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Preface

The concrete rectangular thin plate is widely used in civil engineering field, such as
rectangular liquid-storage structure, shear wall, concrete roof plate, airport runway
and concrete rigid pavement. According to the boundary of the rectangular thin
plate, the rectangular thin plate can be generally divided into two types, with four
edges supported and with free edges. First, due to the thermal inertia of concrete
material itself, concrete thin plate under the effect of non-uniform temperature, a
larger temperature difference will be formed in the internal structure so that tem-
perature stress cannot be ignored. Due to the low tensile strength of concrete, if
effective measures are not taken to eliminate or resist the temperature stress, the
cracks in concrete structures will be caused after the structures are shortly used, and
normal use of the structure will be affected. Seriously, structural safety accidents
will happen. Second, the instability of concrete thin plate structure can be caused by
in-plane compression load, also can be caused by thermal load, if the internal
temperature of concrete thin plate structure is too high, instability and failure of
concrete structures will be led to. Finally, the vibration problem of concrete
structure under the action of mechanical load is drawing more attention nowadays,
and few people pay attention to the vibration because of thermal load. In fact, if the
existence of the thermal environment vibration is ignored, the calculation error of
structure natural frequency and deformation can be caused, so that frequency and
the deformation in structure design can overestimated or underestimated.

Since 1998, I have taken lots of design tasks of the rectangular thin plate
structure, and found that the cracks of the concrete plate will appear in different
degrees under the action of temperature. Therefore, this book describes the thermal
bending, thermal buckling, and thermal vibration of thin plates, which have
important engineering significance. This book introduces the thermal bending of
rectangular thin plate with four edges supported and with free boundary rectangular
thin plate, the thermal buckling of concrete rectangular thin plate and thermal
vibration with four edges supported, which is the sublimation and summary of my
research results about thin plate structure for many years, the publication of the
book is bound to have important theoretical significance and engineering practice
effect in the civil engineering and mechanical engineering, etc.
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The whole book is divided into five chapters. Chapter 1 is the introduction,
which mainly introduces the basic situation and the necessity of the research on the
thermodynamics of the rectangular thin plate; Chap. 2 is the thermal bending of the
rectangular thin plate with four edges supported. According to the common rect-
angular thin plate with four edges supported in engineering, the concrete rectan-
gular thin plate is divided into six types, which is four edges simply supported, four
edges clamped, three edges clamped and one edge simply supported, one edge
clamped and three edges simply supported, two adjacent edges clamped and two
adjacent edges simply supported, two opposite edges clamped and two opposite
edges simply supported, and the thermal bending of the rectangular thin plate is
introduced in detail; Chap. 3 describes the thermal bending of rectangular thin plate
with free boundary. The thermal bending problem about six types of concrete
rectangular thin plate are considered, namely, three edges simply supported and one
edge free, three edges clamped and one edge free, two opposite edges clamped one
edge simply supported and one edge free, two adjacent edges clamped one edge
simply supported and one edge free, two opposite edges simply supported one edge
clamped and one edge free, two adjacent edges simply supported one edge clamped
and one edge free; in Chap. 4, the thermal buckling of concrete rectangular thin
plate is introduced. The thermal buckling of concrete rectangular thin plate with
four sides simply supported is discussed. Chapter 5 is about the thermal vibration of
concrete rectangular thin plate structure, and the free and forced vibration of the
rectangular thin plate with four sides simply supported is introduced.

For people engaging in scientific research, engineering design and construction
technology, this book can provide important mechanics concepts, theoretical cal-
culation method and calculation table when analyzing the crack, deformation,
stability, comfort design of the concrete rectangular thin plate structure. For the
relevant professional researchers (including undergraduates and graduates) in uni-
versities and in research institutes, this book can be used as a reference material for
concrete structures, thin plate elastic mechanics.

Before the book will imminently be published, the author would like to extend
sincere thanks to people who support and care related research projects and the
organization workers of publishing. Specially, thanks to National Natural Science
Foundation Committee! Thanks to selfless care of Prof. Yong feng Du in Lanzhou
University of Technology! Thanks to Dr. Jing Wei and Xinhai Zhou, Masters Xiao
yan Zhang, Jia Chen, De Li, Bo Liu and Liang Ma! They have made an indis-
pensable contribution for publication and compilation of this book.

Although the book has made perfect scientific research achievements in the
thermodynamic theory problems, for the thermal bending, thermal vibration and
thermal buckling with free boundary of the concrete thin rectangular plates, the
results need further validation, and the experimental study on thermal vibration and
thermal buckling problems still need to be further designed. In order to make the
research results widely applicable in design and construction of thin plate structures
in civil engineering, the support from professional and technical personnel of civil
engineering, engineering mechanics and mechanical engineering is vigorously
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needed. The book will inevitably have some defects in the theoretical analysis, or
could even have some mistakes; criticism and comments from the researchers and
readers will be appreciated and please send your suggestions to my e-mail
chengxuansheng @ gmail.com. The author will very appreciate your help.

Lanzhou, China Xuansheng Cheng
November 2016
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Chapter 1
Introduction

Abstract According to rectangular thin plates with or without the free boundary,
the rectangular thin plate can be divided into the rectangular thin plates supported
on four sides and the rectangular thin plates with free boundary. The research
progress of thermal bending, thermal buckling and thermal vibration of rectangular
thin plate is introduced in this chapter.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018 1
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular

Thin Plate, Springer Tracts in Civil Engineering,
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2 1 Introduction

1.1 The Basic Status of Rectangular Thin Plate
Thermal Problems

The study of temperature effect problem began in 1835 [1]. When giving a speech
in French Academy of Science, the French Du Hammel pointed out that for the first
time: when the temperature changes, one part of the object will be subject to the
constraints of another part, and the object inside can produce thermal stress. The
stress is superposed by the two parts, one part of stress is pressure proportional to
the temperature change and equal in all directions, and the other part of stress is
produced by strain while the temperature is constant. The derived linear thermal
stress theory was firstly advocated by the German Neumann in his book in 1841.
After the Second World War, the rapid development of thermal power, nuclear
power, machinery manufacturing, chemical industry, aircraft, spacecraft, rocket
technology and other modern science and technology greatly promoted the research
and application of the thermal stress theory [2]. After more than one hundred years
of research, thermal elastic mechanics has grown from 1960s to 1970s. Today, there
are many literatures about the thermal bending, thermal buckling and thermal
vibration [1—3].

1.1.1 Thermal Bending of Rectangular Thin Plate

The temperature internal force and deflection calculation formula of the rectangular
thin plate with four edges simply supported and four edges clamped were given by
Ugural in their researches [1—9], Jane and Hong analyzed thermal bending of
orthogonal anisotropic laminated plate with four edges simply supported by using
the Generalized Differential Quadrature (GDQ) method [10]. Shen analyzed non-
linear thermal bending response of the functionally graded rectangular plate with
four edges simply supported under lateral load [11]. Zenkour obtained the analytical
solution of the orthogonal laminated plates with four edges simply supported under
the thermal mechanical load [12]. Liu et al. gave the internal force calculation tables
of the rectangular thin plate with four edges simply supported, three edges clamped
and one edge simply supported or free in their literature [13]. To rectangular thin
plates with other boundary conditions, there are no reports in the existing literature.

To calculate the stress and deformation of the rectangular thin plate under the
thermal load, temperature field is firstly analyzed. Strictly speaking, the distribution
of temperature field is very complicated, and it is a function of three-dimensional
coordinates. But for thin plate, as the thickness of the plate is very small in size
compared with the other two directions, so for the sake of simplicity, temperature is
thought to change along the thickness direction only. People had initially taken the
uniform temperature distribution field as the calculation basis, then, began to
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consider the temperature gradient of concrete structure (temperature difference) for
the constant crack damage of concrete structure. At first, it was thought that the
temperature distribution was linear. Later, with the progress of the experimental
research, people realized that the concrete structure of the temperature internal
distribution was nonlinear [14]. Therefore, in engineering calculation, the British
Stephenson analyzed the temperature distribution of the concrete structure along the
direction of wallboard thickness by using exponential function 7, = Ape™** based
on surface temperature amplitude, where A is the surface temperature fluctuation.
New Zealander Priestley also obtained the nonlinear distribution rules by the model
test study of Auckland new market viaduct, and his expression is T, = Tpe™%,
where T is the temperature difference between the inside and outside surface, and
index a is chosen as 10. German scholars Fritz Leonhardt and Kehlbeck et al. also
identified the nonlinear temperature field distribution rules in their works. Guo and
Shi researched reinforced concrete plate temperature field, and proved that the
temperature changes along the plate thickness was a nonlinear change but not much
[15]. The author had simplified the three-dimensional heat conduction equation to
one-dimensional heat conduction equation, and obtained the nonlinear parabolic
temperature field distribution rules combining the boundary condition, and analyzed
and discussed the temperature stress of statically indeterminate structures [16—18].

1.1.2 Thermal Buckling of Rectangular Thin Plate

Gossard et al. studied the thermal buckling problems of rectangular thin plate [19].
Klosner and Forray studied the buckling of temperature field under the condition of
absolutely uniformly distributed in space [20]. Prabhu and Durvasula researched the
thermal buckling problems of rectangular plate with two opposite edges clamped
using Galerkin method [21]. Uemura studied the buckling behavior of non-uniform
temperature field [22]. Sadovsky analyzed the thermal buckling of compressed
square plate under non-uniform temperature field with simply supported [23]. Shen
and Lin studied the post buckling behavior of thin rectangular plate [24]. Murphy
and Ferreira analyzed thermal buckling of aluminum plate with four edges clamped
using the energy principle and the test [25]. Wu et al. studied the buckling behavior
of functionally gradient rectangular plate, and obtained the calculating formula of
the critical buckling temperature [26]. Gong calculated buckling uniform temper-
ature field of thin rectangular plate [27]. Jones analyzed thermal buckling of the
uniaxial symmetry orthogonal fiber-reinforced laminates with four edges simply
supported under uniform heating [28]. Morimoto et al. analyzed thermal buckling
of a functionally graded rectangular plate under partially thermal [29]. Kabir et al.
analyzed thermal buckling response of skew symmetric laminated plates with four
edges clamped [30].
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1.1.3 Thermal Vibration of Rectangular Thin Plate

At present, with the rapid development of science and technology and wide
application in engineering, many studies on the thermal vibration behavior of thin
plate have been carried out. Chang et al. analyzed the nonlinear free vibration of
heated orthotropic anisotropic rectangular thin plate [31, 32]. Ding et al. studied
free vibration of cross isotropic rectangular thin plate under thermal environment
with simply supported edges [33]. Huang et al. analyzed the vibration character-
istics of Functionally Grated Materials plate under thermal environment [34—37].
Hong and Jane studied the shear deformation of vibration under temperature load
by using the Generalized Differential Quadrature (GDQ) method [38]. He et al.
made theoretical analysis on concrete plate dynamic response under blast loading,
and obtained the theoretical calculation formula of large plastic deformation of
concrete square plates with edges clamped [39]. Niu analyzed the coupled vibration
of elastic thin plate under thermal environment [40].

1.2 The Necessity of Concrete Rectangular Thin Plate

When concrete rectangular thin plates are under the solar radiation, sudden cooling
(such as sudden cold at night and cold current lowering temperature) or temperature
difference effect caused by other temperature, the temperature of the structure surface
rises of falls rapidly. Due to the thermal inertia of the concrete material itself, most of
structure internal region is still in the state of original temperature, thus a large
temperature gradient (hereinafter referred to as the “temperature difference”) in the
thickness direction of the plate is formed [41]. The deformation caused by temper-
ature difference effects is restricted by the redundant internal constraints of concrete
thin plate structure [42], so the temperature stress cannot be ignored. Generally
speaking, when the engineering structure is statically determinate structure or free
body, the temperature difference cannot cause temperature stress. But rectangular thin
plate structures are general statically indeterminate structure, therefore, the temper-
ature will inevitably lead to temperature tension on the lower temperature side of the
plate. So, under the effect of the temperature or sunshine, cracks will occur soon after
use due to the low tensile strength of concrete, and the normal use of the structure will
be affected; or even safe incidents of the structure will occur.

Strictly speaking, concrete is an anisotropic and heterogeneous composite
material [43]. But in fact, the actual size of the member is more than four times the
maximum aggregate particle size, so the book assumes that concrete is isotropic
material. Moreover, the proportion of steel in reinforced concrete thin plate is very
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Fig. 1.1 Mucilage mixing tank

small, and the heat conduction coefficient of steel is very large, so the reinforced
effect can be ignored. Therefore, for simplicity and engineering practical reasons,
the reinforced concrete plate is considered in isotropic conditions.

In 1998, the author undertook the design task of 15,000 tons/year mucilage
mixing tank (Fig. 1.1) and coagulant configuration tank (Fig. 1.2) in NBR device.
The height of the mucilage mixing tank is 7.3 m, the length is 20.7 m, the width is
13.2 m, and the tank liquid temperature is 60 °C; the height of the coagulant
configuration tank is 4.5 m, the length is 12.5 m, the width is 9 m, the tank liquid
temperature is 45 °C. According to the survey, the plate thickness and reinforce-
ment amount were large in similar project design, and the theory of thermal elas-
ticity showed that: the bigger plate thickness is, the bigger bending stiffness is. So
the amount of reinforcement caused by temperature difference is greater. The
concrete rectangular liquid storage structure is composed of rectangular plates, so
the book discusses thermal bending of concrete rectangular thin plate with four
edges clamped and with free boundary, and discusses the thermal vibration and
thermal buckling of concrete rectangular plate with simply supported.
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Fig. 1.2 Coagulant configuration tank

1.3 The Main Contents of the Book

1.3.1 Thermal Bending of Concrete Rectangular
Thin Plate

According to the boundary condition of the rectangular thin plate, it can be divided
into two types, which are four edges supported and with free boundary rectangular
thin plate. Four edges supported rectangular thin plate can be divided into six types,
which are the rectangular thin plates with four edges simply supported, four edges
clamped, three edges clamped and one edge simply supported, one edge clamped
and three edges simply supported, two adjacent edges clamped and two adjacent
edges simply supported, two opposite edges clamped and two opposite edges
simply supported. Rectangular thin plate with free boundary (this book only discuss
the situation with one free boundary) also can be divided into six types, which are
the rectangular thin plates with three edges simply supported and one edge free,
three edges clamped and one edge free, two opposite edges clamped one edge
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simply supported and one edge free, two adjacent edges clamped one edge simply
supported and one edge free, two opposite edges simply supported one edge
clamped and one edge free, two adjacent edges simply supported one edge clamped
and one edge free.

Usually, temperature effect is not considered when calculating the thin plate. But
if the temperature of one side is higher than the other, in order to guarantee the
normal use of structure, it is necessary to calculate the temperature stress and
deformation of the plate structure. For example, for the chemical liquid-storage
structure when it stores high temperature liquid, or from the perspective of the use
of liquid-storage structure, because of the changes of temperature, many cracks of
concrete liquid-storage structure are to appear due to temperature stress, which
affects the normal use of liquid-storage structure. For rectangular thin plate made of
isotropic materials under the temperature action, only the rectangular thin plate with
four edges simply supported and rectangular thin plate with four edges clamped are
derived in the existing literature, and analytical solutions are obtained. For rect-
angular thin plate with four edges simply supported, the deflection equation satisfies
the boundary condition of w = 0 only, but does not satisfy the boundary condition
that bending moment is zero. And so it remains to be further researched whether
other deflection function can be obtained. For rectangular thin plate with four edges
clamped, according to the existing research results, the rectangular thin plate is
statically indeterminate structure, the lower temperature side should be in tension
and the higher temperature side should be in compression. Moreover, due to the
ubiquitous continuation of the upper and lower sides of the thin plate and the
existence of material elastic modulus, it remains to be further researched that
whether it is suitable to take the deflection function w = 0 directly in the literature
existed, and whether there is other deflection function. Though Liu et al. showed the
calculation table of rectangular thin plate with three edges clamped and one edge
simply supported in their works [13], the horizontal bending moment in the situ-
ation of clamped edges were greater than solutions obtained by w = 0. For tem-
perature effect calculation of rectangular thin plate with other four edges supported,
there have been no reports in the literature. Therefore, various deflection equations
and internal force analytic solution of rectangular thin plate under thermal load with
four edges supported and with free boundary are derived in this book based on
small deflection theory of thin plate.

1.3.2 Thermal Buckling of Concrete Rectangular
Thin Plate

Concrete rectangular thin plate buckling problem can be caused by in-plane com-
pression load, and also can be caused by thermal load. Therefore, there should be a
full understanding about thermal buckling behavior of rectangular thin plate.
According to domestic and foreign researches about present situation, a lot of
research work about the thermal buckling of rectangular thin plate has been made,
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which laid a solid foundation for the thermal buckling analysis of engineering
structure. But for reinforced concrete structure, due to the particularity of the
concrete material itself, the above conclusions cannot be applied very well. Due to
obvious brittleness of concrete material, the thermal buckling analysis of the con-
crete material should be based on the classical theory of small deformation. In
addition, the constitutive relation of concrete compression suggested by the
American Hognestad [44], German Rusch [45] and specifications are the quadratic
function. So in this book, based on the theory of small deflection, the quadratic
double parameters model is adopted considering the nonlinear effect of concrete
material, the balance equation and stability equation of rectangular thin plate under
the thermal load are derived, and the buckling behavior of the concrete rectangular
thin plates when temperature changes uniformly is researched. Thus the
closed-form solution of the critical buckling temperature changes of concrete
rectangular thin plate in a uniform temperature changes is obtained, and the effect of
material constant, length-width ratio, bedding coefficient and relative thickness of
the thin plate on the critical buckling temperature changes is discussed.

1.3.3 Thermal Vibration of Concrete Rectangular
Thin Plate

In recent years, many studies have been made on vibration of the nonlinear plate
with different geometric features extensively. The content involved the influence of
the geometric non-linearity, material non-linearity, anisotropy, shear deformation,
moment of inertia, deformation of static load on the thin plate. At present, due to the
rapid development of science and technology and its wide use in engineering, a lot
of researches about vibration behavior of heating thin plate have been made. For
example, Li and Zhou analyzed vibration of heating ring plate, and did few
researches on concrete material in studies [46—48]. He et al. analyzed dynamic
response of concrete plate under the action of the explosion load, but assumed
concrete as ideal rigid-plastic material. These studies laid a solid foundation for the
vibration of the thin plate analysis. But due to the particularity of concrete material,
the current research results cannot be applied well. Therefore, based on the theory
of small deflection, using the quadratic double parameters model, the dynamic
equation of thermal elastic problem about concrete rectangular thin plate is derived
in this book. Using the Galerkin method and Progression method, the natural
frequency and the deflection function of forced vibration of concrete rectangular
thin plate under the thermal environment is derived. For convenience of engineering
design, concrete rectangular thin plate natural frequency in transverse temperature
and uniform temperature change, and the deflection function under the action of
uniformly distributed load are given, and the influence of material elastic constants,
length-width ratio, relative thickness and temperature of thin plate on natural fre-
quency and deflection function of concrete thin plate is discussed.



Chapter 2
Thermal Bending of Concrete Rectangular
Thin Plate with Four Supported Edges

Abstract The deflection equation and the internal force analytical solution of the
rectangular thin plate supported on four sides (four edges simply supported, four
edges clamped, three edges clamped and one edge simply supported, one edge
clamped and three edges simply supported, two adjacent edges clamped and two
adjacent edges simply supported, two opposite edges clamped and two opposite
edges simply supported) under temperature difference is systematically introduced in
this chapter. In order to facilitate the engineering application, the tables for deflection
and internal force coefficient calculation based on concrete material are made.

S

2.1 Introduction

The rectangular thin plate with four supported edges can be classified into six types:
rectangular thin plate with four simply supported edges; rectangular thin plate with
four clamped edges; rectangular thin plate with three clamped edges and one simply
supported edge; rectangular thin plate with three simply supported edges and one
clamped edge; rectangular thin plate with two adjacent simply supported edges and
two adjacent clamped edges, rectangular thin plate with two opposite simply sup-
ported edges and two clamped opposite edges.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018 9
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular

Thin Plate, Springer Tracts in Civil Engineering,

DOI 10.1007/978-981-10-4472-4_2
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For the calculation of the temperature effect of the rectangular thin plate, the
existing literature gives the analytical solution for the rectangular thin plate with
four simply supported edges and the rectangular thin plate with four clamped edges
for the isotropic materials. For example, to the rectangular thin plate with four
simply supported edges under temperature disparity, the literature [4] gave the
calculation formulas of deflection with any temperature change, namely

1 o Amn . mnx . nmy
wx,y) = ———5— ——+ sin— sin—- (2.1)
A M
b . ¢ 3
Where = 3 ¢ 2 My (1) sin 255 sin s, D — o8

The literature [3] gave the calculation formulas of deflection with temperature
change along the thickness change, namely
16M* z‘”: >\ sin 2 sm@

=D n=13,5.) (22)

w(x,y) =

m-
m=1 n=1 mn b2>

where, M* = Eo f,l (AT)zdz.

The literature [49] also gave the approximate calculation formulas of bending
moment with temperature change along the thickness change, namely

MxT(MyT) = kxt(kyt)MT (2’3)

in above equation, M” stands for the distribution moment of rectangular thin plate
with four clamped edges caused by lateral temperature disparity; AT stands for the
lateral temperature disparity; o stands for the thermal expansion coefficient of
material; E stands for elastic modulus of material; u stands for Poisson’s ratio of
materials; & stands for the thickness of the thin plate; k, (k) stands for the coef-
ficient of bending moment; M, stands for the distribution moment in the x direc-
tion caused by lateral temperature disparity; M,y stands for the distribution moment
in the y direction caused by lateral temperature disparity.

It is easy to see that (2.2) is the special form of (2.1), and (2.3) is an approxi-
mation of (2.2). Therefore, here only (2.1) will be described. By calculating, (2.1)
only satisfies the edge condition of w = 0, but does not satisfy the edge condition of
moment being equal to zero, and it requires further research whether there are other
deflection functions.

Although there are solutions of rectangular thin plate with four clamped edges
under the action of the temperature and widely used in engineering [18], such as:

o ATEK?

My=My=M"=—"—
12(1 — p)

(2.4)
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(2.4) is obtained by the deflection function satisfying the boundary conditions of
w = 0. But for statically indeterminate structure under the action of temperature, the
lower temperature side is in tension, the higher temperature side is in compression.
And it is continuously everywhere on the upper and lower surface. Due to the
existence of elastic modulus, whether the deflection function w = 0 is appropriate in
the existing literature needs further verification, as well as the deflection function
should be taken as w = w (x, y).

Though Liu et al. showed the calculating table of rectangular thin plate with
three clamped edges and one simply supported edge (see Table 2.1) in their work
[13], transversal moments on the clamped edges were greater than the solution
obtained by w = 0. For the calculation of temperature effects about other rectan-
gular thin plate with four supported edges, current literatures have not been
reported.

Therefore, this chapter is based on the small deflection plate theory. Firstly,
through assuming deflection function that meets equilibrium differential equation
and some of boundary condition, using the Levy method, the analytical solution of
deflection and internal force of isotropic rectangular thin plate with four simply
supported edges is derived. Then according to the conclusion of rectangular thin
plate with four simply supported edges and boundary conditions of other

Table 2.1 Bending calculation coefficient with three edges clamped and one edge free under
temperature disparity

y L
M; = k. aATER* 3,
_____________ / M},T = kyTozATEhzn,el
N, 1s reduction factor of
or T considering concrete creep
Myl My l
7H or + T y
Mxl MX
or
Myz MOT
i ) X
0 A
lx

L1, kT kyT 1 kL kyT2 ky ky
0.50 0.1045 0.0987 0.0972 0.1000 0.0973 0.0998
0.75 0.1139 0.0999 0.0982 0.1021 0.0926 0.1003
1.00 0.1233 0.1008 0.0981 0.1094 0.0885 0.0961
1.25 0.1288 0.1011 0.0993 0.1175 0.0869 0.0917
1.50 0.1344 0.1016 0.1008 0.1286 0.0853 0.0873
1.75 0.1329 0.1013 0.1014 0.1344 0.0877 0.0829
2.00 0.1324 0.1008 0.1019 0.1402 0.0901 0.0784
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rectangular thin plate with four supported edges, by applying the virtual displace-
ment principle and superposition principle, the deflection equation and analytical
solution of internal force of the other rectangular thin plate with four supported
edges under the action of lateral temperature disparity is derived, which provides a
theoretical basis for later engineering calculation.

2.2 The Basic Equation for the Thermal Elastic Problem
of Rectangular Thin Plate

2.2.1 Calculation Assumption

(1) Straight-line which is perpendicular to the mid-plane before deformation is still
perpendicular to the deformed mid-plane, and the length has no change;

(2) The stress o, 1,; and 1y, are far less than the other three stresses (ay, 0, and 1,,),
so the strain caused by these stress can be neglected;

(3) Each point in mid-plane has not displacement which is parallel to mid-plane,
namely u|.—o =0, v|.—o = 0.

2.2.2 Basic Equation of Thermal Elasticity

The existing literature [3—5] showed that the geometry equation for the thermal
elastic problem of rectangular thin plate is

_Ou _ D

== T 5t

v 0w

& == "9t (25)
__ v u_ _~HPw

Yo o T oy = 2wyt

where u, v stand for the displacements in x, y directions, respectively; w stands for
the deflection of any point on the surface of the thin plate; ., ¢, and y,, stand for the
strains of any point on the surface of the thin plate, respectively.

Because of neglecting strain caused by the stress a,, physical equation can be
written as

& = % (0x — poy) +oT
&y =% (0y — poy) +oT (2.6)
2(1+p)

Yy =T E o
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where T = T(x,y,z) stands for temperature disparity of any point in the thin plate.
Stresses can be written as

— Ez _ EdT
O-x - (&\z + ) l—/t
— EZ 2w\ _ Eol 2.7
oy = (av2 Jr/‘aﬂ) By (2.7)
— _ _ _Ez Pw
Ty = Tyx = 1+ u Oxdy

As shown in Fig. 2.1, M, and M, stand for moments of unit width on the cross
section, respectively; M,, stands for torment of unit width on the cross section,
hence

E(T)To(T)zdz

Q’)
s
~
—
\ |~
=
— i

h
2

M= [z dz_—D(axz i) —
h

=

2 2
y y
My = [ 2o,z == D(5% +ud¥) -4 [ ETAT)zdz  (28)
_h _h
2

2 62

= [ztgdz=—D(1 — 1) 55

h

—2

The thickness of the plate compared with the size of the other two directions is
very small, for the purpose of engineering application, assuming that the temper-
ature changes along the thickness direction only, namely, we only consider the
situation of lateral temperature change. That is to say, in this paper, the analytical
solution of lateral deflection and internal forces that is studied is for the specific
condition of lateral temperature change; in addition, due to the thin plate, before the
plate structure is normally used, the heat release W of concrete condensation
sclerosis tends to zero as the change of pouring time. So the original parabolic
nonlinear temperature distribution rule becomes the linear situation, namely [17]

Fig. 2.1 Element forces and
stresses sketch map (6)
M_|eM
% MV Ql\. M\x y
fad .
Z N % T X
h w AT
— dz — O-,r
2 7 ! x
o, 'z, dy, A/
dx
Y Z
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T+ T, (T2_T1)Z

T = _
2 h

(2.9)

where 7| and T, stand for the temperature on two surfaces of the thin plate,
respectively.

According to the existing literature [15], the relationship between concrete
elastic modulus under any temperature normal temperature can be determined by
using the following equations:

E(T) = T<60°C

E(T) = 0 88E ~0.94E 60°C<T <100°C

E(T) = 0.95E ~ 1.08E 100°C<T <300°C (2.10.1)
-1

E(T) = [1+18(i5)™'| 'E T >300°C

Under the action of temperature, the linear expansion coefficient o(7') is deter-
mined by using the following equation:

«(T) =28 (ﬁ) x 107¢ (2.10.2)

As can be seen, the temperature only slightly affects the elastic modulus of
concrete and the linear expansion coefficient under normal temperature. Thus, the
approximate values are as follows:

E(T)=E, o(T) = o (2.11)

By substituting (2.9) and (2.11) into (2.8) obtains the following:

M, = -D(5% +uZ¥) - M"
My:_( iy dvz) MT (2.12)
My = —D(1 — p) &

where MT = fZ"‘fT’L AT stands for the lateral temperature disparity [16, 50].

As it is known that the equilibrium differential equations of elastic surface about
thin plate with same thickness is:

2 2 2
8Mx+28Mxy+8My
Ox? Ox0y Oy
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As there is no external load, only temperature, (2.12) is substituted into the
above mentioned equation, there is:

P\
(@ + a—y2> w = 0. (2.13)

2.3 Thermal Bending of Rectangular Thin Plate with Four
Edges Simply Supported

2.3.1 Boundary Conditions

In Fig. 2.2, the boundary conditions to clamped edges are:

W|x=0 = 07 M= =0
x=a x=a
w y= ’2_’ = 07 MV }f:—% =0

y=% y=t

To simply supported edges, due to w = 0 on whole edge, according to (2.12), the
above formulas are (Fig. 2.2):

O*w MT

w0 =0, 55 |0 = =y (2.14)
O*w MT

w y:_g =0, 87);2 )7:]% = —3 (215)

2.3.2 The Analytical Solution of the Thermal Elastic
Problem

According to (2.13), ordering

o T

M
w= ZXmYm —E(x—a)x

m=1

where X, is only a function about x; Y,, is a function about y only.
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According to the edge conditions (2.14), ordering X,, = sin "%, so the deflection
function w can be written as

- . mnx M7
w = ZIY," SIHT—E(X—CI)X (216)

By substituting (2.16) into the differential (2.13), hence:

vy —2mEyr ity —

Solution of this equation can be written as follows [51]:

. i Ty . T i T
Y, =A, smhm + B, coshM +Cp mry smhm + D, ey coshm
a a a a a a

Due to the temperature and the plate are symmetrical about the x-axis, so Y,
must be an even function, thereby A,, = D,, = 0, by substituting them into (2.16),
hence

o0

MT
w=>" (B,,, cosh’"Tny n cmm%y sinhmTT”y) sianKy ~SpE—ax  (217)

m=1

Ordering mz—’(‘lb = o, by substituting (2.17) into the boundary condition (2.15),
hence

MT

o0
X
Z (B cosho,, + Cpo, sinho,) sian =3 (x—a)x (2.18)
m=1
>, m*n? T Mt
Z 5~ [(Bn +2C,) coshay, + Cpoty, sinhay,| Sin e = (2.19)
m=1 a a D
Fig. 2.2 Four edges simply y

supported

CRRSY

SRR
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The right side of (2.18) is expanded into a single triangular series, namely

M - (2 [M” mmx . mmX
—(x—a)x—z 2D(x—a)xsm7dx sin——

> 2a*M" . mmx
:Z (cosmm — 1) sin—
s a

Then (2.18) becomes
@M’

B,, cosha, + Cyoty sinhoy, = ——
Dm°n

(cosmm — 1) (2.20)

Similarly, the right side of (2.19) is expanded into a single triangular series, namely

MT 2Mri cosmn —1 . mmx

- = sin——
D nD a
m=1

Then the (2.19) becomes

aZMT
(B +2Cy,) cosha,, + Cp0, sinha, = D (cosmm — 1) (2.21)
By (2.20) and (2.21), there is
a2 T
B, = Dirﬁjﬂ Zsh% (cosmm — 1)
C,=0
By substituting B,, and C,, into (2.17), hence
4a2MT = 20,y . mmnx M
w= Z 3 coshocm cosh L sin——— E(x —a)x (2.22)

m=13,...

Since (2.22) is made from satisfying the equilibrium differential Eqs. (2.13) and all
boundary condition (2.14) and (2.15), so (2.22) is the deflection function of rectangular
thin plate with simply supported edges under transverse temperature disparity.
Substituting (2.22) into (2.12), internal force calculation formula is obtained.

Because

o0
Pw _ aMm’ 1 20y ioommx _ MT
ox* — Drn m*lZ3 m cosha,, cosh p ST, D
O w . _ 2M" i cosh 21my Sin
0y Drn 13" coshoc,,,
Pw _ _ AMT i L sinh 222 cos 2
Ox0y Dn TS m cosha,,
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Therefore, there is

o0
T .
MT =y —1) L cosh™@ gjp 2m
x T ([l ) m coshx,,, a a

T e
MI=2C(1—p) > —L—cosh™ sin™@ 4 (u—1)M"  (2.23)

y n m—13 m coshoz,,,
T _ 4M” & 1

MT =4 (1 _ sinh "X cog X
xy n ( 'u) m:% m coshacm a a

(2.23) is internal force analytical solution of rectangular thin plate with simply
supported edges under transverse temperature disparity.

2.3.3 Results Analysis

MATLAB software is used to test the accuracy of Eqgs. (2.22) and (2.23). The
results show that for deflection function w, when taking m = n = 5, the result has
converged to the exact solution; for the bending moment of unit width, when taking
m = n =7, the result has converged to the exact solution; for the bidirectional plate
in engineering with any length-width ratio, its internal force solutions are equal to
the results with existing literature (Because the existing literature has not given
deflection calculation coefficient, it did not make deflection comparison). Because
the existing literature has not given the deflection calculation coefficient, so for the
convenience and engineering application, supplementing deflection calculation
coefficient, thermal bending calculation results of concrete rectangular thin plate
with four simply supported sides are made (see Table A.1).

2.3.4 Engineering Design

For a concrete rectangular thin plate with four edges simply supported under
temperature variation which is perpendicular to surface, according to (2.10.1) and

(2.10.2), E and o are obtained. And then M7 is given, namely M” = 11527({}5 7

According to Table A.1, k,, k, and f can be obtained by f— Then M!, which is

M! = kM", is gotten as well as wy, and M| = k,M". After the bending moment is

gotten, the steel bars due to temperature can be designed according to the knowl-
edge of the reinforced concrete. Namely [44—45]

My
%sx = 1000012
N (2.24.1)
%sy = 10000/ 2
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7o = 0.5(1+ /T = 2a) (2242)
7y = 0.5(1+ /T = 204) o
T
Al = }}4—\/
hito (2.24.3)
Asyl :m

where, M is the bending moment design value in x direction, and MTy is the
bending moment design value in y direction, and Aj,; is the steel section area per
meter width in x direction, and Ay is the steel section area per meter width in
y direction, and f, is the tensile strength design value of the steel, and o, and o, are
the coefficient of section resistance moment in x and y directions, and o; is the
equivalent rectangular stress diagram coefficient of concrete compressive zone, and
7, 1s the internal force arm coefficient of section, and Ay is the effective height of the
section, hy = h — c (c is the thickness of the concrete protective layer), and f, is the
compressive strength design value of the concrete.

If the deflection is w, and the area of steel bar is A (Ayy2) per unit width in x(y)
direction caused by other factors except for the temperature are known, there are

A = Agl +As0
Asy = Asyl +Asy2 (225)
w=wi+w;

Pay attention to that, the formulas of this chapter are based on thin plate structure
that is homogeneous elastic body, which does not accord with the concrete.
Especially, the creep and cracks of concrete reduce component stiffness, and result
in thermal stress relaxation. Therefore, according to Table A.1, calculating bending
moment should multiply the reduction factor of 0.65, and bearing capacity calcu-
lation should multiply the partial coefficient.

2.3.5 Numerical Example

Example: Taking the liquid storage structure with top plate as an example, the
numerical analysis is carried out by a reasonable calculation. The length I, and
width [, of the plate are both 6 m. The thickness & of the plate is 180 mm. The
temperature difference AT between the upper and lower surface of plate is 60 °C.
The live load p is 1 kN/m?. The bulk density of concrete is 26 kN/m”>. The value of
concrete strength is 30 MPa. The value of steel strength is 360 MPa.

Solution: In view of the fact that the stiffness of wallboard is far greater than the
stiffness of top plate in general, the top plate can be regarded as the four edges
simply supported. According to the literature [45], the linear expansion coefficient o
of concrete is 1 x 107> °C. The Poisson’s ratio y of concrete is 1/6. The protective
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layer thickness of concrete is 10 mm. The elastic modulus E of concrete is
3%x10” kN/m?. The design value of compressive strength f. for concrete is
14.3 N/mm?. The partial coefficients of the dead load and live load are taken as 1.2
and 1.4, respectively.

Dead load: g = 0.18 x 26 = 4.68 kN/m>
Live load: p = 1 kN/m?
Design load: ¢ = 1.4p + 1.2g = 7.02 kN/m”.

According to the initial assumption that the diameter of the steel is 10 mm, the
distance from the center of the steel in x direction to the down surface of concrete
plate, ¢, = ¢ + 10/2, is 15 mm and the distance from the center of the steel in
y direction to the down surface of concrete plate, ¢, = ¢ + 10 + 10/2, is 25 mm.
The distance from the center of the steel in x direction to the top surface of concrete
plate, hog, = h — ¢, is 165 mm and the distance from the center of the steel in
y direction to the top surface of concrete plate, ho, = h — ¢y, is 155 mm.

1. Temperature Action
Taking E =3 x 10’ kN/m?, o =1 x 107> °C, AT =60 °C, h =180 mm and

w = 1/6 into the (2.1), D = #’jﬂz), and (2.4), the following results can be gotten.

ER® 3 x 107 x 0.18>
D= =X XY 14996.57kN - m
12(1 — p2) 12(1-3)
ATER? 1 x 1075 x 60 x 3 x 107 x 0.18?
M =2 S X X 5832kN
12(1 — p) 12(1 -
From the Table A.1 in the Appendix A, there are
f =0.0737,k, = 0.4167,k, = 0.4167
2M" 6 x 58.32
=f*— =0.0737 x —————=10.0103
M =g " 14996.57 m

M! = kM" = 0.4167 x 58.42 = 24.30kN - m
M = k,M" = 0.4167 x 58.42 = 24.30kN - m

According to the literature [45], oy = 1, assuming that sy = hg,, and taking MXT s
f.» ho and a; into (2.24.1), there is

M! 24.3 x 106

= = — 0.0624
T 10000, fh2 1000 x 1 x 143 x 1652
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Assuming that hy = hy,, taking MyT , fes o, and o into (2.24.1), there is

M 24.3 x 10°

10000, f,h3 1000 x 1 x 14.3 x 1552

Oisy

Taking o, and ay, into (2.24.2), there is

Ve = 0.5(1+ /T —20,) = 0.5(1++v1—2x0.0624) = 0.9678
7y = 0.5(1+ /T =2a,) =0.5(14++v1—-2x0.071) = 0.9631

Taking y,, and 7,, into (2.24.3), there is

T 6
A.fxl - MX = 243 x 10 =422.7 IIlIIl2
fivsho 360 x 0.9678 x 165
m! 24.3 % 10°
Agyi X x = 452.2 mm?

~ i 360 x 0.9631 x 155

2. Load Action

From the literature [13, 52], w, = f . M, = kyql* and M, = gl can be obtained.
The value / is the minimum [/, /,].
According to the literature [13, 52], there are

f =0.00406, k. = 0.0368 and k, = 0.0368
Taking f, g, [ and D into w, :f%, there is

gt 7.02 x 6
wy =f 5 = 0.00406 x oo = 0.0025

Taking k,, k, into M, = k.gl* and M, = k,ql* respectively, there are
M, = kygl* = 0.0368 x 7.02 x 6* = 9.80kN - m

M, = kgl = 0.0368 x 7.02 x 6 = 9.80kN - m

Assuming that M, = Mf and hgy = hg,, and taking M,, f., hy and o into (2.24.1),
there is

M. 9.8 x 10°
10000,k 1000 x 1 x 14.3 x 1652

=0.0252

CZSX
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Assuming that M, = MyT and hy = hy,, and taking M,, f., ho and o into (2.24.1),
there is

M, 9.8 x 10°
10000, £.h2 1000 x 1 x 14.3 x 1552

Oy = = 0.0285

Taking oy, and oy, into (2.24.2), there is

P = 0.5(14+ /T = 20,) = 0.5(1+ /T — 2 x 0.0252) = 0.9872
7y = 0.5(14 /T=2a,) = 0.5(1++/T—2 x 0.0285) = 0.9855

Assuming that M, = M!, 7, =y, and hy = h,, and taking M,, f, and y, into
(2.24.3), there is
M, 9.8 x 10°

fosho 360 x 0.9872 x 165 mm

A sx2

Assuming that M, = M; s Vs = Vsy and hg = hg,, and taking M,, f, and y, into
(2.24.3), there is

M, 9.8 x 10°

= = — 178.2 mm?
fivsho 360 x 0.9855 x 155 mm

Asy2

In summary, the analysis results can be obtained under the action of temperature
and load. That is

w=w;+wy = 0.0103+0.0025 = 0.0128 m
Age = Agt +Agp = 4227+ 167.1 = 589.8 mm’
Ay = Agyy + Ay = 452.2+178.2 = 630.4 mm?
From the above results, the total deflection at the midspan point of the plate is
12.8 mm. The reinforcement area per meter at the center point of the thin plate in

the x direction is 589.8 mm? and the reinforcement area per meter at the center
point of the thin plate in the y direction is 630.4 mm?>.

2.4 Thermal Bending of Rectangular Thin Plate with Four
Edges Clamped

2.4.1 Boundary Conditions

In Fig. 2.3, the boundary conditions to the clamped edges are:
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Fig. 2.3 Four edges clamped y
b
X
0
a

ow
x= 07 | x=0 — 0 2.26
ST b (220

ow
Wily=0 = 07 — | y=0 = 0 (2.27)

}V»:b Ox ';:b

2.4.2 Analytical Solution of Thermal Elastic Problem

To satisfy the balance differential Eq. (2.13) and the boundary conditions (2.26)
and (2.27), it is apparently that w = 0, but on the boundary according to the (2.12),
it is known that

T
M, ‘y:O,b: M, -M

x:O,a:

Rectangular thin plate with four clamped edges under the action of lateral
variable temperature disparity is regarded as a superposition of the rectangular thin
plate with four simply supported edges under the action of bending moment
My (M7 = —MT") on four edges and rectangular thin plate with four edges simply
supported under the action of temperature disparity AT.

1. Bending Deformation Energy of Thin Plate

As shown in Fig. 2.1, ignoring the work done by shearing force, — %Mx%dxdy is
the work done by bending moment M.dy; f%My%dxdy is work done by the
bending moment M, dx; %Mxy g)%”ydxdy is work done by torque M,,dx; also, because
the work done by the torque and the work done by the bending moment are not
coupled, deformation energy of differential body is
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1 5w Pw Pw
= oY e, 2 oy
v 2[ “ae T ”aa}d"dy

Substituting (2.12) into above equation, and letting M" =0 in (2.12), there is
1 2 2.0\ 2 2. 92 2.0\ 2
av = Lpd (20 L WYy |Owd (O
2 Ox2  0y? Ox2 Oy? OxOy
To the whole plate, deformation energy in bending plate is
2 2 2., 92 2.0\ 2
sz// o'w 87 (1 - )alal, O"w
8x2 Ox2 0y? Ox0y

In above equation, the second item of integrand function is transformed using
Green’s theorem, there is

ow O*w

2. 2.0\ 2 0 o2 2w
// 87w87w_ 0w dxdy:// (('Jxﬁy)_ (dx(?xdy) dxdy
Ox2 Oy? Ox0y Ox Oy

2 2
[ (g e,
Ox Ox0Oy Ox Oy?
The line integral of (2.28) is along the whole edge of rectangular thin plate.
Because the thin plate is with four edges simply supported, x is constant on the

boundary, dx = 0 and ‘?}KV = 0; on the boundary, y is constant, dy = 0 and 4* = 0,

so (2.28) is simplified to
w 2
= —D dxd 2.29
I (5 + ) 229)

2. The Analytic Solution Under Uniform Bending Moment M, on Four Edges

According to the edge condition of rectangular thin plate with four simply sup-
ported edges and equilibrium differential equation for the elastic curved surface of
identical thickness plate, deflection function may be supposed as

2 & . imx . jmx
= Aji — — 2.30
w Z Z j sin p sin 5 ( )
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By substituting (2.30) into (2.29), deformation energy of plate is

4 00 00 2 o\ 2

nabD A J

V= g 513 A 513 AU(a_Z + ﬁ) (2.31)
i=1,3,...j=13,...

The slope of every point along x =0, x = a and y = 0 on bending plane of
plate is

8 T
— () = Z iA; s1n
1 1,3,...j=13,...
8W T = >
y=0 = £ — Z Z JAjj sm—
Ay y=b b, 130 j=1 3.

When Aj increases to Aj; -+ 0A;, slope increment of every point along x =0,
x =a and y = 0 on bending plane of plate is

ow T, . jmy
578x fig = :l:;z sin™ = 0A;;
ow s inx
00— |y—0 = E£—j sin— J0A;;
oy T

The work done by bending moment along edges of plate is
2 / M;gn sinm7xdx5A,-j+2 / M;gi sin’%dyaA,-j
0

Because

OfM; sinj%dy =2LF;

4Mz 4M
where E,' = l_nT’ F'J = J_nT

The work done of moment is

EéA,,+l b poa,
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According to (2.31), the increment of deformation energy is

4 .2 o\ 2
n*abD Jj
oV == ( + b2> AjOA;

According to the virtual displacement principle, hence

4 4 [P +j2 - LI an 16M; 1 (2 +j2 -
il i =—=|l31t5
' mtDab \a® = b? I ! D ij\a® b2

By substituting the above formula into (2.30), hence

oMy S & 1/2 2\7!
wiey)=— 5 D 7( +J—) Sln7s1nJ7y (2.32)

Substitute (2.32) into (2.12) (where MT =

0), there is

16M; & S Ry wla® iny
Mx p) Z Z m Sln X gint?> b
i=1,3 3,...

M, — 16M; i f: a4 pith?

o ) S~ ST (2.33)
i=13,...j=13,.
16(u—1)abM; &,
— T
M, = — 3 Z 71%2 o Cos X e cos s
i=13,...j=13,..

3. The Analytical Solution of Rectangular Thin Plate with Four Simply Supported
Edges Under Temperature Disparity AT

For easy superposition, in (2.22) and (2.23), x axis can be moved to the y = —2

2 SO
there is
da’MT & 1 20,y mnx  MT
w=— cosh — 0 sin— — — (x —a)x
Dr? m; m3 cosha, ( b " a 2D ( )

(2.34)

o0
M, = (1~ 1) ;3 mcoihocm cosh ("2 — o) sin %
m=

,,,,,

T x .
My, =8 (1 — p) ; mcoihoc,,, cosh (™ — 4,,) sin &
m=1,5,...

(u—1)M"  (2.35)

h osh(@ — ocm) cos "I
m=13... mCOs o
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4. The Analytical Solution of Rectangular Thin Plate with Four Simply Supported
Edges Under Thermal Load

By superposing (2.32) and (2.34), hence

4aPMT & 1 mn Commx MT

y
w=— cosh(——ac)sm———x—ax
D 4= m?cosha,, a " a 2D( )

M7 & X 1 A\ i | jny
— = sin— sin——
n4D.%;j;:l](a2 ) a b

i=

(2.36)

(2.36) is the deflection formula of rectangular thin plate with four clamped edges
under lateral temperature disparity.
Superpose (2.33) and (2.35), hence

o0
M" = W1y S L— cosh (2 — a,) sinZ&

x T 13 cosha,,,
1oMT o = 12 PN cin i i i1y
- DY 7j<a_2+/‘ﬁ) sin == sin*
i=13,..j=13,..
T _ aM” -
M 1— cosh(ZX — ¢,,) sin 2
y T ( H ) m:lZ3 mcoshocm ( m) a
. P , (2.37)
+ (u— 1M — 160 Z Z 7 ( bz) sin & gin 2
i=1,3,...j=13,..
T _ 4M" =
M 1-— cosh (& — ¢,,) cosZ&x
xy n ( ,Lt) m:% mcosl’locm ( m)
16M" & - AR inx iy
HA-my 2 2 (@tp) coscos
1=1,3,...J= .

(2.37) is internal force solution of rectangular thin plate with four clamped edges
under lateral temperature disparity.

2.4.3 Result Analysis

To test that formulas (2.36) and (2.37) are correct, the software MATLAB is used to
program the formulas. The results show that: for deflection function w, when taking
m = n = 69, the result has converged to exact solution; for the bending moment M,
of unit width, when taking m = n = 7999, result has converged to exact solution;
for the bending moment M, of unit width, when taking m = n = 10999, the result
basically has converged to the exact solution; for clamped concrete rectangular
plate with arbitrary length-width ratio, the internal force can be seen in Table 2, and
it is identical to the existing literature.
Engineering application is seen in Sect. 2.3.4.
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2.5 Thermal Bending of Rectangular Thin Plate with One
Edge Simply Supported and Three Edges Clamped

2.5.1 Boundary Conditions

In Fig. 2.4, the edge conditions for the clamped edge are:

ow
wlheo =0, 25|, o =0 2.38
|} 0 dy |) 0 ( )
ow
0 =02 =0 2.39
M0 =0 e | (239)

To simply supported edges, due to the deflection w = 0 on the whole boundary,
by (2.12), the above equation becomes (Fig. 2.4)

Pw MmT
Wiy=b = 0, a—yz |y:b = —F (240)

2.5.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.38), (2.39) and (2.40), hence

Myly—p =0, M| _ g = —M", My|y—g = —M"

X=a

Now, Rectangular thin plate with three clamped edges and one simply supported
edge under temperature disparity along thickness direction is regarded as a super-
position of rectangular thin plate with four simply supported edges under the action
of the temperature difference AT and rectangular thin plate with four simply

Fig. 2.4 Three edges y
clamped and one edge simply
supported
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supported edges under the uniform bending moment M; (M; = —M") on three
adjacent edges.

1. The Analytic Solution Under the Uniform Bending Moment M; on Three
Adjacent Edges

The deformation energy of plate is equal to (2.31), namely

2 2

00 00 2
nabD 2 (1 J
V= Z ZANA"" (a—2 + ﬁ) (2.41)

8 00 o0

- Xfo :igi'Ai iA; sm]7y

When Aj increases to A; + 0A;;, slope increment of every point along x = 0,
x =a and y = 0 on bending plane of plate is

inx
8 |) —0 = j:bjsm a 0A;;
0w

i

=0 = i—z sm—éAU

X=a a

The work done by moment along edges of plate is
. b .
_T, . ITX T, Ty
/MT 5 SIH7M5AU+2/MT i 51n7dx()A,-j

Because

‘7‘ M* rm dx 2aM”
0

in

b
P 15 __ 2bM"
OfMT sinj*dx = 227

The work done by moment is

ja  2ib
2 — | M 0A;
(5 Juron
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According to Eq. (2.41), the increment of deformation energy is

4 2 o\ 2
ntabD (i Jj

According to the virtual displacement principle, hence

SM- (2 P\ /22 P
M= (54 5) (S5+5
n*Dij \a b a b

By substituting the above formula into the (2.30), hence

SMy S XX 1 /2 A\ 22 P\ . inx | jmy
w(x7y):n45 Z Z (;4—?) (a—2+—> sin—- sin== (2.42)

i 2
=130 j=13... Y b

Substituting (2.42) into (2.12) (where MT = 0), the internal force calculation

formula of the thin plate with three simply supported edges and one clamped edges
under temperature disparity along thickness is obtained.

8M; o — 1(Z AN(2 L 2 222 o P aiine i iy
M":"z-; 12; il The )@t i) @ ti)smy smy
i=13,.../=13,...
- o0 oo -2
_ 8M; V(2 L P\ (2 o F 22 | N i imx gindmY
My== 2 2, 5(#a—z+b— 2tp) (@ tp)sinsinG (2.43)
i=13,.../=13,...
_ -2
_8=DM; o~ (2 P 2 P Iy e T
My =" 2 2 (atm) (@t i) coscosty
i=13,...j=13,...

2. The Analytic Solution of the Rectangular Thin Plate with Three Clamped Edges
and One Simply Supported Edge Under Heat Load

By superposing (2.34) and (2.42), hence

da’MT & 1 200,y mnx  MT
w=— cosh — 0 sin— — —(x —a)x
Dr? 111:124.. m’ COShO{’” m) ( )

b a 2D

SMT S X 1 /2 A\ /22 P\ L inx | jny

_—TE4D Z Z a(;"‘ﬁ) (a_2+ﬁ) Sln; Sln7
i=13,...j=13,...

(2.44)

(2.44) is just the deflection formula of rectangular thin plate with three clamped

edges and one simply supported edge under temperature disparity along thickness
direction.
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Superposing (2.35) and (2.43), hence

T _4aMt ), mry in M
M —(u—1) > prr o cosh (™ — 4,,) sin ™
m=13,
00 o0 -2
8m” 2 PN(E L 1 22 | Y g imx gin Y
- X (a_2+'ub_2 e Ti) (@& +k)singsin
i=13,...j=13,...
T _ 4M s T
. _ mmy _ 11 MTX _
M =2E(1—p) ¥ L cosh("F — &) sin”™+ (u— )M
m=13,... "
s’ o~ s 1(, 2 B J ] Jmy
__ M~ 1 L 2 ) sin ™ ¢in{™
HZ,E'Z ,( fo + % )( ) (az+b2>smasmb
i=13,...j=13,...
T 4MT o 1
my s
My =4E(1—p) 3 cosh (™ — a,,) cos
m=13,...
-2
81— M = s 2 2 2 2 . .
+ (nz% DY %4_2’)_2 L+ 4 cos & cos 7
=13, j=13,..

(2.45)

(2.45) is the internal force calculation formula of the rectangular thin plate with
three clamped edges and one simply supported edge under temperature disparity
along thickness.

2.5.3 Result Analysis

To test the formulas (2.44) and (2.45) are correct, the software MATLAB is used to
program the formulas. The results show that: when taking m = n = 39, the result has
converged to exact solution; for the bending moment M, of unit width, when taking
m = n = 7999, result has converged to exact solution; for the bending moment M, of
unit width, when taking m = n = 1999, the result has basically converged to the
exact solution at this time, and when taking m = n = 2001, the error is only 1/10,000.
For the convenience and engineering practical reasons, according to the length-width
ratio of the plate, the thermal bending result of the concrete rectangular thin plate
with three edges clamped and one simply supported is tabulated (see Table A.3).
Engineering application is seen in Sect. 2.3.4.

2.6 Thermal Bending of Rectangular Thin Plate
with Three Edges Simply Supported and One Edge
Clamped

2.6.1 Boundary Conditions

In Fig. 2.5, the edge conditions for the clamped edge are:
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Fig. 2.5 One edge clamped y
and three edges simply
supported rpm=soooooooooosooo '
o| | s
| L
[
a
ow
Wly—o =0, o ly—0 =0 (2.46)

To simply supported edges, due to the deflection w = 0 on the whole boundary,
by (2.12), the above equation becomes

O*w MT

Wix=0 = 07 8X2 x=0 — _? (247)
0w MT

wlyp = 0, 5 s === (2.48)

2.6.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.46), (2.47) and (2.48), it is known that

Milx=0=0 M)"y:o: -M", My’y:h: 0

X=a

Now, rectangular thin plate with one clamped edges and three simply edge under
temperature disparity along thickness is regarded as a superposition of rectangular
thin plate with four simply supported edges under the action of the temperature
difference AT and the rectangular thin plate with four simply supported edges under
the action of bending moment M; on edge y = 0.
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1. The Analytical Solution of the Uniform Bending Moment M, of One Edge

The deformation energy of plate is equal to (2.31), namely

CmabD & X L (2 P )4
V= 8 ZAija_z"'ﬁ (2.49)

When Aj increases to A; + 6A
bending plane of plate is

ij» slope increment of every point along y = 0 on

5

. . ImX
ay —:l:z‘] SlI‘l?éAij

y=0

The work done by bending moment along edges of plate is
T inXx
My —j sin—dxoA;
/ T ) sin— i

Because

I

2aM;
/MT sm—dx— a. r

The work done by moment is

]Cl

2% My oA,

According to (2.49), the increment of deformation energy is

mabD (2 2\’

According to the virtual displacement principle, hence

/ N 22—
A — L i + 'i ‘M_T
Y Db \a?> - b? i

By substituting the above formula into the (2.30), hence
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8M; X~ XN 2 A\ imx . jmy
w(x,y) = 2D Z Z }(;"’_ﬁ sin—- sin=~ (2.50)

=130 j=1 3. a

By substituting (2.50) into (2.12) (where M7 = 0) that is the internal force
calculation formula of the rectangular thin plate with four simply supported edges
under the bending moment M on one edge.

R N AV cim iy
Me=zp 2 2 ,(a— F) (F"'FZ) sin G sin >
i=1,3,...j=13,...
_ 0 )
M i 2 2 2 iny
M= > S () (B k) snman sy
i=13,... j=13,..
X 0 -2
_ 8M; 2 (2 Vs inx Jjmy
Mxy—_(l _'u)nzab‘z‘ 12; . 12; J (a_+b_ COS7 COST
i=1,3,...j=13,.

2. Analytic Solution of the Rectangular Thin Plate with One Clamped Edge and
Three Simply Supported Edges Under Thermal Load

By superposing (2.34) and Eq. (2.50), hence

4aPMT & 1 20,y mnx M7
w=— cosh — 0 sin— — —(x —a)x
Dn3 m;nﬁ cosha,, ( b " a 2D( )
M’ & x /i F Jmy
“wor 2o 2o ile tir) ey

(2.52)

(2.52) is just the deflection formula of rectangular thin plate with one clamped
edge and three simply supported edges under temperature disparity along thickness.
By superposing (2.35) and (2.43), hence

(o)
T _ 4M" _ mmy mnx
MX oo (,LL 1) Z mcoshy (‘1 m) sin 2%
m=1,3,... o
sm” = = b 2 Jny
I I
_le Z z(_Z ) (u—2+ )sm sint>
i=13,...j=13,...
T _ 4M" - 1 T
my i _
M, =+-(1 ﬂ)mfm ok, cosh(™ +o,,) sin™® + (u — 1)M
e T - (2:53)
M5 S S (E+h) (o h) e
i=13,...j=13,...

0s h(m— +ocm) cos M

) 2\ —2 ) .
S DBE S P4 ]) o eosty
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(2.53) is the internal force calculation formula of the rectangular thin plate with
three simply supported edges and one clamped edge under temperature disparity
along thickness.

2.6.3 Results Analysis

To test (2.52) and (2.53) are correct, the software MATLAB is used to program the
formulas. The results show that: for the deflection w, when taking m = n = 39, the
result has converged to exact solution. For the bending moment M! of unit width,
when taking m = n = 1999, result has basically converged to exact solution, and has
an error of only 1/10000 in comparison with the result when taking m = n = 2001.
For the bending moment MVT of unit width, when taking m = n = 7001, result
has basically converged to exact solution, and has an error of only 1/10000 in
comparison with the result when taking m = n = 7003. For the convenience and
engineering practical reasons, according to the length-width ratio of the rectangular
thin plate, the thermal bending result of concrete rectangular thin plate with the one
edges clamped and three simply supported is tabulated (see Table A.4).
Engineering application is seen in Sect. 2.3.4.

2.7 Thermal Bending of Rectangular Thin Plate with Two
Adjacent Edges Simply Supported and Two Opposite
Edges Clamped

2.7.1 Boundary Conditions

In Fig. 2.6, to clamped edges, there is:

ow
wl_o=0,—| =0 2.54
|}7() ay 4=0 ( )
ow
=0,—| =0 2.55
W|x:0 ’ Ox o ( )

To simply supported edges, due to the deflection w in the whole edge is zero, by
(2.12), there is

MT
--= (2.56)

Pw

W‘x:a = 07 W

X=a
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Fig. 2.6 Two adjacent edges
clamped and two adjacent
edges simply supported

2 Thermal Bending of Concrete Rectangular Thin Plate ...

(2.57)

2.7.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.54), (2.55), (2.56) and (2.57), there is

M| _,=0, M),|y:b: 0, M|,_o= —M" My}y:O: -MmT

Now, Rectangular thin plate with two adjacent edges clamped and two adjacent

edges simply supported under temperature disparity along thickness is regarded as a
superposition of rectangular thin plate with four simply supported edges under the
action of the temperature difference AT and the rectangular thin plate with four
simply supported edges under uniform bending moment M, on two adjacent edges.

1. The Solution of the Uniform Bending Moment M; on the Two Adjacent Edges

The deformation energy of plate is equal to (2.31), namely

wabD S & 2 2\
=D DID T (SN ey 25

ow T o inx
— =4+= Z Z JAjj sin—
dy y= b4 3. j=13,..

ow T o Jjmy
- =4+ iA;; sin——
Ox x=0 a 1:%.“j:§”. ! b
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When Aj; increased to A; + 0A;;, slope increment of every point along x = 0 and
y = 0 on bending plane of plate is

Pl p— sin = 0A;
Jy =0 b a
ow T, . jmy

55 —:t;lsln?aAij

The work done by bending moment along edges of plate is
_m. . inx _T, . jmy
/MT 5 s1n7dx5Aij+ /MT L 51n7dx5Aij

Because

a
— Qi inx gy — 2aM”
OfMT sin 2 dy = 24

I

b
I 1151 __2bM7”
OfMT sinf}* dx = 2225

The work done by bending moment is

2ab 2
M70A;
ij <b2+ ) T

According to (2.58), the increment of deformation energy is

mabD (2 P\’

According to the virtual displacement principle, there is

8 [ P2\ 'Mr
Aj=—=|>5+ J2 L
D b ij

By substituting the above formula into (2.30), hence

My N = L[ F U inx | jmy
w(x,y) = pry Z '72 ( +b2> sm7 sm7 (2.59)

Substituting (2.59) into (2.12) (where M" = 0), the internal force calculation
formula of the plate with four simply supported edges under the bending moment
M on the two adjacent edges is obtained.




38 2 Thermal Bending of Concrete Rectangular Thin Plate ...

M, =84 io: i 1 (ﬁ + &2) (ﬁ + ﬁ) sin 2 sin ™
o =13 =13, " A b
M. — 8M- io: ic: 1 (/‘_’2 + 2 (ﬁ + ﬁ)71 Slnlm sin{™ 2.60
o =13, j=13,.." ERVAN ’ b (2.60)
_ 8m” - - 2 2\ ! inx Jjny
My = —(1—u) 25 12; A IZ; (ﬁ + 17) cos7, cosT
1=1,5,... J=1,0,...

2. Analytic Solution of Rectangular Thin Plate with Two Adjacent Simply
Supported Edge and Two Adjacent Clamped Edges

By superposing (2.34) and (2.59), hence

da’MT & 1 20,y mmx
=—— ————cosh| —= — o, | sin—
v D3 m:; __m3cosha,, ( b "

M7 SMT & XX 1 /2 A\ inx | jmy (2.61)
—E(x—a)x—%AZ ZT<_+E> sm?sin—

(2.61) is just the deflection formula of rectangular thin plate with two adjacent
simply supported edge and two adjacent clamped edges under temperature disparity
along thickness.

By superposing (2.35) and (2.61), hence

o0
T _ 4M" _ mny mnx
M‘ oo ('u 1) ; mcosh%,,, Sh( OCm) sin 7%
m=13,...
g7 o N (2 i\ (2 ) iy i iny
— o> i’j(?erT) (;Jrﬁ) sin 2 sinf=
i=13,..j=13,..
T am _ mny mnx
M (1 u)m 2:3 ook cosh (™™ — g,,) sin™™
] o0 00 —1 .
—(u— M7 4 8L S~ s L B (B F) i gin /Y
H w2 2 gi\a TR B a b
i=13,...j=13,...
T _ 4M” - 1
— _ mny m_nx
MT =2 (1 — p) ; i cosh (™2 — g,,) cos
m=13,...
sm” - - 2 2\ ! i ity
—(u—1)85 (;—2—&-2—2) cos X cos 7
=13, j=13,..
(2.62)

(2.62) is the internal force calculation formula of rectangular thin plate with two

adjacent simply supported edge and two adjacent clamped edges under temperature
disparity along thickness.
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2.7.3 Results Analysis

To test (2.61) and (2.62) are correct, software MATLAB is used to calculate. The
results show that: for deflection function w, when taking m = n = 69, the result has
converged to exact solution; for the bending moment of M” unit width, when taking
m = n = 5999, result has converged to exact solution; for the bending moment MyT
of unit width, when taking m = n = 5001, the result has basically converge to the
exact solution at this time, and the error is only 1/10000 in comparison with the
result when taking m = n = 4999. For the convenience and engineering practical
reasons, according to the length-width ratio of the rectangular thin plate, the thermal
bending results of concrete rectangular plate with two adjacent edges clamped and
two adjacent edges simply supported is tabulated (see Table 5).
Engineering application is seen in Sect. 2.3.4.

2.8 Thermal Bending of Rectangular Thin Plate with Two
Opposite Edges Simply Supported and Two Opposite
Edges Clamped

2.8.1 Boundary Conditions

In Fig. 2.7, to simply supported edges, there is:

Pw MT
x= 0, 75 |»—0 = —— 2.63
S 269
To clamped edges, there is
ow
v =0,—| ,» =0 2.64
= 264

2.8.2 Analytical Solution for Thermal Elastic Problems
On edges, w = 0, according to (2.12), (2.63) and (2.64), hence

M| =0 =0, My

X=a

T
y=0 = —M
y=b
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Fig. 2.7 Two opposite edges y
clamped and two opposite
edges simply supported

S

Now, rectangular thin plate with two opposite edges clamped and two opposite
edges simply supported under temperature disparity along thickness is regarded as a
superposition of the rectangular thin plate with four simply supported edges under
the action of the temperature difference AT and the rectangular thin plate with four
simply supported edges under the bending moment M, on two opposite edges.

1. The Solution of the Uniform Bending Moment M, on the Two Opposite Edges

The deformation energy of plate is equal to (2.31), namely

wabD &N & 2 2\
v-ERR S S (L) (2.65)

The slope of every point along y = b and y = 0 on bending plane of plate is

ow T > inx
—|y—n =% JA;; sin—
ay| Y= 0 bi:;...j:;... ’ a

y=>b

When A;; increased to A; + dA;;, slope increment of every point along y = b and
y = 0 on bending plane of plate is

o
ady y=0"
y=>

m, . Inx
0 :tg] sm;éAij

The work done by moment along edges of plate is

M., ITX
Z/MT 5 s1n7dx5A,-j
0
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Because

/ . mx 4aM;
M, sm— -
In

The work done by bending moment is

4aM; j
b

oA

According to (2.65), the increment of deformation energy is

n*abD 72 :
oV = ) ( +b2> A;j0A;

According to the virtual displacement principle, hence

N N
A — 16M; j 4L 7
YT mDi b?

By substituting the above formula into (2.30), hence

6M; S X j/2 A\ . imx . jny
w(x,y) = T.Z Z ;<_+—> sin—- sin—= (2.66)

By substituting (2.66) into (2.12) (where M" = 0) that is the internal force cal-
culation formula of the plate with four simply supported edges under the bending
moment M; on the two opposite edges

My N = (P W\ (P T . jmy
2 2 ) ()
o ) ) o\ -2 . .

16M7 & X jlu? PN\ P . imx . jmy

My = —nzbz l:;]:;; (; + ﬁ ; + ﬁ SIHF SIHT (267)

16M; & i A\ jmy

M, =—(1 r 20 4 L o

cy ( )nzab3 13’“.1.:123:“] (a2 + b2> cos cos b

2. Analytic Solution of Rectangular Thin Plate with Two Opposite Edges Simply
Supported and Two Opposite Edges Clamped
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By superposing (2.34) and (2.66), hence

w=—

4a*MT & h 20,y mmx
cos —
Dmd 4= m3 coshay, coshocm b "
o0

M7 16MT & i/ A\ inx | jmy
At s > Y (G )

(2.68) is just the deflection formula of rectangular thin plate with two opposite
edges simply supported and two opposite edges clamped under temperature dis-
parity along thickness.

By superposing (2.35) and (2.67), hence

o0
T _ 4M" _ 1 mmny f 10 MTX
M =% (p—1) 123 ook, cosh (™ — g,,) sin ™
m=13,...
l6MT o~ (2w 2\7? Jjmy
_ i I inx
eyl 12; A 12; ,(az + ba>(a2 +h2> sin 2 sin 7
=1,5,...]=1,5,...
T _ 4M” S 1 mmy
— 11 Mnx
Ml =%E(1—p) > — cosh ("3 — a,) sin 2
: m=13....
T 16MT SN T Y- R ey
~u-OME =S 20 3, ;(a—z+b—z)(?+b—z) sin * sin ‘>
i=1,3,...j=13,...
T _ 4aM” s
mmy mnx
M (1 ,u)m ;3 moosh cosh ("2 — o) cos ™
-1
16M7 jny
“(u- e S F(E+5)  costeost
i=1,3,...j=13,..

(2.69)

(2.69) is the internal force calculation formula of rectangular thin plate with two
opposite edges simply supported and two opposite edges clamped under temper-
ature disparity along thickness.

2.8.3 Results Analysis

To test (2.68) and (2.69) are correct, the software MATLAB is used to program the
formulas. The results show that: for the deflection fuction w, when taking m =
n = 39, the result has converged to exact solution; for the bending moment M of
unit width, when taking m = n = 5999, result has converged to exact solution; for
the bending moment MyT of unit width, when taking m = n = 10,001, the result has
basically converge to the exact solution at this time, and the error is only 1/10000 in
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comparison with the result when taking m =n = 9999. For convenience and
engineering practical reasons, according to the length-width ratio of the rectangular
thin plate, the thermal bending results of concrete rectangular plate with two
opposite edges clamped and two opposite edges simply supported is tabulated (see
Table A.6).

Engineering application is seen in Sect. 2.3.4.



Chapter 3
Thermal Bending of Concrete Rectangular
Thin Plate with Free Boundary

Abstract The deflection equation and the internal force analytical solution of the
rectangular thin plate with free boundary (three simply supported edges and one free
side, three clamped sides and one free side, two opposite edges clamped and one edge
simply supported and one edge free, two adjacent edges clamped and one edge simply
supported and one edge free, two opposite edges simply supported and one edge
clamped and one edge free, and two adjacent edges simply supported and one edge
clamped and one edge free) under temperature difference is systematically introduced
in this chapter. In order to facilitate the engineering application, the coefficient cal-
culation table for deflection and internal force based on concrete material is made.

y

3.1 Introduction

For concrete rectangular thin plate with free boundary under temperature disparity,
the existing literature [49, 53] lists the calculation table (Table 3.1) of concrete
rectangular thin plate with three edges clamped and one edge free, but the values of
transverse bending moment on clamped edges are greater than the solution obtained
when w = 0. As for other rectangular thin plate with free boundary under tem-
perature disparity, there is no relevant report at present in the existing literatures.
Therefore, in this chapter, based on the small deflection thin plate theory and
superposition principle, considering temperature variation which is perpendicular to
surface, the analytical solution of rectangular thin plate is deduced with three edges

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018 45
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular

Thin Plate, Springer Tracts in Civil Engineering,

DOI 10.1007/978-981-10-4472-4_3
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Table 3.1 Bending moment coefficient about the rectangular thin plate with three edges clamped
and one edge free under temperature disparity

’ w= é, MT = ko ATER?

o7 MT M\T = k.Z-OCATEhZ

7W;{+;143' I MO = ko ATER?

M g Myl = ko aATER

/ — L MY = koo ATER?

i M) = koo ATER

lA'/ l,v kxl kyl kx2 ky2 ky ky

0.50 0.1018 0.0983 0.0973 0.0975 0.0948 0.0974
0.75 0.1057 0.0980 0.0973 0.1004 0.0925 0.0913
1.00 0.1085 0.0968 0.0974 0.1050 0.0919 0.0851
1.25 0.1072 0.0957 0.0979 0.1085 0.0931 0.0768
1.50 0.1006 0.0965 0.0983 0.1091 0.0951 0.0696
1.75 0.0997 0.0943 0.0975 0.1013 0.0969 0.0633
2.00 0.0981 0.0933 0.0963 0.0957 0.0985 0.0570

simply supported and one edge free, three edges clamped and one edge free, two
opposite edges simply supported and one edge clamped and one edge free, two
adjacent edges simply supported and one edge clamped and one edge free, two
opposite edges clamped and one edge simply supported and one edge free, and two
adjacent edges clamped and one edge simply supported and one edge free. Then
numerical examples are calculated based on the concrete material and the software
MATLARB is used to prove the validity of the solution.

In this chapter, based on the small deflection thin plate theory and superposition
principle, considering temperature variation which is perpendicular to surface, the
rectangular thin plate with one free edge under temperature disparity is regarded as
the superposition of two types of rectangular thin plate, namely, the rectangular thin
plate with three simply supported edges and one free edge under the temperature
disparity and under the bending moment on different edges. Firstly, by supposing
deflection function which has undetermined parameter at free edge, and adopting
Levy method, the analytic solution of the rectangular thin plate with three simply
supported edges and one free edge under the action of the free boundary deflection
function is obtained. Secondly, the analytic solution of the rectangular thin plate
with three simply supported edges and one free edge under temperature disparity is
obtained. Thirdly, using the solution of rectangular thin plate with four simply
supported edges under the bending moment on different edges, the solution of
rectangular thin plate with three simply supported edges and one free edge under
the bending moment on different edges is obtained. Finally, adopting the
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superposition principle, the analytical solution of the deflection and bending
moment of the rectangular thin plate with one free edge under the transverse
temperature variation is acquired, and the calculation coefficient table of the con-
crete rectangular thin plate with one free edge under transverse temperature dis-
parity is obtained by using MATLAB. Thus it can provide a theoretical basis for the
design and calculation of the rectangular thin plate with one free edge under the
thermal environment.

3.2 Thermal Bending of the Concrete Rectangular Thin
Plate with Three Edges Simply Supported and One
Edge Free

3.2.1 Boundary Conditions

As is shown in Fig. 3.1, the boundary conditions are:

Wlx=0 =0, My|,—0 =0 (3.1)
wly—o =0, My|y—o =0 (3.2)
My|y=0 =0, Mxy|y=b =0, FQy‘y:b =0 (3-3>

3.2.2 Analytic Solution for the Rectangular Thin Plate
with Three Edges Simply Supported and One Edge

Free Under the Deflection w, ‘ y=b

As is shown in Fig. 3.1, let

T
wl‘y:b = Z am sinm—x (3.4)
m=13,.. a

According to (2.12), the other boundary conditions are:

Pw

wi| =0 =0, 8721 w0 =0 (3.5)
82w1

wi|y—0 =0, o7 ly—o =0 (3.6)
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82W1 82W1
L Z |, =0 3.7
dy? +u 02 |y= (3.7)
According to (2.13), let
wi=—Y XY, (3.8)
m=1

According to the boundary conditions (3.5), ordering X,, = sin™, so the
deflection function w; can be written as

Z Y,y sin (3.9)

m=1

Substituting (3.9) into differential equation (2.13), it is obtained as follows

2.2 m411‘4

m*n Y
az " a*t

YW -2 Y =0

The solution of this equation can be written as follows

. mTt mT mTt . mm mrt mm
Y,, = A,, sinh mry + B,, cosh ey +Cy mry sinh my + D, my cosh my
a a a a a a
(3.10)
That is
wy = E (Am sinh my + By cosh — +C,,, my sinh —— iy + D, my cosh @) sin mnx
— a a a a
(3. 1 1)
Fig. 3.1 Three supported y
edges and one free edge

i |
1 1
1 1
1 1
1 1
1 1
bl !
1 1
1 1
1 1
1 1

1 1 X
1 1
I 1

a
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Substituting it into (3.5), the boundary conditions are satisfied naturally, then
substituting it into (3.6) yields

B,=C,= 0

Substituting it into (3.4) and (3.7) and letting 7 mrb — B there is

Ay, sinh f,, + Dy, B,, cosh f,, = an (3.12)
Am (1 — 'u) sinh ﬁm +Dm [(1 - .u) ﬁm COShﬁm + 2sinh ﬁm] = '
Thus
A
D,=p—1)—7—
(u )2smh B

ap
Ay =—"F24+(1 - th
2S1nh ﬁm [ + ( ,u)ﬁm €O ﬁm]

Therefore, the deflection expression of the rectangular thin plate of three simply
supported edges and one free edge under the deflection of free edge is

o0
am(1—p) 2 mny mmy oommyl . mix
== E ormrmranll B thf h — osh —= -
wi 22 2simhf, [\T—x + B, cothf,, | sin p . | sin—

(3.13)

Letting MT be zero and substituting it into (2.12), there is

1 b1
% 2 B, coth ,, +2 el sinh 7 _
T |
x1 2a? H w273, Sinh B, mny osh . | i
- mmy mmy

i . —— cosh mnx
M, —2(1—#)2“2 Z m sin —

2a m=13,... sinh ﬁ,,, Bm coth ﬁ’“ sinh ? ’

(3.14)

3.2.3 Analytical Solution of the Rectangular Thin Plate
With Three Edges Supported and One Edge Free
Under the Action of AT

For simply supported edges, given that the deflection w; is equal to zero along the
whole boundary, so according to (2.12), (3.1), (3.2) and (3.3) are turned into
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Pw MT
Y 0, —|x=0 = —— 3.15
Y ng Ox? 2 D ( )
Pw MT
Wy:() = O, W |y:() = — F (316)
%ZTZV +u %ZTZV = 0
» y—bm . (3.17)
R =

Assuming that the distribution share force on the free edge is Fg,, (3.17) is
merged into

(2—p) = 0 (3.18)

FPw Pw
Ox20y

FQy‘y:b == D[ayg +

y=b

According to (2.23), there are

4a’MT & 1 20, M
wzz—a— Z {Wshamcosh<%—ocm> sinm—nx]——(x—a)x

D m=13,... a 2D
(3.19)
4mT = 1 mmy mmx
M=) 3 Tl o (M)
2 T (u )m:IZB {mcoshfxm o8 a ) ST }
amMT - 1 mmy mmx
My =—— (1 - —_— h(—— m) in — - )M’
(3.20)

Substituting (3.13) into (3.18) yields

D (1 — p)? io: { a,m’ {3 + u sinh 2 } . mnx}
- =+, sin —
a

y=b 2a° m=13,... sinh’ B L1 — 1 2

—1
FQy

Substituting (3.19) into (3.18) yields

43 = 2uMT & O 20,y . mmx
= —_—_———mmm h — m _
y=b b m:zl,;... m cosh o, st b % st a

—2
F Oy
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On the free edge, according to (3.18), hence

1

— —2
F F =0
Ovly_p T g, y=b
That is
i 20,y
8a’ (3 — 2:“) " sinh® :Bm m“cjsh O sinh ( B O(m)
am = —
bDn4(1 — u) 31+: smh2[3m +ﬁm

Substituting it into (3.13) and (3.14), it is obtained as follows

2

—+
sinh m On) 1-— i m_Tty —
2223 — 2)M” i P oo Lm{:x" sinh (2 Y — o) u sinh . o
= DTE3(1 — ,u) i3 1_L sml’122/3m +ﬁ ﬁm coth ﬁm 1 a
g my coshm—ny
a
(3.21)
sinh sinN B, sinh (2&,,,\ o )
mcosn o, m
3+4u hz »
oo | TR
23 —2u)M
My ==——— > !
n m=13,... ﬁm coth ﬂm + 2 1— u  mmx
X sin—
mmy mn mT
X sinh my _y h—y
a a
[ sinhp, 2ty
mcmh [ sinh ( OCm>
23 —2uMT & 3 h2;
iy = 2072 G
m=13,...
> mm . mT mmnx
X (— cosh ™™ B, coth 8, sinh _y) sin —
L a a a
(3.22)
Superimposing (3.19) and (3.21), it is obtained as follows
4a*MT & 1 20,y mnx] MT
=_ sh — oy | sin —| - (x —
Y Dm? m; {m3 cosh o, ©° ( b ) My } 2D (- apr
2a%(3 — 2u)M”
D (1 — p)
. 2 ., mmy
inh ,, 2ty = -
o [ Cosﬁh sinh (222¥ — g,,) (1 S + B, coth ﬂm) sinh — e
x Z 3+pu sth/} x s 7
e Ty
a a

(3.23)
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Superimposing (3.20) and (3.22), there are

74MT - 1 mmy . mnx
M=— (r—1) m;_mmcodqam cosh (T - oc,”) sin ==
ﬁm COth ﬂlﬂ +
S Ginp (2 inh "
2(3 _ ZM)MT > r::;s}lllm sinh ( h" - “m) 2 1+p sinh . -
* T Z 3+ u sinh2g, 1—p s ——
" IT‘L B + ﬂm miy mT
—— cosh ey
a a
(3.24)
_4MT N 1 mtw . mTX 23 —2u)M"
M, = (I—pw Z cosh(_y_am) SlIl—-i-(,u—l)MT-i-%
T _H___mcosh O a a

sinlh B, b (20

S~ meosha, sinh (5 — o1, mmy mmy . mmy\ . mux

X Z - —— cosh — — f,, coth 5, sinh ——) sin —

3+u sinh2g, +B a a a a
2 m

I—p

(3.25)

3.2.4 Results Analysis

To test the accuracy of (3.23), (3.24) and (3.25), the software MATLAB is used to
program the formulas, and the results show that: the deflection w has converged to
exact solution when taking m = n = 9; for the bending moment M, of unit width, the
result has converged to exact solution when taking m = n = 17; for the bending
moment M, of unit width, the result has converged to exact solution when taking
m = n = 1999, and the error is only 1/10,000 compared with the result when taking
m =n = 1999, for the convenience and engineering application, according to the
length-breadth ratio of the thin plate, the calculated result of the rectangular thin
plate with three simply supported edges and one free edge is tabulated (Table A.7).
The engineering application is the same with Sect. 2.3.4.

3.3 Thermal Bending of the Concrete Rectangular Thin
Plate with Three Edges Clamped and One Edge Free

3.3.1 Boundary Conditions

As is shown in Fig. 3.2, for clamped edges, the boundary conditions are (Fig. 3.2):
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Fig. 3.2 Three clamped y
edges and one free edge
-
Z 7
7 >
o 2 Z
Z 7
-
Z 7
7 L x
a
ow
W|x=0 = 0, — | x=0 = 0 (3.26)
X=a a‘x X=a
ow
Wly=0 =0, — |y=0 =0 3.27
‘y 0 " dy ’.v 0 ( )

For the free edge, the bending moment M,, torque M,,, and transverse shear
force Fgp, are equal to zero. Assuming that the deflection is expressed by the Sine
series on the boundary of y = b, so

M,v|y:b =0
MVX|y:b =0 (3.28)
FQy|y:b =0

W= > an sianM (3.29)
m=13,...

Through (2.12), the first part of (3.28) becomes

*w w

MT
o Mar T D

D

y=b

(3.30)

The distributed shear force on the free boundary is Fgp,. Thus, the second and
third parts of (3.28) are merged into

3 3
0w 6W” ) (3.31)
y=b

Fo|,_,=-D |:a—y3 +(2—-u) 20y
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3.3.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.26),
(3.27), (3.29), and (3.30) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Giving that w = 0 on the clamped boundary condition, according to the (2.12)
(3.26) and (3.27), there is

M, =-M", My|y-o = —M"

x=0

Thus, the rectangular thin plate with three edges clamped and one edge free
under temperature variation that is perpendicular to the surface can be considered as
the superposition of two kinds of rectangular thin plate: one with three simply
supported edges and one free edge under temperature difference AT and another
with three simply supported edges and one free edge under the bending moment
M7 on the three adjacent edges.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of AT

According to (3.23), (3.24) and (3.25), analytical solution of rectangular thin
plate with three edges simply supported and one edge free under the action of AT is

da’MT & 1 200, I’a 2a*(3 — 2u)M"
wy = — a Z { 3 cosh( 1y_am) sinw]——(x—a)x-kM
m a

Dr® | 45 lm’cosha,, b 2D Dr(1 — p)
oo sinh g, sinh (222 _ o "
X Z M X {(L + B, coth '[;m) sinh mny mny cosh cosh ﬂ} sin mx
=13, apsih2g, | g 1—p a a p 2
T 2 m
(3.32)
4M’ > 1 mm mnx  2(3 —2u)MT
M/‘ - (/“‘ - 1) Z osh (—y — am> sin — + i
T 213, M cosha, a i
, inh g, b (2my coth
i ”’S::’Sh“m sinh (% B a”’) b P sinh mmy  mmy sh mmuy | . Mmnx
3+u sinh2p, 21+H sin 777005 T 51117
m=13,... T T’” + ﬁm + m
am’ = mmn . ommx 2(3 — 2.)MT
My==—(1-p Z C05h<—y—fxm> sm—+(lvl—1)MT+i><
n m=1,3,... m COSha’” a a T
silh B, op 20y
oo s Sinh (5~ — o) mmy mmy . mmy\ . mux
Z 3+ sinh2p ( a cosh T - ﬁm coth ﬁm sinh T) smT
m=13,... ﬁ ot 4+ 8,
(3.33)

2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and
One Edge Free with the Bending Moment M, on the Three Adjacent Edges
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Using the boundary condition (3.29), the rectangular thin plate with three simply
supported edges and another free edge under the action of bending moment M, on
the three adjacent edges can be considered as the superposition of two kinds of
rectangular thin plate: one with four simply supported edges under the bending
moment M; on the three adjacent edges, and another with three simply supported
edges and one free edge under the deflection w|,—; on the free boundary.

According to (2.42) and (2.43), expressions of deflection and bending moment
of the rectangular thin plate with four simply supported edges under the bending
moment M, on three adjacent edges are as follows:

My &S X 1 A inx . jmy
wa(x,y =D Z Z ( ) <a2+bz s1n7s1n7 (3.34)

i=13,...j= 13.4..

Substituting it into (3.34) and (3.31) yields

-2
—3 8M; & 7 22 2\ [/ 2] . imx
FQy y:b_ E E { - ( > <—a2 + 2 )2 +(2- /J)z sin P

i=13,..j=13,..

Letting a,, = @,, on the free boundary by employing (3.31), it is obtained as
follows:

—=1
F =0
Qy y=b

=3
F
TFoy y=b

That is

m 2 m2
- oMy a’ sinh? 8, deia i (T %) ( ) B‘j +2 -
a,, =
TE4Db(1 — ) %1nh2/)’m 1B,
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Substituting it into (3.13) and (3.14), there is

2 » -2 2 2
sinh 8, 3707 5 {m4 (a; + g) <2m i u) {k
8sM’a? S
w3 =

a? b2
rt4Db 1-

—M

"
mt+(2- “)ﬁ]}
34pu smh2[},

m

e =+ B
2
X {(— + f,, coth [5m> sinh 22 M osh —}
1—u a a

3 2 -2 2 2
sinh ﬁm Z:CZIS # (’1:’7 + ﬁ) (21:2 + l}%) |:];§2 (2 ,u) = ]
8MTa X 3+u bmh2[i
M\'S - 2b E

= =+ B

1+
X Kﬁm coth 8, +2 1—’“

m

(3.36)

b b b T
> X smhm y_n ycosh M} sinm—
u a a a a

(3.37)

) )
sinh , S0 (3 4 5) (4 5) [+ - 0]
8MTa &
Mv3 = — o 31-1—’;14 smh2/}m +ﬁm
T m=13,... mmy m y
(e
a

— p,, coth B, sinh —) sin 77

(3.38)
Superimposing (3.32), (3.34) and (3.36), there is
4PMT & 1 200,y M
= _ h —a, M -
Dn3 m:lz_;mmzcoshocm 08 ( » > s 2D (x—a)x
2
sinh 20, L—un Lo MY
222(3 — 2)M" i il sinh (22 — o) § silh ==
DT[3(1 - /,t) i3 3+u >1nh2/f,,, + ﬁ + ﬁm coth ﬁm s a
213, =
_MY osh MY
a
SMT &S & 1/ P\ 2R P imx . jmy
7E4D,7g ;Z 5(;4‘;) <ﬁ+ﬁ> sin — sin ——
i=13,..j=13,..
: 0 L (m? @ -2 2m? 2\ |2 m?
sinh B, 315, (,Tz + b_z> (a_z + b—z) {F +@2-4) 7}
T3 oc
-~ 8M"a Z '§1+;: sinh 2[3,,, + ,Bm
T[4Db(1 N ‘u) m=1,3
13, )
X K— + B, coth /5’m> sinh 772 — "™ cosh —] sin 7%
1—u a a a

(3.39)
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By superimposing (3.33), (3.35) and (3.37), there is

amT > 1 mmy . ommx
M=) 3 e o (T ) sin S

m=13,...
ﬁm COth ﬁm |
I+u
sinh §,, 20, +2—
+ 23 —2uM” & % sinh (% _ oc,,,) L=u sin 27
n m=13,... 3*:‘ Smhzﬂl + B x sinh " a
a
_my cosh my
L a J
MT & 12 PA\(P P\ 2R P Jny
oo ,-2123:...,-:;, ij (ﬁ " “ﬁ) <7 +3) (@) T
-2
sinh ﬁm Zk 1.3,...m LZ (ZLZZ + 2_’) (Za_z + %) |:_2 (2 ’u) ]
SMTa & 34p Slnh2ﬂm
2 Z m e
n m=13,...

1
x Kﬂ coth f, + 21 H ) x sinh 77 MY osh —y]
1—u a a a

(3.40)
Superimposing (3.33), (3.35) and (3.38), there is
M, 74M (1=p i 1 Sh( 2y )sinmnx+( M’
r 253 m coshocm a " a #
sinhg, o, ™ cosh ™
(3 — 2” f: m°°5h“m sinh (L B am) cosh sin mmx
smh “a
m=13,.. 3+“ S0 + B — B,, coth B, sinh @ “

NN A Y AV AN jny
R DI -~(“$+ﬁ)(;z+ﬁ) (Iﬁﬁ)m?m*

P ) b
sinh 8, >0 13, % ('Zzz + Ibc;) - <2(:f'§7 + %) [bl +2-w ]
o
B 8g;am:1~3w 31+: thzﬁ,,, 4B,
’ X (m;ty osh 7 _ p,. coth 8, sinh —) sin ?

(3.41)
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3.3.3 Results Analysis

To test the accuracy of (3.39), (3.40) and (3.41), the MATLAB software is used to
program the formulas, and the results show that: the deflection w has converged to
exact solution when taking m = n = 9; for the bending moment M, of the unit
width, the result has converged to exact solution when taking m = n = 17; for the
bending moment M, of the unit width, the result has converged to exact solution
when taking m = n = 1999, and the error is only 1/10,000 compared with the result
when taking m = n = 2001. For the convenience and engineering utility, according
to the length-breadth ratio of the thin plate, the calculated results of the rectangular
thin plate with three clamped edges and one free edge are made into the form
(Table A.8).

3.3.4 Numerical Example

Example Taking the concrete rectangular thin plate with three edges clamped and
one edge simply supported as an example, the calculation process is carried out.
The length and width of the plate, /, and [, are both 3.5 m. The thickness of the
plate, i, is 100 mm. The temperature difference between the upper and lower
surface of the plate, AT, is 30 °C. The live load p is 2.0 kN/m?. The bulk density of
concrete is 25 kN/m’. The concrete strength is 30 MPa. The steel strength is
360 MPa.

Solution According to the literature [45], the linear expansion coefficient of con-
crete, o, is 1 X 107> °C. The Poisson’s ratio of concrete, u, is 1/6. The protective
layer thickness of concrete is 10 mm. The elastic modulus of concrete is
E = 3x10" kN/m’. The design value of compressive strength for concrete, f., is
14.3 N/mm?. The partial coefficients of the dead load and live load are taken as 1.2
and 1.4 respectively.

Deadload: g = 0.10 x 25 = 2.5kN/m?

Live load: p = 2kN/m?

Design load: ¢ = 1.4p 4+ 1.2¢ = 5.8 kN/m’
According to the initial assumption that the diameter of the steel is 10 mm, the
distance from the center of the steel in x direction to the down surface of concrete
plate, ¢, = ¢ + 10/2, is 15 mm and the distance from the center of the steel in
y direction to the down surface of concrete plate, ¢, = ¢ + 10 + 10/2, is 25 mm.
The distance from the center of the steel in x direction to the top surface of the
concrete plate, ko, = h — c,, is 165 mm and the distance from the center of the steel
in y direction to the top surface of the concrete plate, hg, = h — ¢, is 155 mm.
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1. Temperature Action

Taking E = 3x10” kN/m?, o = 1x 107 °C, AT = 30 °C, h = 100 mm and x = 1/6
into (2.1), D = %, the following results can be gotten.

ER* 3 x107 x0.10°
2(1-2)  12(1-9%)

D = = 2571.43kN - m

r_ «ATER* 1 x 1075 x 30 x 3 x 107 x 0.10

= = = 9.0k
20— ) (-0 PON

From the Table A.8 in the Appendix A, there are
f=0.0777, k. = 0.1893, k, = 0.7676

M’ 352 %9
— 500777
Wi =f T = 00T X S 4

=0.00333m

M" =k,M" =0.1893 x 9 = 1.704kN - m
M = k,M" = 0.7676 x 9 = 6.908 kN - m

According to the literature [45], oy = 1, assuming that ko = h,, and taking MxT s
£ ho and o into (2.24.1), there is

M 1.704 x 10°

= - = = 0.00438
10000 f.h3 1000 x 1 x 14.3 x 1652

aS}C

Assuming that hy = hy,, taking M\T , fer o, and o into (2.24.1), there is

oM 6.908 x 10°
10000, £:h2 1000 x 1 x 14.3 x 1552

= 0.0201

Olgy

Taking oy, and oy, into (2.24.2), there is

Yo = 0.5(1 +/1o 2%) - 0.5(1 +VI—2x 0.00438) =0.9956
Y = 0.5(14 /T =22,) = 0.5(1+ V1= 2% 0.0201) = 0.9898
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Taking y,, and 7,, into (2.24.3), there is

m! 1.704 x 10°
A == = 28.8 mm?
' Ao 360 x 0.9956 x 165 mm
M 6.908 x 10°

= 125.1 mm?

AY = =
91 = e 360 x 0.9898 x 155

2. Load Action

From the literature [13,52], wy = %4, M, = k.ql* and M, = gl can be obtained.
The value of [ is the minimum [/, [,].
According to the literature [13,52], there are

f=0.00189, k, = 0.0304 and k, = 0.0133

Taking f, g, [ and D into w, = %, there is

ql* 5.8 x 3.54
— L 0.00189 x 2222 (.00064
w2 =1 X 2571.43

Taking k,, k, into M, = gl and M, = k_vql2 respectively, there are
M, = kyql> = 0.0304 x 5.8 x 3.5 =2.16kN - m
M, = kyql* = 0.0133 x 5.8 x 3.5 = 0.945kN - m

Assuming that M, = M! and hy = hy,, taking M,, f., hy and o; into (2.24.1),
there is

M, 2.16 x 10°

= = = 0.0055
10000, f,h3 1000 x 1 x 14.3 x 1652

“A’X

Assuming that M, = MyT and ho = hg,, taking My, f., ho and oy into (2.24.1),
there is

M, 0.945 x 10°

10000£.h3 1000 x 1 x 14.3 x 1652

Olgy
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Taking oy, and oy, into (2.24.2), there is

P = 0.5(1 +/1- 2%) - 0.5(1 +VI—2x 0.0055) =0.997
Py = 0.5(14 /T = 2ay) = 0.5(1 VI—2x 0.0028) = 0.999

Assuming that M, = M!, y, = v, and hg = hq,, and taking M,, fy and 7 into
(2.24.3), there is

M, 2.16 x 10°

= — 36.5 mm>
fivsho 360 x 0.997 x 165 mm

Ao =

Assuming that M, = MyT s Vs = Vs and hg = hyg,, and taking M,, f, and 7, into
(2.24.3), there is

M, 0.945 x 10°

X = = 17.0mm’
Fsho 360 x 0.999 x 155 i

Asy2 =

In summary, the analysis results can be obtained under the action of temperature
and load. That is

w = wy +wy = 0.00333 +0.00064 = 0.004 m
Ay = Ay + Ao = 28.84+36.5 = 65.3 mm?
Ay = Ay + Ay = 125.1 +17.0 = 142.1 mm?

From the above results, the total deflection at the midspan point of the thin plate
is 4 mm. The steel bar area per meter at the midspan point of the plate in the
x direction is 65.3 mm? and the steel bar area per meter at the midspan point of the
plate in the y direction is 142.1 mm?.

3.4 Thermal Bending of Concrete Rectangular Thin Plate
with Two Opposite Edges Clamped and One Edge
Simply Supported and One Edge Free

3.4.1 Boundary Conditions

In Fig. 3.3, the boundary condition for the clamped edge is as follows:
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Fig. 3.3 Two opposite edges y
clamped, one edge simply
supported, and one edge free
-
g Z
7 L
o| 9 Z
7 7
Z 7
“ L
7 L x
a
ow
W|x=0 = 0, — | x=0 = 0 (3.42)
x=a 8)( x=a
ow
wly—o =0, 8—y{y:0 =0 (3.43)

Giving that the deflection w is equal to zero on the whole boundary condition for
the simply supported edge, according to (2.12), the above mentioned equations are
as follows:

w MT

Wheo=0 Fz s, D
-

(3.44)

For the free edge, the bending moment M,, torque M,, and transverse shear
force Fyp, are equal to zero. Assuming that the deflection is expressed by the sine
series on the boundary of y = b, M,, M,,, and Fy, are as follows:

My|y—p =0
My,(|y:;7 =0 (3.45)
FQy|y:b =0
. mmx
wl,_p= ; A SN —— (3.46)

With the use of (2.12), the first formula of (3.44) turns into the following:

MT
=—— (3.47)
y=b D

P
0y? Hox
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The distributed shear force on the free boundary is Fop,. Thus, the second and
third formulas of (3.45) are merged into the following:
— Pw Pw
FQy’y:b: -D :| ‘

8—y3+(2—ﬂ)—

5| | =0 (3.48)

y=b

3.4.2 Analytical Solution for the Thermal Elastic Problem

Searching for the deflection function, it is very difficult to be completely satisfied
with the boundary conditions of (3.42), (3.43), (3.44), (3.46), (3.47), and (3.48).
Thus, the superposition principle is adopted to solve this problem.

Given that w = 0 on the clamped boundary condition, according to (2.12) and
(3.42), the following is obtained:

My x =~ 0

X=a

:_MT:M;

Thus, the rectangular thin plate with two opposite clamped edges, one edge
simply supported and one edge free under temperature variation that is perpen-
dicular to the surface can be viewed as the superposition of two types of rectangular
thin plate, namely, three edges simply supported and one edge free under tem-
perature difference AT, and under the bending moment M, on the two opposite
edges. The other edge have no bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of AT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of AT is

4a*MT & 1 200,y mmx
= - cosh — Oy, | Sin ——
" D3 Z {m3 cosha,, ( b 1) "y }

M 2a%(3 —2u)M"
X X+
2D D (1 — )

2 mmy
sinh B, . 20,y — 4+ coth 8 > sinh —=
X i m* cosh i sin ( b fxm) X (1 —H /jm [m a sin 7nx
m=13,... 31171‘ Sinl’122/},,, + ﬁm — mfn’y cosh miny ¢

(3.49)
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4MT 00 1 oy .
e 8 ()
T (" ),,,:z];___mcosha,,, cos a Oy ) SIN .
B, coth B,
si h/f ) ﬂ
20— 20M" S |t sinh (5 =) | | [T
+f Z 3+u smhz[} 1—‘u i "1
m=1,3,... T +ﬁm
m“y mmy
_MY osh MY
a
amT 0 1 mmy m 23— 20M"
M= (7 ) sin M a7 2022007
) " ( ,u) m:lz,?m mcosh a,, cos a o sin o (H ) :
smh/} . Dt
= W sinh (22 — o)
e mm:h:m‘ S‘"hzﬁ : (@ cosh ™2 _ g coth B, sinh 7) sin X
m=13,... = ‘i +/),m a P "
(3.50)

2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and
One Edge Free with the Bending Moment M, on the Two Opposite Edges

Based on the boundary condition of (3.46), the rectangular thin plate with three
edges simply supported and one edge free under the action of bending moment M,
on the two opposite edges can be viewed as the superposition of two types of
rectangular thin plate. Namely, the rectangular thin plate with four edges simply
supported under the bending moment M, on the two opposite edges and that with
three edges simply supported and one edge free under the deflection w|y:b on the
free boundary.

According to (2.66) and (2.67), the expressions of deflection and bending
moment of the rectangular thin plate with four edges simply supported under the
bending moment M on two opposite edges are as follows:

wa(x, _ Lo, f: i I j2 B sin — sm]ﬂ (3.51)
Y) = T i\e i, a " p '

i=13,...j=13,...

16M; S~ & [ 2i2 A\ imx | jmy
2= D Zl< i) tg) sty

i=13,...j=13,...

WMy S & (i PN AN i jmy
Mo="m 2. 2 @ te)lats) gy

i=13,... j=13,...

(3.52)

Substituting (3.51) into (3.48) obtains the following:

—3 16M; & 00 7 -2 72 21 inx
FQy‘y:b:— na’b Z Z {( b2> p2 (2 .u) Sm7

i=13,...7=13,...
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Letting a,, = @,, on the free boundary by employing (3.48), the following is
obtained:

Fl

=3
F =0
Oy y=b + Oy y=b
That is
00 -2

1 kZ k2 2

32Mj a sinh*B,, 123 " (’Z ) {}72 te- #)%}

A mk
m 7.[4Db(1 _ ) 31+;j smh2/3m +ﬁ

Substituting the above mentioned equation into (3.13) and (3.14) obtains the
following:

N2
sinh o 51, {25+ ) 7[5+ 2 - 0]}

0
— 34u s1n]’12/3
Db(1 — p) mz = + B

2
X {(— + B, coth ﬁm> sinh ™ Y (oh m_rty} sin 7
1—pu a a a a

(3.53)
3 o] m? K -2 K2 m?

sinh B, > 52, 5. (a_z + b_z) [p +(2—-w a—z}

3+p sth[}m
1y lom’ S i N
x3 — 1
nab 13 (ﬁm coth 8, —|—2ﬂ) % sinh mey
o 1—pn a . MTX
X sin ——
mmy mmy a
—— cosh —=
a
(3.54)

. 00 m2 K2 -2 K2 m2

sinh 5,07 5 3. (a_2 + p) [b—z +2-p a—z}

16MT N 34 si h2
My = 2 ﬁ; T By
m=1,3,...
X (mny osh 2 _ . coth f§,, sinh mTcy) sin 77
a a a

(3.55)
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Superimposing (3.49), (3.51) and (3.53) obtains the following:

4a2MT o) 1 2fxmy . mnx MT
w=—— m;____m3cosha,,l cosh( b OCm) sin—=—->5 (x—a)x
sinh f, 20y
m’ LUShl Slnh( am)
202 g | ey
D (1 — p) m=13,... 2 m mn mmn mmnx
X K + B, coth [ﬁ’m) sinh 22 _ Y Sh—y] sin—
1—u a a a a
1oM" & & iR P\ i jmy
— —n4Da2 ) 712 j_ (; + ﬁ) sm; sm7
i=13,...j=13,...

o0 N -2
sinh B, 3 5 ('"—Z + ,%) [’,;é +2- H)rg]
3
16M"a N 34pu sinh 2/3,”
DB =) 2 tuhdh g,

2
X { ( + B,, coth [fm> sinh ™ " osh _mny} sin 2
1—u a a a a

(3.56)
Superimposing (3.50), (3.52), and (3.54) obtains the following:

= 1 mmy mmx
M,=—(u—1 —cosh(——a )sin—
* n (u ) Z mcosho,, a " a

I+u
sinh g, 2y coth B, +2 —)

fc: meosha, 1nh( am) <B 2 l—n sin i
T 3+pusinh Zﬁm

a
[ + B X smhmny my sh@
a a

N A AY A Jny
Py > (G (G g) sl

b? b

. = K -2 Kk m”
sinh Bm Z (az + b? ) {},2 (2 :u) :|
- ' z+,mnh2/xm iy
+ n2ab Z ' I=n "

1
« [(ﬁmm B +2 +ﬁ) x smhm_“y_m_%shm_ﬂy} in"™
— a a a

1 a

(3.57)
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Superimposing (3.50), (3.52), and (3.55) obtains the following:

Ty . mmx r
— — cosh (— - ) ML (- 1M
. mcoshay cosh (== — o ) sin — +(u—1)

T m=13
mmy mmy
_sinkt B, 20y —— cosh ——
N 2(3 = 2p)MT i mweosho sinh ( oc,,,) a sin mmx
hz b4
n m=13,.. zﬁ,’j $in0 26, + B B,, coth 8, sinh % a
M7 & S il 2 A\[(E P\ inx . jny
e 2 3 () () T
i=13,... j=13,...
. e m? K2 -2 12 )
Slnhﬁmk Z (F + h_1> [b_z + (2 - 'u) 7:|
=13,
leMT &
_ o 3+ h2ﬁm
dab D = ,’: e
m=13,...
i i
X <may h — ﬁm coth ﬁm sinh —) sin m—x
(3.58)

3.4.3 Results Analysis

To test the accuracy of (3.56), (3.57), and (3.58), the MATLAB software is used to
program the formulas, and the results show that when m =n =17 is taken,
deflection w has converged to the exact solution. When m = n = 259 is taken for
the bending moment M, of unit width, the result has converged to the exact
solution. When m = n = 175 is taken for the bending moment M, of unit width, the
result basically has converged to the exact solution, and the error is only 1/100,000
in comparison with the result when m = n = 177 is taken. For the convenience and
engineering application, the calculated results are made into the form according to
the length-width ratio of the plate (Table A.9).

The engineering application is the same with Sect. 2.3.4.

According to Table A.9, the relationship of [,/l, with k,, k, and f is shown in
Fig. 3.4.

Figure 3.4 shows that both &, and f decrease with /I, but k, increases with L/,
and f decreases slowly. When [,/ changes from 0.5 to 2.0, k, changes from greater
than zero to less than zero, whereas k, changes from less than zero to greater than
zero.
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kJk,Jf

1.5

+k

X

—m— K,

171,

_1 1 1 1 1 1 1 1 J

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Fig. 3.4 Relationship of /,/I, with k,, k, and f

3.5 Thermal Bending of Concrete Rectangular Thin Plate
with Two Adjacent Edges Clamped and One Edge
Simply Supported and One Edge Free

3.5.1 Boundary Conditions

As is shown in Fig. 3.5, for clamped edge, the boundary conditions are:

0
w|x:0: 07 6_‘)/: 0: 0 (359)
ow
w|y:O: 0, a—y 0: 0 (360)
y=

For the simple supported edge, because the deflection w is equal to zero on the
whole boundary condition, according to (2.12), there are

Pw

MT
T D

W|x:a: O D

(3.61)

X=a

For free edge, the bending moment M,, torque M,, and transverse shear force
Fy, are all equal to zero. Assuming that the deflection is expressed by the sine
series on the boundary of y = b, therefore, M,, M,, and Fyp, are
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Fig. 3.5 Two adjacent edges y
clamped and one edge simply
supported and one edge free

S
RANNNNRNNNNRNNS

X
a
My |y:b: 0
M)’x|y:b: 0 (362)
FQy |y:b: 0
W= > ansin T (3.63)
m=13,... a
By (2.12), the first equation of (3.62) turns into
Pw Pw MT
i — 7 = 3.64
Oy? tH Ox? v—b D ( )

The distributed shear force on the free boundary is Fy,, so the second and the
third equation of (3.62) are merged into

— Pw Pw
Foy|, ,=-D {8—))3 +(2—-u 6?8;} =0 (3.65)

y=b

3.5.2 Analytical Solution for the Thermal Elastic Problem

As can be seen, it is very difficult to look for the deflection function which is
completely satisfied with the boundary conditions (3.59), (3.60), (3.61), (3.63),
(3.64), and (3.65), so the superposition principle is adopted to solve this problem.
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Due to w = 0 on the clamped boundary condition, according to the (2.12), (3.59)
and (3.60), there is

M|, g=—M" =My, M,| = -M"=M;

So the rectangular thin plate with two adjacent clamped edges and one simply
supported edge and one free edge under temperature variation which is perpendic-
ular to surface can be seen as the superposition of two kinds of rectangular thin plate,
that are three simple supported edges and one free edge under temperature difference
AT and three simple supported edges and one free edge under the bending moment
M on the two adjacent edges and the other edges have not bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of AT

According to (3.23), (3.24) and (3.25), analytic solution of Rectangular Thin
Plate with three edges simply supported and one edge free under the action of AT

4a’MT & 1 20,y mmnx
=— sh _ in X
" Dr? Z {m3 cosha, O ( b oc,,,) R }

m=1.3,...
My 2020
2D D (1 — )
' 2 ., mmy
53 et snh (%~ ) (oo, ) snn 2]
344 sinh sinh 28, mmy mmny "
m=13,... T + By — —= cosh —=
a a
(3.66)
amT ) 1 mmy mmnx
M, = -1 _ h(—f ) —
x T (n )m;_”m cosh o, cos a o) S a
B, coth B,
hp, 2 inh
2(3 — 2pu)MT i e sinh (%22 — a,,) p1tu sinh = sin T
P 53 3+u sthﬂ "Fﬁ l—n a
m=1,5,... 1— u m
_mny osh ey
a a
na 00 1 2(3 = 2u)M”
=0 S o (M) sin (7 2E 20N
) T o 1‘3_'_'mcosh O a a T
hg, 20,
o o s (G- 2) oy o ) g T
X Z h2} —— cosh — — Bm coth ﬁm sinh — ) sin —
w3 3'1+l;l4 sinN 28, +ﬁm a a a a
(3.67)

2. Analytical Solution of the Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free with the Bending Moment M; on the Two
Adjacent Edges
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By boundary condition (3.64), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M, on
the two adjacent edges can be seen as the superposition of two kinds of rectangular
thin plate, which are the rectangular thin plate with four simple supported edges
under the action of bending moment M on the two adjacent edges and that of three
simply supported edges and one free edge with the deflection w|y:b on the free
boundary.

According to (2.59) and (2.60), the expressions of deflection and bending
moment of the rectangular thin plate with four edges simply supported under the
bending moment M, on two opposite edges are as follows:

Mz S X 1/ A\ jmy
ws(x,y) = TE4DT‘Z Z '_'<;+ﬁ> §1n751n7 (3.68)

_ i J a
=13,..j=123,
o o (3.69)
8My 1 (i j i j Jmy
My =~ %.gyﬁﬂ+w 2Tp) Sy
i=13,...j=13,...

Substituting (3.68) into (3.65), there is

- SM; i i {( bi>l{i—z+(2“);] sin’%x}

i=13,...j=13,...

-3
F
Oy y—

Letting a,, = @, on the free boundary by (3.65), there is

00 1
Y (k) [Fre-w%

_1eMy a® sinh?f,, k=

mDb(1 — p)? 31+ : “nhZﬁm B,

am =

Substituting the above equations into (3.13) and (3.14), there are

) 2 N\ e

sinh 3 {%(—zﬂ—z) {g—ﬁ(zfu)gj]}
SMTd x — h2

~ Db 5 2 eusnh, 4 g

2
X K— + f,, coth ﬂm> sinh 7 T ogn MY ] sin 7%
1—pu a a a a

Wy =
m:l 3,

(3.70)
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72
. x 1 (m? 2 -1 K2 m?
sinhB,, > &tk |ptQ-wik
k=13,...
3+u sinh 2/fm
M 8MTa & 1—p + By
% =TT Z 1 + mn
b m=13,... (ﬁm coth 8, +2 M) x sinh Y
« 1— u a N mmnx
mmy mmy a
— Ccosn ——
a a
(3.71)
hﬂ i 1 mz4>k2 ! k2+(2 )mz
Sin m & w\a TE) ¥ W
M SMTa o0 e ; hzﬂ
4= 34 p sinN 2B,
Y b 43 1— H + ﬁm
' mTt mT . mm . mnx
X (_y cosh —= — f,, coth 8, sinh _y) sin —
a a a a
(3.72)
Superimposing (3.66), (3.68) and (3.70), there is
4a*MT & 20,y omnx MT
w=——p m:zl;"m%oshocm cosh ( — ,,,) sin — — E(x —a)x
2
hp, 2,y 1-u sinh
2(1 3 — 2;1 MT > msxl:m{'m sinh (L - ‘Zm) sinh a . mnx
Dn3 1— Z 34u sth[f x + B, coth s
o =n b mm mm
mny cosh mny
SMT & X1 <i2 /'2>" inx . jny  8MTd
— -l t+t5 sm—sm——i
D 1:%,.4':23: ij\a® b* b mDb(1 - p)
2
S 1 (m? 2\~ 1— y
. sinh 8, . % X (7 + ,79) [bz 2-p az] K sinh — -
PR a .
X B, coth s ——
:11;3..,. 3l +l,f :th/ﬂ,,, 4B, ,: T{ m flr:t a
_my cosh my
a a

(3.73)
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Superimposing (3.67), (3.69) and (3.71), there is

T m=13,
B, coth f§
sinh 8, . 200,y l+p |*
m h _ + 2_
+ 2(3 = 2pM” i m cosho, s ( o 1- sin mnx
n m=13,... 3 StH sinh Zﬂm + B sinh my 4
1—u 2 a
_mny M
L a a |
SMT 00 00 1 i2 ,uj2 12 ]2 -1 Jmy
PP (L) (5+L) =l
. e 1 2 kZ -1 kZ 2
gy (54 8) o]
k=13,...
SMTa > 34u >mh2/}m “Fﬂ
T b — o
m=13,...
1
X |:<ﬁm coth ﬁm +2ﬂ> X sinh —— my — LTW osh @} sin @
1—u a a a a
(3.74)
Superimposing (3.67), (3.69) and (3.72), there is
am’ = 1 mmy mnx
M, = 1—pu _ h(——‘ )— — M7
YTon ¢ )m; m cosha,, cos a %o ) ST a +u )
hg, 2 mny mny _
N 2(3 — 2u)M” i nf‘c“mlf% sinh (222 — g, a cosh a G
h
n me13,.. if—!‘j o 2bn + B, B, coth B, sinh mny a
a

2

8 T o0 oo 1 ,“l j2 l'2 j -1 _]TCy
D O 1 o [ “‘“7““7
H - 1L (m? 2 m

T 00
— 8M a Z 3l+;lt amh2ﬂm +,B x

— p,, coth 8, sinh —y) sin

s T
(—m Y cosh my mnx
a a

(3.75)
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3.5.3 Results Analysis

To test the accuracy of (3.73), (3.74) and (3.75), using MATLAB software to
program and calculate, the results show that when taking m = n = 17, deflection
w has converged to exact solution. For the bending moment M, of unit width, when
taking m = n = 289 the result has converged to the exact solution. For the bending
moment M, of unit width, when taking m = n = 289, the result has been basically
converged to the exact solution. For the purposes of convenience and engineering
application, according to the length-width ratio of the plate the calculated results are
made into the form (Table A.10).

According to Table A.10, the relationship of /I, with k., k, and f is shown in
Fig. 3.6.

Figure 3.6 shows that both &, and f decrease with /1, but k, increases with ,/1,,,
and f decreases slowly. When [,/ changes from 0.5 to 2.0, k, changes from greater
than zero to less than zero, whereas k, changes from less than zero to greater than
zero. When [,/I; is almost equal to 2.0, f becomes less than zero.

The engineering application is the same with Sect. 2.3.4.

ky(ky, f)

-0.8
-1

-1.2 : :
0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

Fig. 3.6 Relationship of /I, with k,, k, and f
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3.6 Thermal Bending of Concrete Rectangular Thin Plate
with Two Opposite Edges Simply Supported and One
Edge Clamped and One Edge Free

3.6.1 Boundary Conditions

Figure 3.7 shows that for clamped edges, the boundary conditions are given by

ow
dy

=0 (3.76)
y=0

wl,_o=0,

For simply supported edges, given that the deflection w is equal to zero on the
whole boundary condition and according to (2.12), the above equations become

MT
x=0 — —F (377)

62
x=0 — 0 >

w y
2
=a Ox

X=a

For free edges, the bending moment M,, torque M,,, and transverse shear force
Fy, are equal to zero. The deflection is assumed to be expressed by the sine series
on the boundary of y = b. Therefore, M, M,,, and Fy, are

y=>b
Myl,_,=0 (3.78)
FQ_\,]y:b_ 0
wl,_p= Z anm sin? (3.79)
m=13,...
Fig. 3.7 Two opposite edges y

simply supported and one
edge clamped and one edge
free

S
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Through (2.12), the first part of (3.78) becomes

MT
= (3.80)
b D

Pu, P
o Mo

The distributed shear force on the free boundary is Fgp,. Thus, the second and
third parts of (3.78) are merged into

Pw Pw

y=b

3.6.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.76),
(3.77), (3.80), and (3.81) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Given that w = 0 on the clamped boundary condition, according to (2.12) and
(3.76), there is

M|, = ~M" =M

Thus, the rectangular thin plate with one edge clamped, two edges simply
supported, and one edge free under temperature variation that is perpendicular to
the surface can be considered as the superposition of two kinds of rectangular thin
plate: another with three simply supported edges and one free edge under tem-
perature difference AT and another with three simply supported edges and one free
edge under the bending moment M; on the y = 0 edge. The other edges do not
have a bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of AT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of AT
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4a’M7 i 1 cosh 200,y 2 sin
W= — - — -
! Drn3 5 m?3 cosha,, b " a
B M_T (x— a)x 2a%(3 — 2u)MT
2D D3 (1 — p)
2
_ ., mmy
00 Smhﬁn sinh (21,,. . Otm) I—pu sinh —— -
~ Z m3cosho, x a sin
34 u sinh 2/?”, + B, coth 3, e
m=13,... = + B
muy M
Y osh Y
a
(3.82)
am’ > mmy mmnx
M.X = - 1 h <_ - "VH) i -
(Iu ) m:lZ}.... mcosha,, o a i . a
By coth B,,
inh I 20,y i @
2(3 - zlu)MT > )rsllcr:)s}{;c sinh (7‘ B Ofm) 1+ K sinh a . mmx
— Z » +2— sin ——
T i3 3+;4 sth/I +ﬂ 1-— a
3, =
_ MY osh T
a a
am’ > 1 mmy mmnx 2(3 —2u)M”
M, = - h(—f.,,,) in 4 (- M7 4 2SO
Yo (=) n,;____mcoshocm cosh (== = om ) sin = =+ (=M + n
sinh/i . 200y
0 = sinh (52 — o,
x Z m“”?i . 2§ ) (m—ny cosh 7 B, coth B, sinh m—ny) sin ™
TR T a1 a a a
(3.83)

2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and

One Edge Free with the Bending Moment M, on the Edge y = 0

Using the boundary condition (3.79), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M, on the
edge y = 0 can be considered as the superposition of two kinds of rectangular thin
plate: one with four simply supported edges with the bending moment M, on the
edge y = 0 and another with three simply supported edges and one free edge with

the deflection w‘ y=p on the free boundary.

According to (2.50) and (2.51), the expressions of deflection and bending
moment of the rectangular thin plate with four edges simply supported under the

bending moment M; on the edge y = 0 are as follows:

o0 [o°] -2
8Mr ] Jmy
w(x,y) =D E E z< ) sm751n7 (3.84)

i=13,...j=1,3,...
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8M; N XX [ wA\ (2 A\ imx . jmy

M=tmp 20 2ilat e )\atr) oy
i=13,...j=1,3,...

8M; N XN u A\ (2 A\ . imx iy

Mv:n2b2'1z’; ;; Cl_2+ﬁ E—’_ﬁ Sln781n7 (385)

i=1,3,... j=13,...

8M; N = L (PP nXx  jmy

Yo =W 2 2 M et ) ey

Substituting (3.84) with (3.81) yields

. —2 . .
3 SME e > 7 7 21 imx
F = — +(2 — sin —
o2 3 s R (G ) el

Letting a,, = @,, on the free boundary and using (3.81), we obtain

1

- -
F F =0
Qy y=b + Oy y=b
That is,
00 -2
k2 k2 2
16M;a® sinh?B,, % m (“2 bz) [ﬁ +2-wE
= _ '
2
Db (1 — p) 31+: sthﬁM B,

Substituting the above equation into (3.82) and (3.83) yields

: - k2 m? K -2 K m?
sinh B, > o (7 + h_z) [ﬁ +(2- ﬂ)a—z}

k=13

3+u sinh 2[)’
Sl L ﬁm

SMT 3 00 T
Wa = T Db (1 — 1) Z
- Db (1 — 2 . mmy
) 3 ) <1—M + f3,, coth ﬂm> sinh e -
mmy mmy
— —=cosh —

(3.86)



3.6 Thermal Bending of Concrete Rectangular Thin Plate with Two ... 79

. x, 2 (2 K2 -2 2 m?
sinh 8, kﬂX; g (17 + bﬁ) sz +2—-pn a—z}
3+pu sinh 2/},”
om0 S e
X =TT 03 1+ mmn
b’ 4 u A
m=13,... ) <ﬁm coth 8, +21 M) x sinh p; -
sin
mmy mmy a
—= cosh —
a a
(3.87)
: = K (m k? -2 K2 m?
s 5 6 oo
8MTa & i
- - h2
X (m_ny cosh m_ — f,, coth f8,, sinh m_Tty) sin 7%
a a a a
(3.88)

Superimposing (3.82), (3.84), and (3.86) yields

4a2MT i osh 204,y . mmx MT( )
= cos — 0y | sin — —=—(x —a)x
s, _m3co! shoc,,, b " a 2D

sinh P sinh (2x,,,y OCm)

m COShd
2(3 — T X 34y si h2/f,,,
2a (33 2u)M Z 1 ;ﬁl n +B,
bl = u) m=13,... 2 mny mmn mm mmx
X {<7 + f,, coth /)’,,,) sinh 772 " cosh —y} sin —
1—u a a a a
8MT N (PP Jmy
Twpp 2 2 (Gt 7) sin 5 n Y
i= Lj=13,..
. S 2 2 2 -2 K2 n?
snf, > S (E ) [Ere-nz]
sMTa? - — 3tu xmh2/f
e sinlh2g,
DR, 25 A

2
X K— + B, coth [im) sinh —— My _ mmy cosh m_ny} sin mnx
u a a a a

1—
(3.89)
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Superimposing (3.83), (3.85), and (3.87) produces

4amT > 1 mmny mmx
Mt = -1 h (— - m) in —
, (u—1) 5 cosh {—= — ot ) sin —

3 mcosha,,

1
smh/} sinh (21 g ) <ﬁ CO[hﬁ +2 +lt>
m N

23 —2uM" &
+ ( Ttlu) z ;nc()s?i hzﬁ sin ﬂ
L sin
mE13.. ;ﬁ + B, « ginh T _ My o
BT N s (RPN (R W iy
+WZ Z;<;+b72> ( +ﬁ>sm—sm7
=130 j=1 30
. e K2 2 ;2 -2 2 m2
sih,, > K (4 E) B -0z
k=13,
8MTa & 344 sinlh2p,
TR ; -2 + By
m=1,5,
1
X [(ﬁm coth 3, +2ﬂ> x sinh ™ Y oh w} sin "
1—n a a a a
(3.90)
Superimposing (3.83), (3.85), and (3.88) produces
4mT > mmn mmx
My=——>:((1—p) Z ———— cosh (_y_ ocm> sin — + (u— )M
T w3 m cosha, a a
mmy
sinh g, 2%, ™ cosh 72
N 2(3 —2u)M" i e sinh (7 — o1,) co o
hz; . b3
T M1 3, tl’l‘ % + B, B, coth B, smhﬂ a
a
SMT & XN (2 A\ (P ime . jmy
—— |5 +5] X({— +355) sin— sin—
+ n2h2 _72 _72 i (az + b2) (az + bz) a b
i=13,..j=13,..
: O K (m? K -2 m
sinh f3,, ki; W(F+ﬁ> [ +(2—po }
e =13,..
,81‘24—? 3+p smh2/3” +ﬁ
[l e
mm mnx
><( Y e h—fﬂ cothﬁmsmh—) n—
a
(3.91)

3.6.3 Results Analysis

MATLAB software was used to test the accuracy of (3.89), (3.90), and (3.91). The
results show that when taking m = n = 13, the deflection w has converged to the
exact solution. For the bending moment M, of unit width, when taking m = n = 175,
the result has converged to the exact solution. For the bending moment M,, of unit
width, when taking m = n = 259, the result has converged to the exact solution, and
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kJk,Jf

08

06 —— k){
04 —&— L

'y

Fig. 3.8 Relationship of /I, with k,, k, and f

the error only is 1/100,000 in comparison with the result when taking m = n = 261.
For the purpose of convenience and engineering application, the calculated results
are given in the form according to the length-width ratio of the plate (Table A.11).

According to Table A.11, the relationship of /I, with k,, k, and f is shown in
Fig. 3.8.

Figure 3.8 shows that both , and f decrease with /1, but k, increases with L/,
and f decreases slowly. When [,/ changes from 0.5 to 2.0, k, changes from greater
than zero to less than zero, whereas k, changes from less than zero to greater than
zero. When [,/1, is almost equal to 2.0, f becomes less than zero.

The engineering application is the same with Sect. 2.3.4.

3.7 Thermal Bending of the Concrete Rectangular Thin
Plate with Two Adjacent Edges Simply Supported
and One Edge Clamped and One Edge Free

3.7.1 Boundary Conditions

Figure 3.9 shows that the boundary condition for the clamped edge is

0 M
W|x:a: 0 . =Ty
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Fig. 3.9 Two adjacent edges y
simply supported and one
edge clamped and one edge
free

S

For the simply supported edge, given that deflection w is equal to zero on the
whole boundary condition. According to (2.12), the above equations becomes

MT
y=

Pw
x=0 — 0

w -
y=0 ’ 8x2

For free edges, the bending moment M,, torque M,,, and transverse shear force
Fy, are equal to zero. The deflection is assumed to be expressed by the sine series
on the boundary of y = b. Therefore, M,, M,,, and Fy, are

Myyy:b: 0
My, (3.94)
FQy |y:b 0

wl,_p= Z A sin 2 (3.95)
m=13,... a

Through (2.12), the first part of (3.94) becomes

Pw  Pw M

— — - 3.96

0y? tu x|, D (3.96)

The distributed shear force on the free boundary is Fop,. Thus, the second and
third parts of (3.94) are merged into
— Pw Pw
F =-D|l—+02—pu)—— 0 3.97
Qy‘y:b |:8y3 + ( lu) axzay:| ( )

y=b
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3.7.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.92),
(3.93), (3.96), and (3.97) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Given that w = 0 on the clamped boundary condition, according to the (2.12)
and (3.92), there is

Mx|x:a: 7MT = 1‘47T

Thus, the rectangular thin plate with one edge clamped, two edges simply
supported, and one edge free under temperature variation that is perpendicular to
the surface can be considered as the superposition of two kinds of rectangular thin
plate: another with three simply supported edges and one free edge under tem-
perature difference AT and one with three simply supported edges and one free
edge under the bending moment M, on the x = a edge. The other rectangular thin
plate does not have a bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of AT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of AT

4u2MT > 20,y Commnx] M7
wi=——75 Z [m coshu,,, sh( 5 —ocm) sin T] 7—(x7a)!c

m=13,..

2
sinh g, L—n inh Y
2223 —2uM" K Lm{u sinh (% — o) ( ) Sinh = e
Dol —p) ,,,; Sewsihag, | g X\ + By coth B, S
o Y s ™
(3.98)
g = 1 mrw mmnx
My=—(u-1) Z cosh(—y—am) sin ——
T i 13____mcosh<xm a a
By coth B,
inf 2 inh "
26— 2M" S s S0 (52— o) || 1 | SR o Y
bd i 31+[; smh2/f s - 1—u -
_mmy cosh —
a a
amT > mmy mmnx 2(3 —2u)M"
My =——((1- cosh(—fo()sin— — )Mt ==
YT on (1=w m:;mmcosham a " a ' (=DM
sinh §,, 2
o n:l:oxhx sinh (%3 — o) mmny mmy L mmy\ . mmx
X Z o smhzﬁ (— cosh — — f,, coth 8, sinh —) sin —
w13, Tk + B a a a

(3.99)
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2. Solution for Rectangular Thin Plate with Three Simply Supported Edges and
One Free Edge with Bending Moment M, on the Edge x = a

Using the boundary condition (3.95), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M, on the
edge x = a can be considered as the superposition of two kinds of rectangular thin
plate: one with four simply supported edges with the bending moment M on the
edge x = a and another with three simply supported edges and one free edge with
the deflection w|,—; on the free boundary.

(1) Bending deformation energy of plate Fig. 2.1 shows that if shear force is

ignored, the work of bending moment M,dy is — IMX%’J dxdy. The work of
bending moment M,dy is — 1M} ‘32”2” dxdy. The work of torque M,,dy is
1 &
3 My 5555 dxdy.
In addition, given that the work done by the torque does not affect the work done
by the bending moment, the deformation energy of the isolation body is

1 Pw Pw Pw
av = |22 e, 2 oy dxd
v 2[ o2 Tz “aa} Y

Substituting (2.12) into the above equation and setting M’ = 0, it is obtained
L[ (Pw )’ wdw  w
dV=-D{ =5+ =] 20—y |z575 5=
2 {(8x2 * 6y2> (1=x) {8}@ oy? axay}
For the whole plate, the bending deformation energy is

:_D// (a;; )2_2(1—,1)(‘;%‘2; gza)}dxdy (3.100)

(2) Navier solution under uniform bending moment on the x = a edges. In (3.92),
with the use of the Green formula, the second equation of the integrand is

[ (Gu Py [] o(nfy) o(Bn))
Ox* y*  Ox0y V= Ox Dy y

ow O*w ow Pw
=— ————dx— ——=d .101
/ (8x Ox0y Ox 0y y> (3.101)



3.7 Thermal Bending of the Concrete Rectangular Thin Plate with Two ... 85

Given that (3.101) is integrated along the edge of the thin plate and owing to the
rectangular thin plate with four simply supported edges, dx = 0 and %Vz” = 0 on the

boundary of x = constant. Moreover, dy =0 and % =0 on the boundary of
y = constant. Thus, (3.100) can be simplified as

// <6xf )zdxdy (3.102)

According to the boundary conditions of the four simply supported edges plate
and (2.13), the deflection function is assumed to be

N e . Imx . jmy
w= Z Z Ay sin —= sin =~ (3.103)

Substituting the above equation into (3.102), the deformation energy of the plate
is

mabD S X L (2 2\
= > ZAU< +b2) (3.104)

i=13,...j=13,..

The slopes of the points of the curved surface of plate along x = a are

) :ig‘i.Ai‘“zA,] stTy

When A; increases A; + 0A;;, the increment of the slopes of each point on the
curved surface of the plate along the x = a is given by

ow T, . jmy
55 —:I:;zsmjéAij

=a

The work of the bending moment along the plate boundary is
b T, . Jmy
/ My —isin—dxJA;
0 a b
Because

b . _
2bM.

/ M sin Jﬂdx =T

0 b AL
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The work done by the bending moment is @MT’ 0A;j
Ja

Using (3.104), the increment of the deformation energy is

5V = n*abD (ﬁ 72

2
T\t ﬁ) AyjOA;

The principle of virtual displacement implies that

sMr i (2 A\
Aif:4T2~<2+]2>
n*Da*j \a b

Substituting the above equation into (3.101) yields

8M; N N iR P\ imx . jmy
ws(x,y) = mi:;mj:;mj (a_2 + %) sin —= sin =~ (3.105)

Substituting the above equation into (2.12) and letting M” = 0, the internal force
calculation formula of rectangular thin plate with four edges simply supported with
the bending moment M; on the x = a edge is

My S X i PA\(E P\ . inx . jmy
Ma=a D D ilatrg)laty) sngsin
i=13,..j=13,.. (3.106)
My S X i 2 A\(? A\ . inx . jny
Moo= D2 2 latp)lati) sng sy
i=13,...j=13,...

Substituting (3.105) into (3.97) yields

00 00 . . -2 . .
-3 &M, (& 72 2] . imx
Fol = b, 2 2 {’(E*ﬁ R ey

=13, j=13,..
(3.107)

Letting a,, = @,, and by using (3.97), on the free boundary, there is

F Oy

=3
+Fg,

=0 (3.108)
y=b

y=
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That is,
0 -2
5) re-ns
5 3 u
= _  l6M;a sinh?B,, k % <a ’ ot @ 3.109
- TE4Db(1— ) 34+u gth/fm +B,, B )
1—p
Substituting the above equation into (3.13) and (3.14), there is
e 2 2\ "2 2
sinh f, 3> 43k (% + £) B‘ﬁ@*“)%}}
ST . k=13,... .
3 sin; 2/1
wa n*Db(1 — )mzlzj lt;: ol
) KL + B, coth ﬁnl) sinh "2 — " cosh 7} in
1—u a a a
(3. 1 1())
) 00 2 @ -2 2 2
sinh ﬂm ki; (a_2 + ﬁ) |:p + (2 - 'u) a_21|
Z 31+/it sinh 2/3m + ﬁm
x4 =T 2 7 1+
n b K inh 77
ab, 5 ) <ﬁm coth ,8,,1+21_’u) X sinh P o X
_ mny osh miy
(3. 11 1)
) 00 . @ -2 2 2
sinh f3,, kﬂz; (a_z + b-;) [;,_2 +2—-p) 7}
_ 3 h2
Mya nzab m_zm: 17 =B,
T . T n
2 2, )

(3.112)
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Superimposing (3.98), (3.106), and (3.110) yields
_ AaPMT 1 N 20,y ) i MT( )
w= Dm3 m:l.3....m3 cosha,, " 2D T X
inh B, b (20
mS;:oshazn, sinh (_‘ B Olm)
2(3 _ T 3 h2 N
+2a (?; 2u)M Z 1+:: soh2p, | g
br(t=w) m=13.. mmn mm m
X K— + B,, coth f3,, ) sinh 22 M coch _y} S
a a a
8MT &KX X i P Jjmy
Z Z }(;2+b—> sm?smj

-2
(s 08) e m]

SMTa - 3+u sinh 2/3
R, E n 4 f
1—p m
) sinh T _ MY @] sin
a a a a

mwDb(1 — ), 4
3. 5
<[ (12, + ucom
1—u
(3.113)
Superimposing (3.100), (3.106), and (3.111), there is
am’ e mmy nx
LU () s
1+p
sinh B 20m)
) 2(3 B ZH)MT ic: mcm}ﬁxm sinh ( Oy am) <ﬂ coth ﬁm +2 'u> “in mmnx
inh “a
T m=13,.. Tr[f 2 2’3’” + B < sinph ™Y _ MY osh T a
a a
sMT & X i/ A\/2 A\ jmy
e 2 3 i) (@) e

w o B\CTR g gy
7+b2 b3+( H)az

az

M’ & 3tu 1h21
-5 TR0
|
X [(/}m coth/i’m—&-Zﬂ) x sinh 722 MY osh m_n:y] sin 7%
1—u a a a a
(3.114)
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Superimposing (3.99), (3.106), and (3.112), there is

amT > mmy mnx
M= - — —_ cosh (———-—- ) in T (= M7
’ s ( #) m:zl;... mCOSh“m ) a ) S a * (u )
hg, 2, KL @
+ 20 —2pM” i n:lcnosha sinh (¥ — a,) a osh sin 2
h
T pfE. i g — B, coth B, sinh 72 “
a

N N AY i A jmy
;(“z+ﬁ)<;z+ﬁ> ““7““7

inhp S (&) (R g e
sinh 3, > w5 » +( ) Pl
- 3+u smh2/i

n2ab T + B

(mny osh m — B,, coth 8, sinh —) sin !
a

(3.115)

3.7.3 Results Analysis

MATLAB software was used to test the accuracy of (3.113), (3.114), and (3.115).
The results show that when taking m = n = 17, deflection w has converged to the
exact solution. For the bending moment M, of unit width, when taking m =n =
259, the result converge has to the exact solution. For the bending moment M, of
unit width, when taking m = n = 175, the result has converged to the exact solu-
tion, and the error only is 1/100,000 in comparison with the result when taking

koJkylf
08
0.6 I
—— Lk,
0471 ke
—— k,
S

L
0.5 07 09 LI 13 15 17 19 2.1

_1 1 1 1 1 1 1 1

Fig. 3.10 The relationship of /I, with k,, k, and f
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m =n = 177. For the convenience and engineering application, the calculated
results are given in the form according to the length-width ratio of the plate
(Table A.12).

According to Table A.12, the relationship of /I, with k,, k, and f is shown in
Fig. 3.10.

Figure 3.10 shows that both &, and f decrease with [,/l,, but k, increases with 1,/
l,. When [,/1, changes from 0.5 to 2.0, k, changes from greater than zero to less than
zero, k, changes from less than zero to greater than zero, and f is always greater than
Zero.

The engineering application is the same with Sect. 2.3.4.



Chapter 4
Thermal Buckling of the Concrete
Rectangular Thin Plate

Abstract Based on the small deflection theory of thin plate and the nonlinear
constitutive equation of concrete, the closed form solutions of the critical buckling
temperature variation about concrete rectangular thin plate with four edges simply
supported under thermal loading condition are derived in this chapter.

4.1 Introduction

In this chapter, firstly aiming at an arbitrary rectangular thin plate, the equilibrium
and stability equations of concrete rectangular plate subjected to thermal loading are
derived. The close-form solution of the critical buckling temperature difference for
a simply supported reinforced concrete rectangular plate under uniform temperature
change is presented. The critical buckling temperature variations of concrete rect-
angular plates with simply supported boundary conditions in engineering generally
used are calculated, and the influences of material parameters, geometric dimension
(length-breadth ratio) and relative thickness on the critical buckling temperature
variation are discussed. Then, according to the engineering application of the
concrete rectangular thin plate structure, the equilibrium and stability equations of
the concrete rectangular plate on elastic foundation under thermal loading are
derived. The close-form solutions of the critical buckling temperature difference for
a simply supported concrete rectangular plate on elastic foundation under
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temperature variation perpendicular to surface and uniform temperature change are
presented. Through numerical examples, the influences of material parameters,
length-breadth ratio, relative thickness and bending coefficient on the critical
buckling temperature variation are discussed.

4.2 Equilibrium and Buckling Equations of Rectangular
Thin Plate

4.2.1 Geometric Equation

Now considering a reinforced concrete rectangular thin plate with a size of
a X b x h, the coordinates is taken as shown in Fig. 4.1.
Based on the rigidity plate and the small deflection theories [52], there is

o ow
ox’ Z@y

where u, v and w represent the displacements along the x, y and z directions
respectively.
Hence, the geometric equation of thin plate is
O*w 0w Pw

& :—'—’g,:—'—,ﬂ v:—2'—
" o2 “oy? Yy < oxdy

where &6, and y,, are the components of strain.

4.2.2 Physical Equation

Based on the small elastic-plastic theory of Iliushin [54], the stress-strain rela-
tionship of the generally used materials can be expressed as

Fig. 4.1 Geometric graphic a
of rectangular thin plate
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g; = ‘P(S,‘)
The above equation can be written in a polynomial form, that is
o; = E18i+E28i2 +E38? +...

Namely

E E
a,-:El(s,-—i— E—?sf+E—jgf+...) (4.2)

where E|, E,, E3 ...are the material constant.

This paper is based on the concrete constitutive model proposed by Hognestad,
as is shown in Fig. 4.2.

The rise segment of the model is quadratic parabola, the falling section is the
oblique line, that is

2
azﬂ{ e (5) } Bt (4.3)
a:ﬁ(170.15ﬂ> 80 < &< by

Ecu—¢&0

where f. is the ultimate compressive strength of the prism body; & is the strain
corresponding to the ultimate compressive strength of the prism body; &, is the
ultimate compressive strain.

Due to the cracks develop rapidly in the declining segment AB after reaching
peak stress of concrete, the whole part of the internal structure is damaged
increasingly. Therefore, the rise segment OA is only considered. If ordering:

of. E 1
_%e B——2__~

E=F
! &o ’ E1 280

where E represents the initial elastic modulus of the material; B represents another
new material constant.

Fig. 4.2 The stress-strain o
relationship proposed by
Hognestad
P — A
¢ : B
| E £
o

cu
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If combining (4.2) and (4.3), there is
o; = E(s,- — B?lz) (4.4)

The nonlinear elastic constitutive equation of stress-strain under the condition of
thin plate is
o= ts [(sx — Be?) —|—,u<8y - BF%) -1+ ,u)ocT}
oy = 1_E7 [(gy - Bsﬁ) + (e — Be2) — (1+ ,u)ocT} (4.5)
2
Ty =20 +p +;¢) (Vv,v BVX,V)

where p is the Poisson ratio; o is the linear expansion coefficient of the material; T is
the temperature of any point in the thin plate, that is T = T(x, y, z).

4.2.3 Equilibrium and Buckling Equations

Due to the thickness of the thin plate is very small compared to the other two
dimensions, it can be assumed that there is only the longitudinal stress o, o, and 1y,
which is parallel to the middle plane and invariable along the thickness [9]. So the
internal force in the unit width of the plate can be obtained by integrating the stress
along the direction of thickness

h/2
{Nu =/ 2/2 a;dz

(4.6)
f h/2 0242

Substituting (4.1) and (4.5) into (4.6) yields

2
=
|
|
=)
S
—
—
=
S~—
/N
Dl
g
JI=
N—
—
N
~J
=

My = —D(1 — p)

3 e h/2
where D = 12(‘?‘#_) @ =Eo [" 2 Tdz; ¢ = Eocfh/2 Tzdz.
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According to the assumption of small deflection bending problem of thin plate
[9], [55-57], the equilibrium equation is

19Nt + 1927\» _ O
8N,u
d} -+ ox =0 (48)

M, &> M,y 82My’ (9 w Pw
O +2 oy T o TNeGE tNy G +2Ny 5 dxd) +q=0

where, q is the distribution load of unit area. In (4.8), the first two equations are
independent, therefore, substituting the fourth, fifth, sixth equations of (4.7) into the
third equation of (4.8) yields

1 82(/) & *w *w O*w

DV*w 4+ —— Sy AR TV
i oxr Y 0y? Y 0xOy

where, V* = dx,‘ +20x20»2 + g}:

(4.9) is the stability equilibrium equation of concrete thin plate under the thermal
load based on the small deflection theory.

The buckling equation of thin plate is derived by using the critical equilibrium
method. wy and Ty as the deflection and temperature of the critical state are set.
Both the pre-buckling and post-buckling equilibrium equations are satisfied. In the
above equation, a very small increment is given to w and T respectively, that is

w — wo+ow, T — Ty+ 6T
By substituting w = woy+ 6w and T = T+ T into (4.9) and subtracting the

original equilibrium equation, then neglecting the high order, the buckling equation
is obtained. If marking dw and d¢ as w* and T*, there is

— + — ————N, — 2N, =0
Ox? + 0y? 07 x2 Y07y Y0 Oxdy

DVt 1 1 Pe o B *w Pw* O*w*
Ox0y

(4.10)

where Ny, Nyo and N,y are the pre-buckling internal force.

4.3 Thermal Buckling Temperature of Concrete
Rectangular Thin Plate

4.3.1 Calculation Parameters

According to the existing literature, the relationship between the compressive
strength of concrete when temperature is 7 and the compressive strength of concrete
under normal temperature can be determined by the following equations [15]:
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fr=f T <60°C
fT = 0.88f. — 0.94f, 60°C <T < 100°C
£ =0.95f. — 1.08f, 100°C < T < 300°C (4.11)

-1
fr=[1+18() ™| £ 7> 300°C

The relationship between the peak strain ¢/ and the peak train under normal
temperature can be determined by the following equation:

T 1.7
1+5<1000) ]80 (4.12)

Under the action of temperature, the linear expansion coefficient «! can be
determined by the following equation:

T
T _ I —6
of = 28(1000) x 10 (4.13)

Due to the high temperature, the cement slurry and aggregate in the confined
concrete generate different expansion and contraction, and generate thermal stress and
the cracks may appear. The experimental results show that the granite aggregate
concrete generates thermal cracks at 550 °C, and the limestone aggregate concrete
cracks at 700 °C. For the high strength concrete, it may burst and crack suddenly when
T> 400 ~ 500 °C. Thus it is considered that the strength damage will occur when
the temperature reaches these values, and the buckling calculation is not necessary.

4.3.2 Buckling Critical Temperature

Presuming the initial temperature of each point of the thin plate is the same, the
boundary conditions are that the thin plate is clamped in the direction of the
in-plane and simply supported in the bending direction. The critical temperature
rising value AT, in buckling of the concrete thin plate is evaluated.

Given that the temperature varies uniformly in the plane direction, hence
Nyyo = 0, according to the first two equations of (4.8), N,g and N,g also should be
constant, thus applying it to the boundary, there is

2
Nilvoa = ~DB(5%) — 2,
2
Ny’y:(),b DB(‘?Z ) li
, (4.14)
M |x Oa DW_W 0
M, ‘) —0b DW_TP/L:O
xy —
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Substituting the fourth and fifth equations into the first and the second equations
produces

2

Nx‘x—Oa: — 52 2 =

= D(1-p) 1—p
N ’ Bl @ (4.15)

Yiy=0""  DO-p? 1-u

Hence
B’ P

Ny = Ny = — — (4.16)

D(1—p)? l-u

In addition, due to the uniform variation of the temperature in the plane direc-
tion, there is

o o

— 42T _0 4.17

Ox? * 0y? (4.17)

Substituting (4.16) and (4.17) into (4.10) produces

Pw* OPw

Bo? i
4

DV*w* + 5
D(1—p) 1-n

When the temperature varies uniformly in the thin plate, integrating the ¢ and &
in (4.7) yields

@ =0,®=EoTh (4.19)

Given that the edge constraint can increase the rigidity of the structure, for the
sake of safety, only the condition that four edges are simply supported is discussed.
The constraint equations of the rectangular thin plate with four edges simply
supported are

{xO,sidea:w*M;O (4.20)

y=0sideb:w" =M =0
Assuming that the solution meeting the boundary conditions (4.20), the solution is
= Z Z mn sin sm@ (4.21)

m=1 n=1 b

where m, n represent the numbers of half wave along the directions of x and y when
the thin plate is buckling; A,,, is an arbitrary constant.
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Substituting (4.19) into (4.18), there is

Eho Pw* OPw*
4 %
DVw+1_#T*(ax2 - ay2>=0 (4.22)

Substituting (4.21) into (4.22), there is

oo 00 2 2 *
EhoT
E A |D —m2 +—n2 el [N SN IR
oo fo a b 1—u a b

In the above equations, A,,, can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in bracket is required to be zero. That is

D m? N n?\ , EhoT*
moT Ve
a?  b? 1—pu

Hence, the critical temperature expression can be written as

h2r? m?  n?
T"=— " (= += 423
(1 + P <a2 + b2) (423)

Obviously, to obtain the minimum value of T%, it is necessary to the m = n= 1,
thus the critical buckling temperature is turned into

a 27'52
- 71(:(/1 J)ru)a [1 + (a/b)z} (4.24)

AT,

(4.24) is the buckling critical temperature change value of the reinforced con-
crete rectangular plate under the uniform temperature variation.

It can be seen that when the relative thickness of thin plate is constant, the
critical temperature change decreases with the increase of the length-width ratio.
When the length-width ratio is constant, the buckling critical temperature change
increases monotonically with the increase of the relative thickness, but it is inde-
pendent of the initial elastic modulus of the material.

4.3.3 Numerical Examples

If the initial working temperature or the lower temperature side of the thin plate is
normal temperature. After calculation, the critical buckling temperature of the
concrete rectangular thin plate with four edges simply supported is within 200 °C.
For simplicity, the influence of temperature on the linear expansion coefficient is
not considered.
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According to (4.24) of the critical buckling temperature change, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated, in which o = 1x107°/°C, u = 1/6.

In order to make the conclusion of this section can be directly applied to the
calculation of structure engineering, take the length-width ratio b/a = 1.0~ 3.0,
then the four cases are calculated when taking 7 = a/30, h = a/35, h = a/40 and
h = a/45. Specific results are shown in Table 4.1.

As can be seen in Table 4.1, when taking the thickness of the plate 7 = a/30,
the buckling critical temperature AT,, varies in 156.6 ~87.1 °C. When taking the
thickness of the thin plate & = a/35, the critical buckling temperature AT,, varies
between 115.1 and 63.9 °C. When taking the thickness of the plate & = a/40, the
buckling critical temperature AT, varies between 88.1 and 48.9 °C. When taking
the thickness of the plate h = a/45, the buckling critical temperature AT,, varies
between 69.6 and 38.7 °C. Therefore, for the conventional reinforced concrete
rectangular thin plate with four simply supported edges, the buckling critical
temperature it can bear varies between 38.7 and 156.6 °C; The thinner the plate is,
the smaller the critical temperature is, and the larger the length-width ratio is, the
smaller the critical temperature is.

Table 4.1 Influences of b/a and h/a on the critical temperature difference AT,,/°C

b/a h/a AT,, h/a AT,, h/a AT,, hla AT,,
1.0 1/30 156.6 1/35 115.1 1/40 88.1 1/45 69.6
1.1 1/30 143.1 1/35 105.1 1/40 80.5 1/45 63.6
1.2 1/30 132.7 1/35 96.8 1/40 76.6 1/45 59.0
1.3 1/30 124.7 1/35 91.6 1/40 70.1 1/45 55.4
1.4 1/30 118.3 1/35 86.9 1/40 66.6 1/45 52.6
1.5 1/30 113.1 1/35 83.1 1/40 63.6 1/45 50.3
1.6 1/30 108.9 1/35 80.0 1/40 61.3 1/45 48.4
1.7 1/30 105.4 1/35 77.4 1/40 59.3 1/45 46.8
1.8 1/30 102.5 1/35 75.3 1/40 57.6 1/45 45.5
1.9 1/30 100.0 1/35 73.5 1/40 56.3 1/45 44 4
2.0 1/30 97.9 1/35 71.9 1/40 55.1 1/45 43.5
2.1 1/30 96.1 1/35 70.6 1/40 54.1 1/45 42.7
2.2 1/30 94.5 1/35 69.4 1/40 53.1 1/45 42.0
2.3 1/30 93.1 1/35 68.4 1/40 52.4 1/45 41.4
2.4 1/30 91.9 1/35 67.6 1/40 51.7 1/45 40.9
2.5 1/30 90.9 1/35 66.8 1/40 51.1 1/45 40.4
2.6 1/30 89.9 1/35 66.1 1/40 50.6 1/45 399
2.7 1/30 89.1 1/35 65.4 1/40 50.1 1/45 39.6
2.8 1/30 88.3 1/35 64.9 1/40 49.7 1/45 39.3
2.9 1/30 87.6 1/35 64.4 1/40 49.3 1/45 38.9
3.0 1/30 87.1 1/35 63.9 1/40 48.9 1/45 38.7
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4.4 Thermal Buckling of Concrete Rectangular Thin Plate
on the Elastic Foundation

4.4.1 Equilibrium and Buckling Equations

As is shown in Fig. 4.1, considering a rectangular thin plate on the elastic foun-
dation, based on the classical small deflection theory of the thin plate, the equi-
librium equation is

o, +%2=0 (4.25)

\ aM\¥ aM‘ () ()‘
ax- +255 + 57 tNGe + N5 +2N, Xvaxa)+‘1 kw =0

where k is the foundation modulus of the elastic.
Similarly, the first two equations of (4.25) are independent, therefore, substi-
tuting the fourth, fifth, sixth equations of (4.7) into the third of Eq. (4.25) yields

DV4W+ 1 <i+82¢>—Nx82W NaZW—ZN *w

ae o) Nga ~Nhge m Mgy Thvma=0

(4.26)

(4.26) is the stability equilibrium equation of reinforced concrete thin plate on
the elastic foundation under the thermal load and transverse load based on the small
deflection theory.

4.4.2 Thermal Buckling of Thin Plate Under the Uniform
Temperature Change

Similarly, with deriving (4.18), the same equation can be derived as

<3zw* Pw*

Bo? (]
SRR
Ox ady

DV*w* + +
D(1—p)? 1-p

) +hw' =0 (4.27)

When the temperature varies uniformly, substituting (4.19) into (4.27) yields
Pwr OPwr

Eho
4 % *
DV w* + 1—,uT<8x2 + ayz)Jrkw =0 (4.28)

Substituting (4.21) into (4.28) yields

iif‘ m " Bl AN
m=1 n=1 bZ l_'u aZ bZ

=0

nmy
b

. mnTXx |
Sin Nt
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In the above equations, A,,, can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in parentheses is required to be zero. That is

m a2\’ 4 EhaT* (m*  n*\ ,
D(E—Fﬁ)ﬂ —‘v‘k—m(ﬁ—f'ﬁ)ﬂ =0

Hence, the critical temperature expression can be written as

h’r? ni2 n? k(1 —u)  a*b?
12(1 4+ p)o Ehon? m2b? + n’a?

T = (4.29)

az  b?

If ordering A = b/a, H = h/a, there is

H*n? n? k(1 —wa  7?
T=——(m’+ = 4.30
12(1 4 o (m * 22> " EHam®> m2)? 4 n? (4.30)

After calculation, when taking m = n = 1, the minimum value was obtained.
That is [49]

H? 1 - 1

AT, = (L) K= a (4.31)
12(1+ p)o 2’ EHom? (1 + L2>

A

(4.31) is the calculation formula of buckling critical temperature changed value
of the reinforced concrete rectangular plate on the elastic foundation.

Given that the ground temperature varies within 3.2 m below the surface of the
ground between —20 and 35 °C in the urban area [49], and after calculation, the
critical buckling temperature is within 200 °C, thus there is no need to consider the
influence of temperature on the material constant and linear expansion coefficient.

4.4.3 Numerical Examples

According to (4.31) of the critical buckling temperature variation, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated. In which & = 1 x 107°/°C, u = 1/6, and the initial tempera-
ture is set as normal temperature. In order to make the conclusion of this section can
be directly applied to the calculation of structure engineering, taking the
length-width ratio b/a = 1.0 ~ 3.0, then h =a/30, h=a/35, h=a/40 and
h = a/45, the concrete strength is 25 ~ 45 MPa.

For different initial elastic constants E, taking the length-width ratio 4 = 1.0, the
short side a = 3.5 m, the bedding coefficient k=1 X 10° N/m3, the relative
thickness H = 1/35, the critical buckling temperature change is determined by
(4.31). As is shown in Fig. 4.3.
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Fig. 4.3 The influence of material constant variation on the critical bucking temperature

It can be seen by Fig. 4.3 that the critical temperature change decreases with the
increase of initial elastic constant E. Namely, the higher the concrete strength of
thin plate is, the lower the critical temperature variation of the thin plate is. In
addition, the effect of temperature on initial elastic constant is also considered when
the temperature is higher.

For different the length-width ratio 4, taking short side a = 3.5 m, concrete
strength is 40 MPa, bedding coefficient k = 1x10° N/m?, the relative thickness
H=1/35, the critical buckling temperature change is determined by (4.31). As is
shown in Fig. 4.4.

It can be seen Fig. 4.4 that the critical temperature change decreases with the
increase of the length-width ratio 4. When /4 > 2.0, the buckling critical temperature
change value tends to be stable.

For different foundation modulus k%, taking short edge a = 3.5 m, concrete
strength is 40 MPa, 4 = 1.0, H = 1/35, the critical buckling temperature change is
determined by (4.31). As is shown in Fig. 4.5.
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Fig. 4.4 The influence of length-width ratio on the critical bucking temperature
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Fig. 4.5 The influence of the
bedding coefficient on the
critical buckling temperature
variation
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It can be seen in Fig. 4.5 that the critical buckling temperature increases with the
increase of the bedding coefficient k. If the bedding -coefficient
k > 1.0 x 107 N/m’, the critical buckling temperature is close to 400 °C. Thus for
conventional concrete strength is 25 ~ 45 MPa, it is only necessary to calculate
the buckling critical temperature variation of soft soil, and clay and loam in medium
dense soil. There is no need to calculate the buckling critical temperature for other
soils. By this time, if the temperature variation is too large, the concrete plate will
suddenly burst and crack, which should be paid enough attention to.

For different relative thickness H, taking the short side @ = 3.5 m, 4 = 1.0, the
concrete strength is 40 MPa, bedding coefficient £k = 1 x 10% N/m>, the critical
buckling temperature variation is determined according to (4.31), as shown in
Fig. 4.6.

As can be seen in Fig. 4.6, the critical buckling temperature increases with the
increase of relative thickness. So for concrete rectangular thin plate with buckling
temperature influence, the thickness of plate should be appropriately increased.
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4.4.4 Thermal Buckling of Concrete Rectangular Thin Plate
on Elastic Foundation in the Case of the Transverse
Temperature

According to (4.10), there is

Bg? )
D(W*!cx/m +2Wy;x\’v +W*vvyy) + p 2 + (W +W ) +kw* - O
e T e T ) A D T Tk

(4.32)

The experimental results show that [15], temperature along the thickness
direction is a nonlinear variation, but temperature is always transmitted through
high temperature surface to low temperature. Hence, for the sake of simplicity, and
considering the engineering practice, the temperature in plate is transmitted by the
way of uniform change or linear change along the thick [50], that is

Tu - Td
h

T(Z) = Tu - 2, Tu 2 Td

where T, represents the top surface temperature of thin plate; T4 represents the
below surface temperature of thin plate, that is ground temperature[17].
Substituting T, and (4.17) into ¢ and @ produces

Eo(T, — Ty)h?

& = EoT,h 4.
U o= B, (433)

(p:

The constraint equations of the rectangular thin plate with four edges simply
supported are

x=0,a:w' =M;y=0, b:w" =M, (4.34)
Assuming that the solution meeting the boundary conditions (4.34), there is
= Z ZAW‘" sin 2 gin 17 (4.35)
m=1 n=1 b

where m, n represent the numbers of half wave along the directions of x and y
when the thin plate is buckling. A,,, is an arbitrary constant.
Substituting (4.34), (4.35) into (4.32), there is
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0 g 2 A
22w o i) 7
BE&*h(1+ p)(T, — T,;)* +EaTuh] <m2 n2> 2 —|—k} mMAxX . nmy

12(1 — p) —pl\a Tp, S

=0

In the above equations, A,,, can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in parenthesis is required to be zero. That is

2 2\ 2 2 2 2 2
BEa~h(1 T,.—T, EhoT,
p(™ ) g (PR (1+p)( a) Tl (1 N2 k=0
a b 12(1 — ) 1—pul\a b

(4.36)

Obviously, to obtain the minimum value of T, it is necessary to require the
m=n=1, thus the critical buckling temperature is turned into

2
6 2
|:Bo:(1 ) Td:| _Td

1 |2l 4 12 = ok
+ Bo2 (14 p)* |:h (az + bz)n +12 Eh (72 2)"2
a b

6

ATL‘F i R ——
[Boc(l +u)

_Td} +

In China city, ground temperature changes from - 20 °C to 35 °C within 3.2
meters under the ground surface [49], and through the calculation, the critical
buckling temperature is within 200 °C, so the influence of temperature on material
constant, the linear expansion coefficient and so on wasn’t considered [15].

According to (4.37) of the critical buckling temperature change, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated, in which o = 1x107/°C, u = 1/6.

In order to make the conclusion of this section can be directly applied to the
calculation of structure engineering, take the length-width ratio b/a=1.0-3.0, then
the four cases are calculated when taking H=h/a=1/30, H=h/a=1/35, H=h/a=1/40,
H=h/a=1/45. The concrete strength is 15~45 MPa.

For different initial elastic constant E, taking the length-width ratio A=1.0, the
short side a= 3.5 m, the bedding coefficient k = 1x 10° N/m?, the relative thickness
H=1/35, T, = 0°C, the critical buckling temperature change is determined by (4.37).
As is shown in Fig. 4.7.

It can be seen by Fig. 4.7 that the critical temperature change decreases with the
increase of initial elastic constant E but the change is very small.

For different the length-width ratio 4, taking short side a = 3.5 m, concrete is 40
MPa, T,,=0°C, bedding coefficient k= 1 x 10° N/m?® , the relative thickness H=1/35, the
critical buckling temperature change is determined by (4.37) . As is shown in Fig. 4.8.
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It can be seen Fig. 4.8 that the critical temperature change decreases with the
increase of the length-width ratio, but change value is nearly equal. Therefore, for
the sake of simplicity, length-width ratio can be taken as 1.

For different bedding coefficient k, it can directly be seen by (4.37) that the
critical buckling temperature increases with the increases of bedding coefficient &,
so concrete rectangular thin plate should be placed on good foundation if the
buckling will appear because of temperature, in order to improve the critical
buckling temperature values. For the sake of simplicity, the bed coefficient can be
taken as is 1x 10~ °N/mm> because the total change is not much.

For different relative thickness H, taking the short side a=3.5 m, /=1.0, the con-
crete strength is 40 MPa, bedding coefficient k = 1x10° N/m?, the critical buckling
temperature variation is determined according to (4.37), as shown in Fig. 4.9.
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As can be seen in Fig. 4.9, the critical buckling temperature increases with the
increase of relative thickness. So it is necessary to increase the thickness of concrete
rectangular plate if the buckling will appear because of temperature.

For different ground temperature T, taking the short side a=3.5 m, 2=1.0, the
concrete strength is 40 MPa, bedding coefficient k = 1x10° N/m?, T,; changes from
-20°C to 35°C, the critical buckling temperature variation is determined according
to (4.37), as shown in Fig. 4.10.

As can be seen in Fig. 4.10, the critical buckling temperature increases with the
increase of ground temperature 7, however, for engineering, its relative change
value is not big. Therefore, for the sake of simplicity, ground temperature can be
taken as 0 °C.



Chapter 5
Thermal Vibration of Concrete
Rectangular Thin Plate

Abstract Based on the small deflection theory of thin plate, the calculation for-
mula of natural frequency and the deflection function under forced vibration of
rectangular thin plate with four edges simply supported under thermal loading
condition are derived in this chapter.

M

5.1 Introduction

According to the research status, research reports about the vibration of concrete
rectangular thin plate under the action of thermal load have yet been seen in the
existing literature. In recent years, the nonlinear vibration of the thin plate with
different geometric features has been extensively studied, and its content involves
the influence of the geometric non-linearity, material non-linearity and anisotropy,
shear deformation and moment of inertia, and deformation under static load. At
present, due to the rapid development of science and technology and its wide use in
engineering, a lot of research about vibration behavior of heating thin plate has been
made. For example, Li analyzed vibration of heating ring plate, in these studies, the
research of concrete material is less [46—48]. He et al. analyzed dynamic response
of concrete plate under the action of the explosion load, but concrete is assumed to
be the ideal rigid-plastic material. These studies laid a solid foundation for the
vibration analysis of thin plate. But due to the particularity of concrete material, the
current research results cannot be applied well. Therefore, in this book, based on the
theory of small deflection, taking the quadratic double parameters model, the
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dynamic equation of thermal elastic problem of concrete rectangular thin plate is
derived. Using the Galerkin method and Series method, the natural frequency and
the deflection function of forced vibration about concrete rectangular thin plate
under the thermal environment are deduced. For the purpose of the convenience of
engineering design, the natural frequency under transverse temperature and uniform
temperature changes and the deflection function under the action of uniformly
distributed load about the concrete rectangular thin plate are given, and the influ-
ences of material elastic constants, length-width ratio, relative thickness and tem-
perature on natural frequency and deflection function of concrete thin plate are
discussed.

In this chapter, for any rectangular thin plates, the dynamic equation of the
reinforced concrete rectangular thin plate is deduced first. And the nonlinear
dynamic equation and analytical solution of concrete rectangular thin plate with
four edges simply supported under the action of thermal load are given by using the
Galerkin principle. Based on the concrete rectangular thin plate structure on elastic
foundation, dynamic equation of concrete rectangular thin plate under the thermal
environment on elastic foundation is deduced. And the formulas of natural fre-
quency and deflection function of forced vibration about concrete rectangular thin
plate with four edges simply supported on elastic foundation under the thermal
environment are deduced using the Series method. For the convenience of engi-
neering application, natural frequency and deflection function expression under
uniformly distributed load about concrete rectangular thin plate with four edges
simply supported under the action of transverse temperature and uniformly tem-
perature change on elastic foundation are given.

5.2 Free Vibration of Rectangular Thin Plate Under
Thermal Load

5.2.1 Basic Equation About the Free Vibration
of Rectangular Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate, based on the classical
small deflection theory of the thin plate, the equilibrium equation is

ONx ONy __

Ox + dy 0

ONy ONy

nL g (5.1)
O*M, OZM” M, Pw Pw Pw Pw _

0x2 +20x6y + 3_\'2) +NXW+NY 0y? +2N’Q’Dx0y_phW70

In (5.1), the first two equations are independent, therefore substituting the fourth,
fifth, sixth equations of (4.7) into the third of Eq. (5.1), there is
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DV* -
Viw + o2 )

a2 Mgr T Mgy PR T

(5.2)

1 <82(p 82(/)) N Pw Pw Pw Pw
1—u *

(5.2) is a differential equation of free vibration based on the theory of small
deflection of concrete thin plate under the action of thermal load.
Substituting (4.16) and (4.17) into (5.2) yields

2 2 2 2
Be ? <8W+8—W)+phaw 0 (53)

D(1—p)? 1-up

DV* aw v _
Viwt 2 oy o7

For simplicity, considering the case of four edges simply supported, take the
displacement mode shape as

w(x,y,1) = w*(x,y) sin(wt + ) (5.4)

where, ' (x,y) = f sin& sin%.
Substituting (5.4) into (5.3) yields

B¢? b
D(1—p)? l-p

2 2
DV 1 (3 w o Pw

)

) — w*phw =0 (5.5)

Based on Galerkin principle, there is

/.

Due to the arbitrary of Jf, there is

2 2\ 2
b i
D(z+ﬁ)—

Through (5.6) yields

1 2 2\’ B¢? ol ol
2= Ip(E 4T - LA 5.7
@ ph{ (a2+b2> D(l—u)2+1—ﬂ (a2+b2) 57)

(5.7) is the basic frequency of the free vibration of a concrete rectangular thin plate
with four edges simply supported under the thermal load.

Because the thermal load will make the mechanical properties of steel and
concrete change greatly, therefore, in order to analyze the vibration rule of concrete
thin plate under the action of temperature, temperature field distribution of thin

DV*w +

B¢? P Pw  Pw 2
+ — + =] - hw | owds = 0
a )2 1 1( 5 5 w”phw | owds

B¢? P
D(1—p)? 1—p

o
<; + ﬁ> — o*ph =0 (5.6)
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plate must be determined in advance. The results of experiments show that,
although temperature vary is nonlinear along the thickness, the temperature always
transmits from higher temperature to the lower temperature [15]. Therefore, for the
sake of simplicity and considering the actual project, temperature changes inside the
plate are considered as uniformly or linear variation along the thickness [17],
namely

Tb_Tc

T(z)=T,— 5T, > T, (5.8)
where T}, represents the higher temperature of plate surface; 7, represents the lower
temperature of plate surface.

Substituting (5.8) into expression of ¢ and @ of (4.7), yields

Eo(Ty — T.)h

2
0= T , @ = EoTyh (5.9)

Substituting (5.9) into (5.7), yields

w

) En2 <1 1)2{n2h2 (1 1) _oc[(l—s—u)oc(Tb—TL.)2+2430T,,}}

T12p(l-w\a2 " B2) Y1+p\2 B2 2¢0
(5.10)

When the temperature changes uniformly, substituting (4.19) into (5.7), yields

ER’n 1 1\> EaTr® /1 1
2
- " () - (S 5.11
@ T 21— 2) <a2+b2> p(l =) <a2+b2> 1D

In order to make (5.11) have a wide range of applicability in the engineering
structure, letting A = b/a (length-width ratio), H = h/a (relative thickness), then
(5.11) becomes

v g\/p(lE— 1) [1271211) (l ’ 1_12) - OCT} (l N /1_12) 312)

Through (5.12), it can be seen that the natural frequency of thin plate increases
with the increase of the initial elastic modulus E, and decreases with the increase of
the length-width ratio A, and the natural frequency of the square plate is the biggest,
decreases with the increase of temperature 7, and increases with the increase of the
relative thickness.

Therefore, the influence of temperature on the natural frequency of thin plate
should be fully estimated when calculating the structure, such as temperature
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change caused by sunshine (especially the temperature variation at day and night),
temperature changes formed on the two plate surfaces.
In addition, by (4.24) can be known

H2r? 1
AT —— |1+ — 5.13
= 12(1+ﬂ)oc[ * /12} (5.13)

Otherwise, the structure will be buckling failure.

5.2.2 Numerical Examples

According to (5.13), through calculating on the general concrete rectangular thin
plates in engineering, the critical buckling temperature changes of concrete rect-
angular thin plate with the four edges simply supported are within 200 °C, so if the
initial temperature is normal temperature or temperature inside the plate is less than
300 °C. For the sake of simplicity, the influence of the temperature on calculation of
concrete parameters cannot be considered. As an example, only concrete rectangular
thin plate with four edges simply supported is calculated when temperature is 60 °C,
the calculated parameters are: a = 3.5 m, concrete strength is 30 MPa (f, =
1.43 x 10’ N/m?), ¢ =0.002, H=1/30, a=1x107/°C, u=1/6, p=
2500kg/m>. Substituting the above parameters into (5.12) yields, @ = 103.40 rad/s.

5.3 Forced Vibration of Concrete Rectangular
Thin Plate Under Thermal Load

5.3.1 Basic Equation of Forced Vibration
of Rectangular Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate on the elastic foundation,
based on the classical small deflection theory of the thin plate, the dynamic equi-
librium equation is

N,y
ON, + ON,, =0

ox dy
Ny | Ny _
o T =0

5.14)
M, M, o’M, Pw Pw Pw (
ot T2%a0 T 37 TNegr +N G + 2Ny g5 —

phZ% +F(x,y,1) =0

where, F (x, y, t) is vibration load force on the surface of the concrete plate.
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In (5.14), the first two equations are independent, therefore substituting the
fourth, fifth, sixth equations of (4.7) into the third of Eq. (5.14) yields

b2 o2 & o2
pvtw N 2L N Y o W—i—pha—:

82 ya—y2 xy?@y —F(x,y,t)ZO (515)

Substituting (4.16) and (4.17) into (5.15) yields

B¢? P Pw  OPw Pw
pv* Iw L I oY -0
\Y W+<D(1—u)2+ 1—M> <8x2 + By +p pre (x,y,1)

(5.16)

(5.16) is the dynamic equation of the concrete plate under the thermal environment.
If F(x, y, #) is 0, (5.16) is changed as

B¢? () Pw  Pw 82W
pv* 1
vw+<D(1u)2+1—M><3x2 5‘y2)+ h—=0 (5.17)

(5.17) is the equilibrium differential equation for the free vibration of concrete
rectangular thin plate under thermal environment.

The situation of the four edges simply supported is considered, and the dis-
placement pattern is taken as

w(x,y,t) = w*(x,y) sin(wt + ) (5.18)

where, w*(x,y) = Z Z Cyn sin "2 sin 72

m=1n=

Submitting (5.18) 1nt0 (5.17), there is

X = e )2 B
I

m=1n
2

(5.19)

n=1
2 mux nmy __
( LE oy LE ) w’ph} x sin™sin " = 0

Because the undetermined coefficients C,,, is not equal to zero, the quantity in
the bracket must be zero, so the natural frequency of concrete rectangular thin plate
under the thermal environment is

En’n* _ (m* | n®
Oy = 12p(1—42) (a2 + b3> [Dph(l w? + ( )} x (5.20)
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Setting a simply supported rectangular plate subjected to a harmonic load, that is
F(x,y,1) = q(x,y) sin(0t + )

where, g(x,y) is the load amplitude in unit area of the thin plate; 0 is the frequency
of the vibration load,  is the initial phase angle.

The equilibrium differential equation for the forced vibration of the rectangular
thin plate under the thermal environment is

B 2 7)) 2 2 2
DV*w + < ( ¢ + > (a—w + 8—W> —l—pha—w = q(x,y) sin(0t + )

D1 —p)? 1—p)\ox> 0y or?
(5.21)
Taking the displacement mode shape as
w(x,y,1) = wo(x,y) sin(6r + ) (5.22)

where, wo(x,y) = Z Z Ay Sin " sin 772 m is the wave number of the half wave of
m=1n=1

Sine of the thin plate formed in the x direction when vibrating; n is the wave number
of the half wave of Sine of the thin plate formed in the y direction when vibrating.
The load is expressed as a double trigonometric series.

Z qu,, smmxsm% (5.23)

m=1 n=1

where
Gmn = / / (x,y) sm—sm ydxdy (5.24)

Substituting (5.22), (5.23), (5.24) into (5.21) there is

00 00 i ey 2 Bo?
£ ol 158 i+ 8]
( vy ”2”2)—02ph} X sin 2 sin T2 (5.25)

b
o0 [o°]
MTX nT[y
= > > GunSin"sin X

qmn
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The general formula of the deflection (amplitude) is

mnx nmy

o0 o0
=33 o S“S S (5.26)
D 22 n2n2 2 ; + ~

Letting 7, represents the temperature value of the thin plate upward surface, and
T, indicates the temperature of the thin plate downward surface of the thin plate,
then (5.9) becomes

,® = EaT,h (5.27)

Substituting (5.27) into (5.20), yields

2 2
Enrt (m® | BEZ(1+ ) (Tu=Ta)" | _EoT,
() (a—z+ﬁ) _[ i +p(1*/4)}x

2 2
(% + )

Given that T,, = Ty, it becomes the case when the temperature changes.

(5.28) is vibration frequency calculation formula of concrete rectangular thin
plate with four edges simply supported in the cases of transverse temperature
change and uniform temperature change. For other non-uniform temperature field,
as long as the temperature function T = T(x,y, z) is known, based on expressions
of @, ¢ and (5.20), vibration frequency formula under the action of any temperature
T (x, y, t) can be obtained.

Given that the pressure g(x, y) on the thin plate is uniformly distributed, then by
(5.24), there is

(5.28)

1
G //sn—xsm Y rdy = 04 (5.29)

mn 12

where, m and n are odd integer.
Substituting (5.27) and (5.29) into (5.26) yields
nmy

- & 16g sin 2=
wolr,y) = > Y — b (5.30)

BEoczh 1+ u)(T.—Ta)?
m=13,...n=13... D(™ + 1 o — (12 1@( ) 4
mn a (1—n)

ElaiT;h] (21_22 n Z_i) w2 — P ph

mmnx Sln

When x =4, y = g, the maximum deflection of the thin plate (amplitude) is
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mtn_q

Wmax = i i 16q(_1) i (531)

2 2
2 2 BEo*h(1 + p)(Tu—Ta)
=13,...n=13... D™ 4+ n 4 (T —Tq
m=1,3,...n=1, (02 —|—b2) T |: (1) —+
mn i , , )
EoT, m n 2
l—u} X (72 + _bz)” — 0°ph

5.3.2 Numerical Examples

As an example, only the cases of transverse temperature variation and the uniform
temperature variation are discussed. By (5.28) there is

2 2
12p(lf,u2) (az + bz) [ 12p(1—p) + (532)

Et, | (w2 | 2\.2
p(lfu):| (a2 + )T

(5.32) is the vibration natural frequency of concrete rectangular plate with four
edges simply supported under transverse temperature change.

It can be seen that the greater the temperature difference is, the smaller the
natural frequency is. Therefore, only the case of uniform temperature variation is
considered, namely T, = T, then (5.32) becomes

Eh?m* m*  n?\? EoTm® (m®* n?

O =\ |+ 5] ———— |+ (5.33)
2p(l =) \a> ) p(l—p\a b

In order to make the conclusion apply in engineering structure calculation

directly, letting a is short side, 2 =b/a (length-width ratio), H = hla (relative
thickness), and then (5.33) becomes

En* n2\? EoTn? n2
BN o (7)o
\/12,0(1 — 1) ( ) a?p(l—p) 2 (539

It can be seen that the vibration frequency of the thin plate decreases with the
increase of the elastic constant E and the relative thickness H, decreases with the
increase of T.

For the length and width ratio A, for the ease of description, let the short side
a = 3.5 m. In addition, let x = 1 x 107%/°C, u=1/6, p = 2500kg/m*, H = 1/30,
T = 60 °C, concrete strength is 30 MPa, the first frequency of thin plate is shown as
Fig. 5.1.

From Fig. 5.1, it can be seen that the natural frequency of thin plate decreases
with the increase of length-width ratio, and the basic frequency tends to be stable
when the ratio of length and width is greater than 2.

Wy =
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Fig. 5.1 The first frequency
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For the forced vibration under the action of uniformly distributed load, by (5.31)
it can be seen that when the frequency of the load 0 is given, the maximum
deflection of thin plate can be determined. In addition, the bigger the temperature
difference is, the greater the deflection is.

Through deriving, we know that, as for the forced vibration, when there is a big
difference between the loading frequency 0 and the natural frequency of the thin
plate, arbitrary temperature of deflection (amplitude) can be calculated based on
(5.26). As for common rectangular thin plate in engineering, to simplify the cal-
culation, the transverse temperature change and uniform temperature change can be
only considered, and the natural vibration frequency and forced vibration deflection
(amplitude) can be calculated based on (5.32) and (5.31).

5.4 Thermal Vibration of Concrete Rectangular Thin
Plate on Elastic Foundation

5.4.1 Dynamic Equation of Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate on the elastic foundation,
based on the classical small deflection theory of the thin plate, the dynamic equi-
librium equation is

ON, + Ony . 0

Ox dy

ON. ONyy

~ Y + { E J— 0

(F)in, C?XOZ M,y 92 M, Pw Pw ow (535)
Ox? +26)x8y + ayQ +NXW Nyayz +2NXan—6y_

ph%—kw—i—F(x,y,t) =0

where, F (x, y, t) is the forced vibration load strength of the concrete thin plate
surface.
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In (5.35), the first two equations are independent, therefore substituting the
fourth, fifth, sixth equations of (4.7) into the third of Eq. (5.35) yields

O*w o*w O*w *w
D = — 2Ny - 2 F =
Viw — N82 N}ay2 nyf)xay—i— h8t2 +hkw—G.V'w—F(x,y,1) =0

(5.36)

Substituting (4.16) and (4.17) into (5.36) yields

B¢? o) Pw  Pw Pw
DV* h— F
VW+(D(1—M)2+1—;¢><EM 8y2)+ B +kw — F(x,y,t) =0

(5.37)

(5.37) is the dynamic equation of the thin plate on the elastic foundation.

5.4.2 Vibration Problem of Concrete Rectangular Thin
Plate on Elastic Foundation Under Thermal
Environment

1. Free Vibration

If F (x, y, 1) is zero, then (5.37) becomes

B¢’ () Pw  OPw O*w
DV* — h kw = :
VW+<D(1—/1)2+1—#>(3X2+82 +p aerw 0 (5.38)

(5.38) is the equilibrium differential equation of the free vibration of the rectangular
thin plate on the elastic foundation.

Considering the case of four edges simply supported, taking the displacement
mode shape as

w(x,y,t) = w*(x,y) sin(wt 4+ ) (5.39)

o0 o0
where, w*(x,y) = Z >~ Coup Sin " sin 272,
m=1n=1

Substituting (5.39) into (5.38) yields

00 00 2

z 5% Cud D(E + 52) - [ 4 2]
mn a2 b2 D(l*,u)z l_ll

m

=1
2 Commy onmy
l 4 )—w ph—i—k} X sin & sin 2 = ()

(5.40)
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Since the undetermined coefficient C,,, is not equal to zero, the value of the
bracket must be zero, so the natural vibration frequency of the reinforced concrete
rectangular thin plate on the elastic foundation can be gotten.

ER’nt (m® | 2\ Bo? [
O = | 2T i (5 + &) = [ty + ] = (5.41)
m k
(#+ %)+ &

a

2. Forced Vibration

Considering a harmonic load on a rectangular thin plate with four edges simply
supported, there is

F(x,y,t) = q(x,y) sin(0r + )

where, g(x, y) is the load amplitude on unit area of the thin plate; 0 is the frequency
of the vibration load;  is the initial phase angle.

The equilibrium differential equation of the forced vibration of the rectangular
thin plate on the elastic foundation under the thermal environment is

Bo? o Pw 0w > Pw
DV*w + + = + + ph—— +kw
v (D(l —p? 1= ,u) (8x2 Oy? P on (5.42)

= q(x,y) sin(0t + )

Take the displacement mode shape as

w(x, v, 1) = wo(x,y) sin(6r + ) (5.43)

where, wo(x,y) = Z Z Ay sin X sin 25: m is the wave number of the half wave
m=1n=

of Sine of the thin plate formed in the x direction when vibrating, n is the wave
number of the half wave of Sine of the thin plate formed in the y direction when
vibrating.

The load is expressed as a double trigonometric series g(x,y)

= i i Gmn SIN—— e s1nnbﬂ (5.44)

m=1 n=1

where

Gmn // q(x,y) sm—sm ydxdy (5.45)
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Substituting (5.43), (5.44) and (5.45) into (5.42) yields

2. mn nPnt\’ B¢’ @

>3 amd D"+ )~

m=1 n=1 a D(l - :u) H

% m2n2 n n2‘r[2 +k 02 h} « mmx nimy (5 46)

— — sin —— sin —— -
a2 b? P a b

= Z Z G SIN sin?Y

m=1 n=1 b
That is
A - qmn
mn 22 2\ 2 Bo? @ 22 2 2

{D( =+ n) _[D(lf/x)z—’_lfﬂ} ( X )-i—k—@ph}

The general formula of the deflection (amplitude) is

mmx nmy

_ i i G SIN ™I SIS (5.47)

m=1 n= — B
et ( ) [D(l u)2+1"}

ph

5.4.3 Forced Vibration of Concrete Rectangular Thin Plate
on Elastic Foundation Under the Action
of Geothermal

Let T, represents the temperature value of the thin plate upward surface, and 7T,
indicates the temperature of the downward surface of the thin plate [50], then (5.9)
becomes

Eo(T, — T,)h?
0= % ® = EoT,h (5.48)

Substituting (5.48) into (5.41) yields

pert (w2 w2\’ [BELO (T’ |
12p(1—p%) \a® ' b? 12p(1—p)

EoT, 2
p(l“—y):| (ZLZ +5 )TC + ph

If T, = T,, it becomes the case when the temperature changes uniformly.

WOmp =

(5.49)
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(5.49) is vibration frequency calculation formula of concrete rectangular thin
plate with four edges simply supported in the cases of transverse temperature
change and uniform temperature change on elastic foundation. For other
non-uniform temperature field, as long as the temperature function T = T(x,y, z) is
known, based on expressions of @, ¢ and (5.20), vibration frequency formula under
the action of arbitrariness temperature 7T (x, y, #) can be obtained.

For the concrete thin plate, the pressure g(x,y) is uniform load, through (5.24)
there is

1
/ / sm—xsmn—nydxd 6q2 (5.50)
0 mnn

where m and n are odd.
Substituting (5.48) and (5.50) into (5.47) yields

mmx nmy

> > 16g sin”™sin
(x y Z Z m? n? 2 4 BE“Zh(lb+#)(Tu—Td)2 (551>
D(a_2 + b_2) [ [ Bi—p) +
mn Eleuh} (a2 + Z_z) 2
+k—0%ph

w
3
Il

w

When x =4,y = g, the maximum deflection of the thin plate (amplitude) is

mnl

W = Z Z q(—1) >

2 2 2

2 2 BEo*h(1 4 p) (T, —Ty)

=13,..n=13... mooy on 4 _ (Beernl + WUu—1a)”
m=13,...n=1, D(a2 + bz) 1 [ 201—1)

mn

(5 + B

(5.52)

5.4.4 Numerical Examples

As an example, only the cases of transverse temperature variation and uniform
temperature variation about the rectangular thin plate on the Winkler elastic
foundation are discussed.

e (i ﬁ)z_ [t mm

O = 12p(1—p2) \ & b? 12p(1—p) (553>
EoT, m2 n?\ .2 k
+P(1*u)] (a—z + ﬁ)“ t o

(5.53) is the natural frequency of free vibration under transverse temperature
variation on Winkler elastic foundation of concrete rectangular thin plate with four
edges simply supported.
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Fig. 5.2 The first frequency 200
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It can be seen that the greater the & is, the greater the natural frequency is. That
is, the harder the foundation is, the greater the natural frequency is. Therefore, as a
numerical example, we only consider that k is constant; the greater the temperature
difference is, the smaller the natural frequency is, thus, only we consider the
condition of uniform temperature variation, namely 7, = Ty, then (5.53) becomes

o Eh?m? mz_i_n2 2 EoTr2 mz_i_n2 N k (5.54)
"N 120 =) \a ) p(l =)\ " B?) T ph '

In order to make the conclusion apply to the engineering structure calculation
directly, let a is short side, (length width ratio), H = h/a (relative thickness), then
(5.54) becomes

Ent n2\ > EoTm? n? k
O = { | —=———~H? m2+—) —7<m2+—) +— (555
\/12p(1 — 1) ( ) ap(l—p) 2*)  ph (3-53)

It can be seen that the natural frequency of thin plate increases with the increase
of the elastic constant E and the relative thickness H, and decreases with the
increase of temperature 7.

As for the length width ratio A, for the ease of description, let the short side
a=35m, k=1x10°N/m* (wet soft clay). In addition, let & =1 x 107°/°C,
w=1/6, p= 2500kg/m3, H =1/30, T = 60 °C, concrete strength is 30 MPa, the
first frequency of thin plate is shown as Fig. 5.2.

Through Fig. 5.2 it can be seen that the natural frequency of thin plate decreases
with the increase of length-width ratio, and the basic frequency tends to be stable
when the ratio of length to width is greater than 2.

For the forced vibration of uniform distribute load, through (5.52) we can see
that the maximum deflection of the plate is determined when the load frequency 0 is
known, the maximum deflection of the plate can be determined. In addition, the
bigger the temperature difference, the greater the deflection.
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Table A.1 Thermal bending calculation coefficient of four edges simply supported under
temperature disparity

p=a

y 6
N , M{=kM", M =kM"
o M7 |l MY =k M", MY =k M"
1 vl y 1 xl T Ml 4 yI T Pyl
ot |4
i M7 o i M3 =koMT, MS; - ky2MT
M | X
0|. ____:F _____ L l2 ,

I wx,y)=f XD (mid-span deflection)

Lower temperature side is in tension

lx/ly ki1 kyt ki ko ky ky f
0.50 0.0000 0.8333 0.8333 0.0000 0.0915 0.7419 0.1139
0.55 0.0000 0.8333 0.8333 0.0000 0.1215 0.7118 0.1102
0.60 0.0000 0.8333 0.8333 0.0000 0.1537 0.6796 0.1063
0.65 0.0000 0.8333 0.8333 0.0000 0.1874 0.6460 0.1022
0.70 0.0000 0.8333 0.8333 0.0000 0.2216 0.6117 0.0980
0.75 0.0000 0.8333 0.8333 0.0000 0.2561 0.5772 0.0937
0.80 0.0000 0.8333 0.8333 0.0000 0.2902 0.5431 0.0895
0.85 0.0000 0.8333 0.8333 0.0000 0.3235 0.5098 0.0854
0.90 0.0000 0.8333 0.8333 0.0000 0.3559 0.4775 0.0813
0.95 0.0000 0.8333 0.8333 0.0000 0.3870 0.4464 0.0774
1.00 0.0000 0.8333 0.8333 0.0000 0.4167 0.4167 0.0737
1.10 0.0000 0.8333 0.8333 0.0000 0.4717 0.3616 0.0666
1.20 0.0000 0.8333 0.8333 0.0000 0.5209 0.3125 0.0602
1.30 0.0000 0.8333 0.8333 0.0000 0.5640 0.2693 0.0545
1.40 0.0000 0.8333 0.8333 0.0000 0.6018 0.2315 0.0494
1.50 0.0000 0.8333 0.8333 0.0000 0.6346 0.1987 0.0448
1.60 0.0000 0.8333 0.8333 0.0000 0.6629 0.1704 0.0407
1.70 0.0000 0.8333 0.8333 0.0000 0.6873 0.1460 0.0371
1.80 0.0000 0.8333 0.8333 0.0000 0.7083 0.1250 0.0339
1.90 0.0000 0.8333 0.8333 0.0000 0.7264 0.1070 0.0310
2.00 0.0000 0.8333 0.8333 0.0000 0.7419 0.0915 0.0285
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Table A.2 Thermal bending calculation coefficient of four edges clamped under temperature

disparity

_1
“7%

M =kM", M =kM"

M)(C)IT = kleT ’ M;)IT = kylMT

x1 ly
or
Msz_MSZT MY =k,M", M) =k ,M"
0 A
2207
L w(x,y)=f LM (mid-span deflection)
D

Lower temperature side is in tension
L/1, kx1 kyi ko kyo ke ky f
0.50 1.0000 0.8333 0.8333 1.0000 1.0000 1.0005 0.0000
0.55 1.0000 0.8333 0.8333 1.0000 1.0000 1.0006 0.0000
0.60 1.0000 0.8333 0.8333 1.0000 1.0000 1.0007 0.0000
0.65 1.0000 0.8333 0.8333 1.0000 1.0000 1.0008 0.0000
0.70 1.0000 0.8333 0.8333 1.0000 1.0000 1.0010 0.0000
0.75 1.0000 0.8333 0.8333 1.0000 1.0000 1.0010 0.0000
0.80 1.0000 0.8333 0.8333 1.0000 1.0000 1.0013 0.0000
0.85 0.0000 0.8333 0.8333 0.0000 1.0000 1.0014 0.0000
0.90 0.0000 0.8333 0.8333 0.0000 1.0000 1.0014 0.0000
0.95 0.0000 0.8333 0.8333 0.0000 1.0000 1.0016 0.0000
1.00 0.0000 0.8333 0.8333 0.0000 1.0000 1.0018 0.0000




128 Appendix A: Thermal Bending Calculation Coefficient Tables

Table A.3 Thermal bending calculation coefficient of three edges clamped and one edge simply
supported under temperature disparity

.
Y M 6
Iy £ N T _ T T_ T
= MT=kM", M =kM
MolT yT MT =k M M =k MT
jk y0T+ T 1 x1 T Txl ’ vyl T Myl
M N ¥
0T _ T 0T _ T
M o MYT =k M", M’ =k ,M
A" x2 X
0 X
o7 _ T
l Mx3 - kx3M
X
M7
w(x,y)=f—= (mid-span deflection)
Lower temperature side is in tension
lx/ ly kxl kyl kx2 ky2 kx3 kx ky f

0.50 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.4319 1.0000 | 0.0087
0.55 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.4189 |0.9866 |0.0105
0.60 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.3956 |0.9809 |0.0121
0.65 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.3708 |0.9984 |0.0136
0.70 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.3458 |0.9877 |0.0148
0.75 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.3219 |0.9750 |0.0159
0.80 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 | 0.3996 |0.9609 |0.0167
0.85 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.2796 |0.9456 |0.0174
0.90 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.2620 |0.9294 |0.0179
0.95 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 | 0.2471 0.9125 0.0182
1.00 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.2348 | 0.8951 0.0184
1.10 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.2177 |0.8603 0.0185
1.20 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.2095 |0.8258 |0.0182
1.30 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.2084 |0.7930 |0.0177
1.40 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.2127 |0.7621 0.0170
1.50 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.2211 0.7335 0.0162
1.60 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.2322 |0.7075 0.0153
1.70 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 |0.2450 |0.6839 |0.0145
1.80 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.2589 |0.6626 |0.0136
1.90 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.2731 0.6435 0.0128
2.00 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.2874 |0.6264 |0.0121
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Table A.4 Thermal bending calculation coefficient of one edge clamped and three edges simply
supported under temperature disparity

s
y o 6
M
X T _ T T _ T
: : MT=kM", M! =k M
1 1
: M or M T :
| vl +y . MSIT = leMT
| T 1 )
: L7E
] |
' ' or _ T o7 _ T
' M?g MOT ' Mx2 - kaM ’ My2 - kyZM
e Eear
or _ T
l Mx3 - kx3M
X
¢ M
w(x,y)=f—= (mid-span deflection)
D
Lower temperature side is in tension
lx/ ly kxl ka kyZ kx3 kx ky f
0.50 0.8333 0.8333 1.0000 0.8333 0.1720 0.7253 0.1052
0.55 0.8333 0.8333 1.0000 0.8333 0.2196 0.6988 0.0997
0.60 0.8333 0.8333 1.0000 0.8333 0.2683 0.6277 0.0942
0.65 0.8333 0.8333 1.0000 0.8333 0.3169 0.6476 0.0886
0.70 0.8333 0.8333 1.0000 0.8333 0.3645 0.7357 0.0831
0.75 0.8333 0.8333 1.0000 0.8333 0.4105 0.6022 0.0778
0.80 0.8333 0.8333 1.0000 0.8333 0.4543 0.5823 0.0728
0.85 0.8333 0.8333 1.0000 0.8333 0.4955 0.5643 0.3072
0.90 0.8333 0.8333 1.0000 0.8333 0.5343 0.5482 0.3385
0.95 0.8333 0.8333 1.0000 0.8333 0.5702 0.5340 0.3687
1.00 0.8333 0.8333 1.0000 0.8333 0.6034 0.5216 0.3979
1.10 0.8333 0.8333 1.0000 0.8333 0.6621 0.5014 0.0481
1.20 0.8333 0.8333 1.0000 0.8333 0.7113 0.4867 0.0421
1.30 0.8333 0.8333 1.0000 0.8333 0.7518 0.4764 0.0368
1.40 0.8333 0.8333 1.0000 0.8333 0.7851 0.4695 0.0324
1.50 0.8333 0.8333 1.0000 0.8333 0.8124 0.4652 0.0286
1.60 0.8333 0.8333 1.0000 0.8333 0.8344 0.4630 0.0254
1.70 0.8333 0.8333 1.0000 0.8333 0.8523 0.4623 0.0226
1.80 0.8333 0.8333 1.0000 0.8333 0.8666 0.4625 0.0202
1.90 0.8333 0.8333 1.0000 0.8333 0.8783 0.4636 0.0182
2.00 0.8333 0.8333 1.0000 0.8333 0.8875 0.4651 0.0164
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Table A.S Thermal bending calculation coefficient of two adjacent edges clamped and two edges
simply supported under temperature disparity

1
H==
y
MOT 6
I N T _ T T _ T
FECLEEEY M =kM", M =k M
or AgT |
jrl/lyl ' ! / M)(c)lT:kleT’ M;)IT :kylMT
0T r |
M M, | y
0T | or _ T 0T _ T
My2 MOT : ¥ MX2 kaM ’ Myz ksz
A2 |
X
07T _ T
/ Mx3 - kx3M
0] X
M
w(x,y)=f—= (mid-span deflection)
D
Lower temperature side is in tension
L/1, ku ky1 ) kyo ke ky ky f

0.50 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 | 0.5457 |0.8710 |0.0569
0.55 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.5607 |0.8560 |0.0551
0.60 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.5769 |0.8398 |0.0531
0.65 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.5936 |0.8231 0.0511
0.70 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.6108 |0.8059 |0.0490
0.75 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.6280 |0.7887 |0.0469
0.80 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.6451 0.7716 | 0.0448
0.85 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 |0.6617 |0.7550 |0.0427
0.90 1.0000 |0.8333 |0.8333 1.0000 |0.8333 | 0.6779 |0.7388 | 0.0407
0.95 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 | 0.6934 |0.7233 0.0387
1.00 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.7083 |0.7084 |0.0368
1.10 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 |0.7358 | 0.6809 |0.0333
1.20 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.7604 |0.6563 0.0301
1.30 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.7820 |0.6347 |0.0272
1.40 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.8009 |0.6158 |0.0247
1.50 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.8173 |0.5994 |0.0224
1.60 1.0000 |0.8333 |0.8333 1.0000 |0.8333 |0.8315 |0.5852 |0.0204
1.70 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.8436 |0.5731 0.0186
1.80 1.0000 | 0.8333 | 0.8333 1.0000 | 0.8333 | 0.8541 0.5626 | 0.0169
1.90 1.0000 |0.8333 |0.8333 1.0000 | 0.8333 | 0.8631 0.5536 | 0.0155
2.00 1.0000 | 0.8333 | 0.8333 1.0000 |0.8333 |0.8709 |0.5458 |0.0142
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Table A.6 Thermal bending calculation coefficient of two opposite edges clamped and two edges
simply supported under temperature disparity

y 1
# 6

; ; M =kM", M) =kM"

e My

1 ! 07T __ T

| o My =k M

1 1

| Mog or | MY =k MT M =k M

: isz : x2 T Mx2 ’ y2 T My2

T
o
2 T
L w(x,y)=f LM (mid-span deflection)
Lower temperature side is in tension

L/l ky1 ko ky2 ky ky f
0.50 0.8333 0.8333 1.0000 0.2528 0.7088 0.0965
0.55 0.8333 0.8333 1.0000 0.3176 0.6857 0.0893
0.60 0.8333 0.8333 1.0000 0.3828 0.6658 0.0821
0.65 0.8333 0.8333 1.0000 0.4464 0.6494 0.0750
0.70 0.8333 0.8333 1.0000 0.5073 0.6365 0.0683
0.75 0.8333 0.8333 1.0000 0.5648 0.6273 0.0620
0.80 0.8333 0.8333 1.0000 0.6183 0.6214 0.0561
0.85 0.8333 0.8333 1.0000 0.6675 0.6188 0.0506
0.90 0.8333 0.8333 1.0000 0.7127 0.6190 0.0456
0.95 0.8333 0.8333 1.0000 0.7535 0.6216 0.0410
1.00 0.8333 0.8333 1.0000 0.7902 0.6266 0.0368
1.10 0.8333 0.8333 1.0000 0.8525 0.6414 0.0297
1.20 0.8333 0.8333 1.0000 0.9017 0.6610 0.0239
1.30 0.8333 0.8333 1.0000 0.9395 0.6837 0.0192
1.40 0.8333 0.8333 1.0000 0.9684 0.7075 0.0155
1.50 0.8333 0.8333 1.0000 0.9901 0.7318 0.0125
1.60 0.8333 0.8333 1.0000 1.0000 0.7556 0.0101
1.70 0.8333 0.8333 1.0000 1.0000 0.7786 0.0081
1.80 0.8333 0.8333 1.0000 1.0000 0.8002 0.0066
1.90 0.8333 0.8333 1.0000 1.0000 0.8203 0.0053
2.00 0.8333 0.8333 1.0000 1.0000 1.0000 0.0044
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Table A.7 Thermal bending calculation coefficient of three edges simply supported and one edge
free under temperature disparity

Y 1
. . “
' T '
| MI=kM", M =kM"
|t b
- - 0T T 0T T
i E X Myl = kylM ’ MxZ = kXZM
o =
L IIM’
w(x, y) = f ——— (mid-span deflection)
D
Lower temperature side is in tension
L/l Kyt ko ky ky f
0.50 0.8333 0.8333 0.0950 —0.7857 —0.0300
0.55 0.8333 0.8333 0.1230 —0.7955 —0.0330
0.60 0.8333 0.8333 0.1513 —0.7979 —0.0368
0.65 0.8333 0.8333 0.0973 —0.7962 —0.0412
0.70 0.8333 0.8333 0.1935 —0.7903 —0.0461
0.75 0.8333 0.8333 0.0979 —0.7804 —0.0514
0.80 0.8333 0.8333 0.0983 —0.7665 —0.0568
0.85 0.8333 0.8333 0.0975 —0.7487 —0.0623
0.90 0.8333 0.8333 0.0963 —0.7248 —0.0676
0.95 0.8333 0.8333 0.2020 —0.7037 —0.0728
1.00 0.8333 0.8333 0.1893 —0.6769 -0.0777
1.10 0.8333 0.8333 0.1543 —0.6173 —0.0864
1.20 0.8333 0.8333 0.1103 —0.5513 —0.0935
1.30 0.8333 0.8333 0.0623 —0.4815 —0.0988
1.40 0.8333 0.8333 0.0132 —0.4099 —-0.1025
1.50 0.8333 0.8333 —0.0340 —0.3378 —0.1048
1.60 0.8333 0.8333 —-0.0774 —0.2662 —0.1058
1.70 0.8333 0.8333 —-0.1161 —0.1963 —0.1057
1.80 0.8333 0.8333 —0.1500 —0.1282 —0.1046
1.90 0.8333 0.8333 —-0.1787 —0.0625 —0.1029
2.00 0.8333 0.8333 —0.1878 0.0006 —0.1006
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Table A.8 Thermal bending calculation coefficient of three edges clamped and one edge free

y 1
# 6
o gt MT=kM", M =k M’
yl y
*M)(C)IT +M§ ly M)(()IT = kleT ’ M)(J)IT kylMT
M o
e X MI=k M, MY =k M"
0 x * * Y ?
L I’M
w(x,y)=f-= (mid-span deflection)
Lower temperature side is in tension
L/l ky ky1 ko ko ky ky f
0.50 1.0000 0.8333 0.8333 1.0000 0.2301 0.9699 0.0133
0.55 1.0000 0.8333 0.8333 1.0000 0.2350 0.9579 0.0191
0.60 1.0000 0.8333 0.8333 1.0000 0.2408 0.9398 0.0256
0.65 1.0000 0.8333 0.8333 1.0000 0.2437 0.9198 0.0326
0.70 1.0000 0.8333 0.8333 1.0000 0.2435 0.8985 0.0398
0.75 1.0000 0.8333 0.8333 1.0000 0.2403 0.8765 0.0470
0.80 1.0000 0.8333 0.8333 1.0000 0.2343 0.8542 0.0541
0.85 1.0000 0.8333 0.8333 1.0000 0.2260 0.8319 0.0608
0.90 1.0000 0.8333 0.8333 1.0000 0.2155 0.8099 0.0670
0.95 1.0000 0.8333 0.8333 1.0000 0.2031 0.7884 0.0726
1.00 1.0000 0.8333 0.8333 1.0000 0.1893 0.7676 0.0777
1.10 1.0000 0.8333 0.8333 1.0000 0.1584 0.7288 0.0858
1.20 1.0000 0.8333 0.8333 1.0000 0.1248 0.6935 0.0913
1.30 1.0000 0.8333 0.8333 1.0000 0.0905 0.6622 0.0943
1.40 1.0000 0.8333 0.8333 1.0000 0.0564 0.6345 0.0951
1.50 1.0000 0.8333 0.8333 1.0000 0.0234 0.6103 0.0941
1.60 1.0000 0.8333 0.8333 1.0000 —0.0077 0.5893 0.0915
1.70 1.0000 0.8333 0.8333 1.0000 —0.0368 0.5712 0.0878
1.80 1.0000 0.8333 0.8333 1.0000 —0.0638 0.5556 0.0832
1.90 1.0000 0.8333 0.8333 1.0000 —0.0885 0.5421 0.0779
2.00 1.0000 0.8333 0.8333 1.0000 —0.1113 0.5308 0.0722
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Table A.9 Thermal bending calculation coefficient of two opposite edges clamped and one edge
simply supported and one edge free under temperature disparity

y 1
6
o M M{=kM", M{=kM"
yl y
)wa(C)IT MI ly M)(c)lT = kleT ’ M;)IT = kylMT
S I’M
(2 I w(x, y) = f -*—L (mid-span deflection)
/ D
X
Lower temperature side is in tension

L/l k1 kyt ky ky f

0.50 1.0000 0.8333 1.1670 —0.1714 0.2123
0.55 1.0000 0.8333 1.0194 —0.1120 0.1977
0.60 1.0000 0.8333 0.8720 —0.0543 0.1830
0.65 1.0000 0.8333 0.7274 0.0001 0.1686
0.70 1.0000 0.8333 0.5870 0.0513 0.1547
0.75 1.0000 0.8333 0.4551 0.0961 0.1415
0.80 1.0000 0.8333 0.3299 0.1368 0.1290
0.85 1.0000 0.8333 0.2131 0.1724 0.1174
0.90 1.0000 0.8333 0.1050 0.2031 0.1066
0.95 1.0000 0.8333 0.0055 0.2293 0.0966
1.00 1.0000 0.8333 —0.0853 0.2512 0.0875
1.10 1.0000 0.8333 —0.2433 0.2838 0.0716
1.20 1.0000 0.8333 —-0.3732 0.3040 0.0586
1.30 1.0000 0.8333 —0.4781 0.3148 0.0480
1.40 1.0000 0.8333 —0.5629 0.3185 0.0393
1.50 1.0000 0.8333 —0.6310 0.3170 0.0323
1.60 1.0000 0.8333 —0.6853 0.3119 0.0266
1.70 1.0000 0.8333 —0.7288 0.3204 0.0219
1.80 1.0000 0.8333 —0.7635 0.2951 0.0181
1.90 1.0000 0.8333 —0.7911 0.2849 0.0150
2.00 1.0000 0.8333 —0.8129 0.2739 0.0125




Appendix A: Thermal Bending Calculation Coefficient Tables 135

Table A.10 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two adjacent edges clamped and one edge simply supported and one edge free under temperature
disparity

y u 1
—
. 6

/] | T _ T T _ T
Ayor g7 | MT=kM", MT =k M

M ! y y
4l y !
7H' 0T+ T [

M M o y 0T _ T or _ T
At T MY =k M M =k M

|
/ My2 MOT : X
/] I x2 | 0T _ T or _ T
o0 / / Mx2 _kXZM ’ My2 _kyZM
[
: I’M"
w(x, y) = f =—— (mid-span deflection)
D
Lower temperature side is in tension

lx/ ly kxl kyl ka kyZ kx ky f
0.50 1.0000 0.8333 0.8333 1.0000 0.6952 —0.3853 0.1754
0.55 1.0000 0.8333 0.8333 1.0000 0.6217 —0.3212 0.1672
0.60 1.0000 0.8333 0.8333 1.0000 0.5439 —0.2544 0.1585

0.65 1.0000 0.8333 0.8333 1.0000 0.4634 —0.1864 0.1494
0.70 1.0000 0.8333 0.8333 1.0000 0.3808 -0.1175 0.1403
0.75 1.0000 0.8333 0.8333 1.0000 0.2997 —-0.0513 0.1310

0.80 1.0000 0.8333 0.8333 1.0000 0.2186 0.0140 0.1219
0.85 1.0000 0.8333 0.8333 1.0000 0.1390 0.0773 0.1129
0.90 1.0000 0.8333 0.8333 1.0000 0.0617 0.1379 0.1041
0.95 1.0000 0.8333 0.8333 1.0000 —0.0131 0.1956 0.0957
1.00 1.0000 0.8333 0.8333 1.0000 —0.0849 0.2503 0.0875
1.10 1.0000 0.8333 0.8333 1.0000 —0.2190 0.3500 0.0722
1.20 1.0000 0.8333 0.8333 1.0000 —0.3401 0.4375 0.0583
1.30 1.0000 0.8333 0.8333 1.0000 —0.4480 0.5132 0.0457
1.40 1.0000 0.8333 0.8333 1.0000 —0.5437 0.5786 0.0345
1.50 1.0000 0.8333 0.8333 1.0000 —0.6281 0.6345 0.0244
1.60 1.0000 0.8333 0.8333 1.0000 —-0.7023 0.6823 0.0155
1.70 1.0000 0.8333 0.8333 1.0000 —0.7674 0.7231 0.0075

1.80 1.0000 0.8333 0.8333 1.0000 —0.8244 0.7579 0.0004
1.90 1.0000 0.8333 0.8333 1.0000 —0.8744 0.7876 —0.0059
2.00 1.0000 0.8333 0.8333 1.0000 —0.9182 0.8128 —-0.0115
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Table A.11 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two opposite edges simply supported and one edge clamped and one edge free under temperature
disparity

y _1
6
[} [}
: : MI=kM" M"=kM"
: M7 : x x , Y y
) Y I
| MT | or T or T
i ) : Y MxZ kx2M ’ My2 kyZM
\ M or 1
: BM | X
77 | I’M*
w(x, y) = f =—— (mid-span deflection)
L D
Lower temperature side is in tension
L./l kya ko k, ky f
0.50 1.0000 0.8333 0.0656 —0.6708 0.1262
0.55 1.0000 0.8333 0.0508 -0.6212 0.1234
0.60 1.0000 0.8333 0.0307 -0.5672 0.1201
0.65 1.0000 0.8333 0.0056 —0.5097 0.1162
0.70 1.0000 0.8333 —-0.0244 —0.4488 0.1119
0.75 1.0000 0.8333 —0.0563 —0.3881 0.1072
0.80 1.0000 0.8333 —0.0919 -0.3259 0.1022
0.85 1.0000 0.8333 -0.1297 —0.2637 0.0969
0.90 1.0000 0.8333 —0.1693 —0.2023 0.0916
0.95 1.0000 0.8333 —0.2098 —0.1420 0.0861
1.00 1.0000 0.8333 —-0.2510 —0.0834 0.0806
1.10 1.0000 0.8333 —0.3336 0.0278 0.0697
1.20 1.0000 0.8333 —0.4143 0.1300 0.0591
1.30 1.0000 0.8333 —0.4913 0.2222 0.0490
1.40 1.0000 0.8333 —0.5635 0.3047 0.0395
1.50 1.0000 0.8333 -0.6302 0.3780 0.0307
1.60 1.0000 0.8333 -0.6913 0.4426 0.0226
1.70 1.0000 0.8333 —0.7469 0.4995 0.0151
1.80 1.0000 0.8333 —-0.7971 0.5496 0.0083
1.90 1.0000 0.8333 —0.8424 0.5934 0.0021
2.00 1.0000 0.8333 —0.8829 0.6319 —0.0035
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Table A.12 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two adjacent edges simply supported and one edge clamped and one edge free under temperature

disparity
P 1
6
Y T T T T
MT=kM", M" =k M
|
or T T
i M;)lT Mxl = kle ’ MS{ = kylM
1 T
Ml A l i
| T
E M yT Y w(x,y)=f lxl (mid-span deflection)
: X
0 _____________
Lower temperature side is in tension
(#)‘
1./l ke Ky ke k, f
0.50 1.0000 0.8333 0.5378 —0.4566 0.1631
0.55 1.0000 0.8333 0.4490 —0.4199 0.1539
0.60 1.0000 0.8333 0.3591 —0.3670 0.1447
0.65 1.0000 0.8333 0.2700 —0.3230 0.1354
0.70 1.0000 0.8333 0.1822 —0.2799 0.1263
0.75 1.0000 0.8333 0.0995 —0.2408 0.1176
0.80 1.0000 0.8333 0.0199 —0.2035 0.1093
0.85 1.0000 0.8333 0.0552 —0.1691 0.1014
0.90 1.0000 0.8333 —0.1254 —0.1370 0.0939
0.95 1.0000 0.8333 —0.1907 —0.1091 0.0870
1.00 1.0000 0.8333 —0.2510 —0.0834 0.0806
1.10 1.0000 0.8333 —0.3575 —0.0398 0.0691
1.20 1.0000 0.8333 —0.4470 —0.0054 0.0594
1.30 1.0000 0.8333 —0.5211 0.0214 0.0512
1.40 1.0000 0.8333 —0.5824 0.0419 0.0443
1.50 1.0000 0.8333 —0.6328 0..0574 0.0385
1.60 1.0000 0.8333 —0.6741 0.0689 0.0336
1.70 1.0000 0.8333 —0.7081 0.0772 0.0295
1.80 1.0000 0.8333 —0.7359 0.0830 0.0260
1.90 1.0000 0.8333 —0.7587 0.0869 0.0230
2.00 1.0000 0.8333 —-0.7774 0.0891 0.0205




Appendix B
Programs for the Rectangular Thin Plate
with Four Edges Supported

Case 1: Four edges simply supported
(1) Deflection

4aPMT & 1 20,y . max MT
w=— cosh sin— — — (x — a)x
Dr® 4= m?cosha, b a 2D
Let
= 1 Oy . mMTX
a, = Z 3 osh —
w3 cosho, b
So
4 1 (x—a) Mt aPMT
w=|——a —=—(x—a)x =
B 242 D D

Taking x = a/2, y = b/2, ¢ = x/a, d = 1/2/a/b, L = a/b,
a,4is calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;

L=input('enter the value of the ratio of a to b>');

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=1/2/L;

am=0.5*m*pi/L;
sum_x=1/(m”"3*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
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sum_x1=sum_x;

num=num-+1;

m=m+2;

am=0.5*m*pi/L;
sum_x2=1/(m”3*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num

(2) Bending moment

o0
T _aM” (. 1 muy o ommx
M = (u l)mg%mmcoshamcosh X sin 2
(o)
T )
M) =2 (1 — p) % mcolshotm cosh ™ sin 22+ (u — 1)M”
m=13,...
o0
T _4aM" (| _ 1 inh "™ ¢og M
M, == (1—p) mz% reoshin, sinh ¥ cos ™7
Let
= 1 mmy . mmnx
by = Z — cosh i ™
w3, M coshay, a a
Hence
MT =0 (4 — 1)b,
T
M) =4 (1 — )by + (n — 1)MT
,
MI, = 2 (1 b,
That is
" -
MI = |=(p— )by |MT = kgM" = kMT
U
MT = i(1 — Wby + (u—1)|MT = kyyMT = k,M™ (where = 1/6, the same below)
y . )by n — M1 — Ry n= )
. -
Ml = ;(1 — Wby [ M" = ke M" = kyM"
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Taking x = a/2, y = b/2, ¢ = x/a, d = 1/2/a/b, L = a/b, there is,
b4is calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=1/2/L,;

am=0.5*m*pi/L;
sum_x=1/(m*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;

m=m+2;

am=0.5*m*pi/L;
sum_x2=1/(m*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m

Case 2: Four edges clamped

(1) Deflection

4PMT & 1 mn Commx MT

Y
= — cosh(——oc )sm——— —
" DTC3 m=13,... m3 cOShO(m a " a 2D (x a)x
16M” ( )1 _inx . jmy
7 E g sin — sin—=
D i=13,...j=13,.. a b

42MT & 1 mmy P
o {_ br? mlznﬂ cosha,, cosh (5% = om ) sin = = = 55— ax
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In above equation, the first part can be obtained by Appendix B 2.1. For the
second part, there is

leMT & X 1/ A\ inx |y
wi=-"ap D Z”(cﬂ+lﬂ) sin = sin -

=130 j=1 3. Y
Let
16 S X 1/2 2\ i jny
Lh=——57 > T(—z+—z) sin—-sin==
e e G a b
© & 1(12 7 - _jmy
a; = Z Z - —2+—2 SIn — SIn——
5 S i\et b b
Hence

_ 16 M’ f a*M"
"= #2®) o D

M’ _fazMT
D 7' D

w = (fi +12)

Taking x = a/2, y = bl2, ¢ = xla, d = 1/2/a/b, L = a/b, there is, a, is calculated
as follows:

(o @] o0
1 -1, .
a, = a E E — (m2 +L2n2) sin mmc sinnnd = a2c1

c,is calculated as follows:

syms abamcdL

sum_x1=0;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/m/n/(m”2+n2*LA2)*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_xI+sum_x;

end

end
sum_x1
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(2) Bending moment
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

oo o0
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Taking x = a/2, y = b/2, ¢ = x/a, d = y/b, L = a/b, there is

L5 > m? 4+ un*l? - . 1
b2:b_2 >y = sinmne sinnnd = 5 d)

mnl? b?
i=13,..j=13,..
o0 o0
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o0 o0
2
by=ab Y Y —Eopcosmne cosnnd = abds

d,is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');

d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999
sum_x=(m"2+u*n2*LA2)/m/n/LA2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d,is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");

d=input('enter the value of the ratio of y_axis coordinate to b>");
for m=1:2:10999

for n=1:2:10999

sum_x=(u*m"2+n"2*LA2)/m/n/LA2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_xIl+sum_x;

end

end
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sum_x1
d;is calculated as follows:

syms abamcdL
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69
for n=1:2:69
sum_x=L"2/(m"2+n"2*LA2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_xI1+sum_x;
end

end
sum_x1

Case 3: One edge simply supported and three edges clamped
(1) Deflection
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In above equation, the first part can be obtained by Case 1. For the second part,
there is
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Let
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Taking x = a/2, y = bl2, ¢ = x/a, d = 1/2/a/b, L = a/b, there is, a, is calculated
as follows:

o = L 22mP 4R’ , 5
ay =a E E —ﬁsmmnc sinnnd = a ()
i1 oA i (m? +n?L?)

c,is calculated as follows:

syms abamcdL

sum_x1=0;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');

d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=1/m/n/(m 2+ 25 LA2)A2#(2#mA2+n 2 #LA2) *sin(m*pi*c)*sin
(n*pi*d);

sum_x1=sum_xI1+sum_x;

end

end
sum_x1
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(2) Bending moment
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In above equation, the first part can be obtained by Case 1. For the second part,

there is
i=13,... j=13,..
i=13,... j=13
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M! = (kg +ka)M" = k,M"
My = (ky +ks)M" = k,M"
MY = (ko1 +kos)M" = kyM"

xy

Taking x = a/2, y = b/2, ¢ = x/a, d = y/b, L = a/b, there is

- i (m? + un*L?) x (2m? +n’L?)

bs = 5 -~ sin mmc sinnnd = dy
=130 =1 3. (m? +n*L?)
bs = io: XOO: (,um2 —l—n2L2) X (2m2 +n2L2) sin mmc sin nnd = ds
— 5 —
=130 =1 3. (m?4-n2L?)
00 2?4 22
by = d* Z Z %cos mnc cosnnd = a*dg
i1 . (m* +n?l?)

d,is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999
sum_x=(m"2+u*n"2*LA2)/(m"2+n 2 *LA2)A2*(2*mA2+n 2 *LA2)*sin
(m*pi*c)*sin(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

dsis calculated as follows:

symsabamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>");
for m=1:2:1999

for n=1:2:1999

Appendix B: Programs for the Rectangular Thin Plate with Four Edges Supported
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sum_x=(u*m”"2+n"2*LA2)/m/n(m"2+n"2*LA2)A2* (2*m A 24n 2 *¥LA2) *sin
(m*pi*c)*sin(n*pi*d);

sum_x1=sum_xI1+sum_x;
end

end
sum_x1

dgis calculated as follows:

symsabamcdL

sum_x1=0;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>");
for m=1:2:39

for n=1:2:39
sum_x=1/(m"2+n2*¥LA2)"2*(2*m2+n"2*LA2)*cos(m*pi*c)*cos(n*pi*d);

sum_x1=sum_x1+sum_x;
end

end
sum_x1

Case 4: Three edges simply supported and one edge clamped
(1) Deflection
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MY X X (i A\ . imx  jny
= 2 2 ilat) Sy

i=13,... j=13
Let
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w = (fi +/) D =f D

Taking x = a/2, y = bl2, ¢ = x/a, d = 1/2/a/b, L = a/b, there is, a4 is calculated
as follows:

] ]

4 n 1 . . 4

a, =a E E fﬁsmmnc sinnnd = a C3
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csis calculated as follows:

syms abamcdL

sum_x1=0;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");

d=input('enter the value of the ratio of y_axis coordinate to b>");
for m=1:2:39

for n=1:2:39

sum_x=n/m/(m"2/L"2+n"2)"2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_xIl+sum_x;

end
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end
sum_x1

(2) Bending moment
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

! W jmy
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M! = (kg + k)M = k,M"
M)T = (ky1 +kya)M" = k,M"
M;v = (kwl +kxy4)MT = kXyMT

Taking x = a/2, y = b/2, ¢ = x/a, d = y/b, L = a/b, there is

m? + un*L?

i=13,...j=13,... (m? + n2L2)2
= < n um*+n*l?* . .
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I
QI\)
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208
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d4is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:1999

for n=1:2:1999
sum_x=n/m(m”2+u*n 2*LA2)/(m 2+n"2*LA2)2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

dgis calculated as follows:

symsabamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7001

155
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for n=1:2:7001
sum_x=n/m(u*m”2+n"2*L"2)/(m 2+n"2*LA2)"2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

dois calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999

sum_x=n"2/(m"2+n2*L"2)"2*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_xI+sum_x;

end

end
sum_x1

Case 5: Two adjacent edges simply supported and two edges clamped

(1) Deflection
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

SaZMT X XK 1/ ! Jmy
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c4is calculated as follows:

syms abamcdL
sum_x1=0;
L=input('enter the value of the ratio of a to b>");
c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/m/n/(m"2+n"2*LA2)*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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(2) Bending moment
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In above equation, the first part can be obtained by Case 1. For the second part,
there is
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M! = (kg + ks )M" = keM"
M)T = (ky1 +kys)M" = k,M"
M;v = (kwl +kxy5)MT = kXyMT

Taking x = a/2, y = b/2, ¢ = x/a, d = y/b, L = a/b, there is
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dyois calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5999

for n=1:2:5999

sum_x=(m"2+u*n"2*LA2)/m/n/(m 2+n2*LA2)*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

dqqis calculated as follows:

symsabamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5001

Appendix B: Programs for the Rectangular Thin Plate with Four Edges Supported
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for n=1:2:5001
sum_x=(u*m"2+n"2*LA2)/m/n/(m 2+n2*LA2)*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

dq,is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/(m"2+n"2*LA2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1

Case 6: Two opposite edges simply supported and two edges clamped
(1) Deflection
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In above equation, the first part can be obtained by Case 1. For the second part,
there is
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¢sis calculated as follows:

syms abamcdL

sum_x1=0;

L=input('enter the value of the ratio of a to b>');

c=input('enter the value of the ratio of x_axis coordinate to a>');

d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=n/m/(m"24+n"2 LA2)"2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1
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(2) Bending moment
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In above equation, the first part can be obtained by Case 1. For the second part,
there is
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Taking x = a/2, y = b/2, ¢ = x/a, d = y/b, L = a/b, there is
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dq3is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input(‘enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5999

for n=1:2:5999
sum_x=n/m(m"2+u*n"2*LA2)/(m 2+n*2*LA2)"2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

dy4is calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:9999

for n=1:2:9999

sum_x=n/m(u*m”2+n"2*LA2)/(m"2+n"2*LA2)2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_xIl+sum_x;

end

end
sum_x1
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dysis calculated as follows:

syms abamcdL

sum_x1=0;

u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=n"2/(m”"24+n*2*L"2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_xI1+sum_x;

end

end
sum_x1



Appendix C
Programs for the Rectangular Thin Plate
with One edges Free

Case 1: Three edges simply supported and one edge free

(1) Deflection
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(where, u = 1/6, the same below)
In above equation, the first part can be obtained by Case 1. For the second part,
Taking x = a/2, y = b/2, there is
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3
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=0

Therefore, for the rectangular thin plate with three edges simply supported and
one edge free, the deflection solution in center point of the plate is the same with
that with four edges simply supported.
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(2) Bending moment
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Therefore, for the rectangular thin plate with three edges simply supported and
one edge free, the bending moment solution in center point of the plate is the same

with that with four edges simply supported.
Case 2 Three edges clamped and one edge free

(1) Deflection
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Taking x = a/2, y = b/2, so
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In above equation, the first part can be obtained by Appendix B Case 1. For the

second part, there is
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Hence
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Taking ¢ = x/a, d = y/b, L = a/b, there is
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ceis calculated as follows:

symsabamcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");

d=input('enter the value of the ratio of y_axis coordinate to b>");
am=0.5*m*pi/L;
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sum_x=L*(2*m"24n"2*L"2)sin(m*pi*c)sin(n*pi*d)/m/n/(m 2+n"2*L"2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=L*(2*m”2+n"2*L"2)sin(m*pi*c)sin(n*pi*d)/m/n/(m"2+n"2*L"2);

sum_x=sum_x1+sum_x2;
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end
sum_x
num

c4is calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1;k=1; u=1/6;

L=input('enter the value of the ratio of a to b>'");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=2*m”2+LA2*k"2)*sinh(bm)*(kA2*LA2+(2-1/6)*m”2)/(m"4*(m"2
+kA2*¥LA2)A2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;

m=m+2;

bm=m*pi/L;
sum_x2=(2*m"2+LA2*k"2)*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m” 4*(m"2
+kA2*¥LA2)M2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m

k
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero. so
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Hence
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Taking ¢ = x/a, d = y/b, L = a/b, there is
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dy6is calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;n=1;u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>");
sum_x=(m"2+u*n2*LA2)*(2*m 2+n"2*¥LA2)sin(m*pi*c)sin(n*pi*d)/m/n/
(MA2+4n"2*[LA2)M2;

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
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m=m+2;
am=0.5*m*pi/L;

sum_x2=(m"2+u*n 2*LA2)* (2*m 2+n2*LA2)sin(m*pi*c)sin(n*pi*d)/m/n/
(MA2+n"2*LA2)N2;

sum_x=sum_x1+sum_x2;

end
sum_x
num

dy7is calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;n=1;u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m"2+n"2*LA2)*(2*m 2+n2*LA2)sin(m*pi*c)sin(n*pi*d)/m/n/
(MA2+n"2*LA2)N2;

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num-+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(u*m"2+n 2*LA2)* (2*m 2+n2*LA2)sin(m*pi*c)sin(n*pi*d)/m/n/
(MA2+n"2*LA2)N2;

sum_x=sum_x1+sum_x2;

end
sum_x
num

dygis calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1; u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input(‘enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=(2*m"2+LA2*k/2)*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"4*(m"2
+kA2*¥LA2)M2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;

num=num-+1;

m=m+2;

bm=m*pi/L;
sum_x2=(2*m"2+L"2*k"2)*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m” 4*(m"2
+kA2*¥LA2)M2)/((3+1/6)/(1-1/6)*(sinh(2*¥bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

k

dqeis calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:;k=1; u=1/6;

L=input('enter the value of the ratio of a to b>'");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>");
bm=m*pi/L;
sum_x=2*m”2+LA2*k"2)*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"2*(m"2
+kA2FLA2)N2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh
(m*pi*d/L))-bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

bm=m*pi/L;
sum_x2=(2*m"2+LA2*k"2)*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m”2*(m"2
+kA2*FLA2)72)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh
(m*pi*d/L))-bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m

k
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Case 3: Two opposite edges clamped and one edge simply supported and one
edge free

(1) Deflection
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
For the last two part, there is
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Let
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Taking ¢ = x/a, d = y/b, L = a/b, there is
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cgis calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>'");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>");
sum_x=sin(m*pi*c)*sin(n*pi*d)*m/(n*(m"*2+n"2*L"2)"2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m/(n*(m"2+n"2*LA2)"2);
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

n
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cois calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"2*(m"2+k 2 *LA2)A2)/((3
+1/6)/(1-1/6)*(sinh(2*¥bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1l=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;
sum_x2=L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2*(m 24k 2*¥LA2)"2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh (m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is

6MT S X i A\ (# P\
DD D (= +ﬁ)<_2+ﬁ>

Jmy
sm — sm —
a b

o] m2 K2 -2 K2 m?
Zk:lﬁ,“. (a_z + ﬁ) [b_z + (2 - M) Z
3+ usinh2f,
T—a 2 + B

(ﬁm coth B,, + 2”’;) x| .
H sin 22

sinh 2% —
a

™ cosh ™2
a a

o) ) o\ 2
J l J
)@+ 5)

Jmy
sm — sm —
a b

Mx8_
=13, j=1 3,
sinh f3,,
oM’ &
)
mrab | S
oM & XK il 2
Mys =—— Z Z _(
a3 =1
sinh f3,,
1eM”T &
)
nab m=13,...
Let
o0 o0
ba= > >

a a

vy y : 2\ —2
! i—i—,ui ﬁ—«—é sm—sm—
P e e a bj\a* b a b

00 m2 2 -2 12 m?
Dt (a_z + p) [b_z +(2—p a—z}
3+ usinh?2
Jiﬂm _|_ﬁm
1—n 2

B, coth B, sinh ™) sin 22

Jmy

. 00 m> K2\ (K2 m?
sinh §,, Zk:l,_%,m (? + ﬁ) [ﬁ +2-n) ?}
s 3+ pusinh2f,
- - 7 + m
by = Z 1l—p 2 B
m=13,...
” l+p
(ﬁm coth f8,, +2 17#> X e
sinh =¥ — 2 cosh =
. 00 m? K2 -2 K2 m?
sinh 8, Zk:1,3,... (? + 172) [ﬁ +2-p afz}
b24 = Z 3 + Iu S]nh 2ﬂm + ﬁ
m=13,... l—p 2 "
x (M2 cosh ™™ — B, coth f,, sinh ™) sin 2

183



184 Appendix C: Programs for the Rectangular Thin Plate with One edges Free
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d,is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>');

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>");
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(m"2+1/6*n"2*L 2)/(n*(m"24+n"2*L"2)
A2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;

sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(m”"2+1/6*n 2*LA2)/(n* (m"2
+n\2*¥LA2)N2);

sum_x=sum_x1+sum_x2;
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end
sum_x
num
m

n

d,,is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m"2+n 2*LA2)/(n*(m 2+n"2*L"2)
"2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m"2+n 2*L 2)/(n*(m"2
+n2*¥LA2)N2);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

n

dy,is calculated as follows:

symsabbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;

sum_x=L*sinh(bm)*(k"2*L"2+(2-1/6)*m"2)/(m" 2+k"2*L"2)"2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));

while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;

num=num-+1;

k=k+2;

m=m-+2;

bm=m*pi/L;
sum_x2=L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2+k 2 *LA2)"2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

k

d,3is calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the walLue of the ratio of y_axis coordinate to b>");
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"2+Kk 2*LA2)2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;
sum_x2=L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2+k 2 *LA2)"2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)
*sinh(m*pi*d/L))*sin(m*pi*c);

end
sum_x
num
m

k
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Case 4: Two adjacent edges clamped and one edge simply supported and one
edge free

(1) Deflection
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero
For the last two part, there is
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Taking ¢ = x/a, d = y/b, L = a/b, there is
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c1ois calculated as follows:

symsabcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>");

L

sin mmc

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m 2+n"2*L2)"2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num-+1;
m=m+2;

n=n+2;

sum_x2= sin(m*pi*c)*sin(n*pi*d)*n/(m*(m” 2+n 2*L"2)"2);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

n
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c1is calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k"2L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2* (m 2+k 2*LA2)"2)/((3
+1/6)/(1-1/6)*(sinh(2*¥bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1l=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;

sum_x2=k 2L *sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2* (m"2+k"2*LA2)
ADI((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x=a/2, y=b/2, the second part is zero.
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For the last two part, there is
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d,4is calculated as follows:

syms abamcdL
num=1;sum_x1=0;m=1;n=1;u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');

sum_x=(m"2+u*n"2*LA2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m"2+n 2*L12);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(m"2+u*n 2*LA2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m 2+n 2*L"2);

sum_x=sum_x1+sum_x2;
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end
sum_x
num

d,sis calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;n=1;u=1/6;

L=input('enter the value of the ratio of a to b>'");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m"2+n"2*LA2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m"2+n"2*L 2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(u*m"2+n2*LA2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m 2+n"2*L"2);
sum_x=sum_x1l+sum_x2;

end
sum_x
num

d,eis calculated as follows:

symsabbmcdL

num=1;sum_x1=0;m=1;k=1;u=1/6;

L=input('enter the value of the ratio of a to b>");

c=input(‘enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2*(m"2+k"2*LA2))/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(11/6)+bm*coth(bm))*sinh(m*pi*d/L)
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num-+1;
m=m+2;
bm=m*pi/L;



Appendix C: Programs for the Rectangular Thin Plate with One edges Free 195

sum_x2=sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2*(m"2+k" 2*L"2))/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(11/6)+bm*coth(bm))*sinh(m*pi*d/L)
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

k

d,7is calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input(‘enter the walue of the ratio of y_axis coordinate to b>'");
bm=m*pi/L;%bm=m*pi/L;
sum_x=sinh(bm)*(k*2*LA2+(2-1/6)*m"2)/m"2/(m 2+Kk 2*LA2)2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;

sum_x2= sinh(bm)*(kA2*LA2+(2-1/6)*m”2)/m”2/(m"2+k" 2 *¥LA2)A2/((3
+1/6)/(1-1/6)*(sinh(2*¥bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth
(bm)*sinh(m*pi*d/L))*sin(m*pi*c);end

sum_x

num

P
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Case 5: Two opposite edges simply supported and one edge clamped and one
edge free

(1) Deflection
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
For the last two part, there is
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Let
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c12is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m*2+n"2*L"2)"2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m"2+n"2*LA2)"2);
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

n

cy3is calculated as follows:

syms abbmcdL
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>");
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k"2*L*sinh(bm)*(k"A2*LA2+(2-1/6)*m"2)/(m 4* (m"2+k 2*LA2)"2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;
k=k+2;



Appendix C: Programs for the Rectangular Thin Plate with One edges Free

m=m+2;
bm=m*pi/L;
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sum_x2= kA2*L*sinh(bm)* (kA2¥LA2+(2-1/6)*mA2)/(mA4* (mA2+kA2+LA2)
ADY((3+1/6)/(1-1/6)*(sinh(2¥bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh

(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x

(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the

second part, Taking x = a/2, y = b/2, the second part is zero.
For the last two part, there is
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Hence
sMT 8MTa
M0 = wa =T by = kaoM”
sMT 8MT
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Taking ¢ = x/a, d = y/b, L = a/b, there is
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d,gis calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');

b31 =ab 1 d
m:lz3 (2 SR g coth > sinh% -
X sin mmce
mnd osh mnd
L L
: o] 2, KX + (2—p)m?
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sum_x=sin(m*pi*c)*sin(n*pi*d)*n*(m"2+1/6*n*2*L 2)/(m*(m 2+n"2*L"2)
"2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n*(m"2+1/6*n2*L"2)/(m*(m"2
+n2*¥LA2)1N2);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

n

dsoa,3is calculated as follows:

syms abamcdL

num=1;sum_x1=0;m=1;n=1;u=1/6;

L=input('enter the value of the ratio of a to b>');

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m"2+n"2*LA2)*sin(m*pi*c)sin(n*pi*d)/m*n/(m 2+n"2*LA2)"2;
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;

m=m+2;

am=0.5*m*pi/L;
sum_x2=u*m2+n2*¥LA2)*sin(m*pi*c)sin(n*pi*d)/m*n/(m"2+n 2+ LA2)"2;
sum_x=sum_x1+sum_x2;

end
sum_x
num

d;pis calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1;k=1;

L=input('enter the value of the ratio of a to b>'");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>");
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bm=m*pi/L;%bm=m*pi/L;
sum_x=k"2*L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2*(m"2+k 2*LA2)"2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2(1+1/6)/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num-+1;

k=k+2;

m=m+2;

bm=m*pi/L;
sum_x2=k"2*L*sinh(bm)*(k"2*LA2+(2-1/6)*m”"2)/(m"2*(m 2+k"2*L.A2)
ADI((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

k

d3;is calculated as follows:

syms abbmcdL
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>");
c=input('enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k"2*L*gsinh(bm)*(k"A2*LA2+(2-1/6)*m”"2)/(m"2* (mA2+k 2+ LA2)A2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L))-bm*coth
(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;
k=k+2;
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m=m+2;

bm=m*pi/L;

sum_x2= k"2*L*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"2*(m"2+k"2*L"2)
A)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L))-
bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

k

Case 6: Two adjacent edges simply supported and one edge clamped and one
edge free

(1) Deflection
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is
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c14is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>'");
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c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m 2+n"2*L"2)"2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m"2+n"2*¥L 2)"2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m

n

¢1sis calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1;k=1;

L=input('enter the value of the ratio of a to b>');

c=input(‘'enter the value of the ratio of x_axis coordinate to a>'");
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L/m"2*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2+k 2 *LA2) 2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;

sum_x2=L/m"2*sinh(bm)*(kA2*LA2+(2-1/6)*m"2)/(m"2+Kk 2*LA2)"2/((3
+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is
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Hence
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ds,is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>');

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(m"2+1/6*n*2*L 2)/(n*(m 2+n"2*L"2)
"2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num-+1;
m=m+2;

n=n+2;
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sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(m”"2+1/6*n "2*L"2)/(n*(m"2
+n2*¥LA2)N2);
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

n

ds3is calculated as follows:

syms abcdL

num=1;sum_x1=0;m=1;n=1;

L=input('enter the value of the ratio of a to b>');

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m"2+n 2*LA2)/(n*(m"2+n"2*L."2)
~2);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

m=m+2;

n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m”2+n"2*LA2)/(n* (m"2
+n2*LA2)N2);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m

n

ds4is calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input(‘enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m 2+k 2 *LA2)A2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));

while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;

num=num-+1;

k=k+2;

m=m-+2;

bm=m*pi/L;
sum_x2=L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2+k 2 *LA2)"2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
sum_x=sum_x1l+sum_x2;

end
sum_x
num
m

k

dssis calculated as follows:

syms abbmcdL

num=1;sum_x1=0;m=1:k=1;

L=input('enter the value of the ratio of a to b>");

c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the walue of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k"2*LA2+(2-1/6)*m”2)/(m"2+Kk 2*LA2)2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);

while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;

num=num+1;

k=k+2;

m=m+2;

bm=m*pi/L;
sum_x2=L*sinh(bm)*(k"2*LA2+(2-1/6)*m"2)/(m"2+k 2 *LA2)"2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)
*sinh(m*pi*d/L))*sin(m*pi*c);

end
sum_x
num
m

k
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