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Preface

Arguably, the two most powerful operations research/management science
(OR/MS) techniques are simulation and optimization. Simulation in this book
will refer to stochastic simulation, whereby there is randomness in the system, also
known as Monte Carlo simulation. Optimization dates back many centuries and is
generally considered the older of the two siblings. Both approaches were propelled
forward by the advent of the digital computer over half a century ago, leading up
to the present golden age when both routinely address complex large-scale real-
world problems and both are implemented in a large variety of computer software
packages. However, combining the two techniques is a more recent development,
and software effectively integrating the two is relatively limited; thus, simulation
optimization remains an exciting and fertile area of research. The purpose of the
handbook is to provide an overview of the state of the art of simulation optimization,
comprising a survey of the most well-established approaches and a sampling of
recent research advances in theory/methodology.

The single volume should serve as a reference for those already in the field and
as a means for those new to the field for understanding and applying the main
approaches to problems of interest. The intended audience includes researchers,
practitioners, and graduate students in the business/engineering fields of operations
research, management science, operations management, and stochastic control, as
well as in economics/finance and computer science.

In addition to sincerely thanking the authors for their contributions, which have
resulted in a high-quality volume, I wish to gratefully acknowledge the support and
encouragement of Fred Hillier, the Series Editor, whose persistence ensured that I
would not give up on this project when other commitments appeared overwhelming.
Last but certainly not least, I’d like to thank Marie Chau for her superb editorial
assistance.

College Park, MD, USA Michael C. Fu
February 2014
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Selected Abbreviations and Notation

a.s. almost surely
c.d.f. cumulative distribution function
CLT central limit theorem
p.d.f. probability density function
p.m.f. probability mass function
e.g. for example (exempli gratia)
i.e. that is (id est)
i.i.d. independent and identically distributed
s.t. subject to, or such that
w.p. with probability
cf. compare, or see (confer)
E[·] expectation
P(·) probability
Var[·] variance
Cov(·) covariance
f (·) objective function (except in Chaps. 2, 5, and 12, where it is a p.d.f.)
g(·) gradient estimate or p.d.f. (objective function in Chaps. 2 and 9)
x or x decision variables (vector)
xT or AT transpose of vector x or matrix A
Y (x,ξ ) output random variable
Y mean or sample average of Y
f̂ estimate of f
ξ randomness
θ , J(θ ) parameter, performance measure (Chap. 5 only)
Θ constrained parameter set
|x|, |Θ | absolute value (or modulus) of real-valued x, size of setΘ
‖ · ‖ norm, e.g., Euclidean or L2

1{·} indicator function of the set {·}
∇ gradient operator
≡ or := equal by definition

xv



xvi Selected Abbreviations and Notation

d
= equal in distribution
d→ convergence in distribution
p→ convergence in probability
=⇒ implies
⇐⇒ if and only if
N (μ ,σ2) normal distribution with mean μ and variance σ2

N (μ ,Σ) multivariate normal distribution with mean (vector) μ
and covariance matrix Σ

U(a,b) (continuous) uniform distribution on [a,b]
(x)+ max{x,0}
(x)− max{−x,0}
�x� smallest integer greater than or equal to x (ceiling function)
f (h) ∈ O(h) limh→0 sup f (h)/h < ∞ or limh→∞ sup f (h)/h < ∞
f (h) ∈ o(h) limh→0 f (h)/h = 0 or limh→∞ f (h)/h = 0



Chapter 1
Overview of the Handbook

Michael C. Fu

Abstract This chapter provides a brief introduction to the handbook, including an
overview of the contents of the other chapters.

Consider the optimization problem

min
x∈Θ

f (x), (1.1)

where f is the objective function, x represents the decision variables, and Θ is
the feasible region or constraint set. All of the chapters with the exception of the
final one basically address this problem in some form. As in the deterministic
optimization domain, one dichotomy is whether the decision variables are discrete
(ordered or unordered, finite or infinite) or continuous, or a mixture of the two. Most
real-world simulation optimization problems have multiple objectives. Although
this handbook focuses on the case of a single objective function, this (generally
nonlinear) function could be understood as having already subsumed competing
objectives through an appropriate combination or having moved all other objectives
to the constraints in the constrained optimization setting (discussed in many of the
chapters, but see especially Chap. 9, which focuses on stochastic constraints). Other
approaches to multi-objective optimization such as goal programming and Pareto-
optimal solutions are discussed briefly in Chaps. 10 and 11.

The term “simulation optimization” in this handbook generally refers to opti-
mization in the setting where the objective function f cannot be computed exactly,
i.e., it is estimated with some noise. More generally, such a setting is also known as
“stochastic optimization,” but simulation is used in its place here to emphasize the
specific context of using (stochastic or Monte Carlo) simulation for the estimation.
Thus, f is not directly available; rather, realizations of random variables (simulation
replication outputs) are observed. For simplicity, assume that these observations can
be summarized by a single random variable, call it Y (x,ξ ), where ξ represents the
randomness, e.g., a stream of underlying random numbers in a stochastic simulation.

M.C. Fu (�)
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e-mail: mfu@umd.edu
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For most of the handbook, the objective function is the expectation of this output
random variable (response), i.e.,

f (x) = E[Y (x,ξ )],

but more generally it could be some other performance measure such as a
quantile, i.e.,

f (x) = qα(x),

where the α-quantile qα , 0 < α < 1, of Y is defined by

qα(x) = sup{y : P(Y (x,ξ )≤ y)≤ α},

or equivalently α = P(Y (x,ξ )≤ qα(x)) when Y is a continuous random variable.
However, in the literature, simulation optimization is also used sometimes to

refer to the search process itself, i.e., utilizing randomization in guiding the search.
These types of algorithms are the focus of Chaps. 11 and 12. And in some cases,
simulation (or stochastic) optimization references both sources of stochasticity;
hence, the book by Spall [32] is titled “Stochastic Search and Optimization” to cover
both. Another term used is “optimization via simulation” as in the next chapter and
in the early review paper on the topic [7].

To overview the contents, the handbook can be roughly categorized as follows.
Discrete optimization is treated exclusively in Chaps. 2 and 3, whereas the rest of
the handbook focuses mainly on continuous optimization, although the discussion
of random search in Chap. 10 explicitly starts with the discrete setting. Specifically,
Chap. 2 treats the discrete setting along the entire spectrum of possibilities: when
the number of alternatives is relatively small, when the number of alternatives is
very large but finite, and when the number of alternatives is (countably) infinite.
In the first case, the statistical ranking & selection framework is followed, and
several practical algorithms are presented using the probability of correct selection
criterion. In the second case, the approach of ordinal optimization—the idea that
ordering converges (exponentially) fast versus the canonical Monte Carlo inverse
square root rate for estimation—is discussed. In the third case, random search
methods tailored to the simulation setting are described, both globally and locally
convergent algorithms. Chapter 3 also addresses the problem of selecting the best
for a relatively small set of alternatives, but using an optimization framework on the
simulation budget allocation rather than from a statistical perspective. The two main
approaches covered are optimal computing budget allocation (OCBA) and expected
value of information (EVI).

The continuous setting includes the most commonly used simulation optimiza-
tion techniques: response surface methodology (Chap. 4), stochastic approximation
(Chaps. 5–7), sample average approximation (Chaps. 8 and 9), and random search
methods (Chaps. 10–12). Coincidentally, response surface methodology (RSM) and
stochastic approximation (SA) both trace their roots back to 1951, launched by the

http://dx.doi.org/10.1007/978-1-4939-1384-8_3
http://dx.doi.org/10.1007/978-1-4939-1384-8_3
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seminal papers of Box and Wilson [3] and Robbins and Monro [27], respectively.
Needless to say, neither of the two settings considered simulation optimization,
since simulation itself was but in its infancy (the Monte Carlo method having
just been introduced in 1949 [22]), but one could argue that at present simulation
optimization is the primary driver of both fields. Chapter 4 summarizes the RSM
approach and presents some recent advances, including a constrained optimiza-
tion and robust optimization variants. Stochastic gradient estimation methods are
presented in Chap. 5, setting the stage for the subsequent two chapters on SA
methods. Chapter 5 also includes some recent developments on using gradients
in new ways, for both SA and RSM. An overview of SA methods is provided in
Chap. 6, covering the classical Robbins–Monro [27] and Kiefer–Wolfowitz [18]
algorithms, as well as succeeding algorithms such as simultaneous perturbation
stochastic approximation [31], which is particularly applicable for high-dimensional
simulation optimization problems. Classical asymptotic convergence properties are
summarized, and practical implementation challenges that arise in applying an SA
algorithm in simulation optimization, such as those having to do with the step size
(gain) sequences and the projection operator, are discussed in detail. Chapter 7
presents some recently developed SA algorithms that have been successfully applied
to (convex) stochastic programming problems, and summarizes some theoretical
properties of these algorithms. Letting x∗ denote an optimal solution for the
optimization problem (1.1), the theoretical results establish finite-time bounds on
the distance from the optimal value f (x∗), in contrast to classical results that focus
on asymptotic convergence properties of the estimated optimum x∗.

Chapter 8 provides a guide to sample average approximation (SAA), with a
focus on characterizing when it might be a fruitful approach. A novel connection to
infinitesimal perturbation analysis (IPA), one of the stochastic gradient estimation
techniques discussed in Chap. 5, is made. Theoretical properties of SAA are
reviewed, and the approach is contrasted with SA for simulation optimization.
Note that in principle, SAA can also be applied to mixed discrete-continuous
optimization problems, although the focus of Chap. 8 is on cases where there is
special structure such as continuity and differentiability for continuous optimization
problems. For the SAA setting, recent advances in stochastic constraints and
variance reduction techniques are treated in Chap. 9. However, as mentioned earlier,
stochastic constraints arise in the general simulation optimization setting, so these
results can also be viewed as beneficial from the broader simulation optimization
perspective.

The next three chapters treat random search, which is also covered in Chap. 2
for the discrete setting. Chapter 10 explicitly treats the structure of random search
for the setting where simulation is used to estimate the objective function, whereas
the focus of the random search methods of Chaps. 11 and 12 is on the search rather
than the estimation. Chapter 10 begins with a review of algorithms developed for
the discrete deterministic setting (primarily simulated annealing) before moving
to the stochastic simulation setting. The framework specifies the generation of
a population of potential candidates at each iteration. Chapter 11 analyzes the
theoretical convergence properties of various random search algorithms in the
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deterministic setting, focusing on iterative algorithms that consider one candidate
at each iteration. Implementation issues are addressed using the well-known hit-
and-run sampling algorithm for generating from a probability distribution. Along
the same vein, Chap. 12 treats a relatively newer class of random search algorithms
called model-based methods, which work directly with a probability distribution
to generate a population of candidate solutions, and then update the probability
distribution based on the sampled candidates’ performance. This class of methods
includes the cross-entropy method [28] and model reference adaptive search [17].

The final chapter covers the dynamic stochastic setting of Markov decision
processes, where simulation-based approaches have been used successfully to solve
large-scale problems [4,5]. These techniques have become to be known as approxi-
mate dynamic programming [9, 26] in the operations research/management science
community and reinforcement learning [15] in the computer science community.

Each of the chapters was written independently, with editorial coordination only
on topical coverage and notational usage (see table on next page). Generally, the
chapters can be read independently of each other, with a few possible exceptions
being Chaps. 6 & 7 and Chaps. 8 & 9, as the first in each pair provides both
background and context that enhances understanding of the second; moreover, both
Chaps. 6 and 8 consider procedures that make use of stochastic gradient techniques,
the topic of Chap. 5. As might be discerned by the earlier summary descriptions of
the chapters, there is clearly some overlap of topical coverage, e.g., random search
is covered from various angles in four different chapters.

This handbook focuses exclusively on methodology. An abundant source of sim-
ulation optimization applications, covering diverse areas including manufacturing,
supply chain management, transportation, health care, finance/risk, and the military,
can be found in the annual Winter Simulation Conference (WSC) proceedings,
freely available on the World Wide Web at

http://informs-sim.org or http://wintersim.org.
As of the writing of this handbook, simulation optimization has become a regular
full track at WSC, which is the premier conference in the field of stochastic
discrete-event simulation (and also includes hybrid and agent-based simulations).
One might ask whether or not there has been any widespread comparisons between
different approaches. Some papers that have reported comparisons between SA
and SAA include the following: an (s,S) inventory control problem [11]; a mul-
tidimensional newsvendor problem [19]; three stochastic programming problems
[23]: a stochastic utility problem, a stochastic max-flow problem, and a network
planning problem with random demand. The Simulation Optimization Library at

http://www.simopt.org
is a testbed of simulation optimization problems; see the Web site and [24, 25] for
details.

Around the turn of the millennium, commercial software for simulation opti-
mization started becoming prevalent. As discussed in [8], the majority of these are
algorithms based on ideas from deterministic optimization, predominantly robust
metaheuristics, offered as add-ons to existing simulation software packages. The last

http://informs-sim.org
http://wintersim.org
http://www.simopt.org
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section of the next chapter (Sect. 2.8) includes discussion on using these commercial
packages more effectively.

Listed in the following table is the specific notation used for the simulation
optimization settings in each of the chapters, with the exception of the very last
chapter (Chap. 13), which explicitly treats multi-stage problems where the solution
is a policy rather than a set of decision variables, so the notation is necessarily quite
different. The indicated “feasible region (constraint set)” column is a misnomer in
some settings, as it is only the initial region specified on the input decision variables
and does not include further constraints imposed on some estimated outputs, e.g.,
in Chaps. 4, 8, and 9.

decision objective output feasible region
chapter variable function random variable (constraint set)

1 x f (x) Y (x,ξ ) Θ
2 x g(x) Y (x,ξ ) Θ ⊆ Z

d

3 i wi xi j {1, . . . ,k}
4 z E[w0|z] w0 R

k

5 x or θ f (x) or J(θ ) Y (x,ξ ), Y (θ ,ξ ) Θ ⊆R
d

6 x f (x) Y (x,ξ ) Θ ⊆R
d

7 x f (x) Y (x,ξ ) Θ ⊆ R
n

8 x f (x) Y (x,ξ ) Θ ⊆R
d

9 x f (x) ≡ g0(x) Y (x,ξ )≡ G0(x,ξ ) Θ ⊆ R
dx

10 x f (x) Y (x,ξ ) Θ ⊆R
d

11 x f (x) Y (x,ξ ) Θ ⊆ R
n

12 x h(x) H(x,ξ ) Θ ⊆R
d

The use of f as an objective function is common in deterministic optimization;
for that reason it is adopted for the most part in this handbook. However, in the
stochastic world, f is commonly used for probability density functions, which are
needed in describing certain stochastic gradient estimation techniques in Chap. 5
and model-based search methods in Chaps. 2 and 12. Furthermore, the use of f is
not commonly found in statistical models, e.g., regression; hence, it is absent from
the chapter on response surface methodology approach (Chap. 4).

This handbook presupposes that the reader is familiar with the basics of stochas-
tic simulation. If this is not the case, the following resources are recommended to
provide background and fill any gaps in prerequisites:

• The entry, “Simulation of Stochastic Discrete-Event Systems” [10] in the 3rd
edition of the Encyclopedia of Operations Research and Management Science
[12].1

1If you are at a university or other research institution, your library might have online access to the
Encyclopedia through the publisher Springer.
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• The Introductory Tutorials found in the annual Winter Simulation Conference
proceedings alluded to earlier.

• The simulation handbooks [1, 16], and textbooks [2, 21].

Among the topics not explicitly treated in this volume are approaches based on
deterministic methods that fall under the umbrella of metaheuristics, which include
genetic algorithms and tabu search, as well as direct search algorithms such as
coordinate search, pattern search (Hooke–Jeeves), and the Nelder–Mead simplex
algorithm. Although there is no dedicated chapter for metaheuristics, algorithms
similar to simulated annealing are treated in the random search chapters. The reader
is again referred to the Encyclopedia entries, “Heuristics” [20] and “Metaheuristics”
[30], as well as to the edited handbooks [13,14]. Stochastic programming is also not
treated explicitly (although certainly alluded to in Chaps. 7–9), but there is again a
nice Encyclopedia entry on this topic [29], where simulation has begun to play a
larger role in the field. The book [6] also treats ordinal optimization and perturbation
analysis, topics covered in this handbook in Chaps. 2 and 5, respectively.

Acknowledgements This work was supported in part by the National Science Foundation under
Grants CMMI-0856256 and ECCS-0901543, and by the Air Force Office of Scientific Research
under Grant FA9550-10-10340.

References

1. J. Banks, editor. Handbook of Simulation: Principles, Methodology, Advances, Applications,
and Practice. John Wiley & Sons, New York, 1998.

2. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation.
Prentice-Hall, Upper Saddle River, NJ, 5th edition, 2009.

3. G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions. Journal
of the Royal Statistical Society. Series B (Methodological), 13(1):1–45, 1951.

4. H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-based Algorithms for Markov
Decision Processes. Springer, New York, 2007.

5. H. S. Chang, J. Hu, M. C. Fu, and S. I. Marcus. Simulation-Based Algorithms for Markov
Decision Processes. Springer, New York, 2nd edition, 2013.

6. C.-H. Chen, Q.-S. Jia, and L. H. Lee, editors. Stochastic Simulation Optimization for Discrete
Event Systems: Perturbation Analysis, Ordinal Optimization, and Beyond. World Scientific,
Singapore, 2013.

7. M. C. Fu. Sample path derivatives for (s,S) inventory systems. Operations Research,
42(2):351–364, 1994.

8. M. C. Fu. Optimization for simulation: Theory vs. practice (Feature Article). INFORMS
Journal on Computing, 14(3):192–215, 2002.

9. M. C. Fu. Approximate dynamic programming. In S. I. Gass and M. C. Fu, editors,
Encyclopedia of Operations Research and Management Science, pages 73–77. Springer, New
York, 3rd edition, 2013.

10. M. C. Fu and D. Gross. Simulation of stochastic discrete-event systems. In S. I. Gass and M. C.
Fu, editors, Encyclopedia of Operations Research and Management Science, pages 1410–1418.
Springer, New York, 3rd edition, 2013.

11. M. C. Fu and K. J. Healy. Techniques for simulation optimization: An experimental study on
an (s,S) inventory system. IIE Transactions, 29(3):191–199, 1997.



1 Overview of the Handbook 7

12. S. I. Gass and M. C. Fu, editors. Encyclopedia of Operations Research and Management
Science. Springer, New York, 3rd edition, 2013.

13. M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics. Springer, New York, 2nd
edition, 2010.

14. F. W. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics. Springer, New
York, 2003.

15. A. Gosavi. Simulation-Based Optimization: Parametric Optimization Techniques and Rein-
forcement Learning. Kluwer, Boston, MA, 2003.

16. S. G. Henderson and B. L. Nelson, editors. Handbooks in Operations Research and
Management Science: Simulation. North-Holland/Elsevier, Amsterdam, 2006.

17. J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method for global
optimization. Operations Research, 55(3):549–568, 2007.

18. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23:462–266, 1952.

19. S. Kim. Gradient-based simulation optimization. In L. F. Perrone, F. P. Wieland, J. Liu, B. G.
Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006 Winter Simulation
Conference, pages 159–167. IEEE, Piscataway, NJ, 2006.

20. M. Laguna and R. Marti. Heuristics. In S. I. Gass and M. C. Fu, editors, Encyclopedia
of Operations Research and Management Science, pages 695–703. Springer, New York, 3rd
edition, 2013.

21. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York,
3rd edition, 2000.

22. N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American Statistical
Association, 44(247):335–341, September 1949.

23. A. Nemirovski, A. Judisky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

24. R. Pasupathy and S. G. Henderson. A testbed of simulation-optimization problems. In L. F.
Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors,
Proceedings of the 2006 Winter Simulation Conference, pages 255–263. IEEE, Piscataway,
NJ, 2006.

25. R. Pasupathy and S. G. Henderson. Simopt: A library of simulation optimization problems. In
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the
2011 Winter Simulation Conference, pages 4080–4090. IEEE, Piscataway, NJ, 2011.

26. W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley, New York, 2nd edition, 2011.

27. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

28. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, 2004.

29. S. Sen. Stochastic programming. In S. I. Gass and M. C. Fu, editors, Encyclopedia of
Operations Research and Management Science, pages 1486–1496. Springer, New York, 3rd
edition, 2013.

30. K. Sörenson and F. W. Glover. Metaheuristics. In S. I. Gass and M. C. Fu, editors, Encyclopedia
of Operations Research and Management Science, pages 960–970. Springer, New York, 3rd
edition, 2013.

31. J. C. Spall. Multivariate stochastic approximation using simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37:332–341, 1992.

32. J. C. Spall. Introduction to Stochastic Search and Optimization. Wiley-Interscience, New York,
2003.



Chapter 2
Discrete Optimization via Simulation

L. Jeff Hong, Barry L. Nelson, and Jie Xu

Abstract This chapter describes tools and techniques that are useful for
optimization via simulation—maximizing or minimizing the expected value of
a performance measure of a stochastic simulation—when the decision variables are
discrete. Ranking and selection, globally and locally convergent random search and
ordinal optimization are covered, along with a collection of “enhancements” that
may be applied to many different discrete optimization via simulation algorithms.
We also provide strategies for using commercial solvers.

2.1 Introduction

In this chapter we cover optimization via simulation (OvS) problems that can be
represented as

ming(x), x ∈Θ , (2.1)

where g(x) = E [Y (x,ξ )]. There is a single objective g(x), which is representable as
the expected value of a random variable Y (x,ξ ), where ξ represents the randomness,
e.g., the random numbers in a simulation. The distribution of Y (x,ξ ) is an unknown
function of the vector of decision variables x, but realizations of Y (x,ξ ) can be
observed through simulation experiments. If the problem is more naturally thought
of as maximization then we can always formulate an equivalent minimization
version. Henceforth we drop the argument ξ for notational convenience.
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Our focus is on two related cases: Either x is an index in the setΘ = {1,2, . . . ,k}
of feasible solutions, which may be categorical (not ordered in any way); or x
is a vector of d integer-ordered decision variables in a feasible region Φ ⊂ R

d ,
possibly defined by a set of deterministic constraints. In this case we assume that
Φ is compact and convex. Therefore,Θ = Φ ∩Z

d is a finite set, where Z
d denotes

all d-dimensional vectors with integer components, and Problem (2.1) has only a
finite number of feasible solutions. We refer to this class of problems as Discrete
Optimization via Simulation (DOvS) problems.

The solution methods we describe assume that Var[Y (x)]< ∞ for all x ∈Θ , and
that we have an estimator ĝ(x) that converges with probability 1 (w.p.1) to g(x)
as we expend more and more simulation effort on solution x. If that estimator is a
sample mean, then we use the notation Y (x). Often, but not always, we can simulate
independent and identically distributed (i.i.d.) replications, Y1(x),Y2(x), . . . at any x.

The following examples, which are based on Nelson [48], illustrate the types of
problems we consider and the issues that arise.

2.1.1 Designing a Highly Reliable System

A system works only if all of its subsystems work; the subsystems consist of
components that have their own time-to-failure and repair-time distributions. The
objective is to decide how many and what redundant components to use to minimize
steady-state system unavailability given budget constraints. The budget is relatively
tight, so altogether there are only 152 feasible configurations. Let x∈ {1,2, . . . ,152}
index the configurations.

In this problem there are a small number of feasible solutions, and they can be
treated as categorical. This is a choice, however, because we could also define
x = (x1,x2, . . . ,xd) where xi is the number of redundant components of type i
to include. The state of art for solving DOvS problems makes it advantageous
to treat the problem as categorical if the number of solutions is relatively small
because there are highly efficient solution methods that apply when it is possible
to simulate all feasible solutions, at least a little. This is analogous to deterministic
integer programming (IP) problems in which it is possible to exhaust the feasible
region, making it pointless to apply a high-powered IP algorithm. However, unlike a
deterministic IP, a single evaluation of the objective function in DOvS is (typically)
not sufficient because Y (x) is only an estimator of g(x) that is subject to sampling
error, i.e., Y (x) �= g(x) w.p.1, even though E[Y (x)] = g(x). Sampling error is reduced
by expending additional simulation effort at solution x, and doing so (usually
adaptively) is the central feature of solution methods.

In this problem g(x) represents steady-state (long-run average as time goes to
infinity) system unavailability, which implies that the estimator of g(x) can be
defined in one of two ways:
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Extended replication average:

Ŷ (x) =
1
T

∫ T

0
A(t)dt (2.2)

where A(t) = 1 if the system is unavailable, and 0 otherwise. Sampling error is
controlled by increasing the run length T .

Additional replication average:

Y (x) =
1
n

n

∑
i=1

(
1

Te −Tb

∫ Te

Tb

Ai(t)dt

)
=

1
n

n

∑
i=1

Ŷi(x) (2.3)

where Te > Tb are fixed times, and Ai(t) is the sample path from the ith
replication. Sampling error is controlled by increasing the number of i.i.d.
replications n.

In Sect. 2.3 we describe ranking and selection methods for such problems.

2.1.2 Flow-Line Throughput

A three-stage flow line has finite buffer storage space in front of stations 2 and
3 (the number of spaces being denoted by x4 and x5) and an infinite number of
jobs in front of station 1. There is a single server at each station, and the service-
time distribution at station i has service rate xi, i = 1,2,3. If the buffer of station
i is full, then station i− 1 is blocked and a finished job cannot be released from
station i− 1. The total buffer space and the service rates are limited by constraints
on space and cost. The objective is to find a buffer allocation and service rates
such that the expected throughput over a 1-year planning horizon is maximized. The
deterministic constraints are x1+x2+x3 ≤ 20,x4+x5 = 20,1≤ xi ≤ 20 and xi ∈Z

+

for i = 1,2, . . . ,5, implying 21,660 feasible solutions. This example is adapted from
[8, 58] .

Here the number of feasible solutions is probably larger than can be exhausted,
so some sort of search is required. In Sects. 2.5–2.6 we describe methods to solve
such problems based on adaptive random search.

Notice in this problem that the fixed 1-year planning horizon means that sampling
error is reduced only by increasing the number of replications—it makes no sense
to extend a replication beyond 1 year because the performance measure of interest
is defined with respect to 1 year. Thus, the natural estimator is

Y (x) =
1
n

n

∑
j=1

Yj(x)

where Yj(x) is the throughput observed in 1 year of production on replication j for
solution x.
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2.1.3 Inventory Management with Dynamic Customer
Substitution

A retailer faces a one-shot inventory stocking decision for six product variants
at the beginning of the selling season so as to maximize the expected value of
profit. No inventory replenishment can occur, and there is no salvage value for the
products. Each consumer selects the available product with the highest utility for
them, which may be a no-purchase option. The number of customers is Poisson, and
the customer’s choice behavior is modeled by a multinomial logit model. Pricing
is an exogenous decision. Let x1,x2, . . . ,x6 denote the number of each variant the
retailer chooses to stock. This example is adapted from [45].

In theory, there are a countably infinite number of feasible solutions since there
is no fixed upper bound on the quantity of variant i that the retailer stocks, xi. In
practice, clearly there is a level beyond which it makes no sense to stock. These level
bounds can be determined by factors such as store capacity and maximal demand
possible. Then, the problem can be transformed into a DOvS problem.

When solving deterministic IPs, branch-and-bound methods that relax integrality
constraints are often used, which is possible because the objective function can
be evaluated at non-integer values. When solving DOvS problems, however, the
simulation may not make sense at fractional values of x. For instance, it is not
clear how to simulate stocking 112.3 blue shirts. As opposed to having a known
linear, quadratic or even convex objective function, the function g(x) is implied by
the simulation model and little structural information about it is available. And, of
course, g(x) can only be estimated.

2.1.4 Themes

The focus of this chapter is on methods that lead to rigorously provable performance,
as defined in Sect. 2.2 below (however, in Sect. 2.8 we give practically useful tips
for using commercial OvS solvers based on metaheuristics). We assume little or no
structural information about g(x); as a result, the balance between expending effort
on search—looking for better feasible solutions—and estimation—estimating the
true objective function value of solutions we have investigated—is a core issue for
DOvS algorithms.

There are three fundamental types of errors that occur in DOvS problems; the
latter two occur even when the number of feasible solutions is small enough that all
of them can be simulated.

1. The optimal solution is never simulated. This is a reality in many difficult
nonlinear IPs when the feasible solutions cannot be exhausted, and DOvS is no
different.
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2. The best solution that was simulated is not selected. Sampling variability means
that the best solution we simulated may not have the best estimated objective
function value.

3. We do not have a good estimate of the objective function value of the solution
we do select. When minimizing a stochastic response by selecting the solution
with the smallest estimated value, there is a natural bias toward solutions whose
estimated performance is better (lower) than its true expected value.

How these issues are addressed in different problem classes is the subject of the
remainder of this chapter.

2.2 Optimality Conditions

Let Θ ∗ = argmin{g(x) : x ∈ Θ} be the set of optimal solutions of Problem (2.1).
Because Θ = Φ ∩Z

d and Φ ⊂ R
d is a compact set, Θ is a finite set, i.e., |Θ | < ∞.

Therefore,Θ ∗ is guaranteed to be nonempty. Furthermore, the finiteness of Θ also
implies that there exists a positive constant δ > 0 such that

g∗ ≤ g(y)− δ forall y ∈Θ \Θ ∗, (2.4)

where g∗ = minx∈Θ g(x) is the optimal objective value. Note that Eq. (2.4) implies
that optimal solutions are at least δ better than other feasible solutions.

To solve optimization problems we often need optimality conditions which
(a) assure the correctness of algorithms and (b) help in designing implementable
stopping rules. To illustrate the usefulness of optimality conditions, we consider the
following two examples.

• In unconstrained nonlinear optimization, convergence to a stationary point
whose gradient is zero is a widely used optimality condition. Many algorithms,
including the steepest descent algorithm and Netwon’s method, are proved to
satisfy this condition [50]. In practice, all these algorithms typically stop short
of convergence. But they often stop when they find a solution whose gradient is
sufficiently close to zero.

• In integer linear programming, algorithms often keep track of an upper bound and
a lower bound. A commonly used optimality condition is that the gap between the
two bounds goes to zero. Many algorithms, including the branch-and-bound and
branch-and-cut algorithms, are proved to satisfy this condition. Then in practical
implementation, these algorithms often stop when the gap is small enough.

Although the set of optimal solutions Θ ∗ is clearly defined for DOvS problems,
defining optimality conditions for DOvS algorithms is not easy for the following
reasons:

1. The objective function g(x) cannot be calculated exactly; instead, it can only be
estimated by Y (x). This estimation noise generally makes it impossible to rank
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solutions with 100% confidence. Therefore, DOvS algorithms cannot guarantee
in general to find an optimal solution with a finite amount of computational effort.

2. Typically g(x) and Y (x) are unknown functions that are embedded in simulation
models. We do not have the structural results on g(x) or Y (x) that can be used to
screen out (often a large number of) inferior solutions as, for instance, in branch-
and-cut algorithms for integer linear programs. Therefore, to find an optimal
solution of Problem (2.1), one has to evaluate all feasible solutions.

3. AlthoughΘ is a finite set, it often has a large number of feasible solutions as in
the flow-line and inventory-management examples reported in Sects. 2.1.2 and
2.1.3, respectively. Complete enumeration of all solutions may not be possible
for many practical problems.

Despite these difficulties, researchers have established various optimality con-
ditions for DOvS problems that are either theoretically convenient or practically
useful. In this section we will introduce these conditions.

When Θ is small, i.e., Θ has less than a few hundreds of solutions, we may
be able to simulate all solutions and select the best among them. This is known
as ranking and selection (R&S). Because of the randomness in the simulation
outputs, one cannot guarantee to select the best solution with 100% confidence.
Then, a practical approach is to analyze the probability of correct selection (PCS),
i.e., P(x∗ ∈ Θ ∗) where x∗ denotes the selected best solution. A commonly used
optimality condition is to require R&S algorithms to achieve a predetermined PCS,
i.e., P(x∗ ∈Θ ∗)≥ 1−α . In Sect. 2.3 we will introduce such algorithms.

When Θ is large, simulating all solutions in Θ becomes practically impossible.
One may soften the goal of finding an optimal solution to finding a good enough
solution, where a “good enough” solution may be defined as one of the top t
solutions in Θ . Suppose that one has the computational budget to evaluate n
solutions inΘ . Then, it is important to know the probability that at least one of these
n solutions is a top t solution, which is known as the alignment probability (AP).
Let T ⊂Θ denote the set of top t solutions, and let S denote the set of the chosen n
solutions. Then, the alignment probability is defined as P(|T ∩S| ≥ 1). A commonly
used optimality condition is to require algorithms to achieve a predetermined level
of AP, i.e., P(|T ∩ S| ≥ 1) ≥ 1−α . This optimality condition is used in ordinal
optimization, which will be introduced in Sect. 2.4.

Another commonly used optimality condition when Θ is large is global con-
vergence as the amount of computational effort goes to infinity. Let x∗m denote the
solution that the algorithm would report as optimal if stopped at the end of iteration
m and g∗m = g(x∗m). Then, the algorithm is globally convergent in probability if
g∗m → g∗ in probability and globally convergent w.p.1 if g∗m → g∗ w.p.1. By Eq. (2.4),
these two convergence criterion are equivalent to

lim
m→∞

P(x�m ∈Θ �) = 1,

P
(

lim
m→∞

1{x�m ∈Θ �}= 1
)
= 1,
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respectively, where 1{·} is the indicator function. As all algorithms stop in a
finite amount of time, one may wonder why convergence properties are desirable.
Andradóttir [2] answers this question:

Although this [convergence] performance guarantee does not assure that the algorithm will
return a “good” estimated optimal solution (because additional computational effort may
be required), it is certainly a reassuring property to have. From a different perspective, it
is worrisome to use a simulation optimization algorithm in practice that is not known to
converge even if an infinite amount of computational effort is expended!

Many globally convergent algorithms have been proposed to solve DOvS problems
and we will introduce them in Sect. 2.5.

As pointed earlier in this section, optimality conditions assure the correctness of
algorithms and help in designing implementable stopping rules. Global convergence
achieves the first goal by reassuring the algorithm eventually finds an optimal
solution. However, to achieve global convergence when there is no special structure,
algorithms have to evaluate all solutions in Θ in the limit, and it is not clear how
to relax this requirement for some implementable stopping rules. To resolve this
problem, local convergence has been proposed. Let N(x) ⊂ Θ denote the local
neighborhood of any solution x ∈ Θ , and let x be a locally optimal solution if
g(x)≤ g(y) for all y ∈ N(x). Notice that the definition of local optimality depends
on the definition of the local neighborhood and different local neighborhoods
may result in different local optimal solutions. Let L denote the set of locally
optimal solutions for the DOvS problem. Then, similar to the definition of global
convergence, we may define local convergence in probability and local convergence
w.p.1 as

lim
m→∞

P(x�m ∈L ) = 1,

P
(

lim
m→∞

1{x�m ∈L }= 1
)
= 1,

respectively. To converge to a locally optimal solution, algorithms do not need
to evaluate all feasible solutions. Furthermore, because the local neighborhood is
typically a small set, one can statistically test the local optimality of any solution
x, i.e.,

H0 : g(x)≤ min
y∈N(x)

g(y) vs H1 : g(x)> min
y∈N(x)

g(y),

and control the type I and type II errors of the test. This provides an implementable
stopping rule for algorithms in a finite amount of time. In Sect. 2.6 we will introduce
some locally convergent algorithms.

Other than the algorithms that are built around convergence or correct-selection
guarantees, there are also many algorithms that are based on heuristics for deter-
ministic optimization algorithms, such as genetic algorithms and tabu search. These
algorithms work well for difficult deterministic integer programs, and they are
somewhat tolerant of sampling variabilities. However, they typically do not satisfy
any optimality conditions for DOvS problems and may be misled by sampling
variabilities. These algorithms are typically used in commercial Solvers and we offer
some suggestions on how to use them effectively and efficiently in Sect. 2.8.
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2.3 Ranking and Selection

Methods in the category of ranking and selection (R&S) apply to problems with a
relatively small number of feasible solutions, such as designing the highly reliable
system described in Sect. 2.1.1. The R&S procedures that have seen broad use
in optimization via simulation treat the feasible solutions as categorical, meaning
that they make no attempt to exploit relationships among the solutions (other than
that their similarity may make the use of common random numbers effective). The
definition of “relatively small” depends to some extent on how much time it takes to
simulate an alternative, since R&S procedures simulate them all, but problems with
up to 1,000 feasible solutions have been solved in this way. Recently, Luo et al.
[44] implemented R&S procedures on a parallel computing environment with tens
to hundreds of parallel processors, and solved practical DOvS problems with more
than 20,000 feasible solutions.

Our focus will be on the indifference-zone formulation of optimality, as described
in Sect. 2.2, but with some discussion of a Bayesian formulation. Suppose that
there are k ≥ 2 solutions in Θ , denoted as x1,x2, . . . ,xk. We let Yj(xi) denote
the jth observation from simulating solution xi. Many R&S methods assume that
Yj(xi) ∼N (g(xi),σ2

i ), where g(xi) is unknown and the σ2
i are typically unknown

and unequal. To simplify notation, we let g(x1)≤ g(x2)≤ ·· · ≤ g(xk) and the goal
of a R&S procedure is to select solution x1 whose identity is unknown. Under
the indifference-zone formulation, the best solution x1 will be selected with a
probability at least 1−α as long as the difference between the objective values
of the best and second-best solutions is at least δ > 0. If there are a set of solutions
whose objective values are within δ of the best solution, then all solutions in that
set are acceptable.

R&S procedures were developed in the 1950s for statistical selection problems
such as choosing the best treatment for a medical condition. In such contexts small
numbers of alternatives with relatively equal variances (maybe even “known” vari-
ances from similar experiments) were common. Researchers have creatively built on
this foundation to address problems that are of particular importance in computer
simulation: unknown and unequal variances; larger numbers of feasible solutions;
induced correlation across solutions due to the use of common random numbers;
autocorrelation within a replication of a solution in steady-state simulation; and
non-normal output data. Despite the extensive literature and the many variations
that have been proposed, the foundations for most procedures can be found in three
very old procedures described below.

Bechhofer’s procedure [4] is one of the earliest and simplest indifference-zone
selection procedures. It assumes that σ2

1 = σ2
2 = · · · = σ2

k = σ2 and σ2 is known,
and Yj(xi) is independent of Yn(xm) whenever i �= m (different solutions) or j �= n
(different observations) or both.

Bechhofer’s procedure determines the sample sizes required for all k solutions
based on the variance of the solutions and by assuming g(x1)+ δ = g(x2) = · · · =
g(xk)—the most difficult case—which frees it from needing to know anything about
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the true means. This procedure can be thought of as a hypothesis test with controlled
power for detecting that one solution is ≥ δ better than the others; it provides an
experiment design that leads to the indifference-zone definition of optimality being
satisfied with prespecified probability.

Bechhofer’s Procedure

Step 1. Determine the constant h that satisfies P(Zi ≤ h, i = 1,2, . . . ,k− 1) = 1−
α where (Z1,Z2, . . . ,Zk−1) has a multivariate normal distribution with means 0,
variances 1, and common pairwise correlations 1/2. Let

n =

⌈
2h2σ2

δ 2

⌉
.

Step 2. Take n observations from each solution and calculate Y (xi;n) for all i =
1,2, . . . ,k, where Y (xi;n) denotes the sample mean of Yj(xi), j = 1,2, . . . ,n.

Step 3. Select the solution with the smallest sample mean Y (xi;n) as the best.

A feature of Bechhofer’s procedure and its descendants is that they do not try
to exploit information provided by the sample mean of each alternative until the
very end. When the samples are collected one at a time, as they are in simulation
experiments, it is possible to evaluate the selection decision at intermediate stages.
Fully-sequential procedures evaluate after every sample is taken. The simplest
fully-sequential procedure is Paulson’s procedure [54], which makes the same
assumptions as Bechhofer’s procedure.

Paulson’s Procedure

Step 1. Let 0 < λ < δ and

a = ln

(
k− 1
α

)
σ2

δ −λ
.

Let I = {x1,x2, . . . ,xk} and r = 0.
Step 2. Let r = r + 1. Take one observation from each solution that is in I and

compute Y (xi;r) for all xi ∈ I.
Step 3. Let Iold = I and

I=

{
xi ∈ Iold : Y (xi;r)≤ min

�∈Iold
Y(x�;r)+

(a
r
−λ
)+}

, where (x)+ ≡ max{0,x}.

If |I|> 1, then go to Step 2; otherwise, select the solution in I as the best.

Paulson’s procedure uses a large deviations bound to account for taking multiple
looks at the data. Descendants of Paulson’s procedure use bounds based on
Brownian motion crossing boundaries. The efficiency that comes from eliminating
noncompetitive solutions early can be substantial.
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Relatively large numbers of alternatives typically means that (a) they were
created by taking all feasible combinations of some more basic decision variables,
and (b) many of them are not really competitive. Both Bechhofer-like and Paulson-
like procedures can benefit from a prescreening step that eliminates many of the
uncompetitive solutions while retaining the best with a guaranteed probability.
Subset selection procedures trace back to a procedure due to Gupta [22, 23]:

Gupta’s Procedure

Step 1. Determine the constant h that satisfies P(Zi ≤ h, i = 1,2, . . . ,k − 1) =
1 − α where (Z1,Z2, . . . ,Zk−1) has a multivariate normal distribution with
means 0, variances 1, and common pairwise correlations 1/2. Select n ≥ 1.

Step 2. Take n observations from each solution and calculate Y (xi;n) for all i =
1,2, . . . ,n.

Step 3. Let

I =

{
xi : Y (xi;n)≤ min

� �=i
Y (x�,n)+ hσ

√
2
n

}
.

Step 4. Return I.

Under the same assumptions as Bechhofer’s and Paulson’s procedures, Gupta’s
procedure guarantees that P(x1 ∈ I) ≥ 1−α . No indifference-zone parameter is
specified, and it is possible that |I| = k, i.e., no solution is eliminated. In practice,
when k is large many solutions are screened out so that a selection procedure like
Bechhofer’s can be applied to a much smaller set of solutions. By appropriately
spending the allowable error α between screening and selection, the desired
indifference-zone optimality condition can be attained.

We now present two procedures that are based on the principles of Bechhofer,
Paulson and Gupta, but have been extended to be relevant for simulation. NSGS
(Nelson et al. [49]) combines subset selection like Gupta with ranking like
Bechhofer. It allows unknown and unequal variances.

NSGS Procedure

Step 1. Specify a common first-stage number of replications from each solution
n0 ≥ 2; further, set

t = t
n0−1,(1−α/2)

1
k−1

the (1−α/2)
1

k−1 quantile of the t distribution with n0 − 1 degrees of freedom,
and obtain Rinott’s constant h= h(n0,k,1−α/2) from the tables in Wilcox [72],
Bechhofer et al. [5] or Goldsman and Nelson [21].
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Step 2. Take n0 replications from each feasible solution. Calculate the first-stage
sample means Y (xi;n0) and marginal sample variances

S(xi)
2 =

1
n0 − 1

n0

∑
j=1

(
Yj(xi)−Y(xi;n0)

)2
,

for i = 1,2, . . . ,k.
Step 3. Calculate the quantity

Wi� = t

(
S(xi)

2 + S(x�)2

n0

)1/2

for all i �= �. Form the screening subset

I = {xi : Y (xi;n0)≤ Y (x�;n0)+Wi� for all � �= i}.

Step 4. If |I| = 1, then stop and return the solution in I as the best. Otherwise, for
all xi ∈ I, compute the second-stage sample sizes

Ni = max

{
n0,

⌈(
hS(xi)

δ

)2
⌉}

.

Step 5. Take Ni − n0 additional replications from all solutions xi ∈ I.
Step 6. Compute the overall sample means Y (xi;Ni) for all xi ∈ I. Select the

solution xB = argminxi
Y (xi;Ni) as best.

NSGS guarantees that xB = x1, or g(xB) is within δ of g(x1), and also that
g(xB) ∈ Y (xB;NB)± δ , all w.p. ≥ 1−α . NSGS has been applied to problems with
more than 1,000 feasible solutions, and tends to be very efficient when there are
a few competitive solutions and many non-competitive ones. The procedure works
even if this is not the case, but may be computationally expensive if the subset-
selection Step 3 cannot screen out a significant number of feasible solutions.

Procedure KN (Kim and Nelson [39]) below is a descendant of Paulson that
allows unknown and unequal variances, and the use of common random numbers.

KN Procedure

Step 1. Specify common first-stage number of replications n0 ≥ 2. Set

η =
1
2

[(
2α

k− 1

)−2/(n0−1)

− 1

]
.

Step 2. Let I = {x1,x2, . . . ,xk} be the set of solutions still in contention, and
let h2 = 2η(n0 − 1). Obtain n0 observations Yj(xi), j = 1,2, . . . ,n0 from each
solution xi ∈ I and compute Y (xi;n0). For all i �= � calculate
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S2
i� =

1
n0 − 1

n0

∑
j=1

(
Yj(xi)−Yj(x�)−

[
Y (xi;n0)−Y (x�;n0)

])2
,

the sample variance of the difference between solutions i and �. Set r = n0.
Step 3. Set Iold = I. Let

I =
{

xi : xi ∈ Iold and Y (xi;r)≤ Y (x�;r)+Wi�(r),∀� ∈ Iold, � �= i
}
,

where

Wi�(r) =
δ
2r

(
h2S2

i�

δ 2 − r

)+
.

Step 4. If |I|= 1, then stop and select the solution whose index is in I as the best.
Otherwise, take one additional observation Yr+1(xi) from each solution xi ∈ I, set
r = r+ 1 and go to Step 3.

Many extensions and variations of KN have appeared in the literature. Kim and
Nelson [41] proposed KN++, which is asymptotically valid even when observations
are non-normal and dependent. A drawback of a fully sequential procedure, such as
KN, relative to a two-stage procedure, like NSGS, is that fully sequential procedures
frequently switch among the simulations of different solutions. Switching can be
computationally much more costly than running simulation experiments, depending
on the computing environment, offsetting the efficiency gain of the fully sequential
procedures compared to two-stage procedures that require a minimum number of
switches. Hong and Nelson [27] and Osogami [53] designed sequential procedures
that reduce the number of switches dramatically while still maintaining the benefit
of being sequential.

There are two basic paradigms for solving the selection-of-the-best problem:
frequentist (described above) and Bayesian. A comprehensive reference that covers
the basic theory upon which frequentist R&S procedures are based is Kim and
Nelson [40]. We give a brief overview of the Bayesian approach below, based largely
on Frazier and Powell [17]. For more comprehensive treatments, see [11, 16].

A Bayesian procedure consists of a sequence of decisions; the decisions include
which solution x to simulate next, and possibly whether or not to stop the procedure
and select a solution. Let x( j), j = 0,1,2, . . . be the jth decision of which solution to
simulate, which leads to obtaining the ( j + 1)st simulation observation Yj+1(x( j)).
The linking of the jth decision to the ( j + 1)st observation emphasizes that in a
Bayesian framework we may have informative prior distributions on the values of
g(x1),g(x2), . . . ,g(xk) that could be used to make an intelligent decision x(0) even
when no data have yet been obtained.
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Let H j = {x(0),Y1(x(0)),x(1),Y2(x(1)) . . .x( j−1),Yj(x( j−1))} denote the history up
through decision j−1 (observation j), with H0 = /0. The procedure is controlled by
a policy π and a stopping time τ where τ(H j) yields a binary decision to stop the
procedure or to apply

x( j) = π(H j)

to decide which solution x( j) to simulate next.
The key to seeking optimal policies in the Bayesian formulation is that uncer-

tainty about g(x) is represented as a prior probability distribution on its value,
which is updated to a posterior distribution using Bayes rule as observations are
obtained. A typical choice of prior distribution is a non-informative normal-gamma
prior (g(x) is normally distributed given its posterior variance σ2(x), and 1/σ2(x)
has a gamma distribution); see [17] or [15]. This choice of prior leads to a generic
Bayes procedure of the following form:

Procedure Generic Bayes

Step 1. Set n(x) = 0, H0 = /0 and Y (x) = null for all x ∈Θ , and j = 0.
Step 2. Let x( j) = π(H j).
Step 3. Obtain observation Yj+1(x( j)) and update

n(x( j)) = n(x( j))+ 1

Y (x( j)) =
1

n(x( j))
∑

i:x(i)=x( j)

Yi+1(x(i)).

Step 3. If τ(H j+1) indicates time to stop, then return xB = argminx∈ΘY (x).
Else j = j+ 1 and go to Step 2.

Step 2 as stated above masks what is really happening: The decision x( j) is
actually a function of the posterior distributions as calculated from H j, and these
posterior updates may be easy (in the case of a conjugate prior) or numerically
challenging to obtain [11, 16].

The best policy π and stopping time τ depend on the objective. For instance, a
natural objective is

inf
π
Eπ [g(x�N)] = inf

π
Eπ
[

min
x∈Θ

Y N(x)
]

(2.5)

where N is a fixed simulation budget. This is equivalent to minimizing the expected
opportunity cost for the selected solution within a given simulation budget. Another
objective is

inf
π ,τ

Eπ [g(x�τ)− c(τ)] = inf
π ,τ

Eπ
[

min
x∈Θ

Y τ(x)+ c(τ)
]

(2.6)
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where c( j) is the cost of running j simulations; this policy and stopping rule balance
selection loss with the cost of additional simulation. The expectations in (2.5)–(2.6)
are with respect to the posterior distributions of g(x).

The optimal policies for (2.5) and (2.6) are the solutions to dynamic pro-
gramming problems. Unfortunately, it is computationally difficult or impossible to
actually achieve the optimal policy; therefore, research has focused on heuristics
that are implementable and effective. These include the optimal computing budget
allocation (OCBA) procedures [9], the expected value of information (EVI) proce-
dures [12], and the knowledge gradient (KG) methods [17,18], which are the topics
of Chap. 3.

An advantage of the Bayesian formulation is its flexibility; many kinds of
information or knowledge about the problem can be incorporated into the prior
beliefs, leading to substantial gains in efficiency. For instance, the knowledge that
two similar solutions (x1 ≈ x2) will probably have similar values (g(x1) ≈ g(x2))
can be exploited (e.g., [19]).

Branke et al. [7] conducted a comprehensive set of experiments to compare the
performance of different R&S procedures on thousands of combinations of problem
structures. They found that no R&S procedure can dominate in all situations. They
also found that the Bayesian procedures are often more efficient in terms of the
total number of samples required to make a decision. However, they do not provide
the type of correct-selection optimality guarantee that the frequentist procedures
provide.

2.4 Ordinal Optimization

Ordinal optimization (OO), introduced by Ho et al. [25] and treated in detail in
the book by Ho et al. [26], proposes “soft optimization” for OvS problems when
the number of feasible solutions k = |Θ | is too large for R&S methods. Ordinal
optimization selects a subset S fromΘ and limits further analysis to S. If we define a
set T of good enough solutions inΘ , which are often the top t solutions inΘ , we are
interested in the probability that at least l solutions in T are in S, i.e., P(|T ∩S| ≥ l).
This probability is referred to as the alignment probability (AP) and l is called the
alignment level.

There are two basic ideas behind ordinal optimization:

1. Estimating the order among solutions is much easier than estimating the absolute
objective values of each solution.

2. Softening the optimization goal and accepting good enough solutions leads to an
exponential reduction in computational burden.

To understand the first idea, recall that estimating g(x) with Y (x) only has a
convergence rate of 1/

√
n according to the Central Limit Theorem. By comparison,

if one is only interested in identifying the set of optimal solutions Θ ∗, one can
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achieve exponential convergence rate with respect to order using results from large
deviation theory. Specifically, if Y (x) has a finite moment generating function
M(λ ) = E[eλY(x)], then for any positive constant δ > 0, there exists a positive
constant β such that

P(|Y (x)− g(x)|> δ )≤ e−nβ . (2.7)

Based on this result, for any alignment level l, the misalignment probability
decays exponentially, as shown in [13, 14, 26, 68]. Without loss of generality,
we assume that g(x1) < g(x2) < .. . < g(xk). For simplicity, we assume that
all solutions receive the same number of simulation replications n. Let Δ =
mini=1,2,...,k−1(g(xi+1)− g(xi)), and δ = Δ/2. Clearly, if no sample mean Y (xi)
deviates from its true mean g(xi) by more than δ , then all sample means are in
the same order as the true means, and thus all solutions are aligned. Therefore, for
misalignment to happen, there must exist some xi such that |Y (xi)−g(xi)| ≥ δ . We
thus have the following inequality to bound the misalignment probability

P(|T ∩S|< l) ≤ P(∃xi s.t. |Y (xi)− g(xi)| ≥ δ )

= P

( ⋃
i=1,...,k

[|Y (xi)− g(xi)| ≥ δ ]

)

≤
k

∑
i=1

P(|Y (xi)− g(xi)| ≥ δ )

≤ ke−nβ .

The last inequality follows from (2.7). Therefore, the misalignment probability
decays exponentially fast as simulation replication n increases, confirming the first
basic idea that estimating order is easier than estimating the absolute objective value.

It is also worthwhile noticing that the analysis above does not impose the normal-
ity assumption as in the R&S algorithms in Sect. 2.3. A finite moment generating
function is both sufficient and necessary to achieve the asymptotic exponential
convergence rate with respect to order [20]. However, common distributions such as
lognormal and certain Gamma distributions do not have finite moment generating
functions. In such cases, proper truncations can be used to recover the exponential
convergence rate [20].

To understand the benefit of goal softening, we assume that we randomly (and
thus blindly) pick the set S from all k solutions. For simplicity, we only consider
l = 1. Let s = |S| and t = |T |. The misalignment probability is P(|T ∩ S| = 0) =(k−t

s

)
/
(k

s

)
. So the AP is given by

P(|T ∩S| ≥ 1) = 1−P(|T ∩S|= 0)
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= 1−
(

k− t
s

)/(
k
s

)

= 1− (k− t)(k− t− 1) · · ·(k− t − s+ 1)
k(k− 1) · · ·(k− s+ 1)

. (2.8)

We can bound (2.8) by using the fact that

k− t − i
k− i

= 1− t
k− i

≤ 1− t
k
,

for all i = 0,1, . . . ,s− 1. So we have

P(|T ∩S| ≥ 1)≥ 1−
(

1− t
k

)s
. (2.9)

Since 1− t/k ≤ e−t/k, we can further bound (2.9) with the following inequality

P(|T ∩S| ≥ 1)≥ 1− e−
ts
k . (2.10)

The righthand side of (2.10) establishes the fact that as we soften our goal, i.e.,
increase t to make the “good enough” set T larger, or increase the size of the selected
set s, the alignment probability converges exponentially to 1.

Instead of blindly picking the set S, one may run a few simulation replications on
all x ∈Θ and choose S according to the sample mean Y (x). Under the assumption
of a common additive Gaussian simulation error term N (0,σ2) for all x, when an
equal number of simulation replications n is allocated to every x ∈Θ , selecting the
top s solutions ranked by Y (x) has the same lower bound on AP given in (2.10) as
in the blind picking case under a Least Favorable Configuration (LFC) [42]. In an
LFC, without loss of generality, we have g(x) = 0 for all x ∈ S and g(x) = Δ for
all x ∈ Θ \ S. Notice that when Δ = 0, it is equivalent to the blind picking case.
Furthermore, if Δ > Δ , where

Δ =
σ√

n

[
1
2
+ log

(
k− 1√

2π

)]
,

then a tighter lower bound on AP is [42]

P(|T ∩S| ≥ 1)≥ 1− max(t,s)
|t − s| e

[
−min(t,s)(Δ−Δ )

√
n
σ

]
. (2.11)

The new lower bound (2.11) shows that AP converges exponentially to 1 when

• the optimization goal is softened by increasing min(t,s);
• the difference in solution quality Δ between good and bad solutions is larger;
• simulation replications n increases.
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The LFC represents the worst case scenario of AP and thus (2.10) is a universal
lower bound on all problems. Given that the least favorable configuration is hardly
the case in real problems, using Y (x) to choose the set S can achieve much higher
alignment probability than the probability given in (2.8) when S is chosen randomly.
However, unless there is structural information about the problem, such as an LFC
configuration with Δ difference, there is no readily available tighter lower bound on
AP other than (2.10). Nevertheless, for many practical engineering problems, one
may conduct pilot experiments to gain knowledge about the problem and use the
tables in [26] to identify the s that approximately achieves the required AP.

Therefore, to implement OO, one first determines a target AP and picks the set S.
Once the set S is determined, one can then apply a R&S procedure to select the best
solution in S. Because the set S is often much smaller than the feasible solution space
Θ , R&S procedures are both effective and efficient. Furthermore, because the set S
contains at least one good enough solution with a given AP and a R&S procedure
can select the best solution from the set S with a given PCS, one can thus select the
appropriate AP and PCS to ensure that the solution finally selected is a good enough
solution of the original DOvS problem with a target probability.

2.5 Globally Convergent Random Search Algorithms

In this section we consider globally convergent algorithms designed for large, but
still finite, feasible regions Θ . We focus on algorithms that exploit no structural
information other than |g(x)| < ∞ and that we have a consistent estimator ĝ(x) of
g(x) for all x ∈Θ .

The methods described here can be broadly characterized as globally convergent
adaptive random search (GCARS). We start by defining a high-level GCARS
algorithm that contains the key features found in the research literature; we then
discuss some of the possible choices for these features and their consequences.
Finally, we present several specific algorithms that illustrate these choices.

Let Θ � ⊂Θ be the set of globally optimal solutions, which is guaranteed to be
non-empty since |Θ |< ∞. Further, let m = 0,1,2, . . . be the index of the number of
iterations of the algorithm, and let x�m be the solution that the algorithm would report
as optimal if stopped at the end of iteration m. We are interested in algorithms that
provide one of the following convergence guarantees:1

lim
m→∞

P(x�m ∈Θ �) = 1 or

P
(

lim
m→∞

1{x�m ∈Θ �}= 1
)
= 1,

i.e., convergence in probability or w.p.1, respectively.

1One can also define convergence of ĝ(x∗m), the estimated optimal value, but we do not do so here.
See for instance Andradóttir [1].
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On iteration m of our generic algorithm, there is an estimation set Em ⊂ Θ
containing the solutions that will be simulated to estimate, or refine the estimate
of, g(x) for all x ∈ Em. From iteration to iteration the algorithm retains some
memory of what is observed through estimation; let Mm ⊂ Θ denote the set of
solutions on which information is retained through iteration m. For the moment we
are intentionally vague about what the information is, but it could be as little as the
identity of x�m, or as much as a record of all solutions that have ever been estimated,
the order in which they were encountered, and all of the observations collected on
each of them.

Solutions in the estimation set are simulated; how much simulation effort is
expended depends on a simulation allocation rule, denoted SARm(Em|Mm), which
may depend on the estimation set, the solutions on which we retain information,
and the iteration number. The result of estimation is that each solution x ∈Mm has
a value, denoted V (x), which may be an estimate of g(x) or an indicator that x is, or
is not, the current estimated optimal solution x�m.

To represent the “random” aspect of adaptive random search, let Fm(·|Mm) be a
probability distribution on x∈Θ that may depend on the iteration m and information
on the solutions in Mm. Given these components, the generic GCARS algorithm is
as follows:

Generic GCARS Algorithm

Initialization: Set M0 = /0 and choose feasible solution x�0. Set the iteration index
m = 0.

Sampling: Choose the estimation set Em where some or all of the solutions are
sampled fromΘ according to Fm(·|Mm).

Estimation: Apply the SARm(Em|Mm) to solutions x ∈ Em in the estimation set.
Iteration: Update V (x) for all x ∈ Em and choose x�m+1 as the solution with the

best V (x) value. Update the set Mm+1, let m = m+ 1 and go to Sampling.

Notice that the generic GCARS algorithm contains no stopping rule, which is
appropriate for proving asymptotic convergence. In practice stopping may occur,
for instance, when a computation budget is exhausted or when progress appears
too slow. Unless all solutions in Θ are actually simulated, or we have structural
information on g, it is not possible to stop a GCARS algorithm with any statistical
guarantee that x�m is an optimal solution.

We now describe several different ways that the steps of GCARS might be
accomplished. Let Vm be the set of solutions that have been visited by the algorithm
through iteration m. By “visited” we mean that the solutions in Vm have been
simulated during one or more iterations; therefore,Vm =∪m

j=0Em. A key requirement
for GCARS that exploit no structural information about g is that

Vm
m→∞−→ Θ w.p.1, (2.12)

i.e., all solutions will eventually be visited. Clearly this is a strong condition, and
one that will not be realized in practice whenΘ is very large. Therefore, the focus of
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algorithm design is often on being as aggressive as possible in exploring promising
areas ofΘ while still maintaining Condition (2.12) as well as others.

The burden of insuring (2.12) falls primarily on Fm. Three types of distributions
are common.

• A distribution Fm(·|Mm) that puts positive probability on a small number of
feasible solutions in a neighborhood of x�m. When this is the case, then Fm and the
neighborhood structure on which it is defined must connectΘ so that any solution
is reachable from any other solution after a sufficient number of iterations.

• A distribution Fm(·|Mm) that puts positive probability on a “promising” subset
Θm ⊂Θ that may be large or small, but is not necessarily a neighborhood of x�m.
Typically these distributions attempt to use the memory Mm in an intelligent way
to concentrate the search.

• A distribution Fm(·|Mm) that puts positive probability on all of Θ , but may
change as a function of m and Mm. In this case the search is always global,
although it may become probabilistically focused on promising regions.

For instance, the Stochastic Ruler algorithm [73] (described below) takes Mm =
{x�m}, and only the identity of the current estimated optimal solution is retained.
The estimation set is Em = {x�m,x

′}, where x′ ∼ Fm(·|x�m), and Fm(·|x�m) puts positive
probability only on a neighborhood of x�m. When the support of Fm is a small local
neighborhood of x�m, then solution sampling is typically easy. And because the
estimation set is a single neighbor, x�m+1 is one of x�m and x′. Algorithms built in this
way require very low memory, but need increasing effort per iteration to converge to
an optimal solution. In other words, SARm(Em|x�m) must prescribe longer and longer
simulation runs as m increases.

The Nested Partitions algorithm [63,64] (also described below) takes Mm = Vm,
and also retains some measure of the value of each solution visited. Typical choices
for the value are V (x) =C(x), a count of the number of times that x has been visited
by the algorithm through iteration m; or V (x) = Y (x;n(x)), the cumulative sample
mean of the n(x) observations of solution x for all x ∈ Vm. In these algorithms,

x�m+1 = argmaxx∈Vm
C(x) or (2.13)

x�m+1 = argminx∈Vm
Y (x;n(x)). (2.14)

In the Nested Partitions algorithm, Fm(·|Mm) assigns substantial probability to a
subsetΘm ⊂Θ that shows promise of containing good solutions based on previous
iterations, but also some to Θ\Θm to insure convergence. Depending on how these
subregions are formed, sampling x from Θm may be easy or computationally
challenging. When the estimated optimal is defined by (2.14) or (2.13) it is not
essential that SARm increase the simulation effort in m. For instance, when the
cumulative average (2.14) is employed, and Y (x;n(x)) satisfies a strong law of large
numbers, then SARm need only assure that if x is in the estimation set infinitely
often, then it will receive an infinite amount of simulation effort.
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We now look at four GCARS algorithms in more detail to gain insight into the
strengths and weaknesses of various approaches. To simplify the presentation and
statement of results, we assume that there is a unique globally optimal solution x�.

For the Stochastic Ruler algorithm, we need an unbiased estimator ĝ(x) of g(x),
whose distribution need not change as a function of the iteration m; e.g., it could be
Y (x;n) with n fixed. We also need constants a and b such that P(a ≤ ĝ(x)≤ b) = 1
for all x ∈Θ .

Stochastic Ruler Algorithm

Step 0. Choose a and b such that P(a ≤ ĝ(x)≤ b) = 1 for all x ∈Θ , an irreducible
Markov chain transition matrix R on Θ such that R(x,x′) = R(x′,x) for all
solutions x,x′ ∈Θ , and a sequence of positive integers tm such that tm → ∞ as
m → ∞. Select an initial solution x�0 and set m = 0.

Step 1. Generate a candidate solution x′ from R(x�m, ·); in other words, randomly
select a solution using the x�k row of R as the probability distribution on solutions.

Step 2. For i = 1 to tm do:
Generate an independent estimate ĝ(x′) of g(x′)
Generate U ∼U(a,b)
If ĝ(x′)>U , then

x�m+1 = x�m; go to Step 3
endif

Next i
x�m+1 = x′

Step 3. m = m+ 1; go to Step 1

The Stochastic Ruler algorithm works because it insures that the search is
attracted to x� from which it is difficult to leave. Specifically, the probability
of rejecting the candidate solution x′ at Step 2 is minimized at x�; furthermore,
the transition probability into x� is greater than out of x�. And even though
candidate solutions are generated from a stationary discrete-time Markov chain,
the implied transition matrix that describes the movement from solution to solution
is irreducible, aperiodic and finite, and its steady-state probabilities degenerate to
a distribution putting probability 1 on x� as m → ∞. Thus the convergence is in
probability.

The algorithm is elegant and compact (since it retains no past data), but it is not
adaptive and requires increasing effort from iteration to iteration in Step 2. As a
result its performance in practice is often poor.

When memory of visited solutions is not a limitation, Andradóttir [1] showed that
there are significant advantages to using the cumulative sample mean to estimate the
value of the optimal solution, even if it is not used for guiding the search. This
approach makes almost sure convergence of the algorithms easy to prove via the
strong law of large numbers, provides a better estimate of the true value of the
selected solution whenever the algorithm terminates since information on it is
accumulated, and tends to yield better empirical performance. Since it is now
computationally possible to store sample mean information on a very large number
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of solutions, this insight has had a profound impact on algorithm design. The next
two algorithms we describe provide better performance than the Stochastic Ruler
algorithm by being more adaptive and retaining the cumulative sample means.

The principles of branch and bound have had an important influence on DOvS,
even though classical branch and bound techniques such as relaxing integrality
constraints to bound the potential of a partition of the feasible region are not
possible. We first describe the stochastic branch-and-bound method (SB&B) of
Norkin et al. [51,52], and then show how it leads to the widely used Nested Partitions
(NP) algorithms of Shi and Ólafsson [63, 64] and Pichitlamken and Nelson [58].
This development is based on Nelson [48].

To describe a simplified version of SB&B, let {Θ p} be subsets of Θ creating a
partition P . Define the value of the optimal solution restricted toΘ p by

g�(Θ p) = min
x∈Θ p

g(x).

Clearly g(x�) = minΘ p∈P g�(Θ p). Suppose that there exist two bounding functions
� and u defined on subsets ofΘ such that

• �(Θ p)≤ g�(Θ p)≤ u(Θ p)
• u(Θ p) = g(x′) for some x′ ∈Θ p

• If |Θ p|= 1 then �(Θ p) = g�(Θ p) = u(Θ p).

If we knew � and u then we could directly apply branch and bound. Instead, suppose
that there are estimators Lk and Uk defined on subsetsΘ p such that w.p.1,

lim
m→∞

Lm(Θ p) = �(Θ p),

lim
m→∞

Um(Θ p) = u(Θ p).

Under these assumptions, a SB&B algorithm is the following:

Stochastic Branch and Bound Algorithm

Step 1. Set m = 0, P0 =Θ and generate Lm(Θ) and Um(Θ).
Step 2. Set

Θm = argmin{Lm(Θ p) :Θ p ∈Pm}
x�m ∈ argmin{Um(Θ p) :Θ p ∈Pm}.

Step 3. If |Θm|= 1 then Pm+1 =Pm and go to Step 4.
Else let P ′

m be a partition ofΘm and let Pm+1 = (Pm\Θm)∪P ′
m.

Step 4. For all Θ p ∈Pm+1 generate Lm+1(Θ p) and Um+1(Θ p), set m = m+ 1 and
go to Step 2.
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As the algorithm progresses, better estimates are obtained of the bounding
functions, and the partition with the best lower bound is partitioned finer and finer.
Under mild conditions x�m converges w.p.1 to x�.

There are two practical barriers to the application of SB&B. First, there needs to
be bounding functions � and u and convergent estimators of them; see [24, 51, 52]
for some specific stochastic optimization problems where this is the case. A second
barrier is the computing overhead needed to retain and refine a larger and larger
partition structure as the algorithm progresses, since no partition is ever eliminated
from consideration as in deterministic branch and bound.

Notice, however, that for any subsetΘ p, it is trivially true that

�(Θ p) = min
x∈Θ p

g(x)

Lm(Θ p) = min
x∈Θ p

Y (x;n(x))

satisfy the required conditions, provided n(k), the cumulative number of replications
of solution x through iteration k, increases. In other words, the smallest objective
function value in a partition is a (tight) lower bound, and a consistent estimator of
it is the smallest sample mean provided all solutions in the partition are simulated
infinitely many times. But it is also true that the estimator

L̂m(Θ p) = min
x∈X p(m)

Y (x;n(x))

works provided X p(m) is a randomly sampled subset of solutions from Θ p that
converges to Θ p as m → ∞. Therefore, L̂m(Θ p) is a sampling-based lower bound
that is available for any problem, which addresses the first drawback of SB&B.

To avoid the need to carry along information on an increasing number of
partitions, we can modify the definition of the new partition, Pm+1, to be

Pm+1 = (Θ\Θm)∪P ′
m.

In words, we maintain only the most recently refined partition, and aggregate all
other feasible solutions into a single “surrounding region.” With these two refine-
ments SB&B becomes a version of the NP method that is similar to Pichitlamken
and Nelson [58].

NP uses a very straightforward adaptation: sample solutions more intensely
in the partition that has most recently provided an apparently good solution, but
continue to sample solutions from the surrounding region in case the global optimal
is in it. The effectiveness of both SB&B and NP can be enhanced by making
good decisions about which region to partition further, and how many solutions
to sample from each partition. Shi and Ólaffson [64] describe embedding ranking
and selection (Sect. 2.3) or ordinal optimization (Sect. 2.4) into NP to increase the
likelihood that it partitions a region with good solutions. Xu and Nelson [71] suggest
using a more sophisticated sampling-based bound than L̂m, one that is based on an
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empirical Chebyshev inequality, to guide the solution sampling effort allocated to
each partition in SB&B.

A typical strategy for GCARS is to exploit (search intensively) regions ofΘ that
appear to have good solutions, while still maintaining enough global exploration to
be sure to capture x� in the limit. And since g(x) can only be estimated, solutions
must not only be visited, they must be estimated with less and less error in the
limit to allow convergence. Prudius and Andradóttir [60] proposed a framework
called balanced explorative and exploitative search with estimation (BEESE),
which keeps global exploration, local exploitation and solution estimation in play
by switching back and forth among them. Specifically, BEESE uses a Global
probability distribution that places positive probability on all elements of Θ for
exploration; a family of Local probability distributions that assigns probability
only to solutions that are close (in some sense) to the current sample best solution in
Θ for exploitation; and an estimation scheme that allocates replications to a solution
x to estimate g(x). The probability 1 global convergence of an algorithm that falls
into the BEESE framework can be proved provided the Global search distribution
satisfies certain conditions. The simplest version of BEESE, known as R-BEESE,
has the following high-level structure:

R-BEESE

Step 1. Sample a solution x′ ∼ Global(Θ) and estimate g(x′).
Step 2. With probability q, take additional replications of the current sample best

solution x�m to refine the estimate of g(x�m).
Else w.p. p sample a solution x′ ∼ Global(Θ) and estimate g(x′) or refine the
estimate of g(x′) if x′ has been visited before.
Otherwise sample a solution x′ ∼ Local(x�m) and estimate or refine the estimate
of g(x′).

Step 3. Update current sample best solution and go to Step 2.

The Global and Local distributions on Θ , and the switching probabilities
p and q, have an impact on performance. Since p and q are hard to choose (and
should probably evolve), Prudius and Andradóttir [60] also describe A-BEESE
which makes the switching decisions dynamic and adaptive to the progress of the
search. The BEESE framework provides a structure and conditions that guarantee
global convergence, but within which smart heuristics can be employed.

The Stochastic Ruler algorithm generates new candidate solutions directly from
a neighborhood of the previous candidate; NP samples solutions intensely from
a promising region defined by constraints; while R-BEESE switches between
sampling solutions from a static global distribution on Θ and a local distribution
that concentrates around the current sample best. Another approach is to always
generate candidate solutions from a global probability distribution over Θ , but
one that adapts based on the performance of previous candidates. Therefore, the
search is always global, but concentrates on promising areas by changing the global
distribution. The final GCARS algorithm we describe is the Model Reference
Adaptive Search (MRAS) algorithm of Hu et al. [34, 35], and in particular its
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stochastic simulation counterpart SMRAS [36]. MRAS and SMRAS are closely
related to the cross-entropy method [62] and the estimation of distribution algorithm
[46], and thus demonstrates the principles of those algorithms as well.

To make the algorithm easier to state, consider a problem where the goal
is maximization, g(x) > 0 and (for the moment) g can be evaluated exactly,
i.e., we have a zero-variance estimator of g(x), so the optimization problem is
deterministic.2 Let r(·) be a probability mass function over x ∈ Θ , which defines
a random variable X ∼ r; in other words, X is a randomly sampled solution from
Θ , sampled according to distribution r. Therefore r induces a distribution on the
random variable g(X), the value of the objective function at X, making quantities
such as Er[g(X)] well defined.

Under appropriate conditions, there exists a recursive sequence of reference
distributions {rm;m = 0,1,2, . . .) onΘ with the property that [35]

lim
m→∞

Erm [g(X)] = g(x�).

Since x� is unique, this sequence of distributions converges to a distribution
that concentrates all probability on x�. Specifically, starting from some initial
distribution r0(x) that assigns positive probability to all x ∈Θ ,

rm+1(x) =
g(x)rm(x)

∑x′∈Θ g(x′)rm(x′)
.

If we could generate samples from rm, then we could empirically estimate rm+1,
and continue to do this until the reference distribution essentially degenerates
onto x�. Unfortunately, rm may have no special structure, making sampling from it
computationally difficult. Therefore, MRAS samples solutions fromΘ using a con-
venient parametric distribution f (·;ˇm), where at each iteration, ˇm minimizes the
Kullback–Leibler divergence between the parametric distribution and the reference
distribution. SMRAS adapts MRAS to DOvS problems by substituting simulation
estimators for g(x), increasing the precision of these estimators as the algorithm
closes in on x�. A high-level description of SMRAS is given below.

SMRAS Algorithm

Step 1. Choose initial distribution f (·;ˇ0) that assigns positive probability to all of
Θ ; a mixing coefficient λ ∈ (0,1); an initial number of solutions to sample t0;
an initial simulation sample size n0 > 1; a simulation allocation rule nm; and set
m = 0.

2Clearly any minimization problem on g(x) can be formulated as a maximization problem. If an
estimator ĝ(x) of g(x) could be negative, then MRAS/SMRAS maximizes s(g(x)) instead, where
s is a non-negative, strictly increasing function.
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Step 2. Generate tm candidate solutions from f̄ (·;ˇm)= (1−λ ) f (·;ˇm)+λ f (·;ˇ0)

to fill the estimation set Em =
{

x(1),x(2), . . . ,x(tm)
}

.

Step 3. Simulate nm i.i.d. observations Y1(x),Y2(x), . . . ,Ynm(x) for each solution x∈
Em and compute its sample mean Y (x;nm).

Step 4. Calculate a threshold γ for elite solutions.
Step 5. Determine new distribution parameter ˇm+1 by solving

ˇm+1 = arg max
β

{
1
tm
∑

x∈Em

[Y (x;nm)]
m

f (x;ˇm)
w
(
Y (x;nm)

)
ln f (x;ˇ)

}

where

w(y) =

⎧⎪⎨
⎪⎩

0, if y ≤ γ− ε
y− γ+ ε

ε
, if γ− ε < y < γ

1, if y ≥ γ.

Step 6. Set m = m+ 1, choose new solution sample size tm and go to Step 2.

Step 2.5 minimizes the empirical Kullback–Leibler divergence between the
parametric distribution and the reference distribution. There are conditions on the
growth of nm and tm necessary for convergence; and while the algorithm need not
maintain memory of previously visited solutions (since βk+1 completely specifies
the sampling distribution for the next iteration) simulation effort can be saved
by retaining Y (x;n(x)) and n(x) for each visited solution, so that if a solution
is revisited then only nm − n(x) additional replications need to be obtained. The
evolving threshold in Step 2.5 is also important for algorithm performance; see [36].

Notice that SMRAS employs the mixture distribution f̄ (·;ˇm) = (1 −
λ ) f (·;ˇm) + λ f (·;ˇ0), where f (·;ˇ0) forces the algorithm to keep a global
perspective. As a result, the distribution can never degenerate to the optimal
solution. What can be shown is that for certain choices of parametric distributions

lim
m→∞

Eβm [X] = x∗.

2.6 Locally Convergent Random Search Algorithms

In this section, we consider locally convergent DOvS algorithms designed for a finite
but potentially large feasible regionΘ . As in Sect. 2.5, we focus on general-purpose
algorithms that only assume Var[Y (x)]< ∞ and that we have a consistent estimator
ĝ(x) of g(x) for all x ∈Θ .
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Recall from Sect. 2.2 that we use N(x) ⊂ Θ to denote the local neighborhood
of a solution x ∈ Θ . We define x as a locally optimal solution if g(x) ≤ g(y) for
all y ∈ N(x). Since this definition of local optimality depends on the definition
of N(x), we may have different sets of locally optimal solutions when different
neighborhood structures are used. For notational simplicity, we do not explicitly
mention this dependence on the definition of N(x) in this section.

Let L denote the set of locally optimal solutions for the DOvS problem. We
again use x∗m to denote the solution that the DOvS algorithm would report as optimal
if terminated at the end of iteration m. We are interested in algorithms that provide
local convergence in probability or local convergence w.p.1:

lim
m→∞

P(x�m ∈L ) = 1,

P
(

lim
m→∞

1{x�m ∈L }= 1
)
= 1,

Similar to GCARS, an LCARS algorithm has the following key components: an
estimation set Em ⊂Θ containing the solutions that will be simulated to estimate,
or refine the estimate of, g(x) for all x ∈ Em; a memory set Mm ⊂ Θ containing
information on a set of solutions simulated up to iteration m; a simulation allocation
rule, denoted SARm(Em|Mm), determining how much simulation effort is expended
on each solution x∈ Em, which may depend on the memory set Mm and the iteration
number m; and a sampling probability distribution Fm(·|Mm) to control the adaptive
random search process.

Unlike Fm(·|Mm) in GCARS algorithms, which may put positive probability on
all of Θ , Fm(·|Mm) in LCARS algorithms typically only puts positive probability
on a “promising” subset Θm ⊂ Θ , which may be a small neighborhood of x∗m or
a larger area that is believed to contain good solutions according to information in
Mm. When global convergence is not required, focusing sampling on “promising”
areas can speed up the progress of random search considerably.

Similar to GCRS, LCARS algorithms converge in an asymptotic sense as
simulation effort goes to infinity. But unlike its globally convergent counterpart,
an LCARS algorithm can be, and should be, combined with a statistical procedure
to test the local optimality of x∗m. Formally, the statistical local optimality test of a
solution x∗m is

H0 : g(x∗m)≤ min
x∈N(x∗m)

g(x) vs H1 : g(x∗m)> min
x∈N(x∗m)

g(x).

A local optimality test procedure controls the type I and type II errors and
provides an implementable stopping rule for LCRS algorithms to terminate the
search when a locally optimal solution is found. Such a capability is a very desirable
improvement over GCRS, for which it is not possible to stop with any statistical
guarantee that x∗m is an optimal solution. This test can be rewritten in the following
form:
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P(declarex∗mlocallyoptimal)≥ 1−αL ifg(x∗m)≤ min
x∈N(x∗m)

g(x),

P(declarex∗mnotlocallyoptimal)≥ 1−αL ifg(x∗m)≥ min
x∈N(x∗m)

g(x)+ δL,

where αL is the type I error and δL is the indifference zone parameter. This test is
thus a special case of comparison with a standard, which is x∗m. Therefore, efficient
sequential procedures such as that of Kim [38] can be used to perform this test.

The generic LCARS algorithm is identical to the generic GCARS algorithm
presented in Sect. 2.5. We now look at two specific LCARS algorithms in more
detail to learn how different components of the generic LCARS algorithm can
be designed to improve the practical performance of an LCARS algorithm while
preserving its local convergence property. We will pay special attention to the
design of the “promising” subsetΘm ⊂Θ and the sampling probability distribution
Fm(·|Mm).

Convergent Optimization via Most-Promising-Area Stochastic Search (COM-
PASS) [28] proposes a unique structure of the most promising area Θm: it includes
all solutions that are closer to x∗m than any other simulated solution. Let Vm denote
the set of all solutions simulated through iteration m, and Nm(x) be the total
number of i.i.d. simulation replications a solution x has received up to iteration m.
COMPASS starts with an initial feasible solution x0 ∈Θ provided by the user and
randomly samples tm solutions (duplicates allowed) fromΘm at each iteration.

COMPASS

Step 1. Set m = 0,V0 = {x0},x∗0 = x0. Simulate n0(x0) i.i.d. observations for x0,
set N0(x0) = n0(x0), and calculate its sample mean Y 0(x0). LetΘ0 =Θ .

Step 2. Let m = m+1. Sample tm candidate solutions x(1)m ,x(2)m , . . . ,x(tm)m uniformly

and independently fromΘm−1. Let Vm =Vm−1
⋃{x(1)m ,x(2)m , . . . ,x(tm)m }. Determine

nm(x) according to the SAR for every x ∈ Vm and simulate nm(x) i.i.d. replica-
tions for every x ∈ Vm. Update Nm(x) and Y (x) for every x ∈ Vm.

Step 3. Let x∗m = argminx∈Vm Y (x). LetΘm = {x : x ∈Θ , ||x−x∗m|| ≤ ||x−y|| ∀y ∈
Vm,y �= x∗m}. Go to Step 2.

Since COMPASS does not aim for global convergence, it can focus search effort
in the area Θm, which is changed adaptively at each iteration based on information
collected on all simulated solutions x ∈ Vm. As the algorithm iterates, Θm shrinks
quickly and guides the search towards a potential locally optimal solution. When
more simulations reveal that x∗m−1 is no longer the optimal solution, COMPASS
allows the construction of a newΘm and moves the search towards new areas.

COMPASS maintains the cumulative sample mean of each simulated solution
x ∈ Vm, and thus the memory set Mm = Vm. The sampling distribution Fm(·|Mm)
is uniform on Θm and puts zero density on Θ \Θm. The estimation set Em is set to
be Vm, and the SAR(Em|Mm) requires that nm(x)→ ∞ as m → ∞. From a practical
point of view, increasing nm(x) fast can slow down the progress significantly as
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Em includes every visited solution x ∈ Vm. The original COMPASS algorithm thus
increases nm(x) logarithmically.

As COMPASS iterates, the most promising areaΘm eventually will only contain
x∗m. When this happens, we may perform a statistical local optimality test on x∗m and
its neighbors. Although COMPASS converges to a locally optimal solution w.p.1
as m → ∞, the statistical local optimality test provides the capability to stop the
optimization with a rigorous statistical guarantee of local optimality. This is another
significant advantage of LCRS algorithms compared to GCRS algorithms that are
typically stopped either when computation budget is exhausted or progress has been
too slow, and thus no guarantee can be provided on the performance of x∗m when the
algorithm is stopped.

COMPASS sets the estimation set Em to the entire set of visited solutions. As
COMPASS iterates, the size of Em keeps increasing and simulating all solutions in
Em becomes a big computational burden. It has been shown by Hong and Nelson
[29] that for COMPASS to converge to a locally optimal solution w.p.1, it only
requires the simulation effort for solutions that define the most promising area Θm

to go to infinity as m→∞. The constraint definingΘm can be written in the following
form:

(x∗m − xi)
T

(
x− x∗m + xi

2

)
≥ 0, xi ∈ Vm.

Some of these constraints are inactive in the sense that removing them will not
changeΘm. To determine if a solution xi defines an active constraint, Xu et al. [69]
propose to solve the following linear program (LP)

minx (x∗m − xi)
T

(
x− x∗m + xi

2

)

s.t. (x∗m − x j)
T

(
x− x∗m + x j

2

)
≥ 0 ∀x j ∈ Vm \ {x∗m}, j �= i.

The solution xi defines an active constraint if and only if the objective function
value is negative. The LP needs to be solved for every xi ∈ Vm to find all active
solutions. This step is referred to as constraint pruning [69]. When simulation is very
time-consuming, there is still substantial saving in computational cost via constraint
pruning. Numerical experiments conducted in [69] show that performing constraint
pruning every 50 iterations seems to give good practical performance.

Hong and Nelson [29] introduce a generic LCRS algorithm framework with
rather mild conditions on the sampling and estimation steps to ensure local conver-
gence. Xu et al. [70] propose another set of conditions that facilitate implementation
of fast LCRS algorithms. Their results show that to achieve local convergence,
it is sufficient for an LCRS algorithm to satisfy the following conditions on
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Fm(·|Mm), Em, and the sample allocation rule SARm(Em|Mm) on every x ∈ Em. In
the following, let Sm be the set of solutions sampled from Θm at iteration m using
the sampling distribution Fm(·|Mm). Their conditions are:

1. The sampling distribution Fm(·|Mm) guarantees that Pr{x ∈Sm} ≥ ε for all x ∈
N (x∗m−1) for some ε > 0 that is independent of m.

2. The estimation scheme satisfies the following requirements:

(a) Em is a subset of Vm;
(b) Em contains x∗m−1 and Sm;
(c) nm(x) is allocated such that minx∈Em Nm(x) ≥ 1 for all m = 1,2, . . . and

minx∈Em Nm(x)→ ∞ w.p.1 as m → ∞.

These flexible conditions allow the construction of alternative most promising
areas Θm, which has critical influence on the practical performance of an LCRS
algorithm. Xu et al. [70] propose a hyperbox-shapedΘm and call the algorithm the
Adaptive Hyperbox Algorithm (AHA).

Let x(k) be the kth coordinate, 1 ≤ k ≤ d, of a visited solution x ∈ Vm. Set l(k)m =

maxx∈Vm,x �=x∗m{x(k) : x(k) < x∗(k)m } if it exists; otherwise, let l(k)m =−∞. Also, let u(k)m =

minx∈Vm,x �=x∗m{x(k) : x(k) > x∗(k)m } if it exists; otherwise, let u(k)m = ∞. The hyperbox

containing x∗m is Hm = {x : l(k)m ≤ x(k) ≤ u(k)m ,1 ≤ k ≤ d}.

In words, u(k)m and l(k)m give the boundaries, along the kth coordinate direction,
of the largest hyperbox that encloses x∗m but has all other visited solution x ∈ Vm

either on the boundary or outside. Note that u(k)m and l(k)m is ±∞ when there is no
other solution to provide the hyperbox boundary along the kth coordinate direction.
This may arise when x∗m is on the boundary, or when AHA has not visited enough

solutions yet. Let Lm = (l(1)m , . . . , l(d)m ) and Um = (u(1)m , . . . ,u(d)m ).
AHA constructs its most promising area Θm by finding Hm and setting Θm =

Hm
⋂
Θ . This construction of Θm allows AHA to shrink the volume of Θm expo-

nentially fast and thus scales up to higher-dimensional DOvS problems. Another
advantage is that it is much less computationally expensive to identify Hm than to
identify the set of active solutions for the COMPASS algorithm. Again, we denote
the starting solution as x0.

AHA

Step 1. Set m = 0,V0 = {x0},E0 = {x0},x∗0 = x0. Simulate n0(x0) i.i.d. observa-
tions for x0, set N0(x0) = n0(x0), and calculate its sample mean Y 0(x0). Let
U0 =L0 =H0 = /0, andΘ0 =Θ .

Step 2. Let m = m+1. Sample tm candidate solutions x(1)m ,x(2)m , . . . ,x(tm)m uniformly

and independently from Θm−1. Remove any duplicates from x(1)m ,x(2)m , . . . ,x(tm)m ,
and let Sm be the remaining set. Let Em = Sm

⋃{x∗m−1}. Determine nm(x)
according to the SAR for every x ∈ Em and simulate nm(x) i.i.d. replications
for every x ∈ Em. Update Nm(x) and Y (x) for every x ∈ Em.
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Step 3. Let x∗m = argminx∈Em Y (x). Identify Um and Lm and thus Hm. Let Θm =
Hm

⋂
Θ . Go to Step 2.

It is straightforward to verify that AHA satisfies the convergence conditions on
the sampling distribution Fm(·|Mm) and the estimation scheme. Therefore, AHA
converges to the set of locally optimal solutions w.p.1.

Both COMPASS and AHA use a uniform sampling distribution with support on
the most promising area Θm. This choice is reasonable when there is no structural
information about the problem inside the most promising areaΘm. As an alternative,
Hong et al. [32] propose uniformly sampling along coordinate directions insideΘm

and illustrate with a special case how coordinate sampling may help increase the
chance of finding a locally optimal solution inside Θm. Yet another approach by
Sun et al. [65] proposes to use a Gaussian process model as the sampling distribution
to balance exploration and exploitation. It can be effectively combined with an
LCRS algorithm like COMPASS or AHA to improve its practical performance.

Another category of locally convergent DOvS algorithms extend the problem
to the continuous domain via linear interpolation. The advantage is by doing
so, one can apply efficient gradient-based line search methods. The R-SPLINE
algorithm of Wang, Pasupathy, and Schmeiser [66, 67] works within a retrospective
framework [10,33,55–57]. At each iteration m, the retrospective framework converts
a stochastic problem into a deterministic problem by averaging across km sample
paths (generated using common random numbers). Given the deterministic sample-
path problem, R-SPLINE uses piecewise linear interpolation to extend the problem
into the continuous domain, and gradient estimates can then be computed to perform
a line search. R-SPLINE also conducts a neighborhood enumeration search after
every line search step. As km → ∞ with at least a logarithmic pace, R-SPLINE
converges to a locally optimal solution w.p.1.

Stochastic approximation [37, 61] uses stochastic estimates of the gradient
directly to guide a line search. Lim [43] also extends the discrete problem g(x)
into a continuous problem g̃(x) via piecewise linear interpolation. The basic idea is
to find a g̃(x) that has the following properties:

1. Both g(x) and g̃(x) have the same set of locally optimal solutions.
2. It is relatively easy to compute unbiased estimates of g̃(x).
3. Stochastic approximation converges to a locally optimal solution of g̃(x).

When these conditions are satisfied, stochastic approximation can be used to
solve the original DOvS problem. The algorithms in [43] assume simulation noise
has zero mean and finite variance. For a one-dimensional problem, the algorithm
requires that g(x) has a unique local minimizer. In the multidimensional case, the
algorithms require that g(x) is L�-convex or multimodular [47]. Multimodular or L�-
convex functions arise naturally in many important problems in inventory systems
and queueing networks.
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2.7 Algorithm Enhancements

R&S procedures have also been used in conjunction with other DOvS algorithms to
improve their efficiency or to make a correct decision at the end of the optimization
process. Boesel et al. [6] proposed a “clean up” R&S selection procedure that selects
the best solution among all solutions evaluated by a DOvS algorithm and provides a
fixed-width confidence interval for the objective function value of the best solution.
Many search-based OvS algorithms select the best solution from a neighborhood.
Pichitlamken et al. [59] designed a sequential procedure for that purpose. Since a
DOvS algorithm often runs for many iterations and the algorithm may stop at any
iteration, it is desirable to have a R&S procedure that guarantees the solution of
the current iteration is the best among all visited solution. Hong and Nelson [30]
designed such a procedure. In Xu et al. [69], they also used the comparison-with-
a-standard procedure of Kim [38] to test the local optimality of a solution when
solving DOvS problems.

2.8 Using Commercial Solvers

This section is based on material in Hong and Nelson [31], Chap. 12 of Banks et al.
[3], and Nelson [48].

Most commercial simulation modeling software also includes an OvS tool;
however, to the best of our knowledge none of these tools are based on the DOvS
algorithms presented in this chapter, with the exception of the ranking and selection
procedures that are found in a number of simulation packages. In addition, a free
version of COMPASS called “Industrial Strength COMPASS” can be obtained from
www.iscompass.net; with some effort it could be used in conjunction with
commercial simulation modeling software, although it is most suitable for use with
a lower-level programming language such as C++.

Instead of provably convergent DOvS algorithms, robust metaheuristics are the
most common foundation for integrated OvS tools. A “robust metaheuristic” is an
OvS procedure that does not depend on strong problem structure to be effective,
and is somewhat tolerant of some sampling variability. Examples include genetic
algorithms and tabu search. These integrated tools can be applied to problems with
continuous, integer and categorical decision variables. Robust metaheuristics have
been observed to be effective on difficult deterministic optimization problems, but
they usually provide no performance guarantees for deterministic problems, and
certainly not for OvS problems. The following three simple ideas can make them
more effective in practice and help avoid the three types of errors described in
Sect. 2.1.4.
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2.8.1 Preliminary Experiment to Control Sampling Variability

It will often be up to the simulation user to determine how many replications
are needed at each feasible solution examined by the heuristic. We know that
convergence requires that the number of replications should increase as the heuristic
discovers better and better solutions because it is statistically much more difficult to
distinguish solutions that are close in performance than ones that differ substantially.
Therefore at the beginning of the search very little error control may be needed
for the solver to identify good solutions and search directions, but later in the
search this might not be the case. Unfortunately, some solvers use the same number
of replications at all solutions visited, and do not revisit solutions to add more
replications.

However, some OvS software does have an “adaptive” setting, meaning it adjusts
the number of replications based on the variance of the simulation estimates. If
this feature is available, then use it. When the user must specify a fixed number
of replications per solution, then a preliminary experiment should be conducted:
Simulate several solutions, some at the extremes of the feasible region and some in
the interior. Compare the apparent best and apparent worst of these solutions. Find
the minimum number of replications required to declare them to be statistically
significantly different. This is the minimum number of replications that should
be used, which may be substantially more than the default minimum number of
replications specified by the OvS tool because the software designers want their
tool to deliver results quickly. But remember, when the decision that will be based
on the DOvS results really matters, then waiting hours or even days for the best
decision may well be worth it.

2.8.2 Restarting the Optimization

Even with infinite effort, robust metaheuristics may provide no guarantee that they
converge to the optimal solution. Therefore, the chances of finding a very good,
or even the best, solution is increased if the solver is run multiple times. Each
optimization run should use different random number seeds or streams, and should
start from different initial solutions if possible. Be sure to select starting solutions
on the extremes of the solution space, in the center of the space, or even randomly
generated. If you suspect that certain solutions will be good, include them as starting
solutions also. These runs can be made in parallel on different computers. The
inconvenience of initializing several optimization runs is worth it if it leads to a
much better solution, and if all runs lead to the same solution then you can have
higher confidence that you have found the best.
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2.8.3 Statistical Clean Up After Search

After the optimization run or runs have completed, it is critical to perform a second
set of statistically designed experiments on the apparent best solutions identified by
the heuristic; we call these “clean-up experiments.”

In an OvS problem you can never be sure you have found the optimal solution;
this is an error that cannot be avoided unless you exhaust Θ , although restarting
helps. The two other types of errors are avoidable: failing to recognize the best
solution that actually was visited, and poorly estimating the performance of the
solution that was selected in the end. These errors occur because no optimization
algorithm can hope to make any progress while at the same time maintaining
statistical error control every step of the way, and because there is a natural
bias toward solutions that, by chance, received favorable simulation estimates.
Therefore, it is prudent to perform a rigorous statistical analysis, using a ranking-
and-selection procedure such as those described in Sect. 2.3, to decide which are the
best or near-best of the solutions visited during the search. Include at least the top
5 % of the solutions encountered during the search in this controlled experiment. The
ranking-and-selection procedures built into the packages are ideal for this purpose.

The “clean up” concept was introduced in [6], which extended NSGS to be able
to start with solutions having unequal numbers of observations, as one would expect
at the end of a DOvS run.

In summary, the outcomes from using commercial OvS software can be improved
by (a) doing some preliminary experiments to assess output variability; (b) making
multiple optimization runs to improve the chances of identifying good solutions; and
(c) performing a sound experiment on the top solutions to provide a statistical guar-
antee of selecting the best among them and estimating its performance precisely.
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Chapter 3
Ranking and Selection: Efficient Simulation
Budget Allocation

Chun-Hung Chen, Stephen E. Chick, Loo Hay Lee, and Nugroho A. Pujowidianto

Abstract This chapter reviews the problem of selecting the best of a finite set of
alternatives, where best is defined with respect to the highest mean performance,
and where the performance is uncertain but may be estimated with simulation. This
problem has been explored from several perspectives, including statistical ranking
and selection, multiple comparisons, and stochastic optimization. Approaches taken
in the literature include frequentist statistics, Bayesian statistics, related heuristics,
and asymptotic convergence in probability. This chapter presents algorithms that are
derived from Bayesian and related conceptual frameworks to provide empirically
effective performance for the ranking and selection problem. In particular, we
motivate the optimal computing budget allocation (OCBA) algorithm and expected
value of information (EVI) approaches, give example algorithms, and provide
pointers to the literature for detailed derivations and extensions of these approaches.

3.1 Introduction

This chapter deals with the problem of selecting the best of a finite set of
alternatives. In the context of simulation optimization, each alternative represents
a different potential configuration of (or settings for) relevant decision variables.
The performance of each alternative is not known with certainty, but its value can
be estimated using stochastic simulation. We consider the setting where the number
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of feasible solutions (called “alternatives”) is small enough so that each alternative
can be simulated at least a few times in order to estimate its performance. In the
conclusion, we will point to recent work addressing settings where this is not the
case.

In this chapter, we will refer to a replication of a stochastic simulation as a
sample. When using simulation to compare the performance of multiple alternatives,
one might gradually increase the number of samples for each alternative until the
variance of the estimator is sufficiently small (i.e., the confidence intervals for
estimation are satisfactorily narrow) so that a satisfactory amount of evidence exists
to justify a selection of the “best” alternative. One very simple approach is to use an
identical number of samples for each alternative. This approach can be inefficient:
if one alternative has very low variance, then it may only require very few samples
to accurately estimate its performance.

To improve the efficiency of selecting the best alternative, several approaches
have been explored. Intuitively, to ensure a high probability of correctly selecting
an optimal alternative, a larger portion of the sampling budget should be allocated
to those alternatives that are more critical in the process of identifying good
alternatives quickly. Those could be alternatives with high estimated mean perfor-
mance in combination with a certain degree of uncertainty about the actual mean
performance. On the other hand, one might wish to sample less often the alternatives
whose estimated means are either poor or have a low degree of uncertainty about
their values. Two questions remain. How should one allocate resources to sample
from the different alternatives, as a function of their estimated mean performance,
and the uncertainty about their mean performance? For how long should one sample
until stopping to select an alternative as best?

This chapter focuses on two different approaches to answering these questions,
based on the optimal computing budget allocation (OCBA) approach and the
Bayesian expected value of information (EVI) approach. The approaches are
motivated and basic algorithms are presented. Derivations can be found in the
provided references. Empirical results from these two approaches show that they
perform favorably relative to some other approaches that have been proposed, in
the sense of providing a relatively high average-case performance over problem
instances, for a given number of samples that are observed to estimate the mean
performances of the alternatives.

3.1.1 Intuitive Explanations of Simulation Budget Allocation

Consider an inventory control problem where the goal is to maximize the expected
profit during a certain horizon by determining the best among five inventory
ordering policies. Each alternative inventory policy is specified by two numbers
s and S, where 0≤ s< S. If the inventory level falls below s, an order is placed
to increase the inventory level to S. Otherwise, no order is placed. The profit is
estimated via simulation due to randomness in demands and the amount delivered.
The goal is to find the alternative with the highest mean profit.
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Fig. 3.1 Ninety-nine per cent
confidence intervals for five
alternatives in a given stage
of sequential sampling

Alternative

Profit

1 2 3 4 5

One advantage of simulation experiments is that a decision maker can collect
samples in a sequential manner. After a given stage of sampling, estimates of the
means of each alternative are available, along with an assessment of the uncertainty
in the estimates. A selection procedure considers whether additional sampling is
required before selecting an alternative, and if so, how to allocate a sampling budget
to the different simulated alternatives in the next stage of sampling.

Figure 3.1 gives a representative scenario of possible results from the samples
that have been collected through a given stage of sampling. It shows the 99 %
confidence intervals along with the accompanying mean estimator (represented
as the line in the middle of the confidence interval) for each alternative. Some
alternatives seem better, but none are clearly better than all the others: all of the
confidence intervals overlap. In situations such as this, it is not straightforward
to determine which alternatives can be eliminated and which alternatives should
receive more simulation budget.

Intuitively, the decision maker may want to allocate more samples to the
alternatives with bigger half width such as alternatives 1 and 4 to reduce the variance
of their estimators. On the other hand, it is sensible to allocate more samples to
alternatives with larger means such as alternatives 3 and 4 as the objective is to
maximize the profit. The question is how much these factors influence what gets
sampled in the next stage of sampling. The next section gives an overview of the
works attempting to select the best alternative.

3.1.2 Overview of Ranking and Selection (R&S)

R&S procedures aim to identify the best alternative. One R&S procedure might be
considered to be better in some sense than another if it requires fewer samples,
in expectation, to achieve the same level of evidence for correct selection than
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that other procedure does. In this chapter, we will focus on a common context:
all alternatives are simulated. This is suitable for simulation optimization problems
when the number of alternatives is finite and not so large that it would prevent each
alternative from being sampled at least a few times for statistical inference [26].

Many reviews on R&S are available [1, 29, 39]. There are two-stage or few-
stage procedures (e.g., [21, 50]), the two-stage procedures with screening (e.g.,
[48]), and fully-sequential procedures, (e.g., [38]) that can guarantee a desired
probability of correct selection. In indifference zone (IZ) procedures, a difference
is considered to be significant if it is larger than a specified indifference-zone
parameter. The probability of correct selection guarantee in the IZ approach is with
respect to the probability of selecting the true best, subject to the condition that
the mean of the true best is better than the mean of all of the other alternatives
by at least the indifference-zone parameter. Thus, this is based on a worst-case
performance metric. This worst case approach can provide frequentist guarantees
for correct selection, but might require more samples to be collected to obtain that
guarantee than may be practically implementable. As such, they can be statistically
conservative.

In this chapter, we present R&S procedures based on average case performance
metrics that sample in a highly sequential manner. The goal is either to maximize
evidence for correct selection subject to a constraint on the sampling budget or to
reach a level of evidence for correct selection with the fewest expected number of
samples. Using an average-case analysis rather than a worst-case bound of the IZ
approach, we present two distinct approaches. The OCBA approach uses a thought
experiment that attempts to sequentially maximize the probability that the best
alternative can be correctly identified after the next stage of sampling. The EVI
approach uses a Bayesian description of the uncertainty about the mean of each
alternative, a loss function to describe the penalty for not correctly selecting the best
alternative, and expected value of information ideas to minimize the expected loss
from selecting an alternative after simulation. This expected loss can depend upon
which alternative is selected for simulation at each stage. These procedures tend to
require much less sampling to achieve the same or better empirical performance for
correct selection than procedures which are statistically more conservative [4, 58].

The EVI approach differs from the OCBA in one key respect. In the OCBA
approach, the effect of additional sampling is modeled using a Bayesian asymptotic
normality result: the distribution that is used to describe uncertainty after the
samples are observed is assumed to be normally distributed with the same mean and
with a variance that shrinks as samples accumulate. In the EVI approach, a decision
theoretic framework is used. It explicitly models the fact that the posterior mean
will change after the samples are observed. It models the distribution of what the
posterior mean will be and explicitly models how changes in the posterior mean will
potentially change decisions as to which alternative is best. Changes in a decision
from sampling imply a value of information from those samples. The EVI approach
allocates samples in a way that maximizes, in some sense, a measure of the expected
value of information of those samples.
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3.1.3 Organization

Section 3.2 formulates the selection problem and provides the basic notation. In
addition, it provides a generic algorithm for selection procedures together with
explanations on the components of the algorithm. The main insights of the efficient
R&S procedures are presented at the end of Sect. 3.2. Section 3.3 describes one
class of efficient R&S procedures, called OCBA. It encompasses the objective of the
allocation, the allocation rule, the algorithm, and how it has been extended in other
settings. Similarly, Sect. 3.4 provides the details of the EVI procedures. In particular,
three different procedures are presented together with their algorithms. Section 3.5
concludes this chapter.

3.2 Problem Formulation and Selection Procedures

The problem of selecting the best is formulated in Sect. 3.2.1, and a generic selection
procedure algorithm is provided in Sect. 3.2.2. Section 3.2.3 provides an overview
of OCBA and EVI procedures, which are presented in more detail in Sects. 3.3 and
3.4, respectively.

3.2.1 Problem Formulation of Selecting the Best

We consider the problem of selecting the best of several alternatives based on
their means which have to be estimated via stochastic simulation. Without loss of
generality, we define the alternative with the largest mean as the best. For readability,
we use upper case for random variable, lower case for fixed value or realization, and
bold face for vectors.

Let Xij be a random variable whose realization xij is the output of the jth sample
from alternative i, j= 1, 2, . . . . There are k alternatives so that i= 1, 2, . . . , k. Let wi

and σ 2
i be the unknown mean and variance of alternative i. It will be easier at times to

refer to the precision λ i = 1/σ 2
i instead of the variance. Let w[1] ≤w[2] ≤ . . . ≤w[k]

be the ordered means. In practice, the ordering [·] is unknown, and the best
alternative is to be identified by sampling.

A problem configuration is denoted by χ = (w,σ2) where w= (w1, w2, . . . , wk)
and σ2 = (σ 2

1,σ 2
2, . . . , σ 2

k). Let ni be the number of samples from alternative i so far.
Let xi =∑ni

j=1xi j/ni be the sample mean and σ̂2
i =∑ni

j=1(xi j − xi)
2/(ni − 1) be the

sample variance. The ordered sample means are x(1) ≤ x2 ≤ ·· · ≤ x(k). The quantity
ni depends on the decision maker while the quantities xi, σ̂2

i and (i) are updated as
more samples are observed.

Let D be the alternative that is selected as best by the selection procedure when
sampling is completed. Each selection procedure generates estimates ŵi of wi, for
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i= 1, 2, . . . , k. This chapter focuses on selection procedures where the estimates are
based on the sample mean, i.e., ŵi = xi. Thus, at the time sampling stops, D= (k)
and a correct selection occurs when the alternative with the best sample mean is the
true best (i.e., (k)= [k]).

In Bayesian approaches, unknown quantities are represented as random vari-
ables. Let Wi be the random variable that represents the unknown mean of
alternative i. The Bayesian framework uses the notion that we can update our
knowledge using the conditional distribution of parameters, given the data. Once
data are available, the posterior distribution describes the uncertainty of the
unknown mean. If we assume that samples are independent and normally distributed
with unknown mean and variance, and that a non-informative prior distribution is
used for the unknown mean and variance of each alternative, then the posterior
marginal distribution for the unknown mean Wi follows a Student’s t-distribution
St
(
xi, ni/σ2

i , vi
)

where vi = ni − 1 is the degrees of freedom [20]. The mean is xi

for vi > 1 and the variance is (σ 2
i /ni)vi/(vi − 2) for vi > 2.

In the above framework, we have assumed that the unknown means of each
alternative are independently distributed. Some extensions that are mentioned below
describe how to relax some of the assumptions made above.

It will be useful to define two figures of merit that are used by the OCBA and
EVI procedures below. Given the data E = {(xi1, xi2 . . . , xini) for i = 1, 2, . . . , k},
the posterior probability of correct selection (PCS), or posterior probability that the
best alternative is correctly selected, is

PCS = P
(

WD ≥W[k]

∣∣∣E
)
. (3.1)

We could further write PCS = P(D= [k]) in contexts where ties occur with
probability 0, as is the case in this setting.

If the vector of means w= (w1, w2, . . . , wk), the opportunity cost of selecting
alternative i is

LLL (i, w) = w[k]−wi. (3.2)

Thus, the expected opportunity cost (EOC), given the data ε , when D = (k) is
selected as best is

EOC = E
[
LLL (D, W )

∣∣∣E
]
= E
[
W[k]−WD

∣∣∣E
]
. (3.3)

For both the PCS and EOC, the probability expectations are with respect to the
posterior distribution of the unknown means, given all observed data.
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3.2.2 A Generic Algorithm for Selection Procedures

We present a generic sequential selection procedure. Variations on this generic
selection procedure result by making different assumptions about the nature of
the evidence for correct selection and the approximations made to measure that
evidence. In summary, an initialization step is used to provide initial estimates of the
mean and variance of each alternative. Then, samples are collected sequentially until
a stopping rule is activated. At each stage of sampling, an allocation rule specifies
how the samples to be collected during that stage should be allocated among the
alternatives.

The following are the steps for a generic algorithm for selection procedures.

1. Specify a first-stage sample size n0 > 2, and a total number of samples τ > 0 to
allocate per subsequent stage. Specify stopping rule parameters.

2. Sample Xi1,Xi2, . . . ,Xin0 independently and initialize the number of samples
ni ← n0 so far for each alternative, i= 1, 2, . . . , k.

3. Determine the sample statistics xi and σ̂2
i and the order statistics so that x(1) ≤

·· · ≤ x(k).
4. WHILE stopping rule is not satisfied, DO another stage

a. Use the allocation rule to identify which alternative to sample and determine
τ i, the number of samples to allocate to alternative i.

b. Observe the additional samples, update the sample statistics and the order
statistics.

c. Update the number of samples collected so far for each alternative,
ni ← ni + τ i.

5. Select the best alternative based on the selection rule.

As described in the algorithm, the decision maker needs to decide the allocation
rule, the stopping rule, and the selection rule. The following three paragraphs
describe each of the components of the algorithm in general. Sections 3.3 and 3.4
give specific examples of allocation rules and stopping rules.

An allocation rule is a mapping from the sampling statistics of the k alternatives
to a vector of integers that represents the number of samples to observe from each
alternative in the next stage of sampling. Let τ i be the number of samples allocated
to alternative i in the next stage of sampling, for i= 1, 2, . . . , k. We require that there
be a total of τ samples, so that ∑ k

i= 1τ i = τ . The τ i’s are recalculated at each stage
of sampling. For example, in an equal allocation, the allocation rule is to sample
evenly from each alternative: it assigns samples so that, at the end of the stage of
sampling, the difference between the number of samples between the most-sampled
and the least-sampled alternatives, is minimized. If τ = k, then the equal allocation
rule sets τ i = 1 for each i at each stage. If τ = 1, then one equal allocation rule could
set τ i = 1 for the alternative with the smallest index among those alternatives that
have been sampled the least so far, and τ i = 0 for the other alternatives.
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The stopping rule specifies the condition under which sampling is terminated so
that an alternative can be selected as best. It can be based on a total sampling budget
or the desired level of evidence for a correct selection. If a total sampling budget
is chosen, this reflects a choice to take a deterministic number of samples before
selecting an alternative as best independent of the samples seen: sampling continues
if and only if ∑ k

i= 1ni <β , where β is a user-specified total sampling budget.
A selection procedure with such a deterministic sampling budget is “better” if it
provides a higher expected level of evidence for correct selection after sampling.
Such evidence might be the posterior PCS.

If a desired level of evidence for correct selection is chosen as a criterion for
stopping, such as a choice to stop sampling when the posterior PCS is above a pre-
specified threshold, then a “better” procedure is one that requires a fewer number
of samples, in expectation, to reach that threshold. Such a stopping rule is called
an adaptive stopping rule, because the total number of samples may depend on the
values of the samples.

The selection rule specifies which alternative to select as best when sampling is
completed. A very common sampling rule is to pick the alternative with the largest
sample mean, i.e., D= (k), where (k) is the alternative with the largest sample mean
when the sampling stops, and D is the (random) decision variable that represents
the selected alternative. This decision rule is known to be optimal in some situations
(e.g., if the loss function is the expected opportunity cost [16, 30]). An alternative
selection rule is to select the alternative with the largest posterior probability of
being the best [2].

Throughout this chapter, the “default” approach is to use a non-informative prior
distribution for the unknown parameters [20]. This implies that the decision maker
does not favor any specific value for the unknown means. As a result, initial number
of samples need to be collected. If there is additional information, the decision
maker can use an informative prior distribution to describe that information. Branke
et al. [4] and Chick and Frazier [14] show how to handle the analysis with
informative prior distributions.

3.2.3 General Concepts for OCBA and EVI

Before going into the details in Sects. 3.3 and 3.4, the basic ideas of four allocation
rules are presented. The first allocation rule is OCBA for unconstrained optimization,
which will be further described in Sect. 3.3. The other three allocation rules attempt
to maximize EVI and will be discussed in detail in Sect. 3.4.

Basic Idea of OCBA

The basic goal of OCBA is to maximize the probability of correct selection for a
given stage of sampling. It aims to derive closed-form expressions that are easy to
implement to allocate multiple samples to multiple alternatives.
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This is done using an asymptotic framework to analyze the structure of the
optimal allocation when the number of samples tends to infinity. For example,
it uses the Bayesian asymptotic normality result where the posterior distribution
of Wi follows a normal distribution, Wi ∼ N

(
xi, σ2

i /ni
)
. Based on asymptotic

analysis, the simulation budget allocation problem can be formulated as a non-linear
deterministic optimization problem that can be solved using classical techniques
such as the Karush–Kuhn–Tucker (KKT) conditions. The resulting closed-form
allocation rule can then be implemented using a sequential heuristic algorithm.

Basic Idea of EVI

The value of information is defined as the expectation of the reward obtained with
additional information less the reward obtained without that information (that is,
the expected opportunity cost). Ideas for the EVI approach have been developed
independently for several different distributional assumptions and approaches for
how to value the information [16, 22, 31, and others]. The three approaches to
EVI discussed here include variations on whether the information to be valued is
obtained by sampling from one or from multiple alternatives in a given stage of
sampling, or whether the information from only a single stage (resulting in a so-
called one-step lookahead policy) or from potentially multiple stages of sampling is
modeled. The former is typically easier to do than the latter.

The Linear Loss procedure (LL) is an EVI procedure that can allocate multiple
samples to multiple alternatives in each stage of sampling. It aims to minimize the
expected opportunity cost (EOC), which is the difference in means between the
selected alternative and the best alternative. Linear loss is another name for the
EOC [30]. In the LL procedure, the additional information is one extra stage of
sampling, and the reward is the posterior mean reward from the alternative that
would be chosen as best.

The LL1 allocation is like the LL in that it allocates samples to alternatives at each
stage of sampling in order to minimize EOC of a potentially incorrect selection,
and does so in a myopic one-step lookahead manner. The LL1 differs from the LL
allocation in the sense that it requires all samples within a given stage to be taken
from a single alternative and so it is called LL1. This restriction enables a closed
form solution for the one-stage value of information when samples are normally
distributed (with known or unknown means and variances). The LL1 allocation was
independently developed by Frazier et al. [22]. The resulting approach is called the
knowledge gradient of which idea is extensively presented and discussed by Powell
and Ryzhov [49].

Economics of Selection Procedure (ESP) looks at the case where the decision
maker has the option to continue sampling or to stop and select the best. It specifies
one alternative to be sampled like LL1. However, it looks at the future streams of
rewards (potentially multiple stages of learning and sampling costs, the benefit from
implementing a selected alternative) instead of the one-step lookahead analysis as
in the case of OCBA, LL, and LL1 which only maximizes the evidence for correct
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selection by the end of one stage of sampling. As a result, it accounts for the value
of the ability of further sampling after that stage and therefore takes a non-myopic
view of the value of sampling.

3.3 Optimal Computing Budget Allocation (OCBA)

This section briefly introduces the OCBA approach. As ni increases, ŵi = xi becomes
a better approximation to wi in the sense that its corresponding variance becomes
smaller. At a given stage, we need to allocate the additional τ samples to each
alternative. As motivated in Sects. 3.1 and 3.2, instead of equally simulating
all alternatives, we want to choose τ1, τ2, . . . , τk more intelligently so that the
simulation efficiency can be enhanced.

3.3.1 Maximization of PCS

The simulation budget allocation problem that OCBA in Chen et al. [12] aims to
maximize the probability of correct selection (PCS) subject to the sampling budget
of a given stage of sampling τ ,

max
τ1,τ2,..., τk

PCS s.t.
k

∑
i=1

τi = τ,τi ≥ 0. (3.4)

Here ∑ k
i= 1τ i = τ denotes the total computational cost assuming the simulation

execution times for different alternatives are roughly the same. Formally, τ i is a
non-negative integer. However, the allocation rule is derived assuming that τ i is a
continuous variable.

3.3.2 Asymptotic Allocation Rule

We use the Bayesian asymptotic normality result, Wi ∼ N
(
xi, σ2

i /ni
)

[20]. After
the simulation is performed, xi can be calculated, σ 2

i can be approximated by
the sample variance; PCS can then be estimated using a Monte Carlo simulation.
However, estimating PCS via Monte Carlo simulation is time-consuming. Since the
purpose of budget allocation is to improve simulation efficiency, we need a relatively
fast and inexpensive way of estimating PCS within the budget allocation procedure.
Efficiency is more crucial than estimation accuracy in this setting. We adopt a
common approximation procedure used in simulation and statistics literature. This
approximation is based on the Bonferroni inequality. For brevity, we drop the
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notation ε .

PCS = P

(
∩

i:(i) �=(k)

(
W(k)−W(i) ≥ 0

))

≥ 1− ∑
i:(i) �=(k)

[
1−P

(
W(k)−W(i) ≥ 0

)]

= 1− ∑
i:(i) �=(k)

P
(
W(k) <W(i)

)

= 1− ∑
i:(i) �=(k)

ΦN
(−d( j)(k)

)
= APCS.

(3.5)

where ΦN is the cumulative distribution function of standard normal distribution
and d( j)(k) = x(k)− x( j).

Consider an asymptotic case (τ→∞ so that the total sampling budget β →∞ and
τ i → ni), Chen et al. [12] show that the approximation of PCS given in (3.4) can be
maximized when

n(i)
n( j)

=

(
σ(i)/d(i)(k)
σ( j)/d( j)(k)

)2

, (i),( j) ∈ {1, 2, . . . , k} and (i) �= ( j) �= (k), (3.6)

n(k) = σ(k)

√√√√ ∑
i:(i) �=(k)

n2
(i)

σ2
(i)

. (3.7)

It is interesting to see that (3.6) implies that the number of replications for
alternative i is proportional to the square of a noise-to-signal ratio, where the noise
refers to the sample standard deviation and the signal refers to the difference be-
tween alternative i’s sample mean and the best sample mean.

3.3.3 Sequential Heuristic Algorithm for Allocation

With the asymptotic solution in (3.6) and (3.7), we now present a cost-effective
sequential approach based on OCBA to select the best alternative from k alterna-
tives with a user-specified total sampling budget β . Each alternative is initially
simulated with n0 samples in the first stage, and additional samples are allocated
incrementally with τ samples to be allocated in each iteration. Let t be the stage
number.

OCBA Algorithm

INPUT k, β , τ , n0 (β − kn0 is a multiple of τ and n0 ≥ 5);
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INITIALIZE t← 0;
Perform n0 samples for all alternatives; n1,t = n2,t = . . . = nk,t = n0.

LOOP WHILE ∑ k
i= 1ni,t < β DO

UPDATE Calculate sample means xi∑ni,t

j=1xi j/ni,t , and sample standard devia-

tion σ̂i =
√
∑ni,t

j=1(xi j − xi)
2/(ni,t − 1), i= 1, 2, . . . , k, using the new simulation

output; find (k) = argmax
i

xi.

ALLOCATE Increase the sampling budget by τ and calculate the new budget
allocation, n1,t+ 1, n2,t+ 1, . . . , nk,t+ 1, according to

i)
n(i),t+1
n( j),t+1

=
( σ̂(i)/d(i)(k)
σ̂( j)/d( j)(k)

)2
, for all (i) �= (j) �= (k), and

ii) n(k),t+1 = σ̂(k)

√
Σ

i:(i) �=(k)

n2
(i),t+1

σ̂2
(i)

,

SIMULATE Perform τ i = (n(i),t + 1 − n(i),t)+ additional simulations for alter-
native i= 1, 2, . . . , k, where (x)+ =max(0, x);
t ← t+ 1.

END OF LOOP

The resulting n(i) in the ALLOCATE step is a continuous number that must
be rounded to an integer. In the numerical experiments in the next section, n(i) is
rounded to the nearest integer such that the summation of additional simulation
replications for all solutions equals τ . Note that there may not always exist a
solution that satisfies all the three constraints. It actually occurs when at least
one solution has been over simulated, i.e., n(i),t + 1 < n(i),t. In this case, we have
to relax the constraint. For ease of control of the simulation experiment, we can
choose to maintain the constraint ∑ k

i= 1n(i),t + 1 = τ +∑ k
i= 1n(i),t + 1 and apply some

heuristics to round n(i),t + 1 for all i to nearest integers. Chen and Lee [8] have found
numerically that the performance is not sensitive to how we round n(i), probably due
to the robustness of a sequential procedure.

Alternative Simpler OCBA Procedure

When the computational cost of samples (simulation replications) is relatively large
as compared to the computational cost of the ALLOCATE step, we recommend that
τ should be small, or even set to 1. When τ = 1 the ALLOCATE and SIMULATE
steps can be simplified as follows.

ALLOCATE Increase the sampling budget by τ = 1 and calculate a tentative
allocation n1,t+ 1, n2,t+ 1, . . . , nk,t + 1, according to

i)
n(i),t+1
n( j),t+1

=
( σ̂(i)/d(i)(k)
σ̂( j)/d( j)(k)

)2
, for all (i) �= (j) �= (k), and

ii) n(k),t+1 = σ̂(k)

√
Σ

i:(i) �=(k)

n2
(i),t+1

σ̂2
i

,

leave n(i),t + 1 as a decimal number and find (i∗) = argmax
i

(
n(i),t+1 − n(i),t

)
.
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p1 p2

U(1,39) U(5,45)

Exp(1)

Fig. 3.2 A two-stage queuing system where both p1 and p2 must be greater than 10

SIMULATE Perform additional one sample for alternative (i*);
n(i∗),t+1 = n(i∗),t + 1; n(i),t + 1 = n(i),t for (i) �= (i*);
t ← t+ 1.

Intuitively, we determine which alternative is the most starving one in terms
of the need of additional simulation, and then simulate that alternative for one
additional replication. This procedure is iteratively continued until the total budget
β is exhausted or the estimated APCS is sufficiently high. As shown in Chen and
Lee [8], this simpler procedure performs equally well in our numerical testing.

3.3.4 Numerical Results

Chen and Lee [8] provide extensive numerical results for OCBA. Among them,
Fig. 3.2 gives an example of a two-stage queuing system, where we want to allocate
31 parallel servers within a two-stage queue where each stage of the queue can
contain no less than 11 servers.

Denote p1 and p2 as the numbers of workers allocated to nodes 1 and 2
respectively. Thus, p1 + p2 = 31, p1 ≥ 11, and p2 ≥ 11. There are ten alternative
combinations of (p1, p2). We want to choose the best alternative of (p1, p2) so that
the average system time for the first 100 customers is minimized. Since there is
no closed-form analytical solution for the estimation of the system time, stochastic
(discrete-event) simulation can be performed to find the best alternative.

To characterize the performance of different procedures as a function of β , we
vary β between 200 and 8,000 for all of the sequential procedures and the estimated
achieved PCS as a function of β is shown in Fig. 3.3. We estimate the PCS by
estimating the fraction of the event of correct selection out of the independent
experiments that are conducted.

We see that all procedures obtain a higher PCS as the available sampling budget
increases. We can then record the number of samples that correspond to where the
curve crosses at a certain level of PCS that we are interested in. It can be seen that
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3,200 4,200 5,200

OCBA

Equal

Fig. 3.3 PCS vs. β using three sequential allocation procedures

Table 3.1 The sampling
budget to attain PCS= 0.95
or 0.99

PCS OCBA Equal allocation

0.95 470 1,450

0.99 850 2,890

Table 3.2 Number of
maximum allowable workers
to simulate varying numbers
of alternatives

Maximum number of workers Number of alternatives

31 10

41 20

51 30

61 40

71 50

81 60

91 70

101 80

111 90

121 100

OCBA achieves a same PCS using the lowest amount of sampling budget. Table 3.1
shows the sampling budget to attain PCS= 0.95 and 0.99 for OCBA and Equal
Allocation.

It is not surprising that the actual sampling cost using OCBA depends on the
specific problem and the corresponding PCS requirement. However, the speedup
factor of using OCBA versus equal allocation is not very sensitive to problem
specifics, except for the number of alternatives.

Instead of providing only 31 servers, we increase the number of servers up to 121,
where there must be at least 11 servers at each station. As a result, the number of
possible alternatives varies from 10 to 100. Table 3.2 lists some of the possibilities.
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Table 3.3 Speedup factor of using OCBA compared with the use of
equal allocation

Number of alternatives (k) 4 10 20 50 75 100

Speedup factor 1.75 3.42 6.45 12.8 16.3 19.8

In this test, we compare OCBA and equal allocation, and focus on the “speedup
factors” under OCBA. For both procedures, we record the minimum sampling
budget where the curve plotting the estimated PCS vs. β crosses PCS= 0.99: βOCBA

and βEA. The “speedup factor” using OCBA is given by the ratio βEA/βOCBA.
Table 3.3 shows the numerical results for different number of alternatives. We see
that OCBA is even more efficient as the number of alternatives increases. The higher
efficiency is obtained, because a larger alternative space gives the OCBA algorithm
more flexibility in allocating the sampling budget.

3.3.5 Minimization of EOC

Instead of maximizing PCS, we turn our attention to the expected opportunity
cost (EOC). From the simulation efficiency perspective, one has the same question
to ask: how should we allocate the simulation samples so that we can select an
alternative within the given sampling budget while EOC is minimized, instead of
maximizing PCS as in previous sections?

Deriving an asymptotic solution for minimizing EOC is much more complicated
than its counterpart for PCS. Following the same notion of the greedy approach
given in Chen et al. [11] and Hsieh et al. [36], He et al. [33] present a greedy
selection procedure, called OCBALL (or OCBA−EOC), to reduce the EOC of a
potentially incorrect selection by taking a similar OCBA approach to selection.

A critical component in the proposed procedure is to estimate how EOC changes
as ni changes. Let τ i be a nonnegative integer denoting the number of additional
simulation samples allocated to alternative i in the next stage of sampling. We are
interested in assessing how EOC would be affected if alternative i was simulated for
τ additional replications. He et al. [33] present an Estimated Expected Opportunity
Cost (EEOC), which is an upper bound of EOC, as follows

EEOC = ∑
i:(i) �=(k)

P
(
W(i) ≥W(k)

)
E
[
W(i)−W(k)

∣∣∣W(i) ≥W(k)

]
. (3.8)

The OCBA approach in this case aims to sequentially minimize EEOC. A critical
component is to estimate how EEOC changes if alternative i is allocated with τ i

additional replications in a given stage. A heuristic approach to the approxima-

tion of the predictive posterior distribution yields Wi ∼ N

(
1
ni∑

ni

j=1xi j,
σ̂2

i

ni + τi

)
.
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The EEOC can then be determined by using the original distributions for the
unknown means of alternatives other than i as follows

EEOC(i) = ∑
j:( j) �=(k)

∫ +∞

0
x f ∗(k), ( j),(i)(x)dx, (3.9)

where f *
(k), (j),(i)(x) is the probability density function (p.d.f.) of the difference

between alternative (k) and (j), given that τ (i) additional replications are allocated
to alternative (i), and none is allocated to others. If (i)= (k), then f *

(k), (j),(i)(x)

is the p.d.f. of N

(
x( j)− x(k),

σ̂2
(k)

n(k)+τ(k)
+

σ̂2
(i)

n(i)

)
. If (i)= (j), then f *

(k), (j),(i)(x) is

the p.d.f. of N

(
x(i)− x(k),

σ̂2
(k)

n(k)
+

σ̂2
(i)

n(i)+τ(i)

)
. Otherwise, no new information is

available to distinguish alternatives (k) and (j) and f *
(k), (j),(i)(x) is the p.d.f. of

N

(
x( j)− x(k),

σ̂2
(k)

n(k)
+

σ̂2
(i)

n(i)

)
.

Since we want to minimize EOC, OCBALL sequentially allocates additional
samples to the alternatives that lead to the lowest EEOC at each stage. Let r be
the number of alternatives to simulate in each stage. The ALLOCATE steps are
revised as follows

ALLOCATE Find the set S(r) ≡{j : EEOC(j) is among the r lowest values}.
Increase the sampling budget by τ (i) = τ/|S(r)| for alternative (i)∈ S(r), i.e.,
n(i),t + 1 = n(i),t + τ (i) if (i)∈ S(r), n(i),t + 1 = n(i),t otherwise. If τ = 1, only a single
replication is allocated to alternative j which minimizes EEOC(j).

3.3.6 Other Variants

This section discusses some extensions of the OCBA approach. We begin by consid-
ering an efficient budget allocation procedure for selecting an optimal subset of top-r
alternatives rather than the single best alternative [10]. Then we consider problems
with multiple performance measures, which can be formulated either as constrained
optimization or multi-objective optimization. Other recent developments are then
discussed and finally concluded with examples of generalizations of OCBA notions.

Subset Selection Problem

Instead of selecting the best alternative as in previous section, we consider a class
of subset selection problems in simulation optimization or ranking and selection. In
some cases, it is more useful to provide a set of good alternatives than a single best
alternative for decision maker to choose, because he/she may have other concerns
which are not modeled in the simulation. Such efficient subset selection procedures
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are also beneficial to some recent developments in simulation optimization that
require the selection of an “elite” subset of good candidate solutions in each iteration
of the algorithm, such as evolutionary population-based algorithm. A subset with
good performing solutions will result in an update that leads the search in a
promising direction.

Specifically, our objective is to find all top-r alternatives, where r > 1 is the
number of alternatives to select. Koenig and Law [40] develop a two-stage procedure
for selecting all the r best alternatives along the lines of the procedure in Dudewicz
and Dalal [21] (see also Sect. 10.4 of Law [41] for an extensive presentation of
the problem and procedure). However, the number of additional samples for the
second stage is computed based on a least favorable configuration, resulting in very
conservative allocations, so that the required computational cost is much higher than
actually needed.

This problem can be easily handled by changing the correct selection definition in
OCBA. Specifically, PCS = P(W(i) ≥W(j), ∀ (i)∈ Sr, (j) �∈ Sr) where Sr is the optimal
subset. Chen et al. [10] show that the allocation rule is similar to (3.6), that is

n(i)
n( j)

=(
σ(i)/(x(i)−q)
σ( j)/(x( j)−q)

)2

, where q is a value between x(r) and x(r+1). A suggested value of

q, which asymptotically maximizes both P(W(r) ≤ q) and P(W(r+ 1) ≥ q), is given by

q =
σ̂(r+1)x(r)+σ̂(r)x(r+1)

σ̂(r)+σ̂(r+1)
.

Handling Optimization with Multiple Performance Measures

OCBA has also been extended to tackle other simulation-based optimization prob-
lems. The needs of optimization problems with multiple performance measures
become more evident. We can categorize these problems according to whether there
are any constraints and whether the constraints are stochastic or deterministic.

In the case of multi-objective optimization where no performance measures are
constrained, Lee et al. [43, 44] consider the problem of finding the non-dominated
Pareto set where the evidences for correct selection used are type I and type II errors.

There are cases where the secondary stochastic performance measures act as
constraints. In this case, the simulation budget allocation can be allocated based
on the optimality only, feasibility only, or both. Lee et al. [45] propose an OCBA
approach that maximizes a lower bound of PCS. The procedure is applicable for
both the independent case and the case with correlated performance measures. In
some situations, the decision makers are only interested in differentiating the fea-
sible alternatives from the infeasible ones, which is called feasibility determination
problem as addressed by Szechtman and Yücesan [55]. In this case, there is no need
to select the best alternative.

It is also possible to consider the descriptive complexity preference. In this
case, an alternative that is simpler, i.e., having smaller descriptive complexity is
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preferred compared to a complex one if they have similar performance. The decision
makers therefore want to select the top-r simplest alternatives of which performance
measures are above certain desired level [37, 60].

Other Recent Developments

There are several other related works along the lines of the OCBA research. This
section gives some examples, which is by no means an exhaustive list. The OCBA
rule presented in Sect. 3.3.2 assume that the variances are known. In the case
of unknown variances, Chen et al. [13] proposed the OCBA algorithm based on
t distribution. It is found that the differences between the results obtained based
on the t distribution model and the normal distribution model is not significant.
Instead of finding the alternative with the best mean, Trailovic and Pao [57] develop
an OCBA approach for finding an alternative with minimum variance. Unlike the
independence assumption of simulation samples required in this book, Fu et al. [27]
extend the OCBA to problems in which the simulation outputs between alternatives
are correlated. Chen et al. [9] study of the benefit of dynamic allocation. Glynn
and Juneja [28] extend the OCBA to problems in which the simulation output is no
longer normally distributed by utilizing large deviation theory. Blanchet et al. [3]
further extend the work to heavy-tailed distributions, also utilizing large deviation
theory.

Brantley et al. [5, 6] enhance OCBA efficiency by incorporating information from
across the domain into a regression equation. Morrice et al. [46, 47] further extend
the concepts to a method for selecting the best alternative based on a transient mean
performance measure.

Generalized OCBA Notions

The different extensions presented earlier indicate that there exists a consistent
notion where an optimization model is used to determine the best allocation scheme
to maximize a certain desired quality of the outcome given a fixed budget. The
OCBA notion has been generalized for different purposes well beyond selecting the
best alternative as presented in previous subsections. The main idea is that it is
possible to replace the objective function PCS with other objectives. In addition, the
budget to be allocated is not necessarily in terms of computer time or simulation
replications. We give three examples in this section.

The Cross-Entropy (CE) method introduced by Rubinstein [51] belongs to a
class of global optimization algorithms called estimation of distribution algorithms,
which work with a probability distribution over the solution space. In every
iteration of CE, we will first generate a population of solutions from a probability
density function (p.d.f.) with a certain parameter. After these generated solutions
are simulated, the parameters of the distribution are updated by minimizing the
Kullback–Leibler (KL) divergence (or the cross entropy) between the parameterized
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p.d.f. and the target optimal p.d.f.. The CE method has shown to be promising
in solving difficult global optimization problems, but its main focus has been
on deterministic optimization problems. For the stochastic setting, He et al. [34]
develop the OCBA–CE procedure that integrates the objectives of minimizing
the KL divergence from a parameterized distribution that generates the candidate
solutions in the CE method with that of minimizing the total computing budget
per iteration. Numerical testing indicates that the OCBA–CE is promising, resulting
in substantial computational efficiency gains over the CE method with equal
allocation.

The second example is the work by Shortle et al. [54], which uses the notion
of OCBA to the problem of estimating a rare-event probability using splitting
simulation. Multi-level splitting is an effective variance reduction technique. The
basic idea is to create separate copies (splits) of the simulation whenever it gets close
to the rare event. Each level is smaller and much easier to simulate than the original.
Note that this problem is not an optimization problem as the decision maker does not
need to select the best alternative. The problem of determining the number of splits
is formulated as an optimal computing budget allocation problem. In this context,
the objective is to minimize the variance of the rare-event probability estimator. The
budget is the total computation time, which needs to be allocated to different levels.

OCBA can also be extended to problems without simulation or optimization.
For example, Wong et al. [59] propose an OCBA approach for Data Envelopment
Analysis (DEA), which is a mathematical programming approach by Charnes et al.
[7] for measuring efficiency for decision-making units with multiple inputs and
multiple outputs. The idea is to compare different decision-making units in terms of
how many inputs they have used in achieving the outputs. In this case, the objective
is to minimize the expected mean square error for the prediction of the efficiency
score in DEA. The budget refers to the total budget for data allocation. Therefore,
the budget allocation problem is to determine how the data should be collected, i.e.,
finding the optimal number of data points allocated for different unknown variables
to maximize the predicted efficiency score.

3.4 Expected Value of Information (EVI)

The EVI approach is based on a Bayesian decision theoretic approach rather than
a frequentist statistical approach. It is Bayesian in the sense that it presumes that
uncertainty about all unknown parameters, such as the unknown means of each
alternative, be described with probability distributions. It is decision theoretic in
the sense that sampling allocation decisions, as well as decisions to select a given
alternative as best, are based on maximizing an expected reward (or equivalently,
minimizing an expected loss).

There are several potential loss functions of interest in this framework. One loss
function is the 0− 1 loss function: a loss of 1 is incurred if the true best alternative
is not selected as best, and a loss of 0 is incurred if the best alternative is best. With
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the 0− 1 loss function, the expected loss is the PCS in (3.1). Another loss function
of interest is the opportunity cost. The opportunity cost is 0 if the best alternative
is selected as best. Otherwise, the opportunity cost is the difference between the
performance of the best alternative and the performance of the alternative selected
as best. The expected opportunity cost (EOC), averaged over sampling decisions and
realizations of the unknown true performance, has particular significance when the
outputs of simulated alternatives are linear measures of financial (profit) outcomes
for the alternatives they simulate. Minimizing the EOC in that case is equivalent to
maximizing the expected profit. The EOC is therefore particularly interesting when
using a selection procedure to select an alternative with the greatest financial benefit.

Independent of whether the loss function is the 0− 1 loss function, the opportu-
nity cost, or some other loss function, the EVI approach allocates samples in each
stage of sampling with the goal of reducing the expected loss obtained after the
samples are observed. This problem can be solved analytically in a few special cases
(e.g., normal distributed output with known sampling variances, k= 2 alternatives);
otherwise analytically motivated approximations that have attractive theoretical
properties can be assembled to provide good heuristics. Some of these are described
below.

We highlight three EVI procedures that focus on information with respect to the
EOC loss function. Section 3.4.1 presents the LL procedure, which allocates samples
to multiple alternatives in each stage. Section 3.4.2 focuses on a simplification where
only one additional sample to a single alternative can be collected in each stage.
Section 3.4.5 presents the multi-step valuation of information where the proposed
procedure that looks at the value of multiple stages of sampling in order to further
improve effectiveness of an allocation in a given stage.

3.4.1 Linear Loss (LL)

Chick and Inoue [16] proposed a procedure to determine the number of samples to
minimize the expected opportunity cost (EOC).

To find the expected value of sampling an alternative in the next stage of
sampling, we introduce some additional notations to account for the random output
that will be observed. Let Yij be a random variable where yij is the output of the jth
sample from alternative i, j= 1, 2, . . . , that will be observed in the next stage of
sampling. Let yi be the sample average of the output in the additional stage based
on the additional τ i samples, yi =∑τi

j=1yi j/τi. As defined in Sect. 3.2.1, xi is the
sample mean based on ni, the number of samples from alternative i so far. The
overall sample mean for alternative i, denoted as zi is therefore

zi =
nixi + τiyi

ni + τi
. (3.10)
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Before the sampling is done, Zi =
nixi+τiY i

ni+τi
is random. Thus, Zi is the posterior

mean of the unknown mean for alternative i given that ε is the information seen so
far and the fact that τ i samples from alternative i will be observed but have not yet
been observed. The distribution of Zi depends on the value of τ i.

Minimization of EOC

Conceptually, at each stage of sampling, the LL procedure seeks to allocate samples
to several alternatives so that the expected EOC that will be obtained will be
minimized after the next stage of sampling. That so-called predictive EOC depends
on the samples taken in the next stage as they will determine the {Zi}, which in turn
determine which alternative will be selected.

Assessing that predictive EOC is analytically intractable when k> 2 or when
variances are unknown, even when samples are normally distributed. The LL proce-
dure attempts to minimize an upper bound on that predictive EOC. In particular, we
minimize (for asymptotically large τ) the term EOCbnd(τ1, τ2, . . . , τk), where

EOCbnd = ∑
i:(i) �=(k)

E
[(

W(i)−W(k)

)+]−E
[(

Z(i)−Z(k)

)+∣∣∣E
]
. (3.11)

depends on the τ (i) via the Z(i), is an upper bound on the predictive EOC, where
(k) is the alternative with the highest mean given the data ε observed so far, and
(x)+ =max(0, x).

Conceptually, the difference in the summand in the equation for EOCbnd

is the expected opportunity cost of selecting with no additional information,
E[(W(i) −W(k))+|ε], minus the expected value of information of sampling,
E[(Z(i) −Z(k))+|ε], in a pairwise comparison between alternatives (i) and (k). When
no additional samples are taken, the term E[(Z(i) −Z(k))+|ε] is 0. When an infinite
number of samples are taken for both (i) and (k), the difference in the summand is
0 (an infinite number of samples gives perfect information).

At each stage of sampling, ε is updated, and the goal of the LL procedure is to
find an allocation that minimizes EOCbnd.

min
τ1,τ2,..., τk

EOCbnd s.t.
k

∑
i=1

τi = τ, τi ≥ 0. (3.12)

A solution to the problem in (3.12) for the case of known variances is not known
other than by searching on a lattice, as the τ i are non-negative integers. We therefore
derive an asymptotically optimal solution to (3.12) which assumes that τ is very
large and allows for real-valued τ i. When sampling variances are also unknown, an
additional approximation is needed to account for the fact that closed form solutions
for the distribution of differences like W(k) −W(j) are not available (the Behrens–
Fisher problem). Thus, we use the so-called Welch approximation to describe those
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differences. To do so, we define

d∗
jk =

d( j)(k)

λ̂−1/2
jk

, (3.13)

where d( j)(k) = x(k)− x( j) and λ̂−1/2
jk =

√
σ̂2
( j)

n( j)
+

σ̂2
(k)

n(k)
. We also describe the standard-

ized statistics for the difference Z(k) −Z(j) with

d∗
{ jk} =

d( j)(k)

λ̂−1/2
{ jk}

, (3.14)

where λ̂−1/2
{ jk} =

√
τ( j)σ̂2

( j)

n( j)(n( j)+τ( j))
+

τ(k)σ̂2
(k)

n(k)(n(k)+τ(k))
. The notation d*

{jk} differs slightly

from the standardized statistics for the difference W(k) −W(j) that is d*
jk.

We denote the Student t distribution by St(μ ,κ , v), the cumulative distribution
function of the standard Student t distribution (μ = 0, κ = 1) by Φv(·), and the
probability density function by φ v(·). The posterior marginal distribution for the
unknown mean Wi has a Student t-distribution, St

(
xi, ni/σ2

i , vi
)
. The standard EOC

functionΨv[m] gives the EOC when an alternative with known mean m is selected in
preference to a single alternative whose unknown mean has a St(0, 1, v) distribution,

Ψv [m] =
v+m2

v− 1
φv(m)−mΦv (−m) . (3.15)

Welch’s approximation for the degrees of freedom of W[k] −W[j] is

ν( j)(k) =

[
σ̂2
( j)/n( j) + σ̂2

(k)/n(k)
]2

[
σ̂2
( j)/n( j)

]2
/
(
n( j)− 1

)
+
[
σ̂2
(k)/n(k)

]2
/
(
n(k)− 1

) . (3.16)

With this notation, and with the Welch approximation for the differences, we can
approximate EOCbnd by

EOCbnd ≈ ∑
j:( j) �=(k)

λ̂−1/2
jk Ψν( j)(k)

[
d∗

jk

]− λ̂−1/2
{ jk} Ψν( j)(k)

[
d∗
{ jk}
]
. (3.17)

When all of the τ i = 0, then λ̂−1/2
{ jk} Ψν( j)(k)

[
d∗
{ jk}
]

becomes 0. We define

EOCBon f � EOCbnd (0,0, . . . ,0) = ∑
j:( j) �=(k)

λ̂−1/2
jk Ψν( j)(k)

[
d∗

jk

]
. (3.18)
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EOCBonf is an upper bound on the posterior EOC given ε (without considering
further sampling). Closed form solutions for the EOC are only available in special
cases, so the LL procedure is derived by myopically minimizing an upper bound on
the EOC at each stage of sampling. The upper bound is essentially a Bonferroni-
type bound that emerges from considering the EOC in a comparison between the
current best alternative, alternative (k), relative to each of the k − 1 alternatives. See
Chick and Inoue [16] and Branke et al. [4] for further details.

Allocation Rules

Given that there are τ samples to be allocated to k alternatives, the allocation rule
for LL is given by

τ(i) =

(
τ+∑k

j=1n j

)(
σ̂2
(i)γ(i)

)1/2

∑k
j=1

(
σ̂2

j γ j

)1/2
− n(i), (3.19)

where

γ(i) =

⎧⎪⎨
⎪⎩
λ̂ 1/2

ik
ν(i)(k)+(d∗ik)

2

ν(i)(k)−1 φν(i)(k)
(
d∗

ik

)
, for (i) �= (k)

∑
j:( j) �=(k)

γ( j), for (i) = (k).
(3.20)

This formula asymptotically minimizes (3.17) when τ is arbitrarily large (so
that all of the τ (i) are nonnegative). If τ is not sufficiently large, then (3.19) might
prescribe a nonpositive number of samples for some τ (i). If that is the case, then a
better approximation to the distribution of the posterior mean Z(i) should be used.
Fortunately, one is available: there will be no change in the posterior mean following
samples if no new samples are observed. The formulas in (3.19) and (3.20) can
therefore be adapted to the case of small τ by making use of that observation.
The following steps which check nonnegativity of the τ (i) implement the necessary
computations.

a. Initialize the set of alternatives considered for additional samples, S ←
{1, . . . ,k}.

b. For each (i) in S \{(k)} : If (k) ∈S then set λ̂−1
ik ← σ̂2

(i)/n(i) + σ̂2
(k)/n(k), and

set υ(i)(k) with Welch’s approximation. If (k) /∈ S then set λ̂ik ← n(i)/σ̂2
(i) and

υ(i)(k) ← n(i) − 1.
c. Tentatively allocate a total of τ samples to alternatives (i) ∈S

(
set τ( j) ← 0 for

( j) /∈S ):
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τ(i) ←
(
τ+∑ j∈S n j

)(
σ̂2
(i)γ(i)

) 1
2

∑ j∈S
(
σ̂2
( j)γ j

) 1
2

− n(i),

where γ(i) ←

⎧⎪⎨
⎪⎩
λ 1/2

ik
υ(i)(k)+(d∗ik)

2

υ(i)(k)−1 φυ(i)(k)
(
d∗

ik

)
for (i) �= (k)

∑
( j)∈S \{(k)}

γ( j) for (i) = (k).

d. If any τ (i) < 0 then fix the nonnegativity constraint violation: remove (i) from S
for each (i) such that τ (i) ≤ 0, and go to Step 4b. Otherwise, round the τ i so that
∑ k

i= 1τ i = τ (the allocation is determined).

Chick and Inoue [16] derive this algorithm, and generalize it to minimize the
CPU time (rather than the number of samples) if the CPU time per sample differs
from one alternative to the next. The sequential algorithm is the same as that in
Sect. 3.2.2 except that we use the allocation rule in (3.19).

3.4.2 Small-Sample EVI Allocation Rule (LL1)

The somewhat cumbersome check for nonnegativity of the allocation in the LL
allocation rule above can be avoided if all samples in a given stage are allocated to a
single alternative (the alternative simulated in a given stage can still change from one
stage to the next). The LL1 allocation rule does allocate all samples to one alternative
in a given stage, and therefore simplifies the computation of the optimal allocation.
This has been done for the simulation context by Chick et al. [18] and independently
by Frazier et al. [22]. The latter paper used the term knowledge gradient to describe
the idea of one-stage lookahead for the value of sampling from one alternative at
each stage of sampling. The LL1 allocation rule has therefore also been referred to
as KG or KG1 in the literature.

Small-Sample EVI

As there is only one alternative to be sampled, the small-sample EVI procedures
avoid the asymptotic approximation, the use of Bonferroni’s inequality and the
Welch approximation which were employed in the previous EVI procedure.

In the small-sample EVI that seeks to minimize the posterior EOC, the alternative
to be sampled is the one with highest EVILL,(i) where
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EVILL,(i) =

{
λ−1/2
{ik} Ψn(i)−1

λ−1/2
{k−1,k}Ψn(k)−1

[
d∗
{ik}
]

[
d∗
{k−1,k}

] if (i) �= (k)
if (i) = (k)

. (3.21)

Note that x(k) +EVILL, (i) is the expected reward when only taking τ (i) samples
for alternative (i), and then selecting the alternative with the best sample mean. Thus,
EVILL,(i) relates to the expected value of information when comparing the alternative
selected for sampling and the best of the other k− 1 alternatives.

Sequential Algorithm

The following is the procedure for LL1. It is similar to that for LL except in step 4
where the allocation rule of LL1 states that only one alternative with the highest EVI
will be sampled:

a. Set τ (i) ← τ for the alternative that maximizes EVILL,(i), and τ� ← 0 for the others.

3.4.3 Stopping Rules

We now introduce some notation for some stopping rules and more formally
describe them. They were originally proposed in the context of EVI procedures,
but are equally applicable to both OCBA and EVI contexts.

The deterministic sampling rule, which was used in the OCBA algorithm
presented in Sect. 3.3.3, continues sampling until a predefined sampling budget has
been exhausted. That is, sampling continues if and only if ∑ k

i= 1ni < β for some
user-specified β . This is denoted here as the S stopping rule.

There are several adaptive stopping rules that may be used in either the OCBA or
EVI selection procedures—although they were introduced in the context of the EVI
approach. The EOCBonf stopping rule continues sampling until the posterior EOC is
sufficiently small. In particular, sampling continues until an upper bound, EOCBonf

in (3.18), drops below a user-specified threshold ε*> 0. The threshold ε* can
be chosen to be the highest acceptable expected opportunity cost associated with
a possibly incorrect selection. (Someone comfortable with the indifference zone
approach might select ε* to be the indifference zone parameter times the maximal
acceptable probability of incorrect selection [19]).

The PCSSlep stopping rule continues sampling until a user-specified lower bound
is exceeded by a lower bound on the posterior PCS, where the lower bound is due to
Slepian. That is, sampling continues until PCSSlep =∏(i) �=(k)Φv(i)(k)

(
d∗

jk

)
is at least

as great as a user-specified threshold for the posterior PCS, 1−α*, where α*> 0
is a user-specified acceptable level of probability of incorrect selection.
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Fig. 3.4 EOCIZ efficiency
for LL and LL1 in a slippage
configuration with five
alternatives
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3.4.4 Numerical Results for LL and LL1

Branke et al. [4] and Chick et al. [18] provide extensive numerical results for
procedures derived from the OCBA and EVI approaches. This includes procedures
based on the OCBA, LL, and LL1 allocation rules. They also assess EVI-based
allocation rules that focus on improving the posterior PCS, rather than the posterior
EOC, and which are named the 0− 1 allocation rule and the 0− 11 allocation rule.
These allocation rules seek to improve the value of information for the 0− 1 loss
function, whose expected value is the posterior PCS, when allocating samples to
multiple alternatives and to one alternative, respectively, per stage of sampling. The
papers also assess how different stopping rules assess the efficiency of the sampling
procedures. This section recalls some of the key results from those papers.

In making empirical assessments of selection procedures, allocation rules and
stopping rules were combined into a procedure, and were repeatedly applied to
different classes of selection problems. Curves like those in Fig. 3.4 were plotted
for each selection procedure and for each selection problem. The x-axis of the curve
gives the expected total number of samples when the procedure stops, E[N]. The y-
axis plots the empirical evidence for correct selection. In Fig. 3.4, this evidence is the
empirical expected opportunity cost EOCIZ , the average, over repeated applications
of the procedure to a selection problem, of the true opportunity cost, w[k]−wD, when
alternative D is selected as best. In Fig. 3.5, this evidence is the empirical fraction
PICSIZ = 1−PCSIZ , where PCSIZ is the probability of correctly selecting the true
best alternative, the fraction estimated over repeated applications of the procedure
to a selection problem.

Figure 3.4 presents a representative graph that supports a claim that was
systematically found to be true in numerical experiments: the adaptive stopping
rules, EOCBonf and PCSSlep, perform much more effectively than the deterministic
stopping rule. This claim is supported in the graph because the curves with the
EOCBonf stopping rule are lower (have a lower loss for any given expected number
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Fig. 3.5 PICSIZ efficiency
for LL and LL1 in a
monotonically decreasing
means configuration with ten
alternatives (means of each
alternative evenly spaced)
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of samples) than for the (deterministic) S stopping rule. In Fig. 3.4, there are five
alternatives in a so-called slippage configuration (the mean of the best alternative is
exactly the same value better than the means of the other alternatives).

In Fig. 3.4, we also observe that for a given stopping rule, that the LL allocation
rule was at least as good as the LL1 allocation rule. This was not systematically
true. Both of these allocations were equally good for k= 2 alternatives. The LL1

allocation was sometimes better than the LL allocation when there were a relatively
small number of total samples (say, 50–120 depending on the problem structure) or
when the true means of all competing systems were close to the true mean of the
best alternative. As k increases, LL tends to improve in performance relative to LL1.

In Fig. 3.5, we see that the LL allocation rule can perform even better than
the 0− 1 allocation rule for PCS-based figures of merit, even though the latter
is specifically designed to improve PCS. This is apparently due to the additional
approximations that the 0− 1 loss would seem to impose to obtain analytical results
for an easily computable allocation.

Overall, the empirical results showed that the small-sample procedures (LL1) are
competitive if either the number of additional samples allocated is very small, a
fixed budget stopping rule is used (as opposed to an adaptive stopping rule such
as EOCBonf ), or the number of alternatives is small. This may be the case when
alternatives are costly to sample, as when sampling time is very long. In most
other settings, the LL performed better. As a general rule, the OCBA, the LL and
the LL1 allocations were found to be superior to the equal allocation, many times
substantially so.

In terms of overall robustness, Branke et al. [4] and Chick et al. [18] found that
the LL allocation or OCBALL allocation rule (an allocation rule based on the EOC
loss function instead of the PCS-based loss function used for the OCBA allocation
rule from Sect. 3.3 above; see [33]), with the EOCBonf stopping rule, proved to be an
effective combination in a procedure that works best over a broad class of selection
problem structures.



72 C.-H. Chen et al.

3.4.5 Economics of Selection Procedures (ESP)

The OCBA, LL, and LL1 allocations above use criteria to allocate samples during
a given stage of sampling that essentially are myopic and greedy: they try to
maximize (up to approximations) the evidence for correct selection by the end of
the stage. ESP procedures account for the value of the ability to continue to sample
further after that stage. Thus, it better accounts for the information that a sequential
selection procedure can provide.

The ESP procedures have been developed assuming a linear loss reward function,
as the economic benefit of implementing the alternative selected as best is used to
drive both the allocation of samples, and the decision of when to stop sampling. In
making the decision for when to stop sampling, samples are assumed to come at a
cost. There are at least two ways in which samples might come at a cost. One way is
that additional simulation causes delays in implementation. In large scale business
decisions, that may cause a discounting penalty due to delays in decisions. Another
way that costs may be incurred is from the marginal cost of samples: computer time
and resources cost money. Chick and Gans [15] explored the case of discounted
sampling, either with or without additional marginal costs per sample. Chick and
Frazier [14] handled the case of marginal costs of simulation without discounting.

This section describes the latter case: where simulation samples have costs but
there is no additional penalty due to discounting. Thus, to implement them, one
ideally needs to estimate the financial cost of sampling (e.g., the cost of run times
on a bank of servers) and to have simulation output that expresses financial value.
Alternatively, one might use the resulting selection procedure in the absence of those
financial interpretations, and use a notional value of the cost to sample in order to
determine how many simulation samples to run, and in which order. A reduction of
the notional value of the cost to sample would increase the number of samples, if
more samples were desired before selecting an alternative.

By its nature, both allocation rules and stopping rules are derived with this
approach. The focus on economic criteria to determine sampling plans and when to
stop sampling led to the choice of name Economics of Sampling Procedure (ESP).

Maximizing Expected Reward

Similar to the previous procedures, we want to maximize the expected reward.
However, we go beyond a one-step lookahead for the value of sampling and seek
to choose a sequence of alternatives to sample from so that the stream of costs and
terminal reward together maximize the expected net reward from the start to the
time of selecting an alternative as best.

To describe how to do so, it is useful to introduce some new concepts. A selection
policy π is a dynamic method of choosing at each stage t whether to sample an
alternative or to stop and select the alternative. The policy, at stage t, can use all
information obtained up until stage t. Let T ∈{t= 0, 1, 2, . . .} be the stage when
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the decision maker decides to stop and select the best alternative to implement. For
t< T, let i(t) be the index of the alternative to be simulated at stage t and I(T) be
the index of the selected alternative. Then the selection policy π = (i(·), T, I(T)) is
the choice of a sequence of alternatives to sample from, the stopping time, and the
selected alternative.

Let Xi be the random variable of the unknown reward of alternative i and ci is
the cost per sample of alternative i. Note that ci and the output Xi are in terms of
monetary values. The sampling selection problem is the problem of maximizing
expected value of the cost of sequential sampling plus the reward of implementing
the alternative selected as best defined by

sup
π

V π = Eπ

[
T−1

∑
t=0

− ci(t) +XI(T), T+1

∣∣∣E
]
. (3.22)

It can be shown that, under certain technical conditions, a policy π maximizes Vπ

if it minimizes the sum of the expected total sampling cost (Eπ [∑T − 1
t= 0 − ci(t)|ε]) and

the expected opportunity cost when an alternative is selected (Eπ[LLL(I(T), W)|ε]).
Finding a policy π that achieves the maximum in (3.22) is challenging to

solve optimally in general, but Chick and Frazier [14] provided a solution, to an
asymptotic approximation, for the special case of comparing one alternative with
an unknown mean to a given standard alternative whose mean reward is known to
be m. From that special case, they handle the case of k> 1 alternatives by using the
following heuristic: At each stage, each alternative is assessed to see if it is worth
performing more simulations if one were to compare that alternative (with unknown
mean) to the mean of the best other alternative (presuming its mean to be known,
with m set to the current estimate of the mean of the best other alternative).

Optimal Stopping Problem for the Special Case of k= 1 Alternative

Consider comparing one alternative with a known mean reward, m. The sampling
selection problem in (3.22) then becomes an optimal stopping problem. Let c, xt and
nt be the cost per sample, the sample mean, and the number of samples seen so far
up to time t for the one alternative. The Bellman’s recursion for this problem is

V ∗ (m, xt ,nt) = max

{
m,−c+E

[
V ∗
(

m,
ntxt +Xi,t+1

nt + 1
,nt + 1

)∣∣∣xt ,nt

]
, xt

}
.

(3.23)

The first maximand in Bellman’s recursion indicates selecting the known
alternative. The second maximand includes the cost of observing one sample
from the alternative with the unknown mean and thenhaving the option to select
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an alternative or to continue sampling, given the information from that sample.
The third maximand is associated with stopping to sample and to implement the
alternative with the unknown mean.

Chick and Frazier [14] show how to convert the discrete time dynamic program
in (3.23) into a continuous time problem. That continuous time problem is a free
boundary problem for a heat equation, and whose solution gives an asymptotic
approximation to the expected value of the option to continue sampling to learn
more (a non-myopic, multistage version of the one-stage value of information
calculations used in the LL and LL1 procedures), and upper and lower optimal
stopping boundaries. If the statistics of the alternative with the unknown mean are
below the lower stopping boundary, it would be optimal to stop sampling and to
select the known alternative for reward m. If the statistics of the alternative with
an unknown mean are above the upper boundary, the alternative with the unknown
mean should be selected as best with no further sampling. If the statistics of the
alternative with the unknown mean are between the upper and lower stopping
boundaries, then one additional sample should be taken for that alternative, and
the process should be repeated.

Solving this problem for practical use in a procedure could require computing
the solution of a partial differential equation with a free boundary. Fortunately,
Chick and Frazier [14] provide a numerical approximation to the solution to the
free boundary problem which has shown to be useful in problems and which does
not require heavy mathematical machinery for implementations. In particular, they
show that the upper and lower optimal stopping boundaries are given by

m± c1/3
i σ2/3

i b
(
σ2/3

i /c2/3
i ni

)
, (3.24)

for some function b(s)≥ 0 for s≥ 0, and that a useful approximation to b(s) is

b̃(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.233s2 if 0 ≤ s ≤ 1,
0.00537s4− 0.06906s3+ 0.3167s2− 0.02326s if 1 < s ≤ 3,
0.705s1/2 ln(s) if 3 < s ≤ 40,

0.642
[
s(2ln(s))1.4 − ln(32π)

]1/2
if 40 < s.

(3.25)

The region that is between the upper and lower stopping boundaries in (3.24)
for ni > 0 is called the continuation region (because it determines where sampling
should continue).

ESP Allocation Rule and Stopping Rule

The approach for the optimal stopping problem can be extended in a heuristic way
to provide a new allocation rule and a new stopping rule when there are k> 1
alternatives.



3 Ranking and Selection: Efficient Simulation Budget Allocation 75

The stopping rule is motivated and presented first. From the previous subsection,
a given alternative warrants continued simulation if it is between the upper and
lower stopping boundaries in (3.24). Adapted to the case of k> 1 alternatives, each
with unknown mean, one can substitute the value of m in (3.24) with the mean
of the alternative with the best estimated mean (specifically, the highest posterior
mean of the other alternatives). This motivates what we will call the ESPb stopping
rule: sampling continues as long as there is at least one alternative that would merit
additional sampling if it were considered in comparison with the best of the other
alternatives (at least up to asymptotic approximations). More formally, sampling
continues as long as there is at least one alternative i such that

c1/3
i σ2/3

i b
(
σ2/3

i /
(

c2/3
i ni, t

))
> Δ̂i, t , (3.26)

where Δ̂i, t =
∣∣xi,t −max j �=ix j,t

∣∣ is the difference in expected value between the alter-
native i and the best of other alternatives (including the known mean standard m)
conditional on information through stage t, and ni, t is the number of samples from
alternative i through stage t. When the sampling variance σ 2

i is unknown, it is
appropriate in implementations to substitute the sample variance σ̂2

i for it in (3.26),
as well as in (3.27) below [14].

The ESPb allocation rule allocates one sample to the alternative that is ‘furthest
inside’ the continuation region, in a standardized coordinate alternative that is
natural to consider in this application [14]. In particular, one should sample from
the alternative that is the solution to

argmaxib
(
σ2/3

i /
(

c2/3
i ni, t

))
− Δ̂i, t/

(
c1/3

i σ2/3
i

)
. (3.27)

The term c1/3
i σ 2/3

i in (3.26) is the cube root of the product of the sampling costs
and sampling variance, which is inversely proportional to the sampling efficiency
[32].

Chick and Frazier [14] provide another allocation rule that is based more directly
on the diffusion approximation for the expected reward of continuing to sample. But
that other allocation rule requires access to the full solution of the free boundary
problem, and is therefore less attractive from an implementation standpoint.

They also provide numerical results that illustrate the performance of a selection
procedure with various allocation rules and stopping rules. The LL allocation rule
was not tested with the ESPb stopping rule, because ESP is based on approximations
that presume one sample is taken at a time. Table 3.4, adapted from Chick and
Frazier [14], shows the expected total penalty for not knowing the mean rewards
E[cT +OC] for five different combinations between allocation rules and stopping
rules calculated using Monte Carlo Simulation with 106 samples for k = 2, 5, 10, 20
and 105 samples for k= 100. Here, the sampling cost was assumed to be c= 1, T is
the number of samples observed when an alternative is selected as best, and OC is
the realized opportunity cost of selecting that alternative.
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Table 3.4 Expected total penalty for not knowing the mean rewards
E[cT +OC] for several allocation and stopping rules

k

Allocation rule Stopping rule 2 5 10 20 100

LL EOCBonf 320 577 821 1,095 2,168

Equal allocation EOCBonf 321 629 1,040 1,815 8,425

LL1 EOCBonf 318 546 728 916 1,577

LL1 ESPb 231 506 694 875 1,516

ESPb ESPb 233 505 700 856 1,308

In Table 3.4, the stopping rule appears to be more influential than the allocation
rule. Specifically, the ESPb stopping rule performs better than the EOCBonf stopping
rule for each given allocation rule. Performance with the ESPb stopping rule
improves even upon the performance from the EOCBonf stopping rule with these
allocations in all experiments run so far (the ESPb stopping rule has been subject to
less testing to date than has the EOCBonf stopping rule). This appears to be because
the ESPb stopping rule considers the benefit of multiple future stages of sampling
when considering when to stop, whereas the EOCBonf stopping rule only looks one
step ahead.

The ESPb stopping rule works very well with the LL1 and ESPb allocation rules,
and either of those options can be recommended for the selection problem.

3.4.6 Other Variants of EVI

Apart from ESPb, Chick and Gans [15] propose another economics of selection
procedure where there is a positive discount cost. That algorithm, which has
somewhat different stopping boundaries due to the discounting, also has a stopping
boundary which is approximated with an easy to compute function. That stopping
boundary was shown to be related to the optimal stopping boundary for the Bayesian
bandit problem when samples from each bandit are independent Gaussian whose
means are unknown (and are inferred through sampling).

In addition, Chick and Gans [15] provide a discussion on whether the decision
maker should develop a simulation platform. They proposed a view of simulation
as an option to learn more about alternatives before making a selection, and a
mechanism to quantify the value of that learning. That value could be compared
with the time and financial costs of developing the simulation model in the first
place: responding to the question “To simulate, or not to simulate?” when a Bayesian
prior distribution can be used to quantify uncertainty about the potential financial
benefit of various simulated alternatives, at least in some contexts. The approach
is therefore different from most R&S work in simulation which assumes that a
simulation platform has been built and is available.
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There are also several other one-step lookahead policies to myopically maximize
EVI. Frazier et al. [23] consider the case where the prior beliefs about the rewards are
correlated and Ryzhov et al. [52] apply it to propose a new type of online learning
policy. Frazier et al. [24] consider the case with both correlations in the prior belief
and correlation in sampling which is achieved through common random numbers.
The use of common random number is also considered in the work by Chick and
Inoue [17], which minimizes the expected opportunity cost in two stages.

3.5 Conclusion

This chapter discussed some Bayesian approaches to the problem of selecting the
best from a small- to medium-sized set of alternatives, where best is the largest mean
and the means are to be estimated through sampling. The samples are presumed to
be independent, as are the values of the unknown means. The approaches reviewed
include OCBA and EVI, which have variations that are among the most effective
known today. The variations are with different allocation rules and stopping rules.
The OCBA algorithm is very effective in cases where PCS is of particular interest. To
date, it appears that the most effective procedures in a very broad range of tests are
based either on the LL or OCBALL allocation rules in conjunction with the EOCBonf

stopping rule if an adaptive stopping rule is allowed, or with a fixed budget stopping
rule if that is required. It appears that the LL1 and ESPb allocation rule are even
more effective when used in conjunction the ESPb stopping rule, in cases where
sampling costs can be estimated and the output of the simulation has a financial
impact. An analysis of tweaking a notional cost of sampling when such conditions
do not hold is yet to be done, but it would appear that such an approach could be
more broadly applicable. More testing on that would be useful. The papers cited
above also explain how a number of other practicalities might be addressed, such
as the question of including common random numbers. The codes of the algorithms
presented in this chapter can be obtained from the authors.

In cases where the number of alternatives is so large that it is not possible to
simulate all alternatives at least a few times, some other techniques may be required.
The simulation optimization literature addresses this problem. For example, see
Chap. 2 and [25, 35, 56] for reviews. In such cases, one might integrate an R&S
procedure with a search algorithm [42, 53]. He et al. [34] extend the OCBA
notion to the cross-entropy method for combinatorial problems. Or one might use a
response surface technique so that information observed for one alternative can be
informative for the mean values of other alternatives. Initial work on this approach
that is related to the EVI approach above includes the use of Kriging models for the
unknown means of the alternatives when samples are either independent [22, 23] or
correlated such as with common random numbers [24]. Brantley et al. [5, 6] develop
a new OCBA procedure under the use of a regression equation and partitioning of
the decision domain.

http://dx.doi.org/10.1007/978-1-4939-1384-8_2
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Chapter 4
Response Surface Methodology

Jack P.C. Kleijnen

Abstract This chapter first summarizes Response Surface Methodology (RSM),
which started with Box and Wilson’s 1951 article on RSM for real, non-simulated
systems. RSM is a stepwise heuristic that uses first-order polynomials to approx-
imate the response surface locally. An estimated polynomial metamodel gives an
estimated local gradient, which RSM uses in steepest ascent (or descent) to decide
on the next local experiment. When RSM approaches the optimum, the latest first-
order polynomial is replaced by a second-order polynomial. The fitted second-order
polynomial enables the estimation of the optimum. This chapter then focuses on
simulated systems, which may violate the assumptions of constant variance and
independence. A variant of RSM that provably converges to the true optimum under
specific conditions is summarized, and an adapted steepest ascent that is scale-
independent is presented. Next, the chapter generalizes RSM to multiple random
responses, selecting one response as the goal variable and the other responses as
the constrained variables. This generalized RSM is combined with mathematical
programming to estimate a better search direction than the steepest ascent direction.
To test whether the estimated solution is indeed optimal, bootstrapping may be used.
Finally, the chapter discusses robust optimization of the decision variables, while
accounting for uncertainties in the environmental variables.

4.1 Introduction

Response Surface Methodology (RSM) is one of the more popular methods in
simulation optimization. Originally, RSM was developed for the optimization of
real (physical) systems; see the classic 1951 article by Box and Wilson [12], the
overview of RSM during the period 1966–1988 by Myers et al. [32], the recent third
edition of the popular handbook by Myers et al. [33], and recent RSM software on
the Web; see also [4]. RSM in simulation was discussed in the 1975 monograph by
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Kleijnen [25]. One of the first case studies on RSM in simulation is a 1977 report
on a computer center with two servers and three priority classes—namely, small,
medium, and large jobs—estimating the 90 % quantiles of the waiting times per
class for different class limits, and applying RSM to find the optimal class limits; see
[42]. RSM in simulation is also discussed in [5,6,31,39]. Google returned more than
two million results for the term “Response Surface Methodology”, on February 4,
2014; however, as of this writing, RSM (unlike search heuristics such as OptQuest)
has not yet been implemented as an add-on to commercial simulation software.

RSM treats the simulation model as a black box, i.e., RSM observes the
input/output (I/O) of the simulation model, but not the internal variables and specific
functions implied by the simulation’s computer modules. RSM is a sequential
heuristic, i.e., it uses a sequence of local experiments that is meant to lead to
the optimum input combination. Note that an input combination is also called a
point or a scenario. RSM uses design of experiments (DOE) and the concomitant
linear regression analysis. Although RSM is only a heuristic, it has gained a good
track record, as we shall see in the next sections. Moreover, practitioners may not
be interested in convergence proofs, because realistic experiments take so much
time that large sample sizes are impossible; practitioners may be more interested in
finding better solutions than the current one (a French expression claims that “the
best is the enemy of the better”).

More specifically, RSM uses a sequence of local metamodels (approximations)
that are first-order polynomials in the inputs; once the optimum seems close, RSM
augments the latest first-order polynomial to a second-order polynomial. Note that
terminology may be misleading, because many authors use the term “response
surface” instead of “metamodel” (e.g., [38]). Note that RSM may be combined with
white-box methods that give estimated gradients, which may improve RSM, e.g.,
[21, 37].

We focus on stochastic discrete-event simulation, though RSM has also been
applied to deterministic simulation and the simulation of sets of random nonlinear
difference equations. By definition, stochastic simulation (including discrete-event
simulation) uses pseudorandom numbers (PRN). We do not discuss deterministic
simulation, which may also have numeric noise.

Furthermore, we assume that the inputs are continuous variables. We focus on
simulation that has a mean (expected value) as the response (output). Nevertheless,
RSM has also been applied to outputs that are quantiles; see again [42]. The response
may also be a probability (e.g., the overflow probability in a queueing system),
which we may formulate as the expected value of a binary variable using the
indicator function.

The optimum solution for the decision variables may turn out to be inferior when
ignoring uncertainties in the non-controllable environmental variables, i.e., these
uncertainties create a risk. Taguchi introduced robust optimization for the design of
products; see [41] and the update in [33, pp. 483–555]. Ben-Tal et al. developed
robust optimization in mathematical programming with uncertain coefficients; see
[8] and the update in [43]. We shall discuss both approaches (due to Taguchi and
Ben-Tal et al.).
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We assume that RSM starts after the important factors (inputs) and their
experimental area have been identified, i.e., before RSM starts we may need to use
factor screening to identify the really important factors among the many conceivably
important factors. A recent survey of various screening methods is [40]. However,
[14] combines RSM with screening in a single method (called STRONG-S); we
point out that RSM without a preceding screening phase may imply the simulation
of extremely many combinations of simulation inputs, as we shall see in Sect. 4.2.

The remainder of this chapter is organized as follows. Section 4.2 summarizes
classic RSM, developed for real-life experimentation. Section 4.3 adapts this RSM
to the needs of simulation. Section 4.4 presents the adapted steepest descent
(ASD) search direction, originally developed in [29]. Section 4.5 summarizes
generalized RSM (GRSM) for simulation with multiple responses, developed in [2].
Section 4.6 summarizes a procedure for testing whether an estimated optimum
is truly optimal—using the Karush–Kuhn–Tucker (KKT) conditions—developed
in [10]. Section 4.7 discusses robust optimization. Section 4.8 presents conclusions.
The chapter ends with 43 references, enabling further study of details. This chapter
updates and extends the 2008 monograph [27].

4.2 RSM Basics

As previously mentioned, the basics of RSM were developed in real-life experi-
ments for the simplest type of optimization problems, i.e., to minimize the expected
value of a single output, with continuous inputs and without any constraints:

min
z

E[w0|z], (4.1)

where E[w0|z] is the goal or objective output, which is to be minimized through the
choice of the input combinations z = (z1, . . . ,zk)

T, where z j, j = 1, . . .k, denotes the
jth “original” input, i.e., the inputs are not standardized such that they lie between
−1 and 1.

Note: We use z for the original input and x for the standardized input; RSM is
scale dependent as we shall see. For the output we use w, which may be a mnemonic
referring to “waiting time,” which is an output of many simulation models.

RSM has the following characteristics:

• RSM is an optimization heuristic that tries to estimate the input combination that
minimizes a given goal function as in (4.1). Because RSM is a heuristic, it does
not guarantee success.

• RSM is a stepwise (multi-stage) method, as summarized in the steps below.
• In each step, RSM fits a local first-order polynomial regression (meta)model—

except for the last step, in which RSM fits a second-order polynomial.
• To fit (estimate, calibrate) these first-order polynomials, RSM uses I/O data

obtained through so-called resolution-III (R-III) designs; for the second-order
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polynomial, RSM uses a central composite design (CCD); we shall define these
R-III designs and CCDs later in this section.

• Each step—except the last one—selects the direction for changing the inputs
through the gradient implied by the first-order polynomial fitted in that step.
This gradient is used in the mathematical (not statistical) technique of steepest
descent—or steepest ascent, in case the output is to be maximized.

• In the final step, RSM takes the derivatives of the locally fitted second-order
polynomial to estimate the optimum input combination. RSM may also apply
the mathematical technique of canonical analysis to this polynomial, to examine
the shape of the optimal subregion: does that region have a unique minimum, a
saddle point, or a ridge with stationary points?

We now provide more details for each of the steps described above. Figure 4.1 in
Sect. 4.5 gives a specific example with a single goal function and two constrained
random outputs; such constraints are not present in classic RSM.

RSM must be initialized, i.e., it needs a starting point. That point may be the
input combination currently used in practice if the system already exists. Otherwise,
we should use intuition and prior knowledge—as in many other heuristics.

For the neighborhood of this starting point, RSM explores the I/O behavior of
the observed system. RSM approximates this behavior through a metamodel that is
a local first-order polynomial—as Taylor’s series expansion suggests—augmented
with additive white noise e:

y = β0 +
k

∑
j=1

β jz j + e, (4.2)

where white noise means e ∼ N (0,σ2) so e is independently and identically
distributed (IID) in the local experimental area. We denote the regression parameters
by ˇ = (β0,β1, . . . ,βk)

T with the intercept β0 and the k first-order or main effects β j

( j = 1, . . . ,k). When the next step moves to a new local area, the variance may
change. Obviously, (4.2) is a linear regression model with white noise, so least
squares (LS) gives the best linear unbiased estimator (BLUE) of β :

β̂ = (ZTZ)−1ZTw, (4.3)

where the hat denotes the LS estimator, Z denotes the N × (k + 1) matrix that is
determined by the R-III design and the mi replications of point i, and w denotes
the vector with the N simulation outputs; obviously, N = ∑n

i=1mi, so Z has mi ≥ 1
identical rows, where the first element of each row is 1 and corresponds with the
intercept β0.

To select the n input combinations needed to estimate these k+ 1 effects, RSM
uses a R-III design with n ≥ k+ 1. In classic R-III designs this n is a multiple of
four, e.g., if k = 7, then Table 4.1 gives a 27−4 fractional factorial design in the
standardized inputs x j so ‘−’ means −1 and ‘+’ means +1; the last column has the
so-called generator 7 = 1.2.3, which means xi;7 = xi;1xi;2xi;3; the generators in the
columns 4, 5, and 6 are defined analogously. The design is “balanced,” i.e., each
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Table 4.1 A fractional factorial design for seven factors, labeled 1 through 7,
with eight combinations

Combination 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3

1 − − − + + + −
2 + − − − − + +

3 − + − − + − +

4 + + − + − − −
5 − − + + − − +

6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

column has n/2 values equal to −1. Moreover, all pairs of columns are orthogonal.
If n is not a power of 2, then the R-III design is called a Plackett–Burman design,
and is tabulated in many publications and provided by DOE software, e.g., [28]
gives the design for k = 11 inputs and n = 12 combinations.

Unfortunately, there are no general guidelines for determining the appropriate
size of the local area in each step; again, intuition and prior knowledge are
important. However, [13] decides on the size of the local area, using a so-called
trust region; we shall give some details in Sect. 4.3.

To decide on the next subarea, RSM follows the steepest descent path, e.g., if the
estimated first-order effects are such that β̂1 � β̂2 > 0, then RSM decreases input
z1 much more than input z2. Unfortunately, the steepest-descent method is scale
dependent, i.e., linear transformations of the inputs affect the search direction; see
[33]. We shall present a scale-independent variant in Sect. 4.4.

The steepest descent technique does not quantify the step size along its path. We
may therefore try some intuitively selected value for the step size. If that value yields
an output that is significantly higher instead of lower, then we may reduce the step
size. Otherwise, we take one more step in the current steepest descent direction.
A more sophisticated mathematical procedure for selecting the step size will be
presented in Sect. 4.5.

After a number of steps along the steepest descent path, the output will increase
instead of decrease: the first-order polynomial is only a local approximation of
the true I/O function. When such deterioration occurs, RSM observes the n > k
combinations specified by a R-III design centered around the best point found so
far, i.e., RSM may use the same design as in step 2 (see Table 4.1), but translate
the standardized inputs x j into different values for the original inputs z j . The best
combination found so far, may be one of the corner points of the design; see again
Fig. 4.1. Next RSM estimates the first-order effects in the new local polynomial
approximation using LS via (4.3). And so the search continues.

It is intuitively clear that the plane implied by the most recent local first-order
polynomial cannot adequately represent a hill top when searching to maximize a
function or—equivalently—minimize (4.1). So in the neighborhood of the optimum,
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a first-order polynomial shows serious lack of fit. A popular and simple diagnostic
measure is the coefficient of determination R2. A related diagnostic uses an
F-statistic to test whether all estimated first-order effects—and hence the gradient—
are zero. These diagnostics are given by all modern regression software packages.
Instead of these diagnostics, RSM might use “cross-validation.” More details
including references are given in [28].

If the most recently fitted first-order polynomial turns out to be inadequate, then
RSM fits a second-order polynomial:

y = β0 +
k

∑
j=1

β jz j +
k

∑
j=1

k

∑
j′= j

β j; j′z jz j′ + e. (4.4)

To estimate the q = 1 + 2k+ k(k− 1)/2 coefficients of this polynomial, RSM uses a
CCD with n> q combinations More precisely, a CCD starts with a resolution-V (R-
V) design, which by definition gives unbiased estimators of the intercept, the k first-
order effects, and the k(k−1)/2 two-factor interactions in (4.4). For example, if k =
7, then the 27−4 design in Table 4.1 is replaced by a 27−1 design with the generator 7
= 1.2.3.4.5.6 so 64 combinations are used to estimate 29 effects. A CCD augments
this R-V design such that the purely quadratic effects β j; j can also be estimated.
More specifically, a CCD adds the central point and 2k axial points that form a star
design, where—for the standardized factors—the central point is (0, . . .0)T and the
“positive” axial point for factor j is x j = c and all other (k− 1) factors are fixed at
the center so x j′ = 0 with j′ = 1, . . . ,k and j′ �= j; the “negative” axial point for factor
j is x j = −c and x j′ = 0. A detailed discussion of CCDs is given in [28], including
more efficient so-called “saturated” designs; by definition, the latter designs have n
= q. Using this fitted second-order polynomial, RSM estimates the optimal values
of the inputs by straightforward differentiation or by more sophisticated canonical
analysis; see the monograph [33].

If time permits, then RSM may try to escape from a possible local minimum and
restart the search from a different initial local area—which brings RSM back to its
initial step.

We recommend not eliminating inputs that have non-significant effects in a
first-order polynomial fitted within a local experimental area, because these inputs
may have significant effects in a next experimental area. A related issue is the
determination of the number of replications. Indeed, determining whether the signal-
to-noise ratio is big enough is a moot issue in metamodeling; see [28]. For the
time being, we recommend estimating the true mean response for a given input
combination such that a relative precision of (say) 10 % has a 90 % probability,
using the method detailed in [31].

The Taylor series argument suggests that a higher-order polynomial is more
accurate than a lower-order polynomial. A statistical counterargument, however,
is that overfitting gives less accurate estimators of the polynomial coefficients.
Consequently, the higher-order polynomial may give a predictor ŷ with lower bias
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but higher variance such that its mean squared error (MSE) increases. Moreover, a
higher-order polynomial requires the simulation of more input combinations.

4.3 RSM in Simulation

We consider the following two characteristics of simulation experiments:

1. The constant variance assumption does not hold.
2. The independence assumption does not hold if common random numbers (CRN)

are applied.

Many simulation experiments treat queueing systems; examples are supply chains
and telecommunication networks. The simplest queueing model is the M/M/1
queue, which has one server and i.i.d. exponential interarrival and service times,
so it can be modeled as a Markov chain. It is well known that as the traffic rate of
the M/M/1 queue increases, the mean steady-state waiting time increases and the
variance increases even more; consequently, the constant-variance assumption does
not hold.

CRN are often applied in simulation experiments, because it is the default option
in many simulation software packages (e.g., Arena); moreover, CRN are a simple
and intuitive variance reduction technique that gives more accurate estimators of
the regression parameters—except for the intercept β0. The outputs of all input
combinations that use CRN are statistically dependent; actually, we expect these
outputs to be positively correlated. CRN are related to “blocking” in real-life
experiments. In simulation experiments, we may use blocking when combining
CRN and antithetic random numbers through the so-called Schruben–Margolin
strategy; this strategy is detailed in [15].

The preceding two characteristics imply that the ordinary LS (OLS) does
not give the BLUE. Actually, weighted LS (WLS) does give the BLUE if
the variances are not constant and no CRN are used, but assumes known
response variances. Generalized LS (GLS) gives the BLUE if CRN are used,
but assumes known response variances and covariances. We therefore recommend
the following simple estimator, which is detailed in [28]: assuming a constant
number of replications m (as is usual in CRN), we compute the OLS per replication
replacing w in (4.3) by wr to get ˆ̌r (r = 1, . . . , m). Replication r then gives an
estimate of the steepest descent direction if a first-order polynomial is used or the
optimum input combination if a second-order polynomial is used. Together, the m
replications give an estimate of the accuracy of this estimated direction or optimum;
if we find this accuracy too low, then we may simulate additional replications. We
have not yet any experience with this simple sequential approach.

Actually, if we have mi > 1 (i= 1, . . . ,n) replications, then we can further explore
the statistical properties of the LS estimator of β through bootstrapping. Efron and
Tibshirani wrote the classic textbook on bootstrapping in general; see [20]. Many
more references are given in [28]. To explain distribution-free bootstrapping in
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RSM, we first consider the case of no CRN. We resample—with replacement—
the mi simulation outputs wi;r (r = 1, . . . , mi) for input combination i (i = 1, . . . , n),
and obtain the bootstrapped simulation outputs w∗

i;r, where the superscript ∗ is
the general symbol for bootstrapped observations. Resampling for each input
combination i, we obtain the bootstrapped I/O data (Z,w∗) with the N-dimensional
vector w∗ = (w∗

1;1, . . . ,w
∗
1;m1

, . . . ,w∗
n;1, . . . ,w

∗
nmn

)T (so N = ∑n
i=1mi) and the original

N × q matrix of input combinations Z. Next we consider the case of CRN. The n
elements of wr = (w1;r, . . . ,wn;r)

T, r = 1, . . . , m, are then not IID, so we resample
the m IID vectors wr. This case also gives (Z,w∗). In both cases (CRN or no CRN),
we use (Z,w∗) to compute the bootstrapped regression parameter estimator ˆ̌∗
replacing w in (4.3) by w∗. This bootstrapping we repeat (say) B times; popular
choices are B = 100 or B = 1,000. This bootstrap sample gives ˆ̌∗

b (b = 1, . . . ,B),
where we replace w in (4.3) by w∗

b. After we sort these ˆ̌∗
b in ascending order, we

obtain the estimated density function (EDF) of ˆ̌∗. We can also use ˆ̌∗
b to derive the

corresponding estimated steepest ascent direction and optimum.
Note: Instead of distribution-free bootstrapping, we can apply parametric boot-

strapping, which assumes a specific type of distribution, e.g., a Gaussian distribution
(also see Sect. 4.6). Parametric bootstrapping may be attractive if mi is small and
no CRN are used, e.g., the n means and n variances can be estimated if the weak
condition mi > 1 holds. If CRN are used, then the covariance matrix Cov(wr,wr′)
with r, r′ = 1, . . . , m needs to be estimated; this estimation requires m > n, as
proven in [19]. So parametric bootstrapping may require fewer replications, but the
assumed distribution may not hold for the simulated outputs.

Recently, [13] developed STRONG, which is a completely automated variant
of RSM combined with so-called trust regions. STRONG is proven to converge to
the true optimum. Originally, trust regions were developed in [16] for deterministic
nonlinear optimization. The trust region is a subregion in which the objective
function is approximated such that if an adequate approximation is found within the
trust region, then the region is expanded; else the region is contracted. In STRONG
these trust regions replace the “local” regions of classic RSM. STRONG includes
statistical tests to decide whether trust regions should be expanded or shrunken
in the various steps, and how much these areas should change. If necessary, the
trust region is small and a second-order polynomial is used. Next, [14] combines
STRONG with screening, and calls the resulting procedure STRONG-S; this method
is applied to several test functions with multiple local minima. Contrary to the
Taylor series argument, STRONG may have a relatively large trust region that does
not require a second-order polynomial metamodel but only a first-order polynomial
metamodel.

4.4 Adapted Steepest Descent (ASD)

ASD accounts for the covariances between the elements of the estimated gradient
ˆ̌−0 = (β̂1, . . . , β̂k)

T, where the subscript −0 means that the intercept β̂0 of the
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estimated first-order polynomial vanishes in the estimated gradient, i.e., ˆ̌ =
(β̂0, ˆ̌−0)

T with ˆ̌ defined in (4.3). Obviously, the white-noise assumption implies

Cov( ˆ̌) = σ2
w(Z

TZ)−1 = σ2
w

(
a bT

b C

)
, (4.5)

where σ2
w denotes the variance of the simulation output w; Z is the N×(1+k) matrix

of explanatory regression variables including the column with N one’s; N =∑n
i=1mi

is the total number of simulation runs; n is the number of different simulated input
combinations; mi is the number of IID. replications for combination i; a is a scalar;
b is a k-dimensional vector; and C is a k× k matrix such that Cov( ˆ̌−0)= σ2

wC.
We estimate the variance σ2

w in (4.5) through the mean squared residuals (MSR):

σ̂2
w =

∑n
i=1∑

mi
r=1(wi;r − ŷi)

2

N − (k+ 1)
, (4.6)

where ŷi = zTi ˆ̌; also see [28].
We can easily prove that the predictor variance Var[ŷ|z] increases as z—the point

to be predicted—moves further away from the local area where the gradient is
estimated. The point with the minimum predictor variance is −C−1b, where C and
b were defined below (4.5). ASD means that the new point to be simulated is

d =−C−1b−λC−1 ˆ̌−0,

where −C−1b is the point where the local search starts, i.e., the point with minimum
local variance; λ is the step size; and C−1 ˆ̌−0 is the classic steepest descent
direction ˆ̌−0 adapted for Cov( ˆ̌−0).

Accounting for Cov( ˆ̌−0) gives a scale-independent search direction. Experi-
mental results are presented in [29, 30]. These results show that ASD performs
“better” than classic steepest descent, i.e., the angle between the search direction
based on the true ˇ−0 and the search direction estimated in ASD is smaller. In
one example, this angle reduces from 89.87 for classic steepest descent to 1.83 for
ASD.

4.5 Multiple Responses: Generalized RSM

In practice, simulation models have multiple responses (multivariate output), e.g.,
many realistic inventory models require the inventory system to minimize the sum
of all inventory costs excluding the hard to quantify out-of-stock costs, and to result
in at least a guaranteed lower threshold for the service rate or fill rate. Simulation
software facilitates the collection of multiple outputs. There are several approaches
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to solve the resulting issues; see the survey in [39]. The RSM literature also offers
several approaches for such situations; see the surveys in [1, 24, 35].

A novel heuristic is generalized RSM (GRSM) that combines the estimated
gradients of RSM with a search procedure in mathematical programming. GRSM
selects one response as the goal variable and the other responses as constrained
variables; moreover, the deterministic input variables may also be subjected to
constraints. GRSM generalizes the steepest descent search direction through the
affine scaling search direction, borrowing ideas from interior point methods (a
variation on Karmarkar’s algorithm) in mathematical programming; see [3]. This
search moves faster to the optimum than steepest descent, because the former
avoids creeping along the boundary of the feasible area, which is determined by
the constraints on the random outputs and the deterministic inputs. Moreover, this
search tries to stay inside the feasible area, so the simulation program does not crash.
Finally, this search is scale independent; see the proof in [2].

Formally, GRSM extends the classic RSM problem in (4.1) to the following
constrained nonlinear random optimization problem:

min
z

E[w0|z] (4.7)

such that the other (say) (r− 1) random outputs satisfy the constraints

E[wh′ |z]≥ ah′ , h′ = 1, . . . ,r− 1, (4.8)

and the k deterministic inputs z j satisfy the box constraints

l j ≤ z j ≤ u j, j = 1, . . . ,k. (4.9)

An example is an inventory simulation, in which the sum of the expected inventory
carrying costs and ordering costs should be minimized while the expected service
percentage should be at least (say) 90 % so a1 = 0.9 in (4.8); both the reorder
quantity z1 = Q and the reorder level z2 = s should be non-negative so z1 ≥ 0 and z2 ≥
0 in (4.9). Note that more complicated input constraints than (4.9)—namely, linear
budget constraints—feature in the call-center simulation in [23]; input constraints
resulting from output constraints are discussed in [35].

Analogously to the first steps of classic RSM based on (4.2), GRSM locally
approximates the multivariate I/O function by r univariate first-order polynomials
augmented with white noise:

yh = Zβ h+eh, h = 0, . . . r− 1. (4.10)

Like RSM, GRSM assumes that locally the white noise assumption holds for (4.10),
so the BLUEs are the following LS estimators:

ˆ̌
h = (ZTZ)

−1
ZTwh, h = 0, . . . ,r− 1. (4.11)
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The vector ˆ̌0 (LS estimator of first-order polynomial approximation of goal
function) and the goal function (4.7) result in

min
z

ˆ̌0;−0z, (4.12)

where ˆ̌0;−0 = (β̂0;1, . . . , β̂0,k)
T is the LS estimate of the local gradient of the goal

function. The (r − 1) estimates β̂h′ in (4.11) combined with the original output
constraints (4.8) give

ˆ̌T
h′;−0z ≥ ch′ , h′ = 1, . . . ,r− 1, (4.13)

where ˆ̌
h′;−0 = (β̂h′;1, . . . , β̂h′,k)

T is the estimated local gradient of constraint

function h′, and ch′ = ah′ − β̂h′;0 is the modified right-hand side of this constraint
function. The box constraints (4.9) remain unchanged.

Now the k-dimensional vectors ˆ̌
h′;−0 (h′ = 1, . . . ,r−1) in (4.13) are collected in

the (r− 1)× k matrix (say) B. Likewise, we collect the (r− 1) elements ch′ in the
vector c. We define l as the vector with the k elements l j, and u as the vector with the
elements u j. Finally, we introduce the k-dimensional vectors with the non-negative
slack variables s, r, and v, to get the following equivalent problem formulation:

minimize ˆ̌T
0;−0z

subjectto Bz− s = c
z+ r = u
z− v = l.

(4.14)

This optimization problem is linear in the inputs z. GRSM uses this problem to
derive the following search direction:

d =−
(

B
T

S−2B+R−2 +V−2
)−1

ˆ̌0;−0, (4.15)

where S, R, and V are diagonal matrixes with as main-diagonal elements the current
estimated slack vectors s, r, and v in (4.14). Note that ˆ̌0;−0 in (4.15) is the estimated
classic steepest ascent direction. As the value of a slack variable in (4.15) decreases
so the corresponding constraint gets tighter, the GRSM search direction deviates
more from the steepest descent direction. Possible singularity of the various matrices
in (4.15) is discussed in [1].

Following the path defined by (4.15), GRSM must decide on the step size (say)
λ along this path. GRSM chooses

λ = 0.8min
h′

[
ch′ − ˆ̌T

h′;−0zc

ˆ̌T
h′;−0d

]
, (4.16)
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where the factor 0.8 is chosen to decrease the probability that the local meta-
model (4.13) is misleading when applied globally; zc denotes the current input
combination, so the new combination becomes zc +λd. The box constraints (4.9)
for the deterministic inputs hold globally, so it is easy to check whether the new
combination zc +λd violates these constraints.

Analogously to classic RSM, GRSM proceeds stepwise. After each step along the
search path, GRSM tests the following two hypotheses denoted by the superscripts
(1) and (2):

1. Pessimistic null-hypothesis: w0(zc + λd) (output of new combination) is no
improvement over w0(zc) (output of old combination):

H(1)
0 : E[w0(zc +λd)]≥ E[w0(zc)]. (4.17)

2. This step is feasible, i.e., wh′(zc +λd) satisfies the (r− 1) constraints in (4.8):

H(2)
0 : E[wh′(zc +λd)]≥ ah′ , h′ = 1, . . . ,r− 1. (4.18)

To test these hypotheses, we may apply the following simple statistical pro-
cedures (more complicated parametric bootstrapping is used in [1], permitting
non-normality and testing the relative improvement w0(zc + λd)/w0(zc) and the
relative slacks sh′(zc + λd)/sh′(zc)). To test (4.17), we apply the paired Student
tm−1 statistic if CRN are used; we reject the hypothesis if significant improvement
is observed. To test (4.18), we again apply a tm−1 statistic; because we test multiple
hypotheses, we apply Bonferroni’s inequality so we divide the classic α value by
(r− 1) (number of tests).

Actually, a better solution may lie somewhere between zc (old combination)
and zc + λd (new combination at maximum step size). Therefore, GRSM uses
binary search, i.e., it simulates a combination that lies halfway between these two
combinations—and is still on the search path. This halving of the stepsize may be
applied several times.

Next, GRSM proceeds analogously to classic RSM, i.e., around the best combi-
nation found so far, GRSM selects a new local area. Again, a R-III design specifies
the new simulation input combinations, and r first-order polynomials are fitted,
which gives a new search direction. Note that we might use the m replications ˆ̌r to
estimate the accuracy of the search direction; to test the accuracy of the estimated
optimum, we present a test in the next section.

Figure 4.1 illustrates GRSM for a problem with simple known test functions;
obviously, in practice, we use simulation to estimate the true outputs of the various
implicit I/O functions of the simulation model. This figure shows two inputs; see
the two axes labeled z1 and z2. The goal function is to be minimized; the figure
also shows two contour plots or iso-costs functions: E(w0) = a0;1 and E(w0) = a0;2

with a0;2 < a0;1. There are two constrained random outputs; see E(w1) = a1 and
E(w2) = a2. The search starts in the lower-right local area with a 22 design; see the
four elongated points. Together with the replications that are not shown, the I/O data
give a search direction; see the arrow leaving from point (0). The maximum step size
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Fig. 4.1 GRSM illustration with two inputs, two contour plots for the goal output, two constraints
for the other outputs, three local areas, three search directions, and six steps in these directions

along this path takes the search from point (0) to point (1). The binary search takes
the search back to point (2), and next to point (3). Because the best point so far turns
out to be point (1), the 22 design is used to select four points to be simulated in
this local area; this point is one of the four points. This design gives a new search
direction, which indeed avoids the boundary. The maximum step-size now takes the
search to point (4). The binary search takes the search back to point (5), and next to
point (6). Because the best point so far is now point (4), the 22 design is simulated in
the local area with this point as one of its points. A new search direction is estimated,
and the procedure continues.

Two GRSM examples are detailed in [1], illustrating and evaluating GRSM.
One example is an inventory simulation specified in [7], which has a service-level
constraint; no analytical solution is known. The other example is a test function with
a known solution. The results for these examples are encouraging, as GRSM finds
solutions that are both feasible and give low values for the goal functions.

4.6 Testing an Estimated Optimum in GRSM: KKT
Conditions

Obviously, it is uncertain whether the optimum estimated by a heuristic such as
GRSM is close enough to the true optimum. In deterministic nonlinear mathematical
programming, the first-order necessary optimality conditions are known as the
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Fig. 4.2 A constrained nonlinear random optimization problem: three contour plots with goal
values 66, 76, and 96; two other outputs with lower bounds 4 and 9; optimal point A; points B
and C on bound 9; point D on bound 4; local gradients at A through D for goal function and
binding constraint, perpendicular to local tangent lines for binding constraint

Karush–Kuhn–Tucker (KKT) conditions; see [22]. First we present the basic idea
behind these conditions; next, we explain how to test these conditions in simulation.

Figure 4.2 illustrates the same type of problem as the one in Fig. 4.1. More
precisely, Fig. 4.2 shows a goal function E(w0) with the three contour plots that
correspond with the values 66, 76, and 96; also see (4.7). Furthermore, the figure
shows two constrained simulation outputs, namely E(w1) ≥ 4 and E(w2) ≥ 9;
also see (4.8). The figure displays the boundaries of the feasible area, which is
determined by E(w1) = 4 and E(w2) = 9. The optimum combination is point A.
The points B and C lie on the boundary E(w2) = 9; point D lies on the boundary
E(w1) = 4. Obviously, the points A and D lie far away from each other. The figure
also displays the local gradients at these four points for the goal function and for
the binding constraint, i.e., the constraint with a zero slack value in (4.8). These
gradients are perpendicular to the local tangent lines; those lines are shown only for
the binding constraint—not for the goal function.

Let z0 denote a local minimizer for the deterministic variant of our problem. The
KKT conditions for z0 are then

ˇ0;−0 = ∑
h∈A(z0)

λ 0
h ˇh;−0,

λ 0
h ≥ 0,

h ∈ A
(
z0
)
,

(4.19)
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where ˇ0;−0 denotes the k-dimensional vector with the gradient of the goal function,
as we saw in (4.12); A

(
z0
)

is the index set with the indices of the constraints that
are binding at z0; λ 0

h is the Lagrangian multiplier for binding constraint h; ˇh;−0 is
the gradient of the output in that binding constraint; Fig. 4.2 has only one binding
constraint at the points A through D. Altogether, (4.19) implies that the gradient of
the objective is a nonnegative linear combination of the gradients of the binding
constraints, at z0. Figure 4.2 shows that A satisfies (4.19); B has two gradients
that point in different but similar directions—and so does C—whereas D has two
gradients that point in completely different directions.

Note: If the optimum occurs inside the feasible area, then there are no binding
constraints so the KKT conditions reduce to the condition that the goal gradient is
zero. Classic RSM includes tests for a zero gradient estimated from a second-order
polynomial; see again Sect. 4.2.

In simulation we must estimate the gradients; moreover, to check which con-
straints are binding, we must estimate the slacks of the constraints. This estimation
changes the KKT conditions into a problem of nonlinear statistics. An asymptotic
test is presented in [1] , but a small-sample bootstrap test is presented in [10].
We present the latter test, because it is simpler and it allows expensive simulation.
Readers not interested in the technical details of this bootstrapping should skip the
remainder of this section.

As in classic RSM, we assume locally constant (co)variances for each of the r
simulation outputs (when moving to a new local area, the (co)variances may change,
e.g., the points A through D in Fig. 4.2 do not have the same variance for the goal
output). LS per univariate simulation output gives ˆ̌

h (h = 0, 1, . . . , r−1) defined in
(4.11). These estimators have the following estimated covariance matrix:

Ĉov( ˆ̌h, ˆ̌
h′) = Ĉov(wh,wh′)⊗ (ZTZ)

−1
(h,h′ = 0, . . . ,r− 1), (4.20)

where ⊗ denotes the Kronecker product and Ĉov(wh,wh′) is an r × r matrix with
the classic estimators of the (co)variances based on the m replications at the local
center:

Ĉov(wh,wh′) = (σ̂h;h′) = (
m

∑
l=1

(wh;l −wh)(wh′;l −wh′))
1

m− 1
. (4.21)

The Kronecker product implies that Ĉov( ˆ̌
h, ˆ̌

h′) is an rq × rq matrix with q
denoting the number of regression parameters (e.g., q = 1 + k in a first-order
polynomial); this matrix is formed from the r×r matrix Ĉov(wh,wh′) by multiplying

each of its elements by the entire q× q matrix (ZTZ)−1
(e.g., Z is an N × (1+ k)

matrix in Eq. (4.5)). The matrix Ĉov(wh,wh′) is singular if m≤ r, e.g., the case study
in [26] has r = 2 response types and k = 14 inputs so m ≥ 3 replications of the center
point are required. Of course, the higher m is, the higher is the power of the tests
that use these replications. Cases with all n local points replicated or with CRN are
not considered in [10]; these cases require further research.
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In classic RSM we assume that the output is Gaussian, and now we assume that
the r-variate simulation output is multivariate Gaussian. We use the center point
to test whether a constraint is binding in the current local area, because this point
is more representative of the local behavior than the points of the R-III design.
(To save simulation runs, we should start a local experiment at its center point
including replications; if it turns out that either no constraint is binding or at least
one constraint is violated, then we need not test the other hypotheses so we do not
simulate the remainder of the local design.) Actually, we test the following three
null-hypotheses, denoted by the superscripts (1) through (3):

1. The current solution is feasible and at least one constraint is binding; see (4.8):

H(1)
0 : E[wh′ |x = 0] = ah′ , h′ = 1, . . . ,r− 1, (4.22)

where x = 0 corresponds with the center of the local area expressed in the
standardized inputs.

2. The expected value of the estimated goal gradient may be expressed as the
expected value of a linear combination of the estimated gradients of the simula-
tion outputs in the binding constraints, i.e., in (4.19) we replace the deterministic
quantities by their random estimators:

H(2)
0 : E[ ˆ̌0;−0] = E

⎡
⎣ ∑

h∈A(z0)

�̂0
h

ˆ̌h

⎤
⎦ . (4.23)

3. The Lagrangian multipliers in (4.23) are non-negative:

H(3)
0 : E[�̂]≥ 0. (4.24)

Each of these three hypotheses requires multiple tests, so we apply Bonferroni’s
inequality. Moreover, we test these three hypotheses sequentially, so it is hard to
control the final type-I and type-II error probabilities (classic RSM has the same
type of problem, but has nevertheless acquired a track record in practice).

Sub 1: To test (4.22), we use the classic t statistic:

t(h
′)

m−1 =
wh′(x = 0)− ah′√

σ̂h′;h′/m
, h′ = 1, . . . ,r− 1, (4.25)

where both the numerator and the denominator use the m replications at the local
center point; see (4.21). This t statistic may give the following three results:
1. The statistic is significantly positive, i.e., the constraint for output h′ is not

binding. If none of the (r − 1) constraints is binding, then the optimal solution
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is not yet found, assuming that at the optimum at least one constraint is binding;
otherwise, classic RSM applies. The search for better solutions continues (see
again Sect. 4.5).

2. The statistic is significantly negative, i.e., the current local area does not give
feasible solutions so the optimal solution is not yet found. The search should
back-up into the feasible area.

3. The statistic is non-significant, i.e., the current local area gives feasible solutions,
and the constraint for output h′ is binding. The index of this gradient is then
included in A

(
z0
)
; see (4.23). And the KKT test proceeds as follows.

Sub 2 and 3: To estimate the linear combination in (4.23), we apply LS with
as explanatory variables the estimated gradients of the (say) J binding constraints;
these explanatory variables are now random. We collect these gradients in the k× J

matrix B̂J;−0. The parameters estimated through LS are �̂. Let ˆ̌̂
0;−0 denote the LS

estimator of the goal gradient:

ˆ̌̂
0;−0 = B̂J;−0(B̂T

J;−0B̂J;−0)
−1B̂T

J;−0
ˆ̌0;−0 = B̂J;−0�̂ (4.26)

with �̂ = (B̂T
J;−0B̂J;−0)

−1B̂T
J;−0

ˆ̌0;−0. To quantify the validity of this linear approxi-
mation, we use the k-dimensional vector of its residuals

ê( ˆ̌̂
0;−0) =

ˆ̌̂
0;−0 − ˆ̌0;−0. (4.27)

Hypothesis (4.23) implies E[ê( ˆ̌̂
0;−0)] = 0. This hypothesis involves a product of

multivariates, so standard tests do not apply and we use bootstrapping. We do
not apply distribution-free bootstrapping, because in expensive simulation only the
center point is replicated a few times. Instead, we apply parametric bootstrapping,
i.e., we assume a Gaussian distribution (like in classic RSM), and we estimate
its parameters from the simulation’s I/O data. This bootstrapping consists of the
following four steps, where the superscript ∗ denotes a bootstrapped value:

1. Use the Monte Carlo method to sample vec( ˆ̌∗
0;−0, B̂

∗
J;−0), which is a (k + kJ)-

dimensional vector formed by stapling (stacking) the k-dimensional goal gradient
vector and the J k-dimensional vectors of the k× J matrix B̂∗

J;−0:

vec( ˆ̌∗
0;−0, B̂

∗
J;−0)∼N (vec( ˆ̌0;−0, B̂J;−0), Ĉov(vec( ˆ̌0;−0, B̂J;−0))), (4.28)

where Ĉov(vec( ˆ̌0;−0, B̂J;−0)) is the (k+kJ)×(k+kJ) matrix computed through
(4.20).

2. Use the bootstrap values resulting from Step 1 to compute the LS estimate of
the bootstrapped goal gradient using the bootstrapped gradients of the binding
constraints as explanatory variables, i.e., use (4.26) adding the superscript ∗ to

all random variables resulting in ˆ̌̂ ∗
0;−0 and �̂∗.
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3. Use ˆ̌̂ ∗
0;−0 from Step 2 and ˆ̌∗

0;−0 from Step 1 to compute the bootstrap residual

ê( ˆ̌̂ ∗
0;−0) =

ˆ̌̂ ∗
0;−0 − ˆ̌∗

0;−0, analogous to (4.27). Determine whether any of the

bootstrapped Lagrangian multipliers �̂∗ found in Step 2 is negative, i.e., augment
a counter (say) c∗ with the value 1 if this event occurs.

4. Repeat the preceding three steps (say) 1,000 times. This bootstrap sample gives

the EDF of ê( ˆ̌̂ ∗
0;−0; j)—which denotes the bootstrapped residuals per input j

( j = 1, . . . ,k)—and the final value of the counter c∗. Reject the hypothesis in
(4.23) if this EDF implies a two-sided (1−α/(2k)) confidence interval that does
not cover the value 0, where the factor k is explained by Bonferroni’s inequality.
Reject (4.24) if the fraction c∗/1000 is significantly higher than 50%; if the
true Lagrangian multiplier is only slightly larger than zero, then nearly 50 %
of the bootstrapped values is negative. To test the latter fraction, we approximate
the binomial distribution through the normal distribution with mean 0.50 and
variance (0.50× 0.50)/1000= 0.00025.

The numerical examples in [10] give encouraging results, i.e., the classic t test
for zero slacks performs as expected and the new bootstrap tests give observed type-
I error rates close to the prespecified (nominal) rates, while the type-II error rate
decreases as the tested input combination is farther away from the true optimum
(see A through D in Fig. 4.2).

4.7 Robust Optimization

Taguchi emphasizes that in practice some inputs of a product are under complete
control, whereas other inputs are not, e.g., the design of a car engine is completely
controlled by the engineers, but the driving style is not (see again [41]). Conse-
quently, a car design that allows some flexibility in its use is better, e.g., a car
optimized only for the race circuit does not perform well in the city streets. Likewise,
in simulation the perceived optimal solution may be far from optimal due to ignoring
uncertainties in some inputs, e.g., the nominally optimal decision on the inventory
control limits s (reorder level) and S (order-up-to level) may perform poorly if the
solution ignores the uncertainty in the parameters assumed for the random demand
and delivery time distributions. We first explain Taguchi’s approach, updating and
extending [17]; also see [18]. Then we briefly discuss the approach pioneered by
Ben-Tal et al., which is detailed in [8, 9].

We see the following major differences between the two approaches. Originally,
Ben-Tal et al. assumed static deterministic linear problems solved by linear pro-
gramming (LP), whereas we assume dynamic random nonlinear problems solved
by simulation. Ben-Tal et al. assume that uncertainty implies that the coefficients
of the LP problem lie in a mathematical set called the uncertainty set, whereas we
assume that the parameters of some variables of the simulation model (e.g., the
demand distribution) have a given statistical distribution (e.g., demand has a Poisson
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distribution with a parameter λ estimated from historical data, so the estimated
parameter λ̂ has a Gaussian distribution with mean λ̂ and standard deviation
σ̂λ̂ ). Currently, Ben-Tal et al. also consider multi-stage nonlinear problems and
uncertainty sets based on historical data.

Taguchi’s Robust Optimization

We use Taguchi’s view of the world, distinguishing between two types of inputs:

(a) decision variables, denoted by (say) d j ( j = 1, . . . ,k), so d = (d1, . . . ,dk)
T, and

(b) environmental or noise factors eg (g = 1, . . . ,c) so e = (e1, . . . ,ec)
T.

Taguchi assumes a single output, which we denote by w. He focuses on the mean
μw and the variance σ2

w of this output, caused by the noise factors e. However,
we do not use Taguchi’s scalar loss function such as the signal-to-noise or mean-
to-variance ratio μw/σ2

w; see [33, pp. 486–488]. Instead, we use both μw and σ2
w

to characterize the statistical distribution of the output, and we try to solve the
following problem:

minμw such that σ2
w ≤ T, (4.29)

where T is some threshold; also see [33, pp. 488–495]. We also refer to the surveys
on robust optimization in [11, 36].

Taguchi’s worldview has been very successful in production engineering, but
statisticians have seriously criticized his statistical techniques; see the panel report
in [34]. Therefore, in [33, pp. 502–506], Taguchi’s worldview is combined with
RSM, which we adapt. We assume that e has the mean �e and the covariance
matrix ˝e, whereas [33] assumes a constant variance � 2

e , so ˝e = � 2
eI. To find

a robust solution, [33] superimposes contour plots for the mean and variance of the
output, whereas we use more general and flexible mathematical programming. This
mathematical programming, however, requires specification of threshold values like
T in (4.29); managers may find it hard to select specific values, so we may try
different values and estimate the corresponding Pareto-optimal efficiency frontier.
To estimate the variability of this frontier resulting from the various estimators,
we may use bootstrapping (also see our bootstrapping in the preceding section).
For details on our adaptation of the approach in [33], we refer to [17].

More precisely, [33] fits a second-order polynomial for d that is to be optimized.
To model possible effects of e, [33] fits a first-order polynomial in e. Moreover,
“control-by-noise” two-factor interactions are also estimated. Altogether, [33] fits
the following “incomplete” second-order polynomial:

y = β0 +
k

∑
j=1

β jd j +
k

∑
j=1

k

∑
j′= j

β j; j′d jd j′ +
c

∑
g=1

γgeg +
k

∑
j=1

c

∑
g=1

δ j;gd jeg + ε
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= β0 +ˇTd+dTBd+�Te+dT�e+ ε , (4.30)

where we now use the symbol ε (instead of e) to denote the regression residual ε
with με = 0 if this metamodel has no lack-of-fit and with constant variance σ2

ε ;
furthermore, ˇ = (β1, . . . ,βk)

T, B denotes the k× k symmetric matrix with main-
diagonal elements β j; j and off-diagonal elements β j; j′/2, � = (γ1, . . . ,γc)

T, and �

denotes the k× c matrix with interactions δ j;g.
Clearly, (4.30) implies the following regression predictor for the true mean μw:

μy = β0 +ˇTd+dTBd+�T�e +dT��e. (4.31)

And the regression predictor for the true variance σ2
w is

σ2
y = (�T+dT�)˝e(� +�Td)+σ2

ε = lT˝el+σ2
ε , (4.32)

where l = (� +�Td) = (∂y/∂e1, . . . ,∂y/∂ec)
T, so l is the gradient with respect to

e. Consequently, the larger the gradient’s elements are, the larger σ2
y . Furthermore,

if there are no control-by-noise interactions so that � = 0, then we cannot control
σ2

y through d.
To enable estimation of the regression parameters in (4.30), we use a crossed

design, i.e., we combine the design for d and the design for e—as is usual in a
Taguchian approach. To estimate the optimal d, we use a CCD; see the discussion
below (4.4). For the first-order polynomial in e, we use a R-III design; see the
example in Table 4.1. The combination of these two designs obviously enables
the estimation of the two-factor interactions δ j;g. Note that designs that are more
efficient than crossed designs are discussed in [17, 33].

To use linear regression analysis for the estimation of the q parameters in (say) �

= (β0, . . . ,δk;c)
T in (4.30), we reformulate (4.30) as

y = �Tx+ ε, (4.33)

where x is defined in the obvious way, e.g., the element corresponding with β1;2

(interaction between d1 and d2) is d1d2. Note that (4.33) is linear in �, but (4.30) is
not linear in d. Then (4.33) gives the LS estimator

ζ̂ = (XTX)−1XTw, (4.34)

where X is the N×q matrix of explanatory variables with N =∑n
i=1mi and n denoting

the number of different simulated combinations of d and e; w consists of the N
simulation outputs. Obviously, the covariance matrix of ζ̂ is

cov(�̂) = (XTX)−1σ2
w . (4.35)
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The RSM metamodel (4.30) implies that σ2
w equals σ2

ε . This variance is estimated by

MSR =
(ŷ−w)T(ŷ−w)

N − q
, (4.36)

where ŷ = �̂
T

x; also see (4.6).
To estimate μy, we simply plug ζ̂ defined by (4.34) into the right-hand side of

(4.31), where d and �e are known. To estimate σ2
y , we also plug ζ̂ into (4.32),

where ˝e is known. Note that (4.32) involves products of unknown parameters, so
it implies a nonlinear estimator σ̂2

y ; plugged-in estimators certainly create bias, but
we ignore this bias.

Our final goal is to solve (4.29). We solve this constrained minimization problem
through a mathematical programming solver, e.g., Matlab’s “fmincon” [22]. This
gives estimates of the robust decision variables and the corresponding mean and
variance.

An example is detailed in [17], considering the economic order quantity (EOQ)
for an environment with a demand rate that is uncertain but has a known distribution.
This example demonstrates that if management prefers low variability of inventory
costs, then they must pay a price, i.e., the expected costs increases. Furthermore, the
classic EOQ assuming a known fixed demand rate and the robust EOQ do differ.
More examples are referenced in [43].

Ben-Tal et al.’s Robust Optimization

Ben-Tal et al. emphasize that the nominal solution—which ignores the uncertainty
in e—may easily violate the constraints in the given mathematical programming
problem, so they derive a robust solution that gives a slightly worse value for the goal
variable but increases the probability of satisfying the constraints. The mathematical
challenge is to develop a computationally tractable “robust counterpart” of the
original mathematical programming problem. Therefore, they propose a robust
solution that is “immune” to variations within the uncertainty set. Given historical
data on e, [43] derives a specific uncertainty set for p, which is the unknown density
function of e that is compatible with the historical data on e. Technically, p belongs
to this set with confidence 1−α , assuming some phi-divergence measure such as the
well-known chi-square distance. In this chapter we do not present the mathematical
details of the derivation of tractable robust counterparts, but refer to [43].

Note that Taguchians assume a specific distribution for e, which implies �e and
˝e in (4.31) and (4.32). This distribution may be estimated from historical data;
however, an approach that uses only the original observed data on e is developed
in [43], and several numerical examples demonstrate the effectiveness of this novel
combination of the two approaches originated by Taguchi and Ben-Tal et al.
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The examples in [43] include a deterministic simulation of the television example
in [33, p. 512], and a random simulation of a distribution-center example in [40].
In this chapter we focus on simulation, so we discuss only the latter example.
This example has five decision variables (e.g., number of forklifts) and two
environmental variables (e.g., delay probabilities of suppliers); the response is the
total throughput. An incomplete second-order polynomial like (4.30) is fitted. In
[43], (4.29) is replaced by the following related problem:

minσ2
w such that μw ≤ T, (4.37)

where the statistical parameters μw and σ2
w are based on the historical data using

the phi-divergence criterion. These two examples in [43] again demonstrate that
robust solutions may have better worst-case performance and also better average
performance than “nominally” optimal solutions that ignore uncertainty.

4.8 Conclusions

In this chapter, we started with the basics of classic RSM, which minimizes the
expected value of a single response variable in real-life experiments. Next we
considered simulation experiments. We then added the adapted steepest descent
search direction, which improves classic steepest descent. We also summarized
GRSM for simulation with multivariate responses, assuming that one response is to
be minimized while all the other responses and deterministic inputs must meet given
constraints. Furthermore, we presented a bootstrap procedure for testing whether
the KKT conditions hold for the estimated optimum. Finally, we considered robust
optimization.

Future research may study the selection of the required number of replications
and the use of replications to estimate the accuracy of the resulting estimated search
direction or optimum. Bootstrapping may solve this problem, but more research is
needed. Numerical evaluation of the adapted steepest descent method would benefit
from more applications in practice. There is also a need for more research on the
KKT testing procedure when all local points (not only the center) are replicated
and CRN are used; more practical applications are also needed. In Taguchian
robust optimization through RSM, we may vary the threshold values, which gives
different optimal solutions and a corresponding Pareto frontier; bootstrapping this
frontier might enable management to make the final compromise decision—but
more research and applications are needed.
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Chapter 5
Stochastic Gradient Estimation

Michael C. Fu

Abstract This chapter reviews simulation-based methods for estimating gradients,
which are central to gradient-based simulation optimization algorithms such as
stochastic approximation and sample average approximation. We begin by describ-
ing approaches based on finite differences, including the simultaneous perturbation
method. The remainder of the chapter then focuses on the direct gradient estimation
techniques of perturbation analysis, the likelihood ratio/score function method,
and the use of weak derivatives (also known as measure-valued differentiation).
Various examples are provided to illustrate the different estimators—for a single
random variable, a stochastic activity network, and a single-server queue. Recent
work on quantile sensitivity estimation is summarized, and several newly proposed
approaches for using stochastic gradients in simulation optimization are discussed.

5.1 Introduction

For optimization problems with continuous-valued decision variables, the availabil-
ity of gradients can dramatically improve the effectiveness of solution algorithms,
but in the stochastic setting, since the outputs are themselves random, finding or
deriving stochastic gradient estimators can itself be a challenging problem, which
constitutes the subject of this chapter. The three succeeding chapters on stochastic
approximation and sample average approximation—Chaps.6, 7, and 8—highlight
the central role that stochastic gradients play in simulation optimization. In addition
to their use in gradient-based simulation optimization, these estimators have other
important applications in simulation, most notably sensitivity analysis, e.g., factor
screening to decide which factors are the most critical, and hedging of financial
instruments and portfolios.
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Consider the general optimization problem

min
x∈Θ

f (x), (5.1)

where x ∈ Θ ⊆ R
d . In the context of simulation optimization considered here, f

is not directly available but instead the simulation model returns a noisy output
Y (x,ξ ), where ξ represents the randomness. We consider two forms of the objective
function, the commonly used expected value performance

f (x) = E[Y (x,ξ )], (5.2)

and the quantile

f (x) = qα(x) = sup{y : P(Y (x,ξ )≤ y)≤ α, 0 < α < 1, (5.3)

where α = P(Y (x,ξ )≤ qα(x)) when Y is a continuous random variable.
We introduce two examples that will also be used later to illustrate the various

direct gradient estimators:

• A stochastic activity network is a directed acyclic graph where the arcs have
random activity times. The decision variables influence the distribution of these
activity times. The output performance to be considered is the total time to
go from a designated source to a designated sink in the network. We will
specifically consider the longest path performance where the decision variables
(input parameters) are in the individual activity time probability distributions.

• A first-come, first-served (FCFS) single-server queue, where the customer arrival
process and the customer service times are both stochastic and independent of
each other. The output performance to be considered is the average time spent
in the system by a customer, denoted by T , and the input parameters will be
in the service time distribution(s). When the arrival process is renewal, and the
service times are independent and identically distributed (i.i.d.), this is known as
a G/G/1 (or sometimes written GI/GI/1) queue. A simple optimization problem
could be to choose the mean service time x > 0 to minimize

f (x) = E[T (x,ξ )]+ c/x,

where c can be viewed as the cost of having a faster server.

To solve (5.1) for either setting (5.2) or (5.3), a natural adaptation of steepest
descent in deterministic nonlinear optimization is stochastic approximation (SA),
which is an iterative update scheme on the parameter that takes the following general
form for finding a zero of the objective function gradient:

xn+1 =ΠΘ

(
xn − an∇̂ f (xn)

)
, (5.4)

where ∇̂ f is an estimate of the gradient ∇ f , {an} is the so-called gain (also known
as step-size) sequence, and ΠΘ denotes a projection back into the feasible region
Θ when the update (5.4) would otherwise take xn+1 out of Θ . Guaranteeing with
probability 1 (w.p.1) convergence of xn requires an → 0, but at a rate that cannot be
too quick, with a common set of conditions being
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∑
n

an = ∞, ∑
n

a2
n < ∞.

In practice, an is often adjusted to a constant value after some number of iterations,
which theoretically only guarantees weak convergence (in distribution). The gain
sequence need not be deterministic, i.e., it could depend on the output that is
generated, e.g., Kesten’s rule [31], which decreases an only when the sign of the
derivative estimate changes. Under appropriate conditions, there are also Central
Limit Theorem results that characterize the asymptotic behavior of xn (cf. [34]).

When ∇̂ f is an unbiased estimator of ∇ f , the SA algorithm is generally
referred to as being of the Robbins–Monro (RM) [38] type, whereas if ∇̂ f is only
asymptotically unbiased, e.g., using a finite difference estimate with the difference
going to zero at an appropriate rate, then the algorithm is referred to being of the
Kiefer–Wolfowitz (KW) [32] type; see Chap. 6 for details. The Robbins–Monro
SA algorithm generally has a canonical asymptotic convergence rate of n−1/2, in
contrast to n−1/3 for the Kiefer–Wolfowitz SA algorithm.

A key challenge for using an SA algorithm for simulation optimization, is the
sensitivity of the early transient finite-time behavior of (5.4) to the sequence {an};
for KW-type algorithms, there is the additional choice of the difference sequence.
For example, the behavior of SA for the commonly used sequence an = a/n (a > 0)
is very sensitive to the choice of a. If a is too small, then the algorithm will “crawl”
towards the optimum, even at the 1/

√
n asymptotic rate. On the other hand, if a

is chosen too large, then extreme oscillations may occur, resulting in an “unstable”
progression. Iterate averaging, whereby the estimated optimum is not the latest value
of xn but an average of a window of most recent values, can reduce the sensitivity.
Robust SA is a further generalization involving a weighted (based on {an}) average.
Addressing the choice of {an}—as well as other issues such as how to project onto
the feasible region Θ , which might be specified indirectly (e.g., in a mathematical
programming formulation) and possibly involve “noisy” constraints that also have
to be estimated along with the objective function—is one of the main topics of
Chap. 6. Robust SA and other generalizations and extensions of iterate averaging,
along with finite-time analysis of the resulting algorithms, are described in more
detail in Chap. 7.

The rest of this chapter is organized as follows. Section 5.2 summarizes the
finite difference approaches, including the simultaneous perturbation method that
is especially useful in high-dimensional problems. Section 5.3 describes the direct
gradient estimation techniques of perturbation analysis, the likelihood ratio/score
function method, and the weak derivatives method (also known as measure-valued
differentiation) in detail, including illustrative examples (Sects. 5.3.3 and 5.3.4),
a summary of some basic theoretical tools (Sect. 5.3.5), and guidelines for the
practitioner (Sect. 5.3.6). Section 5.4 treats the more recent work on quantile
sensitivity estimation. Section 5.5 describes some new developments in using
direct stochastic gradients in simulation optimization. Section 5.6 concludes by
briefly describing the main application areas in historical context and providing
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some primary reference material for further reading. The content in Sects. 5.2
and 5.3 draws heavily from Fu [14], whereas the exposition on quantile sensitivities
(Sect. 5.4) and recently proposed approaches to using stochastic gradients in
simulation optimization (Sect. 5.5) is new.

An important note on notation: f will later be used to denote a probability
density function (p.d.f.) rather than the objective function, so it will be replaced
by J henceforth; also, what has been referred to as the decision variable(s) x in
the optimization problem (5.1) and in the general SA recursion (5.4) will become
the parameter (vector) θ . Specifically, the goal of the rest of the chapter will be to
estimate either

∇θJ(θ ) = ∇θE[Y (θ ,ξ )],

or in Sect. 5.4

q′α(θ ),

where qα is defined by (5.3) and θ is scalar.

5.2 Indirect Gradient Estimators

We divide the approaches to stochastic gradient estimation into two main
categories—indirect and direct—which we now more specifically define. An
indirect gradient estimator usually has two characteristics: (a) it only estimates
an approximation of the true gradient value, e.g., via a secant approximation in
the scalar case; and (b) it uses only function evaluations (performance measure
output samples) from the original (unmodified) system of interest. When used in
SA, the resulting algorithms are commonly referred to as gradient-free or stochastic
zeroth-order methods. A direct gradient estimator tries to estimate the true gradient
using some additional analysis of the underlying stochastics of the model. More
specifically, we will refer to the indirect gradient estimation approach as one in
which the simulation output is treated as coming out of a given black box, by
which we mean it satisfies two assumptions: (a) no knowledge of the underlying
mechanics of the simulation model is used in deriving the estimators, such as
knowing the input probability distributions; and (b) no changes are made in the
execution of the simulation model itself, such as changing the input distribution
for importance sampling. Note that this entails satisfying both assumptions; many
of the direct gradient estimation techniques can be implemented without changing
anything in the underlying simulation, but they may require some knowledge of the
simulation model, such as the input distributions or some of the system dynamics.
In the case of stochastic simulation, as opposed to online estimation based on an
actual system, it could be argued that to carry out the simulation most of these
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mechanics need to be known, i.e., one cannot carry out a stochastic simulation
without specifying the input distributions. Here, we simply use the two assumptions
to distinguish between the two categories of approaches and not to debate whether
an estimator is “model” dependent or not. In terms of stochastic approximation
algorithms, indirect and direct gradient estimators generally correspond to Kiefer–
Wolfowitz and Robbins–Monro algorithms, respectively.

We describe two indirect gradient estimators: finite differences and simultaneous
perturbation. Following our definition, these approaches require no knowledge of
the workings of the simulation model, which is treated as a black box.

5.2.1 Finite Differences

The straightforward brute-force method for estimating a gradient is simply to use
finite differences, i.e., perturbing the value of each component of θ separately while
holding the other components at the nominal value. If the value of the perturbation
is too small, the resulting difference estimator could be extremely noisy, because
the output is stochastic; hence, there is a trade-off between bias and variance in
making this selection, and unless all components of the parameter vector are suitably
“standardized” a priori, this choice must be done for each component separately,
which could be a burdensome task for high-dimensional problems.

The simplest finite difference estimator is the one-sided forward difference
gradient estimator, with ith component given by

Y (θ + ciei,ξ2,i)−Y(θ ,ξ1,i)

ci
, (5.5)

where c is the vector of differences (ci the perturbation in the ith direction) and ei

denotes the unit vector in the ith direction.
A more accurate estimator is the two-sided symmetric (or central) difference

gradient estimator, with ith component given by

Y (θ + ciei,ξ2,i)−Y (θ − ciei,ξ1,i)

2ci
, (5.6)

which corresponds to the estimator used in the original Kiefer–Wolfowitz SA
algorithm. The variance reduction technique of common random numbers (CRN)
can be thought of being the case where ξ1,i = ξ2,i = ξi. In stochastic simulation,
using CRN can reduce the variance of the gradient estimators substantially, although
in practice synchronization is an important issue, since merely using the same
random number seeds is typically not effective. The symmetric difference estimator
given by (5.6) is more accurate, but it requires 2d objective function estimates
(simulation replications) per gradient estimate, as opposed to d + 1 function
estimates (simulation replications) for the one-sided estimator given by (5.5).
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5.2.2 Simultaneous Perturbation

Introduced by Spall in 1992 [41], simultaneous perturbation stochastic approx-
imation (SPSA) is targeted at high-dimensional problems, due to the property
that the number of simulation replications needed to form an estimator of the
gradient is independent of the dimension of the parameter vector. Specifically, the
ith component of the simultaneous perturbation (SP) gradient estimator is given by

Y (θ +CΔ ,ξ2)−Y (θ −CΔ ,ξ1)

2ciΔi
, (5.7)

where Δ = (Δ1, . . . ,Δd) is a d-dimensional vector of perturbations, which are gener-
ally assumed i.i.d. as a function of iteration and independent across components. In
this case, C contains the set of differences for each component as a diagonal matrix
with the differences {ci} on the diagonal. The key difference between this estimator
and a finite difference estimator is that the numerator of (5.7)—corresponding
to a difference in the function estimates—is the same for all components (i.e.,
independent of i), whereas the numerator in the symmetric difference estimator
given by (5.6) involves a different pair of function estimates for each component
(i.e., is a function of i). Thus, the full gradient estimator requires only two function
estimates, regardless of the size of the dimension d. On the other hand, since d
random numbers must be generated to produce the perturbation sequence Δ at
each iteration, if generating function estimates is relatively inexpensive in terms of
computation, then this procedure may not be computationally superior to the previ-
ous finite difference approaches. In most simulation optimization settings, however,
generating simulation output responses Y (θ ,ξ ) is relatively quite expensive. SPSA
has also been applied in situations where the output J(θ ) is actually deterministic
(no random Y ) but expensive to generate, e.g., requires computationally intensive
finite-element method calculations.

The key requirement on the perturbation sequence to guarantee w.p.1 conver-
gence of SPSA is that each term have mean zero and finite inverse second moments.
Thus, the normal (Gaussian) distribution is prohibited, and the most commonly used
distribution is the symmetric Bernoulli, whereby the perturbation takes the positive
and negative (equal in magnitude, e.g., ±1) value w.p. 0.5. Intuitively, convergence
comes about from the averaging property of the random directions selected at each
iteration, i.e., in the long-run, each component will converge to the correct gradient
even if at any particular iteration the estimator may appear odd. Thus, an interesting
alternative to using random perturbation sequences {Δ} is to use deterministic
sequences [3, 46], analogous to the use of quasi-Monte Carlo.

A very similar gradient estimator for use in SA algorithms is the random
directions gradient estimator [33], whose ith component is given by

[Y (θ + cΔ ,ξ2)−Y(θ − cΔ ,ξ1)]Δi

2ci
. (5.8)
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Instead of dividing by the perturbation component, the difference term multiplies the
component. Thus, normal distributions can be used for the perturbation sequence,
and convergence requirements translate the moment condition to a bound on the
second moment, as well as zero mean. Of course, a correspondence to the SP
estimator can be made by simply taking the componentwise inverse, but in practice
the performance of the two resulting SA algorithms differs substantially.

An extensive and frequently updated annotated bibliography for SPSA can be
found on the World Wide Web at http://www.jhuapl.edu/SPSA/.

5.3 Direct Gradient Estimators

When available, direct gradient estimators offer the following advantages:

• They are generally unbiased, which results in faster convergence rates when
implemented in a simulation optimization algorithm, whether stochastic approx-
imation, sample average approximation, or response surface methodology.

• They eliminate the need to determine appropriate values for the finite difference
sequences, which influence the accuracy of the estimator. Smaller values of c
in (5.5)–(5.8) lead to lower bias but usually at the cost of increased variance, to
the point of possibly giving the wrong sign for small enough values.

• They are generally more computationally efficient.

We begin with the case where the output is an expectation, and write the output
Y in terms of all the input random variables X ≡ {Xi}:

J(θ ) = E[Y (X)] = E[Y (X1, . . . ,XN)], (5.9)

where N is a fixed finite number, and for notational brevity, the display of the
randomness ξ and the dependence on the parameter θ will often be suppressed
in the following derivations. The various direct gradient estimation techniques are
distinguished by their treatment of the dependence on θ in (5.9):

sample (pathwise) vs. measure (distributional).

As illustrated in the examples that follow, many settings allow either dependence,
leading to different gradient estimators.

To derive direct gradient estimators, we write the expectation using what is
sometimes called the law of the unconscious statistician:

E[Y (X)] =

∫
ydFY (y) =

∫
Y (x)dFX(x), (5.10)

where FY and FX denote the distributions of Y and X, respectively. In fact, when
estimating expected value performance, stochastic simulation can be viewed as a
way of implicitly carrying out this relationship, i.e., the simulation model is given

http://www.jhuapl.edu/SPSA/
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input random variables with known distributions, and produces samples of output
random variables, for which we would like to characterize the distributions.

For simplicity in discussion, we will assume henceforth that the parameter
θ is scalar, because the vector case can be handled by taking each component
individually. In view of the right-hand side of (5.10), we revisit the question as
to the location of the parameter in a stochastic setting. Putting it in the sample
performance Y (·;θ ) corresponds to the view of perturbation analysis (PA), whereas
if it is absorbed in the distribution F(·;θ ), then the approach follows that of the
likelihood ratio (LR) method (also known as the score function (SF) method)
or weak derivatives (WD) (also known as measure-valued differentiation). In the
general setting where the parameter is a vector, it is possible that some of the
components would be most naturally located in the sample performance, while
others would be easily retained in the distributions, giving rise to a mixed approach.
For example, in an (s,S) inventory control system, it might be most effective to use
PA for the control parameters (decision variables) s and S, and WD or LR/SF for the
demand distribution parameters.

Let fX denote the p.d.f. of all of the input random variables (not to be confused
with the original objective function f as defined by (5.1)). Differentiating (5.10),
and assuming an interchange of integration and differentiation is permissible, we
write two cases:

dE[Y (X)]

dθ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
Y (x)

d fX (x;θ )
dθ

dx (5.11)

∫ 1

0

dY (X(θ ;u))
dθ

du, (5.12)

where x and u, as well as the integrals, are N-dimensional. For notational simplicity,
these N-dimensional multiple integrals are written as a single integral throughout,
and we also assume one random number u produces one random variate x. In (5.11),
the parameter appears in the distribution directly, whereas in (5.12), the underlying
uncertainty is considered the uniform random numbers; this dichotomy corresponds
to the respective distributional (measure) and pathwise (sample) dependencies.

For expositional ease in introducing the approaches, we begin by assuming that
the parameter only appears in X1, which is generated independently of the other
input random variables. So for the case of (5.12), we use the chain rule to write

dE[Y (X)]

dθ
=

∫ 1

0

dY (X1(θ ;u1),X2, . . .)

dθ
du

=
∫ 1

0

∂Y
∂X1

dX1(θ ;u1)

dθ
du. (5.13)

In other words, the estimator takes the form
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∂Y (X)

∂X1

dX1

dθ
, (5.14)

where the parameter appears in the transformation from random number to random
variate, and the derivative is expressed as the product of a sample path derivative
and derivative of a random variable. The issue of what constitutes the latter will
be taken up shortly, but this approach is called infinitesimal perturbation analysis
(IPA). For the M/M/1 queue, the sample path derivative could be derived using
Lindley’s equation, relating the time in system of a customer to the service times
(and interarrival times, which are not a function of the parameter).

Assume that X1 has marginal p.d.f. f1(·;θ ) and that the joint p.d.f. for the
remaining input random variables (X2, . . .) is given by f−1, which has no (functional)
dependence on θ . Then the assumed independence gives fX = f1 f−1, and the
expression (5.11) involving differentiation of a density (measure) can be further
manipulated using the product rule of differentiation to yield the following:

dE[Y (X)]

dθ
=

∫ ∞

−∞
Y (x)

∂ f1(x1;θ )
∂θ

f−1(x2, . . .)dx (5.15)

=

∫ ∞

−∞
Y (x)

∂ ln f1(x1;θ )
∂θ

fX (x)dx. (5.16)

In other words, the estimator takes the form

Y (X)
∂ ln f1(X1;θ )

∂θ
. (5.17)

Since the term ∂ ln f1(·;θ)
∂θ is the well-known (efficient) score function in statistics, this

approach has been called the score function (SF) method. The other name given to
this approach—the likelihood ratio (LR) method—comes from the closely related
likelihood ratio function given by

f1(·;θ )
f1(·;θ0)

,

which when differentiated with respect to θ gives

∂ f1(·;θ )/∂θ
f1(·;θ0)

,

which is equal to the score function upon setting θ0 = θ .
On the other hand, if instead of expressing the right-hand side of (5.15) as (5.16),

the density derivative is written as

∂ f1(x1;θ )
∂θ

= c1(θ )
(

f (+)
1 (x1;θ )− f (−)

1 (x1;θ )
)
,

it leads to the following relationship:
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dE[Y (X)]

dθ
=

∫ ∞

−∞
Y (x)

∂ fX (x;θ )
∂θ

dx

= c1(θ )
(∫ ∞

−∞
Y (x) f (+)

1 (x1;θ ) f−1(x2, . . .)dx−
∫ ∞

−∞
Y (x) f (−)

1 (x1;θ ) f−1(x2, . . .)dx

)
.

The triple
(

c1(θ ), f (+)
1 , f (−)

1

)
constitutes a weak derivative (WD) for f1, which is

in general not unique. The corresponding WD estimator is of the form

c1(θ )
(

Y (X (+)
1 ,X2, . . .)−Y(X (−)

1 ,X2, . . .)
)
, (5.18)

where X (−)
1 ∼ f (−)

1 and X (+)
1 ∼ f (+)

1 , henceforth often abbreviated X (±) ∼ f (±).

The term weak derivative comes about from the possibility that ∂ f1(·;θ)
∂θ in (5.15)

may not be proper, but its integral may be well-defined, e.g., it might involve
delta-functions (impulses), corresponding to probability mass functions (p.m.f.s)
of discrete distributions. Note that even for a given WD representation, only the
marginal distributions for the two random variables X (±) are specified, i.e., their
joint distribution is not constrained, so the “estimator” given by (5.18) is not really
completely specified. Since (5.18) is a difference of two terms that appear similar,
one might expect that generating the two random variables using CRN rather
than independently would be beneficial, and it is indeed true in many situations,
but such a conclusion is problem dependent. However, for the Hahn–Jordan WD
representation (to be described later in Sect. 5.3.2), independent generation turns
out to be the method that minimizes the variance of the WD estimator [44].

If in the expression (5.12), the interchange of expectation and differentiation does
not hold (e.g., if Y is an indicator function), then as long as there is more than one
input random variable, appropriate conditioning will often allow the interchange as
follows:

dE[Y(X)]

dθ
=

∫ 1

0

dE[Y (X(θ ;u))|Z(u)]
dθ

du, (5.19)

where Z ⊆ {X1, . . . ,XN}. This conditioning is known as smoothed perturbation
analysis (SPA), because it seeks to “smooth” out a discontinuous function. SPA
leads to an estimator of the following form:

∂E[Y (X)|Z]
∂X1

dX1

dθ
. (5.20)

Note that taking Z as the entire set leads back to (5.14).
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Remark. For SPA, the conditioning in (5.19) was done with respect to a subset of
the input random variables only. Further conditioning can be done on events in the
system, which leads to an estimator of the following general form:

dY
dθ

+EZ[δY |B]
dPZ(B)

dθ
, (5.21)

where the subscript indicates a corresponding conditional expectation/probability,
B is an appropriately selected event, and δY represents a change in the performance
measure under the conditioned (usually called “critical”) event. In this case, if the
probability rate dPZ (B)

dθ is 0, the estimator (5.21) also reduces to IPA. On the other
hand, if the IPA term dY

dθ is zero, the estimator may coincide with the WD estimator
in certain cases, with correspondences between c(θ ) and the probability rate, and
between the difference term in (5.18) and the conditional expectation in (5.21).

5.3.1 Derivatives of Random Variables

PA estimators—e.g., those shown in (5.14), (5.20), (5.21)—require the notion
of derivatives of random variables. The mathematical problem for defining such
derivatives consists of constructing a family of random variables parameterized
by θ on a common probability space, with the point of departure being a set of
parameterized distribution functions {F(·;θ )}. We wish to construct X(θ )∼F(·;θ )
s.t. ∀θ ∈Θ , X(θ ) is differentiable w.p.1. The sample derivative is then defined in
the intuitive manner as

dX(θ ,ω)
dθ

= lim
Δθ→0

X(θ +Δθ ,ω)−X(θ ,ω)
Δθ

,

where ω denotes a sample point in the underlying probability space. If the
distribution of X is known, we have [21, 42]

dX(θ )
dθ

=− ∂F(X ;θ )/∂θ
∂F(X ;θ )/∂X

, (5.22)

where we use the (slightly abusive) notation
∂F(X ;θ )

∂X
=

∂F(x;θ )
∂x

∣∣∣∣
x=X

.

Definition. For a distribution function F(x;θ ), θ is said to be a location parameter
if F(x+θ ;θ ) does not depend on θ ; θ is said to be a scale parameter if F(xθ ;θ )
does not depend on θ ; and θ is said to be a generalized scale parameter if F(θ̄ +
xθ ;θ ) does not depend on θ , for some fixed θ̄ (usually a location parameter) not
dependent on θ .



116 M.C. Fu

In these special cases, one can use the following sample derivatives for the three
respective cases (location, scale, generalized scale):

dX
dθ

= 1,
dX
dθ

=
X
θ
,

dX
dθ

=
X − θ̄
θ

.

The most well-known example is the normal distribution, with the mean being
a location parameter and the standard deviation a generalized scale parameter.
Similarly, the two parameters in the Cauchy, Gumbel (extreme value), and logistic
distributions also correspond to location and generalized scale parameters. Other
examples include the mean of the exponential being a scale parameter; and the mean
of the uniform distribution being a location parameter, with the half-width being a
generalized scale parameter. In the special case U(0,θ ), the single parameter is an
ordinary scale parameter. Also, for N (θ ,(θσ)2), θ is an ordinary scale parameter.
See Table 5.1 in Sect. 5.3.3 for more examples.

Lastly, note that for a given distribution, there may be multiple ways to generate a
random variate, which leads to different derivatives, some of which may be unbiased
and some of which may not. This is called the role of representations, and is
illustrated with a simple example (Example 5.5) in Sect. 5.3.3.

5.3.2 Derivatives of Measures

As we have seen already, both the LR/SF and WD estimators rely on differentiation
of the underlying measure, so the parameters of interest should appear in the
underlying (input) distributions. If this is not the case, then one approach is to try
to “push” the parameter out of the performance measure into the distribution, so
that the usual differentiation can be carried out. This is achieved by a change of
variables, which is problem dependent.

Recall that we introduced the idea of a weak derivative by expressing the
derivative of a density (p.d.f.) as an appropriately normalized difference of two
p.d.f.s, i.e., the triple (c(θ ), f (+), f (−)) satisfying

∂ f (x;θ )
∂θ

= c(θ )
(

f (+)(x;θ )− f (−)(x;θ )
)
.

This idea can be generalized without the need for a differentiable density, as long as
the integral exists with respect to a certain set of (integrable) “test” functions, say
L , e.g., the set of continuous bounded functions.

Definition. The triple (c(θ ),F (+),F (−)) is called a weak derivative for distribution
(c.d.f.) F if for all functions g ∈L (not a function of θ ),

d
dθ

∫
g(x)dF(x;θ ) = c(θ )

(∫
g(x)dF(+)(x;θ )−

∫
g(x)dF(−)(x;θ )

)
.
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Remark. As mentioned earlier, the derivative is “weak” in the sense that the density
derivative may not be defined in the usual sense, but in terms of generalized
functions integrable with respect to the functions in L , as in the “definition” of
a delta function in terms of its integral. The concept of a weak derivative need not
be restricted to probability measures, but any finite signed measures. Lastly, note
that a WD gradient estimate may require as many as 2d additional simulations for
the vector case (a pair for each component), unlike LR/SF and IPA estimators, which
will always require just a single simulation.

One choice for the weak derivative (density) that is readily available is

∂ f
∂θ

= c
(

f (+)− f (−)
)
, (5.23)

where

f (−) =
1
c

(
∂ f
∂θ

)−
, f (+) =

1
c

(
∂ f
∂θ

)+
, (5.24)

(x)+ ≡ max{x,0}, (x)− ≡ max{−x,0}, and c =
∫ ( ∂ f

∂θ

)+
dx =

∫ ( ∂ f
∂θ

)−
dx, using the

fact that

∫
f (x)dx = 1 =⇒

∫ ∂ f
∂θ

dx = 0.

The representation given by (5.23) and (5.24) is the Hahn–Jordan decomposition,
which will always exist for probability measures, and results in a decomposition
involving two measures with complementary support. It can be shown in this case
that generating the two random variables according to f (+) and f (−) independently
minimizes variance for the WD estimator [44].

Remark. The representation is clearly not unique. In fact, for any non-negative
integrable function h, we have

∂ f
∂θ

= c
(
[ f (−) +h]− [ f (+) +h]

)
= c̃

(
[ f (−) +h]/(1+

∫
h)− [ f (+) +h]/(1+

∫
h)

)
,

where c̃ = c(1 +
∫

h). Thus, one way to obtain the estimator using the original
simulation is to choose a representation in which both measures have the same
support as the original measure. Then importance sampling can be applied, so that
the original simulation can be used to generate the estimator without the need for
simulating the system under alternative input distributions. Perhaps the most direct
way to achieve this is to add the original measure itself to both f (−) and f (+) and
renormalize appropriately, i.e., choose h = f above:

∂ f
∂θ

= 2c
(
[ f (−) + f ]/2− [ f (+)+ f ]/2

)
.
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5.3.3 Input Distribution Examples

We now demonstrate some of these concepts on a single random variable. Sec-
tion 5.3.4 then considers the two examples introduced at the beginning of the chapter
(stochastic activity network and single-server queue).

Example 5.1. Let X ∼ exp(θ ), an exponential random variable with mean θ and
p.d.f. given by

f (x;θ ) =
1
θ

e−x/θ1{x > 0},

where 1{·} denotes the indicator function. The usual construction of the random
variable is

X(θ ;u) =−θ lnu,

where u represents a random number. Differentiating both expressions, we get

∂ f (x;θ )
∂θ

=

[
x
θ 2

1
θ

e−x/θ − 1
θ 2 e−x/θ

]
1{x > 0}

= f (x;θ )
[

x
θ 2 − 1

θ

]

=
1
θ

[ x
θ 2 e−x/θ1{x > 0}− f (x;θ )

]

=
1
θe

[ e
θ

( x
θ
− 1
)

e−x/θ1{x > θ}− e
θ

(
1− x

θ

)
e−x/θ1{0 < x ≤ θ}

]
,

dX(θ ;u)
dθ

= − lnu =
X(θ ;u)
θ

.

In the third and fourth lines above, the density derivative (which is itself not a
density) has been expressed as the difference of two densities multiplied by a
constant. This demonstrates that the weak derivative representation is not unique,
with the last decomposition being the Hahn–Jordan decomposition, noting that
x = θ is the point at which d f (x;θ )/dθ changes sign. The following correspond
to the LR/SF, WD (a) & (b), and IPA estimators, respectively:

Y (X)
1
θ

(
X1

θ
− 1

)
,

1
θ

[
Y (X (+)

1a , . . .)−Y(X (−)
1a , . . .)

]
,

1
θe

[
Y (X (+)

1b , . . .)−Y(X (−)
1b , . . .)

]
,

dY
dX1

X1

θ
,
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where X (−)
1a ∼ exp(θ ) and X (+)

1a ∼ Erl(2,θ ), where “Erl” is an Erlang distribution

(see Table 5.1), and X (−)
1b ∼ θ − trunc(Erl(2,θ ), [0,θ ]) and X (+)

1b ∼ θ +Erl(2,θ ),
where “trunc(F, [a,b])” represents a distribution (c.d.f.) F truncated to the range
[a,b]. Since an Erl(2,θ ) distribution can be generated by the sum of two i.i.d. expo-
nentially distributed random variables, one way to realize the first WD estimator

would be to use X (−)
1a = X1 and then generate another X̃1 ∼ exp(θ ) independent of

the original X1, giving the WD estimator

1
θ
[
Y (X1 + X̃1, . . .)−Y(X1, . . .)

]
.

The following is a simple example that demonstrates that the WD estimator is
more broadly applicable than the LR/SF estimator.

Example 5.2. Let X ∼U(0,θ ). Then we have the following:

f (x;θ ) =
1
θ

1{0 < x < θ},
X(θ ;u) = uθ ,

∂ f (x;θ )
∂θ

=
1
θ

[
δ (θ − x)− 1

θ
1{0 < x < θ}

]
(5.25)

=
1
θ
[δ (θ − x)− f (x;θ )] ,

dX(θ ;u)
dθ

= u =
X(θ ;u)
θ

,

where we define the Dirac δ -function as the “derivative” of a step function by

1{x ≥ θ}=
∫ x

−∞
δ (y−θ )dy. (5.26)

On the right-hand side of Eq. (5.25), we have the difference of densities for a mass
at θ and the original U(0,θ ) distribution, respectively, i.e., the weak derivative
representation (1/θ ,θ ,F), where θ indicates a deterministic distribution with mass
at θ . So, for example, the estimator in (5.18) would be given by

1
θ
(Y (θ ,X2, . . .)−Y (X1,X2, . . .)) .

This is a case where the LR/SF estimator is ill-defined, due to the δ -function.
Another example is the following.

Example 5.3. Let X ∼ Par(α,θ ), which represents the Pareto distribution with
shape parameter α > 0 and scale parameter θ > 0, and p.d.f. given by

f (x) = θααx−(α+1)1{x ≥ θ}.
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Once again the LR/SF estimator does not exist (for θ ), due to the appearance of
the parameter in the indicator function that controls the support of the distribution,
whereas WD estimators can be derived (see Table 5.1 at the end of the section).

However, the very general exponential family of distributions leads to a nice form
for the LR/SF estimator.

Example 5.4. Let θ denote the vector of parameters in a p.d.f. that can be written
in the following form:

f (x;θ ) = k(θ )exp

(
∑

i
vi(θ )ti(x)

)
h(x),

where the functions h and {ti} are independent of θ , and the functions k and {vi} do
not involve the argument. Then it is straightforward to derive

∂ ln f (x;θ )
∂θ

=
∇k(θ )
k(θ )

+∑
i

∇vi(θ )ti(x).

Examples include the normal, gamma, Weibull, and exponential, for the continuous
case, and the binomial, Poisson, and geometric for the discrete case.

As mentioned in Sect. 5.3.1, the application of PA (both IPA or SPA) depends
on the way the stochastic processes in the system are represented. We illustrate
this through a simple random variable example. In terms of simulation, this means
that a different representation used to generate the random variable could lead to
a different PA estimator. For instance, in Example 5.1, an alternative equivalent
representation is X = −θ ln(1 − u), which in this case leads to the same IPA
estimator X/θ . Since the underlying distribution is identical for the different
representations, the LR/SF and WD estimators are not dependent on the process
representation, but as noted earlier, the same distribution has infinitely many
possible WD estimators.

Example 5.5. For θ ∈ (0,1), let

X ∼
{

U(0,1) w.p. θ ,
U(1,2) w.p. 1−θ ,

a mixture of two uniform distributions, with E[X ] = 1.5− θ and dE[X ]/dθ = −1.
A straightforward construction/representation using two random numbers is

X = 1{U1 ≤ θ}U2 + 1{U1 > θ}(1+U2), (5.27)

where U1, U2 ∼U(0,1) are independent. However, since
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dX
dθ

= 0 w.p.1,

this clearly leads to a biased estimator. Note that viewed as a function of θ , X
jumps from 1+U2 down to U2 at θ = U1. However, an unbiased estimator can
be obtained by using the following construction in which the “coin flipping” and
uniform generation are correlated:

X = 1{U ≤ θ}U
θ
+ 1{U > θ}

(
1+

U −θ
1−θ

)
, where U ∼U(0,1),

=⇒ dX
dθ

=− U
θ 2 1{U ≤ θ}+ U − 1

(1−θ )2 1{U > θ},

which is unbiased (has expectation equal to dE[X ]/dθ = −1). This construction is
based on the property that the distributions of the random variable U/θ under the
condition {U < θ} and the random variable (U − θ )/(1− θ ) under the condition
{U ≥ θ} are both U(0,1). From a simulation perspective, this representation has
the additional advantage of requiring only a single random number to generate X
instead of two as in the previous construction. In this case, the construction also
corresponds to the inverse transform representation. In terms of the derivative, the
crucial property of the representation is that X is continuous across θ =U . One can
easily construct other single random number representations that do not have this
desirable characteristic, e.g.,

X = 1{U ≤ θ}(1−U
θ
)+ 1{U > θ}

(
1+

1−U
1−θ

)
, where U ∼U(0,1),

=⇒ dX
dθ

= 1{U ≤ θ} U
θ 2 + 1{U > θ} 1−U

(1−θ )2 ,

which is biased (has expectation +1), the intuitive reason being the discontinuity of
X at U = θ , where it jumps from 0 to 2.

For the first representation given by (5.27), which used two random numbers and
led to a biased IPA estimator, SPA can be applied by conditioning on U2 as follows:

X = E[X1|U2] =U2θ +(1+U2)(1−θ ) = 1+U2−θ ,

leading to the trivially unbiased “estimator” dX/dθ =−1.

To derive the WD and LR/SF estimators, the p.d.f. is given by

f (x;θ ) = θ1{x ∈ (0,1]}+(1−θ )1{x∈ (1,2]},
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so
∂ f (x;θ )
∂θ

= 1{x ∈ (0,1]}− 1{x∈ (1,2]}, (5.28)

∂ ln f (x;θ )
∂θ

=
1
θ

1{x ∈ (0,1]}− 1
1−θ

1{x ∈ (1,2]}, (5.29)

and the obvious WD from (5.28) is simply (1,U(0,1),U(1,2)), corresponding to the
Hahn–Jordan decomposition, whereas the LR/SF estimator from (5.29) is given by

Y (X) ·
{ 1

θ if X ≤ 1,
− 1

1−θ otherwise.

However, as noted in the remark at the end of Sect. 5.3.2, the WD representation
is not unique, so for example, one can add and subtract a U(0,1) density in (5.28)
to get

1{x ∈ (0,1]}+ 1{x∈ (0,1]}− 1{x∈ (1,2]}− 1{x∈ (0,1]}

= 2

[
1{x ∈ (0,1]}− 1

2
1{x ∈ (0,2]}

]
,

yielding the alternative WD representation (2,U(0,1),U(0,2)).

Discrete distributions present separate challenges for the different approaches.
Basically, when the parameter appears in the support probabilities, then LR/SF and
WD can be easily applied, whereas IPA is in general not applicable. The reverse is
true, however, if the parameter appears instead in the support values. The next two
examples demonstrate this dichotomy, where we work directly with the probability
mass function (p.m.f.) p(x;θ ) = P(X = x), instead of densities with δ -functions.
Let Ber(p;a,b) denote a Bernoulli distribution that takes value a w.p. p and b w.p.
1− p. We start with an example where the parameter θ is the Bernoulli probability.

Example 5.6. Let X ∼ Ber(θ ;a,b), a �= b, which has p.m.f.

p(x;θ ) = θ1{x = a}+(1−θ )1{x= b},

so

∂ p
∂θ

= 1{x = a}− 1{x= b},

which can be viewed as the difference of two (deterministic) masses at a and b
(with c(θ ) = 1), and is the Hahn–Jordan decomposition in this case. For the LR/SF
estimator, we have

∂ ln p
∂θ

=
1{x = a}− 1{x= b}

θ1{x = a}+(1−θ )1{x= b} =
1
θ

1{x = a}− 1
1−θ

1{x = b}.
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Note the similarity of both the WD and LR/SF estimators to the previous example.
In this case, there is no way to construct X such that it will be differentiable w.p.1.
For example, the natural construction/representation

X = a1{U ≤ θ}+ b1{U > θ}

yields dX/dθ = 0 w.p.1, so IPA is not applicable.

In contrast, now consider an example where the parameter θ is one of the support
values.

Example 5.7. Let X ∼ Ber(p;θ ;0), θ �= 0, E[X ] = pθ , dE[X ]/dθ = p, which has
p.m.f.

p(x;θ ) = p1{x = θ}+(1− p)1{x= 0},

which is not differentiable with respect to θ , so LR/SF and WD estimators cannot
be derived. The natural random variable construction

X = θ1{U ≤ p}

leads to the unbiased

dX
dθ

= 1{U ≤ p}= 1{X = θ}= X
θ
.

The IPA estimator dX/dθ = 1{X = θ} holds even if additional values are added
to the underlying support, as long as the additional values do not involve θ . If θ
enters into them, then the estimator can be easily modified to reflect the additional
dependence.

For many common input distributions, Table 5.1 provides the necessary deriva-
tives needed to implement each of the three methods (IPA, LR/SF, WD). Recall
also that the two parameters in the Cauchy, Gumbel, and logistic distributions
(not given in the table) are location and (generalized) scale parameters, so the IPA
expressions would be the same as for the normal distribution. The entry for the mean
of the normal has an interesting implementation for the WD estimator, based on the
observation that a normally distributed random variable N (μ ,σ2) can be generated
via the product of a uniform U(0,1) random number and a double-sided Maxwell
Mxw(μ ,σ2) random variate (generated independently of each other, cf. [25], which
also provides a method for generating from this distribution). Implementation using
such pairs of independent U(0,1) and Mxw(μ ,σ2) distributed random variates
results in a WD derivative estimator with provably the lowest variance for any
polynomial output function. Of course, in most settings the output is not polynomial;
furthermore, the WD estimator requires an additional simulation replication per
partial derivative.
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Table 5.1 Derivatives for common input distributions (NA= not applicable)

Distribution Parameterization p.d.f./p.m.f. f (x)/p(x) Support

Bernoulli Ber(p;a,b) p1{x = a}+(1− p)1{x = b} {a,b}
geometric geo(p) (1− p)x−1 p Z

+

negative binomial negbin(n, p)

(
x−1

n−1

)
(1− p)x−n pn {n,n+1, . . .}

binomial bin(n, p)

(
n

x

)
px(1− p)n−x

N

Poisson Poi(λ ) e−λ λx

x! N

normal (Gaussian) N (μ,σ2) 1√
2πσ e

− (x−μ)2
2σ2 R

Maxwell (2-sided) Mxw(μ,σ2) (x−μ)2√
2πσ3 e

− (x−μ)2
2σ2 R

uniform U(a,b) 1
b−a [a,b]

exponential exp(β ) β−1e−x/β x ≥ 0

Weibull Wei(α ,β ) αβ−α xα−1e−(x/β )α x ≥ 0

gamma gam(α ,β ) β−α xα−1 e−x/β
Γ (α) x ≥ 0

Erlang Erl(α ,β ) β−nxn−1 e−x/β
(n−1)! x ≥ 0

Pareto Par(α ,β ) αβα x−(α+1) x ≥ β

α > 0 is generally the shape parameter, μ is a location parameter, and β > 0 is a scale parameter;
Γ (α) =

∫ ∞
0 tα−1e−t dt; Γ (α) = (α − 1)Γ (α − 1); geo(p) = negbin(1, p), Erl(n,β ) = gam(n,β ) for

n ∈ Z
+; Wei(1,β ) = gam(1,β ) = exp(β ). The definition of the parameter β used here in the exponential,

Weibull, and gamma distributions is the inverse of what is often found in the literature ([35] being a notable
exception), but makes β a scale parameter. This is why the WD expressions below for the exponential,
Weibull, and gamma distributions differ slightly from the table in [24].

input dist IPA LR/SF WD

X ∼ F dX
dθ

∂ ln f (X ;θ )
∂θ (c(θ),F(+) ,F(−))

Ber(θ ;a,b) NA 1
θ 1{X = a} (1,a,b)

− 1
1−θ 1{X = b}

Ber(p;θ ,b) 1{X = θ} NA NA

geo(θ) NA 1
θ + 1−X

1−θ ( 1
θ ,geo(θ),negbin(2,θ))

bin(n,θ) NA X
θ − n−X

1−θ (n,1+bin(n−1,θ),bin(n−1,θ))
Poi(θ) NA X

θ −1 (1,1+Poi(θ),Poi(θ))
N (θ ,σ2) 1 X−θ

σ2

(
1√
2πσ ,θ +Wei(2, 1

2σ2 ), θ −Wei(2, 1
2σ2 )

)

N (μ,θ 2) X−μ
θ

1
θ

[( x−μ
θ
)2 −1

]
( 1
θ ,Mxw(μ,θ 2),N (μ,θ 2))

U(0,θ) X
θ NA ( 1

θ ,θ ,U(0,θ))

U(θ − γ ,θ + γ) 1 NA ( 1
2γ ,θ + γ ,θ − γ)

U(μ−θ ,μ+θ) X−μ
θ NA ( 1

θ ,Ber(0.5;μ−θ ,μ +θ),U(μ−θ ,μ+θ))
exp(θ) X

θ
1
θ
(

X
θ −1

)
( 1
θ ,Erl(2,θ),exp(θ))

Wei(α ,θ) X
θ

1
θ
[(

X
θ
)α −α

]
( αθ , [Erl(2,θα )]1/α ,Wei(α ,θ))

gam(α ,θ) X
θ

1
θ
(

X
θ −α

)
( αθ ,gam(α+1,θ),gam(α ,θ))

Par(α ,θ) X
θ NA ( αθ ,Par(α ,θ),θ)
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5.3.4 Output Examples

We consider the two examples introduced at the beginning of the chapter: stochastic
activity network and single-server queue.

Stochastic Activity Network
A stochastic activity network will be given by a directed acyclic graph, defined by
M nodes and N directed arcs representing activities. The activity times are given by
random variables Xi, i = 1, . . . ,N. Without loss of generality, we take node 1 as the
source (origin) and node M as the sink (destination). A path P is a set of directed
arcs going from source to sink. Let P denote the set of all paths from source to
sink, and P∗ denote the set of arcs on the optimal path corresponding to the project
duration given by Y (e.g., shortest or longest path, depending on the problem), i.e.,

Y = ∑
j∈P∗

Xj,

where P∗ itself is a random variable. We wish to estimate dE[Y ]/dθ , where θ is a
parameter in the distribution(s) of the activity times {Xi}.

Example 5.8. An example of a five-node network with six arcs is shown in Fig. 5.1,
in which there are three paths: P = {(1,4,6),(1,3,5,6),(2,5,6)}. If the longest
path is the performance measure of interest, then

Y = max{X1 +X4 +X6,X1 +X3 +X5 +X6,X2 +X5 +X6}
= X6 +max{X1 +X4,X1 +X3 +X5,X2 +X5}.

For a specific realization, {X1 = 9, X2 = 15, X3 = 8, X4 = 16, X5 = 11, X6 = 12},
Y = 12+max{9+ 16,9+ 8+11,15+11}= 40 and P∗ = (1,3,5,6).

•1

X1

X2

•2

•
3

X3

X4

X5

•4 X6 •5

Fig. 5.1 Example stochastic activity network



126 M.C. Fu

Denote the c.d.f. and p.d.f. of Xi by Fi and fi, respectively. For simplicity, assume
all of the activity times are independent. Even so, it should be clear that duration of
paths in P will not in general be independent, e.g., Example 5.8, where all three of
the paths include arc 6, so clearly the durations are not independent.

Let θ be a parameter in the distribution of a single Xi, i.e., in fi and Fi only. Then
the IPA estimator is given by

dY
dθ

=
dXi

dθ
1{i ∈ P∗}.

The LR/SF estimator is given by

Y
∂ ln fi(Xi;θ )

∂θ
.

The WD estimator is of the form

c(θ )
(

Y (X1, . . . ,X
(+)
i , . . . ,XN)−Y (X1, . . . ,X

(−)
i , . . . ,XN)

)

where X (±)
i ∼ F (±)

i , and (c(θ ),F (+)
i ,F (−)

i ) is a weak derivative for Fi.
If we allow the parameter to possibly appear in all of the distributions, then the

IPA estimator is found by applying the chain rule:

dY
dθ

= ∑
i∈P∗

dXi

dθ
,

whereas the LR/SF and WD estimators are derived by applying the product rule of
differentiation to the underlying input distribution, applying the independence that
allows the joint distribution to be expressed as a product of marginals. In particular,
the LR/SF estimator is given by

Y (X)

(
N

∑
i=1

∂ ln fi(Xi;θ )
∂θ

)
.

The WD estimator is of the form

N

∑
i=1

ci(θ )
(

Y (X1, . . . ,X
(+)
i , . . . ,XN)−Y (X1, . . . ,X

(−)
i , . . . ,XN)

)
,

where X (±)
i ∼ F (±)

i , i = 1, . . . ,N, and (ci(θ ),F
(+)
i ,F (−)

i ) is a weak derivative for Fi.

Example 5.9. We illustrate several cases for Example 5.8 when θ = 10 is the
mean of the exponential distribution for one or all of the activity times. For
the WD estimator, assume that the WD used is the entry from Table 5.1, i.e.,

(1/θ ,Erl(2,θ ),exp(θ )), so that for the distribution(s) in which θ enters, X (+)
i ∼
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Erl(2,10) and X (−)
i = Xi. Assume the same values for Xi as in Example 5.8, and the

following outputs for X (+)
i : X (+)

1 = 17, X (+)
2 = 33, X (+)

3 = 15, X (+)
4 = 40, X (+)

5 =

20, X (+)
6 = 25.

Case 1: θ is the mean of the first activity time, i.e., X1 ∼ exp(θ ).
The IPA estimate is simply X1/θ = 9/10 = 0.9, since X1 is on the critical path
in Example 5.8. The LR/SF estimate is given by (40)(1/10)(9/10− 1) = −0.4.
For WD, in the “+” network, the longest path remains the same as in the original
network, and the longest path length simply increases by the difference in X1, so the
WD estimate is given by (1/10)(48-40) = 0.8.

Case 2: θ is the mean of the second activity time, i.e., X2 ∼ exp(θ ).
The IPA estimate is 0, since X2 is not on the critical path for Example 5.8. The LR/SF
estimate is given by (40)(1/10)(15/10− 1) = 2. For WD, in the “+” network, the
longest path becomes (2,5,6), and the WD estimate is given by (1/10)(56-40) = 1.6.

Case 3: θ is the mean of the sixth activity time, i.e., X6 ∼ exp(θ ).
The IPA estimate is X6/θ = 12/10 = 1.2, since X6 is always on the critical path.
The LR/SF estimate is given by (40)(1/10)(12/10−1)= 0.8, and the WD estimate
is given by (1/10)(53-40) = 1.3.

Case 4: θ is the mean of all of the activity times, i.e., Xi ∼ exp(θ ) i.i.d.
The IPA estimate is (X1 +X3 +X5 +X6)/θ = 40/10 = 4.0. The LR/SF estimate is
given by (40)(1/10)(−0.1+0.5−0.2+0.6+0.1+0.2)= 4.4. For WD, the longest
path has to be computed separately for six different network realizations; and the
WD estimate is the sum of the six differences: (1/10)(8+16+7+21+9+13) = 7.4.

If instead we were interested in estimating P(Y > y) for some fixed y, the WD
and LR/SF estimators would simply replace Y with the indicator function 1{Y > y}.
For example, in Case 1 of Example 5.9, for any y < 40, the LR/SF estimate is given
by (1/10)(9/10-1) = -0.01, and the WD estimate is (1/10)(1-1) = 0; for y ≥ 40, the
LR/SF estimate is 0; for y ≥ 48, the WD estimate is (1/10)(0-0) =0, whereas for
40 ≤ y < 48, the WD estimate is (1/10)(1-0)=0.1. However, IPA would not apply,
since the indicator function is inherently discontinuous, so an extension of IPA such
as SPA is required. On the other hand, if the performance measure were P(Y > θ ),
then since the parameter does not appear in the distribution of the input random
variables, WD and LR/SF estimators cannot be derived without first carrying out an
appropriate change of variables. These cases are addressed in [15].

Single-Server Queue

We illustrate each of the three direct gradient estimators for the FCFS G/G/1 queue.
Let Ai be the interarrival time between the (i− 1)st and ith customer, Xi the service
time of the ith customer, and Ti the system time (in queue plus in service) of the
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ith customer. The sample performance of interest is the average system time over
the first N customers T N = 1

N ∑
N
i=1 Ti, and we take θ as a parameter in the service

time distribution(s). Assume that the system starts empty, so that the times of the
first N service completions are completely determined by the first N interarrival
times and first N service times. Also assume that the arrival process is independent
of the service times, which are also independent of each other but not necessarily
identically distributed, with the p.d.f. and c.d.f. for Xi given by fi and Fi, respectively.

The system time of a customer for a FCFS single-server queue satisfies the
recursive Lindley equation:

Ti+1 = Xi+1 +(Ti −Ai+1)
+. (5.30)

The IPA estimator is obtained by differentiating (5.30):

dTi+1

dθ
=

dXi+1

dθ
+

dTi

dθ
1{Ti ≥ Ai+1}, (5.31)

so that the IPA estimator for the derivative of average system time is given by

dT N

dθ
=

1
N

N

∑
i=1

dTi

dθ
=

1
N

M

∑
m=1

nm

∑
i=nm−1+1

i

∑
j=nm−1+1

dXj

dθ
, (5.32)

where M is the number of busy periods observed and nm is the index of the last
customer served in the mth busy period (n0 = 0 and nM = N for M complete
busy periods), and expressions for dX/dθ for many input distributions can be
found in Table 5.1. Implementation of the estimator involves keeping track of two
running quantities, one for (5.31) and another for the summation in (5.32); thus, the
additional computational overhead is minimal, and no alteration of the underlying
simulation is required.

To derive an LR/SF estimator, we use the fact that the interarrival times and
service times are independently generated, so the joint p.d.f. on the input random
variables will simply be the product of the p.d.f.s of the joint interarrival time
distribution and the individual service time distributions given by

g(A1, . . . ,AN)
N

∏
i=1

fi(Xi;θ ),

where g denotes the joint p.d.f. of the interarrival times. Thus, the straightforward
LR/SF estimator would be given by

(
dT N

dθ

)
LR

= T N

N

∑
i=1

∂ ln fi(Xi;θ )
∂θ

, (5.33)

where expressions for some common input distributions can be found in Table 5.1.
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The WD estimator is also relatively straightforward, just incorporating the
product rule of differentiation as before:

(
dT N

dθ

)
WD
=

N

∑
i=1

ci(θ )
[
T N(A1, . . . ,AN , . . . ,X

(+)
i , . . .)−T N(A1, . . . ,AN , . . . ,X

(−)
i , . . .)

]
,

where X (±)
i ∼ F(±)

i , i = 1, . . . ,N for (ci(θ ),F
(+)
i ,F (−)

i ) a weak derivative of Fi

(again, see Table 5.1). Note that in general, implementation of the estimator requires
2N separate sample paths and resulting sample performance estimates whenever the
parameter appears in N input random variables.

Example 5.10. We illustrate the numerical calculation for the three estimators when
θ = 10 is the mean of the exponential distribution for two cases: the first service
time only or all of the service times. Again, for the WD estimator, assume that the
WD used is the entry from Table 5.1, i.e., (1/θ ,Erl(2,θ ),exp(θ )), so that for the

distribution(s) in which θ enters, X (+)
i ∼ Erl(2,10) and X (−)

i =Xi. Take N = 5, with
the first five arrivals occurring at t = 10,20,30,40,50, i.e., Ai = 10, i = 1,2,3,4,5,
and the following service times generated:

X1 = 15, X2 = 7, X3 = 11, X4 = 9, X5 = 6.

For these values, it turns out that all five customers are in the same busy period, i.e.,
all except the first customer have to wait, and we get the following outputs:

T1 = 15, T2 = 12, T3 = 13, T4 = 12, T5 = 8; T 5 = 12.0.

For the WD estimate, we also need the following (only first entry for the 1st case):

X (+)
1 = 25, X (+)

2 = 12, X (+)
3 = 21, X (+)

4 = 19, X (+)
5 = 11.

Letting T (+i)
j ≡ Tj(. . . ,X

(+)
i , . . .) and T

(+i)
N ≡ T N(. . . ,X

(+)
i , . . .) = 1

N ∑
N
j=1 T (+i)

j , we

compute the following values for T (+i)
j and T

(+i)
5 :

�����i
j

1 2 3 4 5 T
(+i)
5

1 25 22 23 22 18 22.0
2 15 17 18 17 13 16.0
3 15 12 23 22 18 18.0
4 15 12 13 22 18 16.0
5 15 12 13 12 13 13.0
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Note that since all the service times X (+) are longer than the original service times,
all five customers remained in a single busy period on the “+” path.

Case 1: θ is the mean of the first service time only, i.e., X1 ∼ exp(θ ).
The IPA estimate is simply [5(X1/θ )]/5 = 15/10 = 1.5; the LR/SF estimate is
(12)(1/10)(15/10− 1)= 0.6; and the WD estimate is (1/10)(22−12) = 1.0.

Case 2: θ is the mean of all of the service times, i.e., Xi ∼ exp(θ ) i.i.d.
The IPA estimate is [(5X1 +4X2+3X3+2X4+X5)/θ ]/5 = 3.2; the LR/SF estimate
is (12)(1/10)(0.5 − 0.3 + 0.1 − 0.1 − 0.4) = −0.24; and the WD estimate is
(1/10)(10+ 4+ 6+4+1)= 2.5.

Variance Reduction

Both the LR/SF and WD estimators may have variance problems if the parameter
appears in all of the distributions, e.g., if it is the common mean when the service
times are i.i.d. The variance of the LR/SF estimator given by (5.33) increases
linearly with N, so some sort of truncation is generally necessary. For the single-
server queue example, the regenerative structure provides such a mechanism, to be
described shortly. For the WD estimator, although the variance of the estimator may
not increase with N, implementation may not be practical for large N. However,
in many cases, the expression can be simplified, making the computation more
acceptable. As discussed earlier, the variance properties of a WD estimator depend
heavily on the particular weak derivative(s) used and the coupling (correlation)

between X (+)
i and X (−)

i .
Using regenerative theory, the mean steady-state system time can be written as a

ratio of expectations:

E[T ] =
E[Q]

E[η ]
,

where η is the number of customers served in a busy period and Q is the sum of the
system times of customers served in a busy period. Differentiation yields

dE[T ]
dθ

=
dE[Q]/dθ

E[η ]
− dE[η ]/dθ

E[η ]
E[T ].

Applying the natural LR/SF estimators for each of the terms separately leads to the
following regenerative estimator over M busy periods, for the i.i.d. case where θ
appears in the common service time p.d.f. fX :
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(
dT N

dθ

)
LR

=
1
N

M

∑
m=1

{(
nm

∑
i=nm−1+1

Ti

)
nm

∑
i=nm−1+1

∂ ln fX (Xi;θ )
∂θ

}

− 1
N

M

∑
m=1

{
(nm − nm−1)

nm

∑
i=nm−1+1

∂ ln fX (Xi;θ )
∂θ

}
T N .

The advantage of this estimator is that the summations are bounded by the length of
the busy periods, so provided the busy periods are relatively short, the variance of
the estimators should be tolerable.

Higher Derivatives

For the WD estimator, a second derivative estimator would take exactly the same

form as before, the only difference being that (ci(θ ),F
(+)
i ,F (−)

i ) should be a weak
second derivative of Fi.

Using the regenerative method as before, the second derivative LR/SF estimator
is also relatively easy to derive:

(
d2T N

dθ 2

)
LR

=
1
N

M

∑
m=1

{(
nm

∑
i=1

Ti

)
nm

∑
i=nm−1+1

[
∂ 2 ln fX (Xi;θ )

∂θ 2 +

(
∂ ln fX (Xi;θ )

∂θ

)2
]}

− 1
N

M

∑
m=1

{
(nm −nm−1)

nm

∑
i=nm−1+1

[
∂ 2 ln fX (Xi;θ )

∂θ 2 +

(
∂ ln fX (Xi;θ )

∂θ

)2
]}

1
N

N

∑
j=1

Tj.

On the other hand, IPA will not work for higher derivatives for the single-
server queue example. The implicit assumption used in deriving an IPA estimator
is that small changes in the parameter results in small changes in the sample
performance, which translates to the boundary condition in (5.31) being unchanged
by differentiation. In general, the interchange (5.11) will typically hold if the sample
performance is continuous with respect to the parameter. For the Lindley equation,
although Tn+1 in (5.30) has a “kink” at Tn = An+1, it is still continuous at that point,
which is the intuition behind why IPA works. Unfortunately, the “kink” means that
the derivative given by (5.31) has a discontinuity at Tn = An+1, so that IPA will fail
for the second derivative.

An unbiased SPA second derivative estimator can be derived under the addi-
tional assumption that the arrival process has independent interarrival times, by
conditioning on all previous interarrival and service times at each departure, which
determines the system time, say Tn, with the corresponding next interarrival time,
An+1, unconditioned. We provide a brief informal derivation based on sample path
intuition (refer to Fig. 5.2). For the right-hand estimator, in which we assume
ΔTn > 0 (technically it should refer to Δθ ), the only “critical” events are those
departures that terminate a busy period, with the possibility that two busy periods
coalesce (idle period disappears) due to a perturbation. Letting gn and Gn denote the
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Fig. 5.2 Quantities used in deriving FCFS single-server queue SPA estimator

respective p.d.f. and c.d.f. of An, the corresponding probability rate (conditional on
Tn) is then calculated as follows:

lim
Δθ→0

P(Tn +ΔTn ≥ An+1|Tn < An+1)

ΔTn
=

gn+1(Tn)

1−Gn+1(Tn)

dTn

dθ
,

and the corresponding effect would be that the ΔTn perturbation would be propa-
gated to the next busy period. The complete SPA estimator is given by

(
d2T N

dθ 2

)
SPA

=
1
N

M

∑
m=1

nm

∑
i=nm−1+1

i

∑
j=nm−1+1

d2Xj

dθ 2

+
1
M

M

∑
m=1

gnm+1(Tnm)

1−Gnm+1(Tnm)

(
dTnm

dθ

)2

,

where d2X
dθ2 is well-defined when FX(X ;θ ) is twice differentiable, and, in particular,

d2X
dθ2 = 0 for location, scale, and generalized scale parameters.

5.3.5 Rudimentary Theory

A basic requirement for the stochastic gradient estimator is that it be unbiased.

Definition. The gradient estimator ∇̂θ J(θ ) is unbiased if E[∇̂J(θ )] = ∇θJ(θ ).

Basically, unbiasedness requires the exchange of the operations of differentiation
(limit) and integration (expectation), as was assumed in deriving (5.11) and (5.12).
Although in theory uniform integrability is both a necessary and sufficient condition
allowing the desired exchange of limit and expectation operators, in practice the key
result used in the theoretical proofs of unbiasedness is the (Lebesgue) dominated
convergence theorem. In the case of PA, the bounding involves properties of the
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performance measure, whereas in LR/SF and WD, the bounding involves the
distribution functions (probability measures).

Theorem 5.1 (Dominated Convergence Theorem). If limn→∞ gn = g w.p.1 and
|gn| ≤ M ∀n w.p.1 with E[M]< ∞, then limn→∞E[gn] = E[g].

Take Δθ → 0 instead of n → ∞, and g is the gradient estimator, so gΔθ is the
limiting sequence that defines the sample (path) gradient. Verifying that an actual
bound exists is often a non-trivial task in applications, especially in the case of
perturbation analysis.

Considering the two equations in (5.11), we translate these conditions to

gΔθ =
Y (θ +Δθ )−Y(θ )

Δθ
, (5.34)

gΔθ = Y (x)
f (x;θ +Δθ )− f (x;θ )

Δθ
, (5.35)

for IPA and LR/SF, respectively.
For IPA, the dominated convergence theorem bound implied by (5.34) corre-

sponds to Lipschitz continuity on the sample performance function Y , so that the
usual conditions required are piecewise differentiability and Lipschitz continuity of
Y , where the Lipschitz modulus is integrable, i.e., ∃M > 0 with E[M]< ∞ s.t.

|Y (θ +Δθ )−Y(θ )| ≤ M|Δθ |.

In practice, the following generalization of the mean value theorem is useful.

Theorem 5.2 (Generalized Mean Value Theorem). Let Y be a continuous
function that is differentiable on a compact set Θ̃ = Θ\D̃, where D̃ is a set of
countably many points. Then, ∀θ ,θ +Δθ ∈Θ ,

∣∣∣∣Y (θ +Δθ )−Y(θ )
Δθ

∣∣∣∣≤ supθ∈Θ̃

∣∣∣∣dY
dθ

∣∣∣∣ .

If Y (θ ) can be shown to be continuous and piecewise differentiable onΘ w.p.1,
then it just remains to show

E

[
supθ∈Θ̃

∣∣∣∣dY
dθ

∣∣∣∣
]
<∞,

to satisfy the conditions required for unbiasedness via the dominated convergence
theorem. Basically, in order for the chain rule to be applicable, the sample
performance function needs to be continuous with respect to the underlying random
variable(s). This translates into requirements on the form of the performance
measure and on the dynamics of the underlying stochastic system. The applicability
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of IPA may depend on how the input processes are constructed/generated, as was
illustrated in Example 5.5, where one representation led to a biased estimator
while another led to an unbiased estimator. In applying SPA, there is the choice
of conditioning quantities (cf. (5.19)/(5.20)), which affects how easily the resulting
conditional expectation can be estimated from sample paths. In Example 5.5, the
representation that led to a biased IPA estimator only had two random variables,
so there was a limited choice on what to condition, and the obvious choice led
immediately to an unbiased SPA estimator.

For the LR/SF method, the bound is applied to the (joint) p.d.f. (or p.m.f.). Note
that the bound on f (x;θ ) is with respect to the parameter θ and not its usual
argument. For WD, the required interchange is guaranteed by the definition of the
weak derivative, but the sample performance must be in the set of “test” functions
L in the definition, which again generally requires the dominated convergence
theorem.

The previous examples can be used to show in very simple cases where
difficulties arise. Consider the p.d.f.

f (x;θ ) =
1
θ

1{0 < x < θ},

where the LR/SF method does not apply. In this case, f viewed as a function of θ
for fixed x has a discontinuity at θ = x. Similarly, consider the function

P(Y > y) = E[1{Y > y}],

for which IPA will not work. In this case, the performance measure is an indicator
function, which is discontinuous in its argument. In both of these simple examples,
the dominated convergence theorem cannot be applied, because the required
quantity cannot be bounded. However, since the dominated convergence theorem
provides only sufficient conditions, it is possible in some very special situations
(neither of which these two examples satisfy), unbiasedness may still hold.

In addition to the basic requirement for an unbiased estimator, it is important
for the estimators to have low variance. There are also a multitude of choices of
WD triples for a given input distribution, and this determines both the amount of
additional simulation required and the variance of the resulting WD output gradient
estimator. For LR/SF estimators, the variance of the estimator could also be a
problem if care is not taken in implementation, e.g., a naïve estimator may lead
to a linear increase in variance with respect to the simulation horizon, as in the
single-server queue example.
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5.3.6 Guidelines for the Practitioner

Here we summarize some key considerations in applying the three direct gradient
estimation methods (PA, LR/SF, WD) (cf. [14]):

• IPA is generally inapplicable if there is a discontinuity in the sample performance
or the underlying system dynamics; the commuting condition (see [21]) can be
used to check the latter by considering possible event sequences in the system.
Smoothness may depend on system representation, as mentioned in Sect. 5.3.1
and illustrated in Example 5.5.

• SPA uses conditional Monte Carlo, so just as in its use for variance reduction,
the chief challenges of applying this approach include choosing what to condition
on and being able to compute (or estimate) the resulting conditional expectation.
The derived estimator may require additional simulations; see [18] for a compre-
hensive treatment of SPA.

• LR/SF and WD are more difficult to apply when the parameter does not appear
explicitly in a probability distribution (so-called “structural” parameters), in
which case an appropriate change of variables needs to be found.

• When the parameter of interest is known to be a location or (generalized)
scale parameter of the input distribution, then IPA is particularly easy to apply,
regardless of how complicated the actual distribution may be.

• For the LR/SF method, if the parameter appears in an input distribution that
is reused frequently such as in an i.i.d. sequence of random variables, e.g.,
interarrival and service times in a queueing system, truncation of some sort will
usually be required to mitigate the linear increase in variance.

• Application of the WD method generally requires two selections to be made:
(a) which (non-unique) weak derivative (c,F (+),F (−)) representation to use; and
(b) how to correlate (or couple) the random variables generated from F (+) and
F (−). Table 5.1 provides recommendations for many common distributions, and
the Hahn–Jordan decomposition given by (5.23) and (5.24) always provides a
fallback option. For the continuous distribution WD representations in Table 5.1,
the use of common random numbers can often reduce variance, whereas for the
Hahn–Jordan WD representation, it is best to generate the random variables
independently [44]. High-dimensional vectors may require many additional
simulations.

• For discrete distributions, IPA can usually be applied if the parameter occurs in
the possible values of the input random variable, whereas LR/SF and WD can be
applied if the parameter occurs in the probabilities.

• Higher derivative estimators are generally easy to derive using the LR/SF or WD
method, but the former often leads to estimators with large variance and the latter
may require a large number of additional simulations.
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5.4 Quantile Sensitivity Estimation

We begin by considering the sensitivities of the order statistics, which naturally
leads to quantile sensitivity estimation. This is the approach taken in [44]; see [16,
29, 30] for alternative approaches.

For a sample size n of random variables Yj, j = 1, . . . ,n, we consider the ith order
statistic Y(i), where the order statistics are defined by

Y(1) ≤ Y(2) ≤ ·· · ≤ Y(i) ≤ ·· · ≤ Y(n).

For simplicity, assume the {Yj} are all continuous random variables, so that equality
occurs w.p.0. The order-statistics definition assumes neither independence nor
identical distributions for the underlying {Yj}. When i = �αn�, where �x� denotes
the ceiling function that returns the next integer greater than or equal to x, Y(i) will
correspond to the quantile estimator for qα , which we denote by q̂n

α(θ )≡Y(�αn�). We
write Y(i)(Y1, . . . ,Yn) as necessary to show explicit dependence on the {Yj}, which
will be the case for the WD estimator.

Under the setting that Yi are i.i.d. and θ is a (scalar) parameter in the (common)
distribution of {Yj}, the first objective will be to estimate

J′(θ )≡ dE[Y(i)]

dθ
.

Then the respective IPA, LR/SF, and WD estimators are given by

dY(i)
dθ

, (5.36)

Y(i)
n

∑
j=1

∂ ln fYj (Yj;θ )
∂θ

, (5.37)

c(θ )
n

∑
j=1

[
Y(i)(Y1, . . . ,Y

(+)
j , . . . ,Yn)−Y(i)(Y1, . . . ,Y

(−)
j , . . . ,Yn)

]
, (5.38)

where fYj denotes the p.d.f. of Yj. Note that for the IPA estimator, dY(i)/dθ
corresponds to the dY/dθ for Y(i) and NOT the ith order statistic of {dYi/dθ}, i.e.,
if we write the order statistics for the IPA estimators of {dYi/dθ} as

[
dY
dθ

]
(1)

≤ . . .

[
dY
dθ

]
( j)

≤ . . .

[
dY
dθ

]
(n)

,

then in general,

dY( j)

dθ
�=
[

dY
dθ

]
( j)

.
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For the setting where Yi are i.i.d., since the dependence of Y on its arguments
doesn’t depend on the order,

E

[
Y( j)

∂ ln fY (Yj)

∂θ

]
= E

[
Y(k)

∂ ln fY (Yk)

∂θ

]
∀ j,k,

where fY denotes the common p.d.f., so that the following LR/SF estimator

nY( j)
∂ ln fY (Yj)

∂θ
∀ j,

has the same expectation as the original LR/SF estimator given by (5.37), but now
the linearly (with n) increasing variance becomes quadratic in n. The other problem
with these estimators, whether this one or the original (5.37), is that they depend
on fY , which is in general unknown in the simulation setting, where the Yi denote
the output of i.i.d. simulation replications, a function of input random variables, say
X1, . . . ,Xn, whose distributions are known.

Similarly, we can eliminate the linearly (with n) increasing number of replica-
tions for the WD estimator by noting that if Y ∗ is independent of all Yi (which are
i.i.d.) but not necessarily having the same distribution, then the following is true:
∀ j,k ∈ {1, . . . ,n},

Y(i)(Y1, . . . ,Yj−1,Y
∗,Yj+1, . . . ,Yn)

d
= Y(i)(Y1, . . . ,Yk−1,Y

∗,Yk+1, . . . ,Yn).

As a result, the following estimator with the same expectation and order n− 1 less
pairs of simulations can be used:

nc(θ )
[
Y(i)(Y1, . . . ,Y

(+)
j , . . . ,Yn)−Y(i)(Y1, . . . ,Y

(−)
j , . . . ,Yn)

]

for any j. Again, as in the LR/SF case, the Y (+)
j and Y (−)

j need to be derived as a
function of the (common) distribution of the {Yi}.

It turns out that although all of the order statistics sensitivity estimators are
unbiased, going to the quantile estimation setting by increasing the sample size only
leads to asymptotic unbiasedness and not consistency in the general case, so that
batching is required to obtain a consistent estimator of the quantile sensitivity q′α ,
where qα is defined by (5.3). Specifically, although the usual quantile estimator
q̂n
α ≡ Y(�αn�) is strongly consistent, i.e.,

lim
n→∞

q̂n
α = qα w.p.1,

for the quantile sensitivity estimator q̂′nα (θ ) ≡ dY(�αn�)/dθ , it does not follow in
general that

lim
n→∞

q̂′nα (θ ) = q′α(θ )
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in any sense (strong or weak), except that the mean converges correctly, i.e.,

lim
n→∞

E[q̂′nα (θ )] = q′α(θ ).

To obtain consistency requires batching, i.e., for k batches each of sample size n, the
estimator is

q̄′n,kα (θ ) =
1
k

k

∑
i=1

q̂′n,iα (θ ),

where q̂′n,iα (θ ) is the ith estimate out of k batches for whichever estimator is used—
IPA, LR/SF, or WD, given by (5.36), (5.37), or (5.38), respectively—for q̂′n,iα (θ ).
Then it can be established that

lim
k→∞
n→∞

q̂′n,kα (θ ) = q′α(θ ).

The unbatched IPA quantile sensitivity estimator (5.36) does turn out to be provably
consistent if the following (very restrictive) condition is satisfied [30]:

There exists a function φ s.t. dY
dθ = φ(Y ).

We illustrate this condition with two simple examples, the first of which satisfies
this condition, and the second of which does not. In both of these toy examples,
the distribution of the output Y is known, so the LR/SF and WD quantile sensitivity
estimators can also be written down explicitly.

Example 5.11. Take Example 5.1 with Y = Xθ where X is exponentially distributed
with mean 1, i.e., X ∼ exp(1), so Y ∼ exp(θ ). Since dY/dθ = X = Y/θ , the
condition is satisfied with φ(y) = y/θ , and the unbatched IPA estimator Y�αn�/θ
is consistent.

Example 5.12. Take Y = θX1 + X2, where X1 and X2 are both N (0,1) and
independent, so Y ∼ N (0,θ 2 + 1). Then dY/dθ = X1 = (Y −X2)/θ , which still
involves the input random variable X2, and there is no way to write it in terms of Y
only.

However, E[dY/dθ |Y ] = E[X1|Y ] = θY/(θ 2 + 1) = −∂2FY (Y ;θ )/∂1FY (Y ;θ ),
where ∂i denotes the partial derivative with respect to the ith argument (i = 1,2),
and the relationship

E

[
dY
dθ

∣∣∣∣Y
]
=−∂2FY (Y ;θ )

∂1FY (Y ;θ )

can be shown to hold in general [30].
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5.5 New Approaches for Using Direct Stochastic Gradients
in Simulation Optimization

This section provides an overview of several new developments in using direct
stochastic gradient estimators for simulation optimization: three approaches to
enhancing metamodels for response surface methodology (RSM), and combining
indirect and direct estimators when used in stochastic approximation (SA), a
simulation optimization approach introduced earlier in the introduction and treated
in-depth in Chaps. 6 and 7. The new estimator is called a Secant-Tangents AveRaged
(STAR) gradient, because it averages two direct (tangent) gradient estimators and
one indirect (finite-difference secant) gradient estimator.

Before describing the other three approaches, we briefly summarize RSM;
see Chap. 4 for details. Like SA, RSM is a sequential search procedure. The
central component of RSM is the fitting of the local response surface using a
metamodel, and the most common procedure used is regression. Specifically, after
the preliminary scaling and screening of the input variables (called factors in the
experimental design terminology), there are two main phases to RSM. In Phase I,
which is iterative, a linear regression model is generally used to estimate a search
direction to explore. Once a relatively flat area is found, RSM proceeds to Phase II
where a higher-order—usually quadratic—model is fitted, which is used to estimate
the optimum.

Because regression analysis arose from physically observed processes, it assumes
that the only data points generated are measurements of the value of the dependent
variable for each combination of independent variable values. In the simulation
setting, the availability of direct gradient estimates opens up new possibilities that
have just recently begun to be exploited. We begin by discussing a promising new
approach that generalizes traditional regression, which is called Direct Gradient
Augmented Regression (DiGAR).

Another metamodeling technique that can be used for RSM is kriging, which
also arose from physical measurements. In the simulation setting, a generalization
called stochastic kriging, is apropos. We discuss two enhancements to stochastic
kriging that exploit the availability of direct gradient estimates: Stochastic Kriging
with Gradients (SKG), which is analogous to DiGAR, and Gradient Extrapolated
Stochastic Kriging (GESK), which uses the gradients in a totally different manner
by generating new output data.

For these three approaches, we follow the notation of statisticians in using y for
the output and x for the input.

5.5.1 Direct Gradient Augmented Regression (DiGAR)

Consider the usual regression setting with independent variable x and dependent
variable y, where n > 1 data points (x1,y1), . . . ,(xn,yn) are given. Both independent
and dependent variables take values from a continuous domain. For expositional
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ease, here we describe only the one-dimensional setting, for which the basic DiGAR
model is the following:

yi = β0 +β1xi + εi, (5.39)

gi = β1 + ε ′i , (5.40)

where gi, i = 1,2, . . . ,n are the gradient estimates with residuals {ε ′i}, and {εi}
denote the residuals of the outputs. The first line corresponds to traditional
regression, whereas the second line adds the direct gradient estimates in the natural
way. A weighted least-squares objective function is defined by

L = α
n

∑
i=1

(yi −β0 −β1xi)
2 +(1−α)

n

∑
i=1

(gi −β1)
2, (5.41)

where α ∈ [0,1]. Note that α = 1 corresponds to standard regression, whereas
α = 0.5 corresponds to the ordinary least squares (OLS) DiGAR model where
the function estimates and derivative estimates are equally weighted, and α = 0
corresponds to using only the gradient information. Solving the least-squares
problem by minimizing (5.41) yields the following α−DiGAR estimators for the
parameters in the regression model given by (5.39)/(5.40):

β̂0 = ȳ− β̂1x̄, β̂1 =

1
n

n
∑

i=1
(xi − x̄)(yi − ȳ)+ 1−α

α ḡ

1
n

n
∑

i=1
(xi − x̄)2 + 1−α

α

, (5.42)

where the bars indicate the sample means of the respective quantities. If the
estimators for the gradients are also unbiased, then the α−DiGAR estimators are
also unbiased. In the homogeneous setting where the variances of the function
and gradient estimates are given by σ2 and σ2

g , respectively, the following result
(Proposition 4 in [19]) provides conditions under which the new DiGAR estimator
guarantees variance reduction for the slope estimator in the regression model,
assuming unbiased estimators in the uncorrelated setting.

Theorem 5.3. For E[εi] = E[ε ′i ] = 0 ∀i, Cov(εi,ε j) = Cov(ε ′i ,ε ′j) = 0, i �= j,
Cov(εi,ε ′j) = 0 ∀ i, j,

σ2
g

σ2 ≤ 2α
1−α

+
1

1
n

n
∑

i=1
(xi − x̄)2

⇐⇒ Var(β̂DiGAR
1 )≤ Var(β̂ standard

1 ),

where β̂DiGAR
1 and β̂ standard

1 denote the α-DiGAR slope estimator (5.42) and the
standard slope estimator, respectively.
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Even stronger guarantees are available in the maximum likelihood estimator (MLE)
setting (Proposition 7 in [19]). However, all of these results are for the one-
dimensional uncorrelated setting. For the multivariate setting xi = {xi j, j = 1, . . . ,d}
with corresponding output {yi} and partial derivatives {gi j}, the extension of the
least-squares objective function (5.41) for the α-DiGAR model

yi = β0 +
d

∑
j=1

β jxi j + εi,

gi j = β j + ε ′i j,

with non-negative weights that sum to 1, {α j, j = 0,1, . . . ,d}, is

α0

n

∑
i=1

(yi −β0 −
d

∑
j=1

β jxi j)
2 +

d

∑
j=1

α j

n

∑
i=1

(gi j −β j)
2,

which when minimized yields the following slope estimators:

β̂ j =

n
∑

i=1
(xi j − x̄ j)(yi − ȳ)−∑k �= j βk

n
∑

i=1
(xik − x̄k)(xi j − x̄ j)+ n

α j
α0

ḡ j

n
∑

i=1
(xi j − x̄ j)2 + n

α j
α0

, j = 1, . . . ,d,

which reduces to the previous expression (5.42) with α0 = α,α1 = 1−α, when
there is just a single input.

In the simulation optimization setting, simulation replications are often compu-
tationally expensive, so it is desirable to use as few of them as possible for each
value of the input variable. When applying RSM for sequential search, the direction
of improved performance is perhaps the most critical output of the fitted metamodel
in Phase I. In several numerical experiments reported in [19] for an M/M/1 queue
with relatively small number of simulation replications per design point, the slope of
the standard linear regression model often gave the wrong sign, whereas the DiGAR
model always estimated the sign correctly. Thus, where applicable, DiGAR should
provide a better metamodel for simulation optimization using RSM.

5.5.2 Stochastic Kriging with Gradients (SKG)

The stochastic kriging (SK) model, introduced by [1], takes multivariate input
{(xi,ni)}, i = 1,2, . . . ,k, which generates y j(xi) as the simulation output from
replication j at design point xi, where x = (x1,x2, . . . ,xd)

T ∈R
d . Stochastic kriging

models y j(xi) as

y j(xi) = f(xi)
T ˇ+M(xi)+ ε j(xi), (5.43)
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where f(xi) ∈ R
p is a vector with known functions of xi, and ˇ ∈ R

p is a vector
with unknown parameters to be estimated. It is assumed that M is a realization of
a mean zero stationary random process (or random field). The simulation noise for
replication j taken at xi is denoted as ε j(xi). The trend term f(xi)

T ˇ represents
the overall surface mean. The stochastic nature in M is sometimes referred to as
extrinsic uncertainty. The uncertainty in ε j comes from the nature of stochastic
simulation, and it is sometimes referred to as intrinsic uncertainty.

Given the simulation response outputs
{

y j(xi)
}ni

j=1, i = 1,2, . . . ,k, denote the
sample mean of response output and simulation noise at xi as

ȳ(xi) =
1
ni

ni

∑
j=1

y j(xi), ε̄(xi) =
1
ni

ni

∑
j=1

ε j(xi), (5.44)

and model the averaged response output as

ȳ(xi) = f(xi)
T ˇ+M(xi)+ ε̄(xi).

The SKG framework, introduced in [10, 11], parallels DiGAR in the stochastic
kriging setting by modeling the added gradient information analogously:

ḡr(xi) =

(
∂ f(xi)

∂xr

)T

ˇ+
∂M(xi)

∂xr
+ δ̄ r(xi).

5.5.3 Gradient Extrapolated Stochastic Kriging (GESK)

Rather than modeling the gradient directly as in DiGAR and SKG, Gradient
Extrapolated Stochastic Kriging (GESK) extrapolates in the neighborhood of the
original design points {xi}, i= 1,2, . . . ,k, i.e., additional response data are generated
via linear extrapolations using the gradient estimates as follows:

x+i = xi +Δxi, y j(x+i ) = y j(xi)+ g j(xi)
TΔxi, (5.45)

where Δx = (Δx1,Δx2, . . . ,Δxd)
T , and ȳ(x+i ) is defined similarly as ȳ(xi) as

in (5.44). Different extrapolation techniques can be applied in (5.45), and multiple
points can also be added to the neighborhood of xi. For simplicity, here we assume
that the same step size is used for all design points, i.e., Δxi = Δx, i = 1,2, . . . ,k,
and that only a single additional point is added in the neighborhood of each point.
Figure 5.3 depicts the idea where the gradient is indicated by the arrow and the
extrapolated point by the cross.

The GESK model requires the choice of step sizes for the extrapolated points;
large step sizes allow better coverage but at the cost of additional bias since the
linearity is less likely to hold further from the original point. Thus, there is a basic
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Δ

Fig. 5.3 Illustration of gradient-extrapolated response points

bias-variance tradeoff to consider. In [37], this tradeoff is analyzed in a simplified
setting, leading to conditions under which improvement can be guaranteed. To
illustrate the potential improvements in performance that SKG and GESK offer over
ordinary stochastic kriging, we present a simple stylized numerical example from
[37] for a highly nonlinear function with added noise.

Numerical Example

The output is y j(x) = f (x) + ε j(x), where f (x) = exp(−1.4x)cos(7πx/2) and
ε j(x) ∼ N (0,1), and the gradient estimate is given by g j(x) = f ′(x) + δ j(x),
where δ j(x) ∼ N (0,25). Note that the variance of the direct gradient estimates
are higher than those of the response outputs, generally the situation found in
stochastic simulation settings. The Gaussian correlation function RM(x,x′) = exp
{−θ (x− x′)2} is used for the stochastic kriging models. The number of design
points is six, and the number of replications per design point is 50. Predictions are
made at N = 200 equally spaced points in [−2,0]. Figure 5.4 shows the results in
the form of graphs for a typical macro-replication, where both SKG and GESK are
considerably better than SK as a result of incorporating gradient estimates, and both
SKG and GESK better capture the trend of the response surface.
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Fig. 5.4 Fitted curves for a representative macro-replication (6 points, 50 replications per point)

5.5.4 Secant-Tangents AveRaged Stochastic Approximation
(STAR-SA)

Another proposal for the use of direct stochastic gradients is combining them
with indirect gradients obtained from function estimates. In the deterministic
optimization setting, there is nothing gained by the use of the function values
themselves if exact gradients are available, but in the simulation setting the direct
gradient estimates are noisy, so averaging them with indirect (finite difference)
gradient estimates could potentially reduce the variance at the cost of adding some
bias. This is the idea of the Secant-Tangents AveRaged (STAR) gradient estimator
used in the STAR-SA algorithm introduced in [8, 9]:

gSTAR(x,ξ ) = α
Y (x+ c,ξ )−Y(x− c,ξ )

2c
+(1−α)

g(x+ c,ξ )+ g(x− c,ξ )
2

,

(5.46)

where α ∈ [0,1], and for notational convenience, the same noise is assumed for both
points, e.g., through common random numbers, which is a convex combination of a
symmetric finite difference (secant) and an average of two direct gradient (tangent)
estimators. More details are provided in the following chapter on stochastic
approximation, Chap. 6, including the extension to higher dimensions in the form
of STAR-SPSA [8].
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5.6 Concluding Remarks

The direct estimation techniques PA, LR/SF, and WD have been applied to a wide
variety of application domains, the dominant ones being queueing, inventory, and
finance. Historically, the early research was all on queueing systems, motivated
originally by problems in manufacturing and communication networks. The first
work in the inventory control setting was [13, 23]. The first work in finance was
[5, 17], which considered IPA, SPA, and LR/SF estimators (cf. the book [22]).
More recent research in the finance setting includes the first work on quantile
sensitivity estimation [29]; the first combined IPA/LR estimator for options pricing
[45]; and the development of various WD estimators, as described in the dissertation
[44], which also includes an extensive treatment of IPA and LR/SF. Other areas of
application include preventive maintenance, statistical process control, and traffic
light signal control. Stochastic gradient estimation approaches not covered in this
chapter include frequency domain experimentation and Malliavin calculus, the latter
primarily used in continuous-time finance settings; see [14] for references on these
various applications.

More details on IPA can be found in the books by Glasserman [21], Ho and
Cao [26], and Cao [6], whereas a comprehensive treatment of SPA can be found in
the book by Fu and Hu [18]. Although IPA and SPA are the best known forms of
perturbation analysis, other versions include rare perturbation analysis [4], structural
IPA [12], discontinuous perturbation analysis [40], and augmented IPA [20]. This
chapter has treated gradient estimation, hence the focus on infinitesimal PA, but
perturbation analysis originally arose from investigating the effects of a finite
perturbation [27]; see also [7,28,43]. LR/SF is discussed in the books by Rubinstein
and Shapiro [39], Glasserman [22], and Asmussen and Glynn [2], all of which also
include discussion of IPA. The weak derivative method was introduced by Pflug
[36], and many of the WD entry derivations in Table 5.1 can be found in [24].
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Chapter 6
An Overview of Stochastic Approximation

Marie Chau and Michael C. Fu

Abstract This chapter provides an overview of stochastic approximation (SA)
methods in the context of simulation optimization. SA is an iterative search
algorithm that can be viewed as the stochastic counterpart to steepest descent in
deterministic optimization. We begin with the classical methods of Robbins–Monro
(RM) and Kiefer–Wolfowitz (KW). We discuss the challenges in implementing SA
algorithms and present some of the most well-known variants such as Kesten’s
rule, iterate averaging, varying bounds, and simultaneous perturbation stochastic
approximation (SPSA), as well as recently proposed versions including scaled-
and-shifted Kiefer–Wolfowitz (SSKW), robust stochastic approximation (RSA),
accelerated stochastic approximation (AC-SA) for convex and strongly convex
functions, and Secant-Tangents AveRaged stochastic approximation (STAR-SA).
We investigate the empirical performance of several of the recent algorithms by
comparing them on a set of numerical examples.

6.1 Introduction

Stochastic approximation (SA) is a recursive algorithm that can be viewed as the
stochastic counterpart to steepest descent in deterministic optimization. SA was
introduced by Robbins and Monro in 1951 [32] to solve noisy root-finding problems
and was later applied to the setting of stochastic optimization by solving for the zero
of the gradient. The gradient-free setting was addressed by Kiefer and Wolfowitz
in 1952 [24]. SA is currently one of the most widely applicable and most useful
methods for simulation optimization.

Consider the stochastic optimization problem

min
x∈Θ

f (x), (6.1)
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where f (x) =E[Y (x,ξ )] is a performance measure, Y (x,ξ ) is a sample performance,
ξ denotes the stochastic effects, and Θ ⊆ Rd is a continuous parameter space. In
this case, the objective is to find a sequence {xn} that converges to a unique (local)
optimum

x∗ = argmin
x∈Θ

f (x), (6.2)

by using the recursion

xn+1 =ΠΘ

(
xn − an∇̂ f (xn)

)
, (6.3)

where ΠΘ (x) is a projection of x back into the feasible region Θ if x /∈Θ , an > 0
is the step size or gain size, ∇̂ f (xn) is an estimate of the gradient ∇ f (xn), and xN

is the output, where N is the stopping time, which we denote by x∗N . The projection
operator is only required in the constrained setting. Moreover, the minimization
problem in (6.1) and (6.2) could easily be changed to maximization by changing the
sign of an in (6.3). The two classical methods, Robbins–Monro (RM) and Kiefer–
Wolfowitz (KW), estimate ∇ f (xn) using unbiased direct gradient estimates and
finite difference gradient estimates, respectively. Under certain conditions, RM and
KW have the respective asymptotic convergence rates O(n−1/2) and O(n−1/3).

Advances in SA have included the development of new algorithms, modifications
to existing ones, and new asymptotic and finite-time theory. Asymptotic conver-
gence properties of KW, RM and their variations have been a major research focus
(cf. [12, 14, 15, 28, 31, 41]). The original RM and KW algorithms apply to one-
dimensional problems, but they were later extended to the multidimensional case
[2]. Furthermore, the earlier conditions used to prove convergence for RM and
KW were relaxed to obtain almost sure convergence [2]. The estimate xn in (6.3)
was shown to be asymptotically normal [15] with the optimal convergence rate of
O(n−1/2) [8]. More recently, researchers have placed greater emphasis on finite-
time theory as well as error bounds on the difference between objective value at the
current estimate and the optimal objective value (i.e., E[ f (x∗N)− f (x∗)]), which the
next chapter treats in more detail.

Although recursion (6.3) is quite simple, the choice of step-size sequence {an},
gradient estimator ∇̂ f (xn), projection operator ΠΘ , and output x∗N each has a
significant impact on the performance of the algorithm.

We first discuss the influence of step-size sequence {an} on the finite-time
performance. It is widely known that the practical performance of the classical RM
and KW algorithms is highly dependent on the choice of {an} and often performs
poorly without tuning. The algorithm can experience a long oscillatory period if
the gain sequence {an} is “too large,” where the iterates jump back and forth
without approaching the optimum x∗, which can be seen in Fig. 6.1 (left graph),
or a degraded convergence rate if {an} is “too small” relative to the magnitude of
the gradient, where the iterates barely move, which can be seen in Fig. 6.1 (right
graph) (only x1 is labeled since the other iterates are in the same position).
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Fig. 6.1 Sensitivity of SA to step size an when an is “too large” relative to the gradient (left graph)
and when an is “too small” relative to the gradient (right graph)

One approach to tackle the sensitivity is to develop robust step-size sequences,
i.e., an adaptive step-size rule. The earliest attempt at adaptive step sizes was
Kesten’s rule, which can be applied to both RM and KW [23]. This step size only
decreases when there is a directional change in the iterates, i.e., (xn+1 − xn)(xn −
xn−1) < 0. The idea behind this adaptive step size is that, if the iterates move in
the same direction, there is reason to believe they are not in close proximity of the
optimum, so the momentum should not be decreased. Later, this idea was extended
by increasing the step size, as opposed to keeping it constant when the consecutive
errors in the estimates are of the same sign, to increase the speed to convergence
[37]. A recent attempt, called scaled-and-shifted Kiefer–Wolfowitz (SSKW) and
described in more detail in Sect. 6.4.1, adaptively adjusts the step-size sequence
{an} finitely many times during the course of a modified version of KW [4]. The
rationale behind the procedure is to increase the gain size so the iterates are able
to move from one endpoint to the other in the one-dimensional case (ideas are
analogous in the multidimensional case [3]), which ensures the step sizes are large
enough to make noticeable progress towards the optimum in finite-time. If the step
sizes {an} are too large, then they decrease at a faster pace during the recourse stage.
Another method used to select an adaptive step size is generating an approximation
of the inverse of the Hessian, which is the stochastic analogue to the deterministic
Newton–Raphson method [42]. According to Yakowitz et al. [45], “. . .the optimal
choice [of step-size sequence] involves the Hessian of the risk [objective] function,
which is typically unknown and hard to estimate.” Hessians have been estimated
using a set of finite difference gradient approximations [16], heuristics based on
quasi-Newton methods [22], and finite difference approximations using gradient
estimates [33, 42]. The choice of {an} has a significant impact on the finite-time
performance of the algorithm, which is quite difficult to characterize theoretically.
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Another approach to reduce the sensitivity of the estimated optimum to {an} is
to modify the output so that the algorithm puts less emphasis on the last iterate. The
underlying idea behind methods of this type is to take longer steps and incorporate
a subset of the iterates into the output to decrease the reliance on the last iterate.
Iterate averaging, which takes the average of all iterates as the output as opposed
to the final iterate, was the earliest proposal [31, 34]. This algorithm can be easily
implemented, is “robust,” since it is less sensitive to the initial step size choice,
and exhibits O(n−1/2) asymptotic convergence rate under appropriate conditions.
A generalization of iterate averaging, called robust stochastic approximation (RSA)
algorithm [30], uses the step-size sequence {an} for weighting the iterates, which
will be described in more detail in Sect. 6.4. Another generalization introduces a
proximity function into the objective function, which acts as a regularization term
to prevent the next iterate update xn+1 from being too far from xn. An example from
this class of algorithms called the accelerated stochastic approximation (AC-SA)
algorithm [20] is detailed in Sect. 6.4.

Asymptotic theory for SA initially only considered functions satisfying specific
global conditions; however, it is only necessary for the requirements to hold for
a compact set as long as it contains the optimum, so the projection operator is
particularly important in the constrained optimization setting. The feasible regionΘ
must be large enough to increase the likelihood that x∗ ∈Θ , but enlarging the search
space may deteriorate the performance of the algorithm. Adaptively increasing the
search space still leads to provable convergence with an appropriate projection
operator, such as adaptively projecting the iterates onto an increasing compact
set [1].

The gradient estimate is also clearly central to any SA algorithm, and thus the
subject of stochastic gradients is treated in depth in Chap. 5. The most common
gradient estimate is obtained using finite differences, because it only requires
performance measures and no other additional information from the system. For
each dimension, the finite difference gradient estimate requires two performance
measures, and if the measurements are highly volatile, then the gradient estimates
can be noisy. Furthermore, finite difference estimates become computationally
expensive in high dimensions, since the cost grows linearly with the parameter
dimension [2]. Simultaneous perturbation stochastic approximation (SPSA) [38]
only requires two estimates of the objective function to approximate the gradient,
and the computational cost is independent of the dimension of the parameter
space. Recently, a new SA algorithm called Secant-Tangents AveRaged stochastic
approximation (STAR-SA) has been proposed, and it employs a hybrid gradient
estimator that combines direct gradient estimates with a symmetric finite difference
gradient estimate [5, 6].

The remainder of the chapter is organized as follows. We introduce the classical
stochastic approximation methods, Robbins–Monro (RM) and Kiefer–Wolfowitz
(KW) in Sect. 6.2. In Sect. 6.3, we present some of the most useful enhancements for
simulation optimization: Kesten’s rule, Ruppert–Polyak averaging iterates, varying
bounds, and SPSA. We describe four recent developments, scaled-and-shifted
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Kiefer–Wolfowitz (SSKW), robust stochastic approximation (RSA), accelerated
stochastic approximation (AC-SA) for convex and strongly convex functions,
and Secant-Tangents AveRaged (STAR) stochastic approximation in Sect. 6.4.
In Sect. 6.5, we present numerical experiments comparing KW-type algorithms
(original KW, KW with Kesten’s rule, SSKW), RM-type methods (original RM,
RM with iterate averaging, RSA, AC-SA), and single versus mixed gradients (RM,
KW, STAR-SA). Finally, we close with concluding remarks in Sect. 6.6.

6.2 Classical Methods

The classical RM and KW algorithms address unconstrained stochastic optimiza-
tions problems, so we consider the recursive scheme

xn+1 = xn − an∇̂ f (xn), (6.4)

which is identical to (6.3) with the exception of the projection operator.

6.2.1 Robbins–Monro (RM) Algorithm

The RM algorithm was introduced to solve the root-finding problem

M(x) = α

for x ∈ R, where M(x) is a monotone function and α ∈ R. However, it was later
applied to a specific case of root-finding in the stochastic optimization setting, where
the objective is to optimize a stochastic objective function f (x) by setting M(x) =
∇ f (x) and α = 0. RM solves this problem iteratively as in (6.3) by replacing ∇̂ f (xn)
with an unbiased estimator, and the output is taken as the last iterate, x∗N , where N
is the stopping time. However in RM, the direct gradient measurements are still
approximations to the actual gradient because of the presence of noise (∇̂ f (xn) =
∇ f (xn)+ εn, where εn is noise with zero mean). Given the appropriate parameters,
this algorithm converges asymptotically at a rate of O(n−1/2) [35].

Theorem 6.1 (Theorem 2 [32]). Assume ∇ f (x) has a unique root x∗ and suppose
∇̂ f (x) is an unbiased gradient estimator, i.e., ∇ f (x) = E[∇̂ f (x)]. If the sequence
{xn} is generated from (6.4) and the following conditions hold:

1. {an} is a sequence of positive constants such that ∑∞
n=1 an =∞ and∑∞

n=1 a2
n <∞.

2. ∇ f (x) ≥ 0 for x > x∗ and ∇ f (x) ≤ 0 for x < x∗.
3. There exists a positive constant C such that P(|∇̂ f (x)| ≤C) = 1 ∀x.

Then xn
L2→ x∗ as n → ∞, where

L2→ denotes mean-squared convergence.

The most well-known conditions are restrictions on the gain sequence {an}.
Generally, an → 0 but ∑∞

n=1 an = ∞, which prevents the step size from converging
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to zero too quickly, so the iterates are able to make progress to x∗ and do not get
stuck at a poor estimate. The usual form is an =

θa
(n+A)α , where θa > 0, A ≥ 0 and

1
2 <α ≤ 1, with A= 0 andα = 1 as a commonly used choice. The objective function
f is assumed to have a global minimum with a bounded derivative.

6.2.2 Kiefer–Wolfowitz (KW) Algorithm

The KW stochastic approximation algorithm is referred to as a gradient-free or
stochastic zeroth-order method in the following chapter, since it only requires noisy
measurements of the function and does not require additional information on the
system dynamics or input distributions. The original KW iterative scheme

xn+1 = xn − an
Y (xn + cn,ξ+

n )−Y(xn − cn,ξ−
n )

2cn
, (6.5)

estimates the gradient using a symmetric finite difference gradient estimate, and
under certain conditions, KW can achieve an asymptotic convergence rate of
O(n−1/3). In addition, common random numbers (CRN) can be employed to
decrease the variance of estimates, and KW can achieve an asymptotic convergence
rate of O(n−1/2) in certain settings [25].

Theorem 6.2 (Theorem in [24]). Assume f (x) = E[Y (x,ξ )]. If the sequence {xn}
is generated from (6.5) and the following conditions hold:

1. Let {an} and {cn} be positive tuning sequences satisfying the conditions

cn → 0,
∞

∑
n=1

an = ∞,
∞

∑
n=1

ancn < ∞,
∞

∑
n=1

a2
nc−2

n < ∞.

2. f (x) is strictly decreasing for x < x∗, strictly increasing for x > x∗.
3. Var[Y (x,ξ )]< ∞ and the following regularity conditions hold:

1) There exist positive constants β and B such that

|x′ − x∗|+ |x′′ − x∗|< β =⇒ | f (x′)− f (x′′)|< B|x′ − x′′|.

2) There exist positive ρ and R such that

|x′ − x′′|< ρ =⇒ | f (x′)− f (x′′)|< R.

3) For every δ > 0 there exists a positive π(δ ) such that

|x− x∗|> δ =⇒ inf
δ
2 >ε>0

| f (x+ ε)− f (x− ε)|
ε

> π(δ ).

Then xn
p→ x∗ as n → ∞, where

p→ denotes convergence in probability.
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Condition 1 assures that the step size an does not converge to zero too fast, so the
iterates do not get stuck at a poor estimate. In addition, the condition restricts the
finite difference step size cn from decreasing too quickly, which constrains the noise
of the gradients. The second condition insures that there is a global optimum. The
first regularity condition requires f (x) to be locally Lipschitz in a neighborhood of
x∗; the second one prevents f (x) from changing drastically in the feasible region;
and the last one prohibits the function from being very flat outside a neighborhood of
x∗ so that the iterates approach the optimum. Although the KW algorithm converges
asymptotically, its finite-time performance is dependent on the choice of tuning
sequences, {an} and {cn}. If the current xn is in a relatively flat region of the function
and the an is small, then the convergence will be slow. On the other hand, if the xn

is located in a very steep region of the function and {an} is large, then the iterates
will experience a long oscillation period. If {cn} is too small, the gradient estimates
using finite differences could be extremely noisy.

KW has been extended to higher dimensions, and two common gradients
considered are symmetric differences and forward differences whose ith component
is given by

∇̂ fi(xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y (xn + cnei,ξ+
n,i)−Y(xn − cnei,ξ−

n,i)

2cn
symmetric difference,

Y (xn + cnei,ξ+
n,i)−Y(xn,ξn,i)

cn
one-sided forward difference,

where ei denotes a d-dimensional ith unit basis vector, cn ∈ R+, and Y (x,ξ ) is
an unbiased estimate of f (x). This method perturbs each component of xn (i.e.,
xn,i for i = 1, . . . ,d) one at a time while holding all others constant and returns a
corresponding function value estimate. For instance, symmetric differences requires
the estimate of two function values f (xn+cnei) and f (xn−cnei) for i= 1, . . . ,d, and
forward differences requires f (xn) and f (xn +cnei) for i = 1, . . . ,d; therefore, using
symmetric and one-sided forward difference estimates involves 2d and d + 1 simu-
lation replications, respectively. Although using the symmetric difference scheme
is computationally more expensive, it has the potential to reach an asymptotic
convergence rate of O(n−1/3) compared to O(n−1/4) for forward differences. For
d = 1, the computational cost is identical for both the symmetric difference and
one-sided forward difference. Compared with the RM algorithm, however, KW
convergence rates are typically inferior, although under certain conditions with CRN
ξ+

n,i = ξ−
n,i, KW algorithms also can achieve the O(n−1/2) asymptotic convergence

rate. For simulation optimization, RM is not always applicable since additional
information is needed, which may not be readily available or is difficult to obtain.
For KW, there is an additional task of appropriately choosing the difference
sequence {cn}. In general, KW is a simple algorithm to implement for simulation
optimization applications, albeit costly in high-dimensional settings.
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6.3 Well-Known Variants

In this section, we elaborate on Kesten’s rule, iterate averaging, adaptively varying
bounds, and SPSA.

6.3.1 Kesten’s Rule

It is well-known that the classical SA algorithms are extremely sensitive to the
step-size sequence {an}. Therefore, it could be advantageous to consider adaptive
step sizes that adjust based on the ongoing performance of the algorithm, in hopes
of adapting them to the characteristics of the function at the current location of
the iterate and proximity of the current iterate to the optimum. Kesten’s rule [23]
decreases the step size only when there is a directional change in the iterates. The
notion behind this adaptive step size is that, if the iterates continue in the same
direction, there is reason to believe they are approaching the optimum and the pace
should not be decreased in order to accelerate the convergence. If the errors in
the estimate values change signs, it is an indication that either the step size is too
large and the iterates are experiencing long oscillation periods or the iterates are in
the vicinity of the true optimum; either way, the step size should be reduced to a
more appropriate step size or to hone in on x∗. The following algorithm is for the
one-dimensional case d = 1.

SA Algorithm Using Kesten’s Rule

• Input. Choose x1 ∈Θ ,{an}, ΠΘ , and stopping time N.
• Initialize.

– Let n = 2 and k = 1.
– Generate an estimate ∇̂ f (x1) of ∇ f (x1).
– Compute x2 =ΠΘ (x1 − a1∇̂ f (x1)).

• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute xn+1 =ΠΘ (xn − ak∇̂ f (xn)). If (xn+1 − xn)(xn − xn−1)< 0,

go to Step 3. Otherwise, go to Step 4.
– Step 3. Let n = n+ 1 and k = k+ 1. Go to Step 1.
– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x∗N = xN .
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Kesten’s rule can be applied to both RM and KW and still guarantee convergence in
probability, as long as {an} satisfies condition (1) in Theorems 1 and 2 for RM
and KW, respectively [23]. An extension of Kesten’s rule to higher dimensions
is discussed in [11]. See [18] for an extensive review of both deterministic and
stochastic step sizes.

6.3.2 Averaging Iterates

Iterate averaging approaches SA from a different angle. Instead of fine-tuning the
step sizes to adapt to the function characteristics, iterate averaging takes bigger steps
(i.e., an larger than O(n−1)) for the estimates to oscillate around the optimum, so the
average of the iterates will result in a good approximation to the true optimum.
The idea is simple, and yet can be very effective. It is easy to see that for this
method to be successful, it is essential for the iterates to surround the optimum
in a balanced manner, and the domain for which the iterates oscillate shrinks as
n increases. Averaging trajectories reduces the sensitivity to the initial step size
choice. The algorithm follows recursion (6.3) for the RM case; however, instead
of the taking the last iterate xN as the output, the optimum is estimated by

x∗N =
1
N

N

∑
n=1

xn,

which is an average of N iterates, where N is the stopping time. Under “classic”
assumptions, iterate averaging achieves the same convergence rate as the RM
method. Furthermore,

√
n(x∗n −x∗) is asymptotically normal with mean zero and the

smallest covariance matrix, which is the inverse of the average Fisher information
matrix. (cf. [31]). A constant step size can be applied and yields convergence in
distribution [28].

A variation of this method is called the “sliding window” average, which is based
on the last m iterates:

x∗N =
1
m

N

∑
n=N−m+1

xn. (6.6)

An advantage of (6.6) is it ignores the first N −m iterates, which may be poor
estimates, since the first iterate is arbitrary, and averages only the last m, which are
assumed to be closer to x∗. Asymptotic normality for a growing window is shown
in [26, 28], which also includes constant step sizes. Another modification of the
original method incorporates x∗N with xN in the components being averaged, which
is known as the feedback approach [27]. These methods are suited for problems
where the iterates hover around the optimum. In an empirical study, iterate averaging
was applied to SPSA [29]. The results suggest that if the Hessian of f (x) is large,
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averaging is considered ideal, since it is associated with a high variability in f (x),
which indicates the iterates are moving around the optimum. In general, averaging
iterates leads to more robustness with respect to step-size sequence because of the
reduced sensitivity, while converging at the same optimal asymptotic rate as RM.
Inspired by iterate averaging, weighted averages for KW was presented to achieve
the optimal asymptotic convergence rate O(n−1/2) under certain conditions [13].
Under certain parameter settings, iterate averaging and weighted averaging produce
the same estimator.

6.3.3 Varying Bounds

Initially, the asymptotic theory for SA only considered functions satisfying specific
global conditions; however, subsequently it was shown the requirements need only
hold on a compact set Θ ∈ Rd containing the optimum. Therefore, the projection
operator is particularly important in the constrained optimization setting. Since the
optimum is unknown, the compact set should be large enough so that x∗ ∈Θ with
high probability; however, this may increase the potential of an algorithm to perform
poorly due to the size of the parameter search space [1] . For instance, if the compact
set is very large, the step size is extremely small, and the current iterate is extremely
far from the optimum, then the convergence is likely to be slow; however, if the
compact set is small and contains the optimum, then the iterates will never be too
far from the optimum. Even if the step sizes are small, the convergence will be much
faster in comparison to the algorithm restricted to a much larger set.

One of the first ideas was to project the iterates onto a predetermined fixed
point once the magnitude of the iterate surpassed an arbitrarily specified threshold,
with the threshold increasing after it is exceeded [10]. This method converges
asymptotically, but in practice, it has its pitfalls. When an iterate is projected onto an
arbitrary fixed point, in a sense, the algorithm restarts from this “initial” value with a
smaller sequence of step sizes. Not only does it lose all of the progress gained from
the iterations prior to the projection, but the reduction in step size could hinder the
convergence by moving even slower towards the optimum. To circumvent this issue,
it was shown that it suffices to project the iterates onto a predetermined bounded set
[46]. This is a slight improvement, since the iterates do not start from the same
position with an even smaller step size. However, it still has its limitations, since
the initial start values are restricted to the predetermined compact set. Later, an
algorithm defined over a growing feasible region by writing Θ as an increasing
sequence of compact sets (i.e.,Θm ⊆Θm+1, whereΘ = ∪mΘm) was introduced [1].
The orthogonal projection operator changes from ΠΘm to ΠΘm+1 if xn /∈ Θm. The
idea is to start with a smaller feasible region Θ1 and only increase when there is
reason to believe the optimum x∗ /∈Θ1 (i.e., when the xn /∈Θ1). Since the projection
is made onto the current compact setΘm, the progress gained up to that point is not
lost. The feasible regionΘ is written as ∪∞m=1Θm, so it is impossible for x∗ /∈Θm for
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some m. If x∗ is contained in one of the earlier compact sets and if they grow slowly,
the empirical results could improve significantly. The key in the performance is to
choose the sequence {Θm} appropriately. If it grows too quickly, the results might
be very similar to that of the original SA algorithm. The following algorithm and
convergence result are for the RM multidimensional case d ≥ 1, where || · || denotes
the Euclidean norm.

SA with Varying Bounds

• Input. Choose x1 ∈Θ1, {an} and {Θm}.
• Initialize. Let n = 1 and m = 1.
• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute x′n+1 = xn−an∇̂ f (xn). If x′n+1 ∈Θm, go to Step 3. Otherwise,

go to Step 4.
– Step 3. Let xn+1 = x′n+1, n = n+ 1 and go to Step 1.
– Step 4. Let xn+1 =ΠΘm(x

′
n+1), n = n+ 1, m = m+ 1 and go to Step 1.

• Output. x∗N = xN .

Theorem 6.3 (Theorem 2 [1]). Let the sequence {xn} be generated using the
above algorithm, εn = ∇̂ f (x) − E[∇̂ f (x)|Fn], and βn = E[∇̂ f (x)|Fn]− ∇ f (x),
where Fn is the smallest σ -algebra used to generate xn+1. If the following
conditions hold:

1. The sequence {Θm} is a set of compact convex sets such thatΘm ⊆Θm+1 for all
m and ∪∞m=1Θm =Θ .

2. The positive sequences of real numbers {an} and {cn} converge to zero such that
∑∞

n=1 an = ∞, ∑∞
n=1 ancn < ∞, and ∑∞

n=1 a2
nc−2

n < ∞.
3. There exists κ ≥ 0 such that E[||εn||2|Fn]≤ κ

c2
n
(1+ ||xn− x∗||2) a.s. for all n.

4. ||βn|| is bounded a.s. for all n, and ∑∞
n=1 an||βn||< ∞ a.s.

5. There exist a positive sequence of real numbers {Mn} and integer N ≥ 1 such
that ∑∞

n=1 a2
nM2

n < ∞ and for all n ≥ N, supx∈Θn−1
|| f (x)|| ≤ Mn.

6. There exists a unique x∗ ∈ Θ such that ∇ f (x∗) = 0, and for all 0 < δ ≤ 1,
infx∈Θ :δ≤||x−x∗||≤δ−1 f (x)T(x− x∗)> 0.

Then xn → x∗ a.s. as n → ∞.

If an appropriate increasing sequence of compact sets is chosen, the finite-time
performance can improve significantly, but this optimal choice is still an open
problem.
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6.3.4 Simultaneous Perturbation Stochastic Approximation
(SPSA)

Simultaneous perturbation stochastic approximation (SPSA) specifically addresses
multivariate optimization problems [38]. Similar to KW-type algorithms, SPSA
only requires the objective function values to approximate the underlying gradient
and is therefore easy to implement. However, SPSA only requires two functional
evaluations at each iteration regardless of the dimension of the parameter space
Θ , which could potentially reduce the computational cost significantly in high-
dimensional problems. SPSA perturbs the vector x randomly in all directions
simultaneously (hence, the name of the method) and the ith component of the
gradient estimate has the form

∇̂ fi(xn) =
Y (xn + cnΔn,ξ+

n )−Y(xn − cnΔn,ξ−
n )

2cnΔn,i
, (6.7)

where Δn = (Δn,1, . . . ,Δn,d)∈Rd and generally assumed to be i.i.d. and independent
across components, cn ∈ R+ is the finite difference step size, and ξ±

n denotes the
randomness. Observe that the numerator in (6.7) involves two function estimates
and is identical for all i; therefore, the cost of the full gradient (aside from generating
Δn) is independent of dimension.

SPSA Algorithm

• Input. Choose x1 ∈Θ , {an}, {cn}, and stopping time N.
• Initialize. Let n = 1.
• While n < N,

– Step 1. Generate a d-dimensional random perturbation vector Δn.
– Step 2. Generate an estimate of ∇ f (xn):

∇̂ f (xn) =
Y (xn + cnΔn,ξ+

n )−Y (xn − cnΔn,ξ−
n )

2cn

⎡
⎢⎢⎣
Δ−1

n,1
...

Δ−1
n,d

⎤
⎥⎥⎦

– Step 3. Compute xn+1 = xn − an∇̂ f (xn).
– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x∗N = xN .

Theorem 6.4 (Theorem 7.1 [40]). Suppose f has a unique minimum x∗ ∈Θ and
{xn} is generated using SPSA. If the following conditions hold:
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1. The positive sequences of real numbers {an} and {cn} converge to zero such that
∑∞

n=1 an = ∞ and ∑∞
n=1 a2

nc−2
n < ∞.

2. The function f (x) ∈C3 and bounded on Rd.
3. ||xn||< ∞ for all n.
4. E[ε+n −ε−n |Δn,Fn] = 0 and E[(Y (xn±cnΔn,ξ±

n )/Δn,i)
2] is uniformly bounded for

all n, i.
5. x∗ is an asymptotically stable solution of the differential equation ∂x(t)/∂ t =

−∇ f (x(t)).
6. For each n, {Δn,i}d

i=1 are identically distributed, {Δn,i} are independent and
symmetrically distributed with zero mean and uniformly bounded in magnitude
for all n, i.

Then xn → x∗ a.s. as n → ∞.

The optimal convergence rate for SPSA is O(n−1/3) [38]. Various convergence
proofs have been presented with slight modifications to the conditions (cf. [9,13,19,
38, 43]). The perturbation sequence {Δn}, where Δn = (Δn,1, . . . ,Δn,d) with {Δn,i}
independent, must have mean zero (i.e., E[Δn] = 0), and finite inverse moments
(i.e., E[|Δn,i|−1] < ∞ for i = 1, . . . ,d). As a result, the Gaussian distribution is not
applicable. Instead, the most common distribution used is the symmetric Bernoulli
taking a positive and negative value (i.e., ±1) with probability 0.5. In addition,
an appropriately scaled xn is approximately normal for large n, and the relative
efficiency of SPSA depends on the geometric shape of f (x), choice of {an} and
{cn}, distribution of {Δn,i}, and noise level.

Many extensions to the original SPSA algorithm have been developed, e.g.,
the constrained setting using projection operators [17, 36]. A slight modification
is the averaging of the SPSA gradient estimators. Instead of generating one gradient
estimate at each iteration, multiple gradient estimates can be generated at additional
computational cost and averaged to reduce the noise. An accelerated form of SPSA
approximates the second-order Hessian ∇2 f (x) to accelerate the convergence [40],
analogous to the Newton–Raphson method. Iterate averaging in the SPSA setting
has also been explored, but performs relatively poor in finite-time [13,39]. All in all,
SPSA has been shown to be an effective SA method for tackling high-dimensional
problems, with ease of implementation and the asymptotic theory to support it.

6.4 Recent Modifications

This section presents several recently proposed modifications that focus on improv-
ing the finite-time performance of SA: the scaled-and-shifted Kiefer–Wolfowitz
(SSKW) algorithm, the robust SA (RSA) algorithm, the accelerated SA (AC-SA)
algorithm, and the Secant-Tangents AveRaged stochastic approximation (STAR-
SA) algorithm. The theoretical results for RSA and AC-SA focus on an alternative
way to analyze the performance of the estimates through f (x∗N) − f (x∗). The
inequality in (6.15) is an alternative way to view the performance of SA, which
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focuses on the distance between the function evaluated at the estimate and the
optimal function value (i.e., E[ f (x∗N)− f (x∗)]) as opposed to a distance between
the estimate and optimum (e.g., E(x∗N − x∗)2). To illustrate the difference, consider
an extremely flat function on the entire feasible region. The alternative performance
measure will indicate that almost any iterate in the feasible region will be a good
estimate, whereas performance based on the mean-squared error (MSE) of the
estimate and optimum will be more sensitive to the estimate x∗N . Further details
on these two algorithms are provided in the next chapter.

6.4.1 Scaled-and-Shifted Kiefer–Wolfowitz (SSKW)

The scaled-and-shifted Kiefer–Wolfowitz (SSKW) algorithm [4] adaptively adjusts
{an} and {cn} finitely many times during the course of the algorithm to adapt
to the characteristics of the function and noise level in hopes of preventing slow
convergence in finite-time. The idea is to increase {an} so the iterates are able to
make noticeable progress towards the optimum with the option of decreasing {an}
later if it is too large. Furthermore, if the direction of the gradient is classified as
incorrect, then {cn} is increased to reduce the noise. Note that KW only requires
two parameter choices {an} and {cn}, whereas SSKW requires eleven, as seen in
the algorithm below.

SSKW Algorithm

Scaling Phase

• Input. {an}, {cn}, [l,u], ΠΘ , stopping time N, and

– h0 = number of forced boundary hits,
– γ0 = scale up factor for {cn},
– ka = maximum number of shifts of {an},
– va = initial upper bound of shift,
– φa = maximum scale up factor for {an},
– kc = maximum number of scale ups for {cn},
– c0 = maximum value of {cn} after scale ups (i.e., cn ≤ cmax = c0(u− l)),
– g0 = maximum number of gradient estimates in scaling phase,
– mmax = maximum number of adaptive iterations (mmax ≤ N).

• Initialize.

– Choose x1 ∈ [l + c1,u− c1].
– Let n = 1, m = 1, g = 1, sh = 0, and sc = 0.

• Do while m ≤ h0 and g ≤ g0.

– Step 1.

· Generate an estimate ∇̂ f (xn) using symmetric differences.
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· Compute xn+1 using recursion (6.3).

· If xn+1 ∈ (l + cn,xn), go to Step 2.
· If xn+1 ∈ (xn,u− cn,), go to Step 3.
· If xn+1 > u− cn+1 and xn = u− cn or if xn+1 < l+ cn+1 and xn = l+ cn,

go to Step 4, if sc ≤ kc.
· If xn+1 > u− cn+1 and xn = l+ cn or if xn+1 < l+ cn+1 and xn = u− cn,

go to Step 5.

– Step 2.

· Scale {an} up by α =min{φa,(u− cn+1− xn)/(xn+1 − xn)} and use {αan}
for the remaining iterations.

· Set xn+1 = l + cn+1. Let n = n+ 1, m = m+ 1, g = g+ 1 and go to Step 1.

– Step 3.

· Scale {an} up by α = min{φa,(l + cn+1 − xn)/(xn+1 − xn)} and use {αan}
for the remaining iterations.

· Set xn+1 = u− cn+1. Let n = n+1, m = m+1, g = g+1 and go to Step 1.

– Step 4.

· Scale {cn} up by γ = min{γ0,cmax/cn} and use {γcn} for the remaining
iterations.

· Let sc = sc+ 1 and go to Step 5.

– Step 5.

· Set xn+1 = min{u− cn+1,max{xn+1, l + cn+1}}.
· Let n = n+ 1, g = g+ 1 and go to Step 1.

Shifting Phase

• While n ≤ mmax and n ≤ N,

– Step 1.

· Generate an estimate ∇̂ f (xn) using symmetric differences.
· Compute xn+1 using (6.3).

· If xn+1 > u− cn+1 and xn = l+ cn or if xn+1 < l+ cn+1 and xn = u− cn,
go to Step 2, if sh < ka.

· If xn+1 > u− cn+1 and xn = u− cn or if xn+1 < l+ cn+1 and xn = l+ cn,
go to Step 3, if sc < kc.

· Otherwise, go to Step 4.

– Step 2.

· Find smallest integer β ′ such that xn+1 ∈ (l + cn,u− cn) with an+β ′ .
· Set β = min(va,β ′) and shift {an} to {an+β}. If β = va, set va = 2va.
· Let sh = sh+ 1 and go to Step 4.
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– Step 3.

· Scale {cn} up by γ = min{γ0,cmax/cn} and use {γcn} for the remaining
iterations.

· Let sc = sc+ 1 and go to Step 4.

– Step 4.

· Set xn+1 = min{u− cn+1,max{xn+1, l + cn+1}}.
· Let n = n+ 1 and go to Step 1.

KW Algorithm

• If n > mmax and n < N, then SSKW reverts back to KW and stop when n = N.
• Output. x∗N = xN .

The SSKW algorithm has two pre-processing phases, scaling and shifting, which
adjust the tuning sequences in order to improve the finite-time performance, before
reverting back to the original KW algorithm. In the scaling phase, the {an} is scaled
up by a factor α , i.e., {an} to {αan}, so the iterates can move from one boundary
to the other to ensure the step sizes are not too small relative to the gradient. In
the shifting phase, the sequence {an} is decreased by shifting or “skipping” a finite
number (β ) of terms from {an} to {an+β}, when the iterates fall outside of the
feasible region when the sign of the gradient is correct. This acts as a recourse stage
and reduces the step size faster in case the step-size sequence {an} is too large.
During both phases, {cn} is scaled up by γ , i.e., {cn} to {γcn}, if the previous iterate
is at the boundary and the update falls outside the feasible region but is moving in
the wrong direction. This increase is an attempt to reduce the noise of the gradient
estimate. These adjustments do not affect the asymptotic convergence, since the
scaling phase only scales {an} up by a constant, the shifting phase only skips a
finite number of terms in {an}, and the perturbation sequence {cn} is only scaled up
by a constant, all of which occur finitely many times.

6.4.2 Robust Stochastic Approximation (RSA)

The robust SA (RSA) method is intended to be relatively insensitive to the choice
of the step-size sequence, similar to Polyak–Ruppert iterate averaging. The form of
RSA is identical to (6.3) with the exception of the output. Instead of x∗N = xN , where
xN is the last iterate, x∗N is calculated as

x∗N =
∑N

n=1 anxn

∑N
n=1 an

,
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where an > 0 for all n. It is clear that if an = a, where a ∈ R+ for all n, then
x∗N = 1

N ∑
N
n=1 xn, giving the uniformly weighted average of Polyak–Ruppert. As

mentioned earlier, iterate averaging under a constant step size for a moving window
is asymptotically normal [28]. A finite-time bound was derived for E[ f (x∗n)− f (x∗)]
under RSA when f is assumed convex [30]. Assume there exists C > 0 such that
E[||∇ f (x)||2]≤C2 for all x ∈Θ . Then for an N-step iteration policy,

E[ f (x∗N)− f (x∗)]≤ ||x0 − x∗||2 +C2∑N
n=1 a2

n

2∑N
n=1 an

. (6.8)

For equal weights or iterate averaging, the bound on the right hand side of (6.8) can
be minimized if

an = a :=
DΘ

C
√

N
,

where DΘ = maxx,y∈Θ ||x− y||. The distance ||x0 − x∗|| in the place of DΘ tightens
the bound in (6.8), but x∗ is unknown so the improvement may not be practically
meaningful. This step size requires the number of iterations N to be fixed. Similar
to iterate averaging, a sliding window average can also be employed in RSA. The
estimate consists of the last N −K + 1 estimates and has the form

x∗N,K =
∑N

n=K anxn

∑N
n=K an

. (6.9)

If we consider the varying step size

an =
θDΘ
C
√

n
, (6.10)

for θ > 0, then we have the bound

E[ f (x∗N,K)− f (x∗)]≤ DΘC√
N

[
2
θ

(
N

N −K + 1

)
+
θ
2

√
N
K

]
, (6.11)

for 1 ≤ K ≤ N.

6.4.3 Accelerated Stochastic Approximation (AC-SA)
for Strongly Convex Functions

The accelerated SA (AC-SA) algorithm [21] takes a similar approach to iterate
averaging and RSA by taking long strides and incorporating each of the iterates into
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the output. The next two algorithms, accelerated SA for strongly convex and convex
functions, take advantage of the smoothness factor of the function if it exists. AC-SA
for convex functions is a special case of AC-SA for strongly convex functions, so
we first introduce AC-SA for strongly convex functions and then restrict the strong
convexity parameter for the convex case.

AC-SA is an example of a proximal method, which introduce a proximity
function into the objective function. The prox-function acts as a regularization
term to prevent the next iterate update xn+1 from being too far from xn and is
comprised of a distance generating function or Bregman functionω :Θ →R, which
is continuously differentiable and strongly convex with modulus ν > 0 satisfying

〈x− y,∇ω(x)−∇ω(y)〉 ≥ ν||x− y||2 ∀x,y ∈Θ ,

where 〈·, ·〉 denotes the inner product. A prox-function with the given distance
generating function is

V (x,y) =Vω(x,y) = ω(y)− [ω(x)+ 〈∇ω(x),y− x〉].

As xn → x∗, the regularization term disappears, so minimizing f (x) plus a regular-
izer is equivalent to minimizing the function f (x).

Consider a strongly convex function f (·) satisfying

μ
2
||y− x||2 ≤ f (y)− f (x)−〈∇ f (x),y− x〉 ≤ L

2
||y− x||2 +M||y− x||, (6.12)

for all x,y ∈Θ where μ > 0 is the strong convexity parameter. Notice that if f is
Lipschitz continuous with Lipschitz constant M/2, then (6.12) holds with M > 0,
L= 0, and μ = 0, and if f has Lipschitz continuous gradients with Lipschitz constant
L, then (6.12) holds with M = 0, L > 0, and μ = 0.

The AC-SA algorithm updates three sequences, {xmd
n },{xag

n }, and {xn}. Here,
“md” and “ag” are abbreviations for median and aggregate, respectively, and median
is used in a loose sense.

Accelerated SA Method for Strongly Convex Functions

• Input.

– Specify V (x,y), {αn} and {γn} be given such that α1 = 1, αn ∈ (0,1) for n≥ 2,
and γn > 0 for n ≥ 1 and a stopping time N.

• Initialize. Choose xag
0 = x0 ∈Θ and let n = 1.

• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute
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xmd
n =

αn[(1−αn)μ+ γn]

γn +(1−α2
n)μ

xn−1 +(1−αn)
(1−αn)(μ+ γn)

γn +(1−α2
n)μ

xag
n−1

xn = argmin
x∈Θ

{αn[〈∇ f (xmd
n ),x〉+ μV(xmd

n ,x)]+ [(1−αn)μ+ γn]V (xn−1,x)}

xag
n = αnxn +(1−αn)x

ag
n−1

– Step 3. Let n = n+ 1 and go to Step 1.

• Output. x∗N = xag
N .

Note: V (x,y) = 1
2 ||x− y||2 using the Euclidean norm with ν = 1 is a common prox-

function. Refer to [20] for details.

Theorem 6.5 (Theorem 1 [20]). Assume V (x,y)≤ 1
2 ||x−y||2 for all x,y∈Θ when

μ < 0 and E[(∇̂ f (x)−∇ f (x))2]≤ σ2 ∀x ∈Θ . Choose {αn} and {γn} such that

ν(μ+ γn)> Lα2
n , (6.13)

γn/Γn = γn+1/Γn+1 for n ≥ 1, (6.14)

where

Γn =

{
1 if n = 1;
(1−αn)Γn−1 if n ≥ 2.

Then,

E[ f (xag
N )− f (x∗)] ≤ ΓN

(
γ1V (x0,x

∗)+
N

∑
n=1

2(M2 +σ2)α2
n

Γn[ν(μ+ γn)−Lα2
n ]

)
. (6.15)

Consider αn = 2/(n+ 1), γn = 4L/[νn(n+ 1)], and Γn = 2/[n(n+ 1)]. It can be
easily checked that these choices satisfy conditions (6.13) and (6.14). Under these
conditions, the right hand side of (6.15) can be bounded by

4LV(x0,x∗)
νN(N + 1)

+
8(M2 +σ2)

νμ(N + 1)
, (6.16)

for μ > 0. The bounds in (6.15) and (6.16) rely on additional information of the
function and gradient, which are unknown, so they must be approximated.
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6.4.4 Accelerated Stochastic Approximation (AC-SA)
for Convex Functions

AC-SA for convex functions is a special case of AC-SA for strongly convex
functions with μ = 0. The algorithm is identical to AC-SA for strongly convex
function with the exception of the xmd

n and xn update since μ = 0. The resulting
updates are

xmd
n = αnxn−1 +(1−αn)x

ag
n−1,

xn = argmin
x∈Θ

{αn〈∇ f (xmd
n ),x〉+ γnV (xn−1,x)}.

Interestingly, if V (x,y) = 1
2 ||x− y||2, then the update for xn simplifies to

xn = ΠΘ

(
xn−1 − αn

γn
∇̂ f (xmd

n )

)
, (6.17)

which has a similar form to the standard SA algorithm. Notice in the update for xn

in (6.17), αn/γn takes the place of the step size an in (6.3) and the gradient estimate
∇̂ f is evaluated at xmd

n as opposed to xn−1. If we consider the same parameter
setting as in the strongly convex case, the “step size” αn/γn increases with n.
Furthermore, the lower and upper bounds for the optimal objective function can
be computed online and the difference converges to 0 as the number of iterations
goes to infinity [20].

Theorem 6.6 (Proposition 7 [20]). Assume that the assumptions in Theorem 6.5
hold for μ = 0 and the sequencesαn = 2/(n+1) and γn = 4γ/[νn(n+1)] for γ ≥ 2L.
Then

E[ f (xag
N )− f (x∗)] ≤ 4γV (x0,x∗)

νN(N + 1)
+

4(M2 +σ2)(N + 2)
3γ

, (6.18)

where

γ = max

{
2L,

[
ν(M2 +σ2)N(N + 1)(N + 2)

3V(x0,x∗)

]1/2
}

minimizes the bound in (6.18).
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6.4.5 Secant-Tangents AveRaged Stochastic Approximation
(STAR-SA)

The Secant-Tangents AveRaged (STAR) stochastic approximation algorithm esti-
mates the gradient using a hybrid estimator, which is a convex combination of a
symmetric finite difference and an average of two direct gradient estimators:

∇̂ f (xn) = αn
Y (xn + cn,ε+n )−Y (xn − cn,ε−n )

2cn

+(1−αn)

(
Y ′(xn + cn,δ+

n )+Y ′(xn − cn,δ−
n )

2

)
, (6.19)

where ε±n and δ±
n denote the randomness (i.e., f (xn ± cn) = E[Y (xn ± cn,ε±n )] and

f ′(xn ± cn) = E[Y ′(xn ± cn,ξ±
n )]), αn ∈ [0,1] for all n, cn → 0 and αn → 0 as

n→∞. The STAR gradient estimate requires function and gradient estimates on two
points, xn ± cn for each ∇̂ f (xn). In a setting where direct gradients are available,
if the direct gradient is very noisy relative to the function estimates, it is difficult
to decide between implementing RM or KW, even though RM converges faster
asymptotically. Since the performance of neither algorithm is always superior to the
other, the STAR gradient incorporates both. The weights of the convex combination
play a critical role in the performance of STAR-SA and can be chosen to minimize
the variance of the gradient estimate such that it is less than the variance of both the
symmetric finite difference gradient estimate and direct gradient estimate. If

α∗
n =

σ2
g c2

n +ρσ fσgc2
n

σ2
f +σ2

g c2
n + 2ρσ fσgcn

,

where Var[Y (x,ε)] = σ2
f , Var[Y ′(x,ξ )] = σ2

g , and Corr(Y (x,ε),Y ′(x,ξ )) = ρ , then
STAR-SA is theoretically optimal in terms of MSE compared to RM and KW for
simple quadratic functions, and the variance of the STAR gradient is less than that
of RM and KW under certain conditions.

Theorem 6.7 (Theorem 3 [6]). Let {xn} be a sequence generated using recur-
sion (6.3) and gradient estimate (6.19). Assume

1. There exist positive sequences {an}, {cn}, and {αn} such that αn ∈ [0,1] for all
n, ∑∞

n=1 anαn = ∞, ∑∞
n=1 ancn < ∞, ∑∞

n=1 a2
n < ∞, and ∑∞

n=1 a2
nc−2

n < ∞.
2. There exist B,C > 0 such that P(| f ′′(x)| ≤ B) = 1 and P(| f ′(x)| ≤C) = 1 for all

x ∈Θ .
3. There exist K0,K1 > 0 such that K0|x− x∗| ≤ | f ′(x)| ≤ K1|x− x∗| for all x ∈Θ .
4. f ′(x)(x− x∗)> 0 for all x ∈R\{x∗}.
5. For c > 0, σ2 = supx∈R Var[Y (x+ c,ξ+)−Y (x− c,ξ−)|x]< ∞ for all x ∈Θ .
6. ε+n , ε−n , δ+

n ,δ−
n are i.i.d. with mean zero for all n.

Then xn
L2→ x∗ as n → ∞.



170 M. Chau and M.C. Fu

Numerical experiments show that STAR-SA is competitive against RM and KW,
even when the number of iterations for RM are doubled due to the increase in
computational cost of STAR-SA [6]. In the experimental results, the STAR-SA
algorithm either performs significantly better than RM and KW or the MSE is
close to that of the algorithm with the lower MSE. STAR-SA has been extended
to higher dimensions by considering simultaneous perturbation gradient estimates,
instead of using a symmetric finite difference gradient estimate, to take advantage
of its potential efficiency and robustness [5].

6.5 Numerical Experiments

We present three sets of numerical experiments comparing the mean-squared error
(MSE) of various SA algorithms on several contrasting functions. The first set of
experiments illustrates the sensitivity of KW and two variants to the choice of
the two step-size sequence parameters, taken from [7]. The second set compares
three SA algorithms, the robust SA (RSA) method, the accelerated SA (AC-SA)
method, and the original RM algorithm, under various initial settings and step-
size parameters for RM (i.e., starting values, compact intervals, noise levels, and
step sizes). The last set of numerical experiments explores the potential gains from
using the STAR gradient estimate, which utilizes both direct and indirect gradient
estimates, as opposed to using them separately, as in RM and KW, respectively.
Since the numerical experiments consider maximization problems, the sign of an

and αn/γn in recursion (6.3) and (6.17), respectively, must be adjusted accordingly.

Sensitivity Analysis of KW and Its Variants

We perform a sensitivity analysis of KW and KW using Kesten’s rule (denoted
henceforth by KWK) with symmetric finite difference gradient estimates, and we
compare the results with SSKW. Using the parameter settings an = θa/n, cn =
θc/n1/4, θa > 0, θc > 0 arbitrary but fixed, N = 10,000 iterations, and 1,000
sample paths, our analysis replicates the results of [4] for f (x) = −0.001x2 on the
interval [−50,50], where SSKW performs significantly better than KW in terms of
MSE and oscillatory period; however, this result is obtained using what seem to be
nearly worst-case parameter setting for KW. In our experiments, we consider a wide
range of parameters and initial settings for KW and KWK: 19 initial starting values
uniformly spaced within the truncated interval x1 ∈ {−50+5k | k = 1,2, . . .19}, 45
different θa values parametrized by θa ∈ {10sk | k = 1,2, . . . ,9,s = 0,1, . . . ,4}, and
10 different θc values parametrized by θc ∈ {10sk | k = 1,2, . . . ,5,s = 0,1}. In total,
there are 8,550 combinations.

The numerical results illustrate the sensitivity of the classical SA methods to
the parameters. In fact, near optimal performance can be obtained with fine-tuning.
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1

a = 1, c = 1
a = 500, c = 4
a = 90, c = 5

a = 1, c = 1
a = 10, c = 5
a = 100, c = 1

a = 1, c = 1

Fig. 6.2 MSE of the 10000th iterate of KW and KWK for three parameter settings and SSKW
for f (x) =−.001x2, σ = 0.001, an = θa/n, cn = θc/n1/4

Out of the 8,550 combinations, KW outperforms SSKW in half of the cases, which
indicates that with some tuning, KW yields good performance for a fairly wide
range of tunable parameters. Figure 6.2 plots the MSE of KW, KWK, and SSKW
for f (x) = −.001x2,σ = 0.001 against the initial starting values x1 for several
parameter choices that are a good representation of a majority of the results. The
parameter value θa = θc = 1, identical to the settings in [4], is among the worst for
KW and KWK, represented by a nearly vertical orange line for both algorithms, as
a result of the overlapping red and yellow lines for KW and KWK, respectively.
For this parameter setting, SSKW beats KW and KWK significantly for all initial
values with the exception of x1 = 0. The first column in Table 6.1 compares the
MSE all three algorithms with x1 = 0.01, and clearly, KW outperforms SSKW in
almost all cases. Of course, a practitioner would have no way of knowing whether
or not the starting iterate was close to the true optimum, so these results do not
indicate that KW will always perform well. They do indicate, however, that KW
exhibits substantial variation in performance. In the case where θa = 90,θc = 5 and
θa = 10,θc = 5, KW and KWK, respectively, outperform SSKW in a neighborhood
around the optimum. There are also well-tuned parameters such as θa = 500, θc = 4
for KW and θa = 100, θc = 1 for KWK that outperform SSKW for all initial
start values. When KW and KWK perform better than SSKW, the difference is not
as pronounced as when SSKW outperforms KW, but careful tuning can partially
mitigate the sensitivity of KW to parameters such as the initial iterate.

In addition, we implement KW and its variants using the same parameters
(an = 1/n, cn = 1/n1/4, x1 = 30) as in [4] on f (x) = 100e−.006x2

to test the
algorithms under the same setting for a different function. Figure 6.3 plots the
MSE of the 10000th iterate as a function of the initial start value. The horizontal
line for all noise levels indicates that SSKW is insensitive the initial start value.
KW and KWK outperform SSKW within certain intervals around the optimum for
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Table 6.1 MSE of the 100th, 1000th, and 10000th iteration for KW and its variants with
an = 1/n, cn = 1/n1/4

f (x) =−0.001x2 [-50, 50] f (x) = 100e−0.006x2
[-50, 50]

x1 = .01 x1 = 30

σ Algorithm 100 1000 10000 100 1000 10000

0.001
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07x10−2 1.68x10−2 4.84x10−3

KW 10−4 10−4 10−4 763.8 653.3 431.4

KWK 1.12x10−4 1.08x10−4 1.04x10−4 10−7 3x10−8 10−8

0.01
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07 1.68 4.90x10−1

KW 10−4 10−4 10−4 763.8 653.3 431.2

KWK 2.10x10−3 2.11x10−3 2.05x10−3 9.54x10−6 2.76x10−6 8.41x10−7

0.1
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 165.8 57.4 16.0

KW 10−4 10−4 10−4 763.4 651.4 418.2

KWK 2.01x10−1 2.03x10−1 1.97x10−1 5.65x10−2 2.76x10−4 8.41x10−5

1.0
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 187.2 57.8 18.7

KW 10−4 10−4 10−4 722.5 562.5 415.7

KWK 20.1 20.3 19.7 456.9 315.1 239.7

= 0.01
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Fig. 6.3 MSE Comparison of KW and its variants for f (x) = 100e−.006x2
with values an = 1/n,

cn = 1/n1/4, N = 10000

σ ∈ {0.001,0.01,0.1,1.0} and KWK’s better performance intervals overlap those of
KW. However, KW using the deterministic step size 1/n performs better than KWK
where the intervals overlap, which can be seen in Fig. 6.3. Unfortunately, outside of
those intervals, KW and KWK have a tendency to perform poorly.
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RM, RM with Iterate Averaging, Robust SA and Accelerated SA

We investigate the MSE performance of RSA and AC-SA using direct gradient
estimates and compare the results against the classical RM algorithm and RM with
iterate averaging. We consider the optimal parameter settings for RSA and AC-SA,
which require additional knowledge of the function, its gradient, and the optimum,
so in practice, they must be approximated.

We consider a simple quadratic function, f (x) =− 1
3 x2, on the truncated intervals

[−50,50] and [−5,95] with x1 = 30.0, σ = 1.0, and 1,000 sample paths. For the RM
and RM with iterate averaging algorithm, we employ a common step size an = θa/n,
where θa = 10.0. RM performed relatively well for a wide range of multiplicative
constants. We chose to use θa = 10.0, although it did not yield the lowest MSE
at the 1000th or 10000th iteration from preliminary numerical tests. For RSA, we
adopt a constant step size that minimizes the finite-time bound in (6.8), where C =
100/3,190/3 for the intervals [-50, 50] and [-5, 95], respectively, and DΘ = 100. For
the AC-SA algorithm, we consider αn = 2/(n+ 1) and γn = 4γ/[n(n+ 1)], where γ
is given in (6.19) with ν = 1, L = 2/3 and M = 0.

Figure 6.4 plots the MSE as a function of the number of iterations from 1 to
10000 on a log scale. The results for both the centered and skew truncated intervals
appear to have the same behavior across all four algorithms. RM performs well
with a good parameter choice, although it is not the best, but averaging the iterates
improves the performance, resulting in a smoother monotonically decreasing MSE
curve as the number of iterations increase. Compared to a decently/reasonably
tuned RM and RM with iterate averaging algorithm, RSA appears to be inferior,
at least in this simple numerical experiment. The most interesting curve is from the
AC-SA algorithm, where one can observe periodic oscillations, which decrease in
magnitude as the number of iterations increase. We further investigated this behavior
by analyzing individual sample paths, and the estimates {xag

n } appear to have the
same behavior, following a smooth oscillating path/curve. From Fig. 6.4, the AC-
SA curve appears to level off and hover slightly over the RSA curve. The stopping
time dictates the relative performance of AC-SA when there are a smaller number of
iterations because of the oscillations. For the case of the skewed interval, there is a
small range of iterations where AC-SA outperforms RSA, RM, and RM with iterate
averaging, as well as other small ranges where it outperforms RSA. Keep in mind
that these experiments are for a simple quadratic function for a particular setting, so
the relative performance will most likely change in a different setting.

From our numerical experiments, one can conclude that RM and RM with iterate
averaging has the potential to outperform RSA and AC-SA if the step-size parameter
is chosen appropriately for a wide range of choices. In this case, iterate averaging
improves the performance of RM for all 10,000 iterations. Both the AC-SA and
RSA algorithms require additional knowledge to choose the optimal step size that
minimizes the bound in (6.15) and (6.8) for AC-SA and RSA, respectively.



174 M. Chau and M.C. Fu

Fig. 6.4 MSE under RM, RM with averaging, RSA, and AC-SA for f (x) = − 1
3 x2, x1 = 30.0,

σ = 1.0, for symmetrical [−50,50] (left graph) and skewed [−5,95] (right graph) intervals

Fig. 6.5 MSE of 1000th iterate under STAR-SA, RM, and KW for f (x) =−0.1x2, σg = 1.0, and
two levels of σ f : 0.1 (left graph) and 1.0 (right graph)

STAR-SA, RM, and KW

We implement STAR-SA, RM, and KW under various combinations of noise
levels σ f and σg, for f (x) = −ax2, a > 0 and Θ = [−50,50]. The gain sequence
and finite difference step sizes are θa/n and θc/n1/4, respectively, and the MSE
results are based on 1,000 sample paths. For a fairer comparison, the number of
iterations for RM is doubled, since STAR-SA and KW require twice the number
of sample path runs. We consider the following values for the parameter and initial
settings: steepness level a ∈ {10k|k = −3,−2.5, . . . ,1.5,2}, x1 ∈ {−50+ 5k|k =
1, . . . ,10}, θa ∈ {1,10,100}, θc ∈ {0.1,1.0}, σ f ∈ {10k|k = −3, . . . ,1}, σg ∈
{10k|k = −3, . . . ,1}, and N ∈ {100,1000,10000}. Although STAR-SA, RM, and
KW were implemented for all settings, only the case f (x) = −0.1x2, an = 10n−1,
cn = 0.1n−1/4, σ f ∈ {0.001,0.1,1.0}, σg ∈ {0.001,0.1,1.0} and N = 1000 will be
described in detail.

The STAR-SA algorithm outperforms KW and RM for 6 out of the 9
combinations for all initial start values considered. For σ f = 0.001 and σ f < σg,
the MSE of STAR-SA is lower than that of RM, but is approximately equal
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to that of KW. The only case where the MSE of the STAR-SA algorithm is
not approximately less than or equal to the MSE of KW and RM is when
both noise levels are very low, i.e., σ f = σg = 0.001, which is not shown.
In this case, RM performs better than STAR-SA except when the start value
is close to the optimum x∗ = 0. In fact, the MSE of STAR-SA decreases
as x1 approaches x∗. In addition, the MSE of KW and RM are close to the
optimum when σ f = 0.001 and σg = 0.001,0.1, respectively, whereas the MSE
of STAR-SA is close to 0 for (σ f ,σg) ∈ {(0.001,0.001),(0.001,0.1),(0.001,1.0),
(0.1,0.001),(0.1,0.1),(1.0,0.001),(1.0,0.1)}. Figure 6.5 illustrates the MSE
results when σ f = 1.0. When the noise of the function is high, KW performs
poorly, RM outperforms KW, and STAR-SA has the lowest MSE. Figure 6.5 shows
a case where the performance of KW and RM are similar, but the MSE of the
STAR-SA algorithm is lower. Overall, from the numerical experiments conducted,
STAR-SA either performs significantly better than both RM and KW in terms of
MSE or the MSE is approximately equal to that of the algorithm with the lower
MSE.

6.6 Concluding Remarks

Stochastic approximation has an enormous body of literature in all aspects of theory,
algorithms, and applications. From its origins in statistics, it has now reached many
disciplines in engineering and the social sciences, with well-known successes in
such areas as signal processing, pattern recognition, and machine learning. Clearly,
simulation optimization is another fertile area for its application.

This chapter introduced the two main versions of SA:

• KW-like methods that rely only on function estimates, known as gradient-free or
stochastic zeroth-order algorithms; and

• RM-like methods that make use of direct estimates of first-order derivative
information, known as stochastic gradient or stochastic first-order algorithms.

The latter methods generally perform better in practice, but they require information
that is not always available. Asymptotically, they can obtain an O(n−1/2) conver-
gence rate, whereas the former are generally limited to a O(n−1/3) convergence
rate. Among the gradient-free methods, SPSA has been particularly successful for
high-dimensional problems.

The finite-time behavior of any SA algorithm depends heavily on the choice of
the step-size or gain sequence, and various approaches to handling this challenge
have been presented, from Kesten’s rule to iterate averaging, with the latter
procedure highly recommended.

Classical notions of convergence in SA address the iterates {xn}, whereas
recent finite-time analysis has turned to the properties of the function values
{ f (xn)}. Chapter 7 focuses on some recent SA algorithms mainly tailored to convex
stochastic programming problems and provides such convergence properties.
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Finally, SA methods are aimed at continuous-valued optimization problems,
but there is some work attempting to apply SA to discrete optimization problems.
A recent Ph.D. dissertation [44] addresses this setting and includes a summary of
previous work in the area.
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Chapter 7
Stochastic Approximation Methods and Their
Finite-Time Convergence Properties

Saeed Ghadimi and Guanghui Lan

Abstract This chapter surveys some recent advances in the design and analysis
of two classes of stochastic approximation methods: stochastic first- and zeroth-
order methods for stochastic optimization. We focus on the finite-time convergence
properties (i.e., iteration complexity) of these algorithms by providing bounds on the
number of iterations required to achieve a certain accuracy. We point out that many
of these complexity bounds are theoretically optimal for solving different classes of
stochastic optimization problems.

7.1 Introduction

The problem of interest in this chapter is given in the form

f ∗ := min
x∈Θ

f (x) (7.1)

where f (x) = E[F(x,ξ )], Θ ⊆ R
n is a nonempty closed convex set, ξ is a random

vector with probability distribution P supported on set Ξ ⊆R
d , and F :Θ ×Ξ →R.

We assume that the expectation

E[F(x,ξ )] =
∫
Ξ F(x,ξ )dP(ξ ) (7.2)

is well-defined and finite-valued for every x ∈Θ . Moreover, we assume that f (·) is
continuous onΘ .

A basic difficulty of solving stochastic optimization problem (7.1) is that
the multidimensional integral (expectation) (7.2) cannot be computed with high
accuracy for dimension d > 5. One popular method to solve (7.1) is the sample
average approximation (SAA) approach of Chap. 8 (cf. [31, 32]). In SAA, problem
(7.1) is first approximated by
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min
x∈Θ

{
1
N

N

∑
k=1

F(x,ξk)

}
, (7.3)

where ξk,k = 1, . . . ,N are given i.i.d. samples of ξ . Note that the SAA method
is not an algorithm; the obtained SAA problem (7.3) still has to be solved by an
appropriate iterative numerical procedure. Indeed, one possible drawback for SAA
is the high iteration cost (at least linear with respect to N) for numerical algorithms
to solve (7.3). In addition, this approach cannot be used for online optimization
where the decision vector x needs to be updated whenever a new sample ξk is
generated.

In this chapter, we focus on a different approach, stochastic approximation,
aimed at solving problem (7.1) directly. These methods are online approaches,
updating the decision vector xk whenever a new sample ξk is generated at iteration k.
More specifically, depending on the information available, we consider two different
types of stochastic approximation methods.

1. Stochastic first-order (SFO) methods: Given xk ∈Θ and a random sample ξk, we
have access to the stochastic function value F(xk,ξk) and stochastic (sub)gradient
G(xk,ξk) such that

Eξk
[G(xk,ξk)] ∈ ∂ f (xk),

where ∂ f (x) denotes the subdifferential1 of f at x. Observe that the above
condition will be satisfied by a measurable selection G(x,ξ ) ∈ ∂xF(x,ξ ) under
some mild regularity assumptions (cf. Strassen [34]).

2. Stochastic zeroth-order (SZO) methods: Given xk ∈ Θ and a random sample
ξk, we only have access to the stochastic function value F(xk,ξk), and intend
to approximate stochastic (sub)gradients by using available stochastic function
values.

Clearly, SZO methods are built upon SFO methods and their analysis will be
slightly more complicated than that of the latter, due to the error associated with
approximating stochastic (sub)gradients by stochastic function values.

The development of SFO methods goes back to the pioneering paper by Robbins
and Monro [27], whose stochastic approximation (SA) algorithm solves problem
(7.1) by mimicking the simplest gradient descent method, i.e., for chosen x1 ∈ Θ
and a sequence γk > 0, k ≥ 1, of step sizes, it generates the iterates by the formula

xk+1 :=ΠΘ
(
xk − γkG(xk,ξk)

)
, (7.4)

1A subgradient of a function f at x0 is a vector y ∈R
n such that f (x)≥ f (x0)+yT (x−x0), ∀x∈Θ .

The set of all such subgradients is called the subdifferential of f at the point x0.
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where ΠΘ denotes projection onto the setΘ given by ΠΘ (x) = argminz∈Θ ‖x− z‖2.
It has been shown that the classical SA algorithm possesses the “asymptotically
optimal” rate of convergence for solving strongly convex stochastic programming
(SP) problems [3, 29]. Motivated by Robbins and Monro [27], Kiefer and Wol-
fowitz [15] introduced the first SZO method where the stochastic gradient G(xk,ξk)
in (7.4) is approximated by using finite differences. Spall [33] improved Kiefer
and Wolfowitz’s algorithm by introducing simultaneous perturbation stochastic
approximation (SPSA). These SA algorithms became widely used in stochastic
optimization (see, e.g., [1, 5, 6, 17, 24, 28, 33] and references therein) and, due
to especially low demand for computer memory, in signal processing (cf. [1]
and references therein). However, these SA algorithms are very sensitive to the
choice of step sizes and typically perform poorly in practice (e.g., [33, Sect. 4.5.3]).
An important improvement of the classical SA, based on iterates averaging, was
developed by Polyak [25] and Polyak and Juditsky [26]. Their methods were shown
to be more robust with respect to the selection of step sizes than the classical SA and
also exhibit the “asymptotically optimal” rate of convergence for solving strongly
convex SP problems. Please see [17, 20] for an account of the earlier history of SA
methods.

This chapter focuses on recent development of SFO SA methods for SP. New
SA-type methods have been introduced to solve SP problems that are not nec-
essarily strongly convex. Furthermore, motivated by complexity theory in convex
optimization [21], the finite-time convergence properties of these methods have
been analyzed. For example, Nemirovski et al. [20] presented a modified SA
approach, robust SA, for solving general nonsmooth convex SP problems. They
demonstrated that the robust SA exhibits an optimal (unimprovable) O(1/ε2)
iteration complexity for solving these problems, where ε represents a bound on the
distance of the estimated optimal value from f ∗. In other words, one can identify
a worst-case convex SP instance that prevents any algorithm from performing
better than this complexity bound. This method has been shown in [19, 20] to be
competitive to the aforementioned SAA approach (see, e.g., [16, 30]) and even
significantly outperforms it for solving a class of convex stochastic optimization
problems. Similar techniques, based on subgradient averaging, have been proposed
in [13, 14, 22]. While these techniques dealt with nonsmooth convex programming
problems, Lan [18] presented an accelerated SA algorithm for nonsmooth and
smooth stochastic optimization. Lan demonstrated that by properly choosing the
step-size policy, the accelerated SA algorithm exhibits the optimal iteration com-
plexity for solving different classes of convex stochastic optimization problems (see
also [8, 9] for discussions about strong convexity). While convexity has played an
important role in establishing the convergence of all these SA algorithms, Ghadimi
and Lan [10] also developed randomized stochastic gradient methods, along with
its accelerated version in [11] for solving general smooth (not necessarily convex)
stochastic optimization problems.

While there exists a somewhat long history for the development of zeroth-order
(or derivative-free) methods in nonlinear programming (see the monograph by
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Conn et al. [4] and references therein), there exist only a few complexity results
for these types of methods, mostly for convex programming (e.g., [21, 23]) and
deterministic nonconvex programming problems (e.g., [2,7,23,35]). The complexity
studies on SZO methods appear in the literature only recently. In particular,
Nesterov [23] derived some provably tight bounds for approximating first-order
information by zeroth-order information using the Gaussian smoothing technique.
Based on this technique, he established the O(n2/ε2) complexity for solving general
nonsmooth convex SP problems (see p. 17 of [23]). By incorporating the Gaussian
smoothing technique [23] into the randomized stochastic gradient method, Ghadimi
and Lan [10] present a randomized stochastic gradient free (RSGF) method for
solving a class of simulation-based optimization problems without requiring the
convexity assumption. In addition, when applied to smooth stochastic convex
optimization problems, the bound in [10] has a much weaker dependence on n than
the one previously established by Nesterov for solving general nonsmooth convex
SP problems. Such an improvement is obtained by explicitly making use of the
smoothness properties of the objective function and carefully choosing the step sizes
and smoothing parameters.

In this chapter, we provide an overview of several SFO and SZO meth-
ods [8–10, 18, 20, 23]. We focus on the description of these algorithms, the selection
on the step-size policy and the associated complexity results, rather than the more
involved convergence analysis of these algorithms, which can be found in the
original papers. This chapter is structured as follows. In Sect. 7.2, we present
different SFO methods including robust and accelerated stochastic approximation
methods, which are optimal for solving different classes of stochastic convex
optimization problems. We then present a new stochastic approximation type
method, the randomized stochastic gradient method in Sect. 7.3. Section 7.4 is
devoted to a randomized stochastic gradient-free method for solving a certain
class of simulation-based optimization problems. Concluding remarks are made in
Sect. 7.5.

7.2 Convex Stochastic Optimization

In this section, we discuss several stochastic first-order methods for solving convex
stochastic optimization problems where the objective function f in (7.1) is convex,
but not necessarily differentiable. We first show that the robust SA algorithm
can achieve the optimal complexity for solving these general nonsmooth convex
stochastic optimization problems. We then present the accelerated SA algorithm,
which can achieve the optimal complexity for solving both nonsmooth and smooth
convex optimization problems. We then show that the accelerated SA algorithm can
achieve the optimal or nearly optimal complexity bounds for solving nonsmooth and
smooth strongly convex problems.
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7.2.1 Robust SA Method for Nonsmooth Stochastic Convex
Optimization

In this subsection, we present an optimal method, robust SA, for solving general
nonsmooth stochastic convex optimization problems. We start by formally describ-
ing this algorithm.

Algorithm 1 The robust SA (RSA) method
Let x0 ∈Θ be given.
for k = 0, . . . ,N−1 do

Set xk+1 :=ΠΘ (xk − γkG(xk,ξk)) for some γk ∈ (0,+∞).
end for
Output x̄N =

∑N
k=1 γk xk

∑N
k=1 γk

.

Observe that the updating step of Algorithm 1 differs from that of the subgradient
descent method in that one uses the stochastic subgradient G(xk,ξk) in place of
an exact subgradient g(xk) ∈ ∂ f (xk). Also, note that the generalization of the
above robust SA algorithm, the mirror-descent SA in [20], can use possibly non-
Euclidean projections (prox-mapping) instead of simple Euclidean projections used
in Algorithm 1. Moreover, the robust SA method described above differs from
the classical SA in the selection of the output solution and the step-size policy.
Specifically, we choose the averaging solution x̄N as the output solution of the robust
SA method, rather than the last iterate xN as in the classic SA method. Also, while
the step-size policy γk for the above robust SA method is O(1/

√
N) as mentioned

after Theorem 7.1, it is O(1/k) for the classic SA method.
To establish the convergence of the robust SA algorithm, we assume that the

stochastic subgradients G(x,ξ ) have bounded “variance,” i.e.,

E
[‖G(x,ξ )‖2]≤ M2, ∀x ∈Θ . (7.5)

Under this assumption, the quality of the output solution x̄N of the robust SA method
can be quantified as follows (cf. [20, p. 1583]).

Theorem 7.1. Suppose that f is convex and condition (7.5) holds. Then for the
N-step of robust SA algorithm, we have

E [ f (x̄N)− f ∗]≤ ‖x0 − x∗‖2 +M2∑N
t=1 γ2

t

2∑N
t=1 γt

(7.6)

for any N ≥ 0, where x∗ is an arbitrary optimal solution of (7.1).

In implementations of the robust SA algorithm, different policies to specify γk

can be applied (see [20]). We discuss only the constant step-size policy, where the
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number N of iterations is fixed in advance, and γk = γ , k = 1, . . . ,N. In that case,

x̄N =
1
N

N

∑
k=1

xk. (7.7)

Also assume for the sake of simplicity thatΘ is bounded 2 and define

DΘ := max
x,z∈Θ

‖x− z‖. (7.8)

By choosing the step sizes as

γk = γ :=

√
2DΘ

M
√

N
, k = 1, . . . ,N, (7.9)

we have in view of (7.6) that

E [ f (x̄N)− f ∗]≤ MDΘ√
2N

. (7.10)

Observe that the choice of γ in (7.9) is obtained by minimizing the right-hand side
(RHS) of (7.6) subject to γ1 = . . .= γN = γ . Also, note that by choosing the constant
step-size policy, the output solution (7.7) of Algorithm 1 is the same as that of the
improved classical SA method by Polyak and Juditsky [26]. However, the choice of
the step sizes in the latter is different from the one in (7.9).

By (7.10), the robust SA method needs at most

M2D2
Θ

2ε2

iterations to find an ε-solution of (7.1), i.e., a point x̄ ∈ Θ s.t. E[ f (x̄)− f ∗] ≤ ε .
This bound is unimprovable for the SFO methods to solve general nonsmooth
convex optimization problems, in view of the complexity theory by Nemirovski
and Yudin [21, Sect. 5.3]. By Markov’s inequality it follows from (7.10) that for any
ε > 0,

P( f (x̄N)− f ∗ > ε)≤ DΘM

ε
√

2N
. (7.11)

2This assumption can be relaxed, e.g., by simply setting γk =
√

2
M
√

N
.
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It is possible to obtain finer bounds for (7.11) when imposing the following more
restrictive condition:

E
[
exp
{‖G(x,ξ )‖2/M2}]≤ exp{1}. (7.12)

Note that condition (7.12) is stronger than (7.5). Indeed, if a random variable
F satisfies E[exp{F/a}] ≤ exp{1} for some a > 0, then by Jensen’s inequality
exp{E[F/a]} ≤ E[exp{F/a}] ≤ exp{1}, and therefore E[F ] ≤ a. Of course, con-
dition (7.12) holds if for all (x,ξ ) ∈Θ ×Ξ :

‖G(x,ξ )‖ ≤ M.

The following result has been established in [20, Proposition 2.2].

Proposition 7.1. Suppose that condition (7.12) holds. Then for the constant step-
size policy (7.9), the following inequality holds for any Ω ≥ 1 :

P
(

f (x̄N)− f ∗ > (12+ 2Ω)DΘMN−1/2
)
≤ 2exp{−Ω}. (7.13)

It follows from (7.13) that the number N of steps required by the algorithm to
solve the problem with accuracy ε > 0, and a (probabilistic) confidence 1−β , is
of order O

(
ε−2 log2(1/β )

)
. Note that in practice one can modify the robust SA

algorithm so that the approximate solution x̄N is obtained by averaging over a part
of the trajectory (see [20] for details).

7.2.2 Accelerated SA Methods for Nonsmooth and Smooth
Stochastic Optimization

While the robust SA method is theoretically optimal for solving general nonsmooth
convex optimization problems, it does not make use of the smoothness properties
that the objective function f might have. As a result, it does not achieve the best
possible complexity bounds for solving smooth stochastic optimization problems.
In this subsection, we discuss a new stochastic optimization method, the accelerated
SA, which is optimal for solving not only nonsmooth but also smooth stochastic
optimization problems. Below, we present the framework of this method for convex
problems.
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Algorithm 2 The accelerated SA (AC-SA) method for convex problems
Let xag

0 = x0 ∈Θ , step-size parameters {αk}k≥1 and {γk}k≥1 be given s.t. α1 = 1, αk ∈ (0,1) for
any k ≥ 2, and γk > 0 for any k ≥ 1.
for k = 1, . . . ,N do

Set

xmd
k = αkxk−1 +(1−αk)x

ag
k−1, (7.14)

xk = ΠΘ

(
xk−1 −αk/γkG(xmd

k ,ξk)
)
, (7.15)

xag
k = αkxk +(1−αk)x

ag
k−1. (7.16)

end for
Output xag

N .

In this subsection, we assume that the objective function f (·) in (7.1) can be
either smooth or nonsmooth. In the former, we assume that f (·) has Lipschitz
continuous gradients, i.e.,

‖∇ f (y)−∇ f (x)‖ ≤ L‖y− x‖, ∀x,y ∈Θ . (7.17)

In the latter, we assume that f (·) is a general Lipschitz continuous function, i.e.,

| f (y)− f (x)| ≤ K‖y− x‖, ∀x,y ∈Θ . (7.18)

Moreover, to establish the convergence properties of the AC-SA method, we make
the following assumption regarding the error in estimating the true (sub)gradient of
f (·) by the stochastic gradient:

E
[‖G(x,ξk)− g(x)‖2]≤ σ2, ∀x ∈Θ , ∀k ≥ 1. (7.19)

where g(x) ∈ ∂ f (x). The following result shows the main convergence properties of
the AC-SA method, which was first shown in [18, p. 378] (see also [8, p. 1475]).

Theorem 7.2. Suppose that condition (7.19) holds and the step sizes {αk}k≥1 and
{γk}k≥1 in the AC-SA method are chosen such that

γ1/Γ1 = γ2/Γ2 = . . . , (7.20)

where

Γk :=

{
1, k = 1,
(1−αk)Γk−1, k ≥ 2.

(7.21)
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Then,

a) if condition (7.17) holds and γk > Lα2
k , then for any N ≥ 1, we have

E[ f (xag
N )− f ∗]≤ ΓN

(
γ1‖x0 − x∗‖2

2
+

N

∑
k=1

σ2α2
k

Γk[γk −Lα2
k ]

)
. (7.22)

b) if condition (7.18) holds, then for any N ≥ 1, we have

E[ f (xag
N )− f ∗]≤ ΓN

(
γ1‖x0 − x∗‖2

2
+ 2(4K2 +σ2)

N

∑
k=1

α2
k

Γkγk

)
. (7.23)

We now discuss the step-size policies for the above result. By choosing αk =
2/(k+ 1) and γk = 4γ/[k(k+ 1)], we have Γk = 2/[k(k+ 1)], which consequently
implies that condition (7.20) holds. Now, if condition (7.17) holds, by choosing

γ = γ∗N = max

⎧⎨
⎩2L,

[
σ2N(N + 1)(N + 2)

3‖x0 − x∗‖2

] 1
2

⎫⎬
⎭ , (7.24)

we have γk > Lα2
k , and in the view of (7.22), we obtain

E[ f (xag
N )− f ∗]≤ 4L‖x0 − x∗‖2

N(N + 1)
+

4‖x0 − x∗‖σ√
N + 1

. (7.25)

Observe that by choosing αk, γk, and Γk as mentioned above, γ∗N in (7.24) is obtained
by minimizing the RHS of (7.22) with respect to γ over the interval [2L,+∞). Also,
note that the bound in (7.25) implies that the AC-SA method can find an ε-solution
of (7.1) in at most

2‖x0 − x∗‖
√

2L
ε

+
64‖x0 − x∗‖2σ2

ε2

iterations, which is unimprovable for the SFO methods to solve smooth convex
optimization problems, in view of the complexity theory by Nemirovski and
Yudin [21, Sect. 5.3].

Moreover, if condition (7.18) holds, by choosing

γ = γ∗N =

[
(4K2 +σ2)N(N + 1)(2N + 1)

6‖x0 − x∗‖2

] 1
2

, (7.26)
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and in the view of (7.23), we have

E[ f (xag
N )− f ∗]≤ 3‖x0 − x∗‖(2K +σ)√

N
. (7.27)

Note that if conditions (7.19) and (7.18) hold, then condition (7.5) holds for any M ≥
K +σ . Thus, according to our discussion in the previous subsection, (7.27) is also
unimprovable for the SFO methods to solve general nonsmooth convex optimization
problems.

Applying Markov’s inequality to (7.25) and (7.27), for any ε > 0, we obtain

P
(

f (xag
N )− f ∗ > ε

)≤ 1
ε

(
4L‖x0 − x∗‖2

N(N + 1)
+

4‖x0 − x∗‖σ√
N + 1

)
,

and

P
(

f (xag
N )− f ∗ > ε

)≤ 3‖x0 − x∗‖(2K +σ)
ε
√

N
,

respectively, for smooth and nonsmooth convex stochastic optimization problems.
To improve the above probability bounds, we need to modify the light-tail assump-
tion (7.12) for the error associated with estimating the true (sub)gradient by the
stochastic (sub)gradient, i.e.,

E
[
exp{‖G(x,ξk)− g(x)‖2/σ2}]≤ exp{1}, ∀x ∈Θ , ∀k ≥ 1. (7.28)

Define

RΘ (x
∗) := max

x∈Θ
‖x− x∗‖.

The following result is from [18, Corollary 1] (see also [8, Proposition 7]).

Proposition 7.2. Suppose that condition (7.28) holds and λ be any positive
number.

a) If condition (7.17) holds and γ is set to (7.24), then,

P

(
f (xag

N )− f ∗ >
4L‖x0 − x∗‖2

N(N + 1)
+

4(1+ 2λ )σRΘ(x∗)√
N

)

≤ exp{−λ 2/3}+ exp{−λ}. (7.29)

b) If condition (7.18) holds and γ is set to (7.26), then,

P
(

f (xag
N )− f ∗ > 3 [2K‖x0 − x∗‖+(1+ 3λ )σRΘ(x

∗)]N−1/2
)

≤ exp{−λ 2/3}+ exp{−λ}. (7.30)
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In view of (7.29) and (7.30), we conclude that the number N of steps required
by the AC-SA algorithm to solve smooth or nonsmooth problems with accu-
racy ε > 0, and a confidence 1 − β , is of order O

(
ε−1/2 + ε−2 log2(1/β )

)
and

O
(
ε−2 log2(1/β )

)
, respectively.

One critical problem associated with SA-type methods is that it is difficult to
check the accuracy of the generated solutions. In the remaining part of this sub-
section, we show that one can compute, with little additional computational effort,
certain stochastic lower bounds of the optimal value of (7.1) during the execution
of the AC-SA algorithms. These stochastic lower bounds, when grouped with
certain stochastic upper bounds on the optimal value, can provide online accuracy
certificates for the generated solutions. Note that similar validation procedures have
also been developed by Lan et al. [19] for the robust SA algorithm discussed in
Sect. 7.2.1.

Define

l̃bN = min
x∈Θ

ΓN

N

∑
k=1

αk

Γk
l̃ f (x

md
k ,ξk,x), (7.31)

where

l̃ f (z,ξ ,x) := F(z,ξ )+ 〈G(z,ξ ),x− z〉.

Observe that by definition of Γk in (7.21), we have

N

∑
k=1

αk

Γk
=
α1

Γ1
+

N

∑
k=2

1
Γk

(
1− Γk

Γk−1

)
=

1
Γ1

+
N

∑
k=2

(
1
Γk

− 1
Γk−1

)
=

1
ΓN

. (7.32)

Noting this observation, convexity of f and the fact that xmd
k is a function of ξ[k−1] =

(ξ1, . . . ,ξk−1), and ξk is independent of ξ[k−1], we have

E
[
l̃bN
]
= E

[
Eξ[N−1]

[
min
x∈Θ

(
ΓN

N

∑
k=1

αk

Γk
l̃ f (x

md
k ,ξk,x)

)]]

≤ E

[
min
x∈Θ

Eξ[k−1]

[(
ΓN

N

∑
k=1

αk

Γk
l̃ f (x

md
k ,ξk,x)

)]]

= E

[
min
x∈Θ

ΓN

N

∑
k=1

αk

Γk

{
f (xmd

k )+ 〈g(xmd
k ),x− xmd

k 〉
}]

≤ f ∗,

i.e., on average, l̃bN gives a lower bound for the optimal value of (7.1). To see
how good the lower bound l̃bN is, we estimate the expectations and probabilities
of the corresponding errors in Proposition 7.3 (cf. [8, p. 1489]). To establish the
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large-deviation results for l̃bk, we also need the following light-tail condition about
the stochastic function values F(x,ξ ).

E
[
exp{‖F(x,ξk)− f (x)‖2/Q2}]≤ exp{1}, ∀x ∈Θ , ∀k ≥ 1, (7.33)

for some Q > 0.

Proposition 7.3. Suppose that condition (7.19) holds and the step sizes in the AC-
SA method are given such that αk = 2/(k+ 1) and γk = 4γ/[k(k+ 1)]. Then,

a) if condition (7.17) holds and γ is given by (7.24) with replacing ‖x0 − x∗‖ by
RΘ (x0), then for any N ≥ 1, we have

E[ f (xag
N )− l̃bN ]≤ 4LRΘ (x0)

2

N(N + 1)
+

4RΘ (x0)σ√
N + 1

. (7.34)

If in addition, conditions (7.28) and (7.33) hold, then we have

P

(
f (xag

N )− f ∗>4LRΘ (x0)
2

N(N +1)
+

4RΘ (x0)σ +λ [4σ(2RΘ (x0)+RΘ (x∗))+2Q]√
N

)

≤ 2exp{−λ 2/3}+exp{−λ}, (7.35)

b) if condition (7.18) holds and γ is given by (7.26) with replacing ‖x0 − x∗‖ by
RΘ (x0), then for any N ≥ 1, we have

E[ f (xag
N )− l̃bN ]≤ 3RΘ (x0)(2K +σ)√

N
. (7.36)

If in addition, conditions (7.28) and (7.33) hold, then we have

P
(

f (xag
N )− f ∗ > 3RΘ (x0)(2K +σ)+λ [4σ(2RΘ(x0)+RΘ(x

∗))+ 2Q]N−1/2
)

≤ 2exp{−λ 2/3}+ exp{−λ}. (7.37)

We now describe a way to enhance the above lower bounds with efficiently
computable upper bounds on the optimal value f ∗ so that one can assess the quality
of the generated solutions in an online manner. Define

ubN = β−1
N

N

∑
k=�N/2�

kF(xag
k ,ξk), ∀N ≥ 1, (7.38)

where βN := ∑N
k=�N/2� k and �·� denotes the ceiling function that returns the next

integer above the argument. Since Eξk
[F(xag

k ,ξk)] = f (xag
k ), we have E[ubN ] ≥ f ∗,
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i.e., ūbN , N ≥ 1, on average, provide online upper bounds on f ∗. Accordingly, we
define the new online lower bounds as

lbN = β−1
N

N

∑
k=�N/2�

k l̃bk, ∀N ≥ 1, (7.39)

where l̃bk is defined in (7.31). Using this observation and Proposition 7.3, we have

E[ubN − lbN ] = β−1
N

N

∑
k=�N/2�

k[ f (xag
k )− l̃bk]≤ β−1

N

N

∑
k=�N/2�

kO

(
1√
k

)

= O

(
β−1

N

N

∑
k=�N/2�

√
k

)
= O

(
1√
N

)
, N ≥ 3,

where the last identity follows from the facts that ∑N
k=�N/2�

√
k = O(N

3
2 ) and that

βN ≥ 1
2

[
N(N + 1)−

(
N
2
+ 1

)(
N
2
+ 2

)]
≥ 1

8

(
3N2 − 2N − 8

)
.

Therefore, the gap between online upper bound ubN and lower bound lbN converges
to 0 in the same order of magnitude as the one between f (xag

N ) and l̃bN for both
smooth and nonsmooth convex SP problems (cf. [8, p. 1490]).

7.2.3 Accelerated SA Methods for Strongly Convex
Optimization

In this subsection, we consider strongly convex problems with f (·) in (7.1)
satisfying the following condition:

μ
2
‖y− x‖2 ≤ f (y)− f (x)−〈g(x),y− x〉 ≤ L

2
‖y− x‖2+ 2K‖y− x‖, ∀x,y ∈Θ ,

(7.40)

where g(x) ∈ ∂ f (x) and μ > 0 is the strong convexity parameter. Note that if L or
K is zero, the right hand side inequality in the above relation immediately follows
from (7.18) or (7.17). Our goal is to show that the AC-SA algorithm, when employed
with proper step-size parameters, is nearly optimal for solving strongly convex SP
problems. Moreover, we show that the optimal complexity for solving this class of
problems can be achieved by properly restarting the AC-SA algorithm with certain
step-size policy.
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Below, we generalize the AC-SA algorithm presented in the previous subsection
for strongly convex problems.

Algorithm 3 The accelerated SA (AC-SA) method for strongly convex problems
Let xag

0 = x0 ∈Θ , step-size parameters {αk}k≥1 and {γk}k≥1 be given s.t. α1 = 1, αk ∈ (0,1) for
any k ≥ 2, and γk > 0 for any k ≥ 1.
for k = 1, . . . ,N do

Set

xmd
k =

(1−αk)(μ+ γk)

γk +(1−α2
k )μ

xag
k−1 +

αk[(1−αk)μ+ γk]

γk +(1−α2
k )μ

xk−1, (7.41)

xk = argmin
x∈Θ

{
αk[〈G(xmd

k ,ξk),x〉+ μ
2
‖xmd

t − x‖2]+
(1−αk)μ+ γk

2
‖xk−1 − x‖2

}
, (7.42)

xag
k = αkxk +(1−αk)x

ag
k−1. (7.43)

end for
Output xag

N .

The next result is established in [8, Theorem 1] about the main convergence
properties of the AC-SA method for solving strongly convex problems.

Theorem 7.3. Suppose that condition (7.19) holds and the step sizes {αk}k≥1

and {γk}k≥1 in the AC-SA method are chosen such that condition (7.20) holds. If
condition (7.40) holds and μ+ γk > Lα2

k , then for any N ≥ 1, we have

E[ f (xag
N )− f ∗]≤ ΓN

(
γ1‖x0 − x∗‖2

2
+

N

∑
k=1

2(4K2 +σ2)α2
k

Γk(μ+ γk −Lα2
k )

)
, (7.44)

where Γk is defined in (7.21).

By choosing step sizes αk = 2/(k+1) and γk = 4L/[k(k+1)], and in the view of
(7.44), for any N ≥ 1, we have

E[ f (xag
N )− f ∗]≤ 2L‖x0 − x∗‖2

N(N + 1)
+

8(4K2 +σ2)

μ(N + 1)
, (7.45)

which in the view of the complexity theory by Nemirovski and Yudin [21, Sect. 7.2],
implies that the AC-SA algorithm is nearly optimal for solving strongly convex
stochastic optimization problems. More specifically, while the second term in bound
(7.45) is unimprovable, the first term can be much improved. Observe also that



7 Stochastic Approximation Methods 193

the above complexity bound is actually optimal for nonsmooth strongly convex
problems, i.e., L = 0 and K > 0 in (7.40).

By (7.45) and Markov’s inequality, we conclude that, if condition (7.19) holds,
then the iteration complexity of the AC-SA algorithm for solving strongly convex
SP problems to accuracy ε with confidence level 1−β is bounded by

O

(
1
β

[√
L‖x0 − x∗‖2

ε
+

K2 +σ2

με

])
. (7.46)

Moreover, if condition (7.28) holds, then (7.46) can be improved to

O

(√
L‖x0 − x∗‖2

νε
+

K2 +σ2

με
+
σ2

με
log

1
β
+

[
σRΘ (x∗)

ε
log

1
β

]2
)
. (7.47)

Note that the above iteration-complexity bound has a significantly worse depen-
dence on ε than the one in (7.46), although it depends only logarithmically on
1/β . It can be shown that by properly shrinking the feasible region once a while
during the execution of the AC-SA method, the bound in (7.47) can be significantly
improved to

O

(
1
ε

[
log

1
εβ

]2
)
,

in terms of its dependence on ε (see [9, Proposition 5] for more details). It is worth
to point out that, similarly to the bounds (7.31), (7.38), and (7.39) in the previous
subsection, we can define online lower and upper bounds on the optimal value of
problem (7.1), which allow us to provide online accuracy certificates to evaluate
quality of the generated solutions by the AC-SA algorithm for strongly convex
problems (see subsection 5 in [8] for more details).

One problem associated with the above AC-SA method is that it is not optimal
for solving strongly convex SP problems. In the remaining part of this subsection,
we show that by properly restarting the AC-SA algorithm for convex problems with
a certain step-size policy, it can achieve the optimal iteration complexity for solving
strongly convex SP problems. Below we present a multi-stage AC-SA algorithm for
strongly convex problems.
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Algorithm 4 The multi-stage AC-SA method
Let p0 ∈Θ , and a bound V0 such that f (p0)− f (x∗) ≤ V0 be given.
for s = 1, . . . ,S do
a) Run Ns iterations of the AC-SA algorithm for convex problems with input x0 = ps−1,

{αk}k≥1 = 2/(k+1) and {γk}k≥1 = 4γ/k(k+1) with γ = γs, where

Ns =

⌈
max

{
4

√
2L
μ
,

128(4K2 +σ 2)

3μV02−(s+1)

}⌉
, (7.48)

γs = max

⎧⎨
⎩2L,

[
μ(4K2 +σ 2)

3V02−(s−1)
Ns(Ns +1)(Ns +2)

] 1
2

⎫⎬
⎭ , (7.49)

b) Set ps = xag
Ns

, where xag
Ns

is the solution obtained in Step a).
end for
Output pS = xag

NS
.

The following result about the convergence properties of the multi-stage AC-SA
algorithm is presented in [9, Proposition 7].

Proposition 7.4. Let {ps}s≥1 be computed by the multi-stage AC-SA algorithm. If
condition (7.19) holds, then

E[ f (ps)− f ∗]≤ Vs ≡ V02−s, ∀s ≥ 0. (7.50)

As a consequence, the multi-stage AC-SA algorithm will find a solution x̄ ∈ Θ of
(7.1) such that E[ f (x̄)− f ∗] ≤ ε for any ε ∈ (0,V0) in at most S := �logV0/ε�
stages. Moreover, the total number of iterations performed by this algorithm to find
such a solution is bounded by O(T (ε)), where

T (ε) :=

√
L
μ

max

(
1, log

V0

ε

)
+

K2 +σ2

με
. (7.51)

By (7.51) and in view of the complexity theory by Nemirovski and Yudin [21,
Sect. 7.2], we conclude that the multi-stage algorithm exhibits optimal iteration
complexity for solving strongly convex problems. Moreover, suppose that we run
the multi-stage AC-SA algorithm for Sβ := �logV0/(βε)� stages for a given β ∈
(0,1). Then by (7.50) and Markov’s inequality, we have P( f (pSβ )− f ∗ > ε) ≤ β ,
which implies that the total number of iterations performed by the multi-stage
AC-SA algorithm to solve strongly convex problems with accuracy ε > 0 and a
confidence level 1−β is of order O(T (βε)).

As shown in [9, Proposition 9], by properly shrinking the feasible region of
the problem (7.1) and under condition (7.28), we can improve the large-deviation
properties of the multi-stage AC-SA algorithm to
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√
L
μ

max

(
1, log

V0

ε

)
+

K2 +σ2

με
+

[
ln

log(V0/ε)
β

]2 σ2

με
.

7.3 Nonconvex Stochastic Optimization

The convergence of existing SA methods including the ones presented in the
previous section, requires f (·) to be convex [8, 9, 18–20]. In this section, we
study a class of nonconvex stochastic optimization problems. More specifically, we
assume that f (·) in (7.1) is differentiable (but possibly nonconvex) with Lipschitz-
continuous gradients (i.e., (7.17) holds). In addition, we assume that Θ ≡ R

n and
the function f bounded from below. Observe also that to guarantee the convexity of
f (·), one often needs to assume the random variables ξk, k ≥ 1, to be independent
of the search sequence {xk}. Below we present a new SA-type algorithm that can
deal with both convex and nonconvex stochastic optimization problems, and allow
random noises to be dependent on the search sequence. This algorithm is obtained
by incorporating a certain randomization scheme into the classical SA method.

Algorithm 5 The randomized stochastic gradient (RSG) method
Let initial point x1, iteration limit N, step sizes {γk}k≥1 and random variable R with probability
mass function PR(·) supported on {1, . . . ,N} be given.
for k = 1, . . . ,R do

Set xk+1 = xk − γkG(xk,ξk), for some γk ∈ (0,2/L).
end for
Output xR.

Note that, in comparison with the classical SA algorithm, we have used a random
iteration count, R, to terminate the execution of the RSG algorithm. Equivalently,
one can view such a randomization scheme from a slightly different perspective
described as follows. Instead of terminating the algorithm at the R-th step, one can
also run the RSG algorithm for N iterations but randomly choose a search point xR

(according to PR) from its trajectory as the output of the algorithm. Clearly, using
the latter scheme, we just need to run the algorithm for the first R iterations and
the remaining N −R iterations are surpluses. Note however, that the primary goal
to introduce the random iteration count R is to derive new complexity results for
nonconvex SP, rather than save the computational efforts in the last N −R iterations
of the algorithm. Indeed, if R is uniformly distributed, the computational gain from
such a randomization scheme is simply a factor of two.

The following result established in [10, Theorem 2.1] describes the main
convergence properties of the RSG method.
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Theorem 7.4. Suppose that the probability mass function PR(·) in the RSG method
is chosen such that

PR(k) := P(R = k) =
2γk −Lγ2

k

∑N
j=1(2γ j −Lγ2

j )
, k = 1, . . . ,N. (7.52)

If condition (7.19) holds, then

a) for any N ≥ 1, we have

1
L
E[‖∇ f (xR)‖2]≤ D2

f +σ2∑N
k=1 γ2

k

∑N
k=1(2γk −Lγ2

k )
, (7.53)

where the expectation is taken with respect to R and ξ[N] := (ξ1, . . . ,ξN),

D f :=

[
2( f (x1)− f ∗)

L

] 1
2

, (7.54)

and f ∗ denotes the optimal value of problem (7.1);
b) if, in addition, problem (7.1) is convex with an optimal solution x∗, then, for any

N ≥ 1,

E[ f (xR)− f ∗]≤ ‖x1 − x∗‖2 +σ2∑N
k=1 γ

2
k

∑N
k=1(2γk −Lγ2

k )
, (7.55)

where the expectation is taken with respect to R and ξ[N].

We now describe a possible strategy for the selection of the step sizes {γk} in
the RSG method. For the sake of simplicity, let us assume that a constant step-
size policy is used, i.e., γk = γ , k = 1, . . . ,N, for some γ ∈ (0,2/L). Note that the
assumption of constant step sizes does not hurt the efficiency estimate of the RSG
method. By choosing the step sizes as

γk = min

{
1
L
,

D f

σ
√

N

}
, k = 1, . . . ,N, (7.56)

and in the view of (7.53), we have

1
L
E[‖∇ f (xR)‖2]≤BN :=

LD2
f

N
+

2D fσ√
N

. (7.57)

If in addition, problem (7.1) is convex, then by choosing the step sizes as

γk = min

{
1
L
,
‖x1 − x∗‖
σ
√

N

}
, k = 1, . . . ,N, (7.58)
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and in the view of (7.55), we have

E[ f (xR)− f ∗]≤ L‖x1 − x∗‖2

N
+

2‖x1 − x∗‖σ√
N

. (7.59)

Note that D f and ‖x1 − x∗‖ in the definition of γk in (7.56) and (7.58), respectively,
can be replaced by any constant D̃ > 0. In this case, the second terms in (7.57) and
(7.59) are just affected by some constants. Thus, the RSG method allows us to have
unified treatment for both smooth convex and nonconvex SP problems.

Moreover, (7.57) implies that the number of iterations performed by the RSG
method to find a solution x̄ such that E[‖∇ f (x̄)‖2]≤ ε is order O(σ2/ε2), which is,
to the best of our knowledge, the first complexity result in the literature for smooth
nonconvex SP problems. Also, (7.59) implies that the RSG method posses nearly
optimal convergence rate for convex SP problems.

One possible drawback of the step-size policy in (7.56) and (7.58) is that we
need to estimate L to obtain an upper bound on the step sizes {γk}. Note that
similar requirements also exist in some other first-order methods (e.g., gradient
descent methods and Nesterov’s accelerated gradient methods). While under the
deterministic setting, one can somehow relax such requirements by using certain
line-search procedures to enhance the practical performance of these methods, it
is more difficult to devise similar line-search procedures for the stochastic setting,
since the exact values of f (xk) and ∇ f (xk) are not available. It should also be noted
that we do not need very accurate estimate for L in the RSG method. Indeed, it can
be easily checked that the RSG method exhibits an O(1/

√
N) rate of convergence if

the step sizes {γk} are set to

min

{
1

qL
,

D̃

σ
√

N

}
, k = 1, . . . ,N

for any q ∈ (1,
√

N]. In other words, we can overestimate the value of L by a factor
up to

√
N and the resulting RSG method still exhibits similar rate of convergence.

A common practice in stochastic optimization is to estimate these parameters by
using the stochastic gradients computed at a small number of trial points (see, e.g.,
[8,9,19,20]). It is also worth noting that, although in general the selection of PR will
depend on γk and hence on L, such a dependence is not necessary in some special
cases. In particular, if the step sizes {γk} are chosen according to a constant step-size
policy (e.g., (7.56)), then R is uniformly distributed on {1, . . . ,N}. See [12, Sect. 6]
for more details about the practical implementation of the RSG method.

By (7.57) and Markov’s inequality, we have

P
(‖∇ f (xR)‖2 ≥ ε

)≤ 1
ε

(
L2D2

f

N
+

2LD fσ√
N

)
. (7.60)
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It then follows that the number of iterations performed by the RSG method for
finding an (ε,β )-solution of problem (7.1) such that P

(‖∇ f (xR)‖2 ≥ ε
)≤ β , after

disregarding a few constant factors, can be bounded by

O

(
1
βε

+
σ2

β 2ε2

)
. (7.61)

The above complexity bound is rather pessimistic in terms of its dependence on β .
We now describe a variant of the RSG method that can considerably improve the

complexity bound in (7.61). This procedure consists of two phases: an optimization
phase used to generate a list of candidate solutions via a few independent runs of
the RSG method and a post-optimization phase in which a solution is selected from
this candidate list.

Algorithm 6 The two-phase RSG (2-RSG) method
Let initial point x1, number of runs S, iteration limit N, and sample size T be given.
Optimization phase:
for s = 1, . . . ,S do

Call the RSG method with input x1, iteration limit N, step sizes {γk} in (7.56) and probability
mass function PR in (7.52). Let x̄s be the output of this procedure.

end for
Post-optimization phase:
Output x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖g(x̄∗)‖ = min
s=1,...,S

‖g(x̄s)‖, g(x̄s) :=
1
T

T

∑
k=1

G(x̄s,ξk). (7.62)

Observe that in (7.62), we define the best solution x̄∗ as the one with the smallest
value of ‖g(x̄s)‖, s = 1, . . . ,S. Alternatively, one can choose x̄∗ from {x̄1, . . . , x̄S}
such that

f̃ (x̄∗) = min
s=1,...,S

f̃ (x̄s), f̃ (x̄s) =
1
T

T

∑
k=1

F(x̄s,ξk). (7.63)

Also, in the 2-RSG method described above, the number of computations
for the stochastic gradient is given by S × N and S × T , respectively, for the
optimization phase and post-optimization phase. The following result presented in
[10, Theorem 2.4] summarizes the convergence properties of the 2-RSG method.

Theorem 7.5. If condition (7.19) holds, the following statements hold for the
2-RSG method applied to problem (7.1).
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a) Let BN be defined in (7.57). We have

P

(
‖∇ f (x̄∗)‖2 ≥ 2

[
4LBN +

3λσ2

T

])
≤ S+ 1

λ
+ 2−S, ∀λ > 0; (7.64)

b) Let ε > 0 and β ∈ (0,1) be given. If the parameters (S,N,T ) are set to

S = S(β ) := �log(2/β )� , (7.65)

N = N(ε) :=

⌈
max

{
32L2D2

f

ε
,

[
64LD fσ

ε

]2
}⌉

, (7.66)

T = T (ε,β ) :=

⌈
24(S+ 1)σ2

βε

⌉
, (7.67)

then the 2-RSG method can compute an (ε,β )-solution of problem (7.1) after
taking at most

S(β ) [N(ε)+T (ε,β )] (7.68)

computations of the stochastic gradient.

In view of (7.65), (7.66) and (7.67), the complexity bound in (7.68), after
disregarding a few constant factors, is equivalent to

O

(
log(1/β )

ε
+
σ2

ε2 log
1
β
+

log2(1/β )σ2

βε

)
. (7.69)

The above bound can be considerably smaller than the one in (7.61) up to a factor
of 1/

[
β 2 log(1/β )

]
, when the second terms in both bounds dominate.

The complexity bound (7.69) can be further improved. Specifically, if condition
(7.28) holds and the sample size for estimating the gradients at post-optimization
phase is set to

T = T ′(ε,β ) :=
24σ2

ε

[
1+

(
3ln

2(S+ 1)
β

) 1
2
]2

, (7.70)

then the complexity of the 2-RSG method for computing an (ε,β )-solution of
problem (7.1) is order

O

(
log(1/β )

ε
+
σ2

ε2 log
1
β
+

log2(1/β )σ2

ε

)
. (7.71)

Clearly, the third term of the above bound is significantly smaller than the corre-
sponding one in (7.69) by a factor of 1/β (c.f., [10, Corollary 2.5]).
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7.4 Randomized Stochastic Zeroth-Order (SZO) Methods

In this section, we still consider the situation when we f (·) in (7.1) is differentiable
(but possibly nonconvex) with Lipschitz-continuous gradients (i.e., (7.17) holds).
In addition, we assume that Θ ≡ R

n and the function f (·) bounded from below.
However, throughout this section, we assume that only stochastic function values
F(x,ξ ) of the objective function f (·) in (7.1) are given. Our goal is to present SZO
methods for solving these types of simulation optimization problems.

To exploit zeroth-order information, we consider a smooth approximation of the
objective function f given by a convolution with Gaussian distribution. Specifically,
we consider a smooth approximation of f defined as

fμ(x) =
1

(2π)
n
2

∫
f (x+ μu)e−

1
2‖u‖2

du = Eu[ f (x+ μu)], (7.72)

where μ > 0 is the smoothing parameter. The following result due to Nesterov [23]
describes some properties of fμ(·).
Theorem 7.6. The following statements hold for any f satisfying in (7.17).

a) The gradient of fμ given by

∇ fμ(x) =
1

(2π)
n
2

∫
f (x+ μu)− f (x)

μ
ue−

1
2 ‖u‖2

du, (7.73)

is Lipschitz continuous with constant Lμ such that Lμ ≤ L.
b) For any x ∈ R

n,

| fμ(x)− f (x)| ≤ μ2

2
Ln, (7.74)

‖∇ fμ(x)−∇ f (x)‖ ≤ μ
2

L(n+ 3)
3
2 . (7.75)

c) For any x ∈ R
n,

1
μ2 Eu[{ f (x+ μu)− f (x)}2‖u‖2]≤ μ2

2
L2(n+ 6)3 + 2(n+ 4)‖∇ f (x)‖2. (7.76)
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Below, we modify the RSG method in the previous section to use stochastic
zeroth-order rather than first-order information for solving problem (7.1).

Algorithm 7 The randomized stochastic gradient free (RSGF) method
Let initial point x1, iteration limit N, step sizes {γk}k≥1 and random variable R with probability
mass function PR(·) supported on {1, . . . ,N} be given.
for k = 1, . . . ,R do

Generate uk by Gaussian random vector generator and compute Gμ (xk,ξk,uk) given by

Gμ(xk,ξk,uk) =
F(xk +μuk,ξk)−F(xk,ξk)

μ
uk. (7.77)

Set xk+1 = xk − γkGμ (xk,ξk,uk) for some γk ∈ (0,2/(n+4)L).
end for
Output xR.

Note that by (7.73) and (7.77), we have

Eξ ,u[Gμ(x,ξ ,u)] = Eu
[
Eξ [Gμ(x,ξ ,u)|u]

]
= ∇ fμ(x), (7.78)

which clearly implies that Gμ(x,ξ ,u) is an unbiased estimate of ∇ fμ(x). Hence,
if the variance σ̃2 ≡ Eξ ,u[‖Gμ(x,ξ ,u)−∇ fμ(x)‖2] is bounded, we can directly
apply the convergence results in Theorem 7.4 to the above RSGF method. However,
there still exist a few problems in this approach. First, we do not know an
explicit expression of the bound σ̃2. Secondly, this approach does not provide any
information regarding how to appropriately specify the smoothing parameter μ . The
latter issue is critical for the implementation of the RSGF method. The next result
established in [10, Theorem 3.2], shows the main convergence properties of the
RSGF method.

Theorem 7.7. Suppose that the probability mass function PR(·) in the RSGF
method is given by

PR(k) := P(R = k) =
γk − 2L(n+ 4)γ2

k

∑N
j=1

[
γ j − 2L(n+ 4)γ2

j

] , k = 1, . . . ,N. (7.79)

If condition (7.19) holds, then

a) for any N ≥ 1, we have

1
L
E[‖∇ f (xR)‖2]≤ 1

∑N
k=1

[
γk − 2L(n+ 4)γ2

k

]
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{
D2

f + 2μ2(n+ 4)

[
1+L(n+ 4)2

N

∑
k=1

(
γk

4
+Lγ2

k )

]
+ 2(n+ 4)σ2

N

∑
k=1

γ2
k

}
,

(7.80)

where the expectation is taken with respect to R, ξ[N] and u[N].
b) if, in addition, problem (7.1) is convex with an optimal solution x∗, then, for any

N ≥ 1,

E[ f (xR)− f ∗]≤ 1

2∑N
k=1

[
γk − 2(n+ 4)Lγ2

k

] (7.81)

{
‖x1 − x∗‖2 + 2μ2L(n+ 4)

N

∑
k=1

[
γk +L(n+ 4)2γ2

k

]
+ 2(n+ 4)σ2

N

∑
k=1

γ2
k

}
,

(7.82)

where the expectation is taken with respect to R, ξ[N] and u[N].

Similarly to the RSG method, we can specialize the convergence results in the
above theorem with a constant step-size policy. Specifically, if condition (7.19)
holds, then by choosing the step size γk and the smoothing parameter μ as

γk =
1√

n+ 4
min

{
1

4L
√

n+ 4
,

D f

σ
√

N

}
, k = 1, . . . ,N, (7.83)

μ ≤ D f

(n+ 4)
√

2N
, (7.84)

we have

1
L
E[‖∇ f (xR)‖2]≤ B̄N :=

12(n+ 4)LD2
f

N
+

8D f
√

n+ 4σ√
N

. (7.85)

If, in addition, problem (7.1) is convex with an optimal solution x∗, γk and μ are
chosen such that

γk =
1√

n+ 4
min

{
1

4L
√

n+ 4
,
‖x1 − x∗‖
σ
√

N

}
, k = 1, . . . ,N, (7.86)

μ ≤ ‖x1 − x∗‖√
n+ 4

, (7.87)

then

E[ f (xR)− f ∗]≤ 5L(n+ 4)‖x1− x∗‖2

N
+

4‖x1 − x∗‖√n+ 4σ√
N

. (7.88)
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The above bound implies that the complexity of the RSGF method, when the
problem is convex, to find a solution x̄ such that E[ f (x̄)− f ∗] ≤ ε , is bounded by
O(n/ε2), which has a weaker dependence (by a factor of n) than the one established
by Nesterov for solving general nonsmooth convex SP problems (see page 17
of [23]).

By (7.85) and Markov’s inequality, we have

P
(‖∇ f (xR)‖2 ≥ ε

)≤ 1
ε

(
12(n+ 4)L2D2

f

N
+

8LD f
√

n+ 4σ√
N

)
, (7.89)

which implies that the total number of computation of stochastic performed by the
RSGF method for finding an (ε,β )-solution of (7.1) can be bounded by

O

(
n
βε

+
n
β 2

σ2

ε2

)
. (7.90)

Similarly to the RSG method, we can design a two-phase variant of the RSGF
method to improve the dependence of the above bound on the confidence level β as
follows.

Algorithm 8 The two-phase RSGF (2-RSGF) method
Let initial point x1, number of runs S, iteration limit N, and sample size T be given.
Optimization phase:
for s = 1, . . . ,S do

Call the RSGF method with input x1, iteration limit N, step sizes {γk} in (7.86), probability
mass function PR in (7.79) and the smoothing parameter μ satisfying in (7.87). Let x̄s be the
output of this procedure.

end for
Post-optimization phase:
Output x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖gμ (x̄
∗)‖= min

s=1,...,S
‖gμ (x̄s)‖, gμ (x̄s) :=

1
T

T

∑
k=1

Gμ (x̄s,ξk,uk). (7.91)

The following result presented in [10, Theorem 3.4] summarizes the convergence
properties of the 2-RSGF method.

Theorem 7.8. If condition (7.19) holds, the following statements hold for the 2-
RSGF method applied to problem (7.1).
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a) Let B̄N be defined in (7.85). We have

P

(
‖∇ f (x̄∗)‖2 ≥ 8LB̄N +

3(n+4)L2D2
f

2N +
24(n+4)λ

T

[
LB̄N +

(n+4)L2D2
f

N +σ2

])

≤ S+1
λ + 2−S, ∀λ > 0.

b) Let ε > 0 and β ∈ (0,1) be given. If S is set to S(β ) as in (7.65), and the iteration
limit N and sample size T , respectively, are set to

N = N̂(ε) : =max

{
12(n+4)(6LD f )

2

ε
,

[
144L

√
n+4D fσ
ε

]2
}
, (7.92)

T = T̂ (ε,β ) :=
24(n+ 4)(S+ 1)

β
max

{
1,

6σ2

ε

}
, (7.93)

then the 2-RSGF method can compute an (ε,β )-solution of problem (7.1) after
taking at most

2S(β )
[
N̂(ε)+ T̂ (ε,β )

]
(7.94)

computations of the stochastic function values.

Observe that in the view of (7.65), (7.92) and (7.93), the complexity of the 2-
RSGF method to find (ε,β )-solution of (7.1) is bounded by

O

(
n log(1/β )

ε
+

nσ2

ε2 log
1
β
+

n log2(1/β )
β

[
1+

σ2

ε

])
. (7.95)

The above bound is considerably smaller than the one in (7.90), up to a factor
of O

(
1/[β 2 log(1/β )]

)
, when the second terms are the dominating ones in both

bounds.

7.5 Summary

In this chapter, we surveyed some recent advances on the design and analysis of
SA-type methods for solving different classes of stochastic optimization problems.
We focused on the finite-time convergence properties of these methods, indicating
the optimality of their associated complexity bounds when the problem is convex.
We also emphasized the large-deviation properties of the rate of convergence for
these new SA-type methods. Proofs and numerical experiments have not been
included here, but can be found in the original papers [8–10, 18, 20, 23].



7 Stochastic Approximation Methods 205

Acknowledgements This work was supported in part by the National Science Foundation under
Grants CMMI-1000347, CMMI-1254446, and DMS-1319050, and by the Office of Naval Research
under Grant N00014-13-1-0036.

References

1. A. Benveniste, M. Métivier, and P. Priouret. Algorithmes adaptatifs et approximations
stochastiques. Masson, 1987. English translation: Adaptive Algorithms and Stochastic
Approximations, Springer Verlag (1993).

2. C. Cartis, N. I. M. Gould, and P. L. Toint. On the oracle complexity of first-order and derivative-
free algorithms for smooth nonconvex minimization. SIAM Journal on Optimization,
22:66–86, 2012.

3. K. Chung. On a stochastic approximation method. Annals of Mathematical Statistics, pages
463–483, 1954.

4. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
SIAM, Philadelphia, 2009.

5. Y. Ermoliev. Stochastic quasigradient methods and their application to system optimization.
Stochastics, 9:1–36, 1983.

6. A. Gaivoronski. Nonstationary stochastic programming problems. Kybernetika, 4:89–92,
1978.

7. R. Garmanjani and L. N. Vicente. Smoothing and worst-case complexity for direct-search
methods in nonsmooth optimization. IMA Journal of Numerical Analysis, 33:1008–1028,
2013.

8. S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, I: a generic algorithmic framework. SIAM Journal on
Optimization, 22:1469–1492, 2012.

9. S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23:2061–2089, 2013.

10. S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23:2341–2368, 2013.

11. S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
optimization. Technical report, Department of Industrial and Systems Engineering, University
of Florida, Gainesville, FL 32611, USA, June 2013.

12. S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for
constrained nonconvex stochastic programming. Manuscript, Department of Industrial and
Systems Engineering, University of Florida, Gainesville, FL 32611, USA, August 2013.

13. A. Juditsky, A. Nazin, A. B. Tsybakov, and N. Vayatis. Recursive aggregation of estimators
via the mirror descent algorithm with average. Problems of Information Transmission, 41:n.4,
2005.

14. A. Juditsky, P. Rigollet, and A. B. Tsybakov. Learning by mirror averaging. Annals of Statistics,
36:2183–2206, 2008.

15. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23:462–466, 1952.

16. A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12:479–502, 2001.

17. H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications, volume 35 of Applications of Mathematics. Springer-Verlag, New York, 2003.

18. G. Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397, 2012.



206 S. Ghadimi and G. Lan

19. G. Lan, A. S. Nemirovski, and A. Shapiro. Validation analysis of mirror descent stochastic
approximation method. Mathematical Programming, 134(2):425–458, 2012.

20. A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

21. A. S. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

22. Y. E. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, 120:221–259, 2006.

23. Y. E. Nesterov. Random gradient-free minimization of convex functions. Technical report,
Center for Operations Research and Econometrics (CORE), Catholic University of Louvain,
January 2010.

24. G. Pflug. Optimization of stochastic models. In The Interface Between Simulation and
Optimization. Kluwer, Boston, 1996.

25. B. Polyak. New stochastic approximation type procedures. Automat. i Telemekh., 7:98–107,
1990.

26. B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J.
Control and Optimization, 30:838–855, 1992.

27. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.
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Chapter 8
A Guide to Sample Average Approximation

Sujin Kim, Raghu Pasupathy, and Shane G. Henderson

Abstract This chapter reviews the principles of sample average approximation
(SAA) for solving simulation optimization problems. We provide an accessible
overview of the area and survey interesting recent developments. We explain when
one might want to use SAA and when one might expect it to provide good-
quality solutions. We also review some of the key theoretical properties of the
solutions obtained through SAA. We contrast SAA with stochastic approximation
(SA) methods in terms of the computational effort required to obtain solutions of
a given quality, explaining why SA “wins” asymptotically. However, an extension
of SAA known as retrospective optimization can match the asymptotic convergence
rate of SA, at least up to a multiplicative constant.

8.1 Introduction

How does one solve an optimization problem of the form

min
x∈Θ

f (x), (8.1)

where Θ ⊆ R
d (d < ∞) and the real-valued function f (·) cannot be computed

exactly, but can be estimated through a (stochastic) simulation? The principle of
Sample Average Approximation (SAA) allows one to tackle such problems through
the use of sampling and optimization methods for deterministic problems. We
introduce SAA, describe its properties through both examples and theory, and relate
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SAA to established concepts in stochastic simulation. Our goal is to communicate
the essence of the idea and the key results in the area, rather than to provide an
exhaustive discussion of what is known about SAA. As such, this chapter is best
viewed as a guide rather than a survey. Similar guides for the strongly related area
of stochastic programming at a more introductory level can be found in [58].

Throughout, we assume that the function f cannot be observed or computed
directly, but we know that f (x) = E[Y (x,ξ )], where ξ is a random element with a
distribution that does not depend on x, and Y (·, ·) is a (deterministic) real-valued
function. Implicit in this statement is that for each fixed x ∈ Θ, E|Y (x,ξ )| < ∞. We
suppress measure-theoretic considerations unless they come into play at a practical
level. Nevertheless, we attempt to state results precisely.

In SAA, we select and fix ξ1,ξ2, . . . ,ξn, all having the same distribution as ξ ,
and set

fn(x) =
1
n

n

∑
i=1

Y (x,ξi).

Given the (fixed) sample ξ1,ξ2, . . . ,ξn, the function fn(·) is deterministic, and so we
can apply deterministic optimization algorithms to solve the problem

min
x∈Θ

fn(x). (8.2)

We then take an optimizer, X∗
n say, of (8.2) as an estimator of an optimal solution of

(8.1). Unless otherwise stated, we assume that (ξ1,ξ2, . . . ,ξn) form an independent
and identically distributed (i.i.d.) sample. The independence assumption is some-
times relaxed, mostly in variance reduction schemes or randomized quasi-Monte
Carlo schemes where dependence is deliberately introduced.

A popular example to illustrate SAA is the continuous newsvendor problem
where we buy x units of some commodity at a cost c > 0 per unit, observe demand
ξ , and sell as many units as we can at price s > c; see, e.g., [57, p. 330]. The goal
is to choose x so as to maximize profit. (Of course, one can convert this problem to
a minimization problem as in (8.1) simply by multiplying by −1.) The profit for a
given realization ξ is Y (x,ξ ) = smin{x,ξ}− cx. This function is concave in x, has
slope s− c > 0 for sufficiently small x and slope −c < 0 for sufficiently large x. It
follows that the same is true for the approximating function fn(·), which therefore
achieves its maximum. In fact, it is straightforward to show that an optimizer X∗

n
of fn(·) occurs at the 1− c/s quantile of the empirical distribution associated with
the observed demands ξ1,ξ2, . . . ,ξn, i.e., the �n(1−c/s)�th smallest of the observed
demands. If we assume that the distribution of ξ is continuous at its 1−c/s quantile,
which is optimal for the true problem (e.g., [41, p. 353]), then X∗

n converges to this
value as n → ∞ almost surely (a.s.). So in this case, SAA is successful, in that the
sequence of optimizers {X∗

n } converges to a true optimizer.
In general, is SAA a reasonable approach? What kinds of problems are such that

SAA works, in the sense that X∗
n can be expected to converge to the set of optimizers
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of (8.1) as n → ∞ in some sense? What kinds of problems are such that (8.2) is
amenable to deterministic optimization algorithms? Is this procedure competitive
with alternative algorithms, in the sense that the solutions returned after a given
computational effort are comparable in quality?

Most of these questions have been addressed in previous surveys of SAA, so what
is different here? We emphasize the intuition behind SAA, developing concepts
through a range of examples as well as through theory. Mostly we do not prove
results here, but instead give references to complete proofs, and provide proof
sketches where that helps build understanding. Many of those proofs can be found
in the excellent surveys [55–57].

It is hard to pin down the origin of the SAA concept. Certainly there are
strong ties to maximum likelihood estimation and M-estimation in statistics, but
perhaps the strongest roots of the idea from an Operations Research perspective
lie in variants called the stochastic counterpart method [47, 48] and sample-path
optimization [20, 37, 43].

We focus on the unconstrained optimization problem (8.1), but SAA can also
encompass constrained optimization problems, even when the constraints must also
be evaluated using simulation; see [60,61] and the next chapter. The SAA principle
is very general, having been applied to settings including chance constraints [1],
stochastic-dominance constraints [24] and complementarity constraints [18].

The rest of this chapter is organized as follows. Section 8.2 provides a set of
examples that showcase when SAA is appropriate in the sense that the optimization
problem (8.2) has reasonable structure that allows for numerical solution. Sec-
tion 8.3 provides verifiable conditions under which one can expect the problems
(8.1) and (8.2) to share important structural properties such as continuity and
differentiability. This section also showcases the close connection between problems
that are “SAA appropriate” and those that are amenable to infinitesimal perturbation
analysis (IPA) [13, 17] for gradient estimation. This section can also be viewed as a
review of IPA with particular emphasis on multidimensional problems. In Sect. 8.4,
we review some key properties of SAA, particularly with regard to large-sample
performance. Sects 8.5 and 8.6 delve into the selection of the sample size n in
some detail. These sections relate the computational effort required to achieve a
given solution quality in SAA to that of a competing method known as stochastic
approximation. It turns out that SAA is not as efficient as stochastic approximation,
at least in the asymptotic sense. (In the non-asymptotic world of small sample
sizes, it is harder to make clear conclusions, although some results are known for
idealized versions of both approaches; see, e.g., [54].) This leads one to the class of
methods collectively known as retrospective optimization, which is an extension of
SAA. We review some recent results on retrospective optimization that show that
this class of methods can match stochastic approximation in terms of asymptotic
efficiency.
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8.2 When Is SAA Appropriate?

One hopes the X∗
n obtained by solving the SAA problem converges to a solution of

the true problem x∗. The critical condition for convergence is a uniform version of
the strong law of large numbers (ULLN), which takes the form

sup
x∈Θ

| fn(x)− f (x)|= sup
x∈Θ

∣∣∣∣∣
1
n

n

∑
i=1

Y (x,ξi)−E[Y(x,ξ )]

∣∣∣∣∣→ 0

as n → ∞ a.s. The ULLN ensures that the optimal objective value of the SAA
problem converges to that of the true problem. With additional conditions, the
optimal SAA solution converges to the true optimal solution. When the sample
function is convex (concave for a maximization problem), the pointwise law of large
numbers ensures that the ULLN holds on a compact set. We will further discuss
conditions under which the ULLN holds in Sect. 8.4.

In many problems, sample functions are not smooth and may have disconti-
nuities. However, the true problem may still exhibit nice structure, being smooth
and even convex. In such a case, if the ULLN holds, we may still be able to use
a deterministic optimization technique to effectively solve the nonsmooth sample
average problem and thereby obtain a good approximate solution.

In this section, we provide examples that illustrate how SAA works, what issues
may arise when SAA is applied, and how we may deal with them in various settings.
Henceforth, all vectors are assumed to be column vectors, and xT denotes the
transpose of x.

Example 8.1 (Multi-Dimensional Newsvendor Problem). Consider a firm that man-
ufactures p products from q resources. For given resource type i = 1, . . . ,q and
product type j = 1, . . . , p, let ai j be the amount of resource i required to produce
one unit of product j, and v j be the unit margin for product j, i.e., revenue minus
processing cost. Suppose that a manager must decide on a resource vector x =
(x1, . . . ,xq) before the product demand vector ξ = (ξ1, . . . ,ξp) is observed. After the
demand becomes known, the manager chooses a production vector y = (y1, . . . ,yp)
so as to maximize the operating profit in the linear program

P(x,ξ ) : maxy∈Rp
+

vTy

s.t. Ay ≤ x (capacity constraints)

y ≤ ξ (demand constraints).

Here, A is a (q× p) matrix and ai j is the (i, j) element of A. Let Π(x,ξ ) denote
the maximal operating profit function for a given resource level vector x and
a given demand vector ξ . This is precisely the optimal objective value of the
problem P(x,ξ ). Then Π(x,ξ ) = vTy∗(x,ξ ), where y∗(x,ξ ) is an associated optimal
production vector.
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Suppose that the demand ξ can be viewed as a random vector and the probability
distribution of ξ is known. Let π(x) denote the expected maximal operating profit,
where

π(x) = E [Π(x,ξ )] ,

for all x ∈ R
q
+. Let ci, i = 1, . . . ,q, be the unit investment cost for resource i. By

incorporating the investment cost into the operating profit, the value of the firm
is defined as Π(x,ξ )− cTx, for a fixed (x,ξ ). The manager’s objective is now to
choose the resource level x so as to maximize the expected firm value. This leads to
the following stochastic optimization problem:

max
x∈Rq

+

f (x) = π(x)− cTx. (8.3)

This problem is known as the multi-dimensional newsvendor problem [59]. For
simplicity, we focus our attention on the single-period newsvendor model, but the
structure of the optimal policy in the single-period model can be extended to a
dynamic setting under reasonable conditions [19]. In general, a closed-form solution
for the multi-dimensional newsvendor problem is unattainable, unlike the single-
dimensional problem. We illustrate how the SAA approach can be applied to this
example and present some technical details.

From linear programming theory, we can show that both the sample path function
Π(·,ξ ) and the expected objective function π exhibit nice structural properties. First,
Π(·,ξ ) is concave for any fixed ξ , and so is π(·) = E[Π(·,ξ )]. If ξ has a discrete
probability distribution, then bothΠ(·,ξ ) and π(·) are piecewise linear and concave.
However, we focus on random demand with a continuous probability distribution,
and we would like to determine conditions under which π(·) is differentiable
everywhere. Assume that ξ is finite a.s. Consider the dual problem of the linear
program P(x,ξ ):

D(x,ξ ) : min
(μ,λ )∈Rp+q

+
xTλ + ξTμ

s.t. ATλ + μ ≥ v.

Since ξ is finite, the primal problem has a finite optimal solution and the optimal
value of the primal problem is equal to that of the dual problem. Let λ (x,ξ ) denote
the optimal shadow value of the capacity constraint in the primal problem P(x,ξ ).
Using duality theory, it can be shown that

Π(x,ξ )≤Π(x0,ξ )+λ (x0,ξ )T(x− x0), (8.4)

and hence λ (·,ξ ) is a subgradient of Π(·,ξ ). Since Π(·,ξ ) is concave for a fixed
ξ , it is differentiable except on a set A with Lebesgue measure zero. Since ξ is
a continuous random variable, A is also negligible with respect to the probability
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measure. Thus, λ (x,ξ ) is unique and ∇xΠ(x,ξ ) = λ (x,ξ ) at a fixed x a.s. Taking
the expectation in Eq. (8.4) yields that E [λ (·,ξ )] is a subgradient of π(·). Therefore,
E [λ (x,ξ )] is unique for all x ∈ R

q
+ so that π(·) is differentiable and

∇π(·) = E [λ (·,ξ )] = E [∇xΠ(·,ξ )] . (8.5)

Note that Π(·,ξ ) does not have to be differentiable everywhere, but expectation
with respect to a continuous random variable ξ yields a smooth function π(·).
Equation (8.5) establishes that one can interchange the expectation and differentia-
tion operators. In Sect. 8.3 we will discuss how this interchange property basically
ensures that SAA is appropriate for tackling an optimization problem.

The analysis above shows that the true function π(·) and the sample function
Π(·,ξ ) share the same nice structural properties; smoothness and concavity. This
allows the multi-dimensional newsvendor problem to be effectively solved by the
SAA method. The sample average approximation function

fn(x) =
1
n

n

∑
k=1

Π(x,ξk)− cTx

is piecewise linear and concave, but not smooth everywhere. However, the sample
average approximation function can be quickly smoothed out as the sample size
n grows, so in practice, one can choose sufficiently large n, and then apply an
algorithm for optimization of smooth concave functions to solve the sample average
approximation problem using the gradient estimator 1

n ∑
n
k=1λ (x,ξk)− c. If the

sample average function is not smooth enough and any gradient-based algorithm is
not appropriate to use, a subgradient method for convex optimization can be applied
to − fn(·). One can also apply two-stage stochastic linear programming algorithms
to solve the sampled problem [8].

Example 8.2 (Multi-Mix Blending Problem). Consider a simple blending problem
in which q products are made with p raw materials. The blend products have
to satisfy certain pre-specified quality requirements. The total processing costs
incurred depend on the product blending options used. Additionally, the production
output has to meet minimum requirements. A complication arises when some
materials are available in different quantities at different prices.

For the sake of illustration, we consider a problem with only one quality measure.
For given raw material type i = 1, . . . , p, and product type j = 1, . . . ,q, let

• Qi be the value of the quality parameter for raw material i,
• b j be the threshold acceptable level of quality per unit of product j,
• ci j be the cost of processing one unit of raw material i for product j,
• xi j be the amount of raw material i blended into product j,
• d j be the minimum output level required of product j, and
• ai be the available amount of raw material i.
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The classical multi-mix blending problem is to determine the amount of raw
material xi j that minimizes the total processing cost subject to quality requirements.
This problem can be formulated as a linear program. We modify this problem
with the assumption that the raw material quality parameters Qi are random with
known probability distributions. In this case, the quality requirement constraints
can only be satisfied with a certain probability. Thus, instead of minimizing the total
processing cost, the manager chooses the amounts x of raw material to be blended in
order to maximize the probability of achieving the target quality while keeping the
total processing cost within a certain level. This leads to the following constrained
stochastic optimization problem:

minx∈Rp×q
+

f (x) = P

(
p

∑
i=1

(b j −Qi)xi j > 0, j = 1, . . . ,q

)
(8.6)

s.t.
p

∑
i=1

q

∑
j=1

ci jxi j ≤ τ (total processing cost constraints),

p

∑
i=1

xi j ≥ d j, j = 1, . . . ,q (demand constraints),

q

∑
j=1

xi j ≤ ai, i = 1, . . . , p (resource constraints).

In general, analytic evaluation of the probability objective function is intractable,
particularly when the quality parameters Qi are correlated. In applying SAA, the
random element ξ is taken to be all the quality parameters Qi. The corresponding
sample function Y (x,ξ ) is

Y (x,ξ ) = 1

{
p

∑
i=1

(b j −Qi)xi j > 0, j = 1, . . . ,q

}
,

where 1{·} denotes the indicator function.
Suppose that ξ is a nonnegative random vector with a continuous density

function. Note that for any feasible solution x, f (x) is an integral of a density
function over a polyhedral set parameterized by x. By using a classical result in
mathematical analysis, it can be shown that the true function f is differentiable and
the gradient can be expressed as a surface integral [25]. By applying Propositions 8.2
and 8.5 in Sect. 8.3, we can show that the ULLN for fn holds. Therefore, as long as
we can obtain a solution to the sample problem, we can guarantee the convergence of
the SAA optimal values. However, the sample function has a discontinuity whenever
∑p

i=1(b j −Qi)xi j = 0 for some j = 1, . . . ,q, and ∇xY (x,ξ ) = 0 for any x except
discontinuity points, i.e., the sample average function fn(x) is differentiable except
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on a set A of probability zero, and ∇ fn(x) = 0 on Ac. This problem is ill-posed and
any point x ∈ Ac is a stationary point. Thus, any locally convergent algorithm that
searches for a stationary point is not applicable.

One approach to this problem is to approximate the sample function by using
a smooth (or piecewise linear) function. The indicator sample function has a very
simple structure, only taking on values of zero or one. At any discontinuous point
x ∈ A, we can obtain a smooth approximate function by smoothly connecting the
sample function on an open neighborhood of x. The resulting approximate function
can have a non-zero gradient that is selected to point in an uphill direction in this
neighborhood. Then, we can develop an algorithm that employs the gradient to
search for an approximate optimal solution. In the example above, we can use the
smooth approximation φ(h(x,ξ ),ε) of the sample function Y (x,ξ ), where h(x,ξ ) =
min{∑p

i=1(b j − Qi)xi j, j = 1, . . . ,q} and φ : R×R\{0} → R is a continuously
differentiable real-valued function such that for any z ∈ R and a given ε > 0,

(a) φ(z,0) = 1{z ∈ (0,∞)}, and
(b) 1{z ∈ (0,∞)} ≤ φ(z,ε) ≤ 1{z ∈ (−ε,∞)}.
If the smoothing parameter ε goes to zero as n increases, then under a set of
regularity conditions, the optimal solution of the smooth approximate problem
converges to a stationary point of the true problem. This smoothing technique
has been widely used, particularly for minimizing risk measures such as Value-at-
Risk (VaR) and conditional Value-at-Risk (CVaR) [2, 16], as well as for handling
chance constraints [23]. Xu and Zhang [63] provide simple examples of smoothing
techniques and discuss the local convergence of the SAA method with a smoothed
sample function.

The smoothing approach above changes the true objective function to be
optimized, and while the magnitude of the change can be controlled through
the parameter ε , one might wonder whether this approximation can be avoided.
Sometimes a conditional expectation can be used to smooth jumps in the sample
function Y (·,ξ ). This is called smoothed perturbation analysis (SPA) [15]. SPA was
developed to overcome difficulties in applying infinitesimal perturbation analysis
(see Sect. 8.3) in nonsmooth settings, and has been applied to a large class of
stochastic discrete event systems. To illustrate the SPA technique, we consider a
company that produces only one type of product using two types of raw material.
Then, for any x = (x1,x2)> 0, the corresponding objective function is

f (x) = E[Y (x,ξ )] = E

[
1

{
b

2

∑
i=1

xi −Q1x1 −Q2x2 > 0

}]

= E

[
E

[
1

{
b

2

∑
i=1

xi −Q1x1 −Q2x2 > 0

}∣∣∣∣∣Q2

]]

= E

[
FQ1

(
b∑2

i=1 xi −Q2x2

x1

)]
, (8.7)
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where FQ1 is the cumulative distribution function of Q1 (under the assumption that
Q1 has a density). If the density of Q1 is continuous, then at any fixed Q2, the
function inside the expectation in (8.7) is differentiable at x. Thus, if FQ1 is known,
f (·) can be approximated instead by taking the sample average of this smooth
sample function, the expectation of which is the exact function we truly wish to
minimize.

Smoothing techniques may not always be applicable, particularly when the
sample function has a complex structure. However, even when not applicable, the
gap between the sample function fn(·) and the true function f (·) may still converge
to 0 uniformly on the domain Θ as the sample size n grows, so provided that one
can solve the SAA problem (8.2), the sequence of optimal objective function values
will converge.

Example 8.3 (Bus Scheduling Problem). Passengers arrive at a bus stop according
to a Poisson process with rate λ over the interval [0,1]. We wish to schedule the
arrival times of d infinite-capacity buses over this time interval so as to minimize
the expected sum of passenger wait times. We assume that an additional bus arrives
at time 1 so that all waiting times are well defined and can be calculated.

Let x̃ j denote the scheduled time of arrival of the jth bus, j = 1,2, . . . ,d+1 where
x̃d+1 = 1, and let x j = x̃ j − x̃ j−1 denote the length of the time interval between the
arrivals of buses j−1 and j, j = 1,2, . . . ,d+1, where x̃0 = 0. The random element ξ
here may be taken to be N, the number of passengers to arrive over the time interval
[0,1], along with the times T1,T2, . . . ,TN of their arrival.

The sample function Y (x,ξ ) may be written

Y (x,ξ ) =
N

∑
i=1

d+1

∑
j=1

(x̃ j −Ti)1{Ti ∈ (x̃ j−1, x̃ j]}.

The order-statistic property of Poisson processes may be used to show directly (e.g.,
[44, p. 68]) that

f (x) = E[Y (x,ξ )] =
λ
2

d+1

∑
j=1

x2
j ,

so that f (x) is convex and quadratic, and hence smooth. However, the sample
function has a discontinuity whenever the arrival time of a bus coincides with the
time of a passenger arrival.

Like the multi-mix blending problem, for any fixed ξ , Y (·,ξ ) is differentiable
except on a set A of probability zero. Unlike the multi-mix blending problem, the
gradient of the sample function ∇xY (x,ξ ) at x ∈ Ac can take a non-zero value. For
example, when d = 1, the derivative of Y (x,ξ ) for a fixed ξ is zero on (0,T1)
and positive at any differentiable point x ∈ (T1,1). Note that the gradient of the
sample function does not provide any useful information about the (quadratic) true
function, and hence any gradient-based algorithm is highly unlikely to work well in
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this setting. Approximating the sample function with smoothing techniques is not a
trivial problem in this case due to the complexity of the sample function. One could
try to minimize the sample average approximation problem in this example using
techniques such as metamodeling. If the difference between the sample average and
the true function is small enough for sufficiently large sample size n, then the true
function can be well approximated with a quadratic metamodel. Indeed, by applying
Propositions 8.2 and 8.5, we can show that the gap between the sample and the true
function does not persist and eventually converges to 0 uniformly on [0,1]d . Thus,
although SAA can in principle be applied to this example, it may not be the best
approach, due to the lack of useful structure in the sample functions.

In some examples, sample functions can have appealing structural properties in
some variables but not in others. For example, in [14], an (s,S) inventory system is
considered. When the problem is reparameterized with decision variables Δ = S− s
and S, then for each fixed Δ , the sample functions are piecewise linear and convex
in S. It is then natural to solve the problem by searching only over Δ , using the value
of S that minimizes the sample function at each fixed Δ . More precisely, for each
fixed Δ , let S∗n(Δ) minimize fn(Δ , ·). Then one can reduce the two-dimensional
optimization problem of minimizing fn(·, ·) to a one-dimensional optimization
problem where one minimizes fn(Δ ,S∗n(Δ)) over Δ . As discussed in [14], this latter
problem is not unimodal in Δ , so it is difficult to solve numerically.

8.3 Detecting When SAA Is Appropriate

The key principles exemplified in Sect. 8.2 are that

1. SAA is appropriate only when the approximating functions fn have some
structure that enables the application of an efficient deterministic optimization
algorithm, and

2. the limiting function f that we actually want to minimize shares that structure, so
that the properties of the limiting function such as the location of local minima
are similar to those of the approximating function.

The term “some structure” is intentionally vague because it can mean different
things in different problems. For example, by “some structure” we might mean that
all sample functions are convex, in which case convex optimization techniques can
be applied to the sample functions, and we can ensure convergence to a global
minimum of both the sample functions and the limiting function. Alternatively, the
sample functions might not be convex, but might be differentiable, in which case
gradient-based methods could be applied. A weaker property that can be exploited
by numerical optimization algorithms is Lipschitz continuity.

The approximating functions fn are observable, because we can generate them
in finite time, while the limiting function f is not directly observable. Nevertheless,
one can often infer structural properties of f through the corresponding properties
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of the approximating functions fn and regularity conditions that ensure that these
properties persist in the limit as n → ∞.

In this section, we give sufficient conditions involving only the sample functions
Y (·, ·) (from which the approximating functions fn(·) are built) for the true function
f (·) to be continuous or differentiable at a fixed point x. If these conditions apply
at each point x in the domain, then one can conclude that f (·) is continuous or
differentiable over that domain. Perhaps surprisingly, one can often arrive at this
conclusion even when the sample functions do not possess these same properties
over the entire domain. Therefore, Principle 2 does not follow automatically from
Principle 1.

These observations will not be surprising to those who are familiar with
infinitesimal perturbation analysis (IPA), and indeed, the results presented here can
be viewed as a recasting of those ideas in the SAA setting. If we take as given that
SAA-appropriate problems are those for which both the approximating functions
fn(·) and f (·) are differentiable, and the derivatives of fn(·) converge to those for
f (·), then we arrive at an underlying theme of this section, which is the following
meta-principle:

SAA-appropriate problems are almost exactly those in which IPA applies.

In contrast to much of the IPA literature, we explicitly treat the case where d, the
dimension of the domain Θ, can be greater than one. The ideas involved are similar
to the one-dimensional case, but some additional care is required. See [17, Chap. 1]
for an excellent treatment of the one-dimensional case.

Our first result [27] gives sufficient conditions for f (·) to be continuous at a fixed
point x∈Θ. The result is disarmingly straightforward to state and prove. Throughout
this chapter, ‖ · ‖ will denote the Euclidean norm. Let B(x,δ ) = {y : ‖y− x‖ ≤ δ}
denote the closed ball of radius δ around x.

Proposition 8.1. Fix x ∈ Θ. Suppose that Y (·,ξ ) is continuous at x a.s., i.e., for all
ξ in a set of probability 1, Y (x+h,ξ )→ Y (x,ξ ) as h → 0. Suppose further that the
family of random variables

{Y (x+ h,ξ ) : x+ h ∈ B(x,δ )}

is uniformly integrable, for some δ > 0. Then f (·) is continuous at x.

Proof. Continuity of Y (·,ξ ) on a set A of probability 1 ensures that

f (x) = E[Y (x,ξ )1{ξ ∈ A}]

= E

[
lim
h→0

Y (x+ h,ξ )1{ξ ∈ A}
]

= lim
h→0

E[Y (x+ h,ξ )1{ξ ∈ A}] (8.8)

= lim
h→0

f (x+ h),

where the interchange (8.8) is justified by the uniform integrability assumption.
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As an immediate corollary we have the following result on the global continuity
of f (·).
Corollary 8.1. Suppose that the conditions of Proposition 8.1 hold at each x ∈ Θ.
Then f (·) is continuous on Θ.

What is perhaps surprising about this corollary is that we may be able to
establish that f (·) is continuous on Θ even when the sample functions Y (·,ξ )
are discontinuous on Θ almost surely! The apparent contradiction dissolves when
one realizes that the assumption of Proposition 8.1 requires continuity of Y (·,ξ )
only locally at x. There may be discontinuities of this function at points outside a
neighbourhood of x, and this neighbourhood can depend on ξ .

As an example, let us revisit the bus-scheduling problem from Sect. 8.2. The
sample functions Y (·,ξ ) have discontinuities at all points x such that a bus arrival
time coincides with a passenger arrival time in the interval (0,1). Consequently, the
sample functions Y (·,ξ ) are discontinuous on Θ almost surely. However, for a fixed
x ∈ Θ, Y (·,ξ ) is continuous at x unless a passenger arrival coincides with one of
the bus arrival times encoded in x, which occurs with probability 0. Furthermore,
the sum of the waiting times of the N arriving passengers is bounded by N,
which has finite expectation, and so {Y (y,ξ ) : y ∈ B(x,δ )} is uniformly integrable.
Proposition 8.1 then ensures that f is continuous at x, and Corollary 8.1 allows us
to conclude that f is continuous on Θ. We already knew that f is continuous on Θ,
because it is a convex quadratic. However, this same argument can be used to show
continuity in other examples where the form of f (·) is unknown. See [27] for an
example involving locating multiple ambulances. This result for the bus-scheduling
example is a special case of the following general result.

Proposition 8.2. Suppose that

(i) for any fixed ξ , Y (·,ξ ) is a piecewise Lipschitz continuous function, i.e., there
exists a countable partition of Θ such that the restriction of Y (·,ξ ) to the
interior of each component is Lipschitz continuous,

(ii) the Lipschitz constants in all components are bounded by an integrable random
variable L(ξ ),

(iii) the jump size at any discontinuous point x∈Θ is bounded by a random variable
J(ξ ) with E[J2(ξ )]< ∞, and

(iv) for any x ∈ Θ, m(x,x+ h,ξ )→ 0 a.s. as ‖h‖ → 0, where m(x,x+ h,ξ ) is the
number of discontinuity points of the sample function Y (·,ξ ) restricted to the
line segment joining x and x+ h and satisfies

sup
x+h∈B(x,δ )

m(x,x+ h,ξ )≤ M(ξ ),

for some δ > 0 and a random variable M(ξ ) with E[M2(ξ )]< ∞.

Then the assumptions in Proposition 8.1 hold, and hence f (·) is continuous on Θ.
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Proof. Fix x ∈ Θ. We have

|Y (x+ h,ξ )−Y(x,ξ )| ≤ ‖h‖L(ξ )+ J(ξ )m(x,x+ h,ξ ). (8.9)

By Assumption (iv), the right hand side of (8.9) converges to zero a.s. as h → 0.
Thus, Y (·,ξ ) is continuous at x a.s. Since m(x + h,x,ξ ) ≤ M(ξ ) (over x + h ∈
B(x,δ )), the right hand side of (8.9) is dominated by an integrable random variable
‖h‖L(ξ )+ J(ξ )M(ξ ). Thus, {|Y (x+h,ξ )−Y(x,ξ )| : x+h ∈ B(x,δ )} is uniformly
integrable, and so is {Y (x+ h,ξ ) : x+ h ∈ B(x,δ )}.

As with continuity, one can obtain differentiability results for f (·) based on local
properties of the sample functions Y (·, ·).
Proposition 8.3. Fix x in the interior of Θ. Suppose that Y (·,ξ ) is differentiable at
x w.p.1, and let ∇Y (x,ξ ) be its gradient. Suppose further that the family of random
variables

{
Y (x+ h,ξ )−Y(x,ξ )

‖h‖ : 0 < ‖h‖ ≤ δ
}

(8.10)

is uniformly integrable, for some δ > 0. Then f (·) is differentiable at x, and∇ f (x) =
E[∇Y (x,ξ )].

Proof. We have that for all ξ in a set A of probability 1,

Y (x+ h,ξ ) = Y (x,ξ )+ hT∇Y (x,ξ )+ ‖h‖R(x,ξ ,h), (8.11)

where the remainder term R(x,ξ ,h)→ 0 as h → 0. For ξ �∈ A, define ∇Y (x,ξ ) = 0
and R(x,ξ ,h) = 0. Taking h = rei, i.e., the ith unit vector scaled by r, for each
i = 1,2, . . . ,d, and letting r → 0, the uniform integrability assumption implies that
E[|∂Y (x,ξ )/∂xi|]< ∞. Hence, all d components of E[∇Y (x,ξ )] exist and are finite.
Taking expectations in (8.11), we obtain

f (x+ h) = f (x)+ hTE[∇Y (x,ξ )]+ ‖h‖E[R(x,ξ ,h)],
so the result will follow if we show that E[R(x,ξ ,h)]→ 0 as h → 0. From (8.11), we
have that for ξ ∈ A,

Y (x+ h,ξ )−Y(x,ξ )
‖h‖ =

hT

‖h‖∇Y (x,ξ )+R(x,ξ ,h),

and the left-hand side is uniformly integrable (over ‖h‖ ∈ (0,δ ]) by assumption.
But each component of ∇Y (x,ξ ) is integrable, and therefore, hT∇Y (x,ξ )/‖h‖
is uniformly integrable for ‖h‖ ∈ (0,δ ]. It follows that R(x,ξ ,h) is uniformly
integrable for h ∈ (0,δ ], and therefore, E[R(x,ξ ,h)]→ 0 as h → 0 as required.

Corollary 8.2. Suppose that the conditions of Proposition 8.3 hold at each x in
the interior of Θ. Then f (·) is differentiable on the interior of Θ with ∇ f (x) =
E[∇Y (x,ξ )].
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It is again striking that under certain verifiable conditions, one can show that f (·)
is differentiable throughout the interior of Θ, even if the sample functions Y (·,ξ )
are not. In fact, this is the norm in applications arising in discrete-event simulation,
in that the functions Y (·,ξ ) typically fail to be differentiable on “seams” in Θ that
have measure 0.

The uniform integrability assumption is almost always verified (either locally or
on the interior of Θ) by showing that Y (·,ξ ) is Lipschitz continuous with Lipschitz
constant L(ξ ) on the appropriate set, where E[L(ξ )]<∞. Indeed, the Lipschitz con-
dition ensures that |Y (x+ h,ξ )−Y(x,ξ )| ≤ L(ξ )‖h‖, and the uniform integrability
requirement follows immediately. But how can this property be verified? In one
dimension, one can appeal to the following result, known as the generalized mean
value theorem, in which the Lipschitz constant for a sample function Y (·,ξ ) arises
from a bound on the (sample) derivative. For a proof, see [12, Sect. 8.5].

Theorem 8.1. Let g be a continuous real-valued function on the closed interval
[a,b] that is differentiable everywhere except possibly on a set C of at most countably
many points. Then for all x and x+ h in [a,b] with h �= 0,∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣≤ sup
y∈[a,b]\C

|g′(y)|.

In higher dimensions, we can again apply this result. One difficulty is that
real-valued (sample) functions arising in discrete-event simulation often fail to
be differentiable along “seams,” so the set of non-differentiable points can be
uncountable. Fortunately, it is sufficient for our purposes to apply the generalized
mean-value theorem along certain line segments only. So long as these line segments
intersect the non-differentiable set in at most countably many places, we can apply
the generalized mean-value theorem. The following proposition gives sufficient
conditions for the uniform integrability condition (8.10) in Proposition 8.3.

Proposition 8.4. For some δ > 0 suppose that for all ξ in a set of probability 1,

(i) Y (·,ξ ) is continuous in B(x,δ );
(ii) C(ξ )∩ [x,y] is countable for all y ∈ B(x,δ ), where C(ξ ) denotes the points

of non-differentiability of Y (·,ξ ) in B(x,δ ) and [x,y] denotes the line segment
joining x and y; and

(iii) sup
y∈B(x,δ )\C(ξ )

‖∇Y (y,ξ )‖ ≤ L(ξ )< ∞.

If E[L(ξ )]< ∞, then the uniform integrability condition (8.10) holds.

Proof. For ‖h‖ ≤ δ and ξ in the set of probability 1,

|Y (x+ h,ξ )−Y(x,ξ )| ≤ sup
y∈[x,x+h]\C(ξ )

|hT∇Y (y,ξ )| (8.12)

≤ ‖h‖ sup
y∈[x,x+h]\C(ξ )

‖∇Y (y,ξ )‖ (8.13)

≤ ‖h‖L(ξ ),
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where (8.12) and (8.13) follow from the generalized mean-value theorem and
the Cauchy–Schwarz inequality, respectively. The result follows since L(ξ ) is
integrable.

Sometimes one can verify the Lipschitz property directly, as in the following
example.

Example 8.4. A depot is to be located in the unit square [0,1]2. Each night a set
of N requests for pickups the following day is made, where N has finite mean.
Conditional on N ≥ 1, the N pickup locations are independent and identically
distributed with density p(·) on the unit square. The pickups are completed in a
single tour by a van that travels in a straight line from pickup to pickup (Euclidean
distance), visiting all pickups before returning to the base. The sequence of pickups
is chosen so as to minimize the total travel distance of the van, i.e., the sequence of
pickups is the solution to a traveling salesperson problem, starting and finishing at
the depot. In this case, the random element ξ consists of the number and locations
of pickups, and x gives the Cartesian coordinates of the depot. The goal is to select
the depot location to minimize the expected distance traveled by the van.

Here, Y (x,ξ ) gives a realization of the distance traveled by the van. We can write

Y (x,ξ ) = min
π

Y (x,ξ ,π), (8.14)

where π is a permutation specifying the order in which pickups are visited and
Y (x,ξ ,π) is the resulting distance traveled. (We exclude duplicate permutations that
are the reverse of each other in this pointwise minimum.) Each function Y (·,ξ ,π)
is differentiable and in fact has partial derivatives bounded by 2. (To see why,
notice that Y (x,ξ ,π) gives the sum of the distance from x to the first pickup, the
distance from the last pickup to x, and the sum of the “internal” distances between
the pickups of the permutation. The internal distances do not change as x varies.)
Hence, Y (·,ξ ,π) is Lipschitz with Lipschitz constant 2 for all ξ and π . It then
follows from (8.14) that Y (·,ξ ) is Lipschitz with Lipschitz constant 2. Furthermore,
for fixed x, the set of ξ for which Y (·,ξ ) fails to be differentiable at x are such that
multiple permutations attain the minimum in (8.14). This set has probability 0 since
pickup locations have a density. It follows from our previous discussion that f (·) is
differentiable at x and ∇ f (x) = E[∇Y (x,ξ )].

8.4 Known Properties

In this section, we discuss some known properties for well-structured unconstrained
optimization problems. Here, “well-structured” means that the sample function
enjoys some structural property such as continuity or differentiability. We first
investigate under which conditions the optimal solution and value of the SAA
problem approach those of the true problem as the sample size n grows. Then,
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we discuss how quickly this convergence occurs via the Central Limit Theorem
(CLT). We also briefly present the convergence of local solutions for both smooth
and nonsmooth problems.

8.4.1 Almost Sure Convergence

As we briefly discussed in Sect. 8.2, uniform convergence of the sample average
functions is the key condition for establishing convergence of optimal objective
values and solutions in SAA. Indeed, one immediate consequence is the consistency
of the SAA optimal values, i.e., v∗n → v∗ a.s. as n → ∞, where v∗n and v∗ are the
optimal objective values of the SAA problem (8.2) and the true problem (8.1),
respectively. To see why, note that for a fixed sequence {ξn : n ≥ 1}, { fn : n ≥ 1}
can be viewed as a sequence of deterministic functions. Suppose that fn converges to
the true function f uniformly on Θ. Then, for any sequence {xn} ⊂Θ converging to
x∈Θ, fn(xn) converges to f (x). Many problems, including those with discontinuous
sample functions in Sect. 8.2, satisfy this uniform convergence. When the sample
function Y (·,ξ ) is convex a.s., the pathwise LLN is equivalent to the ULLN on
a compact set [55, Corollary 3]. In a problem with non-convex functions, the
following result shows that the conditions for the continuity of the true function
f (·) discussed in Sect. 8.3 are, in fact, sufficient to ensure the uniform convergence
of the approximating functions on a compact set.

Proposition 8.5. Let Θ be a nonempty compact set. For any fixed x ∈ Θ, suppose
that Y (·,ξ ) is continuous at x a.s., and there exists δ > 0 such that the family
of random variables {Y (y,ξ ) : y ∈ B(x,δ )} is uniformly integrable. Then { fn(x)}
converges to f (x) uniformly on Θ a.s. as n → ∞.

Proof. The proof can be carried out by adapting the proof of Proposition 7 in [55].
Choose x̃ ∈ Θ. Let {δk ≤ δ (x̃) : k = 1,2, . . .} be a sequence of positive numbers
decreasing to 0, and define

αk(ξ ) = sup
x∈B(x̃,δk)

|Y (x,ξ )−Y(x̃,ξ )|.

By the continuity of Y (·,ξ ) at x̃, αk(ξ ) goes to zero a.s. as k increases. The uniform
integrability assumption ensures that {αk(ξ ) : k = 1,2 . . .} is uniformly integrable,
and hence

lim
k→∞

E[αk(ξ )] = E

[
lim
k→∞

αk(ξ )
]
= 0.
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Note that

sup
x∈B(x̃,δk)

| fn(x)− fn(x̃)| ≤ 1
n

n

∑
i=1

αk(ξi). (8.15)

By the LLN, the right-hand side of (8.15) converges to E[αk(ξi)] a.s. as n→∞. Thus,
for given ε > 0, there exists a neighborhood V of x̃ such that a.s. for sufficiently
large n,

sup
x∈V∩Θ

| fn(x)− fn(x̃)|< ε.

Since Θ is compact, there exists a finite number of points x1, . . . ,xm ∈ Θ and
corresponding neighborhoods V1, . . . ,Vm covering Θ such that a.s. for sufficiently
large n,

sup
x∈Vj∩Θ

| fn(x)− fn(x j)|< ε, j = 1, . . . ,m. (8.16)

By Proposition 8.1, f (·) is continuous. Thus, we can choose the neighborhoods
V1, . . . ,Vm in such a way that

sup
x∈Vj∩Θ

| f (x)− f (x j)|< ε, j = 1, . . . ,m. (8.17)

By the LLN, with probability 1 (w.p.1) for sufficiently large n,

| fn(x j)− f (x j)|< ε, j = 1, . . . ,m. (8.18)

Combining (8.16)–(8.18), w.p.1 for sufficiently large n, we have

supx∈Θ | fn(x)− f (x)|< 3ε.

When the sample function is continuous, the ULLN implies the continuity of
the true function f . However, in general, the continuity of the true function is not a
necessary condition for uniform convergence of the approximating function fn. For
example, consider a cumulative distribution function (cdf) f (x) = P(ξ ≤ x) and the
empirical cdf fn(x). By the Glivenko–Cantelli Theorem [7, p. 269], fn converges to
f uniformly on R even if f is discontinuous. Optimizing a discontinuous function
is in general a difficult problem, and many practical problems naturally exhibit
continuity properties. In this chapter, we therefore focus on problems where f is
continuous, unless the domain Θ is a discrete set.

We introduce some notation to proceed to the convergence results below. Let
Π∗

n and π∗ denote the set of optimal solutions of the SAA and the true problems,
respectively. We define the Euclidean distance from a point x to a set B to be
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d(x,B) = infy∈B ‖x − y‖, and the distance between two sets A,B ⊂ R
q to be

D(A,B) = sup{d(x,B) : x ∈ A}. In the next theorem, we give convergence results
based on the continuity of the true function and uniform convergence.

Theorem 8.2 (Theorem 5.3, [57]). Suppose there exists a compact subset C ⊂ R
d

such that

(i) π∗ is non-empty and contained in C,
(ii) { fn(x)} converges to f (x) uniformly on C a.s. as n → ∞, and

(iii) for sufficiently large n, Π∗
n is non-empty and contained in C a.s.

Then v∗n → v∗. Furthermore, if the true function f (·) is continuous on C, then
D(Π∗

n,π∗)→ 0 a.s. as n → ∞.

Proof. Fix ε > 0. Uniform convergence of fn to f on C ensures that

fn(x)≥ f (x)− ε

for all x ∈ C, for sufficiently large n a.s. The assumption that Π∗
n ⊆ C ensures that

v∗n is attained on C for sufficiently large n a.s., so v∗n ≥ v∗ − ε for sufficiently large n
a.s. Since ε was arbitrary, liminfn v∗n ≥ v∗ a.s. Also, since there exists x∗ ∈ π∗ ⊆C,
v∗n ≤ fn(x∗)→ v∗ as n →∞ a.s. Thus, v∗n → v∗ as n →∞ a.s. Turning to convergence
of the solution set, suppose that D(Π∗

n,π∗)� 0. Then there exists Xn ∈Π∗
n such that

for some ε > 0, d(Xn,π∗) ≥ ε for all n ≥ 1. Since C is compact, by passing to a
subsequence if necessary, Xn converges to a point x∗ ∈ C, and f (x∗) > v∗. On the
other hand,

fn(X
∗
n )− f (x∗) = [ fn(X

∗
n )− f (X∗

n )]+ [ f (X∗
n )− f (x∗)] (8.19)

Both the first term and the second term in the right hand side of (8.19) converge
to zero by the uniform convergence assumption and continuity of f , respectively.
Thus, v∗n → f (x∗)> v∗, which contradicts the fact that v∗n → v∗.

Theorem 8.2 ensures that, if X∗
n solves the SAA problem exactly, then

d(X∗
n ,π∗) → 0 a.s. as n → ∞. Moreover, if the true problem has a unique optimal

solution x∗, then X∗
n → x∗. When the sample functions are convex, the set of

regularity conditions in Theorem 8.2 can be relaxed by using the theory of epi-
convergence [57, Theorem 5.4].

Now we consider the case where Θ is a finite set and discuss the convergence
of ε-optimal solutions in the SAA method. We first introduce some notation. For
ε ≥ 0, let

π∗(ε) := {x ∈Θ : f (x) ≤ v∗+ ε}, Π∗
n(ε) := {x ∈ Θ : fn(x)≤ v∗n + ε} (8.20)

denote the ε-optimal solutions for the true and the SAA problems, respectively.
Since Θ is finite, the pathwise LLN implies the ULLN. Thus, the a.s. convergence
of v∗n to v∗ is guaranteed. Furthermore, asymptotic normality of v∗n follows under
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moment conditions if the optimal solution is unique. Also, it can be shown that
for any ε ≥ 0, Π∗

n(ε) ⊂ π∗(ε) w.p.1 for n sufficiently large [28]. This means that
any ε-optimal solution of the SAA problem is an ε-optimal solution of the true
problem for large enough n. In particular, if the true problem has a unique solution
x∗, then Π∗

n = {x∗} w.p.1 for n large enough. But, how quickly does the probability
of {Π∗

n(ε)⊂ π∗(ε)} approach 1 as n increases? Large deviation analysis shows that
under a mild regularity condition (essentially finiteness of the moment generating
function of Y (x,ξ ) at each fixed x), the probabilityP{Π∗

n(δ )� π∗(ε)} for 0≤ δ < ε,
converges to zero at an exponential rate. We discuss this further in Sect. 8.5.

8.4.2 Convergence Rates for the SAA Method

There exists a well-developed statistical inference for estimators obtained from
the SAA approach. From this inference, we can obtain error bounds for obtained
solutions and select the sample size n to obtain a desired level of accuracy. The first
result below by [32] states that the estimator v∗n for v∗ is negatively biased and the
expected value of v∗n monotonically increases. This monotonicity property of E[v∗n]
is desirable in the sense that we can expect a tighter lower bound as n increases.

Proposition 8.6. For all n ≥ 1, E[v∗n]≤ E[v∗n+1], and E[v∗n]≤ v∗.

Proof. Since ξ1,ξ2, . . . are i.i.d.,

E[v∗n+1] = E

[
min
x∈Θ

1
n+ 1

n+1

∑
i=1

Y (x,ξi)

]
= E

[
min
x∈Θ

1
n+ 1

n+1

∑
i=1

(
1
n∑j �=i

Y (x,ξ j)

)]

≥ 1
n+ 1

n+1

∑
i=1

E

[
min
x∈Θ

(
1
n∑j �=i

Y (x,ξ j)

)]

= E[v∗n].

For any x̃ ∈Θ, fn(x̃)≥ minx∈Θ fn(x). By taking expectation on both sides, we have

v∗ = minx∈Θ f (x) = minx∈ΘE [ fn(x)]≥ E [minx∈Θ fn(x)] = E[v∗n].

Next, we discuss the asymptotic behavior of the SAA optimal objective value v∗n.
For a sequence of random variables {Xn} and deterministic constants βn, we say that
Xn = op(βn), if Xn/βn → 0 in probability. We also say that Xn = Op(βn), if {Xn/βn}
is bounded in probability (tight), i.e., for any ε > 0, there exists M > 0 such that
P(|Xn/βn|> M)< ε, for all n.

First, assuming that E[Y 2(x,ξ )]< ∞, we have the CLT for any fixed x ∈Θ,

√
n( fn(x)− f (x))

d→ Z(x)
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as n → ∞, where
d→ signifies convergence in distribution, and Z(x)∼N (0,σ2(x)),

σ2(x) ≡ Var[Y (x,ξ )]. The CLT implies that the error fn(x)− f (x) is of order
Op(n−1/2). Under a set of mild regularity conditions, the same canonical conver-
gence rate of v∗n can be obtained by applying a multidimensional version of the CLT
to f .

Theorem 8.3 (Theorem 5.7, [57]). We suppose that

(i) Θ is compact,
(ii) E[Y 2(x,ξ )]< ∞, for some x ∈ Θ,

(iii) Y (·,ξ ) is Lipschitz on Θ with Lipschitz constant L(ξ ) a.s., and E
[
L2(ξ )

]
<∞.

Then,

v∗n = inf
x∈π∗

fn(x)+ op(n
−1/2)

and

√
n(v∗n − v∗) ⇒ inf

x∈π∗
Z(x) (8.21)

as n → ∞, where Z is a Gaussian process on Θ with E[Z(x)] = 0 and
Cov(Z(x),Z(y)) = Cov(Y (x,ξ ),Y (y,ξ )), for all x,y ∈ Θ.

Proof. The essential idea of the proof is to employ a functional CLT for fn and the
Delta method [7] to V ( f ), where V is the real-valued functional given by V (g) =
minx∈Θ g(x), for any continuous function g on Θ.

When the true problem has a unique optimal solution x∗, (8.21) implies that
v∗n is asymptotically normally distributed. It again follows from (8.21) that under
some uniform integrability conditions, the bias E[v∗n]− v∗ is O(n−1/2). If the true
problem has a unique solution, E[v∗n]− v∗ is o(n−1/2), and with additional moments
and second order conditions on f , E[v∗n]− v∗ is, in fact, O(n−1).

The SAA optimal solution X∗
n requires a stronger set of conditions to achieve

the same asymptotic properties as v∗n. When f is smooth and has a unique solution,
under some regularity conditions, the solution X∗

n of the SAA problem converges to
the unique solution x∗ of the true problem at the canonical rate n−1/2. One of the
essential regularity conditions is that the true function f increases quadratically near
the unique solution x∗. (It may converge at a faster rate if the function f increases
linearly near x∗, as may happen if x∗ lies on the boundary of Θ.) We say that the
quadratic growth condition is satisfied at x̃ if there exists α > 0 and a neighborhood
V of x̃ such that for all x ∈Θ∩V,

f (x) ≥ f (x̃)+α‖x− x̃‖2.

IfΘ is a convex, full dimensional set and x̃ lies in the interior ofΘ, then the quadratic
growth condition is equivalent to the second order sufficient optimality condition,



8 Sample Average Approximation 227

i.e., the Hessian matrix ∇2 f (x̃) is positive definite. In the convergence result below,
we provide conditions that are relatively easy to understand and a sketch of the
proof. The readers are referred to [53,57] for the proof under more general regularity
conditions.

We say g : Rd → R is Fréchet differentiable at x if there exists a bounded linear
operator Dxg : Rd →R

d such that

lim
‖u‖↓0

|g(x+ u)− g(x)−Dxg(u)|
‖u‖ = 0.

Theorem 8.4. Assume that the following hold:

(i) The true function f has a unique minimizer x∗ ∈ Θ.
(ii) Y (·,ξ ) is Lipschitz with Lipschitz constant L(ξ ) on Θ a.s., and E [L(ξ )]< ∞.

(iii) Y (·,ξ ) is continuously differentiable at any x in a neighborhood of x∗ a.s.
(iv) E[‖∇xY (x,ξ )‖2]<∞, for some x ∈ Θ.
(v) ∇xY (·,ξ ) is Lipschitz with Lipschitz constant K(ξ ) in a neighborhood of x∗

a.s., and E
[
K2(ξ )

]
< ∞.

(vi) f satisfies the quadratic growth condition at x∗.

Then, ‖X∗
n − x∗‖= Op(n−1/2). Furthermore, assume that

(vii) There exists a neighborhood U of x∗ and α > 0 such that for every u in a
neighborhood of zero, the following problem

min
x∈Θ

f (x)+ u · x (8.22)

has an optimal solution x∗(u) ∈ U and the quadratic growth condition holds
at x∗(u).

If x∗(u) is Fréchet differentiable at u = 0 and D0x∗(·) is continuous,

√
n(X∗

n − x∗) ⇒ D0x∗(Z) (8.23)

as n → ∞, where Z is a multivariate normal vector with mean 0 and covariance
matrix

Σ = E
[
(∇ f (x∗,ξ )−∇ f (x∗))T(∇ f (x∗,ξ )−∇ f (x∗))

]
.

Moreover, if D0x∗(·) is linear, then
√

n(X∗
n − x∗) is asymptotically normally dis-

tributed.

Proof. By Assumptions (i)–(iii), X∗
n → x∗ a.s. as n → ∞, and f (·) is Lipschitz

continuous and continuously differentiable at x∗. Let δn(x) = fn(x)− f (x).
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By the quadratic growth condition (vi) and the generalized mean-value theorem,
we have

‖X∗
n − x∗‖ ≤ supx∈B(x∗,‖X∗

n −x∗‖) ‖∇δn(x)‖
α

.

With Assumptions (iv)–(v), by applying the functional CLT and the continuous
mapping theorem [7] to ∇δn(·), we have supx∈B(x∗,‖X∗

n −x∗‖) ‖∇δn(x)‖= Op(n−1/2),

and hence ‖X∗
n − x∗‖= Op(n−1/2) follows.

By applying the quadratic growth condition (vii) to x∗(∇δn(x∗)) and using the
Lipschitz continuity of ∇ f (·), it can be shown that

X∗
n = x∗(∇δn(x

∗))+ op(n
−1/2).

Since x∗(u) is Fréchet differentiable at u = 0,

x∗(∇δn(x
∗))− x∗ = D0x∗(∇δn(x

∗))+ op(n
−1/2).

Thus, it follows from the CLT on∇δn(x∗) and the continuous mapping theorem that√
n(X∗

n − x∗) = D0x∗(
√

n∇δn(x∗))+ op(1) ⇒ D0x∗(Z).

A second-order condition can ensure the quadratic growth condition (vii) for
the parameterized objective function f (x) + u · x. For example, if Θ is convex, f
is twice continuously differentiable, and ∇2 f (x∗) is positive definite, Assumption
(vii) holds by setting α as the lower bound of the smallest eigenvalue of ∇2 f (x) in a
neighborhood of x∗. If x∗(·) is Lipschitz, the Fréchet derivative D0x∗(·) is continuous
and linear, and thus the asymptotic normality of X∗

n can be ensured.

8.4.3 The SAA Method in the Nonconvex Case

Thus far, the convergence theory for SAA methods that we have presented has been
derived under the assumption that we can produce a global minimum of the SAA
problem in Θ, and hence the theory can be applied primarily to convex problems.
In the nonconvex case, the best that we can hope for from a computational point
of view is that we can generate local minimizers of the SAA problems. When the
sample function is differentiable almost surely on Θ, the validity of IPA ensures
the convergence of the first order points of the SAA problem to those of the true
problem. This reaffirms the key principle observed in Sect. 8.3: when IPA is valid,
the SAA method is appropriate.

For x ∈ Θ, N (x) denotes the normal cone to Θ at x. For x in the interior of Θ,
N (x) = {0}. For x on the boundary of Θ, N (x) is the convex cone generated by
the outward normals of the faces on which x lies. When Θ is convex,

N (x) = {y ∈ R
d : yT(x′ − x)≤ 0, for all x′ ∈Θ}.
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A first-order critical point x of a smooth function f satisfies

−∇ f (x) = z for some z ∈N (x),

i.e., the direction of most rapid descent lies in the normal cone (of directions we
cannot move in without leaving Θ). Let S∗n and S∗ be the set of first-order critical
points of the approximating function fn and the true function f in Θ, respectively.
The following theorem states first-order convergence results of the SAA method,
and is an immediate result of [55, Proposition 19].

Theorem 8.5. Suppose there exists a compact subset C ⊂ R
d such that

(i) S∗ is non-empty and contained in C,
(ii) the true function f (·) is continuously differentiable on an open set containing

C,
(iii) {∇ fn(x)} converges to ∇ f (x) uniformly on C, a.s. as n → ∞, and
(iv) for sufficiently large n, S∗n is non-empty and contained in C w.p.1.

Then D(S∗n,S∗)→ 0 a.s. as n → ∞.

Proof. The proof can be derived from stochastic generalized equations. We do not
introduce them here; rather, we present a relatively easier version of the proof with
the added assumption that the domain Θ is compact and convex. Suppose that
D(S∗n,S∗) � 0. Since Θ is compact, by passing to a subsequence if necessary, we
can assume that there exists a convergent sequence of solutions {X∗

n ∈ S∗n} such that
for some ε > 0, d(X∗

n ,S
∗)≥ ε for all n ≥ 1. Let x∗ be a limit point of {X∗

n }, and then
x∗ /∈ S∗. On the other hand, since Θ is convex and each X∗

n satisfies the first order
criticality condition, for any u ∈ Θ

∇ fn(X
∗
n )

T(u−X∗
n )≥ 0 w.p.1.

By (ii) and (iii),

∇ fn(X
∗
n )

T(u−X∗
n )→ ∇ f (x∗)T(u− x∗)

a.s. as n → ∞. Thus, ∇ f (x∗)T(u− x∗)≥ 0 for all x ∈ Θ. But x∗ /∈ S∗ implies that for
some u ∈ X ∇ f (x∗)T(u− x∗)< 0, which is a contradiction.

The assumptions (ii) and (iii) above are satisfied under the sufficient conditions
for a valid IPA gradient estimator presented in Sect. 8.3. When the sample path
function is continuously differentiable a.s. at any x ∈ Θ, ∇Y (·,ξ ) is uniformly
integrable under the assumptions in Proposition 8.4. By applying Proposition 8.5 to
each component of ∇Y (·,ξ ), we can show the continuity of ∇ f (·) and the uniform
convergence of {∇ fn(·)}.

Theorem 8.5 implies that the limit point of any solution sequence {X∗
n ∈ S∗n} must

lie in S∗. This does not guarantee that {X∗
n } converges almost surely. When there are

multiple critical points, the particular critical point chosen from S∗n depends, among
other things, on the optimization algorithm that is used. The existence of a unique
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first-order critical point can ensure convergence. However, this condition tends to
be difficult to verify in practice.

The second order convergence of the SAA method can be obtained by further
strengthening the assumptions in Theorem 8.5. Now, we select X∗

n from a set of
local minimizers of the SAA problem. By passing to a subsequence if necessary,
we assume that {X∗

n } converges to some random point x∗ ∈ Θ a.s. as n → ∞. The
additional condition required is there must exist a neighborhood of X∗

n in which
X∗

n is a local minimizer and this neighborhood does not shrink to a singleton when
n → ∞.

Theorem 8.6 (Theorem 4.1, [5]). Suppose that the assumptions in Theorem 8.5
hold. Furthermore, assume that for any fixed sample path ξ̄ = {ξ1,ξ2, . . .}, there
exist n0 > 0 and δ > 0 such that for all n≥ n0 and x∈ B(X∗

n ,δ )∩Θ, fn(X∗
n )≤ fn(x).

Then x∗ is a local minimum of f (·) w.p.1.

Nonsmooth objective functions arise in a number of interesting stochastic
optimization problems such as stochastic programs with recourse and stochastic
min-max problems [50]. To close this section, we briefly discuss the local conver-
gence of the SAA method in the nonsmooth setting. When the true and sample
functions are continuous and nonsmooth, we can derive convergence results based
on the Clarke generalized gradient [10]. For a locally Lipschitz function f , the
generalized gradient ∂ f can be defined as the convex hull of all the limit points of
∇ f (xk), where {xk} is any sequence which converges to x while avoiding the points
where∇ f (xk) does not exist. With some technical definitions, the expectation of the
generalized gradient of the sample function can be well-defined [21, 62].

Essentially, the same principle from the smooth case can hold for the nonsmooth
problem. When IPA is valid, i.e., ∂E[Y (x,ξ )] = E[∂xY (x,ξ )], SAA can be appro-
priate and the first order convergence can be achieved. A sufficient condition for
the validity of IPA is that the sample function is locally Lipschitz continuous with
integrable Lipschitz constant. This condition is a fairly general condition in the
Lipschitz continuous setting, just as it is in the smooth case.

8.5 SAA Implementation

Implementing the SAA method is conceptually straightforward since only two
choices need to be made: the sample size with which to generate the sample-path
problem, and the numerical procedure with which to solve the generated sample-
path problem. Assuming a numerical procedure is (somehow) chosen using cues
laid out in Sects. 8.2 and 8.3, the only remaining task then is choosing an appropriate
sample size. Towards making this decision, a reasonable question might be to ask
what minimum sample size ensures that the solution resulting from the generated
sample-path problem is of a stipulated quality, with a specified probability. In what
follows, we present a “minimum sample size” result that answers this question.
This is followed by a discussion of certain refined versions of SAA that are aimed
at enhancing the implementability of the SAA method.
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8.5.1 Sample Size Choice

Recall that for ε ≥ 0, π∗(ε) and Π∗
n(ε) denote the ε-optimal solutions for the true

and the sample-path problems, respectively. Theorem 8.7 presents an expression
for the sample size n that guarantees that P{Π∗

n(δ ) � π∗(ε)} ≤ α , for given
α > 0,ε > 0, and a chosen constant δ < ε . The implication is that when an SAA
problem is generated with a sample size exceeding the expression provided, the
resulting solution is guaranteed to be ε-optimal with probability exceeding 1−α .
To guide intuition, we present the result only for the setting where Θ is finite. The
corresponding expression for the general case follows in a straightforward fashion
after making additional assumptions that help to approximate { f (x) : x ∈ Θ} with
{ f (x) : x ∈ Θ̃}, where Θ̃ is an appropriately chosen finite set that in a certain precise
sense “approximates” Θ.

Theorem 8.7 (Theorem 5.18, [51]). Suppose there exists a constant σ > 0 such
that for any x ∈ Θ \ π∗(ε), the moment generating function Mx(t) of the random
variable Y (x,ξ )− f (x) satisfies Mx(t)≤ exp(σ2t2/2),∀t ∈ R. Then, for ε > 0,0 ≤
δ < ε, and α ∈ (0,1), any n satisfying

n ≥ 2σ2 ln( |Θ|α )

(ε − δ )2 (8.24)

guarantees that P{Π∗
n(δ )� π∗(ε)} ≤ α .

The proof of Theorem 8.7 proceeds by using the crude bound

P{Π∗
n(δ )� π∗(ε)} ≤ ∑

x∈Θ\π∗(ε)
P{ fn(x)≤ v∗+ ε}

≤ |Θ|exp{−nη(δ ,ε)}
≤ |Θ|exp{−n(ε− δ )2/2σ2}, (8.25)

where η(δ ,ε) = minx∈Θ\π∗(ε) Ix(−δ ), and Ix(·) is the large deviations rate function
of Y (x,ξ )− f (x). The expression in (8.24) then follows upon replacing the left-hand
side of (8.25) with α and then solving for the sample size. Note that in choosing a
sample size through (8.24), the tolerance δ to which the SAA problem is solved still
needs to be chosen by the user. It can also be seen from the expression in (8.24)
that the dependence of the minimum sample size on the error probability α is
logarithmic, and hence weak.

The sample size directive given by Theorem 8.7, while useful in some SAA set-
tings, can be overly conservative [31, 51], often resulting in a loss in computational
efficiency. This is unsurprising considering the crude bound leading to (8.25), and
the existence of unknown constants, e.g., σ2 in the case of finiteΘ and several others
in the case of continuous Θ, that nevertheless need to be chosen by the user. Such
loss in efficiency resulting from the sometimes impractical sample size directives
has been one of the primary impediments to SAA’s implementability.
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8.5.2 Refined SAA Methods

With a view towards easier implementation, various refined versions [11, 22, 35, 36,
45] of the SAA method have recently been proposed. In what follows, we discuss
one of these paradigms, Retrospective Approximation (RA), in further detail. (The
similarly named “Retrospective Optimization” technique was introduced by [20],
but to describe the SAA method.)

Recall the efficiency issue associated with the SAA method. SAA dictates that
a single sample-path problem be generated with a large enough sample size and
solved to adequate tolerance. However, the minimum sample size required to ensure
that the resulting solution is of stipulated quality may be so large as to render the
procedure not viable. To thwart this difficulty, RA proposes a slight refinement
of the SAA paradigm. Instead of solving a single sample-path problem generated
with a large enough sample size, RA proposes to generate and solve a sequence of
sample-path problems. The sequence of sample-path problems are generated using
a nondecreasing sequence of sample sizes {mk}, that are then solved to increasing
stringency using a sequence of error-tolerances {εk} that converge to zero. When
the paradigm works as intended, the resulting sequence of solutions approaches
the true solution asymptotically. More importantly, the paradigm is constructed to
preserve efficiency. The early iterations are efficient because they involve sample-
path problems generated with small sample sizes. The later iterations are efficient,
at least in principle, due to the use of “warm starts,” where solutions from previous
iterations are used as initial guesses to the subsequent problems.

Towards further clarification, we now list RA as a nonterminating algorithm.

RA Components:

(i) A procedure for solving a generated sample-path problem to specified toler-
ance vector εk.

(ii) A sequence {mk} of sample sizes tending to infinity.
(iii) A sequence {εk} of error-tolerances tending to zero.
(iv) A sequence of weights {wk j : j = 1,2, . . . ,k} for each iteration.

RA Logic:

0. Initialize the retrospective iteration number k = 1.
1. Generate a sample-path problem with sample size mk. Use RA component (i)

with a “warm start,” i.e., with Xk−1 as the initial guess, to solve the generated
problem to within error-tolerance εk. Obtain a retrospective solution Xk.

2. Use component (iv) to calculate the solution Xk as the weighted sum of
retrospective solutions {Xi}k

i=1:

Xk =
k

∑
j=1

wk jXj.

3. Set k ← k+ 1 and go to 1.
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Step 1 of the RA listing is deliberately left ambiguous, and is to be made precise
depending on the problem context. For example, in the context of using RA within
global SO problems, “solving a sample-path problem to within tolerance εk” can
mean identifying a point Xk whose optimality gap as measured with respect to the
objective function fmk (x) is at most εk.

The iterates resulting from the RA paradigm, for the context of global SO,
are strongly consistent under conditions similar to those imposed within the
SAA method. The proof follows in a rather straightforward fashion from the
corresponding theorem [51, Theorem 5.3] in the SAA context in combination with
some standard results on M-estimators [52].

Theorem 8.8. Assume

A1. The feasible region Θ is compact, and the set of global minima π∗ ⊂ Θ of the
function f is nonempty.

A2. The sequence of sample functions { fn(x)} is such that the set of global minima
Π∗

n of the function fn is nonempty for large enough n w.p.1.
A3. The functional sequence { fn(x)}→ f (x) uniformly as n → ∞ w.p.1.
A4. The function f is continuous on Θ.
A5. The sequence of sample sizes {mk} and the sequence of error-tolerances {εk}

in the RA paradigm are chosen to satisfy {mk}→ ∞ and εk → 0 as k → ∞.
A6. Given s > 0, define the ith sum of the first s weights wi(s) = ∑s

j=1 wi j for each
i ≥ s. The weights {wi j} are chosen so that wi(s)→ 0 as i → ∞.

A7. The sample-path problems are solved to obtain a retrospective solution Xk

satisfying ‖ fmk (Xk)−v∗mk
‖ ≤ εk when Π∗

mk
�= φ , with vmk = inf{ fmk (x) : x ∈Θ}.

Then the sequences { f (Xk)− v∗}, {d(Xk,π∗)}→ 0 w.p.1. (Assume d(Xk,π∗) =∞ if
Π∗

mk
= /0.)

The RA method above was presented as a nonterminating algorithm where a
sequence of sample sizes {mk} for problem generation and a sequence of error-
tolerances {εk} relevant during problem solution need to be chosen by the user.
This raises the natural question of how these sequences should be chosen to ensure
efficiency. Pasupathy [35] partially addresses this question and presents guidelines
on choosing these sequences as a function of the convergence rate of the numerical
procedure in use. For example, it is shown that for efficiency, it may be best to
choose εk = O(1/

√
mk) when the numerical procedure in use converges at a linear

rate. (Convergence rates are defined rigorously in Sect. 8.6.2.) Furthermore, when
using linearly convergent numerical procedures, efficiency dictates that it is best to
choose sample sizes {mk} such that limsupmk/mp

k−1 = 0 for all p > 1. Likewise,
when using numerical procedures that have superlinear convergence rates, efficiency
dictates that it is best to choose {mk} such that limsupmk/mp

k−1 < ∞ for all p > 1.
We discuss these results in more detail in Sect. 8.6.

More recently, [45] addresses the obvious drawback that the directives provided
in [35] are at best asymptotic. In other words, while the results in [35] recommend
the rates at which the sample size sequence {mk} and the error-tolerance sequence
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{εk} should converge to zero, these recommendations still leave a large family of
sequences from which to choose. Royset [45] remedies this in the specific context of
solving smooth stochastic programs (e.g., when derivatives of the function Y (x,ξ )
are observable and Y (x,ξ ) is Lipschitz with the Lipschitz constant having finite
expectation) with a numerical solver that is linearly convergent (e.g., projected
gradient method using Armijo step sizes as detailed in [38]). Using a model that
approximates the progress made by the linearly convergent numerical procedure in
use, [45] formulates a dynamic program to identify generation-effort/solution-effort
trade-off at the beginning of each iteration within RA. The output of the dynamic
program includes the sample size that should be used for each generated problem
and the computational effort that should be expended toward solving each generated
problem.

8.6 Asymptotic Efficiency Calculation

As noted earlier, refined SAA methods like RA, are constructed with a view towards
implementation. Does this construction result in any real computational savings?
In other words, does RA enjoy provable efficiency gains over the SAA paradigm?
In this section, we answer this question in some detail. Towards first providing a
benchmark for an asymptotic rate calculation, we present a very concise overview
and analysis of stochastic approximation (SA) which, alongside the SAA method,
is a standard technique for solving SO problems. This is followed by Sect. 8.6.2
where we discuss the maximum achievable convergence rate by the SAA method.
Section 8.6.3 presents the analogous calculation for the RA method.

Towards setting up the problem of identifying asymptotic efficiency, suppose
that the optimal solution to the true problem, x∗, is unique, and suppose that we
want to obtain a solution that is within a prescribed distance ε from x∗. (All
distances are Euclidean unless otherwise noted.) Suppose also that we measure
computational effort in terms of the number of simulation replications required,
i.e., the number of times Y (x,ξ ) is computed, for various x and ξ . Here we take the
function Y (·, ·) as fixed, rather than allowing it to come from a class of functions
as in many varieties of complexity theory; see, e.g., [33]. Moreover, this measure
ignores the effort required to compute, e.g., gradients. However, our results will be
restricted to rates of convergence that ignore proportionality constants, so as long as
gradients are obtained through schemes that only proportionally increase the work,
e.g., finite differences and infinitesimal perturbation analysis, then our results will
be unaffected. Finally, we also ignore the internal computations of an optimization
algorithm beyond the simulation effort. Such computations often heavily depend on
the dimension of the problem, but since we are fixing f , the dimension is also fixed.
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8.6.1 Asymptotic Rates for Stochastic Approximation

A well-understood, general-purpose method for solving stochastic optimization
problems, alternative to using the SAA principle, is stochastic approximation [26,
30, 42]. For unconstrained problems in R

d , the classical stochastic approximation
algorithm is a simple recursion that produces a sequence of points {X̃n : n ≥ 0},
each of which lies in R

d . The recursion requires an initial point X̃0, a positive gain
sequence {an : n ≥ 0}, and a sequence of vectors {∇̂ f (X̃n) : n ≥ 0} in R

d , where
∇̂ f (X̃n) is an estimate of ∇ f (X̃n). A simple version of a stochastic-approximation
recursion for a minimization problem is then

X̃n+1 = X̃n − an∇̂ f (X̃n). (8.26)

For the problems we consider here, the gradient estimator can usually be taken
to be ∇Y (X̃n,ξn), i.e., the gradient of Y (·,ξn) evaluated at X̃n, where (ξn : n ≥ 0)
are i.i.d., since under fairly general conditions (Sect. 8.3), this gradient estimator is
unbiased and has other desirable qualities like bounded variance. In that case, if f (·)
is smooth, has a unique global minimizer x∗, and an = a/n with a > 0 sufficiently
large, then under additional nonrestrictive conditions,

√
n(X̃n − x∗) ⇒ N(0,Λ), (8.27)

as n → ∞, for a certain d × d matrix Λ. See [4, Chap. VIII] for an overview of this
result and a sketch of how it can be established using the “Ordinary Differential
Equation” approach.

The CLT in (8.27) is striking in that the recursion (8.26) is trivial to implement,
involves almost no computation beyond the calculation of a sample gradient at each
iteration, and is very generally applicable. If the number of iterations of (8.26) is
completed in c units of computer time, n(c) grows roughly linearly in c (as would
be the case if, e.g., sample gradients are computed in constant time), then a time-
changed version of the CLT (8.27) establishes that the resulting SA estimator has
an error X̃n(c)− x∗ = Op(c−1/2). Equivalently, the computational effort required to
obtain an error of order ε with SA is Op(ε−2).

It is generally known that the performance of the recursion in (8.26) is highly
dependent on the gain sequence {an}. (In fact, even when the gradient estimator
∇Y (X̃n,ξn) is directly observable and an = a/n (a > 0), convergence to the
root fails if the constant a falls below a certain threshold, akin to the parallel-
chord method for nonlinear root-finding [34, p. 181].) Accordingly, the last three
decades have seen enormous attention given to the question of choosing the gain
sequence {an}; see [3, 9, 30, 40] and Chap. 6. While we do not go into any further
detail on this question, two key facts stand out. First, within the context of the
iteration (8.26), the fastest achievable convergence rate is Op(c−1/2) [40]. Second,
a remarkably simple scheme independently developed by [39, 49], and surveyed
under the moniker “Polyak–Ruppert averaging” in [4, Chap. VIII], achieves this
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maximum rate. The scheme involves using the step-size sequence an = a/nγ for
some γ ∈ (0,1), and then estimating the root x∗ via the direct average

Xn =
1
n

n

∑
i=1

X̃i.

Under mild conditions, the Polyak–Ruppert averaging scheme enjoys a CLT of the
same form as (8.27), although with a different covariance matrix Λ. Furthermore,
this happens irrespective of the value of the constant a > 0. (The small-sample
performance is, however, seriously affected by the choice of the constant a.) The
Polyak–Ruppert averaging scheme also has other optimality properties related to
the matrix Λ that appears in the limit; see [4, Chap. VIII].

8.6.2 Asymptotic Rates for the SAA Method

As noted in Sect. 8.6.1, the Polyak–Ruppert averaging scheme achieves the max-
imum possible convergence rate of Op(c−1/2) within the context of stochastic
approximation. Loosely speaking, this amounts to requiring Op(ε−2) computational
effort if one wants to obtain ε accuracy. How does the SAA method perform in
comparison? Towards setting up this question rigorously, recall the SAA method
again—a single sample-path problem is generated with sample size n and solved
using a chosen numerical solver. Furthermore, since solving the generated problem
to infinite precision is usually impossible in practice, suppose we execute k iterations
of the numerical procedure on the generated problem to obtain a solution Xn(k). The
total budget expended in the process is then simply c = n× k. It seems clear that,
under certain conditions (e.g., numerical procedure cannot solve to infinite precision
in a finite number of steps), as the available budget c →∞, the sample size n and the
number of steps k should satisfy n,k → ∞ to ensure that the optimality gap of Xn(k)
converges to zero in any reasonable sense. However, what relationship between n
and k (for given c) ensures that such convergence happens at the fastest possible
rate? Moreover, what is the corresponding maximal rate?

In a recent paper, [46] provide an answer to these questions. Before we
summarize their results, let us introduce definitions relating to the convergence rates
of the numerical solver in use. These definitions appear in more restrictive form
in [46].

Denote the numerical procedure acting on the sample function fn(x) by the map
A(x) : Θ→ Θ. Let Ak(x) denote the iterate obtained after k successive applications
of the map A(·) on the initial iterate x. In all three definitions that follow, we
assume that the function fn(x) attains its infimum v∗n := inf{ fn(x) : x ∈ Θ} and
that fn(Ak(x)) → v∗n as k → ∞ for all x ∈ Θ. Also, to avoid trivialities, assume that
fn(Ak+1(x)) is different from v∗n for all k. Denote Qt = limsupk→∞ | fn(Ak+1(x))−
v∗n|/| fn(Ak(x))− v∗n|t .
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Definition 8.1. The numerical procedure A(x) : Θ→Θ is said to exhibit pth-order
sublinear convergence if Q1 ≥ 1, and there exist constants p,s > 0 such that p =
sup{r : fn(Ak(x))− v∗n ≤ s/kr for all x ∈ Θ}.

When fn(x) is convex and Θ is a closed convex set, the subgradient method [33,
Sect. 3.2] for nonsmooth convex optimization exhibits sublinear convergence with
p = 1/2. Similarly, when fn(x) is strongly convex with Θ := R

d , the optimal
gradient method [33, Sect. 2.2] is sublinear with p = 2.

Definition 8.2. The numerical procedure A(x) : Θ → Θ is said to exhibit linear
convergence if Q1 ∈ (0,1) for all x ∈ Θ.

The definition of linear convergence implies that there exists a constant θ
satisfying fn(A(x))−v∗n ≤ θ ( fn(x)−v∗n) for all x∈Θ. The projected gradient method
with Armijo steps [38] when executed on certain smooth problems exhibits a linear
convergence rate.

Definition 8.3. The numerical procedure A(x) :Θ→Θ is said to exhibit superlinear
convergence if Q1 = 0 for all x ∈ Θ. The convergence is said to be pth-order
superlinear if Q1 = 0 and sup{t : Qt = 0}= p < ∞ for all x ∈ Θ.

When fn(x) is strongly convex and twice Lipschitz continuously differentiable
with observable derivatives, Newton’s method is second-order superlinear. For
settings where the derivative is unobservable, there is a slight degradation in the
convergence rate, but Newton’s method remains superlinear [6, p. 338].

We are now ready to summarize the main results of [46] through Theorem 8.9,
which is in essence a characterization of the maximum achievable convergence rate
when using a sublinearly convergent algorithm within the SAA method, and should
be juxtaposed with the Op(c−1/2) rate achievable using stochastic approximation as
discussed in Sect. 8.6.1.

Theorem 8.9 (Convergence Rate for the SAA Method). Let the following
assumptions hold.

A1. The expectation E[Y 2(x,ξ )]< ∞ for all x ∈ Θ.
A2. The function Y (x,ξ ) is Lipschitz w.p.1, and has Lipschitz constant K(ξ ) having

finite expectation.
A3. The function fn(x) attains its infimum on Θ for each n w.p.1.

Also, let c = n× k and n/c1/(2p+1) → a as c → ∞, with a ∈ (0,∞). Then, if the
numerical procedure exhibits pth-order sublinear convergence,

cp/(2p+1)( fn(A
k(x))− v∗) = Op(1) as c → ∞.

The crucial message given by Theorem 8.9 is that in the context of the SAA method,
the maximum achievable convergence rate is Op(c−p/(2p+1)) when the numerical
procedure in use exhibits p-th order sublinear convergence. (While Theorem 8.9
does not directly assert that Op(c−p/(2p+1)) is the maximum achievable rate, [46]
show this rigorously.) [46] also demonstrate that the corresponding rates when
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using linearly convergent and pth-order superlinearly convergent procedures are
Op((c/ logc)−1/2) and Op((c/ loglogc)−1/2), respectively.

Two observations relating to the assertions in [46] are noteworthy. First, the
fastest achievable convergence rate within the SAA method depends on the numer-
ical procedure in use, with faster numerical procedures affording a faster rate.
This is not so surprising when one sees that the SAA method splits the available
budget (c= n×k) between sampling and solving. Since faster numerical procedures
incur a smaller cost to solving, they facilitate attainment of a faster convergence
rate. Second, none of the families of numerical procedures considered are capable
of attaining the canonical convergence rate Op(c−1/2) that is seen in stochastic
approximation. Such degradation from the canonical convergence rate can be
explained as the “price” of using a numerical procedure. In other words, unless the
numerical procedure used within SAA is capable of infinite precision with only a
finite amount of computing effort, there is always a degradation in the convergence
rate due to the fact that a non-negligible portion of the budget is expended towards
solving the generated problem.

8.6.3 Asymptotic Rates for the RA Method

In this section, we present an analogous analysis for the maximum achievable
convergence rates within the RA method. Recall that in the RA method, instead
of generating and solving a single sample-path problem as in the SAA method, a
sequence of sample-path problems are generated with sample sizes {mk} and solved
to corresponding error-tolerances {εk}. In analyzing the achievable convergence
rates within the RA method, we then seek an asymptotic relationship between the
error ‖Xk − x∗‖ incurred at the end of k iterations, and the corresponding total work
done Ck. The following result, adapted from [35], captures this relationship as a
function of the convergence rate of the numerical procedure in use, but with strict
stipulations on the sample-path structure and the ability to observe their derivatives.

Theorem 8.10. Assume that Assumptions (i)–(vi) of Theorem 8.4 hold. In addition,
let the following assumptions hold:

A1. The sample function fn(x) has a unique minimum X∗
n w.p.1.

A2. When fn(x) attains a unique minimum X∗
n , fn(x) is twice differentiable at X∗

n .
Furthermore, the matrix of second-order partial derivatives (Hessian) of fn(x)
at X∗

n is positive definite with smallest eigenvalue uniformly bounded away from
0 w.p.1.

A3. The solution Xk obtained from the kth iteration of RA satisfies ‖∇ fmk (Xk)‖≤ εk.
A4. The numerical procedure used to solve the sample-path problems in RA exhibits

p-th order sublinear convergence or pth-order linear convergence with respect
to the observed derivatives.

A5. The sample sizes are increased linearly, i.e., mk/mk−1 = c > 1 for all k.
A6. The error-tolerances are chosen so that εk = O(1/

√
mk).
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Then the sequence of solutions obtained using the RA procedure satisfies Ck‖Xk −
x∗‖2 = Op(1) as k → ∞, where Ck is the total amount of computational work done
until the kth iteration and is given by Ck = ∑k

i=1 Nimi. Here Ni is the number of
points visited by the numerical procedure during the ith iteration.

Proof. The proof proceeds along lines very similar to the proof of Theorem 5
in [35]. In what follows, we provide only a proof sketch, and only for the case where
the numerical procedure in use exhibits linear convergence. The corresponding
proof for the sublinear convergence case follows almost directly after appropriately
changing the expression in (8.28).

We first see, since the numerical procedure is assumed to exhibit linear conver-
gence, that

Ni = Op

(
1+

1
logr

(
log

εi

‖∇ fmi(Xi−1)‖
))

, (8.28)

for some r ∈ (0,1). Using the Delta method [7] and Assumptions A1, A2, A3, we
write

‖∇ fmi(Xi−1)‖ = Op(‖X∗
i −X∗

i−1‖)+ εi−1. (8.29)

Since Assumptions (i)-(vi) of Theorem 8.4 hold, ‖X∗
i −x∗‖=Op(1/

√
mi) and hence

‖X∗
i − X∗

i−1‖ = Op(1/
√

mi + 1/
√

mi−1). Combining this with (8.28) and (8.29)
yields

Ni = Op

(
1+

1
logr

(
log

εi

1/
√

mi + 1/
√

mi−1 + εi−1

))
. (8.30)

Now use Assumption A6 to obtain

Ck‖Xk − x∗‖2 = Op

(
(

k

∑
i=1

mi)(1/
√

mk + εk)
2

)
. (8.31)

Finally, use (8.31) and Assumption A5 to conclude that the assertion holds.

Theorem 8.10 asserts that, as long as the sample size and error-tolerance
sequences are chosen strategically, the error in the obtained solution converges to
zero at the canonical rate. This assertion is interesting, since we will recall from
Sect. 8.6.2 that the canonical convergence rate is unachievable in the context of the
SAA method, barring unlikely contexts where the numerical procedure exhibited
exceptionally fast convergence rates. It is also noteworthy that Theorem 8.10
assumes that the derivatives of the sample path are observable. This is to help with
terminating the individual iterations of the RA algorithm, and could probably be
relaxed further by assuming instead that the derivative is estimated using a consistent
estimator appropriately constructed from function observations. The assumption
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about the numerical procedure exhibiting at least linear convergence is easily
satisfied, e.g., projected gradient method [38] for certain smooth problems; and
Newton’s method [34, Chap. 9] when used on smooth convex programs with
observable derivatives.

8.7 Conclusions

We have provided a guide to the principle of SAA for simulation optimization,
with a discussion on when SAA might be an appropriate solution method, how
the potential for such applicability can be detected, and an appraisal of SAA’s
implementation and efficiency characteristics. An interesting observation on SAA’s
applicability is that it can be applied whenever infinitesimal perturbation analy-
sis [17] for gradient estimation can be applied. Loosely speaking, both of these
methods become applicable when the sample problems and true problem share
characteristics that are important for numerical optimization software, chief among
which are continuity, differentiability, and the approximate location of optimal
solutions. SAA has a well-developed large-sample theory, both within the global
and the local optimality contexts. The latter context seems especially useful within
application settings.

On the question of asymptotic efficiency, recent results have established that
a straightforward implementation of SAA is inferior to stochastic approximation.
This difference in efficiency stems entirely from the fact that SAA, by construction,
stipulates that the optimization software being employed uses a fixed sample size
irrespective of how close the current solution is to an optimal solution. Towards
remedying this, a refinement of SAA called retrospective approximation has been
developed. The refinement increases sample sizes at a carefully controlled rate as
the numerical optimization proceeds, and in the process recovers the same rate of
convergence (up to a multiplicative constant) as stochastic approximation.

Throughout this chapter, we have made the assumption that samples are i.i.d., but
that is not essential to the established theory. Indeed, one can apply any of several
variance reduction methodologies that induce dependence, and for the most part the
theory remains relatively unchanged; see [57]. One can also generate the samples
using techniques such as quasi-Monte Carlo and randomized versions thereof [29].
Some of these topics, along with stochastic constraints, are treated in detail in the
following chapter.
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Chapter 9
Stochastic Constraints and Variance Reduction
Techniques

Tito Homem-de-Mello and Güzin Bayraksan

Abstract We provide an overview of two select topics in Monte Carlo simulation-
based methods for stochastic optimization: problems with stochastic constraints
and variance reduction techniques. While Monte Carlo simulation-based methods
have been successfully used for stochastic optimization problems with deterministic
constraints, there is a growing body of work on its use for problems with stochastic
constraints. The presence of stochastic constraints brings new challenges in ensuring
and testing optimality, allocating sample sizes, etc., especially due to difficulties in
determining feasibility. We review results for general stochastic constraints and also
discuss special cases such as probabilistic and stochastic dominance constraints.
Next, we review the use of variance reduction techniques (VRT) in a stochastic
optimization setting. While this is a well-studied topic in statistics and simulation,
the use of VRT in stochastic optimization requires a more thorough analysis. We
discuss asymptotic properties of the resulting approximations and their use within
Monte Carlo simulation-based solution methods.

9.1 Introduction

In this chapter we consider stochastic optimization problems of the form

min
x∈Θ

{ f (x) := E[Y (x,ξ )] |gk(x) := E[Gk(x,ξ )]≤ 0, k ∈K } , (SP)

where Gk, k ∈ {0}∪K are extended real-valued functions with inputs being the
decision vector x and a random vector ξ . For simplicity of exposition, we use G0 ≡Y
and go ≡ f . The set of stochastic constraints is determined by the set K . Typically,
K contains a finite number of constraints, i.e., K = {1,2, . . . ,K}; however, this
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does not have to be the case and it can contain uncountably many constraints
(see, e.g., Sect. 9.2.3). In this chapter, we use K = /0 to denote (SP) without
any stochastic constraints and we set K = 1 for the case with a single stochastic
constraint. The set of deterministic constraints x must satisfy is denoted byΘ ⊂R

dx

and Ξ ⊂ R
dξ denotes the support of ξ , where dx and dξ are the dimensions of the

vectors x and ξ , respectively. We assume that ξ has a known distribution P that is
independent of x, and the expectations in (SP), taken with respect to the distribution
of ξ , are well-defined and finite for all x ∈Θ . We will refer to (SP) as the “true”
optimization problem (as opposed to the approximating problems to be discussed in
the sequel).

A wide variety of problems can be cast as (SP) depending on K , Θ and Gk,
k ∈ {0}∪K . For example, in a two-stage stochastic linear program with recourse,
K = /0, Θ = {Ax = b,x ≥ 0}, and G0(x,ξ ) = cx + h(x,ξ ), where h(x,ξ ) is the
optimal value of the linear program

h(x,ξ ) = min
y

q̃y

s.t. W̃ y = r̃− T̃x, y ≥ 0.

Here, ξ is a random vector that is comprised of random elements of q̃, W̃ , R̃ and T̃ .
In contrast, in a stochastic linear program with a single probabilistic constraint

(i.e., P(Ã′x ≥ b̃′)≤ α), we have K = 1, G0(x,ξ ) = cx and

G1(x,ξ ) = 1{Ã′x ≥ b̃′}−α,

where 1{E} denotes the indicator function that takes value 1 if the event E happens
and 0 otherwise, and α ∈ (0,1) is a desired probability level. In this case, ξ is
comprised of random elements of Ã′ and b̃′. Here, the decision maker requires that
the relationship Ã′x ≥ b̃′ be satisfied with probability no more than α .

Monte Carlo simulation-based methods have been successfully used in many
different applications of stochastic optimization. The appeal of such methods results
from the fact that they often approximate well, with a small number of samples,
problems that have very large number of scenarios; see, for instance, [60] for
numerical results.

There are multiple ways to use Monte Carlo methods in problem (SP). A generic
way of describing them is to construct an approximating problem as follows.
Consider a family {gk,Nk(·)} of random approximations of the function gk(·), each
gk,Nk(·) being defined as

gk,Nk(x) :=
1

Nk

Nk

∑
j=1

Gk(x,ξ
j

k ), (9.1)
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where {ξ 1
k , . . . ,ξ

Nk
k } is a sample of size Nk from the distribution1 of ξ , for k ∈

{0}∪K . When ξ 1
k , . . . ,ξ

Nk
k are mutually independent, the quantity gk,Nk (x) is called

a (standard or crude) Monte Carlo estimator of gk(x). Given the family of estimators
{gk,Nk(·)} defined in (9.1), one can construct the corresponding approximating
program

min
x∈Θ
{

fN0(x)≡ g0,N0(x) |gk,Nk(x)≤ 0, k ∈K
}
. (9.2)

In this chapter we adopt the following notation: N denotes the vector of sample
sizes [Nk]k∈{0}∪K ; ν∗ and νN denote the optimal value of (SP) and the optimal
value of its approximation (9.2), respectively; similarly, x∗ and xN denote an optimal
solution to (SP) and (9.2), respectively. For a particular realization {ξ̂ 1

k , . . . , ξ̂
Nk
k }

of {ξ 1
k , . . . ,ξ

Nk
k }, k ∈ {0} ∪K , we use the notation x̂N and ν̂N . Note that for

each x ∈ Θ the quantity gk,Nk(x) is a random variable, since it depends on the

sample {ξ 1
k , . . . ,ξ

Nk
k }. So, the optimal solution(s) xN and the optimal value of (9.2)

νN are random as well. Nevertheless, it is possible to study convergence and
statistical properties of the approximating problem (9.2). Note that “convergence”
here indicates the asymptotic behavior of (9.2) as the sample sizes Nk, k ∈ {0}∪K ,
go to infinity. We will sometimes abuse the notation and write N → ∞ as an
abbreviated form of the latter condition. The idea of replacing the expectations with
sample averages and solving the resulting formulation has a long history, but it has
recently become popular under the name of Sample Average Approximation (SAA)
approach, which is the topic of Chap. 8.

Much of the existing work in the literature focuses on the case where K = /0
in (SP), i.e., the constraints in the problem are deterministic; see, for instance,
[38, 91, 94] and Chap. 8 for reviews of that literature. In this chapter we review
some of the existing works that deal with Monte Carlo simulation-based approx-
imations for problems with stochastic constraints. As we shall see, some new issues
arise in that context, and the extension of the methods designed for deterministic
constraints not only is involved but in some cases is not even known.

We also review some alternative ways to construct the approximating prob-
lem (9.2) that do not rely on standard Monte Carlo sampling. The goal of such
methods is to obtain estimates that are more accurate than those obtained with
standard Monte Carlo sampling, thus allowing the user to obtain a good solution
from (9.2) with fewer samples. Given that the computational effort required to
solve (9.2) typically grows fast with the sample sizes, the use of such alternative
methods becomes crucial for the solution of certain problems.

We close this introduction by acknowledging that this chapter is largely based
on [38], which is a more extensive survey of Monte Carlo methods for stochastic
optimization. Our treatment here is more detailed with respect to assessment

1Throughout this chapter, we will use the terminology “sample [of size N] from the distribution of
ξ” to indicate a set of N random variables with the same distribution as ξ .
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of solution quality and selection of sample sizes for problems with stochastic
constraints. We also have an expanded discussion on the asymptotic properties of
Monte Carlo sampling-based approximations of stochastic optimization problems
using alternative sampling techniques. Finally, we remark that the purpose of this
chapter is to give an overview of two topics in Monte Carlo methods for stochastic
optimization—namely, problems with stochastic constraints and variance reduction
techniques—with the goal of introducing them to students and researchers. Aiming
to be accessible to a wider audience, we outline the main results and provide
references for a more comprehensive treatment.

The remainder of this chapter is organized as follows. In Sect. 9.2 we study
problems with stochastic constraints. We first discuss the general case of expected-
value constraints in Sect. 9.2.1. Next, we examine in more detail two special
classes of stochastic constraints, namely probabilistic and stochastic dominance
constraints, in Sects. 9.2.2 and 9.2.3, respectively. In our review of Monte Carlo
methods for stochastic optimization problems with stochastic constraints, we start
with formulations, then discuss some properties of the SAA approach, survey
solution methods, review choice of sample sizes when appropriate, and finally
discuss how to assess the quality of approximate solutions. Monte Carlo methods
are often enhanced by the use of variance reduction techniques; the use of such
methods in the context of sampling-based stochastic optimization is reviewed in
Sect. 9.3. We review antithetic variates, Latin hypercube sampling, quasi-Monte
Carlo, importance sampling and the use of control variates. Finally, we end the
chapter with some concluding remarks and future research directions in Sect. 9.4.

9.2 Problems with Stochastic Constraints

We start by considering formulation (SP) and the corresponding approximation (9.2)
in which K is a non-empty finite set. Such problems arise naturally in applications
where the decision x must satisfy inequalities but the functions defining the
inequalities depend on a random parameter such as demand or future prices.
Examples include call center staffing problems where the constraints ensure that
the expected number of answered calls, which is estimated by sampling, must be
at least a certain percentage of the expected total number of received calls [4], and
portfolio optimization problems where the constraints are defined by the conditional
value-at-risk (CVaR) of the random returns [51]. CVaR constraints can also be used
to provide convex approximations to chance constrained problems, as discussed
in [71]. There are, however, some classes of problems where the structure of the
stochastic constraints plays a fundamental modeling role, as we shall see below in
Sects. 9.2.2–9.2.3. Since specialized methods have been developed for these classes
of problems, we will study them separately.
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9.2.1 Problems with General Expected-Value Constraints

In this section, we discuss some general results that do not exploit any particular
structure of the constraints.

The SAA Approach

We first consider the properties of the SAA approach, which as discussed earlier
consists of solving (9.2). One of the main concerns is the convergence of optimal
values and limit points of optimal solutions to SAA problems in the general case
as the sample sizes tend to infinity. This issue was studied two decades ago, for
instance, in [48, 90]. While these asymptotic results are very useful, in practice one
is naturally concerned with what happens with finite sample sizes; see [100] for
some results for the finite sample case.

The main issue that arises when using sampling approximations within the
constraints is that of feasibility. For example, consider a single constraint of the
form E[G1(x,ξ )] ≤ 0, and let x̄ be a point on the boundary of the feasibility
set so that E[G1(x̄,ξ )] = 0. Moreover, suppose that G1(x̄,ξ ) is normally dis-
tributed, and consider the sampling approximation 1

N1
∑N1

j=1 G1(x̄,ξ j). Clearly, by
the strong law of large numbers, this quantity converges to zero with probability
one (w.p.1). However, no matter how large N1 is, there is always a 50 % chance that
1

N1
∑N1

j=1 G1(x̄,ξ j)> 0—in which case x̄ is infeasible to the approximating problem.
To circumvent the problem, we can replace the constraint E[G1(x,ξ )]≤ 0 with

E[G1(x,ξ )] ≤ ε, (9.3)

where ε ∈ R. A positive value of ε provides a relaxation of the problem, whereas
a negative value tightens the problem. Let Uε denote the set defined by the set of
x ∈Θ satisfying (9.3), and let Uε

N1
be the corresponding set defined by the sampling

approximation. Then, it is possible show that, under proper assumptions—which
include compactness ofΘ along with other conditions on G1(x,ξ ) such as Lipschitz
continuity—one has that, for any ε > 0,

P
(
U−ε ⊆U0

N1
⊆Uε) ≥ 1−Me−βε

2N1 (9.4)

for some constants M > 0, β > 0. In other words, the probability that the feasibility
set of the approximating problem is “sandwiched” between U−ε and Uε goes to one
exponentially fast. The rate of convergence, of course, depends on the value of ε .
We refer to [100] for details.
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Solution Methods and Choice of Sample Sizes

Under the SAA approach, given a realization {ξ̂ 1, ξ̂ 2, . . . ,} of {ξ 1,ξ 2, . . . ,}, one
then solves (9.2) for that realization. Any appropriate deterministic algorithm can
be used to solve the corresponding problem, depending on the underlying structure
(discrete, convex, etc.). In particular, one can use a penalization technique to bring
the constraints into the objective function; see, for instance, [61] for a discussion.
We are not aware of other approaches designed specifically for general problems
with expected-value constraints in mathematical programming.

In contrast to mathematical programming, in the simulation literature often
no assumptions regarding the structure of Gk are made. The approximations
are obtained through a “black box” response to a simulated system for a given
decision x. When |Θ | is finite and typically of small size, a growing number of
recent papers have been studying the stochastic optimization problems with general
expected value constraints. Classical ranking and selection procedures (see, e.g.,
[47] and Chap. 2) have been extended to the cases where there are single and
multiple stochastic constraints [2, 7]. Ranking and selection procedures aim to find
the best solution among a discrete set of decisions with a pre-specified probability
of selecting the correct solution. In the presence of stochastic constraints, this also
includes determining the feasibility of the decisions. The optimal computing budget
allocation approach (see [17] and Chap. 3) has also been extended to consider
feasibility of the alternatives, e.g., [44, 57], the latter using large deviations theory.
Other ongoing work in this area includes looking at relaxation of independent
sampling for some procedures [33, 34], cases when |Θ | is large [85] or when
stochastic constraints have some additional structure (e.g., [80]).

Assessing Solution Quality

As mentioned above, optimal solutions of (9.2) converge to their “true” correspond-
ing values under some conditions. More specifically, the distance between xN—an
optimal solution of (9.2)—and the set S∗ of optimal solutions of the “true” problem
(SP) goes to zero as N → ∞ w.p.1. Thus, we expect xN to be a good solution for
the original problem. It is necessary, however, to assess the quality of such solution
in rigorous terms. One of the classic approaches for assessing solution quality in
optimization is to bound the candidate solution’s optimality gap. If the bound on the
optimality gap is sufficiently small, then the candidate solution is of high quality.

In stochastic optimization, Monte Carlo sampling can be used to obtain (statis-
tical) lower bounds. A whole research area has been developed to deal with that
issue, starting with [64, 73] (we refer the reader to [8, 38] for reviews). The basic
idea is as follows. Consider problem (SP) with K = /0—i.e., there are no stochastic
constraints—and let x̂ be a “candidate” solution, whose quality we want to assess
(for example, we can take x̂ as an optimal solution to an independently generated
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SAA problem). The optimality gap of x̂ is given by f (x̂)−ν∗. Of course, typically,
we cannot compute exactly either f (x̂) or ν∗. We can, however, estimate the gap by
calculating

GN(x̂) := fN(x̂)−νN, (9.5)

using νN , the optimal value of the approximating problem (9.2) (we write N instead
of N0 since there is no ambiguity). Note that when viewed as an estimator of
optimality gap, GN(x̂) is biased, i.e., E [GN(x̂)]≥ f (x̂)−ν∗. Such bias follows from
the fact that E[νN ] ≤ ν∗. While there are different ways to calculate the above
optimality gap estimator, a basic version uses the same independent and identically
distributed (i.i.d.) observations ξ 1,ξ 2, . . . ,ξN from the distribution of ξ for both
terms in (9.5). Then, multiple independent estimators G k

N(x̂) are generated using NG

“batches” of observations ξ k1,ξ k2, . . . ,ξ kN , k = 1,2, . . . ,NG , and these G k
N(x̂) are

averaged to obtain a point estimator of the optimality gap:

Ḡ (x̂) :=
1

NG

NG

∑
k=1

G k
N(x̂). (9.6)

The sample variance is calculated as usual by s2
G := 1

NG−1 ∑
NG
k=1

(
G k

N(x̂)− Ḡ (x̂)
)2
.

An approximate (1−α)-level confidence interval estimator on the optimality gap
of x̂ is then obtained by

[
0, Ḡ (x̂)+

zαsG√
NG

]
, (9.7)

where zα denotes a 1−α quantile from a standard normal distribution. The resulting
point estimator (9.6) and interval estimator (9.7) are called the Multiple Replications
Procedure (MRP) estimators. A major advantage of MRP is its wide applicability,
as it does not require much structure from the original problem (SP). The main
assumption is that Y (x,ξ ) have finite second moments for all x ∈Θ . The framework
to implement MRP is relatively simple and step by step instructions can be found,
for instance, in [8].

The approach discussed above for the case K = /0 can be extended to the setting
of finite K �= /0 with some adjustments. Suppose there is a single expected-value
constraint; i.e., K = 1. In [100], the authors suggest the following approach to derive
a lower bound. Notice that the optimal value of minx∈Θ { f (x) |E[G1(x,ξ )] ≤ 0} is
bounded from below by the optimal value of minx∈Θ { f (x)+λE[G1(x,ξ )]} for any
λ ≥ 0. Since the latter problem does not have stochastic constraints, the methods
derived for problems with deterministic constraints can be used to obtain a lower
bound for its optimal value. For example, by solving M independent approximations
of the form
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νN(λ ) := min
x∈Θ

{
1
N

N

∑
j=1

Y (x,ξ j)+λG1(x,ξ j)

}
,

one can construct confidence intervals for E[νN(λ )], which in turn is a lower bound
for min{E[Y (x,ξ )]+λE[G1(x,ξ )]}. Of course, the quality of the overall bound will
depend on the value of λ . One possible choice is to take λ as the optimal dual
multiplier of the problem

min
x∈Θ

{
1
N

N

∑
j=1

Y (x,ξ j)

∣∣∣∣∣
1
N

N

∑
j=1

G1(x,ξ j)≤ 0

}
,

where the sample is independent of the samples drawn in each of the M replications.
Note that in this case we use the same sample to estimate both the objective function
and the constraint. Note also that when the original problem is not convex (e.g.,
when the feasibility set is finite) such a lower bound can be loose even if N is
large.

As in the case of problems with deterministic constraints, an upper bound for the
optimal value of (SP) can be obtained simply by evaluating the objective function
at any feasible solution. However, as we saw above, in case of stochastic constraints
feasibility cannot be guaranteed since the functions defining the constraints cannot
be evaluated exactly. One way to ensure feasibility of a given x ∈Θ with a given
confidence is to fix 0 < β < 1 and construct a one-sided 100(1−β )% confidence
interval for E[G1(x,ξ )] as [94]

1
N

N

∑
j=1

G1(x,ξ j)+ zβ

√
s2

N(x)

N
,

where s2
N(x) is the sample variance of the sample {G1(x,ξ 1), . . . ,G1(x,ξN)}. If the

above quantity is less than or equal to zero, then we are 100(1−β )% confident that
x is feasible and consequently the objective value at x yields upper bound for the
optimal value of (SP).

Recall that Karush–Kuhn–Tucker (KKT) conditions provide necessary and suf-
ficient conditions for optimality for a class of problems. In the class of problems we
consider, the expectations in (SP) and their (sub)gradients can only be approximated
by simulation-based methods. Several researchers have looked at determining if a
solution is optimal or near optimal by testing KKT conditions, e.g., by developing
a series of hypotheses tests for verification [9], or by using a so-called optimality
function that has two parts, one that is related to feasibility of the candidate solution
with respect to the stochastic constraints and the other used for testing the more
general Fritz–John conditions (similar to KKT conditions) for optimality [86].
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9.2.2 Problems with Probabilistic Constraints

This class of problems can be written as

min
x∈Θ

{ f (x) | P(Hk(x,ξ )≤ 0)≥ 1−αk, k ∈K } . (9.8)

Clearly, such a problem falls into the framework of (SP), since we can write
P(Hk(x,ξ )≤ 0)≥ 1−αk as E[(1−αk)−1{Hk(x,ξ )≤ 0}]≤ 0. While a probabilistic
constraint (also called chance constraint) is a special case of expected-value
constraint, it is possible to exploit its special properties for its analysis and solution.
The probabilistic constraints in (9.8) are used in situations where violation of the
constraint inside the probability has a qualitative instead of a quantitative nature,
i.e., it matters whether the constraints are violated or not; the amount of violation is
less important. Such constraints are often used to model service level or reliability
restrictions, such as “demand must be satisfied in at least 95 % of the cases.”

It is important to distinguish between the case of separate chance constraints as
in (9.8) and that of joint constraints of the form P(H1(x,ξ ) ≤ 0, . . . ,HK(x,ξ ) ≤ 0)
≥ 1− α . Note that the latter can be represented as P(H(x,ξ ) ≤ 0) ≥ 1− α by
defining H(x,ξ ) := max{H1(x,ξ ), . . . ,HK(x,ξ )}, although some properties such as
differentiability may be lost in such representation. Still, using this representation,
we can assume that K = 1, which is a particular case of (9.8).

Problems with probabilistic constraints have been studied for decades, starting
with the work of Charnes and Cooper [16]. As pointed out by Ahmed and
Shapiro [1], the two major difficulties with such problems are that (a) evaluating
P(Hk(x,ξ ) ≤ 0) can be difficult (e.g., it may involve multidimensional integrals),
and (b) the sets {x : P(Hk(x,ξ ) ≤ 0)≥ 1−αk} may be nonconvex. This subject is
very rich; we refer to [84] for a thorough discussion, and to [1] for a more recent
view. For the purposes of this survey, we will review work that uses Monte Carlo
methods to approximate the chance constraints.

The SAA Approach

We start by discussing a direct SAA approach for this class for problems. To
simplify the discussion, we shall assume that there is only one chance constraint,
i.e., K = 1, and we drop the index k from the notation. Specifically, we consider the
problem

min
x∈Θ

{
1
N

N

∑
j=1

Y (x,ξ j)

∣∣∣∣∣
1
N

N

∑
j=1

1{H(x,ξ j)≤ 0} ≥ 1− γ

}
, (9.9)
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and as before consider the behavior of the optimal value and optimal solutions
of (9.9) as function of N. Note that we have replaced the term 1−α on the right-
hand side with 1− γ , where γ is a parameter. By allowing γ to be different from α
we obtain a problem that is either more relaxed or more tight than the original one,
which is relevant when considering feasibility issues.

It is important to point out that the analysis discussed in Sect. 9.2.1 cannot be
used here since the function 1{H(·,ξ j)≤ 0} is not continuous. Nevertheless, some
convergence results can be derived in this setting as well. For example, in [78] it is
shown that if (a) both Y and H are continuous in x, (b) the set Θ is compact and (c)
there exists an optimal solution x∗ such that, given any neighborhood of x∗, there
exists some x in that neighborhood such that P(H(x,ξ )≤ 0)> 1−α , then we have
that

• νN → ν∗ w.p.1 and
• dist(xN ,S∗)→ 0 w.p.1,

where dist(x,A) is the distance from a point x to a set A, defined as infa∈A ‖x− a‖.
Under certain assumptions—such as compactness ofΘ and Lipschitz continuity of
H with respect to x, or finiteness ofΘ—an exponential convergence of the type (9.4)
holds in this setting as well [62].

Solution Methods and Choice of Sample Sizes

A natural question that arises is, how to solve the approximating problem (9.9)? Let
{ξ̂ 1, ξ̂ 2, . . .} be a realization of {ξ 1,ξ 2, . . .}, and consider problem (9.9) defined for
that specific realization. Here we need to distinguish between the two cases γ = 0
and γ > 0. When γ = 0, problem (9.9) can be equivalently written as

min
x∈Θ

{
1
N

N

∑
j=1

Y (x, ξ̂ j) : H(x, ξ̂ j)≤ 0, j = 1, . . . ,N

}
. (9.10)

Depending on the structure of H—for example, when H is linear or convex in x—
this can be a very tractable problem. The downside, of course, is that the replacement
of α > 0 with γ = 0 yields a more conservative model. Still, [15] improves upon an
original result in [13], showing that, given 0 < δ ≤ 1, by choosing

N ≥ 2
α

(
log

1
δ
+ dx

)

(recall that dx is the dimension of x in (SP)), the optimal solution to (9.10) is
feasible to the original problem (9.8) with probability at least 1−δ , regardless of the
distribution of ξ when H(·,ξ ) is convex. In [70], it is shown that a better value for N,
which grows as log(1/α) instead of 1/α , can be obtained under further assumptions
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on H and the distribution of ξ . Campi and Garatti [14] and Pagnoncelli et al. [79]
discuss approaches to remove some of the sampled constraints in order to obtain a
less conservative problem.

The situation is rather different when γ > 0 in (9.9). It is easy to see that
convexity is lost because of the presence of the indicator functions even if H has
nice properties. Note however that (9.9) is still a chance-constrained problem, where
the underlying distribution is the empirical distribution defined by {ξ̂ 1, . . . , ξ̂N}.
Thus, any method proposed for chance-constrained problems with finite number of
scenarios can be used to solve (9.9), e.g., by finding the so-called p-efficient points
corresponding to the constraints [23], or by strengthening the integer programming
formulation for the problem when H(x,ξ ) is of the form maxi{ξi −hi(x)} [63], i.e.,
separating the random component from the function.

A different sampling-based approach for chance constrained problems is pro-
posed in [42] for the situation where, given x ∈ Θ , the function H(x,ξ ) is
differentiable at x with probability one. Note that when H represents joint chance
constraints such an assumption typically will not hold when ξ has discrete
distribution, because of the “kinks” of the max function. When this assumption
(and some others) do hold, the constraint P(H(x,ξ ) ≤ 0) ≥ 1−α can be written
as a difference of convex (DC) functions. As a result, the original problem can
be approximated (by successive linearization of one of the functions in the DC
formulation) by a sequence of convex problems, and in the limit one obtains a KKT
point for the original problem. Because the functions in the DC formulation cannot
be evaluated exactly, a sampling-based approach is proposed to solve each of these
convex problems.

Recently, problems with probabilistic constraints have also been studied from the
perspective of ranking and selection procedures; see [41].

Assessing Solution Quality

It is possible to derive statistical lower and upper bounds for the optimal value
of (9.8), ν∗. For a given x ∈Θ consider the estimator

p̂(x) :=
1
N

N

∑
j=1

1{H(x,ξ j)> 0}

of p(x) := P(H(x,ξ ) > 0). As discussed before, any feasible x yields an upper
bound for the optimal value of the problem. A given x ∈ Θ is feasible for (9.8)
if p(x) ≤ α . In our context, computing p(x) is impractical so we would like
to use the estimator p̂(x). One way of doing this is to construct a one-sided
100(1 − β )% confidence interval for p(x) similarly to the idea described for
general expected-value constrained problems, i.e., given a realization {ξ̂ 1, ξ̂ 2, . . .}
of {ξ 1,ξ 2, . . .}, compute the value of p̂(x) corresponding to that sample and check
whether
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p̂(x)+ zβ

√
p̂(x)(1− p̂(x))

N
≤ α, (9.11)

where we used the fact that ∑N
j=1 1{H(x,ξ j) > 0} has a binomial distribution with

parameters N and p(x) and assumed that N is sufficiently large to ensure that the
binomial distribution can be well approximated by a normal distribution with mean
N p(x) and variance N p(x)(1 − p(x)). If (9.11) is satisfied, we are 100(1− β )%
confident that x is feasible.

More efficient techniques have been developed by exploiting the structure of
the probabilistic constraints. Following [71], let B(k; p,n) denote the cumulative
distribution function of the binomial distribution with parameters n and p. Given
0 < β < 1, define the quantity U(x) := sup{ρ ∈ [0,1] |B(N p̂(x);ρ ,N) ≥ β} (note
that U(x) is random). Then, it is possible to show that P(p(x)<U(x))≥ 1−β . This
suggests the following procedure: given a realization {ξ̂ 1, ξ̂ 2, . . .} of {ξ 1,ξ 2, . . .},
compute the values of p̂(x) and U(x) corresponding to that sample; if U(x) ≤ α ,
then we are 100(1−β )% confident that x is feasible.

The calculation of lower bounds for the optimal value of (9.8) can in principle
follow the method described in Sect. 9.2.1, but again the lack of convexity implies
that Lagrangian-based bounds are not useful due to the existence of an optimality
gap. The following alternative approach is suggested in [71, 78]. Consider prob-
lem (9.8), and suppose the objective function is deterministic (call it f ). Consider
M independent estimators of the optimal value ν∗ of (9.8), defined by the optimal
value of (9.9) with M independent samples of size N each. Let ν j

N be the optimal

value of the jth replication, and let ν(1)N ≤ . . . ≤ ν(M)
N denote the corresponding

order statistics. The procedure calls for using ν(L)N as a statistical lower bound for
the optimal value of (9.8), as it can be shown that

P
(
ν(L)N ≤ ν∗

)
≥ 1−B(L− 1;θN,M),

where θN is defined as B(�γN�;α,N) and as before B(k; p,n) denotes the cumu-
lative distribution function of the binomial distribution with parameters n and
p. This suggests the following procedure: given M independent realizations of

{ξ 1,ξ 2, . . . ,ξN}, let ν( j)
N be the jth smallest value among the corresponding optimal

values of the approximating problems. Choose L, M and N in a such a way that

B(L − 1;θN ,M) ≤ β ; then, we obtain that ν(L)N is a lower bound for ν∗ with
confidence of at least 100(1−β )%. Of course, there are many such possible choices
for L, M and N, and an appropriate choice must take into account computational
considerations; we refer to [78] for a comprehensive discussion.

9.2.3 Problems with Stochastic Dominance Constraints

We turn now to the class of optimization problems with stochastic dominance
constraints. Stochastic dominance is used to compare the distributions of two
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random variables (e.g., see [66]), thus providing a way to measure risk. Dentcheva
and Ruszczyński [21, 22] first introduced optimization problems with stochas-
tic dominance constraints as an attractive approach for managing risks in an
optimization setting. While pursuing expected profits, one avoids high risks by
choosing options that are preferable to a random benchmark. Recently, optimization
models using stochastic dominance have increasingly been the subject of theoretical
considerations and practical applications in areas such as finance, energy, and
transportation.

Review of Stochastic Dominance

For completeness, we briefly review the main concepts of stochastic dominance.
Given a real-valued random variable Z, we write the cumulative distribution
function of Z as F1(Z;η) := P(Z ≤ η). Furthermore, for n ≥ 2, define recursively
the functions

Fn(Z;η) :=
∫ η

−∞
Fn−1(Z;t)dt,

assuming that the first n− 1 moments of Z are finite. We then say that Z stochasti-
cally dominates another random variable W in nth order (denoted Z �(n) W ) if

Fn(Z;η) ≤ Fn(W ;η) for all η ∈R.

Let (a)+ = max{a,0}. It is useful to note the equivalence given in [74] for n ≥ 2

Fj(Z;η) =
1

( j− 1)!
E
[(
(η−Z)+

) j−1
]
, j = 2, . . . ,n, (9.12)

which implies that the condition that the first n− 1 moments of Z are finite suffices
to ensure that Fn(Z;η) < ∞ for all η .

The concept of stochastic dominance is also related to utility theory [99], which
hypothesizes that for each rational decision maker there exists a utility function
u such that the (random) outcome Z is preferred to the (random) outcome W if
E[u(Z)]≥ E[u(W)]. Often the decision maker’s exact utility function is not known;
in such cases one would say that Z is preferred to W if E[u(Z)] ≥ E[u(W)] for all
u belonging to a certain set of functions. This set of functions is determined by
the risk attitude—for example, a risk-averse decision maker’s utility function is
nondecreasing and concave. To see the connection with the notions of stochastic
dominance defined above (for n = 1,2), let U1 be the set of all nondecreasing
functions u : R �→ R and let U2 be the set of all nondecreasing concave functions
u : R �→R. Then, it is well known that

Z �(n) W ⇐⇒ E[u(Z)]≥ E[u(W)], ∀u ∈Un, n = 1,2, (9.13)
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whenever the expectations exist. Stochastic dominance is also closely related to
concepts of stochastic ordering; for example, the condition E[u(Z)] ≥ E[u(Y )] for
all u ∈U2 is called stochastic increasing concave order (see, e.g., [89]).

Basic Properties and Reformulations

Using the above concepts, an optimization model with stochastic dominance
constraints can then be formulated as follows [21, 22]:

min f (x)

s.t. H(x,ξ )�(n) W (9.14)

x ∈Θ ,

where the random variable W represents a benchmark. The cases that have received
most attention in the literature are n = 1 and n = 2. The difficulties with the n = 1
case are similar to those arising with probabilistic constraints, notably nonconvexity.
The case n = 2, on the other hand, is a convex problem so long as f (·) is convex,
H(·,ξ ) is concave and the set Θ is convex—indeed, the equivalence (9.12) allows
us to write the problem with expected value constraints, yielding

min f (x)

s.t. E
[
(η−H(x,ξ ))+

] ≤ E
[
(η−W)+

] ∀η ∈ R (9.15)

x ∈Θ ,

which is a convex program.
In principle, problem (9.15) falls into the general framework of Sect. 9.2.1, as

it contains expected-value constraints. A major difference, however, is the fact
that (9.15) has one constraint for each η ∈ R, i.e., it has uncountably many
constraints. This issue is circumvented when the random variable W has finitely
many outcomes w1, . . . ,wr, in which case it suffices to write the constraints in (9.15)
only for η = wj, j = 1, . . . ,r, thus yielding a problem with finitely many expected-
value constraints [21] . When the distribution of ξ also has finite support, the
expectations in (9.15) can be written as sums, so the problem becomes deterministic.
When W has infinitely many outcomes, it is natural to resort to sampling methods;
note however that the analysis is more delicate than that described in Sect. 9.2.1
since it involves not only approximating the expectations but also sampling over the
set of (uncountably many) constraints. We will discuss this issue further shortly.

It is also useful to consider the case when the function H in (9.14) is vector-
valued, which we write as (H1(x,ξ ), . . . ,Hm(x,ξ )). This situation occurs in many
practical settings—for example, when H(x,ξ ) is a linear function of the form
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A(ξ )x, where A(ξ ) indicates a random matrix. Of course, in this case, W is
also an m-dimensional random vector. We have then two alternatives. One is to
write the problem with m one-dimensional stochastic dominance constraints; i.e.,
Hj(x,ξ ) �(n) Wj, j = 1, . . . ,m. Even though such a formulation provides a direct
extension of the unidimensional case seen above, it disregards the dependence
among the components Hj of H. Alternatively, we can use concepts of multivariate
stochastic dominance. One such concept is that of convex dominance introduced by
Hu, Homem-de-Mello, and Mehrotra [43]. Given m-dimensional random vectors Z
and W and a convex set C ⊂ R

m, we say that Z dominates W in nth order linearly
with respect to C if

vTZ �(n) vTW for all v ∈ C . (9.16)

Note that the notion of convex dominance includes as a particular case the concept
of positive linear dominance (see, e.g., [66]), which corresponds to C =R

m
+. Under

convex dominance, problem (9.15) is then written as

min f (x)

s.t. E
[(
η− vTH(x,ξ )

)+] ≤ E
[(
η− vTW

)+] ∀η ∈ R, ∀v ∈ C (9.17)

x ∈Θ .

When W has finitely many outcomes w1, . . . ,wr and the set C is polyhedral, the
dominance relationship (9.16) for n = 2 can be written as [39]

E
[(

vTk wj − vTk H(x,ξ )
)+] ≤ E

[(
vTk wj − vTk W

)+]
j = 1, . . . ,r, k = 1, . . . ,K,

where v1, . . . ,vK are certain vectors in the set C . Thus, in that case the problem still
has finitely many expected-value constraints.

The SAA Approach and Solution Methods

An analysis of sampling approximations to problem (9.17) (which includes (9.15)
as a particular case) is provided in [43]. The corresponding sample average
approximation is written as

min f (x)

s.t.
1
N

N

∑
j=1

(
(vi

k)
TW i − (vi

k)
TH(x,ξ j)

)+ ≤ 1
N

N

∑
j=1

(
(vi

k)
TW i − (vi

k)
TW j)+

i = 1, . . . ,N, k = 1, . . . ,K (9.18)

x ∈Θ .
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In the above formulation, {(ξ j, W j)}, j = 1, . . . ,N is a sample of size N from
(ξ , W ), and the {vi

k}, i = 1, . . . ,N are certain vectors in C . Typically, the vi
k vectors

are unknown in advance; to remedy the problem, a cutting-surface algorithm based
on the ideas in [39] is proposed, which converges in finitely many iterations to an
optimal solution of (9.18) [43]. Moreover, the feasibility set UN of (9.18) satisfies

P
(
U−ε ⊆UN ⊆Uε) ≥ 1−Me−βε

2N ,

where Uε is the feasibility set corresponding to the dominance constraint in (9.15)
perturbed by ε on the right-hand side.

Assessing Solution Quality

Statistical lower and upper bounds (e.g., to assess solution quality) can also be
derived for the approximation (9.18). Procedures that are based on similar ideas to
those discussed in Sect. 9.2.1—more specifically, a Lagrangian-based relaxation for
the lower bound, and the objective value of a feasible solution for the upper bound—
but with the necessary adaptation to the setting of (9.17) are proposed in [43]. An
alternative procedure for the case where H is real-valued (rather than vector-valued)
but the set Θ is nonconvex (for example, discrete) is discussed in [101]. The basic
idea is to formulate a hypothesis test to check feasibility of a given solution, and
then use a multiple-replication procedure similar to that described in Sect. 9.2.1—
but modified to discard certain replications—to calculate an optimality gap.

9.3 Variance Reduction Techniques

Monte Carlo sampling-based approximations and algorithms can be significantly
improved by reducing the variability of the estimates they generate. Variance
reduction techniques have a long history in the simulation and statistics literature.
The main goal of such methods is to provide estimators of values associated
with a random variable that have better properties than the standard Monte Carlo
estimators. Consider for example the quantity f (x) defined in (SP) for a fixed x ∈Θ
and its sample average estimator defined in (9.1) (recall that we set f ≡ g0 and
Y ≡ G0). When the sample {ξ 1, . . . ,ξN} is independent and identically distributed,
its variance is given by

Var[ fN(x)] =
Var[Y (x,ξ )]

N
.

Although Var[Y (x,ξ )] is typically unknown, it can be estimated by a sample
variance as follows:

S2
N(x) :=

∑N
i=1[Y (x,ξ i)− fN(x)]2

N − 1
.
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The above estimator is unbiased, i.e., E[S2
N(x)] = Var[Y (x,ξ )].

Of course, it is desirable to have estimators with as small variance as possible.
While this is the case in the context of pointwise estimation, it is even more so in
the case of optimization, since poor estimates of the objective (or of its derivatives)
may lead to slow convergence of an algorithm. Clearly, if Var[Y (x,ξ )] is large
then Var[ fN(x)] will be large as well, unless the sample size can be chosen to
counterbalance that effect. In many cases, however, choosing a large sample size
is not practical, as the evaluation of Y (x, ξ̂ ) for a given ξ̂ can be costly.

The goal of variance reduction techniques is to derive estimators fN(x), νN , etc.
with smaller variance than those obtained with standard Monte Carlo. While in some
cases this is accomplished by exploiting the structure of the problem, some general
techniques do exist. We discuss next some variance reduction methods, mostly in the
context of stochastic optimization problems though we do provide some background
for the case of pointwise estimators (i.e., for a fixed x ∈Θ ).

In our presentation below, we revert to the case where there are no stochastic
constraints (K = /0 in (SP)). Also, for some of the methods discussed below we
assume that the vector ξ has independent components. When such an assumption
does not hold one can often write the components of ξ as functions of some
independent uniform random variables; see, for instance, [10].

9.3.1 Antithetic Variates

Antithetic Variates (AV) aim to reduce variance by inducing correlations. Suppose
N is even and components of ξ are independent. Instead of using N i.i.d. random

variates, the AV estimator aims to use N/2 negatively correlated pairs (ξ j, ξ
j
),

j = 1, . . . ,N/2. This is typically achieved by generating N/2 i.i.d. random vec-
tors U1, . . . ,UN/2 of dimension dξ distributed uniformly over [0,1]dξ , and their
corresponding antithetic variates from the opposite end of the distribution (taken
component-wise), 1−U1, . . . ,1−UN/2, which are also i.i.d. distributed uniformly
over [0,1]dξ ; note that (U j,1−U j), j = 1, . . . ,N/2 are negatively correlated. Then,

regular variate generation techniques are utilized to generate the pairs (ξ j, ξ
j
) using

(U j,1−U j). For the case with dependent components of ξ , we refer to [87].
In contrast to the standard Monte Carlo estimator of E[Y (x,ξ )] with variance

N−1σ2(x) := N−1Var[Y (x,ξ )], the antithetic variates estimator

fN,AV(x) =
1

N/2

N/2

∑
j=1

Y (x,ξ j)+Y(x,ξ
j
)

2

has variance N−1σ2(x)+N−1Cov(Y (x,ξ j),Y (x,ξ
j
)). Therefore, as long as

Cov(Y (x,ξ j),Y (x,ξ
j
))< 0,
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the antithetic estimator has a smaller variance than its crude Monte Carlo counter-
part and they both produce unbiased estimators of the expectation.

The degree of variance reduction depends on the extent to which the negative

correlation between the pair (ξ j, ξ
j
) is preserved after Y (x, ·) is applied to this

pair. In [36], it is argued that the negative correlation can be preserved for a
class of two-stage stochastic linear programs with stochasticity only on the right-
hand side, and computational results are presented. This is because Y (x, ·) is a
monotone function of the right-hand side of the second stage problem for this
class of problems. In general, if Y (x, ·) is a bounded and monotone function in
each of its arguments that is not constant in the interior of its domain, variance
reduction can be achieved using AV [58]. The work in [36] has been expanded by
also considering νN , the optimized sample means, where [28] analytically shows
the extent of variance reduction using AV on a newsvendor problem and present
computational results for two-stage stochastic linear programs. The computations
in [49] indicate that when the monotonicity in the objective function is lost, AV can
increase (e.g., double) the variance. However, when AV is effective, combination
of AV with other variance reduction techniques such as randomized quasi-Monte
Carlo is found to be very effective. The use of AV in the context of assessing solution
quality for two-stage stochastic linear programs is investigated in [97]. These papers
indicate that antithetic variates can result in modest variance reduction with minimal
computational effort for a class of stochastic optimization problems.

9.3.2 Latin Hypercube Sampling

A fairly general way of obtaining estimators with smaller variance is based on
the concept of stratified sampling (see, for instance, [27] and references therein).
Generally speaking, the idea is to partition the sample space and fix the number
of samples on each component of the partition, which should be proportional to
the probability of that component. This way we ensure that the number of sampled
points on each region will be approximately equal to the expected number of points
to fall in that region. It is intuitive that such a procedure yields smaller variance than
crude Monte Carlo; for proofs see [27]. Notice, however, that although theoretically
appealing, implementing such a procedure is far from trivial, since the difficulty is
to determine the partition as well as to compute the corresponding probabilities.

There are many variants of this basic method; a classical one is the so-called Latin
Hypercube Sampling (LHS) approach, introduced in [65]. The LHS method operates
as follows. Suppose we want to draw N samples from a random vector ξ with
dξ independent components, each of which has a Uniform(0,1) distribution. The
algorithm consists repeating the two steps below for each dimension j = 1, . . . ,dξ :

1. Generate

X1 ∼U

(
0,

1
N

)
, X2 ∼U

(
1
N
,

2
N

)
, . . . ,XN ∼U

(
N − 1

N
,1

)
;
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2. Let ξ i
j := Xπ(i), where π is a random permutation of 1, . . . ,N.

In [65], it is shown that each sample ξ i
j (viewed as a random variable) has the

same distribution as ξ j, which in turn implies the estimators generated by the LHS
method are unbiased. In case of arbitrary distributions, the above procedure is easily
modified by drawing the sample as before and applying an inversion method.

Under some conditions, the LHS method does indeed reduce the variance
compared to standard Monte Carlo [65]. Asymptotically (i.e., as the sample size
N goes to infinity), LHS is never worse than standard Monte Carlo [76, 96], even
without the assumptions of [65]. More specifically, VLHS ≤ N/(N − 1)VMC, where
VLHS and VMC are respectively the variances under LHS and standard Monte Carlo.
Thanks to such properties (and to the simplicity of the method), the LHS technique
has been widely used in simulation, showing up even in off-the-shelf spreadsheet-
based software.

One drawback of using the LHS method is that, by construction, the generated
samples are not independent—indeed, variance is reduced precisely because of the
correlation introduced by the method. Lack of independence implies that classical
statistical results such as the Central Limit Theorem (CLT) do not apply directly
to the resulting estimator; consequently, confidence intervals cannot be built in the
standard way. It is worthwhile mentioning that [75] proves a version of the CLT for
LHS estimators, which is useful from the perspective of rates of convergence but not
necessarily for the construction of confidence intervals as the result involves some
quantities that are difficult to estimate. In practice, in order to derive confidence
intervals one typically performs multiple independent replications (for example, m
replications, each with a sample of size N) and applies the classical theory to the
data set consisting of the LHS average estimator from each replication.

The use of LHS in stochastic optimization, while not as widespread as in sim-
ulation, has demonstrated the benefits of that approach, as reported in papers such
as [5, 40, 60, 93, 101]. The use of LHS for assessing solution quality in stochastic
programming was examined theoretically and empirically in [25, 97]. The effect of
using LHS in the context of the newsvendor model was studied in detail in [28],
where some general conclusions are drawn about the effectiveness of that approach
for stochastic optimization.

It is possible to study convergence of estimators of optimal values and optimal
solutions of (9.2) with sampling that is not necessarily i.i.d. under a general
theoretical framework . Throughout the discussion below, assume thatΘ is compact.
Suppose that for each x ∈Θ we have that

fN(x)→ f (x) w.p.1. (9.19)

Suppose also that the function Y (·,ξ ) is Lipschitz. Then, we have that

(i) fN(x)→ f (x) uniformly onΘ w.p.1;
(ii) νN → ν∗ w.p.1;

(iii) dist(xN ,S∗)→ 0 w.p.1.
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Such a result is well known; see, e.g., [88, pp. 67–70]. Under further assumptions
on Y (·,ξ ) and Θ (for example, Y (·,ξ ) is piecewise linear and the support of the
distribution of ξ is finite, or the feasible set Θ is finite), the conclusion (iii) can be
replaced with xN ∈ S∗ w.p.1 for N large enough. For reference, we shall call that
condition the “piecewise-linear/finite-set assumption” for short.

The study of rates of convergence of estimators of optimal values and optimal
solutions in this context is introduced by Homem-de-Mello [37]. In what follows
we summarize the results from that paper, to where we refer the reader for details.
Suppose that for each x ∈Θ , there exist a number Cx > 0 and a function γx(·) such
that γx(0) = 0, γx(z)> 0 if z > 0, and

P(| fN(x)− f (x)| ≥ δ ) ≤ Cx e−Nγx(δ ) for all N ≥ 1 and all δ > 0, (9.20)

i.e., the probability that the deviation between fN(x) and f (x) is bigger than δ goes
to zero exponentially fast with N (notice that (9.20) implies that fN(x) converges in
probability to f (x)). Suppose also that the function Y (·,ξ ) is Lipschitz. Then, it can
be shown that given ε > 0, there exist constants K > 0 and α > 0 such that

P(dist(xN ,S
∗)≥ ε) ≤ Ke−αN for all N ≥ 1. (9.21)

In other words, if an exponential rate of convergence holds for the pointwise
estimators fN(x), then it will hold for the estimators of optimal solutions. The
result in (9.21) can be strengthened in case under the piecewise-linear/finite-set
assumption, as it can be shown that

P(xN �∈ S∗) ≤ Ke−αN for all N ≥ 1.

Results for convergence of estimators of optimal value can be derived under the
piecewise-linear/finite-set assumption. A simplified description of the results from
[37] goes as follows. Suppose that the “true” problem (SP) has a unique optimal
solution x∗, and that

fN(x∗)− f (x∗)
σN(x∗)

d→ N (0,1). (9.22)

where σ2
N(x) := Var[ fN(x)] and

d→ denotes convergence in distribution. Then,

νN −ν∗

σN(x∗)
d→N (0,1), (9.23)

where N (μ ,σ2) denotes the normal distribution with mean μ and variance σ2.
Similarly to the result for estimators of optimal solution, the above results states
that if a CLT holds for the pointwise estimators fN(x), then it will hold for the
estimators of optimal values.
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The above framework allows us to study convergence of estimators of optimal
values and optimal solutions of (9.2) under LHS. Indeed, it can be shown that con-
dition (9.19) holds under finiteness of second moment of Y (x,ξ ); condition (9.20)
holds under certain monotonicity assumptions on Y (x, ·); and condition (9.22) holds
if the random variable Y (x∗,ξ ) is bounded, and the function Y (x∗, ·) is not additive.

9.3.3 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods have a long history as tools to approximate
integrals, and as such have been widely used in many areas. Describing all the
nuances and the properties of such methods would fall out of the scope of this
chapter; thus, we only provide a brief discussion. We refer to [24, 58, 72] for
comprehensive treatments of QMC concepts. To set the stage, consider again
the function Y (x,ξ ) and assume that ξ is a random vector with independent
components, each with uniform distribution on [0,1]dξ . Consider the problem of
estimating f (x) := E[Y (x,ξ )] for a fixed x.

The basic idea of QMC is to calculate a sample average estimate as in the
standard Monte Carlo, but instead of drawing a random sample from the uniform
distribution on [0,1]dξ , a certain set of points ξ̂ 1, . . . , ξ̂N on space [0,1]dξ is carefully
chosen. The deterministic estimate

fN,QMC(x) :=
1
N

N

∑
i=1

Y (x, ξ̂ i) (9.24)

is constructed. A key result is the so-called Koksma–Hlawka inequality, which,
roughly speaking, states that the quality of the approximation given by fN,QMC(x)
depends on the quality of the chosen points (measured by the difference between the
corresponding empirical measure and the uniform distribution, which is quantified
by the so-called star-discrepancy) as well as on the nature of the function Y (x, ·)
(measured by its total variation). A great deal of the research on QMC methods
aims at determining ways to construct low-discrepancy sequences, i.e., sequences of
points ξ̂ 1, ξ̂ 2, . . . for which the star-discrepancy is small for all N. Particular types
of sequences that have proven valuable are the so-called digital nets and also lattice
rules. We briefly describe them next.

Let b ≥ 2 be an arbitrary integer, called the base. An elementary interval in base
b (in dimension s) is a subinterval E of [0,1]s of the form

E =
s

∏
j=1

[
a j

bd j
,

a j + 1

bd j

]

for nonnegative integers {a j} and {d j} such that a j < bd j for all j. The volume
of E is b−∑ j d j . Next, let t and m be nonnegative integers such that t ≤ m. A finite
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sequence of bm points is a (t,m,s)-net in base b if every elementary interval in base
b of volume bt−m contains exactly bt points of the sequence. A sequence of points
u1,u2, . . . is a (t,s)-sequence in base b if, for all integers k ≥ 0 and m > t, the set of
points consisting of the un such that kbm ≤ n < (k+ 1)bm is a (t,m,s)-net in base
b. Such (t,m,s)-nets can be shown to yield approximations such that the integration
error is of order (logN)s/N.

Many of the lattice rules in [0,1]s used in practice are generated as follows:
ξi = (i/N)v0 mod 1 for i = 0, . . . ,N − 1 where v0 is the generating vector, whose
components are integers between 0 and N − 1. There are some general principles
to choose the generating vector. A new approach introduced in [56], whereby the
lattice rules are tailored to the function being integrated, leads to convergence rates
that sometimes approach the theoretical optimal rate of 1/N2, provided the function
is sufficiently smooth.

Despite the theoretical attractiveness of QMC methods with respect to error rates,
an issue that arises when using such techniques in practice is the fact that the bounds
provided by the Koksma–Hlawka inequality involve difficult-to-compute quantities
such as the total variation of Y (x, ·). In other words, they yield qualitative rather than
quantitative results; hence, obtaining a good estimate of the error may be difficult.
A common way to overcome this issue is to incorporate some randomness into the
choice of QMC points. By doing so, errors can be estimated using standard methods,
e.g., via multiple independent replications. Some choices for randomizing the points
of the QMC sequence include the so-called Cranley–Patterson procedure—where
every number in the sequence is perturbed (modulo 1) by a single number generated
from a Uniform(0,1) distribution—and scrambling the digits of each number in the
sequence in a particular way; we refer to [54] for details.

Even with the randomization, one should be cautious when using QMC methods
since oftentimes these techniques “backfire” in problems with moderate or large
dimensionality if not used properly. This can be explained by the fact that the error
rates depend on the dimensionality—for example, the (logN)dξ /N rate seen above.
In such cases, one may try to determine the effective dimension of the problem, i.e.,
the number of variables that account for most of the variability, and then apply a
QMC strategy only for those variables. Such notion can be made precise, see for
instance [76, 77]. Moreover, the theoretical rates derived for QMC often rely on
smoothness of the integrand, which may not always be present. Still, when used
properly such techniques can be highly valuable, resulting in estimators that are
orders of magnitude better than standard Monte Carlo.

Similarly to what happens with standard random numbers, generating a good
QMC sequence may not be simple. Some sequences are easy to generate but the
more powerful ones require sophisticated methods. Fortunately, public software is
available—here we mention [29, 53, 55, 59], where libraries can be found.

A few papers study the application of QMC methods to stochastic optimization
problems. In [46], empirical results are provided for the use of Hammersley
sequences (one form of QMC). In [26], the aforementioned concept of effective
dimension is used to develop an algorithm for two-stage stochastic programs that
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attempt to determine the “important variables” in the problem based on dual
information. The remaining variables are “padded” with either Monte Carlo or Latin
Hypercube sampling; a rigorous analysis of such strategy can be found in [25]. As
in the case of LHS discussed in Sect. 9.3.2, theoretical results on convergence are
harder to obtain than in the Monte Carlo case due to the loss of the i.i.d. property. In
[81, 82], the authors show that, under mild assumptions, the estimator function fN

constructed with QMC points epiconverges to the true function f , which guarantees
convergence of optimal values and optimal solutions under appropriate further
conditions. In [49], those results are applied to the case where the QMC sequence
is randomized with the Cranley–Patterson procedure. The numerical results in those
papers also suggest considerable gains in terms of rates of convergence when
using QMC methods. Homem-de-Mello [37] studies the rates of convergence of
estimators of optimal values under randomized QMC, using the general framework
for non-i.i.d. sampling described in Sect. 9.3.2. Results are provided for a specific
QMC method for which a CLT exists, so that (9.22) holds. As it turns out, in that
case it is possible to show that the estimators of optimal values converge at the rate
[(logN)dξ−1/N3]1/2. One particular difficulty that arises when using QMC methods
for stochastic programming problems lies in the fact that such problems do not
have smooth integrands. Recent work sheds new light on that issue by showing
that, under certain assumptions, all terms of the so-called ANOVA decomposition
of such functions except the residual term are actually infinitely differentiable [35].

9.3.4 Importance Sampling

Importance Sampling (IS) aims to reduce variance by “shifting” the samples to the
most important regions. Suppose again the aim is to estimate E[Y (x,ξ )] for a given
x ∈Θ and suppose ξ has density p.2 Then, f (x) = E[Y (x,ξ )] =

∫
Ξ Y (x,ξ )p(ξ )dξ .

Now consider another density q over Ξ with the property that p(E) = 0 for every
set E for which q(E) = 0, and rewrite E[Y (x,ξ )] =

∫
Ξ Y (x,ξ )L (ξ )q(ξ )dξ . Here,

L (ξ ) = p(ξ )
q(ξ ) is the likelihood ratio, which we assume is well-defined (for this, we

may set L to zero whenever both p and q are zero). Instead of the usual Monte
Carlo estimator fN(x) = 1

N ∑
N
j=1 Y (x,ξ j) that uses an i.i.d. sample ξ 1,ξ 2, . . . ,ξN

from the density p, the importance sampling estimator

fN,IS(x) =
1
N

N

∑
j=1

Y (x, ξ̃ j)L (ξ̃ j)

2Such an assumption is made just for simplicity of notation; the general case can be dealt with via
Radon–Nikodym derivatives, see for instance [3].
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uses an i.i.d. sample ξ̃ 1, ξ̃ 2, . . . , ξ̃N from the new density q. Note that both estimators
are unbiased. However, not all choices of density q will lead to a reduction in
variance. In fact, if q is not chosen appropriately, it might lead to an increase in
variance. Therefore, finding an appropriate density q is critical to IS and much of
the research in this area is directed to this issue.

To understand how to find q, consider the following facts. First, E[Y (x, ξ̃ )L (ξ̃ )] =
E[Y (x,ξ )] and E[Y 2(x, ξ̃ )L 2(ξ̃ )] = E[Y 2(x,ξ )L (ξ )]. Therefore, the variance of
the IS estimator is given by

Var[ fN,IS(x)] =
1
N

[
E[Y 2(x,ξ )L (ξ )]− (E[Y(x,ξ )])2] , (9.25)

and the variance is reduced if and only if E[Y 2(x,ξ )L (ξ )]< E[Y 2(x,ξ )]. If we want
to minimize the variance—i.e., have zero variance—in (9.25), we need to have q
such that E[Y 2(x,ξ )L (ξ )] = (E[Y (x,ξ )])2. When Y (x, ·) is nonnegative, this results
in the optimal zero-variance density

q∗(ξ ) =
p(ξ )Y (x,ξ )
E[Y (x,ξ )]

.

This optimal density, however, requires the knowledge of an unknown quantity,
E[Y (x,ξ )], and is therefore unattainable. Nevertheless, this gives the intuition that
q should be approximately proportional to p(ξ )Y (x,ξ ) in order to achieve variance
reduction even though the proportionality constant may not be known. Here we
see the difficulty of using IS in the optimization context: it is clear that the above
expression for q∗(ξ ) cannot hold for all x ∈Θ , so the same IS density may be good
for some x but bad for others.

In the context of pointwise estimation, there is significant work on how to
determine the IS distribution in the literature as this is critical to the success of
IS. We briefly mention some of that work without getting into much detail. In
exponential titling, the IS distribution is restricted to belong to an exponential
family of distributions [31, 95]. In [88], a method is discussed which parameterizes
the IS distribution and solves a stochastic optimization problem to determine the
parameters of this distribution in order to minimize variance. This optimization
can be done via a sampling-based method and perturbation analysis; see, e.g., [30].
Other approaches in the literature to obtain the IS distribution include nonparametric
methods [67,102] and minimization of the Kullback–Leibler distance to the optimal
distribution [20]. Importance sampling techniques have been very successful in the
estimation of rare event probabilities, especially due to the connection with large
deviations theory; see, for instance, [32] and also [12] for a recent survey of that
area.

Importance sampling is one of the earliest variance reduction methods
applied to two- and multi-stage stochastic linear programs [18, 19, 45]. In [19],
the authors suggest using an additive approximation of Y (x,ξ ) given by
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Y (x,ξ ) + ∑
dξ
i=1ΔiY (x,ξ ), where ξ is a base case and each ΔiY (x,ξ ) gives the

marginal effect of the ith element of ξ . They suggest finding the marginal effects by
ΔiY (x,ξ ) = Y (x,ξ i)−Y (x,ξ ), where ξ i agrees with the base case ξ in all elements
except for the ith element, which agrees with ξ . This results in solving dξ +1 linear
programs to determine q, one for each marginal and one for the base case. The
authors argue that in the context of power generation, IS can capture rare events
such as power supply down and high demands better than crude Monte Carlo,
which are supported by the computations in [45]. Higle [36] applies this method to
a wider range of problems, and the computations indicate that the method can be
effective in reducing variance of E[Y (x,ξ )] estimates for some problems, but it can
also actually increase variance for some other problems.

As mentioned earlier, a major difficulty that arises when employing IS methods
in the context of iterative algorithms for more general stochastic optimization
problems is that changes in x throughout an optimization routine can result in
different IS distributions for different x. The idea of using trust regions on which
the same IS distribution can be used, but the results are inconclusive [92]. In [6], IS
techniques are employed for a chance-constrained problem in which the violation
probabilities αk in (9.8) are very small, so the methods for choice of sample sizes
discussed in Sect. 9.2.2 are not practical. They show that, for the application they
study, it is possible to construct IS distributions that are good for all x in an outer
approximation of the feasibility set of (9.8)—as discussed in that paper, trying to
find an IS distribution that is good for all x ∈Θ is not only unnecessary but also
counterproductive. Recent work applying IS within the stochastic dual dynamic
programming algorithm for multi-stage stochastic programs with nested mean-
CVaR objectives shows promising results [50]. As only relatively few scenarios
under random sampling contribute to estimating CVaR, an IS scheme provides better
estimators by concentrating the sampling to the important regions. A thorough study
of sequential IS methods in the context of optimization remains an open research
area [11].

9.3.5 Control Variates

Like antithetic variates, Control Variates (CV) aim to reduce variance by inducing
correlations. In the case of control variates, though, this is achieved by introducing
a control variable that can either be negatively or positively correlated with Y (x,ξ ).
Let C denote the control variable and λ be a scalar. Suppose E[C] = 0. Note that if
the mean of the control variable is known, which is often the case, then it can be
subtracted from it to obtain a variable with zero mean. The control variate estimator
of E[Y (x,ξ )] is given by

fN,CV(x) =
1
N

N

∑
j=1

(
Y (x,ξ j)+λC j) .
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For any given λ , fN,CV(x) is an unbiased estimator with variance

1
N

(
σ2(x)+λ 2Var[C]+ 2λCov(Y (x,ξ ),C)

)
. (9.26)

We can minimize this variance by setting λ to λ ∗ = −Cov(Y (x,ξ ),C)
Var[C] . By substituting

λ ∗ back in (9.26), we see that as long as C and Y (x,ξ ) are correlated, the variance
of the CV estimator

Var[ fN,CV(x),λ ∗] =
1
N

(
σ2(x)− Cov2(Y (x,ξ ),C)

Var[C]

)

is less than the variance of the crude MC estimator, N−1σ2(x). Notice that even
though Var[C] may be known, Cov(Y (x,ξ ),C ) is unknown but can be estimated,
resulting in an estimator of λ ∗. Unfortunately, when an estimator of λ ∗ is used,
fN,CV(x) is no longer unbiased. However, this can still yield significant variance
reduction and the resulting CV estimator obeys a CLT of the form

√
N ( fN,CV(x)−E[Y (x,ξ )]) d→N (0,Var[ fN,CV(x),λ ∗]),

due to a result of [69].
A number of control variates to estimate E[Y (x,ξ )] that are cheap to compute

and are quite effective across a number of test problems are presented in [36].
In [92], linear control variates are used to obtain more accurate estimators of the
gradient, Hessian, and the value of E[Y (x,ξ )] at a current solution point x in each
iteration of a Monte Carlo sampling-based method to solve two-stage stochastic
linear programs. Similarly, in [83], a subgradient-inequality-based linear control
variate within stratified sampling is used to estimate E[Y (x,ξ )] at each iteration’s
solution x of an algorithm for a class of two-stage stochastic convex programs.
Both papers show that control variates significantly reduce variance (up to more
than 1,000 times in some cases) and allow these Monte Carlo sampling-based
solution procedures to be numerically more viable. Control variates have also been
successfully used in ranking and selection procedures [68, 98].

9.4 Conclusions

In this chapter, we have surveyed the current landscape of Monte Carlo simulation-
based methods for stochastic optimization problems with stochastic constraints and
the use of variance reduction techniques in Monte Carlo approximations of stochas-
tic optimization problems. For stochastically constrained problems, we reviewed
asymptotic and finite sample size properties, and discussed solution methods and
assessment of solution quality. Variance reduction techniques can significantly
improve the quality of the Monte Carlo simulation-based estimators. We reviewed
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their use in the stochastic optimization setting, discussing asymptotic properties and
their use within Monte Carlo simulation-based solution methods. In particular, we
discussed the use of antithetic variates, Latin hypercube sampling, quasi-Monte
Carlo, importance sampling, and control variates. One topic we skipped in VRT
is the use of common random numbers (CRN), which aims to reduce variance by
inducing positive correlations via correlated observations and typically applies when
we are comparing two or more alternative systems (see, e.g., [52]). In the context
of stochastic optimization, CRN techniques can be efficiently used, for instance, in
assessing solution quality (see, e.g., [64]) or when ranking and selecting a system
among a discrete set of alternatives [47].

We note that both topics covered in this chapter are active areas of research
and new work is frequently appearing to address unresolved issues. Being able to
efficiently solve problems with stochastic constraints brings us closer to solving
many real-world problems with multiple performance measures that involve ran-
domness. Variance reduction techniques help make Monte Carlo sampling-based
methods considerably more reliable and efficient; therefore, they are very important
for the practical success of Monte Carlo methods in stochastic optimization. These
two important topics are being tackled by the mathematical programming and
simulation communities. Broadly speaking, in mathematical programming one
typically exploits certain structures found in the problem, whereas the simulation
literature typically works with problems that do not have much structure and can
only be evaluated with expensive simulations. Both approaches have their merits
and can be preferable in certain situations. That said, the line between the two has
been becoming blurry, as this book illustrates. One area of future research is to
further explore and exploit the connections between the simulation and the more
structured mathematical programming approaches. For the increased success and
applicability of these methods, data-driven methods need to be further developed
along with software linking real-world data to stochastic optimization models to
Monte Carlo simulation-based methods.
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Chapter 10
A Review of Random Search Methods

Sigrún Andradóttir

Abstract This chapter provides a brief review of random search methods for
simulation optimization. We start by describing the structure of random search
when system performance is estimated via simulation. Next, we discuss methods for
solving simulation optimization problems with discrete decision variables and one
(stochastic) performance measure, with emphasis on simulated annealing. Finally,
we expand our scope to address simulation optimization problems with continuous
decision variables and/or multiple (stochastic) performance measures.

10.1 Introduction

This chapter describes the use of random search to optimize complex stochastic sys-
tems whose expected performance under any particular system design is unavailable
in closed form, and instead must be estimated via computer simulation. Thus, if Θ
denotes the set of all possible system designs and f (x) = E[Y (x,ξ )] denotes the
expected system performance under each design x ∈Θ , then we aim to solve the
optimization problem

min
x∈Θ

f (x) (10.1)

under the assumption that the values of the objective function f will be estimated
using simulation. We will outline the generic structure of random search methods
and provide a review of a representative set of specific random search approaches.

Random search methods involve repeatedly sampling and evaluating system
designs based on the observed history (i.e., the designs that have been sampled so
far and their estimated performance) in search of the best feasible design. They
are well suited for solving simulation optimization problems where the objective
function often has little known structure (and hence derivatives are unavailable) and
the optimization procedure must identify improved solutions with guidance from the
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estimated performance of the solutions considered so far. The scope of applicability
of random search is broad, and includes deterministic and stochastic optimization
problems with discrete and/or continuous decision parameters.

The outline of this chapter is as follows. In Sect. 10.2, we describe the structure
of random search methods. In Sect. 10.3, we review a representative set of random
search methods for solving discrete simulation optimization problems. In Sect. 10.4,
we discuss example procedures for solving simulation optimization problems with
either continuous decision variables or multiple performance measures. An earlier
overview of random search for simulation optimization emphasizing desirable
features such as convergence and efficiency can be found in Andradóttir [14].

10.2 Structure of Random Search Methods for Simulation
Optimization

In this section, we describe the structure of random search methods applied to solve
the simulation optimization problem (10.1). We will let Sn denote the sampling
strategy used to select candidate system designs in iteration n ≥ 1 of the algorithm,
with Mn specifying the number of such designs. The sampling strategy can be
updated adaptively as the algorithm learns from the results so far, and does not need
to be chosen in advance of execution. Similarly, Mn is a parameter of the sampling
strategy Sn, and consequently does not need to be chosen in advance. The sampling
strategy can be used both to identify new, promising system designs, and also to
obtain improved objective function estimates for previously sampled designs (by re-
sampling them). The following generic random search algorithm can also be found
in Andradóttir [14].

Generic Random Search Algorithm for Simulation Optimization:

Step 0 (initialize): Choose the initial sampling strategy S1 and let n = 1.

Step 1 (sample): Select x(1)n , . . . ,x(Mn)
n ∈Θ according to the sampling strategy Sn.

Step 2 (simulate): Estimate f (x(i)n ), for i = 1, . . . ,Mn, using simulation.
Step 3 (update): Use the simulation results obtained in Step 2 to compute an

estimate of the optimal solution x∗n and to choose an updated sampling strategy
Sn+1. Let n = n+ 1 and go to Step 1.

The primary difference among random search methods involves the choice of the
sampling strategies {Sn}. Also, the generic algorithm does not include a stopping
criterion. This is consistent with the fact that convergence results for random search
are typically asymptotic in nature. In practice, it is of course necessary to augment
the algorithm with a suitable stopping criterion.

In the remainder of this chapter, we will describe specific random search
procedures for simulation optimization. As much of the random search literature
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focuses on problems with discrete decision variables, we start by considering such
problems in Sect. 10.3. Then we consider extensions to continuous feasible regions
and multiple objectives in Sect. 10.4.

10.3 Discrete Simulation Optimization

In this section, we review example procedures for discrete simulation optimization
problems with one (stochastic) performance measure. (In addition, there may be
deterministic performance measures whose values do not need to be estimated
via simulation. They can be incorporated into the constraint set Θ .) We start by
discussing research on how the well-known simulated annealing algorithm can be
applied to solve discrete simulation optimization problems in Sect. 10.3.1. Then we
briefly review certain other random search procedures for solving the optimization
problem (10.1) in Sect. 10.3.2.

10.3.1 Simulated Annealing

The simulated annealing algorithm dates back to the pioneering work by Metropolis
et al. [61]. Since then, a large body of literature has appeared on simulated
annealing, including important works by Kirkpatrick et al. [55], Mitra et al. [62],
Hajek [42], and others. A basic version of the simulated annealing algorithm for
solving a deterministic optimization problem of the form (10.1) is provided below.
We will need the following notation:

• for all x ∈ Θ , N(x) ⊂ Θ is a set of “neighbors” of x (alternatively, N(x) is a
“neighborhood” of x);

• for all x ∈Θ , R(x, ·) is a probability distribution on N(x);
• {Tn} is a sequence of strictly positive numbers;
• w.p. = with probability;
• (y)+ = max{0,y} for all y ∈ IR.

Basic Simulated Annealing Algorithm for Deterministic Optimization:

Step 0 (initialize): Choose an initial system design x0 ∈Θ and let n = 1.
Step 1 (sample): Select a candidate solution x′n ∈ N(xn−1) according to the proba-

bility distribution R(xn−1, ·).
Step 2 (update): Let

xn =

⎧⎨
⎩

x′n w.p. exp

(
− ( f (x′n)− f (xn−1))

+

Tn

)
,

xn−1 otherwise,

n = n+ 1, and go to Step 1.
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It is clear that the Basic Simulated Annealing Algorithm described above fits
within the framework outlined in Sect. 10.2 with Mn = 1 and x∗n = xn for all
n ∈ IN, except that a “simulate” step is of course not needed here, as the exact
objective function values are available. Simulated annealing is designed to solve
global optimization problems in the presence of (possibly multiple) local optimal
solutions. In each iteration n, the algorithm generates a candidate solution x′n, and
then decides whether to stay at the current solution xn−1 or move to the candidate
solution. More specifically, if the candidate solution x′n satisfies f (x′n)≤ f (xn−1), so
that x′n is better than xn−1, then x′n becomes the new estimated optimal solution.
On the other hand, if f (x′n) > f (xn−1), so that the candidate solution is worse
than xn−1, then there is nevertheless a chance that x′n will be chosen as a new
estimate of the optimal solution. This “hill-climbing” feature is designed to allow
the algorithm to escape from locally optimal solutions that are not globally optimal
(i.e., solutions x satisfying f (x) < f (x′) for all x′ ∈ N(x) but f (x) > infx′∈Θ f (x′)).
The probability exp(−( f (x′n)− f (xn−1))

+/Tn) of making such a hill-climbing move
depends both on how inferior the candidate solution is relative to the current solution
(i.e., on the magnitude of ( f (x′n)− f (xn−1))

+) and on the current “temperature” Tn,
with hill-climbing moves being less likely for worse candidate solutions and for
smaller temperatures. Hill-climbing decisions can be made by generating a uniform
random number Un on the interval [0,1], accepting the candidate solution x′n if
Un ≤ exp(−( f (x′n)− f (xn−1))

+/Tn), and rejecting it otherwise (in which case the
current solution xn−1 remains the estimate of the optimal solution). In addition to
requiring that the temperature Tn be strictly positive for all n, most of the simulated
annealing literature assumes that Tn → 0 as n → ∞ at a logarithmic rate, see for
example Hajek [42].

The previous discussion addressed the use of simulated annealing to solve
deterministic optimization problems. In the remainder of this section, we will review
simulated annealing algorithms designed to solve optimization problems with noisy
objective function values, as is the case in simulation optimization.

Bulgak and Sanders [22] present a heuristic simulated annealing approach and
use it to solve a buffer allocation problem. They deal with the noise in the objective
function evaluations by using confidence intervals to ensure that the difference in
performance is statistically significant when the candidate state has a better objective
function estimate than the current state. Haddock and Mittenthal [43] also present a
heuristic simulated annealing method together with numerical results. Their method
employs a different “update” step than the Basic Simulated Annealing Algorithm
described above (motivated by the work of Glauber [36]), and also uses a rapidly
decreasing temperature sequence {Tn} (their sequence decreases at an exponential
rate, rather than at a logarithmic rate).

We now turn to simulated annealing approaches that are provably convergent
when applied to solve discrete simulation optimization problems. For all a and
b �= 0, let N (a,b2) denote a normal random variable with mean a and variance b2.
Gelfand and Mitter [34] show that if the transition matrix R(·, ·) is irreducible, the
temperature sequence {Tn} converges to zero, and the noise in the estimate of the
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difference f (x′n)− f (xn−1) in performance between the candidate and current states
in iteration n has a N (0,σ2

n ) distribution where σn = o(Tn) as n → ∞, then their
simulated annealing procedure with noisy objective function estimates converges
in probability to the set Θ ∗ of global optimal solutions provided that the same
algorithm using exact objective function values converges toΘ ∗ in probability.

Gutjahr and Pflug [41] also present convergence results for the simulated
annealing algorithm when the noise in the estimated objective function values
needed in iteration n has the normal N (0,σ2

n ) distribution. They show that when
σn = O(n−γ), where γ > 1, then the simulated annealing algorithm with noisy
objective function evaluations has the same asymptotic performance as when exact
objective functions are available (and hence converges in probability to Θ ∗ if
the temperature sequence {Tn} is chosen properly). They also generalize their
convergence result to noise distributions that are symmetric around zero and more
peaked around zero than the N (0,σ2

n ) distribution satisfying σn = O(n−γ), where
γ > 1 (i.e., for all ε > 0, the noise is more likely to take values in (−ε,ε) than the
specified N (0,σ2

n ) random variable).
Gelfand and Mitter [34] and Gutjahr and Pflug [41] assume that the variance

σ2
n in the objective function evaluations required in iteration n of the simulated

annealing algorithm converges to zero as n grows. Thus, more precise estimates are
required for larger values of n, which typically results in more computation time
per iteration. Fox and Heine [33] provide convergence guarantees for simulated
annealing applied to solve discrete simulation optimization problems that do not
require a restrictive variance assumption. However, they assume that the objective
function values are restricted to a finite set (they also consider relaxing this
assumption). Each time an estimate of an objective function value f (x) is needed,
they generate a few more observations of f (x) and average them with observations
of f (x) obtained in earlier iterations to obtain the desired estimate of f (x). They
show that this variant of simulated annealing converges in probability to Θ ∗ if the
same algorithm with the exact objective function values converges in probability
toΘ ∗.

Alrefaei and Andradóttir [6] present two simulated annealing algorithms for
discrete simulation optimization. Beyond using noisy objective function estimates,
rather than the exact objective function values, these algorithms differ from the
Basic Simulated Annealing Algorithm presented above in two important ways,
namely the temperature sequence is constant (i.e., Tn = T > 0 for all n) and the
choice of the estimate of the optimal solution x∗n is decoupled from the sequence
{xn} used to search the state spaceΘ for the optimal solution (see also the Generic
Random Search Algorithm described in Sect. 10.2). Alrefaei and Andradóttir [6]
prove that their algorithms converge almost surely to Θ ∗ and provide numerical
results comparing their algorithms with each other and with the methods analyzed
by Gelfand and Mitter [34], Gutjahr and Pflug [41], and Fox and Heine [33].

Alkhamis et al. [5] study a simulated annealing algorithm that employs confi-
dence intervals to determine whether the difference between the estimated objective
function values at the current and candidate solutions is statistically significant.



282 S. Andradóttir

They prove convergence in probability toΘ ∗ when the noise the objective function
evaluations in iteration n converges to zero sufficiently fast relative to the temper-
ature sequence {Tn}, and also provide numerical results. Ahmed and Alkhamis
[1] analyze a simulated annealing approach with a constant temperature and with
decoupled sequences {xn} and {x∗n} (see Alrefaei and Andradóttir [6]) that uses
the two-stage ranking and selection procedure by Dudewicz and Dalal [30] to
decide how many objective function observations are collected from the current
and candidate solutions in iteration n. Alkhamis and Ahmed [4] continue this work
by combining the approach with constant temperature and decoupled {xn} and {x∗n}
sequences of Ahmed and Alkhamis [1] with the confidence interval approach of
Alkhamis et al. [5]. Wang and Zhang [76] study a simulated annealing approach
where a hypothesis test is used to determine whether to stay at the current state or
move to the candidate state.

Prudius and Andradóttir [70] study two simulated annealing algorithms for
discrete simulation optimization with decreasing temperatures {Tn} and with
decoupled {xn} and {x∗n} sequences. The two algorithms differ in that one uses
only the data collected on the objective function values at the current and candidate
solutions xn−1 and x′n in the current iteration n to decide on the next current point xn

(no averaging), whereas the other one uses data collected on the values of f (xn−1)
and f (x′n) in iterations 1 through n to decide on xn (averaging). Both algorithms
are shown to converge almost surely, and numerical results show that using all
available data on the objective function values (as in averaging) does not necessarily
improve performance (because the associated reduction in noise is not necessarily
beneficial).

As was mentioned at the beginning of this section, the literature on simulated
annealing for deterministic optimization is vast, and several researchers have studied
the application of simulated annealing to solve simulation optimization problems.
In addition to the contributions reviewed so far in this section, other works on
simulated annealing for noisy response functions include Painton and Diwekar [66],
who incorporate a penalty function to account for noise in the objective function
estimates, Rosen and Harmonosky [71], who combine simulated annealing with
response surface methodology, and Branke et al. [21], who consider a different
“update” step than the Basic Simulated Annealing Algorithm above under a known
variance assumption.

10.3.2 Other Developments

In this section, we briefly review certain other random search methods that have
been developed for solving discrete simulation optimization problems. Several of
these techniques are reviewed in more detail in other chapters in this volume,
viz. Chaps. 2, 11, and 12. Additional material on random search for simulation
optimization can, for example, be found in the reviews by Jin and Branke [52] and
Bianchi et al. [20].



10 Random Search Methods 283

Stochastic ruler methods constitute a class of random search methods for discrete
simulation optimization. Like simulated annealing, they involve sampling a single
candidate point x′n in each iteration n and deciding whether to accept this point (so
that xn = x′n) or reject it (so that xn = xn−1). However, unlike simulated annealing,
this decision is not made by comparing estimated objective function values at the
current and candidate points. Instead, estimated objective function values at the
candidate point x′n are compared with observations of the “stochastic ruler,” which
is a uniform random variable whose range covers (approximately) the range of
the estimated objective function values. The original stochastic ruler method was
proposed by Yan and Mukai [83] and proven to converge to Θ ∗ in probability.
Alrefaei and Andradóttir [7, 8] have studied modified versions of the stochastic
ruler method that involve less work per iteration (i.e., the maximum number of
comparisons with the stochastic ruler in iteration n is constant, rather than diverging
to infinity with n) and decoupling the {xn} and {x∗n} sequences (see Sect. 10.2). They
prove that their approaches converge almost surely to Θ ∗ and provide numerical
results comparing the approaches.

Most random search methods for simulation optimization compare system
designs based on performance estimates, and can thus be regarded as ascent/descent
methods. For example, Gong et al. [37] present and analyze a “stochastic com-
parison” method that resembles the stochastic ruler method of Yan and Mukai
[83] except that each iteration involves comparisons between objective function
estimates at the current and candidate points, rather than comparisons with a
stochastic ruler. For other related work, see Andradóttir [11–13] and Homem-de-
Mello [44].

Deterministic optimization features various methods that involve partitioning the
feasible region, including branch-and-bound (see, e.g., Nemhauser and Wosley [63])
and random search (see, e.g., Pintér [69]). Partitioning methods have also been
developed for simulation optimization. For example, Norkin et al. [64] present
a branch-and-bound method that involves partitioning the feasible region Θ into
subsets, estimating upper and lower bounds on the optimal objective function value
within each subset, choosing the estimated optimal solution from the subset with
the smallest upper bound, and further partitioning the “record subset” that has the
smallest lower bound. The estimates of the upper and lower bounds improve when
the subset remains in the partition, and eventually converge to the actual values of
the upper and lower bounds. Moreover, the upper and lower bounds are tight for
singletons. Norkin et al. [64] prove that their method converges almost surely to
Θ ∗, discuss the choice of upper and lower bounds in various settings, and provide
illustrative examples. This work is continued by Norkin et al. [65], who provide
additional analysis, discussion about bound estimation, and examples.

Shi and Ólafsson [73] present a nested partitions method for simulation optimiza-
tion. Like branch-and-bound, their approach involves partitioning one subset (“the
most promising region”) in most iterations. The other subsets are then combined
into one “surrounding region.” Then sample designs are collected from each region
and their performance estimated via simulation. The promising index is estimated
for each region as the best estimated performance of the designs sampled from
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the region, and the region with the best promising index will be the new most
promising region. If the most promising region is a singleton, then it can clearly
not be partitioned further. If it is the surrounding region, then the method backtracks
to either its super-region or the entire feasible region. Otherwise, the most promising
region is partitioned. Shi and Ólafsson [73] prove that their method converges
almost surely to Θ ∗. Pichitlamken and Nelson [68] present a nested partitions
method that differs from the original method of Shi and Ólafsson [73] in that a
ranking and selection method is used to select the best sampled solution from
each subset, hill-climbing and restart steps are added, and the sequence {x∗n} is
chosen differently. Moreover, Xu and Nelson [80] present and analyze a method
that combines the branch-and-bound and nested partition approaches.

Hong and Nelson [46] present a random search algorithm for local simulation
optimization named COMPASS (for “convergent optimization via most-promising-
area stochastic search”). The feasible region is composed of vectors with integer
elements, and the approach is local in that the aim is to identify a design with better
performance than any point with Euclidian distance of one away from that design.
COMPASS keeps track of all designs sampled so far and performance estimates
at these designs. In each iteration, new designs are sampled from the portion of
the feasible region that is closer to the design with the best estimated performance
than to any other sampled point (again in Euclidian distance, with adjustments to
ensure that the sampling region is bounded) and simulation results are obtained for
the newly sampled points (and possibly also for previously sampled points). Hong
and Nelson [46] prove convergence w.p.1 to a local optimal solution and provide
numerical examples. This work is continued by Hong [45], Hong et al. [47], and Xu
et al. [78, 79] who improve the efficiency of the original COMPASS approach (see
also the discussion of Xu [77] in Sect. 10.4.1 below).

Andradóttir and Prudius [15] discuss the need for balancing exploration (global
search), exploitation (local search), and estimation (of objective function values at
promising points) within simulation optimization, and then present two versions
of BEESE (for “balanced explorative and exploitative search with estimation”), a
random search approach designed to achieve such a balance. The two approaches
are called R-BEESE (for Random-BEESE) and A-BEESE (Adaptive-BEESE).
Both methods switch between global search and local search for improved system
designs, with R-BEESE doing so at random and A-BEESE doing so adaptively
based on recent progress made via global and local search. Both methods also
add an estimation component via resampling of the design with the best estimated
performance and by ensuring that sufficient data has been collected at the estimated
optimal solution (moreover, A-BEESE involves more local search than its deter-
ministic variant A-BEES, which also adds an estimation component). Andradóttir
and Prudius [15] prove that their methods converge almost surely toΘ ∗ and provide
numerical results.

Model-based methods form another class of random search techniques. These
methods maintain a probabilistic model on the solutions space Θ that is used to
generate candidate solutions, whose estimated performance is in turn used to update
the probabilistic model. The cross-entropy method of Rubinstein and Kroese [72]
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involves the use of a parametric family of distributions and relies on the relationship
between optimization and rare event simulation. In each iteration, solutions are
sampled from the current model in the parametric family. The performance of these
solutions is estimated, a sample quantile is computed, and the solutions whose
estimated performance exceeds the sample quantile are used to obtain an updated
model in the parametric family. The model update involves approximating an
optimal importance sampling distribution on the set of solutions whose performance
exceeds the sample quantile via the use of the Kullback–Leibler (cross-entropy)
distance. Hu et al. [48] provide a model-based algorithm for simulation optimization
that differs from the cross-entropy method primarily in the updating of the model.
They provide convergence analysis that is applicable both when Θ is discrete and
continuous.

10.4 Extensions

In this section, we review example procedures for solving simulation optimiza-
tion problems with either continuous decision variables or multiple (stochastic)
performance measures. We start by discussing research on continuous simulation
optimization problems in Sect. 10.4.1. Then we review certain procedures for
solving simulation optimization problems with multiple performance measures in
Sect. 10.4.2.

10.4.1 Continuous Simulation Optimization

Several researchers have studied the use of random search methods to solve
continuous simulation optimization problems. The simplest form of random search
is pure (non-adaptive) random search, where solutions are sampled repeatedly
from a fixed distribution on the feasible region Θ (e.g., the search does not
utilize information gathered in previous iterations to guide the search for improved
solutions). Baumert and Smith [19] present a pure random search approach that
estimates the objective function value at each sampled solution x by averaging all
observations that are within a certain distance from x. The sampled point with the
best estimated objective function value is chosen as the estimated optimal solution.
Baumert and Smith [19] discuss at what rate the distance should decrease in order
for the method to converge in probability. Their work was continued by Andradóttir
and Prudius [16] who provide further analysis of the (deterministic) shrinking ball
method of Baumert and Smith [19], develop and analyze the stochastic shrinking
ball method, and provide numerical results.

Chia and Glynn [24] study the rate of convergence of pure random search as a
function of the number m of sampled points and number n of observations at each
point, with the estimated optimal solution being the point with the best estimated
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objective function value. They identify at what rates m and n should grow to achieve
the best rate of convergence. Similarly, Ensor and Glynn [31] study the choice of
m and n in grid search. Cheng [23] also studies the asymptotic behavior of pure
random search, addresses implementation issues, and provides numerical examples.
In related research, Yakowitz et al. [81] study how the number of points vs. number
of observations per point should be selected in search approaches that use low-
dispersion sequences to select points. They also discuss a sequential version of their
approach and the use of different numbers of observations to estimate the objective
function value at different sampled points.

Alexander et al. [3] develop a pure random search procedure that iteratively
samples solutions fromΘ and then compares the incumbent and sampled solutions
using increasingly precise (as the number of iterations grows) estimates of the
objective function values at these solutions; the point with the better estimate
becomes the new estimate of the optimal solution. They show that their procedure
is globally convergent w.p.1. Ghate and Smith [35] study a generalized simulated
annealing procedure that also involves comparing estimated objective function
values at the incumbent and sampled solutions in each iteration, with the estimate
being more precise for larger numbers of iterations. They prove convergence in
probability and provide numerical results. Various other authors also study methods
that move between current and sampled solutions based on estimated objective
function values at those points, see for example Gurin [38], Gurin and Rastrigin
[39], Devroye [28], and Marti [59] (and Devroye [29] for related work with finiteΘ ).

Yakowitz and Lugosi [82] develop a method that in certain iterations samples new
solutions from a fixed global distribution (as in pure random search) and ensures that
every sampled point has a sufficient number of observations, and in other iterations
it adaptively resamples previously sampled points. The estimate of the optimal
solution is the most recently sampled point. They prove that their method is globally
convergent in probability. Andradóttir and Prudius [16] present the Adaptive Search
with Resampling (ASR) method and prove that it is globally convergent w.p.1.
Their method includes both sampling and resampling steps (similar to the approach
of Yakowitz and Lugosi [82]), but the search is adaptive, only promising sampled
points are “accepted” for further consideration (and hence additional observations
are not collected at points that are not promising), and the estimated optimal solution
is the best point sampled so far. Numerical results suggest that the ASR method
performs better in practice than the earlier approach. Hu and Andradóttir [49]
improve further on the ASR method by allowing previously accepted points to be
discarded once better points have been found. They prove that their Adaptive Search
with Resampling and Discarding (ASRD) method is convergent w.p.1 and provide
numerical results indicating that the addition of discarding leads to substantial
improvements in performance.

Huang et al. [51], Sun et al. [74], and Xu [77] all use Kriging meta-models and
random search to solve simulation optimization problems. More specifically, Huang
et al. [51] propose the SKO (Sequential Kriging Optimization) approach, where
each iteration starts with a kriging meta-model of the objective function, identifies
a solution that maximizes an Expected Improvement (EI) function (described in
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Sect. 2.7 of [51]), and then either terminates the search (if the EI is small) or updates
the kriging model using the new data point. Sun et al. [74] propose and analyze the
GPS (Gaussian Process-based Search) algorithm whose sampling strategy takes into
account how likely feasible solutions are to improve on the current best estimate
of the optimal solution based on the current kriging model. The GPS approach
can be used for both continuous and discrete simulation optimization. In related
work, Xu [77] presents the SKOPE (Stochastic Kriging for OPtimization Efficiency)
sampling approach and integrates this approach with the AHA discrete simulation
optimization method of Xu et al. [79].

We conclude this section by briefly mentioning other methods that can be
used to solve continuous simulation optimization problems. Methods that involve
partitioning the feasible region have been developed by Deng and Ferris [27]
and Kabirian and Ólafsson [54]. More specifically, Deng and Ferris [27] adapt
the DIRECT (DIviding RECTangles) algorithm of Jones et al. [53] to simulation
optimization, and Kabirian and Olafsson [54] present and analyze a golden region
search algorithm for continuous simulation optimization. Model-based methods (see
Sect. 10.3.2, Rubinstein and Kroese [72], and Hu et al. [48]) can be used for both
discrete and continuous simulation optimization. Finally, Ferris et al. [32] and Deng
and Ferris [26] discuss continuous simulation optimization algorithms that involve
successive quadratic approximations of the objective function.

10.4.2 Simulation Optimization with Multiple Objectives

In this section, we review certain random search approaches designed for solving
simulation optimization problems with multiple (stochastic) performance measures.
Ahmed et al. [2] consider a problem with a deterministic objective function (cost)
and stochastic constraints (on system performance). They present a simulated
annealing approach for solving such problems, where a hypothesis testing step is
added after candidate generation to determine if the candidate solution is feasible
with the desired confidence. Baeslar and Sepúlveda [17] present a goal pro-
gramming framework to handle multiple stochastic performance measures. A goal
value is specified for each performance measure and the original (multi-objective)
optimization problem is translated into a (single-objective) optimization problem
where a weighted sum of the deviations from the specified goals is minimized
(possibly after normalization to address discrepancies between measurement units
for the different performance measures). This optimization problem is then solved
using a genetic algorithm. Baeslar and Sepúlveda [18] continue this research by
applying their methodology to optimize a cancer treatment center.

Multiple authors have proposed random search methods aiming to identify Pareto
optimal solutions to simulation optimization problems with multiple performance
measure. More specifically, a solution x dominates another solution x′ if no objective
performs worse at x than at x′, and at least one objective performs strictly better at x
than at x′. A solution is Pareto optimal if it is not dominated by any other solution.
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Gutjahr [40] presents a Stochastic Pareto Simulated Annealing (SPSA) based on the
Pareto Simulated Annealing (PSA) approach of Czyzak and Jaszkiewicz [25], which
maintains a search set and a solution set, and in each iteration a candidate solution
is generated in the neighborhood of each element of the search set, the estimated
performance of the candidate and current points are compared, and the search and
solution sets are updated (the update of the search set involves hill-climbing with
weights computed by the algorithm). Gutjahr [40] also specifies a Stochastic Pareto
Ant Colony Approach (SP-ACO) and compares the two approaches with a brute-
force approach. Other approaches for multi-objective simulation optimization based
on simulated annealing include Alrefaei et al. [9, 10] and Mattila et al. [60]. Lee
et al. [56] present an approach based on multiobjective evolutionary algorithms
(MOEA) (see, e.g., Zhou et al. [84]) and use it to solve an aircraft spare parts
allocation problem, and Lee et al. [57] study a multi-objective COMPASS approach
(see Sect. 10.3.2 for discussion of the original COMPASS approach).

Another approach to handling multiple performance measures is to designate
one as the objective and the others as constraints. Li et al. [58] combine COMPASS
with a penalty-function approach for handling constraints, and prove almost sure
convergence of the resulting approach. Vieira et al. [75] also present and analyze
an adaptation of COMPASS designed to handle one constraint. Park and Kim [67]
present the penalty function with memory (PFM) approach for handling stochastic
constraints. This approach can be combined with a random search approach
designed for solving unconstrained problems (the authors combine it with the nested
partitions approach, see Sect. 10.3.2) and differs from the approach of Li et al.
[58] primarily in that the penalty function does not diverge at feasible solutions.
Hu and Andradóttir [50] combine the ASRD framework discussed in Sect. 10.4.1
with a penalty function approach and prove that their framework guarantees almost
sure convergence when applied to solve simulation optimization problems with
stochastic constraints.
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Chapter 11
Stochastic Adaptive Search Methods:
Theory and Implementation

Zelda B. Zabinsky

Abstract Random search algorithms are very useful for simulation optimization,
because they are relatively easy to implement and typically find a “good” solution
quickly. One drawback is that strong convergence results to a global optimum
require strong assumptions on the structure of the problem.

This chapter begins by discussing optimization formulations for simulation
optimization that combines expected performance with a measure of variability,
or risk. It then summarizes theoretical results for several adaptive random search
algorithms (including pure adaptive search, hesitant adaptive search, backtracking
adaptive search and annealing adaptive search) that converge in probability to a
global optimum on ill-structured problems. More importantly, the complexity of
these adaptive random search algorithms is linear in dimension, on average.

While it is not possible to exactly implement stochastic adaptive search with
the ideal linear performance, this chapter describes several algorithms utilizing
a Markov chain Monte Carlo sampler known as hit-and-run that approximate
stochastic adaptive search. The first optimization algorithm discussed that uses
hit-and-run is called improving hit-and-run, and it has polynomial complexity, on
average, for a class of convex problems. Then a simulated annealing algorithm and a
population based algorithm, both using hit-and-run as the candidate point generator,
are described. A variation to hit-and-run that can handle mixed continuous/integer
feasible regions, called pattern hit-and-run, is described. Pattern hit-and-run retains
the same convergence results to a target distribution as hit-and-run on continuous
domains. This broadly extends the class of the optimization problems for these
algorithms to mixed continuous/integer feasible regions.
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11.1 Introduction

Computer simulations are often used to model complex systems, and to identify
design decisions that optimize performance. The complex systems often involve
uncertainty, and so stochastic discrete-event simulations are useful to explore the
design space without conducting physical experiments. Optimization of the design
decisions is complicated for several reasons. First, the performance of the system
typically has multiple objectives, so the optimization formulation is challenging.
Second, once a performance function is specified, it is not known explicitly, but can
only be estimated through replications of the computer simulation. And third, the
performance function lacks structure that is often used in optimization algorithms,
such as linearity or convexity. As such, the performance function may have many
“local” optima. Also, the design decisions may include both continuous and integer
variables, which influences the type of optimization algorithm that is appropriate.

This chapter first discusses the modeling issues inherent in optimizing a complex
system with a high degree of uncertainty. If the performance function, or objective
function, has a lot of noise, then optimizing the expected performance may need
to be tempered with a measure of variability or risk. When the constraints on the
system also involve a high degree of uncertainty, the formulation of the optimization
problem may not be a straightforward extension of a deterministic optimization
model. Also, complex systems often involve multiple objectives, which impacts the
optimization model as well as appropriate algorithms.

Once an optimization formulation has been specified, then an algorithm is chosen
to numerically explore the decision space. Random search algorithms, also known
as stochastic search methods, are popular for ill-structured black-box global opti-
mization problems, because they are straightforward to implement and usually find
a relatively good solution quickly. These algorithms have been inspired by physics,
such as simulated annealing and interacting particle algorithms, as well as by
biology, including genetic algorithms, evolutionary programming, particle swarm,
and ant colony optimization. Random search algorithms can be used for mixed
continuous and discrete variables. Typically random search algorithms sacrifice
a guarantee of optimality for finding a good solution quickly with convergence
in probability. However, random search methods have been shown to have a
potential to solve large-scale problems efficiently in a way that is not possible for
deterministic algorithms [18]. Whereas it is known that a deterministic method for
global optimization is NP-hard [48], there is evidence that a stochastic algorithm
can be executed in polynomial time on average, with a high probability of getting a
solution close to the optimum.

The second section of this chapter focuses on theoretical results regarding the
computational complexity of stochastic adaptive search algorithms for ill-structured,
“black-box” deterministic global optimization problems. The main idea of this
section is that an ideal complexity of a linear number of function evaluations in
terms of dimension, on average, is theoretically possible with pure adaptive search.
This result is for a deterministic objective function (no noise), so only one function
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evaluation is needed at any solution. Generalizations of pure adaptive search are
also presented (including hesitant adaptive search, backtracking adaptive search,
and annealing adaptive search) with useful analyses that provide insight into the
behavior of random search algorithms.

Section 11.4 of this chapter describes several random search algorithms for
global optimization (see also [57]). A major challenge for random search algo-
rithms is the difficulty in efficiently sampling the feasible region; even sampling
a uniformly distributed point in a convex bounded feasible region is difficult.
Hit-and-run [45] is a well-known Markov chain Monte Carlo (MCMC) sampler
with fast convergence properties for sampling from bounded sets. The algorithms
described in this section make use of hit-and-run to sample feasible points, and
include a parameter that effectively increases the probability of sampling near the
global optimum. These algorithms strive to approximate the linear performance
of pure adaptive search and annealing adaptive search, and make use of the
asymptotic convergence properties of hit-and-run to a target sampling distribution.
Section 11.4.1 describes improving hit-and-run, the simplest optimization algorithm
using hit-and-run. Section 11.4.2 generalizes improving hit-and-run by adding an
acceptance/rejection step; casting it in the form of simulated annealing with hit-
and-run as the candidate point generator. Section 11.4.3 generalizes the algorithm
further by allowing a population of points. The population of candidate points
interact through a modified acceptance/rejection step. Again, hit-and-run is used
as the candidate point generator. Whereas hit-and-run operates on continuous sets,
a variation called pattern hit-and-run operates on mixed continuous/integer sets.
Pattern hit-and-run is described in Sect. 11.4.4. As with hit-and-run, pattern hit-and-
run converges to a target probability distribution on a mixed continuous/integer set.
Thus, pattern hit-and-run may also be used in the simulated annealing framework
and the interacting particle algorithm for a broad class of mixed continuous/integer
optimization problems.

Finally, Sect. 11.5 addresses preliminary work incorporating the estimation of a
noisy function with repeated replications of a simulation into an adaptive random
search algorithm, and Sect. 11.6 concludes the chapter.

11.2 Optimization Models for Complex Systems with Noise

Before going into a detailed discussion of random search algorithms, I would like to
comment on the modeling aspect of an optimization formulation when the complex
system of interest involves high degrees of uncertainty.

When there is a large degree of uncertainty, then some lessons from the financial
optimization literature may be applied, and the performance of the system would
include not only the expected value, but some measure of variability or risk. Classic
models of portfolio investment optimization consider two objectives: maximize
expected return and minimize risk of the investments. In simulation optimization,
where there is a high degree of uncertainty, it is important to consider a measure
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of risk in addition to the expected performance of the system in the optimization
formulation. For example, consider comparing two designs; one has an expected
cost of 100 with a standard deviation of 20, whereas the second has a higher
expected cost of 105 with a smaller standard deviation of 1. (Note, the distribution
of cost may not be symmetric.) For practical purposes, the second design may
be preferred because a small degradation in cost is offset by the benefit of more
consistency, i.e., less risk.

For notational purposes, consider a general optimization problem (P), defined as,

(P) min
x∈Θ

f (x)

where x is a vector of n decision variables, Θ is an n-dimensional feasible region
and assumed to be nonempty, and f is a real-valued function defined overΘ .

It is common to use the expected performance of the system as an objective
function in simulation optimization, i.e., f (x) = E[Y (x,ξ )], where Y (x,ξ ) is
returned by a simulation and ξ is the noise term. Typically, a sample mean over
a number of replications R, such as

f̂ (x) =
∑R

r=1 Y (x,ξr)

R
,

is used to estimate the expected performance.
An alternative to using expected performance is to use quantiles in the objective

function to incorporate uncertainty [20], e.g., minimize a cost threshold such that
the probability the actual cost is below the threshold exceeds some probability:

min z
subject to P(Y (x,ξ )≤ z)≥ α.

(11.1)

If α = 0.5, then the quantile z is just the median, and for symmetric distributions, the
median equals the mean. However, if α = 0.9, then the interpretation is that 90 %
of the time the actual cost is below the cost threshold z. The quantile constraint
in (11.1) is a particular example of chance constraints, which are discussed in detail
in Chap. 9. In finance, quantiles correspond to value-at-risk (VaR) [40], i.e., in terms
of a cumulative distribution function FY of a random variable Y and a probability
level α ∈ (0,1), the value-at-risk VaRα(Y ) is given by the α-quantile qα(Y ):

VaRα(Y ) = qα(Y ) = min{z|FY (z)≥ α}.

The conditional value-at-risk, abbreviated CVaR, is defined as the expectation of Y
in the conditional distribution of its upper α-tail, given by

CVaRα(Y ) =
1

1−α

∫ 1

0
VaRβ (Y )dβ .
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In [40], CVaR is shown to have desirable properties that make it an effective
objective function that incorporates uncertainty. It has been used extensively
as a risk function in financial optimization, and could be useful in simulation
optimization.

When there is randomness in the constraints, then the notion of feasibility
comes into play. Suppose a noisy constraint is formulated using an expected value
approach, i.e., E[Y (x,ξ )] ≤ 0. Then for a symmetric function, approximately 50 %
of the time the constraint would be violated. A conservative approach is to consider
a worst-case analysis, as with robust optimization. Then the model would include
constraints of the form, maxξ Y (x,ξ )≤ 0. A less conservative approach is to move
the noisy constraints into the objective with penalty coefficients, as with goal
programming.

Goal programming is another way to include multiple objectives into the
optimization formulation. For example, suppose there are three objectives, f1, f2,
and f3. The first step in goal programming is to create a goal for each objective,
such as f1 = 100. The next step is to create an objective function that penalizes
deviations from the goals. In this example, the objective function would include a
term such as | f1 − 100|, or a quadratic penalty term ( f1 − 100)2. There are many
versions of goal programming [19, 38], including one-sided goals and hierarchical
goals, that can be adapted to a simulation optimization model.

Another common multi-objective formulation is to combine the multiple objec-
tives into a single objective with the use of weights, e.g., f (x) =w1 f1+w2 f2+w3 f3.
When the multiple objectives are convex in the decision variables, then various
combinations of the weights can be used to explore the efficient frontier, i.e., to
obtain a set of Pareto-optimal solutions. However, when the objectives are not
convex, then a straightforward combination of weights may miss solutions of
interest on the efficient frontier. Then a method of moving objectives into constraints
and manipulating the right-hand sides of the constraints can be used to explore the
efficient frontier. This method has been called the ε-method [12], which is effective
for both continuous and integer-valued variables in the decision space.

For the rest of this chapter, we focus on the general optimization problem (P),
recognizing that the objective function f (x) and constraint set Θ could include a
variety of formulations. For convenience, we denote the global optimal solution to
(P) by (x∗,y∗) where

x∗ = argmin
x∈Θ

f (x) and y∗ = f (x∗) = min
x∈Θ

f (x).

11.3 Performance Analyses of Stochastic Adaptive Search
Methods

A strong motivation for random search algorithms is that they can find a “good”
solution very quickly. This section provides analyses of performance of several
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stochastic adaptive search methods, including pure random search, pure adap-
tive search, hesitant adaptive search, backtracking adaptive search and annealing
adaptive search. The analysis is theoretical in nature, but provides insights into
how quickly a random search algorithm might perform, and how the quality of the
solution is related to iteration. The insights are used in algorithm development using
MCMC samplers in Sect. 11.4.

11.3.1 Pure Random Search and Pure Adaptive Search

We start by contrasting pure random search (PRS) with pure adaptive search (PAS),
and showing that the average computation of PRS is exponential in dimension
whereas the average computation of PAS is linear in dimension. This motivates
the development of algorithms to approximate the ideal performance of PAS.

Pure random search, or “blind search,” is the simplest and most obvious random
search method for the global optimization problem (P), as discussed in [47]. Pure
random search was first defined in 1958 by Brooks [8] and discussed in [16, 17]
for problems with continuous variables. PRS is also easily defined for problems
with discrete variables, as in [47, 55]. Pure random search samples repeatedly
from the feasible region Θ , typically according to a uniform sampling distribution
(continuous or discrete). More generally, PRS samples independently, from a
distribution δ on the domain Θ . As in [52, 55], it is convenient to use the range
distribution ρ , where ρ(A) = δ ( f−1[A]) for each measurable subset A of Θ . We
also use the cumulative distribution of the range associated with ρ and denoted by
p, so

p(y) = ρ((−∞,y)) = δ ({x ∈Θ : f (x)≤ y})

for y ∈ R. When δ is the uniform distribution, then p(y) reduces to the ratio of the
n-dimensional volume of the set with points less than y to the volume ofΘ .

It can be shown that PRS converges to within an ε distance of the global optimum
with probability one [46, 55]. Note that, for a finite problem (e.g.,Θ is discrete and
bounded), ε may equal zero, whereas for a continuous problem, ε is taken as a
small positive value. Pure random search is often used to determine starting points
for local search methods, referred to as multi-start algorithms.

Even though pure random search converges almost surely [47], it will take a
long time. The expected number of sample points needed to sample within ε of
the optimum grows exponentially in dimension. To understand this exponential
computation, consider the expected number of iterations until a point is within ε
distance of the global minimum, denoted E[N(y∗ + ε)], as a measure of compu-
tational complexity. Each iteration of PRS generates one sample point in Θ and
performs exactly one function evaluation, so this performance measure captures
the majority of the computational effort. (This assumes that it is relatively easy
to generate sample points from δ on Θ .) The random variable N(y), the number
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of iterations until a point is first sampled with an objective function value of y
or less, has a geometric distribution [15], where the probability of a “success” is
p(y), the probability of generating a point in the level set Θ(y), where Θ(y) =
{x ∈Θ : f (x) ≤ y}. Then the expected number of iterations until a point is first
sampled within ε distance of the optimum is

E[N(y∗+ ε)] =
1

p(y∗+ ε)
. (11.2)

This relationship supports the natural intuition that, as the target region close to
the global optimum gets small (i.e., p(y∗+ ε) gets small), the expected number of
iterations gets large (inversely proportional). The probability of failure to achieve
y∗+ ε after k iterations is (1− p(y∗+ ε))k. The variance of the number of iterations
until a point first lands inΘ(y) is

Var[N(y)] =
1− p(y)

p(y)2 .

This supports numerical observations that PRS (and perhaps other random search
methods) experiences large variation; as the probability p(y) decreases, the variance
of N(y) increases.

Now we can see that the performance of PRS depends on how p(y∗ + ε) is
impacted by dimension. Consider a continuous global optimization problem where
the domainΘ is an n-dimensional ball of radius 1, and the area within ε distance of
the global optimum is a ball of radius ε , for 0 < ε ≤ 1. Using a uniform sampling
distribution on this problem, p(y∗+ε) = εn for 0 < ε ≤ 1, and the expected number
of iterations until a sample point falls within the ε-ball is (1/ε)n, an exponential
function of dimension.

To expand this example, suppose the objective function on the n-dimensional unit
ball satisfies a Lipschitz condition with constant K. Then the probability of sampling
a point within ε of the global optimum is p(y∗+ ε) = (ε/K)n [55] and the expected
number of PRS iterations is also exponential in the dimension of the problem,

E[N(y∗+ ε)] = (K/ε)n. (11.3)

Now consider the performance of PRS on a discrete problem, specifically the
traveling salesperson problem (TSP) with N cities and subsequently (N − 1)!
possible points in the domain Θ . If there is a unique minimum, then p(y∗) =
1/(N − 1)! and the expected number of PRS iterations to first sample the minimum
is (N − 1)!, which explodes in N.

All random search algorithms are meant to improve upon PRS. However, the
“No Free Lunch” theorems in Wolpert and Macready [50] show that, in essence,
no single algorithm can improve on any other when averaged across all possible
problems. As a consequence of these theorems, in order to improve upon PRS, we
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must either restrict the class of problems, have some prior information, or adapt the
algorithm as properties of a specific problem are observed.

In contrast to pure random search, where each sample is independent and
identically distributed, we next consider pure adaptive search, where each sample
depends on the one immediately before it. Pure adaptive search (PAS) was
introduced in [36] for convex programs and later analyzed for global optimization
problems with Lipschitz continuous functions in [60] and for finite domains in
[65]. Pure adaptive search, by definition, generates candidate points that are strictly
improving. More formally, we have

Pure Adaptive Search (PAS)

Step 0. Set k = 0. Generate X0 according to probability measure δ on Θ . Set
Y0 = f (X0).

Step 1. Generate Xk+1 according to the normalized restriction of δ to
Θ−

k+1 = {x ∈Θ : f (x) < Yk}. Set Yk+1 = f (Xk+1).
Step 2. If the stopping criterion is met, stop. Otherwise, increment k and return

to Step 1.

PAS demonstrates the potential performance for a random search algorithm.
Direct implementation of PAS is difficult because sampling over an irregular shape,
such as an improving level set {x : f (x) < y}, is a challenge, whereas sampling
over regular shapes, such as hyperrectangles, is easy. However, the analysis shows
the value of being able to find points in the improving level set; the number of
iterations of PAS is linear in dimension, which is an exponential improvement over
the number of iterations of PRS [55].

The expected number of iterations of PAS to get within ε of the optimum is

E[N(y∗+ ε)] = ln(1/p(y∗+ ε)) , (11.4)

which illustrates the logarithmic improvement over PRS, as in (11.2). And for the
Lipschitz-continuous example on the n-dimensional unit ball, the natural logarithm
provides linearity in dimension:

E[N(y∗+ ε)] = n ln(K/ε) ,

as compared to the expression for PRS in (11.3).
A more complete analysis of PAS for Lipschitz continuous objective functions,

showing it is a non-homogeneous Poisson process, can be found in Theorem 2.9,
[55], with an analogous analysis for finite domains (see Corollary 2.9, [55]). The
linearity result for pure adaptive search implies that adapting the search to sample
improving points is very powerful.

To gain insight into the power of steady improvement, consider an algorithm that
is a combination of PRS and PAS. We refer to the combined PRS-PAS algorithm
as p-PAS because it has probability p of sampling according to PAS (making an
improvement) and probability 1− p of sampling according to PRS where 0≤ p ≤ 1.
When p = 1, the p-PAS algorithm reduces to PAS, and when p = 0 it is simply
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Fig. 11.1 The expected number of iterations for the p-PAS algorithm for dimensions from 2 to 10,
and with several values of p, where p = 0 is PRS and p = 1 is PAS

PRS. The p-PAS algorithm also is a closer representation of practical algorithms
that cannot ensure consistent improvement.

An analysis of the p-PAS algorithm in terms of 0 < p ≤ 1 provides a way to
quantify the value of steady improvement. The expected number of iterations to
sample within ε of the optimum for p-PAS in the continuous case is

E[N(y∗+ ε)] = 1+
1
p

ln

(
1− p+

p
p(y∗+ ε)

)
. (11.5)

This expression quantifies the impact of steady improvement on performance. This
can also be derived using hesitant adaptive search (discussed in the following
Sect. 11.3.2) using a bettering probability of b(y) = (1− p)p(y)+ p.

The expected number of iterations to convergence as a function of dimension
is plotted for a specific problem in Fig. 11.1 [55, Chap. 4.1], which illustrates the
exponential complexity of PRS when p = 0, as contrasted with the linear growth of
p-PAS for p > 0; thus, only a small probability of sampling in the improving region
is needed to dramatically improve performance, and there is a diminishing return as
p exceeds 0.5 and gets closer to 1.0.

The idealistic linear property of PAS has inspired the design of several algorithms
with the goal of approximating PAS. Several algorithms have used MCMC samplers
embedded in an optimization context to approximate the performance of PAS
[22, 39], and even more algorithms have used the MCMC sampler hit-and-run, in
continuous and discrete versions, for optimization [29, 32, 33, 41, 44, 62]. These are
discussed in more detail in Sect. 11.4.
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Another approach to implementing PAS directly, without using an MCMC
sampler, uses quantum computing for optimization. Baritompa, Bulger, and Wood
[2,10] developed Grover’s adaptive search for optimization on a quantum computer.
They showed that Grover’s algorithm (originally proposed for database search)
could be modified to efficiently generate PAS iterates and thus achieve linear
performance on a quantum computer. Quantum global optimization methods are
an exciting area and enlarge the class of stochastic search methods.

11.3.2 Hesitant Adaptive Search and Backtracking
Adaptive Search

The property of PAS to consistently generate improving points is a challenge to
implement, so a generalization of PAS, called hesitant adaptive search (HAS), was
introduced in [11] and further analyzed in [53]. Hesitant adaptive search relaxes
strict improvement by including a bettering probability b(y) that may depend on
objective function value. This allows b(y) to reflect the difficulty of sampling an
improving point when y is close to the global minimum. The interpretation of 1−
b(y) is the hesitation probability. PAS is a special case of HAS when b(y)≡ 1.

Hesitant Adaptive Search (HAS)

Step 0. Set k = 0. Generate X0 ∈Θ according to probability measure δ on Θ .
Set Y0 = f (X0).

Step 1. Generate Xk+1 according to the normalized restriction of δ on the
improving set Θ−

k = {x : x ∈Θ and f (x) < Yk} with probability b(Yk),
and otherwise set Xk+1 = Xk. Set Yk+1 = f (Xk+1).

Step 2. If a stopping criterion is met, stop. Otherwise, increment k and return
to Step 1.

The behavior of HAS is a marked Poisson process, where the stochastic process
of Yk, the objective function on the kth iteration, improves, hesitates, then improves
again. The expected number of iterations of HAS to get within ε of the optimum for
a continuous global optimization problem [11] is nicely expressed as

E[N(y∗+ ε)] = 1+
∫
(y∗+ε,∞)

dρ(t)
b(t)p(t)

.

When the bettering probability equals one and the sampling distribution δ is
uniform, then the expression for HAS gives back the linearity result of PAS. The
probability distribution of the number of iterations to termination in a general mixed
continuous-discrete case is derived in [53], and a summary is provided in [55].

The analysis of HAS has been used in [58] to develop a stopping and restarting
strategy of a multi-start method that considers tradeoffs between computational
effort and the probability of obtaining the global optimum. Many algorithms use
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multi-start, with independently sampled initial starting points, combined with a local
search algorithm, or even multi-start with simulated annealing at a low temperature.
A common question is how many multi-starts to run, and when to stop a single run
of the algorithm. The idea in [58] is to use the HAS analysis to model the behavior
of the algorithm with specific parameters that are updated from observations of the
algorithm. Then the analysis can evaluate the tradeoffs between computational effort
and probability of obtaining the global optimum, to determine whether to stop a
run and restart with a new run, or whether to terminate completely. A framework
called Dynamic Multistart Sequential Search was developed and numerical tests
demonstrate its viability for global optimization with black-box functions. The HAS
theory provides information regarding the benefit of performing more runs, based
on the observed performance of the algorithm.

A further generalization of HAS, named backtracking adaptive search (BAS)
was developed to more closely capture the behavior of algorithms that accept
non-improving points with a certain probability, in order to escape local barriers
and more freely move around the space. The backtracking adaptive search algorithm
was first analyzed for discrete problems in [26], and subsequent analyses in
[3, 9, 51] provide a complete characterization of the distribution of the number of
iterations to convergence for a general mixed continuous-discrete problem. The
BAS algorithm uses both a bettering probability b(y), as in HAS, and a worsening
probability w(y), while the hesitation probability is h(y) = 1− b(y)−w(y).

Backtracking Adaptive Search (BAS)

Step 0. Set k = 0. Generate X0 ∈Θ according to probability measure δ on Θ .
Set Y0 = f (X0).

Step 1. Generate Xk+1 according to the normalized restriction of δ to

{x ∈Θ : f (x) > Yk} with probability w(Yk),

{x ∈Θ : f (x) = Yk} with probability h(Yk),

{x ∈Θ : f (x) < Yk} with probability b(Yk),

where w+ h+ b= 1. Set Yk+1 = f (Xk+1).
Step 2. If a stopping criterion is met, stop. Otherwise, increment k and return

to Step 1.

The analyses of BAS, HAS and PAS provide insights into the impact of consistent
improvement and the sampling distribution on the performance. It has already
been used to inspire many algorithms and stopping criterion, and may be further
used to more accurately model tradeoffs between exploration and exploitation of
algorithms. At the time of writing this, preliminary work is ongoing to incorporate
randomness due to noise in the objective function into the analysis of HAS and BAS.
The goal is to include tradeoffs in the estimation error, as well as the exploration and
exploitation, to design better algorithms.
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11.3.3 Annealing Adaptive Search

Another generalization of PAS is annealing adaptive search (AAS), which is a
theoretical abstraction of simulated annealing. In contrast to PAS and HAS, which
consider points sampled from improving regions of Θ , AAS generates points from
the entire feasible set Θ according to a Boltzmann distribution parameterized by
temperature.

In our context with objective function f (x) and feasible regionΘ , the density for
the Boltzmann distribution with parameter T > 0 is

e− f (x)/T

∫
Θ e− f (z)/T dz

.

The algorithm was introduced as adaptive search in [42], and it was proven that
the record values (best values observed) stochastically dominate those of PAS and
hence inherit the ideal linear complexity of PAS. The analysis was extended to
include the total number of sample points (including non-improving points) in [44],
and the name AAS was coined in [52]. The expected number of sample points of
AAS is also linear on average under certain conditions on the cooling schedule for
the temperature parameter. The cooling schedule that maintains a linear complexity
is analytically derived for a broad class of problems, including both continuous and
discrete domains, and uses the HAS analysis to provide bounds on performance (see
[44], and summarized in [52, 55, 56]).

Annealing Adaptive Search (AAS)

Step 0. Set k = 0. Generate X0 according to the uniform distribution (i.e.,
Boltzmann distribution with temperature parameter ∞) onΘ . Set Y0 =
f (X0) and set T0 = τ(Y0), where τ is the cooling schedule.

Step 1. Generate Xk+1 according to a Boltzmann distribution with temperature
parameter Tk onΘ . Set

Yk+1 =

{
f (Xk+1) if f (Xk+1)< Yk,

Yk otherwise.

Set temperature parameter Tk+1 = τ(Yk+1).
Step 2. If the stopping criterion is met, stop. Otherwise, increment k and return

to Step 1.

The concepts of PAS, HAS, BAS and AAS provide motivation for developing
algorithms that have certain sampling distributions, whether it is sampling from a
uniform distribution, a Boltzmann distribution, or a general δ distribution onΘ . The
challenge is how to efficiently sample from these distributions. There are known
methods for sampling from regular shapes, such as hyperrectangles, but sampling
over irregular shapes, such as improving level sets, is difficult. Even sampling from
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a hyperrectangle embedded within a hyperrectangle, where the dimensions of the
inner box are unknown, is difficult. A Markov chain Monte Carlo sampler is a
standard method used to generate points that approximate a desired distribution
over an arbitrary set. The algorithms in the next section use MCMC samplers to
approximate sampling from the desired distributions.

11.4 Optimization Algorithms using Hit-and-Run

Motivated by the theoretical analyses of PAS, HAS, BAS and AAS in Sect. 11.3,
we use an MCMC sampling approach to approximate a sampling distribution (e.g.,
uniform, or Boltzmann) that provides good performance.

Hit-and-run [45] is an MCMC sampling technique that iteratively generates a
sequence of points in a set by taking steps of random length in randomly generated
directions. Hit-and-run can generate a sequence of points that asymptotically
approach a uniform distribution on open sets, and thus could be used to approximate
PAS sampling uniformly on improving level sets. The time for hit-and-run to
converge to a uniform distribution on convex sets is polynomially bounded, and
it is considered the most efficient algorithm known to date for generating an
asymptotically uniform distribution in a convex set [27, 28]. This suggests it may
be an efficient approximation of PAS for optimization. The improving hit-and-run
algorithm, motivated by PAS, is discussed in Sect. 11.4.1.

With the use of a filter, specifically acceptance–rejection of candidate points, hit-
and-run can be used to approximate arbitrary multivariate distributions, including
the Boltzmann distribution [6]. Thus, by adding the Metropolis criterion commonly
used in simulated annealing [31], hit-and-run can be used to approximate AAS. The
algorithm using hit-and-run within a simulated annealing framework is referred to
as hide-and-seek [41], and is discussed in Sect. 11.4.2. A cooling schedule for hide-
and-seek is provided in [44] that uses the analysis of AAS and HAS. Hit-and-run
in a simulated annealing framework was applied to convex sets and shown to be
polynomially bounded [7, 22].

Hit-and-run was also used in a population-based simulated annealing context,
called the interacting particle algorithm [32, 33], discussed in Sect. 11.4.3. The
computational advantage of a population of points is demonstrated in [32]. The
interacting particle algorithm, as in simulated annealing, has a temperature param-
eter. The temperature is allowed to heat and cool using a meta-control approach
[33, 34], and is summarized in Sect. 11.4.3.

Hit-and-run was originally defined for continuous sets, but later expanded to
mixed continuous/integer sets, with variations called discrete hit-and-run [4] and
pattern hit-and-run [29,30], which retain the same convergence properties of asymp-
totically converging to a target probability distribution. A description of pattern
hit-and-run is provided in Sect. 11.4.4. Some preliminary analyses on the mixing
time of pattern hit-and-run and some numerical results using pattern hit-and-run for
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mixed continuous/integer global optimization [29] are also mentioned. Pattern hit-
and-run may also be used in the simulated annealing framework and the interacting
particle algorithm.

11.4.1 Improving Hit-and-Run (IHR)

The initial application of hit-and-run to optimization was called improving hit-and-
run (IHR) [62], and was successfully applied to black-box optimization engineering
design problems [54, 59, 63]. The main idea behind improving hit-and-run is to
embed hit-and-run within an optimization procedure, to attempt to approximate the
linear performance of pure adaptive search. The term “improving” was coined to
indicate that the sequence of points were improving with regard to their objective
function values as in pure adaptive search.

If hit-and-run was allowed to run long enough on each improving level set
to generate a nearly uniform point, then one would expect it would be a good
approximation to PAS, and only a linear number of such improving iterations
would be needed, on average. Instead of generating long sequences of hit-and-run
on each improving region, IHR takes the other extreme, and reduces the hit-and-
run sequence to a length of one. It repeats until an improving point is found,
and then updates the best objective function value to indicate the next improving
level set. Although the sequence of points generated per iteration is too short to
closely approximate uniformity, the hope is that the algorithm may still inherit a
polynomial complexity. In fact, for the class of positive definite quadratic programs,
the expected number of function evaluations for IHR is polynomial in dimension, in
particular, O(n5/2) [62].

The following gives a more detailed description of IHR.

Improving Hit-and-Run (IHR)

Step 0. Set k = 0. Generate X0 ∈Θ , and set Y0 = f (X0).
Step 1. Generate a random direction vector Dk from the multivariate normal

distribution with mean 0 and covariance matrix H−1. If H = I, this
is equivalent to generating a direction uniformly distributed on the
boundary of a unit hypersphere.

Step 2. Generate a candidate point Wk+1 = Xk + λDk by sampling uniformly
over the line set

Lk = {x : x ∈Θ and x = Xk +λDk,λ a real scalar} .

If Lk = /0, go to Step 1.
Step 3. Update the current point Xk+1 with the candidate point if it is improv-

ing, i.e., set
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Xk+1 =

{
Wk+1 if f (Xk +λDk)<Yk

Xk otherwise

and set Yk+1 = f (Xk+1).
Step 4. If the stopping criterion is met, stop. Otherwise, increment k and return

to Step 1.

Steps 1 and 2 describe how hit-and-run generates a candidate point. A random
direction is generated in Step 1, and a random point is generated on the line set
created by intersecting the direction with the feasible region in Step 2. There are
several variations of the algorithm, which are discussed in [55, 61, 62]. Different
direction distributions are discussed in [22–24]. Instead of choosing a point
uniformly on the line set in Step 2, Wang et al. [49] explore other distributions
in “adaptive parametric improving hit-and-run.”

Step 3 is the acceptance/rejection step that moves only to improving points. The
acceptance/rejection step in IHR may be considered a special case of simulated
annealing with temperature equal to zero, because only improving points are
accepted. In the next section, this acceptance/rejection step is modified to accept
non-improving points with some probability, as in the Metropolis criterion for
simulated annealing.

The analysis of PAS was used to show that the expected number of function
evaluations of IHR is O(n5/2) for a certain class of convex programs [62].
The insight from the PAS analysis is that IHR is relatively insensitive to small
perturbations in the objective function, so if the overall trend of the objective is
convex, then the performance of IHR is not hindered by many small local optima.
The intuition is that there is no need to closely approximate an improving direction
(such as a gradient search), because as long as the direction chosen in IHR has a high
probability of intersecting the improving region, we would expect polynomial time
performance, on average. This suggests that IHR may perform well for simulation
optimization, where the randomness in the objective function due to the simulation
will not have a big impact, as long as the objective function itself is nearly convex.

11.4.2 Simulated Annealing with Hit-and-Run

Whereas IHR samples points according to hit-and-run and only accepts improving
points, Romeijn and Smith [41, 42] embed hit-and-run into a simulated annealing
algorithm. Their algorithm, called hide-and-seek, uses hit-and-run to generate a
candidate point that is then accepted or rejected based on the Metropolis criterion
with a temperature parameter. Even though the acceptance probability for simulated
annealing is interpreted as aiding the algorithm to escape local optima, simulated
annealing has also been successfully applied to convex programs. Bertsimas and
Vempala [7] and Kalai and Vempala [22] used hit-and-run as a candidate generator
in a simulated annealing-type algorithm for solving convex programs. In [22],
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simulated annealing is shown to converge quickly, and under certain conditions,
the Boltzmann distribution is proven to be optimal for annealing.

One of the advantages of using hit-and-run as the generator within simulated
annealing is that it involves no parameters that need fine tuning; all it needs
is a random direction and a random step length. In this sense it is a robust
generator. While most simulated annealing generators are local in the sense that
only immediate neighbors or a small subset of the domain has a possibility of
being generated, hit-and-run has a positive probability of sampling anywhere in the
domain on a single iteration.

From a theoretical perspective, an advantage of hit-and-run is that it can converge
to any arbitrary distribution, and in particular a Boltzmann distribution for a fixed
temperature [6]. Thus, if hit-and-run was run long enough in each iteration of hide-
and-seek, it would be close to a Boltzmann distribution, and the linear complexity of
AAS would be well-approximated. Hit-and-run embedded as a candidate generator
in simulated annealing has both analytical and numerical success.

The following gives a more detailed description of hide-and-seek.

Hide-and-Seek

Step 0. Set k = 0. Generate X0 ∈Θ , and set Y0 = f (X0) and T0 ∈ (0,∞).
Step 1. Generate a random direction vector Dk from the multivariate normal

distribution with mean 0 and covariance matrix H−1. If H = I, this
is equivalent to generating a direction uniformly distributed on the
boundary of a unit hypersphere.

Step 2. Generate a candidate point Wk+1 = Xk + λDk by sampling uniformly
over the line set

Lk = {x : x ∈Θ and x = Xk +λDk,λ a real scalar} .

If Lk = /0, go to Step 1.
Step 3. Update the current point Xk+1 by accepting or rejecting the candidate

point as follows,

Xk+1 =

{
Wk+1 with probability PTk (Xk,Wk+1),

Xk otherwise,

where PTk (Xk,Wk+1) = min{1,exp( f (Xk)− f (Wk+1))/Tk}.
Update the temperature according to a cooling schedule, i.e., set

Tk+1 = τ(Tk), and set Yk+1 = f (Xk+1). Also update the best point so
far, YBest = min{YBest ,Yk+1}.

Step 4. If the stopping criterion is met, stop. Otherwise, increment k and return
to Step 1.

The same variations to direction distributions and sampling points on the line set
discussed in Sect. 11.4.1 can be applied to hide-and-seek. In [22], an estimate of the
covariance matrix is used in Step 1 for the direction distribution.
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There are also many variations of the cooling schedule, denoted τ(Tk), in
Step 3. Simulated annealing algorithms that generate candidate points in a local
neighborhood of the current point rely on accepting non-improving points to escape
a basin surrounding a local minimum. For these algorithms, the cooling schedule is
typically slow to provide convergence to a global minimum. However, hit-and-run
has a positive probability of sampling anywhere in the space, so convergence to a
global minimum can be proven without strict assumptions on the cooling schedule.

Bélisle [5] proves that the sequence of objective function values { f (Xk), k =
0,1, . . .} converges in probability to the global minimum y∗, as long as the cooling
schedule converges to 0 in probability i.e., for all ε > 0 and x0 ∈ S,

P( f (Xk)> y∗+ ε|X0 = x0)→ 0 as k → ∞.

A slightly weaker form of convergence is to investigate the best point sampled, in
contrast to the last point sampled in the sequence. For instance, if hide-and-seek
uses a constant temperature value that is very large, it behaves like pure random
search, which converges to the global optimum when keeping track of the best point
sampled. The best objective function value sampled by hide-and-seek converges to
the global minimum [41], i.e.,

YBest → y∗ almost surely, as k → ∞

for a broad class of problems, cooling schedules and direction distributions.
These convergence results do not put strong restrictions on how quickly the

cooling schedule converges to zero. This implies that the cooling schedule can be
fast, and may even be non-monotonic (i.e., heat and cool), as long as it eventually
cools to zero. It is important to realize that the cooling schedule has an effect on
the rate of convergence of hide-and-seek. The convergence rate also depends on, of
course, the specific objective function and constraints in the problem.

The cooling schedule in [44] chooses the temperature for the next iteration
so that the probability of generating an improving point under the Boltzmann
distribution is at least a constant, such as 1 − α . Consequently the expected
number of function evaluations is linear in the dimension of the problem, assuming
hit-and-run has converged to a Boltzmann distribution. Since approximating a
Boltzmann distribution is computationally more difficult when the temperature is
small, the cooling schedule strategy in [44] keeps the temperature as high as possible
while maintaining the 1 − α probability of improvement. The derivation of the
temperature uses a worst-case analysis, where a worst-case problem is defined for
both continuous and integer domains. The worst-case problem needs several pieces
of information: dimension n, the current record value YBest , the Lipschitz constant
K for a continuous problem, or an analogous constant K̃ for a discrete problem, the
n-dimensional volume of the feasible set, and the optimal value y∗. For a specific
problem, we certainly know the dimension, and at the kth iteration, we know the
record value YBest . An upper bound on K or K̃ can be estimated (see [37]). Similarly,
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an upper bound on the volume of the feasible region may be used while maintaining
the linearity properties of the resulting cooling schedule. The main difficulty is
that the optimal function value y∗ is unknown; however, y∗ can be estimated using
order statistics as in [41]. The computational results in [44] illustrate the benefit of
using this cooling schedule strategy as compared to other cooling schedules in the
literature.

11.4.3 Population-Based Simulated Annealing (Interacting
Particle Algorithm) with Hit-and-Run

Another use of hit-and-run in a global optimization context is in a population-based
method called the interacting particle algorithm. The interacting particle algorithm
in [32–34] is based on Feynman–Kac systems in statistical physics [13, 14] and
combines the ideas of simulated annealing with population-based algorithms (such
as genetic algorithms).

In order to explore the benefits of a population-based method, a numerical study
was performed in [32] comparing the interacting particle algorithm to simulated
annealing with multi-start. Making multiple restarts can also be viewed as having
multiple particles instead of a single particle; however when the restarts are
independent there is no interaction between the particles. The numerical results
in [32] indicate that there is a significant computational benefit to the interaction.
However, there is a need for more research to determine the best population size.

A detailed description of the interacting particle algorithm with hit-and-run
follows.

Interacting Particle Algorithm with Hit-and-Run

Step 0. Initialization: Set k = 0. Generate N points, Xi
0 ∈Θ , for i = 1, . . . ,N,

independently. Set T0 ∈ (0,∞).
Step 1. N-Particle Exploration: From each point Xi

k, perform a single hit-and-
run step to generate candidate point W i

k+1, for i = 1, . . . ,N.
Step 2. Temperature Parameter Update: Update the temperature Tk+1 = τ(Tk),

where τ(Tk) is a function that may depend on all of the information gen-
erated by the interacting-particle algorithm up to iteration k, including
historical particle locations, objective function values and temperature
values.

Step 3. N-Particle Selection: Select the locations for the next population of
points by setting Xi

k+1 ←W j
k+1 with probability s j(Tk+1), where

s j(Tk+1) =

(
GTk+1(W

j
k+1)

∑N
i=1 GTk+1(W

i
k+1)

)
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and GTk+1(w) = exp(− f (w)/Tk+1). Set Y i
k+1 = f (Xi

k+1), and also
update the best point so far, YBest ← min{YBest ,Y i

k+1}.
Step 4. If the stopping criterion is met, stop. Otherwise, increment k and return

to Step 1.

As in simulated annealing, the interacting particle algorithm has a temperature
parameter that must approach zero for the population to converge. However, it
does not need to approach zero monotonically. In [33, 34], a meta-control approach
(based on [25]) was developed to control the temperature parameter in order to
speed convergence with a high probability of accuracy. Instead of choosing a
cooling schedule a priori, the meta-control methodology dynamically determines
the changes in the temperature parameter (heating and cooling) by adapting it to
the state of the sampling process. The methodology controls the evolution of the
probability density function of the particles with the temperature parameter to make
the algorithm’s search process satisfy user-defined performance criteria. The criteria
in [33] include the expected objective function value of the particles, the spread of
the particles, and the algorithm running time. Numerical results indicate improved
performance by allowing heating and cooling of the temperature parameter through
the meta-control methodology [33].

The combination of the interacting particle algorithm with the meta-control
methodology reduces the necessity to have a cooling schedule that works for all
problems. The meta-control methodology can adapt the cooling schedule to the
specific problem based on observed function evaluations. More research is needed
to adaptively control the parameters of the generation mechanism as well as the
selection mechanism.

11.4.4 Pattern Hit-and-Run (PHR)

The theoretical and computational success of hit-and-run on continuous sets has
led to many extensions and variations. Andersen and Diaconis [1] proposed
a generalization of hit-and-run algorithms for MCMC samplers. They describe
choosing the candidate point according to the target density π restricted to the line
set determined by the direction vector, as in [5]. The choice of the random direction
is allowed to have a very general distribution, and the concept of a one-dimensional
Euclidean line determined by the direction vector is generalized to include subsets
ofΘ .

A form of a generalized line on an integer set is developed in [4] using a
bidirectional random walk (biwalk), and the algorithm is called discrete hit-and-run.
While discrete hit-and-run has the desired asymptotic convergence properties to a
target distribution on a bounded integer set, the construction of a biwalk requires
a lot of computation. This led to pattern hit-and-run, which uses “patterns” to
generate a biwalk and can be implemented very efficiently [29, 30]. Pattern hit-
and-run can also be extended to a mixed continuous/integer set and retains the
asymptotic convergence properties to a target distribution. Because the analysis of
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PAS, HAS, BAS and AAS holds for continuous and discrete variables, pattern hit-
and-run provides an efficient MCMC sampler that can be used in an optimization
algorithm to approximate a sampling distribution on a mixed continuous/integer
domain.

It is easy to embed pattern hit-and-run (PHR) into an optimization algorithm by
replacing Steps 1 and 2 in IHR, hide-and-seek, or the interacting particle algorithm
with the following steps. The acceptance/rejection step in Step 3 remains the same.

Given a starting point x ∈Θ , PHR has two steps to generate a candidate point w.

Pattern Hit-and-Run (PHR)

Step 1. Generate a pattern that determines a biwalk from x. A pattern consists
of a step length vector, denoted by V = (v1, . . . ,vn), and a permutation
of n coordinate dimensions, denoted by I = {I1, . . . , In} with Ii ∈
{1, . . . ,n} and Ii �= I j for i �= j. Two methods for generating V are:

1. Sphere Biwalk generates V by choosing a uniform direction on an
n-dimensional hypersphere of radius R, then generating a uniform
point on the diameter defined by this direction, and rounding the
random point to the nearest mixed continuous/integer lattice point.

2. Box Biwalk generates V uniformly on an n-dimensional mixed
continuous/integer box C = [−c1,c1]×·· ·× [−cn,cn].

Step 2. Generate a candidate point w, uniformly distributed on the biwalk
intersected withΘ .

Step 1 of PHR determines a biwalk using a pattern consisting of a step length for
each dimension, and an order of dimensions. For example, in a three dimensional
problem where dimensions 1 and 2 are constrained to be integer valued, and
dimension 3 is real-valued, the random step lengths may be v1 = 5,v2 = 4, and
v3 = 1.7. The biwalk may first move along dimension 1, then 3, then 2, denoted
I = {1,3,2}. Generating a pattern biwalk in Step 1 is analogous to generating a
random direction in hit-and-run. In [29], it is proven that, as the mesh of a lattice in
the feasible region gets finer and approaches a continuum, the stochastic process of
points generated by PHR converge to the stochastic process of points generated by
hit-and-run.

Step 2 of PHR generates a candidate point along the intersection of the biwalk
with Θ . As in continuous hit-and-run, if Θ is ill-structured (e.g., nonconvex or
disconnected), then usually Θ is enclosed in a hyperrectangle, and an accep-
tance/rejection on the line set in the hyperrectangle is used to determine a uniform
point on the line set that is also in Θ . For hit-and-run, the additional computation
due to the one-dimensional acceptance–rejection is analyzed in [24], and it is shown
that the size of the enclosing box is not a critical factor to the overall computation.
Another variation to reduce the number of rejected sample points on the line is
to incorporate a slice sampler into hit-and-run; for details, see [24, 61]. These
modifications can also be applied to the one-dimensional sampling on a biwalk of
PHR.
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If Θ is a polytope, then the end points of the line set can easily be determined
using a modified minimum ratio test, and a uniform point can be easily generated by
mapping to the line segment. This mapping for continuous hit-and-run was extended
to PHR to map a point onto the biwalk on a polytope, for details see [30]. Thus
the biwalk is never actually generated, and the pattern is used in the mapping to
efficiently generate a candidate point.

Since the rate of convergence of hit-and-run to a uniform distribution on a
convex set is polynomial in dimension, and since PHR converges to hit-and-run
as the mesh of a lattice approaches a continuous set, we have hope that PHR
also exhibits polynomial time convergence for some types of discrete sets. To
date, a few special sets have been identified. In [29], PHR is proven to converge
to a uniform distribution in polynomial time, O(n3), on an integer lattice of a
hyperrectangle in n dimensions. It is well known that generating a point uniformly
distributed on an integer lattice of a hyperrectangle H = {x : li ≤ xi ≤ ui, for i =
1, . . . ,n} is very easy when the upper and lower bounds (ui and li) are known.
However, suppose the bounds are not known, and it is possible to enclose the
target hyperrectangle in a larger one whose sides are twice the length. Then an n-
dimensional acceptance/rejection sampling on the larger hyperrectangle would need
an exponential number of sample points to obtain one in the smaller set. In contrast,
PHR could provide an approximately uniform point in polynomial time. PHR also
has a polynomial rate of convergence to a uniform distribution on an integer lattice
intersected with a truncated cube. The proof in [30] relies on analysis in [35].

It is straightforward to implement PHR in an optimization algorithm (such as
IHR, simulated annealing, or the interacting particle algorithm) when the feasible
region is mixed continuous/integer constrained in a polytope, or enclosed in a larger
region. A speculation is that, if the improving level sets of an integer program are
nested hyperrectangles, then the algorithm would have nearly polynomial perfor-
mance. Recognizing that PHR has polynomial-time performance on a truncated
cube suggests that there may be an appropriate definition of a “well-rounded”
integer program for which there is polynomial complexity, on average. This is an
open research issue.

Numerical tests have been performed using IHR with PHR on 18 test problems
with dimensions varying between 5 and 20 [30]. IHR with PHR and sphere or
box biwalk outperformed discrete hit-and-run with a random biwalk [4], separating
continuous and integer variables, and a step function approach [43]; for details, see
[29]. The use of pattern hit-and-run in an optimization framework is application to
simulation optimization problems, allowing continuous and integer variables.

11.5 Estimation and Optimization

The algorithms described thus far may be used in simulation optimization, but there
has been no mention of how to estimate the objective function at each sample
point. One approach is to use a fixed number of replications of the simulation
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to perform throughout the optimization algorithm, but there is reason to vary
the number of replications depending on the observed function values. As with
classical statistics, the more replications, the tighter the confidence interval on the
estimate of the function, but, when integrated into an optimization algorithm, there
is no need to have the same tight confidence intervals on regions that are of little
interest (with large function values). An algorithm named Probabilistic Branch and
Bound (PBnB) was introduced in [64] and the analysis expanded in [21] to derive
confidence intervals based on a random sample in the domain, and dynamically
updated replications.

In [21], the PBnB algorithm is designed to estimate a user-defined quantile, and
approximate the corresponding level set of solutions, at a user-specified confidence
level. This algorithm can be applied to mixed continuous/integer domains. Consider
the example used in (11.1), where the user wants to identify a cost threshold z such
that the probability the actual cost is below z exceeds 90 %, i.e., identify the best
10 % solutions. A simulation is used to estimate cost, and PBnB iteratively deter-
mines the sample points to execute the simulation, and the number of replications.
The algorithm provides confidence intervals on the value of z, which tighten as more
iterations are performed. In addition, the set of best 10 % solutions is estimated by
hyperrectangles. During the execution of the algorithm, subregions are pruned when
there is a high probability that they do not belong to the target level set, subregions
are maintained when there is a high probability that they do belong to the target
level set, and subregions are partitioned for more sampling and replications when
their status is uncertain.

An illustration of approximating the set of the best 10 % solutions on a two-
dimensional sinusoidal function is illustrated in Fig. 11.2 (taken from [21]). Two
dimensions are chosen to visualize the partitioning and level set approximation
easily. A nonconvex, multi-modal sinusoidal function is used as a test function with
two cases; one case has no noise, and the second case has random noise according
to a standard normal distribution.

Fig. 11.2 Sinusoidal function with no noise on the left, and N (0,1) noise on the right
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In Fig. 11.2, each rectangle represents a subregion in the algorithm. The number
in a subregion represents the iteration that the subregion is pruned or maintained.
The white rectangles are pruned, the light gray (green in color) rectangles are
maintained, and the dark gray (blue in color) rectangles are the last current
subregions. In Fig. 11.2, the best 10 % level set with no noise is approximated
almost perfectly, but the noisy version shows a larger dark gray region where we
are not confident whether the solutions belong to the top 10 % or not. In this way,
the algorithm provides information to the user about the uncertainty associated with
the objective function. Research in extending the versions of PBnB in [21, 64] is
ongoing.

11.6 Conclusions

Random search methods are useful for black-box global optimization problems,
and combined with estimation techniques, can be readily applied to noisy functions.
Theoretical analyses in PAS, HAS and AAS can be used to guide the algorithm
development, and allocate computation appropriately. The use of MCMC samplers,
such as hit-and-run, pattern hit-and-run, and variations, can be embedded in opti-
mization algorithms to approximate the linear performance in theory. The analyses
can be used to develop stopping criterion, as in [58], and to derive analytical
cooling schedules, as in [44]. The interacting particle algorithm with meta-control
benefits from having a population of points, and dynamically heats and cools the
temperature parameter as function values are observed. Adapting these algorithms to
simulation optimization, as in PBnB, involves integrating an estimation scheme into
the optimization algorithm to efficiently search and estimate the objective function.
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Chapter 12
Model-Based Stochastic Search Methods

Jiaqiao Hu

Abstract Model-based algorithms are a class of stochastic search methods that
have successfully addressed some hard deterministic optimization problems. How-
ever, their application to simulation optimization is relatively undeveloped. This
chapter reviews the basic structure of model-based algorithms, describes some
recently developed frameworks and approaches to the design and analysis of a
class of model-based algorithms, and discusses their extensions to simulation
optimization.

12.1 Introduction

In this chapter, we address the problem of finding the values of a set of design
parameters that attain the optimum of an objective function, written in the following
general form:

x∗ ∈ arg max
x∈Θ

h(x), (12.1)

where Θ is the feasible region, which is often a non-empty compact subset of
R

d , and h : Θ → R is a bounded, deterministic objective function. Stochastic
optimization often refers to the case where the objective function h itself takes the
form of an expectation

h(x) = E[H(x,ξ )],

where ξ is a random variable representing the stochastic uncertainty of the system,
which for example could be a sample path, and only estimates of the “noisy”
sample performance H are available. In this chapter, simulation optimization refers
to the special case of stochastic optimization when the sample performance H
is assessed in a path-wise manner through computer simulation. In contrast with
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deterministic optimization, simulation optimization problems are characterized by
random uncertainties in their performance measures, and the objective functions are
often highly nonlinear with respect to the underlying decision variables.

When the objective function is differentiable, a well-known class of methods for
solving simulation optimization problems is stochastic approximation [4, 5, 28, 29],
the topic of Chaps. 6 and 7. These methods mimic the classical gradient algorithms
in deterministic optimization and rely on the estimation of the gradient of the
objective function. Because they are gradient-based, these methods generally find
local optimal solutions. Sample average approximation [14,27] is another approach
that often exploits structural information such as differentiability, linearity or
convexity. The main idea of this approach is to transform a simulation optimization
problem into a deterministic one by expending a large amount of simulation effort
on each visited solution to obtain a precise estimate of the objective function value.
The resulting deterministic counterpart of the original stochastic problem is then
solved by a deterministic optimization algorithm.

Due to the limited structural knowledge for general simulation optimization
problems, it is natural to adapt random search methods from deterministic opti-
mization to these types of problems. A random search method is usually recursive
and approximates the optimal solution by a sequence of iterates (e.g., candidate
solutions, promising subsets, probability models) generated according to a specified
random mechanism. These methods differ primarily in the type of iterates an
algorithm produces and in the choices of the random strategy used to generate
the iterates. Because random search methods typically only rely on the objective
function values rather than structural information such as convexity and differentia-
bility, they are robust, easy to implement, and can be applied to a broad range of
optimization problems with very different characteristics.

From an algorithmic point of view, a random search algorithm can be broadly
classified as being either instance-based or model-based [44]. In instanced-based
algorithms, an iterate corresponds to a single or a subset of candidate solution(s),
and the construction of new iterates depends explicitly on iterates generated in
previous iterations. These include both population-based algorithms such as genetic
algorithms [10], which produce a collection of candidate solutions at each iteration,
and methods like nested partitions [36] that are based on repeatedly identifying a
promising subset of the feasible region as the search proceeds. Currently, random
search-based simulation optimization is primarily dominated by instance-based
methods, with numerous algorithms proposed in the literature and their behaviors
relatively well studied and understood. In addition to the two aforementioned
methods, some typical examples include response surface methods [3], simulated
annealing [26], tabu search [9], stochastic ruler methods [38], stochastic comparison
[11], and the COMPASS algorithm [15]; see Chaps. 2, 10, and 11, as well as [2] for
a review of this class of methods.

While the field of simulation optimization has significantly evolved in terms of
instance-based algorithms, less attention has been devoted to the study of model-
based methods. Unlike instance-based algorithms, the model-based methods are
based on sampling candidate solutions from an intermediate (usually parameterized)
probability distribution over the feasible region. The idea is to iteratively modify the
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distribution model based on the sampled solutions to bias the search towards regions
containing high quality solutions. Therefore, each iterate in a model-based algorithm
corresponds to a distribution function, which can be abstractly viewed as a “model”
characterizing the promising regions of the solution space. Examples of this type
of method include ant colony optimization (ACO) [8], estimation of distribution
algorithms (EDAs) [30], annealing adaptive search (AAS) [32, 39], probability
collectives (PCs) [37], and the cross-entropy (CE) method [35]. These algorithms
have successfully solved some hard nonlinear, non-differentiable problems and are
becoming increasingly prominent in deterministic optimization.

Unfortunately, because model-based algorithms are generally heuristic in nature,
very few of them have found their way into the simulation optimization literature. In
this chapter, we aim to stimulate new research ideas in this area by presenting some
recently developed frameworks and approaches for the design and analysis of a class
of model-based algorithms. As a starting point, we introduce these developments in
the context of deterministic optimization with the objective function h being viewed
as a “black box” that returns the exact function value for a specified solution. We
then proceed by providing specific examples and algorithms to illustrate the key
modifications needed, as well as issues and challenges involved in extending model-
based algorithms to general simulation optimization settings.

12.2 A Brief Review of Model-Based Methods

The basic idea of model-based algorithms is to use a sequence of probability
distribution functions to successively characterize the promising regions of the
solution space. So in a model-based algorithm, it is the probability distribution rather
than candidate solutions (as in an instance-based algorithm) that is propagated from
one iteration to another. Most algorithms that fall into this category are iterative
methods involving the basic steps of the framework below.

Basic Model-Based Optimization Framework

Step 1. Randomly generate a population of candidate solutions X (k) from gk, where
gk is the probability distribution onΘ at the kth iteration.

Step 2. Evaluate/estimate the performance of generated candidate solutions.
Step 3. Update gk based on the performance of the sampled solutions in X (k) to

construct a new distribution gk+1; increase k by 1 and reiterate from Step 1.

Note that since a population of candidate solutions is generated at each step,
such algorithms retain the primary strengths of population-based approaches such as
genetic algorithms, while providing more flexibility and robustness in exploring the
entire feasible region (i.e., via sampling from gk). Clearly, a major algorithmic ques-
tion in model-based algorithms is how the update in Step 3 is carried out. Important
practical implementation issues are the efficient construction/representation of the
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probability distribution gk and efficient sampling from gk over the feasible regionΘ .
How these issues are addressed is what differentiates particular approaches.

Pure random search [39] (see also Chap. 11) can be viewed as one of the simplest
model-based methods, in the sense that gk is taken to be a fixed uniform distribution
over Θ (not updated at all). The algorithm proceeds by generating a sequence of
uniformly distributed random points over the feasible region and using the best
candidate solution obtained thus far as an estimate of the optimal solution. Although
the idea behind the algorithm is simple, the complexity of the algorithm increases
exponentially with the dimension of the solution space.

A nontrivial improvement of pure random search is the annealing adaptive search
(AAS) algorithm [32, 39], described in detail in Chap. 11, which replaces the fixed
uniform distribution in a pure random search method by a sequence of Boltzmann
distributions parameterized by iteration-varying temperatures Tk. These Boltzmann
distributions are constructed in such a way that as the temperature decreases to zero,
the sequence of distributions will become more concentrated on the set of optimal
solutions. So solutions sampled from Boltzmann distributions with small values of
Tk will be close to the optimum with high probability. For the class of Lipschitz
optimization problems, it has been shown that the expected number of iterations
required by AAS to achieve a given level of precision increases at most linearly
in the problem dimension [32, 39]. However, the idealized AAS is not readily
implementable in practice for solving optimization problems, because the problem
of sampling exactly from a given Boltzmann distribution is known to be very
difficult. This implementation issue has been addressed in a number of papers (see
e.g., [39, 40] and the references therein), and the basic idea is to use Markov chain
Monte Carlo techniques to sample asymptotically from the Boltzmann distribution.

The cross-entropy (CE) method [35] was originally motivated by the problem of
estimating probabilities of rare events in simulation [33], before it was discovered
that it could be modified to solving deterministic optimization problems. The
key idea of CE is to use a family of parameterized distributions to successively
approximate an optimal (importance sampling) distribution concentrated only on
the set of (near) optimal solutions, which is carried out by iteratively estimat-
ing the optimal parameter that minimizes the Kullback–Leibler (KL) divergence
between the parameterized distribution and the target optimal distribution. Since
its introduction, there have been extensive developments regarding implementation
and practical applications of CE (see [35]). Those that are particularly relevant
to our discussion include the adaptation of CE to handle stochastic network
combinatorial optimization problems [34], the application of the method to solving
buffer allocation problems in a simulation-based environment [1], and the work of
[31], which uses CE as a direct policy search approach to solving stochastic dynamic
programming problems. The literature analyzing the convergence properties of the
CE method is relatively sparse, with most of the existing results limited to specific
settings; see, e.g., [13] for a convergence proof of a variational version of CE in
the context of estimation of rare event probabilities, and [7] for probability one
convergence proofs of CE for discrete optimization problems. General convergence
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and asymptotic rate results for CE were recently obtained in [20,22] by relating the
algorithm to recursions of stochastic approximation type (see Sect. 12.4).

Two other well-established model-based methods are the ant colony optimization
(ACO) [8] and the estimation of distribution algorithms (EDAs) [30]. ACO was
inspired by the behavior of a colony of biological ants, which are capable of solving
shortest path problems by exchanging their local information indirectly through a
certain chemical substance called pheromone. ACO is frequently applied to solving
combinatorial problems, e.g., the traveling salesman problem. In such problems, the
generation of candidate solutions (tours) is based on the series of random moves
performed by a collection of artificial ants called agents, which are controlled
by an empirical distribution constructed based on each agent’s local experience.
ACO has been formally extended to stochastic settings for solving stochastic
combinatorial optimization problems. One such extension is called the stochastic ant
colony optimization (S-ACO) [12], which uses Monte-Carlo sampling to estimate
the expectation involved in evaluating the objective function. The probability one
convergence of S-ACO to the global optimal solution has been established in [12].

EDAs inherit the spirit of genetic algorithms (GAs), but eliminate the crossover
and mutation operators to avoid the disruption of partial solutions. In EDAs, a new
population of candidate solutions are generated according to the probability distri-
bution induced or estimated from the promising solutions selected from the previous
generation. Unlike CE, EDAs often take into account the interrelations between the
underlying decision variables needed to represent the individual candidate solutions.
At each iteration of the algorithm, a high-dimensional probabilistic model that better
represents the interdependencies between the decision variables is induced; this step
constitutes the most crucial and difficult part of the method. We refer the reader to
[30] for a review of the way in which different probabilistic models are used as
EDA instantiations. A proof of convergence of a class of EDAs, under the idealized
infinite population assumption, can be found in [41].

There are many other model-based algorithms proposed for optimization. Some
notable examples include probability collectives (PCs) [37], particle swarm opti-
mization [25], the particle filtering approach [42], and gradient-guided stochastic
search [43]. A complete description of all of them is outside the scope of this chapter.
Instead, we will focus our discussions on some recently developed approaches
that allow us to arrive at a systematic framework to study a class of model-
based algorithms in a uniform manner. We review specific algorithms under the
framework, present their asymptotic convergence properties, and discuss their
adaptations to simulation optimization.

12.3 A Model Reference Optimization Framework

We begin with a description of the model reference adaptive search (MRAS) method
introduced by Hu et al. [18], which will serve as a basis for subsequent discussions.

Model-based methods construct a sequence of distributions {gk} with some
desired convergence properties (ideally including gk → g∗ as k → ∞, with g∗
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being a limiting distribution assigning all of its probability mass to the set of
optimal solutions). Some common approaches for constructing such a sequence
include: (a) various proportional selection schemes—used in ACOs, EDAs, and
PCs; (b) Boltzmann selection schemes—used in AAS and the continuous EDA
algorithm in [6]; and (c) optimal importance sampling measure—primarily used
in the CE method.

However, in all cases, the obvious difficulties are that the sequence {gk} often
depends on h, which may not be available in any explicit form, and that the problem
of sampling exactly from even a known (but arbitrary) distribution gk is in general
intractable. In [18], a general approach called model reference adaptive search
(MRAS) is proposed, where these difficulties are circumvented by sampling from a
surrogate distribution that approximates gk. The idea of MRAS is to specify a family
of parameterized distributions { fϕ (·),ϕ ∈ Φ} (with Φ being the parameter space)
and then project gk onto the family to obtain a sequence of sampling distributions
{ fϕk} with desired convergence properties. The projection is carried out by finding
an optimal parameter ϕk that minimizes the Kullback–Leibler (KL) divergence
between gk and the parameterized family { fϕ (·),ϕ ∈Φ} (cf. also [35]), i.e.,

ϕk = arg min
ϕ∈Φ

D(gk, fϕ ),

where

D(gk, fϕ ) :=
∫
Θ

ln
gk(x)
fϕ (x)

gk(x)ν(dx) = Egk

[
ln

gk(X)

fϕ (X)

]
, (12.2)

ν is the Lebesgue/discrete measure on Θ , and Eg[·] is the expectation taken with
respect to the density/mass functions g. The hope is that the parameterized family is
specified with some structure so that once the parameter is determined, sampling
from each of these distributions should be a relatively easy task. Moreover, the
task of updating the entire distribution can be simplified to the task of updating its
associated parameters, and the sequence {gk}, henceforth referred to as reference
distributions, is only used implicitly to guide the parameter updating procedure.

Note that there are other ways of constructing surrogate distributions. For
example, in AAS, Markov chain Monte Carlo (MCMC) techniques are frequently
used to approximate the target Boltzmann distribution at each iteration [32], and
in traditional EDAs, empirical distribution models are directly constructed to
generate new candidate solutions [30, 41]. However, these algorithms can also be
accommodated within the above model reference framework by projecting the target
distributions onto a family of parameterized distributions. Specifically, under such
a framework, the three example sequences of reference distributions {gk} can be
expressed in the following recursive forms:

(a) proportional selection scheme: gk(x) =
S(h(x))gk−1(x)
Egk−1 [S(h(X))]

;
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(b) Boltzmann selection:

gk(x) =
eh(x)/Tk∫

x∈Θ eh(x)/Tkν(dx)
=

e
h(x)( 1

Tk
− 1

Tk−1
)
gk−1(x)

Egk−1

[
e

h(X)( 1
Tk
− 1

Tk−1
)] :=

S(h(x))gk−1(x)
Egk−1 [S(h(X))]

,

with {Tk} being a sequence of parameters determined by an annealing schedule;

(c) importance sampling measure: gk(x) =
S(h(x)) fϕk (x)

Eϕk [S(h(X))]
,

where S(·) is a non-negative increasing (possibly iteration-varying) function, and
Eϕ [·] is the expectation taken with respect to fϕ . The algorithm instantiation
considered in [18] uses the recursive procedure corresponding to case (a) to
construct the gk sequence. This form of reference distributions weights gk by the
value of the performance measure by giving more mass to solutions with good
performance. The resulting gk+1 has the property that it improves the expected
performance of gk, since

Egk+1 [S(h(X))] =
Egk [S

2(h(X))]

Egk [S(h(X))]
≥ Egk [S(h(X))].

This property ensure the convergence of the sequence {gk} to a degenerate
distribution concentrated on the set of optimal solutions. The general structure of
the MRAS method is outlined below.

Basic Model Reference Adaptive Search (MRAS) Optimization Framework

Step 0. Select a parameterized family { fϕ} and the {gk} sequence with desired
convergence properties.

Step 1. Given ϕk, generate N candidate solutions X1
k , . . . ,X

N
k by sampling from fϕk .

Step 2. Update the parameter ϕk+1 based on the sampled solutions by minimizing
the KL-divergence

ϕk+1 = arg min
ϕ∈Φ

D(gk+1, fϕ );

set k ← k+ 1 and reiterate from Step 1 until a stopping criterion is satisfied.

In some model-based algorithms such as CE and EDAs, there is often an addi-
tional selection step embedded in the above procedure. The idea is to concentrate
the computational effort on the set of promising solutions by using only a portion
of the samples—the set of “elite” samples—to update the probability model at
Step 2. Also note that in general, the expectation involved in the KL-divergence
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(cf. (12.2)) cannot be evaluated exactly. So in practice, the objective function
in the minimization problem at Step 2 is often replaced by its sample average
approximation. This leads to an estimator of ϕk+1 that is biased for any finite sample
size N. This bias issue will be discussed later in Sect. 12.5.

12.3.1 Convergence Result

For distributions in the natural exponential family (NEF), the minimization in Step 2
of the basic MRAS framework can be carried out in analytical form, which makes
the method easy to implement efficiently.

Definition 12.1. A parameterized family { fϕ(·),ϕ ∈ Φ ⊆ R
m} on Θ is called a

natural exponential family if there exist mappings Γ : Rd → R
m and K : Rm → R

such that fϕ (x) = exp
(
ϕTΓ (x)−K(ϕ)

)
, where K(ϕ) = ln

∫
Θ exp(ϕTΓ (x))ν(dx)

is a normalization constant.

The NEF has many interesting properties. For the purpose of our discussion, we
recall that K(ϕ) is strictly convex in the interior of Φ and the mean parameter
function defined by

m(ϕ) := ∇ϕK(ϕ) = Eϕ [Γ (X)] (12.3)

is a one-to-one invertible mapping of ϕ . Intuitively, m(ϕ) is essentially a trans-
formed version of the sufficient statistic Γ (x), whose value contains all information
necessary in estimating the parameter ϕ . For example, in the univariate normal
distribution N (μ ,σ2) with mean μ and variance σ2, it can be seen that Γ (x) =
(x,x2)T and ϕ = (μ/σ2,−1/(2σ2))T . Thus, given the value of m(ϕ), the equation
m(ϕ) = Eϕ [Γ (X)] = (μ ,σ2 + μ2)T can be uniquely solved for μ and σ2.

When NEFs are used in the framework with the sample size N adaptively
increasing, the convergence result for the instantiation of MRAS considered in [18]
takes the form

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1. as k → ∞.

Since m(ϕ) is one-to-one, this shows that the sequence of sampling distributions
{ fϕk} will converge to a limiting distribution fϕ∗ for gk sequences of proportional
selection scheme type. In addition, it has been argued in [18] that in many special
cases of interest, the limiting distribution turns out to be a degenerate distribution
on the set of optimal solutions. For example, when multivariate normal distributions
with mean vector μk and covariance matrix Σk are used as parameterized distribu-
tions, the convergence result translates to limk→∞ μk = x∗ and limk→∞ Σk = 0n×n

w.p.1, where 0n×n represents an n-by-n zero matrix.
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12.3.2 Simulation Optimization

In [19], the MRAS method has been generalized to stochastic settings where the
objective function h(x) in (12.1) can only be estimated, e.g., via a simulation model
or real-time observations. We begin by providing a high-level description of the
method.

Stochastic MRAS Framework for Simulation Optimization

Step 0. Select a parameterized family { fϕ} and an idealized {gk} sequence with
desired convergence properties.

Step 1. Given ϕk, generate N candidate solutions Λk := {X1
k , . . . ,X

N
k } by sampling

from fϕk .
Step 2. Take Mk simulation observations for each x ∈ Λk and estimate h(x) by the

sample average H(x) := 1
Mk
∑Mk

j=1 H(x,ξ j), where ξ j is the simulation noise in the
jth replication run.

Step 3. Update the parameter ϕk+1 based on the sampled solutions by minimizing
the KL-divergence

ϕk+1 = arg min
ϕ∈Φ

D(g̃k+1, fϕ );

set k ← k+ 1 and reiterate from Step 1 until a stopping criterion is satisfied.

The basic structure of the stochastic MRAS method (SMRAS) is similar to that
of MRAS for deterministic optimization, the main addition being the requirement
of an additional performance estimation step (i.e., Step 2 above). So in addition
to the sample size N used in MRAS, we also need to specify the number of
simulation replications to be allocated to each sampled candidate solution. At each
iteration, the sample mean based on Mk observations is used to estimate the true
performance h(x). Another modification from the original MRAS method occurs
at Step 3, where a distribution g̃k is used as an approximation of the idealized gk

distribution in minimizing the KL-divergence. The sequence {g̃k} is obtained by
replacing the true objective function h(x) in the construction of gk with its sample
average approximation H(x).

There are two general types of approaches for handling the simulation noise
involved in evaluating the objective function. One type of approaches (e.g., sample
average approximation) relies on highly precise estimates of the objective function
values by allocating a significant amount of simulation replications to each visited
solution. The other type of approaches (e.g., stochastic approximation) does not
require precise performance estimates, but generally involves some forms of
averaging, so that the estimation error due to simulation noise will automatically
cancel out over the course of a large number of iterations. The SMRAS method
falls in between these two types of approaches and requires increasingly precise
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estimates of the objective function values as the search progresses. In particular,
for the proportional selection scheme type {gk} sequence, conditions on {Mk} that
ensure the convergence of the method are provided in [19]. It has been shown
that when the simulation noises (not necessarily i.i.d.) satisfy the large deviation
principle, Mk is required to grow linearly with the number of iterations k.

As compared with the MRAS method for deterministic optimization, the updat-
ing formula for ϕk+1 (or equivalently m(ϕk+1), due to the invertibility of the
mapping m) in SMRAS has an additional simulation error term. For general
reference distribution sequences, a large deviation approach similar to that of
[19] can be applied to determine the conditions on {Mk} under which the error
term converges to zero with probability one. Again, when NEFs are used in
the SMRAS framework and {gk} is constructed using the proportional selection
scheme, essentially the same convergence result as stated in Sect. 12.3.1, i.e.,

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1. as k → ∞,

has been established under some appropriate conditions on the algorithm input
parameters, the sample size N, and the number of simulation replications Mk;
see [19].

12.4 A Stochastic Approximation Framework

In this section, we present a stochastic approximation (cf. Chap. 6) framework
to analyze a general class of model-based algorithms. We show that a slight
modification of the MRAS method introduced in Sect. 12.3 will lead to an inter-
esting connection between model-based algorithms and the well-known stochastic
approximation method. This connection implies that for a general non-differentiable
(deterministic) optimization problem, a model-based algorithm implicitly trans-
forms the underlying problem into an equivalent stochastic optimization problem
with smooth differentiable structures, and the algorithm itself can be viewed as
a gradient-based recursion over a transformed parameter space for solving the
equivalent smoothed problem. This interpretation of model-based algorithms not
only explains why these algorithms work well for hard optimization problems with
little structure, but also allows us to investigate their theoretical properties such
as convergence and rate of convergence by using theory and tools from stochastic
approximation.

The main idea of the stochastic approximation framework is to replace the
reference distribution sequence {gk} in the original MRAS method by a sequence
{ĝk} of the form:

ĝk+1(x) = αkgk+1(x)+ (1−αk) fϕk (x), αk ∈ [0,1] ∀k, (12.4)
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where fϕk is the sampling distribution obtained at the kth iteration of an algorithm
and αk is a mixture coefficient. Note that by taking ĝk+1 as the weighted average
of gk+1 and fϕk , it is “forced” to stay close to both distributions. Thus, if ĝk+1 is
used in place of gk+1 in minimizing the KL-divergence D(ĝk+1, fϕ ) at Step 2 of
the MRAS method, the new sampling distribution fϕk+1 obtained will not deviate
significantly from the current sampling distribution fϕk . Since an NEF distribution
fϕ is uniquely characterized by its associated parameter ϕ , the above intuition can
be formally stated in terms of the difference between the two successive mean
parameter functions (cf. (12.3)) of the projected probability distributions [20, 22]:

m(ϕk+1)−m(ϕk) =−αk∇ϕD(gk+1, fϕ )|ϕ=ϕk . (12.5)

Equation (12.5) explicitly brings out the updating direction of the parameter func-
tions at each step, which is in the direction of the negative gradient of the iteration-
varying objective function for the minimization problem minϕ∈ΦD(gk+1, fϕ ) ∀k.
This suggests that regardless of the type of decision variables involved in the
original problem (12.1), algorithms conforming to the framework are essentially
gradient-based recursions for solving a sequence of optimization problems on the
parameter space Φ with smooth differentiable structures. In the special case of the
CE method, i.e., when gk+1 in the right-hand-side of recursion (12.4) is replaced
with S(h(x)) fϕk (x)/Eϕk [S(h(X))], it can be seen that (12.5) becomes

m(ϕk+1)−m(ϕk) = αk
Eϕk [S(h(X))(Γ (X)−m(ϕk))]

Eϕk [S(h(X))]
= αk∇ϕ lnEϕ [S(h(X))]

∣∣
ϕ=ϕk

.

(12.6)

So the updating direction is in the gradient of the objective function for the maxi-
mization problem maxϕ∈Φ lnEϕ [S(h(X))]. The optimal solution of this optimization
problem is a parameter ϕ∗ whose associated sampling distribution fϕ∗ assigns
maximum probability to the set of optimal solutions of (12.1).

Letting ηk := m(ϕk) and using the invertibility of the mapping m, we can
write (12.5) in the abstract form

ηk+1 = ηk −αkL(ηk), (12.7)

where L(ηk) represents the gradient of the underlying (possibly iteration-varying)
objective function at ηk, which, for the three example {gk} sequences discussed in
Sect. 12.3, takes the general form

L(ηk) =
Eϕk [S(h(X))G(X ,ηk)]

Eϕk [S(h(X))]
(12.8)

for some appropriate function G(x,ηk). In actual implementation, expectations are
replaced by sample averages based on Monte Carlo sampling, (12.7) becomes
stochastic approximation with direct gradient estimation:

η̃k+1 = η̃k −αkL̃(η̃k), (12.9)
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where L̃ is an estimator for L based on sampled candidate solutions. The most
straightforward estimator is

L̃(η̃k) =
N−1∑N

i=1 S(h(Xi
k))G(Xi

k, η̃k)

N−1∑N
i=1 S(h(Xi

k))
.

Thus, it is clear that the rich body of tools and results from stochastic approximation
[28,29] can be incorporated into the framework to analyze model-based algorithms.

12.4.1 Convergence Results

Convergence of the CE Method

The convergence of the CE algorithm has been studied in [20, 22] by writing
(12.9) in the form of a generalized Robbins–Monro algorithm in terms of the true
gradient, a bias term, and a noise term caused by Monte Carlo random sampling, and
then following a standard ordinary differential equation (ODE) argument (cf. e.g.,
[4, 5, 28]). Basically, it has been shown in [22] that the asymptotic behavior of CE
is governed by the properties of a limit set of an underlying ODE. In addition, if the
limit set consists purely of isolated equilibrium points of the ODE, then the sequence
of {η̃k} generated by CE will converge to a unique limiting point η∗ w.p.1. Under
such a condition, the following asymptotic convergence rate result has also been
established in [22]:

k
τ
2 (η̃k −η∗) d−→N

(
0,Σ
)

as k → ∞,

where τ ∈ (0,1) is an appropriate constant and Σ is a positive definite covariance
matrix.

Model-Based Annealing Random Search (MARS)

The stochastic approximation framework also allows for a lot of flexibility in devel-
oping provably convergent algorithms that perform well in practice. For example,
[21] has investigated the use of Boltzmann distributions as reference models in the
framework to address the implementation difficulty of annealing adaptive search,
leading to a new globally convergent algorithm called model-based annealing
random search (MARS). The algorithm complements existing research based on
MCMC sampling techniques in the sense that it samples candidate solutions from a
sequence of NEF distributions that approximates the target Boltzmann distributions,
whereas MCMC techniques are sequential sampling procedures that sample directly
from the Boltzmann distributions. The major steps of the MARS algorithm are given
next.
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Basic MARS Algorithm

Step 0. Select an NEF distribution family { fϕ ,ϕ ∈Φ}, a sequence of temperature
parameters {Tk}, and a gain sequence {αk}.

Step 1. Given ϕk, generate N candidate solutions X1
k , . . . ,X

N
k by sampling from fϕk .

Step 2. Update the parameter

ϕk+1 = arg min
ϕ∈Φ

D(ĝk+1, fϕ );

set k ← k+ 1 and reiterate from Step 1.

At Step 2 of MARS, the reference distribution ĝk+1 is given by ĝk+1(x) =
αkḡk+1(x) + (1 −αk) fϕk (x), which is the mixture of the current sampling distri-
bution fϕk with ḡk+1, an empirical estimate of the true Boltzmann distribution

gk+1(x) := eh(x)/Tk∫
X eh(x)/Tk dx

based on the sampled solutions X1
k , . . . ,X

N
k .

In light of Eq. (12.5), the mean parameter function m(ϕk+1) corresponding to
the new parameter ϕk+1 obtained at Step 2 of MARS can be viewed as an iterate
generated by the gradient recursion

m(ϕk+1) = m(ϕk)−αk∇ϕD(ḡk+1, fϕ )|ϕ=ϕk . (12.10)

By the properties of NEFs, the gradient in (12.10) can be expressed in terms of a
true gradient term involving the Boltzmann distribution gk+1 and an error term due
to random sampling, leading to a Robbins–Monro type stochastic approximation
algorithm

m(ϕk+1) = m(ϕk)−αk

(
m(ϕk)−Egk+1[Γ (X)]+Egk+1[Γ (X)]−Eḡk+1[Γ (X)]

)

= m(ϕk)−αk∇ϕD(gk+1, fϕ )|ϕ=ϕk −αk
(
Egk+1 [Γ (X)]−Eḡk+1[Γ (X)]

)
. (12.11)

Note that (12.11) generalizes a typical stochastic approximation recursion in that
the function D(gk+1, fϕ ) may change shape with k. This time-varying feature of
MARS actually turns out to be a desirable property, because the idealized sequence
of Boltzmann distributions {gk} converges to a limiting distribution g∗ as k goes to
infinity. This will in turn imply the convergence of the sequence of the optimal
solutions {ϕk} to a global optimizer ϕ∗. Under some appropriate conditions on
the algorithm input parameters, the following convergence result has been obtained
in [21]:

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1.
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In addition, for a polynomially increasing sample size N = akβ and a gain sequence
of the form αk = c/kα for constants a > 0, c > 0, α ∈ ( 1

2 ,1), and β > α , an
asymptotic normality result of the following form is also given in [21]:

k
α+β

2
(
m(ϕk)−Γ (x∗)

) d−→N (0,Σ) as k → ∞,

where Σ is a positive definite covariance matrix.

12.4.2 Simulation Optimization

The simulation optimization setting, where H(x,ξ ) is obtained in a simulation
replication, requires an additional simulation allocation rule {Mk}, which allocates
Mk simulation observations to each of the N candidate solutions generated at the
kth iteration. Thus, in constructing gradient estimators, if the true performance at a
sampled solution Xi

k is replaced by the sample average

Hk(X
i
k) =

1
Mk

Mk

∑
j=1

H(Xi
k,ξ j),

then an estimator of the true gradient L(η̃k) in (12.8) will take the form

LN(η̃k) =
N−1∑N

i=1 S(Hk(Xi
k))G(Xi

k, η̃k)

N−1∑N
i=1 S(Hk(Xi

k))
.

Consequently, the gradient iteration (12.9) can be carried out at each step by
replacing the true performance at a sampled solution Xi

k by its sample average
approximation Hk(Xi

k), leading to a recursion of the form

η̃k+1 = η̃k −αkL̃N(η̃k)+αk
(
L̃N(η̃k)−LN(η̃k)

)
. (12.12)

Under some appropriate conditions on the allocation rule {Mk}, the expectation
(conditional on the current sampled solutions) of the error term L̃N(η̃k)−LN(η̃k)
goes to 0 as k → ∞. Thus by treating the simulation noise L̃N(η̃k)− LN(η̃k) as a
vanishing bias term, the (possibly local) convergence and convergence rate analysis
of recursion (12.12) can be studied along the same line as in the deterministic
optimization case.
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Application of MARS to Finite-Horizon Markov Decision Processes

To illustrate the adaptation of the stochastic approximation framework to simula-
tion setting, we modify and extend the MARS algorithm to a stochastic setting
and present a simulation-based algorithm called approximate stochastic annealing
(ASA) for solving finite-horizon Markov decision processes (MDPs) [16]. The idea
is to interpret an MDP as a stochastic optimization problem on the (randomized)
policy space (where candidate solutions are policies) and then use ASA as a specific
optimization strategy to directly search the policy space to find good policies.

Consider a discrete-time finite H -horizon stochastic system xt+1 = f (xt ,at ,wt)
for t = 0,1, . . . ,H − 1, where xt represents the system state at time t taking values
from a finite state space X , at is the control applied at time t chosen from a finite
action set A , {wt} is a sequence of random vectors representing the stochastic
uncertainty of the system, and f is the next-state transition function. Let Rt(xt ,at ,wt)
be the one-stage reward for action at taken in state xt at time t. DefineΠ as the set of
non-stationary deterministic Markovian policies π = {πt , t = 0, . . . ,H −1}, where
each πt : X → A is a function that specifies the action to be applied at time t for
each x ∈X . For an initial state x0 = x, the expected total reward (value function)
associated with a policy π is given by

V π(x) := E
[H −1

∑
t=0

Rt(xt ,πt(xt),wt )
∣∣x0 = x

]
. (12.13)

The objective is to find an optimal policy π∗ ∈Π that maximizes the expected total
reward for a given state x, i.e.,

V π∗(x) = max
π∈Π

V π(x). (12.14)

At each iteration, ASA searches for improved policies by sampling from a
probability distribution function φ(π ,q) over the policy space Π , where q is a
parameter vector taking values from some parameter space. The distribution is then
modified using a Boltzmann selection scheme based on the simulated/estimated
value functions of the sampled policies. One simple way to specify the parame-
terized distribution φ(π ,q) is to use an |X |-by-|A |-by-H stochastic matrix qk,
whose (i, j, t)th entry qk(i, j, t) specifies the probability that the action a j is applied
to state xi at time t. Such a stochastic matrix qk gives rise to a probability mass
function over Π :

φ(π ,qk) :=
H −1

∏
t=0

|X |
∏
i=1

|A |
∏
j=1

[
qk(i, j, t)

]I{π∈Πi, j(t)} ∀π ∈Π , (12.15)

where I{·} is the indicator function and Πi, j(t) := {π : πt(xi) = a j} denotes the
set of deterministic policies that assign action a j to state xi at time t. Thus, as in
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the MARS algorithm, the goal is to iteratively update the entries qk(i, j, t) so that
φ(π ,qk) will be a close approximation to the desired Boltzmann distribution

gk+1(π) =
eV π/Tk

∑π∈Π eVπ/Tk
.

This results in the following adaptive policy search procedure.

Approximate Stochastic Annealing (ASA) Algorithm for Solving MDPs

Step 0. Select a sequence of temperature parameters {Tk} and a gain sequence
{αk}.

Step 1. Given qk, sample N policies Λk := {π1
k , . . . ,π

N
k } from φ(π ,qk).

Step 2. For each π ∈ Λk, perform Mk independent simulation replication runs and
let V̄ π

k = 1
Mk
∑Mk

l=1 V π
l , where V π

l is an estimate of the value function V π obtained
in the lth replication run.

Step 3. Update the q matrix

qk+1 = arg min
q

D
(
ĝk+1,φ(·,q)

)
.

Set k ← k+ 1 and reiterate from Step 1.

Note that at Step 3, the KL-divergence is with respect to ĝk+1(π) = αkg̃k+1(π)+
(1−αk)φ(π ,qk), where g̃k+1 is an empirical estimate of the true Boltzmann distri-
bution gk+1 based on the sampled policies in Λk and value function estimates V π

l .
Since the parameterized distribution φ(π ,qk) given in (12.15) belongs to NEFs,

it is not difficult to show that the entries of the qk matrix updated at Step 3 satisfy
the following recursion:

qk+1(i, j, t)− qk(i, j, t) = αk

[
Eg̃k+1 [I{π ∈Πi, j(t)}]− qk(i, j, t)

]

= αk

[
Egk+1 [I{π ∈Πi, j(t)}]− qk(i, j, t)

]

−αk

[
Egk+1 [I{π ∈Πi, j(t)}]−Eg̃k+1[I{π ∈Πi, j(t)}]

]
. (12.16)

Since gk+1 assigns more weight to policies with better performance, the first term on
the right-hand-side of the second equality implies that the entries of qk are updated
in a direction that “pursues” the optimal policy π∗, whereas the second term can
be viewed as a noise term caused by the approximation error between g̃k+1 and
gk+1. Thus the convergence analysis of ASA essentially boils down to the issue of
inspecting whether the Boltzmann distribution gk+1 can be closely approximated
by its empirical estimate g̃k+1. In particular, under some mild conditions on the
algorithm input parameters, the following result is obtained in [16]:

qk(i, j, t)→ I{π∗ ∈Πi, j(t)} ∀i, j, t as k → ∞ w.p.1,
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which indicates that the sequence of stochastic matrices qk generated by the
algorithm will converge to a limiting matrix assigning unit probability mass to the
optimal policy π∗.

12.5 A Stochastic Averaging Approach

As we have seen in previous sections, convergence analysis of model-based
algorithms typically requires a sample size N that increases polynomially with the
number of algorithm iterations. In practice, this translates to using a per-iteration
computational effort that grows without bound as the number of iterations increases,
which may have a negative impact on the algorithm’s practical performance,
especially in the setting where simulation/function evaluations are expensive.

This efficiency issue has been tackled in [17], where the basic idea is to maintain
a population of probability distribution models (rather than just a single model as
in a typical model-based algorithm) at each iteration and then adaptively allocate a
given computing budget among different models in order to maximize the expected
performance of the algorithm. In this section, we present an approach that aims
to improve the sampling efficiency of model-based algorithms from a different
perspective, focusing primarily on reducing the number of candidate solutions
generated per iteration. This is carried out through embedding a stochastic averaging
procedure within model-based algorithms to make more efficient use of the past
sampling information. The material in this section is based on [23, 24].

For simplicity, we consider the general reference distribution introduced in
Sect. 12.3:

gk(x) =
S(h(x))gk−1(x)
Egk−1 [S(h(X))]

.

By expanding the above recursion, we can write gk in terms of the initial distribution
g0 as

gk(x) =
Sk(h(x))g0(x)
Eg0 [Sk(h(X))]

, (12.17)

where Sk is some appropriate iteration-varying function that depends on S. Substi-
tuting (12.17) into the minimization problem minϕD(gk+1, fϕ ) and dropping terms
that are constants with respect to ϕ , it can be seen that the parameter ϕk+1 obtained
at Step 2 of the MRAS method of Sect. 12.3 can be equivalently obtained by solving
the following optimization problem

ϕk+1 = arg max
ϕ∈Θ

(
Qk+1(ϕ) :=

∫
x∈Θ

Sk+1(h(x)) ln fϕ (x)dx

)
. (12.18)
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As discussed previously, in model-based algorithms, the integral involved in
the Q-function Qk+1(ϕ) is estimated by generating N i.i.d. candidate solutions
X1

k , . . . ,X
N
k from fϕk , and then replacing Qk+1(ϕ) by its sample average

approximation

Q̄k+1(ϕ) :=
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk (X
i
k)

ln fϕ (X
i
k).

Although Q̄k+1(ϕ) is an unbiased estimator of Qk+1(ϕ), the corresponding opti-
mization step will lead to an estimator of ϕk+1 that is biased for any finite
sample size N, because the optimal solution to (12.18) involves a ratio of inte-
grals/expectations. Consequently, common implementations of these algorithms
either require hundreds or even thousands of candidate solutions to be generated
per iteration [6, 35], or require the use of a sample size N that increases at least
polynomially with k in order to reduce the ratio bias effect [13, 18, 21, 22].

This bias issue has been addressed in [23, 24] by replacing the sample average
approximation Q̄k(ϕ) with the stochastic averaging procedure

Q̂k+1(ϕ) = (1−βk)Q̂k(ϕ)+βk
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk (X
i
k)

ln fϕ (X
i
k), (12.19)

with Q̂1(ϕ) := 1
N ∑

N
i=1

(
S1(h(Xi

0))/ fϕ0(X
i
0)
)

ln fϕ (Xi
0), where βk is a step size

constant satisfying βk ∈ (0,1] ∀k. Note that this procedure incrementally updates the
current estimate of the Q-function as new sampling information becomes available
at each iteration. In addition, due to the recursive nature of (12.19), all candidate
solutions generated in the previous iterations contribute to the estimation of the
Q-function Qk+1(ϕ). Consequently, it is reasonable to expect that the number of
samples per iteration N can be significantly reduced or even held at a small constant
value.

It is interesting to note that when NEF is used, Q̂k+1(ϕ) can be expressed as a
linear combination of the parameter vector ϕ and the function K(ϕ):

Q̂k+1(ϕ) = ϕTSk+1 −K(ϕ)Rk+1,

where the quantities Sk and Rk can be computed via the respective recursions

Sk+1 =Sk +βk

(
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk (X
i
k)

Γ (Xi
k)−Sk

)
,

Rk+1 =Rk +βk

(
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk (X
i
k)

−Rk

)
,

with S1 := 1
N ∑

N
i=1 S1(h(Xi

0))/ fϕ0(X
i
0)Γ (X

i
0) and R1 := 1

N ∑
N
i=1 S1(h(Xi

0))/ fϕ0(X
i
0).

Thus, by substituting Q̂k+1(ϕ) for Qk+1(ϕ) in (12.18), we have the following
optimization problem:
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ϕk+1 = arg max
ϕ∈Θ

(
ϕTSk+1 −K(ϕ)Rk+1

)
,

whose unique closed-form solution is given by

m(ϕk+1) =
Sk+1

Rk+1
or equivalently ϕk+1 = m−1

(Sk+1

Rk+1

)
.

The above stochastic averaging idea has been combined with the MARS algorithm
of Sect. 12.4, leading to a two-time-scale stochastic approximation type of algorithm
called MARS with stochastic averaging (MARS-SA).

MARS with Stochastic Averaging (MARS-SA)

Step 0. Select temperature parameters {Tk} and gain sequences {αk} and {βk}.
Step 1. Generate N i.i.d candidate solutions Λk := {X1

k , . . . ,X
N
k } from fϕk (x).

Step 2. Update Sk+1 and Rk+1 according to the recursions:

Sk+1 =Sk +βk

(
1
N ∑

x∈Λk

eh(x)/Tk+1

fϕk (x)
Γ (x)−Sk

)
,

Rk+1 =Rk +βk

(
1
N ∑

x∈Λk

eh(x)/Tk+1

fϕk (x)
−Rk

)
.

Step 3. Compute a new parameter ϕk+1 as

m(ϕk+1) = αk
Sk+1

Rk+1
+(1−αk)m(ϕk).

Set k ← k+ 1 and reiterate from Step 1.

By exploiting the connection of MARS-SA to stochastic approximation method,
it is shown in [23, 24] that the algorithm converges globally even when the per
iteration sample size N is held at a small constant value. In addition, preliminary
empirical results reported in [24] indicate that the new algorithm can be more
efficient (in terms of the number of performance evaluations) than the original
MARS algorithm.

12.6 Conclusions and Open Research Questions

In this chapter, we have provided an overview of three model-based optimization
methods and discussed their extensions to simulation optimization. In particular,
the MRAS method discussed in Sect. 12.3 offers a general framework to design and
implement model-based algorithms, whereas the stochastic approximation method
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presented in Sect. 12.4 provides a systematic approach to analyze the convergence
properties of these algorithms. In addition, we have also outlined in Sect. 12.5 a
stochastic averaging procedure that addresses the estimator bias issue in model-
based algorithms and aims to make these algorithms computationally more efficient.
These methods are illustrated through a number of exemplary algorithms that are
both provably convergent and exhibit promising empirical performance.

There are many challenging research issues that remain to be addressed. For
example, the theoretical convergence and empirical performance of model-based
algorithms are greatly influenced by the choices of reference distributions. So a
natural research question is how the reference distributions should be chosen for
specific problems. Moreover, since existing convergence results are all asymptotic
in nature, a theoretical issue is to study whether finite-time performance bounds
(e.g., similar to those in stochastic adaptive search [39]) can also be developed for
these algorithms.

Model-based algorithms generally do not make use of problem structure, whereas
in a continuous-variable simulation optimization setting, there may be additional
information available (e.g., stochastic gradient estimates, Lipschitz continuity)
from problem knowledge. It is well-known that effective use of structure may
dramatically improve the solution efficiency. Therefore, another interesting research
direction is to investigate how to incorporate problem structure information into
model-based algorithms, as well as to identify classes of problems for which this
can be done in a systematic manner.

The extension of model-based algorithms to simulation optimization is carried
out in a relatively straightforward manner by introducing an additional simulation
allocation sequence {Mk} to obtain increasingly precise performance estimates as
the search proceeds. This motivates the design of new model-based algorithms that
do not rely on expending additional simulation effort on performance estimation
(Mk = 1 for all k), e.g., in a way that the simulation noise will act like martingale
difference noise in stochastic approximation and automatically average out over a
large number of iterations. This is yet another avenue of research that merits further
investigation.
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Chapter 13
Solving Markov Decision Processes via
Simulation

Abhijit Gosavi

Abstract This chapter presents an overview of simulation-based techniques useful
for solving Markov decision processes (MDPs). MDPs model problems of sequen-
tial decision-making under uncertainty, in which decisions made in each state
collectively affect the trajectory of the states visited by the system over a time hori-
zon of interest. Traditionally, MDPs have been solved via dynamic programming
(DP), which requires the transition probability model that is difficult to derive in
many realistic settings. The use of simulation for solving MDPs allows us to bypass
the transition probability model and solve large-scale MDPs considered intractable
to solve by traditional DP. The simulation-based methodology for solving MDPs,
which like DP is also rooted in the Bellman equations, goes by names such as
reinforcement learning, neuro-DP, and approximate or adaptive DP. We begin with a
description of algorithms for infinite-horizon discounted reward MDPs, followed by
the same for infinite-horizon average reward MDPs. Then we present a discussion
on finite-horizon MDPs. For each problem considered, we present a step-by-step
description of a selected group of algorithms. In making this selection, we have
attempted to blend the old and the classical with more recent developments. Finally,
after touching upon extensions and convergence theory, we conclude with a brief
summary of some applications and directions for future research.

13.1 Introduction

Reinforcement learning (RL) and approximate dynamic programming (ADP),
also called adaptive DP by some authors, are closely related research fields that
have been successfully applied to many practical problems addressing sequential
decision-making under uncertainty. The central ideas in these fields are closely tied
to solving control problems in discrete-event dynamic systems where the underlying
problem revolves around finding the optimal control (action) in each state visited
by the system. These problems were initially studied by Richard Bellman [10],
who also formulated what is now known as the Bellman equation. Much of the
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methodology in RL and ADP is tied to solving some version of this equation.
These problems are often called Markov decision processes/problems (MDPs).
The solution methods invented by Bellman [11] and Howard [45] are called value
iteration and policy iteration, respectively; collectively, they are called dynamic
programming (DP) methods.

When the number of states and/or the number of actions is very large, DP suffers
from the curse of dimensionality, i.e., it becomes difficult to apply DP in an exact
sense. This is because DP requires the transition probability matrices, which can
become huge for large-scale problems, too large to be stored or manipulated. It is
on these problems that simulation can play a major role in solution methods. The
key role that simulation plays is in avoiding the transition probabilities. It is well-
known that for complex systems, producing simulators is significantly easier than
developing exact mathematical models, i.e., the transition probabilities.

RL algorithms can run in simulators and have the potential to break the curse of
dimensionality to produce optimal or near-optimal solutions. In particular, we will
focus on methods in which the number of actions is finite and relatively small, e.g.,
a dozen. The algorithms will be based on the Bellman equation but will not need the
transition probability model.

A significant body of literature in the area of RL and ADP appears to be divided
into two branches. The first seeks to use algorithms on a real-time basis within
the system, i.e., while the system is running (on-line). This branch is more closely
associated with the name RL and is popular within the computer science and
artificial intelligence (robotics) community. The other branch works primarily in an
off-line sense and seeks to solve large-scale MDPs where the transition probabilities
can be estimated but a naïve application of DP does not work. This branch is
more closely associated with the name ADP and finds applications in electrical,
industrial, and mechanical engineering. Another somewhat synthetic approach to
study the differences between these two branches is to consider the function used:
RL algorithms for the most part work with the Q-function defined by Eq. (13.1)
or (13.2), whereas most ADP algorithms work with the value function of DP (e.g.,
Definition 13.1).

In the simulation community, one is usually interested in the algorithms belong-
ing to the RL variety, because the Q-function can help avoid the transition
probabilities. Note, however, that there are important exceptions to this, e.g.,
evolutionary policy iteration algorithm [25] and many model-building algorithms
(see e.g., [84]). Regardless of whether the Q-function or the value function is used,
in the simulation community, the interest lies in problems where the transition
probability model is not easy to generate. As such, in this chapter, we limit ourselves
to discussing algorithms that can bypass the transition probability model. As stated
above, the algorithms we discuss will be limited to finite action spaces. It is also
important to note that we will employ the RL algorithm in an off-line sense within
the simulator. Hence, one assumes that the distributions of the random variables that
form inputs to the system are available.
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Some of the earlier books that cover the topics of RL and simulation-based
algorithms include [12, 24, 30, 79, 82]. Numerous books have also appeared that
primarily focus on the ADP aspects, and some of these include [66, 74]. The latest
edition of the second volume of [15] has an entire chapter dedicated to ADP (and
also to RL). See also [21] for policy search via simulation optimization. RL has also
been surveyed in journal articles [35, 49, 52].

In writing this chapter, we have had to make some conscious choices regarding
the selection of algorithms from the vast array now available in the literature. We
have sought to blend our discussion of classical algorithms based on Q-functions
and value iteration with that of the more recent developments in the area of policy
iteration. We study the three main classes of objective functions commonly studied
in this area: the infinite-horizon discounted reward, the infinite-horizon average
reward, and the finite-horizon total reward. A highlight of our presentation is a
step-by-step description of combining function approximators with algorithms of
the Q-Learning type—an important topic from the perspective of attacking large-
scale problems within simulators. Another highlight is the discussion on the finite
horizon and average reward problems that are of significant interest in the operations
research community.

The rest of this chapter is organized as follows. In Sect. 13.2, we present some
background material including notation. Algorithms related to discounted reward,
average reward, and total reward (finite horizon) are presented in Sects. 13.3, 13.4,
and 13.5, respectively. Some simple numerical results are presented in Sect. 13.6.
Sects. 13.7 and 13.8 present short discussions on extensions and convergence theory,
respectively. Sect. 13.9 concludes this chapter with a discussion of applications and
topics for future research and open problems.

13.2 Background

In this section, we present some background for simulation-based optimization of
MDPs. In an MDP, the system transitions from one state to another in a dynamic
fashion. The decision-maker is required to select an action from a set of actions
(where the set contains at least two actions) in a subset of states. Those states in
which actions have to be chosen are called decision-making states. Henceforth,
by states, we will mean decision-making states, since for analyzing MDPs, it is
sufficient to observe the transitions that occur from one decision-making state to
another. Thus, as a result of selecting an action, the system transitions to another
state (which can be the same state)—usually in a probabilistic manner. (In this
chapter, we will confine our discussion to those MDPs in which the transitions are
probabilistic, since they are more interesting in a simulation-based context.) The
probability of transitioning (moving/jumping) from one state to another under the
influence of an action is called the one-step transition probability, or simply the
transition probability. The transition probabilities are collectively referred to as the
transition probability model.
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During a transition from one state to another, the system receives a (one-step)
immediate reward, which is either zero, positive, or negative. Negative rewards can
be viewed as costs. The decision-maker’s goal is to choose actions in each state in a
fashion that optimizes the value of some performance metric of interest. The actions
chosen in the different states visited by the system are stored in a policy, and the
decision-maker is interested in the policy that optimizes the performance metric of
interest, so the solution to an MDP is an optimal policy. As stated above, our interest
in this chapter lies in simulation-based methods that can help determine the optimal
policy without generating the transition probabilities, and thereby solve complex
large-scale MDPs with finite action sets, considered intractable via traditional DP
methods.

The performance metric’s value generally depends on the actions chosen in each
state, the immediate rewards, the time horizon of interest and whether the time value
of money is considered. When the time value of money is taken into account in the
calculations, we have a discounted performance metric, while when it is ignored,
we have an undiscounted performance metric. The time value of money will be
discussed later in more detail. We now present some of the fundamental notation
needed in this chapter.

13.2.1 Notation and Assumptions

A deterministic policy is one in which the decision-maker selects a fixed (deter-
ministic) action in each decision-making state, in contrast to a stochastic policy
in which in each decision-making state, each action is chosen with some fixed
probability (such that the probability of selecting all actions sums to one for every
state). A stationary policy is one in which the action selected in a state does not
change with time. In general, we will be interested in finding stationary deterministic
policies, so henceforth when we refer to a policy, we mean a stationary deterministic
policy unless explicitly specified otherwise.

Let S denote the finite set of states visited by the system, A (i) the finite set of
actions permitted in state i, and μ(i) the action chosen in state i when policy μ is
pursued. We define A ≡ ∪i∈SA (i). Further let r(., ., .) : S ×A ×S →R denote
the immediate reward and p(., ., .) : S ×A ×S → [0,1] denote the associated
transition probability. Then the expected immediate reward earned in state i when
action a is chosen in it can be expressed as:

r̄(i,a) =
|S |
∑
j=1

p(i,a, j)r(i,a, j).

We will make the following two assumptions about the problems considered in
this chapter.
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• Both the state-space, S , and the action-space, A , are finite.
• The Markov chain of every policy is regular, i.e., the transition probability of the

Markov chain can be raised to some finite power such that all elements in the
resulting matrix become strictly positive [42].

13.2.2 Performance Metrics

We now define the three metrics of interest to us. The first metric is the expected
total discounted reward over an infinitely long time horizon. The discount factor is
a well-known mechanism used in MDP theory to capture the time value of money.
It is to be interpreted as follows. If one earns z dollars at a time τ time periods after
the current time, then the current value of those z dollars will be

z

(
1

1+κ

)τ
,

where κ is the rate of interest. We denote 1/(1 + κ) by γ . For the MDP, the
assumption is that transition from one state to another requires one time period,
i.e., τ = 1. Hence, the discount factor that will be used after one state transition will
be γ .

Definition 13.1. The expected total discounted reward of a policy μ starting at state
i in an MDP over an infinitely long time horizon is:

Vμ(i)≡ liminf
k→∞

Eμ

[
k

∑
s=1

γs−1r(xs,μ(xs),xs+1)

∣∣∣∣∣x1 = i

]
,

where γ is the (one-step) discount factor, Eμ denotes the expectation operator over
the trajectory induced by policy μ , and xs denotes the state occupied by the system
before the sth transition (jump) in the trajectory occurs.

In a discounted reward MDP, the goal is to maximize this performance metric for
all values of i ∈S , i.e., it appears that there are multiple objective functions, but
fortunately, it can be shown that when all policies have regular Markov chains,
there exists a stationary, deterministic optimal policy that maximizes the value of
the above metric for all starting states simultaneously [15].

We now define the other popular performance metric for infinite time horizons:
the expected reward per transition over an infinitely long time horizon, commonly
known as the “average reward.” In this metric, the time value of money is ignored.

Definition 13.2. The average (expected) reward of a policy μ per transition in an
MDP, starting at state i over an infinitely long time horizon, is defined as:



346 A. Gosavi

ρμ(i)≡ liminf
k→∞

1
k
Eμ

[
k

∑
s=1

r(xs,μ(xs),xs+1)|x1 = i

]
.

If the Markov chain of the policy is regular, the average reward does not depend on
the starting state, i.e., ρμ(i) = ρμ for all i ∈S . The goal thus becomes to maximize
the average reward.

The third performance metric of interest here is that of the expected total reward
over a finite time (i.e., number of stages) horizon, which is sought to be maximized.
It depends on the starting state in the problem, which is assumed to be known, and
is defined as follows:

Definition 13.3. The expected total reward over a finite horizon of T time periods
for a policy μ when the starting state is i is defined as:

φμ(i)≡ Eμ

[
T

∑
s=1

r(xs,μ(xs),xs+1)

∣∣∣∣∣x1 = i

]
,

where s is generally known as the stage, and the starting state i is fixed for the
problem.

13.2.3 Bellman Equations

The theory of DP is rooted in the famous Bellman equations, which were originally
presented in the form of the value functions (see [11]). For the simulation-based
context, it is the Q-function that is more useful, and hence we present the Bellman
equations in the Q-format. We present the first equation for the discounted reward
MDP.

Theorem 13.1. For a discounted reward MDP, there exists a function Q : S ×
A → R such that the following set of equations have a unique solution

Q(i,a) =
|S |
∑
j=1

p(i,a, j)

[
r(i,a, j)+ γ max

b∈A ( j)
Q( j,b)

]
∀(i,a) (13.1)

and the policy μ , defined by μ(i)∈ arg maxa∈A (i) Q(i,a) for all i ∈S , is an optimal
policy for the MDP.

The associated result for the average reward MDP is:

Theorem 13.2. For an average reward MDP, there exists a function Q : S ×
A → R and a scalar ρ∗ ∈R such that a solution exists for the following equations:
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Q(i,a) = ∑
j∈S

p(i,a, j)

[
r(i,a, j)+ max

b∈A ( j)
Q( j,b)−ρ∗

]
∀(i,a). (13.2)

Further ρ∗ equals the optimal average reward of the MDP, and the policy μ , defined
by μ(i) ∈ arg maxa∈A (i) Q(i,a) for all i ∈S , is an optimal policy for the MDP.

We note that Q(·, ·) is commonly called the Q-factor, Q-value, or the state-action
value in the literature. Finding the optimal values of these quantities holds the key
to solving the MDP.

For the finite-horizon problem, we need a somewhat enhanced style of notation
to account for the stage. In a finite-horizon problem, the state-action pair, (i,a), will
be replaced by the state-stage-action triple, (i,s,a), where s is the stage index and
takes values in the set T = {1,2, . . . ,T}. The notation for the immediate reward,
the transition probability, and the Q-function will need to account for this triple. In
such problems, we will assume that there is no decision-making to be performed
in stage T + 1 and that the Q-value in that stage, regardless of the state or action,
will be zero. The starting state, i.e., when s = 1, will be assumed to be known with
certainty in finite-horizon problems. The following is the Bellman equation for a
finite-horizon undiscounted problem.

Theorem 13.3. There exists a function Q : S ×T ×A → R such that a solution
exists for the following equations: For all i ∈S , all s ∈ T , and all a ∈A (i,s):

Q(i,s,a) = ∑
j∈S

p(i,s,a, j,s+ 1)

[
r(i,s,a, j,s+ 1)+ max

b∈A ( j,s+1)
Q( j,s+ 1,b)

]
,

(13.3)

where Q( j,T +1,b)= 0 for all j ∈S and b∈A ( j,T +1). The policy μ , defined by
μ(i,s) ∈ arg maxa∈A (i,s) Q(i,s,a) for all i ∈S and all s ∈ T , is an optimal policy
for the MDP.

13.3 Discounted Reward MDPs

In this section, we present some of the key (simulation-based) RL algorithms
for solving discounted reward MDPs. We begin with the classical Q-Learning
algorithm, which is based on value iteration, along with a discussion on how it
can be combined with function approximation. This is followed by a popular,
but heuristic, algorithm called SARSA(λ ), based on the notion of the temporal
difference learning algorithm TD(λ ). Thereafter, we present two algorithms based
on policy iteration: one is based on the classical modified policy iteration approach
and the other based on the actor-critic algorithm. We conclude this section with a
relatively new algorithm that combines ideas of genetic algorithms within policy
iteration.
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13.3.1 Q-Learning

The idea of Q-Learning [88] is based on iteratively solving the Bellman equation
presented in Eq. (13.1) while avoiding the transition probabilities. We will first
present the intuition underlying the derivation of this algorithm and then present
the steps more formally.

Clearly, Eq. (13.1) contains the transition probabilities that we seek to avoid
in simulators. The main idea underlying Q-Learning is to use a Robbins–Monro
stochastic approximation algorithm [70] to estimate the mean via samples without
directly summing the samples. If xk denotes the kth sample and x̂k denotes the
estimate after k samples, then the update is as follows:

x̂k+1 ← (1−αk)x̂k +αkxk,

where αk denotes the step size in the kth iteration, which is a small positive scalar
less than 1 that must satisfy the following conditions:

∞

∑
k=1

αk = ∞;
∞

∑
k=1

(
αk
)2

< ∞.

Examples of step-size rules that satisfy the conditions above include

αk =
A

B+ k
(B ≥ A ≥ 0), αk =

logk
k

(k ≥ 2).

In practice, finding the right step-size often requires some experimentation; see
Chaps. 6 and 7 for further discussion.

To apply the Robbins–Monro update for estimating the Q-factors in Eq. (13.1), it
is necessary to express the right hand side of the Bellman equation as an expectation
as follows:

Q(i,a) = Ei,a

[
r(i,a, j)+ γ max

b∈A ( j)
Q( j,b)

]
∀(i,a),

where the expectation operator Ei,a[·] is over the random state transitions that can
occur from state i under the influence of action a. Then the Q-Learning algorithm is
as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ γ max
b∈A ( j)

Qk( j,b)

]
, (13.4)

where the terms in the square brackets represent the sample. Note that (13.4) does
not contain the transition probabilities. In a simulator, where every action is selected
in each state with the same probability, it can be shown that as k tends to infinity, the
algorithm converges to the unique solution of Eq. (13.1), i.e., the Bellman equation,
thereby solving the problem.
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The above presentation ignores subtleties that we now note. First, there are
multiple Q-factors being estimated simultaneously here. Furthermore, in any given
update, the terms within the square brackets potentially contain Q-factors of other
state-action pairs. In general, the Q-factors of the other state-action pairs will
not have been updated with the same frequency, which is true of synchronous
updating used in DP. Updating of this nature is called asynchronous updating, and
the differences in the frequencies arise from the fact that the trajectory pursued
in the simulator is random. In the simulation-based setting, the haphazard order
of updating can rarely be avoided, but in practice, it is necessary to maintain
rough equality in the frequencies with which state-action pairs are visited. The
convergence analysis of the algorithm must take all of this into account.

Not surprisingly, all convergence proofs require that all state-action pairs be
visited infinitely often in the limit. Also, since we are dealing with simulation
noise, all convergence proofs ensure convergence only with probability (w.p.) 1.
Fortunately, a number of proofs for convergence have been worked out under some
rather mild conditions [12, 16] that can be ensured within simulators for the case
in which the Q-factor for each state-action pair is stored separately—a scenario
generally referred to as the “look-up table” case. When the state-action space is very
large, e.g., of the order of hundreds of thousands or millions, it is impossible to store
each Q-factor separately, and one must then use a function-approximation scheme.
When function approximation schemes are used, showing convergence becomes
significantly more challenging, although some progress has been made even in
this direction recently (see the chapter on ADP in [15]). The general Q-Learning
algorithm is presented below.

Basic Q-Learning Algorithm

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
all Q-values to 0, i.e., for all (l,u), where l ∈S and u ∈A (l), set Qk(l,u) = 0.
Start system simulation at any arbitrary state.

Step 1. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach next
state j, receiving reward r(i,a, j).

Step 2. Update the Q-value of (i,a) via Eq. (13.4). Increment k by 1.
If k < kmax, then set i ← j and return to Step 1; otherwise, go to Step 3.

Step 3. For each l ∈S , select d(l) ∈ arg maxb∈A (l) Qk(l,b).
The policy (solution) generated by the algorithm is d.
Stop.

Alternative action–selection strategies for Step 1 will be discussed later.
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13.3.2 Q-Learning with Function Approximation

As stated above, function approximation is necessary when the state-action space
is large. The function approximation approach hinges on using what is known as a
basis-function representation of the Q-function, along with the steepest-descent rule
over the Bellman error, which is essentially the sum of squared errors in regression
theory applied to the Bellman equation. We now present the key ideas. To simply
exposition, we drop the superscript k in this subsection.

Basis Functions

The Q-factor can be represented via basis-functions and their weights using a linear
architecture as follows:

Qw(i,a) =
n

∑
m=1

w(m,a)φ(m,a), (13.5)

where {φ(·, ·)} denote the basis functions and {w(·, ·)} the weight functions, and
n should be much smaller than the size of the state space. The actual set of basis
functions is problem dependent. We now provide a simple example where the state
has a single dimension.

Example with a Linear Architecture

Consider an MDP with a single-dimensional state, i, and two actions. Let n = 2,
where for both values of a, the analyst chooses to use the following architecture:

φ(1,a) = 1; φ(2,a) = i.

Thus, Qw(i,1) = w(1,1)+w(2,1)i; Qw(i,2) = w(1,2)+w(2,2)i.

Bellman Error

The following model is used to represent the Q-factor:

Q(i,a) =
|S |
∑
j=1

p(i,a, j)

[
r(i,a, j)+ γ max

b∈A ( j)
Qw( j,b)

]
∀(i,a),

where Qw(·, ·) denotes an estimate of the true Q-factor. The Bellman error, BE , is
then defined as follows:
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BE ≡ 1
2 ∑

i∈S ,a∈A (i)

[Q(i,a)−Qw(i,a)]
2 .

Thus, the Bellman error denotes one-half times the sum of the squared difference
between the hypothesized model of the Q-factor and that given by the function
approximator. This is the classical sum of squared errors of regression and the
coefficient of 1/2 is popular in the machine learning community because it
simplifies the resulting algorithm. The following expression, the detailed derivation
of which can be found in [12], is commonly used to minimize the Bellman error (the
first use was seen in [90] and now extensively used in the RL literature):

∂BE
∂w(m,a)

=−∂Qw(i,a)
∂w(m,a)

[
r(i,a, j)+ γ max

b∈A ( j)
Qw( j,b)−Qw(i,a)

]
for all (m,a).

(13.6)

The above is generally combined with the following steepest-descent algorithm:

w(m,a)← w(m,a)−α
∂BE

∂w(m,a)
for all (m,a), (13.7)

where α is the step size. For using the above, we must determine the expressions
for ∂Qw(i,a)

∂w(m,a) , which can be done easily from the architecture defined in Eq. (13.5). In
general, it is easy to see from Eq. (13.5) that for linear architectures:

∂Qw(i,a)
∂w(m,a)

= φ(m,a).

Then, for the example MDP considered above, we obtain the following definitions
for the partial derivatives:

∂Qw(i,a)
∂w(1,a)

= 1;
∂Qw(i,a)
∂w(2,a)

= i. (13.8)

We now describe the algorithm using the above example as a specific case. We
note the basis-function representation is conceptual; we do not store Qw(i,1) or
Qw(i,2) in the computer’s memory. Rather, only the following four scalars are
stored: w(1,1), w(2,1), w(1,2), and w(2,2).

Note that in the above, α uses the step-size rules discussed previously. Further-
more, note that the rule to update weights (i.e., Eqs. (13.9) and (13.10)) is derived
from Eqs. (13.6) to (13.8). The above is a popular algorithm, and can be extended
easily (using the above equations) to more complex basis functions that can express
a non-linear architecture, e.g.,

Qw(i,1)=w(1,1)+w(2,1)i+w(3,1)(i)2;Qw(i,2)=w(1,2)+w(2,2)i+w(3,2)(i)2.
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Algorithm for the 2-Action Linear Architecture Example

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
the weights for action 1, i.e., w(1,1) and w(2,1), to small random numbers,
and set the corresponding weights for action 2 to the same values. Start system
simulation at any arbitrary state.

Step 1. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach next
state j, receiving reward r(i,a, j).

Step 2. Compute the following:

Qold ← w(1,a)+w(2,a)i.

Then, set Qnext ← max{Qnext(1),Qnext(2)} , where

Qnext(1) = w(1,1)+w(2,1) j; Qnext(2) = w(1,2)+w(2,2) j.

Then, update the two weights as follows:

w(1,a)← w(1,a)+α (r(i,a, j)+ γQnext −Qold)1; (13.9)

w(2,a)← w(2,a)+α (r(i,a, j)+ γQnext −Qold) i. (13.10)

Increment k by 1. If k < kmax, then set i←j, go to Step 1; otherwise, go to Step 3.
Step 3. The policy learned, μ , is virtually stored within the weights. To determine

the action prescribed in a state i for any i ∈S , compute the following:

μ(i) ∈ arg max
a∈A (i)

[w(1,a)+w(2,a)i] .

Before concluding this subsection, we note that the steepest-descent technique,
coupled with Bellman error (discussed above), closely resembles the approach
adopted in the RL community that uses neurons (also called linear neural networks),
via the Widrow–Hoff (adenaline) rule [58, 93], for approximating the Q-function.

13.3.3 SARSA(λ )

We now present a heuristic algorithm which is known to have strong empirical
performance. It is based on the concept of TD(λ ), popular in RL [80], and the
SARSA algorithm [71]. We first explain the concept of TD(λ ) and follow that by
SARSA.

The notion of TD(λ ) is based on the idea that the immediate reward (also called
“feedback” in the machine learning community), computed within the simulator
after a state transition occurs, can be used to update all state-action pairs in
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the system. Note that in Q-Learning, only the Q-factor of the most recently visited
state-action pair is updated when the immediate reward is obtained from a state
transition. This is called a single-step update. In contrast, in TD(λ ), the impact of
the update for any state-action pair is proportional to how recently it was visited,
something that is measured with the “recency traces.”

We present this idea somewhat more formally now. If W k(i,a) denotes the iterate
in the kth iteration for the state-action pair, (i,a), the Robbins–Monro update is:

W k+1(i,a)←W k(i,a)+αk [feedback] , (13.11)

where the feedback really depends on the objective function at hand. In the TD(λ )
update, where λ ∈ [0,1], one simulates an infinitely long trajectory, and the feedback
takes on the following form:

feedback = Rk +λRk+1 +λ 2Rk+2 + · · · , (13.12)

where Rk is a term that depends on the algorithm and the iteration index k. Note
that in Q-Learning, λ = 0, and Rk = r(i,a, j)+ γ maxb∈A ( j) Q( j,b)−Q(i,a). When
λ > 0 (but less than 1), we have a multi-step update, also called a TD(λ ) update.
In such an update, all states in the system are updated after every state transition in
the simulator, and the feedback from multiple state transitions is used in updating
all (or as we will see later, all but one) states. In the algorithm that follows, we will
use such an updating mechanism.

Within the simulator, the SARSA algorithm uses a policy which is initially fully
stochastic but gradually becomes greedy with respect to the Q-factors. This is also
called an ε-greedy form of action selection (or policy). Furthermore, in SARSA, the
feedback contains the Q-factor of the next state-action pair visited in the simulator;
this is different than in Q-Learning, where the feedback contains the maximum
Q-factor of the next state.

Formally, an ε-greedy form of action selection can be described as follows. In a
state i, one selects the greedy action

arg max
u∈A (i)

Q(i,u)

w.p. Pk and any one of the remaining actions w.p.

1−Pk

|A (i)|− 1
.

Furthermore, the probability of selecting non-greedy actions is gradually diminished
to zero. A potential rule for the probability that can achieve this is: Pk = 1−B/k,
where for instance B = 0.5.
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SARSA (λ ) Algorithm

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
all the Q-values, Q(l,u) for all l ∈S and u ∈A (l), to arbitrary values. Set the
recency trace, e(l,u), to 0 for all l ∈S and u ∈A (l). Start system simulation at
any arbitrary state.

Step 1. For current state i, select action a ∈ A (i) via an ε-greedy form of action
selection. Simulate action a, and let the next state be j, with r(i,a, j) being the
immediate reward. Select an action b ∈ A ( j) via the ε-greedy form of action
selection. Then, compute the feedback, δ , and update e(i,a), the recency trace
for (i,a), as follows:

δ ← r(i,a, j)+ γQ( j,b)−Q(i,a);

e(i,a)← e(i,a)+ 1. (13.13)

Step 2. Update Q(l,u) all l ∈S and u ∈A (l) using

Q(l,u)← Q(l,u)+αδe(l,u). (13.14)

Then, update the recency traces for all l ∈S and u ∈A (l) using

e(l,u)← λγe(l,u).

Increment k by 1. If k < kmax, then set i←j, go to Step 1; otherwise, go to Step 3.
Step 3. For each l ∈S , select d(l) ∈ arg maxb∈A (l) Q(l,b). The policy (solution)

generated by the algorithm is d. Stop.

Original Version of SARSA

SARSA(0), which can be interpreted as a special case of SARSA(λ ) with λ = 0,
was in fact the original version of SARSA [71]. It uses one-step updates, and hence
no eligibility traces are needed in it. Furthermore, it can be shown to converge to the
optimal policy under some mild conditions on how the ε-greedy action selection is
performed (see [75] for details).

Steps in SARSA are similar to those for SARSA(λ ) above with the following
differences: No eligibility traces are required, and in Step 2, only the Q-factor of the
current state-action pair, (i,a), is updated as shown below:

Q(i,a)← Q(i,a)+αδ .
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The multi-step updating of TD(λ ), used in SARSA(λ ), can speed up the updating
in the sense that fewer state-transitions may be necessary in the simulator for
convergence. But it also has some drawbacks: First, after each transition, all
state-action pairs have to be updated, which is computationally intensive (unlike
single-step updating in which only one state-action pair is updated after one state-
transition). Secondly, and more importantly, SARSA (λ ) requires the storage of
the recency traces, which can be challenging via function approximation. On the
other hand, SARSA, which does not require these traces, can be handily combined
with function approximators, via the Bellman error approach (discussed in the
previous section). Thus, overall, the usefulness of employing multi-step updating
in simulators has not been resolved comprehensively in the literature and remains
an open issue for future study.

Finite Trajectories

A version of SARSA (λ ) that often performs better in practice uses finite trajecto-
ries. In such a version, the trajectory for any state is allowed to end (or is truncated)
when that state is revisited. This concept has been discussed extensively in [76]
in the context of the “replacing traces.” In such a finite trajectory algorithm, the
updating of the traces in the steps above is performed as follows: Eq. (13.13) is
replaced by

e(i,a) = 1 and for all u ∈A (i)\ {a}, e(i,u) = 0;

in all other respects, the algorithm is identical to that described above.
The above mechanism for updating traces ensures that when a state is revisited,

the feedback prior to that visit is discarded when that particular state is to be updated
in the future. Essentially, the intuition underlying this is that the effect of an action
in a state should only be measured by the impact the action produces in terms of the
cumulative rewards generated by it, and this impact should terminated when that
state is revisited, because a new (different) action will be selected when the state is
revisited. Updating of this nature has been used widely in artificial intelligence; see
e.g., [91]. This sort of updating can be tied to the original idea of TD(λ ), defined in
Eq. (13.12), by noting that the trajectory is now a finite one that ends when the state
concerned is revisited.

The notion of TD(λ ) has been discussed in the context of the value function,
but not the Q-factors, in much of the literature [12, 79]. In the simulation-based
setting, however, one is interested in the Q-factors, and hence SARSA(λ ) holds
more appeal to the simulation community. In the next subsection, we will discuss
another application of TD(0)—also in the context of Q-factors.
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13.3.4 Approximate Policy Iteration

We now present an algorithm based on ideas underlying policy iteration—a well-
known DP technique that is based on selecting a policy, evaluating its value function
(also called policy evaluation), and then moving on to a better policy. An algorithm
called modified policy iteration [86] uses an iterative approach, rooted in value
iteration, to evaluate the value function of a given policy. The classical form of
policy iteration on the other hand performs the policy evaluation in one step by
solving the Bellman equation for the given policy, which is also called the Poisson
equation. This step requires the transition probabilities that we seek to avoid here.
Modified policy iteration, however, is more relevant in the simulation-based context,
since one can invoke the Q-factor version of the Poisson equation, and then use
a Q-Learning-like approach to solve the Poisson equation, thereby avoiding the
transition probabilities.

In this section, we present a Q-factor version of the modified policy iteration
algorithm that can be used within a simulator. Algorithms belonging to this family
have also been called Q-P-Learning [30], originally in the average reward context
[31]. The algorithm we present is closely related to approximate policy iteration
(API), which is based on the value function of DP, rather than Q-factors. API has
been discussed extensively in [12]. Unfortunately, API based on the value function
cannot be used directly when the transition probability model is not available, which
is the case of interest here. When the transition probability model is available, it is
unclear why one needs a simulator, since efficient methods for DP are available in
the literature. Hence, we restrict our discussion to the Q-factor version here which
can be implemented within simulators, bypassing the transition probability model.

The central idea is to start with any randomly selected policy and evaluate
its Q-factors via the Poisson equation. In the algorithm, the given policy, whose
Q-factors that are being evaluated, will be stored in the form of the P-factors (a
name used to distinguish them from the Q-factors that are simultaneously being
estimated within the simulator). A clear separation of the two types of Q-factors
allows one to perform function approximation. The Q-factor version of the Poisson
equation (or the Bellman equation for a given policy) for policy μ is:

Q(i,a) =
|S |
∑
j=1

p(i,a, j) [r(i,a, j)+ γQ( j,μ( j))] ∀(i,a).

Thus, when a given policy, μ , is available, the algorithm will seek to solve the above
equation via a form of Q-Learning. As discussed in the context of Q-Learning, one
can use the Robbins–Monro algorithm in a simulator to solve this equation without
any need for the transition probabilities. When the Q-factors are evaluated, i.e., the
above equation is solved, a new policy is generated via the policy improvement step
[15]. We now present a step-by-step description of the Q-factor version of API.
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Approximate Policy Iteration (API) Algorithm Using Q-Factors

Step 0. Input kmax= number of iterations per policy evaluation and Emax = total
number of policy evaluations,α ∈ (0,1). Initialize policy evaluations count E = 0
and all the P-values, P(l,u) for all l ∈S and u ∈A (l), to arbitrary values.

Step 1 (Policy Evaluation). Start fresh simulation at any initial state. Initialize all
the Q-values, Q(l,u), to 0, and k, the number of iterations within a policy
evaluation, to 0.

Step 1a. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach
next state j, receiving reward r(i,a, j).

Step 1b. Update Q(i,a) via

Q(i,a)← (1−α)Q(i,a)+α

[
r(i,a, j)+ γQ

(
j,arg max

b∈A ( j)
P( j,b)

)]
. (13.15)

Step 1c. Set k ← k+ 1. If k < kmax, set i ← j and go to Step 1a; else go to Step 2.
Step 2 (Policy Improvement). Set for all l ∈S and all u ∈A (l),

P(l,u)← Q(l,u); E ← E + 1.

If E equals Emax, then go to Step 3; otherwise, go to Step 1.
Step 3. For each l ∈S , select d(l) ∈ arg maxb∈A (l) Q(l,b). The policy (solution)

generated by the algorithm is d. Stop.

In practice, the algorithm exhibits robust behavior but may be time-consuming,
since a number of policies are generally evaluated before the algorithm converges,
and each policy evaluation requires numerous iterations. The convergence of this
algorithm, which is a special case of TD(0) adapted to Q-factors, can be shown along
the lines of the convergence of Q-Learning [39]. Furthermore, as in Q-Learning,
one can use function approximation; separate approximators would be needed for
the Q- and the P-function.

13.3.5 Actor-Critic Algorithm

We now present an API algorithm that is based on policy iteration but is much faster
because it performs the policy evaluation via only one iteration. The algorithm has
been called the actor-critic or the adaptive critic in the literature. This algorithm
has evolved over time with ideas from [8, 53, 89, 95]. We present the most modern
version, which has some proven convergence properties.

The algorithm stores the value function and a substitute (proxy) for the action–
selection probability. Here J(i) will denote the value function for state i, and H(i,a)
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for all i ∈ S and all a ∈ A (i) will denote the quantities (proxies) used to select
actions in the states visited. We present the step-by-step algorithm.

Approximate Policy Iteration (API) via Actor-Critic

Step 0. Input kmax= total number of iterations, α ∈ (0,1). Initialize iteration count
k = 0 and all J-values and H-values to 0, i.e., for all l, where l ∈S , and u∈A (l),
set J(l)← 0 and H(l,u)← 0. Initialize a scalar, H̄, to the largest possible value
such that exp(H̄) can be stored in the computer’s memory without overflow. Start
system simulation at any arbitrary state.

Step 1. For current state i, select action a w.p.

exp(H(i,a))

∑b∈A (i) exp(H(i,b))
,

and simulate to reach next state j, receiving reward r(i,a, j). The above style of
action selection is called the Gibbs-softmax method of action selection.

Step 2. (Critic update) Increment k by 1. Update J(i) via

J(i)← (1−α)J(i)+α [r(i,a, j)+ γJ( j)] .

Step 3. (Actor update) Update H(i,a) using a step size, β , that shares a special
relationship with α (discussed below):

H(i,a)← H(i,a)+β [r(i,a, j)+ γJ( j)− J(i)] .

If H(i,a)<−H̄, set H(i,a) =−H̄; if H(i,a)> H̄, set H(i,a) = H̄.
Step 4. If k < kmax, then set i ← j, go to Step 1; otherwise, go to Step 5.
Step 5. For each l ∈S , select d(l) ∈ arg maxb∈A (l) H(l,b). The policy (solution)

generated by the algorithm is d. Stop.

The algorithm’s ε-convergence to optimality can be shown when the step-sizes
share the following relationship in addition to the usual conditions of stochastic
approximation and some other conditions [53]:

lim
k→∞

β k

αk
= 0.

The above requires that β converge to 0 faster than α . It is not difficult to find step
sizes that satisfy these conditions. One example that satisfies all of these conditions
required in [53] is: αk = log(k)/k and β k = A/(B+k). Although the initial policy is
a stochastic policy, under ideal conditions of convergence, the algorithm converges
to a deterministic stationary optimal policy in the limit as k → ∞.
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Note that the update in Step 4 ensures that the H(·, ·) values are projected onto
the interval [−H̄, H̄]. This is necessary because in the simulator the values of one or
more elements of the matrix H(·, ·) become unbounded.

The algorithm can be combined with function approximation, using ideas
related to Bellman error, by using separate approximators for J(·) and H(·, ·). One
difficulty with this algorithm is that convergence to optimality depends on finding
a sufficiently large value for H̄. Note that the algorithm requires computation of
exp(H(i,a)). If the theoretical value for H̄ that leads to an optimal solution is so
large that the computer overflows in trying to compute exp(H̄), one obtains sub-
optimal policies.

13.3.6 Evolutionary Policy Iteration

We conclude this section with a relatively recent development that combines ideas
from genetic algorithms (GAs) and policy iteration. The GA is a widely used meta-
heuristic [44] based on the principles of genetic evolution. It is typically used in
discrete optimization when the number of solutions is large, but a mechanism is
available to estimate the objective function at each solution. The GA is a very
popular algorithm known to have the ability of generating good solutions when the
number of solutions is very large. The other attractive feature of GA is that it is
simple to code.

The algorithm of interest here is Evolutionary Policy Iteration (EPI) due to [25].
It uses simulation to evaluate the value function of each state for a given policy.
The overall scheme is similar to that used in a typical GA, and in what follows, we
present an informal explanation.

One starts with an arbitrarily selected population (collection) of n policies.
Thereafter, an elite policy is generated from the population. This is the best policy
in the current population; the elite policy and how it is generated is a special feature
of this algorithm. Via mutation, (n− 1) policies are generated from the existing
population; this is called offspring generation in GAs. The elite policy and the
(n − 1) newly generated policies are considered to be the new population, and
the algorithm repeats the steps described above performing another iteration. The
algorithm terminates when the last K (a large number, e.g., 20) iterations have not
produced any change in the elite policy.

Estimating the value function of a given policy, μ , for a given state, i, can be
performed via one simulation trajectory as shown below (it is also possible to use a
one long trajectory to update all states, but we restrict our discussion to the case of
a given state). The output generated by the rth trajectory will be denoted by V̂ r

μ(i).
In practice, one needs to simulate numerous trajectories, and obtain the average of
the values generated by each trajectory. Thus, if R trajectories are simulated, the
average will be:

Ṽμ(i) =
∑R

r=1 V̂ r
μ(i)

R
.
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The routine described below must be applied for each state in the system separately.

Inputs: Given a state i, a policy μ , and the trajectory index r.
Initialize TR, the total reward, to 0. Set k, the number of steps, to 0.
Loop until k = kmax, where kmax denotes the number of state transitions in the
trajectory:

• Start simulation in a given state i. Selection action μ(i) in state i. Let the next
state be j. Observe the immediate reward, r(i,μ(i), j). Update T R as follows:

T R ← T R+ γkr(i,μ(i), j).

• Set i ← j and k ← k+ 1.

Output: V̂ r
μ(i)← TR.

Note that in the above, the value of kmax depends on γ . Clearly, when γk is
very small, there is no point in continuing with the trajectory any further. Thus, in
practice, kmax can be quite small; however, the above routine needs to be performed
for numerous (R) trajectories and for each state separately. In what follows, we will
assume that the above routine can be called whenever the value function of a state
for a given policy is to be estimated.

Evolutionary Policy Iteration (EPI) Algorithm

Initialization: Set the iteration count, k, to 0. The population (collection) of policies
in the kth iteration will be denoted by L k. Populate L 0 with n arbitrarily selected
policies. Set θ , the global/local selection probability, to an arbitrarily selected value
between 0 and 1. Set a and b, the local and the global mutation probabilities, also
to values in (0,1) such that a < b. Initialize action–selection probabilities, P(i,a) for
all i ∈S and all a ∈A (i), to some values such that ∑b P(i,b) = 1 for every i ∈S .
One example is to set P(i,a) = 1/|A (i)| for every i ∈S .

Loop until a termination criterion is met:

• Select an elite policy, denoted by π∗, from L k via the following computation.
For every state i ∈S , select an action ai as follows:

ai ∈
{

arg max
π∈L k

Ṽπ(i)

}
and set π∗(i) = ai.

• Offspring generation:

1. Generate (n−1) subsets of L k, denoted by Y (t) for t = 1,2, . . . ,n−1. Each
of these subsets will contain m policies where m itself is a random number
from the discrete uniform distribution, DU(2,n− 1). The m policies that will
be selected for Y (·) will be selected with equal probability from the set L k.
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2. Generate (n− 1) offspring (policies), denoted by π t for t = 1,2, . . . ,n− 1,
as follows: For each state i ∈ S and each value of t, select an action ut

i as
follows:

ut
i ∈
{

arg max
π∈Y k(t)

Ṽπ(i)

}
and set π t(i) = ut

i.

3. For each π t for t = 1,2, . . . ,n− 1, generate a mutated policy, denoted by π̂ t ,
from π t as follows. With probability θ , use a as the mutation probability and
with the remaining probability (1−θ ), use b as the mutation probability. The
mutation probability is the probability with which each state’s action in the
policy undergoes a change (mutation). If a state’s action is to be changed, it
is changed to an action selected via the action–selection probabilities, P(·, ·),
defined above.

• Generating the new population: The new population Qk+1 is now defined to be
the following set:

{π∗, π̂1, π̂2, . . . , π̂n−1}.

• Set k ← k+ 1.

Output: The policy π∗ is the best policy generated by EPI.

The idea of mutating policies can be explained via a simple example. Assume
a = 0.2 and b = 0.9. Further assume that θ = 0.4. Then, a random number from
the distribution U(0,1) is first generated. If this number is below θ = 0.4, then the
mutation probability will be a; otherwise, the mutation probability will be b. When
it comes to mutating a given policy, consider the following example. Assume that
there are three states and four actions in each state. Furthermore, for the sake of
exposition, the policy, μ , will now be expressed as (μ(1),μ(2),μ(3)). Consider the
following policy which is to be mutated w.p. 0.9:

(3,4,1).

A random number, y, from the distribution U(0,1) will be generated for each state.
We illustrate these ideas for state 2 in which the action prescribed by the policy is 4.
If for state 2, y < 0.9, then the state’s action will be altered to one dictated by P(·, ·),
defined above. Then an action v is selected for state 3 w.p. P(3,v). On the other
hand, if y ≥ 0.9, the state’s action will be unaltered. These mutations are performed
for every state in the system for every policy that is to be mutated.
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13.4 Average Reward MDPs

Average reward MDPs (infinite horizon) are commonly associated to problems
where discounting does not appear to be appropriate. This is usually the case
when the discount factor is very close to 1. Also, finite-horizon problems are often
converted into infinite-horizon problems to make them tractable, and if the horizon
is short, money does not lose value appreciably to factor that into the calculations.
Under these conditions also, the average reward is a more appropriate performance
metric. Finally, there are scenarios, e.g., in queueing networks, electrical systems
and production systems, where the rewards/costs are often calculated in terms of
non-monetary measures such as waiting time, utilization, inventory, etc. Again, in
such instances, the average reward is a more suitable performance metric.

Surprisingly, simple extensions of the discounted MDP algorithms do not work
in the average reward domain. Thus, for instance, setting γ = 1 in Q-Learning leads
to an unstable algorithm in which the Q-factors become unbounded. For average
reward, we cover two different algorithms: one based on relative value iteration and
the other based on updating the value of average reward, alongside the Q-factors.
Note that the Bellman optimality equation for average reward, Eq. (13.2), contains
ρ∗ as an unknown in addition to the Q-factors. Hence, a straightforward extension
of Q-Learning is ruled out.

13.4.1 Relative Q-Learning

The algorithm we now describe employs the concept of relative value iteration in
combination with Q-Learning and originates from [2]. The steps differ from those
in Q-Learning as follows:

• In Step 0, any state-action pair in the system is selected, and henceforth termed
the distinguished state-action pair. It will be denoted by (i∗,a∗).

• In Step 2, the update is performed as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ max
b∈A ( j)

Qk( j,b)−Qk(i∗,a∗)
]
.

The algorithm can be shown to converge w.p.1 to the optimal solution [2], under
conditions identical to those required for Q-Learning. Furthermore, it can be shown
that w.p.1,

lim
k→∞

Qk(i∗,a∗) = ρ∗,

which implies that in the limit the Bellman optimality equation for average reward
is solved.
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13.4.2 R-SMART

We now present another algorithm for average reward MDPs [38], which is a refined
version of algorithms originally presented for semi-MDPs (a more general version
of the MDP) in [26, 32]. We restrict the discussion here to the MDP, which is
a special case of the semi-MDP. The algorithm is called R-SMART (short for
Relaxed-Semi-Markov Average Reward Technique). Like SARSA, this algorithm
relies on using ε-greedy action selection, and further it uses a separate update for the
average reward term. There are two versions of this algorithm. One uses connection
to the stochastic shortest path (SSP) problem [15], and the other uses an artificial
contraction factor. We now present details.

SSP-Version

In this version, the average reward problem is essentially transformed into an SSP.
Since we are not interested in the original SSP, we do not explain the SSP in detail,
but refer the reader to [15]. What is important to note is that the SSP transformation
creates a contractive mapping for the Q-factors enabling their convergence. The
steps in the resulting algorithm will have the following differences with those of
Q-Learning:

• In Step 0, select any state in the system, and call it the distinguished state i∗.
• In this algorithm, some parameters related to the average reward calculation will

be needed. They are T R, the total reward, T T , the total time, and ρk, the estimate
of the average reward in the kth iteration. In Step 0, initialize each of T R, T T ,
and ρ1, to 0.

• In Step 1, select action a using an ε-greedy form of action selection (as discussed
in the context of SARSA).

• In Step 2, update Q(i,a) as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ 1{ j �= i∗} max
b∈A ( j)

Qk( j,b)−ρk
]
,

(13.16)

where 1{·} is the indicator function that returns a 1 if the condition inside the
brackets is satisfied and zero otherwise. This is followed by an update of ρ . If a
greedy action was selected in Step 1, i.e., if a∈ arg maxb∈A (i) Q(i,b), then update

T R, T T and ρk in the order shown below:

T R ← T R+ r(i,a, j);

T T ← T T + 1;

ρk+1 ← (1−β k)ρk +β k(TR/TT ).

If a greedy action is not selected, set ρk+1 ← ρk.
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In the update for ρk, the step size β k is chosen in a manner discussed in the actor-
critic algorithm. The indicator function within the update in Eq. (13.16) ensures
that the problem is essentially transformed into an SSP. Further note that the steps
above ensure that Q-factors for state-action pair (i∗,a) are updated like every other
Q-factor. Under some conditions shown in [38], the algorithm is shown to converge
to the optimal solution and ρk to ρ∗ w.p.1. It is also worthwhile pointing out that
the state i∗ plays the role of the (fictitious) absorbing state in the SSP when it is
encountered as the next state ( j) in a transition.

Contraction-Factor Version

In this version of R-SMART, an artificial contraction factor, γ̄ , will be used. This
artificial factor will make the Q-factor transformation contractive, thereby enabling
convergence. The average reward will be updated as done above in the SSP-version.
The steps in the contraction-factor version of R-SMART will have the following
differences with those of Q-Learning:

• In Step 0, select a suitable value for γ̄ ∈ (0,1).
• As in the SSP-version above, in Step 0, initialize each of T R, T T , and ρ1, to 0.
• In Step 1, select action a using an ε-greedy form of action selection.
• In Step 2, update Q(i,a) as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ γ̄ max
b∈A ( j)

Qk( j,b)−ρk
]
.

Thereafter, update ρk as shown in the steps of the SSP-version.

In the above algorithm, the value of γ̄ must be guesstimated. Convergence can
be assured under certain conditions that require the knowledge of the transition
probabilities. In practice, a value close to 1 often generates optimal solutions.
Although, it is not possible to guess the correct value of γ̄ and one must use trial
and error, on large-scale problems, this version often outperforms the SSP-version.

13.5 Finite Horizon MDPs

As noted earlier, the finite-horizon problem includes stages, which further adds to
the curse of dimensionality posed by the state-action space of infinite-horizon prob-
lems. Nonetheless, these problems are important in their own right. They find many
applications in operations research. Many inventory control problems and problems
in revenue management belong to the finite time horizon. In machine learning,
these problems are called episodic tasks. Sometimes finite-horizon problems can
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be converted into infinite-horizon problems by introducing an artificial transition
from the absorbing state to a starting state; the reason for this transformation is that
it can make the problem tractable [40].

In this section, we will first discuss an SSP algorithm for solving the finite-
horizon problem. Thereafter, we will consider a learning automata algorithm that
has been developed more recently.

13.5.1 Special Case of Stochastic Shortest Path (SSP)

The finite-horizon problem can be studied as a special case of the stochastic shortest
path (SSP) problem in which the state-action pair is replaced by the state-stage-
action triple [15]. Notation for this problem has been introduced earlier, and the
reader should review it at this time.

We will assume that there are T stages in which decision-making is to be
performed. When the system reaches the (T +1)th stage, there is no decision making
to be done, and the simulator will return to the starting state, which is assumed to
be known. The following description is based on [37].

Simulation-Based Algorithm for Finite-Horizon MDPs

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0, stage
s = 1, and all the Q-factors, Qk(i,s,a) for all i ∈S , all s ∈T and all a ∈A (i,s),
to 0. Also set Qk( j,T + 1,b) = 0 for all k, all j ∈ S and b ∈ A ( j,T + 1).
Start system simulation at the starting state, which is assumed to be known with
certainty.

Step 1. For current state i and current stage s, select action a w.p. 1/|A (i,s)|, and
simulate to reach next state j in stage (s+ 1), receiving reward r(i,s,a, j,s+ 1).

Step 2. Update the Q-value of (i,s,a) as follows:

Qk+1(i,s,a)← (1−αk)Qk(i,s,a)+α
[

r(i,s,a, j,s+ 1)+ max
b∈A ( j,s+1)

Qk( j,s+ 1,b)

]
.

Increment k by 1 and s by 1, and if the new value of s equals (T + 1), set s = 1.
If k < kmax, then set i ← j and return to Step 1; otherwise, go to Step 3.

Step 3. For each l ∈S and each s ∈ T , select d(l,s) ∈ arg maxb∈A (l,s) Qk(l,s,b).
The policy (solution) generated by the algorithm is d.
Stop.
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13.5.2 Pursuit Learning Automata (PLA) Sampling

We now present the pursuit learning automata (PLA) sampling algorithm due to
[23]. The theory of learning automata for MDPs has been covered extensively
in [60]. This particular algorithm is based on the concept of PLA [67, 85]. The
idea here is to apply a simulation-based sampling algorithm at each state-stage
pair in the system. It is possible to start the simulation at any given state-stage
pair, and simulate different actions. The algorithm is remarkably robust, and can
converge quickly to the optimal solution. In algorithms considered previously, one
simulates a long trajectory in which states are visited in an asynchronous manner.
This algorithm is also simulation-based, thereby avoiding the transition probability
model, but requires that the system be simulated in each state-stage pair separately;
also, a long simulation trajectory is not needed here. In many ways, it uses the
power of simulation and at the same time does not leave the convergence to count
on visiting each state-stage pair infinitely often. Thus, it appears to combine the
graceful and systematic synchronous updating of dynamic programming with the
power of simulation.

The algorithm will be presented for a given state-stage pair (i,s). Since the
value function of the next state-stage pair will be required, a recursive call will
be necessary to that pair if a forward pass is done. Alternatively, one could start at
the last decision-making stage (T ) in any state, update all the states in that stage,
and then move backwards, one stage at a time, as is done in backward dynamic
programming. Furthermore, in a backward pass style of updating, all states for that
stage must be updated before moving to the previous stage. Remember that for stage
T , the value function of the next stage is zero. Thus, if V (l,s) denotes the value
function for state l and stage s, then V (l,T + 1) = 0 for all l.

The steps below present a routine (function) that must be performed for each
state-stage pair separately. A step-size α , which could be state-dependent, will be
used in updating the probabilities of the learning automaton (LA). In each state, the
LA will store an action–selection probability of P(i,a) such that ∑a P(i,a) = 1.
Some other counters will be needed: T R(l,s,u) will measure the total reward
accumulated thus far within the routine when action u is tried in state l when
encountered in stage s, and N(l,s,u) will measure the number of times action u
has been tried in the state-stage pair, (l,s).

The initialization step must be performed each time this routine is called. For
each call, we have a given state, i, and a given stage, s.
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Pursuit Learning Automata (PLA) Sampling Algorithm

Initialization: Input kmax(i,s) = number of iterations (simulations) allowed for each
state-stage pair (i,s) (simulation budget), α ∈ (0,1). Initialize the LA probabilities
as follows: For any l ∈ S and all a ∈ A (l), P(l,a) = 1/|A (l)|. Initialize the
counters, TR(l,s,u) and N(l,s,u), for all l ∈ S , all s ∈ T , and all u ∈ A (l,s),
to 0; the iteration count k = 0; and V (l,T + 1) = 0 for all l.

Step 1. For current state i and current stage s, select action a w.p. P(i,a), and simu-
late to reach next state j and next stage (s+1), receiving reward r(i,s,a, j,s+1).

Step 2. Update the following quantities:

T R(i,s,a)← T R(i,s,a)+ r(i,s,a, j,s+ 1)+V( j,s+ 1); (13.17)

N(i,s,a)← N(i,s,a)+ 1.

Then compute

Q(i,s,a)← T R(i,s,a)
N(i,s,a)

. (13.18)

Step 3. Determine the greedy action as follows:

a∗ ∈ arg max
b∈A (l,s)

Q(l,s,b).

Step 4. Update the action–selection probabilities: For all u ∈A (i,s),

P(i,u)← (1−α)P(i,u)+α1{a∗ = u}.

Step 5. Increment k by 1. If k < kmax(i,s), then return to Step 1; otherwise, go to
Step 6.

Step 6. Set

V (i,s) = Q(i,s,a∗).

Stop.

Note that the update in Eq. (13.17) requires the value function of the next state-
stage pair. In a backward pass application of the above routine, this value will
already have been computed and will be available for use in the update. In case
one does not use a backward pass, estimating this value will have to be done via a
recursive call to the next state-stage combination ( j,s+ 1). It is also interesting to
note that the computation of the Q-factor in Eq. (13.18) is based on direct averaging,
a concept used in model-building (also called model-based) RL [79].
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13.6 Numerical Results

In this section, we present numerical results on some small problems in order to
illustrate the use of RL algorithms. The case studies covered here are for problems
whose transition probabilities can be estimated; thus, it is possible to determine
whether the optimal solution was reached. Furthermore, these problems can also
be used as testbeds by other researchers for empirical investigation of their own
algorithms. In practice, a simulation analyst is generally also interested in testing
an algorithm on large-scale problems, whose transition probabilities are difficult to
estimate and the only benchmarks available are problem-specific heuristics. Large-
scale versions of both case studies that we cover here are also candidates for such
tests. We begin with the infinite-horizon problem, and then discuss the finite horizon
case.

13.6.1 Infinite Horizon

The case study we cover here is on preventive maintenance of machines and is
primarily drawn from [34]. It is well-known that systems whose probabilities of
failures increase as they age can benefit from preventive maintenance. Examples of
such systems include production lines, bridges, roads, and electric power plants.

We consider the case of a production line which deteriorates with time and
the deterioration can be captured by a function. After a preventive maintenance,
generally, the system has a lower probability of failure than when it failed. Since
it generally costs much lower to preventively maintain a line than to repair it after
a failure, a significant volume of literature has appeared in the area of preventive
maintenance. Toyota Motors have popularized the use of preventive maintenance
in many automobile firms. A large chunk of the literature studies the problem of
determining the time interval after which maintenance should be performed.

We make the following assumptions about the system:

• The production line is needed every day.
• If the line fails during the day, the repair takes the remainder of the day, and the

line is available only the next morning. After a repair, the line is as good as new.
• When a line is shut down for preventive maintenance, it is down for the entire

day. After a preventive maintenance, the line is as good as new.
• If σ denotes the number of days elapsed since the last preventive maintenance

or repair (subsequent to a failure), the probability of failure during the σ th day
can be modeled as (1−ξψσ+2), where ξ and ψ are scalars in the interval (0,1),
whose values can be estimated from the data for time between successive failures
of the system.

• For any given positive value of ε ∈ R, we define σ̄ε as the minimum integer
value of σ such that the probability of failure on the σ̄ th day is less than or
equal to (1− ε). Since a fixed value of ε will be used, we will drop ε from the
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notation. The definition of σ̄ will allow us to truncate the countably infinite state
space to a finite one. The resulting state space of the system will be assumed
to be S = {0,1,2, . . . , σ̄}, i.e., the probability of failure on the σ̄ th day will be
assumed to equal 1. Furthermore, note that rounding of this nature is necessary
to ensure that the probabilities in the last row of the finite Markov chain for one
of the actions (the production action in particular) add up to 1.

• The costs of maintenance and repair are known with certainty, and will equal Cm

and Cr respectively.

The underlying system transitions can be modeled via Markov chains as follows.
Let the state of the system be defined by σ , the number of days elapsed since
the last preventive maintenance or repair. Clearly, when a maintenance or repair
is performed, σ is set to 0. If a successful day of production occurs, i.e., no failure
occurs during the day, the state of the system is increased by 1. Each morning,
the manager has to choose from two actions: {produce,maintain}. Then, we have
the following transition probabilities for the system. We first consider the action
produce. For σ = 0,1,2, . . . , σ̄ − 1,

p(σ , produce,σ + 1) = ξψσ+2; p(σ , produce,0) = 1− ξψσ+2.

For σ = σ̄ , p(σ , produce,0) = 1. For all other cases not specified above,

p(·, produce, ·) = 0.

For the action produce and all values of σ ,

r(σ , produce,0) =−Cr; r(σ , produce,σ ′) = 0 when σ ′ �= 0.

For the action maintain, the mathematical dynamics will be defined as follows.
For all values of σ , p(σ ,maintain,0)= 1 and r(σ ,maintain,0)=−Cm. For all other
cases not specified above, p(.,maintain, .) = 0 and r(.,maintain, .) = 0.

We set ξ = 0.99, ψ = 0.96, Cm = 4, Cr = 2, and σ̄ = 30. Thus, we have 31
states and 2 actions. Our objective function is average reward, and the optimal
policy, which is determined via policy iteration, is of a threshold nature in which
the action is to produce for σ = 0,1, . . . ,5 and to maintain from σ = 6 onwards. The
contracting factor version of the algorithm R-SMART was used in a simulator with
the following specifications:

• The artificial contraction factor, γ̄ , was set to 0.99.
• The learning rates used were:

αk =
1000

5000+ k
; β k =

1000
k(5000+ k)

where k ≥ 1.
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• The exploration probability was defined as shown below:

Pk = 0.5
log(k+ 1)

k+ 1
where k ≥ 1.

• The system was simulated for 200,000 days.

The algorithm always generated the optimal solution in every replication. At least
20 different replications were performed.

The above problem can be studied for a much larger state space. If the time
between failures is significantly higher and as a result σ̄ is closer to 1,000,
the transition probability matrix contains a million elements, which is not easy
to handle. In other words, dynamic programming breaks down. However, it is
not difficult to simulate this system, allowing us to use the simulation-based
algorithm—if necessary in conjunction with some function approximation. It is
also very critical to note here that unlike the problem considered above, usually
the transition probability structure is not available, and the system can still be
simulated as long as the distributions of the input random variables are available.
Thus, for example, in an M/G/1 queue, if one observes the system at the instants
when arrivals occur, one can formulate a Markov chain. However, the transition
probabilities of this Markov chain are not necessary to simulate the system; rather
one can simulate the queue using the distributions of the inter-arrival time and the
service time. In preventive maintenance problems also, simulation of the system is
often possible without generating the transition probabilities (see e.g., [26]).

In general, look-up tables work with up to maybe 2,000 Q-factors in regular
computers, but for a state-action space larger than that, some sort of function
approximation becomes necessary. Thus, for large-scale MDPs, it is imperative that
the analyst either seeks to reduce the state-action space to a reasonable number or
alternatively uses a function approximation scheme. Using function approximation
introduces additional computational issues with regards to how to capture the state-
action space in terms of the basis functions (architectures). It is not uncommon in
practice to experiment with a large number of candidate architectures before the
algorithm starts outperforming a heuristic or a set of heuristics known to generate
reasonable results. It is this aspect of the large-scale problem that makes it necessary
to study, or generate if necessary, some problem-specific heuristics. In summary, one
can conclude that a successful implementation of RL on a large-scale problem is a
significant computational exercise that requires patience.

13.6.2 Finite Horizon

We now consider a finite-horizon MDP where the objective is to maximize the
expected value of the total undiscounted reward over the time horizon. We use an
example, drawn from [24], on inventory control. Inventory control problems are
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ubiquitous in supply chain management, and indeed, most modern supply-chain
software seek to solve problems of the nature considered here. Although the
transition probabilities will be computed to determine the optimal solution, as in
the previous subsection, these problems can be solved for any given distribution of
the input random variable—the size of the demand (in one period/stage) in this case.

In many inventory control problems, the manager seeks to order raw material in
a fashion so as to minimize the fixed costs of ordering (also called set-up costs),
the costs of lost sales, and the costs of holding inventory. In general, large order
quantities increase holding costs, but reduce the costs of lost sales and the ordering
costs; on the other hand, small order quantities increase the risk of lost sales, the
ordering costs, but minimize the inventory holding costs. Clearly, without holding
costs, the problem has a trivial solution, which is: order the maximum possible
quantity. A goal of modern inventory control [5], however, is to maximize inventory
turns and minimize inventory. As such, the holding costs play a critical role in
this problem. Moreover, this is a multiple-period problem in which decisions for
ordering quantities have to be made in every period (stage) separately and unused
inventory from a previous time period is carried over into the next time period.

Let Ds denote the demand during the sth stage (period), xs denote the inventory
at the start of the sth stage, and us denote the action chosen in the sth stage. The
action us will equal the amount ordered at the start of the sth stage. The following
assumptions will be made about the problem:

• There is no backordering, and a demand lost is lost forever.
• The size of demand in a given time period is a discrete random variable whose

distribution is known.
• The holding costs per unit per unit time, h, the cost per order, A, and the lost sales

cost per unit (opportunity cost), p, are known with certainty.
• We will assume that the demand will be realized at the end of the stage, and the

order placed at the start of a stage will arrive at the end of the stage. This will
simplify the computation of the inventory holding costs.

• There is an upper limit, M, on the amount of inventory that can be held (dictated
by storage requirements). This implies that an ordering amount that causes
inventory to exceed M will not be allowed.

• The number of stages, T , is deterministic and known.
• The starting inventory, x1, is known with certainty.

Under these conditions, the inventory levels will then change from one stage to
the next as follows:

xs+1 = (xs + us −Ds)
+ , x1 ≥ 0,

where x+ ≡max(x,0), which reflects the condition that inventory cannot be negative
due to the no backordering assumption. The goal is to minimize the expected total
costs of operating the system, where costs can arise out of holding inventory, lost
sales, and the set-up (fixed) cost per order. The total cost in one trajectory can be
computed as follows:
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T

∑
s=1

[
A ·1{us > 0}+ hxs+ py−s

]
,

where x− ≡ max(−x,0) and ys+1 = xs + us−Ds for s = 1,2, . . . ,T , and y1 = 0.
The following values were used for the inputs in the experiments reported in [24]:

p = 10, A = 5, h = 1, M = 20, T = 3, x1 = 5, and kmax(i,s) = 4 for all state-stage
pairs. The demand was assumed to have a discrete uniform distribution, DU(0,9).
Backward dynamic programming was used to determine the optimal solution, which
was also delivered by the PLA sampling technique. Then, via simulation, the value
function for the starting state, VPLA(x1,1), was computed for the optimal policy,
using 30 replications and a large number of samples. This value was found to
be 24.48 with a standard error of 0.51, which compares well with the true value,
V∗(x1,1) = 27.322, determined via backward dynamic programming (which needed
the exact transition probabilities). Numerous results with other values for the inputs
can be found in [24].

13.7 Extensions

The ideas underlying MDPs can be extended to at least three other domains:
semi-MDPs (SMDPs), stochastic games, also called Competitive Markov decision
processes (CMDPs), and Partially Observable MDPs (POMDPs).

In an SMDP, the time of transition from one state to another is not the same for
every transition. In the most general case, this time is a generally distributed random
variable. Although the SMDP is sometimes loosely referred to as a continuous time
MDP (CTMDP), the latter name is usually reserved for the SMDP in which the
transition times have the exponential distribution. The theory of SMDPs can be
studied for both discounted and average reward objective functions [15]. RL for
SMDPs has been studied in [19] (discounted reward) and [31,38] (average reward).

In a CMDP, there are multiple decision-makers, and the transition probabilities
and rewards depend on the actions of all or a subset of all decision-makers. The
problem becomes significantly more complex and has been studied in detail in [29].
These problems are of considerable interest to economists, and both of the early
contributors [61, 73] have been awarded Nobel prizes in economics. The work in
[61] provides a critical idea, called Nash equilibrium, needed for solving a CMDP,
while the work of Shapley [73] provides the first attempt at value iteration and
solving the CMDP computationally.

In a POMDP, the underlying state is only partially observable to the decision
maker via signals, and the decision-maker is required to choose the best possible
action. The POMDP has been used in robotics and pattern recognition problems.

Not surprisingly, attempts have been made to use simulation to solve POMDPs
and CMDPs via simulation. Some noteworthy works in CMDPs include the
algorithms in [46,69]. Some special forms of sequential games in which the actions
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of the different decision-makers are not concurrently taken but are sequential are
studied in [12]. For POMDPs, the body of literature is somewhat evolved. See [49]
for a survey of early algorithms and [24] for some more recent simulation-based
algorithms.

A large number of computational extensions can be found in computer science,
e.g., hierarchical RL, although convergence guarantees for the underlying theory are
somewhat sparse. Another topic that we did not cover is that of policy gradients [9,
77], which is rooted in the idea of using simulation and derivatives of the objective
function to generate an optimal policy in MDPs. These algorithms suffer from large
variance.

13.8 Convergence Theory

The convergence theory for RL algorithms has become quite rigorous. Here, we
provide a brief account. At least three different lines of convergence arguments have
been worked out for classical Q-Learning-type algorithms:

1. theory developed in [12], which is based primarily on the idea of “reducing cube
sizes” (see Prop. 4.5 of [12]);

2. theory developed in [48, 75, 83], which is based on some remarkably simple
arguments and draws on some basic results in stochastic approximation (see [48]
in particular), and

3. theory based on ordinary differential equations, for which the reader is referred
to [16].

Although one finds three distinct strands of convergence arguments, many of the
proofs rest on showing some basic properties, e.g., the underlying transformation is
contractive (shown for Q-Learning and the SSP-version of Q-Learning in [12]) and
the iterates remain bounded (shown for the SSP-version of Q-Learning in [12] and
for classical Q-Learning in [33]). In other words, by exploiting these fundamental
convergence arguments, generally showing convergence boils down to stability and
contraction arguments, which are much simpler.

More recently, convergence arguments when the algorithm is combined with
function approximation have been developed; [15] provides an up-to-date account
and presents some of the open problems. The algorithms based on evolutionary
search and learning automata have an independent convergence theory, which has
been developed in depth in texts such as [24, 60].

13.9 Concluding Remarks

This chapter presented selected topics on RL relevant to simulation optimization.
We began with Q-Learning, along with a discussion on how to combine it with a
simple linear-basis function approximator, which is critical for large-scale problems
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that simulation-based optimization seeks to solve. We also covered actor-critics, but
only the most modern version. SARSA(λ ) was covered in some detail, because
although a heuristic, it remains popular and can be implemented in simulators.
Thereafter, we presented algorithms belonging to the class called API. Our dis-
cussion included average reward and the finite-horizon problems, which are not
covered in most texts in much detail. Extensions and convergence theory were
briefly described. Here, we summarize some applications and some of the open
problems that should be exciting topics for future research.

• Applications: Since this area has origins in machine learning, some of the initial
applications were naturally in the area of robotics and computer science. Even
today, these algorithms find applications in exciting areas in machine learning,
e.g., autonomous helicopter control [1, 63] and fMRI studies [97]. However, the
body of literature that applies these algorithms to industrial tasks is expanding.
Some of the early applications in the area of operations management include
jobshop scheduling [99], AGV routing [84], preventive maintenance [26], and
airline revenue management [31, 40]. Some more recent work includes the
beer game of supply chain management [22], wireless communication [3, 96],
irrigation control [72], and reentrant semiconductor manufacturing [68].

• Function approximation and convergence: While many advances have been
made in combining RL with function approximators, this is an area that needs
significant additional research without which function approximation will remain
the Achilles’ heel of RL. Not surprisingly, recent coverage of RL seems to stress
the function approximation aspects, many of which are heuristically applied
without convergence analysis. The Bellman error development is also rather
heuristic, and apart from the traditional techniques used in conjunction with
Bellman error [6, 17, 18, 27, 89], recently other techniques have been sought
to be used: see [64] (kernel-based function approximation), [92] (evolutionary
function approximation), and [56] (Laplacian methods). Regardless of the nature
of the function approximation technique used, a preliminary step in this process
involves transforming the state space into the feature space, and some important
references in this context include [43] (coarse coding), [4] (CMAC coding),
and [50] (Kanerva coding). Another promising line of investigation includes the
LSTD (least-squares temporal differences) algorithm [62,98]. Much of this work
has occurred along the lines of API, which also happens to be an active area of
research [14]. See also [55] where a Q-function-based LSTD algorithm, which
is suitable for a simulation-based setting, is presented, although the algorithm’s
convergence has never been proved.

• TD(λ ) in combination with Q-Learning: Although the concept of TD(λ ) has been
around for a long time in this field, its convergence properties are known well for
the case when it is combined with policy evaluation within an API algorithm.
In API, whether λ > 0 provides any advantages over λ = 0 has not been tested
empirically in a comprehensive manner; one clear disadvantage is that it requires
eligibility traces that are not easily combined with function approximation. When
combined with value iteration algorithms, such as Q-Learning (see Q(λ ) learning
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in [65]), the worth of TD(λ ) becomes even more doubtful, since no convergence
guarantees to optimality are available. However, in practice, Q(λ ) appears to
converge significantly faster than Q-Learning [65]. See [83] for an interesting
result which shows that Q(λ ) does converge but not necessarily to the optimal
solution. It is clear that issues with respect to combining TD(λ ) with algorithms
such as Q-Learning and SARSA remain important open problems that require
further investigation.

• Optimistic API: Although much research has occurred in classical versions of
API, it is well-known that it is slow, since it requires numerous simulations to
evaluate just one policy. As such, there is great interest in optimistic API in which
the policy is evaluated via just one (or a few) state transition. The interest in API
also stems from the empirical evidence suggesting that function approximation
works better in conjunction with API rather than with value-iteration-based
methods. Interestingly, the actor-critic, one of the earliest algorithms in RL
[8,95], sought to attain the same objective. One recent algorithm in this direction
is [13].

• Model-building algorithms: Model-building (also called model-based in the RL
literature, but not to be confused with the same term in optimization) algorithms
do not need the transition probability model, but build it within the simulator
while simultaneously solving the Bellman equation. The earliest model-building
algorithms for discounted and average reward are [7, 84], respectively. Other
works on model building include [20, 28, 51, 59, 78, 81, 87] While most of these
algorithms seek to generate the value function and are rooted in DP, some recent
algorithms are based on Q-Learning and actor-critic frameworks [36, 41]. These
algorithms have attracted significant interest recently in applications: robotic
soccer [94], helicopter control [1, 54, 63], function magnetic imaging resonance
(fMRI) studies of brain [47, 97], and vision [57].
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