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FOREWORD

During its August 1991 Annual Business Meeting, the National Council of Examiners for Engineering and Surveying (NCEES) voted
to make the Fundamentals of Engineering (FE) examination an NCEES supplied-reference examination. Then during its August 1994
Annual Business Meeting, the NCEES voted to make the FE examination a discipline-specific examination. As a result of the 1994
vote, the FE examination was developed to test the lower-division subjects of a typical bachelor engineering degree program during
the morning portion of the examination, and to test the upper-division subjects of a typical bachelor engineering degree program
during the afternoon. The lower-division subjects refer to the first 90 semester credit hours (five semesters at 18 credit hours per
semester) of engineering coursework. The upper-division subjects refer to the remainder of the engineering coursework.

Since engineers rely heavily on reference materials, the FE Supplied-Reference Handbook will be made available prior to the
examination. The examinee may use this handbook while preparing for the examination. The handbook contains only reference
formulas and tables; no example questions are included. Many commercially available books contain worked examples and sample
questions. An examinee can also perform a self-test using one of the NCEES FE Sample Questions and Solutions books (a partial
examination), which may be purchased by calling (800) 250-3196.

The examinee is not allowed to bring reference material into the examination room. Another copy of the FE Supplied-Reference
Handbook will be made available to each examinee in the room. When the examinee departs the examination room, the FE Supplied-
Reference Handbook supplied in the room shall be returned to the examination proctors.

The FE Supplied-Reference Handbook has been prepared to support the FE examination process. The FE Supplied-Reference
Handbook is not designed to assist in all parts of the FE examination. For example, some of the basic theories, conversions, formulas,
and definitions that examinees are expected to know have not been included. The FE Supplied-Reference Handbook may not include
some special material required for the solution of a particular question. In such a situation, the required special information will be
included in the question statement.

DISCLAIMER: The NCEESin no event shall be liable for not providing reference material to support all the
guestionsin the FE examination. In theinterest of constant improvement, the NCEESreservestheright to revise
and update the FE Supplied-Reference Handbook as it deems appropriate without informing interested parties.
Each NCEES FE examination will be administered using the latest version of the FE Supplied-Reference
Handbook.

So that this handbook can be reused, PLEASE, at the examination site,
DO NOT WRITE IN THIS HANDBOOK.
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UNITS

This handbook uses the metric system of units. Ultimately, the FE examination will be entirely metric. However, currently some of
the problems use both metric and U.S. Customary System (USCS). In the USCS system of units, both force and mass are called
pounds. Therefore, one must distinguish the pound-force (Ibf) from the pound-mass (Ibm).

The pound-force is that force which accelerates one pound-mass at 32.174 ft/s*. Thus, 1 Ibf = 32.174 lbm-ft/s>. The expression
32.174 Ibm-ft/(Ibf-s?) is designated as g, and is used to resolve expressions involving both mass and force expressed as pounds. For
instance, in writing Newton's second law, the equation would be written as F = ma/g., where F is in Ibf, min Ilbm, and ais in ft/s.

Similar expressions exist for other quantities. Kinetic Energy: KE = mv*/2g., with KE in (ft-Ibf); Potential Energy: PE = mgh/g,, with
PE in (ft-Ibf); Fluid Pressure: p = pgh/g., with p in (Ibf/ft*); Specific Weight: SWV= pg/gL, in (Ibf/ft’); Shear Stress: T = (W/g.)(dv/dy),
with shear stress in (Ibf/ft). In all these examples, g, should be regarded as a unit conversion factor. It is frequently not written
explicitly in engineering equations. However, its use is required to produce a consistent set of units.

Note that the conversion factor g [Ibm-ft/ (lbf—sz)] should not be confused with the local acceleration of gravity g, which has different
units (m/s?) and may be either its standard value (9.807 m/s®) or some other local value.

All equations presented in this reference book are metric-based equations. If the problem is presented in USCS units, it may be
necessary to use the constant g, in the equation to have a consistent set of units.

METRIC PREFIXES
Multiple Prefix Sab COMMONLY USED EQUIVALENTS
IO:E atto a 1 gallon of water weighs 8.34 Ibf
10,12 femto f 1 cubic foot of water weighs 62.4 Ibf
10 pico p o )
107° nano n 1 cubic inch of mercury weighs 0.491 1bf
107 micro H The mass of one cubic meter of water is 1,000 kilograms
107 milli m
2 .

107 centi c TEMPERATURE CONVERSIONS
10~ deci d — "

10! deka da F=18(C)+32

10? hecto h °C = (°F—32)/1.8

3 .
e kilo v °R =°F + 459.69
mega —o

10° siga G K =°C+273.15

10" tera T

10" peta P

10'® exa E

FUNDAMENTAL CONSTANTS

Quantity Symbol Value Units

electron charge e 1.6022 x 107" C (coulombs)
Faraday constant ¥ 96,485 coulombs/(mol)
gas constant metric R 8,314 J/(kmol-K)

gas constant metric R 8.314 kPa-m?/(kmol-K)
gas constant USCS R 1,545 ft-1bf/(Ib mole-°R)
gravitation - newtonian constant G 6.673 x 107" m*/(kg:s?)
gravitation - newtonian constant G 6.673 x 107" N-m?/kg?
gravity acceleration (standard) metric g 9.807 m/s’

gravity acceleration (standard) USCS g 32.174 ft/s?

molar volume (ideal gas), T=273.15K, p=101.3 kPa Vi 22,414 L/kmol

speed of light in vacuum c 299,792,000 m/s



CONVERSION FACTORS

Multiply By To Obtain Multiply By To Obtain
acre 43,560 square feet (ft%) joule (J) 9.478x107* Btu
ampere-hr (A-hr) 3,600 coulomb (C) J 0.7376 ft-1bf
dngstrom (A) 1x1071° meter (m) J 1 newton'm (N-m)
atmosphere (atm) 76.0 cm, mercury (Hg) J/s 1 watt (W)
atm, std 29.92 in, mercury (Hg)
atm, std 14.70 Ibf/in” abs (psia) kilogram (kg) 2.205 pound (Ibm)
atm, std 33.90 ft, water kef 9.8066 newton (N)
atm, std 1.013x10° pascal (Pa) kilometer (km) 3,281 feet (ft)
km/hr 0.621 mph
bar 1x10° Pa kilopascal (kPa) 0.145 Ibf/in? (psi)
Btu 1,055 joule (J) kilowatt (kW) 1.341 horsepower (hp)
Btu 2.928x107* kilowatt-hr (kWh) kW 3,413 Btu/hr
Btu 778 ft-1bf kW 737.6 (ft-1bf)/sec
Btu/hr 3.930x10°* horsepower (hp) kW-hour (kWh) 3,413 Btu
Btu/hr 0.293 watt (W) kWh 1.341 hp-hr
Btu/hr 0.216 ft-1bf/sec kWh 3.6x10° joule (J)
kip (K) 1,000 Ibf
calorie (g-cal) 3.968x10°° Btu K 4,448 newton (N)
cal 1.560%10° hp-hr
cal 4.186 joule (J) liter (L) 61.02 in’
cal/sec 4.186 watt (W) L 0.264 gal (US Liq)
centimeter (cm) 3.281x1072 foot (ft) L/second (L/s) 2.119 ft*/min (cfm)
cm 0.394 inch (in) L/s 15.85 gal (US)/min (gpm)
centipoise (cP) 0.001 pascal-sec (Pa's)
centistokes (cSt) 1x10°° m*/sec (m%/s) meter (m) 3.281 feet (ft)
cubic foot (ft*) 7.481 gallon (gal) m 1.094 yard
m/second (m/s) 196.8 feet/min (ft/min)
electronvolt (eV) 1.602x107"° joule (J) mile (statute) 5,280 feet (ft)
mile (statute) 1.609 kilometer (km)
foot (ft) 30.48 cm mile/hour (mph) 88.0 ft/min (fpm)
ft 0.3048 meter (m) mph 1.609 km/h
ft-pound (ft-1bf) 1.285x107 Btu mm of Hg 1.316x107 atm
ft-Ibf 3.766x1077 kilowatt-hr (kWh) mm of H,O 9.678x107° atm
ft-1bf 0.324 calorie (g-cal)
ft-1bf 1.356 joule (J) newton (N) 0.225 Ibf
ft-Ibf/sec 1.818x107 horsepower (hp) N'm 0.7376 ft-1bf
N-m 1 joule (J)
gallon (US Liq) 3.785 liter (L)
gallon (US Liq) 0.134 ft pascal (Pa) 9.869%x10°° atmosphere (atm)
gamma (Y, ") 1x10°° tesla (T) Pa 1 newton/m” (N/m?)
gauss 1x107* T Pa-sec (Pas) 10 poise (P)
gram (g) 2.205%x10°° pound (Ibm) pound (Ibm,avdp) 0.454 kilogram (kg)
Ibf 4.448 N
hectare 1x10* square meters (m?) Ibf -ft 1.356 N-m
hectare 2.47104 acres Ibf/in? (psi) 0.068 atm
horsepower (hp) 42.4 Btu/min psi 2.307 ft of H,O
hp 745.7 watt (W) psi 2.036 in of Hg
hp 33,000 (ft-1bf)/min psi 6,895 Pa
hp 550 (ft-1bf)/sec
hp-hr 2,544 Btu radian 180/ degree
hp-hr 1.98x10° fi-Ibf
hp-hr 2.68%10° joule (J) stokes 1x107* m%/s
inch (in) 2.540 centimeter (cm) therm 1x10° Btu
in of Hg 0.0334 atm
in of Hg 13.60 in of H,O watt (W) 3.413 Btu/hr
in of H,O 0.0736 in of Hg w 1.341x107 horsepower (hp)
in of H,O 0.0361 Ibf/in” (psi) w 1 joule/sec (J/s)
in of H,O 0.002458 atm weber/m” (Wb/m?) 10,000 gauss




MATHEMATICS

STRAIGHT LINE
The general form of the equation is
AX+By+C=0

The standard form of the equation is
y=mx+Db,
which is also known as the slope-intercept form.
Y=y =mX-Xx)
m= (Y2 = Y1)/(% — Xi1)
The angle between lines with slopes m; and m, is

The point-slope form is

Given two points: slope,

o = arctan [(m, — my)/(1 + mp-my)]
Two lines are perpendicular if m, =-1/my

The distance between two points is

d =\/(yz _3/1)2 +(X2 _X1)2

QUADRATIC EQUATION
a+bx+c=0

-b++/b’* -4ac

Roots =

2a

CONIC SECTIONS

e = eccentricity = cos 6/(cos @)

[Note: X"and Y, in the following cases, are translated axes.]

Case 1. Parabola

e=1:
v
p
<
p

(y — K)* = 2p(x — h); Center at (h, k)
is the standard form of the equation. When h=k=0,

Focus: (p/2,0); Directrix: X=—p/2

Case 2. Ellipse e<l:
. Y’

h,K X
ol e /\(h+a,k)

AY) A
(x Zh) + (y-k) =1; Centerat (h,k)
a b?
is the standard form of the equation. When h=k =0,

Eccentricity.: e=4/1 —‘bz/a2 j =cl/a
b=ay1-¢€’;

Focus: (i ae,O); Directrix Xx=*a/ e

Case 3. Hyperbola e>1:

v’

(x=h)* _(y-k)
- =1; Centerat (h,k
= = (h.k)
is the standard form of the equation. When h=k =0,

Eccentricity: e=4/1+ ‘bz/a2 j =cla
b=a/e’ -1;

Focus: (+ ae0), Directrixx=+a/e

° OBrink, R.W., A First Year of College Mathematics, Copyright © 1937 by D. Appleton-Century
Co., Inc. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.



Case 4. Circle e=0:
(x=hy +(y-k’=r% Center at (h, k)

is the general form of the equation with radius

=l (i)

o)

Length of the tangent from a point. Using the general form of
the equation of a circle, the length of the tangent is found
from

t2 _ (X/_ h)Z + (y/_ k)Z _ r.2

by substituting the coordinates of a point P(X,y’) and the
coordinates of the center of the circle into the equation and
computing.

0}

Conic Section Equation
The general form of the conic section equation is

AX* + 2Bxy + Cy* + 2Dx+ 2Ey + F =0
where not both A and C are zero.
If B>~ AC <0, an ellipse s defined.
If B>~ AC > 0, a hyperbola is defined.
If B> — AC = 0, the conic is a parabola.
If A=Cand B=0, a circleis defined.
IfA=B=C=0, a straight line is defined.
X +y*+2ax+2by+c=0

is the normal form of the conic section equation, if that conic
section has a principal axis parallel to a coordinate axis.

MATHEMATICS (continued)

h=-a k=-b
r=+va’+b’-c

Ifa’ + b? — c is positive, a circle, center (—a, —b).
If &’ + b? — ¢ equals zero, a point at (—a, —b).
If a> + b” — ¢ is negative, locus is imaginary.

QUADRIC SURFACE (SPHERE)
The general form of the equation is

x—hy?+(y—k?*+(z-my?=r?
with center at (h, k, m).
In a three-dimensional space, the distance between two

points is

d=y(6-x )\ +(y, -y, ) +(z -2)

LOGARITHMS
The logarithm of X to the Base b is defined by

log, (X) = ¢, where b®=x
Special definitions for b=eor b= 10 are:

In X, Base =e

log X, Base = 10
To change from one Base to another:

logy X = (loga X)/(loga b)
e.g., In x= (logo X)/(log;o €) = 2.302585 (log;o X)
Identities

log, b" =n

log xX* = clogx; X° = antilog (C log X)

logxy =logx+logy

logob =1;log1=0

logxly =logx—1logy

« Brink, R.W., A First Year of College Mathematics, Copyright (1 1937 by D. Appleton-
Century Co., Inc. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.



TRIGONOMETRY
Trigonometric functions are defined using a right triangle.

sin 8 =yIr, cos 0 = x/r
tan 6 = y/X, cot 8 = xly y

csc 0=rly, sec B =r/Xx

X

a b ¢

Law of Sines ¢, A sinB sinC

Law of Cosines

a=b’+c*—2bccos A
b’=a’+ c* - 2accos B
cc=a’+b*—2abcosC

Identities
cscO=1/sin O

sec 8= 1/cos B

tan 6 = sin B/cos O

cotB=1/tan O

sin’@ + cos’0 = 1

tan’0 + 1 = sec’0

cot’®+ 1 =csc’0

sin (o + 3) =sin O cos 3 + cos O sin 3

cos (0 + ) =cos O cos B —sin A sin B
sin200 =2 sind cos d

cos 200 = cos’d — sin’al = 1 — 2 sin’al = 2 cos’0 — 1
tan 200 = (2 tan a)/(1 — tan’Q)

cot 200 = (cot’a — 1)/(2 cot )

tan (0 + B) = (tan o + tan B)/(1 —tan o tan )
cot (a+ ) = (cot a cot B — 1)/(cot a + cot B)
sin (a—3) = sin a cos 3 — cos O sin 3

cos (00 — ) =cos O cos 3+ sin O sin B

tan (0 — ) = (tan O — tan B)/(1 + tan A tan 3)
cot (a —B)=(cot a cot B+ 1)/(cot B —cot a)

sin(@2)= */(I-cosa)/2
+ /(L +cos a)/2

tan (a/2) = /(1 -cos a)/(1+cos o)

cos (0/2) =

cot (0/2)= + \/(1 +cos O()/(l —-cos O()

= (1/2)[cos (0 — ) — cos (a + B)]
= (1/2)[cos (0 — B) + cos (a + B)]

sin o sin 3

cos O cos 3

MATHEMATICS (continued)
= (1/2)[sin (o + B) + sin (a — B)]
sina +sin 3 =2 sin (1/2)(a + B) cos (1/2)(a — B)
sina —sin B =2 cos (1/2)(a + B) sin (1/2)(a — B)
cos 0 +cos B =2 cos (1/2)(a + B) cos (1/2)(a — B)
cos 0—cos B =-2sin (1/2)(a + B) sin (1/2)(a — B)

sin O cos B

COMPLEX NUMBERS

Definitioni = v~ 1
(@a+iby+(c+idy=(@+c)+i(b+d)
(@a+ib)—(c+idy=(a-c)+i(b-d)
(a+ib)(c+id)=(ac—bd) +i (ad + bc)

a+ib _(a+ib)c-id) _ (ac+hd)+i(bc - ad)
c+id (c+id)c-id) c? +d?2
(atib)+(a—ib)y=2a
(a+ib)—(a-ib)=2ib
(a+ib)(a—ib)=a*+b’

Polar Coordinates
X =T cos 8; y=r sin 6; 0 = arctan (y/X)
ro=0x+iyd= X +y’
X+iy=r (cos 8+i sin B) =re®
[ri(cos O; +i sin 6))][r2(cos 6, + i sin 8,)] =
riry[cos (6; + 6,) +i sin (6; + 6,)]
(X+iy)"  =[r (cos 0 +i sin 6)]"

=r1"(cos NO + i sin nO)

r1(0059+isin61) _n B o .
rz(cos 0, +isin62) - r, [Cos(el e2)""5111(91 92)]

Euler's Identity

€9 =cosO+isind

e%=cosO—isinB
g 4 ' gl _gif

cosb =T’ sin=———

Roots

If k is any positive integer, any complex number (other than
zero) has k distinct roots. The kroots of r (cos 8+ sin 6) can
be found by substituting successively n=0, 1,2, ..., (k—1) in
the formula

i 0 360°) . .(0 360°
W=4/r| cos| —+n +I1sin| —+n
k k k k




MATRICES

A matrix is an ordered rectangular array of numbers with m
rows and N columns. The element &; refers to row i and
column j.

Multiplication

If A = (&) is an m x nmatrix and B = (by) is an n x Smatrix,
the matrix product AB is an m X S matrix

C:(cij)z(éaﬂqjj

where N is the common integer representing the number of
columns of A and the number of rows of B (land k=1, 2, ...,

n).

Addition

If A = (&;) and B = (bjj) are two matrices of the same size mx
N, the sum A + B is the m x n matrix C = (¢;) where ¢;; = a; +
bij.

Identity

The matrix I = (a;) is a square n X n identity matrix where a;;
=1fori=1,2,...,nand ;=0 fori #]j.

Transpose

The matrix B is the transpose of the matrix A if each entry b
in B is the same as the entry a; in A and conversely. In
equation form, the transpose is B = A'.

Inverse
The inverse B of a square n X N matrix A is
4 _adjlA
B=A" :#,where
adj(A) = adjoint of A (obtained by replacing A" elements
with their cofactors, see DETERMINANTS) and
UAO = determinant of A.
DETERMINANTS

A determinant of order n consists of n* numbers, called the
elements of the determinant, arranged in n rows and n
columns and enclosed by two vertical lines. In any
determinant, the minor of a given element is the determinant
that remains after all of the elements are struck out that lie in
the same row and in the same column as the given element.
Consider an element which lies in the hth column and the kth
row. The cofactor of this element is the value of the minor of
the element (if h + k is even), and it is the negative of the
value of the minor of the element (if h + k is odd).

If nis greater than 1, the value of a determinant of order n is
the sum of the n products formed by multiplying each element
of some specified row (or column) by its cofactor. This sum is
called the expansion of the determinant [according to the
elements of the specified row (or column)]. For a second-
order determinant:

a a,

bl b2 = albz _azbl

MATHEMATICS (continued)

For a third-order determinant:

q a; &
b b, by |=ab,c; +a,bsc +asbc, —a;b,c; —a,bic; —absc,
C G, G
VECTORS
Yy
]; S
| A
| P *
A
/@ a
aX

A =ai+aj+ak

Addition and subtraction:
A +B=(ax+byi+(a +byj+(a,+byk
A—B=(a—byi+(a—byj+(a;—byk

The dot product is a scalar product and represents the
projection of B onto A times [JA[L It is given by

A'B =ab+ab,+ab,
=AM BOcos 8=B-A

The cross product is a vector product of magnitude (B A
sin 8 which is perpendicular to the plane containing A and B.
The product is

i jk
AxB=|a, a, a,|=-BxA
b, b, b,

The sense of A X B is determined by the right-hand rule.
A x B =[UA[l BOn sin 6, where

n = unit vector perpendicular to the plane of A and B.



Gradient, Divergence, and Curl

Qo= [il +i_] +ikjcp

ox oy~ 0z

. o. d
oov=| i+ 2+ Lk |dvi+v,j+vik
(ax' oyt oz j[(v' i)

3. 0. 9
DXV: —it+—j+—k | X i+V,i+V,k
(axl oy oz j Vi+vai+va)

The Laplacian of a scalar function @is

p=99,9¢,0%

x> oy’ 0z’
Identities
AB=BA;AB+C)=AB+AC
A-A=TACF
ifi=jj=kk=1
ij=jk=ki=0

If A‘B = 0, then either A =0, B =0, or A is perpendicular
to B.

AxXxB=-BxA
AxB+C)=(AxB)+(AxC)
B+C)xA=BxA)+(CxA)
ixi =jxj=kxk=0

ixj= k=—jxijjxk=i=-kXj
kxi= j=-ixk

If A x B =0, then either A=0, B=0, or A is parallel to B
D'p=000¢) = (0 m)e
OxOe=0

OfoOxA)=0
Ox(OxA)=0(0m)-0A

PROGRESSIONS AND SERIES

Arithmetic Progression

To determine whether a given finite sequence of numbers is
an arithmetic progression, subtract each number from the
following number. If the differences are equal, the series is
arithmetic.

1. The first term is a.
The common difference is d.
The number of terms is n.

The last or nth term is |.

wohk v

The sum of nterms is S
I a+((mn-1d
S na+hi2=n[2a+(n-1)d])2

MATHEMATICS (continued)
Geometric Progression

To determine whether a given finite sequence is a geometric
progression (G.P.), divide each number after the first by the
preceding number. If the quotients are equal, the series is
geometric.

1. The first term is a.
The common ratio is I.
The number of terms is n.

The last or nth term is |.

wohk v

The sum of N terms is S
| =ar"
S=a(l-rM1-r;r#l
S=@-rh/1-r);r#1
limitS, =a/(l-r) r<1
A 2’;; converges if LFJ< 1 and it diverges if L= 1.

Properties of Series
n
C=nc; C=constant

1 n
X, = z

> (% +y -z)=

x=(n+n2)/2

1. A power series in X, or in X— &, which is convergent in the
interval -1 <x<1 (or —1 <X—a< 1), defines a function
of X which is continuous for all values of X within the
interval and is said to represent the function in that
interval.

™=

1l
LN

n n
X "‘ZYi _zzi

1 i=1 i=

\gE

n

1l
—_

M=

x
1)
—_

2. A power series may be differentiated term by term, and
the resulting series has the same interval of convergence
as the original series (except possibly at the end points of
the interval).

3. A power series may be integrated term by term provided
the limits of integration are within the interval of
convergence of the series.

4. Two power series may be added, subtracted, or
multiplied, and the resulting series in each case is
convergent, at least, in the interval common to the two
series.

5. Using the process of long division (as for polynomials),
two power series may be divided one by the other.



Taylor's Series
f(x)= f(a)+ ff‘)(x-ap f"zfa)(x-a)z
+.:kﬂm@%x—@”+

is called Taylor's series, and the function f (x) is said to be
expanded about the point ain a Taylor's series.

If a=0, the Taylor's series equation becomes a Maclaurin's
series.

PROBABILITY AND STATISTICS

Permutations and Combinations

A permutation is a particular sequence of a given set of
objects. A combination is the set itself without reference to
order.

1. The number of different permutations of n distinct
objectstakenr at atimeis

(CERE

2. The number of different combinations of n distinct
objectstakenr at atimeis
|
W )= Plr)_  n
rt [r(n=r)]
3. Thenumber of different permutations of n objects taken
n at a time, given that n; are of typei,

P(n,r)=

wherei =1, 2,..., kand Zn;=n, is
n!

P(n, nl,nz,...nk):m
1- 2-n-n k-

Laws of Prabability
Property 1. General Character of Probability

The probability P(E) of an event E is a real number in the
range of 0 to 1. The probability of an impossible event is 0
and that of an event certain to occur is 1.

Property 2. Law of Total Probability
P(A + B) = P(A) + P(B) — P(A, B), where

P(A+B) = theprobahility that either A or B occur alone
or that both occur together,

P(A) = the probability that A occurs,

P(B) = the probability that B occurs, and

P(A,B) = the probability that both A and B occur

simultaneously.

MATHEMATICS (continued)

Property 3. Law of Compound or Joint Probability
If neither P(A) nor P(B) is zero,

P(A, B) = P(A)P(B | A) = P(B)P(A | B), where

P(B | A) = the probability that B occurs given the fact that A
has occurred, and

P(A | B) = the probability that A occurs given the fact that B
has occurred.

If either P(A) or P(B) is zero, then P(A, B) = 0.

Praobability Functions

A random variable x has aprobability associated with each of
itsvalues. The probability istermed a discrete probability if x
can assume only the discrete values

X=Xy, Xo, ooy Xiy oeny Xy
The discrete probability of the event X = x occurring is
defined as P(X)).

Probability Density Functions

If X iscontinuous, then the probability density functionf (X) is
defined so that

[ f (x)dx = the probability that x lies between x; and x,.

The probability is determined by defining the equation for f
(X) and integrating between the values of x required.

Praobability Distribution Functions

The probability distribution function F(X,) of the discrete
probability function P(X) is defined by

F(X,)= 3 P(x,)=P(X, = X,)

When x is continuous, the probability distribution function
F(X) is defined by

F(x)=[ f(t)dt

which implies that F(a) is the probability that x < a.
The expected value g(x) of any function is defined as

E{g(x} =% 9 )t

BINOMIAL DISTRIBUTION

P(x) is the probability that x will occur in n trials. If p =
probability of success and q = probability of failure= 1 —p,
then

_ nl .
P(x)=Clnx)p a™ =——— T

where

X =0,1,2,...,n,

C(n, xX) =the number of combinations, and

np = parameters.



NORMAL DISTRIBUTION (Gaussian Distribution)

This is a unimodal distribution, the mode being X = I, with
two points of inflection (each located at a distance oto either
side of the mode). The averages of n observations tend to
become normally distributed as n increases. The variate X is
said to be normally distributed if its density function f (X) is
given by an expression of the form

1 s 2
f(x)= et 1 here
O+ 2TT
M = the population mean,
o = the standard deviation of the population, and
—00 < X< 00

When =0 and 0° = 0 = 1, the distribution is called a
standardized or unit normal distribution. Then

f(x):;e_xz/z, where —c0 < X< c0.

NeY

A unit normal distribution table is included at the end of this
section. In the table, the following notations are utilized:

F(X) = the area under the curve from —oo to X,
R(X) = the area under the curve from X to o, and
W(X) = the area under the curve between —X and X.

DISPERSION, MEAN, MEDIAN, AND MODE VALUES

If X;, X5, ..., X, represent the values of n items or
observations, the arithmetic mean of these items or
observations, denoted X, is defined as

X = (/n)(X, + X, +...+X,)=(/n)2 X,

X - for sufficiently large values of n. There_fore, for the
purposes of this handbook, the following is accepted:

U = population mean = X

The weighted arithmetic mean is

X, = ZWX; , where
W,
)?W = the weighted arithmetic mean,
X; = the values of the observations to be averaged, and
w; = the weight applied to the X value.

The variance of the observations is the arithmetic mean of the
sguared deviations from the population mean. In symbols,
X, Xy, ..., Xn represent the values of the n sample
observations of a population of size N. If / is the arithmetic
mean of the population, the population varianceis defined by

o® =(U/N)I(X, = ) + (X, = )+ (X = )]
SNS (X - )

i=1

MATHEMATICS (continued)

The standard deviation of a population is

o= JI/NE (X, -n)

The sample variance is

s =[/n- 1 (x, - x)

The sample standard deviation is

el

The coefficient of variation=CV =g X

The geometric mean = §/ X; X, X;... X,

The root-mean-square value = (1/ n)Z X!

The median is defined as the value of the middle item when
the data are rank-ordered and the number of items is odd. The
median is the average of the middle two items when the rank-
ordered data consists of an even number of items.

The mode of a set of data is the value that occurs with
greatest frequency.

t-DISTRIBUTION

The variate t is defined as the quotient of two independent
variates X and r where X isunit normal and r istheroot mean
square of n other independent unit normal variates; that is,
t = x/r. The following is the t-distribution with n degrees of
freedom:

(t)=" [(n+1)]/2 |
M (n/2Wnm (1 + tz/n)(”*')/Z

where — 0 <t < oo,

A table at the end of this section gives the values of t,, for
values of a and n. Note that in view of the symmetry of the t-
distribution,

ti—gn = —tan. The function for a follows:
a=[° f(t)dt

A table showing probability and density functions is included
on page 121 in the INDUSTRIAL ENGINEERING
SECTION of this handbook.



MATHEMATICS (continued)
GAMMA FUNCTION

r(n)=[2t""e*dt, n>0

CONFIDENCE INTERVALS
Confidence Interval for the Mean [ of a Normal Distribution

(a) Standard deviation 0 is known

X 9 cpusx+z, L

X-Z,,— o
“4n " 4n
(b) Standard deviation G is not known
o S N2 S
X _ta/zﬁs U.S X +tu/2ﬁ
where 1, corresponds ton— 1 degrees of freedom.

Confidence Interval for the Difference Between Two Means
M1 and Py

(a) Standard deviations 0, and 0; known
2 2 2 2
< o] , 0, S < o; . 05
X=Xy =Lyt —=sSH ~H s X = Xy + 2y [— +—
n n n n

(b) Standard deviations 0, and 0, are not known

(1 ¥ IJ[(n ~1)5? + (n, -1)s?]

n m
n+n, -2

(1 . 1][(,1 187 +(n, - 1)s3]

n m
n+n,-2

SH —Hy S X=X g

where g, corresponds to n; + n, — 2 degrees of freedom.

10



UNIT NORMAL DISTRIBUTION TABLE

MATHEMATICS (continued)

7 =\
X X X X X X X
X f(x) F(x) R(x) 2R(X) W(X)
0.0 0.3989 0.5000 0.5000 1.0000 0.0000
0.1 0.3970 0.5398 0.4602 0.9203 0.0797
0.2 0.3910 0.5793 0.4207 0.8415 0.1585
0.3 0.3814 0.6179 0.3821 0.7642 0.2358
0.4 0.3683 0.6554 0.3446 0.6892 0.3108
0.5 0.3521 0.6915 0.3085 0.6171 0.3829
0.6 0.3332 0.7257 0.2743 0.5485 0.4515
0.7 0.3123 0.7580 0.2420 0.4839 0.5161
0.8 0.2897 0.7881 0.2119 0.4237 0.5763
0.9 0.2661 0.8159 0.1841 0.3681 0.6319
1.0 0.2420 0.8413 0.1587 0.3173 0.6827
1.1 0.2179 0.8643 0.1357 0.2713 0.7287
1.2 0.1942 0.8849 0.1151 0.2301 0.7699
1.3 0.1714 0.9032 0.0968 0.1936 0.8064
1.4 0.1497 0.9192 0.0808 0.1615 0.8385
1.5 0.1295 0.9332 0.0668 0.1336 0.8664
1.6 0.1109 0.9452 0.0548 0.1096 0.8904
1.7 0.0940 0.9554 0.0446 0.0891 0.9109
1.8 0.0790 0.9641 0.0359 0.0719 0.9281
1.9 0.0656 0.9713 0.0287 0.0574 0.9426
2.0 0.0540 0.9772 0.0228 0.0455 0.9545
2.1 0.0440 0.9821 0.0179 0.0357 0.9643
2.2 0.0355 0.9861 0.0139 0.0278 0.9722
2.3 0.0283 0.9893 0.0107 0.0214 0.9786
2.4 0.0224 0.9918 0.0082 0.0164 0.9836
2.5 0.0175 0.9938 0.0062 0.0124 0.9876
2.6 0.0136 0.9953 0.0047 0.0093 0.9907
2.7 0.0104 0.9965 0.0035 0.0069 0.9931
2.8 0.0079 0.9974 0.0026 0.0051 0.9949
2.9 0.0060 0.9981 0.0019 0.0037 0.9963
3.0 0.0044 0.9987 0.0013 0.0027 0.9973
Fractiles
1.2816 0.1755 0.9000 0.1000 0.2000 0.8000
1.6449 0.1031 0.9500 0.0500 0.1000 0.9000
1.9600 0.0584 0.9750 0.0250 0.0500 0.9500
2.0537 0.0484 0.9800 0.0200 0.0400 0.9600
2.3263 0.0267 0.9900 0.0100 0.0200 0.9800
2.5758 0.0145 0.9950 0.0050 0.0100 0.9900

11



t-DISTRIBUTION TABLE

MATHEMATICS (continued)

tan
VALUES OF tg4,

n a=0.10 a=0.05 a=0.025 a=0.01 a=0.005 n
1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11

12 1.356 1.782 2.179 2.681 3.055 12

13 1.350 1.771 2.160 2.650 3.012 13

14 1.345 1.761 2.145 2.624 2.977 14

15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16

17 1.333 1.740 2.110 2.567 2.898 17

18 1.330 1.734 2.101 2.552 2.878 18

19 1.328 1.729 2.093 2.539 2.861 19

20 1.325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21

22 1.321 1.717 2.074 2.508 2.819 22

23 1.319 1.714 2.069 2.500 2.807 23

24 1.318 1.711 2.064 2.492 2.797 24

25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26

27 1.314 1.703 2.052 2.473 2.771 27

28 1.313 1.701 2.048 2.467 2.763 28

29 1.311 1.699 2.045 2.462 2.756 29

inf. 1.282 1.645 1.960 2.326 2.576 inf.

12



MATHEMATICS (continued)

¢l

CRITICAL VALUES OF THE F DISTRIBUTION — TABLE
For a particular combination of
numerator and denominator degrees
of freedom, entry represents the
critical values of F corresponding o =0.05
to a specified upper tail area (a).
0 F(o,dfy,df,) F
Denominator Numerator df;
df, 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 )
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 2419 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 591 5.86 5.80 5.71 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
[§ 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 532 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 291 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 341 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 222 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 241 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 271 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 222 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 221 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 237 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
00 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00




DIFFERENTIAL CALCULUS

The Derivative
For any function y =f(x),

= Dyy=dyldx=y
y = timit (ay)/ (o]

= timit {[ f (x+ %)=  (x))/(x}

the derivative

y' = the slope of the curve f(X).

TEST FOR A MAXIMUM
y =f(X)is a maximum for

x =a,iff'(@=0andf"(a)<0.

TEST FOR A MINIMUM
y =f(X)is a minimum for

x =a,iff'(@=0andf"(a)>0.

TEST FOR A POINT OF INFLECTION
y =1 (X) has a point of inflection at X = a,
if f"(a)=0, and
if f "(X) changes sign as X increases through
X=a.
The Partial Derivative

In a function of two independent variables X and Yy, a
derivative with respect to one of the variables may be found if
the other variable is assumed to remain constant. If y is kept
fixed, the function

z =f(xy)

becomes a function of the singlevariablex, and its derivative
(if it exists) can be found. This derivative is called the partial
derivative of z with respect to x. The partial derivative with
respect to X is denoted as follows:

0z _of (x.y)

ox ox
The Curvature of Any Curve
.

o X

The curvature K of a curve at P is the limit of its average
curvature for the arc PQ as Q approaches P. This is also
expressed as: the curvature of a curve at a given point is the
rate-of-change of its inclination with respect to its arc length.

MATHEMATICS (continued)

CURVATURE IN RECTANGULAR COORDINATES

n

K=Y
1+(yr)2 3/2

When it may be easier to differentiate the function with
respect to Yy rather than X, the notation X' will be used for the
derivative.

X = dx/dy

THE RADIUS OF CURVATURE

The radius of curvature R at any point on a curve is defined
as the absolute value of the reciprocal of the curvature K at
that point.

R (K #0)

Ik
1+ (y')2 2

R=
'l

(y"#0)

L'Hospital's Rule (L'Hépital's Rule)
If the fractional function f(X)/g(X) assumes one of the

indeterminate forms 0/0 or co/oo (where @ is finite or infinite),
then

limit f (x)/ g(x)

is equal to the first of the expressions

f'(x) i f"(x) o f"(x)

limit ——, limi ,limi 7" (X)

TR

which is not indeterminate, provided such first indicated limit
exists.

INTEGRAL CALCULUS
The definite integral is defined as:

limit 3 f (x )ax; = 2 f (x)ox
N jz|
Also, Ax; — 0foralli.

A table of derivatives and integrals is available on page 15.
The integral equations can be used along with the following
methods of integration:

A. Integration by Parts (integral equation #6),
B. Integration by Substitution, and

C. Separation of Rational Fractions into Partial Fractions.

+ Wade, Thomas L., Calculus, Copyright © 1953 by Ginn & Company. Diagram reprinted by permission of
Simon & Schuster Publishers.



definitions are followed: arcsin U= sin™' u, (sin u) '

1.

AN

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

22.

[\

23.

24.

25.

26.

27.

MATHEMATICS (continued)

DERIVATIVES AND INDEFINITE INTEGRALS

In these formulas, U, v, and W represent functions of X. Also, @, C, and n represent constants. All arguments of the trigonometric
functions are in radlans A constant of 1ntegrat10n should be added to the integrals. To avoid terminology difficulty, the following

= 1/sin u.

dc/dx=0

dx/dx =1

d(cu)/dx = ¢ du/dx

d(u + v —w)/dx = du/dx + dv/dx — dw/dx
d(uv)/dx = u dv/dx + v du/dx

d(uvw)/dx = uv dw/dx + uw dv/dx + vw du/dx

d(u/v) _ v du/dx—u dv/dx
dx V2
d(uy/dx = nu™" du/dx

d[f (u))/dx = {d[f (u)]/du} du/dx
du/dx = 1/(dx/du)

d(log,u) )

d(e")/dx = " du/dx

d(u”y/dx = vu’" du/dx + (In u) u” dv/dx
d(sin u)/dx = cos u du/dx

d(cos u)/dx = —sin u du/dx

d(tan u)/dx = sec’u du/dx

d(cot u)/dx = —cscu du/dx

d(sec u)/dx = sec u tan u du/dx

d(csc u)/dx = —csc u cot u du/dx

d(sin_lu)_ 1 du
dx _\/1_u2 dx

d(cos_lu!= B 1 %

dx 1-u? ox

(— T2 <sin"u< T;/2)

(0 <coslus T[)

d(tan_lu)_ 1 du (_ T[/2<tan_lu<T§/2)

dx  1+u? dx
d(COt_lu):— 1 % (0<cot_1u<T[)
dx 1+u? dx

d(sec_lu) _ 1 du
AT —1&

(0 <sec'u< n/z)(—ns sec”'u < —n/z)

d(csc_lu) _ 1 du

dx u uz—la

(0 <csc'ug 7T/2X— m<csclus —IT/Z)
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1. [df()=fx)
2. Jdx=x
3. Jaf(x)dx=alf(x)dx
4. JIu() + v(x)] dx=J ux) dx + ] v(x) dx
L xm )
5. [x Xz (m#-1)

6. Ju(x) dv(x) = u(x) v(x) — | v (x) du(x)

7. ax+b_51n|aX+b|
8. _2\/_
f
9. [a¥dx=—
Ina

10. [sinxdx=—cos x
11. [cos x dx=sin x

12, [sin’xdx=X - SIn2X
2 4
sin2X

13. jcoszxdx=§ +

14. [ xsin X dx = sin X — X cos X
15. [xcos xdx=cos X+ X sin X
16. [ sin X cos x dx = (sin®x)/2

17. [sinaxcosbxdx=— cos(a - bx - cos(a + b)x
2(a-b)  2(a+b)
(az:tbz)
18. Jtan x dx=—InCkos xO= In [sec xOJ
19. [cotxdx=—In Cesc x 0= In Csin xO
20. Jtan®x dx = tan X — X
21. [cot®>x dx=—cot Xx— X
22. [e®dx= (lla)e
23. [xe™dx=(e®/a’)(ax— 1)
24. [Inxdx=x[In (x)— 1] (x> 0)
1. X
25. =—tan" = az0
Ia2+x aarl a (@#0)
dx a
26. =1 tn x\f a>0,c>0
a4 fa>0.c>0)
i dx _ 2 tan” 2ax+b
27a. -
©Cad tbxte \4ac-p? Vdac-b’
(4ac—b2>0)
b, | dx 1 |2ax+b \/b2—4ac|
- ax +bx+c \/b2—4ac ‘2ax+b+\/b2—4ac‘
(b2—4ac>0)
dx 2
=- , b? —4ac=0
27c. IaX2+bX+C 23X+b ( )



MATHEMATICS (continued)

MENSURATION OF AREAS AND VOLUMES
Circular Segment

Nomenclature

A = total surface area
P = perimeter
V = volume

Parabola

—

™

A =2bh/3

————————p ——————

A =Dbh/3

Ellipse
¢

Poye =212 +b7)/2

I ARSEAAIARS
PZT[(a+b) +(%x%‘x%)2)\6 +(%X%x%x%)2)\8
AV AS AT/

where
A=(a-b)(a+b)

¢

C
¢
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«
/

A=[r? (¢-sin )]/2
@= s/r =2{arccos [(r — d)/r]}

ircular Sector

V=413 =1d /6
A=4mr’=1d?

+ Gieck, K. & Gieck R., Engineering Formulas, 6th Ed., Copyright (I 1967 by Gieck Publishing. Diagrams
reprinted by permission of Kurt Gieck.



MATHEMATICS (continued)
MENSURATION OF AREAS AND VOLUMES
Parallelogram Right Circular Cone

P=2(a+h)
d, =/a’> +b* - 2ab(cos()
d, =4/a’ +b* +2ab(cos)
d? +d? =2(a’ +b)

A= ah = ab(sing) - nr(r+\/r2+h2j

Ac Ay =X h

V= (1r*h)/3

A = side area + base area

If a= b, the parallelogram is a rhombus.

Regular Polygon (n equal sides) Right Circular Cylinder

¢

¢
@=217n
2
B:I:Mil:n—z V=T[r2h=Tld h
n 4
_ A=side area + end areas = 2T (h + r)
P=ns
$=2r [tan (@/2)] Paraboloid of Revolution
A= (nsr)/2 -——— d ——»
Prismoid /—f\
‘ T

+ Gieck, K. & R. Gieck, Engineering Formulas, 6th Ed., Copyright 8 1967 by Gieck Publishing. Diagrams
reprinted by permission of Kurt Gieck.

V= (N6)( A + A +4A)

17



CENTROIDS AND MOMENTS OF INERTIA

The location of the centroid of an area, bounded by the
axes and the function y =f(X), can be found by integration.

_ [xdA
X, =
A
_ JydA
Ye = r—
A= f(x)dx

dA= f (x)dx = g(y)dy
The first moment of area with respect to the y-axis and the
X-axis, respectively, are:

M, = /xdA=x. A

My =/y dA=yc A
when either X or v is of finite dimensions then | xdA or
| ydA refer to the centroid X or y of dA in these integrals.

The moment of inertia (second moment of area) with
respect to the y-axis and the X-axis, respectively, are:

ly=/x* dA
Ix:/ysz

The moment of inertia taken with respect to an axis passing
through the area's centroid is the centroidal moment of
inertia. The parallel axistheorem for the moment of inertia
with respect to another axis parallel with and located d
units from the centroidal axis is expressed by

— 2
Iparallel axis — IC +Ad
—[ 2 —
In a plane, T =[r?dA=1,+ ly

Values for standard shapes are presented in a table in the
DYNAMICS section.

DIFFERENTIAL EQUATIONS
A common class of ordinary linear differential equations is
d"y(x) dy()
b, ———+...+b ——+Db, y(x)= f(X
Iy M (= (9
where by, ..., b, ..., by, by are constants.

When the equation is a homogeneous differential equation,
f(x) = 0, the solution is

ya(x)=Ce* +C,e"* +.. +Ce ¥ +...+C e
where r, is the nth distinct root of the characteristic
polynomial P(x) with

P(r)=byr "+ byr "+ .+ bir + by

If the root Iy = r,, then C,e”"is replaced with C,xe"*.
Higher orders of multiplicity imply higher powers of X. The
complete solution for the differential equation is

Y(X) = Yr(X) + Yo(¥),

where Yy(X) is any solution with f(x) present. Iff(x) has ™
terms, then resonance is manifested. Furthermore, specific
f(x) forms result in specific y,(X) forms, some of which are:

MATHEMATICS (continued)
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f(x) Y
A B
Ae™ Be™ a#r,

A sin aX + A, cos ax B, sin ax + B, cos ax

If the independent variable is time t, then transient dynamic
solutions are implied.
First-Order Linear Homogeneous Differential
Equations With Constant Coefficients

y' +ay =0, where ais a real constant:

Solution, y = Ce ®, where
C = a constant that satisfies the initial conditions.

First-Order Linear Nonhomogeneous Differential
Equations

dy | _ (A t<o0
Wy=kafy) X(t)_{B t>0}

y(0)=KA
T is the time constant
K is the gain

The solution is

y(t)= KA+ (KB - KA)(l - exp(_TtD or

t KB - KA
_ = ln -
T KB-y
Second-Order Linear Homogeneous Differential
Equations with Constant Coefficients
An equation of the form

y'+2ay +by=0
can be solved by the method of undetermined coefficients

where a solution of the form y = C&* is sought. Substitution
of this solution gives

(r?+2ar +b) Ce*=0

and since Ce€™ cannot be zero, the characteristic equation
must vanish or

r’+2ar+b=0
The roots of the characteristic equation are

r1’2: _ai‘\laz _b

and can be real and distinct for a’ > b, real and equal for & =
b, and complex for a> < b.

If &’ > b, the solution is of the form (overdamped)
y=C,e"* +C,e"*

If a*> = b, the solution is of the form (critically damped)
y=(C, +C,x)e"

If a* < b, the solution is of the form (underdamped)

y=e"*(C, cos Bx+ C, sin X)
where



FOURIER SERIES

Every function F(t) which has the period 7 = 21w and
satisfies certain continuity conditions can be represented by
a series plus a constant.

F(t)=a,/2+ 3 (a cosnot + b sin nwt)
n=1
The above equation holds if F(t) has a continuous
derivative F'(t) for al t. Multiply both sides of the
equation by cos mat and integrate from O to 7.
[ F (t)cos mutdt = [ (a, /2)cos mutdt
[ F (t)cos muotdt = [ (a, /2)cos mutat

+ 3 [a,, |; cos nuwtcos motdt
n=1

+ b, [;sin nwtcos mouxdt]

Term-by-term integration of the series can be justified if

F(t) is continuous. The coefficients are
a, =(2/1)[;F(t)cosnwtdt  and

b, =(2/7)[3F (t)sin nwtdt, where
7= 21Ww. The constants a,, b, arethe Fourier coefficients
of F(t) for theinterval 0 to 7, and the corresponding series
is called the Fourier series of F(t) over the sameinterval.
The integrals have the same value over any interval of
length 7.

If a Fourier series representing a periodic function is
truncated after term n = N, the mean square value Fn2 of
the truncated seriesis given by the Parseval relation. This
relation says that the mean square value is the sum of the
mean square values of the Fourier components, or

Fi =(a,/2) +W2)2 (a? +17)
n=1
and the RM S value is then defined to be the square root of
this quantity or Fy.

FOURIER TRANSFORM
The Fourier transform pair, one form of which is

Flw)=]2 ft)e
f(t) = [y (2n] 2, F (w) e™*doo

can be used to characterize a broad class of signal models
intermsof their frequency or spectral content. Some useful
transform pairs are:

f(t) F(w)

o(t) 1

u(t) (1/2)8(w) + Vjw
T 1 sin(wt/2

u(t+Ej—u£t—E T/Z

el 2nw-w,)

MATHEMATICS (continued)

Some mathematical liberties are required to obtain the second

and fourth form. Other Fourier transforms are derivable from

the Laplace transform by replacing s with jwprovided

ft)=0,t<0
7| ()| dt <o

LAPLACE TRANSFORMS
The unilateral Laplace transform pair

F(s)=[g f(t)ed

1 O+ico
f (t) =E.l.c—ioo F

(s) et

represents a powerful tool for the transient and frequency
response of linear time invariant systems. Some useful
Laplace transform pairs are [Note: The last two transforms
represent the Final Value Theorem (F.V.T.) and Initial Value
Theorem (1.V.T.) respectively. It is assumed that the limits

exist.]:
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f(t) F(s)
o(t), Impulseatt=0 1
u(t), Stepatt=0 Us
t[u(t)], Ramp at t =0 Vs
g 1(s+a)
te ™ U(s+ a)?
e sin Bt B/l(s+a)*+p7
e cos Bt (s+a)/[(s+a)*+ p?
d n f (t) Sn F (S) - nz_ilsn—m—l d m f (0)
dtn m=0 d mt
Bt ()r WsF(S)
[ x(t-1)n(t)dr H(9X(S)
f(t—1) e °F(s)
limit  (t) limit s (s)
limit f (t) limit s (s)

DIFFERENCE EQUATIONS

Difference equations are used to model discrete systems.
Systems which can be described by difference equations
include computer program variablesiteratively evaluatedina
loop, sequentia circuits, cash flows, recursive processes,
systemswith time-delay components, etc. Any system whose
input v(t) and output y(t) are defined only at the equally
spaced intervals t = KT can be described by a difference
equation.



First-Order Linear Difference Equation
The difference equation
P.= Pk_l(l + I) -A

represents the balance P of aloan after the kth payment A.
If Py is defined as y(K), the model becomes

yK -1 +i)yk-1)=-A

Second-Order Linear Difference Equation
The Fibonacci number sequence can be generated by

y(k) =y(k—1) +y(k-2)

where y(-1) = 1 and y(-2) = 1. An aternate form for this
model isf(k+2)=f(k+1) +f (k)

withf (0) =1and f (1) = 1.

z-Transforms
The transform definition is

F(2)= 3 f (k)2
k=0
The inverse transform is given by the contour integral
_ 1 k-1
f(k)= o § F(z)z*'dz

and it represents a powerful tool for solving linear shift
invariant difference equations. A limited unilateral list of z-
transform pairsfollows[Note: Thelast two transform pairs
represent the Initial Value Theorem (1.V.T.) and the Final
Value Theorem (F.V.T.) respectively.]:

f(k) F(2

o(k), Impulseat k=0 1

u(k), Stepat k=0 (1 -27Y

B U(1-Bz7

y(k—-1) ZY(2) +y(-1)

y(k-2) () +y(=2) +y(-1)Z*
y(k+1) 2Y(2) — 2y(0)

y(k+2) 2Y(2) - Zy(0) - 2y(1)
limit (k) limitF(z)

limit f (k) Iimilt(l— z‘l)F(z)

EULER'SAPPROXIMATION
Xi+1 = X + At (dx/dt)
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MATHEMATICS (continued)

NUMERICAL METHODS

Newton's M ethod of Root Extraction

Given a polynomia P(x) with n simple roots, &, ay, ...
where

’ an

n

PR)=[] (x-an)

=x"+o,x" T +a,x" 2+ +a,

and P(a) = 0. A root a can be computed by the iterative

algorithm
- a.j - ﬂ X= a-j
L aP(x)/ox '

a

with  [Pla”?)|<[Pla)]

Newton's Method of Minimization
Given a scalar value function

h(x) = h(xg, X2, ..., Xn)
find a vector x* LR, such that

h(x*) < h(x) for all x
Newton's algorithm is

Convergenceisquadratic.

-1

« =y _| 97N oh
K+l — 2K 7| 32 A
ox X = Xy ox X = Xy
where
_ﬂ_
0X,
on
0X
@_ 2
ox
on
0X,
and
9%h  9%h 9%h |
0X; 0X,0X, 0X,0X,,
0%h 6_2h 0°h
2 0x,0%, O3 0X,0X,,
o
o’h  9°h 2%h
0X,0X, O0X,0%X, x>




Numerical Integration

Three of the more common numerical integration
algorithms used to evaluate the integral

[2£ (x)ax
arc:
Euler's or Forward Rectangular Rule
jab f (x)dx = Axnz_1 f(a + kAx)
k=0

Trapezoidal Rule

forn=1
21 (e = AX[M}
forn>1
f:f(x)dxz%f(a)”gf(mkAX)+ f(b)}

Smpson's Rule/Parabolic Rule (n must be an even integer)

o[22 rla)a1( 212 10)

forn=2

forn=4

fa)+2 S fla+ka)
J: f (X)dx = g - K=2,46,..
3144 Y fa+kax)+ f(b)

k=135.,..

with  Ax=(b—a)/n
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MATHEMATICS (continued)
Numerical Solution of Ordinary Differential Equations
Given a differential equation

dy/dt = f(y, t) with y(0) =y,
At some general time KAt

y[(k+ DAt] Oy(kAt) + At f [ y(kAt), KAL)

which can be used with starting condition Y, to solve
recursively for y(At), y(2At), ..., y(nAt).

The method can be extended to nth order differential
equations by recasting them as n first-order equations.



STATICS

FORCE

A force is a vector quantity. It is defined when its (1)
magnitude, (2) point of application, and (3) direction are
known.

RESULTANT (TWO DIMENSIONS)

The resultant, F, of n forces with components Fy; and Fy;
has the magnitude of

(g 5]

The resultant direction with respect to the X-axis using
four-quadrant angle functions is

n n
0= arctan(z Fyi z FXJJ
i=1 i=1

The vector form of the force is
F=Fi+Fyj

RESOLUTION OF A FORCE
Fx=F cos 8,; Fy=F cos 6y; F,=F cos 6,
cos 6, = Fx/F; cos 8, = Fy/F; cos 6, = F,/F

Separating a force into components (geometry of force is
known R=/x* +y’ +27%)

F,=(XWRF;, Fy=@yRF; F,=(@RF

MOMENTS (COUPLES)

A system of two forces that are equal in magnitude,
opposite in direction, and parallel to each other is called a
couple.

A moment M is defined as the cross product of the radius
vector distance r and the force F from a point to the line of
action of the force.

M=rxF; My = yF,— zF,,
My = zF, — xF, and
M, = xF, — yFy.
SYSTEMS OF FORCES
F=%2F,
M=Z(r\xFp)
Equilibrium Requirements
2F,=0
>M,=0
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CENTROIDS OF MASSES, AREAS, LENGTHS, AND

VOLUMES

Formulas for centroids, moments of inertia, and first moment
of areas are presented in the MATHEMATICS section for
continuous functions. The following discrete formulas are for

defined regular masses, areas, lengths, and volumes:

fe=2 Myry/Z m, where

m, = the mass of each particle making up the system,

rn = the radius vector to each particle from a selected
reference point, and

re = theradiusvector to the center of thetotal mass from

the selected reference point.
The moment of area (M,) is defined as
May = Z Xnan
Max = Z Ynan
My, = 2 Znan
The centroid of area is defined as
Xac = May A with respect to center
Vac = Max/A t of the coordinate system
Zec = Ma /A )
A=%a,
The centroid of alineis defined as
Xic = (Z Xpln)/L, where L= |,
Yic = (Z Yaln)/L
Z.=(Z zln)/L
The centroid of volume is defined as
Xve = (Z X V)V, where V=2 v,
Yve = (Z YaV)IV
Zc = (Z Vo)V

where

MOMENT OF INERTIA
The moment of inertia, or the second moment of

area, is defined as
ly=/x* dA
l,=/y* dA

The polar moment of inertia J of an area about a point is
equal to the sum of the moments of inertia of the area about
any two perpendicular axes in the area and passing through

the same point.
l,=J=1ly+ 1= /(¢ +y") dA
=ry°A, where

I, = the radius of gyration (see page 23).



Moment of Inertia Transfer Theorem

The moment of inertia of an area about any axis is defined
as the moment of inertia of the area about a parallel
centroidal axis plus a term equal to the area multiplied by
the square of the perpendicular distance d from the
centroidal axis to the axis in question.

Iy =1, +d;A
2
ch +dyA, where

r —
Iy =
= distance between the two axes in question,

dy, dy
Iy c? ly = the moment of inertia about the centroidal axis, and
I¥, 1y = the moment of inertia about the new axis.
Radius of Gyration

The radius of gyration ry, ry, Iy is the distance from a
reference axis at which all of the area can be considered to
be concentrated to produce the moment of inertia.

VLA T =LA T = 3A

Product of Inertia
The product of inertia (I, etc.) is defined as:

Iy = /xydA, with respect to the Xy-coordinate system,
le=/xzdA, with respect to the xz-coordinate system, and
ly,= JyzdA, with respect to the yz-coordinate system.
The transfer theorem also applies:

Iy, =1, +d,d A for the Xxy-coordinate system, etc.,

where

dy = x-axis distance between the two axes in question and
dy = y-axis distance between the two axes in question.

FRICTION

The largest frictional force is called the limiting friction.

Any further increase in applied forces will cause motion.
F =u N, where

F = friction force,

[ = coefficient of static friction, and

N =normal force between surfaces in contact.

SCREW THREAD
For a screw-jack, square thread,

M = Pr tan (a * @), where

+ s for screw tightening,

— is for screw loosening,

M = external moment applied to axis of screw,

P =1load onjack applied along and on the line of the axis,
r = the mean thread radius,

o = the pitch angle of the thread, and

[ = tan @= the appropriate coefficient of friction.
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STATICS (continued)
BRAKE-BAND OR BELT FRICTION
F,=F, e where
F, = force being applied in the direction of impending
motion,
F, = force applied to resist impending motion,
M = coefficient of static friction, and

0 = the total angle of contact between the surfaces
expressed in radians.

STATICALLY DETERMINATE TRUSS

Plane Truss

A plane truss is a rigid framework satisfying the following

conditions:

1. The members of the truss lie in the same plane.

2. The members are connected at their ends by frictionless
pins.

3. All of the external loads lie in the plane of the truss and
are applied at the joints only.

4. The truss reactions and member forces can be determined
using the equations of equilibrium.

SF=0;ZM=0

5. A truss is statically indeterminate if the reactions and
member forces cannot be solved with the equations of
equilibrium.

Plane Truss: Method of Joints

The method consists of solving for the forces in the members
by writing the two equilibrium equations for each joint of the
truss.

2 Fy=0and Z Fy =0, where
Fy = horizontal forces and member components and
Fv = vertical forces and member components.

Plane Truss: Method of Sections

The method consists of drawing a free-body diagram of a
portion of the truss in such a way that the unknown truss
member force is exposed as an external force.

CONCURRENT FORCES

A system of forces wherein their lines of action all meet at
one point.

Two Dimensions
SF=0;2F,=0

Three Dimensions
SF=02F,=0;2XF,=0



DYNAMICS

KINEMATICS

Vector representation of motion in space: Let r(t) be the
position vector of a particle. Then the velocity is

v = dr/dt, where

v = the instantaneous velocity of the particle,
(length/time)

t = time
The acceleration is

a= dv/dt=d’r/dt>, where
a = the instantaneous acceleration of the particle,
(length/time/time)

Rectangular Coordinates
r=xi+yj+z
v=dr/dt =X +yj + Z
a=d’r/dt’> =i + yj + Zk, where
x = dx/dt = v,, etc.
X= dzx/dt2 =a,, etc.

Transverse and Radial Components for Planar
Problems

y

PATH

0 X

Unit vectors & and egare, respectively, colinear with and
normal to the position vector.

r=re,

v=re, +rfe,

o= ('r' - réz) e + (ré + 2r'é) €
r = the radius,

0 = the angle between the x-axis and r,
f =dr/dt,etc. and

'r'=d2r/dt2,etc.

Tangential and Normal Components
y et

€n

r PATH

Unit vectors &, and & are, respectively, normal and tangent to
the path.

vV = V&
a = (dv/dt) e+ (V/p) e, where
p = instantaneous radius of curvature and

V; = tangential velocity
Plane Circular Motion

y Vi

0 X
Rotation about the origin with constant radius: The unit
vectors are & = €gand & = — €,.

Angular velocity
w=0=v,/r

Angular acceleration
a=0=0=a//r
s=r6
V, = w

Tangential acceleration

& =r a=dv/dt

Normal acceleration

a, =Vilr=r o
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Straight Line Motion
Constant acceleration equations:
S =5+ Vet + (at) /2
vV =V, +ait
vV =v,2 + 2a,(S— ), where
s = distance along the line traveled,
S, = an initial distance from origin (constant),
V, = an initial velocity (constant),
a, = a constant acceleration,
t =time, and
v = velocity at time t.
For a free falling body, a,= g (downward)
Using variable velocity, V(t)
s=s, = [ov(t) dt
Using variable acceleration, a(t)

v=v, + [ alt) dt

PROJECTILE MOTION
y
VO

g

0 X

a,=0; ay=-—0g

Vy = Vyo = V, cOS O

Vy =Vy, — gt =V, sin 6 — gt

X = Vyt =Vt cos O

Y= Vyot — gt/ 2 = vt sin © — gt*/2
CONCEPT OF WEIGHT

W=mg, where
W= weight, N (Ibf),
m= mass, kg (Ibf-sec’/ft), and

g = local acceleration of gravity, m/sec” (ft/sec?).

KINETICS
Newton's second law for a particle

>F = d(mv)/dt, where

2F = the sum of the applied forces acting on the

particle, N (Ibf).
For a constant mass,
>F = mdv/dt = ma

DYNAMICS (continued)
One-Dimensional Motion of Particle
When referring to motion in the X-direction,

a, = Fy/m, where
Fx = the resultant of the applied forces in the
X-direction. Fy can depend on t, X and Vy in general.
If Fy depends only on t, then
v (t)=v,o + [o[Felt)/ml ot
X(t)=x, + vt + v, {t') o
If the force is constant (independent of time, displacement, or
velocity),
a, = F,/m
V, =V, + (F,/Imt =v,, + at
X=X, + Vot + Ft2/(2m)

=X, + Vot + at?/2

Tangential and Normal Kinetics for Planar Problems
Working with the tangential and normal directions,
> F: = ma; = mdv;/dt and
ZFn=ma, = m(v’/p)
Impulse and Momentum
Assuming the mass is constant, the equation of motion is
mdv, /dt = F,
mdv, = F dt
mlv, (t) - v, (0] = LF. (t')at
The left side of the equation represents the change in linear

momentum of a body or particle. The right side is termed the
impulse of the force Fy(t") betweent' =0 and t' =1t.

Work and Energy
Work Wis defined as
W= /F-dr
(For particle flow, see FLUID MECHANICS section.)

KINETIC ENERGY

The kinetic energy of a particle is the work done by an
external agent in accelerating the particle from rest to a
velocity V.

T=m?/2
In changing the velocity from Vv to V,, the change in kinetic
energy is

To-Ti=mvw/2 —nv*/2
Potential Energy

The work done by an external agent in the presence of a
conservative field is termed the change in potential energy.



Potential Energy in Gravity Field
U = mgh, where

h = the elevation above a specified datum.

Elastic Potential Energy

For a linear elastic spring with modulus, stiffness, or spring
constant K, the force is

Fs= k x, where
X = the change in length of the spring from the undeformed
length of the spring.

The potential energy stored in the spring when compressed
or extended by an amount X is

U=kx¥2
The change of potential energy in deforming a spring from
position X; to position X; is

U,-U,=kx}/2-kx?/2
Principle of Conservation of Work and Energy

If T; and U; are kinetic energy and potential energy at state
i, then for conservative systems (no energy dissipation), the
law of conservation of energy is

U1+T1:U2+T2

If friction is present, then the work done by the friction
forces must be accounted for.

U +T,+W_,=U,+T,

(Care must be exercised during computations to correctly
compute the algebraic sign of the work term).

Impact

Momentum is conserved while energy may or may not be
conserved. For direct central impact with no external forces

myv, + m,v, =myv; + m,V,, where
m,, m, =the masses of the two bodies,
V;,V, =their velocities before impact, and
V|, V, =their velocities after impact.

For impact with dissipation of energy, the relative velocity
expression is

Vi, ~Va
e=-— n n
Vln —V2n

e = the coefficient of restitution for the materials, and the
subscript N denotes the components normal to the
plane of impact.

Knowing e, the velocities after rebound are

oMo, (1+e)+(m —emy )y,

1

“ m, +m,
= mv,(1+e)-(em —my v,
’ m, +m,

DYNAMICS (continued)
where 0<ec<l.

e= 1, perfectly elastic

e =0, perfectly plastic (no rebound)

FRICTION

The Laws of Friction are

1. The total friction force F that can be developed is
independent of the magnitude of the area of contact.

2. The total friction force F that can be developed is
proportional to the normal force N.

3. For low velocities of sliding, the total friction force that
can be developed is practically independent of the
velocity, although experiments show that the force F
necessary to start sliding is greater than that necessary to
maintain sliding.

The formula expressing the laws of friction is

F=u N, where
M = the coefficient of friction.

Static friction will be less than or equal to Us N, where s is
the coefficient of static friction. At the point of impending
motion,

F=usN
When motion is present
F = px N, where
Mk = the coefficient of kinetic friction. The value of i is

often taken to be 75% of s

Belt friction is discussed in the Statics section.

MASS MOMENT OF INERTIA
l,= /(¢ +y?) dm

A table listing moment of inertia formulas is available at the
end of this section for some standard shapes.

Parallel Axis Theorem
I,= 1,0+ md?2, where
I, = the mass moment of inertia about a specific axis (in
this case, the z-axis),

I, = the mass moment of inertia about the body's mass
center (in this case, parallel to the z-axis),

m = the mass of the body, and
d

= the normal distance from the mass center to the
specific axis desired (in this case, the z-axis).

Also,
l,=mr2, where

m = the total mass of the body and
r, = the radius of gyration (in this case, about the z-axis).
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PLANE MOTION OF A RIGID BODY
For a rigid body in plane motion in the X-y plane

may. = Fy
may. = Fy
lca = My, where

¢ = the center of gravity and
a = angular acceleration of the body.

Rotation About a Fixed Axis
o0 = ZMg, where
O denotes the axis about which rotation occurs.

For rotation about a fixed axis caused by a constant applied
moment M

a =M/l

W =et+M/)t

8 =60+wpt+(M/21)¢t
The change in kinetic energy of rotation is the work done
in accelerating the rigid body from ay to .

2 2 [ _ (0
lo /214 6 /2=[5 Md®

Kinetic Energy
The kinetic energy of a body in plane motion is

T= m(vﬁc +vjc)/2 +1, /2

Instantaneous Center of Rotation

The instantaneous center of rotation for a body in plane
motion is defined as that position about which all portions
of that body are rotating.

~
. Ve

ACH= ro, and
v, =BCH, where
C =the instantaneous center of rotation,

0 = the rotational velocity about C, and

AC, BC =radii determined by the geometry of the situation.
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CENTRIFUGAL FORCE

For a rigid body (of mass m) rotating about a fixed axis, the
centrifugal force of the body at the point of rotation is

F.=mra’ = mv/r, where

r = the distance from the center of rotation to the center of
the mass of the body.

BANKING OF CURVES (WITHOUT FRICTION)
tan 8 = V?/(gr), where

0 = the angle between the roadway surface and the
horizontal,

v = the velocity of the vehicle, and

I = the radius of the curve.

FREE VIBRATION

POSITION OF STATIC  [g

EQUILIBRIUM
kdg + kx

rci

1 |
Lodo

The equation of motion is

mi = mg —k(x+Jg)
From static equilibrium

mg = kdg, where
k = the spring constant, and

Oy = the static deflection of the spring supporting the weight
(mg).

mx+kx=0, or
%+ (k/m)x=0

The solution to this differential equation is
X(t)=C, cos 4/(k/m) t +C, sin y/(k/m) t, where

X(t) =

C,, C, = constants of integration whose values depend on the
initial conditions of the problem.

The quantity ./K/m is called the undamped natural
frequency w, or

the displacement in the X-direction and

W, =4/k/m

* Timoshenko, S. and D.H. Young, Engineering Mechanics, Copyright © 1951 by McGraw-Hill Company,
Inc. Diagrams reproduction permission pending.



From the static deflection relation

®, =4/0/3,
The period of vibration is
1=21/w, =2m/m/k =2m/3, /g
If the initial conditions are X(0) = Xy and X(O) =V, , then
X(t) = Xg cos Wit + (Vo /) sin wt
If the initial conditions are X(0) = X, and x(O) =0, then
X(t) = X cos wt,

which is the equation for simple harmonic motion where
the amplitude of vibration is X,.

Torsional Free Vibration
B+w0=0, where

w, =4k /I =4/GJ/IL
k; = the torsional spring constant = GJ/L,
| = the mass moment of inertia of the body,

G= the shear modulus,

J = the area polar moment of inertia of the round shaft
cross section, and

L = the length of the round shaft.

The solution to the equation of motion is
8 =06,cosw,t + (60 / o.)n) SinWyt where
8o = the initial angle of rotation and

8, = the initial angular velocity.

The period of torsional vibration is

1=2w, =2m/IL/GJ

The undamped circular natural frequency of torsional
vibration is

w, =/GI/IL
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DYNAMICS (continued)

6¢C

Figure Area & Centroid Area Moment of Inertia (Radius of Gyration)’ Product of Inertia
y A= biv2 I, =bh'/36 re =h’/18 ey, = Abhy36 =b’h*/72
kB yxc— EZB I, =b’h36 r2 =b*/18 I, =Abh/4=bh/8
h =
- { c lx = bh¥/12 re =h’/6
b x ly = b’ha r, =b’/2
y ‘—f Ai bh/2 I, =bh'/36 re =h’/18 l,.,. == Abh/36==b’h?/72
c h yxc _ EZ ly, =b’36 ry, =b*/18 ly = Abh/12=bh/24
] ! c l, = bh¥/12 r; =h’/6
e X l, =bh12 r> =b’/6
A= bh2 I, =bh’/36 r2 =h’/18 I, =[Ah(2a-b))/36
y % X XY
I\ 1 s =l -ab v s = -ab+ais - b a- o 7
— i Ye e rh3(122 2)] 2 =h’/6 ly =[Ah(2a+b)/12
b N |y =[pnlp’ +ab+a’}/12 2= (b +ab+a’)s = or (22 +b)] /24
y A= bh |, =bh*/12 r? =h?/12 by, =0
C T e EZ l,, =b’h/12 r, =b*/12 l, =Abh/4=b’h?/4
) T Ve |; =bh’/3 r2=h?/3
b I, =b’h/3 r; =b’/3
X J:[bh(b2+h2]/12 r; :(b2+h2)/12
y| |-a A=h(a+b)/2 _h(a® +4ab+b?) , _h*(a® +4ab+b?)
f y _h(2a+b) % = 36(a+h) % = 18(a+b)
o S T R T . _(arb)
T2 * 6la+b)
b X
y A= absin® Iy = (a3b Sin3e) 12 I’X2C = (a Sine)2/12 Ly, = (a3bsin2 90089)/12
C %= (b + acos 6)/2 ly, = [ab sinB(b2 + a200s29]/12 r; = (b2 + azcosze) 12
6o ° a y.= (asin 0)/2 W ¢
/ I, =\a’bsin 6)3 ry :(asin6)2/3
~——bT™ ™| x ly = absine(b+acos9)2]/3 r; = (b+acose)2/3
- (a2 bzsinecose) 6 ~ (abcosB)/6
Housner, George W. & Donald E. Hudson, Applied Mechanics Dynamics, Copyright [ 1959 by D. Van Nostrand Company, Inc., Princeton, NJ. Table reprinted by permission of G.W. Housner & D.E. Hudson.
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DYNAMICS (continued)

Figure Area & Centroid Area Moment of Inertia (Radius of Gyration)’ Product of Inertia
y A= & I, =1, =ma'/4 ro=r; =a’/4 I, =0
c > %= a I, =1,=5m'/4 rl=r) =5a’/4 I, =Aa’
o @ J=ma‘)2 P =a)2
=Ta rp =a
X
y A= T -b) I, =1, =nla‘ -b*)/4 rxi=ryzc=(a2+b2)/4 Ly, =
%= a _sm’ - ‘ re=r, =(5a2 +b2)/4 I, = Aa’
‘ Vo- a I, =1, = -ma’h L
4 r;=a2+b2)/2 =ma’(a’ -b?)
J=mfa* -b*))2
X
A= @2 A ) R ) by, =
y X= a * 72Mm * 361 |, =2a’/3
C = =’ -
. Ye= 4al(3m) ch = /8 ryi = 2/4
- 2 — X |X:T|a4/8 r><2=a2/4
- 4
|y—5Tla/8 ry2:53_2/4
y A=a’0 I, = a*®—sinb cos 0)/4 (2= a’ (B—Sinecose) I, =0
8 C _ 2asin X4 ) | =0
e 2 o - & i Y
0 X 3 06 ly = a&'(6+sind cos 6)/4 2o a” (8+sin cos)
Y. =0 Y4 0
CIRCULAR SECTOR
y A:az(e—smzej | = Aa’ - 2sin> B cos O (2 :61_2 1- 2sin’6 cos@ Iy, =0
a,//]\ 2 4 30 -3sin 6 cosO 4 30 —3sinO cosb l, =0
9 .3 2 .3
S X X, :2@—9 | = Aa’ 1+ 2sin> B cosO rj :a_{l_l_Zsm.—BcosG}
V\C 3 0-sinBcosd y n 6 —sinB cosB 4 0 —sinBO cosO
Ye =0
CIRCULAR SEGMENT
y A =4ab/3 r; =r] =b’/5 l., =0
_ _ Xe X XY,
N %, = 3al5 I, =1, =4ab’/15 . -
c|b . r, =12a°/175 5 =
= Ye = I, =16a’h/175
a—»& ¢ ry2 = 38.2/7
|, =4a’b/7
PARABOLA
Housner, George W. & Donald E. Hudson, Applied Mechanics Dynamics, Copyright [0 1959 by D. Van Nostrand Company, Inc., Princeton, NJ. Table reprinted by permission of G.W. Housner & D.E. Hudson.
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DYNAMICS (continued)
Figure Area & Centroid Area Moment of Inertia (Radius of Gyration)’ Product of Inertia
y A =2ab/3 Iy =2ab’/15 r2=b’/s Aabl4 = a’b’
c |4 X. = 3al5 l, =2ab’/7 2 =3a2/7
* Yo =3b/8 ¢
a X
HALF A PARABOLA
V|2 e A=bh/(n+1) _ bk’ rz_hz(n+1)
= (o T L onEl “3(Bn+1) * 7 3Bn+1)
¢y N2 | _ b’ 2=ty
— b x _hn+l Y n+3 Y n+3
© 22n+l
n" DEGREE PARABOLA
Y| y= (bt A=—""_ph | =" 2z NHL
i n+1 3(n+3) 3(n+1)
C _n+l n 3 > _ N+l
. h ¢ — b |, = b’h ro- =
{ 2n+l 7 3n+l Y 3n+1
n+1
le—— ) ——»| X = h
o Ve 2(n+2)
n" DEGREE PARABOLA




DYNAMICS (continued)

[43

Figure Mass & Centroid Mass Moment of Inertia (Radius of Gyration)’ Product of Inertia
M = PLA Iy =1, =0 r,=r. = Iy, ete. =0
y = L2 1 —m2 2 _
C ;;C_ 0 ly, =1, =ML/12 r, =r; =L*/12 lyysete.=0
& 1—— c _ _ P _ _
e X Z - 0 l,=1,=ML*/3 rp=r}=L"/3
0 = line density
y M = 2mFRA I, =1, =MR*/2 r. =r, =R*/2 ., etc.=0
§C: E IZC:,\/lR2 r22C:|Q2 Izcz :MR2
¢ - — —
N\ Z =0 I =1, =3MR%/2 () =12 =3R/2 l,=1,=0
X & = line density |, =3MR? r} =3R?
z (mass/L)
y M = TFRA I, =1, =MBR> +h?)12 | 1} =r] =GR +h )12 I, .etc.=0
Ye = ¢ ’
c|h =0 |x=IZ:M(3R2+4h2)12 r2 =12 = (3R +4h’)/12
AT l 0 = line density
R X (mass/L)
z
U R M =niph(R? - R?) e =1, r2 =r=(R +3R +h*)/12 I, etc.=0
R — _ 2 2 L2 -
(B X, =0 =M (3R? +3R? +h2 )12 r2=r2=(RF+R)2 l,,.etc.=0
i C h y. =h/2 |yC:|y:M(R12+R22)2 2 =2
L-1- _ X z
:' Xl ZC—O IX :IZ :3R|2+3R22+4h2)/12
/ 6 = mass/vol. =M (3R? +3R? +4h* )12
M = 41oR3 I, =1, =2MR*/5 r;=r; =2R’/5 l,,, ete.=0
X =0 -1 — 2 2 _ 2 _ D2
h = o l, =1, =2MR’/5 r, =r; =2R’/5
Cc
St Z = 0 I, =1,=2MR*/5 r; =ri=2R’/S
v 0 = mass/vol.
z
Housner, George W. & Donald E. Hudson, Applied Mechanics Dynamics, Copyright O 1959 by D. Van Nostrand Company, Inc., Princeton, NJ. Table reprinted by permission of G.W. Housner & D.E. Hudson.




MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN
Stress-Strain Curve for Mild Steel

¢
YIELD STRENGTH AT 0.2
PERCENT OFFSET 300
40,000~
A
250
cZ) 30,000 — / —_1200 .
y o
% =
& 20,0001 / 7180 &
L
&
/ 100
10,000

—50

_/

0.001 0.002

L 0

!
0.003 0.004

in./in. or m/m
0.1 0.2 0.3 0.4 PERCENT
STRAIN

The slope of the linear portion of the curve equals the
modulus of elasticity.

ENGINEERING STRAIN €= AL /Lo, where
€ = engineering strain (units per unit),

AL = change in length (units) of member,

Lo = original length (units) of member,

€y = plastic deformation (permanent), and

€q = elastic deformation (recoverable).
Equilibrium requirements: 2F = 0; ZM =0

Determine geometric compatibility with the restraints. Use a
linear force-deformation relationship;

F=ko.

DEFINITIONS
Shear Stress-Strain

y=1/G, where
y = shear strain,

T = shear stress, and

G=shear modulus (constant in linear force-deformation
relationship).

, where

E =modulus of elasticity
v = Poisson'sratio,
= — (lateral strain)/(longitudinal strain).

33

Uniaxial Loading and Deformation
o = P/A, where

0 = stress on the cross section,

P =loading, and

A = cross-sectional area.

€ =0/L, where

0 = longitudinal deformation and
L = length of member.

E=0/e= prA
o/L
5=L
AE
THERMAL DEFORMATIONS

o =oaL (7T- T,), where
=  deformation caused by a change in temperature,
= temperature coefficient of expansion,
length of member,
= final temperature, and

o\|\|I_Q,Q’I
Il

initial temperature.

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:
2,2
and 0>0, >-P

re+r’
o0, =-R,-5—5 and 0>0, >-F,, where

O; = tangential (hoop) stress,
O, = radial stress,

0
I

= internal pressure

T
o
|

= external pressure
r; = inside radius
ro = outside radius

For vessels with end caps, the axial stress is:
2
— i
0,= F:: r2—r?

o I

These are principal stresses.

+ Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications, 4th Ed. Copyright [J
1990 by Houghton Mifflin Co. Figure used with permission.



When the thickness of the cylinder wall is about one-tenth or
less, of inside radius, the cylinder can be considered as thin-
walled. In which case, the internal pressure is resisted by the
hoop stress

_FRr

O-t—T and :Pir

a7 o
where t = wall thickness.
STRESS AND STRAIN

Principal Stresses

For the special case of a two-dimensional stress state, the
equations for principal stress reduce to

2
o, +0 0,-0
0,,0,=—— L+ [ - yJ +12

2 2 b
0.=0

The two nonzero values calculated from this equation are
temporarily labeled 0, and g, and the third value o is always
zero in this case. Depending on their values, the three roots
are then labeled according to the convention: algebraically
largest = oy, algebraically smallest = a3, other = 0,. A typical
2D stress element is shown below with all indicated
components shown in their positive sense.

Mohr's Circle — Stress, 2D

To construct a Mohr's circle, the following sign conventions
are used.

Gy
— T 1y
y
Oy O x
ol
Txy B E—
Sy

1. Tensile normal stress components are plotted on the
horizontal axis and are considered positive. Compressive
normal stress components are negative.

2. For constructing Mohr's circle only, shearing stresses are
plotted above the normal stress axis when the pair of
shearing stresses, acting on opposite and parallel faces of
an element, forms a clockwise couple. Shearing stresses
are plotted below the normal axis when the shear stresses
form a counterclockwise couple.

The circle drawn with the center on the normal stress
(horizontal) axis with center, C, and radius, R, where

2
C:=0X+cry R= 0, -0, o2
2 2 i
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MECHANICS OF MATERIALS (continued)
The two nonzero principal stresses are then:
0,=C+R
O-b = C - R
The maximum inplane shear stress is T = R However, the
maximum shear stress considering three dimensions is always
o, -0
1 3

j— T cW
T =

i 2

T cCW

Hooke's Law

Three-dimensional case:

&= (1/E)[ox— V(Oy + 07)] Yoy = Ty /G

gy = (1/E)[oy — V(0 + 0y)] Yyz = Ty /G

&= (1/E)[0,— V(0x + 0y)] Yox = Tx/G
Plane stress case (0, = 0):
&= (1/E)(0x— voy) o, e (1 V0 |
gy = (1/E)(0y — vOy) o, = vi oo (e,
e, =—(I/B(voc+voy) |1, v 0 0 VIilve

2

Uniaxial case (0y = 0, = 0): o, = Eg, or 0 = E€ where

€ &y, & = normal strain,
Oy, Oy, 0, = normal stress,
Yxy> Yyz» Yox = shear strain,
Tyy» Tys, Tox= shear stress,
E = modulus of elasticity,
G= shear modulus, and

v = Poisson's ratio.

STATIC LOADING FAILURE THEORIES

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs
when one of the three principal stresses equals the strength of
the material. If g > 0 > 03, then the theory predicts that
failure occurs whenever 0; 2 S or 3 £ — & where S and &
are the tensile and compressive strengths, respectively.

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins
when the maximum shear stress equals the maximum shear
stress in a tension-test specimen of the same material when
that specimen begins to yield. If 0| = ¢; 2 03, then the theory
predicts that yielding will occur whenever T, 2 S,/2 where
S is the yield strength.



Distortion-Energy Theory

The distortion-energy theory states that yielding begins
whenever the distortion energy in a unit volume equals the
distortion energy in the same volume when uniaxially stressed
to the yield strength. The theory predicts that yielding will

occur whenever
(01 -0, )2 + (02 — 03 )2 + (01 e )2 "
5 > Sy

TORSION
Ve = lAimig r(Ag/Az) = r(dg/dz)

The shear strain varies in direct proportion to the radius, from
zero strain at the center to the greatest strain at the outside of
the shaft. dg/dz s the twist per unit length or the rate of twist.

Tz = G Y = Gr (d@/dz)
T =G (d/d) ] r’dA=G)(dg@/d2)

where
J = polar moment of inertia (see table at end of DYNAMICS
section).
L
Q= T dz =l,where
o GJ GJ

¢ = total angle (radians) of twist,
T = torque, and
L = length of shaft.

T = Gr [TI(GI)] =Tr/I

I =E,where
L

¢

T/ gives the twisting moment per radian of twist. This is
called the torsional stiffness and is often denoted by the
symbol K or C.

For Hollow, Thin-Walled Shafts
T
=—— , where
2At
t = thickness of shaft wall and

A= the total mean area enclosed by the shaft measured to
the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positiveif it produces bending of
the beam concave upward (compression in top fibers and
tension in bottom fibers).

2. The shearing force is positive if the right portion of the
beam tends to shear downward with respect to the left.
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MECHANICS OF MATERIALS (continued)

POSITIVE BENDING

S—

NEGATIVE BENDING

—

POSITIVE SHEAR NEGATIVE SHEAR

e iy

The relationship between the load (Q), shear (V), and moment
(M) equations are:

__dv(x)
q(x)= o
v = MK

dx

V-V = J:z [~ alx)] ox

M, =M, = [ V(x)dx

X

Stresses in Beams
€ =—YIp, where

p = the radius of curvature of the deflected axis of the
beam and
y = the distance from the neutral axis to the longitudinal

fiber in question.

Using the stress-strain relationship o= Eg,

Axial Stress: o, = —Ey/p, where

Oy = the normal stress of the fiber located y-distance from
the neutral axis.

1/p = M/(El), where

M = the moment at the section and

| = the moment of inertia of the cross-section.

oy =— Myl/l, where

y = the distance from the neutral axis to the fiber location
above or below the axis. Let y = C, where ¢ = distance
from the neutral axis to the outermost fiber of a
symmetrical beam section.

oy =* Mdll
Let S= I/c: then, 0, = £ M/S where
S = the éastic section modulus of the beam member.
Transverse shear flow: q=VQ/I and
Transverse shear stress: T, = VQ/(Ib) , where
q =
T,y = shear stress on the surface,
V = shear force at the section,

shear flow,

b = width or thickness of the cross-section, and

Q = A'Y where

A" = area above the layer (or plane) upon which the desired
transverse shear stress acts and

y = distance from neutral axis to area centroid.

* Timoshenko, S. & Gleason H. MacCullough, Elements of Srength of Materials, 11949 by K. Van
Nostrand Co. Used with permission from Wadsworth Publishing Co.



Deflection of Beams
Using 1/p = M/(EI),

d’y
El dx? = M, differential equation of deflection curve
d’y

Bl e = dM/dx =V

d'y
dx* = dvV(x)/dx=—q
Determine the deflection curve equation by double integration

(apply boundary conditions applicable to the deflection and/or
slope).

El

El (dy/dx) = /M(x) dx
Ely=[[] M) dx] dx

The constants of integration can be determined from the
physical geometry of the beam.

COLUMNS
For long columns with pinned ends:

Euler's Formula

P.. = critical axial loading,
¢ = unbraced column length.
substitute | = r*A:
P, _ TCE
A (ry
where

r = radiusof gyration and
Ar= dendernessratio for the column.

For further column design theory, see the CIVIL ENGI-
NEERING and MECHANICAL ENGINEERING sections.
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MECHANICS OF MATERIALS (continued)

ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work done
during deflection (extension) of a member will be
transformed into potential energy and can be recovered.

If the final load is P and the corresponding elongation of a
tension member is d, then the total energy U stored is equal to
the work W done during loading.

U=W=Pd/12

The strain energy per unit volume is

u=U/AL = 0*2E (for tension)

MATERIAL PROPERTIES
=
Material * — £ - =
= ) = 7 =
= & = <
- »n < &) =
Modulus of | Mpsi | 30.0 10.0 14.5 1.6
Elasticity, E | GPa | 207.0 | 69.0 | 100.0 | 11.0
Modulus of | Mpsi | 11.5 3.8 6.0 0.6
Rigidity, G | GPa | 80.0 260 | 414 4.1
Poisson's 0.30 0.33 0.21 0.33
Ratio, v




LE

Beam Deflection Formulas — Special Cases
(& is positive downward)
P 2 2 2
y o 5="2 (3x-a), for x>a 5, =2 (3L-a) ¢, = -2
< Omax 6El 6El 2El
il Ste— 2
- — K 5= X (- x+3a),forx<a
L | T g El
4 3
Y} w, LoaD PER UNIT LENGTH 5= W, X’ (Xz +62 —4LX) 5, = w, L 0 = w, L’
:[D:B:D;EEB?; Ornax 24El SEl 6El
|T7 y
L | Prnax
y 5= Mo 5, =Mt g =Mt
* pL o 2El ™ 2E ™ H
;A\f_ X
Mo #/
- L ‘i (pﬂ'lax
B 2 _ 2 P2 Pab(2L —a
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Crandall, S.H. & N.C. Dahl, An Introduction to The Mechanics of Solids, Copyright 0 1959 by the McGraw-Hill Book Co., Inc. Table reprinted with permission from McGraw-Hill.



FLUID MECHANICS

DENSITY, SPECIFIC VOLUME, SPECIFIC
WEIGHT, AND SPECIFIC GRAVITY

The definitions of density, specific volume, specific weight,
and specific gravity follow:

p = limit AmyAV
y = limit AW/AV
also V= lAl\I/l}lOt g [Am/AV = pg

SG =VY/Y,, =p/p., Where

p = dengity (also mass density),

Am = mass of infinitesimal volume,

AV = volume of infinitesimal object considered,

y = specific weight,

AW = weight of an infinitesimal volume,

SG = specific gravity, and

pw = mass density of water at standard conditions = 1,000
kg/m® (62.43 lbm/ft’).

STRESS, PRESSURE, AND VISCOSITY
Stress is defined as

T(P)=limit AF/AA, where

T (P) = surface stress vector at point P,
AF = force acting on infinitesimal area AA,

AA = infinitesimal area at point P, and

Th=—-p

T = 1 (dV/dy) (one-dimensional; i.e., Y),

where

Thand 7; = the normal and tangential stress components at
point P,

p = the pressure at point P,

i = absolute dynamic viscosity of the fluid
NE/m? [Ibm/(ft-sec)],

dv = velocity at boundary condition, and

dy = normal distance, measured from boundary.

% = Wp, where

v = kinematic viscosity; m%/s (ft*/sec).

For a thin Newtonian fluid film and a linear velocity profile,
v(y) = W/d; dv/dy = VI, where
V = velocity of plate on film and
0 = thickness of fluid film.
For a power law (non-Newtonian) fluid
T, = K (dv/dy)", where
K = consistency index and
n = power law index
n <1 = pseudo plastic
n>1 = dilatant
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SURFACE TENSION AND CAPILLARITY
Surface tension g'is the force per unit contact length

o = F/L, where

o = surface tension, force/length,
F = surface force at the interface, and
L = length of interface.
The capillary rise h is approximated by
h =40 cos B/(yd), where
h = the height of the liquid in the vertical tube,
O = the surface tension,
[3 = the angle made by the liquid with the wetted tube wall,
y = specific weight of the liquid, and
d = the diameter or the capillary tube.

THE PRESSURE FIELD IN A STATIC LIQUID AND
MANOMETRY

¢ Az

2

Z4

The difference in pressure between two different points is

Pp—-pi=-Y(Z—-2z)=Yh

Y (

¢ ) P2
I
FLUID 1
h2 FLUID 2
Po X —‘ i~
h1
Y
T P1

./Yz

%

+ Bober, W. & R.A. Kenyon, Fluid Mechanics, Copyright [ 1980 by John Wiley & Sons, Inc. Diagrams
reprinted by permission of William Bober & Richard A. Kenyon.



For a simple manometer,

Po = P2+ Y2ho — yihy
Absolute pressure = atmospheric pressure + gage pressure
reading

Absolute pressure = atmospheric pressure — vacuum gage
pressure reading

Another device that works on the same principle as the
manometer is the simple barometer.

patm:pA:pV+yh:pB+yh

¢ Pv 4-(:,/ Ps
[7

'/ Pa
| BAROMETER
/ RESERVOIR

py = vapor pressure of the barometer fluid

FORCES ON SUBMERGED SURFACES AND THE
CENTER OF PRESSURE
PRESSURE
, / DISTRIBUTION
X / ON WALL

L4
n_o
N
A /
AREA A dA Z
o

Po
(a)

(b)

Forces on a submerged plane wall. (a) Submerged plane surface. (b) Pressure distribution.

The pressure on a point at a distance Z' below the surface is
p=p,+VyZ,forZ 20

If the tank were open to the atmosphere, the effects of p,

could be ignored.

The coordinates of the center of pressure CP are

Y= (yl .2, Sino )/( P, A) and
= (yl ;. sina )/ (p,A) where
y* = the y-distance from the centroid (C) of area (A) to the
center of pressure,
z* = the z-distance from the centroid (C) of area (A) to the
center of pressure,

| and

y I vz = the moment and product of inertia of the

area,
pc. = the pressure at the centroid of area (A), and

Z. = the slant distance from the water surface to the centroid
(C) of area (A).
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FLUID MECHANICS (continued)

SECTION B-B

If the free surface is open to the atmosphere, then
p, =0 and p. = YZ sin Q.

y =1, /(AZ,) and 2z =1, /(AZ,)
The force on the plate can be computed as

F=[piA + (P2 — p1) A/2]i + Vi ytj, where
F = force on the plate,
p; = pressure at the top edge of the plate area,
p. = pressure at the bottom edge of the plate area,
A, = vertical projection of the plate area,
V; = volume of column of fluid above plate, and
¥ = specific weight of the fluid.

ARCHIMEDES' PRINCIPLE AND BUOYANCY

1. The buoyant force exerted on a submerged or floating
body is equal to the weight of the fluid displaced by the
body.

2. A floating body displaces a weight of fluid equal to its
own weight; i.e., a floating body is in equilibrium.

The center of buoyancy is located at the centroid of the

submerged portion of the body.

In the case of a body lying at the interface of two immiscible
fluids, the buoyant force equals the sum of the weights of the
fluids displaced by the body.

ONE-DIMENSIONAL FLOWS

The Continuity Equation So long as the flow Q is
continuous, the continuity equation, as applied to one-
dimensional flows, states that the flow passing two points (1
and 2) in a stream is equal at each point, A;V| = AV,.
Q=AvV
M = Q= pAV, where
Q = volumetric flow rate,
M =

mass flow rate,

+ Bober, W. & R.A. Kenyon, Fluid Mechanics, Copyright [ 1980 by John Wiley & Sons, Inc. Diagrams
reprinted by permission of William Bober & Richard A. Kenyon.



A
\Y

Y

For

= cross section of area of flow,
= average flow velocity, and
the fluid density.

) . O. .
steady, one-dimensional flow, mis a constant. If, in

addition, the density is constant, then Q is constant.

The Field Equation is derived when the energy equation is
applied to one-dimensional flows.

Assuming no friction losses and that no pump or turbine
exists between sections 1 and 2 in the system,

p2+2+22_p1+

1+Z1 where
y 29 Y

29

pi, p» = pressure at sections 1 and 2,

Vi, V, = average velocity of the fluid at the sections,

Z, 2 = the vertical distance from a datum to the sections
(the potential energy),
y = the specific weight of the fluid, and
g = the acceleration of gravity.
FLOW OF A REAL FLUID
2

pl+z+ p2+z +V—+h

y 29 Yy 29
The pressure drop as fluid flows through a pipe of constant

cross-section and which is held at a fixed elevation is

hy

hf = (p1 — p2)Iy, where

=the head loss, considered a friction effect, and all

remaining terms are defined above.

Fluid Flow

The

velocity distribution for laminar flow in circular tubes

or between planes is

r
R

\"

max

Vmax

Vmax

Vmax

\Y
The

2
V=V oax {1 —(Lj }, where
R

= the distance (m) from the centerline,

= the radius (m) of the tube or half the distance between
the parallel planes,

= the local velocity (m/s) at r, and
= the velocity (m/s) at the centerline of the duct.
= 1.18V, for fully turbulent flow
(Re > 10,000),
= 2V, for circular tubes and
= 1.5V, for parallel planes, where
= the average velocity (m/s) in the duct.

shear stress distribution is

T r
— =—, where
T

w

T and T, are the shear stresses at radii r and R respectively.
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FLUID MECHANICS (continued)

The drag force Fp on objects immersed in a large body of
flowing fluid or objects moving through a stagnant fluid is

2
F, = CopV-A
2
Cp= the drag coefficient (see page 46),

V = the velocity (m/s) of the undisturbed fluid, and

A = the projected area (m?) of bluff objects such as spheres,
ellipsoids, and disks and plates, cylinders, ellipses, and
air foils with axes perpendicular to the flow.

For flat plates placed parallel with the flow
Cp = 1.33/Re"’ (10* <Re < 5 x 10%)
Cp=0.031/Re"” (10° < Re < 10%)

The characteristic length in the Reynolds Number (Re) is the
length of the plate parallel with the flow. For bluff objects, the
characteristic length is the largest linear dimension (diameter
of cylinder, sphere, disk, etc.) which is perpendicular to the
flow.

Reynolds Number
Re =VDp/u =VD/v
(2-n)n
Re' = v Dn P ,  where
K(3n+1} 8(n_1)
4n
p = the mass density,

D =the diameter of the pipe or dimension of the fluid
streamline,

| = the dynamic viscosity,

v = the kinematic viscosity,

Re = the Reynolds number (Newtonian fluid),

Re' = the Reynolds number (Power law fluid), and

K and n are defined on page 38.

The critical Reynolds number (Re). is defined to be the
minimum Reynolds number at which a flow will turn
turbulent.

Hydraulic Gradient (Grade Line)

The hydraulic gradient (grade line) is defined as an imaginary
line above a pipe so that the vertical distance from the pipe
axis to the line represents the pressure head at that point. If a
row of piezometers were placed at intervals along the pipe,
the grade line would join the water levels in the piezometer
water columns.

Energy Line (Bernoulli Equation)

The Bernoulli equation states that the sum of the pressure,
velocity, and elevation heads is constant. The energy line is
this sum or the "total head line" above a horizontal datum.

The difference between the hydraulic grade line and the
energy line is the %/ 2g term.



STEADY, INCOMPRESSIBLE FLOW IN CONDUITS
AND PIPES

The energy equation for incompressible flow is
2
pl+zl pz+zz+V—+hf
y 29 y 29
If the cross-sectional area and the elevation of the pipe are the
same at both sections (1 and 2), then 2z, =7z, and V| = V,. The
pressure drop p; — P, is given by the following:

P — P2 = Py
The Darcy equation is
2
h, =f LV— where
D 29

f = f(Re, €/D), the friction factor,

D = diameter of the pipe,

L = length over which the pressure drop occurs,

e = roughness factor for the pipe, and all other symbols are
defined as before.

A chart that gives f versus Re for various values of €D,
known as a Moody or Stanton diagram, is available at the end
of this section on page 45.

Friction Factor for Laminar Flow

The equation for Q in terms of the pressure drop Aps is the
Hagen-Poiseuille equation. This relation is valid only for flow
in the laminar region.

TR'Ap, TD*Ap,
suL  128uL

Flow in Noncircular Conduits

Q:

Analysis of flow in conduits having a noncircular cross
section uses the hydraulic diameter Dy, or the hydraulic
radius Ry, as follows

_ cross-sectional area _ Dy,

wetted perimeter 4

Minor Losses in Pipe Fittings, Contractions, and
Expansions

Head losses also occur as the fluid flows through pipe fittings
(i.e., elbows, valves, couplings, etc.) and sudden pipe

contractions and expansions.
2

2
&4_21 +V;:&+Zz +V_2+hf +hf fitting
y 29 y 29 ,
where 2
\
hf fitting =C_— 2g

Specific fittings have characteristic values of C, which will be
provided in the problem statement. A generally accepted
nominal value for head loss in well-streamlined gradual
contractions is

MY siing = 0.04 V %/ 29

41

FLUID MECHANICS (continued)

The head lossat either an entrance or exit of a pipe from or to
a reservoir is also given by the hy fyin, equation. Values for C
for various cases are shown as follows.

o= =
_I T

V—

=

-
=

AR XIT PROTRUDING SHARP ROUND
C = PIPE ENTRANCE ENTRANCE ~ ENTRANCE
c=08 C=05 c=01
PUMP POWER EQUATION

W= Qyhn, where
Q = quantity of flow (m’/s or cfs),
h = head (m or ft) the fluid has to be lifted,
n = efficiency, and
W = power (watts or ft-Ibf/sec).

THE IMPULSE-MOMENTUM PRINCIPLE
The resultant force in a given direction acting on the fluid
equals the rate of change of momentum of the fluid.
2F = QPyV2 — Qip1Vy, where
2F = the resultant of all external forces acting on the
control volume,

Qip:1V; = the rate of momentum of the fluid flow entering
the control volume in the same direction of the
force, and

Q2p,V, = the rate of momentum of the fluid flow leaving the
control volume in the same direction of the force.

Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement,
or contraction in a pipe line may be computed using the
impulse-momentum principle.

P1A| — PAcos 0 — Fy= Qp (Vacos 0 — V)
Fy—W-p,Assin o = Qp (V,sin a — 0), where

F = the force exerted by the bend on the fluid (the force
exerted by the fluid on the bend is equal in magnitude
and opposite in sign), Fx and Fy are the X-component and
y-component of the force,

+ Bober, W. & R.A. Kenyon, Fluid Mechanics, Copyright [J 1980 by John Wiley & sons, Inc. Diagram
reprinted by permission of William Bober & Richard A. Kenyon.

* Vennard, J.K., Elementary Fluid Mechanics, Copyright 0 1954 by J.K. Vennard. Diagrams reprinted by
permission of John Wiley & Sons, Inc.



p = the internal pressure in the pipe line,

A = the cross-sectional area of the pipe line,

W = the weight of the fluid,

V = the velocity of the fluid flow,

o = the angle the pipe bend makes with the horizontal,
p© = the density of the fluid, and

Q = the quantity of fluid flow.

Jet Propulsion

A= y A
A Y h B >

_l_ 3
—0—Vo=1/2gh

*-PROPULSIVE ("A

FORCE 2

b—+—Ic L=

1
V-I"O

F

<
(=]

1~

F=Qp(V>-0)
F = 2yhA,, where

F = the propulsive force,

y = the specific weight of the fluid,

h = the height of the fluid above the outlet,
A, = the area of the nozzle tip,

Q=A \/ﬁ ,and

V2 = \/ﬁ

Deflectors and Blades
FIXED BLADE

V,
. 2 y

V,
v, ﬁ> 2
Fx X

FEF Vi

F ON BLADE y

v,V

- F4 Qp(Vycos a — V)
Fy = Qp(Vasin a—0)
MOVING BLADE

hd FINAL DIRECTION OF
JET RELATIVE TO BLADE /7/ V1 —V

V,-v=u
RELATIVE TO BLADE_%

- Fx=Qp(Vax— Viv)
=—-Qp(V; —Vv)(1 —cos 0)
Fy=Qp(Vay — Viy)
=+ Qp(V; — V) sin d, where
v = the velocity of the blade.

42

FLUID MECHANICS (continued)

IMPULSE TURBINE

V3

P =Q72—g
FOR o = 180°
FOR o < 180°

W = Qp (V; — V)(1 —cos ) v, where
W= power of the turbine.
W= Qp (V,%4)(1 - cos a)
When a = 180°,

Winax = (Qlez)/2 = (QYVIZ)/zg

MULTIPATH PIPELINE PROBLEMS

The same head loss occurs in each branch as in the
combination of the two. The following equations may be
solved simultaneously for Va and Vg:

h da Ve 1e Vs
“ "D,29 °D,2g

(r>/4)V = (D} /4)v,, + (D¢ /4)v,

The flow Q can be divided into Qa and Qg when the pipe
characteristics are known.

OPEN-CHANNEL FLOW AND/OR PIPE FLOW

Manning's Equation
V= (k/n)R*S", where
k =1 for SI units
k = 1.486 for USCS units
V = velocity (m/s, ft/sec),
n = roughness coefficient,
R = hydraulic radius (m, ft), and
S = slope of energy grade line (m/m, ft/ft).

Hazen-Williams Equation
V =k CRS"*, where
C = roughness coefficient
k; = 0.849 for SI units
k; = 1.318 for USCS units

Other terms defined as above.

* Vennard, J.K., Elementary Fluid Mechanics, Copyright [ 1954 by J.K. Vennard. Diagrams reprinted by
permission of John Wiley & Sons, Inc.



MACH NUMBER

The speed of sound ¢ in an ideal gas is given by
c=+kRT

k= cplc,.

This shows that the acoustic velocity in an ideal gas depends
only on its temperature.

, Where

The mach number Ma is a ratio of the fluid velocity V to the
speed of sound:

Ma = V/c

FLUID MEASUREMENTS

The Pitot Tube — From the stagnation pressure equation for
an incompressible fluid,

v =J/p)p, - p.) =+20(p, - p.,)/y

where

V = the velocity of the fluid,
p, = the stagnation pressure, and

ps = the static pressure of the fluid at the elevation where the
measurement is taken.

0

V,p //

S Po

For a compressible fluid, use the above incompressible fluid
equation if the mach number < 0.3.

\/29(&+Zl _&_sz
Y Y

where, C, = the coefficient of velocity.

Venturi Meters

Q:

CA
1-(A/A)

The above equation is for incompressible fluids.
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FLUID MECHANICS (continued)

Orifices The cross-sectional area at the vena contracta A, is
characterized by a coefficient of contraction C. and given by
C:A.

Q:CA\/Zg(&+zl —&—sz
Y Y

where C, the coefficient of the meter, is given by
CVCC

C=
1-ci(AA)
.
ORIFICES AND THEIR NOMINAL COEFFICIENTS
SHARP
EDGED ROUNDED SHORT TUBE BORDA
__,E _ —
T _— P P
c 0.61 0.98 0.80 0.51
Ce 0.62 1.00 1.00 0.52
Cy 0.98 0.98 0.80 0.98

Submerged Orifice operating under steady-flow conditions:

. Q\

l<
|-
—

Q= szz = Cch' N2g(h1 - hz)

=CA2glh, —h,

in which the product of C; and C, is defined as the coefficient
of discharge of the orifice.

* Vennard, J.K., Elementary Fluid Mechanics, Copyright [0 1954 by J.K. Vennard. Diagrams reprinted by
permission of John Wiley & Sons, Inc



Orifice Discharging Freely Into Atmosphere
. SN

A

Q=CA,2gh

in which h is measured from the liquid surface to the centroid
of the orifice opening.

DIMENSIONAL HOMOGENEITY AND DIMEN-
SIONAL ANALYSIS

Equations that are in a form that do not depend on the
fundamental units of measurement are called dimensionally
homogeneous equations. A special form of the dimensionally
homogeneous equation is one that involves only
dimensionless groups of terms.

Buckingham's Theorem: The number of independent
dimensionless groups that may be employed to describe a
phenomenon known to involve n variables is equal to the
number (N —T1 ), where T is the number of basic dimensions
(i.e., M, L, T) needed to express the variables dimensionally.

SIMILITUDE

In order to use a model to simulate the conditions of the
prototype, the model must be geometrically, kinematically,
and dynamically similar to the prototype system.

To obtain dynamic similarity between two flow pictures, all
independent force ratios that can be written must be the same
in both the model and the prototype. Thus, dynamic similarity
between two flow pictures (when all possible forces are
acting) is expressed in the five simultaneous equations below.

F :_i} {_sz} {sz}
Fp _Fp o p 0 P,

] (2] <] <] o .
E‘H V.—Hg} =[rd, =[Fd,
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FLUID MECHANICS (continued)
where

the subscripts p and m stand for prototype and model
respectively, and

Fi = inertia force,
Fp = pressure force,
Fv = viscous force,
Fc = gravity force,
Fe = elastic force,
Fr = surface tension force,
Re = Reynolds number,
We = Weber number,
Ca = Cauchy number,
Fr = Froude number,
| = characteristic length,
V = velocity,
p = density,
o0 = surface tension,
E = modulus of elasticity,
M = dynamic viscosity,
p = pressure, and
g = acceleration of gravity.
Re—@—E

M v
PROPERTIES OF WATER'
R - A
SP|l&Gzg 82 |23 |82 |SEE
0 9.805 999.8 | 1.781 | 1.785 0.61
5 9.807 1000.0 | 1.518 | 1.518 0.87
10 9.804 999.7 | 1.307 | 1.306 1.23
15 9.798 999.1 | 1.139 | 1.139 1.70
20 9.789 998.2 | 1.002 | 1.003 2.34
25 9.777 997.0 | 0.890 | 0.893 3.17
30 9.764 995.7 1 0.798 | 0.800 4.24
40 9.730 992.2 | 0.653 | 0.658 7.38
50 9.689 988.0 | 0.547 | 0.553 12.33
60 9.642 983.2 | 0.466 | 0.474 19.92
70 9.589 977.8 | 0.404 | 0.413 31.16
80 9.530 971.8 | 0.354 | 0.364 47.34
90 9.466 965.3 | 0.315 | 0.326 70.10
100 | 9.399 958.4 | 0.282 | 0.294 101.33

“From "Hydraulic Models," A.SC.E. Manual of Engineering Practice, No. 25, A.S.C.E., 1942. See footnote 2.

“From J.H. Keenan and F.G. Keyes, Thermodynamic Properties of Seam, John Wiley & Sons, 1936.

fCompiled from many sources including those indicated, Handbook of Chemistry and Physics, 54th Ed., The CRC

Press, 1973, and Handbook of Tables for Applied Engineering Science, The Chemical Rubber Co., 1970.
*Here, if E/10° = 1.98 then E = 1.98 x 10° kPa, while if t x 10° = 1.781, then pt = 1.781 x 10~ Pa's, and so on.

Vennard, J.K. and Robert L. Street, Elementary Fluid Mechanics, Copyright 1954, John Wiley & Sons, Inc.

 Vennard, J.K., Elementary Fluid Mechanics, Copyright [0 1954 by J.K. Vennard. Diagrams reprinted
by permission of John Wiley & Sons, Inc



FLUID MECHANICS (continued)
MOODY (STANTON) DIAGRAM

Reprinted by permission of ASHRAE. e (ft) e, (mm)
Riveted steel 0.003-0.03 0.9-9.0
Concrete 0.001-0.01 0.3-3.0
Cast iron 0.00085 0.25
Galvanized iron 0.0005 0.15
Commercial steel or wrought iron 0.00015 0.046
Drawn tubing 0.000005 0.0015
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FLUID MECHANICS (continued)

DRAG COEFFICIENTS FOR SPHERES, DISKS, AND CYLINDERS
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THERMODYNAMICS

PROPERTIES OF SINGLE-COMPONENT
SYSTEMS

Nomenclature

1. Intensive properties are independent of mass.

2. Extensive properties are proportional to mass.

3. Specific properties are lower case (extensive/mass).

State Functions (properties)

Absolute Pressure, p (Ibf/in? or Pa)
Absolute Temperature, T (°R or K)
Specific Volume, v (ft*/Ibm or m*/kg)

Internal Energy, u (usually in Btu/lbm or kJ/kg)
Enthalpy, h=u+ Pv (same units as U)
Entropy, S [in Btu/(Ibm-°R) or kJ/(kgK)]
Gibbs Free Energy, g = h — TS (same units as U)

Helmbholz Free Energy, a=u— Ts (same units as U)

_(oh
Heat Capacity at Constant Pressure, Cp (ﬁj .

ou
Heat Capacity at Constant Volume, Cv = (O_Tj

Quality X (applies to liquid-vapor systems at saturation) is
defined as the mass fraction of the vapor phase:

X = my/(my + ), where
My = mass of vapor and
M = mass of liquid.
Soecific volume of a two-phase system can be written:
V. =Xvg+ (1 -X)v or
V¢ = specific volume of saturated liquid,
Vy = specific volume of saturated vapor, and

Vig = specific volume change upon vaporization

V= XVig+ W, Where

Similar expressions exist for u, h, and s:
U = Xug+(1—X) U
h Xhg + (1 —X) by
S Xyt (1 -Xs
For a simple substance, specification of any two intensive,
independent propertiesis sufficient to fix all the rest.
For an ideal gas, Pv=RT or PV =mRT, and
P1V1/T1 = P2V2/T2, where
p = pressure,
v = specific volume,
M= mass of gas,
R = gas constant, and
T = temperature.
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Ris specific to each gasbut can be found from

R= L , Where
(mol. wt.)

R =the universal gas constant

= 1,545 ft-Ibf/(Ibmol-°R) = 8,314 J/(kmol[K).
For Ideal Gases, cp—c, =R
Also, for |deal Gases:

IR R
op ), op ).

For cold air standard, heat capacities are assumed to be
constant at their room temperature values. In that case, the
following are true:

Au=CcAT; Ah=cp AT

As=cp In (To/T;) — RIn (P,/Py); and

As=c, In (To/T)) + Rln (V,/vy).
For heat capacities that are temperature dependent, the value
to be used in the above equations for Ah is know as the mean
heat capacity (C,) and is given by

gt
P L-T

Also, for constant entropy processes:

PV = Povok: T,P, -0k = T, p, (-0

Tvy D = Tov, (k’l), where k = ¢,/c,

FIRST LAW OF THERMODYNAMICS

The First Law of Thermodynamics is a statement of
conservation of energy in a thermodynamic system. The net
energy crossing the system boundary is equal to the change in
energy inside the system.

Heat Q is energy transferred due to temperature difference
and is considered positive if it is inward or added to the
system.
Closed Thermodynamic System
(no mass crosses boundary)
Q-w=AU + AKE + APE
where
AKE = change in kinetic energy
APE = change in potential energy

Energy can cross the boundary only in the form of heat or
work. Work can be boundary work, W, or other work forms
(electrical work, etc.)

Work w is considered positiveif it isoutward or work done by
the system.

Reversible boundary work is given by w, = /P dv.



SPECIAL CASES OF CLOSED SYSTEMS
Constant Pressure (Charles Law): W, = PAv

(ideal gas) T/v = constant

Constant Volume: W, =0
(ideal gas) T/P = constant
Isentropic (ideal gas), PVk = constant:

W= (P2V2 - P1V1)/(1 — k)
=R(T-THl(1-k)

Constant Temperature (Boyl€'s Law):
(ideal gas) Pv = constant
W, = RTIn (V2/V1) = RTIn (P1/P2)
PV" = constant:
W= (Pv, = Pv)/(1 —n)

Polytropic (ideal gas),

Open Thermodynamic System
(allowing mass to cross the boundary)

There is flow work (PV) done by mass entering the system.
The reversible flow work is given by:

Wiy = — [ v dP + AKE + 4PE
First Law applies whether or not processes are reversible.
FIRST LAW (energy balance)

s +V2/2+ gz, |- s, +v2 /2 + gz,
+Qin Wi = d (msus)/dt

where
Wie = rate of net or shaft work transfer,
m; = mass of fluid within the system,
Us = specific internal energy of system,
= rate of heat transfer (neglecting kinetic and potential

energy).

SPECIAL CASES OF OPEN SYSTEMS
Wrey = — V(P2 — Py)

Constant Volume:
Constant Pressure:
Constant Temperature:
(ideal gas) Pv = constant:
Wy = RTIn (W/v;) = RTIn (P,/P,)
PV¢ = constant:
Wiey = K (Pov, — Piv)/(1 - K)
=kR(T,-T)/(1 -K)

(k-1)/k

k P

== RT|1-| 2
e T { (HJ ]

PV" = constant

Isentropic (ideal gas):

Polytropic:
Wrey = N (Pov2 — Pvp)/(1 —n)
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THERMODYNAMICS (continued)

Steady-State Systems
The system does not change state with time. This assumption
is valid for steady operation of turbines, pumps, compressors,
throttling valves, nozzles, and heat exchangers, including
boilers and condensers.
Ym(h +Vv?/2+9z )= (h, +V2/2+9Z,)
+Qm —V\'lUut =0 and

>m =>m,, where

M = mass flow rate (subscripts i and e refer to inlet and exit
states of system),

g = acceleration of gravity,
Z = clevation,
V = velocity, and
W = rate of work.

SPECIAL CASES OF STEADY-FLOW ENERGY
EQUATION

Nozzes, Diffusers. Velocity terms are significant. No
elevation change, no heat transfer, and no work. Single mass
stream.

hi + Vi2/2 = he + V62/2

\VARAVA

m , Where

Efficiency (nozzle) =

hes = enthalpy at isentropic exit state.

Turbines, Pumps, Compressors. Often considered adiabatic
(no heat transfer). Velocity terms usually can be ignored.
Significant work terms. Single mass stream.

hi = he +w h —h
Efficiency (turbine) = ﬁ
h,-h
Efficiency (compressor, pump) = W

Throttling Valves and Throttling Processes. No work, no
heat transfer, and single-mass stream. Velocity terms often
insignificant.

hi = he
Boilers, Condensers, Evaporators, One Side in a Heat

Exchanger: Heat transfer terms are significant. For a single-
mass stream, the following applies:

hi +q= he
Heat Exchangers: No heat or work. Two separate flow rates
Iﬂ and rj: _ _
m (hli - hle) =m, (hze —h, )
Mixers, Separators, Open or Closed Feedwater Heaters:
>mh =>mh, and
2m=xm,



BASIC CYCLES

Heat engines take in heat Q at a high temperature Ty,
produce a net amount of work w, and reject heat Q, at a low
temperature T.. The efficiency N of a heat engine is given by:

N =wQu = (Qn—QU/Qn

The most efficient engine possible is the Carnot Cycle. Its
efficiency is given by:

Ne= (TH — TL)/TH where
Ty and T = absolute temperatures (Kelvin or Rankine).

The following heat-engine cycles are plotted on P-v and T-s
diagrams (see page 52):

Carnot, Otto, Rankine

Refrigeration Cycles are the reverse of heat-engine cycles.
Heat is moved from low to high temperature requiring work
W. Cycles can be used either for refrigeration or as heat
pumps.

Coefficient of Performance (COP) is defined as:

COP = Qu/W for heat pump, and as
COP = Q/Wfor refrigerators and air conditioners.

Upper limit of COP is based on reversed Carnot Cycle:

COP; = Ty /(T — Ty) for heat pump and
COP; = T /(Ty— Ty) for refrigeration.

1 ton refrigeration = 12,000 Btu/hr = 3,516 W

IDEAL GAS MIXTURES
i=1,2, ..., nconstituents. Each constituent is an ideal gas.

Mole Fraction: N; = number of moles of component i.
X=N/N;N=ZN; Zx=1

Mass Fraction: y=m/mym=2Xm; 2y, =1

Molecular Weight: M = m/N = Z xM;

Gas Constant: R= R/ M

To convert mole fractions to mass fractions:

y = X M,
©x(xMm)
To convert mass fractions to mole fractions:
- Y. /M,
C2(y/M)
mRT
Partial Pressures p=> p;; p =%
Partial Volumes \/ =yv -y = mRT
ijr Vi vV
where
p,V, T = the pressure, volume, and temperature of the
mixture.
X=plp=VilV
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THERMODYNAMICS (continued)
Other Properties
u=Z (Yit); h=2Z (yih); s= Z (yis)
U; and h; are evaluated at T, and

S is evaluated at T and p;.

PSYCHROMETRICS

We deal here with a mixture of dry air (subscript &) and water
vapor (subscript V):

P=Pat Py
Foecific Humidity (absolute humidity) .
w=m,/m,, where
m, = mass of water vapor and
M, = mass of dry air.
w=0.622p,/pa=0.622p,/(p — pv)
Relative Humidity ¢:
¢@=m,/my = p,/pg, where
My = mass of vapor at saturation and
py = saturation pressure at T.
Enthalpy h: h=h,+ wh,
Dew-Point Temperature Tgp:
Tap= Tear at Pg =Py

Wet-bulb temperature Ty, is the temperature indicated by a
thermometer covered by a wick saturated with liquid water
and in contact with moving air.

Humidity Volume: Volume of moist air/mass of dry air.

Psychrometric Chart

A plot of specific humidity as a function of dry-bulb
temperature plotted for a value of atmospheric pressure. (See
chart at end of section.)

PHASE RELATIONS
Clapeyron Equation for Phase Transitions:

% :_hfg :Si where
dT )y Vi Vi

htg = enthalpy change for phase transitions,

Vig = volume change,

Sy = entropy change,

T = absolute temperature, and

(dP/dT)s, = slope of vapor-liquid saturation line.

Gibbs Phase Rule
P+ F=C+ 2, where
P = number of phases making up a system,

F = degrees of freedom, and
C = number of components in a system.



Gibbs Free Energy

Energy released or absorbed in a reaction occurring reversibly
at constant pressure and temperature AG.

Helmholtz Free Energy

Energy released or absorbed in a reaction occurring reversibly
at constant volume and temperature AA.

COMBUSTION PROCESSES

First, the combustion equation should be written and
balanced. For example, for the stoichiometric combustion of
methane in oxygen:

CH;+2 0O, - CO,+2 H,O

Combustion in Air

For each mole of oxygen, there will be 3.76 moles of
nitrogen. For stoichiometric combustion of methane in air:

CH4+20,+2(3.76) N; - CO,+2 H,0O+7.52 N,

Combustion in Excess Air

The excess oxygen appears as oxygen on the right side of the
combustion equation.

Incomplete Combustion

Some carbon is burned to create carbon monoxide (CO).

i , mass of air
Air-Fuel Ratio (A/F): AIF = _—
mass of fuel

Soichiometric (theoretical) air-fuel ratio is the air-fuel ratio
calculated from the stoichiometric combustion equation.

(AF s

Percent Theoretical Air = W x100
stoichiometric

Percent Excess Air
= (A/ F )actual - (A/ F )stoichiometric X 100

(A/ F )stoichiometric

SECOND LAW OF THERMODYNAMICS
Thermal Energy Reservoirs

AS(eservoir = Q/ Treservoir’ where

Q is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law

No heat engine can operate in a cycle while transferring heat
with a single heat reservoir.

COROLLARY to Kelvin-Planck: No heat engine can have a
higher efficiency than a Carnot cycle operating between the
same reservoirs.
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THERMODYNAMICS (continued)

Clausius Statement of Second Law
No refrigeration or heat pump cycle can operate without a net
work input.

COROLLARY: No refrigerator or heat pump can have a
higher COP than a Carnot cycle refrigerator or heat pump.

VAPOR-LIQUID MIXTURES

Henry's Law at Constant Temperature

At equilibrium, the partial pressure of a gas is proportional to
its concentration in a liquid. Henry's Law is valid for low
concentrations; i.e., X = 0.

pi = py; = hx, where
h = Henry's Law constant,
p; = partial pressure of a gas in contact with a liquid,
X = mol fraction of the gas in the liquid,
yi = mol fraction of the gas in the vapor, and
p = total pressure.

Raoult's Law for Vapor-Liquid Equilibrium

Valid for concentrations near 1; i.e., X, = 1.

pi = Xpi , where
pi = partial pressure of component i,
X = mol fraction of component i in the liquid, and
P = vapor pressure of pure component i at the
temperature of the mixture.
ENTROPY

ds= (1/T) 0Q.cy

$—-95 = J.lz (I/T) 6(?rev
Inequality of Clausius

@e(1/MHdQ=0

[2(1mM3dQss -5
Isothermal, Reversible Process

As=5, -5 =Q/T

Isentropic process
As=0;ds=0
A reversible adiabatic process is isentropic.

Adiabatic Process

0Q=0;As=20
Increase of Entropy Principle
As,, = DS, TS, oumding 20
As,, =2Xm,s, —2Xm,s,
= 5 Qs Mo )2 0



THERMODYNAMICS (continued)

Temperature-Entropy (T-s) Diagram

T

Qrev = JfT ds

AREA = HEAT

Entropy Change for Solids and Liquids
ds=c (dT/T)
S-S5 = j Cc (dT/-r) = Cmeanln (TZITl)s

where C equals the heat capacity of the solid or liquid.

Irreversibility
I = Wrev — Wactual

Closed-System Availability
(no chemical reactions)

(p = (u* uo) - To (S* S)) + po (V*Vo)
Wreversible = (pl - (pZ

Open-System Availability
P=(-hy)-T,(s—s)+VN2+gz

Wreversible = LIJI - L|J2
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THERMODYNAMICS (continued)
COMMON THERMODYNAMIC CYCLES
Carnot Reversed Carnot
P T T
T
_L 2 TH 3 3 TH 2
Ty
=0 q=0 = =0
g =c s=¢ g - 8 g =c
1 4
TL 4 TL
S
S
Otto
(gasoline engine)
n=1-r"%
r=vi/vy
\
S
Rankine Refrigeration
s (Reversed Rankine Cycle)
I;VT q out T
. CONDENSER
Jin 3 2
- BOILER Wi,
EXPANSION -—
VALVE COMPRESSOR
2 4 1
EVAPORATOR
e () 4
din T
| o
2
3 Tlp2=ps
T hy =hg
COMPRESSOR
TURBINE =_:
= EXPANSION
=:VALVE
4= - N4
2
PUMP CONDENSER EVAPORATOR
I/ 1 4
s S
-h,)-(h, - h;-h h,—h
n= (h3 4) (hz hl) COP, = 1 4 COPyp = 2 3
h; = h, 27y h, =h,
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THERMODYNAMICS (continued)

Saturated Water - Temperature Table
Sat Specific Volume Internal Energy Enthalpy Entropy
Temp. at. m’/kg kJ/kg kJ/kg kJ/(kg'K)
o Press.
C Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat.
kPa c = | Evap. c Evap. - Evap.
T D liquid vapor liquid 0 vapor | liquid h vapor liquid S vapor
sat Vf Vg Uf fg ug hf fg hg S ] %
0.01 0.6113 0.001 000 206.14 0.00 23753 23753 0.01 2501.3 2501.4 0.0000 9.1562 9.1562
5 0.8721 0.001 000 147.12 20.97 2361.3 2382.3 20.98 2489.6 2510.6 0.0761 8.9496 9.0257
10 1.2276 0.001 000 106.38 42.00 2347.2 2389.2 42.01 2477.7 2519.8 0.1510 8.7498 8.9008
15 1.7051 0.001 001 77.93 62.99 2333.1 2396.1 62.99 2465.9 2528.9 0.2245 8.5569 8.7814
20 2339 0.001 002 57.79 83.95 2319.0 2402.9 83.96 2454.1 2538.1 0.2966 8.3706 8.6672
25 3.169 0.001 003 43.36 104.88 2304.9 2409.8 104.89 24423 2547.2 03674 8.1905 8.5580
30 4.246 0.001 004 32.89 125.78 2290.8 2416.6 125.79 2430.5 2556.3 0.4369 8.0164 8.4533
35 5.628 0.001 006 25.22 146.67 2276.7 2423.4 146.68 2418.6 2565.3 0.5053 7.8478 8.3531
40 7.384 0.001 008 19.52 167.56 2262.6 2430.1 167.57 2406.7 2574.3 0.5725 7.6845 8.2570
45 9.593 0.001 010 15.26 188.44 2248.4 2436.8 188.45 2394.8 2583.2 0.6387 7.5261 8.1648
50 12.349 0.001 012 12.03 209.32 22342 2443.5 209.33 2382.7 2592.1 0.7038 7.3725 8.0763
55 15.758 0.001 015 9.568 23021 2219.9 2450.1 230.23 2370.7 2600.9 0.7679 7.2234 7.9913
60 19.940 0.001 017 7.671 251.11 2205.5 2456.6 251.13 2358.5 2609.6 0.8312 7.0784 7.9096
65 25.03 0.001 020 6.197 272.02 2191.1 2463.1 272.06 2346.2 2618.3 0.8935 6.9375 7.8310
70 31.19 0.001 023 5.042 292.95 2176.6 2569.6 292.98 2333.8 2626.8 0.9549 6.8004 7.7553
75 38.58 0.001 026 4131 313.90 2162.0 2475.9 313.93 2321.4 2635.3 1.0155 6.6669 7.6824
80 47.39 0.001 029 3.407 334.86 2147.4 2482.2 33491 2308.8 2643.7 1.0753 6.5369 7.6122
85 57.83 0.001 033 2.828 355.84 2132.6 2488.4 355.90 2296.0 2651.9 1.1343 6.4102 7.5445
90 70.14 0.001 036 2361 376.85 2117.7 2494.5 376.92 2283.2 2660.1 1.1925 6.2866 7.4791
95 84.55 0.001 040 1.982 397.88 2102.7 2500.6 397.96 2270.2 2668.1 1.2500 6.1659 7.4159
MPa
100 0.101 35 0.001 044 1.6729 418.94 2087.6 2506.5 419.04 2257.0 2676.1 1.3069 6.0480 7.3549
105 0.120 82 0.001 048 1.4194 440.02 2072.3 2512.4 440.15 2243.7 2683.8 13630 5.9328 7.2958
110 0.143 27 0.001 052 1.2102 461.14 2057.0 2518.1 46130 2230.2 2691.5 1.4185 5.8202 7.2387
115 0.169 06 0.001 056 1.0366 48230 2041.4 2523.7 482.48 22165 2699.0 1.4734 57100 7.1833
120 0.198 53 0.001 060 0.8919 503.50 2025.8 2529.3 503.71 2202.6 2706.3 1.5276 5.6020 7.1296
125 0.2321 0.001 065 0.7706 524.74 2009.9 2534.6 524.99 2188.5 2713.5 1.5813 5.4962 7.0775
130 0.2701 0.001 070 0.6685 546.02 1993.9 2539.9 546.31 2174.2 2720.5 1.6344 53925 7.0269
135 03130 0.001 075 0.5822 567.35 1977.7 2545.0 567.69 2159.6 2727.3 1.6870 52907 6.9777
140 03613 0.001 080 0.5089 588.74 1961.3 2550.0 589.13 2144.7 2733.9 1.7391 5.1908 6.9299
145 0.4154 0.001 085 0.4463 610.18 1944.7 2554.9 610.63 2129.6 2740.3 1.7907 5.0926 6.8833
150 0.4758 0.001 091 03928 631.68 1927.9 2559.5 632.20 21143 2746.5 1.8418 4.9960 6.8379
155 0.5431 0.001 096 0.3468 653.24 1910.8 2564.1 653.84 2098.6 27524 1.8925 4.9010 6.7935
160 0.6178 0.001 102 0.3071 674.87 1893.5 2568.4 675.55 2082.6 2758.1 1.9427 4.8075 6.7502
165 0.7003 0.001 108 02727 696.56 1876.0 2572.5 697.34 2066.2 2763.5 1.9925 47153 6.7078
170 0.7917 0.001 114 0.2428 71833 1858.1 2576.5 719.21 2049.5 2768.7 2.0419 4.6244 6.6663
175 0.8920 0.001 121 0.2168 740.17 1840.0 2580.2 741.17 2032.4 2773.6 2.0909 45347 6.6256
180 1.0021 0.001 127 0.194 05 762.09 1821.6 2583.7 763.22 2015.0 2778.2 2.1396 4.4461 6.5857
185 1.1227 0.001 134 0.174 09 784.10 1802.9 2587.0 785.37 1997.1 2782.4 2.1879 43586 6.5465
190 1.2544 0.001 141 0.156 54 806.19 1783.8 2590.0 807.62 1978.8 2786.4 22359 42720 6.5079
195 1.3978 0.001 149 0.141 05 828.37 1764.4 2592.8 829.98 1960.0 2790.0 2.2835 4.1863 6.4698
200 1.5538 0.001 157 0.127 36 850.65 1744.7 2595.3 852.45 1940.7 2793.2 23309 4.1014 6.4323
205 1.7230 0.001 164 0.115 21 873.04 1724.5 2597.5 875.04 1921.0 2796.0 23780 4.0172 6.3952
210 1.9062 0.001 173 0.104 41 895.53 1703.9 2599.5 897.76 1900.7 2798.5 2.4248 3.9337 6.3585
215 2.104 0.001 181 0.094 79 918.14 1682.9 2601.1 920.62 1879.9 2800.5 24714 3.8507 63221
220 2318 0.001 190 0.086 19 940.87 1661.5 2602.4 943.62 1858.5 2802.1 25178 3.7683 6.2861
225 2.548 0.001 199 0.078 49 963.73 1639.6 2603.3 966.78 1836.5 2803.3 25639 3.6863 6.2503
230 2795 0.001 209 0.071 58 986.74 1617.2 2603.9 990.12 1813.8 2804.0 2.6099 3.6047 6.2146
235 3.060 0.001 219 0.065 37 1009.89 1594.2 2604.1 1013.62 1790.5 2804.2 2.6558 35233 6.1791
240 3344 0.001 229 0.059 76 1033.21 1570.8 2604.0 1037.32 1766.5 2803.8 27015 3.4422 6.1437
245 3.648 0.001 240 0.054 71 1056.71 1546.7 2603.4 1061.23 17417 2803.0 27472 33612 6.1083
250 3.973 0.001 251 0.050 13 1080.39 1522.0 2602.4 1085.36 1716.2 2801.5 27927 3.2802 6.0730
255 4319 0.001 263 0.045 98 1104.28 1596.7 2600.9 1109.73 1689.8 2799.5 2.8383 3.1992 6.0375
260 4.688 0.001 276 0.042 21 1128.39 1470.6 2599.0 113437 1662.5 2796.9 2.8838 3.1181 6.0019
265 5.081 0.001 289 0.038 77 1152.74 1443.9 2596.6 1159.28 1634.4 2793.6 2.9294 3.0368 5.9662
270 5.499 0.001 302 0.035 64 1177.36 1416.3 2593.7 1184.51 1605.2 2789.7 2.9751 2.9551 5.9301
275 5.942 0.001 317 0.032 79 1202.25 1387.9 2590.2 1210.07 1574.9 2785.0 3.0208 2.8730 5.8938
280 6.412 0.001 332 0.030 17 1227.46 1358.7 2586.1 1235.99 1543.6 2779.6 3.0668 27903 5.8571
285 6.909 0.001 348 0.027 77 1253.00 1328.4 2581.4 126231 1511.0 27733 3.1130 27070 5.8199
290 7.436 0.001 366 0.025 57 1278.92 1297.1 2576.0 1289.07 1477.1 2766.2 3.1594 2.6227 57821
295 7.993 0.001 384 0.023 54 1305.2 1264.7 2569.9 1316.3 1441.8 2758.1 3.2062 2.5375 5.7437
300 8.581 0.001 404 0.021 67 1332.0 1231.0 2563.0 1344.0 1404.9 2749.0 3.2534 24511 57045
305 9.202 0.001 425 0019948 | 1359.3 1195.9 2555.2 1372.4 1366.4 2738.7 33010 23633 5.6643
310 9.856 0.001 447 0.018350 | 1387.1 1159.4 2546.4 1401.3 1326.0 2727.3 33493 22737 5.6230
315 10.547 0.001 472 0016867 | 14155 1121.1 2536.6 1431.0 1283.5 27145 33982 2.1821 5.5804
320 11274 0.001 499 0.015488 [ 1444.6 1080.9 2525.5 1461.5 1238.6 2700.1 3.4480 2.0882 5.5362
330 12.845 0.001 561 0.012996 | 1505.3 993.7 2498.9 1525.3 1140.6 2665.9 3.5507 1.8909 5.4417
340 14.586 0.001 638 0010797 | 15703 894.3 2464.6 1594.2 1027.9 2622.0 3.6594 1.6763 53357
350 16.513 0.001 740 0.008813 [ 1641.9 776.6 2418.4 1670.6 893.4 2563.9 3.7777 1.4335 52112
360 18.651 0.001 893 0.006 945 [ 17252 626.3 2351.5 1760.5 7203 2481.0 3.9147 1.1379 5.0526
370 21.03 0.002 213 0.004 925 [ 1844.0 384.5 22285 1890.5 441.6 2332.1 4.1106 0.6865 4.7971
37414 | 2209 0.003 155 0.003 155 | 2029.6 0 2029.6 2099.3 0 2099.3 4.4298 0 4.4298
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THERMODYNAMICS (continued)

Superheated Water Tables

T v u h S v u h S
Temp. m3/kg kJ/kg kJ/kg kJ/(kg[K) m3/kg kJ/kg kJ/kg kJ/(kgK)
°’C p=0.01 MPa (45.81°C) p = 0.05 MPa (81.33°C)
Sat. 14.674 2437.9 2584.7 8.1502 3.240 2483.9 2645.9 7.5939
50 14.869 2443.9 2592.6 8.1749
100 17.196 2515.5 2687.5 8.4479 3.418 2511.6 2682.5 7.6947
150 19.512 2587.9 2783.0 8.6882 3.889 2585.6 2780.1 7.9401
200 21.825 2661.3 2879.5 8.9038 4.356 2659.9 2877.7 8.1580
250 24.136 2736.0 2977.3 9.1002 4.820 2735.0 2976.0 8.3556
300 26.445 2812.1 3076.5 9.2813 5.284 2811.3 3075.5 8.5373
400 31.063 2968.9 3279.6 9.6077 6.209 2968.5 3278.9 8.8642
500 35.679 31323 3489.1 9.8978 7.134 3132.0 3488.7 9.1546
600 40.295 3302.5 3705.4 10.1608 8.057 3302.2 3705.1 9.4178
700 44911 3479.6 3928.7 10.4028 8.981 3479.4 3928.5 9.6599
800 49.526 3663.8 4159.0 10.6281 9.904 3663.6 4158.9 9.8852
900 54.141 3855.0 4396.4 10.8396 10.828 3854.9 4396.3 10.0967
1000 58.757 4053.0 4640.6 11.0393 11.751 4052.9 4640.5 10.2964
1100 63.372 42575 4891.2 11.2287 12.674 4257.4 4891.1 10.4859
1200 67.987 4467.9 5147.8 11.4091 13.597 4467.8 5147.7 10.6662
1300 72.602 4683.7 5409.7 11.5811 14.521 4683.6 5409.6 10.8382
p =0.10 MPa (99.63°C) p = 0.20 MPa (120.23°C)
Sat. 1.6940 2506.1 2675.5 7.3594 0.8857 2529.5 2706.7 7.1272
100 1.6958 2506.7 2676.2 7.3614
150 1.9364 2582.8 2776.4 7.6134 0.9596 2576.9 2768.8 7.2795
200 2172 2658.1 2875.3 7.8343 1.0803 2654.4 2870.5 7.5066
250 2.406 2733.7 2974.3 8.0333 1.1988 2731.2 2971.0 7.7086
300 2.639 2810.4 3074.3 8.2158 13162 2808.6 3071.8 7.8926
400 3.103 2967.9 3278.2 8.5435 1.5493 2966.7 3276.6 8.2218
500 3.565 3131.6 3488.1 8.8342 1.7814 3130.8 3487.1 8.5133
600 4.028 3301.9 3704.4 9.0976 2.013 3301.4 3704.0 8.7770
700 4.490 3479.2 3928.2 9.3398 2.244 3478.8 3927.6 9.0194
800 4.952 3663.5 4158.6 9.5652 2.475 3663.1 4158.2 9.2449
900 5.414 3854.8 4396.1 9.7767 2.705 3854.5 4395.8 9.4566
1000 5.875 4052.8 4640.3 9.9764 2.937 4052.5 4640.0 9.6563
1100 6.337 42573 4891.0 10.1659 3.168 4257.0 4890.7 9.8458
1200 6.799 4467.7 5147.6 10.3463 3.399 4467.5 5147.5 10.0262
1300 7.260 4683.5 5409.5 10.5183 3.630 4683.2 5409.3 10.1982
p = 0.40 MPa (143.63°C) p=0.60 MPa (158.85°C)
Sat. 0.4625 2553.6 2738.6 6.8959 0.3157 2567.4 2756.8 6.7600
150 0.4708 2564.5 2752.8 6.9299
200 0.5342 2646.8 2860.5 7.1706 0.3520 2638.9 2850.1 6.9665
250 0.5951 2726.1 2964.2 7.3789 0.3938 2720.9 2957.2 7.1816
300 0.6548 2804.8 3066.8 7.5662 0.4344 2801.0 3061.6 7.3724
350 0.4742 2881.2 3165.7 7.5464
400 0.7726 2964.4 3273.4 7.8985 0.5137 2962.1 3270.3 7.7079
500 0.8893 3129.2 3484.9 8.1913 0.5920 3127.6 3482.8 8.0021
600 1.0055 3300.2 3702.4 8.4558 0.6697 3299.1 3700.9 8.2674
700 1.1215 3477.9 3926.5 8.6987 0.7472 3477.0 3925.3 8.5107
800 1.2372 3662.4 41573 8.9244 0.8245 3661.8 4156.5 8.7367
900 1.3529 3853.9 4395.1 9.1362 0.9017 3853.4 4394 .4 8.9486
1000 1.4685 4052.0 4639.4 9.3360 0.9788 4051.5 4638.8 9.1485
1100 1.5840 4256.5 4890.2 9.5256 1.0559 4256.1 4889.6 9.3381
1200 1.6996 4467.0 5146.8 9.7060 1.1330 4466.5 5146.3 9.5185
1300 1.8151 4682.8 5408.8 9.8780 1.2101 4682.3 5408.3 9.6906
p =0.80 MPa (170.43°C) p=1.00 MPa (179.91°C)
Sat. 0.2404 2576.8 2769.1 6.6628 0.194 44 2583.6 2778.1 6.5865
200 0.2608 2630.6 2839.3 6.8158 0.2060 2621.9 2827.9 6.6940
250 0.2931 2715.5 2950.0 7.0384 0.2327 2709.9 2942.6 6.9247
300 0.3241 2797.2 3056.5 7.2328 0.2579 2793.2 3051.2 7.1229
350 0.3544 2878.2 3161.7 7.4089 0.2825 2875.2 3157.7 7.3011
400 0.3843 2959.7 3267.1 7.5716 0.3066 2957.3 3263.9 7.4651
500 0.4433 3126.0 3480.6 7.8673 0.3541 3124.4 3478.5 7.7622
600 0.5018 3297.9 3699.4 8.1333 0.4011 3296.8 3697.9 8.0290
700 0.5601 3476.2 3924.2 8.3770 0.4478 3475.3 3923.1 8.2731
800 0.6181 3661.1 4155.6 8.6033 0.4943 3660.4 4154.7 8.4996
900 0.6761 3852.8 4393.7 8.8153 0.5407 3852.2 4392.9 8.7118
1000 0.7340 4051.0 4638.2 9.0153 0.5871 4050.5 4637.6 8.9119
1100 0.7919 4255.6 4889.1 9.2050 0.6335 4255.1 4888.6 9.1017
1200 0.8497 4466.1 5145.9 9.3855 0.6798 4465.6 5145.4 9.2822
1300 0.9076 4681.8 5407.9 9.5575 0.7261 4681.3 5407.4 9.4543
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THERMODYNAMICS (continued)
P-h DIAGRAM FOR REFRIGERANT HFC-134a

(metric units)

(Reproduced by permission of the DuPont Company)
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THERMODYNAMICS (continued)
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THERMODYNAMICS (continued)
HEAT CAPACITY

(at Room Temperature)

Mol Cp Cy
Substance k
wt kJ/(kg'K) Btu/(Ibm-"R) kJ/(kglK) Btu/(Ibm-"R)
Gases
Air 29 1.00 0.240 0.718 0.171 1.40
Argon 40 0.520 0.125 0.312 0.0756 1.67
Butane 58 1.72 0.415 1.57 0.381 1.09
Carbon dioxide 44 0.846 0.203 0.657 0.158 1.29
Carbon monoxide 28 1.04 0.249 0.744 0.178 1.40
Ethane 30 1.77 0.427 1.49 0.361 1.18
Helium 4 5.19 1.25 3.12 0.753 1.67
Hydrogen 2 14.3 343 10.2 2.44 1.40
Methane 16 2.25 0.532 1.74 0.403 1.30
Neon 20 1.03 0.246 0.618 0.148 1.67
Nitrogen 28 1.04 0.248 0.743 0.177 1.40
Octane vapor 114 1.71 0.409 1.64 0.392 1.04
Oxygen 32 0.918 0.219 0.658 0.157 1.40
Propane 44 1.68 0.407 1.49 0.362 1.12
Steam 18 1.87 0.445 1.41 0.335 1.33
Cp Density
Substance
kJ/(kglK) | Btu/(lbm-°R) kg/m® Ibm/ft’
Liquids
Ammonia 4.80 1.146 602 38
Mercury 0.139 0.033 13,560 847
Water 4.18 1.000 997 62.4
Solids
Aluminum 0.900 0.215 2,700 170
Copper 0.386 0.092 8,900 555
Ice (0°C; 32°F) 2.11 0.502 917 57.2
Iron 0.450 0.107 7,840 490
Lead 0.128 0.030 11,310 705
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HEAT TRANSFER

There are three modes of heat transfer: conduction,
convection, and radiation. Boiling and condensation are
classified as convection.

Conduction
Fourier's Law of Conduction

Q =-kA(dT/dx), where

Q =rate of heat transfer.

Conduction through a plane wall:

Ti—

r-— | —

Q=-KkA(T, -T,)/L, where
k = the thermal conductivity of the wall,
A= the wall surface area,
L = the wall thickness, and

T,, T, = the temperature on the near side and far side of
the wall respectively.

Thermal resistance of the wall is given by
R=L/(kA)
Resistances in series are added.

Composite walls:

K4 ko

L Ts

<—|_1 — - -— |_2—>

Rl = R + Ry, where
R; = Li/(k;A) and
R, = Ly/(kA).
To evaluate surface or intermediate temperatures:
T, =T, _QRI;T3 =T, _QRz
Conduction through a cylindrical wall is given by
q

2

CYLINDER (LENGTH =)
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o= 21KL(T, - T, )
1n(r2 /rl)
R= ln(rz /rl)
21kL

Convection

Convection is determined using a convection coefficient (heat
transfer coefficient) h.

Q= hA(TW -To ), where

A = the heat transfer area,

Tw = work temperature, and

Te = bulk fluid temperature.
Resistance due to convection is given by

R=1/(hA)
FINS: For a straight fin,

Q = /hpkA: (Tb -T, ) tanhmL., where

h = heat transfer coefficient,
p = exposed perimeter,

k = thermal conductivity,

Ac = cross-sectional area,

T, = temperature at base of fin,
Te = fluid temperature,

an Jhp/(kA, ), and

¢ =L+ A./p, corrected length.

Radiation
The radiation emitted by a body is given by

Q =¢0AT*, where
T = the absolute temperature (K or °R),
0 =5.67 % 10° W/(m’K*"
[0.173 x 1078 Btu/(hr-f*—°R%)],
€ = the emissivity of the body, and
A = the body surface area.

For a body (1) which is small compared to its surroundings

2

Q, :soA(T;‘ -7, ) where

Q2= the net heat transfer rate from the body.



A black body is defined as one which absorbs all energy
incident upon it. It also emits radiation at the maximum rate
for a body of a particular size at a particular temperature. For
such a body
a=¢=1, where
a = the absorptivity (energy absorbed/incident energy).
A gray body is one for which o = €, where
0<a<l;0<e<l
Real bodies are frequently approximated as gray bodies.

The net energy exchange by radiation between two black
bodies, which see each other, is given by

Q, = AF,oT* -T}), where

F1» = the shape factor (view factor, configuration factor); 0 <
F12 <l1.

For any body, a+ p + 7= 1, where

o = absorptivity,

p = reflectivity (ratio of energy reflected to incident energy),
and

T = transmissivity (ratio of energy transmitted to incident
energy).

For an opaque body, o+ p=1

For a gray body, e+p=1

The following is applicable to the PM examination for
mechanical and chemical engineers.

The overall heat-transfer coefficient for a shell-and-tube heat
exchanger is

L.

1 Rfi t Rfo 1
=+ — + +
UA hA A

kAavg A)

hOA}

where

A = any convenient reference area (m°),

A, = average of inside and outside area (for thin-walled
tubes) (m?),

A = inside area of tubes (m?),

A, = outside area of tubes (m?),

h = heat-transfer coefficient for inside of tubes [W/(m*K)],

h, = heat-transfer coefficient for
[W/(m’K)],

k = thermal conductivityy of tube material [W/(mK)],

Ri = fouling factor for inside of tube (m*EK/W),

R, = fouling factor for outside of tube (m*EK/W),

t = tube-wall thickness (m), and

U = overall heat-transfer coefficient based on area A and
the log mean temperature difference [W/(m?*K)].

outside of tubes
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HEAT TRANSFER (continued)
The log mean temperature difference (LMTD) for
countercurrent flow in tubular heat exchangersis

AT, = (THo — T )_(THi _TCO)
Im —
In THo _TCO
Ty — T
The log mean temper ature differencefor concurrent (parallel)
flow in tubular heat exchangersis

AT = (THo _TCO) — (THi -T )
1Il THo _TCO
Ty —Tg

AT, = log mean temperature difference (K),

Ty = inlet temperature of the hot fluid (K),

Tho = outlet temperature of the hot fluid (K),

Te = inlet temperature of the cold fluid (K), and
Tco = outlet temperature of the cold fluid (K).

where

For individual heat-transfer coefficients of a fluid being
heated or cooled in a tube, one pair of temperatures (either the
hot or the cold) are the surface temperatures at the inlet and
outlet of the tube.

Heat exchanger effectiveness =

actual heat transfer _ q

max possible heat transfer - Qmax

€= Cw (THi _THo)
Chin (THi _Tci)

or

€= Cc (TCO —Tai )
Crin (THi —Tg )

Where C,;, = smaller of C; or Cy

NTU = UA

Number of transfer units, ,
mn

At a cross-section in a tube where heat is being transferred

9=h(TW—Tb)={kf[ﬂ] }
A dr W _| fluid

={km(ﬂ] } , Where
dr W _Imetal

Q / A = local inward radial heat flux (W/m?),

h = local heat-transfer coefficient [W/(m*[K)]

ke = thermal conductivity of the fluid [W/(m[K)],

Km = thermal conductivity of the tube metal [W/(m[K)],

(dt/dr),, = radial temperature gradient at the tube surface
(K/m),

Ty = local bulk temperature of the fluid (K), and

Tw = local inside surface temperature of the tube (K).



Rate of Heat Transfer in a Tubular Heat Exchanger
For the equations below, the following definitions along with
definitions previously supplied are required.

D = inside diameter

Gz = Graetz number [RePr (D/L)],

Nu = Nusselt number (hD/K),

Pr = Prandtl number (cpl/K),

A = area upon which U is based (m?),

F = configuration correction factor,

g = acceleration of gravity (9.81 m/s?),

L = heated (or cooled) length of conduit or surface (m),
Q = inward rate of heat transfer (W),

Ts = temperature of the surface (K),
Ts, = temperature of saturated vapor (K), and
A = heat of vaporization (J/kg).

Q =UAFAT, |

Heat-transfer for laminar flow (Re < 2,000) in a closed
conduit.

0.19Gz"*

Nu=3.66+————"——
1+0.117Gz"*"

Heat-transfer for turbulent flow (Re > 10*, Pr > 0.7) in a
closed conduit (Sieder-Tate equation).

h.D
Nu === 0.023Re**Pr"* (u, /u, )"

where f

Mo = H (Tp),

Mw = M (Tyw), and Re and Pr are evaluated at T,

For non-circular ducts, use the equivalent diameter.
The equivalent diameter is defined as

4 (cross - sectional area)
Dy =

wetted perimeter
For a circular annulus (D, > D;) the equivalent diameter is
Dy =D, —-D;i

For liquid metals (0.003 < Pr < 0.05) flowing in closed
conduits.

Nu = 6.3 + 0.0167Re"**Pr"** (constant heat flux)
Nu = 7.0 + 0.025Re"*Pr”® (constant wall temperature)

Heat-transfer coefficient for condensation of a pure vapor on
a vertical surface.

ht = 0.943[
k

0.25
L’p” A J
ku(Ty, - o)

Properties other than A are for the liquid and are evaluated at
the average between Ty, and Ts.

For condensation outside horizontal tubes, change 0.943 to
0.73 and replace L with the tube outside diameter.

Heat Transfer to/from Bodies Immersed in a Large Body
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HEAT TRANSFER (continued)
of Flowing Fluid

In all cases, evaluate fluid properties at average temperature
between that of the body and that of the flowing fluid.

For flow parallel to a constant-temperature flat plate of length
L (m)

Nu = 0.648Re"°Pr'”? (Re < 10°)
Nu = 0.0366Re"*Pr'? (Re > 10°)

Use the plate length in the evaluation of the Nusselt and
Reynolds numbers.

For flow perpendicular to the axis of a constant-temperature
circular cylinder
Nu = cRe"Pr!”?

(values of ¢ and n follow)

Use the cylinder diameter in the evaluation of the Nusselt and
Reynolds numbers.

Re n (3
1-4 0.330 0.989
4-40 0.385 0911
40 — 4,000 0.466 0.683
4,000 — 40,000 0.618 0.193
40,000 — 250,000 0.805 0.0266

For flow past a constant-temperature sphere. Nu = 2.0 +
0.60Re*Pr!”

(1 <Re <70,000, 0.6 <Pr <400)

Use the sphere diameter in the evaluation of the Nusselt and
Reynolds numbers.

CONDUCTIVE HEAT TRANSFER
Steady Conduction With Internal Energy Generation

For one-dimensional steady conduction, the equation is
d°T/dx* +Q,, /k =0, where

Qgen = the heat generation rate per unit volume and
k = the thermal conductivity.

For a plane wall:

T(x)= Qg_Lz(l - X—zJ + (_TSZ ~Ts j(lj + (—TSI +T J
2k L 2 L 2
Q1 + Q2 = 2QgenL, where
Q =k(dT/ dx)—L
Q, = —k{dT/dx),

For a long circular cylinder:




Q=1 Qgen , where

Q -

the heat-transfer rate from the cylinder per unit
length.

Transient Conduction Using the Lumped Capacitance
Method

Ti = INITIAL TEMPERATURE

T_ =FLUID
TEMPERATURE

If the temperature may be considered uniform within the body
at any time, the change of body temperature is given by

Q=hA(T -T,)=-pc,V(dT/dt)

The temperature variation with time is
T—To=(Ti - T)e MW
The total heat transferred up to time t is

Quotal = PCRV (T — T), where
p = density,
V = volume,
Cp = heat capacity,
t =time,
As = surface area of the body,
T = temperature, and
h = the heat-transfer coefficient.

The lumped capacitance method is valid if
Biot number = Bi = hV/kAg << 1
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HEAT TRANSFER (continued)

NATURAL (FREE) CONVECTION

For free convection between a vertical flat plate (or a vertical
cylinder of sufficiently large diameter) and a large body of
stationary fluid,

h=C (k/L) Ra,", where
L = the length of the plate in the vertical direction

_ 3
Ra, = Rayleigh Number = Mpr

Ts = surface temperature, Y
Te = fluid temperature, 2
B = coefficient of thermal expansion (TS +T_ for an
ideal gas where T is absolute temperature), and
vV = kinematic viscosity.
Range of Ra, C n
10* - 10° 0.59 1/4
10° - 10" 0.10 1/3

For free convection between a long horizontal cylinder and a
large body of stationary fluid

h=C(k/D)Ra? ,where

_ 3
Rap = B To)D"

\Y
Range of Rap C n
107 -10° 1.02 0.148
10> -10* 0.850 0.188
10* =107 0.480 0.250
107 - 10" 0.125 0.333
RADIATION

Two-Body Problem

Applicable to any two diffuse-gray surfaces that form an
enclosure.

_ 0(T14 _T24)
T l-g, 1 l-g,

+
g§A  AFL  &A

Qs

Generalized Cases




Radiation Shields

One-dimensional geometry with low-emissivity shield
inserted between two parallel plates.

Qp —» RADIATION SHIELD

r/.
63.1 63'2
Ay, € AZ"?
T1 2
Az, T3
4 4
le = O(TI ik )
1-¢ 1 1-¢ l1-¢ 1 1-¢
1 + 31, 32, + 2

31A1+A1F13 A E5A AR, A

Shape Factor Relations
Reciprocity relations:

AFij = AF;i

Summation rule:

F. =1

]

M=

HEAT TRANSFER (continued)

Reradiating Surface
Reradiating surfaces are considered to be insulated, or
adiabatic (Q, =0).

A1, Ty €

cr('l'l4 - TZ“)

Q12 =

-, 1

g A A1F12+H 1 JJ{ 1 H L1-e
AFr AFr €A
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TRANSPORT PHENOMENA

MOMENTUM, HEAT, AND MASS TRANSFER
ANALOGY

For the equations which apply to turbulent flow in circular
tubes, the following definitions apply:

Nu = Nusselt Number {hTD}

Pr = Prandtl Number (cp/k),
Re = Reynolds Number (DVp/p),
Sc = Schmidt Number [W/(pDy)],
Sh = Sherwood Number (kyD/Dpy),
= Stanton Number [h/(c,G)]
cm = concentration (mol/m®),
cp = heat capacity of fluid [J(kgK)],
D = tubeinside diameter (m),
Dm = diffusion coefficient (m?s),
(dc./dy), = concentration gradient at the wall (mol/m®),
(dT/dy), = temperature gradient at the wall (K/m),
(dv/dy), = velocity gradient at thewall (s™),
f = Moody friction factor,
G = massvelocity [kg/(m?S)],
h = heat-transfer coefficient at the wall [W/(m?K)],
k = thermal conductivity of fluid [W/(mK)],
kn = mass-transfer coefficient (m/s),
L = length over which pressure drop occurs (m),
(N/A),, = inward mass-transfer flux at thewall [mol/(m?S)],

Q/ A)w = inward heat-transfer flux at the wall (W/m?),

y = distance measured frominner wall toward centerline
(m),

Ac,,= concentration difference between wall and bulk fluid
(mol/md),

AT = temperature difference between wall and bulk fluid
(K),

g = absolute dynamic viscosity (N€/m?), and

T, = shear stress(momentum flux) at thetubewall (N/m?).

Definitions already introduced also apply.
Rate of transfer as afunction of gradients at the wall

Momentum Transfer:

2
TW :—u ;ﬂ = - fpV :(2}[—%)
Y ) 8 4 L /¢
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Heat Transfer:

Hhal

Mass Transfer in Dilute Solutions:

SRl

Rate of transfer in terms of coefficients

Momentum Transfer:

_fpv?
" g

Heat Transfer:

(QJ - hat
A w

Mass Transfer:

(ﬂj =k, Ac,
A w

Use of friction factor (f) to predict heat-transfer and mass-

transfer coefficients (turbulent flow)

Heat Transfer:
J Nu |525_F
" RePr 8

Mass Transfer:
Sh f
Im = Sc?® = —
ReSc 8



CHEMISTRY

Avogadro's Number: The number of elementary particles in a
mol of a substance.

1 mol =1 gram-mole
1 mol = 6.02 x 107 particles

A mol is defined as an amount of a substance that contains as
many particles as 12 grams of '“C (carbon 12). The
elementary particles may be atoms, molecules, ions, or
electrons.

ACIDS AND BASES (aqueous solutions)
1
H =1lo —— |, where
p glO ( [H+ ]]

[H'] = molar concentration of hydrogen ion,
Acids have pH < 7.
Bases have pH > 7.

ELECTROCHEMISTRY

Cathode — The electrode at which reduction occurs.
Anode — The electrode at which oxidation occurs.
Oxidation — The loss of electrons.

Reduction — The gaining of electrons.

Oxidizing Agent — A species that causes others to become
oxidized.

Reducing Agent — A species that causes others to be reduced.
Cation — Positive ion
Anion — Negative ion

DEFINITIONS

Molarity of Solutions — The number of gram moles of a
substance dissolved in a liter of solution.

Molality of Solutions — The number of gram moles of a
substance per 1,000 grams of solvent.

Normality of Solutions — The product of the molarity of a
solution and the number of valences taking place in a
reaction.

Equivalent Mass — The number of parts by mass of an
element or compound which will combine with or replace
directly or indirectly 1.008 parts by mass of hydrogen, 8.000
parts of oxygen, or the equivalent mass of any other element
or compound. For all elements, the atomic mass is the product
of the equivalent mass and the valence.

Molar Volume of an Ideal Gas[at 0°C (32°F) and 1 atm (14.7
psia)]; 22.4 L/(g mole) [359 ft*/(Ib mole)].

Mole Fraction of a Substance — The ratio of the number of
moles of a substance to the total moles present in a mixture of
substances. Mixture may be a solid, a liquid solution, or a gas.
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Equilibrium Constant of a Chemical Reaction
aA+ bB <= cC+dD

o _lgo°

© AT

Le Chatelier's Principle for Chemical Equilibrium— When a
stress (such as a change in concentration, pressure, or
temperature) is applied to a system in equilibrium, the
equilibrium shifts in such a way that tends to relieve the
stress.

Heats of Reaction, Solution, Formation, and Combustion —
Chemical processes generally involve the absorption or
evolution of heat. In an endothermic process, heat is absorbed
(enthalpy change is positive). In an exothermic process, heat
is evolved (enthalpy change is negative).

Solubility Product of a slightly soluble substance AB:
AB, - MA™ +nB™
Solubility Product Constant = Kgp = [A"]™ [B]"

Metallic Elements — In general, metallic elements are
distinguished from non-metallic elements by their luster,
malleability, conductivity, and usual ability to form positive
ions.

Non-Metallic Elements — In general, non-metallic elements
are not malleable, have low electrical conductivity, and rarely
form positive ions.

Faraday's Law — In the process of electrolytic changes, equal
quantities of electricity charge or discharge equivalent
quantities of ions at each electrode. One gram equivalent
weight of matter is chemically altered at each electrode for
96,485 coulombs, or one Faraday, of electricity passed
through the electrolyte.

A catalyst is a substance that alters the rate of a chemical
reaction and may be recovered unaltered in nature and
amount at the end of the reaction. The catalyst does not affect
the position of equilibrium of a reversible reaction.

The atomic number is the number of protons in the atomic
nucleus. The atomic number is the essential feature which
distinguishes one element from another and determines the
position of the element in the periodic table.

Boiling Point Elevation — The presence of a non-volatile
solute in a solvent raises the boiling point of the resulting
solution compared to the pure solvent; i.e., to achieve a given
vapor pressure, the temperature of the solution must be higher
than that of the pure substance.

Freezing Point Depression — The presence of a non-volatile
solute in a solvent lowers the freezing point of the resulting
solution compared to the pure solvent.



CHEMISTRY (continued)
PERIODIC TABLE OF ELEMENTS

S9

1 Atomic Number 2
H Symbol He
1.0079 Atomic Weight 4.0026
3 4 5 6 7 8 9 10
Li Be B C N (0] F Ne
6.941 9.0122 10.811 12.011 14.007 15.999 18.998 20.179
11 12 13 14 15 16 17 18
Na Mg Al Si P S Cl Ar
22.990 24.305 26.981 28.086 30.974 32.066 35.453 39.948
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
39.098 40.078 44.956 47.88 50.941 51.996 54.938 55.847 58.933 58.69 63.546 65.39 69.723 72.61 74.921 78.96 79.904 83.80
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr Y Zr Nb Mo Te Ru Rh Pd Ag Cd In Sn Sb Te 1 Xe
85.468 87.62 88.906 | 91.224 | 92.906 95.94 98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.75 127.60 126.90 131.29
55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn
132.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 | 200.59 | 204.38 207.2 208.98 (209) (210) (222)
87 88 89%* 104 105
Fr Ra Ac Rf Ha
(223) 226.02 227.03 (261) (262)
58 59 60 61 62 63 64 65 66 67 68 69 70 71
*Lanthanide Series Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 174.97
**Actinide Series 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
232.04 | 231.04 238.03 237.05 (244) (243) (247) (247) (251) (252) (257) (258) (259) (260)
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IMPORTANT FAMILIES OF ORGANIC COMPOUNDS

CHEMISTRY (continued)

FAMILY
Carboxylic
Alkane Alkene Alkyne Arene Haloalkane Alcohol Ether Amine Aldehyde Acid Ester
ci
0) ) 0)
Specific _ _ @ | | | | | |
CH;CH; H,C =CH, HC =CH CH;CH,CI CH;CH,OH | CH;0CH; | CH;3;NH,
Example CH;CH CH;COH CH;COCH;
Ethene Ethyne Methvl
- - i et
IUPAC Ethane or or Benzene | Chloroethane Ethanol Methoxy Methan Ethanal Ethagmc Y
Name methane amine Acid ethanoate
Ethylene Acetylene
Common Ethane Ethylene Acetylene Benzene | Ethyl chloride | Ethyl alcohol Dimethyl Methyl- Acetal- Acetic Acid | Methyl acetate
Name ether amine dehyde
RCH = CH, RNH,
RCH = CHR RC=CH R,NH Q 0 i
Ef;‘;rualg RH R C - CHR j AH RX ROH ROR Ii N | | I
:C= RC=CR ’ RCH RCOH RCOR
RzC = CR2
C-H 0 0)
Functional and \C = C/ Aromatic —C| —X — C| —OH —|C —0— | — —é—N— ﬁ || ” |
-C=C- . I (f [ —C—H |—C—OH —C—0—C—
Group C_C / Ring | | [

bonds




CHEMISTRY (continued)

Standard Oxidation Potentials for Corrosion Reactions*

Corrosion Reaction

Potential, E,, Volts
vs. Normal Hydrogen Electrode f

Au - Au*t + 3e
2H,0 - O, +4H" + 4e
Pt - P*" +2e
Pd - Pd*" +2e
Ag - Ag +e

2Hg - Hg,*" +2e
Fe*" . Fe* +e
4OH) " - 0, +2H,0 + 4e
Cu - Cu* +2¢
Sn?" & n*" +2e

H, - 2H" +2¢
Pb - Pb* +2e
Sn - Sn®" + 2e
Ni - Ni*" +2e
Co - Co* +2¢

Cd - Cd* +2e
Fe — Fe*' +2e
Cr - Crt +3e
Zn - Zn*" +2e
Al o AP +3e

Mg-»Mg2++2e
Na -~ Na'+e
K—>K++e

—-1.498
—-1.229
—-1.200
—0.987
—0.799

—0.788
—0.771
—0.401
—0.337
—0.150

0.000
+0.126
+0.136
+0.250
+0.277

+0.403
+0.440
+0.744
+0.763
+1.662

+2.363
+2.714
+2.925

*

T

Measured at 25°C. Reactions are written as anode half-cells. Arrows are reversed for cathode half-

cells.

In some chemistry texts, the signs of the values (in this table) are reversed; for example, the half-cell
potential of zinc is given as —0.763 volt. The present convention is adopted so that when the potential

E, is positive, the reaction proceeds spontaneously as written.

Flinn, Richard A. and Paul K. Trojan, Engineering Materials and Their Applications, 4th Edition. Copyright O 1990 by Houghton Mifflin Company. Table used with permission.
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MATERIALS SCIENCE/STRUCTURE OF MATTER

CRYSTALLOGRAPHY

Common Metallic Crystal Structures

body-centered cubic, face-centered cubic, and hexagonal
close-packed.

¢
Body- 3
Centered %
Cubic i

(BCC)

Face-
Centered
Cubic
(FCO)

Hexagonal
Close-Packed
(HCP)

Number of Atoms in a Cell

BCC: 2
FCC: 4
HCP: 6
Packing Factor

The packing factor is the volume of the atoms in a cell
(assuming touching, hard spheres) divided by the total cell
volume.

BCC: 0.68
FCC: 0.74
HCP: 0.74

Coordination Number

The coordination number is the number of closest neigh-
boring (touching) atoms in a given lattice.
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Miller Indices

The rationalized reciprocal intercepts of the intersections of
the plane with the crystallographic axes:
z

(111)
(112)

X

(111) plane. (axis intercepts at X =Yy = 2)
(112) plane. (axis intercepts at Xx=1,y=1,z=1/2)

. z

() (b)

(010) planes in cubic structures. (a) Simple cubic. (b) BCC.
(axis intercepts at X =00, y =1, Z= )

’ 4 z
X @ y X @ !
(a) (b)

(110) planes in cubic structures. (a) Simple cubic. (b) BCC.
(axis intercepts at X=1,y =1, Z= o)

ATOMIC BONDING

Primary Bonds
Ionic (e.g., salts, metal oxides)
Covalent (e.g., within polymer molecules)
Metallic (e.g., metals)

+ Flinn, Richard A. & Paul K. Trojan, Engineering Materials& Their Application, 4th Ed. Copyright © 1990
by Houghton Mifflin Co. Figure used with permission.

*Van Vlack, L., Elements of Materials Science & Engineering, Copyright 0 1989 by Addison-Wesley
Publishing Co., Inc. Diagram reprinted with permission of the publisher.



CORROSION
A table listing the standard electromotive potentials of metals
is shown on page 67.

For corrosion to occur, there must be an anode and a cathode
in electrical contact in the presence of an electrolyte.

Anode Reaction (oxidation)
M® - M™ +ne”

Possible Cathode Reactions (reduction)

%»0,+2e¢ +H,O - 20H

l/202‘*’267""21‘130+ — 3H20

2e_+2H3O+ — 2H20+H2

When dissimilar metals are in contact, the more electroposi-
tive one becomes the anode in a corrosion cell. Different
regions of carbon steel can also result in a corrosion reaction:
e.g., cold-worked regions are anodic to non-cold-worked;
different oxygen concentrations can cause oxygen-deficient
region to become cathodic to oxygen-rich regions; grain
boundary regions are anodic to bulk grain; in multiphase
alloys, various phases may not have the same galvanic
potential.

DIFFUSION

Diffusion coefficient
D =D, e ¥®D where
the diffusion coefficient,

the proportionality constant,

=]

the activation energy,
= the gas constant [1.987 cal/(g molK)], and
the absolute temperature.

000
I

BINARY PHASE DIAGRAMS
Allows determination of (1) what phases are present at
equilibrium at any temperature and average composition, (2)
the compositions of those phases, and (3) the fractions of
those phases.
Eutectic reaction (liquid — two solid phases)
Eutectoid reaction (solid — two solid phases)
Peritectic reaction (liquid + solid — solid)
Pertectoid reaction (two solid phases — solid)

Lever Rule

The following phase diagram and equations illustrate how the
weight of each phase in a two-phase system can be
determined:
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MATERIALS SCIENCE/STRUCTURE OF MATTER (continued)

| | L
© | W
g SRVl
> -\ o+L | >
s s
i “a/ | \B‘ i
o o
s | ! =
L T — W
= l =

B | | o+ B l

L | 1 L

A Xq, X XB B
0% B COMPOSITION, WT% 100% B
100% A 0% A

(In diagram, L = liquid) If X = the average composition at
temperature T, then

Xs
wt% o =———x100

Xy = X,

X—X
Wt%B=———%x100
X

B o

Iron-Iron Carbide Phase Diagram

. ATOMIC PERCENT CARBON
0 5 10 15 25
1600 ™ \ T ‘
5+ liquid ! 2800
8 Lo !
B |~ Liquid | 2600
1400 |
| — 2400
¥|+ liquid // !
1200 —={ 2200
© 1148°C "N,/ (2100°F) [ w
iy ¥ 211 4.3 | 2000 yj
o o
2 1 2
Z 1000 = 1800 &
i 912° ! G
% 7 + carbide : 11600 %
w | g
= 800 f— \
\rx-v—“{ 727°C (1340°F) | —] 1400
O~ |
%077 \
| — 1200
600 002 ‘
|
— 1000
o + carbide FesC |
|
— 800
400 ‘
0 1 2 3 4 5 6 7

WEIGHT PERCENT CARBON

Gibbs Phase Rule
P+ F=C+2, where

P = the number of phases that can coexist in equilibrium,
F = the number of degrees of freedom, and
C = the number of components involved.

*Van Vlack, L., Elements of Materials Science & Engineering, Copyright 0 1989 by Addison-Wesley
Publishing Co., Inc. Diagram reprinted with permission of the publisher.



THERMAL PROCESSING

Cold working (plastically deforming) a metal increases
strength and lowers ductility.

Raising temperature causes (1) recovery (stress relief), (2)
recrystallization, and (3) grain growth. Hot working allows
these processes to occur simultaneously with deformation.

Quenching is rapid cooling from elevated temperature,
preventing the formation of equilibrium phases.

In steels, quenching austenite [FCC (y) iron] can result in
martensite instead of equilibrium phases—ferrite [BCC ()
iron] and cementite (iron carbide).

TESTING METHODS

Standard Tensile Test
Using the standard tensile test, one can determine elastic
modulus, yield strength, ultimate tensile strength, and
ductility (% elongation).

Endurance Test

Endurance tests (fatigue tests to find endurance limit) apply a
cyclical loading of constant maximum amplitude. The plot
(usually semi-log or log-log) of the maximum stress (0) and
the number (N) of cycles to failure is known as an SN plot.
(Typical of steel, may not be true for other metals; i.e.,
aluminum alloys, etc.)

c
END ‘

KNEE

log N (cycles)

The endurance stress (endurance limit or fatigue limit) is the
maximum stress which can be repeated indefinitely without
causing failure. The fatigue life is the number of cycles
required to cause failure for a given stress level.

Impact Test

The Charpy Impact Test is used to find energy required to
fracture and to identify ductile to brittle transition.

TRANSITION
" TEMPERATURE

ENERGY

TEMPERATURE

Impact tests determine the amount of energy required to cause
failure in standardized test samples. The tests are repeated
over a range of temperatures to determine the transition
temperature.
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MATERIALS SCIENCE/STRUCTURE OF MATTER (continued)

HARDENABILITY

Hardenability is the "ease" with which hardness may be
attained. Hardness is a measure of resistance to plastic
deformation.

e 600-390 450 Cooling rate at 700°C, °C/sec
70\l 556 25 125 8 55 45 3 2.5
60 : \
1
\?\\\
050 4340 ————
% 4140 |
S 40
2
1]
T 30 e
SN " 1060 (#2) |
——
20 — I 1060 (#8)
1020 1040 __ | I
10\\\|HH|\H\\I\H\\ﬁﬂ\l‘\\\\l\\w
10 20 30 40 50 mm

Lo b Vv by vy b b by by
0 i 3 3 1 14 15 13 2 in
Distance from quenched end, Dqe
(#2) and (#8) indicated ASTM grain size

Hardenability Curves for Six Steels

. Cooling rate at 700°C, °C/sec
300
300
600 150
N4/ 55 25 125 8 55
100[TTTT T T ¥ 4
s/ 2-r/M-R“C”
€ 80
1S / 413
3 60 4 8
(] ()
§ 1?5
5 40 1 ©
3 11 @
m 20 m
4 Agitated H,0 -
0IIIIIIIlIIII|Illl|IIII
0 5 10 15 20 25mm
| N T BT A |
0 1 3 3 1in.

Distance from quenched end, Dqe

(a)
Cooling rate at 700°C, °C/sec

300
LT

125 8 55
100[TTTT / 4
£ 80 3 A
S / +°R 13 ¢
3 60 R
5] @
% 27|
— 40 - c—
2 M- R 2
] 1@
@D 20 | @
Agitated Oil 1
IIIllIlIIIII||l|||IIII
00 5 10 15 20 250mm
| T B B A |
0 1 3 2 1in.

Distance from quenched end, Dge
(b)

Cooling Rates for Bars Quenched in

(a) Agitated Water and (b) Agitated Oil.

* Van Vlack, L., Elements of Materials Science & Engineering, Copyright O 1989 by Addison-Wesley Pub.
Co., Inc. Diagrams reprinted with permission of the publisher.



ASTM GRAIN SIZE
Sv=2P
N(0.0645mm2) =2n-1

Nactual — N

Actual Area (0.0645 mm? )

where

S/ = grain-boundary surface per unit volume,

PL = number of points of intersection per unit length between
the line and the boundaries,

N = number of grains observed in a area of 0.0645 mm?, and
N = grain size (nearest integer > 1).

COMPOSITE MATERIALS
o = Zfip
C. = ZfiCi
Ec = ZfE

where

P = density of composite,

C. = heat capacity of composite per unit volume,

E. = Young's modulus of composite,

fi = volume fraction of individual material,

G = heat capacity of individual material per unit volume, and
E = Young's modulus of individual material.

Also

(AL/L); = (AL/L),

(AT + €); = (aAT + e),

[0AT + (F/A)/E], = [0AT + (F/IA)/E],
where

AL = change in length of a material,

L = original length of the material,

o = coefficient of expansion for a material,
AT = change in temperature for the material,
e = elongation of the material,

F = force in a material,

A = cross-sectional area of the material, and

E = Young's modulus for the material.
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MATERIALS SCIENCE/STRUCTURE OF MATTER (continued)

HALF-LIFE

N = Noe %% where

N, = original number of atoms,

N = final number of atoms,

t = time, and

T = half-life.

. Young's
, Density | rodulus | Elp
Material 0]
Mg/m® E Nih/g
GPa

Aluminum 2.7 70 26,000
Steel 7.8 205 26,000
Magnesium 1.7 45 26,000
Glass 2.5 70 28,000
Polystyrene 1.05 2 2,700
Polyvinyl Chloride 1.3 <4 < 3,500
Alumina fiber 39 400 100,000
Aramide fiber 1.3 125 100,000
Boron fiber 2.3 400 170,000
Beryllium fiber 1.9 300 160,000
BeO fiber 3.0 400 130,000
Carbon fiber 2.3 700 300,000
Silicon Carbide fiber 3.2 400 120,000




ELECTRIC CIRCUITS

UNITS

The basic electrical units are coulombs for charge, volts for
voltage, amperes for current, and ohms for resistance and
impedance.

ELECTROSTATICS
F, = Q1Q22 a,,, where
4me

F, = the force on charge 2 due to charge 1,
Q; = the ith point charge,

r = the distance between charges 1 and 2,
a,1, = a unit vector directed from 1 to 2, and
€ = the permittivity of the medium.

For free space or air:

€= ¢, = 8.85 x 107'% Farads/meter

Electrostatic Fields

Electric field intensity E (volts/meter) at point 2 due to a point
charge Q, at point 1 is

For a line charge of density p_ C/m on the z-axis, the radial
electric field is

_ PL
E = a
" ome T
For a sheet charge of density ps C/m” in the X-y plane:

_P
ES—Z—zaZ,Z>O

Gauss' law states that the integral of the electric flux density
D = €E over a closed surface is equal to the charge enclosed

or
Qencl =§ SSE ms

The force on a point charge Q in an electric field with
intensity E is F = QE.

The work done by an external agent in moving a charge Q in
an electric field from point p; to point p, is

P2
W =-Q [E [dl
P
The energy stored W in an electric field E is

We = (1/2) [k CELF dv

Voltage

The potential difference V between two points is the work per
unit charge required to move the charge between the points.

For two parallel plates with potential difference V, separated
by distance d, the strength of the E field between the plates is

\Y

d
directed from the + plate to the — plate.
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Current

Electric current i(t) through a surface is defined as the rate of
charge transport through that surface or

i(t) = dg(t)/dt, which is a function of time t
since g(t) denotes instantaneous charge.

A constant i(t) is written as |, and the vector current density in
amperes/m’ is defined as J.

Magnetic Fields
For a current carrying wire on the z-axis
B la
=—=—% where
no21

H = the magnetic field strength (amperes/meter),
B = the magnetic flux density (tesla),

a, = the unit vector in positive @ direction in cylindrical
coordinates,

| = the current, and
[ = the permeability of the medium.
For air: =, = 411% 10~ H/m

Force on a current carrying conductor in a uniform magnetic
field is

F =IL x B, where

L = the length vector of a conductor.

The energy stored W, in a magnetic field H is
Wi = (1/2) [k, uOHCF dv

Induced Voltage
Faraday's Law; For a coil of N turns enclosing

flux @
v=— N dg/dt, where
v = the induced voltage and
@ = the flux (webers) enclosed by the N conductor turns and

@=/sBdS

Resistivity

For a conductor of length L, electrical resistivity p, and area
A, the resistance is

_pL
A

For metallic conductors, the resistivity and resistance vary
linearly with changes in temperature according to the
following relationships:

pP=po [l +a (T-T,)], and

R=R,[1 +a (T-T,)], where
P, 1s resistivity at T, R, is the resistance at T,, and
a is the temperature coefficient.

Ohm's Law: V=IR v =it R



Resistors in Series and Parallel

For series connections, the current in all resistors is the same
and the equivalent resistance for n resistors in series is

Rr=R+R+ ...+ R,

For parallel connections of resistors, the voltage drop across
each resistor is the same and the resistance for n resistors in
parallel is

RT: 1/(1/R1 + 1/R2+ .ot I/Rn)

For two resistors R; and R, in parallel

_ RR
R =
R +R,
Power in a Resistive Element
2
P=VlI = V— =I°’R
R
Kirchhoff's Laws

Kirchhoff's voltage law for a closed loop is expressed by
2 Vrises =2 Vdrops
Kirchhoff's current law for a closed surface is

2 Iin: 2 Iout

SOURCE EQUIVALENTS
For an arbitrary circuit

————0O a
SOURCES
AND
RESISTORS

The Thévenin equivalent is

AN—0 a

\
R oc
eq R = _9
+
Voc (_) ca lsc

O b

The open circuit voltage V. is V; — Vp, and the short circuit
current is I, from ato b.

The Norton equivalent circuit is

O a

O b

where | and R4 are defined above.

A load resistor R connected across terminals a and b will
draw maximum power when R_ = R,
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ELECTRIC CIRCUITS (continued)

CAPACITORS AND INDUCTORS
)

i
+ +

C v ® L v (1)

The charge qc () and voltage V¢ (t) relationship for a capacitor
C in farads is

C= (c (t)/ Ve (t) or (Qc (t) =Cvc (t)
A parallel plate capacitor of area A with plates separated a

distance d by an insulator with a permittivity € has a
capacitance

C:S;A\
d

The current-voltage relatiopships for a capacitor are

ve(t)=ve(0) +é _[ic (t)dr

ic (t) =C (dVC /dt)

The energy stored in a capacitor is expressed in joules and
given by

Energy = CVc /2 = 9c*/2C = qevc 2
The inductance L of a coil is
L= N(pllL

and using Faraday's law, the voltage-current relations for an
inductor are

VL(t) =L (dlL/dt)

iL(t):iL(O)+%]-VL(T)dT, where

and

V. = inductor voltage,
L = inductance (henrys), and
i = current (amperes).
The energy stored in an inductor is expressed in joules and
given by
Energy = Li,*/2
Capacitors and Inductors in Parallel and Series
Capacitors in Parallel
Cqq=Ci+Co+ ... + Cy

Capacitors in Series

C =
“ 1/C +1/C, +...+1/C,

Inductors In Parallel

L =
1L +/L, +L /L

Inductors In Series
Leq: L1+ L2+ A Ln



RC AND RL TRANSIENTS
+ Vg -
s R +
V— t=0 cC ~%
- 10 B

t 20; ve(t) = ve(0)e YRE + (1 — e¥FC)
i(t) = {[V—vc(0))/R e "C
VR() =i(t) R=[V - vc (0)]e *°

+vg -

v

+
L & v

i) ’) -

tz0; i)=i0)}e ™ +21-e )

VR(t) = i(t) R=i(0) Re ™t + v (1 — e
v (t) = L (di/dt) =—i(0) Re **- + ve Rt

where V(0) and i(0) denote the initial conditions and the
parameters RC and L/R are termed the respective circuit time
constants.

OPERATIONAL AMPLIFIERS

V, = A(V] — V»), where V2 z:(>_o
Ais large (> 10%) and Y1 "
Vi — V, is small enough so as not to saturate the amplifier.

For the ideal operational amplifier, assume that the input
currents are zero and that the gain A is infinite so when
operating linearly v, — v; = 0.

For the two-source configuration with an ideal operational
amplifier,

If v, = 0, we have a non-inverting amplifier with

v, = [1 : iva
Rl

If vy, = 0, we have an inverting amplifier with

R,

vV, = ——2V,

" R
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ELECTRIC CIRCUITS (continued)
AC CIRCUITS

For a sinusoidal voltage or current of frequency f (Hz) and
period T (seconds),

f=1/T=w/(2m), where

w = the angular frequency in radians/s.

Average Value
For a periodic waveform (either voltage or current) with

period T, .
X = (/T x{t)et
0
The average value of a full-wave rectified sine wave is
xave = (zxmax)/n

and half this for a half-wave rectification, where

Xmax = the peak amplitude of the waveform.

Effective or RMS Values
For a periodic waveform with period T, the rms or effective

e {(w)l . (t)dtr

For a sinusoidal waveform and full-wave rectified sine wave,
ers = Xmax /ﬁ

For a half-wave rectified sine wave,
XI'IIIS = Xmax/2

Sine-Cosine Relations
cos (wt) = sin (Wt + 12) = — sin (Wt — TV2)
sin (wt) = cos (Wt — T02) = — cos (Wt + 172)

Phasor Transforms of Sinusoids

P[Vmax cos (Wt + @)] = Vi 0 0=V

Pl max cos (Wt +0)] = |y 1 0 =1

For a circuit element, the impedance is defined as the ratio of
phasor voltage to phasor current.

\Y
Z=—
|
For a Resistor,
ZR =R
For a Capacitor,
1
Zo=——=jX
C iwC JAc
For an Inductor,
Z; = jwlL = jX, where
Xc and X_ are the capacitive and inductive reactances
respectively defined as

Xe --L and X, =owL
wC



Impedances in series combine additively while those in
parallel combine according to the reciprocal rule just as in the
case of resistors.

Complex Power
Real power P (watts) is defined by
P = (%2)Viaxl max cos 0
= Vsl mms c0s 0

where 0 is the angle measured from V to . If | leads (lags) V,
then the power factor (p.f.),

p.f.=cos 0
is said to be a leading (lagging) p.f.
Reactive power Q (vars) is defined by

Q = (“2)Vinax! max sin 6

= Vs mms Sin 6

Complex power S (volt-amperes) is defined by

S =VI*=P+]jQ,
where |* is the complex conjugate of the phasor current.

For resistors, 8 = 0, so the real power is

P=V, ol ms =Vias/R=17cR

rms’ rms

RESONANCE

The radian resonant frequency for both parallel and series
resonance situations is

W, =——— =271, (rad/s)

* JLC

Series Resonance
1
wlL=—-+
w,C
Z = R at resonance.

_wl 1
Q=R " w,CR

BW = w,/Q (rad/s)

Parallel Resonance

w,L =L and

w C

o

Z = Rat resonance.

szoRC=i
w L

(o]

BW= w,/Q (rad/s)
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ELECTRIC CIRCUITS (continued)

TRANSFORMERS
Ip s
+ L [ +
Zp — Vg N, C)Cf N, Vg Zs

Turns Ratio

a=N,/N,
[
[

p s

\Y,

S

a=

p

The impedance seen at the input is
Zy=a'Zs

ALGEBRA OF COMPLEX NUMBERS

Complex numbers may be designated in rectangular form or
polar form. In rectangular form, a complex number is written
in terms of its real and imaginary components.

z=a+ jb, where
a = the real component,
b = the imaginary component, and
j= V-1
In polar form

z=c [ 0, where

c=+a’ +b’,

0 = tan"' (b/a),
a=ccos 0, and
b =csin 6.

Complex numbers are added and subtracted in rectangular
form. If

z=a, t+jb = ¢ (cos B; + jsin 0;)
=¢; 006 and

Lz=a+jb = ¢, (cos B, + jsin 6,)
=, 0 6,, then

z1+z =(a+a)+j(b +by)and

=(a—a) +j (b —by)

While complex numbers can be multiplied or divided in
rectangular form, it is more convenient to perform these
operations in polar form.

=(C1xc) U6 +86,
= (C1/C2) O 91 - 92
The complex conjugate of a complex number z; = (a, +jb,) is

defined as z;* = (a; — jb;). The product of a complex number
and its complex conjugate is z;z;* = a’+b

VARl )

VARV )
21/22



COMPUTERS, MEASUREMENT, AND CONTROLS

COMPUTER KNOWLEDGE

Examinees are expected to possess a level of computer
expertise required to perform in a typical undergraduate
environment. Thus only generic problems that do not require
a knowledge of a specific language or computer type will be
required. Examinees are expected to be familiar with flow
charts, pseudo code, and spread sheets (Lotus, Quattro-Pro,
Excel, etc.).

INSTRUMENTATION

General Considerations

In making any measurement, the response of the total
measurement system, including the behavior of the sensors
and any signal processors, is best addressed using the
methods of control systems. Response time and the effect of
the sensor on the parameter being measured may affect
accuracy of a measurement. Moreover, many transducers
exhibit some sensitivity to phenomena other than the primary
parameter being measured. All of these considerations affect
accuracy, stability, noise sensitivity, and precision of any
measurement. In the case of digital measurement systems, the
limit of resolution corresponds to one bit.

Examples of Types of Sensors

Fluid-based sensors such as manometers, orifice and venturi
flow meters, and pitot tubes are discussed in the FLUID
MECHANICS section.

Resistance-based sensors include resistance temperature
detectors (RTDs), which are metal resistors, and thermistors,
which are semiconductors. Both have electrical resistivities
that are temperature dependent.

Electrical-resistance strain gages are metallic or semicon-
ducting foils whose resistance changes with dimensional
change (strain). They are widely used in load cells. The gage
is attached to the surface whose strain is to be measured. The
gage factor (G.F.) of these devices is defined by

¢ - ORR_ORR
"~ AL/L

R = electrical resistance,

L = the length of the gage section, and

, Wwhere

€ = the normal strain sensed by the gage.

Strain gages sense normal strain along their principal axis.
They do not respond to shear strain. Therefore, multiple gages
must be used along with Mohr's circle techniques to
determine the complete plane strain state.

Resistance-based sensors are generally used in a bridge circuit
that detects small changes in resistance. The output of a
bridge circuit with only one variable resistor (quarter bridge
configuration) is given by

Vout = Vinput x [AR/(4R)]
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Half-bridge and full-bridge configurations use two or four
variable resistors, respectively. A full-bridge strain gage
circuit give a voltage output of

Vout = Vinput x G.F. x (81 - & + &3 — 84)/4

Half- or full-strain gage bridge configurations can be
developed that are sensitive to only some types of loading
(axial, bending, shear) while being insensitive to others.

Piezoelectric sensors produce a voltage in response to a
mechanical load. These transducers are widely used as force
or pressure transducers. With the addition of an inertial mass,
they are used as accelerometers.

Thermocouples are junctions of dissimilar metals which
produce a voltage whose magnitude is temperature dependent.

Capacitance-based transducers are used as position sensors.
The capacitance of two flat plates depends on their separation
or on the area of overlap.

Inductance-based transducers or differential transformers also
function as displacement transducers. The inductive coupling
between a primary and secondary coil depends on the position
of a soft magnetic core. This is the basis for the Linear
Variable Differential Transformer (LVDT).

MEASUREMENT UNCERTAINTY

Suppose that a calculated result R depends on measurements
whose values are X; £ Wy, X £ W,, X3 £ W3, etc., where R=
f(X1, X0, X3, ... %), X is the measured value, and W, is the
uncertainty in that value. The uncertainty in R, Wg, can be
estimated using the Kline-McClintock equation:

I (W:IA8 N (VY-8 IO (T B
R ' ox, ox, ) Max,




CONTROL SYSTEMS

Thelinear time-invariant transfer function model represented
by the block diagram

X(s) Y(s)

G(s)

INPUT OUTPUT

can be expressed as the ratio of two polynomialsin the form
M

X(6) _ (1o N L)
70l " )

wherethe M zeros, z,,, and the N poles, p,, aretheroots of the
numerator polynomial, N(s), and the denominator polynomial,
D(s), respectively.

One classical negative feedback control system model block

diagramis
L(s)

R‘ioaaoqs)
[ Hes) |

where Gg(s) describes an input processor, G¢(s) a controller
or compensator, G4(s) and G,(s) represent a partitioned plant
model, and H(s) a feedback function. C(s) represents the
controlled variable, R(s) represents the setpoint, and L(S)
represents aload disturbance. C(s) isrelated to R(s) and L(s)

by
=5 o 9 G 9

6,9 i
L

" 146, (96,96, (IH (s

Gc(s) Gi(s) Gx(s) H(s) isthe open-loop transfer function. The
characteristic equation is

Ge(s) Ga(s) Go(s) H(s) +1=0
System performance studies normally include:

1. Steady-state analysis using constant inputs is based on
the Final Vaue Theorem. If al poles of a G(s) function
have negative rea parts, then

Steady State Gain = IirgG(s)
For the unity feedback control system model

R(s) +
—»

E(s) C(s)

G(s)
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COMPUTERS, MEASUREMENT, AND CONTROL S (continued)
with the open-loop transfer function defined by

« Nl+so,)

B xm=1

T N
s
n=,
The following steady-state error analysis table can be
constructed where T denotes the type of system; i.e., type O,

type 1, etc.

G(s) =

Steady-State Error ex(t)

Inpu Type T=0 T=1 T=2
Unit Step U(Kg+1) 0 0
Ramp 00 UKg 0
Acceleration o co 1/Kg

2. Frequency response evaluations to determine dynamic
performance and stability. For example, relative stability
can be quantified in terms of
a.  Gain margin (GM) which is the additional gain

required to produce instability in the unity gain feed-
back control system. If at w = g,
O G(juxgg) = 180°; then
GM =-20l0gs0 ((G(jongo) D)
b. Phase margin (PM) which is the additional phase
required to produce instability. Thus,
PM =180° + O G(jwogs)
where ahgg isthe wthat satisfies 0G(ja)0= 1.

3. Transient responses are obtained by using Laplace
Transforms or computer solutions with numerical
integration.

Common Compensator/Controller forms are

PID Controller G¢(s) = K(1+_I_i +TpS
s
|

Lag or Lead Compensator G¢(s) = K[

1+sT, J
depending on the ratio of Ty/T>.

1+sT,

Routh Test
For the characteristic equation
s+t +as?+ ... +a,=0

the coefficients are arranged into the first two rows of an
array. Additional rows are computed. The array and
coefficient computations are defined by:

2 & =X

a az as
b, b, bs
C1 Co Cs
where o =% %3 _ah-ab,
a b,
b2 — a,a, —a,3; c, = asbl _a1b3
a, b,



The necessary and sufficient conditions for all the roots of the
equation to have negative real parts is that all the elements in
the first column be of the same sign and nonzero.

Second-Order Control-System Models

One standard second-order control-system model is
C(s) _ K’
R(s) s®+2lw,s+w’

K = steady state gain,
{ = the damping ratio,
ah = the undamped natural ({= 0) frequency,

—n 1 _72
Wy = Wyy1-¢ , the damped natural frequency,

and

— _~72
Wp = 001~ 2¢ , the damped resonant frequency.
If the damping ratio is less than unity, the system is said to
be underdamped; if ¢ is equal to unity, it is said to be
critically damped; and if {is greater than unity, the system is
said to be overdamped.

For a unit step input to a normalized underdamped second-
order control system, the time required to reach a peak value
t, and the value of that peak C, are given by

RS
o :l+e""z/ﬁ

For an underdamped second-order system, the logarithmic
decrement is

1 X 211(
d=—In — J =
m ( Xiem / 1- 12
where X and X m are the amplitudes of oscillation at cycles k
and k + m, respectively. The period of oscillation 7is related
to wy by
Wy T =2TT
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COMPUTERS, MEASUREMENT, AND CONTROLS (continued)

State-Variable Control-System Models

One common state-variable model for dynamic systems has
the form

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(state equation)
(output equation)
where

x(t) = N by 1 state vector (N state variables),

u(t) = Rby 1 input vector (R inputs),

y(t) = M by 1 output vector (M outputs),

A = system matrix,

B = input distribution matrix,

C = output matrix, and

D = feed-through matrix.

The orders of the matrices are defined via variable definitions.

State-variable models automatically handle multiple inputs
and multiple outputs. Furthermore, state-variable models can
be formulated for open-loop system components or the
complete closed-loop system.

The Laplace transform of the time-invariant state equation is
sX(s) — x(0) = AX(s) + BU(s)

from which
X(s) = P(s) x(0) + P(s) BU(9)

where
d(s)=[s-A]"

is the state transition matrix. The state-transition matrix
Ot =L H{P(s)}

(also defined as ') can be used to write
x(t) = B(t) x(0) + j;cb (t— 1 Bu(p) dr

The output can be obtained with the output equation; e.g., the
Laplace transform output is

Y(s) = {CP(S) B + D}U(S) + CD(S) x(0)

The latter term represents the output(s) due to initial
conditions whereas the former term represents the output(s)
due to the U(S) inputs and gives rise to transfer function
definitions.



ENGINEERING ECONOMICS

Factor Name Converts Symbol Formula
Single Payment . 0 n
+
Compound Amount to F given P (F/P, 1%, n) (1+1)
Single Payment . 0 " n
+
Present Worth to P given F (PIF, i%, n) (1+10)
Uniform Series [
. 0
Sinking Fund to A given F (AIF, 1%, n) (1 N i)n .
| | . (1)
Capital Recovery to A given P (AIP, i%, n) (1 n _)n 1
I —
Uniform Series . . (1+i)" -1
0
Compound Amount toF given A (FIA 1%, ) i
Uniform Series . (1+i)" -1
1 0
Present Worth to P given A (PIA, 1%, n) : (1 N i)n
Uniform Gradient ** . (1 + i)rI -1 n
. 0 -
Present Worth toPgiven G (P/G, 1% ) i’ (1 +i)" i(l + i)n
Uniform Gradient . i (1 + i)" -1 n
Future Worth to F given G (FIG, 1%, n) = T
Uniform Gradient . 0 1_ n
Uniform Series to Agiven G (WG, 1% ) [ (1 + i)n -1

NOMENCLATURE AND DEFINITIONS

Ao, Uniform amount per interest period

B.ooow. Benefit

BV....... Book Value

Coeens Cost

d...... Combined interest rate per interest period

Dj......... Depreciation in year |

Fono Future worth, value, or amount

foveeens General inflation rate per interest period

G.... Uniform gradient amount per interest period

([P Interest rate per interest period

(PR Annual effective interest rate

m........ Number of compounding periods per year

N Number of compounding periods; or the expected
life of an asset

Po.... Present worth, value, or amount

Moo Nominal annual interest rate

S Expected salvage value in year n

Subscripts

| — at time |

Neeeeene at time n

*% ___ PIG = (FIG)/(FIP) = (PIA) x (N/G)

F FIG = (FIA—n)/i = (FIA) x (AG)
F o AIG =[1 - n(AF)]/i

NON-ANNUAL COMPOUNDING

i =[1+Lj -1
m

Discount Factors for Continuous Compounding

(n is the number of years)
(FIP, 1%, n)y= ¢€"
(PIF, 1%, n)y= ¢'"

r

e -1
(AIF, 1%, n) = e —1
rn_l
0, =
e -1
(AP, 1%, n) = T
1-e""
(PIAT% M=~

BOOK VALUE
BV = initial cost — 2 D;
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DEPRECIATION
Straight Line D = A

Accelerated Cost Recovery System (ACRS)
D; = (factor) C
A table of modified factors is provided below.

CAPITALIZED COSTS

Capitalized costs are present worth values using an assumed
perpetual period of time.

A
Capitalized Costs =P =

BONDS

Bond Value equals the present worth of the payments the
purchaser (or holder of the bond) receives during the life of
the bond at some interest rate i.

Bond Yield equals the computed interest rate of the bond
value when compared with the bond cost.

RATE-OF-RETURN

The minimum acceptable rate-of-return is that interest rate
that one is willing to accept, or the rate one desires to earn on

ENGINEERING ECONOMICS (continued)
BREAK-EVEN ANALYSIS

By altering the value of any one of the variables in a situation,
holding all of the other values constant, it is possible to find a
value for that variable that makes the two alternatives equally
economical. This value is the break-even point.

Break-even analysis is used to describe the percentage of
capacity of operation for a manufacturing plant at which
income will just cover expenses.

The payback period is the period of time required for the
profit or other benefits of an investment to equal the cost of
the investment.

INFLATION

To account for inflation, the dollars are deflated by the
general inflation rate per interest period f, and then they are
shifted over the time scale using the interest rate per interest
period i. Use a combined interest rate per interest period d for
computing present worth values P and Net P. The formula for
dis

d=i+f+({xf)

BENEFIT-COST ANALYSIS

In a benefit-cost analysis, the benefits B of a project should
exceed the estimated costs C.

. . . B-C=0,or B/IC=1
investments. The rate-of-return on an investment is the
interest rate that makes the benefits and costs equal.
MODIFIED ACRS FACTORS
Recovery Period (Years)
3 5 7 | 10
Year Recovery Rate (Percent)
1 333 20.0 14.3 10.0
2 44.5 32.0 24.5 18.0
3 14.8 19.2 17.5 14.4
4 7.4 11.5 12.5 11.5
5 11.5 8.9 9.2
6 5.8 8.9 7.4
7 8.9 6.6
8 4.5 6.6
9 6.5
10 6.5
11 33
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Factor Table -i =0.50%

ENGINEERING ECONOMICS (continued)

n P/F P/A P/IG F/P F/A A/P A/F AIG
1 0.9950 0.9950 0.0000 1.0050 1.0000 1.0050 1.0000 0.0000
2 0.9901 1.9851 0.9901 1.0100 2.0050 0.5038 0.4988 0.4988
3 0.9851 2.9702 2.9604 1.0151 3.0150 0.3367 0.3317 0.9967
4 0.9802 3.9505 5.9011 1.0202 4.0301 0.2531 0.2481 1.4938
5 0.9754 4.9259 9.8026 1.0253 5.0503 0.2030 0.1980 1.9900
6 0.9705 5.8964 14.6552 1.0304 6.0755 0.1696 0.1646 2.4855
7 0.9657 6.8621 20.4493 1.0355 7.1059 0.1457 0.1407 2.9801
8 0.9609 7.8230 27.1755 1.0407 8.1414 0.1278 0.1228 3.4738
9 0.9561 8.7791 34.8244 1.0459 9.1821 0.1139 0.1089 3.9668

10 0.9513 9.7304 43.3865 1.0511 10.2280 0.1028 0.0978 4.4589

11 0.9466 10.6770 52.8526 1.0564 11.2792 0.0937 0.0887 4.9501

12 0.9419 11.6189 63.2136 1.0617 12.3356 0.0861 0.0811 5.4406

13 0.9372 12.5562 74.4602 1.0670 13.3972 0.0796 0.0746 5.9302

14 0.9326 13.4887 86.5835 1.0723 14.4642 0.0741 0.0691 6.4190

15 0.9279 14.4166 99.5743 1.0777 15.5365 0.0694 0.0644 6.9069

16 0.9233 15.3399 113.4238 1.0831 16.6142 0.0652 0.0602 7.3940

17 0.9187 16.2586 128.1231 1.0885 17.6973 0.0615 0.0565 7.8803

18 0.9141 17.1728 143.6634 1.0939 18.7858 0.0582 0.0532 8.3658

19 0.9096 18.0824 160.0360 1.0994 19.8797 0.0553 0.0503 8.8504

20 0.9051 18.9874 177.2322 1.1049 20.9791 0.0527 0.0477 9.3342

21 0.9006 19.8880 195.2434 1.1104 22.0840 0.0503 0.0453 9.8172

2 0.8961 20.7841 214.0611 1.1160 23.1944 0.0481 0.0431 10.2993

23 0.8916 21.6757 233.6768 1.1216 24.3104 0.0461 0.0411 10.7806

24 0.8872 22.5629 254.0820 1.1272 25.4320 0.0443 0.0393 11.2611

25 0.8828 23.4456 275.2686 1.1328 26.5591 0.0427 0.0377 11.7407

30 0.8610 27.7941 392.6324 1.1614 32.2800 0.0360 0.0310 14.1265

40 0.8191 36.1722 681.3347 1.2208 44.1588 0.0276 0.0226 18.8359

50 0.7793 44.1428 1,035.6966 1.2832 56.6452 0.0227 0.0177 23.4624

60 0.7414 51.7256 1,448.6458 1.3489 69.7700 0.0193 0.0143 28.0064

100 0.6073 78.5426 3,562.7934 1.6467 129.3337 0.0127 0.0077 45.3613
Factor Table - i = 1.00%

n P/F P/A P/IG F/P F/A A/P A/F AIG
1 0.9901 0.9901 0.0000 1.0100 1.0000 1.0100 1.0000 0.0000
2 0.9803 1.9704 0.9803 1.0201 2.0100 0.5075 0.4975 0.4975
3 0.9706 2.9410 2.9215 1.0303 3.0301 0.3400 0.3300 0.9934
4 0.9610 3.9020 5.8044 1.0406 4.0604 0.2563 0.2463 1.4876
5 0.9515 4.8534 9.6103 1.0510 5.1010 0.2060 0.1960 1.9801
6 0.9420 5.7955 14.3205 1.0615 6.1520 0.1725 0.1625 2.4710
7 0.9327 6.7282 19.9168 1.0721 7.2135 0.1486 0.1386 2.9602
8 0.9235 7.6517 26.3812 1.0829 8.2857 0.1307 0.1207 3.4478
9 0.9143 8.5650 33.6959 1.0937 9.3685 0.1167 0.1067 3.9337

10 0.9053 9.4713 41.8435 1.1046 10.4622 0.1056 0.0956 4.4179

11 0.8963 10.3676 50.8067 1.1157 11.5668 0.0965 0.0865 4.9005

12 0.8874 11.2551 60.5687 1.1268 12.6825 0.0888 0.0788 5.3815

13 0.8787 12.1337 71.1126 1.1381 13.8093 0.0824 0.0724 5.8607

14 0.8700 13.0037 82.4221 1.1495 14.9474 0.0769 0.0669 6.3384

15 0.8613 13.8651 94.4810 1.1610 16.0969 0.0721 0.0621 6.8143

16 0.8528 14.7179 107.2734 1.1726 17.2579 0.0679 0.0579 7.2886

17 0.8444 15.5623 120.7834 1.1843 18.4304 0.0643 0.0543 7.7613

18 0.8360 16.3983 134.9957 1.1961 19.6147 0.0610 0.0510 8.2323

19 0.8277 17.2260 149.8950 1.2081 20.8109 0.0581 0.0481 8.7017

20 0.8195 18.0456 165.4664 1.2202 22.0190 0.0554 0.0454 9.1694

21 0.8114 18.8570 181.6950 1.2324 23.2392 0.0530 0.0430 9.6354

2 0.8034 19.6604 198.5663 1.2447 244716 0.0509 0.0409 10.0998

23 0.7954 20.4558 216.0660 1.2572 25.7163 0.0489 0.0389 10.5626

24 0.7876 21.2434 234.1800 1.2697 26.9735 0.0471 0.0371 11.0237

25 0.7798 22.0232 252.8945 1.2824 28.2432 0.0454 0.0354 11.4831

30 0.7419 25.8077 355.0021 1.3478 34.7849 0.0387 0.0277 13.7557

40 0.6717 32.8347 596.8561 1.4889 48.8864 0.0305 0.0205 18.1776

50 0.6080 39.1961 879.4176 1.6446 64.4632 0.0255 0.0155 22.4363

60 0.5504 44.9550 1,192.8061 1.8167 81.6697 0.0222 0.0122 26.5333

100 0.3697 63.0289 2,605.7758 2.7048 170.4814 0.0159 0.0059 41.3426
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Factor Table - i =1.50%

ENGINEERING ECONOMICS (continued)

n P/IF P/A P/IG F/P F/A A/P A/F A/G
1 0.9852 0.9852 0.0000 1.0150 1.0000 1.0150 1.0000 0.0000
2 0.9707 1.9559 0.9707 1.0302 2.0150 0.5113 0.4963 0.4963
3 0.9563 2.9122 2.8833 1.0457 3.0452 0.3434 0.3284 0.9901
4 0.9422 3.8544 5.7098 1.0614 4.0909 0.2594 0.2444 1.4814
5 0.9283 4.7826 9.4229 1.0773 5.1523 0.2091 0.1941 1.9702
6 0.9145 5.6972 13.9956 1.0934 6.2296 0.1755 0.1605 2.4566
7 0.9010 6.5982 19.4018 1.1098 7.3230 0.1516 0.1366 2.9405
8 0.8877 7.4859 26.6157 1.1265 8.4328 0.1336 0.1186 3.4219
9 0.8746 8.3605 32.6125 1.1434 9.5593 0.1196 0.1046 3.9008

10 0.8617 9.2222 40.3675 1.1605 10.7027 0.1084 0.0934 43772

11 0.8489 10.0711 48.8568 1.1779 11.8633 0.0993 0.0843 4.8512

12 0.8364 10.9075 58.0571 1.1956 13.0412 0.0917 0.0767 5.3227

13 0.8240 11.7315 67.9454 1.2136 14.2368 0.0852 0.0702 5.7917

14 0.8118 12.5434 78.4994 1.2318 15.4504 0.0797 0.0647 6.2582

15 0.7999 13.3432 89.6974 1.2502 16.6821 0.0749 0.0599 6.7223

16 0.7880 14.1313 101.5178 1.2690 17.9324 0.0708 0.0558 7.1839

17 0.7764 14.9076 113.9400 1.2880 19.2014 0.0671 0.0521 7.6431

18 0.7649 15.6726 126.9435 1.3073 20.4894 0.0638 0.0488 8.0997

19 0.7536 16.4262 140.5084 1.3270 21.7967 0.0609 0.0459 8.5539

20 0.7425 17.1686 154.6154 1.3469 23.1237 0.0582 0.0432 9.0057

21 0.7315 17.9001 169.2453 1.3671 24.4705 0.0559 0.0409 9.4550

2 0.7207 18.6208 184.3798 1.3876 25.8376 0.0537 0.0387 9.9018

23 0.7100 19.3309 200.0006 1.4084 27.2251 0.0517 0.0367 10.3462

24 0.6995 20.0304 216.0901 1.4295 28.6335 0.0499 0.0349 10.7881

25 0.6892 20.7196 232.6310 1.4509 30.0630 0.0483 0.0333 11.2276

30 0.6398 24.0158 321.5310 1.5631 37.5387 0.0416 0.0266 13.3883

40 0.5513 29.9158 524.3568 1.8140 542679 0.0334 0.0184 17.5277

50 0.4750 34.9997 749.9636 2.1052 73.6828 0.0286 0.0136 21.4277

60 0.4093 39.3803 988.1674 2.4432 96.2147 0.0254 0.0104 25.0930

100 0.2256 51.6247 1,937.4506 4.4320 228.8030 0.0194 0.0044 37.5295
Factor Table - i =2.00%

n P/IF P/A P/IG F/P F/A A/P A/F AIG
1 0.9804 0.9804 0.0000 1.0200 1.0000 1.0200 1.0000 0.0000
2 0.9612 1.9416 0.9612 1.0404 2.0200 0.5150 0.4950 0.4950
3 0.9423 2.8839 2.8458 1.0612 3.0604 0.3468 0.3268 0.9868
4 0.9238 3.8077 5.6173 1.0824 41216 0.2626 0.2426 1.4752
5 0.9057 47135 9.2403 1.1041 5.2040 0.2122 0.1922 1.9604
6 0.8880 5.6014 13.6801 1.1262 6.3081 0.1785 0.1585 2.4423
7 0.8706 6.4720 18.9035 1.1487 7.4343 0.1545 0.1345 2.9208
8 0.8535 7.3255 24.8779 1.1717 8.5830 0.1365 0.1165 3.3961
9 0.8368 8.1622 31.5720 1.1951 9.7546 0.1225 0.1025 3.8681

10 0.8203 8.9826 38.9551 1.2190 10.9497 0.1113 0.0913 43367

11 0.8043 9.7868 46.9977 1.2434 12.1687 0.1022 0.0822 4.8021

12 0.7885 10.5753 55.6712 1.2682 13.4121 0.0946 0.0746 5.2642

13 0.7730 11.3484 64.9475 1.2936 14.6803 0.0881 0.0681 5.7231

14 0.7579 12.1062 74.7999 1.3195 15.9739 0.0826 0.0626 6.1786

15 0.7430 12.8493 85.2021 1.3459 17.2934 0.0778 0.0578 6.6309

16 0.7284 13.5777 96.1288 1.3728 18.6393 0.0737 0.0537 7.0799

17 0.7142 14.2919 107.5554 1.4002 20.0121 0.0700 0.0500 7.5256

18 0.7002 14.9920 119.4581 1.4282 21.4123 0.0667 0.0467 7.9681

19 0.6864 15.6785 131.8139 1.4568 22.8406 0.0638 0.0438 8.4073

20 0.6730 16.3514 144.6003 1.4859 24.2974 0.0612 0.0412 8.8433

21 0.6598 17.0112 157.7959 1.5157 25.7833 0.0588 0.0388 9.2760

2 0.6468 17.6580 171.3795 1.5460 27.2990 0.0566 0.0366 9.7055

23 0.6342 18.2922 185.3309 1.5769 28.8450 0.0547 0.0347 10.1317

24 0.6217 18.9139 199.6305 1.6084 30.4219 0.0529 0.0329 10.5547

25 0.6095 19.5235 214.2592 1.6406 32.0303 0.0512 0.0312 10.9745

30 0.5521 22.3965 291.7164 1.8114 40.5681 0.0446 0.0246 13.0251

40 0.4529 27.3555 461.9931 2.2080 60.4020 0.0366 0.0166 16.8885

50 0.3715 31.4236 642.3606 2.6916 84.5794 0.0318 0.0118 20.4420

60 0.3048 34.7609 823.6975 3.2810 114.0515 0.0288 0.0088 23.6961

100 0.1380 43.0984 1,464.7527 7.2446 312.2323 0.0232 0.0032 33.9863

82




Factor Table - i =4.00%

ENGINEERING ECONOMICS (continued)

n P/F P/A P/IG F/P F/A A/P A/F AIG
1 0.9615 0.9615 0.0000 1.0400 1.0000 1.0400 1.0000 0.0000
2 0.9246 1.8861 0.9246 1.0816 2.0400 0.5302 0.4902 0.4902
3 0.8890 2.7751 2.7025 1.1249 3.1216 0.3603 0.3203 0.9739
4 0.8548 3.6299 5.2670 1.1699 4.2465 0.2755 0.2355 1.4510
5 0.8219 4.4518 8.5547 1.2167 5.4163 0.2246 0.1846 1.9216
6 0.7903 52421 12.5062 1.2653 6.6330 0.1908 0.1508 23857
7 0.7599 6.0021 17.0657 1.3159 7.8983 0.1666 0.1266 2.8433
8 0.7307 6.7327 22.1806 1.3686 92142 0.1485 0.1085 3.2944
9 0.7026 7.4353 27.8013 1.4233 10.5828 0.1345 0.0945 3.7391

10 0.6756 8.1109 33.8814 1.4802 12.0061 0.1233 0.0833 41773

11 0.6496 8.7605 403772 1.5395 13.4864 0.1141 0.0741 4.6090

12 0.6246 9.3851 47.2477 1.6010 15.0258 0.1066 0.0666 5.0343

13 0.6006 9.9856 54.4546 1.6651 16.6268 0.1001 0.0601 5.4533

14 0.5775 10.5631 61.9618 1.7317 18.2919 0.0947 0.0547 5.8659

15 0.5553 11.1184 69.7355 1.8009 20.0236 0.0899 0.0499 6.2721

16 0.5339 11.6523 77.7441 1.8730 21.8245 0.0858 0.0458 6.6720

17 0.5134 12.1657 85.9581 1.9479 23.6975 0.0822 0.0422 7.0656

18 0.4936 12.6593 94.3498 2.0258 25.6454 0.0790 0.0390 7.4530

19 0.4746 13.1339 102.8933 2.1068 27.6712 0.0761 0.0361 7.8342

20 0.4564 13.5903 111.5647 2.1911 29.7781 0.0736 0.0336 8.2091

21 0.4388 14.0292 1203414 2.2788 31.9692 0.0713 0.0313 8.5779

2 0.4220 14.4511 129.2024 2.3699 34.2480 0.0692 0.0292 8.9407

23 0.4057 14.8568 138.1284 2.4647 36.6179 0.0673 0.0273 9.2973

24 0.3901 15.2470 147.1012 2.5633 39.0826 0.0656 0.0256 9.6479

25 0.3751 15.6221 156.1040 2.6658 41.6459 0.0640 0.0240 9.9925

30 0.3083 17.2920 201.0618 3.2434 56.0849 0.0578 0.0178 11.6274

40 0.2083 19.7928 286.5303 4.8010 95.0255 0.0505 0.0105 14.4765

50 0.1407 21.4822 361.1638 7.1067 152.6671 0.0466 0.0066 16.8122

60 0.0951 22.6235 422.9966 10.5196 237.9907 0.0442 0.0042 18.6972

100 0.0198 24.5050 563.1249 50.5049 1,237.6237 0.0408 0.0008 22.9800
Factor Table - i = 6.00%

n P/IF P/A P/IG F/P F/A A/P A/F A/G
1 0.9434 0.9434 0.0000 1.0600 1.0000 1.0600 1.0000 0.0000
2 0.8900 1.8334 0.8900 1.1236 2.0600 0.5454 0.4854 0.4854
3 0.8396 2.6730 2.5692 1.1910 3.1836 0.3741 0.3141 0.9612
4 0.7921 3.4651 4.9455 1.2625 4.3746 0.2886 0.2286 1.4272
5 0.7473 4.2124 7.9345 1.3382 5.6371 0.2374 0.1774 1.8836
6 0.7050 49173 11.4594 1.4185 6.9753 0.2034 0.1434 2.3304
7 0.6651 5.5824 15.4497 1.5036 8.3938 0.1791 0.1191 2.7676
8 0.6274 6.2098 19.8416 1.5938 9.8975 0.1610 0.1010 3.1952
9 0.5919 6.8017 24.5768 1.6895 11.4913 0.1470 0.0870 3.6133

10 0.5584 7.3601 29.6023 1.7908 13.1808 0.1359 0.0759 4.0220

11 0.5268 7.8869 34.8702 1.8983 14.9716 0.1268 0.0668 44213

12 0.4970 8.3838 40.3369 2.0122 16.8699 0.1193 0.0593 4.8113

13 0.4688 8.8527 45.9629 2.1329 18.8821 0.1130 0.0530 5.1920

14 0.4423 9.2950 51.7128 2.2609 21.0151 0.1076 0.0476 5.5635

15 0.4173 9.7122 57.5546 2.3966 23.2760 0.1030 0.0430 5.9260

16 0.3936 10.1059 63.4592 2.5404 25.6725 0.0990 0.0390 6.2794

17 03714 10.4773 69.4011 2.6928 28.2129 0.0954 0.0354 6.6240

18 0.3505 10.8276 75.3569 2.8543 30.9057 0.0924 0.0324 6.9597

19 0.3305 11.1581 81.3062 3.0256 33.7600 0.0896 0.0296 7.2867

20 0.3118 11.4699 87.2304 3.2071 36.7856 0.0872 0.0272 7.6051

21 0.2942 11.7641 93.1136 3.3996 39.9927 0.0850 0.0250 7.9151

2 0.2775 12.0416 98.9412 3.6035 43.3923 0.0830 0.0230 8.2166

23 0.2618 12.3034 104.7007 3.8197 46.9958 0.0813 0.0213 8.5099

24 0.2470 12.5504 1103812 4.0489 50.8156 0.0797 0.0197 8.7951

25 0.2330 12.7834 115.9732 4.2919 54.8645 0.0782 0.0182 9.0722

30 0.1741 13.7648 142.3588 5.7435 79.0582 0.0726 0.0126 10.3422

40 0.0972 15.0463 185.9568 10.2857 154.7620 0.0665 0.0065 12.3590

50 0.0543 15.7619 217.4574 18.4202 290.3359 0.0634 0.0034 13.7964

60 0.0303 16.1614 239.0428 32.9877 533.1282 0.0619 0.0019 14.7909

100 0.0029 16.6175 272.0471 339.3021 5,638.3681 0.0602 0.0002 16.3711
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Factor Table - i = 8.00%

ENGINEERING ECONOMICS (continued)

n P/F P/A P/G F/P F/A A/P A/F A/G
1 0.9259 0.9259 0.0000 1.0800 1.0000 1.0800 1.0000 0.0000
2 0.8573 1.7833 0.8573 1.1664 2.0800 0.5608 0.4808 0.4808
3 0.7938 2.5771 2.4450 1.2597 3.2464 0.3880 0.3080 0.9487
4 0.7350 33121 4.6501 1.3605 4.5061 03019 0.2219 1.4040
5 0.6806 3.9927 7.3724 1.4693 5.8666 0.2505 0.1705 1.8465
6 0.6302 4.6229 10.5233 1.5869 7.3359 0.2163 0.1363 2.2763
7 0.5835 5.2064 14.0242 1.7138 8.9228 0.1921 0.1121 2.6937
8 0.5403 5.7466 17.8061 1.8509 10.6366 0.1740 0.0940 3.0985
9 0.5002 6.2469 21.8081 1.9990 12.4876 0.1601 0.0801 3.4910
10 0.4632 6.7101 25.9768 2.1589 14.4866 0.1490 0.0690 3.8713
11 0.4289 7.1390 30.2657 23316 16.6455 0.1401 0.0601 4.2395
12 0.3971 7.5361 34.6339 2.5182 18.9771 0.1327 0.0527 4.5957
13 0.3677 7.9038 39.0463 2.7196 21.4953 0.1265 0.0465 4.9402
14 0.3405 8.2442 43.4723 2.9372 24.2149 0.1213 0.0413 52731
15 0.3152 8.5595 47.8857 3.1722 27.1521 0.1168 0.0368 5.5945
16 0.2919 8.8514 52.2640 3.4259 30.3243 0.1130 0.0330 5.9046
17 0.2703 9.1216 56.5883 3.7000 33.7502 0.1096 0.0296 6.2037
18 0.2502 9.3719 60.8426 3.9960 37.4502 0.1067 0.0267 6.4920
19 0.2317 9.6036 65.0134 43157 41.4463 0.1041 0.0241 6.7697
20 0.2145 9.8181 69.0898 4.6610 45.7620 0.1019 0.0219 7.0369
21 0.1987 10.0168 73.0629 5.0338 50.4229 0.0998 0.0198 7.2940
2 0.1839 10.2007 76.9257 5.4365 55.4568 0.0980 0.0180 7.5412
23 0.1703 103711 80.6726 5.8715 60.8933 0.0964 0.0164 7.7786
24 0.1577 10.5288 84.2997 6.3412 66.7648 0.0950 0.0150 8.0066
25 0.1460 10.6748 87.8041 6.8485 73.1059 0.0937 0.0137 8.2254
30 0.0994 11.2578 103.4558 10.0627 113.2832 0.0888 0.0088 9.1897
40 0.0460 11.9246 126.0422 21.7245 259.0565 0.0839 0.0039 10.5699
50 0.0213 12.2335 139.5928 46.9016 573.7702 0.0817 0.0017 11.4107
60 0.0099 12.3766 147.3000 101.2571 1,253.2133 0.0808 0.0008 11.9015
100 0.0005 12.4943 155.6107 2,199.7613 27,484.5157 0.0800 12.4545
Factor Table - i =10.00%
n P/F P/A P/IG F/P F/A A/P A/F AIG
1 0.9091 0.9091 0.0000 1.1000 1.0000 1.1000 1.0000 0.0000
2 0.8264 1.7355 0.8264 1.2100 2.1000 0.5762 0.4762 0.4762
3 0.7513 2.4869 2.3291 1.3310 3.3100 0.4021 0.3021 0.9366
4 0.6830 3.1699 43781 1.4641 4.6410 03155 0.2155 1.3812
5 0.6209 3.7908 6.8618 1.6105 6.1051 0.2638 0.1638 1.8101
6 0.5645 4.3553 9.6842 1.7716 77156 0.2296 0.1296 2.2236
7 0.5132 4.8684 12.7631 1.9487 9.4872 0.2054 0.1054 2.6216
8 0.4665 5.3349 16.0287 2.1436 11.4359 0.1874 0.0874 3.0045
9 0.4241 57590 19.4215 2.3579 13.5735 0.1736 0.0736 3.3724
10 0.3855 6.1446 22.8913 2.5937 15.9374 0.1627 0.0627 3.7255
11 0.3505 6.4951 26.3962 2.8531 18.5312 0.1540 0.0540 4.0641
12 0.3186 6.8137 29.9012 3.1384 21.3843 0.1468 0.0468 4.3884
13 0.2897 7.1034 333772 3.4523 24.5227 0.1408 0.0408 4.6988
14 0.2633 7.3667 36.8005 3.7975 27.9750 0.1357 0.0357 4.9955
15 0.2394 7.6061 40.1520 41772 31.7725 0.1315 0.0315 5.2789
16 0.2176 7.8237 43.4164 4.5950 35.9497 0.1278 0.0278 5.5493
17 0.1978 8.0216 46.5819 5.5045 40.5447 0.1247 0.0247 5.8071
18 0.1799 8.2014 49,6395 5.5599 45.5992 0.1219 0.0219 6.0526
19 0.1635 8.3649 52.5827 6.1159 51.1591 0.1195 0.0195 6.2861
20 0.1486 8.5136 55.4069 6.7275 57.2750 0.1175 0.0175 6.5081
21 0.1351 8.6487 58.1095 7.4002 64.0025 0.1156 0.0156 6.7189
2 0.1228 8.7715 60.6893 8.1403 71.4027 0.1140 0.0140 6.9189
23 0.1117 8.8832 63.1462 8.9543 79.5430 0.1126 0.0126 7.1085
24 0.1015 8.9847 65.4813 9.8497 88.4973 0.1113 0.0113 7.2881
25 0.0923 9.0770 67.6964 10.8347 98.3471 0.1102 0.0102 7.4580
30 0.0573 9.4269 77.0766 17.4494 164.4940 0.1061 0.0061 8.1762
40 0.0221 9.7791 88.9525 452593 442.5926 0.1023 0.0023 9.0962
50 0.0085 9.9148 94.8889 117.3909 1,163.9085 0.1009 0.0009 9.5704
60 0.0033 9.9672 97.7010 304.4816 3,034.8164 0.1003 0.0003 9.8023
100 0.0001 9.9993 99.9202 13,780.6123 137,796.1234 0.1000 9.9927
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Factor Table - i =12.00%

ENGINEERING ECONOMICS (continued)

n P/IF P/A P/IG F/P F/A A/P A/F AIG
1 0.8929 0.8929 0.0000 1.1200 1.0000 1.1200 1.0000 0.0000
2 0.7972 1.6901 0.7972 1.2544 2.1200 0.5917 0.4717 0.4717
3 0.7118 24018 2.2208 1.4049 3.3744 0.4163 0.2963 0.9246
4 0.6355 3.0373 4.1273 1.5735 4.7793 0.3292 0.2092 1.3589
5 0.5674 3.6048 6.3970 1.7623 6.3528 0.2774 0.1574 1.7746
6 0.5066 41114 8.9302 1.9738 8.1152 0.2432 0.1232 2.1720
7 0.4523 4.5638 11.6443 2.2107 10.0890 0.2191 0.0991 2.5515
8 0.4039 4.9676 14.4714 2.4760 12.2997 0.2013 0.0813 29131
9 0.3606 5.3282 17.3563 2.7731 14.7757 0.1877 0.0677 3.2574

10 0.3220 5.6502 20.2541 3.1058 17.5487 0.1770 0.0570 3.5847

11 0.2875 5.9377 23.1288 3.4785 20.6546 0.1684 0.0484 3.8953

12 0.2567 6.1944 25.9523 3.8960 24.1331 0.1614 0.0414 4.1897

13 0.2292 6.4235 28.7024 4.3635 28.0291 0.1557 0.0357 4.4683

14 0.2046 6.6282 31.3624 4.8871 32.3926 0.1509 0.0309 4.7317

15 0.1827 6.8109 33.9202 5.4736 37.2797 0.1468 0.0268 4.9803

16 0.1631 6.9740 363670 6.1304 427533 0.1434 0.0234 5.2147

17 0.1456 7.1196 38.6973 6.8660 48.8837 0.1405 0.0205 5.4353

18 0.1300 7.2497 40.9080 7.6900 55.7497 0.1379 0.0179 5.6427

19 0.1161 7.3658 42.9979 8.6128 63.4397 0.1358 0.0158 5.8375

20 0.1037 7.4694 44.9676 9.6463 72.0524 0.1339 0.0139 6.0202

21 0.0926 7.5620 46.8188 10.8038 81.6987 0.1322 0.0122 6.1913

2 0.0826 7.6446 48.5543 12.1003 92.5026 0.1308 0.0108 6.3514

23 0.0738 77184 50.1776 13.5523 104.6029 0.1296 0.0096 6.5010

24 0.0659 7.7843 51.6929 15.1786 118.1552 0.1285 0.0085 6.6406

25 0.0588 7.8431 53.1046 17.0001 133.3339 0.1275 0.0075 6.7708

30 0.0334 8.0552 58.7821 29.9599 2413327 0.1241 0.0041 7.2974

40 0.0107 8.2438 65.1159 93.0510 767.0914 0.1213 0.0013 7.8988

50 0.0035 8.3045 67.7624 289.0022 2,400.0182 0.1204 0.0004 8.1597

60 0.0011 8.3240 68.8100 897.5969 7,471.6411 0.1201 0.0001 8.2664

100 8.3332 69.4336 83,522.2657 696,010.5477 0.1200 8.3321
Factor Table - i = 18.00%

n P/F P/A P/IG F/P F/A A/P A/F AIG
1 0.8475 0.8475 0.0000 1.1800 1.0000 1.1800 1.0000 0.0000
2 0.7182 1.5656 0.7182 1.3924 2.1800 0.6387 0.4587 0.4587
3 0.6086 2.1743 1.9354 1.6430 3.5724 0.4599 0.2799 0.8902
4 0.5158 2.6901 3.4828 1.9388 52154 03717 0.1917 1.2947
5 0.4371 3.1272 5.2312 2.2878 7.1542 0.3198 0.1398 1.6728
6 0.3704 3.4976 7.0834 2.6996 9.4423 0.2859 0.1059 2.0252
7 03139 3.8115 8.9670 3.1855 12.1415 0.2624 0.0824 2.3526
8 0.2660 4.0776 10.8292 3.7589 15.3270 0.2452 0.0652 2.6558
9 0.2255 4.3030 12.6329 4.4355 19.0859 0.2324 0.0524 2.9358

10 0.1911 4.4941 14.3525 5.2338 23.5213 0.2225 0.0425 3.1936

11 0.1619 4.6560 15.9716 6.1759 28.7551 0.2148 0.0348 3.4303

12 0.1372 4.7932 17.4811 7.2876 34.9311 0.2086 0.0286 3.6470

13 0.1163 4.9095 18.8765 8.5994 422187 0.2037 0.0237 3.8449

14 0.0985 5.0081 20.1576 10.1472 50.8180 0.1997 0.0197 4.0250

15 0.0835 5.0916 21.3269 11.9737 60.9653 0.1964 0.0164 4.1887

16 0.0708 5.1624 22.3885 14.1290 72.9390 0.1937 0.0137 4.3369

17 0.0600 5.2223 23.3482 16.6722 87.0680 0.1915 0.0115 4.4708

18 0.0508 5.2732 242123 19.6731 103.7403 0.1896 0.0096 45916

19 0.0431 53162 24.9877 232144 123.4135 0.1881 0.0081 4.7003

20 0.0365 5.3527 25.6813 27.3930 146.6280 0.1868 0.0068 4.7978

21 0.0309 5.3837 263000 323238 174.0210 0.1857 0.0057 4.8851

2 0.0262 5.4099 26.8506 38.1421 206.3448 0.1848 0.0048 4.9632

23 0.0222 5.4321 27.3394 45.0076 244.4868 0.1841 0.0041 5.0329

24 0.0188 5.4509 27.7725 53.1090 289.4944 0.1835 0.0035 5.0950

25 0.0159 5.4669 28.1555 62.6686 342.6035 0.1829 0.0029 5.1502

30 0.0070 5.5168 29.4864 143.3706 790.9480 0.1813 0.0013 5.3448

40 0.0013 5.5482 30.5269 750.3783 4,163.2130 0.1802 0.0002 5.5022

50 0.0003 5.5541 30.7856 3,927.3569 21,813.0937 0.1800 5.5428

60 0.0001 5.5553 30.8465 20,555.1400 114,189.6665 0.1800 5.5526

100 5.5556 30.8642 15,424,131.91 85,689,616.17 0.1800 5.5555

85




ETHICS

Engineering is considered to be a "profession" rather than an
"occupation" because of several important characteristics
shared with other recognized learned professions, law,
medicine, and theology: special knowledge, special privileges,
and special responsibilities. Professions are based on a large
knowledge base requiring extensive training. Professional
skills are important to the well-being of society. Professions
are self-regulating, in that they control the training and
evaluation processes that admit new persons to the field.
Professionals have autonomy in the workplace; they are
expected to utilize their independent judgment in carrying out
their professional responsibilities. Finally, professions are
regulated by ethical standards.'

The expertise possessed by engineers is vitally important to
public welfare. In order to serve the public effectively,
engineers must maintain a high level of technical competence.
However, a high level of technical expertise without
adherence to ethical guidelines is as much a threat to public
welfare as is professional incompetence. Therefore, engineers
must also be guided by ethical principles.

The ethical principles governing the engineering profession
are embodied in codes of ethics. Such codes have been
adopted by state boards of registration, professional
engineering societies, and even by some private industries. An
example of one such code is the NCEES Model Rules of
Professional Conduct, which is presented here in its entirety.
As part of his/her responsibility to the public, an engineer is
responsible for knowing and abiding by the code.

The three major sections of the model rules address (1)
Licensee's Obligations to Society, (2) Licensee's Obligations
to Employers and Clients, and (3) Licensee's Obligations to
Other Licensees. The principles amplified in these sections
are important guides to appropriate behavior of professional
engineers.

Application of the code in many situations is not
controversial. However, there may be situations in which
applying the code may raise more difficult issues. In
particular, there may be circumstances in which terminology
in the code is not clearly defined, or in which two sections of
the code may be in conflict. For example, what constitutes
"valuable consideration”" or "adequate" knowledge may be
interpreted differently by qualified professionals. These types
of questions are called conceptual issues, in which definitions
of terms may be in dispute. In other situations, factual issues
may also affect ethical dilemmas. Many decisions regarding
engineering design may be based upon interpretation of
disputed or incomplete information. In addition, tradeoffs
revolving around competing issues of risk vs. benefit, or
safety Vs. economics may require judgments that are not fully
addressed simply by application of the code.
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No code can give immediate and mechanical answers to all
ethical and professional problems that an engineer may face.
Creative problem solving is often called for in ethics, just as it
is in other areas of engineering.

NCEES Model Rules of Professional Conduct
PREAMBLE

To comply with the purpose of the (identify jurisdiction,
licensing statute)[] which is to safeguard life, health, and
property, to promote the public welfare, and to maintain a
high standard of integrity and practicel] the (identify board,
licensing statute) has developed the following Rules of
Professional Conduct. These rules shall be binding on every
person holding a certificate of licensure to offer or perform
engineering or land surveying services in this state. All
persons licensed under (identify jurisdiction’s licensing
statute) are required to be familiar with the licensing statute
and these rules. The Rules of Professional Conduct delineate
specific obligations the licensee must meet. In addition, each
licensee is charged with the responsibility of adhering to the
highest standards of ethical and moral conduct in all aspects
of the practice of professional engineering and land
surveying.

The practice of professional engineering and land surveying is
a privilege, as opposed to a right. All licensees shall exercise
their privilege of practicing by performing services only in the
areas of their competence according to current standards of
technical competence.

Licensees shall recognize their responsibility to the public and
shall represent themselves before the public only in an
objective and truthful manner.

They shall avoid conflicts of interest and faithfully serve the
legitimate interests of their employers, clients, and customers
within the limits defined by these rules. Their professional
reputation shall be built on the merit of their services, and
they shall not compete unfairly with others.

The Rules of Professional Conduct as promulgated herein are
enforced under the powers vested by (identify jurisdiction’s
enforcing agency). In these rules, the word “licensee” shall
mean any person holding a license or a certificate issued by
(identify jurisdiction’s licensing agency).

! Harris, C.E., M.S. Pritchard, & M.J. Rabins, Engineering Ethics: Conceptsand Cases, Copyright 00 1995
by Wadsworth Publishing Company, pages 27-28



II.

LICENSEE’S OBLIGATION TO SOCIETY

Licensees, in the performance of their services for clients,
employers, and customers, shall be cognizant that their
first and foremost responsibility is to the public welfare.

Licensees shall approve and seal only those design
documents and surveys that conform to accepted
engineering and land surveying standards and safeguard
the life, health, property, and welfare of the public.

Licensees shall notify their employer or client and such
other authority as may be appropriate when their
professional judgment is overruled under circumstances
where the life, health, property, or welfare of the public is
endangered.

Licensees shall be objective and truthful in professional
reports, statements, or testimony. They shall include all
relevant and pertinent information in such reports,
statements, or testimony.

Licensees shall express a professional opinion publicly
only when it is founded upon an adequate knowledge of
the facts and a competent evaluation of the subject
matter.

Licensees shall issue no statements, criticisms, or
arguments on technical matters which are inspired or paid
for by interested parties, unless they explicitly identify
the interested parties on whose behalf they are speaking
and reveal any interest they have in the matters.

Licensees shall not permit the use of their name or firm
name by, nor associate in the business ventures with, any
person or firm which is engaging in fraudulent or
dishonest business or professional practices.

Licensees having knowledge of possible violations of any
of these Rules of Professional Conduct shall provide the
board with the information and assistance necessary to
make the final determination of such violation.

LICENSEE’S OBLIGATION TO EMPLOYER AND
CLIENTS

Licensees shall undertake assignments only when
qualified by education or experience in the specific
technical fields of engineering or land surveying
involved.

Licensees shall not affix their signatures or seals to any
plans or documents dealing with subject matter in which
they lack competence, nor to any such plan or document
not prepared under their direct control and personal
supervision.

Licensees may accept assignments for coordination of an
entire project, provided that each design segment is
signed and sealed by the licensee responsible for
preparation of that design segment.
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ETHICS (continued)

Licensees shall not reveal facts, data, or information
obtained in a professional capacity without the prior
consent of the client or employer except as authorized or
required by law.

Licensees shall not solicit or accept financial or other
valuable consideration, directly or indirectly, from
contractors, their agents, or other parties in connection
with work for employers or clients.

Licensees shall make full prior disclosures to their
employers or clients of potential conflicts of interest or
other circumstances which could influence or appear to
influence their judgment or the quality of their service.

Licensees shall not accept compensation, financial or
otherwise, from more than one party for services
pertaining to the same project, unless the circumstances
are fully disclosed and agreed to by all interested parties.

Licensees shall not solicit or accept a professional
contract from a governmental body on which a principal
or officer of their organization serves as a member.
Conversely, licensees serving as members, advisors, or
employees of a government body or department, who are
the principals or employees of a private concern, shall not
participate in decisions with respect to professional
services offered or provided by said concern to the
governmental body which they serve.

LICENSEE’S OBLIGATION TO OTHER
LICENSEES

Licensees shall not falsify or permit misrepresentation of
their, or their associates’, academic or professional
qualifications. They shall not misrepresent or exaggerate
their degree of responsibility in prior assignments nor the
complexity of said assignments. Presentations incident to
the solicitation of employment or business shall not
misrepresent pertinent facts concerning employers,
employees, associates, joint ventures, or past
accomplishments.

Licensees shall not offer, give, solicit, or receive, either
directly or indirectly, any commission, or gift, or other
valuable consideration in order to secure work, and shall
not make any political contribution with the intent to
influence the award of a contract by public authority.

Licensees shall not attempt to injure, maliciously or
falsely, directly or indirectly, the professional reputation,
prospects, practice, or employment of other licensees, nor
indiscriminately criticize other licensees’ work.



CHEMICAL ENGINEERING

For additional information concerning Heat Transfer and
Fluid Mechanics, refer to the HEAT TRANSFER,
THERMODYNAMICS, or FLUID MECHANICS sections.

CHEMICAL THERMODYNAMICS

Vapor-Liquid Equilibrium
For a multi-component mixture at equilibrium
fiv _ fi L
where ?iv = fugacity of component i in the vapor phase

f; " = fugacity of component i in the liquid phase

Fugacities of component i in a mixture are commonly
calculated in the following ways:

%iL:XiVi fiL

where x; = mole fraction of component i

for a liquid

Y; = activity coefficient of component i
fi" = fugacity of pure liquid component i
For a vapor fiv =Y, €Di P
where y; = mole fraction of component i in the vapor
aJi = fugacity coefficient of componenti in the vapor
P = system pressure

The activity coefficient Y; is a correction for liquid phase non-
ideality. Many models have been proposed for Y; such as the
Van Laar model:

-
Iny, =A, (1"'—2?2 j

-2
AiX
Iny, :A21(1+—
AxX

where: Yy, = activity coefficient of component 1 in a 2

component system.

Y, = activity coefficient of component 2 in a 2
component system.

Ap, Ay =
experimental data.

constants, typically fitted from

The pure component fugacity is calculated as:
fit' = O P exp{w" (P - P™)/(RT)}
where ®;**' = fugacity coefficient of pure saturated i
P;** = saturation pressure of pure i
vi" = specific volume of pure liquid i
R = Ideal Gas Law Constant
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Often at system pressures close to atmospheric:

- O P
The fugacity coefﬁcientcﬁi for component i in the vapor is
calculated from an equation of state (e.g., Virial). Sometimes
it is approximated by a pure component value from a
correlation. Often at pressures close to atmospheric, qADi =1
The fugacity coefficient is a correction for vapor phase non-
ideality.
For sparingly soluble gases the liquid phase is sometimes
represented as

L —
f-=xk
where k; is a constant set by experiment (Henry’s constant).

Sometimes other concentration units are used besides mole
fraction with a corresponding change in k;.

Chemical Reaction Equilibrium

For reaction

aA +bB=cC +dD

f

where: & = activity of component i = F
i

fi® = fugacity of pure i in its standard state

v = stoichiometric coefficient of component i
AG® = standard Gibbs energy change of reaction
Ka = chemical equilibrium constant

For mixtures of ideal gases:

fi® = unit pressure, often 1 bar
fi=yP=p

where p; = partial pressure of component i

¢ |pd c,,d
Then Ka:Kp:%p_i{p_Egzpmd—a—b yi ylt?
PaAPB EYA§YB3
Forsolids & =1
Forliquids & =xiV;

The effect of temperature on the equilibrium constant is

dinK _ AH®
dT  RT?

where AH® = standard enthalpy change of reaction.




HEATS OF REACTION
For a chemical reaction the associated energy can be defined
in terms of heats of formation of the individual species|AH § )

at the standard state

bAc)= s wlade) - svlahg)

products reactants

The standard state is 25°C and 1 bar.

The heat of formation is defined as the enthalpy change
associated with the formation of a compound from its atomic
species as they normally occur in nature (i.e., Oy, Hyy),
Csoliay €tC.)

The heat of reaction for a combustion process using oxygen is
also known as the heat of combustion. The principal products
are COz(g) and HzO(e).

CHEMICAL REACTION ENGINEERING

A chemical reaction may be expressed by the general
equation

aA +bB - cC+dD.

The rate of reaction of any component is defined as the moles
of that component formed per unit time per unit volume.

dN .
—ry=- Vi th [negative because A disappears]
-dC
—Iy= " A if V is constant

The rate of reaction is frequently expressed by
—1a=kf; (Ca, Csg,....), where
k = reaction rate constant and
C, = concentration of component I.
The Arrhenius equation gives the dependence of Kk on
temperature

k= Ae_Ea/ RT ,where

A = pre-exponential or frequency factor,
E, = activition energy (J/mol, cal/mol),
T = temperature (K), and

R = gas law constant [8.314 J/(molK),

In the conversion of A, the fractional conversion Xa, is
defined as the moles of A reacted per mole of A fed.

Xa = (Cao—Ca)/Cho
Reaction Order
If —rap= kCAXCBy

the reaction is X order with respect to reactant A and y order
with respect to reactant B. The overall order is

if V is constant

n=x+y
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CHEMICAL ENGINEERING (continued)
BATCH REACTOR, CONSTANT T AND V

Zero-Order Reaction

—rIa = kCAO =k (1)
— dCa/dt= k or
CA = CAo - kt
dXA /dt = k/CAo or
CAo XA = kt
First-Order Reaction
—Ia = kCA
— dCy/dt= kCa or
In (CA/Cpo)= —kt
dXp/dt = k(1-Xa) or
In (1 —Xa)= —kt
Second-Order Reaction
—Ia = kCA2
— dCA/ dt = kCA2 or
1/CA— 1/CA0 = kt
dXp/dt = KCao (1 —Xn)? or

Xal[Cpo (1 = Xa)] = kt

Batch Reactor, General

For a well-mixed, constant-volume, batch reactor
—Ian = dCA/dt

— Xa

t= _CAoIo dXA/(_ rA)
If the volume of the reacting mass varies with the conversion
according to

V=Vy,, (1+e,X,)

Vy o =V -
£, = Xa=l ~ VX,=0
Vi a=0

then «

t=-Cpolo” dXA/[(l +eaXp )= rA)]

FLOW REACTORS, STEADY STATE

Space-time T is defined as the reactor volume divided by the

inlet volumetric feed rate. Space-velocity SV is the reciprocal

of space-time, SV=1/1.

Plug-Flow Reactor (PFR)

_ Cho Verr
I:Ao

dX
T :CAojjA(_—rA),where
A

Fa, = moles of A fed per unit time.



Continuous Stirred Tank Reactor (CSTR)
For a constant volume, well-mixed, CSTR

T =VCSTR — Xa
CAO FAO

where — rp 1s evaluated at exit stream conditions.

Continuous Stirred Tank Reactors in Series

With a first-order reaction A —» R, no change in volume.

N Tindividual
ﬂ C.. N 3
k| Cu

where

N = number of CSTRs (equal volume) in series and
Can= concentration of A leaving the Nth CSTR.

TN-reactors

DISTILLATION

Flash (or equilibrium) Distillation
Component material balance:

Fze=yV+xL
Overall material balance:
F=V+L

Differential (simple or Rayleigh) Distillation
W) _ x dx
In| — =] ——
W, ) Sy-x
When the relative volatility @ is constant,
y=0ox/[1+ (a-1)x]
can be substituted to give
X\ =X 1-X
lnﬂ= ! ln( O)+ln °
W, ) (a-1) | x,(1-x) 1-x
For binary system following Raoult's Law

0o = (Y/X)a/(y/X)b = Pa/pp, where

pi = partial pressure of component i.

Continuous Distillation (binary system)

Constant molal overflow is assumed (trays counted

downward)

TOTAL MATERIAL BALANCE
F =D+B
Fz- = Dxp + Bxg
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CHEMICAL ENGINEERING (continued)

OPERATING LINES
Rectifying Section
Total Material:

Vs =L+ D
Component A:

V1Yot = LaXn + DXp

Vi1 = [Lo/(Ln + D)] X, + DXp/(Ly + D)
Sripping Section
Total Material:

Ln=Vm +B
Component A:

LoXm = Vin+1Yme1 + BXa

Yme1 = [Lof/(Lm— B)] Xm— BXg/(Lm— B)
Reflux Ratio
Ratio of reflux to overhead product

R, =L/D=(V-D)/D

Minimum reflux ratio is defined as that value which results in
an infinite number of contact stages. For a binary system the
equation of the operating line is

- Rmin X+ XD
Rmin +1 Rmin +1
Feed Condition Line
slope = g/(q— 1), where

y

_ heat to convert one mol of feed to saturated vapor

molar heat of vaporization

Murphree Plate Efficiency
Eme = (Yn — Ynr1)/( y*n — Yn+1), Where
y = concentration of vapor above plate n,

Yne1 = concentration of vapor entering from plate below n,
and

y'n = concentration of vapor in equilibrium with liquid
leaving plate n.



A similar expression can be written for the stripping section
by replacing n with m.

Definitions:

o = relative volatility,

B = molar bottoms-product rate,

D = molar overhead-product rate,

F = molar feed rate,

L = molar liquid downflow rate,

Rp = ratio of reflux to overhead product,
V = molar vapor upflow rate,

W = weight in still pot,

X = mole fraction of the more volatile component in the
liquid phase, and
y = mole fraction of the more volatile component in the
vapor phase.
Subscripts
B = bottoms product,
D = overhead product,
F = feed,
m = any plate in stripping section of column,
mt+1 = plate below plate m,
n = any plate in rectifying section of column,
n+l = plate below plate n, and
0 = original charge in still pot.
VH
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LIQUID MOLE FRACTION OF MORE VOLATILE COMPONENT

CHEMICAL ENGINEERING (continued)

MASS TRANSFER

Diffusion

MOLECULARDIFFUSON

Gas:
Ny :&[&+£j_&%
A P{A A RT oz

Liquid:

Ne oy (N Mooy 9%,
A A A 0z

in which (pg)im is the log mean of pg; and gy,

UNIDIRECTIONAL DIFFUSON OF A GASA
THROUGH A SECOND STAGNANT GASB (Ng = 0)

ﬁ: D.P x (pAZ ~ pAl)

A F_QT(pB )lm ZZ - Zl

in which (pg)im is the log mean of pg; and pg;,

N, = diffusive flow of component | through area A, in z
direction, and

Dnn = mass diffusivity.
EQUIMOLAR COUNTER-DIFFUSION (GASES)
(Ng=—Np)

Na/A= Dm/(ﬁT)x [(pAl - pa)/(z - 21)]
UNSTEADY STATE DIFFUSON IN A GAS

0pA/0t = Diy (0°pA/0Z)

CONVECTION
Two-Film Theory (for Equimolar Counter-Diffusion)
Ni/A - = K (Pac — Pa)
= K (Cai — Ca)

= K's (Pac — Pa*)

= K||_ (CA* - CAL)a where
pa* = partial pressure in equilibrium with Cp and
Ca* = concentration in equilibrium with pag.

Overall Coefficients
I/Kle = I/k'G + H/k'|_
I/K'L = I/Hk'G + 1/k'|_

Dimensionless Group Equation (Sherwood)
For the turbulent flow inside a tube the Sherwood number

08 13
( K Dj is given by: ( kmDJ = 0.023(MJ [Lj
D, Dy H PDp,

D = inside diameter

Dy, = diffusion coefficient

V = average velocity in the tube
p = fluid density

p = fluid viscosity

where,



CIVIL ENGINEERING

GEOTECHNICAL
Definitions
c Cohesion
Ce Coefficient of Curvature or Gradation
(D30)*/[(Deo)(D10)]
Cy Uniformity coefficient = Dgq /D1y
e Void Ratio = V, /V;
k Coefficient of Permeability = Q/(iA)
o unconfined compressive strength = 2¢
w Water Content (%) = (Wi /Ws) X100
Cc Compression Index = Ae/Alog p
(e — &)/(log p, — log py)
Dy Relative Density (%)
[(Emax — ©)/(Emax — Emin)] X100
[(1Yimin = 1/¥a) /(1 Yimin = 1/¥max)] % 100
G Specific Gravity = Ws/(Vsyw)
AH Settlement = H [C./(1 + &)] log [(pi + Ap)/pi]
HAe/(1 + e)
Pl Plasticity Index = LL — PL
S Degree of Saturation (%) = (Vi /V,) X 100
Q KH(N¢/Ng)  (for flow nets, Q per unit width)
% Total Unit Weight of Soil = WV
\ Dry Unit Weight of Soil = Ws/V

Gyw/(1 +e)=Vy/(1 +w)
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Gw
Ka

Ce

Unit Weight of Solids = Ws/Vs
Porosity =V, /V=¢€/(1 + )

Angle of Internal Friction

Normal Stress = P/A

General Shear Strength = ¢+ Gtan @
Se

Coefficient of Active Earth Pressure
tan’(45 — @/2)

Coefficient of Passive Earth Pressure
tan’(45 + @/2)

Active Resultant Force = 0.5yH *K,
Bearing Capacity Equation

CNc +yDs Ny + 0.5)BN,

Width of strip footing

Depth of footing below surface

Factor of Safety (Slope Stability)
cL + Wcosa tang
W sina

Coefficient of Consolidation = TH %/t
0.009 (LL —10)

Effective Stress=0 —u



UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D-2487)

CIVIL ENGINEERING (continued)

Major Divisions Group Typical Names Laboratory Classification Criteria
Symbols
o
2 ° e .
g s > 2 Cy = © greater than 4;
S 4| & =
3 é 2 GW Well-graded gravels, gravel-sand mixtures, _% ‘§ D,
H ool [ little or no fines 5 2 2
93 = ’g ‘g E (Dw )
@« 8% §8 5 S Co =———— between land 3
s s 2 c 9 B D xD
> ool 8 g 2 R 10 60
~ g o o0 z s i=)
8| °o%% s 5 8 e
@» < S _ - 51
° =S| o GP Poorly graded gravels, gravel-sand 89 &0 o Not meeting all gradiation requirements for GW
[} S 5 mixtures, little or no fines 7 N wa g
‘@ k= & £ o é S s
= g s q E3 w®g
Q — & -2 - s C WAN T
s = £ 2 § GM* Silty gravels, gravel-sand-silt mixtures g é & 8 ?:J Atterberg limits below "A" wi?llj ;Vle b?twlclezz 4
Z z = E u E Qg0 line or P.I less than 4 o
2 g _mgg‘g < dm%%ﬁ and 7 are
g = - SEEE z 2 2 borderline cases
g gn Zd 5 < g GC Clayey gravels, gravel-sand-clay mixtures _g“ g L.E Atterberg limits below "A" requiring use of
g = o o § 59 line with P.I. greater than 7 dual symbols
& .2 s o =73
o = S S 32
g 5 i D,
s 2 = 2 5 g4 C, =—— greater than 6;
©E R 5 2% “p
:c::: ; 2 SW Well-graded sands, gravelly sands, little or ED § 1
= g 5l RS no fines § g (D )2
= ] 2 o
g g 33 5 & & & Co =—=— between I and 3
= | 552 § 2 3 D, xD
[} «n 298 @ B 10 60
g g% g E &
Q ) ; L =
~ it S SP Poorly graded sand, gravelly sands, little A 5 = Not meeting all gradation requirements for SW
5} or no fines Qo 2 3
] 54 O =
S & S 8 _ . .
= o d 5 2 S| Atterberg limits above "A" Limits plotting in
= e 2 a : T S & o g g .
g § ) .F‘E ‘E - SM , Silty sands, sand-silt mixtures . %n 2 p g line or P.L less than 4 l;a[tct}:etd Zonf::4w1tl(1j
o |2 28E8 5 g 8 o 1 between 4 an
5 2= 28 & § =39 . e 7 are borderline
s |8 <‘El g SC Clayey sands, sand-clay mixtures 5 282 Atterberg limits above "A cases requiring use
= < ’ 8 85 4| linewith P.I greater than 7 Auinre
a2 n ine with P.L greater than of dual symbols
Inorganic silts and very fine sands, rock
— - 2 ML flour, silty or clayey fine sands, or clayey PLASTICITY CHART
o - L . . . I
z FL o silts with slight plasticity 60
"oa i g 2 Inorganic clays of low to medium /
IS § =) E CL plasticity, gravelly clays, sandy clays, silty 50 /
:2' =28~ clays, lean clays /
7
g 2 oL Organic silts and organic silty clays of low 1% CH /
wn S plasticity % 40 7
2 E = o MH Inorganic silts, micaceous or diatomaceous Z
g g = g & fine sandy or silty soils, elastic silts b 30 <
o— © - —_ —
gﬂ .; g %‘ '% % 2 CH Inorge.mic clays of high plasti?ity, fat c.lal‘ys |L:) \\\‘A OH and MH
.S wn 2 R
% z 3 & OH Organic clays of med}um to high plasticity, 2 20 N '/
S organic silts i
g o cL /
£ /
<
< 2 10 CL-ML
<
f g % Pt Peat and other highly organic soils o X * MLOaLnd
= = 7
20 0 0 10 20 30 40 50 60 70 80 90 100
= LIQUID LIMIT

* Division of GM and SM groups into subdivisions of d and u are for roads and airfields only. Subdivision is based on Atterberg
limits; suffix d used when L.L. is 28 or less and the P.I. is 6 or less; the suffix u used when L.L. is greater than 28.

® Borderline classification, used for soils possessing characteristics of two groups, are designated by combinations of group symbols.
For example GW-GC, well-graded gravel-sand mixture with clay binder.
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CIVIL ENGINEERING (continued)

STRUCTURAL ANALYSIS Deflection of Trusses and Frames
Influence Lines Principle of virtual work as applied to deflection of trusses:
An influence diagram shows the variation of a function A =% FqdL, where

(reaction, shear, bending moment) as a single unit load moves
across the structure. An influence line is used to (1) determine
the position of load where a maximum quantity will occur and and for load: oL = FyL/AE
(2) determine the maximum value of the quantity.

for temperature: oL = aL(AT)

Frames:

A=73 {{ m[M/(El)] dx}, where
Fo = member force due to unit loads,
Fp = member force due to external load,

M = bending moment due to external loads, and
m = bending moment due to unit load.

BEAM FIXED-END MOMENT FORMULAS

Pab’ Pa’b
FEMAB = _? FEMBA = +—L2

w, L w, L’
FEM,, = -=2> FEMy, =+=>

w_L’ w_L?
FEM, === FEM, =+

REINFORCED CONCRETE DESIGN

Strength Reduction Factors
Ultimate Strength Design Type of Stress ®
ASTM Standard Reinforcing Bars Flexure 0.90
]sssz Nominal |Nominal Area| Nominal Axial Tension 0.90
No. | Diameter in. in.’ Weight Ib/ft Shear 0.85
3 . 0.375 0.11 0.376 Torsion 085
' ' ' Axial Compression With Spiral
4 0.500 0.20 0.668 Reinforcement 0.75
> 0.625 0.31 1.043 Axial Compression With Tied
6 0.750 0.44 1.502 Reinforcement 0.70
7 0.875 0.60 2.044 Bearing on Concrete 0.70
8 1.000 0.79 2.670 -
. _ .
9 1128 1.00 3.400 b €= 0.003 0851,
10 1.270 1.27 4.303 T kB b [ 1 Fcomia
1 1.410 1.56 5313 ) X tl Mt
4 d-am
14 1.693 2.25 7.650 L
18 2.257 4.00 13.600 L__ p—— 1
(1 T=A fy
BEAM STRAIN EQUIVALENT
CROSS- STRESS
SECTION
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DEFINITIONS

Ay = gross cross-sectional area
As = area of tension steel

A, =area of shear reinforcement within a distance Salong a

member
b = width of section
b, =width of web

B =ratio of depth of rectangular stress block to the depth to

the neutral axis

fo—4
ﬂ}zms

=0.8520.85— 0.05( £

d =effective depth

E =modulus of elasticity of concrete

f¢ = compressive stress of concrete

fy =yield stress of steel

M, =nominal moment

M, = factored moment

P, =nominal axial load (with minimum eccentricity)
P, =nominal P, for axially loaded column

p =reinforcement ratio, tension steel

Pp = reinforcement ratio for balanced strain condition
S = spacing of shear reinforcement

V. =nominal concrete shear strength

Vs =nominal shear strength provided by reinforcement
V, = factored shear force

Reinforcement Limits

p = As/(bd)
Pmin £ P < 0.750p
3y fe 200
P min 2 or ——
fy fy

_ 085 fc( 87,000 J

Pp
f,  (87000+f,

Moment Design
@M, = @0.85f;'ab (d — a/2)
= ATy (d—a/2)

Aty
a= 085fhb

Mu = 1-4MDead+ 1-7MLive
oM, = M,
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Shear Design

M

@Vt Vg2V,
Vu = 1-4VDead + 1-7VLive

Vo= 2yt bd

Vs=Afyd/s

Vs(max) = 8\/{ bd

Minimum Shear Reinforcement
A, = 50bs/fy, when
V> @V /2

aximum Spacing for Stirrups

max

) {24 inches}
S __ =min

d/2

IfV, >4,/ f. bd, then
~ min 12 inches
Stax = d/4

T-Beams
Effective Flange Width
1/4 x span length
be = min by, + 16 x slab depth

by, + clear span between beams

Moment Capacity

(a> slab depth)
oM, = @[0.85f."hy (be — by)(d — h¢/2) + 0.85f, ab,, (d — &a/2)]
where

hs = slab depth and
b, = web width.

Columns

([f)n > Py

Pn=0.8P, (tied)

P, = 0.85P, (spiral)

Po = 0.85f¢ Aconcrete T fyAS
Aconcrete = Ag —As

Reinforcement Ratio

Pg= As/Ag
0.01 =pyg=<0.08

STRUCTURAL STEEL DESIGN

Load Combinations

ASD LRFD

D 1.4D

D+L 1.2D+1.6L
D = Dead load

L = Live load due to equipment and occupancy




Tension Members

DEFINITIONS
A = effective net area,
Ag = gross area,

A, = net area,

= width of member,

= nominal diameter plus 1/16 inch,

y = specified minimum yield stress,

= allowable stress,

= specified minimum ultimate stress,

= transverse center to center spacing between fastener
holes; gage lined distance

= length of connection in direction of loading

» = nominal axial strength,

= longitudinal distance between hole centers, pitch,

= thickness of member, <

= reduction coefficient, =]- [—} <09

= connection eccentricity L

(@ = resistance factor for tension.

c

Q@ MmMmmMmao

xCcToxor

ASD/LRFD
A= UA, for bolted connection
Ae = UA, for welded connection

Larger values of U are permitted to be used when
justified by tests or other rational criteria.

(a) When the tension load is transmitted only by bolts or
rivets:
A.=UA,

(b) When the tension member is transmitted only by
longitudinal welds to other than a plate member or
by longitudal welds in combination with transverse

welds:
A.=UA,
A, = gross area of member, in’

(c) When the tension load is transmitted only by
transverse welds:

A, = area of directly connected elements, in’

(d) When the tension load is transmitted to a plate by
longitudinal welds along both edges at the end of the
plate for £ > w:

A. = area of plate, in®

For ¢ =2 2w U=1.00
For2w=/¢215w U=0.87
Forl.5Sw=2/zw U=0.75

Where

¢ = length of weld, in

w = plate width (distance between welds), in

Design Strength
ASD LRFD
Fi=0.6F, @ Pr=0.9F,Ag for yielding
F=0.5F, @ P,=0.75F, Ac for fracture
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t-» < :
|
pneT oL t < P
SN !
]

=P L

A = bt
A, = byt
b, = b - Zd + =s¥/(49)

Member Connections (Block Shear)
ASD

F, = 0.3F,, for net shear area
F:= 0.5F, for net tension area
LRFD

The block shear rupture design strength @R, shall be
determined as follows:

(8 When F A= 0.6 Fy A,

PR = ¢[0.6 FyAgy + FuAn]
(b) When 0.6F, A > FyAq,

QR = 0.6 FyAn, + FyAg]
where

R, = nominal strength,
Ay, = gross area in shear,
Ay = gross area in tension,
A,y = net area in shear, and
At = net area in tension.

Beams
ASD Beams

Fy = Yield Stress
F.= Allowable Stress
S= Section Modulus

Flexure Design
M

For Comp?ct Sections
Fa=0.66F,

For Non-Compact Sections
Fa=0.60F,



Design for Shear

for buildings
Fv=0.40F,

for bridges
Fv=0.33F,

LRFD Beams

AISC

AASHTO

Yielding
The flexural design strength of beams, determined by the limit
state of yielding is @M,
@ =10.90
M =M,
where:

Mp = plastic moment, kip-in (= Fy Z < 1.5My for
homogeneous sections),

My = moment corresponding to onset of yielding at
the extreme fiber from an elastic stress
distribution (= Fy S for homogeneous section
and Fy Sfor hybrid sections), kip-in

Z = plastic section modulus

Design Shear Strength

The design shear strength of unstiffened webs, with
h/t, < 260, is @, V,, where
@ =0.90

V, = nominal shear strength defined as follows:
for  h/t, <418/ .[F,
Vi = 0.6F Ay

for 418/[F,, <hit,<523/.[F,

V. =0.6F, A, (418/@)/(h/tw)
for 523/,[F,, <h/t, <260

V, =(132,000A, )/(h/t,, )

where:

h = Clear distance between flanges less the fillet or corner
radius for rolled shapes; and for built-up sections, the
distance between adjacent lines of fasteners or the
clear distance between the flanges when welds are
used, in.

tw = web thickness, in.

Fyw = specified minimum yield stress of web, ksi

V, = nominal shear strength, kips

A, = area of web clear of flanges, in
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Compression Members

COLUMNS
LRFD
P
For = >0.2
0P,
M
Pu + § M Ux uy < 0
(ﬂ:)n 9 (‘“VI nx (pb M ny
P
For = <0.2
M
B Muy Mo o
2(|jjn (ﬂvl nx (pr ny
where:
Py = required compressive strength, i.e. the total factored

compressive force, kips
= design compressive stress, @Py, kips
resistance factor for compression, @ = 0.85
P, = nominal compressive strength, kips

My = required flexural strength including second-order
effects, kip-in or kip-ft

@ My = design flexural strength, kip-in or kip-ft

@ = resistance factor for flexure = 0.90

M, = nominal flexural strength kip-in or kip-ft

Long Columns — Euler's Formula

P, =TCEl/(k)% where
P.. = critical axial loading,
k

0

= a constant determined by column end restraints, and

= unbraced column length.

Substitute I =r’A:
P../A=TCE/[K(¢ / 1)]*, where
r = radiusof gyration and

¢/r = dendernessratio for the column

Commonly Used k Values For Columns
Th:;);lel:lt;cal Design Value | End Conditions
0.5 0.65 both ends fixed
0.7 0.80 one end fixed and
other end pinned
1.0 1.00 both ends pinned
2.0 2.10 one end fixed and
other end free
Use of these values is cautioned! These are approximations, and
engineering judgment should prevail over their use.




Slenderness Ratio
SR = kl/r, where
1 = length of the compression member,
r = radius of gyration of the member , and

k = effective length factor for the member. Values for this
factor can be found in the table on page 97.

C.=2TE/F,

ASD
If SR>C,
_ 12r°E
23/ r)
If SR<C,
2
(ko
_ 2 |7
Tos 3K/r) (ki)
3 8C, 8Cs
where

F, = allowable axial compressive stress

ENVIRONMENTAL ENGINEERING

Equivalent | Molecular n : Equivalent
Weights Weight 300y Weight
mole
CO;s> 60.008 2 30.004
CO, 44.009 2 22.004
Ca(OH), 74.092 2 37.046
CaCOs 100.086 2 50.043
Ca(HCO;), | 162.110 2 81.055
CaS0, 136.104 2 68.070
Ca*" 40.078 2 20.039
H 1.008 1 1.008
HCO;~ 61.016 1 61.016
Mg(HCO;), | 146.337 2 73.168
Mg(OH), 58.319 2 29.159
MgSO, 120.367 2 60.184
Mg** 24.305 2 12.152
Na* 22.990 1 22.990
Na,CO; 105.988 2 52.994
OH" 17.007 1 17.007
SO, 96.062 2 48.031

Lime-Soda Softening Equations

Unit Conversion

50 mg/L as C,CO; equivalent = 1 meq/L

1. Carbon dioxide removal
CO; + Ca (OH), — CaCOs;(s) + H,O
2. Calcium carbonate hardness removal
Ca (HCOs3), + Ca (OH), - 2CaCOs(s) + 2H,0
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3. Calcium non-carbonate hardness removal
CaSO, + Na,CO; — CaCOs(s) + 2Na* + SO,
4. Magnesium carbonate hardness removal
MgHCOs5), + 2Ca(OH), -
Mg(OH),(s) + 2H,O
5. Magnesium non-carbonate hardness removal
MgSO, + Ca(OH), + Na,CO; - CaCOs(s) +
Mg(OH)y(s) + 2Na" + SO,>
6. Destruction of excess alkalinity
2HCO; + Ca(OH), — CaCO;(s) + COs* + 2H,0
7. Recarbonation
Ca>" +20H + CO, — CaCOsx(s) + H,0

Formula (Definitions)

2CaCOs(s) +

Approach velocity = Q/Ay

Hydraulic loading rate = Q/A

Hydraulic residence time = V/Q

Organic loading rate (volumetric) = QS,/V
Organic loading rate (F:M) = QS,/(Va Xa)
Organic loading rate (surface area) = QS, /Ay
Overflow rate = Q/A

Recycle ratio = R/Q M (1 OO)

Sludge flow rate: Qs = m

Solids loading rate = QX /A

Solids residence time = &
QuXw +QeXe

Weir loading rate = Q/L

Steady State Mass Balance for Aeration Basin:
(Q+R)Xa=QeXe + RXy

in which

A = surface area of unit,

Ay = surface area of media in fixed-film reactor,

>

« = cross-sectional area of channel,

L = linear length of weir,

M = sludge production rate (dry weight basis),
Q = flow rate,

Qe = effluent flow rate,

Qw = waste sludge flow rate,

= sludge volumetric flow rate,

= wet sludge density,

= recycle flow rate,

= influent substrate concentration (typically BOD),
= suspended solids concentration,

= mixed liquor suspended solids (MLSS),

Xe = effluent suspended solids concentration,

X = waste sludge suspended solids concentration,

V = tank volume, and

V, = aeration basin volume.

XXHIP O



Units Conversion
Mass (Ib/day) = Flow (MGD) x Concentration (mg/L)
x 8.34(Ib/MGal)/(mg/L)

BOD Exertion
yi=L (1 —e™), where
k = reaction rate constant (base €, days™'),
L = ultimate BOD (mg/L),
t = time (days), and
y; = the amount of BOD exerted at time t (mg/L).

CIVIL ENGINEERING (continued)

Rational Formula
Q=CIA, where
A = watershed area (acres),
C = runoff coefficient,
| = rainfall intensity (in/hr), and
Q = discharge (cfs).

DARCY'S EQUATION
Q =-KA(dH/dx), where
Q = Discharge rate (ft*/s or m%/s)
K = Hydraulic conductivity (ft/s or m/s)

HYDROLOGY H = Hydraulic head (ft or m)
NRCS (SCS) Rainfall-Runoff A = Cross-sectional area of flow (ft* or m?)
0= (P-0.28)
P+0.8S ’
1,000
S=——-10,
CN
1,000
N=——,
S+10
P = precipitation (inches),
S = maximum basin retention (inches), and
Q = runoff (inches).
SEWAGE FLOW RATIO CURVES
10
8
3
i 6
S 5 — - —
g 4 === '?‘-~~_ MAXIMUM FLOWS
= I Bt S c
3 B TRt N %
g 2 Toe———a— i
o TR oTEeT TS
< Al E G
]
< 1
x
§ 0.8 A
2 —
5 06 S — -
5 05 = ,)’
E 04 A ME,
g /- -==T" -
£ 03 =
= T MINIMUM FLOWS
g 0.2 /
T
o
0.1
1 2 3 4 5678910 20 30 40 60 80100 200 400 600800 1000
Population in thousands (P)
14 18++P
Curve Ayt ——— Curve B: +1 Curve G:—\/_
PC 4+P 4+P
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HYDRAULIC-ELEMENTS GRAPH FOR CIRCULAR SEWERS

Values of: £ and
f Ny
1 C)‘I.O 12 14 16 18 20 22 24 26 28 30 32 34 36
0.9 - -----n, f variable with depth / \;“\\
. ——n,fconstant | // R ‘
— - — Independent of n, f V4 7 4 l
0.8 o | i AL ;
Darcy-Weisbach / .’ b /
Friction factor, f / )’ v
o] [a) 0-7 L. ‘I '4¢ ll /
o \ /// ol / S/

© .- Iz
g 0.6 R Discharge, //, /4 - g ’ //\\

3 \ (\ QA LT 27 .

T / O 4 Hydraulic
2 05 /;/, L4 radius. R
%. \I\{A@ning'sk R ,/

8 0.4 /" ’,/, J 4,/
S X///, ;/'\ Velocity, VTf/ et
§ 0.3 Sy AN /,:'/
4 /<\Area,A \ 7 x"'
’ > Zalidd
/%" \\\\
’ /_ <k ~o 1. R
- P - X A %
A 02 03 04 05 06 07 08 09 10 11 1.2 13
Hydraulic Elements: M, Q, A ,and R
Vi Qf A¢ R¢
Open Channel Flow
Specific Energy
V2 aQ? For rectangular channels
E=o0—+ y= 5 +y
29 20A

where E = specific energy
Q = discharge
V = velocity
y = depth of flow
A = cross-sectional area of flow
o = kinetic energy correction factor, usually 1.0

Critical Depth = that depth in a channel at minimum specific
energy

QA
g T
where Q and A are as defined above,
g = acceleration due to gravity, and

T = width of the water surface

10

AYE
Ye = [_j
9
where: y. = critical depth
q = unit discharge = Q/B
B = channel width

g = acceleration due to gravity

Froude Number = ratio of inertial forces to gravity forces

é“<
<

0



Specific Energy Diagram

E:V_+y
29

Alternate depths — depths with the same specific energy

Uniform Flow — a flow condition where depth and velocity
do not change along a channel

Manning's Equation
Q - 5 AR2/381/2
n

Q = discharge (m’/s or ft'/s)

K =1.486 for USCS units, 1.0 for SI units
A = Cross-sectional area of flow (m? or ft%)
R = hydraulic radius = A/P (m or ft)

P = wetted perimeter (m or ft)

S = slope of hydraulic surface (m/m or ft/ft)
n = Manning’s roughness coefficient

Normal depth — the uniform flow depth
23— Qn
AR S

Weir formulas

Fully submerged with no side restrictions

Q= CLH*?
V-Notch

where Q = discharge, cfs or m’/s
C =3.33 for submerged rectangular weir, USCS units
C = 1.84 for submerged rectangular weir, SI units
C = 2.54 for 90° V-notch weir, USCS units
C =1.40 for 90° V-notch weir, SI units
L = Weir length, ft or m
H = head (depth of discharge over weir) ft or m

TRANSPORTATION
Stopping Sight Dzistance

S= v +Tv, where
29(f £ G)
= stopping sight distance
= initial speed
= acceleration of gravity,
coefficient of friction between tires and roadway,
= grade of road (% /100), and
= driver reaction time.

—4 0 "aQ < w»
I
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Sight Distance Related to Curve Length

a. Crest— Vertical Curve:
L= AS?

100{y/2h, + /2, |
L=2S- 200 (\/h_1A+ \/E)z for S>L

for S<L

where
L = length of vertical curve (feet),
A = algebraic difference in grades (%),
S = sight distance (stopping or passing, feet),
h; = height of drivers' eyes above the roadway surface
(feet), and
h, = height of object above the roadway surface (feet).
When h; = 3.50 feet and h, = 0.5 feet,
AS’
= for S<L
1329
L=2S- 1329 for S>L
A
b. Sag-— Vertical Curve (standard headlight criteria):
AS’
Ll=—— for S<L
400+3.5S
L=2S- 4004355 for S>L

c. Riding comfort (centrifugal acceleration) on sag vertical

curve:
where AV 2

465"

L = length of vertical curve (feet) and
V= design speed (mph).

d. Adequate sight distance under an overhead structure to
see an object beyond a sag vertical curve:

2 + -1
L=AS c—h1 h, for S<L
800 2
h, +h
L=2s-30(c_M+*h for S>L
A 2
where
C = vwvertical clearance for overhead structure

(underpass) located within 200 feet (60 m) of the
midpoint of the curve.

e. Horizontal Curve (to see around an obstruction):

5,729.58 D
=———|1-cos—|,
D 200
where
D = degree of curve,
M = middle ordinate (feet), and
S = stopping sight distance (feet).



Superelevation of Horizontal Curves

a. Highways:
v2
e+f=—,
oR
where
e = superelevation,
f = side-friction factor,
g = acceleration of gravity,
v = speed of vehicle, and

R = radius of curve (minimum).
b. Railroads:
Gv’

gR

g = acceleration of gravity,

v = speed of train,

E = equilibrium elevation of the outer rail,

G = effective gage (center-to-center of rails), and
R = radius of curve.

Spiral Transitions to Horizontal Curves
a. Highways:

3
L =161
R

b. Railroads:
Ls = 62E
E = 0.0007V°D
where
D = degree of curve,
E = equilibrium elevation of outer rail (inches),
Ls = length of spiral (feet),
R = radius of curve (feet), and
V = speed (mph).

Metric Stopping Sight Distance
v2
254(f £ G)
= stopping sight distance (m)
= initial speed km/hr
= grade of road (% /100)
= driver reaction time, seconds
= coefficient of friction between tires and roadway

S=0.278TV +

T OoO<O®m

Highway Superelevation (metric)
e Vv?

—+ =

100 127R
= rate of roadway superelevation in %
= side friction factor
= radius of curve (minimum), m
= vehicle speed, km/hr

<D™
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Highway Spiral Curve Length (metric)
_0.0702V?
*  RC
Ls = length of spiral, m
\% vehicle speed, km/hr

R = curve radius, m
C = 1to3,oftenusedas 1

L

Sight Distance, Crest Vertical Curves (metric)

L= AS’
For S<L loo(m_l_m)z
s ]

For S>L

L = length of vertical curve, (m)

S = sight distance, (stopping or passing, m)

A = algebraic difference in grades %

h; = height of driver's eye above roadway surface (m),
h, = height of object above roadway surface (m).

Sight Distance, Sag Vertical Curves (metric)

L= AS®
120+3.5S ForS<L

L :25—[120 ;3.55) For S> L

Both 1° upward headlight illumination

Highway Sag Vertical Curve Criterion for Driver or
Passenger Comfort (metric)
2
L= AV
395

V = vehicle speed, km/hr

Modified Davis Equation — Railroads
R=0.6 +20/W+ 0.01V + KV %/(WN)

K = air resistance coefficient,

N = number of axles,

R = level tangent resistance [1b/(ton of car weight)],
V = ftrain or car speed (mph), and

W = average load per axle (tons).

Standard values of K

K =0.0935, containers on flat car,
K =0.16, trucks or trailers on flat car, and
K =0.07, all other standard rail units.



CIVIL ENGINEERING (continued)

Railroad curve resistance is 0.8 1b per ton of car weight per Transportation Models

degree of curvature. Optimization models and methods, including queueing theory,

TE =375 (HP) &V, can be found in the INDUSTRIAL ENGINEERING
where section.
e = efficiency of diesel-electric drive system (0.82 to Traffic Flow Relationships (g = kv)
0.93) _
HP=rated horsepower of a diesel-electric locomotive = % CAPACITY
unit, g— ) ki E—
TE=tractive effort (Ib force of a locomotive unit), and z g
V = locomotive speed (mph). E 3
« 1 1 9
AREA Vertical Curve Criteria for Track Profile DENSITY k (veh/mi) DENS;TY K (L,eh,mi‘)
Maximum Rate of Change of Gradient in Percent
Grade per Station
: . In On g -
Line Rat 3
ine Rating Sags [ Crests % %
High-speed Main Line Tracks 0.05 0.10 E 3
Secondary or Branch Line Tracks 0.10 0.20 ) ‘ ‘

VOLUME q (veh/hr)
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AIRPORT LAYOUT AND DESIGN

WIND ROSE 15 mph
LOCATION

A 4.6% CALMS, 0-3 M.PH.

Cross-wind component of 12 mph maximum for aircraft of 12,500 Ib or less weight and 15 mph maximum for aircraft weighing
more than 12,500 Ib.

Cross-wind components maximum shall not be exceeded more than 5% of the time at an airport having a single runway.

A cross-wind runway is to be provided if a single runway does not provide 95% wind coverage with less than the maximum
cross-wind component.
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LONGITUDINAL GRADE DESIGN CRITERIA FOR RUNWAYS
/ \

P.C. \ PT.
¥ g%
PC. \
! b !
Item Transport Airports Utility Airports

Maximum longitudinal grade (percent) 1.5 2.0
Maximum grade change such as A or B (percent) 1.5 2.0
Maximum grade, first and last quarter of runway (percent) 08 | -
Distance between points of intersection for vertical curves (D feet) 1,000 (A+ B)? 250 (A+B)?
Lengths of vertical curve (L, or L,, feet / 1 percent grade change) 1,000 300
& Use absolute values of A and B (percent).

AUTOMOBILE PAVEMENT DESIGN

AASHTO Structural Number Equation

N = aD;+aD,+...+a,D,, where
SN = structural number for the pavement

8 =layer coefficient and D; = thickness of layer (inches).

EARTHWORK FORMULAS
Average End Area Formula, V =L(A| + Ay)/2,

Prismoidal Formula, V=L (A; + 4A,, + A,)/6, where A, = area of mid-section
Pyramid or Cone, V = h (Area of Base)/3,

AREA FORMULAS
Area by Coordinates: Area=[Xs (Yg— Yn) + Xg (Yc—Ya) + Xc (Yp—Yp) +... + Xy (Ya— Yn0)]/2,

h, +h,

+m+m+m+m+md

Trapezoidal Rule: Area = W[ W = common interval,

n-2 n-1
Simpson's 1/3 Rule: Area =W{h1 + 2(k > hkj + 4(k 2 hkj +h, } /3 n = odd number of measurements,

=24,.. =13,..
W = common interval

CONSTRUCTION

Construction project scheduling and analysis questions may be based on either activity-on-node method or on activity-on-arrow
method.

CPM PRECEDENCE RELATIONSHIPS (ACTIVITY ON NODE)

A A
\ 4 \4
B B A » B
Start-to-start: start of B Finish-to-finish: finish of B Finish-to-start: start of B
depends on the start of A depends on the finish of A depends on the finish of A
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VERTICAL CURVE FORMULAS

Tangent
Offset - Forward
Tangent
- & _—| PVI
Back N E
Tangent y PVT
g
PVC 2T~
g\/
Yeve
Datum
VERTICAL CURVE FORMULAS
NOT TO SCALE
L = Length of Curve (horizontal) 0> = Grade of Forward Tangent
PVC = Point of Vertical Curvature a = Parabola Constant
PVl = Point of Vertical Intersection y = Tangent Offset
PVT = Point of Vertical Tangency E = Tangent Offset at PVI
a = Grade of Back Tangent r = Rate of Change of Grade
X = Horizontal Distance from PVC (or point

of tangency) to Point on Curve

L
Xm = Horizontal Distance to Min/Max Elevation on Curve = S O
2a 9,-0,
Tangent Elevation = Ypyc + 01X and = Ypy1 + O (X— L/2)
Curve Elevation = Ypyc + giX+ ax’ = Ypyc + giX + [(G2 — §1)/(2L) 1%
y= ax’ ; a= M
2L
2
E:a(kj; r‘:—gz_gl
2 L

106

CIVIL ENGINEERING (continued)



CIVIL ENGINEERING (continued)

HORIZONTAL CURVE FORMULAS

D = Degree of Curve, Arc Definition
1° =1 Degree of Curve

2° =2 Degrees of Curve

P.C. = Point of Curve (also called B.C.)
P.T. = Point of Tangent (also called E.C.)
P.I. = Point of Intersection

I = Intersection Angle (also called A)

Angle between two tangents
L = Length of Curve,

from P.C. to P.T.
T = Tangent Distance
E = External Distance
R =Radius
L.C. = Length of Long Chord
M = Length of Middle Ordinate
c = Length of Sub-Chord NOT TO SCALE
d = Angle of Sub-Chord

_ LC.
2 sin (1/2)’

L.C

T=Rtan (1/2) = Teodl172)

5729.58 |

R= : L=R 2~ =100
D 180 D

M= R[l —cos(l/2)]

R -

E—R = cos (I/2); L cos (1/2)

+R

¢ = 2Rsin (d/2);

E= R{ ! - 1}
cos(1/2)
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ELECTRICAL AND COMPUTER ENGINEERING

ELECTROMAGNETIC DYNAMIC FIELDS
Theintegral and point form of Maxwell's equations are

$E-dl = —[[5 (aB/ot)-dS
FH-dl = lne + Ils (BD/O1)-dS

ffs, DS =], p dv
fis, BES=0

@ E=-0B/ot

& H=J+o0D/ot

OD=p

OB=0
The sinusoidal wave eguation in E for an isotropic homo-
geneous medium is given by

0% E = - wueE

The EM energy flow of avolumeV enclosed by thesurface S,
can be expressed in terms of the Poynting's Theorem

- s, (ExH)@S=]llyJE dv

+ a/ot{ [y (€E%/2 + pH2) dv}

where the left-side term represents the energy flow per unit
time or power flow into the volume V, whereas the J-E
representsthelossin V and the last term representsthe rate of
change of the energy stored in the E and H fields.

LOSSLESS TRANSMISSION LINES

The wavelength, A, of a sinusoidal signal is defined as the
distance the signal will travel in one period.
u

f
where U isthe velocity of propagation and f is the frequency
of the sinusoid.

The characteristic impedance, Z,, of atransmission lineisthe
input impedance of an infinite length of the lineand isgiven

b
Y 2 = Jic

where L and C are the per unit length inductance and
capacitance of the line.

The reflection coefficient at the load is defined as
— ZL B Zo
Z +Z,
and the standing wave ratio SWR is

1+||'|

SWR =
1-r]

: 21
B = Propagation constant = 5N

108

For sinusoidal voltages and currents:

|
|
|
19
+ } — -
O O
v(d) Zo z,
O T O
=1
- |
I(d) 347 d— »

Voltage across the transmission line:
V(d) =V *elPd + v ¢
Current along the transmission line:
I(d) =1 *elPd+| ¢k
wherel *=V */Zyand | ~=-V7/Z,
Input impedance at d

7. (d)=z, 2ot iZoten(Ba)

°Z, + jz, tan(Bd)

AC MACHINES
The synchronous speed ns for AC motorsis given by

ns = 120f/p, where
f =theline voltage frequency in Hz and
p = the number of poles.
The dlip for an induction motor is
dip = (ns— n)/ns, where
n = therotational speed (rpm).

DC MACHINES

The armature circuit of a DC machine is approximated by a

series connection of the armature resistance R,, the armature

inductance L,, and a dependent voltage source of value
Va=Kang volts

where

Ka = constant depending on the design,

n =isarmature speedinrpm,

¢ = the magnetic flux generated by the field

Thefield circuit is approximated by thefield resistance R;, in

series with the field inductance L;. Neglecting saturation, the
magnetic flux generated by the field current I is

@=Ks It  webers
The mechanical power generated by the armature is
Pmn=Via. watts

where |, is the armature current. The mechanical torque
produced is

T = (602Kl ; newton-meters.



BALANCED THREE-PHASE SYSTEMS
The three-phase line-phase relations are

I, =431, (for delta)
V, =3V, (for wye)

where subscripts L/p denote line/phase respectively. Three-
phase complex power is defined by

S=P+jQ
S=4/3V, 1, (cos, +jsing,)
where

S = total complex volt-amperes,

P =red power, watts

Q =reactive power, VARSs

6, = power factor angle of each phase.

CONVOLUTION
Continuous-time convolution:

V(t)=x(t) B(t) = [, x(T)y(t —T)dr

Discrete-time convolution:

vInl =x(n] yin] = Sx(k] yln-k]

DIGITAL SIGNAL PROCESSING
A discrete-time, linear, time-invariant (DTLTI) systemwitha
singleinput x[n] and asingle output y[n] can be described by

alinear difference equation with constant coefficients of the
form

y[n]+élbiy{n—i] :ilzoa”{”'ﬂ

If al initial conditions are zero, taking a z-transform yields a
transfer function

| .
Z ai Zk—l
i=0

k .
Zk + z bi Zk—l

i=1
Two common discrete inputs are the unit-step function u[n]
and the unit impulse function &[n], where

u[n]={(1) n<0} . é[d:{l n:O}

n=0 0 n#0

The impulse response h[n] is the response of adiscrete-time
system to x[n] = d[n].

A finite impulse response (FIR) filter is one in which the
impulse response h[n] islimited to afinite number of points:

i =$adn-1
The corresponding transfer function is given by
H(z)=Yaz"
i=0

where k is the order of the filter.
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An infinite impulse response (IIR) filter is one in which the
impulse response h[n] has an infinite number of points:

hinl = 3 a,8]n -]
i=0

COMMUNICATION THEORY CONCEPTS

Spectral characterization of communication signals can be
represented by mathematical transform theory. An amplitude
modulated (AM) signal formis

v(t) = Ac [1 + m(t)] cos wt, where
A. = carrier signal amplitude.
If the modulation baseband signal m(t) is of sinusoidal form
with frequency wy, or

m(t) = mcos wnt

then m is the index of modulation with m > 1 implying
overmodulation. An angle modulated signal is given by

v(t) = Acos [wt + @(b)]

where the angle modulation ¢(t) isafunction of the baseband
signal. The angle modulation form

@) = kom(t)
is termed phase modulation since angle variations are
proportional to the baseband signal my(t). Alternately

t

olt) =k [mlt)dr
istermed frequency modulation. Therefore, theinstantaneous
phase associated with v(t) is defined by

t

@ (1) =t + ky [m(t)dr

from which the instantane_agus frequency
_ doy(t)
dt

wherethe frequency deviation is proportional to the baseband
signal or

Awxt) = ki m(t)
These fundamental concepts form the basis of analog
communication theory. Alternately, sampling theory,
conversion, and PCM (Pulse Code Modulation) are
fundamental concepts of digital communication.

= 6 + ke m(t) = we + Auxt)

FOURIER SERIES
If At) sdatisfies certain continuity conditions and the
relationship for periodicity given by

fO=ft+T) foralt

then f(t) can be represented by the trigonometric and complex
Fourier series given by

f(t)=A +3 Acosnw,t+3 B.sinnw,t
n=1 n=1

and .
f(t)= yCe™

n=-oo



where

w, = 21VT

4, =) [ f(z)dn

4, = @1 [ f(t)cos nw,Tdt
B, =1 [ £(t)sin now, tdt

Cn _ (I/T) LHTf(T)e_jnm"T dt

Three useful and common Fourier series forms are defined in

terms of the following graphs (with w, = 2107T).

Given: it
Vo
t
0
A N 7V0
-Tr T
2 2
e— T —
then w
£1(0)= 312 (47, rm)cos (neo,)
Z’n:édd)
Given:
fa(t)
el
i
I I I
-T 0 o1 ot
2
then
VT 2V T &si T
f)=Lt 2 FISI&(:;Z))COS(,W)
AN sin(nnT/T) Yy
L= X )
Given:
fs(t)="a train of impulses with weights A"
-T 0o T 2T 8T
then

()= 3 48(c=n7)

n=-o

£:0)=(4/7)+ 24/7) T eos (n0,1)

n=1

(4/7) T

n=—oo

£t)
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SOLID-STATE ELECTRONICSAND DEVICES

Conductivity of a semiconductor material:

0 =g (nl, + pH,), where

W, = electron mobility,

H, = hole mobility,
n = electron concentration,
p = hole concentration, and

q = charge on an electron.

Doped material:
p-type material; p, = N,
n-type material; n, = N,

Carrier concentrations at equilibrium
(p)(n) = n;* where

n; = intrinsic concentration.

Built-in potential (contact potential) of a p-» junction:

N_N
v, SLZN <, where
q h;
Thermal voltage
VT :k_T
q

N, = acceptor concentration,

N, = donor concentration,

T = temperature (K), and

k = Boltzmann's Constant = 1.38 x 102 J/K

Capacitance of abrupt p — n junction diode

civ)=c,/\i-v/y,

where

C, =junction capacitance at V'=0,
V' = potential of anode with respect to cathode
Vy; = junction contact potential

Resistance of a diffused layer is
R=R, (L/'W), where
R, = sheet resistance = p/d in ohms per square
p = resistivity,
d = thickness,

L = length of diffusion, and
W = width of diffusion.

TABULATED CHARACTERISTICSFOR:
Diodes

Bipolar Junction Transistor (BJT)
N-Channel JFET and MOSFET
Enhancement MOSFETSs

follow on pages 111-112.



ELECTRICAL AND COMPUTER ENGINEERING (continued)

DIODES
Device and Schematic Ideal | —V Plece.w 1se:L1near Mathematical
Symbol Relationship Approximation of The | —V Relationship
| —V Relationship
(Junction Diode) ip i Shockley Equation
i = nvr) _
D , v " ip = Isle("f’/ ) lj,where
- ' - b | = saturation current
A+ vp - C 051006V 1 = emission coefficient, typically 1 for Si
Vg = breakdown voltage Vr = thermal voltage = k_T
(Zener Diode) A ip ip Same as above.
'p
-V, vp Vp
A c o (0.5 t0 0.6)V
+ Vp -
V, = Zener voltage

NPN Bipolar Junction Transistor (BJT)

. Mathematical Large-Signal (DC) Low-Frequency Small-Signal (AC)
Schematic Symbol Relationships Equivalent Circuit Equivalent Circuit
ie =ig+tic Active Region: Low Frequency:
i = Bj base emitter junction forward biased; = |
.C B .B base collector junction reverse biased G CQA/T
C lc =Adalg e = B/Om,
| a =p/@+1) c vc | OV V,
. ¢ i = | e(VBE/VT) rO - a - |
i B c s I, . co
Is = emitter saturation I Blg
B ‘ current BO 1 where
l Ie Vr = thermal voltage Vee ‘IE Ico= dc collector current at the
E onint
E Early voltage

NPN - Transistor

Note: These relationships are valid
in the active mode of operation.

Saturation Region:
both junctions forward biased

Co |
c
VCEsat -
_B o
BOo—I|
VBEsat *IE
E

VA:

%rc
B \

PNP - Transistor

Same as for NPN with current
directions and voltage polarities
reversed.

Cutoff Region:

both junctions reversed biased

I

Bo——

A

Same as for NPN.

Same as NPN with current directions
and voltage polarities reversed
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ELECTRICAL AND COMPUTER ENGINEERING (continued)

N-Channel Junction Field Effect Transistors (JFETs)
and Depletion MOSFETSs (Low and Medium Frequency)

Schematic Symbol

Mathematical Relationships

Small-Signal (AC) Equivalent Circuit

JFET
Do
fi
G
O—»
"
S O
Depletion MOSFET
Do
fi
o | ‘o]
G | B
Ji

Cutoff Region: Vgs <V,
iD =0

Triode Region: Vgs> Vj and vgp >V,
ip=( Dstpz)[ZVDs (Ves— Vp) — Vbs® ]

Saturation Region: Vgs> Vp and Vgp <V,
ip = Ipss (1 — Vag/Vp)’, where
Ipss = drain current with vgs = 0 (in the
saturation region)
= KV,
K = conductivity factor
Vo

= pinch-off voltage

2 1pssl o
Vol

in saturation region

Om =

ip(t)

G -—D
O—_

+ +
Vgs gmvgs rd VdS
o . . 0O

£
=
[¢]
=
[¢]
w

Enhancement MOSFET (Low and Medium Frequency)

Schematic Symbol

Mathematical Relationships

Small-Signal (AC) Equivalent Circuit

PO

b,

Cutoff Region: Vgs< V;
iD =0

Om = 2K(Ves— V}) in saturation region

|
O | < O Triode Region: Vgs> Vi and Vgp > V;
G ——— B ip =K [2Vps (Vas— Vo) — Vps’ ]
b,
S Saturation Region: Vgs> V; and Vgp < Vi S
ip= K(Ves— Vt)z, where where
N - channel K = conductivity factor
V;= threshold voltage ry = Vs
Oiy
onint
Do Same as for N-channel with current directions and voltage | Same as for N-channel.
T polarities reversed.
ip
o | | po
¢ | "B
b
SO
P - channel
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NUMBER SYSTEMS AND CODES

An unsigned number of base-r has a decimal equivalent D
defined by m _
D=Yar*+Xar”, where
k=0 i=1

ay = the (k+1) digit to the left of the radix point and
a = the ith digit to the right of the radix point.

Signed numbers of base-I are often represented by the radix
complement operation. If M is an N-digit value of base-r, the
radix complement R(M) is defined by

RM)=rN-M
The 2's complement of an N-bit binary integer can be written
2's Complement (M) =2~ —M

This operation is equivalent to taking the 1's complement
(inverting each bit of M) and adding one.

The following table contains equivalent codes for a four-bit
binary value.

Binary | Decimal dI;ICei)I(;:‘I Octal | BCD | Gray
Base-2 | Base-10 Base-8 | Code [ Code
Base-16
0000 0 0 0 0 0000
0001 1 1 1 1 0001
0010 2 2 2 2 0011
0011 3 3 3 3 0010
0100 4 4 4 4 0110
0101 5 5 5 5 0111
0110 6 6 6 6 0101
0111 7 7 7 7 0100
1000 8 8 10 8 1100
1001 9 9 11 9 1101
1010 10 A 12 - 1111
1011 11 B 13 - 1110
1100 12 C 14 - 1010
1101 13 D 15 - 1011
1110 14 E 16 - 1001
1111 15 F 17 -—- 1000

LOGIC OPERATIONS AND BOOLEAN ALGEBRA

Three basic logic operations are the "AND ( - )," "OR (+),"
and "Exclusive-OR [O" functions. The definition of each
function, its logic symbol, and its Boolean expression are
given in the following table.

A A A
o ) )=
B B B

Function

Inputs

AB C=AB C=A+B | C=A0OB
00 0 0 0
01 0 1 1

10 0 1 1

11 1 1 0
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As commonly used, A AND B is often written AB or AB.
The not operator inverts the sense of a binary value

0= 1,1 - 0)

NOT OPERATOR
A C=A Input Output
> - A C=A
LOGIC SYMBOL 0 1
1 0

DeMorgan's Theorem

first theorem: A+ B= A[B

second theorem: AIB=A+B

These theorems define the NAND gate and the NOR gate.
Logic symbols for these gates are shown below.

NAND Gates: ALB=A+B

A
NAND
B B

NOR Gates: A+B=A[B

NOR

A
_C C
—0

B

o3}

FLIP-FLOPS

A flip-flop is a device whose output can be placed in one of
two states, 0 or 1. The flip-flop output is synchronized with a
clock (CLK) signal. Qp represents the value of the flip-flop
output before CLK is applied, and Q. represents the output
after CLK has been applied. Three basic flip-flops are
described below.

RS Flip-Flop JK Flip-Flop D Flip-Flop

—s  q—

CLK

R Q-

—J Q—= —|D Q—

CLK CLK

—




R Qn+1 JK Qnt1 D | Qnit
00 |Q;, no change 00 |Qn no change 0] 0
01 |0 010 1| 1
10 |1 101
11 | x invalid 11Q,  toggle
Composite Flip-Flop State Transition
Qn | Qnu S R J K |D
0 0 0 X 0 X 0
0 1 1 0 1 X 1
1 0 0 1 X 1 0
1 1 X 0 X 0 1

Switching Function Terminology

Minterm — A product term which contains an occurrence of
every variable in the function.

Maxterm — A sum term which contains an occurrence of
every variable in the function.

Implicant — A Boolean algebra term, either in sum or product
form, which contains one or more minterms or maxterms of a
function.

Prime Implicant — An implicant which is not entirely
contained in any other implicant.

Essential Prime Implicant — A prime implicant which
contains a minterm or maxterm which is not contained in any
other prime implicant.
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A function represented as a sum of minterms only is said to
be in canonical sum of products (SOP) form. A function
represented as a product of maxterms only is said to be in
canonical product of sums (POS) form. A function in
canonical SOP form is often represented as a minterm list,
while a function in canonical POS form is often represented
as a maxtermlist.

A Karnaugh Map (K-Map) is a graphical technique used to
represent a truth table. Each square in the K-Map represents
one minterm, and the squares of the K-Map are arranged so
that the adjacent squares differ by a change in exactly one
variable. A four-variable K-Map with its corresponding
minterms is shown below. K-Maps are used to simplify
switching functions by visually identifying all essential prime
implicants

Four-variable Karnaugh Map

&AB 00 01 11 10

00 my my my; mg
01 m; ms mi3 my
11 m3 my mys my
10 my mg miy myo




INDUSTRIAL ENGINEERING

LINEAR PROGRAMMING
The general linear programming (LP) problem is:

Maximize Z= C;X; + CyX + ... + CoXn
Subject to:

a;X+apX + ... taxa < b

QX+ anX + ... + aXa < by

amiX) T ampXo + ... + 8mXn < b,

where Xly ooy Xn 20

An LP problem is frequently reformulated by inserting slack
and surplus variables. Although these variables usually have
zero costs (depending on the application), they can have non-
zero cost coefficients in the objective function. A slack
variable is used with a "less than" inequality and transforms it
into an equality. For example, the inequality 5X; + 3% + 2% <5
could be changed to 5X; + 3%, + 2%; + §; = 5 if S, were chosen
as a slack variable. The inequality 3X; + X; —4X; 2 10 might be
transformed into 3X; + X; — 4X3 — S, = 10 by the addition of the
surplus variable S,. Computer printouts of the results of
processing and LP usually include values for all slack and
surplus variables, the dual prices, and the reduced cost for each
variable.

DUAL LINEAR PROGRAM

Associated with the general linear programming problem is
another problem called the dual linear programming problem.
If we take the previous problem and call it the primal
problem, then in matrix form the primal and dual problems
are respectively:

Dual
Minimize W= b'y
Subject to: YA = C

Primal
Maximize Z = cX
Subject to: AX< b

x20 y=0
If A is a matrix of size [m X n], then y is an [1 X M| vector, Cis
an [1 x n] vector, and b is an [m x 1] vector.
STATISTICAL QUALITY CONTROL

Average and Range Charts

n Ay D; Dy
2 1.880 0 3.268
3 1.023 0 2.574
4 0.729 0 2.282
5 0.577 0 2.114
6 0.483 0 2.004
7 0.419 0.076 1.924
8 0.373 0.136 1.864
9 0.337 0.184 1.816
10 0.308 0.223 1.777
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X = an individual observation

n = the sample size of a group

k = the number of groups

R = (range) the difference between the largest and smallest

observations in a sample of size n.

X, + X, +..+ X,
n

X, + X, +...+ X,
k

X|
I

Xl
I

_R*R +..*R,

Py

+...
k

The R Chart equations are:

0O

L, =R
CL,
CL,

c

D4
D3

,_
I
Py ]

The X Chart equations are:
CL, =X
UCL, =X + AR
LCL, =X - AR

Standard Deviation Charts

n Az Bs B4
2 2.659 0 3.267
3 1.954 0 2.568
4 1.628 0 2.266
5 1.427 0 2.089
6 1.287 0.030 1.970
7 1.182 0.119 1.882
8 1.099 0.185 1.815
9 1.032 0.239 1.761
10 0.975 0.284 1.716

CL, =X

LCL, = X- AS
UCL, = B,S
CL, =S

LCL, = B,S



Approximations

The following table and equations may be used to generate
initial approximations of the items indicated.

n Cs d> ds
2 0.7979 1.128 0.853
3 0.8862 1.693 0.888
4 0.9213 2.059 0.880
5 0.9400 2.326 0.864
6 0.9515 2.534 0.848
7 0.9594 2.704 0.833
8 0.9650 2.847 0.820
9 0.9693 2.970 0.808
10 0.9727 3.078 0.797

0=R/d,

o=Slc,

o, =d,0

o, = 6@, where

0 = an estimate of ¢,
Or = an estimate of the standard deviation of the ranges of the
samples, and

Os = an estimate of the standard deviation of the standard
deviations.

Tests for Out of Control

1. A single point falls outside the (three sigma) control
limits.

2. Two out of three successive points fall on the same side
of and more than two sigma units from the center line.

3. Four out of five successive points fall on the same side of
and more than one sigma unit from the center line.

4. Eightsuccessive points fall on the same side of the center
line.

QUEUEING MODELS

Definitions

P, = probability of n units in system,

L = expected number of units in the system,
Lq = expected number of units in the queue,
W = waiting time in system,

W, = waiting time in queue,

A = mean arrival rate (constant),

M = mean service rate (constant),

p = server utilization factor, and

S = number of servers.
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Kendall notation for describing a queueing system:
A/B/sIM
A = the arrival process,
B = the service time distribution,
S = the number of servers, and
M = the total number of customers including those in service.

Fundamental Relationships

L =AW

Ly =AW,

W =W;+ 1/u
P =A(sw

Single Server Models (s=1)
Poisson Input — Exponential Service Time: M = oo
Po=1-AMu=1-p
Pn=(1-p)a" = Pop"
L =p/(1-p)=Mu-A)
L = N/[H (4= )]
W =1[ud-p)]=1(-M)
Wo= W= 1/p= M (1 - N)]
Finite queue: M < 0
Po = (1-p)/(1-p"")
P = [(1 - p)/(1 - p"")]p"
L =p/(1-p)— M+ 1p""/(1 - pMT)
Ly =L—-(1-Pp)
Poisson Input — Arbitrary Service Time

Variance o is known. For constant service time,

o’ =0.

Po=1-p

Ly = (\’o® +p*)[2 (1 - p)]
L =p+Lq

W= Lo/ A

W =W+ 1/p

Poisson Input — Erlang Service Times, 0° = 1/(ku?)

Lg = [(1 + K/QKIIAD (M (U= )]
= [NI(ku?) + p*)[2(1 - )]
Wo= [(1 + K/ (1= M]}

W =W+ 1/n



Multiple Server Model (s> 1)
Poisson Input — Exponential Service Times

)\ S
Po( p
L=

" s-p)
s s+l

_FRsp
$(1-p)?

P = Py (A/)"nt 0<sn<s
Pn=Po MW 7% n=s
Wy= LA

W =W, +1/u

L =Lg+Au

Calculations for Py and L, can be time consuming; however,
the following table gives formulae for 1, 2, and 3 servers.

S Po Lq

1 1-p p’l(1-p)

2 | (1-p)(L+p) 2p%(1-p?

3 2(1-p) 9"
2+4p + 3p? 2+2p-p*-3p°

MOVING AVERAGE

Lo2dy
d[ - i=1
n
where,
d. = forecasted demand for period t,
di = actual demand for ith period preceding t, and
n = number of time periods to include in the moving

average.

EXPONENTIALLY WEIGHTED MOVING AVERAGE

d,=ady + (1-0a)d,_,

where
at = forecasted demand for t
o = smoothing constant
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LINEAR REGRESSION AND DESIGN OF
EXPERIMENTS

Least Squares
y =&+ bx,where
y-intercept: & = y — bx
andslope:f) = S5, /S5,

S, = éwi -(un é&j(i%}

i=1

n n 2
Sy = ¥x- (n mj
i=1 i=1

n = samplesize
_ n
y = (1/” Zl}’i)
1=
n
X = (Un ij
i=1
Standard Error of Estimate
S S, -S2
ez =Xy MSE, where
s,(n-2)
n n 2
Syy =i§yi2 _( n)(giyi)

Confidence Interval for a

o2
axt,,. [%+;_]MSE

XX

Confidence Interva for b
MSE

a/2,n-2 S

XX

b+t

Sample Correlation Coefficient

2V FACTORIAL EXPERIMENTS
Factors: X, Xo, ooy Xn
Levels of each factor: 1, 2
r =number of observations for each experimental
condition (treatment),
E, = estimate of the effect of factor X;,i=1, 2, ..., n,
E; = estimateof theeffect of theinteraction between factors
X and X,
Y, = averageresponsevalueforall r2™ observationshaving
B X;setatlevel k, k=1, 2, and
Yijkm: average response valuefor all r2™ observations having
Xisetatlevel k, k=1, 2, and X; set at level m,m=1, 2.
Ei = Vi2 _Vil
- (Vijzz _VUZI)_ (VUIZ _Vijn)
I} 2




ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

Given independent random samples of size n from k
populations, then:
k n

556 bl ) o

1
$1' otal — rror + $1' reatments

Let T be the grand total of all kn observations and T; be the
total of the n observations of the ith sample. See One-Way
ANOVA table on page 121.

C=T?(kn)
$l'otal = é]
SS e = 2(T2/0)-C

i=1

rror — $1' otal — $1' reatments

x> —-C

IJ_

Ms

LEARNING CURVES
The time to do the repetition N of a task is given by

Tn = KN °, where

K = constant and
S = In (learning rate, as a decimal)/In 2.

If N units are to be produced, the average time per unit is
given by

__K (1+s) _ y <(i+s)
Toe = i+ [(N +0.5)"" =05 ]
INVENTORY MODELS

For instantaneous replenishment (with constant demand rate,
known holding and ordering costs, and an infinite stockout
cost), the economic order quantity is given by

EOQ = 2AD

,  Where

A
D = number of units used per year, and

cost to place one order,

h = holding cost per item and per unit

Under the same conditions as above with a finite
replenishment rate, the economic manufacturing quantity is
given by

2AD

MO Hi-o/Ry

where

R = the replenishment rate.
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ERGONOMICS

NIOSH Formula
Action Limit

=90 (6/H)(1 —0.01V — 300J0.7 + 3/D) (1 — F / Fyx)
where

H = horizontal distance of the hand from the body's center of
gravity at the beginning of the lift,

V =vertical distance from the hands to the floor at the
beginning of the lift,

D = distance that the object is lifted vertically, and

F = average number of lifts per minute.

Biomechanics of the Human Body

BASIC EQUATIONS
Hx+F«=0
Hy+F,=0
H,+F,=0
T+ Tre =0
THyZ + TFyZ =0
Tny + Tny =0

The coefficient of friction Y and the angle o at which the

floor is inclined determine the equations at the foot.

Fx=HF;
With the slope angle o
Fx=MUFcos a

Of course, when motion must be considered, dynamic
conditions come into play according to Newton's Second
Law. Force transmitted with the hands is counteracted at the
foot. Further, the body must also react with internal forces at
all points between the hand and the foot.



FACILITY DESIGN

Equipment Requirements

Pjj = desired production rate for product i on machine j,
measured in pieces per production period,

Tjj = production time for product i on machine j, measured in
hours per piece,

Cij = number of hours in the production period available for
the production of product i on machine j,

M; = number of machines of type j required per production
period, and

n = number of products.

Therefore, M; can be expressed as

M. = Z”: ijTij
S Cij
People Requirements
P LI
a2 Cij , Where

A, = number of operators required for assembly operation j,

Pjj = desired production rate for product i and assembly
operation j (pieces per day),

Tjj = standard time to perform operation j on product i
(minutes per piece),

Cij = number of minutes available per day for assembly
operation j on product i, and

N = number of products.

Plant Location

The following is one formulation of a discrete plant location
problem.

Minimize

z=33cy, +> fx,

ENEER=

subject to

m

DYy smx, j=1....n

i=1

n .

Zy” =1, j=I....m

yij 2 0, for all i, j
X = (0, 1), for all
where

m = number of customers,

n = number of possible plant sites,

yij = fraction or portion of the demand of customer i which is
satisfied by a plant located at site j; i =1, ..., m;j =1,
..,n,

X =1, if a plant is located at site |,

X =0, otherwise,

Cj = cost of supplying the entire demand of customer i from a
plant located at site j, and

fi = fixed cost resulting from locating a plant at site j.
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MATERIAL HANDLING

Distances between two points (X;, Y;) and (X;, Y;) under
different metrics:

Euclidean:
— 2 2
D= \/(Xl _Xz) +(y1 - yz)
Rectilinear (or Manhattan):
D =[x —x 0+ Dyy — yoJ
Chebyshev (simultaneous X and y movement):

D = max([X, — %0, Oy, — y»0)

FACILITY LAYOUT

Line Balancing
Nmin = (ORX Ztl /OT)

= Theoretical minimum number of stations

Idle Time/Station = CT-ST
Idle Time/Cycle = X (CT-9I)
o Idle Time/Cycle <100
Percent Idle Time = N xCT

actual

where

CT = cycle time (time between units),
OT = operating time/period,

OR = output rate/period,

ST

ti = individual task times, and

station time (time to complete task at each station),

N = number of stations.

Job Sequencing

Two Work Centers — Johnson's Rule

1. Select the job with the shortest time, from the list of jobs,
and its time at each work center.

2. Ifthe shortest job time is the time at the first work center,
schedule it first, otherwise schedule it last. Break ties
arbitrarily.

3. Eliminate that job from consideration.
4. Repeat 1, 2, and 3 until all jobs have been scheduled.

CRITICAL PATH METHOD (CPM)
dj = duration of activity (i, j),

CP = critical path (longest path),

T = duration of project, and

T = ¥ d,
(e



PERT

(&, by, j) (optimistic, most likely, pessimistic)
durations for activity (i, j),

Mj = mean duration of activity (i, j),

0;; = standard deviation of the duration of activity (i, j),
M = project mean duration, and
0 = standard deviation of project duration.

a; + 4bij +¢;
u,, e S
ij 6
C: —a;
O.ij - ) 6 1]
u - (i,j)zD:CPu”
o'= ¥ o
(i,j)oce
MACHINING FORMULAS
Material Removal Rate Formulas
1. Drilling:

MRR = (174) D*f N, where
D = drill diameter,
f = feed rate, and
N = rpm of the drill.
Power = MRR X specific power

2. Slab Milling:

Cutting speed is the peripheral speed of the cutter
V = 1DN, where

D = cutter diameter and

N = cutter rpm.

Feed per tooth f is given by
f=V/(Nn), where

v = workpiece speed and

n = number of teeth on the cutter.

t=(l +lo)/v, where

t = cutting time,

| = length of workpiece, and

I = additional length of cutter's travel

=.J/Dd (approximately).

Ifl, <<
MRR = lwd/t, where

d = depth of cut,

w = min (width of the cut, length of cutter), and cutting time
=t=I/.
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3. Face Milling:
MRR = width x depth of cut x workpiece speed

(Workpiece length + tool clearance)

Cutting time = workpiece speed
=(+2lx/V
Feed (per tooth) = V/(Nn)

I = tool travel necessary to completely clear the workpiece;
usually = tool diameter/2.

Taylor Tool Life Formula
VT" = C, where

V = speed in surface feet per minute,
T = time before the tool reaches a certain percentage of
possible wear, and
C,n = constants that depend on the material and on the tool.
Work Sampling Formulas
1- 1-
D=2, PP and R=Z7,, [P
pn

p = proportion of observed time in an activity,
D = absolute error,

R = relative error (R= D/p)

n = sample size



INDUSTRIAL ENGINEERING (continued)

ONE-WAY ANOVA TABLE

Source of Variation EHTEH0T SO Mean Square F
Freedom Squares
MST
Between Treatments k-1 SSrreatments MST = % ME
SS,
_ M$ - ITOr
Error k (n 1) $Error k(n _ 1)
Total kn—1 $l'otall
PROBABILITY AND DENSITY FUNCTIONS: MEANS AND VARIANCES
Variable Equation Mean Variance
Binomial n__n
Coefficient x) (n - X)!
n =X
Binomial b(x; n, p) =( jpx (1-p) np np(l —p)
X
(N—rj nr r(N-r)n(N-n)
r n—x N
Hyper h(x;n,r,N)=(X]— N NZ(N -1)
Geometric j
Ne™
Poisson f (X; )\) = v A A
Geometric gx;p)=p-p*" 1/p (1-p)/p?
Negative . _[y+r=-1) . y
e f(y'“p)‘( -1 JP0-e) r/p r(1-pyp’
Binomial
__n X e
Multinomial %) = XX ! P P np np; (1 —pi)
Uniform f(xX)=1/(b—a) (a+by2 (b—a)%/12
Xu—le—x/B
Gamma f()=a—; a>0,>0 ap ap?
p°r (o)
()=ze
Exponential X)= E e B B?
o +1 a+1
. Berlla+1)/a] | gm0 -r
Weibull f(x)=—xe™P (@ +iya] | a a
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ERGONOMICS

US Civilian Body Dimensions, Female/M ale, for Ages20to 60 Years

(Centimeters)
Per centiles
5th 50th 95th Std. Dev.

HEIGHTS
Stature (height) 1495/ 161.8 160.5/173.6 171.3/184.4 6.6/6.9
Eye height 138.3/151.1 148.9/162.4 159.3/ 172.7 6.4/6.6
Shoulder (acromion) height 121.1/132.3 131.1/142.8 141.9/152.4 6.1/6.1
Elbow height 93.6/100.0 101.2/ 109.9 108.8/119.0 46/58
Knuckle height 64.3/69.8 70.2/75.4 75.9/80.4 35/32
Height, sitting 78.6184.2 85.0/90.6 90.7/96.7 35/37
Eye height, sitting 67.5/72.6 73.3/78.6 78.5/84.4 33/36
Shoulder height, sitting 49.2/52.7 55.7/59.4 61.7/65.8 3.8/4.0
Elbow rest height, sitting 18.1/19.0 23.3/24.3 28.1/29.4 29/30
Knee height, sitting 45.2/49.3 49.8/54.3 54.5/59.3 27129
Popliteal height, sitting 35.5/39.2 30.8/44.2 443/48.8 26/28
Thigh clearance height 10.6/11.4 13.7/14.4 17.5/17.7 18/1.7
DEPTHS
Chest depth 21.4/21.4 24.2124.2 29.7/27.6 25/19
Elbow-fingertip distance 385/44.1 42.1/47.9 46.0/51.4 22122
Buttock-knee distance, sitting 51.8/54.0 56.9/59.4 62.5/64.2 31/30
Buttock-popliteal distance, sitting 43.0/44.2 48.1/49.5 53.5/54.8 31/30
Forward reach, functional 64.0/76.3 71.0/825 79.0/88.3 45/5.0
BREADTHS
Elbow-to-elbow breadth 31.5/35.0 38.4/417 49.1/50.6 5.4/46
Hip breadth, sitting 31.2/30.8 36.4/35.4 43.7/40.6 37/28
HEAD DIMENSIONS
Head breadith 13.6/14.4 14.54/15.42 155/16.4 0.57/0.59
Head circumference 52.3/53.8 54.9/56.8 57.7/59.3 1.63/1.68
Interpupillary distance 5.1/55 5.83/6.20 6.5/6.8 0.4/0.39
HAND DIMENSIONS
Hand length 16.4/17.6 17.95/19.05 19.8/20.6 1.04/0.93
Breadth, metacarpal 7.0/82 7.66/8.88 84/958 0.41/0.47
Circumference, metacarpal 16.9/19.9 18.36/21.55 19.9/235 0.89/1.09
Thickness, metacarpal 11 25/24 2771276 31/31 0.18/0.21
Digit 1

Breadth, interphalangesl 17/21 1.98/2.29 21/25 0.12/0.13

Crotch-tip length 47151 5.36/5.88 6.1/66 0.44/0.45
Digit 2

Breadith, distal joint 14/1.7 1.55/1.85 1.7/20 0.10/0.12

Crotch-tip length 6.1/6.8 6.88/7.52 78182 0.52/0.46
Digit 3

Breadth, distal joint 14/17 1.53/1.85 17/20 0.09/0.12

Crotch-tip length 70/7.8 7771853 8.7/95 0.51/0.51
Digit 4

Breadth, distal joint 13/16 1.42/1.70 16/19 0.09/0.11

Crotch-tip length 6.5/7.4 7.29/7.99 8.2/89 0.53/0.47
Digit 5

Breadth, distal joint 12/14 1.32/1.57 15/1.8 0.09/0.12

Crotch-tip length 48/54 5.44 ] 6.08 6.2/6.99 0.44/0.47
FOOT DIMENSIONS
Foot length 22.3/24.8 24.1/26.9 26.2/29.0 1.19/1.28
Foot breadth 8.1/9.0 8.84/9.79 9.7/10.7 0.50/0.53
Lateral malleolus height 5.8/6.2 6.78/7.03 7.8/80 0.59/0.54
Weight (kg) 46.2 / 56.2 61.1/74.0 89.9/97.1 13.8/12.6
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The average shifts with age of the threshold of hearing for pure tones of persons with "normal" hearing, using a 25-year-old group as

a reference group.

Shift in threshold, decibels

Equivalent sound-level contours used in determining the A-weighted sound level on the basis of an octave-band analysis. The curve
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ERGONOMICS (continued)

Estimated average trend curves for net hearing loss at 1,000, 2,000, and 4,000 Hz after continuous exposure to steady noise. Data are
corrected for age, but not for temporary threshold shift. Dotted portions of curves represent extrapolation from available data.
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Tentative upper limit of effective temperature (ET) for unimpaired mental performance as related to exposure time; data are based on
an analysis of 15 studies. Comparative curves of tolerable and marginal physiological limits are also given.
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MECHANICAL ENGINEERING
Examinees should also review the material in sections titled
HEAT TRANSFER, THERMODYNAMICS,
TRANSPORT PHENOMENA, FLUID MECHANICS, T
and COMPUTERS, MEASUREMENT, AND
CONTROLS.

REFRIGERATION AND HVAC
Two-Stage Cycle

Oouw 1
3 f 2
CONDENSER
COMPRESSOR Wi, 1
(X) ExPANSION VALVE ’ s
h —h
4 1 COP = —
HEAT EXCHANGER | (hz -h ) - (h3 - h4)
~e h, -h
7 _ h 1
. COPyp =
COMPRESSOR Wi, 2 (h2 -h ) - (h3 - h4)
(X) ExPANSION VALVE ]
(see also THERMODYNAMICS section)

8 EVAPORATOR 5 HVAC - Pure Heating and Cooling

o,

(0]

The following equations are valid if the mass flows are the
same in each stage. ) H T2

COP, =— Q. — = sy or

ot TWL o h, =h +h; —h; 20—
Q h, -h
COp,, =———= — N . T
b Vvin,l +Vvin,2 hz _hl +h6 _hs Q:ma(hz _hl):macpm(Tz _Tl)

Cp =1.02k1/(kg )

Air Refrigeration Cycle

O’CJUT
/ Cooling and Dehumidification
HEAT e .
EXCHANGER 2
3
W\N
TURBINE COMPRESSOR
! 3 LQuib ouT
j mw
4 1
CONDITIONED
4 SPACE
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MECHANICAL ENGINEERING (continued)

Adiabatic Mixing
MOIST .
® AIR Mag
/1 e 1 8
2 o 1 MOIST AIR
My
(0]
T

Qout = ma[(hz - hl ) + hf3(wl -0, )]
mw = ma ((*)1 - 0)2)

Heating and Humidification

-
My =My + My,
h. = My hy + My, hy
3 -
My;
m,,w, +m_,w
. w, =~ T
My;
distance 13 =& x distance 12 measured on
2 My;
/ psychrometric chart
;
- Heating Load
(see also HEAT TRANSFER section)
Q,=m, [(hz - h1)+ h, (002 - W, )]
r:nw = ma(wz _wl) T To
] Ky Ko ks e
Adiabatic Humidification (evaporative cooling) ' ol

— | L, e L, L; —

' Q
3 Q= A(Ti -T, )/ R’
®
R":i+i+i+i+iz where
h1 kl kz k3 h2

Q = heat transfer rate,

2 A = wall surface area, and
R' = thermal resistance.

1 Overall heat transfer coefficient = U
i = U=1R
h, =h +hy (0, — o) Q:UA(Ti—To)
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Cooling Load
Q = UA(CLTD)
CLTD = effective temperature difference

CLTD depends on solar heating rate, wall or roof orientation,
color, and time of day.

Infiltration
Air change method
. P.C VN,
=———— (T —-T_ ), where
Q=S50 (17 T)
Pa = air density,
Cp = air specific heat,
V = room volume,
Nac = number of air changes per hour,
T, = indoor temperature, and
T, = outdoor temperature.
Crack method

Q=1.2CL(T, -T,), where

C = coefficient and
L

crack length.

FANS, PUMPS, AND COMPRESSORS

Scaling Laws
(see page 44 on Similitude)

), )
ND*), ND?),
[pl\rlil]fl :[pNﬁE]fl
(N?DZJZZ[N?DJI
[pNTDzl :[pNE)DZl

W W
( 3 SJ =( 3 SJ, where
pPN°D” ), \pN°D” ),

Q = volumetric flow rate,
M = mass flow rate,

H = head,

P = pressure rise,

W = power,

p© = fluid density,

N = rotational speed, and
D = impeller diameter.
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MECHANICAL ENGINEERING (continued)

Subscripts 1 and 2 refer to different but similar machines or to
different operating conditions of the same machine.

Fan Characteristics

Ap
power
U
constant N, D, p
Typical Fan Curves

backward curved

W = APQ , Where
N
W = fan power,

AP = pressure rise, and
Nt = fan efficiency.

Pump Characteristics

Pump Performance Curves
(Constant N, D, p)

power

NPSH Required

Flow Rate, Q

Net Positive Suction Head (NPSH)
2
wpsi= P W P
Pg 29 pY

P; = inlet pressure to pump,

where

V; = velocity at inlet to pump, and
P, = vapor pressure of fluid being pumped.

W = pgHQ

,  Where

W = pump power,
n = pump efficiency, and
H = head increase.



MECHANICAL ENGINEERING (continued)

Compressor Characteristics Internal Combustion Engines
OTTO CYCLE (see THERMODYNAMICS section)

/’Y DIESEL CYCLE

\ | 2
7T !

COMPRESSOR MAP

‘5(?’ 3
o O A

Pe/Pi
S’(,ﬁe
N
N
N
~
//\

3
~
S
~
T~

07 7 ,
7 /7 ’
v /\(\ / \‘\speed,N
7|
/

A

m
m = mass flow rate and

P./P, = exit to inlet pressure ratio.

2 _\/2
W =ri he—hi+—ve 2Vi J

2 _\y2
= y-r(cp (T.-7)+ u], where
2 s

. r= V1/V2
W = input power, B
he, hi = exit, inlet enthalpy, fe= V3V
Vo Vi = exit, inlet velocity, N re -1
Cp = specific heat at constant pressure, and r < k(rC - 1)
Te, Ti = exit, inlet temperature. k = cplc,
h,=h + h, —h Brake Power
n .
T -T W, =21TN =21FRN, where
T, =T, +—=—1, where _
n W, = brake power, W
hes = exit enthalpy after isentropic compression, T = torql%e, N'm
Tes = exit temperature after isentropic compression, and N = rotation speed, rev/s
_ . . F = force at end of brake arm, N; and
n = compression efficiency.
R = length of brake arm, m
ENERGY CONVERSION AND POWER PLANTS
(see also THERMODYNAMICS section) e« R

Q F

=
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INDICATED POWER
W =W, +W,, where

W = indicated power, W and

W, = friction power, W
BRAKE THERMAL EFFICIENCY
W,

Ny = :

=7 < h
m (HV)’ where

Ny = brake thermal efficiency,
m, = fuel consumption rate, kg/s and
HV = heating value of fuel, J/kg

INDICATED THERMAL EFFICIENCY

N, = W,
" m, (HV)
Mechanical Efficiency
qo= Ny
W n;
[——— B —_—
Ve Il Cylinder
Piston
S
[ §
I I
|

DISPLACEMENT VOLUME
Vy =T8S m’ for each cylinder
Total volume = V; = Vg + V, m’
V. = clearance volume, m’
COMPRESSION RATIO
re=Vi/Ve
MEAN EFFECTIVE PRESSURE (mep)

S
Vyn.N

mep = , Where

Ns = number of crank revolutions per power stroke,
Ne = number of cylinders, and

Vy = displacement volume per cylinder.

mep can be based on brake power (bmep), indicated power
(imep), or friction power (fmep).

MECHANICAL ENGINEERING (continued)

VOLUMETRIC EFFICIENCY

[ 2ma
i p.V,n N (four-stroke cycles only)
where
m, = mass flow rate of air into engine, kg/s

Pa = density of air, kg/m’

SPECIFIC FUEL CONSUMPTION (sfc)

m; 1
sfe=—=—+—, kg/J
W nHV

Use Np and W, for bsfc and n; and W, for isfc.

Gas Turbines
BRAYTON CYCLE (steady-flow cycle)

3
COMBUSTOR

COMPRESSOR

] 4
P
\
T
S
Wio = hi—h=cp (T -Ty)
Wiy = hs—hy=cp (T3 -Ty)
Wiet = Wio + Wy
U23 = hs—hy=cp (T3 -T))
Qa1 = hi—hy=cp (T - Ty)
Onet = Op3 + 041
,7 = Wnet /q23



MECHANICAL ENGINEERING (continued)

BRAYTON CYCLE WITH REGENERATION STEAM TRAP
REGENERATOR 3 COMBUSTOR
LIQUID + VAPOR
2 VVAAA 4 2
1 ﬁ’\
|;» 6
COMPRESSOR TURBINE
LIQUID ONLY
\ 1 5 h, = h,
4
T JUNCTION
m, + m, m,
3 5 3 1
2 6 2 ',
m.h, + myh, = h (M +m,)
1
s PUMP
p
h3—h2:h5—h6or T3—T2:T5—T6
s = hy—hy=cp(T4—Ts) 2 1
Oss = hs—hs=cp(Te—Ts) -
r] = Wnet/q34
Regenerator efficiency
w
_ h3 B hz _L-T,
Neeg = h-h, T, -T, w=h,—h, = (h,=h,)m,
hoe=h, = v(P,—=P,)
hs =y + Nyeg (hs — ) we=- V(P:=P,)
o T=Tt N (Ts—T) e
Steam Power Plants
MACHINE DESIGN
FEEDWATER HEATERS
» Variable Loading Failure Theories
l My Modified Goodman Theory: The modified Goodman criterion
) states that a fatigue failure will occur whenever
m, +m, m,
-~ OPEN l—— o o o
3 1 2 +M>] or —2>], 0,20, where
Se Sut Sy
n'11h1 + rhzhz _ hs(rh1 + mz) S = fatigue strength,
St = ultimate strength,
m, S, =yield strength,
2 i O, = alternating stress, and
n'n1 r'n1 Om = mean stress
<«——— CLOSED |=— Omax = Om* Oa
3 1
rh2
4
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Soderberg Theory: The Soderberg theory states that a fatigue
failure will occur whenever

g, ©
ZayCmsyq

e Sy

0,20

Endurance Limit: When test data is unavailable, the
endurance limit for steels may be estimated as

o = [ 05S,,S, <1400 MPa
e 700 MPa, S, > 1400 MPa

Endurance Limit Modifying Factors: Endurance limit
modifying factors are used to account for the differences
between the endurance limit as determined from a rotating
beam test, &, and that which would result in the real part, S..

S = Ka ko ke Kg ke ki &', where
Surface Factor, kK, =aS;,

Surface Factor a Exponent
Finish kpsi MPa b
Ground 1.34 1.58 —0.085
Machined or 2.70 4.51 —0.265

CD
Hot rolled 14.4 57.7 -0.718
As forged 39.9 272.0 —0.995
Sze Factor, kg:
For bending and torsion:
d< 8 mm; k=1
8 mm < d <250 mm; k, = 1189d""
d> 250 mm; 0.6<kp<0.75
For axial loading: ko=1

Load Factor, k:

ke =0.923 axial loading, S, < 1520 MPa
ke=1 axial loading, S, > 1520 MPa
ke=1 bending

Temperature Factor, kg

for T<450°C,ky=1
Miscellaneous Effects Factor, k.: Used to account for strength
reduction effects such as corrosion, plating, and residual
stresses. In the absence of known effects, use ke =1.
Shafts and Axles

Static Loading: The maximum shear stress and the von Mises
stress may be calculated in terms of the loads from

Trex =§[(8M +Fd) + (8T)2]‘/2,

o =#[(8M + Fd)? + (asT)?]”
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where

M = the bending moment,
F = the axial load,

T = the torque, and

d = the diameter.

Fatigue Loading: Using the maximum-shear-stress theory

combined with the Soderberg line for fatigue, the diameter
and safety factor are related by

; 2 2 1/2
™ =n Mm+KfMa + T_m+KfsTa
32 S S, S S,

y y

where

d = diameter,

n = safety factor,

M, = alternating moment,

M, = mean moment,

T, = alternating torque,

Tm = mean torque,

S = fatigue limit,

S = yield strength,

K: = fatigue strength reduction factor, and

Kss = fatigue strength reduction factor for shear.

Screws, Fasteners, and Connections

Square Thread Power Screws: The torque required to raise,
Tg, or to lower, T,a load is given by

T :de I+T[mm +F“cdc
o2 \md, —pl 2

B

T, = Fd, (T[mm _lJ_'_ Fud.

2 \m, +ul 2
where

d. = mean collar diameter,
dn = mean thread diameter,

| = lead,
F = load,
L = coefficient of friction for thread, and

Me = coefficient of friction for collar.



The efficiency of a power screw may be expressed as

n = FI/2mT)
Threaded Fasteners: The load carried by a bolt in a threaded
connection is given by

Fr=CP+F; Fn<0
while the load carried by the members is
Fn=(1-C)P-F Fm<0

where

C = joint coefficient,
= Ko/ (ko + k)
F, = total bolt load,
Fi = bolt preload,
Fmn = total material load,
P = externally applied load,

ko = the effective stiffness of the bolt or fastener in the grip,
and

kn = the effective stiffness of the members in the grip.

Bolt stiffness may be calculated from
_ AAE
A+ Al

b where

A4 = major-diameter area,

A, = tensile-stress area,

E = modulus of elasticity,

lg = length of unthreaded shank, and

li = length of threaded shank contained within the grip.

Member stiffness may be obtained from
ki = dEAE", where
d = bolt diameter,

E = modulus of elasticity of member, and
| = clamped length.

Coefficient A and b are given in the table below for various
joint member materials.

Material A b
Steel 0.78715 0.62873
Aluminum 0.79670 0.63816
Copper 0.79568 0.63553
Gray cast iron 0.77871 0.61616

Threaded Fasteners—Design Factors: The bolt load factor is

My = (SA — F)ICP
The factor of safety guarding against joint separation is
ns=Fi /[P (1-C)]

MECHANICAL ENGINEERING (continued)

Threaded Fasteners—Fatigue Loading: If the externally
applied load varies between zero and P, the alternating stress
is

0,= CPI2AY)
and the mean stress is
Om=03+ Fi /AI

Bolted and Riveted Joints Loaded in Shear:

N
F<-—0d7T N ANNN
| t—F

(a) FASTENER IN SHEAR
Failure by pure shear, (a)

7= F/A, where

= shear load and

n
I

A = area of bolt or rivet.

(b) MEMBER RUPTURE

Failure by rupture, (b)
o = F/A, where
F =load and

A = net cross-sectional area of thinnest member.

1Ol )

(c) MEMBER OR FASTENER CRUSHING

Failure by crushing of rivet or member, (c)

o0 = F/A, where
F =load and
A = projected area of a single rivet.
y i
| Fiq Y | Fio
1 F? 2,
Tl VR
— —
F24 I:14 ? F13‘
4 3 } y
l | X
Fxs

S
(d) FASTENER GROUPS
Fastener groupsin shear, (d).



The location of the centroid of a fastener group with respect
to any convenient coordinate frame is:

n = total number of fasteners,

i = the index number of a particular fastener,

A, = cross-sectional area of the ith fastener,

X; = X-coordinate of the center of the ith fastener, and

yi = y-coordinate of the center of the ith fastener.

The total shear force on a fastener is the vector sum of the

force due to direct shear P and the force due to the moment M
acting on the group at its centroid.

The magnitude of the direct shear force due to P is

|F1i :E, This force acts in the same

n direction as P. The magnitude of
the shear force due to M is

This force acts perpendicular to a line drawn from the
centroid to the center of a

||:2, | _ M . particular fastener. Its sense is such
I . . .
Zn: r2 that its moment is in the same
I . .
i=l direction (CW or CCW) as M.
Mechanical Springs

Helical Linear Springs: The shear stress in a helical linear
spring is

_K 8FD,

Sm}

where

= wire diameter,
= applied force,

O T o
|

= mean spring diameter, and

s=(2C+ 1/20)
C =DM
The deflection and force are related by F = kx where the
spring rate (spring constant) K is given by

k=d*G/(8D°N)

where G is the shear modulus of elasticity and N is the
number of active coils.

~
Il

Spring Material: The minimum tensile strength of common
spring steels may be determined from

SJt:A/dm

where Sy is the tensile strength in MPa, d is the wire diameter
in millimeters, and A and mare listed in the following table.
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Material ASTM m A
Music wire A228 0.163 2060
Oil-tempered wire A229 0.193 1610
Hard-drawn wire A227 0.201 1510
Chrome vanadium A232 0.155 1790
Chrome silicon A401 0.091 1960

Maximum allowable torsional stress for static applications
may be approximated as

Sy = T =0.455; cold-drawn carbon steel (A227,
A228, A229)

T =0.50§; hardened and tempered carbon and
low-alloy steels (A232, A401)

Compression Spring Dimensions

S:,y:

Type of Spring Ends
; Plain and
Term Plain Ground
End coils, Ng 0 1
Total coils, N; N N+1
Free length, L, [pN+d p(N+1)
Solid length, Ls  |d (N;+ 1) dN;
Pitch, p (Lp—d)y/N Lo/(N+ 1)
Squared or Squared and
Term Closed Ground
End coils, Ng 2 2
Total coils, N; N+ 2 N+2
Free length, L, |pN+3d pN +2d
Solid length, Ls  |d (N;+ 1) dN;
Pitch, p (Lo —3d)/N (Lo —2d)/N

Helical Torsion Springs: The bending stress is given as
o =K; [32Fr/(1d )]

where F is the applied load and r is the radius from the center
of the coil to the load.

K = correction factor
=(@4C?-C-1)/[4C(C-1)]
C =D/
The deflection 8 and moment Fr are related by
Fr=ko
where the spring rate K is given by
k=d*E/(64N)

where Kk has units of N-m/rad and 0 is in radians.



Spring Material: The strength of the spring wire may be found
as was done in the section on linear springs. The allowable
stress Ois then given by

S, =0=0.785; cold-drawn carbon steel (A227,
A228, A229)

S, = 0 = 0.87Shardened and tempered carbon and
low-alloy steel (A232, A401)
Ball/Roller Bearing Selection
The minimum required basic load rating (load for which 90%
of the bearings from a given population will survive 1 million
revolutions) is given by
1

C=PL%, where
C = minimum required basic load rating,
P = design radial load,
L = design life (in millions of revolutions), and
a = 3 for ball bearings, 10/3 for roller bearings.
When a ball bearing is subjected to both radial and axial

loads, an equivalent radial load must be used in the equation
above. The equivalent radial load is

Peg = XVF, + YF, where
Pey = equivalent radial load,
F, = applied constant radial load, and
Fa = applied constant axial (thrust) load.

For radial contact, groove ball bearings:
V =1 if inner ring rotating, 1.2 outer ring rotating,

If Fo/(VF) > e, E )02
X =0.56, and Y= 0.840(—61}
CO

0.236
where e€=0.5 13[C_3J , and

[0}
C, = basic static load rating, from bearing catalog.
If Fo/(VF)<e X=1andY=0.

Press/Shrink Fits

The interface pressure induced by a press/shrink fit is
_ 0.50

r(rl+r? r{r’+r’
Elr-r) gl
0 ro r i r r.i

where the subscripts i and 0 stand for the inner and outer
member, respectively, and

p =inside pressure on the outer member and outside
pressure on the inner member,

O = the diametral interference,
r
r; = inside radius of inner member,

nominal interference radius,

ro = outside radius of outer member,
E
Vv = Poisson's ratio of respective member.

Young's modulus of respective member, and
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See the MECHANICS OF MATERIALS section on thick-
wall cylinders for the stresses at the interface.

The maximum torque that can be transmitted by a press fit
joint is approximately
T=2mppl,
where I and p are defined above,
T = torque capacity of the joint,
[ = coefficient of friction at the interface, and
| = length of hub engagement.
Intermediate- and Long-Length Columns

The slenderness ratio of a column is § = I/k, where | is the
length of the column and K is the radius of gyration. The
radius of gyration of a column cross-section is,

k=4I/A

where | is the area moment of inertia and A is the cross-
sectional area of the column. A column is considered to be
intermediate if its slenderness ratio is less than or equal to

(S)p, where

S ), =T E, and
P S
y

E = Young's modulus of respective member, and
S, = yield strength of the column material.
For intermediate columns, the critical load is

1(s,s Y
Pcr = Sy _E 2— , where
Tt

Pcr = critical buckling load,

A = cross-sectional area of the column,

S = yield strength of the column material,

E = Young's modulus of respective member, and
S = slenderness ratio.

For long columns, the critical load is
TTEA
Pe = =

where the variable area as defined above.

For both intermediate and long columns, the effective column
length depends on the end conditions. The AISC
recommended values for the effective lengths of columns are,
for: rounded-rounded or pinned-pinned ends, lg = |; fixed-
free, lgr = 2.11; fixed-pinned, lg = 0.80l; fixed-fixed, lg =
0.65l. The effective column length should be used when
calculating the slenderness ratio.



Gearing

Gear Trains: Velocity ratio, m,, is the ratio of the output
velocity to the input velocity. Thus, m, = Wy / Win. For a two-
gear train, M, = —Nj, /Ng: where Nij is the number of teeth on
the input gear and Ny is the number of teeth on the output
gear. The negative sign indicates that the output gear rotates
in the opposite sense with respect to the input gear. In a
compound gear train, at least one shaft carries more than one
gear (rotating at the same speed). The velocity ratio for a
compound train is:

_, product of number of teeth on driver gears

~ product of number of teeth on driven gears

A simple planetary gearset has a sun gear, an arm that rotates
about the sun gear axis, one or more gears (planets) that rotate
about a point on the arm, and a ring (internal) gear that is
concentric with the sun gear. The planet gear(s) mesh with the
sun gear on one side and with the ring gear on the other. A
planetary gearset has two, independent inputs and one output
(or two outputs and one input, as in a differential gearset).

Often, one of the inputs is zero, which is achieved by
grounding either the sun or the ring gear. The velocities in a
planetary set are related by
w; W
— ¥ =4m, where
W~ W,y

oy = speed of the first gear in the train,
w. = speed of the last gear in the train, and
Wyrm = speed of the arm.

Neither the first nor the last gear can be one that has planetary
motion. In determining m,, it is helpful to invert the
mechanism by grounding the arm and releasing any gears that
are grounded.

Loading on Straight Spur Gears: The load, W, on straight spur
gears is transmitted along a plane that, in edge view, is called
the line of action. This line makes an angle with a tangent line
to the pitch circle that is called the pressureangle @. Thus, the
contact force has two components: one in the tangential
direction, W, and one in the radial direction, W;. These
components are related to the pressure angle by

W = W, tan(¢).

Only the tangential component W, transmits torque from one
gear to another. Neglecting friction, the transmitted force may
be found if either the transmitted torque or power is known:

_2r_21

d mN’
2H _ 2H

. =——=——+, where
dw mNw
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W, = transmitted force, newton,

T = torque on the gear, newton-mm,

d = pitch diameter of the gear, mm,

N = number of teeth on the gear

m = gear module, mm (same for both gears in mesh)
H = power, kW, and

w = speed of gear, rad/sec

Stresses in Spur Gears: Spur gears can fail in either bending
(as a cantilever beam, near the root) or by surface fatigue due
to contact stresses near the pitch circle. AGMA Standard
2001 gives equations for bending stress and surface stress.
They are:
o, = W %KSKBK , bending and
Fml K,

o, = Cp\/ﬂ%CsCf , surface stress.
Fld C,

Where,

Op = bending stress,

W, = transmitted load,

F = face width,

m = module,

J = bending strength geometry factor,

Ka = application factor,

Kg = rim thickness factor,

Ky =idler factor,

= load distribution factor,

Ks = size factor,

Ky = dynamic factor,

C, = elastic coefficient,

| = surface geometry factor,

pitch diameter of gear being analyzed, and

C; = surface finish factor.

C, Cy, Cs and C, are the same as K, K, K and Ky,
respectively.

o
Il



2" factorial experiments, 117

A

AASHTO, automobile pavement design, 105
AC circuits, 74

AC machines, 108

Accelerated Cost Recovery System (ACRS), 80
acids and bases, 64

addition, 6

adiabatic humidification (evaporative cooling), 126
adiabatic mixing, 126

adiabatic process, 50

air refrigeration cycle, 125

airport layout and design, 104

algebra of complex numbers, 75

anode, 64

anode reaction (oxidation), 69
approximations, 116

Archimedes' principle and buoyancy, 39
area formulas for surveying, 105

AREA vertical curve criteria for track profile, 103
arithmetic progression, 7

ASD beams, 96

ASD columns, 98

ASD member connections, 96

ASD, steel design, 95

ASHRAE psychrometric chart No. 1, 56
ASTM, 133

ASTM grain size, 71

ASTM standard reinforcing bars, 94

atomic bonding, 68

atomic number, 64

automobile pavement design, 105

average and range charts, 115

average value, 74

Avogadro's number, 64

B

balanced three-phase systems, 109
ball/roller bearing selection, 134

banking of curves (without friction), 27
batch reactor constant T and V, 89

batch reactor, general, 89

beam deflection formulas — special cases, 37
beam design, 96

beam fixed-end moment formulas, 94
benefit-cost analysis, 80

binary phase diagrams, 69

binomial distribution, 8

biomechanics of the human body, 118
bipolar junction transistor (BJT), 110, 111
BOD exertion, 99

boilers, condensers, evaporators, one side in a heat exchanger, 48
boiling point elevation, 64

bolted and riveted joints loaded in shear, 132
bonds, 80

book value, 79

brake power, 128

brake thermal efficiency, 129

brake-band or belt friction, 23

Brayton cycle (steady-flow cycle), 129
Brayton cycle with regeneration, 130
break-even analysis, 80

C

canonical product of sums (POS), 114
canonical sum of products (SOP), 114
capacitors and inductors, 73

INDEX
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capacitors and inductors in parallel and series, 73

capitalized costs, 80

catalyst, 64

cathode, 64, 69

centrifugal force, 27

centroids and moments of inertia, 18

centroids of masses, areas, lengths, and volumes, 22

chemical
reaction engineering, 89
reaction equilibrium, 88
thermodynamics, 88
circle, 4
circular sector, 16
circular segment, 16
Clausius statement of second law, 50
closed thermodynamic system, 47
closed-system availability, 51
columns, 36
concrete design, 95
steel design, 97
combustion
in air, 50
in excess air, 50
incomplete, 50
processes, 50
common metallic crystal structures, 68
common thermodynamic cycles, 52
commonly used k values for columns, 97
communication theory concepts, 109
complex numbers, 5, 75
complex power, 75
composite flip-flop state transition, 114
composite materials, 71
compressible fluid, 43
compression members, 97
compression ratio, 129
computer knowledge, 76
concept of weight, 25
concurrent forces, 23
condensation
outside horizontal tubes, 60
pure vapor on a vertical surface, 60
conduction, 58
through a plane wall, 58
conductive heat transfer, 60
confidence interval, 10
confidence interval for a, 117
confidence interval for b, 117
conic section equation, 4
conic sections, 3
construction, 105
continuity equation, 39
continuous distillation (binary system), 90
continuous stirred tank reactor (CSTR), 90
continuous stirred tank reactors in series, 90
control systems, 77
convection, 58, 91
convolution, 109
cooling and dehumidification, 125
cooling load, 127
coordination number, 68
corollary, 50
corrosion, 69

CPM precedence relationships (activity on node), 105

crest — vertical curve, 101

critical depth, 100

critical path method (cpm), 119

critical values of the F distribution table, 13
critically damped, 18, 78

crystallography, 68

current, 72

curvature in rectangular coordinates, 14



curvature of any curve, 14 F
cylindrical pressure vessel, 33
face milling, 120
D facility design, 119
facility layout, 119
Darcy's equation, 99 fan characteristics, 127
DC machines, 108 fans, pumps, and compressors, 127

deflection of beams, 36 Faraday's law, 64, 72
deflection of trusses and frames, 94 fas.tener groups in shear, 132
deflectors and blades, 42 fatigue loading, 131
DeMorgan's theorem, 113 feed condition line, 90
density, specific volume, specific weight, and specific gravity, 38 feedwater heaters, 130
depreciation, 80 field equation, 40

derivative, 14 first law (energy balance), 48

derivatives and indefinite integrals, 15 first law of _therquynamics, 47 )
design for shear-beams, 97 first-order linear difference equation, 20
design of experiments one-way anova table, 121 first-order linear nonhomogeneous differential equations, 18

design shear strength, 97 first-order reaction, 89

design strength ASD/LRFD, 96 fixed blade, 42 ) o

determinants, 6 flash (or equilibrium) distillation, 90

diesel cycle, 128 ﬂ.exure design, 96

difference equations, 19 flip-flops, 113

differential (simple or rayleigh) distillation, 90 ﬂOW ) )

differential calculus, 14 in noncircular conduits, 41

differential equations, 18 of a real fluid, 40 ) o

diffusion, 69, 91 open channel-environmental engineering, 100

diffusion coefficient, 69 parallel to a constant-temperature flat plate, 60
past a constant-temperature sphere, 60
perpendicular to axis of a constant-temperature circular cylinder, 60

flow reactors, steady state, 89

digital signal processing, 109
dimensional homogeneity and dimensional analysis, 44
dimensionless group equation (Sherwood), 91

diodes, 111 fluid flow, 40
discount factors for continuous compounding, 79 fluid measurements, 43
force, 22

dispersion, mean, median, and mode value, 9
displacement volume, 129 forces on submerged surfaces and the center of pressure, 39

distibution, 9 fouling factor, 59
distillation, 90 Fourier series, 19, 109

distortion-energy theory, 35 Fourier transform, 19

drag coefficients for spheres, disks, and cylinders, 46 four-v.aria}?le Karnaugh map, 114
drilling, 120 free vibration, 27

freezing point depression, 64
friction, 23, 26
friction factor for Laminar flow, 41

dual linear program, 115

E friction factor to predict heat-transfer and mass transfer coefficients, 63
Froude Number, 100
Earthwork formulas, 105 fundamental constants, 1
effective flange width-concrete t-beams, 95 fundamental relationships, 116
effective or RMS values, 74
elastic potential energy, 26
elastic strain energy, 36 G
electrochemistry, 64 ) .
electromagnetic dynamic fields, 108 gain margin, 77
electrostatic fields, 72 gamma function, 10
electrostatics, 72 gas turbines, 129
ellipse, 3, 16 gear.trams, 135
endurance limit, 131 gearing, 135 )
endurance limit modifying factors, 131 general considerations, 76
endurance test, 70 geometric progression, 7
energy conversion and power plants, 128 gqotechmcal definitions, 92
energy line (Bernoulli equation), 40 Gibbs
engineering strain, 33 free energy, 50
enhancement MOSFET (low and medium frequency), 112 phase rule, 49
entropy, 50 phase rgle, 69
entropy change for solids and liquids, 51 gradient, divergence, and curl, 7
environmental engineering, 98
environmental engineering formula (definitions), 98 H
equilibrium constant of a chemical reaction, 64
equ@molar count.er—diffusion (gases), 91 half-life, 71
equipment requirements, 119 hardenability, 70
equivalent mass, 64 hardness, 70
ergonomics, 118, 122 Hazen-Williams equation, 42
heqring,' 1235 124 heat
essen'tlal prime implicant, 114 capacity, 57
Euler's o engines, 49
approximation, 20 exchangers, 48
.fonnyla, 36,97 transfer rate in a tubular heat exchanger, 60
identity, 5 transfer to/from bodies immersed in a large body of flowing fluid, 60
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heat transfer, 63 Kirchhoff's laws, 73
heating and humidification, 126
heating load, 126
heats of reaction, 89 L
heats of reaction, solution, formation, and combustion, 64
heat-transfer coefficient, 59
helical linear springs, 133
helical torsion springs, 133
Helmholtz free energy, 50
Henry's law at constant temperature, 50
highway, 102
sag vertical curve criterion for driver or passenger comfort (metric), 102
spiral curve length (metric), 102
superelevation (metric), 102
hollow, thin-walled shafts, 35
Hooke's Law, 34
horizontal curve formulas, 107
HVAC - pure heating and cooling, 125
hydraulic gradient (grade line), 40
hydraulic-elements graph for circular sewers, 100
hydrology, 99
NRCS (SCS) rainfall-runoff, 99
Rational Formula, 99
hyperbola, 3

laminar flow, 60
Laplace transforms, 19
laws of probability, 8
Le Chatelier's principle for chemical equilibrium, 64
learning curves, 118
least squares, 117
Lever rule, 69
L'Hospital's Rule (L'Hopital's Rule), 14
licensee's obligation to employer and clients, 87
licensee's obligation to other licensees, 87
licensee's obligation to society, 87
lime-soda softening, 98
line balancing, 119
linear programming, 115
linear regression and design of experiments, 117
liquid metals, 60
load combinations-structural steel design, 95
loading on straight spur gears, 135
log mean temperature difference
concurrent flow in tubular heat exchangers, 59
countercurrent flow in tubular heat exchangers, 59

1 logarithms, 4
logic gates, 113

ideal gas mixtures, 49 logic operations and boolean algebra, 113
impact, 26 long columns — Euler's formula, 97
impact test, 70 longitudinal grade design criteria for runways, 105
implicant, 114 lossless transmission lines, 108

essential prime implicant, 114 LRFD, 96, 97

prime implicant, 114 LRFD beams, 97
important families of organic compounds, 66 LRFD columns, 97
impulse and momentum, 25
impulse response, 109

p! P M

impulse turbine, 42
impulse-momentum principle, 25, 41
incomplete combustion, 50
increase of entropy principle, 50
indicated power, 129

indicated thermal efficiency, 129
induced voltage, 72

inequality of Clausius, 50
infiltration, 127

inflation, 80

influence lines, 94

instantaneous center of rotation, 27
instrumentation, 76

integral calculus, 14

interest factor tables, 81-85
intermediate- and long-length columns, 134
internal combustion engines, 128
inventory models, 118

inverse, 6

iron-iron carbide phase diagram, 69
irreversibility, 51

isentropic process, 50

isothermal, reversible process, 50

Mach number, 43
machine design, 130
machining formulas, 120
magnetic fields, 72
Manning's equation, 42
environmental engineering, 101
mass
fraction, 49
mass transfer in dilute solutions, 63
mass moment of inertia, 26
mass transfer, 63, 91
material handling, 119
material properties, 36
material removal rate formulas, 120
matrices, 6
maximum
rate of change of gradient in percent grade per station, 103
spacing for stirrups, 95
maximum normal-stress theory, 34
maximum shear-stress theory, 34
maxterm, 114
maxterm list, 114
mean effective pressure (mep), 129

J measurement uncertainty, 76
mechanical
jet propulsion, 42 efficiency, 129
JFETs, 110 springs, 133
job sequencing, 119 member connections (block shear), 96
junction, 130 mensuration of areas and volumes, 16, 17

metallic elements, 64
metric stopping sight distance, 102
K Miller indices, 68
minimum shear reinforcement, 95
minor losses in pipe fittings, contractions, and expansions, 41
minterm, 114
minterm list, 114
miscellaneous effects factor, ke, 131
Model Rules of Professional Conduct, 86

Karnaugh map (K-Map), 114
Kelvin-Planck statement of second law, 50
Kendall notation, 116

kinematics, 24

kinetic energy, 25, 27

kinetics, 25
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modified ACRS factors, 80
modified Davis equation — railroads, 102
modified Goodman theory, 130
Mohr's Circle — stress, 2D, 34
molar volume, 64
molarity
solutions, 64
mole fraction of a substance, 64
molecular diffusion, 91
moment
capacity-concrete T-beams, 95
design-concrete design, 95
inertia transfer theorem, 23
moment of inertia, 22
moments (couples), 22
momentum transfer, 63
momentum, heat and mass transfer analogy, 63
Moody (Stanton) diagram, 45
MOSFETs, 110, 112
moving average, 117
moving blade, 42
multipath pipeline problems, 42
multiple server model (s > 1), 117
multiplication, 6
Murphree plate efficiency, 90

N

natural (free) convection, 61

NCEES Model Rules of Professional Conduct, 86
N-channel junction field effect transistors (JFET's), 112
Newton's method of minimization, 20

Newton's method of root extraction, 20

NIOSH formula, 118

nomenclature, 16, 47

nomenclature and definitions, 79

non-annual compounding, 79

non-metallic elements, 64

normal depth, 101

normal distribution, 9

normality of solutions, 64

nozzles, diffusers, 48

NPN bipolar junction transistor (BJT), 111

NRCS (SCS) rainfall-runoff, 99

number of atoms in a cell, 68

number systems and codes, 113

numerical integration, 21

numerical methods, 20

numerical solution of ordinary differential equations, 21

0]

one-dimensional flows, 39
one-dimensional motion of particle, 25
one-way analysis of variance (anova), 118
open channel flow and/or pipe flow, 42
open channel flow—environmental engineering, 100
open thermodynamic system, 48
open-system availability, 51
operating lines, 90
operational amplifiers, 74
orifice
discharge freely into atmosphere, 44
submerged, 43
orifices, 43
Otto Cycle, 128
overall heat-transfer coefficient, 59
overdamped, 78
oxidation, 64
oxidizing agent, 64

packing factor, 68
parabola, 3, 16
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paraboloid of revolution, 17
parallel
axis theorem, 26
resonance, 75
parallelogram, 17
partial
derivative, 14
pressures, 49
volumes, 49
people requirements, 119
periodic table of elements, 65
permutations and combinations, 8
pert, 120
P-h diagram for refrigerant HFC-134a, 55
phase margin, 77
phase relations, 49
phasor transforms of sinusoids, 74
PID controller, 77
pipe bends, enlargements, and contractions, 41
pitot tube, 43
plane circular motion, 24
plane motion of a rigid body, 27
plane truss, 23
method of joints, 23
method of sections, 23
plant location, 119
plug-flow reactor (PFR), 89
polar coordinates, 5
possible cathode reactions (reduction), 69
potential energy, 25
in gravity field, 26
power in a resistive element, 73
power law fluid, 38, 40
Preamble to the NCEES Model Rules of Professional Conduct, 86
press/shrink fits, 134
pressure field in a static liquid and manometry, 38
primary, 68
prime implicant, 114
principal stresses, 34
principle of conservation of work and energy, 26
prismoid, 17
probability and density functions
means and variances, 121
probability and statistics, 8
probability density functions, 8
probability distribution functions, 8
probability functions, 8
product of inertia, 23
progressions and series, 7
projectile motion, 25
properties of series, 7
properties of single-component systems, 47
properties of water, 44
psychrometric chart, 49
psychrometrics, 49
pump, 130
pump characteristics, 127
pump power equation, 41

quadratic equation, 3
quadric surface (sphere), 4
queueing models, 116

radiation, 58, 61

radiation shields, 62

radius of curvature, 14

radius of gyration, 23

railroads, 102

Raoult's law for vapor-liquid equilibrium, 50

rate of heat transfer in a tubular heat exchanger, 60
rate of transfer



function of gradients at the wall, 63
in terms of coefficients, 63
rate-of-return, 80
rational formula, 99
RC and RL transients, 74
rectangular coordinates, 24
rectifying section, 90
reducing agent, 64
reflux ratio, 90
refrigeration and HVAC, 125
refrigeration cycles, 49
regular polygon (n equal sides), 17
reinforced concrete design, 94
reinforced concrete design definitions, 95
reinforcement limits—concrete design, 95
reinforcement ratio—concrete design, 95
reradiating surface, 62
resistivity, 72
resistors in series and parallel, 73
resolution of a force, 22
resonance, 75
series, 75
resultant, 22
Reynolds Number, 40
right circular cone, 17
right circular cylinder, 17
RMS, 74
roots, 5
rotation about a fixed axis, 27
Routh test, 77
Rules of Professional Conduct, 86

sag, 101

sample, 117

saturated water - temperature table, 53

Scaling laws, 127

screw thread, 23

screws, fasteners, and connections, 131

second law of thermodynamics, 50

second-order control-system models, 78

second-order linear difference equation, 20

second-order linear nonhomogeneous differential equations
with constant coefficients, 18

second-order reaction, 89

sensors, types of, 76

series resonance, 75

sewage flow ratio curves, 99

shafts and axles, 131

shape factor relations, 62

shear design—concrete design, 95

shear stress-strain, 33

shearing force and bending moment sign conventions, 35

sight distance related to curve length, 101

sight distance, crest vertical curves (metric), 102

sight distance, sag vertical curves (metric), 102

similitude, 44

simple planetary gearset, 135

Simpson's Rule, 21, 105

sine-cosine relations, 74

single server models (s= 1), 116

size factor, ks, 131

slab milling, 120

Soderberg theory, 131

solid-state electronics and devices, 110

solubility product constant, 64

source equivalents, 73

special cases of closed systems, 48

special cases of open systems, 48

special cases of steady-flow energy equation, 48

specific energy, 100

specific energy diagram—environmental engineering, 101

specific fuel consumption (sfc), 129

sphere, 16

spiral transitions to horizontal curves, 102
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spring material, 133, 134

square thread power screws, 131

standard deviation charts, 115

standard error of estimate, 117

standard oxidation potentials for corrosion reactions, 67
standard tensile test, 70

state functions (properties), 47

state-variable control-system models, 78

static loading, 131

static loading failure theories, 34

statically determinate truss, 23

statistical quality control, 115

steady conduction with internal energy generation, 60
steady, incompressible flow in conduits and pipes, 41
steady-state error ex(t), 77

steady-state mass balance for aeration basin, 98
steady-state systems, 48

steam power plants, 130

steam trap, 130

stopping sight distance, 101, 102

straight line, 3, 80

straight line motion, 25

strength reduction factors-reinforced concrete, 94
stress and strain, 34

stress, pressure, and viscosity, 38

stresses in beams, 35

stresses in spur gears, 135

stress-strain curve for mild steel, 33

stripping section, 90

structural analysis, 94

structural steel design, 95

structural steel design definitions, 96

subscripts, 79

superelevation of horizontal curves, 102
superheated water tables, 54

surface factor, k,, 131

surface tension and capillarity, 38

switching function terminology, 114

systems of forces, 22

T

tabulated characteristics, 110
tangential and normal components, 24
tangential and normal kinetics for planar problems, 25
Taylor Tool life formula, 120
Taylor's series, 8
t-beams—concrete design, 95
t-distribution table, 12
temperature factor, kq, 131
temperature-entropy (T-s) diagram, 51
tension members-structural steel design definitions, 96
test

for a point of inflection, 14

for maximum, 14

for minimum, 14
testing methods, 70
tests for out of control, 116
thermal conductivity, 59
thermal deformations, 33
thermal energy reservoirs, 50
thermal processing, 70
threaded fasteners, 132

design factors, 132

fatigue loading, 132
three dimensions, 23
throttling valves & throttling processes, 48
to evaluate surface or intermediate temperatures, 58
torsion, 35
torsional free vibration, 28
total material balance, 90
traffic flow relationships (q = kv), 103
transformers, 75

transient conduction using the lumped capacitance method, 61

transportation, 101
transportation models, 103



transpose, 6

transverse and radial components for planar problems, 24
Trapezoidal Rule, 21, 105

trigonometry, 5

turbines, pumps, compressors, 48

turbulent flow, 60

turbulent flow in circular tubes, 63

turns ratio, 75

two dimensions, 23

two work centers, 119

two-body problem, 61

two-film theory (for equimolar counter-diffusion), 91
two-stage cycle, 125

type of spring ends, 133

typical fan curves, 127

U

ultimate strength design—reinforced concrete, 94
underdamped, 78

uniaxial loading and deformation, 33

uniaxial stress-strain, 33

unidirectional diffusion of a gas through a second stagnant gas b (n, = 0), 91

unified soil classification system, 93
unit normal distribution table, 11
units, 72

units conversion, 99

unsteady state diffusion in a gas, 91

US civilian body dimensions, female/male, for ages 20 to 60 years, 122
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values of tgp, 12

vapor-liquid equilibrium, 88
vapor-liquid mixtures, 50

variable loading failure theories, 130
vectors, 6

velocity ratio, 135

venturi meters, 43

vertical curve formulas, 106

voltage, 72

volumetric efficiency, 129

wastewater treatment, 98
water treatment, 98

water, properties, 44

Weir formulas, 101

wind rose, 104

work and energy, 25

work sampling formulas, 120

yielding, 97

zero-order reaction, 89
z-transforms, 20
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