « and that the rate of reproduction
is proportional to the number of organisms present. (This assumption holds
approximately while there is sufficient food.)
Our assumption is expressed by the differential equation of normal repro-
duction
z=ke, k>0

From the conditions of the problem x > 0, so that the direction field is defined
on a half-plane; it is depicted in Fig. 9. From the form of the direction field
it is clear that = increases with ¢, but is not clear whether infinite values of z
will be reached in finite time (whether an integral curve will have a vertical
asymptote) or whether the curve will remain finite for all £. Along with the
future the past is also unclear: will an integral curve tend to the axis ¢ = 0 as
t tends to a finite or infinite negative limit?

Fortunately the reproduction equation can be solved explicitly by the pre-
ceding theorem: according to formula (3),

3 It was in solving the simplest differential equations, those now known as equations
with separable variables, that Barrow came to discover this theorem.
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Fig. 9. The reproduction equation z = kz

*d
t—t0=/ é k(t —to) = In(z/zg), « = ektt)g,,

Consequently the solutions of the normal reproduction equation increase expo-
nentially as ¢ — +o0o and decrease exponentially as t — —oo; neither infinite
nor zero values of @ are attained for finite values of t. Thus according to the
equation the same time period is always required to double the population,
regardless of its size (the doubling period of the earth’s population is of the
order of 40 years at present). Up to the middle of the twentieth century science
also increased exponentially (Fig. 10).
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Fig. 10. Growth of the number of research and review journals (according to the

book of V. V. Nalimov and A. M. Mul’chenko Scientometry (Nauka, Moscow 1969
[Russian])

The same differential equation with negative k describes radioactive decay.
To reduce the amount of a radioactive substance by one-half requires time
T = k™'In2, regardless of the initial amount of the substance. This time
is called the half-life. The half-life of the widely known isotope radium-226 is
1620 years, and that of the commonest isotope of uranium (U-238) is 4.5 x 10°
years.

The same equation is also encountered in a large number of other prob-
lems. (We shall see below that this is not coincidental, but a manifestation
of a natural law according to which “every” function is approximately linear
locally.)

Problem 1. At what altitude is the density of the air one-half of that at the surface
of the earth? Regard the temperature as constant. One cubic meter of air at the
surface of the earth weighs 1250g.
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Answer. 8In2km & 5.6 km — the height of Mt. Elbrus.

7. Example: The Explosion Equation

Now let us assume that the rate of reproduction is proportional not to the
number of individuals in the population but to the number of pairs of indi-
viduals:

i = ka?. (4)

In this case for large z reproduction takes place much faster than in the
case of normal reproduction, and for small z it goes much more slowly (this
situation occurs more often in problems of physical chemistry, where the rate
of a reaction is proportional to the concentration of the two reagents; however
at present whales of certain species are having such difficulty finding a mate
that the reproductive rate of the whale population is subject to Eq. (4), and
with small z).

The direction field appears to differ little from that of the ordinary re-
production equation (Fig. 9), but computations show that the integral curves
behave quite differently. Suppose for simplicity that ¥ = 1. By Barrow’s for-

for t < C. An

1
t—C
integral curve is one branch of a hyperbola (Fig. 11). The hyperbola has a
vertical asymptote.

mula we find the solution t = -—i +C,ie,z = —
T

Fig. 11. The explosion equation & = 2

Thus if the growth of the population is proportional to the number of pairs
of individuals in the population, then the size of the population becomes in-
finitely large in a finite time. Physically this conclusion corresponds to the
explosive nature of the process. (Of course for ¢ too close to C the idealization
adopted in describing the process by a differential equation is inapplicable, so
that the actual size of the population does not attain infinite values in finite
time.)

It is interesting to observe that the other branch of the hyperbola z = (C' —)™!
is also an integral curve of our equation (if we extend it from the semiaxis ¢ > 0 to
the entire  axis). The solutions corresponding to the two branches of the hyperbola
are both given by the same formula, but have no connection with each other. The
connection between these solutions is recovered if we consider time to be a complex
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variable or if we compactify the affine z-axis to form the projective line (cf. Chapt.

5).

Problem 1. * Which of the differential equations & = 2™ determine on an affine line
a phase velocity field that can be extended without singular points to the projective
line?

Answer. n=0,1,2.

8. Example: The Logistic Curve

The ordinary reproduction equation £ = kz is applicable only as long as the
number of individuals is not too large. As the number of individuals increases
competition for food leads to a decrease in the rate of reproduction. The sim-
plest hypothesis is that the coefficient & is an inhomogeneous linear function
of z (when z is not too large any smooth function can be approximated by an
inhomogeneous linear function): k = a — bz.

We thus arrive at the reproduction equation taking account of competition
& = (a— bz)z. The coefficients a and b can be taken as 1 by a change of scale
on the t- and z-axes. We thus obtain the so-called logistic equation

z=(1-2z)a.

The phase velocity vector field v and the direction field in the (¢, z)-plane
are depicted in Fig. 12.
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Fig. 12. The vector field and the direc- Fig.13. The integral curves of the
tion field of the equation = (1 — z)z equation z = (1 — z)2

We conclude from this that the integral curves look as depicted in Fig. 13.
More precisely, we see that

1) the process has two equilibrium positions 2 = 0 and = = 1;

2) between the points 0 and 1 the field is directed from 0 to 1, and for
z > 1 to the point 1.

Thus the equilibrium position 0 is unstable (as soon as a population arises
it begins to grow), while the equilibrium position 1 is stable (a smaller popu-
lation increases, and a larger one decreases).

* Here and in the sequel problems marked with an asterisk are more difficult than
the others.
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For any initial state > 0, as time passes the process moves toward the
stable equilibrium state z = 1.

It is not clear from these considerations, however, whether this passage
takes place in a finite or infinite time, i.e., whether integral curves starting in
the region 0 < < 1 can have points in commeon with the line z = 1.

It can be shown that there are no such common points and that these
integral curves tend asymptotically to the line x = 1 as ¢ — +o00 and to the
line x = 0 as t — —oo. These curves are called logistic curves. Thus a logistic
curve has two horizontal asymptotes (z = 0 and # = 1) and describes the
passage from one state (0) to another (1) in an infinite time.

Problem 1. Find the equation of a logistic curve,

Solution. By formula (3) ¢ = [dz/(z(1 — z)) = In(z/1 — z), or = = €' /(1 + €).
This formula proves the asymptotic property of the logistic curve mentioned above.

Problem 2. Prove that the integral curves of the equation ¢ = (1 — z)z in the
region z > 1 tend asymptotically to the line z = 1 as ¢ — 400 and have the vertical
asymptote ¢t = const.

For small « the logistic curve is practically indistinguishable from the exponential
curve, i.e., competition has little influence on reproduction. However, as z increases
the reproduction becomes nonexponential, and near z = 1/2 the exponential curve
diverges sharply upward from the logistic curve; subsequently logistic growth de-
scribes the saturation of the system, i.e., the establishment of an equilibrium mode
init (z =1).

Up to the middle of the twentieth century science grew exponentially (cf. Fig.
10). If such growth were to continue, the entire population of the earth would consist
of scientists by the end of the twenty-first century and there would not be enough
forests on the earth to print all the scientific journals. Consequently saturation must
set in before that point: we are nearing the point where the logistic curve begins to
lag behind the exponential curve. For example, the number of mathematical journal
articles increased at a rate of 7% per year from the end of the Second World War
until the 1970’s but the growth has been slower for the past several years.

9. Example: Harvest Quotas

Up to now we have considered a free population developing according to its
own inner laws. Assume now that we harvest a part of the population (for
example, we catch fish in a pond or in the ocean). Let us assume that the
rate of harvesting is constant. We then arrive at the differential equation for
harvesting

t=(1-2)z—c

The quantity ¢ characterizes the rate of harvesting and is called the gquota.
The form of the vector fleld and the phase velocity field under different values
of the harvest rate ¢ is shown in Fig. 14.

We see that for a harvesting rate that is not too large (0 < ¢ < 1/4) there
exist two equilibrium positions (4 and B in Fig. 14). The lower equilibrium
position £ = A) is unstable. If for any reason (overharvesting or disease) the



26 Chapter 1. Basic Concepts

; o< 14

z
t
z
> c=1/4
T
z /4
1]

n

NP

Fig.14. The harvest equation ¢ = (1 —2)z — ¢

¥
I
v
\
t
}
!
}

size of the population = drops below A, the population will subsequently die
out in a finite time.

The upper equilibrium position B is stable — this is the steady state toward
which the population converges under constant harvest c.

If ¢ > 1/4 there is no equilibrium, and the entire population will be har-
vested in a finite time (for example, Steller’s sea-cow).

For ¢ = 1/4 there is one unstable equilibrium state (A = B = 1/2). It
is mathematically possible to continue harvesting indefinitely at such a rate
if the initial population is sufficiently large. However, an arbitrarily small
fluctuation in the established equilibrium size of the population will lead to a
complete harvest of the population in a finite time.

Thus, although any quotas up to the maximal (¢ < 1/4) are theoretically
admissible, the mazimal quota ¢ = 1/4 leads to instability and is therefore
inadmissible. Moreover as a practical matler quotas close to 1/4 are also in-
admissible since with these values the threshold of danger A is close to the
steady state B (small random fluctuations throw the population below the
threshold A, after which it perishes.)

It turns out, however, that the harvest can be organized so as to obtain
in a stable manner a harvest at the rate 1/4 for 1 unit of time (more than
this cannot be achieved since 1/4 is the maximal reproductive rate of the
unharvested population).

10. Example: Harvesting with a Relative Quota

Instead of an absolute rate of harvest, let us fix a relative rate, i.e., let us fix
the fraction of the population to be harvested in unit time: & = (1 — z )z — pz.
The form of the vector field and the integral curves (for p < 1) is depicted in
Fig. 15.
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Fig. 15. The harvest equation ¢ = (1 — z)v — pz

The lower, unstable equilibrium point is now at the point z = 0, and the
second equilibrium position B is now stable for any p, 0 < p < 1.

After a certain period of adjustment the population converges to the
steady state z = B. When this happens, the absolute rate of harvest be-
comes established at the value ¢ = pB. This is the ordinate of the point of
intersection of the graphs of the functions v = (1 — 2)z and v = pz (Fig.
15, left). Let us study the behavior of the quantity ¢ as p varies. Under small
relative harvests (small p) the steady rate of harvest is also small; as p — 1
it also tends to 0 (overharvesting). The highest absolute value of the rate c is
the largest ordinate of the graph of the function v = (1 — z)z. It is attained
when the line v = px passes through the vertex of the parabola (i.e., when
p=1/2), and is equal to ¢ = 1/4.

Let us take p = 1/2 (i.e., assign the relative quota so that the steady
population will be half of the unharvested population). We will then have
achieved the maximum possible steady harvest rate ¢ = 1/4, and the system
will remain stable (return to its steady state under small fluctuations of the
initial population from the steady population).

11. Equations with a Multidimensional Phase Space

In the examples considered above the phase space was one-dimensional. In
more complicated cases (for example, taking account of the interaction be-
tween several populations) a point of the phase space is determined by several
numbers (two for two populations, etc.). The definitions of a differential equa-
tion, solutions, etc., in this case are analogous to those given above. We shall
repeat these definitions.

Let v be a vector field in a region U of an n-dimensional phase space. The
autonomous differential equation defined by the field v is the equation

z=v(z), ze€UCR"™

A solution of this equation is a smooth mapping ¢ : I — U of an interval of

the time axis into the phase space for which d¢/dt = v(p(t)) for all t in I.
The image of the mapping ¢ is called a phase curve and the graph® of

the mapping ¢ is called an integral curve. The integral curve lies in the direct

® The graph of a mapping f : X — Y is the subset of the direct product X x Y
consisting of all pairs of the form (z, f(z)), where 2 € X; the direct product X xY
is the set of all ordered pairs (z,y), where z € X and y € Y.
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product of the time axis and the phase space. This direct product is called
the extended phase space. The extended phase space has dimension n + 1.

Let (to, @0 ) be a point of the extended phase space. The solution ¢ satisfies
the initial condition (tg,xq) if ¢(to) = xo, 1.e., if the integral curve passes
through the point (tg,zy).

As in the case of a one-dimensional phase space, the integral curves can
be described using a direction field in the extended phase space. The slope is
replaced by the following construction.

Assume that a direction field is given in the region V of the direct product
R x R" and that the direction of the field is nowhere vertical (parallel to R™).
Let ¢ be a coordinate in R, and let @ = (zy,...,z,) be coordinates in R".
Then at each point there exists (a unique) vector of the direction attached at
this point having horizontal coordinate (t-component) equal to 1. Thus this
vector has the form (1, v(¢,x)), where v(t,2) is a vector in R™ depending on
a point of the extended phase space. In other words a nonvertical direction
field in the extended phase space determines a time-dependent vector field in
the phase space.

Each integral curve of the given direction field obviously satisfies the dif-
ferential equation

z =v(t,z),

i.e., is the graph of the mapping ¢ of an interval of the time axis into the
phase space for which de/dt = v(t, (%)) for all t. Conversely the graph of
any solution is an integral curve of this field.

The solution satisfies the initial condition (tg, @) if and only if the integral
curve passes through this point.

Remark. In coordinate notation a vector field in n-dimensional space is defined by
n functions of n variables. Our differential equation therefore assumes the form of a
“system of n first-order equations”:

21 =01(8%1,. . Tn)yerry Tn =Va(t; @1, .., Tn).

A solution is defined by a vector-valued function (¢1,...,%n) of the variable ¢ for
which dpr/dt = vi(t;1(t),...,on(t)), k =1,...,n, for all t. An initial condition is
given by n + 1 numbers (to;&1,0,...Tn0)-

12. Example: The Differential Equation of a Predator-Prey
System

The simplest and crudest model describing the struggle of two species — the
predator-prey model — consists of the following. Consider a pond in which two
species of fish live, say carp and pike. If there were no pike, the carp would
multiply exponentially at a rate proportional to their numbers x, say ¢ = kx
(we assume that the total mass of the carp is much less than the mass of the
pond). If y is the number of pike, one must take account of the number of carp
eaten by the pike. We shall assume that the number of encounters of carp with
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pike is jointly proportional to the numbers of carp and pike; then for the rate
of fluctuation in the number of carp, we obtain the equation z = kx — azy.
As for the pike, they die out in the absence of carp: y = —ly, while in the
presence of carp they begin to increase at a rate proportional to the number
of carp eaten: y = ~ly + bzxy. ‘
We thus arrive at a system of differential equations for the simplest model
of a predator-prey system:

z = kx — azy,
y = —ly + bzy.

This model is called the Lotka- Volterra model, after its creators. The right-
hand side defines a vector field in the plane: the vector attached at the point
(z,y) has components (kz — azy, —ly + bry). This is a phase velocity field.

The phase space is the sector z >0, y > 0.

The phase velocity vector field is not difficult to sketch by following the
changes of sign of the two components (Fig. 16). The critical point (zo =
/b, yo = k/a) corresponds to an equilibrium number of carp and pike, when
the increase in the carp population is balanced by the activity of the pike and
the increase in the pike is balanced by their natural mortality.

Y
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Fig. 16. The phase velocity field of the predator-prey model

If the initial number of pike is less than yo (the point A in the figure),
then the numbers of carp and pike both increase until the increasing numbers
of pike begin to eat carp faster than the latter can increase (point B). At
that point the number of carp begins to decrease while the number of pike
continues to increase until the shortage of food causes the pike also to begin
to die out (point C'). The number of pike will then decrease so much that the
carp will again begin to multiply (point D). This new increase in the number
of carp will lead to an increase in the number of pike also after a time. In this
way the populations of carp and pike will oscillate about their equilibrium
numbers.

The question arises, however, whether these oscillations are periodic or
not. Our approximate picture of the phase velocity field does not provide an
answer to this question, and different cases can be imagined, as depicted in
Fig. 17, for example.

In order to investigate these cases, consider the line segment joining the
critical point to the z-axis. Each point A of this line segment (except the point
on the z-axis) determines a phase curve that again intersects the line segment
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Fig.17. The first return function

in some point $(A). The function @ is called the first return function (or the
Poincaré mapping, as well as the monodromy or holonomy).

Consider the graph of the first return function. It is called the Lamerey
diagram. The Lamerey diagrams for the four cases of Fig. 17 are depicted in
Fig. 18.

D(4) D(A) &(4) d(A)

Fig. 18. Lamerey diagrams

From the Lamerey diagram it is easy to construct the sequence of images of
the point A when the mapping @ is iterated. To do this one needs to construct
the so-called Lamerey staircase (Fig. 19) whose vertices have abscissas and

ordinates A, P(A), P?(A) = $(H(4)),... .

Fig.19. The Lamerey staircase

The points of intersection of the graph of the return function with the
diagonal (the graph of & = A) correspond to closed phase curves (cycles) in
the phase plane.

A cycle is demonstrably stable (resp. unstable) if at the corresponding
point A we have #'(4) < 1 (resp. '(4A) > 1). As for our four Lamerey
diagrams (Fig. 18), in the first case the curves are spirals winding in toward
the critical point; in the second case they wind outward from this point; in the
third case they are closed. In the fourth case the phase curves wind toward a
stable cycle from both within and without.
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Accordingly in the first case an equilibrium in the population of the pond
becomes established as time passes and the oscillations die out. In the second
case the equilibrium is unstable, and the oscillations increase. In this case
there will come a time when the number of carp (or pike) is less than 1; before
that time our model will become inapplicable, and the population of the pond
will become eztinct.

In the third case periodic oscillations about the equilibrium state will be
observed in the numbers of carp and pike; the amplitude of the oscillations is
determined by the initial conditions.

In the fourth case periodic oscillations in the numbers of carp and pike
are also observed, but the amplitude of the steady oscillations is independent
of the initial conditions: any phase spiral winds toward a limit cycle. In this
case it is said that self-sustaining oscillations are established in the system.

Which of these cases holds for the Lotka-Volterra system? We cannot yet
answer this question (for the solution see § 2).

13. Example: A Free Particle on a Line

According to Newton’s First Law the acceleration of a material point not
subject to any external force is zero: Z = 0. If the point z belongs to R, we
speak of a free particle on the line (one may imagine a bead on a wire).

The phase space has dimension 2 since the whole motion is determined by
the initial position and the initial velocity. On the phase space with coordinates
z1 = x and 9 = & a phase velocity vector field arises:

Ty =1y, I3=0,

and consequently the components of the field are equal to (z2,0) (Fig. 20).

2
O oo
Ol O O »»»‘z',
-0 - O - €O

Fig. 20. The phase velocity field of a free particle

All the points of the zj-axis are equilibrium positions. This kind of equi-
librium is called neutral equilibrium in physics and unsteble equilibrium in
mathematics (a suitable arbitrarily small change in the initial phase point
causes a change in the position that is not small after a sufficiently long time).

The phase curves are the horizontal lines z, = const and all the points of
the x,-axis.

Problem 1. Find the solution with initial condition (a,b) for to = 0.

Solution . ¢1(t) = a + bt, po(t) = b.
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Fig. 21. The phase velocity field for a Fig.22. The phase velocity field for
falling particle small oscillations

14. Example: Free Fall

According to Galileo the acceleration g of bodies falling near the surface of
the earth is constant. If z is the height, then # = —g. Introducing coordinates
on the phase plane, as in the preceding example, we obtain the system

Ty =Ty, To=-—g.
The vector field defined by the right-hand side is depicted in Fig. 21.

Problem 1. Prove that the phase curves are parabolas.

15. Example: Small Oscillations

In many cases the force that restores a system to its equilibrium position is
more or less proportional to the displacement from the equilibrium position
(Hooke’s law, and the like; the essence of the matter is that the force is zero
in the equilibrium position, and every function is linear on the infinitesimal
level). We thus arrive at the equation of small oscillations:

T =—kzx.

The coefficient & > 0 can be made equal to 1 by a choice of time scale. The
equation then assumes the form

T = —x.

Introducing the coordinates z; = z and z, = & on the phase plane as
before, we rewrite this equation as the system

Ty = T2, X9 = —I].

The right-hand sides of these equations define a vector field on the phase
plane. This field is depicted in Fig. 22.

Problem 1. Prove that the phase curves are a set of concentric circles and their
common center.
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Solution. The phase velocity vector is perpendicular to the radius-vector.

Problem 2. Prove that the phase point moves along a circle with constant angular
velocity equal to 1.

Solution. The length of the phase velocity vector equals the length of the radius
vector.

Problem 3. Find the solution with the initial condition 2(0) = a, 2(0) = b.

Solution. According to the two preceding problems the vector of the initial condi-
tion must be rotated by an angle t. We obtain

21(t) = acost + bsint, x2(t) = —asint + bcost.

Remark. Thus we have proved that z executes harmonic oscillations and we have
proved the “law of conservation of energy”: the quantity =3/2 4 x3/2 is constant
along a phase curve.

Problem 4. Prove the law of conservation of energy 23/2 + kz} /2 for the system
i?] = T2, (iz = --k'z'l.

Remark. The quantity x2/2 is called the kinetic energy, and kz?/2 is called the
potential energy.

Problem 5. Prove that the integral curves of the system (with k = 1) are helices.

16. Example: The Mathematical Pendulum

Consider a weightless rod of length [ attached at one end and bearing a point
mass m at the other end. We denote by 6 the angle by which this pendulum
deviates from the vertical. According to the laws of mechanics, the angular
acceleration @ of the pendulum is proportional to the torque of the weight
(Fig. 23):

I6 = —mglsiné,

where I = mi? is the moment of inertia (the sign is negative because the
torque tends to decrease the deviation).

Thus the equation of the pendulum has the form 6 = —ksind, k = g/l.
The coefficient k can be made equal to 1 by a choice of the time scale. The
equation then assumes the form § = —sin 4.

The phase space has dimension 2. The coordinates can be taken as the
displacement angle z; = 6 and the angular velocity z3 = 6. The equation
assumes the form of the system

Iy = Ty, IT9= —sinz,.



34 Chapter 1. Basic Concepts

A2
- S
- N V4
L \:\ /:' et R NN
g \\/’ ,'0’1“‘:‘ \/’/
1 NN LR VAN
P Ald NN -~ -’ - ~ A7
N - e N
N -
" o <>g=77 °
mg
Fig. 23. The mathematical pendulum Fig. 24. The phase velocity field of the
pendulum

The right-hand side defines a phase velocity vector fleld. It is depicted in
Fig. 24.

Problem 1. Prove that the origin (z1 = z2 = 0) and the point (z1 = 7, z2 = 0)
are phase curves.

We shall make a detailed study of the form of the other phase curves below
(§ 12).

Remark. For infinitesimal angles of deviation sin 6 is equivalent to the angle
6. Replacing sin 6 by the approximate value 6, we reduce the equation of the
pendulum to the equation of small oscillations (Sect. 15). The question as to
the extent to which conclusions drawn from the study of this very simple equa-
tion carry over to the full pendulum equation requires a special investigation,
which we shall carry out below (§ 12).

17. Example: The Inverted Pendulum

Consider the behavior of a pendulum turned upside down. In this case the
angle 6 is close to 7, and so it is natural to introduce the angle of deviation from
the upper position » = § — 7. Then % = sin 1, and for small ¢ approximately

b = .

This equation is called the equation of “small oscillations” of the inverted
pendulum. The phase space is two-dimensional. For coordinates we shall take
zy = ¢ and z, = 1. We then obtain the system

Ty =22, T2 =27

The phase velocity vector field is depicted in Fig. 25. We shall study its phase
curves in detail in § 2.

18. Example: Small Oscillations of a Spherical Pendulum

The deviation from the vertical is characterized by two numbers z and y.
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It is known from mechanics that the equations of small oscillations have
the form
I=-z ) y =Y.

The phase space is 4-dimensional. As coordinates in the phase space we take
Ty =1z,Ty =1, 23 =Yy, 4 = y. The equations can be written in the form

Ty = T2, T2 = —I3, (kg—-—-x‘;, Try = —T3.

Line

[
Fig. 25. The phase velocity field of the Fig. 26. The phase curves of the spher-
inverted pendulum ical pendulum on a hypersurface of

constant energy

The right-hand sides define a vector field on R4.

Problem 1. Prove that the phase curves of this field lie on the three-dimensional
spheres 2% 4 -+ 4 22 = const.

Problem 2. Prove that the phase curves are great circles of these spheres.
However, not every great circle of a sphere is a phase curve.

Problem 3. * Prove that the set of all phase curves on each three-dimensional
sphere itself forms a two-dimensional sphere.

A three-dimensional sphere §° can be thought of as the three-dimensional space
R? completed by one “point at infinity.” Consequently a partition of $® into circles
determines a partition of R® into circles and one nonclosed circle (“with both ends
going off to infinity”). This partition is depicted in Fig. 26.

Problem 4. * Verify that any two of the circles of this partition are linked with
a linking number equal to 1 (the linking number tells how many times one of the
curves crosses a film stretched over the other, points of intersection being counted
positive or negative depending on the direction of crossing.).
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§ 2. Vector Fields on the Line

In this section we study a differential equation defined by a vector field on the
line and equations with separable variables that reduce to such an equation.

1. Existence and Uniqueness of Solutions

Let v be a smooth (continuously differentiable) function defined on an interval
U of the real axis.

Theorem. The solution ¢ of the equation & = v(z) with initial condition
(to, o)

1) ezists for allto € R and g € U;

2) is unique in the sense that any two solutions with the same initial
condition coincide in some neighborhood of the point ty;

3) is given by Barrow’s formula:

o) g
t—t0=Lo Fg), 1fv(:c0)#0,

o(t) = zg, if v(zg)=0.

Proof. Suppose z¢ is not an equilibrium position. We have seen in § 1 that:
1) the solution is given by Barrow’s formula in a neighborhood of the point
to and 2) the function ¢ defined by this formula is a solution and satisfies the
initial condition.

In the case when z; is an equilibrium position the function ¢(t) = ¢ is
also a solution, and the theorem is proved. O

Problem 1. Find the gap in this proof.

2. A Counterexample

Let v = 22/3 (see Fig. 27). The two solutions ¢, = 0 and ¢, = (¢/3)* satlsfy
the same initial condition (0,0), contrary to the assertion of uniqueness.

To be sure, the function v is not differentiable, so that this example does
not refute the assertion of the theorem. However, the proof given made no use
of the smoothness of v: it goes through even in the case when the function v is
merely continuous. Consequently this proof cannot be correct. And indeed, the
assertion of uniqueness was proved only under the assumption v(z¢) # 0. We
see that if the field v is merely continuous (and not differentiable), the solution
with initial condition in the equilibrium position may fail to be unique. It turns
out that the smoothness of v guarantees the uniqueness in this case (cf. Sect.

3 below).
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This example can also be described as follows: under a motion with velocity
v(z) = 22/3 the equilibrium point (z = 0) can be reached from another point
in a finite time.

In § 1 we have studied the motion in a linear field (with velocity v(z) = kz).
In this case it required an infinite time to reach the equilibrium position
(for example, if v(z) = —=z, then the phase point approaches equilibrium
so slowly that at every instant it would require one more unit of time to reach
equilibrium if its velocity were constant from that instant on).

The reason for nonuniqueness in the case v(z) = z2/3 is that the velocity
decreases too slowly when approaching the equilibrium position. As a result
the solution manages to reach the singular point in a finite time.
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Fig. 27. An example of nonuniqueness

3. Proof of Uniqueness

Let us assume that ¢ is a solution of the equation z = v(z) with a smooth
right-hand side v. We shall suppose that ¢(t5) = ¢ is an equilibrium position
and ¢(t;) = z; is not (Fig. 28). On the interval between ¢, and ¢; consider
the instant ¢, closest to t; at which v(p(t2)) = 0. By Barrow’s formula for
any point t3 between t; and ¢; we have

3 ]
t3 ——tl = /;l 1—)(%, T3 = Lp(t;;).

If the function v is smooth, then the integral tends to infinity as z3 tends to
z4. Indeed, the slope of the chord of the graph of a smooth function on an
interval is bounded (Fig. 29), so that |v(£)| < k|¢ — z3|, where the constant
k is independent of the point € of the interval [z1, z2] (the condition that the
slope of the chord of the graph be bounded is called a Lipschitz condition and
the constant k a Lipschitz constant). Thus

z3 de
/xl k(€ — z2) !

The latter integral is easily calculated; it tends to infinity as z3 tends to z,.
It is easy to verify this without even calculating the integral: it must be equal

[ts —t1| >
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Fig. 28. Proof of uniqueness Fig. 29. The Lipschitz condition

to the time of transit between the two points in the linear field, and this time
tends to infinity when one of the points tends to the equilibrium position.

Thus the number [ty — ¢1] is larger than any preassigned number. But
there are no numbers larger than any other. Consequently the solution with
initial condition in an equilibrium position cannot assume values that are not
equilibrium positions. Therefore if ¢(tg) is an equilibrium position, we have
v(p(t)) = 0 for all t. Consequently ¢ = 0, i.e., ¢ is a constant. The uniqueness
is now proved.

We now remark that the main point in the proof was the comparison of a
motion in a smooth field with a more rapid motion in a suitable linear field.
For the latter motion the time to enter an equilibrium position is infinite, and
consequently it is a fortior: infinite for the slower motion in the original field.

Problem 1. Can the integral curves of a smooth equation = v(z) approach each
other faster than exponentially as ¢t — co?

Answer. If one of them corresponds to an equilibrium position, no; otherwise, yes.

Problem 2. Does the uniqueness theorem hold in the case when the derivative of
the function v exists but is discontinuous?

Answer. Yes.

Problem 3. Show that a sufficient condition for uniqueness of the solution with

x
.. . . d .
initial value x¢ is that the integral / ——6— diverge at xo.

2 (&)

Problem 4. Show that a sufficient condition for uniqueness is that the function v
satisfy a Lipschitz condition |u(z) — v(y)| < k|z — y| for all z and y.

Problem 5. Prove that the solution of the equation # = v(t, z) with initial condition
¢(to) = zo is unique, where v is a smooth function.

Hint: Reduce the equation to an equation with right-hand side zero by the change
of variable z — = — ¢(t), and then compare the direction field with a suitable linear
field. This comparison proves the uniqueness in a phase space of any dimension.

Problem 6. Prove that the phase curves of the predator-prey system (§ 1, Sect.
12) do not intersect the coordinate axes (for example, what was originally a positive
number of carp cannot become negative at a later time).
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Problem 7. Prove that every two solutions of the equation z = v(z) with smooth v
satisfying the same initial condition coincide everywhere that they are both defined.

4. Direct Products
Consider two differential equations:

&y =vi(z1), 1 € Up; 1)
&g = vo(z2), 22 € Us. (2)

The direct product of these equations is the system

{il = vy(a1), )

.’i‘2 = 't)2($2),

whose phase space is the direct product U of the phase spaces of Egs. (1) and
(2). The following result is an immediate consequence of the definition.

Theorem. The solution ¢ of the differential equation (3), which is the direct
product of Egs. (1) and (2) is a mapping ¢ : I — U of the form (t) =
(¢1(t), p2(t)), where ©1 and @, are the solutions of Eqs. (1) and (2), defined
on the same interval.

In particular, suppose the phase spaces U; and U, are one-dimensional.
Then we know how to solve each of Egs. (1) and (2). Consequently we can
also solve the system (3) of two equations explicitly.

To be specific, by the theorem of Sect. 5 of § 1 the solution ¢ with the condition
(to) = zo can be found in a neighborhood of the point t = #; from the relations

e1(t) d€ w2(t) d{
/;1,0 ;—1—@ stohe= /1‘2,0 ’U2(€) (wo - (rl’o’w2’0))'

if vi(z1,0) # 0 # va(z2,0).

If v1(z1,0) = 0, then the first relation is replaced by ¢1 = x1,0 and if v3(x2,0) = 0,
then the second is replaced by @2 = z2,0. Finally, if vi(z1,0) = v2(z2,0) = 0, then
zo is a singular point of the vector field v and an equilibrium position of the system

(3): o(t) = zo.

5. Examples of Direct Products

Consider the system of two equations

i‘l = Ty, i‘2=k$2.

Problem 1. Sketch the corresponding vector fields in the plane for £ = 0,41,1/2,2.
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We have already solved each of these equations separately. Thus the solu-
tion ¢ with initial condition ¢(to) = x¢ has the form

o1 = 21,0170y = g4 gekliT10), (4)

Consequently along each phase curve x = ¢(t) we have either

|z2] = Cla1*, (3)
where C is a constant independent of t, or z; = 0.
Problem 2. Is the curve in the phase plane (z1,z2) given by Eq. (5) a phase curve?

Answer. No.

X

7N R

Fig. 30. Nodes: The phase curves of the systems &1 = z1, 2 = kaa, for k > 1,
k=1,and 0 <k <1

The family of curves (5), where C' € R, has various forms depending on
the value of the parameter k. If k& > 0 this is a family of “parabolas® with
exponent k.” Such parabolas are tangent to the zj-axis if k¥ > 1 or to the
zo-axis if k < 1. (Fig. 30; for k = 1 a family of lines passing through the origin
is obtained). The distribution of phase curves depicted in Fig. 30 is called a
node. For k < 0 the curves (5) have the form of hyperbolas (Fig. 31)7 and
in a neighborhood of the origin they form a saddle. For k = 0 the curves (5)
become straight lines (Fig. 32).
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Fig.31. A saddle; the phase curves of Fig.32. The phase curves of the sys-
the system @7 = x1, 22 = k22, £ <0 tem &1 =1, 22 =0

It can be seen from Eq. (4) that each phase curve lies entirely in one
quadrant (or on a coordinate semiaxis or coincides with the origin, which is

¢ True parabolas are obtained only for k = 2 and k = 1/2.
" True hyperbolas are obtained only for k = —1.
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a phase curve for all k). The arrows in the figures indicate the direction of
motion of the point ¢(t) as t increases.

Problem 3. Prove that each of the parabolas z; = z? (k = 2) consists of three
phase curves. Describe all the phase curves for other values of k (k > 1, k = 1,
0<k<1l,k=0,k<0).

It is interesting to trace the transition from one figure to another as k varies
continuously.

Problem 4. Describe the node corresponding to k& = 0.01 and the saddle corre-
sponding to k = —0.01.

Problem 5. Solve the equation for the inverted pendulum #; = z3, 22 = z; and
sketch the phase curves.

Solution. In the phase plane we introduce new coordinates: X = x1 + 22, ¥ =
21 — z2. The system breaks up into a direct product: X = X,Y = -Y. In the
(X,Y)-plane the phase curves form a saddle, as in Fig. 31. Consequently we also
obtain a saddle in the (z1,z2)-plane (Fig. 33). Hence, in particular, it follows that
for @ given displacement of the pendulum from the vertical there exists one and only
one initial velocity under which the pendulum approaches asymptotically the upper
equilibrium position as t — +oo (the corresponding phase curve is a straight ray
that reaches 0). With a smaller or larger initial velocity the pendulum falls, either
without reaching the upper equilibrium position or having passed through it (the
corresponding phase curves are halves of hyperbolas).

The solutions have the form X = Xoe', Y = Yoe ™!, whence z; = Ae' + Be™* =
acosht + bsinht, z» = Ae' — Be™* = asinht + bcosht.

%
1
Fig. 33. The phase curves of the inverted pendulum

6. Equations with Separable Variables

Definition. An equation with separable variables is an equation

dy _ fy)
iz = ga)’ ©)

We shall assume that f and g are smooth functions that do not vanish in
the region under consideration.
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Along with this equation we consider the system
=g(z), y=f(y) (7

. Theorem. The phase curves of the system (7) are integral curves of Eq. (6);
and, conversely, the integral curves of Eq. (6) are phase curves of the system

(7).

Proof. The slope of the phase velocity vector is f(y)/g(z). Hence a phase curve
of the system is tangent to the direction field of the equation at each of its
points.

Conversely suppose an integral curve of Eq. (6) is given. Then the pa-
rameter ¢ on the curve can be chosen so that the parametric equation of
the curve is ¢ = (1), y = ¥(t), and the function ¢ is a solution of the
equation & = g(x) (this is where the condition g # 0 is used). The sec-
ond coordinate ¢ of the point with parameter ¢ then satisfies the relation
(dyp/dt)/(de/dt) = F((t))/g(@(?)), i-e., is a solution of the equation § = f(y).

Consequently our curve is a phase curve of the system. O

Theorem. The solution of Eq. (6) with initial condition (zg,yo) ezists, is
unique,® and is given by the formula

fowe =, 7ay

Proof. This follows from the preceding theorem and the formulas for the so-
lution of the equations ¢ = g(z) and y = f(y) with intial conditions (tg, z¢)
and (tg, yo) respectively. O

Remark. A “mnemonic” rule for solving an equation with separable variables
is to regard both the left- and right-hand sides as fractions and transpose “all
the = terms to one side and all the y terms to the other side”:

dx _ dy
@ ) ®

When this has been done, “equating the integrals” gives the desired rela-

d
tion between z and y in the form of the equality / 2 / —dL + C for
9(z) f(y)

the primitives or in the form shown in the theorem for the definite integrals.

Of course this “mnemonic” rule, properly understood, is a completely rigorous
deduction of the formulas for the solution. Indeed relation (8) expresses the equality
of values of two differential forms at any vector tangent to an integral curve of Eq.
(6) (and conversely a curve all of whose tangent vectors satisfy relation (8) is an
integral curve for Eq. (6)).

8 In the sense that any two such solutions coincide wherever both are defined.
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The integrals of the forms on the left- and right-hand sides of Eq. (8) over the
same segment of an integral curve of Eq. (6) are equal (since only the values of the
form at the vectors tangent to a curve occur in the definition of the integral over a
curve, and on these vectors the values of the two forms coincide). Finally the integral
of the form dz/g(z) along a segment of the curve equals the ordinary integral of the
function 1/g along the projection of this curve on the z-axis, and similarly for the
form dy/f(y).

Formula (8) is sometimes called the symmetric form for writing Eq. (6).

Problem 1. Sketch the integral curves of the equations dy/de = y/z, dy/dz = z/y,
dy/dz = —y/z, and dy/dz = —z/y.

Problem 2. Sketch the integral curves of the equations dy/dz = kx*y?, dy/dz =
siny/ sinz, and dy/dz = sinz/sin y.

Problem 3. Sketch the phase curves of the pendulum equation z = y, § = —sin z.

Hint: Consider the variables-separable equation dy/dz = —(sinz)/y.

7. An Example: The Lotka-Volterra Model

In Sect. 12 of § 1 we studied the simplest model for the interaction of y
predators (pike) and z prey (carp):

& =kz —azy, y=-ly+ bzy. (9)

But we were not able to sketch the phase curves.

Theorem. The phase curves of the system (9) are closed (Fig. 34).

P 9 p+q i
N/
N
ya
Y
Yo Z
Zz Ty T Yo Y Z, 2
Ly
Fig. 34. The phase curves of the Lotka- Fig.35. The structure of the phase
Volterra model curves of the Lotka-Volterra model

Proof. The phase curves of the system (9) coincide with the integral curves of

d b — 1
the variables-separable equation Y y_(x_) or with the phase curves of
dz  z(k — ay)
the product-equation :
dz z dy gy

dr  bz—1 dr k-—ay

(in the region where z, y, bz — [, and k — ay are nonzero).
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k—aydy= be —1

Consequently / dz + C or p(z) + ¢q(y) = C, where

p=bz—llnz, g = ay — klny. The graphs of the functions p and ¢ are convex
upward. Therefore the graph of the function p+ ¢ is also convex upward (Fig.
35). Consequently the level lines of the function p + ¢ are closed curves. It is
easy to verify that the phase curves of Eq. (9) are not only among the level
lines of p + g but actually coincide with them; the theorem is now proved. O

It follows from the fact that the phase curves are closed that the number
of carp and pike in the Lotka-Volterra model vary periodically with time. The
period of oscillation depends on the initial condition.

Problem 1. Prove that the period of oscillation in the Lotka-Volterra model (9)
tends to infinity as the initial condition tends to the point (0,0).

Remark. Mathematical approach to infinity must be distinguished from physical
approach to infinity. For example as ¢ — 0 the function 1/¢ does indeed tend to
infinity (for example for ¢ = 107% the quantity 1/¢ is indeed large). At the same
time |Ing| virtually remains bounded as ¢ — 0 (for example when ¢ = 107° this
quantity is of the order of 10). In practice logarithms in asymptotic relations can
often be treated as constants.

Problem 2. How does the period of oscillation in the Lotka-Volterra model (9) tend
to infinity when the initial condition has the form (zo,¢) and ¢ — 0?

Answer. Logarithmically.

Consider certain deductions from our computations.

For the Lotka-Volterra system (9).

1) There exists an equilibrium position (zg,yo) (which is unique for x > 0,
y > 0).

2) The numbers of carp and pike vary periodically with time under
nonequilibrium initial conditions.

3) The phase curves of the system (9) are closed.

We remark that our model can hardly claim to be a precise description
of reality, even within the framework of the two-dimensional phase space. For
example, the rate of reproduction of carp must decrease when their numbers
are large, even in the absence of pike; otherwise the pond wouldn’t be large
enough for the carp, etc. We may think, therefore that a more precise model
has the form

{x:m(k—ay+gf(x,y)), (9 )
v =y(-l+bz +eg(z,y)), )

where zef and yeg are small corrections to our model that were neglected in
the idealization (the correction to & is divisible by z since the rate of repro-
duction of carp is 0 when their number is 0; for the same reason the correction
to y is divisible by y). We shall assume that f and g are smooth functions
(strictly speaking, here and below we are considering a bounded portion of
the phase plane since there are no grounds for believing the corrections are
small for very large values of the coordinates).
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We shall call a property of the model (9) a robust property if it (or a
closely similar property) also holds for every system (9.) for sufficiently small
€.

Let us consider the deductions 1)-3) from this point of view.

Theorem. The system (9.) has an equlibrium position z(¢), y(e) depending
smoothly on small ¢ and such that 2(0) = zq, y(0) = yo t$ an equilibrium
position of the system (9).

Proof. By the implicit function theorem the system of equations

F($7y76)=0a G(z,y,e)=0

in z and y has a solution (z(¢),y(e)) that becomes (zg,yo) for ¢ = 0 if the
Jacobian J = D(F,G)/D(z,y)|(z0,y,,0)iS nonzero.

Inourcase F =k —ay+ef, G=—l+bx+eg, so that J =

. 0
b
which was to be proved. O

Hence the conclusion 1) is robust: the equilibrium position exists not only
for the system (9) but for any nearby system (9. ).

In contrast, conclusions 2) and 3) are nonrobust. Indeed, the return func-
tion for the system (9) has the form ¢#(A) = A. For the nearby system (9.)
the graph of the return function is near the diagonal, but does not necessarily
coincide with it. Depending on the form of the perturbations of f and g the
Lamerey diagram may be located above or below the diagonal or intersect it
in one or more points corresponding to stable or unstable cycles.

Consequently the conclusions that the phase curves are closed and that the
numbers of pike and carp vary periodically with an amplitude depending on the
initial conditions are not robust. Although for the nearby system (9.) every
coil of a phase curve is also near a closed cycle, it does not close precisely, and
after a long time (of the order of 1/¢) a self-oscillatory mode establishes itself
(the phase curve winds onto a limit cycle).

The property of having a limit cycle is stable with respect to small perturbations
of the system of equations. More precisely, assume that a cycle corresponds to a fixed
point A = $(A) of the return function ¢ and that #'(4) # 1. In such a situation
the cycle is called nondegenerate.

If a system defined by a vector fleld vy has a nondegenerate limit cycle passing
through Aq, then every nearby system (defined by the field v. for small ¢) has a
nearby cycle (passing through a point Ay near Ap).

To prove this it is necessaly to apply the 1mphc1t function theorem to the equa-
tion $(A4,e) = A, A(0) =

Consequently the conclusw’n that the system has self-oscillations described by a
nondegenerate limit cycle is robust: in every nearby system there are nearby self-
oscillations. ;

We remark that the degenerate limit cycles can disappear under a small defor-
mation of the system. Nevertheless they occur in a way that cannot be removed by
a small deformation in the case when a family of systems depending on a parame-
ter, rather than an individual system, is considered. In this case distinct cycles may
coalesce for particular values of the parameter, and a similar coalescence may take
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place for some nearby value of the parameter in any nearby family. At the instant
when two nondegenerate cycles coalesce a degenerate cycle appears. In this situa-
tion, in general, one of the two coalescing cycles is stable and the other unstable. The
degenerate cycles that arise when two nondegenerate cycles coalesce are of interest
because they always occur on the boundary of the region in which the oscillatory
mode exists in the parameter space.

For example, Fig. 36 depicts the Lamerey diagrams for three very near values of
the parameter (curves 1, 2, and 3). Diagram 1 intersects the bisector in two points: in
this case the system has two limit cycles, the stable cycle being inside the unstable
cycle (Fig. 37). The equilibrium position is unstable; the whole region inside the
unstable cycle is a region of attraction (“sink”) of the stable cycle. When the initial
conditions are in this region (except for the equilibrium position) self-oscillations are
set up in the system depicted by the stable cycle.

Curve 2 corresponds to a critical value of the parameter: a stable cycle coalesces
with an unstable cycle and becomes degenerate. The phase curves that originate
in the region bounded by the cycle tend to the cycle as time passes. However the
oscillatory mode that is thereby set up is unstable: an arbitrarily small random
deviation can throw the phase point outside the cycle.

Fig. 36. Metamorphosis of Lamerey diagrams

When the parameter is changed even more (curve 3) the cycle disappears en-
tirely. Thus the coalescence of cycles leads to a spasm in the behavior of the system:
the stable self-oscillatory mode with a finite region of attraction suddenly disappears.
Motions whose initial conditions lie in the sink of a disappearing cycle move to other
regions of the phase space (Fig. 37) after the disappearance. In our example, after
the parameter has passed through a critical value in the populations of predators
and prey, an arbitrarily small deviation of the initial conditions from equilibrium
leads to unbounded increase in the oscillations, and consequently to extinction.

The metamorphosis of the qualitative picture of the motion as the parameter
varies is studied by bifurcation theory (bifurcation = branching), and the application
of bifurcation theory to the study of spasmodic reactions of mechanical, physical,
chemical, biological, economic, and other systems to smooth variation of the external
conditions has lately come to be known as catastrophe theory.

It can be seen from Fig. 36 that when the value of the parameter differs from
the critical value by a small amount A, the distance between the stable and un-
stable cycles is of order v/A. Consequently the rate of approach of the cycles as
the parameter varies grows rapidly as the parameter approaches a critical value. At
the instant of a catastrophe both cycles are moving toward each other with infinite
velocity. This explains why it is so difficult to avert the impending catastrophe of
loss of stability of a system by the time signs of it have become noticeable.

Problem 3. Study the bifurcation of cycles when the parameter ¢ varies in the
system given in polar coordinates by the equations

F=cr—r4+7°, $=1.
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©, @ |
Coil El],

Fig. 37. Metamorphosis of the phase portrait and the behavior of the solutions

Solution. For ¢ = 0 a stable cycle whose radius is of the order /¢ is generated
from the equilibrium position » = 0. It disappears for ¢ = 1/4, coalescing with an
unstable cycle.

Remark. It can be shown that the birth or death of a cycle at an equilibrium position,
like the birth or death of a pair of cycles, is a generic phenomenon encountered in the
variation of the parameter in general one-parameter families of differential equations.

The stable limit cycles describe stationary periodic oscillations of a system under
stationary external conditions. The oscillations describable by stable cycles are called
self-oscillations, in contrast to the forced oscillations caused by periodic external
action and oscillations of the same type as the free oscillations of a pendulum. The
occurrence of self-oscillations is quite marvelous in itself, but they are encountered,
for example, in such systems as a clock, a steam engine, an electric bell, the heart,
a radio transmitter, and Cepheid variable stars. The functioning of each of these
mechanisms is described by a limit cycle in a suitable phase space.

It should not be thought, however, that all oscillatory processes are described by
limit cycles: in multidimensional phase space much more complicated behavior of the
phase curves is possible. Examples are furnished by the precession of a gyroscope,
the motion of planets and their satellites and their revolution about their axes (the
aperiodicity of these motions is responsible for the complexity of the calendar and
the difficulty of predicting the tides), and the motion of charged particles in magnetic
fields (which causes the aurora). We shall study the simplest motions of this type in
§ 24 and Sect. 6 of § 25. In systems with a multidimensional phase space the phase
curves can even approach a set on which all nearby trajectories diverge rapidly from
one another (Fig. 38). Such attracting sets have lately come to be known as strange
attractors: they are connected with phenomena of same type as turbulence and are
responsible, for example, for the impossibility of long-range weather forecasting.
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Fig. 38. An attractor with scattering of its phase curves

§ 3. Linear Equations

Linear equations describe the influence that small variations in the initial con-
ditions or in the right-hand sides of arbitrary equations exert on the solutions.
In this section linear homogeneous and inhomogeneous equations with one de-
pendent variable are solved explicitly and studied: the monodromy operator,
the §-function, the Green'’s function, and forced oscillations appear.

1. Homogeneous Linear Equations

Definition. A first-order homogeneous linear equation is an equation

dy
= = 1
- = f(@)y, (1)
whose right-hand side is a (homogeneous) linear function of the one-dimen-
sional dependent variable y.

This is a special case of an equation with separable variables. Solving it
according to the general rule, we find dy/y = f(z)dz, In(y/yo) = f;o f(¢)de.
A consequence of this is the following result.

Theorem. Every solution of Eq. (1) can be extended to the entire interval on
which the function f is defined; the solution with initial condition (zo,yo) 48

. ° d
given by the formula y = yoeffo fode

Remark 1. Let y = ¢(z) be a solution of Eq. (1). Then for any constant ¢ the
function y = cp(z) is also a solution. The sum of two solutions (defined on
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the entire interval of definition of f) of Eq. (1) is also a solution. Therefore
all such solutions of the homogeneous linear equation (1) form a vector space.
The dimension of this vector space is 1 (why?).

Remark 2. Dilating the extended phase space (z,y) along the y-axis maps the
direction field of the homogeneous linear equation (1) into itself. Therefore the
integral curves map into one another under the action of dilations along the
y-azis. They can all be obtained from any one of them by dilations (Fig. 39).

Linear equations occupy a special place in the theory of differential equa-
tions because, by one of the basic principles of analysis, every smooth function
is well approximated in a neighborhood of each point by a linear function. The
operation of linearization that thereby arises leads to linear equations as a first
approximation in the study of an arbitrary equation near any solution.

z
4
X
T
Fig. 39. The integral curves of a linear Fig.40. A coordinate system near a
equation cycle

Consider, for example, an autonomous system with a two-dimensional phase
plane (z,y) having a limit cycle (Fig. 40). Introduce coordinates (X mod 7, Y) in
a neighborhood of this cycle in such a way that the equation of the cycle assumes
the form Y = 0, and a traversal of the cycle in the direction of the phase velocity
corresponds to increasing X by T. Then under the mapping (z,y) — (X,Y) the
phase curves of the initial system transform into integral curves of an equation of
the form

-Z—; =a(X,Y), where a(X,0)=0, a(X+7T,Y)=a(X,Y). (2)
Linearization of this equation on Y at the point Y = 0 leads to a linear equation
dy
%= F(X)Y, where f(X) = 3a/0Y |y=o.

We remark that the function f has period T'.
We thus arrive at the problem of investigating a linear equation with a periodic
coeflicient f.

2. First-order Homogeneous Linear Equations with Periodic
Coefficients

Definition. A first-order homogeneous linear equation with T-periodic coeffi-
cient is an equation
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dY

T = f(X)Y, where (X +T) = f(X). (3)

The solutions of Eq. (3) determine a linear mapping of the Y -axis into
itself, assigning to the value ¢(0) at X = 0 the value ¢(T') of the same solution
for X = T > 0. This mapping A : R — R is called a monodromy (Fig. 41).
(We plan to use a similar operator in the multidimensional case.)

T 27 Jr

Fig.41. A monodromy operator

Theorem. The monodromy operator A : R — R of the linear equation (3)
18 linear and is the operator of multiplication by a positive number . If this
number A (called the multiplier) is greater than 1, all the nonzero solutions
tend to infinity as x — +oo; if A < 1, they tend to 0; if A = 1, all solutions
are bounded.

Proof. The linearity of A follows from the fact that dilations along the Y-axis
map integral curves into integral curves and that A > 0, i.e., the X-axis is an
integral curve. Translation by T along the X-axis also takes integral curves
into integral curves (because of the periodicity of f). It follows from this that
the values of the solution with initial condition ¢(0) = Y are equal to \Y,
MY, XY ,... for X = T, 2T, 3T,...; therefore o(NT) — o0 as N — +o0
if A >1and o(NT) — 0 as N — +oo if A < 1. Moreover translating the
extended phase space by NT along the X-axis, we find

e(NT + §) = A"¢(S),
from which all the assertions being proved follow (why?). O

Remark. A formula for the multiplier follows from the theorem of Sect. 1:

T
InA = /0 £(6) de.

Thus the multiplier is greater or less than one according as the average
value of the function f is positive or negative.

In the first case the zero solution of the linear equation (3) is unstable, and
in the second case it is stable (moreover solutions with initial conditions near
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Fig. 42. Stability of the zero solution

zero tend to 0); in the case A = 1 the solutions with nonzero initial conditions
are periodic (Fig. 42).
A natural question arises: what relation does our theorem on the solutions of the

linearized equation (3) have to the original problem on the behavior of the solutions
of the nonlinear equation (2), i.e., to the problem of phase curves near a cycle?

Problem 1. Prove that if A > 1, then the cycle is unstable and the phase curves
originating near a cycle are unwinding spirals diverging from the cycle; if A < 1,
then the cycle is stable and the phase curves originating in a neighborhood of it are
spirals winding onto the cycle.

In other words in the cases when the multiplier is different from 1 linearization
leads to a correct judgment about the stability of the cycle. On the other hand if
A = 1, then, even though the solutions of Eq. (3) are periodic, it would be incorrect
to extend this inference from the linearized equation (3) to the original equation (2),
for which the solutions near Y = 0 are, in general, not periodic, and no judgment
about the stability of the cycle can be made from the linearized equation.

Hint: Consider the return function @ defined by the solutions ¢ of Eq. (2) and
assigning to the initial condition Y = ¢(0) for X = 0 the value #(Y) = ¢(T). Prove
that the linearization of @ at the point Y = 0 is a monodromy operator.

Problem 2. Study the stability of the limit cycle » = 1 for the system given in
polar coordinates by the equations

F=(r'=1)(2c-1), $=1 (wherez =rcosy).

3. Inhomogeneous Linear Equations

Definition. A first-order inhomogeneous linear equation is an equation

W — faw + o) )

The term solution is taken to mean a solution defined on the entire interval
of definition of the functions f and g.

Theorem. If one particular solution of an inhomogeneous equation y = ¢;(x)
is known, all other solutions have the form y = ¢1(z) + o), where g is a
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solution of the homogeneous equation (1); every function of this type satisfies
the inhomogeneous equation (4).

Proof. Let A : Ly — Ly be a linear operator (Fig. 43). The solutions ¢g of a
homogeneous equation Apg = 0 form a vector space Ker A C L;. The image
ImA = AL, forms a subspace of Ly. If ¢ € Im A, then the solutions of the
inhomogeneous equation Ay = g form an affine subspace ¢; + Ker A parallel
to Ker A. In our case Ap = dp/dz — fp. This is a linear operator®, so that the
assertion of our theorem follows from the algebraic theorem on the solution
of an inhomogeneous linear equation. ]

KerA g, +KerA

P1 4 2
0 — f———
ImA g
Ly Ly

Fig. 43. The solution space of an inhomogeneous linear equation

To find a particular solution one may use the method of “variation of
parameters.”

The method of variation of parameters is often used in studying the in-
fluence of all possible perturbations. Consider, for example, the motion of the
planets about the Sun. In first approximation, not taking account of the at-
traction of the planets on one another, we arrive at the independent motion of
planets in Keplerian ellipses. This is the solution of the unperturbed equations
of motion.

To take account of the perturbing influence of the planets on one another
we may proceed as follows: assume that the planets make a Keplerian motion,
but the parameters of the Keplerian ellipse vary slightly with time.!® Thus
quantities that had been constant in the unperturbed motion are now regarded
as functions of time.

The differential equations describing the variation of these parameters are
sometimes simpler to solve or study than the original equations. In particular,
in the application to inhomogeneous linear equations, where the role of the
unperturbed problem is played by the homogeneous equation and the role
of the perturbation is played by the inhomogeneity, the method of variation
of parameters leads to an explicit formula for the solution. In this case the
perturbation is not required to be small.

We already know that every solution of the homogeneous equation (1) has
the form y = cp(z), where ¢ is an arbitrary constant and ¢ is any nonzero

® The spaces L; and Ly can be chosen in various ways. For example, we may as-
sume that L; consists of the once continuously differentiable functions and L2 of
continuous functions.

19For example, the oscillation of the eccentricity of the Earth’s orbit is one of the
causes of Ice Ages.
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solution. We shal] try to choose the function ¢ = ¢(z) so that y = ¢(z)p(z) is
a solution of the inhomogeneous equation (4).

Theorem. The solution of the inhomogeneous linear equation (4) with initial
condition y(zo) = 0 ezists, is unique, and 18 given by the formula

y = / eJe TO% ey ae. (5)

Proof. Substituting y = ¢(x)e(z) into (4) gives
dotcep = fep+g.

But ¢ is a solution of the homogeneous equation (1). Hence ¢’ = f¢ and

¢ =ofp dn)= | " g()0(6) d.

0

Substituting the known solution of the homogeneous equation in place of ¢,
we obtain formula (5) (after introducing ¢ into the integral), which was to be
proved. u]

4. The Influence Function and é-shaped Inhomogeneities

Formula (5) has a simple “physical meaning,” which can be made clear as
follows. The following principle is obvious.

The Principle of Superposition. If ¢y and @2 are solutions of the inho-
mogenous linear equations Apy = g; and Aps = gq, then @)+, 18 a solution
of the equation Ap = g1 + g2.

This principle makes it possible to separate the various perturbations when
taking account of all possible perturbations, calculate their influence individ-
ually, and add the effects of the perturbations (for example, if two stones
are thrown into water, the waves from each of them can be calculated in-
dependently and the perturbations added; in the flight of a missile one can
introduce independent corrections for wind and the deviation of the density
of the atmosphere from the tabular density, etc.).

In applications to our inhomogeneous equation (4) the function ¢ plays
the role of the perturbation. We shall attempt to represent the function g¢
in the form of a linear combination of “elementary perturbations”; then the
solution is the same linear combination of solutions of equations with these
elementary perturbations as the inhomogeneity g¢.

Definition. A §-shaped sequence is a sequence hy of nonnegative smooth
functions equal to 0 outside neighborhoods that tend to 0 as N — oo and
each possessing an integral equal to 1.
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An example of such a sequence is easy to construct (Fig. 44). Physicists
say that “the limit of the sequence Ay is the Dirac delta-function equal to
zero everywhere except at the point 0 and having integral 1.”

Fig.44. A 6-shaped sequence

Of course no function § with these properties exists.

Nevertheless many quantities in whose definitions the functions Ay occur
tend to definite limits as N — oo, which are said to be the corresponding quan-
tities calculated for the é-function. For example, for any continuous function
g

+oo
Jlim. /  h(@)g(e)de = (0)

(Prove this!) Therefore by definition

+00
| s@ae)de = 500)

-0

In exactly the same way, translating all Ay by £ along the z-axis, we find

+oo
/ 8z — )g(x) dz = g(€),

—o0

ie., 8(- — &) is the “6-function concentrated at the point £.”

The last formula can also be interpreted as the representation of any
smooth function g as a “continuous linear combination” of §-functions concen-
trated at different points x with coefficients equal to the values of ¢ at these
points.

Thus an arbitrary inhomogeneity ¢ in Eq. (4) can be decomposed into a
continuous linear combination of inhomogeneities “each concentrated at one
point” and having the form of shifted é-functions. According to the principle
of superposition, to find a particular solution of Eq. (4) with an arbitrary
inhomogeneity it suffices to know this solution for a é-shaped inhomogeneity.

Definition. The solution of the equation

d
= e+ s =6, £>0,
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with initial condition y(0) = 0, is called the influence function of the perturba-
tion at the instant £ on the solution at the instant x (or the Green’s function!!)
and is denoted y = G¢(z).

Theorem. The Green’s function is given by the formula

0 ifz <€,
Gel) = { ef: fieyde if x> €. ©)

Remark. As explained above, we are talking about the limit of a sequence of
solutions of the equations

N = @+ bz - ©) ™

where {hn} is a é6-shaped sequence, as N — oo.

Heuristic proof: For z < £ the solution is zero, since the inhomogeneity
disappears. For z > £ the solution coincides with some solution of the homo-
geneous equation, since the inhomogeneity disappears. For & near € the second
term on the right-hand side of Eq. (7) is large in comparison with the first
term, so that the integral of dy/dz over a small neighborhood of the point £
is almost equal to
+cc
/ hn(z —€)de = 1.
-0
Passing to the limit as N — oo, we see that the jump in the solution y(z)
as = passes through the point € equals 1, i.e., for z > £ the function G¢ of the
variable z is the solution of the homogeneous equation with initial condition
y(€) = 1, which was to be proved. O
This reasoning can be made completely rigorous, but it is simpler to carry
out the following argument.

Mathematical proof: Substituting the function Ay translated by £ for ¢ in
formula (5) for the solution of Eq. (4) and passing to the limit as N — oo, we
obtain what was required:

T z x
Ge(a) = lim / LTI Uy gy = I O
N—oo To
fog<é<ua. ]
Corollary. The solution of the inhomogeneous equation (4) with inhomogene-
ity g and with zero initial condition is expressed in terms of the influence

function by the formula y(z) = [ Ge(x)g(€) dé for z > 0.

" This function is also called the retarded Green’s function in order to avoid confusion
with the Green’s functions of boundary-value problems for higher-order equations,
which we do not consider here.
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Of course this formula is equivalent to formula (5) (by (6)).

Problem 1. Solve the equation dy/dz = y+hn, where An(z) = N for |[2—1| < 1/2N
and 0 for |z — 1| > 1/2N with initial condition y(0) = 0, and find the limit of the
solution as N — oo.

5. Inhomogeneous Linear Equations with Periodic Coeflicients

Theorem. If the equation

% = f(z)y + g(=)

with right-hand side of period T in x i3 such that the mean value of f over a
period s nonzero, then the equation has a solution of period T, and moreover
ezactly one such solution (stable if the average value is negative and unstabdle
of it is positive, cf. Fig. 45).

M A>1
0 T 2T aT
y
A<l
4
a7 T 2T 3T

Fig. 45. Establishment of a forced oscillation

Proof. Consider the mapping by the period that assigns to the initial condition
©(0) of a solution ¢ the value @(T) of the same solution at the instant T.
This mapping is an inhomogeneous linear mapping (why?); it has the form
@©(T) = Ap(0) + C, where X is a multiplier of the homogeneous equation. The
logarithm of A equals the integral of f over a period. Consequently A # 1 if
the mean value of f is not 0, and the assertion being proved follows from this
fact. 0

Thus for A < 1 after a certain “transition process” has been carried out a
completely definite oscillatory mode is established in the system independently
of the initial condition. The oscillations that arise are called forced oscillations.
They are caused by a periodic external action on the system, i.e., by the
function g.

Problem 1. Find a periodic solution of the equation



§ 4. Phase Flows 57

= = - sinz
dz v+

and study its stability.

Remark. Inhomogeneous linear equations arise naturally in the cases when we
study the influence exerted on the solution by small perturbations of the initial
condition simultaneously with small perturbations of the right-hand side of the
differential equation (neglecting infinitesimals of higher order than first with
respect to the perturbations). The inhomogeneity g in Eq. (4) corresponds
precisely to a perturbation of the equation.

For example under a small perturbation of the vector field in a neigh-
borhood of a limit cycle with multiplier different from 1 the cycle does not
disappear, but merely- deforms slightly; the periodic solution of the corre-
sponding inhomogeneous linear equation gives a first approximation to this
deformation of the cycle.

Problem 2. Suppose the smooth function ¢(t,¢) is a solution of the equation ¢ =
v(t z;¢) depending on the parameter ¢ and becomes a solution ¢o(t) of the equation
& = v(t z;0) for ¢ = 0. Prove that the derivative of the solution with respect
to the parameter, ¢(t) 8¢/ 0¢|e=0 satisfies the inhomogeneous linear equation

¥ = f(t)¥ + g(t), where f and g are the values of dv/dz and dv/d¢ for ¢ = 0,
z = o(t). This equation is called an (inhomogeneous) equation in variations, since
1 describes a small variation in the solution under the action of a small change in
the equation corresponding to ¢ = 0.

§ 4. Phase Flows

The mathematical formalization of the concept of a deterministic process leads
to the concept of a one-parameter transformation group.

In this section we define and study one-parameter diffeomorphism groups
and their connections with vector fields. We shall need some algebraic termi-
nology. All the theorems in this section are essentially obvious.

1. The Action of a Group on a Set

A transformation of a set is a one-to-one mapping of the set onto itself.
Problem 1. Which of the three following mappings is a transformation?

) R>R, 2—¢"; 2) R—R, z 3) C-C, z 27,

Answer. Only the second.
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The product fg of the transformations f and g of a set is the transforma-
tion obtained by applying first g, then f, i.e., (fg)(z) = f(g(z)).

Problem 2. Give an example in which fg is not the same as gf.

The transformation f~! inverse to f is defined by the condition that if f
takes r to y, then f~! takes y to z.

A collection of transformations of a set is called a transformation group if
it contains the inverse of each of its transformations and the product of any
two of its transformations.

Problem 3. Is the set of the three reflections about the vertices of an equilateral
triangle a transformation group?

Problem 4. How many elements are there in the group of isometries'? of an equi-
lateral triangle? In the group of rotations of a tetrahedron?

Answer. 6, 12.

The concept of a transformation group is one of the most fundamental
in all of mathematics and at the same time one of the simplest: the human
mind naturally thinks in terms of invariants of transformation groups (this is
connected with both the visual apparatus and our power of abstraction).

Let A be a transformation group on the set X. Multiplication and inversion
define mappings A x A — A and A — A (the pair (f,g) goes to fg, and the
element g to ¢g71). A set A endowed with these two mappings is called an
abstract group (or briefly, simply a group). Thus a group is obtained from a
transformation group by simply ignoring the set that is transformed.

Problem 5. Prove that the set R of all real numbers becomes a group when
equipped with the operations of ordinary addition and changing the sign.

Algebraists usually define a group as a set with two operations satisfying a
collection of axioms such as f(gh) = (fg)h. These axioms automatically hold for
transformation groups. Actually these axioms mean simply that the group is formed
from some transformation group by ignoring the set that is transformed. Such ax-
ioms, together with other unmotivated definitions, serve mathematicians mainly by
making it difficult for the uninitiated to master their subject, thereby elevating its
authority.

Let G be a group and M a set. We say that an action of the group G on
the set M is defined if to each element g of the group G there corresponds a
transformation Ty : M — M of the set M, to the product of any two elements
of the group corresponds the product of the transformations corresponding to
these elements, and to any two mutually inverse elements correspond mutually
inverse transformations: Ty, = TyT,, Ty-1 = (T,)~".

12 An isometry is a transformation that preserves distances (so that the distance be-
tween the images of two points equals the distance between the points themselves).
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Each transformation group of a set naturally acts on that set (T, = g),
but may also act on other sets. For example, consider an equilateral triangle.
The group of its six isometries acts on the set of its two orientations: the
reflections reverse the orientation, the rotations do not.

Problem 6. Which permutations of the three coordinate axes are realized by the
action of the group of isometries of the cube max(|z|,|yl,|2|) < 1 on the set of axes?

Answer. All six.

Problem 7. How does the group of linear changes of coordinates act on the set of
matrices of linear operators from a space into itself?

Answer. Tym = gmg™.

The transformation T, is also called the action of the element g of the
group G on M. The action of the group G on M defines another mapping
T:G x M — M assigning to the pair ¢ € G, m € M the point Tym.

If the action T is fixed, then the result Tym of the action of the element
g of the group G on a point m of the set M is denoted by gm for short. Thus
(fg)m = f(gm), and so the parentheses are usually omitted.

Let us fix a point m of the set M and act on it by all the elements of the
group G. We thereby obtain a subset {gm, g € G} of the set M. This subset
is called the orbit of the point m (for the given group action), and is denoted
Gm.

Problem 8. Find the orbits of the group of rotations of the plane about zero.
Problem 9. Prove that any two orbits of an action are either disjoint or coincident.

Problem 10. How many orbits are there in the action of the group of isometries of
the tetrahedron on the set of unordered pairs of its edges?

Problem 11. How many colorings of the six faces of a cube by six colors 1,...,6
are essentially different (cannot be transformed into one another by rotations of the
cube)?

Answer. 6!/24 = 30.

A mapping ¢ : G — H of the group G into the group H is called a
homomorphism if it takes products into products and inverses into inverses:

e(f9) = o(He(g); elg™") = (v(9))".

The action of a group G on a set M is a homomorphism of the group G
into the group of all transformations of the set M.
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2. One-parameter Transformation Groups

A group is called commutative (or Abelian) if the product is independent of
the order of the factors: fg = gf for any two elements of the group.

Ezample 1. The group of isometries of an equilateral triangle is not Abelian.
Ezample 2. The group of translations of the real axis is Abelian.

The operation in an Abelian group is usually denoted +.

For example, the successive application of translations by a and b in either
order is a translation by a + b. Therefore the set of all real numbers with the
operation of addition is an Abelian group; the natural action of this group on
the line assigns to the number a the translation by a.

Definition. A one-parameter group of transformations of a set is an action
on the set by the group of all real numbers.

Remark. Actions by the group of integers Z are sometimes called “one-
parameter groups with discrete time.” For such an action T, = (T1)", so
that the whole group consists of powers of one transformation.

A one-parameter group of transformations of the set M is usually denoted
{g'}. Here g' : M — M is the transformation corresponding to the point ¢t of
R.

Thus a one-parameter group of transformations of the set M is a collection
of transformations ¢g* parametrized by the real parameter ¢t such that for any
real numbers s and ¢

1) g¢tt=g%" 2) ¢7'=(¢")""

The parameter t is usually called time and the transformation g¢* is called the
transformation in time t.

Ezample 1. M = R, ¢! is translation by 2t (i.e., g’z = z + 2t). Properties 1)
and 2) are obvious.

Ezample 2. M = R, ¢* is dilation by a factor €’ (i.e., g'z = e'z). Properties
1) and 2) are obvious. The notation g* derives from this example.

Ezample 8. M = R, g'z = z + sint. Property 2) holds, but Property 1) does
not; {g'} is not a one-parameter group.

Remark. It follows obviously from Property 1) that ¢° is the identity trans-
formation, which leaves each point fixed. Therefore Property 2) follows from
Property 1). Property 1) is called the group property.

A one-parameter transformation group is the mathematical equivalent of
the physical concept of a “two-sided deterministic process.” Let M be the
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phase space of the process. A point of this space is a definite state of the
process. Assume that at the instant ¢ = 0 the process was in state z. Then at
another moment ¢ the process will be in another state. Denote this new state
of the process by g'z. We have defined for each ¢ a mapping ¢ : M — M from
the phase space of the process into itself. The mapping ¢! takes the state at
the instant 0 to the state at the instant ¢. It is called the transformation in
time t.

The mapping ¢' really is a transformation (a mapping that is.one-to-one
and onto). This follows from the fact that, by the definition of determinacy,
_ each state uniquely determines both the future and the past of the process. The
group property also holds. Indeed, suppose at the initial instant the process
was in state x. One may either pass to the state at the instant ¢ + s directly
(z — g¢'"*z) or first study the intermediate state g'z at which the process
arrives in time t, then see where this intermediate state moves in time s. The
agreement of the results (¢'7°z = g°¢g'z) means that the transition from the
initial state to the final state in a fixed time always takes place in the same
way, independently of the instant of time at which we leave the initial state.

A one-parameter group of transformations of the set M is also called a
phase flow with the phase space M (the phase space can be thought of as
filled with a fluid, particle = of which passes to the point g'z during time t).

The orbits of a phase flow are called its phase curves (or trajectories).

Ezample. Let g be a rotation of the plane about the point 0 through angle
t. The group property obviously holds. The orbits of the phase flow {g‘} are
the point 0 and circles with center at Q.

The points that are phase curves are called fized points of the flow.

3. One-parameter Diffeomorphism Groups

Assume now that the set M under consideration is endowed with the structure
of a smooth manifold. Examples of smooth manifolds are: 1) any open domain
of Euclidean space; 2) a sphere; 3) a torus. The general definition is given in
Chapt. 5. For the time being we may assume that we are dealing with an open
domain of Euclidean space.

A diffeomorphism is a mapping that is smooth, along with its inverse. (A
mapping is called smooth if the coordinates of the image-point are smooth
functions of the coordinates of the pre-image and vice versa.)

Problem 1. Which of the functions z, —a, 2, z°, arctan z define a diffeomorphism
of the line onto itself?

Answer. Only the first two.
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Definition. A one-parameter diffeomorphism group is a one-parameter trans-
formation group whose elements are diffeomorphisms satisfying the additional
condition that g'z depends smoothly on both of the arguments ¢ and z.

Ezample 1. M = R, gt is multiplication by e**.

Ezample 2. M = R?, ¢! is rotation about 0 by the angle ¢.

Remark. The condition of smooth dependence on the time t is needed in order to
eliminate pathological examples such as the following: let {a} be a basis of the
group R, i.e., a set of real numbers such that each real number has a unique rep-
resentation in the form of a finite linear combination of numbers of the set with
integer coeflicients. To each number a of the basis we assign the translation of the
line by some distance, paying no attention to other elements of the basis. Setting
gttt = g%1 .. g% we obtain a one-parameter transformation group each of
whose elements is a translation of the line and consequently a diffeomorphism; but
in general g’ is not a smooth function of ¢ and is even discontinuous.

Instead of smoothness with respect to t one may require only continuity (from
which smoothness is a consequence) but we have no need to do this.

Definition. A one-parameter group of linear transformations is a one-para-
meter diffeomorphism group whose elements are linear transformations.

Ezample. On the plane with coordinates (z,y) consider the transformation
9'(z,y) = (e, efty).

It is clear that ¢* is a linear transformation (in time ¢ the z-axis is dilated
by the factor ¢! and the y-axis by the factor ).

The group property g't® = g'¢g® follows from the exponential property
(e**t¥ = e¥ev), and the smoothness of this dependence on t is also obvious.
Thus {¢*} is a one-parameter group of linear transformations of the plane.

In particular let o = 1, § = 2 (Fig. 46). In this case the phase curves are
the fixed point (0,0), the coordinate semi-axes, and semiparabolas; the action
of one of the transformations of the phase flow on a domain E is depicted in
Fig. 46. The areas of domains are increased by a factor of €3t under the action
of gt.

Consider also the case @ = 1, § = —1 (Fig. 47). In this case the transfor-
mation g’ consists of a compression by a factor of e! in the direction of the
y-axis and a dilation by a factor of €' in the direction of the z-axis. Such a
transformation is called a hyperbolic rotation, since the phase curves of the
flow {g'} are halves of the hyperbolas 2y = const (of course the equilibrium
position 0 and the coordinate semi-axes are also phase curves). Hyperbolic
rotations preserve area, although they strongly distort the shape of figures
(Fig. 47).

We remark that our one-parameter group of linear transformations of the
plane decomposes into the “direct product” of two one-parameter groups of
linear transformations of lines (namely dilations of the axes).
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4 %

X X

Fig. 46. The action of the phase flow Fig. 47. A hyperbolic rotation
on a domain

Problem 2. Does every one-parameter group of linear transformations of the plane
decompose similarly?

Hint: Consider rotations or shifts (z,y) — (z + ty, y).

4. The Phase Velocity Vector Field
Consider a one-parameter group {g'} of diffecomorphisms of a domain M.

Definition. The phase velocity vector of the flow {g'} at the point z in M is
the velocity with which the point g'z leaves z, i.e.,

d
v(e)= 2| _ (%),

The phase velocity vectors of a flow at all points of the domain M form a
smooth vector field (since g‘z depends smoothly on t and z). It is called the
phase velocity field.

Problem 1. Find the phase velocity fields of the following flows on the line: g'z =

z+t g’z =e'x, g':v =e 'z

Answer. v(z)=1,z,—=z.

Problem 2. The fixed points of the flow are singular points of the phase velocity
field, i.e., the phase velocity vector vanishes at these points. Is the converse true?

Answer. Yes. See Sect. 3 of § 2.

Let us fix a point z¢ and study its motion under the action of the phase
flow g'. In other words consider the mapping ¢ : R — M defined as follows:

e(t) = g'zo.

Theorem. The mapping @ is a solution of the equation ¢ = v(x) with initial
condition p(0) = zo.
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In other words under the action of the phase flow the phase point moves
so that its velocity vector at any instant equals the phase velocity vector at the
point of the phase space at which the moving point 1s located.

Proof. This follows from the group property:

d\ . d| e d| e
dt t=rg$—zize=og z_de €=Og (g :l?)——v(g \’l?)

0O

Thus with each one-parameter diffeomorphism group there 18 associated a

differential equation (defined by the phase velocity vector field); the solutions

of this equation are the motions of the phase points under the action of the
phase flow.

Problem 3. Is the converse true, i.e., is every solution given by the formula ¢(t) =
tro?
g'zo?

Answer. Yes, by the uniqueness theorem (§ 2, Sect. 3).

If the phase flow describes the course of a process with arbitrary initial
conditions, then the differential equation defined by its phase velocity vector
field determines the local law of evolution of the process; the theory of dif-
ferential equations is supposed to reconstruct the past and predict the future
knowing this law of evolution.

The statement of a law of nature in the form of a differential equation
reduces any problem about the evolution of a process (physical, chemical,
ecological, etc.) to a geometric problem of the behavior of the phase curves of
the given vector field in the corresponding phase space.

Definition. The phase flow of the differential equation £ = v(z) is the one-
parameter diffeomorphism group for which v is the phase velocity vector field.

To find the phase flow of an equation it suffices to solve the equation:
gtz is the value of the solution ¢ at the instant ¢ with the initial condition

©(0) = zo.

Ezamples. The phase flow of the equation # = kz is the group {eF*}. The phase
flow of the equation of small oscillations of a pendulum (z; = z2, 2 = —21)
consists of rotations of the plane through the angle t. The phase flow of the
equation of small oscillations of the inverted pendulum (2; = 9, 2 = z;)
consists of hyperbolic rotations.

Problem 4. Find the phase flows of the differential equations ¢ = 0,& = 1,& = -1,
z=sinz (0<z<m).

Answer. g'z =z, gt =x + t, ¢’z = (z — 1)e' + 1, g'z = 2arccot (e " cot z/2).

Problem 5. Find the phase flows of the systems
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Y, {5c=y, {v'c=siny,
0; y=1 y=0.

—N
. 8.
1]

Answer. (z + ty,y), (z 4+ ty + t*/2,y + 1), (z + tsiny, y).

The question arises, is every smooth vector field the phase velocity vector
field of a flow?
The answer to this question is negative.

Ezample 1. Consider the differential equation £ = 1 with phase space 0 < z <
1. It is clear that the transformation g* can be only a translation by #, but for
t # 0 such a translation does not take the phase space into itself.

Ezample 2. Consider the case v(z) = 2?2, z € R. The solution of the equation
% = v(z) with initial condition zq for t = 0 can easily be found explicitly:

d 1 1
W@, —Z=t4+C, C=-—, z=—20_,
z? T T 1 —zot
Thus ¢'z = (1w—t) It is not difficult to verify that ¢'*° = g'¢®, so that at
—tx

first glance we appear to have found the phase flow.

Unfortunately the mapping g is not a diffeomorphism of the line for any
value of ¢ except t = 0 (it is not even defined everywhere). Therefore the field
v(z) = 2? is not the phase velocity vector field of any one-parameter group of
diffeomorphisms of the line.

Remark. The reason why the two fields just given have no phase flows lies
in the noncompactness of the phase space. We shall see below that a smooth
vector field on a compact manifold always defines a phase flow. In particular
the field v(z) = z? on the affine line can be extended to a smooth vector field
on the entire projective line (including the point at infinity). The projective
line is compact (a topological circle), and a smooth vector field on it defines
a phase flow. The formulas we have found for the mappings g* describe just
this flow: g? is a diffeomorphism of the projective line, not the affine line!

Problem 6. Prove that every smooth vector field on the line that has at most linear
growth at infinity (|v(z)| < a + b|x|)) is the phase velocity field of a one-parameter
group of diffeomorphisms of the line.

Hint: By comparing the motion with a faster motion in a suitable linear field prove
that the solution cannot become infinite in a finite time and consequently can be
continued to the entire axis ¢.

Problem 7. Does the equation # = €® sin z define a phase flow on the line?

Answer. Yes.
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Problem 8. Consider the vector space of all polynomials p of degree less than n in
the variable . Define a transformation in time ¢ as the translation of the argument
of the polynomial by t (i.e., (¢'p)(z) = p(x +1)). Prove that {g'} is a one-parameter
group of linear transformations and find its phase velocity vector field.

Solution. The vector field at the point p is the polynomial dp/dz.

§ 5. The Action of Diffeomorphisms on Vector Fields
and Direction Fields

The main method of solving and studying differential equations is to choose
a suitable change of variables, i.e., in geometric terms, a suitable diffeomor-
phism that simplifies the given vector field or direction field. In this section we
introduce formal definitions of the necessary concepts. We begin by recalling
certain simple facts from differential calculus.

1. The Action of Smooth Mappings on Vectors

In studying all possible mathematical objects it is useful to study mappings*®
along with objects. We recall the definition of the action of smooth mappings
on vectors.

Let f: M — N be a smooth mapping of the domain M of a vector space
into the domain N of a vector space, and let v be a vector attached at the
point z of the pre-image domain M, i.e., an arrow with tail at the origin z
(Fig. 48). Then at the image point f(z) of the domain N there also arises a
vector denoted by f,,v and called the image of the vector v under the mapping
f, defined as below.

o
-———00-—2). 7

Fig. 48. The action of a smooth mapping on a vector

Definition. The image of the vector v under the mapping f is the velocity
vector with which the moving point f(p(t)) leaves the point f(x) when the
moving point p(t) leaves the point z with velocity v:

13This is the essence of the so-called “category” point of view. Roughly speaking
a category is a collection of objects and mappings (example: the category of all
vector spaces and linear mappings of them).
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d

_ fle(0), where p(0) =2, =]  o(t)=v. (1

d
f*x’v - d_ dt t=0

tlt

In other words the arrow v is shortened by a factor of 1000, then under
the action of f becomes a bent arrow, then the latter is lengthened by a factor
of 1000, and finally 1000 tends to infinity.

Problem 1. Prove that the image of the vector v does not depend on the choice of
the motion ¢ provided the point ¢(t) leaves ¢ with velocity v.

Solution. Let ¢ be another motion leaving = with the same velocity. Then the
distance between the points ¢(¢) and ¢(t) for small [¢| is o(]¢t|). Since the mapping f
is smooth, the distance between the image-points f((¢)) and f(4(¢)) at N is also
o(Jt]), which was required.

Problem 2. Suppose v is a positive unit vector of the line attached at the point a
and let f(z) = %, Find fu.v.

Answer. 2a - unit vector.

Problem 3. Can two points on a plane moving along different coordinate axes leave
the origin with the same velocity vector?

Answer. Yes, if the velocity is zero. For example: ¢(t) = (t,0), %(t) = (0,#).

The set of velocity vectors of motions leaving point z of a domain M is a
vector space: this is simply the space of vectors attached at the point z. Its
dimension is the dimension of the domain M. This space is called the tangent
space to the domain M at the point z and is denoted T, M.

Fig.49. The tangent space

Everyone encountering this for the first time finds it difficult to distinguish the
tangent space to a vector space from the vector space itself. The following gener-
alization is presented as an aid in dealing with this difficulty. Consider a smooth
surface M in R®, for example a sphere. The velocity vectors with which a point
moving over the sphere can leave a given point of the sphere obviously form a plane
(the two-dimensional tangent space of the sphere at the given point z); this tangent
plane T M (Fig. 49) is clearly distinct from the sphere M itself.

The mapping f., defined above maps the tangent space to the pre-image
domain M at the point z into the tangent space to the image-domain at the

point f(z).
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Problem 4. Prove that the mapping fuz : To M — Ty(;) N is linear.

Solution. By Taylor’s formula

f(z +vt) = f(z) + (0f/0=)vt + o([t]),

and consequently f.; = 8f/0z is a linear operator.

If Cartesian coordinates (z1,...,2m,) and (y1,...,ys) have been chosen
respectively in the pre-image and image spaces of the mapping f, so that f is
given by a set of n functions f; of m variables «;, then the components of the
vector f.,v are expressed in terms of the components of the vector v by the
formula

Ofi

(faz®)i = : aij]"

In other words the matriz of the operator f., is composed of the partial

derivatives (Ofi/0z;).

Definition. The linear operator f,, is called the deriwative of the mapping f
at the point .

Problem 5. Consider the mapping f of the line into the plane f(z) = (sinz,cos z).
Find the value of its derivative on the vector v of length 10 attached at the point «
and giving the positive orientation of the z-axis.

Answer. f,,v = (10 cos @,—10sin a).

Problem 6. Consider the mapping f of the plane into itself f(zi,z2) = (23 +
z122,%2) (Fig. 50). Find the set of all points @ at which the linear operator fi, is
degenerate and find the image of this set under the mapping f (these two sets are
called the sets of critical points and critical values respectively).

Solution. The matrix of the operator has the form

(3a:¥+mz rc1)
0 1)

and therefore the derivative is degenerate on the parabola z» = —3z}. Its image is
the semicubical parabola (y1/2)* + (¥2/3)% = 0.

The mapping of this problem is called the Whitney mapping (cusp). H. Whitney
proved that the cusp singularity is typical for smooth mappings of the plane into
itself (for example, every smooth mapping near f has a similar singularity near the
origin.)

Remark. The linear structure (vector addition) in the tangent space to M at the
point  was defined above using the linear structure of the ambient space in which
M is imbedded, or in other words, using a Cartesian coordinate system.

Actually both the set T;; M and the vector space structure on it can be defined in-
dependently of the choice of the coordinate system, even with curvilinear coordinate
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Z2 ’ Yz
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Kerfyx

Fig. 50. The critical points and critical values of the Whitney mapping

systems, provided the system is admissible, i.e., connected to the Cartesian coordi-
nate system by a smooth change of variables (diffeomorphism). The independence of
the tangent space from the coordinate system is not entirely obvious, since the arrow
sketched in the domain M (the attached vector) bends under a diffeomorphism.

A definition independent of the coordinate system for the exit velocity vector
from the point = has a rather abstract appearance:

Definition. A tangent vector to a domain M at a point z is an equivalence class of
smooth motions ¢ : R — M, for which ¢(0) = z; the equivalence ¢ ~ % is defined
by the following condition: the distance between the points ¢(t) and #(t) in some
(and then every) system of coordinates is o(|t]) as ¢ — 0 (Fig. 51).

Fig.51. An equivalence class of motions

It is clear that this is indeed an equivalence relation (¢ ~ ¢, ¢ ~ ¥ = ¢ ~ ¢,
@~ 1 ~x = ¢~ x). The equivalence class of the motion ¢ is defined (for a fixed
coordinate system) by the components of the exit velocity vector of ¢(t) from the
point ¢(0).

Thus our vector defined without use of coordinates becomes an ordinary arrow
as soon as a coordinate system is fixed. The only thing that needs to be proved is
the independence of the vector operations (addition and scalar multiplication) from
the coordinate systems occurring in their definition. But this independence follows
immediately from the linearity of the operation of taking the derivative of a mapping
at a point (the relevant mapping is a “change of variables,” i.e., the diffeomorphism
assigning to the set of old coordinates of a point the set of its new coordinates).

Although our definition is independent of the coordinate system, there remains a
dependence on the whole class of coordinate systems connected by smooth changes
of variables. This class is called a differentiable structure and the concepts just
introduced depend essentially on it.

The derivative of the mapping f at the point « is a linear operator fuz : To M —
Tty N that is independent of both the coordinate system in the pre-image and the
coordinate system in the image by its very definition (1) (Fig. 52).
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F
M
~ fr (LTl v
' N
M
Fig. 52. The derivative of a mapping Fig.53. A local diffeomorphism may
at a point fail to be a global diffeomorphism

Problem 7. Let f be a diffeomorphism of M onto N. Prove that the mapping fuo
is a vector-space isomorphism by its very definition (1) (Fig. 52).

Problem 8. Is the converse true?

Answer. No, even if f.; is an isomorphism for every z (cf. Fig. 53).

2. The Action of Diffeomorphisms on Vector Fields

Definition. A smooth vector field v is defined in a domain M if to each point
@ there is assigned a vector v(z) € T, M attached at that point and depending
smoothly on the point z (if a system of m coordinates is chosen, the field is
defined by its m components, which are smooth functions of m variables). The
vector v(x) is called the value of the field v at the point z.

Let us examine how various objects behave under smooth mappings. Tan-
gent vectors move forward under the mappings ¢ : M — N (i.e., under the
action of g a vector v tangent to M is mapped into a vector g.,v tangent to
N). Functions move backward under the mappings g : M — N, i.e., a function
f on N generates a function on M (its value at the point € M is equal to
the value of f at the image of the point z; this function is denoted g¢* f; the
upper asterisk denotes backward motion).

Vector fields in general map neither backward nor forward. Indeed, under
a mapping two points of the pre-image may map to the same point and carry
different vectors with them, so that a field in the pre-image does not transform
to the image. Moreover, many tangent vectors at a given point of the pre-image
may have a common image, so that a field on the image does not transform
to the pre-image.

Definition. The image of a vector field under a diffeomorphism onto is the
vector field whose value at each point is the image of the vector of the original
field at the pre-image of the given point. The image of the field v under the
diffeomorphism ¢ is denoted ¢,v.



§ 5. Vector and direction fields 71

In other words, the image g.v of the field v in M under a diffeomorphism
g of a domain M onto N is the fleld w in N defined by the formula w(y) =
(gxz)v(), where z = g~y (Fig. 54).

Fig. 54. The action of a diffeomorphism on a vector field

Problem 1. Find the image of the field v(z) = 1 on the line under the action of
the diffeomorphism g(z) = 2z.

Answer. (g.v)(y) = 2.

The vector field on the x-axis whose unique component is v is frequently
denoted!* by the symbol vd/dz. The convenience of this notation is that under
dilations of the axis 9/0z behaves like 1/z. For example, the solution of the
preceding problem can be written as follows:

o_ 2 _,0
9z A(y/2) "oy

In this notation the formula for the action of a diffeomorphism of the line on
a vector field assumes the form of the following formula for change of variable:

0 190 .
% " @) g s Thus the notation d/0x makes the

computation of the action of diffeomorphisms on fields automatic.

if y = g(z), then

Problem 2. Find the image of the field 3/3z under the action of the diffeomor-
phism y = €.

Answer. ylnyd/dy.

If (zq,...,2,) is a fixed coordinate system in R", then the basis vector
fields (with components (1,0,...,0),...,(0,...,0,1)) are denoted 9/0z1,...,
8/0z,. The field with components (v, ..., v,) is therefore denoted v,;0/0z; +
<o 0,0/ 0.

Problem 3. Find the images of the “Euler field” v = 2,9/021 + 228/0x2 on the
plane under the action of the following diffeomorphisms: 1) a rotation about 0; 2) a
hyperbolic rotation; 3) any linear transformation.

Answer. v.

*1n reality v0/8¢ is the operator of differentiation in the direction of the field v (cf.
§ 10), but since the operator vd/8z and the field v determine each other uniquely,
they are frequently identified.
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Problem 4. Prove that a diffeomorphism taking the vector field v to the field w
takes the phase curves of the field v to the phase curves of the field w. Is the converse
true?

Answer. No, for example: v = z8/8z, w = 229/0z.

3. Change of Variables in an Equation

Let w be the image of the vector field v in M under a diffeomorphism ¢ of a
domain M onto a domain N, i.e., w = ¢g«v.

Theorem. The differential equations

t=v(z), zeM (1)
and

y=w(y), yeN (2)

are equivalent in the sense that if ¢ : I — M 1is a solution of the first, then
goyw:I — N is a solution of the second equation and conversely.

In other words: the change of variables y = g(z) takes Eq. (1) into Eq.
(2). Or again: substituting g(z) for y turns Eq. (2) into Eq. (1).

Proof. This is obvious. In other words, applying successively the rule for differ-
entiating a composite function, the definition of a solution ¢, and the definition
d
of the field ¢.v, we find Z90P = Grz?(t) = gazv(z) = w(y), where z = ¢(1),
y = g(x(t)), which was to be proved. O
Problem 1. Solve the equation of small oscillations of a pendulum
d.31 = T2, iiz = —-I1,

by passing to polar coordinates'® through the substitution z; = rcos8, 2 = rsin#.

Solution. By carrying out the substitution we find » = 0, 9 = —1, whence z; =
ro cos(Bo — t), 2 = 7o sin(fp — t).

Problem 2. Study the phase curves of the system

{d:l =z +a1(l — 2! —23),
&y = —a1 + 22(1 — 2} — 73).

1 Of course the usual conventions are needed concerning the multivaluedness of polar
coordinates: the mapping (r,6) — (z1,22) is not a diffeomorphism of the plane
onto the plane. For example, one can consider separately the diffeomorphism of
the domain » > 0, 0 < # < 27 onto the plane less the positive z1-semiaxis defined
by this mapping and the diffeomorphism of the domain r > 0, —7 < # < 7 onto
the plane less the negative z1-semiaxis.
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Solution. Passing to polar coordinates, we obtain

F=r(l-r?), 6=-1.

The phase curves of this system in the (r,@)-plane coincide with the integral
curves of the equation dr/d@ = r(v* — 1). Sketching these curves (Fig. 55) and
returning to Cartesian coordinates, we obtain Fig. 56. The only singular point is the
origin. The phase curves that originate near this point wind outwards toward the
circle 23 4+ 3 = 1 as time passes. This circle is a closed phase curve (limit cycle).
The phase curves also wind inward to this circle from the outside.

Passing to polar coordinates makes it possible to integrate explicitly the original
system also.

4

r .—-‘/ \-—/
X

2

/f//

|

Fig. 55. Integral curves in the (r,6)- Fig.56. Phase curves in the (z1,z2)-
plane plane

4. The Action of a Diffeomorphism on a Direction Field

Let g be a diffeomorphism of a domain M onto a domain N, and suppose that
a direction field is defined in the domain M. Then a direction field also arises
in the domain N. It is called the image of the original field under the action
of the diffeomorphism g and is defined as follows.

Consider some point y of the domain N (Fig. 57). In M it has a unique
pre-image z = ¢~ ! M. Consider the direction of this field at the point x. This
is a line in the tangent space T, M. Let us take any nonzero vector of this line.
Its image under the action of ¢ is a nonzero vector in the tangent space TyN
(since g is a diffeomorphism). The line defined by this vector is independent
of the choice of the vector on the original line (since g., is a linear operator).
This new line is a line of the new direction field at the point y. The following
theorem is obvious.

Theorem. Under the action of a diffeomorphism g : M — N the integral
curves of the original direction field on M map into integral curves of the
direction field on N obtained by the action of g on the original field.

To prove this it suffices to extend the given direction field (in a neighbor-
hood of each point of the domain M) to a vector field whose vectors lie on
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the lines of the given direction field and are different from zero, then apply
the theorem of Sect. 3.

g } )=
§ o~
A
Fig.57. The action of a diffeomor- Fig.58. A direction field that cannot
phism on a direction field be extended to a vector field

Problem 1. Can every smooth direction field in a domain of the plane be extended
to a smooth vector field?

Answer. No, if the domain is not simply connected (Fig. 58).

The theorem stated above shows that to solve the differential equation

dz

i =v(t,x)

it suffices to construct a diffeomorphism that maps the direction field to the
direction field of an equation that we already know how to solve — for example,
the field of an equation with separable variables. In other words it suffices to
choose a change of variable that reduces the equation to one that has already
been solved.

Problem 2. Choose a change of variables such that the variables become separable

in the equation de _ @ —t*
4 i Tt

Solution. Polar coordinates will do.

Problem 3. Find a diffeomorphism that takes all the 1ntegral curves of the equation
dz/dt = z — 1 into parallel lines.

Solution. We solve the homogeneous eq}lation: z = Ce'. We find a particular
solution of the inhomogeneous equation : Ce' = ~1,C =e™', z = 1.

Consequently each solution of the mhomogeneous equation has the form ¢ = 1+
ae’. The mapping taking (¢,z) to (,a) is the desired diffeomorphism (a = e~*(2—1)),
since a is constant along integral curves.

Another solution: Assign the point (¢,y) to the point (¢,z), where y is the ordinate
of the point of intersection of the integral curve passing through the point (¢,z) and
the ordinate axis (Fig. 59).

Problem 4. Does every smooth direction field defined on the entire plane become
a field of parallel lines under a suitable diffeomorphism?
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Answer. No, see Fig. 60.

24 .

: .
# C

t :

Fig. 59. Rectifying integral curves Fig. 60. A nonrectifiable direction field
on the plane

Problem 5. Can a diffeomorphism of the plane map the direction field of the
differential equation # = 2% into a field of parallel lines?

Answer. It is possible, though an explicit formula is difficult to write out.

5. The Action of a Diffeomorphism on a Phase Flow

Let {¢' : M — M} be a one-parameter diffeomorphism group, and let f :
M — N be another onto diffeomorphism.

Definition. The image of the flow {¢'} under the action of the diffeomorphism
f is the flow {h': N — N}, where h' = fg'f~1.

In other words, the diagram

M L M
7l lf
N N N

is commutative for any t. It is clear that f takes the orbits of the group {g'}
into orbits of the group {h'}.

If we regard the diffeomorphism f as a “change of variables,” then the
transformation A is simply the transformation g! “written in new coordi-
nates.”

Remark. The flows {g'} and {h'} are sometimes called equivalent (or sim-
ilar or conjugate), and the diffeomorphism f is called an equivalence (or a
conjugating diffeomorphism).

Problem 1. Prove that {h'} is a one-parameter diffeomorphism group.
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Problem 2. Are the one-parameter groups of rotations of the plane and hyperbolic
rotations of it conjugate?

Let v be the phase velocity vector field of the one-parameter group {g*}
and w that of the group {h'} into which the first group is mapped by the
diffeomorphism f.

The following theorem is obvious.

Theorem. The diffeomorphism f takes the field v into the field w; conversely,
if a diffeomorphism takes v into w, then it takes {g'} into {Rh'}.

Problem 3. Can the vector fields on the line defining the following five differential
equations be transformed into one another by diffeomorphisms: ¢ = sinz, ¢ = 2sin z,
# =sin’z, & = sin 22, # = 2sinz + sin® 27

Answer. The second can be transformed into the fourth and the fifth.*®

§ 6. Symmetries

In this section we solve homogeneous and quasi-homogeneous differential equa-
tions. The solution of these equations is based on the use of one-parameter
groups of symmetries of vector fields and direction fields, which we study first
of all.

1. Symmetry Groups

Definition. A diffeomorphism g : M — M is called a symmetry of the vector
field v on M if it maps the field into itself: g,v = v. We also say that the field
v is wnvariant with respect to the symmetry g.

Ezample. A rotation of the plane about zero is a symmetry of the Euler field
z10/0zy + 220/0x, (whose vector at the point x is v(x) = = (Fig. 61)).

Problem 1. Suppose a diffeomorphism takes the phase curves of a vector field into
one another. Is it a symmetry of the field?

Answer. Not necessarily.

Definition. A diffeomorphism ¢ : M — M is called a symmetry of a direction
field on M if it maps this direction field into itself; the field is then said to be

1% The fifth case is extremely difficult!
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Fig.61. The Euler field

invariant with respect to the symmetry. The integral curves of the field map
into one another under the action of a symmetry.

Ezample. The direction field of the equation & = v(t) in the extended phase
space is invariant with respect to translations along the z-axis (Fig. 4 on p.
17 above), and the field of the equation ¢ = v(x) is invariant with respect to
translations along the t-axis (Fig. 6 on p. 19).

Problem 2. Supppose a diffeomorphism maps the integral curves of a direction
field into one another. Is it a symmetry of the direction field?

Answer. Yes.

A field is said to be invariant with respect to ¢ group of diffeomorphisms
if it is invariant with respect to each transformation of the group. In this case
we say that the field admits this symmetry group.

Ezample. The Euler field on the plane admits, among others, the following four
symmetry groups: the one-parameter group of dilations (z ~— e'z), the one-
parameter group of rotations through the angle ¢, the one-parameter group of
hyperbolic rotations, and the group of all linear transformations of the plane
GL(2,R).

All the symmetries of a given field form a group (prove this!).
Problem 8. Find the group of all symmetries of the Euler field on the plane.

Answer. GL (2, R).

2. Application of a One-parameter Symmetry Group to Integrate
an Equation

Theorem. Suppose a one-parameter group of symmetries of a direction field
on the plane is known. Then the equation defined by this direction field can
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be integrated explicitly in a neighborhood of each nonstationary point of the
symmetry group.

A point is called nonstationary for a transformation group if not all of the
transformations of the group leave it fixed.

If the group consists of translations along a line, the equation with this
symmetry group was solved in § 1, p. 18 (Barrow’s formula). We shall show
that the general case reduces to this one by a suitable diffeomorphism (i.e.,
by an intelligent choice of local coordinates on the plane).

Lemma. In a neighborhood of every nonstationary point of action of a one-
parameter group of diffeomorphisms on the plane one can choose coordinates
(u,v) such that the given one-parameter diffeomorphism group can be written
in the form of a group of translations:

g°(u,v) = (u +s,v) for sufficiently small |ul, |v], |s].

This formula says that the coordinate v indexes the orbits of the given
group, and the coordinate u on each orbit is simply the time of the motion
(measured from some line in the plane).

Proof. Through the given point O we pass a line I' intersecting transversally
{at a nonzero angle) the phase curve {¢*0} passing through the point (Fig.
62). Let v be the coordinate of a point y(v) on this line, measured from
the point 0. Consider the mapping @ of the (u,v)-plane into our plane that
takes the point with coordinates (u, v) to the point g*vy(v). This mapping is a
diffeomorphism of a neighborhood of the point (0,0) onto a neighborhood of
the point O. Therefore (u,v) are local coordinates. In (u,v)-coordinates the
action of ¢° assumes the required form, since ¢g®g* = ¢g°**. O

The theorem follows from the lemma, since in the (u, v)-coordinate system
the slope of the given direction field is independent of w.

T gUy(v)

P
g g‘D

Fig. 62. Rectification of a one-parameter diffeomorphism group

Remark. This proof also gives an ezplicit method of integrating an equation;
in the coordinates of the lemma the equation assumes the form dv/du = w(v)
(the line I must be taken nontangential to the direction of the given field
at 0). In practice it is not always convenient to use just these coordinates.
It suffices that the lines v = const be the orbits of the given one-parameter
diffeomorphism group; as the other coordinate one can take any function of
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u instead of u itself, say z. All that matters is that the transformations ¢*
map the lines z = const into one another. In the (z,v)-coordinate system the
original direction field defines an equation with separable variables dv/dz =

w(v)f(z), where f(z) = du/d=.

Problem 1. Suppose a one-parameter group of symmetries of a direction field in
an n-dimensional domain is known. Reduce the problem of integrating the corre-
sponding differential equation to finding the integral curves of a direction field on a
domain of dimension n — 1.

Hint: The space of orbits of the symmetry group has dimension n — 1.

3. Homogeneous Equations

Definition. An equation is called homogeneous if the direction field defining it
on the plane is homogeneous, i.e., invariant with respect to the one-parameter
group of dilations, ¢°(z,y) = e*(z,y) (Fig. 63).

The domain of definition of such a field is not necessarily the entire plane:
it suffices that this field be defined on some domain that is invariant with
respect to dilations (for example, in a sector).

Fig.63. The direction field of a homogeneous equation

Problem 1. Which of the following equations are homogeneous: dy/dz = y/z,
dy/de = z/y, dy/de =Inz —Iny (z > 0,y > 0)?

Answer. All three.

Theorem. A homogeneous equation dy/dz = F(z,y) can be reduced to an
equation with separable variables by the substitution y = vz (i.e., by passing
to (z,v)-coordinates) in the domain x > 0.

Proof. The orbits of the group of dilations are the rays passing through the
origin (Fig. 64). As the line I' we take the straight line + = 1 with the
usual parameter y on it. The coordinates u and v exhibited in the lemma are
u=lInz, v=y/z.
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The variables are separable in (z,v)-coordinates by the remark in Sect.
2. |

Problem 2. Solve the equation dy/dz = y/z + v*/2*, =z > 0.

Solution. dy = vdz + ¢ dv, dy/de = v + zdv/dz, xdv/dz = v?, =1/v =Inz + C,
y=-—z/(lnz+C).

If K is an integral curve of a homogeneous equation, then the curve e’ K
homothetic to it is also an integral curve (Fig. 65). Thus to study all the
integral curves of a homogeneous equation it suffices to sketch one curve in
each sector of the plane.

y

0 — K
™~~~ \
N e’k
Fig. 64. Coordinates for solving a ho- Fig.65. The integral curves of a ho-
mogeneous equation mogeneous equation

Problem 3. Sketch the integral curves of the equation dy/dx = 2y/z + y* /2%

Answer. See Fig. 65.

Definition. A function f is called homogeneous of degree r if it satisfies the
relation

fle*z) = €™ f(x) (1)
identically.

In other words a homogeneous function of degree r is a common eigenvector
of all the linear operators (e®)* with eigenvalues .

The operator g* (action of the diffeomorphism ¢ on a function) is defined
in § 5, p. 58.

Ezample. Let us draw the line p + ¢ = r in the (p, ¢)-plane. A polynomial
>~ apqxPy? is homogeneous of degree r if and only if the exponents of each
monomial occurring in it with nonzero coefficient lie on this line (called a
Newton diagram).

Theorem (Euler). A necessary and sufficient condition for a function f to be
homogeneous of degree r is that it satisfy the Euler relation Y ¢;0f/0x; = rf.
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The Euler relation says that f is an eigenvector of the operator of differ-
entiation along the Euler field depicted in Fig. 61 (the phase velocity field of
the group of dilations e®) with eigenvalue r.

Proof. The Euler relation is obtained by differentiating the definition (1) of
a homogeneous function with respect to s at s = 0. Relation (1) is obtained
from Euler’s relation by integrating the differential equation with separable
variables that is defined by the Euler relation on each orbit of the group of
dilations: df /dz = rf/z. O

A necessary and sufficient condition for the direction field of the differen-
tial equation dy/dz = F(z,y) to be homogeneous is that the right-hand side
be a homogeneous function of degree zero. For example the ratio of any two
homogeneous polynomials of the same degree will do.

Remark. Passing from (z, y)-coordinates to the coordinates (z,v = y/z) in a domain
where z # 0 and to coordinates (v = z/y,y) in a domain where y # 0 is called the
o-process or inflating the point 0.

Fig. 66. The o-process

This construction has a simple geometric meaning: it denotes the passage from
the plane to the surface obtained from it by removing the origin and gluing in its
place the whole projective line. Here is how this is done. Consider the mapping
(fibration) a : (R?\ 0) — RP! that defines the projective line!”.

The mapping a assigns to a point of the plane the line joining that point to
the origin. The graph of the mapping a (Fig. 66) is a surface S in the space (R?\
0) x RP". The imbedding of R* \ 0 in R? imbeds this graph in the product M =
R* x RP? (differomorphic to the interior of an anchor ring).

Problem 4. Prove that the closure of a graph in M is a smooth surface.

Hint: The equations y = vz and ¢ = uy define smooth surfaces.

This surface ¥ (the closure of the graph) consists of the graph itself and the line
0 x RP! (diffeomorphic to a circle). The projection of M onto the first factor R*
defines a smooth mapping of the surface X' onto the plane. This mapping is called a
deflation. Tt takes the entire circle 0 x RP? to the point 0 and maps the remaining
part of X (i.e., the graph) diffeomorphically onto the plane with a point removed.

Problem 5. Prove that the surface X' is diffeomorphic to a Mdbius band.

17 The projective line is the set of all lines in the plane passing through the origin. In
general the projective space RP™™! is the set of lines passing through the origin

in R™.
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Any geometric object having a singularity at the point 0 can be lifted from the
plane with a point removed to X using the diffeomorphism exhibited above. When
this is done, it turns out that the singularities become simplified in the lifting (to
.

Repeating the inflation process, it is possible to resolve the singularity. For
example, one can turn any algebraic curve with a singularity at the point 0 into a
curve having no singularities except ordinary self-intersections.

Problem 6. Resolve the singularity of the semicubical parabola z* = 3.

Answer. See Fig. 67.

<K

Fig. 67. Resolving a singularity

Inflation about a singular point as center is also useful in studying vector fields
and direction fields. We have seen above that in the case of a homogeneous direction
field the very first inflation leads to an equation with separable variables.

Problem 7. Prove that a smooth vector field on the plane equal to 0 at the origin
can be lifted to the surface X as a field that can be smoothly extended to the circle
glued in during the o-process.

4. Quasi-homogeneous Equations

Let us fix a system of linear coordinates (z,y) in the plane and two real
numbers o and f.

Definition. A group of quasi-homogeneous dilations of the plane is a one-
parameter group of linear transformations

9°(z,y) = (e*z,¢7y).

The numbers « and 3 are called the weights of the variables 2 and y.
(the terms weighted-homogeneous and generalized-homogeneous are also used
along with guasi-homogeneous.) Notation: a = degz, 8 = degy.

If @« = 8 =1, then {¢°} is the usual dilation group.

Definition. An equation is called quasi-homogeneous (with weights a and 3)
if the direction field that defines it in the plane is invariant with respect to
the group of quasi-homogeneous dilations.
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Problem 1. Choose the weights so that the direction field of the equation dy/dz =
—z/y® is quasi-homogeneous.

Answer. a =2,08 =1.

Theorem. A quasi-homogeneous equation dy/dr = F(x,y) with weights deg o
and deg B can be reduced to an equation with separable variables by passing to
the coordinates (z,y*/zP) in the domain = > 0.

Proof. The orbits of the group of quasi-homogeneous dilations are halves of
“parabolas” y* = Cz? (Fig. 30, p. 40). We choose as the line I" (Sect. 2) the
line z = 1 with the parameter y on it. Quasi-homogeneous dilations map the
lines parallel to I' into parallel lines. Therefore the theorem follows from the
lemma of Sect. 2 and the remark following it. d

We now explain how to tell whether an equation is quasi-homogeneous or
not from its right-hand side.

Definition. A function f is called quasi-homogeneous of degree r if it satisfies
the identity f(e**z,ef*y) = e f(x,y).

In other words f is a common eigenvector of the operators (g°)* (where
¢° is a quasi-homogeneous dilation) with eigenvalues e™.

Ezample. A polynomial is quasi-homogeneous of degree r (with weights o and
B) if and only if the exponents of the monomials zPy? occurring in it lie on
the Newton diagram ap + 8¢ = r (Fig. 68).

i‘Z

™

N
™

(N T2

Fig. 68. The Newton diagram of a quasi-homogeneous function

The quasi-homogeneous degree of a quasi-homogeneous polynomial is also
called its weight. For example, the weight of = being a and that of y being
B, the weight of z2y® will be 2a + 38, etc. The assignment of weights is also
called grading.

Problem 2. Choose the weights of the variables so that the polynomial iy + ot
will be quasi-homogeneous of degree 1.

Answer. degy = 1/4, degz = 3/8.
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Problem 8. Prove that a function f of the variables x; with weights «; is quasi-
homogeneous of degree r if and only if it satisfies the Euler relation y_ eiz:0/0z; =

rf.

Remark. A vector field ) a;2:9/0z; is called a quasi-homogeneous Euler field (it
is the phase velocity field of a group of quasi-homogeneous dilations). The Euler
relation says that f is an eigenvector of the operator of differentiation along the
Euler field with eigenvalue r.

Theorem. A necessary and sufficient condition for the direction field of the
equation dy/dr = F(z,y) to be quasi-homogeneous 1s that the right-hand side
be quasi-homogeneous and its quasi-homogeneous degree be equal to the differ-
ence of the degrees of y and x:

deg F' = degy —degz = § — a.

Proaf. Under the action of quasi-homogeneous dilations ¢°® the quantity y, and
consequently dy also, is increased by a factor of e#* and = (and consequently
also dz) by a factor of e®°. For a direction field to map into itself under such a
dilation it is necessary that the value of F' at the new point be obtained from
the value at the old point by multiplying by the same factor by which dy/dz
(or y/z) is multiplied, i.e., e(F=)s, O

Remark. Thus in calculating the weights one may deal with dy/dz as if it were
a fraction, regarding d as a “coefficient” of weight zero. Then the weight of dz
is a, that of dy is 3, and the weight of dy/dz is § — a.

The condition for quasi-homogeneity of an equation is that the weights of
the left- and right-hand sides be the same.

Problem 4. Choose the weights of the variables so that the differential equation of
the phase curves of Newton’s equation # = C'z* is quasi-homogeneous.

Solution. The equation of the phase curves is dy/dz = C:ck/y. Consequently 23 =
(k + De.

5. Similarity and Dimensional Considerations

The quasi-homogeneous equations with phase spaces of any dimension are
defined in analogy with what was done above for the two-dimensional case.
Quasi-homogeneous vector fields are defined by the condition degd/dz; =
—deg z;. For example the Euler field has degree 0.

Problem 1. Prove that if f is a quasi-homogeneous function of degree r and v
a quasi-homogeneous field of degree s, then the derivative of f along v is a quasi-
homogeneous function of degree » + s.

Problem 2. Let 2 = P, y = (J, where P and @) are homogeneous polynomials of
degree m. Prove that if any of the phase curves is closed and is traversed in time
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T, then when dilated by a factor of e® it yields a closed phase curve with period of
revolution ¢*( =™,

Problem 3. Let # = v(z), where v is a quasi-homogeneous field of degree r.
Prove that if T is the period of revolution over a closed curve 4 and ¢° is a quasi-
homogeneous dilation, then ¢g°+ is also a closed phase curve and its period of revo-
lution is e™*"T.

Problem 4. How does the period of oscillation of the “soft pendulum” z = y,
y= —z8 depend on the amplitude zmax?

Answer. It is inversely proportional to the amplitude.

In applying similarity considerations one frequently encounters second
derivatives as well as first derivatives. Let us see how they behave under quasi-
homogeneous dilations. The following result is obvious.

Theorem. Under a quasi-homogeneous dilation (z,y) — (e*°z,eP%y) the
graph of the function y = @(z) transforms into the graph of the function
y = &(x), for which
d*o d*
(ﬂ_k")’——f-(old point).

W(new point) = e 7

In other words d*y/(dz)* transforms like y/z* (which explains the con-
venience of the Leibniz notation for the derivative). Consequently in order
to tell whether an equation containing derivatives of higher order is quasi-
homogeneous, it suffices to ascribe a weight of 0 to the letter d and require
that the weights of the right- and left-hand sides be the same.

Problem 5. Prove that if a particle in a force field with homogeneous degree m
traverses a trajectory 7 in time T, then the same particle will traverse a homothetic

trajectory My in time T’ = A —™/2T,

Solution. Newton’s equation d®z/dt> = F(z), in which F is homogeneous of degree
m transforms into itself under suitable quasi-homogeneous dilations: the weights a
(for ) and B (for t) must be taken so that a — 28 = ma. We takea =2, 8 =1—-m.
To the dilation ' = Az corresponds the time T/ = A1 ~™/2T,

Problem 6. Prove that the squares of the periodic times of similar trajectories in

a gravitational field have the same ratio as the cubes of their linear dimensions'®.

Solution. From the preceding problem with m = —2 (the law of universal gravita-
tion) we obtain T’ = X3/2T,

Problem 7. Explain how the period of oscillation depends on the amplitude in the
case of a restoring force proportional to the displacement (a “linear oscillator”) and

18This is a special case of Kepler’s Third Law, in which the trajectories are not
assumed to be similar. The law of universal gravitation was found from the two
preceding problems; Kepler’s law was known earlier.
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in the case of a restoring force proportional to the cube of the displacement (a “soft”
force).

Answer. For the linear pendulum the period is independent of the amplitude; for
the soft pendulum it is inversely proportional to the amplitude.

. . 0 ) ..
Problem 8. The equation of heat conduction has the form —6-1; = agTZ (t is time,
z is distance, and u is the temperature). It is known that as a result of annual
temperature variations the earth freezes to a depth of one meter in a certain place.
To what depth would it freeze as a result of daily temperature variations of the same

amplitude?

Solution. The equation transforms into itself under the quasi-homogeneous dila-
tions (¢,z) = (e*°t,e’x). Consequently reducing the period by a factor of 365 leads

to a reduction in the depth of freezing by a factor of +/365. Hence the answer is 5
cm.

The use of similarity considerations originated with Galileo, who explained
the limitations in size of land animals with it. The weight grows in proportion
to the cube of the linear dimension and bone strength in proportion to the
square. For marine animals there is no such restriction, and whales attain a
much greater size than, say, elephants. Numerous applications of these con-
siderations in various areas of natural science bear such names as: similarity
theory, dimension theory, scaling, self-modelling, and others.

6. Methods of Integrating Differential Equations

There are several other techniques that sometimes make it possible to integrate
a differential equation explicitly. For example, consider the equation

dy _ P(z,y)

de  Q(z,y)

Let us rewrite it in the form
Qdy—~Pdx =0

(a one-form equal to zero on vectors tangent to the integral curves). If the
form is the total differential of a function,

Qdy — Pdz = dF,

then the function F' is constant along each integral curve.

Knowing the level lines of the function F', one can find the integral curves.
It even suffices that the form Q dy — P dx become an exact differential when
multiplied by a suitable function (after all, multiplying P and @ simulta-
neously by the same function does not alter the original equation). Such a
function is called an integrating factor. An integrating factor always exists (in
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a neighborhood of a point where @) is nonzero), but finding it is not any easier
than solving the original equation.

The basic method of solving and studying differential equations is to select
diffeomorphisms (changes of variables) that reduce the corresponding direc-
tion field, vector field, or phase flow to the simplest form. For example, for
homogeneous and quasi-homogeneous equations such changes of variable were
exhibited above.

There is a variety of techniques for finding changes of variables to integrate
differential equations of special forms. Lists of such equations and techniques
can be found in problem books (cf., for example, Problems in Differential
Equations, by A. F. Filippov, (Freeman, San Francisco, 1963), §§ 4, 5, 6, 8,
9, 10) and in handbooks (cf., for example, the book of E. Kamke Differen-
tralgleichungen reeller Funktionen, dritte Auflage, (Chelsea, New York, 1959),
which contains about 1600 equations). Anyone can enlarge these lists as fol-
lows: take any equation that has already been solved and carry out any change
of variables in it. The masters of integrating differential equations (Jacobi, for
example) attained great success in the solution of specific applied problems
using this technique. For the last decade we have witnessed an unexpected re-
vival of interest in certain particular equations that can be integrated exactly,
which have turned out to be connected with delicate questions of algebraic
geometry on the one hand and with questions of the physics of particle so-
lutions of partial differential equations (solitons, instantons, and the like) on
the other.

However all these methods of integration have two essential defects. First,
even an equation as simple as dz/dt = 2% —t cannot be solved by quadratures,
i.e., the solution cannot be expressed as a finite combination of elementary
and algebraic functions and their integrals!®. Second, a cumbersome formula
that gives a solution in explicit form is frequently less useful than a simple
approximate formula. For example, the equation 2 — 3z = 2a can be solved
explicitly by Cardan’s formula z = ¥/a + vVaZ — 1+ ¥/a — Va? — 1. However,
if we wish to solve this equation for a = 0.01, it is more useful to observe
that for small a it has approximately the root z = —(2/3)a — a circumstance
that is not at all obvious from Cardan’s formula. Similarly the pendulum
equation & 4+ sinz = 0 can be solved in explicit form using (elliptic) integrals.
However it is simpler to solve the majority of questions about the behavior of
the pendulum starting from the approximate equation for small oscillations
(242 = 0) and from qualitative considerations that make no use of the explicit
formula (cf. § 12).

The exactly solvable equations are useful as examples, since one can often
observe phenomena on them that also hold in more complicated cases. For
example, studying the exact solution of the equation & = ka makes it possible

¥ The proof of this theorem of Liouville is similar to the proof of the unsolvability
of equations of degree 5 in radicals (Ruffini-Abel-Galois); it is deduced from the
fact that a certain group is not solvable. In contrast to the usual Galois theory,
the discussion here involves an unsolvable Lie group rather than a finite group.
The study of these questions is called differential algebra.
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to prove a uniqueness theorem for the general equation with smooth right-
hand side (cf. § 2, Sect. 3). Other examples are provided by the so-called
self-modelling solutions of the equations of mathematical physics.

Problem 1. Find solutions of Laplace’s equation®® in R? and R® depending only
on the distance from the point to the origin.

Answer. C'In1/r + const and C/r + const (Newtonian potentials; strictly speaking
A(ln1/r) = —276 in R? and A(1/r) = —476 in R® (why?)).

Whenever an exactly solvable problem is found, it becomes possible to
carry out an approximate study of nearby problems using the methods of
perturbation theory.

However it is dangerous to extend results obtained in the study of an
exactly solvable problem to nearby problems of a general form: frequently an
exactly integrable equation can be integrated only because its solutions behave
more simply than those of nearby nonintegrable problems. For example, we
were able to integrate the equation of the phase curves of the Lotka-Volterra
model (Sect. 7 of § 2) only because they are all closed curves (whereas for
the majority of nearby nonintegrable models the majority of phase curves are
nonclosed spirals).

20The Laplacian operator in Euclidean space R™ is the operator A = divgrad =
5~ 8%/0z} (z; are Cartesian coordinates). Laplace’s equation has the form Au = 0.
The solutions of this equation are called harmonic functions. For example a steady-
state temperature distribution is given by a harmonic function. The Laplacian
operator measures the difference between the average value of a function in a
small sphere and its value at the center of the sphere. The average of a harmonic
function over any sphere is exactly equal to its value at the center of the sphere
(prove this!).



Chapter 2. Basic Theorems

In this chapter we state theorems about the existence and uniqueness of so-
lutions and first integrals and about the dependence of the solutions on the
initial data and parameters. The proofs are discussed in Chapt. 4; in the
present chapter we discuss only the connections among these results.

§ 7. Rectification Theorems

In this section we state the fundamental theorem on rectification of a direction
field and deduce from it theorems on existence, uniqueness, and differentiable
dependence of the solution on parameters and initial conditions, theorems on
extension, and theorems on local phase flows.

1. Rectification of a Direction Field
Consider a smooth direction field in a domain U of n-dimensional space.
Definition. A rectification of a direction field is a diffeomorphism mapping

it into a field of parallel directions (Fig. 69). A field is said to be rectifiable if

there exists a rectification of it.
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Fig. 69. Rectification of a direction field

Theorem 1 (Fundamental). Every smooth direction field is rectifiable in a
neighborhood of each point. If the field is r times continuously differentiable
(of class C™, 1 < r < o0), then the rectifying diffeomorphism can also be taken
from the class C".
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Ezample. The direction field of the equation & = = (Fig. 69) can be rectified by
the diffeomorphism (¢,z) — (¢,y = ze™?). Indeed this diffeomorphism maps
the integral curves z = Ce' in the (¢,z)-plane to the parallel lines y = C in
the (¢,y)-plane.

Problem 1. Rectify the direction fields of the equations ¢=tand % =2%ina
neighborhood of the origin.

Problem 2. Is every smooth direction field in the plane globally rectifiable?
Answer. No.

Problem 3. Suppose a (smooth) field of two-dimensional planes is given in R® (a
plane is attached at each point). Is it always possible to rectify this field (transform
it into a field of parallel planes by a suitable diffeomorphism)?

Hint: A rectifiable field is a field of planes tangent to a family of surfaces.

Answer. No. Consider, for example, the field of planes given by the equation y dx +
dz = 0 (a vector belongs to a plane of this field if this 1-form vanishes on it). There
is no surface tangent to the planes of this field.

The proof of the fundamental theorem will be given in § 32. Here are two
restatements of it.

Theorem 2. All smooth direction fields in domains of the same dimension
are locally diffeomorphic (can be mapped into each other by a diffeomorphism).

1 = 2: By the fundamental theorem all fields are locally diffeomorphic
to one standard field. 2 = 1: The property of being locally diffeomorphic to
any field implies, in particular the property of being locally diffeomorphic to
a standard field, i.e., local rectifiability.

Theorem 3. The differential equation £ = v(t, x) with smooth right-hand side
v 18 locally equivalent to the very simple equation dy/dr = 0.

In other words, in a neighborhood of each point of the extended phase space
of (t,) there ezists an admissible coordinate system (7,y) (transition to which
18 a diffeomorphic change of variables) in which the equation can be written
in the very simple form dy/dr = 0.

1 = 3: We first rectify the direction field v and then consider Cartesian
coordinates in which the time axis 7 is parallel to the lines of the rectified
direction field. 3 = 1: Every direction field can be written locally as the
direction field of a suitable differential equation. Passing to a local coordinate
system in which the equation has the form dy/dr = 0 rectifies the given field.
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Problem * 4. Is it possible to rectify the direction field of the equation & = v(¢,z)
on the whole extended phase space R x R™ when the right-hand side is smooth and
defined on this entire space?

Problem 5. Prove that the coordinate system in Theorem 3 can be chosen so that
time is left fixed (r = ¢).

Problem 6. Rectify the direction field of the equation ¢ = 4t on the entire plane
by a time-preserving diffeomorphism (¢, z) — (¢, y(t,z)).

Problem 7. Is it possible to rectify the direction field of the equation & = 2? on
the entire plane by a time-preserving diffeomorphism?

Answer. No.

The fundamental theorem on rectification was essentially discovered by
Newton. In his famous “second letter” to Oldenburg, the Secretary of the
Royal Society (24 October 1676), Newton encoded the method of proving it
in the form of a second (long) anagram (Newton preferred to conduct his
correspondence with Leibniz, who lived in Germany, through Oldenburg). In
modern terms Newton’s method consists of the following.

Suppose given an equation & = v(t,z). We shall seek a rectifying diffeo-
morphism y = h(t, z) for which y =  when t = 0 (time is not changed). From
the condition §y = 0 we obtain for h the equation dy/dt + (Oy/dz)v = 0. We
expand v and h in series of powers of ¢

h=h0+th1+"', 'U=’l)0+t’l)1+"‘.

Then hyo(z) = z, and so Oh/Oz = E 4+ thy + - --. We then substitute the series
for h and v into the equation for h. We then expand the left-hand side in a
series in t. We then set the coefficients of t°,t!, ... equal to zero in this series
(based on the uniqueness of the coeflicients of a Taylor series). We obtain
successively

h1+’00=0, 2h2+h1'l)0+’l)1=0,....

The equation for hy contains, besides hy, only the derivatives of the h,, with
smaller indices. Therefore we can sequentially (“recursively”) find first Ay,
then h, and hence all the terms of the series being sought.

This is Newton’s method of integrating differential equations by the use of
series. To apply this method one had to know how to expand given functions
in series. To do that Newton had to discover his binomial formula (1 + t)? =
l+at+---.

Problem 8. Solve the equation £ = x by Newton’s method with the initial condition
#(0) = 1.

Solution. ¢ = 1+tp1 +t2 2+ -+ = 1 + 202t +3pat” + - = L+ @1t + pat® + -+,
and consequently ¢1 = 1, g2 = ¢1/2, 3 = 2/3,..., whence ¢ = 1/k!. This is the
way in which the series for the exponential was originally discovered.
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All the subsequent development of analysis, even today, follows the path
marked out by Newton.

The proof of the convergence of the series constructed by Newton was
much studied in the 19th century. The convergence of the series for k in the
analytic case was proved by Cauchy!. Cauchy’s theorem was extended to the
case of finite smoothness by Picard. The proof is discussed in § 32.

The fundamental Theorem 1 is an assertion of the same character as the theo-
rems of linear algebra on the reduction of quadratic forms or the matrices of linear
operators to normal form. It gives an exhaustive description of the possible local
behaviors of direction fields, reducing all questions to the trivial case of a parallel
field.

A related theorem of analysis is the implicit function theorem. A smooth map-
ping f : R™ — R" is called nondegenerate at the point 0 if the rank of the derivative
at this point is as large as possible (i.e., the smaller of m and n). Suppose f(0) = 0.

Two such mappings f and g are called locally equivalent at the point 0 if one of
them maps into the other under the action of diffeomorphisms of the domain and
target spaces that leave 0 fixed: h : R™ - R™, k: R" - R", foh=kog.

In other words two mappings are locally equivalent if under suitable choices of
admissible local coordinate systems in the domain and target space (with origin at
0) they can be written by the same formulas.

Implicit Function Theorem. In some neighborhood of a nondegenerate point any
two smooth mappings (of spaces of fized dimensions m and n) are equivalent.

In particular every mapping is equivalent to its linear part at a nondegenerate
point. Therefore the theorem just stated is one of numerous theorems on lineariza-
tion.

As a local normal form to which the mapping f reduces by diffeomorphisms h
and k it is natural to take the following simplest one:

yi=a; fori<r, y;=0fori>r

where r = min(m, n) is the rank of the derivative of f at zero, z; are the coordinates
of a point in the domain space, and y; are coordinates of a point in the target space.
In other words, f is an imbedding if the dimension of the domain is less than that
of the target space and a fibration otherwise.

The reader accustomed to more complicated statements of the implicit function
theorem will easily verify that these more complicated statements are equivalent to
the simple geometric statement given here.

All the theorems just listed on normal forms describe the orbits of the actions of
various groups ( “changes of variable”) on sets (matrices, forms, fields, and mappings,
respectively).

2. Existence and Uniqueness Theorems

The following corollary is a consequence of the fundamental Theorem 1 on
rectification.

! Euler had already pointed out the necessity of a proof of convergence, noting that
the series obtained by a similar route in other problems were sometimes divergent.
Euler sought the solution of the equation dx/dt = (z — t)/t* equal to zero for
t = 0 in the form of a series in ¢. The result was the everywhere-divergent series

=Y (k- 1)t~
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Corollary 1. Through each point of a domain in which a smooth direction
field is defined there passes an integral curve.

Proof. Consider a diffeomorphism that rectifies the given field. The recti-
fied field consists of parallel directions. In that field an integral curve passes
through each point (a straight line, to be specific). The diffeomorphism in-
verse to the rectifying diffeomorphism maps this line into the desired integral
curve. 0

Corollary 2. Two integral curves of a smooth direction field having a point
i common coincide in a neighborhood of that point.

Proof. For a rectified field this is obvious, but a rectifying diffeomorphism
maps integral curves of the original field into integral curves of the rectified
field. 0

Corollary 3. A solution of the differential equation & = v(t,z) with the initial
condition (to, o) in the domain of smoothness of the right-hand side exists and
is untque (in the sense that any two solutions with a common initial condition
cowncide in some neighborhood of the point tg).

Proof. We apply Corollaries 1 and 2 to the direction field of the equation in
the extended phase space. The result is Corollary 3. O

Remark. In Corollary 3 and in what follows z is a point of a phase space of
any (finite) dimension m. This corollary is called an ezistence and uniqueness
theorem for solutions of a system of m first-order equations.

3. Theorems on Continuous and Differentiable Dependence of the
Solutions on the Initial Condition

Consider the value of the solution ¢ of the differential equation & = v(¢,z)
with initial condition ¢(ty) = z¢ at the instant of time ¢ as a function @ of
(to,zg;t) with values in the phase space.

The following result is a consequence of the fundamental Theorem 1 on
rectification.

Corollary 4. The solution of an equation with smooth right-hand side depends
smoothly on the initial conditions.

This means that the function & shown above is defined, continuous, and
smooth in a neighborhood of each point (tg,zq;t0) (of class C" if v is of class
cr).
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Proof. For the simplest equation (v = 0) this is obvious (® = zo). The general
equation reduces to this one by a diffeomorphism (the details are left to the
reader). U

Remark. The theorem on differentiability with respect to the initial condi-
tion provides a quite efficient method of studying the influence exerted on
the solution by a small perturbation of the initial condition. If the solution is
known for some initial condition, then to determine the deviation of the solu-
tion with a nearby initial condition from the given “unperturbed” solution a
linear-homogeneous equation is obtained in first approximation (the equation
of variations). The “perturbation theory” that arises in this way is but one of
the variants of Newton’s series method.

Problem 1. Find the derivative of the solution ¢ of the equation # = z® 4 sint
with respect to the initial condition ¢(0) = a for a = 0.

Solution. By Corollary 4 the solution can be expanded in a Taylor series in a:
@ = @o + ap1 + - - (the dots stand for an infinitesimal of higher order than first in
a). Here ¢o is the unperturbed solution (with zero as initial condition), and ¢ is
the unknown derivative. For our equation o = 0. Substituting the series into the
equation and equating the terms of like degree in a on the left- and right-hand sides
(by the uniqueness of Taylor series), we obtain for ¢; the equation of variations
@1 = 1 sint with initial condition ¢1(0) = 1 (why?). Hence the answer is e! =",

Problem 2. Find the segment of a phase curve of the generalized Lotka-Volterra
system z = z(1 — yagz‘,y)), y = y(z — 1) passing through the point z = 1, y = ¢
(with error of order ¢°). )

Solution. The equation of the phase curves is dy/dz = y(z — 1)/(2(1 — ya)). The
unperturbed solution is y = 0. The equation of variations is dy/dz = y(z — 1)/=.
The answer is y = ee® ! /a independently of the form of the function a.

Problem 3. Find the derivative of the solution of the pendulum equation 6 =—sinf
with initial condition 6(0) = a, 8(0) = 0 with respect to @ at a = 0.

Solution. To apply Corollary 4 one must write the equation as a system of equations.
The resulting system of equations of variations can be written in the form of a single
second-order equation. It is convenient to write out only the second-order equations
equivalent to these systems and their solutions rather than the systems themselves.
The unperturbed solution is § = 0. The equation of variations is the equation for
small oscillations of the pendulum: 8 = —@. The answer is cost.

Caution. In using the approximate formulas for the perturbed solutions ob-
tained through the equation of variations, one must not forget that they give
a good approximation for fixed ¢ and small deviation ¢ of the initial condition
from the unperturbed condition: the error for fixed ¢ is O(e?), but nonuni-
formly as t — oo (the constant in O increases with t).

For example, the formula obtained in Problem 2 would give an incorrect
picture of the form of the phase curves of the usual Lotka-Volterra model if
we had tried to apply it to describe the form of these curves in the large (as
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we know from § 2, these curves are closed; the part of the curve far from the
z-axis is by no means described by the solution to Problem 2).

In exactly the same way the solution of the full pendulum equation with
initial condition (a,0) is near the solution of the equation of small oscillations
(with the same initial condition) for fixed ¢: the difference between them is
of order O(a®) (why?). However for any fixed a # 0 the error increases as
t increases and for sufficiently large ¢ the approximate solution loses contact
with the perturbed solution (because of the difference of the periods of small
and true oscillations). The limiting passages ¢ — oo and ¢ — 0 cannot be
interchanged!

Problem 4. Find the first term (linear in a) of the Taylor series expansion of
the solution of the equation of the soft pendulum # = —2® with initial condition
z(0) = 0, (0) = a.

Solution. The unperturbed solution is « = 0. The equation of variations is ¢ = 0.
The initial condition is ¢1(0) = 0, ¢1(0) =1 (why?). The answer is z &~ at.

It follows from the differentiability theorem that the error in this approximate
formula is at most O(a?) for each fixed t. However for any fixed a # 0 the approxima-
tion becomes completely unsatisfactory for sufficiently large ¢. This can be seen, for
example, from the fact that the approximate solution grows without bound, and the
actual solution describes periodic oscillations of an amplitude that is small together
with a (the size of the amplitude is of order /a by similarity considerations).

To estimate the range of applicability of the approximate formula we can com-
pute the following approximations: £ = at 4+ a®@s + a®p3 + ---. Substituting into
the equation, we obtain a2¢2 + a3¢3 + .o = —at® 4+ .. Hence p2 =0, ¢3 = —ts,
¢s = —t*/4, p3 = —t°/20, and « ~ at — a®t*/20 + ---. The second term is small in
comparison with the first if a®t*/20 < 1, ie., t € a~'/2, In other words the value
of the approximate solution must be small in comparison with the amplitude of the
true oscillation, at € v/a.

Problem 5. Prove that under this condition the relative error of the approximate
solution is indeed small.

Solution. This follows from similarity conditions. The quasi-homogeneous dilations
X = e*z, T = e *t transform the equation # = —z® into itself. The solution with
initial condition (0, a) becomes the solution with initial condition (0,4 = e**a). The
approximate solution ¢ = at becomes X ~ AT. We choose s so that A = 1. For
A =1 the solution X ~ T has small relative error when T' < 1. But dilations do
not change the relative errors. Hence the relative error of the approximate solution
z ~ at is also small for T < 1. But T = e°t,a = e ?°. Hence T <« 1 for t < a2,
Thus for small a the approximation gives a small relative error, even for very large
t, provided t is small in comparison with the large number 1/+/a.

In applications of the theory of differential equations it is always necessary to
deal with a large number of quantities, some of which are “very small” and others
“very large.” To discern what is large in comparison with what (i.e., in what order
to perform the passages to the limit) is not always easy; the study of this question
is sometimes half of the job.
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4. Transformation over the Time Interval from ¢, to ¢t

Consider the differential equation ¢ = v(t,z) with right-hand side defining a
smooth direction field in a domain of the extended phase space (of any finite
dimension 1 4+ m).

Definition. Transformation over the time interval from ty to t is the mapping
of a domain of the phase space into the phase space that assigns to the initial
condition at the instant ¢y the value of the solution with this initial condition
at the instant ¢ (Fig. 70).

Fig. 70. The transformation over the time interval from #, to ¢

This transformation is denoted gf .
In the notation of Corollary 4

91,20 = B(to, zo; t).

The following corollary is a consequence of the fundamental theorem on rec-
tification.

Corollary 5. The transformations over the time interval from ty to t for an
equation with smooth right-hand side

1) are defined in a neighborhood of each phase point xo for t sufficiently
close to tg;

2) are local diffeomorphisms (of class C” if the right-hand side is of class
C") and depend smoothly on t and ty;

3) satisfy the identity gj x = gig; = for s and t sufficiently close to to (for
all z in a sufficiently small neighborhood of the point x¢ );

4) are such that for fized £ the function p(t) = g} € 1s a solution of the
equation & = v(t, ) satisfying the initial condition p(ty) = €.

Corollary § obviously follows from the preceding corollaries. One can also
use a rectification that leaves time invariant. For the rectified equation (g = 0)
all the transformations over the time interval from ty to ¢ are identities, so
that Properties 1)-4) hold.

Let us consider, in particular, the case of an autonomous equation z =
v(z). In this case the following theorem is obvious.
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Theorem. The transformation over the time interval from ty to t for an
autonomous equation depends only on the length t — ty of the time interval
and not on the initial instant t,.

Proof. A translation of the extended phase space of an autonomous equation
along the t-axis maps the direction field onto itself and hence maps integral
curves onto one another. Under a translation by s the solution ¢ with initial
condition p(¢p) = zp maps into the solution 3 with the initial condition ¥ (¢ +
s) = 9. For any t we have 9(t 4+ s) = ¢(t). Consequently gf = gf:'_ﬁa, as
asserted. O

For brevity we shall write the mapping ¢ as ¢7. The mappings g™ have

to
the following properties:

1) they are defined for sufficiently small |7] in a neighborhood of a selected
point of the phase space;

2) they are diffeomorphisms of this neighborhood into the phase space and
depend smoothly on 7;

3) for all sufficiently small |s| and |t| and for all z in some neighborhood
of the selected point the group property g°¢lz = g*t'z holds;

4) for fixed ¢ the function ¢(t) = g*¢ is a solution of the equation # = v(z)
with initial condition ¢(0) = €.
The family {¢*} is called the local phase flow of the vector field v.

Problem 1. Assume that the equation & = v(t,z) has T-periodic coefficients (v(t+
T,z) = v(¢,z)) and that all the mappings over the time interval from ¢y to ¢ for
it are defined everywhere. Prove that the transformations over the times that are
multiples of T form a group: g&T = A* for any integer k. Which of the two following
relations is true: g57+® = A¥ g3, g(’,“T“ = g AF?

Answer. The second.

5. Theorems on Continuous and Differentiable Dependence on a
Parameter

Assume that the right-hand side of a given equation £ = v(t, z; @) depends
smoothly on a parameter a ranging over some domain A of the space R®.

The following corollary is a consequence of the fundamental Theorem 1
on rectification.

Corollary 6. The wvalue of the solution with initial condition ¢(tg) = zo
at an wnstant t depends smoothly on the initial condition, the time, and the
parameter «.

We denote this value by é(tg, xo; «; ). The corollary asserts that the func-
tion § (with values in the phase space) is defined, continuous, and smooth in a
neighborhood of each point (to,zg; o,to) of the product of the extended phase
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space, the time axis, and the domain of variation of the parameter (it is of

class CT if the right-hand side i3 of class C").

Proof. A small trick is useful here. Consider the “extended equation” & =
v(t,z; @), & = 0 with phase space of dimension m + a (where m = dim {z}).
The solution of this equation with initial condition (%o, zg;ap) is a pair (z =
©(t), @ = ag) whose first component ¢ is the solution of the original equation
for @ = ay satisfying the initial condition ¢(tg) = zo. By Corollary 4 this
pair depends smoothly on (¢g, ;¢ ap). Consequently the first component
also depends smoothly on these arguments, which was to be proved. O

Remark. This extension trick reduces the theorem on smooth dependence on
the parameter to smooth dependence on the initial conditions. Conversely,
given smooth dependence on the parameter (for a fixed initial condition), it
is easy to deduce smooth dependence on the initial condition. It suffices to
translate the equation so that the initial condition becomes the parameter
vo(t,z) = v(t,z — a).

The theorem on differentiable dependence on the parameter provides a
quite efficient method of approximately solving equations near “unperturbed”
equations for which the solution is known. It suffices to represent the solution
of the perturbed equation in the form of a Taylor series in powers of the per-
turbation, substitute this series into the perturbed equation, and equate the
coefficients of identical powers of the perturbation. The free term of the series
for the solution will be the known solution of the unperturbed equation. Re-
cursively solvable equations will then be obtained to determine the subsequent
terms. The most important of them, the equation for the first-degree terms in
the perturbation, is an inhomogeneous equation of variations (compare § 3).

The method just described is used in all applications of the theory of differ-
ential equations under the name of perturbation theory or the small parameter
method. It is one of the variants of Newton’s series method.

Problem 1. Find the derivative of the solution of the logistic equation ¢ = z(a —z)
with initial condition #(0) = 1 with respect to the parameter a at a = 1.

Solution. Let a = 1 + ¢, and let the perturbed solution be & = @o + ep1 + O(e?).
Upon substituting into the perturbed equation we obtain the equation

fot+epr+- o =(pot+epr 4+ )1+e—po—epr—--0)

The unperturbed equation ¢ = z(1—=z) has solution ¢y = 1. Equating the coefficients
of £, we obtain the equation of variations ¢; = 1 — ¢ with the initial condition
©1(0) = 0 (why?). Therefore the solution is 1 — e™*.

Remark. A physicist would state this computation as follows. It is clear that for
a = 1+ ¢ the solution 2 = 1 4 y differs only a little from 1. Let us ignore the
difference between the @ in front of the parenthesis in the equation and 1. We then
obtain the approximate equation # ~ a — 2, y ~ ¢ — y, whence y = (1 ~ e7*).
Traditional mathematical “rigor” forbids us to neglect the difference between
the first  in the equation and 1 while not neglecting this difference for the second
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@. Actually this “physical” reasoning is correct — it is simply a convenient shorthand
for the calculations given above.

Problem 2. Find the derivative of the solution of the pendulum equation with
constant torque, # = a —sin@ at the instant a, for @ = 0. At the initial instant the
pendulum is at rest (§ =60 = 0).

Solution. 0 =ay+ -, e =a—ay, §=1—-y,y—1=2,%2 = —2z, z2(0) = -1,
2(0) =0,z = —cost,y = 1 —cost. In first approximation the effect of a small torque
is to shift the equilibrium position to the point a while the pendulum undergoes small
oscillations with frequency 1 about this point; hence the derivative of the solution
with respect to a is 1 — cost.

Caution. Strictly speaking all our approximate solutions are based on the
theorem on differentiability only for small [¢|. In reality it is not difficult to
justify them for any finite time interval |t| < T provided the size of the per-
turbation € does not exceed a certain quantity depending on 7. In this time
interval the error in the first approximation of perturbation theory is bounded
above by the quantity O(e?), but the constant in the O increases with T

It is extremely risky to extend the conclusions reached in this way to an
infinite time interval: the limiting passages ¢ — oo and ¢ — 0 cannot be
interchanged.

Ezample. Consider a bucket of water at the bottom of which there is a small
hole of radius ¢ (Fig. 71). For every T there exists ¢ so small that for a long
time (¢ < T') the bucket is nearly full. But for any fixed ¢ > 0 the bucket
becomes empty as time tends to infinity.

f—» oo

Fig.71. The asymptotic behavior of the solutions of the perturbed equation

Problem 3. Fip'd the derivative of the solution of the equa'tion of small oscillations
of a pendulum 6 = —w?8 with initial condition 8(0) = 1, #(0) = 0 with respect to
the parameter w for w = 1.

Solution. The exact solution is given by the formula # = coswt. Consequently the
derivative is —tsint.

If we knew the exact solution only for w = 1 and tried to find a solution for
w =1+ ¢ by the small parameter method, we would obtain § & cost — et sint. We
might think that the true solution is unbounded if we forget that the approximation
can be used only for small et.



100 Chapter 2. Basic Theorems

6. Extension Theorems

Consider the differential equation & = wv(¢,z) defined by a smooth direction
field in a domain U of the extended phase space. Let I' be a subset of the
domain U.

Definition. A solution ¢ with the initial condition ¢(to) = x¢ can be eztended
forward (resp. backward) to I' if there exists a solution with the same initial
condition whose graph intersects I" in a point where ¢t > g (resp. t < tg).

A solution can be eztended forward (resp. backward) indefinitely if there
exists a solution with the same initial condition defined for all ¢ > #, (resp.
for all t < ty).

Ezample. No solution of the equation # = z% 4+ 1 can be extended forward or
backward indefinitely.

Definition. A set is called compact if from every covering of the set by open
sets one can choose a finite subcovering.

The compact subsets of a Euclidean space are the closed and bounded
sets.

The boundary of a set is the set of points in every neighborhood of which
there are both points belonging to the set and points not belonging to the set.

The following corollary is an obvious consequence of the fundamental the-
orem on rectification.

Corollary 7. A solution with initial condition in a compact set in the extended
phase space can be extended forward and backward to the boundary of the
compact set.

In other words through any interior point of a compact set there passes an
integral curve that intersects the boundary of the compact set in both directions
from the initial point (Fig. 72).

Fig. 72. Extension of a solution to the boundary of a compact set

The extension is unique in the sense that any two solutions with the same
initial condition coincide wherever they are both defined.
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Problem 1. Is it true that an integral curve of any smooth direction field in a
domain of Euclidean space passing through a point of a compact set K can be
extended to the boundary of K'?

Answer. No. For example, consider the direction field of the phase curves of the
pendulum in the domain #? + &3 > 0, K being the annulus 1 < z? + 23 < 2.

Thus it is essential for the validity of the theorem that the direction field in the
extended phase space be “nonvertical.”

Proof of Corollary 7. We begin by proving uniqueness. Consider the least
upper bound of the time values at which two solutions with the same initial
condition coincide. The solutions coincide to the left of this point. If both are
defined at this point, then they coincide there also, since they are continu-
ous. But then they must also coincide to the right of the point (by the local
uniqueness theorem). Thus the point in question must be an endpoint of one
of the intervals of definition. This proves uniqueness of the forward extension
of the solution (for the backward extension the reasoning is similar). We now
construct the extension.

By the local existence theorem, at each point of the extended phase space
there is a neighborhood such that the solution with initial condition at any
point of the neighborhood can be continued forward and backward to an
interval of time that is the same for all points of this neighborhood. From
the covering of the compact set by such neighborhoods we choose a finite
subcovering. From the finite collection of time intervals corresponding to these
neighborhoods we choose the shortest and denote it by ¢.

The solution with initial condition at the original point can be extended
forward by € (since this point belongs to the compact set and hence is covered
by one of our neighborhoods). We choose the value of this solution at time
¢/2 after the initial instant. If the point of the integral curve corresponding
to this value is still inside the compact set, the solution with initial condition
at that point can be continued forward again by ¢ (altogether 3¢/2 from the
original instant). We again move forward in time by ¢/2 (i.e., we consider the
value of the extended solution at an instant e after the original instant) and
again extend the solution by e, etc. After a finite number of steps the integral
curve will exit from the compact set (since its projection on the t-axis cannot
be unbounded, and ¢ increases by /2 at each step). Consequently there will
arrive an instant at which the integral curve will intersect the boundary of the
compact set, which was to be proved. O

Problem 2. Prove that any solution of an equation = v(¢,«) defined by a direction
field in R x R™ can be extended indefinitely if v grows no faster than the first power
of z at infinity, i.e., if |v(¢,2)] < k|z| for all ¢ and all |z| > », where r and k are
constants.

Hint. Comparing with a motion in the field ¢ = kz, construct compact sets whose
boundaries require arbitrarily long times to reach.
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We now assume that the domain of definition of the right-hand side of the
equation £ = v(¢,z) contains the cylinder R x K, where K is a compact set
in the phase space.

Definition. The solution ¢ with the initial condition ¢(t9) = z¢ can be
extended forward (resp. backward) to the boundary of the compact set K if
there exists a solution with the same initial condition that assumes values on
the boundary of the compact set K for some ¢ > to (resp. t < ¢g).

The following result is an obvious consequence of Corollary 7.

Corollary 8. A solution with initial condition in a given compact set K in
the phase space can be extended forward (resp. backward) either indefinitely
or to the boundary of the compact set K.

Ax(3K)
AxK 2 1
%X/(b}(l{
4 —=" ol
7 A b ¢

Fig. 73. Extension of a solution to the boundary of a compact set

Ezample. The solution of the pendulum equation &; = x5, o, = —z; with
initial condition z; = 1, z; = 0 cannot be extended to the boundary of the
compact set =3 + 23 < 2.

Proof of Corollary 8. Consider a closed interval A = [a,b] of the t-axis
containing to. The cylinder A x K in the extended phase space (cf. Fig. 73)
is compact. By the preceding theorem the solution can be extended to its
boundary. This boundary consists of a “bottom and top” (a x K and b x K)
and a “lateral surface” A x (9K) (by Leibniz’ formula (A x K) = (04) x
K+ Ax(0K).). If for every b > tg the integral curve intersects the top b x K,
then the solution can be extended forward indefinitely, while if it intersects the
lateral surface for some b, it can be extended to the boundary of the compact
set. a

Corollary 9. A solution of the autonomous equation & = v(x) with inital
value in any compact set of the phase space can be continued forward (resp.
backward) either infinitely far or to the boundary of the compact set.

For the cylinder R x K belongs to the extended phase space of the au-
tonomous equation for any compact set K in the phase space.
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Problem 3. Prove that the vector field v determines a phase flow if all the solutions
of the equation & = v(2) can be continued infinitely far.

7. Rectification of a Vector Field

Consider a smooth vector field v in the domain U.
A rectification of the field is a diffeomorphism that transforms it into a
field of parallel vectors of identical length in Euclidean space (Fig. 74).

ML
Y
W
I

Fig. 74. Rectification of a vector field Fig. 75. Construction of rectifying co-
ordinates

The following result is a consequence of the fundamental theorem on rec-
tification.

Corollary 10. Every smooth vector field 1s locally rectifiable in a neighborhood
of each nonsingular point (a point where the vector field is nonzero).

Proof. The vector fields in a neighborhood of a nonsingular point are nonzero
and hence determine a direction field in this domain of the phase space. By
the fundamental theorem this field is rectifiable. Let us perform a rectifying
diffeomorphism. We shall thereby get parallel vectors, but their lengths will
in general depend on the point where they are attached. In the rectifying
coordinates the equation given by our field will assume the form

&y =u(z), &2 =--- =2, =0, with u(0) #0.

In place of z; we introduce a new coordinate ¢, defining &(z) as the time
required to go from the plane 7 = 0 to the point z (Fig. 75). Solving the
fo3Y

dr
equation, we find this time by Barrow’s formula: £(z) = S/ R—
0 u(n;:{'%“-axn)
In the coordinates (€, z9,...,z,) the equation assumes the form £ = 1, 7, =
<o =1z, =0, i.e., the field is rectified. O

Remark. The theorem on rectification of a vector field is yet another reformu-
lation of the theorem on the rectification of a direction field (to deduce the
second from the first it suffices to choose one vector (depending smoothly on
the point where it is attached) on each line of the given direction field, which
is always easy to do locally).

Here are two more obvious reformulations of Corollary 10.
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Corollary 11. Any two smooth vector fields in domains of the same dimension
can be transformed into each other by diffeomorphisms in sufficiently small
neighborhoods of any nonsingular points.

Corollary 12. Every differential equation & = v(z) can be written in the
normal form &3 =1, &9 = -+ = &, = 0 for o suitable choice of coordinates in
a sufficiently small neighborhood of any nonsingular point of the field.

In other words every equation z = v(x) 1s locally equivalent to the simplest
equation £ = v (v # 0 independent of =) in a neighborhood of any nonsingular
point.

Problem 1. Rectify the phase velocity vector field of the pendulum z28/8z1 —
210/822 in a neighborhood of the point 1 = 1, z3 = 0.

Solution. Polar coordinates will do. Let x; = rcos#, zy =7 sind (r > 0,]0] < 7).
In these coordinates the equation has the form 7 = 0, # = 1, and therefore the field
is rectified: it has the form 9/96.

Problem 2. Rectify the following fields:
1) $18/8z1 + 2220/0z5 for z1 > 0;
2) 8/0z1 +sinz10/0xs;
3) 218/0x1 + (1 — 2})8/dz, for 3 < 1.

§ 8. Applications to Equations of Higher Order than
First

The fundamental theorems on systems of any number of equations of any
order will be deduced in this section from the analogous theorems for systems
of first-order equations.

1. The Equivalence of an Equation of Order n and a System of n
First-order Equations

Definition. A differential equation of order n is an equation

. n—1

(1)

where F is a differentiable function (of class C”, r > 1) defined in a domain U
of a space of dimension n + 1 (the time ¢ and the derivatives of the unknown
function of orders from 0 to n — 1 inclusive).
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A solution of Eq. (1) is a C"-mapping ¢ : I — R from an interval of the
real axis into the real axis for which

1) the point with coordinates (7,¢(7),. .., V(7)) belongs to the do-
main U for any 7 in I;

2) for any 7 in I

d"p

— . (n—1)
pra W F(rie(r),...,¢ (7).

Ezample. One solution of the equation of small oscillations of the pendulum
& = —z is the function ¢(t) = sint; another is ¢(t) = cost (Fig. 76). Conse-
quently the graphs of solutions of a second-order equation may intersect (in
contrast to the graphs of solutions of a first-order equation, i.e., the integral
curves, which according to the uniqueness theorem either do not intersect or
coincide on the entire interval).

Fig. 76. The graphs of two solutions of a second-order equation

The phase space of the pendulum equation is the plane with coordinates
(z,2): defining these two numbers at the initial instant determines the entire
motion of the pendulum. Consider the question of the dimension of the phase
space for the general nth-order equation (1): how many numbers must be
given at the initial instant in order to determine the solution uniquely at all
times?

Theorem. The nth-order equation (1) is equivalent to a system of n first-
order equations

"i'l::L‘Q,...,.'in_]:iE", Ii'nZF(t;:lIl,...,.'En_l) (2)

in the sense that if ¢ is a solution of Eq. (1) then the vector consisting
of the derivatives (p,¢,...,¢™* V) is a solution of the system (2), and if
(@1,.-,9Pn) 18 a solution of the system (2), then o1 is a solution of Eq. (1).

The proof is obvious.

Thus the phase space of the process described by an nth-order differential
equation has dimension.n; the entire course of the process () is described by
giving a set of n numbers at the initial instant of time to — the values of the
derivatives of ¢ of order less than n at the point 2.
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Remark. The reason it is necessary to give n initial conditions at the initial
instant in order to determine the solution of an nth-order equation may per-
haps become more understandable if we consider a differential equation as a
limit of difference equations.

Fix a number h > 0 (called the step size). The first difference of the
given function ¢ with step size h is the function whose value at the point ¢ is
@(t+ h) —p(t). The first difference is denoted A¢p. The second difference AZp
is defined as A(Ap).

Problem 1. Prove that (A%p)(t) = ¢(t + 2h) — 2p(t + h) + ¢(2).
The nth difference is defined similarly: A™p = A(A™ 1),

Problem 2. Prove that A" = 0 if and only if ¢(¢t + kh) is a polynomial of degree
less than n in k € Z.

For example, if we write out successively the values of k? and their differences
on the line below, then the differences of the differences, the third line will consist
of all 2s; if we begin with k%, then the fourth line will contain nothing but 6’s, etc.:

1 4 9 16 25

3 5 7 9
2 2 2
1 8 27 64 125
7 19 37 61
12 18 24
6 6

. . . A
A first-order difference equation is an equation of the form Z? = v(t, ),

Pt h) —e(t) = v(t,p(t)). From such an equation, knowing only the

*y
number ¢(tg), it is possible to find ¢(to + k), and from the latter ¢(to + 2h),
etc. As h — 0 a difference equation becomes a differential equation. It is
therefore not surprising that the solution of a first-order differential equation
is also determined by the value of a single number at the initial instant.

A second-order difference equation has the form

2
G = Fltv. 5).

ie.,

p(t +2h) — 2;:2(t th+e) _ F(t; (1), p(t+ h}z - @(t)).
Knowing the value of ¢ at two instants separated by a time interval of
length h, we can find the value of ¢ after another interval h from this equation.
Thus all the values (2o + kh) are determined by the first two of them.
As h — 0 the second-order difference equation becomes a second-order
differential equation. It is therefore not surprising that the solution of the
differential equation is also determined by giving two numbers at the initial
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instant (and n numbers for an nth-order equation). The theorem on the pre-
ceding page is precisely the justification for passing to the limit as h — 0.

Problem 3. Prove that the equation d"z/dt™ = 0 is satisfied by all polynomials of
degree less than n, and only by these functions.

Problem ;1 Find2 the dimension of the manifold of solutions of the Helmholtz

(971; + 53/—1; +u = 0 in the domain z®> 4+ y® > 0, depending only on the

distance to the origin.

equation

Solution. The unknown function of » must satisfy a second-order equation; conse-
quently the solutions are determined by two numbers.

2. Existence and Uniqueness Theorems

The following corollary is a consequence of the theorem of Sect. 1 and the
existence and uniqueness theorems for systems of first-order equations (§ 7).

Corollary. Let u = (up;uy,...,uy,) be a point of the domain U in which the
right-hand side of Eq. (1) is defined. The solution ¢ of Eq. (1) with initial
condition

99(u0) = Ui, ‘10("0) = u27"'a‘19("—1)(u0) = Un (3)

ezists and is unique (in the sense that any two solutions with the same initial
condition coincide on the intersection of their intervals of definition).

In writing the initial condition for Eq. (1) it is customary to write = instead
of ¢.

Ezample. At t = 7w/4 the solutions cost and sint of the pendulum equa-
tion # = —z satisfy respectively the initial conditions z(7/4) = v/2/2,
&(m/4) = —v/2/2 and z(7/4) = V/2/2, &(x/4) = \/2/2 (Fig. 76). These initial
conditions are distinct, and so it is not surprising that the graphs of the solu-
tions intersect without coinciding. The uniqueness theorem for a second-order
equation forbids only a common tangent at a point of intersection of two
noncoincident graphs. The graphs of two solutions of the same third-order
equation may be tangent to each other, but then at the point of tangency
they must have different curvatures, etc.

Problem 1. Suppose it is known that Eq. (1) has as solutions the functions ¢ and
sint. Find the order n of the equation.

Solution. The functions ¢ and sint have the same derivatives of orders 0, 1, and 2
at the point 0. If they satisfied the same third-order equation, they would coincide
by virtue of the uniqueness theorem. An equation of order n > 4 satisfied by both
functions is easy to invent, for example, (™ + z("=? = 0. Hence n > 4.
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Problem 2. Can the graphs of two solutions of the equation & + p(t)¢ + ¢(t)z = 0
have the form depicted in Fig. 777

Fig. 77. An impossible configuration of graphs

Answer. No, since the solutions ¢, and @2 have the same initial condition and do
not coincide.

Problem 3. Consider the equation 2z = t?&. The solutions ¢ = 0 and ¢ = t* both
satisfy the initial condition 2 = # = 0 for t = 0. Why don’t they coincide?

Answer. The uniqueness theorem applies to equations of the form (1), i.e., to equa-
tions that can be solved for the highest-order derivative; but the present equation
cannot be written in this form (in a neighborhood of zero).

Problem 4. Solve the difference equation A% = 0 with the initial condition ¢(0) =
0, (Ap)(0) =0, (A%p)(0) = 2 for t a multiple of the step size h = 1.

Solution. ¢ = a + bt + ct?, Ap = b + 2¢ct + ¢, A% = 2¢. By the initial conditions
c=1,b=~1,a=0. Hence p = t* — ¢.

3. Differentiability and Extension Theorems

Since the equivalence of an nth-order equation to a system of first-order equa-
tions has already been established, we conclude that the solution of an nth-
order equation depends smoothly on the initial conditions and the parameters
(if the right-hand side depends smoothly on parameters); the reader can easily
state an extension theorem as well.

Problem 1. Find in first approximation in ¢ the influence of a small resistance in
the medium ¢ F(z,¢) on the motion of a body falling from height h.

Solution. The question involves the equation & = —g + ¢F (=, %) and the initial
conditions (0) = h, £(0) = 0.

By the theorem on differentiable dependence on the parameter the solution has
the form ¢ = o +ep1 +- - -, where @o(¢) = h — gt* /2. Substituting = = ¢() into the

equation and equating the terms of the series in ¢, we find 1 = F(po,%0), whence
t 3

ei(t) = / / F(po(1),¢0(7))dr ds. For example, if F = —&, then ¢; = gt /6.

o Jo
Hence the retardation during the fall is in first approximation proportional to the
height: —ep1 /po = €t?/6 = eh/3g.
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Problem 2. Prove that all solutions of the pendulum equation = —sin can be
extended indefinitely.

Problem 3. For which natural numbers k£ can all the solutions of the equation
& = z* be extended infinitely far?

Answer. Only for k = 1.

4. Systems of Equations

By a system of differential equations we shall mean a system of equations in
n unknown functions

d™z;
dtni

where the arguments of each function F; are the independent variable ¢, the de-
pendent variables z;, and their derivatives of orders less than n; (j = 1,...,n)
respectively.

A solution of the system is defined as in Sect. 1. It should be emphasized
that a solution of the system is a vector-valued function defined on an interval.
Thus (¢1,-..,%x) is not n solutions, but only one solution of a system of n
equations — a remark that applies equally to systems of both algebraic and
differential equations.

First of all we determine the phase space that corresponds to the system

(4).

= F(tz,...), 1=1,...,n, (4)

n

Theorem. The system (4) is equivalent to a system of N = > n; first-order
=1

equations.

In other words the dimension of the phase space of the system (4) is N.

For the proof we must introduce as coordinates in the phase space the
derivatives of z; of order less than n;.

For example, let n = ny = ny = 2. Then the system has the form

&y = Fi(t;21,21,29,22), F2 = Fa(t;21,%1,22,29)
and is equivalent to the system of four equations
Ty =13, &y =14, T3 = Fi(t;z), &4 = Fa(t;2),
where = (21, T3, T2, T4).

Ezample. The system of n second-order differential equations of Newtonian
mechanics

m,-ejz:‘g‘qU‘-, i=1...n, ®)
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where U is the potential energy and m; > 0 are masses, is equivalent to the
Hamiltonian system of 2n equations

. OH 0H .
¢;i = pPi=—F5— z=1,...,n,

opi’ Oq;’

where p; = m;¢; and H = T + U is the total energy (T = Y m;¢?/2 =
Y- p?/(2m;) is the kinetic energy). Thus the dimension of the phase space of
the system (8) is 2n.

Theorems on existence, uniqueness, and differentiability with respect to
the initial conditions and parameters, as well as extension theorems carry over
automatically to systems of the form (4): to determine the solution uniquely
it suffices to prescribe the derivatives of z; of order less than n; at the initial
instant. For example, for the system of Newtonian equations (5) it suffices to
prescribe n coordinates and n velocities at the initial instant.

Problem 1. In coordinates fixed on the Earth the Coriolis force F' = 2m[v, 2],
where §2 is the angular velocity vector of the Earth, acts on a material point of mass
m moving with velocity v with respect to the Earth. A stone is thrown (with initial
velocity 0) into a mine shaft of depth 10 m at the latitude of Leningrad (A = 60°).
By how much will the Coriolis force cause it to deviate from the vertical?

Solution. By hypothesis :c =9 +2[x, £2]. The magnitude of the angular velocity of
the Earth, 2 ~ 7.3-10 %sec™!, will be considered a small parameter By the theorem
on dlfferentlablhty x = mg + Ny + 0(02) and &, = gt*. Substituting @ into the
equation, we obtain .Qg/ = 2[gt, §2], y(0) = ¢(0) = o. Hence Ry = [g, £2]t*/3, and
consequently |2y] = % |h|[§2] cos A. Therefore the stone deviates eastward by 0.3
mm.

Remark. The problem of the deviation of the stone played a prominent role in the
history of physics. The phenomenon of eastward deviation (rather than westward,
as one might expect at first glance) was predicted by Newton in a letter to Hooke
of 28 November 1679; Newton asked Hooke to carry out an experiment with a stone
to prove the rotation of the earth, which at the time was not universally accepted.

In his reply (of 6 January 1680) Hooke stated the law of universal gravitation. At
the time Newton had an inaccurate idea of the stone’s orbit. The resulting discussion
caused Newton to give up his plan to abandon the study of science and led him
to write The Mathematical Principles of Natural Philosophy, his famous Principia,
which was the beginning of modern physics.

In his letter Hooke gave the correct exponent (—2) in the law of gravity (in the
Principia Newton writes that Wren, Hooke, and Halley had independently discov-
ered that Kepler’s third law corresponds to just this exponent). Besides Kepler’s law,
Hooke refers to Halley’s observations on the retardation of a pendulum clock carried
up Mount St. Elena. In the letter Hooke says explicitly that the stone is moved
by the same force that causes the planets to move in Keplerian ellipses; criticizing
the spiral Newton had sketched, Hooke asserted that the orbit of the stone in the
absence of air resistance would be an “eccentric elliptoid.”

Newton interpreted an elliptoid to be an ellipse and was interested in knowing
how Hooke had found the orbit. After great labors he succeeded in proving that
the orbit is indeed an ellipse (for falling both onto the earth and down a mine).
The proof was (and remains) so difficult mathematically that Newton arrived at
the conclusion that Hooke “was asserting more than he knew.” He never afterwards
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referred to Hooke’s letter. In a letter to Halley on his discussion with Hooke Newton
gave a description of the difference between the approaches of a mathematician and
a physicist to natural science, which remains current even today: “Mathematicians,
that find out, settle & do all the business, must content themselves with being
nothing but dry calculators and drudges, & another, that does nothing but pretend
and grasps things, must carry away all the inventions as well of those that were to
follow him as of those that went before.”

Hooke dropped steel balls from a height of 10 m and asserted that he observed
a systematic south-eastward deviation (which is practically impossible because of
the extreme smallness of this deviation in comparison with aerodynamic effects). In
the absence of resistance the stone inside the mine shaft in a homogeneous Earth
would be subject to Hooke’s law (the attractive force directly proportional to the
distance from the center of the Earth), but Hooke himself could hardly have known
this. The orbit of the stone in this case is an ellipse (in a system of coordinates not
rotating with the Earth) with center at the center of the Earth and minor semi-axis
about 400 km (why?); the orbit would be traversed in the same time that a low-orbit
satellite would circle the earth, i.e., in an hour and a half (why?).

Problem 2. It is known from the newspapers that the cosmonaut Leonov, going
for a walk in space, threw the lens cap of his movie camera toward the earth. Where

did it go?

Solution. This is a problem involving the influence of a small perturbation in the
initial conditions on the solution. The equation of motion, by the law of univer-
sal gravitation, can be written in the form # = —7/r®. The motion of both the
cosmonaut and the lens cap occurs in the plane of the circular orbit, so that we
may assume * € R?, Let us write the equation of motion in polar coordinates. To
do this we introduce the unit vector e, = r/r and the unit vector e, perpendic-
ular to it and directed forward along the circular orbit. It is clear that e, = ¢e,
and é, = —¢e,. Differentiating the quantity » = re,, we find » = re, + rge,,
# = e, + 27pe, + rpe, — r¢’e,. Consequently Newton’s equation in polar coordi-
nates assumes the form of a system of two second-order equations

For’ = —yr’, TG+ 2r¢ = 0.

We take as a unit of length the radius of the circular orbit of the space station
( = 6400 km). We choose the unit of time so that the angular velocity of the motion
in the orbit is 1. Then the motion over the orbit is described by the equations r = 1,
¢ =t, and so v = 1. The initial conditions for the space station (and the cosmonaut)
are 7(0) = 1, #(0) = 0, ¢(0) = 0, ¢(0) = 1. The initial conditions for the lens cap
differ only in that #(0) = —v is the velocity of the throw, i.e., the initial velocity of
the lens cap relative to the cosmonaut. Assume that the velocity of the throw is 10
m/sec. Then v ~ 1/800 (since our unit of velocity is nearly the first cosmic velocity,
i.e., about 8 km/sec).

The quantity 1/800 is small compared to 1, and therefore we must study the
influence of a small deviation in the initial condition on the unperturbed solution
r =1, ¢ = t. By the theorem on differentiability with respect to the initial condition
we seek a solution close to the unperturbed solution in the form r =1+ 7 + .-+,
¢ = t+ 1 +---, where the dots indicate infinitesimals of order v?. Substituting
these expressions in Newton’s equation with v = 1 and rejecting infinitesimals of
order v%, we obtain the equations of variations

1 =3r1 +2p1, $1+2r =0.

The solution of the equations of variations with the initial conditions of the lens
cap (r1(0) = ¢1(0) = ¢1(0) = 0, 71(0) = —v) can be easily found by observing
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that @1 4+ 2r1 = 0, so that #1 = —ry. This solution has the form 7 = —wvsint,
@1 = 2v(1 — cost). By the theorem on differentiability the true solution of Newton’s
equations differs from the one we have found by infinitesimals of order v* (for ¢ not
too large). Consequently the lens cap describes an ellipse relative to the cosmonaut
(Fig. 78) with semiaxes v and 2v. Our unit of length is the radius of the orbit, and
v & 1/800. Thus the lengths of the semiaxes of the ellipse are about 8 and 16 km.

v
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Fig. 78. The motion of the lens cap with respect to the space station

At first the lens cap moves downward (toward the Earth), but then begins to
overtake the cosmonaut and moves 32 km ahead in the orbit; finally it returns
upward, describing approximately a 100-kilometer ellipse in exactly the same time
required for the space station to complete one revolution in its orbit.

Of course in this computation we have neglected quantities of order v and the
actual motion of the lens cap relative to the cosmonaut will not be periodic (the coil
does not close, and the error will be of order 1/800 the size of the ellipse, i.e., the
lens cap will orbit at a distance of about 10 m from the space station). We have also
neglected many effects (the pressure of light rays, the deviation of the direction of
the throw from the vertical, the deviation of the orbit of the space station from a
circle, etc.) which give larger errors.

V. V. Beletskii, from whose charming book Essays on the Motion of the Celestial
Bodies (Nauka, Moscow, 1972) the lens cap problem was taken, remarks that the
lens cap would hardly be visible at a distance greater than one kilometer, and the
first kilometer of the ellipse is very nearly a straight line. It was for that reason that
Leonov saw the lens cap he had thrown fly straight toward the Earth.

5. Remarks on Terminology

The equations and systems of equations considered above are called normal
or solved with respect to the highest-order derivatives. No other equations and
systems are considered in this course, so that the term equation or system
denotes a normal system or a system equivalent to a normal system (such as,
for example, the system of Newton’s equations (5)).

The functions occurring on the right-hand side of a system can be defined
in various ways: explicitly, implicitly, parametrically, and the like.
Ezample. The notation 22 = x is an abbreviation for the two distinct differen-
tial equations = \/z and ¢ = —/z, each of which has the half-line z > 0 as
phase space. These equations are defined by two distinct vector fields, which
are smooth for z > 0 (Fig. 79).

When the right-hand side is given implicitly, special care must be taken
to establish its domain of definition and avoid ambiguous notation.
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Fig. 79. The integral curves of the two equations combined in the notation =2

Ezample. A Clairaut equation is an equation ¢ = #t — f(&). The Clairaut
equation

€ =it —3%/2 (6)

is an abbreviation for two distinct differential equations defined for = < #2/2.
Each of them satisfies an existence and uniqueness theorem in the domain
below a parabola: < t2/2 (Fig. 80). Through each point of this domain
pass two tangents to the parabola. Each tangent consists of two half-lines.
Each half-tangent is an integral curve of one of the two equations combined
by formula (6). '

\\\\ | / t
Fig.80. The integral curves of two equations written together in the form of a
Clairaut equation

Problem 1. Study the Clairaut equation = = &t — &°.

Remark. In studying equations whose right-hand sides are given implicitly, i.e.,
equations of the form F(¢,z,z) = 0, it is often useful to consider the direction
field defined by this equation not in the (¢, z)-plane, but on the surface E in
three-dimensional (t, 2, p)-space given by the equation F(t,z,p) = 0 (Fig. 81).



114 Chapter 2. Basic Theorems
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sc,lrmnam curve
Fig. 81. The surface E and the traces of contact planes on it

This three-dimensional space is called the space of 1-jets? of functions.
Its points are all the nonvertical directions (i.e., those not parallel to the z-
axis) at all points of the (¢, z)-plane. A point (¢, z, p) is the direction of a line
dz = pdt at the point (¢,2). The 1-form « = dz — pdt defines the contact
structure described below in the manifold of 1-jets. The vectors attached at
a point of the three-dimensional space of jets on which this form vanishes
constitute a plane. It is called the contact plane. The contact plane is vertical
(it contains the direction of the p-axis). The set of all contact planes forms
the contact plane field in the space of jets and is called the contact structure.

Assume that the surface E that defines the equation is smooth (this con-
dition holds for equations F = 0 with F in general position). Consider the
projection of the surface E to the (¢,z)-plane parallel to the p-direction. A
point on the surface is called regular if the tangent plane to the surface at
that point is not vertical (i.e., does not contain the line in the p-direction).
In a neighborhood of a regular point projection is a diffeomorphism (by the
implicit function theorem) and the surface is the graph of a smooth func-
tion p = v(t,z). This function defines a differential equation & = v(¢,z) (in
a neighborhood of the projection of the regular point under consideration).
Other points of the surface, both regular and irregular, may project to the
same point of the plane. To each regular point corresponds its own direc-
tion field on the plane and its own differential equation; all these different
differential equations are combined in the equation F' = 0.

Consider the contact plane at a regular point of the surface E. It intersects
the tangent plane in a line. Thus in a neighborhood of a regular point on E
there arises a smooth direction field - the field of traces of contact planes. The
following theorem is obvious.

Theorem. Under a projection of the surface E defined by the equation p =
v(t,z) onto the (t,z)-plane along the p-azis the field of traces of contact planes
on E maps into the direction field of the equation dx /dt = v(t,z) on the plane.

2 The k-jet of a function is its Taylor polynomial of degree k.



8. Applications to higher-order equations 115

Corollary. This projection maps integral curves of the trace field on E into
integral curves of the equation in the plane.

The tangent plane of the surface E at irregular points is vertical. But
it may nevertheless intersect the contact plane in a line (for a surface F in
general position the tangent plane will coincide completely with the contact
plane only at individual exceptional points).

In a neighborhood of a nonexceptional irregular point on the surface E
the traces of contact planes define a smooth direction field. Thus the field of
traces of contact planes on the surface E can be extended to nonexceptional
irregular points. The extended field is called the direction field of the equation
F =0 on E and its integral curves are called integral curves of the equation
F=0onkE.

The projections of the pieces of these curves between irregular points to
the (¢, z)-plane are locally the integral curves of the corresponding equations
dz /dt = v(¢,z) (this does not hold globally, even when there are no irregular
points!).

The transition from the plane to the surface E is often useful for both
studying and solving the equation.

Problem 2. Find the integral curves of the equation @#? = t on the surface p* =t
and their projections on the (¢, z)-plane.

Solution. We take p and @ as coordinates on E. In these coordinates the equation
of the traces of contact planes (dz = pdt) assumes the form dz = 2p® dp. The
integral curves are & 4+ C' = 2p° /3. Their projections are the semicubical parabolas
(z + C)* = 4t*/9 (Fig. 82). The irregular points form the line p = 0. They are all

nonexceptional.

Fig. 82. Projections of integral curves

The projection of the line of irregular points on the (¢,z)-plane is called the
discriminant curve. In the present case the discriminant curve is the z-axis.

The cusp divides the semicubical parabola into two parts. Each of them is an
integral curve of one of the two equations # = v/t (or —/t} in the half-plane t > 0.
It can be shown that the projections of integral curves in E onto the plane for an
equation in general position has a cusp at the general point of the discriminant
curve (moreover in the neighborhood of such a point the equation reduces to the
form #° = t by a diffeomorphism of the (¢,z)-plane). However this is not the case
for all equations.
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Problem 3. Find the integral curves of the Clairaut equation z = t& — f(¢) on
the surface ¢ = pt — f(p), their projections on the (¢, z)-plane, and the discriminant
curve.

Solution. We take p and t as coordinates on E. The equation of the traces of contact
planes (dz = pdt) assumes the form (¢tdp+pdt— f' dp = pdt,or (t— f')dp = 0. The
irregular points are those at which ¢ = f’. They are all exceptional. The integral
curves on E are p = const (in the domain where ¢ # f'). These are lines. Their
projections on the (t,z)-plane are also lines: z = tC — f(C). A Clairaut equation is
simply the equation of a family of lines parametrized by the slope.

The discriminant curve is given parametrically by the equations ¢t = f'(C),
z = tC — f(C). In a neighborhood of a point where f’ £ 0 these formulas define a
smooth curve that is the graph of a function « = g(t). Indeed, near a point where
f" # 0 we can express C in terms of ¢ and then z in terms of ¢. The line z = tC— f(C)
is tangent to the discriminant curve at such a point (why?). Thus the discriminant
curve of a Clairaut equation is the envelope of the family of lines described by the
equation.

The transition from the function f to the function g is called Legendre’s trans-
formation. The Legendre transformation of the function g will again be f (prove
this!). Therefore the functions f and g are called duals of each other.

Problem 4. Calculate the Legendre transformation of the function |p|*/a (a > 1).
Answer. |t|°/3, where a™! + 871 = 1.

The geometric meaning of Legendre’s transformation is as follows. Consider the
set of all nonvertical lines (those not parallel to the z-axis) in the (¢,z)-plane. A
line is defined by its equation # = at — b. Thus nonvertical lines can be regarded
as points in the (a,b)-plane. This plane is called the dual of the original plane. The
coordinates a and b are called the tangential coordinates of the line.

The plane dual to the (a,b)-plane is the original (¢,z)-plane because of the
complete symmetry of the equation @ + b = at under the change of variable (t,z) —
(a,b): a line in the plane of lines is a point in the original plane.

Consider a smooth curve z = g(t) in the (¢,z)-plane. The tangent to this curve
varies under motion along the curve. When this happens, the point of the dual plane
corresponding to the tangent describes a certain curve. This curve is called the dual
of the original curve. The curve dual to the one just constructed is the original curve.
If g # 0 for the original curve, then the dual curve is the graph of the function
b = f(a). The functions f and g are Legendre transformations of each other.

The proof of these facts (which have numerous generalizations and applications
in all areas of mathematics) is left to the inquisitive reader as an exercise.

§ 9. The Phase Curves of an Autonomous System

In this section we study the simplest geometric properties of phase curves of
autonomous systems, i.e., systems whose right-hand sides are independent of
time.
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1. Autonomous Systems

Definition. A system of differential equations is called autonomous if it maps
into itself under arbitrary translations along the time axis.

In other words a system is autonomous if its right-hand side is independent
of time. For example, an autonomous nth-order equation is

¢™ = F(z,..., "),

Remark. In the description of evolutionary processes by differential equations
it is usually autonomous systems that arise: the independence of the right-
hand side of ¢ reflects the time-independence of the laws of nature (without
which scientific study of nature would be impossible). The term “autonomous”
means “independent” and reflects the independence of the evolution of the
state of the system under consideration from all others. Nonautonomous sys-
tems arise in the description of nature most often in the following way. Assume
that we are studying part I of a physical system I 4+ II. Then, although the
law of evolution of the entire system does not change with time, the influence
of part I on part I may lead to a law of evolution for part I that does change
with time.

For example, the influence of the Moon on the Earth causes the tides.
Mathematically this influence is expressed by the fact that the magnitude of
the gravitational acceleration occurring in the equation of motion of terrestrial
objects varies with time.

In such situations we say that the distinguished part I is nonautonomous.
Therefore all systems whose right-hand side depends explicitly on time are
called nonautonomous. Of course nonautonomous systems may occur in other
cases also, for example, in the transformation process when solving au-
tonomous systems. As an example: the transition to the nonautonomous equa-
tion with separable variables in integrating the Lotka-Volterra system (Sect.

7 of § 2).
Problem 1. Is the equation of variations for the small perturbations of a solution
of an autonomous system under small variations in initial conditions an autonomous

equation?

Answer. If the unperturbed solution is a state of equilibrium, it is autonomous; in
general it isn’t.

2. Translation over Time

Let us begin with an example. Consider the autonomous nth-order equation

™ = F(z,z,...e™D), (1)
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Theorem. Assume that * = sint is a solution of Eq. (1). Then the function
z = cost is also a solution.

This follows immediately from the following proposition.

Theorem. Let p : R — U be a solution of the autonomous equation & = v(z)
defined by a vector field v in the phase space U, and let h* : R — R be a
translation along the time azis, h°(t) = s +t. Then @ o h® is also a solution
for any s.

In other words, if z = ¢(t) is a solution, so is z = ¢(t + s).

Proof. This is obvious: the direction field of an autonomous equation maps
into itself under translations along the time axis, and consequently the integral
curves map into integral curves under such translations.

Corollary. Through each point of the phase space of an autonomous system
there passes one and only one phase curve.

Remark. Here and throughout the following the discussion concerns maximal
phase curves that are the images of solutions that cannot be extended to any
larger interval (it may be impossible to extend a solution ¢ : I — U either
because the interval [ is already the entire line or because (t) approaches the
boundary of the domain U when t approaches an endpoint of the interval).

Proof of the corollary: Assume that two phase curves pass through a point
— the images of solutions ¢ and %, defined on the entire line (the case when
the solutions cannot be extended infinitely far is left to the reader). Then
there exist instants of time @ and b such that p(a) = ¥(b) (since both curves
pass through one point). Translating one of the curves along the time axis, we
obtain a new solution ¢ o h*~?. This solution has a common initial condition
with the solution v at ¢ = b. Hence they coincide. Consequently ¢ is obtained
from ¢ by translation along the time axis. Thus the images of the mappings
@ and ¥ coincide, as was to be proved. ]

Remark. The phase curves of a nonautonomous system (the images of solutions
in the phase space) may intersect without coinciding. Therefore it is better to
trace the solutions of nonautonomous systems through integral curves.

Problem 1. Suppose one and only one phase curve passes through each point of
the phase space of the system z = v(¢,2). Does it follow from this that the system

is autonomous?

Answer. No, for example, = 1 + ¢2.
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3. Closed Phase Curves

We know already that distinct phase curves of an autonomous system do not
intersect. Let us see if a single phase curve can intersect itself. In other words,
can a solution of a first-order autonomous system take on the same value more
than once?

Theorem. A mazimal phase curve of an autonomous system either has no
self-intersections or reduces to a single point, or is a closed phase curve (dif-
feomorphic to a circle).

We have already encountered examples of closed phase curves (for exam-
ple, limit cycles, cf. § 2).
The proof of the theorem is based on the following four lemmas.

Lemma 1. A solution ¢ of a first-order autonomous system that takes on the
same value twice (p(a) = o(b), b > a) can be eztended to the entire time axis
as a periodic mapping @ with period T = b — a.

Proof. Every s is uniquely representable as s = nT + o, where 0 < o < T.
Set #(a+ s) = ¢(a + o). Then P is a solution of period T, coinciding with ¢
on the interval [a, b]. Indeed @ coincides with a translate of the solution ¢ in
a neighborhood of each point, and so is itself a solution (by the theorem of
Sect. 2). O

The solution obtained can have periods other than T'. We shall study the
set of all periods of a mapping of the line.

Lemma 2. The set of all periods of any mapping i3 a subgroup of the group
R.

Proof. The number T is a period of the mapping f if and only if a translation
of the line by T maps f into itself. The translations that map f into itself
form a subgroup of the group of all translations. For if two translations map
f into itself, then their composition and their inverses do also.

Remark. This reasoning also shows that if any group acts on any set, then
the set of all transformations of the group that leave fixed a given element of
the set forms a subgroup of the original group. This subgroup is called the
stationary group of the given element.

Lemma 3. The set of all periods of a continuous mapping of the line i3 closed.

Proof. Suppose a sequence of periods T; of the mapping f converges to the
number T. Then f(¢t + T) = lim f(t + T3) = lim f(¢) = f(¢) for any t. O

Thus the set of all periods of a continuous mapping of the line is a closed
subgroup of the line.
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Lemma 4. Every closed subgroup G of the group of real numbers R 1s either
R or an arithmetic progression formed by integer multiples of some number,

or {0}.

Proof. If G # {0}, then G has positive elements (since —t belongs to G if ¢
does).

Two cases are possible:

1) G contains positive elements arbitrarily close to zero;

2) the distance from 0 to all positive elements of the group is larger than
some positive number.

In the first case G contains arithmetic progressions with arbitrarily small
differences, and hence there are elements of G in every neighborhood of every
point of the line. Since G is closed, G = R. In the second case, consider the
positive element T of G closest to 0 (such an element exists, since the group
is closed). The arithmetic progression of integer multiples of the element T
belongs to the group. We shall prove that there are no other elements in the
group. Indeed, any other number ¢ is representable in the form nT + 7, where
0<7<T. Ifte G, thent—nT =7 <T is a positive element of the group,
contradicting the minimality of the element T O

Problem 1. Find all closed subgroups 1) of the plane R?*; 2) of the space R™; 3)
of the circle S*' = {z € C: |z| = 1}.

Solution. The subgroups of 1) and 2) are direct sums of closed subgroups of the
linle (Fig. 83); those of 3) are regular n-gons formed by the nth roots of unity and
S* itself.

4

Fig. 83. A closed subgroup of the plane

Combining Lemmas 2, 3, and 4, we conclude that the set of all periods of a
continuous periodic mapping of the line either consists of all integer multiples
of one smallest period or is the entire line (in the latter case the mapping is
constant).

In particular the solution @ of Lemma 1 is either constant (and then the
corresponding phase curve is an equilibrium position) or it has a smallest
period 6. We define a mapping A of the circle into the phase curve by the
formula A : (cos a,sin a) +— @(af/27). This mapping A is well-defined, since
@ has period 8. A is differentiable, since @ is a solution. The mapping A 1s a
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Fig. 84. The derivative of the function f in the direction of the vector v

one-to-one mapping of the circle onto a phase curve, since @ cannot take on
the same value twice within its smallest period (by Lemma 1).

The derivative of A with respect to a is nonzero, since otherwise the
solution would take on a value that is an equilibrium position, and then by the
uniqueness theorem it would be a constant. By the implicit function theorem
A is a local diffeomorphic mapping of the a-axis onto the image of @ in the
phase space, i.e., onto a phase curve. Hence the mapping inverse to A is
differentiable, i.e., A is a diffeomorphism.

The theorem is now proved. O

Nonclosed phase curves, though they cannot intersect themselves, may
wind about themselves in a very complicated manner.

Problem 2. Find the closures of the phase curves of the double pendulum #;, = —z1,
To9 = —2xa.

Answer. A point, circles, and tori. Cf. § 24 and § 25, Sect. 6.

§ 10. The Derivative in the Direction of a Vector Field
and First Integrals

Many geometric concepts can be described in two ways: in the language of
points of a space or using functions defined on the space. Such a duality often
turns out to be useful in the most varied areas of mathematics.

In particular vector fields can be described not only using velocities of
motions, but also as differentiations of functions, and the basic theorems of
differential equations can be stated in terms of first integrals.

1. The Derivative in the Direction of a Vector

Let v be a vector attached at the point z of a domain U, and let f : U — R be
a differentiable function. Let ¢ : I — U be some parametrized curve leaving z
with velocity v, so that ¢(0) = z and ¢(0) = v. A composite mapping of the
interval I of the real axis into the real axis then arises, fop : I — R, given
by (f o @)(t) = f(p(t)), ie., a real-valued function of a real variable ¢ (Fig.
84).
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Definition. The derivative of the function f in the direction of the vector v
1s the derivative of the function just constructed at the point 0.

This number is denoted L, f (L in honor of Sophus Lie). To justify this
definition, we must verify that the number so obtained depends only on the
vector v and not on the particular choice of the curve ¢. This can be seen,
for example, from the expression for the directional derivative in terms of
coordinates: by the rule for differentiating a composite function

d < of
t=0f oY= ; —OTT—;UI’

Lof =%

where the derivatives are taken at the point where the vector is attached:
here z; are the coordinates in a neighborhood of this point and v; are the
components of the velocity vector in this coordinate system.

The same thing can be expressed in another way by saying that L, f is
the value of the 1-form df on the vector v.

Problem 1. Calculate the derivative of the function H in the direction of the vector
EXQLQ_%jQ
Op; 0¢; 0Oqi Opi /)’

Answer. 0.

2. The Derivative in the Direction of a Vector Field

Now let v be a vector field in a domain U.

Definition. The derivative of the function f: U — R in the direction of the
field v is a new function L,f : U — R whose value at each point  is the
derivative of the function f in the direction of the vector of the field attached
at 2: (Ly f)(2) = Ly(s)f. The function L, f is called the Lie derivative of the
function f.

Ezample. Let v = 0/0z; be the basic vector field whose components in the
coordinate system (z1,...,z,) are (1,0,...,0). Then L,f = 9f/0z, is the
partial derivative of the function f.

Caution. In working with partial derivatives one must keep firmly in mind
that a danger lurks in the very notation used for them: the partial derivative
of a function f with respect to z; depends not only on the function taken as
the zy-coordinate in the domain under consideration but even more on the
choice of the other coordinates. For example, in the (z,y)-plane the partial
derivative 3f/0z of a function f(y) is zero, but the partial derivative df/0x
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of the same function of a point in the plane on the same variable z in the
coordinate system (z,z), where z = = + y, is —1. One really should write
af/axlyzconst and af/awlz:const'

The derivative of a function in the direction of a vector field does not have
the defect of the partial derivatives just indicated: it is a geometric object in-
dependent of the coordinate system by its very definition. If a smooth function
f and a smooth vector field v are given, then L, f is a well-defined function
(of class C™~ ! if f and v are of class C”). In other words if a diffeomorphism
maps the vector field and the function to a new place, then the derivative of
the translated function in the direction of the translated field coincides with
the translation of the derivative of the original function in the direction of the
original field. This property of the operation of differentiation in a direction
is called naturalness. Other examples of natural operations are addition and
multiplication of functions, addition of fields, and multiplication of fields by
functions.

3. Properties of the Directional Derivative

In this section we undertake the formalization of some obvious facts. We de-
note by F' the set of all infinitely differentiable functions f : U — R. This
set has the natural structure of a real vector space (since addition of func-
tions preserves differentiability), and even that of a ring (since the product
of infinitely differentiable functions is differentiable), or as one should say,
an R-algebra (a ring for whose elements multiplication by scalars is defined
satisfying the usual requirements). ‘

Let v be an infinitely differentiable vector field in U. The derivative of a
function of F' in the direction of the field v again belongs to F' (here infinite
differentiability is essential). Thus differentiation in the direction of the field
v is a mapping L, : F — F of the algebra of infinitely differentiable functions
into itself. Let us consider several properties of this mapping;:

L. L’v(f "I"g) =L,f+ L,g; 2. Lv(fg) = fLyg+ gLof;
3. Lyyw =Ly + Ly, 4 Liy = fLy; 5. LyLy, = LyLy

(f and g are smooth functions and u and v are smooth vector fields).

Problem 1. Prove properties 1)-5), except for the one that is not true.

Remark on terminology. Algebraists call a mapping of a*(commutative)
ring into itself a derivation if it possesses Properties 1 and 2 of the mapping
L,. The set of all derivations of a ring forms a module over the ring (a module
over a ring is a generalization of a vector space over R; the elements of a
module can be added to one another and multiplied by elements of the ring).

The vector fields in U form a module over the R-algebra F' of functions
in U. Properties 3 and 4 say that the operation L that maps the field v into
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the derivation L, is a homomorphism of the F-module of fields into the F-
module of derivations of the algebra F. Property 5), when it holds, says that
the derivations L, and L, commute.

Problem * 2. Is the homomorphism L an isomorphism?

Analysts call the mapping L, a first-order homogeneous linear differential
operator. This name is given because, according to 1 and 2, the operator
L, : F — Fis R-linear. In coordinates this operator is written as follows: L, =
v10/0xy + - - - + v,0/8z,. Previously (p. 71) we have denoted the vector field
itself by the same symbol: the field is frequently identified with the operation
of differentiating along it.

A Lie derivative operator along the vector field v analogous to L, can be
defined not only for functions, but for arbitrary differential-geometric objects
(vector fields, forms, tensors) that can be transformed by diffeomorphisms.
The derivative of each object is an object of the same type. The French call
the operator L, the fisherman’s derivative: the fisherman sits still and differ-
entiates the objects carried past him by the phase flow.

4. The Lie Algebra of Vector Fields

Property 5) does not always hold for vector fields u and v. For example, for
the fields u = 9/9z and v = £9/dx on the z-axis we have

LyL, =0/0z +1208%/02%, L,L, = z0%/9z%.

Problem 1. Prove that the differential operator Lq Ly — Ly Lq is of first order, not
of second order, as it appears to be at first glance: Lo Ly — LyLa = Lc, where ¢ is
a vector field depending on the fields a and b.

Definition. The field ¢ is called the commutator or the Poisson bracket of the fields
a and b and is denoted {a, b].

Problem 2. Prove the following three properties of the commutator:
1. [a,b + Xc] = [a,b] + A[a, ¢], for X € R (linearity);
2. [a,b] + [b,a] = 0 (skew-symmetry);
[[a b], ] [[b cl, } [c al, ] = 0 (the Jacobi identity).

Definition. A vector space with a binary operation possessing properties 1, 2, and
3 is called a Liealgebra.

Thus vector fields with the operation of commutation form a Lie algebra. This
operation is just as fundamental for all of mathematics as addition and multiplica-
tion.

Problem 3. Prove that the oriented three-dimensional Euclidean space becomes a
Lie algebra if the operation is defined as the vector cross product.
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Problem 4. Prove that the space of square matrices of order n becomes a Lie
algebra if the operation is defined as AB — BA.

Problem 5. Do the symmetric matrices form a Lie algebra with the same operation?
What about the skew-symmetric matrices?

Problem 6. Knowing the components of the fields @ and b in some coordinate
system, find the components of their commutator.

Answer. [a,b]; =3 a;0b;/0z; — b;0a;/0z; = Labi — Lya;.

Problem 7. Let {g'} be the phase flow of the field @ and {h"} the phase flow of the
field b. Prove that the flows commute (g*hA° = h®g*) if and only if the commutator
of the fields is zero.

Problem 8. Let aw be the velocity field of the points of a body rotating with
angular velocity w about the point 0 € R®. Find the commutator of the fields ao
and ag.

Answer. [@a,ag] = @, where v is the cross product of a and 3.

5. First Integrals

Let v be a vector field in a domain U and f : U — R a differentiable function.

Definition. The function f is called a first integral of the equation & = v(z)
if its derivative in the direction of the field v is zero: L, f = 0.

The strange-sounding name first integral is a relic of the times when math-
ematicians tried to solve all differential equations by integration. In those days
the name integral (or a partial integral) was given to what we now call a so-
lution.

The following two properties of a first integral are obviously equivalent to
the relation L, f = 0 and could be taken as the definition of it.

1. The function f is constant along each solution @ : I — U, i.e., each
function f o s constant.

2. Each phase curve of the field v belongs to one and only one of the level
sets of the function f (Fig. 85).

Ezample. Consider the system &; = x1, £2 = 22, whose phase space is the
whole plane. The phase curves (rays) are depicted in Fig. 86. We shall show
that this system has no first integral except a constant. Indeed a first integral is
a function continuous in the entire plane and constant on each ray emanating
from the origin; hence it is constant.

Problem 1. Prove that in a neighborhood of a limit cycle every first integral is
constant.
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Fig. 85. A phase curve lies entirely on Fig. 86. A system having no first inte-
one level surface of an integral grals

Problem 2. For which k does the system of equations #; = 21, £2 = kx2 on the
whole plane have a non-constant first integral?

Answer. For k < 0 (cf. Fig. 30 on p. 40).

Problem 3. Prove that the set of all first integrals of a given field forms an algebra:
the sum and product of first integrals are also first integrals.

Nonconstant first integrals are rarely encountered. Nevertheless in the
cases where they exist and can be found the reward is quite significant.

Ezample. Let H be a function of the 2n variables (p1,...,qn) that is dif-
ferentiable (r times, r > 2). The system of 2n equations p; = —0H/Jq;,
g; = OH/9p; is called the system of canonical Hamiltonian equations. (Hamil-
ton showed that the differential equations of a large number of problems of
mechanics, optics, calculus of variations, and other areas of science can be
written in this form). The function H is called the Hamiltonian (in mechanics
it is usually the total energy of the system).

Theorem (Law of Conservation of Energy). The Hamiltonian s a first
integral of the system of canonical Hamiltonian equations.

Proof.
) 0 0
L H = Z(a 5t B q) ;[aZ(‘aZ)“LZ_Z'Eg{]:O’
which was to be shown. O

6. Local First Integrals

The absence of nonconstant first integrals is connected with the topological
structure of the phase curves. In the general situation the phase curves cannot
be packed globally on a level surface of any function, and so there is no non-
constant first integral. Locally, however, in a neighborhood of a nonsingular
point, the phase curves have a simple structure and nonconstant first integrals
do exist.
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Let U be a domain in n-dimensional space, v a differentiable vector field
on U, and z¢ a nonsingular point of the field (v(zo) # 0).

Theorem. There exists a neighborhood V of the point zo such that in V
the equation ¢ = v(z) has n — 1 functionally independent first integrals
fiy..v, fn=1, and any first integral of the equation is a function of fi,..., fn—1
m V.

[A set of m functions is functionally independent in a neighborhood of a
point o if the rank of the derivative of the mapping f : U — R™ defined by
these functions is m at the point z¢ (cf., for example, G. M. Fikhtengol'ts, The
Fundamentals of Mathematical Analysis, Pergamon Press, New York, 1965,
Vol. 1, Chapt. 6).]

Proof. For the standard equation in R® 43 = 1, yo = -+ = 3, = 0, this is
obvious: the first integrals are any smooth functions of ys,...,¥y,. The same
is true for this equation in any convex domain (a domain is called convez if it
contains the line segment joining any two of its points). In a convex domain
any integral of the standard equation reduces to functions of s, ..., yn. Every
equation in a suitable neighborhood of a nonsingular point can be written in
standard form in suitable coordinates y. This neighborhood can be considered
convex in the y-coordinates. (If it is not convex, it can be replaced by a smaller
convex domain.)

It remains only to remark that both the property of being a first integral
and functional independence are independent of the system of coordinates. 0

Problem 1. Give an example of a domain in which the standard equation has a
first integral that does not reduce to a function of ¥2,...,¥yn.

7. Time-Dependent First Integrals

Let f be a differentiable function on the extended phase space of the equation
& = v(t, @), in general nonautonomous.

Let us form the autonomous system whose phase curves are the integral
curves of the original equation. To do this we enlarge the equation by adding
the trivial equation ¢ = 1:

X =V(X), X=(e2), V() =(1,0)

Definition. A function f is said to be a time-dependent first integral of the
equation € = wv(¢, &) if it is the first integral of the extended autonomous
equation (Fig. 87).

In other words: each integral curve of the original equation lies in a level
set of the function.
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Fig. 87. Integral curves on the level surface of a time-dependent first integral

The vector field V' does not vanish anywhere. According to the theorem
of Sect. 6 in some neighborhood of each point of the extended phase space
the equation £ = v(t,x) has a number of functionally independent (time-
dependent) first integrals equal to the dimension of the phase space (the number
of components of the vector @ ); moreover every (time-dependent) first integral
can be expressed in terms of these particular integrals in this neighborhood.

In particular an autonomous equation with an n-dimensional phase space
has in a neighborhood of any (not necessarily nonsingular) point n time-
dependent functionally independent first integrals.

A first integral of a differential equation (or system) of any order is a first
integral of the equivalent first-order system.

Problem 1. Prove that the system of Newtonian equations # = —7/r® has a first
integral that can be written in polar coordinates as r*¢ (r € R?).

This integral, called the sectorial velocity, was discovered by Kepler from obser-
vations of the motion of Mars (“Kepler’s Second Law”).

Problem 2. Prove that the sectorial velocity is a first integral of the equation
7 = ra(r) for any form of the function a.

A force field of the form ra(r) is called central. The preceding problem shows
why the law of universal gravitation cannot be deduced from Kepler’s Second Law:
the third law is needed.

Problem 3. Prove that each component of the cross product [r,#] is a first in-
tegral for motion in any central force field in three-dimensional space (“the law of
conservation of angular momentum?”).

Problem 4. Prove that if the Hamiltonian function is independent of g¢;, then p; is
a first integral of the Hamilton equations.

Problem 5. Assume that each solution of the equation & = wv(¢, &) with an n-
dimensional phase space can be extended to the whole t-axis. Prove that such an
equation has n functionally independent (time-dependent) first integrals on the en-
tire extended phase space, in terms of which all of its (time-dependent) first integrals
can be functionally expressed.
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§ 11. First-order Linear and Quasi-linear Partial
Differential Equations

Partial differential equations have not been nearly so well studied as ordinary
differential equations. The theory of one first-order partial differential equation
has been successfully reduced to the study of special ordinary differential
equations, the so-called characteristic equations. The essence of the connection
between a partial differential equation and a characteristic equation is that
motion of a solid medium can be described using both the ordinary differential
equations of motion of its particles and the partial differential equations for
a field. In this section the simplest special cases of linear and so-called quasi-
linear partial differential equations are studied in detail and a rule for solving
the general equation is given.

1. The Homogeneous Linear Equation

Definition. A first-order homogeneous linear equation in a domain U is an
equation Lou = 0, where a is a known vector field in the domain U and u is an
unknown function. In coordinates it has the form a;0u/0z1+ - -+a,0u/0z, =
0, ax = ag(z1,...,2,). The phase curves of the vector field a are called the
characteristics of the equation Lqu = 0. The equation £ = a(z) is called the
characteristic equation.

Remark. The adjective “characteristic” in mathematics always means “con-
nected in an invariant manner” (in the present case, invariant with respect
to the choice of the coordinate system). Thus a characteristic subgroup of a
group is the subgroup that maps into itself under all automorphisms of the
group, the characteristic equation of the matrix of an operator is indepen-
dent of the choice of basis, the characteristic classes in topology map into
themselves under diffeomorphisms, etc.

The characteristics of the equation Lyu = 0 are connected with the equa-
tion invariantly with respect to diffeomorphisms: if a diffeomorphism maps the
old equation into a new one, then it maps the characteristics of the old equa-
tion into the characteristics of the new one. In addition one can even multiply
the field a by a nonvanishing function - this changes neither the solutions nor
the characteristics of the equation.

Problem 1. Find the characteristics of the equation du/8z = ydu/dy.

Solution. £ =1,y = —y; y = Ce™".

Theorem. A function u 1s a solution of the equation Lou = 0 if and only if
it 18 a first integral of the characteristic equation.

Proof. This is the definition of a first integral. o
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Despite the obviousness of this theorem, it is very useful, since the ordinary
characteristic equation is easier to solve than the original partial differential
equation.

Problem 2. Solve the equation of Problem 1.

Solution. u = ye” is a solution, and all solutions can be obtained as functions of
this one.

Problem 8. Solve the equation ydu/dz = 20u/dy on the entire plane.
Answer. Any solution is a function of z* + y*.

Problem 4. Are all solutions of the equation zdudz = ydu/dy on R? functions of
zy?

Answer. No. There exists a solution for which u(1,1) # u(-1,-1).

2. The Cauchy Problem

Definition. The Cauchy problem for the equation Lou = 0 is the problem of
determining a function u from its values on a given hypersurface (a hypersur-
face in R™ is an (n — 1)-dimensional surface. For example, in the case n = 2
a hypersurface is a curve, for n = 3 an ordinary surface).

The given hypersurface is called the initial hypersurface and prescribing
the unknown function on it is called an initial condition, u|, = ¢. The function
o is called the initial function. It is defined on the initial hypersurface.

The Cauchy problem does not always have a solution. Indeed, along each
characteristic the value of u is constant. But a characteristic can intersect the
initial surface more than once (Fig. 88). If the values of the initial function
at these points are distinct, then the corresponding Cauchy problem has no
solution in any domain containing the characteristic in question.

a

=

Fig. 88. An unsolvable Cauchy problem

Definition. A point on the initial hypersurface is called noncharacteristic if
the characteristic passing through the point is transversal (nontangential) to
the initial hypersurface.
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Theorem. Let & be a noncharacteristic point on the initial hypersurface. Then
there ezists a neighborhood of the point @ in which the Cauchy problem has
one and only one solution.

Proof. By the rectification theorem one can choose coordinates in a neighbor-
hood of the point @ such that the field a will have components (1,0,...,0)
and the initial hypersurface will assume the form z; = 0. In these coordinates
the Cauchy problem assumes the form du/dz; = 0, u|,,=9 = . The unique
solution in a convex domain is u(z1,...,Ts) = @(Z2,...,&x). 0

Problem 1. Solve the Cauchy problem u|y=0 = siny for the equation du/dx =
yOu/dy.

Solution. On a characteristic y = C'e™"; according to the initial condition « = sin C.
Hence u = sin(e”y).

Problem 2. Which points of the line 2 = 1 are noncharacteristic for the equation
yOu )0z = zOu/Oy?

Answer. y # 0.

Problem 3. Does the Cauchy problem u|.=; = y* for this equation on R? have a
solution? Is it unique?

Answer. There is a solution, but it is not unique.

Remark. The solutions of an ordinary differential equation form a finite-
dimensional manifold: each solution is defined by a finite set of numbers (initial
conditions). We see that a homogeneous linear partial differential equation of
first order with respect to a function of n variables has “as many solutions as
there are functions of n — 1 variables.” An analogous phenomenon holds also
for general first-order partial differential equations.

The reason will become clear if we regard a differential equation as the
limit of difference equations. The same considerations suggest that for a
second-order partial differential equation it is necessary to prescribe two func-
tions on the initial hypersurface (the values of the function and its derivative
in a direction transversal to the initial hypersurface), etc. Of course these
considerations do not replace the proofs of the corresponding existence and
uniqueness theorems for solutions. These proofs can be found in textbooks
on the theory of partial differential equations, for example, in the book of
Courant and Hilbert, Methods of Mathematical Physics, Interscience, New
York, 1953-1962.

3. The Inhomogeneous Linear Equation

Definition. A first-order inhomogeneous linear equation in a domain U is an
equation Lgu = b, where a is a given vector field, b is a given function, and u
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is the unknown function in the domain U. In coordinate notation: a,du/0z; +
-+ + a,0u/0z, = b, where a; = b are known functions of z1,...,zn.

The Cauchy problem is posed just as for a homogeneous equation.

Theorem. In some sufficiently small neighborhood of any noncharacteristic
point of the initial surface the solution exists and is unique.

Proof. The derivative with respect to time of the unknown function along a
characteristic is known (equal to b), and hence its increment along a segment
of the characteristic equals the integral of b with respect to the time of motion
along this segment. For example, if a; # 0 at the point being studied, this
increment equals [ b/a; dz; along a segment of the characteristic. 0

Problem 1. Solve the Cauchy problem u|s=¢c = siny for the equation du/dr =
you/dy + y.

Solution. As z changes with velocity 1 the value of u on the characteristic y = C'e™"
varies with velocity Ce™". Consequent}]{y the increment of u along this characteristic
as z changes from 0 to X is C(1 —e™").

The point (X,Y) lies on the characteristic where C' = e¢* Y. At this point u =
sinC 4+ C(1 — e=*). Thus v = sin(e®y) + y(e* — 1).

4. The Quasi-linear Equation

Definition. A first-order quasi-linear equation is an equation Lou = § with
respect to the function u, where a(z) = a(z,u(z)) and B(z) = b(z, u(z)).
Here a is a vector field in z-space depending on a point of the u-axis as a
parameter and b is a function on z-space also depending on a point of the
u-axis as a parameter. In coordinate notation the equation has the form

0
() g+ ) S = )
The difference from a linear equation is only that the coefficients a and b may
depend on the value of the unknown function.

Ezample. Consider a one-dimensional medium of particles moving along a
line by inertia, so that the velocity of each particle remains constant. We
denote the velocity of the particle at the point = at time t by u(t,z). We
then write Newton’s equation: the acceleration of the particle equals zero. If

z = ¢(t) is the motion of a particle, then ¢ = u(t,(¢)) and ¢ = g—: + %99 =
Ou

Ou . . L . .
5t + u—. Thus the velocity field of & medium consisting of noninteracting
x
particles satisfies the quasi-linear equation u; + uu, = 0.
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Problem 1. Construct the graph of the solution at the instant ¢ if u = arctan x for
t=0.

Solution. The diffeomorphism of the plane (z,u) — (x + ut,u) moves each line
u = const along the z-axis by ut and maps the graph of the solution at the instant
0 to the graph of the solution at the instant ¢ (this diffeomorphism is none other
than the transformation of the phase flow of the Newton equation for particles: the
(z,u)-plane is the phase plane of the particle). For the answer see Fig. 89.

Fig. 89. The graph of a solution is obtained from the graph of the initial condition
by the action of the phase flow

Remark. For t > m/2 no smooth solution exists. Starting from this instant the par-
ticles collide and the assumption of the absence of interaction among them becomes
physically unrealistic. In these circumstances the motion of the medium is described
by the so-called shock waves — discontinuous solutions satisfying the equation to
the left and right of a discontinuity and satisfying additional conditions derived
from physical considerations at the discontinuity (depending on the nature of the
interaction when the particles collide).

Problem 2. Construct the equation for the evolution of the velocity field of a
medium of noninteracting particles in a force field with force F(x) at the point z.

Answer. u; + uu, = F.

Problem 3. Solve this equation with the initial condition w|¢=0 = 0 for the force

F(z)= -z

Solution. The phase flow consists of rotations, so that the graph of u(t,-) is a
straight line with inclination —¢t. Hence u(t,z) = —ztant, |¢| < /2.

Problem 4. Find the maximum width of a strip 0 < ¢t < C in which there exists a
solution of the equation 41 + uwu; = sinz with the initial condition uft=0 = 0.

Answer. C' = 7/2.

5. The Characteristics of a Quasi-linear Equation

The example just studied shows the usefulness of passing from the partial
differential equations for the velocity field to ordinary differential equations
for the motion of particles of the medium. Something analogous can be done
also in the case of a general quasi-linear first-order equation.



134 Chapter 2. Basic Theorems

The equation Lg(s u(z))u = b(x,u(z)) says that if the point z leaves zo
with velocity ag = a(zo,up), where ug = u(zy), then the value of u(z) begins
to change with velocity by = b(zg,uo) (Fig. 90). In other words the vector
Ay of the direct product of the z-space and the u-axis attached at the point
(70, up) and with components a, and by is tangent to the graph of the solution.
Suppose Ag # 0.

Fig. 90. The geometric meaning of a quasi-linear equation

Definition. The direction line of the vector Ay is called the characteristic
direction of the quasi-linear equation at the point (zg,uq).

The set of characteristic directions at all points of the domain of definition
of the coefficients of the equation forms a direction field. This field is called
the characteristic direction field of the equation. In coordinate notation the
characteristic directions are the directions of the vectors of the field

1é] 0
A= Z ak(a:,u)a—zk + b(x,u)a—u.

The differential equation defined by the characteristic direction field is
called the characteristic equation, and its integral curves are called character-
1stics. Thus characteristics are phase curves of the vector field A.

Problem 1. Find the characteristics of the equation of a medium of noninteracting
particles u; + uu, = 0.

Solution. & = u, { = 1, % = 0. The characteristics are the lines £ = ¢ +uot, ¥ = ug.

Remark 1. A linear equation is a special case of a quasi-linear equation, but the
characteristics of a linear equation, when regarded as a quasi-linear equation,
differ from its characteristics as a linear equation: the former lie in (2, u)-space,
the latter are the projections of the former on the z-space.

Remark 2. Quasilinear equations preserve the quasi-linear form under diffeo-
morphisms of the z-space and even under diffeomorphisms of the product
space in which its coefficients a and b are defined. Characteristics are invari-
antly connected with the equation: if such a diffeomorphism maps the old
equation into a new one, then the characteristics of the old equation map into
the characteristics of the new one. Moreover the equation can be multiplied
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by a nonvanishing function of z and u, and in the process neither the solutions
nor the characteristics will change (although the vector field A changes).

Problem 2. Prove that a quasi-linear equation can be reduced by a suitable lo-
cal diffeomorphism of the product space to the standard form du/dz1 = 0 in a
neighborhood of any point (x,u) at which the value of @ is nonzero.

6. Integration of a Quasi-linear Equation

The characteristic equation for the equation Y axOu/0z) = b is customarily
written in the so-called symmetric form

@1_ dz, du

ay an - T’
which expresses the collinearity of the tangent to the characteristic with the
characteristic vector (these relations signify that the 1-forms are equal on
vectors tangent to characteristics if the denominators are nonzero).

Definition. A surface is called an integral surface of a direction field if the
direction field lies in its tangent plane at every point.

Theorem. A necessary and sufficient condition for a smooth surface to be the
integral surface of a smooth direction field is that each integral curve having a
point in common with the surface lies entirely on the surface.

Proof. By the rectification theorem the field can be transformed into a field of
parallel lines by a diffeomorphism. For such a field the theorem is obvious. 0O

The following theorem is a consequence of the definition of a characteristic
direction.

Theorem. A function u i3 a solution of a quasi-linear equation if and only if
its graph is an integral surface of the characteristic direction field.

The following corollary is a consequence of the last two theorems.

Corollary. A function u is a solution of a¢ quasi-linear equation if and only
if its graph contains an interval of the characteristic passing through each of
118 points.

Thus finding the solutions of a quasi-linear equation reduces to finding
its characteristics. If the characteristics are known, it remains only to form
a surface from them that is the graph of a function: this function will be a
solution of the quasi-linear equation and all solutions can be obtained in this
way.
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Problem 1. Prove that the Cauchy problem for a first-order quasi-linear equation
has a solution, and moreover only one in a sufficiently small neighborhood of a point
xo of the initial hypersurface for an initial condition such that the vector a(zo, u(zo))
is not tangent to the initial hypersurface.

Remark. In contrast to the linear equation one cannot speak of points of the initial
hypersurface themselves as being characteristic for a quasi-linear equation: whether
a given point is characteristic or not depends on the initial value as well.

7. The First-order Nonlinear Partial Differential Equation

Like linear or quasi-linear equations, nonlinear equations of the most general
form F(z,0u/0z,u) = 0 can be integrated using characteristics. But while
the characteristics of a linear equation with respect to a function in R" lie in
R™ and those of a quasi-linear equation lie in the (n + 1)-dimensional space
R™ x R, the characteristics of the general nonlinear equation are curves in
the (2n + 1)-dimensional space of 1-jets of functions on which the function F'
that defines the equation is defined.

Definition. The space of -jets of functions of ¢ = (z1,...,2,)is the (2n+1)-
dimensional space with coordinates (zi,...,Zn;p1,-..,Pn;y). The 1-jet of a
function u at the point z is the point of this space with coordinates (z,p =
Ou/0z,y = u(z)). The set of 1-jets of the function u at all points = of its
domain of definition is called the 1-graph of the function.

The equation F(z,0u/0z,u) = 0 defines a hypersurface E in the space of
1-jets, namely the surface on which F(z,p,y) = 0. A solution of the equation
F =0 is a function whose 1-graph belongs to the hypersurface E.

We shall assume that the vector of derivatives F), (with components
OF/0p;) is nonzero: without this restriction the equation might not contain
Ou/0z and hence would not even be a differential equation. It follows from
the condition Fj, # 0 that the hypersurface E is smooth (by the implicit func-
tion theorem). The hardest part of the theory of a first-order nonlinear partial
differential equation is to invent the following definition.

Definition. The characteristics of the equation F' = 0 are the phase curves
of the following difficult-to-remember system of differential equations on the
hypersurface E in the space of 1-jets:

t=F, p=-F;,—-pF,, y=pkF,

Problem 1. Prove that a phase curve of this system originating on the hypersurface
E lies entirely in E.

Solution. F = F,z + Fpp+ F,5 = 0.
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Problem 2. Prove that the I-graph of each solution of the equation F' = 0 contains
an interval of the characteristic passing through each of its points. Conversely if
the I1-graph of a function consists of whole characteristics, then the function is a
solution.

Solution. Along the 1-graph of the solution dy = pde and dp = (8°u/02?)dz.
For a characteristic vector the first condition obviously holds and the second follows
from the fact that the restriction of dF to the l-graph is zero: the restriction of
F,dz + F, dp + F, dy to the 1-graph has the form

(F: 4 pFy)de + F,0%u /02" dz.

The proof of the converse (and also the geometric motivation for the strange
definition of characteristics) can be found in the book of V. I. Arnol’d, Geometri-
cal Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New
York, 1988, § 8, or in the book of V. I. Arnol’d, Mathematical Methods of Classi-
cal Mechanics, Springer-Verlag, 1989, pp. 369-370: these proofs are based on the
geometry of the field of contact planes in the space of jets.

The result of Problem 2 reduces the integration of a first-order nonlinear equa-
tion (for example, finding a solution of the Cauchy problem) to integrating a system
of ordinary differential equations, the characteristic equations. From the initial con-
dition one constructs a submanifold of the space of 1-jets, and the characteristics
passing through it form the 1-graph of the desired solution.

Problem 3. Prove that the characteristics of a nonlinear equation that is quasi-
linear project to characteristics of this quasi-linear equation under the mapping

(z,p,9) = (@, y)-

Problem * 4. Prove that the characteristics of the nonlinear equation F' = 0 are
invariantly connected with the equation: under diffeomorphisms of the @-space or
even the product of the @-space with the axis of values of the function the derivatives
transform so that the characteristics of the old equation map into characteristics of
the new one; under multiplication of F' by a nonvanishing function the characteristics
do not change.

Remark. In reality the connection between the hypersurface E and the characteristics
on it is invariant with respect to the even larger group of diffeomorphisms of the space
of jets, which permutes the arguments not only with the values but also with the
derivatives: all that matters is that the diffeomorphism of the space of jets preserve
the field of contact planes (defined by the equation dy = p dz). Such diffeomorphisms
are called contact diffeomorphisms and form the contact group, which is fundamental
for the theory of first-order partial differential equations and for geometric optics.

Definition. A Hamilton-Jacobi equation is a first-order partial differential equation
in which the value of the unknown function does not occur explicitly, i.e., an equation
of the form H(z,d0u/dz) = 0.

Problem 5. Prove that the distance from a point of the plane to a smooth curve
in the plane (Fig. 91) satisfies the Hamilton-Jacobi equation Y (du/8zi)* =1 in a
neighborhood of this curve (excluding the curve itself).

Problem 6. Prove that the distance from a point in Euclidean space to a smooth
submanifold (of any dimension) in the space satisfies the Hamilton-Jacobi equation
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u(x)
z

Fig.91. The solution of a Hamilton-Jacobi equation

5~(0u/dz;)* = 1in a neighborhood of the submanifold (excluding the submanifold
itself).

Problem 7. Prove that in a sufficiently small neighborhood of any point of a Eu-
clidean space every solution of the Hamilton-Jacobi equation Y (8u/0z;)* = 1 is
the distance to some smooth hypersurface plus a constant.

Problem 8. Prove that the characteristics of a Hamilton-Jacobi equation H = 0
project to (x, p)-space as phase curves of the Hamilton equations ¢ = Hyp, p = —Hz
lying on the zero level surface of the Hamiltonian function.

§ 12. The Conservative System with one Degree of
Freedom

As an example of the application of the first integral to the study of a differ-
ential equation we shall consider here a mechanical system with one degree of
freedom, without friction.

1. Definitions

A conservative system with one degree of freedom is a system described by a
differential equation

& = F(z), 1)

where F is a function that is differentiable on some interval I of the z-axis.
Eq. (1) is equivalent to the system

:i'l = T2, (izzF(xl), ((L’l,{tg)EIXR. (2)

In mechanics the following terminology is adopted:
I is the configuration space;
7 = z is the coordinate;
z2 = z 1s the velocity;
Z is the acceleration;
I x R is the phase space;
(1) is Newton’s equation;
F' is the force field;
F(z) is the force.
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Consider also the following functions on the phase space:

3 2
=% _ %2 the kinetic energy;

U= ——f F(£)d¢ the potential energy;

0

E =T+U the total mechanical energy.

du . )
It is obvious that F(z) = 5 % that the potential energy determines the
z

system.

Ezample 1. For the pendulum of § 1 (Fig. 92) we have & = — sin z, where z is

the angular displacement, F(z) = —sinz, U(z) = — cosz. For the equation
of small oscillations of the pendulum & = —=z
22
Fla)=—z, U(z)= 5

Fig. 92. The potential energy of a pendulum

For the equation of small oscillations of the inverted pendulum 2 = z

22
F(z)=2, U(z)= -5

(cf. Fig. 93).

X

Fig. 93. The potential energy of a pendulum near the lower and upper equilibrium
positions

2. The Law of Conservation of Energy

Theorem. The total energy E is a first integral of the system (2).
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Proof. We have

d xZ(t)z : 1.
7 (T + U(:vl(t))) =282 + U'2y = 22F(z1) — F(z1)z2 =0,
which was to be proved. O

The theorem just proved makes it possible to study and solve explicitly “in
quadratures” equations of the form (1), for example the pendulum equation.

3. The Level Lines of the Energy

Let us study the phase curves of the system (2). Each of these lies entirely on
one level set of the energy. We shall study these level sets.

Theorem. The level set of the energy

{(11,12) : %—%—U(zl) = E}

18 @ smooth curve in a neighborhood of each of its points, except for the equi-
librium positions, i.e., the points (z1,x2) where

F(z1)=0, z,=0.

Proof. Using the implicit function theorem, we have

OF OF

8—331 = —F(21), '5;2‘

= 9.

If one of the derivatives is nonzero, then the level set of E in a neighborhood
of that point is the graph of a differentiable function of the form z; = z;(z3)
or &3 = (). The theorem is now proved. O

We remark that the points (z1,z2) excluded above, where F(z;) = 0
and zo = 0, are precisely the stationary points (equilibrium positions) of the
system (2) and singular points of the phase velocity vector field. Furthermore
these same points are the critical points® of the total energy E(z1,z2). Finally,
the points z; where F(z;) = 0 are the critical points of the potential energy
U.

In order to sketch the level lines of the energy it is useful to imagine a ball
rolling in a “potential well” of U (Fig. 94).

Fix the value of the total energy E. We remark that the kinetic energy is
nonnegative. Therefore the potential energy cannot exceed the total energy,
and so a level line of the energy E projects to the configuration space (the
x1-axis) into the set of values of the potential energy not exceeding E {z; €
I: U(z1) < E} (the ball cannot rise above the level E in the potential well).

3 A critical point of a function is a point at which the total differential of the function
vanishes. The value of the function at such a point is also called a critical value.



§ 12. The Conservative System with one Degree of Freedom 141
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Fig. 94. A ball in a potential well and the phase curve

Furthermore the smaller the potential energy the larger the velocity (in
absolute value): |zo| = \/2(E — U(z;)) (when rolling into the well the ball
picks up speed, which it loses when ascending). At the “turning points” where
U(z1) = E the velocity is zero.

It follows from the fact that the energy is an even function of z, that
a level line of the energy is symmetric with respect to the z;-axis (the ball
traverses each point with the same velocity in both directions).

These simple considerations suffice to sketch the level lines of the energy
of systems with various potentials U. We begin by considering the simplest
case (an infinitely deep potential well with one center of attraction ¢), where
F(x) is monotonically decreasing, F(£) = 0, and I = R (Fig. 94).

If the value of the total energy E} is less than the minimum of the potential
Es,, then the level set E = Ej is empty (the motion of the ball is physically
impossible). The level set E = E, consists of a single point (£,0) (the ball
rests at the bottom of the well).

If the value Ej of the total energy is larger than the critical value E; =
U(§), then the level set E = Ej3 is a smooth closed symmetric curve enclosing
the equilibrium position (£,0) on the phase plane (the ball rolls back and forth
in the well; it rises to the height E3, and at that instant its velocity becomes
zero, and it rolls back down the well and passes through ¢, at which instant
its velocity is a maximum,; it then rises on the other side, etc.).

In studying more complicated cases one must proceed similarly, succes-
sively increasing the value of the total energy E and stopping at values of E
equal to the critical values of the potential energy U(€) (where U'(€) = 0),
each time examining the curves with values of E slightly smaller and slightly
larger than the critical values.

Ezample 1. Suppose the potential energy U has three critical points: & (a
minimum), {2 (a local maximum), and £; (a local minimum). Figure 95 shows
the level lines E; = U(fl), U({]) < E, < U(ﬁg), E; = U(£3), U(fg) < Ey <
U(fg), Es = U(fz), and Fg > U(ég)
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U
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i

Fig. 95. The level lines of the energy

Problem 1. Sketch the level lines of the energy for the pendulum equation & =
—sinz and for the equations of the pendulum near the lower and upper equilibrium

positions (¢ = —z and & = ).

Problem 2. Sketch the level lines of the energy for the Kepler problem*

—% + % and for the potentials depicted in Fig. 96.

U : U\/\/\ U\[\/
l\/\‘ T 1 -
A re e X

Fig. 96. Sketch the level lines of the energy

4. The Level Lines of the Energy Near a Singular Point

U =

In studying the behavior of the level lines near a critical value of the energy

it is useful to keep in mind the following circumstances.

Remark 1. If the potential energy is a quadratic form U = kx%/2, then the

level lines of the energy are second-order curves 2E = 3 + ka?.

In the case of an attraction we have k£ > 0 (i.e., the critical point 0 is a
minimum of the potential energy (Fig. 97)). In this case the level lines of the

energy are similar ellipses with center at 0.

In the case of repulsion we have k < 0 (i.e., the critical point 0 is a
maximum of the potential energy (Fig. 97)). In this case the level lines of the

* The variation in the distance of planets and comets from the Sun is described by

Newton’s equation with this potential.
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energy are similar hyperbolas with center at 0 and asymptotes given by z, =
+vkz;. These asymptotes are also called separatrices, since they separate

hyperbolas of different types.
ik»ﬂ i ; \—\

Fig. 97. The level lines of the energy for attractive and repellent quadratic potentials

Remark 2. In a neighborhood of a nondegenerate critical point the increment of
the function is a quadratic form provided the coordinates are suitably chosen.

The point 0 is a critical point of the differentiable function f if f'(0) = 0.
The critical point 0 is nondegenerate if f"'(0) # 0. Let us assume that f(0) = 0.

Lemma (Morse®). In a neighborhood of the critical point 0 the y-coordinate
can be chosen so that f = Cy?, C = sgn f"(0).

Such a coordinate will of course be y = sgnz+/|f(z)|. The assertion is that
the correspondence z +— y is diffeomorphic in a neighborhood of the point 0.
For the proof it is convenient to use the following proposition:

Lemma (Hadamard). Let f be a differentiable function (of class C") that
vanishes at the point @ = 0. Then f(z) = zg(z), where g 1s a differentiable
function (of class C™™1 in a neighborhood of the point x = 0).

Proof. We have
_ df(ta: odi =
flz)= A / fl(tx)x dt = x/ f'(tz) dt;

the function g(z) = fol f'(tz) dt is of class C™!, and the lemma is proved. 0O

We now apply Hadamard’s Lemma twice to the function f of Morse’s
Lemma. We find that f = 22%p(z), where 20(0) = f"(0) # 0. Thus
y = x4/]p(z)]. Morse’s Lemma is now proved, since the function +/|¢(z)]
is differentiable in a neighborhood of the point ¢ = 0 (r — 2 times if f is of
class C").

Thus in a neighborhood of a nondegenerate critical point the level lines of
the energy become either ellipses or hyperbolas under a diffeomorphic change
of the coordinates {z1,22).

 Both this lemma and the one that follows can be extended to functions of several
variables.
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Problem 1. Find the tangents to the separatrices of a repelling singular point
(U <0).

Answer. o = +/|U"(£)|(z1 — €) (Fig. 98).

4
3 4

Fig. 98. Tangents to the separatrices of a repelling singular point

5. Extension of the Solutions of Newton’s Equation

Suppose the potential energy is defined on the entire z-axis. The following
result is an immediate consequence of the law of conservation of energy.

Theorem. If the potential energy U is everywhere positive®, then every solu-
tion of the equation

du

Cdr

(11)

z =

can be extended indefinitely.

Ezample 1. Let U = —2? /2. The solution z = 1/(t — 1) cannot be extended to ¢ = 1.

We begin by establishing the following proposition, known as an a prior:
estimate.
Lemma. If there ezists a solution for |t| < T, it satisfies the inequalities
. £(0)? .
|2(t)] < V2E,, |2(t) — 2(0)| < V2Ey|t|, where Ey = #(0) + U(z(0)) s the

2
initial value of the energy.

Proof. According to the law of conservation of energy

224

20 4 v = B,

and since U > 0, the first inequality is proved. The second inequality follows
from the first, since () — z(0) = fot #(6) df. The lemma is now proved. O

% Of course changing the potential energy U by a constant does not change Eq. (11).
All that matters is that U be bounded below.
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Proof of the theorem. Let T be an arbitrary positive number.
Consider the rectangle II (Fig. 99) on the phase plane given by

ll‘] —Z'I(O)I SQ\/ 2EOT, ,.’L‘2| _<_2\/ 2E0

X

N

2978,

) X

Fig. 99. A rectangle from which the phase point does not exit in time T

Consider the parallelepiped (t| < T, (z1,22) € II in the extended phase space
of (x1,z2,t). By the extension theorem the solution can be extended to the
boundary of the parallelepiped. It follows from the lemma that the solution
can exit only through a face of the parallelepiped where |t| = T. Thus the
solution can be extended to any t = T, and hence indefinitely. a

Problem 1. Prove that the solutions of the system of Newton equations m;&; =

v i=1,...,N,m; >0,z € RY can be extended indefinitely in the case of a
1

positive potential energy (U > 0).

6. Noncritical Level Lines of the Energy

Assume that the potential energy U is defined on the whole z-axis. Let E be a
noncritical value of the energy, i.e., E does not equal the value of the function
U at any of its critical points.

Consider the set of points where the value of U is less than E, {z : U(z) <
E}. This set (Fig. 100) consists of a finite or countable number of intervals,
since the function U is continuous (two of these intervals may extend to infin-
ity). At the endpoints of the intervals we have U(z) = E, so that U'(z) # 0
(because E is a noncritical value).

Each point of the set {z : U(a) < E} is for this reason an endpoint of an
interval of smaller values. Therefore the whole set {z : U(z) < E} is the union
of an at most countable number of pairwise disjoint segments and, perhaps,
one or two rays extending to infinity, or else it coincides with the entire z-axis.

Consider (Fig. 101) one such interval a < z < b, where

U(a)=U(b)=E, U(z)<E fora<az<b.

2
Theorem. The equation % +U(zy) = E for a < 1 < b defines a smooth

curve diffeomorphic to a circle in the (z1,z2)-plane. This curve is a phase
curve of the system (2).
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Fig.100. The set of points = where Fig.101. A phase curve diffeomorphic
U(z)< E to a circle

Simalarly a ray a < ¢ < 00 (or —o0 < & < b) on which U(z) < E 1s
the projection to the x1-azis of a phase curve diffeomorphic to a straight line
(Fig. 102). Finally in the case when U(z) < E on the whole line the level set
corresponding to E consists of two phase curves

b)) =+ 2(E—U($1))

=
’\/—\”1

Fig.102. A phase curve diffeomorphic to a line

Thus the level set for a noncritical value of the energy consists of a finite
or countable number of smooth phase curves.

7. Proof of the Theorem of Sect. 6

The law of conservation of energy makes it possible to solve Newton’s equation
explicitly. Indeed, for a fixed value of the total energy F the magnitude (but
not the sign) of the velocity z is defined by the position z:

i =+/2(E - U(z))). (3)

and this is an equation with a one-dimensional phase space that we already
know how to solve.

Let (z1,22) be a point of our level set with z; > 0 (Fig. 103). We seek
the solution ¢ of Eq. (1) with initial condition ¢(ty) = z1, ¢(t9) = x5, from
relation (3):
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e(t) de¢

. VAE-T©) )

t—1g =

for ¢ near t,.

. T b d¢
We now remark that the integral — = —
2 Ja V2AE-TU(9))
U'(a) # 0 and U'(d) # 0. It follows from this that formula (4) defines a
function ¢ continuous on some closed interval ¢; < t < t3, and moreover
¢(t1) = a and ¢(tz) = b. This function satisfies Newton’s equation everywhere
(Fig. 104).

% 6 o
b b /‘:El\

converges, since

" a\n o) x ‘ bl . & 7 ¢
7

Fig. 103. A phase point traverses half Fig.104. Extension of a solution of

of the phase curve (from a to b) in the Newton’s equation using reflections

ﬁnite time T/2 = tz - t1

The interval (¢;,t2) has length T/2. We extend ¢ to the next interval of
length T/2 by symmetry considerations: p(ta +7) = p{ty — 7), 0 < 7 < T/2,
and then periodically: ¢(t + T') = ¢(¢). The function ¢ now constructed on
the entire line satisfies Newton’s equation everywhere. In addition ¢(t¢) = 2y,
¢(to) = .

Thus we have constructed a solution of the system (2) with the initial con-
dition (z1,z2). It turned out to be periodic, with period T'. The corresponding
closed phase curve is precisely the part of the level set corresponding to F over
the interval @ < z < b. This curve is diffeomorphic to a circle, like every closed
phase curve (cf. § 9).

The case when the interval extends to infinity (in one direction or both)
is simpler than the one we have considered and is left to the reader.

8. Critical Level Lines

Critical level lines can have a more complicated arrangement. We remark that
such a line contains fixed points (z1,z2) (where U'(z1) = 0 and z5 = 0), each
of which is a phase curve. If U(z) < E everywhere on a phase curve except
at U(a) = U(b) = E and both ends are critical points (U'(a) = U'(b) = 0),
then both of the open arcs 3 = £4/2(F —U(21)), ¢ < z; < b, (Fig. 105)
are phase curves. The time spent by a phase point in traversing such an arc
is infinite (by the extension theorem of Sect. 5 and uniqueness).
If U'(a) = 0 and U'(b) # 0 (Fig. 105), then the equation

2

D +U@@)=E, a<z<bh
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determines a nonclosed phase curve. Finally, if U'(a) # 0 and U'(b) # 0 (Fig.
105), the part of the critical level set over the interval a < z; < b is a closed
phase curve, as in the case of a noncritical level E.

9. An Example
Let us apply all that has just been said to the pendulum equation
& = —sina.

The potential energy is U(z) = — cosz (Fig. 106). The critical points are 1 = k,
k=0,%1,....

lé A U U
'3 E
a b a b a b

A1 1 X

XZT 24 24
J—-Qé——»

l N X1 Xy Xy

a) b) c)

Fig.106. The phase curves of the pendulum equation

The closed phase curves near 1 = 0, 2 = 0 resemble ellipses. Small oscilla-
tions of the pendulum correspond to these phase curves. Their period T is nearly
independent of the amplitude as long as the latter is small. For larger values of
the constant energy larger closed curves are obtained, until the energy reaches the
critical value equal to the potential energy of the pendulum turned upside down.
As this happens the period of oscillation grows (since the time of motion along the
separatrices forming the critical level set is infinite).

To still larger values of the energy there correspond nonclosed curves on which
x2 is of constant sign, i.e., the pendulum rotates rather than oscillates. Its velocity
attains its greatest value at the lower equilibrium position and its smallest value at
the higher equilibrium position.

We remark that values of z; differing by 2km correspond to the same position of
the pendulum. Therefore it is natural to consider the phase space of the pendulum
to be a cylinder {1 mod2n,z,} rather than a plane (Fig. 107).
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Wrapping the picture already sketched in the plane onto the cylinder, we obtain
the phase curves of the pendulum on the surface of the cylinder. They are all closed
smooth curves except the two stationary points A and B (the lower and upper
equilibrium positions) and the two separatrices C' and D.

Y] N \ /] ¢

A2

— ;

= —
= ;
Fig.107. The cylindrical phase space Fig. 108. The angle of deviation of the

of the pendulum pendulum and its rate of change for
amplitude near

Problem 1. Sketch the graphs of the functions z,(¢) and z3(t) for a solution with
energy close to the critical energy in the upper position, but slightly smaller.

Solution. See Fig. 108. The functions z:1(t) and z2(¢) can be expressed in terms
of the elliptic sine sn and the elliptic cosine cn. As F tends to the smaller critical
value, the oscillations of the pendulum approach harmonic oscillations, and sn and
cn become sin and cos.

Problem 2. With what velocity does the period of oscillation T of the pendulum
tend to infinity when the energy E tends to the critical value E;?

Answer. With logarithmic velocity (~ C In(E; — E)).

Hint. See formula (4).

Problem 3. Sketch the phase curves of the systems with potential energies U(z) =
tasinz, U(z) = 4307 U(z) = £sinz®.

T ’
Problem 4. Sketch the phase curves of Newton’s equation with the force fields
F(z) = xzsinz, F(z) = +20% F(z) = +sin2?.

)
xr

10. Small Perturbations of a Conservative System

By studying the motion of a conservative system we can study nearby sys-
tems of a general type using the theorem on differentiability with respect
to a parameter (cf. § 7, Sect. 5). In doing this we encounter qualitatively
new phenomena that are quite important for applications — the so-called self-
oscillations.

Problem 1. Study the phase curves of a system near the system of equations of
small oscillations of the pendulum:
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{531 =22 + ¢ fi(z1,22),

z2 = —x1 + € fo(z1,72),

ek, 2!+z2<R.

Solution. For ¢ = 0 we obtain the equations of small oscillations of the pendulum.
By the theorem on differentiability with respect to a parameter for small ¢ the
solution (on a finite time interval) differs by a correction of order ¢ from harmonic
oscillations:

z1 = Acos(t —1p), z2 = —Asin(t —to).
Consequently for sufficiently small ¢ < ¢o(T") the phase point remains near a circle
of radius A during the time interval T'.

In contrast to the conservative case (¢ = 0) for ¢ # 0 the phase curve is not
necessarily closed: it may have the form of a spiral (Fig. 109) in which the distance
between adjacent coils is small (of order ¢). To determine whether the phase curve

approaches the origin or recedes from it, we consider the increment in the energy
2

E=% +22 over one revolution about the origin. We shall be particularly interested

in the sign of this increment: the increment is positive on an expanding spiral,
negative on a contracting spua] and zero on a cycle. We shall deduce an approximate
formula (5) for the increment in the energy.

X

Fig. 109. The phase curves of the Van der Pol equation and the increment in the
energy during one revolution

It is easy to compute the derivative of the energy in the direction of our vector
field: it is proportional to ¢ and equal to E(z1,z2) = e(z1 f1 + 22 f2)-

To compute the increment in the energy during a revolution one should integrate
this function along a coil of a phase trajectory, which unfortunately is unknown to
us. But we have already ascertained that this coil is nearly a circle. Therefore up to
order O(e?) the integral can be taken over a circle § of radius A:

27
AE:s/ E(Acost,—Asint)dt + O(?).
0

Substituting the computed value of E, we find’
AE = eF(A) + 0(e?), (5)

where F(A) = %fl dzs — fadz, (the integral is taken counterclockwise over the

circle of radius A).

7 We are using the fact that dzy = z2 dt and dzy = —z, dt along S.
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Having computed the function F, we can study the behavior of the phase curves.
If the function F is positive, the increment of the energy AF over a revolution is also
positive (for small positive ¢). In this case the phase curve is an expanding spiral;
the system undergoes increasing oscillations. If F' < 0, then AE < 0 and the phase
spiral contracts. In this case the oscillations die out.

It can happen that the function F' changes sign (Fig. 109). Let 4y be a simple
zero of the function F. Then for small ¢ the equation AE(z1,x2) = 0 is satisfied by
a closed curve I' on the phase plane close to a circle of radius Ag (this follows from
the implicit function theorem).

It is obvious that the curve I’ is a closed phase curve — a limit cycle of our
system.

Whether the nearby phase curves wind onto the cycle or unwind from it is

determined by the sign of the derivative F' = .If eF" > 0, the cycle is

dA A:AO
unstable, and if ¢ F' < 0 it is stable. Indeed, in the former case the increment of the
energy during a revolution is positive if the phase curve is outside the cycle and less
than zero if it is inside. Therefore the phase curve always recedes from the cycle. In
the latter case, however, the phase curves approach the cycle both from within and
from without, as in Fig. 109.

Ezample 1. Consider the equation & = —z + €2(1 — 2?) (called the Van der

Pol equation). Computing the integral (5) for f; = 0, fo = z2(1 — 2?), we
4

obtain F(A) = 7r(A2 - %—)

This function has a simple root 4 = 2 (Fig. 109); for smaller A it is
positive and for large A it is negative. Therefore the Van der Pol equation has
a stable limit cycle close to the circle £? 4+ #% = 4 in the phase plane.

Let us compare the motion of the original conservative system (e = 0) with
what happens for ¢ # 0. In a conservative system oscillations with any ampli-
tude are possible (all phase curves are closed). The amplitude is determined
by the initial conditions in this case.

In the nonconservative system qualitatively different phenomena are pos-
sible, for example a stable limit cycle. In this case a periodic oscillation of one
and the same completely definite amplitude is established for quite different
initial conditions. This established mode is called a self-oscillating mode.

Problem * 2. Study the self-oscillating modes of the motion of a pendulum with
small friction under the action of a constant torque M:

Z+sine+ez =M.

Hint: This problem is studied in detail for any ¢ and M in the book of A. A.
Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators, (Pergamon Press,
New York, distributed by Addison-Wesley Publishing Co., Reading, Mass., 1966,
Chapter 7). In the first edition of this classical book the name of the second author
was omitted, due to “a tragic mistake,” as the later editions explain it. (The author
had been shot!)
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Linear equations are about the only large class of differential equations for
which a fairly complete theory exists. This theory, which is really a branch
of linear algebra, makes it possible to solve completely all autonomous linear
equations.

The theory of linear equations is also useful as a first approximation in the
study of nonlinear problems. For example, it makes it possible to study the
stability of equilibrium positions and the topological type of singular points
of generic vector fields.

§ 13. Linear Problems

We begin by considering two examples of situations where linear equations
arise.

1. Example: Linearization

Consider a differential equation defined by a vector field v in the phase space.
We already know that in a neighborhood of a nonsingular point (v # o) the
field has a simple structure: it can be rectified by a diffeomorphism. Now let
us consider the structure of the field in the neighborhood of a singular point,
i.e., a point where the vector field vanishes. Such a point zy is a stationary
solution of our equation. If the equation describes a physical process, then z,
1s a stationary state of the process, an “equilibrium position” of it. Therefore
the study of a neighborhood of a singular point is the study of the way in
which the process develops under a small deviation of the initial conditions
from equilibrium (for example: the upper and lower equilibrium positions of
a pendulum).

In studying a vector field in a neighborhood of a point 2y where the vector
field is 0 it is natural to expand the field in a neighborhood of this point in a
Taylor series. The first term of the Taylor series is the linear term. Discarding
all the other terms is called linearization. The linearized vector field can be
regarded as an example of a vector field with a singular point zy. On the other
hand, one may hope that the behavior of the solutions of the original and the
linearized equations are closely related (since the infinitesimals discarded in
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linearization are of higher order). Of course the question of the connection
between the solutions of the original and the linearized equations requires
special investigation. This investigation is based on a detailed analysis of the
linear equation, which we take up first.

Problem 1. Show that linearization is an invariant operation, i.e., independent of
the system of coordinates.

More precisely, suppose the field v in the domain U is given by components
vi(z) in the system of coordinates z;. Suppose the singular point has coordinates
z; = 0, (so that »;(0) = 0,7 =1,...,n). Then the original equation can be written
in the form of the system

;i =vi(z), 1=1,...,n.

Definition. The linearized equation is the equation

n

£w=§:am&w t=1,...,n, aij=

i=1

ov;

0z {z=o

Consider a tangent vector & € ToU with components & (i = 1,...,n). The linearized
equation can be written in the form

£ = A€,
where A is the linear mapping, A : ToyU — ToU given by the matrix a;,;.

We claim that the mapping A is independent of the system of coordinates w;
occurring in its definition.

Problem 2. Linearize the equation of the pendulum & = —sinz near the equilib-
rium position zg = km, &9 = 0.

2. Example: One-parameter Groups of Linear Transformations of
R’n

Another problem that reduces immediately to linear differential equations is
the problem of describing the one-parameter groups of linear transformations!
of the vector space R™.

We remark that the tangent space to the vector space R™ at any point can
be naturally identified with the vector space itself. To be specific, we identify
the element ¢ of the tangent space T, R" represented by the curve ¢ : I — R",
©(0) = z with the vector

(t) -z € R"

v = lim 1
t—0 t

! We recall that part of the definition of a one-parameter group {g'} is the require-
ment that g*z be differentiable with respect to  and t.
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of the space R" itself (the correspondence v < ¢ is one-to-one and onto).

This identification depends on the vector space structure of R™ and is not
preserved by diffeomorphisms. Nevertheless in the linear problems that we
shall now be studying (for example, in the problem of one-parameter groups
of linear transformations), the vector space structure of R" is fixed once and
for all. For that reason henceforth until we return to nonlinear problems we
make the identification T,R" = R".

Let {g¢, t € R} be a one-parameter group of linear transformations. Con-
sider the motion ¢ : R — R™ of a point o € R".

Problem 1. Prove that ¢(t) is a solution of the equation
T = Az (1)
with the initial condition ¢(0) = zo, where 4 : R® — R" is the linear operator

( = R-endomorphism) defined by the relation Az = % (¢'x) for all z € R™.
t=0

Hint. Cf. § 4, Sect. 4.

Equation (1) is called linear. Thus to describe all one-parameter groups of
linear transformations it suffices to study the solutions of the linear equations

(1)

We shall see below that the correspondence between one-parameter groups
{g*} of linear transformations and the linear equations (1) is one-to-one and
onto: each operator A : R* — R™ defines a one-parameter group {¢‘}.

Ezample 1. Let n = 1, and let A be multiplication by the number k. Then g'isa
dilation by a factor of e**.

Problem 2. Find the velocity field of the points of a rigid body rotating about an
axis passing through the point o with angular velocity w.

Answer. v(z) = [w,z].

3. The Linear Equation
Let A: R™ — R™ be a linear operator on the real n-dimensional space R".

Definition. A linear equation is an equation with the phase space R"™ defined
by the vector field v(x) = Aw:

T = Az. (1)

The full name of equation (1) is: a system of n first-order homogeneous linear
ordinary differential equations with constant coefficients.
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If we fix in R™ a (linear) coordinate system z;, ¢ = 1,...,n, then Eq.
n

(1) can be written in the form of a system of n equations: #; = Zaiﬂj,
i=t

i=1,...,n, where (a;;) is the matrix of the operator A in the given coordinate
system. This matrix is called the matriz of the system.

In the case n = 1 the solution of Eq. (1) with the initial condition ¢(0) =
x¢ is given by the exponential ¢(t) = etlag.

It turns out that the solution is given by this same formula in the general
case as well: one has only to explain what is meant by the exponential of a
linear operator. We now take up this problem.

§ 14. The Exponential Function

The function e, A € R, can be defined in either of two equivalent ways:

A7 48

A _

i T TR 1)
A\n

A_ 1 A

o= Jim (B+7) ®

(where E denotes the number 1).
Now let A : R® — R™ be a linear operator. To define e” we first define
the concept of the limit of a sequence of linear operators.

1. The Norm of an Operator

We fix an inner product in R™ and denote by ||z| = \/(z,z) (z € R") the
square root of the inner product of @ with itself.
Let A: R® — R" be a linear operator.

Definition. The norm of A is the number

Az
|A]| = sup I “
z#0 |||

Geometrically ||A|| denotes the largest “coeflicient of dilation” of the trans-
formation A.

Problem 1. Prove that 0 < ||4]| < cc.

Hint. ||A|| = sup ||[Az]||, the sphere is compact, and the function ||Az]| is contin-

uous. I=l=t

Problem 2. Prove that ||[AA]| = |A||A]l, |4 + B|| < ||A]| + ||B]|, and ||AB|| <
B:R"

A1l B||, where A: R* — R™ and — R™ are linear operators, and A €
is a number.
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Problem 3. Let (aij) be the matrix of the operator A in an orthonormal basis.

Show that
max ) af; < [l4]* <Dl
i

i

Hint. See G. E. Shilov, An Introduction to the Theory of Linear Spaces, Dover, New
York, 1974, § 53.

2. The Metric Space of Operators

The set L of all linear operators 4 : R® — R™ is itself a vector space over the
field of real numbers (by definition (A + AB)x = Az + ABz).

Problem 1. Find the dimension of the vector space L.

Answer. n?.

Hint. An operator is defined by its matrix.

We define the distance between two operators as the norm of their differ-
ence p(A,B) =||A - B|.

Theorem. The space of linear operators L with the metric p 1s a complete

metric space?.

Let us verify that p is a metric.

By definition p > 0if A # B, p(A,A) = 0, and p(B,A4) = p(4, B). The
triangle inequality p(4, B) + p(B,C) > p(A4,C) follows from the inequality
|IX + Y| < |IX]|| +||Y]|| of Problem 2 of Sect. 1 (with X = A — B and
Y = B — C). Thus the metric p makes L into a metric space. It is obviously
also a complete space.

3. Proof of Completeness

Let {A4;} be a Cauchy sequence, i.e., for every ¢ > 0 there exists N(¢) such that
p(Am, Ar) < € for m,k > N. Let & € R". Form the sequence of points ; € R"

2 A metric space is a pair consisting of a set M and a function p: M x M — R,
called a metric, for which

1) plz,y) 20, (p(z,y) =0) & (z =y);

2)  plz,y) =ply,z) Yo,y € M;

3)  plz,y) <plx,2) +p(z,9) Vo,y,2 € M.

A sequevnce of points z; in a metric space M is called a Cauchy sequence if for
every £ > 0 there exists N such that p(zi,z;) < € for all 4,7 > N. The sequence

x; converges to the point z if for every £ > 0 there exists N such that p(z,z;) <e
for all ¢ > N. A space is called complete if every Cauchy sequence converges.
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such that @; = A;2. We shall show that {@;} is a Cauchy sequence in the space R
endowed with the metric p(@,y) = || — y||. Indeed, by definition of the norm of an
operator, for m,k > N

[@m — @ell < p(Am, Akl < ef|2]|-

Since ||&|| is a fixed number (independent of m and k), it follows from this that
{z;} is a Cauchy sequence. The space R" is complete. Therefore the following limit
exists:

y = lim z; € R".

1= OO

We remark that ||@r — y|| < el|&]| for k > N{(e), and N(¢) is the same number as
above, independent of @.

The point y is a linear function of the point & (the limit of a sum is the sum of
the limits). We therefore obtain a linear operator A : R* — R" with Az =y, and
A € L. We see that for k > N(¢)

p(Ar, A) = [[Ax — Af| = sup 122 =Yl
z#o0

Izl

Thus A = klim Ak, and so the space L is complete.
— 00

Problem 1. Prove that a sequence of operators A; converges if and only if the
sequence of their matrices in a fixed basis converges. Deduce another proof of com-
pleteness from this result.

4. Series

Suppose given a real vector space M made into a complete metric space by a
metric p such that the distance between any two points of M depends only on
their difference, and p(Az,0) = |A|p(z,0) (z € M, X € R). Such a space is said
to be normed, and the function p(z,0) is called the norm of 2 and denoted

[l]l-

Ezample 1. The Euclidean space M = R™ with the metric
p@y) =llz -yl = V(z-y)z-y)

Ezample 2. The space L of linear operators R” — R™ with the metric p(A, B) =
l4 - Bl

We shall denote the distance between the elements A and B of M by
|4~ Bl

Since the elements of M can be added and multiplied by scalars and
Cauchy sequences in M have limits, the theory of series of the form A; + 4, +
.-+, A; € M, repeats verbatim the theory of numerical series.

The theory of functional series also carries over immediately to functions
with values in M.
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Problem 1. Prove the following two theorems:

o0

The Weierstrass Criterion®. If a series E fi of functions fi : X — M 1s
i=1

majorized by a convergent numerical series

oo
Ifill <ai, D ai<oo, ai€R,
i=1
then it converges absolutely and uniformly on X.

Differentiation of a series. If a series > f; of functions f; : R - M

converges and the series of derivatives Z d_tl converges uniformly, then the

Cd & . . .
latter converges to the derivative P Zf, (t 1s a coordinate on the line R).
i=1

Hint. The proof for the case M = R can be found in any course of analysis. It
carries over verbatim to the general case.

5. Definition of the Exponential e4

Let A: R™ — R" be a linear operator.

Definition. The ezponential e? of the operator A is the linear operator from
R" to R™ given by

o Ak
_E+A+ Z%

(where F is the identity operator, Ex = @).

Theorem. The series e converges for any A uniformly on each set X =

{A: |4]| £a}, a € R.

Proof. Let ||A|]] € a. Then our series is majorized by the numerical series
a - .

l14+a+ o7 + -+, which converges to e®. By the Weierstrass criterion the series

e convefges uniformly for ||4]| < a. o

Problem 1. Compute the matrix e if the matrix A has the form

3 Usually referred to in Western literature as the M -test, since the constants a; are
usually denoted M;, Trans.
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1 0 0 1
D (53) 2 (5 o)
0 0
(5 o) (0 1).
0 0

(g )2 (51
i
0

3) (cost sint 4) é
~—sint cost/’ 0

O O =

Answer.

6. An Example

Consider the set of polynomials of degree less than n in one variable z with
real coeflicients.

This set has a natural real vector space structure: polynomials can be
added and multiplied by numbers.

Problem 1. Find the dimension of the space of polynomials of degree less than n.

Solution. n; a basis, for example, is 1,z,z%,...,z" .

We shall denote the space of polynomials of degree less than n by R™%.
The derivative of a polynomial of degree less than n is a polynomial of degree
less than n. Therefore a mapping arises

d
A:R" R, Ap=_.
T

Problem 2. Prove that A4 is a linear operator; find its kernel and image.
Answer. KerA=R', ImA=R"!.

On the other hand we denote by H', (t € R) the operator of translation
by t taking the polynomial p(z) into p(z + t).

Problem 8. Prove that H' : R* — R™ is a linear operator. Find its kernel and
image.

Answer. Ker H' =0, Im H' = R".

* Thus we are identifying the space of polynomials in which the basis exhibited
above was chosen with the coordinate space R™ isomorphic to it.
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Finally, we form the operator e“*.

Theorem. et = Ht,

Proof. In a course of analysis this theorem is called Taylor’s formula for poly-

nomials:
tdp t2d%p
p(w+t)—p(w)+ﬁa+ﬁw+--- .

7. The Exponential of a Diagonal Operator

Suppose the matrix of the operator A is diagonal with diagonal elements
A, ..., An. It is easy to see that the matrix of the operator e is also diagonal,
with diagonal elements e*t,. .., e*n.

Definition. An operator A : R* — R" is called diagonalizable if its matrix
in some basis is diagonal. Such a basis is called a proper basis.

Problem 1. Give an example of a nondiagonalizable operator.
Problem 2. Prove that the eigenvalues of a diagonalizable operator A are real.

Problem 8. If all n eigenvalues of the operator A : R — R" are real and distinct,
then the operator is diagonalizable.

Let A be a diagonalizable operator. Then the computation of e? is carried
out most simply in a proper basis.

FEzample 1. Suppose the matrix of the operator A has the form (} i) in a basis

€1, e;. Since the eigenvalues Ay = 2, A2 = 0 are real and distinct, the operator A
is diagonalizable. A proper basis is fi = €1 + €2, fo = e1 — e;. The matrix of

the operator A in the basis of eigenvectors is (g 8) Therefore the matrix of the

2
operator e in the basis of eigenvectors is (eo (1))
A 1(e2+1 62—-1)

Thus in the original basis the matrix of the operator e” is slezo1 241

8. The Exponential of a Nilpotent Operator

Definition. The operator A : R™ — R" is called nilpotent if some power of
it equals 0.
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Problem 1. Prove that the operator with the matrix (8 (1)) is nilpotent. In

general if all the elements of a matrix on or below the diagonal are 0, the operator
is nilpotent.

L d . .
Problem 2. Prove that the differentiation operator T in the space of polynomials
x

of degree less than n is nilpotent.

If the operator A is nilpotent, the series for e? terminates, i.e., reduces to
a finite sum.

Problem 3. Calculate e'* (¢ € R), where A : R* — R™ is the operator with the

matrix
0 1 0
01
0
1
0

(containing 1’s only above the main diagonal).

Hint. One of the ways of solving this problem is Taylor’s formula for polynomials.

The differentiation operator — has a matrix of this form in some basis (which one?).
For the solution see § 25.

9. Quasi-polynomials

Let A be a real number. A quasi-polynomial with exponent A is a product
e**p(z), where p is a polynomial. The degree of the polynomial p is called the
degree of the quasi-polynomial. Fix the value of the exponent A.

Problem 1. Prove that the set of all quasi-polynomials of degree less than n is a
vector space. Find its dimension.

Solution. n. A basis is, for example, e*%, ze*®, ... 2" e,

Remark. The concept of a quasi-polynomial, like the concept of a polynomial,
conceals a certain ambiguity. A (quasi-)polynomial can be interpreted as an
expression composed of signs and letters; in that case the solution of the
preceding problem is obvious. On the other hand a (quasi-)polynomial can be
interpreted as a function, i.e., a mapping f : R — R.

In reality these two interpretations are equivalent (when the coeflicients
of the polynomials are real or complex numbers; at present we are considering
(quasi-)polynomials with real coeflicients).

Problem 2. Prove that every function f: R — R that can be written in the form
of a quasi-polynomial has a unique expression of this form.
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Hint. It suffices to prove that the relation e**p(z) = 0 implies that all the coefficients
of the polynomial p(z) are equal to 0.

We shall denote the n-dimensional vector space of quasi-polynomials of
degree less than n with exponent A by R™.

d . ) ,
Theorem. The differentiation operator o e linear operator from R" into
z
R", and for anyt € R
e'# = HY, (3)

where H' : R® — R™ is the operator of translation by t (i.e., (H'f)(z) =
fle+1))

Proof. We must first of all prove that the derivative and the translate of
a quasi-polynomial of degree less than n with exponent A are again quasi-
polynomials of degree less than n with exponent A.

Indeed,

d .
(7 p(2)) = A p(a) + P (2),  Hp(a +1) = (M p(a +1)).

T
The linearity of differentiation and translation are not in question. It remains
only to remark that the Taylor series for a quasi-polynomial converges abso-
lutely on the entire line (since the Taylor series for e** and for p(z) converge
absolutely). This is what formula (3) expresses. O

Problem 3. Compute the matrix of the operator e’ if the matrix of A has the
form

Al 0
y

1

0 A

(the diagonal consists of \’s, there are 1’s above the diagonal, and 0’s everywhere
else). For example, compute
exp ((1) 1) .

Hint. This is precisely the form of the matrix of the differentiation operator in the
space of quasi-polynomials (in'what basis?). For the solution see § 25.

§ 15. Properties of the Exponential

We now establish a number of properties of the operator e” : R* — R"; these
properties enable us to use e? to solve linear differential equations.
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1. The Group Property

Let A: R®™ — R™ be a linear operator.

Theorem. The family of linear operators e!* : R* — R™, t € R, is a one-
parameter group of linear transformations of R™.

Proof. Since we already know that e*4 is a linear operator, we need only verify

that
e(t+1;)A — etAesA (1)

and that ‘4 depends differentiably on t. We shall prove that

d
ae“‘ = Ae'4, (2)
as an exponential should behave.

To prove the group property (1) we first multiply the power series in A

formally:
LI S
(B+tAd+ A+ )(Bdsd+ TA 4+ =
t? 2
=E+(t+s)A+ (5 +ts+ 5 )a 4.

The coefficient of A* in the product is (¢ + s)¥/(k!), since the formula (1)
holds in the case of numerical series (4 € R). All that remains to be done is
to justify the termwise multiplication. This can be done in the same way that
termwise multiplication of absolutely convergent numerical series is justified
(the series for e!* and e*4 converge absolutely, since the series e/** and el
converge, where a = ||A||). The proof can be directly reduced to the numerical
case, as we shall now show.

Lemma. Let p € Rz1,...,2,] be a polynomial with nonnegative coefficients in the
variables z1,...,2n. Let Ay,...,An : R — R™ be linear operators. Then
lIp(Az, s Al < p([[ALlls- -, [ Anl])-

Proof. This follows from the relations
lA+ BIL <IIAIl+[1Bll, ABI <{IAINIBI, [AAll=[AIAll

The lemma is now proved. O
We denote by Sm(A) the partial sum of the series for e*:

Sm(A) = ZF
k=0

Sm 1s a polynomial in A with nonnegative coefficients. We must prove that the
difference Ay = Sp(tA)Sm(sA) — Sm((t + s)A) tends to zero as m — oo.
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We remark that A,, is a polynomial in sA and tA4 with nonnegative coefficients.
Indeed, the terms of degree at most m in A in the product of the series are all
obtained by multiplying all the terms of degree not larger than m in the two factor
series. Moreover .Sy, ((s+t)A) is the partial sum of the product series. Therefore A, is
the sum of all the terms of degree larger than m in A in the product Sm(tA)Sm(sA).
But all the coefficients of a product of polynomials with nonnegative coefficients are
nonnegative.

By the lemma [|Am(tA, sA)|| < Am(|[tA]],||sAll)- Let us denote the nonnegative
numbers ||t A|| and ||sA|| by 7 and 6. Then A (7,0) = Sm(7)Sm(c)—Sm(7+0). Since
e"e? = ¢"17, the right-hand side tends to 0 as m — co. Thus lim An,(t4,sA) =0,

m—0o0
and relation (1) is proved.

To prove relation (2) we differentiate the series eA! formally with respect
to t; we then obtain the series of derivatives

dt

o0 >
ditk . th .
HA =AZk—!A )
k=0 k=0

This series converges absolutely and uniformly in any domain ||4|| £ q, |t| <
T, just like the original series. Therefore the derivative of the sum of the series
is the sum of the series of derivatives. The theorem is now proved. O

Problem 1. Is it true that e2t? = e%ef?
Answer. No.

Problem 2. Prove that dete? # 0.

Hint. e=* = (e®)™'.

Problem 3. Prove that if the operator A in a Euclidean space is skew-symmetric,
then the operator e# is orthogonal.

2. The Fundamental Theorem of the Theory of Linear Equations
with Constant Coeflicients

An immediate consequence of the theorem just proved is a formula for solving
a linear equation:

&= Az, =z € R" (3)

Theorem. The solution of Eq. (3) with initial condition ¢(0) = x( s

o(t) = exy, t€R. (4)

Proof. According to the differentiation formula (2)

d
—({— = Aezy = Ap(t).
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Thus ¢ is a solution. Since €’ = E, we have ¢(0) = @o. The theorem is now
proved, since by the uniqueness theorem every solution coincides with the
solution (4) in its domain of definition. 0

3. The General Form of One-parameter Groups of Linear
Transformations of the Space R™

Theorem. Let {g' : R™ — R"} be a one-parameter group of linear transfor-
mations. Then there exists a linear operator A : R — R™ such that g' = et

dgt t_F
Praof. Set A = &9 —lim Z
dt li=o0 t—0
¢(t) = g'zo is a solution of Eq. (3) with the initial condition ¢(0) = @,.
According to (4) we have g'zy = ¢!z, which was required. O

The operator A is called the infinitesimal generator of the group {g'}.

. We have already proved that the motion

Problem 1. Prove that the infinitesimal generator is uniquely determined by the
one-parameter group.

Remark. Thus there is a one-to-one correspondence between the linear differ-
ential equations (3) and their phase flows {¢*}, and the phase flow consists of
linear diffeomorphisms.

4. A Second Definition of the Exponential

Theorem. Let A: R® — R" be a linear operator. Then

et = lm (E+ %)m. (5)

m—0o0

Proof. Consider the difference

(o2 - S-S

k=0

A\m
(The series converges since (E + —) is a polynomial and the series for e”

m
converges.) We remark that the coefficients of the difference are nonnegative:

_1_>m(m—1)-...~(m—k+1)i
kY — mem----- m K

Therefore, setting [|A]| = a, we find
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A\m /1 cC* a\m
A _ ~ - _Ym k — oM el .
“6 (E+m) “Skz_;)(k! mk)a ¢ (1+m)

This last quantity tends to 0 as m — oo, and the theorem is proved. a

5. An Example: Euler’s Formula for e*

Let C be the complex line. We can regard it as the real plane R?, and mul-
tiplication by a complex number z as a linear operator A : R? — R2. The
operator A is a rotation through the angle arg z together with a dilation by a
factor of |z|.

Problem 1. Find the matrix of the multiplication by z = u +¢v in the basis e; = 1,
€9 = z.

Answer. (u v ) .
v

A
Let us now find e”. By formula (5) we must first form the operator E + -
This is multiplication by the number 1 4+ i, i.e., a rotation through the angle

arg (1 + %) together with dilation by a factor of ‘1 + —Z‘ (Fig. 110).

Fig. 110. The complex number 1 + (z/n)

Problem 2. Prove that as n — co
z z 1
arg (14 ) =Tm - +0( ),

z z 1 (6)
‘1+;|=1+Re; +o(;).

n

The operator (E + —4) is rotation by the angle n arg (1 + i) together
n n

with dilation by a factor of ‘1 + _z_‘ . From formula (6) we find the limits of
n
the angle of rotation and the coefficient of dilation:

n

lim narg (1+i) =Imz, lim ‘1+§ = eRe?,

n—oo n n—oo
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Thus we have proved the following theorem.

Theorem. Let z = u+iv be a complex number and A : R*> — R? the operator
of multiplication by z. Then e is the operator of multiplication by the complex
number e*(cosv + 1 sinv).

Definition. The complex number
z n
e"(cosv +isinv) = lim (1 + —)
n—oo n
is called the ezponential of the complex number z = u + v and is denoted

e = e"(cosv +isinv). (7N

Remark. If we do not distinguish a complex number from the operator of
multiplication by that complex number, the definition becomes a theorem,
since the exponential of an operator is already defined.

Problem 3. Find €°, ¢!, ¢, ™, 2™,
9 9 b 9

Problem 4. Prove that e®11°2 = ¢*1e®2 (2; € C, 2, € C).

Remark. Since the exponential is also defined by a series, we have

2

ez=1+z+z2—'+-~, zeC (8)

(the series converges absolutely and uniformly in each disk |z| < a).

Problem 5. By comparing this series with Euler’s formula (7), deduce the Taylor
series for sin v and cosv.

Remark. Conversely, knowing the Taylor series for sinwv, cosv, and e*, we
could have proved formula (7), starting from formula (8) as the definition of

e,

‘6. Euler’s Broken Lines

Combining formulas (4) and (5), we obtain a method of approximate solution
of the differential equation (3) known as Euler’s broken-line method.
Consider a differential equation defined by a vector field v and whose
phase space is the vector space R™. To find the solution ¢ of the equation
& = v(x), * € R", with initial condition &, we proceed as follows (Fig. 111).
The velocity at the point @ is known: it is v(x(). We move with constant
velocity v(xg) from x during the time interval At = t/N. We arrive at the
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point &1 = x¢ + v(xo)At. During the next time interval of length At we move
with velocity v(@,), etc.:

Trt1 =@ +v(xp)At, k=0,1,...,N-1.

@t

2t ar t R
n

A a

Fig.111. An Euler broken line

We denote the last point @y by X n(t). We remark that the graph describ-
ing a motion with piecewise constant velocity is a broken line of N segments
in the extended phase space R x R™. This broken line is called an Euler broken
line. One would naturally expect that as N — oo the sequence of Euler broken
lines tends to an integral curve, so that for large N the last point Xy (t) will
be near the value of the solution ¢ with the initial condition ©(0) = x, at
the point t.

Theorem. For a linear equation (3) the relation Nlirn Xn(t) = (t) holds.

Proof. By definition of an Euler broken line for v(¢) = Az we have Xy =

A\ N ) A ‘
(E + —N-) . Therefore A}]m Xy = e a (cf. (5)). Thus 1\}1m Xy = p(t)
(cf. (4)). g

Problem 1. Prove that not only does the endpoint of the Euler broken line tend to
(1), but also the whole sequence of piecewise-linear functions ¢, : I — R™ whose
graphs are the Euler broken lines tends uniformly to the solution ¢ on the interval
[0,4].

Remark. In the general case the Euler broken line (when the vector field »

depends nonlinearly on ) can also be written in the form Xy = (E +

tA\" . . . .
—]—V—) @, where A is the nonlinear operator that maps the point @ into the

point v(x). We shall see below that in this case the sequence of Euler broken
lines converges to a solution, at least for sufficiently small |¢| (§ 31, Sect. 9).
Thus the expression (4), in which the exponential is defined by formula (5),
gives the general solution of all differential equations’®.

® In practice it is not convenient to solve an equation approximately using Euler
broken lines, since one is forced to take a very small step size At in order to
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The Euler theory of the exponential, which is the same in all its variants
from the definition of the number e, the Euler formula for e*, Taylor’s formula,
formula (4) for solving linear equations, down to Euler’s broken-line method,
has many other applications that are beyond the scope of this course.

§ 16. The Determinant of an Exponential

If the operator A is given by its matrix, the computation of the matrix of the
operator e may require long calculations. However the determinant of the

matrix e? can be computed very easily, as we shall now see.

1. The Determinant of an Operator

Let A: R® — R" be a linear operator.

Definition. The determinant of the operator A is the determinant of the
matrix of the operator in some basis ey, ..., e,; we denote it by det A.

The determinant of the matrix of the operator A is independent of the
basis. Indeed, if (A) is the matrix of the operator A in the basis e, ..., e,
then the matrix of the operator A in another basis will be (B)(A)(B~!), and

det(B)(A)(B™!) = det(A).

The determinant of a matriz is the oriented volume of the parallelepiped®
whose edges are the columns of the matriz. [This definition of a determinant,
which makes the algebraic theory of determinants trivial, is kept secret by the
authors of most algebra textbooks in order to enhance the authority of their
science.]

is the area of

1 T2
Y1
the parallelogram spanned by the vectors §; and €; with components (xy,y1)
and (22,y2) taken with the plus sign if the ordered pair of vectors (&;,&2)
gives the same orientation of R? as the basis pair (e, €2), and taken with the
minus sign if not.

The ¢th column in the matrix of the operator A in the basis ey,..., e, is
composed of the coordinates of the image Ae; of the basis vector e;. Therefore

For example, for n = 2 (Fig. 112) the determinant

obtain a prescribed accuracy. More frequently one uses various improvements on
this method, in which the integral curve is approximated not by a segment of a
line but by a segment of a parabola of one degree or another. The most commonly
used methods are those of Adams, Stormer, and Runge. Further information about
these methods is contained in textbooks on numerical computation.
The parallelepiped with edges &1,...,£, € R consists of all points of the form
1 61 +-- ~+mn£n, 0 < z; < 1. For n = 2 a parallelepiped is called a parallelogram. If
you know some definition of volume, you will easily be able to prove this assertion.
If not, you may take it as the definition of the volume of a parallelepiped.
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Y&

Fig. 112. The determinant of a matrix equals the oriented area of the parallelogram
spanned by its columns

the determinant of the operator A is the oriented volume of the 1mage of the
unit cube (the parallelepiped with edges ey, ...e,) under the mapping A.

Problem 1. Let I be a parallelepiped with linearly independent edges. Prove
that the ratio of the (oriented) volume of the image parallelepiped AII to the
(oriented) volume of IT is independent of II and equal to det A.

Remark. The reader familiar with the theory of measurement of volumes in
R™ can replace IT by any figure having a volume.

Thus the determinant of the operator A is the coeffictent by which an
oriented volume changes: when A is applied, the oriented volume of any figure
is altered by a factor of det A. It is not at all obvious geometrically that the
scaling of the volume of all figures is the same (even in the case of the plane);
indeed the shape of a figure changes greatly under a linear transformation.

2. The Trace of an Operator

The trace of the matrix A is the sum of its diagonal elements. The trace is

n
denoted tr or Sp (from the German Spur): tr 4 = Za“‘
=1
The trace of the matrix of an operator A : R® — R" is independent of
the basis and depends only on the operator A itself.

Problem 1. Prove that the trace of a matrix equals the sum of all n of its eigenvalues
and the determinant is their product.

Hint. Apply Viéte’s formula to the polynomial

det|A = ME| = (=A)" + (=2)""* Z“""’ e

i=1

The eigenvalues do not depend on the basis. This enables us to make the
following definition.
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Definition. The #race of an operator A is the trace of its matrix in some (or
any) basis.

3. The Connection Between the Determinant and the Trace

Let A: R® — R" be a linear operator, and let ¢ € R. The following result is
easy to prove.

Theorem. As ¢ — 0, det(E +cA) = 1 +etr A + O(e?).

Proof. The determinant of the operator E+¢A is the product of its eigenvalues.
The eigenvalues of the operator E + €A (counted according to multiplicity)
are equal to 1 + 5)\,, where \; are the eigenvalues of the operator A. Therefore

det(E+eA) = H(l-{—e)\ )= 1+EZ)\ + O(?), which was to be proved. O
i=1 =1

Second proof. It is clear that o(e) det(E + ¢A) is a polynomial in ¢, and
(0) = 1. It must be proved that ¢'(0) = tr A. We shall denote the determinant of
the matrix ||z; ;|| by A(|lzi,;||)- By the rule for differentiating a composite function

C‘li—f T Z 8(‘1_1 Ed:i:;’j , where ; j(¢) are the elements of the matrix E 4 ¢A.
=1
The partial derivative 4 is by definition equal to 4 det(E + he;, j), where
ozij e dh |p=

ei,j 1s the matrix whose only nonzero element is a 1 in the ith row and jth column.

But det(E +he;;) = 1 for i # j and 1+h if i = j. Thus aiA =0ifi#jandlif
4L,j |E

dzii .
s = % = Za,-,,' = tr A, which was to be proved. O

i=1 i=1

t = j. Therefore d—se

de

Incidentally we have just given a new proof that the trace is independent
of the basis.

Corollary. Under a small variation in the edges of a parallelepiped only the
change in each edge along its own direction influences the change in volume;
the contribution to the change in volume by the changes of an edge in the
direction of the other edges is a second-order infinitesimal.

For example, the area of the nearly square parallelogram of Fig. 113 differs
from the area of the shaded rectangle by second-order infinitesimals.

This corollary can be proved from elementary geometric considerations;
such an approach would lead to a geometric proof of the preceding theorem.

4. The Determinant of the Operator e4

Theorem. For any linear operator A: R* — R”
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Fig. 113. Approximate determination of the area of a nearly square parallelogram

det e = et 4.

Proof. According to the second definition of the exponential we have det e =

det ( lim (E + %) m) = lim (det (E + —:;)m), for the determinant of

m-—-00 m—oo
a matrix is a polynomial (and hence a continuous function) of its elements.
Furthermore, by the preceding theorem

det (E+ ;%)m = (det (E+ %))m = <1+ %trA+O(%))m, m — 00.

It remains only to remark that lim (1 + 2 + O(%)) " =¢%forany a € R,
m—00 m m

in particular for a = tr A. o
Corollary 1. The operator e® is nondegenerate.

Corollary 2. The operator e? preserves the orientation of R™ (i.c., dete? >
0).
Corollary 3 (Liouville’s formula). The phase flow {¢'} of the linear equa-
tion
¢=Az, z€R" (1)

over time t changes the volume of any figure by a factor of €%, where a = tr A.

Indeed, det g* = det e4t = et At = ettr 4,

In particular the following corollary is a consequence of this.
Corollary 4. If the trace of A is 0, then the phase flow of Eq. (1) preserves
volumes (i.e., g maps any parallelepiped into a parallelepiped of the same
volume).

Indeed €® = 1.

Ezample 1. Consider the pendulum equation with friction coefficient —k
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¥ =—z+kz,
which is equivalent to the system

Ty =2y, &2 =-21+kxy

with the matrix (Fig. 114) (_01 llc)

Fig. 114. The behavior of areas under the phase flow transformations of the pen-
dulum equation

The trace of this matrix is k. Hence for k < 0 the phase flow transformation
g' (t > 0) maps each domain of the phase plane into a domain of smaller area.
In a system with negative friction (k£ > 0), in contrast, the area of the domain
g'U (t > 0) is larger than the area of U. Finally, when there is no friction
(k = 0), the phase flow g' preserves area (not surprisingly: in this case, as we
already know, g' is rotation through the angle t).

Problem 1. Suppose the real parts of all the eigenvalues of A are negative. Prove
that a phase flow ¢° of Eq. (1) decreases volumes (¢ > 0).

Problem 2. Prove that the eigenvalues of the operator e are e*i, where ); are the
eigenvalues of the operator A. Deduce the theorem proved above from this fact.

§ 17. Practical Computation of the Matrix of an
Exponential — The Case when the Eigenvalues are Real
and Distinct

In the practical solution of differential equations the operator A is defined
by its matrix in some basis and an explicit computation of the matrix of the
operator e in the same basis is required. We begin with the simplest case.

1. The Diagonalizable Operator

Consider the linear differential equation
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¢ =Ax, x€R", (1)

where A : R* — R" is a diagonalizable operator. In a basis in which the
matrix of the operator A is diagonal it has the form

A1 0
0 An

where ); are the eigenvalues. The matrix of the operator e has the diagonal

form
eAl t

eAnt

Thus the solution ¢, with the initial condition ¢¢(0) = (z1,,...,2n,) has in
this basis the form ) = e**z,. It is necessary to pass to this basis if the
matrix of the operator A is given in a different basis.

If all n of the eigenvalues of the operator A are real and distinct, it is diag-
onalizable (R™ decomposes into the direct sum of one-dimensional subspaces
invariant with respect to A).

Therefore to solve Eq. (1) in the case when the eigenvalues of the operator
A are real and distinct, one must proceed as follows to:

1) form the characteristic equation
det|A — \E| = 0;

2) find its roots Aq, ..., A,; we are assuming that they are real and distinct;

3) find the eigenvectors &1, ..., &, from the linear equations A& = A&,
&k # 05

4) expand the initial condition in eigenvectors

zo =Y _ Ciéi;
k=1

n
5) write the solution ¢(t) = Z Cretti€y.
k=1
In particular, we have the following corollary.

Corollary. Let A be a diagonalizable operator. Then the elements of the ma-
triz et (t € R) in any basis are linear combinations of the ezponentials e*+?,
where A\ are the eigenvalues of the matriz of A.

2. An Example

Consider the pendulum with friction
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Ib] = T2, :i'g = - — k$2.

The matrix of the operator A has the form

(_01 fk) trA=—k detA=1.

Therefore the characteristic equation has the form A? + kX + 1 = 0; the roots
are real and distinct when the discriminant is positive, i.e., when |k| > 2. Thus
for a coeflicient of friction k that is sufficiently large (in absolute value) the
operator A is diagonalizable.

Consider the case k > 2. In this case both roots A\; and A, are negative.
In a proper basis the equation can be written in the form

91 =My, A <0, y2=2Ay2, A2 <O

From this, as in § 2, we obtain the solution y;(t) = e*ty1(0), ya2(t) = e*2'y2(0)
and the picture (the node of Fig. 115). As t — 400 all solutions tend to zero.
Almost all the phase curves are tangent to the yj-axis if |Az| is larger than [A]
(in that case y, tends to zero faster than y; ). The picture in the (21, z2)-plane
is obtained by a linear transformation.

W

o

N

Fig.115. The phase curves of the pendulum with strong friction in a proper basis

Suppose, for example, k = 3%, so that A\; = -% and A\, = —3.

We find the eigenvector £€; from the condition z; = —3z; we obtain
&1 = ey —3e;. Similarly & = e; —3e,. Since |A;| < |A2], the phase curves have
the form depicted in Fig. 116. Examining Fig. 116, we arrive at the following
remarkable inference: if the coefficient of friction k is sufficiently large (k > 2),
the pendulum does not undergo damped oscillations, but instead goes directly
to the equilibrium position: its velocity @2 changes sign at most once.

Problem 1. To which motions of the pendulum do the phase curves I, I1, and 111
of Fig. 116 correspond? Sketch a typical graph z(t).

Problem 2. Study the motion of the inverted pendulum with friction & = = — kz.

3. The Discrete Case

All that has just been said about the exponential function e#! of a continuous
argument t applies also to the exponential function A™ of the discrete argu-
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I

Iy

i

7]
Fig.116. The phase curves of the pendulum equation with strong friction in the
usual basis

ment n. In particular, if A is a diagonalizable operator, then to calculate A™
it is convenient to pass to a diagonal basis.

Ezample. The Fibonacci sequence 0,1,1,2,3,5,8,13,... is defined by the condition
that each successive term is the sum of its two predecessors (an = @n—1 + an—2) and
the two initial terms ap = 0, a1 = 1.

Problem 1. Find a formula for a,. Show that a, increases like a geometrical pro-

. . Ina,
gression, and find lim =a
n—oo N

Hint. We remark that the vector £, = (an,@n—1) can be expressed linearly in terms

of én—1: &, = A&n—1, where A = (i (1)>, here € = (1,0). Therefore a, is the first

component of the vector A™~*&;.

Answer. o = In((v/5 + 1)/2), an = (A — A2)/v/5, where \; = (1 + v/5)/2 and
Az = (1 — v/5)/2 are the eigenvalues of A.

The same reasoning reduces the study of any recursive sequence a, of order k
given by a rule
an =C1ap-1 + -+ Cran-, n=12,...,

and its k initial terms”, to the study of the exponential function A™, where A :
R* — R is a linear operator. Therefore, learning how to compute the matrix of an
exponential, we are simultaneously studying all recursive sequences.

Returning to the general problem of computing e4!, we remark that the
roots of the characteristic equation det(A — AE) = 0 may be complex. To
study this case, we first consider a linear equation with the complex phase
space C™.

" The fact that it is necessary to know the first k terms to determine a recursively
defined sequence of order k is closely connected with the fact that the phase space
of a differential equation of order k£ has dimension k. This connection becomes
comprehensible if the differential equation is written in the form of a limit of
difference equations.
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§ 18. Complexification and Realification

Before studying complex differential equations we recall what is meant by the
complexification of a real space and the realification of a complex space.

1. Realification

We shall denote by C™ an n-dimensional vector space over the field C of
complex numbers.

The realification of the space C™ is the real vector space that coincides
with C™ as a group, and in which multiplication by real scalars is defined as
in C™, but multiplication by complex scalars is not defined. (In other words,
realifying C™ amounts to forgetting about the C-module structure while re-
taining the R-module structure).

It is easy to see that the realification of the space C" is a 2n-dimensional
real vector space R2". We shall denote the realification by the symbol R above
and to the left, for example: RC = R2.

If (e1,...,en) is a basis in C™, then (ey,...,en,%€1,...7€,) is a basis in
ch = R2n,

Let A: C™ — C™ be a C-linear operator. The realification of the operator
A is the R-linear operator A : RC™ — BC™ that coincides pointwise with
A.

Problem 1. Let (e1,...,€m) be a basis of the space C™, (f1,... f») a basis of the
space C", and (A) the matrix of the operator A. Find the matrix of the realified

operator Ry,
Answer. (g _aﬁ>’ where (A) = (a) + ¢(8).

Problem 2. Prove that B(A + B) = BA + ®B and R(AB) = RARB.

2. Complexification

Let R" be a real vector space. The complexification of the space R™ is the
n-dimensional complex vector space denoted by © R™ constructed as follows.

The points of the space CR™ are the pairs (£,71), where £ € R" and
1 € R™. Such a pair is denoted & + in. The operations of addition and multi-
plication by complex scalars are defined in the usual manner:

(u -+ i0)(€ +im) = (u€ — vm) + i(v€ + um),
(& +im) + (&2 +in2) = (&1 + &2) + t(m + 02).
It is easy to verify that the C-module so obtained is an n-dimensional

complex vector space: CR™ = C™. If (ey,...,e,) is a basis in R, then the
vectors ey + io form a C-basis in C* = CR™,
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The vectors & + 70 are denoted more briefly by &.

Let A : R™ — R"™ be an R-linear operator. The complezification of the
operator A is the C-linear operator A : © R™ — © R" defined by the relation
CA:(E+in) = AE+iAn.

Problem 1. Let (e1,...,€mr) be a basis of R™ and (fi,...,fn) a basis of R". Let
(A) be the matrix of an operator A. Find the matrix of the complexified operator

(€ A).
Answer. (CA) = (A).

Problem 2. Prove that (A + B) =4+ ©B and ©(AB) = CA°B.

Remark on terminology. The operations of complexification and realifica-
tion are defined for both spaces and mappings. Algebraists call operations of
this kind functors.

3. The Complex Conjugate

Consider the real 2n-dimensional vector space R?*® = BCR"™ obtained from
R™ by a complexification followed by a realification. This space contains the
n-dimensional subspace of vectors of the form £ + i0, £ € R", called the real
plane R™ C R*".

The subspace of vectors of the form 0+ i€, € € R", is called the imaginary
plane iR™ C R*". The whole space R*" is the direct sum of these two n-
dimensional subspaces.

iR"
‘ iR"
! I
a
n
‘ ;
Fig.117. The operator of multiplica- Fig. 118. The complex conjugate

tion by ¢

After realification the operator iE of multiplication by ¢ in C* = ©R"
becomes the R-linear operator R(iE) = I : R?" — R?" (Fig. 117). The
operator I maps the real plane isomorphically onto the imaginary plane and
the imaginary plane onto the real plane. The square of the operator I is the
negative of the identity operator.

Problem 1. Let (e1,...,e5) be a basis of R™ and (e1,...,€n,,1€1,...,1€,) a basis
of R*» = RCR™ Find the matrix of the operator [ in this basis.

Answer. (I) = (% _OE).
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We denote by o : R>® — R?" (Fig. 118) the operator of complex conju-
gation: o(€ + tn) = € — in. The action of o is often denoted by a bar above
the vector.

The operator ¢ coincides with the identity operator on the real plane and
the negative of the identity operator on the imaginary plane. It is involutive:
c?=E.

Suppose A : R™ — ©R" is a C-linear operator. The complez conjugate
of the operator A, denoted A, is the operator A : © R™ — € R" defined by
the relation

Az = A% for every z € CR™.

Problem 2. Prove that A is a C-linear operator.

Problem 3. Prove that the matrix of the operator A in a real basis is the complex
conjugate of the matrix of A in the same basis.

Problem 4. Prove that A+ B=A+ B, AB=AB, and X = X\ A.

Problem 5. Prove that the complex linear operator A4 : °R™ — ©R" is the
complexification of a real operator if and only if 4 = A.

4. The Exponential, Determinant, and Trace of a Complex
Operator

The exponential, determinant, and trace of a complex operator are defined
exactly as in the real case. They have the same properties as in the real case,
the only difference being that the determinant, being a complex number, is
not a volume.

Problem 1. Prove that the exponential has the following properties:

Rledy=e"4, A=A, Olet)=c"4

9 Y

Problem 2. Prove that the determinant has the following properties:

det BA = |det A)?, detA=1detA, detCA=detA.

Problem 3. Prove that the trace has the following properties:
trBA=trA+trd, trA=1trd, trCA=trA.

Problem 4. Prove that the equality

deted = et' 4
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holds in the complex case also.

5. The Derivative of a Curve with Complex Values

Let ¢ : I — C™ be a mapping from an interval I of the real t-axis into the
complex vector space C". We shall call ¢ a curve.
The derivative of the curve ¢ at the point ¢ty € I is defined as usual:

de = lim Pt +h) = go(to). This is a vector of the space C™.
dt li=ty, h—0 h
- dy .
Ezample 1. Let n = 1 and ¢(¢) = e** (Fig. 119). Then pr
t=

Fig. 119. The derivative of the mapping t — e'* at the point 0 equals ¢

Let us consider the case n = 1 in more detail. Since multiplication is de-
fined in C, curves with values in C can be not only added but also multiplied:

(P14 92)t) = 1) +@2(t), (pr2)(t) = p1(D)palt), teL.

Problem 1. Prove that the derivative has the following properties:

d(pl d(pg d d d(pz

L o1+ ) = 221 9 orpr) = +e
Prtee) =gt e = P RE g

dt

In particular the derivative of a polynomial with complex coefficients is
given by the same formula as in the case of real coefficients.

If n > 1, it is impossible to multiply two curves with values in C™. How-
ever, since C" is a C-module, it is possible to multiply a curve ¢ : I — C™
by a function f : I — C:

(fe)(t) = f()e ().

Problem 2. Prove that the derivative has the following properties:

d(Re) _Rdp (c )= % _de
dt dt ’ dt oodt dt’
d(p1 +p2) _ der d<P2 d(fe) _ df dy

dt dt | dt’ a @’
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Of course it is assumed here that the derivatives exist.

Theorem. Let A : C* — C™ be a C-linear operator. Then for each t € R
the following C-linear operator from C™ into C™ exzists:

d 4 tA
—e't = Ae'.

dt
Proof. This can be proved exactly as in the real case, but one can also reduce
it to the real case. For by realifying C™ we obtain

d d d yr R
R tA) _ SR/ 1Ay _ & «(Ra) _ (R tRA) _ Ry g tA
(dte ) = (e i (TA)(e (Ae').

§ 19. The Linear Equation with a Complex Phase Space

The complex case, as frequently happens, is simpler than the real case. It is
intrinsically important; moreover the study of of the complex case will help
us to investigate the real case.

1. Definitions

Let A: C™ — C™ be a C-linear operator. We define a linear equation® with
the phase space C™ to be an equation

2=Az, zeC". (1)

A mapping ¢ : I — C™ of the interval I of the real t-axis into C" is a
solution of Eq. (1) with the initial condition ¢(to) = 20, to € R, 29 € C™ if
d
1) for every 7 € I . = Ap(1);
dt t=r1
2) t() € I and (p(to) = 29.
In other words a mapping ¢ : I — C™ is called a solution of Eq. (1) if
it is a solution of the equation obtained by realifying the space C™ and the

operator A. This equation has a 2n-dimensional real phase space and is given
by 2 = RAz, z ¢ R*» = RC™.

2. The Fundamental Theorem

The following theorems are proved exactly as in the real case (cf. § 15, Sects.
2 and 3):

8 The full name is a system of n first-order linear homogeneous ordinary differential
equations with constant complex coefficients.
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Theorem. The solution of Eq. (1) with initial condition ¢(0) = 2o is given
by the formula p(t) = eAlz,.

Theorem. Every one-parameter group {g*(t € R)} of C-linear mappings of
the space C™ has the form gt = eA!, where A : C® — C™ is a C-linear
operator.

Our immediate goal is to study e“4* and compute it explicitly.

3. The Diagonalizable Case

Let A : C™ — C™ be a C-linear operator. Consider the characteristic equation
det |[A — AE| = 0. ‘ (2)

Theorem. If the n roots A1,..., A, of the characteristic equation are pairwise
distinct, then C™ decomposes into the direct sum of one-dimensional subspaces
that are invariant with respect to A and eAt: C" = C} 4 --- + CL. Moreover
in each one-dimensional invariant subspace C} the operator eA' reduces to
multiplication by the complex number e*+t,

Indeed the operator A has® n linearly independent one-dimensional eigen-
spaces: C" = C{ 4 - + C.. On the line C} the operator A acts as multipli-
cation by A, and so the operator et acts as multiplication by e**?.

Let us now examine the case n = 1 in more detail.

4. Example: A Linear Equation whose Phase Space is the
Complex Line

Such an equation has the form

Cé_fz,\z, z€C, \eC, tcR (3)

We already know the solution of this equation: ¢(t) = e*z;. Let us study the
complex function e* of a real variable ¢:

e R 5 C.

If X is real, then the function e*! is real (Fig. 120).
In this case the phase flow of Eq. (3) consists of dilations by the factors
e*. If ) is a pure imaginary, A = iw, then by Euler’s formula

eM = ™ — coswt + i sin wt.

® This it the only place where the complex case differs from the real case. The reason
the real case is more complicated is that the field R is not algebraically closed.
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At At At

I t |t t
A50 A<0 -0

Fig. 120. The graphs of the functions e*' for real A

In this case the phase flow of Eq. (3) is a family of rotations {g*} through the
angle wt (Fig. 121). Finally, in the general case A = a 4 ww, and multiplication
by e* is the product of a multiplication by e®* and multiplication by ! (cf.
§ 15, Sect. 5):

e)\t — e(a+iu)t — eat . eiwt. (4)
(o c
R
N7 [ ="
Fig. 121. Phase and integral curves of Fig.122. Phase and integral curves of
the equation 2 = Az for purely imagi- the equation 2 = Az for A = a + w,
nary A a<0,w>0

Thus the transformation g* of the phase flow of Eq. (3) is a dilation by a
factor of e** and a simultaneous rotation through the angle wt.

Let us now consider the phase curves. Suppose, for example, a < 0 and
w > 0 (Fig. 122). In such a case as t increases the phase point e*zy will
approach the origin, winding around it in a counterclockwise direction (i.e.,
from 1 to ¢).

In polar coordinates for a suitable choice of a ray from which angles are
measured the phase curve is given by the equation

r=e% or p=k7llnr, (k: EY—)

Such a curve is called a logarithmic spiral.
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o<l o <0 2% >0
w>0 w< 0 w>0 w< 0
Fig. 128. Stable foci Fig.124. Unstable foci

The curves are also logarithmic spirals with other combinations of signs
of a and w (Figs. 123 and 124).

In all cases (except A = 0) the point z = 0 is the only fixed point of the
phase flow (and the only singular point of the vector field corresponding to
Eq. (3)).

This singular point is called a focus (we are assuming that a # 0 and
w #0). If @ < 0, then ¢(t) — 0 as t — 400, and the focus is said to be stable,
while if a > 0 it is unstable.

For @ = 0 and w # 0 the phase curves are circles and the singular point is
their center (Fig. 125).

Choose a coordinate in C': z = = + iy. We shall study the variation of
the real and imaginary parts () and y(t) under the motion of a phase point.
From (4) we find

z(t) = re® cos(p + wt), y(t) =re* sin(p + wt),

where the constants r and ¢ are defined by the initial condition (Fig. 126).

>0 x ¢ x o <0
re®

@ Fgod
—\/| t

2 2

“w )

Fig.125. A center Fig.126. The real part of e as a
function of time

9

Thus for a > 0 the coordinates z(¢) and y(t) undergo “harmonic oscillations
with frequency w and with exponentially increasing amplitude r = ¢%*)” while
with a < 0 they undergo damped oscillations.

The variation of z or y with time can also be written as Ae®! coswt +
Be%'sinwt, where the constants A and B are determined by the initial con-
ditions.

Remark 1. In studying Eq. (3), we have thereby simultaneously studied all the
one-parameter groups of C-linear transformations of the complex line.
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Remark 2. At the same time we have studied the system of linear equations
on the real plane
T =oar—wy, Y=wz+ay,

which Eq. (3) becomes after realification.
From the theorems of Sects. 2 and 3 and the computations of Sect. 4 there
follows an explicit formula for the solutions of Eq. (1).

5. Corollary

Suppose the n roots \1,..., A\, of the characteristic equation (2) are pairwise
distinct. Then every solution ¢ of Eq. (1) has the form

o)=Y e, (5)
k=1

where € are constant vectors independent of the initial conditions and ¢y are
complex constants depending on the initial conditions. For any choice of these
constants formula (5) gives a solution of Egq. (1).

If z1,..., %, is a linear coordinate system in C”, then the real (or imag-
inary) part of each coordinate z; = z; + iy; will vary with time like a linear
combination of the functions e®*! coswyt, e**¥sinwyt;

n

n
= Z rk,le""‘t cos(Ok,1 + wit) = Z Aky,e"“‘t coswyt + Bk,le""t sinwgt, (6)
k=1 k=1

where A\, = ay + twy, and r, 6, A, and B are real constants depending on the
initial conditions.

To prove this it suffices to expand the initial condition in a basis of eigen-
vectors: ¢(0) = cxé1 + - + cpén.

§ 20. The Complexification of a Real Linear Equation

We shall now use the results of the study of the complex equation to study
the real case.

1. The Complexified Equation
Let A: R® — R" be a linear operator defining a linear equation
©=Az, =€ R". (1)
The complexification of Eq. (1) is the equation with complex phase space

2=C4z, zeC"=°R" (2)
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Lemma 1. The solutions of Eq. (2) with complez conjugate initial conditions
are complex conjugates of each other.

Proof. Let ¢ be the solution with initial condition ¢(t5) = 2o (Fig. 127).
Then $(t9) = Zp. We shall show that % is a solution. The lemma will then be
proved (in view of the uniqueness of the solution).

For any value of t we have

% _ T _ o i 4
at 7 {4 P 2
which was to be proved. O
9(t)
zf/
L 7
i}\
o1t)

Fig.127. Complex conjugate solutions

Remark. Instead of Eq. (2) we could have taken the more general equation
2 =F(z,t), ze°R",

whose right-hand side assumes complex conjugate values at complex conjugate
points: F(Z,t) = F(z,t).

For example, this condition is satisfied by any polynomial in the coor-
dinates zp of the vector z whose coefficients in a real basis are real-valued
functions of ¢.

Corollary. The solution of Eq. (2) with a real initial condition is real and
satisfies Bq. (1).
For if ¥ # ¢ (Fig. 128), the uniqueness theorem would be violated. O
In the following lemma it is essential that the equation be linear.

Lemma 2. The function z = @(t) is a solution of the complexzified equation
(2) of and only if its real and 1maginary parts satisfy the original equation (1).

Indeed CA(x + iy) = Az + iAy, so that the realification of Eq. (2) de-

composes into a direct product:

¢ =Ax, x € R",
y=Ay, yeR"
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One can see from Lemmas 1 and 2 how, knowing the complex solutions of
Eq. (2), one can find the real solutions of Eq. (1) and conversely. In particular
formulas (6) of Sec. 5 of § 19 give the explicit form of the solution in the case
when the characteristic equation has simple roots.

2. The Invariant Subspaces of a Real Operator

Let A: R™ — R™ be areal linear operator. Let A be one of the roots (in general
complex) of the characteristic equation det |JA— AE| = 0. The following lemma
is obvious.

Lemma 3. If £ € C" = CR" is an eigenvector of the operator CA with
eigenvalue A, then € is an eigenvector with eigenvalue X. The multiplicities of
the eigenvalues \ and X are the same.

__ Indeed, since CA= C 4, the equation © A& = A€ is equivalent to € A€ =
A€, and the characteristic equation has real coefficients.

\\57

Fig. 128. The solution with a real ini- Fig. 129. The eigenvalues of a real op-
tial condition cannot assume complex erator
values

Let us now assume that the eigenvalues Ay,..., A\, € C of the operator

A: R™ — R"™ are pairwise distinct (Fig. 129). Among these eigenvalues there
will be a certain number v of real values and a certain number p of complex
conjugate pairs (and v + 2u = n, so that the parity of the number of real
eigenvalues is the same as the parity of n). The following proposition is easily
proved.

Theorem. The space R™ decomposes into the direct sum of v one-dimensional
subspaces and p two-dimensional subspaces, all invariant with respect to A.

Indeed to a real eigenvalue there corresponds a real eigenvector and hence
a one-dimensional subspace in R".

Let A and X be a pair of complex conjugate eigenvalues. To the eigenvalue
there corresponds an eigenvector § € C™ = © R™ of the complexified operator
CA.

By Lemma 3 the conjugate vector € is also an eigenvector corresponding
to the eigenvalue .

The complex plane C? spanned by the eigenvectors & and £ is invariant
with respect to the operator © A, The real subspace R* C © R" is also invari-
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ant. Therefore their intersection is also invariant with respect to € A. We shall
show that this intersection is a two-dimensional real plane R? (Fig. 130).

\
DY

1]

e O
H

— ]

G i /
R

Fig. 130. The real part of a complex eigenvector belongs to an invariant real plane

Indeed, consider the real and imaginary parts of the eigenvector &:
1 ra n 1 3 n
w=§(£+£)ER, 925(5—5)612-

Being C-linear combinations of the vectors € and €, the vectors @ and y belong
to the intersection C? N R™. The vectors & and y are C-linearly independent,
since the C-linearly independent vectors € and € can be expressed in terms
of them:

Thus each vector of the plane C? can be written uniquely in the form of
a linear combination of the real vectors & and y:

n=ax+by, acC, beC.

Such a vector is real (g = 7) if and only if @& + by = azx + by, i.e., a and b
are real. Thus the intersection C? N R™ is the two-dimensional real plane R?
spanned by the vectors & and y, which are the real and imaginary parts of the
eigenvector £.

The eigenvalues of the restriction of the operator A to the plane R? are A
and X.

Indeed, complexification does not change the eigenvalues. After complex-
ification of the restriction of A to R? we obtain the restriction of €A to C2.
But the plane C? is spanned by the eigenvectors of the operator €A with
eigenvalues A and \. Thus the eigenvalues of A|R? are A and .

It remains to show that the one- and two-dimensional invariant subspaces
of the space R™ are R-linearly independent. This follows immediately from
the fact that the n eigenvectors of the operator © A are C-linearly independent

and can be expressed as linear combinations of our vectors &, (k=1,...,v)
and @y and yx (k= 1,...,u).
The theorem is now proved. O

Thus in the case when all the eigenvalues of the operator A : R™ — R"™
are simple, the linear differential equation € = Az, @ € R™, decomposes into
the direct product of equations with one- and two-dimensional phase spaces.
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We remark that a generic polynomial does not have multiple roots. Hence
to study linear differential equations it is necessary first of all to consider linear
equations on the line (which we have already done) and on the plane.

3. The Linear Equation on the Plane

Theorem. Let A: R? — R? be a linear operator with nonreal eigenvalues
and X.

Then A is the realification of the operator A: C' — C1 of multiplication
by the complez number A.

More precisely, the plane R? can be endowed with the structure of the
complex line C', so that R? = BRC' and 4 = BA.

Proof. The proof is a rather mysterious computation'®. Let = + iy € © R? be
a complex eigenvector of the operator © A with eigenvalue A = a + iw. The
vectors @ and y form a basis in R?. We have, on the one hand,

CAx +1y) = (a + iw)(x + iy) = oz — wy + i(wz + ay)

and on the other hand € A(z + iy) = Az + iAy, whence Az = az — wy and
Ay = we + ay, i.e., in the basis @, y the operator A : R*> — R? has the same

matrix
a w
-w a)’

as the operator ®A of multiplication by A = & 4 iw in the basis 1, —i. Thus
the desired complex structure on R? results from taking « as 1 and —y as 7.

Corollary 1. Let A: R? — R? be a linear transformation of the Euclidean
plane with nonreal eigenvalues A and \. Then the transformation A is similar
to a dilation by a factor of |A| with a rotation through the angle arg A.

Corollary 2. The phase flow of a linear equation (1) on the Euclidean plane
R? with nonreal eigenvalues A\, X = a £ 2w 18 similar to a family of dilations
by factors of e®* with simultaneous rotations through angles wt.

In particular the singular point 0 is a focus, and the phase curves are the
affine images of logarithmic spirals approaching the origin as t — 400 in the
case when the real part « of the eigenvalues A, X is negative and receding from
it in the case when a > 0 (Fig. 131).

'®The computation can be replaced by the following reasoning. Let A = a + iw.
Define an operator I : R> — R? by the condition A = aE +wI. Such an operator
I exists since w # 0 by hypothesis. Then I? = —E, since the operator A satisfies
its characteristic equation. Taking I as multiplication by 7, we obtain the required
complex structure on R?,
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Fig.131. The image of a logarithmic Fig. 132. An elliptic rotation
spiral under a linear transformation

In the case a = 0 (Fig. 132) the phase curves form a family of concentric
ellipses, and the singular point is their center. In this case the phase flow
transformations are called elliptic rotations.

4. The Classification of Singular Points in the Plane

Now let

©=Az, zcR) A:R?>- R?
be an arbitrary linear transformation in the plane. Let the roots A; and A,
of the characteristic equation be distinct. If they are real and A\; < Aq, the

equation decomposes into two one-dimensional equations, and we obtain one
of the cases already studied in Chapt. 1 (Figs. 133, 134, 135).

1] &

) - i

-—-—>o<-—_~_f

A ' N

/17< 0< A,

Ar<A, <0 Ag=2p <0
Fig. 133. Stable nodes Fig. 134. A saddle point

Here we are omitting the borderline cases when one of A\; and A, is zero.
These cases are much less interesting, since they are rarely encountered and are
lost under arbitrarily small perturbations. The study of these cases presents
no difficulty.

If the roots are complex, A1 2 = & =+ iw, then depending on the sign of «
one of the cases depicted in Figs. 136, 137, and 138 may occur.

The case of a center is exceptional, but it occurs, for example, in conser-
vative systems (cf. § 12). The cases of multiple roots are also exceptional. It
is left to the reader to verify that the case depicted in Fig. 133 (A = A, <0,
the so-called degenerate node) corresponds to a Jordan block.
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AOQ a<0
75 ) @

O0<A4< A,

Fig.135. An unstable node Fig. 136. Stable foci

5. Example: The Pendulum with Friction
Let us apply what has just been said to the equation of small oscillations of
a pendulum with friction, & = —z — k& (k is the coefficient of friction). We
form the equivalent system
i:l = T2, (i'2 = —I —k‘.’l)g.

Let us study the characteristic equation. The matrix of the system

0o 1

-1 -k
has determinant 1 and trace —k. The roots of the characteristic equation
A2 + kA + 1 = 0 are complex for |k| < 2, i.e., when the friction is not too

Fig. 137. Centers Fig. 138. Unstable foci

<>

The real part of each of the complex roots A; » = @ £ w is —k/2. In other
words for a positive, not too large, coefficient of friction (0 < k < 2) the lower
equilibrium position of the pendulum (z1 = z2 = 0) 1s a stable focus.

As k — 0 the focus changes into a center: the smaller the coefficient of
friction, the more slowly the phase point approaches the equilibrium position
as t — +oo (Fig. 139). The explicit formulas for the variation of z; = z with
time are obtained from Corollary 2 of Sect. 3 and the formulas of Sect. 4 of §
19:

z(t) = r* cos( — wt) = Ae®! coswt + Be®' sinwt,

1 The case of real roots was studied in § 17, Sect. 2.
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xp &
=X

Fig.139. The phase plane of a pendulum with small friction

where the coefficients r and  (or A and B) are determined from the initial
conditions.

Thus the oscillations of the pendulum will be damped, with a variable
amplitude re® and period 27 /w. The larger the coefficient of friction, the
more rapid the decrease in the amplitude!?. The frequency w = /1 — k2/4
decreases as the coefficient of friction k increases. As k — 2 the frequency
tends to 0 and the period to co (Fig. 140).

2

For small k we have w = 1 — — (as k — 0), so that the friction causes

only an insignificant increase in the period, and its influence on the frequency
can be ignored in many calculations.

y b i
X x x
X k
re t _k

2t peker

2

w

Fig. 140. The transition from damped oscillations to a nonoscillatory motion of the
pendulum: the phase curves and the graphs of the solutions for three values of the
coefficient of friction

Problem 1. Sketch the phase curves of the unlinearized pendulum with friction,
& = —sinz — kz (Fig. 141).

Hint. Calculate the derivative of the total energy along a phase curve.

12And yet for any value k < 2 the pendulum will perform an infinite number of
swings. But if k£ > 2, the pendulum makes at most one change of direction.
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Fig. 141. After several revolutions the pendulum begins to swing around the lower
equilibrium position

6. The General Solution of a Linear Equation in the Case when
the Characteristic Equation Has Only Simple Roots

We already know that every solution ¢ of the complexified equation is a linear
combination of exponentials (cf. § 19, Sect. 5):

n
P(t) =) cxe*'é,
k=1

where £}, is an eigenvector corresponding to the eigenvalue A\g. We shall choose
real eigenvectors for real eigenvalues, and complez conjugate pairs of eigen-
vectors corresponding to complex conjugate pairs of eigenvalues.

We already know that the solutions of a real equation are solutions of
its complexification with real initial conditions. A necessary and sufficient
condition for the vector ¢(0) to be real is that

n n
D kb =) @l
k=1 k=1
For this to happen the coefficients of complezx conjugate pairs of vectors
must be complez conjugates and those of real vectors must be real.
We remark that the n complex constants ¢i (for a fixed choice of eigen-
vectors) are determined uniquely by the solution of the complex equation. We
have thus proved the following theorem.

Theorem. Every solution of a real equation can be uniquely written (for a
fized choice of eigenvectors) in the form

v v+p _
p(t) =Y axe™'&+ Y exe &y + e, (1)
k=1 k=v+1

where ap are real constants and ¢y are complex constants.

Formula (1) is called the general solution of the equation. It can be rewrit-
ten in the form
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v vtp
p(t) = Z are™ € + 2Re Z cre €.
k=1 k=p+1

We remark that the general solution depends on v + 2u = n real constants
ar, Rec, Imcr. These constants are uniquely determined by the initial con-
ditions. ’

Corollary 1. Let ¢ = (¢1,...,9.) be a solution of a system of n first-order
real linear differential equations with the matriz A. Suppose all the roots of the
characteristic equation of the matriz A are simple. Then each of the functions
©m 18 a linear combination of the functions e**?, et coswyit, and e®*! sinwyt,
where Ay are the real roots and oy, *iwy the complez roots of the characteristic
equation.

Proof. We expand the general solution of (1) in a coordinate basis: ¢ =
p1e1+- -+ pne,. Taking into account the relation elonive)t — e“*!(coswyt
tsinwygt), we obtain the required result. a

In the practical solution of linear systems, having found the eigenvalues,
one may seek the solution in the form of a linear combination of the functions
eMt ekt coswit, and e® ¢ sinwyt by the method of undetermined coefficients.

Corollary 2. Let A be a real square matriz having no multiple eigenvalues.
Then each of the elements of the matriz e is a linear combination of the
functions e*t, et coswyit, e+t sinwit, where A\ are the real roots and oy £
twi the complex roots of the characteristic equation of A.

Proof. Each column of the matrix e! is composed of the coordinates of the
image of a basis vector under the action of a phase flow of the system of
differential equations with matrix A. O

Remark. Everything that has been said carries over immediately to equations
and systems of equations of order higher than 1, since the latter reduce to
systems of first order (cf. § 8).

Problem 1. Find all real solutions of the equations 20 4 42 = 0, 200 = z,
z +z =0.
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§ 21. The Classification of Singular Points of Linear
Systems

We have seen above that in the general case (when the characteristic equation
has no multiple roots) a real linear system decomposes into the direct product
of one- and two-dimensional systems. Since we have already studied the one-
and two-dimensional systems, we can now study multi-dimensional systems.

1. Example: Singular Points in Three-dimensional Space

The characteristic equation is a real cubic. A real cubic equation may have
three real roots or one real and two complex roots. Many different cases are
possible, depending on the location of the roots Ay, Ay, Az in the plane of the
complex variable A.

We call attention to the order and sign of the real parts. There are 10
“robust” cases (Fig. 142) and a number of “degenerate” cases (cf., for example,
Fig. 143), when the real part of one of the roots is zero or equal to the real part
of a root that is not its complex conjugate (we are not considering the case of
multiple roots at present). The study of the behavior of the phase curves in
each of these cases presents no difficulty.

Fig. 143. Some degenerate cases

Taking account of the fact that e*! tends to zero as ¢ — +oo (when
Re A < 0), and the smaller Re A the faster the vanishing, we obtain the phase
curves depicted in Figs. 144-148:

p(t) = Re(cle)‘ltfl + cpe??tE, + 036’\3t€3).
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5
&
Ay ;LZ}'J 0
————O0—

Fig. 144. The phase space of a linear Fig. 145. The case A\; < A2 < 0 < Az,
equation in the case M1 < A2 < 0. Contraction along two directions and
The phase flow consists of contractions dilation along a third

along three directions

Fig.146. The case Re A1, < A3 < 0. Fig.147. The case A3 < Re 1,2 < 0.
Contraction along the direction of &3, Contraction along the direction of &3,
rotation with a more rapid contraction rotation with a less rapid contraction
in the (&€1,&2)-plane in the (&1,&2)-plane

Fig.148. The case Re A1, < 0 < As. Dilation along the direction of &3, rotation
with contraction in the (€1, &;)-plane

The cases 1')-5') are obtained from 1)-5) by changing the direction of the
t-axis, so that one need only replace all the arrows in Figs. 144-148 by their
opposites.

Problem 1. Sketch the phase curves in cases 6), 7), 8), and 9) of Fig. 143.
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2. Linear, Differentiable, and Topological Equivalence

Every classification is based on some equivalence relation. There exist at least
three reasonable equivalence relations for linear systems: they correspond to
the algebraic, differential and topological approaches.

Let {f'},{¢'} : R® — R" be phase flows.

Definition. The flows {f*} and {g'} are equivalent'® if there exists a one-
to-one onto mapping h : R® — R™ taking the flow {f'} to the flow {g*}, so
that ho ft = gt o h for any t € R (Fig. 149). We can say that the flow {f*}
becomes {g'} under the change of coordinates h.

Fig. 149. Equivalent flows

In this context, flows are called:

1) linearly equivalent if there exists such a mapping h : R® — R" that is
a linear isomorphism, h € GL(R");

2) differentiably equivalent if there exists such a mapping h : R* — R"
that is a diffeomorphism;

3) topologically equivalent if there exists such a mapping h : R* — R"
that is a homeomorphism, i.e., a continuous mapping that is one-to-one, onto,
and has a continuous inverse.

Problem 1. Prove that linear equivalence implies differentiable equivalence,
and that differentiable equivalence implies topological equivalence.

We remark that the mapping h maps the phase curves of the flow {f*}
into the phase curves of the flow {g‘}.

Problem 2. Does every linear automorphism h € GL(R") that maps the
phase curves of the flow {f*} into the phase curves of the flow {g'} realize a
linear equivalence of flows?

Answer. No.

13The equivalence relation introduced here is also called conjugacy and similarity.
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2t$.

Hint. Consider n = 1, flz = ez, g’z = ¢
Problem 3. Prove that the relations of linear, differentiable, and topological
equivalence are genuine equivalence relations, i.e.

f~f (f~9)=g~f), (f~g 9~k =(f~k).

In particular everything that has been said applies to the phase flows of
linear systems. For brevity we shall speak about equivalence of the systems
themselves.

Thus we have partitioned all linear systems into equivalence classes by
three different methods (linear, differentiable, and topological). Let us study
these classes in more detail.

3. The Linear Classification

Theorem. Let A,B : R" — R™ be linear operators all of whose eigenvalues
are simple. Then the systems

z=Ax, € R", and y=By, ye€ R",

are linearly equivalent if and only if the eigenvalues of the operators A and B
coincide.

Proof. A necessary and sufficient condition for equivalence of the linear systems
is that B = hAh™! for some h € GL(R") (Fig. 150) (for y = h& = hAz =
hAh~'y). The eigenvalues of the operators A and hAh~! coincide. (It is not
essential here that the eigenvalues be simple.)

Conversely, suppose the eigenvalues of A are simple and coincide with
those of B. Then A and B decompose into the direct products of the same
number of (linearly equivalent) one- and two-dimensional systems, according
to § 20; therefore they are linearly equivalent. a

NIV
7S AT

Fig. 150. Linearly equivalent systems

Problem 1. Show that the systems 21 = @1, ©2 = 2, and 21 = 21 + 2, T2 = T2
are linearly inequivalent, even though they have the same eigenvalues.
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4. The Differentiable Classification

The following fact is obvious.

Theorem. Two lLinear systems
¢ =Ax, x=DBx, xecR"

are differentiably equivalent if and only if they are linearly equivalent'®.

Proof. Let h : R® — R" be a diffeomorphism that maps the phase flow of the
system A to the phase flow of the system B. The point @ = 0 is fixed for the phase
flow of the system A. Therefore h maps 0 to one of the fixed points ¢ of the flow of
the system B, so that Be = 0. The diffeomorphism d : R* — R™ of translation by
¢ (de =  —c¢) maps the phase flow of B into itself: (x —¢) = & = Bx = B(xz—c)).
The diffeomorphism h; = doh : R* — R"™ maps the flow of A to the flow of B and
leaves o fixed: h1(0) = 0.

Let us denote by H : R® — R™ the derivative of the diffeomorphism h; at o.
The diffeomorphisms h; o €' = eP’ 0 h; coincide for any t. Therefore for any ¢ their
derivatives also coincide at = o:

Het*' = P'H,

which was to be proved. a

§ 22. The Topological Classification of Singular Points

Consider the two linear systems:
2 =Ax, =Bz, xc R"

and suppose that the real parts of all their eigenvalues are nonzero. We shall
denote by m_ the number of eigenvalues with negative real part and by my
the number of eigenvalues with positive real part, so that m_ + m4 = n.

1. Theorem

A necessary and sufficient condition for topological equivalence of two linear
systems having no eigenvalues with real part zero is that the number of eigen-
values with negative (or positive) real part be the same for both systems:

m-(A) =m_(B), m4+(4)=m4(B).

This theorem asserts, for example, that stable nodes and foci (Fig. 151)
are topologically equivalent to each other (m_ = 2) but not equivalent to a
saddle point (m_ = m4 =1).

1t should not be thought that every diffeomorphism that establishes the equiva-
lence is linear. For example, consider A = B = 0.
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N ey A
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N N

Fig. 151. Topologically equivalent and inequivalent systems

Like the signature of a nondegenerate quadratic form, the number m_ is
the only topological invariant of the system.

Remark. An analogous proposition holds locally (in a neighborhood of a fixed
point) for nonlinear systems whose linear parts have no purely imaginary
eigenvalues. In particular in a neighborhood of a fixed point such a system is
topologically equivalent to its linear part (Fig. 152). We cannot take the time
to prove this proposition, which is quite important for the study of nonlinear

I\ A\
\/ "

Fig. 152. Topological equivalence of a system and its linearization

2. Reduction to the Case m_ =o

The topological equivalence of linear systems with the same m_ and my
follows from the following three lemmas:

Lemma 1. The direct products of topologically equivalent systems are topo-
logically equivalent.

That is, if the systems given by the operators Ay, By : R™* — R™' and A2, B5 :
R™2 — R™2 map into each other by homeomorphisms h; : R™ — R™! and
ho : R™? — R™2 there exists a homeomorphism A : R™t + R™? — R™! + R™?
mapping a phase flow of the product-system @1 = A;@1, 2 = A22» to the phase
flow of the product-system @1 = By&1, 2 = B2@s.

The proof is obvious: one may set h(x1,22) = (h1(®1), h2(2)).

The following lemma is known from linear algebra.

Lemma 2. If the operator A : R" — R"™ has no purely imaginary eigen-
values, then the space R™ decomposes into the direct sum of two A-invariant
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subspaces, R™ = R™- + R™+, so that all the eigenvalues of the restriction of
A to R™- have negative real part and those of the restriction of A to R™+
have positive real part. (Fig. 153).

This follows, for example from the Jordan normal form.

- (L) N/

» . -

/ R r// > / l\

Fig.153. Invariant subspaces of an Fig.154. All unstable nodes are topo-
operator having no purely imaginary logically equivalent

eigenvalues

Lemmas 1 and 2 reduce the proof of topological equivalence to the follow-
ing special case:

Lemma 3. Let A: R* — R"™ be a linear operator, all of whose eigenvalues
kave positive real part (Fig. 154). Then the system

T =Azr, =z R",
18 topologically equivalent to the standard system (Fig. 154):

=2, xcR"

This lemma is almost obvious in the one-dimensional case and in the case
of a focus in the plane, hence also — by Lemma 1 - in any system having no
multiple roots.

Let us now carry out the proof of Lemma 3 in the general case.

3. The Lyapunov Function

The proof of Lemma 3 is based on the construction of a special quadratic
function — the so-called Lyapunov function.

Theorem. Let A : R* — R"™ be a linear operator all of whose eigenvalues
have positive real part. Then there exists a Euclidean structure on R™ such
that the vector Ax forms an acute angle with the radius-vector & at each point

z # o.

In other words:

2

There exists a positive-definite quadratic form r? on R™ whose derivative

in the direction of the vector field Ax is positive:
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Lazr® >0 for  #o. (1)

Or again:

There ezists an ellipsoid in R™ with center at o such that at each point x
the vector Ax is directed outward (Fig. 155).

It is easy to verify that all three formulations are equivalent.

We shall prove this theorem (and use it in what follows) in the second
formulation. It is more convenient to prove it in the complex case:

Suppose all the eigenvalues Ar of the operator A: C™ — C™ have positive
real parts. Then there exists a positive-definite quadratic form r?: RC™ — R
whose derivative in the direction of the vector field B Az is a positive-definite
quadratic form:

Lr 72 >0 for z # o. (2)

Applying inequality (2) in the case when the operator A is the complex-
ification of a real operator and z belongs to the real subspace (Fig. 156), we
obtain the real theorem (1). 0

Fig.155. The level surface of a Lya- Fig.156. The level surface of a Lya-
punov function punov function in C*

4. Construction of the Lyapunov Function

As the Lyapunov function r? we shall take the sum of thé squares of the

absolute values of the coordinates in a suitable complex basis: r? = (z,%) =
n

Z 21, Zx. For a fixed basis we can identify the vector z with the set of numbers
k=1

21,...,zn and the operator A : C* — C™ with the matrix (ag;). Computation
shows that the derivative is ¢ quadratic form

Lg,.(2,%Z) = (Az2,Z) + (2,4z) = 2Re(Az,2). (3)

If the basis is proper, then the form obtained is positive-definite (Fig. 157).
Indeed, in this case

2Re(Az,%) =2) Relilal’, (4)

k=1
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Fig.157. The positive-definiteness of the form (4) in the case n = 1

By hypothesis all the real parts of the eigenvalues A\, are positive. Therefore
the form (4) is positive-definite.

If the operator A has no proper basis, it has an almost proper basis that
can be used with equal success to construct a Lyapunov function.

More precisely, we have the following lemma.

Lemma 4. Let A: C™ — C™ be a C-linear operator and € > 0. Then a basis
E1,...,& of C™ can be chosen in which the matriz of A is upper triangular
and all the elements above the diagonal are less than € in absolute value:

)\1 <é¢
(A): '..
0 An

Proof. The existence of a basis in which the matrix is upper-triangular follows,
for example, from the Jordan normal form.

Such a basis is easily constructed by induction on n using only the existence of an
eigenvector for every linear operator A : C" — C™. Let &; be this vector (Fig. 158).
Consider the quotient space C™/C&; = C"~'. The operator A defines an operator
A : C"' — C™ on the quotient space. Let 7a,... M, be a basis of C*7! in
which the matrix of the operator Ais upper triangular. We denote by &1,...,&x

any representatives of the classes 72,...,7, in C". Then the basis &1,...,&x is the
one required.

5 ¢

&
7] |

Fig. 158. Construction of a basis in which the matrix of an operator is triangular

Suppose the matrix of the operator A is upper triangular in the basis
&1,...,&,. We shall show that the elements above the diagonal can be made
arbitrarily small by replacing the vectors of the basis with vectors proportional
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to them. Indeed let ay; be the elements of the matrix of the operator A in the
basis &, so that ag; = 0 for & > I. In the basis &}, = N¥& the elements of the
matrix of the operator A are a}; = ay N =k For sufficiently small N we shall
have |a},;| < ¢ for all [ > k.
Lemma 4 is now proved. O
We shall use the sum of the squares of the absolute values of the coordi-
nates in the “e-almost proper” basis as the Lyapunov function (for sufficiently

small ¢).

5. An Estimate of the Derivative

Consider the set of all quadratic forms on R™. This set has a natural vector
m{m+1)
space structure as R~ 2z .

The following lemma is obvious.

Lemma 5. The set of positive-definite quadratic forms on R™ 1is open in

R™G
m
That is, if the form a = E apxx; is positive-definite, there exists € > 0
k=1

such that every form @ + b with |by| < ¢ (for all k,! with 1 < k,1 < m) is also
positive-definite.

m

Proof. The form a is positive at all points of the unit sphere Z 2} = 1. The

sphere is compact and the form is continuous. Therefore the lower bound is
attained, and so a(z) > a > 0 everywhere on the sphere.

If |b| < e, then |b(z)] < 5 |bri| < m?e on the sphere.

Therefore for ¢ < a/m? the form a+ b is positive on the sphere and hence
positive-definite. The lemma is now proved. a

Remark. It also follows from our reasoning that any positive-definite quadratic
form satisfies everywhere the inequality

allz|* € a(z) < Bz, 0<a<pB. (5)

Problem 1. Prove that the set of nondegenerate quadratic forms of a given signature
is open.

Ezample 1. The space of quadratic forms of two variables aa? + 2bay + cy? is a
three-dimensional space with coordinates a, b, and ¢ (Fig. 159). The cone b* = ac
divides this space into three open parts corresponding to the signatures.
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Fig. 159. The space of quadratic forms

We shall use Lemma 5 to prove the following: for sufficiently small ¢ the
derivative of the sum of the squares of the absolute values of the coordinates
in the e-almost proper basis chosen in Lemma 4 in the direction of the vector
field B Az is positive-definite.

According to formula (3) this derivative is the quadratic form of the real
and imaginary parts of the coordinates z; = x + iyx.

Let us display the terms in formula (3) with diagonal and superdiagonal
elements of the matrix (A4):

Lag,r? =P+ Q, where P =2Re Z arizikz, @ =2Re E arpizkZi.
k=l k<l

We remark that the diagonal terms of the triangular matrix (A) are
the eigenvalues \; of the operator A. Therefore the quadratic form P =

n
ZQRe Me(z2 + y}) of the variables xy and yi is positive-definite and in-
k=1
dependent of the choice of the basis'®.

By Lemma 5 we conclude that for sufficiently small € the form P+ @ (near
P) is also positive-definite. For the coefficients of the variables 2 and yx in
the form Q become arbitrarily small for sufficiently small ¢ (since |ag| < € for
k<.

Inequality (2), and with it (1) also, is now proved.

Remark. Since L 4,72 is a positive-definite quadratic form, an inequality of
the form (5) holds:
ar? < Lapr? < fr?, (5"

where 8 > a > 0 are constants.
Thus the theorem on the Lyapunov function stated in Sect. 3 is now
proved. O
The following series of problems leads to another proof of this theorem.

Problem 2. Prove that differentiation in the direction of the vector field Az in R"
defines a linear operator Ly : R*™+t1/2 . RM™+D/2 fiom the space of quadratic
forms on R" into itself.

157t should be noted that the mapping BC™ — R defined by the form P does
depend on the choice of the basis.
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flx,
0 0 g“xa
X
h
——

Fig.160. Construction of the homeomorphism A

Problem 3. Knowing the eigenvalues A; of the operator A, find the eigenvalues of
the operator La.

Answer. \; + Aj,1<7,7<n.

Hint. Let A have a proper basis. Then the eigenvectors of L4 are the quadratic
forms equal to the pairwise products of the linear forms that are the eigenvectors of
the operator dual to A.

Problem 4. Prove that the operator L4 is an isomorphism if no two of the eigen-
values of 4 are negatives of each other. In particular, if the real parts of all the
eigenvalues of A have the same sign, then every quadratic form on R" is the deriva-
tive of some quadratic form in the direction of the vector field Ax.

Problem 5. Prove that if the real parts of all the eigenvalues of the operator A are
positive, then a form whose derivative in the direction of the field Az is positive-
definite is itself positive-definite, and consequently satisfies all the hypotheses of the
theorem just proved.

Hint. Represent the form as the integral of its derivative along the phase curves.

6. Construction of the Homeomorphism h

We now proceed to the proof of Lemma 3. A homeomorphism h: R* — R"
mapping the phase flow {f*} of the equation @ = Az (Re Ay > 0) to the phase
flow {g*} of the equation @ = & will be constructed as follows. Consider the

sphere!®
S—{zeR": (x)=1),

where r? is the Lyapunov function of (1).

The homeomorphism h will leave fixed the points of this sphere. Let @
be a point of the sphere (Fig. 160). The mapping k will map the point flxg
of the phase trajectory of the equation & = Az to the point g'&y of the phase
trajectory of the equation & = @:

h(fleg) =g'zy VtER, z0€S, h(0)=0. (6)

18 Actually an ellipsoid.
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We must verify the following:

1) the formula (6) determines the value of & unambiguously at every point
xz € R";

2) the mapping h' : R® — R" is one-to-one, onto, and continuous and
has a continuous inverse;

3)hofl=gloh.

The proofs of all of these assertions are obvious.

7. Proof of Lemma 3

Lemma 6. Let ¢ : R* — R™ be a nonzero solution of the equation T = Azx. We
form a real-valued function of a real variable t: '

p(t) = o (p(1)).
Then the mapping p: R — R is a diffeomorphism, and

a <dp/dt <g.

Proof. By the uniqueness theorem 7?(p(t)) # 0 for all ¢t € R. According to (5') we
find for dp/dt = Lagr®/r® the estimate a < dp/dt < 3, which was to be proved. 0O
It follows from Lemma 6 that:

1) Each point @ # 0 can be represented in the form & = f'®o, where xo € 5,
t € R, and {f'} is the phase flow for the equation © = Ax.

Indeed, consider the solution ¢ with initial condition ¢(0) = . By Lemma 6
for some 7 we shall have »?(¢(7)) = 1. The point o = ¢(7) belongs to S. Setting
t = —7, we obtain = f‘ax,.

2) Such a representation is unique.

Indeed, the phase curve emanating from @ (Fig. 160), is unique and intersects
the sphere in a single point o (by Lemma 6); the uniqueness of ¢ also follows from
the fact that p is monotonic (Lemma 6).

Thus we have constructed a one-to-one correspondence between the direct prod-
uct of the line and the sphere and the Euclidean space with one point removed

F:Rx S ' - R"\o, F(t,z0)= f'zo.

It follows from the theorem on dependence of the solution on the initial conditions
that both the mapping F and the inverse mapping are continuous (even diffeomor-
phisms).

We now remark that for the standard equation @ = @ we have dp/dt = 2.
Therefore the mapping G : R x §*~! — R™ \ 0 given by G(t,2¢) = g'2¢ is also a
one-to-one correspondence that is continuous in both directions. By definition (6) the
mapping h coincides with the mapping (G o F~': we have proved that h : R* — R
is a one-to-one correspondence.

The continuity of h and h™! everywhere except at the point o follows from the
continuity of ', F~!, and G, G™' (actually A is a diffeomorphism everywhere except
at the point o, cf. Fig. 161).

The continuity of h and h~" at the point o follows from Lemma 6. This lemma
even makes it possible to obtain an explicit estimate of 7*(h(x)) in terms of r*(x)
for ||z} < 1:
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R™
h
—— Rm_
1
Fig.161. The homeomorphism & is a Fig.162. The standard saddle point
diffeomorphism everywhere except at

o

(2 () < (h(=)) < (r*(2))F .

Indeed, suppose @ = F(t, @) for t < 0. Then ft < Inr*(z) < at and Inr*(h(z)) =
2t. Finally for ¢ # 0 we have @ = fl'xg, so that

(ho f')(®) = h(f'(f*(20))) = h(f™**(20)) = g""*(®0) =
=g'(9°(®0)) = g'(h(®)) = (g o h) ().

For @ = 0 we also have (ho f*)(@) = (¢' o h)(x). Thus assertions 1), 2), and 3)
of Sect. 6 are proved. The proof of Lemma 3 is now complete.

8. Proof of the Topological Classification Theorem

It follows from Lemmas 1, 2, and 3 that every linear system & = Az for
which the operator A : R® — R™ has no eigenvalues with real part zero is
topologically equivalent to the standard multidimensional saddle point (Fig.
162):
T, = —&y, &yr==x,, xR, =z, R"+.

Consequently two such systems having the same numbers m_ and m. are
topologically equivalent.

We remark that the subspaces R™- and R™+ are invariant with respect
to the phase flow {¢'}. As t increases each point of R™- approaches o.

Problem 1. Prove that g'z — o as t — +oo if and only if x € R™-.

For this reason R™- is called the incoeming (or contracting) manifold of
the saddle. In exactly the same way R™+ is called the outgoing {or dilating)
manifold. The outgoing manifold is defined by the condition g'z — o as
t — —oo.

Let us now prove the second part of the topological classification the-
orem: topologically equivalent systems have the same number of eigenvalues
with negative real part.

This number is the dimension m_ of the incoming manifold. Thus it suf-
fices to prove that the dimensions of the incoming manifolds of equivalent
saddles are the same.
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We remark that every homeomorphism A that maps the phase flow of one
saddle point to the phase flow of a second must map the incoming manifold
of the one to the incoming manifold of the other (since a homeomorphism
preserves the relation of tending to o as t — +o00). Therefore the homeomor-
phism A also provides a homeomorphic mapping of the incoming manifold of
one saddle to the incoming manifold of the other.

The agreement between the dimensions of the manifolds is now a conse-
quence of the following topological proposition:

The dimension of the space R™ 13 a topological invariant. In other words
there exists a homeomorphism h: R™ — R™ only between spaces of the same
dimension.

Although this proposition seems obvious!”, its proof is not easy and will
not be given here.

Problem 2. Prove that the four saddle points with three-dimensional phase space
and with (m_,m4) = (3,0), (2,1), (1,2), (0,3) are not topologically equivalent
(without using the unproved topological proposition just stated).

Hint. A one-dimensional invariant manifold consists of three phase curves, while
an invariant manifold of more than one dimension consists of infinitely many (Fig.

163).
AN

Py
—. — AN
[N

Y4
SANIRS .L\f <
e 2%

Fig. 163. The invariant manifolds of three-dimensional saddles

Thus the topological classification of linear systems whose eigenvalues have
nonzero real parts in R', R?, and R® has now been carried out completely,
while in R" with n > 3 we are obliged to refer to an unproved proposition on
the topological invariance of dimension.

Problem 3. Carry out the topological classification of the linear operators A :
R — R" having no eigenvalues of absolute value 1.

1" There exist, however, one-to-one correspondences R™ — R™ and also continuous

9 9 1

mappings of R™ onto R™ with m < n (for example, continuous mappings of R
onto R?).
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§ 23. Stability of Equilibrium Positions

The problem of the stability of an equilibrium position of a nonlinear system is
solved just as for the linearized system, provided the latter has no eigenvalues
on the imaginary axis.

1. Lyapunov Stability

Consider the equation
z=v(z), zeUCR", (1)

where v is a vector field that is differentiable r times (r» > 2) in a domain
U. Assume that Eq. (1) has an equilibrium position (Fig. 164). Choose the
coordinates z; so that the equilibrium position is the origin: v(0) = o.

The solution with the initial condition ¢(tg) = 0 is ¢ = 0. We are inter-
ested in the behavior of the solutions with nearby initial conditions.

U
Fig. 164. Will the phase curves that Fig. 165. Stable and unstable equilib-
emanate from the points in a suffi- rium positions: the difference in the be-
ciently small neighborhood of an equi- havior of the integral curves

librium position remain near the equi-
librium position?

Definition. The equilibrium position £ = o of Eq. (1) is called stable (or
Lyapunov stable) if for every ¢ > 0 there exists § > 0 (depending only on ¢
and not on the value of the ¢ that will be introduced below) such that for
every xo for which!® ||z]| < é the solution ¢ of Eq. (1) with initial condition
@(0) = =z can be extended to the entire half-line ¢ > 0 and satisfies the
inequality || (t)]| < ¢ for all ¢ > 0 (Fig. 165).

In other words Lyapunov stability of an equilibrium position means that
the solutions whose initial values tend to the equilibrium position in question
converge uniformly on the interval [0, 4+00) (to a constant solution). The con-
vergence of the values of the solutions for fixed ¢ is guaranteed by the theorem
on continuous dependence of the solution on the initial condition; what is
important is the uniform convergence, i.e., the independence of é from t.

B g = (21,...,20), then ||z||* = ) 42l
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Problem 1. Study the stability of the equilibrium positions for the following equa-
tions:

1) =0 3) { &1 = a, 1) {a':1=:v1; 5) { & = 22,

2) ¢ = x; Ty = —27; To = —Ta; T9 = —sinzy.

Problem 2. Prove that the definition given above is unambiguous, i.e., that the
stability of an equilibrium position is independent of the system of coordinates oc-
curring in the definition.

Problem 3. Suppose it is known that for any N > 0 and ¢ > 0 there exists a
solution ¢ of Eq. (1) such that for some ¢ > 0 the inequality ||so(t)|| > N|l¢(0)]|

holds, and |[¢(0)}| < e. Does it follow from this that the equilibrium position & = o
is unstable?

Hint. Consider the soft pendulum equation # = —a®.

2. Asymptotic Stability

Definition. The equilibrium position @ = o of Eq. (1) is asymptotically stable
if it is (Lyapunov) stable and

Jim_o(t) = o

for every solution ¢ with initial condition ¢(0) lying in a sufficiently small
neighborhood of zero (Fig. 166).

© \/\ t
90 @\ __ !

Fig.166. An asymptotically stable equilibrium position: the integral curves

Problem 1. Solve Problems 1), 2), and 3) of Sect. 1 with stability replaced by
asymptotic stability throughout.

Problem 2. Does Lyapunov stability of an equilibrium position follow if every
solution tends to this equilibrium position as ¢t — +o00?

Answer. No.

3. A Theorem on Stability in First Approximation

Along with (1) we shall consider the linearized equation (Fig. 167)
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z=Az, A:R"— R". (2)
Then v(2) = v; + vy, where v;(z) = Az and vy(z) = O(||z||?).

Theorem. Suppose all the eigenvalues A of the operator A lie in the left half-
plane: Re A < 0 (Fig. 168). Then the equilibrium position © = o of Eq. (1) is
asymptotically stable.

§'(/(7) __.l:{_ " |2

/7 NN .

Fig. 167. The phase curves of Egs. (1) Fig. 168. The eigenvalues of the oper-
and (2) ator A

Problem 1. Give an example of a Lyapunov unstable equilibrium position of Eq.
(1) for which Re A <0 for all A.

Remark. It can be shown that if the real part of at least one eigenvalue ) is positive,
then the equilibrium position is unstable. In the case of zero real parts stability
depends on the terms of the Taylor series of degree higher than the first.

Problem 2. Is the origin a (Lyapunov and asymptotically) stable equilibrium po-

sition for the system @1 = 3, &2 = —a?

Answer. If n is even it is (Lyapunov) unstable; if n is odd, it is Lyapunov stable,
but not asymptotically stable.

4. Proof of the Theorem

According to § 22, Sect. 3, there exists a Lyapunov function: a positive-definite
quadratic form r? whose derivative in the direction of the linear field v is
negative-definite:

Lvlrz S _27727

where 7 is a positive constant (Fig. 169).

Lemma. In a sufficiently small neighborhood of the point ® = o the derivative
of the Lyapunov function in the direction of a nonlinear field v satisfies the
inequality

Lyr? < —yr?. (3)

Indeed, L,r? = Ly, r? 4+ Ly,r%. We shall show that for small r the second
term is much smaller than the first:
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Fig.169. The level surface of a Lyapunov function

Lo, r2 = O(r%). (4)

In fact, for any field © and any function f

L,f= Z gfl u;.

=1

In our case (v = vy, f = r?) we have u; = O(r?) and g—i = O(r) (why?),
;

from which relation (4) follows.

Thus there exist C' > 0 and ¢ > 0 such that for all  with ||| < o the
inequality |L,,r%|. < Clr?(2)]*/? holds. The right-hand side is at most yr?
for sufficiently small |||, so that in some neighborhood of the point * = o
we have

Lyr? < =291 4 yr? = —4r2,

The lemma is now proved.

Let ¢ be a non-zero solution of Eq. (1) with initial condition in a suffi-
ciently small neighborhood of the point @ = 0. We define a function p of time
by the relation

p(t) =Inr’(p(t)), t>0.

By the uniqueness theorem we have r%(p(t)) # 0, so that the function p is
defined and differentiable. According to inequality (3)

1 d, Lyr?

pzrzogoar r2  —

It follows from this that r2(¢(¢)) decreases monotonically to 0 as ¢ — +oo:

p(t) < p(0) =4t r(p(1)) < *(p(0))e™ — 0. (5)

which was to be proved.
Problem 1. Point out the gap in the preceding proof.

Solution. We have not proved that the solution ¢ can be extended indefi-
nitely.
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Consider a ¢ > 0 such that inequality (3) holds for ||z|| < o.
Consider a compact set in the extended phase space (Fig. 170):

F={z,t:r*(z)<o, [t|<T}.

g

.—l
1

\
\

Fig. 170. Indefinite forward extensibility of the solution

Consider the solution ¢ with the initial condition ¢(0), where r2(¢(0)) <
o. By the extension theorem ¢ can be extended forward to the boundary of
the cylinder F'. But while the point (¢,¢(t)) belongs to F, the derivative of
the function r?(¢(t)) is negative. Therefore the solution cannot exit through
the lateral surface of the cylinder F' (where r? = ¢2) and hence it can be
extended to the top t = T.

Since T is arbitrary (and independent of ¢) the solution ¢ can be extended

forward indefinitely with 7%(¢(t)) < 0% and so inequality (3) holds for all ¢ > 0.

Remark 1. We have proved more than the asymptotic stability of the equilib-

rium position. It can be seen from inequality (5) that the convergence ¢(t) — o

is uniform (with respect to initial conditions #o sufficiently close to o).
Moreover inequality (5) indicates the rate of convergence (exponential).

In essence this theorem asserts that the uniform exponential convergence
of the solutions of the linear equation (2) to zero is not violated under a
nonlinear perturbation vy (@) = O(||x||?) of the right-hand side of the equation.
A similar assertion holds for various perturbations of a more general nature.
For example, one could consider a nonautonomous perturbation wvy(e,t) for
which [[va (@, 1) < (2]}, where @(2]]) = of 2]} as = — o.

Problem 2. Prove that under the hypotheses of the theorem Eqgs. (1) and (2) are
topologically equivalent in neighborhoods of the equilibrium position.

Remark 2. In connection with the theorem just proved we arrive at the fol-
lowing algebraic problem (the so-called Routh-Hurwitz problem):

It is required to determine whether all the roots of a given polynomaial lie
wn the left half-plane.

This question can be solved in a finite number of arithmetic operations on
the coefficients of the polynomial. The corresponding algorithms are described
in courses of algebra (Hurwitz’ criterion, Sturm’s method) and functions of
a complex variable (the argument principle, the methods of Vyshegradskii,
Nyquist, and Mikhailov). See, for example, the book by A. G. Kurosh, A
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Course of Higher Algebra [Russian], Nauka, Moscow, 1968, Chapter 9, or the
book of M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Func-
tions of a Complez Variable [Russian], Fizmatgiz, Moscow, 1958), Chapter V;
also see the book of M. M. Postnikov, Stable Polynomials [Russian]|, Nauka,
Moscow, 1981. We shall return to the Routh-Hurwitz problem in Sect. 5 of §
36.

§ 24. The Case of Purely Imaginary Eigenvalues

Linear equations having no purely imaginary eigenvalues have been studied
in detail in §§ 21 and 22. Their phase curves behave rather simply (the saddle
point, § 22, Sect. 8).

Linear equations with purely imaginary eigenvalues provide us with ex-
amples of more complicated behavior in the phase curves.

Such equations occur, for example, in the theory of oscillations of conser-
vative systems (cf. § 25, Sect. 6).

1. The Topological Classification

Suppose all the eigenvalues Aq,..., A, of the linear equation
& =Az, z€R", A:R"— R", (1)

are purely imaginary.
In which cases are two equations of the form (1) topologically equivalent?

Problem 1. Prove that in the case of the plane (n = 2, A1 2 = fiw # 0) a necessary
and sufficient condition for topological equivalence of two equations of the form (1)
is algebraic equivalence, i.e., having the same eigenvalues.

A similar result has now been proved for n > 2 also.

2. An Example

Consider the following equation in R*:

:i'l = w12, .
o A2 = Fwwr,

T2 = —w1y, (2)
T3z = Woly .
. .’ /\3,4 = :{:'lwg‘
Ty = —WeTs3,

The space R* decomposes into the direct sum of two invariant planes (Fig.
171):
R4 = Rl,? + R3v4.
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Fig.171. The phase space of the system (2)
The system (2) decomposes into two independent systems:

(1,29) € Ry g

T = w122,
Ty = ~w T,

(3)

T3 = Wl
{ ) 3 244, (Q73,.T4)€R3v4

Ty = —Wal3.
In each of the planes the phase curves are circles
S'={z€R,:al+a2=C>0}

or a point (C' = 0), and the phase flow consists of rotations (by the angles wyt
and wot respectively).
Each phase curve of Eq. (2) belongs to the direct product of the phase
curves in the planes R; ; and Ry 4. Suppose these two curves are both circles.
The direct product of two circles

T?=5"xS'={xcR: 22 +a5=C,al+2}=C}

is called a two-dimensional torus.

To get a better picture of the torus 7% one can proceed as follows. Consider
the surface of an anchor ring in R?® (Fig. 172) obtained by rotating a circle
about an axis lying in the plane of the circle but not intersecting it. A point
of such a surface is defined by two angular coordinates ¢1, ¢ mod 27. The
coordinates ¢; and ¢o define a diffeomorphism of the surface of the anchor
ring and the direct product T2 of two circles.

(22}
L2, /20N
2n| &3 o
P -
0] 4 znf g,
Fig.172. The torus Fig.173. A map of the torus

The coordinates ¢; and e can be called longitude and latitude. A map
of the torus T? (cf. Fig. 173) can be represented on the square 0 < ¢; < 27,



§ 24. The Case of Purely Imaginary Eigenvalues 217

0 < 2 < 27 of the (¢1,92)-plane by “gluing together” the points (¢1,0) and
(¢1,27) and the points (0,p2) and (27, 2). One can also regard the entire
(¢1,%2)-plane as a map, but then each point of the torus will have an infinite
number of images on the map (like the two images of Chukotka on maps of
the hemispheres).

The phase flow of Eq. (2) leaves the torus T? C R* fixed. The phase
curves of Eq. (2) lie on the surface T'2. If (o, is the polar angle of the plane
R, ; measured from the unit vector of the wx,-axis in the direction of the
unit vector of the z-axis, then according to (3) we have ¢; = w;. Similarly,
measuring ¢, from z4 to x3, we obtain s = wy. Thus:

The phase trajectories of the flow (2) on the surface T? satisfy the differ-
ential equation

Y1 =wi, P2 = wa. (4)

The latitude and longitude of the phase point vary uniformly, and on a
map of the torus the motion is represented by a straight line, while on the
surface of the anchor ring a “solenoid” is obtained (Fig. 174).

4
/ < >
R

%
Fig.174. A solenoid on the torus

3. The Phase Curves of Eq. (4) on the Torus

The numbers w; and w, are called rationally independent if the relation kjw; +
kaws = 0 with integers ki and ke implies ky = k; = 0. For example V2 and
/8 are rationally dependent, while /6 and v/8 are rationally independent.

Theorem. If wy and wy are rationally dependent, then every phase curve of
Eq. (4) on the torus is closed. If wy and wse are rationally independent, then
every phase curve of Eq. (4) is everywhere dense!® on the torus T? (Fig. 175).

In other words if on each square of an infinite chessboard there is an identical
hare (and identically situated) and a hunter shoots in a direction of irrational slope
with respect to the lines of the chessboard, he will hit at least one hare. (It is clear
that if the slope is rational, sufficiently small hares could be placed so that the hunter
will miss all of them.)

1P A set A is everywhere dense in a space B if there is a point of the set A in every
arbitrarily small neighborhood of any point of the space B.
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v
/ y+lec +L
A g+ 7oc
pd ol P 4
g+6a

Fréoc @+ be
Fig.175. An everywhere-dense curve Fig.176. The images of a point of the
on the torus circle under repeated rotations through

the angle «

Lemma. Consider a rotation of the circle S* by an angle o that is incommen-
surable with 2w (Fig. 176). Then the images of any point on the circle under
the repeated rotations

©, o+a, p+2a, ¢+ 3a,...(mod2r)

form a set that is everywhere dense on the circle.

The proof can be deduced from the structure of closed subgroups of the
line (cf. § 9). We shall carry it out again.

The pigeon-hole principle. If k 4 1 objects lie in k boxes, then at least one
box contains more than one object.

We divide the circle into k equal half-open intervals of length 27 /k. By
the pigeon-hole principle among the first & + 1 points of our sequence there
are two lying on the same half-open interval. Let these points be ¢ + pa and
@ + go with p > ¢. Consider s = p — ¢. The angle of rotation sa differs from a
multiple of 27 by less than 27 /k. In the sequence of points ¢, ¢ + sa, ¢ + 2sa,
@ + 3sa, ...{(mod 27) (Fig. 177) each pair of adjacent points are at the same
distance, less than 2x/k, from each other. Let ¢ > 0 be given. Choosing k
sufficiently large, we can get 27 /k < ¢. In any ¢-neighborhood of any point of
S1 there are points of the sequence ¢ + Nsa (mod 27).

The lemma is now proved. O

(2%}

..V* - Por %
+ @,
\99; . /,/ n C_U?k

oo " i

21k g,

Fig.177. The points ¢ + Nsa Fig. 178. Reduction of the theorem to
the lemma

Remark. We have not used the incommensurability of o with 27. But it is
obvious that the lemma is not true for o commensurable with 2.
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Problem 1. Find and repair the gap in the proof of the lemma.

Proof of the theorem. A solution of Eq. (4) has the form

@1(t) = 01(0) +wit,  @a(t) = ©2(0) + wat. (5)

Let w; and w, be rationally dependent: kywy + kywy = 0, k2 + k2 # 0. The
equations in the unknown T

w1T=97Fk2, ng——- —27!"01

are consistent. A solution T of these equations is a period of the closed phase
curve (5).

Let w; and w, be rationally independent. Then w;/wy is an irrational
number. Consider the successive points of intersection of the phase curve (5)
with the meridian p; = 0 (mod 27) (Fig. 178). The latitudes of these points
are

W2
Yo x =20+ 2r—k (mod2m).
w1

By the lemma the set of points of intersection is everywhere dense on the
meridian. We remark that the lines drawn from the points of a set that is
everywhere dense on a line lying in the plane in a direction not coinciding
with the direction of this line form an everywhere dense subset of the plane.
Therefore the image

. . t . palt
a1(t) = r(t) =22 28] gy(6) = pue) — 2 [ 22)]
2 27
of the phase curve (5) on the square 0 <.%; < 27, 0 < @ < 27 is everywhere
dense. Hence a phase curve of Eq. (4) (and hence of Eq. (2)) is everywhere
dense on the torus.

4. Corollaries

A number of simple corollaries of the theorem just proved go beyond the scope
of the theory of ordinary differential equations.

Problem 1. Consider the sequence of first digits of powers of 2:
1,2,4,8,1,3,6,1,2,5,1,2,4,8,...

Does the digit 7 occur in this sequence? In general, can the number 2" begin with
any combination of digits?

Problem 2. Prove that sup cost + sin V2t = 2.
0<t<oo

5. The Multidimensional Case

Suppose the eigenvalues of Eq. (1) in R?™ are simple and of the form
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A = Fiwy, Fiws, ..., Tiwy.

Reasoning as in the example of Sect. 2, we shall show that the phase curves
lie on the m-dimensional torus

T™ =5 x - xS' = {(¢1,...,om) mod2r} = R™/Z™

and satisfy the equations ¢; = wi, P2 = wa, ..., Pm = Wp,. The numbers
Wi,...,wn are rationally independent if for integers k

(k1w1+"'+k7nwm:0):>(kl=”’=km=0)~

Problem *1. Prove that if the frequencies wy,...,wm are rationally independent,
then each phase curve of Eq. (1) lying on the torus T™ is everywhere dense in the
torus.

Corollary. Suppose a horse makes jumps of size (v/2,v/3) across a field (Fig. 179),
where corn is sown in a square-nest pattern. Then the horse will necessarily knock
down at least one plant. %

(o}
T o
(e mun e o)

Fig. 179. The phase curve of the system ¢ =1, @2 = \/§, p3 = V3 is everywhere
dense on the three-dimensional torus

6. The Uniform Distribution

The everywhere-dense curves considered above possess the remarkable prop-
erty of being uniformly distributed over the surface of the tori. We shall state
the corresponding theorem in the simplest case. Consider the sequence of
points @y, @a, ... on the circle S' = {» mod 27 }. The sequence is uniformly
distributed if for any arc A C S' the number N(A, k) of points of a long
segment of the sequence (p1,...,¢) in A is asymptotically proportional to
the length of A:

. ON(AK) |4

lim ————~ = —

k—oo k o 2r )

Problem *1. Prove that the sequence ¢, v + a, ¢ + 2a,..., where a is an angle
incommensurable with 2m, is uniformly distributed on S*.

Corollary. The numbers 2" begin with 7 more often than with 8. If N7(k) and

Ns(k) are the numbers of elements among (1,2,4,... ,28) beginning with 7 and 8
respectively, then the following limit exists:
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lim Nq(k
k—oo ]Vs(k) ’

~—

Problem 2. Find this limit and verify that it is larger than 1.

Remark. The initial segment of the sequence (cf. Sect. 4) seems to indicate that there

are fewer 7’s. This is connected with the fact that the irrational number log2 =
0.3010... is very close to the rational number 13—020.

§ 25. The Case of Multiple Eigenvalues

Solving a linear equation with constant coefficients reduces to computing the
matrix et If the eigenvalues of the matrix A are pairwise distinct, then the
explicit form of the matrix e“? is indicated in § 19, Sect. 5 and in § 20, Sect. 6.
To find the explicit form of the matrix e4? in the case of multiple eigenvalues,
we shall use the Jordan normal form.

1. The Computation of e4*, where A is a Jordan Block

One method of computing e!, where 4 is a Jordan block:

Al

A . R" > R",

1
A

was shown in § 14: A is the matrix of the operator of differentiation in the
basis

ey =the* /L, 0<k<n,

of the space of quasi-polynomials of degree less than n with exponent A. By
Taylor’s formula e4* is the matrix of the translation operator f(-)— f(-+s)
.in the same basis.

Another method is based on the following lemma:

Lemma. Let A and B be linear operators from R™ to R™. If they commudte,
then eAtB AeB

=€ €.

Proof. We compare the formal series

*¥The first digits of the powers of 3 and those of the populations of the countries of
the world are distributed according to the same law.
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etef = (E+A+§;+---)(E+B+%2+m) =
=E+(A+B)+%(.42+2AB+B2)+~~,

eA+B=E+(A+B)+%(A+B)2+---=
=E+(A+B)+%(A2+2AB+BQ)+---

If AB = BA, then the series coincide (since e*t¥ = e*e¥ for numbers).

Since the series converge absolutely, e4tB = ¢4¢®, which was to be proved.
0

We represent A in the form A = AE + A, where A is a nilpotent Jordan
block:

Since AE commutes with any operator, we have et = etAE+A) = AteAdl,

We compute the matrix

A2t2 An—ltn—-l
At n
=FE+ A+ —+ -+ —— (A" =0).
e +AF e o) ( )
We remark that the action of A on the basis ey,...,e, is that of a shift:

0 «tey «tey «i -+ «te,. Therefore A* acts as translation by k positions and
has the matrix ‘

0o ... 1

1
0
Thus we have proved the following result.
Theorem.
1t 232 ... "V (n-1)
1t :
eAt = R t%/2 7
t
1
e teM L T leM (n - 1)!
At = eM :
te/\t
At

€
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Our computations carry through without any changes in the complex case

(AeC,A:C* > CM).

2. Applications
The following result is an immediate consequence of formula (1).

Corollary 1. Let A : C® — Cm" be a linear operator with eigenvalues
Aly- .y A of respective multiplicities vy, ..., v, and let t € R. Then each ele-
ment of the matriz of et (in any fized basis) is the sum of quasi-polynomials
in t with ezponents \; of degree less than vy respectively (1 =1,...,k).

Proof. Consider the matrix of the operator e#! in a basis in which the matrix
A has Jordan form. Our assertion then follows from (1). The elements of the
matrix of the operator e*’ in any other basis are linear combinations (with
constant coefficients) of the elements of the matrix of the operator e?* in the
given basis. 0

Corollary 2. Let ¢ be a solution of the differential equation & = Az, z € C",
and A: C" — C". Then each component of the vector ¢ (in any fized basis)
18 @ sum of quasi-polynomials in t with exponents A\; of degrees less than v

k
respectively: o;(t) = Ze’\"pﬂ(t), where p;; is o polynomial of degree less
I=1

than v;.
Indeed ¢(t) = e*p(0).

Corollary 3. Let A: R* — R"™ be a linear operator with real eigenvalues A,
(1 <1< k) of respective multiplicities vy and complez eigenvalues oy + twy,
(1 <1< m) of multiplicities ;. Then each element of the matriz of ¢4t and
each component of the solution of the equation @ = Az, ® € R™, 1s a sum of
complez quasi-polynomials with exponents A\; and a; +iw; of degrees less than
v and pp respectively.

Such a sum can also be written in the less convenient form:
k m
w;(t) = Z eMipii+ Z e®![g;1(t) coswit + 1 () sinwyt],
=1 =1

where p, ¢, and r are polynomials of degrees less than vy, p;, and p; respec-
tively, with real coefficients.
Indeed, if 2 = 2 + 1y and A = o + iw, then

RezeM = Ree®! (2 + iy)(coswt + isinwt) = e*(z coswt — ysinwt).
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Incidentally it can be seen from these formulas that if the real parts of all
eigenvalues are negative, then all solutions tend to zero as t — 400 (as must
be the case according to § 22 and § 23).

3. Applications to Systems of Equations of Order Higher than the
First

By writing the system as a system of first-order equations we reduce the
problem to the one considered above, and we can solve it by bringing the
matrix to Jordan form. In practice it is often convenient to proceed in another
way. First of all, the eigenvalues of the equivalent first-order system can be
found without writing out its matrix.

Indeed, to an eigenvalue A there corresponds an eigenvector, hence a solu-
tion p(t) = e*p(0) of the equivalent first-order system. But then the original
system also has a solution of the form (t) = e*'1(0). In the original sys-
tem we make the substitution ¢ = e¢*€. The system admits such a solution
(nonzero) if and only if A satisfies an algebraic equation from which we can
find the eigenvalues A;.

The solutions themselves can then be sought in the form of sums of quasi-
polynomials with exponents A\; and undetermined coefficients.

Ezample 1. 21 = 2.

We make the substitution @ = e*'¢. We find Me e = eMeE, M =1, Aip3,4 =
1, -1, 7, —1.

Every solution of our equation has the form

z=Cre +Cae  +Cscost + Cysint.

FEzample 2. 1 = xa, &2 = a
We substitute © = 6“5 We find A€ = €2, AN2& = &. This system of linear
equations in & and &2 has a nontrivial solution n" and only if A* = 1. Every solution

of our system has the form
w1 =Chre +Cae™t + 6;3 cost + Cysint, a» = Die' + Dae™" + Dzcost+ Dssint.
Substituting into the system gives Dy = C1, D2 = C2, D3 = —C3, Dy = —Cls.

FEzample 3. 209 923 4 2 = (.
We substitute 2 = ¢*'¢. We find

Mo2X 4+1=0, XN =1, Mase=1,1,-1, 1.
Every solution of the original equation has the form

(Cit + Cs)et + (Cat + Cy)e ™.

Problem 1. Find the Jordan normal form of the 4 X 4 matrix corresponding to this
equation.
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4. The Case of a Single nth-order Equation

We remark that the multiplicities of the eigenvalues in general do not deter-
mine the dimensions of the Jordan blocks. The situation is simpler in the case
of a linear operator 4 corresponding to a single nth-order differential equation:

.’L'(n) — (1,133('1_]) + ot aye, ap € C. (2)

The following result is a consequence of Corollary 2 of Sect. 2.

Corollary 4. Every solution of Eq. (2) has the form

k
A
p(t) =) Mpi(h), (3)
=1
where Ay, ..., A, are the roots of the characteristic equation
/\n = (Ll)\n_l + cee Uy, (4)

and p; 15 a polynomial of degree less than vy (where v 1s the multiplicity of
the root ;).

Indeed Eq. (2) has a solution of the form e*(¢) if and only if ) is a root
of Eq. (4). Corollary (4) is now proved.
We now turn to the equivalent first-order system of equations:

0 1
0 1
&= Az, A= . (5)

Ay (51

We obtain the following result.

Corollary 5. If the operator A: C™ — C" has a mairiz of the form (5), then
to each of its eigenvalues A there corresponds ezactly one Jordan block, whose
dimension equals the multiplicity of A.

Indeed, according to formula (3), to each eigenvalue A there corresponds
one characteristic direction. In fact, let € be an eigenvector of the operator
A. Then among the solutions of the form (3) is the first component e*'&
of the vector e*¢. But then the remaining components are the derivatives:
£k = A*€y. Therefore the number A determines the direction of the vector &

uniquely.
Since each Jordan block has its own characteristic direction, Corollary 5
is now proved. O

Problem 1. Is every linear combination of the quasi-polynomials (3) a solution of
Eq. (2)7
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5. On Recursive Sequences

Our study of exponentials with a continuous exponent e*4 is easily extended
to an exponential with a discrete exponent A™. In particular we can now study
a recursive sequence defined by the relation

Tp = AQTp—1 + -+ QGTp—k (6)

(for example, the sequence 0, 1, 2, 5, 12, 29, ... defined by the relation z,, =
22p—1 + Tp—2 and the initial condition xy = 0, z; = 1).

Corollary 6. As a function of n the nth term of a recursive sequence is a
sum of quasi-polynomials in n:

m
xn, = Z /\;Ipl(n")v
=1

where A\; are the eigenvalues of the matriz A corresponding to the sequence
and p; 1s a polynomial of degree less than vy (where vy is the multiplicity of

)

We recall that the matrix A is the matrix of the operator A : R¥ — R
that takes a segment of length & of our sequence &,-7 = (¢p—f,...,Tn—1) to
the succeeding segment of length &, £, = (Tpekg1,. -, Tn):

0
1 Tp—k Tn—k+1
Ab,y = c = : = ¢,
0 1 Tp-1 Tn
ay e as a

It is important to note that the operator 4 is independent of n. Therefore z,,
1s one of the components of the vector A™E, where £ is a constant vector. The
matrix A has the form (5). Using Corollary (5) and bringing A into Jordan
form, we obtain Corollary 6. O

In the computations there is no need to write out the matrix or bring it
to normal form. An eigenvector of the operator A4 corresponds to a solution
of Eq. (6) of the form » = A™. Substituting into Eq. (6), we find for A the
equation

M= g Mg
It is easy to verify that this is the characteristic equation of the operator A.

Ezample 1. For the sequence 0,1, 2,5,12,29,... (xa = 22n_1 + zn—2) we find
A= 92\ + 1, Mpo=12 V2. Therefore the relation 2, = 22n_1 + Zn_2 is satisfied
by the sequences &, = (1+v2)", &, = (1 —+/2)", and also any linear combinations
of them (and only such linear combinations)

an = c1(1+V2)" +e2(1 = V2)™
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Among these combinations it is easy to choose one for which o = 0, z; = 1:

¢y +co =0, \/_(c]~Cn)—1 namely an—[(1+\/_)n—(1—\/-)n]/(2\/—)

Remark. As n — 400 the first term increases exponentially and the second decreases
exponentially. Therefore for large n

an % (14 V2)"/(2V2)

and in particular €nt1/®» ~ 1 + /2. From this we find very good approximations
for V/2: V2 & (€41 — ©a)/@a. Substituting @, =1, 2, 5, 12, 29,..., we find

V2 (2-1/1=1 V2x(5-2)/2=15
V2R (12-5)/5 = 1.4;v/2 ~ (29— 12)/12 = 17/12 ~ 1.417 . ..

These are the same approximations used to compute v/2 in antiquity; they can also
be obtained by expanding V2 in a continued fraction. Furthermore (Tnt1 — za)/2n
is the best rational approximation to /2 by a fraction whose denominator does not
exceed z,.

6. Small Oscillations

We have studied above the case when there is only one eigenvector correspond-
ing to each root of the characteristic equation, whatever its multiplicity: the
case of a single nth-order equation. There exists a case that is in a certain
sense the opposite of this, when to each root there corresponds a number of
linearly independent eigenvectors equal to the multiplicity of the root. This is
the case for small oscillations of a conservative mechanical system.

In the Fuclidean space R™ we consider a quadratic form U given by a
symmetric operator A:

U(z) = - (43: z), z€R", A:R"—- R' A=A

Consider the differential equation?'

z=—gradU (7

(here U is the potential energy).

In studying Eq. (7) it is useful to imagine a ball rolling along the graph
of the potential energy (compare with § 12).

Equation (7) can be written in the form & = —Az or in coordinate no-
tation as a system of n second-order linear equations. By the general rule we
seek a solution ¢ = ¢, and we find

1 The vector field grad U is defined by the condition “dU(&) = (grad U, £) for every
vector £ € TRE.” Here the parentheses denote the Euclidean inner product.
In Cartesian (orthonormal) coordinates the vector field grad U is given by the

o | 2UY
Oz’ " Bz /)

components (
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AeME = 21 4eME, (A+NE)E =0, det|A+ N\E|=0.

From this we find n real (why?) values of A? and 2n values of \.

If they are all distinct, then every solution of Eq. (7) is a linear combination
of exponentials. If there are multiple roots, the question of the Jordan blocks
arises.

Theorem. If the quadratic form U 1is nondegenerate, then to each eigenvalue
A there corresponds a number of linearly independent eigenvectors equal to its

multiplicity, so that every solution of Eq. (7) can be written in the form of a
2n

sum of exponentials?®: p(t) = Z My, & € CM.
k=1

Proof. By an orthogonal transformation we can bring the form U to principal
azes: there exists an orthonormal basis ey,..., e, in which U can be written
in the form

I
U(e) = 5 Zakxk, T =211+ -+ a,€y.
~ k=1
The nondegeneracy of the form U says that none of the numbers a; is
zero. In the coordinates chosen Eq. (7) assumes the form

T = —ad1ry, Ty = —dA2T2,..., Ty = —UpTyp

whether or not there are multiple roots?®. Our system has split into the direct
product of n “pendulum equations.” Each of these (¥ = —az) can be solved
immediately.

If a > 0, then a = w? and

2z = C coswt + Cy sinwt.
If a <0, then ¢ = —a? and
x = Cy coshat + C, sinh ot = Dye“t + Dye™ "

These formulas contain, in particular, the assertion of the theorem. a

If the form U is positive-definite, then all the ay are positive and the point
x performs n independent oscillations along the n mutually perpendicular di-
rections eq,...,e, (Fig. 180). These oscillations are called the principal or
characteristic oscillations, and the numbers w; are called the natural frequen-
cies. They satisfy the equation det |4 — w?E| = 0.

221t is of interest to note that Lagrange, who was the first to study the equation
of small oscillations (7), at first made a mistake. He thought that in the case of
multiple roots some “secular” terms of the form te' would be required (in the
real case ¢sinwt), as in Sects. 2, 4, and 5 above.

23'We remark that we are making essential use of the orthonormality of the basis ey:
if the basis were not orthonormal, the components of the vector grad —,1; Zakxi
would not be equal to apxy;.
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The trajectory of a point & = ¢(t) in R™ (where ¢ is a solution of Eq.
(7)) lie in the parallelepiped |zx| < X, where X} is the amplitude of the kth
characteristic oscillation. In particular for n = 2 the point lies in a rectangle.

If the frequencies w; and w, are commensurable, then the trajectory is a
closed curve. In this case it is called a Lissajous curve (Fig. 181).

e, AN
K _* )

2
\>0 G

Fig. 180. The directions of the charac- Fig.181. One of the Lissajous curves
teristic oscillations and the level lines with wa = 2w,
of the potential energy

If, on the other hand, w; and wy are incommensurable, then the trajectory
fills up an everywhere dense subset of the rectangle. This follows from the
theorem of § 24.

Problem 1. Sketch the Lissajous curves for w1 = 1, ws = 3, and for wy = 2, w2 = 3.

Problem 2. Prove that among the Lissajous curves with ws = nw; is the graph of
a polynomial of degree n. This polynomial is called the Chebyshev polynomial.

Ty (x) = cos(narccosa).

Problem 3. What does the trajectory of @ = ¢(¢) look like in the case U = z?—23?

Problem 4. For which U is the equilibrium position @ = & = 0 of Eq. (7) stable a)
in the sense of Lyapunov? b) asymptotically?

§ 26 Quasi-polynomials

In solving linear equations with constant coefficients we constantly encoun-
tered quasi-polynomials. We shall now explain the reason for this phenomenon
and give some new applications of it.

1. A Linear Function Space

Consider the set F of all infinitely differentiable complex-valued functions on
the real axis R.

The set F has a natural complex vector space structure: if f; and f; are
functions of F, the function ¢; f; + ¢3 f> (where ¢; and c; are constants in C)
also belongs to F.
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Definition. The functions f1,..., fn € F are linearly independent if they are
linearly independent as vectors of the vector space F, i.e., if

(afit - tenfa=0)= (= =c=0),

where ¢y,...,c, € C.

Problem 1. For which « and 3 are the functions sin at and sin 8t linearly indepen-
dent?

Problem 2. Prove that the functions e1?,..., et?
Ar are pairwise distinct.

are linearly independent if the

Hint. This follows from the existence of an nth-order linear equation with solutions
At Ant ¢
e ..., e (cf. Sect. 2 below).

Among the elements of the space F' are the quasi-polynomials with ex-
v—1
ponent A: f(t) = e’\thktk and, more generally, finite sums of quasi-
k=0
polynomials with different exponents

k v —1
FO = "M amt™, Ai# N (1)
=1 m=0

Problem 3. Prove that each function of the form (1) can be written uniquely in
the form of a sum (1). In other words:

If the sum (1) equals 0, then each coefficient ¢; ., equals 0.

Hint. One possible solution can be found in Sect. 2 (the corollary below).

2. The Vector Space of Solutions of a Linear Equation

Theorem. The set X of all solutions of the linear equation
2™ 4 gD L ar =0 (2)

constitutes a subspace of F' of finite dimension n.

Proof. Consider the operator D : F — F that maps each function to its
derivative. The operator D is linear:

D(e1fi +eafz) =c1Dfi +c2Dfo.
Consider a polynomial in the operator D:

A=a(D)=D"+ ;D" ' +.-- +a,E.
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The operator A is linear and A : F — F. The solutions?* of Eq. (2) form the
kernel of the operator A. Thus X = Ker 4.

But the kernel Ker A of a linear operator is a vector space. Therefore X
is a vector space. We shall show that X is isomorphic to C".

Let ¢ € X. We shall assign to the function ¢ a set of n numbers: the
set of values at the point t = 0 of the function ¢ and its derivatives g =
(¢(0),(Dp)(0),...,(D" 1p)(0)). We then obtain a mapping

B:X —C", B(y¢)=eo,

This mapping is linear. The image of the mapping B is the entire space C™.
For by the existence theorem, there exists a solution ¢ € X with any given
initial conditions ¢g.

The kernel of the mapping B is zero. For by the uniqueness theorem, the
initial conditions ¢g = o determine the solution (¢ = 0) uniquely. Thus B is
an isomorphism.

The theorem is now proved. o

Corollary. Let Aq,..., A be the roots of the characteristic equation a(\) =0
of the differential equation (2) and vq,...,vy their respective multiplicities.
Then each solution of Eq. (2) can be written uniquely in the form (1) and
each sum of quasi-polynomials of the form (1) satisfies Eq. (2).

Proof. Formula (1) defines a mapping ¢ : C™ — F that assigns to the set of nn
coefficients ¢; ,, the function f. This mapping is linear. Its image contains the
space X of solutions of Eq. (2). For according to § 25 each solution of Eq. (2)
can be written in the form (1). By the theorem the dimension of the space X
is n.

A linear mapping of the space C™ onto a space X of the same dimension
is an isomorphism. Therefore @ realizes an isomorphism of C" and X. This
is the assertion of the corollary. O

3. Translation-invariance

Theorem. The space X of solutions of the differential equation (2) is invari-
ant under the translations mapping the function o(t) into o(t + s).

Indeed a translation of a solution will be a solution, as is the case for any
autonomous equation (compare § 10).

Examples of translation-invariant subspaces of the space F are:

Ezample 1. The one-dimensional space {ce*'}.

**We know in advance that all solutions of Eq. (2) are infinitely differentiable, i.e.,
belong to F' (cf. § 25, Sect. 4).
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FEzample 2. The space of quasi-polynomials {e“p<n(t)} of dimension n.
Ezample 3. The plane {c1 coswt + ¢z sin wt}.

Ezample 4. The space {p<n(t) coswt + q<a(t)sinwt} of dimension 2n.

It can be shown that every finite-dimensional translation-invariant sub-
space of the space F' is the space of solutions of some differential equation
(2).

In other words, such a subspace always decomposes into the direct sum
of spaces of quasi-polynomials. This explains the significance of the quasi-
polynomials for the theory of linear equations with constant coefficients.

If an equation is invariant with respect to some group of transformations,
then spaces of functions invariant under that group will play an important role
in solving the equation. In this way various special functions arise in mathe-
matics. For example, the spherical functions are connected with the group of
rotations of the sphere; these are finite-dimensional spaces of functions on the
sphere that are invariant under rotations.

Problem *1. Find all finite-dimensional subspaces of the space of smooth functions
on the circle that are invariant with respect to rotations of the circle.

4. Historical Remark

The theory of linear differential equations with constant coefficients was
founded by Euler and Lagrange before the Jordan normal form of a matrix
was constructed.

They reasoned as follows. Let A; and Ay be two roots of the characteristic
equation. They correspond to the solutions e*'? and e*?* that span the two-
dimensional plane {c;e*" + cpe?2!} (Fig. 182) in the space F. Now suppose
the equation varies so that A, approaches ;. Then e*?* approaches e*t?, and
for Ay = Ay the plane degenerates into a line.

The question arises: Does there exist a limiting position of the plane as
A2 — M ?

Instead of e? and e*?! the basis can be taken as e*! and e*?! — e
(when Ay # Ap). But e*2! —eMt v (A, — Ay )te M. Hence the basis (eM?, (eM!—
e*2t/(A\y— 1)) of our plane becomes the basis (e*!,te*1?) of the limiting plane
as Ao — A;. Hence it is natural to expect that the solution of the limiting
equation (with multiple root Ay = A; will lie in the limiting plane {c;e™? +
cate*?t}). Once the formula is written out, it can be verified by substituting
into the equation.

The appearance of the solutions t*e* (k < ») in the case of a root of
multiplicity v is explained in the same way.

The reasoning just given can be made completely rigorous (for example,
by citing the theorem on differentiable dependence of the solutions on a pa-
rameter).

Art Aat At
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5. Inhomogeneous Equations

Let A : Ly — Ly be a linear transformation. Any pre-image z € L; of the
element f € Ly is called a solution of the inhomogeneous equation Az = f
with right-hand side f (Fig. 183).

oot Herd Ar
i
A
[ L : — —g—-—-f—— Im4
Ei,t 1 ‘X
et g tert) i Lg

Fig. 182. The limiting position of the Fig.183. The kernel and image of an
plane spanned by two exponentials operator A

Every solution of an inhomogeneous equation is the sum of a particular
solution @y and the general solution of the homogeneous equation Az = 0:

A7 f =2y + Ker A

The inhomogeneous equation is solvable if f belongs to the vector space
ImA = A(L)) C L,.»®

Consider, in particular, the differential equation
™ a2 4 tane = f(1) (3)
(an nth-order inhomogenecous equation with constant coefficients).

Theorem. Suppose the right-hand side f(t) of Eq. (3) is a sum of quasi-
polynomials. Then every solution of Eq. (3) is a sum of quasi-polynomials.

Consider the space C™ of all quasi-polynomials
cm = {6/\tp<m(t)}

of degree less than m with exponent A. The linear operator D (mapping every
function into its derivative) maps C™ into itself. Therefore the operator A =
a(D)= D"+ ay D" 1+ 4+ a,E: C™ — C™ is also a linear transformation
from C™ into itself. We can now write Eq. (3) in the form Az = f. To study
its solvability we must find the image Im A = A(C™) of the mapping A.

Lemma 1. Suppose A is not a root of the characteristic equation, i.e., a(\) #
0. Then A: C™ — C™ 1s an isomorphism.

Proof. The matrix of the operator D : C™ — C™ in a suitable basis is a
Jordan block with A on the diagonal. In this same basis the operator A has a

*>Here the notation Im denotes the image of the linear transformation A, not the
imaginary part of a complex number. Trans.
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triangular matrix with a()) on the diagonal. Hence det A = {(a(A))™ # 0, and
A is an isomorphism. O

Corollary. If A is not a root of the characteristic equation, then Eq. (3) with
right-hand side in the form of a quasi-polynomial of degree m and exponent A
has a particular solution in the form of a quasi-polynomial of degree less than
m and ezponent A.

Lemma 2. Let A be a root of the characteristic equation of multiplicity v,
ie., a(z) = (z — \)¥b(z), b(A) #0. Then AC™ = C™7,

Proof. A = a(D) = (D — AE)*b(D). By Lemma 1 (D) : C™ — C™ is an
isomorphism. It remains to be shown that (D — AE)*C™ = C™~". But the
matrix of the operator D — AE in the basis
t* .
ex = 13¢, 0<k<m,
is a nilpotent Jordan block, i.e., this operator acts on the basis as the shift
0 «deg «iey « -+ «le,_1. The operator (D — AE)" acts as a shift by v
places and therefore maps C™ onto C™™". O

Corollary. Let )\ be a root of the characteristic equation a()\) = 0 of multi-
plicity v. Let £ € CF be a quasi-polynomial of degree less than k with ezponent
A. Then Eq. (3) has a solution ¢ € C**V in the form of a quasi- polynomzal
with exponent A of degree less than k + v.

For the proof it suffices to set m = k + v in Lemma 2. O

Proof of the theorem. Consider the set X of all sums of quasi-polynomials.
This is an infinite-dimensional subspace of the space F. By the preceding
corollary the image A(X) of the operator 4 = a(D) : ¥ — X contains all
quasi-polynomials. Being a vector space, A(X) coincides with . Therefore
Eq. (3) has a particular solution that is a sum of quasi-polynomials. It remains
only to add the general solution of the homogeneous equation. The latter is a
sum of quasi-polynomials according to § 25.

The theorem is now proved. O

Remark 1. If f = eMpi(t), then there exists a particular solution of Eq. (3)
of the form ¢ = t"eMqi(t).

Indeed, by Lemma 2 there exists a particular solution in the form of a
quasi-polynomial of degree less than k + v; but the terms of degree less than
v satisfy the homogeneous equation (cf. the corollary of Sect. 2), so that they
can be discarded.

Remark 2. Suppose Eq. (3) 1s real. If the X are real, then the solution can be
sought in the form of a real quasi-polynomial, while if A = a % iw, the solution
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can be sought in the form e*'(p(t) coswt+q(t) sinwt). Here the sine can appear
in the solution even in the case when only cosines appear on the right-hand
side.

Problem 1. In what form can one write particular solutions of the following 13
equations:

1,2) ite =t 3,4) dta=et 5,6) dtae=te
7.8) &tz =~Fsint; 9,10) & +a = te' cost;
11, 12) &+ 2z = t*e"sint;  13) 2 4 40 = 1%’ cos t?

6. The Method of Complex Amplitudes

In the case of complex roots it is usually simpler to carry out the computations
as follows.

Suppose Eq. (3) is real and the function f(t) is represented as the real
part of a complex-valued function f(t) = Re F(t). Let ¢ be a complex-valued
solution of the equation «(D)® = F. Then, taking the real part, we verify
that a(D)p = f, where ¢ = Re & (since « = Rea).

Thus to find the solutions of a linear inhomogeneous equation with right-
hand side f, it suffices to regard f as the real part of a complez-valued function
F, solve the equation with right-hand side F, and take the real part of the
solution.

Ezample 1. Let f(t) = coswt = Ree'™!. The degree of the quasi-polynomial
F(t) = ™! is 0, so that a solution can be sought in the form Ct”e'**, where C
is a complex constant (called the complex amplitude) and v is the multiplicity
of the root iw. Finally
¢(t) = Re (Ct*e™).
If C = re', then
o(t) = rt” cos(wt + ).

Thus the complex amplitude C contains information about both the amplitude
(r) and the phase (8) of the real solution.

Ezample 2. Consider the behavior of the pendulum (Fig. 184) (or any other
linear oscillating system, for example a loaded spring or an electrical oscillator)
under the action of an external periodic force:

& +w?e = f(t), f(t)=cosvt=Ree".

The characteristic equation A2 + w? = 0 has roots A = fiw. If 1?2 # w?,
then a particular solution should be sought in the form & = C'e*”!. Substituting
into the equation, we find

C=——079 (4)
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The quantity C can be written in trigonometric form: C = 'r(u)eio(”).

NN

Fig.184. A system oscillating under the action of the external force f(t) = coswvt

According to formula (4) the amplitude r and the phase 8 have the values
indicated in Fig. 185%%. The real part of @ is r cos(vt + ). Thus the general
solution of the inhomogeneous equation has the form

x = rcos(vt + 6) + C cos(wt + 6,).

Consequently the oscillation of the pendulum under the influence of an
external force consists of the “forced oscillation” r cos(vt + 6) with the same
frequency as the external force and the “free oscillation” with the natural fre-
quency w.

! w v I w v

Fig.185. The amplitude and phase of a {rictionless pendulum as a function of the
frequency of the external force

The dependence of the amplitude r of the forced oscillation on the fre-
quency of the external force v has a characteristic resonance form: the closer
the frequency of the external force is to the natural frequency w, the more

_strongly it rocks the system.

This phenomenon of resonance, which is observed when the frequency of
the external force coincides with the natural frequency of an oscillating system,
has great importance in applications. For example, in designing all kinds of
devices it is necessary to take care that the natural frequency of the device not
be close to the frequency of the external forces it will undergo. Otherwise even
a small force, acting over an extended period of time, can rock the system and
destroy it.

26 The grounds for choosing ¢ = —m (not +7) for v > w are shown by Example 3
below.
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Fig.186. The sum of two harmonics with frequencies close to each other (beats)
and its limit in the case of resonance (reinforcement)

The phase of the forced oscillations € has a jump of —w when v crosses
the resonance value w. For v close to w “beats” are observed (Fig. 186): the
amplitude of the oscillations of the pendulum alternately increases (when the
relation between the phases of the pendulum and the external force is such
that the external force reinforces the pendulum, adding energy to it) and
decreases (when the relation changes in such a way that the external force
slows down the pendulum).

The closer the frequencies v and w are to each other the more slowly the
relation between the phases, and « fortior: the period of the beats, changes.
As v — w the period of the beats tends to infinity.

In the case of resonance (v = w) the relation of the phases is constant and
the forced oscillations can grow to infinity (Fig. 186).

Indeed, by the general rule when v = w we seek a solution of the form
¢ = ReCte**. Substituting into the equation, we find C' = 1/(2iw), whence

= 5= sinwt (Fig. 186). The forced oscillations grow without bound.

Ezample 3. Consider the pendulum with friction # + ki + w?z = f(t). The
characteristic equation A2 4+ k) + w? = 0 has the following roots (Fig. 187):

r -6 4
T
I @ v 7 v
Fig. 187. The eigenvalues of the equa- Fig.188. The amplitude and phase of
tion of the pendulum with friction the forced oscillation of a pendulum

with friction as a function of the fre-
quency of the external force

. k k?
A2 = —a =482, where a = 5 and 2 = {/w? — T Let us assume that the
coefficient of friction k is positive and small (k% < 4w?). Consider a harmonic
external force f(t) = cosvt = Ree*”!. If the coefficient of friction k is nonzero,
then iv cannot be a root of the characteristic equation (since Ay » have nonzero
real parts). Therefore the solution must be sought in the form = = Re C'e™*.
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Substituting into the equation, we find

1
= 5 5
¢ w? — v? + kiv (3)
Let us write C in trigonometric form: C' = re'®. The graphs showing the
dependence of the amplitude r and the phase 8 on the frequency of the external
force have, according to (5), the form depicted in Fig. 188.

privi=w?-vi+kiv

Fig. 189. The values of the characteristic polynomial on the imaginary axis

These graphs are constructed as follows. Consider the denominator of the
fraction (), i.e., the value of the characteristic polynomial p on the imaginary
axis. The image of the mapping v — p(iv) = w? —v2+kiv is called a Mikhailov
curve. It can be seen from (5) that this curve (for our equation), is the parabola
depicted in Fig. 189. In the case when the friction is small the parabola is
“close” to a ray of the real axis traversed twice.

It is now easy to construct the image of the mapping v — C(v) = 1/p(iv).
This curve is called the emplitude-phase characteristic. To construct it, it suf-
fices to perform an inversion and reflection in the real axis with the Mikhailov
curve. The portion of the Mikhailov curve near the origin is almost indistin-
guishable from a pair of line segments and corresponds to neighborhoods of
the points w and —w of the v-axis with radii of order k. Under the inversion
lines become circles, and so the amplitude-phase characteristic contains two
parts that approximate large circles (of diameter 1/(kw)) (Fig. 190). On the
v-axis these circles correspond to small neighborhoods (with radius of order
k) of the resonance values w and —w: the rest of the v-axis corresponds to the
crossbar connecting the circles and the terminal arcs.

Having thus studied the mapping v — C(v), we can now easily study the
dependence of the absolute value and argument of the complex amplitude C
on v: their graphs are shown in Fig. 188.

The general solution of the inhomogeneous equation, 1.e.,

x = rcos(vt + 0) + Cre™* cos(2t + 6;),

is obtained by adding the general solution of homogeneous equation (i.e.,
Cre™* cos(2t + 61)) to a particular solution of the inhomogeneous equation.
As t — +oo this term tends to 0, so that only the forced oscillation
z = rcos(vt 4 6) remains.
Let us compare the behavior of the pendulum with the coefficient of fric-
tion zero (Fig. 185) and positive (Fig. 188).
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InC

Fig. 190. The dependence of the complex amplitude on the frequency of the external
force

We see that the influence of a smeall friction on the resonance prevents
the amplitude of the oscillations from becoming infinite under resonance and
causes it to increase only to a definite finite value inversely proportional to
the coefficient of friction.

Indeed, the function r(v) expressing the dependence of the amplitude
of the steady-state oscillations on the frequency of the external force has a
sharply defined maximum near v = w (Fig. 188). It can be seen from formula
(5) that the height of this maximum increases like 1/(kw) as k decreases.

From the “physical” point of view the finiteness of the amplitude of the
steady-state forced oscillations when the coefficient of friction is nonzero is
easy to predict by calculating the energy balance. With large amplitudes the
energy lost to friction is larger than the energy communicated to the pendulum
by the external force. Therefore the amplitude will decrease until a mode
becomes established in which the loss of energy to friction is balanced by
the work of the external force. The size of the amplitude of the steady-state
oscillations increases in inverse proportion to the coefficient of friction as the
latter tends to zero.

The shift in the phase 8 is always negative: the forced oscillation lags
behind the impelling force.

Problem 1. Prove that every solution of an inhomogeneous linear system of equa-
tions with constant coefficients and right-hand side in the form of a quasi-polynomial

with vector coefficients
_ At k
= € Cpat
1 k

is a sum of quasi-polynomials with vector coefficients.

Problem 2. Prove that every solution of an inhomogeneous linear recursive equation
with right-hand side in the form of a sum of quasi-polynomials

Tp +a1Tper o0 kZaok = f(n)

is a sum of quasi-polynomials. Find a formula for the general term of the sequence
0,2,7,18,41, 88, ... (zn = 2zn_1 +n).
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7. Application to the Calculation of Weakly Nonlinear
Oscillations

In studying the dependence of the solution of the equation on the parameters
it is necessary to solve inhomogeneous linear equations — the equations of
variations (cf. § 3). In particular, if the “unperturbed” system is linear, the
problem often reduces to solving linear equations with the right-hand side
in the form of a sum of exponentials (or trigonometric functions) or quasi-
polynomials.

Problem 1. Study the dependence of the period of oscillation of a pendulum de-
scribed by the equation & = — sin@ on the amplitude A, regarding this last quantity
as small.

Answer. T = 271'(1 + 442/16 + O(A“ ).

For example, with an angle of deviation of 30° the period is 2% larger than the
period for small oscillations.

Solution. Consider the solution of the pendulum equation with initial condition
2(0) = A, #(0) = 0 as a function of A.

By the theorem on differentiable dependence of the solution on the initial condi-
tions this function is smooth. Let us expand it in a Taylor series in A about A = 0:

@ = Axi(t) + Aea(t) + A2a(t) + O(AY).

Then
&= A" + A%ds 4+ A%ds + O(AY),
&= Ady + A3 + A%F5 4+ 0(AY),
sine = Az; + A%2a + ‘43(3?3 — nr?/()‘) + O(A4).
The equation & = —sin@ holds for any A. From this we find equations for x,, =z,
and x3:
f.L“l = —21, i;z = =22, .’.1173 = —{3 + ZL‘?/() (6)
The initial condition 2(0) = 4, #(0) = 0 holds for any A. From this we find

initial conditions for Eq. (6):
.’7:1(0)2 1, .’L’Q(O):1‘3(0)2.1"1(0)3?1?3(0):.”&3(0)20. (7)

Solving Eq. (6) with conditions (7), we find 21 = cost, 23 = 0, and for a3, we obtain
the equation )

&3 + a3 = (cos1)/6, w3(0) = #3(0) = 0.

Solving this equation (say by the method of complex amplitudes), we find
23 = a(cost — cos 3t) + Bisint,

where a = 1/192 and 3 = 1/16.
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Thus the influence of the nonlinearity (sinz # 2) on the oscillations of the
pendulum reduces®” to the addition of a term A3z3 + O(A"):

= Acost + Aa[a(cost — cos 3t) + SBtsint] + O(A4).

The period of oscillation T is found as the maximum point for 2(¢) near 2= for
small A. This point is found from the condition 2(T') = 0, i.e.,

A{=sint + A*[(8 — a)sinT + 3asin 3T + BT cos T] + O(A®)} = 0.

Let us solve this equation approximately for small A. We set T = 27 4 «. For u we
obtain the equation

sinu = A*[27 + O(u)] + O(A®).

By the implicit function theorem u = 278A*4+0(A3),i.e., T = 2m(14+A%/16+0(A%)).
Since T is an even function of A, we see that o(A%) = O(A*).

Problem 2. Study the dependence of the period of oscillation on the amplitude A
for the equation
F+wlz+ar?+b02® =0.

Answer.

=2 [1 + ( o4’ i)A? +o(‘43‘)}.
w

12wt Sw?

Problem 8. Obtain the same results from the explicit formula for the period (§ 12,
Sect. 7).

§ 27. Nonautonomous Linear Equations

The portion of the theory of linear equations that is independent of translation-
invariance carries over easily to linear equations and systems with nonconstant
coefficients.

1. Definition

The equation
z=A(t)z, z€ R", A(t):R"— R", (1)

271t is useful here to recall the bucket with a hole (cf. the caution in § 7, Sect. 5):
the occurrence of the “secular” term ¢sint in the formula for x3 does not imply
anything about the behavior of the pendulum as t — oo. Our approximation is
good only on a finite interval of time; for large ¢ the term O(A*) becomes large.
And indeed, the true solution of the equation for the oscillations of a pendulum
remains bounded (by the quantity A) for all ¢, as can be seen from the law of
conservation of energy.



242 Chapter 3. Linear Systems

where t belongs to an interval I of the real axis, will be called a linear (ho-
mogeneous) equation with variable coefficients®®.

The solutions of Eq. (1) are depicted geometrically by integral curves in
the strip I x R™ of the extended phase space (Fig. 191). As usual, we shall
assume that the function A4(¢) is smooth??.

Ezample 1. Consider the pendulum equation # = —w?z. The frequency w is
determined by the length of the pendulum. The oscillations of a pendulum of
variable length are described by the analogous equation # = —w?(¢)z. This
equation may be written in the form (1):

i = 2, (0 1
{m; Ctye,, A= <~w2(t) o)'

An example of a pendulum of variable length is provided by a swing: by
varying the position of the center of gravity a person on a swing can cause a
periodic change in the value of the parameter w (Fig. 192).
1
R

N\ |
7

Fig.191. The integral curves of a lin- Fig.192. A swing

ear equation

If

>
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7

2. The Existence of Solutions

One solution of Eq. (1) can be seen immediately: the zero solution. By the
general theorems of Chapt. 2, for any initial conditions (¢, #o) in I X R™ there
exists a solution defined in some neighborhood of the point . For a nonlinear
equation it may be impossible to extend this solution to the entire interval I
(Fig. 193). A peculiarity of linear equations is that the solution cannot go to
infinity in a finite time.

Theorem. Every solution of Eq. (1) can be extended to the entire interval.

28 We assume that the coefficients are real-valued. The complex case is completely
analogous.
2°Tt would suffice to assume that the function A(t) is continuous (cf. below, Sect. 6

of § 32).
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t
Fig. 193. A solution of the equation & = 2” that cannot be extended

The reason is that for a linear equation

2] < Cll=,

and so the solution grows no faster than ¢C*.

A precise proof can be carried out, for example, as follows. Let [a, b] be a compact
interval in I. Then on the interval [a,b] the norm3® of the operator A(t) is bounded:

A < ¢ = C(a,b).

We shall prove the following a priori estimate:
If a solution @ is defined on the interval [to,t] (a < 1o <t < b) (Fig. 194), then

eIl < e“ =l (to)]]. (2)
For the zero solution this is obvious. If ¢ (o) # 0, then by the uniqueness theorem
@(7) does not vanish amywhere. Let us set #(1) = [|¢(7)||. The function L(7) = Inr?

is defined for to < 7. < t.

By hypothesis L < 2r#/r® < 2C. Therefore L(t) < L(to) + 2C(t — to), which
proves the a priori estimate (2).

Now suppose ||@g||* = B > 0. Consider a compact subset of the extended phase
space (Fig. 195)

F={te:a<t<b |lz|° <2Be -],

By the extension theorem the solution with initial condition ¢(to) = o can be
extended forward to the boundary of the cylinder F. The boundary of the cylinder
F consists of the top and bottom (¢t = a, t = b) and the lateral surface (|jz||* =
2Be*?=2)) The solution cannot exit through the lateral surface since, by the a
priori estimate, ||¢(t)|] < Be*“*~*. Thus the solution can be continued to the
right to ¢t = b. The proof of the extension to the left to a is similar.

Since @ and b are arbitrary, the theorem is proved.

r
¢
/ t
'R P o ¢ g
Fig.194. The a priori estimate of the Fig.195. The extension of the solu-
growth of the solution on [a,b] tiontot =15

30 . . . .
We are assuming that some Euclidean metric has been chosen in R™.



244 Chapter 3. Linear Systems

3. The Vector Space of Solutions

Consider the set X of all solutions of Eq. (1) that are defined on the entire
interval J. Since a solution is a mapping ¢ : I — R"™ with values in the
vector phase space R", solutions can be added and multiplied by scalars:

(c1p1 + c2902)(t) = c1901 () + cap2(2).

Theorem. The set X of all solutions of Eq. (1) defined on the interval I 1s a
vector Space.

Proof. This is obvious:

d . .
5(01901 +cap2) = c191 + 292 = crApr + caAps = A(c1p1 + c202).

Theorem. The vector space X of solutions of a linear equation is isomorphic
to the phase space R™ of the equation.

Proof. Let t € I. Consider the mapping
B : X = R", Bip=(t),

which assigns to each solution ¢ its value at the instant ¢.

The mapping By is linear (since the value of the sum of two solutions is
the sum of their values). Its image is the entire phase space R", since by the
existence theorem, for every g € R™ there exists a solution ¢ with the initial
condition ¢(ty) = @¢. The kernel of the mapping B; is o since the solution
with zero initial condition ¢(t9) = o is identically zero by the uniqueness
theorem.

Thus By is an somorphism of X onto R"™. This is the fundamental result
of the theory of linear equations.

Definition. A fundamental system of solutions of Eq. (1) is a basis of the
vector space X of solutions.

Problem 1. Find a fundamental system of solutions of Eq. (1), where
L /0 1
a=(2 )
The following propositions are consequences of the theorem just proved.

Corollary 1. Eq. (1) has a fundamental system of n solutions @y,...,@q.

Corollary 2. Every solution of Eq. (1) is a linear combination of the solutions
of a fundamental system.
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Corollary 3. Any set of n + 1 solutions of Eq. (1) is linearly dependent.

Corollary 4. The mappings over the time from ty to t; corresponding to Eq.
(1) (Fig. 196)
gii = B, B;;' : R" — R"

are linear isomorphisms.

R" R
t
(ér.%\!?
) % 7

Fig. 196. The linear transformation of the phase space that is realized by the solu-
tions of a linear equation over the time from o to ¢;

4. The Wronskian Determinant

Let ey,..., e, be a basis in the phase space R™. The choice of a basis fixes
a unit of volume and an orientation in R"™. Therefore every parallelepiped in
the phase space has a definite volume.

Consider a system of n vector-valued functions ¢ : I — R", (k =
1,...,n).

Definition. The Wronskian of the system of vector-valued functions ¢ is the
numerical function W : I — R whose value at the point ¢ equals the (oriented)
volume of the parallelepiped spanned by the vectors ¢;(¢),...,px(t) € R,

where

(Pk(t) = (Pk,l(t)el + -+ ‘79k,n(t)en~

In particular, let ¢} be solutions of Eq. (1). Their images in the isomor-
phism B; constructed above are vectors of the phase space ¢ (t) € R™. They
are linearly independent if and only if the Wronskian equals 0 at the point t.
Hence:

Corollary 5. 4 system of solutions ¢y,...,p, of Eq. (1) is fundamental if
and only if its Wronskian 1s nonzero at some point t.



246 Chapter 3. Linear Systems

Corollary 6. If the Wronskian of a system of solutions of Eq. (1) vanishes
at one point, then it vanishes identically for all t.

Problem 1. Can the Wronskian of a system of linearly independent vector-valued
functions vanish identically?

Answer. Yes.

Problem 2. Prove that the Wronskian of a system of fundamental solutions is
proportional to the determinant of the transformation over the time from to to #;:

W(t) = (det g;l )W (to).
Hint. The solution is given in Sect. G.

5. The Case of a Single Equation
We consider a single nth-order equation
:L'(") + al.’v("~1) +otapr = 0 (3)

with, in general, variable coefficients ap = ar(t), t € I.

Some second-order equations with variable coeflicients are encountered so fre-
quently that they have special names and their solutions have been studied and
tabulated in as much detail as the sine and cosine (cf., for example, Jahnke, Emde,
and Losch Tables of Functions, McGraw-Hill, New York, 1960).

2
Ezample 1. Bessel’s equation: & + %i-, + (1 — %) 2 =0.

Ezample 2. The hypergeometric equation of Gauss:

(oz+,8+1)t—’y.)+ af

-1 t(t—l)‘r:O‘

T+

Ezample 3. The Mathieu equation: & + (a + bcost)z = 0.

We could have written Eq. (3) as a system of n first-order equations and
applied the previous reasoning.

It is possible, however, to study the solution space X of Eq. (3) directly. It
is a vector space of functions o : I — R. It is naturally isomorphic to the solu-
tion space of the equivalent system of n equations. The isomorphism is given by
assigning to the function ¢ the vector-valued function @ = (¢,¢,...," ")
of derivatives of ¢. Thus:
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Corollary 7. The solution space X of Eq. (3) s isomorphic to the phase
space R™ of Eq. (3), an isomorphism being given by assigning to each solution
@ € X the set of values of the derivatives at some point ty:

@ = ((to), $(to), ..., " (ty)).

Definition. A basis of the vector space X is called a fundamental system of
solutions of Eq. (3).

Problem 1. Exhibit a fundamental system of solutions of Eq. (3) in the case when
the coefficients ar are constant. (For example, for & + a2z = 0.)

Answer. {t"e*}, where 0 < » < v, if ) is a root of the characteristic equation of
multiplicity v. In the case of complex roots (A = a & iw) the factor e*' must be
replaced by e’ coswt and e*'sinwt. In particular, for & + ax =0

coswt and sinwt if @ =w? > 0;
coshat and sinhat or ¢* and ¢™*" if « = —a® < 0;
1 and t if a=0.

Definition. The Wronskian of the system of functions @ : [ — R, 1 < k < n,
is the numerical function W : I — R whose value at the point ¢ equals

e1(t) o pall)
W(t) = o1(t) o @al(t)
. .(1;1 n ( t ) ....... LP%"“ 1.).( t)

In other words it is the Wronskian of the system of vector-valued functions
pr : I — R"™ obtained from ¢} in the usual way:

ek = (pr(®), @x(®), ... @)), k=1,...,n.

Everything that was said about the Wronskian of a system of vector-valued
solutions of Eq. (1) carries over without change to the Wronskian of a system
of solutions of Eq. (3). In particular, we have the following proposition.

Corollary 8. If the Wronskian of a system of solutions of Eq. (3) vanishes
at even one point, then it vanishes identically for all t.

Problem 2. Suppose the Wronskian of two functions vanishes at the point t5. Does
it follow that it vanishes identically?

Answer. No, unless the functions are analytic.
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Corollary 9. If the Wronskian of a system of solutions of Eq. (3) vanishes
at even one point, then these solutions are linearly dependent.

Problem 3. Suppose the Wronskian of two functions is identically zero. Does it
follow that these functions are linearly dependent?

Corollary 10. A system of n solutions of Eq. (3) is fundamental if and only
if their Wronskian is nonzero at at least one point.

Ezample 4. Consider the system of functions e*?, ..., e**. These functions
form a fundamental system of solutions of a linear equation of the form (3)
(which one?). Therefore they are linearly independent. Hence their Wronskian
is nonzero. But this determinant is

ettt ernt 1 1
W = )‘le/\lt ce )\11,5/\"t — e(/\1+"'+)\n)t A s An
NIRRT R R

1 1
)\l : A n
/\gn—l) ....... Xgh‘-’f)

18 nonzero if the A\ are pairwise distinct.

Ezample 5. Consider the pendulum equation # + w?z = 0. A fundamental
system of solutions is: (coswt,sinwt). The Wronskian of this system W =
coswt sin wt
—wsinwt w coswt
flow of the pendulum equation preserves area (cf. § 16, Sect. 4).

= w is constant. This is not surprising, since the phase

Let us now study how the volume of figures in the phase space changes
in the general case under the action of the transformations gf, over the time
from #4 to ¢.

6. Liouville’s Theorem

The Wronskian of the solutions of Eq. (1) is a solution of the differential
equation

W =aW, where a(t)=trA(t) (the trace of A(t)). (4)



§ 27. Nonautonomous Linear Equations 249

Corollary.

‘ a(r)dr
0

W(t) = ef‘ W(to), detgy, = ef'o ) dr, (5)

Indeed Eq. (4) is easy to solve:

dW

t
S =adt, InW —-1InW, =/ a(r)dr.

to

Incidentally it can be seen once again from formula (5) that the Wronskian
of the solutions is either identically zero or does not vanish at any point.

Problem 1. Find the volume of the image of the unit cube 0 < 2; < 1 under the
action of the transformation over unit time of the phase flow of the system

) = 2% — @2 — X3, Ta =1 +as s, &3 =1 — T2 — T3,

Solution. tr A = 2, so that W(t) = ¢*'W(0) = €**.

A short proof of Liouville’s Theorem. If the coefficients are constant,
then Eq. (4) is Liouville’s formula from § 16. “Freezing” the coefficients A(t)
(setting them equal to their values at some instant 7), we verify Eq. (4) for
any 7. 0

A long proof. Consider the linear transformation of the phase space g7t% : R —
R™ (Fig. 197) over the small time interval from 7 to T 4+ A. This transformation
maps the value of each solution ¢ of Eq. (1) at the instant 7 to its value at the
instant 7 4+ A. According to Eq. (1)

Plr+4)=@(r) + A(T)p(r)A + o(4),

ie., gTT2 = E 4 AA(7) + o(A).

T

T+4

Fig. 197. The action of the phase flow on the parallelepiped spanned by a funda-
mental system of solutions

Consequently according to § 16 the coefficient of dilation of volumes under the
transformation g7t# is det ¢7t= = 1 4+ Ae + o(A), where ¢ = tr A.

But W(7) is the volume of the parallelepiped I, spanned by the values of our °
system of solutions at the instant 7. The transformation g7t maps these values
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Fig. 198. The phase flow of an asymptotically stable linear system

into the set of values of the same system of solutions at the instant 7 + A. The
parallelepiped II-4 4 spanned by these new values has volume W(r + A). Thus

W(r+A)= (detg/t*)W(r) =[1+a(r)A + o( Q)W (7),
whence W = «W, which was to be proved. O

Corollary. The Wronskian of a system of solutions of Eq. (3) equals

¢ ay(7T)dr

W(t)=e Jio W (to).

The negative sign appears because in writing Eq. (3) in the form of the
system (1) the term a;2(" ") must be transposed to the right-hand side. The
only nonzero element of the diagonal of the matrix of the resulting system

0 1

—p —aq

is —ay.
Ezample 1. Consider the equation of the swing & + f(¢)x = 0.

Theorem. The equilibrium position v = & = 0 cannot be asymptotically stable
for any f.

Proof. Consider some basis £, 7 in the plane of the initial conditions R? (Fig.
198). Stability would mean that ¢i € — o and g{ 7 — o. Then for a suitable
fundamental system W(¢) — 0.

The equation is equivalent to the system

i‘] = T2, ;7:‘2 = —f(t):cl

with matrix _O f (1) . Since tr 4 = 0, it follows that W(¢) = const, contra-
dicting the relation W — 0. a
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Problem 2. Consider the swing with friction & + a(t)# + w?(¢t)2 = 0. Show that
asymptotic stability is impossible if the coefficient of friction is negative (a(t) < 0V?).

Is it true that for a positive coefficient of friction the equilibrium position (0,0)
is always stable?

Remark. The divergence of a vector field v in Euclidean space R™ with Carte-

n
dv;

sian coordinates z; is the function dive = ; e

In particular for a linear vector field v(x) = Awx the divergence is the trace
of the operator A:

div Az = tr A.

The divergence of a vector field determines the rate of dilation of volumes
under the corresponding phase flow.

Let D be the domain of definition of the (not necessarily linear) equation
2 = v(x) in Euclidean space. We denote by D(t) the image of the region D
under the action of the phase flow and by V(¢) the volume of the region D(t).

Problem *3. Prove the following theorem.

Liouville’s Theorem.

A%
(dIt = /divvdm (Fig. 199).

D(t)

Corollary 1. If divv = 0, then the phase flow preserves the volume of any
region.

Such a phase flow can be pictured as the flow of an incompressible “phase
I
fluid” in the pha,se space.

Corollary 2. The phase flow of the Hamilton equations
0H 0H

Pr=—7—

s .= =, 7=1,...,7'Ir
o0 T g ’

preserves volumes.

2H 9’H
P . di = - = 0.
roof. divw Z B30idpe ~ Dpidas 0 ]

This fact plays a fundamental role in statistical physics.

7. Sturm’s Theorems on the Zeros of Solutions of Second-order
Equations

The solutions of second-order linear equations possess certain peculiar oscilla-
tion properties. Sturm spoke of “the theorems whose names I have the honor
to bear.”
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Fig.199. The phase flow of a vector Fig. 200. The solutions of the equa-
field of divergence 0 preserves areas tion # £ w’z =0

Consider the equations with constant coefficients (Fig. 200):
F4+wle=0, iF—k2z=0.

The solutions of the first equation have infinitely many zeros. The distance
between two successive zeros of any nonzero solution of this equation is 7 /w.
Each nonzero solution of the second equation has at most one zero. In both
cases between any two zeros of a solution that is not identically zero there is
a zero of any other solution.

Sturm’s theorems show that analogous phenomena hold for the equations
with variable coefficients

F4+q(t)a=0 (6)

(the more general equation & + p(t)@ + ¢(¢)a = 0 is easily reduced to the form
(6)).

Consider the phase plane for Eq. (6) with coordinates (2, y = ). The
phase curves of a nonautonomous equation may intersect. Nevertheless it is
possible to obtain some information about these curves for a second-order
equation. This information is the basis of Sturm’s theorem.

Proposition 1. The phase curves of Eq. (6) intersect the ray x =0, y > 0
in points where v is increasing and the ray v = 0, y < 0 in points where  is
decreasing.

Proof. Write Eq. (6) in the form of a system

r=y, y=—qt).

On the line x = 0 the phase velocity vector has the component (y,0) for any
g (Fig. 201), which proves Prop. 1. O
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4
1=

z
N
Fig. 201. The phase plane of the equa- Fig. 202. Proof of the theorem on ze-
tion & 4+ ¢(t)z =0 ros

/ ty %

We remark that for y # 0 the phase velocity vector is nonzero on the axis
x = 0. Therefore the zeros of any (not identically zero) solution of Eq. (1) are
isolated and on any segment of the t-axis there are only finitely many such
ZETOS.

The following proposition is an immediate consequence of Prop. 1.

Proposition 2. For any two successive intersections of a phase curve with
the line x = 0 one occurs with y > 0, the other with y < 0.

We denote by ¢ the polar angle measured from the positive direction of
the y-axis in the direction of the positive z-axis. The following result is a
consequence of Prop. 2.

Proposition 3. Between any two successive intersections of a phase curve
with the azis ¢ = 0 the quantity ¢ increases by 7 along the phase curve.

The following result is an obvious consequence of this proposition.

Theorem. On the interval between two successive zeros of any solution of Eq.
(1) there is a zero of any other solution.

Proof. Consider the polar angle ¢ along the two solutions (Fig. 202), ¢ = a(t),
@ = B(t). Suppose the zeros of the first solution correspond to ¢t = ¢; and t = t,.
Assume that for the first solution we have y > 0 for ¢t = t; (if such is not the case,
reverse the sign of the first solution). Then we may assume a(t1) = 0. By Prop. 3 we
have a(t2) = m. We may assume that 0 < 3(#1) < m (if such is not the case, reverse
the sign of the second solution).

If the solutions are linearly dependent, their zeros coincide and there is nothing
to prove. If they are linearly independent, then the vectors corresponding to them in
the phase plane are also linearly independent at each instant of time. Consequently,
in this case we have 3(t) # «(t) for all ¢.

Thus B(t1) < 7 = a(tz) < B(t2). Consequently on the interval [{1,t2] there exists
ts for which 3(t3) = m; this is a zero of the second solution. ]

A second consideration that lies at the basis of Sturm’s theorems is that
the angular velocity of the motion of a phase point of Eq. (6) about the origin
can be computed explicitly.
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Proposition 4. Denote by ¢ the rate of variation of the polar angle ¢ during
a motion of the phase point (2(t),y(t)) of Eq. (1). Then the value of ¢ is the
same for all vectors (x,y) that are collinear with the given one and is equal to

. _a(t)2® +y?
T2 4y?

Proof. If r is the radius-vector of the phase point, then the double of the
angular momentum per unit mass is [r,7] and also equal to —r% (the plane
is oriented by the coordinates (z,y), but the angle ¢ is measured from the
y-axis toward the z-axis). Therefore

T )
N L% D e
PETTE T T
which was to be proved. O

It follows from Prop. 4 that at equal values of the polar angle ¢ # km the
larger the coefficient q in the equation, the faster the radius-vector of a phase
point revolves.

The following result is an easy consequence of this fact.

The Sturm Comparison Theorem. Consider two equations of the form
(6)
E+q(t)e=0, &+Q(t)x=0,

and assume that Q > q. Then on the interval between any two successive zeros
of any solution of the first equation (the one with the smaller coefficient q)
there 1s a zero of any solution of the second equation.

Proof. Assume to begin with that @ is strictly larger than ¢ for all t. Denote by
¢ = aft) the polar angle along the first solution and by ¢ = A(t) the polar angle
along the second solution. As above, we may assume that a(t1) =0, a(t2) = 7, and
0 < A(t1) < m. At the initial instant {1 we have A(t1) > a(t1). Subsequently, for
t1 <t <ty A(t) will remain larger than a(t). Indeed, if the function a overtook
A for the first time at some instant 7, then at that instant the values of o and A
would be the same and would be different from kn. But then at the instant when «
overtook A the radius-vector of the overtaking point would be revolving more slowly
(A(7) > é&(7) according to Prop. 4, since > ¢) and there could be no overtaking.
Thus A(t2) > a(t:) = 7. But A(t1) < 7. Hence there exists an instant ¢z € [t1, 2]
where A(t3) = m. This is a zero of the second solution.

In the case @ > ¢ the proof is obtained by a limiting passage from the case
Q>q. m)

Corollary. The distance between any two successive zeros of Eq. (6)
a) 1s not larger than m/w if ¢(t) > w? for all t,
b) is not less than 7/ if q(t) < 02?2 for all t.
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In particular, if ¢(t) < 0 for all t, then no solution of Eq. (6) except the
1dentically zero solution can have two zeros.

Proof. a) Suppose an interval of length 7/w can be inserted strictly between
two successive zeros. For each interval of length 7 /w one can choose a solution
of the equation # +w?x = 0 whose zeros will be the endpoints of this interval.
On this interval the solution of Eq. (6), which has coefficient ¢ not less than
w?, will have no zeros.

This contradicts the comparison theorem. Hence it is impossible to insert
an interval of length m/w between the zeros of a solution of Eq. (6).

b) The proof is similar, using a comparison with the equation &4 2%z = 0.

]

The study of the characteristic oscillations of solid media (a clamped
string) leads to the following Sturm-Liouwville problem.

Find the solutions of the equation

&+ (q(t) + Nz =0, (7)

that vanish at the endpoints of a given interval 0 <t < 1.

" The values of the spectral parameter A at which such solutions (not iden-
tically zero) exist are called the eigenvelues and the solutions themselves are
called eigenfunctions.

Problem 1. Find the eigenfunctions and eigenvalues in the case ¢ = 0.

Answer. The eigenfunctions are sin v Ait (I'ig. 203), and the eigenvalues are A =
kz/\l, /\1 = (ﬂ'/l)"

S

Fig. 203. The characteristic oscillations of a string

Solution. & + Az = 0, 2(0) = 2(l) = 0 = A > 0 = & = acos VN + bsin VAl
2(0)=0=a=0= VN =kr =\ =, (x/])*.

Theorem. For any function ¢ that is smooth on the interval [0,1] the Sturm-
Liouville problem has an infinite set of eigenvalues; the corresponding eigen-
functions may have an arbitrarily large number of zeros on the interval.

Proof. Consider the solution of Eq. (7) with initial condition 2(0) = 0, #(0) =
1. We denote by ¢ = «(t, \) the value of the polar angle along the phase curve
for this equation; let «(0, A) = 0. The function « is continuous. Consider the
value afl,\) as a function of A\. As A\ — +oo the quantity a(l, ) tends to
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infinity. Indeed, suppose ¢+ A > w?. If w is sufficiently large, then the interval
7 /w will fit into the interval [0,(] an arbitrarily large number of times, say k
times. Thus the number of zeros of the solution of the equation on this interval
with A this large will be at least & (by the comparison theorem). Consequently
a(l,A) > 7k (Prop. 3). Thus a(l,A) — oo as A — +oo. Hence there exists
an infinite set of eigenvalues Ay for which a(¢, \x) = 7k. The theorem is now
proved. O

Problem 2. Prove that klim Me/R = (/1.
Problem 3. Extend these results to equations of the form

(pz) +qx =0, p(t)>0 Vi

Hint. Consider the phase plane (z,v), where y = pa.

§ 28. Linear Equations with Periodic Coefficients

The theory of linear equations with periodic coefficients explains how to rock
a swing and why the upper, usually unstable, equilibrium position of a pen-
dulum becomes stable if the point of suspension of the pendulum is making
sufficiently rapid oscillations in the vertical direction.

1. The Mapping over a Period
Consider the differential equation

z=uv(t,e), v(t+T,z)=v(t,z), = R" (1)
whose right-hand side is a periodic function of time (Fig. 204).

Ezample 1. The motion of a pendulum with periodically varying parameters
(for example, the motion of a swing) is described by a system of equations of
the form (1):

T =2, Fg=-—wit)ry; wt+T)=uw(t). (2)

We shall assume that all the solutions of Eq. (1) can be extended indefi-
nitely: this is known to be the case for the linear equations in which we are
especially interested.

The periodicity of the right-hand side of the equation manifests itself in
the special properties of the phase flow of Eq. (1).
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x=¢(1)

U
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Fig. 204. The extended phase space of an equation with periodic coefficients

Lemma 1. The transformation of the phase space over the time from t, to
ta, t.e., gff : R® — R" remains unchanged when both the quantities t; and t;
are simultaneously increased by the period T' of the right-hand side of Eq. (1).

Proof. We must prove that the translate ¥(t) = ¢(t + T') of the solution ¢(t)
by the time T is a solution. But translating the extended phase space by T
along the time axis maps the direction field of Eq. (1) into itself (Fig. 205).
Therefore an integral curve of Eq. (1), when shifted by T, is tangent to the
direction field at each point, and consequently remains an integral curve.

Thus, gffig = gff, which was to be proved. O
Rn
[ T t

Fig.205. The monodromy mapping

Consider in particular the transformation gf realized by the phase flow
over the time of one period T'. This transformation will play an important role
in what follows; we shall call it the transformation over time T and denote it

(Fig. 205) by
A=gl:R" - R"
Ezample 2. For the systems
Ty =9, Lo =21 and I =a;, T = —2Ty,
which can be considered to be periodic with any period T, the mapping A is

a rotation for the first system and a hyperbolic rotation for the second.

Lemma 2. The transformations gi7 form a group gi7 = A™. Moreover
nT+s _ s . nT
90 = %90 -
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Proof. According to Lemma 1 we have gﬁ%"“ = g¢3. Therefore ggT+s _
93?“96” = 93957 Setting s = T, we find génﬂ)T = AgdT, whence by
induction ¢g77 = A"

The lemma is now proved. 0

To each property of the solutions of Eq. (1) corresponds an analogous
property of the mapping A over a period.

Theorem. 1) The point @y 1s a fized point of the mapping A (Axy = xy) if
and only if the solution with initial condstion x(0) = xo s periodic with period
T.

2) A periodic solution x(t) 18 Lyapunov-stable (resp. asymptotically stable)
if and only if the fized point xo of the mapping A is Lyapunov stable (resp.
asymptotically stable)3'.

3) If the system (1) is linear, i.e., v(t,&) = V(t)x is a linear function of
x, then the mapping A is linear.

4) If, in addition, the trace of the linear operator V(t) is zero, then the
mapping A preserves volumes: det A = 1.

Proof. Assertions 1) and 2) follow from the relation gl +* = g3 A and the fact
that the solution depends continuously on the initial conditions on the interval
[0,T.

Assertion 3) follows from the fact that the sum of two solutions of a linear
system is again a solution.

Assertion 4) follows from Liouville’s theorem. O

2. Stability Conditions

We shall now apply the theorem just proved to the mapping A of the phase
plane of x1 and @, into itself corresponding to the system (2). Since the system
(2) is linear and the trace of the matrix on the right-hand side is zero, we obtain
the following result.

Corollary. The mapping A is linear and preserves areas (det A =1). A nec-
essary and sufficient condition for the zero solution of the system of equations
(2) to be stable 1s that the mapping A be stable.

Problem 1. Prove that a rotation of the plane is a stable mapping and a hyperbolic
rotation is unstable.

We shall now study in more detail the area-preserving linear mappings of
a plane into itself.

31 A fixed point @y of the mapping A is called Lyapunov stable (vesp. asymptotically
stuble) if for every € > 0 there exists § > 0 such that | — xo| < & implies |[A"@ —
A"zo| < ¢ for all n, 0 < n < oo simultaneously (resp. and also A"@ — A"y — 0
as n — oo.
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Theorem. Let A be the matriz of an area-preserving linear transformation of
o plane into itself (det A =1). Then the mapping A is stable if |tr A| < 2 and
unstable if |tr A| > 2.

Proof. Let Ay and Aa be the eigenvalues of A. They satisfy the characteristic
equation A2 — tr AN + 1 = 0 with real coefficients Ay + Ay = tr A and Ay =
det A = 1. The roots A\; and Ay of this real quadratic equation are real for
[tr 4] > 2 and complex conjugates of each other if [tr A| < 2 (Fig. 206). In
the first case one of the eigenvalues is larger than 1 in absolute value and the
other is smaller; the mapping 4 is a hyperbolic rotation and is unstable. In
the second case the eigenvalues lie on the unit circle:

1 = )\1)\2 - /\1:\—1 == 1)\1|2.

The mapping A is equivalent to a rotation through the angle a (where Ay 3 =
e'*) i.e., becomes a rotation under a suitable choice of a Euclidean structure
on the plane (why?). Thus it is stable.

The theorem is now proved. O
trd»2 tr A<z A
A1\7 Az o
g 0 1
Az

Fig. 206. The eigenvalues of a monodromy

Thus the whole question of the stability of the zero solution of the system
(2) has been reduced to computing the trace of the matrix A. Unfortunately
this trace can be computed explicitly only in special cases. It can always be
found approximately by numerical integration of the equation on the interval
0 <t < T. In the important case when w(#) is nearly constant some simple
general considerations are of use.

3. Strongly Stable Systems

Consider a linear system (1) with a two-dimensional phase space (i.e., with
n = 2). Such a system is called Hamiltonian if the divergence of v is zero. For
Hamiltonian systems, as shown above, the phase flow preserves area: det A =
1.

Definition. The zero solution of a linear Hamiltonian system is strongly stable
if it is stable and the zero solution of any nearby linear Hamiltonian system
is also stable.
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The following result is a consequence of the two preceding theorems.
Corollary. If |tr A| < 2, then the zero solution is strongly stable.

For if |tr A| < 2, then the condition |tr A’| < 2 also holds for the mapping
A' corresponding to a sufficiently near system.

Let us apply this to a system with nearly constant coefficients. Consider,
for example, the equation

i =—w(a+ea(t)z, <1, (3)
where a(t + 27) = a(t), for example a(t) = cost (the pendulum whose fre-
quency oscillates about w with a small amplitude and period 2 )32,

We shall represent each system (3) by a point in the plane of the parame-
ters ¢ and w (Fig. 207). Obviously the stable systems with |tr A] < 2 form an
open set in the (w,¢)-plane, as do the unstable systems with |tr 4] > 2.

The boundary of stability is given by the equation |tr A| = 2.

&

Nojco

Fig. 207. The region of instability under parametric resonance

Theorem. All points of the w-azis except those with integer and half-integer
coordinates, w = k/2, k = 0,1,2,..., correspond to strongly stable systems

(3).

Thus the set of unstable systems can approach the w-axis only at the
points w = k/2. In other words, a swing can be started oscillating by small
periodic changes in length only in the case when one period of the length
change is close to an integer number of half-periods of the natural oscillations
— a result familiar to everyone from experience.

The proof of the theorem just stated is based on the fact that when ¢ = 0,
Eq. (3) has constant coefficients and can be solved explicitly.

Problem 1. For the system (3) with ¢ = 0 compute the matrix of the transformation
A over the period T' = 27 in the basis (a,2).

Solution. The general solution is
z = (') coswt + (' sin wt.

321n the case a(t) = cost Eq. (3) is called a Mathieu equation.
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The particular solution with initial condition v =1, 2 =0 is
r =coswt, &= —wsinwt.
The particular solution with initial condition 2 =0, 2 =1 is

z = (sinwt)/w, & = coswt.

Answer A__( cos 2w sin?nw/w)

—wsin2mw  cos2mw

Therefore |tr A| = |2cos2wn| < 2ifw # k/2, k = 0,1,..., and the theorem
follows from the preceding corollary.

A closer analysis®® shows that, in general, (and in particular when a(t) =
cost) near the points w = k/2, k = 1,2,..., the region of instability (shaded
in Fig. 207) actually does approach the w-axis.

Thus when certain relations hold between the frequency of variation of the
parameters and the natural frequency of the swing (w =~ k/2, k = 1,2,...),
the lower equilibrium position of an ideal swing (3) is unstable, and it begins
to oscillate under an arbitrarily small periodic variation in its length.

This phenomenon is known as parametric resonance. The characteristic
property of parametric resonance is that it manifests itself most strongly in
the case when the frequency of variation of the parameters v (in Eq. (3) the
frequency v equals 1) is twice the natural frequency w.

Remark. Parametric resonance is theoretically observed for an infinite set of
ratiosw/v & k/2,k =1,2,... . In practice we usually observe only those cases
when k is small (k = 1,2 and rarely 3). What is happening is that

a) for large k the region of instability approaches the w-axis by a narrow
tongue and very rigid bounds are obtained for the resonance frequency ( ~ ¢*
for a(t) = cost in (3)).

b) the instability itself is expressed only weakly for large k, since the
quantity |tr A| — 2 is small and the eigenvalues are close to 1 for large k;

c) an arbitrarily small amount of friction leads to a minimum value e of
the amplitude which is required in order for parametric resonance to occur:
for smaller € the oscillations die out. As k increases, the quantity ¢ increases
rapidly (Fig. 208).

We remark also that for Eq. (3) the quantity x increases without bound
in the unstable case. In real systems the oscillations attain only a finite ampli-
tude, since for large @ the linearity of Eq. (3) itself ceases to hold and nonlinear
effects must be taken into account.

330f., for example, Problem 1 of Sect. 4, which is explained below.
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€4

Fig. 208. The influence of a small amount of friction on the region of instability

4. Computations

Problem 1. Find the form of the regions of stability in the (¢,w)-plane for the
system described by the equation

=—f(t)x, f(t+2m)= f(1), (4)
w+e for0<t<m, .
{w~5 form <t < 2m, ¢<L

@

f(@)

Solution. It follows from the solution of the preceding problem (Prob. 1 of Sect. 3)
that A = A, Ay, where

c Sk Wi .
A = k B/ , Cp = COSTwp, &p =siN7Tw, wiz =wLe.
—Wg Sk C

Therefore the boundary of the zone of stability has the equation
]tl‘ AI = |2(?1C2 - (wl/wg + W'_)/wl )S]Sgl = 2. (5)

Since ¢ € 1, we have wy fws = (w +¢)/(w —¢) = 1.

We introduce the notation wy /wa + wa/wi = 2(1 + A). Then, as one can easily
compute, A = 2¢%/w? + 0(54) & 1. Using the relations 2¢;¢2 = cos 2mwe + cos 27w,
25182 = cos 2me — cos 27w, we rewrite Eq. (5) in the form

—Acos2me + (24 A)cos2mw = £2
or

cos2mw = (2 + Acos2me) /(2 + A4), (61)
cos2mw = (=2 + Acos2me)/(2 4+ A). (62)

In the first case cos2mw & 1. Therefore we set w =k + a, |a| € 1; cos 27w =
cos2ma = 1 — 27%a® + O(a*). We rewrite Eq. (61) in the form cos2mw = 1 —
-2—%(1 — cos2me) or 27%a” 4+ O(a*) = Arne® + O(e*). Substituting the value
A= (22 fw?) +0(c"), we find @ = +e*/w? + o(c?), e, w = k2 /k* + o(c?) (Fig.
209).

Eq. (62) can be solved similarly; the result is

w=sx+c/(mrrx)+olc), >x=k+1/2.
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Fig. 209. The region of instability for Eq. (4)

Problem 2. Can the usually unstable upper equilibrium point of a pendulum be-
come stable if the point of suspension oscillates in the vertical direction?

Solution. Suppose the length of the pendulum is [, the amplitude of the oscillations
of the point of suspension is @ € [, and the period of oscillation of the point of
suspension is 27‘, where in the course of each half-period the acceleration of the
point of suspension is constant and equal to £c (then ¢ = 8a/7?). It turns out
that for sufficiently rapid oscillations of the point of suspension (7 <« 1) the upper
equlhbuum pomt becomes stable. The equation of motion can_ be wntten in the
form # = (w? 4+ a*)a (the sign reverses after time 1), where w? = g/, o® = c/l

If the oscillations of the point of suspension are sufficiently rapid, then o? > w?

(a? = 8af(IT?)).

In analogy with the preceding problem, we have A = A2 A;, where

A = ( coshkr %71 sinhk'r) ’ Ay = ( cos 21 27 sin .Q‘r) '

ksinh kbt coshkr —{2sin 27 cos 21

k2=a'2+w2, 2° =" — W
The condition for stability |tr A| < 2 therefore has the form
|2 cosh krcos 27 + (k/2 — £2/k)sinh k7sin 27] < 2. (7

We shall show that this condition holds for sufficiently rapid oscillations of the point
of suspension, i.e., when ¢ > g. We introduce the dimensionless variables ¢ and pu
given by
efl= <1, gle=p" < 1.
Then k7 = 226 /1 + p2, 27 =22e /1 — p2, k[ 2 = [k = 2u* + O(u*).

Therefore the following expansions are valid up to o(e* + u*) for small ¢ and u:
coshkr =1+4e’(1+p*) + 26 /34 -+, cosr=1—4e"(1—p°)+8"*/3 4+,
(k)2 = 2/k)sinh kT sin 27 = 16°1> + - +-

Thus the stability condition (7) assumes the form
2(1 — 166 + 16¢*/3 + 8% +---) + 1667 1* < 2.

Ignoring higher-order infinitesimals, we find (2/3)16¢* > 32u¢® or u < ¢/V/3, or
g/c < af(3l). This condition can be rewritten in the form N > /3/32wl/a =~

0.3wl/a, where N = 1/(27) is the number of oscillations of the point of suspension in
unit time. For example, if the length of the pendulum [ is 20 cm and the amplitude

of the oscillations of the point of suspension @ equals 1 cm, then N > 0.314/980/20-
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20 =~ 43 (oscillations per second). In particular the upper equilibrium position is
stable if the point of suspension makes more than 50 oscillations per second.

§ 29. Variation of Constants

In studying equations close to the “unperturbed” equations already stud-
ied the following device is frequently useful. Let ¢ be a first integral of the
“unperturbed” equation. Then ¢ will no longer be a first integral for nearby
“perturbed” equations. However, it is often possible to find out (precisely or
approximately) how the values ¢(¢(¢)) change with time, where ¢ is a solu-
tion of the “perturbed” equation. In particular, if the original equation is a
homogeneous linear equation and the perturbed equation is inhomogeneous,
this device leads to an explicit formula for the solution. Moreover, because the
equation is linear, the perturbation is not required to be “small.”

1. The Simplest Case
Consider the simplest linear inhomogeneous equation
z=f(t), € R" tel, (1)
corresponding to the simplest homogeneous equation
T = o. (2)

Equation (1) can be solved by quadrature:

o(t) = olto) + / Fr)dr. (3)

2. The General Case
Consider the linear inhomogeneous equation
x=A(t)z + h(t), e R", tel, (4)
corresponding to the homogeneous equation
& = A(t)x. (5)

Assume that we know how to solve the homogeneous equation (5) and @ =
®(t) is a solution of it. Let us take the initial conditions ¢ = @(tg) as the
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Fig.210. The coordinates of the point ¢ are first integrals of the homogeneous
equation

coordinates (¢,t) that rectify the integral curves of Eq. (5) in the extended
phase space (Fig. 210).

In the new coordinates Eq. (5) assumes the very simple form (2). The
passage to rectifying coordinates is carried out by a transformation that is
linear in @. Therefore in the new coordinates the inhomogeneous equation (4)
assumes the very simple form (1), and we can solve it.

3. Computations
We shall seek the solution of the inhomogeneous equation (4) in the form
p(t) =g'e(t), c¢:I— R", (6)

where g' : R® — R" is the linear operator of transformation over the time
from ty to t for the homogeneous equation (5).
Differentiating on t, we find

Y =3d'ct+gié¢ =Ag'c+g'c = Ap + ¢'c.

Substituting into Eq. (4), we find ¢*¢é = h(t). Thus we have proved the fol-
lowing result.

Theorem. Formula (6) gives the solution of Eq. (4) if and only if ¢ satisfies
the equation ¢ = f(t), where f(t) = (¢*) 1 h(?).

This last equation has the very simple form (1). Applying formula (3), we
obtain the following proposition.

Corollary. The solution of the inhomogeneous equation (4) with the initial
condition ¢(tg) = ¢ has the form

p(t) = g’(c + /

to

t

(97) " h(rydr).

Remark. In coordinate form the theorem just proved can be stated as follows:
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In order to solve the linear inhomogeneous equation (4) knowing a fun-
damental system of solutions of the homogeneous equation (5), it suffices to
substitute a linear combination of the solutions of a fundamental system into
the inhomogeneous equation, regarding the coefficients as unknown functions
of time. The very simple equation (1) is then obtained for determining these
coefficients.

Problem 1. Sclve the equation & 4+ = f(¢).
Solution. We form the homogeneous system of two equations:
T) =29 To = —a5.
A fundamental system of solutions of this system is known:
(#1 =cost, @2 = —sint); (a3 =sint, @2 = cost).
By the general rule we seek a solution in the form
2y = c1(t)cost + ca(t)sint, a2 = —c1(t)sint + ca(t) cost.
To determine ¢; and c¢» we obtain the system
¢icost+éasint =0, —¢érsint+ éacost = f(t).

Consequently
¢y = —f(t)sint, ¢é2 = f(t)cost.

Answer. 2(t) = [ar(O) —/ f(r)sin‘r(lr] cost + [.1':(0) +/ f(r)cosTdr|sint.
0 0



Chapter 4. Proofs of the Main Theorems

In this chapter we prove theorems on the existence, uniqueness, continuity,
and differentiability of solutions of ordinary differential equations, and also
‘theorems on the rectification of a vector field and a direction field.

The proofs also contain a method for constructing approximate solutions.

§ 30. Contraction Mappings

The method studied below for finding a fixed point of a mapping of a metric
space into itself is applied subsequently to construct solutions of differential
equations.

1. Definition

Let A: M — M be a mapping of a metric space M (with metric p) into itself.
The mapping M is called a contraction if there exists a constant A, 0 < A < 1,
such that

p(Az, Ay) < Ap(z,y) Vz,y € M. (1

FEzample 1. Let A : R — R be a real-valued function of a real variable (Fig. 211). If
the derivative of A is merely less than 1 in absolute value, the mapping A may fail
to be a contraction; but it is a contraction if |[A'| < A < 1.

Fzample 2. Let A : R® — R"™ be a linear operator. If all the eigenvalues of A
lie strictly inside the unit disk, then there exists a Euclidean metric (a Lyapunov

. function, cf. § 22) on K™ such that A is a contraction.

Problem 1. Which of the following mappings of the real line (with the usual metric)
into itself is a contraction?

1) y=sinz; 2) /22 +1; 3) arctanz.

Problem 2. Can the sign < in inequality (1) be replaced by <?
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Ax &

_

X

Fig.211. The fixed point of a contraction mapping

2. The Contraction Mapping Theorem

A point z € M is called a fized point of a mapping A: M — M if Az = z.

Let A: M — M be a contraction mapping of a complete metric space M
wnto itself. Then A has one and only one fized point. For any point z in M
the sequence of images of the point © under applications of A (Fig. 212)

z, Az, A%z, Az, ...

converges to the fized point.

Proof. Let p(z, Az) = d. Then
p(A™z, A™Mz) < \"d.

o0
The series Z A" converges. Therefore the sequence A"z, =0,1,2,..., is
n=0
a Cauchy sequence. The space M is complete. Therefore the following limit
exists: X = lim A"z.
n—oo
We shall show that X is a fixed point of A. We remark that every con-
traction mapping is continuous (one can take § = ¢). Therefore
AX = A lim A"z = lim A"z = X.

n—oo n—oo

We shall show that every fixed point Y coincides with X. Indeed
p(X,Y) = p(AX,AY) < Xp(X|Y), A<1=p(X,Y)=0.

O
Ax Alx
X d Ad 2
X./._Z‘d\'qu
:
1 4
A A x
Fig.212. The sequence of images of Fig. 213. An estimate of the accuracy
the point « under iteration of the con- of the approximation of = to the fixed

traction mapping A point X
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3. Remark

The points z, Az, A%z,... are called successive approzimations to X. Let z
be an approximation to the fixed point X of a contraction mapping A. The
accuracy of this approximation is easily estimated in terms of the distance
between the points z and Az:

d
<
(@, X) < 7=

ford+Ad+Nd+ = T (Fig. 213).

8 31. Proof of the Theorems on Existence and
Continuous Dependence on the Initial Conditions

In this section we construct a contraction mapping of a complete metric space
whose fixed point defines the solution of a given differential equation.

1. The Successive Approximations of Picard

Consider the differential equation @ = v(t, ), defined by the vector field v in
some domain of the extended phase space R™*! (Fig. 214).

We define the Picard mapping to be the mapping A that takes the function
@ :t — x to the function Ay : t — @, where

(Ap)(t) = 2o + / o(r, p(7)) dr.

to

L g {f"s’)
§§ X }zzzfz ﬂ(y)
% t ¥
Fig.214. An integral curve of the e- Fig.215. The Picard mapping A

quation & = v(¢, )

Geometrically, passing from ¢ to Ae (Fig. 215) means constructing with
respect to a curve (¢) a new curve (A¢p) whose tangent for each ¢ is parallel to
a given direction field, only not on the curve (A¢p) itself — for then Ay would
be a solution — but at the corresponding point of the curve (¢). We have

@ 18 a solution
with the initial condition & (¢ = Ap).
p(te) = xo
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Motivated by the contraction mapping theorem, we consider the sequence
of Picard approzimations ¢, Ap, A%, ... (starting, say, with ¢ = xo).

t
Ezample 1. & = f(t) (Fig. 216). (Ap)(t) = 2o +/ f(r)dr. In this case the first
to

step already leads to the exact solution.

Ezample 2. & =z, to = 0 (Fig. 217). The convergence of the approximations in this
case can be observed directly. At the point ¢

p=1,
t
0

t
A2<p=a+/ (1+7)dr=1+41t+1/2,
0

At =14t+t*/2+ - +1t"/n!,
lim A%p = €'

n—oo

X ’aef 2¢) (A?)

¥ PITTRTTIET AT

= 0~ g
7 =33 .
p— N >~
,,{);@%W vy e
Z = % ST e (4l sy
1 = § Q - Al P
4 t
Fig.216. The Picard approximation Fig.217. The Picard approximation
for the equation 2 = f(¢) for the equation z = =

Remark 1. Thus the two definitions of the exponential

t\n t2
1) e’ = lim (1+—) v Del=14tt gt
correspond to two methods of approximating the solutions of the the very
simple differential equation & = z: the broken line method of Euler, and
the method of successive approximations of Picard. Historically the original
definition of the exponential was simple:

3) €' is the solution of the equation & = z with initial condition z(0) = 1.

Remark 2. Similarly one can prove that the approximations converge for the
equation ¢ = kz. The reason for the convergence of the successive approxi-
mations in the general case is that the equation # = kz is the “worst case”:
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- the successive approximations for any equation converge at least as fast as for
some equation of the form z = kz.

To prove convergence of the successive approximations we shall construct
a complete metric space in which the Picard mapping is a contraction. We
begin by recalling some facts from analysis.

2. Preliminary Estimates

1) The norm. We shall denote the norm of the vector « in the Euclidean space
R"™ by |&| = y/(2,x). The space R" with the metric p(2,y) = |z — y| is a
complete metric space.

We note two important inequalities: the triangle inequality

|z +y| < || + |y|
and the Schwarz inequality!

(2, y)| < || |yl-

2) The vector-valued integral. Let f :[a,b] — R™ be a vector-valued function
with values in R", continuous on [a, b]. The vector-valued integral

b
I:/ f(t)dt € R
is defined in the usual way (using integral sums).

Lemma.

[ rwal<| [iswral 1)

Proof. Compare the integral sums using the triangle inequality: I > f(ti)AiI <
ST F(:)]]A:l, which was to be proved. a

3) The norm of a linear operator. Let A : R™ — R™ be a linear operator
from one Euclidean space into another. We shall denote its norm by |A| =
Ax
sup I—————l Then
zER™\o |:13|

! We recall the proofs of these inequalities. We pass a two-dimensional plane through
the vectors @ and y of Euclidean space. This plane inherits the Euclidean struc-
ture from R™. On the Euclidean plane both of these inequalities are known from
elementary geometry. They are thereby proved for any Euclidean space as well,
for example in R™. In particular we have proved without any calculation that

n 9 n n b 2 b b
\Zx;y; < Em?zy?, and / fgdt] < / f? dt/ g’ dt.
i=1 i=1 i=1 o a a
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|A+ B| < |Al+|B|, |AB|<|A||B|. (2)
The set of linear operators from R™ to R™ becomes a complete metric

space if we set p(A, B) = |A — B|.

3. The Lipschitz Condition

Let A : My — M, be a mapping of the metric space M; (with metric p;) into
the metric space My (with metric p;), and let L be a positive real number.

Definition. The mapping A satisfies a Lipschitz condition with constant L
(written A € Lip L) if it increases the distance between any two points of M,
by a factor of at most L (Fig. 218):

p2(A‘7"7Ay) < Lpl(x7y) va /S M.

The mapping A satisfies a Lipschitz condition if there exists a constant L
such that A € Lip L.

A
x Ax v f
] A & G X
T
14 Ay L
x Rm R"
Fig. 218. The Lipschitz condition p; < Fig.219. The derivative of the map-

Lp ping f

Problem 1. Do the following mappings satisfy a Lipschitz condition? (The metric
is always the Euclidean metric.)

1) y=2*, 2€R; 2)y=va, 2>0; 3) y=+/a?+a}, (21,22) € R
8 y=aT-a, d2ah 5= {2 IS

6) y=2>, 2€C, |z| <1

Problem 2. Prove that

contraction = Lipschitz condition = conlinuity.

4. Differentiability and the Lipschitz Condition

Let f : U — R" be a smooth mapping (of class C", » > 1) of the domain U of
the Euclidean space R™ into the Euclidean space R™ (Fig. 219). The tangent
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space to the Euclidean space at each point has its own natural Euclidean
structure. Therefore the derivative of f at a point ® € U C R™

f*z . T;.,Rm - Tf(z)Rn

is a linear operator from one Euclidean space into another. The following
theorem is obvious.

Theorem. A continuously differentiable mapping f satisfies a Lipschitz con-
dition on each conver compact subset V of the domain U with constant L equal
to the supremum of the derivative f on V:

L = sup | fazl-
zeV

Proof. Join the points & and y € V with a line segment (Fig. 220): 2(t) =
z +t(y —x), 0 <t < 1. By the Barrow formula

1)~ f@) = [ GO = [ fumirdr

From formulas (1) and (2) of Sect. 2 and from the fact that z = y — @, we
have

1 1
}/0 f*,(r)i(r)dr‘g/ Lly —e|dr = Ly - 2|,
0

which was to be proved. O

Rm

Fig. 220. Continuous differentiability implies a Lipschitz condition

Remark. The supremum of the norm of the derivative |fi| on V is attained.
Indeed, by hypothesis f € C, and so the derivative f, is continuous. Conse-
quently |f.| attains a maximum value L on the compact set V.

In approaching the proof of the convergence of the Picard approximations,
we study them in a small neighborhood of a single point. To describe this
neighborhood we use the following four numbers.

5. The Quantities C, L, a', b’

Let the right-hand side v of the differential equation
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z=v(t,x) 3)

be defined and differentiable (of class C", r > 1) in a domain U of the extended
phase space: U C R! x R". We fix a Euclidean structure in R", and hence
also in T, R".

Consider any point (to, zo) € U (Fig. 221). The cylinder

C={t,x: [t—to| <a, |x—xo| < b}

lies in the domain U for sufficiently small @ and b. We denote by C and L the
suprema of the quantities |v| and |v,| on this cylinder?. These suprema are
attained, since the cylinder is compact: |v| < C, |v,| < L.

Consider the cone K, with vertex (tg, ), aperture C, and height a':

Ko={t,x: |t—to] <d', |z—x] <C|t —1t,]}.

If the number @’ is sufficiently small, this cone K lies inside the cylinder €.
If the numbers @' > 0 and b > 0 are sufficiently small, then the cylinder €
also contains every cone K, obtained from Ky by a parallel translation of the
vertex to the point (tg, ), where |& — zo| < V.

We shall assume that a’' and b’ are chosen so small that K, C €. The
solution ¢ of Eq. (3) with initial condition ¢(t5) = @ will be sought in the
form ¢(t) = = + h(t,z) (Fig. 222).

The corresponding integral curve lies inside the cone K.

A

Fig. 221. The cylinder € and the cone Fig. 222. The definition of h(t, )
Ko

6. The Metric Space M

Consider the set of all continuous mappings h of the cylinder |z — zo| < ¥,
|t — to| < a' into the Euclidean space R"™. We denote by M the set of such
mappings that satisfy the additional condition

|h(t,2)| < CJt - to] (4)

(in particular, h(ty,z = 0)).
We introduce a metric p in M by setting

% Here and below the asterisk denotes the derivative (with respect to &) for fixed ¢.
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p(hi, he) = ||hy — ho| = B2 |ha(t, @) — ha(t,z)|.
|t—to]<a’

Theorem. The set M, endowed with the metric p, is a complete metric space.

Proof. A uniformly convergent sequence of continuous functions converges to
a continuous function. If the functions of the sequence satisfied inequality (4),
then the limiting function also satisfies inequality (4) with the same constant
C. 0

We remark that the space M depends on three positive numbers: a', o',

and C.

7. The Contraction Mapping A: M — M

We define a mapping A : M — M by setting®
¢
(Ah)(t, ) = / v(r, 2 + h(r,z)) dr. (5)
to

Because of inequality (4) the point (7, + h(7, &)) belongs to the cone K,
and consequently to the domain of definition of the vector field v.

Theorem. If the quantity o' is sufficiently small, then formula (5) defines a
contraction mapping of the space M into itself.

Proof. 1. We shall show that A maps M into itself. The function Ah is con-
tinuous, since the integral of a continuous function that depends continuously
on a parameter is itself continuously dependent on the parameter and on the
upper limit of integration. The function Ah satisfies inequality (4), since

(Am)t.2) < | / ooy ar < | / cat| < Clt - tol.

Thus AM C M.
2. We shall show that the mapping A 1s a contraction:
”Ahl—Ahgn S/\“hl -—h2”, 0<A<l.

To do this we estimate the value of Ah; — Ah, at the point (¢,x). We have
(Fig. 223)

(Ah] - AhQ)(t,z:) = / (’Ul - 'Ug)dT,

to

3 In comparing this mapping with the Picard mapping of Sect. 1, it should be kept
in mind that we are now seeking a solution in the form & + h.
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by
-hy
x W

Lo

t T

Fig. 223. Comparison of v; and v,

where vi(7) = v(r,& + hi(r,2)), i = 1,2.

According to the theorem of Sect. 4 for a fixed 7 the function v(r,2)
satisfies a Lipschitz condition with constant L (on the second argument).
Therefore

[v1(7) = v2(7)| < Llhy(7,2) — ho(7,2)| < L||h1 — he||.

According to the lemma of Sect. 2
t
(Ahy — Ahy)(t,2)| < ’/ Liks — halldr| < La'|[Ry — hal.
to

For La' < 1 the mapping is a contraction.
The theorem is now proved. O

8. The Existence and Uniqueness Theorem

Corollary. Suppose the right-hand side v of the differential equation (3) is
continuously differentiable in a neighborhood of the point (to, o) of the ez-
tended phase space. Then there i1s a neighborhood of the point ty such that
a solution of Eq. (3) is defined in this neighborhood with the initial condition
¢(te) = ©, where @ 1s any point sufficiently close to @g; moreover this solution
depends continuously on the initial point x.

Proof. The contraction mapping A, according to the theorem of § 30, has a
fixed point h € M. Set g(¢,2) = & + h(t,z). Then

t ag(t,x
sty =+ [ o(rgtrendn Lo —uligi2))
to
We see that g satisfies Eq. (3) for fixed « and for ¢t = t; it satisfies the
initial condition g(t,#o) = ). The function g is continuous, since h € M.
The corollary is now proved. 0

Thus we have proved an existence theorem for Eq. (3) and produced a
solution that depends continuously on the initial conditions.

Problem 1. Prove the uniqueness theorem.
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Solution 1. Set b’ = 0 in the definition of M. From the uniqueness of the fixed
point of the contraction mapping 4 : M — M it follows that the solution (with
initial condition (o) = @o) is unique.

Solution 2. Let o1 and @2 be two solutions with the same initial condition ¢1(ts) =
@2(to) defined for |t — to| < . Let 0 < &’ < a. We set ||| = o nax {p(t)]. We
to}<a’

t—to
have

or(1) — pa(t) = / o(r, @1(r)) = v(r, pa(r)) dr.

For sufficiently small o' the points (7,¢1(7)) and (7, @2(7)) lie inside the cylinder,
where v € Lip L. Therefore [[¢p1 — @2|| < La'l|¢p1 — 2], whence La’ < 1 implies
ll¢1 — 2|l = 0. Thus the solutions ¢1 and @3 coincide in some neighborhood of the
point to.

The local uniqueness theorem is now proved.

9. Other Applications of Contraction Mappings

Problem 1. Prove the inverse function theorem.

Hint. It suffices to invert, in a neighborhood of the point 0 € R", a C'-mapping
whose linear part equals 1, ¥ = & +@(x), where ’(0) = 0 (the general case reduces
to this one by a linear change of coordinates).

We seek the solution in the form @ = y + ¥ (y). Then for 9 we obtain the

equation Y(y) = —p(y + Y(y)).
Consequently the function % being sought is a fixed point of the mapping A

defined by the formula
(AP)(Y) = ~p(y + ¥(¥)).

The mapping A is a contraction (in a suitable metric) because the derivative of the
function ¢ is small in a neighborhood of the point o (by the condition ¢’(0) = 0).

Problem 2. Prove that the Euler broken line tends to a solution as the step size
tends to zero.

Solution. Let ga = @ + ha be the Euler broken line with step A and initial point
ga(t,zo) = & (Fig. 224). In other words, for ¢ # ¢ + kA

Qg_Agﬁl = v(s(t)7gA(s(t)’ il!)),

where s(t) = to + kA, k being the integer part of (¢ —to)/A. The difference between
the Euler broken line and the solution g can be estimated by the formula of Sect. 3
of § 30:

lga —gll = lha —h|| < (1= N)7"|ARs - ha]l.

But

t

(Ahd)(taw):/ 'U(TagA(Tvm))dTv hA(tvm):/ v(s(r)ng(s(T)»w))dT‘

to to
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As A — 0 the difference between the two integrands tends to zero uniformly in 7
for |7| < o' (because of the uniform continuity of v). Therefore ||[Aha — hal| — 0
as A — 0, and the Euler broken line tends to the solution. :

g x1)

4 ] 4 1
fo t7 S(f)f a t

Fig.224. The Euler broken line

Problem *3. Consider a diffeomorphism A of a neighborhood of the point o in
R" onto a neighborhood of the point 0 in R™ that maps 0 to 0. Assume that the
linear part of A at o (i.e., the linear operator Ao : R* — R™) does not have
any eigenvalues of absolute value 1. Let the number of eigenvalues with [A] < 1 be
m_ and let the number with |[A| > 1 be my. Then A.o has an invariant subspace
R™- (an incoming space) and an invariant subspace R™+ (an outgoing space),
whose points tend to 0 under the application of A} as N — 400 (for R™~) or as
N — —oo (for R™+) (Fig. 225).

Prove that the original nonlinear operator A also has invariant submanifolds
M™- and M™% in a neighborhood of the point 0 (incoming and outgoing manifolds)
that are tangent to the subspaces R™- and R™*+ at the point o (ANx — 0 as
N — 400 on M™~ and as N — —oo for x € M™+).

Rm— MITJ_
R™ I
17
M™ k
A*o /4

Fig. 225. The incoming and outgoing invariant manifolds of a diffeomorphism and
of its linear part

Hint. Take any submanifold I of dimension m (say the tangent to R™+ at 0) and
apply powers of A to it. Prove by the contraction method that the approximations
I'nv = AN T so obtained converge to M™+ as N — +oo.

Problem *4. Prove that there exist incoming and outgoing invariant manifolds for
the nonlinear saddle & = v(x), v(0) = o (it is assumed that none of the eigenvalues
of the operator A = v.(0) lies on the imaginary axis).
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§ 32. The Theorem on Differentiability

In this section we shall prove the rectification theorem.

1. The Equation of Variations

Associated with a differentiable mapping f : U — V is a linear operator on
the tangent space at each point

faz 1 T2U = Ty V.
In exactly the same way with a differential equation
z=v(t,e), ze€UCR", (1)

there is associated a system of differential equations

z =uv(t,z), zecUCR" )
y = v*(t,:c)y, yE T:cUa

called the system of equations of variations for Eq. (1) and linear with respect
to the tangent vector y (Fig. 226).

Fig. 226. The solution of the equation of variations with the initial condition (z,y)

The asterisk in formula (2) (and in subsequent formulas) denotes the
derivative with respect to @ for a fixed t. Thus v.(¢, @) is a linear operator
from R" into R".

Along with the system (2) it is convenient to consider the system

¢ =v(tx), zc€cUCR" :i=wvle)z, z:R"— R" (3)

The system (3) is obtained from (2) by replacing the unknown vector y with
the unknown linear operator z. We shall also use the name equation of varia-
tions in reference to the system (3).

Remark. In general given a linear equation
y=At)y, yeR", (2)

it is useful to consider the associated equation
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Z=A(t)z, z:R"—> R", (39

in the linear operator z.
Knowing a solution of one of Egs. (2') and (3'), it is easy to find a solution
of the other (how?).

2. The Differentiability Theorem

Suppose the right-hand side v of Eq. (1) s twice continuously differentiable
in some neighborhood of the point (ty, o). Then the solution g(t,x) of Eq.
(1) with tnitial condition g(ty,x) = @ depends on the initial condition & in a
continuously differentiable manner as © and t vary in some (perhaps smaller)
neighborhood of the point (to, xo):

veC?=gecCl
(it s of class C* in x).

Proof. v € C? = v, € C'. Therefore the system of equations of variations
(3) satisfies the hypotheses of § 31 and the sequence of Picard approximations
converges uniformly to a solution of the system in a sufliciently small neigh-
borhood of the point ;. We choose initial conditions ¢o = @ (sufficiently close
to o), and 9y = E. We denote the Picard approximations by ¢, (for #) and
by ¥, (for z), i.e., we set

‘Pn+1(t7x) =z +/; v(Ta¢n(T9x)> dT? (4)
Ynt1(t,e) =FE —i—/t Vo7, Pn(T, ) )hn(T, @) dr. (5)

We remark that ¢, = to. From the definitions (4) and (5) we con-
clude by induction on n that ¢,41, = ¥,4+1. Therefore the sequence {1}
is the sequence of derivatives of the sequence {¢,}. Both sequences (4) and
(5) converge uniformly (being the sequences of Picard approximations of the
system (3)) for |t — #o| sufficiently small. Thus the sequence {¢,} converges
uniformly along with the derivatives on . Therefore the limiting function
g(t,z) = nli—»n;o @n(t, ) is continuously differentiable with respect to @, which

was to be proved. O
Remark. We have simultaneously proved the following theorem.

Theorem. The derivative g« of a solution of Eq. (1) with respect to the initial
condition x satisfies the equation of variations (3) with the nitial condition

Z(to) =E:

% (tva’) = v(t,g(t,a:)), %9*(t7m) = v*(t,g(t,m))g*(t,w).
g(to,w)zsc, g*(tﬁ’m)=E'
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This theorem explains the meaning of the equations of variations: they
describe the action of the transformation over the time from to to ¢ on the
vectors tangent to the phase space (Fig. 227).

y Gl t)y
X —
9(xt)
f
t ;

Fig. 227. The action of the transformation over the time from #y to t on a curve in
the phase space and on a tangent vector to it

3. Higher Derivatives with Respect to =

Let » > 2 be an integer.

Theorem T.. Suppose the right-hand side v of Eq. (1) i3 r times continuously
differentiable in some neighborhood of the point (to,2¢). Then the solution
g(t, ) of Eq. (1) with initial condition g(to,x) = x i3 r—1 times continuously
differentiable as a function of the initial condition ® when x and t vary in some
(possibly smaller) neighborhood of the point (o, o):

veC = geCr.

Proof. v € C™ = v, € C""1. Hence the system of equations in variations
(3) satisfies the hypotheses of Theorem T,_;. Therefore Theorem Ty, r > 2
follows from Theorem T, _y:

vECT v, eCT g, eCI s ge O

But Theorem 7, was proved in Sect. 2. Thus Theorem T is proved. a

4. Derivatives in ¢ and t

Let r > 2 be an integer.

Theorem T). Under the hypotheses of Theorem T, the solution g(t,2) is a
differentiable function of class CT! in the variables x and t jointly: v € CT =
g € Cr—l'

This theorem is an obvious corollary of the preceding theorem. Here is a
formal proof.

Lemma. Let f be a function (with values in R™) defined on the direct product of
the domain G of the Euclidean space R™ and the interval I of the t-azis:
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f:GxI—- R"

Form the integral
t
F(z,t)= / fle,7)dr, ®€G, [to,t]CI.
to

IffeCyand feC™ ', then FcC.

Indeed, any rth partial derivative of the function F' with respect to the variables
z; and ¢ containing a differentiation with respect to ¢ can be expressed in terms of
f and the partial derivatives of f of order less than r, and is therefore continuous:
and every rth partial derivative with respect to the variables x; is continuous by
hypothesis.

Proof of the theorem. We have

glt,e)==x +/ (v(r,g(r,2))dr.

to
We use the notation f(r,) = v(r,g(r,@)) and apply the lemma. We find that for
I<p<r
gec’inCcL=>gecC’.

According to Theorem T, we have g € Cg for p < r. We obtain successively
geC’ =>geC'=>...2geC™".

But according to § 31 we have g € C° (the solution depends continuously on (z,1)).
Theorem 7} is now proved. a

Problem 1. Prove that if the right-hand side of the differential equation (1)
is infinitely differentiable, then the solution is also an infinitely differentiable
function of the initial conditions:

veEC®=>geC™.

Remark. Tt can also be proved that if the right-hand side v is analytic {can
be expanded in a convergent Taylor series in a neighborhood of each point),
then the solution g is also an analytic function of # and t.

It is natural to regard differential equations with analytic right-hand sides
both as functions of complex-valued unknowns and (what is especially im-
portant) as functions of complex-valued time. For this theory cf., for example,
the book of V. V. Golubev, Vorlesungen iber Differentialgleichungen im Kom-
plezen, Hochschulbiicher fiir Mathematik, Bd. 43, VEB Deutscher Verlag der
Wissenschaften, Berlin, 1958.

5. The Rectification Theorem

This theorem is an obvious corollary of Theorem 7. Before proving it we recall
two simple geometric propositions. Let L; and L, be two subspaces of a third
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vector space L (Fig. 228). The subspaces Ly and L, are called transversal if

their sum is the whole space L: Ly + Ly, = L. For example, a line in R® is
transversal to a plane if it intersects it in a nonzero angle.

Ly

7

Fig. 228. The line L; is transversal to the plane L in the space R®

’
7

Proposition 1. For each k-dimensional subspace R* in R™ there is a subspace
of dimension n — k transversal to it (and in fact there is one among the Ck
coordinate planes of the space R™).

The proof can be found in courses of linear algebra (the theorem on the
rank of a matrix).

Proposition 2. If a linear transformation A : L — M maps some pair of
transversal subspaces into transversal subspaces, then its range 1s all of M.

Proof. AL = AL, + AL, = M.

Proof of the rectification theorem: the nonautonomous case (cf.
Chapt. 2, § 8, Sect. 1). Consider the mapping G of a domain of the direct
product R x R™ into the extended phase space of the equation

& = o(t, @), (1)

given by the formula G(t,z) = (¢,9(t,2)), where g(t,a) is a solution of Eq.
(1) with the initial condition g(¢,2) = @. ,

We shall show that G is a rectifying diffeomorphism in a neighborhood of
the point (g, o).

a) The mapping G is differentiable (of class C"~! if v € C") by Theorem
T!.

b) The mapping G leaves t fized: G(t,z) = (t,g(t,)).

c) The mapping G4 takes the standard vector field e (& = o, t = 1) into
the given field: G.e = (1,v) (since g(¢, ) is a solution of Eq. (1)).

d) The mapping G 1s a diffeomorphism in a neighborhood of the point
(to, a'}()).

Indeed, let us compute the restrictions of the linear operator G|ty .z, to
the transversal planes R™ and R' (Fig. 229). We find:

G*'R":t:to :E, G*IRI:;B:zoe ='U+e.
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The plane R™ and the line with direction vector v + e are transversal.
Thus G, is a linear transformation of R**! onto R"*!, and consequently an
isomorphism (the Jacobian of G, at the point (%o, @) is nonzero). By the
inverse function theorem G is a local diffeomorphism.

The theorem is now proved. O

Gy
n ™
R e
—— e
Fig. 229. The derivative of the map- Fig. 230. The construction of a diffeo-
ping G at the point (¢0,%0) morphism that rectifies a vector field

Proof of the rectification theorem: the autonomous case (§ 7, Sect.
1). Consider the autonomous equation

z=v(z), zeUCR" (6)

Suppose the phase velocity vector vy is nonzero at the point @, (Fig. 230).
Then there exists an (n — 1)-dimensional hyperplane R"™! C R™ passing
through @ and transversal to vy (more precisely, the corresponding plane in
the tangent space T,,U is transversal to the line R! with direction vy).

We define a mapping G of the domain R x R"™1, where R"! = {¢},
R = {t}, into the domain R" by the formula G(¢,€) = g(¢, &), where £ lies in
R™ ! near xq and g(t, £) is the value of the solution of Eq. (6) with the initial
condition ¢(0) = £ at the instant ¢. We shall show that in a sufficiently small
neighborhood of the point (¢ = xy, t = 0) the mapping G is a rectifying
diffeomorphism.

a) The mapping G is differentiable (G € C™~! if v € C™) by Theorem T7.

b) The mapping G~ is rectifying since G, maps the standard vector field
e (£ =o0,1=1)to G,e = v, because g(t, &) satisfies Eq. (6).

¢) The mapping G 1is a local diffeomorphism.

Indeed, let us calculate the linear operator G.li =, on the transversal
planes R"! and R'. We find G,|gn-1 = E, G.|p1e = vo.

Thus the operator G.|¢, =, maps the pair of transversal subspaces R"~!
and R! C R"™ onto a pair of transversal subspaces. Therefore G|t =, is a
linear transformation of R"™ onto R™ and consequently an isomorphism. By
the inverse function theorem G is a local diffeomorphism. The theorem is now
proved. O

Remark. Since the theorem on differentiability is proved with the loss of one
derivative (v € C™ = g € C™™!), we can also guarantee only class C"~1 of
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smoothness for our rectifying diffeomorphisms. In reality the rectifying diffeo-
morphism constructed belongs to C”; the proof is given below.

6. The Last Derivative

In the differentiability theorem (Sect. 2) we assumed the field v was twice
continuously differentiable. In reality it would suffice to have only continuous
first-order derivatives.

Theorem. If the right-hand side v(t, x) of the differential equation & = v(t, )
18 continuously differentiable, then the solution g(t, @) with initial condition
g(to, ) = @ 13 a continvously differentiable function of the initial conditions:

veC = geC,. (7)

Corollaries.
HveCr=geC" forr>1.

2) The rectifying diffeomorphisms constructed in Sect. § are r times con-
tinuously differentiable of v € C7.

The corollaries are deduced from relation (7) by repeating verbatim the
reasoning of Sects. 3, 4, and 5. The proof of relation (7) itself requires some
clever tricks.

Proof of the theorem. We begin with the following remarks.

Lemma 1. The solution of a linear equation y = A(t)y whose right-hand side
depends continuously on t ezists, is unique, is determined uniquely by the initial
conditions p(to) = Yo, and is a continuous function of Yo and t.

Indeed the proof of the existence, uniqueness and continuity theorems (§ 31)
used only the differentiability with respect to & for a fixed ¢ (actually only the
Lipschitz condition on @). Therefore the proof remains valid if the dependence on ¢
is assumed to be merely continuous. The lemma is now proved. O

We remark that the solution is a linear function of yo and a continuously dif-
ferentiable function of ¢, hence belongs to the class C* jointly in Yo and t.

Lemma 2. If the linear transformation A in Lemma 1 also depends on a parameter
o in such a way that the function A(t,a) is continuous, then the solution will be a
continuous function of Yo, t, and a.

Indeed, the solution can be constructed as the limit of a sequence of Picard
approximations. Each approximation depends continuously on o, t, and «. The
sequence of approximations converges uniformly with respect to ¥o, ¢, and a in a
sufficiently small neighborhood of each point (Yo,0,%0,0). Therefore the limit is a
continuous function of Yo, ¢, and a.

Lemma 2 is now proved. O

We now apply Lemma 2 to the equation of variations.
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Lemma 3. The system of equations of variations
z=v(t,x), Y=v.(,2)y

has a solution that is uniquely determined by its initial data and depends continuously
on them provided the field v is of class C*.

Indeed, the first equation of the system has a solution by the existence theorem
of § 31. This solution is uniquely determined by its initial conditions (to,®o) and
depends continuously on these conditions. Let us substitute this solution into the
second equation. We then obtain an equation that is linear in y. Its right-hand side
depends continuously on ¢ and on the initial condition @, (regarded as a parameter)
of the solution of the first equation under consideration. By Lemma 2 this linear
equation has a solution that is determined by its initial data ¥y and is a continuous
function of ¢, Yo and the parameter g

Lemma 3 is now proved. O

Thus the equations of variations are solvable even in the case v € C'. We remark
that in the case v € C* we proved that the derivative of the solution with respect to
the initial data satisfies the equation of variations (3). We cannot assert this now:
in fact we don’t even know whether such a derivative exists.

To prove that the solution is differentiable with respect to the initial conditions
we begin by studying a special case.

Lemma 4. If the vector field v(t,&) of class C* vanishes at the point & = o, for
all t together with its derivative v., then the solution of the equation © = v(t, ) is
differentiable with respect to the initial conditions at the point & = o.

Indeed, by hypothesis |v(¢, )| = o(||) in a neighborhood of the point @ = o.
Let us estimate the error in the approximation & = @y to the solution & = ¢(t)
with the initial condition ¢ (o) = 2o according to the formula of Sect. 3 of § 30. For
sufficiently small |@o| and |t — ¢o| we find

t
/ v(7, &) dT
to

where the constant K is independent of x,.
Thus | — @o| = o(|xo]), from which it follows that ¢ is differentiable with
respect to @ at zero, which was to be proved. O

lp —ao| <(1-N)""

< K max v(r, o),
to <7<t

We now reduce the general case to the special situation of Lemma 4: to do this
it suffices to choose a suitable coordinate system in the extended phase space. First
of all we can always assume that the solution under consideration is zero:

Lemma 5. Suppose & = @(t) is a solution of the equation & = v(t,x) with right-
hand side of class C' defined in a domain of the extended phase space B x R™.
Then there exists a C*-diffeomorphism of the eztended phase space that preserves
time ((t,z) — (t,21(t,2))) and maps the solution p to 1 = 0.

Indeed it suffices to make the shift &, = @ — (1), since p € C'.

Lemma 5 is now proved. O

In the coordinate system (t, 1) the right-hand side of our equation is 0 at the
point &1 = 0. We shall show that the derivative of the right-hand side with respect
to @1 can also be made to vanish using a suitable change of coordinates that is linear
in x.
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Lemma 6. Under the hypotheses of Lemma 5 the coordinates (t,21) can be chosen
so that the equation © = v(t, ) is equivalent to the equation &1 = v1(¢,®1), where
the field v1 equals 0 at the point €1 = 0 along with its derivative 8v1/0x1. Moreover
the function @1(t,&) can be chosen to be linear (but not necessarily homogeneous)
with respect to @. )

According to Lemma 5 we may assume that v;(¢,0) = 0.
To prove Lemma 6 we begin by considering a special case:

Lemma 7. The assertion of Lemma 6 is true for a linear equation & = A(t)x.

Indeed it suffices to take as @; the value of the solution with initial condition
@(t) = = at a fixed instant ¢o. According to Lemma 1 we have ; = B(t)x, where
B(t) : R® — R™ is a linear operator of class C* with respect to ¢. In the coordinates
(t,1) our linear equation assumes the form &; = o.

Lemma 7 is now proved. |

Proof of Lemma 6. We linearize the equation @ = v(t,) at zero, i.e., we form
the equation of variations & = A(t)x, where A(t) = v.(¢,0).

By hypothesis v € C', so that A € C°. By Lemma 7 we can choose C*-
coordinates @7 = B(t) such that in the new coordinates the linearized equation
assumes the form @; = 0. It is easy to verify that in this coordinate system the
right-hand side of the original nonlinear equation will have zero as its linear part.

Indeed, let us introduce the notation v = Az + R, (so that R = o(|z|)) and
z = Cz;y (so that C = B"l). The differential equation for @; is obtained from
& = v by substituting = Cx;. We obtain

0331 +C$1 = ACGB] + R

But by definition of C' the first terms on the left and right (the linear terms in @)
are equal. Thus

ibl = C"IR(t,C:cl) = O(|a:1|)
Lemma 6 is now proved. 0O

Combinirfg Lemmas 6 and 4, we arrive at the following conclusion:

Lemma 8. The solution of the differential equation & = v(t,x) with right-hand
side of class C* depends differentiably on the initial condition. The derivative z of
the solution with respect to the initial condition satisfies the system of equations of
variations

z=v(,x), z=wu(x)z, 2()=F:R"— R".

To prove Lemma 8 it suffices to write the equation in the system of coordinates
of Lemma 6 and apply Lemma 4.

To prove the theorem it remains to verify the continuity of the derivative of the
solution with respect to the initial condition. According to Lemma 8 this derivative
exists and satisfies the system of equations of variations. It follows from Lemma 3
that the solutions of this system depend continuously on @, and ¢.

Hence the theorem is proved. ]



Chapter 5. Differential Equations on
Manifolds

In this chapter we define differentiable manifolds and prove a theorem on the
existence of the phase flow defined by a vector field on a manifold.

Many interesting and profound results have been obtained in the theory
of differential equations on manifolds. There will not be time to discuss these
in the present chapter, which is only a brief introduction to this area at the
junction of analysis and topology.

§ 33. Differentiable Manifolds

The concept of a differentiable or smooth manifold plays a role in geometry
and analysis that is as fundamental as the concepts of group and vector space
in algebra.

1. Examples of Manifolds

Although the definition of a manifold will be given later, the following ob, Jects
for example, are manifolds (Fig. 231):

1. The vector space R™ or any domain (open subset) U of it.

2. The sphere S™ defined in the Euclidean space R"*! by the equation
2?4+ ...+ 22, =1, in particular the circle S*.

3. The torus T? = S* x S! (cf. § 24).

4. The projective space RP™ = {(z¢ : 21 : ... : &,)}. We recall that the
points of this space are the lines passing through the origin in R"*1. Such a
line is determined by any of its points (except the origin). The coordinates
of this point (zy,...,2,) in R™"! are called homogeneous coordinates of the
corresponding point of the projective space.

This last example is particularly instructive. In studying the following
definitions it is useful to keep in mind the affine coordinates in projective
space (cf. Example 3 of Sect. 3 below).

2. Definitions

A differentiable manifold M is a set M together with a differentiable manifold
structure on it.
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Fig. 231. Examples of manifolds

A differentiable manifold structure is introduced on the set M if an atlas
consisting of charts that are consistent is prescribed.

Definition 1. A chart is a domain U C R" together with a one-to-one
mapping ¢ : W — U of a subset W of the manifold M onto U (Fig. 232). We
call ¢(x) the image of the point ¢ € W C M on the chart U.

Counsider the charts (Fig. 233)
(p,':W,'—>U,' and QOJ'ZW]‘—*U]‘.

If the sets W; and W; intersect, then their intersection W; N W; has an
image on both charts: ’

Uij = QO,'(W,' n W])a Uji = ‘PJ(W] n W,)

The transition from one chart to the other is defined by a mapping of subsets
of vector spaces

vij  Uij = Upi,  9i(2) = 9 (07 (2))-

90
¢

Fig.232. A chart Fig. 233. Consistent charts

Definition 2. Two charts ¢; : W; — U; and ¢; : W; — U; are consistent if
1) the sets U;; and Uj; are open (possibly empty);

2) the mappings ¢;; and ¢;; (which are defined if W; N W} is nonempty)
are diffeomorphisms of domains of R".
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Remark. Various classes of manifolds are obtained, depending on the smooth-
ness class of the mappings ¢;;.

If a diffeomorphism is understood to be a diffeomorphism of class C7,
1 < r < oo, then the manifold (which we shall define below) will be called a
differentiable manifold of class C". If we set r = 0, i.e., require only that the
@ij be homeomorphisms, the result is the definition of a topological manifold.
If we require that ¢;; be analytic', we obtain the analytic manifolds.

There are other possibilities as well. For example, if we fix an orientation
in R™ and require that the diffeomorphisms ¢;; preserve the orientation (that
the Jacobian of ¢;; be positive at each point), we obtain the definition of an
oriented manifold.

Definition 3. A collection of charts ¢; : W; — U; is an atlas on M if
1) any two charts are consistent;

2) any point z € M has an image on at least one chart.

Definition 4. Two atlases on M are equivalent if their union is again an atlas
(i.e., if any chart of the first atlas is consistent with any chart of the second).

It is easy to see that Definition 4 really does give an equivalence relation.

Definition 5. A differentiable manifold structure on M is an equivalence class
of atlases.

At this point we note two conditions that are frequently imposed on man-
ifolds to avoid pathology.

1. The Hausdorff condition: Any two points z, y € M have disjoint neigh-
borhoods (Fig. 234). That is, either there exist two charts @; : W; — U; and
@; : W; — U; with W; and W; disjoint and containing = and y respectively,
or there exists a chart in which both z and y have an image.

(204 gty

Fig. 234. The Hausdorff condition

If we do not require the Hausdorff condition, the set obtained from two lines
R = {z} and R = {y} by identifying points with equal negative coordinates = and
y is a manifold. On such a manifold the theorem about the unique continuation of

! A function is analytic if its Taylor series converges to it in a neighborhood of each
point.
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solutions of a differential equation is not true, although the local uniqueness theorem
is true.

1. Second-countability. There exists an atlas of M consisting of at most
countably many charts.

In what follows the word manifold denotes a differentiable manifold that
satisfies the Hausdorff and second-countability conditions.

3. Examples of Atlases

1. The sphere S? defined by the equation z? + 22 + 22 = 1 in R? can be
equipped with an atlas of two charts, for example, in stereographic projection
(Fig. 235). Here

W1=52\N’ Uy :Rf;
Wg:Sz\S, Ug:R%.

Fig. 235. An atlas of the sphere. A family of tangent circles on the sphere passing
through the point N is represented on the lower chart by a family of parallel lines
and on the upper chart by a family of tangent circles

Az
b)) !
wet | h
VT % ;
R
. EU7
\ S actoox
1/’ 1/’ X N \‘ZZ
Fig. 236. An atlas of the torus Fig. 237. Affine charts of the projec-
tive plane

Problem 1. Write down the formulas for the mappings ¢1,2 and verify that our
two charts are consistent.

A differentiable structure on S™ can be defined similarly by an atlas of
two charts.
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422 Z
Z

Fig. 238. The consistency of the charts of the projective plane

%

Fig. 239. An open subset Fig. 240. A compact subset

12

o1

A

Y

2. An atlas of the torus T2 can be constructed using angular coordinates:
latitude ¢ and longitude ¥ (Fig. 236). For example we can consider 4 charts
corresponding to the variation of the angles ¢ and v in the intervals

0<p<2r, —-w<p<m,
0<y <27, —w<YPp <.

3. An atlas of the projective plane RP? can be made from three “affine
charts” (Fig. 237):

T 2 .
o Y1=—, y2=—, if =z #0,
Ve %0 %0
0 2 .
ZTo:iTy i@y LY, zm=—, zp=—, if x,#0,
P2 1 Iy
N To Ty .
wy=—, ug=—, if x2#0.
T2 )

These charts are consistent. For example the consistency of (g and ¢; means
that the mapping o,1 of the domain Uy 1 = {y1,y2 : y1 # 0} of the (y1,y2)-
plane onto the domain Uy o: 21 # 0 of the (21, 22 )-plane given by the formulas
z1 =y7 ', 22 = yoy; " is a diffeomorphism (Fig. 238).

_ -1 -
Proof. yy = 27", yo = 2021 .

Similarly a differentiable structure in the projective space RP™ can be
defined by an atlas of n 4+ 1 affine charts.
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4. Compactness

Definition. A subset G of the manifold M is open if its image (W N G) on
each chart ¢ : W — U is an open subset of the domain U of the vector space
(Fig. 239).

Problem 1. Prove that the intersection of two open subsets and the union of any
number of open subsets of a manifold are open.

Definition. A subset K of the manifold M is compact if every covering of it
by open subsets contains a finite subcovering,.

Problem 2. Prove that the sphere S" is compact. Is the projective space RP™
compact?

Hint. The following theorem can be used for the solution.

Theorem. Suppose a subset F' of a manifold M (Fig. 240) is the union of a
finite number of subsets F;, each of which has a compact image on one of the
charts F; C Wi, @i : Wy — U, t.e., @i(F;) is compact in R™.

Then F' 1s compact.

Proof. Let {G;} be an open covering of the set F. Then {¢;(G; N W;)} is an
open covering of the compact set ¢;( F;) for each ¢. Choose a finite subcovering
of it. Forcing j to range over this finite set of values, we obtain a finite number
of the G that cover F. O

5. Connectedness and Dimension

Definition. A manifold M is connected (Fig. 241) if for any two of its points =
and y there exists a finite chain of charts p; : W; — U; such that W, contains
x, W, contains y, W; N W;,; is nonempty for each ¢, and U; is connected?.

If a manifold M is not connected, it decomposes in a natural way into
connected components M;.

Problem 1. Are the manifolds defined by the following equations connected in R?
(in RP®):
-y =2t =C, C#0?

2 That is, any two points of U; can be joined by a broken line in U; C R".
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Fig.241. A connected manifold M and a disconnected manifold M; U M,

Problem 2. The set of all matrices of order n having nonzero determinant has a

natural differentiable manifold structure (a domain in R"Z). How many connected
components does this manifold have?

Theorem. Let M be a connected manifold and @; : W; — U, its charts. Then
the dimension of the vector space R"™ in which U; is a domain is the same for
all charts.

Proof. This follows from the fact that a diffeomorphism between domains of
vector spaces is possible only when the spaces are of the same dimension, and
the fact that any two domains W; and W; of a connected manifold M can be
joined by a finite chain of pairwise intersecting domains. O

The number n defined in the theorem is called the dimension of the man-
ifold M and is denoted dim M.

For example, dim R" = dim S” = dim 7™ = dim RP" = n.

A disconnected manifold is called n-dimensional if all of its components
have the same dimension n.

Problem 8. Equip the set O(n) of orthogonal matrices of order n with the structure
of a differentiable manifold. Find its connected components and their dimension.

Answer. O(n) = SO(n) x Z,, dim O(n) = n(n - 1)/2.

6. Differentiable Mappings

Definition. A mapping f : M7 — M, of one C"-manifold into another is said
to be differentiable (of class C") if in local coordinates on My and My it is
defined by a differentiable function (of class C").

In other words, let ¢1 : Wi — U; be a chart of M; representing the point @ € W3
and ¢, : W, — U, a chart of M representing the point f(z) € W, (Fig. 242). Then
the mapping of domains of Euclidean spaces ¢z o f o ", which is defined in a
neighborhood of the point ¢;(z), must be differentiable of class C”.
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@ (F()
U

Fig. 242. A differentiable mapping

Fig. 243. Projection of the sphere on the plane yields a closed disk

Ezample 1. The projection of the sphere on the plane (Fig. 243) is a differen-
tiable mapping f : S? — RZ.

We see that the image of a differentiable mapping is not necessarily a
differentiable manifold.

r
fU
R G, A—

I
Fig.244. A curve on a manifold M

Ezample 2. A curve® on the manifold M emanating from the point z € M at
the instant ¢¢ is defined to be a differentiable mapping f : I — M from an
interval I of the real ¢t-axis containing the point t; into the manifold M with

flto) = .

Or a parametrized curve, since curves on M are sometimes defined as one-
dimensional submanifolds of the manifold M (for the definition see Sect. 8 below).
A parametrized curve may have points of self-intersection, cusps, and the like (Fig.
244).
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Ezample 3. A diffeomorphism f : My — M, of the manifold M; onto the
manifold M, is a differentiable mapping f whose inverse f1: M, - My
exists and is differentiable.

Manifolds M; and M are diffeomorphic if there exists a diffeomorphism of
one onto the other. For example, a sphere and an ellipsoid are diffeomorphic.

7. Remark

It is easy to see that every connected one-dimensional manifold is diffeomor-
phic to a circle (if compact) or to the line (if not compact).

Examples of two-dimensional manifolds are the sphere, the torus (diffeo-
morphic to a “sphere with one handle”) and the “sphere with n handles” (Fig.

O -G

Fig. 245. Nondiffeomorphic two-dimensional manifolds

In courses of topology it is proved that every compact connected orientable two-
dimensional manifold is diffeomorphic to a sphere with n > 0 handles. Little is known
about three-dimensional manifolds. For example, it is unknown whether a compact
simply-connected? three-dimensional manifold is diffeomorphic to the sphere $* (the
Poincaré conjecture) or even homeomorphic to it.

In large dimensions the differential and topological classifications of manifolds
diverge. For example there are exactly 28 smooth manifolds homeomorphic to the
sphere 57 but not diffeomorphic to one another. These are called the Milnor spheres.

A-Milnor sphere in C® with the coordinates z1,...,25 can be defined by the
following two equations:

A kB tn A+ =0, |al 4 4lnl =1

For k =1,2,...,28 we obtain the 28 Milnor spheres®. One of these 28 manifolds is
diffeomorphic to the sphere S7.

8. Submanifolds

The sphere in R? defined by the equation 22 + y? 4+ 2% = 1 provides an exam-
ple of a subset of Euclidean space that inherits from it a natural differentiable

* A manifold is simply connected if every closed path in it can be continuously
contracted to a point.

 Cf. E. Brieskorn, “Beispiele zur Differentialtopologie von Singularititen,” Invent.
Math., 2 (1966), 1-14.
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manifold structure — the structure of a submanifold of R3. The general defi-
nition of a submanifold is the following.

Definition. A subset V' of a manifold M (Fig. 246) is a submanifold if each
point z € V has a neighborhood W in M and a chart ¢ : W — U such that
(W nNYV)is a domain of some affine subspace of the affine space R™ in which
U lies.

N
SR
=

Fig. 246. A submanifold

A submanifold V itself has a natural manifold structure W' = WnV, U' =
(W)

The following fundamental fact is presented without proof and will not be
used in what follows.

Theorem. Every manifold M™ is diffeomorphic to a submanifold of a Eu-
clidean space of sufficiently large dimension RN (for ezample, it suffices to
take N > 2n, where n = dim M™ ).

Thus the abstract concept of a manifold actually encompasses a set of
objects no larger than “n-dimensional surfaces in an N-dimensional space.”
The advantage of the abstract approach is that it immediately encompasses
the cases when no imbedding in a Euclidean space is given in advance and
introducing one would only lead to unnecessary complications (for example:
the projective space RP™). The situation here is the same as with finite-
dimensional vector spaces (they are all isomorphic to the coordinate space
{(z1,...,24)}, but introducing coordinates often complicates matters).

9. An Example

In conclusion let us consider five interesting manifolds (Fig. 247).

M, = SO (3) is the group of orthogonal matrices of order three with determinant
+1. Since a matrix has nine elements, M; is a subspace of the space R®. It is easy
to see that this subset is indeed a submanifold.

M, = T157 is the set of unit tangent vectors to the sphere S* in three-
dimensional Euclidean space. The introduction of a differentiable manifold structure
in this set is left to the reader (cf. § 34).

Ms = RP? is three-dimensional projective space.
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S~
4 =

Fig. 247. Examples of three-dimensional manifolds

M,'.S'O(.?)

O,

Mj'{(xog? "’"2""3)}

M, is the configuration space of a rigid body having a fixed point at the origin
0.

Mj is the submanifold of the space R® = BC® defined by the equations 2% +
254+ 22 =0 and {212 + |22 + |z3]% = 2.

Problem * 1. Which of the manifolds M;-M; are diffeomorphic?

§ 34. The Tangent Bundle. Vector Fields on a Manifold

With each smooth manifold M there is associated another manifold (of di-
mension twice as large) called the tangent bundle® of M and denoted TM.
The tangent bundle enables us to carry over immediately to manifolds the
whole theory of ordinary differential equations.

1. The Tangent Space

Let M be a smooth manifold. A tangent vector € to M at the point x is an
equivalence class of curves emanating from z; two curves (Fig. 248)

7]:]——_’M7 72:I—AM

are equivalent if their images on any chart ¢y, : I — U and ¢y, : I — U are
equivalent.

® The tangent bundle is a special case of a vector bundle; a still more general concept
is that of a fibration. All these concepts are fundamental in topology and analysis,
but we limit ourselves to just the tangent bundle, which is especially important
for the theory of ordinary differential equations.
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M
A& .
Z b [
9’;4,2\@” o

Fig. 248. A tangent vector

We remark that the concept of equivalence of curves is independent of the
choice of the chart from the atlas (cf. § 5): equivalence on a chart ¢; implies
equivalence on any other chart ¢}, since the transition mapping ¢;; from one
chart to another is a diffeomorphism.

The set of vectors tangent to M at z has a vector-space structure inde-
pendent of the choice of chart (cf. § 5). This vector space is called the tangent
space to M at x and is denoted T, M. Its dimension equals the dimension of
M.

Ezample 1. Let M™ be a submanifold of an affine space RV (Fig. 249) passing
through z. Then T, M™ can be thought of as an n-dimensional plane in RY
passing through z. In doing this one must remember, however, that the tangent
spaces to M at different points  and y are disjoint: TM NTyM = @.

e

R” X

Fig. 249. The tangent space Fig. 250. The coordinates of a tangent
vector

2. The Tangent Bundle

Consider the union of the tangent spaces to the manifold M at all of its points
TM = éJM T.M.

The set TM has a natural smooth manifold structure.

Indeed, consider a chart on the manifold M, and let (z1,...,z,): W — U C R
(Fig. 250) be local coordinates in a neighborhood W of the point z defining this chart.
Every vector € tangent to M at a point ¢ € W is determined by its set of components
(&1,...,&) in the given coordinate system. To be specific, if v : I — M is a curve
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. . N . d
emanating from z in the direction of £ at the instant to, then & = Zl, zi(v(1))-
=to

Thus every vector £ tangent to M at a point of the domain W is determined by
a set of 2n numbers (z1,...,24), (&,...,€n), the n coordinates of the “point of
attachment” z and the n “components” £;. We have thus obtained a chart of a part
of the set TM:

¥ : TW — R*™, P(&) = (21, .- » T, E15- - €a)-

The different charts for T M corresponding to different charts of the atlas of M
are consistent (of class C”"' if M is of class C"). Indeed, let (y1,...,ya) be another
local coordinate system on M and let (71,...,7,) be the components of the vector
in this system; then

n
Oy .
yi:yi(a:l?"'vx")a = (Taifl (z:l,...,n),
- Zj
j=1
are smooth functions of z; and &;.

Thus the set TM of all tangent vectors to M has received the structure of a
smooth manifold of dimension 2n.

Definition. The manifold TM is called the tangent bundle” of the manifold
M.

There exist natural mappings ¢ : M — TM (the null section) and p :
TM — M (the projection): i(z) is the zero vector of T, M and p(§) is the
point z at which £ is tangent to M (Fig. 251).

Problem 1. Prove that the mappings ¢ and p are differentiable, that ¢ is a diffeo-
morphism of M onto i(M ), and that poi : M — M is the identity transformation.

M,
¥ L \ m H R"

" ™~ lp 0"/5‘

——O— M
X

Fig.251. The tangent bundle Fig. 252. A parallelized and a nonpar-
allelizable manifold

The preimages of the points ¢ € M under the mapping p : TM — M
are called fibers of the bundle TM. Every fiber has the structure of a vector
space. The manifold M is called the base of the bundle T'M.

7 We shall use this abbreviated name instead of the pedantic term space of the
tangent bundle.
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3. A Remark on Parallelizability

The tangent bundle of the affine space R™ or of a domain U of it has an
additional direct-product structure: TU = U x R".

Indeed, a tangent vector to U can be defined by a pair (z,§), where z € U
and £ is the vector of the space R™ for which the linear isomorphism with
T,U is shown (Fig. 252).

This can be otherwise expressed by saying that the affine space is paral-
lelizable: equality is defined for tangent vectors to the domain U at different
points of the space R™.

The tangent bundle of a manifold is by no means necessarily a product
space, and in general it is impossible to give a sensible definition of equality
of vectors attached at different points of a manifold M.

The situation here is the same as with the Mobius band (Fig. 253), which
is a bundle with the circle as base and the line as a fiber, but is not the direct
product of a circle and a line.

Definition. A manifold M is parallelized if a direct product structure has been
introduced in its tangent bundle, i.e., a diffcomorphism TM"™ = M"™ x R"
mapping Ty M linearly to £ x R". A manifold is parallelizable if it can be
parallelized.

i

Fig. 253. A bundle that is not a direct Fig.254. The hedgehog theorem
product

Ezample 1. Any domain in Euclidean space is parallelized in the natural way.

Problem 1. Prove that the torus is parallelizable, but that the Mébius band is not.

Theorem *. The only parallelizable spheres are S*, S, and S7. In particular,
the two-sphere is not parallelizable:

TS? # S* x R,

(It follows from this, for example, that a hedgehog cannot be combed: at
least one quill is perpendicular to the surface (Fig. 254).)

The reader who has solved the problem at the end of § 33 will easily prove
that S? is nonparallelizable (hint: RP? % S2 x S'). A parallelization of the
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circle S! is obvious. It is an instructive exercise to parallelize S* (hint: S is a
group, namely the group of quaternions of unit length). A complete proof of
the theorem just stated requires a rather profound penetration of topology; it
was attained comparatively recently.

Analysts are inclined to regard all bundles as direct products and all man-
ifolds as parallelizable. Care should be taken to avoid this error.

4. The Tangent Mapping

Let f : M — N be a smooth mapping from the manifold M to the manifold
N (Fig. 255). We denote by f., the induced mapping of the tangent spaces. It
is defined as in § 6, and is a linear mapping of one vector space into another:

foz 1 TeM — TyyN.

Fig. 255. The derivative of the mapping f at the point

Let z range over M. The preceding formula defines a mapping
f*:TM_’TNa f*szM:f*l"

of the tangent bundle of M into the tangent bundle of N. This mapping is
differentiable (why?) and maps the fibers of TM linearly into the fibers of TN

(Fig. 256).
™
H j ‘ &

TN
lp1 le

/;\M — /;'?;)\N

Fig. 256. The tangent mapping

The mapping f. is the tangent mapping to f (the notation T'f : TM — TN is
also used).

Problem 1. Let f : M — N and g : N — K be smooth mappingsand gof : M — K
their composition. Prove that (gof)« = (g« )o( fs), i.e., that
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N TN
f g S g
/ N = / N
M ELZA K ™ (go/)e TK

Remark on terminology. In analysis this formula is called the rule for differenti-
ating a composite function; in algebra it is called the (covariant) functorial property
of passing to the tangent mapping.

5. Vector Fields

Let M be a smooth manifold (of class C"*1) and TM its tangent bundle (Fig.
257).

Definition. A wvector field® (of class C”) v on M is a smooth mapping v :
M — TM (of class C") such that the mapping powv : M — M is the identity:
the diagram

™™
v
/
M lp
E
N
M
is commutative, i.e., p(v(z)) = z.
Remark. If M is a domain of the space R™ with coordinates (z1,...,z,), this
definition coincides with the old one (§ 5).
v
V(o) ™
I
™, ep
x M s
Fig. 257. A vector field Fig. 258. A velocity field

No specific coordinate system occurs in the present definition, however.
Ezample. Consider the family g? of rotations of the sphere $? about the SN-

axis through the angle ¢ (Fig. 258). Each point z € S? of the sphere describes
a curve (a parallel of latitude) in this rotation and has velocity

d
v(z) = 7 t=og’x €T,S%

8 The term section of the tangent bundle is also used.
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We thus obtain a mapping v : $? — T'S?; it is obvious that pv = E, i.e., v is
a vector field on S2.

In general if ¢ : M — M is a one-parameter group of diffeomorphisms of
the manifold M, there arises a phase velocity vector field on M, point-for-point
as in § 5.

All the local theory of (nonlinear) ordinary differential equations carries
over immediately to manifolds, since we took care in advance (in § 5) to keep
the fundamental concepts independent of the coordinate system.

In particular, the basic local theorem on rectification of a vector field and
the local theorems on existence, uniqueness, and continuity and differentia-
bility with respect to the initial conditions all carry over to manifolds. The
specifics of the manifold manifest themselves only in the study of nonlocal
questions. The simplest of the latter are the questions of continuation of so-
lutions and the existence of a phase flow with a given phase velocity vector

field.

§ 35. The Phase Flow Defined by a Vector Field

The theorem proved below is the simplest theorem of the qualitative theory
of differential equations: it gives conditions under which it makes sense to ask
about the behavior of the solutions of a differential equation on an infinite
time interval.

It follows in particular from this theorem that the solution is globally
continuous and differentiable with respect to the initial data (i.e., on any
finite time interval). This theorem is also useful as a technical method of
constructing diffeomorphisms. For example, it can be used to prove that every
closed manifold having a smooth function with only two critical points is
homeomorphic to a sphere.

1. Theorem

Let M be a smooth manifold (of class C", r > 2) (Fig. 259) and let v: M —
TM be a vector field. Suppose the vector v(z) 1s different from zero only in a
compact part K of the manifold M. Then there exists ¢ one-parameter group
of diffeomorphisms gt : M — M for which the field v is the phase velocity
vector field:

gt = v(g'a). (1)

Corollary 1. Every vector field v on a compact manifold M 1is the phase
velocity vector field of some one-parameter group of diffeomorphisms.
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vix)
™
g ¥

P M
X

Fig. 259. A vector field vanishing outside a compact set K

In particular, under the hypotheses of the theorem or the hypotheses of
Corollary 1, the following corollary holds.

Corollary 2. Every solution of the differential equation
z =wv(z), z €M, (2)

can be extended forward and backward indefinitely. When this is done, the
solution g'x at the instant t depends smoothly on t and on the initial condition
z.

Remark. The hypothesis of compactness cannot be eliminated.

Ezample 1. M = R, @ = 2® (cf. § 1, Sect. 7): the solution cannot be extended
indefinitely.

FEzample 2 M ={z: 0<z<1},£=1

Let us now proceed to the proof.

2. Construction of the Diffeomorphisms g* for Small ¢

For each point x € M there ezists an open neighborhood U C M and a number
e > 0 such that for each point y € U and any t with |t| < & the solution
g'y of Eq. (2) with initial condition y (att = 0) exists, is unique, depends
differentiably on t and y, and satisfies the condition

9ty =g'g"y. (3)
if |s| <e, lt| <e, and [s+t| < e.

Indeed the point z has an image on some chart, and for equations in a
domain of an affine space our assertion has been proved (cf. Chapt. 2 and
Chapt. 4)°.

® The proof of uniqueness requires a small additional argument: it must be verified
that uniqueness of a solution with given initial conditions on each fixed chart
implies its uniqueness on the manifold. On a non-Hausdorff manifold uniqueness
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Thus the compact set K is covered with open neighborhoods U. We can
choose a finite subcovering {U;}.

Let ¢; be the corresponding numbers ¢; we choose g = mine; > 0.

Then for |t| < ¢¢ the diffeomorphisms g' : M — M and ¢'** = g'g*® are
globally defined if |s], |t|, |s + t| < €0 and g'z = z for z outside K.

Indeed, although the solutions of (2) defined using different charts with the
initial condition z (for ¢ = 0) are a priori different, they coincide for |t| < &g
because of the choice of ¢y and the local uniqueness theorem.

Furthermore, by the local differentiability theorem the point ¢g‘z depends
differentiably on ¢ and z, and since g*¢~! = E, the mapping ¢ : M — M is a

d
diffeomorphism. We remark that I gtz = v(2).
t=0

3. The Construction of g* for any ¢t

We represent ¢ in the form neo/2 +r, where n is an integer and 0 < r < g¢/2.

Such a representation exists and is unique. The diffeomorphisms ¢%°/? and ¢"
are already defined.

We set gt = (¢g°°/?)"g". This is a diffeomorphism of M onto M. For |t| <

63 /2 the new definition agrees with the previous one (cf. Sect. 2). Therefore

t

% t=0.g
It is easy to see that for any s and ¢

gt =g%g" (4)

z = v(z).

Indeed, let
s=(meo/2)+p, t=(neo/2)+q, s+1t=_(keo/2)+r
Then the left and right-hand sides of Eq. (4) assume the form
(9°°/*)*g" and (g°°/*)"g"(g""*)"g".
Two cases are possible:
Dm4+n=k, ptg=7r, 2m+n=k—1, p+g=r+(e0/2).

We remark that since |p| < €0/2 and |gq| < €0/2, it follows that the diffeomorphisms

g5/, g7, and g? commute. Formula (4) follows from this in both the first and second

cases (g°°/2g" = gP g, since |p|, lq|, |r| < €0/2 and p+ ¢ = 0/2+ 7).

It remains to verify that the point g'z depends differentiably on # and z.
This follows, for example, from the fact that g¢ = (¢*/")" for sufficiently large
N and ¢*/Nz depends differentiably on ¢ and z (cf. Sect. 2).

may fail (example: the equation ¢ = 1, g = 1 on the manifold obtained from two
lines {#} and {y} by identifying points with equal negative coordinates). But if
the manifold M satisfies the Hausdorff condition, then the proof of uniqueness
given in § 7, Sect. 6 goes through. (The Hausdorff condition is used in proving
that the values of the solutions ¢1(T") and ¢3(T) coincide at some first point T
beyond which they do not coincide).
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Thus ¢! is a one-parameter group of diffeomorphisms of the manifold M;
the corresponding phase velocity vector field is v, and the theorem is proved.
O

4. A Remark

It is easy to deduce from the theorem just proved that every solution of a
nonautonomous equation

t=wv(t,z), z€M, teR,

defined by a vector field v depending on time t on a compact manifold M can
be extended indefinitely.

This explains in particular the possibility of extending indefinitely the
solutions of a linear equation

z=v(t,z), v(t,e)=Alt)z, te R, =€ R". (5)

In fact let us regard R™ as the affine part of the projective space RP™. The
space RP" is obtained from its affine part by adding an infinitely distant
plane RP™ = R" U RP"™.

R

Fig. 260. Extension of a linear vector field to projective space

Let v be a linear vector fleld in R" (v(x) = Ax). The following result is
easily verified.

Lemma. A vector field v on R™ has a unique extension to a smooth field
v' on RP™. The field v' on the infinitely distant plane RP™"! is tangent to
RP".

In particular, let us extend the vector field v(t) (for each t) determining
Eq. (5) to a field v'(t) on RP". Consider the equation

& =v'(t,¢), =€ RP", tcR. (6)

Projective space is compact. Consequently each solution of Eq. (6) can be
extended indefinitely (Fig. 260).

A solution with the initial condition in RP"™! always remains in RP"™!,
since the field v’ is tangent to RP™™!.
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By the uniqueness theorem the solutions of an equation with initial con-
ditions in R™ remain inside R" for all t. But inside R™ Eq. (6) has the form
(5). Thus each solution of Eq. (5) can be extended infinitely far.

Problem 1. Prove the lemma.

Solution 1. Let (z1,...,z,) be affine coordinates in RP™, and let (y1,...,yx) be
other affine coordinates given by:

y=e, we=akert (k=2,...,n)

The equation of RP™ ! in the new coordinates is y; = 0.
The differential equation (5)

n

dx ,
Py =Za;,jwj, 1=1,...,n,

i=1

can be written in the new coordinates as (Fig. 261)

d
—dytl =—y (am + Zax,wk), k> 1;

d
% =ak,1 + Eak,lyl — Yk (al,l + Zal’iyi)’ k>1, [>1.

It is clear from these formulas, which hold for 4 # 0, how the field should be defined
for y1 = 0. For y» = 0 we find dy: /dt = 0, which proves the lemma. m]

Fig. 261. The behavior of the extended field near the infinitely distant plane

Solution 2. An affine transformation can be regarded as a projective transformation
that leaves the plane at infinity fixed, but not its individual points. In particular the
linear transformations e’ can be continued to diffeomorphisms of projective space
leaving the plane at infinity fixed. These diffeomorphisms form a one-parameter
group; its phase velocity vector field is v’.
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§ 36. The Indices of the Singular Points of a Vector
Field

In this section we study simple applications of topology to the study of differ-
ential equations.

1. The Index of a Curve

We begin with some intuitive considerations. They will be confirmed below
by definitions and proofs (cf. Sect. 7).

Consider a vector field defined on an oriented Euclidean plane. Suppose a
closed oriented curve is defined on the plane, not passing through the singu-
lar points of the field (Fig. 262). Suppose a point traverses the curve in the
positive direction. The vector of the field at the point in question will rotate
continuously during the motion'®. When a point returns to a place, having
traversed the curve, the vector also returns to its original position. But in
doing so it may complete several revolutions in one direction or the other.

The number of revolutions of a vector field in traversing a curve is called
the indez of the curve. In computing the index a revolution is counted positive
if the vector rotates in the direction given by the orientation of the plane (from
the first unit vector toward the second) and negative in the opposite case.

Fig. 262. A curve of index 1

Ezample 1. The indices of the curves a, 3, v, and § in Fig. 263 are 1, 0, 2, and —1

respectively.
o« B 4 g
(7
DN

Fig. 263. Curves with different indices

Ezample 2. Let O be a singular point of the field. Then the index of every curve
lying in a sufficiently small neighborhood of the point O is 0.

19To trace the rotation of a vector it is convenient to translate all vectors to the
point 0 in accordance with the natural parallelization of the plane.
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Indeed, the direction of the field at the point O varies continuously in a suffi-
ciently small neighborhood of the point by less than, say =/2.

Problem 1. We define a vector field on the plane R? = ®C with the point O
removed by the formula v(z) = 2™ (where n is a number not necessarily positive).
Calculate the index of the circle z = ¢'* oriented in the direction of increasing ¢
(the plane is oriented by frame 1, 7).

Answer. n.

2. Properties of the Index

Property 1. Under a continuous deformation of a closed curve the indez does
not change as long as the curve does not pass through a singular point.

Indeed, the direction of a vector of the field varies continuously outside the
singular points; therefore the number of revolutions also varies continuously
with the curve. Being an integer, it must be constant.

Property 2. The indez of ¢ curve does not change under a continuous de-
formation of a vector field, provided there are no singular points of the vector
field on the curve at any time during the deformation.

From these two properties, which are quite obvious intuitively!!, a number
of profound theorems follow.

3. Examples

Ezample 1. Consider a vector field on the plane. Let D be a disk and S its
boundary circle!'?.

Theorem. If the index of the curve S 1s nonzero, then there is at least one
singular point inside the domain D bounded by the curve.

In fact, if there are no singular points, then S can be deformed continuously
inside D without passing through any singular points in such a way that the
result is a curve arbitrarily close to the point O (one could also simply deform
the curve to the point O). The index of the small curve so obtained is zero.

"' A precise formulation and proof of the propositions just stated requires certain
technical apparatus from topology: homotopy, homology, or something of the sort
(we shall use Green’s formula for this purpose below). Cf., for example, the book
of Steenrod and Chinn, First Concepts of Topology, Random House, New York,
1966.

'2One can also consider the more general case where D is any plane domain bounded
by a simple closed curve §.
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But the index does not change under the deformation, so that it must have
been zero to begin with. O

Problem 1. Prove that the system of differential equations

t=z+ P(z,y), 9=vy+Q(z,v),

where P and @ are bounded functions on the entire plane, has at least one equilib-
rium position.

Ezample 2. Let us prove the fundamental theorem of algebra:

Every equation 2™ + a12" 1 + - + a, = 0 has at least one complez root.

Consider the vector field v on the plane of the complex variable z defined
by the formula v(z) = 2™ + a; 2" ! + - + a,. The singular points of the field
v are the roots of this equation.

Lemma. The indez of a circle of sufficiently large radius in the field just
constructed is n (with the orientation as in the problem of Sect. 1).

In fact the formula
v(z) = 2" +t(a1z2" M+t ap), 0<t<1,

defines a continuous deformation of the original field to the field z”. Let r >
1+]ai|+ -+ |an|. Then r™ > |ag|r"~! + -+ - 4 |an|. Therefore on a circle of
radius r there are no singular points at any time during the deformation. By
Property 2 the index of this circle in the original field is the same as in the
field z™. But in the field 2" the index is n.

The lemma is now proved. O

By the preceding theorem there are singular points of the vector field,
i.e., roots of the equation, inside the circle of radius r. The theorem is now
proved. a

Ezample 3. Let us prove the following fixed-point theorem:

Theorem. Every smooth'® mapping f : D — D of the closed disk into itself
has a fized point.

We shall assume that a vector space structure has been introduced into
the plane of the disk D and that the origin of the vector space is at the center
of the disk (Fig. 264). The fixed points of the mapping f are the singular
points of the vector field v(z) = f(z) — .

13 This theorem holds for any continuous mapping, but we consider all mappings to
be smooth here and prove the theorem (cf. Sect. 7) only under this assumption.



312 Chapter 5. Differential Equations on Manifolds

Assume that there are no fixed points in D. Then there are none on the
boundary circle either.

Lemma. The index of the disk D in the field v is 1.

Indeed, there exists a continuous deformation of the field v into the field
—&, such that there are no singular points on the circle at any time during
the deformation (for example, it suffices to set v,(z) =tf(z)—2, 0 <t < L.
Therefore the indices of the circle in the fields v¢ = —@ and vy = v are the
same. But the index of the circle || = r in the field —@ is easy to compute
directly: it equals 1.

The lemma is now proved. o

By the theorem of Example 1 there is a singular point of the field v, i.e.,
a fixed point of the mapping f, inside the disk.

' / \\
QS

Fig. 264. A mapping of a disk into it- Fig.265. The indices of the simple
self singular points are %1

4. The Index of a Singular Point of a Vector Field

Let O be an isolated singular point of a vector field on the plane, i.e., suppose in
some neighborhood of the point O there are no other singular points. Consider
a circle of sufficiently small radius with center at this point; assume that the
plane is oriented and that the orientation on the circle is chosen to be positive
(as in Sect. 1).

Theorem. The index of a circle of sufficiently small radius with center at an
1solated singular point O is independent of the radius of the circle, provided it
18 suffictently small.

Indeed two such circles can be continuously deformed into each other with-
out passing through any singular points.

We remark also that any other curve that winds around the point O once
in the positive direction could have been chosen instead of a circle.

Definition. The index of some (and hence any) sufficiently small positively
oriented circle with center at an isolated singular point of a vector field is
called the indez of the singular point.
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Ezamples. The indices of singular points of the node, saddle, and focus (or center)
types are respectively +1, —1, and +1 (Fig. 265).

A singular point of a vector field is called simple if the operator of the
linear part of the field at this point is nondegenerate. The simple singular
points on the plane are nodes, saddle points, foci, and centers. Thus the index
of a simple singular point is always +1.

Problem 1. Construct a vector field with a singular point of index n.

Hint. Cf., for example, the problem of Sect. 1.

Problem 2. Prove that the index of a singular point is independent of the choice
of the orientation of the plane.

Hint. When the orientation reverses, the direction for positive traversal of a circle
and the direction for counting a positive revolution also reverse simultaneously.

5. The Theorem on the Sum of the Indices

Let D be a compact domain on an oriented plane bounded by a simple curve
S. We give the curve S the orientation induced from D (so that the domain D
stays on the left as the curve is traversed). This means that the frame formed
by the velocity vector and the normal vector directed into D must define the
positive orientation of the plane. ,

Suppose a vector field is defined on the plane having no singular points on
the curve S and having only a finite number of singular points in the domain

D.

Theorem. The indez of the curve S equals the sum of the indices of the
singular points lying inside D.

To prove this we remark that the index of a curve possesses the following
additive property.

Consider two oriented curves 7v; and 72 passing through the same point.
We can form a new oriented curve vy + 42 by traversing first v, and then ;.

Lemma. The index of the curve v; 472 i3 the sum of the indices of the curves
7 and vs.

Indeed, a vector of the field will make n; revolutions in traversing the
curve v; and another ny in traversing the curve v, for a total of n; + ng
revolutions. The lemma is now proved. O

We now partition D into parts D; each containing at most one singular
point of the field (Fig. 266) and such that there are no singular points on
the boundary of any part. We orient the curves v; bounding these parts as a
boundary should be oriented (Fig. 266); then by the lemma
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ind )~ % =ind (S + 3 indd;),
i J

where é; is a closed curve representing the part of the boundary of the domain
D; located inside D and traversed twice, once in each direction.

S
d
il
7

Fig. 266. The index of the curve S equals the sum of the indices of the curves v;
and 72

The index of each curve §; is 0, since this curve can be contracted to a
point without passing through any singular points of the field (cf. Sect. 8).
The index of the curve 7; equals the index of the singular point enclosed by
the curve (or 0, if there are no singular points in the domain D;). The theorem
is now proved. a

Problem 1. Let p be a polynomial of degree n in the complex variable z and D a
domain in the plane of the variable z bounded by the curve S. Assume that there
are no roots of the polynomial on the curve S. Prove that the number of roots of
the polynomial inside D (counting multiplicities) equals the index of the curve S in
the field v = p(2), i.e., the number of revolutions of the curve p(.5) about 0.

Remark. We thereby obtain a method of solving the Routh-Hurwitz problem (cf. §
23):

Find the number n_ of roots of a given polynomial in the left half-plane.

For this purpose we consider a semicircle of very large radius in the left half-
plane with center at the point 2 = 0 and with diameter on the imaginary axis. The
number of roots in the left half-plane is the index of the boundary of this semicircle
(provided its radius is sufficiently large and there are no purely imaginary roots). To
calculate the index of the curve S it suffices to compute the number v of revolutions
of the image of the imaginary axis oriented from —¢ to +7 about the origin. Indeed,
it is easy to verify that

n_=indS =v+n/2,

since the image of a semicircle of sufficiently large radius under the mapping p makes
approximately n/2 revolutions about the origin (the larger the radius, the closer to
n/2).

In particular all the roots of a polynomial of degree n lie in the left half-plane if
and only if the point p(it) revolves about the origin n/2 times (in the direction from
1 to i) as t varies from —oo to +oo.
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6. The Sum of the Indices of the Singular Points on a Sphere

Problem *1. Prove that the index of a singular point of a vector field in the
plane is preserved under a diffeomorphism.

Thus the index is a geometric concept independent of the coordinate sys-
tem. This circumstance enables us to define the index of a singular point not
only on the plane, but on any two-dimensional manifold. Indeed, it suffices to
consider the index of the singular point on some chart: on other charts it will
be the same.

Ezample 1. Consider the sphere 22+y%+42% = 1 in three-dimensional Euclidean
space. The angular velocity vector field for rotation about the z-axis (& =y,
y = —z, # = 0) has two singular points: the north and south poles (Fig. 267).
The index of each is +1.

S

Fig.267. A vector field on the sphere having two singular points of index 1

Assume that a vector field is given on the sphere having only isolated
singular points. Then there must be only a finite number of singular points,
since the sphere is compact.

Theorem *. The sum of the indices of all the singular points of a field on the
sphere is independent of the choice of field.

It is clear from the preceding example that this sum equals 2.

The idea of the proof. Consider a chart of the sphere covering the whole
sphere except for one point, which we shall call the pole. In the Euclidean
plane of this chart consider the coordinate vector field e;. We transfer this
field to the sphere. We then obtain a field on the sphere (defined everywhere
except at the pole), which we shall again denote e;.

Now consider a chart on a neighborhood of the pole. On the plane of this
chart we can also draw the vector field e; on the sphere, defined everywhere
except at the one point O. Its form is shown in Fig. 268.

Lemma. The indez of a closed curve that revolves once about the point O in
the field just constructed on the plane is equal to 2.
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Fig. 268. A vector field that is parallel Fig.269. On each island the sum of
in one chart of the sphere, but is drawn the number of peaks and pits is one
in another chart larger than the number of passes

To prove the lemma it suffices to carry out explicitly the operations de-
scribed above, taking as charts, for example, the charts of the sphere in stere-
ographic projection (Fig. 235). The parallel straight lines of the first chart
become the circles of Fig. 268 in the second, from which it is clear that the
index is 2.

Now consider a vector field v on the sphere. Choose as pole a nonsingular
point of the field. Then all the singular points of the field have an image on a
chart of the complement of the pole. The sum of the indices of all the singular
points of the field equals the index of a circle of sufficiently large radius in the
plane of this chart (by the theorem of Sect. 5). We now transfer this circle to
the sphere, and from the sphere to a chart on a neighborhood of the pole. On
this chart the index of the circle so obtained in the field being studied is zero,
since the pole is a nonsingular point of the field. Remaining on this new chart,
we can interpret the index of the circle on the first chart as the “number of
revolutions of the field v with respect to the field e,” during a traversal of the
circle.

This number equals +2, since on the new chart the field e; completes 2
revolutions during a traversal of a circle about the point O in the positive
direction for the first chart represented on the second chart, while the field v
makes zero revolutions.

Problem * 2. Let f : S — R! be a smooth function on the sphere all of whose
critical points are simple (i.e., the second differential at each critical point is nonde-
generate). Prove that mo — m; + m2 = 2, where m; is the number of critical points
whose negative index of inertia of the second differential is <.

In other words, if the number of saddle points is subtracted from the number of
minima and the number of mazima is added, the result is always 2. For example, the
number of mountain peaks on the Earth plus the number of pits exceeds the number
of passes by 2. If we restrict ourselves to a single island or continent, i.e., consider
functions on a disk without critical points on the boundary, then mo —mq +m2 =1
(Fig. 269).

Hint. Consider the gradient of the function f.
Problem *3. Prove Euler’s theorem on polyhedra:

For any conver polyhedron with oq vertices, a1 edges, and az faces, ag — a1 +
Qg = 2.
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Hint. This problem can be reduced to the preceding one.

Problem *4. Prove that the sum of the indices x of the singular points of a vector
field on any two-dimensional compact manifold is independent of the field.

The number y is called the Fuler characteristic of the manifold. For example,
we saw above that the Euler characteristic of the sphere x(5?) is 2.

Problem 5. Find the Euler characteristic of the torus, the pretzel, and the sphere
with n handles (Fig. 245).

Answer. 0, —2, 2 — 2n.

Problem *6. Transfer the results of Problems 2 and 3 from the sphere to any
compact two-dimensional manifold M:

mo —m1 +my =ap — a1 +az = x(M).

7. Justification

We now give a precise definition of the winding number of a vector field.

Let v be a smooth vector field defined in a domain U of the (z;,z2)-plane
by its components vi(x1,z2) and va(z1,x2). The coordinate system (z1,z2)
defines an orientation and a Euclidean structure on the plane.

Remove the singular points of the field from the domain U and denote
the domain that is left by U’. We define a mapping of the domain U’ into the
circle by the formula f : U' — SY, f(z) = I:Ez;l

This mapping is smooth (since we have excluded the singular points of the
field). Consider some point z of the domain U’. On the circle in a neighborhood
of the image f(z) of the point z we can introduce an angular coordinate ¢. We
then obtain a smooth real-valued function ¢(z1, ) defined in a neighborhood
of the point z.

Let us calculate its total differential. We have for vy # 0

dyp = darctan 2 M%—_L;é?—l— (1)
V1 vy + v3
The left-hand side equals the right-hand side for v; = 0 and v # 0. Thus
although the function ¢ itself is defined only locally and only up to a multiple
of 2x, its differential is a well defined smooth differential form in the whole
domain U’'. We shall denote this form by de.

Definition. The indez of the oriented closed curve vy : ST — U’ is the integral
of the form (1) over the curve v, divided by 2x:

indy = — 7{ do. )
2w
/
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We can now give precise proofs of the theorems given above. Let us prove,
for example, the index sum theorem (cf. Sect. 5).

Proof. Let D be a domain with boundary S inside which the given field v has
a finite number of singular points. Denote by D’ the domain obtained from
D by removing small disk-shaped neighborhoods of the singular points. Then
the boundary of D', counting orientation, is D' = S — 5 S, where S; is a
circle enclosing the ith singular point in the positive direction (Fig. 270). We
apply Green’s formula to the domain D’ and the integral (2). We obtain

/L)/O=Zd¢_zijéd¢.

The left-hand side is zero, since the form (1) is locally an exact differential. In
view of definition (2) we obtain ind S = 3 ind S;, which was to be proved. 0O

Problem *1. Prove that the index of a closed curve is an integer.

Problem *2. Carry out a complete proof of the assertions of Sects. 1, 2, 3, and 4.

8. The Multidimensional Case

The multidimensional generalization of the concept of winding number is
known as the degree of a mapping.

The degree of a mapping is the number of preimages of a point counted
according to signs determined by orientations. For example, the degree of the
mapping of an oriented circle onto an oriented circle depicted in Fig. 271 is 2,
since the number of preimages of the point y, counting signs, is 14+1—-14+1 = 2.

,
bt

y vy
Fig. 270. A domain to which Green’s Fig. 271. A mapping of degree 2
formula applies

To give a general definition we proceed as follows. Let f : M{ — MJ be
a smooth mapping of one n-dimensional oriented manifold onto another. A
point € M{* of the domain manifold is called a regular point if the derivative
of the mapping at the point z is a nondegenerate linear transformation f,, :
T My — Ty M3,

For example, the point = in Fig. 271 is regular, but the point &' is not.
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Definition. The degree of the mapping f at the regular point x is the num-
ber deg, f equal to +1 or —1 according as f., takes the orientation of the
space T, M} into the orientation of the space Ty(sy M3 or into the opposite
orientation.

Problem 1. Prove that the degree of a linear automorphism A : R* — R is
the same at all points and equals deg, A = sgn det A = (—1)™~, where m_ is the
number of eigenvalues of the operator A with negative real part.

Problem 2. Let A : R* — R™ be a linear automorphism in a Euclidean space.
Define a mapping of the unit sphere by the formula f(z) = A(z)/|Az|. Find the
degree of the mapping f at a point z.

Answer. deg,f = deg A.

Problem 3. Let f: S"™' — §™~! be the mapping taking each point of the sphere
into the point diametrically opposite it. What is the degree of this mapping?

Answer. deg,f = (—1)".

Problem 4. Let A: C" — C™ be a C-linear automorphism. Find the degree of its
realification ®A.

Answer. +1.

Now consider any point y of the target manifold M. A point y € My
is called a regular value of the mapping f if all the points of its complete
preimage f~ly are regular. For example, in Fig. 271 the point y is a regular
value, but the point y' is not.

Now suppose in addition that our manifolds M{* and M} are compact and
connected. We then have the following theorem.

Theorem.

1. There exist regular values.

2. The number of points in the preimage of a regular value is finite.

3. The sum of the degrees of the mapping at all points of the preimage of
a reqular value 1s independent of the particular regular value considered.

The proof of this theorem is rather complicated and will not be given; it
can be found in textbooks of topology'*.

Remark 1. In fact almost all the points of the manifold M} are regular values:
the nonregular values constitute a set of measure 0.

Remark 2. The condition of compactness is essential, not only for the second
assertion of the theorem, but also for the third. (Consider, for example, the
imbedding of the negative semiaxis into the number line.)

14 Cf., for example, H. I. Levine, Singularities of Differentiable Mappings, Math. Inst.
Univ. Bonn, 1955, Sec. 6.3.
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Remark 8. The number of points of the preimage (not counting signs) may be
different for different regular values (for example, in Fig. 271 the value y has
four preimages and the value y" only 2).

Definition. The sum of the degrees of the mapping f at all points of the
preimage of a regular value is called the degree of the mapping:

degf= 3 deg,f.

T€f~ly

Problem 5. Find the degree of the mapping of the circle |z| = 1 onto itself defined
by the formula f(2) = 2", n=0,£1,4£2,....

Answer. n.

Problem 6. Find the degree of the mapping of the unit sphere in Euclidean space
R" onto itself given by the formula f(z) = Az/|Az|, where A : R* — R" is a

nondegenerate linear operator.
Answer. deg f = sgn det A.

Problem 7. Find the degree of the mapping of the complex projective line CP*
onto itself given by the formula a) f(z) = 2", b) f(z) = z".

Answer. a) n; b) —n.

Problem 8. Find the degree of the mapping of the complex line CP' onto itself
given by a polynomial of degree n.

Answer. n.

Problem *9. Prove that the index of the closed curve v : §' — U’ defined in Sect.
7 coincides with the degree of the following mapping h of a circle onto a circle.

Let f: U’ — S be the mapping constructed in Sect. 7 using the vector field v
in the domain U’. Set h = fo~: 8" — S'. Then

indvy = deg h.

Definition. The index of an isolated singular point o of the vector field v
defined in a domain of Euclidean space R™ containing o, is the degree of the
following mapping h of the sphere of small radius r with center at o onto itself
corresponding to the field. The Izlafping h:Ss71 - 81 51 ={zecR":
ro(x

v(z)|

|&| =r}, is given by h(x) =

Problem 10. Let the operator ¥.o, the linear part of the field v at the point o,
is nondegenerate. Then the index of the singular point 0 equals the degree of this
operator.
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Problem 11. Find the index of the singular point 0 of the field in R™ corresponding
to the equation & = —a.

Answer. (—1)".

The concept of degree makes it possible to state multidimensional ana-
logues of the two-dimensional theorems studied above. The proofs can be
found in textbooks of topology.

In particular, the sum of the indices of the singular points of a vector field
on a compact manifold of any dimension 13 independent of the choice of the
field and is determined by properties of the manifold ttself. This number is
called the Euler characteristic of the manifold.

To compute the Euler characteristic of a manifold, it suffices to study the
singular points of any differential equation defined on it.

Problem 12. Find the Euler characteristic of the sphere S™, the projective space
RP7", and the torus 7.

Answer. x(S™) =2x(RP") =14 (-1)", x(T") = 0.

Solution. On a torus of any dimension there is a differential equation with no
singular points (cf., for example, § 24, Sect. 5), so that x(T") = 0.

It is clear that x(S™) = 2x(RP™). Indeed, consider the mapping p : " — RP"
taking each point of the sphere 5™ into the line joining it to the origin. The mapping
p is a local diffeomorphism; here the preimage of each point of the projective space
consists of two diametrically opposite points of the sphere. Consequently each vector
field on RP" defines a field on S™ with twice as many singular points, and the indices
of any two diametrically opposite points on the sphere will be the same as the index
of the point of projective space corresponding to them.

To compute X(S"R we define the sphere by the equation 3 4 -+ -4 22 = 1 in the
Euclidean space R"*! and consider the function zo : §* — R.

Fig. 272. Linearization of a differential equation on a sphere near its singular points

We form the differential equation on the sphere
& =gradazg

and study its singular points (Fig. 272). The vector field grad 2y vanishes at two
points: the north pole N (2o = 1) and the south pole S (2o = —1). Linearizing the
differential equation in a neighborhood of the north and south poles respectively, we
obtain the equations
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€=-¢ EcR"=TnS"; n=7, neR"=TsS"

Consequently the index of the north pole is (—1)" and that of the south pole is
(+1)", so that x(S™) =1 + (-1)".

In particular it follows from this that every vector field on an even-dimensional
sphere has at least one singular point.

Problem 13. Construct a vector field on an odd-dimensional sphere 5*"~! having
no singular points.

Hint. Consider the second-order differential equation & = —z, ¢ € R".



Examination Topics

1. The rectification theorem (§ 7, Sects. 1, 7) and its proof (§ 32, Sect. 5).

2. The existence, uniqueness, and differentiability theorems (§ 7, Sects. 2-5 and §
31, Sects. 1-8; § 32, Sects. 1-4). Contraction mappings (§ 30).

3. The extension theorem (§ 7, Sect. 6) and the theorem that a vector field on a
compact manifold defines a phase flow (§ 35, Sects. 1-3).

4. The phase curves of an autonomous system. The theorem on closed phase curves
(§9).
5. The derivative in the direction of a vector field and first integrals (§10, § 12).

6. The exponential of a linear operator. The exponential of a complex number and
the exponential of a Jordan block (§ 14; § 15, Sects. 4, 5; § 25, Sect. 1).

7. Theorems on the connections between phase flows, linear equations, one-parameter
transformation groups, and exponentials (§ 4, Sects. 2-4; § 13, Sects. 1-3; § 15, Sects.
1-3).

8. The connection between the determinant, the exponential, and the trace. Liou-
ville’s theorem on the Wronskian determinant (§ 16; § 18, Sect. 4; § 27, Sect. 6).

9. The classification of singular points of linear systems in the plane (§ 2, Sects. 4,
5; § 17, Sect. 2; § 19, Sect. 4; § 20, Sects. 3-5).

10. The solution of homogeneous linear autonomous systems in the complex and
real domains in the case when the characteristic equation has only simple roots (§

17, Sect. 1; § 18, Sect. 5; § 19; § 20).

11. The solution of homogeneous autonomous linear equations and systems in the
case when the characteristic equation has multiple roots (§ 25).

12. The solution of inhomogeneous autonomous linear equations with the right-hand
side in the form of a sum of quasi-polynomials (§ 26).

13. Homogeneous nonautonomous linear equations and systems. The Wronskian.
The case of periodic coefficients (§ 27 and § 28, Sect. 1).

14. The solution of inhomogeneous linear equations using variation of constants (§
29).

15. The theorem on stability in linear approximation (§ 22, Sects. 3-5; § 23).

16. The phase curves of a linear equation whose characteristic equation has purely
imaginary roots. Small oscillations of conservative systems (§ 24 and § 25, Sect. 6).



Sample Examination Problems

1. ! To stop river boats at a dock ropes are thrown from the boat and wound onto
a post on the dock. How much force is needed to stop a boat if three coils of rope
are wound around the post, the coefficient of friction of the rope against the post is
1/3 and the worker on the dock holds the free end of the rope with a force of 10 ks?

2. On the surface of a cylinder sketch the phase curves of a pendulum on which a
constant torque acts:
*=1+4+2sinz.

What motions of the pendulum correspond to the different types of curves?
3. Compute the matrix e’, where A is a given matrix of order 2 or 3.

4. Sketch the image of the square |@;| < 1 under the phase flow transformation of
the system
2p = 2x2, T2 =21+ To.

over the time t = 1.

5. How many decimal digits are needed to write the hundredth term of the sequence
1,1,6,12,29,59,... (2 = Tn-1 + 22n_2 +n, 1 = 22 = 1)?

6. Sketch the phase curve of the system
t=av—y—2, y=ax+y, =34z,
passing through the point (1,0,0).

7. Find all a, 3, and 4 for which the three functions sin at, sin 3, and sin~yt are
linearly independent.

8. On the (21, 22)-plane sketch the trajectory of a point executing the small oscilla-
tions

@i = —0U/dxi, U = (52} — 8xyxa + 523)/2.

9. A horizontal force of 100 g acts for 1 second on a mathematical pendulum of
length 1 m and weight 1 ks originally at rest. Find the amplitude (in cm) of the
oscillations that will be established after the force ceases to act.

10. Investigate whether the null solution of the system

{i‘l = 23, (1) = {0.4 for 2km <t < (2k + L)m,
iy = —w a1, 7T 0.6 for (2k — 1)w <t < 2k,
k=0,%1,£2,...

is Lyapunov stable.

! In all numerical problems an error of 10-20% in the answer is admissible.



Sample Examination Problems 325

11. Find all the singular points of the system
t=wy+12, y=a’+y’ - 25

Study their stability, determine the types of singular points, and sketch the phase
curves,

12. Find all the singular points of the system on the torus {(z,y) mod27}:
&= —siny, ¢=sinz+siny.

Study their stability, determine the types of singular points and sketch the phase
curves.

13. It is known from experiment that when light is refracted at the interface of two
media, the sines of the angles formed with the normal to the interface by the incident
ray and the refracted ray are inversely proportional to the indices of refraction of
the media: n; sin @1 = na sinas.

Find the form of light rays in the (z,y)-plane with index of refraction n(y).
Consider the case n(y) = 1/y (Lobachevsky geometry is realized in the half-plane
y > 0 with this index of refraction).

14. Sketch the rays emanating from the origin in various directions in a plane with
index of refraction y* — y* + 1.

The solution of this problem explains the phenomenon of the mirage. The index
of refraction of the air over a desert has a maximum at a certain height, since the
air is more rarefied in the layers above and in the hot layers below, and the index of
refraction is inversely proportional to the velocity. The oscillation of a ray near the
layer at which the index of refraction is maximal is perceived as a mirage.

Another phenomenon that is explained by the same oscillations of a ray is that
of the acoustic channel in the ocean, along which sound carries for hundreds of kilo-
meters. The cause of this phenomenon is the interplay of temperature and pressure,
leading to the formation of a layer with maximal index of refraction (i.e., minimal
speed of sound) at a depth of 500-1000 m. The acoustic channel can be used, for
example, to warn of tidal waves.

15. Sketch the geodesics on the torus, using Clairaut’s theorem: the product of the
distance to the axis of rotation and the sine of the angle a geodesic makes with a
meridian is constant along each geodesic of a surface of revolution.

16. Rectify the phase curves of the equation & =  — 2% in a neighborhood of the
point z =0, & = 1.

17. Rectify the integral curves of the equation & = @ + cost.
18. Rectify the direction field of the equation = x + te'.
19. Rectify the phase velocity field of the equation & = z near the point = 1.

20. In what coordinates are the variables separable in the equation

dy/de = 2* + y*/3?

21. Solve the equation # = x + §(t — 2).

22. Find the derivative of the solution of the equation & = &* 4+ Aa® with initial
condition (0) = 1, ¢(0) = 0, with respect to A at 4 = 0.

23. Find the eigenvalues and eigenvectors of the monodromy operator of the 2m-
periodic solution of the equation & — @ = sint.
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24. Solve the equation ¢ = Atz + z, where A : R* — R" is a linear operator.
25. Can the operators A and B fail to commute if

e =P = et = E?

26. Find all the time-independent first integrals of the system # = y, ¥ = = + y that
are continuous in the entire phase plane.

27. The numbers 1 and i are eigenvalues of A : B> — R®. Does the equation ¢ = Az
have any nonconstant first integrals that are continuous in R3?

28. The numbers 1 and —1 are eigenvalues of A : R®> — R®. Does the equation
& = Az have any nonconstant first integrals that are continuous in R®?

29. Solve the Cauchy problem

Uz +uy =0, uly=0 =sinz.

80. The equation (™ = F(t,z,... ,:c(""l)) has solutions ¢ and sint. Determine n.

31. Can the solutions of the equation # = 2®sinz be continued to the entire time
axis?

32. Can all solutions of Newton’s equation & = —grad U, U = z} + 2122 + 235 be
extended indefinitely?

83. Can all the solutions of the equation
z=1+2sinz

be extended indefinitely?

34. Can the equilibrium position of Newton’s equation be Lyapunov stable without
being a local minimum of the potential energy?

35. Can a periodic solution of an autonomous system represented by a limit cycle
in the phase plane be asymptotically stable?

86. Can a periodic solution of an autonomous system be Lyapunov unstable if it is
represented in the phase plane by a limit cycle onto which phase curves approximat-
ing the cycle wind spirally from the interior and from the exterior under a motion
in the direction of increasing time?

37. Can a Lyapunov-unstable equilibrium position become stable after linearization?
Can it become asymptotically stable?

38. Can an asymptotically stable equilibrium position become Lyapunov-unstable
after linearization?

Supplementary Problems

1. Does the equation of variations for the equation # = —sinz along the solution
with initial condition zy = 0, 2o = 2 have nonzero solutions that are bounded on
the entire time axis?

2. Does the equation of variations of this same equation along the solution with
initial condition zo = 0, 0 = 1 have unbounded solutions?
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8. Solve the equation of variations in Prob. 1.

4. FInd the eigenvalues and eigenvectors of the monodromy operator for the equation
in variations of Prob. 2.

5. Find the derivative with respect to ¢ at ¢ = 0 of the 27-periodic solution of the
equation  + sinx = ¢ cost that becomes z = m when ¢ = 0.

6. Find the largest value of ¢ for which the solution of the Cauchy problem
u +uuy, = —sinz, ul=0 =0

can be continued to [0,1).

7. Find all the finite-dimensional subspaces of the space of infinitely-differentiable
functions on the line that are invariant with respect to all translations of the line.

8. Suppose the function v has a double root at zero. Prove that the equation ¢ = v(z)
can be reduced to § = y* + Cy® by a diffeomorphism of a neighborhood of zero (the
constant C is determined by the field).

9. Prove that the zeros of a linear combination of the first n eigenfunctions of the
Sturm-Liouville problem

Uze + q(z)u = Au, uw(0)=u(l)=0, ¢>0
divide the interval [0,[] into at most n parts.

Hint. (I. M. Gel’fand). Convert to fermions, i.e., to skew-symmetric solutions of the
equation ) uz;o; + »_ q{®:)u = Au and use the fact that the first eigenfunction of
this equation has no zeros inside the fundamental simplex 0 < 21 < -+ <z, < .

10. (N. N. Bautin). Prove that the generalized Lotka-Volterra system
z=z(a+kz+1ly), y=yb+mz+ny)

has no limit cycles: its closed non-point phase curves, when they exist, fill up an
annulus.

11. Consider the motion of matter along a circle under the translating action of a
velocity field and a small diffusion. Prove that if the velocity field has stationary
points and is in general position, then almost all the mass eventually accumulates
in a neighborhood of one of the points of attraction.

[The evolution equation for the density is: & = euge — (uv)z, where v0/0z is
the velocity field. On the covering line of the circle the field is potential: v = —U,.
If the velocity field is potential, then the stationary solution is given by a Gibbs

distribution
u(z) = Ce” Ve,

For small ¢ this distribution is concentrated near the minimum of the potential.
If the function U tends to —oo at —oo, the stationary solution has the form

u() = Cfx U=/ g

It is concentrated near the local minimum of the potential for which the excess of
the maximum value of the potential over this minimum value is maximal on the axis
to the left of this minimum.]

12. (A. A. Davydov). An involution is a diffeomorphism whose square is the identity
mapping. An involution of the plane is called admissible with respect to a vector
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field if the fixed points of the involution form a curve and under the action of the
involution the vectors of the field change sign at the points of this curve.

Prove that in a neighborhood of a nonsingular point of the field all the admissible
involutions in general position are equivalent (can be mapped into one another by
diffeomorphisms that preserve each phase curve of the field).

[The solution of this problem provides a normal form p? = z of an equation that
is not solved for the derivative in a neighborhood of a nonregular point in general
position (it was found by H. M. Cibrario in 1932). The equation F(z,y,p) = 0
defines a surface in three-dimensional space. At a nonregular point its tangent plane
is vertical (tangent to the p-axis). In a neighborhood of a nonregular point in general
position there arises an involution (it transposes the nearby points of the intersection
of the surface with a vertical line). This involution is admissible with respect to the
vector field tangent to the integral curves of a differential equation on the surface.
Bringing the involution to normal form is equivalent to normalizing the equation by
a local diffeomorphism of the (z,y)-plane.]

13. (continuation). Suppose the fixed curve of an involution that is admissible with
respect to a vector field with a singular point of focus, saddle, or node type passes
through a singular point, and the absolute values of the eigenvalues of the saddle or
node are distinct.

Prove that any two such involutions are equivalent in a neighborhood of a singu-
lar point if the tangents to their fixed curves at the singular point are not separated
by characteristic directions.

[This theorem of Davydov provides the normal form (p—kz)? = y for an equation
in general position that is not solved with respect to the derivative in a neighborhood
of a nonregular point at which the plane dy = pdx is tangent to the surface ' = 0;
k is the unique modulus (invariant under diffeomorphisms) of the “folded focus,
saddle, or node” formed by the projections of integral curves on the (z,y)-plane.]

The solutions of Probs. 12 and 13 also provide normal forms of families of tra-
jectories of slow motion in the theory of relaxation oscillations in general position
with two slow variables. In this theory in three-dimensional space fibered into ver-
tical lines over the “plane of the slow variables” two vector fields are defined: one
(the “fast” one) is vertical and the other (the “perturbing” one) is arbitrary. The
zeros of the fast field form the “slow surface.” the planes spanned by the directions
of the two fields leave tracks on the tangent plane to the slow surface which form
the direction field of the “slow motion” on the slow surface. We are discussing the
family of projections of integral curves of this field from the slow surface to the plane
of the slow variables.

The critical values of the projection of the slow surface on the plane of the
slow variables form (in a generic system) a discriminant curve with isolated cusps.
In a neighborhood of a general point of this curve the family of projections is dif-
feomorphic to a family of semicubical parabolas (y — c)2 = &° (this follows from
the normal form of Prob. 12). At isolated points of smoothness of the discriminant
curve the family of projections is diffeomorphic to a folded focus, saddle, or node
(Prob. 13). In addition, in a generic system, there are isolated points of smoothness
of the discriminant curve in a neighborhood of which the family can be described
as follows. Label the integral curves by a parameter ¢ and regard the family of
their projections on the (z,y)-plane as a surface in three-dimensional space with
coordinates (z,y,c), partitioned into the lines ¢ = const. This surface is (locally)
diffeomorphic to the “folded umbrella” surface u? = v3w?, partitioned into the lines
u+v+w = const. Finally, in a neighborhood of a cusp of the discriminant curve the
family of projections is described similarly using a partition of the “swallow’s tail”
surface {u,v,w : A\* +uA? + v\ +w has a multiple root} into the curves u = const.
The last family of projections, in contrast to those described above, has an infinite
number of moduli, even with respect to the homeomorphisms of the (z,y)-plane
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(in the case of the folded umbrella there are no moduli up to infinitely-differentiable
diffeomorphisms, but in the analytic case infinitely many independent moduli arise).

The solutions of Probs. 12 and 13 also describe the singularities of families of
asymptotic lines on a surface in three-dimensional space (a family of semicubical
parabolas at the general point of a parabolic line and a folded focus, node, or saddle
at isolated points of tangency of an asymptotic direction to a parabolic line).

Written Examination Problems (Moscow State University, 1991)

(Two hours for each variant of four questions)
{ b=y {l . { &=y
X 2 or or § - 4
y=-z §=-z y=z

G .2 . 4 L2
or {a./___gy or{?‘y or {gi_yz.
y=z y=-x y=a

Variant 1.

a) Find all the equilibrium points and study their stability.

b) Are all the solutions indefinitely continuable?

c) Find the number of nonzero solutions satisfying y(0) = z(1) = 0.

d) Calculate the derivative of the solution with initial conditions #(0) = y(0) = ¢
with respect to € at ¢ = 0.

&
(

or {:L —fyz or {;L = a?y32 . OrF { r _gx%4 .

y=ay y=—a’y y=2y

a) Find all the equilibrium points and study their stability.
b) Are all the solutions indefinitely continuable?
¢) Find a diffeomorphism rectifying the direction field of phase curves in a neigh-
borhood of (1,1).
d) Find all the first integrals that are continuous on the whole phase plane and
coincide with y for @ = 0.

Variant 2. ) . ) s
Y, or {l Y or {l =Ty

I
|
8
<

(Il

Variant 3.

t=iz" or =2 or 3=1iz"7 or 2 =23 or £=1iz3 or =13,
a) Find all equilibrium points and study their stability.
b) Find all the initial conditions for which the solution can be continued forward
indefinitely.
¢) Find the image of the vector (1, 0) at the phase point 0 under the time 1 mapping
of the phase flow.
d) Find all the first integrals that are continuous in a neighborhood of the point
z =1 and coincide with 1 along the real axis.

Variant 4.
ou

4 2(’)u ‘ 9 2
Ju . gu _ < 24 2
e (1+2 +y)ay 2u 2+2"+y")

, - “l =
u|z‘:0 0
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du 4 gau—. )
or 1:9;—{—(1—}-211 +y)8y_3u

u| =0
=0

a) Does there exist an unbounded solution defined on the whole plane?

b) Is the value of u bounded along the characteristics?

c) Does each characteristic intersect the surface y = « + u??

d) Does there exist a first integral of the equation of characteristics whose derivative
with respect to y at the origin is equal to 1?7 Find the derivative of this derivative
along the characteristic vector.

Variant 5.
. 2 .2 . 2 2 . . 2 9 . ) . 9
T=z° —sin“t or =2 —cos"t or z =sinh“z —cos"t or & = sin” ¢t — sinh” z.

a) Find the third derivative at the origin of the solution satisfying the initial condi-
tion z(0) = 0. ,

b) Is this solution extendable over the whole t-axis?

¢) Do there exist unbounded solutions of the equation?

d) Find the number of asymptotically stable periodic solutions of the equation.
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Acoustic channel 325 Degree of a mapping 319

Action of a group 58 Derivative in the direction of a vector

Atlas 290,291 121

Attractor 47 - in the direction of a vector field 122
- Lie 122

Base of a bundle 300

- of a mapping 68
Boundary of a set 100 &

Determinant 169

Cauchy problem 130 - Vandermonde 248
Characteristic, amplitude-phase 238 - Wronskian 245

- Euler 321 Diagram, Lamerey 30
Characteristic equation 129, 134 - Newton 89
Characteristics of an equation 136 Diffeomorphism 61
Charts 289 - contact 137
Commutator 124 - of a manifold 296
Complexification 177 - conjugate 76

- of a linear equation 185 Differentiable structure 69

Condition for stability 258 Differentiab.ility 16
Contact structure 114 - _Of a' manifold 288
Coordinates, affine 287 Diffusion 327

- homogeneous 288 Dimension of a manifold 294

- local 299 D?rec.t product 39

- tangential 116 Distribution, Gibbs 327
Curve, dual 116 Divergence 251

- discriminant 115 Eigenfunction 255

- integral 16, 27 Energy 139, 227

- Lissajous 229 Equation, autonomous 19, 27, 97
- logistic 24 - Bessel 246

- Mikhailov 238 - characteristic 129, 134
- parametrized 295 - Clairault 113, 116

- phase 27, 61 - difference 106

- - closed 119 - differential 18

Cycle 30, 327 - evolution 19

- nondegenerate 45 - explosion 23

- limit 31 - Hamilton-Jacobi 137

- stable 47 - heat 86
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- hypergeometric (Gauss) 246

- homogeneous 79

- homogeneous linear 49, 154, 164, 181,
242, 246, 256

- - partial 129

- - with periodic coefficients 49, 57, 256

- inhomogeneous linear 51, 57, 233, 264

- - partial 131

- Laplace 88

- linearized 152

- logistic 24

- long-term 175

- Lotka-Volterra 29, 44, 327

- Mathieu 246, 260

- nth-order 104, 233, 246

- Newton 84, 109, 144, 147

- nonautonomous 127

- nonlinear 152, 200, 210, 240

- - partial 136

- not solved for the derivative 112, 328

- of small oscillations 34, 94, 105, 139,
148, 174, 191, 227

- of variations 57, 94, 279

- quasi-homogeneous 82

- quasi-linear 132

- reproduction 22

- - with competition 24

- Van der Pol 151

- with separable variables 41

Equilibrium, neutral 31

- stable 210

Equilibrium position 19

Equivalence of flows 75, 197

Estimate, a priori 144

Euler broken lines 167, 277

Evolutionary process 13

Extension of solutions 100, 108, 144

Fermion 327

Fiber of a bundle 300

Fibration 298

Field, direction 18, 115

- - contact plane 114

- - Euler 77, 81

- - quasi-homogeneous Euler 84

- vector 19

- - on a manifold 298

- - phase velocity 63

Focus 184

- folded 328

Folded umbrella 328

Form, differential 20, 42

- Jordan normal 201

- of an equation not solved for the deriva-
tive 328

- symmetric 43

Formula, Barrow 18, 37

- Cardan 87

- Euler 166

- Liouville 172

- Taylor 160

Function, influence 55

- Green’s 55

- Hamiltonian 126

- harmonic 88

- homogeneous 80

- Lyapunov 201

- quasi-homogeneous 83

- return 30

Functor 178

Geodesic 325

Grading 83

Group, abstract 58

- commutative (abelian) 60
- contact 137

- of diffeomorphisms 62

- of quasi-homogeneous dilations 82
- of symmetries 76

- of transformations 58

- - linear 63, 153

- one-parameter 60

- stationary 119

Group property 60, 163

Hadamard’s lemma 143
Holonomy 30
Homeomorphism 206
Homomorphism 59
Hypersurface 130

- initial 130



Image of a vector 66

- of a vector field 70

- of a phase flow 75
Independence, linear rational 217, 230,
245

Index of a curve 309

- of a singular point 312
Initial condition 18, 107
Integral, first 125

- - time-dependent 127
- - local 126
Integrating factor 86
Involution 327

Isometry 58

Jet 114
Kepler problem 142

Lamerey staircase 30

Law of gravitation 110
Legendre transformation 116
Lie algebra 124
Linearization 49, 152

Lines, asymptotic 329

- geodesic 325

- parabolic 329

- level, of energy 139
Lipschitz condition 37, 272
Lipschitz constant 37

Local evolution law 64
Lotka-Volterra model 29, 43, 327

Manifold, analytic 290

- connected 293

- differentiable (smooth) 289
- invariant incoming 208, 278
- - outgoing 208, 278

- oriented 290

- topological 288

Manifold structure 289
Mapping, differentiable (smooth) 66, 294
- contraction 267

- locally equivalent 92

- nondegenerate 92

- over a period 256

- Picard 269

Index 333

- Poincaré 30

- Whitney (cusp) 69
Method of complex amplitudes 235
- small-parameter 98
Milnor sphere 296
Mirage 325

Mobius band 81, 301
Modulus 328
Monodromy 30, 50, 327
Morse’s lemma 143
Motions, slow 328
Multiplier 50, 57

Natural frequency 228
Node 40

- folded 328

Norm 157, 271

- of an operator 156

Operator, diagonal 160

- complex conjugate 178

- Laplacian 88

- nilpotent 160

Orbit 59

Oscillating mode 44
Oscillations, forced 47, 56, 236
- natural (characteristic) 228
- relaxation 328

- weakly nonlinear 240

Parallelization 301

Pendulum 33, 95, 104, 139, 148, 174,
191, 240, 248, 256

Perturbations, small 53, 94, 98, 149, 240,
264

Poincaré conjecture 296

Phase flow 61

Plane, contact 114

- dual 116

Poisson bracket 124

Projective line 81

Quasi-polynomials 161, 229
Quota, harvest 25

Realification 177
Rectification of a vector field 103, 304
- of a direction field 89
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Resonance 237

- parametric 261

Rotation, elliptic 190

- hyperbolic 62
Routh-Hurwitz problem 214

Saddle 40

Section of a bundle 300
Self-oscillating mode 31, 151
Self-oscillations 47, 149
Sequence, Cauchy 156

- Fibonacci 176

- recursive 226

Smoothness 16

- of a manifold 290
Solution of an equation 18

- - general 193

- - periodic 56

- - of an nth-order equation 105
Space, complete 156

- fibered 298

- metric 156

- normed 157

- of a bundle 300

- of jets 114

- phase 13

- - extended 28

- projective

- tangent 67, 299

- vector 13

Spiral, logarithmic 183
Stability, asymptotic 211, 258
- Lyapunov 210, 258, 326

- strong 259

Stable equilibrium mode 25
Sturm-Liouville problem 255, 327
Submanifold 297

Subset, compact 293

- invariant 182

- open 293

Swallow’s tail 329
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