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Introduction

Industrial research today is conducted in a changing, hectic, and highly competitive global environment.
Until about 25 years ago, the R&D conducted in the U.S. and the technologies based upon it were
internationally dominant. But in the last 20 years, strong global competition has emerged and the pace
at which high technology products are introduced has increased. Consequently, the lifetime of a new
technology has shortened and the economic benefits of being first in the marketplace have forced an
emphasis on short-term goals for industrial development. To be successful in the international market-
place, corporations must have access to the latest developments and most recent experimental data as
rapidly as possible.

In addition to the increased pace of industrial R&D, many American companies have manufacturing
facilities, as well as product development activities in other countries. Furthermore, the restructuring of
many companies has led to an excessive burden of debt and to curtailment of in-house industrial research.
All of these developments make it imperative for industry to have access to the latest information in a
convenient form as rapidly as possible. The goal of this handbook is to provide this type of up-to-date
information for engineers involved in the field of thermal engineering.

This handbook is not designed to compete with traditional handbooks of heat transfer that stress
fundamental principles, analytical approaches to thermal problems, and elegant solutions of traditional
problems in the thermal sciences. The goal of this handbook is to provide information on specific topics
of current interest in a convenient form that is accessible to the average engineer in industry. The
handbook contains in the first three chapters sufficient background information to refresh the reader's
memory of the basic principles necessary to understand specific applications. The bulk of the book,
however, is devoted to applications in thermal design and analysis for technologies of current interest,
as well as to computer solutions of heat transfer and thermal engineering problems.

The applications treated in the book have been selected on the basis of their current relevance to the
development of new products in diverse fields such as food processing, energy conservation, bioengi-
neering, desalination, measurement techniques in fluid flow and heat transfer, and other specific topics.
Each application section stands on its own, but reference is made to the basic introductory material as
necessary. The introductory material is presented in such a manner that it can be referred to and used
by several authors of application sections. For the convenience of the reader, each author has been
requested to use the same nomenclature in order to help the reader in the transition from material in
some of the basic chapters to the application chapters. But wherever necessary, authors have defined
special symbols in their chapters.

A special feature of this handbook is an introduction to the use of the Second Law rather than the
First Law of Thermodynamics in analysis, optimization, and economics. This approach has been widely
used in Europe and Asia for many years, but has not yet penetrated engineering education and usage in
the U.S. The Second Law approach will be found particularly helpful in analyzing and optimizing thermal
systems for the generation and/or conservation of energy.
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Nomenclature

Symbol Quantity

Unit Dimensions
(MLtT)SI English

a Velocity of sound m/s ft/s L t–1

a Acceleration m/s2 ft/s2 L t–2

A Area: Ac, cross-sectional area; m2 ft2 L2

Ap, projected area of a body normal to the 
direction of flow; Aq, area through which rate of 
heat flow is q; Ag, surface area; Ao, outside surface 
area; Ai, inside surface area; Af, fin surface area

b Breadth or width m ft L
c Specific heat; cp, specific heat at constant pressure; 

cv, specific heat at constant volume
J/kg K Btu/lbm °R L2 t–2 T–1

C Constant or Coefficient; CD, total drag coefficient; 
Cf, skin friction coefficient; Cfx, local value of Cf 
at distance x, from leading edge;

—
Cf, average 

value of Cf

none none —

C Thermal capacity J/K Btu/°F M L2 t–2 T–1

·
C Hourly heat capacity rate;

·
Cc, hourly heat 

capacity rate of colder fluid in a heat 
exchanger;

·
Ch, hourly heat capacity of hotter 

fluid; C*, ratio of heat capacity rates in heat 
exchangers

W/K Btu/hr°F M L2 t–1 T–1

D Diameter, DH, hydraulic diameter; Do, outside 
diameter; Di, inside diameter

m ft L

e Base of natural or Napierian logarithm none none —
e Total energy per unit mass J/kg Btu/lbm L2 t–2 —
E Total energy J Btu M L2 t–2

E Emissive power of a radiating body; Eb, emissive 
power of a blackbody

W/m2 Btu/hr·ft2 M t–2

Eλ Monochromatic emissive power per micron at 
wavelength λ

W/m µm Btu/hr·ft2 micron M t–2 L–1

f Darcy friction factor for flow through a pipe or 
duct

none none —

f′ Friction coefficient for flow over banks of tubes none none —
F Force; FB, buoyant force N lb M L t–2

FT Temperature factor none none —
F1-2 Geometric shape factor for radiation from one 

blackbody to another
none none —

g Acceleration due to gravity m/s2 ft/s2 L t–2

gc Dimensional conversion factor 1.0 kg·m/N·s2 32.2 ft·lbm/lb·s2

G Mass velocity or flow rate per unit area kg/s·m2 lbm/hr·ft2 M L–2 t–1

G Irradiation incident on unit surface in unit time W/m2 Btu/hr·ft2 M L–2 t–1

h Enthalpy per unit mass J/kg Btu/lbm L2 t–2
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Symbol Quantity

Unit Dimensions
(MLtT)SI English

h Local heat transfer coefficient;
–
h, average heat 

transfer coefficient
–
h =

–
hc +

–
hr; hb, heat transfer 

coefficient of a boiling liquid; hc, local 
convection heat transfer coefficient;

–
hc, average 

heat transfer coefficient;
–
hr, average heat 

transfer coefficient for radiation

W/m2·K Btu/hr·ft2·°F M t–3 T–1

hfg Latent heat of condensation or evaporation J/kg Btu/lbm L2 t–2

H Head, elevation of hydraulic grade line m ft L
i Angle between sun direction and surface normal rad deg —
I Moment of inertia m4 ft4 L4

I Intensity of radiation W/sr Btu/hr unit solid angle M L2 t–3

Iλ Intensity per unit wavelength W/sr·µm Btu/hr·sr micron M L t–3

J Radiosity W/m2 Btu/hr·ft2 M L–2 t–1

k Thermal conductivity; ks, thermal conductivity of 
a solid; kf, thermal conductivity of a fluid; kg, 
thermal conductivity of a gas

W/m·K Btu/hr·ft°F M L–2 t–1 T–1

K Thermal conductance; kk, thermal conductance 
for conduction heat transfer; kc, thermal 
convection conductance; Kr, thermal 
conduction for radiation heat transfer

W/K Btu/hr·ft°F M t–1 T–1

K Bulk modulus of elasticity Pa lb/ft2 M L–1 t–2

log Logarithm to the base 10 none none —
ln Logarithm to the base e none none —
l Length, general or characteristic length of a body m ft L
L Lift N lb M L t–2

Lf Latent heat of solidification J/kg Btu/lbm L2 t–2

·m Mass flow rate kg/s lbm/s M t–1

m Mass kg lbm M
M Molecular weight gm/gm mole lbm/lb mole —
·M Momentum per unit time N lb MLt–2

n Manning roughness factor none none —
n Number of moles none none —
NPSH Net positive suction head m ft L
N Number in general; number of tubes, etc. none none —
p Static pressure; pc, critical pressure; pA, partial 

pressure of component A
N/m2 psi or lb/ft2 or atm M L–1 t–2

P Wetted perimeter or height of weir m ft L
q Discharge per unit width m2/s ft2/s L2 t–1

q Rate of heat flow; qk, rate of heat flow by 
conduction; qr, rate of heat flow by radiation; qc, 
rate of heat flow by convection; qb, rate of heat 
flow by nucleate boiling

W Btu/hr M L2 t–3

q� Rate of heat generation per unit volume W/m3 Btu/hr·ft3 M L–1 t–3

q″ Rate of heat generation per unit area (heat flux) W/m2 Btu/hr·ft2 M t–3

Q Quantity of heat J Btu M L2 t–3

r Radius; rH, hydraulic radius; ri, inner radius; ro, 
outer radius

m ft L

R Thermal resistance; Rc, thermal resistance to 
convection heat transfer; Rk, thermal resistance 
to conduction heat transfer; Rf, to radiation heat 
transfer

K/W hr°F/Btu L T M–1
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Symbol Quantity

Unit Dimensions
(MLtT)SI English

Re Electrical resistance ohm ohm —
R Perfect gas constant 8.314 J/K·kg mole 1545 ft·lbf/lb·mole°F L2 t–2 T–1

s Entropy per unit mass J/kg·K ft·lb/lbm·°R L2t–2T–1

S Entropy J/K ft·lb/°R ML2t–2T–1

SL Distance between centerlines of tubes in adjacent 
longitudinal rows

m ft L

ST Distance between centerlines of tubes in adjacent 
transverse rows

m ft L

t Time s hr or s t
T Temperature; Tb, temperature of bulk of fluid; Tf, 

mean film temperature; Ts, surface temperature, 
To, temperature of fluid far removed from heat 
source or sink; Tm, mean bulk temperature of 
fluid flowing in a duct; TM, temperature of 
saturated vapor; Tsl, temperature of a saturated 
liquid; Tfr, freezing temperature; Tt, liquid 
temperature; Tas, adiabatic wall temperature

K or °C °F or R T

u Internal energy per unit mass J/kg Btu/lbm L2 t–2

u Velocity in x direction; u′, instantaneous 
fluctuating x component of velocity;

–
u, average 

velocity

m/s ft/s or ft/hr L t–1

u* Shear stress velocity m/s ft/s Lt–1

U Internal energy J Btu ML2t–2

U Overall heat transfer coefficient W/m2K Btu/hr·ft2°F M t–3 T–1

U∞ Free-stream velocity m/s ft/s L t–1

v Specific volume m3/kg ft3/lbm L3 M–1

v Velocity in y direction; v′, instantaneous 
fluctuating y component of velocity

m/s ft/s or ft/hr L t–1

V Volume m3 ft3 L3

·
V Volumetric flow rate m3/s ft3/s L3 t–1

Ws Shaft work m·N ft·lb ML2t–2

·
W Rate of work output or power W Btu/hr M L2 t–3

x Coordinate or distance from the leading edge; xc, 
critical distance from the leading edge where 
flow becomes turbulent

m ft L

x Quality percent percent none
y Coordinate or distance from a solid boundary 

measured in direction normal to surface
m ft L

z Coordinate m ft L
Z Ratio of hourly heat capacity rates in heat 

exchangers
none none —

Greek Symbols

α Absorptivity for radiation, αλ, monochromatic 
absorptivity at wavelength λ

none none —

α Thermal diffusivity = k/ρc m2/s ft2/s L2 t–1

β Temperature coefficient of volume expansion 1/K 1/R T–1

βk Temperature coefficient of thermal conductivity 1/K 1/R T–1

γ Specific heat ratio, cp/cv none none —
Γ Circulation m2 ft2 L2t–1
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Symbol Quantity

Unit Dimensions
(MLtT)SI English

Γ Body force per unit mass N/kg lb/lbm L t–2

Γc Mass rate of flow of condensate per unit breadth 
= ·m/πD for a vertical tube

kg/s·m lbm/hr·ft M L–2 t–1

δ Boundary-layer thickness; δh, hydrodynamic 
boundary-layer thickness; δth, thermal 
boundary-layer thickness

m ft L

∆ Difference between values none none —
ε Heat exchanger effectiveness none none —
� Roughness height m ft L
� Emissivity for radiation; �λ, monochromatic 

emissivity at wavelength λ; �φ, emissivity in 
direction φ

�H Thermal eddy diffusivity m2/s ft2/s L2 t–1

�M Momentum eddy diffusivity m2/s ft2/s L2 t–1

ζ Ratio of thermal to hydrodynamic boundary-
layer thickness, δh/δth

— — —

η Efficiency; ηf, fin efficiency none none —
λ Wavelength; λmax, wavelength at which 

monochromatic emissive power Ebλ is a 
maximum

µm micron L

µ Absolute viscosity N·s/m2 lb/ft·s M L–1 t–1

ν Kinematic viscosity, µ/ρ m2/s ft2/s L2 t–1

νf Frequency of radiation 1/s 1/s t–1

Φ Velocity potential m2/s ft2/s L2 t–1

ρ Mass density, 1/v; ρ1, density of liquid; ρv, density 
of vapor

kg/m3 lbmft3 M L–3

τ Shearing stress, τs, shearing stress at surface; τw, 
shear at wall of a tube or a duct

N/m2 lb/ft2 M L–1 t–2

τ Transmissivity for radiation none none —
σ Stefan-Boltzmann constant W/m2K4 Btu/hr ft2R4 M t–3 T–4

σ Surface tension N/m lb/ft M t–2

φ Angle rad rad —
ψ Stokes’ stream function m3/s ft3/s L3 t–1

ω Angular velocity 1/s 1/s t–1

ω Solid angle sr steradian —

Dimensionless Numbers

Bi Biot number
Ec Eckert number
Eu Euler number
Fo Fourier modulus
Fr Froude number
Gz Graetz number
Gr Grahsof number
Ja Jakob number
Kn Knudsen number
M Mach number
Nu Average Nusselt number; NuD, average diameter 

Nusselt number; Nux, local Nusselt number
Pe Peclet number
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Pr Prandtl number
Ra Rayleigh number
Re Reynolds number; Rex, local value of Re at a 

distance x from leading edge; ReD, diameter 
Reynolds number; Reb, bubble Reynolds 
number

Θ Boundary Fourier modulus or dimensionless 
time

St Stanton number
We Weber number

Miscellaneous

a > b a great than b
a < b a smaller than b
∝ Proportional sign
� Approximately equal sign
∞ Infinity sign
Σ Summation sign

Subscripts

c = critical condition
i = inlet
f = fin
u = unit quantities
w = wall or properties at wall temperature
c.s. = control surface
c.v. = control volume
o = stagnation or standard state condition; outlet or outside
1,2 = inlet and outlet, respectively, of control volume

Note: Those symbols and subscripts that are not included in the above list are defined in the text.
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1
Engineering

Thermodynamics

1.1 Fundamentals
Basic Concepts and Definitions • The First Law of 
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Although various aspects of what is now known as thermodynamics have been of interest since antiquity,
formal study began only in the early 19th century through consideration of the motive power of heat:
the capacity of hot bodies to produce work. Today the scope is larger, dealing generally with energy and
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entropy, and with relationships among the properties of matter. Moreover, in the past 25 years engineering
thermodynamics has undergone a revolution, both in terms of the presentation of fundamentals and in
the manner that it is applied. In particular, the second law of thermodynamics has emerged as an effective
tool for engineering analysis and design.

1.1 Fundamentals

Classical thermodynamics is concerned primarily with the macrostructure of matter. It addresses the
gross characteristics of large aggregations of molecules and not the behavior of individual molecules.
The microstructure of matter is studied in kinetic theory and statistical mechanics (including quantum
thermodynamics). In this chapter, the classical approach to thermodynamics is featured.

Basic Concepts and Definitions

Thermodynamics is both a branch of physics and an engineering science. The scientist is normally
interested in gaining a fundamental understanding of the physical and chemical behavior of fixed,
quiescent quantities of matter and uses the principles of thermodynamics to relate the properties of matter.
Engineers are generally interested in studying systems and how they interact with their surroundings. To
facilitate this, engineers have extended the subject of thermodynamics to the study of systems through
which matter flows.

System

In a thermodynamic analysis, the system is the subject of the investigation. Normally the system is a
specified quantity of matter and/or a region that can be separated from everything else by a well-defined
surface. The defining surface is known as the control surface or system boundary. The control surface
may be movable or fixed. Everything external to the system is the surroundings. A system of fixed mass
is referred to as a control mass or as a closed system. When there is flow of mass through the control
surface, the system is called a control volume, or open, system. An isolated system is a closed system
that does not interact in any way with its surroundings.

State, Property

The condition of a system at any instant of time is called its state. The state at a given instant of time
is described by the properties of the system. A property is any quantity whose numerical value depends
on the state but not the history of the system. The value of a property is determined in principle by some
type of physical operation or test.

Extensive properties depend on the size or extent of the system. Volume, mass, energy, and entropy
are examples of extensive properties. An extensive property is additive in the sense that its value for the
whole system equals the sum of the values for its parts. Intensive properties are independent of the size
or extent of the system. Pressure and temperature are examples of intensive properties.

A mole is a quantity of substance having a mass numerically equal to its molecular weight. Designating
the molecular weight by M and the number of moles by n, the mass m of the substance is m = nM. One
kilogram mole, designated kmol, of oxygen is 32.0 kg and one pound mole (lbmol) is 32.0 lb. When
an extensive property is reported on a unit mass or a unit mole basis, it is called a specific property. An
overbar is used to distinguish an extensive property written on a per-mole basis from its value expressed
per unit mass. For example, the volume per mole is , whereas the volume per unit mass is v, and the
two specific volumes are related by = Mv.

Process, Cycle

Two states are identical if, and only if, the properties of the two states are identical. When any property
of a system changes in value there is a change in state, and the system is said to undergo a process.
When a system in a given initial state goes through a sequence of processes and finally returns to its
initial state, it is said to have undergone a cycle.

v
v
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Phase and Pure Substance

The term phase refers to a quantity of matter that is homogeneous throughout in both chemical compo-
sition and physical structure. Homogeneity in physical structure means that the matter is all solid, or all
liquid, or all vapor (or, equivalently, all gas). A system can contain one or more phases. For example,
a system of liquid water and water vapor (steam) contains two phases. A pure substance is one that is
uniform and invariable in chemical composition. A pure substance can exist in more than one phase, but
its chemical composition must be the same in each phase. For example, if liquid water and water vapor
form a system with two phases, the system can be regarded as a pure substance because each phase has
the same composition. The nature of phases that coexist in equilibrium is addressed by the phase rule
(Section 1.3, Multicomponent Systems).

Equilibrium

Equilibrium means a condition of balance. In thermodynamics the concept includes not only a balance
of forces, but also a balance of other influences. Each kind of influence refers to a particular aspect of
thermodynamic (complete) equilibrium. Thermal equilibrium refers to an equality of temperature,
mechanical equilibrium to an equality of pressure, and phase equilibrium to an equality of chemical
potentials (Section 1.3, Multicomponent Systems). Chemical equilibrium is also established in terms of
chemical potentials (Section 1.4, Reaction Equilibrium). For complete equilibrium, the several types of
equilibrium must exist individually.

To determine if a system is in thermodynamic equilibrium, one may think of testing it as follows:
isolate the system from its surroundings and watch for changes in its observable properties. If there are
no changes, it may be concluded that the system was in equilibrium at the moment it was isolated. The
system can be said to be at an equilibrium state. When a system is isolated, it cannot interact with its
surroundings; however, its state can change as a consequence of spontaneous events occurring internally
as its intensive properties, such as temperature and pressure, tend toward uniform values. When all such
changes cease, the system is in equilibrium. At equilibrium. temperature and pressure are uniform
throughout. If gravity is significant, a pressure variation with height can exist, as in a vertical column
of liquid.

Temperature

A scale of temperature independent of the thermometric substance is called a thermodynamic temperature
scale. The Kelvin scale, a thermodynamic scale, can be elicited from the second law of thermodynamics
(Section 1.1, The Second Law of Thermodynamics, Entropy). The definition of temperature following
from the second law is valid over all temperature ranges and provides an essential connection between
the several empirical measures of temperature. In particular, temperatures evaluated using a constant-
volume gas thermometer are identical to those of the Kelvin scale over the range of temperatures where
gas thermometry can be used.

The empirical gas scale is based on the experimental observations that (1) at a given temperature
level all gases exhibit the same value of the product  (p is pressure and  the specific volume on
a molar basis) if the pressure is low enough, and (2) the value of the product  increases with the
temperature level. On this basis the gas temperature scale is defined by

where T is temperature and is the universal gas constant. The absolute temperature at the triple point
of water (Section 1.3, P-v-T Relations) is fixed by international agreement to be 273.16 K on the Kelvin
temperature scale. is then evaluated experimentally as = 8.314 kJ/kmol · K (1545 ft · lbf/lbmol · °R).

The Celsius termperature scale (also called the centigrade scale) uses the degree Celsius (°C), which
has the same magnitude as the Kelvin. Thus, temperature differences are identical on both scales.
However, the zero point on the Celsius scale is shifted to 273.15 K, as shown by the following relationship
between the Celsius temperature and the Kelvin temperature:
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(1.1)

On the Celsius scale, the triple point of water is 0.01°C and 0 K corresponds to –273.15°C.
Two other temperature scales are commonly used in engineering in the U.S. By definition, the Rankine

scale, the unit of which is the degree Rankine (°R), is proportional to the Kelvin temperature according to

(1.2)

The Rankine scale is also an absolute thermodynamic scale with an absolute zero that coincides with
the absolute zero of the Kelvin scale. In thermodynamic relationships, temperature is always in terms
of the Kelvin or Rankine scale unless specifically stated otherwise.

A degree of the same size as that on the Rankine scale is used in the Fahrenheit scale, but the zero
point is shifted according to the relation

(1.3)

Substituting Equations 1.1 and 1.2 into Equation 1.3 gives

(1.4)

This equation shows that the Fahrenheit temperature of the ice point (0°C) is 32°F and of the steam
point (100°C) is 212°F. The 100 Celsius or Kelvin degrees between the ice point and steam point
corresponds to 180 Fahrenheit or Rankine degrees.

To provide a standard for temperature measurement taking into account both theoretical and practical
considerations, the International Temperature Scale of 1990 (ITS-90) is defined in such a way that the
temperature measured on it conforms with the thermodynamic temperature, the unit of which is the
Kelvin, to within the limits of accuracy of measurement obtainable in 1990. Further discussion of ITS-
90 is provided by Preston-Thomas (1990).

The First Law of Thermodynamics, Energy

Energy is a fundamental concept of thermodynamics and one of the most significant aspects of engi-
neering analysis. Energy can be stored within systems in various macroscopic forms: kinetic energy,
gravitational potential energy, and internal energy. Energy can also be transformed from one form to
another and transferred between systems. For closed systems, energy can be transferred by work and
heat transfer. The total amount of energy is conserved in all transformations and transfers.

Work

In thermodynamics, the term work denotes a means for transferring energy. Work is an effect of one
system on another that is identified and measured as follows: work is done by a system on its surroundings
if the sole effect on everything external to the system could have been the raising of a weight. The test
of whether a work interaction has taken place is not that the elevation of a weight is actually changed,
nor that a force actually acted through a distance, but that the sole effect could be the change in elevation
of a weight. The magnitude of the work is measured by the number of standard weights that could have
been raised. Since the raising of a weight is in effect a force acting through a distance, the work concept
of mechanics is preserved. This definition includes work effects such as is associated with rotating shafts,
displacement of the boundary, and the flow of electricity.

Work done by a system is considered positive: W > 0. Work done on a system is considered negative:
W < 0. The time rate of doing work, or power, is symbolized by and adheres to the same sign
convention.

T T°( ) = ( ) −C K 273 15.

T T°( ) = ( )R K1 8.

T T°( ) = °( ) −F R 459 67.

T T°( ) = °( ) +F C1 8 32.

Ẇ
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Energy

A closed system undergoing a process that involves only work interactions with its surroundings
experiences an adiabatic process. On the basis of experimental evidence, it can be postulated that when
a closed system is altered adiabatically, the amount of work is fixed by the end states of the system and
is independent of the details of the process. This postulate, which is one way the first law of thermody-
namics can be stated, can be made regardless of the type of work interaction involved, the type of
process, or the nature of the system.

As the work in an adiabatic process of a closed system is fixed by the end states, an extensive property
called energy can be defined for the system such that its change between two states is the work in an
adiabatic process that has these as the end states. In engineering thermodynamics the change in the
energy of a system is considered to be made up of three macroscopic contributions: the change in kinetic
energy, KE, associated with the motion of the system as a whole relative to an external coordinate frame,
the change in gravitational potential energy, PE, associated with the position of the system as a whole
in the Earth’s gravitational field, and the change in internal energy, U, which accounts for all other
energy associated with the system. Like kinetic energy and gravitational potential energy, internal energy
is an extensive property.

In summary, the change in energy between two states of a closed system in terms of the work Wad of
an adiabatic process between these states is

(1.5)

where 1 and 2 denote the initial and final states, respectively, and the minus sign before the work term
is in accordance with the previously stated sign convention for work. Since any arbitrary value can be
assigned to the energy of a system at a given state 1, no particular significance can be attached to the
value of the energy at state 1 or at any other state. Only changes in the energy of a system have
significance.

The specific energy (energy per unit mass) is the sum of the specific internal energy, u, the specific
kinetic energy, v2/2, and the specific gravitational potential energy, gz, such that

(1.6)

where the velocity v and the elevation z are each relative to specified datums (often the Earth’s surface)
and g is the acceleration of gravity.

A property related to internal energy u, pressure p, and specific volume v is enthalpy, defined by

(1.7a)

or on an extensive basis

(1.7b)

Heat

Closed systems can also interact with their surroundings in a way that cannot be categorized as work,
as, for example, a gas (or liquid) contained in a closed vessel undergoing a process while in contact
with a flame. This type of interaction is called a heat interaction, and the process is referred to as
nonadiabatic.

A fundamental aspect of the energy concept is that energy is conserved. Thus, since a closed system
experiences precisely the same energy change during a nonadiabatic process as during an adiabatic

KE KE PE PE U U Wad2 1 2 1 2 1−( ) + −( ) + −( ) = −

specific energy
v

gz= + +u
2

2

h u pv= +

H U pV= +
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process between the same end states, it can be concluded that the net energy transfer to the system in
each of these processes must be the same. It follows that heat interactions also involve energy transfer.
Denoting the amount of energy transferred to a closed system in heat interactions by Q, these consid-
erations can be summarized by the closed system energy balance:

(1.8)

The closed system energy balance expresses the conservation of energy principle for closed systems of
all kinds.

The quantity denoted by Q in Equation 1.8 accounts for the amount of energy transferred to a closed
system during a process by means other than work. On the basis of an experiment, it is known that such
an energy transfer is induced only as a result of a temperature difference between the system and its
surroundings and occurs only in the direction of decreasing temperature. This means of energy transfer
is called an energy transfer by heat. The following sign convention applies:

The time rate of heat transfer, denoted by ,  adheres to the same sign convention.
Methods based on experiment are available for evaluating energy transfer by heat. These methods

recognize two basic transfer mechanisms: conduction and thermal radiation. In addition, theoretical and
empirical relationships are available for evaluating energy transfer involving combined modes such as
convection. Further discussion of heat transfer fundamentals is provided in Chapter 3.

The quantities symbolized by W and Q account for transfers of energy. The terms work and heat
denote different means whereby energy is transferred and not what is transferred. Work and heat are not
properties, and it is improper to speak of work or heat “contained” in a system. However, to achieve
economy of expression in subsequent discussions, W and Q are often referred to simply as work and
heat transfer, respectively. This less formal approach is commonly used in engineering practice.

Power Cycles

Since energy is a property, over each cycle there is no net change in energy. Thus, Equation 1.8 reads
for any cycle

That is, for any cycle the net amount of energy received through heat interactions is equal to the net
energy transferred out in work interactions. A power cycle, or heat engine, is one for which a net amount
of energy is transferred out by work: Wcycle > 0. This equals the net amount of energy transferred in by heat.

Power cycles are characterized both by addition of energy by heat transfer, QA, and inevitable rejections
of energy by heat transfer, QR:

Combining the last two equations,

The thermal efficiency of a heat engine is defined as the ratio of the net work developed to the total
energy added by heat transfer:

U U KE KE PE PE Q W2 1 2 1 2 1−( ) + −( ) + −( ) = −

Q to

Q from

>

<

0

0

:

:

 heat transfer  the system

 heat transfer  the system

Q̇

Q Wcycle cycle=

Q Q Qcycle A R= −

W Q Qcycle A R= −
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(1.9)

The thermal efficiency is strictly less than 100%. That is, some portion of the energy QA supplied is
invariably rejected QR ≠ 0.

The Second Law of Thermodynamics, Entropy

Many statements of the second law of thermodynamics have been proposed. Each of these can be called
a statement of the second law or a corollary of the second law since, if one is invalid, all are invalid.
In every instance where a consequence of the second law has been tested directly or indirectly by
experiment it has been verified. Accordingly, the basis of the second law, like every other physical law,
is experimental evidence.

Kelvin-Planck Statement

The Kelvin-Plank statement of the second law of thermodynamics refers to a thermal reservoir. A thermal
reservoir is a system that remains at a constant temperature even though energy is added or removed by
heat transfer. A reservoir is an idealization, of course, but such a system can be approximated in a number
of ways — by the Earth’s atmosphere, large bodies of water (lakes, oceans), and so on. Extensive
properties of thermal reservoirs, such as internal energy, can change in interactions with other systems
even though the reservoir temperature remains constant, however.

The Kelvin-Planck statement of the second law can be given as follows: It is impossible for any system
to operate in a thermodynamic cycle and deliver a net amount of energy by work to its surroundings
while receiving energy by heat transfer from a single thermal reservoir. In other words, a perpetual-
motion machine of the second kind is impossible. Expressed analytically, the Kelvin-Planck statement is

where the words single reservoir emphasize that the system communicates thermally only with a single
reservoir as it executes the cycle. The “less than” sign applies when internal irreversibilities are present
as the system of interest undergoes a cycle and the “equal to” sign applies only when no irreversibilities
are present.

Irreversibilities

A process is said to be reversible if it is possible for its effects to be eradicated in the sense that there
is some way by which both the system and its surroundings can be exactly restored to their respective
initial states. A process is irreversible if there is no way to undo it. That is, there is no means by which
the system and its surroundings can be exactly restored to their respective initial states. A system that
has undergone an irreversible process is not necessarily precluded from being restored to its initial state.
However, were the system restored to its initial state, it would not also be possible to return the
surroundings to their initial state.

There are many effects whose presence during a process renders it irreversible. These include, but
are not limited to, the following: heat transfer through a finite temperature difference; unrestrained
expansion of a gas or liquid to a lower pressure; spontaneous chemical reaction; mixing of matter at
different compositions or states; friction (sliding friction as well as friction in the flow of fluids); electric
current flow through a resistance; magnetization or polarization with hysteresis; and inelastic deforma-
tion. The term irreversibility is used to identify effects such as these.

Irreversibilities can be divided into two classes, internal and external. Internal irreversibilities are
those that occur within the system, while external irreversibilities are those that occur within the
surroundings, normally the immediate surroundings. As this division depends on the location of the
boundary there is some arbitrariness in the classification (by locating the boundary to take in the

η = = −
W

Q
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immediate surroundings, all irreversibilities are internal). Nonetheless, valuable insights can result when
this distinction between irreversibilities is made. When internal irreversibilities are absent during a
process, the process is said to be internally reversible. At every intermediate state of an internally
reversible process of a closed system, all intensive properties are uniform throughout each phase present:
the temperature, pressure, specific volume, and other intensive properties do not vary with position. The
discussions to follow compare the actual and internally reversible process concepts for two cases of
special interest.

For a gas as the system, the work of expansion arises from the force exerted by the system to move
the boundary against the resistance offered by the surroundings:

where the force is the product of the moving area and the pressure exerted by the system there. Noting
that Adx is the change in total volume of the system,

This expression for work applies to both actual and internally reversible expansion processes. However,
for an internally reversible process p is not only the pressure at the moving boundary but also the pressure
of the entire system. Furthermore, for an internally reversible process the volume equals mv, where the
specific volume v has a single value throughout the system at a given instant. Accordingly, the work of
an internally reversible expansion (or compression) process is

(1.10)

When such a process of a closed system is represented by a continuous curve on a plot of pressure vs.
specific volume, the area under the curve is the magnitude of the work per unit of system mass (area
a-b-c′-d′ of Figure 1.3, for example).

Although improved thermodynamic performance can accompany the reduction of irreversibilities,
steps in this direction are normally constrained by a number of practical factors often related to costs.
For example, consider two bodies able to communicate thermally. With a finite temperature difference
between them, a spontaneous heat transfer would take place and, as noted previously, this would be a
source of irreversibility. The importance of the heat transfer irreversibility diminishes as the temperature
difference narrows; and as the temperature difference between the bodies vanishes, the heat transfer
approaches ideality. From the study of heat transfer it is known, however, that the transfer of a finite
amount of energy by heat between bodies whose temperatures differ only slightly requires a considerable
amount of time, a large heat transfer surface area, or both. To approach ideality, therefore, a heat transfer
would require an exceptionally long time and/or an exceptionally large area, each of which has cost
implications constraining what can be achieved practically.

Carnot Corollaries

The two corollaries of the second law known as Carnot corollaries state: (1) the thermal efficiency of
an irreversible power cycle is always less than the thermal efficiency of a reversible power cycle when
each operates between the same two thermal reservoirs; (2) all reversible power cycles operating between
the same two thermal reservoirs have the same thermal efficiency. A cycle is considered reversible when
there are no irreversibilities within the system as it undergoes the cycle, and heat transfers between the
system and reservoirs occur ideally (that is, with a vanishingly small temperature difference).

W Fdx pAdx= =∫ ∫1

2

1

2
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2

W m pdv= ∫1
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Kelvin Temperature Scale

Carnot corollary 2 suggests that the thermal efficiency of a reversible power cycle operating between
two thermal reservoirs depends only on the temperatures of the reservoirs and not on the nature of the
substance making up the system executing the cycle or the series of processes. With Equation 1.9 it can
be concluded that the ratio of the heat transfers is also related only to the temperatures, and is independent
of the substance and processes:

where QH is the energy transferred to the system by heat transfer from a hot reservoir at temperature
TH, and QC is the energy rejected from the system to a cold reservoir at temperature TC. The words rev
cycle emphasize that this expression applies only to systems undergoing reversible cycles while operating
between the two reservoirs. Alternative temperature scales correspond to alternative specifications for
the function ψ in this relation.

The Kelvin temperature scale is based on ψ(TC, TH) = TC /TH. Then

(1.11)

This equation defines only a ratio of temperatures. The specification of the Kelvin scale is completed
by assigning a numerical value to one standard reference state. The state selected is the same used to
define the gas scale: at the triple point of water the temperature is specified to be 273.16 K. If a reversible
cycle is operated between a reservoir at the reference-state temperature and another reservoir at an
unknown temperature T, then the latter temperature is related to the value at the reference state by

where Q is the energy received by heat transfer from the reservoir at temperature T, and Q′ is the energy
rejected to the reservoir at the reference temperature. Accordingly, a temperature scale is defined that is
valid over all ranges of temperature and that is independent of the thermometric substance.

Carnot Efficiency

For the special case of a reversible power cycle operating between thermal reservoirs at temperatures
TH and TC on the Kelvin scale, combination of Equations 1.9 and 1.11 results in

(1.12)

called the Carnot efficiency. This is the efficiency of all reversible power cycles operating between
thermal reservoirs at TH and TC. Moreover, it is the maximum theoretical efficiency that any power cycle,
real or ideal, could have while operating between the same two reservoirs. As temperatures on the
Rankine scale differ from Kelvin temperatures only by the factor 1.8, the above equation may be applied
with either scale of temperature.
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The Clausius Inequality

The Clausius inequality provides the basis for introducing two ideas instrumental for quantitative
evaluations of processes of systems from a second law perspective: entropy and entropy generation. The
Clausius inequality states that

(1.13a)

where δQ represents the heat transfer at a part of the system boundary during a portion of the cycle,
and T is the absolute temperature at that part of the boundary. The symbol δ is used to distinguish the
differentials of nonproperties, such as heat and work, from the differentials of properties, written with
the symbol d. The subscript b indicates that the integrand is evaluated at the boundary of the system
executing the cycle. The symbol indicates that the integral is to be performed over all parts of the
boundary and over the entire cycle. The Clausius inequality can be demonstrated using the Kelvin-Planck
statement of the second law, and the significance of the inequality is the same: the equality applies when
there are no internal irreversibilities as the system executes the cycle, and the inequality applies when
internal irreversibilities are present.

The Clausius inequality can be expressed alternatively as

(1.13b)

where Sgen can be viewed as representing the strength of the inequality. The value of Sgen is positive
when internal irreversibilities are present, zero when no internal irreversibilities are present, and can
never be negative. Accordingly, Sgen is a measure of the irreversibilities present within the system
executing the cycle. In the next section, Sgen is identified as the entropy generated (or produced) by
internal irreversibilities during the cycle.

Entropy and Entropy Generation

Entropy

Consider two cycles executed by a closed system. One cycle consists of an internally reversible process
A from state 1 to state 2, followed by an internally reversible process C from state 2 to state 1. The
other cycle consists of an internally reversible process B from state 1 to state 2, followed by the same
process C from state 2 to state 1 as in the first cycle. For these cycles, Equation 1.13b takes the form

where Sgen has been set to zero since the cycles are composed of internally reversible processes.
Subtracting these equations leaves
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Since A and B are arbitrary, it follows that the integral of δQ/T has the same value for any internally
reversible process between the two states: the value of the integral depends on the end states only. It
can be concluded, therefore, that the integral defines the change in some property of the system. Selecting
the symbol S to denote this property, its change is given by

(1.14a)

where the subscript int rev indicates that the integration is carried out for any internally reversible process
linking the two states. This extensive property is called entropy.

Since entropy is a property, the change in entropy of a system in going from one state to another is
the same for all processes, both internally reversible and irreversible, between these two states. In other
words, once the change in entropy between two states has been evaluated, this is the magnitude of the
entropy change for any process of the system between these end states.

The definition of entropy change expressed on a differential basis is

(1.14b)

Equation 1.14b indicates that when a closed system undergoing an internally reversible process receives
energy by heat transfer, the system experiences an increase in entropy. Conversely, when energy is
removed from the system by heat transfer, the entropy of the system decreases. This can be interpreted
to mean that an entropy transfer is associated with (or accompanies) heat transfer. The direction of the
entropy transfer is the same as that of the heat transfer. In an adiabatic internally reversible process of
a closed system the entropy would remain constant. A constant entropy process is called an isentropic
process.

On rearrangement, Equation 1.14b becomes

Then, for an internally reversible process of a closed system between state 1 and state 2,

(1.15)

When such a process is represented by a continuous curve on a plot of temperature vs. specific entropy,
the area under the curve is the magnitude of the heat transfer per unit of system mass.

Entropy Balance

For a cycle consisting of an actual process from state 1 to state 2, during which internal irreversibilities
are present, followed by an internally reversible process from state 2 to state 1, Equation 1.13b takes
the form

where the first integral is for the actual process and the second integral is for the internally reversible
process. Since no irreversibilities are associated with the internally reversible process, the term Sgen

accounting for the effect of irreversibilities during the cycle can be identified with the actual process only.
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Applying the definition of entropy change, the second integral of the foregoing equation can be
expressed as

Introducing this and rearranging the equation, the closed system entropy balance results:

(1.16)

When the end states are fixed, the entropy change on the left side of Equation 1.16 can be evaluated
independently of the details of the process from state 1 to state 2. However, the two terms on the right
side depend explicitly on the nature of the process and cannot be determined solely from knowledge of
the end states. The first term on the right side is associated with heat transfer to or from the system
during the process. This term can be interpreted as the entropy transfer associated with (or accompanying)
heat transfer. The direction of entropy transfer is the same as the direction of the heat transfer, and the
same sign convention applies as for heat transfer: a positive value means that entropy is transferred into
the system, and a negative value means that entropy is transferred out.

The entropy change of a system is not accounted for solely by entropy transfer, but is also due to the
second term on the right side of Equation 1.16 denoted by Sgen. The term Sgen is positive when internal
irreversibilities are present during the process and vanishes when internal irreversibilities are absent.
This can be described by saying that entropy is generated (or produced) within the system by the action
of irreversibilities. The second law of thermodynamics can be interpreted as specifying that entropy is
generated by irreversibilities and conserved only in the limit as irreversibilities are reduced to zero. Since
Sgen measures the effect of irreversibilities present within a system during a process, its value depends
on the nature of the process and not solely on the end states. Entropy generation is not a property.

When applying the entropy balance, the objective is often to evaluate the entropy generation term.
However, the value of the entropy generation for a given process of a system usually does not have
much significance by itself. The significance is normally determined through comparison. For example,
the entropy generation within a given component might be compared to the entropy generation values
of the other components included in an overall system formed by these components. By comparing
entropy generation values, the components where appreciable irreversibilities occur can be identified
and rank ordered. This allows attention to be focused on the components that contribute most heavily
to inefficient operation of the overall system.

To evaluate the entropy transfer term of the entropy balance requires information regarding both the
heat transfer and the temperature on the boundary where the heat transfer occurs. The entropy transfer
term is not always subject to direct evaluation, however, because the required information is either
unknown or undefined, such as when the system passes through states sufficiently far from equilibrium.
In practical applications, it is often convenient, therefore, to enlarge the system to include enough of
the immediate surroundings that the temperature on the boundary of the enlarged system corresponds
to the ambient temperature, Tamb. The entropy transfer term is then simply Q/Tamb. However, as the
irreversibilities present would not be just those for the system of interest but those for the enlarged
system, the entropy generation term would account for the effects of internal irreversibilities within the
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system and external irreversibilities present within that portion of the surroundings included within the
enlarged system.

A form of the entropy balance convenient for particular analyses is the rate form:

(1.17)

where dS/dt is the time rate of change of entropy of the system. The term represents the time
rate of entropy transfer through the portion of the boundary whose instantaneous temperature is Tj. The
term accounts for the time rate of entropy generation due to irreversibilities within the system.

For a system isolated from its surroundings, the entropy balance is

(1.18)

where Sgen is the total amount of entropy generated within the isolated system. Since entropy is generated
in all actual processes, the only processes of an isolated system that actually can occur are those for
which the entropy of the isolated system increases. This is known as the increase of entropy principle.
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1.2 Control Volume Applications

Since most applications of engineering thermodynamics are conducted on a control volume basis, the
control volume formulations of the mass, energy, and entropy balances presented in this section are
especially important. These are given here in the form of overall balances. Equations of change for mass,
energy, and entropy in the form of differential equations are also available in the literature (see, e.g.,
Bird et al., 1960).

Conservation of Mass

When applied to a control volume, the principle of mass conservation states: The time rate of accumu-
lation of mass within the control volume equals the difference between the total rates of mass flow in
and out across the boundary. An important case for engineering practice is one for which inward and
outward flows occur, each through one or more ports. For this case the conservation of mass principle
takes the form

(1.19)

The left side of this equation represents the time rate of change of mass contained within the control
volume,  denotes the mass flow rate at an inlet, and  is the mass flow rate at an outlet.

The volumetric flow rate through a portion of the control surface with area dA is the product of the
velocity component normal to the area, vn, times the area: vn dA. The mass flow rate through dA is ρ(vn

dA). The mass rate of flow through a port of area A is then found by integration over the area

For one-dimensional flow the intensive properties are uniform with position over area A, and the last
equation becomes

(1.20)

where v denotes the specific volume and the subscript n has been dropped from velocity for simplicity.

Control Volume Energy Balance

When applied to a control volume, the principle of energy conservation states: The time rate of accu-
mulation of energy within the control volume equals the difference between the total incoming rate of
energy transfer and the total outgoing rate of energy transfer. Energy can enter and exit a control volume
by work and heat transfer. Energy also enters and exits with flowing streams of matter. Accordingly, for
a control volume with one-dimensional flow at a single inlet and a single outlet,

(1.21)
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where the underlined terms account for the specific energy of the incoming and outgoing streams. The
terms  and  account, respectively, for the net rates of energy transfer by heat and work over the
boundary (control surface) of the control volume.

Because work is always done on or by a control volume where matter flows across the boundary, the
quantity  of Equation 1.21 can be expressed in terms of two contributions: one is the work associated
with the force of the fluid pressure as mass is introduced at the inlet and removed at the exit. The other,
denoted as ,  includes all other work effects, such as those associated with rotating shafts, displace-
ment of the boundary, and electrical effects. The work rate concept of mechanics allows the first of these
contributions to be evaluated in terms of the product of the pressure force, pA, and velocity at the point
of application of the force. To summarize, the work term  of Equation 1.21 can be expressed (with
Equation 1.20) as

(1.22)

The terms (pvi) and (peve) account for the work associated with the pressure at the inlet and
outlet, respectively, and are commonly referred to as flow work.

Substituting Equation 1.22 into Equation 1.21, and introducing the specific enthalpy h, the following
form of the control volume energy rate balance results:

(1.23)

To allow for applications where there may be several locations on the boundary through which mass
enters or exits, the following expression is appropriate:

(1.24)

Equation 1.24 is an accounting rate balance for the energy of the control volume. It states that the time
rate of accumulation of energy within the control volume equals the difference between the total rates
of energy transfer in and out across the boundary. The mechanisms of energy transfer are heat and work,
as for closed systems, and the energy accompanying the entering and exiting mass.

Control Volume Entropy Balance

Like mass and energy, entropy is an extensive property. And like mass and energy, entropy can be
transferred into or out of a control volume by streams of matter. As this is the principal difference
between the closed system and control volume forms, the control volume entropy rate balance is obtained
by modifying Equation 1.17 to account for these entropy transfers. The result is

(1.25)
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where dScv/dt represents the time rate of change of entropy within the control volume. The terms and
account, respectively, for rates of entropy transfer into and out of the control volume associated

with mass flow. One-dimensional flow is assumed at locations where mass enters and exits. represents
the time rate of heat transfer at the location on the boundary where the instantaneous temperature is Tj;
and accounts for the associated rate of entropy transfer. denotes the time rate of entropy
generation due to irreversibilities within the control volume. When a control volume comprises a number
of components, is the sum of the rates of entropy generation of the components.

Control Volumes at Steady State

Engineering systems are often idealized as being at steady state, meaning that all properties are unchang-
ing in time. For a control volume at steady state, the identity of the matter within the control volume
changes continuously, but the total amount of mass remains constant. At steady state, Equation 1.19
reduces to

(1.26a)

The energy rate balance of Equation 1.24 becomes, at steady state,

(1.26b)

At steady state, the entropy rate balance of Equation 1.25 reads

(1.26c)

Mass and energy are conserved quantities, but entropy is not generally conserved. Equation 1.26a
indicates that the total rate of mass flow into the control volume equals the total rate of mass flow out
of the control volume. Similarly, Equation 1.26b states that the total rate of energy transfer into the
control volume equals the total rate of energy transfer out of the control volume. However, Equation
1.26c shows that the rate at which entropy is transferred out exceeds the rate at which entropy enters,
the difference being the rate of entropy generation within the control volume owing to irreversibilities.

Applications frequently involve control volumes having a single inlet and a single outlet, as, for
example, the control volume of Figure 1.1 where heat transfer (if any) occurs at Tb: the temperature, or
a suitable average temperature, on the boundary where heat transfer occurs. For this case the mass rate
balance, Equation 1.26a, reduces to Denoting the common mass flow rate by  Equations
1.26b and 1.26c read, respectively,

(1.27a)

(1.28a)

When Equations 1.27a and 1.28a are applied to particular cases of interest, additional simplifications
are usually made. The heat transfer term is dropped when it is insignificant relative to other energy
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transfers across the boundary. This may be the result of one or more of the following: (1) the outer
surface of the control volume is insulated, (2) the outer surface area is too small for there to be effective
heat transfer, (3) the temperature difference between the control volume and its surroundings is small
enough that the heat transfer can be ignored, (4) the gas or liquid passes through the control volume so
quickly that there is not enough time for significant heat transfer to occur. The work term drops out
of the energy rate balance when there are no rotating shafts, displacements of the boundary, electrical
effects, or other work mechanisms associated with the control volume being considered. The changes
in kinetic and potential energy of Equation 1.27a are frequently negligible relative to other terms in the
equation.

The special forms of Equations 1.27a and 1.28a listed in Table 1.1 are obtained as follows: when
there is no heat transfer, Equation 1.28a gives

(1.28b)

Accordingly, when irreversibilities are present within the control volume, the specific entropy increases
as mass flows from inlet to outlet. In the ideal case in which no internal irreversibilities are present,
mass passes through the control volume with no change in its entropy — that is, isentropically.

For no heat transfer, Equation 1.27a gives

(1.27b)

A special form that is applicable, at least approximately, to compressors, pumps, and turbines results
from dropping the kinetic and potential energy terms of Equation 1.27b, leaving

(1.27c)

FIGURE 1.1 One-inlet, one-outlet control volume at steady state.
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In throttling devices a significant reduction in pressure is achieved simply by introducing a restriction
into a line through which a gas or liquid flows. For such devices = 0 and Equation 1.27c reduces
further to read

(1.27d)

That is, upstream and downstream of the throttling device, the specific enthalpies are equal.
A nozzle is a flow passage of varying cross-sectional area in which the velocity of a gas or liquid

increases in the direction of flow. In a diffuser, the gas or liquid decelerates in the direction of flow. For
such devices, = 0. The heat transfer and potential energy change are also generally negligible. Then
Equation 1.27b reduces to

(1.27e)

TABLE 1.1 Energy and Entropy Balances for One-Inlet, One-
Outlet Control Volumes at Steady State and No Heat Transfer

Energy balance

(1.27b)

Compressors, pumps, and turbinesa

(1.27c)

Throttling

(1.27d)

Nozzles, diffusersb

(1.27f)

Entropy balance

(1.28b)

a For an ideal gas with constant cp, Equation 1′ of Table 1.7 allows
Equation 1.27c to be written as

(1.27c′)

The power developed in an isentropic process is obtained with Equation
5′ of Table 1.7 as

(1.27c″)

where cp = kR/(k – 1).
b For an ideal gas with constant cp, Equation 1′ of Table 1.7 allows

Equation 1.27f to be written as

(1.27f′)

The exit velocity for an isentropic process is obtained with Equation
5′ of Table 1.7 as

(1.27f″)

where cp = kR/(k – 1).
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Ẇcv

0
2

2 2

= − +
−

h hi e
i ev v
© 2000 by CRC Press LLC



Solving for the outlet velocity

(1.27f)

Further discussion of the flow-through nozzles and diffusers is provided in Chapter 2.
The mass, energy, and entropy rate balances, Equations 1.26, can be applied to control volumes with

multiple inlets and/or outlets, as, for example, cases involving heat-recovery steam generators, feedwater
heaters, and counterflow and crossflow heat exchangers. Transient (or unsteady) analyses can be con-
ducted with Equations 1.19, 1.24, and 1.25. Illustrations of all such applications are provided by Moran
and Shapiro (2000).

Example 1

A turbine receives steam at 7 MPa, 440°C and exhausts at 0.2 MPa for subsequent process heating duty.
If heat transfer and kinetic/potential energy effects are negligible, determine the steam mass flow rate,
in kg/hr, for a turbine power output of 30 MW when (a) the steam quality at the turbine outlet is 95%,
(b) the turbine expansion is internally reversible.

Solution. With the indicated idealizations, Equation 1.27c is appropriate. Solving, 
Steam table data (Table A.5) at the inlet condition are hi = 3261.7 kJ/kg, si = 6.6022 kJ/kg · K.

(a) At 0.2 MPa and x = 0.95, he = 2596.5 kJ/kg. Then

(b) For an internally reversible expansion, Equation 1.28b reduces to give se = si. For this case, he =
2499.6 kJ/kg (x = 0.906), and  = 141,714 kg/hr.

Example 2

Air at 500°F, 150 lbf/in.2, and 10 ft/sec expands adiabatically through a nozzle and exits at 60°F, 15
lbf/in.2. For a mass flow rate of 5 lb/sec determine the exit area, in in.2. Repeat for an isentropic expansion
to 15 lbf/in.2. Model the air as an ideal gas (Section 1.3, Ideal Gas Model) with specific heat cp = 0.24
Btu/lb · °R (k = 1.4).

Solution. The nozzle exit area can be evaluated using Equation 1.20, together with the ideal gas equation,
v = RT/p:

The exit velocity required by this expression is obtained using Equation 1.27f′ of Table 1.1,
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Finally, with R = = 53.33 ft · lbf/lb · °R,

Using Equation 1.27f″ in Table 1.1 for the isentropic expansion,

Then Ae = 3.92 in.2.

Example 3

Figure 1.2 provides steady-state operating data for an open feedwater heater. Ignoring heat transfer and
kinetic/potential energy effects, determine the ratio of mass flow rates, 

Solution. For this case Equations 1.26a and 1.26b reduce to read, respectively,

Combining and solving for the ratio 

Inserting steam table data, in kJ/kg, from Table A.5,

Internally Reversible Heat Transfer and Work

For one-inlet, one-outlet control volumes at steady state, the following expressions give the heat transfer
rate and power in the absence of internal irreversibilities:

FIGURE 1.2 Open feedwater heater.
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(1.29)

(1.30a)

(see, e.g., Moran and Shapiro, 2000).
If there is no significant change in kinetic or potential energy from inlet to outlet, Equation 1.30a reads

(1.30b)

The specific volume remains approximately constant in many applications with liquids. Then Equation
1.30b becomes

(1.30c)

When the states visited by a unit of mass flowing without irreversibilities from inlet to outlet are
described by a continuous curve on a plot of temperature vs. specific entropy, Equation 1.29 implies
that the area under the curve is the magnitude of the heat transfer per unit of mass flowing. When such
an ideal process is described by a curve on a plot of pressure vs. specific volume, as shown in Figure
1.3, the magnitude of the integral ∫vdp of Equations 1.30a and 1.30b is represented by the area a-b-c-d
behind the curve. The area a-b-c′-d′ under the curve is identified with the magnitude of the integral ∫pdv
of Equation 1.10.

FIGURE 1.3 Internally reversible process on p–v coordinates.

˙

˙
Q

m
Tdscv

rev







= ∫int 1

2

˙

˙
W

m
dp g z zcv

rev







= − +

−
+ −( )∫int

ν
v v1

2
2
2

1

2

1 22

˙

˙
W

m
dp ke pecv

rev







= − = =( )∫int

ν ∆ ∆ 0
1

2

˙

˙
W

m
v p p vcv

rev







= − −( ) =( )

int
2 1 constant
© 2000 by CRC Press LLC



1.3 Property Relations and Data

Pressure, temperature, volume, and mass can be found experimentally. The relationships between the
specific heats cv and cp and temperature at relatively low pressure are also accessible experimentally, as
are certain other property data. Specific internal energy, enthalpy, and entropy are among those properties
that are not so readily obtained in the laboratory. Values for such properties are calculated using
experimental data of properties that are more amenable to measurement, together with appropriate
property relations derived using the principles of thermodynamics. In this section property relations and
data sources are considered for simple compressible systems, which include a wide range of industrially
important substances.

Property data are provided in the publications of the National Institute of Standards and Technology
(formerly the U.S. Bureau of Standards), of professional groups such as the American Society of
Mechanical Engineering (ASME), the American Society of Heating. Refrigerating, and Air Conditioning
Engineers (ASHRAE), and the American Chemical Society, and of corporate entities such as Dupont and
Dow Chemical. Handbooks and property reference volumes such as included in the list of references
for this chapter are readily accessed sources of data. Property data are also retrievable from various
commercial online data bases. Computer software is increasingly available for this purpose as well.

Basic Relations for Pure Substances

An energy balance in differential form for a closed system undergoing an internally reversible process
in the absence of overall system motion and the effect of gravity reads

From Equation 1.14b, = TdS. When consideration is limited to simple compressible systems:
systems for which the only significant work in an internally reversible process is associated with volume
change, = pdV, the following equation is obtained:

(1.31a)

Introducing enthalpy, H = U + pV, the Helmholtz function, Ψ = U – TS, and the Gibbs function, G = H
– TS, three additional expressions are obtained:

(1.31b)

(1.31c)

(1.31d)

Equations 1.31 can be expressed on a per-unit-mass basis as

(1.32a)

(1.32b)

(1.32c)

(1.32d)

dU Q W
rev rev

= ( ) − ( )δ δint int

δQ
rev( )int

δW
rev( )int

dU TdS pdV= −

dH TdS Vdp= +

d pdV SdTΨ = − −

dG Vdp SdT= −

du Tds pdv= −

dh Tds vdp= +

d pdv sdTψ = − −

dg vdp sdT= −
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Similar expressions can be written on a per-mole basis.

Maxwell Relations

Since only properties are involved, each of the four differential expressions given by Equations 1.32 is
an exact differential exhibiting the general form dz = M(x, y)dx + N(x, y)dy, where the second mixed
partial derivatives are equal: (∂M/∂y) = (∂N/∂x). Underlying these exact differentials are, respectively,
functions of the form u(s, v), h(s, p), ψ(v, T), and g(T, p). From such considerations the Maxwell relations
given in Table 1.2 can be established.

Example 4

Derive the Maxwell relation following from Equation 1.32a.

TABLE 1.2 Relations from Exact Differentials
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Solution. The differential of the function u = u(s, v) is

By comparison with Equation 1.32a,

In Equation 1.32a, T plays the role of M and –p plays the role of N, so the equality of second mixed
partial derivatives gives the Maxwell relation,

Since each of the properties T, p, v, and s appears on the right side of two of the eight coefficients of
Table 1.2, four additional property relations can be obtained by equating such expressions:

These four relations are identified in Table 1.2 by brackets. As any three of Equations 1.32 can be
obtained from the fourth simply by manipulation, the 16 property relations of Table 1.2 also can be
regarded as following from this single differential expression. Several additional first-derivative property
relations can be derived; see, e.g., Zemansky, 1972.

Specific Heats and Other Properties

Engineering thermodynamics uses a wide assortment of thermodynamic properties and relations among
these properties. Table 1.3 lists several commonly encountered properties.

Among the entries of Table 1.3 are the specific heats cv and cp. These intensive properties are often
required for thermodynamic analysis, and are defined as partial derivations of the functions u(T, v) and
h(T, p), respectively,

(1.33)

(1.34)

Since u and h can be expressed either on a unit mass basis or a per-mole basis, values of the specific
heats can be similarly expressed. Table 1.4 summarizes relations involving cv and cp. The property k,
the specific heat ratio, is

(1.35)
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Values for cv and cp can be obtained via statistical mechanics using spectroscopic measurements. They
can also be determined macroscopically through exacting property measurements. Specific heat data for
common gases, liquids, and solids are provided by the handbooks and property reference volumes listed
among the Chapter 1 references. Specific heats are also considered in Section 1.3 as a part of the
discussions of the incompressible model and the ideal gas model. Figure 1.4 shows how cp for water
vapor varies as a function of temperature and pressure. Other gases exhibit similar behavior. The figure
also gives the variation of cp with temperature in the limit as pressure tends to zero (the ideal gas limit).
In this limit cp increases with increasing temperature, which is a characteristic exhibited by other gases
as well

The following two equations are often convenient for establishing relations among properties:

(1.36a)

(1.36b)

Their use is illustrated in Example 5.

Example 5

Obtain Equations 2 and 11 of Table 1.4 from Equation 1.

Solution. Identifying x, y, z with s, T, and v, respectively, Equation 1.36b reads

Applying Equation 1.36a to each of (∂T/∂v)s and (∂v/∂s)T ,

TABLE 1.3 Symbols and Definitions for Selected Properties

Property Symbol Definition Property Symbol Definition

Pressure p Specific heat, constant volume cv

Temperature T Specific heat, constant pressure cp

Specific volume v Volume expansivity β

Specific internal energy u Isothermal compressivity κ

Specific entropy s Isentropic compressibility α

Specific enthalpy h u + pv Isothermal bulk modulus B

Specific Helmholtz function ψ u – Ts Isentropic bulk modulus Bs

Specific Gibbs function g h – Ts Joule-Thomson coefficient µJ

Compressibility factor Z pv/RT Joule coefficient η

Specific heat ratio k cp /cv Velocity of sound c
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Introducing the Maxwell relation from Table 1.2 corresponding to ψ(T, v),

With this, Equation 2 of Table 1.4 is obtained from Equation 1, which in turn is obtained in Example
6. Equation 11 of Table 1.4 can be obtained by differentiating Equation 1 with repect to specific volume
at fixed temperature, and again using the Maxwell relation corresponding to ψ.

TABLE 1.4 Specific Heat Relationsa

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

a See, for example, Moran, M.J. and
Shapiro, H.N. 2000. Fundamentals of
Engineering Thermodynamics, 4th ed.
Wiley, New York.
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P-v-T Relations

Considerable pressure, specific volume, and temperature data have been accumulated for industrially
important gases and liquids. These data can be represented in the form p = f (v, T ), called an equation
of state. Equations of state can be expressed in tabular, graphical, and analytical forms.

P-v-T Surface

The graph of a function p = f (v, T) is a surface in three-dimensional space. Figure 1.5 shows the p-v-
T relationship for water. Figure 1.5b shows the projection of the surface onto the pressure-temperature
plane, called the phase diagram. The projection onto the p–v plane is shown in Figure 1.5c.

Figure 1.5 has three regions labeled solid, liquid, and vapor where the substance exists only in a single
phase. Between the single phase regions lie two-phase regions, where two phases coexist in equilibrium.
The lines separating the single-phase regions from the two-phase regions are saturation lines. Any state
represented by a point on a saturation line is a saturation state. The line separating the liquid phase and

FIGURE 1.5 Pressure-specific volume-temperature surface and projections for water (not to scale).
© 2000 by CRC Press LLC



the two-phase liquid-vapor region is the saturated liquid line. The state denoted by f is a saturated liquid
state. The saturated vapor line separates the vapor region and the two-phase liquid-vapor region. The
state denoted by g is a saturated vapor state. The saturated liquid line and the saturated vapor line meet
at the critical point. At the critical point, the pressure is the critical pressure pc, and the temperature is
the critical temperature Tc. Three phases can coexist in equilibrium along the line labeled triple line.
The triple line projects onto a point on the phase diagram. The triple point of water is used in defining
the Kelvin temperature scale (Section 1.1, Basic Concepts and Definitions; The Second Law of Ther-
modynamics, Entropy).

When a phase change occurs during constant pressure heating or cooling, the temperature remains
constant as long as both phases are present. Accordingly, in the two-phase liquid-vapor region, a line of
constant pressure is also a line of constant temperature. For a specified pressure, the corresponding
temperature is called the saturation temperature. For a specified temperature, the corresponding pressure
is called the saturation pressure. The region to the right of the saturated vapor line is known as the
superheated vapor region because the vapor exists at a temperature greater than the saturation temperature
for its pressure. The region to the left of the saturated liquid line is known as the compressed liquid
region because the liquid is at a pressure higher than the saturation pressure for its temperature.

When a mixture of liquid and vapor coexists in equilibrium, the liquid phase is a saturated liquid and
the vapor phase is a saturated vapor. The total volume of any such mixture is V = Vf + Vg; or, alternatively,
mv = mfvf + mgvg, where m and v denote mass and specific volume, respectively. Dividing by the total
mass of the mixture m and letting the mass fraction of the vapor in the mixture, mg /m, be symbolized
by x, called the quality, the apparent specific volume v of the mixture is

(1.37a)

where vfg = vg – vf. Expressions similar in form can be written for internal energy, enthalpy, and entropy:

(1.37b)

(1.37c)

(1.37d)

For the case of water, Figure 1.6 illustrates the phase change from solid to liquid (melting): a-b-c;
from solid to vapor (sublimation): a′-b′-c′; and from liquid to vapor (vaporization): a″-b″-c″. During
any such phase change the temperature and pressure remain constant and thus are not independent
properties. The Clapeyron equation allows the change in enthalpy during a phase change at fixed
temperature to be evaluated from p-v-T data pertaining to the phase change. For vaporization, the
Clapeyron equation reads

(1.38)
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where (dp/dT)sat is the slope of the saturation pressure-temperature curve at the point determined by the
temperature held constant during the phase change. Expressions similar in form to Equation 1.38 can
be written for sublimation and melting.

The Clapeyron equation shows that the slope of a saturation line on a phase diagram depends on the
signs of the specific volume and enthalpy changes accompanying the phase change. In most cases, when
a phase change takes place with an increase in specific enthalpy, the specific volume also increases, and
(dp/dT)sat is positive. However, in the case of the melting of ice and a few other substances, the specific
volume decreases on melting. The slope of the saturated solid-liquid curve for these few substances is
negative, as illustrated for water in Figure 1.6.

Graphical Representations

The intensive states of a pure, simple compressible system can be represented graphically with any two
independent intensive properties as the coordinates, excluding properties associated with motion and
gravity. While any such pair may be used, there are several selections that are conventionally employed.
These include the p-T and p-v diagrams of Figure 1.5, the T-s diagram of Figure 1.7, the h-s (Mollier)
diagram of Figure 1.8, and the p-h diagram of Figure 1.9. The compressibility charts considered next
use the compressibility factor as one of the coordinates.

Compressibility Charts

The p-v-T relation for a wide range of common gases is illustrated by the generalized compressibility
chart of Figure 1.10. In this chart, the compressibility factor, Z, is plotted vs. the reduced pressure, pR,
reduced temperature, TR, and pseudoreduced specific volume,  where

(1.39)

and

FIGURE 1.6 Phase diagram for water (not to scale).
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(1.40)

In these expressions, is the universal gas constant and pc and Tc denote the critical pressure and
temperature, respectively. Values of pc and Tc are given for several substances in Table A.9. The reduced
isotherms of Figure 1.10 represent the best curves fitted to the data of several gases. For the 30 gases
used in developing the chart, the deviation of observed values from those of the chart is at most on the
order of 5% and for most ranges is much less.*

Figure 1.10 gives a common value of about 0.27 for the compressibility factor at the critical point.
As the critical compressibility factor for different substances actually varies from 0.23 to 0.33, the chart
is inaccurate in the vicinity of the critical point. This source of inaccuracy can be removed by restricting
the correlation to substances having essentially the same Zc values. which is equivalent to including the
critical compressibility factor as an independent variable: Z = f (TR, pR, Zc). To achieve greater accuracy

FIGURE 1.8 Enthalpy-entropy (Mollier) diagram for water. (Source: Jones, J.B. and Dugan, R.E. 1996. Engineering
Thermodynamics. Prentice-Hall, Englewood Cliffs, NJ, based on data and formulations from Haar, L., Gallagher,
J.S., and Kell, G.S. 1984. NBS/NRC Steam Tables. Hemisphere, Washington, D.C.)

* To determine Z for hydrogen, helium, and neon above a TR of 5, the reduced temperature and pressure should
be calculated using TR = T/(Tc + 8) and PR = p/(pc + 8), where temperatures are in K and pressures are in atm.
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variables other than Zc have been proposed as a third parameter — for example, the acentric factor (see,
e.g., Reid and Sherwood, 1966).

Generalized compressibility data are also available in tabular form (see, e.g., Reid and Sherwood,
1966) and in equation form (see, e.g., Reynolds, 1979). The use of generalized data in any form (graphical,
tabular, or equation) allows p, v, and T for gases to be evaluated simply and with reasonable accuracy.
When accuracy is an essential consideration, generalized compressibility data should not be used as a
substitute for p-v-T data for a given substance as provided by computer software, a table, or an equation
of state.

Equations of State

Considering the isotherms of Figure 1.10, it is plausible that the variation of the compressibility factor
might be expressed as an equation, at least for certain intervals of p and T. Two expressions can be
written that enjoy a theoretical basis. One gives the compressibility factor as an infinite series expansion
in pressure,

and the other is a series in 

These expressions are known as virial expansions, and the coefficients … and B, C, D … are
called virial coefficients. In principle, the virial coefficients can be calculated using expressions from
statistical mechanics derived from consideration of the force fields around the molecules. Thus far only
the first few coefficients have been calculated and only for gases consisting of relatively simple molecules.
The coefficients also can be found, in principle, by fitting p-v-T data in particular realms of interest.
Only the first few coefficients can be found accurately this way, however, and the result is a truncated
equation valid only at certain states.

Over 100 equations of state have been developed in an attempt to portray accurately the p-v-T behavior
of substances and yet avoid the complexities inherent in a full virial series. In general, these equations
exhibit little in the way of fundamental physical significance and are mainly empirical in character. Most
are developed for gases, but some describe the p-v-T behavior of the liquid phase, at least qualitatively.
Every equation of state is restricted to particular states. The realm of applicability is often indicated by
giving an interval of pressure, or density, where the equation can be expected to represent the p-v-T
behavior faithfully. When it is not stated, the realm of applicability often may be approximated by
expressing the equation in terms of the compressibility factor Z and the reduced properties, and super-
imposing the result on a generalized compressibility chart or comparing with compressibility data from
the literature.

Equations of state can be classified by the number of adjustable constants they involve. The Redlich-
Kwong equation is considered by many to be the best of the two-constant equations of state. It gives
pressure as a function of temperature and specific volume and thus is explicit in pressure:

(1.41)

This equation is primarily empirical in nature, with no rigorous justification in terms of molecular
arguments. Values for the Redlich-Kwong constants for several substances are provided in Table A.9.
Modified forms of the equation have been proposed with the aim of achieving better accuracy.
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Although the two-constant Redlich-Kwong equation performs better than some equations of state
having several adjustable constants, two-constant equations tend to be limited in accuracy as pressure
(or density) increases. Increased accuracy normally requires a greater number of adjustable constants.
For example, the Benedict-Webb-Rubin equation, which involves eight adjustable constants, has been
successful in predicting the p-v-T behavior of light hydrocarbons. The Benedict-Webb-Rubin equation
is also explicit in pressure,

(1.42)

Values of the Benedict-Webb-Rubin constants for various gases are provided in the literature (see, e.g.,
Cooper and Goldfrank, 1967). A modification of the Benedict-Webb-Rubin equation involving 12
constants is discussed by Lee and Kessler, 1975. Many multiconstant equations can be found in the
engineering literature, and with the advent of high speed computers, equations having 50 or more
constants have been developed for representing the p-v-T behavior of different substances.

Gas Mixtures

Since an unlimited variety of mixtures can be formed from a given set of pure components by varying
the relative amounts present, the properties of mixtures are reported only in special cases such as air.
Means are available for predicting the properties of mixtures, however. Most techniques for predicting
mixture properties are empirical in character and are not derived from fundamental physical principles.
The realm of validity of any particular technique can be established by comparing predicted property
values with empirical data. In this section, methods for evaluating the p-v-T relations for pure components
are adapted to obtain plausible estimates for gas mixtures. The case of ideal gas mixtures is discussed
in Section 1.3, Ideal Gas Model. In Section 1.3, Multicomponent Systems, some general aspects of
property evaluation for multicomponent systems are presented.

The total number of moles of mixture, n, is the sum of the number of moles of the components, ni:

(1.43)

The relative amounts of the components present can be described in terms of mole fractions. The mole
fraction yi of component i is yi = ni /n. The sum of the mole fractions of all components present is equal
to unity. The apparent molecular weight M is the mole fraction average of the component molecular
weights, such that

(1.44)

The relative amounts of the components present also can be described in terms of mass fractions: mi /m,
where mi is the mass of component i and m is the total mass of mixture.

The p-v-T relation for a gas mixture can be estimated by applying an equation of state to the overall
mixture. The constants appearing in the equation of state are mixture values determined with empirical
combining rules developed for the equation. For example, mixture values of the constants a and b for
use in the Redlich-Kwong equation are obtained using relations of the form

(1.45)
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where ai and bi are the values of the constants for component i. Combination rules for obtaining mixture
values for the constants in other equations of state are also found in the literature.

Another approach is to regard the mixture as if it were a single pure component having critical
properties calculated by one of several mixture rules. Kay’s rule is perhaps the simplest of these, requiring
only the determination of a mole fraction averaged critical temperature Tc and critical pressure pc:

(1.46)

where Tc,i and pc,i are the critical temperature and critical pressure of component i, respectively. Using
Tc and pc, the mixture compressibility factor Z is obtained as for a single pure component. The unkown
quantity from among the pressure p, volume V, temperature T, and total number of moles n of the gas
mixture can then be obtained by solving Z = pV/n T.

Additional means for predicting the p-v-T relation of a mixture are provided by empirical mixture
rules. Several are found in the engineering literature. According to the additive pressure rule, the pressure
of a gas mixture is expressible as a sum of pressures exerted by the individual components:

(1.47a)

where the pressures p1, p2, etc. are evaluated by considering the respective components to be at the
volume V and temperature T of the mixture. The additive pressure rule can be expressed alternatively as

(1.47b)

where Z is the compressibility factor of the mixture and the compressibility factors Zi are determined
assuming that component i occupies the entire volume of the mixture at the temperature T.

The additive volume rule postulates that the volume V of a gas mixture is expressible as the sum of
volumes occupied by the individual components:

(1.48a)

where the volumes V1, V2, etc. are evaluated by considering the respective components to be at the
pressure p and temperature T of the mixture. The additive volume rule can be expressed alternatively as

(1.48b)

where the compressibility factors Zi are determined assuming that component i exists at the pressure p
and temperature T of the mixture.

Evaluating ∆h, ∆u, and ∆s

Using appropriate specific heat and p-v-T data, the changes in specific enthalpy, internal energy, and
entropy can be determined between states of single-phase regions. Table 1.5 provides expressions for
such property changes in terms of particular choices of the independent variables: temperature and
pressure, and temperature and specific volume.
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Taking Equation 1 of Table 1.5 as a representative case, the change in specific enthalpy between states
1 and 2 can be determined using the three steps shown in the accompanying property diagram. This
requires knowledge of the variation of cp with temperature at a fixed pressure p′, and the variation of [v
– T(∂v/∂T)p] with pressure at temperatures T1 and T2:

1-a: Since temperature is constant at T1, the first integral of Equation 1 in Table 1.5 vanishes, and

a-b: Since pressure is constant at p′, the second integral of Equation 1 vanishes, and

b-2: Since temperature is constant at T2, the first integral of Equation 1 vanishes, and

Adding these expressions, the result is h2 – h1. The required integrals may be performed numerically or
analytically. The analytical approach is expedited when an equation of state explicit in specific volume
is known.

Similar considerations apply to Equations 2 to 4 of Table 1.5. To evaluate u2 – u1 with Equation 3,
for example, requires the variation of cv with temperature at a fixed specific volume v′, and the variation
of [T(∂p/∂T)v – p] with specific volume at temperatures T1 and T2. An analytical approach to performing
the integrals is expedited when an equation of state explicit in pressure is known.

As changes in specific enthalpy and internal energy are related through h = u + pv by

(1.49)

only one of h2 – h1 and u2 – u1 need be found by integration. The other can be evaluated from Equation
1.49. The one found by integration depends on the information available: h2 – h1 would be found when
an equation of state explicit in v and cp as a function of temperature at some fixed pressure is known,
u2 – u1 would be found when an equation of state explicit in p and cv as a function of temperature at
some specific volume is known.

Example 6

Obtain Equation 1 of Table 1.4 and Equations 3 and 4 of Table 1.5.

Solution. With Equation 1.33 and the Maxwell relation corresponding to ψ(T, v) from Table 1.2,
Equations 3′ and 4′ of Table 1.5 become, respectively,

Introducing these expressions for du and ds in Equation 1.32a, and collecting terms,
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Since T and v are independent, the coefficients of dT and dv must vanish, giving, respectively,

The first of these corresponds to Equation 1 of Table 1.4 and Equation 4 of Table 1.5. The second of
the above expressions establishes Equation 3 of Table 1.5. With similar considerations, Equation 3 of
Table 1.4 and Equations 1 and 2 of Table 1.5 may be obtained.

Fundamental Thermodynamic Functions

A fundamental thermodynamic function is one that provides a complete description of the thermodynamic
state. The functions u(s, v) , h(s, p) , ψ(T, v), and g(T, p) listed in Table 1.2 are fundamental thermodynamic
functions.

In principle, all properties of interest can be determined from a fundamental thermodynamic function
by differentiation and combination. Taking the function ψ(T, v) as a representative case, the properties
v and T, being the independent variables, are specified to fix the state. The pressure p and specific entropy
s at this state can be determined by differentiation of ψ(T, v), as shown in Table 1.2. By definition, ψ =
u – Ts, so specific internal energy is obtained as

with u, p, and v known, the specific enthalpy can be found from the definition h = u + pv. Similarly,
the specific Gibbs function is found from the definition g = h – Ts. The specific heat cv can be determined
by further differentiation cv = (∂u/∂T)v.

The development of a fundamental function requires the selection of a functional form in terms of
the appropriate pair of independent properties and a set of adjustable coefficients that may number 50
or more. The functional form is specified on the basis of both theoretical and practical considerations.
The coefficients of the fundamental function are determined by requiring that a set of selected property
values and/or observed conditions be statisfied in a least-squares sense. This generally involves property
data requiring the assumed functional form to be differentiated one or more times, for example p-v-T
and specific heat data. When all coefficients have been evaluated, the function is tested for accuracy by
using it to evaluate properties for which accepted values are known such as velocity of sound and Joule-
Thomson data. Once a suitable fundamental function is established, extreme accuracy in and consistency
among the thermodynamic properties are possible. The properties of water tabulated by Keenan et al.
(1969) and by Haar et al. (1984) have been calculated from representations of the Helmholtz function.

Thermodynamic Data Retrieval

Tabular presentations of pressure, specific volume, and temperature are available for practically important
gases and liquids. The tables normally include other properties useful for thermodynamic analyses, such
as internal energy, enthalpy, and entropy. The various steam tables included in the references of this
chapter provide examples. Computer software for retrieving the properties of a wide range of substances
is also available, as, for example, the ASME Steam Tables (1993) and Bornakke and Sonntag (1996).
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Increasingly, textbooks come with computer disks providing thermodynamic property data for water,
certain refrigerants, and several gases modeled as ideal gases — see, e.g., Moran and Shapiro (1996).

The sample steam table data presented in Table 1.6 are representative of data available for substances
commonly encountered in mechanical engineering practice. Table A.5 and Figures 1.7 to 1.9 provide
steam table data for a greater range of states. The form of the tables and figures, and how they are used
are assumed to be familiar. In particular, the use of linear interpolation with such tables is assumed
known. 

Specific internal energy, enthalpy, and entropy data are determined relative to arbitrary datums and
such datums vary from substance to substance. Referring to Table 1.6a, the datum state for the specific
internal energy and specific entropy of water is seen to correspond to saturated liquid water at 0.01°C
(32.02°F), the triple point temperature. The value of each of these properties is set to zero at this state.
If calculations are performed involving only differences in a particular specific property, the datum
cancels. When there are changes in chemical composition during the process, special care should be
exercised. The approach followed when composition changes due to chemical reaction is considered in
Section 1.4.

Liquid water data (see Table 1.6d) suggests that at fixed temperature the variation of specific volume,
internal energy, and entropy with pressure is slight. The variation of specific enthalpy with pressure at
fixed temperature is somewhat greater because pressure is explicit in the definition of enthalpy. This
behavior for v, u, s, and h is exhibited generally by liquid data and provides the basis for the following
set of equations for estimating property data at liquid states from saturated liquid data:

(1.50a)

(1.50b)

(1.50c)

(1.50d)

As before, the subscript f denotes the saturated liquid state at the temperature T, and psat is the corre-
sponding saturation pressure. The underlined term of Equation 1.50c is often negligible, giving h(T, p)
≈ hf (T), which is used in Example 3 to evaluate h1.

In the absence of saturated liquid data, or as an alternative to such data, the incompressible model
can be employed:

(1.51)

This model is also applicable to solids. Since internal energy varies only with temperature, the specific
heat cv is also a function of only temperature: cv(T) = du/dT. Although specific volume is constant,
enthalpy varies with both temperature and pressure, such that

 (1.52)

Differentiation of Equation 1.52 with respect to temperature at fixed pressure gives cp =cv. The common
specific heat is often shown simply as c. Specific heat and density data for several liquids and solids are

v T p v T,( ) ≈ ( )f
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 Temperature Table

Enthalpy (kJ/kg) Entropy (kJ/kg · K)

d
Evap.
(hfg)

Saturated
Vapor

(hg)

Saturated
Liquid

(sf)

Saturated 
Vapor

(sg)

2501.3 2501.4 0.0000 9.1562
2491.9 2508.7 0.0610 9.0514
2489.6 2510.6 0.0761 9.0257
2487.2 2512.4 0.0912 9.0003
2482.5 2516.1 0.1212 8.9501

r): Pressure Table

Enthalpy (kJ/kg) Entropy (kJ/kg · K)

d
Evap.
(hfg)

Saturated
Vapor

(hg)

Saturated
Liquid

(sf)

Saturated
Vapor

(sg)

2432.9 2554.4 0.4226 8.4746
2415.9 2567.4 0.5210 8.3304
2403.1 2577.0 0.5926 8.2287
2392.8 2584.7 0.6493 8.1502
2358.3 2609.7 0.8320 7.9085
ABLE 1.6 Sample Steam Table Data

(a) Properties of Saturated Water (Liquid-Vapor):

Specific Volume (m3/kg) Internal Energy (kJ/kg)

Temp
(°C)

Pressure
(bar)

Saturated
Liquid 

(vf × 103)

Saturated
Vapor

(vg)

Saturated
Liquid

(uf)

Saturated
Vapor

(ug)

Saturate
Liquid

(hf)

.01 0.00611 1.0002 206.136 0.00 2375.3 0.01
4 0.00813 1.0001 157.232 16.77 2380.9 16.78
5 0.00872 1.0001 147.120 20.97 2382.3 20.98
6 0.00935 1.0001 137.734 25.19 2383.6 25.20
8 0.01072 1.0002 120.917 33.59 2386.4 33.60

(b) Properties of Saturated Water (Liquid-Vapo

Specific Volume (m3/kg) Internal Energy (kJ/kg)

Pressure
(bar)

Temp
(°C)

Saturated
Liquid

(vf × 103)

Saturated
Vapor

(vg)

Saturated
Liquid

(uf)

Saturated
Vapor

(ug)

Saturate
Liquid

(hf)

0.04 28.96 1.0040 34.800 121.45 2415.2 121.46
0.06 36.16 1.0064 23.739 151.53 2425.0 151.53
0.08 41.51 1.0084 18.103 173.87 2432.2 173.88
0.10 45.81 1.0102 14.674 191.82 2437.9 191.83
0.20 60.06 1.0172 7.649 251.38 2456.7 251.40
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/kg) u(kJ/kg) h(kJ/kg) s(kJ/kg · K)
p = 0.35 bar = 0.035 MPa (Tsat = 72.69°C)

26 2473.0 2631.4 7.7158
25 2483.7 2645.6 7.7564
63 2542.4 2723.1 7.9644
96 2601.2 2800.6 8.1519
28 2660.4 2878.4 8.3237

id Water

103

kg) u(kJ/kg) h(kJ/kg) s(kJ/kg · K)
p = 50 bar = 5.0 MPa (Tsat = 263.99°C)

95 83.65 88.65 0.2956
68 333.72 338.85 1.0720
68 586.76 592.15 1.7343
30 848.1 853.9 2.3255
59 1147.8 1154.2 2.9202

dynamics, 4th ed. Wiley, New York, as extracted from 
, New York.
TABLE 1.6 Sample Steam Table Data (continued)

(c) Properties of Superheated Wat

T(°C) v(m3/kg) u(kJ/kg) h(kJ/kg) s(kJ/kg · K) v(m3

p = 0.06 bar = 0.006 MPa (Tsat 36.16°C)

Sat. 23.739 2425.0 2567.4 8.3304 4.5
80 27.132 2487.3 2650.1 8.5804 4.6

120 30.219 2544.7 2726.0 8.7840 5.1
160 33.302 2602.7 2802.5 8.9693 5.6
200 36.383 2661.4 2879.7 9.1398 6.2

(d) Properties of Compressed Liqu

T(°C)
v × 103

(m3/kg) u(kJ/kg) h(kJ/kg) s(kJ/kg · K)
v × 
(m3/

p = 25 bar = 2.5 MPa (Tsat 223.99°C)

20 1.0006 83.80 86.30 0.2961 0.99
80 1.0280 334.29 336.86 1.0737 1.02

140 1.0784 587.82 590.52 1.7369 1.07
200 1.1555 849.9 852.8 2.3294 1.15
Sat. 1.1973 959.1 962.1 2.5546 1.28

 Source: Moran, M.J. and Shapiro, H.N. 2000. Fundamentals of Engineering Thermo
Keenan, J. H., Keyes, F.G., Hill, P.G., and Moore, J.G. 1969. Steam Tables. Wiley



provided in Tables B.2, C.1, and C.2. As the variation of c with temperature is slight, c is frequently
taken as constant.

When the incompressible model is applied. Equation 1.49 takes the form

(1.53)

Also, as Equation 1.32a reduces to du = Tds, and du = c(T)dT, the change in specific entropy is

(1.54)

Ideal Gas Model

Inspection of the generalized compressibility chart, Figure 1.10, shows that when pR is small, and for
many states when TR is large, the value of the compressibility factor Z is close to 1. In other words, for
pressures that are low relative to pc, and for many states with temperatures high relative to Tc, the
compressibility factor approaches a value of 1. Within the indicated limits, it may be assumed with
reasonable accuracy that Z = 1 — that is,

(1.55a)

where R = /M is the specific gas constant. Other forms of this expression in common use are

(1.55b)

Referring to Equation 3′ of Table 1.5, it can be concluded that (∂u/∂v)T vanishes identically for a gas
whose equation of state is exactly given by Equation 1.55, and thus the specific internal energy depends
only on temperature. This conclusion is supported by experimental observations beginning with the work
of Joule, who showed that the internal energy of air at low density depends primarily on temperature.

These considerations allow for an ideal gas model of each real gas: (1) the equation of state is given
by Equation 1.55 and (2) the internal energy and enthalpy are functions of temperature alone. The real
gas approaches the model in the limit of low reduced pressure. At other states the actual behavior may
depart substantially from the predictions of the model. Accordingly, caution should be exercised when
invoking the ideal gas model lest significant error is introduced.

Specific heat data for gases can be obtained by direct measurement. When extrapolated to zero
pressure, ideal gas-specific heats result. Ideal gas-specific heats also can be calculated using molecular
models of matter together with data from spectroscopic measurements. Table A.9 provides ideal gas-
specific heat data for a number of substances. The following ideal gas-specific heat relations are frequently
useful:

(1.56a)

(1.56b)
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where k = cp /cv.
With the ideal gas model, Equations 1 to 4 of Table 1.5 give Equations 1 to 4 of Table 1.7, respectively.

Equation 2 of Table 1.7 can be expressed alternatively using s°(T) defined by

(1.57)

as

(1.58)

Expressions similar in form to Equations 1.56 to 1.68 can be written on a molar basis.

For processes of an ideal gas between states having the same specific entropy, s2 = s1, Equation 1.58
gives

or with pr = exp[s°(T)/R]

(1.59a)

A relation between the specific volume and temperatures for two states of an ideal gas having the same
specific entropy can also be developed:

(1.59b)

TABLE 1.7 Ideal Gas Expressions for ∆h, ∆u, and ∆s

Variable Specific Heats Constant Specific Heats

(1) (1′)

(2) (2′)

(3) (3′)

(4) (4′)

s2 = s1 s2 = s1

(5) (5′)

(6) (6′)
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Equations 1.59 are listed in Table 1.7 as Equations 5 and 6, respectively.
Table A.8 provides a tabular display of h, u, s°, pr , and vr vs. temperature for air as an ideal gas.

Tabulations of and s° for several other common gases are provided in Table A.2. Property retrieval
software also provides such data; see, e.g., Moran and Shapiro (2000). The use of data from Table A.8
for the nozzle of Example 2 is illustrated in Example 7.

When the ideal gas-specific heats are assumed constant, Equations 1 to 6 of Table 1.7 become
Equations 1′ tο 6′, respectively. The specific heat cp is taken as constant in Example 2.

Example 7

Using data from Table A.8, evaluate the exit velocity for the nozzle of Example 2 and compare with the
exit velocity for an isentropic expansion to 15 lbf/in.2.

Solution. The exit velocity is given by Equation 1.27f

At 960 and 520°R, Table A.8 gives, respectively, hi = 231.06 Btu/lb and he = 124.27 Btu/lb. Then

Using Equation 1.59a and pr data from Table A.8, the specific enthalpy at the exit for an isentropic
expansion is found as follows:

Interpolating with pr data, he = 119.54 Btu/lb. With this, the exit velocity is 2363.1 ft/sec. The actual
exit velocity is about 2% less than the velocity for an isentropic expansion, the maximum theoretical
value. In this particular application, there is good agreement in each case between velocities calculated
using Table A.8 data and, as in Example 2, assuming cp constant. Such agreement cannot be expected
generally, however. See, for example, the Brayton cycle data of Table 1.15.

Polytropic Processes

An internally reversible process described by the expression pvn = constant is called a polytropic process
and n is the polytropic exponent. Although this expression can be applied with real gas data, it most
generally appears in practice together with the use of the ideal gas model. Table 1.8 provides several
expressions applicable to polytropic processes and the special forms they take when the ideal gas model
is assumed. The expressions for ∫pdv and ∫vdp have application to work evaluations with Equations 1.10
and 1.30, respectively. In some applications it may be appropriate to determine n by fitting pressure-
specific volume data.

Example 8 illustrates both the polytropic process and the reduction in the compressor work achievable
by cooling a gas as it is compressed.

Example 8

A compressor operates at steady state with air entering at 1 bar, 20°C and exiting at 5 bar. (a) If the air
undergoes a polytropic process with n = 1.3, determine the work and heat transfer, each in kJ/kg of air
flowing. Repeat for (b) an isothermal compression and (c) an isentropic compression.
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TABLE 1.8 Polytropic Processes: pvn = Constanta

General Ideal Gasb

(1) (1′)

n = 0: constant pressure n = 0: constant pressure
n = ±∞: constant specific volume n = ±∞: constant specific volume

n = 1: constant temperature
n = k: constant specific entropy when k is constant

n = 1 n = 1

(2) (2′)

(3) (3′)

n ≠ 1 n ≠ 1

(4) (4′)

(5) (5′)

a For polytropic processes of closed systems where volume change is the only work mode, Equations 2, 4, and 2′, 4′
are applicable with Equation 1.10 to evaluate the work. When each unit of mass passing through a one-inlet, one-
exit control volume at steady state undergoes a polytropic process, Equations 3, 5, and 3′, 5′ are applicable with

Equations 1.30a and 1.30b to evaluate the power. Also note that generally, 
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Solution. Using Equation 5′ of Table 1.8 together with Equation 1.30b,

(The area behind process 1-2 of Figure 1.11, area 1-2-a-b, represents the magnitude of the work required,
per unit mass of air flowing.) Also, Equation 1′ of Table 1.8 gives T2 = 425 K.

An energy rate balance at steady state and enthalpy data from Table A.8 gives

(b) Using Equation 3′ of Table 1.8 together with Equation 1.30b,

FIGURE 1.11 Internally reversible compression processes.
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Area 1-2′-a-b on Figure 1.11 represents the magnitude of the work required, per unit of mass of air
flowing. An energy balance reduces to give  = –135.3 kJ/kg. (c) For an isentropic
compression, = 0 and an energy rate balance reduces to give  = –(h2s – h1), where 2s denotes
the exit state. With Equation 1.59a and pr data, h2s = 464.8 kJ/kg (T2s = 463K). Then  = –(464.8
– 293.2) = –171.6 kJ/kg. Area 1-2s-a-b on Figure 1.11 represents the magnitude of the work required,
per unit of mass of air flowing.

Ideal Gas Mixtures

When applied to an ideal gas mixture, the additive pressure rule (Section 1.3, p-v-T Relations) is known
as the Dalton model. According to this model, each gas in the mixture acts as if it exists separately at
the volume and temperature of the mixture. Applying the ideal gas equation of state to the mixture as
a whole and to each component i, pV =  piV =  where pi, the partial pressure of component
i, is the pressure that component i would exert if ni moles occupied the full volume V at the temperature
T. Forming a ratio, the partial pressure of component i is

(1.60)

where yi is the mole fraction of component i. The sum of the partial pressures equals the mixture pressure.
The internal energy, enthalpy, and entropy of the mixture can be determined as the sum of the respective

properties of the component gases, provided that the contribution from each gas is evaluated at the
condition at which the gas exists in the mixture. On a molar basis,

(1.61a)

(1.61b)

(1.61c)

The specific heats and for an ideal gas mixture in terms of the corresponding specific heats of the
components are expressed similarly:

(1.61d)
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(1.61e)

When working on a mass basis, expressions similar in form to Equations 1.61 can be written using mass
and mass fractions in place of moles and mole fractions, respectively, and using u, h, s, cp, and cv in
place of  and , respectively.

The internal energy and enthalpy of an ideal gas depend only on temperature, and thus the  and
 terms appearing in Equations 1.61 are evaluated at the temperature of the mixture. Since entropy

depends on two independent properties, the  terms are evaluated either at the temperature and the
partial pressure pi of component i, or at the temperature and volume of the mixture. In the former case

(1.62)

Inserting the expressions for H and S given by Equations 1.61b and 1.61c into the Gibbs function,
G = H – TS,

(1.63)

where the molar-specific Gibbs function of component i is gi(T, pi) = hi(T) – Tsi(T, pi). The Gibbs function
of i can be expressed alternatively as

(1.64)

were p′ is some specified pressure. Equation 1.64 is obtained by integrating Equation 1.32d at fixed
temperature T from pressure p′ to pi.

Moist Air

An ideal gas mixture of particular interest for many practical applications is moist air. Moist air refers
to a mixture of dry air and water vapor in which the dry air is treated as if it were a pure component.
Ideal gas mixture principles usually apply to moist air. In particular, the Dalton model is applicable, and
so the mixture pressure p is the sum of the partial pressures pa and pv of the dry air and water vapor,
respectively.

Saturated air is a mixture of dry air and saturated water vapor. For saturated air, the partial pressure
of the water vapor equals psat(T), which is the saturation pressure of water corresponding to the dry-bulb
(mixture) temperature T. The makeup of moist air can be described in terms of the humidity ratio (specific
humidity) and the relative humidity. The bulb of a wet-bulb thermometer is covered with a wick saturated
with liquid water, and the wet-bulb temperature of an air-water vapor mixture is the temperature indicated
by such a thermometer exposed to the mixture.
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When a sample of moist air is cooled at constant pressure, the temperature at which the sample
becomes saturated is called the dew point temperature. Cooling below the dew point temperature results
in the condensation of some of the water vapor initially present. When cooled to a final equilibrium
state at a temperature below the dew point temperature, the original sample would consist of a gas phase
of dry air and saturated water vapor in equilibrium with a liquid water phase.

Psychrometric charts are plotted with various moist air parameters, including the dry-bulb and wet-
bulb temperatures, the humidity ratio, and the relative humidity, usually for a specified value of the
mixture pressure such as 1 atm.

Generalized Charts for Enthalpy, Entropy, and Fugacity

The changes in enthalpy and entropy between two states can be determined in principle by correcting
the respective property change determined using the ideal gas model. The corrections can be obtained,
at least approximately, by inspection of the generalized enthalpy correction and entropy correction charts,
Figures 1.12 and 1.13, respectively. Such data are also available in tabular form (see, e.g., Reid and
Sherwood, 1966) and calculable using a generalized equation for the compressibility factor (Reynolds,
1979). Using the superscript * to identify ideal gas property values, the changes in specific enthalpy and
specific entropy between states 1 and 2 are

(1.65a)

(1.65b)

The first underlined term on the right side of each expression represents the respective property change
assuming ideal gas behavior. The second underlined term is the correction that must be applied to the
ideal gas value to obtain the actual value. The quantities  and  at state 1 would
be read from the respective correction chart or table or calculated, using the reduced temperature TR1

and reduced pressure pR1 corresponding to the temperature T1 and pressure p1 at state 1, respectively.
Similarly,  and  at state 2 would be obtained using TR2 and pR2. Mixture values
for Tc and pc determined by applying Kay’s rule or some other mixture rule also can be used to enter
the generalized enthalpy correction and entropy correction charts.

Figure 1.14 gives the fugacity coefficient, f/p, as a function of reduced pressure and reduced temper-
ature. The fugacity f plays a similar role in determining the specific Gibbs function for a real gas as
pressure plays for the ideal gas. To develop this, consider the variation of the specific Gibbs function
with pressure at fixed temperature (from Table 1.2)

For an ideal gas, integration at fixed temperature gives

where C(T) is a function of integration. To evaluate g for a real gas, fugacity replaces pressure,
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In terms of the fugacity coefficient the departure of the real gas value from the ideal gas value at fixed
temperature is then

FIGURE 1.12 Generalized enthalpy correction chart. (Source: Adapted from Van Wylen, G. J. and Sonntag, R. E.
1986. Fundamentals of Classical Thermodynamics, 3rd ed., English/SI. Wiley, New York.)

g RT f C T= + ( )ln
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(1.66)

As pressure is reduced at fixed temperature, f/p tends to unity, and the specific Gibbs function is given
by the ideal gas value.

FIGURE 1.13 Generalized entropy correction chart. (Source: Adapted from Van Wylen, G. J. and Sonntag, R. E.
1986. Fundamentals of Classical Thermodynamics, 3rd ed., English/SI. Wiley, New York.)
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Multicomponent Systems

In this section are presented some general aspects of the properties of multicomponent systems consisting
of nonreacting mixtures. For a single phase multicomponent system consisting of j components, an
extensive property X may be regarded as a function of temperature, pressure, and the number of moles
of each component present in the mixture: X = X(T, p, n1, n2, … nj). Since X is mathematically
homogeneous of degree one in the n’s, the function is expressible as

FIGURE 1.14 Generalized fugacity coefficient chart. (Source: Van Wylen, G. J. and Sonntag, R. E. 1986. Funda-
mentals of Classical Thermodynamics, 3rd ed., English/SI. Wiley, New York.)
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(1.67)

where the partial molar property  is by definition

(1.68)

and the subscript n� denotes that all n’s except ni are held fixed during differentiation. As  depends
in general on temperature, pressure, and mixture composition: (T, p, n1, n2, … nj), the partial molal
property  is an intensive property of the mixture and not simply a property of the ith component.

Selecting the extensive property X to be volume, internal energy, enthalpy, entropy, and the Gibbs
function, respectively, gives

(1.69)

where  and  denote the respective partial molal properties.
When pure components, each initially at the same temperature and pressure, are mixed, the changes

in volume, internal energy, enthalpy, and entropy on mixing are given by

(1.70a)

(1.70b)

(1.70c)

(1.70d)

where  and  denote the molar-specific volume, internal energy, enthalpy, and entropy of
pure component i.

Chemical Potential

The partial molal Gibbs function of the ith component of a multicomponent system is the chemical
potential, µi,
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(1.71)

Like temperature and pressure, the chemical potential, µi is an intensive property.
When written in terms of chemical potentials, Equation 1.67 for the Gibbs function reads

(1.72)

For a single component sysrem, Equation 1.72 reduces to G = nµ; that is, the chemical potential equals
the molar Gibbs function. For an ideal gas mixture, comparison of Equations 1.63 and 1.72 suggests µi

= (T, pi); that is, the chemical potential of component i in an ideal gas mixture equals its Gibbs
function per mole of gas i evaluated at the mixture temperature and the partial pressure of the ith gas
of the mixture.

The chemical potential is a measure of the escaping tendency of a substance in a multiphase system:
a substance tends to move from the phase having the higher chemical potential for that substance to the
phase having a lower chemical potential. A necessary condition for phase equilibrium is that the chemical
potential of each component has the same value in every phase.

The Gibbs phase rule gives the number F of independent intensive properties that may be arbitrarily
specified to fix the intensive state of a system at equilibrium consisting of N nonreacting components
present in P phases: F = 2 + N – P. F is called the degrees of freedom (or the variance). For water as
a single component, for example, N = 1 and F = 3 – P.

• For a single phase, P = 1 and F = 2: two intensive properties can be varied independently, say
temperature and pressure, while maintaining a single phase.

• For two phases, P = 2 and F = 1: only one intensive property can be varied independently if two
phases are maintained — for example, temperature or pressure.

• For three phases, P = 3 and F = 0: there are no degrees of freedom; each intensive property of
each phase is fixed. For a system consisting of ice, liquid water, and water vapor at equilibrium,
there is a unique temperature: 0.01°C (32.02°F) and a unique pressure: 0.6113 kPa (0.006 atm).

The phase rule does not address the relative amounts that may be present in the various phases.
With G = H – TS and H = U + pV, Equation 1.72 can be expressed as

(1.73)

from which can be derived

(1.74)

When the mixture composition is constant, Equation 1.74 reduces to Equation 1.31a.

Ideal Solution

The Lewis-Randall rule states that the fugacity  of each component i in an ideal solution is the product
of its mole fraction and the fugacity of the pure component, fi, at the same temperature, pressure, and
state of aggregation (gas, liquid, or solid) as the mixture:
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(1.75)

The following characteristics are exhibited by an ideal solution:  With these,
Equations 1.70a, b, and c show that there is no change in volume, internal energy, or enthalpy on mixing
pure components to form an ideal solution. The adiabatic mixing of different pure components would
result in an increase in entropy, however, because such a process is irreversible.

The volume of an ideal solution is

(1.76)

where Vi is the volume that pure component i would occupy when at the temperature and pressure of
the mixture. Comparing Equations 1.48a and 1.76, the additive volume rule is seen to be exact for ideal
solutions. The internal energy and enthalpy of an ideal solution are

(1.77)

where  and  denote, respectively, the molar internal energy and enthalpy of pure component i at
the temperature and pressure of the mixture. Many gaseous mixtures at low to moderate pressures are
adequately modeled by the Lewis Randall rule. The ideal gas mixtures considered in Section 1.3, Ideal
Gas Model, is an important special case. Some liquid solutions also can be modeled with the Lewis-
Randall rule.

f y fi i i= ( )Lewis-Randall rule

V v U u H hi i i i i i= = =, , .

V n v Vi i

i

j

i

i

j

= = ( )
= =
∑ ∑

1 1

ideal solution

U n u H n hi i

i

j

i i

i

j

= = ( )
= =
∑ ∑,

1 1

ideal solution

ui hi
© 2000 by CRC Press LLC



1.4 Combustion

The thermodynamic analysis of reactive systems is primarily an extension of principles presented in
Sections 1.1 to 1.3. It is necessary, though, to modify the methods used to evaluate specific enthalpy
and entropy.

Reaction Equations

In combustion reactions, rapid oxidation of combustible elements of the fuel results in energy release
as combustion products are formed. The three major combustible chemical elements in most common
fuels are carbon, hydrogen, and sulfur. Although sulfur is usually a relatively unimportant contributor
to the energy released, it can be a significant cause of pollution and corrosion.

The emphasis in this section is on hydrocarbon fuels, which contain hydrogen, carbon, sulfur, and
possibly other chemical substances. Hydrocarbon fuels may be liquids, gases, or solids such as coal.
Liquid hydrocarbon fuels are commonly derived from crude oil through distillation and cracking pro-
cesses. Examples are gasoline, diesel fuel, kerosene, and other types of fuel oils. The compositions of
liquid fuels are commonly given in terms of mass fractions. For simplicity in combustion calculations,
gasoline is often considered to be octane, C8H18, and diesel fuel is considered to be dodecane, C12H26.
Gaseous hydrocarbon fuels are obtained from natural gas wells or are produced in certain chemical
processes. Natural gas normally consists of several different hydrocarbons, with the major constituent
being methane, CH4. The compositions of gaseous fuels are commonly given in terms of mole fractions.
Both gaseous and liquid hydrocarbon fuels can be synthesized from coal, oil shale, and tar sands. The
composition of coal varies considerably with the location from which it is mined. For combustion
calculations, the makeup of coal is usually expressed as an ultimate analysis giving the composition on
a mass basis in terms of the relative amounts of chemical elements (carbon, sulfur, hydrogen, nitrogen,
oxygen) and ash.

A fuel is said to have burned completely if all of the carbon present in the fuel is burned to carbon
dioxide, all of the hydrogen is burned to water, and all of the sulfur is burned to sulfur dioxide. In
practice, these conditions are usually not fulfilled and combustion is incomplete. The presence of carbon
monoxide (CO) in the products indicates incomplete combustion. The products of combustion of actual
combustion reactions and the relative amounts of the products can be determined with certainty only by
experimental means. Among several devices for the experimental determination of the composition of
products of combustion are the Orsat analyzer, gas chromatograph, infrared analyzer, and flame ion-
ization detector. Data from these devices can be used to determine the makeup of the gaseous products
of combustion. Analyses are frequently reported on a “dry” basis: mole fractions are determined for all
gaseous products as if no water vapor were present. Some experimental procedures give an analysis
including the water vapor, however.

Since water is formed when hydrocarbon fuels are burned, the mole fraction of water vapor in the
gaseous products of combustion can be significant. If the gaseous products of combustion are cooled at
constant mixture pressure, the dew point temperature (Section 1.3, Ideal Gas Model) is reached when
water vapor begins to condense. Corrosion of duct work, mufflers, and other metal parts can occur when
water vapor in the combustion products condenses.

Oxygen is required in every combustion reaction. Pure oxygen is used only in special applications
such as cutting and welding. In most combustion applications, air provides the needed oxygen. Ideali-
zations are often used in combustion calculations involving air: (1) all components of air other than
oxygen (O2) are lumped with nitrogen (N2). On a molar basis air is then considered to be 21% oxygen
and 79% nitrogen. With this idealization the molar ratio of the nitrogen to the oxygen in combustion
air is 3.76; (2) the water vapor present in air may be considered in writing the combustion equation or
ignored. In the latter case the combustion air is regarded as dry; (3) additional simplicity results by
regarding the nitrogen present in the combustion air as inert. However, if high-enough temperatures are
attained, nitrogen can form compounds, often termed NOX, such as nitric oxide and nitrogen dioxide.
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Even trace amounts of oxides of nitrogen appearing in the exhaust of internal combustion engines can
be a source of air pollution.

The minimum amount of air that supplies sufficient oxygen for the complete combustion of all the
combustible chemical elements is the theoretical, or stoichiometic, amount of air. In practice, the amount
of air actually supplied may be greater than or less than the theoretical amount, depending on the
application. The amount of air is commonly expressed as the percent of theoretical air or the percent
excess (or percent deficiency) of air. The air-fuel ratio and its reciprocal the fuel-air ratio, each of which
can be expressed on a mass or molar basis, are other ways that fuel-air mixtures are described. Another
is the equivalence ratio: the ratio of the actual fuel-air ratio to the fuel-air ratio for complete combustion
with the theoretical amount of air. The reactants form a lean mixture when the equivalence ratio is less
than unity and a rich mixture when the ratio is greater than unity.

Example 9

Methane, CH4, is burned with dry air. The molar analysis of the products on a dry basis is CO2, 9.7%;
CO, 0.5%; O2, 2.95%; and N2, 86.85%. Determine (a) the air-fuel ratio on both a molar and a mass
basis, (b) the percent of theoretical air, (c) the equivalence ratio, and (d) the dew point temperature of
the products, in °F, if the pressure is 1 atm.

Solution.
(a) The solution is conveniently conducted on the basis of 100 lbmol of dry products. The chemical

equation then reads

where N2 is regarded as inert. Water is included in the products together with the assumed 100
lbmol of dry products. Balancing the carbon, hydrogen, and oxygen, the reaction equation is

The nitrogen also balances, as can be verified. This checks the accuracy of both the given product
analysis and the calculations conducted to determine the unknown coefficients. Exact closure
cannot be expected with measured data, however. On a molar basis, the air-fuel ratio is

On a mass basis

(b) The balanced chemical equation for the complete combustion of methane with the theoretical
amount of air is

The theoretical air-fuel ratio on a molar basis is

a b cCH O N CO CO O N H O4 2 2 2 2 2 2+ +( ) → + + + +3 76 9 7 0 5 2 95 86 85. . . . .

10 2 23 1 3 76 9 7 0 5 2 95 86 85 20 4. . . . . . . .CH O N CO CO O N H O4 2 2 2 2 2 2+ +( ) → + + + +
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2 4 76

1
9 52

.
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The percent theoretical air is then

(c) Equivalence ratio = = 9.52/10.78 = 0.88. The reactants form a lean mixture.
(d) To determine the dew point temperature requires the partial pressure pv of the water vapor. The

mole fraction of the water vapor is

Since p = 1 atm, pv = 0.169 atm = 2.48 lbf/in.2. With psat = 2.48 lbf/in.2, the corresponding
saturation temperature from the steam tables is 134°F. This is the dew point temperature.

Property Data for Reactive Systems

Tables of thermodynamic properties such as the steam tables provide values for the specific enthalpy
and entropy relative to some arbitrary datum state where the enthalpy (or alternatively the internal energy)
and entropy are set to zero. When a chemical reaction occurs, however, reactants disappear and products
are formed, and it is generally no longer possible to evaluate  and  so that these arbitrary datums
cancel. Accordingly, special means are required to assign specific enthalpy and entropy for application
to reacting systems.

Property data suited for the analysis of reactive systems are available from several sources. The
encyclopedic JANAF Thermochemical Tables is commonly used. Data for a wide range of substances
are retrievable from Knacke et al. (1991), which provides both tabular data and analytical expressions
readily programmable for use with personal computers of the specific heat, enthalpy, entropy, and Gibbs
function. Textbooks on engineering thermodynamics also provide selected data, as, for example, Moran
and Shapiro (2000).

Enthalpy of Formation

An enthalpy datum for reacting systems can be established by assigning arbitrarily a value of zero to
the enthalpy of the stable elements at a standard reference state where the temperature is Tref = 298.15
K (25°C) and the pressure is pref , which may be 1 bar or 1 atm depending on the data source. The term
stable simply means that the particular element is chemically stable. For example, at the standard state
the stable forms of hydrogen, oxygen, and nitrogen are H2, O2, and N2 and not the monatomic H, O, and N.

The molar enthalpy of a compound at the standard state equals its enthalpy of formation, symbolized
here by  The enthalpy of formation is the energy released or absorbed when the compound is formed
from its elements, the compound and elements all being at Tref and pref . The enthalpy of formation may
be determined by application of procedures from statistical thermodynamics using observed spectro-
scopic data. The enthalpy of formation also can be found in principle by measuring the heat transfer in
a reaction in which the compound is formed from the elements. In this chapter, the superscript ° is used
to denote pref . For the case of the enthalpy of formation, the reference temperature Tref is also intended
by this symbol. Table 1.9 gives the values of the enthalpy of formation of various substances at 298 K
and 1 atm.

The molar enthalpy of a substance at a state other than the standard state is found by adding the molar
enthalpy change  between the standard state and the state of interest to the molar enthalpy of
formation:
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(1.78)

That is, the enthalpy of a substance is composed of  associated with the formation of the substance
from its elements, and  associated with a change of state at constant composition. An arbitrarily
chosen datum can be used to determine  since it is a difference at constant composition. Accordingly,

 can be evaluated from sources such as the steam tables and the ideal gas tables.
The enthalpy of combustion,  is the difference between the enthalpy of the products and the

enthalpy of the reactants, each on a per-mole-of-fuel basis, when complete combustion occurs and both
reactants and products are at the same temperature and pressure. For hydrocarbon fuels the enthalpy of
combustion is negative in value since chemical internal energy is liberated in the reaction. The heating
value of a fuel is a positive number equal to the magnitude of the enthalpy of combustion. Two heating
values are recognized: the higher heating value and the lower heating value. The higher heating value

TABLE 1.9 Enthalpy of Formation, Gibbs Function of 
Formation, and Absolute Entropy of Various Substances at 298 
K and 1 atm

and (kJ/kmol), (kJ/kmol•K)

Substance Formula   

Carbon C(s) 0 0 5.74
Hydrogen H2(g) 0 0 130.57
Nitrogen N2(g) 0 0 191.50
Oxygen O2(g) 0 0 205.03
Carbon monoxide CO(g) –110,530 –137,150 197.54
Carbon dioxide CO2(g) –393,520 –394,380 213.69
Water H2O(g) –241,820 –228,590 188.72

H2O(l) –285,830 –237,180 69.95
Hydrogen peroxide H2O2(g) –136,310 –105,600 232.63
Ammonia NH3(g) –46,190 –16,590 192.33
Oxygen O(g) 249,170 231,770 160.95
Hydrogen H(g) 218,000 203,290 114.61
Nitrogen N(g) 472,680 455,510 153.19
Hydroxyl OH(g) 39,460 34,280 183.75
Methane CH4(g) –74,850 –50,790 186.16
Acetylene C2H2(g) 226,730 209,170 200.85
Ethylene C2H4(g) 52,280 68,120 219.83
Ethane C2H6(g) –84,680 –32,890 229.49
Propylene C3H6(g) 20,410 62,720 266.94
Propane C3H8(g) –103,850 –23,490 269.91
Butane C4H10(g) –126,150 –15,710 310.03
Pentane C5H12(g) –146,440 –8,200 348.40
Octane C8H18(g) –208,450 17,320 463.67

C8H18(l) –249,910 6,610 360.79
Benzene C6H6(g) 82,930 129,660 269.20
Methyl alcohol CH3OH(g) –200,890 –162,140 239.70

CH3OH(l) –238,810 –166,290 126.80
Ethyl alcohol C2H5OH(g) –235,310 –168,570 282.59

C2H5OH(l) –277,690 174,890 160.70

Source: Adapted from Wark, K. 1983. Thermodynamics, 4th ed.
McGraw-Hill, New York, as based on JANAF Thermochemical Tables,
NSRDS-NBS-37, 1971; Selected Values of Chemical Thermodynamic
Properties, NBS Tech. Note 270-3, 1968; and API Research Project 44,
Carnegie Press, 1953. 
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is obtained when all the water formed by combustion is a liquid; the lower heating value is obtained
when all the water formed by combustion is a vapor. The higher heating value exceeds the lower heating
value by the energy that would be required to vaporize the liquid water formed at the specified temper-
ature. Heating values are typically reported at a temperature of 25°C (77°F) and a pressure of 1 bar (or
1 atm). These values also depend on whether the fuel is a liquid or a gas. A sampling is provided on a
unit-mass-of-fuel basis in Table 1.10.

In the absence of work  and appreciable kinetic and potential energy effects, the energy liberated
on combustion is transferred from a reactor at steady state in two ways: the energy accompanying the
exiting combustion products and by heat transfer. The temperature that would be achieved by the products
in the limit of adiabatic operation is the adiabatic flame or adiabatic combustion temperature.

For a specified fuel and specified temperature and pressure of the reactants, the maximum adiabatic
flame temperature is realized for complete combustion with the theoretical amount of air. Example 10
provides an illustration. The measured value of the temperature of the combustion products may be
several hundred degrees below the calculated maxunum adiabatic flame temperature, however, for several
reasons including the following: (1) heat loss can be reduced but not eliminated; (2) once adequate
oxygen has been provided to permit complete combustion, bringing in more air dilutes the combustion
products, lowering the temperature; (3) incomplete combustion tends to reduce the temperature of the
products, and combustion is seldom complete; (4) as result of the high temperatures achieved, some of
the combustion products may dissociate. Endothermic dissociation reactions also lower the product
temperature.

Absolute Entropy

A common datum for assigning entropy values to substances involved in chemical reactions is realized
through the third law of thermodynamics, which is based on experimental observations obtained primarily
from studies of chemical reactions at low temperatures and specific heat measurements at temperatures
approaching absolute zero. The third law states that the entropy of a pure crystalline substance is zero
at the absolute zero of temperature, 0 K or 0°R. Substances not having a pure crystalline structure have
a nonzero value of entropy at absolute zero.

The third law provides a datum relative to which the entropy of each substance participating in a
reaction can be evaluated. The entropy relative to this datum is called the absolute entropy. The change
in entropy of a substance between absolute zero and any given state can be determined from measure-
ments of energy transfers and specific heat data or from procedures based on statistical thermodynamics
and observed molecular data. Table 1.9 and Tables A.2 and A.8 provide absolute entropy data for various
substances. In these tables, pref =1 atm.

When the absolute entropy is known at pressure pref and temperature T, the absolute entropy at the
same temperature and any pressure p can be found from

TABLE 1.10 Heating Values in kJ/kg of Selected Hydrocarbons at 25°C

Higher Valuea Lower Valueb

Hydrocarbon Formula Liquid Fuel Gas. Fuel Liquid Fuel Gas. Fuel

Methane CH4 — 55,496 — 50,010
Ethane C2H6 — 51,875 — 47,484
Propane C3H8 49,973 50,343 45,982 46,352
n-Butane C4H10 49,130 49,500 45,344 45,714
n-Octane C8H18 47,893 48,256 44,425 44,788
n-Dodecane C12H26 47,470 47,828 44,109 44,467
Methanol CH3OH 22,657 23,840 19,910 21,093
Ethanol C3H5OH 29,676 30,596 26,811 27,731

a H2O liquid in the products.
b H2O vapor in the products. 

Ẇcv
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(1.79)

For an ideal gas, the second term on the right side of Equation 1.79 can be evaluated by using Equation
1.58, giving

(1.80)

In this expression, (T) denotes the absolute entropy at temperature T and pressure pref .
The entropy of the ith component of an ideal gas mixture is evaluated at the mixture temperature T

and the partial pressure pi: (T, pi). For the ith component, Equation 1.80 takes the form

(1.81)

where (T) is the absolute entropy of component i at temperature T and pref .

Example 10

Liquid octane at 25°C, 1 atm enters a well insulated reactor and reacts with dry air entering at the same
temperature and pressure. For steady-state operation and negligible effects of kinetic and potential energy,
determine the temperature of the combustion products for complete combustion with the theoretical
amount of air, and (b) the rates of entropy generation and exergy destruction, each per kmol of fuel.

Solution. For combustion of liquid octane with the theoretical amount of air, the chemical equation is

(a) At steady state, the control volume energy rate balance reduces to read

where R denotes reactants, P denotes products, and the symbols for enthalpy have the same
significance as in Equation 1.78. Since the reactants enter at 25°C, the corresponding  terms
vanish, and the energy rate equation becomes

Introducing coefficients from the reaction equation, this takes the form
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Using data from Table 1.9 to evaluate the right side,

Each  term on the left side of this equation depends on the temperature of the products, Tp,
which can be solved for iteratively as Tp = 2395 K.

(b) The entropy rate balance on a per-mole-of-fuel basis takes the form

or on rearrangement,

The absolute entropy of liquid octane from Table 1.9 is 360.79 kJ/mol · K. The oxygen and
nitrogen in the combustion air enter the reactor as components of an ideal gas mixture at Tref ,
pref . With Equation 1.81, where p = pref , and absolute entropy data from Table 1.9,

The product gas exits as a gas mixture at 1 atm, 2395 K with the following composition: 
= 8/64 = 0.125,  = 9/64 = 0.1406,  = 47/64 = 0.7344. With Equation 1.81, where p
= pref , and absolute entropy data at 2395 K from Table A.2,

Inserting values, the rate of entropy generation is

Using Equation 1.87 and assuming T0 = 298 K, the rate of exergy destruction is  = 1.61
× 106 kJ/kmol.
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Gibbs Function of Formation

Paralleling the approach used for enthalpy, a value of zero is assigned to the Gibbs function of each
stable element at the standard state. The Gibbs function of formation of a compound equals the change
in the Gibbs function for the reaction in which the compound is formed from its elements. Table 1.9
provides Gibbs function of formation data of various substances at 298 K and 1 atm.

The Gibbs function at a state other than the standard state is found by adding to the Gibbs function
of formation the change in the specific Gibbs function  between the standard state and the state of
interest:

(1.82a)

where

(1.82b)

The Gibbs function of component i in an ideal gas mixture is evaluated at the partial pressure of
component i and the mixture temperature.

As an application, the maximum theoretical work that can be developed, per mole of fuel consumed,
is evaluated for the control volume of Figure 1.15, where the fuel and oxygen each enter in separate
streams and carbon dioxide and water each exit separately. All entering and exiting streams are at the
same temperature T and pressure p. The reaction is complete:

This control volume is similar to idealized devices such as a reversible fuel cell or a van’t Hoff equilibrium
box.

For steady-state operation, the energy rate balance reduces to give

FIGURE 1.15 Device for evaluating maximum work.
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where  denotes the molar flow rate of the fuel. Kinetic and potential energy effects are regarded as
negligible. If heat transfer occurs only at the temperature T, an entropy balance for the control volume
takes the form

Eliminating the heat transfer term from these expressions, an expression for the maximum theoretical
value of the work developed per mole of fuel is obtained when the entropy generation term is set to zero:

This can be written alternatively in terms of the enthalpy of combustion as

(1.83a)

or in terms of Gibbs functions as

(1.83b)

Equation 1.83b is used in the solution to Example 11.

Example 11

Hydrogen (H2) and oxygen (O2), each at 25°C, 1 atm, enter a fuel cell operating at steady state, and
liquid water exits at the same temperature and pressure. The hydrogen flow rate is 2 × 10–4 kmol/sec
and the fuel cell operates isothermally at 25°C. Determine the maximum theoretical power the cell can
develop, in kW.

Solution. The overall cell reaction is H2 + 1/2 O2 → H2O(�), and Equations 1.83 are applicable. Selecting
Equation 1.83b, and using Gibbs function data from Table 1.9,
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Reaction Equilibrium

Let the objective be to determine the equilibrium composition of a system consisting of five gases A,
B, C, D, and E, at a temperature T and pressure p, subject to a chemical reaction of the form

where the v’s are stoichiometric coefficients. Component E is assumed to be inert and thus does not
appear in the reaction equation. The equation suggests that at equilibrium the tendency of A and B to
form C and D is just balanced by the tendency of C and D to form A and B.

At equilibrium, the temperature and pressure would be uniform throughout the system. Additionally,
the equation of reaction equilibrium must be satisfied:

(1.84a)

where the µ’s are the chemical potentials (Section 1.3, Multicomponent Systems) of A, B, C, and D in
the equilibrium mixture. In principle, the composition that would be present at equilibrium for a given
temperature and pressure can be determined by solving this equation.

For ideal gas mixtures, the solution procedure is simplified by using the equilibrium constant K(T )
and the following equation:

(1.84b)

where yA, yB, yC, and yD denote the mole fractions of A, B, C, and D in the equilibrium mixture and n
= nA + nB + nC + nD + nE, where the n’s denote the molar amounts of the gases in the mixture. Tabulations
of K(T ) for each of several reactions of the form Equation 1.84a are provided in Table 1.11. An application
of Equation 1.84b is provided in Example 12.

Example 12

One kmol of CO reacts with the theoretical amount of dry air to form an equilibrium mixture of CO2,
CO, O2, and N2 at 2500 K, 1 atm. Determine the amount of CO in the equilibrium mixture, in kmol.

Solution. The reaction of CO with the theoretical amount of dry air to form CO2, CO, O2, and N2 is

where z is the amount of CO, in kmol, present in the equilibrium mixture. The total number of moles n is

At equilibrium CO2 ↔ CO + 1/2 O2; and Equation 1.84b takes the form

where p/pref = 1. At 2500 K, Table 1.11 gives K = 0.0363. Solving iteratively, z = 0.175.
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TABLE 1.11 Logarithms to the Base 10 of the Equilibrium Constant K

log10 K

Temp (K) H2 ⇔ 2H O2 ⇔ 2O N2 ⇔ 2N

1/2O2 + 1/2N2 
⇔NO

H2O ⇔
H2 + 1/2O2 

H2Ο ⇔
OH + 1/2H2

CO2 ⇔
CO + 1/2 O2

CO2 + H2 
⇔

CO + H2O
Temp 
(°R)

298 –71.224 –81.208 –159.600 –15.171 –40.048 –46.054 –45.066 –5.018 537
500 –40.316 –45.880 –92.672 –8.783 –22.886 –26.130 –25.025 –2.139 900

1000 –17.292 –19.614 –43.056 –4.062 –10.062 –11.280 –10.221 –0.159 1800
1200 –13.414 –15.208 –34.754 –3.275 –7.899 –8.811 –7.764 +0.135 2160
1400 –10.630 –12.054 –28.812 –2.712 –6.347 –7.021 –6.014 +0.333 2520
1600 –8.532 –9.684 –24.350 –2.290 –5.180 –5.677 –4.706 +0.474 2880
1700 –7.666 –8.706 –22.512 –2.116 –4.699 –5.124 –4.169 +0.530 3060
1800 –6.896 –7.836 –20.874 –1.962 –4.270 –4.613 –3.693 +0.577 3240
1900 –6.204 –7.058 –19.410 –1.823 –3.886 –4.190 –3.267 +0.619 3420
2000 –5.580 –6.356 –18.092 –1.699 –3.540 –3.776 –2.884 +0.656 3600
2100 –5.016 –5.720 –16.898 –1.586 –3.227 –3.434 –2.539 +0.688 3780
2200 –4.502 –5.142 –15.810 –1.484 –2.942 –3.091 –2.226 +0.716 3960
2300 –4.032 –4.614 –14.818 –1.391 –2.682 –2.809 –1.940 +0.742 4140
2400 –3.600 –4.130 –13.908 –1.305 –2.443 –2.520 –1.679 +0.764 4320
2500 –3.202 –3.684 –13.070 –1.227 –2.224 –2.270 –1.440 +0.784 4500
2600 –2.836 –3.272 –12.298 –1.154 –2.021 –2.038 –1.219 +0.802 4680
2700 –2.494 –2.892 –11.580 –1.087 –1.833 –1.823 –1.015 +0.818 4860
2800 –2.178 –2.536 –10.914 –1.025 –1.658 –1.624 –0.825 +0.833 5040
2900 –1.882 –2.206 –10.294 –0.967 –1.495 –1.438 –0.649 +0.846 5220
3000 –1.606 –1.898 –9.716 –0.913 –1.343 –1.265 –0.485 +0.858 5400
3100 –1.348 –1.610 –9.174 –0.863 –1.201 –1.103 –0.332 +0.869 5580
3200 –1.106 –1.340 –8.664 –0.815 –1.067 –0.951 –0.189 +0.878 5760
3300 –0.878 –1.086 –8.186 –0.771 –0.942 –0.809 –0.054 +0.888 5940
3400 –0.664 –0.846 –7.736 –0.729 –0.824 –0.674 +0.071 +0.895 6120
3500 –0.462 –0.620 –7.312 –0.690 –0.712 –0.547 +0.190 +0.902 6300

Source: Based on data from the JANAF Thermochemical Tables, NSRDS-NBS-37, 1971.
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1.5 Exergy Analysis

The method of exergy analysis (availability analysis) presented in this section enables the location,
cause, and true magnitude of energy resource waste and loss to be determined. Such information can
be used in the design of new energy-efficient systems and for improving the performance of existing
systems. Exergy analysis also provides insights that elude a purely first-law approach. For example, on
the basis of first-law reasoning alone, the condenser of a power plant may be mistakenly identified as
the component primarily responsible for the plant’s seemingly low overall performance. An exergy
analysis correctly reveals not only that the condenser loss is relatively unimportant (see the last two
rows of the Rankine cycle values of Table 1.15), but also that the steam generator is the principal site
of thermodynamic inefficiency owing to combustion and heat transfer irreversibilities within it.

When exergy concepts are combined with principles of engineering economy, the result is known
as thermoeconomics or exergoeconomics. Thermoeconomics allows the real cost sources at the com-
ponent level to be identified: capital investment costs, operating and maintenance costs, and the costs
associated with the destruction and loss of exergy. Optimization of thermal systems can be achieved by
a careful consideration of such cost sources. From this perspective thermoeconomics is exergy-aided
cost minimization.

Discussions of exergy analysis and thermoeconomics are provided by Bejan et al. (1996), Moran
(1989), and Moran and Shapiro (2000). In this section salient aspects are presented. Also see Sections 1.8
to 1.10.

Defining Exergy

An opportunity for doing work exists whenever two systems at different states are placed in communi-
cation because, in principle, work can be developed as the two are allowed to come into equilibrium.
When one of the two systems is a suitably idealized system called an environment and the other is some
system of interest, exergy is the maximum theoretical useful work (shaft work or electrical work)
obtainable as the systems interact to equilibrium, heat transfer occurring with the environment only.
(Alternatively, exergy is the minimum theoretical useful work required to form a quantity of matter from
substances present in the environment and to bring the matter to a specified state.) Exergy is a measure
of the departure of the state of the system from that of the environment, and is therefore an attribute of
the system and environment together. Once the environment is specified, however, a value can be assigned
to exergy in terms of property values for the system only, so exergy can be regarded as an extensive
property of the system.

Exergy can be destroyed and generally is not conserved. A limiting case is when exergy would be
completely destroyed, as would occur if a system were to come into equilibrium with the environment
spontaneously with no provision to obtain work. The capability to develop work that existed initially
would be completely wasted in the spontaneous process. Moreover, since no work needs to be done to
effect such a spontaneous change, the value of exergy can never be negative.

Environment

Models with various levels of specificity are employed for describing the environment used to evaluate
exergy. Models of the environment typically refer to some portion of a system’s surroundings, the
intensive properties of each phase of which are uniform and do not change significantly as a result of
any process under consideration. The environment is regarded as composed of common substances
existing in abundance within the Earth’s atmosphere, oceans, and crust. The substances are in their stable
forms as they exist naturally, and there is no possibility of developing work from interactions — physical
or chemical — between parts of the environment. Although the intensive properties of the environment
are assumed to be unchanging, the extensive properties can change as a result of interactions with other
systems. Kinetic and potential energies are evaluated relative to coordinates in the environment, all parts
of which are considered to be at rest with respect to one another.
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For computational ease, the temperature T0 and pressure p0 of the environment are often taken as
standard-state values, such as 1 atm and 25°C (77°F). However, these properties may be specified
differently depending on the application. T0 and p0 might be taken as the average ambient temperature
and pressure, respectively, for the location at which the system under consideration operates. Or, if the
system uses atmospheric air, T0 might be specified as the average air temperature. If both air and water
from the natural surroundings are used, T0 would be specified as the lower of the average temperatures
for air and water.

Dead States

When a system is in equilibrium with the environment, the state of the system is called the dead state.
At the dead state, the conditions of mechanical, thermal, and chemical equilibrium between the system
and the environment are satisfied: the pressure, temperature, and chemical potentials of the system equal
those of the environment, respectively. In addition, the system has no motion or elevation relative to
coordinates in the environment. Under these conditions, there is no possibility of a spontaneous change
within the system or the environment, nor can there be an interaction between them. The value of exergy
is zero.

Another type of equilibrium between the system and environment can be identified. This is a restricted
form of equilibrium where only the conditions of mechanical and thermal equilibrium must be satisfied.
This state of the system is called the restricted dead state. At the restricted dead state, the fixed quantity
of matter under consideration is imagined to be sealed in an envelope impervious to mass flow, at zero
velocity and elevation relative to coordinates in the environment, and at the temperature T0 and pressure p0.

Exergy Balances

Exergy can be transferred by three means: exergy transfer associated with work, exergy transfer associated
with heat transfer, and exergy transfer associated with the matter entering and exiting a control volume.
All such exergy transfers are evaluated relative to the environment used to define exergy. Exergy is also
destroyed by irreversibilities within the system or control volume.

Exergy balances can be written in various forms, depending on whether a closed system or control
volume is under consideration and whether steady-state or transient operation is of interest. Owing to
its importance for a wide range of applications, an exergy rate balance for control volumes at steady
state is presented next.

Control Volume Exergy Rate Balance

At steady state, the control volume exergy rate balance takes the form

(1.85a)

or

(1.85b)
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 has the same significance as in Equation 1.22: the work rate excluding the flow work.  is the
time rate of heat transfer at the location on the boundary of the control volume where the instantaneous
temperature is Tj. The associated rate of exergy transfer is

(1.86)

As for other control volume rate balances, the subscripts i and e denote inlets and outlets, respectively.
The exergy transfer rates at control volume inlets and outlets are denoted, respectively, as and

Finally, accounts for the time rate of exergy destruction due to irreversibilities within
the control volume. The exergy destruction rate is related to the entropy generation rate by

(1.87)

The specific exergy transfer terms ei and ee are expressible in terms of four components: physical
exergy ePH, kinetic exergy eKN, potential exergy ePT, and chemical exergy eCH:

(1.88)

The first three components are evaluated as follows:

(1.89a)

(1.89b)

(1.89c)

In Equation 1.89a, h0 and s0 denote, respectively, the specific enthalpy and specific entropy at the restricted
dead state. In Equations 1.89b and 1.89c, v and z denote velocity and elevation relative to coordinates
in the environment, respectively. The chemical exergy eCH is considered next.

Chemical Exergy

To evaluate the chemical exergy, the exergy component associated with the departure of the chemical
composition of a system from that of the environment, the substances comprising the system are referred
to the properties of a suitably selected set of environmental substances. For this purpose, alternative
models of the environment have been developed. For discussion, see, for example, Moran (1989) and
Kotas (1995).

Exergy analysis is facilitated, however, by employing a standard environment and a corresponding
table of standard chemical exergies. Standard chemical exergies are based on standard values of the
environmental temperature T0 and pressure p0 — for example, 298.15 K (25°C) and 1 atm, respectively.
A standard environment is also regarded as consisting of a set of reference substances with standard
concentrations reflecting as closely as possible the chemical makeup of the natural environment. The
reference substances generally fall into three groups: gaseous components of the atmosphere, solid
substances from the lithosphere, and ionic and noninonic substances from the oceans. The chemical
exergy data of Table 1.12 correspond to two alternative standard exergy reference environments, called
here model I and model II, that have gained acceptance for engineering evaluations.

Although the use of standard chemical exergies greatly facilitates the application of exergy principles,
the term standard is somewhat misleading since there is no one specification of the environment that

Ẇcv Q̇j

˙ ˙
,E

T

T
Qq j

j
j= −









1 0

˙ ˙E m ei i i=
˙ ˙ .E m ee e e= ĖD
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suffices for all applications. Still, chemical exergies calculated relative to alternative specifications of
the environment are generally in good agreement. For a broad range of engineering applications the
simplicity and ease of use of standard chemical exergies generally outweigh any slight lack of accuracy
that might result. In particular, the effect of slight variations in the values of T0 and p0 about the values
used to determine the standard chemical exergies reported in Table 1.12 can be neglected.

The literature of exergy analysis provides several expressions allowing the chemical exergy to be
evaluated in particular cases of interest. The molar chemical exergy of a gas mixture, for example, can
be evaluated from

(1.90)

where is the molar chemical exergy of the ith component.

Example 13

Ignoring the kinetic and potential exergies, determine the exergy rate, in kJ/kg, associated with each of
the following streams of matter:

(a) Saturated water vapor at 20 bar.
(b) Methane at 5 bar, 25°C.

Let T0 = 298 K, p0 = 1.013 bar (1 atm).

Solution. Equation 1.88 reduces to read

(a) From Table A.5, h = 2799.5 kJ/kg, s = 6.3409 kJ/kg · K. At T0 = 298 K (25°C), water would be
a liquid; thus with Equations 1.50c and 1.50d, h0 ≈ 104.9 kJ/kg, s0 ≈ 0.3674 kJ/kg · K. Table 1.12
(model I) gives eCH = 45/18.02 = 2.5 kJ/kg. Then

Here the specific exergy is determined predominately by the physical component.
(b) Assuming the ideal gas model for methane, h – h0 = 0. Also, Equation 1.58 reduces to give s –

s0 = –Rlnp/p0. Then, Equation 1.88 reads

With eCH = 824,350/16.04 = 51,393.4 kJ/kg from Table 1.12 (model I),

Here the specific exergy is determined predominately by the chemical component.
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The small difference between p0 = 1.013 bar and the value of p0 for model I has been ignored.

Exergetic Efficiency

The exergetic efficiency (second law efficiency, effectiveness, or rational efficiency) provides a true
measure of the performance of a system from the thermodynamic viewpoint. To define the exergetic
efficiency both a product and a fuel for the system being analyzed are identified. The product represents
the desired result of the system (power, steam, some combination of power and steam, etc.). Accordingly,
the definition of the product must be consistent with the purpose of purchasing and using the system.

TABLE 1.12 Standard Molar Chemical Exergy, eCH (kJ/kmol), 
of Various Substances at 298 K and p0

Substance Formula Model Ia Model IIb

Nitrogen N2(g) 640 720
Oxygen O2(g) 3,950 3,970
Carbon dioxide CO2(g) 14,175 19,870
Water H2O(g) 8,635 9,500

H2O(l) 45 900
Carbon (graphite) C(s) 404,590 410,260
Hydrogen H2(g) 235,250 236,100
Sulfur S(s) 598,160 609,600
Carbon monoxide CO(g) 269,410 275,100
Sulfur dioxide SO2(g) 301,940 313,400
Nitrogen monoxide NO(g) 88,850 88,900
Nitrogen dioxide NO2(g) 55,565 55,600
Hydrogen sulfide H2S(g) 799,890 812,000
Ammonia NH3(g) 336,685 337,900
Methane CH4(g) 824,350 831,650
Ethane C2H6(g) 1,482,035 1,495,840
Methanol CH3OH(g) 715,070 722,300

CH3OH(l) 710,745 718,000
Ethyl alcohol C2H5OH(g) 1,348,330 1,363,900

C2H5OH(l) 1,342,085 1,357,700

a Ahrendts, J. 1977. Die Exergie Chemisch Reaktionsfähiger Systeme,
VDI-Forschungsheft. VDI-Verlag, Dusseldorf, 579. Also see
Reference States, Energy — The International Journal, 5: 667–677,
1980. In Model I, p0 = 1.019 atm. This model attempts to impose a
criterion that the reference environment be in equilibrium. The
reference substances are determined assuming restricted chemical
equilibrium for nitric acid and nitrates and unrestricted
thermodynamic equilibrium for all other chemical components of
the atmosphere, the oceans, and a portion of the Earth’s crust. The
chemical composition of the gas phase of this model approximates
the composition of the natural atmosphere.

b Szargut, J., Morris, D. R., and Steward, F. R. 1988. Energy Analysis
of Thermal, Chemical, and Metallurgical Processes. Hemisphere,
New York. In Model II, p0 = 1.0 atm. In developing this model a
reference substance is selected for each chemical element from
among substances that contain the element being considered and that
are abundantly present in the natural environment, even though the
substances are not in completely mutual stable equilibrium. An
underlying rationale for this approach is that substances found
abundantly in nature have little economic value. On an overall basis,
the chemical composition of the exergy reference environment of
Model II is closer than Model I to the composition of the natural
environment, but the equilibrium criterion is not always satisfied. 
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The fuel represents the resources expended to generate the product and is not necessarily restricted to
being an actual fuel such as a natural gas, oil, or coal. Both the product and the fuel are expressed in
terms of exergy.

For a control volume at steady state whose exergy rate balance reads

the exergetic efficiency is

(1.91)

where the rates at which the fuel is supplied and the product is generated are  and  respectively.
 and  denote the rates of exergy destruction and exergy loss, respectively. Exergy is destroyed

by irreversibilities within the control volume, and exergy is lost from the control volume via stray heat
transfer, material streams vented to the surroundings, and so on. The exergetic efficiency shows the
percentage of the fuel exergy provided to a control volume that is found in the product exergy. Moreover,
the difference between 100% and the value of the exergetic efficiency, expressed as a percent, is the
percentage of the fuel exergy wasted in this control volume as exergy destruction and exergy loss.

To apply Equation 1.91, decisions are required concerning what are considered as the fuel and the
product. Table 1.13 provides illustrations for several common components. Similar considerations are
used to write exergetic efficiencies for systems consisting of several such components, as, for example,
a power plant.

Exergetic efficiencies can be used to assess the thermodynamic performance of a component, plant,
or industry relative to the performance of similar components, plants, or industries. By this means the
performance of a gas turbine, for instance, can be gauged relative to the typical present-day performance
level of gas turbines. A comparison of exergetic efficiencies for dissimilar devices — gas turbines and
heat exchangers, for example — is generally not significant, however.

The exergetic efficiency is generally more meaningful, objective, and useful than other efficiencies
based on the first or second law of thermodynamics, including the thermal efficiency of a power plant,
the isentropic efficiency of a compressor or turbine, and the effectiveness of a heat exchanger. The
thermal efficiency of a cogeneration system, for instance, is misleading because it treats both work and
heat transfer as having equal thermodynamic value. The isentropic turbine efficiency (Equation 1.95a)
does not consider that the working fluid at the outlet of the turbine has a higher temperature (and
consequently a higher exergy that may be used in the next component) in the actual process than in the
isentropic process. The heat exchanger effectiveness fails, for example, to identify the exergy destruction
associated with the pressure drops of the heat exchanger working fluids.

Example 14

Evaluate the exergetic efficiency of the turbine in part (a) of Example 1 for T0 = 298 K.

Solution. The exergetic efficiency from Table 1.13 is

Using Equations 1.88 and 1.89a, and noting that the chemical exergy at 1 and 2 cancels,

˙ ˙ ˙ ˙E E E EF P D L= + +

ε = = −
+˙

˙

˙ ˙

˙
E

E

E E

E
P

F

D L

F

1

ĖF
˙ ,EP
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Since 

Finally, using data from Example 1 and s2 = 6.8473 kJ/kg · K,

Introduction to Exergy Costing

Since exergy measures the true thermodynamic values of the work, heat, and other interactions between
the system and its surroundings as well as the effect of irreversibilities within the system, exergy is a
rational basis for assigning costs. This aspect of thermoeconomics is called exergy costing. An intro-
duction to exergy costing is given in the present discussion. A detailed development of exergy costing
is provided in Sections 1.8 to 1.10 together with allied concepts and case studies.

Referring to Figure 1.16 showing a steam turbine-electric generator at steady state, the total cost to
produce the electricity and exiting steam equals the cost of the entering steam plus the cost of owning
and operating the device. This is expressed by the cost rate balance for the turbine-generator:

(1.92a)

where  is the cost rate associated with the electricity,  and  are the cost rates associated with
the entering steam and exiting steam, respectively, and  accounts for the cost rate associated with
owning and operating the system, each annualized in $ per year.

FIGURE 1.16 Steam turbine/electric generator used to discuss exergy costing.
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With exergy costing, the cost rates  and are evaluated in terms of the associated rate of
exergy transfer and a unit cost. Equation 1.92a then appears as

(1.92b)

The coefficients c1, c2, and ce in Equation 1.92b denote the average cost per unit of exergy for the
associated exergy rate. The unit cost c1 of the entering steam would be obtained from exergy costing
applied to the components upstream of the turbine. Assigning the same unit cost to the exiting steam:
c2 = c1 on the basis that the purpose of the turbine-generator is to generate electricity and thus all costs
associated with owning and operating the system should be charged to the power, Equation 1.92b becomes

(1.92c)

The first term on the right side accounts for the cost of the net exergy used and the second term accounts
for cost of the system itself. Introducing the exergetic efficiency from Table 1.13, the unit cost of the
electricity is

(1.93)

This equation shows, for example, that the unit cost of electricity would increase if the exergetic efficiency
were to decrease owing to a deterioration of the turbine with use.

Example 15

A turbine-generator with an exergetic efficiency of 90% develops 7 × 107 kW · hr of electricity annually.
The annual cost of owning and operating the system is $2.5 × 105. If the average unit cost of the steam
entering the system is $0.0165 per kW · hr of exergy, evaluate the unit cost of the electricity.

Solution. Substituting values into Equation 1.93,
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1.6 Vapor and Gas Power Cycles

Vapor and gas power systems develop electrical or mechanical power from energy sources of chemical,
solar, or nuclear origin. In vapor power systems the working fluid, normally water, undergoes a phase
change from liquid to vapor, and conversely. In gas power systems, the working fluid remains a gas
throughout, although the composition normally varies owing to the introduction of a fuel and subsequent
combustion. The present section introduces vapor and gas power systems.

The processes taking place in power systems are sufficiently complicated that idealizations are
typically employed to develop tractable thermodynamic models. The air standard analysis of gas power
systems considered later in the present section is a noteworthy example. Depending on the degree of
idealization, such models may provide only qualitative information about the performance of the corre-
sponding real-world systems. Yet such information is frequently useful in gauging how changes in major
operating parameters might affect actual performance. Elementary thermodynamic models can also
provide simple settings to assess, at least approximately, the advantages and disadvantages of features
proposed to improve thermodynamic performance.

Rankine and Brayton Cycles

In their simplest embodiments vapor power and gas turbine power plants are represented conventionally
in terms of four components in series, forming, respectively, the Rankine cycle and the Brayton cycle
shown schematically in Table 1.14. The thermodynamically ideal counterparts of these cycles are
composed of four internally reversible processes in series: two isentropic processes alternated with two
constant pressure processes. Table 1.14 provides property diagrams of the actual and corresponding ideal
cycles. Each actual cycle is denoted 1-2-3-4-1; the ideal cycle is 1-2s-3-4s-1. For simplicity, pressure
drops through the boiler, condenser, and heat exchangers are not shown. Invoking Equation 1.29 for the
ideal cycles, the heat added per unit of mass flowing is represented by the area under the isobar from
state 2s to state 3: area a-2s-3-b-a. The heat rejected is the area under the isobar from state 4s to state
1: area a-1-4s-b-a. Enclosed area 1-2s-3-4s-1 represents the net heat added per unit of mass flowing.
For any power cycle, the net heat added equals the net work done.

Expressions for the principal energy transfers shown on the schematics of Table 1.14 are provided by
Equations 1 to 4 of the table. They are obtained by reducing Equation 1.27a with the assumptions of
negligible heat loss and negligible changes in kinetic and potential energy from the inlet to the outlet
of each component. All quantities are positive in the directions of the arrows on the figure. Using these
expressions, the thermal efficiency is

(1.94)

To obtain the thermal efficiency of the ideal cycle, h2s replaces h2 and h4s replaces h4 in Equation 1.94.
Decisions concerning cycle operating conditions normally recognize that the thermal efficiency tends

to increase as the average temperature of heat addition increases and/or the temperature of heat rejection
decreases. In the Rankine cycle, a high average temperature of heat addition can be achieved by
superheating the vapor prior to entering the turbine, and/or by operating at an elevated steam-generator
pressure. In the Brayton cycle an increase in the compressor pressure ratio p2/p1 tends to increase the
average temperature of heat addition. Owing to materials limitations at elevated temperatures and
pressures, the state of the working fluid at the turbine inlet must observe practical limits, however. The
turbine inlet temperature of the Brayton cycle, for example, is controlled by providing air far in excess
of what is required for combustion. In a Rankine cycle using water as the working fluid, a low temperature
of heat rejection is typically achieved by operating the condenser at a pressure below 1 atm. To reduce

η =
−( ) − −( )

−
h h h h

h h
3 4 2 1

3 2
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erosion and wear by liquid droplets on the blades of the Rankine cycle steam turbine, at least 90%
quality should be maintained at the turbine exit: x4 > 0.9.

The back work ratio, bwr, is the ratio of the work required by the pump or compressor to the work
developed by the turbine:

(1.95)

TABLE 1.14 Rankine and Brayton Cycles

Rankine Cycle Brayton Cycle

(1)

(2)

(3)

(4)

˙

˙
˙
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m h hp
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


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= −( ) >( )2 1 0

˙ ˙Q m h hin = −( ) >( )3 2 0

˙ ˙W m h ht = −( ) >( )3 4 0

˙ ˙Q m h hout = −( ) >( )1 4 0
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As a relatively high specific volume vapor expands through the turbine of the Rankine cycle and a much
lower specific volume liquid is pumped, the back work ratio is characteristically quite low in vapor
power plants — in many cases on the order of 1 to 2%. In the Brayton cycle, however, both the turbine
and compressor handle a relatively high specific volume gas, and the back ratio is much larger, typically
40% or more.

The effect of friction and other irreversibilities for flow-through turbines, compressors, and pumps is
commonly accounted for by an appropriate isentropic efficiency. The isentropic turbine efficiency is

(1.95a)

The isentropic compressor efficiency is

(1.95b)

In the isentropic pump efficiency, ηp, which takes the same form as Equation 1.95b, the numerator is
frequently approximated via Equation 1.30c as h2s – h1 ≈ v1∆p, where ∆p is the pressure rise across the
pump.

Simple gas turbine power plants differ from the Brayton cycle model in significant respects. In actual
operation, excess air is continuously drawn into the compressor, where it is compressed to a higher
pressure; then fuel is introduced and combustion occurs; finally the mixture of combustion products and
air expands through the turbine and is subsequently discharged to the surroundings. Accordingly, the
low-temperature heat exchanger shown by a dashed line in the Brayton cycle schematic of Table 1.14
is not an actual component, but included only to account formally for the cooling in the surroundings
of the hot gas discharged from the turbine.

Another frequently employed idealization used with gas turbine power plants is that of an air-standard
analysis. An air-standard analysis involves two major assumptions: (1) as shown by the Brayton cycle
schematic of Table 1.14, the temperature rise that would be brought about by combustion is effected
instead by a heat transfer from an external source; (2) the working fluid throughout the cycle is air,
which behaves as an ideal gas. In a cold air-standard analysis the specific heat ratio k for air is taken as
constant. Equations 1 to 6 of Table 1.7 together with data from Table A.8 apply generally to air-standard
analyses. Equations 1′ to 6′ of Table 1.7 apply to cold air-standard analyses, as does the following
expression for the turbine power obtained from Table 1.1 (Equation 27c″):

(1.96)

(Equation 1.96 also corresponds to Equation 5′ of Table 1.8 when n = k.) An expression similar in form
can be written for the power required by the compressor.

For the simple Rankine and Brayton cycles of Table 1.14 the results of sample calculations are provided
in Table 1.15. The Brayton cycle calculations are on an air-standard analysis basis.

Otto, Diesel, and Dual Cycles

Although most gas turbines are also internal combustion engines, the name is usually reserved to
reciprocating internal combustion engines of the type commonly used in automobiles, trucks, and buses.
Two principal types of reciprocating internal combustion engines are the spark-ignition engine and the
compression-ignition engine. In a spark-ignition engine a mixture of fuel and air is ignited by a spark
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plug. In a compression ignition engine air is compressed to a high-enough pressure and temperature that
combustion occurs spontaneously when fuel is injected.

In a four-stroke internal combustion engine, a piston executes four distinct strokes within a cylinder
for every two revolutions of the crankshaft. Figure 1.17 gives a pressure-displacement diagram as it
might be displayed electronically. With the intake valve open, the piston makes an intake stroke to draw
a fresh charge into the cylinder. Next, with both valves closed, the piston undergoes a compression stroke
raising the temperature and pressure of the charge. A combustion process is then initiated, resulting in
a high-pressure, high-temperature gas mixture. A power stroke follows the compression stroke, during
which the gas mixture expands and work is done on the piston. The piston then executes an exhaust
stroke in which the burned gases are purged from the cylinder through the open exhaust valve. Smaller
engines operate on two-stroke cycles. In two-stroke engines, the intake, compression, expansion, and

TABLE 1.15 Sample Calculations for the Rankine and Brayton Cycles of Table 1.14

Rankine Cycle

Given data: p1 = p4 = 8 kPa (saturated liquid at 1)
T3 = 480°C (superheated vapor at 3)
p2 = p3 = 8 MPa

 = 100 MW

Ideal cycle: ηt = ηp = 100%
Actual cycle: ηt = 85%, ηp = 70%

Parameter Ideal Cycle Actual Cycle

x4 0.794 0.873
h2 (kJ/ kg) 181.9a 185.4

2.86 × 105 3.38 × 105

η (%) 39.7 33.6

151.9 197.6

8.2 10.7

a h2s ≈ h1 + v1∆p
b Equation 1.86 with T0 = 298 K, Tj = Tsat (8 kPa) = 315 K

Brayton Cycle

Given data: p1 = p4 = 1 bar
p2 = p3 = 10 bar
T3 = 1400 K
ηt = ηc = 100%

Parameter Air-Standard Analysis
Cold Air-Standard Analysis

k = 1.4

T2 (K) 574.1 579.2
T4 (K) 787.7 725.1

427.2 397.5

η (%) 45.7 48.2
bwr 0.396 0.414

Ẇnet

˙ ( )m kg/h

˙ (Qout MW)

˙ (,Eq out
bMW)

˙ ˙ ( )W mnet kJ/kg
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exhaust operations are accomplished in one revolution of the crankshaft. Although internal combustion
engines undergo mechanical cycles, the cylinder contents do not execute a thermodynamic cycle, since
matter is introduced with one composition and is later discharged at a different composition.

A parameter used to describe the performance of reciprocating piston engines is the mean effective
pressure, or mep. The mean effective pressure is the theoretical constant pressure that, if it acted on the
piston during the power stroke, would produce the same net work as actually developed in one cycle.
That is,

where the displacement volume is the volume swept out by the piston as it moves from the top dead
center to the bottom dead center. For two engines of equal displacement volume, the one with a higher
mean effective pressure would produce the greater net work and, if the engines run at the same speed,
greater power.

Detailed studies of the performance of reciprocating internal combustion engines may take into account
many features, including the combustion process occurring within the cylinder and the effects of
irreversibilities associated with friction and with pressure and temperature gradients. Heat transfer
between the gases in the cylinder and the cylinder walls and the work required to charge the cylinder
and exhaust the products of combustion also might be considered. Owing to these complexities, accurate
modeling of reciprocating internal combustion engines normally involves computer simulation.

To conduct elementary thermodynamic analyses of internal combustion engines, considerable simpli-
fication is required. A procedure that allows engines to be studied qualitatively is to employ an air-
standard analysis having the following elements: (1) a fixed amount of air modeled as an ideal gas is
the system; (2) the combustion process is replaced by a heat transfer from an external source and generally
represented in terms of elementary thermodynamic processes; (3) there are no exhaust and intake
processes as in an actual engine: the cycle is completed by a constant-volume heat rejection process;
(4) all processes are internally reversible.

The processes employed in air-standard analyses of internal combustion engines are selected to
represent the events taking place within the engine simply and mimic the appearance of observed
pressure-displacement diagrams. In addition to the constant volume heat rejection noted previously, the

FIGURE 1.17 Pressure-displacement diagram for a reciprocating internal combustion engine.

mep
net work for one cycle
displacement volume
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compression stroke and at least a portion of the power stroke are conventionally taken as isentropic. The
heat addition is normally considered to occur at constant volume, at constant pressure, or at constant
volume followed by a constant pressure process, yielding, respectively, the Otto, Diesel, and Dual cycles
shown in Table 1.16. Referring to Table 1.16, the ratio v1/v2 is the compression ratio, r. For the Diesel
cycle, the ratio v3/v2 is the cutoff ratio, rc.

Reducing the closed system energy balance, Equation 1.8, gives the following expressions for heat
and work applicable in each case shown in Table 1.16:

Table 1.16 provides additional expressions for work, heat transfer, and thermal efficiency identified with
each case individually. The thermal efficiency, evaluated from Equation 1.9, takes the form

Equations 1 to 6 of Table 1.7 together with data from Table A.8, apply generally to air-standard analyses.
In a cold air-standard analysis the specific heat ratio k for air is taken as constant. Equations 1′ to 6′ of
Table 1.7 apply to cold air-standard analyses, as does Equation 4′ of Table 1.8, with n = k for the
isentropic processes of these cycles.

As all processes are internally reversible, areas on the p-v and T-s diagrams of Table 1.16 can be
interpreted, respectively, as work and heat transfer. Invoking Equation 1.10 and referring to the p-v
diagrams, the areas under process 3-4 of the Otto cycle, process 2-3-4 of the Diesel cycle, and process
x-3-4 of the Dual cycle represent the work done by the gas during the power stroke, per unit of mass.
For each cycle, the area under the isentropic process 1-2 represents the work done on the gas during the
compression stroke, per unit of mass. The enclosed area of each cycle represents the net work done per
unit mass. With Equation 1.15 and referring to the T-s diagrams, the areas under process 2-3 of the Otto
and Diesel cycles and under process 2-x-3 of the Dual cycle represent the heat added per unit of mass.
For each cycle, the area under the process 4-1 represent the heat rejected per unit of mass. The enclosed
area of each cycle represents the net heat added, which equals the net work done, each per unit of mass.

Carnot, Ericsson, and Stirling Cycles

Three thermodynamic cycles that exhibit the Carnot efficiency (Equation 1.12) are the Carnot, Ericsson,
and Stirling cycles shown in Figure 1.18. Each case represents a reversible power cycle in which heat
is added from an external source at a constant temperature TH (process 2-3) and rejected to the surround-
ings at a constant temperature TC (process 4-1). Carnot cycles can be configured both as vapor power
cycles and as cycles executed by a gas in a piston-cylinder assembly (see, e.g., Moran and Shapiro,
2000). Carnot cycles also can be executed in systems where a capacitor is charged and discharged, a
paramagnetic substance is magnetized and demagnetized, and in other ways. Regardless of the type of
device and the working substance used, the Carnot cycle always has the same four internally reversible
processes in series: two isentropic processes alternated with two isothermal processes.

The Ericsson and Stirling cycles also consist of four internally reversible processes in series: heating
from state 1 to state 2 (at constant pressure in the Ericsson cycle and at constant volume in the Stirling

W

m
u u

W

m
u u

Q

m
u u

12
1 2

34
3 4

41
1 4

0

0

0

= − <( )

= − >( )

= − <( )

η = −1 41Q m

Q mA
© 2000 by CRC Press LLC



©
 2000 by C

R
C

 Press L
L

C

(c) Dual Cycle

m

Q

m
u ux

x
23 2

20= = −,   

m
p v v

Q

m
h hx x

x
3

3 3 2
3

3= −( ) = −,   

= −
−

−( ) + −( )1 4 1

2 3

u u

u u h hx x
TABLE 1.16 Otto, Diesel, and Dual Cycles

(a) Otto Cycle (b) Diesel Cycle

W

m
23 0=

W

m
p v v23

2 3 2= −( ) W

Q

m
u u23

3 2= −
Q

m
h h23

3 2= −
W

η = −
−
−

1 4 1

3 2

u u

u u
η = −

−
−

1 4 1

3 2

u u

h h
η



FIGURE 1.18 (A) Carnot, (B) Ericsson, and (C) Stirling cycles.
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cycle), isothermal heating from state 2 to state 3 at temperature TH, cooling from state 3 to state 4 (at
constant pressure in the Ericsson cycle and at constant volume in the Stirling cycle), and isothermal
cooling from state 4 to state 1 at temperature TC. An ideal regenerator allows the heat input required for
process 1-2 to be obtained from the heat rejected in process 3-4. Accordingly, as in the Carnot cycle all
the heat added externally occurs at TH and all of the heat rejected to the surroundings occurs at TC.

The Ericsson and Stirling cycles are principally of theoretical interest as examples of cycles that
exhibit the same thermal efficiency as the Carnot cycle: Equation 1.12. However, a practical engine of
the piston-cylinder type that operates on a closed regenerative cycle having features in common with
the Stirling cycle has been under study in recent years. This engine, known as the Stirling engine, offers
the opportunity for high efficiency together with reduced emissions from combustion products because
the combustion takes place externally and not within the cylinder as in internal combustion engines. In
the Stirling engine, energy is transferred to the working fluid from products of combustion, which are
kept separate. It is an external combustion engine.
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1.7 Guidelines for Improving Thermodynamic Effectiveness

Thermal design frequently aims at the most effective system from the cost viewpoint. Still, in the cost
optimization process, particularly of complex energy systems, it is often expedient to begin by identifying
a design that is nearly optimal thermodynamically; such a design can then be used as a point of departure
for cost optimization. Presented in this section are guidelines for improving the use of fuels (natural
gas, oil, and coal) by reducing sources of thermodynamic inefficiency in thermal systems. Further
discussion is provided by Bejan et al. (1996).

To improve thermodynamic effectiveness it is necessary to deal directly with inefficiencies related to
exergy destruction and exergy loss. The primary contributors to exergy destruction are chemical reaction,
heat transfer, mixing, and friction, including unrestrained expansions of gases and liquids. To deal with
them effectively, the principal sources of inefficiency not only should be understood qualitatively, but
also determined quantitatively, at least approximately. Design changes to improve effectiveness must be
done judiciously, however, for the cost associated with different sources of inefficiency can be different.
For example, the unit cost of the electrical or mechanical power required to provide for the exergy
destroyed owing to a pressure drop is generally higher than the unit cost of the fuel required for the
exergy destruction caused by combustion or heat transfer.

Since chemical reaction is a significant source of thermodynamic inefficiency, it is generally good
practice to minimize the use of combustion. In many applications the use of combustion equipment such
as boilers is unavoidable, however. In these cases a significant reduction in the combustion irreversibility
by conventional means simply cannot be expected, for the major part of the exergy destruction introduced
by combustion is an inevitable consequence of incorporating such equipment. Still, the exergy destruction
in practical combustion systems can be reduced by minimizing the use of excess air and by preheating
the reactants. In most cases only a small part of the exergy destruction in a combustion chamber can be
avoided by these means. Consequently, after considering such options for reducing the exergy destruction
related to combustion, efforts to improve thermodynamic performance should focus on components of
the overall system that are more amenable to betterment by cost-effective conventional measures. In
other words, some exergy destructions and energy losses can be avoided, others cannot. Efforts should
be centered on those that can be avoided.

Nonidealities associated with heat transfer also typically contribute heavily to inefficiency. Accord-
ingly, unnecessary or cost-ineffective heat transfer must be avoided. Additional guidelines follow:

• The higher the temperature T at which a heat transfer occurs in cases where T > T0, where T0

denotes the temperature of the environment (Section 1.5), the more valuable the heat transfer and,
consequently, the greater the need to avoid heat transfer to the ambient, to cooling water, or to a
refrigerated stream. Heat transfer across T0 should be avoided.

• The lower the temperature T at which a heat transfer occurs in cases where T < T0, the more
valuable the heat transfer and, consequently, the greater the need to avoid direct heat transfer with
the ambient or a heated stream.

• Since exergy destruction associated with heat transfer between streams varies inversely with the
temperature level, the lower the temperature level, the greater the need to minimize the stream-
to-stream temperature difference.

• Avoid the use of intermediate heat transfer fluids when exchanging energy by heat transfer between
two streams

Although irreversibilities related to friction, unrestrained expansion, and mixing are often secondary
in importance to those of combustion and heat transfer, they should not be overlooked, and the following
guidelines apply:

• Relatively more attention should be paid to the design of the lower temperature stages of turbines
and compressors (the last stages of turbines and the first stages of compressors) than to the
remaining stages of these devices.
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• For turbines, compressors, and motors, consider the most thermodynamically efficient options.

• Minimize the use of throttling; check whether power recovery expanders are a cost-effective
alternative for pressure reduction.

• Avoid processes using excessively large thermodynamic driving forces (differences in temperature,
pressure, and chemical composition). In particular, minimize the mixing of streams differing
significantly in temperature, pressure, or chemical composition.

• The greater the mass rate of flow, the greater the need to use the exergy of the stream effectively.

• The lower the temperature level, the greater the need to minimize friction.

Flowsheeting or process simulation software can assist efforts aimed at improving thermodynamic
effectiveness by allowing engineers to readily model the behavior of an overall system, or system
components, under specified conditions and do the required thermal analysis, sizing, costing, and
optimization. Many of the more widely used flowsheeting programs: ASPEN PLUS, PROCESS, and
CHEMCAD are of the sequential-modular type. SPEEDUP is a popular program of the equation-solver
type. Since process simulation is a rapidly evolving field, vendors should be contacted for up-to-date
information concerning the features of flowsheeting software, including optimization capabilities (if
any). As background for further investigation of suitable software, see Biegler (1989) for a survey of
the capabilities of 15 software products.

1.8 Exergoeconomics

Exergoeconomics is an exergy-aided cost-reduction method that combines exergy and cost analyses to
provide the designer or operator of an energy conversion plant with information not available through
conventional energy, exergy, or cost analyses. Exergoeconomics is also a powerful tool for understanding
the interconnections between thermodynamics and economics and, thus, the behavior of an energy
conversion plant from the cost viewpoint. For a more detailed presentation of exergoeconomics, readers
may refer to the following references: Bejan et al. (1996), Tsatsaronis (1993), and Tsatsaronis et al. (1984,
1985, 1986). Sections 1.2 through 1.5 have outlined the principles for conducting detailed thermodynamic
evaluations of thermal systems. In particular, techniques have been developed for evaluating the thermo-
dynamic inefficiencies of these systems: exergy destructions and exergy losses. However, we often need
to know the cost of such inefficiencies. Knowledge of these costs is very useful for improving the cost-
effectiveness of the system — that is, for reducing the costs of the final products produced by the system.

In addition, if a system has more than one product, as for example the net power and saturated vapor
of the cogeneration system shown in Figure 1.19, we would want to know the production cost for each
product. This is a common problem in chemical plants where electrical power, chilled water, compressed
air, and steam at various pressure levels are generated in one department and sold to another. The plant
operator wants to know the true cost at which each of the utilities is generated; these costs are then
charged to the appropriate final products according to the type and amount of each utility used to generate
a final product. In the design of a thermal system, such cost allocation assists in pinpointing cost-
ineffective processes and operations and in identifying technical options that might improve the cost-
effectiveness of the system.

Accordingly, the objective of an exergoeconomic analysis might be to (1) calculate separately the
costs of each product generated by a system having more than one product, (2) understand the cost
formation process and the flow of costs in the system, (3) optimize specific variables in a single
component, or (4) minimize the costs associated with the overall system.

An exergoeconomic analysis must be preceded by an exergy analysis (see Section 1.5) and an
economic analysis (see Bejan et al. [1996] and Section 1.10). Because of the variation of costs from
year to year, when we evaluate the design of a thermal system from the cost viewpoint we must use the
cost levelization approach. Therefore, the cost values used throughout the following discussion are
levelized costs. For conciseness, the term levelized is omitted, however.
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Cost accounting in exergoeconomics calls for the use of cost balances. Cost balances can be formulated
for an overall system (subscript tot) operating at steady state:

(1.97)

and for each component (see Equations 1.102 and 1.103). Equation 1.97 indicates that the cost rate
associated with the product of the system (

·
CP) equals the total rate of expenditures made to generate

the product, namely, the fuel cost rate (
·

CF) and the cost rates associated with capital investment (
·
ZCI )

and operating and maintenance (O&M) (
·
ZOM). Here, and throughout Sections 1.8, 1.9, and 1.10, the

terms fuel and product are used in the sense introduced in Section 1.5. When referring to a single stream
associated with a fuel or product, the expression fuel stream or product stream is used. The rates

·
ZCI

and 
·
ZOM are calculated by dividing the annual contribution of capital investment and the annual operating

and maintenance costs, respectively, by the number of time units (usually hours or seconds) of system
operation per year. The sum of these two variables is denoted by

·
Z:

(1.98)

In this section we discuss the basic elements of exergoeconomics, which include exergy costing, cost
balances, and means for costing various exergy transfers. The exergoeconomic variables defined below
are used in the evaluation and optimization of the design and operation of thermal systems.

Exergy Costing

For a system operating at steady state there may be a number of entering and exiting streams as well
as both heat and work interactions with the surroundings. Associated with these transfers of matter and
energy are exergy transfers into and out of the system and exergy destructions caused by the irrevers-
ibilities within the system. Since exergy measures the true thermodynamic value of such effects, and
costs should only be assigned to commodities of value, it is meaningful to use exergy as a basis for
assigning costs in thermal systems. Indeed, exergoeconomics rests on the notion that exergy is the only

FIGURE 1.19 Cogeneration system.
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rational basis for assigning costs to the interactions a thermal system experiences with its surroundings
and to the sources of inefficiencies within it. We refer to this approach as exergy costing.

In exergy costing, a cost rate is associated with each exergy transfer. Thus, for entering and exiting
streams of matter with exergy transfers

·
Ei and

·
Ee, respectively, power

·
W, and exergy transfer associated

with heat transfer,
·

Eq, we write, respectively,

(1.99)

(1.100)

where ci, ce, cw, and cq denote average costs per unit of exergy, for example, in dollars per gigajoule ($/GJ).
Exergy costing does not necessarily imply that costs associated with streams of matter are related

only to the exergy rate of each respective stream. Nonexergy-related costs also can affect the total cost
rate associated with material streams. Examples include the cost rates associated with a treated water
stream at the outlet of a water treatment unit, an oxygen or nitrogen stream at the outlet of an air
separation unit, a limestone stream supplied to a gasifier or fluidized-bed reactor, iron feedstock supplied
to a metallurgical process, and an inorganic chemical fed to a chemical reactor. Accordingly, when
significant nonexergy-related costs occur, the total cost rate associated with the material stream j, denoted
by

·
Cj

TOT, is given by

(1.101)

where
·

Cj is the cost rate directly related to the exergy of stream j (e.g., Equation 1.99) and
·

Cj
NE is the

cost rate due to nonexergetic effects. The term
·

Cj
NE represents a convenient way for charging nonexergy-

related costs from one component to other components that should bear such costs. More details
about

·
Cj

NE are given in Bejan et al. (1996) and Tsatsaronis et al. (1986).

Cost Balance

Exergy costing usually involves cost balances formulated for each component separately. A cost balance
applied to the kth system component indicates that the sum of cost rates associated with all exiting
exergy transfers equals the sum of cost rates of all entering exergy transfers plus the appropriate charges
due to capital investment (

·
Zk

CL) and operating and maintenance expenses ( ·Zk
OM). The sum of the last two

terms is denoted by ( ·Zk ). For example, for a component receiving a heat transfer (subscript q) and
generating power (subscript w), we write

(1.102)

This equation simply states that the total cost of the exiting exergy transfers equals the total expenditure
to obtain them: the cost of the entering exergy streams plus the capital and other costs. When a component
receives power (as in a compressor or a pump) the term

·
Cw,k would move with its positive sign to the

right side of this expression. The term
·

Cq,k would appear with its positive sign on the left side if there
is a heat transfer from the component. Cost balances are generally written so that all terms are positive.

Introducing the cost rate expressions of Equations 1.99 and 1.100, Equation 1.102 becomes

(1.103)
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The exergy rates exiting and entering the kth component denoted by
·

Ee,k ,
·

Wk, 
·

Eq,k, and
·
Ei,k are

calculated in an exergy analysis conducted at a previous stage. The term
·
Zk is obtained by first calculating

the capital investment and O&M costs associated with the kth component and then computing the
levelized values of these costs per unit of time (year, hour, or second) of system operation (see, for
example, Bejan et al. [1996] and Tsatsaronis et al. [1984, 1986]).

The variables in Equation 1.103 are the levelized costs per unit of exergy for the exergy transfers
associated with the kth component: ce,k, cw,k, cq,k, and ci,k. In analyzing a component, we may assume
that the costs per exergy unit are known for all entering streams. These costs are known from the
components they exit or, if a stream enters the overall system consisting of all components under
consideration, from the purchase cost of this stream. Consequently, the unknown variables to be calcu-
lated with the aid of the cost balance for the kth component are the costs per exergy unit of the exiting
streams: ce,k and, if power or useful heat are generated in that component, the cost per unit of exergy
associated with the transfer of power cw,k or heat cq,k. Some auxiliary equations are usually necessary to
calculate these costs, as discussed next.

Auxiliary Costing Equations

Various approaches for formulating the auxiliary equations are suggested in the literature. However, the
method recommended for obtaining an objective set of auxiliary equations consistent with the definitions
of fuel and product is detailed by Lazzaretto and Tsatsaronis (1996, 1997) and summarized in the
following three steps:

Step 1: Exergy Streams

All material and energy streams crossing the boundaries of the component being considered should be
first identified, and the exergy values associated with these streams should be calculated.

Step 2: Definition of Fuel and Product

In evaluating the performance of a component, it is generally meaningful and appropriate to operate
with exergy differences associated with each material stream between the inlet and outlet of the com-
ponent. For example, in defining the product of a heat exchanger operating above ambient temperature,
we consider only the exergy addition to the cold stream and not the sum of the exergies associated with
the material streams at the outlet. Similarly, for defining the fuel of the heat exchanger we consider only
the exergy removal from the hot stream and not the sum of the exergies associated with the material
streams at the inlet. Exergy differences (exergy additions to or removals from a stream) should be applied
to all material streams undergoing a change of physical exergy (Equation 1.89a) and to some material
streams undergoing a chemical exergy (Equation 1.90) conversion. This approach has been used in
developing Table 1.13 for all cases except the gasifier/combustion chamber, which is considered next.

In many cases involving conversion of chemical exergy (e.g., conversion of chemical exergy of a solid
fuel in chemical and thermal exergy through a gasification process), the purpose of owning and operating
the component dictates that the chemical exergy at the outlet is considered on the product side and the
chemical exergy of the fuel stream at the inlet on the fuel side. Thus, in the definition of the exergetic
efficiency of a gasifier or combustion chamber in Table 1.13, the exergy of the “fuel” for the component
equals the value of the exergy of the entering fuel stream.

Accordingly, when considering the fuel and product of a component, a decision must be made for
each exergy stream with respect to whether an exergy difference or just the exergy values at the inlet
or outlet should be included in the definitions of fuel and product. Then, the product consists of all the
exergy values to be considered at the outlet plus all the exergy increases between inlet and outlet (i.e.,
the exergy additions to the respective material streams). Similarly, the fuel consists of all the exergy
values to be considered at the inlet plus all the exergy decreases between inlet and outlet (i.e., the exergy
removals from the respective material streams).
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Step 3: Auxiliary Equations

In general, if there are Ne exergy streams exiting the component being considered, we have Ne unknowns
and only one equation, the costs balance (Equation 1.103). Therefore, we need to formulate Ne – 1
auxiliary equations. This is accomplished with the aid of the F and P rules presented next:

• The F rule refers to the removal of exergy from an exergy stream within the component being
considered. The F rule states that the total cost associated with this removal of exergy must be
equal to the average cost at which the removed exergy was supplied to the same stream in upstream
components. The number of auxiliary equations provided by the F rule is always equal to the
number (Ne, F) of exiting exergy streams that are considered in the definition of the fuel for the
component.

• The P rule refers to the supply of exergy to an exergy stream within the component being considered
and to the costing of streams associated with the product. The P rule states that each exergy unit
is supplied to any stream associated with the product at the same average cost, cP. This cost is
calculated from the cost balance and the equations obtained by applying the F rule. The number
of auxiliary equations provided by the P rule is always equal to Ne, P – 1, where Ne, P is the number
of exiting exergy streams that are included in the product definition. 

Since the total number of exiting streams (Ne) is equal to the sum (Ne, F + Ne, P), the F and P rules together
provide the required Ne – 1 auxiliary equations.

General Example

The general application of these steps may be demonstrated with the aid of Figure 1.20.

Step 1: Referring to Figure 1.20, there are seven exergy streams (1, 2, and 5 through 9) entering the
component (subscript i) and seven exergy streams (3 through 8 and 10) exiting the component (subscript
e). The streams shown in this figure are selected to cover all situations that might be encountered. In an
actual component, however, not all of the streams shown in Figure 1.20 exist.

Step 2: The exergy streams 1 through 4 are associated with the chemical exergy or total exergy of
the corresponding material streams. The purpose of owning and operating the component dictates that
the entering streams 1 and 2 should be part of the fuel, whereas the exiting streams 3 and 4 should be
part of the product. For the exergy streams with the numbers 5, 6, 7, and 8, the purpose of the component
dictates the consideration of the respective exergy differences between outlet and inlet. These are positive
for streams 7 and 8 and negative for streams 5 and 6. Streams 9 at the inlet and 10 at the outlet represent
exergy streams associated with the transport of mechanical, electrical, or thermal energy. We conclude
that exergy streams 1, 2, 5, 6, and 9 are associated with the fuel, whereas streams 3, 4, 7, 8, and 10 are
associated with the product of the component. Thus, the fuel and product of the component, respectively,
are

FIGURE 1.20 Schematic of a component in a thermal system to define fuel, product, and auxiliary equations.
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(1.104)

(1.105)

Step 3: In accordance with Equation 1.103, the cost balance for the component is

(1.106)

By grouping the terms associated with fuel and product, we obtain

(1.107)

The F rule states that the total cost rate associated with the removal of exergy from stream 5: ( ·
C5i –

·
C5e)

must be equal to the average cost at which the removed exergy: ( ·
E5i –

·
E5e) was supplied to that stream

in upstream components. Since each exergy unit was supplied to stream 5 at the average cost of c5i, the
F rule for stream 5 becomes

(1.108)

From this equation we obtain

(1.109)

Similarly, for stream 6

(1.110)

The P rule states that each exergy unit is supplied to all streams associated with the product at the
same average cost, cP. This rule leads to the following equations:

(1.111)

Since we assume that the cost rate
·
Z and all costs associated with all entering streams are known, we

can calculate the unknowns
·

C3,
·

C4,
·

C5e,
·

C6e,
·

C7e,
·

C8e, and
·

C10 by solving the system of Equations 1.107,
1.109, 1.110, and 1.111.

Note that Equation 1.107 may be written as

(1.112)

or

(1.113)

where
·

EF,
·

EP, and cP are given in Equations 1.104, 1.105 and 1.111, respectively. The variable cF denotes
the average cost at which each exergy unit of 

·
EF is supplied to the component. Equation 1.112 demon-

strates that the average cost (cP) at which each exergy unit is supplied to all streams associated with the
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product can be calculated by combining the cost balance (Equation 1.112) with the equations obtained
from the F rule (Equations 1.109 and 1.110). After calculating the value of cP , Equations 1.111 can be
used to calculate the cost associated with each exiting stream included in the definition of the product.
This suggests that the cost balance (Equation 1.112) should always be used to calculate the value of cP

with the aid of the auxiliary equations obtained from the F rule.

Exergoeconomic Variables and Evaluation

The cost balances together with the auxiliary equations formulated for each plant component form a
system of linear equations, the solution of which provides the cost per exergy unit and the cost rates
associated with all exergy streams in the system. The remaining exergoeconomic variables are calculated
from these cost rates and the known exergy rates using the equations for defining the respective
exergoeconomic variables, as discussed next.

The exergoeconomic evaluation is conducted at the system component level using the following
variables for the kth component. From the exergy analysis we know the

• Rate of exergy destruction ·ED,k:

(1.114)

• Exergetic efficiency εk:

(1.115)

• Exergy destruction ratio yk:

(1.116)

In addition, we calculate the following variables from the exergoeconomic analysis:

• Cost per unit of fuel exergy cF,k:

(1.117)

• Cost per unit of product exergy cP,k:

(1.118)

• Cost rate associated with exergy destruction
·

CD,k:

(1.119)

• Cost rate associated with exergy losses
·

CL,k:

(1.120)

• Cost rate associated with capital investment
·

Zk
CI

• Cost rate associated with operating and maintenance expenses
·

Zk
OM

˙ ˙ ˙ ˙
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• Sum 
·

Zk of the cost rates associated with capital investment and O&M expenses:

(1.121)

• Relative cost difference rk:

(1.122)

• Exergoeconomic factor ƒ:

(1.123)

The value of cF,k depends on the relative position of the kth component in the system and on the
interconnections between the kth component and the remaining components. As a general rule, the closer
the kth component to the product (fuel) stream of the overall system, the larger (smaller) the value of cF,k .

An exergoeconomic analysis

1. Identifies and compares the real cost sources in a system: Equations 1.119 to 1.121.
2. Illustrates the cost formation process within a system.
3. Calculates separately the cost at which each product stream is generated.
4. Most importantly, assists in the effective cost minimization in a thermal system, particularly its

design.

Examples of design optimization are given in Bejan et al. (1996), Lin and Tsatsaronis (1993), Tsatsaronis
(1993), and Tsatsaronis et al. (1984, 1985, 1991, 1992, 1994). This point is discussed in Section 1.9.

1.9 Design Optimization

Design optimization of a thermal system means the modification of the structure and the design param-
eters of a system to minimize the total levelized cost of the system products under boundary conditions
associated with available materials, financial resources, protection of the environment, and government
regulation, together with the safety, reliability, operability, availability, and maintainability of the system.
A truly optimized system is one for which the magnitude of every significant thermodynamic inefficiency
(exergy destruction and exergy loss) is justified by considerations related to costs or is imposed by at
least one of the above boundary conditions. A thermodynamic optimization, which aims only at mini-
mizing the thermodynamic inefficiencies, may be considered as a subcase of design optimization.

An appropriate formulation of the optimization problem is usually the most important and sometimes
the most difficult step of a successful optimization study. In optimization problems we separate the
independent variables into decision variables and parameters. The values of the decision variables are
amenable to change. The values of the parameters are fixed by the particular application. In optimization
studies, only the decision variables may be varied. The parameters are independent variables that are each
given one specific and unchanging value in any particular model statement. The variables whose values
are calculated from the independent variables using a mathematical model are the dependent variables.

However, the optimization of thermal systems involves complexities that render conventional math-
ematical optimization approaches ineffective. The reasons include the following:

• Some of the input data and functions required for the thermodynamic and, particularly, the
economic model might not be available or might not be in the required form. For example, it is
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not always possible to express the purchased-equipment costs as a function of the appropriate
thermodynamic decision variables.

• A significant decrease in the product costs may be achievable only through changes in the structure
of the system, but such changes are seldom elicited from conventional optimization techniques
focusing on the optimization of a particular structure. Moreover, it is not always practical to
develop a mathematical optimization model for every promising system structure.

• Even if all the required information is available, the complexity of the system might not allow a
satisfactory mathematical model to be formulated and solved in a reasonable time.

In such cases the application of exergoeconomic techniques may provide significant benefits for the
optimization process. The more complex the thermal system the larger are the expected benefits,
particularly when chemical reactions are involved. The interactions of exergoeconomics with several
other areas during the optimization procedure are shown schematically in Figure 1.21. Exergoeconomics
uses results from the synthesis, cost analysis, and simulation of thermal systems and provides useful
information for the evaluation and optimization of these systems as well as for the application of expert
systems to improve the design and operation of such systems.

The following section presents the main features of a general methodology that can be used to evaluate
and iteratively optimize the design of a thermal system.

An Iterative Exergoeconomic Procedure for Optimizing the Design 
of a Thermal System

The conventional approach to optimization is to iteratively optimize subsystems and/or ignore the
influence of some structural changes and decision variables. An effective alternative approach for the
optimization of complex systems is the following iterative exergoeconomic optimization technique that
consists of seven steps:

1. In the first step a workable design is developed. The guidelines presented in Section 1.7 and in
Bejan et al. (1996), Lin and Tsatsaronis (1993), Linnhoff et al. (1982), Sama (1993), Tsatsaronis
(1993), and Tsatsaronis and Pisa (1994) may assist in developing a workable design that is

FIGURE 1.21 Interactions of exergoeconomics with other areas of engineering and optimization procedure.
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relatively close to the optimal design. Thus, the use of these guidelines can reduce the total number
of required iterations.

2. A detailed exergoeconomic analysis and, if necessary, a pinch analysis are conducted for the
design configuration developed in the previous step. The results are used to determine design
changes that are expected to improve the design being considered. In this step, and in steps 3
through 7, we consider only changes in the decision variables that affect both the exergetic
efficiency and the investment costs. The remaining decision variables are optimized in step 8.

3. A component optimization may be conducted for one or two components in isolation for which
the sum of the cost rates ( ·Zk +

·CD,k ) is significantly higher than the same sum for the remaining
components. For this, we assume that the costs per exergy unit remain constant for all inlet
streams. Step 3 is meaningful only for components in which each of the terms ·Zk and ·

CD,k has a
significant contribution to the costs associated with the respective component. If not, step 3 should
either be omitted or, preferably, replaced by (a) an efficiency maximization procedure when ·

CD,k

is the dominating cost rate, or (b) an investment cost minimization procedure when ·Zk is the
dominating cost rate. Another approach is discussed by Tsatsaronis et al. (1991, 1994). The
sum ( ·Zk +

·
CD,k ) is a measure of the economic importance of the kth component. Therefore, the

components should be considered in order of descending value of this sum. The quality of this
information is significantly improved when we consider only avoidable costs associated with both
the capital investment and the cost of exergy destruction in the kth component (Tsatsaronis and
Park, 1999).

4. The exergoeconomic factor ƒk is used to identify the major cost source (capital investment or cost
of exergy destruction).
a. When the ƒk value is high, investigate whether it is cost effective to reduce the capital investment

of the kth component at the expense of the component efficiency.
b. When the ƒk value is low, try to improve the component efficiency by increasing the capital

investment.
5. Eliminate any subprocesses that increase the exergy destruction or exergy loss without contributing

to the reduction of capital investment or of the fuel costs for other components.
6. Consider improving the exergetic efficiency of a component if it has a relatively low exergetic

efficiency or relatively large values for the rate of exergy destruction, the exergy destruction ratio,
or the exergy loss ratio.

7. Based on the results from steps 2 through 6, a new design is developed and the value of the
objective function for this design is calculated. In comparison with the previous design, if this
value has been improved we may decide to proceed with another iteration that involves steps 2
through 7. If, however, the value of the objective function is not better in the new design than in
the previous one, we may either revise some design changes and repeat steps 2 through 7 or
proceed with step 8.

8. In this step, we use an appropriate mathematical optimization technique to optimize the decision
variables that affect the costs but not the exergetic efficiency. At the end of this step, the cost-
optimal design is obtained.

9. Finally, a parametric study may be conducted to investigate the effect on the optimization results
of some parameters used and/or assumptions made in the optimization procedure.

When applying this methodology, it is important to recognize that the values of all thermoeconomic
variables depend on the component types: heat exchanger, compressor, turbine, pump, chemical reactor,
and so forth. Accordingly, whether a particular value is judged to be high or low can be determined only
with reference to a particular class of components. Application of fuzzy inference systems could be very
useful in making such judgments (Cziesla and Tsatsaronis, 1999). It is also important to consider the
effects of contemplated design changes in one component on the performance of the remaining compo-
nents. These effects may be determined either by inspection of the system flowsheets or by using a
simulation program.
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A cogeneration system studied by Frangopoulos (1994), Tsatsaronis and Pisa (1994), Valero et al.
(1994), and von Spakovsky (1994) is used in the following case to demonstrate the application of steps
1, 2, 4, and 7. Examples of exergoeconomic evaluations and improvements of complex thermal systems
are discussed by Tsatsaronis et al. (1991, 1992, 1994).

Case Study

Figure 1.19 presents the base-case design of a cogeneration system that develops a net power output of
30 MW and provides 14 kg/s of saturated water vapor at 20 bar. Not all data assumed for this system
are realistic. The investment costs have been artificially increased to demonstrate the application of the
exergoeconomic methodology to a variety of components. The optimization of an actual cogeneration
system would be significantly easier because the components of a gas turbine system would not be
optimized individually, as done here.

The first five columns of Table 1.17 show relevant thermodynamic and economic data. The second
column of Table 1.18 shows the assumed purchased-equipment costs (PEC) for each component in the
base-case design. These costs are obtained from the cost equations given in Appendix B of Bejan et al.
(1996). The remaining direct costs, as well as the indirect costs, are estimated. The total capital investment
of the cogeneration system in the base case is approximately $46 million in mid-1994 dollars. Table 7.9
in Bejan et al. (1996) summarizes the parameters and assumptions used in the economic analysis, which
is based on the revenue-requirement method (EPRI Technical Assesment Guide, 1991).

TABLE 1.17 Mass Flow Rate, Temperature, Pressure, Exergy Rate, and Cost Data for the Streams 
of the Cogeneration System

State Stream

Mass Flow 
Rate
·m (kg/s)

Temperature
T

(K)

Pressure
p

(bar)

Exergy Flow
Rate

·
E

(MW)

Cost Flow
Rate

·
C

($/h)

Cost per 
Exergy Unit

c ($/GJ)

1 Air 91.28 298.1 1.01 0.000 0 0
2 Air 91.28 603.7 10.13 27.538 2756 27.80
3 Air 91.28 850.0 9.62 41.938 3835 25.40
4 Combustion products 92.92 1520.0 9.14 101.454 5301 14.51
5 Combustion products 92.92 1006.2 1.10 38.782 2026 14.51
6 Combustion products 92.92 779.8 1.07 21.752 1137 14.51
7 Combustion products 92.92 426.9 1.01 2.773 145 14.51
8 Water 14.00 298.1 20.00 0.062 0 0
9 Water 14.00 485.6 20.00 12.810 1256 27.23

10 Methane 1.64 298.1 12.00 84.994 1398 4.57
11 Power to air 

compressor
— — — 29.662 2003 18.76

12 Net power — — — 30.000 2026 18.76

TABLE 1.18 Values of the Purchased-Equipment Costs (PEC) and the Thermoeconomic Variables 
for the Base Design Case (T3 = 850 K; T4 = 1520 K; p2/p1 = 10; ηηηηsc = ηηηηst = 0.86)a

Component
PEC 

(106 $)
εεεε

(%)

·
E

(MW)
yD

(%)
cF

($/GJ)
cP

($/GJ)

·
CD

($/h)

·
Z

($/h)

·
C D

+ ·
Z

($/h)
r

(%)
f

(%)

Combustion 
Chamber

0.34 80.37 25.48 29.98 11.45 14.51 1050 68 1118 26.7 6.1

Gas Turbine 3.74 95.20 3.01 3.54 14.51 18.76 157 753 910 29.2 82.7
Air 
Compressor

3.73 92.84 2.12 2.50 18.76 27.80 143 753 896 48.2 84.0

HRSG 1.31 67.17 6.23 7.33 14.51 27.36 326 264 590 88.5 44.8
Air Preheater 0.94 84.55 2.63 3.09 14.51 20.81 137 189 326 43.4 57.9

a For the overall plant, we have ·CP,tot = $3617/h and ·CL,tot =
·C7 = $145/h.
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The year-by-year economic analysis results in the levelized annual costs for fuel ($10.4 × 106),
operating and maintenance ($6.0 × 106), and carrying charges ($10.5 × 106) for a levelization time period
of 10 years. These values are the corresponding levelized current-dollar costs obtained for the base case.
The levelized costs are used as input data for the thermoeconomic analysis and optimization. The cost
flow rates in the system are obtained by dividing the levelized annual costs by the number of hours of
system operation per year.

The methodology introduced above will now be applied to the case-study cogeneration system. The
objectives are to identify the effects of the design variables on the costs and suggest values of the design
variables that would make the system more cost-effective. The key design variables — the decision
variables — for the cogeneration system are the compressor pressure ratio p2 /p1, the isentropic com-
pressor efficiency ηsc, the isentropic turbine efficiency ηst, the temperature of the air entering the
combustion chamber T3, and the temperature of the combustion products entering the gas turbine T4.

First Design Case

The following nominal values of the decision variables correspond to the first workable design (base-
case design) developed for the cogeneration system of Figure 1.19 and Tables 1.17 and 1.18:

The last two columns of Table 1.17 and the last 10 columns of Table 1.18 summarize the values of the
thermoeconomic variables calculated for each component of the cogeneration system for the base-case
design. In accord with the methodology presented, the components are listed in order of descending
value of the sum ( ·

CD +
·
Z ).

The combustion chamber, the gas turbine, and the air compressor have the highest values of the sum
(

·
Z + ·

CD ) and, therefore, are the most important components from the thermoeconomic viewpoint. The
low value of the exergoeconomic factor f for the combustion chamber shows that the costs associated
with the combustion chamber are almost exclusively due to exergy destruction. A part of the exergy
destruction in a combustion chamber can be avoided by preheating the reactants and by reducing the
heat loss and the excess air, but this usually leads only to a small reduction. For simplicity, we assume
here that the heat loss cannot be further reduced. The excess air is determined by the desired temperature
T4 at the inlet to the gas turbine. The temperature T4 is a key design variable for it affects both the
performance of the entire system (exergy destruction in the combustion chamber, gas turbine, air
preheater, and heat-recovery steam generator (HRSG), and exergy loss associated with stream 7) and
the investment costs of the components.

An increase in the heat transfer rate in the air preheater, achieved through an increase in temperature
T3, also results in a decrease of the exergy destruction in the combustion chamber. Thus, the temperature
T3 is also a key design variable because, in addition to the combustion chamber, it affects the exergy
loss associated with stream 7 as well as the performance and investment costs of the air preheater and
the heat-recovery steam generator. Holding all other decision variables constant, the higher the temper-
ature T3 the smaller the average temperature difference in the air preheater and the heat-recovery steam
generator. A decrease in the average temperature difference in these heat exchangers results in an increase
in both the exergetic efficiency and the capital investment for each heat exchanger. In summary, by
considering measures for reducing the high cost rate associated with the exergy destruction in the
combustion chamber of the cogeneration system, two key design variables have been identified: tem-
peratures T3 and T4. An increase in these temperatures reduces the

·
CD value for the combustion chamber

and other components but increases their capital investment costs.
Turning next to the gas turbine, which has the second highest value of the sum ( ·Z + ·

CD), the relatively
large value of the factor f suggests that the capital investment and O&M costs dominate. The capital
investment cost of the gas turbine depends on temperature T4, pressure ratio p2/p1, and isentropic
efficiency ηst. To reduce the high

·
Z value associated with the gas turbine, a reduction in the value of at

least one of these variables should be considered.

p p T K T Ksc st2 1 3 410 0 86 850 1520= = = = =, . , , .η η
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The air compressor has the highest f value and the second-highest relative cost difference r among
all components. Thus, we would expect the cost-effectiveness of the entire system to improve if the ·Z
value for the air compressor is reduced. This may be achieved by reducing the pressure ratio p2/p1 and/or
the isentropic compressor efficiency ηsc.

The heat-recovery steam generator has the lowest exergetic efficiency and the highest r value among
all the components. As the f value indicates, almost 45% of the relative cost difference is caused by
the

·
Z value in this component, with the remaining 55% caused by exergy destruction. Thus, we might

conclude that a decrease of the exergy destruction in the HRSG could be cost-effective for the entire
system, even if this would increase the investment cost associated with this component. The exergy
destruction in the HRSG can be reduced by decreasing the values of T6 and T7. A decrease in the value
of T7 also results in a decrease in the exergy loss from the total system. In terms of the decision variables,
temperatures T6 and T7 may be reduced by increasing T5 and/or decreasing T4 at fixed values of the
remaining decision variables.

The relatively high value of f in the air preheater suggests a reduction in the investment cost of this
component. This can be achieved by decreasing T3. It should be noted, however, that changes suggested
by the evaluation of this component should only be considered if they do not contradict changes suggested
by components with a larger value of ( ·CD + ·Z).

Summarizing the foregoing conclusions, the following changes in the design variables are expected
to improve the cost-effectiveness of the system:

• Increase the value of T3, as suggested by the evaluation of the combustion chamber and HRSG.
• Decrease the pressure ratio p2/p1 (and thus p4/p5) and the isentropic efficiencies ηsc and ηst, as

suggested by the evaluation of the air compressor and gas turbine.
• Maintain T4 fixed, since we get contradictory indications from the evaluation of the combustion

chamber on one side and the gas turbine and HRSG on the other side.

Second Design Case

Contemplating the effects of changes made in accordance with the above list in the values of the design
variables used in the first iteration, the following new values are selected for the second design case:

The new values of the thermoeconomic variables for each component are summarized in Table 1.19. In
the new design, the combustion chamber, the gas turbine, and the air compressor also have the highest
values of the sum ( ·CD + ·Z) and, therefore, are still the most important components from the thermo-
economic viewpoint. The high cost rate associated with the combustion chamber can be reduced by
increasing the values of T3 and T4. In the evaluation of the cogeneration system we should, however,
consider that the value of the combustion chamber will always be the highest among the ( ·CD + ·Z) values
for the components of the cogeneration system.

The gas turbine now has the highest f value. The reduction in this value from 82.7% in the base design
to 81.0% in the new design is relatively small compared with a target value of below 75%. This
observation suggests (1) a significant decrease in the values of ηst and/or p2/p1 — that is, a decrease
greater than the decrease in these variables in the previous step: from 86 to 85% and from 10 to 9,
respectively; and (2) a reduction in the value of T4. Note that the decrease in the T4 value contradicts
the corresponding suggestion from the combustion chamber.

The high values of the exergoeconomic factor f and the relative cost difference r for the air compressor
suggest a decrease in the values of the decision variables p2/p1 and ηsc.

The anticipated increase in the exergetic efficiency of the HRSG (see first iteration) was not realized
because of the interdependence of the components. The reduction in the values of p2/p1, ηsc, and ηst for
the compressor and the turbine leads to an increase in the temperature differences (and, therefore, a
decrease in the exergetic efficiency) of the HRSG. Thus, the HRSG thermoeconomic evaluation suggests
that the T3 value increases and the T4 value decreases.

T K T K p p3 4 2 1870 1520 9 85 85= = ( ) = = =, , , %, %.unchanged sc stη η
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The relatively high value of f in the air preheater suggests a reduction in the T3 value. As noted in
the first iteration, however, changes suggested by the evaluation of this component should only be
considered if they do not contradict changes suggested by components with a higher value of the sum
( ·C D +

·Z).
Summarizing the foregoing suggestions from the thermoeconomic evaluation of each component, the

following changes in the decision variables are expected to improve the cost-effectiveness of the cogen-
eration system:

• Increase the value of T3 , as suggested by the evaluation of the combustion chamber and HRSG.

• Decrease the pressure ratio p2 /p1 and the isentropic efficiencies ηsc and ηst, as suggested by the
evaluations of the air compressor and gas turbine.

• Decrease the temperature T4, as suggested from the evaluations of the gas turbine and the HRSG.

Third Design Case

To illustrate the effect of the suggested changes in the decision variables on the overall costs, we use
the following new set of values for the design variables:

The results from the thermoeconomic analysis for the last set of values are summarized in Table 1.19
by the values given in parentheses. A comparison of the corresponding values shown in Table 1.19
demonstrates the improvement in the cost-effectiveness of the last design case. As a result of these
changes, the value of the objective function

·
CP,tot is reduced from $3355/h to $2934/h. The

·
C7 value has

increased from $157/h in the new case to $167/h in the last case. This increase, however, is outweighed
by the decreases in the values of ( ·CD,k +

·Zk ).

Additional Iterations

Additional iterations conducted in a similar way are necessary to further decrease the value of the
objective function and/or establish a nearly optimal design case. The cost-optimal values of the decision
variables (Bejan et al., 1996) are

TABLE 1.19 Component Data for the Second Iteration Case: (T3 = 870 K; T4 = 1520 K; p2/p1 = 9; ηηηηsc = 85%; 
ηηηηst = 85%)a. The Values Given in Parentheses Refer to the Third Iteration Case Considered Here (T3 = 910 K; 
T4 = 1480 K; p2/p1 = 7; ηηηηsc = 0.83)b

Component
εεεε

(%)

·
ED

(MW)
yD

(%)
cF

($/GJ)
cP

($/GJ)

·
CD

($/h)

·
Z

($/h)

·
CD + 

·
Z

($/h)
r

(%)
f

(%)

Combustion 
chamber

80.3
(81.3)

25.93
(27.47)

29.77
(29.92)

10.50
(9.42)

13.26
(11.71)

980
(931)

72
(55)

1052
(986)

26.3
(24.4)

6.8
(5.5)

Gas turbine 94.9
(94.3)

3.18
(3.69)

3.66
(4.01)

13.26
(11.71)

16.97
(13.75)

152
(155)

647
(296)

799
(451)

28.0
(17.5)

81.0
(65.6)

Air 
compressor

92.1
(90.5)

2.34
(2.99)

2.69
(3.25)

16.97
(13.75)

23.96
(18.38)

143
(148)

546
(324)

689
(472)

41.2
(33.6)

79.2
(68.7)

HRSG 66.6
(67.6)

6.40
(6.10)

7.35
(6.65)

13.26
(11.71)

25.60
(23.51)

305
(257)

261
(284)

566
(541)

93.1
(100.7)

46.1
(52.5)

Air preheater 84.7
(85.6)

3.15
(4.97)

3.62
(4.90)

13.26
(11.71)

18.94
(16.53)

150
(190)

206
(275)

356
(464)

42.9
(41.2)

57.8
(59.2)

Overall plant 49.1
(46.6)

41.01
(44.79)

47.09
(48.79)

4.57
(4.57)

21.80
(19.06)

675
(736)

1922
(1424)

2597
(2160)

377.0
(317.2)

74.0
(65.9)

a For the overall plant in the new design case, we have ·CP,tot = $3355/h and ·CL,tot =
·C7 = $157/h.

b For the overall plant in this design case, we have ·CP,tot = $2934/h and ·CL,tot =
·C7 = $167/h.

T K T K p p sc3 4 2 1910 1480 7 0 83 0 83= = = = =, , , . , .η η and st
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© 2000 by CRC Press LLC



With these values we obtain the objective function
·

CP,tot = $2870/h. For the cost-optimal case, the
exergetic efficiency of the overall system is 45.0%, the cost rate associated with the exergy loss is $205/h,
and the pinch temperature difference in the heat-recovery steam generator is 49.7 K.

1.10 Economic Analysis of Thermal Systems

Generally, each company has a preferred approach for conducting an economic analysis and calculating
the costs associated with the products generated in a thermal system. Here only a few general introductory
comments are made. A detailed discussion of an economic analysis is given in Bejan et al. (1996).

A complete economic analysis consists of the following three steps:

Step1. Estimate the required total capital investment.
Step 2. Determine the economic, financial, operating, and market-associated parameters for the

detailed cost calculation.
Step 3. Calculate the costs of all products generated by the system.

These steps are now discussed in turn.

Estimation of Total Capital Investment

The capital needed to purchase the land, build all the necessary facilities, and purchase and install the
required machinery and equipment for a system is called the fixed-capital investment. The fixed-capital
investment represents the total system cost, assuming a zero-time design and construction period (over-
night construction). The total capital investment is the sum of the fixed-capital investment and other
outlays (e.g., startup costs, working capital, costs of licensing, research and development, as well as
interest during construction).

The costs of all permanent equipment, materials, labor, and other resources involved in the fabrication,
erection, and installation of the permanent facilities are the direct costs. The indirect costs (e.g., costs
associated with engineering, supervision, and construction, including contractor’s profit and contingen-
cies) do not become a permanent part of the facilities but are required for the orderly completion of the
project. The fixed-capital investment is the sum of all direct and indirect costs.

The purchased equipment costs are estimated with the aid of vendors’ quotations, quotations from
experienced professional cost estimators, calculations using extensive cost databases, or estimation
charts. If necessary, the cost estimates of purchased equipment must be adjusted for size (with the aid
of scaling exponents) and for time (with the aid of cost indices). The remaining direct costs are associated
with equipment installation, piping, instrumentation, controls, electrical equipment and materials, land,
civil structural and architectural work, and service facilities. These direct costs, the indirects costs, and
the other outlays, if they cannot be estimated directly, are calculated as a percentage of the purchased
equipment costs or alternatively as a percentage of the fixed-capital investment.

For more detailed information on the estimation of the total capital investment, readers should consult
the references by Bejan et al. (1996), Chauvel et al. (1976), Douglas (1988), Garrett (1989), Guthrie
(1969, 1970, 1974), Humphreys (1991), Perry and Chilton (1973), Peters and Timmerhaus (1991), Ulrich
(1984), and Valle-Riestra (1983).

Principles of Economic Evaluation

Decisions about expenditures generally require consideration of the time value of money: if an amount
of money P (present value) is deposited in an account earning i percent interest per time period and the
interest is compounded at the end of each of n time periods, the amount will grow to a future value (F):

(1.124)F P i n= +( )1
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In engineering economy, the unit of time is usually taken as the year. If compounding occurs p times
per year (p ≥ 1) for a total number of n years (n ≥ 1) and i is the annual rate of return (or cost-of- money
rate), Equation 1.124 becomes

(1.125)

Then the annual effective rate of return is

(1.126)

and the general equation for calculating the future value becomes

(1.127)

When Equation 1.127 is used to calculate the present value (P) of a future amount (F), the term ieff is
called effective discount rate. Table 1.20 summarizes some basic formulas and factors used in economic
analysis.

TABLE 1.20 Summary of Basic Formulas and Factors Used in Economic Analysis

Formulaa Factor

Single-payment compound-amount factor (SPCAF)

Single-payment present-worth factor or single-payment discount factor (SPDF)

Uniform-series compound-amount factor (USCAF)

Uniform-series sinking fund factor (USSFF)

Uniform-series present-worth factor (USPWF)

Capital-recovery factor (CRF)

Capitalized-cost factor (CCF)

Constant-escalation levelization factor (CELF)

a In these expressions, cost-of-money compounding and ordinary annuities are assumed. The exponent n
denotes the number of years and ieff is the effective rate of return. The factor k is defined by Equation 1.132.
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Annuities
An annuity is a series of equal-amount money transactions occurring at equal time intervals or periods
(usually years). The most common type of annuity is the ordinary annuity, which involves money
transactions occurring at the end of each period.

If an amount A is deposited at the end of each period in an account earning ieff percent per period,
the future sum F (amount of the annuity) accrued at the end of the nth period is

(1.128)

The term [(1+ieff)n – 1]/ieff is called the uniform-series compound amount factor and the reciprocal,
ieff /[(1 + ieff)n – 1], is called the uniform-series sinking fund factor. These terms are also listed in Table 1.20.

The present value or present worth of an annuity (P) is defined as the amount of money that would
have to be invested at the beginning of the first time interval at an effective compound rate of return per
period ieff  to yield a total amount at the end of the last time interval equal to the amount of the annuity:

(1.129)

The expression on the right side of this equation is called the uniform-series present-worth factor. The
reciprocal of this factor is the capital-recovery factor (CRF, see Table 1.20), which may be used to
convert the expenditures associated with capital investment into an annuity.

Cost Escalation
The real escalation rate of an expenditure is the annual rate of expenditure change caused by factors
such as resource depletion, increased demand, and technological advances. The nominal (or apparent)
escalation rate (rn) is the total annual rate of change in an expenditure and includes the effects of both
the real escallation rate (rr) and the inflation rate (ri):

(1.130)

In the analysis of thermal systems we often assume that all costs except fuel costs and the prices of
byproducts change annually with the average inflation rate (i.e., rr = 0). When fossil-fuel costs are
expected over a long period of future years to increase on the average faster than the predicted inflation
rate, a positive real escalation rate for fuel costs may be appropriate for the economic analysis of the
thermal system being studied.

Levelization
Cost escalation applied to an expenditure over an n-year period results in a nonuniform cost schedule
in which the expenditure at any year is equal to the previous year expenditure multiplied by (1 + rn).
The constant-escalation levelization factor (CELF, see Table 1.20) is used to express the relationship
between the value of the expenditure at the beginning of the first year (P0 ) and an equivalent annuity
(A), which is now called a levelized value. The levelization factor depends on both the effective annual
cost-of-money rate ieff and the nominal escalation rate rn:

(1.131)
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where

(1.132)

The concept of levelization is general and is defined as the use of time-value-of-money arithmetic to
convert a series of varying quantities to a financially equivalent constant quantity (annuity) over a
specified time interval. In exergoeconomics, the concept of levelization is applied to calculate the
levelized annual fuel costs, the levelized annual operating and maintenance expenses, and the levelized
total cost associated with the capital investment. Among all available approaches, the total revenue
requirement method (Bejan et al., 1996; Tsatsaronis et al., 1984, 1986) is the most detailed and most
appropriate method for that purpose.

Parameters and Assumptions
To conduct a detailed economic analysis several parameters must be specified and assumptions must be
made for the entire life of the system being analyzed. These include:

• The estimated total capital investment.

• Current fuel cost and operating and maintenace expenditures.

• Average capacity factors, average general inflation rate, and average nominal escalation rate of
each expenditure.

• Beginning and length of the design and construction period and of the operation period.

• Allocation of investment expenditures to the individual years of design and construction.

• Plant financing sources and associated required returns on capital.

• Tax rates.

• Depreciation method used for tax purposes.

• Insurance cost.

These parameters and assumptions are discussed in Bejan et al. (1996) and the EPRI Technical Assess-
ment Guide (1991).

Calculation of the Product Costs

In a conventional economic analysis, we must identify among all product streams of a thermal system
the main product stream, the cost of which is calculated from the cost balance. To proceed in this way,
it is necessary to make assumptions with respect to the selling prices of all the remaining product streams,
which are now byproduct streams.

However, when exergoeconomics is applied to a thermal system, the total annual levelized costs
associated with owning and operating the system are apportioned among the product streams using the
exergy costing approach and the auxiliary costing equations as discussed in Section 1.8. Thus, the cost
associated with each product stream is calculated directly and there is no need to make assumptions
about the prices of the byproducts.
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2.9 Non-Newtonian Flows
Introduction • Classification of Non-Newtonian Fluids • 
Apparent Viscosity • Constitutive Equations • Rheological 
Property Measurements • Fully Developed Laminar Pressure 
Drops for Time-Independent Non-Newtonian Fluids • Fully 
Developed Turbulent Flow Pressure Drops • Viscoelastic Fluids

2.1 Fluid Statics

Stanley A. Berger

Equilibrium of a Fluid Element

If the sum of the external forces acting on a fluid element is zero, the fluid will be either at rest or
moving as a solid body — in either case, we say the fluid element is in equilibrium. In this section we
consider fluids in such an equilibrium state. For fluids in equilibrium the only internal stresses acting
will be normal forces, since the shear stresses depend on velocity gradients, and all such gradients, by
the definition of equilibrium, are zero. If one then carries out a balance between the normal surface
stresses and the body forces, assumed proportional to volume or mass, such as gravity, acting on an
elementary prismatic fluid volume, the resulting equilibrium equations, after shrinking the volume to
zero, show that the normal stresses at a point are the same in all directions, and since they are known
to be negative, this common value is denoted by –p, p being the pressure.

Hydrostatic Pressure

If we carry out an equilibrium of forces on an elementary volume element dxdydz, the forces being
pressures acting on the faces of the element and gravity acting in the –z direction, we obtain

(2.1.1)

The first two of these imply that the pressure is the same in all directions at the same vertical height in
a gravitational field. The third, where γ is the specific weight, shows that the pressure increases with
depth in a gravitational field, the variation depending on ρ(z). For homogeneous fluids, for which ρ =
constant, this last equation can be integrated immediately, yielding

(2.1.2)

or

(2.1.3)

where h denotes the elevation. These are the equations for the hydrostatic pressure distribution.
When applied to problems where a liquid, such as the ocean, lies below the atmosphere, with a

constant pressure patm, h is usually measured (positive) downward from the ocean/atmosphere interface
and p at any distance h below this interface differs from patm by an amount

(2.1.4)

Pressures may be given either as absolute pressure, pressure measured relative to absolute vacuum,
or gauge pressure, pressure measured relative to atmospheric pressure.
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∂

∂
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∂
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Manometry

The hydrostatic pressure variation may be employed to measure pressure differences in terms of heights
of liquid columns — such devices are called manometers and are commonly used in wind tunnels and
a host of other applications and devices. Consider, for example the U-tube manometer shown in Figure
2.1.1 filled with liquid of specific weight γ, the left leg open to the atmosphere and the right to the region
whose pressure p is to be determined. In terms of the quantities shown in the figure, in the left leg

(2.1.5a)

and in the right leg

(2.1.5b)

the difference being

(2.1.6)

which determines p in terms of the height difference d = h1 – h2 between the levels of the fluid in the
two legs of the manometer.

Hydrostatic Forces on Submerged Objects

The force acting on a submerged object due to the hydrostatic pressure is given by

(2.1.7)

where h is the variable vertical depth of the element dA and p0 is the pressure at the surface. In turn we
consider plane and nonplanar surfaces.

Forces on Plane Surfaces

Consider the planar surface A at an angle θ to a free surface shown in Figure 2.1.2. The force on one
side of the planar surface, from Equation (2.1.7), is

(2.1.8)

FIGURE 2.1.1 U-tube manometer.
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but h = y sin θ, so

(2.1.9)

where the subscript c indicates the distance measured to the centroid of the area A. The total force (on
one side) is then

(2.1.10)

Hence, the magnitude of the force is independent of the angle θ, and is equal to the pressure at the
centroid, γhc + p0, times the area. If we use gauge pressure, the term p0A in Equation (2.1.10) is dropped.

Since p is not evenly distributed over A, but varies with depth, F does not act through the centroid.
The point of action of F, called the center of pressure, can be determined by considering moments in
Figure 2.1.2. The moment of the hydrostatic force acting on the elementary area dA about the axis
perpendicular to the page passing through the point 0 on the free surface is

(2.1.11)

so if ycp denotes the distance to the center of pressure,

(2.1.12)

where Ix is the moment of inertia of the plane area with respect to the axis formed by the intersection
of the plane containing the planar surface and the free surface (say 0x). Dividing by F = γhcA =
γ yc sin θA gives

(2.1.13)

FIGURE 2.1.2 Hydrostatic force on a plane surface.
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By using the parallel axis theorem, Ix = Ixc +  where Ixc is the moment of inertia with respect to an
axis parallel to 0x passing through the centroid, Equation (2.1.13) becomes

(2.1.14)

which shows that, in general, the center of pressure lies below the centroid.
Similarly, we find xcp by taking moments about the y axis, specifically

(2.1.15)

or

(2.1.16)

where Ixy is the product of inertia with respect to the x and y axes. Again, by the parallel axis theorem,
Ixy = Ixyc + Axcyc, where the subscript c denotes the value at the centroid, so Equation (2.1.16) can be written

(2.1.17)

This completes the determination of the center of pressure (xcp, ycp). Note that if the submerged area is
symmetrical with respect to an axis passing through the centroid and parallel to either the x or y axes
that Ixyc = 0 and xcp = xc; also that as yc increases, ycp → yc.

Centroidal moments of inertia and centroidal coordinates for some common areas are shown in Figure
2.1.3.

Forces on Curved Surfaces

On a curved surface the forces on individual elements of area differ in direction so a simple summation
of them is not generally possible, and the most convenient approach to calculating the pressure force
on the surface is by separating it into its horizontal and vertical components.

A free-body diagram of the forces acting on the volume of fluid lying above a curved surface together
with the conditions of static equilibrium of such a fluid column leads to the results that:

1. The horizontal components of force on a curved submerged surface are equal to the forces exerted
on the planar areas formed by the projections of the curved surface onto vertical planes normal
to the directions of these components, the lines of action of these forces being calculated as
described earlier for planar surfaces; and 

2. The vertical component of force on a curved submerged surface is equal in magnitude to the
weight of the entire column of fluid lying above the curved surface, and acts through the center
of mass of this volume of fluid.

Since the three components of force, two horizontal and one vertical, calculated as above, need not meet
at a single point, there is, in general, no single resultant force. They can, however, be combined and
considered to be equivalent to a single force at any arbitrary point of application together with a moment
about that point.
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Hydrostatic Forces in Layered Fluids

All of the above results which employ the linear hydrostatic variation of pressure are valid only for
homogeneous fluids. If the fluid is heterogeneous, consisting of individual layers each of constant density,
then the pressure varies linearly with a different slope in each layer and the preceding analyses must be
remedied by computing and summing their separate contributions to the forces and moments.

Buoyancy

The same principles used above to compute hydrostatic forces can be used to calculate the net pressure
force acting on completely submerged or floating bodies. These laws of buoyancy, the principles of
Archimedes, are that:

1. A completely submerged body experiences a vertical upward force equal to the weight of the
displaced fluid; and 

2. A floating or partially submerged body displaces its own weight in the fluid in which it floats
(i.e., the vertical upward force is equal to the body weight).

The line of action of the buoyancy force in both (1) and (2) passes through the centroid of the displaced
volume of fluid; this point is called the center of buoyancy. (This point need not correspond to the center
of mass of the body, which could have nonuniform density. In the above it has been assumed that the
displaced fluid has a constant γ. If this is not the case, such as in a layered fluid, the magnitude of the
buoyant force is still equal to the weight of the displaced fluid, but the line of action of this force passes
through the center of gravity of the displaced volume, not the centroid.)

FIGURE 2.1.3 Centroidal moments of inertia and coordinates for some common areas.
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If a body has a weight exactly equal to that of the volume of fluid it displaces, it is said to be neutrally
buoyant and will remain at rest at any point where it is immersed in a (homogeneous) fluid.

Stability of Submerged and Floating Bodies

Submerged Body

A body is said to be in stable equilibrium if when given a slight displacement from the equilibrium
position the forces thereby created tend to restore it back to its original position. The forces acting on
a submerged body are the buoyancy force, FB, acting through the center of buoyancy, denoted by CB,
and the weight of the body, W, acting through the center of gravity denoted by CG (see Figure 2.1.4).
We see from Figure 2.1.4 that if the CB lies above the CG a rotation from the equilibrium position
creates a restoring couple which will rotate the body back to its original position — thus, this is a stable
equilibrium situation. The reader will readily verify that when the CB lies below the CG, the couple
that results from a rotation from the vertical increases the displacement from the equilibrium position
— thus, this is an unstable equilibrium situation.

Partially Submerged Body

The stability problem is more complicated for floating bodies because as the body rotates the location
of the center of buoyancy may change. To determine stability in these problems requires that we determine
the location of the metacenter. This is done for a symmetric body by tilting the body through a small
angle ∆θ from its equilibrium position and calculating the new location of the center of buoyancy CB′;
the point of intersection of a vertical line drawn upward from CB′ with the line of symmetry of the
floating body is the metacenter, denoted by M in Figure 2.1.5, and it is independent of ∆θ for small

FIGURE 2.1.4 Stability for a submerged body: (left) equilibrium position, (right) slightly rotated.

FIGURE 2.1.5 Stability for a partially submerged body.
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angles. If M lies above the CG of the body, we see from Figure 2.1.5 that rotation of the body leads to
a restoring couple, whereas M lying below the CG leads to a couple which will increase the displacement.
Thus, the stability of the equilibrium depends on whether M lies above or below the CG. The directed
distance from CG to M is called the metacentric height, so equivalently the equilibrium is stable if this
vector is positive and unstable if it is negative; stability increases as the metacentric height increases.
For geometrically complex bodies, such as ships, the computation of the metacenter can be quite
complicated.

Pressure Variation in Rigid-Body Motion of a Fluid

In rigid-body motion of a fluid all the particles translate and rotate as a whole, there is no relative motion
between particles, and hence no viscous stresses since these are proportional to velocity gradients. The
equation of motion is then a balance among pressure, gravity, and the fluid acceleration, specifically,

(2.1.18)

where a is the uniform acceleration of the body. Equation (2.1.18) shows that the lines of constant
pressure, including a free surface if any, are perpendicular to the direction g – a. Two important
applications of this are to a fluid in uniform linear translation and rigid-body rotation. While such
problems are not, strictly speaking, fluid statics problems, their analysis and the resulting pressure
variation results are similar to those for static fluids.

Uniform Linear Acceleration

For a fluid partially filling a large container moving to the right with constant acceleration a = (ax, ay)
the geometry of Figure 2.1.6 shows that the magnitude of the pressure gradient in the direction n normal
to the accelerating free surface, in the direction g – a, is

(2.1.19)

FIGURE 2.1.6 A fluid with a free surface in uniform linear acceleration.
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and the free surface is oriented at an angle to the horizontal

(2.1.20)

Rigid-Body Rotation

Consider the fluid-filled circular cylinder rotating uniformly with angular velocity ΩΩΩΩ = Ωez (Figure 2.1.7).
The only acceleration is the centripetal acceleration ΩΩΩΩ × (ΩΩΩΩ × r) = – rΩ2er, so Equation 2.1.18 becomes

(2.1.21)

or

(2.1.22)

Integration of these equations leads to

(2.1.23)

FIGURE 2.1.7 A fluid with a free surface in rigid-body rotation.
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where po is the reference pressure (at r = z = 0). This result shows that at any fixed r the pressure varies
hydrostatically in the vertical direction, while the constant pressure surfaces, including the free surface,
are paraboloids of revolution.

Further Information

The reader may find more detail and additional information on the topics in this section in any one of
the many excellent introductory texts on fluid mechanics, such as

White, F.M. 1999. Fluid Mechanics, 4th ed., McGraw-Hill, New York.
Munson, B.R., Young, D.F., and Okiishi, T.H. 1998. Fundamentals of Fluid Mechanics, 3rd ed., John
Wiley & Sons, New York.
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2.2 Equations of Motion and Potential Flow

Stanley A. Berger

Integral Relations for a Control Volume

Like most physical conservation laws those governing the motion of a fluid apply to material particles or
systems of such particles. This so-called Lagrangian viewpoint is generally not as useful in practical fluid
flows as an analysis based on the flow through fixed (or deformable) control volumes — the Eulerian
viewpoint. The relationship between these two viewpoints can be deduced from the Reynolds transport
theorem, from which we also most readily derive the governing integral and differential equations of motion.

Reynolds Transport Theorem

The extensive quantity B, a scalar, vector, or tensor, is defined as any property of a given quantity of
fluid (e.g., momentum, energy) and b as the corresponding value per unit mass (the intensive value).
The Reynolds transport theorem for a moving and arbitrarily deforming control volume CV, with
boundary CS (see Figure 2.2.1), states that

(2.2.1)

where Bsystem is the total quantity of B in the system (any mass of fixed identity), n is the outward normal
to the CS, Vr = V(r, t) – VCS(r, t), the velocity of the fluid particle, V(r, t), relative to that of the CS,
VCS(r, t), and d/dt on the left-hand side is the derivative following the fluid particles, i.e., the fluid mass
comprising the system. The theorem states that the time rate of change of the total B in the system is
equal to the rate of change within the CV plus the net flux of B through the CS. To distinguish between
the d/dt which appears on the two sides of Equation (2.2.1) but which have different interpretations, the
derivative on the left-hand side, following the system, is denoted by D/Dt and is called the material
derivative. This notation is used in what follows. For any function f(x, y, z, t),

For a CV fixed with respect to the reference frame, Equation (2.2.1) reduces to

(2.2.2)

(The time derivative operator in the first term on the right-hand side may be moved inside the integral,
in which case it is then to be interpreted as the partial derivative ∂/∂t.)

Conservation of Mass

If we apply Equation (2.2.2) for a fixed control volume, with Bsystem the total mass in the system, then
since conservation of mass requires that DBsystem/Dt = 0 there follows, since b = Bsystem/m = 1,

d

dt
B

d
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b d b dArsystem
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(2.2.3)

This is the integral form of the conservation of mass law for a fixed control volume. For a steady flow,
Equation (2.2.3) reduces to

(2.2.4)

whether compressible or incompressible. For an incompressible flow, ρ = constant, so

(2.2.5)

whether the flow is steady or unsteady.

Conservation of Momentum

The conservation of (linear) momentum states that

(2.2.6)

where M is the total system momentum. For an arbitrarily moving, deformable control volume it then
follows from Equation (2.2.1) with b set to V,

(2.2.7)

This expression is only valid in an inertial coordinate frame. To write the equivalent expression for a
noninertial frame we must use the relationship between the acceleration aI in an inertial frame and the
acceleration aR in a noninertial frame,

FIGURE 2.2.1 Control volume.
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(2.2.8)

where R is the position vector of the origin of the noninertial frame with respect to that of the inertial
frame, Ω is the angular velocity of the noninertial frame, and r and V the position and velocity vectors
in the noninertial frame. The third term on the right-hand side of Equation (2.2.8) is the Coriolis
acceleration, and the fourth term is the centripetal acceleration. For a noninertial frame Equation (2.2.7)
is then

(2.2.9)

where the frame acceleration terms of Equation (2.2.8) have been brought to the left-hand side because
to an observer in the noninertial frame they act as “apparent” body forces.

For a fixed control volume in an inertial frame for steady flow it follows from the above that

(2.2.10)

This expression is the basis of many control volume analyses for fluid flow problems.
The cross product of r, the position vector with respect to a convenient origin, with the momentum

Equation (2.2.6) written for an elementary particle of mass dm, noting that (dr/dt) × V = 0, leads to the
integral moment of momentum equation

(2.2.11)

where ΣM is the sum of the moments of all the external forces acting on the system about the origin of
r, and MI is the moment of the apparent body forces (see Equation (2.2.9)). The right-hand side can be
written for a control volume using the appropriate form of the Reynolds transport theorem.

Conservation of Energy

The conservation of energy law follows from the first law of thermodynamics for a moving system

(2.2.12)

where  is the rate at which heat is added to the system,  the rate at which the system works on
its surroundings, and e is the total energy per unit mass. For a particle of mass dm the contributions to
the specific energy e are the internal energy u, the kinetic energy V2/2, and the potential energy, which
in the case of gravity, the only body force we shall consider, is gz, where z is the vertical displacement
opposite to the direction of gravity. (We assume no energy transfer owing to chemical reaction as well
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as no magnetic or electric fields.) For a fixed control volume it then follows from Equation (2.2.2) [with
b = e = u + (V2/2) + gz] that

(2.2.13)

Problem

An incompressible fluid flows through a pump at a volumetric flow rate  The (head) loss between
sections 1 and 2 (see Figure 2.2.2 ) is equal to (V is the average velocity at the section).
Calculate the power that must be delivered by the pump to the fluid to produce a given increase in
pressure, ∆p = p2 – p1.

Solution: The principal equation needed is the energy Equation (2.2.13). The term  the rate at which
the system does work on its surroundings, for such problems has the form

(P.2.2.1)

where represents the work done on the fluid by a moving shaft, such as by turbines, propellers,
fans, etc., and the second term on the right side represents the rate of working by the normal stress, the
pressure, at the boundary. For a steady flow in a control volume coincident with the physical system
boundaries and bounded at its ends by sections 1 and 2, Equation (2.2.13) reduces to (u ≡ 0),

(P.2.2.2)

Using average quantities at sections 1 and 2, and the continuity Equation (2.2.5), which reduces in this
case to

(P.2.2.3)

we can write Equation (P.2.2.2) as

(P.2.2.4)

FIGURE 2.2.2 Pump producing pressure increase.
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 the rate at which heat is added to the system, is here equal to –  the head loss between
sections 1 and 2. Equation (P.2.2.4) then can be rewritten

or, in terms of the given quantities,

(P.2.2.5)

Thus, for example, if the fluid is water (ρ ≈ 1000 kg/m3, γ = 9.8 kN/m3),  = 0.5 m3/sec, the heat
loss is  and ∆p = p2 – p1 = 2 × 105N/m2 = 200 kPa, A1 = 0.1 m2 = A2/2, (z2 – z1) = 2 m, we
find, using Equation (P.2.2.5)

Differential Relations for Fluid Motion

In the previous section the conservation laws were derived in integral form. These forms are useful in
calculating, generally using a control volume analysis, gross features of a flow. Such analyses usually
require some a priori knowledge or assumptions about the flow. In any case, an approach based on
integral conservation laws cannot be used to determine the point-by-point variation of the dependent
variables, such as velocity, pressure, temperature, etc. To do this requires the use of the differential forms
of the conservation laws, which are presented below.

Mass Conservation–Continuity Equation

Applying Gauss’s theorem (the divergence theorem) to Equation (2.2.3) we obtain

(2.2.14)

which, because the control volume is arbitrary, immediately yields

(2.2.15)

This can also be written as

(2.2.16)
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using the fact that

(2.2.17)

Special cases:

1. Steady flow [(∂/∂t) ( ) ≡ 0]

(2.2.18)

2. Incompressible flow (Dρ/Dt ≡ 0)

(2.2.19)

Momentum Conservation

We note first, as a consequence of mass conservation for a system, that the right-hand side of Equation
(2.2.6) can be written as

(2.2.20)

The total force acting on the system which appears on the left-hand side of Equation (2.2.6) is the sum
of body forces Fb and surface forces Fs. The body forces are often given as forces per unit mass (e.g.,
gravity), and so can be written

(2.2.21)

The surface forces are represented in terms of the second-order stress tensor*  = {σij}, where σij is
defined as the force per unit area in the i direction on a planar element whose normal lies in the j
direction.** From elementary angular momentum considerations for an infinitesimal volume it can be
shown that σij is a symmetric tensor, and therefore has only six independent components. The total
surface force exerted on the system by its surroundings is given by

(2.2.22)

The integral momentum conservation law Equation (2.2.6) can then be written

(2.2.23)

*We shall assume the reader is familiar with elementary Cartesian tensor analysis and the associated subscript
notation and conventions. The reader for whom this is not true should skip the details and concentrate on the final
principal results and equations given at the ends of the next few subsections.

**This assignment of roles to the first and second subscripts of the stress tensor is a convention and is far from
universal. Frequently, their roles are reversed, the first subscript denoting the direction of the normal to the planar
element, the second the direction of the force.
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The application of the divergence theorem to the last term on the right-side of Equation (2.2.23) leads to

(2.2.24)

where ∇ ·  ≡ {∂σij/xj}. Since Equation (2.2.24) holds for any material volume, it follows that

(2.2.25)

(With the decomposition of Ftotal above, Equation (2.2.10) can be written

(2.2.26)

If ρ is uniform and f is a conservative body force, i.e., f = –∇Ψ, where Ψ is the force potential, then
Equation (2.2.26), after application of the divergence theorem to the body force term, can be written

(2.2.27)

It is in this form, involving only integrals over the surface of the control volume, that the integral form
of the momentum equation is used in control volume analyses, particularly in the case when the body
force term is absent.

Analysis of Rate of Deformation

The principal aim of the following two subsections is to derive a relationship between the stress and the
rate of strain to be used in the momentum Equation (2.2.25). The reader less familiar with tensor notation
may skip these sections, apart from noting some of the terms and quantities defined therein, and proceed
directly to Equations (2.2.38) or (2.2.39).

The relative motion of two neighboring points P and Q, separated by a distance ηηηη, can be written
(using u for the local velocity)

or, equivalently, writing ∇u as the sum of antisymmetric and symmetric tensors,

(2.2.28)

where ∇u = {∂ui/∂xj}, and the superscript * denotes transpose, so (∇u)* = {∂uj/∂xi}. The second term
on the right-hand side of Equation (2.2.28) can be rewritten in terms of the vorticity, ∇ × u, so Equation
(2.2.28) becomes

(2.2.29)
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which shows that the local velocity field consists of a rigid-body translation, a rigid-body rotation with
angular velocity 1/2 (∇ × u), and a velocity or rate of deformation. The coefficient of ηηηη in the last term
in Equation (2.2.29) is defined as the rate-of-strain tensor and is denoted by ,  in subscript form

(2.2.30)

From  we can define a rate-of-strain central quadric, along the principal axes of which the deforming
motion consists of a pure straining extension or contraction.

Relationship Between Forces and Rate of Deformation

We are now in a position to determine the required relationship between the stress tensor  and the
rate of deformation. Assuming that in a static fluid the stress reduces to a (negative) hydrostatic or
thermodynamic pressure, equal in all directions, we can write

(2.2.31)

where  is the viscous part of the total stress and is called the deviatoric stress tensor,  is the identity
tensor, and δij is the corresponding Kronecker delta (δij = 0 if i ≠ j; δij = 1 if i = j). We make further
assumptions that (1) the fluid exhibits no preferred directions; (2) the stress is independent of any previous
history of distortion; and (3) that the stress depends only on the local thermodynamic state and the
kinematic state of the immediate neighborhood. Precisely, we assume that  is linearly proportional to
the first spatial derivatives of u, the coefficient of proportionality depending only on the local thermo-
dynamic state. These assumptions and the relations below which follow from them are appropriate for
a Newtonian fluid. Most common fluids, such as air and water under most conditions, are Newtonian,
but there are many other fluids, including many which arise in industrial applications, which exhibit so-
called non-Newtonian properties. The study of such non-Newtonian fluids, such as viscoelastic fluids,
is the subject of the field of rheology.

With the Newtonian fluid assumptions above, and the symmetry of  which follows from the
symmetry of ,  one can show that the viscous part  of the total stress can be written as

(2.2.32)

so the total stress for a Newtonian fluid is

(2.2.33)

or, in subscript notation

(2.2.34)

(the Einstein summation convention is assumed here, namely, that a repeated subscript, such as in the
second term on the right-hand side above, is summed over; note also that ∇ · u = ∂uk/∂xk = ekk.) The
coefficient λ is called the “second viscosity” and µ the “absolute viscosity,” or more commonly the
“dynamic viscosity,” or simply the “viscosity.” For a Newtonian fluid λ and µ depend only on local
thermodynamic state, primarily on the temperature.
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We note, from Equation (2.2.34), that whereas in a fluid at rest the stress is an isotropic normal stress
(equal to p in all directions), this is not the case for a moving fluid, since in general σ11 ≠ σ22 ≠ σ33. To
have an analogous quantity to p for a moving fluid we define the pressure in a moving fluid as the
negative mean normal stress, denoted, say, by 

(2.2.35)

(σii is the trace of  and an invariant of ,  independent of the orientation of the axes). From Equation
(2.2.34)

(2.2.36)

For an incompressible fluid ∇ · u = 0 and hence  ≡ p. The quantity (λ + 2/3µ) is called the bulk
viscosity. If one assumes that the deviatoric stress tensor τij makes no contribution to the mean normal
stress, it follows that λ + 2/3µ = 0, so again  = p. This condition, λ = –2/3µ, is called the Stokes
assumption or hypothesis. If neither the incompressibility nor the Stokes assumptions are made, the
difference between  and p is usually still negligibly small because (λ + 2/3µ) ∇ · u << p in most fluid
flow problems. If the Stokes hypothesis is made, as is often the case in fluid mechanics, Equation (2.2.34)
becomes

(2.2.37)

The Navier–Stokes Equations

Substitution of Equation (2.2.33) into (2.2.25), since ∇ ·  = ∇φ, for any scalar function φ, yields
(replacing u in Equation (2.2.33) by V)

(2.2.38)

These equations are the Navier–Stokes equations (although the name is as often given to the full set of
governing conservation equations). With the Stokes assumption (λ = –2/3µ), Equation (2.2.38) becomes

(2.2.39)

If the Eulerian frame is not an inertial frame, then one must use the transformation to an inertial frame
either using Equation (2.2.8) or the “apparent” body force formulation, Equation (2.2.9).

Energy Conservation — The Mechanical and Thermal Energy Equations

In deriving the differential form of the energy equation we begin by assuming that heat enters or leaves
the material or control volume by heat conduction across the boundaries, the heat flux per unit area
being q. It then follows that

(2.2.40)
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The work-rate term  can be decomposed into the rate of work done against body forces, given by

– (2.2.41)

and the rate of work done against surface stresses, given by

(2.2.42)

Substitution of these expressions for  and  into Equation (2.2.12), use of the divergence theorem,
and conservation of mass lead to

(2.2.43)

(note that a potential energy term is no longer included in e, the total specific energy, as it is accounted
for by the body force rate-of-working term ρf · V).

Equation (2.2.43) is the total energy equation showing how the energy changes as a result of working
by the body and surface forces and heat transfer. It is often useful to have a purely thermal energy
equation. This is obtained by subtracting from Equation (2.2.43) the dot product of V with the momentum
Equation (2.2.25), after expanding the last term in Equation (2.2.43), resulting in

(2.2.44)

With σij = –pδij + τij, and the use of the continuity equation in the form of Equation (2.2.16), the first
term on the right-hand side of Equation (2.2.44) may be written

(2.2.45)

where Φ is the rate of dissipation of mechanical energy per unit mass due to viscosity, and is given by

(2.2.46)

With the introduction of Equation (2.2.45), Equation (2.2.44) becomes

(2.2.47)

or

(2.2.48)
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where h = e + (p/ρ) is the specific enthalpy. Unlike the other terms on the right-hand side of Equation
(2.2.47), which can be negative or positive, Φ is always nonnegative and represents the increase in
internal energy (or enthalpy) owing to irreversible degradation of mechanical energy. Finally, from
elementary thermodynamic considerations

where S is the entropy, so Equation (2.2.48) can be written

(2.2.49)

If the heat conduction is assumed to obey the Fourier heat conduction law, so q = – k∇T, where k is the
thermal conductivity, then in all of the above equations

(2.2.50)

the last of these equalities holding only if k = constant.
In the event the thermodynamic quantities vary little, the coefficients of the constitutive relations for
 and q may be taken to be constant and the above equations simplified accordingly.
We note also that if the flow is incompressible, then the mass conservation, or continuity, equation

simplifies to 

(2.2.51)

and the momentum Equation (2.2.38) to

(2.2.52)

where ∇2 is the Laplacian operator. The small temperature changes, compatible with the incompressibility
assumption, are then determined, for a perfect gas with constant k and specific heats, by the energy
equation rewritten for the temperature, in the form

(2.2.53)

Boundary Conditions

The appropriate boundary conditions to be applied at the boundary of a fluid in contact with another
medium depends on the nature of this other medium — solid, liquid, or gas. We discuss a few of the
more important cases here in turn:

1. At a solid surface: V and T are continuous. Contained in this boundary condition is the “no-slip”
condition, namely, that the tangential velocity of the fluid in contact with the boundary of the
solid is equal to that of the boundary. For an inviscid fluid the no-slip condition does not apply,
and only the normal component of velocity is continuous. If the wall is permeable, the tangential
velocity is continuous and the normal velocity is arbitrary; the temperature boundary condition
for this case depends on the nature of the injection or suction at the wall.
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2. At a liquid/gas interface: For such cases the appropriate boundary conditions depend on what
can be assumed about the gas the liquid is in contact with. In the classical liquid free-surface
problem, the gas, generally atmospheric air, can be ignored and the necessary boundary conditions
are that (a) the normal velocity in the liquid at the interface is equal to the normal velocity of the
interface and (b) the pressure in the liquid at the interface exceeds the atmospheric pressure by
an amount equal to

(2.2.54)

where R1 and R2 are the radii of curvature of the intercepts of the interface by two orthogonal
planes containing the vertical axis. If the gas is a vapor which undergoes nonnegligible interaction
and exchanges with the liquid in contact with it, the boundary conditions are more complex. Then,
in addition to the above conditions on normal velocity and pressure, the shear stress (momentum
flux) and heat flux must be continuous as well.

For interfaces in general the boundary conditions are derived from continuity conditions for each
“transportable” quantity, namely continuity of the appropriate intensity across the interface and continuity
of the normal component of the flux vector. Fluid momentum and heat are two such transportable
quantities, the associated intensities are velocity and temperature, and the associated flux vectors are
stress and heat flux. (The reader should be aware of circumstances where these simple criteria do not
apply, for example, the velocity slip and temperature jump for a rarefied gas in contact with a solid
surface.)

Vorticity in Incompressible Flow

With µ = constant, ρ = constant, and f = –g = –gk the momentum equation reduces to the form (see
Equation (2.2.52))

(2.2.55)

With the vector identities

(2.2.56)

and

(2.2.57)

and defining the vorticity

(2.2.58)

Equation (2.2.55) can be written, noting that for incompressible flow ∇ · V = 0,
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The flow is said to be irrotational if

(2.2.60)

from which it follows that a velocity potential Φ can be defined

(2.2.61)

Setting ζ = 0 in Equation (2.2.59), using Equation (2.2.61), and then integrating with respect to all the
spatial variables, leads to

(2.2.62)

(the arbitrary function F(t) introduced by the integration can either be absorbed in Φ, or is determined
by the boundary conditions). Equation (2.2.62) is the unsteady Bernoulli equation for irrotational,
incompressible flow. (Irrotational flows are always potential flows, even if the flow is compressible.
Because the viscous term in Equation (2.2.59) vanishes identically for ζ = 0, it would appear that the
above Bernoulli equation is valid even for viscous flow. Potential solutions of hydrodynamics are in fact
exact solutions of the full Navier–Stokes equations. Such solutions, however, are not valid near solid
boundaries or bodies because the no-slip condition generates vorticity and causes nonzero ζ; the potential
flow solution is invalid in all those parts of the flow field that have been “contaminated” by the spread
of the vorticity by convection and diffusion. See below.)

The curl of Equation (2.2.59), noting that the curl of any gradient is zero, leads to

(2.2.63)

but

(2.2.64)

since div curl ( ) ≡ 0, and therefore also

(2.2.65)

(2.2.66)

Equation (2.2.63) can then be written

(2.2.67)

where ν = µ/ρ is the kinematic viscosity. Equation (2.2.67) is the vorticity equation for incompressible
flow. The first term on the right, an inviscid term, increases the vorticity by vortex stretching. In inviscid,
two-dimensional flow both terms on the right-hand side of Equation (2.2.67) vanish, and the equation
reduces to Dζζζζ/Dt = 0, from which it follows that the vorticity of a fluid particle remains constant as it
moves. This is Helmholtz’s theorem. As a consequence it also follows that if ζζζζ = 0 initially, ζζζζ ≡ 0 always;
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i.e., initially irrotational flows remain irrotational (for inviscid flow). Similarly, it can be proved that
DΓ/Dt = 0; i.e., the circulation around a material closed circuit remains constant, which is Kelvin’s
theorem.

If ν ≠ 0, Equation (2.2.67) shows that the vorticity generated, say, at solid boundaries, diffuses and
stretches as it is convected.

We also note that for steady flow the Bernoulli equation reduces to

(2.2.68)

valid for steady, irrotational, incompressible flow.

Stream Function

For two-dimensional planar, incompressible flows (V = (u, ν)), the continuity equation

(2.2.69)

can be identically satisfied by introducing a stream function ψ, defined by

(2.2.70)

Physically ψ is a measure of the flow between streamlines. (Stream functions can be similarly defined
to satisfy identically the continuity equations for incompressible cylindrical and spherical axisymmetric
flows; and for these flows, as well as the above planar flow, also when they are compressible, but only
then if they are steady.) Continuing with the planar case, we note that in such flows there is only a single
nonzero component of vorticity, given by

(2.2.71)

With Equation (2.2.70)
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For this two-dimensional flow Equation (2.2.67) reduces to
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where ∇4 = ∇2 (∇2). For uniform flow past a solid body, for example, this equation for Ψ would be
solved subject to the boundary conditions:

(2.2.75)

For the special case of irrotational flow it follows immediately from Equations (2.2.70) and (2.2.71)
with ζz = 0, that ψ satisfies the Laplace equation

(2.2.76)

Inviscid Irrotational Flow: Potential Flow

For irrotational flows we have already noted that a velocity potential Φ can be defined such that V =
∇Φ. If the flow is also incompressible, so ∇ · V = 0, it then follows that

(2.2.77)

so Φ satisfies Laplace’s equation. (Note that unlike the stream function ψ, which can only be defined
for two-dimensional flows, the above considerations for Φ apply to flow in two and three dimensions.
On the other hand, the existence of ψ does not require the flow to be irrotational, whereas the existence
of Φ does.)

Since Equation (2.2.77) with appropriate conditions on V at boundaries of the flow completely
determines the velocity field, and the momentum equation has played no role in this determination, we
see that inviscid irrotational flow — potential theory — is a purely kinematic theory. The momentum
equation enters only after Φ is known in order to calculate the pressure field consistent with the velocity
field V = ∇Φ.

For both two- and three-dimensional flows the determination of Φ makes use of the powerful tech-
niques of potential theory, well developed in the mathematical literature. For two-dimensional planar
flows the techniques of complex variable theory are available, since Φ may be considered as either the
real or imaginary part of an analytic function (the same being true for ψ, since for such two-dimensional
flows Φ and ψ are conjugate variables.)

Because the Laplace equation, obeyed by both Φ and ψ, is linear, complex flows may be built up
from the superposition of simple flows; this property of inviscid irrotational flows underlies nearly all
solution techniques in this area of fluid mechanics.

Problem

A two-dimensional inviscid irrotational flow has the velocity potential

(P.2.2.6)

What two-dimensional potential flow does this represent?

Solution. It follows from Equations (2.2.61) and (2.2.70) that for two-dimensional flows, in general

(P.2.2.7)
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It follows from Equation (P.2.2.6) that

(P.2.2.8)

Integration of Equation (P.2.2.8) yields

(P.2.2.9)

The streamlines, ψ = constant, and equipotential lines, Φ = constant, both families of hyperbolas and
each family the orthogonal trajectory of the other, are shown in Figure 2.2.3. Because the x and y axes
are streamlines, Equations (P.2.2.6) and (P.2.2.9) represent the inviscid irrotational flow in a right-angle
corner. By symmetry, they also represent the planar flow in the upper half-plane directed toward a
stagnation point at x = y = 0 (see Figure 2.2.4). In polar coordinates (r, θ), with corresponding velocity
components (ur , uθ), this flow is represented by

(P.2.2.10)

with

(P.2.2.11)

For two-dimensional planar potential flows we may also use complex variables, writing the complex
potential f(z) = Φ + iψ as a function of the complex variable z = x + iy, where the complex velocity is
given by f ′(z) = w(z) = u – iν. For the flow above

FIGURE 2.2.3 Potential flow in a 90° corner.
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(P.2.2.12)

Expressions such as Equation (P.2.2.12), where the right-hand side is an analytic function of z, may
also be regarded as a conformal mapping, which makes available as an aid in solving two-dimensional
potential problems all the tools of this branch of mathematics.

Further Information

More detail and additional information on the topics in this section may be found in more advanced
books on fluid dynamics, such as

Batchelor, G.K. 1967. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge,
England.
Warsi, Z.U.A. 1999. Fluid Dynamics. Theoretical and Computational Approaches, 2nd ed., CRC Press,
Boca Raton, FL.
Sherman, F.S. 1990. Viscous Flow, McGraw-Hill, New York.
Panton, R.L. 1996. Incompressible Flow, 2nd ed., John Wiley & Sons, New York.
Pozrikidis, C. 1997. Introduction to Theoritical and Computational Fluid Dynamics, Oxford University
Press, New York.

FIGURE 2.2.4 Potential flow impinging against a flat (180°) wall (plane stagnation-point flow).

f z z( ) = 2
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2.3 Similitude: Dimensional Analysis and Data Correlation

Stuart W. Churchill

Dimensional Analysis

Similitude refers to the formulation of a description for physical behavior that is general and independent
of the individual dimensions, physical properties, forces, etc. In this subsection the treatment of similitude
is restricted to dimensional analysis; for a more general treatment see Zlokarnik (1991). The full power
and utility of dimensional analysis is often underestimated and underutilized by engineers. This technique
may be applied to a complete mathematical model or to a simple listing of the variables that define the
behavior. Only the latter application is described here. For a description of the application of dimensional
analysis to a mathematical model see Hellums and Churchill (1964).

General Principles

Dimensional analysis is based on the principle that all additive or equated terms of a complete relationship
between the variables must have the same net dimensions. The analysis starts with the preparation of a
list of the individual dimensional variables (dependent, independent, and parametric) that are presumed
to define the behavior of interest. The performance of dimensional analysis in this context is reasonably
simple and straightforward; the principal difficulty and uncertainty arise from the identification of the
variables to be included or excluded. If one or more important variables are inadvertently omitted, the
reduced description achieved by dimensional analysis will be incomplete and inadequate as a guide for
the correlation of a full range of experimental data or theoretical values. The familiar band of plotted
values in many graphical correlations is more often a consequence of the omission of one or more
variables than of inaccurate measurements. If, on the other hand, one or more irrelevant or unimportant
variables are included in the listing, the consequently reduced description achieved by dimensional
analysis will result in one or more unessential dimensionless groupings. Such excessive dimensionless
groupings are generally less troublesome than missing ones because the redundancy will ordinarily be
revealed by the process of correlation. Excessive groups may, however, suggest unnecessary experimental
work or computations, or result in misleading correlations. For example, real experimental scatter may
inadvertently and incorrectly be correlated in all or in part with the variance of the excessive grouping.

In consideration of the inherent uncertainty in selecting the appropriate variables for dimensional
analysis, it is recommended that this process be interpreted as speculative and subject to correction on
the basis of experimental data or other information. Speculation may also be utilized as a formal technique
to identify the effect of eliminating a variable or of combining two or more. The latter aspect of
speculation, which may be applied either to the original listing of dimensional variables or to the resulting
set of dimensionless groups, is often of great utility in identifying possible limiting behavior or dimen-
sionless groups of marginal significance. The systematic speculative elimination of all but the most
certain variables, one at a time, followed by regrouping, is recommended as a general practice. The
additional effort as compared with the original dimensional analysis is minimal, but the possible return
is very high. A general discussion of this process may be found in Churchill (1981).

The minimum number of independent dimensionless groups i required to describe the fundamental
and parametric behavior is (Buckingham, 1914)

(2.3.1)

where n is the number of variables and m is the number of fundamental dimensions such as mass M,
length L, time θ, and temperature T that are introduced by the variables. The inclusion of redundant
dimensions such as force F and energy E that may be expressed in terms of mass, length, time, and

i n m= −
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temperature is at the expense of added complexity and is to be avoided. (Of course, mass could be
replaced by force or temperature by energy as alternative fundamental dimensions.) In some rare cases
i is actually greater than n – m. Then

(2.3.2)

where k is the maximum number of the chosen variables that cannot be combined to form a dimensionless
group. Determination of the minimum number of dimensionless groups is helpful if the groups are to
be chosen by inspection, but is unessential if the algebraic procedure described below is utilized to
determine the groups themselves since the number is then obvious from the final result.

The particular minimal set of dimensionless groups is arbitrary in the sense that two or more of the
groups may be multiplied together to any positive, negative, or fractional power as long as the number
of independent groups is unchanged. For example, if the result of a dimensional analysis is

(2.3.3)

where X, Y, and Z are independent dimensionless groups, an equally valid expression is

(2.3.4)

Dimensional analysis itself does not provide any insight as to the best choice of equivalent dimensionless
groupings, such as between those of Equations (2.3.3) and (2.3.4). However, isolation of each of the
variables that are presumed to be the most important in a separate group may be convenient in terms of
interpretation and correlation. Another possible criterion in choosing between alternative groupings may
be the relative invariance of a particular one. The functional relationship provided by Equation (2.3.3)
may equally well be expressed as

(2.3.5)

where X is implied to be the dependent grouping and Y and Z to be independent or parametric groupings.
Three primary methods of determining a minimal set of dimensionless variables are (1) by inspection;

(2) by combination of the residual variables, one at a time, with a set of chosen variables that cannot
be combined to obtain a dimensionless group; and (3) by an algebraic procedure. These methods are
illustrated in the examples that follow.

Example 2.3.1: Fully Developed Flow of Water Through a Smooth Round Pipe

Choice of Variables. The shear stress τw on the wall of the pipe may be postulated to be a function of
the density ρ and the dynamic viscosity µ of the water, the inside diameter D of the pipe, and the space-
mean of the time-mean velocity um. The limitation to fully developed flow is equivalent to a postulate
of independence from distance x in the direction of flow, and the specification of a smooth pipe is
equivalent to the postulate of independence from the roughness e of the wall. The choice of τw rather
than the pressure drop per unit length –dP/dx avoids the need to include the acceleration due to gravity
g and the elevation z as variables. The choice of um rather than the volumetric rate of flow V, the mass
rate of flow w, or the mass rate of flow per unit area G is arbitrary but has some important consequences
as noted below. The postulated dependence may be expressed functionally as φ{τw, ρ, µ, D, um} = 0 or
τw = φ{ρ, µ, D, um}.

i n k= −

φ X Y Z, ,{ } = 0

φ XY Z Y Z1 2 2 0, ,{ } =

X Y Z= { }φ ,
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Tabulation. Next prepare a tabular listing of the variables and their dimensions:

Minimal Number of Groups. The number of postulated variables is 5. Since the temperature does not
occur as a dimension for any of the variables, the number of fundamental dimensions is 3. From Equation
(2.3.1), the minimal number of dimensionless groups is 5 – 3 = 2. From inspection of the above tabulation,
a dimensionless group cannot be formed from as many as three variables such as D, µ, and ρ. Hence,
Equation (2.3.2) also indicates that i = 5 – 3 = 2.

Method of Inspection. By inspection of the tabulation or by trial and error it is evident that only two
independent dimensionless groups may be formed. One such set is

Method of Combination. The residual variables τw and µ may be combined in turn with the noncom-
bining variables ρ, D, and um to obtain two groups such as those above.

Algebraic Method. The algebraic method makes formal use of the postulate that the functional rela-
tionship between the variables may in general be represented by a power series. In this example such a
power series may be expressed as

where the coefficients Ai are dimensionless. Each additive term on the right-hand side of this expression
must have the same net dimensions as τw. Hence, for the purposes of dimensional analysis, only the first
term need be considered and the indexes may be dropped. The resulting highly restricted expression is
τw = AρaµbDc  Substituting the dimensions for the variables gives

Equating the sum of the exponents of M, L, and θ on the right-hand side of the above expression with
those of the left-hand side produces the following three simultaneous linear algebraic equations: 1 = a
+ b; –1 = –3a – b + c + d; and –2 = –b – d, which may be solved for a, c, and d in terms of b to obtain
a = 1 – b, c = –b, and d = 2 – b. Substitution then gives τw = Aρ1-bµb D–b  which may be regrouped as

Since this expression is only the first term of a power series, it should not be interpreted to imply that
 is necessarily proportional to some power at µ/Dumρ but instead only the equivalent of the

expression derived by the method of inspection. The inference of a power dependence between the
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dimensionless groups is the most common and serious error in the use of the algebraic method of
dimensional analysis.

Speculative Reductions. Eliminating ρ from the original list of variables on speculative grounds leads to

or its exact equivalent:

The latter expression with A = 8 is actually the exact solution for the laminar regime (Dumρ/µ < 1800).
A relationship that does not include ρ may alternatively be derived directly from the solution by the
method of inspection as follows. First, ρ is eliminated from one group, say ,  by multiplying it
with Dumρ/µ to obtain

The remaining group containing ρ is now simply dropped. Had the original expression been composed
of three independent groups each containing ρ, that variable would have to be eliminated from two of
them before dropping the third one.

The relationships that are obtained by the speculative elimination of µ, D, and um, one at a time, do
not appear to have any range of physical validity. Furthermore, if w or G had been chosen as the
independent variable rather than um, the limiting relationship for the laminar regime would not have
been obtained by the elimination of ρ.

Alternative Forms. The solution may also be expressed in an infinity of other forms such as

If τw is considered to be the principal dependent variable and um the principal independent variable, this
latter form is preferable in that these two quantities do not then appear in the same grouping. On the
other hand, if D is considered to  be the principal independent variable, the original formulation is
preferable. The variance of  is less than that of τwD/µum and τwD2ρ/µ2 in the turbulent regime
while that of τwD/µum is zero in the laminar regime. Such considerations may be important in devising
convenient graphical correlations.

Alternative Notations. The several solutions above are more commonly expressed as
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where f = 2  is the Fanning friction factor and Re = Dumρ/µ is the Reynolds number.
The more detailed forms, however, are to be preferred for purposes of interpretation or correlation

because of the explicit appearance of the individual, physically measurable variables.

Addition of a Variable. The above results may readily be extended to incorporate the roughness e of
the pipe as a variable. If two variables have the same dimensions, they will always appear as a
dimensionless group in the form of a ratio, in this case e appears most simply as e/D. Thus, the solution
becomes

Surprisingly, as contrasted with the solution for a smooth pipe, the speculative elimination of µ and
hence of the group Dumρ/µ now results in a valid asymptote for Dumρ/µ → ∞ and all finite values of
e/D, namely,

Example 2.3.2: Fully Developed Forced Convection in Fully Developed Flow in a Round 
Tube

It may be postulated for this process that h = φ{D, um, ρ, µ, k, cp}, where here h is the local heat transfer
coefficient, and cp and k are the specific heat capacity and thermal conductivity, respectively, of the fluid.
The corresponding tabulation is

The number of variables is 7 and the number of independent dimensions is 4, as is the number of
variables such as D, um, ρ, and k that cannot be combined to obtain a dimensionless group. Hence, the
minimal number of dimensionless groups is 7 – 4 = 3. The following acceptable set of dimensionless
groups may be derived by any of the procedures illustrated in Example 1:

Speculative elimination of µ results in
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which has often erroneously been inferred to be a valid asymptote for cpµ/k → 0. Speculative elimination
of D, um, ρ, k, and cp individually also does not appear to result in expressions with any physical validity.
However, eliminating cp and ρ or um gives a valid result for the laminar regime, namely,

The general solutions for flow and convection in a smooth pipe may be combined to obtain

which would have been obtained directly had um been replaced by τw in the original tabulation. This
latter expression proves to be superior in terms of speculative reductions. Eliminating D results in

which may be expressed in the more conventional form of

where Nu = hD/k is the Nusselt number and Pr = cpµ/k is the Prandtl number. This result appears to be
a valid asymptote for Re → ∞ and a good approximation for even moderate values (>5000) for large
values of Pr. Elimination of µ as well as D results in 

or

which appears to be an approximate asymptote for Re → ∞ and Pr → 0. Elimination of both cp and ρ
again yields the appropriate result for laminar flow, indicating that ρ rather than um is the meaningful
variable to eliminate in this respect.

The numerical value of the coefficient A in the several expressions above depends on the mode of
heating, a true variable, but one from which the purely functional expressions are independent. If jw, the
heat flux density at the wall, and Tw – Tm, the temperature difference between the wall and the bulk of
the fluid, were introduced as variables in place of h ≡ jw/(Tw – Tm), another group such as cp(Tw – Tm)
(Dρ/µ)2 or ρcp(Tw – Tm)/τw or  which represents the effect of viscous dissipation, would
be obtained. This effect is usually but not always negligible.

Example 2.3.3: Free Convection from a Vertical Isothermal Plate

The behavior for this process may be postulated to be represented by
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where g is the acceleration due to gravity, β is the volumetric coefficient of expansion with temperature,
T∞ is the unperturbed temperature of the fluid, and x is the vertical distance along the plate. The
corresponding tabulation is

The minimal number of dimensionless groups indicated by both methods is 9 – 4 = 5. A satisfactory
set of dimensionless groups, as found by any of the methods illustrated in Example 1, is

It may be reasoned that the buoyant force which generates the convective motion must be proportional
to ρgβ(Tw – T∞), thus, g in the first term on the right-hand side must be multiplied by β(Tw – T∞), resulting
in

The effect of expansion other than on the buoyancy is now represented by β(Tw – T∞), and the effect of
viscous dissipation by cp(Tw – T∞)(ρx/µ)2. Both effects are negligible for all practical circumstances.
Hence, this expression may be reduced to

or

where Nux = hx/k and Grx = ρ2gβ(Tw – T∞)x3/µ2 is the Grashof number.
Elimination of x speculatively now results in

or

This expression appears to be a valid asymptote for Grx → ∞ and a good approximation for the entire
turbulent regime. Eliminating µ speculatively rather than x results in
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or

The latter expression appears to be a valid asymptote for Pr → 0 for all Grx, that is, for both the laminar
and the turbulent regimes. The development of a valid asymptote for large values of Pr requires more
subtle reasoning. First cpµ/k is rewritten as µ/ρα where α = k/ρcp. Then ρ is eliminated speculatively
except as it occurs in ρgβ(Tw – T∞) and k/ρcp. The result is

or

where

is the Rayleigh number. The above expression for Nux appears to be a valid asymptote for Pr → ∞ and
a reasonable approximation for even moderate values of Pr for all Grx, that is, for both the laminar and
the turbulent regimes.

Eliminating x speculatively from the above expressions for small and large values of Pr results in

and

The former appears to be a valid asymptote for Pr → 0 and Grx → ∞ and a reasonable approximation
for very small values of Pr in the turbulent regime, while the latter is well confirmed as a valid asymptote
for Pr → ∞ and Grx → ∞ and as a good approximation for moderate and large values of Pr over the
entire turbulent regime. The expressions in terms of Grx are somewhat more complicated than those in
terms of Rax, but are to be preferred since Grx is known to characterize the transition from laminar to
turbulent motion in natural convection just as ReD does in forced flow in a channel. The power of
speculation combined with dimensional analysis is well demonstrated by this example in which valid
asymptotes are thereby attained for several regimes.
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Correlation of Experimental Data and Theoretical Values

Correlations of experimental data are generally developed in terms of dimensionless groups rather than
in terms of the separate dimensional variables in the interests of compactness and in the hope of greater
generality. For example, a complete set of graphical correlations for the heat transfer coefficient h of
Example 2.3.2 above in terms of each of the six individual independent variables and physical properties
might approach book length, whereas the dimensionless groupings both imply that a single plot with
one parameter should be sufficient. Furthermore, the reduced expression for the turbulent regime implies
that a plot of Nu/Re f1/2 vs. Pr should demonstrate only a slight parametric dependence on Re or Re f1/2.
Of course, the availability of a separate correlation for f as a function of Re is implied.

Theoretical values, that is, ones obtained by numerical solution of a mathematical model in terms of
either dimensional variables or dimensionless groups, are presumably free from imprecision. Even so,
because of their discrete form, the construction of a correlation or correlations for such values may be
essential for the same reasons as for experimental data.

Graphical correlations have the merit of revealing general trends, of providing a basis for evaluation
of the choice of coordinates, and most of all of displaying visually the scatter of the individual experi-
mental values about a curve representing a correlation or their behavior on the mean. (As mentioned in
the previous subsection, the omission of a variable may give the false impression of experimental error
in such a plot.) On the other hand, correlating equations are far more convenient as an input to a computer
than is a graphical correlation. These two formats thus have distinct and complementary roles; both
should generally be utilized. The merits and demerits of various graphical forms of correlations are
discussed in detail by Churchill (1979), while the use of logarithmic and arithmetic coordinates, the
effects of the appearance of a variable in both coordinates, and the effects of the distribution of error
between the dependent and independent variable are further illustrated by Wilkie (1985).

Churchill and Usagi (1972; 1974) proposed general usage of the following expression for the formu-
lation of correlating equations:

(2.3.6)

where yo{x} and y∞{x} denote asymptotes for small and large values of x, respectively, and n is an
arbitrary exponent. For convenience and simplicity, Equation (2.3.6) may be rearranged in either of the
following two forms:

(2.3.7)

or

(2.3.8)

where Y{x} ≡ y{x}/yo{x} and Z{x} ≡ y∞{x}/yo{x}. Equations (2.3.6), (2.3.7), and (2.3.9) are hereafter
denoted collectively as the CUE (Churchill–Usagi equation). The principle merits of the CUE as a
canonical expression for correlation are its simple form, generality, and minimal degree of explicit
empiricism, namely, only that of the exponent n, since the asymptotes yo{x} and y∞{x} are ordinarily
known in advance from theoretical considerations or well-established correlations. Furthermore, as will
be shown, the CUE is quite insensitive to the numerical value of n. Although the CUE is itself very
simple in form, it is remarkably successful in representing closely very complex behavior, even including
the dependence on secondary variables and parameters, by virtue of the introduction of such dependencies
through yo{x} and y∞{x}. In the rare instances in which such dependencies are not represented in the
asymptotes, n may be correlated as a function of the secondary variables and/or parameters. Although
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the CUE usually produces very close representations, it is empirical and not exact. In a few instances,
numerical values of n have been derived or rationalized on theoretical grounds, but even then some
degree of approximation is involved. Furthermore, the construction of a correlating expression in terms
of the CUE is subject to the following severe limitations:

1. The asymptotes yo{x} and y∞{x} must intersect once and only once;
2. The asymptotes yo{x} and y∞{x} must be free of singularities. Even though a singularity occurs

beyond the asserted range of the asymptote, it will persist and disrupt the prediction of the CUE,
which is intended to encompass all values of the independent variable x; and

3. The asymptotes must both be upper or lower bounds.

In order to avoid or counter these limitations it may be necessary to modify or replace the asymptotes
with others. Examples of this process are provided below. A different choice for the dependent variable
may be an option in this respect. The suitable asymptotes for use in Equation (2.3.6) may not exist in
the literature and therefore may need to be devised or constructed. See, for example, Churchill (1988b)
for guidance in this respect. Integrals and derivatives of the CUE are generally awkward and inaccurate,
and may include singularities not present or troublesome in the CUE itself. It is almost always preferable
to develop a separate correlating equation for such quantities using derivatives or integrals of yo{x} and
y∞{x}, simplified or modified as appropriate.

The Evaluation of n

Equation (2.3.6) may be rearranged as

(2.3.9)

and solved for n by iteration for any known value of y{x}, presuming that yo{x} and y∞{x} are known.
If y{x*} is known, where x* represents the value of x at the point of intersection of the asymptotes, that
is, for yo{x} = y∞{x}, Equation (2.3.9) reduces to

(2.3.10)

and iterative determination of n is unnecessary.
A graphical and visual method of evaluation of n is illustrated in Figure 2.3.1 in which Y{Z} is plotted

vs. Z for 0 ≤ Z ≤ 1 and Y{Z}/Z vs. 1/Z for 0 ≤ 1/Z ≤ 1 in arithmetic coordinates with n as a parameter.
Values of y{x} may be plotted in this form and the best overall value of n selected visually (as illustrated
in Figure 2.3.2). A logarithmic plot of Y{Z} vs. Z would have less sensitivity relative to the dependence
on n. (See, for example, Figure 1 of Churchill and Usagi, 1972.) Figure 2.3.1 explains in part the success
of the CUE. Although y and x may both vary from 0 to ∞, the composite variables plotted in Figure
2.3.1 are highly constrained in that the compound independent variables Z and 1/Z vary only between
0 and 1, while for n ≥ 1, the compound dependent variables Y{Z} and Y{Z}/Z vary only from 1 to 2.  

Because of the relative insensitivity of the CUE to the numerical value of n, an integer or a ratio of
two small integers may be chosen in the interest of simplicity and without significant loss of accuracy.
For example, the maximum variance in Y (for 0 ≤ Z ≤ 1) occurs at Z = 1 and increases only 100(21/20 –
1) = 3.5% if n is decreased from 5 to 4. If yo{x} and y∞{x} are both lower bounds, n will be positive,
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and if they are both upper bounds, n will be negative. To avoid extending Figure 2.3.1 for negative values
of n, 1/y{x} may simply be interpreted as the dependent variable.

Intermediate Regimes

Equations (2.3.6), (2.3.7), and (2.3.8) imply a slow, smooth transition between yo{x} and y∞{x} and,
moreover, one that is symmetrical with respect to x*(Z = 1). Many physical systems demonstrate instead
a relatively abrupt transition, as for example from laminar to turbulent flow in a channel or along a flat
plate. The CUE may be applied serially as follows to represent such behavior if an expression yi{x} is

FIGURE 2.3.1 Arithmetic, split-coordinate plot of Equation 2.3.10. (From Churchill, S.W. and Usagi, R. AIChE
J. 18(6), 1123, 1972. With permission from the American Institute of Chemical Engineers.)

FIGURE 2.3.2 Arithmetic, split-coordinate plot of computed values and experimental data for laminar free con-
vection from an isothermal vertical plate. (From Churchill, S.W. and Usagi, R. AIChE J. 18(6), 1124, 1972. With
permission from the American Institute of Chemical Engineers.)
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postulated for the intermediate regime. First, the transition from the initial to the intermediate regime is
represented by

(2.3.11)

Then the transition from this combined regime to the final regime by

(2.3.12)

Here, and throughout the balance of this subsection, in the interests of simplicity and clarity, the functional
dependence of all the terms on x is implied rather than written out explicitly. If yo is a lower bound and
yi is implied to be one, y1 and y∞ must be upper bounds. Hence, n will then be positive and m negative.
If yo and yi are upper bounds, y1 and y∞ must be lower bounds; then n will be negative and m positive.
The reverse formulation starting with y∞ and y1 leads by the same procedure to

(2.3.13)

If the intersections of yi with yo and y∞ are widely separated with respect to x, essentially the same
pair of values for n and m will be determined for Equations (2.3.12) and (2.3.13), and the two repre-
sentations for y will not differ significantly. On the other hand, if these intersections are close in terms
of x, the pair of values of m and n may differ significantly and one representation may be quite superior
to the other. In some instances a singularity in yo or y∞ may be tolerable in either Equation (2.3.12) or
(2.3.13) because it is overwhelmed by the other terms. Equations (2.3.12) and (2.3.13) have one hidden
flaw. For x → 0, Equation (2.3.12) reduces to

(2.3.14)

If yo is a lower bound, m is necessarily negative, and values of y less than yo are predicted. If yo/y∞ is
sufficiently small or if m is sufficiently large in magnitude, this discrepancy may be tolerable. If not,
the following alternative expression may be formulated, again starting from Equation (2.3.11):

(2.3.15)

Equation (2.3.15) is free from the flaw identified by means of Equation (2.3.14) and invokes no additional
empiricism, but a singularity may occur at y∞ = yo, depending on the juxtapositions of yo, yi, and y∞.
Similar anomalies occur for Equation (2.3.13) and the corresponding analog of Equation (2.3.14), as
well as for behavior for which n < 0 and m > 0. The preferable form among these four is best chosen
by trying each of them.

One other problem with the application of the CUE for a separate transitional regime is the formulation
of an expression for yi{x}, which is ordinarily not known from theoretical considerations. Illustrations
of the empirical determination of such expressions for particular cases may be found in Churchill and
Usagi (1974), Churchill and Churchill (1975), and Churchill (1976, 1977), as well as in Example 2.3.5
below.

Example 2.3.4: The Pressure Gradient in Flow through a Packed Bed of Spheres

The pressure gradient at asymptotically low rates of flow (the creeping regime) can be represented by
the Kozeny–Carman equation, Φ = 150 Rep, and at asymptotically high rates of flow (the inertial regime)
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by the Burke–Plummer equation, Φ = 1.75 (Rep)2, where Φ = ρε2dp(–dPf /dx)µ2(1 – ε), Rep = dpuoρ/µ(1
– ε), dp = diameter of spherical particles, m, ε = void fraction of bed of spheres, dPf /dx = dynamic
pressure gradient (due to friction), Pa/m, and uo = superficial velocity (in absence of the spheres), m/sec.
For the origin of these two asymptotic expressions see Churchill (1988a). They both have a theoretical
structure, but the numerical coefficients of 150 and 1.75 are basically empirical. These equations are
both lower bounds and have one intersection. Experimental data are plotted in Figure 2.3.3, which has
the form of Figure 2.3.1 with Y = Φ/150 Rep, Y/Z = Φ/(1.75 Rep)2 and Z = 1.75 Rep = Rep/85.7.
A value of n = 1 is seen to represent these data reasonably well on the mean, resulting in

which was originally proposed as a correlating equation by Ergun (1952) on the conjecture that the
volumetric fraction of the bed in “turbulent” flow is proportional to Rep. The success of this expression
in conventional coordinates is shown in Figure 2.3.4. The scatter, which is quite evident in the arithmetic
split coordinates of Figure 2.3.3, is strongly suppressed in a visual sense in the logarithmic coordinates
of Figure 2.3.4.

Example 2.3.5: The Friction Factor for Commercial Pipes for All Conditions

The serial application of the CUE is illustrated here by the construction of a correlating equation for
both smooth and rough pipes in the turbulent regime followed by combination of that expression with
ones for the laminar and transitional regimes.

The Turbulent Regime. The Fanning friction factor, fF, for turbulent flow in a smooth round pipe for
asymptotically large rates of flow (say ReD > 5000) may be represented closely by the empirical
expression:

FIGURE 2.3.3 Arithmetic, split-coordinate plot of experimental data for the pressure drop in flow through a packed
bed of spheres. (From Churchill, S.W. and Usagi, R. AIChE J. 18(6), 1123, 1972. With permission from the American
Institute of Chemical Engineers.)
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A corresponding empirical representation for naturally rough pipe is

Direct combination of these two expressions in the form of the CUE does not produce a satisfactory
correlating equation, but their combination in the following rearranged forms:

and

with n = –1 results in, after the reverse rearrangement,

The exact equivalent of this expression in structure but with the slightly modified numerical coefficients
of 0.300, 2.46, and 0.304 was postulated by Colebrook (1938–1939) to represent his own experimental

FIGURE 2.3.4 Logarithmic correlation of experimental data for the pressure drop in flow through a packed bed of
spheres. (From Churchill, S.W. and Usagi, R. AIChE J. 18(6), 1123, 1972. With permission from the American
Institute of Chemical Engineers.)
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data. The coefficients of the expression given here are presumed to be more accurate, but the difference
in the predictions of fF with the two sets of coefficients is within the band of uncertainty of the
experimental data. The turbulent regime of the “friction-factor” plot in most current textbooks and
handbooks is simply a graphical representation of the Colebrook equation. Experimental values are not
included in such plots since e, the effective roughness of commercial pipes, is simply a correlating factor
that forces agreement with the Colebrook equation. Values of e for various types of pipe in various
services are usually provided in an accompanying table, that thereby constitutes an integral part of the
correlation.

The Laminar Region. The Fanning friction factor in the laminar regime of a round pipe (Red < 1800)
is represented exactly by the following theoretical expression known as Poiseuille’s law: fF = 16/ReD.
This equation may be rearranged as follows for convenience in combination with that for turbulent flow:

The Transitional Regime. Experimental data as well as semitheoretical computed values for the limiting
behavior in the transition may be represented closely by (fF/2) = (ReD/37500)2. This expression may be
rewritten, in terms of (2/fF)1/2 and ReD(fF/2)1/2, as follows:

Overall Correlation. The following correlating equation for all ReD(fF/2)1/2 and e/D may now be con-
structed by the combination of the expressions for the turbulent and transition regimes in the form of
the CUE with n = 8, and then that expression and that for the laminar regime with n = –12, both
components being chosen on the basis of experimental data and predicted values for the full regime of
transition:

The absolute value signs are only included for aesthetic reasons; the negative values of the logarithmic
term for very small values of ReD(fF/2)1/2 do not affect the numerical value of (2/fF)1/2 in the regime in
which they occur. This overall expression appears to have a complicated structure, but it may readily
be recognized to reduce to its component parts when the corresponding term is large with respect to the
other two. It is insensitive to the numerical values of the two arbitrary exponents. For example, doubling
their values would have almost no effect on the predictions of (fF/2)1/2. The principal uncertainty is
associated with the expression for the transition regime, but the overall effect of the corresponding term
is very small. The uncertainties associated with this correlating equation are common to most graphical
correlations and algebraic expressions for the friction factor, and are presumed to be fairly limited in
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magnitude and to be associated primarily with the postulated value of e. Although the overall expression
is explicit in ReD(fF/2)1/2 rather than ReD, the latter quantity may readily be obtained simply by multiplying
the postulated value of ReD(fF/2)1/2 by the computed values of (2/fF)1/2.
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2.4 Hydraulics of Pipe Systems

J. Paul Tullis

Basic Computations

Equations

Solving fluid flow problems involves the application of one or more of the three basic equations:
continuity, momentum, and energy. These three basic tools are developed from the law of conservation
of mass, Newton’s second law of motion, and the first law of thermodynamics.

The simplest form of the continuity equation is for one-dimensional incompressible steady flow in a
conduit. Applying continuity between any two sections gives

(2.4.1)

For a variable density the equation can be written

(2.4.2)

in which A is the cross-sectional area of the pipe, V is the mean velocity at that same location, Q is the
flow rate, ρ is the fluid density, and  is the mass flow rate. The equations are valid for any rigid
conduit as long as there is no addition or loss of liquid between the sections.

For steady state pipe flow, the momentum equation relates the net force in a given direction (Fx) acting
on a control volume (a section of the fluid inside the pipe), to the net momentum flux through the control
volume.

(2.4.3)

For incompressible flow this equation can be reduced to

(2.4.4.)

These equations can easily be applied to a three-dimensional flow problem by adding equations in the
y and z directions.

A general form of the energy equation (see Chapter 1) applicable to incompressible pipe or duct flow

(2.4.5)

The units are energy per unit weight of liquid: ft · lb/lb or N · m/N which reduce to ft or m. The first
three terms are pressure head (P/γ), elevation head (Z) (above some datum), and velocity head (V2/2g).
The last three terms on the right side of the equation are the total dynamic head added by a pump (Hp)
or removed by a turbine (Ht) and the friction plus minor head losses (Hf). The sum of the first three
terms in Equation 2.4.5 is defined as the total head, and the sum of the pressure and elevation heads is
referred to as the piezometric head.

The purpose of this section is to determine the pressure changes resulting from incompressible flow
in pipe systems. Since pipes of circular cross sections are most common in engineering application, the
analysis in this section will be performed for circular geometry. However, the results can be generalized
for a pipe of noncircular geometry by substituting for the diameter D in any of the equations, the hydraulic
diameter, Dh, defined as

A V A V Q1 1 2 2= =

ρ ρ1 1 1 2 2 2A V A V m= = ˙

ṁ
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The analysis in this section can also be applied to gases and vapors, provided the Mach number in the
duct does not exceed 0.3. For greater values of the Mach number, the compressibility effect becomes
significant and the reader is referred to Section 2.7 on compressible flow.

Fluid Friction

The calculation of friction loss in pipes and ducts depends on whether the flow is laminar or turbulent.
The Reynolds number is the ratio of inertia forces to viscous forces and is a convenient parameter for
predicting if a flow condition will be laminar or turbulent. It is defined as

(2.4.6)

in which V is the mean flow velocity, D diameter, ρ fluid density, µ dynamic viscosity, and ν kinematic
viscosity.

Friction loss (Hf) depends on pipe diameter (d), length (L), roughness (e), fluid density (ρ) or specific
weight (γ), viscosity (ν), and flow velocity (V). Dimensional analysis can be used to provide a functional
relationship between the friction loss Hf , pipe dimensions, fluid properties, and flow parameters. The
resulting equation is called the Darcy–Weisbach equation:

(2.4.7)

The friction factor f is a measure of pipe roughness. It has been evaluated experimentally for numerous
pipes. The data were used to create the Moody friction factor chart shown as Figure 2.4.1. For Re <
2000, the flow in a pipe will be laminar and f is only a function of ReD. It can be calculated by

(2.4.8)

At Reynolds numbers between about 2000 and 4000 the flow is unstable as a result of the onset of
turbulence (critical zone in Figure 2.4.1). In this range, friction loss calculations are difficult because it
is impossible to determine a unique value of f. For Re > 4000 the flow becomes turbulent and f is a
function of both Re and relative pipe roughness (e/d). At high Re, f eventually depends only on e/d;
defining the region referred to as fully turbulent flow. This is the region in Figure 2.4.1 where the lines
for different e/d become horizontal (e is the equivalent roughness height and d pipe diameter). The ReD

at which this occurs depends on the pipe roughness. Laminar flow in pipes is unusual. For example, for
water flowing in a 0.3-m-diameter pipe, the velocity would have to be below 0.02 m/sec for laminar
flow to exist. Therefore, most practical pipe flow problems are in the turbulent region.

Using the Moody chart in Figure 2.4.1 to get f requires that Re and e/d be known. Calculating Re is
direct if the water temperature, velocity, and pipe diameter are known. The problem is obtaining a good
value for e. Typical values of e are listed in Figure 2.4.1. These values should be considered as guides
only and not used if more–exact values can be obtained from the pipe supplier.

Since roughness may vary with time due to buildup of solid deposits or organic growths, f is also
time dependent. Manufacturing tolerances also cause variations in the pipe diameter and surface rough-
ness. Because of these factors, the friction factor for any pipe can only be approximated. A designer is
required to use good engineering judgment in selecting a design value for f so that proper allowance is
made for these uncertainties.
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For noncircular pipes, the only change in the friction loss equation is the use of an equivalent diameter
— based on the hydraulic radius (R), i.e., d = 4R — in place of the circular pipe diameter d. R is the
ratio of the flow area to the wetter perimeter.

Wood (1966) developed equations which can be used in place of the Moody diagram to estimate f
for Re > 104 and 10–5 < k < 0.04 (k = e/d).

(2.4.9)

The practical problem is still obtaining a reliable value for e. It cannot be directly measured but must
be determined from friction loss tests of the pipe.

An exact solution using the Darcy–Weisbach equation can require a trial-and-error solution because
of the dependency of f on Re if either the flow or pipe diameter are not known. A typical approach to
solving this problem is to estimate a reasonable fluid velocity to calculate Re and obtain f from the
Moody chart or Equation (2.4.9). Next, calculate a new velocity and repeat until the solution converges.
Converging on a solution is greatly simplified with programmable calculators and a variety of software
available for computer.

For long gravity flow pipelines, the starting point in selecting the pipe diameter is to determine the
smallest pipe that can pass the required flow without friction loss exceeding the available head. For
pumped systems, the selection must be based on an economic analysis that compares the pipe cost with
the cost of building and operating the pumping plant.

Local Losses

Flow through valves, orifices, elbows, transitions, etc. causes flow separation which results in the
generation and dissipation of turbulent eddies. For short systems containing many bends, valves, tees,

FIGURE 2.4.1 The Moody diagram.

f a b c= + −Re

a k k b k c k= + = =0 094 0 53 88 1 620 225 0 44 0 134. . , , .. . .
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etc. local or minor losses can exceed friction losses. The head loss hl associated with the dissipation
caused by a minor loss is proportional to the velocity head and can be accounted for as a minor or local
loss using the following equation.

(2.4.10)

in which Kl is the minor loss coefficient and Am is the area of the pipe at the inlet to the local loss. The
loss coefficient Kl is analogous to fL/d in Equation 2.4.7.

The summation of all friction and local losses in a pipe system can be expressed as

(2.4.11)

(2.4.12)

in which

(2.4.13)

It is important to use the correct pipe diameter for each pipe section and local loss.
In the past some have expressed the local losses as an equivalent pipe length: L/d = Kl/f. It simply

represents the length of pipe that produces the same head loss as the local or minor loss. This is a
simple, but not a completely accurate method of including local losses. The problem with this approach
is that since the friction coefficient varies from pipe to pipe, the equivalent length will not have a unique
value. When local losses are truly minor, this problem becomes academic because the error only
influences losses which make up a small percentage of the total. For cases where accurate evaluation
of all losses is important, it is recommended that the minor loss coefficients Kl be used rather than an
equivalent length.

The challenging part of making minor loss calculations is obtaining reliable values of Kl. The final
results cannot be any more accurate than the input data. If the pipe is long, the friction losses may be
large compared with the minor losses and approximate values of Kl will be sufficient. However, for short
systems with many pipe fittings, the local losses can represent a significant portion of the total system
losses, and they should be accurately determined. Numerous factors influence Kl. For example, for
elbows, Kl is influenced by the shape of the conduit (rectangular vs. circular), by the radius of the bend,
the bend angle, the Reynolds number, and the length of the outlet pipe. For dividing or combining tees
or Y-branches, the percent division of flow and the change in pipe diameter must also be included when
estimating Kl. One factor which is important for systems where local losses are significant is the
interaction between components placed close together. Depending on the type, orientation, and spacing
of the components, the total loss coefficient may be greater or less than the simple sum of the individual
Kl values.

Comparing the magnitude of Σ(fL/2gdAp
2)  to Σ  will determine how much care should be

given to the selection of the Kl values. Typical values of Kl are listed in Table 2.4.1 (Tullis, 1989). When
more comprehensive information on loss coefficients is needed, the reader is referred to Miller (1990).
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Pipe Design

Pipe Materials

Materials commonly used for pressure pipe transporting liquids are ductile iron, concrete, steel, fiberglass,
PVC, and polyolefin. Specifications have been developed by national committees for each of these pipe
materials. The specifications discuss external loads, internal design pressure, available sizes, quality of
materials, installation practices, and information regarding linings. Standards are available from the
following organizations:

American Water Works Association (AWWA)
American Society for Testing and Materials (ASTM)
American National Standards Institute (ANSI)
Canadian Standards Association (CSA)

TABLE 2.4.1 Minor Loss Coefficients

Kl

Item Typical Value Typical Range

Pipe inlets
Inward projecting pipe 0.78 0.5–0.9
Sharp corner-flush 0.50 —
Slightly rounded 0.20 0.04–0.5
Bell mouth 0.04 0.03–0.1

Expansionsa (1 – A1/A2)2 (based on V1)
Contractionsb (1/Cc – 1)2 (based on V2)
A2/A1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cc 0.624 0.632 0.643 0.659 0.681 0.712 0.755 0.813 0.892
Bendsc

Short radius, r/d = 1
90 — 0.24
45 — 0.1
30 — 0.06

Long radius, r/d = 1.5
90 — 0.19
45 — 0.09
30 — 0.06

Mitered (one miter)
90 1.1 —
60 0.50 0.40–0.59
45 0.3 0.35–0.44
30 0.15 0.11–0.19

Tees c —
Diffusers c —
Valves

Check valve 0.8 0.5–1.5
Swing check 1.0 0.29–2.2
Tilt disk 1.2 0.27–2.62
Lift 4.6 0.85–9.1
Double door 1.32 1.0–1.8

 Full-open gate 0.15 0.1–0.3
 Full-open butterfly 0.2 0.2–0.6
 Full-open globe 4.0 3–10

a See Streeter and Wylie, 1975, p. 304.
b See Streeter and Wylie, 1975, p. 305.
c See Miller, 1990.
d See Kalsi Engineering and Tullis Engineering Consultants, 1993.
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Federal Specifications (FED)
Plastic Pipe Institute (PPI)

In addition, manuals and other standards have been published by various manufacturers and manu-
facturer’s associations. All of these specifications and standards should be used to guide the selection
of pipe material. ASCE (1992) contains a description of each of these pipe materials and a list of the
specifications for the various organizations which apply to each material. It also discusses the various
pipe-lining materials available for corrosion protection.

For air- and low-pressure liquid applications one can use unreinforced concrete, corrugated steel,
smooth sheet metal, spiral rib (sheet metal), and HDPE (high-density polyethylene) pipe. The choice of
a material for a given application depends on pipe size, pressure requirements, resistance to collapse
from internal vacuums and external loads, resistance to internal and external corrosion, ease of handling
and installing, useful life, and economics.

Pressure Class Guidelines

Procedures for selecting the pressure class of pipe vary with the type of pipe material. Guidelines for
different types of materials are available from AWWA, ASTM, ANSI, CSA, FED, PPI and from the
pipe manufacturers. These specifications should be obtained and studied for the pipe materials being
considered.

The primary factors governing the selection of a pipe pressure class are (1) the maximum steady state
operating pressure, (2) surge and transient pressures, (3) external earth loads and live loads, (4) variation
of pipe properties with temperature or long-time loading effects, and (5) damage that could result from
handling, shipping, and installing or reduction in strength due to chemical attack or other aging factors.
The influence of the first three items can be quantified, but the last two are very subjective and are
generally accounted for with a safety factor which is the ratio of the burst pressure to the rated pressure.

There is no standard procedure on how large the safety factor should be or on how the safety factor
should be applied. Some may feel that it is large enough to account for all of the uncertainties. Past
failures of pipelines designed using this assumption prove that it is not always a reliable approach. The
procedure recommended by the author is to select a pipe pressure class based on the internal design
pressure (IDP) defined as

(2.4.14)

in which Pmax is the maximum steady state operating pressure, Ps is the surge or water hammer pressure,
and SF is the safety factor applied to take care of the unknowns (items 3 to 5) just enumerated. A safety
factor between 3 and 4 is typical.

The maximum steady state operating pressure (Pmax) in a gravity flow system is usually the difference
between the maximum reservoir elevation and the lowest elevation of the pipe. For a pumped system it
is usually the pump shutoff head calculated based on the lowest elevation of the pipe.

Surge and transient pressures depend on the specific pipe system design and operation. Accurately
determining Ps requires analyzing the system using modern computer techniques. The most commonly
used method is the “Method of Characteristics” (Tullis, 1989; Wylie and Streeter, 1993). Some of the
design standards give general guidelines to predict Ps that can be used if a detailed transient analysis is
not made. However, transients are complex enough that simple “rules of thumb” are seldom accurate
enough. Transients are discussed again in a later subsection.

Selection of wall thickness for larger pipes is often more dependent on collapse pressure and handling
loads than it is on burst pressure. A thin-wall, large-diameter pipe may be adequate for resisting relatively
high internal pressures but may collapse under negative internal pressure or, if the pipe is buried, the
soil and groundwater pressure plus live loads may be sufficient to cause collapse even if the pressure
inside the pipe is positive.

IDP = SFP Psmax +( )
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External Loads

There are situations where the external load is the controlling factor determining if the pipe will collapse.
The magnitude of the external load depends on the diameter of the pipe, the pipe material, the ovality
(out of roundness) of the pipe cross section, the trench width, the depth of cover, the specific weight of
the soil, the degree of soil saturation, the type of backfill material, the method used to backfill, the degree
of compaction, and live loads. The earth load increases with width and depth of the trench, and the live
load reduces with depth of cover. The cumulative effect of all these sources of external loading requires
considerable study and analysis.

There are no simple guidelines for evaluating external pipe loads. Because of the complexity of this
analysis, the default is to assume that the safety factor is adequate to account for external loads as well
as the other factors already mentioned. One should not allow the safety factor to replace engineering
judgment and calculations. One option to partially compensate for the lack of a detailed analysis is to
use a higher-pressure class of pipe in areas where there will be large live loads or where the earth loading
is unusually high. One should consider the cost of a pipe failure caused by external loads compared
with the cost of using a thicker pipe or the cost of performing a detailed analysis. Those interested in
the details of performing calculations of earth loading should be Spranger and Handy, 1973.

Limiting Velocities

There are concerns about upper and lower velocity limits. If the velocity is too low, problems may
develop due to settling of suspended solids and air being trapped at high points and along the crown of
the pipe. The safe lower velocity limit to avoid collecting air and sediment depends on the amount and
type of sediment and on the pipe diameter and pipe profile. Velocities greater than about 1 m/sec (3
ft/sec) are usually sufficient to move trapped air to air release valves and keep the sediment in suspension.

Problems associated with high velocities are (1) erosion of the pipe wall or liner (especially if coarse
suspended sediment is present), (2) cavitation at control valves and other restrictions, (3) increased
pumping costs, (4) removal of air at air release valves, (5) increased operator size and concern about
valve shaft failures due to excessive flow torques, and (6) increased risk of hydraulic transients. Each
of these should be considered before making the final pipe diameter selection. A typical upper velocity
for many applications if 6 m/sec (20 ft/sec). However, with proper pipe design and analysis (of the
preceding six conditions), plus proper valve selection, much higher velocities can be tolerated. 

Valve Selection

Valves serve a variety of functions. Some function as isolation or block valves that are either full open
or closed. Control valves are used to regulate flow or pressure and must operate over a wide range of
valve openings. Check valves prevent reverse flow, and air valves release air during initial filling and
air that is collected during operation and admit air when the pipe is drained.

Control Valves

For many flow control applications it is desirable to select a valve that has linear control characteristics.
This means that if you close the valve 10%, the flow reduces about 10%. Unfortunately, this is seldom
possible since the ability of a valve to control flow depends as much on the system as it does on the
design of the valve. The same valve that operates linearly in one system may not in another.

Valve selection — Selecting the proper flow control valve should consider the following criteria:

1. The valve should not produce excessive pressure drop when full open.
2. The valve should control over at least 50% of its movement.
3. The operating torque must not exceed the capacity of the operator or valve shaft and connections

at any flow connection.
4. The valve should not be subjected to excessive cavitation.
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5. Pressure transients caused by valve operation should not exceed the safe limits of the system.
6. Some valves should not be operated at very small openings. Other valves should be operated near

full open.

Controllability. To demonstrate the relationship between a valve and system, consider a butterfly valve
that will be used to control the flow between two reservoirs with an elevation difference of ∆Z. System
A is a short pipe (0.3 m dia., 100 m long, ∆Z = 10 m) where pipe friction is small = 46.9,
and System B is a long pipe (0.3 m dia., 10,000 m long, ∆Z = 200 m) with high friction =
4690. Initially, assume that the same butterfly valve will be used in both pipes and it will be the same
size as the pipe. The flow can be calculated using the energy equation (Equation 2.4.5) and the system
loss equation (Equation (2.4.12):

(2.4.15)

For the valve, assume that the Kl full open is 0.2 and at 50% open it is 9.0. Correspondingly, 
= 1.905 and 85.7. For System A, the flow with the valve full open will be 0.453 m3/sec and at 50% open
0.275 m3/sec, a reduction of 39%. Repeating these calculations over the full range of valve openings
would show that the flow for System A reduces almost linearly as the valve closes.

For System B, the flow with the valve full open will be 0.206 m3/sec and at 50% open 0.205 m3/sec,
a reduction of less than 1%. For System B the valve does not control until the valve loss, expressed by

 becomes a significant part of the friction term (4690). The same valve in System B will not
start to control the flow until it has closed more than 50%. A line-size butterfly valve is obviously not
a good choice for a control valve in System B. One solution to this problem is to use a smaller valve.
If the butterfly valve installed in System B was half the pipe diameter, it would control the flow over
more of the stroke of the valve.

The range of opening over which the valve controls the flow also has a significant effect on the safe
closure time for control valves. Transient pressures are created when there is a sudden change in the flow.
Most valve operators close the valve at a constant speed. If the valve  does not control until it is more
than 50% closed, over half of the closing time is wasted and the effective valve closure time is less than
half the total closing time. This will increase the magnitude of the transients that will be generated.

Torque. To be sure that the valve shaft, connections, and operator are properly sized, the maximum
torque or thrust must be known. If the maximum force exceeds operator capacity, it will not be able to
open and close the valve under extreme flow conditions. If the shaft and connectors are underdesigned,
the valve may fail and slam shut causing a severe transient.

For quarter-turn valves, the force required to operate a valve consists of seating, bearing, and packing
friction, hydrodynamic (flow) forces, and inertial forces. These forces are best determined experimentally.
A key step in applying experimental torque information is the determination of the flow condition creating
maximum torque. This requires that the system be analyzed for all possible operating conditions and
valve openings. For a given size and type of valve, the flow torque depends on the torque coefficient
(which is dependent on the specific valve design) and the pressure drop which, in turn, depends on the
flow. In short systems where there is little friction loss and high velocities, a quarter-turn valve will see
maximum torques at large openings where the flow is high. In long systems with high reservoir heads
and smaller velocities, the same valve will see maximum torque at small openings where the pressure
drop is high.

One situation where it is easy to overlook the condition causing maximum torque is with parallel
pumps. Each pump normally will have a discharge control valve. The maximum system flow occurs
with all three pumps operating. However, the flow and the torque for any of the pump discharge valves
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is maximum for only one pump operating. One specific example (Tullis, 1989) showed that the torque
on a butterfly valve was three times higher when one pump was operating compared with three pumps
operating in parallel.

Cavitation. Cavitation is frequently an important consideration in selection and operation of control
valves. It is necessary to determine if cavitation will exist, evaluate its intensity, and estimate its effect
on the system and environment. Cavitation can cause noise, vibration, and erosion damage and can
decrease performance. The analysis should consider the full range of operation. Some valves cavitate
worst at small openings and others cavitate heavily near full open. It depends on both the system and
the valve design. If cavitation is ignored in the design and selection of the valves, repairs and replacement
of the valves may be necessary. Information for making a complete cavitation analysis is beyond the
scope of this section. Detailed information on the process to design for cavitation is contained in Tullis
(1989, 1993).

The first step in a cavitation analysis is selecting the acceptable level of cavitation. Experimental data
are available for four limits: incipient (light, intermittent noise), critical (light, steady noise), incipient
damage (pitting damage begins), and choking (very heavy damage and performance drops off). Limited
cavitation data are available for each of these limits (Tullis, 1989, 1993). Choosing a cavitation limit
depends on several factors related to the operating requirements, expected life, location of the device,
details of the design, and economics. For long-term operation of a control valve in a system where noise
can be tolerated, the valve should never operate beyond incipient damage. In systems where noise is
objectionable, critical cavitation would be a better operating limit.

Using a choking cavitation as a design limit is often misused. It is generally appropriate as a design
limit for valves that only operate for short periods of time, such as a pressure relief valve. The intensity
of cavitation and the corresponding noise vibration and erosion damage at the valve are at their maximum
just before a valve chokes. If the valve operates beyond choking (sometimes referred to as supercavita-
tion), the collapse of the vapor cavities occurs remote from the valve. Little damage is likely to occur
at the valve, but farther downstream serious vibration and material erosion problems can occur.

If the cavitation analysis indicates that the valve, orifice, or other device will be operating at a cavitation
level greater than can be tolerated, various techniques can be used to limit the level of cavitation. One
is to select a different type of valve. Recent developments in valve design have produced a new generation
of valves that are more resistant to cavitation. Most of them operate on the principle of dropping the
pressure in stages. They usually have multiple paths with numerous sharp turns or orifices in series. Two
limitations to these valves are that they often have high pressure drops (even when full open), and they
are only usable with clean fluids.

A similar approach is to place multiple conventional valves in series or a valve in series with orifice
plates. Proper spacing of valves and orifices placed in series is important. The spacing between valves
depends upon the type. For butterfly valves it is necessary to have between  five and eight diameters of
pipe between valves to prevent flutter of the leaf of the downstream valve and to obtain the normal
pressure drop at each valve. For globe, cone, and other types of valves, it is possible to bolt them flange
to flange and have satisfactory operation.

For some applications another way to suppress cavitation is to use a free-discharge valve that is vented
so cavitation cannot occur. There are valves specifically designed for this application. Some conventional
valves can also be used for free discharge, if they can be adequately vented.

Cavitation damage can be suppressed by plating critical areas of the pipe and valve with cavitation-
resistant materials. Based on tests using a magnetostriction device, data show that there is a wide variation
in the resistance of the various types of material. Limited testing has been done on the erosion resistance
of different materials and coating to cavitation in flowing systems. The available data show that there
is less variation in the damage resistance of materials in actual flowing systems. However, experience
has shown the plating parts of the valve with the right material will extend valve life.

Injecting air to suppress cavitation is a technique which has been used for many years with varying
degrees of success. The most common mistake is placing the air injection port in the wrong location so
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the air does not get to the cavitation zone. If an adequate amount of air is injected into the proper region,
the noise, vibrations, and erosion damage can be significantly reduced. The air provides a cushioning
effect reducing the noise, vibration, and erosion damage. If the system can tolerate some air being
injected, aeration is usually the cheapest and best remedy for cavitation.

Transients. Transient pressures can occur during filling and flushing air from the line, while operating
valves, and when starting or stopping pumps. If adequate design provisions and operational procedures
are not established, the transient pressure can easily exceed the safe operating pressure of the pipe. A
system should be analyzed to determine the type and magnitudes of possible hydraulic transients. The
basic cause is rapid changes in velocity. The larger the incremental velocity change and the faster that
change takes place, the greater will be the transient pressure. If the piping system is not designed to
withstand the high transient pressures, or if controls are not included to limit the pressure, rupture of
the pipe or damage to equipment can result.

All pipelines experience transients. Whether or not the transient creates operational problems or pipe
failure depends upon its magnitude and the ability of the pipes and mechanical equipment to tolerate
high pressures without damage. For example, an unreinforced concrete pipeline may have a transient
pressure head allowance of only a meter above its operating pressure before damage can occur. For such
situations even slow closing of control valves or minor interruptions of flow due to any cause may create
sufficient transient pressures to rupture the pipeline. In contrast, steel and plastic pipes can take relatively
high transient pressures without failure.

Transients caused by slow velocity changes, such as the rise and fall of the water level in a surge
tank, are called surges. Surge analysis, or “rigid column theory” involves mathematical or numerical
solution of simple ordinary differential equations. The compressibility of the fluid and the elasticity of
the conduit are ignored, and the entire column of fluid is assumed to move as a rigid body.

When changes in velocity occur rapidly, both the compressibility of the liquid and the elasticity of
the pipe must be included in the analysis. This procedure is often called “elastic” or “waterhammer”
analysis and involves tracking acoustic pressure waves through the pipe. The solution requires solving
partial differential equations.

An equation predicting the head rise ∆H caused by a sudden change of velocity ∆V = V2 – V1 can be
derived by applying the unsteady momentum equation to a control volume of a section of the pipe where
the change of flow is occurring. Consider a partial valve closure which instantly reduces the velocity
by an amount ∆V. Reduction of the velocity can only be accomplished by an increase in the pressure
upstream from the valve. This creates a pressure wave of magnitude ∆H which travels up the pipe at
the acoustic velocity a. The increased pressure compresses the liquid and expands the pipe. The transient
head rise due to an incremental change in velocity is

(2.4.16)

This equation is easy to use for multiple incremental changes of velocity as long as the first wave has
not been reflected back to the point of origin.

The derivation of Equation (2.4.16) is based on an assumption of an instant velocity change. For a
valve closing at the end of the pipe, instant closure actually refers to a finite time. It is the longest time
that a valve can be closed and still cause a pressure rise equal to that of an instant closure. Normally,
it is equal to 2L/a sec (which is the time required for the first pressure wave to travel to and from the
other end of the pipe of length L); the head rise at the valve will be the same as if the valve were closed
instantly. The 2L/a time is therefore often the instant closure time.

For a valve at the end of a long pipeline, the instant closure time can be considerably greater than
2L/a. This is because when the friction loss coefficient fL/d is much greater than the loss coefficient for
the valve Kl, the valve can be closed a long way before the flow changes. This dead time must be added
to the 2L/a time to identify the actual instant closure time. To avoid the maximum potential transient
pressure rise, the valve must be closed much slower than the instant closure time.

  ∆ ∆ ∆H V g V= −a a, for �
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Computational techniques for estimating transient pressures caused by unsteady flow in pipelines are
too complex to be done with simple hand calculations. The solution involves solving partial differential
equations based on the equations of motion and continuity. These equations are normally solved by the
method of characteristics. This technique transforms the equations into total differential equations. After
integration, the equations can be solved numerically by finite differences. This analysis provides equa-
tions that can be used to predict the flow and head at any interior pipe section at any time (Tullis, 1989;
Wiley and Streeter, 1993).

To complete the analysis, equations describing the boundary conditions are required. Typical boundary
conditions are the connection of a pipe to a reservoir, a valve, changes in pipe diameter or material, pipe
junctions, etc. Friction loss is included in the development of the basic equations and minor losses are
handled as boundary conditions. The analysis properly models friction and the propagation and reflections
of the pressure wave. It can also be used for surge calculations.

It is recommended that every pipe system should have at least a cursory transient analysis performed
to identify the possibility of serious transients and decide whether or not a detailed analysis is necessary.
If an analysis indicates that transients are a problem, the types of solutions available to the engineer
include

1. Increasing the closing time of control valves.
2. Using a smaller valve to provide better control.
3. Designing special facilities for filling, flushing, and removing air from pipelines.
4. Increasing the pressure class of the pipeline.
5. Limiting the flow velocity.
6. Using pressure relief valves, surge tanks, air chambers, etc.

Check Valves

Selecting the wrong type or size of check valve can result in poor performance, severe transients, and
frequent repairs (Kalsi, 1993). Proper check valve selection requires understanding the characteristics
of the various types of check valves and analyzing how they will function as a part of the system in
which they will be installed. A check valve that operates satisfactorily in one system may be totally
inadequate in another. Each valve type has unique characteristics that give it advantages or disadvantages
compared with the others. The characteristics of check valves that describe their hydraulic performance
and which should be considered in the selection process include

1. Opening characteristics, i.e., velocity vs. disk position data.
2. Velocity required to fully open and firmly backseat the disk.
3. Pressure drop at maximum flow.
4. Stability of the disk at partial openings.
5. Sensitivity of disk flutter to upstream disturbances.
6. Speed of valve closure compared with the rate of flow reversal of the system.

Disk stability varies with flow rate, disk position, and upstream disturbances and is an important factor
in determining the useful life of a check valve. For most applications it is preferable to size the check
valve so that the disk is fully open and firmly backseated at normal flow rates. One of the worst design
errors is to oversize a check valve that is located just downstream from a disturbance such as a pump,
elbow, or control valve. If the disk does not fully open, it will be subjected to severe motion that will
accelerate wear. To avoid this problem, it may be necessary to select a check valve that is smaller than
the pipe size.

The transient pressure rise generated at check valve closure is another important consideration. The
pressure rise is a function of how fast the valve disk closes compared with how fast the flow in the
system reverses. The speed that the flow in a system reverses depends on the system. In systems where
rapid flow reversals occur, the disk can slam shut causing a pressure transient (Thorley, 1989).
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The closing speed of a valve is determined by the mass of the disk, the forces closing the disk, and
the distance of travel from full open to closed. Fast closing valves have the following properties: the
disk (including all moving parts) is lightweight, closure is assisted by springs, and the full stroke of the
disk is short. Swing check valves are the slowest-closing valves because they violate all three of these
criteria; i.e., they have heavy disks, no springs, and long disk travel. The nozzle check valve is one of
the fastest-closing valves because the closing element is light, is spring loaded, and has a short stroke.
The silent, duo, double door, and lift check valves with springs are similar to nozzle valves in their
closing times, mainly because of the closing force of the spring.

Systems where rapid flow reversals occur include parallel pumps, where one pump is stopped while
the others are still operating, and systems that have air chambers or surge tanks close to the check valve.
For these systems there is a high-energy source downstream from the check valve to cause the flow to
quickly reverse. As the disk nears its seat, it starts to restrict the reverse flow. This builds up the pressure,
accelerates the disk, and slams it into the seat. Results of laboratory experiments, field tests, and computer
simulations show that dramatic reductions in the transient pressures at disk closure can be achieved by
replacing a slow-closing swing check valve with a fast-acting check valve. For example, in a system
containing parallel pumps where the transient was generated by stopping one of the pumps, the peak
transient pressure was reduced from 745 to 76 kPa when a swing check was replaced with a nozzle
check valve. Such a change improved performance and significantly reduced maintenance.

Air Valves

There are three types of automatic air valves: (1) air/vacuum valves, (2) air release valves, and (3)
combination valves. The air/vacuum valve is designed for releasing air while the pipe is being filled and
for admitting air when the pipe is being drained. The valve must be large enough that it can admit and
expel large quantities of air at a low pressure differential. The outlet orifice is generally the same diameter
as the inlet pipe.

These valves typically contain a float, which rises and closes the orifice as the valve body fills with
water. Once the line is pressurized, this type of valve cannot reopen to remove air that may subsequently
accumulate until the pressure becomes negative, allowing the float to drop. If the pressure becomes
negative during a transient or while draining, the float drops and admits air into the line. For thin-walled
pipes that can collapse under internal vacuums, the air/vacuum valves should be sized for a full pipe
break at the lowest pipe elevation. The vacuum valve must supply an air flow equal to the maximum
drainage rate of the water from the pipe break and at an internal pipe pressure above the pipe collapse
pressure.

The critical factor in sizing air/vacuum valves is usually the air flow rate to protect the pipe from a
full pipe break. Since a pipe is filled much slower than it would drain during a full break, the selected
valve will be sized so that the air is expelled during filling without pressurizing the pipe. Sizing charts
are provided by manufacturers.

Air release valves contain a small orifice and are designed to release small quantities of pressurized
air that are trapped during filling and that accumulate after initial filling and pressurization. The small
orifice is controlled by a plunger activated by a float at the end of a lever arm. As air accumulates in
the valve body, the float drops and opens the orifice. As the air is expelled, the float rises and closes off
the orifice. Sizing air release valves requires an estimate of the amount of pressurized air that must be
expelled. This is determined by the filling procedure and any source of air that can be admitted into the
pipe or be degassed from the liquid during operation.

The combination valve is actually two valves: a large valve that functions as an air/vacuum valve and
a small one that functions as an air release valve. The installation can either consist of an air/vacuum
valve and an air release valve plumbed in parallel, or the two can be housed in a single valve body.
Most air valve installations require combination valves.

One caution is that manual air release valves should be avoided because improper operation of them
can be very dangerous. If the system is pressurized with the manual air valves closed, the trapped air
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will be pressurized to full system pressure. When the air valve is manually opened, releasing the
pressurized air can cause rapid acceleration of the liquid and generate serious transients when the water
is decelerated as it hits the air valve. If manual air valves are installed, they should be very small so the
air release rate is controlled to a safe rate.

Locating air valves in a piping system depends on the pipe profile, pipe length, and flow rates.
Preferably, pipes should be laid to grade with valves placed at the high points or at intervals if there are
no high points. One should use engineering judgment when defining a high point. If the pipe has numerous
high points that are close together, or if the high points are not pronounced, it will not be necessary to
have an air valve at each high point. If the liquid flow velocity is above about 1 m/sec (3 ft/sec), the
flowing water can move the entrained air past intermediate high points to a downstream air valve.
Releasing the air through an air valve prevents any sizable air pockets under high pressure from forming
in the pipe. Trapped air under high pressure is extremely dangerous.

Velocity of the flow during filling is important. A safe way to fill a pipe is to limit the initial fill rate
to an average flow velocity of about 0.3 m/sec (1 ft/sec) until most of the air is released and the air/vacuum
valves close. The next step is to flush the system at about 1 m/sec (3 ft/sec), at a low system pressure,
to flush the remaining air to an air release valve. It is important that the system not be pressurized until
the air has been removed. Allowing large quantities of air under high pressure to accumulate and move
through the pipe can generate severe transients. This is especially true if the compressed air is allowed
to pass through a control valve or manual air release valve. When pressurized air flows through a partially
open valve, the sudden acceleration and deceleration of the air and liquid can generate high pressure
transients.

Pump Selection

Optimizing the life of a water supply system requires proper selection, operation, and maintenance of
the pumps. During the selection process, the designer must be concerned about matching the pump
performance to the system requirements and must anticipate problems that will be encountered when
the pumps are started or stopped and when the pipe is filled and drained. The design should also consider
the effect of variations in flow requirements, and also anticipate problems that will be encountered due
to increased future demands and details of installation.

Selecting a pump for a particular service requires matching the system requirements to the capabilities
of the pump. The process consists of developing a system equation by applying the energy equation to
evaluate the pumping head required to overcome the elevation difference, friction, and minor losses. For
a pump supplying water between two reservoirs, the pump head required to produce a given discharge
can be expressed as

(2.4.17)

or

(2.4.18)

in which the constant C is defined by Equation (2.4.13).
Figure 2.4.2 shows a system curve for a pipe having an 82-m elevation lift and moderate friction

losses. If the elevation of either reservoir is a variable, then there is not a single curve but a family of
curves corresponding to differential reservoir elevations.

The three pump curves shown in Figure 2.4.2 represent different impeller diameters. The intersections
of the system curve with the pump curves identify the flow that each pump will supply if installed in
that system. For this example both A and B pumps would be a good choice because they both operate
at or near their best efficiency range. Figure 2.4.2 shows the head and flow that the B pump will produce

Hp Z H f= +∆

Hp Z CQ= +∆ 2
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when operating in that system are 97 m and 450 L/m. The net positive suction head (NPSH) and brake
horsepower (bhp) are obtained as shown in the figure.

The selection process is more complex when the system demand varies, either due to variations in
the water surface elevation or to changing flow requirements. If the system must operate over a range
of reservoir elevations, the pump should be selected so that the system curve, based on the mean (or the
most frequently encountered) water level, intersects the pump curve near the midpoint of the best
efficiency range. If the water level variation is not too great, the pump may not be able to operate
efficiently over the complete flow range.

The problem of pump selection also becomes more difficult when planning for future demands or if
the pumps are required to supply a varying flow. If the flow range is large, multiple pumps or a variable-
speed drive may be needed. Recent developments in variable-frequency drives for pumps make them a
viable alternative for systems with varying flows. Selection of multiple pumps and the decision about
installing them in parallel or in series depend on the amount of friction in the system. Parallel installations
are most effective for low-friction systems. Series pumps work best in high-friction systems.

For parallel pump operation the combined two pump curve is constructed by adding the flow of each
pump. Such a curve is shown in Figure 2.4.3 (labeled 2 pumps). The intersection of the two-pump curve
with the system curve identifies the combined flow for the two pumps. The pump efficiency for each
pump is determined by projecting horizontally to the left to intersect the single-pump curve. For this
example, a C pump, when operating by itself, will be have an efficiency of 83%. With two pumps
operating, the efficiency of each will be about 72%. For the two pumps to operate in the most efficient
way, the selection should be made so the system curve intersects the single-pump curve to the right of
its best efficiency point.

Starting a pump with the pipeline empty will result in filling at a very rapid rate because initially
there is little friction to build backpressure. As a result, the pump will operate at a flow well above the
design flow. This may cause the pump to cavitate, but the more serious problem is the possibility of
high pressures generated by the rapid filling of the pipe. Provisions should be made to control the rate
of filling to a safe rate. Start-up transients are often controlled by starting the pump against a partially
open discharge valve located near the pump and using a bypass line around the pump. This allows the
system to be filled slowly and safely. If the pipe remains full and no air is trapped, after the initial filling,
subsequent start-up of the pumps generally does not create any serious problem. Adequate air release
valves should be installed to release the air under low pressure.

FIGURE 2.4.2 Pump selection for a single pump.
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For some systems, stopping the pump, either intentionally or accidentally, can generate high pressures
that can damage the pipe and controls. If the design process does not consider these potential problems,
the system may not function trouble free. Downtime and maintenance costs may be high. Not all systems
will experience start-up and shutdown problems, but the design should at least consider the possibility.
The problem is more severe for pipelines that have a large elevation change and multiple high points.
The magnitude of the transient is related to the length and profile of the pipeline, the pump characteristics,
the magnitude of the elevation change, and the type of check valve used. The downsurge caused by
stopping the pump can cause column separation and high pressures due to flow reversals and closure of
the check valves. Surge-protection equipment can be added to such systems to prevent damage and
excessive maintenance.

Another operational problem occurs with parallel pumps. Each pump must have a check valve to
prevent reverse flow. When one of the pumps is turned off, the flow reverses almost immediately in that
line because of the high manifold pressure supplied by the operating pumps. This causes the check valve
to close. If a slow-closing check valve is installed, the flow can attain a high reverse velocity before the
valve closes, generating high pressure transients.

Numerous mechanical devices and techniques have been used to suppress pump shutdown transients.
These include increasing the rotational inertia of the pump, use of surge tanks or air chambers near the
pump, pressure relief valves, vacuum-breaking valves, and surge-anticipating valves. Selection of the
proper transient control device will improve reliability, extend the economic life of the system, and
reduce maintenance. Failure to complete a transient analysis and include the required controls will have
the opposite effect. A system is only as good as it is designed to be.

Other Considerations

Feasibility Study

Designing pipelines, especially long transmission lines, involves more than just determining the required
type and size of pipe. A starting point for major projects is usually a feasibility study which involves

FIGURE 2.4.3 Selection of parallel pumps.
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social, environmental, political, and legal issues, as well as an economic evaluation of the engineering
alternatives developed during the preliminary design. The preliminary design should identify the scope
of the project and all major features that influence the cost or viability. Since local laws, social values,
and environmental concerns vary significantly between geographic areas, the engineer must be aware
of the problems unique to the area.

Choices that affect the economics of the project include alternative pipe routes, amount of storage
and its effect on reliability and controllability of flow, choice of pipe material, diameter and pressure
class, provision for future demands, etc. In making decisions one must consider both the engineering
and economic advantages of the alternatives. Reliability, safety, maintenance, operating, and replacement
costs must all be given their proper value. The analysis should consider (1) expected life of the pipe,
which is a function of the type of pipe material and the use of linings or protective coatings; (2) economic
life, meaning how long the pipe will supply the demand; (3) planning for future demand; (4) pumping
cost vs. pipe cost; and (5) provisions for storage.

During the feasibility study only a general design has been completed so a detailed analysis of all
hydraulic problems and their solutions is not available. Even so, it is necessary to anticipate the need
for special facilities or equipment and problems such as safe filling, provisions for draining, cavitation
at control valves, and transient problems caused by valve or pump operation. Provisions should be made
for the cost of the detailed analysis, design, and construction costs required to control special operational
problems. Attention should also be given to costs associated with winterizing, stream crossings, highways
crossing, special geologic or topographic problems, and any other items that would have a significant
influence on the cost, reliability, or safety of the project.

Storage

The purposes of storage tanks and intermediate reservoirs include (1) to supply water when there is a
temporary interruption of flow from the supply, (2) to provide supplemental water during peak periods,
(3) to sectionalize the pipe to reduce mean and transient pressures, (4) to maintain pressure (elevated
storage), and (5) to simplify control. Storage also has a significant impact on the control structures,
pumping plants, and general operation of the pipeline. If there is adequate storage, large fluctuations in
demand can be tolerated. Any mismatch in supply and demand is made up for by an increase or decrease
in storage, and valves in the transmission main will require only infrequent adjustments to maintain
storage. Pumps can be activated by level controls at the storage tank and not by fluctuations in demand
so they can operate for long periods near their design point.

If there is no storage, the system may have to provide continuous fine adjustment of the flow to
provide the required flow within safe pressure limits. For gravity systems this may require automatic
pressure- or flow-regulating valves. For pumped systems, the variations in flow can cause constant-speed
centrifugal pumps to operate both below and above their design point where power consumption is high,
efficiency is low, and where there is more chance of operational problems. Selection of a variable-
frequency drive can avoid these problems. The selection of multiple pumps vs. a variable-speed pump
is primarily a economic decision.

Thrust Blocks

Any time there is a change of pipe alignment, an unbalanced force is developed. The force required to
restrain the pipe can be calculated with the two-dimensional, steady state momentum equation. For
buried pipelines, this force can be transmitted to the soil with a thrust block. Determining the size of
the block and, consequently, the bearing surface area depends on pipe diameter, fluid pressure, deflection
angle of the pipe, and bearing capacity of the soil. A convenient monograph for sizing thrust blocks was
published in the Civil Engineering in 1969 (Morrison, 1969).
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2.5 Open Channel Flow*

Frank M. White

Definition

The term open channel flow denotes the gravity-driven flow of a liquid with a free surface. Technically,
we may study any flowing liquid and any gas interface. In practice, the vast majority of open channel
flows concern water flowing beneath atmospheric air in artificial or natural channels.

The geometry of an arbitrary channel is shown in Figure 2.5.1. The area A is for the water cross
section only, and b is its top width. The wetted perimeter P covers only the bottom and sides, as shown,
not the surface (whose air resistance is neglected). The water depth at any location is y, and the channel
slope is θ, often denoted as So = sin θ. All of these parameters may vary with distance x along the
channel. In unsteady flow (not discussed here) they may also vary with time.

Uniform Flow

A simple reference condition, called uniform flow, occurs in a long straight prismatic channel of constant
slope So. There is no acceleration, and the water flows at constant depth with fluid weight exactly
balancing the wetted wall shear force: ρgLA sin θ = τwPL, where L is the channel length. Thus, τw =
ρgRhSo, where Rh = A/P is called the hydraulic radius of the channel. If we relate wall shear stress to
the Darcy friction factor f, τw = (f/8)ρV2, we obtain the basic uniform flow open channel relation:

(2.5.1)

Antoine Chézy first derived this formula in 1769. It is satisfactory to base f upon the pipe-flow Moody
diagram (Figure 2.4.1) using the hydraulic diameter, Dh = 4Rh, as a length scale. That is, f = fcn (VDh/ν,
ε/Dh) from the Moody chart. In ordinary practice, however, engineers assume fully rough, high-Reynolds-
number flow and use Robert Manning’s century-old correlation:

(2.5.2)

where ζ is a conversion factor equal to 1.0 in SI units and 1.486 in English units. The quantity n is
Manning’s roughness parameter, with typical values, along with the associated roughness heights ε,
listed in Table 2.5.1.

* Nomenclature appears at end of this section.

FIGURE 2.5.1 Definition sketch for an open channel.
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Critical Flow

Since the surface is always atmospheric, pressure head is not important in open channel flows. Total
energy E relates only to velocity and elevation:

At a given volume flow rate Q, the energy passes through a minimum at a condition called critical flow,
where dE/dy = 0, or dA/dy = b = gA3/Q2:

(2.5.3)

where b is the top-surface width as in Figure 2.5.1. The velocity Vcrit equals the speed of propagation
of a surface wave along the channel. Thus, we may define the Froude number Fr of a channel flow, for
any cross section, as Fr = V/Vcrit. The three regimes of channel flow are

TABLE 2.5.1 Average Roughness Parameters for Various Channel Surfaces

Average Roughness Height ε

n ft mm

Artificial lined channels
Glass 0.010 ± 0.002 0.0011 0.3
Brass 0.011 ± 0.002 0.0019 0.6
Steel; smooth 0.012 ± 0.002 0.0032 1.0
Painted 0.014 ± 0.003 0.0080 2.4
Riveted 0.015 ± 0.002 0.012 3.7

Cast iron 0.013 ± 0.003 0.0051 1.6
Cement; finished 0.012 ± 0.002 0.0032 1.0
Unfinished 0.014 ± 0.002 0.0080 2.4

Planed wood 0.012 ± 0.002 0.0032 1.0
Clay tile 0.014 ± 0.003 0.0080 2.4
Brickwork 0.015 ± 0.002 0.012 3.7
Asphalt 0.016 ± 0.003 0.018 5.4
Corrugated metal 0.022 ± 0.005 0.12 37
Rubble masonry 0.025 ± 0.005 0.26 80
Excavated earth channels
Clean 0.022 ± 0.004 0.12 37
Gravelly 0.025 ± 0.005 0.26 80
Weedy 0.030 ± 0.005 0.8 240
Stony; cobbles 0.035 ± 0.010 1.5 500
Natural channels
Clean and straight 0.030 ± 0.005 0.8 240
Sluggish, deep pools 0.040 ± 0.010 3 900
Major rivers 0.035 ± 0.010 1.5 500
Floodplains
Pasture, farmland 0.035 ± 0.010 1.5 500
Light brush 0.05 ± 0.02 6 2000
Heavy brush 0.075 ± 0.025 15 5000
Trees 0.15 ± 0.05 ? ?
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There are many similarities between Froude number in channel flow and Mach number in variable-area
duct flow (see Section 2.6).

For a rectangular duct, A = by, we obtain the simplified formulas

(2.5.4)

independent of the width of the channel.

Example 2.5.1

Water (ρ = 998 kg/m3, µ = 0.001 kg/m · sec) flows uniformly down a half-full brick 1-m-diameter
circular channel sloping at 1°. Estimate (a) Q; and (b) the Froude number.

Solution 2.5.1 (a). First compute the geometric properties of a half-full circular channel:

From Table 2.5.1, for brickwork, n ≈ 0.015. Then, Manning’s formula, Equation (2.5.2) predicts

The uncertainty in this result is about ±10%. The flow rate is quite large (21,800 gal/min) because 1°,
although seemingly small, is a substantial slope for a water channel.

One can also use the Moody chart. With V ≈ 3.49 m/sec, compute Re = ρVDh/µ ≈ 3.49 E6 and ε/Dh

≈ 0.0037, then compute f ≈ 0.0278 from the Moody chart. Equation (2.5.1) then predicts

Solution 2.5.1 (b). With Q known from part (a), compute the critical conditions from Equation (2.5.3):

Hence

Again the uncertainty is approximately ±10%, primarily because of the need to estimate the brick
roughness.

Hydraulic Jump

In gas dynamics (Section 2.6), a supersonic gas flow may pass through a thin normal shock and exit as
a subsonic flow at higher pressure and temperature. By analogy, a supercritical open channel flow may
pass through a hydraulic jump and exit as a subcritical flow at greater depth, as in Figure 2.5.2. Application
of continuity and momentum to a jump in a rectangular channel yields
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(2.5.5)

Both the normal shock and the hydraulic jump are dissipative processes: the entropy increases and the
effective energy decreases. For a rectangular jump,

(2.5.6)

For strong jumps, this loss in energy can be up to 85% of E1. The second law of thermodynamics requires
∆E > 0 and y2 > y1 or, equivalently, Fr1 > 1,

Note from Figure 2.5.2 that a hydraulic jump is not thin. Its total length is approximately four times
the downstream depth. Jumps also occur in nonrectangular channels, and the theory is much more
algebraically laborious.

Weirs

If an open channel flow encounters a significant obstruction, it will undergo rapidly varied changes
which are difficult to model analytically but can be correlated with experiment. An example is the weir
in Figure 2.5.3 (colloquially called a dam), which forces the flow to deflect over the top. If L << Y, the
weir is termed sharp-crested; if L = O(Y) it is broad-crested. Small details, such as the upper front corner
radius or the crest roughness, may be significant. The crest is assumed level and of width b into the paper.

FIGURE 2.5.2 A two-dimensional hydraulic jump.

FIGURE 2.5.3 Geometry and notation for flow over a weir.
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If there is a free overfall, as in Figure 2.5.3, the flow accelerates from subcritical upstream to critical
over the crest to supercritical in the overfall. There is no flow when the excess upstream depth H = 0.
A simple Bernoulli-type analysis predicts that the flow rate Q over a wide weir is approximately
proportional to bg1/2H3/2. An appropriate correlation is thus

(2.5.7)

If the upstream flow is turbulent, the weir coefficient depends only upon geometry, and Reynolds number
effects are negligible. If the weir has sidewalls and is narrow, replace width b by (b – 0.1H).

Two recommended empirical correlations for Equation (2.5.7) are as follows:

(2.5.8)

These data are for wide weirs with a sharp upper corner in front. Many other weir geometries are
discussed in the references for this section. Of particular interest is the sharp-edged vee-notch weir,
which has no length scale b. If 2θ is the total included angle of the notch, the recommended correlation is

(2.5.9)

The vee-notch is more sensitive at low flow rates (large H for a small Q) and thus is popular in laboratory
measurements of channel flow rates.

A weir in the field will tend to spring free and form a natural nappe, or air cavity, as in Figure 2.5.3.
Narrow weirs, with sidewalls, may need to be aerated artificially to form a nappe and keep the flow
from sliding down the face of the weir. The correlations above assume nappe formation.

Gradually Varied Flow

Return to Figure 2.5.1 and suppose that (y, A, b, P, So) are all variable functions of horizontal position
x. If these parameters are slowly changing, with no hydraulic jumps, the flow is termed gradually varied
and satisfies a simple one-dimensional first-order differential equation if Q = constant:

(2.5.10)

The conversion factor ζ2 = 1.0 for SI units and 2.208 for English units. If flow rate, bottom slope, channel
geometry, and surface roughness are known, we may solve for y(x) for any given initial condition y =
yo at x = xo. The solution is computed by any common numerical method, e.g., Runge–Kutta.

Recall from Equation (2.5.3) that the term V2b/(gA) ≡ Fr2, so the sign of the denominator in Equation
(2.5.10) depends upon whether the flow is sub- or supercritical. The mathematical behavior of Equation
(2.5.10) differs also. If Fr is near unity, the change dy/dx will be very large, which probably violates the
basic assumption of “gradual” variation.

For a given flow rate and local bottom slope, two reference depths are useful and may be computed
in advance:
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(a) The normal depth yn for which Equation (2.5.2) yields the flow rate:
(b) The critical depth yc for which Equation (2.5.3) yields the flow rate.

Comparison of these two, and their relation to the actual local depth y, specifies the type of solution
curve being computed. The five bottom-slope regimes (mild M, critical C, steep S, horizontal H, and
adverse A) create 12 different solution curves, as illustrated in Figure 2.5.4. All of these may be readily
generated by a computer solution of Equation 2.5.10. The following example illustrates a typical solution
to a gradually varied flow problem.

Example 2.5.2

Water, flowing at 2.5 m3/sec in a rectangular gravelly earth channel 2 m wide, encounters a broad-crested
weir 1.5 m high. Using gradually varied theory, estimate the water depth profile back to 1 km upstream
of the weir. The bottom slope is 0.10.

Solution. We are given Q, Y = 1.5 m, and b = 2 m. We may calculate excess water level H at the weir
(see Figure 2.5.3) from Equations (2.5.7) and (2.5.8):

Since the weir is not too wide, we have subtracted 0.1 H from b as recommended. The weir serves as
a “control structure” which sets the water depth just upstream. This is our initial condition for gradually
varied theory: y(0) = Y + H = 1.5 + 0.94 ≈ 2.44 m at x = 0. Before solving Equation (2.5.10), we find
the normal and critical depths to get a feel for the problem:

Normal depth:

Critical depth:

We have taken n ≈ 0.025 for gravelly earth, from Table 2.5.1. Since y(0) > yn > yc, we are on a mild
slope M – 1 “backwater” curve, as in Figure 2.5.4. For our data, Equation (2.5.10) becomes

where Q = 2.5, b = 2, ζ = 1, A = 2y, So = sin 0.1°, Rh = 2y/(2 + 2y), g = 9.81, y(0) = 2.44 at x = 0.
Integrate numerically backward, that is, for ∆x < 0, until x = –1 km = –1000 m. The complete solution

curve is shown in Figure 2.5.5. The water depth decreases upstream and is approximately y ≈ 1.31 m
at x = –1000 m. If slope and channel width remain constant, the water depth asymptotically approaches
the normal depth yn far upstream.
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FIGURE 2.5.4 Classification of solution curves for gradually varied flow.
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2.6 External Incompressible Flows

Alan T. McDonald

Introduction and Scope

Potential flow theory (Section 2.2) treats an incompressible ideal fluid with zero viscosity. There are no
shear stresses; pressure is the only stress acting on a fluid particle. Potential flow theory predicts no drag
force when an object moves through a fluid, which obviously is not correct, because all real fluids are
viscous and cause drag forces. The objective of this section is to consider the behavior of viscous,
incompressible fluids flowing over objects.

A number of phenomena that occur in external flow at high Reynolds number over an object are
shown in Figure 2.6.1. The freestream flow divides at the stagnation point and flows around the object.
Fluid at the object surface takes on the velocity of the body as a result of the no-slip condition. Boundary
layers form on the upper and lower surfaces of the body; flow in the boundary layers is initially laminar,
then transition to turbulent flow may occur (points “T”).

Boundary layers thickening on the surfaces cause only a slight displacement of the streamlines of the
external flow (their thickness is greatly exaggerated in the figure). Separation may occur in the region
of increasing pressure on the rear of the body (points “S”); after separation boundary layer fluid no
longer remains in contact with the surface. Fluid that was in the boundary layers forms the viscous wake
behind the object.

The Bernoulli equation is valid for steady, incompressible flow without viscous effects. It may be
used to predict pressure variations outside the boundary layer. Stagnation pressure is constant in the
uniform inviscid flow far from an object, and the Bernoulli equation reduces to

(2.6.1)

where p∞ is pressure far upstream, ρ is density, and V is velocity. Therefore, the local pressure can be
determined if the local freestream velocity, U, is known.

FIGURE 2.6.1 Viscous flow around an airfoil (boundary layer thickness exaggerated for clarity).

p V∞ + =1
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Boundary Layers

The Boundary Layer Concept

The boundary layer is the thin region near the surface of a body in which viscous effects are important.
By recognizing that viscous effects are concentrated near the surface of an object, Prandtl showed that
only the Euler equations for inviscid flow need be solved in the region outside the boundary layer. Inside
the boundary layer, the elliptic Navier-Stokes equations are simplified to boundary layer equations with
parabolic form that are easier to solve. The thin boundary layer has negligible pressure variation across
it; pressure from the freestream is impressed upon the boundary layer.

Basic characteristics of all laminar and turbulent boundary layers are shown in the developing flow
over a flat plate in a semi-infinite fluid. Because the boundary layer is thin, there is negligible disturbance
of the inviscid flow outside the boundary layer, and the pressure gradient along the surface is close to
zero. Transition from laminar to turbulent boundary layer flow on a flat plate occurs when Reynolds
number based on x exceeds Rex = 500,000. Transition may occur earlier if the surface is rough, pressure
increases in the flow direction, or separation occurs. Following transition, the turbulent boundary layer
thickens more rapidly than the laminar boundary layer as a result of increased shear stress at the body
surface.

Boundary Layer Thickness Definitions

Boundary layer disturbance thickness, δ, is usually defined as the distance, y, from the surface to the
point where the velocity within the boundary layer, u, is within 1% of the local freestream velocity, U.
As shown in Figure 2.6.2, the boundary layer velocity profile merges smoothly and asymptotically into
the freestream, making δ difficult to measure. For this reason and for their physical significance, we
define two integral measures of boundary layer thickness. Displacement thickness, δ*, is defined as

(2.6.2)

Physically, δ* is the distance the solid boundary would have to be displaced into the freestream in a
frictionless flow to produce the mass flow deficit caused by the viscous boundary layer. Momentum
thickness, θ, is defined as

(2.6.3)

Physically, θ is the thickness of a fluid layer, having velocity U, for which the momentum flux is the
same as the deficit in momentum flux within the boundary layer (momentum flux is momentum per unit
time passing a cross section).

FIGURE 2.6.2 Boundary layer on a flat plate (vertical thickness exaggerated for clarity).
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Because δ* and θ are defined in terms of integrals for which the integrand vanishes in the freestream,
they are easier to evaluate experimentally than disturbance thickness δ.

Exact Solution of the Laminar Flat-Plate Boundary Layer

Blasius obtained an exact solution for laminar boundary layer flow on a flat plate. He assumed a thin
boundary layer to simplify the streamwise momentum equation. He also assumed similar velocity profiles
in the boundary layer, so that when written as u/U = f(y/δ), velocity profiles do not vary with x. He used
a similarity variable to reduce the partial differential equations of motion and continuity to a single third-
order ordinary differential equation.

Blasius used numerical methods to solve the ordinary differential equation. Unfortunately, the velocity
profile must be expressed in tabular form. The principal results of the Blasius solution may be expressed as

(2.6.4)

and

(2.6.5)

These results characterize the laminar boundary layer on a flat plate; they show that laminar boundary
layer thickness varies as x1/2 and wall shear stress varies as 1/x1/2.

Approximate Solutions

The Blasius solution cannot be expressed in closed form and is limited to laminar flow. Therefore,
approximate methods that give solutions for both laminar and turbulent flow in closed form are desirable.
One such method is the momentum integral equation (MIE), which may be developed by integrating
the boundary layer equation across the boundary layer or by applying the streamwise momentum equation
to a differential control volume (Fox and McDonald, 1992). The result is the ordinary differential equation

(2.6.6)

The first term on the right side of Equation (2.6.6) contains the influence of wall shear stress. Since τw

is always positive, it always causes θ to increase. The second term on the right side contains the pressure
gradient, which can have either sign. Therefore, the effect of the pressure gradient can be to either
increase or decrease the rate of growth of boundary layer thickness.

Equation (2.6.6) is an ordinary differential equation that can be solved for θ as a function of x on a
flat plate (zero pressure gradient), provided a reasonable shape is assumed for the boundary layer velocity
profile and shear stress is expressed in terms of the other variables. Results for laminar and turbulent
flat-plate boundary layer flows are discussed below.

Laminar Boundary Layers. A reasonable approximation to the laminar boundary layer velocity profile
is to express u as a polynomial in y. The resulting solutions for δ and τw have the same dependence on
x as the exact Blasius solution. Numerical results are presented in Table 2.6.1. Comparing the approximate
and exact solutions shows remarkable agreement in view of the approximations used in the analysis.
The trends are predicted correctly and the approximate values are within 10% of the exact values.

Turbulent Boundary Layers. The turbulent velocity profile may be expressed well using a power law,
u/U = (y/δ)1/n, where n is an integer between 6 and 10 (frequently 7 is chosen). For turbulent flow it is
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not possible to express shear stress directly in terms of a simple velocity profile; an empirical correlation
is required. Using a pipe flow data correlation gives

(2.6.7)

and

(2.6.8)

These results characterize the turbulent boundary layer on a flat plate. They show that turbulent boundary
layer thickness varies as x4/5 and wall shear stress varies as 1/x1/5.

Approximate results for laminar and turbulent boundary layers are compared in Table 2.6.2. At a
Reynolds number of 1 million, wall shear stress for the turbulent boundary layer is nearly six times as
large as for the laminar layer. For a turbulent boundary layer, thickness increases five times faster with
distance along the surface than for a laminar layer. These approximate results give a physical feel for
relative magnitudes in the two cases.

The MIE cannot be solved in closed form for flows with nonzero pressure gradients. However, the
role of the pressure gradient can be understood qualitatively by studying the MIE.

Effect of Pressure Gradient

Boundary layer flow with favorable, zero, and adverse pressure gradients is depicted schematically in
Figure 2.6.3. (Assume a thin boundary layer, so flow on the lower surface behaves as external flow on

TABLE 2.6.1 Exact and Approximate Solutions for Laminar Boundary Layer Flow 
over a Flat Plate at Zero Incidence

Velocity Distribution

f (η) = 2η – η2 2/15 1/3 5.48 0.730
f (η) = 3/2 η – 1/2 η3 39/280 3/8 4.64 0.647
f (η) = sin (π/2 η) (4 – π)/2π (π – 2)/π 4.80 0.654
Exact 0.133 0.344 5.00 0.664

TABLE 2.6.2 Thickness and Skin Friction Coefficient for Laminar and Turbulent Boundary Layers on a Flat 
Plate

Reynolds 
Number

Boundary Layer Thickness/x Skin Friction Coefficient Turbulent/Laminar Ratio

Laminar BL Turbulent BL Laminar BL Turbulent BL BL Thickness Skin Friction

2E + 05 0.0112 0.0333 0.00148 0.00517 2.97 3.48
5E + 05 0.00707 0.0277 0.000939 0.00431 3.92 4.58
1E + 06 0.00500 0.0241 0.000664 0.00375 4.82 5.64
2E + 06 0.00354 0.0210 0.000470 0.00326 5.93 6.95
5E + 06 0.00224 0.0175 0.000297 0.00272 7.81 9.15
1E + 07 0.00158 0.0152 0.000210 0.00236 9.62 11.3
2E + 07 0.00112 0.0132 0.000148 0.00206 11.8 13.9
5E + 07 0.000707 0.0110 0.0000939 0.00171 15.6 18.3

Note: BL = boundary layer.
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a surface, with the pressure gradient impressed on the boundary layer.) The pressure gradient is favorable
when ∂p/∂x < 0, zero when ∂p/∂x = 0, and adverse when ∂p/∂x > 0, as indicated for Regions 1, 2, and 3.

Viscous shear always causes a net retarding force on any fluid particle within the boundary layer. For
zero pressure gradient, shear forces alone can never bring the particle to rest. (Recall that for laminar
and turbulent boundary layers the shear stress varied as 1/x1/2 and 1/x1/5, respectively; shear stress never
becomes zero for finite x.) Since shear stress is given by τw = µ ∂u/∂y)y=0, the velocity gradient cannot
be zero. Therefore, flow cannot separate in a zero pressure gradient; shear stresses alone can never cause
flow separation.

In the favorable pressure gradient of Region 1, pressure forces tend to maintain the motion of the
particle, so flow cannot separate. In the adverse pressure gradient of Region 3, pressure forces oppose
the motion of a fluid particle. An adverse pressure gradient is a necessary condition for flow separation.

Velocity profiles for laminar and turbulent boundary layers are shown in Figure 2.6.2. It is easy to
see that the turbulent velocity profile has much more momentum than the laminar profile. Therefore,
the turbulent velocity profile can resist separation in an adverse pressure gradient better than the laminar
profile.

The freestream velocity distribution must be known before the MIE can be applied. We obtain a first
approximation by applying potential flow theory to calculate the flow field around the object. Much
effort has been devoted to calculation of velocity distributions over objects of known shape (the “direct”
problem) and to determination of shapes to produce a desired pressure distribution (the “inverse”
problem). Detailed discussion of such calculation schemes is beyond the scope of this section; the state
of the art continues to progress rapidly.

Drag

Any object immersed in a viscous fluid flow experiences a net force from the shear stresses and pressure
differences caused by the fluid motion. Drag is the force component parallel to, and lift is the force
component perpendicular to, the flow direction. Streamlining is the art of shaping a body to reduce fluid
dynamic drag. Airfoils (hydrofoils) are designed to produce lift in air (water); they are streamlined to
reduce drag and thus to attain high lift–drag ratios.

In general, lift and drag cannot be predicted analytically for flows with separation, but progress
continues on computational fluid dynamics methods. For many engineering purposes, drag and lift forces
are calculated from experimentally derived coefficients, discussed below.

Drag coefficient is defined as

FIGURE 2.6.3 Boundary layer flow with presssure gradient (thickness exaggerated for clarity).
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(2.6.9)

where 1/2ρV2 is dynamic pressure and A is the area upon which the coefficient is based. Common practice
is to base drag coefficients on projected frontal area (Fox and McDonald, 1992).

Similitude was treated in Section 2.3. In general, the drag coefficient may be expressed as a function
of Reynolds number, Mach number, Froude number, relative roughness, submergence divided by length,
and so forth. In this section we consider neither high-speed flow nor free-surface effects, so we will
consider only Reynolds number and roughness effects on drag coefficient.

Friction Drag

The total friction drag force acting on a plane surface aligned with the flow direction can be found by
integrating the shear stress distribution along the surface. The drag coefficient for this case is defined
as friction force divided by dynamic pressure and wetted area in contact with the fluid. Since shear
stress is a function of Reynolds number, so is drag coefficient (see Figure 2.6.4). In Figure 2.6.4, transition
occurs at Rex = 500,000; the dashed line represents the drag coefficient at larger Reynolds numbers. A
number of empirical correlations may be used to model the variation in CD shown in Figure 2.6.4
(Schlichting, 1979).

Extending the laminar boundary layer line to higher Reynolds numbers shows that it is beneficial to
delay transition to the highest possible Reynolds number. Some results are presented in Table 2.6.3; drag
is reduced more than 50% by extending laminar boundary layer flow to ReL = 106.

Pressure Drag

A thin flat surface normal to the flow has no area parallel to the flow direction. Therefore, there can be
no friction force parallel to the flow; all drag is caused by pressure forces. Drag coefficients for objects
with sharp edges tend to be independent of Reynolds number (for Re > 1000), because the separation
points are fixed by the geometry of the object. Drag coefficients for selected objects are shown in Table
2.6.4.

Rounding the edges that face the flow reduces drag markedly. Compare the drag coefficients for the
hemisphere and C-section shapes facing into and away from the flow. Also note that the drag coefficient

FIGURE 2.6.4 Drag coefficient vs. Reynolds number for a smooth flat plate parallel to the flow.
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for a two-dimensional object (long square cylinder) is about twice that for the corresponding three-
dimensional object (square cylinder with b/h = 1).

TABLE 2.6.3 Drag Coefficients for Laminar, Turbulent, and Transition Boundary Layers on a Flat Plate

Reynolds 
Number

Drag Coefficient Laminar/
Transition

% Drag 
ReductionLaminar BL Turbulent BL Transition

2E + 05 0.00297 0.00615 — — —
5E + 05 0.00188 0.00511 0.00189 — —
1E + 06 0.00133 0.00447 0.00286 0.464 53.6
2E + 06 0.000939 0.00394 0.00314 0.300 70.0
5E + 06 0.000594 0.00336 0.00304 0.195 80.5
1E + 07 0.000420 0.00300 0.00284 0.148 85.2
2E + 07 0.000297 0.00269 0.00261 0.114 88.6
5E + 07 0.000188 0.00235 0.00232 0.081 9.19

Note: BL = Boundary layer.

TABLE 2.6.4 Drag Coefficient Data for Selected Objects (Re > 1000)

Object Diagram CD(RE* 103)

Square prism b/h = ∞ 2.05

Disk

b/h = 1 1.05

1.17

Ring 1.20b

Hemisphere (open end facing flow) 1.42

Hemisphere (open end facing downstream) 0.38

C-section (open side facing flow) 2.30

C-section (open side facing downstream) 1.20

a Data from Hoerner, 1965.
b Based on ring area.

>~
© 2000 by CRC Press LLC



2-76
Friction and Pressure Drag: Bluff Bodies

Both friction and pressure forces contribute to the drag of bluff bodies (see Shapiro, 1960, for a good
discussion of the mechanisms of drag). As an example, consider the drag coefficient for a smooth sphere
shown in Figure 2.6.5. Transition from laminar to turbulent flow in the boundary layers on the forward
portion of the sphere causes a dramatic dip in drag coefficient at the critical Reynolds number (ReD ≈
2 × 105). The turbulent boundary layer is better able to resist the adverse pressure gradient on the rear
of the sphere, so separation is delayed and the wake is smaller, causing less pressure drag.

Surface roughness (or freestream disturbances) can reduce the critical Reynolds number. Dimples on
a golf ball cause the boundary layer to become turbulent and, therefore, lower the drag coefficient in
the range of speeds encountered in a drive.

Streamlining

Streamlining is adding a faired tail section to reduce the extent of separated flow on the downstream
portion of an object (at high Reynolds number where pressure forces dominate drag). The adverse
pressure gradient is taken over a longer distance, delaying separation. However, adding a faired tail
increases surface area, causing skin friction drag to increase. Thus, streamlining must be optimized for
each shape.

Front contours are of principal importance in road vehicle design; the angle of the back glass also is
important (in most cases the entire rear end cannot be made long enough to control separation and reduce
drag significantly).

Lift

Lift coefficient is defined as

(2.6.10)

Note that lift coefficient is based on projected planform area.

FIGURE 2.6.5 Drag coefficient vs. Reynolds number for a smooth sphere. (From Schlichting, H. 1979. Boundary
Layer Theory, 7th ed., McGraw-Hill, New York. With permission.)
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Airfoils

Airfoils are shaped to produce lift efficiently by accelerating flow over the upper surface to produce a
low-pressure region. Because the flow must again decelerate, inevitably there must be a region of adverse
pressure gradient near the rear of the upper surface (pressure distributions are shown clearly in Hazen,
1965).

Lift and drag coefficients for airfoil sections depend on Reynolds number and angle of attack between
the chord line and the undisturbed flow direction. The chord line is the straight line joining the leading
and trailing edges of the airfoil (Abbott and von Doenhoff, 1959).

As the angle of attack is increased, the minimum pressure point moves forward on the upper surface
and the minimum pressure becomes lower. This increases the adverse pressure gradient. At some angle
of attack, the adverse pressure gradient is strong enough to cause the boundary layer to separate
completely from the upper surface, causing the airfoil to stall. The separated flow alters the pressure
distribution, reducing lift sharply.

Increasing the angle of attack also causes the the drag coefficient to increase. At some angle of attack
below stall the ratio of lift to drag, the lift–drag ratio, reaches a maximum value.

Drag Due to Lift

For wings (airfoils of finite span), lift and drag also are functions of aspect ratio. Lift is reduced and
drag increased compared with infinite span, because end effects cause the lift vector to rotate rearward.
For a given geometric angle of attack, this reduces effective angle of attack, reducing lift. The additional
component of lift acting in the flow direction increases drag; the increase in drag due to lift is called
induced drag.

The effective aspect ratio includes the effect of planform shape. When written in terms of effective
aspect ratio, the drag of a finite-span wing is

(2.6.11)

where ar is effective aspect ratio and the subscript ∞ refers to the infinite section drag coefficient at CL.
For further details consult the references.

The lift coefficient must increase to support aircraft weight as speed is reduced. Therefore, induced
drag can increase rapidly at low flight speeds. For this reason, minimum allowable flight speeds for
commercial aircraft are closely controlled by the FAA.

Boundary Layer Control

The major part of the drag on an airfoil or wing is caused by skin friction. Therefore, it is important to
maintain laminar flow in the boundary layers as far aft as possible; laminar flow sections are designed
to do this. It also is important to prevent flow separation and to achieve high lift to reduce takeoff and
landing speeds. These topics fall under the general heading of boundary layer control.

Profile Shaping

Boundary layer transition on a conventional airfoil section occurs almost immediately after the minimum
pressure at about 25% chord aft the leading edge. Transition can be delayed by shaping the profile to
maintain a favorable pressure gradient over more of its length. The U.S. National Advisory Committee
for Aeronautics (NACA) developed several series of profiles that delayed transition to 60 or 65% of
chord, reducing drag coefficients (in the design range) 60% compared with conventional sections of the
same thickness ratio (Abbott and von Doenhoff, 1959).
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Flaps and Slats

Flaps are movable sections near the trailing edge of a wing. They extend and/or deflect to increase wing
area and/or increase wing camber (curvature), to provide higher lift than the clean wing. Many aircraft
also are fitted with leading edge slats which open to expose a slot from the pressure side of the wing
to the upper surface. The open slat increases the effective radius of the leading edge, improving maximum
lift coefficient. The slot allows energized air from the pressure surface to flow into the low-pressure
region atop the wing, energizing the boundary layers and delaying separation and stall.

Suction and Blowing

Suction removes low-energy fluid from the boundary layer, reducing the tendency for early separation.
Blowing via high-speed jets directed along the surface reenergizes low-speed boundary layer fluid. The
objective of both approaches is to delay separation, thus increasing the maximum lift coefficient the
wing can achieve. Powered systems add weight and complexity; they also require bleed air from the
engine compressor, reducing thrust or power output.

Moving Surfaces

Many schemes have been proposed to utilize moving surfaces for boundary layer control. Motion in the
direction of flow reduces skin friction, and thus the tendency to separate; motion against the flow has
the opposite effect. The aerodynamic behavior of sports balls — baseballs, golf balls, and tennis balls
— depends significantly on aerodynamic side force (lift, down force, or side force) produced by spin.
These effects are discussed at length in Fox and McDonald (1992) and its references.

Computation vs. Experiment

Experiments cannot yet be replaced completely by analysis. Progress in modeling, numerical techniques,
and computer power continues to be made, but the role of the experimentalist likely will remain important
for the foreseeable future.

Computational Fluid Dynamics (CFD)

Computation of fluid flow requires accurate mathematical modeling of flow physics and accurate numer-
ical procedures to solve the equations. The basic equations for laminar boundary layer flow are well
known. For turbulent boundary layers generally it is not possible to resolve the solution space into
sufficiently small cells to allow direct numerical simulation. Instead, empirical models for the turbulent
stresses must be used. Advances in computer memory storage capacity and speed (e.g., through use of
massively parallel processing) continue to increase the resolution that can be achieved.

A second source of error in CFD work results from the numerical procedures required to solve the
equations. Even if the equations are exact, approximations must be made to discretize and solve them
using finite-difference or finite-volume methods. Whichever is chosen, the solver must guard against
introducing numerical instability, round-off errors, and numerical diffusion (Hoffman, 1992).

Role of the Wind Tunnel

Traditionally, wind tunnel experiments have been conducted to verify the design and performance of
components and complete aircraft. Design verification of a modern aircraft may require expensive scale
models, several thousand hours of wind tunnel time at many thousands of dollars an hour, and additional
full-scale flight testing.

New wind tunnel facilities continue to be built and old ones refurbished. This indicates a need for
continued experimental work in developing and optimizing aircraft configurations.

Many experiments are designed to produce baseline data to validate computer codes. Such systematic
experimental data can help to identify the strengths and weaknesses of computational methods.

CFD tends to become only indicative of trends when massive zones of flow separation are present.
Takeoff and landing configurations of conventional aircraft, with landing gear, high-lift devices, and
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flaps extended, tend to need final experimental confirmation and optimization. Many studies of vertical
takeoff and vectored thrust aircraft require testing in wind tunnels.

Defining Terms

Boundary layer: Thin layer of fluid adjacent to a surface where viscous effects are important; viscous
effects are negligible outside the boundary layer.

Drag coefficient: Force in the flow direction exerted on an object by the fluid flowing around it, divided
by dynamic pressure and area.

Lift coefficient: Force perpendicular to the flow direction exerted on an object by the fluid flowing
around it, divided by dynamic pressure and area.

Pressure gradient: Variation in pressure along the surface of an object. For a favorable pressure gradient,
pressure decreases in the flow direction; for an adverse pressure gradient, pressure increases in
the flow direction.

Separation: Phenomenon that occurs when fluid layers adjacent to a solid surface are brought to rest
and boundary layers depart from the surface contour, forming a low-pressure wake region. Sepa-
ration can occur only in an adverse pressure gradient.

Transition: Change from laminar to turbulent flow within the boundary layer. The location depends on
distance over which the boundary layer has developed, pressure gradient, surface roughness,
freestream disturbances, and heat transfer.
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2.7 Compressible Flow

Ajay Kumar

Introduction

This section deals with compressible flow. Only one- or two-dimensional steady, inviscid flows under
perfect gas assumption are considered. Readers are referred to other sources of information for unsteady
effects, viscous effects, and three-dimensional flows.

The term compressible flow is routinely used to define variable density flow which is in contrast to
incompressible flow, where the density is assumed to be constant throughout. In many cases, these
density variations are principally caused by the pressure changes from one point to another. Physically,
the compressibility can be defined as the fractional change in volume of the gas element per unit change
in pressure. It is a property of the gas and, in general, can be defined as

where τ is the compressibility of the gas, ρ is the density, and p is the pressure being exerted on the
gas. A more precise definition of compressibility is obtained if we take into account the thermal and
frictional losses. If during the compression the temperature of the gas is held constant, it is called the
isothermal compressibility and can be written as

However, if the compression process is reversible, it is called the isentropic compressibility and can be
written as

Gases in general have high compressibility (τT for air is 10–5 m2/N at 1 atm) as compared with liquids
(τT for water is 5 × 10–10 m2/N at 1 atm).

Compressibility is a very important parameter in the analysis of compressible flow and is closely
related to the speed of sound, a, which is the velocity of propagation of small pressure disturbances and
is defined as

In an isentropic process of a perfect gas, the pressure and density are related as

Using this relation along with the perfect gas relation p = ρRT, we can show that for a perfect gas
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where γ is the ratio of specific heats at constant pressure and constant volume, R is the gas constant,
and T is the temperature. For air under normal conditions, γ is 1.4 and R is 287 m2/sec2 K so that the
speed of sound for air becomes a = 20.045  m/sec where T is in kelvin.

Another important parameter in compressible flows is the Mach number, M, which is defined as the
ratio of the gas velocity to the speed of sound or

where V is the velocity of gas. Depending upon the Mach number of the flow, we can define the following
flow regimes:

Subsonic through hypersonic flows are compressible in nature. In these flows, the velocity is appre-
ciable compared with the speed of sound, and the fractional changes in pressure, temperature, and density
are all of significant magnitude. We will restrict ourselves in this section to subsonic through flows only.

Before we move on to study these flows, let us define one more term. Let us consider a gas with
static pressure p and temperature T, traveling at some velocity V and corresponding Mach number M.
If this gas is brought isentropically to stagnation or zero velocity, the pressure and temperature which
the gas achieves are defined as stagnation pressure p0 and stagnation temperature T0 (also called total
pressure and total temperature). The speed of sound at stagnation conditions is called the stagnation
speed of sound and is denoted as a0.

One-Dimensional Flow

In one-dimensional flow, the flow properties vary only in one coordinate direction. Figure 2.7.1 shows
two streamtubes in a flow. In a truly one-dimensional flow illustrated in Figure 2.7.1(a), the flow variables
are a function of x only and the area of the stream tube is constant. On the other hand, Figure 2.7.1(b)
shows a flow where the area of the stream tube is also a function of x but the flow variables are still a
function of x only. This flow is defined as the quasi-one-dimensional flow. We will first discuss the truly
one-dimensional flow.

In a steady, truly one-dimensional flow, conservation of mass, momentum, and energy leads to the
following simple algebraic equations.

(2.7.1)
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where q is the heat added per unit mass of the gas. These equations neglect body forces, viscous stresses,
and heat transfer due to thermal conduction and diffusion. These relations given by Equation 2.7.1, when
applied at points 1 and 2 in a flow with no heat addition, become

(2.7.2)

The energy equation for a calorically perfect gas, where h = cpT, becomes

Using cp = γR/(γ – 1) and a2 = γRT, the above equation can be written as

(2.7.3)

Since Equation (2.7.3) is written for no heat addition, it holds for an adiabatic flow. If the energy equation
is applied to the stagnation conditions, it can be written as

(2.7.4)

It is worth mentioning that in arriving at Equation (2.7.4), only adiabatic flow condition is used whereas
stagnation conditions are defined as those where the gas is brought to rest isentropically. Therefore, the
definition of stagnation temperature is less restrictive than the general definition of stagnation conditions.
According to the general definition of isentropic flow, it is a reversible adiabatic flow. This definition is
needed for the definition of stagnation pressure and density. For an isentropic flow,

FIGURE 2.7.1 (a) One-dimensional flow; (b) quasi-one-dimensional flow.
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(2.7.5)

From Equations 2.7.4 and 2.7.5, we can write

(2.7.6)

(2.7.7)

Values of stagnation conditions are tabulated in Anderson (1982) as a function of M for γ = 1.4.

Normal Shock Wave

A shock wave is a very thin region (of the order of a few molecular mean free paths) across which the
static pressure, temperature, and density increase whereas the velocity decreases. If the shock wave is
perpendicular to the flow, it is called a normal shock wave. The flow is supersonic ahead of the normal
shock wave and subsonic behind it. Figure 2.7.2 shows the flow conditions across a normal shock wave
which is treated as a discontinuity. Since there is no heat added or removed, the flow across the shock
wave is adiabatic. By using Equations 2.7.2 the normal shock equations can be written as

(2.7.8)

Equations (2.7.8) are applicable to a general type of flow; however, for a calorically perfect gas, we can
use the relations p = ρRT and h = cpT to derive a number of equations relating flow conditions downstream
of the normal shock to those at upstream. These equations (also known as Rankine–Hugoniot relations)
are

(2.7.9)

FIGURE 2.7.2 Flow conditions across a normal shock.
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Again, the values of p2/p1, ρ2/ρ1, T2/T1, etc. are tabulated in Anderson (1982) as a function of M1 for γ
= 1.4. Let us examine some limiting cases. As M1 → 1, Equations 2.7.9 yield M2 → 1, p2/p1 → 1, ρ2/ρ1

→ 1, and T2/T1 → 1. This is the case of an extremely weak normal shock across which no finite changes
occur. This is the same as the sound wave. On the other hand, as M1 → ∞, Equations (2.7.9) yield

However, the calorically perfect gas assumption no longer remains valid as M1 → ∞.
Let us now examine why the flow ahead of a normal shock wave must be supersonic even though

Equations (2.7.8) hold for M1 < 1 as well as M1 > 1. From the second law of thermodynamics, the
entropy change across the normal shock can be written as

By using Equations (2.7.9) it becomes

(2.7.10)

Equation (2.7.10) shows that the entropy change across the normal shock is also a function of M1 only.
Using Equation (2.7.10) we see that

Since it is necessary that s2 – s1 � 0 from the second law, M1 ≥ 1. This, in turn, requires that p2/p1 �
1, ρ2/ρ1 � 1, T2/T1 � 1, and M2 � 1.

We now examine how the stagnation conditions change across a normal shock wave. For a calorically
perfect gas, the energy equation in Equations (2.7.9) gives

In other words, the total temperature remains constant across a stationary normal shock wave.
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Let us now apply the entropy change relation across the shock using the stagnation conditions.

Note that entropy at stagnation conditions is the same as at the static conditions since to arrive at
stagnation conditions, the gas is brought to rest isentropically. Since T02 = T01,

(2.7.11)

Since s2 > s1 across the normal shockwave, Equation (2.7.11) gives P02 < P01 or, in other words, the total
pressure decreases across a shock wave.

One-Dimensional Flow with Heat Addition

Consider one-dimensional flow through a control volume as shown in Figure 2.7.3. Flow conditions
going into this control volume are designated by 1 and coming out by 2. A specified amount of heat per
unit mass, q, is added to the control volume. The governing equations relating conditions 1 and 2 can
be written as

(2.7.12)

The following relations can be derived from Equation (2.7.12) for a calorically perfect gas

(2.7.13)

(2.7.14)

FIGURE 2.7.3 One-dimensional control volume with heat addition.
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(2.7.15)

(2.7.16)

Equation (2.7.13) indicates that the effect of heat addition is to directly change the stagnation temperature
T0 of the flow. Table 2.7.1 shows some physical trends which can be obtained with heat addition to
subsonic and supersonic flow. With heat extraction the trends in Table 2.7.1 are reversed.

Figure 2.7.4 shows a plot between enthalpy and entropy, also known as the Mollier diagram, for one-
dimensional flow with heat addition. This curve is called the Rayleigh curve and is drawn for a set of
given initial conditions. Each point on this curve corresponds to a different amount of heat added or
removed. It is seen from this curve that heat addition always drives the Mach numbers toward 1. For a
certain amount of heat addition, the flow will become sonic. For this condition, the flow is said to be
choked. Any further increase in heat addition is not possible without adjustment in initial conditions.
For example, if more heat is added in region 1, which is initially supersonic, than allowed for attaining
Mach 1 in region 2, then a normal shock will form inside the control volume which will suddenly change
the conditions in region 1 to subsonic. Similarly, in case of an initially subsonic flow corresponding to
region 1′, any heat addition beyond that is needed to attain Mach 1 in region 2, the conditions in region
1′ will adjust to a lower subsonic Mach number through a series of pressure waves.

Similar to the preceding heat addition or extraction relationships, we can also develop relationships
for one-dimensional steady, adiabatic flow but with frictional effects due to viscosity. In this case, the
momentum equation gets modified for frictional shear stress. For details, readers are referred to Anderson
(1982).

TABLE 2.7.1 Effect of Heat Addition on Subsonic and Supersonic Flow

M1 < 1 M1 > 1

M2 Increases Decreases
p2 Decreases Increases
T2 Increases for M1 < γ–1/2 and decreases for M1 > γ–1/2 Increases
u2 Increases Decreases
T02 Increases Increases
p02 Decreases Decreases

FIGURE 2.7.4 The Rayleigh curve.
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Quasi-One-Dimensional Flow

In quasi-one-dimensional flow, in addition to flow conditions, the area of duct also changes with x. The
governing equations for quasi-one-dimensional flow can be written in a differential form as follows
using an infinitesimal control volume shown in Figure 2.7.5.

(2.7.17)

(2.7.18)

(2.7.19)

Equation 2.7.17 can be written as

(2.7.20)

which can be further written as follows for an isentropic flow:

(2.7.21)

Some very useful physical insight can be obtained from this area–velocity relation.

• For subsonic flow (0 ≤ M < 1), an increase in area results in decrease in velocity, and vice versa.

• For supersonic flow (M > 1), an increase in area results in increase in velocity, and vice versa.

• For sonic flow (M = 1), dA/A = 0, which corresponds to a minimum or maximum in the area
distribution, but it can be shown that a minimum in area is the only physical solution.

Figure 2.7.6 shows the preceding results in a schematic form.
It is obvious from this discussion that for a gas to go isentropically from subsonic to supersonic, and

vice versa, it must flow through a convergent–divergent nozzle, also known as the de Laval nozzle. The
minimum area of the nozzle at which the flow becomes sonic is called the throat. This physical
observation forms the basis of designing supersonic wind tunnels shown schematically in Figure 2.7.7.
In general, in a supersonic wind tunnel, a stagnant gas is first expanded to the desired supersonic Mach
number. The supersonic flow enters the test section where it passes over a model being tested. The flow

FIGURE 2.7.5 Control volume for quasi-one-dimensional flow.
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then is slowed down by compressing it through a second convergent–divergent nozzle, also known as a
diffuser, before it is exhausted to the atmosphere.

Now, using the equations for quasi-one-dimensional flow and the isentropic flow conditions, we can
derive a relation for the area ratio that is needed to accelerate or decelerate the gas to sonic conditions.
Denoting the sonic conditions by an asterisk, we can write u* = a*. The area is denoted as A*, and it is
obviously the minimum area for the throat of the nozzle. From Equation (2.7.17) we have

(2.7.22)

Under isentropic conditons,

(2.7.23)

(2.7.24)

Also, u*/u = a*/u. Let us define a Mach number M* = u/a*. M* is known as the characteristic Mach
number and it is related to the local Mach number by the following relation:

(2.7.25)

FIGURE 2.7.6 Compressible flow in converging and diverging ducts.

FIGURE 2.7.7 Schematic of a typical supersonic wind tunnel.
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Using Equations (2.7.23) through (2.7.25) in Equation (2.7.22) we can write

(2.7.26)

Equation (2.7.26) is called the area Mach number relation. Figure 2.7.8 shows a plot of A/A* against
Mach number. A/A* is always ≥ 1 for physically viable solutions.

The area Mach number relation says that for a given Mach number, there is only one area ratio A/A*.
This is a very useful relation and is frequently used to design convergent–divergent nozzles to produce
a desired Mach number. Values of A/A* are tabulated as a function of M in Anderson (1982).

Equation (2.7.26) can also be written in terms of pressure as follows:

(2.7.27)

Nozzle Flow

Using the area relations, we can now plot the distributions of Mach number and pressure along a nozzle.
Figure 2.7.9 shows pressure and Mach number distributions along a given nozzle and the wave config-
urations for several exit pressures. For curves a and b, the flow stays subsonic throughout and the exit
pressure controls the flow in the entire nozzle. On curve c, the throat has just become sonic, and so the
pressure at the throat, and upstream of it, can decrease no further. There is another exit pressure
corresponding to curve j (pj < pc) for which a supersonic isentropic solution exists. But if the pressure
lies between pc and pj, there is no isentropic solution possible. For example, for an exit pressure pd, a
shock will form in the nozzle at location s which will raise the pressure to pd′ and turn the flow subsonic.
The pressure will then rise to pd as the subsonic flow goes through an increasing area nozzle. The
location, s, depends on the exit pressure. Various possible situations are shown in Figure 2.7.9. It is clear
that if the exit pressure is equal to or below pf , the flow within the nozzle is fully supersonic. This is

FIGURE 2.7.8 Variation of area ratio A/A* as a function of Mach number for a quasi-one-dimensional flow.
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the principle used in designing supersonic wind tunnels by operating from a high-pressure reservoir or
into a vacuum receiver, or both.

Diffuser

If a nozzle discharges directly into the receiver, the minimum pressure ratio for full supersonic flow in
the test section is

where pf is the value of pE at which the normal shock stands right at the nozzle exit. However, by adding
an additional diverging section, known as a diffuser, downstream of the test section as shown in Figure
2.7.10 it is possible to operate the tunnel at a lower pressure ratio than p0/pf . This happens because the
diffuser can now decelerate the subsonic flow downstream of the shock isentropically to a stagnation
pressure  The pressure ratio required then is the ratio of stagnation pressures across a normal shock
wave at the test section Mach number. In practice, the diffuser gives lower than expected recovery as a
result of viscous losses caused by the interaction of shock wave and the boundary layer which are
neglected here.

The operation of supersonic wind tunnels can be made even more efficient; i.e., they can be operated
at even lower pressure ratios than  by using the approach shown in Figure 2.7.7 where the
diffuser has a second throat. It can slow down the flow to subsonic Mach numbers isentropically and,
ideally, can provide complete recovery, giving  = p0. However, due to other considerations, such as
the starting process of the wind tunnel and viscous effects, it is not realized in real life.

Two-Dimensional Supersonic Flow

When supersonic flow goes over a wedge or an expansion corner, it goes through an oblique shock or
expansion waves, respectively, to adjust to the change in surface geometry. Figure 2.7.11 shows the two

FIGURE 2.7.9 Effect of exit pressure on flow through a nozzle.
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flow situations. In Figure 2.7.11(a) an oblique shock abruptly turns the flow parallel to the wedge surface.
The Mach number behind the shock is less than ahead of it, whereas the pressure, temperature, and
density increase. In the case of an expansion corner, oblique expansion waves smoothly turn the flow
to become parallel to the surface downstream of the expansion corner. In this case, the Mach number
increases, but the pressure, temperature, and density decrease as the flow goes through the expansion
corner. Oblique shocks and expansion waves occur in two- and three-dimensional supersonic flows. In
this section, we will restrict ourselves to steady, two-dimensional supersonic flows only.

Oblique Shock Waves

The oblique shock can be treated in the same way as the normal shock by accounting for the additional
velocity component. If a uniform velocity v is superimposed on the flow field of the normal shock, the
resultant velocity ahead of the shock can be adjusted to any flow direction by adjusting the magnitude
and direction of v. If v is taken parallel to the shock wave, as shown in Figure 2.7.12, the resultant
velocity ahead of the shock is w1 = and its direction from the shock is given by β = tan–1

(u1/v). On the downstream side of the shock, since u2 is less than u1, the flow always turns toward the
shock. The magnitude of u2 can be determined by the normal shock relations corresponding to velocity
u1 and the magnitude of v is such that the flow downstream of the shock turns parallel to the surface.
Since imposition of a uniform velocity does not affect the pressure, temperature, etc., we can use normal
shock relations with Mach number replaced in them to correspond to velocity u1 or u1/a1, which is
nothing but M1 sin β. Thus, oblique shock relations become

(2.7.28)

FIGURE 2.7.10 Normal shock diffuser.

FIGURE 2.7.11 Supersonic flow over a corner.
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(2.7.29)

(2.7.30)

The Mach number M2 (= w2/a2) can be obtained by using a Mach number corresponding to velocity u2

(= w2 sin(β – θ)) in the normal shock relation for the Mach number. In other words,

(2.7.31)

To derive a relation between the wedge angle θ and the wave angle β, we have from Figure 2.7.12

so that

This can be simplified to

(2.7.32)

Dennard and Spencer (1964) have tabulated oblique shock properties as a function of M1. Let us now
make some observations from the preceding relations.

From the normal shock relations, M1 sin β � 1. This defines a minimum wave angle for a given Mach
number. The maximum wave angle, of course, corresponds to the normal shock or β = π/2. Therefore,
the wave angle β has the following range

FIGURE 2.7.12 Oblique shock on a wedge.
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(2.7.33)

Equation 2.7.32 becomes zero at the two limits of β. Figure 2.7.13 shows a plot of θ against β for various
values of M1. For each value of M1, there is a maximum value of θ. For θ < θmax, there are two possible
solutions having different values of β. The larger value of β gives the stronger shock in which the flow
becomes subsonic. A locus of solutions for which M2 = 1 is also shown in the figure. It is seen from
the figure that with weak shock solution, the flow remains supersonic except for a small range of θ
slightly smaller than θmax.

Let us now consider the limiting case of θ going to zero for the weak shock solution. As θ decreases
to zero, β decreases to the limiting value µ, given by

(2.7.34)

For this angle, the oblique shock relations show no jump in flow quantities across the wave or, in other
words, there is no disturbance generated in the flow. This angle µ is called the Mach angle and the lines
at inclination µ are called Mach lines.

Thin-Airfoil Theory

For a small deflection angle ∆θ, it can be shown that the change in pressure in a flow at Mach M1 is
given approximately by

(2.7.35)

FIGURE 2.7.13 Oblique shock characteristics.
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This expression holds for both compression and expansion. If ∆p is measured with respect to the
freestream pressure, p1, and all deflections to the freestream direction, we can write Equation (2.7.35) as

(2.7.36)

where θ is positive for a compression and negative for expansion. Let us define a pressure coefficient Cp, as

where q1 is the dynamic pressure and is equal to  Equation (2.7.36) then gives

(2.7.37)

Equation (2.7.37) states that the pressure coefficient is proportional to the local flow deflection. This
relation can be used to develop supersonic thin-airfoil theory. As an example, for a flat plate at angle of
attack α0 (shown in Figure 2.7.14), the pressure coefficients on the upper and lower surfaces are

The lift and drag coefficients can be written as

where c is the chord length of the plate. Since α0 is small, we can write

FIGURE 2.7.14 Lifting flat plate.
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(2.7.38)

A similar type of expression can be obtained for an arbitrary thin airfoil that has thickness, camber, and
angle of attack. Figure 2.7.15 shows such an airfoil. The pressure coefficients on the upper and lower
surfaces can be written as

(2.7.39)

For the thin airfoil, the profile may be resolved into three separate components as shown in Figure 2.7.15.
The local slope of the airfoil can be obtained by superimposing the local slopes of the three components as

(2.7.40)

where α = α0 + αc (x) is the local total angle of attack of the camber line. The lift and drag for the thin
airfoil are given by

Let us define an average value of α (x) as 

Using Equation (2.7.40) and the fact that = α and = 0 by definition, the lift and drag coefficients
for the thin airfoil can be written as

FIGURE 2.7.15 Arbitrary thin airfoil and its components.
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(2.7.41)

Equations (2.7.41) show that the lift coefficient depends only on the mean angle of attack whereas the
drag coefficient is a linear combination of the drag due to thickness, drag due to camber, and drag due
to lift (or mean angle of attack).
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Further Information

As mentioned in the beginning, this section discussed only one- or two-dimensional steady, inviscid
compressible flows under perfect gas assumption. Even this discussion was quite brief because of space
limitations. For more details on the subject as well as for compressible unsteady viscous flows, readers
are referred to Anderson (1982) and Liepmann and Roshko (1966).
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2.8 Multiphase Flow

John C. Chen

Introduction

Classic study of fluid mechanics concentrates on the flow of a single homogeneous phase, e.g., water,
air, steam. However, many industrially important processes involve simultaneous flow of multiple phases,
e.g., gas bubbles in oil, wet steam, dispersed particles in gas or liquid. Examples include vapor–liquid
flow in refrigeration systems, steam–water flows in boilers and condensers, vapor–liquid flows in
distillation columns, and pneumatic transport of solid particulates. In spite of their importance, multiphase
flows are often neglected in standard textbooks. Fundamental understanding and engineering design
procedures for multiphase flows are not nearly so well developed as those for single-phase flows. An
added complexity is the need to predict the relative concentrations of the different phases in the
multiphase flows, a need that doesn’t exist for single-phase flows.

Inadequate understanding not withstanding, a significant amount of data have been collected and
combinations of theoretical models and empirical correlations are used in engineering calculations. This
knowledge base is briefly summarized in this section and references are provided for additional infor-
mation. While discussions are provided of solid–gas flows and solid–liquid flows, primary emphasis is
placed on multiphase flow of gas–liquids since this is the most often encountered class of multiphase
flows in industrial applications.

A multiphase flow occurs whenever two or more of the following phases occur simultaneously:
gas/vapor, solids, single-liquid phase, multiple (immiscible) liquid phases. Every possible combination
has been encountered in some industrial process, the most common being the simultaneous flow of
vapor/gas and liquid (as encountered in boilers and condensers). All multiphase flow problems have
features which are characteristically different from those found in single-phase problems. First, the
relative concentration of different phases is usually a dependent parameter of great importance in
multiphase flows, while it is a parameter of no consequence in single-phase flows. Second, the spatial
distribution of the various phases in the flow channel strongly affects the flow behavior, again a parameter
that is of no concern in single-phase flows. Finally, since the density of various phases can differ by
orders of magnitude, the influence of gravitational body force on multiphase flows is of much greater
importance than in the case of single-phase flows. In any given flow situation, the possibility exists for
the various phases to assume different velocities, leading to the phenomena of slip between phases and
consequent interfacial momentum transfer. Of course, the complexity of laminar/turbulent characteristics
occurs in multiphase flows as in single-phase flows, with the added complexity of interactions between
phases altering the laminar/turbulent flow structures. These complexities increase exponentially with the
number of phases encountered in the multiphase problem. Fortunately, a large number of applications
occur with just two phase flows, or can be treated as pseudo-two-phase flows.

Two types of analysis are used to deal with two-phase flows. The simpler approach utilizes homoge-
neous models which assume that the separate phases flow with the same identical local velocity at all
points in the fluid. The second approach recognizes the possibility that the two phases can flow at
different velocities throughout the fluid, thereby requiring separate conservation equations for mass and
momentum for each phase. Brief descriptions of both classes of models are given below.

Fundamentals

Consider n phases in concurrent flow through a duct with cross-sectional area Ac. Fundamental quantities
that characterize this flow are
© 2000 by CRC Press LLC
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Basic relationships between these and related parameters are

(2.8.1)

 (2.8.2)

 (2.8.3)

 (2.8.4)

 (2.8.5)

In most engineering calculations, the above parameters are defined as average quantities across the entire
flow area, Ac. It should be noted, however, that details of the multiphase flow could involve local variations
across the flow area. In the latter situation, Gi, vi, and αi are often defined on a local basis, varying with
transverse position across the flow area.

Pressure drop along the flow channel is associated with gravitational body force, acceleration forces,
and frictional shear at the channel wall. The total pressure gradient along the flow axis can be represented
as

(2.8.6)

ṁ i

u i

i

i

i

i

=

=

=

mass flow rate of th phase

velocity of th phase

volume fraction of th phase in channelα

G i

m

A

i

i

c

=

=

mass flux of th phase

˙

v i

G

i

i

i

=

=

superficial velocity of th phase

ρ

u i

v

i

i

i

=

=

actual velocity of th phase

α

x i

m

m

G

G

i

i

i

i

n
i

i

i

n

=

= =

∑ ∑
=

flow quality of th phase

˙

1

α

ρ

ρ

i

i

i i

i

i ii

n

i

x

u

x

u

=

=













=
∑

volume fraction of th phase

1

dP

dz

dP

dz

dP

dz

dP

dzg a f

= 

 + 


 + 




© 2000 by CRC Press LLC



2-99
where

(2.8.7)

and

(2.8.10)

(2.8.11)

In applications, the usual requirement is to determine pressure gradient (dP/dz) and the volume
fractions (αi). The latter quantities are of particular importance since the volume fraction of individual
phases affects all three components of the pressure gradient, as indicated in Equations (2.8.7) to (2.8.11).
Correlations of various types have been developed for prediction of the volume fractions, all but the
simplest of which utilize empirical parameters and functions.

The simplest flow model is known as the homogeneous equilibrium model (HEM), wherein all phases
are assumed to be in neutral equilibrium. One consequence of this assumption is that individual phase
velocities are equal for all phases everywhere in the flow system:

(2.8.12)

This assumption permits direct calculation of the volume fractions from known mass qualities:

(2.8.13)

The uniform velocity for all phases is the same as mixture velocity:

(2.8.8)

(2.8.9)
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(2.8.14)

where

(2.8.15)

This homogeneous model permits direct evaluation of all three components of axial pressure gradient,
if flow qualities (xi) are known:

(2.8.16)

(2.8.17)

(2.8.18)

where u and ρ are given by Equations (2.8.14) and (2.8.15).
Predicting the coefficient of friction (f to clear) remains a problem, even in the homogeneous model.

For cases of fully turbulent flows, experience has shown that a value of 0.02 may be used as a first-
order approximation for (f to clear). More-accurate estimates require empirical correlations, specific to
particular classes of multiphase flows and subcategories of flow regimes.

The following parts of this section consider the more common situations of two-phase flows and
describe improved design methodologies specific to individual situations.

Gas–Liquid Two-Phase Flow

The most common case of multiphase flow is two-phase flow of gas and liquid, as encountered in steam
generators and refrigeration systems. A great deal has been learned about such flows, including delin-
eation of flow patterns in different flow regimes, methods for estimating volume fractions (gas void
fractions), and two-phase pressure drops.

Flow Regimes

A special feature of multiphase flows is their ability to assume different spatial distributions of the
phases. These different flow patterns have been classified in flow regimes, which are themselves altered
by the direction of flow relative to gravitational acceleration. Figures 2.8.1 and 2.8.2 (Delhaye, 1981)
show the flow patterns commonly observed for co-current flow of gas and liquid in vertical and horizontal
channels, respectively. For a constant liquid flow rate, the gas phase tends to be distributed as small
bubbles at low gas flow rates. Increasing gas flow rate causes agglomeration of bubbles into larger slugs
and plugs. Further increasing gas flow rate causes separation of the phases into annular patterns wherein
liquid concentrates at the channel wall and gas flows in the central core for vertical ducts. For horizontal
ducts, gravitational force tends to drain the liquid annulus toward the bottom of the channel, resulting
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FIGURE 2.8.1 Flow patterns in gas–liquid vertical flow. (From Lahey, R.T., Jr. and Moody, F.I. 1977. The Thermal
Hydraulics of a Boiling Water Nuclear Reactor, The American Nuclear Society, LaGrange, IL. With permission.)

FIGURE 2.8.2 Flow patterns in gas–liquid horizontal flow.
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in stratified and stratified wavy flows. This downward segregation of the liquid phase can be overcome
by kinetic forces at high flow rates, causing stratified flows to revert to annular flows. At high gas flow
rates, more of the liquid tends to be entrained as dispersed drops; in the limit one obtains completely
dispersed mist flow.

Flow pattern maps are utilized to predict flow regimes for specific applications. The first generally
successful flow map was that of Baker (1954) for horizontal flow, reproduced here in Figure 2.8.3. For
vertical flows, the map of Hewitt and Roberts (1969), duplicated in Figure 2.8.4, provides a simple
method for determining flow regimes. Parameters used for the axial coordinates of these flow maps are
defined as follows:

(2.8.19)

(2.8.20)

(2.8.21)

Void Fractions

In applications of gas–liquid flows, the volume fraction of gas (αg) is commonly called “void fraction”
and is of particular interest. The simplest method to estimate void fraction is by the HEM. From Equation
(2.8.13), the void fraction can be estimated as

FIGURE 2.8.3 Flow pattern map for horizontal flow (Baker, 1954). (From Collier, J.G. 1972. Convective Boiling
and Condensation, McGraw-Hill, London. With permission.)
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(2.8.22)

where αg, xg, ρg, ρ� are cross-sectional averaged quantities.
In most instances, the homogenous model tends to overestimate the void fraction. Improved estimates

are obtained by using separated-phase models which account for the possibility of slip between gas and
liquid velocities. A classic separated-phase model is that of Lockhart and Martinelli (1949). The top
portion of Figure 2.8.5 reproduces the Lockhart–Martinelli correlation for void fraction (shown as α)
as a function of the parameter X which is defined as

(2.8.23)

FIGURE 2.8.4 Flow pattern map for vertical flow (Hewitt and Roberts, 1969). (From Collier, J.G. 1972. Convective
Boiling and Condensation, McGraw-Hill, London. With permission.)
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where

Often, flow rates are sufficiently high such that each phase if flowing alone in the channel would be
turbulent. In this situation the parameter X can be shown to be

(2.8.24)

Another type of separated-phase model is the drift-flux formulation of Wallis (1969). This approach
focuses attention on relative slip between phases and results in slightly different expressions depending
on the flow regime. For co-current upflow in two of the more common regimes, the drift-flux model
gives the following relationships between void fraction and flow quality:

FIGURE 2.8.5 Correlations for void fraction and frictional pressure drop (Lockhart and Martinelli, 1949). (From
Collier, J.G. 1972. Convective Boiling and Condensation, McGraw-Hill, London. With permission.)

  

dP

dz f





 =

l

frictional pressure gradient of liquid phase flowing alone in channel

dP

dz fg





 = frictional pressure gradient of gas phase flowing alone in channel

  

X
x

xtt
g

g

g

g

=
−

























1
0 9 0 5 0 1. . .

ρ
ρ

µ
µl

l

© 2000 by CRC Press LLC



2-105
Bubbly flow or churn-turbulent flow:

(2.8.25)

Dispersed drop (mist) flow:

(2.8.26)

where uo= terminal rise velocity of bubble, in bubbly flow, or terminal fall velocity of drop in churn-
turbulent flow

Co = an empirical distribution coefficient � 1.2

Pressure Drop

Equations (2.8.16) through (2.8.18) permit calculation of two-phase pressure drop by the homogeneous
model, if the friction coefficient (f) is known. One useful method for estimating (f) is to treat the entire
two-phase flow as if it were all liquid, except flowing at the two-phase mixture velocity. By this approach
the frictional component of the two-phase pressure drop becomes

(2.8.27)

where (dP/dz)f�G = frictional pressure gradient if entire flow (of total mass flux G) flowed as liquid in
the channel.

The equivalent frictional pressure drop for the entire flow as liquid, (dP/dz)f�g, can be calculated by
standard procedures for single-phase flow. In using Equations (2.8.16) through (2.8.18), the void fraction
would be calculated with the equivalent homogeneous expression Equation (2.8.13).

A more accurate method to calculate two-phase pressure drop is by the separated-phases model of
Lockhart and Martinelli (1949). The bottom half of Figure 2.8.5 shows empirical curves for the Lock-
hart–Martinelli frictional multiplier, φ:

(2.8.28)

where (i) denotes either the fluid liquid phase (f) or gas phase (g). The single-phase frictional gradient
is based on the ith phase flowing alone in the channel, in either viscous laminar (v) or turbulent (t)
modes. The most common case is where each phase flowing alone would be turbulent, whence one could
use Figure 2.8.5 to obtain
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(2.8.29)

where (dP/dz)fg is calculated for gas phase flowing alone and X = Xtt as given by Equation (2.8.24).
The correlation of Lockhart–Martinelli has been found to be adequate for two-phase flows at low-to-

moderate pressures, i.e., with reduced pressures less than 0.3. For applications at higher pressures, the
revised models of Martinelli and Nelson (1948) and Thom (1964) are recommended.

Gas–Solid, Liquid–Solid Two-Phase Flows

Two-phase flows can occur with solid particles in gas or liquid. Such flows are found in handling of
granular materials and heterogeneous reaction processing. Concurrent flow of solid particulates with a
fluid phase can occur with various flow patterns, as summarized below.

Flow Regimes

Consider vertical upflow of a fluid (gas or liquid) with solid particles. Figure 2.8.6 illustrates the major
flow regimes that have been identified for such two-phase flows. At low flow rates, the fluid phase
percolates between stationary particles; this is termed flow through a fixed bed. At some higher velocity
a point is reached when the particles are all suspended by the upward flowing fluid, the drag force
between particles and fluid counterbalancing the gravitational force on the particles. This is the point of
minimum fluidization, marking the transition from fixed to fluidized beds. Increase of fluid flow rate
beyond minimum fluidization causes instabilities in the two-phase mixture, and macroscopic bubbles or
channels of fluid are observed in the case of gaseous fluids. In the case of liquid fluids, the two-phase
mixture tends to expand, often without discrete bubbles or channels. Further increase of fluid velocity
causes transition to turbulent fluidization wherein discrete regions of separated phases (fluid slugs or
channels and disperse suspensions of particles) can coexist. Depending on specific operating conditions
(e.g., superficial fluid velocity, particle size, particle density, etc.), net transport of solid particles with
the flowing fluid can occur at any velocity equal to or greater than that associated with slug flow and
turbulent flow. Further increases in fluid velocity increase the net transport of solid particles. This can
occur with large-scale clusters of solid particles (as exemplified by the fast fluidization regime) or with
dilute dispersions of solid particles (as often utilized in pneumatic conveying). For engineering applica-
tion of fluid–solid two-phase flows, the important thresholds between flow regimes are marked by the
fluid velocity for minimum fluidization, terminal slip, and saltation threshold.

Minimum Fluidization

The transition from flow through packed beds to the fluidization regime is marked by the minimum
fluidization velocity of the fluid. On a plot pressure drop vs. superficial fluid velocity, the point of
minimum fluidization is marked by a transition from a linearly increasing pressure drop to a relatively
constant pressure drop as shown in Figure 2.8.7 for typical data, for two-phase flow of gas with sand
particles of 280 µm mean diameter (Chen, 1996). The threshold fluid velocity at minimum fluidization
is traditionally derived from the Carman–Kozeny equation,

(2.8.30)
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where φ= sphericity of particles (unity for spherical particles)

αmf = volumetric fraction of fluid at minimum fluidization

Small, light particles have minimum fluidization voidage (αmf) of the order 0.6, while larger particles
such as sand have values closer to 0.4.

FIGURE 2.8.6 Flow patterns for vertical upflow of solid particles and gas or liquid. (From Chen, J.C. 1994. Proc.
Xth Int. Heat Transfer Conf., Brighton, U.K., 1:369–386. With permission.)

FIGURE 2.8.7 Transition at minimum fluidization. (From Chen, J.C. 1996. In Annual Review of Heat Transfer,
Vol. VII, Begal House, Washington, D.C. With permission.)
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An alternative correlation for estimating the point of minimum fluidization is that of Wen and Yu
(1966):

(2.8.31)

where 
When the fluid velocity exceeds Umf , the two-phase mixture exists in the fluidized state in which the

pressure gradient is essentially balanced by the gravitational force on the two-phase mixture:

(2.8.32)

This fluidized state exists until the fluid velocity reaches a significant fraction of the terminal slip velocity,
beyond which significant entrainment and transport of the solid particles occur.

Terminal Slip Velocity

For an isolated single particle the maximum velocity relative to an upflowing fluid is the terminal slip
velocity. At this condition, the interfacial drag of the fluid on the particle exactly balances the gravitational
body force on the particle:

(2.8.33)

where CD = coefficient of drag on the particle.
The coefficient of drag on the particle (CD) depends on the particle Reynolds number:

(2.8.34)

The following expressions may be used to estimate CD as appropriate:

(2.8.35)

Pneumatic Conveying

A desirable mode of pneumatic conveying is two-phase flow with solid particles dispersed in the
concurrent flowing fluid. Such dispersed flows can be obtained if the fluid velocity is sufficiently high.
For both horizontal and vertical flows, there are minimum fluid velocities below which saltation of the
solid particles due to gravitational force occurs, leading to settling of the solid particles in horizontal
channels and choking of the particles in vertical channels. Figures 2.8.8 and 2.8.9 for Zenz and Othmer
(1960) show these different regimes of pneumatic conveying for horizontal and vertical transport,
respectively. Figure 2.8.8 shows that for a given rate of solids flow (W) there is a minimum superficial
fluid velocity below which solid particles tend to settle into a dense layer at the bottom of the horizontal
channels. Above this saltation threshold, fully dispersed two-phase flow is obtained. In the case of vertical
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FIGURE 2.8.8 Flow characteristics in horizontal pneumatic conveying. (From Zeng, F.A. and Othmer, D.F. 1960.
Fluidization and Fluid-Particle Systems, Reinhold, New York. With permission.)

FIGURE 2.8.9 Flow characteristics in vertical pneumatic conveying. (From Zeng, F.A. and Othmer, D.F. 1960.
Fluidization and Fluid-Particle Systems, Reinhold, New York. With permission.)
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transport illustrated in Figure 2.8.9, there is a minimum fluid velocity below which solid particles tend
to detrain from the two-phase suspension. This choking limit varies not only with particle properties but
also with the actual rate of particle flow. Well-designed transport systems must operate with superficial
fluid velocities greater than these limiting saltation and choking velocities.

Zenz and Othmer (1960) recommend the empirical correlations represented in Figure 2.8.10 estimating
limiting superficial fluid velocities at incipient saltation or choking, for liquid or gas transport of
uniformly sized particles. Note that these correlations are applicable for either horizontal or vertical
concurrent flow. Figure 2.8.10 is duplicated from the original source and is based on parameters in
engineering units, as noted in the figure. To operate successfully in dispersed pneumatic conveying of
solid particles, the superficial fluid velocity must exceed that determined from the empirical correlations
of Figure 2.8.10.
© 2000 by CRC Press LLC
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2.9 New-Newtonian Flows

Thomas F. Irvine, Jr. and Massimo Capobianchi

Introduction

An important class of fluids exists which differ from Newtonian fluids in that the relationship between
the shear stress and the flow field is more complicated. Such fluids are called non-Newtonian or
rheological fluids. Examples include various suspensions such as coal–water or coal–oil slurries, food
products, inks, glues, soaps, polymer solutions, etc.

An interesting characteristic of rheological fluids is their large “apparent viscosities”. This results in
laminar flow situations in many applications, and consequently the engineering literature is concentrated
on laminar rather than turbulent flows. It should also be mentioned that knowledge of non-Newtonian
fluid mechanics and heat transfer is still in an early stage and many aspects of the field remain to be
clarified.

In the following sections, we will discuss the definition and classification of non-Newtonian fluids,
the special problems of thermophysical properties, and the prediction of pressure drops in both laminar
and turbulent flow in ducts of various cross-sectional shapes for different classes of non-Newtonian fluids.

Classification of Non-Newtonian Fluids

It is useful to first define a Newtonian fluid since all other fluids are non-Newtonian. Newtonian fluids
possess a property called viscosity and follow a law analogous to the Hookian relation between the
stress applied to a solid and its strain. For a one-dimensional Newtonian fluid flow, the shear stress at
a point is proportional to the rate of strain (called in the literature the shear rate) which is the velocity
gradient at that point. The constant of proportionality is the dynamic viscosity, i.e.,

(2.9.1)

where x refers to the direction of the shear stress y the direction of the velocity gradient, and  is the
shear rate. The important characteristic of a Newtonian fluid is that the dynamic viscosity is independent
of the shear rate.

Equation (2.9.1) is called a constitutive equation, and if τx,y is plotted against ,  the result is a linear
relation whose slope is the dynamic viscosity. Such a graph is called a flow curve and is a convenient
way to illustrate the viscous properties of various types of fluids.

Fluids which do not obey Equation (2.9.1) are called non-Newtonian. Their classifications are illus-
trated in Figure 2.9.1 where they are separated into various categories of purely viscous time-independent
or time-dependent fluids and viscoelastic fluids. Viscoelastic fluids, which from their name possess both
viscous and elastic properties (as well as memory), have received considerable attention because of their
ability to reduce both drag and heat transfer in channel flows. They will be discussed in a later subsection.

Purely viscous time-independent fluids are those in which the shear stress in a function only of the
shear rate but in a more complicated manner than that described in Equation (2.9.1). Figure 2.9.2
illustrates the characteristics of purely viscous time-independent fluids. In the figure, (a) and (b) are
fluids where the shear stress depends only on the shear rate but in a nonlinear way. Fluid (a) is called
pseudoplastic (or shear thinning), and fluid (b) is called dilatant (or shear thickening). Curve (c) is one
which has an initial yield stress after which it acts as a Newtonian fluid, called Bingham plastic, and
curve (d), called Hershel-Buckley, also has a yield stress after which it becomes pseudoplastic. Curve
(e) depicts a Newtonian fluid.

Figure 2.9.3 shows flow curves for two common classes of purely viscous time-dependent non-
Newtonian fluids. It is seen that such fluids have a hysteresis loop or memory whose shape depends

τ µ µγy x

du

dy,
˙= =

γ̇

γ̇
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FIGURE 2.9.1 Classification of fluids.

FIGURE 2.9.2 Flow curves of purely viscous, time-independent fluids: (a) pseudoplastic; (b) dilatant; (c) Bingham
plastic; (d) Hershel–Buckley; (e) Newtonian.

FIGURE 2.9.3 Flow curves for purely viscous, time-dependent fluids: (a) thixotropic; (b) rheopectic.
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upon the time-dependent rate at which the shear stress is applied. Curve (a) illustrates a pseudoplastic
time-dependent fluid and curve (b) a dilatant time-dependent fluid. They are called, respectively, thixo-
tropic and rheopectic fluids and are complicated by the fact that their flow curves are difficult to
characterize for any particular application.

Apparent Viscosity

Although non-Newtonian fluids do not have the property of viscosity, in the Newtonian fluid sense, it
is convenient to define an apparent viscosity which is the ratio of the local shear stress to the shear rate
at that point.

(2.9.2)

The apparent viscosity is not a true property for non-Newtonian fluids because its value depends upon
the flow field, or shear rate. Nevertheless, it is a useful quantity and flow curves are often constructed
with the apparent viscosity as the ordinate and shear rate as the abscissa. Such a flow curve will be
illustrated in a later subsection.

Constitutive Equations

A constitutive equation is one that expresses the relation between the shear stress or apparent viscosity
and the shear rate through the rheological properties of the fluid. For example, Equation (2.9.1) is the
constitutive equation for a Newtonian fluid.

Many constitutive equations have been developed for non-Newtonian fluids with some of them having
as many as five rheological properties. For engineering purposes, simpler equations are normally satis-
factory and two of the most popular will be considered here.

Since many of the non-Newtonian fluids in engineering applications are pseudoplastic, such fluids
will be used in the following to illustrate typical flow curves and constitutive equations. Figure 2.9.4 is
a qualitative flow curve for a typical pseudoplastic fluid plotted with logarithmic coordinates. It is seen
in the figure that at low shear rates, region (a), the fluid is Newtonian with a constant apparent viscosity
of µo (called the zero shear rate viscosity). At higher shear rates, region (b), the apparent viscosity begins
to decrease until it becomes a straight line, region (c). This region (c) is called the power law region
and is an important region in fluid mechanics and heat transfer. At higher shear rates than the power
law region, there is another transition region (d) until again the fluid becomes Newtonian in region (e).
As discussed below, regions (a), (b), and (c) are where most of the engineering applications occur.

FIGURE 2.9.4 Illustrative flow curve for a pseudoplastic fluid (a) Newtonian region; (b) transition region I: (c)
power law region; (d) transition region II; (e) high-shear-rate Newtonian region.

µ τ
γa = ˙
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Power Law Constitutive Equation

Region (c) in Figure 2.9.4, which was defined above as the power law region, has a simple constitutive
equation:

(2.9.3)

or, from Equation (2.9.2):

(2.9.4)

Here, K is called the fluid consistency and n the flow index. Note that if n = 1, the fluid becomes
Newtonian and K becomes the dynamic viscosity. Because of its simplicity, the power law constitutive
equation has been most often used in rheological studies, but at times it is inappropriate because it has
several inherent flaws and anomalies. For example, if one considers the flow of a pseudoplastic fluid (n
< 1) through a circular duct, because of symmetry at the center of the duct the shear rate (velocity
gradient) becomes zero and thus the apparent viscosity from Equation (2.9.4) becomes infinite. This
poses conceptual difficulties especially when performing numerical analyses on such systems. Another
difficulty arises when the flow field under consideration is not operating in region (c) of Figure 2.9.4
but may have shear rates in region (a) and (b). In this case, the power law equation is not applicable
and a more general constitutive equation is needed.

Modified Power Law Constitutive Equation

A generalization of the power law equation which extends the shear rate range to regions (a) and (b) is
given by

(2.9.5)

Examination of Equation (2.9.5) reveals that at low shear rates, the second term in the denominator
becomes small compared with unity and the apparent viscosity becomes a constant equal to µO. This
represents the Newtonian region in Figure 2.9.4. On the other hand, as the second term in the denominator
becomes large compared with unity, Equation (2.9.5) becomes Equation (2.9.4) and represents region
(c), the power law region. When both denominator terms must be considered, Equation (2.9.5) represents
region (b) in Figure 2.9.4.

An important advantage of the modified power law equation is that it retains the rheological properties
K and n of the power law model plus the additional property µo. Thus, as will be shown later, in the
flow and heat transfer equations, the same dimensionless groups as in the power law model will appear
plus an additional dimensionless parameter which describes in which of the regions (a), (b), or (c) a
particular system is operating. Also, solutions using the modified power law model will have Newtonian
and power law solutions as asymptotes.

Equation (2.9.5) describes the flow curve for a pseudoplastic fluid (n < 1). For a dilatant fluid, (n >
1), an appropriate modified power law model is given by

(2.9.6)
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Many other constitutive equations have been proposed in the literature (Skelland, 1967; Cho and Hartnett,
1982; Irvine and Karni, 1987), but the ones discussed above are sufficient for a large number of
engineering applications and agree well with the experimental determinations of rheological properties.

Rheological Property Measurements

For non-Newtonian fluids, specifying the appropriate rheological properties for a particular fluid is
formidable because such fluids are usually not pure substances but various kinds of mixtures. This means
that the properties are not available in handbooks or other reference materials but must be measured for
each particular application. A discussion of the various instruments for measuring rheological properties
is outside the scope of the present section, but a number of sources are available which describe different
rheological property measurement techniques and instruments: Skelland (1967), Whorlow (1980), Irvine
and Karni (1987), and Darby (1988). Figure 2.9.5 is an illustration of experimental flow curves measured
with a falling needle viscometer and a square duct viscometer for polymer solutions of different
concentrations. Also shown in the figure as solid lines is the modified  power law equation used to
represent the experimental data. It is seen that Equation (2.9.5) fits the experimental data within ±2%.
Table 2.9.1 lists the rheological properties used in the modified power law equations in Figure 2.9.5. It
must be emphasized that a proper knowledge of these properties is vital to the prediction of fluid
mechanics and heat transfer phenomena in rheological fluids.

Fully Developed Laminar Pressure Drops for Time-Independent Non-
Newtonian Fluids

Modified Power Law Fluids

This important subject will be considered by first discussing modified power law fluids. The reason is
that such solutions include both friction factor–Reynolds number relations and a shear rate parameter.
The latter allows the designer to determine the shear rate region in which his system is operating and
thus the appropriate solution to be used, i.e., regions (a), (b), or (c) in Figure 2.9.4.

For laminar fully developed flow of a modified power law fluid in a circular duct, the product of the
friction factor and a certain Reynolds number is a constant depending on the flow index, n, and the shear
rate parameter, β.

(2.9.7)

where fD is the Darcy friction factor and Rem the modified power law Reynolds number, i.e., 

(Darcy friction factor)*

TABLE 2.9.1 Rheological Properties Used in the Modified Power Law 
Equations in Figure 2.9.5 for Three Polymer Solutions of CMC-7H4

CMC K (N · secn/m2) n µo (N · sec/m2)n

5000 wppm 2.9040 0.3896 0.21488
2500 wppm 1.0261 0.4791 0.06454
1500 wppm 0.5745 0.5204 0.03673

Source: Park, S. et al., Proc. Third World Conf. Heat Transfer, Fluid Mechanics, 
and Thermodynamics, Vol. 1, Elsevier, New York, 1993, 900–908.

* It should be noted that the Fanning friction factor is also used in the technical literature. The Fanning friction
factor is 1/4 of the Darcy friction factor, and will be characterized by the symbol fF.
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where β is the shear rate parameter mentioned previously which can be calculated by the designer for
a certain operating duct  and d) and a certain pseudoplastic fluid (µo, K, n). The solution for a circular
tube has been calculated by Brewster and Irvine (1987) and the results are shown in Figure 2.9.6 and
in Table 2.9.2. Referring to Figure 2.9.6, we can see that when the log10 β is less than approximately
–2, the duct is operating in region (a) of Figure 2.9.4 which is the Newtonian region and therefore
classical Newtonian solutions can be used. Note that in the Newtonian region, Rem reverts to the
Newtonian Reynolds number given by

FIGURE 2.9.5 Experimental measurements of apparent viscosity vs. shear rate for polymer solutions (CMC-7H4)
at different concentrations. (From Park, S. et al., in Proc. Third World Conf. Heat Transfer, Fluid Mechanics, and
Thermodynamics, Vol. 1, Elsevier, New York, 1993, 900–908.
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FIGURE 2.9.6 Product of friction factor and modified Reynolds number vs. log10 β for a circular duct. (From
Brewster, R.A. and Irvine, T.F., Jr., Wärme und Stoffübertragung, 21, 83–86, 1987.

TABLE 2.9.2 Summary of Computed Values of fD · Rem for Various Values of n 
and β for a Circular Duct

fD · Rem for Flow Index: n = 

β 1.0 0.9 0.8 0.7 0.6 0.5

10–5 64.000 64.000 64.000 64.000 63.999 63.999

10–4 64.000 63.999 63.997 63.995 63.993 63.990

10–3 64.000 63.987 63.972 63.953 63.930 63.903

10–2 64.000 63.873 63.720 63.537 63.318 63.055

10–1 64.000 62.851 61.519 59.987 58.237 56.243

100 64.000 58.152 52.377 46.761 41.384 36.299

101 64.000 54.106 45.597 38.308 32.082 26.771

102 64.000 53.371 44.458 36.985 30.716 25.451

103 64.000 53.291 44.336 36.845 30.573 25.314

104 64.000 53.283 44.324 36.831 30.559 25.300

105 64.000 53.282 44.323 36.830 30.557 25.299

Exact solution 64.000 53.282 44.323 36.829 30.557 25.298

Source: Brewster, R.A. and Irvine, T.F., Jr., Wärme und Stoffübertragung, 21, 83–86, 1987. 
With permission.
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(2.9.8)

When the value of log10 β is approximately in the range –2 ≤ log10 β ≤ 2, the duct is operating in the
transition region (b) of Figure 2.9.4 and the values of fD · Rem must be obtained from Figure 2.9.6 or
from Table 2.9.2.

When log10 β is greater than approximately 2, the duct is operating in the power law region (c) of
Figure 2.9.4 and power law friction factor Reynolds number relations can be used. They are also indicated
in Figure 2.9.6 and Table 2.9.2. In this region, Rem becomes the power law Reynolds number given by

(2.9.9)

For convenience, Brewster and Irvine (1987) have presented a correlation equation which agrees within
0.1% with the results tabulated in Table 2.9.2.

(2.9.10)

Thus, Equation (2.9.10) contains all of the information required to calculate the circular tube laminar
fully developed pressure drop for a pseudoplastic fluid depending upon the shear rate region(s) under
consideration, i.e., regions (a), (b), or (c) of Figure 2.9.4. Note that in scaling such non-Newtonian
systems, both Rem and β must be held constant. Modified power law solutions have been reported for
two other duct shapes. Park et al. (1993) have presented the friction factor–Reynolds number relations
for rectangular ducts and Capobianchi and Irvine (1992) for concentric annular ducts.

Power Law Fluids

Since the power law region of modified power law fluids (log10 β ≥ 2) is often encountered, the friction
factor–Reynolds number relations will be discussed in detail in this subsection.

An analysis of power law fluids which is most useful has been presented by Kozicki et al. (1967).
Although the method is approximate, its overall accuracy (±5%) is usually sufficient for many engineering
calculations. His expression for the friction factor–Reynolds number product is given by

(2.9.11)

where

(2.9.12)

and a and b are geometric constants which depend on the cross-sectional shape of the duct. For example,
for a circular duct, a = 0.25 and b = 0.75. Values of a and b for other duct shapes are tabulated in Table
2.9.3. For additional duct shapes in both closed and open channel flows, Kozicki et al. (1967) may be
consulted.
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Fully Developed Turbulent Flow Pressure Drops

In a number of engineering design calculations for turbulent flow, the shear rate range falls in region
(c) of Figure 2.9.4. Thus, power law relations are appropriate for such pressure drop calculations.

Hartnett and Kostic (1990) have investigated the various correlations which have appeared in the
literature for circular tubes and have concluded that for a circular tube the relation proposed by Dodge
and Metzner (1959) is the most reliable for pseudoplastic fluids. It is given by

TABLE 2.9.3 Constants a and b for Various Duct Geometrics Used in the Method 
Due to Kozicki et al. (1967)

Geometry α* a b

0.1 0.4455 0.9510
0.2 0.4693 0.9739
0.3 0.4817 0.9847
0.4 0.4890 0.9911
0.5 0.4935 0.9946
0.6 0.4965 0.9972
0.7 0.4983 0.9987
0.8 0.4992 0.9994
0.9 0.4997 1.0000
1.0a 0.5000 1.0000

0.0 0.5000 1.0000
0.25 0.3212 0.8482
0.50 0.2440 0.7276
0.75 0.2178 0.6866
1.00 0.2121 0.8766

0.00 0.3084 0.9253
0.10 0.3018 0.9053
0.20 0.2907 0.8720
0.30 0.2796 0.8389
0.40 0.2702 0.8107
0.50 0.2629 0.7886
0.60 0.2575 0.7725
0.70 0.2538 0.7614
0.80 0.2515 0.7546
0.90 0.2504 0.7510
1.00b 0.2500 0.7500

2φ (deg)

10 0.1547 0.6278
20 0.1693 0.6332
40 0.1840 0.6422
60 0.1875 0.6462
80 0.1849 0.6438
90 0.1830 0.6395

N

4 0.2121 0.6771
5 0.2245 0.6966
6 0.2316 0.7092
8 0.2391 0.7241

a Parallel plates.
b Circle.
Source: Irvine, T.F., Jr. and Karni, J., in Handbook of Single Phase Convective Heat 
Transfer, John Wiley & Sons, New York, 1987, pp 20.1–20.57.
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(2.9.13)

where fF is the Fanning friction factor and

(2.9.14)

Figure 2.9.7 is a graphical representation of Equation (2.9.13) which indicates the Dodge and Metzner
experimental regions by solid lines, and by dashed lines where the data are extrapolated outside of their
experiments.

For noncircular ducts in turbulent fully developed flow, only a limited amount of experimental data
are available. Kostic and Hartnett (1984) suggest the correlation:

(2.9.15)

where fF is again the Fanning friction factor and Re* is the Kozicki Reynolds number:

(2.9.16)

and a and b are geometric constants given in Table 2.9.3.

FIGURE 2.9.7 Dodge and Metzner relation between Fanning friction factor and Re′g. (From Dodge, D.W. and
Metzner, A.B., AIChE J., 5, 189–204, 1959.)
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Viscoelastic Fluids

Fully Developed Turbulent Flow Pressure Drops

Viscoelastic fluids are of interest in engineering applications because of reductions of pressure drop and
heat transfer which occur in turbulent channel flows. Such fluids can be prepared by dissolving small
amounts of high-molecular-weight polymers, e.g., polyacrylamide, polyethylene oxide (Polyox), etc., in
water. Concentrations as low as 5 parts per million by weight (wppm) result in significant pressure drop
reductions. Figure 2.9.8 from Cho and Hartnett (1982) illustrates the reduction in friction factors for
Polyox solutions in a small-diameter capillary tube. It is seen that at zero polymer concentration the
data agree with the Blasius equation for Newtonian turbulent flow. With the addition of only 7 wppm
of Polyox, there is a significant pressure drop reduction and for concentrations of 70 wppm and greater
all the data fall on the Virk line which is the maximum drag-reduction asymptote. The correlations for
the Blasius and Virk lines as reported by Cho and Hartnett (1982) are

(2.9.17)

(2.9.18)

At the present time, no generally accepted method exists to predict the drag reduction between the
Blasius and Virk lines. Kwack and Hartnett (1983) have proposed that the amount of drag reduction
between those two correlations is a function of the Weissenberg number, defined as

(2.9.19)

where λ = characteristic time of the viscoelastic fluid. They present correlations which allow the friction
factor to be estimated at several Reynolds numbers between the Blasius and Virk lines.

FIGURE 2.9.8 Reduction in friction factors for polyethylene oxide (Polyox) solutions in a small-diameter capillary
tube. (From Cho, Y.I. and Harnett, J.P., Adv. Heat Transfer, 15, 59–141, 1982. With permission.)
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Fully Developed Laminar Flow Pressure Drops

The above discussion on viscoelastic fluids has only considered fully developed turbulent flows. Laminar
fully developed flows can be considered as nonviscoelastic but purely viscous non-Newtonian. Therefore,
the method of Kozicki et al. (1967) may be applied to such situations once the appropriate rheological
properties have been determined.

Nomenclature
a = duct shape geometric constant
b = duct shape geometric constant
c = duct width (see Table 2.9.3) (m)
di = concentric annuli inner diameter (see Table 2.9.3) (m)
do = concentric annuli outer diameter (see Table 2.9.3) (m)
fD = Darcy friction factor
fF = Fanning friction factor
h = duct height (see Table 2.9.3) (m)
K = fluid consistency (Nsn/m2)
n = flow index
N = number of sides in polygon (see Table 2.9.3)

Reg = generalized Reynolds number,

Rem = modified power law Reynolds number,

ReN = modified power law Reynolds number Newtonian asymptote,

Rea = apparent Reynolds number

Re* = Kozicki Reynolds number
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= Metzner Reynolds number

= average streamwise velocity (m/sec)
t = time (sec)

ws = Weissenberg number
x = direction of shear stress (m)
y = direction of velocity gradient (m)

Greek

α* = duct aspect ratio in Table 2.9.3
β = shear rate parameter

= shear rate (L/sec)
∆P = presure drop (N/m2)
λ = characteristic time of viscoelastic fluid (sec)

µa = apparent viscosity (N · sec/m2)
µo = zero shear rate viscosity (N · sec/m2)
µ∞ = high shear rate viscosity (N · sec/m2)
µ* = reference viscosity

τo = yield stress (N/m2)
τy,x = shear stress (N/m2)
φ = half apex angle (see Table 2.9.3) (°)
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Further Information

It is not possible to include all of the interesting non-Newtonian topics in a section of this scope. Other
items which may be of interest and importance are listed below along with appropriate references:
hydrodynamic and thermal entrance lengths, Cho and Hartnett (1982); non-Newtonian flow over external
surfaces, Irvine and Karni (1987); chemical, solute, and degradation effects in viscoelastic fluids, Cho
and Harnett (1982); general references, Skelland (1967), Whorlow (1980), and Darby (1988).
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3.1 Conduction Heat Transfer

Robert F. Boehm

Introduction

Conduction heat transfer phenomena are found virtually throughout the physical world and the industrial
domain. The analytical description of this heat transfer mode is one of the best understood processes.
Some of the bases of the understanding of conduction date back to early history. It was recognized that
by invoking certain relatively minor simplifications, mathematical solutions resulted directly. Some of
these were easily formulated. What transpired over the years was a vigorous development of applications
to a broad range of processes. Perhaps no single work better summarizes the wealth of these studies
than does the book by Carslaw and Jaeger (1959). It provides solutions to a broad range of problems,

Frank Kreith, Editor
Engineering Consultant
University of Colorado

Robert F. Boehm
University of Nevada-Las Vegas

George D. Raithby
University of Waterloo

K. G. Terry Hollands
University of Waterloo

N. V. Suryanarayana
Michigan Technological University

Thomas F. Irvine, Jr.
State University of New York, 
Stony Brook

Massimo Capobianchi
Gonzaga University

Michael F. Modest
Pennsylvania State University

Van P. Carey
University of California at Berkeley

John C. Chen
Lehigh University

Noam Lior
University of Pennsylvania

Anthony F. Mills
University of California at Los Angeles
3-1© 2000 by CRC Press LLC



 

3

 

-2

                         
ranging from topics related to the cooling of the earth to the current-carrying capacities of wires. The
general analyses given there have been applied to a range of modern-day problems from laser heating
to temperature control systems.

Today, conduction heat transfer is still an active area of research and application. A great deal of
interest has been shown in recent years in topics like contact resistance — where a temperature difference
develops between two solids that do not have perfect contact with each other. Additional issues of current
interest include non-Fourier conduction, where the processes occur so fast that the equations described
below do not apply. Also, the problems related to transport in minaturized systems are garnering a great
deal of interest. Increased interest has also been focused on ways of handling composite materials, where
the ability to conduct heat is very directional.

Much of the work in conduction analysis is now accomplished by the use of sophisticated computer
codes. These tools have given the heat-transfer analyst the capability to solve problems in inhomogenous
media with very complicated geometries and with very involved boundary conditions. It is still important
to understand analytical methods for determining the performance of conducting systems. At the mini-
mum these can be used as calibrations for numerical codes.

Fourier’s Law

The basis of conduction heat transfer is Fourier’s Law. This law involves the idea that the heat flux is
proportional to the temperature gradient in any direction n. Thermal conductivity, k, a property of
materials that is temperature dependent, is the constant of proportionality.

(3.1.1)

In many systems the area A is a function of the distance in the direction n. One important extension
is that this can be combined with the First Law of Thermodynamics to yield the Heat Conduction
Equation. For constant thermal conductivity, this is given as:

(3.1.2)

In this equation, α is the thermal diffusivity, and ·qG is the internal heat generation per unit volume.
Some problems, typically steady-state, one-dimensional formulations where only the heat flux is desired,
can be easily solved using Equation (3.1.1). Most conduction analyses are performed with
Equation (3.1.2). In the latter — a more general approach — the temperature distribution is found from
this equation and the appropriate boundary conditions. Then the heat flux, if desired, is found at any
location using Equation (3.1.1). Normally, it is the temperature distribution that is of most importance.
For example, it may be desirable to determine through analysis if a material will reach some critical
temperature, like its melting point. Less frequently, the heat flux is the desired objective.

While there are times when one needs only to understand the temperature response of a structure,
often the engineer is faced with a need to increase or decrease heat transfer to some specific level.
Examination of the thermal conductivity of materials gives some insight to the range of possibilities that
exist through simple conduction.

Of the more common engineering materials, pure copper exhibits one of the highest abilities to conduct
heat, with a thermal conductivity approaching 400 W/m2 K. Aluminum, also considered to be a good
conductor, has a thermal conductivity a little over half that of copper. In order to increase the heat transfer
above the values possible through simple conduction, more sophisticated designs are necessary that
incorporate a variety of other heat transfer modes like convection and phase change.

Decreasing the rate of heat transfer is accomplished with the use of insulation. A discussion of this
follows.
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Insulations
Insulating materials are used to decrease heat flow and thus decrease surface temperatures. These
materials are found in a variety of forms, typically loose fill, batt, and rigid. Even a gas, like air, can
be a good insulator if it can be kept from moving when it is heated or cooled. A vacuum is an excellent
insulator. Usually, though, the engineering approach to insulation is the addition of a low-conducting
material to the surface. While there are many chemical forms, costs, and maximum operating tempera-
tures of common types of insulators, it seems that when higher operating temperatures are required, the
thermal conductivity and cost of the insulation will often also be higher.

Loose-fill insulation includes such materials as milled alumina-silica (maximum operating temperature
of 1260°C and thermal conductivities in the range of 0.1–0.2 W/m2 K) and perlite (maximum operating
temperature of 980°C and thermal conductivities in the range of 0.05–1.5 W/m2 K). Batt type insulation
includes one of the more common types — glass fiber. This type of insulation comes in a variety of
densities which, in turn, have a profound effect on the thermal conductivity. Thermal conductivities for
glass fiber insulation can range from about 0.03–0.06 W/m2 K. Rigid insulations show a very wide range
of types and performance characteristics. For example, a rigid insulation in foam form, polyurethane,
is light in weight, shows a very low thermal conductivity (about 0.02 W/m2 K), but has a maximum
operating temperature only up to about 120°C. Rigid insulations in refractory form show quite different
characteristics. For example, alumina brick is quite dense, has a thermal conductivity of about 2 W/m2

K, but can remain operational to temperatures around 1760°C. Many insulations are characterized in
the book edited by Guyer (1989).

Often, commercial insulation systems designed for high-temperature operation use a layered approach.
Temperature tolerance may be critical. Perhaps a refractory material is applied in the highest-temperature
region, an intermediate-temperature foam insulation is used in the middle section, and a high-perfor-
mance, lower-operating-temperature insulation is used on the outer side near ambient conditions.

Analyses can be performed showing the effects of temperature variations of thermal conductivity.
However, the most frequent approach is to assume that the thermal conductivity is constant at some
temperature between the two extremes experienced by the insulation.

Plane Wall at Steady State
Consider steady-state heat transfer in a plane wall of thickness L, but of very large extent in both other
directions. The wall has temperature T1 on one side and T2 on the other. If the thermal conductivity is
considered to be constant, then Equation (3.1.1) can be integrated directly to give the following result:

(3.1.3)

This can be used to determine the steady-state heat transfer through slabs.
An electrical circuit analog is widely used in conduction analyses. This is accomplished by considering

the temperature difference to be analogous to a voltage difference, the heat flux to be like current flow,
and the remainder of Equation (3.1.3) to be like a thermal resistance. The latter is seen to be

(3.1.4)

Heat transfer through walls made of layers of different types of materials can be easily found by summing
the resistances in series or parallel form, as appropriate.

In the design of systems, seldom is a surface temperature specified or known. More often, the surface
is in contact with a bulk fluid, whose temperature is known at some distance from the surface. Convection
from the surface is then represented by Newton’s Law of Cooling:

(3.1.5)
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This equation can also be represented as a temperature difference divided by a thermal resistance, which
is 1/

–
hc A. It can be shown that a very low surface resistance, as might be represented by phase-change

phenomena, effectively imposes the fluid temperature directly on the surface. Hence, usually a known
surface temperature results from a fluid temperature being imposed directly on the surface through a
very high heat-transfer coefficient. For this reason, in the later results given here, particularly those for
transient systems, a convective boundary will be assumed. For steady-state results this is less important
because of the ability to add resistances via the circuit analogy.

Long, Cylindrical Systems at Steady State

For long (L), annular systems at steady-state conditions with constant thermal conductivities, the fol-
lowing two equations are the appropriate counterparts to Equations (3.1.3) and (3.1.4). The heat transfer
can be expressed as

(3.1.6)

Here r1 and r2 represent the radii of the annular sections. A thermal resistance for this case is as shown
below.

(3.1.7)

Overall Heat Transfer Coefficient

The overall heat transfer coefficient concept is valuable in several aspects of heat transfer. It involves
a modified form of Newton’s law of cooling, as noted above, and it is written as:

(3.1.8)

In this formulation,
—
U is the overall heat transfer coefficient based upon the area A. Because the area

for heat transfer in a problem can vary (as with a cylindrical geometry), it is important to note that the
—
U is dependent upon which area is selected. The overall heat transfer coefficient is usually found from
a combination of thermal resistances. Hence, for a common-series combination-circuit analog, the

—
UA

product is taken as the sum of the resistances.

(3.1.9)

For an example of the use of this concept, see Figure 3.1.1.
For steady-state conditions, the product

—
UA remains constant for a given heat transfer and overall

temperature difference. This can be written as

(3.1.10)

If the inside area, A1, is chosen as the basis, the overall heat transfer coefficient can then be expressed as

(3.1.11)
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Critical Thickness of Insulation

Sometimes, adding insulation can cause an increase in heat transfer. This circumstance should be noted
so that one can apply it when desired and design around it when an insulating effect is needed. Consider
the circumstance shown in Figure 3.1.1. Assume that the temperature on the outside of the tube (inside
of the insulation) is known. This could be determined if the inner heat transfer coefficient is very large
and the thermal conductivity of the tube is large. In this case, the inner fluid temperature will be almost
the same temperature as the inner surface of the insulation. Alternatively, this could be applied to a
coating (say an electrical insulation) on the outside of a wire. By forming the expression for the heat
transfer in terms of the variables shown in Equation (3.1.11), and examining the change of heat transfer
with variations in r3 (that is, the thickness of the insulation). While simple results are given in many
texts (showing the critical radius as the ratio of the insulation thermal conductivity to the heat transfer
coefficient on the outside), Sparrow (1970) considered a heat transfer coefficient that varies as

 ~  |T3 – Tf,o|n.

For this case, it is found that the heat transfer is maximized at:

(3.1.12)

By examining the orders of magnitude of m, n, kins, and
–
hc,o the critical radius is often found to be on

the order of a few millimeters. Hence, additional insulation on small-diameter cylinders such as narrow-
gauge electrical wires could actually increase the heat dissipation. On the other hand, the addition of
insulation to large-diameter pipes and ducts will almost always decrease the heat transfer rate.

Internal Heat Generation

The analysis of temperature distributions and the resulting heat transfer in the presence of volume heat
sources is required in some circumstances. These include phenomena such as nuclear fission processes,
Joule heating, and microwave energy deposition. Consider first a slab of material 2 l thick but otherwise

FIGURE 3.1.1 An insulated tube with convective environments on both sides.
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very large, with internal generation. The outside of the slab is kept at temperature T1. To find the
temperature distribution within the slab, the thermal conductivity is assumed to be constant.
Equation (3.1.2) reduces to the following:

(3.1.13)

Solving this equation by separating the variables, integrating twice, and applying boundary conditions
gives

(3.1.14)

A similar type of analysis for a long cylindrical element of radius r1 gives

(3.1.15)

Two additional cases will be given. Both involve the situation when the rate of heat generation is
dependent upon the local temperature, according to the following relationship:

(3.1.16)

For a plane wall of 2 l thickness, and a temperature of T1 specified on each surface

(3.1.17)

For a similar situation in a long cylinder with a temperature of T1 specified on the outside radius r1

(3.1.18)

In Equation (3.1.18), the Jo is the typical notation for the Bessel function. Variations of this function are
tabulated in Abramowitz and Stegun (1964) or are available on many computer systems. In both of the
cases shown above the following holds

Fins

Fins are widely used to enhance the heat transfer (usually convective, but also radiative) from a surface.
This is particularly true when the surface is in contact with a gas. Fins are used on air-cooled engines,
electronic cooling forms, as well as in a number of other applications. Since the heat transfer coefficient
tends to be low in gas convection, area is added to the surface in the form of fins to decrease the
convective thermal resistance.
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The simplest fins to analyze are those usually found in practice — one-dimensional and constant in
cross section. In simple terms, to be one dimensional the fins have to be long compared to a transverse
dimension. Three cases are normally considered for analysis, and these are shown in Figure 3.1.2. They
are the insulated-tip fin, the very long fin, and the convecting-tip fin.

For Case I, the solution to the governing equation and the application of the boundary conditions of
the known temperatures at the base and the insulated tip yields:

(3.1.19)

For the infinitely long case, the following simple form results.

(3.1.20)

The final case yields the following result:

(3.1.21)

where Bi ≡
–
hc L/k .

In all three of the cases given, the following definitions apply:

Here A is the cross section of the fin parallel to the wall. P is the perimeter around that area.
To find the amount of heat removed in any of these cases, the temperature distribution is used in Fourier’s

law, Equation (3.1.1). For most fins that truly fit the one-dimensional assumption (i.e., long compared to
their transverse dimensions), all three equations will yield results that don’t differ significantly.

Two performance indicators are found in the fin literature. The fin efficiency is defined as the ratio
of the actual heat transfer rate from a fin to the heat-transfer rate from an ideal fin.

(3.1.22)

FIGURE 3.1.2 Three typical cases for one-dimensional, constant-cross-section fins are shown.
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The ideal heat transfer is found from convective gain or loss from an area the same size as the fin surface
area, all at a temperature Tb. Fin efficiency is normally used to tabulate heat transfer results for various
types of fins, including those with nonconstant area or not meeting the one-dimensional assumption. An
example of the former can be developed from a result given by Arpaci (1966). Consider a straight fin
of triangular profile, as shown in Figure 3.1.3. The solution is found in terms of modified Bessel functions
of the first kind. Tabulations are given in Abramowitz and Stegun (1964).

(3.1.23)

Here, 
The fin effectiveness, ε, is defined as the heat transfer from the fin compared to the bare-surface

transfer through the same base area.

(3.1.24)

Carslaw and Jaeger (1959) give an expression for the effectiveness of a fin of constant thickness around
a tube (see Figure 3.1.3). This is given as :

(3.1.25)

FIGURE 3.1.3 Two examples of fins with a cross-sectional area that varies with distance from the base.
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Here the notations I and K denote Bessel functions that are given in Abramowitz and Stegun (1964).
Fin effectiveness can be used as one indication whether or not fins should be added. A rule of thumb

indicates that if the effectiveness is less than about three, fins should not be added to the surface.

Transient Systems

Negligible Internal Resistance

Consider the transient cooling or heating of a body with surface area A and volume V. This is taking
place by convection through a heat transfer coefficient

–
hc to an ambient temperature of T∞. Assume the

thermal resistance to conduction inside the body is significantly less than the thermal resistance to
convection (as represented by Newton’s law of cooling) on the surface of the body. This ratio is denoted
by the Biot Number, Bi:

(3.1.26)

The temperature (which will be uniform throughout the body at any time for this situation) response
with time for this system is given by the following relationship. Note that the shape of the body is not
important — only the ratio of its volume to its area matters.

(3.1.27)

Typically this will hold for the Biot Number being less than (about) 0.1.

Bodies with Significant Internal Resistance

When a body is being heated or cooled transiently in a convective environment, but the internal thermal
resistance of the body cannot be neglected, the analysis becomes more complicated. Only simple
geometries (a symmetrical plane wall, a long cylinder, a composite of geometrical intersections of these
geometries, or a sphere) with an imposed step change in ambient temperature are addressed here.

The first geometry considered is a large slab of minor dimension 2 l. If the temperature is initially
uniform at To, and at time 0+ it begins convecting through a heat transfer coefficient to a fluid at T∞, the
temperature response is given by:

(3.1.28)

and the λn are the roots of the transcendental equation: λnL tan λnL = Bi. The following definitions hold:

The second geometry considered is a very long cylinder of diameter 2R. The temperature response
for this situation is

(3.1.29)
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Now the λn are the roots of λnR J1(λnR) – Bi Jo(λnR) = 0, and

The common definition of Bessel’s functions applies here.
For the similar situation involving a solid sphere, the following holds:

(3.1.30)

and the λn are found as the roots of λnR cosλnR = (1 – Bi) sinλnR. Otherwise, the same definitions hold
as were given for the cylinder.

Solids that can be envisioned as the geometrical intersection of the simple shapes described above
can be analyzed with a simple product of the individually shape solutions. For these cases, the solution
is found as the product of the dimensionless temperature functions for each of the simple shapes, with
appropriate distance variables taken in each solution. This is illustrated in the right-hand diagram in
Figure 3.1.4. For example, a very long rod of rectangular cross section can be seen as the intersection
of two large plates. A short cylinder represents the intersection of an infinitely long cylinder and a plate.
The temperature at any location within the short cylinder is

(3.1.31)

Details of the formulation and solution of the partial differential equations in heat conduction are
found in the text by Arpaci (1966).

FIGURE 3.1.4 Three types of bodies that can be analyzed with methods given in this section.
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Finite Difference Analysis of Conduction

Today, numerical solution of conduction problems is the most-used analysis approach. Two general
techniques are applied for this: those based upon finite difference ideas and those based upon finite
element concepts. General numerical formulations are introduced in Chapter 5. Here, we briefly introduce
some finite difference concepts as they might be applied in heat conduction analysis.

First, consider formulation ideas. Consider the two-dimensional form of Equation (3.1.2), neglecting
heat generation. This is given by:

(3.1.32)

By using finite approximations to the first and second derivatives, the following results:

(3.1.33)

In this notation, i denotes node center locations in the x direction, j indicates node center locations in
the y direction, and Ti,j = T(i, j, t), and T′i,j = T(i, j, t+∆t). As written, the form is denoted as the explicit
formulation because the forward difference is used for the time derivative (a new time-step temperature
is found in terms of all of the old time-step temperatures). If the time derivative is taken as the backward
difference, then the new (and, hence, unknown) temperatures at all surrounding nodes are used with the
known (old) temperature at each node to find the temperatures at the new time. Because each equation
contains a number of unknowns that must be found simultaneously, the result is termed the implicit
formulation. This is shown below for a general interior node.

(3.1.34)

A formal differencing approach, where finite differences are generated directly from partial derivatives,
can be carried out for each application. However, the possibility of unusual geometries and mixing of
boundary conditions often results in situations that are not easily differenced. For this reason, an energy
balance method often yields an approach that can be more easily applied physically.

Attention is drawn to a one-dimensional slab (very large in two directions compared to the thickness).
The slab is divided across the thickness into smaller subslabs (denoted as nodes in what follows), and
this is shown in Figure 3.1.5. All nodes are of thickness ∆x except for the two boundaries where the
thickness is ∆x/2. A characteristic temperature for each node is assumed to be represented by the
temperature at the node center. Of course this assumption becomes more accurate as the size of the node
becomes smaller. On the periphery of the object being analyzed the location representing the temperature
of the node is located on the boundary of the object, and this results in fractionally sized nodes at these
positions. Hence, with the two boundary node centers located exactly on the boundary, a total of n nodes
are used (n – 2 full, interior nodes and half-nodes on each of the two boundaries).

In the analysis, a general interior node i (this applies to all nodes 2 through n – 1) is considered for
an overall energy balance. Conduction in from node i – 1 and from node i + 1, as well as any heat
generation present, is assumed to be energy per unit time flowing into the node. This is then equated to
the time rate of change of energy within the node. A backward difference on the time derivative is
applied here, and the notation Ti′≡ Ti(t+∆t) is used. The balance gives the following on a per-unit-area
basis:
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(3.1.35)

In this equation different thermal conductivities have been used to allow for possible variations in
properties throughout the solid.

The analysis of the boundary nodes will depend upon the nature of the conditions there. For the
purposes of illustration, convection will be assumed to be occurring off of the boundary at node 1. A
balance similar to Equation (3.1.35), but now for node 1, gives the following:

(3.1.36)

If the heat transfer situation in the slab is symmetrical about the slab center line, consideration of this
aspect allows only half of the slab to be analyzed. Consideration of the half-node located on the left-
hand side of the centerline yields:

(3.1.37)

Here, the zero shown as the second term denotes the fact that no energy flows across the centerline.
After all n equations are written, it can be seen that there are n unknowns represented in these

equations: the temperature at all nodes. If one or both of the boundary conditions is known in terms of
a specified temperatures, this will decrease the number of equations and unknowns by one or two,
respectively. To determine the temperature as a function of time, the time step is arbitrarily set, and all
the temperatures are found by simultaneous solution at t = 0+∆t. This is denoted by the matrix system
shown below. For the situation shown here, the thermal conductivity is taken to be constant throughout
the slab, and no internal heat generation is considered. With these simplifications, the system of equations
to be solved (using Equations 3.1.35 through 3.1.37) is

FIGURE 3.1.5 A one-dimensional finite differencing of a slab with a general interior node and one surface node
detailed.
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The time is then advanced by ∆t and the temperatures are again found by simultaneous solution.
The finite difference approach just outlined using the backward difference for the time derivative is

termed the implicit technique, and it results in an n x n system of linear simultaneous equations. If the
forward difference is used for the time derivative, then only one unknown will exist in each equation.
This gives rise to what is called an explicit or “marching” solution. While this type of system is more
straightforward to solve because it deals with only one equation at a time with one unknown, a stability
criterion must be considered which limits the time step relative to the distance step.

Two- and three-dimensional problems are handled in conceptually the same manner. One-dimensional
heat fluxes between adjoining nodes are again considered. Now there are contributions from each of the
dimensions represented. Details are outlined in the book by Jaluria and Torrance (1986).

Defining Terms

Biot Number: Ratio of the internal (conductive) resistance to the external (convective) resistance from
a solid exchanging heat with a fluid.

Fin: Additions of material to a surface to increase area and thus decrease the external thermal resistance
from convecting and/or radiating solids.

Fin effectiveness: Ratio of the actual heat transfer from a fin to the heat transfer from the same cross-
sectional area of the wall without the fin.

Fin efficiency: Ratio of the actual heat transfer from a fin to the heat transfer from a fin with the same
geometry but completely at the base temperature.

Fourier’s law: The fundamental law of heat conduction. Relates the local temperature gradient to the
local heat flux, both in the same direction.

Heat conduction equation: A partial differential equation in temperature, spatial variables, time, and
properties that, when solved with appropriate boundary and initial conditions, describes the
variation of temperature in a conducting medium.

Overall heat transfer coefficient: The analogous quantity to the heat transfer coefficient found in
convection (Newton’s law of cooling) that represents the overall combination of several thermal
resistances, both conductive and convective.

Thermal conductivity: The property of a material that relates a temperature gradient to a heat flux.
Dependent upon temperature.
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For Further Information

The references listed above will give the reader an excellent introduction to analytical formulation and
solution (Arpaci), material properties (Guyer), and numerical formulation and solution (Jaluria and
Torrance). Current developments in conduction heat transfer appear in several publications, including
the Journal of Heat Transfer, International Journal of Heat and Mass Transfer, and Numerical Heat
Transfer.
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3.2 Convection Heat Transfer

3.2.1 Natural Convection

George D. Raithby and K.G. Terry Hollands

Introduction

Natural convection heat transfer occurs when the convective fluid motion is induced by density differences
that are themselves caused by the heating. An example is shown in Figure 3.2.1(A), where a body at
surface temperature Ts transfers heat at a rate q to ambient fluid at temperature T∞ < Ts.

In this section, correlations for the average Nusselt number are provided from which the heat transfer
rate q from surface area As can be estimated. The Nusselt number is defined as

(3.2.1)

where ∆T = Ts – T∞ is the temperature difference driving the heat transfer. A dimensional analysis leads
to the following functional relation:

(3.2.2)

For given thermal boundary conditions (e.g., isothermal wall and uniform T∞), and for a given geometry
(e.g., a cube), Equation (3.2.2) states that Nu depends only on the Rayleigh number, Ra, and Prandtl
number, Pr. The length scales that appear in Nu and Ra are defined, for each geometry considered, in
a separate figure. The fluid properties are generally evaluated at Tf , the average of the wall and ambient
temperatures. The exception is that β, the temperature coefficient of volume expansion, is evaluated at
T∞ for external natural convection (Figures 3.2.1 to 3.2.3) in a gaseous medium.

The functional dependence on Pr is approximately independent of the geometry, and the following
Pr-dependent function will be useful for laminar heat transfer (Churchill and Usagi, 1972):

(3.2.3)

 and  are functions, defined in Equations 3.2.4 and 3.2.5, will be useful for turbulent heat transfer:

FIGURE 3.2.1 (A) Nomenclature for external heat transfer. (A) General sketch; (B) is for a tilted flat plate, and
(C) defines the length scale for horizontal surfaces.
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(3.2.4)

(3.2.5)

The superscripts V and H refer to the vertical and horizontal surface orientation.
The Nusselt numbers for fully laminar and fully turbulent heat transfer are denoted by Nu� and Nut,

respectively. Once obtained, these are blended (Churchill and Usagi, 1972) as follows to obtain the
equation for Nu:

(3.2.6)

The blending parameter m depends on the body shape and orientation.
The equation for Nu� in this section is usually expressed in terms of NuT, the Nusselt number that

would be valid if the thermal boundary layer were thin. The difference between Nul and NuT accounts
for the effect of the large boundary layer thicknesses encountered in natural convection.

It is assumed that the wall temperature of a body exceeds the ambient fluid temperature (Ts > T∞).
For Ts < T∞ the same correlations apply with (T∞ – Ts) replacing (Ts – T∞) for a geometry that is rotated

FIGURE 3.2.2 Nomenclature for heat transfer from planar surfaces of different shapes.

FIGURE 3.2.3 Definitions for computing heat transfer from a long circular cylinder (A), from the lateral surface
of a vertical circular cylinder (B), from a sphere (C), and from a compound body (D).
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180° relative to the gravitational vector; for example, the correlations for a horizontal heated upward-
facing flat plate applies to a cooled downward-facing flat plate of the same planform.

Correlations for External Natural Convection

This section deals with problems where the body shapes in Figures 3.2.1 to 3.2.3 are heated while
immersed in a quiescent fluid. Different cases are enumerated below.

1. Isothermal Vertical (φ  = 0) Flat Plate, Figure 3.2.1B. For heat transfer from a vertical plate
(Figure 3.2.1B), for 1 < Ra < 1012,

(3.2.7)

 and  are given by Equations (3.2.3) and (3.2.4). Nu is obtained by substituting Equation
(3.2.7) expressions for Nul and Nut into Equation (3.2.6) with m = 6.

2. Vertical Flat Plate with Uniform Heat Flux, Figure 3.2.1B. If the plate surface has a constant
(known) heat flux, rather than being isothermal, the objective is to calculate the average temper-
ature difference,  between the plate and fluid. For this situation, and for 15 < Ra* < 105,

(3.2.8a)

(3.2.8b)

Ra* is defined in Figure 3.2.1B and  is given by Equation (3.2.4). Find Nu by inserting these
expressions for Nul and Nut into Equation (3.2.6) with m = 6. The  expression is due to Fujii
and Fujii (1976).

3. Horizontal Upward-Facing (φ = 90°) Plates, Figure 3.2.1C. For horizontal isothermal surfaces
of various platforms, correlations are given in terms of a lengthscale L* (Goldstein et al., 1973),
defined in Figure 3.2.1C. For Ra ≥ 1,

(3.2.9)

Nu is obtained by substituting Nul and Nut from Equation 3.2.9 into Equation 3.2.6 with m = 10.
For non-isothermal surfaces, replace ∆T by  

4. Horizontal Downward-Facing (φ = –90°) Plates, Figure 3.2.1C. For horizontal downward-facing
plates of various planforms, the main buoyancy force is into the plate so that only a very weak
force drives the fluid along the plate; for this reason, only laminar flows have been measured. For
this case, the following equation applies for Ra < 1010, Pr ≥ 0.7:

(3.2.10)

Hl fits the analysis of Fujii et al. (1973).
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5. Inclined Plates, Downward Facing (–90° ≤ φ  ≤ 0), Figure 3.2.1B. First calculate q from Case 1
with g replaced by g cos φ; then calculate q from Case 4 (horizontal plate) with g replaced by g
sin (–φ), and use the maximum of these two values of q.

6. Inclined Plates, Upward Facing (0 ≤ φ  ≤ 90), Figure 3.2.1B. First calculate q from Case 1 with
g replaced by g cos φ; then calculate q from Case 3 with g replaced by g sin φ, and use the
maximum of these two values of q.

7. Vertical and Tilted Isothermal Plates of Various Planform, Figure 3.2.2. The line of constant χ
in Figure 3.2.2 is the line of steepest ascent on the plate. Provided all such lines intersect the
plate edges just twice, as shown in the figure, the thin-layer (NuT) heat transfer can be found by
subdividing the body into strips of width ∆χ, calculating the heat transfer from each strip, and
adding. For laminar flow from an isothermal vertical plate, this results in

(3.2.11)

Symbols are defined in Figure 3.2.2, along with L and calculated C1 values for some plate shapes.
If the plate is vertical, follow the procedure in Case 1 above (isothermal vertical flat plate) except
replace the expression for NuT in Equation (3.2.7) by Equation (3.2.11). If the plate is tilted,
follow the procedure described in Case 5 or 6 (as appropriate) but again use Equation (3.2.11)
for NuT in Equation (3.2.7)

8. Horizontal Cylinders, Figure 3.2.3A. For a long, horizontal circular cylinder use the following
expressions for Nul and Nut:

(3.2.12)

 is given in the table below. For Ra > 10–2, f = 0.8 can be used, but for 10–10 < Ra < 10–2 use
f = 1 – 0.13/(NuT)0.16. To find Nu, the values of Nul and Nut from Equation (3.2.12) are substituted
into Equation (3.2.6) with m = 15 (Clemes et al., 1994).

9. Vertical Cylinders (φ = 90°), Figure 3.2.3B. For high Ra values and large diameter, the heat
transfer from a vertical cylinder approaches that for a vertical flat plate. Let the NuT and Nul

equations for a vertical flat plate of height L, Equation (3.2.7), be rewritten here as  and
Nup, respectively. At smaller Ra and diameter, transverse curvature plays a role which is accounted
for in the following equations:

(3.2.13)

These equations are valid for purely laminar flow. To obtain Nu, blend Equation (3.2.13) for Nul

with Equation (3.2.7) for Nut using Equation (3.2.6) with m = 10.
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10. Spheres, Figure 3.2.3C. For spheres use Equation (3.2.6), with m = 6, and with 

(3.2.14)

The table above contains  values.
11. Combined Shapes, Figure 3.2.3D. For combined shapes, such as the cylinder in Figure 3.2.3D

with spherical end caps, calculate the heat transfer from the cylinder of length L (Case 8), the
heat transfer from a sphere of diameter D (Case 10) and add to obtain the total transfer. Other
shapes can be treated in a similar manner.

Correlations for Open Cavities

Examples of this class of problem are shown in Figure 3.2.4. Walls partially enclose a fluid region
(cavity) where boundary openings permit fluid to enter and leave. Upstream from its point of entry, the
fluid is at the ambient temperature, T∞. Since access of the ambient fluid to the heated surfaces is
restricted, some of the heated surface is starved of cool ambient to which heat can be transferred. As
the sizes of the boundary openings are increased, the previous class of problems is approached; for
example, when the plate spacing in Figure 3.2.4A (Case 12) becomes very large, the heat transfer from
each vertical surface is given by Case 1.

12. Isothermal Vertical Channels, Figure 3.2.4A and B. Figure 3.2.4A shows an open cavity bounded
by vertical walls and open at the top and bottom. The large opposing plates are isothermal, at
temperatures T1 and T2, respectively, and the spacing between these plates is small.  is the
average temperature difference between the plates and T∞, as shown in Figure 3.2.4A, but T1 and
T2 must not straddle T∞. For this case

(3.2.15)

FIGURE 3.2.4 Nomenclature for various open-cavity problems.
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where f Re is the product of friction factor and Reynolds number for fully developed flow through,
and C1 is a constant that accounts for the augmentation of heat transfer, relative to a vertical flat
plate (Case 1), due to the chimney effect. The fRe factor accounts for the cross-sectional shape
(Elenbaas, 1942a). Symbols are defined in Figure 3.2.4A and B; in the Nu equation, q is the total
heat transferred to the ambient fluid from all heated surfaces.
For the parallel plate channel shown in Figure 3.2.4(A), use f Re = 24, m = –1.9, and for gases
C1 ≈ 1.2. It should be noted, however, that C1 must approach 1.0 as Pr increases or as the plate
spacing increases. For channels of circular cross section (Figure 3.2.4B) fRe = 16, m = –1.03,
and for gases C1 ≈ 1.17. For other cross-sectional shapes like the square (fRe = 14.23), hexagonal
(fRe = 15.05), or equilateral triangle (fRe = 13.3), use Equation (3.2.15) with the appropriate fRe,
and with m = –1.5, and C1 ≈ 1.2 for gases.
The heat transfer per unit cross-sectional area, q/Ac, for a given channel length H and temperature
difference, passes through a maximum at approximately Ramax, where

(3.2.16)

Ramax provides the value of hydraulic radius r = 2Ac/P at this maximum.
13. Isothermal Triangular Fins, Figure 3.2.4C. For a large array of triangular fins (Karagiozis et al.,

1994) in air, for 0.4 < Ra < 5 × 105

(3.2.17)

In this equation, b is the average fin spacing (Figure 3.2.4C), defined such that bL is the cross-
sectional flow area between two adjacent fin surfaces up to the plane of the fin tips. For Ra <
0.4, Equation (3.2.17) underestimates the convective heat transfer. When such fins are mounted
horizontally (vertical baseplate, but the fin tips are horizontal), there is a substantial reduction of
the convective heat transfer (Karagiozis et al., 1994).

14. U-Channel Fins, Figure 3.2.4C. For the fins most often used as heat sinks, there is uncertainty
about the heat transfer at low Ra. By using a conservative approximation applying for Ra < 100
(that underestimates the real heat transfer), the following equation may be used:

(3.2.18)

For air C1 depends on aspect ratio of the fin as follows (Karagiozis, 1991):

(3.2.19)

Equation (3.2.18) agrees well with measurements for Ra > 200, but for smaller Ra it falls well
below data because the leading term does not account for heat transfer from the fin edges and
for three-dimensional conduction from the entire array.

15. Circular Fins on a Horizontal Tube, Figure 3.24D. For heat transfer from an array of circular
fins (Edwards and Chaddock, 1963), for H/Di = 1.94, 5 < Ra < 104, and for air,
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(3.2.20)

A more general, but also more complex, relation is reported by Raithby and Hollands (1985).
16. Square Fins on a Horizontal Tube, Figure 3.2.4D. Heat transfer (Elenbaas, 1942b) from the square

fins (excluding the cylinder that connects them) is correlated for gases by

(3.2.21)

Heat Transfer in Enclosures

This section deals with cavities where the bounding walls are entirely closed, so that no mass can enter
or leave the cavity. The fluid motion inside the cavity is driven by natural convection, which enhances
the heat transfer among the interior surfaces that bound the cavity.

17. Extensive Horizontal Layers, Figure 3.2.5A. If the heated plate, in a horizontal parallel-plate
cavity, is on the top (0 = 180°), heat transfer is by conduction alone, so that Nu = 1. For heat
transfer from below (θ = 0°) (Hollands, 1984):

(3.2.22)

where

(3.2.23)

The equation has been validated for Ra < 1011 for water, Ra < 108 for air, and over a smaller Ra
range for other fluids. Equation (3.2.22) applies to extensive layers: W/L ≥ 5. Correlations for
nonextensive layers are provided by Raithby and Hollands (1985).

FIGURE 3.2.5 Nomenclature for enclosure problems.
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18. Vertical Layers, Figure 3.2.5(A), with θ = 90°. W/L > 5. For a vertical, gas-filled (Pr ≈ 0.7) cavity
with H/L ≥ 5, the following equation closely fits the data, for example that of Shewen et al. (1996)
for Ra(H/L)3 ≤ 5 × 1010 and H/L ≥ 40.

(3.2.24)

For Pr ≥ 4, the following equation is recommended (Seki et al., 1978) for Ra(H/L)3 < 4 × 1012

(3.2.25a)

and for Ra (H/L)3 > 4 × 1012

(3.2.25b)

19. Tilted Layers, Figure 3.25A, with 0 ≤ θ ≤ 90°, W/L > 8. For gases (Pr ≈ 0.7), 0 ≤ θ ≤ 60° and
Ra ≤ 105 (Hollands et al., 1976), use

(3.2.26)

See equation (3.2.23) for definition of [x]°. For 60° ≤ θ ≤ 90° linear interpolation is recommended
using Equations (3.2.24) for θ = 90° and (3.2.26) for θ = 60°.

20. Concentric Cylinders, Figure 3.2.5B. For heat transfer across the gap between horizontal concen-
tric cylinders, the Nusselt number is defined as Nu = q′ ln(Do/Di)/2πk∆T where q′ is the heat
transfer per unit length of cylinder. For Ra ≤ 8 × 107, 0.7 ≤ Pr ≤ 6000, 1.15 ≤ D/Di ≤ 8 (Raithby
and Hollands, 1975)

(3.2.27)

For eccentric cylinders, see Raithby and Hollands (1985).
21. Concentric Spheres, Figure 3.2.5B. The heat transfer between concentric spheres is given by the

following equation (Raithby and Hollands, 1975) for Ra ≤ 6 × 108, 5 ≤ Pr ≤ 4000, 1.25 < Do/Di

≤ 2.5,

(3.2.28)

For eccentric spheres, see Raithby and Hollands (1985).
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Example Calculations

Problem 1: Heat Transfer from Vertical Plate, Figure 3.2.6A. For the vertical isothermal surface in
Figure 3.2.6A with Ts = 40°C, H1 = 1 m, H2 = 1 m, W1 = 1 m, W2 = 1 m and for an ambient air temperature
of T∞ = 20°C (at 1 atm), find the heat transfer from one side of the plate.

Properties: At Tf = (Tw + T∞)/2 = 30°C and atmospheric pressure for air: ν = 1.59 × 10–5 m2/sec, α =
2.25 × 10–5 m2/sec, Pr = 0.71, k = 0.0263 W/mK. At T∞, β ≈ 1/T∞ = 1(273 + 20) = 0.00341 K–1.

Solution: For the geometry shown in Figure 3.2.6A:

 = 0.514 from Equation (3.2.3); Ct =  = 0.103 from Equation (3.2.4). NuT = C1 Ra1/4 = 185
from Equation (3.2.11).

FIGURE 3.2.6 Sketches for example problems.
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from Equation (3.2.6) with m = 6.

Comments on Problem 1: Since Nul < Nut, the heat transfer is primarily turbulent. Do not neglect
radiation. Had the surface been specified to be at constant heat flux, rather than isothermal, the equations
in this section can be used to find the approximate average temperature difference between the plate and
fluid.

Problem 2: Heat Transfer from Horizontal Strip, Figure 3.2.6B. Find the rate of heat loss per unit
length from a very long strip of width W = 0.1 m with a surface temperature of Ts = 70°C in water at
T∞ = 30°C.

Properties: At Tf = (Ts + T∞)1/2 = 50°C

Solution: This problem corresponds to Case 3 and Figure 3.2.1C.

from Equation 3.2.5 and  = 0.563 from Equation (3.2.3).

From Figure 3.2.1C and Equation (3.2.9)

Comments: Turbulent heat transfer is dominant. Radiation can be ignored (since it lies in the far
infrared region where it is not transmitted by the water).

Problem 3: Heat Loss Across a Window Cavity, Figure 3.2.6C. The interior glazing is at temperature
T1 = 10°C, the exterior glazing at T2 = –10°C, the window dimensions are W = 1 m, H = 1.7 m, and the
air gap between the glazings is L = 1 cm and is at atmospheric pressure. Find the heat flux loss across
the window.
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Properties: At = T1 + T2/2 = 0°C = 273K

Solution: The appropriate correlations are given in Case 18 and by Equation (3.2.24).

Comments: For pure conduction across the air layer, Nu = 1.0. For the calculated value of Nu = 1.01,
convection must play little role. For standard glass, the heat loss by radiation would be roughly double
the natural convection value just calculated.

Special Nomenclature

Note that nomenclature for each geometry considered is provided in the figures that are referred to in
the text.

= function of Prandtl number, Equation (3.2.3)
= function of Prandtl number, Equation (3.2.4)
= function of Prandtl number, Equation (3.2.5)
= surface averaged value of Ct, page 3–39
= surface averaged value of Tw – T∞
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Further Information

There are several excellent heat transfer textbooks that provide fundamental information and correlations
for natural convection heat transfer (e.g., Kreith and Bohn, 1993; Incropera and DeWitt, 1990). The
correlations in this section closely follow the recommendations of Raithby and Hollands (1985), but that
reference considers many more problems. Alternative equations are provided by Churchill (1983).

3.2.2 Forced Convection — External Flows

N.V. Suryanarayana

Introduction

In this section we consider heat transfer between a solid surface and an adjacent fluid which is in motion
relative to the solid surface. If the surface temperature is different from that of the fluid, heat is transferred
as forced convection. If the bulk motion of the fluid results solely from the difference in temperature of
the solid surface and the fluid, the mechanism is natural convection. The velocity and temperature of
the fluid far away from the solid surface are the free-stream velocity and free-stream temperature. Both
© 2000 by CRC Press LLC
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are usually known or specified. We are then required to find the heat flux from or to the surface with
specified surface temperature or the surface temperature if the heat flux is specified. The specified
temperature or heat flux either may be uniform or may vary. The convective heat transfer coefficient h
is defined by

(3.2.29)

In Equation (3.2.29) with the local heat flux, we obtain the local heat transfer coefficient, and with the
average heat flux with a uniform surface temperature we get the average heat transfer coefficient. For a
specified heat flux the local surface temperature is obtained by employing the local convective heat
transfer coefficient.

Many correlations for finding the convective heat transfer coefficient are based on experimental data
which have some uncertainty, although the experiments are performed under carefully controlled con-
ditions. The causes of the uncertainty are many. Actual situations rarely conform completely to the
experimental situations for which the correlations are applicable. Hence, one should not expect the actual
value of the heat transfer coefficient to be within better than ±10% of the predicted value.

Many different correlations to determine the convective heat transfer coefficient have been developed.
In this section only one or two correlations are given. For other correlations and more details, refer to
the books given in the bibliography at the end of this section.

Flat Plate

With a fluid flowing parallel to a flat plate, changes in velocity and temperature of the fluid are confined
to a thin region adjacent to the solid boundary — the boundary layer. Several cases arise:

1. Flows without or with pressure gradient
2. Laminar or turbulent boundary layer
3. Negligible or significant viscous dissipation (effect of frictional heating)
4. Pr ≥ 0.7 (gases and most liquids) or Pr � 1 (liquid metals)

Flows with Zero Pressure Gradient and Negligible Viscous Dissipation

When the free-stream pressure is uniform, the free-stream velocity is also uniform. Whether the boundary
layer is laminar or turbulent depends on the Reynolds number Rex (ρU∞ x/µ) and the shape of the solid
at entrance. With a sharp edge at the leading edge (Figure 3.2.7) the boundary layer is initially laminar
but at some distance downstream there is a transition region where the boundary layer is neither totally
laminar nor totally turbulent. Farther downstream of the transition region the boundary layer becomes
turbulent. For engineering applications the existence of the transition region is usually neglected and it
is assumed that the boundary layer becomes turbulent if the Reynolds number, Rex, is greater than the
critical Reynolds number, Recr. A typical value of 5 × 105 for the critical Reynolds number is generally
accepted, but it can be greater if the free-stream turbulence is low and lower if the free-stream turbulence
is high, the surface is rough, or the surface does not have a sharp edge at entrance. If the entrance is
blunt, the boundary layer may be turbulent from the leading edge.

FIGURE 3.2.7 Flow of a fluid over a flat plate with laminar, transition, and turbulent boundary layers.
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Temperature Boundary Layer
Analogous to the velocity boundary layer there is a temperature boundary layer adjacent to a heated (or
cooled) plate. The temperature of the fluid changes from the surface temperature at the surface to the
free-stream temperature at the edge of the temperature boundary layer (Figure 3.2.8).

The velocity boundary layer thickness δ depends on the Reynolds number Rex. The thermal boundary
layer thickness δT depends both on Rex and Pr

Rex < Recr:

(3.2.30)

Recr < Rex:

(3.2.31)

Viscous dissipation and high-speed effects can be neglected if Pr1/2 Ec/2 � 1. For heat transfer with
significant viscous dissipation see the section on flow over flat plate with zero pressure gradient: Effect
of High Speed and Viscous Dissipation. The Eckert number Ec is defined as Ec = 

With a rectangular plate of length L in the direction of the fluid flow the average heat transfer coefficient
hL with uniform surface temperature is given by

Laminar Boundary Layer (Figure 3.2.9) (Rex < Recr, ReL < Recr): With heating or cooling starting from
the leading edge the following correlations are recommended. Note: in all equations evaluate fluid
properties at the film temperature defined as the arithmetic mean of the surface and free-stream temper-
atures unless otherwise stated.

FIGURE 3.2.8 Temperature boundary layer thickness relative to velocity boundary layer thickness.

FIGURE 3.2.9 Heated flat plate with heating from the leading edge.
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Local Heat Transfer Coefficient (Uniform Surface Temperature)
The Nusselt number based on the local convective heat transfer coefficient is expressed as

(3.2.32)

The classical expression for fPr is 0.564 Pr1/2 for liquid metals with very low Prandtl numbers, 0.332Pr1/3

for 0.7 < Pr < 50 and 0.339Pr1/3 for very large Prandtl numbers. Correlations valid for all Prandtl numbers
developed by Churchill (1976) and Rose (1979) are given below.

(3.2.33)

(3.2.34)

In the range 0.001 < Pr < 2000, Equation (3.2.33) is within 1.4% and Equation (3.2.34) is within 0.4%
of the exact numerical solution to the boundary layer energy equation.

Average Heat Transfer Coefficient
The average heat transfer coefficient is given by

(3.2.35)

From Equation 3.2.35 it is clear that the average heat transfer coefficient over a length L is twice the
local heat transfer coefficient at x = L.
Uniform Heat Flux
Local Heat Transfer Coefficient
Churchill and Ozoe (1973) recommend the following single correlation for all Prandtl numbers.

(3.2.36)

Note that for surfaces with uniform heat flux the local convective heat transfer coefficient is used to
determine the local surface temperature. The total heat transfer rate being known, an average heat transfer
coefficient is not needed and not defined.

Turbulent Boundary Layer (Rex > Recr, ReL > Recr): For turbulent boundary layers with heating or
cooling starting from the leading edge use the following correlations:
Local Heat Transfer Coefficient

Recr  < Rex < 107:

(3.2.37)

107 < Rex:

(3.2.38)
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Equation (3.2.38) is obtained by applying Colburn’s j factor in conjunction with the friction factor
suggested by Schlicting (1979).

In laminar boundary layers, the convective heat transfer coefficient with uniform heat flux is approx-
imately 36% higher than with uniform surface temperature. With turbulent boundary layers, the difference
is very small and the correlations for the local convective heat transfer coefficient can be used for both
uniform surface temperature and uniform heat flux.
Average Heat Transfer Coefficient
If the boundary layer is initially laminar followed by a turbulent boundary layer at Rex = Recr, the
following correlations for 0.7 < Pr < 60 are suggested:

Recr  < ReL < 107:

(3.2.39)

If Recr < ReL < 107 and Recr = 105, Equation 3.2.39 simplifies to 

(3.2.40)

107 < ReL and Recr = 5 × 105:

(3.2.41)

Uniform Surface Temperature — Pr > 0.7: Unheated Starting Length
If heating does not start from the leading edge as shown in Figure 3.2.10, the correlations have to be
modified. Correlation for the local convective heat transfer coefficient for laminar and turbulent boundary
layers are given by Equations (3.2.42) and (3.2.43) (Kays and Crawford, 1993) — the constants in
Equations (3.2.42) and (3.2.43) have been modified to be consistent with the friction factors. These
correlations are also useful as building blocks for finding the heat transfer rates when the surface
temperature varies in a predefined manner. Equations (3.2.44) and (3.2.45), developed by Thomas (1977),
provide the average heat transfer coefficients based on Equations (3.2.42) and (3.2.43).

Local Convective Heat Transfer Coefficient

Rex < Recr :

(3.2.42)

Rex > Recr :

(3.2.43)

FIGURE 3.2.10 Heated flat plate with unheated starting length.
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Average Heat Transfer Coefficient over the Length (L – xo)

ReL < Recr :

(3.2.44)

In Equation (3.2.44) evaluate hx=L from Equation (3.2.42).

Recr  = 0:

(3.2.45)

In Equation (3.2.45) evaluate hx=L from Equation (3.2.43).
Flat Plate with Prescribed Nonuniform Surface Temperature
The linearity of the energy equation permits the use of Equations (3.2.42) through (3.2.45) for uniform
surface temperature with unheated starting length to find the local heat flux and the total heat transfer
rate by the principle of superposition when the surface temperature is not uniform. Figure 3.2.11 shows
the arbitrarily prescribed surface temperature with a uniform free-stream temperature of the fluid. If the
surface temperature is a differentiable function of the coordinate x, the local heat flux can be determined
by an expression that involves integration (refer to Kays and Crawford, 1993). If the surface temperature
can be approximated as a series of step changes in the surface temperature, the resulting expression for
the local heat flux and the total heat transfer rate is the summation of simple algebraic expressions. Here
the method using such an algebraic simplification is presented.

FIGURE 3.2.11 Arbitrary surface temperature approximated as a finite number of step changes.
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The local convective heat flux at a distance x from the leading edge is given by

(3.2.46)

where hxi denotes the local convective heat transfer coefficient at x due to a single step change in the
surface temperature ∆Tsi at location xi(xi < x). Referring to Figure 3.2.11, the local convective heat flux
at x (x3 < x < x4) is given by

where hx(x, x1) is the local convective heat transfer coefficient at x with heating starting from x1; the
local convective heat transfer is determined from Equation (3.2.42) if the boundary layer is laminar and
Equation (3.2.43) if the boundary layer is turbulent from the leading edge. For example, hx(x, x2) in the
third term is given by

The procedure for finding the total heat transfer rate from x = 0 to x = L is somewhat similar. Denoting
the width of the plate by W,

(3.2.47)

where  is the average heat transfer coefficient over the length L – xi due to a step change ∆Ti in
the surface temperature at xi. For example, the heat transfer coefficient in the third term in Equation
(3.2.47) obtained by replacing xo by x2 in Equation (3.2.44) or (3.2.45) depending on whether ReL <
Recr or Recr = 0.

Flows with Pressure Gradient and Negligible Viscous Dissipation

Although correlations for flat plates are for a semi-infinite fluid medium adjacent to the plate, most
applications of practical interest deal with fluid flowing between two plates. If the spacing between the
plates is significantly greater than the maximum boundary layer thickness, the medium can be assumed
to approach a semi-infinite medium. In such a case if the plates are parallel to each other and if the
pressure drop is negligible compared with the absolute pressure, the pressure gradient can be assumed
to be negligible. If the plates are nonparallel and if the boundary layer thickness is very much smaller
than the spacing between the plates at that location, the medium can still be considered as approaching
a semi-infinite medium with a non-negligible pressure gradient. In such flows the free-stream velocity
(core velocity outside the boundary layer) is related to the pressure variation by the Bernoulli equation:
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Another situation where the free-stream velocity varies in the direction of flow giving rise to a pressure
gradient is flow over a wedge. For the family of flows for which the solutions are applicable, the free-
stream velocity at the edge of the boundary layer is related to the x-coordinate by a power law, U∞ =
cxm. Flows over semi-infinite wedges (Figure 3.2.12) satisfy that condition. The exponent m is related
to the wedge angle βπ

With laminar boundary layers, the boundary layer thickness, friction factor, and Nusselt numbers are
defined by

The values of c1, c2, and c3 are available in Burmeister (1993). For example, for β = 0.5 (wedge angle
= 90°), m = 1/3, c1 = 3.4, c2 = 0.7575, and c3 = 0.384 for Pr = 0.7, and c3 = 0.792 for Pr = 5. Rex is
based on U∞ = cxm; the free-stream velocity is not uniform.

Uniform Temperature: Flat Plate with Injection or Suction with External Flows of a Fluid 
Parallel to the Surface

Injection (Figure 3.2.13) or suction has engineering applications. When the free-stream temperature of
the fluid is high, as in gas turbines, a cooling fluid is introduced into the mainstream to cool the surface.
If the cooling fluid is introduced at discrete locations (either perpendicular to the surface or at an angle),
it is known as film cooling. If a fluid is introduced or withdrawn through a porous medium, it is known
as transpiration (Figure 3.2.13). An application of suction is to prevent boundary layer separation.

Analytical solutions for a laminar boundary layer with transpiration suction or blowing are available
if the velocity perpendicular to the surface varies in the following manner: 

FIGURE 3.2.12 Flow over a wedge. βπ is the wedge angle.

FIGURE 3.2.13 Flat plate with transpiration injection.
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Solutions are limited to the cases of the injected fluid being at the same temperature as the surface and
the injected fluid being the same as the free-stream fluid. Positive values of vo indicate blowing and
negative values indicate suction. Values of  for different values of Pr and for different values
of blowing or suction parameter are given in Kays and Crawford (1993).

For example, for a laminar boundary layer over a flat plate with a fluid (Pr = 0.7) the value of
 is 0.722 for (vo/U∞)  = –0.75 (suction) and 0.166 for (vo/U∞)  = 0.25

(blowing). Heat transfer coefficient increases with suction which leads to a thinning of the boundary
layer. Blowing increases the boundary layer thickness and decreases the heat transfer coefficient.

For turbulent boundary layers Kays and Crawford (1993) suggest the following procedure for finding
the friction factor and convective heat transfer coefficient. Define friction blowing parameter Bf and heat
transfer blowing parameter Bh as

(3.2.48)

(3.2.49)

where
vo = velocity normal to the plate

U∞ = free-stream velocity
= mass flux of the injected fluid at the surface (ρvo)

G∞ = mass flux in the free stream (ρU∞)
St = Stanton number = Nux/RexPr = h/ρU∞cp

The friction factors and Stanton number with and without blowing or suction are related by

(3.2.50)

(3.2.51)

In Equations (3.2.50) and (3.2.51) Cfo and Sto are the friction factor and Stanton number with vo = 0 (no
blowing or suction), and Cf and St are the corresponding quantities with blowing or suction at the same
Rex(ρU∞x/µ).

For the more general case of variable free-stream velocity, temperature difference, and transpiration
rate, refer to Kays and Crawford (1993).

Flow over Flat Plate with Zero Pressure Gradient: Effect of High-Speed and Viscous 
Dissipation

In the boundary layer the velocity of the fluid is reduced from U∞ to zero at the plate leading to a
reduction in the kinetic energy of the fluid. Within the boundary layer there is also the work done by
viscous forces; the magnitude of the such viscous work is related to the velocity of the fluid, the velocity
gradient, and the viscosity of the fluid. The effect of such a reduction in the kinetic energy and the
viscous work is to increase the internal energy of the fluid in the boundary layer. The increase in the
internal energy  may be expected to lead to an increase in the temperature; but because of the heat
transfer to the adjacent fluid the actual increase in the internal energy (and the temperature) will be less
than the sum of the decrease in the kinetic energy and viscous work transfer; the actual temperature
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increase depends on the decrease in the kinetic energy, the viscous work transfer, and the heat transfer
from the fluid. The maximum temperature in the fluid with an adiabatic plate is known as the adiabatic
wall temperature (which occurs at the wall) and is given by

(3.2.52)

In Equation (3.2.52) r is the recovery factor and is given by Eckert and Drake (1972).

Equation (3.2.52) can be recast as

(3.2.53)

From Equation (3.2.53) the maximum increase in the fluid temperature as a fraction of the difference
between the plate and free-stream temperatures is given by r Ec/2. With air flowing over a plate at 500
m/sec, the increase in the temperature of the air can be as high as 105°C. With Ts = 40°C and T∞ =
20°C, the temperature of the air close to the plate can be higher than the plate temperature. It is thus
possible that although the plate temperature is higher than the free-stream temperature, the heat transfer
is from the air to the plate. At a Mach number greater than 0.1 for gases, viscous dissipation becomes
significant.

The temperature profiles for high-speed flows for different values of Ts are shown in Figure 3.2.14.
In high-speed flows, as heat transfer can be to the plate even if the plate temperature is greater than the
fluid temperature, the definition of the convective heat transfer coefficient given in Equation (3.2.29) is
not adequate. On the other hand, as the heat transfer is always from the plate if Ts > Taw, the adiabatic
wall temperature is more appropriate as the reference temperature. Thus, in high-speed flows the
definition of the convective heat transfer coefficient is given by

(3.2.54)

Equation (3.2.54) is consistent with Equation (3.2.29) as the adiabatic wall temperature equals the free-
stream temperature if the effects of viscous dissipation and reduced kinetic energy in the boundary layer
are neglected. With the adiabatic wall temperature as the fluid reference temperature for the definition

FIGURE 3.2.14 Temperature profiles for high-speed flows: (a) T∞ < Ts < Taw ; (b) Ts = T∞; (c) Ts � T∞; (d) Ts > Taw.
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of the convective heat transfer coefficient, equations for low speeds can also be used for high-speed
flows. Because of the greater variation in the fluid temperature in the boundary layer, the variation of
properties due to temperature variation becomes important. It is found that the correlations are best
approximated if the properties are evaluated at the reference temperature T * defined by Eckert (1956):

(3.2.55)

With properties evaluated at the reference temperature given by Equation (3.2.55), Equation (3.2.56)
through (3.2.61) are applicable to high-speed flows with Prandtl numbers less than 15. It should be noted
that the adiabatic wall temperatures in the laminar and turbulent regions are different affecting both the
temperature at which the properties are evaluated and the temperature difference for determining the
local heat flux. Therefore, when the boundary layer is partly laminar and partly turbulent, an average
value of the heat transfer coefficient is not defined as the adiabatic wall temperatures in the two regions
are different. In such cases the heat transfer rate in each region is determined separately to find the total
heat transfer rate.

Evaluate properties at reference temperature given by Equation (3.2.55):

(3.2.56)

(3.2.57)

(3.2.58)

(3.2.59)

(3.2.60)

(3.2.61)

When the temperature variation in the boundary layer is large, such that the assumption of constant
specific heat is not justified, Eckert (1956) suggests that the properties be evaluated at a reference
temperature corresponding to the specific enthalpy i* given by

(3.2.62)

where i is the specific enthalpy of the fluid evaluated at the temperature corresponding to the subscript.
Equation (3.2.62) gives the same values as Equation (3.2.55) if Cp is constant or varies linearly with
temperature.

At very high speeds the gas temperature may reach levels of temperatures that are sufficient to cause
disassociation and chemical reaction; these and other effects need to be taken into account in those cases.

Flow over Cylinders, Spheres, and Other Geometries

Flows over a flat plate and wedges were classified as laminar or turbulent, depending on the Reynolds
number, and correlations for the local and average convective heat transfer coefficients were developed.
But flows over cylinders (perpendicular to the axis) and spheres are more complex. In general, the flow
over cylinders and spheres may have a laminar boundary layer followed by a turbulent boundary layer
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and a wake region depending on the Reynolds number with the diameter as the characteristic length
(Figure 3.2.15). Because of the complexity of the flow patterns, only correlations for the average heat
transfer coefficients have been developed.

Cylinders: Use the following correlation proposed by Churchill and Bernstein (1977): Red Pr > 0.2.
Evaluate properties at (Ts + T∞)/2:

(3.2.63)

(3.2.64)

(3.2.65)

For flow of liquid metals, use the following correlation suggested by Ishiguro et al. (1979):

(3.2.66)

For more information on heat transfer with flow over cylinders, refer to Morgan (1975) and Zukauskas
(1987).

Spheres: For flows over spheres (Figure 3.2.16) use one of the following three correlations.

1. Whitaker (1972): Evaluate properties at T∞ except µs at Ts.

FIGURE 3.2.15 A fluid stream in cross flow over a cylinder.

FIGURE 3.2.16 A fluid flowing over a sphere.
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(3.2.67)

2. Achenbach (1978): Evaluate properties at (Ts + T∞)/2:

(3.2.68)

(3.2.69)

3. Liquid Metals: From experimental results with liquid sodium, Witte (1968) proposed

(3.2.70)

Other Geometries: For geometries other than cylinders and spheres, use Equation (3.2.71) with the
characteristic dimensions and values of the constants given in the Table 3.2.1.

(3.2.71)

Although Equation (3.2.71) is based on experimental data with gases, its use can be extended to fluids
with moderate Prandtl numbers by multiplying Equation (3.2.71) by (Pr/0.7)1/3.

Heat Transfer across Tube Banks

When tube banks are used in heat exchangers, the flow over the tubes in the second and subsequent
rows of tubes is different from the flow over a single tube. Even in the first row the flow is modified by
the presence of the neighboring tubes. The extent of modification depends on the spacing between the
tubes. If the spacing is very much greater than the diameter of the tubes, correlations for single tubes
can be used. Correlations for flow over tube banks when the spacing between tubes in a row and a
column is not much greater than the diameter of the tubes have been developed for use in heat-exchanger
applications. Two arrangements of the tubes are considered — aligned and staggered as shown in Figure
3.2.17. The nomenclature used in this section is shown in the figure.

For the average convective heat transfer coefficient with tubes at uniform surface temperature, from
experimental results, Zukauskas (1987) recommends correlations of the form:

(3.2.72)

In Equation (3.2.72) all properties are evaluated at the arithmetic mean of the inlet and exit temperatures
of the fluid, except Prs which is evaluated at the surface temperature Ts. The values of the constants c,
p, m, and n  are given in Table 3.2.2 for in-line arrangement and in Table 3.2.3 for staggered
arrangement.
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TABLE 3.2.1 Values of c and m in Equation (3.2.71)

From Jakob, 1949. With permission.

FIGURE 3.2.17 Two arrangements of tube banks. In-line or aligned arrangement on the left and staggered arrange-
ment on the right. (a = ST /d; b = SL/d.)
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In computing Red, the maximum average velocity between tubes is used. The maximum velocities
for the in-line and staggered arrangements are given by

(3.2.73)

(3.2.74)

(3.2.75)

Equation (3.2.72) is for tube banks with 16 or more rows. When there are fewer than 16 rows, the
heat transfer coefficient given by Equation (3.2.72) is multiplied by the correction factor c1 defined by
Equation (3.2.76) and given in Table 3.2.4.

(3.2.76)

where
hN = heat transfer coefficient with N rows (fewer than 16)
h16 = heat transfer coefficient with 16 or more rows

TABLE 3.2.2 In-Line Arrangement — Values of Constants in Equation (3.2.72) (p = 0 in all cases)

Red c m n

1–100 0.9 0.4 0.36
100–1000 0.52 0.5 0.36
103–2 × 105 0.27 0.63 0.36
2 × 105 – 2 × 106 0.033 0.8 0.4

TABLE 3.2.3 Staggered Arrangement — Values of Constants in Equation (3.2.72)

Red c p m n

1–500 1.04 0 0.4 0.36
500–1000 0.71 0 0.5 0.36
103–2 × 105 0.35 0.2 0.6 0.36
2 × 105 – 2 × 106 0.031 0.2 0.8 0.36

TABLE 3.2.4 Correction Factor c1 to Be Used with Equation (3.2.76)

Number of Rows (N)

Tube Arrangement 1 2 3 4 5 7 10 13

In-line 0.70 0.80 0.86 0.90 0.93 0.96 0.98 0.99
Staggered 0.64 0.76 0.84 0.89 0.93 0.96 0.98 0.99
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Pressure Drop: With tube banks, pressure drop is a significant factor, as it determines the fan power
required to maintain the fluid flow. Zukauskas (1987) recommends that the pressure drop be computed
from the relation

(3.2.77)

where pi and pe are the fluid pressures at inlet and exit of the tube banks. The values of χ and f are
presented in Figure 3.2.18a. In Figure 3.2.18a the friction factor f for in-line arrangement is presented
for different values of b (SL/d) for SL = ST . For values of SL/ST other than 1, the correction factor χ is
given in the inset for different values of (a – 1)/(b – 1). Similarly, the friction factor for staggered
arrangement (for equilateral triangle arrangement) and a correction factor for different values of a/b are
also given in Figure 3.2.18b. The value of f is for one row of tubes; the total pressure drop is obtained
by multiplying the pressure drop for one row by the number of rows, N.

The temperature of the fluid varies in the direction of flow, and, therefore, the value of the convective
heat transfer coefficient (which depends on the temperature-dependent properties of the fluid) also varies
in the direction of flow. However, it is common practice to compute the total heat transfer rate with the
assumption of uniform convective heat transfer coefficient evaluated at the arithmetic mean of the inlet
and exit temperatures of the fluid. With such an assumption of uniform convective heat transfer coeffi-
cient, uniform surface temperature and constant specific heat (evaluated at the mean fluid temperature),
the inlet and exit fluid temperatures are related by

(3.2.78)

The heat transfer rate to the fluid is related by the equation

(3.2.79)

Example

A heat exchanger with aligned tubes is used to heat 40 kg/sec of atmospheric air from 10 to 50°C with
the tube surfaces maintained at 100°C. Details of the heat exchanger are

Determine the number of rows required.

Solution: Average air temperature = (Ti + Te)/2 = 30°C. Properties of atmospheric air (from Suryanaray-
ana, 1995):
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To find Umax we need the minimum area of cross section for fluid flow (Figure 3.2.19).

(a)

(b)

FIGURE 3.2.18 Friction factors for tube banks. (a) In-line arrangement; (b) Staggered arrangement. (From Zukaus-
kas, A., in Handbook of Single-Phase Convective Heat Transfer, Kakac, S. et al., Eds., Wiley Interscience, New
York, 1987. With permission.)
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With values from Table 3.2.2, 

From Equation 3.2.78,

Fan Power: From the first law of thermodynamics (see Chapter 1), the fan power is

pi and pe are the pressures at inlet and exit of the heat exchanger and ve is the fluid velocity at exit.
Assuming constant density evaluated at (Ti + Te)/2 the pressure drop is found from Figure 3.2.18a.

Red = 17,865:

In Figure 3.2.18, although the friction factor is available for values of b up to 2.5, we will estimate the
value of f  for b = 3. From Figure 3.2.18, f ≈ 0.11. The correction factor c = 1.

FIGURE 3.2.19 Aligned tube heat exchanger (only a few of the 20 columns and rows are shown).
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Heat Transfer with Jet Impingement

Jet impingement (Figure 3.2.20) on a heated (or cooled) surface results in high heat transfer rates, and
is used in annealing of metals, tempering of glass, cooling of electronic equipment, internal combustion
engines, and in a wide variety of industries — textiles, paper, wood, and so on. Usually, the jets are
circular, issuing from a round nozzle of diameter d, or rectangular, issuing from a slot of width w. They
may be used singly or in an array. The jets may impinge normally to the heated surface or at an angle.
If there is no parallel solid surface close to the heated surface, the jet is said to be free; in the presence
of a parallel surface close to the heated surface, the jet is termed confined. In this section only single,
free jets (round or rectangular) impinging normally to the heated surface are considered.

Jets may be submerged with the fluid from the nozzle exiting into a body of a fluid (usually the same
fluid), for example, air impinging on a surface surrounded by atmospheric air. In submerged jets entrained
fluid (the part of the surrounding fluid dragged by the jet) has a significant effect on the flow and heat
transfer characteristics of the jet, but the effect of gravity is usually negligible. In free-surface jets — a
liquid jet in an atmosphere of air is a good approximation to a free-surface jet — the entrainment effect
is usually negligible, but the effect of gravity may be significant.

A jet is usually divided into three regions, a free-jet region, a stagnation region, and a wall-jet region.
In the free-jet region the effect of the target surface on the flow is negligible. In the stagnation region
the target surface affects the flow field, and the velocity parallel to the surface increases while the velocity
component normal to the surface decreases. At the beginning of the stagnation region, the axial velocity
of the fluid is very much greater than the radial component (or the x-component) of the velocity. The
stagnation region is followed by the wall-jet region where the radial component (or the x-component)
of the velocity is much greater than the axial velocity.

The heat transfer coefficient is a function of H/d (or H/w), Red(ρvjd/µ) or (ρvj2w/µ), and Pr and
depends on the region (stagnation or wall jet), whether it is submerged or nonsubmerged and whether
the flow adjacent to the plate is laminar or turbulent. Some of the heat transfer correlations suggested
by different researchers are given below. All the correlations are for single jets.

Submerged Jets: Single Circular Jets

FIGURE 3.2.20 Circular jet of diameter d or a rectangular jet of width w.
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Average heat transfer coefficients up to radius r (Martin, 1990):

(3.2.80)

Range of validity:

Local convective heat transfer coefficient at radius r (Webb and Ma, 1995):

(3.2.81)

Submerged Jets: Single Rectangular Jet

Average heat transfer coefficient (Martin, 1990):

(3.2.82)

Free-Surface Jets: Single Circular Jet. Correlations are given in Table 3.2.5 (Liu et al., 1991 and Webb
and Ma, 1995).

For more information on jet impingement heat transfer, refer to Martin (1977) and Webb and Ma
(1995) and the references in the two papers.
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3.2.3 Forced Convection — Internal Flows

N.V. Suryanarayana

Introduction

Heat transfer to (or from) a fluid flowing inside a tube or duct is termed internal forced convection. The
fluid flow may be laminar or turbulent. If the Reynolds number based on the average velocity of the
fluid and diameter of the tube (ρvd/µ) is less than 2100 (Reynolds numbers in the range of 2000 to 2300
are cited in different sources), the flow is laminar. If the Reynolds number is greater than 10,000, the
flow is turbulent. The flow with a Reynolds number in the range 2100 to 10,000 is considered to be in
the transitional regime. With heating or cooling of the fluid, there may or may not be a change in the
phase of the fluid. Here, only heat transfer to or from a single-phase fluid is considered.

Fully Developed Velocity and Temperature Profiles. When a fluid enters a tube from a large reservoir,
the velocity profile at the entrance is almost uniform as shown in Figure 3.2.21. The fluid in the immediate
vicinity of the tube surface is decelerated and the velocity increases from zero at the surface to uc at a
distance δ from the surface; in the region r = 0 to (R – δ) the velocity is uniform. The value of δ increases
in the direction of flow and with constant fluid density the value of the uniform velocity uc increases.
At some location downstream, δ reaches its maximum possible value, equal to the radius of the tube,
and from that point onward the velocity profile does not change.

The region where δ increases, i.e., where the velocity profile changes, is known as the entrance region
or hydrodynamically developing region. The region downstream from the axial location where δ reaches
its maximum value and where the velocity profile does not change is the fully developed velocity profile
or hydrodynamically fully developed region. Similarly, downstream of the location where heating or
cooling of the fluid starts, the temperature profile changes in the direction of flow. But beyond a certain
distance the dimensionless temperature profile does not change in the direction of flow. The region where
the dimensionless temperature profile changes is the thermally developing region or the thermal entrance
region, and the region where the dimensionless temperature profile does not change is the thermally
© 2000 by CRC Press LLC
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fully developed region. For simultaneously developing velocity and temperature profiles in laminar flows,
the hydrodynamic and thermal entrance lengths are given by

(3.2.88)

(3.2.89)

(3.2.90)

In most engineering applications, with turbulent flows, correlations for fully developed conditions can
be used after about 10 diameters from where the heating starts.

Convective Heat Transfer Coefficient and Bulk Temperature. The reference temperature for defining
the convective heat transfer coefficient is the bulk temperature Tb and the convective heat flux is given by

(3.2.91)

The bulk temperature Tb is determined from the relation

(3.2.92)

where Ac is the cross-sectional area perpendicular to the axis of the tube.
If the fluid is drained from the tube at a particular axial location and mixed, the temperature of the

mixed fluid is the bulk temperature. It is also know as the mixing cup temperature. With heating or
cooling of the fluid the bulk temperature varies in the direction of flow. In some cases we use the term
mean fluid temperature, Tm, to represent the arithmetic mean of the fluid bulk temperatures at inlet and
exit of the tube.

FIGURE 3.2.21 Developing and fully developed velocity profiles.
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Heat Transfer Correlations

Laminar Flows — Entrance Region. For laminar flows in a tube with uniform surface temperature, in
the entrance region the correlation of Sieder and Tate (1936) is

(3.2.93)

valid for

The overbar in the Nusselt number indicates that it is formed with the average heat transfer coefficient
over the entire length of the tube. Properties of the fluid are evaluated at the arithmetic mean of the inlet
and exit bulk temperatures. In Equation (3.2.93) the heat transfer coefficient was determined from

(3.2.94)

Therefore, to find the total heat transfer rate with  from Equation (3.2.93) employ Equation (3.2.94).

Laminar Flows — Fully Developed Velocity and Temperature Profiles. Evaluate properties at the bulk
temperature

(3.2.95)

(3.2.96)

Turbulent Flows. If the flow is turbulent, the difference between the correlations with uniform surface
temperature and uniform surface heat flux is not significant and the correlations can be used for both
cases. For turbulent flows, Gnielinsky (1976, 1990) recommends: 
Evaluate properties at the bulk temperature.

(3.2.97)

(3.2.98)

f = friction factor = 2τw/ρv2.
To reflect the effect of variation of fluid properties with temperature, multiply the Nusselt numbers

in Equation (3.2.97) by (Tb/Ts)0.45 for gases and (Pr/Prs)0.11 for liquids where the temperatures are absolute,
and T and Pr with a subscript s are to be evaluated at the surface temperature. The equations can be
used to evaluate the heat transfer coefficient in the developing profile region. To determine the heat
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transfer coefficient in the fully developed region set d/L = 0. A simpler correlation (fully developed
region) is the Dittus–Boelter (1930) equation. Evaluate properties at Tb.

(3.2.99)

where n = 0.4 for heating (Ts > Tb) and n = 0.3 for cooling (Ts < Tb).
For liquid metals with Pr � 1 the correlations due to Sleicher and Rouse (1976) are 

Uniform surface temperature:

(3.2.100)

Uniform heat flux:

(3.2.101)

Subscripts b, f, and s indicate that the variables are to be evaluated at the bulk temperature, film
temperature (arithmetic mean of the bulk and surface temperatures), and surface temperature, respec-
tively.

In the computations of the Nusselt number the properties (evaluated at the bulk temperature) vary in
the direction of flow and hence give different values of h at different locations. In many cases a
representative average value of the convective heat transfer coefficient is needed. Such an average value
can be obtained either by taking the arithmetic average of the convective heat transfer coefficients
evaluated at the inlet and exit bulk temperatures or the convective heat transfer coefficient evaluated at
the arithmetic mean of the inlet and exit bulk temperatures. If the variation of the convective heat transfer
coefficient is large, it may be appropriate to divide the tube into shorter lengths with smaller variation
in the bulk temperatures and evaluating the average heat transfer coefficient in each section.

Uniform Surface Temperature — Relation between the Convective Heat Transfer Coefficient and the
Total Heat Transfer Rate:  With a uniform surface temperature, employing an average value of the
convective heat transfer coefficient the local convective heat flux varies in the direction of flow. To relate
the convective heat transfer coefficient to the temperatures and the surface area, we have, for the elemental
length ∆z (Figure 3.2.22).

(3.2.102)

FIGURE 3.2.22 Elemental length of a tube for determining heat transfer rate.
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Assuming a suitable average convective heat transfer coefficient over the entire length of the tube,
separating the variables, and integrating the equation from z = 0 to z = L, we obtain

(3.2.103)

Equation (3.2.103) gives the exit temperature. For a constant-density fluid or an ideal gas, the heat
transfer rate is determined from

(3.2.104)

Equation (3.2.103) was derived on the basis of uniform convective heat transfer coefficient. However,
if the functional relationship between h and Tb is known, Equation (3.2.102) can be integrated by
substituting the relationship. The convective heat transfer coefficient variation with Tb for water in two
tubes of different diameters for two different flow rates is shown in Figure 3.2.23. From the figure it is
clear that h can be very well approximated as a linear function of T. By substituting such a linear function
relationship into Equation (3.2.102), it can be shown that

(3.2.105)

where hi, he, and hs are the values of the convective heat transfer coefficient evaluated at bulk temperatures
of Tbi, Tbe, and Ts, respectively. Although it has been demonstrated that h varies approximately linearly
with the bulk temperature with water as the fluid, the variation of h with air or oil as the fluid is much
smaller and is very well approximated by a linear relationship. For other fluids it is suggested that the
relationship be verified before employing Equation (3.2.105). [Note: It is tempting to determine the heat
transfer rate from the relation

Replacing q by Equation (3.2.104) and solving for Tbe for defined values of the mass flow rate and tube
surface area, the second law of thermodynamics will be violated if > 2. Use of Equation
(3.2.103) or (3.2.105) ensures that no violation of the second law occurs however large As is.]

Uniform Surface Heat Flux:  If the imposed heat flux is known, the total heat transfer rate for a
defined length of the tube is also known. From Equation (3.2.104) the exit temperature of the fluid is
determined. The fluid temperature at any location in the pipe is known from the heat transfer rate up to
that location (q = q″As) and Equation (3.2.104). The convective heat transfer coefficient is used to find
the surface temperature of the tube.

Temperature Variation of the Fluid with Uniform Surface Temperature and Uniform Heat Flux:  The
fluid temperature variations in the two cases are different. With the assumption of uniform heat transfer
coefficient, with a uniform surface temperature the heat flux decreases in the direction of flow leading
to a progressively decreasing rate of temperature change in the fluid with axial distance. With uniform
heat flux, the surface and fluid temperatures vary linearly except in the entrance region where the higher
heat transfer coefficient leads to a smaller difference between the surface and fluid temperatures. The
variation of the fluid temperature in the two cases is shown in Figure 3.2.24.
Convective Heat Transfer in Noncircular Tubes

Laminar Flows: The Nusselt numbers for laminar flows have been analytically determined for different
noncircular ducts. Some of them can be found in Kakac et al. (1987), Kays and Crawford (1993), and
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Burmeister (1993). A few of the results are given below. The characteristic length for forming the
Reynolds number and Nusselt number is the hydraulic mean diameter defined as

Infinite parallel plates: a = spacing between plates, dh = 2a

Both plates maintained at uniform and equal temperatures: Nu = 7.54
Both plates with imposed uniform and equal heat fluxes: Nu = 8.24

Rectangular ducts: a = longer side, b = shorter side, dh = 2ab/(a + b)

Equilateral triangle: dh = a/31/2, a = length of each side

Uniform surface temperature: Nu = 2.35
Uniform surface heat flux:* Nu = 3.0

FIGURE 3.2.23 Variation of h with Tb in 1-, 2-, and 4-cm-diameter tubes with water flow rates of 0.2 kg/sec and
0.4 kg/sec with uniform surface temperature.

FIGURE 3.2.24 Variation of fluid temperature in a tube with (a) uniform surface temperature and (b) uniform heat
flux.

b/a 1 0.7 0.5
0.2
5

0.12
5

Uniform surface temperature 2.98 3.08 3.39 4.44 5.6
Uniform heat flux* 3.61 3.73 4.12 5.33 6.49

* Uniform axial heat flux but circumferentially uniform surface temperature.

dh = 4 cross-sectional area
wetted perimeter
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Coaxial tubes: With coaxial tubes many different cases arise — each tube maintained at uniform but
different temperatures, each tube subjected to uniform but different heat fluxes (an insulated
surface is a special case of imposed heat flux being zero), or a combinations of uniform surface
temperature of one tube and heat flux on the other. The manner in which the heat transfer
coefficient is determined for uniform but different heat fluxes on the two tubes is described below.
Define:

Then

(3.2.106)

Some of the values needed for the computations of Nui and Nuo (taken from Kays and Crawford,
1993) are given in the Table 3.2.6.

For a more detailed information on heat transfer and friction factors for laminar flows in noncircular
tubes refer to Kakac et al. (1987).

Turbulent Flows: For noncircular tubes, estimates of the convective heat transfer coefficient can be
obtained by employing equations for circular tubes with dh replacing d in the computations of the
Reynolds and Nusselt numbers. To determine the heat transfer coefficients in developing regions and
for more-accurate values with turbulent flows in noncircular tubes refer to Kakac et al. (1987) and the
references in that book.

Mixed Convection

If the fluid velocity is low, the effect of natural convection becomes significant and the heat transfer rate
may be increased or decreased by natural convection. From a review of experimental results, Metais
and Eckert (1964) developed maps to delineate the different regimes where one or the other mode is
dominant and where both are significant. Figures 3.2.25 and 3.2.26 show the relative significance of
natural and forced convection in vertical and horizontal tubes. The maps are applicable for 10–2 < Pr(d/L)
< 1 where d and L are the diameter and the axial length of the tube. The maps show the limits of forced
and natural convection regimes. The limits are delineated “in such a way that the actual heat flux under

TABLE 3.2.6 Values for Use with Equation (3.2.106)

r* Nuii Nuoo θi
* θo

*

0.05 17.81 4.792 2.18 0.0294
0.1 11.91 4.834 1.383 0.0562
0.2 8.499 4.883 0.905 0.1041
0.4 6.583 4.979 0.603 0.1823
0.6 5.912 5.099 0.473 0.2455
0.8 5.58 5.24 0.401 0.299
1.0 5.385 5.385 0.346 0.346
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the combined influence of the forces does not deviate by more than 10 percent from the heat flux that
would be caused by the external forces alone or by the body forces alone.” The Grashof number is based
on the diameter of the tube.

For flows in horizontal tubes, correlations were developed for the  mixed convection regime in
isothermal tubes by Depew and August (1971) and for uniform heat flux by Morcos and Bergles (1975).

Uniform Surface Temperature. Fully developed velocity profile, developing temperature profile:

L/d < 28.4 25 < Gz < 712 0.7 × 105 < Gr < 9.9 × 105

µs = dynamic viscosity, evaluated at the wall temperature

FIGURE 3.2.25 Map delineating forced, mixed, and natural convection — vertical tubes.

FIGURE 3.2.26 Map delineating forced, mixed, and natural convection — horizontal tubes.
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All other properties at the average bulk temperature of the fluid

(3.2.107)

Uniform Heat Flux. Properties at (Ts + Tb)/2: 3 × 104 < Ra < 106, 4 < Pr < 175, 2 < hd2/(kwt) < 66, kw =
tube wall thermal conductivity, t = tube wall thickness.

(3.2.108)

In Equation (3.2.107) and (3.2.108) evaluate fluid properties at the arithmetic mean of the bulk and wall
temperatures.
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3.2.4 Convection Heat Transfer in Non-Newtonian Fluids

Thomas F. Irvine, Jr., and Massimo Capobianchi

Introduction

The general characteristics of non-Newtonian fluids are described in Section 2.9 and will not be repeated
here. Topics to be included in this section are laminar and turbulent heat transfer in fully developed duct
flow, and laminar free convection heat transfer in vertical channels and plates and several other common
geometries.

For non-Newtonian flows, except for certain classes of fluids which exhibit a slip phenomenon at
solid boundaries, the boundary condition is taken as no-slip or zero velocity at all solid surfaces. For
heat transfer analyses, however, the situation is more complicated because there are many different ways
to heat a wall, which in turn affects the type of thermal boundary conditions.

In general, the rate of heat transfer from a surface, or the temperature difference between the wall
and the fluid, is calculated using the equation qc = hcAq∆T. Since the heat transfer coefficient can vary
considerably for different thermal boundary conditions, it is important that the boundary conditions be
specified correctly. Although the number of thermal boundary conditions is in principle infinite, several
classical types have been identified and are in common use. They are usually identified in terms of the
Nusselt number, Nu = hcL/k, with a particular subscript. For example, for duct flow, the symbol NuT is
used to specify the Nusselt number when the wall temperature is constant in both the flow and peripheral
directions. Other thermal boundary conditions are described in Table 3.2.7 for duct heat transfer and
will be used throughout this section.

It should be noted that because of the symmetry in circular and parallel plate ducts, NuH1 and NuH2

are identical and are referred to simply as NuH. NuH4 with wall conduction is a more-complicated problem
where the energy equations must be solved simultaneously in both the wall and the fluid. Such problems
are called conjugated. In the NuH4 situation, the designer has the flexibility of affecting the heat transfer
by varying either or both the characteristics of the duct wall or the convective fluid. In the heat transfer
relations to be considered later, care will be taken to identify the proper thermal boundary conditions
using the nomenclature in Table 3.2.7.

Laminar Duct Heat Transfer — Purely Viscous, Time-Independent 
Non-Newtonian Fluids

As discussed in Section 2.9, a convenient and comprehensive constitutive equation for pseudoplastic
fluids (flow index, n < 1) is the modified power law equation:

(3.2.109)

Equation (3.2.109) has the characteristic that at low shear rates, the equation approaches that for a
Newtonian fluid while at large shear rates it describes a power law fluid. In addition, solutions using

TABLE 3.2.7 Thermal Boundary Conditions for Duct Heat Transfer

1. Constant wall temperature in both the flow and circumferential direction NuT

2. Constant heat flux in the flow direction and constant temperature in the circumferential direction NuH1

3. Constant heat flux in the flow and circumferential directions NuH2

4. Constant heat flux per unit volume in the wall with circumferential wall heat conduction NuH4

µ
µ

µ
γ
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Equation (3.2.109) generate a shear rate parameter, β, which describes whether any particular system is
in the Newtonian, transitional, or power law region. For duct flow, β is given by

(3.2.110)

If log10 β > 2: Power law region
If log10 β < –2: Newtonian region
If –2 ≤ log10 β ≤ 2: Transition region

For fully developed flow, the characteristic length is the hydraulic diameter, DH, and the fluid temperature
is the “bulk” temperature defined as

(3.2.111)

Figure 3.2.27 illustrates the values of NuT vs. β for a circular duct with the flow index, n, as a parameter.
It is seen from the figure that the effect of β on NuT is only moderate, but for some applications it may
be important to know at what value of β the system is operating. The situation is similar for boundary
condition NuH.

Although Figure 3.2.27 shows the Nusselt number relation graphically, it is convenient to have simple
correlation equations to represent the solutions for both boundary conditions. For fully developed Nusselt
numbers with values of 0.5 ≤ n ≤ 1.0 and 10–4 ≤ β ≤ 104, Irvine et al. (1988) present the following
equation which represents both solutions with a maximum difference of 1.5%:

(3.2.112)

The Newtonian Nusselt numbers are NuN = 3.6568 for NuT, and NuN = 4.3638 for NuH. In addition,
Table 3.2.8 lists the power law Nusselt numbers, NuTP and NuHP , for log10 β = 4.

Graetz solutions for the thermal entrance lengths are also available. They assume that the velocity
profile is fully developed at the duct entrance and present the duct lengths required for the Nusselt
numbers to reach within 1% of the fully developed values. Figure 3.2.28 shows these thermal entrance
lengths for NuT thermal boundary condition. The situation is similar for boundary condition NuH.

A correlation equation for the thermal entrance lengths for both the NuT and NuH boundary conditions
by Irvine et al. (1988) represents the numerical solutions within 0.5% for 0.5 ≤ n ≤ 1.0 and –4 ≤ log10

β ≤ 4. Table 3.2.9 lists the power law thermal entrance lengths which are needed to evaluate the following
correlation equation:

(3.2.113)

where  is the modified power law dimensionless entrance length defined as  = (xent,β,n/DH)/Pe,
and  and  are the Newtonian and power law values, respectively. The Newtonian dimension-
less entrance lengths are  = 0.03347 for NuT and  = 0.04309 for NuH.
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Only one noncircular geometry using the modified power law equation has been published in the
archival literature for laminar fully developed heat transfer (Capobianchi and Irvine, 1992). A correlation
equation for NuH1 for annuli with constant heat flux at the inner wall and the outer wall insulated is

(3.2.114)

Nusselt numbers for square ducts and power law fluids can be found in Chandrupatla and Sastri (1977)
and, for isosceles triangular ducts, in Cheng (1984). Thermally developing and thermally developed
laminar heat transfer in rectangular channels has been studied by Hartnett and Kostic (1989).

For other cross-sectional shapes, a power law approximate correlation has been proposed by Cheng
(1984):

FIGURE 3.2.27 Variation of the fully developed circular duct Nusselt numbers, NuT , with the shear rate parameter
β and n. (From Irvine, T.F., Jr. et al., in ASME Symposium on Fundamentals of Forced Convection Heat Transfer,
ASME publ. HTD 101, 1988, 123–127. With permission.)

TABLE 3.2.8 Power Law NuT and NuH 
Solutions for a Circular Duct (log10 β = 4)

n NuTP NuHP

1.0 (Newtonian) 3.6568 4.3638
0.9 3.6934 4.4109
0.8 3.7377 4.4679
0.7 3.7921 4.5385
0.6 3.8605 4.6281
0.5 3.9494 4.7456

Source: Irvine, T.F., Jr. et al., in ASME Symposium
on Fundamentals of Forced Convection Heat
Transfer, ASME publ. HTD 101, 1988, 123–127.
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(3.2.115)

where a and b are the Kozicki geometric constants listed in Table 3.9.3 in the section on non-Newtonian
flows. Equation (3.2.115) applies to any thermal boundary condition. For circular ducts, Equation 3.2.115
predicts the correct solution for both NuT and NuH.

Turbulent Duct Flow for Purely Viscous Time-Independent 
Non-Newtonian Fluids

It is known that in turbulent flow, the type of thermal boundary conditions has much less effect than in
laminar flow. Therefore, turbulent flow heat transfer investigations are often reported without specifying
the thermal boundary conditions. Yoo (1974) has presented an empirical correlation for turbulent heat
transfer in circular ducts for purely viscous time-independent power law fluids.

FIGURE 3.2.28 Thermal entrance lengths vs. shear rate parameter β and n for NuT in circular ducts. (From Irvine,
T.F., Jr. et al., in ASME Symposium on Fundamentals of Forced Convection Heat Transfer, ASME publ. HTD 101,
1988, 123–127. With permission.)

TABLE 3.2.9 Values of Circular Duct Thermal Entrance 
Lengths for NuT and NuH for Use in Equation 3.2.113

n NuT,  × 102
NuH,  × 102

1.0 (Newtonian) 3.347 4.309
0.9 3.326 4.281
0.8 3.306 4.248
0.7 3.279 4.210
0.6 3.250 4.166
0.5 3.213 4.114

Source: Irvine, T.F., Jr., et al., in ASME Symposium on Fundamentals 
of Forced Convection Heat Transfer, ASME publ. HTD 101, 1988, 
123–127.
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(3.2.116)

Equation (3.2.116) describes all of the experimental data available in the literature at the time with a
mean deviation of 2.3%. Equation (3.2.116) is recommended in order to predict the turbulent fully
developed heat transfer in the ranges 0.2 ≤ n ≤ 0.9 and 3000 ≤ Rea ≤ 90,000. The Reynolds number and
Prandtl numbers in Equation (3.2.116) are based on the apparent viscosity at the wall, µa, i.e., 

(3.2.117)

(3.2.118)

In order to evaluate Equations (3.2.117) and (3.2.118) in terms of the rheological properties and operating
parameters, an expression must be obtained for µa in terms of these quantities. The value of µa is evaluated
by considering that µa is determined from fully developed laminar circular tube power law fluid flow
for which it can be shown that (Irvine and Karni, 1987)

(3.2.119)

assuming that the quantities K, n, cp, and k  are constant. It is also of interest that the Prandtl number
is no longer a thermophysical property for power law fluids but depends upon the average velocity, 
and the hydraulic diameter, DH.

Hartnett and Rao (1987) have investigated fully developed turbulent heat transfer for a rectangular
duct with a 2:1 aspect ratio and propose the following equation which generally agreed with their
experimental data within ±20%:

(3.2.120)

Viscoelastic Fluids

An important characteristic of viscoelastic fluids is their large hydrodynamic and thermal entrance
lengths. Cho and Hartnett (1982) have reported hydrodynamic entrance lengths of up to 100 diameters
and thermal entrance lengths up to 200 to 800 diameters depending upon the Reynolds and Prandtl
numbers. These can be compared with Newtonian fluids entrance lengths which are of the order of 10
to 15 diameters. Therefore, care must be used in applying fully developed relations to practical situations.

Cho et al. (1980) reported heat transfer measurements in the thermal entrance region and recommend
the following empirical equation for saturated aqueous polymer solutions for 6000 ≤ Rea and x/DH values
up to 450:

(3.2.121)

where JH = St  and St - hc/ρcp

All of the reported fully developed turbulent flow heat transfer measurements have been plagued by
solute and solvent, thermal entrance, and degradation effects, and thus there is considerable scatter in
the results. Degradation effects can be reduced or eliminated by using large amounts of polymer (500
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to 10,000 wppm) so that the solution becomes saturated. Cho and Hartnett (1982) attempted to eliminate
these effects by using a thermal entrance length of 430 diameters and saturated polymer solutions which
should yield maximum heat transfer reductions. Their experimental results for fully developed heat
transfer were correlated for a Reynolds number range 3500 ≤ Rea ≤ 40,000 and concentration solutions
of 500 to 5000 wppm of polyacrylamide and polyethylene oxide by

(3.2.122)

For viscoelastic fluids in fully developed (hydrodynamically and thermally) laminar flow in circular
ducts there is no apparent viscoelastic effect. Thus, the heat transfer relations are the same as those for
time-independent fluids such as power law or modified power law fluids. The same situation holds for
thermal entrance region heat transfer (Graetz problem). Relations for laminar Nusselt numbers in thermal
entrance regions are presented by Cho and Hartnett (1982).

Free Convection Flows and Heat Transfer

Free convection information available in the heat transfer literature up to the present time is concentrated
on heat transfer to power law fluids for vertical plates and parallel plate channels. For free convection
flows, however, the velocities and thus the shear rates are low and care must be taken that the flow for
a particular fluid is in the power law shear rate region before using power law solutions or correlations.
Comprehensive review articles on free convection with non-Newtonian fluids have been presented by
Shenoy and Mashelkar (1982) and Irvine and Karni (1987).

For a single vertical plate with a modified power law fluid and a thermal boundary condition in
laminar flow, the following relation is recommended by Shenoy and Mashelkar (1982):

(3.2.123)

where  is the average Nusselt number and

(3.2.124)

(3.2.125)

where α is the isobaric thermal expansion coefficient.
In the range 0.5 ≤ n ≤ 1, T(n) can be approximated by

(3.2.126)

The characteristic dimension in the Nusselt and Grashof numbers is the plate height, L.
For thermal boundary conditions NuH, the following relation is also recommended by Shenoy and

Mashelkar (1982). Since the heat flux, qw is specified in this case, the local plate temperature at any x
(measured from the bottom of the plate) can be obtained from the local Nusselt number NuHx. The heat
transfer coefficient is defined in terms of the difference between the wall and free-stream temperatures.

(3.2.127)

where

JH a= −0 03 0 45. .Re

NuT ,

Nu T n GrTL TL
n

TL
n n= ( ) +( ) +( )1 2 2 3 1/ /Pr

NuTL

GrTL

n

s

nL

K
g T T= −( )[ ]

+

∞

−ρ α
2 2

2

2

PrTL
p

n

n n
s

n nc

k

K
L g T T=







−( )[ ]
+( )

−( ) +( )
∞

−( ) +( )ρ
ρ

α
2 1

1 2 2 3 3 2 2

T n n( ) = +0 1636 0 5139. .

Nu Gr PrHx Hx
n n

Hx
n= [ ]+( ) +( )0 619 3 2 4 0 213

.
.

© 2000 by CRC Press LLC



3-62
(3.2.128)

(3.2.129)

Vertical Parallel Plates
For power law fluids and laminar flow, Figure 3.2.29 presents the graphical results of a numerical solution.
Of interest are the average Nusselt number  and the dimensionless average flow velocity between
the plates,  These are shown on the left and right ordinates respectively in Figure 3.2.29 (Irvine et
al., 1982). The characteristic dimension in the Nusselt and Grashof numbers is the plate spacing, b. The
dimensionless quantities used in Figure 3.2.29 are defined as follows:

For vertical parallel plates for the average Nusselt number,  and the between plate average velocity,
Schneider and Irvine (1984) have presented graphical results similar to Figure 3.2.29.

Lee et al. (1998) has presented a numerical solution for laminar flow of a modified power law fluid
between vertical plates. Lee has also calculated thermal entrance regions and shown that if a parallel
plate system is actually operating in the transition region and if the power law solution is used, both the
total heat transfer and the velocity between plates can differ by over an order of magnitude. It is important
to consider the shear rate parameter in order to determine which free convection solution to use.

Sphere and Horizontal Cylinder — Power Law Fluids
For flow over a sphere, the correlation for power law fluids by Amato and Tien (1976) is

(3.2.130)

where

(3.2.131)

and 
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where the characteristic dimension in all dimensionless variables is the sphere radius, r, and GrTr and
PrTr are defined in Equations (3.2.124) and (3.2.125).

For pseudoplastic fluids flowing over a cylinder, an experimental correlation proposed by Gentry and
Worllersheim (1974) for the average Nusselt number,  is

(3.2.132)

where GrTD and PrTD are defined as in Equations (3.2.124) and (3.2.125) with the cylinder diameter, D,
being used instead of L.
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3.3 Radiation

Michael F. Modest

Nature of Thermal Radiation

All materials continuously emit and absorb radiative energy by lowering or raising their molecular energy
levels. This thermal radiative energy may be viewed as consisting of electromagnetic waves or of massless
energy parcels, called photons. Electromagnetic waves travel through any medium at the speed of light
c, which is c0 = 2.998 × 108 m/sec in vacuum and approximately the same in most gases such as air and
combustion products. These are characterized by their wavelength λ or frequency ν, which are related by

(3.3.1)

The strength and wavelengths of emission and absorption depend on the temperature and nature of the
material.

The ability of photons to travel unimpeded through vacuum and gases makes thermal radiation the
dominant mode of heat transfer in vacuum, low-pressure environments, and outer space applications
(due to the near absence of conduction and convection). Its temperature dependence [as given by Equation
(3.3.3) below] on the other hand, guarantees that radiative heat transfer is of utmost importance in high-
temperature applications (including solar radiation: with the sun being a high-temperature heat source
at an effective temperature of Tsun = 5762 K).

When an electromagnetic wave traveling through a gas (or vacuum) strikes the surface of a medium,
the wave may be partly or totally reflected, and any nonreflected part will penetrate into the medium.
If a wave passes through a medium without any attenuation, the material is called transparent. A body
with partial attenuation is known as semitransparent, and a body through which none of the incoming
radiation penetrates is called opaque. Most gases are rather transparent to radiation (except for narrow
spectral regions, called absorption bands), while most solids tend to be strong absorbers for most
wavelengths, making them opaque over a distance of a few nanometers (electrical conductors, i.e., metals)
to a few micrometers (ceramics, semiconductors), or more (dielectrics).

Blackbody Radiation

The total amount of radiative energy emitted from a surface into all directions above it is termed emissive
power; we distinguish between spectral (at a given wavelength λ, per unit wavelength) and total
(encompassing all wavelengths) emissive power. The magnitude of emissive power depends on wave-
length λ, temperature T, and a surface property, called emissivity ε, which relates the ability of a surface
to emit radiative energy to that of an ideal surface, which emits the maximum possible energy (at a
given wavelength and temperature). Such an ideal surface is known as a “blackbody” or “black surface,”
since it absorbs all incoming radiation; i.e., it reflects no radiation and is, therefore, invisible (“black”)
to the human eye. The spectral distribution of the emissive power of a black surface is given by Planck’s
law.

(3.3.2)

where C1 and C2 are sometimes called Planck function constants. The total emissive power of a blackbody
is given by

ν λ= c
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(3.3.3)

with σ known as the Stefan–Boltzmann constant. Figure 3.3.1 shows the spectral solar irradiation that
impinges on Earth, which closely resembles the spectrum of a blackbody at 5762 K. The general behavior
of Planck’s law is depicted in Figure 3.3.2, together with the fractional emissive power, f(λT), defined as

(3.3.4)

FIGURE 3.3.1 Solar irradiation onto Earth. (From Modest, M., Radiative Heat Transfer, McGraw-Hill, New York,
1993. With permission.)

FIGURE 3.3.2 Normalized blackbody emissive power spectrum. (From Modest, M., Radiative Heat Transfer,
McGraw-Hill, New York, 1993. With permission.)
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Note that 90% of all blackbody emission takes place at wavelengths of λT > 2200 µmK and at all
wavelengths λT < 9400 µmK. This implies that — for typical high-temperature heat transfer applications
in the range between 1000 and 2000 K — infrared wavelengths in the range 1 µm < λ < 10 µm govern
the heat transfer rates. For solar applications shorter wavelengths, down to λ ≅ 0.4 µm are also important.
Also shown in Figure 3.3.2 is Wien’s law:

(3.3.5)

which approximates Planck’s law accurately over the part of the spectrum that is important to heat
transfer, and that is easier to manipulate mathematically.

Example 3.3.1

What fraction of total solar emission falls into the visible spectrum (0.4 to 0.7 µm)?

Solution: With a solar temperature of 5762 K it follows that for 

and for

From Figure 3.3.2 we can estimate f(λ1Tsun) ≅ 12% and f(λ2Tsun) ≅ 48%. Thus, the visible fraction of
sunlight is 48 – 12 ≅ 36%: with a bandwidth of only 0.3 µm the human eye responds to approximately
36% of all emitted sunlight!

Radiative Exchange between Opaque Surfaces

Radiative Properties of Surfaces

Strictly speaking, the surface of an enclosure wall can only reflect radiative energy and allow a part of
it to penetrate into the substrate. A surface cannot absorb or emit photons: attenuation takes place inside
the solid, as does emission of radiative energy (with some of the emitted energy escaping through the
surface into the enclosure). In practical systems, the thickness of the surface layer over which absorption
of irradiation from inside the enclosure occurs is very small compared with the overall dimension of
an enclosure — usually a few nanometers for metals and a few micrometers for most nonmetals. The
same may be said about emission from within the walls that escapes into the enclosure. Thus, in the
case of opaque walls it is customary to speak of absorption by and emission from a “surface,” although
a thin surface layer is implied. Four fundamental radiative properties are defined:

(3.3.6a)

(3.3.6b)

(3.3.6c)

E
C

eb
C T

λ
λ

λ
= −1

5
2

λ µ λ µ1 10 4 0 4 5762 2304= = × =. .m, mKsunT

λ µ λ µ2 20 7 0 7 5762 4033= = × =. .m, mKsunT

Reflectivity, ρ ≡ reflected part of incoming radiation
total incoming radiation 

Absorptivity, ρ ≡ absorbed part of incoming radiation
total incoming radiation 

Transmissivity, τ ≡ transmitted part of incoming radiation
total incoming radiation 
© 2000 by CRC Press LLC



3-68
(3.3.6d)

Since all incoming radiation must be reflected, absorbed, or transmitted, it follows that

(3.3.7)

In most practical applications surface layers are thick enough to be opaque (τ = 0, leading to ρ + α =
1. All four properties may be functions of wavelength, temperature, incoming direction (except emis-
sivity), and outgoing direction (except absorptivity).

Directional Behavior. For heat transfer applications, the dependence on incoming direction for absorp-
tivity (as well as ρ and τ) and outgoing direction for emissivity is generally weak and is commonly
neglected; i.e., it is assumed that the surface absorbs and emits diffusely. Then, for an opaque surface,
for any given wavelength

(3.3.8)

Published values of emissivities are generally either “normal emissivities” (the directional value of ελ
in the direction perpendicular to the surface) or “hemispherical emissivities” (an average value over all
outgoing directions). The difference between these two values is often smaller than experimental accuracy
and/or repeatability.

Reflected energy (due to a single, distinct incoming direction) may leave the surface into a single
direction (“specular” reflection, similar to reflection from a mirror for visible light), or the reflection
may spread out over all possible outgoing directions. In the extreme case of equal amounts going into
all directions, we talk about “diffuse” reflection. Smooth surfaces (as compared with the wavelength of
radiation) tend to be specular reflectors, while rough surfaces tend to be more or less diffusely reflecting.
Analysis is vastly simplified if diffuse reflections are assumed. Research has shown that — except for
some extreme geometries and irradiation conditions susceptible to beam channeling (irradiated open
cavities, channels with large aspect ratios) — radiative heat transfer rates are only weakly affected by
the directional distribution of reflections. Therefore, it is common practice to carry out radiative heat
transfer calculations assuming only diffuse reflections.

Spectral Dependence. The emissivity of a surface generally varies strongly and in complex ways with
wavelength, depending on the material, surface layer composition, and surface structure (roughness).
Therefore, unlike bulk material properties (such as thermal conductivity) the surface emissivity may
display significant differences between two ostensibly identical samples, and even for one and the same
sample measured at different times (due to surface roughness and contamination). Despite these diffi-
culties, surfaces may be loosely grouped into two categories — metals and nonconductors (dielectrics),
and some generalizations can be made.

Polished Metals. Smooth, purely metallic surfaces (i.e., without any nonmetallic surface contamination,
such as metal oxides) tend to have very low emissivities in the infrared. For many clean metals ελ < 0.1
for λ > 2 µm, and spectral as well as temperature dependence are generally well approximated by the
proportionality ελ ∝  in the infrared. However, for shorter wavelengths (λ < 1 µm), emissivity
values may become quite substantial, and temperature dependence is usually reversed (decreasing, rather
than increasing, with temperature). Typical room temperature behavior of several metals is shown in
Figure 3.3.3. Caution needs to be exercised when choosing an emissivity value for a metal surface:
unless extraordinary care is taken to keep a polished metal clean (i.e., free from oxidation and/or surface
contamination), its emissivity may soon become several times the value of the original, polished specimen
(for example, consider the formation of aluminum oxide on top of aluminum, Figure 3.3.3).

Emissivity, ε ≡ energy emitted from a surface
energy emitted by a black surface at same temperature

ρ α τ+ + =1

ε α ρλ λ λ= = −1

T /λ
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Ceramics and Refractories. Smooth ceramics tend to have fairly constant and intermediate emissivity
over the near- to mid-infrared, followed by a sharp increase somewhere between 4 and 10 µm. At short
wavelengths these materials display strong decreases in emissivity, so that a number of them may appear
white to the human eye even though they are fairly black in the infrared. The temperature dependence
of the emissivity of ceramics is rather weak; generally a slight increase with temperature is observed in
the infrared. The spectral emissivity of a few ceramics is also shown in Figure 3.3.3.

Other Nonconductors. The behavior of most electrically nonconducting materials is governed by surface
structure, nonhomogeneity, dopants, porosity, flaws, surface films, etc.  The emissivity may vary irreg-
ularly across the spectrum because of various emission bands, influence of flaws, etc., making any
generalization impossible. This irregularity may be exploited to obtain surfaces of desired spectral
behavior, so-called selective surfaces. Some selective surfaces (as compared with a common steel) are
depicted in Figure 3.3.4. For a solar collector it is desirable to have a high spectral emissivity for short
wavelengths λ < 2.5 µm (strong absorption of solar irradiation), and a low value for λ > 2.5 µm (to
minimize re-emission from the collector). The opposite is true for a spacecraft radiator panel used to
reject heat into space.  

It is clear that (1) values of spectral surface emissivity are subject to great uncertainty and (2) only
a relatively small range of infrared wavelengths are of importance. Therefore, it is often assumed that
the surfaces are “gray”, i.e., the emissivity is constant across (the important fraction of) the spectrum,
ελ ≠ ελ (λ), since this assumption also vastly simplifies analysis. Table 3.3.1 gives a fairly detailed listing
of total emissivities of various materials, defined as

(3.3.9)

which may be enlisted for a gray analysis.

View Factors
In many engineering applications the exchange of radiative energy between surfaces is virtually unaf-
fected by the medium that separates them. Such (radiatively) nonparticipating media include vacuum
as well as monatomic and most diatomic gases (including air) at low to moderate temperature levels
(i.e., before ionization and dissociation occurs). Examples include spacecraft heat rejection systems,
solar collector systems, radiative space heaters, illumination problems, and so on. It is common practice

FIGURE 3.3.3 Normal, spectral emissivities for selected materials. (From Modest, M., Radiative Heat Transfer,
McGraw-Hill, New York, 1993. With permission.)
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to simplify the analysis by making the assumption of an idealized enclosure and/or of ideal surface
properties. The greatest simplification arises if all surfaces are black: for such a situation no reflected
radiation needs to be accounted for, and all emitted radiation is diffuse (i.e., the radiative energy leaving
a surface does not depend on direction). The next level of difficulty arises if surfaces are assumed to be
gray, diffuse emitters (and, thus, absorbers) as well as gray, diffuse reflectors. The vast majority of
engineering calculations are limited to such ideal surfaces, since, particularly, the effects of nondiffuse
reflections are usually weak (see discussion in previous section).

Thermal radiation is generally a long-range phenomenon. This is always the case in the absence of
a participating medium, since photons will travel unimpeded from surface to surface. Therefore, per-
forming a thermal radiation analysis for one surface implies that all surfaces, no matter how far removed,
that can exchange radiative energy with one another must be considered simultaneously. How much
energy any two surfaces exchange depends in part on their size, separation, distance, and orientation,
leading to geometric functions known as view factors, defined as

(3.3.10)

In order to make a radiative energy balance we always need to consider an entire enclosure rather than
and infinitesimal control volume (as is normally done for other modes of heat transfer, i.e., conduction
or convection). The enclosure must be closed so that irradiation from all possible directions can be
accounted for, and the enclosure surfaces must be opaque so that all irradiation is accounted for, for
each direction. In practice, an incomplete enclosure may be closed by introducing artificial surfaces. An
enclosure may be idealized in two ways, as indicated in Figure 3.3.5: by replacing a complex geometric
shape with a few simple surfaces, and by assuming surfaces to be isothermal with constant (i.e., average)
heat flux values across them. Obviously, the idealized enclosure approaches the real enclosure for
sufficiently small isothermal subsurfaces.

Mathematically, the view factor needs to be determined from a double integral, i.e., 

(3.3.11)

FIGURE 3.3.4 Spectral, hemispherical reflectivities of several spectrally selective surfaces. (From Modest, M.,
Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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TABLE 3.3.1  Total Emissivity and Solar Absorptivity of Selected Surfaces

Temperature (°C) Total Normal Emissivity
Extraterrestrial Solar 

Absorptivity

Alumina, flame-sprayed –25 0.80 0.28
Aluminum foil

As received 20 0.04
Bright dipped 20 0.025 0.10

Aluminum, vacuum-deposited 20 0.025 0.10
Hard-anodized –25 0.84 0.92
Highly polished plate, 98.3% 
pure

225–575 0.039–0.057

Commercial sheet 100 0.09
Rough polish 100 0.18
Rough plate 40 0.055–0.07
Oxidized at 600°C 200–600 0.11–0.19
Heavily oxidized 95–500 0.20–0.31

Antimony, polished 35–260 0.28–0.31
Asbestos 35–370 0.93–0.94
Beryllium 150 0.18 0.77

370 0.21
600 0.30

Beryllium, anodized 150 0.90
370 0.88
600 0.82

Bismuth, bright 75 0.34
Black paint

Parson’s optical black –25 0.95 0.975
Black silicone –25–750 0.93 0.94
Black epoxy paint –25 0.89 0.95
Black enamel paint 95–425 0.81–0.80

Brass, polished 40–315 0.10
Rolled plate, natural surface 22 0.06
Dull plate 50–350 0.22
Oxidized by heating at 600°C 200–600 0.61–0.59

Carbon, graphitized 100–320 0.76–0.75
320–500 0.75–0.71

Candle soot 95–270 0.952
Graphite, pressed, filed surface 250–510 0.98

Chromium, polished 40–1100 0.08–0.36
Copper, electroplated 20 0.03 0.47

Carefully polished electrolytic 
copper

80 0.018

Polished 115 0.023
Plate heated at 600°C 200–600 0.57
Cuprous oxide 800–1100 0.66–0.54
Molten copper 1075–1275 0.16–0.13

Glass, Pyrex, lead, and soda 260–540 0.95–0.85
Gypsum 20 0.903
Gold, pure, highly polished 225–625 0.018–0.035
Inconel X, oxidized –25 0.71 0.90
Lead, pure (99.96%), unoxidized 125–225 0.057–0.075

Gray oxidized 25 0.28
Oxidized at 150°C 200 0.63

Magnesium oxide 275–825 0.55–0.20
900–1705 0.20

Magnesium, polished 35–260 0.07–0.13
Mercury 0–100 0.09–0.12
Molybdenum, polished 35–260 0.05–0.08

540–1370 0.10–0.18
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where θi and θj are the angles between the surface normals on Ai and Aj, respectively, and the line (of
length Sij) connecting two points on the two surfaces. Analytical solutions to Equation (3.3.11) may be
found for relatively simple geometries. A few graphical results for important geometries are shown in
Figures 3.3.6 to 3.3.8. More-extensive tabulations as well as analytical expressions may be found in
textbooks on the subject area (Modest, 1993; Siegel and Howell, 1992) as well as view factor catalogs
(Howell, 1982). For nontrivial geometries view factors must be calculated numerically, either (1) by
numerical quadrature of the double integral in Equation (3.3.11), or (2) by converting Equation (3.3.11)
into a double-line integral, followed by numerical quadrature, or (3) by a Monte Carlo method (statistical
sampling and tracing of selected light rays).

View Factor Algebra. For simple geometries analytical values can often be found by expressing the
desired view factor in terms of other, known ones. This method is known as view factor algebra, by
manipulating the two relations,

(3.3.12)

2750 0.29
Nickel, electroplated 20 0.03 0.22

Polished 100 0.072
Platinum, pure, polished 225–625 0.054–0.104
Silica, sintered, powdered, fused 
silica

35 0.84 0.08

Silicon carbide 150–650 0.83–0.96
Silver, polished, pure 40–625 0.020–0.032
Stainless steel

Type 312, heated 300 hr at 
260°C

95–425 0.27–0.32

Type 301 with Armco black 
oxide

–25 0.75 0.89

Type 410, heated to 700°C in 
air

35 0.13 0.76

Type 303, sandblasted 95 0.42 0.68
Titanium, 75A 95–425 0.10–0.19

75A, oxidized 300 hr at 450°C 35–425 0.21–0.25 0.80
Anodized –25 0.73 0.51

Tungsten, filament, aged 27–3300 0.032–0.35
Zinc, pure, polished 225–325 0.045–0.053

Galvanized sheet 100 0.21

Source: Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.

FIGURE 3.3.5 Real and ideal enclosures for radiative transfer calculations. (From Modest, M., Radiative Heat
Transfer, McGraw-Hill, New York, 1993. With permission.)

TABLE 3.3.1  (continued) Total Emissivity and Solar Absorptivity of Selected Surfaces

Temperature (°C) Total Normal Emissivity
Extraterrestrial Solar 

Absorptivity

Reciprocity rule: A F A Fi i j j j i− −=
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FIGURE 3.3.6 View factor between parallel, coaxial disks of unequal radius. (From Modest, M., Radiative Heat
Transfer, McGraw-Hill, New York, 1993. With permission.)

FIGURE 3.3.7 View factor between identical, parallel, directly opposed rectangles. (From Modest, M., Radiative
Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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(3.3.13)

assuming that the (closed) configuration consists of N surfaces. The reciprocity rule follows immediately
from Equation (3.3.11), while the summation rule simply states that the fractional energies leaving
surface Ai must add up to a whole.

Example 3.3.2

Assuming the view factor for a finite corner, as shown in Figure 3.3.8 is known, determine the view
factor F3–4, between the two perpendicular strips as shown in Figure 3.3.9.

Solution. From the definition of the view factor, and since the energy traveling to A4 is the energy
going to A2 and A4 minus the one going to A2, it follows that

FIGURE 3.3.8 View factor between perpendicular rectangles with common edge. (From Modest, M., Radiative
Heat Transfer, McGraw-Hill, New York, 1993. With permission.)

FIGURE 3.3.9 Configuration for Example 3.3.2 (strips on a corner piece). (From Modest, M., Radiative Heat
Transfer, McGraw-Hill, New York, 1993. With permission.)
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and, using reciprocity,

Similarly, we find

All view factors on the right-hand side are corner pieces and, thus, are known from Figure 3.3.8.

Crossed-Strings Method. A special type of view factor algebra may be used to determine all the view
factors in long enclosures with constant cross section. The method is called the crossed-strings method
since the view factors can be determined experimentally with four pins, a roll of string, and a yardstick.
Consider the configuration in Figure 3.3.10, which shows the cross section of an infinitely long enclosure,
continuing into and out of the plane of the figure. Repeatedly applying reciprocity and summation rules
allows the evaluation of F1–2 as

(3.3.14)

where Aab is the area (per unit depth) defined by the length of the string between points a and b, etc.
This formula is easily memorized by looking at the configuration between any two surfaces as a
generalized ”rectangle,” consisting of A1, A2, and the two sides Aac and Abd. Then

(3.3.15)

Example 3.3.3

Calculate F1–2 for the configuration shown in Figure 3.3.11.

Solution. From the figure it is obvious that

FIGURE 3.3.10 The crossed-strings method for arbitrary two-dimensional configurations. (From Modest, M.,
Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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Similarly, we have

and

Radiative Exchange between Opaque Surfaces (Net Radiation Method)

Consider an enclosure consisting of N opaque surfaces. The enclosure is closed, or, if not, no surface
external to the surface reflects or emits radiation into the enclosure (i.e., the open configuration may be
artificially closed by replacing openings with  cold, black surfaces); any external radiation entering the
enclosure is dealt with individually for each surface [see Equation (3.3.17) below]. All surfaces are
assumed to be gray, and emit and reflect diffusely. Traditionally, the radiosity J of the surfaces is
determined, defined as the total diffuse radiative energy leaving a surface (by emission and reflection),

(3.3.16)

where Hi is the incoming radiative flux (irradiation) onto surface Ai. This leads to N simultaneous
equations for the unknown radiosities, specifically,

(3.3.17a)

or

(3.3.17b)

depending on whether surface temperature or surface flux are known on surface Ai. In Equation (3.3.17)
Hoi is irradiation on surface Ai from outside the enclosure, if any; Hoi is always zero for closed config-
urations, but is useful in the presence of external light sources (such as solar energy, lasers, etc.). The

FIGURE 3.3.11 Infinitely long wedge-shaped groove for Example 3.3.3. (From Modest, M., Radiative Heat
Transfer, McGraw-Hill, New York, 1993. With permission.)
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radiosity neither is a useful quantity to determine, nor is there a need to determine it. Eliminating the
radiosities from Equations (3.3.17a) and (3.3.17b) leads to N simultaneous equations in temperature (Ebi)
and heat flux (qi):

(3.3.18)

Note that no artificial closing surfaces (j > N) appear in Equation (3.3.18), since for these surfaces εj =
1 and Ebj = 0. Thus, such closing surfaces may simply be ignored in the analysis.

Since Equation (3.3.18) is a set of N equations, this requires that N values of emissive power Ebi

and/or flux qi must be given as boundary conditions, in order to solve for the remaining N unknowns.
For computer calculations Equation (3.3.18) may be recast in matrix form

(3.3.19a)

where

(3.3.19b)

(3.3.19c)

δij is Kronecker’s delta, i.e., 

(3.3.20)

and q, eb, and ho are vectors of the surface heat fluxes qi, emissive powers Ebi, and external irradiations
Hoi (if any). For example, if the temperatures are given for all the surfaces, and the heat fluxes are to
be determined, Equation (3.3.19) is solved by matrix inversion, and 

(3.3.21)

Example 3.3.4

A right-angled groove, consisting of two long black surfaces of width a, is exposed to solar radiation
qsol (Figure 3.3.12). The entire groove surface is kept isothermal at temperature T. Determine the net
radiative heat transfer rate from the groove.

Solution. We may employ Equation (3.3.19). However, the enclosure is not closed, and we must close
it artificially. We note that any radiation leaving the cavity will not come back (barring any reflection
from other surfaces nearby). Thus, our artificial surface should be black. We also assume that, with the
exception of the (parallel) solar irradiation, no external radiation enters the cavity. Since the solar
irradiation is best treated separately through the external irradiation term Ho, our artificial surface is
nonemitting. Both criteria are satisfied by covering the groove with a black surface at 0 K (A3). Even
though we now have three surfaces, the last one does not really appear in Equation (3.3.18) (since Eb3

= 0 and 1/ε3 – 1 = 0):

q
F q H E F Ei

i jj

N

i j j oi bi i j bj

j

N

ε ε
− −









 + = −

=
− −

=
∑ ∑1

1
1 1

C q A e hb o⋅ = ⋅ −

C Fij
ij

j j
i j= − −









 −

δ
ε ε

1
1

A Fij ij i j= − −δ

δij

i j

i j
=

=

≠







1

0

if

if

q C A e C h1
b

1
o= ⋅( ) ⋅ − ⋅( )− −
© 2000 by CRC Press LLC



3-78
From the crossed-strings method, Equation (3.3.15), we find

and

Example 3.3.5

Consider a very long duct as shown in Figure 3.3.13. The duct is 30 × 40 cm in cross section, and all
surfaces are covered with gray, diffuse surface material. Top and bottom walls are at T1 = T3 = 1000 K

FIGURE 3.3.12 Right-angled groove exposed to solar irradiation, Example 3.3.4. (From Modest, M., Radiative
Heat Transfer, McGraw-Hill, New York, 1993. With permission.)

FIGURE 3.3.13 Two-dimensional gray, diffuse duct for Example 3.3.5. (From Modest, M., Radiative Heat Transfer,
McGraw-Hill, New York, 1993. With permission.)
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with ε1 = ε3 = 0.3, while the side walls are at T2 = T4 = 600 K with ε2 = ε4 = 0.8 as shown. Determine
the net radiative heat transfer rates for each surface.

Solution. Using Equation (3.3.18) for i = 1 and i = 2 and noting that F1–2 = F1–4 and F2–1 = F2–3,

The view factors are readily evaluated from the crossed-strings method as F1–2 =1/4, F1–3 = 1 – 2F1–2 =1/2,
F2–1 = 4/3 F1–2 =1/3 and F2–4 = 1 – 2F2–1 = 1/3. Substituting these, as well as emissivity values, into the
relations reduces them to the simpler form of

or

Thus,

and

Finally, substituting values for temperatures,
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Note that, for conservation of energy, both heat transfer rates must add up to zero.

Small Body Inside Isothermal Enclosure. An especially simple — but important — case occurs if a
small, convex body A1 (i.e., a surface that cannot “see” itself, or F1–1 = 0) is totally enclosed by an
isothermal enclosure A2. Then, with N = 2 and F1–2 = 1, Equation (3.3.18) reduces to

(3.3.22)

If the enclosure is large, i.e., A1 � A2, then Equation (3.3.22) simplifies further to

(3.3.23)

Radiation Shields. If it is desired to minimize radiative heat transfer between two surfaces, it is common
practice to place one or more radiation shields between them (usually thin metallic sheets of low
emissivity). If two surfaces Ai and Aj are close together, so that Ai ≅ Aj and Fi–j ≅ 1, then the radiative
exchange between them is, from Equation (3.3.22),

(3.3.24)

where Rij is termed the radiative resistance. Equation (3.3.24) is seen to be analogous to an electrical
circuit with “current” q and “voltage potential” Ebi – Ebj. Therefore, expressing radiative fluxes in terms
of radiative resistances is commonly known as network analogy. The network analogy is a very powerful
method of solving one-dimensional problems (i.e., whenever only two isothermal surfaces see each other,
such as infinite parallel plates, or when one surface totally encloses another). Consider, for example,
two large parallel plates, A1 and AN, separated by N – 2 radiation shields, as shown in Figure 3.3.14. Let
each shield have an emissivity εS on both sides. Then, by applying Equation (3.3.24) to any two
consecutive surfaces and using the fact that q remains constant throughout the gap,

FIGURE 3.3.14 Placement of radiation shields between two large, parallel plates. (From Modest, M., Radiative
Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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(3.3.25)

where

(3.3.26)

and, if ε2 = ε3 L = εN–1 = εS,

(3.3.27)

Equations (3.3.24) to (3.3.27) are also valid for concentric cylinders, concentric spheres, and similar
configurations, as long as rN – r

1
 � r1. Also, the relations are readily extended to shields with nonidentical

emissivities.
While the network analogy can (and has been) applied to configurations with more than two surfaces

seeing each other, this leads to very complicated circuits (since there is one resistance between any two
surfaces). For such problems the network analogy is not recommended, and the net radiation method,
Equation (3.3.18), should be employed.

Radiative Exchange within Participating Media

In many high-temperature applications, when radiative heat transfer is important, the medium between
surfaces is not transparent, but is “participating,” i.e., it absorbs, emits, and (possibly) scatters radiation.
In a typical combustion process this interaction results in (1) continuum radiation due to tiny, burning
soot particles (of dimension <1 µm) and also due to larger suspended particles, such as coal particles,
oil droplets, fly ash; (2) banded radiation in the infrared due to emission and absorption by molecular
gaseous combustion products, mostly water vapor and carbon dioxide; and (3) chemiluminescence due
to the combustion reaction itself. While chemiluminescence may normally be neglected, particulates as
well as gas radiation generally must be accounted for.

Radiative Properties of Molecular Gases

When a photon (or an electromagnetic wave) interacts with a gas molecule, it may be absorbed, raising
the energy level of the molecule. Conversely, a gas molecule may spontaneously lower its energy level
by the emission of an appropriate photon. This leads to large numbers of narrow spectral lines, which
partially overlap and together form so-called vibration-rotation bands. As such, gases tend to be trans-
parent over most of the spectrum, but may be almost opaque over the spectral range of a band. The
absorption coefficient κλ is defined as a measure of how strongly radiation is absorbed or emitted along
a path of length, L, leading to the spectral absorptivity and emissivity for this path, or

(3.3.28)

Although gases are distinctly nongray, for simple heat transfer calculations we often need to determine
the total emissivity for an isothermal path (compare Equation (3.3.9))

(3.3.29)
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For a mixture of gases the total emissivity is a function of path length L, gas temperature Tg, partial
pressure(s) of the absorbing gas(es) pa, and total pressure p. For the — in combustion applications most
important — mixture of nitrogen with water vapor and/or carbon dioxide, the total emissivity may be
calculated from Leckner (1972). First, the individual emissivities for water vapor and carbon dioxide,
respectively, are calculated separately from

(3.3.30a)

(3.3.30b)

(3.3.30c)

Here ε0 is the total emissivity of a reference state, i.e., for the case of p = 1 bar and pa → 0 (but paL >
0), and the correlation constants a,b,c,cji, PE (paL)0, (paL)m, and T0 are given in Table 3.3.2 for water
vapor and carbon dioxide. (For convenience, plots of ε0 are given in Figures 3.3.15 for CO2 and 3.3.16
for H2O.) The total emissivity of a mixture of nitrogen with both water vapor and carbon dioxide is
calculated from

(3.3.31)

TABLE 3.3.2 Correlation Constants for the Determination of the Total Emissivity for Water Vapor and 
Carbon Dioxide

Gas Water Vapor Carbon Dioxide

M, N 2,2 2,3
–2.2118
0.85667
–0.10838

–1.1987
0.93048
–0.17156

0.035596
–0.14391
0.045915

–3.9893
1.2710

–0.23678

2.7669
–1.1090
0.19731

–2.1081
1.0195

–0.19544

0.39163
–0.21897
0.044644

PE (p + 0.28pa)/p0

(paL)m/(paL)0 13.2t2 0.054/t2,  t < 0.7
0.225t2,  t > 0.7

a
2.144,  t < 0.75 1 + 0.1/t1.45

1.88 – 2.053 log10 t, t > 0.75
b 1.10/t1.4 0.23
c 0.5 1.47

Note: T0 = 1000 K, p0 = 1 bar, t = T/T0, (pa L)0 = 1 bar cm. 
Source: Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.
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(3.3.32)

where the ∆ε compensates for overlap effects between H2O and CO2 bands, and the  and  are
calculated from Equation (3.3.30).

If radiation emitted externally to the gas (for example, by emission from an adjacent wall at temperature
Ts) travels through the gas, the total amount absorbed by the gas is of interest. This leads to the absorptivity
of a gas path at Tg with a source at Ts:

(3.3.33)

which for water vapor or carbon dioxide may be estimated from

(3.3.34)

FIGURE 3.3.15 Total emissivity of water vapor at reference state (total gas pressure p = 1 bar, partial pressure of
H2O pa → 0). (From Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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where ε is the emissivity calculated from Equation (3.3.30) evaluated at the temperature of the surface
Ts, and using an adjusted pressure path length, paLTs /Tg. For mixtures of water vapor and carbon dioxide
band overlap is again accounted for by taking

(3.3.35)

with ∆ε evaluated for a pressure path length of paLTs/Tg.

Example 3.3.6

Consider a layer of a gas mixture at 1000 K and 5 bar that consists of 10% carbon dioxide and 70%
nitrogen. What is its emissivity for a path length of 1.76 m, and its absorptivity (for the same path) if
the layer is irradiated by a source at 1500 K?

Solution. First we calculate the total emissivity of the CO2 at the reference state (p = 1 bar, pa → 0).
for a length of 1.76 m from Equation (3.3.30c) or Figure 3.3.15. With

one gets, interpolating Figure 3.3.15, ε0 ≅ 0.15. The correction factor in Equation (3.3.30b) is calculated
from Table 3.3.2 with PE = 5 + 0.28 × 0.5 = 5.14, a = 1.1, b = 0.23, c = 1.47, and (paL)m = 0.225 bar
cm. Thus,

FIGURE 3.3.16 Total emissivity of carbon dioxide at reference state (total gas pressure p = 1 bar, partial pressure
of CO2 pa → 0). (From Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.)
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and

To calculate the absorptivity ε0 must be found for a temperature of

From Figure 3.3.15 it follows that ε0 ≅ 0.15 again and, with ε/ε0 pretty much unchanged, from Equation
(3.3.34),

Radiative Properties of Particle Clouds

Nearly all flames are visible to the human eye and are, therefore, called luminous (sending out light).
Apparently, there is some radiative emission from within the flame at wavelengths where there are no
vibration–rotation bands for any combustion gases. This luminous emission is known today to come
from tiny char (almost pure carbon) particles, call soot, which are generated during the combustion
process. The “dirtier” the flame is (i.e., the higher the soot content), the more luminous it is.

Radiative Properties of Soot. Soot particles are produced in fuel-rich flames, or fuel-rich parts of flames,
as a result of incomplete combustion of hydrocarbon fuels. As shown by electron microscopy, soot
particles are generally small and spherical, ranging in size between approximately 50 and 800 Å (0.005
to 0.08 µm), and up to about 3000 Å in extreme cases. While mostly spherical in shape, soot particles
may also appear in agglomerated chunks and even as long agglomerated filaments. It has been determined
experimentally in typical diffusion flames of hydrocarbon fuels that the volume percentage of soot
generally lies in the range between 10–4 to 10–6%.

Since soot particles are very small, they are generally at the same temperature as the flame and,
therefore, strongly emit thermal radiation in a continuous spectrum over the infrared region. Experiments
have shown that soot emission often is considerably stronger than the emission from the combustion
gases.

For a simplified heat transfer analysis it is desirable to use suitably defined mean absorption coefficients
and emissivities. If the soot volume fraction fv is known as well as an appropriate spectral average of
the complex index of refraction of the soot, m = n – ik, one may approximate the spectral absorption
coefficient by (Felske and Tien, 1977).

(3.3.36)

and a total, or spectral-average value may be taken as

(3.3.37)

where C2 = 1.4388 mK is the second Planck function constant. Substituting Equation (3.3.37) into
Equation (3.3.29) gives a total soot cloud emissivity of

(3.3.38)
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Pulverized Coal and Fly Ash Dispersions. To calculate the radiative properties of arbitrary size distri-
butions of coal and ash particles, one must have knowledge of their complex index of refraction as a
function of wavelength and temperature. Data for carbon and different types of coal indicate that its real
part, n, varies little over the infrared and is relatively insensitive to the type of coal (e.g., anthracite,
lignite, bituminous), while the absorptive index, k, may vary strongly over the spectrum and from coal
to coal. If the number and sizes of particles are known and if a suitable average value for the complex
index of refraction can be found, then the spectral absorption coefficient of the dispersion may be
estimated by a correlation given by Buckius and Hwang (1980). Substitution into Equation (3.3.29) can
then provide an estimate of the total emissivity. If both soot as well as larger particles are present in the
dispersion, the absorption coefficients of all constituents must be added before applying Equation
(3.3.29).

Mixtures of Molecular Gases and Particulates. To determine the total emissivity of a mixture it is
generally necessary to find the spectral absorption coefficient κλ of the mixture (i.e., the sum of the
absorption coefficient of all contributors), followed by numerical integration of Equation (3.3.29).
However, since the molecular gases tend to absorb only over a small part of the spectrum, to some
degree of accuracy

(3.3.39)

Equation (3.3.39) gives an upper estimate since overlap effects result in lower emissivity (compare
Equation (3.3.31) for gas mixtures).

Heat Exchange in the Presence of a Participating Medium

The calculation of radiative heat transfer rates through an enclosure filled with a participating medium
is a challenging task, to say the least. High-accuracy calculations are rare and a topic of ongoing research.
There are, however, several simplistic models available that allow the estimation of radiative heat transfer
rates, and relatively accurate calculations for some simple cases.

Diffusion Approximation. A medium through which a photon can only travel a short distance without
being absorbed is known as optically thick. Mathematically, this implies that κλ L � 1 for a characteristic
dimension L across which the temperature does not vary substantially. For such an optically thick,
nonscattering medium the spectral radiative flux may be calculated from

(3.3.40)

similar to Fourier’s diffusion law for heat conduction. Note that a medium may be optically thick at
some wavelengths, but thin (κλ L � 1) at others (e.g., molecular gases!). For a medium that is optically
thick for all wavelengths, Equation (3.3.40) may be integrated over the spectrum, yielding the total
radiative flux

(3.3.41)

where κR is the suitably averaged absorption coefficient, termed the Rosseland-mean absorption coeffi-
cient. For a cloud of soot particles, κR ≅ κm from Equation (3.3.37) is a reasonable approximation.
Equation (3.3.41) may be rewritten by defining a “radiative conductivity” kR,
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(3.3.42)

This form shows that the diffusion approximation is mathematically equivalent to conductive heat transfer
with a (strongly) temperature-dependent conductivity.

Note: More accurate calculations show that, in the absence of other modes of heat transfer (conduction,
convection), there is generally a temperature discontinuity near the boundaries (Tsurface ≠ Tadjacent medium),
and, unless boundary conditions that allow such temperature discontinuities are chosen, the diffusion
approximation will do very poorly in the vicinity of bounding surfaces.

Example 3.3.7

A soot cloud is contained between two walls at T1 = 1000 K and T2 = 2000 K, spaced 1 m apart. The
effective absorption coefficient of the medium is κR = 10 m–1 and the effective thermal conductivity is
kc = 0.1 W/mK. Estimate the total heat flux between the plates (ignoring convection effects).

Solution. For simplicity we may want to assume a constant total conductivity k = kc + kR, leading to

where kR must be evaluated at some effective temperature. Choosing, based on its temperature depen-
dence,

gives

Note that (1) conduction is negligible in this example and (2) the surface emissivities do not enter the
diffusion approximation. While a more accurate answer can be obtained by taking the temperature
dependence of kR into account, the method itself should be understood as a relatively crude approximation.

Mean Beam Length Method. Relatively accurate yet simple heat transfer calculations can be carried
out if an isothermal, absorbing–emitting, but not scattering medium is contained in an isothermal, black-
walled enclosure. While these conditions are, of course, very restrictive, they are met to some degree
by conditions inside furnaces. For such cases the local heat flux on a point of the surface may be
calculated from

(3.3.43)

where Ebw and Ebg are blackbody emissive powers for the walls and medium (gas and/or particulates),
respectively, and α(Lm) and ε(Lm) are the total absorptivity and emissivity of the medium for a path
length Lm through the medium. The length Lm, known as the average mean beam length, is a directional
average of the thickness of the medium as seen from the point on the surface. On a spectral basis
Equation (3.3.43) is exact, provided the above conditions are met and provided an accurate value of the
(spectral) mean beam length is known. It has been shown that spectral dependence of the mean beam
length is weak (generally less than ±5% from the mean). Consequently, total radiative heat flux at the
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surface may be calculated very accurately from Equation (3.3.43), provided the emissivity and absorp-
tivity of the medium are also known accurately. The mean beam lengths for many important geometries
have been calculated and are collected in Table 3.3.3. In this table Lo is known as the geometric mean
beam length, which is the mean beam length for the optically thin limit (κλ → 0), and Lm is a spectral
average of the mean beam length. For geometries not listed in Table 3.3.3, the mean beam length may
be estimated from

(3.3.44)

where V is the volume of the participating medium and A  is its entire bounding surface area.

Example 3.3.8

An isothermal mixture of 10% CO2 and 90% nitrogen at 1000 K and 5 bar is contained between two
large, parallel, black plates, which are both isothermal at 1500 K. Estimate the net radiative heat loss
from the surfaces.

Solution. The heat loss may be calculated from Equation (3.3.43), after determining the mean beam
length, followed by evaluation of ε(Lm) and α(Lm). From Table 3.3.3 it is clear that Lm = 1.76 × thickness
of slab = 1.76 m. It turns out that the necessary ε(Lm) = 0.15 and α(Lm) = 0.122 have already been
calculated in Example 3.3.6. Thus, the heat flux is immediately calculated from Equation (3.3.43) as

TABLE 3.3.3 Mean Beam Lengths for Radiation from a Gas Volume to a Surface on Its Boundary

Geometry of Gas Volume

Characterizing 
Dimension

L

Geometric Mean
Beam Length

L0/L

Average Mean
Beam Length

Lm/L Lm/L0

Sphere radiating to its surface Diameter, L = D 0.67 0.65 0.97
Infinite circular cylinder to bounding
surface

Diameter, L = D 1.00 0.94 0.94

Semi-infinite circular cylinder to: Diameter, L = D 
Element at center of base 1.00 0.90 0.90
Entire base 0.81 0.65 0.80

Circular cylinder 
(height/diameter = 1) to:

Diameter, L = D 

Element at center of base 0.76 0.71 0.92
Entire surface 0.67 0.60 0.90

Circular cylinder 
(height/diameter = 2) to:

Diameter, L = D 

Plane base 0.73 0.60 0.82
Concave surface 0.82 0.76 0.93
Entire surface 0.80 0.73 0.91

Circular cylinder 
(height/diameter = 0.5) to:

Diameter, L = D 

 Plane base 0.48 0.43 0.90
Concave surface 0.53 0.46 0.88
Entire surface 0.50 0.45 0.90

Infinite semicircular cylinder to center 
of plane rectangular face

Radius, L = R — 1.26 —

Infinite slab to its surface Slab thickness, L 2.00 1.76 0.88
Cube to a face Edge L 0.67 0.6 0.90
Rectangular 1 × 1 × 4 parallelepipeds: Shortest edge, L

To 1 × 4 face 0.90 0.82 0.91
To 1  × 1 face 0.86 0.71 0.83
To all faces 0.89 0.81 0.91

Source: Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, 1993. With permission.

L
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L L
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Defining Terms

Absorptivity: The ability of a medium to absorb (i.e., trap and convert to other forms of energy)
incoming radiation; gives the fraction of incoming radiation that is absorbed by the medium.

Absorption coefficient: The ability of a medium to absorb (i.e., trap and convert to other forms of
energy) over a unit path length; the reciprocal of the mean distance a photon travels before being
absorbed.

Blackbody: Any material or configuration that absorbs all incoming radiation completely. A blackbody
also emits the maximum possible amount of radiation as described by Planck’s law.

Diffuse surface: A surface that emits and/or reflects equal amounts of radiative energy (photons) into
all directions. Or a surface that absorbs and/or reflects equal amounts of radiation independent of
incoming direction.

Emissive power: The rate of radiative energy leaving a surface through emission. The maximum amount
of emissive power is emitted by a blackbody with a spectral strength described by Planck’s law.

Emissivity: The ability of a medium to emit (i.e., convert internal energy into electromagnetic waves
or photons) thermal radiation; gives the fraction of emission as compared with a blackbody.

Gray: A medium whose radiative properties (such as absorptivity, emissivity, reflectivity, absorption
coefficient) do not vary with wavelength.

Irradiation: Incoming radiative flux onto a surface from outside it.
Network analogy: Expressing radiative heat exchange between surfaces in terms of an electrical

network, with heat flux as “current,” differences in emissive power as “potentials,” and defining
radiative resistances.

Opaque medium: A medium of sufficient thickness that absorbs all nonreflected irradiation; no radiation
is transmitted through the medium.

Photon: A massless particle carrying energy in the amount of hν; the quantum mechanical alternative
view of an electromagnetic wave carrying radiative energy.

Planck’s law: The law describing the spectral distribution of the radiative energy emitted (emissive
power) of a blackbody.

Radiosity: Total radiative flux leaving a surface (diffusely), consisting of emitted as well as reflected
radiation.

Reflectivity: The ability of an interface, or of a medium or of a composite with a number of interfaces,
to reflect incoming radiation back into the irradiating medium.

Semitransparent: See transparent.
Spectral value: The value of a quantity that varies with wavelength at a given wavelength; for dimen-

sional quantities the amount per unit wavelength.
Transmissivity: The ability of a medium to let incoming radiation pass through it; gives the fraction

of incoming radiation that is transmitted through the medium.
Transparent: The ability of a medium to let incoming radiation pass through it. A medium that lets all

radiation pass through it is called transparent, a medium that only allows a part to pass through
it is called semitransparent.

View factor: The fraction of diffuse radiant energy leaving one surface that is intercepted by another
surface.
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4.1 Water Desalination

Noam Lior

Introduction and Overview

Water desalination is a process that separates water from a saline water solution. The natural water cycle
is the best and most prevalent example of water desalination. Ocean waters evaporate due to solar heating
and atmospheric influences; the vapor consisting mostly of fresh water (because of the negligible volatility
of the salts at these temperatures) rises buoyantly and condenses into clouds in the cooler atmospheric
regions, is transported across the sky by cloud motion, and is eventually deposited back on the earth
surface as fresh water rain, snow, and hail. The global freshwater supply from this natural cycle is ample,
but many regions on Earth do not receive an adequate share. Population growth, rapidly increasing
demand for fresh water, and increasing contamination of the available natural fresh water resources
render water desalination increasingly attractive. Water desalinaiton has grown over the last four decades
to an output of about 20 million m3 of fresh water per day, by about 10,000 sizeable land-based water
desalination plants.

The salt concentration in the waters being desalted ranges from below 100 ppm wt. (essentially fresh
water, when ultrapure water is needed), through several thousand parts per million (brackish waters
unsuitable for drinking or agricultural use) and seawater with concentrations between 35,000 and 50,000
ppm. Official salt concentration limits for drinkable water are about 1000 ppm, and characteristic water
supplies are restricted to well below 500 ppm, with city water in the U.S. being typically below 100
ppm. Salinity limits for agricultural irrigation waters depend on the type of plant, cultivation, and soil,
but are typically below 2000 ppm.

Many ways are availiable for separating water from a saline water solution. The oldest and still
prevalent desalination process is distillation. The evaporation of the solution is effected by the addition
of heat or by lowering of its vapor pressure, and condensation of these vapors on a cold surface produces
fresh water. The three dominant distillation processes are multistage flash (MSF), multieffect (ME), and
vapor compression (VC). Until the early 1980s the MSF process was prevalent for desalination. Now
membrane processes, especially reverse osmosis (RO), are economical enough to have taken about one
third of the market. In all membrane processes separation occurs due to the selective nature of the
permeability of a membrane, which permits, under the influence of an external driving force, the passage
of either water or salt ions but not of both. The driving force may be pressure (as in RO), electric potential
(as in electrodialysis, ED), or heat (as in membrane distillation, MD). A process used for low-salinity
solutions is the well-known ion exchange (IE), in which salt ions are preferentially adsorbed onto a
material that has the required selective adsorption property and thus reduce the salinity of the water in
the solution.

The cost of desalted water is comprised of the capital cost of the plant, the cost of the energy needed
for the process, and the cost of operation and maintenance staff and supplies. In large seawater desalination
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plants the cost of water is about $1.4 to $2/m3, dropping to less than $1/m3 for desalting brackish water.
A methodology for assessing the economic viability of desalination in comparison with other water
supply methods is described by Kasper and Lior (1979). Desalination plants are relatively simple to
operate, and progress toward advanced controls and automation is gradually reducing operation expenses.
The relative effect of the cost of the energy on the cost of the fresh water produced depends on local
conditions, and is up to one half of the total.

The boiling point of a salt solution is elevated as the concentration is increased, and the boiling point
elevation is a measure of the energy needed for separation. Thermodynamically reversible separation
defines the minimal energy requirement for that process. The minimal energy of separation Wmin in such
a process is the change in the Gibbs free energy between the beginning and end of the process, ∆G. The
minimal work when the number of moles of the solution changes from n1 to n2 is thus

(4.1.1)

The minimal energy of separation of water from seawater containing 3.45 wt.% salt, at 25°C, is 2.55
kJ/(kg fresh water) for the case of zero fresh water recovery (infinitesimal concentration change) and
2.91 kJ/(kg fresh water) for the case of 25% freshwater recovery. Wmin is, however, severalfold smaller
than the energy necessary for water desalination in practice. Improved energy economy can be obtained
when desalination plants are integrated with power generation plants (Aschner, 1980). Such dual-purpose
plants save energy but also increase the capital cost and complexity of operation.

Two aspects of the basically simple desalination process require special attention. One is the high-
corrosivity of seawater, especially pronounced in the higher-temperature destillation processes, which
requires the use of corrosion-resistant expensive materials. Typical materials in use are copper–nickel
alloys, stainless steel, titanium, and, at lower temperatures, fiber-reinforced polymers (George et al.,
1975). Another aspect is scale formation (Glater et al., 1980; Heitman, 1990). Salts in saline water,
particularly calcium sulfate, magnesium hydroxide, and calcium carbonate, tend to precipitate when a
certain temperature and concentration are exceeded. The precipitate, often mixed with dirt entering with
the seawater and with corrosion products, will gradually plug up pipes, and when depositing on heat
transfer surfaces reduces heat transfer rates and thus impairs plant performance. While the ambient-
temperature operation of membrane processes reduces scaling, membranes are much more susceptible
not only to minute amounts of scaling or even dirt, but also to the presence of certain salts and other
compounds that reduce their ability to separate salt from water. To reduce corrosion, scaling, and other
problems, the water to be desalted is pretreated. The pretreatment consists of filtration, and may inlude
removal of air (deaeration), removal of CO2 (decarbonation), and selective removal of scale-forming
salts (softening). It also includes the addition of chemicals that allow operation at higher temperatures
without scale deposition, or which retard scale deposition and/or cause the precipitation of scale which
does not adhere to solid surfaces, and that prevent foam formation during the desalination process.

Saline waters, including seawater, contain, besides a variety of inorganic salts, also organic materials
and various particles. They differ in composition from site to site, and also change with time due to both
natural and person-made causes. Design and operation of desalination plants requires good knowledge
of the saline water composition and properties (Fabuss, 1980; Heitman, 1991). 

The major water desalination processes that are currently in use or in advanced research stages are
concisely described below. Information on detailed modeling can be found in the references.

Distillation Processes

Multistage Flash Evaporation (MSF)

Almost all of the large desalination plants use the MSF process shown schematically in Figure 4.1.1. A
photo of an operating plant is shown in Figure 4.1.2. The seawater feed is preheated by internal heat
recovery from condensing water vapor during passage through a series of stages, and then heated to its
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FIGURE 4.1.1 Schematic flow and temperature diagram of the MSF process, for a recirculation type plant
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top temperature by steam generated by an external heat source. The hot seawater then flows as a horizontal
free-surface stream through a series of “stages,” created by vertical walls which separate the vapor space
of each stage from the others. These walls allow the vapor space of each stage to be maintained at a
different pressure, which is gradually decreased along the flow path due to the gradually decreasing
temperature in the condenser/seawater-preheater installed above the free stream. The seawater is super-
heated by a few degrees celsius relative to the vapor pressure in each stage it enters, and consequently
evaporates in each stage along its flow path. The latent heat of the evaporation is supplied by equivalent
reduction of the sensible heat of the evaporating water, thus resulting in a gradual lowering of the stream
temperature. The evaporation is vigorous, resulting in intensive bubble generation and growth with
accompanying stream turbulence, a process known as flash evaporation (Lior and Greif, 1980; Miyatake
et al., 1992, 1993). One of the primary advantages of the MSF process is the fact that evaporation occurs
from the saline water stream and not on heated surfaces (as in other distillation processes such as
submerged tube and ME evaporation) where evaporation typically causes scale depostition and thus
gradual impairment of heat transfer rates. Also, the fact that the sensible heat of water is much smaller
than its latent heat of evaporation, where the specific heat cp = 4.182 kJ/kg/°C change of water temperature
and the latent heat is hfg = 2378 kJ/kg, and the fact that the top temperature is limited by considerations
of scaling and corrosion, dictate the requirement for a very large flow rate of the evaporating stream.
For example (in the following, the subscripts b, d, and s refer to brine distillate, and steam, respectively),
operating between a typical top temperature Tb,t of 90°C at the inlet to the evaporator and an exit
temperature Tb,e of 40°C corresponding to the ambient conditions, the overall temperature drop of the
evaporating stream if 50°C. By using these values, the heat balance between the sensible heat of the
water stream, flowing at a mass flow rate  and the latent heat needed for generating water vapor
(distillate) at a mass flow rate is

(4.1.2)

which yields the brine-to-product mass flow ratio as

FIGURE 4.1.2 One of the six units of the 346,000 m3/day MSF desalination plant Al Taweelah B in Abu Dhabi,
United Arab Emirates. (Courtesy of Italimpianti S. p. A.) It is a dual-purpose plant, composed of six identical power
and desalination units. Five of the six boilers are seen in the background. The desalination units were in 1996 the
largest in the world. They have 17 recovery and 3 reject stages and a performance ratio (PR) of 8.1. The plant also
produces 732 MWe of power.
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(4.1.3)

Therefore, 12.37 kg of saline water are needed to produce 1 kg of distillate. This high flow rate incurs
corresponding pumping equipment and energy expenses, sluggish system dynamics, and, since the stream
level depth is limited to about 0.3 to 0.5 m for best evaporation rates, also requires large evaporator
vessels with their associated expense.

The generated water vapor rises through a screen (“demister”) placed to remove entrained saline water
droplets. Rising further, it then condenses on the condenser tube bank, and internal heat recovery is
achieved by transferring its heat of condensation to the seawater feed that is thus being preheated. This
internal heat recovery is another of the primary advantages of the MSF process. The energy performance
of distillation plants is often evaluated by the performance ratio, PR, typically defined as

(4.1.4)

where  is the mass flow rate of heating steam. Since the latent heat of evaporation is almost the same
for the distillate and the heating steam, PR is also the ratio of the heat energy needed for producing one
unit mass of product (distillate) to the external heat actually used for that purpose. Most of the heating
of the brine stream to the top temperature Tb,t is by internal heat recovery, and as seen in Figure 4.1.1,
the external heat input is only the amount of heat needed to elevate the temperature of the preheated
brine from its exit from the hottest stage at Tb,2 to Tb,t. Following the notation in Figure 4.1.1, and using
heat balances similar to that in Equation (4.1.3) for the brine heater and flash evaporator, the PR can
thus also be defined as

(4.1.5)

where and are the specific heats of brine, the first averaged over the temperature range
Tb,e → Tb,t and the second over Tb,2 → Tb,t. The rightmost expression in Equation (4.1.5) is nearly correct
because the specific heat of the brine does not change much with temperature, and the latent heat of
evaporation of the brine is nearly equal to the latent heat of condensation of the heating steam. It is
obvious from Equation (4.1.5) that PR increases as the top heat recovery temperature Tb,2 (at the exit
from the condenser/brine-preheater) increases. It is also obvious (even from just examining Figure 4.1.1)
that increasing the number of stages (matched with a commensurate increase in condenser heat transfer
area and assuming no significant change in the overall heat transfer coefficient) for a given Tb,t, will
raise the flash evaporator inlet temperature Tb,3, which will lead to a rise in Tb,2 and thus also in the PR.

Assuming that the temperature drop of the flashing brine, ∆Tb, is the same in each stage, the relationship
between the number of stages (n) and the performance ratio is

(4.1.6)

where LTD is the lowest temperature difference between the flashed vapor and the heated feedwater, in
each stage (Figure 4.1.1). Equation (4.1.6) shows that increasing the number of stages increases the PR.
This implies that more heat is then recovered internally, which would thus require a larger con-
denser/brine-preheater heat transfer area. The required heat transfer area, A, per unit mass of distillate
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produced for the entire heat recovery section (composed of nrec stages), and taking average values of the
overall vapor-to-feedwater heat transfer coefficient U and LMTD, is thus

(4.1.7)

LMTD, the log-mean temperature difference between the vapor condensing on the tubes and the heated
brine flowing inside the tubes, for an average stage is

(4.1.8)

where GTD is the greatest temperature difference between the flashing brine and the brine heated in the
condenser. The size of the heat transfer area per unit mass of distillate is

(4.1.9)

Examination of this equation will show that the required heat transfer area for the heat recovery section
per unit mass of distillate produced, A, increases significantly when PR is increased, and decreases
slightly as the number of heat recovery stages, nrec, is increased.

The MSF plant shown in Figure 4.1.1 is of the recirculation type, where not all of the brine stream
emerging from the last evaporation stage is discharged from the plant (as it would have been in a once-
through type of plant). A fraction of the emerging brine is mixed with pretreated seawater and recirculated
into the condenser of the heat recovery section of the plant. Since only a fraction of the entire stream
in this configuration is new seawater, which needs to be pretreated (removal of air and CO2, i.e., deaeration
and decarbonation, and the addition of chemicals that reduce scale deposition, corrosion, and foaming),
the overall process cost is reduced. The recirculation plant is also easier to control than the once-through
type.

While most of the energy exchange in the plant is internal, steady-state operation requires that energy
in an amount equal to all external energy input be also discharged from the plant. Consequently, the
heat supplied in the brine heater (plus any pumping energy) is discharged in the heat rejection stages
section of the plant (Figure 4.1.1). Assuming an equal temperature drop in each stage, and that the
pumping energy can be neglected relative to the heat input in the brine heater, indicates that the ratio
of the number of the heat-recovery to heat-rejection stages is approximately equal to the performance
ratio PR.

Further detail about MSF desalination can be found in Steinbruchel and Rhinesmith, (1980) and Khan
(1986). A detailed design of an MSF plant producing 2.5 million gals. of freshwater per day was published
by the U.S. government (Burns and Roe, 1969).

Multi-Effect Distillation (ME)

The principle of the ME distillation process is that the latent heat of condensation of the vapor generated
in one effect is used to generate vapor in the next effect, thus obtaining internal heat recovery and good
energy efficiency. Several ME plant configurations, most prominently the horizontal tube ME (HTME,
shown in Figure 4.1.3) and the vertical tube evaporator (VTE, shown schematically in Figure 4.1.4) are
in use. In the HTME, vapor is circulated through a horizontal tube bundle, which is subjected to an
external spray of somewhat colder saline water. The vapor flowing in these spray-cooled tubes condenses,
and the latent heat of condensation is transferred through the tube wall to the saline water spray striking
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the exterior of the tube, causing it to evaporate. The vapor generated thereby flows into the tubes in the
next effect, and the process is repeated from effect to effect.

In the VTE the saline water typically flows downward inside vertical tubes and evaporates as a result
of condensation of vapor coming from a higher temperature effect on the tube exterior. While internal
heat recovery is a feature common to both MSF and ME processes, there are at least three important
differences between them. One is that evaporation in the ME process occurs on the heat transfer surfaces
(tubes), while in the MSF process it takes place in the free stream. This makes the ME process much
more susceptible to scale formation. At the same time, the heat transfer coefficient between the vapor
and the preheated brine is lower in the MSF process because the heated brine does not boil. In the ME
process it does boil, and it is well known that boiling heat transfer coefficients are significantly higher
than those where the heating does not result in boiling. In using direct transfer of latent heat of
condensation to latent heat of evaporation, instead of sensible heat reduction to latent heat of evaporation
as in MSF, the ME process requires a much smaller brine flow than the MSF. Limiting brine concentration
in the last effect to about three times that of the entering seawater, for example, requires a brine flow
of only about 1.5 times that of the distillate produced. At the same time, a pump (although much smaller
than the two pumps needed in MSF) is needed for each effect.

The PR of ME plants is just sightly lower than the number of effects, which is determined as an
optimized compromise between energy efficiency and capital cost. Six effects are typical, although plants
with as many as 18 effects have been built.

Further detail about ME desalination can be found in Steinbruchel and Rhinesmith (1980) and
Standiford, (1986a).

Vapor Compression Distillation (VC)

As stated earlier, the vapor pressure of saline water is lower than that of pure water at the same
temperature, with the pressure difference proportional to the boiling point elevation of the saline water.
Desalination is attained here by evaporating the saline water and condensing the vapor on the pure water.
Therefore, the pressure of the saline water vapor must be raised by the magnitude of that pressure
difference, plus some additional amount to compensate for various losses. This is the principle of the
vapor compression desalination method. Furthermore, as shown in Figure 4.1.5, the heat of condensation

FIGURE 4.1.3 Two HTME desalination units, each producing 5000 m3/day, in St. Croix, U.S. Virgin Islands.
(Courtesy of I.D.E. Technologies Ltd.)
© 2000 by CRC Press LLC
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of the compressed vapor is recovered internally by using it to evaporate the saline water. Additional heat
recovery is obtained by transferring heat from the concentrated brine effluent and the produced freshwater
(which need to be cooled down to as close to ambient conditions as possible anyway) to the feed saline
water which is thus preheated. The schematic flow diagram in Figure 4.1.5 shows a design in which the
preheated seawater is sprayed onto a bank of horizontal tubes carrying condensing compressed vapor
at a temperature higher than that of the seawater. The spray thus evaporates on contact with the exterior
of the tube and provides the cooling needed for the internal condensation. Considering the fact that the
energy required for vapor compression over a typical overall temperature difference of 4°C and a vapor
compressor efficiency of 0.8 is 34 kJ/kg (easily calculated from an enthalpy balance), and that the latent
heat of condensation is about 2400 kJ/kg, one can see that a small amount of compression energy enables
a large amount of heat to be used internally for desalination. One can thus envisage the VC plant as a
large flywheel, wheeling a large amount of energy around at the expense of a small amount needed for
sustaining its motion.

The compressor can be driven by electric motors, gas or steam turbines, or internal combustion (usually
diesel) engines. The compressor can also be a steam-driven ejector (Figure 4.1.5b), which improves
plant reliability because of its simplicity and absence of moving parts, but also reduces its efficiency
because an ejector is less efficient than a mechanical compressor. In all of the mentioned thermally
driven devices, turbines, engines, and the ejector, the exhaust heat can be used for process efficiency
improvement, or for desalination by an additional distillation plant.

Figure 4.1.6 shows a multi-effect VC plant. Using more than a single effect reduces the vapor volume
that needs to be compressed. Furthermore, the overall required heat transfer area is also decreased
because much of the single-phase heat transfer process in the preheater of the single-effect plant is

FIGURE 4.1.5 Schematic flow diagram of a basic horizontal-tube VC desalination plant (a) with mechanical, motor-
driven compressor; (b) with a thermo-compressor, using an ejector.
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replaced by the high-heat-transfer condensation–evaporation processes in the effects. Although the ME
feature also increases the required compression ratio, the cost of produced water is reduced overall.

Further detail about VC desalination can be found in Steinbruchel and Rhinesmith (1980), Khan
(1986), and Standiford, (1986b).

Solar Distillation

The benefits of using the nonpolluting and practically inexhaustible energy of the sun for water desali-
nation are obvious. Furthermore, many water-poor regions also have a relatively high solar flux over a
large fraction of the time. The major impediment in the use of solar energy is economical: the diffuse
nature of solar energy dictates the need for constructing a large solar energy collection area. For example,
assuming a single-effect solar still efficiency of 50% (which is the upper practical limit for conventional
designs), the still would produce at most about 3.5 to 4.8 kg fresh water per m2 per day, or a 208 to 286
m2 solar still would be required to produce 1 m3 of fresh water per day. More realistic still efficiencies
increase the area requirement about twofold.

Shown in Figure 4.1.7, a typical solar still consists of a saline water container in which the water is
exposed to the sun and heated by it. The temperature rise to above ambient causes net evaporation of

FIGURE 4.1.6 Schematic flow diagram of a ME vapor compression submerged-tube desalinaton plant with three
effects.

FIGURE 4.1.7 A typical basin-type solar still.
© 2000 by CRC Press LLC
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the saline water, thus separating pure water vapor from the solution. The vapor condenses on the colder
cover, and this destilled water flows to collection troughs.

Solar stills of the type depicted in Figure 4.1.7, in many sizes and constructional variants, have been
built and used successfully in many countries in the world. They are simple, easy to construct, reliable,
and require very little maintenance although in some regions the covers must be cleaned frequently from
accumulated dust or sand.

Since the heat of condensation in single-effect stills of the type shown in Figure 4.1.7 is lost to the
ambient, more energy-efficient operation can obviously be achieved in a multi-effect design, where the
heat of condensation is used to evaporate additional saline water. A number of such stills were built and
tested successfully, but are not commercially competitive yet.

Solar stills integrate the desalination and solar energy collection processes. Another approach to solar
desalination is to use separately a conventional desalination process and a suitable solar energy supply
system for it. Any compatible desalination and solar energy collection processes could be used. Distil-
lation, such as MSF or ME, can be used with heat input from solar collectors, concentrators, or solar
ponds (Hoffman, 1992; Glueckstern, 1995). Net average solar energy conversion efficiencies of solar
collectors (Rabl, 1985; Lior, 1991) are about 25% and of solar ponds (Lior, 1993) about 18%, similar
to the efficiencies of solar stills, but the MSF or ME plants can operate at preformance ratios of 10 or
more, thus basically increasing the freshwater production rate by at least tenfold, or reducing the required
solar collection area by at least tenfold for the same production rate.

Solar or wind energy can also be used for desalination processes that are driven by mechanical or
electrical power, such as VC, RO, and ED. The solar energy can be used to generate the required power
by a variety of means, or photovoltaic cells can be used to convert solar energy to electricity directly.

Freeze Desalination

It is rather well known that freezing of saline water solutions is an effetive separation process in that it
generates ice crystals that are essentially salt-free water, surrounded by saline water of higher concen-
tration. This process requires much less energy than distillation, and the problems of corrosion and
scaling are markedly reduced due to the much lower operating temperatures. Several pilot plants were
constructed and have proven concept viability. Nevertheless, the process has not yet reached commercial
introduction for several reasons, such as the difficulty in developing efficient and economical compressors
for vapor with the extremely high specific volume at the low process pressure, and difficulties in
maintaining the vacuum system leak free and in effecting reliable washing of the ice crystals. A review
of freeze desalination processes is given by Tleimat (1980).

Membrane Separation Processes

Reverse Osmosis (RO)

Separation of particulate matter from a liquid by applying pressure to the liquid and passing it through
a porous membrane, whereby particles larger than the pore size remain on the upstream side of the
membrane and the liquid flows to its downstream side, is well known as filtration. Semipermeable very
dense membranes that actually separate salt molecules (ions) from the water, by similarly keeping the
salt on the upstream side and allowing the pressurized pure water to flow through the membrane, were
developed in the 1950s. The reverse of this process, osmosis, is well known: for example, if a membrane
is placed to separate water from an aqueous salt solution, and the membrane is semipermeable (here
meaning that it permits transfer of water only, not the salt components in the aqueous solution), the
water will tend naturally to migrate through this membrane into the salt solution. Osmosis is, for example,
the major mass transport phenomenon across living cells. The driving force for this water flux is
proportional to the concentration difference between the two sides of the membrane, and is exhibited
as the so-called osmotic pressure, which is higher by 2.51 MPa on the water side of the membrane for
typical seawater at 25°C. If a pressure higher than the osmotic pressure is applied on the saline solution
© 2000 by CRC Press LLC



4-14
side of the membrane, the water flux can be reversed to move pure water across the membrane from
the saline solution side to the pure water one. This process is called reverse osmosis (and sometimes
hyperfiltration), and is the basic principle of RO desalination

Unlike filtration of particulates, the selective “filtration” of the water in RO is not due to the relationship
of the membrane pore size to the relative sizes of the salt and water molecules. Rather, one way to
explain the process is that the very thin active surface layer of the membrane forms hydrogen bonds
with water molecules and thus makes them unavailable for dissolving salt. Salt thus cannnot penetrate
through that layer. Water molecules approaching that layer are, however, transported through it by forming
such hydrogen bonds with it and in that process displacing water molecules that were previously hydrogen
bonded at these sites. The displaced water molecules then move by capillary action through the pores
of the remainder of the membrane, emerging at its other side.

The most prevalent membrane configurations used in RO plants are of the spiral-wound or hollow-
fiber types. The basic spiral-wound-type module (Figure 4.1.8) is made of two sheets placed upon each
other and rolled together in an increasing diameter spiral around a cylindrical perforated tube. One of
the sheets is in the form of a sandwich typically composed of five layers bonded together along three
edges. The two outer layers are the semipermeable membranes. Each of them is backed by a porous
material layer for mechanical strength, and the very central layer is a thicker porous material layer that
takes up the produced fresh water. The second sheet is a porous mesh through which the high-pressure
saline water feed is passed in an axial direction. Product water separates from the saline solution and
permeates through the two adjacent semipermeable membranes into the central product water–carrying
layer, which conducts it spirally to the unbonded edge of the “sandwich” and to the inner perforated
tube. The semipermeable membranes are typically made from cellulose acetate, and more recently from
composites of several polymers.

Hollow fiber modules have a configuration similar to a shell-and-tube heat exchanger, with the fibers
taking the place of the tubes. A very large number of typicallly 25 to 250 µm outside-diameter semi-
permeable hollow fibers (wall thickness typically 5 to 50 µm) are bundled together and placed in a saline
water pressure vessel. The hollow core of each fiber is sealed on one end. The pressurized saline water
is brought into the module (through a central porous feed tube, Figure 4.1.9) to circulate on the exterior
surface of the fibers, and water permeates through the fiber wall into its hollow core, through which it
flows to a permeate collection manifold at the open end of the fiber bundle. The increasingly concentrated

FIGURE 4.1.8 A spiral-wound RO membrane element.
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saline water flows radially and is discharged at the exterior shell of the bundle. The hollow fibers are
typically made of polyamide or cellulose triacetate, and offer about 20 fold more surface (separation)
area per unit volume than the spiral-wound configuration.

The basic approximate equation for the separation process gives the water flux  (kg/m2sec) across
an RO membrane, in the absence of fouling, as

(4.1.10)

where 

Kpe water permeability constant of the membrane (in kg/m2sec Pa), typically increasing strongly as
the temperature rises: a plant designed to operate at 20°C may produce up to 24% more water if
the water temperature is 28°C,

Kcf compaction correction factor (dimensionless) which corrects for the fact that the flux is reduced
due to densification of the barrier layer (a phenomenon similar to creep) of the membrane, and
which increases with the operating pressure and temperature. It is often calculated by the relation-
ship

(4.1.11)

where B is a constant,
C(T) represents the temperature dependence of the Compaction Correction Factor for the particular
membrane of interest,
C(P) represents its pressure dependence: while a higher pressure difference across the membrane
is shown in Equation (4.1.10) to increase the water flux, higher feed pressure (Pf) also tends to
compact the membrane and thus reduce its water flux, typically according to

(4.1.12)

where n is a negative number,
and where the time dependence C(t) is represented by

(4.1.13)

where t is the operating time (say, in days) and m is a negative number depending on the membrane. 
P water or saline solution pressure (Pa),
π osmotic pressure (Pa),

FIGURE 4.1.9 A hollow-fiber RO membrane module. (Du Pont Permasep™.)
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and the subscripts f and p pertain to the saline feed water and to the desalted product water, respectively.
The required membrane area A can be estimated by

(4.1.14)

where  is the freshwater mass production rate of the plant (kg/sec), and f (0 < f ≤ 1.0) is the area
utilization factor that corrects for the fact that the membrane surface is incompletely in contact with the
saline water feed stream due to the porous mesh and other devices, such as turbulence promoters, placed
in the feed stream path; in a good design f > 0.9.

Examination of Equation (4.1.10) shows that water separation rate increases with the water perme-
ability constant Kpe. Unfortunately, so does the salt flux across the membrane, resulting in a saltier
product. An approximation for this salt flow is

(4.1.15)

where

salt mass transfer rate across the membrane, kg/sec,
K a proportionality constant, dimensionless,
Ks salt permeation constant, kg/sec, which increases with pressure and temperature.

The salinity of the product water (Cp) can be estimated by the formula

(4.1.16)

where

Kcp concentration polarization coefficient, ≡  is a measure of the increase of the feedwater
salinity at the membrane wall beyond that of the bulk solution,

Cfm salt concentration at the membrane wall,

bulk salinity of the saline water feed, ≈ (Cf + Cr)/2,
Cr salt concentration of the reject brine,
η salt rejection factor, ≡ (amount of salts rejected by the membrane)/(amount of salts in the brine

feed).

The pressure to be used for RO depends on the salinity of the feed water, the type of membrane, and
the desired product purity. It ranges form about 1.5 MPa for low feed concentrations or high-flux
membranes, through 2.5 to 4 MPa for brackish waters, and to 6 to 8.4 MPa for seawater desalination.
In desalination of brackish water, typical product water fluxes through spiral-wound membranes are
about 600 to 800 kg/(m2day) at a recovery ratio (RR) of 15% and an average salt rejection of 99.5%, where

(4.1.17)

The fluxes in hollow-fiber membranes used in seawater desalination are 20- to 30-fold smaller, but
the overall RO system size does not increase, because the hollow-fiber membranes have a much larger
surface area per unit volume. The RR and salt rejection ratio are similar to those of spiral-wound
membranes.
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Since the concentrated reject brine is still at high pressure, it is possible to recover energy by passing
this brine through hydraulic turbines, and thus reduce the overall energy consumption by up to 20%.
The energy requirements of seawater RO desalination plants with energy recovery are about 5 to 9 kWh,
or 18 to 33 MJ, of mechanical or electric power per m3 fresh water produced. In comparison, the MSF
desalination process requires about 120 to 280 MJ of heat and about 15 MJ of mechanical/electric power
(for pumping and auxiliaries) per m3. The energy requirement of the RO process is thus smaller than
that of the MSF process even if the RO energy requirement is multiplied by the thermal-to-mechanical
(or electrical) power conversion factor of 3 to 4. The specific exergy consumption of the MSF process
using 120°C steam is about 2- to 3-fold higher than that of the RO process, but becomes comparable in
magnitude if the steam temperature is lowered to 80°C.

The life of membranes is affected by gradual chemical decomposition or change. For example,
cellulose acetate membranes hydrolyze with time. The rate of hydrolysis has a steep minimum at a
solution pH of 4.5 to 5.0, and increases drastically with temperature.

Membranes are susceptible to plugging by dirt and to deterioration in their selectivity caused by various
species present in the saline water. Careful pretreatment of the feed water is therefore necessary. It typically
consists of clarification, filtration, chlorination for destroying organic matter and microorganisms, removal
of excess chlorine to prevent membrane oxidation, and dosing with additives to prevent calcium sulfate
scaling and foam formation. Periodical chemical or mechanical cleaning is also necessary. Pretreatment
and cleaning are significant and increasing fractions of the RO plant capital and operating costs.

Further detail about RO desalination can be found in Sourirajan and Matsuura (1985) and Amjad
(1993).

Electrodialysis (ED)

In ED, the saline solution is placed between two membranes, one permeable to cations only and the
other to anions only. A direct electrical current is passed across this system by means of two electrodes,
cathode and anode, exposed to the solution (Figure 4.1.10). It causes the cations in the saline solution
to move toward the cathode, and the anions to the anode. As shown in Figure 4.1.10, the anions can
leave the compartment in their travel to the anode because the membrane separating them from the
anode is permeable to them. Cations would similarly leave the compartment toward the cathode. The
exit of these ions from the compartment reduces the salt concentration in it, and increases the salt
concentration in the adjacent compartments. Tens to hundreds of such compartments are stacked together
in practical ED plants, leading to the creation of alternating compartments of fresh and salt-concentrated
water. ED is a continuous-flow process, where saline feed is continuously fed into all compartments and
the product water and concentrated brine flow out of alternate compartments. The flow along the
membranes also improves the mass transport there, and the separators between the membranes are
constructed to provide good flow distribution and mixing on the membrane surfaces. Membrane sizes
are roughly 0.5 × 1 m, spaced about 1 mm apart. Many typed of polymers are used to manufacture these
ion-exchange selective membranes, which are often reinforced by strong fabrics made from other
polymers or glass fibers.

Careful and thorough feed water pretreatment similar to that described in the section on RO is required.
Pretreatment needs and operational problems of scaling are diminished in the electrodialysis reversal
(EDR) process, in which the electric current flow direction is periodically reversed (say, three to four
times per hour), with simultaneous switching of the water flow connections. This also reverses the salt
concentration buildup at the membrane and electrode surfaces, and prevents concentrations that cause
the precipitation of salts and scale deposition. 

The voltage used for ED is about 1 V per membrane pair, and the current flux is of the order of 100
A/m2 of membrane surface. The total power requirement increases with the feed water salt concentration,
amounting to about 10 MW/m3 product water per 1000 ppm reduction in salinity. About half this power
is required for separation and half for pumping. Many plant flow arrangements exist, and their description
can be found, along with other details about the process, in Shaffer and Mintz (1980) and Heitman (1991).
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Defining Terms

Boiling point elevation: The number of degrees by which the boiling point temperature of a solution
is higher than that of the pure solute at the same pressure.
Flash evaporation: An evaporation process that occurs when a liquid with a free surface is exposed to
its vapor, where the vapor is below the saturation pressure corresponding to the temperature of the liquid.
The process is typically vigorous, accompanied by rapid growth of bubbles and associated turbulence
in the liquid.
Hydrolysis: Decompostion in which a compound is split into other compounds by taking up the elements
of water.
Osmosis: The diffusion process of a component of a solution (or mixture) across a semipermeable
membrane, driven by the concentration difference (or gradient) of that component across the membrane.
Osmotic pressure: The minimal pressure that has to be applied to the solution (mixture) on the lower
concentration side of a membrane permeable to one solution component, for stopping the osmosis of
that component through the membrane.

FIGURE 4.1.10 The ED process. C and A are cation- and anion-permeable membranes, respectively. Application
of electric current causes ion transport in a way that salt is depleted in alternate compartments, and enriched in the
remaining ones.
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Further Information

The major texts on water desalination written since the 1980s are Spiegler and Laird (1980), Khan,
(1986) (contains many practical design aspects), Lior (1986) (on the measurements and control aspects),
Heitman (1990) (on pretreatment and chemistry aspects), and Spiegler and El-Sayed (1994) (an overiew
primer). Extensive data sources are provided in George et al. (1975) and M. W. Kellog (1975).

The two major professional journals in this field are Desalination, The International Journal on the
Science and Technology of Desalting and Water Purification and Membrane Science, which often
addresses membrane-based desalination processes, both published by Elsevier, Amsterdam.

The major professional society in the field is the International Desalination Association (IDA) head-
quartered at P.O. Box 387, Topsfield, MA 01983. IDA regularly organizes international conferences,
promotes water desalinaton and reuse technology, and is now publishing a trade magazine The Interna-
tional Desalination & Water Reuse Quarterly.

The Desalination Directory by M. Balaban Desalination Publications, Mario Negri Sud Research
Institute, 66030 Santa Maria Imbaro (Ch), Italy, lists more than 5000 individuals and 2000 companies
and institutions in the world of desalinaiton and water reuse.

Two useful (though by now somewhat dated) books on desalination are by Howe, E. D. 1974.
Fundamentals of Water Desalination, Marcel Dekker, New York, and by Porteous, A. 1975. Saline Water
Distillation Processes, Longman, London.

Much information on oceans and seawater properties is avaiable in the book by Riley, J. P. and Skinner,
Eds. 1975. Chemical Oceanography, Academic Press, New York.

4.2 Environmental Heat Transfer

Henry Shaw

Introduction

Environmental heat transfer studies the impact of human activity on the delicate balance between the
quantity of solar energy affecting our planet Earth and the heat radiating back into space. To understand
the implications of global heat transfer, we must investigate the inner workings of Earth’s climate. Earth
supports life because of its distance from the sun and the composition of the atmosphere. However, our
climate may be changing, threatening to send this delicate balance out of control. To understand how
climate can change, we must learn how it depends on factors that are under our influence. This chapter
will address the principal factors that control Earth’s climate and view the implications of human activity
in modifying climate. The development of planetary heat exchange follows the excellent description
provided by R.P. Turco (1997). A simple model is presented that can be used to estimate equilibrium
climate change as a function of the buildup of infrared-absorbing gases in the atmosphere. This model
uses as input the atmospheric buildup of carbon dioxide (CO2) due to fossil fuel use and population
growth to estimate the magnitude of the “greenhouse effect.”

Global Climate

Global climate is the weather as reported by meteorologists averaged over extended periods of time and
over the surface of Earth. The global average temperature is used as the figure of merit in projecting
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future climate because it is the most stable climate parameter. The period for averaging generally involves
decades or longer. Consequently, the average global temperature does not vary significantly on a year-
to-year basis. Typically, the surface air temperature can change by as much as 20°C from day to night.
Averaging over the entire globe eliminates the effect of the day-night cycle, since the same total area
of the globe is always under illumination. The global average temperature is a good indicator of the
total energy that Earth has absorbed from the sun. The atmosphere, land, and oceans have enormous
capacities to store heat. Accordingly, these reservoirs of heat maintain the average temperature over long
time intervals despite fluctuations in the global heat input or loss. The temperature changes are caused
by variations in the sun’s energy reaching Earth and movements of air masses with different meteoro-
logical characteristics that include temperature, moisture, clouds, and precipitation. If the temperature
over a much larger region were averaged, then much less variability would be observed. In a similar
vein, periodic disruptions of oceanic flow and temperature in the southern Pacific, known as
El Nino/Southern Oscillation (ENSO) or La Nina, cause major weather disruptions due to buildup of
hot or cold water masses, respectively, during these relatively local occurrences. The atmosphere and
tropical Pacific Ocean interact in such a way that wind and water currents periodically create large pools
of warm surface water over the eastern Pacific Ocean. This is a major factor contributing to the important
El Nino Southern Oscillation (ENSO) phenomenon, which periodically triggers anomalous and destruc-
tive weather around the Pacific Ocean basin.

Climate studies focus on the global balance of energy. The source of energy is the sun. The absorption
of solar energy by Earth, flow of energy through Earth reservoirs, and eventual loss of energy back to space
are the processes that are of concern in environmental heat transfer. There are a number of other concerns
that can be attributed to environmental heat transfer on a more localized level, such as the effect of:

• Fluorochlorocarbons (CFCs), ideal heat transfer fluids used in refrigeration and air conditioning,
on the stratospheric ozone layer.

• Deposition of ammonium nitrate and ammonium sulfate on boiler heat transfer surfaces due to
the reaction of ammonia (added for NOx control) with SO2 and NO2.

• SO2 control in reducing atmospheric sulfur concentration needed for cloud seeding, etc.

These potential areas of environmental heat transfer will not be discussed at this time.
The sun generates energy by the process of nuclear fusion. The atoms are fused together to form

heavier nuclei. When nuclei fuse, huge amounts of energy are released. The nuclear fusion of hydrogen
atoms (H) to form helium atoms (He), for example, is the basic process that powers the sun. An empirical
way of explaining this process is through the concept of binding energy or mass defect per nuclear
particle. Figure 4.2.1 relates the binding energies of all nuclear particles to their atomic mass. Iron
(26Fe56) is considered the most stable element and the fusion of two atoms lighter than iron, e.g., 1H2 +

1H3 (the two heavy isotopes of hydrogen, deuterium, and tritium) give up energies on the order of 17 MeV.
Nuclear fission, which is the process operating in all nuclear reactors, is similarly explained as uranium
(92U235 ) splitting due to the capture of a thermal neutron. The uranium fragments or fission products
have higher binding energies because they have lower mass, producing 200 MeV per fission. Nuclear
processes will be discussed later as alternatives to fossil fuel combustion for producing power without
emitting infrared absorbing gases.

Average Temperature of Earth

The balance of energy held in various heat reservoirs determines the average temperature of Earth at
any moment. Two overall processes control the total heat content of these reservoirs, viz., the absorption
of energy from incoming sunlight and the emission of thermal radiation back into space.

Figure 4.2.2a compares the spectra of sunlight and terrestrial heat radiation. The sun is a blackbody
with an emission temperature of about 6000 K. The emission peaks at a wavelength of about 0.55 µm
(as predicted by Wien’s law, λmax = 2987/T in µm ·K). The absolute intensity of the radiation reaching
Earth is controlled by the distance from the sun and the size of the sun itself. The size of the sun is
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constant and need not be considered a factor in contemporary climate change. However, the distance of
Earth from the sun does vary. Earth’s orbit around the sun is not circular, but elliptical. Although the
eccentricity of the orbit is very small, amounting to variations in the mean distance from the sun of less
than 2%, the variation in distance can be important over a seasonal cycle.

In considering the overall energy balance of Earth, it is helpful to consider the total radiative energy
contained in the absorption or emission spectrum. The total energy emitted by the sun is equivalent to
the integral of the solar spectrum in Figure 4.2.3, i.e., the total emission is proportional to the area under
the radiation emissive curve for sunlight. Similarly, the total energy emitted by Earth as thermal radiation
is given by the corresponding area in Figure 4.2.2. These spectrally integrated total emissions are usually
expressed as a radiant energy flux in units of energy per unit time per unit area perpendicular to the
direction of the source of the radiation. The total energy flux reaching Earth from the sun, denoted f,
depends on the distance from Earth to the sun, xes, on the order of 1.5 × 108 km, in the following way:

(4.2.1)

where: f = the solar constant, or the total energy flux reaching Earth, W/m2

xes = distance between Earth and the sun, m
–
f, –x es are the average values for the solar constant and the distance from the sun

In order to solve the climate-related heat balance equations, a set of consistent physical characteristic
values for Earth is needed. Such a table, assembled by Clark (1982), is included as Table 4.2.1 with data
sources.

The solar constant has a value of about 1375 W/m2. The energy flux falls off in proportion to x–2 as
the distance from the sun increases. This is the general law of the way intensity varies with distance for
spherical radiators. The relative distance of Earth from the sun varies by about 3.4% during the course
of a year. This is a consequence of the eccentricity of Earth’s orbit around the sun.

FIGURE 4.2.1 Binding energy per stable isotope (Adapted from Stephenson, 1954).

f f x xes es= ( )2
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FIGURE 4.2.2 Absorption and emission spectra important in the study of climate (Peixoto and Oort, 1992). (a) Black
body curves for the solar radiation (assumed to have a temperature of 255 K): (b) absorption spectra for the entire vertical
extent of the atmosphere and (c) for the portion of the atmosphere above 11 km; and (d) absorption spectra for the various
atmospheric gases between the top of the atmosphere and the Earth’s surface. Updated with data from Fels and Schwarzkopf
(1988, personal communication) between 10 and 100 µm.
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Albedo and Insolation

The fraction of total incident solar energy that is reflected is the albedo of the planet (Budyko, 1974).
The albedo represents the reflectance averaged over wavelength as well as over the different angles of
incidence from the sun. Earth’s planetary albedo is calculated to be about 0.33. The albedo depends on
a large number of factors such as the distribution of clouds, quantity of pollution and dust particles in
the atmosphere, amount of snow and ice on the surface, wetness of the ground, growth of crops, ocean
foam, etc. Due to the complexity of calculating the albedo, satellites are used to measure the planetary
averaged albedo directly and have confirmed the value of 0.33. The variation of albedo for various
surfaces is given in Table 4.2.2.

Solar insolation is the quantity of solar energy that reaches Earth. This calculation is slightly more
complex than taking the difference between the solar constant and the albedo flux. This is a consequence
of multiple scattering of incident radiation by the atmosphere, clouds, aerosols, and the surface. The
radiation is also absorbed in the atmosphere and never reaches the surface. The fraction of solar energy
absorbed by Earth’s surface is less than half of insolation. The atmosphere absorbs one quarter and the
rest is scattered into space.

For the simple climate analysis presented here, we follow the derivation of Chamberlain (1978). The
solar constant is first reduced by the fraction of the incident radiation that is reflected as albedo and then
is reduced by a factor of four, corresponding to the ratio of the surface area to the maximum cross-
sectional area of Earth.

FIGURE 4.2.3 Spectral distribution of solar irradiation at the top of the atmosphere (upper curve) and at sea level
(lower curve) for average atmospheric conditions of the sun at its zenith. The shaded areas represent absorption by
various atmospheric gases. The unshaded area between the two curves represents the portion of the solar energy
backscattered by the air, water vapor, dust, and aerosols and reflected by clouds. 1360 W m-2 represents the solar
constant. (Adapted from Gast, Handbook of Geophyscis and Space Environments, Air Force Cambridge Research
Laboratory, 1965.)
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As can be seen in Figure 4.2.2, the terrestrial emission spectrum is well separated in wavelength from
the solar spectrum and lies at much longer wavelengths. This difference is essential in supporting Earth’s
climate system.

TABLE 4.2.1 Some Useful Quantities in CO2 Research

Quantity Symbola Value Source

Solar constant f 1.375 kW/m2 1
Earth mass M 5.976 × 1024 kg 2
Equatorial radius a 6.378 × 106 m 2
Polar radius c 6.357 × 106 m 2
Mean radius R 6.371 × 106 m 3
Surface area Ae 5.101 × 1014 m2 4
Land area Al 1.481 × 1014 m2 5
Ocean area As 3.620 × 1014 m2 6
Mean land elevation hl 840 m 5
Mean ocean depth hs 3730 m 7
Mean ocean volume Vs 1.350 × 1018 m3 6
Ocean mass Ms 1.384 × 1021 kg 8
Mass of atmosphere Ma 5.137 × 1018 kg 9
Equatorial surface gravity g 9.780 m/s2 2

a Symbols generally following reference standards used in Source 10 below.
Sources and Notes:

1. D. V. Hoyt, 1979, The Smithsonian Astrophysical Observatory Solar Constant Program,
Rev. Geophys. Space Physics, 17:427-458.

2. F. Press and R. Siever, 1974, Earth, W. H. Freeman, San Francisco.
3. For sphere of Earth’s volume.
4. Calculated form land and ocean data cited here.
5. B. K. Ridley, 1979, The Physical Environment, Ellis Horwood, West Sussex, U.K.
6. H. W. Menard and S. M. Smith, 1966, Hypsometry of Ocean Basin Provinces, J. Geophys.

Res., 71:4305-4325, adopted as reference standard by Bolin (10).
7. Calculated from volume and area data cited here.
8. Calculated from volume data cited here plus density of 1025 kg/m3, adopted as reference

standard in Bolin (10).
9. K. E. Trenberth, 1981, Seasonal Variations in Global Sea-Level Pressure and the Total

Mass of the Atmosphere, J. Geophys. Res., 86:5238-5246; this supersedes value adopted
as reference standard by Bolin (10).

10. B. Bolin, Ed., 1981, Carbon Cycle Modelling, SCOPE 16, John Wiley & Sons, New York.
Table source: Adapted from Clark, W.C., Carbon Dioxide Review 1982, Oxford University

Press, New York, 1982.

TABLE 4.2.2 Albedo for Various Surfaces 
in the Visible Parts of the Spectrum

Surface Albedo

Sand 0.18–0.28
Grassland 0.16–0.20
Green crops 0.15–0.25
Forests 0.14–0.20
Dense forests 0.50–0.10
Fresh snow 0.75–0.95
Old snow 0.40–0.60
Cities 0.14–0.18

Source: Houghton, H.G., Physical Meteorology,
MIT Press, Cambridge, MA, 1985.
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Terrestrial Radiation

Earth emits radiation that can be approximated as blackbody radiation. If we consider the Earth-atmosphere
system to be an ideal blackbody, it would exhibit a mean emission temperature of about 255 K. Using
Wien’s law, the peak emission intensity at this temperature corresponds to a wavelength of roughly 10 µm.
Figure 4.2.2a illustrates the ideal spectrum of Earth emissions. The area under this spectrum represents
the total energy flux emitted by Earth per unit area of surface, averaged over the entire planet.

The two principal components of Earth’s climate system must be balanced. Considering the planet
as a whole, the solar energy absorbed must equal the terrestrial energy emitted. Otherwise, there would
be a net gain or loss of energy over time, and the temperature of Earth would change accordingly.
Because the average planetary temperature is known to be very stable over long periods of time, the
heat source and sink must be in a steady state.

The total solar energy absorbed by the planet is determined by a number of factors, including the
incident solar energy (solar constant), f, the size of the planet, and the amount of energy reflected
(albedo). In terms of these parameters, summarized in Table 4.2.1, the energy source for the climate
system is given in Equation (4.2.2).

qin = fAc(1 –αe) (4.2.2)

where: qin = incoming solar energy, W
f = the solar constant, 1375 W/m2

Ac = cross-sectional area of Earth = πR2, m2

R = average diameter of Earth, m
α e = average albedo of Earth

The albedo of Earth is the fraction of impinging solar energy reflected to space. Thus, the fraction
absorbed that contributes to the climate system is 1 –αe. The cross-sectional area of Earth is used in
Equation (4.2.2) because this is the area that intercepts the solar energy. The energy absorbed from sunlight
must be balanced by the emission of heat into space. The total radiative energy flux (at all wavelengths)
emitted by a perfect blackbody radiator, per unit surface area of the emitter, is given by the Stefan-Boltzmann
law. In this case, the emission of thermal radiation occurs from the entire surface of the planet, i.e., 4πR2.

Fb = AsσT4
—

(4.2.3)

where: Fb = heat radiation, kW
As = surface area of Earth = 4πR2, m2

σ = Stefan-Boltzmann constant, 5.672 × 10–11 kW/m2 · K4

T = average temperature, K

To estimate the average temperature of Earth at the top of the atmosphere, we equate
Equations (4.2.2) and (4.2.3).

(4.2.4)

Solving for the temperature, we get Equation (4.2.5):

(4.2.5)

Inherent in Equation (4.2.5) is the requirement that the energy reservoirs of Earth, i.e., atmosphere,
oceans, and land, be in equilibrium. The reservoirs respond rapidly to imbalances in energy sources and
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sinks. The atmosphere can adjust its temperature by several degrees in a matter of days; the oceans, in
months. These time scales are short compared with the variations in the climate system of interest, which
span decades to centuries. Consequently, we are assured that the climate system is in equilibrium for
the conditions assumed in the primitive climate model.

The heat balance represented by Equation (4.2.5) is not arbitrary. If insolation increases, then the heat
content of the reservoirs will increase. According to Equation (4.2.6), the temperature of the reservoirs
must rise in proportion to the added energy:

∆Q = cpM∆T (4.2.6)

where: ∆Q = added energy, J
c p = average heat capacity, J/kg · K

M = mass of reservoir, kg
∆T = change in temperature, K

As the temperature of Earth increases, its thermal radiation also increases in proportion to the fourth
power of the temperature, according to Equation (4.2.5). This nonlinear response is important because
it allows small variations in climate, forcing (solar constant or albedo) to be compensated by much
smaller variations in the effective radiation temperature. The difference between the effective temperature
of Earth on top of the atmosphere of 255 K, and the average temperature of land and ocean surfaces of
290 K is remarkable because of the implications for supporting life. The difference in temperature is
attributed to the presence of an atmosphere that causes two critical alterations of the simple energy
balance model. First, the gas molecules absorb and scatter radiation, and second, clouds and small
particles scatter, absorb, and emit radiation.

Heat Reservoirs

The overall heat balance that equates the energy input from the sun to the heat emitted by Earth provides
the average global temperature on top of the atmosphere. However, the behavior of Earth’s climate
system is determined by the heat transfer between all the reservoirs on Earth. The thermal properties of
major reservoirs are provided in Table 4.2.3. Since we cannot account for every reservoir, we infer
climatic behavior in Table 4.2.4 by estimating the average thermal behavior of the principal reservoirs.
The information required for Table 4.2.4 is obtained from Tables 4.2.1 and 4.2.3.

The surface reservoirs of Earth are land area = 1.48 × 108 km2, ocean area = 3.36 × 108 km2, and
cryosphere = 0.26 × 108 km2, for a total area of 5.101 × 108 km2. Table 4.2.1 gives the area of the oceans
as 3.62 × 108 km2, which corresponds to the sum of the hydrosphere and cryosphere as used in Table 4.2.4.

Energy storage and flow within the climate system are depicted in Figure 4.2.4. The sizes, masses, and
other characteristics of these reservoirs are summarized in Table 4.2.4. Equation (4.2.6) is used to obtain
the heat content of each reservoir. The principal reservoirs of heat that affect climate are the atmosphere,
surface oceans, and land surfaces. These reservoirs interact on relatively short time scales. The processes
that transfer energy between the reservoirs, and the rates of energy exchange, are indicated in Table 4.2.5.
The most massive heat reservoir is that of the deep oceans. The deep ocean waters are cold and not readily
accessible. A significant change in the temperature of a reservoir is only a small percentage of its absolute
temperature. For a reservoir at 300 K, a temperature change on the order of 10 K is very important. One
can estimate the time required for such a change by assuming that all factors, other than total energy loss
or gain, can be ignored. Equation (4.2.7) provides this simple relationship:

∆t = cpM∆T/qL (4.2.7)

where: ∆t = total time for a change, s
cp = heat capacity, J/kg · K
M = mass of reservoir, kg
∆T = change in temperature, K
qL = total energy loss rate from the reservoir, W
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TABLE 4.2.3 Therm

mal Thermal Conductive Penetration Depth
3d (m)tivity k Diffusivity k* Capacity ca

Substance C 1 K–1) (10–6 m2 s–1) (103 J m–2 K–1 s–1/2) Diurnal Annual

Air 2 6 21.5 0.006 2.3 44
4 × 106 b 2.4 1 × 103 19 × 103

Water 2 0.14 1.57 0.2 3.6
130b,c 48 5.7 108

Ice 1.16 2.08 0.5 10.2
Snow 0.38 0.13 0.3 6.0
Sandy soil 0.24 0.63 0.2 4.8
(40% pore space) 0.74 2.56 0.4 8.1

Clay soil 0.18 0.60 0.2 3.9
(40% pore space) 0.51 2.21 0.4 6.9

Peat soil 0.10 0.18 0.2 3.0
(80% pore space) 0.12 1.39 0.2 3.3

a k* = k/ρc, c* = ρc tes, Halstead, New York (1987)].
b The values of k* fo ns because turbulent eddy mixing is a more efficient process to transport heat

vertically than molecula itions, the implied annual penetration depths of about 100 m for the oceans and
19 km for the atmosph bserved profiles in Figure 4.2.20.

c From Munk (1966)
al Properties of Major Reservoirs

Ther

Density ρ Specific Heat c Heat Capacity ρc Conduc
ondition (103 kg m–3) (103 J kg–1 K–1) (106 J m–3 K–1) (W m–

0°C, still 0.0012 1.00 0.0012 0.02
stirred

0°C, still 1.00 4.19 4.19 0.58
stirred

0°C, pure 0.92 2.10 1.93 2.24
Fresh 0.10 2.09 0.21 0.08
Dry 1.60 0.80 1.28 0.30

Saturated 2.00 1.48 2.98 2.20
Dry 1.60 0.89 1.42 0.25

Saturated 2.00 1.55 3.10 1.58
Dry 0.30 1.92 0.58 0.06

Saturated 1.10 3.65 4.02 0.50

, d = (Pk*/π)1/2. [These values are from Oke, T.R., Boundary Layer Clima

r stirred wate and air are, of course, much greater than those for still conditio
r conduction. In spite of the large uncertainties in specifying k* for stirred cond

ere give reasonable order of magnitude estimates if we compare them with the o
 based on geochemical data for lower thermocline (k* = 1.3 cm2 s–1).

k *



ing solar radiation. (Adapted from Rotty, 1975 and
FIGURE 4.2.4 The average radiation and heat balance of the Earth – atmospheric system, relative to 100 units of incom
Gates, 1979.)
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Data taken from Table 4.2.4 and Platt (1976) can be used with Equation (4.2.7) to estimate the time
required to heat or cool the surface of the ocean, land, and atmosphere by 10 K.

The estimated time of cooling the ocean surface reservoir is about 1 year. With a small percentage
reduction in insolation, the ocean surface is therefore likely to cool several degrees per decade. Land
surface is much more susceptible to rapid temperature change. In the absence of sunlight, the time for
land to cool by 10 K is on the order of a day. The atmosphere can cool even faster, i.e., on the order of
hours. We know empirically that the ground and surface air can indeed cool overnight.

The Greenhouse Effect

As indicated above, molecules in the atmosphere can absorb radiation at some wavelengths and scatter
radiation at all wavelengths by means of Rayleigh scattering (intensity of scattered light is proportional
to the inverse of wavelength to the fourth power). Also, molecules experience vibrational and rotational
motions that lead to absorption and emission of radiation in the infrared portion of the electromagnetic
spectrum. Absorption spectroscopy resolves their spectra into a series of sharp lines, concentrated in

TABLE 4.2.4 Earth’s Energy Reservoirs

Heat Energy
Volume Mass Temp. Capacity Content

Reservoir (km3)a (Gt) (K) (J/g · K) (EJ)

Atmosphereb 5.0 × 109 5.2 × 106 250 1.0 1.3 × 106

Land
Surfacec 3.0 × 104 3.3 × 104 290 3.7 3.5 × 104

Subsurfacec 1.5 × 105 1.6 × 105 280 3.7 1.7 × 105

Oceans
Surfaced 3.3 × 107 3.3 × 107 280 4.2 4.0 × 107

Thermoclined 1.7 × 108 1.7 × 108 275 4.2 1.9 × 108

Deepd l.2 × 109 1.2 × 109 270 4.2 l.4 × 109

Cryospheree 5.1 × 107 4.7 × 107 265 2.1 2.6 × 107

a Volume is specified in order to estimate the reservoir’s heat contents.
b The atmosphere is assumed to be 10 km thick (approximately the Tropo-

sphere) at density of 1.05 kg/m3.
c The land surface depth is taken to be 0.2 m thick for diurnal response, with

a density of 1100 kg/m3, based on saturated sandy and clay soil with 80%
saturated pore space. The deep soil layer is taken as 1.0 m thick, for seasonal
variations.

d The oceans have a density of 1025 kg/m3 and average depths of about 100 m
for the surface, 0.5 km for the thermocline, and 3.7 km for the deep oceans.

e The ice and snow reservoir has a density of 920 kg/m3 and an average depth
of 2 km.

Source: Modified from Turco, R.P., Earth Under Siege, Oxford University
Press, New York, 1987. 

TABLE 4.2.5 Time Required for Reservoirs to Cool by 10 K

Net Heat Change, EW Surface Ocean Surface Land Atmosphere

IR emissions to space 50 20 860
Net IR transfer to atmosphere 160 60
Sensible heat transfer to atmosphere 50 50
Latent heat transfer to atmosphere 200 50
Total 460 180 860

Time, seconds 3 × 107 70000 6000
1 year 1 day 2 h
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broader spectral bands. Molecules composed of different atoms, like carbon dioxide (CO2) and water
vapor (H2O), tend to have very strong absorption bands. Most of the other molecules, such as oxygen
(O2), nitrogen (N2), and hydrogen (H2), have very weak bands.

Figures 4.2.2 and 4.2.3 show the ability of the atmosphere to absorb incoming solar radiation as a
function of wavelength throughout the solar and infrared spectrum. Sunlight at a visible wavelength of
0.5 µm is nearly unaffected by atmospheric absorption, whereas at an ultraviolet wavelength of 0.2 µm
it is completely absorbed. Surface infrared radiation at a wavelength of about 8 to 9 µm passes unaffected
through the atmosphere to space, but at 6 µm escape is not possible.

The longer the path of a photon through the atmosphere, the more likely it will be absorbed. The
probability that a photon will be absorbed along the path is expressed as the negative exponential of the
optical depth by the Beer–Bouger–Lambert law. Optical depth, at a specific wavelength, is the product
of the absorption coefficient, concentration of absorbing molecules, and path length. Consequently,
radiation traversing the atmosphere at an angle is more likely to be absorbed than if it were travelling
normal to Earth.

Figure 4.2.2 shows that atmospheric absorption in the thermal wavelength regions is dominated by
the presence of H2O and CO2 absorption bands. Water vapor absorbs both solar near-infrared and thermal
longwave radiation. The important absorption bands are in the near-infrared bands, the 6.3-µm vibration-
rotation band, and the pure rotation band at wavelengths longer than 15 µm. CO2 is active mainly in the
15-µm vibration-rotation band. The ozone (O3) 9.6-µm vibration-rotation band appears in a region
without other strong absorptions.

The atmospheric absorption spectrum has two regions through which radiation can travel easily.
Outside these regions, the air is quite opaque. The first region spans the ultraviolet, visible, and near-
infrared spectrum, from about 0.3 to 0.7 µm in wavelength. The second region is in the infrared region,
from about 8 to 13 µm. In climate studies, this thermal region is the one referred to by Luther and
Ellingson (1985) as the atmospheric window. The window only has a strong absorption of O3 (9.6 µm
band) and a weaker background absorption due to the water vapor continuum. The greenhouse effect is
caused by the relative ease with which solar radiation can reach Earth’s surface through the UV visible
region of the spectrum, and the difficulty that thermal radiation has in escaping from the surface. Both
H2O and CO2 behave as ideal greenhouse gases because they are transparent at visible and near-infrared
wavelengths, and are opaque at longer infrared wavelengths. As will be discussed later, many other gases
have similar radiative properties and can act as effective greenhouse gases.

The emission spectrum of Earth is compared with blackbody radiation at various temperatures in
Figure 4.2.5. The actual emission spectrum does not resemble a perfect blackbody spectrum. There is
no reason to believe that all the thermal radiation leaving Earth is emitted from the same atmospheric
level. Atmospheric temperature varies substantially with height. It follows that the radiation emitted by
gases near the surface has a different emission temperature than the radiation emitted by gases at the
tropopause, or the upper thermosphere. Figure 4.2.6 shows the structure of the atmosphere up to 100 km.
It should be noted that 90% of the mass of the atmosphere is found in the lower 10 km.

The blackbody emission spectra in Figure 4.2.5 has the same intensity as the CO2 band at 15 µm
emission at close to 210 K. Comparing this temperature with the temperature profile in Figure 4.2.6, we
see that temperatures in this range can be found in the lower stratosphere and middle mesosphere.
Although either is possible, it has been established to be from the mesosphere. Similarly, the region
from about 10 to 13 µm falls close to a temperature of 290 K, based on comparisons with the blackbody
curves. Such a temperature is found only near the surface. This is consistent with the atmospheric window.

The mechanism of the greenhouse effect can now be explained. At constant solar energy input, the
thermal emissions must also remain constant. Thus, the area under the emission curve in Figure 4.2.5
must remain constant. Greenhouse gases partially close the atmospheric window and trap heat at the
surface and in the lower atmosphere. To balance this effect, the surface and lower atmosphere must
warm and emit thermal radiation at a greater intensity.

The greenhouse effect occurs when the atmosphere absorbs thermal emissions. In accordance with
the principle of conservation of energy, the amount of heat absorbed equals the amount reemitted.
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Roughly half of the reemitted heat travels in the same direction as the original thermal radiation, but
the other half travels in the opposite direction. Thus, multiple occurrences of absorption and reradiation
inhibit the escape of thermal energy to space. The atmosphere absorbs and emits radiation with nearly
the same efficiency as determined by Kirchhoff’s law, i.e., absorptivity and emissivity of air are equal.
Consequently, the primitive climate model is modified by representing the entire atmosphere as an
absorber and emitter with the same average emissivity at all wavelengths. This result was derived by
Chamberlain (1978).

(4.2.8)

where: Ts = the actual average temperature of the surface, K
Te = the effective blackbody radiation temperature of Earth, K
ε = emissivity ≈ 0.75

The emissivity is about three-quarters of the heat radiated by Earth’s surface which is effectively
absorbed by the atmosphere. Using this value in Equation (4.2.8) yields an average planetary surface
temperature of 287 K, in accord with the measurements. The greenhouse effect of the atmosphere,
therefore, explains the difference between the effective blackbody emission temperature of Earth and
its surface temperature. Furthermore, most of the radiation leaving Earth originates in the upper atmo-
sphere and not at the surface.

The absorption of trace components in the atmospheric window is explained in great detail in
Figure 4.2.7. It should be noted that ozone and the CFCs (referred to as Freons, or F11, F12, F13, and
F22) have strong absorptions in the window region, while methane and nitrous oxide absorb near the
short-wavelength edge of the window. CO2 tends to narrow the window from the long-wavelength side.
As these greenhouse gases become more concentrated, their absorption bands overlap, narrowing the
window. Earth’s radiation where absorptions are strong is colder and therefore less intense. The surface
and lower atmosphere respond by warming up, intensifying the emission in the more transparent regions
of the spectrum to compensate for the loss of intensity in the window.

The greenhouse power of the trace atmospheric components is extremely large. This can be seen even
for CFC concentrations of about 1 ppb(v) which produce the same global warming as roughly 300 ppm(v)

FIGURE 4.2.5 Comparison of satellite-measured infrared emissions of Earth’s with blackbody temperature (Clark,
1982). Sample spectra from the Iris satellite, indicating the effective radiation temperature for different wavelengths
of thermal infrared radiation. (Adapted from Hanel et al., J. Geophys. Res., 77, 2629-2641, 1972.)

T Ts e= −( )( )2 2
1 4ε
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CO2. In other words, CFCs are about 300,000 times more effective than CO2 in causing a greenhouse
effect.

Clouds have an important effect on both solar and longwave radiation. At infrared wavelengths, clouds
may be treated as blackbodies because they contain condensed water in the form of cloud droplets or
ice crystals that are excellent infrared absorbers. Clouds absorb all the infrared radiation striking them
and emit blackbody radiation at the temperature of the cloud. These rules may be applied to all forms
of clouds described in Table 4.2.6.

There is some spectral variation in cloud absorbtivity (or emissivity), but this is significant mainly in
the case of very thin cirrus clouds. Clouds scatter solar visible radiation and control Earth’s albedo.
About 60% of Earth is covered by clouds at any time, and the average albedo of these clouds is roughly
0.50. Thus, most of Earth’s albedo can be attributed to clouds. Clouds also absorb solar near-infrared
radiation (Figure 4.2.3), which accounts for about half the solar constant. About one-fourth the total
insolation is due to near-infrared absorption by clouds. Finally, through multiple scattering, clouds diffuse
the solar radiation emerging from their bottom surfaces.

Clouds contribute to the greenhouse effect by absorbing heat emitted by Earth’s surface and lower
atmosphere. Because they are blackbodies, clouds can absorb heat radiated by Earth. This is referred to
as closing the atmospheric window at around 10 µm. The thermal flux emitted by the surface is absorbed

FIGURE 4.2.6 Structure of the atmosphere as a function of height above the surface of Earth and temperature.
(From Peixoto J.P., and Dort, A.H., Physics of Climates, American Institute of Physics, College Park, MD, 1992.
With permission.) Idealized vertical temperature profile according to the U.S. Standard Atmosphere (1976). Also
shown are the names commonly used for the various layers and pauses in the atmosphere (Wallace and Hobbs, 1977).
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by the cloud bottom. The cloud bottom emits a flux of the same intensity back to the surface, preventing
heat loss from the system. However, the top of the cloud also emits heat out to space. From space, the
cloud tops look like the surface. The net effect is a cooling of local climate. In the case of cirrus clouds,
the solar albedo is small. The large ice crystals in these clouds are not efficient in reflecting sunlight
back to space. However, these clouds remain opaque to longwave radiation and behave as blackbodies.
The thermal radiation emitted by the surface and lower atmosphere is absorbed at the cloud bottom. The
cloud bottom reradiates the heat back toward the surface. The top of the cloud also radiates heat towards
space. Since the cloud top is much colder than the surface, the emission to space is less intense than

FIGURE 4.2.7 The absorption of trace constituents in the atmosphere window (Watson et al., 1986). Spectral
locations of the absorption features of various trace gases. The spectrum between 7 and 13 µm is referred to as the
atmospheric “window.”

TABLE 4.2.6 Effects of Clouds

Type Description
Area Effects on

Covered Shortwave Longwave

Stratus Low-lying, dense, surface 
to 2 km

Large Efficient reflector,
albedo = 0.5

Absorb/reradiate,
blackbody radiation

Cumulus Convectively active, 
separate puffs, forms 
storm clouds, 2 to 7 km

Localized Efficient reflector,
albedo = 0.5

Absorb/reradiate
blackbody radiation

Cirrus High, thin ice, 5 to 13 km Large Inefficient reflector,
albedo = 0

Absorb/reradiate
blackbody radiation
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the original absorbed radiation. These clouds enhance the local greenhouse effect. Consequently, low-
level clouds tend to produce net cooling, and cirrus clouds produce a net warming. Overall, the global
effect of clouds on Earth’s climate is to produce a small net cooling of surface temperatures,

The extent of and variations in global cloud cover are not well understood. What is the distribution
of high and low clouds? How do clouds respond to global warming or cooling? Although clouds play
a central role in the climate system, we do not know how they respond to a greenhouse effect. The
surface of Earth is not very reflective, as seen from the values in Table 4.2.2. The oceans have an albedo
of only about 0.1. Because the fraction of land and oceans covered with ice have albedos of 0.7, they
are important contributors to the global average albedo. In fact, the increased albedo reinforces the
cooling in a positive feedback process. In colder climates, snow and ice migrate toward lower latitudes
and down mountain slopes. This enhances the cooling and promotes further migration. However, the
system is believed stable because during glacial periods the ice margins eventually retreated. It should
be noted that interglacial periods have lasted 10,000 to 20,000 years, as compared with glacial periods
that lasted 100,000 years. This suggests that icy climates are more resistant to warming.

The Greenhouse Energy Balance

All the basic elements of the global energy balance, including the solar and thermal components and
the greenhouse effect, are depicted in Figure 4.2.4. Of the total solar energy incident on Earth (given as
100% of incoming energy, equivalent to one-quarter of the solar constant, or about 345 W/m2 when
averaged over the entire surface of Earth), scattering from the atmosphere, clouds, and the surface reflects
about 28% (the albedo). About 22% (17% + 5%) of the incident solar energy is absorbed in the
atmosphere, mainly by water vapor and clouds. The rest of the solar energy, about 47%, is absorbed on
the surface and converted to heat. The surface is also heated by thermal radiation emitted downward
from the atmosphere and clouds. About 29% of the heat is removed from the surface as latent and
sensible heat. The energy used in water vapor evaporation is released when it condenses to water and
ice. Thus, when a cloud forms, the latent heat of the condensing water vapor is released and warms the
air trapped in the cloud.

Solar heat absorbed on the surface is emitted as longwave radiation. Only 5% of this emission escapes
into space through the atmospheric window. Most of the thermal emission from the surface is absorbed
by clouds and greenhouse gases. The absorbed longwave radiation, together with the solar radiation
directly absorbed into the atmosphere and the latent and sensible heat transferred to the atmosphere from
the surface, are converted to heat. The heat is dissipated by reradiating it as longwave radiation. The
radiation from cloud tops and from the greenhouse gases above the surface (64%) account for most of
the thermal energy escaping Earth. The sum of the direct longwave emissions from the troposphere, with
3% from the stratosphere and the 5% that penetrate the atmospheric window, exactly balance the net solar
energy input of 72%. The clouds and greenhouse gases also emit on the order of 96% longwave radiation
back to the surface, which contributes to the surface energy balance in the form of the greenhouse effect.

Energy Reservoirs

The aggregate of glaciers and snow is referred to as the cryosphere. The principal source of glacial ice
on Earth is the Antarctic continent. The Antarctic ice sheets cover an area the size of Brazil to an average
depth of more than 2 km. The volume of ice is enormous, amounting to more than 2 × 107 km3. Additional
volumes of permanent ice are located on Greenland and in a number of mountain glaciers. The Antarctic
ice sheets are equivalent in total volume to about 80 m of depth of the world’s oceans. If the ice sheets
were to melt, the sea level would rise by roughly that amount and coastal regions would be flooded.
The most permanent glaciers reside on Antarctica, where the ice may be up to 200,000 years old. Air
bubbles trapped in the ice have revealed the history of CO2 concentrations over the past 160,000 years.
The ice also exhibits heavy deposits of sulfate and ash following major volcanic eruptions. The temper-
ature of the planet is recorded as well in the oxygen isotopes long ago frozen into the ice. Ice and snow
participate in Earth’s climate system in several ways. As we noted in Table 4.2.4, the water tied up as
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ice on land represents a substantial fraction of the total surface ocean water. Ice- and snow-covered
surfaces have a high albedo and so increase the reflectivity of Earth. If a substantial fraction of the
surface area of Earth was to become covered with ice, then the planetary albedo would increase
significantly and further cooling would result. The frozen Earth might never thaw, and no life as we
know it could exist. Ice covering the seas, as in the Arctic Ocean, has a strong influence on the energy
balance of these regions. Fortunately, floating ice is an excellent insulator against heat loss. The layer
of cold ice isolates the ocean water from the atmosphere, preventing efficient latent heat exchange.

The total energy contained in the ice reservoir is about 2.6 × 107 EJ, comparable to the total energy
held in the surface oceans. However, the rate of transfer of energy between the ice sheets and the rest
of the climate system is much slower than the rate of transfer between the surface oceans and the
atmosphere. Thus, the effects of the cryosphere must be factored into climate changes occurring over
periods of 1000 years or longer.

Processes of Climate

The flow of energy among different elements of the climate system can become quite complex. Details
concerning these processes extend beyond the requirements for understanding environmental heat trans-
fer. As mentioned above, the radiative processes (scattering, absorption, and emission) dominate the
climate system. Physical processes (and material properties) also are important. The conduction of heat
in soil and the capacity of water to store heat are significant. The latent heat properties of water are
critical. The behavior of cloud particles and the optical properties of clouds and aerosols are also
important. Clearly, the dynamics of the atmosphere is fundamental to climate.

Astronomical processes contribute to Earth’s climate and climate change. The sun and the processes
that control its output of energy are critical. The brightness of the sun and sunspots, which oscillates
over periods of about 11 years, are frequently discussed in relation to climate. The orbit of Earth and
small perturbations in it over time have been connected to ice ages. According to Milankovitch (1941),
Earth’s orbital parameters vary over periods of about 20,000, 40,000, and 100,000 years. The paths of
asteroids and comets through the solar system and the mechanics of impact of these bodies with Earth
may explain periodic climatic disasters in Earth’s history, according to Alvarez (1983). All these factors
external to Earth itself cause variations in climate.

Chemical processes also play a role in the climate system. The concentrations of greenhouse gases
are controlled, to varying degrees, by chemical processes. O3 is the most chemically active of all the
greenhouse compounds and water vapor is the least active. A variety of mechanisms may affect the
amounts of climate-active compounds in the atmosphere, including photochemical reactions, biochemical
processes, interactions with clouds, geochemical transformations, and industrial processes. In the latter
case, relatively small concentrations of compounds such as chlorofluorocarbons were released into the
environment without realizing their efficiency for absorbing infrared radiation. Similarly, massive quan-
tities of otherwise natural compounds such as SO2, CO2, and N2O have been emitted without realizing
their climatic impacts.

Biological processes are key drivers of climate system. Several greenhouse gases, such as CO2, CH4,
and N2O, are partly controlled by biological processes. Photosynthesis and respiration are the funda-
mental life processes on the planet, and they control surface environmental conditions that affect the
absorption and transfer of energy in terrestrial and marine components of the climate system. Biological
processes have also been invoked as a potential means of modifying or controlling certain components
of the climate system, e.g., the use of iron to stimulate phytoplankton to absorb excess carbon dioxide
from the atmosphere.

Climate Variability

Climate variability is the statistical noise in the climate system. It is the change in climate from the
average or mean over a time interval of interest. The interval may be a year, decade, century, millennium,
© 2000 by CRC Press LLC



4-37
or longer. The climate is conveniently measured by the average surface temperature of Earth. A change
of less than 0.5°C is considered normal in the current climate that has lasted over 5 centuries.

Volcanic Eruptions, Smoke, Dust, and Haze

Major eruptions produce widespread layers of aerosols, or fine particles, in the stratosphere, which
efficiently scatter sunlight and enhance Earth’s albedo. Climate cools as a result of the increased albedo.
Volcanic aerosols are composed primarily of mineral ash particles ejected by volcanos. Large amounts
of ash are emitted and settle over vast regions. The ash falls out within a few months, while volcanic
aerosols produced from the stratospheric oxidation of SO2 and H2S remain in the stratosphere for years.
Volcanic aerosols spread over Earth and create spectacular sunsets and climate change. During the time
the aerosols are dispersed over the entire globe, they affect the global radiation balance.

The effect of changes in smoke, dust, and haze concentrations in the upper troposphere or stratosphere
is to increase the planetary albedo and reduce the surface temperature. However, the introduction of
highly absorbing aerosols in the lower atmosphere (boundary layer) can lower the albedo and warm the
surface.

A Simple Model on the Effect of Energy Consumption 
on Climate Modification

Summary of Model

Per capita energy growth patterns were used to project the growth of atmospheric CO2. The population
of less-developed countries will grow 2.7 times — from 50 to 67% of world population — from 1991
to 2100. Over the same period, world population will grow from 5.0 to 10.3 billion people, and energy
use from 15 to 50.7 TW. LDC energy use will grow disproportionately faster, from 20 to 46%, and the
energy use in industrialized countries will slow from 30 to 22% of world energy. It is anticipated that
the global standard of living will improve substantially while relative energy consumption will decrease
on the order of 1.1% per acre due to conservation and efficiency improvements. Nonfossil energy sources
consisting mostly of nuclear energy will overtake fossil energy consisting mostly of coal in the year
2075. The growth of CO2 emissions from 6 to 18.2 GtC per acre will result in an average global
temperature increase of 3°C due to this source only. However, CO2 is only about half the problem. When
all infrared-absorbing gases are considered, an average increase of 5.6°C is projected for 2100. This
scenario is similar to the IPCC scenario IS 92A.

Introduction to Model

The atmospheric monitoring program by Keeling et al. (1997) shows the level of carbon dioxide in the
atmosphere has increased about 16% over the last 39 years and now stands at about 365 ppm. This
observed increase is believed to be the continuation of a trend, which began in the middle of the last
century with the start of the Industrial Revolution. Fossil fuel combustion, cement manufacturing, and
the clearing of virgin forests (deforestation) are considered to be the primary anthropogenic contributors,
although the relative contribution of each is uncertain because deforestation appears to have been a net
source during some periods of time and a sink during other periods.

Carbon dioxide (CO2) is the major component of trace atmospheric gases that affect global climate.
The other trace gases contained in the atmosphere are water vapor (H2O), ozone (O3), methane (CH4),
carbon monoxide (CO), nitrous oxide (N2O), sulfur hexafluoride (SF6), and chlorofluorocarbons (CFC).
Except for H2O and O3, the other trace gases have long lifetimes in the atmosphere. They absorb part
of the infrared rays reradiated by Earth and induce atmospheric warming.

Predictions of the climatological impact of a CO2-induced greenhouse effect draw upon various
mathematical models to gauge the global average temperature increase. The scientific community
generally discusses the impact in terms of doubling the 1975 atmospheric CO2 content in order to get
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beyond the normal fluctuations (noise level) of climate data. A scenario was built into the present study
for projecting the atmospheric concentration of CO2 and the other infrared-absorbing trace gases in order
to estimate future global average temperatures. The scenario is based on data presented by:

• Rogner (1986) on regional energy consumption

• Global energy requirements by Häfele (1981) with modifications from various industrial projec-
tions

• Growth projections of CH4, N2O, CFC 11, CFC 12, and other CFCs by Ramanathan (1985) and
Wigley (1987), as summarized by Krause et al. (IPSEP, 1989)

• Energy efficiency improvement and conservation measures from various DOE sources

It should be noted that the scenario discussed here is similar to the business-as-usual scenario IS 92A
in the IPCC study (Pepper et al., 1992).

Methodology

The impact of per capita energy growth patterns on future energy demand and growth of atmospheric
carbon dioxide was evaluated by subdividing the globe into 6 regions of similar sociopolitical background
and population growth rate. The 6 key global regions specifically considered are

1. North America (U.S. and Canada) [NA]. 
2. Middle East (North Africa and Persian Gulf States) [ME]. 
3. Commonwealth of Independent States and Eastern Europe [CISEE]. 
4. China and other centrally planned Asiatic economies [CPAE]. 
5. Industrialized countries (including Western Europe, Australia, New Zealand, Israel, Japan, and

South Africa) [IC]. 
6. Less-developed countries (including all of South and Central America, Central Africa, and the

rest of Asia) [LDC].

FIGURE 4.2.8 Growth of CO2 as a function of time: Mauna Loa, Hawaii. (Data from Keeling, D. and Whorf, T.
Scripps Institution of Oceanography.)
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TABLE 4.2.7 Current Greenhouse Gas Concentrations

Preindustrial Present GWP2 Atmospheric
Concentration Tropospheric (100 yr. Time Lifetime

Gas (1860) Concentration1 Horizon) (Years)3

Carbon dioxide (CO2) (ppm) 2884 364.35 1 120
Methane (CH4) (ppb) 8486 18507/16838 21 12
Nitrous oxide (N2O) (ppb) 2859 3117/3108 310 120
CFC-11 zero 2657/2618 3800 50
(trichlorofluoromethane)
(CCl3F) (ppt)

CFC-12 (dichlorotrifluoroethane) zero 5357/5248 8100 102
(C2F3Cl3) (ppt)

CFC-113 (trichlorotrifluoroethane) 
(C2F3Cl3) (ppt)

zero 847/828 4800 85

Carbon tetrachloride (CCl4) zero 1007/988 1400 42
(ppt)

Methyl chloroform (CH3CCl3) zero 947/858 36010 5
(ppt)

HCFC-22 zero 126/11011 1500 12
(chlorodifluoromethane)
(CHCIF2) (ppt)

Sulfur hexafluoride (SF6) zero 3.6 NH/3.4 SH12 23,900 3200
(ppt)

Perfluoroethane (C2F6) (ppt) zero 413 9200 10,000
Surface ozone (ppb) 2514 2615/2516 17 hours

1 Present tropospheric concentration estimates are calculated as annual arithmetic averages; ppm = parts per million (106),
ppb = parts per billion (109), ppt = parts per trillion (1012).

2 The Global Warming Potential (GWP) is typically used to contrast different greenhouse gases relative to CO2. The GWP
provides a simple measure of the relative radiative effects of the emissions of various greenhouse gases and is calculated using
the formula:

Formula taken from: IPCC (Intergovernmental Panel on Climate Change) 1990: Climate Change: The IPCC Scientific
Assessment, J.T. Houghton, G.J. Jenkins, and J.J. Ephraums (Eds.). Cambridge University Press, Cambridge, U.K.

GWPs taken from: IPCC, 1996: Climate Change 1995: The Science of Climate Change, J.T. Houghton, L.G. Meira Filho, B.A.
Callander, N. Harris, A. Kattenberg, and K. Maskell, Cambridge, University Press, Cambridge, U.K. (see page 22 and page 119).

3 Atmospheric lifetimes (general term used for the “adjustment time”, the time scale characterizing the decay of an instanta-
neous pulse input into the reservoir) taken from: IPCC, 1996: Climate Change 1995: The Science of Climate Change (see
pp. 92-93).

4 Historical CO2 record from the Siple Station, Antarctica ice core.
5 1997 Annual average derived from in situ sampling at Mt. Cimone, Italy.
6 Historical CH4 concentration from the Law Dome “DE08”, Antarctica ice core.
7 Annual arithmetic average based on 1996 monthly, nonpollution values from the Advanced Global Atmospheric Gases

Experiment (AGAGE), Mace Head, Ireland monitoring site.
8 Annual arithmetic average based on 1996 monthly, nonpollution values from the AGAGE, Cape Grim, Tasmania, Australia

monitoring site.
9 Historical N2O concentration from the Law Dome “BHD”, Antarctica ice core.
10 IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission

Scenarios, J.T. Houghton, L.G. Meira Filho, J. Bruce, Hoesung Lee, B.A. Callander, E. Haites, N. Harris, and K. Maskell (Eds.),
Cambridge University Press, Cambridge, U.K. (see page 33).

11 Atmospheric HCFC-22 measurements from flask samples taken at Pt. Barrow, Alaska, U.S. and Cape Grim, Tasmania,
Australia, respectively. These measurements were conducted by the Nitrous Oxide and Halocompounds Group (NOAH) of the
National Oceanic and Atmospheric Administration (NOAA)/Climate Monitoring and Diagnostics Laboratory (CMDL).

12 NOAH hemispheric SF6 estimates derived from 1996 flask and in situ air samples at NOAA/CMDL land sites.
13 IPCC, 1996: Climate Change 1995 (see page 93).
14 IPCC, 1996: Climate Change 1995 (see page 90).
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Population and Energy

Although economic considerations are critical in determining per capita energy use, this study did not
independently evaluate economics, but used the projections of Edmonds, et al. (1984). It was found that
50% of the world’s population currently residing in LDC will grow to 67% by 2100, while world
population will grow from 5.0 to 10.3 billion people in the year 2100 (see Figure 4.2.9). Consequently,
the world’s energy needs will grow from 15 to 50.7 TW (see Figure 4.2.10) while the LDC needs will
grow from 20 to 46%, and the IC needs will decrease from 41 to 22% (see Figure 4.2.11). The apparent
decrease in energy demand by the IC will not affect the standard of living, because substantial increases
in the efficiency of energy utilization and conservation will be implemented (see Figure 4.2.12 and
Table 4.2.8). The per capita energy use will decrease in NA as a consequence of energy demand reductions
of about 30% by the year 2100 (see Figure 4.2.13). Similar efficiency improvements are projected
worldwide. Specific details relating to power plants and automotive efficiency improvements are explic-
itly presented in Figure 4.2.12 and Table 4.2.8. Other effects such as decreasing the consumption of
electricity for lighting, heating, refrigeration, and air conditioning (with fluids other than banned chlo-
rofluorocarbons) were assumed as part of the model based on Geller’s (1986) projections and reasonable
market penetration and replacement rates.

Nonfossil energy sources are projected to grow faster than fossil fuels and cross about the year 2075
(see Figure 4.2.10). After 2025, the predominant fossil fuel will be coal (see Figure 4.2.14) and non-
fossil energy source will be nuclear, i.e., either fission or fusion or both (see Figure 4.2.15). The use of
renewable energy will grow exponentially, but will not predominate as a nonfossil fuel source because
it is very area intensive, thus conflicting with population growth. It should also be noted that most of
the petroleum-based energy will be used in transportation and not for stationary power or other industrial
energy uses.

Carbon Emissions

The carbon cycle for 1975 (depicted in Figure 4.2.16) is used as the starting point to show the redistri-
bution of carbon among the relevant reservoirs. Carbon emissions are estimated to grow from 6 to

FIGURE 4.2.9 World population projection.
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18.2 GtC/a in 2100 (see Table 4.2.9 and Figure 4.2.17). The per capita emissions of carbon will decrease
for NA and CISEE, and increase for the rest of the world, but the relative order for the six global regions
will remain the same between 1975 and 2100 (see Figure 4.2.18). It should be noted, however, that the
percentage contribution from the LDC and ME will increase from 23 to 55% (see Figure 4.2.19).

It is projected that the 1975 atmospheric CO2 concentration will double by 2100, resulting in a global
average temperature increase of 3°C due to this constituent only. These results agree well with the
Edmonds et al. (1984) median case (B) projections, albeit under different synthetic oil projections.
Another global average temperature projection due to CO2 can only be made on the assumption that the

FIGURE 4.2.10 Comparison of total primary fossil and nonfossil fuel energy sources.

FIGURE 4.2.11 Total primary energy comparison by global region.
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equilibrium global average temperature exceeded the 0.5°C normal temperature fluctuation level in 1980,
and the preindustrial concentration was 280 ppm CO2. The latter projection predicts a temperature
increase of 2.4°C in 2100. When the other radiatively and chemically active trace gases are included in
a model using the radiative forcing constants for CO2, CH4, N2O, CFC 11, CFC 12, and all other CFCs,
then one predicts a temperature increase of 5.6°C in 2100 (see Figure 4.2.20). These estimates do not
consider negative feedback mechanisms such as high cloud formation. The question of which predictions
and which models best simulate a carbon dioxide and other trace-gases-induced climate change is still
being debated by the scientific community. The incremental temperature increase would not be uniform
over Earth’s surface. The polar caps are likely to see temperature increases on the order of 10°C. There
will be little, if any, temperature increase at the equator.

Climate

There is currently no definitive scientific evidence that Earth is warming. If Earth is on a warming trend,
we are not likely to detect it before a decade passes. This is about the earliest projection of when the
temperature might rise above the 0.5°C needed to get beyond the range of normal temperature fluctua-
tions. On the other hand, if climate modeling uncertainties have exaggerated the temperature rise, it is
possible that a greenhouse effect induced by infrared-absorbing gases may not be detected until 2020

FIGURE 4.2.12 Steam plant thermal efficiency improvement with time.

TABLE 4.2.8 Automotive Carbon Emissions

Automobile Fuel Carbon Emissions Coala

Electric Gasoline Electric Gasoline Power
Yea

r (miles/kWh) (miles/gal) (kg/mile) (kg/mile) (kg/kWh)

2000 2.0 30 0.10 0.09 0.202
2050 4.0 50 0.04 0.05 0.171
2100 5.0 60 0.03 0.04 0.162

a Power plant efficiences are 45% in 2000, 53% in 2050, and 56% in 2100.
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at the earliest. It should be noted that the equilibrium response of climate, as estimated by global average
temperature, lags the measured temperature by about two decades due to the thermal inertia of the oceans.

The greenhouse effect is not likely to cause substantial climatic changes until the average global
temperature rises at least 1°C above today’s level. This could occur in the first to second quarter of the
next century. However, there is concern among some scientific groups that once the effects are measur-
able, they might not be reversible, and little could be done to correct the situation in the short term.

FIGURE 4.2.13 Regional per capita primary energy consumption.

FIGURE 4.2.14 Primary fossil fuel energy sources.
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Therefore, a number of environmental groups are calling for action now to prevent a potentially unde-
sirable situation from developing in the future.

Mitigation of the greenhouse effect would require major reductions in fossil fuel combustion. Shifting
between fossil fuels is not a feasible alternative because of limited long-term supply availability of
certain fuels, although oil does produce about 18% less carbon dioxide per kW·h of heat released than
coal, and gas about 32% less than oil (see Table 4.2.9). The energy outlook suggests synthetic fuels will
have a negligible impact on the growth of CO2 in the atmosphere, contributing less than 10% of the
total carbon dioxide released from fossil fuel combustion by the year 2050. This low level includes the
expected contribution from carbonate decomposition, which occurs during shale oil recovery and assumes
essentially no efficiency improvement in synthetic fuel processes above those currently achievable. After
2050, however, the contribution of carbonate decomposition may account for as much as half the total
carbon emitted from oil utilization, and CO2-contaminated natural gas from remote deposits may account
for half the natural-gas CO2 emissions.

In addition to improvements in energy efficiency, use of nonfossil fuels, a large international research
effort is currently underway to evaluate the feasibility of capturing and sequestering CO2. Herzog et al.
(1997) discuss the current international status of these technologies. The main challenge regarding CO2

capture technology is to reduce the overall cost by lowering both the energy and the capital cost
requirements. One strategy that looks extremely promising is to combine CO2 removal with advanced
coal energy conversion processes that have features which will enable low energy-intensive capture. The
major options for CO2 storage are underground or in the ocean. The capacity of the ocean to accept CO2

is almost unlimited, but there are questions that still need to be addressed about its effectiveness, including
sequestration lifetimes, and the environmental impact associated with increased seawater acidity. While
there are diverse niche opportunities for industrial utilization of power plant CO2, these uses are all
small compared to the total quantities of CO2 emitted by the power sector.

FIGURE 4.2.15 Primary nonfossil fuel energy sources.
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FIGURE 4.2.16 The global carbon cycle. Arrows show the transfer of elemental carbon (C) between the various
carbon reservoirs (boxes) and indicate the closed loops that make up the cycle. Transfer rates are given in units of
1012 kg of C per year, and reservoir contents in 1012 kg of C. Burning of fossil fuels releases an additional 5 x 1012

kg yr-1 to yield the net increase in atmospheric burden. (Adapted from Holland, H.D., The Chemistry of the
Atmospheres and Oceans, John Wiley & Sons, Chichester, 1978, and updated with information reviewed by Clark,
W.C. (Ed.), Carbon Dioxide Review: 1982, Oxford University Press, Oxford, 1982; and by Bolin, B. and Cook,
R.B, (Eds.), The Major Biogeochemical Cycles and Their Interactions, SCOPE 21, John Wiley & Sons, Chichester,
1983.)
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TABLE 4.2.9 Production of Carbon Dioxide 
from Fossil Fuels per Unit Energy

Fossil Fuel GtC/TW gC/MJ

Coal 0.722 22.9
Oil 0.653 20.7
Gas 0.391 12.4

Note: TW = 31.54 EJ/a
= 29.89 Quads/a

FIGURE 4.2.17 Comparison of carbon emissions by source.

FIGURE 4.2.18 Regional per capita carbon emissions.
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Numerical Analysis and

Computational Tools

5.1 Computer-Aided Engineering (CAD)
5.2 Finite Difference Methods

Finite Differences and their Order of Accuracy • Approximate 
Solutions to a One-Dimensional Heat Equation • The Crank-
Nicolson Algorithm • A Steady-State Problem — An Elliptic 
PDE • Some Iterative Methods for Linear Equations • Line (or 
Block) G-S and SOR Iteration • Dealing with Boundary 
Conditions • Conclusions on Direct and Iterative Methods

5.3 Finite Element Method
FEM Concept • Weighted Integrals and Weak Forms of the 
Heat Equation • A Simple Example of the FEM • Some Popular 
Finite Elements and Their Integration • Some Boundary 
Considerations • Time-Dependent Problems • Variational 
Forms of Elliptic Problems • An Example of Modern Software

5.4 Boundary Element Method
BEM and a Poisson Problem • BEM in Two Dimensions • 
Higher-Order Problems and Integration • Comparison between 
the BEM and the FEM

5.5 Software and Databases
General Purpose Interactive Mathematical Software • Large 
Subroutine Libraries for Engineering and Science • Major 
Engineering Finite Element Packages

5.1 Computer-Aided Engineering (CAE)

Since the 1950s the digital computer has played an ever-increasing role in engineering studies. Particulary
since the advent of FORTRAN and the subsequent development of libraries in this language in the late
1950s, an exponentially growing amount of software has become available. Those years represent the
beginning of the era of Computer-Aided Engineering. More recently this term is applied to more user-
friendly software designed to be used in real time on a PC or workstation. This section presents the type
of algorithms (computing schemes) and software commonly used today in thermal engineering.

One of the most important developments in computational mathematics is in the numerical (approx-
imate) solution of partial differential equations. The primary approach until recently has been the use
of finite differences to approximate partial derivatives, and this approach is the topic of the next subsection.
Following that, we deal with the Finite Element method and then introduce the Boundary Element method.

Frank Hagin
Colorado School of Mines
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5.2 Finite Difference Methods

Here the basic concepts of the finite difference method are introduced, including the notions of accuracy
(or rate of convergence) and stability. Over the past several decades highly accurate and stable finite
difference techniques have been developed for all areas of engineering, including heat transfer. Although
we are treating linear problems, the concepts introduced apply to nonlinear problems as well.

Finite Differences and Their Order of Accuracy

For simplicity, first consider finite difference approximations to derivatives of a function ƒ of one variable.
The forward difference approximation to the first derivative is

(5.1)

where h denotes a small step size. To introduce the order of such an approximation, expand ƒ(x0 + h)
in the Taylor series about x0 and obtain:

(5.2)

where H.O.T. stands for higher order terms in the Taylor expansion. Assuming h is very small, the error
in Equation 5.1 is approximately  ƒ″(x0); hence the approximation in Equation 5.1 is of order h and is
denoted by O(h). This is not a very satisfactory approximation; for example, if one needs an accuracy
of 0.001 this would require a very small step size h. Hence, approximations of order h2 or higher are
needed. For example, an order h2, O(h2), approximation to the first derivative is the central difference
formula:

For later purposes an important approximation, also of O(h2), is that of ƒ″,

(5.3)

Approximate Solutions to a One-Dimensional Heat Equation

Consider the following one-dimensional, transient heat flow problem:

(5.4)

One seeks approximate solutions to Equation 5.4, with appropriate boundary conditions. At discrete
point (xi, yj) denote the step sizes between these points by h = xi+1 – xi and ∆t = tj+1 – tj. Apply the
Approximation 5.1 to the t derivative in Equations 5.4 and Approximation 5.3 to the x derivative. It is
usually desired to move forward in the t direction since one typically knows T at t = 0; so take a small
time step, ∆t = t1, and solve for the values T(xi, t1), with ranging xi between a to b. Having the approximate
solution at the t1 level, proceed to the next time level, and so on. Hence, writing the approximation to
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Equation 5.4, dropping the approximation symbols, and using the notation Ti,j = T(xi, tj), one has this
relationship between T values at the jth and (j + 1)st levels:

(5.5)

Solving for the T at the ( j + 1)st level one gets:

where λ =  and i = 1, 2, …, n.

It is convenient to write such expressions in matrix form; letting TJ denote the vector (T1,j, T2,j, …, Tn,j),
one can express the set of Equations (5.5) as Tj+1 = A Tj + fj where

(5.6)

Since the next time-level values Tj+1 are computed directly from those at the previous level, this scheme
is called explicit. Also, since it started from a forward difference in the time direction, the scheme is
also called a forward difference algorithm. The advantage of explicit schemes is that they are relatively
simple (basically, a matrix multiplication in this case); but, as illustrated below, they tend to have stability
problems.

A Numerical Example — Let T(x, t) denote the temperature in a thin rod of unit length and constant
cross section and homogeneous conductivity k. If heat is generated in the rod, e.g., by resistance to an
electrical current, the heat equation becomes

where k is the thermal diffusivity, ρ is the density, and c is the specific heat of the rod; q� represents
the rate of heat generation per unit volume. Consider the units:

k = π2 J/cm sec°C; ρ = 4 g/cm3;
c = 0.01 π2 J/gm°C; q� = 0.08 J/sec cm3.

Here J represents unit of heat, joule, and π � 3.1415927. Applying these units to the above equation
leads to the PDE below. Further, assume the ends of the rod of unit length are held at T = 0 and the
initial temperature distribution is sin πx + x(1 – x). This leads to the BVP:

(5.7)

As the reader can verify, the exact solution is T(x, t) = e–t sin πx + x(1 – x); hence, one can check numerical
approximations for accuracy. As will be seen, the choice of the time step, ∆t, and x step, h, is critical. The
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first numerical approximation is with h = 0.1 and a small time step, ∆t = 0.001, taking 500 time steps to
end up at t = 0.5. Table 5.1 shows the results of this run, where T denotes the exact solution and ν denotes
the approximate solution using n = 9 (i.e., 9 interior x points, hence h = 0.1). The results are accurate to only
two significant figures, so the error is about 1%. But this is expected since the error is of order O(∆t + h2);
that is, linear in ∆t and quadratic in h as discussed earlier in the approximations to f ′ and f ″.

The fifth column in the table shows the reduction in errors in ν when n is increased to 69. However,
the sixth column shows what happens when one increases n further, to 71. The results are totally useless
because at this value of n and larger, the algorithm becomes unstable. For this forward difference scheme
the stability is determined by the eigenvalues of the matrix A in Equation 5.6; in particular, the largest
one must be no larger than 1.0 in absolute value. Stated differently, one needs the spectral radius ρ(A)
to be no larger than 1.0 It can be shown that stability for this algorithm applied to Problem 5.4 requires

For example, see Isaacson and Keller.1 In the case of the Problem 5.7, k = π2; hence solving this last
inequality with ∆t = .001 shows that one needs h to be at least 0.0142. This means that n must be smaller
than 70, as suggested by the numerical results. This exhibits the problem with explicit schemes like the
current one — to get h small enough to get a high degree of accuracy (say five or six digits) requires
an extremely small time step. The next topic introduces a more practical scheme, one which is both
more accurate and without the stability restriction.

The Crank-Nicolson Algorithm
In addressing the above stability issue and in seeking more accurate methods, researchers have studied
various combination of forward difference and backward difference (in the t direction) schemes. A widely
used method is that of Crank-Nicolson (C-N) which will be applied to above boundary value problem
Equation 5.7. To that end, consider the matrix

Letting I denote the identity matrix one can now form the following two matrices:

TABLE 5.1 Forward Difference Algorithm Applied 
to Boundary-Value Problem in Equation 5.7

xi T(xi, 0.5) ννννi,500 �Ti – ννννi� �Ti – ννννi
(n = 69)� �Ti – ννννi

(n = 71)�

0.1 0.2774 0.2782 0.0007 0.0000311 5183
0.2 0.5165 0.5179 0.0014 0.0000592 9559
0.3 0.7007 0.7026 0.0019 0.0000815 etc.
0.4 0.8168 0.8191 0.0022 0.0000958 etc.
0.5 0.8565 0.8589 0.0023 0.0001010 etc.
0.6 0.8168 0.8191 0.0022 0.0000958 etc.
0.7 0.7007 0.7026 0.0019 0.0000815 etc.
0.8 0.5165 0.5179 0.0014 0.0000592 etc.
0.9 0.2774 0.2782 0.0007 0.0000311 etc.
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Below, these matrices are formed using the MATLAB system. Once again, assuming that T is known
at time level j, solve T = Tj+1 from the following:

(5.8)

The C-N formula in Equation 5.8 results from averaging the forward difference formula and the backward
difference analog, based on the approximation

This scheme in Equation 5.8 is implicit (as opposed to explicit) in the sense that one must solve the
algebraic system involving matrix C. However, since both C and D consist of only three diagonal “bands”,
the computation is only of order n for each time step in contrast to order n3 if matrix C were full.

The following table shows the results using the Crank-Nicolson algorithm on the Problem in
Equation 5.7. Ti denotes the exact solution and νi the approximate solution. Columns 3 and 4 are the
results with a larger time step, ∆t = 0.1, and with h = 0.1, as before. Note these results are similar to
the explicit scheme shown in Table 5.1 (with ∆t and h = 0.1) since the C-N scheme has an error of
O(h2 + ∆t2), as opposed to order O(h + ∆t2) for the forward difference method. In the fifth column of
Table 5.2 are the results when one decreases both steps, h = ∆t = 0.01; note the improved accuracy due
to the quadratic error in both h and ∆t.

MATLAB® (The MathWorks, Inc., Natick, MA, 01760) is a very powerful and widely used software
package for doing matrix algebra and other related computations. Below shows how the matrices for
the C-N algorithm are set up and 50 time steps are taken. Assume n (the number of x values), d (the n-
vector of the given T values at t = 0) and the “forcing” vector ƒ have all been defined. The MATLAB
commands are as follows, where anything following the % symbol is a comment and the semicolon
both ends a statement and suppresses output.

dt = .01; h = 1/(n+1); lambda = dt/(h*pi)^2; % dt is the time step
w = ones(1, n-1); % a vector of n-1 ones
B = 2*eye(n) - diag(w, 1) - diag(w, -1) % creates the B matrix; eye is ‘identity’
C = 2*I + lambda*B; D = 2*I - lambda*B;
v = d;
for j = 1:1:50 % doing the 50 time steps

u = D*v + 2*dt*f;
v = C\u; % this solves Cv = u for v

end
v % sends final v to the screen

TABLE 5.2 Crank-Nicolson Algorithm 
Applied to the Problem in Equation 5.7 
with h = ∆t = 0.1 and h = ∆t = 0.01

xi Ti ννννi,50 �Ti – ννννi� �Ti – ννννi
(n = 99)�

0.1 0.2774 0.2481 0.0007 0.00000759
0.2 0.5165 0.5178 0.0013 0.00001374
0.3 0.7007 0.7025 0.0018 0.00001854
0.4 0.8168 0.8190 0.0021 0.00001854
0.5 0.8565 0.8588 0.0022 0.00002240
0.6 0.8168 0.8190 0.0021 0.00002153
0.7 0.7007 0.7025 0.0018 0.00001854
0.8 0.5165 0.5178 0.0013 0.00001374
0.9 0.2774 0.2481 0.0007 0.00000759

C T DT f+j j jt1 2= + ∆ .

′( ) ≅
( ) − −( )

g t
g t g t t

tj

j j ∆
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5-6
Note: while the above short program is quite adequate for small problems like the one illustrated, it is
not recommended for large problems. In particular, for problems requiring large matrices one should
especially take advantage of the special form of matrices C and D. Since they are tridiagonal, i.e., with
only three nonzero diagonal elements, the system (5.8) can be solved very efficiently. Such considerations
are discussed below.

A Steady-State Problem — An Elliptic PDE

Next, consider a typical two-dimensional steady-state problem which leads to an elliptic differential
equation. The main concern with such problems is not stability, but rather that of dealing with very large
systems of equations (linear, in the current case). The differential equation to be studied is the steady-
state two-dimensional conduction equation:

This is Laplace’s equation. Should the right side of the equation be some nonzero function, it is called
the Poisson equation; it would be treated essentially the same. Once again, the second derivatives are
approximated using Equation 5.3. As before let Ti,j = T(xi, yj) and denote the steps between grid points
by h = ∆x and k = ∆y; one can express the approximation to Laplace’s equation by

(5.9)

The boundary value problems to be discussed here will be for rectangular regions in the xy-plane with
thermal conditions given on the four boundary lines (the so-called Dirichlet problem). Systems involving
Equation 5.9 will be solved in which the points (xi, yj) are interior grid points where i = 1, …, m and
j = 1, …, n. Therefore, one needs to solve a system of N = mn equations in N unknowns. For example,
consider the figure below in which the rectangular area is divided into 16 sections with 9 interior points
labeled 1, …, 9. The nine Ti,j values will be solved at these points. In the Dirichlet problem, the data
(values of T ) would be provided on the boundary of the region.

Introduce the constants r = h2/k2 and R = (1+r) in Equation 5.9 and write the equations:

(5.10)

Leaving the two-dimensional representation of the unknowns, Ti,j, using the ordering illustrated in the
figure above, and labeling the unknowns by ν1, …, ν9, the system in Equation 5.10 can be put in matrix
form Aνννν = d:

FIGURE 5.1 Domain with nine interior points.
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(5.11)

When h = k, then r = 1, 2R = 4 and the result is a famous matrix with 4’s on the main diagonal and –1
on four other diagonals. (However, note that a3,4 = a4,3 = 0.) This procedure will now be applied to the
following boundary value problem:

(5.12)

The exact solution is T = sinx sinhy. Below are the MATLAB commands to solve this problem. First,
some numerical approximations are shown in the following table in which several results are given for
x = π/2 (errors tend to be largest near the middle of the rectangle). Note that the predicted error is O(h2 +
k2); and comparing columns 3, 4, and 5 shows that the error decreases by a factor of four as h and k are
successively halved.

While starting to get some reasonable results with m = 31 and n = 23, note that the resulting system
of equations is getting rather large, specifically N = mn = 713. Unless one takes advantage of the special
structure of the matrix A, solving such systems becomes time-consuming, especially if a high degree of
accuracy is called for. Hence, for elliptic problems of this type it is generally preferable to solve the
resulting large algebraic systems by iteration, the next subject.

Some Iterative Methods for Linear Equations

To illustrate some iterative techniques return to the problem in Equation 5.12. Such problems are well
suited to iteration since the matrix A in Equation 5.11 is diagonally dominate, i.e., the main diagonal
contains 2 R � 4 whereas the rest of each row consists of zeros and, at most, four values around 1.0.

TABLE 5.3 Results of Solving Boundary-Value Problem 
in Equation 5.12 by Direct Method

y T(π/2, y) �T – ννννm=7, n=5� �T – ννννm=15, n=11� �T – ννννm=31, n=23�

5/3 2.55281 0.0076 0.002001 0.000501
4/3 1.76504 0.0104 0.002634 0.000661
1 1.17520 0.0098 0.002465 0.000618

2/3 0.71716 0.0073 0.001838 0.000461
1/3 0.33954 0.0038 0.000971 0.000243
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A widely used scheme is called Gauss-Seidel. As in all iterative methods, one starts with an initial
estimate of the value in question, the vector νννν. Unless better information is available, start with an initial
guess of νννν = 0; having an “old” value of νννν compute the new one, and continue this process until two
successive approximations agree to within a given tolerance. Designate the old, or previous, value by
νννν p and the current value by simply νννν. Assume matrix A is available as in Equation 5.11, although only
the main diagonal and m elements on each side of it are used (since all other elements of A are zero).
The following description and code is easily modified in case A is full; it can also be made more efficient
by only using nonzero elements. Notice in particular that as one computes the components νi of the new
vector, one always uses the most recent components available. In these equations all summations are on j.

(5.13)

where (i – m)′ denotes Max[i – m, 1] and (i + m)′ denotes Min[i + m, N].
Table 5.4 shows the result of taking 20 iterations of the set of Equations 5.13 on the problem in

Equation 5.12 starting with νννν    = 0. The G-S iterations are said to converge, when they actually converge
to the solution to finite difference approximation, not to the exact solution to the original problem,
Equation 5.12 in this case. In Table 5.4 the superscripts (i.e., 20 and 100) on νννν indicated the number of
iterations performed. Column three of the table shows the expected results for the m = 7 and n = 5 case;
results much like column 3 of Table 5.3. However, in column 4, with m = 15 and n = 11, note the results
are useless since convergence has hardly begun. In the fifth column, with 100 iterations, the results are
finally comparable with the results of column 4 of Table 5.3.

The reason for the slow convergence in the m = 15 and n = 11 case is discussed below. The G-S
scheme can be put in matrix form by first splitting the matrix A into the sum of three N by N matrices;
i.e., A = D – L – U. Here D consists of the main diagonal elements, ai,i = 2 R, with zeros elsewhere; L
has the elements below the main diagonal of A and U, the elements above the main diagonal. The sth

G-S iterate can be expressed:

TABLE 5.4 Results of Gauss-Seidel Iteration on Problem 
in Equation 5.12

y T(π/2, y) �T – νννν22220000
m=7, n=5� �T – νννν22220000

m=15, n=11� �T – νννν111100000000
m=15, n=11�

5/3 2.55281 0.0003 0.2828 0.0008
4/3 1.76504 0.0022 0.4440 0.0020
1 1.17520 0.0033 0.4630 0.0026

2/3 0.71716 0.0027 0.3653 0.0023
1/3 0.33954 0.0013 0.1954 0.0006
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The matrix M = (D – L)–1 U is key to the convergence of such problems. Let ρ = ρ(M) denote the
spectral radius of M; i.e., the largest (in absolute value) of the eigenvalues of M. Denote the error the
sth iteration by es = �ννννs – ννννexact�, where � ·� denotes the norm of a vector (here the norm used is �νννν� =
max�νi�, the largest component of the vector). The following fundamental inequality is helpful for the
current purposes:

where e0 is the error in the initial value for νννν. This inequality shows that convergence demands ρ p 1.0.
Fortunately, this is the case for matrices associated with the heat equation under study. However, the
problem the above table (column 4) illustrates is that as N gets large ρ gets very close to 1.0. In the m =
15, n = 11 case, ρ is about 0.945; hence ρ20 � (0.945)20 � 0.323, and after 20 iterations the error in νννν
is expected to be about 1/3 of the original error. In contrast to that case, when m = 7 and n = 5 it happens
that ρ � 0.793; hence ρ20 � (0.793)20 � 0.0097 and one can expect a reasonable accuracy, i.e., an
accuracy consistent with that of the finite difference scheme itself.

The most widely used iterative scheme for problems of this type involves a weighted average of the
G-S result and the previous iterate; the method of successive over-relaxation (or SOR) and that approach
is now discussed. In this equation all sums are on j; for example, j p i denotes j taking on values 1,…,i-1
(and of course if i = 1, j takes on no values).

(5.14)

Comparing with Equation 5.13 ones sees that if ω = 1, one has the G-S algorithm. Of particular interest
is the case 1 p ω p 2, the over-relaxed (SOR) case in which careful choice of the parameter can
dramatically improve convergence. Rigorous studies have been done for the current type of matrices in
which the optimal values of ω are sought and the resulting improvement in the special radius ρ is
illustrated (see Isaacson and Keller1 and Varga2). The key results of these studies are briefly summarized
below.

For simplicity, assume that h = k = a/m and n = m (recall that in the latest example a = π). While true
that ρ p 1, but as already seen in the G-S case, it tends toward 1.0 as m increases, thus slowing
convergence. As defined above, let M1 = (D – I)–1 U denote the matrix for G-S. Similarly one can find
the matrix Mω for the SOR scheme in Equation 5.14 (this matrix is not used here, nor is it ever used in
computation). The theory shows that, for the optimal choice of ω, and for small h:

(5.15)

The constants c1 and c2 are roughly the same size, so the key point is that for G-S, ρ approaches 1.0
much faster (as h gets small) than does SOR with a good value of ω. For example, in the problem under
study here, Equation 5.12, Table 5.4 illustrates that with m = 15, n = 11 the convergence was painfully
slow. It was pointed out there that ρ � 0.945, explaining the convergence problem. Moreover, using
Equation 5.15, one could estimate the result of halving the step sizes; e.g., using the current h in
Equation 5.15 and solving for c1, then halving h in Equation 5.15 gives ρ � 0.997. Hence, one would
experience a terrible rate of convergence if h were halved here.

For the m = 15, n = 11 case, the optimal value of ω in SOR is about 1.5182. This results in a ρ =
ρ(Mω) � 0.523; this was the experimental result, while the theory gives the optimal ρ � 0.527. Table 5.5
summarizes numerical results comparing G-S and SOR for the m = 15, n = 11 case and the m = 23, n =
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17 case. In the latter case the spectral radii are ρ(M1) � 0.975 and ρ(Mω) � 0.709 (using ω = 1.64). In
Table 5.5 the ν refers to the G-S approximation and w the SOR approximation; and the superscripts
(25 and 50) denote the number of iterations.

The errors shown in these tables reflect both the error in the finite difference approximation and any
lack of convergence of the iterative scheme. In the case of the G-S results, the error is dominated by
lack of convergence, whereas in the SOR case an appropriate number of iterates were taken so that the
two types of errors were about the same.

A MATLAB code to do NumIts iterations using the SOR method follows. Assume that m, n, N, r, R,
ω (omega), and the data vector d have been defined. For simplicity, this code does not include the usual
refinements such as testing two successive iterates for convergence. However, it is very efficient since
no more than 6N multiplications are required per iteration. Also note that the possibly large N by N
matrix A is not required, rather only a total of five N vectors, including the data.

v1 = ones(1, N-1); % an N-1 vector of ones
for i = m:m:N-1 % zero out v1(m), v1(2m), …

v1(i) = 0; end
vm = ones(1, N-m);
vp = zeros(1, N); % set the initial solution vector to zero
omega2R = omega/(2*R);
for ctr = 1:1:NumIts % take NumIts iterations on solution v

for i = 1:1:N
vtemp = d(i);
if i > 1, vtemp = vtemp + v1(i-1)*v(i-1); end
if i > m, vtemp = vtemp + r*v(i-m); end
if i < N, vtemp = vtemp + v1(i)*vp(i+1); end
if i < = N-m, vtemp = vtemp + r*vp(i+m); end
v(i) = omega2R*vtemp + (1-omega)*vp(i);

end
vp = v; % get ready for the next iteration

end

Another refinement on iterative methods which can further improve convergence is presented next.

Line (or Block) G-S and SOR Iteration
To simplify the presentation, the concept is illustrated on the case m = n = 3 and refers to the 9 by 9
matrix A in Equation 5.11. Using the first three equations in Equation 5.11, and using the first six
components of the previous iteration for νννν, one solves a 3 by 3 system for the first three components of
a new νννν. Next consider equations 4 to 6 in Equation 5.11 and think of components ν1, ν2, ν3 as known
(since one just solved for them); and using the “old” values of ν5,…,ν9, solve for the new ν4, ν5, ν6.
Finally, using equations 7 to 9 in Equation 5.11 one similarly solves for new ν7, ν8, ν9, thus completing
one iteration. This is referred to as a line or block G-S iteration and has a slight advantage over the
above G-S (or point) scheme.

TABLE 5.5 Comparing Results of Gauss-Seidel Iterations with SOR

y T(π/2, y) �T – νννν25
m=15, n=11� �T – w22225555

m=15, n=11� �T – νννν55550000
m=23, n=17� �T – w55550000

m=23, n=17�

5/3 2.55281 0.2044 0.0030 0.2467 0.00027
4/3 1.76504 0.3273 0.0044 0.3614 0.00047
1 1.17520 0.3487 0.0041 0.4272 0.00046

2/3 0.71716 0.2799 0.0028 0.3448 0.00029
1/3 0.33954 0.1511 0.0012 0.1879 0.00009
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The line or block SOR refinement proceeds as follows. For example, suppose, as just indicated, one
has computed a line G-S triple ν1,ν2,ν3 using the first three equations of Equations 5.11. Before proceeding
to the next line, one applies the SOR weighted average as in Equation 5.14; e.g., the (new ν1) + (1 – ω)
(previous ν1). One advantage of this approach is that in each iteration one, in general, solves n systems
of m by m equations in which the matrix involved is especially easy to compute with. For example, in
the current example one repeatly solves systems of the type:

Even in the general m case such matrices are very efficiently solved due to the simple diagonals (the
–1s) below and above the main diagonal. Each such m by m system can be solved in order m operations
(in comparison to order m3 operations if the matrix were full); of course there are n such solutions to
complete an iteration.

The line SOR method has a so-called  improvement over the simple (or point) SOR. More precisely,
recall that in Equation 5.15 ρ(Mω) � 1 – c2h if an optimal ω is used in the point SOR. Once again,
assuming k � h, for the line SOR this improves to ρ(Mω

line) � 1 – c2h. To illustrate the effect of this
improved spectral radius, in the sixth column of Table 5.5 is shown the error associated with 50 point
SOR iterations. Had a line SOR been used, comparing the two ρ values indicates that one could have
achieved the same accuracy with about 33 iterations.

A refinement that is often used when a very large N = mn is needed, the alternating direction iteration,
is attributed to Peachman and Rachford. Briefly the idea is to take a (horizontal) line SOR iterate, as
just discussed, to get an estimate for νννν. Then do a vertical line SOR (i.e., in the present case, in the y
direction) to further improve νννν; this constitutes one iteration. This method will offer substantial improve-
ment on the rate of convergence if carried out properly. However, to be effective the method requires
that one use not one parameter, ω, but a sequence of them to be applied cyclically. Since the algorithm
is considerably more complex, it is only practical when a very large amount of calculation is required
and the same matrix A repeatedly used.

For a more technical treatment of these and other issues, see Isaacson and Keller.1 For more detail
on iterative methods, see Varga.2 For a broad introduction to finite difference methods in heat transfer,
see Özisik.3

Dealing with Boundary Conditions

The examples discussed so far assumed, for simplicity, rectangular domains, and divided the intervals
involved into equal step sizes. In general, domains may be much more complex in structure, for example
curved in places. Thus, one is faced with modifying the finite difference scheme at, and near, the boundary.
As mentioned at the start of this section, complex boundaries provide an inherent advantage to the finite
element method, to be discussed shortly. In this short section an introduction is given into how one
accommodates the finite difference method to handle more “interesting” boundaries.

The Dirichlet Boundary Condition

Assume that one is solving Laplace’s equation

with points specified on the boundary. In particular, one needs to modify the difference approximation
of Equation 5.9 for those points (xi, yi) near the boundary. For example, consider the points in Figure 5.2.
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For convenience, denote the five points in question with a local labeling 0,…,4 with point number 1
being the central point. The goal is to approximate the two derivatives in Laplace’s equation at the point
labeled by 1, which represents the point (xi, yj). Note that the two points labeled by 0 and 3 are on the
boundary, hence T is known there; whereas at the other three (interior) points T is part of the unknown
vector in Equation 5.11. The problem, as illustrated by Figure 5.2, is that boundary points 0 and 3 are
not full steps (h and k) from central point 1; so new approximations for Txx and Tyy are needed. For
Txx(xi, yj), expand in Taylor series about the point 1 to obtain:

where again H.O.T. represents terms of order h3 and higher. Forming the sum αT2 + T0, dropping the
H.O.T. terms, and solving for Txx gives

Note that when α = 1 this reduces to the familiar approximation to Txx. Similarly, expanding T3 = T(xi, yj +
βk), as above, one gets the approximation to Tyy; then adding the two gives

(5.16)

This second line then replaces the corresponding terms in Equations 5.10 and 5.11. In particular, the
diagonal element 2R in Equation 5.11 is replaced by the new coefficient of T1 = T(xi, yj); i.e.,

Hence, for each interior element near the boundary, as the point 1 in Figure 5.2, the corresponding
diagonal element of A in Equation 5.11 must be modified; and for the adjacent interior points, like the
points 2 and 4, those corresponding elements in A must be altered via Equation 5.16. Moreover, for

FIGURE 5.2 Points on and near boundary.
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those points on the boundary, like 0 and 3, the corresponding data in the right side of Equation 5.11
must be modified according to Equation 5.16.

The Flux Boundary Condition
Here is an indication of how flux (or Neumann) conditions are handled when faced with an irregular
boundary. Again the two-dimension Laplace equation is considered, but now with the normal derivative
specified on the boundary:

The situation is illustrated in Figure 5.3 where, as above, the locally labeled points 0,…,4 are involved
in the usual 5-point approximation to Txx and Tyy at point 1. Again, the central point 1 represents the
point of interest, (xi, yj).

For the problem illustrated here, points 0 and 3 are outside the domain; hence, the values of T at these
points must be replaced by taking advantage of ∂T/∂n in the vicinity. Focusing on point 0, let d denote
the distance between points 0 and 6, where point 6 results from the normal to the boundary being
extended, as shown in Figure 5.3. One approximates the flux condition by (T0 – T6)/d = g, where g is
evaluated at point 7; hence one can eliminate T0 in favor of T6. Then T6 can be eliminated by, for example,
linearly interpolating between T4 and T5. In the same way point 3 can be eliminated.

Summarizing, point 1 represents point (xi, yj) which corresponds to a certain row in matrix A, let’s
say row k. Points 2 and 4 in Figure 5.3 have their usual influence in row k — plus effects of the linear
interpolation discussed above. The temporary points 0 and 3 have their influence represented by other
interior points (specifically points 1, 2, 4, and 5) and the boundary conditions. So row k of A must be
modified as outlined, specifically at the columns related to points 1, 2, 4, and 5. This type of modification
must be done for every interior point that is similarly near the boundary.

Both of the treatments of the boundary conditions suggested in this discussion are less accurate than
the usual 5-point approximation to Txx and Tyy (which is O(h2)). In contrast, both approximations
introduced here are O(h). However, it has been shown that, in spite of this, for elliptic problems with
smooth boundaries one still can expect the overall finite difference approximation to the entire problem
to be of order O(h2). For more details see Birkhoff and Lynch.4

Conclusions on Direct and Iterative Methods

It is frequently an important decision whether to use a direct method (e.g., Gaussian elimination) or an
iterative scheme to solve a system of linear equations. Moreover, one’s decision may change depending
on the hardware and software available. For example, as PCs and engineering workstations become
faster with larger main memory and disk capability, one may be able to solve a very large system using

FIGURE 5.3 Applying flux condition.
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a direct method and double-precision arithmetic — an option not available a few years prior. Very user-
friendly software is available and, when feasible, direct methods are usually the “cleaner” way to proceed.

On the other hand, even with a well-equipped computer it may not be feasible to attack problems
requiring matrices of size 1000 by 1000 or larger with a general-purpose package (e.g., MATLAB,
Maple, Mathematica). Even with the sparce matrices of the type considered above, with only five nonzero
diagonals, as Gaussian elimination is performed the matrix tend to “fill out” as one proceeds in the
calculation. Thus, these computations become nearly as time-consuming as with a “full” matrix (and
solving a full N by N system takes nearly N3 numeric operations). So it is important in solving such
systems to take advantage of their special structure; and iteration is usually best suited for this. As was
illustrated above with the MATLAB code for the simple SOR algorithm, one does not have to form
these extremely large matrices consisting of mostly zeros. In that case, only 6N multiplications per
iteration were required; so one can afford to take numerous iterations, as opposed to forming and solving
the problem by Gaussian elimination.

5.3 Finite Element Method

The method of finite differences dominated the scene in the numerical solution of partial difference
equations (PDEs) for decades. A new technique arrived on the scene in the 1960s and has gathered
momentum since — to the extent that it has become the method of choice for many areas of engineering.
It is the finite element method (FEM). Briefly, any two- or three-dimensional object can be subdivided
into a finite number of pieces (or elements) which at least approximates the original figure. The PDE is
expressed in an equivalent integral expression which is “solved” on each element and then collected
into an approximate solution for the entire domain. In particular, very complex boundaries can be
accommodated quite routinely by the FEM in contrast to the difficulties encountered by such boundaries
with finite differences (as illustrated in earlier). In the next several subsections the FEM method will be
applied to a steady-state (elliptic) PDE.

In addition to the relative ease of handling complex boundaries, the FEM became a very natural
extension of modern CAD/CAM software with which users can quite painlessly design complex struc-
tures. Hence, once a three-dimensional solid is formed via CAD/CAM software it became relatively
easy (but by no means trivial) to form a finite element mesh and proceed to attack the integral form of
the problem. So, well-established engineering software companies expanded their products to provide
FEM solutions to a host of problems, including those involving heat transfer.

FEM Concept

Suppose one is confronted with a boundary value problem involving an elliptic PDE; for example, a
simple heat conduction equation with the temperature specified on the boundary; such as the problem
in Equation 5.12. One approach is to express this problem by an equivalent one of minimizing the value
of a related integral. This integral can be derived in several ways, to be discussed over the next several
subsections. For example, the solution of problem in Equation 5.12 above is equivalent to minimizing
the functional I [T] given by:

This is the so-called energy form of the problem and, remarkably, the solution to the original BVP is
the same as the function T that minimizes I [T] for all functions satisfying the boundary conditions of
Equation 5.12. More on this subject in a later subsection.

Now briefly consider the problem of minimization for the functional I. What is done in every FEM
approach is to first divide the domain of interest (e.g., in Equation 5.12 the rectangle 0  x  π, 0 
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y  2) typically into a number of small triangular or square regions (or elements). Then one seeks to
approximate the function T as follows:

(5.17)

where the γi are constants to be determined and the φi are functions of very special kind and related to
the type of element. To find the approximate minimum to function T, the form of Equation 5.17 is
substituted into I[T] above and one takes the N partial derivatives ∂I/∂γi. This leads to N linear equations
in the unknown γi.

We later present a discussion of the more popular elements, together with their accuracy and appli-
cation. Once the type of element is chosen, the approximating functions φi are usually prescribed. For
example, if one has chosen triangles as the basic elements with only the three vertices of each triangle
involved, then each φi is a piece-wise linear function of x and y, linear on a particular triangle. Such
functions will be discussed in detail later.

Before delving into the details of the meshing process and solving for the approximation in
Equation 5.17, the most common way to convert a BVP to a functional problem is presented next.

Weighted Integrals and Weak Forms of the Heat Equation

The above brief discussion of the energy functional approach is relatively restricted in its application,
whereas the following approach is applicable to essentially any BVP of practical interest. It leads to
another variational form of the problem using weighted integrals.

Using the compact notation Tx = ∂T/∂x = ∂x(T), consider the following fairly general form of the
steady-state heat conduction equation:

(5.18)

Basic to the FEM is to express the so-called weighted integral form of a (typically approximate) solution.
That is, one takes the error (or residual) in an approximation, multiplies by a weight function w and
integrates over the domain D of interest to get

(5.19)

This is a weak form of Equation 5.18 in the sense that if T solves Equation 5.18 then clearly Equation 5.19
is satisfied for any reasonable function w. The converse is not true without further restrictions on T and
w; and that issue is now discussed. As Equation 5.19 now stands, T should have two continuous (or at
least integrable) derivatives. To lessen this “smoothness” restriction on T, “integrate-by-parts” by applying
the following form of Green’s theorem. Let νννν = (ν1, ν2) be a smooth vector function and denote ∇·νννν =
∂xν1 + ∂yν2. Green’s theorem can be expressed:

(5.20)

where Γ is the boundary of D traversed in the usual counterclockwise direction, and n = (n1, n2) is the
outer normal. Now apply Equation 5.20 with νννν = (p1Tx, p2Ty) to the differential terms in Equation 5.19
to get:

(5.21)
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This is another and more desirable weak form of the differential equation and it contains a suggestion
regarding boundary conditions on Γ. Finally, add a quite general set of boundary conditions for the
Equation 5.18 to get the BVP:

(5.22)

Here Γ1 and Γ2 make up the complete boundary Γ. The first condition, on Γ1, is called the essential
boundary condition and note that if Γ1 = Γ (hence, no Γ2), one has the Dirichlet problem. If there is the
second boundary condition (on Γ2), it is called the natural condition. The term natural is partly explained
by the fact that in Equation 5.21 to evaluate the integral over Γ, one knows the integrand, namely wg
(at least on the portion Γ2; more on this below). Moreover, should g = 0, this integral would be 0. On
the other hand if, for example, one had the condition of the normal derivative ∂nT = n1Tx + n2Ty = g on
Γ, one would not have the information to perform this integration in Equation 5.21, unless of course
p1 = p2 = constant. The natural boundary condition comes up frequently in variational approaches and
physically it represents the flux across the boundary.

Now address the question: in what sense does a solution of the weak form in Equation 5.21 provide
a solution the original BVP in Equation 5.22? If T satisfies the essential boundary condition T = f on
Γ1 and Equation 5.21 is satisfied for a “complete” set of weight functions (also called test functions) w,
then the BVP is also satisfied by this T. The term “complete” is highly technical and will not be defined
here (see Oden and Reddy5). Rather, a typical set of weights w and a typical approximate solution T
will be illustrated in the examples to follow.

Another concern in Equation 5.21 is that the line integral is over the entire boundary Γ, whereas in
the BVP (5.22) the natural condition is only specified on Γ2. Hence, if Γ2 � Γ, one has the problem of
evaluating the complete line integral in Equation 5.22. This is technically taken care of by insisting that
the test functions w are zero on Γ1, in which case the line integral in Equation 5.21 is only over Γ2. This
is also illustrated in the example problems to follow.

To provide an overview of the approximate solution of Equation 5.21, the FEM approach is simplified
a bit. Consider an approximation to T in the form

(5.23)

where the φj are the basic functions (typically piece-wise polynomials) and the γj are constants to be
determined. The weight functions w are a compatible set of functions, the most popular being the φj .
This approach is called the Galerkin method, an approach used in solving a host of different problems
in the physical sciences. So, in Equation 5.21, use w = φi and T as in Equation 5.23 to get:

(5.24)

−∂ ( ) − ∂ ( ) =

=

+ =

x x y y

x y

p T p T Q

T f

n p T n p T g

1 2

1 1 2 2

  ,

.

on   

on   

1

2

Γ

Γ

T x yj j

j

N

~ , ,γ φ ( )
=

∑
1

p p dx dy

Qdx dy g s ds i N

x i x j y i y j j

j

N

D

i

D

i

1 2

1

2

1

∂ ∂ + ∂ ∂( )

= + ( ) = …

=
∑∫∫

∫∫ ∫

φ φ φ φ γ

φ φ  ;     , , .
Γ

© 2000 by CRC Press LLC



5-17
Put this in matrix form Kγ = β where γ = (γ1,…,γN), vector β is computed from the right side of
Equation 5.24, and matrix K is defined by the left side of Equation 5.24,

(5.25)

The matrix K is called the stiffness matrix and is a central feature of the Galerkin method. What is
essential is that this matrix is invertible so that one has a unique solution of Equation 5.24 for the
unknown γi. In the example of the FEM to follow, the situation will be a bit more complex than this
outline, but the essential features will be illustrated.

A Simple Example of the FEM

Consider the “thin plate” shown in the Figure 5.4 below. The simple two-dimensional heat conduction
equation for it is

(5.26)

The Dirichlet boundary conditions on five boundary sections, making up Γ1 in Equation 5.22, are T(x,0.3) =
2.7 – 0.3x, T(0,y) = 3 – y, T(x,0) = 3, T(x, 0.1) = 2.9 + 0.1x, and on the right-most diagonal section T =
2.6 + 1.4x – x2. Finally, the Γ2 section of the boundary has the normal (flux) condition ∂nT(0.2,y) =
∂xT(0.2,y) = y. It is easily verified that the solution to the resulting BVP is T = 3 – y (1 – x).

The domain is divided into a rather crude finite element mesh of 13 triangles, as shown in Figure 5.4.

Provided here is a simplified version of the usual FEM notation for ease of presentation. Note the
labeling of the 13 vertices (or nodes) of the resulting mesh; they will be referred to as E1,…,E13 in the
text, but they are labeled by 1,…,13 in Figure 5.5. Associated with each node Ei, one defines a basic
function φi as a piece-wise linear function with the following property: φi = 1 at the ith node and zero at
all other nodes. For example, φ3 = 1 at node E3 = (0.2, 0.2) and zero at adjacent nodes (labeled 1, 2, 4,
13) and all other nodes. So geometrically, the graph of φ3 has the value 1 at node 3 and slopes linearly
to 0 at the four adjacent nodes.

To show how a basic function is created, φ3 is defined on the triangle (3,1,2), i.e., formed by nodes
3, 1, and 2. The idea is made more general by defining, and (x1, y1) = (0.2, 0.2), (x2, y2) = (0.1, 0.2),
and (x3, y3) = (0.1, 0.1). To solve for φ3 = a + bx + cy on this triangle, one solves the system:

FIGURE 5.4 The domain and 13 elements.
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Solving this system results in φ3 = –1 + 10x. Similarly solving for φ3 on triangle (3,2,13) gives φ3 =
–1 + 10y, and on triangle (3,4,1), φ3 = 1 + 10x – 10y. Again, φ3 = 0 on the rest of the domain. In a similar
manner the basic functions are defined for each node.

The next step is to set up the equations for the coefficients γj in the representation T ~ � γjφj(x, y). In
the FEM the γj are determined so that all boundary conditions are satisfied at those nodes. In the current
case, the Γ1 conditions immediately give the values for γ4,…,γ13 since the corresponding φj values are
1.0 at these nodes. Using the Dirichlet conditions given above, one can evaluate γ4,…,γ13 to get,
respectively, 2.76, 2.73, 2.7, 2.8, 2.9, 3.0, 3.0, 3.0, 2.93, 2.92. So in this example one needs only to
solve for the coefficients γ1, γ2 corresponding to the two interior nodes E1, E2; and for γ3 corresponding
to the node E3 on the Γ2 portion of the boundary. Hence, one needs to solve a 3 by 3 system of linear
equations. To that end, express Equation 5.24 in the current setting in which p1 = p2 = 1 and Q = 0:

(5.27)

Note that the double integral sum has been split into two pieces — the sum from 1 to 3 involve unknown
γj, whereas the second piece and the Γ2 integral involve only known quantities and are the right side of
Equation 5.27. So the left side of Equation 5.27 provides the stiffness matrix K discussed above. Also
notice that, as discussed earlier, φ1 = φ2 = φ3 = 0 on Γ1, thus justifying the line integral in Equation 5.27
being only over Γ2 (and here ds = dy). Turn now to the computation of the matrix K,

(5.28)

FIGURE 5.5 The domain and 13 nodes.
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Focus on the computation of K1,3 which involves the basic functions φ1 and φ3. From Figure 5.5 and the
definition of the φi it is clear that the integrand in Equation 5.28 is nonzero only on triangles (3,4,1) and
(1,2,3), so one only needs to compute the basic functions there. To compute the contribution on triangle
(3,1,2), first recall that here φ3 = –1 + 10x, hence, ∂xφ3 = 10 and ∂yφ3 = 0. To find φ1 on triangle (1,2,3)
one solves the system

Solving this system, give φ1 = –10x + 10y on triangle (1,2,3); hence, ∂xφ1 = –10 and ∂yφ1 = 10. Since
the area of triangle (1,2,3) is 0.005, the contribution to k1,3 is 0.005 (∂xφ3 ∂xφ1) = –0.5. In a similar manner
the contribution from triangle (1,3,4) is also –0.5; hence K1,3 = –1.0. Proceeding in the same way, one
computes the matrix K shown below in Equation 5.29. The reader is reminded that in the more general
PDE, specifically when coefficients p and q are substantial functions of x and y, the above integrations
likely must be done by a numerical quadrature. This is discussed in the next subsection.

Regarding the right side of Equation 5.27, less details are provided, but observe that everything is
known and the computations for i = 1,2,3 provide the right side in the system kγ = β. The values are
β1 = 5.53, β2 = 8.82, β3 = 2.86. The resulting system becomes:

(5.29)

Solving this linear system one gets γ1 = 2.82, γ2 = 2.91, γ3 = 2.84.
Checking the results at the three nodes E1, E2, E3 against the exact values for T = 3 – y(1 – x), shows

that the results are exact there. At E1 = (0.1, 0.2), T = 2.82 = γ1; at E2 = (0.1, 0.1), T = 2.91 = γ2; and at
E3 = (0.2, 0.2), T = 2.84 = γ3. Exact solutions for a quadratic T using the piece-wise linear basic functions
is not to be expected. The reason they are exact here is that T = 3 – y(1 – x) happens to be bilinear, i.e.,
linear on both vertical and horizontal lines (e.g., on lines x = 0.1 and x = 0.2 on which the three (originally)
unknown nodes happen to lie).

To illustrate that the above approximate solution is not exact, compare the approximate solution to
the exact solution at (0.05, 0.05) where the exact T(0.05, 0.05) = 2.9525. To compute the approximate
solution there, first note that this point is on the edge between triangles (2,8,9) and (2,9,10); and is only
affected by φ2 and φ9. In fact the approximate solution is

hence the error is 2.955 – 2.9525 = 0.0025. This is the maximum error over the entire domain, shared
by the points (0.15, 0.05) and (0.35, 0.05). This error is somewhat less than one would expect with the
piece-wise linear basic functions and the sides of the triangles being as large as 0.2. (The expected error
in FEM is a fairly complicated subject and is discussed below.) This better than expected accuracy just
experienced is due largely to the size and shape of the boundary and the fact, mentioned above, that the
exact solution is bilinear. In particular, the approximation is exact down the center of the main portion
of the domain, thus helping the solution throughout.

In this particular problem, if more accuracy is called for one could reasonably continue to use the
simple triangular mesh with smaller triangles, and in fact this problem is revisited in a later subsection
with this approach. However, when one is confronted with more complex boundaries and certainly when
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the domain is three-dimensional, it is efficient to use more elaborate elements. Some of the more popular
elements used in modern software will be discussed next.

Some Popular Finite Elements and Their Integration

The example above focused on the historically important triangular element with three nodes (the vertices
of the triangle). The key feature of such elements is that they lead to piece-wise linear basis functions,
the φj. While such approximating functions have been useful for decades in a number of areas of
application, they suffer from the fact that linear functions do not do a very good job of approximating,
e.g., quadratic, cubic, or other higher-order surfaces. More appropriate elements for dealing with prob-
lems demanding higher accuracy and/or with curved boundaries is the next subject.

Quadratic Triangular Element

Considerable detail will be given for this important case and provided are all the essential ingredients
for solving a BVP using this element. Then several other cases will be discussed in much less detail.
The idea here is simply to add to the three nodes at the vertices three additional nodes at the midpoints
of each side of the triangle. These six nodes are exactly what is needed to determine the six constants
in a quadratic in two variables:

(5.30)

In this subsection focus will be on single elements (as opposed to an entire mesh of elements). To
simplify the presentation, the element under consideration will be in a standard position, which for the
triangle will be as in Figure 5.6.

Note that for elements in “standard” position the coordinate variables ξ and η will be used, leaving
x and y for the coordinates of the original boundary value problem. Shortly it will be shown how to map
a (typically small) element in the xy-plane over to the standard element in the ξη-plane. Returning to
Equation 5.30, as before, one defines the basis functions as having value 1.0 at one node and 0.0 at the
other five nodes. This defines the constants c1,…,c6 in Equation 5.30 for each particular node. This
process leads to the following basis functions (shown in vector form):

. (5.31)

As the reader can easily verify, φ1 has values 1.0 at (0, 0) and 0.0 at the other five nodes, and similarly
for the other five basis functions. The functions in Equation 5.31 are clearly quadratic, moreover they

FIGURE 5.6 Standard (quadratic) triangle
with six nodes.
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are interpolating functions of second degree in that any quadratic polynomial can be expressed as a
linear combination of these six functions. Furthermore, for any smooth function ƒ (ξ, η), if ƒ is known
at the six nodes it can be approximated by the φi, thus

where the (ξi, ηi) are the six nodes. (If this standard triangle had sides of size h instead of 1.0, such
approximations would have error of order h3. More on this subject later.)

This is the way the standard triangle is mapped onto a much more general figure with three (possibly)
curved sides. (In FEM applications, the sides will typically be small, of size h.) Consider the following
figure (Figure 5.7) in the xy-plane in which the six nodes are used to describe, perhaps only approximately,
the sides of the figure. Since three points uniquely determine a quadratic, if the sides are at most quadratic,
then the six nodes will perfectly describe all three sides. For convenience the standard triangle is also
shown.

Given the six nodes, the mapping between the two figures is given by:

(5.32)

It is clear from the properties of the φi that the (ξi, ηi) nodes map onto the (xi, yi) nodes. As an illustration
of this mapping, consider the six (xi, yi) values: (0,0), (1,–½), (2,0), (2,1), (1,2), and (1,1). To see where
the triangle leg on the ξ axis maps, apply Equation 5.32 with these (xi, yi) values and use Equation 5.31
with η = 0 to get:

Then eliminating the ξ from these two equations one obtains y = x2/2 – x which agrees with the three
nodes (0,0), (1,–½), and (2,0), and this leg will be mapped exactly if the corresponding side in the xy-
plane is indeed parabolic.

FIGURE 5.7 Standard triangle and a typical xy image.
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In addition to the better handling of curved boundaries, the six-node triangular elements have better
interpolating accuracy compared to the three-node elements, specifically O(h3) vs. O(h2) local error. In
a modern software package the domain of interest is divided up into a fairly large number of elements.
If the boundary of the domain is polygonal (consisting only of a series of straight lines) then regular,
straight-sided, triangular elements will work well. But if the boundary is curved, one gets a much better
approximation to it by using elements with three nodes per side since this allows for a quadratic
approximation to each small piece of boundary. Figure 5.8 illustrates a portion of a domain with a curved
boundary showing regular triangles in the interior and elements with one curved side along the boundary.

Computing the Stiffness Matrix

Now consider the key issue of how the components of the stiffness matrix are computed in the current
context. For convenience, Equation 5.25 is repeated here, except now the basic functions in the xy-plane
are denoted by ψ(x, y). The symbol φ is reserved for the basis functions in the ξη-plane.

Recall from the earlier comments and the above example (starting with Equation 5.26) for a particular
Ki,j, one only has to integrate over a few elements rather than the entire domain D. So focus on single
element T* in the xy mesh and see how the integration is performed over the standard triangle; call it
T, in the ξη-plane. Changing variables and integrating over one element in the above integral:

(5.33)

where

Here H replaces the integrand in the integral on the left and J is the Jacobian matrix of the transformation,
with det(J) the determinate of the matrix. Now J can be computed using Equations 5.32 and 5.31; also
observe that each of the four components of J is a linear function of ξ and η.

Next, assemble the integrand H in Equation 5.33 by replacing the integrand in x, y by its equivalent
in ξ, η. Denoting φi(ξ, η) = ψi(x, y) and applying the chain rule:

FIGURE 5.8 A portion of the domain.
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(5.34)

This relationship can now be used to find H(ξ, η) in Equation 5.33. The partial derivatives to be replaced
appear on the right side of Equation 5.34, whereas the left side is easily computed via Equation 5.31.
Fortunately, it can easily be argued that under realistic conditions matrix J is invertible, and since its
four components are linear it is easy to invert J analytically (as shown in the next equation). Hence,
multiply Equation 5.34 by J–1 to get:

This allows one to replace the partial derivatives in Equation 5.33 by their equivalence in ξ and η, thus
providing the integrand H(ξ, η) in Equation 5.33 — unless one of the coefficients p1 and p2 vary in x
and/or y. Suppose, for example, that p1 is a function of x and y. One needs the equivalent function of ξ
and η for H in Equation 5.33. But this is simply:

where x and y are replaced by the right sides of Equation 5.32.
Finally, all the information is available to translate a particular element involved in the computation

of a Ki,j to the standard triangle and perform the integration there, the next topic.

Integration over the Standard Triangle

First, a bit of an alert. Should one have an isotropic material, hence constant p1 and p2 in the integrals
in Equation 5.33, there is a price to be paid for the change to ξ, η variables. Note that in this case, in
the xy integral in Equation 5.33, since p1 and p2 are constants, the integrand is a quadratic polynomial
in x and y, hence it can be integrated analytically. Whereas if one traces the steps in assembling H(ξ,
η) one finds that this integrand is a rational function (quotient of polynomials), and one must typically
resort to numerical integration.

In spite of the point just raised, most modern software is designed to handle more general cases (e.g.,
nonisotropic material) and proceed under the assumption that numerical integration will usually be
needed. Continue with that assumption and consider some numerical schemes for computing in integral
in Equation 5.33, that is

(5.35)

where T is the standard triangle shown in Figure 5.7 and the sum on the right represents the numerical
quadrature.

Probably the best choice of quadrature for this element results from taking as the (ξi, ηi) the three
midpoints of the sides of the triangle, and the weights ai = ⅓. This quadrature has a truncation error of
O(h3), back in the xy-plane, consistent with the local interpolation error for this six-node (quadratic
triangular) element. Little is gained for this element by using a more accurate (and more expensive)
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quadrature resulting from using more points. More accurate quadratures are appropriate if using higher-
order elements. For example, here is the four (interior) points quadrature which has a truncation error
of O(h4): (ξi, ηi) = (1/3, 1/3); ai = , (ξi, ηi) = (3/5, 1/5), (1/5, 3/5), and (1/5, 1/5)); ai = . This
completes the rather detailed treatment of the quadratic triangular element. More will be said about
handling boundary conditions later. Following are some other widely used elements.

Some Rectangular Elements

Figure 5.9 shows a standard square element with four nodes for: –1  ξ  1 and –1  η  1. Again,
the four basis functions are defined so that each function is 1.0 at one node and 0.0 at the other three
nodes. This leads to the following four basis functions:

(5.36)

Notice, for example, that φ1(–1, –1) = 1 and φ1 = 0 at the other three nodes, and it is linear on the two
adjacent sides (ξ = –1 and η = –1). However, in contrast to the case of the linear triangular element,
these functions are not linear on the entire square. For example, down the diagonal η = ξ note that φ1 =
(1 – ξ)2/4. This element is called bilinear, the term coming from the fact that using linear combinations
of these four functions one can generate all polynomials of the form c1 + c2ξ + c3η + c4ξη. This four-
node element is analogous to the three-node triangular element, although marginally better due to the
fourth (bilinear) term above. For example, they both have O(h2) local truncation error.

Finally, consider mapping of the standard square onto (typically small) elements in the xy-plane.
Analogous to Equation 5.32 above, given four points (xi, yi), the current transformation is

(5.37)

It is easy to see which figure the standard square maps onto in the xy-plane. For example, set ξ = ±1.0
in Equation 5.36; clearly both x and y in Equation 5.37 become linear functions of η, say x = a + bη
and y = c + dη. Eliminating η gives y as a linear function of x, so the image of the two vertical sides

FIGURE 5.9 Standard four-node square.
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of the standard square maps onto a straight lines. Similarly for the horizontal sides; hence, the standard
square maps onto arbitrary quadrilaterals in the xy-plane. Next, a more accurate element is considered.

The Serendipity Element

This widely used element starts with the standard square and adds four nodes at the midpoints of the
sides, as shown in Figure 5.10. At each of the eight nodes one defines the basis functions in the usual
way, having value 1.0 at one node and 0.0 at the other seven nodes. The reader can verify that the
following basis functions do the job:

(5.38)

Also note that on any side (ξ = ±1 or η = ±1) each φi is a quadratic function of the other variable (or
identically zero) and, as mentioned above, passes through all three nodes on that side. For example, for
φ1 with η = –1, one has φ1 = –½ξ(1 – ξ), which has the advertised values of 1.0 at (–1, –1) and 0.0 at
the other nodes on this side.

This eight-node element is analogous to the six-node triangular element, e.g., both have local truncation
error of O(h3). However, these basis functions are not quadratic except on horizontal and vertical lines.
For example, down the diagonal η = ξ all of the φi are cubic functions. It can be shown that linear
combinations of these basis functions form all polynomials of the form:

(5.39)

Notice that the last two terms in Equation 5.39 are cubic and are not present in the analogous expression
for the quadratic triangular element. These extra terms give the current element slightly more accuracy,
but as mentioned above, the two elements have the same order of accuracy.

Along with the relatively good accuracy of this element is the fact that the standard square maps onto
four-sided elements with curved (quadratic) sides. As before, the transformation is

(5.40)

In this case the eight (xi, yi) points will outline a four-sided figure with (possibly) curved sides as in
Figure 5.10. The mapping of Equation 5.40 then takes the standard square onto the corresponding figure
in the xy-plane.

The work in forming the integrals defining the stiffness matrix proceeds as above with the six-node
triangular element leading to Equation 5.33, except now the integration is over the standard square.
Rewriting Equation 5.35 for the current setting one has:
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(5.41)

Briefly consider the approximation of the integral on the right. Since the current eight-point element has
O(h3) local truncation error, the chosen quadrature should have at least that accuracy. Most modern
software packages use Gaussian quadrature which provides very high accuracy with relatively few
quadrature points. Several quadratures are given below, first for a single integral of the form:

. (5.42)

By judicious choice of points ξi and weights wi, Gaussian quadratures using n points provides an
approximation that is exact for all polynomial of degree less than 2n. Moreover, recall that the interval
[–1, 1] typically corresponds to an interval of size [–h, h] in the original xy system, and on the small
interval, an n-point Gaussian quadrature has an error of order O(h2n).

Here is a short list of Gaussian schemes. Provided are the points for ξ  0 since the points and weights
are symmetric about the origin. The weights are in parentheses.

n = 1: ξi = 0.00000000 (2.00000000)
n = 2: ξi = 0.57735027 (1.00000000)
n = 3: ξi = 0.00000000 (0.88888889) and 0.77459667 (0.55555556)
n = 4: ξi = 0.33998104 (0.65214515) and 0.86113631 (0.34785485)

For example, using n = 2 points leads, when translated to [–h, h], to a quadrature error of O(h4) and n =
3 points an error of O(h6). Very likely either of these quadatures will prove adequate and be consistent
with the accuracy of the element approximations. Recall that the eight-node square element itself has a
interpolation error of O(h3).

Finally, consider how this type of quadrature is applied to the standard square. For a set number of
points, n, one uses the same quadrature for integration in both ξ and η and proceeds by first defining
function g and its approximation, for each ξ in [–1, 1]:

Then applying the quadrature to g one has:

FIGURE 5.10 The eight-node square and an xy image.
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For example, if n = 3 one would need to evaluate ƒ at the nine points shown in the figure below.

Before leaving the standard square and two-dimensional elements, one more widely used element is
mentioned. It has the eight nodes of the above Serendipity element plus one at the center of the square,
(0, 0). This element is marginally more accurate than the Serendipity element since it is able to provide
one more term to the type of polynomials that it can represent, which are

Compare this with Equation 5.39. Because of the form, this element is called biquadratic. The basis
functions are not given here (see Reddy and Garling9). They are considerably more complex than the
basis functions for the Serendipity element (fourth-order polynomials as opposed to cubic), so in most
problems the slight improvement in accuracy does not justify the additional expense of evaluation.

Three-Dimensional Elements

Here, a small sampling of three-dimensional elements are shown; first, a linear brick element, then a
quadratic triangular-sided (tetrahedral) element.

Possibly the most widely used three-dimensional element is the linear brick element based on the
cube shown in Figure 5.12, also shown is a typical image in xyz-space.

FIGURE 5.11 Guassian quadrature points.

FIGURE 5.12 The standard brick and image.
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The basis functions are easily shown to be

(5.43)

Notice on any edge (e.g., η = –1 = ζ) each function is linear, but this is only true (once again) on lines
parallel to the coordinate axis. For example, down the diagonal ξ = η = ζ each basis function is cubic.
The mapping to the xyz system is given by

(5.44)

To see the image of an edge of the brick, take, for example, ξ = η = 1. Then, from Equation 5.43, clearly
all the φi are linear functions of ζ; hence, from Equation 5.44 x, y, and z are linear functions of ζ. It
follows that this edge maps onto a line. Similarly each edge maps onto a straight line and, hence, the
brick maps onto a six-sided solid with straight edges. (However, the sides are not planar unless the four
determining xy points are in a plane.)

Another popular, and more accurate, three-dimensional element is analogous to the eight-node square
Serendipity element. It is the 20-point brick with nodes at the 8 corners, as above, plus 1 at each of the
midpoints of the 12 edges. It will have quadratic behavior, i.e., in terms of accuracy and representing
edges. However, the basis functions themselves are fourth polynomials in ξ, η, and ζ; hence, they are
relatively expensive to deal with. For more details see Reddy and Gartling.9

In practice it often makes sense to use a simple linear element
(like the eight-node brick above) for the interior of the domain
under study, then go to a higher-order (often quadratic) element
to better represent the boundary. As mentioned earlier, a qua-
dratic element does a much better job of approximating a curved
boundary. Two such possibilities are now discussed.

An efficient second-order element is the ten-node triangular
shaped (tetrahedral) element. Figure 5.13 shows the standard
version of this element.

One can easily verify that the following basis functions do
the usual job of taking on values of 1.0 at one node and 0.0 at
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FIGURE 5.13 The 10-node tetrahedra.
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the other nodes. Note that they are optimally efficient in that there are only 10 of them (the minimum
number) and each one is quadratic (the minimum order).

(5.45)

Moreover, linear combinations of these functions will represent any quadratic polynomial:

Again, the mapping into the xyz system is provided by Equation 5.44, except the sum is over 10 basis
functions.

Another element that is particulary useful in connection with
the interior linear brick elements is the quadratic prism element
whose standard form is shown in Figure 5.14.

As an example of its utility, if a linear brick element near the
boundary places two of its nodes on the boundary, one can, e.g.,
fill in above and beside the brick element with the quadratic prism
elements as shown in Figure 5.15. The same type of fill-in can be
accomplished using the quadratic tetrahedral element discussed
just above. However, it would take three tetrahedral elements to
do the job of one prism, as illustrated in Figure 5.15.

Integration in Three Dimensions

Analogous to the integration of Equation 5.41 in two dimensions
and assuming the same type of quadrature, the integration over the
brick becomes:

The weights wi are the same as discussed above. Of course, the
calculations are more involved since the matrix J is now a 3 by 3
matrix, so its inversion is more difficult. But logically the steps are
the same.
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FIGURE 5.14 The quadratic prism.

FIGURE 5.15 A block and two
prisms.
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Integration of the tetrahedral and prisms are not as straightforward as the brick above. In particular
the quadrature points (ξi, ηj, ζk) and the weights have to be modified substantially. To pursue such issues
see Davis and Rabinowitz.6

Some Boundary Considerations

In the last section some options were given for elements for the representation of the domain D involved
in the boundary-value problem of interest, Equation 5.22. Also discussed were the integrations in
computing the stiffness matrix involved in the fundamental equation:

(5.46)

Turn to the second line of Equation 5.46 which provides the right side of the vector equation and seek β
in Kγ = β. The double integral on domain D is much like that already discussed, so it will not be discussed
further. However, the last integral is of a different nature, a line integral in a two-dimensional setting and
a surface integral when in three dimensions. The computation of these integrals is the next subject.

Line Integral in Two Dimensions

Consider a portion of a boundary and an associated triangular element as shown in Figure 5.16. (Recall
that the curved “leg” of the element typically only approximates the actual boundary; but if h is
sufficiently small and quadratic elements are used this approximation should be adequate. So proceed
with that assumption.)

Consider the line integral over this key triangular leg; and denote the integral by

(5.47)

For convenience assume that the Γe is mapped from the side ξ + η = 1 of the standard triangle. Hence,
setting η = 1 – ξ in Equation 5.32 so this portion of boundary can be represent by a single parameter ξ:

(5.48)

FIGURE 5.16 Standard triangle and image on boundary.
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Here, one only needs to sum on those basis functions that affect this one side of the standard triangle
(e.g., three φj in the case of a quadratic triangular element). To perform the line integral in Equation 5.47,
change integration variable from arc-length parameter s to ξ. This is a standard calculus result:

(5.49)

where x and y are given by Equation 5.48. As a simple illustration, if one is using the linear triangular
element then, assuming φ1 and φ2 are the basis functions involved, Equation 5.48 reduces to

Differentiating this x and y one sees that the square root term in Equation 5.49 is just the distance between
points (x1, y1) and (x2, y2) on this segment of boundary. More generally, this square root term makes the
adjustment between the element’s approximation to the arc-length of Γe and the interval [0, 1].

Surface Integral in Three Dimensions

Now consider an analogous look at the situation in three dimensions. The three-dimensional version of
Equation 5.46 is

Again concentrate on the last integral, which is now a surface integral. For simplicity, assume that the
standard cube maps onto the element shown in Figure 5.17 and that the ζ = 1.0 surface of the cube maps
onto the surface area under investigation. So, referring to (5.44), but assuming n points rather than 8,
and setting ζ = 1.0 the surface section can be expressed:

(5.50)
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As before, the sums in Equation 5.50 only need to be done over those basis functions that affect the top
surface of the standard cube since Equation 5.50 will only be evaluated on that surface.

Since one now has a surface integral, the differential ds denotes an element of surface area and,
analogous to Equation 5.49, one has

The x, y, and z in the Jacobians Jk are given by Equation 5.50, and the square root term above once again
makes the adjustment between the area of the ξη-square (namely 4.0) and the area of the portion of
surface under study. So one has all the data and technique necessary to compute the surface integrals
in the right side of the key vector equation Kγ = β.

Once the elements of matrix K and vector β are computed, one is typically faced with a large system
of linear equations to solve. This system is usually solved by a direct method (i.e., Gaussian elimination)
although for some problems iteration techniques may be preferable (see Section 5.2).

Time-Dependent Problems

This subsection provides an introduction to how time-dependent problems can be approached with the
FEM. The analogue of Equation 5.18 is

(5.51)

where functions p, q, and Q can be functions of x, y, and t, while ρ may depend on x and y. As before,
multiply Equation 5.51 by weight function w, integrate over the domain D, and apply Green’s function
to get, analogous to Equation 5.21:

(5.52)

Along with the boundary conditions of the problem in Equation 5.22, one now has initial conditions
(i.e., at t = 0) defining the complete boundary conditions for Equation 5.51:

FIGURE 5.17 The quadratic brick and image on boundary.
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(5.53)

Analogous to the form of the approximate solution in Equation 5.23, seek solutions of the form

(5.54)

where the γj, previously constants, now depend on t. One applies t = 0 in Equation 5.54 to satisfy the
initial condition; hence, the constants νj(0) are determined by the function T0 evaluated at the nodal
points. The elements and nodes on D are determined just as they are for the steady-state heat equation.

It remains to obtain a system of differential equations to determine the N functions γj(t) for the time
interval of interest. As before, choose w = φi in Equation 5.52 and replace T by the form of Equation 5.54
to get:

This can be put in matrix form, analogous to form Kγ = β above,

(5.55)

To integrate Equation 5.55 numerically, the recommended approach is analogous to the Crank-Nicolson
method. Let ∆t denote the time step and γn = γ(n∆t); Crank-Nicolson in this context appears:

(5.56)

Since the second γ′ in this expression depends on values at the (n + 1)st time step, the method is implicit.
To take the time step in Equation 5.56, apply Equation 5.55 at the nth and (n + 1)st time step, and by
denoting Kn = K(n∆t) and βn = β(n∆t) obtain:

(5.57)

Finally, for each time step, the system in Equation 5.57 is solved for the new γ and Equation 5.54
provides the approximate solution for this time. Again this algorithm does not have stability problems
(demanding small time steps relative to the mesh size). Moreover, if ∆t is consistent with the mesh size
and the FEM elements are of order O(h2) or higher, one should expect this order of accuracy for the
time-dependent problem.
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Variational Forms of Elliptic Problems

Earlier in this chapter it was mentioned that some elliptic problems are equivalent to minimizing a
functional, an integral which typically represent the energy associated with the problem. This association
has a rich literature in mathematical physics, with many important applications. Therefore, following is
a brief introduction to this notion, particularly as it pertains to elliptic problems in heat transfer.

A central notion is that of a positive definite operator. Suppose the operator L of interest operates on
functions defined on some region D in the xy-plane. (Usually L is a differential operator, certainly in
this setting.) The domain of the operator, Ω(L) usually consists of those functions with certain smoothness
properties and satisfying some conditions on the boundary Γ of D. L is said to be positive definite if for
all functions u in the domain, not identically zero on D and satisfying the boundary conditions, one has

The prototype positive definite operator is the Laplacian –∆ where ∆u = uxx + uyy and the domain of
the operator is the set of functions u such that the second derivatives are continuous (or at least smooth
enough that the integral above makes sense), and u = 0 on the boundary of D. It is easy to show that
this operator is positive definite by applying a form of Green’s function as follows:

The last integral is 0 since u is assumed zero on Γ. The previous integral is positive or zero, but if zero,
then that u must be a constant, hence identically zero. Thus, operator L is positive definite. In a similar
manner many elliptic boundary value problems can be shown to enjoy this property.

The linear functional associated with many differential equations Lu = f is

(5.58)

This sets the stage for the following classical statement equating the two problems:

Let operator L be a positive definite differential operator and consider the boundary value problem:
Lu = f, u ∈ Ω(L). Function u solves this problem if, and only if, u minimizes the functional F[u]
over all u in Ω(L).

To apply this remarkable statement to the Poisson problem –∆u = f, with u = 0 on the boundary of D,
one can solve the equivalent problem of minimizing the F in Equation 5.58, where
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Again, the boundary term is zero in the application of Green’s function since it was specified that u =
0 on the boundary. To see how this relates to the FEM, seek to minimize the functional

(5.59)

and look for the approximation to this minimum in the usual form:

Substituting this form into Equation 5.59, one has

(5.60)

where the sums are on j. Now, think of F as a function of the γj and minimize F with respect to these
N values. Taking the partial derivative of Equation 5.60 with respect to γi and setting to 0:

Rearranging slightly gives

Comparing this with Equation 5.24 observe that, except for the differences in the two problems, one has
the equivalent system to solve for the unknown γ. Hence, the new approach, minimizing the energy
functional, leads to the same system as the method discussed earlier (the weighted integrals or Galerkin
method).

Before the popularity of the FEM the variational form of a problem usually referred to what is called
the energy form and the minimization the above F[u]. The growth of the FEM has stimulated much
research in the mathematical aspects of the subject, so currently it has been established that a very large
class of elliptic boundary value problems have an equivalent variational form (see Oden and Reddy5).
However, the weighted integral, or Galerkin method discussed previously, are applicable to many
problems for which there is no variational form. Hence, in practice the Galerkin method is that most
often used, for example, in modern software packages.

Error Estimates

Throughout this chapter an important concept is the order of accuracy that a particular numerical
approximation enjoys. Typically, when a scheme was said to be O(h3) this has meant that the error at a
typical point, say (xi, yj), should behave like Ch3 for small h, where C is a constant. The error analysis
for the FEM is a bit more complex in that the best estimates involve a mean or integral average of the
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error over the entire domain, say D. Following is a short discussion of the situation for a typical FEM
application.

The first type of error to consider involves how well any smooth function is approximated by using
the nodes on a single element, the interpolation error. For example, suppose one is using a two-
dimensional triangular element with six nodes; this is a quadratic element in the sense that every
polynomial in two variables of degree two or less are represented exactly using the six nodes. Hence,
the degree, k, of this element is 2. Now the standard triangle has sides of unit length, but in practice
this triangle is mapped into the real xy domain onto a three-sided figure with sides of order h (the mesh
size). In this case the interpolation error is of O(h3). More generally, a mesh is of degree k if, in the
sense just discussed, the elements exactly represent all polynomials of degree k or less.

The second, and more important, aspect of error analysis involves how well the FEM solution
approximates the exact solution to the BVP. This error is best measured using various integral norms
over the domain D of interest. Let u denote a function with enough smoothness for the following integrals
to exist. Assuming a two-dimensional setting, define a family of norm on D as follows:

and likewise for other norms �u�m. Following is a summary of the type of error bounds available. For
more details, see Strang and Fix7 or Oden and Reddy.5 Assume one’s problem involves a second-order
differential equation and that the elements used are of degree k. Denoting the error in the FEM result
by e = u – ufem, a typical result is

(5.61)

where u denotes the exact solution. For sake of illustration, assume the elements are quadratic, so k = 2.
Note that the error bound in Equation 5.61 involves �u�3, thus requiring all derivatives through order
three to be well behaved. In applying Equation 5.61 one has some choices as to just how the error
estimate is applied. In particular, if one chooses s = 0, then �e�0 is of O(h3); alternatively by choosing
s = 1 Equation 5.61 says that �e�1 is no worse than O(h2). For example, if one is only concerned with
the error in u itself, the clear choice is the s = 0 result. Also note that Equation 5.61 shows that the
degree of the mesh generally translates into a correspondingly more accurate final result.

If the errors in u and its first derivatives are of primary concern, the following statement is particularly
useful:

(5.62)

For example, again assuming k = 2, setting s = 3 shows �e�1 is of O(h2), agreeing with the Equation 5.61
result. Choosing s = 2, the result in Equation 5.62 only guarantees that �e�1 is of order h, an inferior
result to that of Equation 5.61. However, the result in Equation 5.62 has the advantage that it only requires
integral bounds on the first and second derivatives of u. So the choice in applying error bounds like
these often depends on the amount of smoothness that can be expected from the exact solution.
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These error bound results have some clear advantages in flexibility as has been pointed out. However,
they do not provide what some would consider the optimal type of error estimate, i.e., bounding the
maximum error in u and, possibly, its derivatives over the entire domain D. For example, a sharp spike
in error will tend to get averaged out and not show up in these integral bounds. However, in general, if
the boundary of the domain and any external forcing term are well behaved (e.g., no sharp cusps, etc.)
then these bounds will typically provide the user with adequate assurance.

An Example of Modern Software

There is a wide variety of software for applying the FEM method to numerous areas of engineering,
including heat transfer. Broadly speaking, this software falls into two categories. The first group are
those relatively simple programs (typically in FORTRAN or a mathematical languages like MATLAB)
designed to handle a modest class of problems with relatively few options. Some of these are offered
free to the public, e.g., included in a book on the FEM; for example, see Reddy,8 Reddy and Gartling,9

Wong and Bang,10 and Huang and Usmani.11

The second category of software includes a number of large commercial packages designed to handle
a wide range of BVPs in two and three dimensions and able to accommodate very complex boundaries.
These packages offer a large choice of elements, some of which have already been discussed. Most of
the major commercial packages are based on the CAD/CAM concept in which the domain of interest
can be constructed graphically or analytically, and the mesh size can be user-specified or determined by
the software to guarantee a specified accuracy. The mesh itself is typically generated by the software to
accommodate the details of the boundary and often the mesh shape and size is “adapted” to respond to
how fast the solution is changing throughout the domain. Consequently, these packages tend to be quite
large, demanding a well-equipped PC, or, in some cases, a workstation, and are priced accordingly.

An example of the commercial companies with major FEM capability is ANSYS, Inc. who has a
large suite of engineering software. The author was provided a complementary copy of ANSYS/Ed, a
relatively small but quite powerful educational version of their major products. These products handle
a host of linear and nonlinear engineering problems including structural analysis, dynamic analysis (e.g.,
vibration and buckling), heat transfer, electromagnetics, and acoustics. Here this software is discussed
and illustrated on the example described in Equation 5.26 and pictured in Figures 5.4 and 5.5, in which
the domain was divided into 13 elements. Using the ANSYS package, the domain is created in a GUI
(graphical user interface) environment in which the boundary is created by pointing and clicking. After
the domain is described and the boundary values specified, the mesh is determined by selecting from a
menu of elements deemed appropriate for this problem; then, in this case, the author specifies the desired
mesh size. The program then divides the domain into a number of elements of the specified size, as
shown in Figure 5.18. Finally, the solution stage is entered and the FEM solution obtain (very quickly
in this case).

Figure 5.19 shows a typical form of graphical solution (seen in black and white here, but more
effectively on a color monitor). Should numerical results be required (at each node), this can be requested,
as well as a number of other output options. The elements used in this application were the six-node,
quadratic, triangular elements discussed earlier. As the theory discussed above indicates, the error in
solution u will tend to zero like h3.

5.4 Boundary Element Method

In this section an introduction is given to an important method, the boundary element method (BEM),
which shares some features with the finite element method. The basic idea of the BEM is to again convert
the boundary value problem of interest into an integral equation; however, in the BEM one seeks the
key integral relationship over the boundary of the region of interest. This has the advantage of reducing
the dimension of the problem by one. For example, in a three-dimensional linear steady-state heat
problem, the FEM and finite difference approach lead to the fundamental linear system of equations
© 2000 by CRC Press LLC
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involving N3 unknowns. If the BEM is successful in posing the fundamental integral equation only on
the boundary, the corresponding linear system is reduced to order N2. The advantage of the BEM is
especially strong if the domain of interest is very large or infinite. Of course, there are trade-offs between
the two methods, and some of these are discussed below.

As with the finite element approach, major use is made of various forms of Green’s theorem which
relates the original integral equation, in full dimension, to values only on the boundary. A key issue is
the selection of weighting function since judicious choice can often reduce the integral over the entire

FIGURE 5.18 An ANSYS/Ed mesh for the FEM example. (Courtesy of ANSYS, Inc.)

FIGURE 5.19 An ANSYS/Ed graphical solution. (Courtesy of ANSYS, Inc.)
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domain to zero, or to a single point, thus providing the lowering of the dimension of the problem. These
concepts now will be illustrated.

BEM and a Poisson Problem

In this subsection Ω denotes the domain of interest in two or three dimensions, and Γ denotes its boundary.
The Poisson problem to be discussed is

(5.63)

where Γ = Γ1 + Γ2. A particularly useful choice of weighting function for this problem is the fundamental
solution G(x, ξ) to Laplaces’s equation. This function depends on the dimension of the problem and
will be defined below. In any dimension, such a G enjoys the property:

(5.64)

where δ(x – ξ) is the delta function with the property that when multiplied by any continuous function h(x)
and integrated over a region including fixed point ξ, it returns the value h(ξ). This feature is exploited shortly.

The first step in this presentation of the BEM is to apply Green’s identity as follows, where ξ is an
interior point (i.e., not on the boundary):

where all of the integrals are with respect to x and the differential notation specifies the entire domain
or the boundary. As before, ∂n denotes the outer normal derivative relative to the boundary. Use the fact
that ∇2T = b in the first term. Then apply the delta behavior of G in Equation 5.64 to the second term
to produce –T(ξ). Finally, rearranging terms results in

(5.65)

Equation 5.65 is the fundamental BEM relationship involving known and unknown values of T and flux
∂nT. There are two distinct uses of Equation 5.65; first, variable ξ is taken to the boundary and the result
is discretized, leading to a system of linear equations for any missing T and flux values on the boundary.
Secondly, when all such boundary values are known in the integrals in Equation 5.65, it is applied to
compute T at desired interior points. In the next section these steps are taken for a two-dimensional
problem, and later three-dimensional issues are discussed.

BEM in Two Dimensions

The problem to be discussed here is a case of Equation 5.63 in two dimensions. In this case the
fundamental solution for Laplace’s equation, ∇2G = δ(x – ξ), is

(5.66)
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It is a routine calculation to show that

. (5.67)

For simplicity of presentation, it will first be assumed that b = 0 in Equations 5.63 and 5.65; the
nonhomogeneous situation will be discussed later. To discretize Equation 5.65, one first sets ξ to a finite
number of discrete (still interior) values ξi and divides the boundary into N segments denoted by Γj.
This is expressed:

(5.68)

where q = ∂nT is the flux across the boundary. The integrals in Equation 5.68 over (typically small)
segments of the boundary are usually done numerically. The simplest case to implement is obtained by
approximating T(x) and q(x) in Equation 5.68 at the midpoint xj of each segment Γj, in which case
Equation 5.68 becomes

(5.69)

Recall that at this point the ξi values are still interior points. In order to get an integral equation for the
missing temperature and flux values on the boundary, one must let ξi the values in Equation 5.69 approach
the midpoint values (denoted by xj).

Turning now to the integrals in Equations 5.68 or 5.69, note that when ξi ≠ xj the integrals can be
integrated numerically since both F and G are continuous on segment Γj. However, when ξi = xj both
F and G are singular on that segment. The logarithmic singularity in G can be integrated routinely.
However, the singularity in F is a serious one and must be evaluated with care. Assuming that midpoint
xj is a “normal” point of the boundary (e.g., not at a corner or cusp, etc.) it can be shown that as ξ
approaches xj from the interior of the domain:

(5.70)

where PV denotes the principle value of this singular integral. For details see Brebbia et al.12

The linear system of equations for the unknown temperature and flux values on the boundary can
now be obtained. In the following, ξi also denote midpoints of the Γi. Turning to Equation 5.69, define
matrices F and G by:

Generally, these integrals need to be computed numerically. However, if the boundary is a polygon or
if one is using straight-line segments to approximate the boundary, the integrals can be evaluated
analytically. Putting aside for the moment of the complication when i = j, Equation 5.69, can be put in
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Here I is the N by N identity matrix and T is the N-vector of temperatures on the boundary. Finally, the
i = j correction in Equation 5.70 subtracts ½ from the diagonal of matrix F and results in the new matrix
H and the system:

(5.71)

Two simple cases of the current boundary value problems, Equation 5.63 with b = 0, can now be easily
addressed from Equation 5.71. First, the Dirichlet problem, in which the temperature is specific on the
entire boundary. Here vector T is known, so the product νννν = HT is computed; then Gq = νννν is solved
giving the flux values on the boundary (i.e., at the midpoints of each segment).

The second problem that follows easily from Equation 5.71 is the Neumann problem where the flux
is specified on the entire boundary. In this case, the right side of Equation 5.71 is computed, say w =
Gq, and then the system HT = w is solved for the temperatures on the boundary.

In either of these two cases, once both T and q are known at all midpoints of the boundary,
Equation 5.69 can be used to compute T(ξi) for any desired interior point.

Mixed Boundary Value Problem

The more general BVP has temperature specified on part of the boundary and flux on the rest, as in
Equation 5.63. This can perhaps be best illustrated by a simple example. Consider the BVP ∇2T = 0,
with temperature specified on the vertical sides of the rectangle in Figure 5.20 and flux specified on the
horizontal sides. Note that the boundary is divided into N = 8 segments and that the midpoints, xj, are
labeled in an unusual way which will simplify the presentation to follow.

The problem with proceeding to solve the system HT = Gq is that neither T nor q is known at all eight
midpoint values; in fact, each is known at four points. One must set up a new 8 by 8 system, say Au =
νννν, to solve for the missing temperature and flux valves. First define the unknown vector u by u = [T1,
T2, T3, T4, q5, q6, q7, q8], where the subscripts on T and q correspond to the labeling in Figure 5.20. To
construct the matrix A, equation HT = Gq is spilt so that the unknown values are on the left side and
known values on the right. For i = 1,…,8, one thus obtains:

(5.72)

FIGURE 5.20 Domain with eight BEM segments.
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Hence, the components of vector νννν are available from the given boundary conditions; and matrix A for
this problem is

Finally, after solving Au = v one has the required temperature and flux values at all midpoints of the
boundary, and again Equation 5.69 can be used to solve for interior temperatures.

Nonhomogeneous Poisson Problem

So far it has been assumed that b = 0 in BVP Equation 5.63 and integral form Equation 5.65. Without
that assumption, the key integral relationship of Equation 5.69 becomes:

(5.73)

The last term now must be computed for the N values of i and the resulting vector added to the right
side of Equation 5.71. As the notation indicates, these integrals must be computed over the entire domain;
moreover in stage two of the BEM method (applying Equation 5.73 for interior values of ξ) it will have
to be computed for each requested interior point. Hence, it is important that these integrals be computed
efficiently, much like such considerations in the FEM. This is discussed further below.

Computing Interior Derivatives

Should one need derivatives of T interior to the domain, the formula of Equation 5.73 can be differentiated
directly. For example, to compute ∂T(ξ)/∂ξ1, dropping the subscript on ξ, one gets:

From such derivatives one can, for example, compute the flux at any interior point.

A Numerical Example in Two Dimensions

To give an indication of the numerical effectiveness of the BEM, the problem in the example in
Equation 5.12 will be solved here and numerical results compared with the earlier finite difference results.
Briefly, the problem is a Dirichlet one,

with T = sinx sinh 2 on the top piece of the boundary (y = 2) and T = 0 on the other three sides. Recall
that the exact solution is T = sinx sinhy. Equation 5.69 was used as just discussed, i.e., it was first applied
to compute the flux values at the midpoints of the boundary elements, then again used to compute T at
the desired interior points. The results are summarized in Table 5.6 and the notation will be that used in
Table 5.3 (for the finite difference results), where m denotes the number of midpoints on the x intervals
and n is the number on the y intervals. In the current notation, the total number of midpoints is N = 2(m + n).

Comparing the BEM results in Table 5.6 with Table 5.3 shows that the errors are very much the same
(with BEM results, on average, slightly better). As predicted by the finite difference theory, the errors
in both cases are of order h2, where h is the (largest) side of the small rectangles in which the domain
is divided. Also comparing the two tables shows that in Table 5.3 the maximum errors tend to be toward
the center of the domain, around point (π/2, 1), and this is to be expected since in this Dirichlet problem
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the exact T is known around the entire boundary. In contrast, the errors in Table 5.6 tend to be near the
top boundary. The reason for this is that the BEM must compute approximations to the flux along the
boundary, and with these rather crude meshes this introduces substantial error in the flux, which in turn
translates into errors near the boundary.

This example shows the typical advantage of the BEM over alternative methods in that the resulting
linear system is much smaller. For example, in the m = 31, n = 23 case the finite difference approach
led to a linear system with 713 unknowns (and the same would be true for the FEM). Whereas the BEM
led to 108 unknowns. On the other hand, in both the finite difference and FEM approaches the resulting
matrices are relatively sparse (lots of zeros); so if the software being used takes advantage of this, the
computational times become more competitive. Further comparisons between the BEM and the FEM
are made shortly.

A systematic error analysis for the BEM is not presented here. As suggested by the above example,
the errors in the BEM method as presented here (i.e., taking T and flux as constant on each section Γj)
will tend to converge much as the theory for the finite difference approach. When one uses more accurate
descriptions of T and flux the approximation theory gets more complex, and more like that discussed
for the FEM earlier. One way in which the approximations can be improved follow.

More Accurate Integrations

If the type of accuracy shown in the above example is not adequate for one’s purpose, or if a large two-
dimension or three-dimension problem is involved, there are basically two ways to increase accuracy.
One is to take a smaller mesh, hence larger N, generally expecting the doubling of N to reduce the error
by a factor of four. The other alternative is to use a more accurate integration scheme in the integrals
in Equations 5.68 and 5.73. For example, consider integrals:

(5.74)

Earlier, for simplicity, T was taken to be constant over this segment Γj so that it can be factored out of
the integral. Then in computing the matrix F one only had to integrate the function F. A simple way to
improve the approximation of T (and q) without increasing the size of the resulting system of equations
is to take a linear approximation to T over Γj in Equation 5.74 and use the values of T at the two endpoints
of Γj (rather than the midpoint). This results in slightly more difficult integrals for matrices F and G,
but this typically does not matter if these are done numerically. This linear approximation to T does not
increase the size of the linear system. For details of this idea see Chapter 3 in Brebbia et al.12

Should one require yet more accurate approximations to T and q (for example, when they change
rapidly on the boundary), some sort of quadrature involving both T and F in Equation 5.74 will be called
for. To accommodate better integration accuracy and to allow for approximation to curved boundaries,
the follow approach parallels that done earlier for the FEM. First, consider a section of boundary Γj

with three points, one on each endpoint and a midpoint, labeled locally by P1 = (x1, y1), P2 = (x2, y2),
and P3 = (x3, y3). See Figure 5.21.

TABLE 5.6 Results of Solving Boundary-Value Problem 
in Equation 5.12 by the BEM

y T(π/2, y) �T – ννννm=7, n=5� �T – ννννm=15, n=11 � �T – ννννm=31, n=23�

5/3 2.55282 0.0114 0.002510 0.000567
4/3 1.76504 0.0086 0.001738 0.000392
1 1.17520 0.0057 0.001150 0.000260

2/3 0.71716 0.0033 0.000685 0.000157
1/3 0.33954 0.0013 0.000294 0.000071
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As before, consider the three quadratic functions, shown in vector form, defined on basic interval [–1, 1]:

(5.75)

Note that φ1 = 1 at η = –1 and is zero at 0, +1; φ2 = 1 at η = 0 and is zero at –1, +1; φ3 = 1 at η = 1
and is zero at –1, 0. Again, analogous to that done previously, the following provides a mapping between
Γj and [–1, 1], where the (xi, yi) are as in Figure 5.21:

(5.76)

Note that both x(η) and y(η) are quadratic functions of η. This does not say that it exactly represents
quadratic boundaries, e.g., where y varies quadratically in x; however, the mapping does provide a good
approximation to many curved boundaries.

Integrals of the type in Equation 5.74 can be translated to the interval [–1, 1] as follows.

These integrals are usually to be performed numerically and a couple observations are in order. Several
Gaussian schemes were given previously after Formula (5.42). For example, if the highly accurate three-
point Gaussian quadrature is used, all three nodes are interior in the interval [–1, 1] and this means, for
the current integral, T must be evaluated (or solved for) at three interior points on each segment Γj. The
resulting linear system will have 3N unknowns. Similarly, if the two-point Gaussian quadrature is used,
one evaluates T and F at two interior points and thus leads to 2N unknowns. Recall that Gaussian
quadratures using n points (all of which are interior) have errors of order h2n, for intervals of length h.

FIGURE 5.21 Standard interval and image on boundary.
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A popular choice is the familiar Simpson’s rule for these integrals and this also leads to system with
2N unknowns. Simpson’s rule is defined by

Like the two-point Gaussian rule, Simpson’s rule has an error of order h4 and it has the advantage of
evaluating the function at convenient points, the endpoints, and midpoint of the interval.

Higher-Order Problems and Integrations

In the last section, two-dimensional problems were considered and the resulting line integrals on the
boundary were discussed. The dimension of the BEM integrals can be increased in two ways. In two
dimensions, if one is faced with a nonhomogeneous problem, e.g., ∇2T = b then the last term in
Equation 5.73 must be dealt with, i.e.,

(5.77)

where the Ωk are two-dimensional elements of the domain. These integrals are typically approximated
by Gaussian quadrature as discussed previously, and the same methods and theory apply here. One
advantage of integrals of the type in Equation 5.77 is that they do not involved the unknown T and q
values on the boundary, hence do not affect the size of the basic linear system. On the other hand, there
can be a large number of these integrals since there are many more surface elements than the N boundary
elements. Moreover, when Equation 5.73 is applied to compute T(ξi) for a large number of interior points
there is a substantial amount of computing involved.

Three-Dimensional Problems

Clearly moving from two-dimensions to three-dimensions increases, by one, the dimension of all the
integrals being discussed. For example, integrals of the form Equation 5.74 are now surface integrals,
and the earlier quadrature discussions apply now.

One additional consideration here is that in order to keep the order of the final linear system as small
as possible, the choice of quadrature is important. For example, suppose integrals of Equation 5.74 are
involved with a Neumann problem in which T is unknown on the entire boundary. Further assume that
one is using the six-point triangular (quadratic) elements defined by Equation 5.31. A good choice of
quadrature is that discussed below Equation 5.35, namely using the three midpoints of the sides of the
triangles as nodes with weights of 1/3. The final linear system would have about 3N/2 unknowns where
N is the number of triangular elements. In contrast, if the more accurate three-point Gaussian quadrature
is applied to the triangles, the nodes are all interior to the triangles and hence, are not shared among the
elements. The final linear system would be about 3N or twice the size of the previous case. Moreover,
the nodes are at rather “awkward” locations within the elements.

Should the problem be nonhomogeneous, e.g., ∇2T = b, the integrals in Equation 5.77 would be over
(usually many, small) three-dimensional elements. For the interior elements (i.e., not part of the boundary)
the most practical elements are the eight-node bricks defined by Equation 5.43. Since these integrals do
not involve unknown quantities, an efficient Gaussian quadrature is usually best. For example, as
discussed below Equation 5.42, if a three-point (on [–1, 1]) Gaussian quadrature is used it will require
nine function evaluations on each element Ωj. Again, as discussed earlier, if the domain under study has
a curved boundary, then for those segments containing a portion of the boundary a more accurate element
may be called for. The reader is again referred to elements like the 10-node tetrahedral element defined
by Equation 5.45.
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Comparison between the BEM and the FEM

Here are some general remarks regarding the advantages and disadvantages of the two methods. First,
assume the BEM is applicable, i.e., by judicious choice of weighting function and application of Green’s
theorems one is able to reduce the dimension of the fundamental integral equation. For a linear BVP
the solution of this integral equation leads to a system of linear equation of relatively small order. For
example, if one has a three-dimensional domain divided into small cubic elements, then the resulting
linear system will involve as few as 6N2 unknown T and flux values on the surface. This problem using
the FEM, or finite difference methods, would require solving a system involving N3 unknown values at
all interior nodes. Since often N is quite large, this is the inherent advantage of the BEM.

On the other side of the coin, there are several issues. First, in the example just mentioned, the 6N2

system will be dense, with the matrix consisting of mostly nonzero elements; hence it is difficult to
avoid using the full Gaussian elimination algorithm (which takes roughly n3/3 multiplication for a system
with n unknowns). The linear system for the FEM, and the finite difference techniques, are typically
sparse, with the matrix consisting of mostly zeros. So if the software intelligently takes advantage of
the sparseness, e.g., by iteration, the disadvantage of the large N3 system can be at least partially
diminished. (Note: unfortunately, some modern high-quality software programs do not take advantage
of the sparseness.) A second issue that needs to be emphasized is that in the BEM, after all T and flux
values are found on the boundary, there is still considerable computation to be done. In particular, if
one is solving a nonhomogeneous problem, e.g., Equation 5.63 with b ≠ 0, and needs to know T at a
large number of interior points, then usually a great deal of computing is required using Equation 5.73.
Notice in Equation 5.73 that there are likely many integration to be performed over the entire domain,
so if these are not done very efficiently all previous cost benefits may be lost. Recall that in the FEM,
once the linear system is solve (for the coefficients of the basis functions) it is relatively inexpensive to
solve for a, e.g., temperature, at an arbitrary point in the domain.

In summary, if the computation for the problem under study is dominated by the solution of the basic
linear system then, if applicable, the BEM is likely the method of choice. This would be the case if, in
the latest example, the N3 order system is pressing one’s computing capacity. The BEM is especially
efficient if one has a homogeneous problem, e.g., Equation 5.63 with b = 0, and needs information at
relatively few interior points. The primary advantage of the FEM is that it is much more widely applicable
and at this time has more software choices available.

5.5 Software and Databases

Following are lists of several types of available software appropriate to problems in heat transfer and
other areas of science and engineering. These lists are by no means comprehensive, but do provide a
number of options to the interested reader. This software is divided into several groupings

General Purpose Interactive Mathematical Software
Large Subroutine Libraries for Engineering and Science
Major Engineering Finite Element Packages

General Purpose Interactive Mathematical Software

The following are among the most widely used interactive, general purpose software for doing mathe-
matics and engineering. They all have “higher level” programming capability, high-quality graphics,
extensive libraries of mathematical functions, and have substantial capacity for numerical computation.
Most of the ones listed here also have major “symbolic” capability, e.g., the ability to analytically
perform complex algebraic manipulations and calculus operations (including differentiation, integration,
power series expansions, etc.). These packages are designed for those wishing to have control over the
details of setting up and solving their problems — as opposed to the CAD-based engineering packages
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discussed below. All of the following packages continue to be refined and expanded. The Web site is
given for each of these.

Macsyma was the original major symbolic package; it was developed over a period of several
decades, primarily at the Massachusetts Institute of Technology. Originally developed for mainframe
computers, it is now available for well-equipped PCs and a variety of other computing platforms.
http://www.macsyma.com

Maple was developed in Waterloo, Ontario, Canada; it has substantial symbolic capability and is
available on a wide range of computing platforms from relatively modest PCs to supercomputers.
http://www.maplesoft.com

Mathematica is a relative newcomer to this field, but is perhaps now the most widely used symbolic
package in the world. It was developed by Wolfram Research, Inc. in Champaign, IL and is available
on a large number of platforms. (This author did the BEM computations using this package.)
http://www.mathematica.com

MATLAB was originally developed as a matrix-based package to solve linear systems of equations
very efficiently and conveniently. Over the years it has expanded to have major numerical and graphics
capability and now has over 20 “tool boxes” for performing tasks in areas like signal and image
processing, control design, and statistics. While not a symbolic package, this capability can be achieved
by interfacing with Maple. (This author used MATLAB for the finite difference computations.)
http://www.mathworks.com

The following are other packages in this general category that are worth considering: Axiom, Derive,
GANITH, Magma, Mathcad, Milo, MuPAD, Pari, Schur, and SymbMath. HiQ is a substantial package
available on the Macintosh platforms.

Large Subroutine Libraries for Engineering and Science

Following are several libraries of high-quality subroutines, written in the FORTRAN or C languages
(both, in some cases). In most cases these are in the public domain; hence, available at little or no cost,
but the IMSL and NAG libraries are commercial products. Generally, the routines in these libraries will
run on most computing platforms. Electronic addresses are provided.

CMLIB is the “core mathematics library” of the National Institute of Science and Technology (NIST).
http://gams.nist.gov

ESSL is for use on a wide range of IBM computers, and the routines have, in some cases, been tuned
specifically for IBM hardware. http://www.ibm.com

IMSL is the original commercial package of this type, developed by Visual Numerics, Inc.
http://www.vni.com

NAG is also a long-established commercial product developed by Numerical Algorithms Group. The
symbolic system Axiom is available from NAG. http://www.nag.com

SLATEC is distributed by the Department of Energy at: 
http://www.doe.gov/html/osti/estsc/estsc.html, or http://www.netlib.org/

slatec

To aid prospective users in accessing software at these and other sites, NIST has developed an on-
line, cross-indexed searching program. It guides the users through a decision tree to search for software
appropriate for their problem of interest. Once the desired software is located, abstracts, documentation,
and source code can be obtained. The address for this important site is http://gams.nist.gov

Major Engineering Finite Element Packages

This final category lists some of the well established packages for performing the FEM (or in one case
the BEM) on two- and three-dimensional problems. Typically, they are based on computer-aided design
(CAD) technology in which the object under study can be interactively designed and visualized. Then,
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for example, they can automatically divide a three-dimensional solid into elements of the appropriate
shape and number and then perform a FEM (or BEM) computation to the desired tolerance. These are
very “high level” packages, e.g., in many cases the user can describe the problem of interest in physical
terms, without specifying the partial differential equations involved. Many options exist for displaying
the computed results. (This author used the educational version of the ANSYS product line in the FEM
computation, where some of the many features of this and other similar products were discussed.)

Table 5.7 provides a sampling of the packages of this type currently available. The “Address” column
of the table shows either the Website or mailing address.
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Appendix A. Properties of Gases and Vapors

TABLE A.1  Properties of Dry Air at Atmospheric Pressure

Symbols and Units:

K = absolute temperature, degrees Kelvin
deg C = temperature, degrees Celsius
deg F = temperature, degrees Fahrenheit

ρ = density, kg/m3

cp = specific heat capacity, kJ/kg·K
cp/cv = specific heat capacity ratio, dimensionless

µ = viscosity, N·s/m2 × 106 (For N·s/m2 (= kg/m·s) multiply tabulated values by 10–6)
k = thermal conductivity, W/m·k × 103 (For W/m·K multiply tabulated values by 10–3)

Pr = Prandtl number, dimensionless
h = enthalpy, kJ/kg

Vs = sound velocity, m/s

A
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TABLE A.1  (continued) Properties of Dry Air at Atmospheric Pressure
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TABLE A.2  Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide

Symbols and Units:

T = absolute temperature, degrees Kelvin
= enthalpy, kJ/kmol
= internal energy, kJ/kmol
= absolute entropy at standard reference pressure, kJ/kmol K
= enthalpy of formation per mole at standard state = 0 kJ/kmol]

Part a. Ideal Gas Properties of Nitrogen, N2

Source: Adapted from M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd. ed., Wiley, 
New York, 1995, as presented in K. Wark. Thermodynamics, 4th ed., McGraw-Hill, New York, 1983, based on the 
JANAF Thermochemical Tables, NSRDS-NBS-37, 1971.
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TABLE A.2  (continued) Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide
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Part b. Ideal Gas Properties of Oxygen, O2

TABLE A.2  (continued) Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide
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TABLE A.2  (continued) Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide
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Part c. Ideal Gas Properties of Carbon Dioxide, CO2

TABLE A.2  (continued) Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide
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TABLE A.2  (continued) Ideal Gas Properties of Nitrogen, Oxygen, and Carbon Dioxide
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TABLE A.3 Psychrometric Table: Properties of Moist Air at 101 325 N/m2

Symbols and Units:

Ps = pressure of water vapor at saturation, N/m2

Ws = humidity ratio at saturation, mass of water vapor associated with unit mass of dry air

Va = specific volume of dry air, m3/kg

Vs = specific volume of saturated mixture, m3/kg dry air

= specific enthalpy of dry air, kJ/kg

hs = specific enthalpy of saturated mixture, kJ/kg dry air
ss = specific entropy of saturated mixture, J/K·kg dry air

ha
a
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TABLE A.4 Water Vapor at Low Pressures: Perfect Gas Behavior pv/T = R = 0.461 51 kJ/kg·K

Symbols and Units:

t = thermodynamic temperature, deg C
T = thermodynamic temperature, K

pv = RT, kJ/kg
uo = specific internal energy at zero pressure, kJ/kg
ho = specific enthalpy at zero pressure, kJ/kg

sl = specific entropy of semiperfect vapor at 0.1 MN/m2, kJ/kg·K

ψl = specific Helmholtz free energy of semiperfect vapor at 0.1 MN/m2, kJ/kg

ψl = specific Helmholtz free energy of semiperfect vapor at 0.1 MN/m2, kJ/kg

ζl = specific Gibbs free energy of semiperfect vapor at 0.1 MN/m2, kJ/kg

pr = relative pressure, pressure of semiperfect vapor at zero entropy, TN/m2

vr = relative specific volume, specific volume of semiperfect vapor at zero entropy, mm3/kg
cpo = specific heat capacity at constant pressure for zero pressure, kJ/kg·K
cvo = specific heat capacity at constant volume for zero pressure, kJ/kg·K

k = cpo/cvo = isentropic exponent, –(∂logp/∂logv)s
© 2000 by CRC Press LLC
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TABLE A.5  Properties of Saturated Water and Steam

Part a. Temperature Table
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TABLE A.5  (continued) Properties of Saturated Water and Steam
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Part b. Pressure Table

Source: Adapted from M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd. ed., Wiley, New 
York, 1995, as extracted from J.H. Keenan, F.G. Keyes, P.G. Hill, and J.G. Moore, Steam Tables, Wiley, New York, 1969.

TABLE A.5  (continued) Properties of Saturated Water and Steam
© 2000 by CRC Press LLC



 

A

 

-15

                       
© 2000 by CRC Press LLC

TABLE A.6  Properties of Superheated Steam

Symbols and Units:

T = temperature, °C h = enthalpy, kJ/kg
Tsat = Saturation temperature, °C S = entropy, kJ/kg·K
ν = Specific volume, m3/kg p = pressure, bar and µPa
u = internal energy, kJ/kg
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TABLE A.6  (continued) Properties of Superheated Steam

Symbols and Units:

T = temperature, °C h = enthalpy, kJ/kg
Tsat = Saturation temperature, °C S = entropy, kJ/kg·K
ν = Specific volume, m3/kg p = pressure, bar and µPa
u = internal energy, kJ/kg
© 2000 by CRC Press LLC
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TABLE A.6  (continued) Properties of Superheated Steam

Symbols and Units:

T = temperature, °C h = enthalpy, kJ/kg
Tsat = Saturation temperature, °C S = entropy, kJ/kg·K
ν = Specific volume, m3/kg p = pressure, bar and µPa
u = internal energy, kJ/kg
© 2000 by CRC Press LLC
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TABLE A.7  Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including Fuels and 
Refrigerants, English and Metric Units

Note: The properties of pure gases are given at 25°C (77°F, 298 K) and atmospheric pressure (except as stated).
© 2000 by CRC Press LLC
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.7  (continued) Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including 
Fuels and Refrigerants, English and Metric Units
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TABLE A.8  Ideal Gas Properties of Air

Part a. SI Units
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TABLE A.8  (continued) Ideal Gas Properties of Air
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TABLE A.8 (continued) Ideal Gas Properties of Air

Part b. English Units
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Source: Adapted from M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd. ed., Wiley, New 
York, 1995, as based on J.H. Keenan and J. Kaye, Gas Tables, Wiley, New York, 1945.

TABLE A.8 (continued) Ideal Gas Properties of Air
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Appendix B. Properties of Liquids  

TABLE B.1 Properties of Liquid Water*

Symbols and Units:

ρ = density, lbm/ft3. For g/cm3 multiply by 0.016018. For kg/m3 multiply by 16.018.
cp = specific heat, Btu/lbm·deg R = cal/g·K. For J/kg·K multiply by 4186.8
µ = viscosity. For lbf·sec/ft2 = slugs/sec·ft, multiply by 10–7. For lbm·sec·ft multiply by 10–7 and by

32.174. For g/sec·cm (poises) multiply by 10–7 and by 478.80. For N·sec/m2 multiply by 10–7 and
by 478.880.

k = thermal conductivity, Btu/hr·ft·deg R. For W/m·K multiply by 1.7307.

B
Appendix B

Properties of Liquids
© 2000 by CRC Press LLC
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TABLE B.2 Physical and Thermal Properties of Common Liquids

Part a. SI Units
(At 1.0 Atm Pressure (0.101 325 MN/m2), 300 K, except as noted.)
© 2000 by CRC Press LLC
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Appendix C. Properties of Solids

TABLE C.1 Properties of Common Solids*

C
Appendix C

Properties of Solids
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C

TABLE C.2  Miscellaneous Properties of Metals and Alloys

Part a. Pure Metals
At Room Temperature
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TABLE C.2  Miscellaneous Properties of Metals and Alloys

Part b. Commercial Metals and Alloys
© 2000 by CRC Press LLC
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D
Appendix D

SI Units
Appendix D. SI Units and Conversion Factors

Greek Alphabet

International System of Units (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and
Measures (CGPM) in 1960. It is a coherent system of units built from seven SI base units, one for each
of the seven dimensionally independent base quantities: the meter, kilogram, second, ampere, kelvin,
mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temperature,
amount of substance, and luminous intensity, respectively. The definitions of the SI base units are given
below. The SI derived units are expressed as products of powers of the base units, analogous to the
corresponding relations between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is either the
appropriate SI base unit itself or the appropriate SI derived unit. However, any of the approved decimal
prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units.

It is recommended that only SI units be used in science and technology (with SI prefixes where
appropriate). Where there are special reasons for making an exception to this rule, it is recommended
always to define the units used in terms of SI units. This section is based on information supplied by IUPAC.

Definitions of SI Base Units

Meter: The meter is the length of path traveled by light in vacuum during a time interval of 1/299 792
458 of a second (17th CGPM, 1983).
Kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the
kilogram (3rd CGPM, 1901).
Second: The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM,
1967).
Ampere: The ampere is that constant current which, if maintained in two straight parallel conductors of
infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce
between these conductors a force equal to 2 × 10–7 newton per meter of length (9th CGPM, 1958).
Kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic
temperature of the triple point of water (13th CGPM, 1967).
Mole: The mole is the amount of substance of a system which contains as many elementary entities as
there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities must
be specified and may be atoms, molecules, ions, electrons, or other particles, or specified groups of such
particles (14th CGPM, 1971). Examples of the use of the mole:

Greek
Letter

Greek
Name

English
Equivalent

Greek
Letter

Greek
Name

English
Equivalent

Α    α Alpha a Ν    ν Nu n
Β    β Beta b Ξ    ξ Xi x
Γ    γ Gamma g Ο    ο Omicron o
∆    δ Delta d Π    π Pi p
Ε    ε Epsilon e Ρ    ρ Rho r
Ζ    ζ Zeta z Σ    σ    ς Sigma s
Η    η Eta e Τ    τ Tau t
Θ    θ    ϑ Theta th Υ    υ Upsilon u
Ι      ι Iota i Φ    φ    ϕ Phi ph
Κ    κ Kappa k Χ    χ Chi ch
Λ    λ Lambda l Ψ    ψ Psi ps
Μ    µ Mu m Ω    ω Omega o
© 2000 by CRC Press LLC
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• 1 mol of H2 contains about 6.022 × 1023 H2 molecules, or 12.044 × 1023 H atoms.
• 1 mol of HgCl has a mass of 236.04 g.
• 1 mol of Hg2Cl2 has a mass of 472.08 g.

• 1 mol of has a mass of 401.18 g and a charge of 192.97 kC.

• 1 mol of Fe0.91 S has a mass of 82.88 g.
• 1 mol of e– has a mass of 548.60 µg and a charge of –96.49 kC.
• 1 mol of photons whose frequency is 1014 Hz has energy of about 39.90 kJ.

Candela: The candela is the luminous intensity, in a given direction, of a source that emits monochromatic
radiation of frequency 540 × 1012 Hz and that has a radiant intensity in that direction of (1/683) watt
per steradian (16th CGPM, 1979).

Names and Symbols for the SI Base Units

SI Derived Units with Special Names and Symbols

Physical Quantity Name of SI Unit Symbol for SI Unit

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Physical Quantity
Name of
SI Unit

Symbol for
SI Unit

Expression in Terms of SI 
Base Units

Frequencya hertz Hz s–1

Force newton N m · kg · s–2

Pressure, stress pascal Pa N · m–2 = m–1 · kg · s–2

Energy, work, heat joule J N · m = m2 · kg · s–2

Power, radiant flux watt W J · s–1 = m2 · kg · s–3

Electric charge coulomb C A · s
Electric potential, electromotive force volt V J · C–1 = m2 · kg · s–3 · A–1

Electric resistance ohm Ω V · A–1 = m2 · kg · s–3 · A–2

Electric conductance siemens S Ω–1 = m–2 · kg–1 · s4 · A2

Electric capacitance farad F C · V–1 = m–2 · kg–1 · s4 · A2

Magnetic flux density tesla T V · s · m–2 = kg · s–2 · A–1

Magnetic flux weber Wb V · s = m2 · kg · s–2 · A–1

Inductance henry H V · A–1 · s = m2 · kg · s–2 · A–2

Celsius temperatureb degree Celsius °C K
Luminous flux lumen lm cd · sr
Illuminance lux lx cd · sr · m–2

Activity (radioactive) becquerel Bq s–1

Absorbed dose (or radiation) gray Gy J · kg–1 = m2 · s–2

Dose equivalent (dose equivalent index) sievert Sv J · kg–1 = m2 · s–2

Plane angle radian rad 1 = m · m–1

Solid angle steradian sr 1 = m2 · m–2

a For radial (circular) frequency and for angular velocity the unit rad s–1, or simply s–1, should be used, and this 
may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles per second.

b The Celsius temperature θ is defined by the equation

q/°C = T/K = 237.15

The SI unit of Celsius temperature interval is the degree Celsius, °C, which is equal to the kelvin, K. °C
should be treated as a single symbol, with no space between the ° sign and the letter C. (The symbol °K,
and the symbol °, should no longer be used.)

Hg2
2+
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Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate
contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar; mega-
electronvolt, MeV; and kilotonne, kt.

Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Conversion Factors — Metric to English

Physical Quantity Name of Unit Symbol for Unit Value in SI Units

Time minute min 60 s
Time hour h 3600 s
Time day d 86 400 s
Plane angle degree ° (π/180) rad
Plane angle minute ′ (π/10 800) rad
Plane angle second ″ (π/648 000) rad
Length angstroma Å 10–10 m
Area barn b 10–28 m2

Volume liter l, L dm3 = 10–3 m3

Mass tonne t Mg = 103 kg
Pressure bara bar 105 Pa = 105 N · m–2

Energy electronvoltb eV (= e × V) ≈ 1.60218 × 10–19 J
Mass unified atomic mass unitb,c u (= ma(12C)/12) ≈ 1.66054 × 10–27 kg

a The angstrom and the bar are approved by CIPM for “temporary use with SI units,” until CIPM 
makes a further recommendation. However, they should not be introduced where they are not 
used at present.

b The values of these units in terms of the corresponding SI units are not exact, since they depend 
on the values of the physical constants e (for the electronvolt) and NA (for the unified atomic mass 
unit), which are determined by experiment.

c The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the 
name and symbol have not been approved by CGPM.

Multiple or
Submultiple Prefix Symbol

Multiple or
Submultiple Prefix Symbol

1018 exa E 10–1 deci d
1015 peta P 10–2 centi c
1012 tera T 10–3 milli m
109 giga G 10–6 micro µ (Greek mu)
106 mega M 10–9 nano n
103 kilo k 10–12 pico p
102 hecto h 10–15 femto f
10 deca da 10–18 atto a

To Obtain Multiply By

Inches Centimeters 0.393 700 787 4
Feet Meters 3.280 839 895
Yards Meters 1.093 613 298
Miles Kilometers 0.621 371 192 2
Ounces Grams 3.527 396 195 × 10–2

Pounds Kilograms 2.204 622 622
© 2000 by CRC Press LLC
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Conversion Factors — English to Metric

Conversion Factors — General

Gallons (U.S. liquid) Liters 0.264 172 052 4
Fluid ounces Milliliters (cc) 3.381 402 270 × 10–2

Square inches Square centimeters 0.155 000 310 0
Square feet Square meters 10.763 910 42
Square yards Square meters 1.195 990 046
Cubic inches Milliliters (cc) 6.102 374 409 × 10–2

Cubic feet Cubic meters 35.314 666 72
Cubic yards Cubic meters 1.307 950 619

To Obtain Multiply Bya

Microns Mils 25.4
Centimeters Inches 2.54
Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.609 344
Grams Ounces 28.349 523 13
Kilograms Pounds 0.453 592 37
Liters Gallons (U.S. liquid) 3.785 411 784
Millimeters (cc) Fluid ounces 29.573 529 56
Square centimeters Square inches 6.451 6
Square meters Square feet 0.092 903 04
Square meters Square yards 0.836 127 36
Milliliters (cc) Cubic inches 16.387 064
Cubic meters Cubic feet 2.831 684 659 × 10–2

Cubic meters Cubic yards 0.764 554 858

a Boldface numbers are exact; others are given to ten significant 
figures where so indicated by the multiplier factor.

To Obtain Multiply Bya

Atmospheres Feet of water @ 4°C 2.950 × 10–2

Atmospheres Inches of mercury @ 0°C 3.342 × 10–2

Atmospheres Pounds per square inch 6.804 × 10–2

Btu Foot-pounds 1.285 × 10–3

Btu Joules 9.480 × 10–4

Cubic feet Cords 128
Degree (angle) Radians 57.2958
Ergs Foot-pounds 1.356 × 10–7

Feet Miles 5280
Feet of water @ 4°C Atmospheres 33.90
Foot-pounds Horsepower-hours 1.98 × 106

Foot-pounds Kilowatt-hours 2.655 × 106

Foot-pounds per minute Horsepower 3.3 × 104

Horsepower Foot-pounds per second 1.818 × 10–3

Inches of mercury @ 0°C Pounds per square inch 2.036
Joules Btu 1054.8
Joules Foot-pounds 1.355 82
Kilowatts Btu per minute 1.758 × 10–2

Kilowatts Foot-pounds per minute 2.26 × 10–5

Kilowatts Horsepower 0.745712

To Obtain Multiply By
© 2000 by CRC Press LLC



D-44
Temperature Factors

Conversion of Temperatures

Knots Miles per hour 0.868 976 24
Miles Feet 1.894 × 10–4

Nautical miles Miles 0.868 976 24
Radians Degrees 1.745 × 10–2

Square feet Acres 43 560
Watts Btu per minute 17.5796

a Boldface numbers are exact; others are given to ten significant figures where so 
indicated by the multiplier factor.

From To From To

Fahrenheit Celcius
Celsius Fahrenheit

Kelvin
tF = (tc × 1.8) + 32
TK = tc + 273.15

Rankine TR = (tc + 273.15) × 18

Kelvin
Kelvin Celsius

Rankine
tc = TK – 273.15
TR = Tk × 1.8

Rankine TR = tF + 459.67 Rankine Fahrenheit tF = TR – 459.67
Kelvin

To Obtain Multiply Bya

° = °( ) +

= ( ) −

° = °( ) −[ ]
= −

= ( ) +

F C

Fahrenheit temperature temperature in kelvins

C F

Celsius temperature temperature in kelvins 273.15

Fahrenheit temperature Celsius temperature

9 5 32

1 8 459 67

5 9 32

1 8 32

. .

.

t
t

C
F=

− 32

1 8.

T
t

k
F=

−
+

32

1 8
273 15

.
.

T
T

K
R=

1 8.
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