


Analysis of Time Series Structure:
SSA and Related Techniques

N. Golyandina, V. Nekrutkin, and A. Zhigljavsky

Copyright © 2001 CRC Press, LLC



Analysis  of 
Time  Series 
Structure 

SSA  ﾇ  and  __  Related  ___ Techniques 

NINA  GOLYANDINA 
VLADIMIR  NEKRUTKIN 
ANATOLY  ZHIGLJAVSKY 

CHAPMAN  &  HALL/CRC 
BocaRaton  London  New  York  Washington,  D.C. 



www.crcpress.com


66  Local  Polynomial  Modeling  and  its  Applications  J.  Fan  and  1.  Gijbels  (1996) 
67  Multivariate  Dependencies ﾑ Models,  analysis  and  interpretation 

D.R.  Cox  and  N.  Wermuth  (1996) 
68  Statistical  Inference ﾑ Based  on  the  likelihood  A.  Awalini  (1996) 

69  Bayes  and  Empirical  Bayes  Methods  for  Data  Analysis 
B.P.  Carlin  and  T.A  Louis  (1996) 

70  Hidden  Markov  and  Other  Models  for  Discrete-Valued  Time  Series 
1.L.  MacdonaldandW.  Zucchini  (1997) 

71  Statistical  Evidence ﾑ A  likelihood  paradigm  R.  Royall  (1997) 
72  Analysis  of  Incomplete  Multivariate  Data  J.L.  Schafer  (1997) 
73  Multivariate  Models  and  Dependence  Concepts  H.  Joe  (1997) 

74  Theory  of  Sample  Surveys  M.E.  Thompson  (1997) 
75  Retrial  Queues  G.  Falin  andJ.G.C.  Templeton  (1997) 

76  Theory  of  Dispersion  Models  B.  J^rgensen  (1997) 
77  Mixed  Poisson  Processes  J.  Grandell  (1997) 

78  Variance  Components  Estimation ﾑ Mixed  models,  methodologies  and  applications 
P.S.R.S.  Rao  (1997) 

79  Bayesian  Methods  for  Finite  Population  Sampling 
G.  Meeden  andM.  Ghosh  (1997) 

80  Stochastic  Geometry ﾑ Likelihood  and  computation 
0.E.  Bamdorff-Nielsen,  W.S.  Kendall  and  M.N.M.  van  Lieshoul  (WS) 

81  Computer-Assisted  Analysis  of  Mixtures  and  Applications ﾑ 
Meta-analysis,  disease  mapping  and  others  D.  Bohning  (1999) 

82  Classification,  2nd  edition  A.D.  Gordon  (1999) 
83  Semimartingales  and  their  Statistical  Inference  B.L.S.  Prakasa  Rao  (1999) 

84  Statistical  Aspects  of  BSE  and  vCJD ﾑ Models  for  Epidemics 
C.A.  Donnelly  and  N.M.  Ferguson  (1999) 

85  Set-1ndexed  Martingales  G.  IvanoffandE.  Menbach  (2000) 
86  The  Theory  of  the  Design  of  Experiments  D.R.  Cox  and  N.  Reid  (2000) 

87  Complex  Stochastic  Systems 
0.E.  Barndorlf-Nielsen,  D.R.  Cox  and  C.  Kliippelberg  (2001) 

88  Multidimensional  Scaling,  2nd  edition  T.F.  Cox  and  M.A.A.  Cox  (2001) 
89  Algebraic  Statistics ﾑ Computational  Commutative  Algebra  in  Statistics 

G.  Pistone,  E.  Riccomagno  andH.P.  Wynn  (2001) 
90  Analysis  of  Time  Series  Structure ﾑ SSA  and  Related  Techniques 

N.  Golyandina,  V.  Nekrutkin  and  A.A.  Zhigljavsky  (2001) 



33  Analysis  of  Infectious  Disease  Data  N.G.  Becker  (1989) 
34  Design  and  Analysis  of  Cross-0ver  Trials  B.  Jones  and  M.G.  Kenward  (1989) 

35  Empirical  Bayes  Methods,  2nd  edition  J.S.  Maritz  and  T.  Lwin  (1989) 
36  Symmetric  Multivariate  and  Related  Distributions 

K.T.  Fang.  5.  KouandK.W.  Ng  (1990) 
37  Generalized  Linear  Models,  2nd  edition  P.  McCullagh  and  J.A.  Nelder  (1989) 

38  Cyclic  and  Computer  Generated  Designs,  2nd  edition 
J.A.  John  and  E.R.  Williams  (1995) 

39  Analog  Estimation  Methods  in  Econometrics  C.F.  Manski  (1988) 
40  Subset  Selection  in  Regression  A.J.  Miller  (1990) 

41  Analysis  of  Repeated  Measures  M.J.  Crowder  and  D.J.  Hand  (1990) 
42  Statistical  Reasoning  with  Imprecise  Probabilities  P.  Walley  (1991) 
43  Generalized  Additive  Models  T.J.  Hastie  and  R.J.  Tibshirani  (1990) 

44  Inspection  Errors  for  Attributes  in  Qua 
N ・ L ん肪 $on ， S ・ KoLan 』 x ， W ノ u 

45  The  Analysis  of  Contingency  Tables,  2nd  editio 
46  The  Analysis  of  Quanta!  Response  Data 

47  Longitudinal  Data  with  Serial  Correlation@@A  state-space  approach 
R.H.  Jones  (1993) 

48  Differential  Geometry  and  Statistics  M.K.  Murray  andJ.W.  Rice  (1993) 
49  Markov  Models  and  Optimization  M.H.A.  Davis  (1993) 

50  Networks  and  Chaos@@Statistical  and  probabilistic  aspects 
0.E.  Barndorff-Nielsen,  J.L.  Jensen  and  W.S.  Kendall  (1993) 

51  Number-Theoretic  Methods  in  Statistics  K.-T.  FangandY.  Wang  (1994) 
52  Inference  and  Asymptotics  0.E.  Bamdorff'-Nielsen  and  D.R.  Cox  (1994) 

53  Practical  Risk  Theory  for  Actuaries 
C.D.  Daykin,  T.  Pentikainen  andM.  Pesonen  (1994) 

54Biplotsy.C.  GowerandD.J.  Hand(1996) 
55  Predictive  Inference ﾑ An  introduction  5.  Geisser  (1993) 

56  Mode1-Free  Curve  Estimation  M.E.  Tarter  and  M.D.  Lock  (1993) 
57  An  Introduction  to  the  Bootstrap  B.  Efron  andR.J.  Tibshirani  (1993) 

58  Nonparametric  Regression  and  Generalized  Linear  Models 
P.J.  Green  andB.W.  Silverman  (1994) 

59  Multidimensional  Scaling  T.F.  Cox  and  M.A.A.  Cox  (1994) 
60  Kernel  Smoothing  M.P.  Wand  and  M.C.  Jones  (1995) 
61  Statistics  for  Long  Memory  Processes  J.  Beran  (1995) 

62  Nonlinear  Models  for  Repeated  Measurement  Data 
M.  Davidian  and  D.M.  Giltinan  (1995) 

63  Measurement  Error  in  Nonlinear  Models 
R ・ J ・ C4Qr ル川， D ・ 尺は pg 乃 dL ガ LA ・山が口 nJ 々  i(I995)   

64  Analyzing  and  Modeling  Rank  Data  J.J.  Marden  (1995) 
65  Time  Series  Models ﾑ In  econometrics,  finance  and  other  fields 

D ・ R ・ Cox,D ・ VH 加 M り an 』 o ・ E ・ B 口川ガ o が -NLben(l996) 



MONOGRAPHS  ON  STATISTICS  AND  APPLIED  PROBABILITY 

General  Editors 

D ・ R ・ CoX,v ・ I5ham ， 爪 ・ I ぬ dInLT ・   uL ， ロ ・ Reid ， R.Ti   hi 卜 ni ， 川 dH ・ TOng 

1  Stochastic  Population  Models  in  Ecology  and  Epidemiology  M.S.  Barlett  (1960) 
2  Queues  D.R.  Cox  and  W.L.  Smith  (1961) 

3  Monte  Carlo  Methods  J.M.  Hammersley  andD.C.  Handscomb  (1964) 
4  The  Statistical  Analysis  of  Series  of  Events  D.R.  Cox  and  P.A.  W.  Lewis  (1966) 

5  Population  Genetics  W.J.  Ewens  (1969) 
6  Probability,  Statistics  and  Time  M.S.  Barlett  (1975) 

7  Statistical  Inference  S.D.  Silvey  (1975) 
8  The  Analysis  of  Contingency  Tables  B.S.  Everilf  (1977) 

9  Multivariate  Analysis  in  Behavioural  Research  A.E.  Maxwell  (1977) 
10  Stochastic  Abundance  Models  S.  Engen  (1978) 

11  Some  Basic  Theory  for  Statistical  Inference  E.J.G.  Pitman  (1979) 
12  Point  Processes  D.  R.  Cox  and  V.  Isham  (1980) 
13  Identification  of  Outliers  DM@  Hawkins  (1980) 

14  Optimal  Design  S.D.  Silvey  (1980) 
15  Finite  Mixture  Distributions  B.S.  Everilt  and  D.J.  Hand  (1981) 

16  Classification  A.D.  Gordon  (1981) 
17  Distribution-Free  Statistical  Methods,  2nd  edition  J.S.  Mariti  (1995) 

18  Residuals  and  Influence  in  Regression  R.D.  Cook  and  S.  Weisberg  (1982) 
19  Applications  of  Queueing  Theory,  2nd  edition  G.F.  Newell  (1982) 

20  Risk  Theory,  3rd  edition  R.E.  Beard,  T.  Pentikainen  and  E.  Pesonen  (1984) 
21  Analysis  of  Survival  Data  D.R.  Cox  and  D.  Oakes  (1984) 

22  An  Introduction  to  Latent  Variable  Models  B.S.  Everilt  (1984) 
23  Bandit  Problems  D.A.  Berry  and  B.  Fristedt  (1985) 

24  Stochastic  Modelling  and  Control  M.H.A.  Davis  and  R.  Vmter  (1985) 
25  The  Statistical  Analysis  of  Composition  Data  J.  Aitchison  (1986) 

26  Density  Estimation  for  Statistics  and  Data  Analysis  B.  W.  Silverman  (1986) 
27  Regression  Analysis  with  Applications  G.B.  Wetherill  (1986) 

28  Sequential  Methods  in  Statistics,  3rd  edition 
C.B.  Wetherill  and  K.D.  Glawbrook  (1986) 

29  Tensor  Methods  in  Statistics  P.  McCullagh  (1987) 
30  Transformation  and  Weighting  in  Regression 

R.J.  CarrollandD.  Ruppert(¥9W) 
31  Asymptotic  Techniques  for  Use  in  Statistics 

0.E.  Bandorff-Nielsen  and  D.R.  Cox  (1989) 
32  Analysis  of  Binary  Data,  2nd  edition  D.R.  CoxandE.J.  SnelK.1989) 



Contents

Preface 

Notation 

Introduction 

Part I. SSA: Methodology 

1 Basic SSA 
1.1 Basic SSA: description 
1.2 Steps in Basic SSA: comments 
1.3 Basic SSA: basic capabilities 
1.4 Time series and SSA tasks 
1.5 Separability 
1.6 Choice of SSA parameters 
1.7 Supplementary SSA techniques 

2 SSA forecasting 
2.1 SSA recurrent forecasting algorithm 
2.2 Continuation and approximate continuation 
2.3 Modifications to Basic SSA R-forecasting 
2.4 Forecast confidence bounds 
2.5 Summary and recommendations 
2.6 Examples and effects 

3 SSA detection of structural changes 
3.1 Main definitions and concepts 
3.2 Homogeneity and heterogeneity 
3.3 Heterogeneity and separability
3.4 Choice of detection parameters
3.5 Additional detection characteristics
3.6 Examples 

Copyright © 2001 CRC Press, LLC



Part II. SSA: Theory 

4 Singular value decomposition 
4.1 Existence and uniqueness 
4.2 SVD matrices 
4.3 Optimality of SVDs 
4.4 Centring in SVD 

5 Time series of finite rank 
5.1 General properties 
5.2 Series of finite rank and recurrent formulae 
5.3 Time series continuation 

6 SVD of trajectory matrices 
6.1 Mathematics of separability 
6.2 Hankelization 
6.3 Centring in SSA 
6.4 SSA for stationary series 

List of data sets and their sources 

References 

Copyright © 2001 CRC Press, LLC



Preface

This monograph is about a technique of time series analysis which is often called
‘singular-spectrum analysis’ (SSA). The basic SSA algorithm looks simple, but
understanding of what it does and how it fits among the other time series analysis
techniques is by no means simple. At least, it was difficult for us: we have spent
a few years on this. This book is an account of what we have learned.

Spending so much time on just one technique should be somehow justified.
For us, the justification is our belief in the capabilities of SSA: we are absolutely
convinced that for a wide range of time series SSA can be extremely useful. More
than that, we firmly believe that in the near future no statistical package will be
sold without incorporating SSA facilities, and every time series analysis textbook
will contain an SSA-related section.

Although not widely known among statisticians and econometrists, SSA has
become a standard tool in meteorology and climatology; it is also a well-known
technique in nonlinear physics and signal processing. We think that the lack of
popularity of SSA among statisticians was mostly due to tradition and the lack of
theory of SSA. We should also accept that the main methodological principle of
SSA is not really statistical; SSA is more a technique of multivariate geometry
than of statistics. In addition to statistics and multivariate geometry, the theory
of SSA comprises the elements of signal processing, linear algebra, nonlinear
dynamical systems, the theory of ordinary differential and finite-difference equa-
tions, and functional analysis. It is thus not surprising that it took a long time for
us to achieve some level of understanding of what SSA is.

Despite the fact that the material of the book touches many different fields, a
large part of the book is oriented towards a wide circle of readers who need or
have an interest in time series analysis.

SSA is essentially a model-free technique; it is more an exploratory, model-
building tool than a confirmatory procedure. It aims at a decomposition of the
original series into a sum of a small number of interpretable components such as
a slowly varying trend, oscillatory components and a ‘structureless’ noise. The
main concept in studying the SSA properties is ‘separability,’ which characterizes
how well different components can be separated from each other.

An important feature of SSA is that it can be used for analyzing relatively short
series. On the other hand, asymptotic separation plays a very important role in
the theory of SSA. There is no contradiction here because the asymptotic features
(which hold as the length of the series N tends to infinity) are found to be met
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for relatively small N. In practical applications, we typically deal with series of
length varying from a few dozen to a few thousand.

Possible application areas of SSA are diverse: from mathematics and physics to
economics and financial mathematics, from meteorology and oceanology to so-
cial science and market research. Any seemingly complex series with a potential
structure could provide another example of a successful application of SSA.

There are a large number of examples in the book. Many of these examples are
real-life series from different areas including medicine, physics, astronomy, eco-
nomics, and finance. These examples are not the most exciting examples of appli-
cation of SSA; they were not selected to impress the reader. The purpose of the
selection was different: the examples serve only for illustrating the methodolog-
ical and theoretical aspects discussed in the book. Also, each example illustrates
a different feature of the method, so that the number of examples can hardly be
reduced.

This book could not have been written had we not acquired a particular compu-
ter routine realizing SSA (see the Web site http://vega.math.spbu.ru/caterpillar).
We were very lucky to have had in our team Kirill Braulov from St. Petersburg
University who developed the software. We are very grateful to Kirill for his ex-
cellent work. We are also very grateful to our other collaborators and colleagues
from the Faculty of Mathematics, St. Petersburg University, and especially to
Sergei Ermakov, Vladislav Solntsev, Dmitrii Danilov and Alexander Bart, who
have participated in a large number of seminars and discussions on the topic.
These seminars and discussions were most useful, especially during the initial
stage of the work. Also we are grateful to Dmitry Belov (Institute of Physiol-
ogy, St. Petersburg University) for permission to use his EEG data for one of the
examples in the book.

Our Cardiff University colleague, Gerald Gould, has carefully gone through the
manuscript and improved the English where necessary; we are much obliged to
him for a very important job. Comments from the Chapman & Hall editors have
also helped very much in improving the manuscript; we are really thankful to
them.

A part of this work has been done in accordance with the grant GR/M21713,
“Multivariate methods in change-point detection problems” from the EPSRC. We
are very grateful for this support. However, our main gratitude undoubtedly goes
to the Procter & Gamble Company, which for many years has been extremely
supportive of us. We have worked with a number of very bright and clever people
from the company, but first of all we wish to acknowledge Phil Parker and Luigi
Ciutti. Their interest in and support for our work have helped us tremendously.

Last but not least, we are very grateful to our families for their patience and
understanding during the long period taken to write this book.

Nina Golyandina, Vladimir Nekrutkin, Anatoly Zhigljavsky

St. Petersburg – Cardiff, October 2000
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Notation

SVD singular value decomposition
LRF linear recurrent formula
SSA singular-spectrum analysis
c.d.f. cumulative distribution function
F time series
N length of time series
FN = (f0, . . . , fN−1) time series of length N
Fi,j = (fi−1, . . . , fj−1) subseries of a time series FN

L window length
K = N − L+ 1 number of L-lagged vectors of FN

Xi ith L-lagged vector of time series
X = [X1 : . . . : XK ] trajectory matrix with columns Xi

XT transposed matrix X
ML,K linear space of L×K matrices〈
X,Y

〉
M inner product of matrices inML,K

||X||M Frobenius matrix norm inML,K

rank(X) rank of matrix X
H Hankelization operator
λi ith eigenvalue of the matrix XXT

EM identical M ×M matrix
0LK zero L×K matrix
0M zero vector of dimension M
1M vector (1, . . . , 1)T of dimension M
IRM Euclidean space of dimension M
L linear subspace of the Euclidean space
dim L dimension of a linear space L
Lr linear space of dimension r
span(P1, . . . , Pn) linear space spanned by vectors P1, . . . , Pn

span(X) linear space spanned by the columns of X
L(L) = L(L)(FN ) L-trajectory space of a time series FN

dist(X,L) distance from a vector X to a linear space L
fdim(FN ) difference dimension of a time series FN

rankL(FN ) L-rank of a time series FN

rank(FN ) rank of a time series FN

Ui ith eigenvector of the SVD of the matrix X
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Vi ith factor vector of the SVD of the matrix X
ρ(L,M) maximal cross-correlation of two series

ρ
(ω)
12 weighted cross-correlation of two series

ρ
(Π)
12 spectral cross-correlation of two series
Rf covariance function of a stationary series F
mf spectral measure of a stationary series F
pf spectral density of a stationary series F
Φf spectral function of a stationary series F
ΠN

f periodogram of a time series FN

g(F1, F2) heterogeneity index of time series F1, F2
G = GB,T heterogeneity matrix of a time series F
meas Lebesque measure in IR
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Introduction

SSA (singular-spectrum analysis) is a novel technique of time series analysis in-
corporating the elements of classical time series analysis, multivariate statistics,
multivariate geometry, dynamical systems, and signal processing. Despite the fact
that a lot of probabilistic and statistical elements are employed in the SSA-based
methods (they relate to stationarity, ergodicity, principal component and bootstrap
techniques), SSA is not a statistical method in terms of classical statistics. In par-
ticular, we typically do not make any statistical assumptions concerning either
signal or noise while performing the analysis and investigating the properties of
the algorithms.

The present book is fully devoted to the methodology and theory of SSA. The
main topics are SSA analysis, SSA forecasting, and SSA detection of structural
changes. Let us briefly consider these topics.

SSA analysis of time series

The birth of SSA is usually associated with publication of the papers by Broom-
head and King (1986a, 1986b) and Broomhead et al. (1987). Since then, the
technique has attracted a lot of attention. At present, the papers dealing with
methodological aspects and applications of SSA number several hundred; see, for
example, Vautard et al. (1992), Ghil and Taricco (1997), Allen and Smith (1996),
Danilov and Zhigljavsky (1997), Yiou et al.(2000) and the references therein. An
elementary introduction to the subject can be found in the recent book by Elsner
and Tsonis (1996).

SSA has proved to be very successful, and has already become a standard tool
in the analysis of climatic, meteorological and geophysical time series; see, for ex-
ample, Vautard and Ghil (1989), Ghil and Vautard (1991), and Yiou et al. (1996).
It is thus not surprising that among the main journals publishing SSA-related re-
search papers are Journal of Climate, Journal of the Atmospheric Sciences, and
Journal of Geophysical Research.

Let us turn to the description of SSA. The basic version of SSA consists of four
steps, which are performed as follows. Let F = (f0, f1, . . . , fN−1) be a time
series of length N , and L be an integer, which will be called the ‘window length’.
We setK=N−L+1 and define the L-lagged vectorsXj=(fj−1, . . . , fj+L−2)T,
j = 1, 2, . . . ,K, and the trajectory matrix

X = (fi+j−2)
L,K
i,j=1 = [X1 : . . . : XK ] .
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Note that the trajectory matrix X is a Hankel matrix, which means that all the ele-
ments along the diagonal i+j= const are equal. The construction of the trajectory
matrix constitutes the first step of the algorithm.

The second step is the singular value decomposition (SVD) of the matrix X,
which can be obtained via eigenvalues and eigenvectors of the matrix S = XXT

of size L × L. This provides us with a collection of L singular values, which
are the square roots of the eigenvalues of the matrix S, and the corresponding
left and right singular vectors. (The left singular vectors of X are the orthonor-
mal eigenvectors of S; in SSA literature, they are often called ‘empirical orthog-
onal functions’ or simply EOFs. The right singular vectors can be regarded as the
eigenvectors of the matrix XTX.) We thus obtain a representation of X as a sum
of rank-one biorthogonal matrices Xi (i = 1, . . . , d), where d (d ≤ L) is the
number of nonzero singular values of X.

At the third step, we split the set of indices I = {1, . . . , d} into several groups
I1, . . . , Im and sum the matrices Xi within each group. The result of the step is
the representation

X =
m∑

k=1

XIk
, where XIk

=
∑
i∈Ik

Xi .

At the fourth step, averaging over the diagonals i+j = const of the matrices
XIk

is performed. This gives us an SSA decomposition; that is, a decomposition
of the original series F into a sum of series

fn =
m∑

k=1

f (k)n , n = 0, . . . , N − 1, (I.1)

where for each k the series f (k)n is the result of diagonal averaging of the matrix
XIk

.
The basic scheme of SSA for analysis of time series and some modifications of

this scheme are known in the SSA literature cited above. Note that SSA is usually
regarded as a method of identifying and extracting oscillatory components from
the original series; see, for example, Yiou et al. (1996), Ghil and Taricco (1997),
Fowler and Kember (1998). The standard SSA literature, however, does not pay
enough attention to theoretical aspects which are very important for understand-
ing how to select the SSA parameters and, first of all, the window length L for the
different classes of time series. The concept of separability and related method-
ological aspects and theoretical results provide us with this understanding. It is the
study of separability which makes the biggest distinction between our research on
SSA analysis and the standard approach to SSA.

The choice of parameters in performing the SSA decomposition (they are the
window length L and the way of grouping the matrices Xi) must depend on the
properties of the original series and the purpose of the analysis.

The general purpose of the SSA analysis is the decomposition (I.1) with addi-
tive components f (k)n that are ‘independent’ and ‘identifiable’ time series; this is
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what we mean when we talk about analyzing the structure of time series by SSA.
Sometimes, one can also be interested in particular tasks, such as ‘extraction of
signal from noise,’ ‘extraction of oscillatory components’ and ‘smoothing’.

For a properly made SSA decomposition, a component f (k)n in (I.1) can be iden-
tified as a trend of the original series, an oscillatory series (for example, season-
ality) or noise. An oscillatory series is a periodic or quasi-periodic series which
can be either pure or amplitude-modulated. Noise is any aperiodic series. The
trend of the series is, roughly speaking, a slowly varying additive component of
the series with all the oscillations removed.

Note that no parametric model for the components in (I.1) is fixed and these
components are produced by the series itself. Thus, when analyzing real-life se-
ries with the help of SSA one can hardly hope to obtain the components in the
decomposition (I.1) as exact harmonics or linear trend, for example, even if these
harmonics or linear trend are indeed present in the series (by a harmonic we mean
any sine series with some amplitude, frequency and phase). This is an influence
of noise and a consequence of the non-parametric nature of the method. In many
cases, however, we can get a good approximation to these series.

In the ideal situation the components in (I.1) must be ‘independent’. Achieving
‘independence’ (or ‘separability’) of the components in the SSA decomposition
(I.1) is of prime importance in SSA. From the authors’ viewpoint, separability
of components in this decomposition is the main theoretical problem in SSA re-
search and the main target in the selection of SSA parameters. Separability of
components is the central problem in the book; it is touched upon in virtually
every section.

There are different notions of separability (more precisely, L-separability, since
the fact of separability depends on the window length L). The most important
is weak separability, defined as follows. Provided that the original time series
fn is a sum of m series f (k)n (k = 1, . . . ,m), for a fixed window length L,
weak L-separability means that any subseries of length L of the kth series f (k)n

is orthogonal to any subseries of length L of the lth series f (l)n with l 	= k, and
the same holds for their subseries of length K = N − L + 1. This is equivalent
to the fact that there is a way of constructing the SVD of the trajectory matrix X
and grouping the matrices Xj so that for each k the matrix XIk

is the trajectory

matrix of the series f (k)n .
The demand of exact separability of components is a strict requirement which

rarely holds in practice. The notion of approximate separability is more impor-
tant (and much less restrictive) than the exact one. For a relatively long series,
approximate separability of the components is often achieved due to the theo-
retical concept of asymptotic separability which holds for a rather wide class of
components.

To measure the degree of ‘separability’ of the components in (I.1) we use a
number of different characteristics, such as ‘spectral correlation coefficient’ or
‘weighted correlation coefficient’.
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Weak separability may not be sufficient to guarantee that a particular SSA de-
composition properly reflects the structure of the original time series. Indeed, in
the case when two or more of the singular values of the trajectory matrices X(k)

and X(l) corresponding to two different components f (k)n and f (l)n of the original
series are equal (in practice, if the singular values are close), then the SVD is not
uniquely defined and the two series f (k)n and f (l)n are mixed up, so that an addi-
tional analysis (such as rotations in theL-dimensional space of the lagged vectors)
is required to separate the two series. If there is (approximate) weak separability
and all eigenvalues corresponding to different components in (I.1) are sufficiently
isolated from each other, then we have (approximate) strong separability, which
means that for a proper grouping the SSA decomposition (approximately) coin-
cides with the one assumed.

The absence of approximate strong separability is often observed for series with
complex structure. For these series and series of special structure, there are dif-
ferent ways of modifying SSA. Several modifications of the basic SSA technique
can be of interest, such as SSA with single and double centring, Toeplitz SSA,
and sequential SSA (when the basic scheme is applied several times with differ-
ent parameters to the residuals from the previous analysis). SSA with centring and
Toeplitz SSA are based on particular non-optimal decompositions of the trajec-
tory matrices; they may be useful in analysis of time series of special structure,
such as series with linear-like tendencies and stationary-like series.

Toeplitz SSA was suggested in Vautard and Ghill (1989); it is a well known
modification of the basic SSA method. By contrast, SSA with double centring of
the trajectory matrix is a new version of SSA.

SSA forecasting of time series

The principles of SSA forecasting developed in this book are new with respect to
the main-stream SSA approach. Let us now briefly consider the methodological
aspects of SSA forecasting.

An important property of the SSA decomposition is the fact that, if the original
series fn satisfies a linear recurrent formula (LRF)

fn = a1fn−1 + . . .+ adfn−d (I.2)

of some dimension d with some coefficients a1, . . . , ad, then for any N and L
there are at most d nonzero singular values in the SVD of the trajectory matrix X;
therefore, even if the window length L and K = N −L+ 1 are larger than d, we
only need at most d matrices Xi to reconstruct the series.

The fact that the series fn satisfies an LRF (I.2) is equivalent to its representabi-
lity as a sum of products of exponentials, polynomials and harmonics, that is as

fn =
q∑

k=1

αk(n)eµkn sin(2πωkn+ ϕk) . (I.3)
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Here ak(n) are polynomials, µk, ωk and ϕk are arbitrary parameters. The number
of linearly independent terms q in (I.3) is smaller than or equal to d.

SSA forecasting is based on a fact which, roughly speaking, states the follow-
ing: if the number of terms r in the SVD of the trajectory matrix X is smaller than
the window lengthL, then the series satisfies some LRF of some dimension d ≤ r.
Certainly, this assertion must not be understood ad litteram. However, for infinite
series a similar fact can be found in Gantmacher (1998, Chapter XVI, Section 10,
Theorem 7). The theorem due to Buchstaber (1994) amplifies these considerations
for finite time series; this theorem says that under the above-mentioned conditions
the series (with the possible exception of the last few terms) satisfies some LRF.
This assertion, however, does not directly lead to a forecasting algorithm, since
the last terms of the series are very important for forecasting.

An essential result for SSA forecasting was obtained in Danilov (1997a, 1997b).
It can be formulated as follows: if the dimension r of the linear space Lr spanned
by the columns of the trajectory matrix is less than the window length L and this
space is not a vertical space, then the series satisfies a natural LRF of dimension
L− 1. (If eL /∈ Lr, where eL = (0, 0, . . . , 0, 1)T ∈ IRL, then we say that Lr is a
‘non-vertical’ space.)

If we have a series satisfying an LRF (I.2), then we can obviously continue
it for an arbitrary number of steps using the same LRF. It is important that any
LRF governing a given series provides the same continuation, and thus we do
not necessarily need the LRF with the minimal value of d. Thus, we now know
how to continue time series with non-vertical spaces and small ranks of trajectory
matrices.

Of course, when we are dealing with real-life time series we can hardly hope
to have a time series that is governed by an LRF of small dimension (in terms of
SVD, a ‘real-life’ trajectory matrix with L ≤ K has, as a rule, rank L). However,
the class of series that can be approximated by the series governed by the LRFs of
the form (I.2) or, equivalently, by the (deterministic) time series of the form (I.3)
with a small number of terms, is very broad and we can attempt forecasting of
these series using an SSA-based forecasting method. We may also be interested
in continuing (forecasting) some periodic (perhaps, amplitude-modulated) com-
ponents of the original series and in forecasting the trend, ignoring noise and all
oscillatory components of the series.

The idea of SSA forecasting of a certain time series component is as follows.
The selection of a group of r < rankX rank-one matrices Xi on the third step of
the basic SSA algorithm implies the selection of an r-dimensional space Lr ⊂ IRL

spanned by the corresponding left singular vectors.
If the space Lr is non-vertical, then, as was mentioned previously, this space

produces the appropriate LRF, which can be used for forecasting (called recur-
rent forecasting) of the series component, corresponding to the chosen rank-one
matrices.

As in the basic SSA, the separability characteristics help in selection of both
the window length L and the space Lr. Moreover, separability is directly related
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to LRFs: roughly speaking, if two series are separable, then they satisfy certain
LRFs.

The SSA recurrent forecasting algorithm can be modified in several ways. For
example, we can base our forecast on the Toeplitz SSA or SSA with centring
rather than on the basic SSA (the Lr is then spanned by the corresponding ver-
sions of left singular vectors); in some cases, we can also base the forecast on the
LRF of minimal order. Perhaps the most important modification is the so-called
SSA vector forecasting algorithm developed in Nekrutkin (1999). The idea of this
method is as follows.

For any group of indices I selected at the grouping stage, the application of
SSA gives us K = N − L + 1 vectors X̂1, . . . , X̂K that lie in an r-dimensional
subspace Lr of IRL. Here r is the number of elements in I , for each j the X̂j is the
projection of the L-lagged vector Xj onto the subspace Lr, and the subspace Lr

is spanned by the r left eigenvectors of the trajectory matrix X with the indices
in the group I . We then continue the vectors X̂1, . . . , X̂K for M steps in such a
way that (i) the continuation vectors Zm (K < m ≤ K+M) belong to the space
Lr and (ii) the matrix [X̂1 : . . . : X̂K : ZK+1 : . . . : ZK+M ] is approximately
a Hankel matrix. The forecasting series is then obtained by means of diagonal
averaging of this matrix.

While the recurrent forecasting algorithm performs the straightforward recur-
rent continuation of a one-dimensional series (with the help of the LRF so con-
structed), the vector forecasting method makes the continuation of the vectors in
an r-dimensional space and only then returns to the time-series representation.
Examples show that vector forecasting appears to be more stable than the recur-
rent one, especially for long-term forecasting.

Confidence intervals for the forecasts can be very useful in assessing the quality
of the forecasts. However, unlike the SSA forecasts themselves (their construction
does not formally require any preliminary information about the time series), for
constructing confidence bounds we need some assumptions to be imposed on the
series and the residual component, which we associate with noise.

We consider two types of confidence bounds; the first one is for the values of
the series itself at some future point N +M , and the second one is for the values
of the signal at this future point (under the assumption that the original series
consists of a signal and additive noise). These two types of confidence intervals
are constructed in different ways: in the first case, we use the information about
forecast errors obtained during the analysis of the series; the second one uses the
bootstrap technology.

To build the confidence intervals for the forecast of the entire initial series, we
construct the forecasting LRF of dimension L − 1 (in the case of the recurrent
forecast) and repeatedly apply it to all subseries of the same dimension within the
observation period [0, N−1]. Then we compare the results with the corresponding
values of the series. Under the assumption that the residual series is stationary and
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ergodic, we can estimate the quantiles of the related marginal distribution, and
therefore build the confidence bounds.

The bootstrap technique is useful for constructing confidence intervals for the
signal F (1) at some future time N + M under the assumption that the series
FN = (f0, . . . , fN−1) is a sum of a signal F (1)N and noise F (2)N = FN − F (1)N . To

do that, we first obtain the SSA decomposition FN = F̃
(1)
N + F̃

(2)
N , where F̃ (1)N

(the reconstructed series) approximates F (1)N , and F̃ (2)N is the residual series. As-

suming that we have a (stochastic) model for the residuals F̃ (2)N , we then simulate

some number S of independent copies F̃ (2)N,i of the series F (2)N , obtain S series

F̃
(1)
N + F̃ (2)N,i and get S forecasting results f̃ (1)N+M−1,i. Having obtained the sample

f̃
(1)
N+M−1,i (1 ≤ i ≤ S) of the forecasting results, we use it to calculate the em-

pirical lower and upper quantiles of fixed level γ and construct the corresponding
confidence interval for the forecast.

Note that the bootstrap confidence bounds can be constructed not only for the
SSA forecasts but also for the terms of the SSA decomposition when we are
dealing with separation of a signal from noise.

SSA detection of structural changes in time series

We call a time series FN homogeneous if it is governed by an LRF of order d that
is small relative to the length of the series N .

Assume now that the series is homogeneous until some time Q < N , but then
it stops following the original LRF (this may be caused by a perturbation of the
series). However, after a certain time period, it again becomes governed by an
LRF. In this case, we have a structural change (heterogeneity) in the series. We
may have either a permanent heterogeneity (in this case the new LRF is different
from the original one) or a temporary heterogeneity, when both LRFs coincide.
Note that even in the latter case, the behaviour of the series after the change is dif-
ferent from the behaviour of the homogeneous (unperturbed) series; for example,
the initial conditions for the LRF after the perturbation can be different from the
unperturbed initial conditions.

The main idea of employing SSA for detecting different types of heterogeneity
is as follows. The results of Section 5.2 imply that for sufficiently large values
of the window length L the L-lagged vectors of a homogeneous series span the
same linear space L(L) independently of N , as soon as N is sufficiently large.
Therefore, violations in homogeneity of the series can be described in terms of
the corresponding lagged vectors: the perturbations force the lagged vectors to
leave the space L(L). The corresponding discrepancies are defined in terms of the
distances between the lagged vectors and the space L(L), which can be determined
for different subseries of the original series.

Since, in practice, the series are described by LRFs only approximately, the
problem of approximate construction of the spaces L(L) arises again. Analogous
to the problems of forecasting, the SVD of the trajectory matrices is used for
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this purpose. As everywhere in the book, the concept of separability plays a very
important role when we are interested in detecting changes in components of the
series (for example, in the signal, under the presence of additive noise). Unlike the
forecasting problems, for studying structural changes in time series, the properties
of the SVDs of subseries of the initial series F become of prime importance.

We consider two subseries (say F ′ and F ′′) of the series F ; we call them ‘base
subseries’ and ‘test subseries’. Assume that the lengths of these subseries are fixed
and equal to B and T , respectively. Suppose that B > L and T ≥ L, where L is
the window length. Let us make an SVD of the trajectory matrix of the base sub-
series, select a group of r < L left singular vectors, consider the linear space L ′r
spanned by these vectors and compute the sum of the squared distances between
the space L ′r and the L-lagged vectors corresponding to the test subseries. If we
normalize this sum by the sum of the squared norms of the L-lagged vectors of
the test subseries, then we obtain the so-called heterogeneity index g = g(F ′, F ′′)
formally defined in Section 3.1. The heterogeneity index g(F ′, F ′′) measures the
discrepancy between F ′ and F ′′ by computing the relative error of the optimal
approximation of the L-lagged vectors of the time series F ′′ by vectors from the
space L′

r.

The main tool used to study structural changes (heterogeneities) in time series
is the ‘heterogeneity matrix’ of size (N−B+1)× (N −T +1). The entries of
this matrix are the values of the heterogeneity index g = g(F ′, F ′′), where F ′

and F ′′ run over all possible subseries of the series F of fixed lengths B and T ,
respectively.

The columns, rows and some diagonals of the heterogeneity matrix constitute
the ‘heterogeneity functions’. Change in the indexation system gives us the ‘de-
tection functions’; they are more convenient for the purpose of change detection.

We also consider three groups of supplementary detection characteristics. The
first group is obtained when we use a different normalization in the expression
for the heterogeneity index (rather than using the sum of the squared norms of the
L-lagged vectors of the test subseries, we use the sum of the squared terms of the
whole series). This renormalization of the heterogeneity index often helps when
we monitor changes in monotone series and their components.

The second group of characteristics relates to the series of the roots of the
characteristic polynomials of the LRFs that correspond to the SSA decomposition
of the base subseries F ′. The roots of the characteristic polynomials monitor the
dynamics of the linear spaces L′

r. In particular, this monitoring can be very useful
for distinguishing the changes that actually happen in the series from spurious
changes that are caused by the fact that abrupt changes in the dynamics of the
linear spaces L′

r may be related to the changes in the order of the singular values.

The third group of characteristics is basically the moving periodograms of the
original series; this group is used to monitor the spectral structure of the original
series.
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Composition of the book

The book has two parts; they are devoted to the methodology and theory of SSA,
respectively. The methodological principles of SSA are thoroughly considered
in Part I of the book. This part consists of three chapters, which deal with SSA
analysis, SSA forecasting and SSA detection of structural changes, respectively.

SSA analysis of time series is dealt with in Chapter 1. In Section 1.1, the basic
algorithm is described. In Section 1.2, the steps of this algorithm are explained
and commented on. In Section 1.3, the main capabilities of the basic algorithm
are illustrated by a number of real-life examples. In Section 1.4, the major tasks
that can be attempted by SSA are formulated and discussed. In Section 1.5, the
concept of separability is considered in detail. These considerations play a very
important role in the selection of the parameters of SSA, the problem which is
dealt with in Section 1.6. In Section 1.7, supplementary SSA techniques, such as
SSA with centring and Toeplitz SSA, are considered.

Chapter 2 is devoted to SSA forecasting methodology. In Section 2.1, we for-
mally describe the SSA recurrent forecasting algorithm. In Section 2.2, the princi-
ples of SSA forecasting and links with LRFs are discussed. Several modifications
of the basic SSA recurrent forecasting algorithm are formulated and discussed
in Section 2.3. The construction of confidence intervals for the forecasts is made
in Section 2.4. In Section 2.5, we summarize the material of the chapter, and
in Section 2.6 we provide several examples illustrating different aspects of SSA
forecasting.

The methodology of SSA detection of structural changes in time series is con-
sidered in Chapter 3. In Section 3.1, we introduce and discuss the main concepts.
In Section 3.2, we consider various violations of homogeneity in time series and
the resulting shapes of the heterogeneity matrices and detection functions. In Sec-
tion 3.3, we generalize the results of Section 3.2 to the case when we are detecting
heterogeneities in one of the components of the original series rather than in the
series itself (this includes the case when the series of interest is observed with
noise). The problem of the choice of detection parameters is dealt with in Section
3.4. In Section 3.5, we consider several additional detection characteristics, and
in Section 3.6 we provide a number of examples.

Chapters 4, 5 and 6 constitute the second (theoretical) part of the book, where
all the statements of Part I are properly formulated and proved (with the exception
of some well-known results where the appropriate references are given).

Chapter 4 considers the singular value decomposition (SVD) of real matri-
ces, which is the main mathematical tool in the SSA method. The existence and
uniqueness of SVDs is dealt with in Section 4.1. In Section 4.2, we discuss the
structure and properties of the SVD matrices with special attention paid to such
features of SVD as orthogonality, biorthogonality, and minimality. In Section 4.3,
we consider optimal features of the SVD from the viewpoints of multivariate ge-
ometry and approximation of matrices by matrices of lower rank. A number of
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results on optimality of the standard SVD are generalized in Section 4.4 to the
SVD with single and double centring.

Chapter 5 provides a formal mathematical treatment of time series of finite
rank; the L-trajectory matrices of these series have rank less than min(L,K) for
all sufficiently large L and K. General properties of such series are considered
in Section 5.1. As discussed above, the series of finite rank are related to the
series governed by the LRFs; these relations are studied in Section 5.2. The results
concerning the continuation procedures are derived in Section 5.3.

In Chapter 6, we make a formal mathematical study of four topics that are
highly important for the SSA methodology. Specifically, in Section 6.1 we study
weak separability of time series, in Section 6.2 diagonal averaging (Hankeliza-
tion) of matrices is considered, while centring in SSA is studied in Section 6.3,
and specific features of SSA for deterministic stationary sequences are discussed
in Section 6.4.

Other SSA and SSA-related topics

On the whole, this book considers many important issues relating to the imple-
mentation, analysis and practical application of SSA. There are, however, several
other topics which are not covered here. Let us mention some of them.

1. Multichannel SSA.Multichannel SSA is an extension of the standard SSA to
the case of multivariate time series (see Broomhead and King, 1986b). It can
be described as follows. Assume that we have an l-variate time series fn =(
f
(1)
n , . . . , f

(l)
n

)
, where n = 0, 1, . . . , N − 1 (for simplicity we assume that the

time domain is the same for all the components of the series). Then for a fixed
window length L we can define the trajectory matrices X(i) (i=1, . . . , l) of the
one-dimensional time series f (i)n . The trajectory matrix X can then be defined as

X =

 X(1)

· · ·
X(l)

 . (I.4)

The other stages of the multichannel SSA procedure are identical to the one-
dimensional procedure discussed above with obvious modification that the diag-
onal averaging should be applied to each of the l components separately. (Multi-
channel SSA can be generalized even further, for analyzing discrete time random
fields and image processing problems; see Danilov and Zhigljavsky, 1997.)

There are numerous examples of successful application of the multichannel
SSA (see, for example, Plaut and Vautard, 1994; Danilov and Zhigljavsky, 1997),
but the theory of multichannel SSA is yet to be developed. The absence of a
theory is the reason why, in the present book, we have confined ourselves to the
univariate case only. This case is already difficult enough, and multichannel SSA
has additional peculiarities.

Construction of the trajectory matrix in multichannel SSA is not obvious; there
are several alternatives to (I.4). The matrix (I.4) seems to be the natural candidate
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for the trajectory matrix of a multivariate series, but its advantages are not clear.
Note also that there is a version of SSA that deals with complex-valued series; it
can be considered as a version of multichannel SSA as well. It is, however, not
clear how to compare the two-channel SSA with the one-channel complex SSA.

2. Continuous time SSA. The basic SSA scheme and most of its variations can
be modified for the case of continuous time. There are many significant changes
(with respect to the material of the book) that would to be made if one were to try
to analyze the corresponding procedure: instead of sums we get integrals, instead
of matrices we have linear operators, the SVD becomes the Schmidt decomposi-
tion in the corresponding Hilbert space, LRFs become ordinary differential equa-
tions, and so on. Note that the theory of generalized continuous time SSA includes
the standard discrete time SSA as a particular case. In addition, such a general-
ization allows us to consider not only embeddings of Hankel type but also many
other mappings which transfer functions of one variable to the functions of two
variables. Those interested in this approach can find a lot of related material in
Nekrutkin (1997).

3. Use of different window lengths. The use of different values of the window
length is discussed in Section 1.7 in relation to the so-called ‘Sequential SSA’.
There are some other suggestions in the literature, such as selecting the window
length at random (see Varadi et al., 1999) or keeping the ratio L′/N ′ fixed, where
L′ is the window length for the subseries of the original series of length N ′ =
N/k which is obtained by sieving the original series (see Yiou et al., 2000). Both
methods are suggested for analyzing long series; the latter one is shown to have
some similarity with the wavelet analysis of time series.

4. SSA for sequential detection of structural changes. The methodology of
Chapter 3 aims at a nonsequential (posterior) detection of structural changes in
time series. Some of these algorithms can be modified for the more standard
change-point problem of sequential detection of change-points. This approach
is implemented in Moskvina and Zhigljavsky (2000), where some of the de-
tection algorithms are analyzed as proper statistical procedures. The Web site
http://www.cf.ac.uk/maths/stats/changepoint/ contains more information on the
subject and a link to the software that can be downloaded.

Let us mention some other areas related to SSA.

During the last forty years, a variety of techniques of time series analysis and
signal processing have been suggested that use SVDs of certain matrices; for sur-
veys see, for example, Marple (1987) or Bouvet and Clergeot (1988). Most of
these techniques are based on the assumption that the original series is random
and stationary; they include some techniques that are famous in signal process-
ing, such as Karhunen-Loève decomposition and the MUSIC algorithm (for the
signal processing references, see, for example, Madisetti and Williams, 1998).
Some statistical aspects of the SVD-based methodology for stationary series are
considered, for example, in Brillinger (1975, Chapter 9), Subba Rao (1976) and
Subba Rao and Gabr (1984).
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The analysis of periodograms is an important part of the process of identify-
ing the components in the SSA decomposition (I.1). For example, noise is mod-
eled by aperiodic (chaotic) series whose spectral measures do not have atoms
(white noise has constant spectral density). A comparison of the observed spec-
trum of the residual component in the SSA decomposition with the spectrum of
some common time series (these can be found, for example, in Priestley, 1991
and Wei, 1990, Chapter 11) can help in understanding the nature of the residuals
and formulation of a proper statistical hypothesis concerning the noise. However,
a single realization of a noise series can have a spectrum that significantly differs
from the theoretical one. Several simulation-based tests for testing the white noise
zero hypothesis against the ‘red noise’ alternative (i.e., an autoregressive process
of the first order) have been devised; the approach is called ‘Monte Carlo SSA’,
see Allen and Smith (1996). This approach has attracted a lot of attention of re-
searchers; for its extension and enhancement see, for example, Paluš and Novotna
(1998).

Another area which SSA is related to is nonlinear (deterministic) time se-
ries analysis. It is a fashionable area of rapidly growing popularity; see the re-
cent books by Cutler and Kaplan (1997), Kantz and Schreiber (1997), Abarbanel
(1996), Tong (1993), and Weigend and Gershenfeld (1993). Note that the spe-
cialists in nonlinear time series analysis (as well as statisticians) do not always
consider SSA as a technique that could compete with more standard methods;
see, for example, Kantz and Schreiber (1997, Section 9.3.2).

It is impossible to discuss all the fields related to SSA. In a certain wide sense,
one can consider SSA as a method of approximating the original series (or its
component) with the other series governed by an LRF. Then we can consider a
long list of publications on the theme, starting with Prony (1795).

On the other hand, the essential feature of SSA is the choice of the optimal basis
consisting of the left singular vectors. If we do not restrict ourselves to strong
optimality (see the discussion on Toeplitz and centring SSA), then we arrive at a
wide class of methods dealing with different bases (including, for example, the
wavelet bases) that can be used for the decomposition of the lagged vectors.

As has already been mentioned, in signal processing, nonlinear physics and
some other fields, a number of methods are in use that are based on SVDs of the
trajectory matrices (as well as other matrices calculated through the terms of time
series); these methods are used for different purposes.

Thus, the area of SSA-related methods is very wide. This is one of the reasons
why we are confident that the ideas and methodology of SSA described in this
book will be useful for a wide circle of scientists in different fields for many years
to come.
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PART I

SSA: Methodology

Copyright © 2001 CRC Press, LLC



CHAPTER 1

Basic SSA

This chapter deals with the basic scheme of SSA and several modifications of it.
Only the problem of analysis of the structure of a one-dimensional real-valued
time series is considered. Some refined generalizations of the basic scheme adap-
ted to the problems of time series forecasting and homogeneity analysis (including
the change-point detection problem) are considered in the subsequent chapters.

Briefly, in this chapter we consider Basic SSA as a model-free tool for time se-
ries structure recognition and identification. We do not want to specify the notion
‘structure’ at the moment but mention that the goal of Basic SSA is a decomposi-
tion of the series of interest into several additive components that typically can be
interpreted as ‘trend’ components (that is, smooth and slowly varying parts of the
series), various ‘oscillatory’ components (perhaps with varying amplitudes), and
‘noise’ components.

In this chapter we do not assign any stochastic meaning to the term ‘noise’: the
concept of a deterministic stationary ‘noise’ series is generally more convenient
for SSA since it deals with a single trajectory of a time series rather than with
a sample of such trajectories. Also, it may occur that we are not interested in
certain components of the series and can therefore subsume them under the noise
components.

Basic SSA performs four steps. At the first step (called the embedding step), the
one-dimensional series is represented as a multidimensional series whose dimen-
sion is called the window length. The multidimensional time series (which is a
sequence of vectors) forms the trajectory matrix. The sole (and very important)
parameter of this step is the window length.

The second step, SVD step, is the singular value decomposition of the trajectory
matrix into a sum of rank-one bi-orthogonal matrices. The first two steps together
are considered as the decomposition stageof Basic SSA.

The next two steps form the reconstruction stage. The grouping stepcorre-
sponds to splitting the matrices, computed at the SVD step, into several groups
and summing the matrices within each group. The result of the step is a represen-
tation of the trajectory matrix as a sum of several resultant matrices.

The last step transfers each resultant matrix into a time series, which is an
additive component of the initial series. The corresponding operation is called
diagonal averaging. It is a linear operation and maps the trajectory matrix of the
initial series into the initial series itself. In this way we obtain a decomposition of
the initial series into several additive components.
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Let us describe these steps formally and discuss their meaning and features.

1.1 Basic SSA: description

Let N > 2. Consider a real-valued time series F = (f0, . . . , fN−1) of length
N . Assume that F is a nonzero series; that is, there exists at least one i such that
fi 	= 0. Though one can usually assume that fi = f(i∆) for a certain function of
time f(t) and a certain time interval ∆, this does not play any specific role in our
considerations.

Moreover, the numbers 0, . . . , N−1 can be interpreted not only as discrete time
moments but also as labels of any other linearly ordered structure. The numbering
of the time series values starts at i = 0 rather than at the more standard i = 1; this
is only for convenience of notation.

As was already mentioned, Basic SSA consists of two complementary stages:
decomposition and reconstruction.

1.1.1 First stage: decomposition

1st step: Embedding
The embeddingprocedure maps the original time series to a sequence of multidi-
mensional lagged vectors.

Let L be an integer (window length), 1 < L < N . The embedding procedure
forms K = N − L+ 1 lagged vectors

Xi = (fi−1, . . . , fi+L−2)T, 1 ≤ i ≤ K,

which have dimension L. If we need to emphasize the dimension of the Xi, then
we shall call them L-lagged vectors.

The L-trajectory matrix(or simply trajectory matrix) of the series F :

X = [X1 : . . . : XK ]

has lagged vectors as its columns. In other words, the trajectory matrix is

X = (xij)
L,K
i,j=1 =


f0 f1 f2 . . . fK−1
f1 f2 f3 . . . fK
f2 f3 f4 . . . fK+1
...

...
...

. . .
...

fL−1 fL fL+1 . . . fN−1

 . (1.1)

Obviously xij = fi+j−2 and the matrix X has equal elements on the ‘diagonals’
i + j = const. (Thus, the trajectory matrix is a Hankel matrix.) Certainly if N
and L are fixed, then there is a one-to-one correspondence between the trajectory
matrices and the time series.
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2nd step: Singular value decomposition
The result of this step is the singular value decomposition (SVD) of the trajectory
matrix. Let S = XXT. Denote by λ1, . . . , λL the eigenvaluesof S taken in the
decreasing order of magnitude (λ1 ≥ . . . ≥ λL ≥ 0) and by U1, . . . , UL the
orthonormal system of the eigenvectorsof the matrix S corresponding to these
eigenvalues. Let d = max{i, such that λi > 0}.

If we denote Vi = XTUi/
√
λi (i = 1, . . . , d), then the SVD of the trajectory

matrix X can be written as

X = X1 + . . .+Xd, (1.2)

where Xi =
√
λiUiV

T
i . The matrices Xi have rank 1; therefore they are elemen-

tary matrices. The collection (
√
λi, Ui, Vi) will be called ith eigentripleof the

SVD (1.2).

1.1.2 Second stage: reconstruction

3rd step. Grouping
Once the expansion (1.2) has been obtained, the grouping procedure partitions the
set of indices {1, . . . , d} into m disjoint subsets I1, . . . , Im.

Let I = {i1, . . . , ip}. Then the resultant matrixXI corresponding to the group
I is defined as XI = Xi1 + . . . + Xip . These matrices are computed for I =
I1, . . . , Im and the expansion (1.2) leads to the decomposition

X = XI1 + . . .+XIm
. (1.3)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.

4th step: Diagonal averaging
The last step in Basic SSA transforms each matrix of the grouped decomposition
(1.3) into a new series of length N .

Let Y be an L × K matrix with elements yij , 1 ≤ i ≤ L, 1 ≤ j ≤ K. We
set L∗ = min(L,K), K∗ = max(L,K) and N = L +K − 1. Let y∗ij = yij if
L < K and y∗ij = yji otherwise.

Diagonal averagingtransfers the matrix Y to the series g0, . . . , gN−1 by the
formula:

gk =



1
k + 1

k+1∑
m=1

y∗m,k−m+2 for 0 ≤ k < L∗ − 1,

1
L∗

L∗∑
m=1

y∗m,k−m+2 for L∗−1 ≤ k < K∗,

1
N − k

N−K∗+1∑
m=k−K∗+2

y∗m,k−m+2 for K∗ ≤ k < N.

(1.4)

The expression (1.4) corresponds to averaging of the matrix elements over the
‘diagonals’ i + j = k + 2: the choice k = 0 gives g0 = y11, for k = 1 we have
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g1 = (y12 + y21)/2, and so on. Note that if the matrix Y is the trajectory matrix
of some series (h0, . . . , hN−1) (in other words, if Y is the Hankel matrix), then
gi = hi for all i.

Diagonal averaging (1.4) applied to a resultant matrix XIk
produces the series

F̃ (k) = (f̃ (k)0 , . . . , f̃
(k)
N−1) and therefore the initial series f0, . . . , fN−1 is decom-

posed into the sum of m series:

fn =
m∑

k=1

f̃ (k)n . (1.5)

1.2 Steps in Basic SSA: comments

The formal description of the steps in Basic SSA requires some elucidation. In
this section we briefly discuss the meaning of the procedures involved.

1.2.1 Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time
series F = (f0, . . . , fN−1) to the multidimensional series X1, . . . , XK with vec-
tors Xi = (fi−1, . . . , fi+L−2)T ∈ IRL, where K = N − L + 1. Vectors Xi are
called L-lagged vectors(or, simply, lagged vectors).

The single parameter of the embedding is the window lengthL, an integer such
that 2 ≤ L ≤ N − 1.

Embedding is a standard procedure in time series analysis. With the embedding
being performed, further development depends on the purpose of the investiga-
tion.

For specialists in dynamical systems, a common technique is to obtain the em-
pirical distribution of all the pairwise distances between the lagged vectors Xi

and Xj and then calculate the so-called correlation dimension of the series. This
dimension is related to the fractal dimension of the attractor of the dynamical sys-
tem that generates the time series. (See Takens, 1981; Sauer, Yorke and Casdagli,
1991, for the theory and Nicolis and Prigogine, 1989, Appendix IV, for the cor-
responding algorithm.) Note that in this approach, L must be relatively small and
K must be very large (formally, K →∞).

If L is sufficiently large, then one can consider each L-lagged vector Xi as
a separate series and investigate the dynamics of certain characteristics for this
collection of series. The simplest example of this approach is the well-known
‘moving average’ method, where the averages of the lagged vectors are computed.
There are also much more sophisticated algorithms.

For example, if the initial series can be considered as a locally stationary pro-
cess, then we can expand each lagged vector Xi with respect to any fixed basis
(for instance, the Fourier basis or a certain wavelet basis) and study the dynamics
of such an expansion. These ideas correspond to the dynamical Fourier analysis.
Evidently, other bases can be applied as well.
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The approximation of a stationary series with the help of the autoregression
models can also be expressed in terms of embedding: if we deal with the model

fi+L−1 = aL−1fi+L−2 + a1fi + εi+L−1, i ≥ 0, (1.6)

then we search for a vectorA = (a1, . . . , aL−1,−1)T such that the inner products
(Xi, A) are described in terms of a certain noise series.

Note that these (and many other) techniques that use the embedding can be
divided into two large parts, which may be called ‘global’ and ‘dynamical’. The
global methods treat the Xi as L-dimensional vectors and do not use their order-
ing.

For instance, if we calculate the empirical distribution of the pairwise distances
between the lagged vectors, then the result does not depend on the order in which
these vectors appear. A similar situation occurs for the autoregression model (1.6)
if the coefficients ai are calculated through the whole collection of the lagged
vectors (for example, by the least squares method).

This invariance under permutation of the lagged vectors is not surprising since
both models deal with stationary-like series and are intended for finding global
characteristics of the whole series. The number of lagged vectorsK plays the role
of the ‘sample size’ in these considerations, and therefore it has to be rather large.
Theoretically, in these approaches L must be fixed and K →∞.

The situation is different when we deal with the dynamical Fourier analysis
and similar methods, and even with the moving averages. Here the order of the
lagged vectors is important and describes the dynamics of interest. Therefore, the
nonstationary scenario is the main application area for these approaches. As for
L and K, their relationship can generally be arbitrary and should depend on the
concrete data and the concrete problem.

At any rate, the window length L should be sufficiently large. The value of L
has to be large enough so that each L-lagged vector incorporates an essential part
of the behaviour of the initial series F = (f0, . . . , fN−1).

In accordance with the formal description of the embedding step (see Section
1.1.1), the result of this step is a trajectory matrix

X = [X1 : . . . : XK ]

rather than just a collection of the lagged vectors Xi. This means that generally
we are interested in the dynamical effects (though some characteristics that are
invariant under permutations of the lagged vectors will be important as well).

The trajectory matrix (1.1) possesses an obvious symmetry property: the trans-
posed matrix XT is the trajectory matrix of the same series f0, . . . , fN−1 with
window length equal to K rather than L.

1.2.2 Singular value decomposition

Singular value decomposition (SVD) of the trajectory matrix (1.1) is the second
step in Basic SSA. SVD can be described in different terms and be used for dif-
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ferent purposes. (See Chapter 4 for the mathematical results.) Most SVD features
are valid for general L × K matrices, but the Hankel structure of the trajectory
matrix adds a number of specific features. Let us start with general properties of
the SVD important for the SSA.

As was already mentioned, the SVD of an arbitrary nonzero L × K matrix
X = [X1 : . . . : XK ] is a decomposition of X in the form

X =
d∑

i=1

√
λiUiV

T
i , (1.7)

where λi (i = 1, . . . , L) are eigenvalues of the matrix S = XXT arranged in
decreasing order of magnitudes,

d = max{i, such that λi > 0} = rankX,

{U1, . . . , Ud} is the corresponding orthonormal system of the eigenvectors of the
matrix S, and Vi = XTUi/

√
λi.

Standard SVD terminology calls
√
λi the singular values; the Ui and Vi are

the left and right singular vectorsof the matrix X, respectively. The collec-
tion (

√
λi, Ui, Vi) is called ith eigentripleof the matrix X. If we define Xi =√

λiUiV
T
i , then the representation (1.7) can be rewritten in the form (1.2), i.e. as

the representation of X as a sum of the elementary matrices Xi.
If all the eigenvalues have multiplicity one, then the expansion (1.2) is uniquely

defined. Otherwise, if there is at least one eigenvalue with multiplicity larger
than 1, then there is a freedom in the choice of the corresponding eigenvectors. We
shall assume that the eigenvectors are somehow chosen and the choice is fixed.

Since SVD deals with the whole matrix X, it is not invariant under permuta-
tion of its columnsX1, . . . , XK . Moreover, the equality (1.7) shows that the SVD
possesses the following property of symmetry: V1, . . . , Vd form an orthonormal
system of eigenvectors for the matrix XTX corresponding to the same eigenval-
ues λi. Note that the rows and columns of the trajectory matrix are subseries of
the original time series. Therefore, the left and right singular vectors also have a
temporal structure and hence can also be regarded as time series.

SVD (1.2) possesses a number of optimal features. One of these properties
is as follows: among all the matrices X(r) of rank r < d, the matrix

∑r
i=1Xi

provides the best approximation to the trajectory matrix X, so that ||X−X(r)||M
is minimum.

Here and below the (Frobenius) normof a matrix Y is
√〈Y,Y〉M, where the

inner productof two matrices Y = (yij)
q,s
i,j=1 and Z = (zij)

q,s
i,j=1 is defined as

〈Y,Z〉M =
q,s∑

i,j=1

yijzij .

Note that ||X||2M =
∑d

i=1 λi and λi = ||Xi||2M for i = 1, . . . , d. Thus, we
shall consider the ratio λi/||X||2M as the characteristic of the contribution of the
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matrix Xi in the expansion (1.2) to the whole trajectory matrix X. Consequently,∑r
i=1 λi/||X||2M, the sum of the first r ratios, is the characteristic of the optimal

approximation of the trajectory matrix by the matrices of rank r.

Let us now consider the trajectory matrix X as a sequence of L-lagged vectors.
Denote by L(L) ⊂ IRL the linear space spanned by the vectors X1, . . . , XK . We
shall call this space the L-trajectory space(or, simply, trajectory space) of the
series F . To emphasize the role of the series F , we use notation L(L)(F ) rather
than L(L). The equality (1.7) shows that U = (U1, . . . , Ud) is an orthonormal
basis in the d-dimensional trajectory space L(L).

Setting Zi =
√
λiVi, i = 1, . . . , d, we can rewrite the expansion (1.7) in the

form

X =
d∑

i=1

UiZ
T
i , (1.8)

and for the lagged vectors Xj we have

Xj =
d∑

i=1

zjiUi, (1.9)

where the zji are the components of the vector Zi.
By (1.9), zji is the ith component of the vector Xj , represented in the basis U .

In other words, the vector Zi is composed of the ith components of lagged vectors
represented in the basis U .

Let us now consider the transposed trajectory matrix XT. Introducing Yi =√
λiUi we obtain the expansion

XT =
d∑

i=1

ViY
T
i ,

which corresponds to the representation of the sequence of K-lagged vectors in
the orthonormal basis V1, . . . , Vd. Thus, the SVD gives rise to two dual geomet-
rical descriptions of the trajectory matrix X.

The optimal feature of the SVD considered above may be reformulated in the
language of multivariate geometry for the L-lagged vectors as follows. Let r <

d. Then among all r-dimensional subspaces Lr of IRL, the subspace L(0)r
def=

L(U1, . . . , Ur), spanned by U1, . . . , Ur, approximates these vectors in the best
way; that is, the minimum of

∑K
i=1 dist

2(Xi,Lr) is attained at L(0)r . The ratio∑r
i=1 λi/

∑d
i=1 λi is the characteristic of the best r-dimensional approximation

of the lagged vectors.
Another optimal feature relates to the properties of the directions determined

by the eigenvectors U1, . . . , Ud. Specifically, the first eigenvector U1 determines
the direction such that the variation of the projections of the lagged vectors onto
this direction is maximum.

Copyright © 2001 CRC Press, LLC



Every subsequent eigenvector determines a direction that is orthogonal to all
previous directions, and the variation of the projections of the lagged vectors onto
this direction is also maximum. Therefore, it is natural to call the direction of
ith eigenvector Ui the ith principal direction. Note that the elementary matrices
Xi = UiZ

T
i are built up from the projections of the lagged vectors onto ith

directions.
This view on the SVD of the trajectory matrix composed of L-lagged vectors

and an appeal to associations with principal component analysislead to the fol-
lowing terminology. We shall call the vector Ui the ith (principal) eigenvector,
the vector Vi will be called the ith factor vector,and the vector Zi the vector of
ith principal components.

1.2.3 Grouping

Let us now comment on the grouping step, which is the procedure of arranging
the matrix terms Xi in (1.2). Assume that m = 2, I1 = I = {i1 . . . , ir} and
I2 = {1, . . . , d} \ I , where 1 ≤ i1 < . . . < ir ≤ d.

The purpose of the grouping step is separation of the additive components of
time series. Let us discuss the very important concept of separability in detail.
Suppose that the time series F is a sum of two time series F (1) and F (2); that is,
fi = f

(1)
i + f (2)i for i = 0, . . . , N −1. Let us fix the window length L and denote

by X, X(1) and X(2) the L-trajectory matrices of the series F , F (1) and F (2),
respectively.

Consider an SVD (1.2) of the trajectory matrix X. (Recall that if all the eigen-
values have multiplicity one, then this expansion is unique.) We shall say that the
series F (1) and F (2) are (weakly) separable by the decomposition(1.2), if there
exists a collection of indices I ⊂ {1, . . . , d} such that X(1) =

∑
i∈I Xi and

consequently X(2) =
∑

i/∈I Xi.

In the case of separability, the contribution of X(1), the first component in the
expansion X = X(1) + X(2), is naturally to measure by the share of the corres-

ponding eigenvalues:
∑

i∈I λi
/∑L

i=1 λi .

The separation of the series by the decomposition (1.2) can be looked at from
different perspectives. Let us fix the set of indices I = I1 and consider the corres-
ponding resultant matrix XI1 . If this matrix, and therefore XI2 = X −XI1 , are
Hankel matrices, then they are necessarily the trajectory matrices of certain time
series that are separable by the expansion (1.2).

Moreover, if the matrices XI1 and XI2 are close to some Hankel matrices, then
there exist series F (1) and F (2) such that F = F (1) + F (2) and the trajectory
matrices of these series are close to XI1 and XI2 , respectively (the problem of
finding these series is discussed below). In this case we shall say that the series
are approximately separable.
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Therefore, the purpose of the grouping step (that is the procedure of arranging
the indices 1, . . . , d into groups) is to find several groups I1, . . . , Im such that the
matrices XI1 , . . . ,XIm

satisfy (1.3) and are close to certain Hankel matrices.
Let us now look at the grouping step from the viewpoint of multivariate ge-

ometry. Let X = [X1 : . . . : XK ] be the trajectory matrix of a time series F ,
F = F (1) + F (2), and the series F (1) and F (2) are separable by the decompo-
sition (1.2), which corresponds to splitting the index set {1, . . . , d} into I and
{1, . . . , d} \ I .

The expansion (1.3) with m = 2 means that U1, . . . , Ud, the basis in the trajec-
tory space L(L), splits into two groups of basis vectors. This corresponds to the
representation of L(L) as a product of two orthogonal subspaces (eigenspaces)
L(L,1) = L(Ui, i ∈ I) and L(L,2) = L(Ui, i 	∈ I) spanned by Ui, i ∈ I , and
Ui, i 	∈ I , respectively.

Separability of two series F (1) and F (2) means that the matrix XI , whose
columns are the projections of the lagged vectorsX1, . . . , XK onto the eigenspace
L(L,1), is exactly the trajectory matrix of the series F (1).

Despite the fact that several formal criteria for separability will be introduced,
the whole procedure of splitting the terms into groups (i.e., the grouping step) is
difficult to formalize completely. This procedure is based on the analysis of the
singular vectors Ui, Vi and the eigenvalues λi in the SVD expansions (1.2) and
(1.7). The principles and methods of identifying the SVD components for their
inclusion into different groups are described in Section 1.6.

Since each matrix component of the SVD is completely determined by the
corresponding eigentriple, we shall talk about grouping of the eigentriples rather
than grouping of the elementary matrices Xi.

Note also that the case of two series components (m = 2) considered above is
often more sensibly regarded as the problem of separating out a single component
(for example, as a noise reduction) rather than the problem of separation of two
terms. In this case, we are interested in only one group of indices, namely I .

1.2.4 Diagonal averaging

If the components of the series are separable and the indices are being split up
accordingly, then all the matrices in the expansion (1.3) are Hankel matrices. We
thus immediately obtain the decomposition (1.5) of the original series: for every
k and n, f̃ (k)n is equal to all the entries x(k)ij along the secondary diagonal

{(i, j), such that i+ j = n+ 2}
of the matrix XIk

.
In practice, however, this situation is not realistic. In the general case, no sec-

ondary diagonal consists of equal elements. We thus need a formal procedure of
transforming an arbitrary matrix into a Hankel matrix and therefore into a series.
As such, we shall consider the procedure of diagonal averaging,which defines
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the values of the time series F̃ (k) as averages of the corresponding diagonals of
the matrices XIk 

.
It is convenient to represent the diagonal averaging step with the help of the

Hankelization operatorH.
The operatorH acts on an arbitrary (L×K)-matrix Y = (yij) in the following

way (assume for definiteness that L ≤ K): for i+ j = s and N = L+K − 1 the
element ỹij of the matrixHY is

ỹij =



1
s− 1

s−1∑
l=1

yl,s−l for 2 ≤ s ≤ L−1 ,

1
L

L∑
l=1

yl,s−l for L ≤ s ≤ K + 1 ,

1
K + L− s+ 1

L∑
l=s−K

yl,s−l for K+2 ≤ s ≤ K+L .

(1.10)

For L > K the expression for the elements of the matrix HY is analogous, the
changes are the substitutionL↔ K and the use of the transposition of the original
matrix Y.

Note that the Hankelization is an optimal procedure in the sense that the matrix
HY is closest to Y (with respect to the matrix norm) among all Hankel matrices
of the corresponding size (see Section 6.2). In its turn, the Hankel matrix HY
defines the series uniquely by relating the values in the diagonals to the values in
the series.

By applying the Hankelization procedure to all matrix components of (1.3), we
obtain another expansion:

X = X̃I1 + . . .+ X̃Im
, (1.11)

where X̃Il
= HXIl

.
A sensible grouping leads to the decomposition (1.3) where the resultant ma-

trices XIk
are almost Hankel ones. This corresponds to approximate separability

and implies that the pairwise inner products of different matrices X̃Ik
in (1.11)

are small.
Since all the matrices on the right-hand side of the expansion (1.11) are Hankel

matrices, each matrix uniquely determines the time series F̃ (k) and we thus obtain
(1.5), the decomposition of the original time series.

The procedure of computing the time series F̃ (k) (that is, building up the group
Ik plus diagonal averaging of the matrix XIk

) will be called reconstruction of a
series component̃F (k) by the eigentripleswith indices in Ik.

1.3 Basic SSA: basic capabilities

In this section we start discussing examples that illustrate basic capabilities of
Basic SSA. Note that terms such as ‘trend’, ‘smoothing’, ‘signal’, and ‘noise’ are
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used here in their informal, common-sense meaning and will be commented on
later.

1.3.1 Trends of different resolution

The example ‘Production’ (crude oil, lease condensate, and natural gas plant liq-
uids production, monthly data from January 1973 to September 1999) shows the
capabilities of SSA in extraction of trends that have different resolutions. Though
the series has a seasonal component (and the corresponding component can be
extracted together with the trend component), for the moment we do not pay at-
tention to periodicities.

Taking the window length L = 120 we see that the eigentriples 1-3 correspond
to the trend. Choosing these eigentriples in different combinations we can find
different trend components.
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Figure 1.1 Production: general tendency (rough trend).

Figs. 1.1 and 1.2 demonstrate two alternatives in the trend resolution. The lead-
ing eigentriple gives a general tendency of the series (Fig. 1.1). The three leading
eigentriples describe the behaviour of the data more accurately (Fig. 1.2) and show
not only the general decrease of production, but also its growth from the middle
70s to the middle 80s.

1.3.2 Smoothing

The series ‘Tree rings’ (tree ring indices, Douglas fir, Snake river basin, U.S., an-
nual, from 1282 to 1950), is described in Hipel and McLeod (1994, Chapter 10)
with the help of a (3,0)-order ARIMA model. If the ARIMA-type model is ac-
cepted, then it is generally meaningless to look for any trend or periodicities.
However, we can smooth the series with the help of Basic SSA.

Copyright © 2001 CRC Press, LLC



-DQ �� -DQ �� -DQ �� -DQ �� -DQ �� -DQ ��

����

����

����

����

����

����

����

����

����

Figure 1.2 Production: accurate trend.

Fig. 1.3 shows the initial series and the result of its SSA smoothing, which is
obtained by the leading 7 eigentriples with window length 120. Fig. 1.4 depicts
the residuals.
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Figure 1.3 Tree rings: smoothing result.
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Figure 1.4 Tree rings: residuals.

Another example demonstrating SSA as a smoothing technique uses the ‘White
dwarf’ data, which contains 618 point measurements of the time variation of the
intensity of the white dwarf star PG1159-035 during March 1989. The data is
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discussed in Clemens (1994). The whole series can be described as a smooth
quasi-periodic curve with a noise component.

Using Basic SSA with window length L = 100 and choosing the leading 11
eigentriples for the reconstruction, we obtain the smooth curve of Fig. 1.5 (thick
line). The residuals (Fig. 1.6) seem to have no evident structure (to simplify the
visualization of the results; these figures present only a part of the series).

Further analysis shows that the residual series can be regarded as a Gaussian
white noise, though it does not contain very low frequencies (see the discussion
in Section 1.6.1).

Thus, we can assume that in this case the smoothing procedure leads to noise
reduction and the smooth curve in Fig. 1.5 describes the signal.
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Figure 1.5 White dwarf: smoothed series.
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Figure 1.6 White dwarf: residuals.

1.3.3 Extraction of seasonality components

The ‘Eggs’ data (eggs for a laying hen, monthly, U.S., from January 1938 to De-
cember 1940, Kendall and Stuart, 1976, Chapter 45) has a rather simple structure:
it is the sum of an explicit annual oscillation (though not a harmonic one) and the
trend, which is almost constant.

The choiceL = 12 allows us to extract simultaneously all seasonal components
(12, 6, 4, 3, 2.4, and 2-months harmonics) as well as the trend.

The graph in Fig. 1.7 depicts the initial series and its trend (thick line), which
is reconstructed from the first eigentriple.
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Figure 1.7 Eggs: initial series and its trend.
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Figure 1.8 Eggs: four leading seasonal harmonics.

The four leading seasonal harmonic components (briefly, harmonics) of the
series are depicted in Fig. 1.8; they are: 12-months, 6-months (presented in the
same scale), 4-months and 2.4-months harmonics (also in the same scale). The
corresponding pairs of the eigentriples are 2-3; 4-5; 6-7, and 8-9. The two weakest
harmonics, 3-months and 2-months (10-11 and 12 eigentriples, respectively), are
not shown.

1.3.4 Extraction of cycles with small and large periods

The series ‘Births’ (number of daily births, Quebec, Canada, from January 1, 1977
to December 31, 1990) is discussed in Hipel and McLeod (1994). It shows, in
addition to a smooth trend, two cycles of different ranges: the one-year periodicity
and the one-week periodicity.

Both periodicities (as well as the trend) can be simultaneously extracted by
Basic SSA with window length L = 365. Fig. 1.9 shows the one-year cycle of
the series added to the trend (white line) on the background of the ‘Births’ series
from 1981 to 1990. Note that the form of this cycle varies in time, though the
main two peaks (spring and autumn) remain stable. The trend corresponds to the
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Figure 1.9 Births: initial time series and its annual periodicity.
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Figure 1.10 Births: one-week periodicity.

leading eigentriple, while the one-year periodic component is reconstructed from
the eigentriples 6-9 and 12-19.

Fig. 1.10 demonstrates the one-week cycle on the background of the initial
series for approximately the first three months of 1977. This cycle corresponds to
the eigentriples 2-5 and 10-11.

1.3.5 Extraction of periodicities with varying amplitudes

The capability of SSA in extracting an oscillating signal with a varying amplitude
can be illustrated by the example of the ‘Drunkenness’ series (monthly public
drunkenness intakes, Minneapolis, U.S., from January 1966 to July 1978, Mc-
Cleary and Hay, 1980). The initial series is depicted in Fig. 1.11 (thin line).

Taking L = 60 in Basic SSA and reconstructing the series from the fourth and
fifth eigentriples, we see (bottom line in Fig. 1.11) an almost pure 12-months peri-
odic component. The amplitude of this annual periodic component approximately
equals 120 at the beginning of the observation time. The amplitude then gradually
decreases and almost disappears at the end. The amplitude is reduced by a factor
of about 10, but the trend in the data is diminished only by a factor of three to
four.

1.3.6 Complex trends and periodicities

The ‘Unemployment’ series (West Germany, monthly, from April 1950 to De-
cember 1980, Rao and Gabr, 1984) serves as an example of SSA capability of
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Figure 1.11 Drunkenness: varying amplitudes.

extracting complex trends simultaneously with the amplitude-modulated period-
icities.

The result of extraction is presented in Fig. 1.12 (the initial series and the re-
constructed trend) and in Fig. 1.13 (seasonality).
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Figure 1.12 Unemployment: trend.

The window length was taken as L = 180. Since both the trend and the season-
ality are complex, many eigentriples are required to reconstruct them. The trend
is reconstructed from the eigentriples 1, 2, 5-7, 10, 11, 14, 15, 20, 21, 24, 27, 30,
and 33, while the eigentriples with numbers 3, 4, 8, 9, 12, 13, 16-19, 22, 23, 25,
26, 34, 35, 43, 44, 71, and 72 describe the seasonality.

Copyright © 2001 CRC Press, LLC



-DQ �� -DQ �� -DQ �� -DQ �� -DQ �� -DQ �� -DQ �� -DQ ��

�������

�

������

������

Figure 1.13 Unemployment: seasonality.

If we were to take a smaller number of eigentriples for the trend, then we would
obtain a less refined description of a smooth, slowly varying component of the
series corresponding to a more general tendency in the series.

1.3.7 Finding structure in short time series

The series ‘War’ (U.S. combat deaths in the Indochina war, monthly, from 1966
to 1971, Janowitz and Schweizer, 1989, Table 10) is chosen to demonstrate the
capabilities of SSA in finding a structure in short time series.
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Figure 1.14 War: trend and annual periodicity.

Selecting a window length L = 18, we can see (Fig. 1.14) that the two leading
eigentriples perfectly describe the trend of the series (thick line on the background
of the initial data). This trend relates to the overall involvement of U.S. troops in
the war.

The third (bottom) plot of Fig. 1.14 shows the component of the initial series
reconstructed from the eigentriples 3 and 4. There is little doubt that this is an
annual oscillation modulated by the war intensity. This oscillation has its origin
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Figure 1.15 War: quarter periodicity and series approximation.

in the climatic conditions of South-East Asia: the summer season is much more
difficult for any activity than the winter one.

Two other series components, namely that of the quarterly cycle corresponding
to the eigentriples 5 and 6 (depicted at the bottom of Fig. 1.15) and the omitted
4-months cycle, which can be reconstructed from the eigentriples 7 and 8, are
both modulated by the war intensity and both are less clear for interpretation.
Nevertheless, if we add all these effects together (that is, reconstruct the series
component corresponding to the eight leading eigentriples), a perfect agreement
between the result and the initial series becomes apparent: see Fig. 1.15, top two
plots, with the thick line corresponding to the reconstruction.

1.4 Time series and SSA tasks

In the previous section the terms ‘trend’, ‘smoothing’, ‘amplitude modulation’
and ‘noise’ were used without any explanation of their meaning. In this section
we shall provide the related definitions and corresponding discussions. We shall
also describe the major tasks that can be attempted by Basic SSA. Examples of
application of Basic SSA for solving these tasks have been considered in Sec-
tion 1.3.

1.4.1 Models of time series and the periodograms

Formally, SSA can be applied to an arbitrary time series. However, a theoret-
ical study of its properties requires specific considerations for different classes
of series. Moreover, different classes assume different choices of parameters and
expected results. We thus start this section with a description of several classes
of time series, which are natural for the SSA treatment, and use these classes
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to discuss the important concept of (approximate) separability defined earlier in
Section 1.2.3. (For the theoretical aspects of separability see Section 6.1.)

Since the main purpose of SSA is a decomposition of the series into additive
components, we always implicitly assume that this series is a sum of several sim-
pler series. These ‘simple’ series are the objects of the discussion below. Note
also that here we only consider deterministic time series, including those that can
be regarded as ’noise’. Stochastic models of the noise series, in their relation to
the separability problem, are discussed in Sections 6.1.3 and 6.3.

(a) Stationary series

The concept of a deterministic stationary time series is asymptotic (rigorous defi-
nitions and results on the subject are given in Section 6.4, here we stick to a looser
style). Specifically, an infinite series F = (f0, f1, . . . , fn, . . . ) is called stationary
if for all nonnegative integers k,m the following convergence takes place:

1
N

N−1∑
j=0

fj+kfj+m −→
N→∞

Rf (k −m), (1.12)

where the (even) functionRf (n) is called the covariance functionof the series F .
The covariance function can be represented as

Rf (n) =
∫

(−1/2,1/2]

ei2πnωmf (dω),

where mf is a measure called the spectral measureof the series F .
The form of the spectral measure determines properties of the corresponding

stationary series in many respects. For example, the convergence (1.12) implies,
loosely speaking, the convergence of the averages

1
N

N−1∑
j=0

fj+k −→
N→∞

0 (1.13)

for any k if and only if mf does not have an atom at zero.
Thus, the definition of stationarity is related to the ergodicity not only of the

second order, but also of the first order as well. Below, when discussing station-
arity, we shall always assume that (1.13) holds, which is the zero-mean assump-
tion for the original series.

If the measure mf is discrete, then, roughly speaking, we can assume that the
stationary series F has the form

fn ∼
∑
k

ak cos(2πωkn) +
∑
k

bk sin(2πωkn), ωk ∈ (0, 1/2], (1.14)

where ak = a(ωk), bk = b(ωk), b(1/2) = 0 and the sum
∑

k(a
2
k+b

2
k) converges.

(Note that a(1/2) 	= 0 if one of the ωk is exactly 1/2.)
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Then the measure mf is concentrated at the points ±ωk, ωk ∈ (0, 1/2), with
the weights (a2k + b2k)/4. The weight of the point 1/2 equals a2(1/2).

A series of the form (1.14) will be called almost periodic (see Section 6.4.2
for the precise definition). Periodic series correspond to a spectral measure mf

concentrated at the points ±j/T (j = 1, . . . , [T/2]) for some integer T . In terms
of the representation (1.14), this means that the number of terms in this represen-
tation is finite and all the frequencies ωk are rational.

Almost periodic series that are not periodic are called quasi-periodic. For these
series the spectral measure is discrete, but it is not concentrated on the nodes of
any grid of the form ±j/T . The harmonicfn = cos 2πωn with an irrational ω
provides an example of a quasi-periodic series.

Aperiodic (in other terminology — chaotic) series are characterized by a spec-
tral measure that does not have atoms. In this case one usually assumes the exi-
stence of the spectral density : mf (dω) = pf (ω)dω. Aperiodic series serve as
models for noise; they are also considered in the theory of chaotic dynamical sys-
tems. If the spectral density exists and is constant, then the aperiodic series is
called white noise.

Almost periodic and chaotic series have different asymptotic behaviour of their
covariance functions: in the aperiodic case this function tends to zero, but the
almost periodic series are (generally) characterized by almost periodic covariance
functions.

As a rule, real-life stationary series have both components, periodic (or quasi-
periodic) and noise (aperiodic) components. (The series ‘White dwarf’ – Sec-
tion 1.3.2 – is a typical example of such series.)

Note that it is difficult, or even impossible when dealing with a finite series,
to distinguish between a periodic series with a large period and a quasi-periodic
series. Moreover, on finite time intervals aperiodic series are hardly distinguished
from a sum of harmonics with wide spectrum and small amplitudes.

For a description of finite, but reasonably long, stationary series, it is conve-
nient to use the language of the Fourier expansion of the initial series. This is the
expansion

fn = c0 +
[N/2]∑
k=1

(
ck cos(2πnk/N) + sk sin(2πnk/N)

)
, (1.15)

where N is the length of the series, 0 ≤ n < N , and sN/2 = 0 for even N . The
zero term c0 is equal to the average of the series, so that if the series is centred,
then c0 = 0.

For a series of a finite length, the periodogramof the series is an analogue of
the spectral measure. By definition (see Section 6.4.5) the periodogram ΠN

f (ω) of
the series F = (f0, . . . , fN−1) is

ΠN
f (ω) =

1
N

∣∣∣∣N−1∑
n=0

e−i2πωnfn

∣∣∣∣2, ω ∈ (−1/2, 1/2]. (1.16)
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Since the elements of the series F are real numbers, ΠN
f (−ω) = ΠN

f (ω) for
|ω| < 1/2, and therefore we can consider only the interval [0, 1/2] for ω. If the
series F is represented in the form (1.15), then it is not difficult to show that

ΠN
f (k/N) =

N

2


2c20 for k = 0,

c2k + s2k for 0 < k < N/2,
2c2N/2 for k = N/2.

(1.17)

The last case is, of course, possible only when N is odd.
Let us consider the Fourier expansions (1.15) of two series F (1) and F (2) of

length N and denote the corresponding coefficients by c(j)k and s(j)k , j = 1, 2.
Using the notation

dk =

{
c
(1)
k c

(2)
k + s

(1)
k s

(2)
k for k 	= 0 and N/2,

2c(1)k c
(2)
k for k = 0 or N/2, 

(1.18)

we can easily see that the inner product of two series is

(
F (1), F (2)

) def= N−1∑
k=0

f (1)n f (2)n

=
N

2

(
2d0 +

∑
0<k<N/2

dk + 2dN/2

)
, (1.19)

where dN/2 = 0 for odd N .

This immediately yields that the norm ||F || =
√
(F, F ) of the series (1.15) is

expressed through its periodogram as follows:

||F ||2 =
[N/2]∑
k=0

ΠN
f (k/N). (1.20)

The equality (1.20) implies that the value (1.17) of the periodogram at the point
k/N describes the influence of the harmonic components with frequency ω =
k/N into the sum (1.15). Moreover, (1.20) explains the normalizing coefficient
N−1 in the definition (1.16) of the periodogram.

Some other normalizations of the periodograms are known in literature and
could be useful as well. In particular, using below the periodogram analysis of the
time series for the purposes of SSA, we shall plot the values of ΠN

f (k/N)/N (for
fixed k this is called power of the frequency k/N ), but we shall keep the name
‘periodogram’ for the corresponding line-plots.

The collection of frequencies ωk = k/N with positive powers is called the
support of the periodogram. If the support of a certain periodogram belongs to
some interval [a, b], then this interval is called the frequency range of the series.

Asymptotically, for the stationary series, the periodograms approximate the
spectral measures (see Theorem 6.4 of Section 6.4.5).
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Thus, a standard model of a stationary series is a sum of a periodic (or quasi-
periodic) series and an aperiodic series possessing a spectral density.

If the lengthN of a stationary series is large enough, then the frequencies j/N ,
which are close to the most powerful frequencies of the almost periodic compo-
nent of the series, have large values in the periodogram of the series.

For short series the grid {j/N, j = 0, . . . , [N/2]} is a poor approximation to
the whole range of frequencies [0, 1/2], and the periodogram may badly reflect
the periodic structure of the series components.

(b) Amplitude-modulated periodicities

The nature of the definition of stationarity is asymptotic. This asymptotic nature
has both advantages (for example, the rigorous mathematical definition allows
illustration of all the concepts by model examples) as well as disadvantages (the
main one is that it is not possible to check the stationarity of the series using only
a finite-time interval of it).

At the same time, there are numerous deviations from stationarity. We con-
sider only two classes of the nonstationary time series which we describe at a
qualitative level. Specifically, we consider amplitude-modulated periodic series
and series with trends. The choice of these two classes is related to their practical
significance and importance for the SSA.

The trends are dealt with in the next subsection. Here we discuss the amplitude-
modulated periodic signals, that is, series of the form fn = A(n)gn, where gn is
a periodic sequence and A(n) ≥ 0. Usually it is assumed that on the given time
interval (0 ≤ n ≤ N − 1) the function A(n) varies much more slowly than the
low-frequency harmonic component of the series gn.

Series of this kind are typical in economics where the period of the harmonics
gn is related to seasonality, but the amplitude modulation is determined by long-
term tendencies.

An explanation of the same sort is suitable for the example ‘War’ of Sec-
tion 1.3.7, where the seasonal component of the combat deaths (Fig. 1.14, bottom
line) seems to be modulated by the intensity of the military activities.

Let us discuss the periodogram analysis of the amplitude-modulated periodic
signals, for the moment restricting ourselves to the amplitude-modulated har-
monic

fn = A(n) cos(2πω + θ), n = 0, . . . , N − 1. (1.21)

As a rule, the periodogram of the series (1.21) is supported on a short frequency
interval containing ω. This is not surprising since, for example, for large ω1 ≈ ω2
the sum

cos(2πω1n) + cos(2πω2n) = 2 cos
(
π(ω1 − ω2)n

)
cos
(
π(ω1 + ω2)n

)

Copyright © 2001 CRC Press, LLC



is a product of a slowly varying sequence

A(n) = 2 cos
(
π(ω1 − ω2)n

)
and the harmonic with the high frequency (ω1 + ω2)/2.

Note that for n ≤ 1/2(ω1−ω2) the sequenceA(n) is positive and its oscillatory
nature cannot be seen for small n.

Fig. 1.16 depicts the periodogram of the main seasonal (annual plus quarterly)
component of the series ‘War’ (Section 1.3.7). We see that the periodogram is sup-
ported around two main seasonal frequencies, but is not precisely concentrated at
these two points. For the ‘War’ series, this is caused by the amplitude modulation.

However, the above discussion implies that in the general case the appearance
of exactly the same modulation can be caused by two different reasons: either it
can be the ‘true’ modulation, which can be explained by taking into account the
nature of the signal, or the modulation is spurious, with its origin in the closeness
of the frequencies of the harmonic components of the original series.

The other possible reason of spreading around the main frequencies is the dis-
creteness of the periodogram grid {k/N}: if a frequency ω of a harmonic does
not belong to the grid, then it spreads over it.

Note that since the length of the ‘War’ series is proportional to 12, the fre-
quencies ω = 1/12 and ω = 1/3, which correspond to annual and quarterly
periodicities, fall exactly on the periodogram grid {k/36, k = 1, . . . , 18}.
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Figure 1.16 War: periodogram of the main seasonality component.

Evidently, not only periodic series can be modulated by the amplitude; the
same can hold for quasi-periodic and chaotic sequences. However, identification
of these cases by means of the periodogram analysis is more difficult.
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(c) Trends

It seems that there is no commonly accepted definition of the concept ‘trend’.
Certainly, the main tendency of the series can be postulated with the help of a
parametric model, and subsequent estimation of the parameters would allow us
to talk about, say, linear, exponential, or logistic trends; see, for instance, Ander-
son (1994, Chapter 3.8). Very often the problem of trend approximation is stated
directly, as a pure approximation problem, without any worry concerning the ten-
dencies. The most popular approximation is polynomial; see, for example, Otnes
and Enochson (1978, Chapter 3.8) or Anderson (1994, Chapter 3.2.1).

For us, this meaning of the notion ‘trend’ is not suitable just because Basic SSA
is a model-free, and therefore nonparametric method.

Under the assumption that the series F is a realization of a certain random
discrete-time process, ξ(n), trend is often defined as Eξ(n), the expectation of
the random process (see, for instance, Diggle, 1990, Section 1.4). We cannot use
this definition since we are working with only one trajectory and do not have an
ensemble of trajectories for averaging.

In principle, the trend of a time series can be described as a function that reflects
slow, stable, and systematic variation over a long period of time; see Kendall and
Stuart (1976, Section 45.12). The notion of trend in this case is related to the
length of the series — from the practical point of view this length is exactly the
‘long period of time’.

Moreover, we have already collected oscillatory components of the series into a
separate class of (centred) stationary series and therefore the term ‘cyclical trend’
(see Anderson, 1994, Chapter 4) does not suit us. In general, an appropriate defi-
nition of trend for SSA defines the trend as an additive component of the series
which is (i) not stationary, and (ii) ‘slowly varies’ during the whole period of time
that the series is being observed (compare Brillinger, 1975, Chapter 2.12).

At this point, let us mention some consequences of this understanding of the no-
tion ‘trend’. The most important is the nonuniqueness of the solution to the prob-
lem ‘trend identification’ or ‘trend extraction’ in its nonparametric setup. This
nonuniqueness has already been illustrated by the example ‘Production’; see Sec-
tion 1.3, where Figs. 1.1-1.2 depict two forms of trend: the trend that describes
the general tendency of the series (Fig. 1.1) and the detailed trend (Fig. 1.2).

Furthermore, for a finite time series, a harmonic component with a low fre-
quency is practically indistinguishable from a trend (it can even be monotone on
a finite time interval). In this case, auxiliary subject-related information about the
series can be decisive for the problem of distinguishing trend from the periodicity.

For instance, even though the reconstructed trend in the example ‘War’ (see
Section 1.3.7 and Fig. 1.14) looks like a periodicity observed over a time interval
that is less than half of the period, it is clear that there is no question of periodicity
in this case.

In the language of frequencies, trend generates large powers in the low-freq-
uency range of the periodogram.
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Finally, we have assumed that any stationary series is centred. Therefore, the
average of all the terms fn of any series F is always added to its trend. On the
periodogram, a nonzero constant component of the series corresponds to an atom
at zero.

Therefore, a general descriptive model of the series that we consider in the
present monograph is the additive model where the components of the series are
trends, oscillations, and noise components. In addition, the oscillatory compo-
nents are subdivided into periodic and quasi-periodic, while the noise compo-
nents are, as a rule, aperiodic series. Both stationarity and amplitude modulation
of the oscillatory and noise components are allowed. The sum of all the additive
components, except for the noise, will be called the signal.
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Figure 1.17 Rośe wine: initial time series and the trend.

Example 1.1 Additive components of time series
Let us consider the ‘Rosé wine’ series (monthly rosé wine sales, Australia, from
July 1980 to June 1994, thousands of litres). Fig. 1.17 depicts the series itself (the
thin line) and Fig. 1.18 presents its periodogram.

Fig. 1.17 shows that the series ‘Rosé wine’ has a decreasing trend and an annual
seasonality of a complex form. Fig. 1.18 shows the periodogram of the series; it
seems reasonable that the trend is related to large values at the low-frequency
range, and the annual periodicity is related to the peaks at frequencies 1/12, 1/6,
1/4, 1/3, 1/2.4, and 1/2. The nonregularity of the powers for these frequencies
indicates a complex form of the annual periodicity.

Fig. 1.19 depicts two additive components of the ‘Rosé wine’ series: the sea-
sonal component (top graph), which is described by the eigentriples 2-11, 13 and
the residual series (L = 84). The trend component (thick line in Fig. 1.17) is
reconstructed from the eigentriples 1, 12, and 14.

Periodogram analysis demonstrates that the expansion of the series into three
parts is indeed related to the separation of the spectral range into three regions: low
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Figure 1.18 Rośe wine: periodogram for the series.
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Figure 1.19 Rośe wine: two components of the series.

frequencies correspond to the trend (the thick line in Fig. 1.20), the frequencies
describing the seasonalities correspond to the periodic component (Fig. 1.20, the
thin line), and the residual series (which can be regarded as noise) has all the other
frequencies (Fig. 1.21).

The periodograms of the whole series (see Fig. 1.18), its trend and the seasonal
component (see Fig. 1.20) are presented in the same scale.

1.4.2 Basic SSA: Classification of the main tasks

Classification of the main tasks, which Basic SSA can be used for, is naturally
related to the above classification of the time series and their components. It is, of
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Figure 1.20 Rośe wine: periodograms of the trend and the seasonal component.
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Figure 1.21 Rośe wine: periodogram of the residuals.

course, neither rigid nor exact, but it helps to understand features of the method
and the main principles for the choice of its parameters in analyzing specific data
sets; see Section 1.6.

1. Trend extraction and smoothing
These two problems are in many ways similar and often cannot be distin-
guished in practice. None of these problems has an exact meaning, unless a
parametric model is assumed. Therefore, a large number of model-free meth-
ods can be applied to solve each of them. Nevertheless, it is convenient to
distinguish trend extraction and smoothing, at least on a qualitative level.
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• Trend extraction
This problem occurs when we want to obtain more or less refined non-oscil-
latory tendency of the series. The trend being extracted, we can investigate
its behaviour, approximate it in a parametric form, and consider its contin-
uation for forecasting purposes.
Note that here we are not interested in whether the residual from the trend
extraction has ‘structure’ (for example, it can contain a certain seasonality)
or is a pure noise series.
Results of trend extraction with the help of Basic SSA can be demonstrated
by the examples ‘Production’ (Section 1.3.1, Figs. 1.1 and 1.2), ‘Unemploy-
ment’ (Section 1.3.6, Fig. 1.12) and ‘War’ (Section 1.3.7, Fig. 1.14).
In the language of periodograms, trend extraction means extraction of the
low-frequency part of the series that could not be regarded as an oscillatory
one.

• Smoothing
Smoothing a series means representing the series as a sum of two series
where the first one is a ‘smooth approximation’ of it. Note that here we do
not assume anything like existence of the trend and do not pay attention to
the structure of the residuals: for example, the residual series may contain a
strong periodicity of small period. In the language of frequencies, to smooth
a series we have to remove all its high-frequency components.
Methods that use weighted moving averages (see Anderson, 1994, Chapter
3.3) or weighted averages depending on time intervals, including the local
polynomial approximation (see Kendall and Stuart, 1976, Chapter 36), per-
fectly correspond to the meaning of the term ‘smoothing’. The same is true
for the median smoothing; see Tukey (1977, Chapter 7).
If a series is considered as a sum of a trend and a noise, a smoothing proce-
dure would probably lead to a trend extraction.
The example ‘Snake’ (Section 1.3.2, Fig. 1.3) shows the smoothing capabil-
ities of Basic SSA. There is no distinct border between the trend extraction
and smoothing, and the example ‘Unemployment’ (Section 1.3.6, Fig. 1.12)
can be considered both for the refined trend extraction and for the result of
a certain smoothing.

2. Extraction of oscillatory components
The general problem here is identification and separation of the oscillatory
components of the series that do not constitute parts of the trend. In the para-
metric form (under the assumptions of zero trend, finite number of harmonics,
and additive stochastic white noise), this problem is extensively studied in the
classical spectral analysis theory (see, for example, Anderson, 1994, Chap-
ter 4).

The statement of the problem in Basic SSA is specified mostly by the model-
free nature of the method. One of the specifics is that the result of Basic SSA
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extraction of a single harmonic component of a series is not, as a rule, a purely
harmonic sequence. This is a general feature of the method, it was thoroughly
discussed in the Introduction. From the formal point of view, this means that
in practice we deal with an approximate separability rather than with the exact
one (see Section 1.5).

Also, application of Basic SSA does not require rigid assumptions about the
number of harmonics and their frequencies. For instance, the example ‘Births’
(Section 1.3.4) illustrates simultaneous extraction of two (approximately) pe-
riodic components in daily data (the annual and weekly periodicities).

Certainly, auxiliary information about the initial series always makes the sit-
uation clearer and helps in choosing the parameters of the method. For ex-
ample, the assumption that there might be an annual periodicity in monthly
data suggests that the the analyst must pay attention to the frequencies j/12
(j = 1, . . . , 6). The presence of sharp peaks on the periodogram of the ini-
tial series leads to the assumption that the series contains periodic components
with these frequencies.

Finally, we allow the possibility of amplitude modulation for the oscillatory
components of the series. In examples ‘War’ (Section 1.3.7), ‘Drunkenness’
(Section 1.3.5) and ‘Unemployment’ (Section 1.3.6) the capabilities of Basic
SSA for their extraction have been demonstrated.

The most general problem is that of finding the whole structure of the series, that
is splitting it into several ‘simple’ and ‘interpretable’ components, and the noise
component.

3. Obtaining the refined structure of a series
According to our basic assumption, any series that we consider can be repre-
sented as the sum of a signal, which itself consists of a trend and oscillations,
and noise.

If the components of the signal are expressed in a parametric form (see, for
instance, Ledemann and Lloyd, 1984, Chapter 18.2) for a parametric model of
seasonal effects), then the main problem of the decomposition of the series into
its components can be formalized. Of course, for the model-free techniques
such as Basic SSA, this is not so.

The previously discussed problems are similar in the sense that we want to
find a particular component of a series without paying much attention to the
residuals. Our task is now to obtain the whole structure of the signal, that is to
extract its trend (if any), to find its seasonal components and other periodicities,
and so on. The residuals should be identified as the noise component.

Therefore, we must take care of both the signal and noise. The decomposi-
tion of the signal into components depends, among the other things, on the
interpretability of these components (see the ‘War’ example of Section 1.3.7).

As for the residual series, we have to be convinced that it does not contain parts
of the signal. If the noise can be assumed stochastic, then various statistical
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procedures may be applied to test the randomness of the residuals. Due to
its simplicity, the most commonly used model of the noise is the model of
stochastic white noise. From the practical point of view, it is usually enough to
be sure that the residual series has no evident structure.

These considerations work for the formally simpler problem of noise reduc-
tion, which differs from that discussed above in that here the series is to be
split into two components only, the signal and the noise, and a detailed study
of the signal is not required.

In practice, this setup is very close to the setup of the problem of ‘smoothing’,
especially when the concept ‘noise’ is understood in a broad sense.

For a series with a large signal-to-noise ratio, the signal generates sharp peaks
at the periodogram of the series. It is sometimes important to remember that if
the frequency range of the noise is wide (as for white noise), then the powers
of the frequencies, relating to these peaks, include the powers of the same
frequencies of the noise. The exception is only when the frequency ranges of
the signal and noise are different.

1.5 Separability

As mentioned above, the main purpose of SSA is a decomposition of the original
series into a sum of series, so that each component in this sum can be identi-
fied as either a trend, periodic or quasi-periodic component (perhaps, amplitude-
modulated), or noise.

The notion of separability of series plays a fundamental role in the formal-
ization of this problem (see Sections 1.2.3 and 1.2.4). Roughly speaking, SSA
decomposition of the series F can be successful only if the resulting additive
components of the series are (approximately) separable from each other.

This raises two problems that require discussion:

1. Assume that we have obtained an SSA decomposition of the series F . How do
we check the quality of this decomposition? (Note that the notion of separabi-
lity and therefore the present question are meaningful when the window length
L is fixed.)

2. How, using only the original series, can we predict (at least partially and ap-
proximately) the results of the SSA decomposition of this series into compo-
nents and the quality of this decomposition?

Of course, the second question is related to the problem of the choice of the
SSA parameters (window length and the grouping manner). We shall therefore
delay the corresponding discussion until the next section. Here we consider the
concept of separability itself, both from the theoretical and the practical view-
points.
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1.5.1 Weak and strong separability

Let us fix the window length L, consider a certain SVD of the L-trajectory matrix
X of the initial series F of length N , and assume that the series F is a sum of two
series F (1) and F (2), that is, F = F (1) + F (2).

In this case, separability of the series F (1) and F (2) means (see Section 1.2.3)
that we can split the matrix terms of the SVD of the trajectory matrix X into two
different groups, so that the sums of terms within the groups give the trajectory
matrices X(1) and X(2) of the series F (1) and F (2), respectively.

The separability immediately implies (see Section 6.1) that each row of the
trajectory matrix X(1) of the first series is orthogonal to each row of the trajectory
matrix X(2) of the second series, and the same holds for the columns.

Since rows and columns of trajectory matrices are subseries of the correspond-
ing series, the orthogonality condition for the rows (and columns) of the trajectory
matrices X(1) and X(2) is just the condition of orthogonality of any subseries of
length L (and K = N − L + 1) of the series F (1) to any subseries of the same
length of the series F (2) (the subseries of the time series must be considered here
as vectors).

If this orthogonality holds, then we shall say that the series F (1) and F (2) are
weakly separable. A finer (and more desirable in practice) notion of separability
is the notion of strong separability which, in addition to the orthogonality of the
subseries of the two series, puts constraints on the singular values of the matrices
X(1) and X(2). This notion is discussed in Section 1.5.4. Note that if all the sin-
gular values of the trajectory matrix X are different, then the conditions for weak
separability and strong separability coincide. Below, for brevity, we shall use the
term ‘separability’ for ‘weak separability’.

The condition of (weak) separability can be stated in terms of orthogonality
of subspaces as follows: the series F (1) and F (2) are separable if and only if
the subspace L(L,1) spanned by the columns of the trajectory matrix X(1), is
orthogonal to the subspace L(L,2) spanned by the columns of the trajectory matrix
X(2), and similar orthogonality must hold for the subspaces L(K,1) and L(K,2)

spanned by the rows of the trajectory matrices.

Example 1.2 Weak separability
Let us illustrate the notion of separability in the language of geometry. Consider
the series F = F (1) + F (2) with elements fn = f

(1)
n + f

(2)
n where f (1)n = an,

f
(2)
n = (−1/a)n, a = 1.05 and 0 ≤ n ≤ 27. Let L = 2, then the series F (1) and
F (2) are (weakly) separable.

The two-dimensional phase diagram of the series F , that is the plot of the vec-
tors Xn+1 = (fn, fn+1)T, is shown in Fig. 1.22 in addition to both principal
directions of the SVD of the trajectory matrix of F . Since the principal directions
are determined by the eigenvectors, they are proportional to the vectors (1, 1.05)T

and (1.05,−1)T. The projection of the vectors Xn on the first of these directions
fully determines the series F (1) and ‘annihilates’ the series F (2), while the pro-
jection of these vectors on the second principal direction has the opposite effect:
the series F (2) is left untouched and F (1) disappears.
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Figure 1.22 Separability: two-dimensional phase diagram of the series.

Since a similar phenomenon holds also for the K-dimensional phase diagram
of the series (K = 27), Fig. 1.22 provides us with a simple geometrical interpre-
tation of separability.

Let us give one more separability condition, which is only a necessary condition
(it is not sufficient). This condition is very clear and easy to check.

Let L∗ = min(L,K) and K∗ = max(L,K). Introduce the weights

wi =


i+ 1 for 0 ≤ i ≤ L∗ − 1,
L∗ for L∗ ≤ i < K∗,
N − i for K∗ ≤ i ≤ N − 1.

(1.22)

Define the inner product of series F (1) and F (2) of length N as

(
F (1), F (2)

)
w

def=
N−1∑
i=0

wif
(1)
i f

(2)
i (1.23)

and call the series F (1) and F (2) w-orthogonal if(
F (1), F (2)

)
w
= 0.

It can be shown (see Section 6.2) that separability implies w-orthogonality.
Therefore, if the series F is split into a sum of separable series F (1), . . . , F (m),
then this sum can be interpreted as an expansion of the series F with respect to
a certain w-orthonormal basis, generated by the original series itself. Expansions
of this kind are typical in linear algebra and analysis.

The window length L enters the definition of w-orthogonality; see (1.22). The
weights in the inner product (1.23) have the form of a trapezium. If L is small
relative toN , then almost all the weights are equal, but for L ≈ N/2 the influence
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of the central terms in the series is much higher than of those close to the end-
points in the time interval.

1.5.2 Approximate and asymptotic separability

Exact separability does not happen for real-life series and in practice we can talk
only about approximate separability. Let us discuss the characteristics that reflect
the degree of separability, leaving for the moment questions relating to the singu-
lar values of the trajectory matrices.

In the case of exact separability, the orthogonality of rows and columns of the
trajectory matrices X(1) and X(2) means that all pairwise inner products of their
rows and columns are zero. In statistical language, this means that the noncentral
covariances (and therefore, noncentral correlations — the cosines of the angles
between the corresponding vectors) are all zero. (Below, for brevity, when talking
about covariances and correlations, we shall drop the word ‘noncentral’.)

This implies that we can consider as a characteristic of separability of two series
F (1) and F (2) the maximum correlation coefficientρ(L,K), that is the maximum of
the absolute value of the correlations between the rows and between the columns
of the trajectory matrices of these two series (as usual, K = N − L+ 1).

We shall say that two series F (1) and F (2) are approximately separableif all
the correlations between the rows and the columns of the trajectory matrices X(1)

and X(2) are close to zero.
Let us consider other characteristics of the quality of separability. The follow-

ing quantity (called the weighted correlationor w-correlation) is a natural mea-
sure of deviation of two series F (1) and F (2) from w-orthogonality:

ρ
(w)
12 =

(
F (1), F (2)

)
w

‖F (1)‖w‖F (2)‖w , (1.24)

where ‖F (i)‖w =
√(

F (i), F (i)
)
w

, i = 1, 2.

If the absolute value of the w-correlation is small, then the two series are almost
w-orthogonal, but, if it is large, then the series are far from being w-orthogonal
and are therefore badly separable.

For long (formally, for infinitely long) series it is convenient to introduce the
notion of asymptotic separability. Consider two infinite series F (1) and F (2) and
denote by F (1)N and F (2)N the finite series consisting of the first N elements of the
series F (1) and F (2). Assume also that the window length L is a function of the
series length N .

We shall say that the series F (1) and F (2) are asymptotically separableif the
maximum ρ(L,K) of the absolute values of the correlation coefficients between
the rows/columns of the trajectory matrices of the series F (1)N and F (2)N tends to
zero, as N →∞. The standard behaviour of the window length L = L(N) in the
definition of the asymptotic separability is such that L,K →∞.
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From the practical viewpoint, the effect of the asymptotic separability becomes
apparent in the analysis of long series and means that two asymptotically separa-
ble series are approximately separable for large N .

Section 6.1 contains several analytical examples of both exact and asymptotic
separability. These examples show that the class of asymptotically separable se-
ries is much wider than the class of series that are exactly separable, and the
conditions on the choice of the window length L are much weaker in the case of
asymptotic separability.

For instance, exact separability of two harmonics with different periods can
be achieved when both periods are divisors of both the window length L and
K = N − L + 1. This requires, in particular, that the quotient of the periods is
rational.

Another example of exact separability is provided by the series f (1)n = exp(αn)
and f (2)n = exp(−α) cos(2πn/T ) with an integer T . (We thus deal with the ex-
ponential trend and an amplitude-modulated harmonic.) Here separability holds
if the window length L and K are proportional to T .

Conditions for asymptotic separability are much weaker. In particular, two har-
monics with arbitrary different frequencies are asymptotically separable as soon
as L and K tend to infinity. Moreover, under the same conditions the periodic
components are asymptotically separable from the trends of a general form (for
example, from exponentials and polynomials).

1.5.3 Separability and Fourier expansions

Since separability of series is described in terms of orthogonality of their sub-
series, and the inner product of series can be expressed in terms of the coefficients
in the Fourier expansion (1.19), new separability characteristics related to these
expansions can be introduced.

In the expansion (1.19), the terms dk defined in (1.18) have the meaning of the
weights of the frequencies k/N in the inner product (1.19). If all the dk are zero,
then the series are orthogonal and this can be interpreted in terms of the Fourier
expansion: each frequency k/N makes a zero input into the inner product.

On the other hand, if ΠN
f1
(k/N)ΠN

f2
(k/N) = 0 for all k, then, since

N

2
|dk| ≤

√
ΠN

f1
(k/N)ΠN

f2
(k/N), (1.25)

all the dk are zero and the orthogonality of the series has the following explanation
in terms of the periodograms: in this case the supports of the periodograms of the
series F (1) and F (2) do not intersect.

Thus, we can formulate the following sufficient separability condition in terms
of periodograms: if for each subseries of length L (and K as well) of the series
F (1) the frequency range of its periodogram is disjoint from the frequency range
of the periodogram of each subseries of the same length of the series F (2), then
the two series are exactly separable.
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In this language, the above (sufficient) conditions for separability of two finite
harmonic series with different integer periods T1 and T2 become obvious: if

L = k1T1 = k2T2, K = m1T1 = m2T2

with integer k1, k2, m1,m2, then for any subseries of lengthL of the first series its
periodogram must contain just one frequency ω(L)1 = 1/k1, and at the same time

the corresponding frequency for the second series must be equal ω(L)2 = 1/k2. For
the subseries of length K, the analogous condition must hold for the frequencies
ω
(K)
1 = 1/m1 and ω(K)2 = 1/m2.
For stationary series, the analogous conditions for asymptotic separability are:

if the supports of the spectral measures of stationary series are disjoint, then these
series are asymptotically separable as L→∞ and K →∞ (see Section 6.4.4).

The simplest example of this situation is provided by the sum of two harmonics
with different frequencies.

When we deal with an approximate orthogonality of the series rather than with
the exact one, we can use the characteristics describing the degree of disjoint-
ness of the supports of the periodograms, such that their smallness guarantees the
smallness of the correlation coefficient between the series. Indeed, the formulae
(1.18), (1.20) and (1.25) yield∣∣(F (1), F (2))∣∣ ≤ Φ(N)(F (1), F (2))

def=
[N/2]∑
k=0

√
ΠN

f1
(k/N)ΠN

f2
(k/N) ≤ ∣∣∣∣F (1)∣∣∣∣ ∣∣∣∣F (2)∣∣∣∣ .

Therefore,

ρ
(Π)
12

def=
Φ(N)(F (1), F (2))√

[N/2]∑
k=0

ΠN
f1
(k/N)

√
[N/2]∑
k=0

ΠN
f2
(k/N)

(1.26)

can be taken as a natural measure of the spectral orthogonality of the series F1
and F2. We shall call this characteristic the spectral correlation coefficient. Obvi-
ously, the value of the spectral correlation coefficient is between 0 and 1, and the
absolute value of the standard correlation coefficient between the series F1 and
F2 does not exceed ρ(Π)12 .

Therefore, smallness of the spectral correlation coefficients between all the sub-
series of length L (and K as well) of the series F (1) and F (2) is a sufficient con-
dition for approximate separability of these series.

For this condition to hold, it is not necessary that the series F (1) and F (2) be
subseries of stationary series. For example, if one of the series is a sum of a slowly
varying monotone trend and a noise, while the other series is a high-frequency
oscillatory series, then for a sufficiently large N and L � N/2 we have every
reason to expect approximate separability of these two series.
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Indeed, when L and K are sufficiently large, the periodogram of any subseries
of the first series is mostly supported at the low-frequency range, while the main
support of the periodogram of the subseries of the second series is in the range of
high frequencies. This implies smallness of the spectral correlation coefficients.

We consider another similar example. Assume that the average values of all
the subseries of the series F (1) are large, the average values of the corresponding
subseries of F (2) are close to zero, and the amplitudes of all the harmonic com-
ponents of the series F (1) and F (2) are small. Then it is easy to see that all the
spectral correlations (1.26) are small.

This example explains the approximate separation of ‘large’ signals F (1) from
series F (2) that oscillate rapidly around zero (a phenomenon that is regularly
observed in practice). Note that the conditions imposed on F (2) in this example
are typical for finite subseries of aperiodic series.

Thus, in many cases a qualitative analysis of the periodograms of the series
provides an insight into their separability features. At the same time, smallness
of the spectral correlation coefficients provides only a sufficient condition for ap-
proximate separability and it is not difficult to construct examples where exact
separability takes place, but the spectral correlation coefficients are large.

Example 1.3 Separability and spectral correlation
Let N = 399, a = 1.005, T = 200 and the terms of the series F (1) and F (2) are

f (1)n = a−n, f (2)n = an cos(2πn/T ).

It can be shown that the choice of the window length L = 200 (hence, K = 200)
leads to the exact separability of the series.

At the same time, the periodogram analysis does not suggest exact separability:
the frequency ranges of the two series significantly intersect and the maximum
spectral correlation coefficients between their subseries equals 0.43.

Thus, for a fixed window length Lwe have several characteristics of the quality
of (weak) separability, related to the rows and columns of the trajectory matrices:

1. Cross-correlation matrices between the rows (and columns) of the trajectory
matrices.If all the correlations are zero, then we have exact separability, while
the smallness of their absolute values corresponds to approximate separability.

2. Weighted correlation coefficientρ(w)12 between time seriesF (1) andF (2) de-

fined by(1.24). The equality ρ(w)12 = 0 is a necessary (but not sufficient) condi-
tion for separability. Irrespective of separability, the expansion of a time series
onto w-uncorrelated or approximately w-uncorrelated components is a highly
desirable property.

3. Matrices of spectral correlations between the rows (and columns) of the tra-
jectory matrices. The vanishing of all the spectral correlations is a sufficient
(but not necessary) condition for separability. Smallness of these correlations
implies approximate separability. In the latter case, this separability has a use-
ful interpretation in the language of periodograms: the frequency ranges (with
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an account of their powers) of all the subseries of length L (or K) of the series
are almost disjoint.

1.5.4 Strong separability

The criteria for (weak) separability of two series for a fixed window length give a
solution to the problem that can be stated as follows: ‘Does the sum of the SVDs
of the trajectory matrices of the series F (1) and F (2) coincide with one ofthe
SVDs of the trajectory matrix of the series F = F (1) + F (2)?’

Another question, closer to practical needs, can be stated as follows: ‘Is it pos-
sible to group the matrix terms of anySVD of the trajectory matrix X of the series
F = F (1) + F (2), to obtain the trajectory matrices of the series F (1) and F (2)?’

If the answer to this question is the affirmative, then we shall say that the se-
ries F (1) and F (2) are strongly separable. It is clear that if the series are weakly
separable and all the singular values of the trajectory matrix X are different, then
strong separability holds.

Moreover, strong separability of two series F (1) and F (2) is equivalent to
the fulfillment of the following two conditions: (a) the series F (1) and F (2) are
weakly separable, and (b) the collections of the singular values of the trajectory
matrices X(1) and X(2) are disjoint.

Let us comment on this. Assume that

X(1) =
∑
k

X(1)k , X(2) =
∑
m

X(2)m

are the SVDs of the trajectory matrices X(1) and X(2) of the series F (1) and F (2),
respectively. If the series are weakly separable, then

X =
∑
k

X(1)k +
∑
m

X(2)m

is the SVD of the trajectory matrix X of the series F = F (1) + F (2).
Assume now that the singular values corresponding to the elementary matrices

X(1)1 and X(2)1 coincide. This means that using the SVD of the matrix X we

cannot uniquely identify the terms X(1)1 and X(2)1 in the sum X(1)1 + X(2)1 , since
these two matrices correspond to the same eigenvalue of the matrix XXT.

To illustrate this discussion, let us consider a simple example.

Example 1.4 Weak and strong separability
Let N = 3, L = K = 2 and consider the series

F (1) = (1,−a, a2), F (2) = (1, a−1, a−2), a 	= 0.

In this case, the matrices X(1) and X(2) are

X(1) =
(

1 −a
−a a2

)
, X(2) =

(
1 a−1

a−1 a−2

)
.
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Checking the weak separability of the series is easy. At the same time, the
matrices X(1)(X(1))T and X(2)(X(2))T have only one positive eigenvalue each,
and the singular values of the matrices X(1) and X(2) are√

λ(1) = 1 + a2,
√
λ(2) = 1 + a−2,

respectively. Thus, for any a 	= 1 the series F (1) and F (2) are strongly separa-
ble, but for a = 1 these series are only weakly separable; they loose the strong
separability.

Indeed, if a 	= 1, then the SVD of the trajectory matrix X of the series F (1) +
F (2) is uniquely defined and has the form

X =
(

2 −a+ a−1

−a+ a−1 a2 + a−2

)
= (1 + a2)U1V T1 + (1 + a−2)U2V T2 = X(1) +X(2) ,

where U1 = V1 = (1,−a)T/√(1 + a2) and U2=V2=(1, a−1)T/
√
(1 + a−2).

At the same time, when a = 1 there are infinitely many SVDs of the matrix X:

X =
(

2 0
0 2

)
= 2U1V T1 + 2U2V T2 ,

where {U1, U2} is an arbitrary orthonormal basis in IR2, V1 = XTU1/2 and V2 =
XTU2/2. From all these SVDs only one is acceptable, the one corresponding
to U1 = (1, 1)T/

√
2 and U2 = (1,−1)T/√2. This SVD gives us the required

decomposition X = X(1) +X(2).

In practice, the lack of strong separability (under the presence of the weak
separability, perhaps, approximate) becomes essential when the matrix XXT has
two close eigenvalues. This leads to an instability of the SVD computations. Let
us return to the example of the asymptotic separability of the harmonic series F (1)

and F (2) with

f (1)n = cos(2πω1n), f (2)n = cos(2πω2n),

where ω1 	= ω2 and L,K →∞.
As demonstrated in Section 5.1, for all L and K the SVD of the trajectory ma-

trix of each of the series F (1), F (2) consists of two terms so that the eigen and
factor vectors are the harmonic series with the same frequency as the original se-
ries (however, the phase of the harmonics may differ from the phase in the original
series). Also, the singular values asymptotically (when L,K →∞) coincide and
do not depend on the frequencies of the harmonics.

Moreover, the series F (1) and F (2) are asymptotically separable, and, since
these series have the same amplitude, asymptotically all four singular values are
equal. Therefore, even when N , L, and K are large, we cannot as a rule separate
the periodicities F (1) and F (2) out of the sum F = F (1)+F (2) (if, of course, we
do not use special rotations in the four-dimensional eigenspace of the trajectory
matrix X of the series F ).
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Another way to deal with the case of equal singular values is described in Sec-
tion 1.7.3. It is based on the simple fact that if the series F (1) are F (2) weakly
separable, then we can always find a constant c 	= 0 such that the series F (1) and
cF (2) are strongly separable.

The presence of close singular values is the reason why SSA often fails to
decompose the component consisting of many harmonics with similar weights. If
these weights are small, then it may be natural to consider such components as
the noise components.

1.6 Choice of SSA parameters

In this section we discuss the role of the parameters in Basic SSA and the prin-
ciples for their selection. As was mentioned in Section 1.4.1, we assume that
the time series under consideration can be regarded as a sum of a slowly vary-
ing trend, different oscillatory components, and a noise. The time series analysis
issues related to this assumption were discussed in Section 1.4.2.

Certainly, the choice of parameters depends on the data we have and the analy-
sis we have to perform. We discuss the selection issues separately for all the main
problems of time series analysis.

There are two parameters in Basic SSA: the first is an integer L, the window
length, and the second parameter is structural; loosely speaking, it is the way of
grouping.

1.6.1 Grouping effects

Assume that the window length L is fixed and we have already made the SVD of
the trajectory matrix of the original time series. The next step is to group the SVD
terms in order to solve one of the problems discussed in Section 1.4.2. We suppose
that this problem has a solution; that is, the corresponding terms can be found in
the SVD, and the result of the proper grouping would lead to the (approximate)
separation of the time series components (see Section 1.5).

Therefore, we have to decide what the proper grouping is and how to find the
proper groups of the eigentriples. In other words, we need to identify an eigen-
triple corresponding to the related time series component. Since each eigentriple
consists of an eigenvector (left singular vector), a factor vector (right singular
vector) and a singular value, this is to be achieved using only the information
contained in these vectors (considered as time series) and the singular values.

(a) General issues

We start by mentioning several purely theoretical results about the eigentriples of
several ‘simple’ time series (see Section 5.1).
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Exponential-cosine sequences
Consider the series

f(n) = Aeαn cos(2πωn+ φ), (1.27)

ω ∈ [0, 1/2], φ ∈ [0, 2π) and denote T = 1/ω.
Depending on the parameters, the exponential-cosine sequence produces the

following eigentriples:

1. Exponentially modulated harmonic time series with a frequencyω ∈ (0, 1/2)
If ω ∈ (0, 1/2), then for any L and N the SVD of the trajectory matrix has
two terms. Both eigenvectors (and factor vectors) have the same form (1.27)
with the same frequency ω and the exponential rate α. If α ≤ 0 then for large
N , L and K = N − L + 1, both singular values are close (formally they
asymptotically coincide for L,K → ∞). Practically, they are close enough
when L and K are several times greater than T = 1/ω.

2. Exponentially modulated saw-tooth curve(ω = 1/2)
If ω = 1/2 and sin(φ) 	= 0, then fn is proportional to (−eα)n. In this case for
any L the corresponding SVD has just one term. Both singular vectors have
the same form as the initial series.

3. Exponential sequence(ω = 0)
If ω = 0 and cos(φ) 	= 0, then fn is proportional to eαn and we have an
exponential series. For any N and window length L, the trajectory matrix of
the exponential series has only one eigentriple. Both singular vectors of this
eigentriple are exponential with the same parameter α.

4. Harmonic series(α = 0)
If α = 0 and ω 	= 0, then the series is a pure harmonic one. The eigenvectors
and factor vectors are harmonic series with the same ω. If ω 	= 1/2 and T =
1/ω is a divisor of K and L, then both singular values coincide.

Polynomial series
Consider a polynomial series of the form

fn =
m∑

k=0

akn
k, am 	= 0.

1. General case
If fn is a polynomial of degree m, then the order of the corresponding SVD
does not exceed m + 1 and all the singular vectors are polynomials too; also
their degrees do not exceed m.

2. Linear series
For a linear series

fn = an+ b, a 	= 0,

with arbitrary N and L the SVD of the L-trajectory matrix consists of two
terms. All singular vectors are also linear series with the same |a|.
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Note that the exponential-cosine and linear series (in addition to the sum of
two exponential series with different rates) are the only series that have at most
two terms in the SVD of their trajectory matrices for any series length N and
window length L ≥ 2 (see the proofs in Section 5.1). This fact helps in their SSA
identification as components of more complex series.

Let us now turn to the various different grouping problems and the correspond-
ing grouping principles. We start with mentioning several general rules.

1. If we reconstruct a component of a time series with the help of just one eigen-
triple and both singular vectors of this eigentriple have a similar form, then
the reconstructed component will have approximately the same form.

This means that when dealing with a single eigentriple we can often predict the
behaviour of the corresponding component of the series. For example, if both
singular vectors of an eigentriple resemble linear series with similar slopes,
then the corresponding component is also almost linear. If the singular vectors
have the form of the same exponential series, then the trend has a similar form.
Harmonic-like singular vectors produce harmonic-like components (compare
this with the results for exponential-cosine series presented at the beginning of
this section).

The conservation law under discussion can be extended to incorporate mono-
tonicity (monotone singular vectors generate monotone components of the se-
ries) as well as some other properties of time series.

2. If L � K then the factor vector in an eigentriple has a greater similarity
with the component, reconstructed from this eigentriple, than the eigenvector.
Consequently we can approximately predict the result of reconstruction from
a single eigentriple with the help of its factor vector.

3. If we reconstruct a series with the help of several eigentriples, and the peri-
odograms of their singular vectors are (approximately) supported on the same
frequency interval[a, b], then the frequency power of the reconstructed series
will be mainly supported on[a, b]. This feature is analogous to that in item 1
but concerns several eigentriples and is formulated in terms of the Fourier ex-
pansions.

4. The larger the singular value of the eigentriple is, the bigger the weight of the
corresponding component of the series. Roughly speaking, this weight may be
considered as being proportional to the singular value.

Now let us turn to the SSA problems.

(b) Grouping for extraction of trends and smoothing

1. Trends
According to our definition, trend is a slowly varying component of a time series
which does not contain oscillatory components. Assume that the time series itself
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56 BASIC SSA

is such a component alone. Practice shows that in this case, one or more lead-
ing singular vectors will be slowly varying as well. Exponential and polynomial
sequences are good examples of this situation.

For a general series F we typically assume that its trend component F (1) is (ap-
proximately) strongly separable from all the other components. This means that
among the eigentriples of the series F , there are eigentriples that approximately
correspond to the SVD components of the series F (1).
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Figure 1.23 Production: three factor vectors of the ‘accurate trend’.

Thus, to extract a trend of a series, we have to collect all the elementary matri-
ces related to slowly varying singular vectors.

The ordinal numbers of these eigentriples depend not only on the trend F (1)

itself, but on the ‘residual series’ F (2) = F − F (1) also. Consider two different
extremes. First, let the series F have a strong trend tendency F (1) with a relatively
small oscillatory-and-noise component F (2). Then most of the trend eigentriples
will have the leading positions in the SVD of the whole series F . Certainly, some
of these eigentriples can have small singular values, especially if we are looking
for a more or less refined trend.

For instance, in the ‘Production’ example (Section 1.3.1, Fig. 1.2) a reasonably
accurate trend is described by the three leading eigentriples, and the singular value
in the third eigentriple is five times smaller than the second one. The correspond-
ing factor vectors are shown at Fig. 1.23.

The other extreme is the situation where we deal with high oscillations on the
background of a small and slow general tendency. Here, the leading elementary
matrices describe oscillations, while the trend eigentriples can have small singular
values (and therefore can be far from the top in the ordered list of the eigentriples).

2. Smoothing
The problem of smoothing may seem similar to that of trend extraction but it has
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Figure 1.24 Tree rings: factor vectors with ordinal numbers 6, 7, and 8.

its own specifics. In particular, we can smooth any time series, even if it does
not have an obvious trend component (the example ‘Tree rings’ in Section 1.3.2
is just one of this sort). That means that for the extraction of a trend, we collect
all the eigentriples corresponding to a slowly varying (but not oscillatory) part of
the series; at the same time a smoothed component of a series is composed of a
collection of the eigentriples whose singular vectors do not oscillate rapidly.

In the ‘Tree rings’ example (Section 1.3.2, Fig. 1.3) seven leading eigentriples
corresponding to low frequencies were chosen for smoothing. Fig. 1.24 demon-
strates factor vectors with numbers 6, 7, and 8. The sixth factor vector is slowly
varying, and therefore it is selected for smoothing, while the eighth one corre-
sponds to rather high frequencies and is omitted. As for the 7th factor vector, it
demonstrates mixing of rather low (0-0.05) and high (approximately 0.08) fre-
quencies. To include all low frequencies, the seventh eigentriple was also selected
for smoothing.

For relatively long series, periodogram analysis serves as a good description
of the matter. Periodograms (see Figs. 1.25 and 1.26) confirm that smoothing in
the ‘Tree rings’ example splits the frequencies into two parts rather well. The
small intersection of the frequency ranges for the result of the smoothing and the
residual is due to mixing of some of the frequencies in some of the eigentriples
(see the 7th factor vector in Fig. 1.24).

(c) Grouping for oscillations

1. Harmonic series
Let us start with a pure harmonic with a frequency ω and a certain phase and
amplitude. Since we assume that such a component F (1) in the original series
is approximately strongly separable from F (2) = F − F (1), we may hope that
two (or one if ω = 1/2) SVD eigentriples of the trajectory matrix generated by
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Figure 1.25 Tree rings: periodogram of smoothed series.
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Figure 1.26 Tree rings: periodogram of smoothing residuals.

F correspond to F (1). The problem is, therefore, to identify these eigentriples
among all other eigentriples generated by F .

Let ω 	= 1/2. As was stated in the example of the exponential-cosine function,
the pure harmonic corresponding to (1.27) with α = 0 generates an SVD of order
two with the singular vectors having the same harmonic form.

Consider the ideal situation where T = 1/ω is a divisor of the window length
L and K = N − L+ 1. Since T is an integer, it is a period of the harmonic.

Let us take, for definiteness, the left singular vectors (that is, the eigenvectors).
In the ideal situation described above, the eigenvectors have the form of sine and
cosine sequences with the same T and the same phases. The factor vectors are
also of the same form.
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Thus, the identification of the components that are generated by a harmonic is
reduced to the determination of these pairs. Viewing the pairwise scatterplots of
the eigenvectors (and factor vectors) simplifies the search for these pairs; indeed,
the pure sine and cosine with equal frequencies, amplitudes, and phases create the
scatterplot with the points lying on a circle.

Figure 1.27 Scatterplots of sines/cosines.
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Figure 1.28 Eggs: scatterplots of paired harmonic factor vectors.

If T = 1/ω is an integer, then these points are the vertices of the regular
T -vertex polygon. For the rational frequency ω = q/p < 1/2 with relatively
prime integers p and q, the points are the vertices of the regular p-vertex poly-
gon. Fig. 1.27 depicts scatterplots of four pairs of sin/cosine sequences with zero
phases, the same amplitudes and frequencies 1/12, 10/53, 2/5, and 5/12.
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Small deviations from this ideal situation would imply that the points in the
scatterplots are no longer exactly the vertices of the regular p-vertex polygon, al-
though staying reasonably close to them. As an example, Fig. 1.28 provides scat-
terplots of paired factor vectors in the ‘Eggs’ example (Section 1.3.3), correspond-
ing to the harmonics with the frequencies 1/12, 2/12, 3/12 and 5/12 = 1/2.4.

Therefore, an analysis of the pairwise scatterplots of the singular vectors allows
one to visually identify those eigentriples that correspond to the harmonic com-
ponents of the series, provided these components are separable from the residual
component.

In practice, the singular values of the two eigentriples of a harmonic series are
often close to each other, and this fact simplifies the visual identification of the
harmonic components. (In this case, the corresponding eigentriples are, as a rule,
consecutive in the SVD order.) Such a situation typically occurs when, say, both
L and K are several times greater than 1/ω.

Alternatively, if the period of the harmonic is comparable toN , then the corres-
ponding singular values may not be close and therefore the two eigentriples may
not be consecutive. The same effect often happens when the two singular values
of a harmonic component are small and comparable with the singular values of
the components of the noise.

The series F may contain several purely harmonic components, and the fre-
quency of each one should be identified using the corresponding pair of eigen-
triples. In easy cases it is a straightforward operation (see, for example, the scat-
terplot of period 12 at Fig. 1.28). In more complex cases, the periodogram analysis
applied to the singular vectors often helps.

One more method of approximate identification of the frequency, which can
be useful even for short series, is as follows. Consider two eigentriples, which
approximately describe a harmonic component with frequency ω0. Then the scat-
terplot of their eigenvectors can be expressed as a two-dimensional curve with
Euclidean components of the form

x(n) = r(n) cos(2πω(n)n+ φ(n))
y(n) = r(n) sin(2πω(n)n+ φ(n)) ,

where the functions r, ω and φ are close to constants and ω(n) ≈ ω0. The polar
coordinates of the curve vertices are (r(n), δ(n)) with δ(n) = 2πω(n)n+ φ(n).

Since ∆n
def= δ(n+1)− δ(n) ≈ 2πω0, one can estimate ω0 by averaging polar

angle increments ∆n (n = 0, . . . , L − 1). The same procedure can be applied to
a pair of factor vectors.

If the period of the harmonic is equal to 2, that is ω = 1/2, then the situation
is simpler since in this case the SVD of this harmonic consists of only one eigen-
triple, and the corresponding eigenvector and factor vector have a saw-tooth form.
Usually the identification of such vectors is easy.

2. Grouping for identification of a general periodic component
Consider now the more comprehensive case of extraction of a general periodic
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component F (1) out of the series F . If the integer T is the period of this compo-
nent, then according to Section 1.4.1,

f (1)n =
[T/2]∑
k=1

ak cos(2πkn/T ) +
[T/2]∑
k=1

bk sin(2πkn/T ). (1.28)

Hence (see Section 5.1), there are at most T −1 matrix components in the SVD of
the trajectory matrix of the series F (1), for any window length L ≥ T−1. More-
over, for large L the harmonic components in the sum (1.28) are approximately
strongly separable, assuming their powers a2k + b2k are all different.

In this case, each of these components produces either two (for k 	= T/2) or
one (for k = T/2) eigentriples with singular vectors of the same harmonic kind.

Therefore, under the assumptions:

(a) the series F (1) is (approximately) strongly separable from F (2) in the sum
F = F (1) + F (2) for the window length L,

(b) all the nonzero powers a2k + b2k in the expansion (1.28) are different, and

(c) L is large enough,

we should be able to approximately separate all the eigentriples, corresponding to
the periodic series F (1) in the SVD of the trajectory matrix of the whole series F .

To perform this separation, it is enough to identify the eigentriples that cor-
respond to all the harmonics with frequencies k/T (this operation has been de-
scribed above in the section ‘Grouping for oscillations: Harmonic series’) and
group them.

For instance, if it is known that there is a seasonal component in the series F
and the data is monthly, then one must look at periodicities with frequencies 1/12
(annual), 1/6 (half-year), 1/4, 1/3 (quarterly), 1/2.4, and 1/2. Of course, some
of these periodicities may be missing.

In the example ‘Eggs’ (see Section 1.3.3), all the above-mentioned periodicities
are present; they can all be approximately separated for the window length 12.

If some of the nonzero powers in (1.28) coincide, then the problem of identi-
fication of the eigentriples in the SVD of the series F has certain specifics. For
instance, suppose that a21 + b21 = a22 + b22. If L is large, then four of the singular
values in the SVD of the trajectory matrix of the series F are (approximately)
the same, and the corresponding singular vectors are linear combinations of the
harmonics with two frequencies: ω1 = 1/T and ω2 = 2/T .

Therefore, the components with these frequencies are not strongly separable. In
this case, the periodogram analysis of the singular vectors may help a lot; if their
periodograms have sharp peaks at around the frequencies ω1 and ω2, then the
corresponding eigentriples must be regarded as those related to the series F (1).

Figs. 1.29 and 1.30 depict the periodograms of the sixth and the eighth eigen-
vectors from the example ‘Rosé wine’ (Section 1.4.1, Fig. 1.17). Due to the close-
ness of the singular values in the eigentriples 6-9 (the eigenvalue shares for these
eigentriples lie between 0.349% and 0.385%) the harmonics (mostly, with the fre-
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Figure 1.29 Rośe wine: periodogram of the sixth eigenvector.
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Figure 1.30 Rośe wine: periodogram of the eighth eigenvector.

quencies 4/12 and 5/12) are being mixed up, and this is perfectly reflected in the
periodograms provided.

3. Modulated periodicities
The case of amplitude-modulated periodicity is much more complex since we do
not assume the exact form of modulation. However, the example of the exponen-
tially modulated harmonic (1.27) with α 	= 0 shows that sometimes identification
of the components of such signals can be performed. Let us start with this se-
ries. Being one of the simplest, the exponentially modulated harmonic can be
considered as an additive component of some econometric series describing an
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Figure 1.31 Hotels: spiral in the scatterplot of factor vectors.

exponential growth associated with an exponentially modulated seasonal oscilla-
tion.

On the whole, the situation here is analogous to the case of a pure harmonic
series. If the frequency is not 1/2 and the window length L is large, then we have
two eigentriples with approximately equal singular values, both being character-
ized by the singular vectors of the same exponential-cosine shape. Therefore, the
scatterplots of these pairs of eigen/factor vectors have the form of a spiral and
visually are easily distinguishable.

For instance, Fig. 1.31 depicts the scatterplot of the second and third factor vec-
tors corresponding to the annual periodicity with increasing amplitude in the se-
ries ‘Hotels’ for L = 48 (description of this series can be found in Section 1.7.1).

If the period of the harmonic is 2, then the series is fn = (−a)n, where a = eα.
The singular vectors of the single eigentriple, created by this series, have exactly
the same shape as the modulated saw-tooth curve. Of course, visual identification
of this series is also not difficult.

If the series modulating the pure harmonic is not exponential, then the extrac-
tion of the corresponding components is much more difficult (see the theoretical
results of Section 5.1 concerning the general form of infinite series that generate
finite SVDs of their trajectory matrices). Let us, however, describe the situation
when the identification of the components is possible.

As we already mentioned in Section 1.4.1, if the amplitude of the modulated
harmonic F (1) varies slowly, then the range of frequencies is concentrated around
the main frequency, which can clearly be seen in the periodogram of this modu-
lated harmonic. If the window length L and K = N − L + 1 are large, then all
the singular vectors of this series will have the same property.

Therefore, if the series F (1) is (approximately) strongly separable from a series
F (2) in the sum F = F (1)+F (2), then one can expect that the frequency interval
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of F (2) has a small (in terms of powers) intersection with the frequency interval
of the modulated harmonic F (1). Thus, by analyzing periodograms of the singular
vectors in all the eigentriples of the series F , one can hope to identify the majority
of those that (approximately) describe F (1).

The situation is similar when an arbitrary periodic (not necessarily harmonic)
signal is being modulated. In this case, each term in the sum (1.28) is multiplied
by the function modulating the amplitude, and every frequency k/T gives rise to
a group of neighbouring frequencies. Under the condition that F (1) and F (2) are
strongly separable, one should look for singular vectors in the SVD of the series
F such that their periodograms are concentrated around the frequencies k/T .
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Figure 1.32 Unemployment: periodogram of the 4th eigenvector (in periods).
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Figure 1.33 Unemployment: periodogram of the 12th eigenvector (in periods).
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In the example ‘Unemployment’ (Section 1.3.6) the modulated annual period-
icity generates, in particular, the pairs of eigentriples 3-4 and 12-13. Figs. 1.32
and 1.33 depict the periodograms of the fourth and the twelfth eigenvectors, de-
scribing the main frequency 1/12 and close frequencies, respectively. These fi-
gures demonstrate the typical shape of the periodograms of the singular vectors
generated by a modulated harmonic.

(d) Grouping for finding a refined decomposition of a series

The problem of finding a refined structure of a series by Basic SSA is equivalent
to the identification of the eigentriples of the SVD of the trajectory matrix of
this series, which correspond to the trend, various oscillatory components, and
noise. The principles of grouping for identification of the trend and oscillatory
components have been described above.

As regards noise, we should always bear in mind the intrinsic uncertainty of
this concept under the lack of a rigorous mathematical model for noise. From the
practical point of view, a natural way of noise extraction is the grouping of the
eigentriples, which do not seemingly contain elements of trend and oscillations.
In doing that, one should be careful about the following.

1. If the frequency range of the noise contains the frequency of a harmonic com-
ponent of the signal, then the harmonic component reconstructed from the re-
lated SVD eigentriples will also include the part of the noise corresponding
to this frequency (compare Marple, 1987, Chapter 13.3). Analogously, the ex-
tracted trend ‘grasps’ the low-frequency parts of the noise, if there are any. If
the frequency ranges of the signal and noise do not intersect, then this effect
does not appear.

2. If the amplitude of a harmonic component of the signal is small and the noise
is large, then the singular values corresponding to the harmonic and the noise
may be close. That would imply the impossibility of separating the harmonic
from the noise on the basis of the analysis of the eigentriples for the whole
series. Speaking more formally, the harmonic and noise would not be strongly
separable. This effect disappears asymptotically, when N →∞.

3. The SVD of the trajectory matrix of the pure noise (that is, of an aperiodic
stationary sequence) for large N,L and K should be expected to contain at
least some (leading) eigentriples looking like harmonics (see Section 6.4.3).
The components of the original series, reconstructed from these eigentriples,
will look similar. This necessitates a profound control of the interpretability of
the reconstructed components.

Certainly, the above discussion concerns also the problem of noise reduction,
which is a particular case of the problem under consideration.
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(e) Grouping hints

A number of characteristics of the eigentriples of the SVD of the trajectory ma-
trix of the original series may very much help in making the proper grouping for
extraction of the components from the series. Let us discuss two of these charac-
teristics.

1. Singular values
As mentioned above, if N,L and K are sufficiently large, then each harmonic
different from the saw-tooth one produces two eigentriples with close singular
values. Moreover, a similar situation occurs if we have a sum of several different
harmonics with (approximately) the same amplitudes; though the corresponding
singular vectors do not necessarily correspond to a pure harmonic (the frequencies
can be mixed), they can still form pairs with close singular values and similar
shapes.

Therefore, explicit plateaux in the eigenvalue spectra prompts the ordinal num-
bers of the paired eigentriples. Fig. 1.34 depicts the plot of leading singular val-
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Figure 1.34 Births: leading singular values.

ues for the example ‘Births’ (Section 1.3.4). Five evident pairs with almost equal
leading singular values correspond to five (almost) harmonic components of the
‘Births’ series: eigentriple pairs 2-3, 4-5 and 10-11 are related to a one-week per-
iodicity with frequencies 1/7, 2/7 and 3/7, while pairs 6-7 and 8-9 describe the
annual birth cycle (frequencies ≈ 1/365 and ≈ 2/365). Note that the first singu-
lar value, equal to 4772.5, corresponds to the trend component of the series and is
omitted in Fig. 1.34.

Another useful insight is provided by checking breaks in the eigenvalue spectra.
As a rule, a pure noise series produces a slowly decreasing sequence of singular
values. If such a noise is added to a signal, described by a few eigentriples with
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large singular values, then a break in the eigenvalue spectrum can distinguish
signal eigentriples from the noise ones.

Note that in general there are no formal procedures enabling one to find such a
break. Moreover, for complex signals and large noise, the signal and noise eigen-
triples can be mixed up with respect to the order of their singular values.

At any rate, singular values give important but supplementary information for
grouping; the structure of the singular vectors is more essential.

2. w-Correlations
As discussed earlier, a necessary condition for the (approximate) separability of
two series is the (approximate) zero w-correlation of the reconstructed compo-
nents. On the other hand, the eigentriples entering the same group can correspond
to highly correlated components of the series.

Thus, a natural hint for grouping is the matrix of the absolute values of the w-
correlations, corresponding to the full decomposition (in this decomposition each
group corresponds to only one matrix component of the SVD). This matrix for an
artificial series F with

fn = en/400+sin(2πn/17)+0.5 sin(2πn/10)+ εn, n = 0, . . . , 339, (1.29)

standard Gaussian white noise εn, and L = 85, is depicted in Fig. 1.35 ( w-
correlations for the first 30 reconstructed components are shown in 20-colour
scale from white to black corresponding to the absolute values of correlations
from 0 to 1).

�

�

Figure 1.35 Series (1.29): matrix of w-correlations.

The form of this matrix gives an indication of how to make the proper grouping:
the leading eigentriple describes the exponential trend, the two pairs of the sub-
sequent eigentriples correspond to the harmonics, and the large sparkling square
indicates the white noise components. Note that theoretical results of Section 6.1.3
tell us that such a separation can be indeed (asymptotically) valid.
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Figure 1.36 White dwarf: matrix of w-correlations.

For the example ‘White dwarf’ (Section 1.3.2) with L = 100, the matrix of the
absolute values of the w-correlations of the reconstructed components produced
from the leading 30 eigentriples is depicted in Fig. 1.36 in the manner of Fig. 1.35.

It is clearly seen that the splitting of all the eigentriples into two groups — from
the first to the 11th and the rest — gives rise to a decomposition of the trajectory
matrix into two almost orthogonal blocks, with the first block corresponding to
the smoothed version of the original series and the second block corresponding to
the residual, see Figs. 1.5 and 1.6 in Section 1.3.2. Note that despite the fact that
some w-correlations between the eigentriples in different blocks exceed 0.2, the
reconstructed components are almost w-uncorrelated: |ρ(w)| = 0.004.

The similarity of Figs. 1.35 and 1.36 gives us an additional argument in favour
of the assertion that in the ‘White dwarf’ example smoothing leads to noise re-
duction.

1.6.2 Window length effects

Window length is the main parameter of Basic SSA, in the sense that its improper
choice would imply that no grouping activities will help to obtain a good SSA
decomposition. Moreover, it is the single parameter of the decomposition.

Selection of the proper window length depends on the problem in hand, and
on preliminary information about the time series. In the general case no universal
rules and unambiguous recommendations can be given for the selection of the
window length. The main difficulty here is caused by the fact that variations in
the window length may influence both weak and strong separability features of
SSA, i.e., both the orthogonality of the appropriate time series intervals and the
closeness of the singular values.
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However, there are several general principles for the selection of the window
length L that have certain theoretical and practical grounds. Let us discuss these
principles.

(a) General effects

1. The SVDs of the trajectory matrices, corresponding to the window lengths L
and K = N −L+ 1, are equivalent (up to the symmetry: left singular vectors
↔ right singular vectors). Therefore, for the analysis of structure of time series
by Basic SSA it is meaningless to take the window length larger than half of
the time series length.

2. Bearing in mind the previous remark, the larger the window length is, the more
detailed is the decomposition of the time series. The most detailed decomposi-
tion is achieved when the window length is approximately equal to half of time
series length, that is when L ∼ N/2. The exceptions are the so-called series of
finite rank, where for any L larger than d and N > 2d− 1 (d is the rank of the
series) the number of nonzero components in the SVD of the series is equal to
d and does not depend on the window length (see Section 1.6.1 for examples
and Section 5.1 for general results).

3. The effects of weak separability.

• Since the results concerning weak separability of time series components
are mostly asymptotic (when L,K → ∞), in the majority of examples to
achieve a better (weak) separation one has to choose large window lengths.
In other words, a small window length could mix up interpretable compo-
nents.

• If the window length L is relatively large (say, it is equal to several dozen),
then the (weak) separation results are stable with respect to small pertur-
bations in L.

• On the other hand, for specific series and tasks, there are concrete recom-
mendations for the window length selection, which can work for a relatively
small N (see section ‘Window length for periodicities’ below).

4. The effects of closeness of singular values.
The negative effects due to the closeness of the singular values related to dif-
ferent components of the original series (that is, the absence of strong sepa-
rability in the situation where (approximate) weak separability does hold), are
not easily formalized in terms of the window length. These effects are often
difficult to overcome by means of selection of L alone.

Let us mention two other issues related to the closeness of the singular values.

• For the series with a complex structure, too large window lengthL can
produce an undesirable decomposition of the series components of interest,
which may lead, in particular, to their mixing with other series components.
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This is an unpleasant possibility, especially since a significant reduction of
L can lead to a poor quality of the (weak) separation.

• Alternatively, sometimes in these circumstances even a small variation in
the value of L can reduce mixing and lead to a better separation of the
components, i.e., provide a transition from weak to strong separability. At
any rate, it is always worthwhile trying several window lengths.

(b) Window length for extraction of trends and smoothing

1. Trends
In the problem of trend extraction, a possible contradiction between the require-
ments for weak and strong separability emerges most frequently. Since trend is a
relatively smooth curve, its separability from noise and oscillations requires large
values of L.

On the other hand, if trend has a complex structure, then for values of L that
are too large, it can be described only by a large number of eigentriples with
relatively small singular values. Some of these singular values could be close to
those generated by oscillations and/or noise time series components.

This happens in the example ‘Births’, where the window length of order 1000
and more (the series length is 5113) leads to the situation where the components
of the trend are mixed up with the components of the annual and half-year period-
icities (a short description of the series ‘Births’ is provided in Section 1.3.4; other
aspects relating to the choice of the window length in this example are discussed
below).

The problem is complex; there is a large variety of situations. We briefly con-
sider, on a quantitative level, two extreme cases: when the trend can be extracted
relatively easily, and when the selection of the window length for extraction of
trend is difficult or even impossible.

(i) Trends: reliable separation
Let F = F (1) + F (2) where F (1) is a trend and F (2) is the residual. We assume
the following.

1. The series F (1) is ‘simple’. The notion of ‘simplicity’ can be understood as
follows:

• From the theoretical viewpoint, the series F (1) is well approximated by a
series with finite and small rank d (for example, if it looks like an exponen-
tial, d = 1, a linear function, d = 2, a quadratic function, d = 3, etc.). See
Section 5.1 for a description of the series of finite rank.

• We are interested in the extraction of the general tendency of the series
rather than of the refined trend.

• In terms of frequencies, the periodogram of the series F (1) is concentrated
in the domain of rather small frequencies.
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• In terms of the SSA decomposition, the few first eigentriples of the de-
composition of the trajectory matrix of the series F (1) are enough for a
reasonably good approximation of it, even for large L.

2. Assume also that the series F (1) is much ‘larger’ than the series F (2) (for
instance, the inequality ||F (1)|| � ||F (2)|| is valid).

Suppose that these assumptions hold and the window length L provides a cer-
tain (weak, approximate) separation of the time series F (1) and F (2). We can
expect that in the SVD of the trajectory matrix of the series F , the leading eigen-
triples will correspond to the trend F (1); i.e., they will have larger singular values
than the eigentriples corresponding to F (2). In other words, strong separation oc-
curs. Moreover, the window length L, sufficient for the separation, should not be
very large in this case in view of the ‘simplicity’ of the trend.

This situation is illustrated by the example ‘Production’ (Section 1.3.1, Figs. 1.1
and 1.2), where both trend versions are described by the leading eigentriples.
Analogously, if we are interested only in extracting the main tendency of the se-
ries ‘Unemployment’ (Section 1.3.6), then, according to Fig. 1.37, taking just one
leading eigentriple will be a perfectly satisfactory decision for L = 12.
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Figure 1.37 Unemployment:L = 12 for extraction of the main tendency.

(ii) Trends: difficult case
Much more difficult situations arise if we want to extract a refined trend F (1),
when the residual F (2) has a complex structure (for example, it includes a large
noise component) with ||F (2)|| being large. Then large L can cause not only mix-
ing of the ordinal numbers of the eigentriples corresponding to F (1) and F (2)

(this is the case of the ‘Unemployment’ example), but also closeness of the cor-
responding singular values, and therefore a lack of strong separability.

Certainly, there are many intermediate situations between these two extremes.
Consider, for instance, the ‘England temperatures’ example (average annual tem-
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Figure 1.38 England temperatures: L = 48 for extraction of the main tendency.

peratures, Central England, from 1659 to 1998). Here the problem of extraction
of a smooth trend can easily be solved: under the choice of L equal to several
dozen, the first eigentriple always describes the general tendency; see Fig. 1.38
for the choice L = 48.

This happens because relatively small values of L are enough to provide (weak)
separability, the trend has a simple form, and it thus corresponds to only one
eigentriple; this eigentriple is leading due to a relatively large mean value of the
series.

At the same time, if we wish to centre the series (which may seem a natural
operation since in this kind of problem the deviation from the mean is often the
main interest), then small values of L, say L < 30, do not provide weak separa-
tion. Large values of L, say L > 60, mix up the trend eigentriple with some other
eigentriple of the series; this is a consequence of the complexity of the series
structure.

2. Smoothing
Generally, the recommendations concerning the selection of the window length
for the problem of smoothing are similar to the case of the trend extraction. This
is because these two problems are closely related. Let us describe the effects of
the window length in the language of frequencies.

Treating smoothing as removing of the high-frequency part of a series, we
have to take the window length L large enough to provide separation of this low-
frequency part from the high-frequency one. If the powers of all low frequencies
of interest are significantly larger than those of the high ones, then the smoothing
problem is not difficult, and the only job is collecting several leading eigentriples.
This is the case for the ‘Tree rings’ and ‘White dwarf’ examples of Section 1.3.2.
Here, the larger we take L, the narrower the interval of low frequencies we can
extract.
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Figure 1.39 White dwarf: L = 100, periodogram of residuals.
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Figure 1.40 White dwarf: L = 200, periodogram of residuals.

For instance, in Section 1.3.2, the smoothing of the series ‘White dwarf’ has
been done with L = 100, with the result of the smoothing being described by
the leading 11 eigentriples. In the periodogram of the residuals (see Fig. 1.39) we
can see that for this window length the powers of the frequencies in the interval
[0, 0.05] are practically zero.

If we take L = 200 and 16 leading eigentriples for the smoothing, then this
frequency interval is reduced to [0, 0.03] (see Fig. 1.40). At the same time, forL =
10 and two leading eigentriples, the result of smoothing contains the frequencies
from the interval [0, 0.09].

Visual inspection shows that all smoothing results look similar. Also, their
eigenvalue shares are equal to 95.9% ± 0.1%. Certainly, this effect can be ex-
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plained by the specificity of the series: its frequency power is highly concentrated
in the narrow low-frequency region.

More difficult problems with smoothing occur when powers of low and high
frequencies are not separable from each other by their values.

(c) Window length for periodicities

The problem of choosing the window length L for extraction of a periodic compo-
nent F (1) out of the sum F = F (1) + F (2) has certain peculiarities related to the
correspondence between the window length and the period. In general, these pe-
culiarities are the same for the pure harmonics and for complex periodicities, and
even for modulated periodicities. Thus, we do not consider these cases separately.

1. For the problem of extraction of a periodic component with period T , it is
natural to measure the length of the series in terms of the number of periods.
Specifically, if F (1) is asymptotically separable from F (2), then to achieve the
separation we must have, as a rule, the length of the seriesN such that the ratio
N/T is at least several units.

2. For relatively short series, it is preferable to take into account the conditions
for pure (nonasymptotic) separability (see Section 1.5); if one knows that the
time series has a periodic component with an integer period T (for example, if
this component is a seasonal component), then it is better to take the window
length L proportional to that period. Note that from the theoretical viewpoint,
N−1 must also be proportional to T .

3. In the case of a long series, the demand that L/T and (N−1)/T be integers
is not that important. In this case, it is recommended that the window length
be chosen as large as possible (for instance, close to N/2, if the computer
facilities allow one to do this). Nevertheless, even in the case of long series it
is recommended that L be chosen such that L/T is an integer.

4. If the series F (2) contains a periodic component with period T1 ≈ T , then to
extract F (1) we generally need a larger window length than for the case when
such a component is absent (see Section 6.1.2 for the theory).

5. Since two harmonic components with equal amplitudes produce equal singular
values, asymptotically, when L and K tend to infinity, a large window length
can cause a lack of strong separability and therefore a mixing up of the com-
ponents.

If in addition the frequencies of the two harmonics are (almost) equal, then a
contradiction between the demands for the weak and strong separability can
occur; close frequencies demand large window lengths, but the large window
lengths lead to approximately equal singular values.

To demonstrate the effect of divisibility of L by T , let us return to the ‘Eggs’
example (Section 1.3.3). Figs. 1.41 and 1.42 depict the matrices of w-correla-
tions for the full decomposition of the series with L = 12 and L = 18. It is
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clearly seen that for L = 12 the matrix is essentially diagonal, which means that
the eigentriples related to the trend and different seasonal harmonics are almost
w-uncorrelated. This means that the choice L = 12 allows us to extract all the
harmonic components of the series.
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Figure 1.41 Eggs:L = 12, w-correlations.
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Figure 1.42 Eggs:L = 18, w-correlations.

For L = 18 (that is, when the period 12 does not divide L), only the leading
seasonality harmonics can be extracted in a proper way; the other components
have relatively large w-correlations.

The choice L = 13 would give results that are slightly worse than for L = 12,
but much better than for L = 18. This confirms the robustness of the method with
respect to small variations in L.
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(d) Refined structure

In doing a simultaneous extraction of different components from the whole series,
all the aspects discussed above should be taken into account. Thus, in basically
all the examples of Section 1.3, where the periodicities were the main interest, the
window length was a multiple of the periods. At the same time, if in addition the
trends were to be extracted, L was reasonably large.

For the short series and/or series with a complex structure, these simple recom-
mendations may not suffice and the choice of the window length becomes a more
difficult problem.

For instance, in the example ‘War’ (Section 1.3.7), the choice L = 18 is dic-
tated by the specific amplitude modulation of the harmonic components of the
series, which is reflected in the shape of the trend. When the window length is
reduced to 12, the amplitude-modulated harmonics are mixed up with the trend
(the effect of the small window length). On the other hand, the decompositions
with L = 24 and L = 36 lead to a more detailed decomposition of the sum of
the trend and the annual periodicity (six eigentriples instead of four for L = 12),
where the components are again mixed up (the effect of a too large L).

Note that if we wish to solve the problem of extracting the sum of the trend and
the annual periodicity, then the choice of L = 36 is preferable to L = 18.
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Figure 1.43 Births: trend.

To demonstrate the influence of the window length on the result of the decom-
position, let us consider another more complex example, namely ‘Births’ (Sec-
tion 1.3.4).

In the series ‘Births’ (daily data for about 14 years, N = 5113) there is a one-
week periodicity (T1 = 7) and an annual periodicity (T2 = 365). Since T2 � T1,
it is natural to take the window length as a multiple of T2.

The choiceL = T2, as was shown in Section 1.3.4, guarantees the simultaneous
extraction of both weekly and annual periodicities. Moreover, this window length
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allows also the extraction of the trend of the series (see Fig. 1.43) using the single
leading eigentriple. Note that these results are essentially the same as for the cases
L = 364 and L = 366.

At the same time, if we would choose L = 3T2 = 1095, then the components
of the trend will be mixed up with the components of the annual and half-year
periodicities; this is a consequence of the complex shape of the trend and the
closeness of the corresponding eigenvalues. Thus, large values of the window
length lead to violation of strong separability.

If the problem of separation of the trend from the annual periodicity is not im-
portant, then values of L larger than 365 work well. If the window length is large,
we can separate the global tendency of the series (trend + annual periodicity) from
the weekly periodicity + noise even better than for L = 365 (for L = 1095 this
component is described by several dozen eigentriples rather than by 5 eigentriples
for L = 365). In this case, the weekly periodicity itself is perfectly separable from
the noise as well.

Note also that if we were to take a small (in comparison to the annual period)
window length (for example, L = 28), then the global behaviour of the series
would be described by just one leading eigentriple. The weekly periodicity could
also be separated, but a little worse than for large L.

In even more complex cases, better results are often achieved by the applica-
tion of Sequential SSA, which after extraction of a component with a certain L
requires a repeated application of SSA to the residuals with different L. An ex-
ample of sequential SSA is described in Section 1.7.3.

(e) Hints

If we are not using the knowledge about the subject area and the series, then the
only source of information helping in the window length selection is the series
itself. Often the shape of the graph of the series (leading, for instance, to a visual
identification of either a trend or a strong harmonic) is an effective indicator. At
the same time, it is impossible to describe all possible manipulations with the
series that may help in the selection of L, especially if we bear in mind that the
corresponding algorithms should be fast (faster than the numerical calculation of
the SVD of a large matrix) and should use the specifics of the problem.

We consider just one way of getting recommendations for selecting the window
length, namely, the method based on the periodogram analysis of the original
series and parts of the series.

1. If the resolution of the periodogram of the series F is good enough (that is,
the series is sufficiently long), then the periodogram can help in determining
the periods of the harmonic components of the series and thus in selecting the
window length for their separation. Moreover, the presence of distinct powerful
frequency ranges in the periodogram indicates possible natural components of
the series related to these frequency ranges.
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2. One of the sufficient conditions for approximate weak separability of two se-
ries is the smallness of all the spectral correlations for all the subseries of length
L (and also K = N − L+ 1) of these two series (see Section 1.5.3). Assume
that:

• periodograms of all the subseries of length L and K of the series F have
the same structure,

• this structure is characterized by the presence of distinct and distant power-
ful frequency ranges.

In this case, the choice of a window length equal to L would most probably
lead to a splitting of the series F into the components corresponding to these
frequency ranges. This suggests that a preliminary periodogram analysis of at
least several subseries might be useful.

A control of the correct choice of the window length is made at the grouping
stage; the possibility of a successful grouping of the eigentriples means that the
window length has been properly selected.

1.7 Supplementary SSA techniques

Supplementary SSA techniques may often improve Basic SSA for many specific
classes of time series and for series of a complex structure. In this section, we
consider several classes of this kind and describe the corresponding techniques.
More precisely, we deal with the following series and problems:

1. The time series is oscillating around a linear function, and we want to ex-
tract this linear function.

2. The time series is stationary-like, and we want to extract several harmonic
components from the series.

3. The time series has a complex structure (for example, its trend has a com-
plex form, or several of its harmonic components have almost equal ampli-
tudes), and therefore for any window length a mixing of the components of
interest occurs.

4. The time series is an amplitude-modulated harmonic and we require its en-
velope.

The last problem is rather specific. Its solution is based on the simple idea that
squared amplitude-modulated harmonic is a sum of low and high-frequency series
that can be separated by Basic SSA.

The technique for the first two problems is in a way similar; having informa-
tion about the time series, we use a certain decomposition of the trajectory matrix,
which is different from the straightforward SVD and adapted to the series struc-
ture.

A lack of strong separability (in the presence of weak separability) is one of the
main difficulties in Basic SSA. One of possible ways to overcome this difficulty is
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to enlarge the singular value of a series component of interest by adding a series
similar to this component.

Alternatively, we can use Sequential SSA. This means that we extract some
components of the initial series by the standard Basic SSA and then extract other
components of interest from the residuals.

Suppose, for example, that the trend of the series has a complex form. If we
choose a large window length L, then certain trend components would be mixed
with other components of the series. For small L, we would extract the trend but
obtain mixing of the other series components which are to be extracted.

A way to solve the problem, and this is a typical application of Sequential SSA,
is to choose a relatively small L to extract the trend or its part, and then use a large
window length to separate components of interest in the residual series.

Let us describe these approaches in detail and illustrate them with examples.

1.7.1 Centring in SSA

Consider the following extension of Basic SSA. Assume that we have selected
the window length L. For K = N − L + 1, consider a matrix A of dimension
L×K and pass from the trajectory matrix X of the series F to the matrix X∗ =
X−A. Let S∗ = X∗(X∗)T, and denote by λi and Ui (i = 1, . . . , d) the nonzero
eigenvalues and the corresponding orthonormal eigenvectors of the matrix S∗.
Setting Vi = (X∗)TUi/

√
λi we obtain the decomposition

X = A+
d∑

i=1

X∗
i (1.30)

with X∗
i =

√
λiUiV

T
i , instead of the standard SVD (1.2). At the grouping stage

the matrix A will enter one of the resultant matrices as an addend. In particular,
it can produce a separate time series component after the application of diagonal
averaging.

If the matrix A is orthogonal to all the X∗
i (see Section 4.4), then the matrix

decomposition (1.30) yields the decomposition

||X||2M = ||A||2M +
d∑

i=1

||X∗
i ||2M

of the squared norms of the corresponding matrices.
Here we consider two ways of choosing the matrix A, thoroughly investigated

in Sections 4.4 and 6.3. We follow the terminology and results from these sections.

(a) Single and Double centring

Single centringis the row centring of the trajectory matrix. Here

A = A(X) = [E1(X) : . . . : E1(X)],
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where each ith component of the vector E1(X) (i = 1, . . . , L) is equal to the
average of the ith components of the lagged vectors X1, . . . , XK .

Thus, under Single centring we consider the space span(X(c)1 , . . . , X
(c)
K ) with

X
(c)
i = Xi − E1(X) rather than span(X1, . . . , XK). In other words, we shift

the origin to the centre of gravity of the lagged vectors and then use the SVD
of the obtained matrix. Of course, Single centring is a standard procedure in the
principal component analysis of multidimensional data.

For the Double centring, SVD is applied to the matrix, computed from the
trajectory matrix by subtracting from each of its elements the corresponding row
and column averages and by adding the total matrix average. In other words, in
this case we have

A = A(X) + B(X) (1.31)

with B(X) = [E12(X) : . . . : E12(X)]T, where the jth component of the vector
E12(X) (j = 1, . . . ,K) is equal to the average of all the components of the vector
X
(c)
j .
Under Single centring the addend A has the same form as the other components

of the decomposition (1.30), provided we have included the normalized vector of
averages U0(1) = E1(X)/||E1(X)|| in the list of eigenvectors Ui. Indeed, A =
U0(1)Z

T
0(1) with Z0(1) = ||E1(X)||1K. (Each component of the vector 1K ∈ IRK

is equal to 1.)
In the Double centring case, we add one more vector to the list of eigenvectors,

the vector U0(2) = 1L/
√
L. Here

A = U0(1)Z
T
0(1) + U0(2)Z

T
0(2)

with Z0(2) =
√
LE12(X). We set

λ0(1) = ||Z0(1)|| = ||E1(X)||
√
K and λ0(2) = ||Z0(2)|| = ||E12(X)||

√
L.

Moreover, let V0(1) = Z0(1)/
√
λ0(1) and V0(2) = Z0(2)/

√
λ0(2). Then we call(

U0(i)), V0(i), λ0(i)
)
(i = 1, 2) the first and the second average triples.

SinceA(X) and B(X) are orthogonal to each other and to all the other decom-
position components (see Section 4.4), we have for the Double centring

||X||2M = λ0(1) + λ0(2) +
d∑

i=1

λi

(for the Single centring the term λ0(2) is omitted). Therefore, the shares of the
average triples and the eigentriples are equal to

λ0(1)/||X||2M, λ0(2)/||X||2M and λi/||X||2M.

Note that Basic SSA does not use any centring. Nevertheless, Single centring
can have some advantage if the series F can be expressed in the form F = F (1)+
F (2), where F (1) is a constant series and F (2) oscillates around zero.
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Certainly, if the series length N is large enough, its additive constant compo-
nent will undoubtedly be extracted by Basic SSA (as well as with the averaging
of all the components of the series), but, for the short series, Single centring SSA
can work better. Since the analogous, but much brighter, effects are produced by
Double centring SSA, we do not consider any Single centring example here.

The effect of Double centring can be explained as follows. If the initial series
is a linear one, X is its trajectory matrix and A is defined by (1.31), then A = X.
Therefore, for F = F (1)+F (2) with linear F (1), the matrix A contains the entire
linear part of the series F . Theoretically, Double centring leads to the asymptotic
extraction of the linear component of the series from rather general oscillatory
residuals (see Section 6.3.2).

As usual, nonasymptotic effects occur as well. For fixed N and L, let us con-
sider the series F which is the sum of a linear series F (1) and a pure harmonic
F (2) with an integer period T . If the window length L andK = N −L+1 divide
T , then the matrix A defined by (1.31) coincides with the trajectory matrix of the
series F (1). The residual matrix X∗ = X−A corresponds to the trajectory matrix
of the harmonic series F (2). Therefore, here we obtain the theoretically precise
linear trend extraction (see Section 6.3.2 for the theory).

(b) Double centring and linear regression

Comparison of the extraction of a linear component of a series by Double centring
SSA and by linear regression can be instructive. Note that these two methods have
different origins and therefore can produce very different results.

As for linear regression, it is a formal procedure for the linear approximation
by the least-squares method and gives a linear function of time for any series,
even if the series does not have any linear tendency at all. By contrast, Double
centring SSA gives us (usually, approximately) a linear component only if the
strong linear tendency is really present. On the other hand, Double centring does
not produce a precise linear function but only a pointwise approximation of it.
Roughly speaking, linear regression estimates the coefficients of a linear function,
while Double centring SSA estimates the values of a linear function at each point.

If the time series has a linear tendency and its length is rather large, then both
methods produce similar results. The difference appears for a relatively short time
series. For these series, the objective of the linear regression can be in disagree-
ment with the problem of searching for a linear tendency of the series.

Let us illustrate these statements by two examples.

Example 1.5 ‘Investment’: long time series with a linear tendency
The theory tells us (see Section 6.3.2) that Double centring SSA extracts (perhaps,
approximately) the linear component of the series if the series oscillates near this
linear component. Since linear regression automatically approximates any series
by a linear function, a correspondence between the results of both methods would
indicate that the linear function obtained by the regression method describes the
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actual tendency of the series, and thus it is not merely the result of a formal pro-
cedure.
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Figure 1.44 Investment: linear regression and Double centring results.

The example ‘Investment’ (the investment series of U.K. economic time series
data, quarterly, successive observations, Prothero and Wallis, 1976), illustrates
these considerations. The series is presented in Fig. 1.44, thick line.

Let us select the window length L = 24 in Double centring SSA, and take
both average triples for the reconstruction. Then the reconstructed component
(Fig. 1.44, thin line with black points) will resemble a linear function.

For comparison, the result of standard linear regression analysis (thin line) is
placed on the same plot. Since both lines (SSA reconstruction curve and linear
regression function) are very close, the general linear behaviour of the ‘Invest-
ment’ series can be considered as being confirmed. Note that the ‘Investment’
series can be regarded as a ‘long’ series since it oscillates rather rapidly around
the regression line.

The second example demonstrates the difference between these two methods
and shows the Double centring SSA capabilities for short series.

Example 1.6 ‘Hotels’: continuation of the extracted tendency
The ‘Hotels’ series (hotel occupied room, monthly, from January 1963 to De-
cember 1976, O’Donovan, 1983) is a good example for discussing the difference
between linear regression and Double centring SSA approaches to the extraction
of a linear tendency in a series. Fig. 1.45 depicts the initial series and its linear
regression approximation. Despite the fact that the series is not symmetric with
respect to the regression line and has an increasing amplitude, the whole linear
tendency seems to have been found in a proper way.

The second figure (Fig. 1.46) deals with the first 23 points of the series. Two
lines intersect the plot of the series. The thin one is the linear regression line
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Figure 1.45 Hotels: time series and its linear regression approximation.

calculated from this subseries. The thick line is the reconstruction of the series
produced by both average triples for the Double centring SSA with window length
L = 12. This Double centring curve is almost linear but differs from that of the
linear regression.
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Figure 1.46 Hotels: short interval. Regression and Double centring lines.

Fig. 1.47 shows the continuation of both lines for the first 72 points of the
‘Hotels’ series. The upper linear function (y = 543.6 + 3.2x) is a continuation
of the linear regression line of the Fig. 1.46. The lowest linear function (y =
556.8 + 1.9x) is the linear continuation of the Double centring line (Fig. 1.46). It
is very close to the middle linear function (y = 554.8+2.0x) which is the part of
the global linear regression line of Fig. 1.45.
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Figure 1.47 Hotels: continuation of linear functions.

Comparison of these lines shows that linear regression fails to find a good ap-
proximation of the main tendency of the whole series based on the first 23 points.
On the other hand, the Double centring line is very close to the global linear re-
gression line, but it uses only the first 23 points of the series rather than the full
number 168.

Note that using Single or Double centring SSA, one can extract not only con-
stants or linear components of time series. Other components of interest (such as
oscillatory ones) can be extracted in the same manner as in Basic SSA. For exam-
ple, for the series, containing the first 23 points of the ‘Hotels’ data and Double
centring with L = 12 (see Fig. 1.46), the eigentriples 1-2, 3-4, 5-6, 7, 8-9 and
10-11 describe harmonics with ω = 1/12, 2/12, 3/12, 6/12, 4/12 and 5/12,
respectively.

Moreover, if the time series has a general linear-like tendency, then the Double
centring approach is often preferable to Basic SSA.

1.7.2 Stationary series and Toeplitz SSA

If the lengthN of the series F is not sufficiently large and the series is assumed to
be stationary, then the usual recommendation is to replace the matrix S = XXT

by some other matrix, which takes into account the stationarity of the series.
Note first that we can consider the lag-covariance matrixC = S/K instead

of S for obtaining the SVD of the trajectory matrix X. Indeed, the difference
between the SVDs of the matrices S and C lies only in the magnitude of the
corresponding eigenvalues (for S they are K times larger); the singular vectors of
both matrices are the same. Therefore, we can use both S and C in Basic SSA
with the same effect.
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Denote by cij = cij(N) the elements of the lag-covariance matrix C. If the
time series is stationary, and K → ∞, then lim cij = Rf (|i − j|) as N → ∞,
where Rf (k) stands for the lag k term of the time series covariance function; see
Sections 1.4.1 and 6.4. (Recall that according to our agreement of Section 1.4.1,
any infinite stationary series has zero average.)

Therefore, the main idea is to take the Toeplitz version of the lag-covariance
matrix, that is to put equal values c̃ij in each matrix diagonal |i − j| = k. Of
course, the convergence c̃ij → Rf (|i− j|) must be kept.

There are several ways of getting the Toeplitz lag-covariance matrices from
the series (see Elsner and Tsonis, 1996, Chapter 5.3). The main one is to use the
standard estimate of the covariance function of the series and to transform it into
an L× L matrix. More precisely (see Anderson, 1994, Chapter 8.2), for the time
series F = (f0, . . . , fN−1) and a fixed window length L, we take the matrix C̃
with the elements

c̃ij =
1

N − |i− j|
N−|i−j|−1∑

m=0

fmfm+|i−j|, 1 ≤ i, j ≤ L, (1.32)

rather than Basic SSA lag-covariance matrix C = S/K with the elements

cij =
1
K

K−1∑
m=0

fm+i−1fm+j−1, 1 ≤ i, j ≤ L. (1.33)

Having obtained the Toeplitz lag-covariance matrix C̃ we calculate its ortho-
normal eigenvectors H1, . . . ,HL and decompose the trajectory matrix:

X =
L∑

i=1

HiZ
T
i , (1.34)

where Zi = XTHi. We thus obtain an orthogonal matrix decomposition of the
kind discussed in Section 4.2.1. Setting λi = ||Zi||2 and Qi = Zi/

√
λi (here we

formally assume that C̃ has full rank), we come to the decomposition of the tra-
jectory matrix X into a sum similar to the usual SVD. The grouping and diagonal
averaging can then be made in the standard way. Note that the numbers λi (which
may be called squared Toeplitz singular values) generally do not coincide with
the eigenvalues of the matrix C̃.

If the initial series is a sum of a constant series with the general term c0 and a
stationary series, then centring seems to be a convenient procedure (since we are
dealing with finite time series, the centring can be applied for c0 = 0 as well).
One way is to centre the entire series before calculating the matrix (1.32).

The other method is to apply the Single centring. For Toeplitz SSAwith the
lag-covariance matrix (1.32) this means that we extract the product

Mij =

 1
n(i, j)

n(i,j)−1∑
m=0

fm

  1
n(i, j)

n(i,j)−1∑
m=0

fm+|i−j|


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(here we used the notation n(i, j) = N − |i− j|) from c̃ij , find the eigenvectors
H1, . . . ,HL of the above matrix, compute the (single) centred trajectory matrix
X∗ as was described in Section 1.7.1, obtain Zi = (X∗)THi, and come to the de-
composition similar to (1.34) with an additional matrix term A corresponding to
the Single centring. Note that unlike Basic SSA, the Toeplitz SSA is not invariant
with respect to the substitution of K = N −L+1 for the window length L, even
without centring.

The Toeplitz construction of the lag-covariance matrix seems to have an ad-
vantage since the matrix elements (1.32) are generally closer than (1.33) to the
terms Rf (|i − j|) of the theoretical covariance function, due to a wider range
of averaging. Nevertheless, it is not universally better since we are not dealing
with the lag-covariance matrix itself but rather with some specific features of the
decompositions of the trajectory matrices, such as separability.

First, the Toeplitz SSA is not aimed at nonstationary series. If the series has
a strong nonstationary component, then Basic SSA seems to be preferable. For
example, if we are dealing with a pure exponential series, then it is described by a
single eigentriple (see Sections 1.6.1 and 5.1 for details) for any window length,
while Toeplitz SSA produces L eigentriples for window length L with harmonic-
like eigenvectors. The same effect takes place for the linear series, exponential-
cosine series, etc. In terms of Section 4.2.1, Toeplitz SSA often produces a de-
composition, which is not minimal.

Second, Toeplitz SSA generally produces a nonoptimal decomposition. The de-
composition of the trajectory matrix produced by SVD (it is used in Basic SSA
and Single and Double centring SSA) is optimal in the the sense that each eigen-
value is the solution of a certain optimization problem; in other words, each eigen-
value is as large as it can be. Therefore, the main series effects are described by the
leading SVD eigentriples, but even subsequent eigentriples can be meaningful.

If we have nonoptimal orthogonal decomposition of the trajectory matrix, it
is more ‘spread’ and the problem similar to the problem of small ‘almost equal
singular values’ becomes even more serious.

Moreover, for long stationary series, both methods give practically the same
results. Yet, for relatively short stationary and noisy series, Toeplitz SSA can be
advantageous.

Example 1.7 ‘Tree rings’: four modulated harmonics
Let us consider the ‘Tree rings’ example (see Section 1.3.2). The periodogram
(Fig. 1.48) of the series shows four sharp peaks corresponding approximately to
the periods T1 = 74, T2 = 52, T3 = 42 and T4 = 12.5.

If we take the window length L = 334, then Basic and Single centring SSA
(both using SVD) extract periodicities corresponding to T1 and T4 but produce a
mixture of the two other periodic components. Standard Toeplitz SSA with Single
centring works better (see Fig. 1.49) and extracts all the leading periodicities at
once.
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Figure 1.48 Tree rings: periodogram in periods up to T = 85.
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Figure 1.49 Tree rings: four periodic components. First 500 points.

Remark 1.1 In Example 1.7 we did not discuss whether the extracted period-
icities are the true ones or produced by the aperiodic component of the series (see
Section 6.4). Our aim was to demonstrate their extraction.

1.7.3 Close singular values

As was discussed in Section 1.6.2, close singular values of SVD cause difficulties
that are difficult to overcome by modifying the window length L. Nevertheless,
there are several techniques that can help to solve the problem. Let us discuss two
of them.

Copyright © 2001 CRC Press, LLC



(a) Series modification

Sometimes one can modify the series in such a manner that this problem disap-
pears. The theoretical base of such effects is the following simple fact: if the time
series F (1) and F (2) are weakly separable, then for a wide range of constants
c 	= 0 the time series F (1) and cF (2) are strongly separable. In practice, we use
this fact in some approximate sense.

Let us consider two examples of this kind.

1. If we want to extract a small slowly varying trend whose components are mixed
with other series components, then it can be worthwhile to add a constant to
the series and use a relatively small window length for the trend extraction.
Then the new trend will be described by the leading eigentriple, and there will
be no problem in its extraction. The added constant has to be subtracted from
the extracted series.

The example ‘England temperatures’ (Section 1.6.2) is of this kind if we deal
with it in the reverse manner; being centred, the time series is complex for the
rough trend extraction, but if we add to the centred series a constant, equal to
9.18 (that is, if we come back to the uncentered data), a rather wide range of
window lengths will provide the extraction.

2. Assume that our aim is extracting a harmonic with a known frequency ω and
this harmonic is mixed with some other time series components due to their
close singular values. If the selected window length L provides a weak separa-
bility of the harmonic of interest, then we can add a harmonic of the same fre-
quency (and some amplitude and phase) to the series. Under the proper choice
of these parameters, the singular values corresponding to the harmonic will be
enlarged enough so that they will not be mixed with any other series compo-
nents (for example, the harmonic will be described by the leading eigentriples).
Therefore, the modified harmonic will be easily extracted.

Example 1.8 ‘Rośe wine’: adding a harmonic component
To illustrate the extraction of a harmonic component from the series, let us con-
sider the example ‘Rosé wine’ described in Section 1.4.1 (see Fig. 1.17 for the
time series and Fig. 1.18 for its periodogram). As was mentioned in Section 1.6,
the harmonics with frequencies 4/12 and 5/12 are mixed under the choice L = 84.
Moreover, other window lengths lead to mixing of other harmonics due to a com-
plex nonstationary structure of the series.

However, if we add to the series a harmonic with frequency 4/12 (that is, pe-
riod 3), zero phase and amplitude 30, then the new quarterly harmonics will be
extracted under the choice of the same L = 84 and the pair of the second and
third eigentriples. The final result is obtained by subtracting the additional har-
monic component.

Note that the problem of close singular values can be solved by other modifi-
cations of Basic SSA as well. For instance, the Toeplitz SSA helps in extracting
harmonic components in the ‘Tree rings’ example of Section 1.7.2. However, this
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example seems to be a good illustration of the advantages of a concrete technique
related to the problem of close singular values rather than an illustration of the
absolute advantage of the Toeplitz SSA.

(b) Sequential SSA

The mixing problem of the time series components (formally, the problem of close
singular values for weakly separable series components) may be resolved in one
more manner, by the so-called Sequential SSA.

The two-step Sequential SSA can be described as follows. First, we extract se-
veral time series components by Basic SSA with a certain window length L1.
Then we apply Basic SSA to the residuals and extract several series compo-
nents once again. The window length L2 of the second stage is generally different
from L1.

Having extracted two sets of time series components, we can group them in
different ways. For instance, if a rough trend has been extracted at the first stage
and other trend components at the second stage, then we have to add them together
to obtain the accurate trend.

Let us illustrate this by an example.

Example 1.9 Long ‘Unemployment’ series: extraction of harmonics
Consider the ‘Unemployment’ series starting from January 1948 (note that ‘Un-
employment’ example of Section 1.3.6 has April 1950 as its starting point). The
series is depicted in Fig. 1.50 (thin line).
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Figure 1.50 Long ‘Unemployment’ series: time series from January 1948.

Comparing Fig. 1.50 with Fig. 1.12, we see that the trend of the long ‘Unem-
ployment’ series (thick line) has a more complex structure than that of the shorter
one. Selection of a large window length would mix the trend and periodic com-
ponents of the series. For small window lengths the periodic components are not
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separable from each other, and therefore these lengths are not suitable. Hence,
Basic SSA fails to extract (amplitude-modulated) harmonic components of the
series.

The two-stage Sequential SSA proves to be a better method in this case. If
we apply Basic SSA with L = 12 to the initial series, then the first eigentriple
will describe the trend, which is extracted rather well: the trend component does
not include high frequencies, while the residual component practically does not
contain low ones (see Fig. 1.51 for the residual series).
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Figure 1.51 Long ‘Unemployment’ series: trend residuals.
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Figure 1.52 Long ‘Unemployment’ series: annual periodicity.

The second Sequential SSA stage is applied to the residual series with L =
180. Since the series is amplitude modulated, the main periodogram frequencies
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(annual ω = 1/12, half-annual ω = 1/6 and 4-months ω = 1/4) are somewhat
spread out, and therefore each (amplitude-modulated) harmonic can be described
by several (more than 2) eigentriples.

Periodogram analysis of the obtained singular vectors shows that the leading
14 eigentriples with share 91.4% can be related to 3 periodicities: the eigentriples
1, 2, 5− 8, 13, 14 describe the annual amplitude-modulated harmonic (Fig. 1.52),
the eigentriples 3, 4, 11 − 12 are related to half-year periodicity, and the eigen-
triples 9, 10 describe the 4-months harmonic.

The same technique can be applied to the ‘Births’ series if we want to obtain
better results than those described in Section 1.3.4. (See Section 1.6.2 for a dis-
cussion concerning the large window length problem in this example.)

1.7.4 Envelopes of highly oscillating signals

The capabilities of SSA in separating signals with high and low frequencies can
be used in a specific problem of enveloping highly oscillating sequences with
slowly varying amplitudes. The simple idea of such a technique can be expressed
as follows.
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Figure 1.53 EEG:α-rhythm. First 1200 points.

Let fn = A(n) cos(2πωn) where ω is large and A(n) is slowly varying. Then

gn
def= 2f2n = A2(n) +A2(n) cos(4πωn). (1.35)

SinceA2(n) is slowly varying and the second term on the right-hand side of (1.35)
oscillates rapidly, one can gather the slowly varying terms of the SSA decompo-
sition for gn, and therefore approximately extract the term A2(n) from the series
(1.35). All we need to do then is to take the square root of the extracted term.
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Figure 1.54 EEG: series G and its slowly varying component. First 600 points.

Example 1.10 EEG: envelope of α-rhythm
This idea is illustrated by the time series F representing an α-rhythm component
of an electroencephalogram (EEG). The whole series F consists of approximately
3500 points; its first 1200 points can be seen in Fig. 1.53. The series can be de-
scribed as an amplitude-modulated harmonic with the main frequency approxi-
mately equal to 1/20.

� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����

���

���

�

��

��

���

Figure 1.55 EEG:α-rhythm and its envelope. First 600 points.

Let us consider the square of the initial series multiplied by 2 and denote it by
G. Taking window length L = 60 and reconstructing the low-frequency part of
the time series G from the eigentriples 1, 4, 7 and 10, we obtain an estimate of
A2(n) (the first 600 points of the reconstructed series are depicted in Fig. 1.54 by
the thick line; the thin line corresponds to the series G).

By taking the square root of the estimate we obtain the result. (See Fig. 1.55,
where the first 600 points of the initial series with its envelope are depicted.)

It may be interesting to note that the α-rhythm time series under consideration
was extracted from the initial EEG signal by 5-stage Sequential SSA with differ-
ent window lengths (the largest was equal to 600).

Note also that to obtain the resulting envelope we may need some smoothing to
remove very small but existing parts of highly oscillating components. As usual,
Basic SSA with small window length would do the job.
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CHAPTER 2

SSA forecasting

A reasonable forecast of a time series can be performed only if the following
conditions are met:

1. The series has a structure.

2. A mechanism (method, algorithm) identifying this structure is found.

3. A method of the time series continuation, based on the identified structure,
is available.

4. The structure of the time series is preserved for the future time period over
which we are going to forecast (continue) the series.

All these conditions are natural. Of course, condition 4 cannot be validated
with the help of the data to be forecasted. Moreover, the structure of the series can
hardly be identified uniquely (for example, if the series has a noise component).
Therefore, the situation of different (and even ‘contradictory’) forecasts is not
impossible. Thus, it is important not only to realize and indicate the structure
under continuation, but also to check its stability.

At any rate, a forecast can be made only if a certain model is built. The model
can either be derived from the data or at least checked against the data. In SSA
forecasting, these models can be described with the help of the linear recurrent
formulae (or equations). Note that in general the dimension (in other words, the
order) of the recurrent formulae may be unknown.

The class of series governed by linear recurrent formulae (LRFs) is rather wide
and important for practical implications. For instance, an infinite series is gover-
ned by some LRF if and only if it can be represented as a linear combination of
products of exponential, polynomial and harmonic series. (See Chapter 5 for a
review of the entire theory.)

The series governed by LRFs admits natural recurrent continuation since each
term of such a series is equal to a linear combination of several preceding terms.
Of course, the coefficients of this linear combination can be used for the continu-
ation as well.

It is important that we need not necessarily search for an LRF of minimal di-
mension. Indeed, any other LRF governing the series produces the same continu-
ation.

The theory of Section 5.2, Chapter 5, indicates how to find an LRF, which
governs a series, with the help of SSA. The general idea can be described as
follows.
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Let d be the minimal dimension of all LRFs governing F . (In this case we shall
say that the time series F is governed by a minimal LRF of dimension d.) It can
be proved that if the window length L is larger than d, and the length of the series
is sufficiently large, then the trajectory space of the series F is d-dimensional.
Basic SSA provides a natural basis for the trajectory space.

The trajectory space determines (under mild and natural restrictions) an LRF
of dimension L−1 that governs the series. If we apply this LRF to the last terms
of the initial series F , we obtain the continuation of F .

The same idea may work if we want to continue an additive component F (1)

of a series F . Here we assume that F (1) is governed by an LRF and is strongly
separable from the residual series F (2) = F−F (1) for the selected value of the
window length L. It should be mentioned that if two series are strongly separable,
then each of them must satisfy some LRF (see Remark 6.1 in Section 6.1.1).

In practice, it is not reasonable to assume that the series of interest is governed
by an LRF of relatively small dimension. In this way we come to the concept
of approximate recurrent continuation, which can and will also be called the re-
current forecasting. We thus suppose that the series F under consideration can
be expressed as a sum of the series F (1) admitting recurrent continuation and the
residual series F (2). If we consider the residuals as a noise, then we have the prob-
lem of forecasting the signal F (1) in the presence of the noise F (2). We may also
have the problems of forecasting the series F (1) regarded as a trend or a seasonal
component of F .

The main assumption is that for a certain window length L, the series com-
ponents F (1) and F (2) are approximately strongly separable. Then, acting as in
Basic SSA, we reconstruct the series F (1) with the help of a selected set of eigen-
triples and obtain approximations to both the series F (1) and its trajectory space.
In other words, we obtain both the LRF, approximately governing F (1), and the
initial data for this formula. Hence we obtain a forecast of the series F (1).

The theory of the method can be found in Chapter 5. The contents of the present
Chapter are as follow.

Section 2.1 formally describes the general SSA forecasting algorithm. The rest
of the chapter is devoted to study of this algorithm and related discussions.

Section 2.2 describes the principles of SSA forecasting and its relations to lin-
ear recurrent formulae. Several modifications of the general SSA forecasting al-
gorithm are considered in Section 2.3.

Section 2.4 is devoted to a description of different ways of constructing confi-
dence intervals that can be used for checking the forecast accuracy and stability.
After the summarizing Section 2.5, several forecasting examples are presented in
Section 2.6.

When dealing with continuation, we always need to bear in mind the length of
the series under continuation. Therefore, we usually incorporate this length into
the notation of the series and write, for example, FN rather than simply F .
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2.1 SSA recurrent forecasting algorithm

Let us formally describe the forecasting algorithm under consideration.

Algorithm inputs:
(a) Time series FN = (f0, . . . , fN−1), N > 2.
(b) Window length L, 1 < L < N .
(c) Linear space Lr ⊂ IRL of dimension r < L. It is assumed that eL /∈

Lr, where eL = (0, 0, . . . , 0, 1)T ∈ IRL. In other terms, Lr is not a ‘vertical’
space. In practice, the space Lr is defined by its certain orthonormal basis, but the
forecasting results do not depend on this concrete basis.

(d) Number M of points to forecast for.

Notations and Comments:
(a) X = [X1 : . . . : XK ] (where K = N − L + 1) is the trajectory matrix of

the time series FN .
(b) P1, . . . , Pr is an orthonormal basis in Lr.

(c) X̂ def= [X̂1 : . . . : X̂K ] =
r∑

i=1

PiP
T
i X. The vector X̂i is the orthogonal

projection of Xi onto the space Lr.
(d) X̃ = H X̂ = [X̃1 : . . . : X̃K ] is the result of the Hankelization of the

matrix X̂. The matrix X̃ is the trajectory matrix of some time series F̃N =
(f̃0, . . . , f̃N−1).

(e) For any vector Y ∈ IRL we denote by Y� ∈ IRL−1 the vector consisting
of the last L − 1 components of the vector Y , while Y � ∈ IRL−1 is the vector
consisting of the first L− 1 components of Y .

(f) We set ν2 = π21 + . . .+ π2r , where πi is the last component of the vector Pi

(i = 1, . . . , L). Since ν2 is the squared cosine of the angle between the vector eL
and the linear space Lr, it can be called the verticality coefficient of Lr.

(g) Suppose that eL /∈ Lr. (In other words, we assume that Lr is not a vertical
space.) Then ν2 < 1. It can be proved (see Chapter 5, Theorem 5.2) that the last
component yL of any vector Y = (y1, . . . , yL)T ∈ Lr is a linear combination of
the first components y1, . . . , yL−1:

yL = a1yL−1 + a2yL−2 + . . .+ aL−1y1.

VectorR = (aL−1, . . . , a1)T can be expressed as

R =
1

1− ν2
r∑

i=1

πiP
�
i (2.1)

and does not depend on the choice of a basis P1, . . . , Pr in the linear space Lr.

SSA recurrent forecasting algorithm:
In the above notations, define the time series GN+M = (g0, . . . , gN+M−1) by
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the formula

gi =


f̃i for i = 0, . . . , N − 1,
L−1∑
j=1

ajgi−j for i = N, . . . , N +M − 1. 
(2.2)

The numbers gN , . . . , gN+M−1 form the M terms of the SSA recurrent forecast.
For brevity, we call this algorithm SSA R-forecasting algorithm.

Remark 2.1 Let us define the linear operator P(r) : Lr "→ IRL by the formula

P(r)Y =
(

Y�
RTY�

)
, Y ∈ Lr. (2.3)

If setting

Zi =
{
X̃i for i = 1, . . . ,K,
P(r)Zi−1 for i = K + 1, . . . ,K +M, 

(2.4)

the matrix Z = [Z1 : . . . : ZK+M ] is the trajectory matrix of the series GN+M .
Therefore, (2.4) can be regarded as the vector form of (2.2).

If Lr is spanned by certain eigenvectors corresponding to the SVD of the trajec-
tory matrix of the series FN , then the corresponding SSA R-forecasting algorithm
will be called the Basic SSA R-forecasting algorithm.

Remark 2.2 Denote by L(L) = span(X1, . . . , XK) the trajectory space of the
series FN . Suppose that dim L(L) = r < L and eL /∈ L(L). If we use the Basic
SSA R-forecasting algorithm with Lr = L(L), then X = X̂ = X̃ and therefore
F̃N = FN . This means that the initial points gN−L+1, . . . , gN−1 of the forecast-
ing recurrent formula (2.2) coincide with the last L−1 terms of the series FN .

2.2 Continuation and approximate continuation

The algorithmic scheme described in the previous section is related to both the
series, which are governed by the linear recurrent formulae, and the SSA method-
ology. Let us describe the ideas that lead to SSA forecasting.

2.2.1 Linear recurrent formulae and their characteristic polynomials

The theory of the linear recurrent formulae and associated characteristic polyno-
mials is well known (for example, Gelfond, 1967, Chapter V, §4). However, we
provide here a short survey of the most essential results. A more formal descrip-
tion can be found in Chapter 5.
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(a) Series governed by linear recurrent formulae

By definition, a nonzero series FN = (f0, . . . , fN−1) is governed by a linear
recurrent formula (LRF) of dimension not exceeding d ≥ 1 if

fi+d =
d∑

k=1

aifi+d−k (2.5)

for certain a1, . . . , ad with ad 	= 0 and 0 ≤ i ≤ N − d + 1. In the notation of
Section 5.2 this is expressed as fdim(FN ) ≤ d. If

d = min(k : fdim(FN ) ≤ k),

then we write fdim(FN ) = d and call d the finite-difference dimensionof the
series FN . In the case when FN is governed by LRF (2.5) and d = fdim(FN ),
the formula (2.5) is called minimal.

If (2.5) holds but we do not require that ad 	= 0, then the time series FN satisfies
the LRF (2.5).

The class of series governed by LRFs is rather wide: it contains harmonic,
exponential and polynomial series and is closed under term-by-term addition and
multiplication. For instance, the exponential series fn = eαn is governed by the
LRF fn = afn−1 with a = eα, the harmonic series fn = cos(2πωn+φ) satisfies
the equation

fn = 2 cos(2πω) fn−1 − fn−2,
and so on. Other examples, as well as theoretical results, can be found in Sec-
tion 5.2.

The difference between minimal and arbitrary LRFs governing the same series
can be illustrated by the following example. For the exponential series FN with
fn = an, a = eα and N ≥ 3, the LRF fn = afn−1 is the minimal one and
fdim(FN ) = 1. On the other hand, the series fn = an satisfies the equation
fn = 2afn−1 − a2fn−2 for 2 ≤ n ≤ N − 1.

To understand whether the LRF (2.5) is minimal for the series FN with suf-
ficiently large N , one can apply the following procedure. Consider the window
length L (1 < L < N ) and suppose that d < min(L,K). In view of (2.5), the
L-lagged vectors X1, . . . , XK satisfy the vector recurrent equation

Xi+d =
d∑

k=1

aiXi+d−k, 1 ≤ i ≤ K − d.

Therefore, each Xi is a linear combination of X1, . . . , Xd. If these vectors are
linearly independent, then the LRF (2.5) is minimal and vice versa.

These assertions can be formulated in other terms. Denote by L(L) the trajec-
tory space of the series FN satisfying (2.5). If d < min(L,K), then the equalities
fdim(FN ) = d and dimL(L) = d are equivalent. Such a reformulation leads to a
new concept.
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Let 1 ≤ d ≤ L. By definition, an arbitrary series FN has L-rank d (i.e.,
rankL(FN ) = d) if dim L(L) = d.

If rankL(FN ) = d for any L such that d < min(L,K), then the time series
FN has rankd (briefly, rank(FN ) = d).

Roughly speaking, each time series FN with fdim(FN ) = d has rank, and
this rank is equal to d. The following simple example shows that the opposite
assertion is not true: let us takeN = 7 and FN = (1, 1, 1, 1, 1, 1, 2); then for each
L = 2, . . . , 6 we have rankL(FN ) = 2, while no LRF of dimension d < 6 can
govern this series.

However, if rankL(FN ) = d < L, then the series FN (with the exception of
several first and last terms) is governed by an LRF of dimension d0 ≤ d.

This LRF can be found by the procedure described in Theorem 5.1 of Chapter 5,
but the procedure seems to be difficult for practical computations.

Moreover, let L > rankL(FN ) and eL /∈ L(L). Let us denote r = dimL(L)

and take Lr = L(L). Then, as shown in Theorem 5.2 in the same chapter, the
series FN satisfies the LRF

fL+i−1 = a1fL+i−2 + . . .+ aL−1fi, 0 ≤ i ≤ K − 1, (2.6)

whereR = (aL−1, . . . , a1)T is defined in (2.1).
This fact has a purely geometric origin; due to Theorem 5.2, if L ⊂ IRL is

a linear subspace of dimension r < L and eL /∈ L, then the last component
yL of any vector Y ∈ L is equal to the inner product RTY �, where the vector
Y � ∈ IRL−1 consists of the first L−1 components of the vector Y and P1, . . . , Pr

is an orthonormal basis of L.

(b) Characteristic polynomials and their roots

Let the series FN = (f0, . . . , fN−1) have finite-difference dimension d and is
governed by the LRF

fd+i = a1fd+i−1 + a2yd+i−2 + . . .+ adyi, ad 	= 0, (2.7)

for 0 ≤ i ≤ N − d. Consider the characteristic polynomial of the LRF (2.7):

Pd(λ) = λd −
d∑

k=1

akλ
d−k.

Let λ1, . . . , λp be the different (complex) roots of the polynomial Pd(λ). Since
ad 	= 0, these roots are not equal to zero. We also have k1 + . . .+ kp = d, where
km are the multiplicities of the roots λm (m = 1, . . . , p).

Denote fn(m, j) = njλnm for 1 ≤ m ≤ p and 0 ≤ j ≤ km−1. Theorem 5.3 of
Section 5.2 tells us that the general solution of the equation (2.7) is

fn =
p∑

m=1

km−1∑
j=0

cmjfn(m, j), (2.8)
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with certain complex cmj . The specific values of the cmj are defined by the first
d elements of the series FN : f0, . . . , fd−1.

Thus, each root λm produces a component

f (m)n =
km −1∑
j=0

cmjfn(m, j) (2.9)

of the series fn.
Let us fix m and consider this component in the case km = 1, which is the

main case in practice. Set λm = ρei2πω , ω ∈ (−1/2, 1/2], where ρ > 0 is the
modulus (absolute value) of the root and 2πω is its polar angle.

If ω is either 0 or 1/2, then λm is a real root of the polynomial Pd(λ) and the
series component f (m)n is real and is equal to cm0λnm. This means that f (m)n =
Aρn for positive λm and f (m)n = A (−1)nρn = Aρn cos(πn) for negative λm.
The latter case corresponds to the exponentially modulated saw-tooth sequence.

All other values of ω lead to complex λm. In this case, Pd has a complex conju-
gate root λl = ρe−i2πω of the same multiplicity kl = 1. We thus can assume that
0 < ω < 1/2 and describe a pair of conjugate roots by the pair of real numbers
(ρ, ω) with ρ > 0 and ω ∈ (0, 1/2).

If we add together the components f (m)n and f (l)n corresponding to these con-
jugate roots, then we obtain the real series Aρn cos(2πωn + φ) with A and φ
expressed in terms of cm0 and cl0.

The asymptotic behaviour of f (m)n essentially depends on ρ = |λm|. Let us
consider the simplest case km = 1 as above. If ρ < 1, then f (m)n rapidly tends to
zero and asymptotically has no influence on the whole series (2.8). Alternatively,
the root with ρ > 1 and |cm0| 	= 0 leads to a rapid increase of |fn| (at least for a
certain subsequence of n).

For example, if λm = ρ = 0.8 and |cm0| 	= 0, then |f (m)n | becomes smaller
by approximately a factor 10 in 10 time steps and by a factor 5·109 in 100 steps.
If λm = ρ = 1.2 (and |cm0| 	= 0), then |f (m)n | is increased approximately 6-fold
in 10 time steps and 8 ·107-fold in 100 steps. Similar effects hold for the series
component Aρn cos(2πωn+φ) corresponding to a pair of conjugate complex
roots: the series amplitude Aρn rapidly decreases or increases depending on the
inequalities ρ < 1 or ρ > 1.

The root λm with km > 1 produces km terms in the sum (2.9). For example,
if λm = 1 and km = 2, then f (m)n =An+B for some A and B. In other words,
the root 1 of multiplicity 2 generates a linear series. Example 5.10 of Section 5.2
treats the general case km = 2 in detail.

If the series FN has finite-difference dimension d, then the characteristic poly-
nomial of its minimal LRF (2.7) has d roots. As was mentioned above, the same
series satisfies many other LRFs of certain dimensions r > d. Consider such an
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LRF

fr+i = b1fr+i−1 + b2yr+i−2 + . . .+ bryi. (2.10)

The characteristic polynomial Pr(λ) of the LRF (2.10) has r roots with d roots
(we call them the main roots) coinciding with the roots of the minimal LRF. The
other r−d roots are extraneous: in view of the uniqueness of the representation
(2.9), the coefficients cmj corresponding to these roots are equal to zero. However,
the LRF (2.10) governs a wider class of series than the minimal LRF (2.7).

Since the roots of the characteristic polynomial specify its coefficients uniquely,
they also determine the corresponding LRF. Consequently, by removing the ex-
traneous roots of the characteristic polynomial Pr(λ), corresponding to the LRF
(2.10), we can obtain the polynomial describing the minimal LRF of the series.

Example 2.1 Annual seasonality
Let the series FN have the period 12 (for instance, this series describes a season-
ality). Then it can be expressed as a sum of a constant and six harmonics:

fn = c0 +
5∑

k=1

ck cos(2πnk/12 + φk) + c6 cos(πn). (2.11)

Under the condition that ck 	= 0 for k = 0, . . . , 6 the series has finite-difference
dimension 12. In other words, the characteristic polynomial of the minimal LRF
governing the series (2.11) has 12 roots. All these roots have the modulus 1. Two
real roots (+1 and −1) correspond to the first and the last terms in (2.11). The
harmonic term with frequency ωk = k/12 generates two complex conjugate roots
exp(±i2πk/12), which have polar angles ±2πk/12.

���� ���� � ��� ���
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Figure 2.1 Annual seasonality: main and extraneous roots.

Let us now consider an LRF that is not minimal. Let N be large enough. If
we select certain L > 13 and take r = 12, Lr = L(L)(FN ), then the vector
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R = (aL−1, . . . , a1)T defined in (2.1) produces the LRF

fi+L−1 = a1fi+L−2 + . . .+ aL−1fi, (2.12)

which is not minimal but governs the series (2.11).
Let us take c0 = . . . = c6 = 1, φ1 = . . . = φ5 = 0 and L = 24. The roots

of the characteristic polynomial of the formula (2.12) are depicted in Fig. 2.1. We
can see that the main 12 roots of the polynomial form a regular dodecagon, with
the vertices on the unit circle of the complex plane. Eleven extraneous roots can
be seen around zero; they have small moduli.

2.2.2 Recurrent continuation of time series

If the time series FN is governed by an LRF (2.10) of dimension r < N , then
there exists a natural recurrent continuation of such a series produced by the same
formula (2.10). Whether LRF is minimal or not is of no importance since the
extraneous roots have no influence on the series FN .

(a)L-continuation

It is important to reformulate the concept of recurrent continuation in purely geo-
metrical terms. Let us start with a definition.

Consider a time series FN = (f0, . . . , fN−1) and fix a window length 1 <
L < N . Denote by X1, . . . , XK the corresponding L-lagged vectors, and set
L(L) = span(X1, . . . , XK). Let d = dimL(L). (In other terms, the L-rank of
the series FN is equal to d.) Evidently, d ≤ min(L,K).

We say that the series FN admits a continuation in L(L) (or, briefly, admitsL-
continuation) if there exists a uniquely defined f̃N such that all L-lagged vectors
of the series F̃N+1 = (f0, . . . , fN−1, f̃N ) belong to L(L). In this case, the series
F̃N+1 (as well as the number f̃N ) will be called the one-stepL-continuation of
the series FN .

Theorem 5.4 and Remark 5.9 in Section 5.3 provide the complete description
of those series that admit L-continuation. For the moment, the following is im-
portant.

1. If eL ∈ L(L), then FN does not admit L-continuation. As a consequence, if
d = L, then the series cannot be L-continued since the uniqueness condition
does not hold.

2. If d < L ≤ K and eL 	∈ L(L), then the series FN admits L-continuation. From
now on we assume that these assumptions concerning L(L) are satisfied.

3. The one-step L-continuation of the series FN can be performed by the formula

f̃N =
L−1∑
k=1

ak fN−k, (2.13)
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where the vectorR = (aL−1, . . . , a1)T is defined in the formula (2.1) applied
to the space Lr = L(L).

4. The series FN is governed by the same LRF (2.13), that is

fi+L =
L−1∑
k=1

ak fi+L−k, 0 ≤ i ≤ N − L− 1.

5. If the series FN admits a one-step L-continuation, then it can be L-continued
for an arbitrary number of steps. Therefore, we can consider an infinite series
F which is the L-continuation of FN .

6. Let the series FN satisfy an LRF

fi+d0 =
d0∑
k=1

bk fi+d−k, 0 ≤ i ≤ N − d0 − 1, (2.14)

and d0 ≤ min(L − 1,K). Then d ≤ d0, eL /∈ L(L) and the series will admit
L-continuation, which can be produced by the same formula (2.14).

These properties are not surprising in view of the results discussed above concern-
ing the correspondence between the series with fdim(FN ) = d and rankL(FN ) =
d. Reformulated in terms of continuation, this correspondence means that under
the conditions rankL(FN ) < L ≤ K and eL /∈ L(L) the concepts of recurrent
continuation and L-continuation are equivalent.

(b) Recurrent continuation and Basic SSA forecasting

Let us return to the forecasting algorithm of Section 2.1, considering the case of
Basic SSA R-forecasting.

Suppose that Lr = L(L), eL /∈ L(L) and r < L ≤ K. Then

r = rankL(FN ) = fdim(FN )

and the series FN is governed by an LRF of order r. In other words, the series FN

admits L-continuation.
Since the vectors Xi belong to the linear space Lr, the matrix X̃ of the fore-

casting algorithm coincides with the trajectory matrix X for the initial series FN .
Denote by FN+M recurrent continuation of the series FN for M steps. This

continuation can be performed with the help of the LRF (2.6), as the latter gov-
erns the series FN . By the algorithm description, the forecasting formula (2.2) is
produced by the same LRF (2.6).

Therefore, the seriesGN+M defined by the formula (2.2) is equal to FN+M and
the SSA R-forecasting algorithm with Lr = L(L) produces recurrent continuation
of the series FN . The vector form (2.4) of the algorithm corresponds to the L-
continuation.

To obtain the vector R, we must have an orthonormal basis of the linear space
L(L), see formula (2.1). Dealing with SSA, the SVD of the trajectory matrix
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X for the series FN provides us with the eigenvectors (left singular vectors)
U1, . . . , Ur, which form a natural basis of L(L). Therefore, if the series FN admits
L-continuation, the latter can be performed with the help of SSA.

Other choices of Lr can lead to continuation of the series components. Let
FN = F

(1)
N + F

(2)
N with nonzero F (1)N and F (2)N . Denote the L-lagged vectors of

the series F (1)N by X(1)1 , . . . , X
(1)
K and set L(L,1) = span(X(1)1 , . . . , X

(1)
K ).

Let r = dimL(L,1) and assume that r < L ≤ K and eL /∈ L(L,1). Then
the series F (1)N admits L-continuation and the SSA R-forecasting algorithm with
Lr = L(L,1) performs this continuation.

Suppose that series F (1)N and F (2)N are strongly separable for the window length
L ≤ K (see Section 1.5) and denote by X the trajectory matrix of the series FN .
Then the SVD of the matrix X produces both the space Lr and the series F (1)N .

Indeed, let Ui (i = 1, . . . , L) be the eigenvectors of the matrix S = XXT and
let I = {j1, . . . , jr} ⊂ {1, . . . , L} be the set of indices corresponding to the time
series F (1)N . If we take Pi = Uji 

, i = 1, . . . , r, then Lr = span(P1, . . . , Pr) and

r < L. The series F (1)N can be obtained in terms of the resultant Hankel matrix,
which is produced by the grouping of the elementary matrices corresponding to
the set of indices I .

Therefore, Basic SSA gives rise to the continuation of the series component
which is accomplished by the Basic SSA R-forecasting algorithm. Note that if
F
(1)
N and F (2)N are strongly separable, then both dimensions of their trajectory

spaces are smaller than L.

2.2.3 Approximate continuation

The problems of exact continuation have mainly a theoretical and methodological
sense. In practice, it is not wise to assume that the series obtained by measure-
ments is governed by some LRF of relatively small dimension. Thus, we pass to
the concept of approximate continuation, which is of greater importance in prac-
tice.

(a) Approximate separability and forecasting errors

Let FN = F
(1)
N + F

(2)
N and suppose that the series F (1)N admits a recurrent con-

tinuation. Denote by d the dimension of the minimal recurrent formula governing
F
(1)
N . If d < min(L,K), then d = rankL(F

(1)
N ).

If F (1)N and F (2)N are strongly separable for some window length L, then we

can perform recurrent continuation of the series F (1)N by the method described

in Section 2.2.2. We now assume that F (1)N and F (2)N are approximately strongly

separable and discuss the problem of approximate continuation of the series F (1)N .

If F (2)N is small enough and signifies an error or noise, this continuation can

be regarded as a forecast of the signal F (1)N in the presence of noise F (2)N . In
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other cases we can describe the problem as that of forecasting an interpretable
component F (1)N of FN : for example, forecasting its trend or seasonal component.

As above, to do the continuation we use the Basic SSA R-forecasting algorithm
described in Section 2.1. Formally, we assume that the following conditions hold.

1. The series of length N and window length L provide approximate strong
separability of the series F (1)N and F (2)N .

2. Let

X =
∑
i

√
λiUiV

T
i

be the SVD of the trajectory matrix X of the series FN . Then the choice of
the eigentriples {(√λi, Ui, Vi)}i∈I , I = (i1, . . . , ir), associated with F (1)N

allows us to achieve (approximate) separability.

3. d
def= fdim(F (1)N ) ≤ r < L ≤ K.

4. eL /∈ span(Ui, i ∈ I). In other terms,
∑

i∈I u
2
iL < 1, where uiL is the last

component of the eigenvector Ui.

If these conditions hold, then we can apply the (Basic) SSA R-forecasting algo-
rithm, taking Lr = span(Ui, i ∈ I) and Pj = Uij 

. The result gN , . . . , gN+M−1
is called the approximate recurrent continuation of the series FN .

Let us discuss the features of this forecasting method. The forecast series gn
(n ≥ N ) defined by (2.2), generally does not coincide with recurrent continuation
of the series F (1)N . The errors have two origins. The main one is the difference

between the linear space Lr and L(L,1), the trajectory space of the series F (1)N .
Since the LRF (2.2) is produced by the vectorR and the latter is strongly related to
the space Lr (see Proposition 5.5 of Chapter 5), the discrepancy between Lr and
L(L,1) produces an error in the LRF governing the forecast series. In particular,
the finite-difference dimension of the forecast series gn (n ≥ N ) is generally
greater than d.

The other origin of the forecasting errors lies in the initial data for the forecast.
For recurrent continuation, the initial data is f (1)N−L+1, . . . , f

(1)
N−1, where f (1)n is the

nth term of the series F (1)N . In the Basic SSA R-forecasting algorithm, the initial
data consists of the last L−1 terms gN−L+1, . . . , gN−1 of the reconstructed series.
Since generally f (1)n 	= gn, the initial data produces its own error of forecasting.

On the other hand, if the quality of approximate separability of F (1)N and F (2)N

is rather good and we select the proper eigentriples associated with F (1), then we
can expect that the linear spaces Lr and L(L,1) are close. Therefore, the coeffi-
cients in the LRF (2.2) are expected to be close to those of the LRF governing
recurrent continuation of the series F (1)N . Analogously, approximate separability

implies that the reconstructed series gn is close to f (1)n , and therefore the errors of
the initial forecasting data are small. As a result, in this case we can expect that
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the Basic SSA R-forecasting procedure provides a reasonable approximation to
recurrent continuation of F (1)N , at least in the first few steps.

The following artificial example illustrates the role of separability in forecast-
ing.

Example 2.2 Separability and forecasting
Let us consider the series FN = F

(1)
N + F

(2)
N with N = 100,

fn = f (1)n + f (2)n , f (1)n = 3an, f (2)n = sin(2πn/10)

and a = 1.01. Note that the series F (2)N has finite-difference dimension 2 and F (1)N

is governed by the minimal LRF f (1)n = af
(1)
n−1.

If we want to forecast the series F (1)N , then we have to choose the window
length L and take just one eigenvector of the corresponding SVD as the basis of
the linear space L1. (In this example, the leading eigenvector is acceptable for a
wide range of L.)

Evidently, the forecasting result depends onL. The choice of the window length
L can be expressed in terms of separability: a proper L ought to provide good
separability characteristics. Let us compare the choice of two window lengths,
L = 50 and L = 15, from the viewpoint of forecasting. Since exponential and
harmonic series are asymptotically separable, the window length L = 50 seems
to provide a good separation, while L = 15 should be regarded as too small.

The results for both Basic R-forecasting procedures are depicted in Fig. 2.2,
where the top thick line starting at n = 101 corresponds to L = 50, and the
analogous bottom thick line relates to L = 15. The thin line indicates the initial
series FN continued up to n = 190, which is the last forecasting point.
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Figure 2.2 Forecasting accuracy: two variants of window length.
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For L = 50, the choice of the first eigentriple in correspondence with F (1)N

leads to the w-correlation ρ(w)12 = 0.0001 and the maximum cross-correlation
ρ(L,K) = 0.034. Therefore, the achieved separability should be regarded as rather
good. If we take L = 15, then we obtain ρ(w)12 = 0.0067 and ρ(L,K) = 0.317,
which means that the separation is poorer.

If we compare the forecasting results at the point n = 190, then we observe
that the window length L = 50 provides the relative forecast error of about 2%,
while the choice L = 15 gives almost 9%. This difference is not surprising since
the window length L = 15 is too small for achieving good separability.

Note that both forecasts underestimate the true series. This can be explained in
terms of the characteristic polynomials. Indeed, the main root of the polynomial
P14(λ) corresponding to L = 15 is equal to 1.0091. The analogous root for L =
50 is 1.0098. The (single) root of the polynomial corresponding to the minimal
LRF governing F (1)N is a = 1.01. The arrangement of the roots coincides with the

arrangement of the two forecasts and the exponential series f (1)n = an.

(b) Approximate continuation and the characteristic polynomials

Let us return to the errors of separability and forecasting. The discrepancies be-
tween Lr and L(L,1) can be described in terms of the characteristic polynomials.
We have three LRFs: (i) the minimal LRF of dimension d governing the series
F
(1)
N , (ii) the continuation LRF of dimension L−1, which also governs F (1)N , but

produces L−d−1 extraneous roots in its characteristic polynomial PL−1, and (iii)
the forecasting LRF governing the forecast series gn (n ≥ N). The characteristic
polynomial P (f)L−1 of the forecasting LRF also has L−1 roots.

If Lr and L(L,1) are close, then the coefficients of continuation and forecasting
recurrent formulae must be close too. Therefore, all simple roots of the forecasting
characteristic polynomial P (f)L−1 must be close to that of the continuation polyno-
mial PL−1. The roots λm with multiplicities km > 1 could be perturbed in a more
complex manner.

Example 2.3 Perturbation of the multiple roots
Let us consider the series FN with

fn = (A+ 0.1n) + sin(2πn/10), n = 0, . . . , 199.

Evidently, FN = F
(1)
N + F

(2)
N with the linear series F (1)N defined by f

(1)
n =

A+ 0.1n and the harmonic series F (2)N corresponding to f (2)n = sin(2πn/10).
The series FN has finite-difference dimension fdim(FN ) = 4. Therefore, any

LRF governing FN produces a characteristic polynomial with four main roots.
These main roots do not depend on A; the linear part of the series generates one
real root λ = 1 of multiplicity 2, while the harmonic series corresponds to two
complex conjugate roots with modulus ρ = 1 and ω = 0.1.
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Our aim is to forecast the series F (1)N for A = 0 and A = 50 with the help of
the Basic SSA forecasting algorithm. In both cases, we take the window length
L = 100 and choose the eigentriples that correspond to the linear part of the
initial time series FN . (For A = 0 we take the two leading eigentriples, while for
A = 50 the appropriate eigentriples have the ordinal numbers 1 and 4.) Since the
series F (1)N and F (2)N are not exactly separable for any choice of L, we deal with
approximate separability.

The forecasting polynomials P (f)L−1 with A = 0 and A = 50 demonstrate dif-
ferent splitting of the double root λ = 1 into two simple ones. For A = 0 there
appear two complex conjugate roots with ρ = 1.002 and ω = 0.0008, while in the
case A = 50 we obtain two real roots equal to 1.001 and 0.997. All extraneous
roots are less than 0.986.

This means that for A = 0 the linear series F (1)N is approximated by a low-
frequency harmonic with a slightly increasing exponential amplitude. In the case
A = 50 the approximating series is the sum of two exponentials, one of them is
slightly increasing and another one is slightly decreasing.

These discrepancies lead to quite different long-term forecasting results: oscil-
lating for A = 0 and exponentially increasing for A = 50.

In the case of a large discrepancy between Lr and L(L,1), both the main and
the extraneous roots of the continuation polynomial can differ significantly, and
the error of the forecasting procedure can be rather large.

Evidently, such an error depends on the order L−1 of the characteristic poly-
nomials as well; the bigger the number of the perturbed extraneous roots, the less
precise the forecasting procedure may become.

On the other hand, the conditions for approximate separability are usually
asymptotic and require relatively large L. In practice, this means that we have
to take the smallest window length L providing a sufficient (though approximate)
separability.

2.3 Modifications to Basic SSA R-forecasting

The Basic SSA R-forecasting algorithm discussed in Section 2.2 should be re-
garded as the main forecasting algorithm due to its direct relation to the linear
recurrent formulae. Nevertheless, there exist several natural modifications to this
algorithm that can give better forecasts in specific situations.

2.3.1 SSA vector forecasting

Let us return to Basic SSA and assume that our aim is to extract a certain additive
component F (1)N from a series FN . In this algorithm, for an appropriate window
length L, we obtain the SVD of the trajectory matrix of the series FN and select
the eigentriples (

√
λi, Ui, Vi), i ∈ I = (j1, . . . , jr), corresponding to F (1)N . Then
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we obtain the resultant matrix

XI =
∑
i∈I

√
λiUiV

T
i

and, after diagonal averaging, we obtain the reconstructed series F̃ (1)N that esti-

mates F (1)N .
Note that the columns X̂1, . . . , X̂K of the resultant matrix XI belong to the

linear space Lr = span(Ui, i ∈ I). If F (1)N is strongly separable from F
(2)
N

def=
FN −F (1)N , then Lr coincides with L(L,1) (the trajectory space of the series F (1)N )
and XI is a Hankel matrix (in this case XI is the trajectory matrix of the series
F
(1)
N ). If F (1)N and F (2)N are approximately strongly separable, then Lr is close to

L(L,1) and XI is approximately a Hankel matrix.
Briefly, the idea of ‘vector forecasting’ can be expressed as follows. Let us

imagine that we can continue the sequence of vectors X̂1, . . . , X̂K for M steps
in such a manner that:

1. The continuation vectors Zm (K < m ≤ K +M) belong to the same linear
space Lr.

2. The matrix XM = [X̂1 : . . . : X̂K : ZK+1 : . . . : ZK+M ] is approximately a
Hankel matrix.

Having obtained the matrix XM we can obtain the series GN+M by diagonal
averaging. Since the first elements of the reconstructed series F̃ (1)N coincide with

the elements of GN+M , the latter can be considered to be a forecast of F (1)N .
Now let us give a formal description of the SSA vector forecasting algorithm

(briefly, V-forecasting) in the same manner as was done in Section 2.1 for the SSA
recurrent forecasting algorithm.

Preliminaries:

• The SSA vector forecasting algorithm has the same inputs and conditions as
the SSA R-forecasting algorithm.

• The notation in (a)-(g) of Section 2.1 is kept. Let us introduce some more
notation.

Consider the matrix

Π = V�(V�)T + (1− ν2)RRT, (2.15)

where V� = [P�
1 : . . . : P�

r ]. The matrix Π is the matrix of the linear operator
that performs the orthogonal projection IRL−1 "→ L�

r (see Proposition 5.9 in
Section 5.3), where L�

r = span(P�
1 , . . . , P

�
r ).

We define the linear operator P(v) : Lr "→ IRL by the formula

P(v)Y =
(

ΠY�
RTY�

)
, Y ∈ Lr. (2.16)
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SSA vector forecasting algorithm:

1. In the notation above we define the vectors Zi as follows:

Zi =
{
X̂i for i = 1, . . . ,K
P(v)Zi−1 for i = K + 1, . . . ,K +M + L− 1.

(2.17)

2. By constructing the matrix Z = [Z1 : . . . : ZK+M+L−1] and making its
diagonal averaging we obtain a series g0, . . . , gN+M+L−1.

3. The numbers gN , . . . , gN+M−1 form the M terms of the SSA vector forecast.

If Lr is spanned by certain eigenvectors obtained by Basic SSA, we shall call
the corresponding algorithm the Basic SSA vector forecasting algorithm. Let us
discuss its features.

(a) Continuation
If Lr is the trajectory space of the series FN (in other words, if we act under
the assumptions of Section 2.2.2), then the result of the vector forecasting coin-
cides with that of the recurrent one. Thus, in this case the V-forecasting algorithm
performs recurrent continuation of the series FN .

More precisely, in this situation the matrix Π is the identity matrix, and (2.16)
coincides with (2.3). Furthermore, the matrix Z has Hankel structure and diagonal
averaging is the identical operation.

The same coincidence holds if FN = F
(1)
N + F

(2)
N , the series F (1)N and F (2)N

are strongly separable, and Lr is the trajectory space of the series F (1)N . The Basic

SSA V-forecasting then performs recurrent continuation of F (1)N .

(b) Forecasting
Though the results are the same, the essentials of recurrent and vector forecasting
are different. Briefly, recurrent forecasting performs recurrent continuation di-
rectly (with the help of LRF), while vector forecasting deals with L-continuation.
In the case of approximate continuation, the two forecasting algorithms usually
give different results.

In a typical situation, there is no time series such that the linear space Lr (for
r < L − 1) is its trajectory space, and therefore (see Proposition 5.6) this space
cannot be the trajectory space of the series to be forecasted. The recurrent fore-
casting method uses Lr to obtain the LRF of the forecast series.

The vector forecasting procedure tries to perform the L-continuation of the se-
ries in Lr; any vector Zi+1 = P(v)Zi belongs to Lr, and Z�

i+1 is as close to (Zi)�
as it can be. The last component of Zi+1 is obtained from Z�

i+1 by the LRF ap-
plied in the recurrent forecasting. Since the matrix Z is not a Hankel one, diagonal
averaging works in the same manner as in Basic SSA.

(c) Details
Both forecasting methods have two general stages: diagonal averaging and con-
tinuation. For the recurrent forecasting, diagonal averaging is used to obtain the
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reconstructed series, and continuation is performed by applying the LRF. In the
vector forecasting method, these two stages are used in the reverse order; first,
vector continuation in Lr is performed and then diagonal averaging gives the
forecast values.

Note that in order to getM forecast terms the vector forecasting procedure per-
forms M+L−1 steps. The aim is the permanence of the forecast under variations
in M : the M -step forecast ought to coincide with the first M values of the fore-
cast for M+1  or more steps. In view of the features of diagonal averaging, we
have to produce L−1 extra steps.

(d) Comparison
If the series admits recurrent continuation, then the results for both Basic SSA
forecasting methods coincide. In the case of approximate continuation they dif-
fer. Typically, a poor approximation implies a large difference between the two
forecasts.

In the case of approximate separability it is hard to compare the recurrent and
vector forecasting methods theoretically. Generally, the approximate coincidence
of the two forecasting results can be used as an argument in favour of the fore-
casting stability.

Recurrent forecasting is simpler to interpret due to the description of LRFs in
terms of the characteristic polynomials. On the other hand, results of data analysis
show that the vector forecasting method is usually more ‘conservative’ (or less
‘radical’) in those cases when the recurrent forecasting method demonstrates rapid
increase or decrease.

2.3.2 Toeplitz SSA forecasting

Using Basic SSA recurrent and vector forecasting, we take Lr to be spanned by
certain eigenvectors Uk, k ∈ I , of the SVD applied to the trajectory matrix X of
the series FN . In other words, the basis vectors Pi of Lr have the form Pi = Uji

(see Section 2.2.2). Other decompositions of the trajectory matrix lead to another
choice of Lr.

If the original series can be regarded as a stationary one, then as defined in
(1.34) the Toeplitz SSA decomposition

X =
L∑

i=1

HiZ
T
i

can be used in place of the SVD in Basic SSA. Here the Hi stands for the ith
eigenvector of the Toeplitz lag-covariance matrix defined in (1.32). (See Sec-
tion 1.7.2 in Chapter 1 for details.)

Let us consider the SSA R-forecasting algorithm of Section 2.1. If we select a
set of indices I = (j1, . . . , jr) and take Pi = Hji

as the basis vectors in Lr, then
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we obtain the Toeplitz SSA R-forecasting algorithm. Evidently, one can use the
vector forecasting variant in Toeplitz forecasting as well.

As was mentioned in Section 1.7.2, for relatively short intervals of stationa-
ry-like series, the Toeplitz SSA may give better separability characteristics than
Basic SSA. Therefore, if we have a problem of continuation of a sum of several
harmonic components of a stationary series, then Toeplitz forecasting may have
an advantage.

Moreover, if L is much smaller than K = N − L + 1, then the Toeplitz lag-
covariance matrix has a more regular structure than the standard lag-covariance
matrix used in Basic SSA. The eigenvectors of the Toeplitz lag-covariance matrix
are also more regular. Since forecasting is based on the space Lr generated by the
eigenvectors (and does not use both the factor vectors and the singular values),
for stationary time series Toeplitz SSA forecasting may give more stable results.

2.3.3 Centring in SSA forecasting

To elucidate the characteristics of the (single) centring variant of SSA forecasting,
we start with a series that admits recurrent continuation.

Consider the series FN with fdim(FN ) = d ≥ 1 and sufficiently large N .
As was described in Section 2.2, if we take the window length L such that d <
min(L,K) and suppose that the corresponding trajectory space L(L) is not a ver-
tical one, then dim L(L) = d and the choice Lr = L(L) leads to recurrent continu-
ation of the series FN , which is performed by SSA recurrent forecasting algorithm
of Section 2.1. Let us consider another way of doing such a continuation.

By definition, the space L(L) is spanned by the L-lagged vectors X1, . . . , XK

of the series FN . In the same manner as in Section 1.7, we denote by E = E1(X)
the vector of the row averages of the trajectory matrix X. In other words, we set

E = (X1 + . . .+XK)/K. (2.18)

Evidently, E ∈ L(L). We set

L
(L)
E = span(X1 − E , . . . , XK − E) = L(L) − E . (2.19)

Then (see Section 4.4) the dimension r
def= dimL

(L)
E is equal to either d or d−1.

Assume that r ≥ 1 (the case r = 0 corresponds to a constant series FN ).
If eL /∈ L

(L)
E , then according to the proof of Theorem 5.2, the last component

yL of any vector Y ∈ L
(L)
E is equal to the linear combination of its first L−1

components:

yL =
L−1∑
k=1

akyL−k, (2.20)

where the vector R = (aL−1, . . . , a1)T is obtained from L
(L)
E by the formula

(2.1), with P1, . . . , Pr standing for an orthonormal basis in L
(L)
E .
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Let us now consider the infinite series F , which is recurrent continuation of
FN , and denote by Xi (i > K) the ith L-lagged vector in the series F . Since
X1, . . . , XK span the space L(L), and Xi ∈ L(L) for any i > K, it follows that
Xi − E ∈  L

(L)
E for any i.

Let us denote by z(i)k the kth component of the vector Xi−E . In view of (2.20)
we obtain

z
(i)
L =

L−1∑
k=1

akz
(i)
L−k. (2.21)

Rewriting (2.21) in terms ofXi = (fi−1, . . . , fi+L−2)T we come to the equalities

fi+L−2 =
L−1∑
k=1

akfi+L−2−k + εL −RTE�, i ≥ 1, (2.22)

where εL is the last component of the vector E .
Thus, we have arrived at the heterogeneous linear recurrent formula, governing

the series FN and performing its recurrent continuation. Evidently, if E = 0L,
then (2.22) coincides with recurrent continuation formula which is obtained in
terms of L(L), see Section 2.2.

The transition from the trajectory space L(L) to the space (2.19) is considered
in Sections 4.4 and 1.7, where the features of the centring versions of the SVD and
Basic SSA are discussed. In terms of these Sections, L(L)E corresponds to single
centring.

Single centring ideas give rise to versions of both recurrent and vector SSA
forecasting algorithms for Basic and Toeplitz forecasting. Let us describe these
versions in the formal manner of Section 2.1. For brevity, we present only the
modified items within the description of the algorithms.

There are two versions of these modifications. If we are reconstructing a com-
ponent of a time series with the help of the centring variant of the Basic (or
Toeplitz) SSA, we can either include the average triple into the list of the eigen-
triples selected for reconstruction or not. These two possibilities are kept in the
centring variant of SSA forecasting.

Now let Lr be a subspace of IRL of dimension r < L, eL /∈ Lr, and let
P1, . . . , Pr be some orthonormal basis of Lr.

If we do not take average triple for the reconstruction, then:
1. The matrix X̂ (Section 2.1, Notation and Comments, item b) is defined as

X̂ = [X̂1 : . . . : X̂K ] =
r∑

i=1

PiP
T
i (X−A), (2.23)

where A = [E : . . . : E ] and the vector E has the form (2.18).

2. Formula (2.2) and its vector version defined by (2.3) and (2.4) are kept for
the recurrent variant of SSA centring forecasting. Analogously, for SSA vector
forecasting, the formulae (2.16) and (2.17) are kept.
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In the case when we take the average triple for the reconstruction, we have

1. Matrix X̂ is defined as

X̂ = [X̂1 : . . . : X̂K ] =
r∑

i=1

PiP
T
i (X−A) +A,

in the same notation as (2.23).

2. (i) In recurrent forecasting, the formula (2.2) is modified as

gi =


f̃i for i = 0, . . . , N − 1,
L−1∑
j=1

ajgi−j + a for i = N, . . . , N +M − 1

with a = εL−RTE�. To modify its vector form (2.3), (2.4), we keep the latter
formula and replace (2.3) by

P(rc)Y =
(

Y� − E�

RT(Y� − E�)

)
+ E ,

where the operator P(rc) maps Lr + E to IRL.

(ii) In SSA vector forecasting variant, the formula (2.17) is kept and (2.16) is
replaced by

P(vc)Y =
(

Π(Y� − E�)
RT(Y� − E�)

)
+ E , Y ∈ Lr + E .

If we use Basic SSA centring forecasting, then the vectors Pi (1 ≤ i ≤ r)
are selected from the set of the SVD eigenvectors for the matrix X − A. In the
Toeplitz variant, the Toeplitz decomposition of X−A is used instead.

Note that the double centring variant of SVD (see Section 4.4) can hardly be
used for forecasting in the style under consideration. The main reason for this is
that the double centring is applied to both the rows and columns of the trajectory
matrix, while the SSA forecasting algorithm of Section 2.1 and all its modifica-
tions and variants are based on the linear space Lr, which is associated only with
the columns of the trajectory matrix.

2.3.4 Other ways of modification

There exist numerous versions of the forecasting methods based on the SSA ideas.
Let us mention several of these versions, stating them as problems to be solved
rather than as methods recommended for direct use in practice.

(a) Minimal recurrent formula: Schubert and reduction methods

The linear recurrent formula applied in the recurrent SSA forecasting algorithm
has dimension L − 1 (L is the window length), while the minimal recurrent for-
mula governing the series FN (if any) can have a much smaller dimension. There-
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fore, for a window length sufficient for approximate separability, it is natural to
look for the LRF of relatively small dimension to perform a reasonable forecast.

Assume that the series FN admits a recurrent continuation. One way of finding
its minimal LRF is described in Theorem 5.1 of Section 5.2, where such an LRF
is explained in geometrical terms of the Schubert basis (Schubert method). An-
other possibility arises if we can distinguish the main and extraneous roots of the
characteristic polynomial of the LRF. In this case we can remove the extraneous
roots and come to the minimal formula (reduction method).

Both methods are theoretically exact if fdim(FN ) < min(L,K). However,
their practical usefullness is not at all obvious since we deal with approximate
separability, which produces perturbations of all results.

The stability of the Schubert method under data perturbations has not yet been
checked. Therefore, there is a danger that not only the coefficients of the obtained
‘minimal’ LRF but even its dimension can vary significantly under small varia-
tions in the data. Also, the method seems to be much more complicated than Basic
SSA R-forecasting.

The modification of the Basic SSA R-forecasting algorithm based on the reduc-
tion of the polynomial roots works well if the main roots are properly indicated
and the perturbation in the data is not very large. Otherwise the forecasting results
can be unpredictable. An example of applying the reduction recurrent forecasting
algorithm can be found in Section 2.6.1.

Note that both methods can be used only for recurrent forecasting. Moreover,
the problem of the initial data arises again; the errors in the initial data for the
minimal LRF can affect the forecast more severely than for an LRF of large di-
mension.

(b) The nearest subspace

If FN admits recurrent continuation, then the choice Lr = L(L) leads to the LRF
governing FN . In the case of approximate separability, the forecasting LRF is
calculated through the selected linear space Lr, which typically cannot be the
trajectory space of any time series (see Proposition 5.6 in Section 5.2).

One can try to solve this annoying contradiction in the following manner. Let
us state the problem of finding a linear space L′

r as follows: (a) the space has the
same dimension r as the initial space Lr, (b) L′

r is the trajectory space of a certain
time series, and (c) L′

r is the closest to Lr (the cosine of the angle between these
spaces is maximum).

If the errors in data are not very large, then such a space can be regarded as
an appropriate ‘estimate’ of the trajectory space of a series under recurrent con-
tinuation. The space L′

r being found, the corresponding LRF of dimension L− 1
appears, and the specific form of the forecast by this LRF depends on the initial
data. Since the vector consisting of the last L−1 points of the reconstructed series
does not generally belong to L′

r, we can perform its orthogonal projection onto
this linear space and take the result for the initial forecast data.
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We do not discuss here the general algorithmic problem of finding this near-
est subspace. Let us consider the simplest case r = 1 when the space L1 is
spanned by a vector X = (x1, . . . , xL)T, and L′

1 must be spanned by the vec-
tor Ya = (1, a, . . . , aL−1)T. Then the optimal a gives the maximum value for the
expression |(X,Ya)|/||X|| ||Ya|| and can be obtained by simple calculations.

The optimal a being obtained, we must find the corresponding LRF, that is
the vector R (see formula (2.1) in Section 2.1). In the one-dimensional case this
problem is rather simple as well, since all the components of the formula (2.1) are
expressed in terms of the single vector P1 = Ya/||Ya||.

Omitting the calculations we present the result for the case |a| 	= 1:

R = C(a)(1, a, . . . , aL−2)T (2.24)

with

C(a) =
aL−1(a2 − 1)
a2L−2 − 1

.

We can now apply the LRF so obtained to the appropriate initial data.
Evidently the one-dimensional case is convenient for the reduction of the extra-

neous polynomial roots; the LRF defined by (2.24) defines a characteristic poly-
nomial with a single main root λ = a. Therefore, taking the last term of the recon-
structed series as the initial point and applying the recurrent formula fn = afn−1,
we make the forecast based on both ideas: that of the nearest subspace and the
minimal LRF.

2.4 Forecast confidence bounds

According to the main SSA forecasting assumptions, the component F (1)N of the
series FN ought to be governed by an LRF of relatively small dimension, and the
residual series F (2)N = FN − F (1)N ought to be approximately strongly separable

from F
(1)
N for some window length L. In particular, F (1)N is assumed to be a finite

subseries of an infinite series F (1), which is a recurrent continuation of F (1)N .
These assumptions cannot be ignored, but fortunately they hold for a wide class
of practical problems.

To establish confidence bounds for the forecast, we have to apply even stronger
assumptions, related not only to F (1)N , but to F (2)N as well. First, let us consider

F
(2)
N as a finite subseries of an infinite random noise series F (2) that perturbs the

signal F (1). The other assumptions can hardly be formulated in terms of F (2)N

only; they mainly deal with the residual series F̃ (2)N = FN − F̃
(1)
N , where F̃ (1)N

is the reconstructed component of FN . Since F̃ (1)N ≈ F
(1)
N , the features of F̃ (2)N

are strongly related to those of F (2)N . A more precise formulation of the additional
assumptions depends on the problem we are solving and the method that we are
applying.
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Here we consider the following two problems, related to construction of the
confidence bounds for the forecast. The first problem is to construct a confidence
interval for the entire series F = F (1)+F (2) at some future point in timeN+M .
The second problem can be formulated as a construction of confidence bounds for
the signal F (1) at the same future point in time.

These two problems will be solved in different ways. The first uses the informa-
tion about the forecast errors obtained by processing the series. This variant can
be called the empirical one. The second requires additional information about the
model governing the series F̃ (2)N to accomplish a bootstrap simulation of the series
FN (see Efron and Tibshirani, 1986, Section 5, for general bootstrap concepts).

Let us briefly discuss both problems of constructing the confidence bounds for
the Basic SSA R-forecasting method. All other SSA forecasting procedures can
be treated analogously.

2.4.1 Empirical confidence intervals for the forecast of the initial series

Assume that we have already obtained the forecast value f̃ (1)N+M−1, that is, we
have already performed M steps of the Basic SSA R-forecasting procedure. By
definition, we use f̃ (1)N+M−1 as the forecast of the (future) term f

(1)
N+M−1 of the

signal F (1). As was already mentioned, our problem is to build up a confidence
interval for the (future) term fN+M−1 of the series F .

Let us consider the multistartM -step recurrent continuationprocedure. We
take a relatively small integer M and apply M steps of recurrent continuation
produced by the forecasting LRF modifying the initial data from (f̃ (1)0 , . . . , f̃

(1)
L−2)

to (f̃ (1)K−M , . . . , f̃
(1)
N−M−1), K = N − L+ 1.

The last points gj+M+L−1 of these continuations can be compared with the
values fj+M+L−1 of the initial series FN . We thus obtain the multistartM -step
residual seriesHK−M+1 with

h
(M)
j = fj+M+L−2 − gj+M+L−2, j = 0, . . . ,K −M.

Suppose for the moment that the reconstructed series F̃ (1)N coincides with F (1)N

and the forecasting LRF governs it. Then gk = f
(1)
k and the multistart M -step

residual series coincides with the last K −M + 1 terms of the stationary noise
series F (2)N .

If these suppositions are not valid, then h(M)j does not coincide with f (2)j+M+L−2.
Even so, let us assume that the multistart M -step residual series is stationary
and ergodic in the sense that its empirical cumulative distribution function (c.d.f.)
tends to the theoretical c.d.f. of the series as N → ∞. Then, having the series
HK−M+1 at hand, we can estimate certain of its quantiles (for example, the up-
per and lower 2.5% ones).

Note that the terms gj+M+L−2 are obtained through the same number of steps

with the same LRF as the forecast value f̃ (1)N+M−1, and their initial data is taken
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from the same reconstructed series. Since forecasting requires the assumption
that the series structure is kept in the future, the obtained empirical c.d.f. of the
multistartM -step residual series can be used to construct the empirical confidence
interval for fN+M−1.

More formally, let us fix a confidence level γ (0 < γ < 1), and set α = 1−γ.
If c−α/2 and c+α/2 stand for the lower and upper α/2-quantiles, calculated through
the empirical c.d.f. of the multistart M -step residual series, then we obtain the
empirical confidence interval(

f̃
(1)
N+M−1 + c−α/2, f̃

(1)
N+M−1 + c+α/2

)
,

which covers fN+M−1 with an approximate confidence level γ. Evidently, the
number K has to be sufficiently large for the empirical c.d.f. to be stable.

If the multistart M -step residual series can be regarded as white noise, then
the other variant of empirical confidence intervals is meaningful. Assuming the
Gaussian white noise hypothesis, the standard symmetrical confidence bounds of
fN+M−1 can be constructed with the help of the sample average and the sam-
ple variance of the multistart M -step residual series. Of course, the white noise
hypothesis can be checked with the help of the standard statistical procedures.

2.4.2 Bootstrap confidence bounds for the forecast of a signal

Let us consider a method of constructing confidence bounds for the signal F (1) at
the moment of time N +M − 1. In the unrealistic situation, when we know both
the signal F (1) and the true model of the noise F (2)N , the Monte Carlo simulation

can be applied to check the statistical properties of the forecast value f̃ (1)N+M−1
relative to the actual term f

(1)
N+M−1.

Indeed, assuming that the rules for the eigentriple selection are fixed, we can
simulate S independent copies F (2)N,i of the process F (2)N and apply the forecasting

procedure to S independent time series FN,i
def= F

(1)
N +F (2)N,i. Then the forecasting

results will form a sample f̃ (1)N+M−1,i (1 ≤ i ≤ S), which should be compared

against f (1)N+M−1. In this way the Monte Carlo confidence boundsfor the forecast
can be build up.

Since in practice we do not know the signal F (1)N , we cannot apply this pro-
cedure. Let us describe the bootstrap (for example, Efron and Tibshirani, 1986,
Section 5) variant of the simulation for constructing the confidence bounds for the
forecast.

Under a suitable choice of the window length L and the corresponding eigen-
triples, we have the representation FN = F̃

(1)
N + F̃

(2)
N , where F̃ (1)N (the recon-

structed series) approximates F (1)N , and F̃ (2)N is the residual series. Suppose now

that we have a (stochastic) model of the residuals F̃ (2)N . (For instance, we can pos-
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tulate some model for F (2)N and, since F̃ (1)N ≈ F
(1)
N , apply the same model for

F̃
(2)
N with the estimated parameters.)

Then, simulating S independent copies F̃ (2)N,i of the series F (2)N , we obtain S

series FN,i
def= F̃

(1)
N + F̃

(2)
N,i and produce S forecasting results f̃ (1)N+M−1,i in the

same manner as in the Monte Carlo simulation variant.
More precisely, any time series FN,i produces its own reconstructed series F̃ (1)N,i

and its own forecasting linear recurrent formula LRFi for the same window length
L and the same set of the eigentriples. Starting at the last L−1 terms of the series
F̃
(1)
N,i, we perform M steps of forecasting with the help of its LRFi to obtain

f̃
(1)
N+M−1,i.

As soon as the sample f̃ (1)N+M−1,i (1 ≤ i ≤ S) of the forecasting results is ob-
tained, we can calculate its (empirical) lower and upper quantiles of a fixed level
γ and obtain the corresponding confidence interval for the forecast. This interval
(called the bootstrap confidence interval) can be compared with the forecast value
f̃
(1)
N+M−1 obtained from the initial forecasting procedure. A discrepancy between

this value and the obtained confidence interval can be caused by the inaccuracy
of the stochastic model for F̃ (2)N .

The average of the bootstrap forecast sample (bootstrap average forecast) es-
timates the mean value of the forecast, while the mean square deviation of the
sample shows the accuracy of the estimate.

The simplest model for F̃ (2)N is the model of Gaussian white noise. The cor-
responding hypothesis can be checked with the help of the standard tests for ran-
domness and normality.

2.4.3 Confidence intervals: comparison of forecasting variants

The aim of this section is to compare different SSA forecasting procedures using
several artificial series and Monte Carlo confidence intervals.

Let FN = F
(1)
N + F

(2)
N , where F (2)N is Gaussian white noise with standard

deviation σ. Assume also that the signal F (1)N admits a recurrent continuation. We

can and shall perform a forecast of the series F (1)N for M steps using different

variants of SSA forecasting and appropriate eigentriples associated with F (1)N .

If the signal F (1)N and its recurrent continuation are known, then we can apply
the Monte Carlo procedure described in the previous section to check the accuracy
of the forecasting results and compare different ways of forecasting.

To do that, we simulate a large number of independent copies F (2)N,i of F (2)N ,

produce the time series FN,i = F
(1)
N + F

(2)
N,i, and forecast their signal component

F
(1)
N using the eigentriples of the same ordinal numbers as that for the initial series
FN . Evidently this procedure is meaningful only if the choice of the eigentriples
is stable enough for different realizations of the white noise F (2)N .
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Monte Carlo forecast of the signal F (1)N is useful in at least two respects: its
average (called the Monte Carlo average forecast) shows the bias produced by the
corresponding forecasting procedure, while the upper and lower quantiles indicate
the role of the random component in the forecasting error.

Several effects will be illustrated with the help of this technique. First, we shall
compare some forecasting variants from the viewpoint of their accuracy. The sec-
ond matter to be demonstrated is the role of the proper window length. Lastly, we
compare different variants of the confidence intervals in forecasting.

Throughout all the examples, we use the following notation: N stands for the
length of the initial series, M is the number of forecasting steps, and σ denotes
the standard deviation of the Gaussian white noise F (2)N . The confidence intervals
are obtained in terms of the 2.5% upper and lower quantiles of the corresponding
empirical c.d.f. using the sample size S = 1000.

(a) Periodic signal: recurrent and vector forecasting

Let N = 100, M = 100, σ = 0.5. Let us consider a periodic signal F (1)N of the
form

f (1)n = sin(2πn/17) + 0.5 sin(2πn/10).

The series F (1)N has difference dimension 4, and we use four leading eigentriples

for its forecasting under the choice L = 50. The initial series FN = F
(1)
N + F

(2)
N

and the signal F (1)N (the thick line) are depicted in Fig. 2.3.
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Figure 2.3 Periodic signal and the initial series.

Let us apply the Monte Carlo simulation for the Basic SSA recurrent and vector
forecasting algorithms.

Copyright © 2001 CRC Press, LLC



Fig. 2.4 shows the confidence Monte Carlo intervals for both methods and
the true continuation of the signal F (1)N (thick line). Confidence intervals for R-
forecasting are marked by dots, while thin solid lines correspond to vector fore-
casting. We can see that these intervals practically coincide for relatively small
numbers of forecasting steps, while the vector method has an advantage in the
long-term forecasting.
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Figure 2.4 Periodic signal: confidence intervals for the recurrent and vector forecasts.
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Figure 2.5 Periodic signal: Basic Monte Carlo average R-forecast.

The bias in the Basic SSA R-forecast is demonstrated in Fig. 2.5, where the
thick line depicts the true continuation of the series F (1)N and the thin line corre-
sponds to the average of the Monte Carlo average R-forecast. We see that the bias
is sufficiently small.
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Note that the bias in the vector method almost coincides with that in the recur-
rent one. Therefore, the advantage of vector forecasting can be expressed mainly
in terms of its stability rather than in the bias. The bias in both methods is caused
by the nonlinear structure of the forecasting procedures.

(b) Periodic signal: Basic and Toeplitz recurrent forecasting

The same series with the same forecasting parameters serves as an example for
comparing the Basic and Toeplitz R-forecasting methods. As usual, we apply the
centring variant of the Toeplitz forecasting algorithm, though the results of the
comparison do not depend on this choice.
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Figure 2.6 Periodic signal: Toeplitz Monte Carlo average R-forecast.

Fig. 2.6 is analogous to Fig. 2.5 and shows the bias in Toeplitz R-forecasting.
In comparison with the Basic R-forecast, we see that the bias is rather large. The
explanation lies in the fact that in contrast to Basic SSA, the four leading eigen-
triples in the Toeplitz SSA decomposition of the signal F (1)N do not describe the
entire signal; their share is approximately 99.8%. From the formal viewpoint, the
Toeplitz decomposition of the trajectory matrix is not the minimal one (see Sec-
tions 4.2.1 and 1.7.2).

Indeed, if we consider the signal F (1)N as the initial series and produce its
Toeplitz forecast with L = 50 and 4 leading eigentriples, then the result will
be very close to the Monte Carlo average forecast, presented in Fig. 2.6 (thin line,
the thick line depicts the continuation of the series F (1)N ).

The situation with the confidence intervals is different, see Fig. 2.7. The Monte
Carlo confidence intervals for the Toeplitz forecast (depicted by thick lines) are
typically inside that for the Basic forecast (thin lines). This is not surprising since
the Toeplitz SSA gives more stable harmonic-like eigenvectors for stationary time
series.
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Figure 2.7 Periodic signal: confidence intervals for the Basic and Toeplitz R-forecasts.

Note that the confidence intervals for the Basic and Toeplitz forecasting algo-
rithms are shifted relative to each other due to a large bias in the Toeplitz method.
We conclude that Toeplitz forecasting proves to be less precise (on average), but
more stable.

(c) Separability and forecasting

Consider the series F (1)N with

f (1)n = 3an + sin(2πn/10), a = 1.01,

and N = 100. This series is governed by an LRF of dimension 3.
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Figure 2.8 Separability and forecasting: the signal and the initial series.
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Taking σ = 1 and two window lengths L = 15 and L = 50, we consider Basic
SSA R-forecasting of the series FN = F

(1)
N + F

(2)
N for 90 steps. Our aim is to

compare the accuracy of these two variants of forecasting of the signal F (1)N with
the help of the Monte Carlo simulation. The first three eigentriples are chosen for
the reconstruction in both variants. The series FN and the signal F (1)N (thick line)
are depicted in Fig. 2.8.
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Figure 2.9 Separability and forecasting: two confidence intervals.
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Figure 2.10 Separability and forecasting: comparison of biases.

The influence of separability on forecasting in the absence of noise has already
been discussed (see Example 2.2 in Section 2.2). We now explain this influence
in statistical terms of bias and confidence intervals.
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Fig. 2.9 shows that the Monte Carlo forecasting confidence intervals forL = 15
(thin line marked with dots) are much wider than that for L = 50. This is not
surprising since the separability characteristics for L = 15 are: ρ(w)12 = 0.0083
and ρ(L,K) = 0.26, while for L = 50 we have ρ(w)12 = 0.0016 and ρ(L,K) = 0.08.

Note that both confidence intervals are almost symmetric with respect to the
true continuation of the signal (the thick line in Fig. 2.9). This means that in this
example the choice of the window length does not have a big influence on the
bias of the forecasts. Yet if we consider the last forecast points (Fig. 2.10), we
can see that the choice L = 50 is again better. Indeed, the Monte Carlo average
forecast for L = 15 (thin line, marked with dots) has a small but apparent phase
shift relative to the true continuation (thick line), while for the choice L = 50
(thin line) there is almost no phase shift.

(d) Confidence intervals of different kinds

According to the discussion at the beginning of this section, we can construct
three kinds of confidence interval for forecasting (see Section 2.4 for their detailed
description).

First, as we know the true form of both the signal F (1)N and the noise F (2)N , we
can build the Monte Carlo confidence intervals, which can be considered to be the
true confidence intervals for the signal forecast.

Second, we can apply the bootstrap simulation for the same purpose. Here we
use the same Gaussian white noise assumption but calculate its variance in terms
of the residuals of the reconstruction.

Third, the empirical confidence bounds for the forecast of the entire series
FN = F

(1)
N + F

(2)
N can be built as well.

The last two methods are more important in practice since neither F (1)N nor

F
(2)
N is usually known. Our aim is to compare three kinds of confidence bounds

by a simple example.
Consider the exponential series F (1)N with f (1)n = 3an, a = 1.01 and N = 190.

As above, we assume that F (2)N is a realization of the Gaussian white noise and
take σ = 1. Since we want to deal with the empirical confidence intervals, we
truncate the series at n = 160 and use the truncated series as the initial one. A
comparison of the confidence intervals is performed for 30 Basic SSA R-fore-
casting steps with L = 50. Since F (1)N is governed by an LRF of dimension 1, we
take one leading eigentriple for reconstruction and forecasting in all cases.

The series FN (thin oscillating line) is depicted in Fig. 2.11 together with its
reconstruction, the Basic SSA R-forecast (thick lines) and the corresponding em-
pirical intervals. The vertical line corresponds to the truncation point.

Figs. 2.12-2.14 show three variants of the confidence intervals on the back-
ground of the series FN . Fig 2.12 represents the empirical intervals around the
forecast of the signal F (1)N (thick line). Since the empirical intervals are built for
the entire series FN , it is not surprising that they cover the series values. Note
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Figure 2.11 Exponential signal: the initial series and forecast.

that the length of the empirical confidence intervals is almost constant due to the
homogeneity of the residuals used for their construction (see Section 2.4).
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Figure 2.12 Exponential signal: empirical confidence intervals.

The bootstrap confidence intervals are shown in Fig. 2.13, where the thick line
corresponds to the exponential signal F (1)N . The intervals are shifted relative to
the signal (and they are symmetric relative to its forecast) because the bootstrap
simulation uses the reconstructed series, which differs from the signal itself. Note
that the empirical confidence intervals in Fig. 2.12 are also shifted relative to the
signal F (1)N .
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Figure 2.13 Exponential signal: bootstrap confidence intervals.

Lastly, the Monte Carlo confidence intervals are depicted in Fig. 2.14 together
with the signal F (1)N (thick line). In this case the intervals appear to be symmetric
around the signal.
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Figure 2.14 Exponential signal: Monte Carlo confidence intervals.

Comparing the intervals, we can see that the lengths of the bootstrap and Monte
Carlo intervals are very similar and are smaller than those of the empirical inter-
vals. The latter is natural since the first two bound the signal and the third one
bounds the entire series.

One more difference is that the intervals obtained by simulation are enlarging
in time, while the empirical ones are rather stable. Thus, we can use the empirical
confidence intervals only for relatively short-term forecasting.
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2.5 Summary and recommendations

Let us summarize the material of the previous sections, taking as an example
the Basic SSA R-forecasting method. Other versions of SSA forecasting can be
described and commented on similarly.

1. Statement of the problem
We have a series FN = F

(1)
N + F

(2)
N and have the problem of forecasting its

component F (1)N . If F (2)N can be regarded as noise, then the problem is that of

forecasting the signal F (1)N in the presence of a noise F (2)N .

2. The main assumptions

• The series F (1)N admits a recurrent continuation with the help of an LRF of
relatively small dimension d.

• There exists a number L such that the series F (1)N and F (2)N are approxi-
mately strongly separable for the window length L. This is an important
assumption since any time series F (1)N is an additive component of FN in

the sense that FN = F
(1)
N +F (2)N with F (2)N = FN−F (1)N . The assumption of

(approximate) separability means that F (1)N is a natural additive component
of FN from the viewpoint of the SSA method.

3. Proper choice of parameters
Since we have to select the window length L providing a sufficient quality of
separability and to find the eigentriples corresponding to F (1)N , all the major
rules of Basic SSA are applicable here. Note that in this case we must separate
F
(1)
N from F

(2)
N , but we do not need the decomposition of the entire series

FN = F
(1)
N + F

(2)
N .

4. Specifics and dangers
The SSA forecasting problem has some specifics in comparison with the Basic
SSA reconstruction problem:

• Since the chosen window length L produces an LRF of dimension L − 1,
which is applied as a recurrent continuation formula, the problem of extra-
neous roots for its characteristic polynomial becomes important. The choice
L = d+ 1 with d standing for the dimension of the minimal LRF, must be
optimal. Unfortunately, in practice, small values of L do not usually pro-
vide sufficient separability. As a result, one has to try to select the minimal
window length that is greater than d and provides reasonable separability.

• The linear space Lr of dimension r determining the forecasting LRF is
spanned by the eigenvectors of the chosen eigentriples. Since the condition
r ≥ d has to be fulfilled, the number of eigentriples selected as correspond-
ing to F (1)N has to be at least d.

• In Basic SSA, if we enlarge the set of proper eigentriples by some extra
eigentriples with small singular values, then the result of reconstruction will
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essentially be the same. When dealing with forecasting, such an operation
can produce large perturbations since the space Lr will be perturbed a lot;
its dimension will be enlarged, and therefore the LRF governing the forecast
will be modified. (Note that the magnitude of the extra singular values is not
important in this case.) Hence, the eigentriples describing F (1)N have to be
determined very carefully.

5. Characteristics of forecasting
Let us mention several characteristics that might be helpful in judging the fore-
casting quality.

• Separability characteristics. All the separability characteristics considered
in detail in Section 1.5 are of importance for forecasting.

• Polynomial roots. The roots of the characteristic polynomial of the forecast-
ing LRF can give insight into the behaviour of the forecast. These polyno-
mial roots can be useful in answering the following two questions:

(a) We expect that the forecast has some particular form (for example, we
expect it to be increasing). Do the polynomial roots describe such a pos-
sibility? For instance, an exponential growth has to be indicated by a
single real root (slightly) greater than 1; if we try to forecast the annual
seasonality, then pairs of complex roots with frequencies ≈ k/12 have
to exist, and so on.

(b) Is it possible to obtain a hazard inconsistent forecast? In terms of the
polynomial roots, each extraneous root increases such a possibility. Even
so, if the modulus of the root is essentially less than 1, then a slight per-
turbation of the proper initial data should not produce large long-term
errors. Since the polynomial roots with moduli greater than 1 correspond
to the series components with increasing envelopes (see Section 2.2.1),
large extraneous roots may cause problems even in short-term forecast-
ing.

• Verticality coefficient.The verticality coefficient ν2 is the squared cosine of
the angle between the space Lr and the vector eL. The condition ν2 < 1
is necessary for forecasting. If ν2 is close to 1, then, in view of (2.1), the
coefficients of the forecasting LRF will be large and therefore some roots
of the characteristic polynomial will have large moduli too. If the expected
behaviour of the forecast does not suggest a rapid increase or decrease,
then a large value of the verticality coefficient indicates a possible difficulty
with the forecast. This typically means that extra eigentriples are taken to
describe F (1)N (alternatively, the approach in general is inappropriate).

6. The role of the initial data
Apart from the number M of forecast steps, the formal parameters of the Ba-
sic SSA R-forecasting algorithm are the window length L and the set I of
eigentriples describing F (1)N . These parameters determine both the forecasting
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LRF (2.1) and the initial data for the forecast. Evidently, the forecasting re-
sult essentially depends on this data, especially when the forecasting LRF has
extraneous roots.

The SSA R-forecasting method uses the last terms f̃ (1)N−L+1, . . . , f̃
(1)
N−1 of the

reconstructed series F̃ (1)N as the initial forecasting data. Due to the properties of

diagonal averaging, the last (and the first) terms of the series F (1)N are usually
reconstructed with a poorer precision than the middle ones. This effect may
cause essential forecast errors.

For example, any linear (and nonconstant) series fn = an + b is governed by
the minimal LRF fn = 2fn−1 − fn−2, which does not depend on a and b.
The parameters a and b used in the forecast are completely determined by the
initial data f0 and f1. Evidently, errors in this data may essentially modify the
behaviour of the forecast (for example, change a tendency to increase into a
tendency to decrease).

Thus, it is important to check the last points of the reconstructed series (for
example, to compare them with the expected future behaviour of the series
F
(1)
N ).

7. Reconstructed series and LRFs
In the situation of strong separability of F (1)N and F (2)N and proper eigentriple
selection, the reconstructed series is governed by the LRF which completely
corresponds to the series F (1)N . Discrepancies in such a correspondence indi-
cate possible errors: insufficient separability (which can be caused by the bad
quality of the forecasting parameters) or general inefficiency of the model. Two
characteristics of the correspondence may be useful here.

• Global discrepancies. Rather than using an LRF for forecasting, we can use
it for approximation of either the whole reconstructed series or its subseries.
For instance, if we take the first terms of the reconstructed series as the
initial data (instead of the last ones) and make N − L + 1 steps of the
procedure, we can check whether the reconstructed series can be globally
approximated with the help of the LRF.
Evidently, we can use another part of the reconstructed series as the initial
data while taking into consideration the poor quality of its first terms or
possible heterogeneity of the dynamics of the series F (1)N .

• Local discrepancies.The procedure above corresponds to long-term fore-
casting. To check the short-term correspondence of the reconstructed series
and the forecasting LRF, one can apply a slightly different method.
This method is used in Section 2.4.1 to construct empirical confidence in-
tervals and is called the multistart recurrent continuation. According to it,
for a relatively small Q we perform Q steps of the multistart recurrent
continuation procedure, modifying the initial data from (f̃ (1)0 , . . . , f̃

(1)
L−1)

to (f̃ (1)K−Q, . . . , f̃
(1)
N−Q), K = N − L + 1. The continuation is computed
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with the help of the forecasting LRF. The results are to be compared with
f̃
(1)
L , . . . , f̃

(1)
N−1.

Since both the LRF and the initial data have errors, the local discrepancies
for small Q are usually more informative than the global ones. Moreover,
by checking different Q we can estimate the maximal number M of steps
for a reasonable forecast.

8. Forecasting stability and reliability
While the correctness of the forecast cannot be checked via the intrinsic proper-
ties of the data, its reliability can be examined. Let us mention several methods
for carrying out such an examination.

• Different algorithms.We can try different forecasting algorithms (for ex-
ample, recurrent and vector) with the same parameters. If their results ap-
proximately coincide, we have an argument in favour of the stability of
forecasting.

• Different initial data.Since the last terms of the reconstructed series can
have significant errors, forecasting can start at one of the previous points.
Then we would have several forecasts and, of course, can compare them
and get an opinion about the forecasting stability.

• Different window lengths.If the separability characteristics are stable under
a small variation in the window length L, we can compare the forecasts for
different L.

• Forecasting of truncated series.Let us truncate the initial series FN by re-
moving the last few terms from it. If the separability conditions are stable
under such an operation, then we can forecast the truncated terms and com-
pare the result with the initial series FN and the reconstructed series F̃ (1)N

obtained without truncation. If the forecast is regarded as adequate, then its
continuation by the same LRF can be regarded as reliable. Of course, this
forecast can be compared with the one obtained without truncation, and, if
they are similar, we can approve the forecasting stability.

9. Confidence intervals
Though both empirical and bootstrap variants of the confidence intervals are
not absolute, they give important additional information about forecasting. Let
us summarize their features and peculiarities.

• General assumptions.The model of the initial series is FN = F
(1)
N + F

(2)
N ,

where F (1)N is a signal and F (2)N is assumed to be ‘noise’. The series F (1)N is
supposed to admit a recurrent continuation, and the problem of its forecast-
ing is under solution.

• Goals.The empirical confidence intervals are constructed for the entire se-
ries FN , which is assumed to have the same structure in the future. Boot-
strap confidence intervals are built for the continuation of the signal F (1)N .
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• Data sources and additional assumptions. The data source for construction
of the bootstrap confidence intervals is the residual series F̃ (2)N = FN −
F̃
(1)
N , where F̃ (1)N is the reconstructed series. It is assumed that the statistical

model for the residual series is being built and the corresponding parameters
have been estimated through the data F̃ (2)N .

The data used to construct the empirical confidence intervals has the form
of the residual series as well, but now we have the multistart residual series
defined in Section 2.4.1.

Note that in order to build the empirical confidence interval for the forecast
at time N + Q, we use the multistart Q-step residual series as the sample
and calculate the corresponding intervals through its c.d.f., which is shifted
by the value f̃ (1)N+Q−1 of the forecast.

For fixed Q, the multistart Q-step residual series consists of N −L−Q+2
terms. It is assumed that the corresponding empirical distribution is stable
if N would increase and therefore this distribution can be used up to time
N +Q.

Evidently, the method is meaningful only if N − L−Q+ 2 is sufficiently
large (say, if it exceeds several dozen).

• Checking the assumptions.The simplest situation when the assumptions for
both variants of the confidence intervals are valid is when the corresponding
residual series are Gaussian white noises. This hypothesis can be checked
by standard statistical methods.

Nevertheless, confidence bounds make sense even if such a hypothesis is
formally rejected. Then, at any rate, we would have a scale for the preci-
sion of the forecast and can compare different forecasting methods from the
viewpoint of their stability.

• Bootstrap average forecast.Dealing with the bootstrap simulation, we can
obtain additional information concerning forecasting. For instance, having
obtained the forecast for the series FN,i (1 ≤ i ≤ S), we can take the
average of the corresponding (random) forecasts and obtain the bootstrap
average forecastof the series F (1)N . Therefore, we can use one more fore-
casting variant, which can be compared to other variants of forecasts.

2.6 Examples and effects

2.6.1 ‘Wages’: Forecast of the exponential tendency

The series ‘Wages’ (annual wages, U.S., from 1900 to 1970, Hipel and McLeod,
1994) demonstrates a tendency that can be approximately considered as an expo-
nential one. Therefore, it is natural to use a one-dimensional linear space L1 for
its forecasting. Here we compare several ways of perfoming such a forecast for
the period from 1971 to 1980.
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Let us truncate the series at 1959 and forecast this truncated series up to 1980,
that is for 21 years. The truncated series has length N = 60 and under the selec-
tion of the window length L = 30 we take the leading eigenvector U1 as the basis
of L1. The w-correlation of the reconstructed series and the residuals is 0.025.
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Figure 2.15 Wages: truncation and forecast.
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Figure 2.16 Wages: polynomial roots.

The result of the Basic SSA recurrent forecasting procedure is shown in Fig.
2.15. Here the thick line corresponds to the ‘Wages’ series, the vertical line shows
the point of truncation, the thin line depicts the reconstructed series and the thin
line with dots is the result of forecasting.

Since the first 11 forecasted values are close to real wages for the period from
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1960 to 1970, it is natural to suppose that the subsequent 10 values of forecast
would describe the future with good precision.

The linear recurrent formula applied in this forecasting has order d = 29. The
roots of the corresponding characteristic polynomial are depicted in the complex-
plane representation in Fig. 2.16.

Let us compare the result of the Basic SSA recurrent forecasting algorithm with
the results of its various modifications.

Firstly, we apply the reduction method, described in Section 2.3.4, for finding
the minimal recurrent forecasting formula. Evidently, the dimension of such a for-
mula ought to be 1. Fig. 2.16 shows that the characteristic polynomial has single
real root λ1 ≈ 1.0474, while all the other roots are complex ones with moduli
significantly smaller than 1. If we would decide to have a purely exponential fore-
cast, we can keep the root λ1 and remove all the others since they are extraneous.
Then the new (minimal) LRF will have the form fn = afn−1, a = λ1.

Secondly, since we have obtained the one-dimensional space L1, the nearest-
subspace method (Section 2.3.4) for finding the minimal forecasting recurrent
formula can be applied as well. For both minimal formulae the initial data for
forecasting consists of the last term of the reconstructed series.

Table 2.1 Wages: forecasting results.

Method Start Time Forecast 1980 Accuracy

1960 12849 0.021
recurrent 1967 13099 0.028

1971 12958 −
1960 13091 0.023

MinLRF(1) 1967 13074 0.027
1971 12916 −
1960 12074 0.018

MinLRF(2) 1967 13188 0.029
1971 13015 −
1960 12339 0.017

vector 1967 12694 0.015
1971 12676 −

Lastly, we use the vector variant of Basic SSA forecasting (Section 2.3.1).
Thus, we have four Basic SSA forecasting modifications. Moreover, for each
modification we take three variants of the initial forecast point: 1960 (then we
take L = 30), 1967 (L = 33) and 1971 (L = 36). The leading eigenvector serves
as a basis of L1 in all cases. For comparison, we perform forecasting up to 1980.
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The forecasting results are gathered in Tables 2.1 and 2.2. The abbreviations
‘recurrent’ and ‘vector’ denote the recurrent and vector Basic SSA forecasting
methods, respectively. Two other forecasting variants use minimal (one-dimen-
sional) LRFs, achieved by the reduction of the extraneous polynomial roots: the
first, ‘MinLRF(1),’ is obtained by the reduction of the LRF (2.1) of the Basic
SSA forecasting procedure, and the second, ‘MinLRF(2),’ uses the main root of
the polynomial defined by the nearest-subspace LRF (2.24).

Table 2.1 shows the forecasting results at 1980 and their accuracy relative to
the ‘Wages’ data. The column ‘Accuracy’ contains the results of comparison of
the forecasts with the initial series: if we consider the forecast results and ‘Wages’
data under comparison as vectors, then the accuracy is calculated as the distance
between these vectors divided by the norm of the ‘Wages’ vector. Evidently, the
comparison can be performed for 1960-1971 and 1967-1971, depending on the
initial forecasting point.

Table 2.2 Wages: coefficients of the minimal LRFs.

Method Start Time Coefficient

1960 1.0474
MinLRF(1) 1967 1.0473

1971 1.0470

1960 1.0434
MinLRF(2) 1967 1.0479

1971 1.0478

Table 2.2 shows the (single) parameter a of the minimal recurrent formula fn =
afn−1 for different starting times and two methods.

Let us briefly discuss the forecasting results. Table 2.1 shows that the Basic
SSA recurrent forecasting algorithm (as well as its reduction modifications) gives
similar results for all starting times. Moreover, the accuracy is similar too. This
confirms the validity of the choice r = 1 for the space Lr and demonstrates the
stability of forecasting.

The vector forecasting procedure gives more conservative results. Since the
accuracy of vector forecasting is slightly better, the conservative forecast ought to
be taken into consideration as well.

The nearest-subspace method seems to be less stable with respect to variation
of the initial forecast point, though the forecasting results of the forecasts from
1967 and 1971 correspond to that of the Basic SSA recurrent algorithm.

Table 2.2 explains this effect. The minimal recurrent formula calculated via the
reduction of the polynomial roots is almost the same for all initial forecast points,
while the coefficient of the minimal LRF produced by the nearest subspace is far
less stable.
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2.6.2 ‘Eggs’: Minimal LRF

The series ‘Eggs’ (monthly, from January 1938 to December 1940, see Sec-
tion 1.3.3 for a detailed description) has an evident structure: it can be described
as a sum of a slowly decreasing almost constant trend which can be approxi-
mated by an exponential sequence, an annual seasonal component, and a small
noise. Therefore, we can express the ‘Eggs’ series FN as FN = F

(1)
N +F (2)N with

N = 36,

f (1)n = c0 a
n
0 +

5∑
k=1

ck cos(2πnk/12 + φk) + c6 cos(πn), (2.25)

a0 � 1, and a noise series F (2)N . If we would prefer, we can change each pure
harmonic component cos(2πnk/12+φk) of (2.25) for the exponential-modulated
harmonic ank cos(2πnk/12 + φk) with ak ≈ 1 (k = 1, . . . , 6).

At any rate, if ck 	= 0 for k = 0, . . . , 6, the series F (1)N is governed by an
LRF of dimension 12, and, therefore, the minimal window length for proper fore-
casting is equal to L = 13. In view of the general concepts of Section 1.5, this
window length can be expected to provide good separability of F (1)N and F (2)N and,
consequently, a reasonable forecast.

Fig. 2.17 depicts two variants of such forecasts up to January 1942. (They are
represented by the thin lines, with the thick one corresponding to the initial ‘Eggs’
series.) Both forecasts are performed with the help of the Basic SSA R-forecasting
procedure, with L = 13 and the eigentriples 1-12, but have different initial fore-
cast points.
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Figure 2.17 Eggs: forecast by the minimal LRF.

The first starts at January 1941 and produces 13 steps. The second is based on
the first 25 points of the series only. It starts at February 1940 and performs 25
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steps. Therefore, we deal with two LRFs of the (minimal) dimension 12 and two
initial data sets.

Fig. 2.17 shows that the results of both forecasts during the period from January
1941 to January 1942 are very similar, though the first of them gives slightly larger
values due to a small phase shift.

Therefore, for the ‘Eggs’ series, the minimal LRF produces stable and reason-
able results.

2.6.3 ‘Precipitation’: Toeplitz forecasting

The series ‘Precipitation’ (in mm, monthly, Eastport, U.S., from January 1896 to
December 1950, Hipel and McLeod, 1994) has a slowly decreasing trend and
an oscillatory component with a complex structure (Fig. 2.19, thin oscillating
line). Its periodogram, which is depicted in Fig. 2.18 in the frequency scale with
marked periods, shows that in addition to the usual annual harmonics and other
high-frequency components, there are two periodogram peaks corresponding to
approximately 62-months and 104-months periodicities.
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Figure 2.18 Precipitation: main periodogram peaks and the associated periods.

As was mentioned in Sections 1.7.2 and 2.3.2, for such data the Toeplitz SSA
with centring can give better results than Basic SSA.

Let us truncate the series ‘Precipitation’ at December 1947 and perform the
forecast of its trend for 84 steps (that is from January 1948 to December 1962),
taking L = 312 for the Toeplitz SSA R-forecasting variant with centring (Sec-
tion 2.3.3). To reconstruct the trend, we take the average triple and the third
Toeplitz eigentriple.

Fig. 2.19 shows the results of forecasting as well as the empirical confidence
intervals corresponding to the 2.5% upper and lower quantiles and relating to
the entire series ‘Precipitation’. The trend of the truncated series (as well as its
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Figure 2.19 Precipitation: trend forecast

forecast) is represented by the thick line. The thick vertical line corresponds to
the truncation point. Evidently, an almost linear behaviour of the reconstructed
trend is continued into the future.

If we want to forecast not only the general tendency of the series, but also its
low-frequency (5 and 8-9 years) oscillation components, we select the average
triple and the eigentriples 3, 6-7, 10-11 for the reconstruction. (The two leading
eigentriples correspond to the annual periodicity.) The resulting reconstruction
and forecast can be found at Fig. 2.20.
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Figure 2.20 Precipitation: low-frequency oscillations.

Note that for both forecasting variants, the empirical confidence intervals are
not symmetric with respect to the forecast values. The reason lies in the asym-
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metric behaviour of the initial series: large precipitation values look like ‘outliers’
on the background of the average series behaviour. Moreover, the hazard-like ap-
pearance of these ‘outliers’ produce abrupt changes in the upper confidence line.
If we were to take 80% confidence intervals instead of 95% ones, these irregular-
ities would be removed.

Comparison of the confidence intervals for the forecasting variants of Fig. 2.19
and Fig. 2.20 shows that the latter ones are slightly narrower. It is interesting
that the Basic SSA R-forecasting produces very similar forecast values (and con-
fidence intervals as well) for the trend and can hardly make a forecast of the
low-frequency components.

2.6.4 ‘Fortified wine’: Vector and recurrent forecasting

The series ‘Fortified wine’ (fortified wine sales, Australia, monthly, from January
1980 till June 1994) has the same origin as the ‘Rosé wine’ series, discussed in
Example 1.1 of the Section 1.4.1. Therefore, it is not surprising that these two
series have basically the same structure: in addition to a smooth trend, there exists
an annual seasonality of a complex form, and a noise. The main difference is
in the proportion of the amplitudes for different components in the 12-months
periodicity.
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Figure 2.21 Fortified wine: truncated series and its reconstruction.

We use this data to illustrate the difference between the recurrent and vector
SSA procedures for long-term forecasting. We truncate the series at December
1989 and perform forecasting from January 1990 to December 1994, that is for
60 steps.

Taking the window length L = 60, we select the eigentriples 1-7, which corre-
spond to the trend and the main annual harmonics: the 12-months, 6-months and
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4-months ones. The truncated series (thick line) and its reconstruction (thin solid
line) can be seen in Fig. 2.21.
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Figure 2.22 Fortified wine vector forecasting: bootstrap confidence intervals.

We can see that the approximation is rather good, despite the fact that we did
not include high-frequency seasonal harmonics in the reconstruction. This kind of
decision might be reasonable if we are interested only in the main seasonal effects.
Note, however, that the residual series of such a reconstruction can hardly be re-
garded as a Gaussian white noise: it contains obvious high-frequency harmonics.
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Figure 2.23 Fortified wine vector forecasting: bootstrap average forecast.

Nevertheless, while performing forecasting we will apply the Gaussian white
noise model for construction of the bootstrap confidence intervals and the boot-
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strap average forecast. These intervals are not absolute, but still not meaningless.
Additional reasons for applying the Gaussian white noise model is that the resid-
ual series does not have a visible trend and its empirical c.d.f. is close to the c.d.f.
of the normal distribution.

The results of Basic SSA vector forecasting and the bootstrap simulation are
depicted in Figs. 2.22-2.24.

The first figure demonstrates a good correspondence between the 95% boot-
strap confidence intervals for the forecast and the 54 last points of the initial series
(thick line). The next two figures compare the ‘Fortified wine’ series with its vec-
tor forecast and the bootstrap average forecast. (The latter depends not only on the
data, but on the model for the residuals as well.) If the forecasting parameters are
well chosen and the model is reasonable, then all three curves ought to be similar.

Figs. 2.23 and 2.24 demonstrate this similarity. Both figures represent the ave-
rage of S = 1000 bootstrap forecasts (thin lines). The thick lines correspond to
the ‘Fortified wine’ series (Fig. 2.23) and its vector forecast (Fig. 2.24).

If we apply recurrent forecasting for the same series in the same conditions,
then the results of long term forecasting will be much worse. We illustrate these
results with figures of the same kind as the previous ones.

Fig. 2.25 shows that the bootstrap confidence intervals for recurrent forecast-
ing become rapidly increasing and almost meaningless for the last third of the
forecasting period. Note that for the first year of the forecast, these intervals are
similar to that of vector forecasting, although they are a little wider.
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Figure 2.24 Fortified wine vector forecasting: two forecasts.

The other pair of figures elucidates this phenomenon. Fig. 2.26 shows that the
bootstrap average forecast still corresponds to the ‘Fortified wine’ series. This
correspondence, by the way, can be used as an argument that the Gaussian white
noise model for the reconstruction residuals is reasonable.
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Figure 2.25 Fortified wine recurrent forecasting: bootstrap confidence intervals.
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Figure 2.26 Fortified wine recurrent forecasting: bootstrap average forecast.

The discrepancies appear when we compare the recurrent forecast with the
bootstrap average one (Fig. 2.27). We see that the amplitude of oscillations of the
recurrent forecast (the thick line) increases, while the bootstrap average and the
initial ‘Fortified wine’ series have an approximately constant (or even decreasing)
amplitude of oscillations (the thin line in Fig. 2.27). The polynomial roots give
the explanation: there exists a pair of complex conjugate roots with moduli sig-
nificantly larger than 1 (they are equal to 1.018). They correspond to the 6-months
periodicity and the latter can be explicitly seen on the plot of the recurrent forecast
in Fig. 2.27.
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Figure 2.27 Fortified wine recurrent forecasting: two forecasts.

Thus, vector forecasting gives reasonable long-term results, while the recurrent
one appears to be less stable. On the other hand, the bootstrap average forecast
can correct this instability.

2.6.5 ‘Gold price’: Confidence intervals and forecast stability

Previous examples of time series were relatively simple for SSA forecasting since
we had in mind enough preliminary information about their behaviour. Moreover,
this information was in correspondence with the SSA requirements: we were able
to give a reasonable prediction for the number of eigentriples that describe the
components under forecasting, as well as the form of the related eigenvectors.
Therefore, unpredictable forecasting effects were hardly possible there.

The series ‘Gold price’ (gold closing price, daily, 97 successive trading days,
Hipel and McLeod, 1994), depicted in Fig. 2.28 by the thin line, has a more com-
plex structure. The main difficulties appear if we pay attention to the last points of
the series. To perform the forecast, we ought to decide whether the abrupt decrease
of ‘Gold price’ can be regarded as a ‘random’ effect or as important information
for forecasting. Depending on this decision, we select different eigentriples for
the reconstruction (and the forecast).

Figs. 2.28 and 2.29 demonstrate the effect of such a decision on the reconstruc-
tion (thick lines). Using Basic SSA with L = 48 we see that the 6th eigentriple is
responsible for the last points of the series.

Indeed, the five leading eigentriples describe the series in a proper way, with the
exception of its end (Fig. 2.28). On the other hand, the reconstruction via the six
leading eigentriples demonstrates (see Fig. 2.29, thick line) a good approximation
of the entire series.

Our aim is to study the recurrent forecasts performed by these variants of the
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Figure 2.28 Gold price: initial series and the rough reconstruction.
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Figure 2.29 Gold price: initial series and an accurate reconstruction.

eigentriple selection with the help of the bootstrap confidence intervals under the
Gaussian white noise model for the residuals. Yet we start with the bootstrap
confidence bounds for reconstruction, which are achieved in the same manner
and under the same assumptions as the forecasting ones. In the simulation we use
the sample size S = 1000 and construct the lower and upper 2.5% quantiles for
the confidence intervals.

Figs. 2.30 and 2.31 show the confidence intervals for the reconstruction per-
formed by the leading 5 (Fig. 2.30) and 6 (Fig. 2.31) eigentriples, respectively.

In both figures, three thick lines intersect the plot of the ‘Gold price’ series. The
middle ones are the averages of the bootstrap reconstructions (bootstrap average
reconstruction); they are quite similar to the reconstruction lines of Figs. 2.28 and
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Figure 2.30 Gold price: confidence intervals for the rough reconstruction.
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Figure 2.31 Gold price: confidence intervals for the accurate reconstruction.

2.29. The other two pairs of thick lines depict the bootstrap confidence intervals.
Though the share of the 6th eigentriple is only 0.46%, the confidence intervals
of Fig. 2.31 are significantly less than that of Fig. 2.30. Since the initial data for
the forecasting LRF corresponds to the last series points, it is important that the
confidence intervals become wider towards both edges of the series.

Let us turn to the results of Basic SSA recurrent forecasting depicted in Figs.
2.32 and 2.33. Both figures have the same form; they describe the last 10 points
of the ‘Gold price’ series (thick lines) and 10 forecast points. Four lines intersect
the ‘Gold price’ plots. All of them have a similar sense for the first and last 10
points.
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Figure 2.32 Gold price: forecast based on the five leading eigentriples.

The thin lines, marked by dots, describe the reconstructed series (up to point
97) and the Basic recurrent forecasts (points 98-107). The other lines demonstrate
the results of the bootstrap simulation: the thin middle lines depict the bootstrap
average reconstruction (up to the time point 97) and the forecasts; two extreme
pairs of the thin solid lines indicate the corresponding confidence intervals.
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Figure 2.33 Gold price: forecast based on the six leading eigentriples.

Figs. 2.32 and 2.33 show that the choice of 5 or 6 leading eigentriples produce
very different forecasts.

The forecast of Fig. 2.32 seems to be rather stable since both forecast lines are
close to each other and the forecast confidence intervals are not much wider than
the reconstructed ones.
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In other words, the choice of 5 leading eigentriples leads to stable results which,
however, do not take into account the atypical behaviour of the last ‘Gold price’
points.

Fig. 2.33 demonstrates that attempts to take these points into account for fore-
casting fail: the confidence intervals become extremely wide and therefore mean-
ingless. The forecast lines differ much. Thus, if we include the 6th eigentriple into
the list for forecasting, we come to great instability.

In terms of the bootstrap simulation, the 6th eigentriple is very unstable un-
der random perturbations of the residual series, while the first 5 eigentriples are
relatively stable.

The abrupt change of the forecasting behaviour caused by only one weak eigen-
triple has its origin in the transformation of the linear space Lr governing the
forecast (see Section 2.1). This transformation can hardly be expressed in terms
of the leading characteristic polynomial roots; indeed, the two roots with largest
moduli are similar in both cases – they both are real and approximately equal to
0.998. The other roots are significantly smaller.

Even so, we can indicate the characteristic that captures the transformation of
the linear space Lr. This characteristic is related to the verticality of the space.
Fig. 2.34 depicts the verticality function produced by the SVD of the trajectory
matrix of the series ‘Gold price’.
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Figure 2.34 Gold price: verticality function.

If we set Li = span (U1, . . . , Ui) with Ui standing for the ith eigenvector of
the SVD, then the verticality function v(i) (1 ≤ i ≤ L) is equal to the squared
cosine of the angle between Li and eL = (0, . . . , 1)T. The verticality coefficient
ν2 (see Section 2.1) can be easily calculated in terms of the verticality function.

The verticality function of Fig. 2.34 shows several relatively big jumps, which
indicate the transformation of the linear spaces Li after adding a single eigenvec-
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tor to its basis. The first jump corresponds to the transition from L5 to L6, that is
to the difference between Figs. 2.32 and 2.33.

Of course, the jump in the verticality function does not necessarily imply abrupt
changes in the forecast behaviour. Yet it signals the possibility of such a change.
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Figure 2.35 Gold price: forecast based on the nine leading eigentriples.

The second significant jump of the ‘Gold price’ verticality function is between
the 8th and the 9th eigentriples. It can be checked that if we take the leading
seven or eight eigentriples for the reconstruction, then the forecast behaviour will
be very similar to that of Fig. 2.33. The adjunction of the 9th eigentriple changes
the situation a lot.

The forecasting result is represented in Fig. 2.35 in the manner of Figs. 2.32
and 2.33. It is also unstable and differs from the previous ones.

Note that here the polynomial roots are also meaningful. The two largest root
moduli (1.019 and 1.001) correspond to two pairs of complex conjugate roots
with frequencies ω ≈ 1/17 and ω ≈ 2/15. The third root is real and is slightly
greater than 0.998.

Evidently, the emergence of new polynomial roots with large moduli may sig-
nificantly affect even a short-term forecast.
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CHAPTER 3

SSA detection of structural changes

3.1 Main definitions and concepts

Let us start with a description of the main model of the time series, whose struc-
tural changes we are attempting to detect.

We shall call a time series FN homogeneous if it is governed by some linear
recurrent formula (LRF) whose dimension is small relative to N . (See Chapter 2
concerning continuation of such series and series close to them and Chapter 5
concerning the related theory.)

Assume that due to an outside action (or for another reason) a homogeneous
time series is being exposed to an instant perturbation; that is, it stops following
the original LRF. However, after a certain time period it again becomes governed
by an LRF which may be different from the original one. Even if the new LRF
coincides with the original one, the behaviour of the time series after the pertur-
bation is generally different from the behaviour of the unperturbed series: this
behaviour is determined by the new (perturbed) initial conditions for the LRF.

Thus, we assume that the time series is being exposed to an instant (local)
perturbation which sends it from one homogeneous state to another within a rel-
atively short transition time. As a result, the series as a whole stops being homo-
geneous and the problem of studying this heterogeneity arises.

We shall mostly study the problem of the posterior detection of the heterogen-
eities without restricting ourselves to the detection of the transition (perturbed)
interval of the series, which is the change-point detection problem. In addition
to this standard detection problem, we shall be interested in comparison of the
homogeneous parts of the series before and after the change. The case of two or
more local perturbations will be considered as well.

The main idea of the method for solving the above problem of detection of
structural changes can be described as follows. In view of Section 5.2, the time
series FN governed by the LRF is characterized by the fact that for sufficiently
large values of the window length L (this value must be larger than the dimension
of the LRF) the L-lagged vectors of this series span the same linear space L(L)

independently of N (as soon as N is sufficiently large). Moreover, if the LRF is
minimal, then the space L(L) uniquely defines the LRF and vice versa.

Thus, the violations in the homogeneity of the series can be described in terms
of the corresponding lagged vectors: the perturbations force the lagged vectors to
leave the space L(L). The corresponding discrepancies are defined in terms of the
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distances between the lagged vectors and the space L(L), which can be determined
for different parts of the series (for example, before and after the perturbation).

Of course, such an ideal situation is possible only in artificial examples. In prac-
tical cases the series are described by LRFs only approximately, and the problem
of approximate construction of the spaces L(L) becomes important. Here, as in
the problems of SSA forecasting (see Chapter 2), the SVD of the trajectory matri-
ces does help. However, unlike the forecasting problems, for studying structural
changes in time series, the properties of the SVD of subseries of the initial series
are of considerable importance.

As in Chapters 1 and 2, the study in the present chapter is made at a qualitative
level; although in some simple cases (which are, as a rule, artificial examples)
some quantitative procedures can be suggested.

3.1.1 Heterogeneity matrix and heterogeneity functions

(a) Heterogeneity matrix

Consider two time series F (1) = F
(1)
N1

and F (2) = F
(2)
N2

and take an integer L

with 2 ≤ L ≤ min(N1 − 1, N2). Denote by L(L,1) the linear space spanned by
the L-lagged vectors of the series F (1).

Let U (1)l (l = 1, . . . , L) be the eigenvectors of the SVD of the trajectory matrix

of the series F (1). For l > d
def= dimL(L,1), we take vectors from any orthonormal

basis of the space orthogonal to L(L,1) as the eigenvectors U (1)l .

Let I = {i1, . . . , ir} be a subset of {1, . . . , L} and L(1)r
def= span(U (1)l , l ∈ I).

Denote by X(2)1 , . . . , X
(2)
K2

(K2 = N2 − L + 1) the L-lagged vectors of the time
series F (2).

We introduce a measure called the heterogeneity index, which characterizes the
discrepancy between the series F (2) and the structure of the series F (1) (described
by the subspace L(1)r ):

g(F (1);F (2)) =

K2∑
l=1

dist2
(
X
(2)
l ,L(1)r

)
K2∑
l=1

‖X(2)l ‖2
, (3.1)

where dist(X,L) is the Euclidean distance between the vector X ∈ IRL and the
linear space L ⊂ IRL. The heterogeneity index g is the relative error of the optimal
approximation of the L-lagged vectors of the time series F (2) by vectors from the
space L(1)r .

The values of g belong to the interval [0, 1]. If all the L-lagged vectors of
the series F (2) lie in the subspace L(1)r , then g(F (1);F (2)) = 0. Alternatively,
if all the L-lagged vectors of F (2) are orthogonal to the subspace L(1)r , then
g(F (1);F (2)) = 1.
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The heterogeneity index g can be interpreted as a normalized squared error of
the multiple regression of vectorsX(2)1 , . . . , X

(2)
K2

relative to the vectorsU (1)l , l∈I .
We now define the heterogeneity matrix(H-matrix) of a time series FN . The

elements of this matrix are values of the heterogeneity index g for different pairs
of subseries of the series FN .

To make the definition we introduce the following objects:

(a) the initial time series FN : FN = (f0, . . . , fN−1), N > 2;

(b) the subseries (intervals) Fi,j of the time series FN : Fi,j = (fi−1, . . . , fj−1)
for 1 ≤ i < j ≤ N ;

(c) the window length L: 1 < L < N ;

(d) the length B of the base subseries of the series FN : B > L;

(e) the length T of the test subseries of the series FN : T ≥ L;

(f) the collection I of different positive integers: I = {j1, . . . , jr}; we assume
that I is such that j < min(L,B − L+ 1) for each j ∈ I;

(g) the base spaces(i = 1, . . . , N − B + 1) are spanned by the eigenvectors
with the indices in I , obtained by the SVD of the trajectory matrices X(i,B)

of the series Fi,i+B−1 with window length L. The corresponding set of
eigentriples is called the base set of eigentriples.

In these terms, the elements gij of the heterogeneity matrix G = GB,T are

gij = g(Fi,i+B−1;Fj,j+T−1), (3.2)

where i = 1, . . . , N −B + 1 and j = 1, . . . , N − T + 1. Thus, in (3.2) the space
L
(L,i)
I,B plays the role of L(1)r . The series Fi,i+B−1 are called the base subseries(or

base intervals) of the series FN , while Fj,j+T−1 are test subseries(intervals).
By definition, the quantity gij is the normalized sum of distances between the

L-lagged vectors of the series Fj,j+T−1 and the linear space L
(L,i)
I,B . Note that the

matrix G is generally not symmetric even for T = B, since the base and the test
subseries of the series play different roles in the construction of the heterogeneity
index gij .

If the base spaces L
(L,i)
I,B do not depend on i for a certain range of i, then for

any T all ith rows of the matrix G are equal to each other for the same range of i.
In turn, if the set of L-lagged vectors of the series Fj,j+T−1 does not depend on
j for j1 ≤ j ≤ j2, then for any B all jth columns of the matrix G are equal for
j1 ≤ j ≤ j2.

(b) Heterogeneity functions

On the basis of the heterogeneity matrix G let us introduce various heterogeneity
functions.

1. Row heterogeneity functions
For fixed i ∈ [1, N−B+1] the row heterogeneity function is a seriesH(r,i)N−T+1,
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so that its general term is

h
(r,i)
n−1

def= gin = g(Fi,i+B−1;Fn,n+T−1), n = 1, . . . , N − T + 1.

Thus, the series H(r,i)N−T+1 corresponds to the ith row of the matrix G.

The row heterogeneity function H(r,i)N−T+1 reflects the homogeneity of the se-
ries FN (more precisely, of its test subseries Fn,n+T−1) relative to the fixed

base subseries Fi,i+B−1 (more precisely, relative to the base space L
(L,i)
I,B ).

This is due to the fact that in the construction of the row heterogeneity func-
tion the base subseries of the series FN is fixed, but the test subseries varies.

2. Column heterogeneity functions
In addition to the row heterogeneity function we can consider the column het-
erogeneity functions, which correspond to the columns of the H-matrix. For-
mally, for fixed j ∈ [1, . . . , N − T + 1] the column heterogeneity function
H
(r,j)
N−B+1 of length N −B + 1 is defined as the time series with general term

h
(c,j)
n−1

def= gnj = g(Fn,n+B−1;Fj,j+T−1).

In this case, the test subseries of the series is fixed, but the base subseries varies.

The column heterogeneity function also reflects the homogeneity of the series
FN (more precisely, the base spaces L

(L,n)
I,B ) relative to its fixed test subseries

Fj,j+T−1 (more precisely, relative to the L-lagged vectors of this subseries).

When using the column heterogeneity functions in the interpretation of the
results we have to bear in mind that in comparison to the row heterogeneity
functions, the base and the test subseries of FN are being interchanged.

3. Diagonal heterogeneity functions
The diagonal heterogeneity function is a time series H(d,δ)N−T−δ+1 with parame-
ter 0 ≤ δ ≤ N − T , such that

h
(d,δ)
n−1

def= gn,n+δ = g(Fn,n+B−1;Fn+δ,n+δ+T−1)

for n = 1, . . . , N −T + δ+1. Thus, the series H(d,δ)N−T−δ+1 corresponds to the
’diagonal’ j = i+ δ of the matrix G.

The series H(d,δ)N−T−δ+1 reflects the local heterogeneity of the series, since both
the base and the test subseries of the series FN vary at the same time. For
T + δ > B the test intervals are ahead of the base intervals. In particular, for
δ = B the test intervals immediately precede the base intervals.

4. Symmetric heterogeneity function
When δ = 0 and T = B, the base subseries of the series coincides with the test
subseries. The heterogeneity matrix G becomes a square matrix, and the series

H
(s)
N−B+1

def= H
(d,0)
N−B+1 corresponds to its principal diagonal. The general term

h
(s)
n−1

def= g
(d,0)
n−1 = g(Fn,n+B−1;Fn,n+B−1)
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of the series H(s)N−B+1 is equal to the eigenvalue share:

h
(s)
n−1 = 1−

∑
l∈I

λ
(n)
l

/∑
l

λ
(n)
l , (3.3)

where λ(n)l are the eigenvalues of the SVD of the trajectory matrix of the se-

ries Fn,n+B−1 with window length L. We shall call the series H(s)N−B+1 the
symmetric heterogeneity function.

The equality (3.3) implies that for B = T the principal diagonal of the het-
erogeneity matrix G (namely, the series H(s)N−B+1) characterizes the quality of
the local description of the series FN by the eigentriples with indices in I .

Remark 3.1 A single heterogeneity interval in the series FN can generate one or
more radical changes in the behaviour of the heterogeneity functions.

Consider, for instance, the row heterogeneity function (that is, assume that the
test interval varies, but the base interval is unchanged). Then an abrupt change in
the values of the row heterogeneity function may happen in two regions: when the
test interval ‘enters’ the heterogeneity interval of the original series and when it
‘departs’ from this heterogeneity interval.

For the column and symmetric heterogeneity functions, a single local hetero-
geneity in the original series also generates two potential jumps. In the same sit-
uation the diagonal heterogeneity functions may have three (for δ = B) and even
four jumps (for δ 	= B).

3.1.2 Detection functions

As was already mentioned, posterior change detection problems can be regarded
as specific cases of the problem of studying heterogeneities in time series. As
a rule, change detection problems are problems of testing homogeneity of the
structure of the series with respect to the structure of the initial part of the series
(‘forward’ change). Sometimes the problems of testing changes with respect to
the structure of the terminal part of the series are also of interest (‘backward’
changes). In some cases estimation of the change-point, which is the time of the
violation of the homogeneity, is also important.

We shall mostly consider the ‘forward’ change detection problem, although the
‘backward’ change detection is of significant importance in the forecasting prob-
lems, in finding the homogeneous parts of the original series that can be used for
forecasting. The ‘forward’ change detection problem can easily be transformed
into the ‘backward’ problem by inverting the time, that is, by considering the

series f ′i
def= fN−i−1.

(a) Structural changes and heterogeneity functions

The specifics of the change detection problem raises the question of the corre-
spondence between the heterogeneity functions and the original series FN . Let us

Copyright © 2001 CRC Press, LLC



discuss different cases of this correspondence for the problem of ‘forward’ change
detection.

If we consider the row heterogeneity functions, then the ‘forward’ change as-
sumes that the test interval is ahead of the base one, and therefore we can formally
deal with the starting base subseriesF1,B which corresponds to the first point of
the initial series.

As was already mentioned, a single change in the series FN must generally cor-
respond to one or more radical changes in the values of heterogeneity functions;
for the row heterogeneity function there may be at most two such changes.

Assume that we are interested in the first (after the starting base interval) change
in the series. This change corresponds to the ‘entrance’ of the test interval into the
region of heterogeneity, and therefore it is natural to index the values of the row
heterogeneity function by the last point of the test interval rather than by the first
point of this interval (as is made in the homogeneity matrix). Thus, we obtain
the new indexation: the ith term of the row heterogeneity function is indexed by
T − 1 + i.

In the case when we are trying to find several changes in the original series, it is
worthwhile keeping both indexation systems for the terms of the row heterogen-
eity function (the standard and the new one). This is in order to prevent assigning
two structural changes to the original series while observing two radical changes
in the values of the row heterogeneity function that are caused by ‘passing’ the
region of heterogeneity by the test interval.

Of course, all the above also relates to the column heterogeneity functions (and
to the symmetric heterogeneity functions, where the base and test intervals coin-
cide).

The general case of the diagonal heterogeneity function requires a larger num-
ber of indexation systems, since one local heterogeneity can give rise to three or
four jumps in the values of this function.

In what follows, we shall not use the entire variety of heterogeneity functions
and their indexation systems. In addition to the full information which is con-
tained in the heterogeneity matrix, we shall use only some particular cases of the
heterogeneity functions in the form of the so-called detection functions.

(b) Types of detection function

The detection functions considered below will differ from the heterogeneity func-
tions in several aspects.

First, since we are interested only in the ‘forward’ changes, we shall use only
the series F1,B as the base part of the series for both the row and column hetero-
geneity functions.

Second, for the diagonal (but not symmetric) heterogeneity functions we shall
always assume that δ = B. This means that there is no gap between the base and
test intervals. We thus always compare neighbouring parts of the time series.
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Finally, the detection and heterogeneity functions have different domains. For
example, the indexation of the terms of the heterogeneity functions always starts
at 0, but the terms of the row detection function are in correspondence with the
end-points of the test intervals. (For the column detection function the indexation
corresponds to the last points of the base intervals.) That means that we are mostly
interested in the first ‘forward’ change in the series.

We introduce formally the detection functions, which are related to the hetero-
geneity functions of the previous section.

1. Row detection function
The row detection function is the series D(r)T,N with terms

d
(r)
n−1

def= h
(r,1)
n−T = g(F1,B ;Fn−T+1,n), (3.4)

T ≤ n ≤ N . This corresponds to the detection of the change with respect to
the initial part of the series (more precisely, with respect to its first B terms,
which are represented by the space L(L,1)

I,B ).

2. Column detection function
The column detection function is the series D(c)B,N with terms

d
(c)
n−1

def= h
(1,c)
n−B = g(Fn−B+1,n;F1,T ), (3.5)

B ≤ n ≤ N .

3. Diagonal detection function
This is the series D(d)T+B,N with terms

d
(d)
n−1

def= h
(d,B)
n−T−B = g(Fn−T−B+1,n−T+1;Fn−T+1,n), (3.6)

T + B ≤ n ≤ N . Since there is no gap between the base and test intervals,
this detection function can be used for detection of abrupt structural changes
against the background of slow structural changes.

4. Symmetric detection function
Let T = B. Then the terms of the series D(s)B,N , which is called the symmetric
detection function, are defined by

d
(s)
n−1

def= h
(s)
n−B = g(Fn−B+1,n;Fn−B+1,n), (3.7)

B ≤ n ≤ N . This detection function measures the quality of approximation
of the base series by the chosen eigentriples.

The relation between the above heterogeneity/detection functions and the het-
erogeneity matrix in the case B = T is shown in Fig. 3.1. The rows in this figure
are numbered from bottom to top, and the columns are numbered in the stan-
dard manner, from left to right. Thus, the bottom ith row corresponds to the base
subseries

Fi,i+B−1 = (fi−1, . . . , fi+B−2)
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N-B+1

1
1 B+1 N-B+1

(s)

(d)

(r)

(c)

Figure 3.1 Heterogeneity matrix and four detection functions.

of the series FN , and the elements of this row constitute the row heterogeneity
function H(r,i)N−T+1. Analogously, the jth column from the right of the heterogen-
eity matrix corresponds to the test subseries

Fj,j+T−1 = (fj−1, . . . , fj+T−2),

and the elements of this column constitute the column heterogeneity function
H
(c,j)
N−B+1.
The detection functions are depicted in Fig. 3.1. The row and column detection

functions correspond to the first (from below) row and the first column of the
matrix. The symmetric detection function is depicted as the principal diagonal of
the matrix, while the diagonal function is parallel to the symmetric function, but
starts at the point B + 1 of the first row of a matrix. The indexation of terms of
the detection functions is not shown in the figure.

3.2 Homogeneity and heterogeneity

Let us come back to the main model of perturbations of homogeneous (that is,
governed by the LRF) time series.

Let FN be a homogeneous series governed by the minimal LRF of dimension
d (in terms of Chapter 5, fdim(FN ) = d). Let us choose integers L and r so that
L ≥ d and d ≤ r ≤ min(L,N − L+ 1).

If we choose I = {1, 2, . . . , r}, then the heterogeneity matrix (3.1) is the
zero matrix. Indeed, since B ≥ L, then for any i we have L(L)(Fi,i+B−1) =
L(L)(FN ), and therefore all the L-lagged vectors of the series Fj,j+T−1 belong
to the space L(L)(Fi,i+B−1) for all i, j. This implies that any homogeneous se-
ries FN gives rise to a zero heterogeneity matrix, and the presence of nonzero
elements gij in this matrix is an indication of a violation of homogeneity.
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HOMOGENEITY AND HETEROGENEITY 157

We consider several types of violation of homogeneity and the corresponding
heterogeneity matrices.

3.2.1 Types of single heterogeneity

In accordance with the main model of a single local perturbation of homogen-
eity, the time series FN is governed by an LRF until a certain time Q. Then an
instant perturbation takes place, although in a short time the series again becomes
homogeneous and controlled by an LRF. This LRF may differ from the initial one.

If the same LRF is restored, then we have a temporary violation of the time
series structure; otherwise (when the new LRF is different from the original one)
the violation of the structure is permanent.

We denote by Q the maximal moment of time such that the series F1,Q−1 is
homogeneous. This moment of time Q will be called the moment of perturbation
or change-point. Let d = fdim(F1,Q−1).

Assume that some time S ≥ 0 after the perturbation, the time series becomes
homogeneous again, which means that the series FQ+S,N is homogeneous. We set
d1=fdim(FQ+S,N ). The time interval [Q,Q+S] is called the transition interval.
The behaviour of the series within the transition interval is of no interest to us.

Let L ≥ max(d, d1). Assume in addition that L ≤ Q−1 and L ≤ N−Q−S+1.
If the L-lagged vectors of the series FN span the original subspace L(L)(F1,Q−1)
after they left the transition interval [Q,Q + S] (that is, if L(L)(F1,Q−1) =
L(L)(FQ+S,N )), then both homogeneous parts of the time series are governed
by the same minimal LRF. This is the case of a temporary heterogeneity. By con-
trast, if L(L)(F1,Q−1) 	= L(L)(FQ+S,N ), then the minimal LRFs that govern the
two parts of the series are different and the heterogeneity is permanent.

For instance, a change in the period in one of the harmonic components of
the series and a change in the number of harmonic components mean permanent
heterogeneity. Alternatively, a change in the phase of one of the harmonic com-
ponents, a change in a constant component of the series, and change in the slope
of a linear additive component of the series mean temporary heterogeneity.

Let us now describe the general form of the heterogeneity matrix (H-matrix) of
a locally perturbed homogeneous series. We shall assume that the lengths of the
base and test intervals satisfy the condition max(B, T ) < Q.

Analogous to the case of a homogeneous series, consider I = {1, 2, . . . , r}
and assume that r = d ≤ min(L,B − L + 1). Then all the elements gij of the
heterogeneity matrix GB,T are zero for i + B ≤ Q and j + T ≤ Q. This is due
to the fact that for i + B ≤ Q and j + T ≤ Q, both the base and test subseries
of the series FN are also subseries of the homogeneous series F1,Q−1. The values
of the other elements of the H-matrix depend on the type of the heterogeneity and
the values of parameters.

Schematically, the general form of the H-matrix is depicted in Fig. 3.2. The re-
gionA corresponds to the elements gij of the H-matrix where the series Fi,i+B−1
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and Fj,j+T−1 are subseries of the homogeneous series F1,Q−1. Thus, in the re-
gionA, we have gij = 0. In the region D, both series Fi,i+B−1 and Fj,j+T−1 are
intervals of the series FQ+S,N . Thus, if the dimension d1 of the series FQ+S,N is
not larger than the dimension d of the series F1,Q−1, then the region D is also the
zero region.

In case of temporary heterogeneity, all four regions A, B, C and D are zero
regions.

B

A

D

C

N-B+1

Q+S

Q-B+1

1
1 Q-T+1 Q+S N-T+1�

Figure 3.2 General form of the H-matrix.

‘The heterogeneity cross’, that is the region of the elements gij of the H-matrix
with indices (i, j) such that

Q−B + 1 ≤ i ≤ Q+ S − 1, Q− T + 1 ≤ j ≤ Q+ S − 1,

is also an essential part of this matrix (it is coloured dark in Fig. 3.2). The hetero-
geneity cross corresponds to those (i, j) where either the base or the test interval
has a nonempty intersection with the transition interval. The width of the vertical
strip of the cross is equal to T + S − 1, and the height of its horizontal strip is
B + S − 1.

Let us give examples of series and their H-matrices for different types of het-
erogeneity. Depicting the matrices we shall use the black-and-white scale, where
the smaller the value the whiter the colour. White corresponds to zero.

In the majority of examples, the transition interval consists of one point only
(that is, S = 0). The case S > 0 differs only in the width of the heterogeneity
cross. An instructive example with S = 1 is the case of a homogeneous series
with an outlier (Example 3.7).

(a) Permanent violation (‘tile-structure’ matrices)

As discussed above, permanent violation is characterized by the fact that the two
minimal LRFs, which govern the series F1,Q−1 and FQ+S,N , do not coincide.
Since the dimension of the LRF reflects the complexity of the related series, the
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main classification will be made in terms of the correspondence between the di-
mensions d = fdim(F1,Q−1) and d1 = fdim(FQ+S,N ). Moreover, the relation
between the spaces spanned by the L-lagged vectors of these subseries of the
series FN will also be taken into account.

For simplicity, we take S = 0 in all the examples relating to permanent hetero-
geneity.

Example 3.1 Conservation of dimension
Assume that fdim(F1,Q−1) = fdim(FQ,N ). For instance, let the series FN have

the form

fn =
{
C1 sin(2πω1n+ φ1) for n < Q− 1,
C2 sin(2πω2n+ φ2) for n ≥ Q− 1, (3.8)

with C1, C2 	= 0, 0 < ω1, ω2 < 0.5 and ω1 	= ω2. The last relation signifies the
permanency of the structural change. It is clear that in this case d = d1 = 2.

Under the choice r = d, the heterogeneity matrix is a square matrix with ele-
ments

gij = 0 if

{
i ≤ Q−B
j ≤ Q− T , or

{
i ≥ Q+ S
j ≥ Q+ S

and, in general, gij > 0 otherwise. Thus, the blocks A and D (Fig. 3.2) are zero
blocks and the blocks B and C are generally not.

��� ���

���

���

Figure 3.3 Conservation of dimension: H-matrix.

This matrix is depicted in Fig. 3.3 for the series (3.8) with N = 400, ω1 =
1/10, ω2 = 1/10.5, C1 = C2 = 1, φ1 = φ2 = 0 and Q = 201. Other parameters
are B = T = 100, L = 50, r = 2 and I = {1, 2}. Since the values of the
parameters (the lengths of the test and base intervals and the window length) are
rather large, the matrix has a regular structure with constant values of gij in the
blocks B and C. The values of gij vary between the limits [0, 0.17].
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In Fig. 3.3, as well as the subsequent figures, the middle horizontal labels indi-
cate the edges of the vertical strip of the heterogeneity cross (i.e., Q−B + 1 and
Q). The vertical labels (Q− T + 1 and Q) correspond to the horizontal strip.

Since we are considering the heterogeneity of the series with respect to its ini-
tial part, it is worthwhile using detection functions. These functions are depicted
in Fig. 3.4 (three detection functions are shown in the top graph; the series itself
is in the bottom one). Note that for pictorial convenience the first 99 terms of the
series are omitted.

We can see that all the detection functions start rising at the point 201 (this is the
first point with nonzero values of all the detection functions). This is a reflection
of the structural change in the series FN at this moment of time.

��� ��� ��� ��� ��� ��� ���

�

����

����

����

��� ��� ��� ��� ��� ��� ���

����

�

���

Figure 3.4 Conservation of dimension: detection functions and the initial series.

We recall that the row detection function (thick line, top graph of Fig. 3.4) cor-
responds to the bottom row of the H-matrix of Fig. 3.3. The symmetric detection
function (thin line) indicates the principal diagonal of this matrix. The diagonal
detection function (the line marked by crosses) depicts the secondary diagonal of
the matrix with the column number exceeding the row number by 99.

Also, according to the definition of the detection functions, the indexation has
been changed so that the values of gij correspond to the last points of the test
intervals.

In this case, since the length of the test interval is 100, the first term of the
row and diagonal detection functions is indexed by 100, and the indexation of
the diagonal detection function starts at 200. This indexation system provides
a correspondence between the change-points in the behaviour of the detection
functions and the time series FN .
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Example 3.2 Reduction of dimension: general case
Let us assume that fdim(F1,Q−1) > fdim(FQ,N ), but

L(L)(F1,Q−1) 	⊃ L(L)(FQ,N ).

An example of such a series is the series FN with

fn =
{
C1 sin(2πω1n) + C2 sin(2πω2n) for n < Q− 1,
C3 sin(2πω3n) for n ≥ Q− 1, (3.9)

where C1, C2, C3 	= 0, 0 < ωi < 0.5, i = 1, 2, 3, ω1 	= ω2, and ω3 	= ω1, ω2.
In this case, under the choice r = 4 and I = {1, 2, 3, 4} (and suitable parameters
L, B and T ), the heterogeneity matrix has a form similar to the case of the ‘con-
servation of dimension’ (Fig. 3.3): the blocks A and D are zero blocks, but the
blocks C and B are not.

Example 3.3 Reduction of dimension: inheritance of structure
The heterogeneity matrix has a specific form when the reduction of dimension
is caused by the disappearance of one of the series components. In this case we
have L(L)(F1,Q−1) ⊃ L(L)(FQ,N ). We called this the inheritance of the series
structure after the perturbation. Let us give an example.

Assume that the series FN has the form (3.9) with N = 50, ω1 = ω3 = 1/10,
ω2 = 1/5, C1 = 1, C3 = 0.8, C2 = 0.2, φ1 = φ2 = φ3 = 0, and Q = 32. We
thus have d = 4 and d1 = 2.

Since ω1 = ω3, we have L(L)(F1,Q−1) ⊃ L(L)(FQ,N ). Choose B = 15,
T = L = 8. In accordance with our convention, r = 4 and I = {1, 2, 3, 4}. The
corresponding H-matrix is depicted in Fig. 3.5 (the values vary from 0 to 0.072).

�� ��

��

��

Figure 3.5 Reduction of dimension: inheritance of structure.

The blocksA, C, andD of this matrix are zero blocks. Only the nonzero blockB
deserves a commentary. By definition, an element of the block B is the normalized
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sum of distances between certain L-lagged vectors of the series F1,Q−1 and the r-
dimensional subspace L(1)r spanned by the r leading eigenvectors corresponding
to some subseries of the series FQ,N .

Since in the present case r = d > d1, and the subspace L(L)(FQ,N ) has dimen-
sion d1, there is an uncertainty in the selection of r− d1 missing eigenvectors (in
our case r−d1 = 2), which correspond to the zero eigenvalue. In accordance with
our convention, these eigenvectors are chosen as ‘arbitrary’ orthonormal vectors
in the ‘zero’ eigenspace. (In practice, they are chosen by a concrete computational
procedure.)

Thus, despite the fact that the spaces L(F1,Q−1) and L(L)r intersect, they do not
coincide, and the distance from the vectors in the space L(F1,Q−1) to the space
L(L)r is not necessarily zero.

Example 3.4 Increase of dimension: general case
Consider the general case of the increase of dimension of the series after the per-
turbation. We thus assume that fdim(F1,Q−1)< fdim(FQ,N ) and L(L)(F1,Q−1) 	⊂
L(L)(FQ,N ). This means that the perturbation increases the complexity of the se-
ries, which implies structural change. In the simplest case

L(L)(F1,Q−1) ∩ L(L)(FQ,N ) = 0.

�� ��
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Figure 3.6 Increase of dimension: the general case.

Assume, for example, that

fn =
{
C1 sin(2πω1n) for n < Q− 1,
C2 sin(2πω2n) + C3 sin(2πω3n) for n ≥ Q− 1, (3.10)

where C1, C2, C3 	= 0, 0 < ω1, ω2, ω3 < 0.5 and all the ωi are different. In this
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case, the elements of the heterogeneity matrix are such that

gij = 0  if

{
i ≤ Q−B
j ≤ Q− T

and (in general) gij > 0 otherwise. Thus, in the general case, only the block A
is the zero block. This matrix is depicted in Fig. 3.6 for the series (3.10) with
N = 50, ω1 = 1/10, ω2 = 1/8, ω3 = 1/5, C1 = 1, C2 = 0.8, C3 = 0.5 and
Q = 22. Thus, r = 2 and I = {1, 2}. The other parameters are B = T = 10 and
L = 5. The range of values of the H-matrix is [0, 0.65].

Example 3.5 Increase of dimension: inheritance of structure
The more typical case is perhaps when the new structure inherits the structure of
the unperturbed series, that is when L(L)(F1,Q−1) ⊂ L(L)(FQ,N ).

This happens, for instance, when a harmonic is added to the already existing
one, which is the case ω1 = ω2 in the series (3.10). In this situation, for appropri-
ate parameters the H-matrix achieves the specific form shown below.

Let the series FN be (3.10) with N = 55, ω1 = ω2 = 1/10, ω3 = 1/5,
C1 = 1, C2 = 0.8, C3 = 0.2, φ1 = φ2 = φ3 = 0 and Q = 32. Thus, r = 2
and I = {1, 2}. Let the other parameters be B = 19 and T = L = 10. Then the
H-matrix is as depicted in Fig. 3.7. The range of values of its elements is [0, 0.1].

�� ��
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��

Figure 3.7 Increase of dimension: inheritance.

The blocks A and B of the matrix of Fig. 3.7 are zero blocks. The equality
B = 0 (0 is the zero matrix) is due to the choice of parameters. Specifically,
the values for B and L are chosen in such a way that the components of the
series FQ,N (harmonics with frequencies 1/10 and 1/5) are separable. In this
case, for all j such that Q+ S ≤ j ≤ N − T +1, the lagged vectors of the series
F1,Q−1 belong to the two-dimensional subspace L

(L,j)
I,B (where I = {1, 2}) of the

four-dimensional space L
(L,j)
J,B (where J = {1, 2, 3, 4}) spanned by the L-lagged
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vectors of the series Fj,j+B−1. Other choices of the parameters L andB may lead
to a lack of separability and therefore to a nonzero block B.

(b) Temporary violation (‘cross-structure’ matrices)

In the case of temporary violation, L(L)(F1,Q−1) = L(L)(FQ,N ) and the elements
of the H-matrix satisfy the following relation:

if gij 	= 0 then Q−B < i < Q+ S or Q− T < j < Q+ S.

Thus, in the case of temporary violation, all four blocks of the H-matrix (see
Fig. 3.2) are zero blocks. Hence the pictorial representation of this matrix has the
form of a cross. The horizontal strip reflects how the transition interval distorts
the space L(L)(F1,Q−1) with respect to which the heterogeneity has arisen. The
vertical strip shows what kind of influence the heterogeneity has on the lagged
vectors of the series.

Consider two cases corresponding to two values of S of particular interest:
S = 0 and S = 1.

Example 3.6 S = 0: change of initial data in the LRF
In the case of temporary violation and S = 0 we have

L(L)(FQ,N ) 	= L(L)(FQ−1,N ).

In particular, this implies that L(L)(F1,Q−1) = L(L)(FQ,N ) 	= L(L)(FN ).

�� ��

��

��

Figure 3.8 Temporary violation (S = 0): H-matrix.

As an example of this situation we may consider the series

fn =
{
C1 sin(2πωn+ φ1) for n < Q− 1,
C2 sin(2πωn+ φ2) for n ≥ Q− 1 (3.11)

with 0 < ω < 0.5 and φ1 	= φ2.
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Figure 3.9 Temporary violation (S = 0): detection functions and the time series.

As another example, take piecewise linear (or piecewise constant) series:

fn =
{
a1n+ b1 for n < Q− 1,
a2n+ b2 for n ≥ Q− 1 

(3.12)

with a1 	= a2 and/or b1 	= b2.
The H-matrix for the piecewise constant series FN of the form (3.12) with

N = 40, a1 = a2 = 0, b1 = 0.01, b2 = 1.01 and Q = 21 is represented in
Fig. 3.8. Both homogeneous subseries are governed by the same LRF: fn+1 = fn.
The parameters of the matrix are r = 1 and I = {1}, and also B = T = 10 and
L = 5. The range of values for the elements of the matrix is [0, 0.78].

Consider the detection functions. From their representation in Fig. 3.9 (the de-
tection functions are given in the top graph; the original series is in the bottom
one), we observe the start of the growth of the row and diagonal functions at the
point Q = 21. This is in agreement with the fact that the structure of the series
FN has been perturbed at this time.

Fig. 3.9 depicts the row detection functionD(r)10,40 (thin line marked with points),

the symmetric detection function D(s)10,40 (thin line) and the diagonal detection

function D(d)20,40 (thick line).

Note that the diagonal detection function D(r)20,40 has two jumps, when the test
and base intervals contact the change-point for the first time. It again starts achiev-
ing zero values only when the base interval passes the change-point. Of course,
this feature of the diagonal detection function may be undesirable in the case of
several changes in the series.
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Example 3.7 S = 1: a single outlier
The presence of a single outlier is one of the most common cases of series hetero-
geneity. This is the case of a temporary violation with S = 1.

Consider a homogeneous series F ∗
N with general term f∗n, and for some Q

(1 < Q < N) set

fn =
{
f∗n for n 	= Q− 1,
a for n = Q− 1, (3.13)

with some a 	= f∗Q. In this case, we shall say that the series FN has heterogeneity
in the form of a single outlier. It is clear that this heterogeneity is temporary.
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Figure 3.10 Temporary violation: detection functions and the series with an outlier.
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Figure 3.11 Series with an outlier: H-matrix.
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As an example, consider the series F ∗
N with N = 149 and

f∗n = sin(2πn/17) + 0.5 sin(2πn/10).

Take Q = 51 and define the series FN by (3.13) with a = f∗Q−1− 1.5. The series
FN is depicted in Fig. 3.10 (bottom graph). For this series d = d1 = 4. Hence,
r = 4 and I = {1, 2, 3, 4}.

The H-matrix of the series FN with B = 30 and T = L = 15 is represented in
Fig. 3.11 (the range is [0, 0.34]). From this figure, we can see that the elements of
the H-matrix relating to the vertical strip of the heterogeneity cross are on average
significantly larger than the corresponding values in its horizontal strip.

This can be explained by the fact that for large B and L (r < L < B/2), the
spaces L(L,i)

I,B are stable with respect to a single outlier. Thus, the heterogeneity at

point Q has very little effect on the spaces L(L,i)
I,B , but it significantly changes the

the lagged vectors of the test subseries Fj,j+T−1.
The corresponding row and column detection functions are depicted in Fig. 3.10

(top graph). Note that the row function (thin line) detects the outlier more expli-
citly than the column one. Note also that if B and L were to be reduced, then the
vertical and horizontal strips of the cross would be closer in terms of the values
of the heterogeneity index.

3.2.2 Multiple heterogeneity

If there are several local regions of heterogeneity in the time series, then its hetero-
geneity matrix contains submatrices corresponding to each single heterogeneity.
Let us give an example with two local heterogeneities.

Example 3.8 Example of multiple heterogeneity
Consider the series FN with

fn =


C0 + C2 sin(2πω1n) for 1 < n < Q1 − 1,
C1 + C2 sin(2πω1n) for Q1 − 1 ≤ n < Q2 − 1,
C1 + C2 sin(2πω2n) for Q2 − 1 ≤ n < N,

where N = 120, Q1 = 41, Q2 = 81, C0 = 0.02, C1 = 0.1, C2 = 1, ω1 = 0.1,
and ω2 = 10/98. The series F1,Q1 −1, FQ1,Q2 −1, and FQ2,N are homogeneous
with governing LRFs of equal dimension 3. Moreover, the LRFs of the first two
subseries coincide, but they differ from the LRF of the third subseries. Thus,
the first change-point Q1 corresponds to a temporary violation, while the second
change point Q2 relates to a permanent one.

The series FN is depicted in Fig. 3.12. In accordance with our convention,
r = 3 and I = {1, 2, 3}. Set B = T = 10 and L = 5. Fig. 3.13 shows the
H-matrix of the series FN (the range for its elements is [0,0.09]).

The elements gij with 1 ≤ i, j ≤ 71 = Q2 − B of this matrix correspond to
the subseries F1,Q2−1, which has only one heterogeneity. The representation of
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Figure 3.12 Double heterogeneity: initial series.
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Figure 3.13 Double heterogeneity: H-matrix.

the corresponding part of the matrix is similar to Fig. 3.8 and has the form of a
cross (temporary violation with S = 0).

The elements gij with Q1 = 41 ≤ i, j ≤ 100 = N − B + 1 correspond to
the subseries FQ1,N , which also has only one heterogeneity with conservation of
dimension (this time the heterogeneity is permanent). The representation of the
corresponding part of the matrix is similar to Fig. 3.3.

Remark 3.2 All the detection functions above relate to the study of heterogen-
eities with respect to the initial part of the series. However, in the forecasting
problems, the study of heterogeneities with respect to the end part of the series is
more important (backward change detection). Then the moment of heterogeneity
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(change-point) is defined as the minimal P such that the series FP+1,N is homo-
geneous. If there is only one local heterogeneity in the series, then P = Q+ S.

The backward detection problem can be reduced to the forward one by the

‘inversion’ of the series: f ′i
def= fN−i−1. Formally, this means the substitution

of r = d1 = fdim(FP+1,N ) for r = d = fdim(F1,Q−1) and an appropriate
choice of the new parameters B′, L′ and T ′. If d = d1, then we can use ‘forward’
parametersB,L and T for the backward detection. Then the ‘backward’ H-matrix
is obtained by rotating the ‘forward’ H-matrix through 180 degrees with respect
to the centre of the matrix.

In the latter case, the backward detection functions coincide with the hetero-
geneity functions for the original series. The shift in the indexation is not needed
since the values of the backward detection functions have to refer to the first point
of the test interval, which is the case for the heterogeneity functions. Thus, the
first (from the right) significant change in values of the heterogeneity functions
indicates the first (from the right) heterogeneity in the series.

3.3 Heterogeneity and separability

In the previous sections, the series FN containing heterogeneities have been con-
sidered as single objects. This implied, in particular, that the number r of the
eigentriples determining the base spaces L(L,i)

B,I was equal to the dimension d =
fdim(F1,Q−1) of the LRF governing the subseries F1,Q−1 of the series FN .

More realistic is the situation when FN = F
(1)
N + F

(2)
N , where the additive

component F (1)N is subjected to a perturbation and the series F (2)N has a sense of a

nuisance (for example, F (2)N is noise).

In this setup, the requirement of (approximate) separability of the correspond-
ing subseries of the series F (1)N and F (2)N naturally arises. The concept of sepa-
rability, being central in the SSA, is discussed in Section 1.5 in detail (see also
Section 6.1 for the corresponding theoretical aspects).

The main object describing violations of homogeneity of time series is again
the heterogeneity matrix. For a homogeneous series, this is the zero matrix (un-
der a suitable choice of parameters). It was this zero matrix that served as the
background in classification of different types of heterogeneity.

In order to describe a variety of forms of the ‘background’ H-matrices for the
problem of detection of structural changes in series components, we first need to
study the case of a homogeneous series F (1)N whose subseries are (approximately)

separable from the corresponding subseries of the series F (2)N .

This problem is studied in Section 3.3.1. Section 3.3.2 describes several cases
of heterogeneity.
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3.3.1 Heterogeneity

Let us start with the ‘ideal’ case of stable separability.

(a) Stable separability

Let FN = F
(1)
N + F

(2)
N and F (1)N be homogeneous. Set d = fdim(F (1)N ). Assume

that for all i = 1, . . . , N−B+1 the subseries F (1)i,i+B−1 and F (2)i,i+B−1 are strongly
L-separable for some window length L such that d < L < B. Since B > d, the
subseries F (1)i,i+B−1 are governed by the same LRF that governs the series F (1)N ,

and therefore fdim(F (1)i,i+B−1) = d. Set r = d.
We shall need one more assumption. Specifically, we assume that for any i,

the subseries F (1)i,i+B−1 is described in the SVD of the L-trajectory matrix of the
series Fi,i+B−1 by the eigentriples indexed by the numbers in I = {i1, . . . , ir},
which are the same as for the series F (1)1,B . If these assumptions hold, then we

shall call the series F (1)N and F (2)N stably separable (more precisely, (B,L)-stably
separable). If the series are stably separable, then for all 1 ≤ i ≤ N −B + 1 we
have

L
(L,i)
I,B = L(L)(F (1)i,i+B−1) = L(L)(F (1)N ). (3.14)

In view of the equality (3.14), the heterogeneity index gij defined in (3.2) does
not depend on i for any T .

If the series are stably separable, we can express gij explicitly for all i, j. In-

deed, since all the L-lagged vectors of the time series F (2)N are orthogonal to the

subspace L(L)(F (1)N ), it follows that

gij =

T−L+1∑
l=1

‖X(2)l,j ‖2

T−L+1∑
l=1

‖Xl,j‖2
, (3.15)

where Xl,j and X(2)l,j are the L-lagged vectors of the time series Fj,j+T−1 and

F
(2)
j,j+T−1, respectively.
Let us comment on the condition of stable separability implying (3.15). The

condition of strong separability of the subseries of the series F (1)N and F (2)N is, of
course, very restrictive. It consists in the requirement of weak separability of the
series F (1)i,i+B−1 and F (2)i,i+B−1 for all i and the condition that the singular values
corresponding to these series in the SVD of the trajectory matrices of their sums
are different.

Even the demand of weak separability is a strong condition. For a homogeneous
series of dimension not exceeding 2, the unique example of two weakly separated
series is provided by the pair of exponential-cosine sequences whose parameters
satisfy certain relationships (see Sections 5.2 and 6.1.1).
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However, the class of the series satisfying these conditions significantly widens
if we replace the requirement of weak separability by the one of approximate
(and, especially, asymptotic) weak separability.

The demand that the eigenvalues be different is necessary for the uniqueness of
identification of the weakly separable series in the SVD of the trajectory matrix
of their sum.

There is another condition relating to the eigenvalues, namely the constancy of
the set Ii indexing the eigentriples which describes the subseries F (1)i,i+B−1 of the

series F (1)N . As will be seen in examples, strong separability does not imply this
constancy (however, for the harmonic series this is true). A more serious matter
is that the constancy of Ii is formulated in terms of the ordinal numbers of the
eigentriples, but their order can be unstable under even small noise fluctuations.

Let us give two examples of stably separable time series and the corresponding
H-matrices.

Example 3.9 Stable separation: nonperiodic series
Fig. 3.14 depicts the H-matrix of the series FN with N = 100 and general term
fn = f

(1)
n + f

(2)
n , where

f (1)n = an cos(2πn/40), f (2)n = a−n, (3.16)

a = 1.025. The parameters (guaranteeing stable separation) were chosen as fol-
lows: B = 79, L = 40, r = 2 and I = {1, 2}; this corresponds to selection of the
eigentriples related to the series F (1)N . The parameter T was chosen as 79.
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Figure 3.14 Stable separation: H-matrix for nonperiodic series.

Note that each column of the H-matrix consists of equal elements but the matrix
is not constant. In terms of the heterogeneity functions, all the row heterogeneity
functions coincide and are decreasing, while the column ones are different but
constant.
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The next example deals with purely harmonic series.

Example 3.10 Stable separation: periodic series
Let the series F (1)N and F (2)N be harmonic with different integer periods p1, p2 > 2
and amplitudes C1 and C2, C1 	= C2. Denote by p the greatest common divisor
of p1 and p2.

Choose the window length L and the parameter B so that p divides both L and
B−L+1. Then the series F (1)i,i+B−1 and F (2)i,i+B−1 are weakly L-separable for all
i = 1, . . . , N−B+1. Also, the inequality C1 	= C2 guarantees their strong sepa-
rability. Moreover, in the SVD of the L-trajectory matrix of the series Fi,i+B−1,
the harmonic with the larger amplitude is related to the larger eigenvalue (of mul-
tiplicity two).

Thus, the series F (1)N and F (2)N are stably separable. This implies (3.15). Let us
show that in the present case all the gij are equal.

Indeed, since for a periodic harmonic with integer period p and amplitude 1 the
sum of its p squares within one period is p/2, the norms of the vectors ‖X(2)l,j ‖
and ‖Xl,j‖ do not depend on l and j and their squares are equal to C22L/2 and
(C21 + C22 )L/2, respectively. Thus,

gij =
C22

C21 + C22
,

which does not depend on T , the length of the test interval.

The differences in the heterogeneity matrices of Examples 3.9 and 3.10 are
related to the fact that the series themselves are essentially different: periodicity of
the harmonic series in the latter example guarantees the constancy of the gij ; at the
same time, stable separability of the components of a nonperiodic homogeneous
series leads only to the equality of all row heterogeneity functions.

Let us now consider the deviations from stable separability of series.

(b) Deviations from stable separability

In this section we consider different deviations from the condition of stable sepa-
rability of the series F (1)N and F (2)N , still assuming the homogeneity of the series

F
(1)
N . We have to distinguish two different kinds of deviation: deviations from

weak separability, not related to the ordering of the eigenvalues, and the effects
of coincidence and rearrangement of the eigenvalues, which have an influence on
both strong separability and the constancy of the sets Ii. Of course, these devia-
tions may occur at the same time.

(i) Deviations from weak separability.Assume that the series F (1)N and F (2)N are
approximately weakly separable. This means that either the values of the param-
eters B and L are close to those guaranteeing (weak) separability or these values
are sufficiently large and asymptotic (weak) separability does take place.
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Assume also that in the SVD of the trajectory matrix of the series Fi,i+B−1 for

all i, the series F (1)i,i+B−1 is related to the eigentriples with indices from the same
set I . (This requirement corresponds to arrangement stability for the eigentriples
in the case of strong separability.)

To start with, we consider two examples when the values of the parameters B
and L are close to those guaranteeing exact separability. These examples corre-
spond precisely to the situation described in Examples 3.9 and 3.10. In the for-
mer example, under the choice of parameters providing exact separability, the
H-matrix consists of equal rows (the series is not periodic), while in the latter
example all the elements of the H-matrix are equal (the series is periodic).

Example 3.11 Approximate weak separability: nonperiodic series
Fig. 3.15 depicts the H-matrix for the homogeneous series FN of Example 3.9
with general term (3.16) (compare this figure with Fig. 3.14, where the same scale
is used to encode the H-matrix).
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Figure 3.15 Deviations in parameters: H-matrix for nonperiodic series.

All the parameters are as in Example 3.9 except for the window length L, which
is now L = 35 instead of L = 40. These parameters guarantee only approximate
weak separability rather than exact separability.

Fig. 3.15 shows that the heterogeneity matrix is essentially the same; for in-
stance, the range of its values is (0.005,0.04). However, the row heterogeneity
functions are no longer equal.

Consider now the case when the series F (1)N and F (2)N are periodic.

Example 3.12 Approximate weak separability: periodic series
Fig. 3.16 depicts the H-matrix for a homogeneous series FN with N = 50 and
general term fn = f

(1)
n + f

(2)
n ,

f (1)n = sin(2πn/3), f (2)n = 0.5 sin(2πn/5).
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The parameters are B = 29, T = L = 14, r = 2, and I = {1, 2}. The range of
values of the matrix elements is approximately [0.1, 0.3].
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Figure 3.16 Deviations in parameters: H-matrix for periodic series.

Note that if we select L = 15 (this corresponds to exact separability), then all
the elements of the H-matrix will be equal to 0.2 (see Example 3.10). In the case
L = 14 we have approximate separability.

Even though the value of the window length L is almost the same, the matrix
depicted in Fig. 3.16 is very different from the ‘ideal’ constant matrix correspond-
ing to exact separability. Let us comment on the reasons for this difference.

The lengths B and T of two intervals, the base and the test ones, enter the
definition of the heterogeneity matrix. Separability characteristics of the series
are strongly influenced by the choice of the length B of the base interval (as well
as by the choice of the window length). At the same time, in the case of stable
separability and harmonic series, the H-matrix does not depend on T .

In the case of deviations from exact separability, there appears a dependence of
the H-matrix on T . The number of terms in the sums in both the numerator and
denominator of (3.1) is T − L + 1. The smaller T is (and therefore T − L + 1),
the larger fluctuations the elements of the H-matrix may have.

Large fluctuations in the H-matrix depicted in Fig. 3.16 can be explained by
the fact that the number of lagged vectors in the numerator and denominator of
(3.1) is only 1 (that is, T = L). If we increase the number of these lagged vectors
by increasing T , then the variation in values of the elements of the H-matrix will
decrease. For instance, for T = 33 (in this case T − L + 1 = 20) the values of
these elements lie in the interval (1.9, 2.0).

Since both series are periodic, there exists a specific choice of the parameter T ,
which leads to a very small range for the heterogeneity indices gij .

If we take T = 29, then the variation in values across the rows of the H-matrix
practically disappears (it becomes 0.005) and all the columns become equal. This
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is caused by the fact that the number T − L + 1 of lagged vectors entering the
sums in (3.1) is equal to 15 and is therefore proportional to both periods, 3 and 5.

Note that the choice T = L makes the mosaic structure of the H-matrix more
apparent also due to the total disagreement of T − L+ 1 = 1 with the periods of
the series.

Example 3.13 Asymptotic separability: harmonic series corrupted by noise
For long series, asymptotic weak separability (see Section 6.1.2) is a more natural
concept than the version of approximate separability related to a bad choice of
parameters. In the problems under consideration, regular asymptotic separability
assumes that the values of L and B − L+ 1 are large. Of course, this is possible
only when N is large.

As a rule, regular asymptotic separability implies that there are small fluctu-
ations around the limiting H-matrices, which are either constant or have the form
presented in Fig. 3.14. Natural examples of asymptotic separability arise in the
cases of noisy series.

Consider an infinite series F with general term

fn = f (1)n + f (2)n = C sin(2πnω + φ) + εn,

where εn is some (deterministic) stationary chaotic series with covariance func-
tion Rε and spectral density pε.

The results of Sections 6.4.4 and 6.4.3 imply that the noise εn is asymptotically
strongly separable from the signal F (1), and, moreover, the signal F (1) asymptot-
ically corresponds to the first two eigentriples. (In the case of stochastic Gaussian
white noise, weak separability is proved in Section 6.1.3.)

Thus, if we choose r = 2 and I = {1, 2}, then asymptotically the elements gij
of the heterogeneity matrix have the constant limit

lim gij =
2Rε(0)

C2 + 2Rε(0)
. (3.17)

In practice, the closeness of the elements of the H-matrix to the constant value
(3.17) is achieved by virtue of the large value of the series length N and the small
(relative to C2) value of the variance Rε(0).

Example 3.16 can be regarded as another example demonstrating the effect
of asymptotic separability, if the original series is taken only until the moment
of rearrangement of the eigentriples. In that example, where the components are
not separable for any choice of parameters, the base interval length B = 100
and the window length L = 50 appear to be large enough, so that the property
of asymptotic separability of the series F (1)i,i+B−1 and F (2)i,i+B−1 provides almost
exact separation (until the moment of rearrangement of the eigentriples). We can
observe the result of this in the bottom part of the H-matrix in Fig. 3.21.

Let us discuss the deviations from stable separability relating to the changes in
the order of the eigenvalues.
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(ii) Rearrangement of the eigentriples. The following examples are related to
the case when there is weak L-separability of the subseries of the series F (1)N and

F
(2)
N , but the conditions relating to the eigenvalues of the trajectory matrices do

not hold for all possible locations of the base interval.
More formally, we assume that

1. For some B and L and all i = 1, . . . , N − B + 1 the series F (1)i,i+B−1 and

F
(2)
i,i+B−1 are weakly separable;

2. There exists some M (maximal number with this property) such that B < M
and for m = B,B + 1, . . . ,M − 1

• the series F (1)m−B+1,m and F (2)m−B+1,m are strongly separable;

• in the SVD of the L-trajectory matrix of the series Fm−B+1,m the series

F
(1)
m−B+1,m is represented by the eigentriples with the same numbers I =

{i1, . . . , ir}, which hold for the series F (1)1,B .

We shall call the moment of timeM the moment of the eigentriple rearrangement
of the series FN . At this moment we have either termination of strong separability
or a rearrangement in the set of the eigentriples representing the subseries of the
series F (1)N (without violation of strong separability). Since the former effect (if
it is indeed present) is usually accompanied by the second one, we can consider
these two effects together.

Let us give corresponding examples.

Example 3.14 Eigentriple rearrangement: increase of dimension
Consider the time series FN with N = 400 and general term fn = f

(1)
n + f

(2)
n ,

where

f (1)n = 10 a−n, f (2)n = an cos(2πn/20),

a = 1.005. The series FN is depicted in the bottom graph of Fig. 3.18.
Under the choice B = 39 and L = 20 (see Section 6.1.1) we have weak se-

parability of the series F (1)i,i+B−1 and F (2)i,i+B−1 for all i. It is clear that the series

F
(1)
i,i+B−1 is described by the single eigentriple. It is straightforward to check that

the series F (1)1,B and F (2)1,B are strongly separable and that the series F (1)1,B is repre-
sented by the leading eigentriple.

Thus, we have r = 1 and I = {1}. Fig. 3.17 shows the H-matrix for T = 20;
the plots of the row (thin line) and column (thick line) detection functions are
given at the top graph of Fig. 3.18.

We can see that the behaviour of the row functions is totally different from
that of the column functions. While the row detection function varies smoothly
(this corresponds to its canonical behaviour in the case of stable separability for
nonperiodic series), the column function has a jump from almost zero at n = 320
to almost 1 at n = 321.
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Figure 3.17 Eigentriple rearrangement and dimension increase: H-matrix.
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Figure 3.18 Eigentriple rearrangement: detection functions and the time series.

An additional analysis shows that this jump identifies the moment of the rear-
rangement of the order of the eigentriples which describe the series F (1)m−B+1,m;
for m ≤ 321 these series were described by the leading eigentriple, but starting
at m = 322 the two leading eigentriples describe the series F (2)m−B+1,m with only

the third one corresponding to F (1)m−B+1,m. Thus, the moment M of the eigen-
triple rearrangement is M = 322 (but strong separability is valid everywhere).

The mosaic structure of the top part of the H-matrix also has an explanation: for
m ≥M the choice r = 1 corresponds to selection of only one of the two leading
eigentriples describing the series F (1)m−B+1,m. We thus deal with the effect of the
dimension increase discussed in Section 3.2.1 in a different context.
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The following example is similar to Example 3.14, but it has some peculiarities.

Example 3.15 Eigentriple rearrangement: conservation of dimension
Consider the time series FN with N = 400 and general term fn = f

(1)
n + f

(2)
n ,

where

f (1)n = 10 a−n cos(2πn/10), f (2)n = an cos(2πn/20),

a = 1.005. The series FN is depicted in the bottom graph of Fig. 3.20.
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Figure 3.19 Eigentriple rearrangement and conservation of dimension: H-matrix.
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Figure 3.20 Eigentriple rearrangement: detection functions and the time series.

The choice B = 39 and L = 20 provides weak separability of the subseries
F
(1)
i,i+B−1 and F (2)i,i+B−1 for all i; moreover, both subseries are described by two
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eigentriples. As above, the series F (1)1,B and F (2)1,B are strongly separable. The series

F
(1)
1,B corresponds to two leading eigentriples (that is, r = 2 and I = {1, 2}).
The heterogeneity matrix is depicted in Fig. 3.19 (the parameter is T = 20);

plots of the row (thin line) and the column (thick line) detection functions are
given in the top graph of Fig. 3.20.

These figures show two features that are different from what we have seen in
the previous example. First, the big jump in the values of the column detection
function is not instantaneous; at the point m = 250 the function is almost zero,
and at m = 253 it is almost one, but in the two points between, its values are
far from 0 and 1. Second, the rows in the top part (and the bottom part as well)
of the H-matrix are (theoretically) equal, but the values of the row heterogeneity
functions increase at the bottom and decrease at the top.

The first feature can be explained by the fact that the rearrangement of the
eigentriples is not instantaneous. Instead, there are two stages. Indeed, for m <

M = 251 the seriesF (1)m−B+1,m are described by the first two eigentriples; starting
at m = 253 they are described by the third and the fourth. For the two intermedi-
ate points (m = 251, 252) the series correspond to the eigentriples 2 and 4. (Note
that strong separability holds again.)

The second feature becomes clear as well: since we have r = 2 and I = {1, 2},
but after the time when the eigentriple rearrangement is completed, the series
F
(2)
i,i+B−1 is described by the two leading eigentriples; this means that the series

F
(1)
i,i+B−1 are F (2)i,i+B−1 just change places. The opposite behaviour of the row

heterogeneity functions is caused by the difference in behaviour of the nonperi-
odic series F (1)N and F (2)N : the first of them tends to zero, while the second has an
increasing amplitude.
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Figure 3.21 General deviation from stable separability: H-matrix.

Copyright © 2001 CRC Press, LLC



Finally, let us briefly illustrate the summary effect of both deviations from stable
separability.

Example 3.16 General deviation from stable separability
Consider the series FN with N = 400, general term fn = f

(1)
n + f

(2)
n and

f (1)n = 10 a−n cos(2πn/11), f (2)n = an cos(2πn/20),

a = 1.005. The series FN is depicted in the bottom graph of Fig. 3.22. Thus,
r = 2 and I = {1, 2}. Let B = 100, L = T = 50. The resulting H-matrix is
depicted in Fig. 3.21; it looks like a slightly perturbed matrix of Fig. 3.19. The
detection functions are plotted in the top graph of Fig. 3.22 (the types of lines are
the same as in Fig. 3.20).
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Figure 3.22 General deviation: detection functions and the time series.
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Figure 3.23 General deviation: detection functions for largeT .

Fig. 3.23 presents the row and column detection functions for the same val-
ues of B and L, but with T = 69 (that is, the sums in the numerator and the
denominator in the definition of gij use 20 L-lagged vectors rather than just one,
when T = L). We can see that the increase of T does not remove the essential
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differences between the row and column detection functions, although it makes
the functions smoother.

Remark 3.3 Suppose that time series F (1)N and F (2)N are approximately (B,L)-
stably separable and the terms of the time series F (2)N are essentially smaller

than that of F (1)N . Then we have (i) all the elements of the heterogeneity ma-

trix have small values; and (ii) if the subseries F (1)i,i+B−1 of the time series F (1)N

are described by a small number of the leading eigentriples in the SVD of the
L-trajectory matrices of the series Fi,i+B−1, then the effect of the eigentriple re-
arrangement is small.

3.3.2 Heterogeneity in separable series

Until now, we have assumed that the series F (1)N is homogeneous. Our next prob-
lem is to discuss the case when it has intervals of heterogeneity. The heterogen-
eity matrix G is, as always, our main point of interest. The series F (1)N and F (2)N

themselves can be either stably separable on the homogeneity intervals or have
discrepancies from this ideal situation.

(a) Stable separability

Suppose that the subseries F (1)1,Q−1 of the series F (1)N is a homogeneous series
governed by a minimal LRF of dimension r < Q. Then it can be continued with
the help of this LRF up to the time N . Let us denote by F̂ (1)N the result of this
continuation.

Let Q be the change-point for the series F (1)N . We consider the heterogeneities
of the types described in Section 3.2.

As in the previous section, the series F (1)N and F (2)N are related to each other.

More precisely, we assume that the series F̂ (1)N and F (2)N are (B,L)-stably separa-
ble under the choice of proper parameters L < B < Q. In other words, the series
F̂
(1)
i,i+B−1 and F (2)i,i+B−1 are stably L-separable for all i = 1, . . . , N −B + 1, and

for any i in the SVD of the L-trajectory matrix of the series

F̂i,i+B−1
def= F̂

(1)
i,i+B−1 + F

(2)
i,i+B−1

the subseries F̂ (1)i,i+B−1 is described by r eigentriples with the indices in a fixed
set I = (i1, . . . , ir).

This means, in particular, that r < L and the series F (1)i,i+B−1 and F (2)i,i+B−1 are
(B,L)-stably separable for all i < Q−B. Note that generally we do not assume
any separability of the series F (1)i,i+B−1 and F (2)i,i+B−1 for i ≥ Q + S. Formally,

this situation differs from that of Section 3.2 in that here the series F (2)N is not a
zero series.
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In accordance with our assumptions, for any T and a single heterogeneity of the
series F (1)N , the H-matrix must generally have the same structure as in the case of

the zero series F (2)N . This matrix consists of the heterogeneity cross corresponding
to the transition period [Q,Q+ S], and four blocks (see Fig. 3.2): block A refers
to the series F1,Q−1, blockD – to the series FQ+S,N , and blocks B and C describe
the relations between these series.

The main difference is that the block A is not a zero block in this case and
also the other blocks may have a more complex structure than in the case of Sec-
tion 3.2.

Let us describe some general features of the heterogeneity matrices correspond-
ing to the series under consideration.

1. Since the block A corresponds to the series F1,Q−1, which is a sum of sta-
bly separable homogeneous series, this block has the same structure as the
H-matrices of stably separable series discussed in Section 3.3.1.

More precisely, the elements gij of the heterogeneity matrix G have the form
(3.15) for i < Q−B and j < Q− T . In particular, each column of the block
A consists of equal elements.

2. The row heterogeneity functions H(r,i)N−T+1 (in other words, the rows of the
matrix G) coincide for i < Q − B. This is caused by the coincidence of the
base spaces L(L,i)

I,B for this range of i. In particular, all the columns of the block
C consist of equal elements.

3. If both F (1)1,Q−1 and F (2)1,Q−1 are periodic series, then all the elements gij in the
block A are equal. Otherwise the block A has an equal-row structure similar
to that of Fig. 3.14.

4. If the heterogeneity is temporary, then the matrix is cross-structured; the het-
erogeneity cross is located either on a constant background (for the periodic
series) or on an equal-row background.

The elements gij of the matrix G have the form (3.15) in all four blocks.

5. In the case of permanent heterogeneity, there is no general rule for the elements
in the blocks B, C and D. Moreover, these elements can be both larger or
smaller than the elements of the block A.

6. If the series F (2)N is sufficiently small, then the entire classification of Sec-
tion 3.2.1 is valid. The difference is that all zero blocks of Examples 3.1-3.7
now correspond to blocks with small gij (see Remark 3.3).

Summarizing these considerations, we can state that, in general, the problem of
finding and identifying heterogeneities in the series F (1)N under the influence of an

addend F (2)N (which is stably separable until a change-point) is more complex in
view of the nonzero background in the heterogeneity matrix G. However, in some
cases (for example, in the case of temporary heterogeneity in periodic series and in
the case of small F (2)N ) this matrix gives a good description of the entire situation.
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Remark 3.4 The case when the whole series F (1)N is homogeneous and the het-

erogeneity occurs in the series F (2)N does not need a special study. Indeed, this
corresponds (up to a re-indexation of both series) to the case when we take I for
the set of eigentriples describing F (2)i,i+B−1 rather than F (1)i,i+B−1. Then the ele-
ments g′ij of the new heterogeneity matrix G′ relate to the elements gij of G via
the equality g′ij = 1− gij . Thus, the matrix G′ is complementary to G.

Now let us consider two examples, the first one relating to a harmonic series
with permanent heterogeneity and the second one describing a nonperiodic situa-
tion with a temporary heterogeneity.

Example 3.17 Permanent violation in a component of a periodic series
Consider the series FN = F

(1)
N + F

(2)
N with

f
(1)
n =

{
sin(2πn/3) for n < Q− 1,
sin(2πn/4) for n ≥ Q− 1,

f
(2)
n = 0.5 sin(2πn/5),

where N = 100, Q = 51. Thus, we have a permanent violation in the harmonic
series F (1)N ; the series F (2)N is also harmonic.
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Figure 3.24 Permanent violation in a component of a periodical series: H-matrix.

Take B = 29, T = L = 15. Since L and K = B − L + 1 are proportional
to 3 (period of the first series up to the change-point Q) and 5 (period of the
second series), it follows that the SVD of any subseries Fi,i+B−1 of the series

F1,Q−1 provides weak separability of the series F (1)i,i+B−1 and F (2)i,i+B−1. Since
the amplitudes of both series differ, the separation is a strong one. In addition, the
first two eigentriples of the SVD of the L-trajectory matrix of the series Fi,i+B−1
correspond to the series F (1)i,i+B−1; the third and fourth eigentriples describe the
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series F (2)i,i+B−1. Thus, r = 2 and I = {1, 2}. Fig. 3.24 shows the corresponding
H-matrix.

The matrix is similar to that of Example 3.1, where F (2)N is the zero series. The
range of elements of the H-matrix is approximately [0.02, 0.27].

Example 3.18 Temporary violation in a component of a nonperiodic series
This example shows the form of a typical heterogeneity matrix in the case of
nonperiodic series F (1)N and F (2)N and a temporary violation in F (1)N .

Consider the series F (1)N with general term

f (1)n =
{

10 a−n cos(2πn/10) for n < Q− 1,
10 a−n cos(2πn/10 + φ) for n ≥ Q− 1,

and the series F (2)N with f (2)n = an. The parameters are N = 150, Q = 100,
a = 1.005 and φ = π/4. The series is depicted in the bottom graph of Fig. 3.26.
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Figure 3.25 Temporary violation in a component of a nonperiodic series: H-matrix.

Thus, we deal with the change in the phase of the exponential-cosine series
F
(1)
N . This is the case of a temporary violation.
If we take B = 39, L = 20, r = 2 and I = {1, 2}, then we can see that the

series F (1)i,i+B−1 and F (2)i,i+B−1 are stably separable up to the change-point.
The heterogeneity matrix for the case T = L is presented at Fig. 3.25. The

‘cross structure’ of the matrix is apparent, though less distinct in view of the
nonconstant background, typical for the nonperiodic situation.

Fig. 3.26 depicts the column (thick line) and row (thin line) detection functions
corresponding to the heterogeneity matrix of Fig. 3.25.
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Figure 3.26 Temporary violation: detection functions and the time series.

(b) Deviations from stable separability

Let us now give examples of H-matrices corresponding both to heterogeneity and
deviations from stable separability of the series F (1)1,Q−1, F

(2)
1,Q−1. The case of the

eigentriple rearrangement has been illustrated in the previous section; therefore,
we do not treat this deviation separately but restrict ourselves to approximate se-
parability and the general case of this deviation.
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Figure 3.27 Heterogeneous noisy periodicity: H-matrix.

Example 3.19 Permanent violation in a harmonic signal corrupted by noise
Let us add Gaussian white noise with variance 0.04 to the series of Example 3.1
(the parameters stay the same).
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Since the noise is relatively small, and the parameters B and L are sufficiently
large, the series of Example 3.1 (in our terminology, the series F (1)N ) is approx-

imately weakly separated from the noise series (that is, from F
(2)
N ) on the time

interval [1, Q − 1], Q = 201. The eigentriples are not rearranged for the same
reason.

The H-matrix and detection functions are shown in Figs. 3.27 and 3.28, respec-
tively. The detection functions (row, diagonal, and symmetric) are depicted in the
manner of Fig. 3.4.
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Figure 3.28 Heterogeneous noisy periodicity: detection functions and the time series.

Since in this example we have a permanent violation of the signal with conser-
vation of dimension and the noise is small, it is not surprising that the matrix of
Fig. 3.27 has generally the same structure as the matrix of Fig. 3.3.

Fig. 3.28 shows that the symmetric detection function (thin line) can easily fail
to detect a structural change in the presence of noise.

Let us now consider the general deviation from stable separability.

Example 3.20 General deviation from stable separability
This example corresponds to the case when the heterogeneity occurs in the series
F
(1)
N , but the set I of the chosen eigentriples (approximately) describes the initial

part of the series F (2)N . In view of Remark 3.4, this is not an essential modification,
but it makes the figures clearer for interpretation.

Thus, we take F (2)N = F
(2,1)
N + F

(2,2)
N , where F (2,1)N has the general term

f (2,1)n = 10 a−n cos(2πn/20)

and the series F (2,2)N is the standard Gaussian white noise series.
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The series F (1)N has the form

f (1)n =
{
an cos(2πn/10) for n < Q− 1,
an cos(2πn/7) for n ≥ Q− 1,

with N = 400, Q = 301 and a = 1.006. The series FN is plotted in Fig. 3.30
(bottom graph).

The series F (1)N has a permanent violation and the series F (2)N has a noise com-

ponent. On the other hand, if we consider the sum of the series F (1)1,Q−1+F
(2,1)
1,Q−1,

then we come to the situation of eigentriple rearrangement, which is similar to
that of Example 3.15.
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Figure 3.29 General deviation: H-matrix.

If we take B = 39, L = 20, then for m < M = 210 the series F (1)m−B+1,m

and F (2,1)m−B+1,m are stably separable, and the second of them is described by the
two leading eigentriples. The eigentriple rearrangement takes place during three
successive moments of time, and then the series becomes stably separable again,
with a permutation of their eigentriple numbers.

As a result, we have both types of deviations from stable separability and a
permanent heterogeneity.

The heterogeneity matrix is depicted in Fig. 3.29. The parameters of the matrix
are B = T = 39. The window length L is equal to 20. The choice r = 2
and I = {1, 2} provides the (approximate) stable separability of F (1)i,i+B−1 and

F
(2)
i,i+B−1 for small i. Let us discuss the structure of this heterogeneity matrix.
Three light rectangles can be seen close to the matrix main diagonal. The bot-

tom left rectangle corresponds to the subseries preceding the interval of the eigen-
triple rearrangement. (Note that due to the noise influence, this interval is rather
large.) The top right rectangle indicates the part of the series that follows the het-
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erogeneity interval. The middle one describes the period between the end of the
eigentriple rearrangement and the beginning of the heterogeneity interval.

Small values of the heterogeneity indices gij in these rectangles can be ex-
plained by (approximate) weak separability and by the fact that the subseries that
are approximately described by the third and fourth eigentriples are relatively
small at these ‘nonpermuted’ time intervals.

If we would consider the series only after the rearrangement period, then the
heterogeneity matrix will be represented by the top right matrix rectangle of
Fig. 3.29, including two light and two dark rectangles. This part of the matrix
is similar to the matrix of Example 3.19 (see Fig. 3.27).
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Figure 3.30 General deviation: detection functions and the time series.

The top graph of Fig. 3.30 contains two heterogeneity functions, corresponding
to the 240th row and the 240th column of the matrix. Both heterogeneity functions
are depicted in the manner of detection functions in order to align them with the
moments of the rearrangement and the change-point (see Section 3.1.2). We can
see that both the row (thin line) and column (thick line) heterogeneity functions
perfectly indicate the change-point. As for the moment of rearrangement, the col-
umn function shows a rapid decrease there, while the row one continues to behave
as a slowly decreasing function.

The subseries Fi,i+B−1, corresponding to the 240th row heterogeneity function
is marked at the bottom graph of Fig. 3.30 by two vertical lines.

Note that if we were to use the standard row and column detection functions,
corresponding to the first row and the first column of the heterogeneity matrix,
then we should miss the change-point because of the nonconstant background het-
erogeneity indices gij appearing after the eigentriple rearrangement. As regards
the rearrangement itself, the column detection function indicates it well, while the
row one fails once again.
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Note also that if we were to choose the four leading eigentriples instead of
two, that is if we were to take r = 4 and I = {1, 2, 3, 4}, then the eigentriple
rearrangement would have no influence on the heterogeneity matrix, and therefore
the heterogeneity of the series will be seen much more clearly. The corresponding
matrix is depicted in Fig. 3.31.
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Figure 3.31 The choice r = 4: eigentriple rearrangement is not indicated.

3.4 Choice of detection parameters

As always, we consider the series FN = F
(1)
N + F

(2)
N .

Let us assume that the series F (1)N is homogeneous within the time intervals
[1, Q1− 1], [Q1+S1, Q2− 1], . . . , [Ql +Sl, N ], but we do not have information
about the number l of change-points and the parameters Qj , Sj . (In particular, it
is possible that Q1 = N + 1 and there is no heterogeneity at all.)

Then we have several problems to be solved. First, our aim is to determine
whether a violation of homogeneity did actually occur; if it did, then we have to

– find the number of change-points;

– find their location (that is, to determine parameters Qj and Sj);

– classify each heterogeneity in the manner of Section 3.2.1.

Here we make several remarks that may help in making the appropriate deci-
sions. We mostly concentrate on the situation when the search for heterogeneities
begins at the initial part of the series (forward search).

Let us describe the choice of parameters and interpretation of the detection
results for different classes of time series. We begin with the simplest situation
and then move to more and more complicated ones.
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3.4.1 Single heterogeneity

Detection of a single heterogeneity is the basis for general detection. It helps
to understand the peculiarities of multiple heterogeneity. However, even in the
case of detection of a single heterogeneity, we have both simple and complicated
situations. Let us start with the ‘ideal’ case.

(a) The ‘ideal’ detection

The clearest situation is when F (2)N is the zero series. In this case we deal with a

single series F (1)N = FN and assume that there exists Q′ < N such that the series
F1,Q′−1 is a homogeneous series, and the dimension d of its minimal LRF is less
than Q′/2 (see Sections 3.1 and 3.2 for the full description). By definition, the
maximal Q′ coincides with Q.

Let us choose the proper parameters B and L. (According to our assumptions,
any B > 2d and L such that d < min(L,B − L+ 1) will suffice.)

If we take any subseries Fi,i+B−1, such that i ≤ Q−B, and consider the SVD

of its L-trajectory matrix, then for some r all the eigenvalues λ(i)s with s > r are
equal to zero. Therefore, we take I = {1, 2, . . . , r}. Evidently, r = d.

In this ‘ideal’ situation, the nonzero elements of the H-matrix indicate the exi-
stence of some heterogeneity in the series. A classification of the types of hetero-
geneity is presented in Section 3.2.1. This classification allows us to character-
ize permanent and temporary heterogeneities. It also helps to understand differ-
ences in H-matrices depending on the dimensions of the LRFs before and after
the change-point.

(b) NonzeroF (2)N : identification

If F (2)N is not the zero series, then the problem of the choice of the detection
parameters is more difficult. In particular, the representation

FN = F
(1)
N + F

(2)
N (3.18)

is fundamental in theory in view of the different roles of both series in the detec-
tion problems. (For instance, F (2)N is usually regarded as a noise series.)

In practice, however, we deal with the entire series FN and the difference be-
tween F (1)N and F (2)N becomes relative. Thus, the practical problem of identifying
the terms in the sum (3.18) arises; we assume that the representation (3.18) does
hold, but we do not know the addends.

Let us assume that the parameters B and L are selected in such a way that the
subseries F (1)i,i+B−1 and F (2)i,i+B−1 are (approximately) stably separable for some

(maximal) range 1 ≤ i ≤ Q′−B of i. Then the difference between F (1)N and F (2)N

can been explained as follows (see also Remark 3.4).
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1. We assume that the series F (1)1,Q′−1 is homogeneous.

2. The chosen set I of eigentriples corresponds to the subseries F (1)i,i+B−1 of

the series F (1)1,Q′−1 for all i = 1, . . . , Q′ − B; as a rule, it is a set of several
leading eigentriples.

3. The heterogeneity under detection is assumed to happen at the series F (1)N .

Let us turn now to the identification problem. By our assumptions, for the se-
lectedB and L certain eigentriples (the same for all i) of the trajectory matrices of
the subseries Fi,i+B−1 (i ≤ Q′ − B) are stably interpretable as (approximately)
describing subseries of the same homogeneous series.

Then, until the moment of time Q′ the series F (1)N is (approximately) identified
by the obtained set I of the eigentriples; we thus have the detection parameters r
and I . Remark 3.4 yields that we do not need to know at which series the hetero-
geneity actually happens, whether it is F (1)N or its residual.

Formally, we have the inequality Q′ ≤ Q. Since Q is the first change-point, the
‘ideal’ case is the equality Q′ = Q. However, in practice the inequality Q′ < Q
is more realistic. This is due to various deviations from stable separability which
may happen before the moment Q. In the situation of the eigentriple rearrange-
ment we may get Q′ = M , where M is the time that the rearrangement occurs;
deviations from weak separability may also lead to the inequality Q′ < Q.

The identification procedure can easily be performed in some cases, and it is
difficult in others. Moreover, for certain FN no suitable parameters Q′ > 1, B
and L can be found.

However, there is a situation when the described procedure is valid with Q′ ≈
Q. This is the case of small noisy-like F (2)N .

(c) Small noisy-likeF (2)N

In view of Remark 3.3 the case of small noisy-like F (2)N is similar to the ‘ideal’

case of the zero series F (2)N . A natural example of this situation is the problem

of the change-point detection in a homogeneous signal F (1)N in the presence of a

small noise F (2)N . Let us consider this example.

To obtain (approximate) separability of the series F (1)i,i+B−1 and F (2)i,i+B−1 until
the change-point, we must take a relatively large B. (Though it must not to be
larger than the expected value of Q.)

Concerning the choice of L, we can take it approximately equal to B/2 (see
Section 1.6 for details of the parameter choice for separation).

Since the series F (2)N is small enough and in view of the (approximate) separa-
bility obtained, several r leading singular values produced by the series Fi,i+B−1
must be large enough and describe the series F (1)i,i+B−1, while the other singular
values are expected to be small. Thus, an abrupt decrease of the singular values,
placed in order of decrease of their magnitudes, may help in finding the number r
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and the set I = {1, 2, . . . , r}. The other (and even more important) method is the
eigenvector analysis, which was thoroughly described in Chapter 1.

If the parameters are chosen in a proper way, then the corresponding hetero-
geneity matrix has small elements in the left bottom block A (see Fig. 3.2).

For example, if F (1)1,Q−1 is a harmonic with amplitude C and F (2)N is a white
noise series with variance σ2, then asymptotically in N and other parameters, the
elements of the block A are close to σ2/(0.5C2 + σ2); see Example 3.13.

If σ2 � C2, then the block A is zero-like. The values of the heterogeneity
indices for the other blocks depend on the type of heterogeneity.

Evidently, the case of noisy-like F (2)N is not the only simple case of hetero-

geneity detection. Generally, F (2)N should be a ‘small’ series and there ought to
exist parametersB,L providing (approximate) stable separability of the subseries
F
(1)
i,i+B−1 and F (2)i,i+B−1 up to a point Q′ ≈ Q. This is the case of Example 3.17.

However, there is no general rule for the choice of B and L in all ‘simple’ situa-
tions.

As a result, if the detection is performed in a situation close to ‘ideal’, then
large values of the heterogeneity index indicate a heterogeneity, and the general
form of the H-matrix can help to identify both the change-point and the type of
the heterogeneity.

(d) GeneralF (2)N

By choosing the eigentriples for F (1)N we are trying to obtain good separability
features and to collect all stable eigentriples with relatively large singular values
to describe F (1)N until the moment of time Q′. Since Q′ depends on B, L, r and
I; in practice we try to obtain Q′ as large as we can.

If the time series F (2)N is noisy-like and small (large signal/noise ratio), these
goals can often be realized at least for large N . In particular, we can obtain the
equality Q′ ≈ Q. In the case of the general F (2)N , the goals may contradict. We,
however, have to try our best to satisfy these goals, paying primary attention to
the value of Q′.

Examples of this situation are described in Section 3.3.2. For instance, in Ex-
ample 3.20 we have that for r = 2 and I = {1, 2} the moment of time Q′

corresponds to the eigentriple rearrangement moment M = 210, while the choice
r = 4 and I = {1, 2, 3, 4} gives Q′ ≈ Q = 301.

It follows from these examples that the detection problem is complicated in
view of the possibility that the detection background (that is, block A) may con-
tain large elements in certain columns. If separability is approximate, then the
equal-row background is perturbed, and it is difficult to recognize a possible het-
erogeneity on the perturbed nonconstant background.

Moreover, if the entire series is generally increasing or decreasing, then the
detection background also varies in a monotone manner, and the heterogeneity
recognition is even more complicated.
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3.4.2 Detection functions

Let us make several remarks concerning the interpretation of the behaviour of the
detection functions (see Section 3.1.2 for their formal definition), which is useful
in the case of forward detection.

1. As a rule, the row detection function is best if we want to detect the first
change-point of the series. In the ideal situation, the change-point coincides
with the first point of sharp increase of this function.

2. In principle, the diagonal detection function may indicate change-points more
clearly than the other ones if a sharp heterogeneity takes place on the back-
ground of a slowly varying structure of the time series. On the other hand, its
use can be inconvenient since a single heterogeneity may give rise to several
sharp peaks on the plot of the diagonal function.

3. The symmetric detection function has bad detection power. Even so, it is useful
since it characterizes the local description of the series FN by a fixed set of
eigentriples.

4. The column detection function is, as a rule, a weaker detector of the hetero-
geneity than the row one; however, it is often informative when we try to dis-
tinguish the heterogeneity from the eigentriple rearrangement.

The difference between the row and column detection functions is a good in-
dicator of the true heterogeneity. If the column function has a sharp increase
and the row function is slowly varying, then we have an argument that we are
dealing with the eigentriple rearrangement.

3.4.3 Multiple heterogeneity

Until now we have discussed the case of a single heterogeneity and its forward
detection. This means that we were looking for a single change-point (and its
heterogeneity type), starting at the initial subseries F1,B of the time series FN .
Let us make several remarks concerning the specifics of general heterogeneity
detection, when both suppositions are not assumed.

For simplicity we deal only with the case of zero series F (2)N . In particular, this
means that the set I is always of the kind {1, . . . , r} for certain r.

The case of small noisy-like F (2)N is analogous. As usual, other F (2)N may sig-
nificantly complicate the detection problem.

1. Since the selection of the eigentriples (that is, the choice of the set I) is typi-
cally performed by analyzing a single base subseries Fi,i+B−1 (we call it the
starting base subseries) of the time series FN , the corresponding H-matrix is
adapted to detect heterogeneities relative to this base subseries. If we do not
deal with the forward detection, then the starting base subseries can differ from
F1,B . For example, the backward H-matrix can essentially differ from the for-
ward one due to the difference between their base eigentriple sets.
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2. If all the homogeneity intervals of the series FN have the same difference
dimension r (equal to that of their minimal LRFs), then the H-matrix does not
depend on the choice of the starting base subseries belonging to the intervals
of homogeneity.

3. If the difference dimensions are different, then we generally cannot take a sin-
gle starting base subseries for the entire series FN and therefore cannot get a
single H-matrix of a simple and understandable structure.

If the sequential difference dimensions are decreasing (increasing), then the
forward (backward) detection would give the entire picture. For instance, to
understand the type of the heterogeneity of Example 3.4, it would be useful
to apply the backward H-matrix with r = 4, which for appropriate values of
parameters has a form similar to that of the matrix of Fig. 3.3.

4. In the general case, it is useful to search sequentially for the change-points and
heterogeneities. This can be done as follows.

Starting, for instance, with the forward detection, we choose the parameters
B and L, take F1,B as a starting base subseries, select the base set of the
eigentriples, and obtain (at least approximately) the interval [Q1, Q1 + S1]
of the first heterogeneity with the help of the (forward) H-matrix. Then we
take the second homogeneous interval of the series and produce the second
H-matrix, and so on until the end of the series is reached. The collection of H-
matrices obtained in this way would give the entire description of the situation.

5. The row and column detection functions can be used at each step of the sequen-
tial detection procedure in the usual way. The use of the diagonal detection
functions should be done with care; these functions give adequate information
only while searching for the first forward heterogeneity. At subsequent steps,
the straightforward use of all the sharp peaks of the diagonal detection function
may lead to misinterpretations.

3.4.4 Heterogeneities in trends and periodicities

Let us consider two separate problems related to heterogeneity detection in trends
and periodicities.

(a) Trends

In accordance with our definition, the trend of the series is associated with its low-
frequency (but nonperiodic) component. To separate it from the other components
of all the series Fi,i+B−1 with the help of a stable set of eigentriples, we must take
a relatively small B. The choice of the window length L depends on the concrete
series and should be made so that the best separation is achieved.

Under these conditions, a sufficiently large trend is described by the single lead-
ing eigentriple of SVD of the trajectory matrix of the series Fi,i+B−1. (Otherwise,
if the trend is not large enough, we can add a constant to the initial series.)
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Therefore, the series F̃i,i+B−1, reconstructed from the leading eigentriple, must
be similar to the exponential series with some rate αi, that is to the series of the
form gn = cie

αin with some ci and n = i− 1, . . . , i+ B − 2. If the trend is the
exponential-like series on some time interval, the corresponding rates αi (and ci)
are almost equal to each other. (Note that any reasonable monotone series can be
locally approximated by some exponential series.)

On time intervals where the trend changes its behaviour, the rates also change,
and we come to the case of (approximate) permanent violations in the piecewise
exponential series. Therefore, sharp changes in the trend behaviour will be de-
tected via the increase of the detection functions.

Let us now turn to the structure of the H-matrix detecting changes in trend.
As was mentioned above, a single permanent heterogeneity does not change

the dimension of the series and is characterized by small values of the heterogen-
eity index in blocks A and D (see Examples 3.1, 3.17 and 3.19). Thus, we can
expect that all the rectangles along the main diagonal of the H-matrix have small
elements.

Besides, computational experiments show that, as a rule, other blocks of homo-
geneity (for the case of a single heterogeneity, these are the blocks B and C) of
the H-matrix also have small elements.

This effect can be explained by the specific nature of the H-matrices corres-
ponding to relatively small variations in the rate of the exponential series. Indeed,
even large changes in trend behaviour correspond to relatively small changes in
the exponential rate (say, from 0.005 to 0.01). Therefore, despite the fact that
the heterogeneity under consideration is of a permanent type, the heterogeneity
matrix is going to be ‘cross-structured’.

(b) Periodicities

Let us assume that we deal with the forward heterogeneity detection in a series
FN = F

(1)
N + F

(2)
N , and the component F (1)N of the series is homogeneous until

time Q. We also assume that FN = G
(1)
N + G

(2)
N , where G(1)N (the signal) is a

periodic series until time Q and G(2)N is a small noise (as earlier, this is assumed
for simplicity).

Since F (1)N is a homogeneous series, it is a component of G(1)N , and the (first)

heterogeneity occurs in one or several harmonic components of the series G(1)N .
Our aim is to discuss the choice of parameters in the manner of Section 3.4.1.

In view of the periodic feature of the signal, the detection parameters B,L and
T ought to be proportional to the period of the seriesG(1)N . Thus, we can hope that
the harmonic components of the signal are (approximately) separated from each
other (and from the noise) in the SVD of the L-trajectory matrices of the subseries
Fi,i+B−1 for all i ≤ Q′ −B ≈ Q−B.

By collecting the leading harmonic components with stable eigentriple num-
bers we build G(1)1,Q′−1. If we wish, we can assume that F (1)N = G

(1)
N . Otherwise,

Copyright © 2001 CRC Press, LLC



we reduce the set of chosen stable eigentriples determining F (1)N . At any rate, at
least the block A of the heterogeneity matrix will consist of approximately equal
elements.

If, additionally, the series FN has a trend component and we do not look for its
heterogeneities, then it would be better to extract the trend (say, with the help of
Basic SSA) and perform heterogeneity detection for the detrended series.

3.4.5 Role of parameterT

Generally, the detection parameter T is a smoothing parameter. Small values of T
imply both a large contrast in the detection and a high sensitivity to small pertur-
bations of the series. By enlarging T , we reduce the contrast between small and
large values of the detection functions and make these functions smoother.

The minimal value of T is T =L. This corresponds to the case of a single ad-
dend in both the numerator and denominator of the formula (3.1), which defines
the heterogeneity index. In the general case, the number of addends in (3.1) is
T−L+1.

If we deal with periodic series, then there are additional constraints for choos-
ing proper values of parameter T . In this case, as was explained in the previous
subsection, a properly chosen T must be proportional to the period of the series.

3.5 Additional detection characteristics

Various additional detection characteristics can help to identify and interpret het-
erogeneities in time series. Let us discuss three groups of these characteristics.

The first group of characteristics is based on the so-called renormalized hetero-
geneity matrices (and the corresponding detection functions). Renormalization
can help, for example, when we deal with monotone series or its monotone com-
ponents.

The second group (a collection of polynomial root functions) is related to the
variations in linear spaces L(L,i)

I,B . The third group (characteristics associated with
the moving periodograms) describes changes in the spectral structure of the initial
series in time.

3.5.1 Renormalized heterogeneity matrices

The normalization of the heterogeneity index, produced by the denominator in
the formula (3.1), is natural; indeed, the range of the index is [0, 1], and the ex-
treme values 0 and 1 indicate the opposite situations: pure homogeneity and pure
heterogeneity (see examples in Section 3.2.1).

However, in some cases this normalization can be a disadvantage. Let us dis-
cuss the problem by the example of the row detection functions.

Assume that the series is positive and monotone increasing. Then the denomin-
ator of the row detection function – see (3.4) and (3.1) – increases as well. There-
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fore, the heterogeneity index of the last part of the series is generally smaller
than the analogous index for the initial interval of the series only because of the
increase of the entire series.

This effect has two unpleasant consequences:

1. The background for the detection is nonconstant (see Example 3.9). This
produces difficulties in identification of possible heterogeneities.

2. Two ‘equivalent’ heterogeneities occurring at the beginning and at the end
of the series will produce different (in absolute scale) increases of the het-
erogeneity characteristics. Thus, we shall not be able to compare the het-
erogeneities by their ‘power’.

To avoid these difficulties, we can denormalize the heterogeneity index by omit-
ting the denominator in the formula (3.1). However, it is more convenient to have
a denominator (not depending on j) in the definition of this index. Thus, we define
the renormalized heterogeneity index by

g̃ij
def=

1
(T − L+ 1)L

T−L+1∑
l=1

dist2
(
Xl,j , L

(L,i)
I,B

)
1
N

N−1∑
k=0

f2k

(3.19)

where B, L, T , r and I are fixed detection parameters and Xl,j are the L-lagged
vectors of the series Fj,j+T−1. In this definition, we use the squared sum of all
the elements of the series FN as the denominator and take averaging coefficients
in agreement with the total number of the terms of the series in all the sums.

Let us explain the features of this renormalization via the following example.

Example 3.21 Renormalized heterogeneity indices
Consider a time series FN = F

(1)
N + F

(2)
N with two temporary heterogeneities of

the ‘outlier’ type (see Example 3.7). To describe FN , we start with the time series
F ∗
N = F

(∗,1)
N + F

(∗,2)
N , where

f (∗,1)n = 2an, a = 1.008,

and f (∗,2)n is Gaussian white noise with zero mean and unit variance.
Let temporary violations be caused by local shifts of the series F ∗

N . That is,
let fn and f∗n coincide for all n except the time intervals 100 ≤ n ≤ 104 and
300 ≤ n ≤ 304, where fn = f∗n + 5. The initial series is depicted in the bottom
graph of Fig. 3.32.

As usual, we cannot formally determine which one of the two series, either the
signal F (∗,1)N or noise F (∗,2)N , is affected by this shift. For definiteness, we apply

the shifts to F (∗,1)N .
Let B = 60, L = 30, r = 1, I = {1} and T = 39. The top graph of Fig. 3.32

shows the row (thin line) and column (thick line) detection functions correspond-
ing to the standard heterogeneity matrix G.
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Figure 3.32 Renormalization: standard detection functions and the time series.
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Figure 3.33 Renormalization: renormalized detection functions.

The row detection function clearly shows the first change-point, but since the
signal increases, it poorly indicates the second one. It can be checked that the
(absolute) perturbations of the row detection function caused by the second het-
erogeneity and the random fluctuation occurred around the time 170 are approxi-
mately equal.

Unlike the case depicted in Fig. 3.32, the row detection function correspond-
ing to the renormalized heterogeneity matrix G̃ (thin line in Fig. 3.33) properly
reflects the situation. Two peaks of the row function have approximately equal
values; this is in agreement with the equality of the shifts for the unperturbed time
series.

The behaviour of the renormalized column detection function (Fig. 3.33, thick
line) is generally similar to that of the standard column function.

Remark 3.5 If the heterogeneity occurs in a stationary time series (especially if
the series is a white noise) and means a change in its amplitude, then the standard
heterogeneity index defined by (3.2) and (3.1) may have no sense.
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Indeed, since the noise is generally ‘structureless’, there are no stable eigen-
triples determining the base spaces L(L,i)

I,B . Therefore, the only reasonable version

of L(L,i)
I,B is the zero space L(L)0 corresponding to r = 0 and I = ∅.

This choice leads to gij ≡ 1 implying that the standard heterogeneity index is
meaningless. By contrast, the renormalized heterogeneity index defined in (3.19)
can be very useful in detection of change-points in the variance of the noise.

3.5.2 Roots of characteristic polynomials

When considering the heterogeneity matrices, we relate the lagged vectors of the
test subseries Fj,j+T−1 and the base linear spaces L(L,i)

I,B generated by the base
subseries Fi,i+B−1 of the series FN .

It may also be reasonable to study the sequence of spaces L(L,i)
I,B irrespectively

of the other objects. Such a study may be useful for several purposes. For example,

1. The problem of the eigentriple rearrangement (see Section 3.3) is formu-
lated in terms of the base subseries, rather than in terms of the test subseries.
By definition, the spaces L(L,i)

I,B relate to the base subseries of the series FN

and reflect their important properties.

2. Since heterogeneities usually affect the base spaces L(L,i)
I,B , these spaces can

help in studying the nature of heterogeneities.

Note that the symmetric heterogeneity function describes the spaces L(L,i)
I,B only

as the approximation spaces. Therefore, this function is not very informative in
view of its low sensitivity to different heterogeneities. The root functions of the
characteristic polynomial seem to be preferable for the purpose of monitoring the
homogeneity of the series.

Let L(L,i)
I,B be a certain base space with fixed i ≤ Q − B. In the case of stable

separability, L(L,i)
I,B is chosen as the trajectory space of a homogeneous additive

component F (1)i,i+B−1 of the series Fi,i+B−1.
Theorem 5.2 of Section 5.2 shows how to construct the LRF of dimensionL−1,

which governs the series F (1)i,i+B−1. This LRF is ‘extracted’ from the space L
(L,i)
I,B .

The roots of the characteristic polynomial of this LRF give essential information
concerning both the series F (1)i,i+B−1 and the space L

(L,i)
I,B .

Let d be the difference dimension of the series F (1)i,i+B−1 (evidently, d=card I).
Then, only d roots of the characteristic polynomial affect the behaviour of the
series (as a rule, they have maximal moduli); the other roots are extraneous.

When i varies, the LRFs obtained give a dynamical description of the sequence
of subseries F (1)i,i+B−1 and the associated linear spaces. All essential modifica-
tions of the spaces must be reflected in this description. These modifications can
be caused by the eigentriple rearrangements and other structural changes in the
series.
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In the case of approximate separability these considerations are also valid. Then
d, the number of selected main polynomial roots, has the sense of the difference
dimension of a certain series approximating the series F (1)i,i+B−1.

Let us consider the characteristic polynomial of some LRF and assume for
simplicity that it does not have multiple roots. In accordance with the agreement
of Section 2.2.1, we describe a nonzero polynomial root with a modulus ρ in the
following way:

1. Every positive root has the representation (ρ, 0).
2. Every negative root is represented as (ρ, 1/2).
3. Every pair of complex conjugate roots has a representation (ρ, ω), where
±2πω are their polar angles (0 < ω < 1/2).

For a fixed polynomial, the collection of pairs (ρ, ω) is called the modulus-freq-
uency representation of the polynomial roots.

Note that every pair (ρ, ω), ω ∈ [0, 1/2], corresponds to a separate real (expo-
nential-cosine) additive component of the series governed by the LRF. (This com-
ponent is equal to Aρn cos(2πωn + φ) for some A and φ.) Therefore, we do not
distinguish the conjugate roots from each other and treat them as a single object
with the representation (ρ, ω). Evidently, the number of modulus-frequency root
representations does not exceed the degree of the polynomial.

Having a sequence of characteristic polynomials which correspond to the base
linear spaces LL,i

I,B , we choose the number m of the module-root representations
to be investigated.

The selection procedure for m is as follows. Since the number r of eigentriples
is already chosen, we take the number d of the main polynomial roots equal to r.
Then, analyzing the base subseries F1,B (we are describing the forward detection)
and perhaps some other base subseries Fi,i+B−1, we understand whether these d
roots are real or complex and thus obtain the number m.

Having obtained a collection of polynomial root representations, we arrange
them in order of decreasing moduli. Thus, we come to m two-dimensional piece-
wise linear curves with nodes (ρi, ωi) on the modulus-frequency plane (i =
1, . . . , N − B + 1). Evidently, the curves may intersect and produce an unclear
picture.

To make the situation clearer, we reorder the root representations in the follow-
ing manner. For fixed i we arrange the selected m leading root representations in
order of decreasing frequencies. Then we have m root-frequency functions with
nonintersecting plots and m root-modulus functions, which are generally not or-
dered with respect to their values.

Abrupt changes in the behaviour of the root-frequency and the root-modulus
functions can give a lot of information concerning the behaviour of the series FN .
Let us consider an example.

Example 3.22 Root functions
Consider the time series described in Example 3.20. The choice r = 2 and I =
{1, 2} gives us two violations: the eigentriple rearrangement and a permanent
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heterogeneity. They divide the entire time interval into three parts (homogeneity
intervals).

Since for any i the two leading polynomial roots are complex conjugate and
correspond to a single harmonic approximating the series F (1)i,i+B−1, they give a
single modulus-frequency representation (ρi, ωi) and therefore produce a single
root-modulus function and a single root-frequency function.

Fig. 3.34 depicts the root-modulus function (top graph) and the root-frequency
function (bottom graph). Note that in what follows, the terms of the root func-
tions are indexed in the same manner as the detection functions to simplify the
comparisons.
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Figure 3.34 Root functions: two leading eigentriples.

The root functions give additional information to Figs. 3.29 and 3.30. The
root-modulus and root-frequency functions correspond to the series component
F
(2,1)
N on the first homogeneity interval. Then the root-modulus function oscil-

lates around the constant 1/a ≈ 0.994, and the values of the root-frequency func-
tion are approximately equal to 1/20.

On the second and third homogeneity intervals these functions correspond to
the series component F (1)N . Therefore, the root-modulus function oscillates around
the constant a = 1.006, and the values of the root-frequency function are close to
1/10 in front of the second heterogeneity interval and are close to 1/7 behind it.

Fig. 3.34 (as well as the moving periodograms of Example 3.23) demonstrates
the difference between the eigentriple rearrangement (sharp alternation of the fre-
quency) and the true change-point (smooth transition from ω = 1/10 to ω = 1/7).

A different situation will hold if we choose r = 4 and m = 2 (see Fig 3.31). In
this case, we have a single perturbation corresponding to the true change-point.

Fig. 3.35 demonstrates two pairs of the root-modulus and root-frequency func-
tions corresponding to the two harmonics approximating the series F (1)i,i+B−1 (and
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corresponding to two pairs of the complex conjugate polynomial roots). Note that
the representations are arranged in order of decreasing frequencies.

The root-frequency functions are presented in the bottom graph of Fig.3.34,
and the root-modulus functions are shown in the top graph. The leading root-
frequency function (thick line) demonstrates a smooth transition from ω = 1/10
to ω = 1/7 on the heterogeneity interval. The corresponding root-modulus func-
tion (also marked by the thick line) is stable.
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Figure 3.35 Root functions: four leading eigentriples.

The second root-frequency function (thin line) has small deviations from ω =
1/20 everywhere except for the heterogeneity interval. The corresponding root-
modulus function has a similar behaviour.

Thus, the heterogeneity is detected by both modulus-frequency representations.
Naturally, the eigentriple rearrangement has no influence on the root functions for
r = 4.

3.5.3 Moving periodograms

Spectral properties of ‘moving’ subseries Fi,i+B−1 can be characterized by a se-

quence of the corresponding periodograms Π(i,i+B̃−1)
f (see Section 1.4.1 for the

definition and a discussion).
Formally, to relate the periodograms and the detection/root functions, we must

take B̃ = B, but, in view of the discreteness of the periodogram grid, it can be
more convenient to take B̃ slightly different from B. Define

πjk
def= Π(k,k+B̃−1)

f (j/B̃).

Then, the periodogram matrixis defined as

Π = {πjk}, k = 1, . . . , N − B̃ + 1, j = 0, . . . , [B̃/2],
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where [x] denotes the integer part of x.
If we depict the periodogram matrix in the same manner as the heterogeneity

matrices, then we will obtain a figure of the local spectral behaviour of the series
FN . In such a figure we should be able to see a relation between the subseries
Fi,i+B̃−1 and the powers of their main periodogram frequencies (calculated up

to the errors caused by the discreteness of the grid {j/B̃}). This can help in
explaining the nature of the heterogeneity.

For a fixed frequency ω = j/B̃, the frequency-power function (f -power func-
tion) is defined as

p(ω)n
def= πj,n+1, n = 0, . . . , N − B̃ .

This function provides us with useful information concerning the dynamics of a
single frequency component of the series.

Example 3.23 Moving periodograms
Consider the time series described in Examples 3.20 and 3.22. In these examples,
the length B of the base intervals was taken as 39 to achieve a better separability.
Since the periodograms relate to the entire series and are independent of sepa-
rability of its components, we take the length B̃ of the moving interval as 42 to
get a better correspondence with the main frequencies (1/20, 1/10 and 1/7) of the
series.

The part of the periodogram matrix corresponding to the low frequencies is
depicted in Fig. 3.36.
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Figure 3.36 Moving periodograms: periodogram matrix.

Three frequency rows can be easily seen in the matrix plot of Fig. 3.36. They
relate to the frequencies 2/42, 4/42 and 6/42 (from bottom to top), which are
approximately equal to 1/20, 1/10 and 1/7. The changes in the frequency structure
of the series become apparent. To understand the nature of these modifications we
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use the f -power functions corresponding to these frequencies. Note that in what
follows, the terms of the f -power functions are indexed in the same way as the
detection and root functions to simplify the comparisons.
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Figure 3.37 Moving periodograms:f -power functions.

Three f -power functions corresponding to ω = 2/42 ≈ 1/20 (thick line),
ω = 4/42 ≈ 1/10 (thin line) and ω = 6/42 = 1/7 (thin line marked by dots)
are shown in Fig. 3.37. They demonstrate that there is no heterogeneity until time
300; all the f -power functions demonstrate smooth behaviour. (Small fluctuations
in the f -power functions are related to the approximation quality of the true fre-
quencies by the nodes of the grid {j/42}.)

The interval of heterogeneity, marked by the two vertical lines, is clearly seen
as well; it is characterized by the abrupt changes in f -power functions. At the
same time, the intersection of the f -power functions, corresponding to ω ≈ 1/20
and ω ≈ 1/10, indicates the region of the eigentriple rearrangement.

In summary, the intervals of the eigentriple rearrangement and the heterogen-
eity can be (approximately) calculated by three methods: with the help of the de-
tection functions, root functions and by means of the f -power functions. All three
methods give similar results, though the intervals obtained are slightly different
in width and have small shifts relative to each other as a result of the noise.

3.6 Examples

3.6.1 ‘Coal sales’: detection of outliers

We use the example ‘Coal sales’ (U.S. monthly sales of coal, from January 1971 to
December 1991) discussed in Makridakis, Wheelwright and Hyndman (1998), to
demonstrate the capabilities of SSA detection of outliers in slowly varying noisy
series having periodic components.
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A plot of ‘Coal’ time series FN is given in Fig. 3.38 (bottom graph). Seve-
ral abrupt local changes of its behaviour can be easily seen there. Basic SSA
with double centring, applied to the entire ‘Coal’ series, clearly shows the general
structure of the series: it has a linear-like trend, several components describing the
annual periodicity, and the residuals.

Let us select parameters to perform the SSA heterogeneity detection. Since we
are interested in ‘outliers’, we must not take B larger than the base time interval
between the arrivals of the ‘outliers’. Also, small values of B provide a good
description of the trend by a single leading eigentriple.

On the other hand, B and L ought to be large enough to ensure separation
of smooth trends of the subseries Fi,i+B−1 from their annual periodicities. The
resulting decision is B = 23 and L = 12.

Since B is rather small, for any i the trend of the series Fi,i+B−1 can be per-
fectly approximated by an exponential series and therefore described by just one
leading eigentriple of the SVD of the corresponding trajectory matrix. Thus, we
select r = 1 and I = {1}.

The heterogeneity matrix with T = 16 is shown in Fig. 3.39, the corresponding
row detection function is presented at the top graph of Fig. 3.38.
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Figure 3.38 Coal sales: row detection function and the time series.

Fig. 3.39 demonstrates an approximate equal-row structure of the H-matrix.
Therefore, approximate separability takes place all the time. We are thus deal-
ing with several temporary violations of the kind of Example 3.7, but the ‘cross-
structure’ of the H-matrix is hardly recognizable due to the stability of the linear
spaces L

(L,i)
I,B (see formulae (3.2) and (3.1)) with respect to the influence of the

outliers.
Sharp peaks of the row detection function correspond to outliers in the ‘Coal’

series. The correspondence can be easily seen by comparing the top and bottom
graphs of Fig. 3.38. Note that the first ‘outlier’ (October 1971) is detected from

Copyright © 2001 CRC Press, LLC



� �� ��� ��� ���
�

��

���

���

���

Figure 3.39 Coal sales: H-matrix.

the sharp decrease of the row function; the time of its occurrence belongs to the
first series interval F1,B selected as the base one.
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Figure 3.40 Coal sales: renormalized row detection function.

Since the ‘Coal’ series is generally increasing and the leading eigentriple de-
scribes just the increasing part of the series, the detection above is made on the
decreasing background. Thus (see Section 3.5.1), it might be worthwhile to use
the renormalized heterogeneity measures, i.e., to apply the alternative normaliza-
tion in the definition of the heterogeneity indices.

The resulting row detection function is presented in Fig. 3.40. Comparing this
plot with the analogous plot of Fig. 3.38, we can see that the two last peaks of the
detection function (August 1984 and July 1989) became more distinct and there-
fore compatible, say, with an earlier peak in November 1974, which corresponds
to the ‘outlier’ of similar discrepancy relative to the general tendency of the series.

3.6.2 ‘Petroleum sales’: detection of trend changes

The series ‘Petroleum sales’ (U.S. monthly sales of petroleum, from January 1971
to December 1991, Makridakis, Wheelwright and Hyndman, 1998) has a trend of
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complex form and a single outlier-like sharp peak corresponding to autumn 1990.
The series can be found in the bottom graph of Fig. 3.42.

If we take relatively small B and L, choose r = 1 and I = {1} and use the H-
matrix and the detection functions of Section 3.4.4, then in addition to detecting
the ‘outlier’ in the manner of the example of Section 3.6.1, we shall be able to
indicate the changes in the series trend.

Here we deal with multiple permanent heterogeneities in the exponential se-
ries in the presence of a small noisy-like additive component and a single outlier
region.

The H-matrix of the ‘Petroleum’ series computed forB = T = 23 and L = 12,
is depicted in Fig. 3.41. The row detection function can be found at the top graph
of Fig. 3.42 (thick line). The sharp peaks of the row detection function and the
corresponding dark vertical and horizontal lines in Fig. 3.41 indicate the main
changes in the trend behaviour.
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Figure 3.41 Petroleum sales: H-matrix.

The first large peak of the row detection function describes two changes that
occurred during the period from autumn 1973 to summer 1974. The chosen B is
too large to distinguish them. The second peak corresponds to a sharp increase of
the series around October 1978. The end of this increase (approximately February
1981) is indicated by the next smoother peak of the row detection function. Note
that the renormalization of the heterogeneity indices (see Section 3.5.1) would
make this peak even more distinct.

The beginning (November 1985) and the end (October 1986) of a sharp de-
crease of the ‘Petroleum’ series are indicated by the (biggest) single peak of the
row detection function (for large values of B these peaks are not distinguishable).
Lastly, the outlier region is also apparent.

A plot of the leading root-modulus function of the characteristic polynomials
corresponding to the linear spaces L

(L,i)
I,B (see Fig. 3.43) confirms our conclusions
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concerning the approximation of the trend by a piecewise exponential series and
the interpretation of the behaviour of the row detection function.
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Figure 3.42 Petroleum sales: detection functions and the time series.
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Figure 3.43 Petroleum sales: leading root-modulus function.

Indeed, all the roots are real and therefore they correspond to (locally) exponen-
tial series. Thus, the values of the roots determine the local rates of exponentials
and their increasing/decreasing behaviour, which describe the behaviour of the
series trend. It is the perfect correspondence between the peaks of the row detec-
tion function and the local extremes of the root-modulus function that confirms
our considerations.

The thin line marked with crosses at the top graph of Fig. 3.42 depicts the
diagonal detection function. As was mentioned in Remark 3.1 (see also Exam-
ple 3.6), the diagonal detection function may have several peaks related to the
same change-point. We can see that in this case, the diagonal detection function
has four ‘true’ peaks, agreeing with the peaks of the row detection function as
well as three spurious peaks, which mirror the true ones.

The structure of the H-matrix (Fig. 3.41) corresponds to the general description
of Section 3.4.4, relating to trends. Thus, we have an explanation of both the light
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rectangles located along the main diagonal of the matrix of Fig. 3.41 (the case
of a permanent heterogeneity with conservation of dimension) and the other light
rectangles (the specifics of a piecewise exponential series).

Though the H-matrix of Fig. 3.41 has a ‘multiple cross’ structure, it depicts
permanent violations rather than temporary ones (the ‘outlier’ region is an excep-
tion).

3.6.3 ‘Sunspots’: detection of changes in amplitudes and frequencies

The ‘Sunspots’ series (annual sunspot numbers, from 1700 to 1988, Hipel and
McLeod, 1994) is a standard test-bed for numerous methods of time series anal-
ysis. The series (thin line in Fig. 3.44) is an amplitude-modulated oscillatory se-
quence of a rather complex form.
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Figure 3.44 Sunspots: time series and its low-frequency component.

Its behaviour has obviously changed in the interval somewhere between the
end of the eighteenth century to the thirties of the nineteenth century. (We do
not discuss here the reasons for this well-known heterogeneity.) The thick line in
Fig. 3.44 depicts the low-frequency component of the ‘Sunspots’ series.

The component is reconstructed with the help of Toeplitz SSA with window
length 132 by the average triple and the eigentriples 5,6 and 9-11. It includes the
slowly varying trend and two periodicities of approximately 100 and 55 years.

We can see that this component generally corresponds to the modulation of the
amplitude of the ‘Sunspots’ series and reflects some specifics of the heterogeneity
interval of interest. Despite this we shall investigate the ‘Sunspots’ series as a
whole, trying to detect (and describe) the amplitude and frequency heterogeneities
altogether.

Since the main frequency of the ‘Sunspots’ series is approximately 1/11, we
take B = 43 and L = 22 to separate the corresponding component from the
other components and choose r = 3 and I = {1, 2, 3} to join the trend and the
main-frequency periodicity.

The resulting row detection function and the H-matrix for T = 43 are depicted
in Fig. 3.45 and Fig. 3.46, respectively. The column detection function is similar
to the row one.
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Figure 3.45 Sunspots: row detection function.
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Figure 3.46 Sunspots: H-matrix.

A sharp peak of the row detection function and the cross-structure of the H-
matrix precisely correspond to the heterogeneity region of the ‘Sunspots’ series.

The roots of the characteristic polynomial help us to understand the nature of
the heterogeneity. Since the base spaces L(L,i)

I,B correspond to approximation of
the time series Fi,i+B−1 by the sum of one exponential (the first eigentriple) and
one harmonic (the second and third eigentriples), let us consider the two lead-
ing modulus-frequency root representations. The top graph of Fig. 3.47 presents
the two leading root-modulus functions. The thick line corresponds to the real
root (exponential component) and the thin line relates to the amplitude of the har-
monic component of the series. The corresponding frequencies can be found in
the bottom graph of Fig. 3.47.

We can see that both root-modulus functions are in perfect correspondence with
each other. Since one function relates to the slowly varying part of the series and
the other presents its main harmonic component, the correspondence of the root-
modulus functions means that the amplitude modulation of the main harmonic
component of the series is in agreement with its low-frequency component (see
Fig. 3.44).
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Figure 3.47 Sunspots: two pairs of the leading root functions.

Both series in the top graph of Fig. 3.47 have low values precisely at the het-
erogeneity region of the ‘Sunspots’ series, which is characterized by small am-
plitudes. The same region can be indicated by the abrupt changes of the leading
root-frequency function (the thin line in the top graph of Fig. 3.47; the thick line
is the zero one since it corresponds to the real root).

On the whole, the frequency values are about the main ‘Sunspots’ frequency
(approximately, 1/11), but the heterogeneity region is characterized by large dis-
crepancies from this frequency. This means that the row detection function (see
Fig. 3.45) detects both the heterogeneity in the amplitude modulation and the het-
erogeneity in frequency.

3.6.4 ‘Demands’: rearrangement or heterogeneity?

Sometimes the distinction between the eigentriple rearrangement and heterogen-
eity of the series is difficult to pick up by a straightforward heterogeneity analysis.
But it is important to discriminate between these effects since the rearrangement
is a ‘false’ heterogeneity. The following example shows how additional detection
techniques help in these situations.

The ‘Demands’ series (demand for a double-knit polyester fabric, sequential
observations, Montgomery and Jonson, 1976) is an example of this kind. The
series (after standardization) is shown at the bottom graph of Fig. 3.48. Its peri-
odogram (see Fig. 3.49) shows a very regular frequency-structure of the series:
the peaks of the periodogram are located on the grid {j/30}, though the series
length is N = 240. Note that the true main frequencies of the series are slightly
greater than 1/30, 1/15, etc.
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A more detailed investigation shows that the most powerful frequency of the
beginning of the series is ω = 1/2. Therefore, we take B = 59, L = 30 (to
achieve the best separation) and r = 1, I = {1} (to start with the main frequency).
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Figure 3.48 Demands: detection functions and the time series.
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Figure 3.49 Demands: periodogram of the series.

The corresponding H-matrix (Fig. 3.50) and the row/column detection func-
tions (top graph of Fig. 3.48, the column function is represented by a thick line)
show two explicit rearrangement-like intervals of the series.

The root functions (Fig. 3.51) clarify the situation: while the root-modulus
function (top graph) is generally stable (apart from the interval of the first rear-
rangement), the root-frequency function (bottom graph) indicates transitions from
the frequency ω = 1/2 to ω ≈ 1/10 and then to ω ≈ 1/5.
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Figure 3.50 Demands: H-matrix.
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Figure 3.51 Demands: root functions.

The case can be clarified in an even better way. The periodogram matrix (see
Section 3.5.3), calculated for B̃ = 60 (note that B = 59) shows that there is a
time interval when all the powerful frequencies (except for the stable frequency
ω ≈ 1/10) either lose their power or start gaining it. In particular, the frequency
ω = 1/2 vanishes almost at the same time as the power of the frequency ω ≈ 1/5
starts to increase.

The f -power functions (see Fig. 3.53) corresponding to the frequencies ω =
1/2 (thin line), ω ≈ 1/10 (thick line) and ω ≈ 1/5 (thin line marked with dots)
indicate both the two rearrangement intervals and a hidden heterogeneity between
them.
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Figure 3.52 Demands: periodogram matrix.
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Figure 3.53 Demands: f-power functions.

The powers of the frequency ω = 1/2 are slowly decreasing in time, while
the powers of ω ≈ 1/10 are relatively stable. The interval where their values are
approximately equal indicates the first eigentriple rearrangement, though not in
terms of eigenvalues but rather in terms of the amplitudes of the Fourier decom-
position of the series. After this interval ω ≈ 1/10 becomes the main frequency
(see Fig. 3.51).

As it decreases, the power of the frequency ω = 1/2 becomes as small as the
frequency ω ≈ 1/5, which was almost constant until this time. Then the power
of the frequency ω ≈ 1/5 has an abrupt increase, which indicates heterogeneity.
When the values of the powers corresponding to ω ≈ 1/5 and ω ≈ 1/10 become
close, the second rearrangement is indicated.
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Lastly, let us consider the components of the ‘Demands’ series, corresponding
to the three frequencies of interest. For this purpose, we apply the Toeplitz SSA
with L = 60 and take eigentriples 1, 2-3 and 4-5 for the reconstruction. The result
can be seen in Fig. 3.54: the component of ω = 1/2 has a slowly decreasing am-
plitude (top graph), and the component of ω ≈ 1/10 is almost harmonic (middle
graph), while the third component, which corresponds to ω ≈ 1/5, has a constant
amplitude in the beginning of the series and then becomes modulated by the am-
plitude. Despite the fact that the abrupt change of the amplitude is smoothed, as
is evident from Fig. 3.53, the whole picture corresponds to the indicated hetero-
geneity.
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Figure 3.54 Demands: three main components of the series.
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PART II

SSA: Theory
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CHAPTER 4

Singular value decomposition

This chapter is devoted to a description of the singular value decomposition (SVD)
of real matrices, which is the main mathematical tool in the Basic SSA method.
Most features of SVD discussed below are used in different parts of the book
and clarify either theoretical constructions or interpretation of results in various
examples.

4.1 Existence and uniqueness

Let X be a nonzero matrix with L > 1 rows and K > 1 columns. Then S def=
XXT is a symmetric L×L matrix. Like every symmetric matrix, the matrix
S has L linearly independent eigenvectors, that is, linearly independent vectors
U1, . . . , UL such that

SUi = λiUi ,

where the λi are real numbers called the eigenvaluesof the matrix S. The linear
space spanned by the collection of eigenvectors Ui is called the eigenspace.

We can choose the eigenvectors Ui to be orthonormal, that is, (Ui, Uj) = 0 for
i 	= j (the orthogonality property) and ||Ui|| = 1 (the unit norm property), where
(X,Y ) is the inner product of vectors X and Y , and ||X|| =

√
(X,X) is the

normof the vector X .
Furthermore, the matrix S is positive semidefinite, i.e., λi ≥ 0 for all i =

1, . . . , L. We assume that the eigenvalues λi are placed in decreasing order: λ1 ≥
λ2 ≥ . . . ≥ λL ≥ 0.

We denote by d the number of nonzero eigenvalues of the matrix S. If d < L,
λd > 0 and λd+1 = 0, then all the other eigenvalues with indices larger than d
are also zero. If λL > 0, then d = L. Since d is equal to the rank of the matrix X,
we obtain d ≤ min(L,K).

For 1 ≤ i ≤ d we set

Vi =
1√
λi

XTUi. (4.1)

Proposition 4.1 VectorsUi andVi have the following properties.
1. Let 1 ≤ i, j ≤ d. Then(Vi, Vj) = 0 for i 	= j and ||Vi|| = 1. If i > d, then
XTUi = 0K ∈ IRK , where0K is the zero vector.
2. Vi is an eigenvector of the matrixXTX corresponding to the eigenvalueλi.

Copyright © 2001 CRC Press, LLC



3. If 1 ≤ i ≤ d, then

Ui =
1√
λi

XVi .

4. If K > d then all the otherK − d eigenvectors of the matrixXTX correspond
to the zero eigenvalue.
5. The following equality is valid:

X =
d∑

i=1

√
λiUiV

T
i . (4.2)

Proof.
1. The first statement follows from the equality

(XTUi,XTUj) = (Ui,XXTUj) = λj(Ui, Uj)

and the orthonormality of the vectors Ui. In particular, if i = j > d, then λj = 0
and ||XTUj || = 0.
2. Consider the vector XTXVi:

XTXVi =
1√
λi

XTX(XTUi)

=
1√
λi

XT(XXT)Ui =
√
λiXTUi = λiVi.

3. The proof is straightforward:

XVi =
1√
λi

XXTUi =
√
λiUi.

4. Let V be an eigenvector of the matrix XTX orthogonal to Vi, 1 ≤ i ≤ d. Then

0 =
√
λi(Vi, V ) = (XTUi, V ) = (Ui,XV )

for any 1 ≤ i ≤ d. We set U = XV . Then XXTU = 0L, XTU = 0K and

XTXV = XTU = 0K.

5. Since the eigenvectors U1, . . . , UL of the matrix S = XXT form an orthonor-
mal basis of IRL, it follows that

EL =
L∑

i=1

UiU
T
i , (4.3)

where EL is the identity L× L matrix. Since ELX = X, we obtain

X =
L∑

i=1

UiU
T
i X =

L∑
i=1

Ui(XTUi)T

=
d∑

i=1

√
λiUiV

T
i +

L∑
i=d+1

Ui(XTUi)T.
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Since XTUi = 0K for i > d, the proof is complete. ✷

The equality (4.2) is called the singular value decomposition(SVD) of the ma-
trix X. Standard terminology calls numbers

√
λi singular valuesof the matrix X,

while the vectors Ui and Vi are called the left and right singular vectorsof the
matrix X. The collection (

√
λi, Ui, Vi) is called ith eigentripleof the matrix X.

Let us discuss the uniqueness properties of SVD (4.2). Of course this unique-
ness could not be treated ad litteram. First, since −Ui is also the eigenvector of
S corresponding to the eigenvalue λi, in (4.2) we can replace one or more pairs
(Ui, Vi) by (−Ui,−Vi) with each term on the right side of (4.2) remaining the
same.

Moreover, if, for example, λ
def= λ1 = λ2 > λ3, then the choice of the basis

in the two-dimensional eigenspace corresponding to the eigenvalue λ is not well-
defined and the vectors U1, U2 (as well as the vectors V1, V2) are not determined
uniquely. This means that if λ1 = λ2 > λ3, then both matrices

√
λ1U1V

T
1 and√

λ2U2V
T
2 have a sense only through their sum (which does not depend on the

choice of U1 and U2), but not individually.
Bearing these considerations in mind, the uniqueness property of SVD can be

formulated as follows.
Let P1, . . . , PL and Q1, . . . , QL be some orthonormal systems in IRL and IRK ,

respectively. Assume that there exist nonnegative constants c1 ≥ . . . ≥ cL ≥ 0
such that

X =
L∑

i=1

ciPiQ
T
i . (4.4)

Consider an SVD (4.2) of the matrix X.

Proposition 4.2
1. cd > 0 andcd+1 = . . . = cL = 0.
2. c2i = λi for 1 ≤ i ≤ d.
3. For eachi = 1, . . . , d the vectorPi is an eigenvector of the matrixXXT

corresponding to the eigenvalueλi.
4.Qi = XTPi/

√
λi (i = 1, . . . , d).

5. If all the numbersci are different, then(4.4) coincides with(4.2) up to the
signs ofUi andVi.

Proof.
Since X admits the decomposition (4.4) and the vectorsQ1, . . . , QL are orthonor-
mal,

S = XXT =
L∑

i,j=1

cicjPiQ
T
i QjP

T
j =

L∑
i=1

c2iPiP
T
i .

Multiplying the last equality by Pi on the right, we obtain that SPi = c2iPi, and
the first three statements of the proposition are proved. The fourth one is obtained
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by transposing the equality (4.4), which gives

XT =
L∑

j=1

cjQjP
T
j ,

and then multiplying it by Pi on the right. The last statement is an evident conse-
quence of the properties of eigenvectors. ✷

Corollary 4.1 Let I ⊂ {1, . . . , d}, J = {1, . . . , d} \ I. Set

XI =
∑
i∈I

√
λiUiV

T
i

andXJ
def= X−XI . Then the decomposition

XJ =
∑
i∈J

√
λiUiV

T
i

is the SVD of the matrixXJ .

4.2 SVD matrices

Singular value decomposition (4.2) can be rewritten in matrix form as follows.
Set Ud = [U1 : . . . : Ud], Vd = [V1 : . . . : Vd], and let Λd be the diagonal d× d
matrix with the eigenvalue λi as the ith diagonal element. Then (4.2) takes the
form

X = UdΛ
1/2
d VTd , (4.5)

which is the standard matrix form of the singular value decomposition.
The equality (4.5) can be rewritten in the form known as the quasi-diagonal

representation of the matrix X. It is well known that for a suitable choice of an
orthonormal basis in IRL, any symmetric L × L matrix has a diagonal represen-
tation. It follows from (4.5) that we can select proper bases both in IRL and IRK

and obtain an analogous representation for any rectangular matrix X.
Let U = [U1 : . . . : UL] and V = [V1 : . . . : VK ]. (Note that in the case d < K

we take Vd+1, . . . , VK as an orthonormal system of eigenvectors corresponding
to the zero eigenvalue of the matrix XTX.)

The matrices U and V are L × L and K × K unitary (or rotation) matri-
ces. For the matrix U, this means that for all vectors X,Y ∈ IRL the equality
(UX,UY ) = (X,Y ) is valid and therefore the matrix U, treated as a linear map-
ping IRL "→ IRL, conserves both the vector norms and the angles between vectors.
Another characterization of the rotation property is the identity U−1 = UT.

Denote by Λ the matrix of the size of the initial matrix X with the diagonal
elements λii = λi for 1 ≤ i ≤ d and all the other elements equal to zero. Then
(4.5) can be rewritten as

X = UΛ1/2VT or Λ1/2 = UTXV. (4.6)
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The equalities (4.6) have the meaning of the quasi-diagonal representationof the
matrix X. For suitable bases U1, . . . , UL in IRL and V1, . . . , VK in IRK (in other
words, under two proper rotations), any rectangular L × K matrix has a quasi-
diagonal representation Λ1/2. The term ‘rotation’ is used here since a transition
from one orthonormal basis in a linear space to another one is performed with the
help of a rotation matrix similar to U and V.

4.2.1 Matrix orthogonal decompositions and SVD

Consider the linear spaceML,K of real L×K matrices equipped with the stan-
dard operations of matrix addition and multiplication by constants. Evidently, the
dimension of this space is LK. Define the inner product of matricesas follows.
Let X = (xij)

L,K
i,j=1 and Y = (yij)

L,K
i,j=1 be matrices inML,K . Then

〈X,Y〉M =
L∑

i=1

K∑
j=1

xijyij . (4.7)

In the standard manner the equality

||X||2M = 〈X,X〉M =
L∑

i=1

K∑
j=1

x2ij (4.8)

defines the square of the matrix norm (usually called the Frobeniusmatrix norm),
distM(X,Y) = ||X −Y||M has the sense of the distance between matrices X
and Y, and so on.

The inner product (4.7) is the usual inner product of vectors in IRLK (with
elements xij and yij) and does not depend on the rectangular structure of the
matrices. In particular, (4.7) does not depend on mutual permutation of matrix
elements and therefore does not take into consideration many important matrix
characteristics such as their rank.

On the other hand, the definition (4.7) tells us that the inner product of matrices
X and Y is equal to the inner product of XT and YT, which seems to be natural.
(Of course these inner products act in different spaces: X,Y ∈ ML,K , while
XT,YT ∈ MK,L.) The other useful property of the matrix inner product is that
proximity of two matrices can be considered as proximity of their columns; if
X1, . . . , XK ∈ IRL and Y1, . . . , YK ∈ IRL are columns of matrices X and Y,
respectively, then

||X−Y||2M =
K∑
i=1

||Xi − Yi||2.

The analogous equality can obviously be written in terms of the matrix rows rather
than columns.

Matrices X and Y are orthogonalif 〈X,Y〉M = 0. Though the concept of or-
thogonality is too general to be useful in all cases, there exist sufficient conditions
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that relate orthogonality of matrices to other properties of these matrices, such as
the span of their columns or rows. Indeed, in terms of the matrix columns,

〈X,Y〉M =
K∑
i=1

(Xi, Yi)

and, therefore, if span(X) def= span(X1, . . . , XK) is orthogonal to span (Y) =
span(Y1, . . . , YK), then X and Y are orthogonal. An analogous sufficient condi-
tion can be formulated in terms of the matrix rows; i.e., linear spaces span (XT)
and span (YT). Note that the orthogonality span (X) ⊥ span (Y) can be ex-
pressed as XTY = 0KK, while the condition span (XT) ⊥ span (YT) is equiv-
alent to XYT = 0LL (here 0NN stands for the N ×N zero matrix).

Orthogonality of the span spaces in any combination does not give necessary
conditions for matrix orthogonality. However, there exists a class of matrices
where matrix orthogonality is expressed in terms of orthogonality of the span
spaces. Such matrices are unit-rankor elementarymatrices.

Every elementary matrix has proportional (nonzero) columns and proportional
(nonzero) rows. This means that every elementary L ×K matrix X has a repre-
sentation

X = cPQT (4.9)

where P ∈ IRL, Q ∈ IRK , ||P || = ||Q|| = 1 and c > 0. The vector P constitutes
the basis of span (X); Q plays the same role for span (XT). The representation
(4.9) is unique up to signs of P and Q which can be modified simultaneously.

A useful feature of the elementary matrices is that for any matrix Y = PQT

and any X ∈ML,K

〈X,Y〉M =
(
XTP,Q

)
= (XQ,P ). (4.10)

Indeed, if Q = (q1, . . . , qK)T, then PQT = [q1P : . . . : qKP ] and therefore

〈X,Y〉M =
K∑
i=1

qi(Xi, P ) =
K∑
i=1

qiX
T
i P =

(
XTP,Q

)
where X = [X1 : . . . : XK ]. Thus, if X = c1P1Q

T
1 and Y = c2P2Q

T
2 , then

〈X,Y〉M = c1c2(P1, P2)(Q1, Q2) ,

and, therefore, X and Y are orthogonal if and only if P1 ⊥ P2 or Q1 ⊥ Q2.
When dealing with linear spaces equipped with an inner product, the usual

decomposition of an element of such a space is its orthogonal decomposition into
a sum of ‘simple’ elements. If we express the ‘simplicity’ of a matrix in terms of
the value of its rank, then we shall consider the decomposition of a matrix into a
sum of orthogonal elementary matrices:

X =
m∑
i=1

Xi =
m∑
i=1

ciPiQ
T
i (4.11)
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with Xi = ciPiQ
T
i , ci > 0, Pi ∈ IRL, Qi ∈ IRK , ||Pi|| = ||Qi|| = 1 and

(Pi, Pj)(Qi, Qj) = 0 for i 	= j.
It can be easily proved that the decomposition (4.11) has the following proper-

ties:

1. ||Xi||M = ci;

2. ||X||2M =
m∑
i=1

c2i =
m∑
i=1

||Xi||2M;

3. XQi = ciPi +
∑

j:(Qi,Qj) 
=0
cj(Qi, Qj)Pj ;

4. XTPi = ciQi +
∑

j:(Pi,Pj) 
=0
cj(Pi, Pj)Qj ;

5. (XQi, Pi) = ci.

Any matrix X of rank d can be decomposed in many ways into the orthogonal
sum of elementary matrices.

Since the dimension of the linear spaceML,K is LK, there exist LK pairwise
orthogonal L × K matrices. For example, suppose that one of the standard or-
thonormal bases ofML,K consists of the matrices with a single element equal to
1 and all the other elements zero. These matrices have rank 1, and therefore they
are elementary matrices. If we denote by E(k)i ∈ IRk the vector with all zeros
apart from the ith component, which is equal to 1, then any matrix X ∈ ML,K

with elements xij has the orthogonal decomposition

X =
L,K∑
i,j=1

xijE
(L)
i

(
E
(K)
j

)T
.

This decomposition is universal, but it can have a lot of terms, even when X is
itself an elementary matrix.

If we consider an orthonormal basis P1, . . . , PL in IRL, then

X =
L∑

i=1

PiP
T
i X =

L∑
i=1

PiS
T
i (4.12)

with Si = XTPi. Thus, taking all the nonzero vectors Si and setting ci = ||Si||
and Qi = Si/ci we obtain (4.11). A similar decomposition holds if we take an
orthonormal basis Q1, . . . , QK in IRK and multiply X by

EK =
K∑
i=1

QiQ
T
i

on the right.
Decomposition (4.11) shows that each column of the matrix X treated as a

vector is a linear combination of the vectors P1, . . . , Pm. Therefore, m ≥ d =
rankX. It is easy to construct the decomposition (4.12) with d nonzero terms.
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For example, if P1, . . . , Pd form an orthonormal basis of span (X), then XTPi is
a zero vector for i ≥ d and (4.12) turns into

X =
d∑

i=1

PiS
T
i

with linearly independent Si.
Let us characterize all the decompositions of the kind

X =
m∑
i=1

PiQ
T
i (4.13)

with m = rankX, without the orthogonality restrictions on Pi and Qi.

Proposition 4.3
1. The equalitym = rankX holds if and only if the vectorsP1, . . . , Pm are
linearly independent and belong tospan (X).
2. The equalitym = rankX holds if and only if both vector systemsP1, . . . , Pm

andQ1, . . . , Qm are linearly independent.

Proof.
1. Since span (X) ⊂ span (P1, . . . , Pm),

dim (span (X)) ≤ dim (span (P1, . . . , Pm)) ≤ m (4.14)

and the equality m = rankX holds if and only if both inequalities in (4.14)
become equalities. This means that a) the vectors P1, . . . , Pm are linearly inde-
pendent and b) span (X) = span (P1, . . . , Pm).
2. As has already been mentioned, m ≥ d = rankX. Moreover if P1, . . . , Pm

are linearly dependent, then we can express each Pi as a linear combination of
the basis vectors of span (P1, . . . , Pm). Recalculation of Qi then leads to a de-
composition similar to (4.13), but with a smaller number of terms on its right
side.

Now let us assume that both systems P1, . . . , Pm and Q1, . . . , Qm are linearly
independent and m > d. Then span (X) is a subspace of span (P1, . . . , Pm),
and these linear spaces do not coincide. Denote by Y1, . . . , Ym the orthonormal
basis of span (P1, . . . , Pm) such that Y1, . . . , Yd is a basis of span (X). Then
XTYk = 0K for k > d.

Since

Pi =
m∑
j=1

cijYj

for some cij ,

X =
m∑
i=1

 m∑
j=1

cijYj

QTi =
m∑
j=1

Yj

(
m∑
i=1

cijQ
T
i

)
.
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Thus, for k > d

0K = XTYk =
m∑
i=1

cikQi

and the Qi are linearly dependent. ✷

A decomposition (4.13) with m = rankX is called minimal.

Corollary 4.2 The decomposition(4.13) is a minimal orthogonal decomposition
if and only if both vector systemsP1, . . . , Pm andQ1, . . . , Qm are linearly inde-
pendent and(Pi, Pj)(Qi, Qj) = 0 for all i 	= j.

As a result, we have obtained a class of matrix decompositions into a minimal
number of orthogonal elementary matrices. Of course, the singular value decom-
positions belong to this class.

We set Xi =
√
λiUiV

T
i in SVD (4.2). Then (4.2) can be rewritten in the form

X = X1 + . . .+Xd. (4.15)

The matrices Xi have unit ranks and are orthogonal to each other. Moreover, the
matrices Xi are biorthogonal in the sense that XiXTj = 0LL and XTi Xj = 0KK
for i 	= j. This means that the SVD is not only a decomposition of a matrix into the
minimal system of orthogonal elementary matrices, but also this decomposition
is biorthogonal. In view of Proposition 4.2, it is a unique (up to multiplicity of the
eigenvalues λi) biorthogonal elementary decomposition. Evidently,

||X||2M = λ1 + . . .+ λd. (4.16)

4.3 Optimality of SVDs

The optimal features of SVD are based on two extreme properties of the eigen-
values/eigenvectors of symmetric matrices. These properties are well known; their
proofs can be found in Gantmacher (1998).

Theorem 4.1 LetC be a symmetricL×L matrix. Denote byλ1 ≥ . . . ≥ λL the
eigenvalues of the matrixC and byU1, . . . , UL the corresponding orthonormal
system of its eigenvectors. Then
1. a)

λ1 = max
P

(CP,P ) = (CU1, U1),

where the maximum is taken over allP ∈ IRL with ||P || = 1;

b) for 2 ≤ k ≤ L

λk = max
P

(k)(CP,P ) = (CUk, Uk),

where the maximum is taken over allP ∈ IRL with ||P || = 1 and (P,Ui) = 0
(1 ≤ i < k);
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2. for any1 ≤ k ≤ L

max
P1,...,Pk

k∑
i=1

(CPi, Pi) =
k∑

i=1

(CUi, Ui) =
k∑

i=1

λi,

where the maximum is taken over all orthonormal systemsP1, . . . , Pk ∈ IRL.

We now turn to SVDs starting with an auxiliary proposition. Assume that a
matrix X has a rank d > 0. Fix k such that 1 ≤ k ≤ d. We consider the problem
of approximation of the matrix X with respect to the matrix norm by matrices Y
of the form

Y =
k∑

i=1

PiQ
T
i , (4.17)

where Pi ∈ IRL and Qi ∈ IRK . Of course, we can assume that the vectors Pi are
orthonormal. We, however, do not assume the orthonormality of the Qi.

Let us fix the orthonormal vectors P1, . . . , Pk and denote byMk,P the collec-
tion of matrices (4.17). Our problem is to find the matrix Y0∈Mk,P such that

min
Y∈Mk,P

||X−Y||M = ||X−Y0||M.

To find the optimal matrix Y0 it is sufficient to find the corresponding matrices
Q1, . . . , Qk in (4.17).

Proposition 4.4 OptimalQi have the formQi = XTPi.

Proof.
Since for all vectors Q1, . . . , Qk the matrices Yi = PiQ

T
i are orthogonal,〈

X−
k∑

i=1

PiXTPi,

k∑
j=1

PjQ
T
j

〉
M

= 0. (4.18)

Indeed, by (4.10) we have〈
X,

k∑
j=1

PjQ
T
j

〉
M

=
k∑

j=1

(
XTPj , Qj

)
,

and in view of the orthonormality of the vectors P1, . . . , Pk the same result is
valid for the inner product〈 k∑

i=1

PiXTPi,

k∑
j=1

PjQ
T
j

〉
M
.

The equality (4.18) shows that the matrix
∑k

i=1 PiXTPi is the orthogonal projec-
tion of the matrix X onMk,P ; this completes the proof. ✷

An analogous statement holds if we fix the orthonormal system Q1, . . . , Qk.
Then the optimal Pi (which are not necessarily orthonormal in this case) are equal
to XQi.
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Now letMk be the set of matrices of the form

Y =
k∑

i=1

PiQ
T
i (4.19)

with k < d. Take X, a matrix of a rank d, and consider the problem of optimal
approximation with respect to the matrix norm of this matrix by matrices inMk.
In this case, both Pi and Qi are arbitrary, while Proposition 4.4 deals with a fixed
collection of orthonormal vectors Pi.

Let (
√
λi, Ui, Vi) be eigentriples of the SVD (4.2). The optimal features of the

SVD can be formulated as follows.

Proposition 4.5

1. min
Y∈Mk

||X−Y||2M =
d∑

i=k+1

λi.

2. If we take

Y0 =
k∑

i=1

√
λiUiV

T
i ∈Mk, (4.20)

then

||X−Y0||2M = min
Y∈Mk

||X−Y||2M. (4.21)

Proof.
We can assume that P1, . . . , Pk are linearly independent and form an orthonormal
system. Indeed, if the Pi are linearly dependent, then we decompose several Pi

into linear combinations of the others and recalculate the Qi. The matrix (4.19)
will remain the same, while k will be reduced. In the same manner, if P1, . . . , Pk

are linearly independent but not pairwise orthogonal, then we can find an or-
thonormal basis of span(P1, . . . , Pk), decompose each Pi in terms of this basis,
and recalculate the Qi.

By Proposition 4.4 we know that for fixed orthonormal Pi (1 ≤ i ≤ k), the
optimal Qi have the form Qi = XTPi. Therefore, the problem is to find the
optimal Pi. Since∣∣∣∣∣∣X− k∑

i=1

PiXTPi

∣∣∣∣∣∣2
M

= ||X||2M −
k∑

i=1

(
XXTPi, Pi

)
, (4.22)

we have to find orthonormal P1, . . . , Pk such that the right side of (4.22) is mini-
mal. But the answer to this problem is well-known (see Theorem 4.1); these vec-
tors can be selected as the leading k eigenvectors of the matrix S = XXT. This
means that Pi = Ui. In view of the equality (4.16), both statements are proved.✷

The optimal features of SVD can be re-expressed differently for different pur-
poses. For example, the set Mk can be looked at from another viewpoint. Since
any matrix Y ∈Mk has rank not exceeding k, the problem (4.21) is the problem
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of approximation of the matrix X by a matrix of smaller rank. Therefore, Proposi-
tion 4.5 tells us that the sum of the first k SVD terms makes the best approximating
matrixY0 of rank not larger thank.

On the other hand, it follows from (4.19) that any column Yi of the matrix
Y ∈ Mk belongs to the linear space span (P1, . . . , Pk) of dimension not larger
than k < d, whereas the columns X1, . . . , XK of the matrix X span the linear
space span (X) of dimension d. Since

||X−Y||2M =
K∑
i=1

||Xi − Yi||2,

the optimization problem of Proposition 4.5 can be regarded as the problem of
simultaneous approximation of the vectors X1, . . . , XK , spanning the d-dimensi-
onal vector space span (X) by some vectors Y1, . . . , YK spanning a linear space L
of dimension not exceeding k < d. Of course, Proposition 4.5 gives the solution:
the optimal linear spaceL is equal tospan (U1, . . . , Uk), while the columns of
the matrix(4.20) are equal to the optimalYi.

A natural characteristic of these (equivalent) optimal approximations is defined
by

||X−Y0||2M
||X||2M

=
λk+1 + . . .+ λd
λ1 + . . .+ λd

.

If we do not deal with the optimal approximation and set

XI =
∑
i∈I

√
λiUiV

T
i

with I = {j1, . . . , jk} ⊂ {1, . . . , d}, j1 > . . . > jk, and k < d, then

1− ||X−XI ||2M
||X||2M

=
λj1 + . . .+ λjk

λ1 + . . .+ λd
. (4.23)

The characteristic (4.23) can be called the eigenvalue share of the eigentriples
with numbersj1, . . . , jk.

Another description of the optimal features of SVD is related to the so-called
principal vectors of the collection X1, . . . , XK ∈ IRL. Let X,P ∈ IRL, X 	= 0L,
||P || = 1. Then (X,P )P is the projection of X onto the one-dimensional linear
space LP = span (P ), and c = |(X,P )| is the norm of this projection. The value
c = c(P ) can be regarded as a measure of the quality of the approximation of
the vector X by LP ; the larger c = c(P ) is, the better X is approximated by
span (P ).

If we want to find P such that LP approximates the collection of vectors
X1, . . . , XK in the best way, then we arrive at the following optimization prob-
lem: find the vector P0 such that ||P0|| = 1 and

ν1
def=

K∑
i=1

(Xi, P0)2 = max
P

K∑
i=1

(Xi, P )2 (4.24)
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where the maximum on the right side of (4.24) is taken over all P ∈ IRL with
||P || = 1.

The solution to this problem can also be described in terms of SVD.

Proposition 4.6 Consider the matrix X = [X1 : . . . : XK ] and its SVD(4.2).
Then
1. The vectorP0 = U1 is the solution of the problem(4.24) with ν1 = λ1.
2. LetP0 be the solution of the following optimization problem

νk
def=

K∑
i=1

(Xi, P0)2 = max
P

(k)
K∑
i=1

(Xi, P )2 , (4.25)

where the maximum on the right side of (4.25) is taken over all P ∈ IRL such that
||P || = 1 and (P,Ui) = 0 for 1 ≤ i < k. If k ≤ d, then the vectorP0 = Uk is
the solution of the problem(4.25), andνk = λk. If k > d, thenνk = 0.

Proof.
Since

K∑
i=1

(Xi, P )2 = ||XTP ||2 =
(
XXTP,P

)
,

both statements follow from Theorem 4.1. ✷

Proposition 4.6 enables us to call the vector Ui the ith principal vectorof the
collection X1, . . . , XK . We set cj(Ui) = (Xj , Ui). Since

Xj =
d∑

i=1

cj(Ui)Ui,

the coefficient cj(Ui) is called the ith principal componentof the vector Xj and
the vector

Zi = (c1(Ui), . . . , cK(Ui))T = XTUi

is the vector ofith principal components. Note that, in view of (4.1), Zi =
√
λiVi

and SVD (4.2) can be treated as a simultaneous decomposition of the columns of
the matrix X with respect to the basis of their principal vectors. Such an inter-
pretation is standard in principal component analysis where the columns of the
matrix X form an L-dimensional sample of size K.

In the same way, the Vi are the principal vectors for the rows of the matrix X,
the vectors

√
λiUi are the vectors of their principal components and the decom-

position (4.2) produces two systems of principal vectors and two related decom-
positions with respect to these systems.

Now let us consider one more optimization problem related to SVD. Let us
fix 1 ≤ k < d = rankX and an orthonormal system W1, . . . ,Wk ∈ IRL and
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consider the matrix

Y =
k∑

i=1

WiQ
T
i +

d∑
i=k+1

PiQ
T
i (4.26)

under the assumption that the collection of vectors W1, . . . ,Wk, Pk+1, . . . , Pd

forms an orthonormal system. (Here the Pi are arbitrary up to this restriction, and
the Qi are arbitrary vectors in IRL.) Denote by Mk,W the set of such matrices
and consider the problem of finding the matrix Y0 ∈Mk,W such that

||X−Y0||M = min
Y ∈Md,W

||X−Y||M. (4.27)

Proposition 4.7 The solution Y0 to the problem(4.27) has the following struc-
ture:Qi = XTWi for 1 ≤ i ≤ k; if d ≥ i > k, then the vectorsPi coincide with
the first d− k orthonormal eigenvectors of the matrix

XW
def= X−

k∑
i=1

Wi(XTWi)T

andQi = XTPi.

Proof.
The expression for Qi immediately follows from Proposition 4.4. Therefore, set-
ting

ZW =
k∑

i=1

WiQ
T
i ,

we can take

Y = ZW +
d∑

i=k+1

PiQ
T
i = ZW +Y∗

0

with Y∗
0 ∈Md−k. Since ||X−Y||M= ||XW −Y∗

0 ||M, the proof is complete.✷

4.4 Centring in SVD

Centring is not a standard procedure in SVD. Two versions of centring will be
discussed; single centring is usual in principal component analysis, while double
centring is a specific version of SSA aimed at extracting linear-like signals.

4.4.1 Single centring

For the initial matrix X with K columns and L rows, we set

A1(X) =
1
K

X1K1TK , (4.28)
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where 1K = (1, . . . , 1)T ∈ IRK . If we consider the vector

E1(X) =
1
K

X1K ∈ IRL, (4.29)

then E1(X) is the result of averaging the elements of X over its rows. In other
words, if X = [X1 : . . . : XK ], then E1(X) = (X1 + . . .+XK)/K.

Since A1(X) = E1(X)1TK, the matrix A1(X) has K identical columns which

are equal to E1(X). The transition X "→ X′ def= X − A1(X) has the meaning of
row centring.

Let us consider the SVD of the matrix X′ :

X′ =
d∑

i=1

√
λiUiV

T
i . (4.30)

If E1(X) = 0L, then the equality (4.30) is the SVD of the initial matrix X and
therefore coincides with (4.2). Otherwise (4.30) can be rewritten as

X =
√
λ0(1)U0(1)V

T
0(1) +

d∑
i=1

√
λiUiV

T
i = A1(X) +

d∑
i=1

Xi (4.31)

with

U0(1) = E1(X)/||E1(X)||, V0(1) = 1K/
√
K

and
√
λ0(1) = ||E1(X)||√K. Therefore, (4.31) is a decomposition of the matrix

X into a sum of elementary matrices. Note that here d is the order of the SVD of
the matrix X′ and therefore not of X in general.

We call decomposition (4.31) the single centring SVDof the matrix X. The
triple

(√
λ0(1), U0(1), V0(1)

)
is called the first average triple.

Let us discuss the properties of this version of SVD.

Proposition 4.8
1. The decomposition(4.31) is a decomposition of the matrixX into a sum of
orthogonal elementary matrices.
2. The decomposition(4.31) is an SVD of the matrixX if and only if1K is an
eigenvector of the matrixXTX.
3. The decomposition(4.31) is the minimal decomposition if and only if either1K
belongs to the spacespan (XT) or 1K is orthogonal to this space.

Proof.
If E1(X) = 0L, i.e., if 1K is orthogonal to span (XT), then all the statements
obviously hold. Assume that E1(X) 	= 0L.
1. Note that

X′1K = X1K − E1(X)1TK1K = 0L

and therefore V0(1) is an eigenvector of the matrix (X′)TX′ corresponding to the
zero eigenvalue. This means that all right singular vectors Vi are orthogonal to 1K .
(In other words, the sums of their coordinates are zeros.) Thus, V0(1), V1, . . . , Vd
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form an orthonormal system, and the corresponding elementary matrices are orth-
ogonal.
2. Suppose that 1K is an eigenvector of the matrix XXT. Since

A1(X) = XTV0(1)V T0(1),

A1(X) is one of the matrix components of the SVD of the matrix X. This is a
direct consequence of Corollary 4.1.
3. All we need (see Proposition 4.3) is to demonstrate that the vector Vi belongs
to the span (XT) if and only if 1K ∈ span (XT).

If 1K ∈ span (XT), then all the rows of the matrix (4.30) are linear combina-
tions of the rows of the matrix X and vice versa. Therefore, 1K ∈ span (XT) if
and only if Vi ∈ span (XT) for 1 ≤ i ≤ d. ✷

Corollary 4.3
1. Since the decomposition(4.31) is orthogonal, the equality

||X||2M = λ0(1) +
d∑

i=1

λi (4.32)

is valid.
2. The decomposition(4.31) is optimal in the sense of Proposition4.7 applied to
the matrix XT with d0 = 1 and a fixed vectorW1 = V0(1).

Remark 4.1 The equality (4.32) means that the number λ0(1)/||X||2M can be
regarded as the share of the first average triple in the sense of (4.23).

Analogous to the row centring of the matrix X, the column centring SVD can be
performed as well. Then, instead of E1(X) defined by (4.29), and A1(X) defined
by (4.28), we set

E2(X) =
1
L

XT1L, (4.33)

A2(X) = 1L(E2(X))T =
1
L

1L1TLX (4.34)

and apply the SVD to the matrix X −A2(X) rather than to the matrix X′. Then
the decomposition (4.31) becomes

X =
√
λ0(2)U0(2)V

T
0(2) +

d∑
i=1

√
λiUiV

T
i

with U0(2) = 1L/
√
L, V0(2) = E2(X)/||E2(X)||, d = rank (X − A2(X)) and

the corresponding λ0(2). Of course, the analogous statements to Proposition 4.8
and Corollary 4.3 are valid in this case as well.
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4.4.2 Double centring

Let us consider the double centring SVD. Let the matrix X′′ be defined as

X′′ def= X′ −A2(X′) ,

which is the same as

X′′ = X−A(12)(X)

with

A(12)(X) = A1(X) +A2(X)−A1(A2(X)).

The matrix A12(X) def= A1(A2(X)) = A2(A1(X)) is the matrix with each ele-
ment equal to the average value of all the elements of the matrix X. Formally this
matrix average is equal to

ax =
1
KL

1TLX1K

and the matrix A12(X) itself is

A12(X) = ax1L1TK.

In the double centring version we deal with the SVD of the matrix

X′′ =
d∑

i=1

√
λiUiV

T
i

and thus obtain the double centring SVDof the matrix X:

X = A(12)(X) +
d∑

i=1

√
λiUiV

T
i = A1(X) +A2(X′) +

d∑
i=1

Xi. (4.35)

Since X′′1K = 0L and (X′′)T1L = 0K, both Ui and Vi are centred in the sense
that (Ui,1L) = 0 and (Vi,1K) = 0.

Note that

A1(X) =
√
λ0(1) U0(1)V

T
0(1)

with V0(1) = 1K/
√
K, U0(1) = E1(X)/||E1(X)|| and λ20(1) = ||E1(X)||2K. In

the same way,

A2(X′) =
√
λ
(1)
0(2) U

(1)
0(2)

(
V
(1)
0(2)

)T
with U (1)0(2) = 1L/

√
L, V (1)0(2) = E2(X′)/||E2(X′)|| and λ(1)0(2) = ||E2(X′)||2L.

This means that the squared matrix norm of X can also be obtained as the sum
of the squared matrix norms of the matrices on the right side of (4.35)

||X||2M = ||A1(X)||2M + ||A2(X′)||2M +
d∑

i=1

||Xi||2M
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or, in terms of λi, λ0(1) and λ(1)0(2),

||X||2M = λ0(1) + λ
(1)
0(2) +

d∑
i=1

λi.

The triple
(√

λ
(1)
0(2), U

(1)
0(2), V

(1)
0(2)

)
is called the second average tripleof the de-

composition (4.35). The numbers λ0(1)/||X||2M and λ
(1)
0(2)/||X||2M can be re-

garded as the shares of the first and second average triplesin the double centring
SVD.
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CHAPTER 5

Time series of finite rank

In practice, a time series FN is usually a result of some measurements, and there-
fore the order d of the SVD decomposition of the trajectory matrix of FN typically
equals min(L,K), K = N − L + 1. However, there are series such that d does
not depend on L or K, when L and K are large enough.

As was mentioned in Section 1.6.1, this property is important for the eigentriple
grouping in Basic SSA. Moreover, such time series (and series sufficiently close to
them) admit relatively simple and efficient continuation procedures discussed in
Chapter 2. The same class of series is the basis for the change detection problems
of Chapter 3.

The present chapter is devoted to a formal mathematical description of this
class of time series and the linear recurrent formulae that govern these series.
Several results that are useful for the construction of the continuation procedures
are established.

5.1 General properties

Consider a real-valued sequence (series) FN = (f0, . . . , fN−1) with N ≥ 3 and
fix the window length L (1 < L < N).

The result of the embedding procedure (see Section 1.2.1) is a sequence of the
L-lagged vectors of the series FN :

X
(L)
i = Xi = (fi−1, . . . , fi+L−2)T, i = 1, . . . ,K.

Denote by L(L)(FN ) def= span(X1, . . . , XK) the trajectory space of the series
FN (this space will be denoted by L(L) for short).

Let 0 ≤ d ≤ L. If dimL(L) = d, then we shall say that the seriesFN has
L-rank d and write this as rankL(FN ) = d. We shall assume that d 	= 0, which
means that not all the fn are zero.

It is clear that the equality rankL(FN ) = d can hold only if

d ≤ min(L,K). (5.1)

When dealing with equalities of the kind rankL(FN ) = dwe shall always assume
that the condition (5.1) is met. If the equality rankL(FN ) = d holds for all the
appropriate L, then we say that the seriesFN has rankd (rank(FN ) = d).
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Let X = [X1 : . . . : XK ] be the L-trajectory matrix of the series FN . Obvi-
ously

rankL(FN ) = rankX = rankXXT = rankXTX.

Moreover, the orthonormal system of eigenvectors U1, . . . , Ud corresponding to
the positive eigenvalues λ1 ≥ . . . ≥ λd of the matrix XXT constitute a basis of
the space L(L). Therefore, rankL(FN ) is the order of the SVD decomposition of
the trajectory matrix X.

Let us give examples of series of a finite rank and infinite series F such that
rankL(F ) = L for any L.

Example 5.1 Series of finite rank
1. Exponential-cosine sequences
These series have the form

fn = Aeαn cos(2πωn+ φ) (5.2)

with A 	= 0, ω ∈ [0, 1/2] and φ ∈ [0, 2π). The exponential-cosine sequences can
have rank either 1 or 2:

a) If ω = 0 and cos(φ) 	= 0, then fn is proportional to eαn and we have
the exponential series, which has rank 1. For all L ≥ 1 and N ≥ L, the
space L(L) is spanned by the vector (1, a, . . . , aL−1)T, a = eα. The same
result takes place for the exponentially modulated saw-tooth sequence with
ω = 1/2, cos(φ) 	= 0 and a = −eα.

b) If ω ∈ (0, 1/2), then the sequence (5.2) has rank 2. For all L, 2 ≤ L ≤
N−1, the space L(L) is spanned by the vectors Y1 and Y2 with components
y
(1)
k = eα(k−1) cos(2πω(k − 1)) and y(2)k = eα(k−1) sin(2πω(k − 1)),

respectively (1 ≤ k ≤ L).
2. Polynomial sequences

a) The linear series fn = an + b, a 	= 0, is a series of rank 2. For L ≥ 2 and
N ≥ L+ 1, the space L(L) is spanned by the vectors

Y1 = (1, . . . , 1)T, Y2 = (0, 1, . . . , L− 1)T. (5.3)

b) The quadratic sequence fn = n2 has rank 3. For 3 ≤ L ≤ N − 2, the
linear space L(L) is spanned by the vectors Y1 and Y2 defined in (5.3) and
by Y3 = (0, 12, 22, . . . , (L− 1)2)T.

The case of a general polynomial is considered later (see Example 5.3).
3. A series that does not have a finite rank
Let us first take N = 2L − 1 and consider the series FN with f0 = fL = 1 and
the other fn being zero. It is easy to see that all L coordinate vectors are present
among the lagged vectors X(L)i of the series FN . Hence rankL(FN ) = L. The
required series F can now be constructed as follows: the first three terms of the
series F are the terms of the series F3 (taken in the same order), while the next
five are the terms of F5, and so on.
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Remark 5.1 Note that the SVD eigenvectors of the trajectory matrix of any series
FN are linear combinations of the basis vectors of L(L)(FN ); the same holds for
the factor vectors if we deal with the space L(K)(FN ) rather than with L(L)(FN ).
Therefore, the singular vectors corresponding to the series of Example 5.1 (items
1 and 2) have the form stated in Section 1.6.1.

Let us introduce one more concept related to series of finite rank. We shall say
that a series FN admits an L-decomposition of order not larger thand (we write
this as ordL(FN ) ≤ d), if there exist two systems of functions

ϕk : {0, . . . , L− 1} "→ IR, ψk : {0, . . . ,K − 1} "→ IR

(k = 1, . . . , d) such that

fi+j =
d∑

k=1

ϕk(i)ψk(j), 0 ≤ i ≤ L− 1, 0 ≤ j ≤ K − 1. (5.4)

If ordL(FN ) ≤ d and ordL(FN ) � d−1, then the series FN admits an L-decom-
position of the orderd (ordL(FN ) = d).

Let us give an explicit form of the decomposition (5.4) for several series of
Example 5.1.

Example 5.2 Series of finite order

a) The power sequence fn = an, a 	= 0:

fi+j = ai+j = ai · aj = ϕ1(i)ψ1(j);

b) the exponential-cosine sequence (5.2) with ω ∈ (0, 1/2):

fi+j = Aeαi cos(2πωi) · eαj cos(2πωj + φ)
−Aeαi sin(2πωi) · eαj sin(2πωj + φ) = ϕ1(i)ψ1(j) + ϕ2(i)ψ2(j);

c) linear sequence fn = an+ b with a 	= 0:

fi+j = 1 · (aj + b) + i · a = ϕ1(i)ψ1(j) + ϕ2(i)ψ2(j);

d) quadratic sequence fn = n2:

fi+j = i2 · 1 + 1 · j2 + (2i) · j
= ϕ1(i)ψ1(j) + ϕ2(i)ψ2(j) + ϕ3(i)ψ3(j).

The following statement demonstrates that there is a close link between the
notions of finite rank and finite order.

Proposition 5.1
1. The conditionsrankL(FN ) = d andordL(FN ) = d are equivalent.
2. The equality(5.4) determines anL-decomposition of orderd of the seriesFN if
and only if both systems of functions,(ϕ1, . . . , ϕd) and(ψ1, . . . , ψd), are linearly
independent.
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Proof.
1. Evidently, it is sufficient to show that the inequalities rankL(FN ) ≤ d and
ordL(FN ) ≤ d are equivalent. Let rankL(FN ) ≤ d and denote by

Φk = (ϕk(0), . . . , ϕk(L− 1))T, 1 ≤ k ≤ d, (5.5)

some vectors that span the space L(L). Let ψk(j) be the coefficients of the expan-
sion of the vector X(L)j+1 with respect to these vectors. We then have the equalities

X
(L)
j+1 =

d∑
k=1

ψk(j)Φk, 0 ≤ j < K,  (5.6)

which in the component-wise notation have the form (5.4).
On the other hand, we can see that in the notation (5.5) the equations (5.4) be-

come (5.6). This means that all the vectors X(L)j belong to some linear space L
spanned by the vectors Φk (k = 1, . . . , d). Obviously, the dimension of this space
does not exceed d.
2. Let the equalities (5.4) define ordL(FN ). If the functions ϕk (or ψk) are not lin-
early independent, then replacing some of them by linear combinations of others
we come to equalities of the same form (5.4), but with a smaller number of terms.
This leads to a contradiction. To prove the converse, assume that both function
systems are linearly independent. We introduce the vectors

Ψk = (ψk(0), . . . , ψk(K − 1))T, 1 ≤ k ≤ d.

Then (5.4) can be rewritten in the form

X =
d∑

k=1

ΦkΨTk .

In view of the result of Proposition 4.3 of Section 4.2.1, rankX = d. ✷

Example 5.3 Polynomial series
Consider a general polynomial series fn = Pm(n), where Pm(t), t ∈ IR, is a
polynomial function of order m. Since

Pm(s+ t) =
m∑

k=0

dkPm(s)
dsk

tk

k!
,

it follows that rankL(FN ) = m + 1 for L > m and all sufficiently large N .
Moreover, the singular vectors of the SVD for the corresponding trajectory matri-
ces have a polynomial structure.

Remark 5.2 Consider the class of infinite series that admit decompositions of fi-
nite order. Then (5.4) implies that this class is a linear space and is closed with
respect to term-by-term multiplication of series. Therefore, Examples 5.2 and 5.3
imply that any time series whose general term can be represented as a sum of prod-
ucts of an exponential (eαn), harmonic (cos(2πωn+φ)) and polynomial (Pm(n))
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terms does admit a decomposition of finite order. In view of Proposition 5.1, its
L-rank does not depend on L for large L and K.

Now let us turn to the SVD of the trajectory matrices of time series with finite
rank. Consider the series FN and assume that rankL(FN ) = d for some L sat-
isfying (5.1). Then for the L-trajectory matrix X of the series FN we obtain that
rankX = d and therefore the SVD of this matrix has d terms:

X =
√
λ1U1V

T
1 + . . .+

√
λdUdV

T
d . (5.7)

Proposition 5.1 (and Proposition 4.3 of Section 4.2.1) tells us that there are
many representations

X =
d∑

k=1

PkQ
T
k (5.8)

with some Pk ∈ IRL and Qk ∈ IRK , where the vectors P1, . . . , Pd (and the
vectors Q1, . . . , Qd also) are linearly independent.

Suppose that we have obtained a decomposition (5.8) with d = rankX. The
following proposition shows how to compute the SVD (5.7) in terms of the vectors
Pk and Qk. Evidently it is enough to compute only λk and Uk; see (4.1). We set

c
(p)
ij = (Pi, Pj) , c

(q)
ij = (Qi, Qj)

and consider d× d matrices Ap, Aq with the elements c(p)ij and c(q)ij , respectively.

Proposition 5.2 The eigenvalues of the matrix XXT coincide with the eigenval-
ues of the matrix AqAp. If A = (a1, . . . , ad)T is an eigenvector of the matrix
AqAp, thenU = a1P1 + . . . + adPd is an eigenvector of the matrix XXT and
vice versa.

Proof.
Let Z = a1P1 + . . .+ adPd with some a1, . . . , ad. Since

XTPm =
d∑

j=1

c
(p)
mjQj , XQk =

d∑
j=1

c
(q)
kj Pj ,

then

XXTZ =
d∑

k=1

(
d∑

m=1

am

(
d∑

j=1

c
(q)
kj c

(p)
jm

))
Pk.

As the Pk are linearly independent, the rest of the proof is obvious. ✷

Let us consider in detail the example of the exponential-cosine series FN with
fn = eαn cos(2πωn+ φ), ω ∈ (0, 1/2). The exponential-cosine series has L-
rank 2 for any N ≥ 3 and 1 < L < N , see Example 5.2. Here we are interested
in the situation when both eigenvalues of the matrix XXT are equal or approxi-
mately equal.
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We set ψ = φ/2. Since

fk+m = eα(k+m) cos(2πωk + ψ) cos(2πωm+ ψ)
−eα(k+m) sin(2πωk + ψ) sin(2πωm+ ψ),

the equality (5.8) is valid with d = 2 and the vectors P1, P2, Q1, Q2 whose com-
ponents are as follows:

p1k = eαk cos(2πωk + ψ), p2k = −eαk sin(2πωk + ψ),

q1m = eαm cos(2πωm+ ψ), q2m = eαm sin(2πωm+ ψ)

for 1 ≤ k ≤ L, 1 ≤ m ≤ K. Let p = ||P1||/||P2||, q = ||Q1||/||Q2||,

cp =

(
P1, P2

)
||P1|| ||P2|| , cq =

(
Q1, Q2

)
||Q1|| ||Q2||

and S = ||P1|| ||P2|| ||Q1|| ||Q2||.
Proposition 5.3 LetT = 1/ω.

1. If L = K, thenλ1 = λ2.

2. Let α = 0. If L/T andK/T are integers, thenλ1 = λ2. If L/T is an
integer andK →∞, thenλ1/λ2 → 1.

3. Letα ≤ 0. If min(L,K)→∞, thenλ1/λ2 → 1.

Proof.
1. Proposition 5.2 implies that if d = 2 and λ1, λ2 are the eigenvalues of the
matrix XXT, then λ̃1 = λ1/S and λ̃2 = λ2/S are the eigenvalues of the matrix

B =
(

pq+ cpcq qcp + p−1cq
pcq + q−1cq p−1q−1 + cpcq

)
. (5.9)

Let us show that both eigenvalues of the matrix B coincide if and only if cp =
−cq and ||P1|| ||Q1|| = ||P2|| ||Q2||.

Since λ̃1,2 are the roots of the quadratic equation

λ̃2 − (pq+ (pq)−1 + 2cpcq
)
λ̃+ 1 + c2pc

2
q − c2p − c2q = 0,

the eigenvalues coincide if and only if

D
def=
(
pq+ (pq)−1 + 2cpcq

)2 − 4(1 + c2pc
2
q − c2p − c2q) = 0. (5.10)

Since c2p and c2q do not exceed 1 and C
def= pq+ (pq)−1 ≥ 2, the minimal value

of D for fixed cp and cq is equal to 4(cp + cq)2 and is achieved for C = 2.
Therefore, the first statement is proved.

2. If α = 0 and both L/T and K/T are integers, then ||P1||2 = ||P2||2 = L/2,
||Q1||2 = ||Q2||2 = K/2 and cp = cq = 0. Thus, D = 0 and the eigenvalues
coincide.
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Consider now the asymptotic case. Note that

λ1
λ2

=
pq+ (pq)−1 + 2cpcq +

√
D

pq+ (pq)−1 + 2cpcq −
√
D
,

where D is defined in (5.10). If α = 0 and L/T is an integer, then p = 1 and
cp = 0. Since K → ∞, it follows that both ||Q1||2 and ||Q2||2 are equivalent
to K/2 and therefore q → 1. In view of the boundedness of

(
Q1, Q2

)
, cq → 0.

Thus, D → 0 and λ1/λ2 → 1.
3. In the case α ≤ 0 and min(L,K)→∞ we obtain

lim ||P1|| = lim ||Q1|| <∞, lim ||P2|| = lim ||Q2|| <∞.
Moreover, there exist the finite limits lim

(
P1, P2

)
= − lim

(
Q1, Q2

)
. Thus,

asymptotically the eigenvalues become close. This completes the proof. ✷

5.2 Series of finite rank and recurrent formulae

Let us give one more definition. We shall say that the series FN has difference
dimension not larger thand (fdim(FN ) ≤ d), if 1 ≤ d < N − 1 and there are
numbers a1, . . . , ad such that

fi+d =
d∑

k=1

ak fi+d−k, 0 ≤ i ≤ N − d− 1, ad 	= 0. (5.11)

It is easy to see that for d < N − 2 the inequality fdim(FN ) ≤ d implies
fdim(FN ) ≤ d+ 1.

The number d = min{k : fdim(FN ) ≤ k} is called the finite-difference di-
mension of the series FN (fdim(FN ) = d). For the zero series FN with fn ≡ 0,
we set fdim(FN ) = 0. We shall typically assume that fdim(FN ) > 0.

The formula (5.11) will be called the linear recurrent formula (LRF). The LRF
(5.11) with d = fdim(FN ) is the minimal LRF. For infinite series the upper
bounds on i and d disappear in the definition of the difference dimension.

If (5.11) is valid, then we shall say that the series FN is governed by the LRF
(5.11). If (5.11) holds without any restrictions on ad, then FN satisfiesthe LRF
(5.11).

Example 5.4 Series of finite difference dimension
Let us specify the formula (5.11) for the series of Examples 5.1 and 5.2.

a) the power sequence fn = an: fi+1 = afi, d = 1;

b) the exponential-cosine sequence (5.2) with ω ∈ (0, 1/2):

fi+2 = 2eα cos(2πω)fi+1 − e2αfi, d = 2;

c) the linear sequence fn = an+ b with a 	= 0: fi+2 = 2fi+1 − fi, d = 2;

d) the quadratic sequence fn = n2: fi+3 = 3fi+2 − 3fi+1 + fi, d = 3.
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These representations can be validated by direct insertion of the formulae for
fn into the corresponding LRFs.

The following proposition shows the relationship between the difference di-
mension and the L-rank of time series FN .
Proposition 5.4 Let1 < L < N ,K = N − L+ 1 andd ≤ min(L,K).
1. If fdim(FN ) ≤ d, thenrankL(FN ) ≤ d. Additionally, if theL-lagged vectors

X
(L)
1 , . . . , X

(L)
d are linearly independent, thenrankL(FN ) = d.

2. If fdim(FN ) ≤ d and the vectorsX(d)1 , . . . , X
(d)
d are linearly independent,

then fdim(FN ) = d. In this case, the LRF (5.11) is the unique minimal LRF
governing the seriesFN .

Proof.
1. The equalities (5.11) can be rewritten in the form

X
(L)
j =

d∑
k=1

akX
(L)
j−k , d+ 1 ≤ j ≤ K.

Thus, all the vectorsX(L)j are linear combinations of the vectorsX(L)1 , . . . , X
(L)
d ,

which yields the inequality rankL(FN ) ≤ d. In the case when these vectors are
linearly independent, the last inequality becomes an equality.
2. Assume that fdim(FN ) = d0 < d. Then the first statement implies the inequ-
ality rankd(FN ) ≤ d0. On the other hand, rankd(FN ) = d in view of the linear
independence of the vectors X(d)1 , . . . , X

(d)
d . The uniqueness of the representa-

tion (5.11) is a consequence of the uniqueness of the representation of the vector
X
(d)
d+1 as a linear combination of the X(d)1 , . . . , X

(d)
d . ✷

Remark 5.3 Proposition 5.4 implies that the LRFs of Example 5.4 are minimal.
Proposition 5.4 shows that any sequence governed by the LRF (5.11) is also a

series of finite rank. It is easy to construct an example showing that the converse
statement is false.

Example 5.5 Counterexample
Let fn = 1 for 0 ≤ n ≤ N − 2 and fN−1 = 2. It is clear that rankL(FN ) = 2
for 2 ≤ L ≤ N − 1. At the same time, for d < N − 1 the equalities (5.11) cannot
be satisfied for any set of coefficients ak.

The following theorem (see Buchstaber, 1994) makes the situation clearer and
also plays an important role in the problem of series continuation. This theorem
implies that any (finite) series of L-rank d < L is governed by an LRF of dimen-
sion not larger than d with, perhaps, an exception made for the first few and last
few terms of the series.

Consider the series FN and denote by Fi,j (1 ≤ i ≤ j ≤ N) the series con-
sisting of fi−1, . . . , fj−1. In the case i = 1 we shall write Fj instead of F1,j . As

before we set X(L)i = (fi−1, . . . , fi+L−2)T.
We set ei = (0, . . . , 1, . . . , 0)T ∈ IRL for the vector all of whose components

are zero except for the ith one which is equal to 1.
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Theorem 5.1 Let 1 ≤ rankL(FN ) = d < L. Then there are integersd0 andM
such that0 ≤ d0 ≤ d, 0 ≤M ≤ d− d0 andfdim(FM+1,M+K+d0) = d0.

Proof.
Let Ld be the L-trajectory space of the series FN . Denote by L⊥

d the orthogonal
complement of this space, and byMi (0 ≤ i ≤ L) the linear vector space spanned

by the vectors e1, . . . , ei. Set Ni =Mi ∩ L⊥
d . Obviously, s

def= dimL⊥
d = L− d

and NL = L⊥
d . For ∆i

def= dimNi we have

0 = ∆0 ≤ ∆1 ≤ . . . ≤ ∆L = s

with ∆i+1 −∆i ∈ {0, 1}.
We define ni = min{k : ∆k = i} for 1 ≤ i ≤ L− d, set r = n1 and observe

that r ≤ d+1. (This follows from the fact that the maximal value of r corresponds
to the equalities ∆L = s,∆L−1 = s− 1, . . . ,∆L−s = 0.)

Consider first the case r = 1, that is e1 ∈ L⊥
d . Then (X(L)m , e1) = 0 for

1 ≤ m ≤ K. This corresponds to the equalities d = 1 and f0 = . . . = fK−1 = 0.
Hence fdim(F1,K) = 0, M = 0, and d0 = 0.

Now let r > 1. We set ρ = r− 1. Choose the basis Y1, . . . , Ys in the space L⊥
d

so that Yi ∈ Nni
. We can assume that Y1 has the form

Y1 = (aρ, aρ−1, . . . , a1,−1, 0, . . . , 0)T, (5.12)

and this representation of the vector Y1 is unique. Since the vector Y1 is orthogonal
to all the vectors X(L)m , it follows that

fi+ρ =
ρ∑

k=1

akfi+ρ−k (5.13)

for 0 ≤ i ≤ K − 1. We now set ρ1 = min{k ≥ 0 : aj = 0, j > k}. Obviously,
ρ1 ≤ ρ. If ρ1 = 0, then fρ = . . . = fK+ρ−1 = 0, fdim(Fρ+1,ρ+K) = 0, M = ρ
and d0 = 0.

If ρ1 > 0, then the formula (5.13) has the form

fi+ρ =
ρ1∑
k=1

akfi+ρ−k, aρ1 	= 0, (5.14)

0 ≤ i ≤ K − 1. This is the LRF of order ρ1 (i.e., d0 = ρ1) which governs the
series FM+1,M+K+d0 with M = ρ− d0. ✷

Corollary 5.1
1. If an infinite (in both directions) series

F = (. . . , f−n, . . . , f−1, f0, f1, . . . , fn, . . . )

satisfies the conditionrankL(F ) = d > 0 for someL ≥ d, thenfdim(F ) = d
andrankL0(F ) = d for anyL0 ≥ d.
2. If an infinite series

F = F∞ = (f0, . . . , fn, . . . )
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satisfies the condition rankL(F ) = d > 0 for someL ≥ d, then there exist
integers d0,M  such that0 ≤ d0 ≤ d, 0 ≤M ≤ d− d0 and

fdim(FM+1,∞) = rankL0(FM+1,∞) = d0

for anyL0 ≥ d.

Proof.
1. Let us modify the proof of Theorem 5.1 for the series F . Since the series
F is nonzero, ρ 	= 0 and ρ1 	= 0. Therefore, the equality (5.14) holds for all
i = 0,±1, . . .  Hence fdim(F ) ≤ ρ ≤ d and fdim(F ) = ρ1 ≤ d. Accord-
ing to Proposition 5.4 we have rankL(F ) ≤ ρ1. This implies that ρ1 = d and
fdim(F ) = d.

Let us turn to the second equality. First we note that the equality fdim(F ) = d
and Proposition 5.4 imply that rankL0(F ) ≤ d for any L0 ≥ d. Additionally,
the inequality rankL0(F ) < d cannot hold for L0 since otherwise the inequality
fdim(F ) < d would hold.
2. The second statement of the corollary can be proved analogously. Since the
series F is infinite, the restrictions on the end of the series cannot appear. On the
other hand, the restriction on the beginning of the series F can occur. ✷

Remark 5.4 The second statement of Corollary 5.1 corresponds to Gantmacher
(1998, Chapter XVI, Section 10, Theorem 7). The theorem asserts that an infinite
(in both directions) trajectory (Hankel) matrix of an infinite series F has rank d if
and only if (a) the series satisfies the LRF (5.11) for all i (without restrictions on
ad), and (b) it does not satisfy an analogous LRF with smaller d.

For instance, the infinite series with f0 = 0 and fn = 1, n ≥ 1, has rank 2
for any L ≥ 2. This series is governed by the LRF fi+1 = fi for i ≥ 1 (see
Corollary 5.1, item 2) and satisfies the LRF fi+2 = fi+1 + 0 · fi for i ≥ 0 (in
correspondence with Gantmacher, 1998).

Remark 5.5 The basis Y1, . . . , Ys described in the proof of Theorem 5.1 is called
a Schubert basis. We can always assume that each vector Yi has a form similar
to (5.12); i.e., the last L− ni components of the vector Yi are zeros and the nith
component is −1.

This means that each vector Yi also defines an LRF describing some subseries
of the series FN . These LRFs have, however, larger order than the LRF (5.14).
Moreover, the vectors Y2, . . . , Ys, unlike Y1, are not uniquely defined (to get the
uniqueness we can consider, for instance, the orthogonal Schubert basis).

Remark 5.6 If we make an additional assumption that eL /∈ Ld, then among the
basis vectors Y1, . . . , Ys of the space L⊥

d there should exist at least one whose last
component is not zero. According to the construction of the Schubert basis, this
can only be Ys so that Ys = (aL−1, aL−2, . . . , a1,−1)T. Since the vector Ys is
orthogonal to all the vectors X(L)m (1 ≤ m ≤ K), we have

fi+L−1 =
L−1∑
k=1

akfi+L−1−k, 0 ≤ i ≤ K − 1. (5.15)
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We have thus arrived at an LRF of dimension smaller than or equal to L − 1.
This LRF governs the series FN with the exception, possibly, of its beginning. If
aL−1 	= 0, then the whole series FN is governed by the LRF (5.15).

As was already mentioned, the LRF (5.15) is not uniquely defined since the
Schubert basis is not unique. Let us give one of the variants of this LRF derived
from totally different considerations (see Danilov, 1997a, 1997b).

For any vector X ∈ IRL we shall denote by X� ∈ IRL−1 the vector consist-
ing of the first L − 1 components of the vector X . Denote by P1, . . . , Pd some
orthonormal basis of the trajectory space Ld and consider the linear vector space
L�
d spanned by P�

1 , . . . , P
�
d . Denote by πi the last component of the vector Pi.

Assuming that eL /∈ Ld, we obtain the inequality ν2
def= π21 + . . . + π2d < 1.

It is natural to call the quantity ν2 the verticality coefficientof the space Ld. Note
that the verticality coefficient is equal to the squared cosine of the angle between
eL and the space Ld, and therefore this coefficient does not depend on the choice
of the basis in this space. Set

R =
1

1− ν2
d∑

i=1

πiP
�
i , R = (aL−1, . . . , a1)T. (5.16)

Theorem 5.2 Let 1 ≤ rankL(FN ) = d < L andeL /∈ Ld. Then(5.15) holds,
where the coefficientsak are defined in(5.16).

Proof.
The proof will be given in three steps.
1. Let us demonstrate that for any vector V ∈ L�

d there exists a vector Y ∈ Ld

such that Y � = V , and, moreover, the condition eL /∈ Ld implies the uniqueness
of this vector.

Indeed, since the vectors P�
1 , . . . , P

�
d span the space L�

d , we have

V = h1P
�
1 + . . .+ hdP

�
d .

Also, the vectors P1, . . . , Pd form a basis of the space Ld, and therefore the vector
Y = h1P1 + . . . + hdPd belongs to Ld. Since Y � = V , the existence is proved.
Let Y1, Y2 ∈ Ld and Y �

1 = Y �
2 = V . Then the difference Y1 − Y2 obviously

belongs to Ld and is proportional to eL. Therefore, if Y1 	= Y2, then eL ∈ Ld.
2. Let us now prove that the last component y = yL of the vector Y has the form
RTV . Let V = (x1, . . . , xL−1)T. Then there exist numbers hk such that

(x1, x2, . . . , xL−1, 0)T + y eL =
d∑

k=1

hk Pk. (5.17)

Taking the inner product of both sides of (5.17) and Pk, we obtain

hk =
(
P�
k , V

)
+ y πk, k = 1, . . . , d . (5.18)
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On the other hand, taking the inner product of (5.17) and eL and using (5.18),
we have

y =
d∑

k=1

hk πk =
d∑

k=1

(
P�
k , V

)
πk + y ν2,

where ν2 = π21 + . . .+ π2d < 1. Since

d∑
k=1

(
P�
k , V

)
πk =

(
d∑

k=1

P�
k πk, V

)
= (1− ν2) (R, V ) ,

we have y = yL = RTV .
3. Consider now the L-lagged vector

Xi+1 = X
(L)
i+1 = (fi, fi+1, . . . , fi+L−1)T ∈ Ld.

Clearly V
def= X�

i+1 = (fi, fi+1, . . . , fi+L−2)T ∈ L�
d . Therefore, we obtain the

i+L−1 = RTX�
i+1i+1. This defines the required LRF. ✷. This defines the required LRF. ✷

Remark 5.7 The proof of Theorem 5.2 implies that the vector Y ∈ IRL belongs
to a linear vector space L with dim L < L and eL /∈ L if and only if Y � ∈ L�

and the last component y of the vector Y has the form y = RTY �.

Consider now the vectorR from a different viewpoint. We set

Q = (1− ν2)
( −R

1

)
. (5.19)

Proposition 5.5 The vectorQ is the orthogonal projection of the vectoreL onto
L⊥
d . Moreover,||Q||2 = 1− ν2 and||R||2 = ν2/(1− ν2).

Proof.
Since ν2 = π21 + . . .+ π2d, we have

Q = eL −
(
π1P

�
1 + . . .+ πdP

�
d

π21 + . . .+ π2d

)
= eL −

d∑
i=1

πiPi.

Using the equality πi = (eL, Pi) we obtain

Q =
∑
i>d

πiPi (5.20)

and thus the first statement of the proposition is proved. The required expression
for ||Q||2 is an immediate consequence of (5.20); the expression for ||R||2 follows
from (5.19). ✷

Note that if ν2 = 1, then Q = 0L (the vector R is not defined in this case). At
the other extreme, when ν2 = 0, we have Q = eL andR = 0L−1.

Let us give some examples of series of finite rank along with the corresponding
LRFs. These examples serve to elucidate the role of the restrictions that cut off the
beginning and the end of the series from the corresponding LRF of Theorem 5.1.
The examples also illustrate Theorem 5.2.
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Example 5.6 LRF of Theorem5.1
Consider the series FN of Example 5.5 with N = 7, and assume that L = 3.
Then the L-trajectory space L2 has a basis consisting of the vectors e1 + e2 and
e3 (this implies that Theorem 5.2 is not applicable to this series). The orthog-
onal complement L⊥

2 is one-dimensional and has the basis e2 − e1. Furthermore,
dimN0 = dimN1 = 0, N2 = N3 = L⊥

2 . Thus, r = 2, ρ = d0 = 1 < d = 2 and
M = 0. Since Y1 = e1 − e2 ∈ N2, the formula (5.14) has the form fi+1 = fi
and holds for all i except for the last one.

Example 5.7 LRFs of Theorems5.1 and5.2
Let F7 = (2, 1, 1, 1, 1, 1, 1) and L = 4. Obviously, rank4(F7) = 2. The basis
of the space L2 consists of the vectors e1 and e2 + e3 + e4. The space L⊥

2 has
the basis e2 − e3, e3 − e4, which is a Schubert basis. Consider the series F7 from
the viewpoint of Theorem 5.1. In this case, dimN0 = dimN1 = dimN2 = 0,
dimN3 = 1, r = 3 and ρ = 2.

Since Y1 = e2 − e3, we have d0 = 1 and the LRF has the form fi+2 = fi+1.
This LRF holds for i = 0, . . . , 5. Therefore, we have in this case ρ = d = 2, but
the dimension of the LRF is one less (since aρ = 0); hence, M = 1. The LRF
itself is valid for all the terms of the series apart from the first one.

The vector Y2 = e3 − e4 generates the LRF fi+3 = fi+2, which governs all
the terms of the series except for the first two.

Let us check now what we can get from Theorem 5.2. In this case we can
take P1 = e1 and P2 = (e2 + e3 + e4)/

√
3. This yields π1 = 0, π2 = 1/

√
3,

P�
1 = (1, 0, 0)T and P�

2 = (0, 1, 1)T/
√
3. Since ν2 = 1/3, we immediately

obtainR = (0, 1, 1)T/2, which corresponds to the LRF fi+3 = (fi+2 + fi+1)/2
(0 ≤ i ≤ 5).

This formula holds for all the terms of the series apart from the first one. Note
that this LRF corresponds to the second vector in the Schubert basis: Y ′

2 = 0.5e1+
0.5e2 − e4 = Y2 + 0.5Y1.

If in this example we chooseL = 3, then the space L⊥
2 will become one-dimen-

sional and the LRFs of both theorems will coincide.

Example 5.8 LRFs of Theorems5.1
Consider the series F9 = (2, 1, 1, 1, 1, 1, 1, 1, 2) and the window length L = 5.
Then rank4(F9) = 3 and the basis of the space L3 = L

(5)
3 is e1, e2 + e3 + e4,

e5. Theorem 5.2 is again inapplicable. Correspondingly, dimL⊥
3 = 2 and the

Schubert basis of L⊥
3 can be chosen as e2 − e3, e3 − e4. It is easy to see that

dimN1 = dimN2 = 0, dimN3 = 1, and dimN4 = 2. Consequently, r = n1 =
3, n2 = 4, and ρ = 2.

We have Y1 = e2−e3 and Y2 = e3−e4. Therefore, either of the two equalities
(Xi, Y1) = 0 and (Xi, Y2) = 0, which hold for 0 ≤ i ≤ 4, generates the LRFs
fi+2 = fi+1 and fi+3 = fi+2 of dimension 1. We thus again have d0 = 1. The
first of these LRFs describes the terms fi with 1 ≤ i ≤ 7 (M = 1); the second
one describes the terms with 2 ≤ i ≤ 8. Together these two LRFs describe the
whole series, with the exception of the first and the last terms.
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Example 5.9 LRFs of Theorems5.1 and5.2
Consider the series F7 = (1, 1, 1, 2, 1, 1, 1) and let the window length be L = 5.
It is easy to see that in this case d = rankL(F7) = 3, which coincides with
K = N −L+ 1. The space L ⊥3 has the basis e1 − e5, −4e1 + e2 + e3 + e4, and
thus Y1 = 4e1 − e2 − e3 − e4. Therefore, the LRF (5.14) of dimension d0 = 3
has the form fi+3 = −fi+2 − fi+1 + 4fi. It holds for 0 ≤ i ≤ 2 and does not
hold for i = 3.

It is easy to construct the LRF (5.15), (5.16) using Proposition 5.5. Simple
calculations giveR = (3, 4, 4, 4)/19. The resulting formula of dimension 4 holds
for 0 ≤ i ≤ 2; i.e., it describes the whole series F7.

Theorem 5.1 together with Corollary 5.1 (as well as Theorem 5.2) show that,
despite the fact that the notions of a series of finite rank and of finite dimension
are not generally equivalent, there is a close link between them. In this respect,
the series governed by the LRFs are of particular importance since they possess
analytic descriptions. Let us formulate the corresponding statement (the proof can
be found, for instance, in Gelfond, 1967, Chapter V, §4).

Let the series F = (f0, . . . , fn, . . .) be governed by the LRF (5.11) with ad 	= 0
and i ≥ 0. Consider the characteristic polynomial of the LRF (5.11):

Pd(λ) = λd −
d∑

k=1

akλ
d−k

and denote by km (1 ≤ m ≤ p) the multiplicities of its different roots λ1, . . . , λp
(k1 + . . .+ kp = d). Set

fn(m, j) = njλnm, 1 ≤ m ≤ p, 0 ≤ j ≤ km − 1.

Note that since ad 	= 0, all the roots λm are different from zero.

Theorem 5.3 A real-valued seriesF satisfies the LRF(5.11) if and only if

fn =
p∑

m=1

km−1∑
j=0

cmjfn(m, j) (5.21)

with (complex) coefficientscmj determined by the firstd terms of the series,
f0, . . . , fd−1.

Remark 5.8 If the root λm is real, then its input into the sum (5.21) has the form
of a polynomial in n, multiplied by λnm. Moreover, the corresponding coefficients
cmj are real.

If the root λm is complex, then the polynomial has also a complex conjugate
root λl of the same multiplicity. (Note that the coefficients ak are real.) Rewriting
one of these roots as eαei2πω with ω ∈ (0, 1/2), we get that the joint input of
both roots into the sum (5.21) has the form of a polynomial in n multiplied by the
term eαn cos(2πωn + φ). Moreover, in this case the corresponding coefficients
cmj and clj are conjugate complex numbers.
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In both cases, if the multiplicity of the root λm is 1, then the polynomial in n
becomes a constant. Therefore, any infinite series satisfying LRF (5.11) for any i
is necessarily a sum of products of polynomial, exponential and harmonic series.
This is in total agreement with Remark 5.2.

Example 5.10 LRFs of dimension 1 and 2
Let us consider the case d = 1 and d = 2 in detail. If d = 1, then the linear
recurrent formula is fn = afn−1, a 	= 0, and the unique (up to a nonzero con-
stant A) time series F satisfying this equation is fn = Aan. This corresponds
to the constant (a = 1), saw-tooth (a = −1), exponential (a > 0, a 	= 1) and
exponential–saw-tooth (a < 0, a 	= −1) series.

For d = 2 we have to consider the polynomial Pd(λ) = λ2 − a1λ− a2 and its
roots λ1, λ2 under the assumption a2 	= 0.

If these roots coincide, then they are real, and the series has the form

fn = A1λ
n +A2nλ

n, λ = λ1 = λ2.

Note that if F is a linear series, then λ1 = λ2 = 1. Two different real roots λ1
and λ2 generate a sum of two different power series:

fn = A1λ
n
1 +A2λ

n
2 .

At the same time, two different (and conjugate) complex roots λ1 = eα+i2πω ,
λ2 = eα−i2πω with α ∈ IR and 0 < ω < 1/2, generate a series of the form

fn = Aeαn cos(2πωn+ φ),

where A and φ are arbitrary constants, providing that the series is not a zero one.
Note that a pure harmonic solution appears if |λ1| = |λ2| = 1.

Assume now that Ld ⊂ IRL is some linear space of dimension d < L and
eL /∈ Ld. Let us pose the question: ‘Does there exist a nonzero series such that its
L-lagged vectors belong to Ld?’ The following statement shows that for d < L−1
the answer to this question is typically negative.

Let us define the space Ld in terms of the set of L− d linear equations:

xL + cj1xL−1 + . . .+ cj,L−2x2 + cj,L−1x1 = 0 (5.22)

(1 ≤ j ≤ L−d), where the vectors (cj,L−1, . . . , cj1, 1)T are linearly independent
(this is possible in view of the assumption eL /∈ Ld).

Proposition 5.6 There exists an infinite nonzero seriesΦ = (ϕ0, . . . , ϕn, . . . )
such that itsL-lagged vectors belong toLd if and only if the polynomials

Pj(λ) = λL−1 + cj1λ
L−2 + . . .+ cj,L−2λ+ cj,L−1 (5.23)

(j = 1, . . . , L− d) have at least one common root.

Proof.
If the L-lagged vectors of the series Φ belong to Ld, then this series satisfies L−d
linear recurrent formulae

ϕn = aj1ϕn−1 + . . .+ aj,L−2ϕn−L+1 + aj,L−1ϕn−L, n ≥ L, (5.24)

Copyright © 2001 CRC Press, LLC



where ajk = −cjk. According to Theorem 5.3 the form of the series satisfying
(5.24) is fully determined by the roots of the polynomial (5.23). If all the roots are
different (this case is the most important in practice), then

ϕn = b1jλ
n
1j + . . .+ bLjλ

n
Lj ,

where the λkj are the roots of the polynomial (5.23). This immediately implies
the statement of the proposition for the case when all the roots are different. The
case of multiple roots is analogous. ✷

Corollary 5.2 Letd = L− 1 andeL /∈ Ld. Then the LRF

ϕn = a11ϕn−1 + . . .+ a1,L−2ϕn−L+1 + a1,L−1ϕn−L, n ≥ L,

with a1k = −c1k generates all series whoseL-lagged vectors belong toLd.

5.3 Time series continuation

Let FN = (f0, . . . , fN−1) and d ≤ min(L,K), K = N − L + 1. Assume that
rankL(FN ) = d, and denote by Ld = L(L)(FN ) the corresponding d-dimen-
sional L-trajectory space.

We shall say that the series FN is continuable inLd (or simply L-continuable)
if there is a unique number f̃N such that all the L-dimensional lagged vectors
of the series F̃N+1 = (f0, . . . , fN−1, f̃N ) still belong to the space Ld. In this
case, the series F̃N+1 (and also the number f̃N ) will be called the one–step L-
continuationof the series FN .

Note that the condition eL /∈ Ld is necessary for L-continuability of a time se-
ries. Indeed, if eL ∈ Ld, then the series FN is not L-continuable since, otherwise,
the uniqueness of the continuation would be violated. In particular, if we have
rankL(FN ) = L, then the series FN is not L-continuable.

On the other hand, if there are two different numbers f̃N such that the L-
dimensional lagged vectors of the series F̃N+1 = (f0, . . . , fN−1, f̃N ) belong to
Ld, then eL ∈ Ld. This means that the condition eL /∈ Ld provides the uniqueness
of the L-continuation.

The following theorem gives sufficient conditions for L-continuability in terms
of the LRF. Moreover, it shows the close link between series that admit an L-
continuation and series that satisfy linear recurrent formulae.

Theorem 5.4
1. If the seriesFN is governed by some LRF

fi+d0 =
d0∑
k=1

akfi+d0−k, 0 ≤ i ≤ N − d0 − 1, (5.25)

with d0 ≤ min(K,L − 1), then it isL-continuable and itsL-continuation is
achieved by the same LRF(5.25).
2. We setL∗ = min(L,K). If d = rankL∗(FN ) < L∗ and eL∗ /∈ L(L

∗)(FN ),
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then the seriesFN is bothL-continuable andK-continuable. These continuations
coincide and can be achieved by some LRF of dimensionL∗ − 1 or smaller.

Proof.
1. We set

f̃N =
d0∑
k=1

akfN−k, X̃K+1 = (fK , . . . , f̃N )T.

Since d0 ≤ K,

X̃K+1 =
d0∑
k=1

akXK+1−k

and therefore X̃K+1∈ Ld. The inequality d0<L implies the condition eL /∈ Ld.
2. Let us consider the trajectory space L(L

∗)(FN ). Since its dimension d is smaller
than L∗ and eL∗ /∈ L(L

∗)(FN ), we obtain (see Theorem 5.2) that the series FN

satisfies an LRF of dimension not exceeding L∗ − 1 < min(L,K). The rest of
the proof is similar to the proof of the first assertion of the theorem. ✷

Remark 5.9
1. If FN satisfies the LRF (5.25) and d0 < min(L,K), then FN admits both an L-
continuation and a K-continuation. The results of these continuations coincide.
2. We see that (under the assumptions of Theorem 5.4) if the series FN is L-
continuable, then so is the series F̃N+1. Therefore, under these assumptions any
L-continuable series FN of L-rank d can be uniquely continued to an infinite se-
ries F̃ of the same L-rank.
3. By definition, L-continuabity of the series FN implies the possibility of con-
tinuing the series to the right. Analogously, we can define L-continuability of the
series FN to the left. If d < L∗ = min(L,K), then a necessary and sufficient
condition for this is e1 /∈ L(L

∗)(FN ).

Example 5.11 Right and left continuation
Among the series of Examples 5.6-5.8, only the series of Example 5.7 is continu-
able to the right (with all the continued values equal to 1). At the same time, the
series of Example 5.6 is continuable to the left, and the series of Example 5.8
cannot be continued either to the right or to the left.

Example 5.12 Counterexample
The series of Example 5.9 has L-rank 3 for L = 5, with e5 /∈ L3. However, it
is not L-continuable. Indeed, the condition of orthogonality of the vector X̃3 =
(2, 1, 1, 1, f̃7)T to the basis vectors e1− e5, −4e1+ e2+ e3+ e4 of the space L⊥

3

leads to contradiction. The conditions of Theorem 5.4 (second assertion) are not
satisfied since d = K.

Despite the fact that in the definition of L-continuability of a series FN of L-
rank d all the terms of this series are formally present, the continued value f̃N is
determined (under the fulfillment of the conditions eL /∈ Ld and d < L ≤ K)
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only by the last L-lagged vector XK . More precisely, the lagged vector X̃K+1 of
the L-continued series F̃N+1 is

X̃K+1 = DLXK , (5.26)

where

DL =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 aL−1 aL−2 . . . a1

 (5.27)

and the vectorR=(aL−1, . . . , a1) is defined in (5.16). By definition, X̃K+1∈ Ld.
We also have that the vector X̃�

K+1 consisting of the first L − 1 components of

the vector X̃K+1 coincides with the vector (XK)� consisting of the last L − 1
components of the vector XK .

Consider now a vector X ∈ Ld, still assuming that eL /∈ Ld. Let us state the
problem of finding the vector Y ∈ Ld such that the distance between the vectors
X� and Y � is minimal. Such a problem arises in forecasting (continuing) a series
by the Vector SSA forecasting method discussed in Section 2.3.1.

According to Remark 5.7, Y = DLX if and only if X� ∈ L�
d , where the space

L�
d consists of all the vectors Z� with Z ∈ Ld. In this case, Y � = X�, and

the last component y of the vector Y has the form y = (R,X�). In the general
case, the problem stated above has the following solution, which does not require
a special proof.

Proposition 5.7 Denote byΠ the operator corresponding to the orthogonal pro-
jectionIRL−1 "→ L�

d . ThenY � = ΠX� andy = (R, Y �).

As discussed above, if eL /∈ Ld, d < min(L,K) and X = XK is the last
column of the L-trajectory matrix of the series FN , then the vector X� belongs
to L�

d and ΠX� = X�. Therefore, Proposition 5.7 essentially describes a contin-
uation of the series FN with the help of the formulae (5.26) and (5.27). Note that
for d = L − 1 the operator Π is the identity operator (the equality ΠX� = X�
holds for any X).

Proposition 5.8 Letd = L−1, eL /∈ LL−1 andX ∈ LL−1. ThenDLX ∈ LL−1.

Proof.
Let us represent the hyperplane LL−1 in the form

LL−1 = {Z ∈ IRL such that (A,Z) = 0}.
Since eL /∈ LL−1 and the vector A ∈ IRL is orthogonal to LL−1, the vector
A coincides (up to a multiplier) with the vector Q defined in (5.19). The last
component z of the vector X can be expressed in terms of the linear combination
of the other components: z = (R,X�).
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Moreover, we have in this case that L �L−1 = IRL−1. (Indeed, any vector in
IRL−1 always uniquely determines the point in the hyperplane in IRL, unless this
hyperplane is vertical.) This completes the proof. ✷

Remark 5.10 Proposition 5.7 shows that any time series FN with rankL(FN ) =
L− 1 and eL /∈ LL−1 admits an L-continuation.

Let us discuss now the properties of the operator Π. Let P1, . . . , Pd be an
orthonormal basis of the space Ld. We set V� = [P�

1 : . . . : P�
d ] and W =

(π1, . . . , πd)T, where πi is the last component of the vector Pi. As above, let
ν2 = π21 + . . .+ π2d. Also, we introduce the matrix A = (V�)TV�.

Proposition 5.9 If eL /∈ Ld then we have the following.
1. The matrixΠ of the linear projection operator Π has the form

Π = V�(V�)T + (1− ν2)RRT. (5.28)

2. In the notation of Proposition5.7 we have the equalitiesy = RTX� and

Y � = ΠX� = V�(V�)TX� + y(1− ν2)R.
Proof.
1. Let us first prove that the matrix A has the inverse:

A−1 = Id +
1

1− ν2 W WT, (5.29)

where Id is the identity d × d matrix. Indeed, let V be a matrix with columns
P1, . . . , Pd. Obviously, VTV = Id. On the other hand,

VTV = A+WWT,

and thus A = Id −WWT. Since WTW = ν2 < 1, we have(
Id −WWT

)(
Id +

1
1− ν2 WWT

)
=

= Id − 1
1− ν2

(
ν2WWT −WWTWWT

)
= Id. (5.30)

Since both matrices on the left side of (5.30) are symmetric, the proof of the
existence of the inverse to A is complete. This also implies that the vectors P�

i

(1 ≤ i ≤ d) are linearly independent.
The vectors P�

1 , . . . , P
�
d constitute a basis of the space L �d . This yields that Π

has the form

Π = V�A−1(V�)T = V�(V�)T +
1

1− ν2V
�WWT(V�)T.

Using the equality R = V�W/(1 − ν2), see (5.16), we immediately obtain the
required result.
2. Taking into account the equality ||R||2 = ν2/(1− ν2), see (5.28) and Proposi-
tion 5.5, we obtain

RTΠX� = RTV�(V�)TX� + (1− ν2)RTRRTX�
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=
1

1− ν2W
TA(V�)TX� + ν2RTX� =

=
1

1− ν2
(
WT(V�)TX� −WTWWT(V�)TX�

)
+ ν2RTX�

= RTX� − ν2RTX� + ν2RTX� = RTX�.

Using (5.28) we obtain the second statement of the proposition. ✷
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CHAPTER 6

SVD of trajectory matrices

This chapter contains a rigorous mathematical description of four topics used
throughout Part 1 of this book: weak separability of time series, Hankelization
of matrices, centring in SSA, and specifics of SSA for deterministic stationary
sequences.

6.1 Mathematics of separability

The concept of separability is central in the SSA considerations. This concept was
thoroughly discussed in Section 1.5 from the standpoints of methodology and
practical implementation; here we mainly restrict ourselves to strict definitions
and analytical examples.

6.1.1 Definition and examples

Let F (1)N and F (2)N be time series of length N and FN = F
(1)
N + F

(2)
N . Under the

choice of window length L, each of the series F (1)N , F (2)N and FN generates an
L-trajectory matrix: X(1), X(2) and X.

Denote by L(L,1) and L(L,2) the linear spaces spanned by the columns of the
trajectory matrices X(1) and X(2). Similar notation L(K,1) and L(K,2) will be
used for the spaces spanned by the columns of the transposed matrices (X(1))T

and (X(2))T, K = N − L+ 1.

If L(L,1) ⊥ L(L,2) and L(K,1) ⊥ L(K,2), then we say that the series F (1)N and

F
(2)
N are weaklyL-separable.
For brevity, we shall use the term ‘separability’ instead of ‘weakL-separability’

in cases when no ambiguity occur.
Let us elucidate the last definition. Suppose that the series F (1)N and F (2)N are

L-separable. Consider certain SVDs of the trajectory matrices X(1) and X(2):

X(1) =
∑
k

√
λ1k U1kV

T
1k, X(2) =

∑
k

√
λ2k U2kV

T
2k.

Then

X = X(1) +X(2) =
∑
k

√
λ1k U1kV

T
1k +

∑
m

√
λ2m U2mV

T
2m. (6.1)
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Proposition 4.2 of Section 4.1 tells us that (6.1) is an SVD of the matrix X.
Thus, the representation FN = F

(1)
N + F

(2)
N is natural from the viewpoint of the

SVD of the matrix X.
If F (1)N and F (2)N are weakly L-separable and λ1k 	= λ2m for all k and m, then

we say that g1 and g2 are stronglyL-separable. The difference between separa-
bility and strong separability can be expressed as follows. If separability occurs,
then an SVD of the matrix X exists such that we can group its terms in a proper
way and obtain F (1)N and F (2)N in terms of their trajectory matrices X(1) and X(2).
In the case of strong separability, we can obtain F (1)N and F (2)N for any SVD of the
trajectory matrix X. In this section we study features of weak separability.

Remark 6.1 Suppose that nonzero series F (1)N and F (2)N are weakly L-separable.
Denote by d1, d2 the ranks of the trajectory matrices X(1) and X(2). Since

d1 + d2 = rankX ≤ L,

both d1 and d2 do not exceed L−1. Therefore, the time series F (1)N and F (2)N have
L-ranks smaller than L and can be studied by the methods of Chapter 5.

In particular, Theorem 5.2 shows that if the vector eL = (0, 0, . . . , 1)T does
not belong to the L-trajectory space of the series FN , then both F (1)N and F (2)N

satisfy certain LRFs of dimension L− 1.

We set F (1)N = (f (1)0 , . . . , f
(1)
N−1) and F (2)N = (f (2)0 , . . . , f

(2)
N−1).

Proposition 6.1 Let K = N − L + 1. Time seriesF (1)N andF (2)N are weakly
L-separable if and only if
1. for any0 ≤ k,m < K − 1

f
(1)
k f (2)m = f

(1)
k+Lf

(2)
m+L; (6.2)

2. for any0 ≤ m ≤ K − 1

f (1)m f
(2)
0 + . . .+ f

(1)
m+L−1f

(2)
L−1 = 0; (6.3)

3. for any0 ≤ k,m < L− 1

f
(1)
k f (2)m = f

(1)
k+Kf

(2)
m+K ; (6.4)

4. for any0 ≤ m ≤ L− 1

f (1)m f
(2)
0 + . . .+ f

(1)
m+K−1f

(2)
K−1 = 0. (6.5)

Proof.
By definition, weak L-separability is equivalent to the matrix equalities

(X(1))TX(2) = 0KK and X(1)(X(2))T = 0LL. (6.6)

Taking the first equality in (6.6) we obtain the condition

f
(1)
k f (2)m + . . .+ f

(1)
k+L−1f

(2)
m+L−1 = 0, 0 ≤ k,m ≤ K − 1,
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which is equivalent to (6.2), (6.3). The second equality in (6.6) is equivalent to
(6.4), (6.5). ✷

Let us consider several examples of separation taking some simple test series
F
(1)
N and finding conditions for their separation from some nonzero series F (2)N =

(f (2)0 , . . . , f
(2)
N−1).

Example 6.1 Separation of a nonzero constant
Consider the constant series F (1)N with f (1)n ≡ c 	= 0, 0 ≤ n ≤ N −1. In this case
the conditions for separability are rather simple. Equalities (6.2) and (6.4) show
that the series FN have both periods L and K. Therefore, there exists an integer
M such that L/M and (N +1)/M are integers and the series F (2)N has period M .
Equalities (6.3) and (6.5) imply

f
(2)
0 + . . .+ f

(2)
M−1 = 0.

For example, if f (2)n = cos(2πn/T ), where T and (N + 1)/T are integers, then
the choice L = kT < N with k an integer implies separability.

Example 6.2 Separation of an exponential series
Proposition 6.1 implies that the conditions for separability of the exponential se-
ries f (1)n = eαn from a series F (2)N are exactly the same as the conditions for sepa-

rability of the constant series f̃1n ≡ c = 1 from a series F̃ (2)N with f̃ (2)n = eαnf
(2)
n .

Therefore, the exponential series is separable from a nonzero series F (2)N if and
only if there exists integer T > 1 such that L/T and (N + 1)/T are integers, T
is a period of the series eαnf (2)n , and

T−1∑
m=0

eαmf (2)m = 0.

For example, if (N+1)/L is an integer, then the choice of window length L leads
to separation of the series f (1)n = eαn and f (2)n = e−αn cos(2πn/L).

Example 6.3 Separation of a harmonic series
Here we deal with the series f (1)n = cos(2πωn+ φ) assuming that 0 < ω < 1/2
and L,K > 2. We set T = 1/ω. The equality (6.2) leads to two equalities:

cos(2πωL) f (2)m+L = f (2)m , sin(2πωL) f (2)m+L = 0,

0 ≤ m < K − 1. Since F (2)N is a nonzero series, it follows that 2L/T is an
integer. Therefore, two general situations can occur: if L/T is an integer, then the
series F (2)N has period L; if L/T is not an integer but 2L/T is an integer, then

f
(2)
m+L = −f (2)m . In the same manner, (6.4) implies that 2K/T is an integer and

similar situation holds with K substituted for L.
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The equalities (6.3) and (6.5) yield a pair of conditions:

L−1∑
k=0

ei2πωkf
(2)
k = 0,

K−1∑
k=0

ei2πωkf
(2)
k = 0,

where i2 = −1.
Let us give a typical example of separation. For an integer T1 consider f (2)n =

cos(2πn/T1) assuming that L/T , L/T1, K/T and K/T1 are integers. Then F (1)N

and F (2)N are separable.

Example 6.4 Separation of an exponential-cosine series
Assume that f (1)n = eαn cos (2πωn+ φ). It can be easily seen that the conditions
for separability of this series from a nonzero series FN coincide with the con-
ditions for separability of the harmonic series f̃ (1)n = cos(2πωn + φ) from the
series F̃ (2)N with f̃ (2)n = eαnf

(2)
n .

Example 6.5 Separation of a linear series
Let f (1)n = an+ b with a 	= 0. Then (6.2) has the form

ak f (2)m + bf (2)m = ak f
(2)
m+L + (aL+ b)f (2)m+L, a 	= 0,

and since 0 ≤ k < K − 1 we have f (2)m = f
(2)
m+L and bf (2)m = (aL + b)f (2)m+L.

Therefore, f (2)m = 0 for 0 ≤ m ≤ N−1. As a result, a nonconstant linear series is
not separable from any nonzero series. A similar result holds for the polynomials
of higher order.

6.1.2 Approximate and asymptotic separability

For a fixed window length L, the definition of weak separability of series F (1)N

and F (2)N is formulated in terms of orthogonality for their subseries. This leads to
the natural concept of approximate separabilityof two time series. For any series
FN = (f0, . . . , fN−1) we set

Fi,j = (fi−1, . . . , fj−1), 1 ≤ i ≤ j < N.

Let F (1)N = (f (1)0 , . . . , f
(1)
N−1), F

(2)
N = (f (2)0 , . . . , f

(2)
N−1). For i, j ≥ 1 and

M ≤ N − 1−max(i, j) we set

ρ
(M)
i,j =

(
F
(1)
i,i+M−1, F

(2)
j,j+M−1

)
||F (1)i,i+M−1|| ||F (2)j,j+M−1||

(6.7)

under the assumption that the denominator is positive.
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The notation ( · , · ) stands for the usual inner product of Euclidean vectors and
|| · || is the Euclidean norm. If the denominator in (6.7) is equal to zero, then we
assume that ρ(M)i,j = 0.

The number ρ(M)i,j has the sense of the cosine of the angle between the vectors

F
(1)
i,i+M−1 and F (2)j,j+M−1. Using the statistical terminology, we can call ρ(M)i,j the

correlation coefficientbetween F (1)i,i+M−1 and F (2)j,j+M−1.

Time series F (1)N , F
(2)
N are (weakly) ε-separable for the window lengthL if

ρ(L,K) def= max
(

max
1≤i,j≤K

|ρ(L)i,j )|, max
1≤i,j≤L

|ρ(K)i,j )|
)
< ε, (6.8)

K = N − L+ 1.
If the number ε is small, then the series are approximately separable. Of course,

if separable time series F (1)N and F
(2)
N are slightly perturbed, they become ε-

separable with some small ε. Suppose that the parameters L and N provide weak
separability of the series F (1)N , F

(2)
N . Then another way from separability to ap-

proximate separability is in a small perturbation of the parameters L and N .
The concept of approximate separability has its asymptotic variant. Consider

infinite time series F (1) = (f (1)0 , . . . , f
(1)
n , . . . ) and F (2) = (f (2)0 , . . . , f

(2)
n , . . . ).

For each N > 2 let the series F (1)N and F
(2)
N consist of the first N terms of

the series F (1) and F (2), respectively. Choosing a sequence of window lengths
1 < L = L(N) < N , we obtain the related sequence of the maximum correlation
coefficientsρN = ρ(L,K) defined by (6.8).

If there exists a sequence L = L(N) such that ρN → 0 as N → ∞, then the
time series F (1) and F (2) are called asymptotically separable. If F (1) and F (2)

are asymptotically separable for any choice of L such that L→∞ and K →∞,
then they are called regularly asymptotically separable. Conditions for regular
asymptotic separability can be written as follows:

ρ(N1, N2)
def= max

i,j<N1

∣∣∣∣∣
N2−1∑
k=0

f
(1)
i+kf

(2)
j+k

∣∣∣∣∣√√√√N2−1∑
k=0

(
f
(1)
i+k

)2√√√√N2−1∑
k=0

(
f
(2)
j+k

)2 −→
N1,N2→∞

0. (6.9)

Now let us consider examples of asymptotic separability taking into consid-
eration the rate of convergence in (6.9). Since we will deal only with regular
separability, the term ‘regular’ will be omitted for brevity.

Example 6.6 Asymptotic separation of a constant series
1. Consider an oscillatory series of the form

f (2)n =
m∑

k=0

ck cos(2πωkn+ φk) (6.10)
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with different frequencies ωk ∈ (0, 1/2] and some phases φk ∈ [0, 2π). We as-
sume that φk 	= π/2, 3π/2 if ωk = 1/2. Then the series (6.10) is regularly asymp-
totically separable from a constant series f (1)n ≡ c 	= 0 .

Indeed, uniformly in i, j andN1, the numerator in (6.9) isO(1), while both fac-
tors in the denominator are of order N−1/2

2 . Therefore, the rate of the asymptotic
separation of the series (6.10) from a constant is 1/min(L,K).

2. The exponential series f (2)n = eαn with α 	= 0 is asymptotically separable
from a constant series.

Note that in this case the ratio in (6.9) does not depend on i or j. If α > 0, then
the numerator in (6.9) is of order eαN2 , while the denominator tends to infinity as
eαN2

√
N2, N2 →∞. If α < 0, then the numerator tends to a constant, while the

denominator is of order N1/22 . In both cases, the rate of the asymptotic separation
is 1/min(

√
L,
√
K), which is rather slow.

If |α| is close to zero, then the true order of (6.9) is (|α|N2)−1/2. Therefore, a
small α produces strong requirements on the size of L and K.

3. Consider an exponential-cosine series

f (2)n = eαn cos(2πωn+ φ), (6.11)

α 	= 0. If α > 0, then the numerator in (6.9) has the form O(eαN2), while the
denominator is equivalent to cN1/22 eαN2 . For α < 0 the numerator tends to a

constant and the denominator is of order N1/22 . Since the convergence is uniform
in i, j, the rate of the asymptotic separation is 1/min(

√
L,
√
K).

4. Any polynomial series

f (2)n =
m∑

k=0

ckn
k, cm = 1, (6.12)

is not asymptotically separable from a constant nonzero series. Indeed, in this
case for fixed i and j, both the numerator and the denominator in (6.9) is of order
Nm+1
2 as N2 →∞.

Example 6.7 Asymptotic separation of an oscillatory series
1. Consider two oscillatory sequences of the form (6.10) with disjoint sets of

frequencies. Simple calculations show that this case is similar to that of separa-
tion of a constant from an oscillatory series, and the rate of separation is also
1/min(L,K).

Note that the actual separation depends on the distance between the two sets
of frequencies. For example, if we consider two harmonic time series with fre-
quencies 0 < ω1 < ω2 < 1/2, then there exists a subsequence of N2 → ∞ such
that

ρ(N1, N2) ∼ C

N2(ω2 − ω1) .

In other words, if ω1 and ω2 are close to each other, then both L and K = N −
L+ 1 have to be essentially greater than 1/|ω1 − ω2|.
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2. Any polynomial (6.12) is asymptotically separable from an oscillatory se-
ries (6.10). In this case, the numerator in (6.9) has the form O(Nm

2 ), while the
denominator is of order Nm+1

2 . Since the convergence is uniform in i and j, the
rate of separation is 1/min(L,K).

3. Consider the exponential series F (2)N with f (2)n = eαn.
In the same manner as in the case of an exponential and a constant series, for

α > 0 the numerator in (6.9) has the form O(eαN2), while the denominator is
equivalent to cN1/22 eαN2 , c > 0. If α < 0, then the correlation coefficient is of

order N−1/2
2 uniformly in i, j. The rate of separation is 1/min(

√
L,
√
K).

4. The result concerning separation of the series (6.10) from the exponential-
cosine series (6.11) is similar to the result obtained for (6.10) and the pure expo-
nential series; the rate of separation is also the same.

Example 6.8 Asymptotic separation of a polynomial

1. Any exponential series f (2)n = eαn with α 	= 0 is asymptotically separable
from a polynomial (6.12).

The order of decrease of the correlation coefficient (6.9) is O(N−1/2
2 ), since

the numerator is of order O(Nm
2 e

αN2), while the order of the denominator is
Nm+1/2eαN2 . The convergence is uniform in i and j, and the rate of asymptotic
separation is 1/min(

√
L,
√
K).

2. Two polynomials are not asymptotically separable in the sense of conver-
gence in (6.9). This case is analogous to the case of a constant and a polynomial.

Example 6.9 Asymptotic separation of an exponential series

1. Two exponential series f (1)n = eαn and f (2)n = eβn with nonzero α ≥ β are
asymptotically separable from each other in the sense of convergence (6.9) if and
only if β < 0 < α.

It can be easily seen that if α and β are either both positive or both nega-
tive, then the expression (6.9) tends to a constant depending on α and β. If
the signs of α and β are different, the order of convergence to zero in (6.9) is
O(emin(−α,β)N2), N2 →∞.

For stationary sequences (see Section 6.4) we use another definition of asymp-
totic separability. We say that two infinite time series F (1), F (2) are weakly point-
wise regularly asymptotically separableif both the window length L and K =
N − L+ 1 tend to infinity and

M−1∑
k=0

f
(1)
n+kf

(2)
m+k√

M−1∑
k=0

(
f
(1)
n+k

)2√M−1∑
k=0

(
f
(2)
m+k

)2 −→
M→∞

0 (6.13)

for any m,n ≥ 0. Evidently, (6.13) follows from (6.9).
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6.1.3 Separation of a signal from noise

According to our definition (see Section 1.4.1 for the related discussions and Sec-
tion 6.4 for the mathematical results), we consider the stationary noise series as
having a deterministic rather than random nature. Within this approach, it can be
demonstrated that, roughly speaking, any stationary signal is pointwise asymptot-
ically separable from any stationary noise (see Section 6.4.4).

However, the theory fails for nonstationary signals. We thus consider the prob-
lem of separating a signal from a random noise separately. Note that in this case
we shall deal with uniform separability of the kind (6.9) rather than with pointwise
separability defined in (6.13), though the latter is much simpler for the analysis
and more natural for deterministic stationary sequences.

Let (Ω,F ,P) be a probability space and let F (1), F (2) be two random infinite
sequences. If there exists a sequence L = L(N) such that the sequence of random
variables ρ(L,K), defined in (6.8), (6.7) tends to zero in probability as N → ∞,
then we call the random sequences F (1) and F (2) stochastically separable.

When F (1) is a nonrandom sequence (‘signal’), and F (2) is a ‘purely random’
sequence (‘noise’), it is convenient to introduce another notation.

Let F = (f0, . . . , fn, . . . ) be some nonrandom infinite time series, while Ξ =
(ξ0, . . . , ξn, . . . ) is a random sequence with zero mean. The following conditions
are sufficient for stochastic separability of a signal F from a noise Ξ.

For any δ > 0 let us introduce the random event

AL,K(δ) =
{
ω ∈ Ω : min

0≤j≤L−1
1
K

K−1∑
m=0

ξ2m+j < δ

}
and set PL,K(δ) = P(AL,K(δ)). Let

f̃i,k
def=

fi+k√√√√K−1∑
k=0

f2i+k

and

ΞL,K
def= max

i,j≤L−1

∣∣∣∣K−1/2
K−1∑
k=0

f̃i+kξj+k

∣∣∣∣.
Proposition 6.2 If there existδ > 0, L = L(N) andK = K(N) such that

max(PL,K(δ), PK,L(δ))→ 0, max(ΞL,K ,ΞK,L)→ 0

in probability asN →∞, thenF andΞ are stochastically separable.

Copyright © 2001 CRC Press, LLC



Proof.
We shall prove that there exist L,K →∞ such that

ρ
(K)
L

def= max
i,j≤L−1

∣∣∣∣K−1/2
K−1∑
k=0

fi+kξj+k

∣∣∣∣√√√√K−1∑
k=0

f2i+k

√√√√ 1
K

K−1∑
k=0

ξ2j+k

−→
L,K→∞

0

in probability, and that the analogous convergence holds for ρ(L)K . Since

P
(
ρ
(K)
L > ε

)
= P

(
ρ
(K)
L > ε,AL,K(δ)

)
+P

(
ρ
(K)
L > ε,AC

L,K(δ)
)

(6.14)

and the first term on the right side of (6.14) tends to zero as L,K →∞, we need
to check the convergence of the second term. Inequalities

P
(
ρ
(K)
L > ε,AC

L,K(δ)
)
≤ P

(
ΞL,K > ε1, A

C
L,K(δ)

)
≤ P(ΞL,K > ε1)

with ε1 = ε
√
δ lead to the convergence of ρ(K)L . The case of ρ(L)K is similar. ✷

Corollary 6.1 Any infinite time seriesF is stochastically separable from Gaus-
sian white noiseΞ if L,K →∞ andL/K → a > 0.

Proof.
We set δ = 1−∆, 0 < ∆ < 1. Applying the analogue of the Chebyshev inequality
for the fourth moment we obtain that

P

(
1
K

K−1∑
m=0

ξ2m+j < δ

)

= P

(
1
K

K−1∑
m=0

(ξ2m+j − 1) < −∆
)

= O(K−2)

uniformly in j. Then

PL,K(δ) ≤ LP

(
1
K

K−1∑
m=0

ξ2m < δ

)
= O(L/K2).

Since f̃2i,0 + . . .+ f̃2i,K−1 = 1 for any i, it follows that

G
(K)
ij

def=
K−1∑
k=0

f̃i+kξj+k ∈ N(0, 1)

with N(0, 1) standing for the normal distribution with parameters 0 and 1.
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Therefore, P
(
K−1/2|G(K)ij | > ε

)
= 2(1− Φ(K1/2ε)) and

P(|ΞL,K | > ε) ≤ 2L(1− Φ(K1/2ε)) ,

where Φ stands for the cumulative distribution function of the N(0, 1) distribution.
Since

1− Φ(x) ∼ 1√
2πx

e−x2

as x→ +∞, the assertion is proved. ✷

6.2 Hankelization

By definition, an L×K matrix X is a Hankel matrix if its elements xij coincide
on the ‘matrix diagonals’ i + j = s for any 2 ≤ s ≤ L + K. Our interest
in Hankel matrices is based on the fact that any Hankel matrix is the trajectory
matrix of some time series FN with N = K + L− 1 and vice versa.

Assume that we have some L ×K matrix Y with elements yij . Our aim is to
find a Hankel matrix Z = HY of the same dimension such that the difference
Y −Z has minimal Frobenius norm (see Section 4.2.1). The linear operatorH is
the Hankelizationoperator.

We set L∗ = min(L,K),K∗ = max(L,K) andN = L+K−1. Let y∗ij = yij
if L < K and y∗ij = yji otherwise.

The following assertion can be found in Buchstaber (1994).

Proposition 6.3 Lets = i+ j. Then the element̃yij of the matrixHY is

ỹij =



1
s− 1

s−1∑
l=1

y∗l,s−l for 2 ≤ s ≤ L∗−1 ,

1
L∗

L∗∑
l=1

y∗l,s−l for L∗ ≤ s ≤ K∗ + 1 ,

1
N − s+ 2

L∗∑
l=s−K∗

y∗l,s−l for K∗ + 2 ≤ s ≤ N + 1.

(6.15)

Proof.
By definition, a Hankel matrix Z with elements zij satisfies the conditions zij =
gs for i+ j = s and some numbers gs. Since the square of the Frobenius norm of
a matrix is the sum of squares of all its elements, we obtain

||Y − Z||2M =
∑
i,j

|yij − zij |2 =
L+K∑
s=2

∑
i+j=s

|yij − gs|2. (6.16)
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Therefore, we must find the numbers gs such that the right side of (6.16) attains
its minimum. The result is well-known:

gs =
1
ns

∑
i+j=s

yij , (6.17)

where ns stands for the number of (i, j) such that 1 ≤ i ≤ L, 1 ≤ j ≤ K and
i+j = s. Formula (6.15) is just another form of (6.17) and gives exact expressions
for the gs. ✷

Remark 6.2
1. If we fix L and K and consider the linear spaceMLK of L×K real matrices,
then the set M(H)

LK of Hankel L × K matrices is a linear subset of MLK . If we
equip MLK with the (Frobenius) inner product (4.7), then the optimal Hankel
matrix of Proposition 6.3 is the orthogonal projection of the matrix Y onto the
linear subspace M(H)

LK of Hankel matrices. Therefore, the linear operator H :
MLK "→ M(H)

LK is an orthogonal projection operator.
2. Any Hankel matrix can be represented as the trajectory matrix of some time
series FN = (f0, . . . , fN−1) withN = L+K−1. Formula (6.17) determines the
series FN with the trajectory matrix that is nearest to the matrix Y: fn = gn+2. In
terms of Section 1.1 the corresponding operator P performs diagonal averaging
of the matrix Y.

The restriction of the Frobenius inner product (4.7) from MLK to M(H)
LK de-

termines the corresponding inner product on the linear space FN of time series of
length N = K + L− 1.

Let us fix integers 1 ≤ L ≤ N and set K = N − L+ 1, L∗ = min(L,K) and
K∗ = max(L,K). For the weights

wi =


i+ 1 for 0 ≤ i < L∗,
L∗ for L∗ ≤ i < K∗,
N − i for K∗ ≤ i < N,

(6.18)

we define the inner productof series F (1)N , F
(2)
N ∈ FN as

(
F
(1)
N , F

(2)
N

)
w

def=
N−1∑
i=0

wif
(1)
i f

(2)
i (6.19)

where f (1)i and f (2)i are the terms of the series F (1)N and F (2)N .

Proposition 6.4 Let X(1) and X(2) be theL-trajectory matrices of the series
F
(1)
N andF (2)N . Then

(
F
(1)
N , F

(2)
N

)
w
=
〈
X(1),X(2)

〉
M.

Proof.
Denote by x(1)ij and x(2)ij the elements of the trajectory matrices X(1) and X(2).
Then, analogous to (6.16), we obtain〈

X(1),X(2)
〉
M =

∑
i,j

x
(1)
ij x

(2)
ij
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=
L+K∑
s=2

∑
i+j=s

f
(1)
s−2f

(2)
s−2 =

N−1∑
i=0

ni+2f
(1)
i f

(2)
i

=
(
F
(1)
N , F

(2)
N

)
w

where we have used the equality wi = ni+2. ✷

If
(
F
(1)
N , F

(2)
N

)
w
= 0, then we shall call the series F (1)N and F (2)N w-orthogonal.

Corollary 6.2 If the seriesF (1)N andF (2)N are weaklyL-separable, then they are
w-orthogonal.

Proof.
If F (1)N and F (2)N are weakly separable, then their trajectory matrices are biorthog-
onal in the sense of equalities (6.6). Therefore (see Section 4.2.1), these matrices
are orthogonal with respect to the Frobenius inner product. An application of
Proposition 6.4 now gives us the result. ✷

Remark 6.3 The w-orthogonality of the series follows from pairwise orthogo-
nality of the columns (or rows) of their L-trajectory matrices. Hence the notion
of w-orthogonality is useful not only for the SVD of the trajectory matrices but
also for certain other orthogonal decompositions (for example, for the Toeplitz
and Centring SVDs).

6.3 Centring in SSA

Some features of Centring decompositions of general matrices were discussed in
Section 4.4. The case of trajectory matrices has its own peculiarities related to the
problems of separability and special tasks of centring.

6.3.1 Single centring SSA and the constant series

Let us consider a time series FN , some window length L, and let, as usual, K =
N −L+1. As described in Section 4.4, the single centring SVD of the trajectory
matrix X of the series FN has the form

X = A1(X) +
d∑

i=1

√
λiUiV

T
i = A1(X) +

d∑
i=1

Xi (6.20)

with

A1(X) = E1(X)1TK, E1(X) =
1
K

X1K ∈ IRL, (6.21)

1K = (1, . . . , 1)T ∈ IRK , and (
√
λi, Ui, Vi) standing for the eigentriples of the

SVD of the matrix X − A1(X). Evidently, A1(X) is an elementary (unit-rank)
matrix.

Single centring is a standard transformation in principal component analysis.
It can easily be proved (see Proposition 4.8 of Section 4.4) that all the factor
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vectors Vi are orthogonal to the constant vector 1K. This property can be written
as E1(Xi) = 0L.

If we apply the decomposition (6.20) for the reconstruction of the series compo-
nent, then we can include the (first) average triple

(√
λ0(1), U0(1), V0(1)

)
defined

by

U0(1) = E1(X)/||E1(X)||, V0(1) = 1K/
√
K

and
√
λ0(1) = ||E1(X)||√K to the list of eigentriples selected for reconstruction.

Thus, the definition of weak L-separability (see Section 6.1.1) has to be slightly
modified. Indeed, let FN = F

(1)
N + F

(2)
N and X, X(1) and X(2) stand for the L-

trajectory matrices of the series FN , F
(1)
N and F (2)N . If we assume that the trajec-

tory matrix X(1) can be expressed as the sum of some terms of the decomposition
(6.20), then the term A1(X) either belongs to the set of these terms or does not.

We can now give the following natural definition. The series F (1)N and F (2)N

are weaklyL-separable under single centring if either E1(X(1)) = 0L and the
matrices X(1), X(2)−A1(X(2)) are biorthogonal, or E1(X(2)) = 0L and X(2) is
biorthogonal to X(1) −A1(X(1)).

This definition of weak separability gives rise to a new series of examples,
which are analogous to those provided in Section 6.1.1. Most of the results are
similar, and we do not discuss them here. We consider only the simplest example
of separation of a constant series where the difference from the previous case is
apparent.

(a) Separation of a constant series

A specific interest in centring in SSA is in connection with the fact that for any L
the transformation X "→ X−A1(X) transfers the trajectory matrix of a constant
time series to the zero matrix. In other words, if the series FN is a constant series,
and X stands for its trajectory matrix, then A1(X) = X.

To extract a constant series F (1)N from the sum FN = F
(1)
N +F (2)N , we need not

take into consideration the eigentriples in the SVD of the matrix X−A1(X). All
we need is to consider the average term A1(X). In view of the equality

A1(X) = A1(X(1)) +A1(X(2)) = X(1) +A1(X(2)),
the conditions for separability of the constant series F (1)N from a series F (2)N is
the equality A1(X(2)) = 0LK. This means that E1(X(2)) = 0L or, in terms of
elements f (2)n of the series F (2)N ,

f
(2)
i + . . .+ f

(2)
i+K−1 = 0, i = 0, . . . , L− 1. (6.22)

Therefore, the series F (2)N is separable from a constant with the help of the first
average triple if it has period K and its average with respect to this period is
zero. Note that these conditions are weaker than those given in Example 6.1 of
Section 6.1.1.

Copyright © 2001 CRC Press, LLC



(b) Asymptotic separation of a constant series

Now let us turn to asymptotic separability of a constant series in case of single
centring. For fixed L,K we denote by P = P(L,K) the diagonal averaging oper-
ator. It transfers any L×K matrix Y into the time series F = F (Y) by diagonal
averaging of the matrix Y (see Section 6.2). In terms of Section 1.1, if Y is the
resultant matrix, then F = PY is the corresponding reconstructed series.

Suppose F (1) is an infinite constant series, F (2) is some infinite series, and de-
note by F (1)N and F (2)N the series consisting of the first N terms of the series F (1)

and F (2). We set FN = F
(1)
N +F (2)N and denote by X(1) and X(2) the correspond-

ing trajectory matrices for some window length L. Note that A1(X(1)) = X(1)

and PA1(X(1)) = F
(1)
N .

Thus, if we reconstruct F (1)N with the help of the average triple, then (using

the linearity of the operators A1 and P) we obtain the series F (1)N +PA1(X(2)).
Therefore, the series ∆N

def= PA1(X(2)) can be regarded as an error series.
Let us assume now that N →∞ and L = L(N). Our aim is to find conditions

guaranteeing that each term δk of the error series ∆N tends to zero as N → ∞.
In this case we shall say that the constant series F (1)N is asymptotically separable

fromF
(2)
N with the help of the first average triple.

This definition corresponds to pointwise asymptotic separability of the kind
(6.13). To obtain an analogue of the asymptotic separation in the sense of (6.9),
we must require the convergence δk → 0 be uniform with respect to k.

Proposition 6.5 Assume that one of the following conditions is valid:
1. min(L,K)→∞ and

1
K

K−1∑
m=0

f
(2)
i+m −→

K→∞
0, i ≥ 0; (6.23)

2. L is bounded and(6.23) holds uniformly with respect toi.

Then the constant seriesF (1)N is asymptotically separable fromF (2)N with the help
of the first average triple.

Proof.
We demonstrate the validity of both assertions at the same time assuming for
brevity that L ≤ (N + 1)/2. By (6.15) and (6.21), we have

δk =



1
k + 1

k+1∑
i=1

yi for 0 ≤ k ≤ L−2 ,

1
L

L∑
i=1

yi for L− 1 ≤ k ≤ K − 1 ,

1
N − k

L∑
i=k−K+2

yi for K ≤ k ≤ N − 1,

(6.24)
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where yi stands for the ith component of the vector E1(X(2)). More precisely, if
we denote by f (2)n the terms of the series F (2)N , then

yi =
1
K

(
f
(2)
i−1 + . . .+ f

(2)
i+K−1

)
. (6.25)

Since K → ∞, it follows that yi → 0 for any i. Therefore, δk → 0 for
k ≤ L− 2. If yi → 0 uniformly in i, then δk → 0 uniformly in k. ✷

We observe that the conditions for asymptotic separability of a constant series
under centring differ from the related conditions in the case with no centring; see
formulae (6.9) and (6.13).

(c) Stochastic separability

Let us take a random sequence Ξ = (ξ0 . . . , ξn, . . .) with zero mean and a co-
variance function Rξ(i, j) and consider the problem of the asymptotic stochastic
separation of a constant signal F from a noise Ξ in the sum F + Ξ. For fixed
N and window length L, we denote the truncated series FN and ΞN in the same
manner as in the previous section.

Let us fix the window length L and denote by X and H the L-trajectory matri-
ces of the series FN and ΞN . Then the random process

F̂N = PA1(X+H) = FN + PA1(H)

is an unbiased estimator of the constant series FN . The general term ηk of the

process EN
def= PA1(H) is obtained by (6.24), (6.25) with the replacement of

f
(2)
i by ξi in (6.25). This process has the meaning of a (random) estimation error.

The covariance function of the process EN can easily be written. Let us restrict
ourselves to the variance of the process ηk under the assumptions N → ∞ and
L ≤ K = N − L+ 1. Evidently, Eηk = 0.

To be in accordance with (6.25), we set ζi = (ξi−1 + . . .+ ξi+K−1) /K. Then

Rζ(i, j)
def= Eζiζj =

1
K2

K−1∑
m,l=0

Rξ(i+m, j + l).

Thus,

Dηk =



1
(k + 1)2

k+1∑
i,j=1

Rζ(i, j) for 0 ≤ k ≤ L−2 ,

1
L2

L∑
i,j=1

Rζ(i, j) for L− 1 ≤ k ≤ K − 1 ,

1
(N − k)2

L∑
i,j=k−K+2

Rζ(i, j) for K ≤ k ≤ N − 1.
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Suppose now that |Rξ(k,m)| ≤ ce−β|k−m| with some positive β. Then it can
be easily checked that |Rζ(i, j)| = O(K−1) for i, j ≤ K. Thus, if K → ∞ and
L ≤ K, then

sup
0≤k≤N−1

Dηk = O(N−1)

as N →∞.

6.3.2 Double centring and linear series

The double centring version of SVD of an L × K matrix X was described in
Section 4.4.2. The decomposition has the form

X = A(12)(X) +
∑
i≥1

√
λiUiV

T
i , (6.26)

where

A(12)(X) = A1(X) +A2(X)−A1(A2(X)),

A1(X) is defined in (6.21) and the expression for A2(X) can be found in (4.33),
(4.34).

Whereas A1(X) is a matrix with equal columns E1(X) resulting from the row
centring of the matrix X, the matrix A2(X) has equal rows (E2(X))T corres-
ponding to the column centring of X.

The matrix A12(X) def= A1(A2(X)) is a matrix with the identical elements.
They are equal to the average value of all the elements of the matrix X. The sum

on the right side of (6.26) is the SVD of the matrix X′′ def= X − A(12)(X). The
decomposition (6.26) can be rewritten as

X = A1(X) +A2(X′) +
∑
i≥1

Xi (6.27)

where X′ = X−A1(X) and Xi =
√
λiUiV

T
i .

According to Section 4.4.2, all the terms on the right side of (6.27) are ele-
mentary pairwise orthogonal matrices. Both matrices A1(X) and A2(X′) can be
expressed in terms of the first and second average triples (see Section 1.7.1).

Double centring is used in multivariate statistics (Jolliffe, 1986, Chapter 12.3)
but it seems to be a little exotic there.

In SSA, the matrix X is the trajectory matrix of some time series FN . If the
decomposition (6.26) is performed, then the reconstruction is obtained in the usual
manner: after grouping the terms of the double centring decomposition (6.26), we
apply the diagonal averaging operator P to each resultant matrix and arrive at the
decomposition of the initial series FN .
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(a) Separation of a linear series

The following proposition shows that a linear time series plays the same role for
double centring as a constant series for single centring.

Proposition 6.6 If X is anL-trajectory matrix of a linear seriesFN , then

A(12)(X) = X.

Proof.
Let fn = an + b be the general term of the series FN . Then the L-trajectory
matrix X of the series FN has the elements

xij = a(i+ j − 2) + b = fi−1 + fj−1 − b,
(1 ≤ i ≤ L, 1 ≤ j ≤ K). Denote by a(12)ij the elements of the matrix A(12)(X).
Then

a
(12)
ij =

1
K

K∑
m=1

xim +
1
L

L∑
k=1

xkj − 1
LK

L∑
k=1

K∑
m=1

xkm. (6.28)

The three terms on the right side of (6.28) are equal to fi−1 + 0.5fK−1 − b/2,
fj−1 + 0.5fL−1 − b/2 and 0.5(fL−1 + fK−1), respectively. This clearly implies
the required result. ✷

We have thus arrived at the conditions for extracting a linear series with the
help of double centring. Let FN = F

(1)
N + F

(2)
N and suppose that F (1)N is a linear

time series. For a given window length L we have the following representation of
the corresponding trajectory matrices:

X = X(1) +X(2). (6.29)

Applying the linear double centring operator A(12) to (6.29) we obtain that

A(12)(X) = X(1) +A(12)(X(2)).
If the matrix Z def= A(12)(X(2)) is the zero matrix, then double centring will
separate the linear series F (1)N from the series F (2)N with the help of both average
triples.

Denote by f (2)n the terms of the series F (2)N . The condition Z = 0LK can be
rewritten in the form

1
K

K∑
m=1

f
(2)
i+m−2 +

1
L

L∑
k=1

f
(2)
k+j−2 =

1
LK

L∑
k=1

K∑
m=1

f
(2)
k+m−2, (6.30)

(1 ≤ i ≤ L, 1 ≤ j ≤ K). If we sum the equalities (6.30) over 1 ≤ j ≤ K for
fixed i, then we arrive at the equality

f
(2)
i + . . .+ f

(2)
i+K−1 = 0 (6.31)

which is valid for any 0 ≤ i ≤ L− 1. In similar fashion,

f
(2)
j + . . .+ f

(2)
j+L−1 = 0 (6.32)
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for any 0 ≤ j ≤ K − 1. The conditions (6.31) and (6.32) are the conditions
of Example 6.1 (see Section 6.1.1), where separation of a constant series from
another series was discussed.

As a result, if there existsM > 1 such thatM is a divisor of both L andN−1,
the series F (2)N has period M and

f
(2)
0 + . . .+ f

(2)
M−1 = 0,

and then double centring separates the linear series F (1)N from F
(2)
N under the

choice of the window length L and with the help of both average triples.

(b) Asymptotic separability

The concept of asymptotic extraction of a linear series under double centring is
similar to the case of single centring and a constant series.

Suppose that F (1) is an infinite linear series, F (2) is an infinite series, and
denote by F (1)N and F (2)N the series consisting of the first N terms of the series
F (1) and F (2).

We set FN = F
(1)
N + F

(2)
N and denote by X(1) and X(2) the corresponding

L-trajectory matrices for some window length L. Note that in view of Proposi-
tion 6.6, we have A(12)(X(1)) = X(1) and therefore PA(12)(X(1)) = F

(1)
N .

Thus, if we reconstruct F (1)N with the help of both average triples, then using the

linearity of the operators A(12) and P we have an error ∆(12)N
def= PA(12)(X(2)).

As before, P stands for the diagonal averaging operator.
Now let us suppose that N → ∞ and L = L(N). Our aim is to obtain condi-

tions guaranteeing that all the terms δ(12)n of the error series ∆(12)N tend to zero as
N →∞.

In view of (6.28) the element a(N)ij of the matrix A(12)(X(2)) is

a
(N)
ij =

1
K

K−1∑
m=0

f
(2)
i+m +

1
L

L−1∑
k=0

f
(2)
k+j −

1
LK

L−1∑
k=0

K−1∑
m=0

f
(2)
k+m, (6.33)

where the f (2)n are the terms of the series F (2).
Since P is a linear averaging operator, we can easily obtain δ(12)n → 0 for any

n, if min(L,K)→∞ and

1
M

M−1∑
j=0

f
(2)
i+j −→

M→∞
0

for any i (see Proposition 6.5).

(c) Stochastic separability

The conditions for separability of a linear signal from a general random noise
under double centring can be derived in the manner of Section 6.3.1. However,
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the corresponding covariance function is rather cumbersome, and we thus restrict
ourselves to the simplest (and, in a way, the main) particular case of a random
white noise series.

Suppose that we have an infinite linear series F (1) with f (1)n = an + b and a
white noise series Ξ = (ξ0, . . . , ξn, . . .). Assume that Eξn = 0, Dξn = σ2 and
Eξnξm = 0 for n 	= m.

If we cut both series at the moment of timeN −1, we then obtain a finite linear
series F (1)N and the corresponding noise series ΞN . We set FN = F

(1)
N + ΞN .

Under the choice of window length L = L(N), we obtain the L-trajectory
matrices X, X(1) and H of the series FN , F (1)N and ΞN , respectively. We then
apply double centring to the matrix X. If we select both average triples in the
double centring SSA for reconstruction, we obtain the series F̃ (1)N with f̃ (1)n =
an + b + δn, where δn can be considered as the general term of a random error
series ∆N . Evidently, Eδn = 0. Our aim is to investigate the variance of the series
δn.

To simplify all the expressions, we consider the case of odd N and L = K =
(N + 1)/2. Then it is sufficient to consider 0 ≤ n ≤ L− 1.

The series ∆N has the form

∆N = PA(12)(H) = PA1(H) + PA2(H)−PA12(H).

We set ηi = (ξi + . . . + ξi+L−1)/L. Then the matrix PA12(H) has identical
elements that are equal to (η0 + . . .+ ηL−1)/L and, since L = K, we have

PA1(H) = PA2(H).

The kth term (1 ≤ k ≤ L) of the series PA1(H) is equal to (η0+ . . .+ ηk−1)/k.
Therefore, for 0 ≤ n ≤ L− 1, the term δn of the series ∆N has the form

δn =
2

n+ 1

n∑
i=0

ηi − 1
L

L−1∑
i=0

ηi

=
2L− n− 1
(n+ 1)L

n∑
i=0

ηi − 1
L

L−1∑
i=n+1

ηi. (6.34)

It is easy to check that Eηiηj = σ2(L − |i − j|)/L2, 0 ≤ i, j ≤ L − 1. We set
τ = (n+ 1)/L. In this notation

D

(
n∑

i=0

ηi

)
= σ2τ2L

(
1− τ/3

)
+O(1), (6.35)

D

(
L−1∑

i=n+1

ηi

)
= σ2(1− τ)2L

(
1− (1− τ)/3

)
+O(1) (6.36)
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and

E

 n∑
i=0

ηi

L−1∑
j=n+1

ηj

 = 0.5σ2τ(1− τ)L+O(1). (6.37)

Since

2
n+ 1

− 1
L

=
2− τ
τL

,

we obtain from (6.34), (6.35), (6.36) and (6.37) that

Dδn =
2σ2

3L
(4− 5τ + 2τ2) +O(1/L2). (6.38)

For n > L− 1 we have to use 2− τ in place of τ in (6.38).
The result (6.38) is slightly worse than that obtained for the standard maximum

likelihood estimator. More precisely, formula (1.4.9) in Draper and Smith (1998,
Section 1.4) gives us 0.5σ2(4 − 6τ + 3τ2)/L for the order of the variance (for
n ≤ L− 1); this result should be compared with (6.38).

Nevertheless, the examples of Section 1.7.1 show that for relatively small N ,
double centring should be preferred to linear regression in the problem of extract-
ing a linear tendency from a time series.

6.4 SSA for stationary series

This section is devoted to the study of the properties of SSA applied to determin-
istic stationary sequences.

First, we describe the notion of a deterministic stationary sequence and write
the spectral representation for such a sequence. This representation is analogous
to the spectral representation for a random stationary sequence; this material is in
accordance with Brillinger (1975, Chapter 3.9).

Second, Section 6.4.2 is devoted to the classification of stationary series. With
respect to the structure of their spectral measures, these series are divided into
three classes: periodic, quasi-periodic and aperiodic (or chaotic). This division is
useful in the theory of chaotic dynamical systems (see, for example, Schuster,
1995), where the transition from periodic to quasi-periodic and then to chaotic
motion indicates an increase of the level of the system complexity.

On the other hand, the class of (Bohr) almost-periodic series and functions, con-
nected with problems of wave mechanics and thoroughly studied in the literature
(see the bibliography in Corduneanu, 1968), is a good example of deterministic
stationary sequences with a discrete spectral measure.

Third, we briefly consider the question of the asymptotic behaviour of the SVD
of Hankel matrices associated with stationary series. We discuss several results
concerning the asymptotic distribution of the eigenvalues and eigenvectors of
Toeplitz matrices (see Grenander and Szegö, 1984). These results are useful for
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SSA since they help to identify the eigentriples of series with a complex structure
and explain some phenomena discussed in Chapter 1.

The last two sections are devoted to weak separability of stationary series and
the role of periodogram analysis in their study.

6.4.1 Spectral representation of stationary series

Let us start with the following definition (see Brillinger, 1975, Chapter 3.9).

Definition 6.1 Let F = (f0, . . . , fn, . . . ) be a time series. The series F is called
stationaryif there exists a function Rf (k) (−∞ < k < +∞) such that for any
k, l ≥ 0

R
(N)
f (k, l) def=

1
N

N−1∑
m=0

fk+mfl+m −→
N→∞

Rf (k − l). (6.39)

If (6.39) is valid, then Rf is called the covariance functionof the stationary series
F .

The following proposition shows that if the limit (6.39) exists, then it depends
on the pair (k, l) only via k − l.
Proposition 6.7 Suppose that for anyk, l ≥ 0 there exists a finite limit

R∗
f (k, l) = lim

N→∞
1
N

N−1∑
m=0

fk+mfl+m.

ThenR∗
f (k + n, l + n) = R∗

f (k, l) for anyk, l, n ≥ 0.

Proof.
If k ≥ l, then

1
N

N−1∑
m=0

fk+mfl+m =
1
N

N−1+l∑
j=l

fk−l+jfj

=
1
N

N−1+l∑
j=0

fk−l+jfj − 1
N

l∑
j=0

fk−l+jfj . (6.40)

Since the first term on the right side of (6.40) tends toR∗
f (k− l, 0) and the second

is O(N−1), the proof is complete. ✷

Proposition 6.8 LetRf be the covariance function of a stationary seriesF . Then
there exists a finite measuremf defined on the Borel subsets of(−1/2, 1/2] such
that

Rf (k) =
∫

(−1/2,1/2]

ei2πkωmf (dω).
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Proof.
For any n ≥1, any integer kp and any complex zp (1 ≤ p ≤ n) we have

n∑
j,m=1

zjzm
1
N

N−1∑
l=0

fkj+lfkm+l

=
1
N

N−1∑
l=0

∣∣∣ n∑
j=1

fkj+l zj

∣∣∣ 2 ≥ 0.

Therefore, the function R(N)f is positive semidefinite. Since the class of positive
semidefinite functions is closed under pointwise limit transition, the covariance
function Rf is also positive semidefinite. Hence, in view of Herglotz’s theorem
(Loève, 1963, Chapter IV), we obtain the required result. ✷

The measure mf is called the spectral measureof the series F . If mf is ab-
solutely continuous with respect to Lebesgue measure with the Radon-Nikodým
derivative pf , then pf is called the spectral densityof F . Accordingly, the function

Φf (ω)
def= mf ((−1/2, ω]) is the spectral function.

Since F is a real-valued series,Rf (−k) = Rf (k), and the spectral measuremf

has the following property: ifA is a Borel subset of (−1/2, 1/2), thenmf (−A) =
mf (A). Therefore,

Rf (k) = 2
∫

[0,1/2)

cos(2πkw)mf (dw) + (−1)kmf ({1/2}).

The spectral density can be considered as an even function: pf (−ω) = pf (ω).
The following proposition shows that we can extend the domain of stationary

sequences to the set Z = {±n, n = 0, 1, . . .}.
Proposition 6.9 LetF be a stationary series with a covariance functionRf . Let
gn = f|n| for n ∈ Z. Then for allk, l ∈ Z we have

1
2N − 1

N−1∑
j=−N+1

gk+jgl+j −→
N→∞

Rf (k − l).

Proof.
Suppose that k ≥ l ≥ 0. Then

1
2N − 1

N−1∑
j=−N+1

gk+jgl+j

=
1

2N − 1

N−1∑
j=0

fk+jfl+j +
1

2N − 1

N−1∑
j=k

fj−kfj−l +O(N−1).

Since both terms on the right side of the above equality tend to 0.5Rf (k − l), the
assertion is verified. Other cases for k, l are analogous. ✷
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From now on, if necessary we shall assume that a stationary sequence has the
domain Z .

Let us introduce some more notation. For fixed k ∈ Z , we write ek(ω) for the
imaginary exponential ei2πkω , ω ∈ (−1/2, 1/2]. In the same manner, for fixed
k ∈ Z and a time series F = (. . . , f−2, f−1, f0, f1, f2, . . .), we denote by Fk the
series G with gn = fk+n.

Let F be a stationary series with covariance function Rf . Denote by Lf the
linear space spanned by the series Fk, k ∈ Z , with complex coefficients. The
formula[

Fk, Fl

]
def= lim

N→∞
1

2N − 1

N−1∑
j=−N+1

fk+jf l+j = Rf (k − l), (6.41)

extended to Lf by bilinearity, defines an inner product in Lf . The corresponding
norm is denoted by ||| · |||.

Moreover, if we consider the Hilbert space L2f of complex functions that are
square integrable relative to the spectral measure mf , and we denote by ( · , · )f
and || · ||f the corresponding inner product and the norm, then[

Fk, Fl

]
=

∫
(−1/2,1/2]

ei2πkω e−i2πlωmf (dω) = (ek, el)f

and for finite linear combinations H1 =
∑

j αjFkj
and H2 =

∑
l βlFml[

H1,H2

]
=
(∑

j

αjekj
,
∑
l

βleml

)
f
. (6.42)

Denote by L(e) the linear subspace of L2f spanned by the imaginary exponents

ek ∈ Z . Then (6.42) shows that the linear spaces Lf and L(e) are in natural
one-to-one isometric correspondence:

Lf / H =
∑
j

αjFkj
←→

∑
j

αjekj
= ψ ∈ L(e).

Evidently, this isometric correspondence of Lf and L(e) can be extended to their

closuresHf = Lf and L2f = L(e) in the corresponding agreed norms ||| · ||| and
|| · ||f . Therefore, we obtain the Hilbert space Hf isometric to L2f and equipped
with the inner product [ · , · ] and the norm ||| · |||.

To point out a difference between the stationary time series and the elements
ofHf , we write H(1) � H(2) if H(1) and H(2) are identical elements ofHf . For
two time series H(1),H(2) ∈ Hf we have H(1) � H(2) if and only if

1
2N − 1

N−1∑
n=−N+1

∣∣∣h(1)n − h(2)n

∣∣∣2 −→
N→∞

0. (6.43)
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Therefore, the stationary series F coincides with the zero series 0 in Hf if and
only if

1
2N − 1

N−1∑
n=−N+1

|fn|2 −→
N→∞

0.

Analogously, the sequence of stationary series

F (m) = ( . . . , f (m)−1 , f
(m)
0 , f

(m)
1 , . . . ) ∈ Hf

tends to 0 inHf if and only if

lim
m→∞

∣∣∣∣∣∣∣∣∣F (m)∣∣∣∣∣∣∣∣∣2 = lim
m→∞ lim

N→∞
1

2N − 1

N−1∑
n=−N+1

∣∣∣f (m)n

∣∣∣2 = 0.

The following theorem is similar to the Cramér spectral theorem in the theory
of stationary processes (for example, Rozanov, 1967, Chapter 1, §4). The proof, in
the main, corresponds to Brillinger (1975, Chapter 3.9). We set I = (−1/2, 1/2].
Theorem 6.1 LetF be a stationary series with covariance functionRf and spec-
tral measuremf . Then

1. There exists a functionMf : I "→ Hf such thatMf has finite variation in
Hf and for allk ∈ Z

Fk �
∫
I

ek dMf . (6.44)

2. For all ω1, ω2 ∈ I[
Mf (ω1),Mf (ω2)

]
= Φf (min(ω1, ω2)). (6.45)

Proof.
Let H ∈ Hf and consider ψ ∈ L2f such that H ↔ ψ. As ψ1

def= e1ψ ∈ L2f , there

exists a unique H1 ∈ Hf such that H1 ↔ ψ1. Setting UH def= H1 we obtain the
operator U : Hf "→ Hf .

In view of the isometry Hf ↔ L2f , it is easy to check that U is a unitary
operator. Indeed, for any H ∈ Hf with H ↔ ψ we have

U−1H ↔ e−1ψ

and for H(1) ↔ ψ(1), H(2) ↔ ψ(2),[
UH(1),UH(2)

]
= (e1ψ(1), e1ψ(2))f

=
∫
I

ei2πωψ(1)(ω)e−i2πωψ(2)(ω)mf (dω)

= (ψ(1), ψ(2))f =
[
H(1),H(2)

]
. (6.46)
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Moreover, Fk ↔ ek implies UFk ↔ ek+1 ↔ Fk+1, and therefore U has the
meaning of the trajectory shift operator.

According to the theory of the spectral representation of unitary operators (see,
for example, Riesz and Sz.-Nagy, 1990, Chapter VIII, §2), there exists a unique
spectral family{Sω, ω ∈ I} of operators Sω : Hf "→ Hf such that

U =
∫
I

ei2πωdSω. (6.47)

Recall that a family of operators {Sω, ω ∈ I} is called spectral if

1. Sω1 ◦Sω2 = Smin(ω1,ω2) (and thus Sω is a projection operator for any ω);

2. Sω+0 = Sω , where Sω+0 stands for the strong limit lim
ω1↓ω

Sω1 ;

3. S−1/2+0 = 0, S1/2 = 1, where 0 stands for the zero operator and 1 denotes
the identity operator.

To understand the nature of the spectral operators Sω , we observe that ifHf /
H ↔ ψ ∈ L2f , then

Hf / SωH ↔ 1ωψ ∈ L2f (6.48)

where 1ω is the indicator of the set (−1/2, ω]:

1ω(ω0) =
{

1 for ω0 ≤ ω,
0 for ω0 > ω.

Indeed, if we define the operator family {Sω, ω ∈ I} by (6.48) and set S∆ =
Sω1 −Sω2 for ∆ = (ω1, ω2], then for any H ↔ ψ and any elementary complex
function

g
def=
∑
m

cm1∆k

we can define theHf -valued integral

JH(g) =
∫
I

g(ω)d(SωH) def=
∑
m

cmS∆m
H

and check that[
JH(1)(g1), JH(2)(g2)

]
=
∫
I

g1g2ψ1ψ2dmf = (g1ψ1, g2ψ2)f (6.49)

for elementary functions g1, g2 and H(1),H(2) ∈ Hf such that H(1) ↔ ψ1 and
H(2) ↔ ψ2.

Now, takingHf / H ↔ ψ ∈ L2f and g ∈ L2(|ψ|2dmf ), we get theHf -valued
integral

Hf / JH(g) =
∫
I

g(ω)d(SωH)↔ gψ ∈ L2f ,
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which is formally defined via the convergence gn → g where the gn are elemen-
tary functions approximating g in L2(|ψ|2dmf ). The equality (6.49) holds also
under the assumption that g1ψ1, g2ψ2 ∈ L2f .

If we take g = e1, then we obtain

JH(e1) =
∫
I

ei2πωd(SωH)↔ e1ψ ↔ UH

and therefore

UH �
∫
I

ei2πωd(SωH) ;  (6.50)

this representation can be considered as a weak form of (6.47).
In similar fashion, if we take H = F ↔ ψ and g = ek, then

JH(ek) =
∫
I

ei2πkωd(SωH)↔ ekψ ↔ UkH

and

UkH �
∫
I

ei2πkωd(SωH). (6.51)

Taking H = F we get (6.44) with Mf (ω) = SωF , in view of the equality
UkF � Fk.

Since F ↔ 1 and using (6.48) we obtain[
Sω1F,  Sω2F

]
=
∫
I

1ω1 1ω2dmf = Φf (min(ω1, ω2))

and the proof is complete. ✷

Remark 6.4 Properties (6.44) and (6.45) are similar to the spectral representa-
tion of a random stationary process in terms of the Fourier transformation of the
stochastic orthogonal measure corresponding to the spectral measure of the pro-
cess. Indeed, (6.45) means ‘orthogonality’, and Mf (ω) = Sωf corresponds to
the cumulative distribution function of the ‘stochastic orthogonal measure’.

Remark 6.5 The result of Theorem 6.1 remains valid for stationary sequences of
the form F = (f0, f1, . . . , fn, . . . ) if we define the inner product of the series
G1, G2 ∈ Lf as [

G1, G2

]
= lim

N→∞
1
N

N−1∑
n=0

g(1)n g
(2)
n . (6.52)

In this case, the operator U is isometric but not unitary. Since we do not use the
spectral representation (6.47) directly, the final result is still valid.
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Proposition 6.10 Under the conditions of Theorem 6.1, for anyH ∈ Hf and
ω0 ∈ I we have

1
N

N−1∑
n=0

e−i2πnω0 UnH
Hf−→

N→∞
(Sω0 − Sω0 −0)H. (6.53)

Proof.
Let H ↔ ψ. By (6.51),

1
N

N−1∑
n=0

e−i2πnω0 UnH

�
∫
I

(
1
N

N−1∑
n=0

ei2πn(ω−ω 0)

)
d(SωH)

=
∫
I

1− ei2πN(ω−ω  0)

N(1− ei2π(ω−ω0))
d(SωH) (6.54)

where the integrand is assumed to be 1 if ω = ω0.
Since

(Sω0 − Sω0 −0)H �
∫

{ω0 }

d(SωH),

we obtain ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1N

N−1∑
n=0

e−i2πnω0 UnH − (Sω0 − Sω0 −0)H

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=
∫

I\{ω0 }

∣∣∣∣ 1− ei2πN(ω−ω  0)

N(1− ei2π(ω−ω0))

∣∣∣∣2 |ψ|2(ω)mf (dω). (6.55)

It is easy to see that∣∣∣∣ 1− ei2πN(ω−ω0)

N(1− ei2π(ω−ω0))

∣∣∣∣2 = sin2(πN(ω − ω0))
N2 sin2(π(ω − ω0))

≤ C

ε2N2

for |ω−ω0| ≥ ε, and the same expression is O(1) uniformly onN for |ω−ω0| <
ε. Since ψ ∈ L2f , the right side integral in (6.55) tends to zero as N →∞. ✷

Remark 6.6
1. In view of the equality

|||(Sω0 −Sω0−0)H|||2 = |ψ|2(ω0)mf ({ω0}),
the left side of (6.53) tends to the zero element of Hf for any H if and only if
mf ({ω0}) = 0.
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2. If we take H = F , then (6.53) can be rewritten as

1
N

N−1∑
n=0

e−i2πnω0 Fn
Hf−→

N→∞
Mf (ω0)−Mf (ω0 − 0). (6.56)

The right side is equal to zero if and only if mf ({ω0}) = 0. The convergence
(6.56) means, in particular, that∣∣∣∣∣∣∣∣∣ 1

N

N−1∑
n=0

e−i2πnω0 Fn

∣∣∣∣∣∣∣∣∣2
= lim

T→∞
1

2T − 1

T−1∑
k=−T+1

∣∣∣∣∣ 1N
N−1∑
n=0

e−i2πnω0fn+k

∣∣∣∣∣
2

−→
N→∞

|||Mf (ω0)−Mf (ω0 − 0)|||2 = mf ({ω0}). (6.57)

3. If we take H = F and ω0 = 0, then we come to the ‘Law of Large Numbers in
Hf ’ result for stationary sequences: the convergence

1
N

N−1∑
n=0

Fn
Hf−→

N→∞
0 (6.58)

takes place if and only ifmf ({0}) = 0.
4. It follows from (6.53) that[

1
N

N−1∑
n=0

e−i2πnω1 UnH,
1
N

N−1∑
n=0

e−i2πnω2 UnH

]
−→
N→∞

0

if ω1 	= ω2.

6.4.2 Classification of stationary sequences

(a) Periodic series

If a time series F has an (integer) period T , then its terms fn can be expressed as

fn =
[T/2]∑

k=−[T/2]+1

cke
i2πkn/T (6.59)

with [x] standing for the integer part of x. Since F is a real-valued series, it follows
that c−k = c̃k.

Using the equality

1
N

N−1∑
j=0

fn+jfm+j =
[T/2]∑

k,l=−[T/2]+1

ck c̄le
i2πkn/T e−i2πlm/T IN (k, l)
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with

IN (k, l) =
1
N

N−1∑
j=0

ei2πkj/T e−i2πlj/T −→
N→∞

{
1 for l = k,
0 for l 	= k,

we can see that the periodic series F is stationary with covariance function

Rf (n) =
[T/2]∑

k=−[T/2]+1

|ck|2ei2πkn/T .

This function also has period T . The spectral measure is supported at the points
ωk = k/T with weights |ck|2. In terms of the spectral function,

Φf (ω) =
∑

k/T≤ω

|ck|2.

The space Hf is finite-dimensional, and it is isometric to the complex vector
space L2f = {ψ} = {(α−[T/2]+1, . . . , α[T/2]

)} equipped with the inner product

(ψ1, ψ2)f =
[T/2]∑

k=−[T/2]

|ck|2α(1)k α
(2)
k .

On the other hand, if we denote

M
(n)
f (ω) =

∑
k/T≤ω

cke
i2πkn/T ,

then

fm+n =
∑
k

cke
i2πmk/T ei2πnk/T =

∫
I

ei2πωmdM
(n)
f (ω).

If we set

Mf (ω) = ( . . . ,M (−1)
f (ω),M (0)

f (ω),M (1)
f (ω), . . . ),

then we come to the equality (6.44), which is now the pointwise equality.

(b) Almost periodic sequences

If the spectral measure mf of a stationary sequence F is discrete, then this se-
quence will be called a generalized almost periodic(GAP) sequence. A general-
ized almost periodic sequence F is generalized quasi-periodicif the support Ωf

of the measure mf is not a subset of any grid {k/T}, where T is an integer.
Let the measuremf be supported on the set Ωf ={ω1, ω2, . . .} ⊂ (−1/2, 1/2],

and suppose that mf ({ωk}) = d2k > 0. Since the measure mf is finite,

mf ((−1/2, 1/2]) =
∑
k

d2k <∞.
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Due to the assumption that F is real-valued, the set Ωf∩(−1/2, 1/2) is symmetric
around zero.

A simple example of a generalized quasi-periodic series with a spectral measure
mf supported on Ωf can be described as follows. Denote by ck a complex square
root of d2k and assume that ck = cl if ωk = −ωl. For ωk = 1/2 we take ck as a
real square root of d2k. If

|c1|+ . . .+ |ck|+ . . . <∞, (6.60)

then we define

fn =
∑

ωk ∈Ωf

cke
i2πωkn. (6.61)

We can now check in the manner of the previous paragraph that this series is
stationary with covariance function

Rf (n) =
∑

ωk ∈Ωf

|ck|2ei2πωkn. (6.62)

If the set Ωf is not a subset of the grid {±k/T} with an integer T , then the se-
ries (6.61) is called quasi-periodic . (See Berge, Pomeau and Vidal, 1986, Chap-
ter III.3.2, for examples and discussion.)

In addition to the series of the form (6.61) satisfying (6.60), there is another
class of the stationary sequences with covariance function (6.62). By definition
(see, for instance, Corduneanu, 1968, Chapter 1, or Osipov, 1988), a series F is
called a Bohr almost periodic(briefly, Bohr) series if for any ε > 0 there exists a
trigonometric polynomial series

Tε = ( . . . , t(ε)−1, t
(ε)
0 , t

(ε)
1 , . . . )

with

t(ε)n =
M∑

m=1

ame
i2πωmn, ωm ∈ I,

such that sup
n∈Z

|fn − t(ε)n | < ε.

The class of Bohr series is closed under addition and term-by-term multiplica-
tion and includes the periodic series. Moreover, if F is a Bohr series, then for any
k ∈ Z , the shifted series Fk is also a Bohr series.

It can be proved (see Corduneanu, 1968, or Osipov, 1988) that Bohr sequences
have the following properties:
1. For any m ∈ Z there exists a limit

lim
N→∞

1
N

N−1∑
k=0

fk+m = Mf . (6.63)

The number Mf does not depend on m and the convergence in (6.63) is uni-
form in m;
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2. It follows from (6.63) that the sequence

R
(N)
f (m, j) =

1
N

N−1∑
k=0

fk+mfk+j

converges uniformly in m − j to a number Rf (m − j). Therefore, any Bohr
sequence is a stationary sequence;

3. If F1, F2 are Bohr sequences, then the limit[
F1, F2

]
= lim

N→∞
1
N

N−1∑
k=0

f
(1)
k f

(2)
k

is finite and can be used as the definition of an inner product of F1 and F2.
If we take the closure of the set of Bohr sequences in the norm generated by
this inner product, then we come to the Hilbert spaceH with the inner product
[ · , · ] and the norm ||| · |||.
For any Bohr sequence F , the spaceHf is a closed linear subspace ofH;

4. Define the sequence

eω = ( . . . , e−i2π2ω, e−i2πω, 1, ei2πω, ei2π2ω, . . . ).

Then there exists a countable set Ωf = {ω1, ω2 . . .} ⊂ I such that

cm
def=
[
F, eωm

]
= lim

N→∞
1
N

N−1∑
k=0

fke
−2πωmk 	= 0. (6.64)

For ω /∈ Ωf the limit (6.64) exists and is equal to zero. The numbers cm satisfy
the inequality |c1|2 + |c2|2 + . . . < ∞. The set Ωf is called the spectrum of
the Bohr seriesF .

5. For any l ∈ Z [
Fl, eω

]
=
{

0 for ω /∈ Ωf ,
cme

i2πωml for ω = ωm.
(6.65)

6. If F and G are Bohr series, then[
F,G

]
=

∑
ω∈Ωf∩Ωg

[
F, eω

] [
G, eω

]
. (6.66)

7. The decomposition

fn ∼
∑
k

cke
i2πωkn (6.67)

is valid in the sense that∣∣∣∣∣∣∣∣∣F − m∑
k=1

ckeωk

∣∣∣∣∣∣∣∣∣ −→
m→∞ 0.
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It follows from (6.65) and (6.66) that

Rf (n) =
[
Fk+n, Fn

]
=
∑
m

|cm|2ei2π(k+n)ωme−i2πnωm

and therefore the spectral measure of any Bohr series F is a discrete measure.

(c) Aperiodic time series

A stationary series is called aperiodic (or, in another terminology, chaotic; see
Schuster, 1995) if its spectral function Φf is continuous. Of course, the existence
of the spectral density pf is only a sufficient condition (and the most common ex-
ample) of this situation. If the spectral density exists, the series is called regularly
aperiodicor regularly chaotic. Since Φf is continuous, (6.58) is valid in this case.

Aperiodic series provide models for many chaotic dynamic processes. The
chaotic behaviour of these processes can be checked by the convergence of the
covariance function Rf (n) to zero as n→∞.

If pf= const, then the stationary series is called white noise. An example of a
white noise series is the sequence fn = {nν} − 1/2 with an irrational positive ν,
where {a} denotes the fractional part of a. (The proof can be easily accomplished
with the help of Weyl’s criterion of the uniform distribution of sequences, see for
example Kuipers and Niederreiter, 1974, Chapter 1, §6.)

Other examples of regularly aperiodic time series can be constructed via a white
noise series in the usual manner of the theory of random stationary processes. For
example, if F = ( . . . , f−1, f0, f1, . . . , ) is a white noise with pf ≡ 1, then

gn =
M∑
k=1

akfn−k

will be the term of a regularly chaotic series G with the spectral density

pg(ω) =
∣∣∣ M∑
k=1

ake
−i2πkω

∣∣∣2.
6.4.3 SVD for stationary series

Let F = (f0, . . . , fn, . . .) be a stationary series and consider the collection of
singular value decompositions generated by F . More precisely, for any N > 1
we fix a window length L = L(N) < N and consider the trajectory matrix
X = X(N) of the series FN = (f0, . . . , fN−1) with its SVD

X =
∑
j

√
λjUjV

T
j . (6.68)
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Note that λj and Uj are the eigenvalues and eigenvectors of the matrix S =
XXT with the elements

skm = skm(N) =
K−1∑
j=0

fk−1+jfm−1+j ,

where K = N − L+ 1 and k,m = 1, . . . , L. Therefore, skm/K → Rf (k −m)
and for fixed L and large K both eigenvalues and eigenvectors of the covariance
matrix C = XXT/K are close to those of the Toeplitz matrix Rf = R(L)f with
the elements rk,m = Rf (k −m), where k,m = 1, . . . , L.

Thus, if we consider the eigenvectors and eigenvalues of the matrix Rf , then
we also obtain information about the SVD (6.68) for large K.

(a) SVD for almost periodic sequences

Let us start with the case of GAP sequences, where

Rf (n) =
∑

ωk∈Ωf

|ck|2ei2πωkn, Ω ⊂ (−1/2, 1/2].

Since Rf (0) =
∑

ωk∈Ωf

|ck|2 and

1
L

L−1∑
j=0

Rf (m− j)ei2πωkj

=
∑
ωl∈Ω

|cl|2ei2πωlm
1
L

L−1∑
j=0

e−i2πωljei2πωkj

−→
L→∞

|ck|2ei2πωkm,

we can claim that asymptotically (as L → ∞) the eigenvalues νj of the matrix

R(L)f /L become close to |cj |2 and the corresponding complex eigenvectors ap-
proximately have the form

E(L)ωj

def=
(
1, ei2πωj , . . . , ei2πωj(L−1)

)T/√
L.

Note that (E(L)ωj , E
(L)
ωk )→ 0 for ωj 	= ωk as L→∞.

In the case ωj 	= 1/2 the pair (ωj ,−ωj) generates two asymptotically orthog-
onal real harmonic eigenvectors with the frequency |ωj |.

Let us now fix the window length L large enough to achieve a good approxi-
mation of the eigenvalues νj by |cj | and the corresponding eigenvectors by E(L)ωj .
Then for large K = K(L) we obtain that the leading singular values of the SVD
(6.68) are proportional to the largest absolute values of the amplitudes of the har-
monic components of the GAP series, written in the form (6.67). Moreover, for
large L and K the corresponding eigenvectors are close to the harmonic series
with the frequencies associated with these amplitudes.
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(b) SVD for aperiodic sequences

The situation is different if the series F is regularly chaotic. Assume that the
spectral measure mf of a stationary series F has a bounded spectral density pf ,
that is

Rf (n) =

1/2∫
−1/2

ei2πωnpf (ω)dω.

Referring to Grenander and Szegö (1984, Chapters 5.2, 7.4, 7.7), we quote two
important results. The first one is devoted to the asymptotic (as L→∞) distribu-
tion of the eigenvalues of the matrix Rf .

Let µ1, . . . , µL be the eigenvalues of the L × L Toeplitz matrix Rf with the
elements rmk = Rf (m − k). Denote by PL the discrete uniform distribution on
the set {µ1, . . . , µL}.
Theorem 6.2 AsL → ∞, the distributionPL weakly converges to the distribu-
tion Df of the random variablepf (α), whereα is a random variable uniformly
distributed on[−1/2, 1/2].
The second theorem considers the asymptotic distribution of the eigenvectors of
the matrix Rf . For m ≥ 1 we set

p
(m)
f (ω) =

1
m

1/2∫
−1/2

(
sinπm(ω − ω′)
sinπ(ω − ω′)

) 2
pf (ω′)dω′.

The sequence of continuous functions p(m)f approximates pf as m → ∞ in
Lq((−1/2, 1/2)) for q ≥ 1. The approximation is uniform if pf is continuous
in [−1/2, 1/2] (see, for example, Edwards, 1979, Chapter 6.1).

For ωk = k/L, k = 0, 1, . . . , [L/2], let us define the vectors Ck, Sk ∈ IRL by
their components

c
(j)
L = cos(2πωkj), s

(j)
L = sin(2πωkj), −[L/2] < j ≤ [L/2].

Finally, for any 0 ≤ a < b we denote by ΠL(a, b) and Π(m)L (a, b) the orthogonal
projection operators onto the linear spaces

La,b = span(Uk, such that a ≤ µk ≤ b)

and

L
(m)
a,b = span(Ck, Sk, such that a ≤ p

(m)
f (ωk) ≤ b).

Theorem 6.3 LetL → ∞. Then there exists a sequencem = m(L) → ∞ such
that ∣∣∣∣∣∣ΠL(a, b)−Π(m)L (a, b)

∣∣∣∣∣∣ −→
L→∞

0

for all a < b, the points of continuity of the distributionDf .
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Let us discuss the results of the theorems starting with Theorem 6.3. Assume
for simplicity that the spectral measure pf is a continuous function, and for any c
the number n(c) of ω ∈ I such that pf (ω) = c is finite. Then the the statement of
Theorem 6.3 can be interpreted as follows:

1. In the limit the set {pf (ω), ω ∈ I} coincides with the set of eigenvalues of the
matrix Rf ;

2. Every ω 	= 0, 1/2 with pf (ω) = c 	= 0 asymptotically produces two real
orthogonal harmonic eigenvectors with frequency ω; these eigenvectors corre-
spond to the eigenvalue c.

The points ω = 0 or ω = 1/2 with pf (ω) = c 	= 0 produce the unique
harmonic eigenvector of frequency ω corresponding to the eigenvalue c.

It follows from this description that for a monotone continuous spectral density,
all the eigenvectors are asymptotically the harmonic series, and every frequency
ω ∈ (0, 1/2) corresponds to a pair of equal eigenvalues. (This implies, in partic-
ular, that the phenomenon of frequency mixing in SSA is resolved in the limit.)
Moreover, for a decreasing spectral density the leading eigenvalues correspond to
low frequencies.

By contrast, if pf is not a monotone function, then certain harmonic eigenvec-
tors with different frequencies (asymptotically) correspond to the same eigenval-
ues.

Let us pass to Theorem 6.2. By definition, the weak convergence of PL to
the distribution Df of the random variable pf (α) means that for any bounded
continuous function g we have

g(µ1) + . . .+ g(µL)
L

−→
L→∞

1/2∫
−1/2

g(pf (ω))dω = 2

1/2∫
0

g(pf (ω))dω (6.69)

(here we have used the equality pf (−ω) = pf (ω)).
If pf ≡ a = const, then the stationary series is white noise. In this case, asymp-

totically inL, all the eigenvalues of the matrix Rf are equal to a. In the same man-
ner, if pf attains two values a1 and a2 on the sets A1 and A2 with A1 ∪ A2 = I
and meas(A1) = 1 −meas(A2) = p, then asymptotically 100p% of the eigen-
values are equal to a1 and the rest of them are equal to a2. The general case of
piecewise constant pf is similar.

For any a < b let us denote by NL(a, b) the number of eigenvalues µj such
that a ≤ µj ≤ b. Assume that pf is a smooth function. Then the number n(c)
of roots of the equation pf (ω) = c is finite for any c and the distribution Df is
continuous. Therefore, (6.69) is valid for any bounded Rieman integrable function
and we can consider the local (asymptotic) density for the number of eigenvalues
of the matrix Rf .
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Indeed, it follows from Theorem 6.2 that for any a < b

NL(a, b)
L

−→
L→∞

∫
I

1[a,b](pf (ω))dω, (6.70)

where 1A is the indicator of the set A. (The equality (6.70) corresponds to the
choice g = 1[a,b] in (6.69).)

Let us denote by ω1, . . . , ωn(c) the roots of the equation pf (ω) = c. If we take
b = a+ ε, where ε is small positive, and assume that n(a) = 1 and p′f (ω1) 	= 0,
then (6.70) becomes

NL(a, a+ ε)
L

∼ ε

|p′f (ω1)|
+ o(ε) (6.71)

as L→∞. In the same manner, if p′f (ω1) = 0 and p′′f (ω1) 	= 0, then

NL(a, a+ ε)
L

∼
√

ε

2|p′′f (ω1)|
+ o(ε1/2) , (6.72)

and so on. If n(a) = 2 and both p′f (ω1) and p′f (ω2) are nonzero, then

NL(a, a+ ε)
L

∼ ε

(
1

|p′f (ω1)|
+

1
|p′f (ω2)|

)
+ o(ε). (6.73)

Other situations can be investigated in the same manner.
This means that for smooth pf the eigenvalues are mainly concentrated around

the numbers pf (ω) such that p′f (ω) = 0. If p′f (ω) 	= 0 for all ω, then the func-
tion 1/|p′f (ω)| has the meaning of global asymptotic density of the number of
eigenvalues.

Analogously, if we denote by ΛL(a, b) the sum of the eigenvalues µj such that
a ≤ µj ≤ b and take

g(x) = ga,b(x) = x1[a,b](x), m1 ≤ a < b ≤ m2

with m1 = min pf , m2 = max pf , then we obtain from (6.69) that

ΛL(a, b)
µ1 + . . .+ µL

−→
L→∞

1
Rf (0)

∫
I

pf (ω)1[a,b](pf (ω))dω. (6.74)

For a = m1 we obtain from (6.74) the function of the asymptotic eigenvalue
share, standard in statistics. Taking b = a + ε with small ε we can obtain the
expressions for the local eigenvalue densities analogous to (6.71)-(6.73).

(c) Summary

Let us summarize the material of this subsection. For both almost periodic and
regularly chaotic series, the asymptotic (L,K → ∞) singular vectors of the tra-
jectory matrices have the form of harmonic series with frequencies belonging to
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the support of the spectral measure. In the almost periodic case this support is
countable, while for the chaotic situation it is uncountable.

The corresponding eigenvalues are proportional to the weights of the discrete
spectral measure for almost periodic sequences and to the values of the spectral
density in the regularly aperiodic case.

Note that since we are considering the eigenvalues of the matrices S = XXT

and not that of the covariance matrices C = S/K, the asymptotic eigenvalues
in the case of GAP sequences are proportional to LK. For regularly aperiodic se-
quences the corresponding coefficient isK. The difference can be used for check-
ing whether or not long stationary-like sequences contain periodicities.

6.4.4 Separability of stationary series

Below we assume that the index set for the stationary sequences under consider-
ation isN = {0, 1, 2, . . .}. According to Remark 6.5, the entire spectral theory is
valid if we use the inner product inHf determined by (6.52) instead of (6.41).

According to the definition of Section 6.1.2 (see (6.13)), two infinite time se-
ries F (1), F (2) are weakly pointwise regularly asymptotically separable if both
window length L and K = N − L+ 1 tend to infinity and

N−1∑
k=0

f
(1)
n+kf

(2)
m+k√

N−1∑
k=0

(
f
(1)
n+k

)2√N−1∑
k=0

(
f
(2)
m+k

)2 −→N→∞
0

for any m,n ≥ 0.
Let us consider the separability conditions for stationary series. If F (1) and

F (2) are stationary sequences, then

1
N

N−1∑
k=0

(
f
(i)
n+k

)2
−→
N→∞

Rfi
(0) > 0, i = 1, 2

for any n, and the asymptotic separability conditions are reduced to the require-
ment of the convergence

1
N

N−1∑
k=0

f
(1)
n+kf

(2)
m+k −→N→∞

0.

Let us assume that F
def= F (1) + F (2) is a stationary series with spectral measure

mf and F (1), F (2) ∈ Hf . In view of the results of Section 6.4.1, the Hilbert space

Hf is isometric to L2f
def= L2(dmf ), and the series F corresponds to the constant

function 1 ∈ L2f , that is F ↔ 1.

Since F (1), F (2) ∈ Hf , there exist ψ1, ψ2 ∈ L2f such that fi ↔ ψi, i = 1, 2,

and ψ1 + ψ2 = 1 in L2f . Therefore, the spectral measures of F (1), F (2) have the
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form dmf1 = |ψ1|2dmf and dmf2 = |ψ2|2dmf , respectively. Moreover,

1
N

N−1∑
k=0

f
(1)
n+kf

(2)
m+k

−→
N→∞

[
F (1)n , F (2)m

]
=
∫
I

ei(n−m)ωψ1(ω)ψ2(ω)mf (dω) ,

and the separability condition takes the form ψ1ψ2 = 0 mf -almost everywhere.
In other words, separation holds when the supports of the spectral measures mf1

and mf2 are disjoint.
For periodic series this result gives the opportunity to separate its various ‘ele-

mentary’ components: since mf is concentrated on a grid {± k/T} with integer
k and T , each term cke

i2πnk/T + c−ke
−i2πnk/T on the right side of (6.59) can be

asymptotically separated from the sum of the others.
For (generalized) quasi-periodic series everything is similar. Any chaotic series

F can be (weakly) divided by SSA into two series belonging toHf if their spectral
densities have disjoint supports.

If F (1) is a GAP series (‘signal’) and F (2) is a chaotic series (‘noise’), then their
spectral measures always have disjoint supports. Thus, under the assumption that
F
(1)
N , F

(1)
N ∈ Hf , any generalized almost periodical signal is weakly pointwise

regularly asymptotically separated from a stationary chaotic noise.

6.4.5 Periodograms

Let F = (f0, f1, . . . ) be a stationary series. Then the series

Π(N)k,f (ω)
def=

1
N

∣∣∣∣∣
N−1∑
n=0

e−i2πωnfn+k

∣∣∣∣∣
2

, ω ∈ I,

is called the N -periodogram seriesof the series F .
Periodogram series can be used as an approximation for the spectral measure

of a stationary sequence. More precisely, we have the following result.

Theorem 6.4
1. For anyω ∈ I,

lim
T→∞

1
T

T−1∑
k=0

Π(N)k,f (ω)
N

−→
N→∞

mf ({ω}). (6.75)

2. For any bounded continuousΨ : I "→ IR,

lim
T→∞

1
T

T−1∑
k=0

∫
I

Ψ(ω)Π(N)k,f (ω)dω −→
N→∞

∫
I

Ψ(ω)mf (dω). (6.76)
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3. Let us assume that there exists a spectral densitypf that is continuous at the
pointω. Then

lim
T→∞

1
T

T−1∑
k=0

Π(N)k,f (ω) −→N→∞
pf (ω). (6.77)

Proof.
1. According to Remark 6.5, the convergence (6.75) is exactly the convergence
(6.57) of Remark 6.6.
2. Analogous to (6.54) and the first equality of (6.57), we have that the left side of
(6.76) is equal to∫

I

Ψ(ω)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
N

N−1∑
n=0

e−i2πωnFn

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

dω

=
∫
I

∫
I

Ψ(ω)
sin2(πN(ω − ω1))
N sin2(π(ω − ω1))

dω

mf (dω1) .

Since the function

h(N)ω1
(ω) def=

sin2(πN(ω − ω1))
N sin2(π(ω − ω1))

is a density on I for any ω1 ∈ I and, as N →∞, the associated distribution tends
to the Dirac distribution concentrated at the point ω1, we obtain∫

I

Ψ(ω)h(N)ω1
(ω) dω −→

N→∞
Ψ(ω1)

(see, for example, Edwards, 1979, Chapter 6.1.1). Therefore, the second assertion
of the theorem is proved.
3. Similar to the proof of the previous assertion, we get

lim
T→∞

1
T

T−1∑
k=0

Π(N)k,f (ω) =
∫
I

h(N)ω (ω1)pf (ω1) dω1.

This completes the proof. ✷

Remark 6.7 If we consider the Bohr sequence F then, in view of (6.65),

Π(N)k,f (ω)
N

−→
N→∞

mf ({ω})
for any k.
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List of data sets and their sources

• Data ‘Births’, ‘Coal sales’, ‘Demands’, ‘Drunkenness’, ‘Eggs’, ‘Fortified
wine’, ‘Gold price’, ‘Hotels’, ‘Investment’, ‘Petroleum sales’, ‘Precipi-
tation’, ‘Rosé wine’, ‘Sunspots’, ‘Tree rings’, ‘Unemployment’, ‘Wages’:
Time Series Data Library maintained by Rob Hyndman
http://www-personal.buseco.monash.edu.au/ ̃  hyndman/ TSDL

• Data ‘England temperatures’: The Meteorological Office (U.K.)
http://www.meto.govt.uk/sec5/CR data/Monthly/HadCET act.txt

• Data ‘Production’: Economic Time Series Page
http://www.economagic.com/em-cgi/data.exe/doeme/pnprbus

• Data ‘White dwarf’: The Santa Fe Time Series Competition Data
http://www.stern.nyu.edu/ ̃  aweigend/Time-Series/SantaFe.html

• EEG Data: Dr. Dmitry Belov, Institute of Physiology, St. Petersburg University

• Data ‘War’: Table 10 in Janowitz and Schweizer (1989).
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