Soft Computing for Control
of Non-Linear Dynamical Systems

Studies in Fuzziness and Soft Computing

Editor-in-chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw, Poland

E-mail: kacprzyk @ibspan.waw.pl

http://www.springer.de/cgi-bin/search_book.pl7series =294 1

Further volumes of this series can
be found at our homepage.

Vol. 42. S. Pal, G. Ashish and M. Kundu (Eds.)
Soft Computing for Image Processing, 2000
ISBN 3-7908-1217-X

Vol. 43. L.C. Jain, B. Lazzerini and U. Halici (Eds.)

Innovations in ART Neural Networks, 2000
ISBN 3-7908-1270-6

Vol. 44. J. Aracil and F. Gordillo (Eds.)
Stability Issues in Fuzzy Control, 2000
ISBN 3-7908-1277-3

Vol. 45. N. Kasabov (Ed.)

Future Directions for Intelligent Information
Systems on Information Sciences, 2000
ISBN 3-7908-1276-5

Vol. 46. J.N. Mordeson and P.S. Nair
Fuzzy Graphs and Fuzzy Hypergraphs, 2000
ISBN 3-7908-1286-2

Vol. 47. E. Czogatat and J. Eeski
Fuzzy and Neuro-Fuzzy Intelligent Systems, 2000
ISBN 3-7908-1289-7

Vol. 48. M. Sakawa
Large Scale Interactive Fuzzy Multiobjective
Programming, 2000
ISBN 3-7908-1293-5

Vol. 49. L.1. Kuncheva
Fuzzy Classifier Design, 2000
ISBN 3-7908-1298-6

Vol. 50. E. Crestani and G. Pasi (Eds.)
Soft Computing in Information Retrieval, 2000
ISBN 3-7908-1299-4

Vol. 51. J. Fodor, B. De Baets and P. Perny (Eds.)
Preferences and Decisions under Incomplete
Knowledge, 2000

ISBN 3-7908-1303-6

Vol. 52. E.E. Kerre and M. Nachtegael (Eds.)
Fuzzy Techniques in Image Processing, 2000
ISBN 3-7908-1304-4

Vol. 53. G. Bordogna and G. Pasi (Eds.)
Recent Issues on Fuzzy Databases, 2000
ISBN 3-7908-1319-2

Vol. 54. P. Sin¢dk and J. Vascék (Eds.)
Quo Vadis Computational Intelligence?, 2000
ISBN 3-7908-1324-9

Vol. 55. J.N. Mordeson, D.S. Malik
and S.-C. Cheng

Fuzzy Mathematics in Medicine, 2000
ISBN 3-7908-1325-7

Vol. 56. L. Polkowski, S. Tsumoto and T.Y. Lin
(Eds.)

Rough Set Methods and Applications, 2000
ISBN 3-7908-1328-1

Vol. 57. V. Novdk and 1. Perfilieva (Eds.)
Discovering the World with Fuzzy Logic, 2001
ISBN 3-7908-1330-3

Vol. 58. D.S. Malik and J.N. Mordeson
Fuzzy Discrete Structures, 2000
ISBN 3-7908-1335-4

Vol. 59. T. Furuhashi, S. Tano and H.-A. Jacobsen
(Eds.)

Deep Fusion of Computational

and Symbolic Processing, 2001

ISBN 3-7908-1339-7

Vol. 60. K.J. Cios (Ed.)

Medical Data Mining and Knowledge Discovery,
2001

ISBN 3-7908-1340-0

Vol. 61. D. Driankov and A. Saffiotti (Eds.)
Fuzzy Logic Techniques for Autonomous Vehicle
Navigation, 2001

ISBN 3-7908-1341-9

Vol. 62. N. Baba and L.C. Jain (Eds.)
Computational Intelligence in Games, 2001
ISBN 3-7908-1348-6

Oscar Castillo - Patricia Melin

Soft Computing
for Control of Non-Linear
Dynamical Systems

With 112 Figures
and 13 Tables

Physica-Verlag

A Springer-Verlag Company

Prof. Dr. Oscar Castillo

Prof. Dr. Patricia Melin

Tijuana Institute of Technology
Department of Computer Science
P.O. Box 4207

Chula Vista, CA 91909

USA

ocastillo@tectijuana.mx

pmelin @tectijuana.mx

ISSN 1434-9922

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek — CIP-Einheitsaufnahme
Castillo, Oscar: Soft computing for control of non-linear dynamical systems; with 13 tables / Os-
car Castillo; Patricia Melin. — Heidelberg; New York: Physica-Verl., 2001
(Studies in fuzziness and soft computing; Vol. 63)
ISBN 978-3-662-00367-1 ISBN 978-3-7908-1832-1 (eBook)
DOI 10.1007/978-3-7908-1832-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Physica-Verlag. Violations are liable for prosecution under the German Copyright Law.

Physica-Verlag Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
© Physica-Verlag Heidelberg 2001

Softcover reprint of the hardcover 1st edition 2001

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Hardcover Design: Erich Kirchner, Heidelberg
SPIN 10784664 88/2202-5 4 3 2 1 0 — Printed on acid-free paper

Preface

This book presents a unified view of modelling, simulation, and control of non-
linear dynamical systems using soft computing techniques and fractal theory. Our
particular point of view is that modelling, simulation, and control are problems
that cannot be considered apart, because they are intrinsically related in real world
applications. Control of non-linear dynamical systems cannot be achieved if we
don’t have the appropriate model for the system. On the other hand, we know that
complex non-linear dynamical systems can exhibit a wide range of dynamic
behaviors (ranging from simple periodic orbits to chaotic strange attractors), so
the problem of simulation and behavior identification is a very important one.
Also, we want to automate each of these tasks because in this way it is more easy
to solve a particular problem. A real world problem may require that we use
modelling, simulation, and control, to achieve the desired level of performance
needed for the particular application.

Soft computing consists of several computing paradigms, including fuzzy
logic, neural networks, evolutionary computation, and chaos theory, which can be
used to produce powerful hybrid intelligent systems. We believe that to really be
able to automate modelling, simulation, and control of dynamical systems, we
require the use of hybrid combinations of soft computing techniques. In this way,
we can exploit the advantages that each technique offers for solving these difficult
problems. On the other hand, fractal theory provides us with powerful
mathematical tools that can be used to understand the geometrical complexity of
natural or computational objects. We believe that, in many cases, it is necessary to
use fractal techniques to understand the geometry of the problem at hand.

This book is intended to be a major reference for scientists and engineers
interested in applying new computational and mathematical tools to modelling,
simulation, and control of non-linear dynamical systems. This book can also be
used as a textbook or major reference for graduate courses like: soft computing,
control of dynamical systems, applied artificial intelligence, and similar ones. We

vi

consider that this book can also be used to get novel ideas for new lines of
research, or to continue the lines of research proposed by the authors of the book.

In Chapter one, we begin by giving a brief introduction to the problems
of modelling, simulation, and control of non-linear dynamical systems. We
discuss the importance of solving these problems for real-world applications. We
motivate the reasons for automating modelling, simulation, and control using
computational techniques. We also outline the importance of using soft computing
techniques and fractal theory to really achieve automated modelling, simulation,
and adaptive control of non-linear dynamical systems.

We describe in Chapter 2 the main ideas underlying fuzzy logic, and the
application of this powerful computational theory to the problems of modelling
and control of dynamical systems. We discuss in some detail fuzzy set theory,
fuzzy reasoning, and fuzzy inference systems. We also describe briefly the
generalization of conventional (type-1) fuzzy logic to what is now known as type-
2 fuzzy logic. At the end, we also give some general guidelines for the process of
fuzzy modelling and control. The importance of fuzzy logic as a basis for
developing intelligent systems for control has been recognized in several areas of
application. For this reason, we consider this chapter essential to understand the
new methods for modelling, simulation, and control that are described in
subsequent chapters.

We describe in Chapter 3 the basic concepts, notation, and the learning
algorithms for neural networks. We discuss in some detail feedforward networks,
adaptive neuro-fuzzy inference systems, neuro-fuzzy control, and adaptive neuro-
control. First, we give a brief review of the basic concepts of neural networks and
the backpropagation learning algorithm. We then continue with a general
description of adaptive neuro-fuzzy systems. Finally, we end the chapter with a
review of the most important current methods for neuro-control, and some general
remarks about adaptive control and model-based control. The importance of
neural networks as a computational tool to achieve “intelligence” for software
systems has been well recognized in the literature of the area. For this reason,
neural networks have been applied for solving complex problems of modelling,
identification and control.

We describe in Chapter 4 the basic concepts and notation of genetic
algorithms, and simulated annealing. We also describe the application of genetic
algorithms for evolving neural networks, and fuzzy systems. Both genetic
algorithms and simulated annealing are basic search methodologies that can be
used for modelling and simulation of complex non-linear dynamical systems.
Since both techniques can be considered as general purpose optimization
methodologies, we can use any of them to find the model which minimizes the
fitting error for a specific problem. Also, genetic algorithms can be used to
automate the simulation of dynamical systems, because it can be used to produce
the best set of parameter values for a model of the system. As genetic algorithms
are based on the ideas of natural evolution, we can use this methodology to try
evolving a neural network or fuzzy system for a particular application. The

vii

problem of finding the best architecture of a neural network is very important
because there are no theoretical results on this, and in many cases we are forced to
trial and error unless we use a genetic algorithm to automate this process. A
similar thing occurs in the determining the optimum number of rules and
membership functions of a fuzzy system for a particular application, here a genetic
algorithm can also help us avoid time consuming trial and error.

We describe in Chapter 5 the basic concepts of dynamical systems and
fractal theory, which are two powerful mathematical theories that enable the
understanding of complex non-linear phenomena. We also describe the general
mathematical methods for controlling chaos in dynamical systems. Dynamical
systems theory gives us the general framework for studying non-linear systems. It
can also be used to for behavior identification in complex non-linear dynamical
systems. On the other hand, fractal theory gives us powerful concepts and
techniques that can be used to measure the complexity of geometrical objects. In
particular, the concept of the fractal dimension is very useful in classifying the
complexity for time series of measured data for a problem. We discuss at the end
of the chapter the problem of controlling chaotic behavior in non-linear dynamical
systems. We review several methods for chaos control based on different ideas of
how to move from a chaotic orbit of the dynamical system to a periodic stable
orbit. This is very important in real world applications, because in many cases we
need to control chaos to avoid physical damage to the system.

We describe in Chapter 6 our new method for time series analysis and
prediction. This method is based on a new hybrid fuzzy-fractal approach, that
combines the advantages of the fractal dimension for measuring the complexity of
the time series, and of fuzzy logic for constructing a set of fuzzy rules to model
the problem. We also define a new concept, which we have called the fuzzy
fractal dimension, to generalize the mathematical definition of the capacity
dimension. We show results of the application of our new method to real time
series and measure the efficiency of our new hybrid approach for modelling. This
new approach for time series prediction can be very useful for forecasting the
behavior of complex non-linear dynamical systems.

We describe in Chapter 7 a new method for modelling complex
dynamical systems using multiple differential equations. This method is a new
fuzzy reasoning procedure that can be considered as a generalization of Sugeno’s
original fuzzy inference system. Our method uses a set of fuzzy rules, which have
as consequents non-linear differential equations. Each equation is viewed as local
model, for each region of the domain of definition for a complex non-linear
dynamical system. The general idea of the approach is to simplify the task of
modelling complex dynamical systems, by dividing the domain in smaller regions
in which a simpler model can be formulated. We show the application of our new
approach to the problems of modelling complex robotic dynamic systems, and
aircraft systems. Modelling these dynamical systems can be used in controlling
their complex non-linear dynamic behavior.

viii

We describe in Chapter 8 a new method for automated simulation of non-
linear dynamical systems with a hybrid fuzzy-genetic approach. Genetic
algorithms are used, in this case, to generate the parameter values for the
mathematical models of the dynamical systems. Fuzzy logic is used to model the
uncertainty in behavior identification for a particular dynamical system. A set of
fuzzy rules can be developed as a classification scheme of the dynamic behaviors
using as information the fractal dimension or the Lyapunov exponents of the
system. We also present a new concept, which we have called fuzzy chaos, to
generalize the mathematical definition of chaos. In many cases, due to uncertainty
it is more appropriate to find fuzzy regions of specific dynamic behaviors, even
more for the complex chaotic behavior. We show results of the application of this
hybrid fuzzy-genetic approach to the problem of automated simulation for robotic
dynamic systems.

We present in Chapter 9 a new method for adaptive model-based control
of robotic dynamic systems. This method combines the use of neural networks,
fuzzy logic, and fractal theory to achieve real time control of robotic systems. Our
neuro-fuzzy-fractal approach uses neural networks for identification and control,
fuzzy logic for modelling, and fractal theory for time series analysis. We show
results of our hybrid approach for several types of robot manipulators. Robotic
systems are highly non-linear dynamical systems with a wide range of dynamic
behaviors going from simple periodic behavior to the completely unstable chaotic
behavior. In this case, chaotic behavior has to be avoided to prevent physical
damage to the robot, and also other types of unstable behavior could be dangerous
for the system. For this reason, the control of these systems is very important in
real world applications. Our hybrid neuro-fuzzy-fractal approach exploits the
advantages that each technique has for achieving the ultimate goal of controlling
robotic dynamic systems in an efficient way.

We present in Chapter 10 the application of our new method for adaptive
model-based control to the case of controlling biochemical reactors in the food
industry. We use our hybrid neuro-fuzzy-fractal approach for controlling the
complex behavior of biochemical reactors during production. Bioreactors are used
in food production plants to produce the food with the required characteristics and
level of quality. In this case, we need to control the reactor to optimize the
production and the quality of the food product. Biochemical reactors use specific
bacteria to produce chemical compounds that needed to obtain particular food
products. The behavior of these reactors is highly non-linear and requires complex
control strategies. For this reason, the application of soft computing techniques
can help in achieving the goal of adaptive control of this type of reactors. In this
case, neural networks are used for identification and control, fuzzy logic for
modelling, and fractal theory for identifying bacteria during the production
process.

We describe in Chapter 11 the application of soft computing techniques
to the problem of controlling complex electrochemical processes. Electrochemical
processes, like the ones used in battery formation, are highly non-linear and

ix

difficult to control. Also, mathematical models of these processes are difficult to
obtain. The ultimate goal, in this case, is to control the process to optimize the
manufactured product, avoiding at the same time going over the limiting
temperature value for the electrochemical reaction. We use a hybrid neuro-fuzzy-
genetic approach to control the electrochemical process during battery formation
in a manufacturing plant. Neural networks are used for modelling the
electrochemical reaction, fuzzy logic is used for controlling the process, and
genetic algorithms are used to optimize the membership functions for the fuzzy
systems using as input the measured data for the process.

We describe in Chapter 12 the application of soft computing techniques
to the problem of controlling aircraft dynamic systems. Aircraft systems, are very
complicated non-linear dynamical systems that show a wide range of dynamic
behaviors even chaos. For this reason, controlling these systems is a very difficult
task. We use a hybrid neuro-fuzzy-fractal approach for controlling the aircraft
dynamics during flight. Neural networks are used for identification and control of
the system, fuzzy logic for modelling, and fractal theory to measure the
complexity of dynamic situation. We use our new fuzzy reasoning procedure for
multiple differential equations to model the complex dynamical system. Our
hybrid neuro-fuzzy-fractal approach enables on-line real time control of these type
of dynamical systems.

Finally, we present in Chapter 13 the application of soft computing
techniques to the problem of controlling dynamic economic systems. We consider
the complex situation of the competing economies of three countries with
international trade. This economic system is highly non-linear and coupled, and
for this reason has a wide range of dynamic behaviors going from simple stable
periodic orbits to the very unstable chaotic behavior. The ultimate goal, in this
case, is to control international trade so as achieve stable economic growth and
optimize the national income. We can use mathematical models of this economic
system to simulate different kinds of behaviors and analyze the possible routes for
control. We can then use a fuzzy system with rules having as consequents
differential equations, to completely model the economic dynamic system. We can
also use neural networks to control the economic system. The neural networks can
be trained with historical data or using a genetic algorithm and simulations. Our
hybrid approach can enable the control of this complex economic dynamic
system, and illustrates that computing techniques can also be applied to problems
in economics.

Contents

Chapter 1

Chapter 2

Chapter 3

Introduction to Control of Non-Linear

Dynamical Systems

Fuzzy Logic

2.1 Fuzzy Set TheOrycc.ooevviivvivnirieieceeeee e
2.2 Fuzzy Reasoningc.cccoovveevvnenenieniceeennnnsesiennes
23 Fuzzy Inference Systemscc.ccccvvvenenvienncnnnennn,
24 Type-2 Fuzzy Logic Systemscccccovvrvvrvrerreenann.
2.4.1 Type-2 Fuzzy Setsccccovvevevrnirinreeerieeneenenns
242 Type-2 Fuzzy SyStemscccceevverrvineeerisresenrennne
2.5 Fuzzy Modellingc.cocooveveeieneneienieee e,
2.6 SUMMATY ..oorveiiiiirieiercecrerree et ee e

Neural Networks for Control

3.2
3.2.1
322

Backpropagation for Feedforward Networks
The Backpropagation Learning Algorithm
Backpropagation Multilayer Perceptions

Adaptive Neuro-Fuzzy Inference Systems
ANFIS Archit€Cturecccccoveevrnreecenreeeriseennen
Learning Algorithmc.cococoovvieeiirineiecienee,

11
15
20

21
24

Xii

Chapter 4

Chapter 5

Chapter 6

33 Neuro-Fuzzy Controlc.cccccooeeieiiiiiciiireeeeen, 44
3.3.1 Inverse Leamingcccececeievecviveenieieiceeeceeeenee 45
3.3.2 Specialized Learningc.cocoeeeveercreeenrereenennns 48
34 Adaptive Model-Based Neuro-Control 51
3.4.1 Indirect Neuro-Controlcccoeeeveveeieveereeirenenene. 51
3.42 Direct Neuro-Controlcccoevereveeeiieecieccireneere e, 56
3.4.3 Parameterized Neuro-Controlcccocoevvvuevveenennen. 61
35 SUMMATY ...ocviiieieie e 62
Genetic Algorithms and Simulated Annealing 63
4.1 Genetic Algorithmscccoovevviviviiceeiieecee. 65
4.2 Simulated Annealingccccoeevvvvieecceeieceeeene, 68
4.3 Applications of Genetic Algorithmscccoco.e..... 71
4.3.1 Evolving Neural Networksc.ccococveevverrvierirennnann. 72
4.3.1.1 Evolving Weights in a Fixed Network 73
4.3.12 Evolving Network Architecturescevveveneen, 75
432 Evolving Fuzzy Systemsccccoevevereevrereceeenene. 81
4.4 SUMMATY .o 84
Dynamical Systems Theory 85
5.1 Basic Concepts of Dynamical Systems 85
5.2 Controlling Chaoscccoveeveeeeieniiircieieeere e 90
52.1 Controlling Chaos through Feedback 93
52.1.1 Ott-Grebogi-Yorke Methodc.cccoovevvivvevveenenrnene. 93
5.2.12 Pyragas’s Control Methodsccoccoeevvivinvennennnnn. 95
5.2.1.3 Controlling Chaos by Chaosccceceereeriveerierennane. 97
5.2.2 Controlling Chaos without Feedback 99
5.2.2.1 Control through Operating Conditions 99
5.2.2.2 Control by System Designcccccceeveviivveveeveerecnennnn. 99
5223 Taming Chaosccccorvemierieririniieniiniiieseeeeneesee e 101
523 Method Selectioncccccevverievivevieinene e 102
5.3 SUMMATY ...ocviiiiiiiceeece e 103
Hybrid Intelligent Systems for Time Series Prediction 105

6.1 Problem of Time Seriés Predictioncccccvveeenee.. 105

Chapter 7

Chapter 8

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Fractal Dimesion of an Objectccccceveeviiennnnne. 106
Fuzzy Logic for Object Classification 108
Fuzzy Estimation of the Fractal Dimension 110

Fuzzy Fractal Approach for Time Series Analysis
and Predictioncceveevveiiiiinieniic e 111

Neural Network Approach
for Time Series Predictionceccovvivveeiiienicenens 114

Fuzzy Fractal Approach for Pattern Recognition 116

Modelling Complex Dynamical Systems with a Fuzzy

Inference System for Differential Equationsc..cccucuun. 119
7.1 The Problem of Modelling Complex Dynamical

SYSIEIMS .vevuvririrerirenreiirertee st e eeee e et e sreeesesesane 119
7.2 Modelling Complex Dynamical Systems with the

New Fuzzy Inference Systemccoocevevecenrennnenne. 120
7.3 Modelling Robotic Dynamic Systems with the New

Fuzzy Interence Systemcccocevveriiienenieennnnnne 122
7.3.1 Mathematical Modelling of Robotic Systems 123
7.3.2 Fuzzy Modelling of Robotic Dynamic Systems 124
7.3.3 Experimental Results........ccccoceeireveninecenineiennens 126
7.4 Modelling Aircraft Dynamic Systems with the New

Fuzzy Inference Systemcccoevvevevcieniceveerennne. 130
7.5 SUMMALY .ot 132

A New Theory of Fuzzy Chaos for Simulation

of Non-Linear Dynamical Systems . 135
8.1 Problem Descriptioncccoceevieireneeneenieneeneneens 135
8.2 Towards a New Theory of Fuzzy Chaos 136
8.3 Fuzzy Chaos for Behavior Identification in the

8.4

Simulation of Dynamical Systemsc.ccoceverenee. 137

Simulation of Dynamical Systemsc.cccocveeeene 138

Xiv

Chapter 9

Chapter 10

85 Method for Automated Parameter Selection

Using Genetic Algorithmsccccoceeeiirecinieceenenenn, 139
8.6 Method for Dynamic Behavior Identification

Using Fuzzy LogICc.cooiveviiieeiiecceceenieecieene 141
8.6.1 Behavior Identification Based on the Analytical

Properties of the Modelcccceenieiniiinnnes 141
8.6.2 Behavior Identification Based on the Fractal

Dimension and the Lyapunov Exponents 144
8.7 Simulation Results for Robotic Systems 145
8.8 SUMMATY .vvevieiriiecieeeieeen et sseee s 148
Intelligent Control of Robotic Dynamic Systems 149
9.1 Problem Descriptionccoeeeeinerieniniereeneeeee 149
9.2 Mathematical Modelling of Robotic

Dynamic SYStemSccevvrireniiveeniiriieineninceenns 150
9.3 Method for Adaptive Model-Based Control 152
9.3.1 Fuzzy Logic for Dynamic System Modelling 152
9.3.2 Neuro-Fuzzy-Fractal Adaptive

Model-Based Controlcccocoooiniiiiiiiciiiiciiin, 154
9.4 Adaptive Control of Robotic Dynamic Systems 154
9.5 Simulation Results for Robotic Dynamic Systems .. 156
9.6 SUMMATY .ocveiiieiieceeeeere e e 162
Controlling Biochemical Reactorscccoceeveeveerensnensernannee 163
10.1 INtrodUCtioncovevevivieririercireenee e 163
10.2 Fuzzy Logic for Modellingc..ocooeeinrveenneenennn. 165
10.3 Neural Networks for Controlc..ccceevvveevinennennn. 166
10.4 Adaptive Control of a Non-Linear Plant 168
10.5 Fractal [dentification of Bacteriac.c.cecceneenne 169
10.6 Experimantal ReSUILscccecvenerveceniiniiiinicins 171
10.7 SUMMATY ..ooveiiiiicrinrr e 174

Chapter 11

Chapter 12

Chapter 13

Controlling Aircraft Dynamic Systemscccocevveneersensens 175
11.1 INtroductioncccoveiiiineneecreeeeee e 175
11.2 Fuzzy Modelling of Dynamical Systems 177
11.3 Neural Networks for Controlccccoceoveerrerinnnen. 179
11.4 Adaptive Control of Aircraft Systems 180
11.5 Experimental Resultsc.ccccovioinnninnvininnn, 182
11.6 SUIMMATY ..o s 185
Controlling Electrochemical Processes 187
12.1 INroductionc.cccoevevermeennnierinieciere e 187
12.2 Problem Descriptionccccocevieeviecinenieieeiene 188
12.3 Fuzzy Method for cControlc.cceeveviverierennnne. 189
12.4 Neuro-Fuzzy Methof for Control 191
12.5 Neuro-Fuzzy-Genetic Method for Control 193
12.6 Experimental Results

for the Three Hybrid Approachesccccceeveennennen. 195
12.7 SUMMATY .eoeieiiire e 196
Controlling International Trade Dynamicsc.ccececercene. 197
13.1 Introductionccceecevrinieiinineiee e 197
13.2 Mathematical Modelling of International Trade 198
13.2.1 Oscillations in Autonomous Economies 199
13.22 International Trade as a Perturbation

of Internal Oscillationsccooevvirrcciereinnne, 200
133 Fuzzy Logic for Model Selection 201
134 Adaptive Model-Based Control

of International Tradeccccevevvvvivvieiiiiieeeee e 204

Xvi

13.5 Simulation Results for Control

of International Tradecoocooviiiiieeeeceeeeeeeee, 206
13.6 SUMMATY ..ooviiiiiieiecee et e 208
REFEIEICES erreererernenenenanesnniiensiieierssssssssessssesanssnsnssesaasensesessssssssrsressassonsonases 209

INAEX ettt ree e e e e nenannananna et aaeneeeaeeseessssseenssberererenerene 219

Chapter 1

Introduction to Control of Non-Linear
Dynamical Systems

We describe in this book, new methods for modelling, simulation, and control of
dynamical systems using soft computing techniques and fractal theory. Soft
Computing (SC) consists of several computing paradigms, including fuzzy logic,
neural networks, and genetic algorithms, which can be used to produce powerful
hybrid intelligent systems. Fractal theory provides us with the mathematical tools
to understand the geometrical complexity of natural objects and can be used for
identification and modelling purposes. Combining SC techniques with fractal
theory, we can take advantage of the "intelligence" provided by the computer
methods and also take advantage of the descriptive power of fractal mathematical
tools. Non-linear dynamical systems can exhibit extremely complex dynamic
behavior, and for this reason, it is of great importance to develop intelligent
computational tools that will enable the identification of the best model for a
particular dynamical system, then obtaining the best simulations for the system,
and also achieving the goal of controlling the dynamical system in a desired
manner.

As a prelude, we provide a brief overview of the existing methodologies
for modelling, simulation, and control of dynamical systems. We then show our
own approach in dealing with these problems. Our particular point of view is that
modelling, simulation and control are problems that can not be considered apart
because they are intrinsically related in real-world applications. We think that in
many cases control of non-linear dynamical systems can not be achieved if we
don't have proper mathematical models for the systems. Also, useful simulations
of a model, that can give us numerical insights into the behavior of a dynamical
system, can not be obtained if we don't have the appropriate model.

Traditionally, mathematical models of dynamical systems have been
obtained by statistical methods, which lack the accuracy needed in real-world
applications. We instead of the traditional approach, consider a general modelling

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

method using fuzzy logic techniques. Our modelling approach consists in a set of
fuzzy if-then rules that relate a specific mathematical model to a specific region of
the universe of discourse. We have proposed a new reasoning methodology for
multiple differential equations that can be considered as a generalization of
Sugeno's original approach. In Sugeno's original approach the fuzzy if-then rules
have polynomials in the consequent part. Instead of simple polynomials, we are
now using non-linear differential equations. The idea of our approach is to use
relatively simple models for each region of the universe of discourse, instead of
trying to use only one complicated model for the complete system. We have
applied this approach to the case of robotic systems, aircraft systems, and
biochemical reactors with excellent results. In all of these cases, the dynamical
systems have very complicated behaviors and for this reason it is very difficult to
develop a unique model for the system. Instead, we use local models for each
region of the universe of discourse and relate them by fuzzy rules to the necessary
conditions for the application of the models.

The problem of numerical simulation of non-linear dynamical systems
consists in the application of an appropriate mapping for different parameter
values, and behavior identification according to the time series generated in the
simulation. Traditionally, the simulation of a specific dynamical system is done
by, manually trying different sets of parameter values for the mathematical model,
and then checking the dynamic behaviors corresponding to these parameter
values. The problem of this approach is that is time consuming and in many cases
interesting behaviors are never explored. We have used SC techniques to automate
the process of parameter value selection for a mathematical model and then the
subsequent identification of the limiting behavior of the system. We use genetic
algorithms to evolve a population of parameter values and find at the end the best
ones for identification. Once the mapping is iterated with the best parameter
values, a set of fuzzy rules is used for behavior identification. The set of fuzzy if-
then rules represents the expert knowledge for dynamic behavior identification.
We also use the concept of the fractal dimension as a measure of the complexity
of the time series generated by the iteration of the dynamical system. The fuzzy-
fractal-genetic approach for automated simulation has been applied to different
types of dynamical systems with excellent results. As an example, we can mention
that for robotic dynamic systems we can automatically find out interesting
parameter values in the sense that interesting behavior is explored. These
simulations are useful in finding out how to control a complex dynamical system.

The problem of controlling non-linear dynamical systems consists in
finding out control laws to achieve a desired trajectory for the system. Of course,
control laws can be deduced from the mathematical models of the dynamical
system or from computational models that use real data for the problem.
Traditionally, the control of dynamical systems has been considered as a linear
control problem, i.e., linear models are used to represent the dynamical system
and accordingly linear control laws are obtained. Of course, many real world
problems have been solved to a certain degree with this approach. However, real

world dynamical systems are intrinsically non-linear in nature, and assuming that
they are linear is only a very crude approximation of reality. We have to say here
that some researchers are trying right now to generalize the results of classical
linear control theory to the case of non-linear dynamical systems. However,
results have been difficult to achieve to the moment. Another approach is to use
computational models to represent the non-linear dynamical system and the
control laws needed to achieve the desired level of performance in real world
applications. Our approach is to use SC techniques and fractal theory to control
non-linear dynamical systems in real time. We use fuzzy logic for modelling the
dynamical system with a set of fuzzy rules relating the models (as differential
equations) to their corresponding regions in the universe of discourse. On the
other hand, we use neural networks for control of the dynamical system using as a
reference model the one given by the fuzzy system for modelling. Of course, the
neural network has to be trained with real control data for the specific problem.
We can also use neural networks for identification of the parameters of the
specific models used in the fuzzy rule base mentioned above. In many cases, we
also use the fractal dimension as a measure of classification for the complexity of
the problem at hand. For example, for the case of biochemical reactors we use the
fractal dimension to classify bacteria by the geometrical complexity of their
colonies. In this way, the fractal dimension is used to control the process of
production because bacteria are responsible for the quality of the food being
produced. The neuro-fuzzy-fractal hybrid approach for controlling non-linear
dynamical systems uses the best that each technique has to offer for these types of
applications. Of course, other SC techniques can also be used in controlling non-
linear dynamical systems, for example in the hybrid approach mentioned above,
we can also use genetic algorithms to find the best architecture for the neural
networks, i.e., the best number of nodes and layers of the neural network. This
genetic approach can help in the design of the intelligent control system for a
particular application.

We illustrate these ideas in this book with several real world applications.
We consider the problem of controlling robotic dynamic systems with our neuro-
fuzzy-fractal approach. The problem of robot control is how to make the system
follow a pre-specified desired trajectory while satisfying certain constraints. In
this case, fuzzy logic is used for modelling these dynamical systems, and neural
networks are used for control and identification. We also consider the use of a
fuzzy-genetic approach for automated simulation of robotic systems. On the other
hand, we consider the application of our neuro-fuzzy-fractal approach for
controlling aircraft dynamic systems. This is done similarly to the case of robots,
the main difference is in the type of models that we need to use for aircraft
dynamic systems. We can also use the fuzzy-genetic approach for automated
simulation of aircraft systems if we want to explore the diversity of dynamic
behaviors possible for this type of systems. Also, we consider the application of
our hybrid neuro-fuzzy-fractal approach for the case of controlling biochemical
reactors used for food production. In this case, mathematical models are used to

represent the population of bacteria in the bioreactor and the chemical compound
been produced by the bacteria. The problem here is how to control conditions in
the bioreactor in such a way as to optimize food production. We also consider the
problem of controlling electrochemical processes as the ones used in battery
formation. In this case, we have used a hybrid neuro-fuzzy-genetic approach for
intelligent control of the electrochemical process. The neural network is used for
modelling the process, fuzzy logic is used for control, and genetic algorithms for
evolving the fuzzy system. Of course, this is another hybrid architecture for
control of non-linear dynamical systems, but in this case we have found that this is
the most appropriate one. Finally, we also consider the problem of controlling
international trade between countries. This application comes from the field of
economics and is very important for planning the economy of a specific country.
The problem here is how to control the trade between countries in such a way as
to optimize national income and achieve stable growth of the country. We have
shown that international trade can produce chaotic unstable behavior of a system
of at least three countries under certain specific conditions. Of course, we want to
avoid this type of erratic dynamic behavior in the economy of the countries
involved. We have used a hybrid approach combining SC techniques for
controlling dynamic behavior in this type of economic systems.

The diversity of the applications considered in this book, gives idea of
the universality of the hybrid approach of combining SC techniques for
controlling non-linear dynamical systems. The best combination of SC techniques
may change because of the properties of the system under consideration, but one
can always find the hybrid architecture needed for achieving the ultimate goal of
control. Of course, we still need to do a lot of work in finding out general rules for
knowing in advance the best combination of techniques. The best architecture of
the intelligent control system has to be determined in many cases by a lot
experimental work. But at the end the rewards of this experimental work are
satisfying.

Chapter 2

Fuzzy Logic

This chapter introduces the basic concepts, notation, and basic operations for
fuzzy sets that will be needed in the following chapters. Since research on Fuzzy
Set Theory has been underway for over 30 years now, it is practically impossible
to cover all aspects of current developments in this area. Therefore, the main goal
of this chapter is to provide an introduction to and a summary of the basic
concepts and operations that are relevant to the study of fuzzy sets. We also
introduce in this chapter the definition of linguistic variables and linguistic values
and explain how to use them in fuzzy rules, which are an efficient tool for
quantitative modelling of words or sentences in a natural or artificial language. By
interpreting fuzzy rules as fuzzy relations, we describe different schemes of fuzzy
reasoning, where inference procedures based on the concept of the compositional
rule of inference are used to derive conclusions from a set of fuzzy rules and
known facts. Fuzzy rules and fuzzy reasoning are the basic components of fuzzy
inference systems, which are the most important modelling tool, based on fuzzy
set theory.

The "fuzzy inference system" is a popular computing framework based
on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang,
Sun & Mizutani, 1997). It has found successful applications in a wide variety of
fields, such as automatic control, data classification, decision analysis, expert
systems, time series prediction, robotics, and pattern recognition (Jamshidi, 1997).
Because of its multidisciplinary nature, the fuzzy inference system is known by
numerous other names, such as "fuzzy expert system" (Kandel, 1992), "fuzzy
model" (Sugeno & Kang, 1988), "fuzzy associative memory" (Kosko, 1992), and
simply "fuzzy system".

The basic structure of a fuzzy inference system consists of three
conceptual components: a "rule base”, which contains a selection of fuzzy rules; a
"data base" (or "dictionary"), which defines the membership functions used in the
fuzzy rules; and a '"reasoning mechanism”, which performs the inference
procedure upon the rules and given facts to derive a reasonable output or

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

conclusion. In general, we can say that a fuzzy inference system implements a
non-linear mapping from its input space to output space. This mapping is
accomplished by a number of fuzzy if-then rules, each of which describes the
local behavior of the mapping. In particular, the antecedent of a rule defines a
fuzzy region in the input space, while the consequent specifies the output in the
fuzzy region.

We also describe very briefly a new area in fuzzy logic, which studies
type-2 fuzzy sets and type-2 fuzzy systems. Basically, a type-2 fuzzy set is a set in
which we also have uncertainty about the membership function. Since we are
dealing with uncertainty for the conventional fuzzy sets (which are called type-1
fuzzy sets here) we can achieve a higher degree of approximation in modelling
real world problems. Of course, type-2 fuzzy systems consist of fuzzy if-then
rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a
generalization of conventional fuzzy logic (type-1) in the sense that uncertainty is
not only limited to the linguistic variables but also is present in the definition of
the membership functions.

In what follows, we shall first introduce the basic concepts of fuzzy sets,
and fuzzy reasoning. Then we will introduce and compare the three types of fuzzy
inference systems that have been employed in various applications. We will also
consider briefly type-2 fuzzy logic systems and the comparison to type-1 fuzzy
systems. Finally, we will address briefly the features and problems of fuzzy
modelling, which is concerned with the construction of fuzzy inference systems
for modelling a given target system.

2.1 Fuzzy Set Theory

Let X be a space of objects and x be a generic element of X. A classical set A,
AcX, is defined by a collection of elements or objects x € X, such that each x can
either belong or not belong to the set A. By defining a "characteristic function” for
each element x € X, we can represent a classical set A by a set of order pairs (x,0)
or (x,1), which indicates x ¢ A or x € A, respectively.

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965)
expresses the degree to which an element belong to a set. Hence the characteristic
function of a fuzzy set is allowed to have values between 0 and 1, which denotes
the degree of membership of an element in a given set.

Definition 2.1 Fuzzy sets and membership functions
If X is a collection of objects denoted generically by x, then a "fuzzy set" A in X
is defined as a set of ordered pairs:

A= {(x () | x € X}. @

where p,(x) is called "membership function” (or MF for short) for the fuzzy set A.
The MF maps each element of X to a membership grade (or membership value)
between 0 and 1.

Obviously, the definition of a fuzzy set is a simple extension of the
definition of a classical set in which the characteristic function is permitted to
have any values between 0 and 1. If the values of the membership function p A(X)
is restricted to either 0 or 1, then A is reduced to a classical set and p,(x) is the
characteristic function of A.

A fuzzy set is uniquely specified by its membership function. To describe
membership functions more specifically, we shall define the nomenclature used in
the literature (Jang, Sun & Mizutani, 1997).

Definition 2.2 Support
The "support” of a fuzzy set A is the set of all points x in X such that p L(x)>0:

support (A) = { x| p,(x)> 0 }. 22)

Definition 2.3 Core
The "core" of a fuzzy set is the set of all points x in X such that p (x) = 1:

core (A)={x|p,(x)=1}. (2.3)

Definition 2.4 Normality
A fuzzy set A is "normal" if its core is nonempty. In other words, we can always
find a point x € X such that u,(x) = 1.

Definition 2.5 Crossover points
A "crossover point" of a fuzzy set A is a point x € X at which u,(x)=0.5:

crossover (A) = { x| pn,(x)=0.5}. (2.4)

Definition 2.6 Fuzzy singleton
A fuzzy set whose support is a single point in X with p (x) = 1 is called a "fuzzy

singleton".

Corresponding to the ordinary set operations of union, intersection and
complement, fuzzy sets have similar operations, which were initially defined in
Zadeh's seminal paper (Zadeh, 1965). Before introducing these three fuzzy set
operations, first we shall define the notion of containment, which plays a central
role in both ordinary and fuzzy sets. This definition of containment is, of course, a
natural extension of the case for ordinary sets.

Definition 2.7 Containment
The fuzzy set A is "contained" in fuzzy set B (or, equivalently, A is a "subset" of
B) if and only if p, (x) < p,(x) for all x. Mathematically,

AcB e p,(x) € ppx). (2.5)

Definition 2.8 Union
The "union" of two fuzzy sets A and B is a fuzzy set C, written as C = AUB or C
= A OR B, whose MF is related to those of A and B by

() = max(1,00, ()) = pa(%) v (). 26)

Definition 2.9 Intersection
The "intersection” of two fuzzy sets A and B is a fuzzy set C, written as C = AnB
or C=A AND B, whose MF is related to those of A and B by

() = min(p, (), (%)) = 1, (x) A B0, @)

Definition 2.10 Complement or Negation _
The "complement" of a fuzzy set A, denoted by A (1A, NOT A), is defined as

pa(x) =1- p,(x). (2.8)

As mentioned earlier, a fuzzy set is completely characterized by its MF.
Since most fuzzy sets in use have a universe of discourse X consisting of the real
line R, it would be impractical to list all the pairs defining a membership function.
A more convenient and concise way to define a MF is to express it as a
mathematical formula. First we define several classes of parameterized MFs of
one dimension.

Definition 2.11 Triangular MFs
A "triangular MF" is specified by three parameters {a, b, ¢} as follows:

0, x<a.
y = triangle(x;a,b,c) = (x-a)/ (b-a), asxsb. 2.9)
(c-x)/ (c-b), b<x<c.
0, c<x

The parameters {a,b,c} (with a <b < ¢) determine the x coordinates of the three
corners of the underlying triangular MF.

Figure 2.1 (a) illustrates a triangular MF defined by triangle(x; 10, 20,
40).

Definition 2.12 Trapezoidal MFs
A "trapezoidal MF" is specified by four parameters {a, b, c, d} as follows:

p
0, x<a.
(x-a) / (b-a), as<x<b. (2.10)
trapezoid (x;a,b,c,d) =-§ 1, b<x<c.
(d-x) / (d-c), c<x<d.
0, d<x
\

The parameters {a, b, ¢, d} (with a <b < ¢ <d) determine the x coordinates of the
four corners of the underlying trapezoidal MF. Figure 2.1 (b) illustrates a
trapezoidal MF defined by trapezoid(x; 10, 20 40, 75).

Due to their simple formulas and computational efficiency, both
triangular MFs and trapezoidal MFs have been used extensively, especially in
real-time implementations. However, since the MFs are composed of straight line
segments, they are not smooth at the corner points specified by the parameters. In
the following we introduce other types of MFs defined by smooth and nonlinear
functions.

(a) Triangular MF b) Trapezoidal MF

Figure 2.1 Examples of two types of parameterized MFs

Definition 2.13 Gaussian MFs
A "Gaussian MF" is specified by two parameters {c, ¢ }:

10

-1 (x-c)?

gaussian(x;c,c)=€ © . (2.11)

A "Gaussian MF is determined completely by ¢ and o ; c represents the MFs
center and ¢ determines the MFs width. Figure 2.2 (a) plots a Gaussian MF
defined by gaussian (x; 50, 20).

Definition 2.14 Generalized bell MFs
A "generalized bell MF" is specified by three parameters {a, b, c}:

bell(x; a, b, ¢) = 1 (2.12)
1 +](x-c)/al»

where the parameter b is usually positive. We can note that this MF is a direct
generalization of the Cauchy distribution used in probability theory, so it is also
referred to as the "Cauchy MF". Figure 2.2 (b) illustrates a generalized bell MF
defined by bell(x; 20, 4, 50).

Although the Gaussian MFs and bell MFs achieve smoothness, they are
unable to specify asymmetric MFs, which are important in certain applications.
Next we define the sigmoidal MF, which is either open left or right.

(a) Gaussian MF (b) Generalized Bell MF
Figure 2.2 Examples of two classes of parameterized continuous MFs.

Definition 2.15 Sigmoidal MFs
A "Sigmoidal MF" is defined by the following equation:

1 (2.13)

1 + exp [-a(x-¢)]

sig(x; a, ¢) =

11

where a controls the slope at the crossover point x = c.

Depending on the sign of the parameter "a", a sigmoidal MF is inherently
open right or left and thus is appropriate for representing concepts such as "very
large" or "very negative". Figure 2.3 shows two sigmoidal functions y| =sig(x; 1,

-5) and y; =sig(x; -2, 5).

(@) yq =sig(x; 1, -5) (b) yp = sig(x; -2, 5)

Figure 2.3 Two sigmoidal functions y; and y, .

2.2 Fuzzy Reasoning

As was pointed out by Zadeh in his work on this area (Zadeh, 1973), conventional
techniques for system analysis are intrinsically unsuited for dealing with
humanistic systems, whose behavior is strongly influenced by human judgment,
perception, and emotions. This is a manifestation of what might be called the
"principle of incompatibility": "As the complexity of a system increases, our
ability to make precise and yet significant statements about its behavior
diminishes until a threshold is reached beyond which precision and significance
become almost mutually exclusive characteristics" (Zadeh, 1973). It was because
of this belief that Zadeh proposed the concept of linguistic variables (Zadeh,
1971) as an alternative approach to modelling human thinking.

Definition 2.16 Linguistic variables

A "Linguistic variable" is characterized by a quintuple (x, T(x), X, G, M) in which
x is the name of the variable; T(x) is the "term set" of x-that is, the set of its
"linguistic values" or "linguistic terms"; X is the universe of discourse, G is a
"syntactic rule" which generates the terms in T(x); and M is a "semantic rule"
which associates with each linguistic value A its meaning M(A), where M(A)
denotes a fuzzy set in X.

12

Definition 2.17 Concentration and dilation of linguistic values
Let A be a linguistic value characterized by a fuzzy set membership function

pA(.). Then Akis interpreted as a modified version of the original linguistic value
expressed as

Ak= [[paIK/x . (2.14)
In particular, the operation of "concentration" is defined as

CON (A) = A2 , 2.15)

while that of "dilatation" is expressed by

DIL (A)=A"" . 2.16)

Conventionally, we take CON(A) and DIL(A) to be the results of
applying the hedges "very" and "more or less", respectively, to the linguistic term
A. However, other consistent definitions for these linguistic hedges are possible
and well justified for various applications.

Following the definitions given before, we can interpret the negation
operator NOT and the connectives AND and OR as

NOT(A)=TA=Jx [1-p,x)1/x ,
AANDB=ANB= [y [p,x)Ap,x)]/x, @2.17)
AORB=AUB= [x [p,(x)vpy(x)]/x

respectively, where A and B are two linguistic values whose meanings are defined
by p,(-) and p(.) .

Definition 2.18 Fuzzy If-Then Rules
A "fuzzy if-then rule" (also known as "fuzzy rule", "fuzzy implication", or "fuzzy
conditional statement") assumes the form

ifxisAthenyisB |, (2.18)

where A and B are linguistic values defined by fuzzy sets on universes of
discourse X and Y, respectively. Often "x is A" is called "antecedent" or
"premise", while "y is B" is called the "consequence” or "conclusion".

Examples of fuzzy if-then rules are widespread in our daily linguistic
expressions, such as the following:

13

e If pressure is high, then volume is small.
e Ifthe road is slippery, then driving is dangerous.
e Ifthe speed is high, then apply the brake a little.

Before we can employ fuzzy if-then rules to model and analyze a system,
first we have to formalize what is meant by the expression "if x is A then y is B",
which is sometimes abbreviated as A - B. In essence, the expression describes a
relation between two variables x and y; this suggests that a fuzzy if-then rule is
defined as a binary fuzzy relation R on the product space X X Y. Generally
speaking, there are two ways to interpret the fuzzy rule A - B. If we interpret A
-> B as A "coupled with" B then

R=A>B=AXB=[yxy 1,00 1(y)/ (x¥)
where * is an operator for intersection (Mamdani & Assilian, 1975). On the other
hand, if A = B is interpreted as A "entails" B, then it can be written as one of two

different formulas:

e Material implication:

R=A>B=]AUB. (2.19)
e Propositional Calculus:
R=A>B=]AU(ANB). (2.20)

Although these two formulas are different in appearance, they both reduce to the
familiar identity A <> B =] A U B when A and B are propositions in the sense of
two-valued logic.

Fuzzy reasoning, also known as approximate reasoning, is an inference
procedure that derives conclusions from a set of fuzzy if-then rules and known
facts. The basic rule of inference in traditional two-valued logic is "modus
ponens", according to which we can infer the truth of a proposition B from the
truth of A and the implication A > B. This concept is illustrated as follows:

premise 1 (fact): X is A,
premise 2 (rule): if xis Athenyis B ,
consequence {conclusion): y is B.

However, in much of human reasoning, modus ponens is employed in an
approximate manner. This is written as

premise 1 (fact): X is A'
premise 2 (rule): if xis Athenyis B,
consequence (conclusion): y is B'

14

where A’ is close to A and B' is close to B. When A, B, A' and B’ are fuzzy sets of
appropriate universes, the foregoing inference procedure is called "approximate
reasoning" or "fuzzy reasoning"; it is also called "generalized modus ponens"
(GMP for short), since it has modus ponens as a special case.

Definition 2.19 Fuzzy reasoning

Let A, A', and B be fuzzy sets of X, X, and Y respectively. Assume that the fuzzy
implication A -> B is expressed as a fuzzy relation R on X X Y. Then the fuzzy set
B induced by "x is A™ and the fuzzy rule "if x is A then y is B" is defined by

Hg'(y) = maxy min [p,'(x), Hp(X, y)]
=V [/ A ppx,) . 221

Now we can use the inference procedure of fuzzy reasoning to derive
conclusions provided that the fuzzy implication A = B is defined as an
appropriate binary fuzzy relation.

Single Rule with Single Antecedent
This is the simplest case, and the formula is available in Equation (2.21). A further
simplification of the equation yields

He'(y) = Vx (HA'() A o)) T A pg(y)
=0 A pg(y)

In other words, first we find the degree of match ® as the maximum of p A'(X) A
1, (x); then the MF of the resulting B' is equal to the MF of B clipped by .
Intuitively, o represents a measure of degree of belief for the antecedent part of a

rule; this measure gets propagated by the if-then rules and the resulting degree of
belief or MF for the consequent part should be no greater than o.

Multiple Rules with Multiple Antecedents
The process of fuzzy reasoning or approximate reasoning for the general case can
be divided into four steps:

1) Degrees of compatibility: Compare the known facts with the antecedents of
fuzzy rules to find the degrees of compatibility with respect to each
antecedent MF.

2) Firing Strength: Combine degrees of compatibility with respect to antecedent
MFs in a rule using fuzzy AND or OR operators to form a firing strength that
indicates the degree to which the antecedent part of the rule is satisfied.

15

3) Qualified (induced) consequent MFs: Apply the firing strength to the

consequent MF of a rule to generate a qualified consequent MF.
4) Qverall output MF: Aggregate all the qualified consequent MFs to obtain an
overall output MF.

2.3 Fuzzy Inference Systems

The "Mamdani fuzzy inference system" (Mamdani & Assilian, 1975) was
proposed as the first attempt to control a steam engine and boiler combination by a
set of linguistic control rules obtained from experienced human operators. Figure
2.4 is an illustration of how a two-rule Mamdani fuzzy inference system derives
the overall output z when subjected to two numeric inputs x and y.

In Mamdani's application, two fuzzy inference systems were used as two
controllers to generate the heat input to the boiler and throttle opening of the
engine cylinder, respectively, to regulate the steam pressure in the boiler and the
speed of the engine. Since the engine and boiler take only numeric values as
inputs, a defuzzifier was used to convert a fuzzy set to a numeric value.

Figure 2.4 The Mamdani fuzzy inference system using the min and max operators.

16

Defuzzification

Defuzzification refers to the way a numeric value is extracted from a fuzzy set as
a representative value. In general, there are five methods for defuzzifying a fuzzy
set A of a universe of discourse Z, as shown in Figure 2.5 (Here the fuzzy set A is
usually represented by an aggregated output MF, such as C' in Figure 2.4). A brief
explanation of each defuzzification strategy follows.

o Centroid of area Zooa:

Zoop = Iz u,(z)zdz (2.22)

fz H,(z)dz
where p,(z) is the aggregated output MF. This is the most widely adopted

defuzzification strategy, which is reminiscent of the calculation of expected values
of probability distributions.

Figure 2.5 Various defuzzification methods for obtaining a numeric output.

. BisectorofareazBOA: 2, Satisfies
Zgoa 1§
[n@dz = [Bor y (2)dz (2.23)

where o = min{z |z € Z} and = max{z |z € Z}.

17

e Mean of maximum z : Zy;om 1S the average of the maximizing z

MOM
at which the MF reach a maximum p*. Mathematically,

Zyow = 1724z (2.24)
.[z' dZ

where z' = { z| u,(z) = u* }. In particular, if p (z) has a single maximum at z =
z*, then z,,,, = z*. Moreover, if u,(z) reaches its maximum whenever z € [z
)/2.

left’

= +
Zﬁgh,] then z,,5,, = (z,4 Z gt

e Smallest of maximum z Dz is the minimum (in terms of

SOM * TSOM

magnitude) of the maximizing z.
e Largest of maximum z ., : 7, is the maximum (in terms of
magnitude) of the maximizing z. Because of their obvious bias, z

and z

SOM

Lom are not used as often as the other three defuzzification

methods.

The calculation needed to carry out any of these five defuzzification
operations is time-consuming unless special hardware support is available.
Furthermore, these defuzzification operations are not easily subject to rigorous
mathematical analysis, so most of the studies are based on experimental results.
This leads to the propositions of other types of fuzzy inference systems that do not
need defuzzification at all; two of them will be described in the following. Other
more flexible defuzzification methods can be found in several more recent papers
(Yager & Filer, 1993), (Runkler & Glesner, 1994).

Sugeno Fuzzy Models

The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was proposed
by Takagi, Sugeno and Kang in an effort to develop a systematic approach to
generating fuzzy rules from a given input-output data set (Takagi & Sugeno,
1985), (Sugeno & Kang, 1988). A typical fuzzy rule in a Sugeno fuzzy model has
the form:

if x is A and y is B then z=1(x,y)

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a traditional
function in the consequent. Usually f(x,y) is a polynomial in the input variables x
and y, but it can be any function as long as it can appropriately describe the output
of the model within the fuzzy region specified by the antecedent of the rule. When
f(x,y) is a first-order polynomial, the resulting fuzzy inference system is called a
"first-order Sugeno fuzzy model". When f is constant, we then have a "zero-order
Sugeno fuzzy model", which can be viewed either as a special case of the
Mamdani inference system, in which each rule's consequent is specified by a

18

fuzzy singleton, or a special case of the Tsukamoto fuzzy model (to be introduced
next), in which each rule's consequent is specified by a MF of a step function
center at the constant.

Figure 2.6 shows the fuzzy reasoning procedure for a first-order Sugeno
model. Since each rule has a numeric output, the overall output is obtained via
"weighted average", thus avoiding the time-consuming process of defuzzification
required in a Mamdani model. In practice, the weighted average operator is
sometimes replaced with the "weighted sum" operator (that is, wz +wgz in

Figure 2.6) to reduce computation further specially, in the training of a fuzzy
inference system. However, this simplification could lead to the loss of MF
linguistic meanings unless the sum of firing strengths (that is, Xw;) is close to

unity.

Z=pix+tqytrn
W

LTpXtQytr
W3

4
weighted average
=W 2) T Wy 7,
Wi T W,

Figure 2.6 The Sugeno fuzzy model.

Tsukamoto Fuzzy Models

In the "Tsukamoto fuzzy models" (Tsukamoto, 1979), the consequent of each
fuzzy if-then rule is represented by a fuzzy set with a monotonical MF, as shown
in Figure 2.7. As a result, the inferred output of each rule is defined as a numeric
value induced by the rule firing strength. The overall output is taken as the
weighted average of each rule's output. Figure 2.7 illustrates the reasoning
procedure for a two-input two-rule system.

19

Since each rule infers a numeric output, the Tsukamoto fuzzy model
aggregates each rule's output by the method of weighted average and thus avoids
the time-consuming process of defuzzification. However, the Tsukamoto fuzzy
model is not used often since it is not as transparent as either the Mamdani or
Sugeno fuzzy models.

Figure 2.7 The Tsukamoto fuzzy model.

There are certain common issues concerning all the three fuzzy inference
systems introduced previously, such as how to partition an input space and how to
construct a fuzzy inference system for a particular application.

Input Space Partitioning

Now it should be clear that the spirit of fuzzy inference systems resembles that of
"divide and conquer" - the antecedent of a fuzzy rule defines a local fuzzy region,
while the consequent describes the behavior within the region via various
constituents. The consequent constituent can be a consequent MF (Mamdani and
Tsukamoto fuzzy models), a constant value (zero-order Sugeno model), or a linear
equation (first-order Sugeno model). Different consequent constituents result in
different fuzzy inference systems, but their antecedents are always the same.
Therefore, the following discussion of methods of partitioning input spaces to

20

form the antecedents of fuzzy rules is applicable to all three types of fuzzy
inference systems.

e Grid partition: This partition method is often chosen in designing a
fuzzy controller, which usually involves only several state variables
as the inputs to the controller. This partition strategy needs only a
small number of MFs for each input. However, it encounters
problems when we have a moderately large number of inputs. For
instance, a fuzzy model with 10 inputs and 2 MFs on each input

would result in 210 = 1024 fuzzy if-then rules, which is prohibitively
large. This problem, usually referred to as the "curse of
dimensionality”, can be alleviated by other partition strategies.

e Tree partition: In this method each region can be uniquely specified
along a corresponding decision tree. The tree partition relieves the
problem of an exponential increase in the number of rules. However,
more MFs for each input are needed to define these fuzzy regions,
and these MFs do not usually bear clear linguistic meanings. In other

words, ortogonality holds roughly in X X Y, but not in either X or Y
alone.

e Scatter partition: By covering a subset of the whole input space that
characterizes a region of possible occurrence of the input vectors, the
scatter partition can also limit the number of rules to a reasonable
amount. However, the scatter partition is usually dictated by desired
input-output data pairs and thus, in general, orthogonality does not
hold in X, Y or X X Y. This makes it hard to estimate the overall
mapping directly from the consequent of each rule's output.

2.4 Type-2 Fuzzy Logic Systems

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is
used to build these rules is uncertain. Such uncertainty leads to rules whose
antecedents or consequents are uncertain, which translates into uncertain
antecedent or consequent membership functions (Karnik & Mendel 1998). Type-1
fuzzy systems (like the ones seen in previous sections), whose membership
functions are type-1 fuzzy sets, are unable to directly handle such uncertainties.
We describe briefly in this section, type-2 fuzzy systems, in which the antecedent
or consequent membership functions are type-2 fuzzy sets. Such sets are fuzzy
sets whose membership grades themselves are type-1 fuzzy sets; they are very
useful in circumstances where it is difficult to determine an exact membership
function for a fuzzy set.

21

2.4.1 Type-2 Fuzzy Sets

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an
extension of the concept of an ordinary fuzzy set (henceforth called a “type-1
fuzzy set”). A type-2 fuzzy set is characterized by a fuzzy membership function,
i.e., the membership grade for each element of this set is a fuzzy set in [0,1],
unlike a type-1 set where the membership grade is a crisp number in [0,1]. Such
sets can be used in situations where there is uncertainty about the membership
grades themselves, e.g., an uncertainty in the shape of the membership function or
in some of its parameters. Consider the transition from ordinary sets to fuzzy sets.
When we cannot determine the membership of an element in a set as 0 or 1, we
use fuzzy sets of type-1. Similarly, when the situation is so fuzzy that we have
trouble determining the membership grade even as a crisp number in [0,1], we use
fuzzy sets of type-2.

This does not mean that we need to have extremely fuzzy situations to
use type-2 fuzzy sets. There are many real-world problems where we cannot
determine the exact form of the membership functions, e.g., in time series
prediction because of noise in the data. Another way of viewing this is to consider
type-1 fuzzy sets as a first order approximation to the uncertainty in the real-
world. Then type-2 fuzzy sets can be considered as a second order approximation.
Of course, it is possible to consider fuzzy sets of higher types but the complexity
of the fuzzy system increases very rapidly. For this reason, we will only consider
very briefly type-2 fuzzy sets. Lets consider some simple examples of type-2
fuzzy sets.

Example 2.1 Consider the case of a fuzzy set characterized by a Gaussian
membership function with mean m and a standard deviation that can take values
in [0,,0,], i.e.,

n(x)=exp {~ %[(x -m)/c]’ };0 € [61,02] (2.25)

Corresponding to each value of o, we will get a different membership curve (see
Figure 2.8). So, the membership grade of any particular x (except x=m) can take
any of a number of possible values depending upon the value of o, i.e., the
membership grade is not a crisp number, it is a fuzzy set. Figure 2.8 shows the
domain of the fuzzy set associated with x=0.7; however, the membership function
associated with this fuzzy set is not shown in the figure.

22

Figure 2.8 A type-2 fuzzy set representing a type-1 fuzzy set with uncertain
standard deviation.

Example 2.2 Consider the case of a fuzzy set with a Gaussian membership

function having a fixed standard deviation &, but an uncertain mean, taking values
in [my, my), i.e.,

u(x)=exp {~ %[(x —~m)/c]’ };m € [m;,my] (2.26)

Again, p(x) is a fuzzy set. Figure 2.9 shows an example of such a set.

Figure 2.9 A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean.
The mean is uncertain in the interval [0.4, 0.6].

23

Example 2.3 Consider a type-1 fuzzy set characterized by a Gaussian membership
function (mean M and standard deviation &), which gives one crisp membership
m(x) for each input x € X, where

m(x)=exp {— % [(x — M)/oy]*} 2.27)

This is shown in Figure 2.10. Now, imagine that this membership of x is a fuzzy
set. Let us call the domain elements of this set “primary memberships” of x
(denoted by p,) and membership grades of these primary memberships “secondary
memberships” of x [denoted by p,(x, p1)]. So, for a fixed x, we get a type-1 fuzzy
set whose domain elements are primary memberships of x and whose
corresponding membership grades are secondary memberships of x. If we assume
that the secondary memberships follow a Gaussian with mean m(x) and standard
deviation o, as in Figure 2.10, we can describe the secondary membership
function for each x as

pa(x, 1) = € — ¥ [(p1 - m(X))/]’ (2.28)

where p, € [0,1] and m is as in equation (2.27).

Figure 2.10 A type-2 fuzzy set in which the membership grade of every domain
point is a Gaussian type-1 set.

We can formally define these two kinds of type-2 sets as follows.

24

Definition 2.20 Gaussian type-2
A Gaussian type-2 fuzzy set is one in which the membership grade of every
domain point is a Gaussian type-1 set contained in [0,1].

Example 2.3 shows an example of a Gaussian type-2 fuzzy set.

Definition 2.21 Interval type-2

An interval type-2 fuzzy set is one in which the membership grade of every

domain point is a crisp set whose domain is some interval contained in [0,1].
Example 2.1 shows an example of an interval type-2 fuzzy set.

2.4.2 Type-2 Fuzzy Systems

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in
general, will not change for any type-n (Karnik & Mendel 1998). A higher-type
number just indicates a higher “degree of fuzziness”. Since a higher type changes
the nature of the membership functions, the operations that depend on the
membership functions change; however, the basic principles of fuzzy logic are
independent of the nature of membership functions and hence, do not change.
Rules of inference like Generalized Modus Ponens or Generalized Modus Tollens
continue to apply.

In Figure 2.11 we show the general structure of a type-2 fuzzy system.
We assume that both antecedent and consequent sets are type-2; however, this
need not necessarily be the case in practice.

Figure 2.11 General structure of a type-2 fuzzy system. The structure of the
“output processing” block is shown in Figure (b). In order to
emphasize the importance of the type-reduced set, we have shown
two outputs for the fuzzy system, the type reduced set and the
crisp defuzzified value.

25

The structure of the type-2 fuzzy rules is the same as for the type-1 case
because the distinction between type-2 and type-1 is associated with the nature of
the membership functions. Hence, the only difference is that now some or all the
sets involved in the rules are of type-2. In a type-1 fuzzy system, where the output
sets are type-1 fuzzy sets, we perform defuzzification in order to get a number,
which is in some sense a crisp (type-0) representative of the combined output sets.
In the type-2 case, the output sets are type-2; so we have to use extended versions
of type-1 defuzzification methods. Since type-1 defuzzification gives a crisp
number at the output of the fuzzy system, the extended defuzzification operation
in the type-2 case gives a type-1 fuzzy set at the output. Since this operation takes
us from the type-2 output sets of the fuzzy system to a type-1 set, we can call this
operation “type reduction” and call the type-1 fuzzy set so obtained a “type-
reduced set”. The type-reduced fuzzy set may then be defuzzified to obtain a
single crisp number; however, in many applications, the type-reduced set may be
more important than a single crisp number.

Type-2 sets can be used to convey the uncertainties in membership
functions of type-1 fuzzy sets, due to the dependence of the membership functions
on available linguistic and numerical information. Linguistic information (e.g.
rules from experts), in general, does not give any information about the shapes of
the membership functions. When membership functions are determined or tuned
based on numerical data, the uncertainty in the numerical data, e.g., noise,
translates into uncertainty in the membership functions. In all such cases, any
available information about the linguistic/numerical uncertainty can be
incorporated in the type-2 framework. However, even with all of the advantages
that fuzzy type-2 systems have, the literature on the applications of type-2 sets is
scarce. Some examples are Yager (1980) for decision making, and Wagenknecht
& Hartmann (1988) for solving fuzzy relational equations. We think that more
applications of type-2 fuzzy systems will come in the near future as the area
matures and the theoretical results become more understandable for the general
public in the fuzzy arena.

2.5 Fuzzy Modelling

In general, we design a fuzzy inference system based on the past known behavior
of a target system. The fuzzy system is then expected to be able to reproduce the
behavior of the target system. For example, if the target system is a human
operator in charge of a chemical reaction process, then the fuzzy inference system
becomes a fuzzy logic controller that can regulate and control the process.

Let us now consider how we might construct a fuzzy inference system
for a specific application. Generally speaking, the standard method for
constructing a fuzzy inference system, a process usually called "fuzzy modelling",
has the following features:

26

e The rule structure of a fuzzy inference system makes it easy to
incorporate human expertise about the target system directly into the
modelling process. Namely, fuzzy modelling takes advantage of
"domain knowledge" that might not be easily or directly employed in
other modelling approaches.

e When the input-output data of a target system is available,
conventional system identification techniques can be used for fuzzy
modelling. In other words, the use of "numerical data" also plays an
important role in "fuzzy modelling", just as in other mathematical
modelling methods.

Conceptually, fuzzy modelling can be pursued in two stages, which are

not totally disjoint. The first stage is the identification of the "surface structure",
which includes the following tasks:

L.
2.
3.

4.

Select relevant input and output variables.

Choose a specific type of fuzzy inference system.

Determine the number of linguistic terms associated with each input and
output variables.

Design a collection of fuzzy if-then rules.

Note that to accomplish the preceding tasks, we rely on our own

knowledge (common sense, simple physical laws, an so on) of the target system,
information provided by human experts who are familiar with the target system,
or simply trial and error.

After the first stage of fuzzy modelling, we obtain a rule base that can

more or less describe the behavior of the target system by means of linguistic
terms. The meaning of these linguistic terms is determined in the second stage, the
identification of "deep structure", which determines the MFs of each linguistic
term. Specifically, the identification of deep structure includes the following tasks:

I.
2.

Choose an appropriate family of parameterized MFs.

Interview human experts familiar with the target systems to determine
the parameters of the MFs used in the rule base.

Refine the parameters of the MFs using regression and optimization
techniques.

Task 1 and 2 assume the availability of human experts, while task 3

assumes the availability of a desired input-output data set.

27

2.6 Summary

In this chapter, we have presented the main ideas underlying Fuzzy Logic and we
have only started to point out the many possible applications of this powerful
computational theory. We have discussed in some detail fuzzy set theory, fuzzy
reasoning and fuzzy inference systems. We also reviewed briefly type-2 fuzzy
logic, which is a generalization of conventional fuzzy logic (type-1). At the end,
we also gave some remarks about fuzzy modelling. In the following chapters, we
will show how fuzzy logic techniques (in some cases, in conjunction with other
methodologies) can be applied to solve real world complex problems. This chapter
will serve as a basis for the new hybrid intelligent methods, for modelling and
simulation, that will be described in Chapters 6, 7 and 8 of this book. Fuzzy Logic
will also play an important role in the new neuro-fuzzy methodology for control
that is presented in Chapters 9 to 13 of this book.

Chapter 3

Neural Networks for Control

Application of fuzzy inference systems to automatic control was first reported in
Mamdani's paper (Mamdani & Assilian, 1975), where a "fuzzy logic controller"
(FLC) was used to emulate a human operator's control of a steam engine and
boiler combination. Since then, "fuzzy logic control" has been recognized as the
most significant and fruitful application for fuzzy logic (Kosko, 1992). In the past
few years, advances in microprocessors and hardware technologies have created
an even more diversified application domain for fuzzy logic controllers, which
ranges from consumer electronics to the automobile industry. However, without
adaptive capability, the performance of FLCs relies exclusively on two factors: the
availability of human experts, and the knowledge acquisition techniques to
convert human expertise into appropriate fuzzy rules. These two factors
substantially restrict the application domain of FLCs.

On the other hand, investigation into using neural networks in automatic
control systems did not receive much attention until the "backpropagation”
learning rule was formulated by Rumelhart and others (Rumelhart, Hinton &
Williams, 1986). Since then, research of neural control has evolved quickly and a
number of neural controller design methods have been proposed in the literature
(Werbos, 1991).

Figure 3.1 is a block diagram of a typical "feedback control system",
where the "plant" (or "process") represents the dynamic system to be controlled
and the "controller" employs a control strategy to achieve a control goal. Here we
shall denote the state variables of the plant as a vector x(t); these variables are
usually governed by a set of "state equations” (usually differential equations) that
characterize the dynamic behavior of the plant. Since the state variables are
internal to the plant, some of them may not be directly measurable from the
external world. The measurable quantities of the plant, also known as its outputs,
are denoted as a vector y(t). We shall assume that all states are measurable; thus
the output of the plant y(t) is equal to the state x(t).

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

30

The state equation for a general non-linear plant can be expressed in the
matrix notation

x'(t) = £ (x(t), u(t)) (plant dynamics) @G0
u(t) Plant y(®) = x(t)
> Controller — > Dynamics —p
y®
x(®)

Figure 3.1 Block diagram for a continuous feedback control system.

where u(t) is the controller's output at time t, and the size of the vector x(t) is
called the "order" of the plant. A general control goal is to find a controller with a
static function ¢ that maps an observed plant output x(t) to a control action u-that
is, u(t) = ¢ (x(t))- such that the plant output can follow some given desired output
signal x4(t) as closely as possible. If x4(t) is a constant vector, then the control

problem is referred to as "regulator problem", where the plant states are directly
fed back to the controller. This is actually what Figure 3.1 shows. On the other
hand, if the desired trajectory xq(t) is a time-varying signal, then we have a

"tracking problem" in which an error signal, defined as the difference between
desired and actual outputs, is fed back to the controller. If f is unknown, we need
to perform system identification first to find a model for the plant. Moreover, if f
is time varying, it is desirable to make ¢ adaptive to respond to the changing
characteristics of the plant.

In the case of linear feedback control systems, the plant and controller
can be reformulated as the following equations:

x'(t) = Ax(t) + Bu(t) (plant dynamics) (3.2)
u(t) = kx(t) (linear controller)

The treatment of linear control systems is relatively complete in the literature (for
example, see Brogan, 1991) and will not be discussed here. On the other hand, the
area of non-linear control is still with many open problems and its more
interesting. In this book, the treatment will be restricted to non-linear plants with a
general form given by Equation (3.1).

If we replace the controller block in Figure 3.1 with neural networks or
fuzzy systems, then we end up with "neural" or "fuzzy control systems",
respectively. In other words, neural or fuzzy control design methods are

31

systematic ways of constructing neural networks or fuzzy inference systems,
respectively, as controllers intended to achieve prescribed control goals. In the
same vein, the term "neuro-fuzzy control” has been used when one is speaking
about design methods for fuzzy logic controllers that use neural network
techniques. :

Most neural or fuzzy controllers are nonlinear; thus rigorous analysis for
neuro-fuzzy control systems is difficult and remains a challenging area for further
investigation. On the other hand, a neuro-fuzzy controller usually contains a large
number of parameters; it is thus more versatile than a linear controller in dealing
with non-linear plant characteristics. Therefore, neuro-fuzzy controllers almost
always surpass pure linear controllers if designed properly.

In this chapter, we present the basic concepts, notation, and basic
learning algorithms for neural networks that will be needed in the following
chapters of this book. The chapter is organized as follows: Backpropagation for
Feedforward Networks, Adaptive Neuro-Fuzzy Inference Systems, Neuro-Fuzzy
Control and Adaptive Neuro-Control. First, we give a brief review of the basic
concepts of neural networks and the backpropagation learning algorithm. Second,
we give a brief description of adaptive neuro-fuzzy systems. Third, we give a brief
review on the current methods for neuro-fuzzy control. Finally, we end the chapter
with some remarks about adaptive control and model-based control. We consider
this material necessary to understand the new methods for control that will be
presented in Chapter 7 of this book.

3.1 Backpropagation for Feedforward Networks

This section describes the architectures and learning algorithms for adaptive
networks, a unifying framework that subsumes almost all kinds of neural network
paradigms with supervised learning capabilities. An adaptive network, as the
name indicates, is a network structure consisting of a number of nodes connected
through directional links. Each node represents a process unit, and the links
between nodes specify the causal relationship between the connected nodes. The
learning rule specifies how the parameters (of the nodes) should be updated to
minimize a prescribed error measure.

The basic learning rule of the adaptive network is the well-known
steepest descent method, in which the gradient vector is derived by successive
invocations of the chain rule. This method for systematic calculation of the
gradient vector was proposed independently several times, by Bryson and Ho
(1969), Werbos (1974), and Parker (1982). However, because research on
artificial neural networks was still in its infancy at those times, these researchers'
early work failed to receive the attention it deserved. In 1986, Rumelhart et al.
used the same procedure to find the gradient in a multilayer neural network. Their
procedure was called "backpropagation learning rule", a name which is now

32

widely known because the work of Rumelhart inspired enormous interest in
research on neural networks. In this section, we introduce Werbos's original
backpropagation method for finding gradient vectors and also present improved
versions of this method.

3.1.1 The Backpropagation Learning Algorithm

Suppose that a given feedforward adaptive network has L layers and layer | (1 =0,
1,..., L) has N(I) nodes. Then the output and function of node i [i = 1, ..., N()] in
layer 1 can be represented as x j and fj ;, respectively, as shown in Figure 3.2.

Since the output of a node depends on the incoming signals and the parameter set
of the node, we have the following general expression for the node function fli:

Xl,i = fl,i (X XLUN(I-1), O B.v,..) 3.3)
where o, B, v, etc. are the parameters of this node.

fi X3
Xo,1 X2,1
. f3 1 _>
fi2 X5
.
X0,2
o X22
fis
Layer 0 Layer | Layer 2 Layer 3

Figure 3.2 Feedforward adaptive network.

Assuming that the given training data set has P entries, we can define an
error measure for the pth (1 < p < P) entry of the training data as the sum of the

squared errors:
NL)

2
ElD =y d, - X) (3.4)

k=1

33

where dy is the kth component of the pth desired output vector and X is the kth

component of the actual output vector produced by presenting the pth input vector
to the network. Obviously, when Ep is equal to zero, the network is able to

reproduce exactly the desired output vector in the pth training data pair. Thus our
task here is to minimize an overall error measure, which is defined as E =Y. Ep .

We can also define the "error signal" g, s the derivative of the error
measure Ep with respect to the output of the node i in layer |, taking both direct
and indirect paths into consideration. Mathematically,

g, = ol E, (3.5)
ox Li

this expression was called the "ordered derivative" by Werbos (1974). The
difference between the ordered derivative and the ordinary partial derivative lies
in the way we view the function to be differentiated. For an internal node output

XLi» the partial derivative 8+Ep / axu is equal to zero, since Ep does not depend
on Xi j directly. However, it is obvious that Ep does depend on XL indirectly,
since a change in X},i will propagate through indirect paths to the output layer and
thus produce a corresponding change in the value of Ep .

The error signal for the ith output node (at layer L) can be calculated
directly:

_ At -
€= 0 Ep_ = G_Ep_ (3.6)
0 X 0 X

This is equal to ey j = -2(d; - x j) if Ep, is defined as in Equation (3.4). For the

internal node at the ith position of layer 1, the error signal can be derived by the
chain rule of differential calculus:

N@+1) N(+1)
= = + =
8l,i Qi—'"Ep' Z a—Ep— Q—flﬂ,m- Z Sl+1,m —a'—flﬂ,m- (3'7)
ox . m1 @ X 0Xx, . m=1 0Xx,.
Li I+1,m Li Li
H_/
error signal error signal
at layer | at layer 1+1

where 0 <1 < L-1. That is, the error signal of an internal node at layer | can be
expressed as a linear combination of the error signal of the nodes at layer I+1.

34

Therefore, for any 1 and i, we can find €l by first applying Equation (3.6) once to

get error signals at the output layer, and then applying Equation (3.7) iteratively
until we reach the desired layer 1. The underlying procedure is called
backpropagation since the error signals are obtained sequentially from the output
layer back to the input layer.

The gradient vector is defined as the derivative of the error measure with
respect to each parameter, so we have to apply the chain rule again to find the
gradient vector. If o is a parameter of the ith node at layer 1, we have

O'E, =0"E, 0f; = g; 0fj; (3.8)
oo o0x;; Oa oo

The derivative of the overall error measure E with respect to o is

,
O"E =2 0'E, (3.9)
oo 0o

Accordingly, for simple steepest descent (for minimization), the update
formula for the generic parameter o is

Aa=-n OtE (3.10)
oa

in which 7 is the "learning rate", which can be further expressed as

n= k (3.11)
VI, (8E/da)

where k is the "step size", the length of each transition along the gradient direction
in the parameter space.

There are two types of learning paradigms that are available to suit the
needs for various applications. In "off-line learning" (or "batch learning"), the
update formula for parameter o is based on Equation (3.9) and the update action
takes place only after the whole training data set has been presented-that is, only
after each "epoch" or "sweep". On the other hand, in "on-line learning" (or
"pattern-by-pattern learning"), the parameters are updated immediately after each
input-output pair has been presented, and the update formula is based on Equation
(3.8). In practice, it is possible to combine these two learning modes and update

35

the parameter after k training data entries have been presented, where k is between
1 and P and it is sometimes referred to as the "epoch size".

3.1.2 Backpropagation Multilayer Perceptions

Artificial neural networks, or simply "neural networks" (NNs), have been studied
for more than three decades since Rosenblatt first applied single-layer
"perceptrons” to pattern classification learning (Rosenblatt, 1962). However,
because Minsky and Papert pointed out that single-layer systems were limited and
expressed pessimism over multilayer systems, interest in NNs dwindled in the
1970s (Minsky & Papert, 1969). The recent resurgence of interest in the field of
NN has been inspired by new developments in NN learning algorithms (Fahlman
& Lebiere, 1990), analog VLSI circuits, and parallel processing techniques
(Lippmann, 1987).

Quite a few NN models have been proposed and investigated in recent
years. These NN models can be classified according to various criteria, such as
their learning methods (supervised versus unsupervised), architectures
(feedforward versus recurrent), output types (binary versus continuous), and so
on. In this section, we confine our scope to modelling problems with desired
input-output data sets, so the resulting networks must have adjustable parameters
that are updated by a supervised learning rule. Such networks are often referred to
as "supervised learning” or "mapping networks", since we are interested in
shaping the input-output mappings of the network according to a given training
data set.

A backpropagation "multilayer perceptron” (MLP) is an adaptive
network whose nodes (or neurons) perform the same function on incoming
signals; this node function is usually a composite of the weighted sum and a
differentiable non-linear activation function, also known as the "transfer function”.
Figure 3.3 depicts three of the most commonly used activation functions in
backpropagation MLPs:

Logistic function: fix)y=_1
]l +eX
Hyperbolic tangent function: f(x)=tanh (x/2)= 1-eX
1 +eX
Identity function: f(x)=x

Both the hyperbolic tangent and logistic functions approximate the
signum and step function, respectively, and provide smooth, nonzero derivatives
with respect to input signals. Sometimes these two activation functions are

36

referred to as "squashing functions" since the inputs to these functions are
squashed to the range [0,1] or [-1,1]. They are also called "sigmoidal functions”
because their s-shaped curves exhibit smoothness and asymptotic properties.

Backpropagation MLPs are by far the most commonly used NN
structures for applications in a wide range of areas, such as pattern recognition,
signal processing, data compression and automatic control. Some of the well-
known instances of applications include NETtalk (Sejnowski & Rosenberg, 1987),
which trained an MLP to pronounce English text, Carnegie Mellon University's
ALVINN (Pomerleau, 1991), which used an MLP for steering an autonomous
vehicle; and optical character recognition (Sakinger, Boser, Bromley, Lecun &
Jackel, 1992). In the following lines, we derive the backpropagation learning rule
for MLPs using the logistic function.

Figure 3.3 Activation functions for backpropagation MLPs: (a) logistic function;
(b) hyperbolic function; (c) identity function.

The "net input" X of a node is defined as the weighted sum of the
incoming signals plus a bias term. For instance, the net input and output of node j
in Figure 3.4 are

Xj = 2 Wij Xj T W; (3.12)

JJ
XJ:f()_(J)Z 1

L+exp (-5)) ,

where x; is the output of node i located in any one of the previous layers, Wij is the
weight associated with the link connecting nodes i and j, and wj is the bias of node
j- Since the weights wij are actually internal parameters associated with each node

J, changing the weights of a node will alter the behavior of the node and in turn
alter the behavior of the whole backpropagation MLP.

37

<
X ——p | Z —J—@ e

X3 W3 Node _)

Figure 3.4 Node j of a backpropagation MLP.

Figure 3.5 shows a three-layer backpropagation MLP with three inputs to
the input layer, three neurons in the hidden layer, and two output neurons in the
output layer. For simplicity, this MLP will be referred to as a 3-3-2 network,
corresponding to the number of nodes in each layer.

4
X
XIQ 7 >
Xo@ 5
X8
X 8] >
3@ p

0 i N

Layer 0 Layer 1 Layer 2
(Input Layer) (Hidden Layer) (Output Layer)

Figure 3.5 A 3-3-2 backpropagation MLP.

The "backward error propagation"”, also known as the "backpropagation”
(BP) or the "generalized data rule" (GDR), is explained next. First, a squared error
measure for the pth input-output pair is defined as

E, =2 (dy- x1)? (3.13)
k

38

where dy is the desired output for node k, and xy is the actual output for node k

when the input part of the pth data pair presented. To find the gradient vector, an
error term g; is defined as

g=0" E,. (3.14)
5 Xi

By the chain rule, the recursive formula for €; can be written as

.
-2(d; - x;) 0x;.=-2(d; - X)) x; (1- x;) if node i is a output
0X; node
& =14 (3.15)

Qi- Zj,i<j 6+Ep_ QXJ_ = X (1- Xi) Zj,i<j -E-—IJ Wij otherwise

\6)_(i 0)_(J 0 Xj

where Wij is the connection weight from node i to j; and Wij is zero if there is no
direct connection. Then the weight update wy; for on-line (pattern-by-pattern)

learning is

Awgi=-n3 E, =-nd"Ey 8%, = -ngxx (3.16)
0 Wi 0 Yi 0 Wi
where m is a learning rate that affects the convergence speed and stability of the

weights during learning.
For off-line (batch) learning, the connection weight wy is updated only

after presentation of the entire data set, or only after an "epoch":

Awgi=-nd*E=-nX 0'E, (3.17)

or, in vector form,

39

Aw=-nd"E=-nV4E (3.18)
ow

where E = Zp Ep. This corresponds to a way of using the true gradient direction

based on the entire data set.

The approximation power of backpropagation MLPs has been explored
by some researchers. Yet there is very little theoretical guidance for determining
network size in terms of say, the number of hidden nodes and hidden layers it
should contain. Cybenko (1989) showed that a backpropagation MLP, with one
hidden layer and any fixed continuous sigmoidal non-linear function, can
approximate any continuous function arbitrarily well on a compact set. When used
as a binary-valued neural network with the step activation function, a
backpropagation MLP with two hidden layers can form arbitrary complex
decision regions to separate different classes, as Lippmann (1987) pointed out. For
function approximation as well as data classification, two hidden layers may be
required to learn a piecewise-continuous function (Masters, 1993).

3.2 Adaptive Neuro-Fuzzy Inference Systems

In this section, we describe a class of adaptive networks that are functionally
equivalent to fuzzy inference systems (Kosko, 1992). The architecture is referred
to as ANFIS, which stands for "adaptive network-based fuzzy inference system".
We describe how to decompose the parameter set to facilitate the hybrid learning
rule for ANFIS architectures representing both the Sugeno and Tsukamoto fuzzy
models.

3.2.1 ANFIS Architecture

A fuzzy inference system consists of three conceptual components: a fuzzy rule
base, which contains a set of fuzzy if-then rules; a database, which defines the
membership functions used in the fuzzy rules; and a reasoning mechanism, which
performs the inference procedure upon the rules to derive a reasonable output or
conclusion (Kandel, 1992). For simplicity, we assume that the fuzzy inference
system under consideration has two inputs x and y and one output z. For a first-
order Sugeno fuzzy model (Sugeno & Kang, 1988), a common rule set with two
fuzzy if-then rules is the following:

Rule I: Ifxis Ajandyis By, then f; =pyx+qy+r1y,
Rule 2: If x is Ay and y is By, then f) =pyx+qyy+ry,

40

Figure 3.6 (a) illustrates the reasoning mechanism for this Sugeno model; the
corresponding equivalent ANFIS architecture is as shown in Figure 3.6 (b), where
nodes of the same layer have similar functions, as described next. (Here we denote
the output of the ith node in layer 1 as 0p,)-

Layer 1: Every node i in this layer is an adaptive node with a node function

Ol,i = HAj (X), fori= l, 2 s
01; = upi-2 (y), fori=3,4, (3.19)

where x (or y) is the input to node i and A; (or B;_5) is a linguistic label (such as
"small" or "large") associated with this node. In other words, Ol,i is the

membership grade of a fuzzy set A and it specifies the degree to which the given
input x (or y) satisfies the quantifier A. Here the membership function for A can
be any appropriate parameterized membership function, such as the generalized
bell function:

pa (X) = 1 (3.20)
I+ (x-cj)/a; [P

where {aj , b;, ¢j} is the parameter set. As the values of these parameters change,

the bell-shaped function varies accordingly, thus exhibiting various forms of
membership functions for a fuzzy set A. Parameters in this layer are referred to as
"premise parameters".

Layer 2: Every node in this layer is a fixed node labeled I1, whose output is the
product of all incoming signals:

0=

AT WiTHA (X) ppi(y), 1=1,2. (32D
Each node output represents the firing strength of a fuzzy rule.
Layer 3: Every node in this layer is a fixed node labeled N. The ith node
calculates the ratio of the ith rule's firing strength to the sum of all rules' firing
strengths:

O3,i = Wi =W / (wptwy) , 1=1,2. (3.22)

For convenience, outputs of this layer are called "normalized firing strengths".

A B
N NS5O W
fi=pix+qiy +r1
——>
X Y = f=wf+wf
W, + W,
= _N.lf1 + W2f2
A2 B>
''''''''''' / VY2270 w,
&—» S—» Hh=px+tqy+tn
X Y
X y
(a)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

AN R A

y
A, W) Wi +
X< Wlfl
A,
z
B,
y
(: > szz
B, W Wz + {
X Yy

(b)

Figure 3.6 (a) A two-input Sugeno fuzzy model with 2 rules; (b) equivalent
ANFIS architecture (adaptive nodes shown with a square and
fixed nodes with a circle).

41

42

Layer 4: Every node i in this layer is an adaptive node with a node function
04i=W; §=W; (px +qy +1;) , (3.23)

where wj is a normalized firing strength from layer 3 and {pi, qj,r}is the

parameter set of this node. Parameters in this layer are referred to as "consequent
parameters".

Layer 5: The single node in this layer is a fixed node labeled £, which computes
the overall output as the summation of all incoming signals:

overall output = 05,i =2 Wi fl = Zi__’vi_fi_ (3.29)
i i Wi

Thus we have constructed an adaptive network that is functionally
equivalent to a Sugeno fuzzy model. We can note that the structure of this
adaptive network is not unique; we can combine layers 3 and 4 to obtain an
equivalent network with only four layers. In the extreme case, we can even shrink
the whole network into a single adaptive node with the same parameter set.
Obviously, the assignment of node functions and the network configuration are
arbitrary, as long as each node and each layer perform meaningful and modular
functionalities.

The extension from Sugeno ANFIS to Tsukamoto ANFIS is
straightforward, as shown in Figure 3.7, where the output of each rule (fj, i =1, 2)

is induced jointly by a consequent membership function and a firing strength.

3.2.2 Learning Algorithm

From the ANFIS architecture shown in Figure 3.6 (b), we observe that when the
values of the premise parameters are fixed, the overall output can be expressed as
a linear combination of the consequent parameters. Mathematically, the output f in
Figure 3.6 (b) can be written as

f= Wy fl + _ Wy f2 (3.25)
W)+ wy w T wy
=W (p1xtqry+11)+ Wy (pax +qy +17)
=(W1x) p1 + (W1y) q + (W) 11 + (Wx) pp + (Way) qp + (W) 1p

43

Wi

Y fi Z =>f=wfitwf,
w; +w,
= W]fl + szz

(®)

Figure 3.7 (a) A two-input Tsukamoto fuzzy model with two rules;
(b) equivalent ANFIS architecture.

44

which is linear in the consequent parameters py, qp, I1, p2, 9o, and rp. From this

observation, we can use a hybrid learning algorithm for parameter estimation in
this kind of models (Jang, 1993). More specifically, in the forward pass of the
hybrid learning algorithm, node outputs go forward until layer 4 and the
consequent parameters are identified by the least-squares method. In the backward
pass, the error signals propagate backward and the premise parameters are updated
by gradient descent.

It has been shown (Jang, 1993) that the consequent parameters identified
in this manner are optimal under the condition that the premise parameters are
fixed. Accordingly, the hybrid approach converges much faster since it reduces
the search space dimensions of the original pure backpropagation method. For
Tsukamoto ANFIS, this can be achieved if the membership function on the
consequent part of each rule is replaced by a piecewise linear approximation with
two consequent parameters.

3.3 Neuro-Fuzzy Control

The original purpose of fuzzy logic control, as proposed in Mamdani's paper in
1975, was to mimic the behavior of a human operator able to control a complex
plant satisfactorily. The complex plant in question could be a chemical reaction
process, a subway ftrain, or a traffic signal control system. After more than 20
years, the ultimate goal of fuzzy controllers remains the same-that is, to automate
an entire control process by replacing a human operator with a fuzzy controller
made up of computer software/hardware.

To construct a fuzzy controller, we need to perform "knowledge
acquisition", which takes a human operator's knowledge about how to control a
system and generates a set of fuzzy if-then rules as the backbone for a fuzzy
controller that behaves like the original human operator. Usually we can obtain
two types of information from a human operator: "linguistic information" and
"numerical information".

Linguistic information: An experienced human operator can usually summarize
his or her reasoning process in arriving at final control actions or decisions as a set
of fuzzy if-then rules with imprecise but roughly correct membership functions;
this corresponds to the linguistic information supplied by human experts, which is
obtained via a lengthy interview process plus a certain amount of trial and error.

Numerical information: When a human operator is working, it is possible to
record the sensor data observed by the human and the human's corresponding
actions as a set of desired input-output data pairs. This data set can be used as
training data in constructing a fuzzy controller.

45

Prior to the emergence of neuro-fuzzy approaches, most design methods
used only linguistic information to build fuzzy controllers; this approach is not
easily formalized and is more of an art than an engineering practice. Following
this approach usually involves manual trial-and-error processes to fine-tune the
membership functions. Successful fuzzy control applications based on linguistic
information plus trial-and-error tuning include steam engine and boiler control
(Mamdani & Assilian, 1975), Sendai subway systems (Yasunobu & Miyamoto,
1985), nuclear reaction control (Bernard, 1988), automobile transmission control
(Kasai & Morimoto, 1988), aircraft control (Chiu, Chand, Moore & Chaudhary,
1991), and many others.

Now, with learning algorithms, we can take further advantage of the
numerical information (input-output data pairs) and refine the membership
functions in a systematic way. In other words, we can use linguistic information to
identify the structure of a fuzzy controller, and then use numerical information to
identify the parameters such that the fuzzy controller can reproduce the desired
action more accurately.

3.3.1 Inverse Learning

The development of "inverse learning" (Widrow & Stearns, 1985) for designing
neuro-fuzzy controllers involves two phases. In the learning phase, an on-line or
off-line technique is used to model the inverse dynamics of the plant. The
obtained neuro-fuzzy model, which represents the inverse dynamics of the plant,
is then used to generate control actions in the application phase. These two phases,
can proceed simultaneously, hence this design method fits in perfectly with the
classical adaptive control scheme.

By assuming that the order of the plant (that is, the number of state
variables) is known and all state variables are measurable, we have

x(k+1) = f(x(k), u(k)) (3.26)

where x(k+1) is the state at time k+1, x(k) is the state at time k, and u(k) is the
control signal at time k (assuming for simplicity that u(k) is a scalar). Similarly,
the state at time k+2 is expressed as

x(k+2) = f(x(k+1), u(k+1)) = £((x(K), u(k)), uk+1))(3.27)

In general, we have

x(k+n) = F(x(k), U) (3.28)

46

where n is the order of the plant, F is a multiple composite function of f, and U is
the control actions from k to k+n-1, which is equal to

[u(k), uk+1), ..., u(k+n-1)]7

The preceding equation points out the fact that given the control input u from time
k to k+n-1, the state of the plant will move from x(k) to x(k+n) in exactly n time
steps. Furthermore, we assume that the inverse dynamics of the plant do exist, that
is, U can be expressed as an explicit function of x(k) and x(k+n):

U = G(x(k), x(k+n)) (3.29)

This equation essentially says that there exists a unique input sequence U,
specified by mapping G, that can drive the plant from state x(k) to x(k+n) in n
time steps. The problem now becomes how to find the inverse mapping G.

Although the inverse mapping G in Equation (3.29) exists by
assumption, it does not always have an analytically closed form. Therefore,
instead of looking for methods of solving Equation (3.29) explicitly, we can use
an adaptive network or ANFIS with 2n inputs and n outputs to approximate the
inverse mapping G according to the generic training data pairs

[x(k)T, x(k+n)T ; UT] (3.30)

Figure 3.8 illustrates the situation in which n is equal to 1. Figure 3.8 (a)
shows a plant block in which the plant output x(k+1) is a function of a previous

state x(k) and input u(k); we use z1 block to represent the unit-time delay
operator. Figure 3.8 (b) is the block diagram during the training phase; Figure 3.8
(c) is the block diagram during the application phase.

Assume that the adaptive network truly imitates the input-output
mapping of the inverse dynamics G. Then, given the current state x(k) and the
desired future state xg(k+n), the adaptive network will generate an estimated U:

U = G(x(k), x4(k+n)) (331)

After n steps, this control sequence can bring the state x(k) to the desired state
xq(k+n), assuming that the adaptive network function Gis exactly the same as the

inverse mapping G. This application phase is shown in the block diagram of
Figure 3.8 (b). If the future desired state xy(k+n) is not available in advance, we

can use the current desired state xg(k) in Figure 3.8 (b). This implies that the

current desired state will appear after n time steps and the whole system behaves
like a pure n-step time delay system.

47

: z! { Plant
L x(k) i
u(k): ¢ i X(kt1) = f(uck), x(k))
: >
(a)
u(k) x(k+1)
¥ P Plant
C; Cu X(k) 7!
- NFIS ‘
Mr o
\A
(b)
Z~1
x(k)
X4(k+1) ANFIS u(k) x(k+1)
—> controller Plant >

©

Figure 3.8 Block diagram for the inverse learning method: (a) plant block;
(b) training phase; (c) application phase

. 78 .
When G is not close to G, the control sequence U cannot bring the state
to xq(k+n) in exactly the next n time step. As more data pairs are used to refine

the parameters in the adaptive network, G will become closer to G and the control
will be more and more accurate as the training process goes on.

For off-line applications, we have to collect a set of training data pairs
and then train the adaptive network in the batch mode. For on-line applications to

48

deal with time-varying systems, the control actions in Equation (3.31) are
generated every n time steps while on-line learning occurs at every time step.
Alternatively, we can generate the control sequence at every time step and apply
only the first component to the plant. Figure 3.9 is a block diagram for on-line
learning when n is equal to 1. The dashed line in the figure indicates that the two
ANFIS blocks are exact duplicates of each other. (For simplicity, we have
removed the unit-time delay operator from this figure).

x(k) u(k) x(k+1)
—> >
—>
Xq(k+1)

Figure 3.9 Block diagram for on-line inverse learning

3.3.2 Specialized Learning

A major problem with inverse learning is that an inverse model does not always
exist for a given plant. Moreover, inverse learning is an indirect approach that
tries to minimize the network output error instead of the overall system error
(defined as the difference between desired and actual trajectories). "Specialized
learning" (Psaltis, Sideris & Yamamura, 1988) is an alternative method that tries
to minimize the system error directly by backpropagating error signals through the
plant block. The price that we pay is that we need to know more about the plant
under consideration.

Figure 3.10 illustrates the most basic type of specialized learning, Figure
3.10 (a) is the plant block (assuming its order is 1), and Figure 3.10 (b) indicates
the training of the ANFIS controller. The ANFIS parameters are updated to reduce

49

the system error ey(k), which is defined as the difference between the system's
output x(k) and the desired output x (k).

Desired Model

e z §
L x(®) !
! E f L x(kt]) = fu(k), x(K)
E > ;

u(k) >

xa(k+1)

Desired
u(k
() > Model

/ €x

P
x(K) 7 x(k+1)

(b)

Figure 3.10 (a) Desired model block; (b) specialized learning
with model referencing

To be more specific, let the plant dynamics be specified by
x(k+1) = f(x(k), v(k))
and the ANFIS output be denoted as
(k) = F(x(k), u(k), 6) (3.32)

where 0 is a parameter vector to be updated. If we set the ANFIS output as the
plant's input, then v(k) = ¥(k) and we have a closed-loop system specified by

50

x(k+1) = f(x(k), F(x(k), u(k), 9))

The objective of specialized learning is to minimize the difference
between the closed-loop system and the desired model. Hence we can define an
error measure:

J(©) = X [if(x(k), F(x(k), u(k), 8)) - x4(k+1)|[2 (3.33)
k

We can use backpropagation or steepest descent to update © to minimize the
above error measure. To find the derivative of J(8) with respect to 0, we need to
know the derivative of f with respect to its second argument. In other words, to
backpropagate error signals through the plant block in Figure 3.10 (b), we need to
know the "Jacobian matrix" of the plant, where the element at row i and column j
is equal to the derivative of the plant's ith output with respect to its jth input. This
usually implies that we need a model for the plant and the Jacobian matrix
obtained from the model, which could be a neural network, an ANFIS, or another
appropriate mathematical description of the plant.

For a single-input plant, if the Jacobian matrix is not easily found
directly, a crude estimate can be obtained by approximating it directly from the
changes in the plant's input and output(s) during two consecutive time instants.
Other methods that aim at using an approximate Jacobian matrix to achieve the
same learning effects can be found in Chen and Pao (1989).

It is not always convenient to specify the desired plant output x4(k) at

every time instant k. As a standard approach in model reference adaptive Control,
the desired behavior of the overall system can be implicitly specified by a model

that is able to achieve the control goal satisfactorily. Let the desired model be
specified by

x4(k+1) = f(x(k), u(k))
Then the error measure in Equation (3.33) becomes

1®) =2 Hf(X(li), F(x(k), u(k), 0)) - f(x(k), u(k)|2 (3.34)

Again, we still need the Jacobian matrix of the plant to do backpropagation.

Note that the ANFIS controller in Equation (3.32) represents the most
general situation. More commonly, the ANFIS controller is a function of x(k) and
6 only and the input to the plant v(k) is expressed as the difference between the
command signal u(k) and ANFIS output, as follows:

V() = u(k) - Fx(k), 0) .

51

3.4 Adaptive Model-Based Neuro-Control

This section briefly reviews various approaches in current adaptive neuro-control
design (Odmivar & Elliot, 1997). Although there are other ways to classify these
approaches (e.g., Hunt, Sbarbaro, Zbikowski & Gawthrop, 1992) this section
nevertheless adopts one similar to adaptive control theory: 1) indirect neuro-
control and 2) direct neuro-control.

In the indirect neuro-control scheme, a neural network does not send a
control signal "directly" to the process. Instead, a neural network is often used as
an indirect process characteristics indicator. This indicator can be a process model
that mimics the process behavior or a controller auto-tuner that produces
appropriate controller settings based upon the process behavior. In this category,
the neuro-control approaches can be roughly distinguished as follows: 1) neural
network model-based control, 2) neural network inverse model-based control, and
3) neural network auto-tuner development.

In the direct neuro-control scheme, a neural network is employed as a
feedback controller, and it sends control signals "directly" to the process.
Depending on the design concept, the direct neuro-control approaches can be
categorized into: 1) controller modelling, 2) model-free neuro-control design, 3)
model-based neuro-control design, and 4) robust model-based neuro-control
design.

Regardless of these distinctions, a unifying framework for neuro-control
is to view neural network training as a non-linear optimization problem,

NN: min J(w) (3.35)

w

in which one tries to find an optimal representation of the neural network that
minimizes an objective function J over the network weight space w. Here, NN
indicates that the optimization problem formulation involves a neural network.
The role a neural network plays in the objective function is then a key to
distinguishing the various neuro-control design approaches.

3.4.1 Indirect Neuro-Control

The most popular control system application of neural networks is to use a neural
network as an input-output process model. This approach is a data-driven
supervised learning approach, i.e., the neural network attempts to mimic an
existing process from being exposed to the process data (see Figure 3.11). The
most commonly adopted model structure for such a purpose is the non-linear auto-
regressive and moving average with exogenous inputs (known as NARMAX)
model or a simpler NARX (Su, McAvoy & Werbos, 1992). Alternatively, one can

52

choose to identify a continuous-time model with a dynamic neural network.
Regardless of the model structure and the control strategy, the neuro-control
design in this case can be conceptually stated as follows:

NN: min F{ Yp = Yn(Ws -.) } (3.36)

w

where Yp stands for plant/process output, y,, for neural network output, and w for

neural network weights. Here F is a functional that measures the performance of
the optimization process. It is usually an integral or sum of the prediction errors
between Yp and yp,. For example, in this model development stage, process inputs

and outputs {up, yp} are collected over a finite period of time and used for neural

network training.

u__ > Plant : » ¥
|
N S
jmmmmmmmemeeeeeeeood Training |
1 L
v f
> Neural Network ' > u’

Figure 3.11 Neural Network as a black-box model of a process

At the implementation stage, nevertheless, the neural network model
cannot be used alone. It must be incorporated with a model-based control scheme.
In the chemical process industry, for example, a neural network is usually
employed in a non-linear model predictive control (MPC) scheme (Su & McAvoy,
1993). Figure 3.12 illustrates the block diagram of an MPC control system. In
fact, the MPC control is also an optimization problem.

The optimization problem here can be expressed as follows:

min F' { y* -y, (u, ...) } (3.37)

u

where y* designates the desired close-loop process output, u the process/model
input or control signal, and y;, the predicted process output (by the neural network

53

model). Here F' stands for an objective function that evaluates the closed-loop
performance. For example, the optimization problem in the implementation stage
is usually as follows:

min Z{|y*®) -y -d®) 2, yp=8(,.) (338

u t

Figure 3.12 Neural network model with non-linear model predictive control

where y*(t) stands for desired set point trajectory and d(t) for estimated
disturbance. This optimization is performed repeatedly at each time interval
during the course of feedback control. Although the constrains are not particularly
of interest in the discussion, one advantage of this indirect control design
approach over the direct ones is that the constraints can be incorporated when
solving the above optimization problem.

In some cases, a certain degree of knowledge, about the process might be
available, such as model structure or particular physical phenomena that are well
understood. In this case, a full black-box model might not be most desirable. For
example, if the structure of the process model is available, values for the

54

associated parameters can be determined by a neural network. Examples of these
parameters can be time constants, gains, and delays or physical parameters such as
diffusion rates and heat transfer coefficients. When model structure is not known a
priori, neural networks can be trained to select elements of a model structure from
a predetermined set. Lastly, in other cases where model structure is partially
known, neural networks can also be integrated with such a partial model so that
the process can be better model (see Figure 3.13).

For illustration purposes, the parametric or partial neural network
modelling problem can be formulated as follows:

NN: min F{y,-yn®,..)} , 8=N(w,..) (339

w

where yp, is the predicted output from the model and © stands for the process

parameters, model structural information and other elements required to complete
the model. Notice the only difference between Equation (3.39) and Equation
(3.36) is that yp, replaces y,. From a model-based control standpoint, this

approach is essentially identical to the full black-box neural network model except
that the neural network does not directly mimic the process behavior.

Figure 3.13 A neural network can be a parameter estimator, model structure
selector, or a partial element of a physical model

55

A neural network can be trained to develop an inverse model of the plant.
The network input is the process output, and the network output is the
corresponding process input (see Figure 3.14). In general, the optimization
problem can be formulated as

NN: min F { u*p_1 -u, (W, ...)} (3.40)
w

where u*p-l is the process inputs. Typically, the inverse model is a steady

state/static model, which can be used for feedforward control. Given a desired

process set point y*, the appropriate steady-state control signal u* for this set
point can be immediately known:

u* =¥ (y%, ...) (3.41)
Successful applications of inverse modelling are discussed in (Miller,

Sutton & Werbos, 1995). Obviously, an inverse model exists only when the
process behaves monotonically as a "forward" function at steady state.

u y
i > Plant >
]
R A
| Training _____________
! : 1:
____________ !
T \ 4
Neural
< Network <
u’

Figure 3.14 A neural network inverse model

As in the previous case where neural networks can be used to estimate
parameters of a known model, they can also be used to estimate tuning parameters
of a controller whose structure is known a priori. A controller's tuning parameter

56

estimator is often referred to as an autotuner. The optimization problem in this
case can be formulated as follows:

NN:min F {n* -n, (w, ...)} (3.42)

w

where n* denotes the controller parameters as targets and my, stands for the

predicted values by the neural network. Network input can comprise sampled
process data or features extracted from it. However, these parameters 1 cannot be
uniquely determined from the process characteristics. They also depend on the
desired closed-loop control system characteristics. Usually, the controller
parameters are solutions to the following closed-loop control optimization:

min ' { y* - Yo (U,)} 5 u=C(n, ...) (3.43)
n

where C is a controller with a known structure. Here, Yp/m denotes that either a

process or a model can be employed in this closed-loop control in order to find the
target controller C.

3.4.2 Direct Neuro-Control

Among the four direct neuro-control schemes, the simplest for neuro-controller
development is to use a neural network to model an existing controller (see Figure
3.15). The input to the existing controller is the training input to the network and
the controller output serves as the target. This neuro-control design can be
formulated as follows:

NN:min F {u*. -u, (w, ...)} (3.44)

w

where u*. is the output of an existing controller C*. Usually, the existing
controller C* can be a human operator or it can be obtained via

min F' {y* - ypm (0, ..)} 5 u=C(...) (345

C

Like a process model, a controller is generally a dynamical system and
often comprises integrators or differentiators. If a feedforward network is used to
model the existing controller, dynamical information must be explicitly provided
as input to the network.

57

e u
> Controller E >
1
R | A
r_________________i Training E
1 1 !
t [
v 4
[}
Neural !
b !
Network >
u’

Figure 3.15 The simplest approach to neuro-control is to use a
neural network to model an existing controller

While the benefits of this approach may be apparent when the existing
controller is a human, its utility may be limited. It is applicable only when an
existing controller is available, which is the case in many applications. Staib &
Staib (1992) discuss how it can be effective in a multistage training process.

In the absence of an existing controller, some researchers have been
inspired by the way a human operator learns to "control/operate" a process with
little or no detailed knowledge of the process dynamics. Thus they have attempted
to design controllers that by adaptation and learning can solve difficult control
problems in the absence of process models and human design effort. In general,
this model-free neuro-control can be stated as:

NN:min F {y* -y, (u,...)} , u=N(w,..) (3.46)

w

where Yp is the output from the plant. The key feature of this direct adaptation

control approach is that a process model is neither known in advance nor
explicitly developed during control design. Figure 3.16 is a typical representation
of this class of control design.

The first work in this area was the "adaptive critic" algorithm proposed
by Barto et al. (1983). Such an algorithm can be seen as an approximate version of
dynamic programming. In this work, they posed a well-known cart-pole balancing
problem and demonstrated their design concept. In this class of control design,
limited/poor information is often adopted as an indication of performance criteria.

58

For example, the objective is the cart-pole balancing problem is simply to
maintain the pole in a near-upright balanced position for as long as possible. The
instructional feedback is limited to a "failure" signal when the controller fails to
hold the pole in an upright position. The cart-pole problem has become a popular
test-bed for explorations of the model-free control design concept.

. "’E Training :< """""""""""""""

s !
| ! !
I ! '
l ! '
| ! '
| ! I
| ! '
i ! I
| ! '
| | '
! u ! y
r Neural > ! |
- Network Plant

Figure 3.16 The model-free control design concept

Despite its historical importance and intuitive appeal, model-free
adaptive neuro-control is not appropriate for most real-world applications. The
plant is most likely out of control during the learning process, and few industrial
processes can tolerate the large number of "failures" needed to adapt the
controller.

From a practical perspective, one would prefer to let failures take place in
a simulated environment (with a model) rather than in a real plant even if the
failures are not disastrous or do not cause substantial losses. As opposed to the
previous case, this class of neuro-control design is referred to as "model-based
neuro-control design”. Similar to Equation (3.46), as a result, the problem
formulation becomes

NN:minF {y*-y,(u,...)} , u=X(w,..) (3.47)

w

Here, Yp in Equation (3.46) is replaced by y,-the model's output. In this case,

knowledge about the processes of interest is required. As can be seen in Figure
3.17, a model replaces the plant/process in the control system.

59

If a process model is not available, one can first train a second neural
network to model the plant dynamics. In the course of modelling the plant, the
plant must be operated "normally” instead of being driven out of control. After the
modelling stage, the model can then be used for control design. If a plant model is
already available, a neural network controller can then be developed in a
simulation in which failures cannot cause any loss but that of computer time. A
neural network controller after extensive training in the simulation can then be
installed in the actual control system.

In fact, these "model-based neuro-control design" approaches have not
only proven effective in several studies (Troudet, 1991), but also have already
produced notable economic benefits (Staib, 1993). Nevertheless, the quality of
control achieved with this approach depends crucially on the quality of the process
model. If a model is not accurate enough, the trained neuro-controller is unlikely
to perform satisfactorily on the real process. Without an on-line adaptive
component, this neuro-controller does not allow for plant drifts or other factors
that could adversely affect the performance of the control system.

renn : Training [.

! ! | }

r mmmmme- s ==- \

1 [} 1

1 [}]

1]]

: i i

i | |

: u ;‘ y
r Neural ! >

- Network Model

Figure 3.17 A model replaces the plant/process in the control system during
the control design phase

The neuro-controller approaches discussed above still share a common
shortcoming: A neural network must be trained for every new application.
Network retraining is needed even with small changes in the control criterion,
such as changes in the relative weighting of control energy and tracking response,
or if the controller is to be applied to a different but similar processes. In order to
avoid such drawbacks, the concept of "robustness” is naturally brought into the
design of a neuro-controller. In robust model-based neuro-control design, a family
of process models is considered instead of just a nominal one (see Figure 3.18).

60

Often such a family is specified by a range of noise models or range of the process
parameters. Robust neuro-control design can be formulated as follows:

NN:minF {y* - yni(u,...)} , u=N(W,..), VmjeM (3.48)

w

where m; stands for the ith member of the model family M. Ideally, the real

process to be controlled should belong to this family as well so that the controller
is robust not only for the model but also for the real process.

Two aspects of robustness are commonly distinguished. Robust Stability
refers to a control system that is stable (qualitatively) over the entire family of
processes, whereas robust performance refers to (quantitative) performance
criteria being satisfied over the family (Morari & Zafiriou, 1989). Not
surprisingly, there is a tradeoff to achieve robustness. By optimizing a neural
network controller based upon a fixed (and accurate) process model, high
performance can be achieved as long as the process remains invariant, but at the
likely cost of brittleness. A robust design procedure, on the other hand, is not
likely to achieve the same level of nominal performance but will be less sensitive
to process drifts, disturbances, and other sources of process-model mismatch.

Neural Model |
- Network

Figure 3.18 Robust model-based neuro-control

61

3.4.3 Parameterized Neuro-Control

All the above neuro-control approaches share a common shortcoming-the need for
extensive application-specific development efforts. Each application requires the
optimization of the neural network controller and may also require process model
identification. The expense in time and computation has been a significant barrier
to widespread implementation of neuro-control systems.

In an attempt to avoid application-specific development, a new neuro-
control design concept-parameterized neuro-control (PNC)-has evolved (Samad &
Foslien, 1994). Figure 3.19 illustrates this PNC strategy. The PNC controller is
equipped with parameters that specify process characteristics and those that
provide performance criterion information. For illustration purposes, a PNC can
be conceptually formulated as follows:

NN: min F(e) {y* - ymi O, u, ...)} ,

w (3.49)
u=XWw,06,¢,..) , YVm;6) € M(O)

where € designates the parameter set that defines the space of performance
criteria, O stands for the process parameter set, O is the estimates for process
parameters, and again M(0) is a family of parameterized models m;(0) in order to

account for errors in process parameters estimates 6.

FooTmEETTTT TN
. ": Training ®-""="""---TTmmoooooommmoooooes K
__________ |
K .
A 1: Process and other E_ .
! Parameterization !
1

r
|
|
|
|
|
I
|
f
|
1
1
|

|
\ A 4 |
Neural
Network Model >

Figure 3.19 Parameterized Neuro-Control

62

In fact, the two additional types of parameters (€ and 6) make a PNC
generic. A PNC is generic in two respects: 1) the process model parameters 0
facilitate its application to different processes and 2) the performance parameters €
allow its performance characteristics to be adjustable, or "tunable". For example,
if a PNC is designed for first-order plus delay processes, the process parameters
(i.e., process gain, time constant, and dead time) will be adjustable parameters to
this PNC. Once developed, this PNC requires no application-specific training or
adaptation when applied to a first-order plus delay process. It only requires
estimates of these process parameters. These estimates do not have to be accurate
because the robustness against such inaccuracy is considered in the design phase.

3.5 Summary

In this chapter, we have presented the main ideas underlying Neural Networks and
the application of this powerful computational theory to general control problems.
We have discussed in some detail the backpropagation learning algorithm for
feedforward networks, the integration of fuzzy logic techniques to neural
networks to form powerful adaptive neuro-fuzzy inference systems and the basic
concepts and current methods of neuro-fuzzy control. At the end, we also gave
some remarks about adaptive neuro-control and model-based control of non-linear
dynamical systems. In the following chapters, we will show how neural network
techniques (in conjunction with other techniques) can be applied to solve real
world complex problems of control. This chapter will serve as a basis for the new
hybrid intelligent control methods that will be described in Chapter 7 of this book.

Chapter 4

Genetic Algorithms and Simulated Annealing

This chapter introduces the basic concepts and notation of genetic algorithms and
simulated annealing, which are two basic search methodologies that can be used
for modelling and simulation of complex non-linear dynamical systems. Since
both techniques can be considered as general purpose optimization methodologies,
we can use them to find the mathematical model which minimizes the fitting
errors for a specific problem. On the other hand, we can also use any of these
techniques for simulation if we exploit their efficient search capabilities to find the
appropriate parameter values for a specific mathematical model. We also describe
in this chapter the application of genetic algorithms to the problem of finding the
best neural network or fuzzy system for a particular problem. We can use a
genetic algorithm to optimize the weights or the architecture of a neural network
for a particular application. Alternatively, we can use a genetic algorithm to
optimize the number of rules or the membership functions of a fuzzy system for a
specific problem. These are two important application of genetic algorithms,
which will be used in later chapters to design intelligent intelligent systems for
controlling real world dynamical systems.

Genetic algorithms and simulated annealing have been used extensively
for both continuous and discrete optimization problems (Jang, Sun & Mizutani,
1997). Common characteristics shared by these methods are described next.

o Derivative freeness: These methods do not need functional derivative
information to search for a set of parameters that minimize (or maximize) a
given objective function. Instead they rely exclusively on repeated
evaluations of the objective function, and the subsequent search direction
after each evaluation follows certain heuristic guidelines.

o Heuristic guidelines: The guidelines followed by these search procedures are
usually based on simple intuitive concepts. Some of these concepts are

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

64

motivated by so-called nature's wisdom, such as evolution and
thermodynamics.

Flexibility: Derivative freeness also relieves the requirement for differentiable
objective functions, so we can use as complex an objective function as a
specific application might need, without sacrificing too much in extra coding
and computation time. In some cases, an objective function can even include
the structure of a data-fitting model itself, which may be a fuzzy model.

Randomness: These methods are stochastic, which means that they use
random number generators in determining subsequent search directions. This
element of randomness usually gives rise to the optimistic view that these
methods are "global optimizers" that will find a global optimum given enough
computing time. In theory, their random nature does make the probability of
finding an optimal solution nonzero over a fixed amount of computation time.
In practice, however, it might take a considerable amount of computation
time.

Analytic opacity: It is difficult to do analytic studies of these methods, in part
because of their randomness and problem-specific nature. Therefore, most of
our knowledge about them is based on empirical studies.

Iterative nature: These techniques are iterative in nature and we need certain
stopping criteria to determine when to terminate the optimization process. Let
K denote an iteration count and fj denote the best objective function obtained

at count k; common stopping criteria for a maximization problem include the
following;

1) Computation time: a designated amount of computation time, or
number of function evaluations and/or iteration counts is reached.
2) Optimization goal: f| is less than a certain preset goal value.

3) Minimal improvement: fj - fj_j is less than a preset value.
4) Minimal relative improvement: (fi - fi_1)/ fic_q is less than a preset
value.

Both genetic algorithms (GAs) and simulated annealing (SA) have been

receiving increasing amounts of attention due to their versatile optimization
capabilities for both continuous and discrete optimization problems. Moreover,
both of them are motivated by so-called "nature's wisdom": GAs are based on the
concepts of natural selection and evolution; while SA originated in annealing
processes found in thermodynamics and metallurgy.

65

4.1 Genetic Algorithms

Genetic algorithms (GAs) are derivative-free optimization methods based on the
concepts of natural selection and evolutionary processes (Goldberg, 1989). They
were first proposed and investigated by John Holland at the University of
Michigan (Holland, 1975). As a general-purpose optimization tool, GAs are
moving out of academia and finding significant applications in many areas. Their
popularity can be attributed to their freedom from dependence on functional
derivatives and their incorporation of the following characteristics:

e GAs are parallel-search procedures that can be implemented on parallel
processing machines for massively speeding up their operations.

e GAs are applicable to both continuous and discrete (combinatorial)
optimization problems.

e GAs are stochastic and less likely to get trapped in local minima, which
inevitably are present in any optimization application.

e GAs' flexibility facilitates both structure and parameter identification in
complex models such as fuzzy inference systems or neural networks.

GAs encode each point in a parameter (or solution) space into a binary
bit string called a "chromosome", and each point is associated with a "fitness
value" that, for maximization, is usually equal to the objective function evaluated
at the point. Instead of a single point, GAs usually keep a set of points as a
"population", which is then evolved repeatedly toward a better overall fitness
value. In each generation, the GA constructs a new population using "genetic
operators" such as crossover and mutation; members with higher fitness values are
more likely to survive and to participate in mating (crossover) operations. After a
number of generations, the population contains members with better fitness
values; this is analogous to Darwinian models of evolution by random mutation
and natural selection. GAs and their variants are sometimes referred to as methods
of "population-based optimization" that improve performance by upgrading entire
populations rather than individual members. Major components of GAs include
encoding schemes, fitness evaluations, parent selection, crossover operators, and
mutation operators; these are explained next.

Encoding schemes: These transform points in parameter space into bit string
representations. For instance, a point (11, 4, 8) in a three-dimensional parameter
space can be represented as a concatenated binary string:

1011 0100 1000

11 4 8

66

in which each coordinate value is encoded as a "gene" composed of four binary
bits using binary coding. other encoding schemes, such as gray coding, can also be
used and, when necessary, arrangements can be made for encoding negative,
floating-point, or discrete-valued numbers. Encoding schemes provide a way of
translating problem-specific knowledge directly into the GA framework, and thus
play a key role in determining GAs' performance. Moreover, genetic operators,
such as crossover and mutation, can and should be designed along with the
encoding scheme used for a specific application.

Fitness evaluation: The first step after creating a generation is to calculate the
fitness value of each member in the population. For a maximization problem, the
fitness value fj of the ith member is usually the objective function evaluated at this

member (or point). We usually need fitness values that are positive, so some kind
of monotonical scaling and/or translation may by necessary if the objective
function is not strictly positive. Another approach is to use the rankings of
members in a population as their fitness values. The advantage of this is that the
objective function does not need to be accurate, as long as it can provide the
correct ranking information.

Selection: After evaluation, we have to create a new population from the current
generation. The selection operation determines which parents participate in
producing offspring for the next generation, and it is analogous to "survival of the
fittest" in natural selection. Usually members are selected for mating with a
selection probability proportional to their fitness values. The most common way to
implement this is to set the selection probability equal to:

k=n
k=1

where n is the population size. The effect of this selection method is to allow
members with above-average fitness values to reproduce and replace members
with below-average fitness values.

Crossover: To exploit the potential of the current population, we use "crossover"
operators to generate new chromosomes that we hope will retain good features
from the previous generation. Crossover is usually applied to selected pairs of
parents with a probability equal to a given "crossover rate". "One-point crossover"
is the most basic crossover operator, where a crossover point on the genetic code
is selected at random and two parent chromosomes are interchanged at this point.
In "two-point crossover", two crossover points are selected and the part of the
chromosome string between these two points is then swapped to generate two
children. We can define n-point crossover similarly. In general, (n-1)-point

67

crossover is a special case of n-point crossover. Examples of one-and two-point
crossover are shown in Figure 4.1.

crossover point

100 {11110 100 {10010
=

101 {10010 101 {11110
(a)

110011 110 110110 [110
=

110110 |010 1]0011 | 010
(b)

Figure 4.1 Crossover operators: (a) one-point crossover; (b) two-point crossover.

Mutation: Crossover exploits current gene potentials, but if the population does
not contain all the encoded information needed to solve a particular problem, no
amount of gene mixing can produce a satisfactory solution. For this reason, a
"mutation" operator capable of spontaneously generating new chromosomes is
included. The most common way of implementing mutation is to flip a bit with a
probability equal to a very low given "mutation rate". A mutation operator can
prevent any single bit from converging to a value throughout the entire population
and, more important, it can prevent the population from converging and stagnating
at any local optima. The mutation rate is usually kept low so good chromosomes
obtained from crossover are not lost. If the mutation rate is high (above 0.1), GA
performance will approach that of a primitive random search. Figure 4.2 provides
an example of mutation.

Mutated bit
Y
10011110 = 10011010

Figure 4.2 Mutation operator.

In the natural evolutionary process, selection, crossover, and mutation all
occur in the single act of generating offspring. Here we distinguish them clearly to
facilitate implementation of and experimentation with GAs.

Based on the aforementioned concepts, a simple genetic algorithm for
maximization problems is described next.

68

Step 1: Initialize a population with randomly generated individuals and evaluate
the fitness value of each individual.

Step 2: Perform the following operations:
(a) Select two members from the population with probabilities
proportional to their fitness values.
(b) Apply crossover with a probability equal to the crossover rate.
(c) Apply mutation with a probability equal to the mutation rate.
(d) Repeat (a) to (d) until enough members are generated to form the next
generation.

Step 3: Repeat steps 2 and 3 until a stopping criterion is met.

Figure 4.3 is a schematic diagram illustrating how to produce the next
generation from the current one.

10010110 ... 10010110 ...
01100010 ... selection 01100010 ...
10100100 ... 10100100 ...

— crossover —>

mutation

01111101 10011101 ...

Current Generation Next Generation

Figure 4.3 Producing the next generation in GAs.

4.2 Simulated Annealing

"Simulated Annealing” (SA) is another derivative-free optimization method that
has recently drawn much attention for being as suitable for continuous as for
discrete (combinational) optimization problems (Otten & Ginneken, 1989). When
SA was first proposed (Kirkpatrick, Gelatt & Vecchi, 1983) it was mostly known
for its effectiveness in finding near optimal solutions for large-scale combinatorial
optimization problems, such as traveling salesperson problems and placement
problems. Recent applications of SA and its variants (Ingber & Rosen, 1992) also

69

demonstrate that this class of optimization approaches can be considered
competitive with other approaches when there are continuous optimization
problems to be solved.

Simulated annealing was derived from physical characteristics of spin
glasses (Kirkpatrick, Gelatt & Vecchi, 1983). The principle behind simulated
annealing is analogous to what happens when metals are cooled at a controlled
rate. The slowly falling temperature allows the atoms in the molten metal to line
themselves up and form a regular crystalline structure that has high density and
low energy. But if the temperature goes down too quickly, the atoms do not have
time to orient themselves into a regular structure and the result is a more
amorphous material with higher energy.

In simulated annealing, the value of an objective function that we want to
minimize is analogous to the energy in a thermodynamic system. At high
temperatures, SA allows function evaluations at faraway points and it is likely to
accept a new point with higher energy. This corresponds to the situation in which
high-mobility atoms are trying to orient themselves with other nonlocal atoms and
the energy state can occasionally go up. At low temperatures, SA evaluates the
objective function only at local points and the likelihood of it accepting a new
point with higher energy is much lower. This is analogous to the situation in
which the low-mobility atoms can only orient themselves with local atoms and the
energy state is not likely to go up again.

Obviously, the most important part of SA is the so-called "annealing
schedule" or "cooling schedule", which specifies how rapidly the temperature is
lowered from high to low values. This is usually application specific and requires
some experimentation by trial-and-error.

Before giving a detailed description of SA, first we shall explain the
fundamental terminology of SA.

Objective function: An objective function f(.) maps an input vector x into a scalar
E: E = f(x),

where each x is viewed as a point in an input space. The task of SA is to sample
the input space effectively to find an x that minimizes E.

Generating function: A generating function g(. , .) specifies the probability density
function of the difference between the current point and the next point to be
visited. Specifically, Ax (= Xpew - X) is a random variable with probability

density function g(Ax,T), where T is the temperature. For common SA (especially
in combinatorial optimization applications), g(. , .) is usually a function
independent of the temperature T.

Acceptance function: After a new point Xpew has been evaluated, SA decides

whether to accept or reject it based on the value of an acceptance function h(. , .).

70

The most frequently used acceptance function is the "Boltzmann probability
distribution":

h(AE, T) = l .1
1 + exp(AE / (cT))

where c is a system-dependent constant, T is the temperature, and AE is the energy
difference between xpew and x:

AE = f(Xnew) - f(X)

The common practice is to accept xpew With probability h(AE, T).

Annealing schedule: An annealing schedule regulates how rapidly the temperature
T goes from high to low values, as a function of time or iteration counts. The
exact interpretation of "high" and "low" and the specification of a good annealing
schedule require certain problem-specific physical insights and/or trial-and-error.
The easiest way of setting an annealing schedule is to decrease the temperature T
by a certain percentage at each iteration.

The basic algorithm of simulated annealing is the following:

Step 1: Choose a start point x and set a high starting temperature T. Set the
iteration countk to 1.

Step 2: Evaluate the objective function E =f(x) .

Step 3: Select Ax with probability determined by the generating function g(Ax,
T). Set the new point Xpeyy, €qual to x + Ax .

Step 4: Calculate the new value of the objective function: Epew = f(Xpew) -

Step 5: Set x to Xpew and E to Epeyw with probability determined by the
acceptance function h(AE , T), where AE = Epew- E .

Step 6: Reduce the temperature T according to the annealing schedule (usually
by simply setting T equal to T, where 1 is a constant between 0 and 1).

Step 7: Increment iteration count k. If k reaches the maximum iteration count,

stop the iterating. Otherwise, go back to step 3.

In conventional SA, also known as "Boltzmann machines", the
generating function is a Gaussian probability density function:

g(Ax, T)=(nTy ™2 exp[-| Ax |2/ 2T)] 4.2)
where Ax (= Xpew - X) is the deviation of the new point from the current one, T is

the temperature, and n is the dimension of the space under exploration. It has been
proven (Geman & Geman, 1984) that a Boltzman machine using the
aforementioned generating function g(. , .) can find a global optimum of f(x) if
the temperature T is reduced no faster than T, / Ink .

71

Variants of Boltzmann machines include the "Cauchy machine" or "fast
simulated annealing”" (Szu & Hartley, 1987), where the generating function is the
Cauchy distribution:

g (AX) = T (4.3)
(Il A | + T2+ 02

The fatter tail of the Cauchy distribution allows it to explore farther from the
current point during the search process.

Another variant of the original SA, the so-called "very fast" simulated
annealing (Ingber & Rosen, 1992), was designed for optimization problems in a
constrained search space. Very fast simulated annealing has been reported to be
faster than genetic algorithms on several test problems by the same authors.

4.3 Applications of Genetic Algorithms

The simple version of the genetic algorithm described in the previous section is
very simple, but variations of this algorithm have been used in a large number of
scientific and engineering problems and models (Mitchell, 1996). Some examples
follow.

e Optimization: genetic algorithms have been used in a wide variety of
optimization tasks, including numerical optimization and such combinatorial
optimization problems as circuit layout and job-shop scheduling.

e Automatic Programming: genetic algorithms have been used to evolve
computer programs for specific tasks, and to design other computational
structures such as cellular automata and sorting networks.

e Machine Learning: genetic algorithms have been used for many machine
learning applications, including classification and prediction tasks, such as the
prediction of weather or protein structure. Genetic algorithms have also been
used to evolve aspects of particular machine learning systems, such as
weights for neural networks, rules for learning classifier systems or symbolic
production systems, and sensors for robots.

e Economics: genetic algorithms have been used to model processes of
innovation, the development of bidding strategies, and the emergence of
economic markets.

e Immune Systems: genetic algorithms have been used to model various
aspects of natural immune systems, including somatic mutation during an
individual’s lifetime and the discovery of multigene families during
evolutionary time.

e Ecology: genetic algorithms have used to model ecological phenomena such
as biological arms races, host-parasite coevolution, symbiosis, and resource
flow.

72

e Social Systems: genetic algorithms have been used to study evolutionary
aspects of social systems, such as the evolution of social behavior in insect
colonies, and, more generally, the evolution of cooperation and
communication in multi-agent systems.

This list is by no means exhaustive, but it gives the flavor of the kinds of things

genetic algorithms have been used for, both in problem solving and in scientific

contexts. Because of their success in these and other areas, interest in genetic
algorithms has been growing rapidly in the last several years among researchers in
many disciplines.

We will describe bellow the application of genetic algorithms to the
problem of evolving neural networks, which is a very important problem in
designing the particular neural network for a problem.

4.3.1 Evolving Neural Networks

Neural Networks are biologically motivated approaches to machine learning,
inspired by ideas from neuroscience. Recently, some efforts have been made to
use genetic algorithms to evolve aspects of neural networks (Mitchell, 1996).

In its simplest feedforward form, a neural network is a collection of
connected neurons in which the connections are weighted, usually with real-
valued weights. The network is presented with an activation pattern on its input
units, such as a set of numbers representing features of an image to be classified.
Activation spreads in a forward direction from the input units through one or more
layers of middle units to the output units over the weighted connections. This
process is meant to roughly mimic the way activation spreads through networks of
neurons in the brain. In a feedforward network, activation spreads only in a
forward direction, from the input layer through the hidden layers to the output
layer. Many people have also experimented with “recurrent” networks, in which
there are feedback connections between layers.

In most applications, the neural network learns a correct mapping
between input and output patterns via a learning algorithm. Typically the weights
are initially set to small random values. Then a set of training inputs is presented
sequentially to the network. In the backpropagation learning procedure, after each
input has propagated through the network and an output has been produced, a
“teacher” compares the activation value at each output unit with the correct
values, and the weights in the network are adjusted in order to reduce the
difference between the network’s output and the correct output. This type of
procedure is known as “supervised learning”, since a teacher supervises the
learning by providing correct output values to guide the learning process.

There are many ways to apply genetic algorithms to neural networks.
Some aspects that can be evolved are the weights in a fixed network, the network
architecture (i.e., the number of neurons and their interconnections can change),
and the learning rule used by the network.

73

4.3.1.1 Evolving Weights in a Fixed Network

David Montana and Lawrence Davis (1989) took the first approach of evolving
the weights in a fixed network. That is, Montana and Davis were using the genetic
algorithm instead of backpropagation as a way of finding a good set of weights for
a fixed set of connections. Several problems associated with the backpropagation
algorithm (e.g., the tendency to get stuck at local minima, or the unavailability of
a “teacher” to supervise learning in some tasks) often make it desirable to find
alternative weight training schemes.

Montana and Davis were interested in using neural networks to classify
underwater sonic “lofargrams” (similar to spectrograms) into two classes:
“interesting” and “not interesting”. The networks were to be trained from a
database containing lofargrams and classifications made by experts as to whether
or not a given lofargram is “interesting”. Each network had four input units,
representing four parameters used by an expert system that performed the same
classification. Each network had one output unit and two layers of hidden units
(the first with seven units and the second with ten units). The networks were fully
connected feedforward networks. In total there were 108 weighted connections
between units. In addition, there were 18 weighted connections between the non-
input units and a “threshold unit” whose outgoing links implemented the
thresholding for each of the non-input units, for a total of 126 weights to evolve.

The genetic algorithm was used as follows. Each chromosome was a list
of 126 weights. Figure 4.4 shows (for a much smaller network) how the encoding
was done: the weights were read off the network in a fixed order (from left to right
and from top to bottom) and placed in a list. Notice that each “gene” in the
chromosome is a real number rather than a bit. To calculate the fitness of a given
chromosome, the weights in the chromosome were assigned to the links in the
corresponding network, the network was run on the training set (here 236
examples from the database), and the sum of the squares of the errors was
returned. Here, an “error” was the difference between the desired output value and
the actual output value. Low error meant high fitness in this case.

Chromosome: (0.3 -04 02 08 -03 -0.1 0.7 -0.3)
Figure 4.4 Encoding of network weights for the genetic algorithm.

An initial population of 50 weights vectors was chosen randomly, with
each weight being between —1.0 and +1.0. Montana and Davis tried a number of

74

different genetic operators in various experiments. The mutation and crossover
operators they used for their comparison of the genetic algorithm with
backpropagation are illustrated in Figures 4.5 and 4.6. The mutation operator
selects n non-input units, and for each incoming link to those units, adds a random
value between —-1.0 and +1.0 to the weight on the link. The crossover operator
takes two parent weight vectors, and for each non-input unit in the offspring
vector, selects one of the parents at random and copies the weights on the
incoming links from that parent to the offspring. Notice that only one offspring is
created.

(03 -04 02 08 -03 -0.1 0.7 -03) (03 -04 02 0.6 -03 -09 0.7 -0.1)

Figure 4.5 Illustration of the mutation method. Here the weights on incoming links
to unit 5 are mutated.

Parent 1 Parent 2

(03 -04 02 08 -03 -0.1 0.7 -03) (0.7 -09 03 04 0.8 -02 0.1 0.5

Child @

(0.7 -0.9 02 04 <03 -02 0.7 0.5)

Figure 4.6 Illustration of the crossover method. In the child network shown here,
the incoming links to unit 4 come from parent 1 and the incoming
links 5 and 6 come from parent 2.

75

The performance of a genetic algorithm using these operators was
compared with the performance of a backpropagation algorithm. The genetic
algorithm had a population of 50 weight vectors, and a rank selection method was
used. The genetic algorithm was allowed to run for 200 generations. The
backpropagation algorithm was allowed to run for 5000 iterations, where one
iteration is a complete epoch (a complete pass through the training data). Montana
and Davis found that the genetic algorithm significantly outperforms
backpropagation on this task, obtaining better weight vectors more quickly.

This experiment shows that in some situations the genetic algorithm is a
better training method for neural networks than simple backpropagation. This
does not mean that the genetic algorithm will outperform backpropagation in all
cases. It is also possible that enhancements of backpropagation might help it
overcome some of the problems that prevented it from performing as well as the
genetic algorithm in this experiment.

4.3.1.2 Evolving Network Architectures

Neural network researchers know all too well that the particular architecture
chosen can determine the success or failure of the application, so they would like
very much to be able to automatically optimize the procedure of designing an
architecture for a particular application. Many believe that genetic algorithms are
well suited for this task (Mitchell, 1996). There have been several efforts along
these lines, most of which fall into one of two categories: direct encoding and
grammatical encoding. Under direct encoding a network architecture is directly
encoded into a genetic algorithm chromosome. Under grammatical encoding, the
genetic algorithm does not evolve network architectures; rather, it evolves
grammars that can be used to develop network architectures.

Direct Encoding.

The method of direct encoding is illustrated in work done by Geoffrey Miller,
Peter Todd, and Shailesh Hedge (1989), who restricted their initial project to
feedforward networks with a fixed number of units for which the genetic
algorithm was used to evolve the connection topology. As is shown in Figure 4.7,
the connection topology was represented by a NxN matrix (5x5 in Figure 4.7) in
which each entry encodes the type of connection from the “from unit” to the “to
unit”. The entries in the connectivity matrix were either “0” (meaning no
connection) or “L” (meaning a “learnable” connection). Figure 4.7 also shows
how the connectivity matrix was transformed into a chromosome for the genetic
algorithm (“0” corresponds to 0 and “L” to 1) and how the bit string was decoded
into a network. Connections that were specified to be learnable were initialized
with small random weights.

76

From 1 2 3 4 5§

unit
To unit 1 @

w R WN
o - M~ o o
o - H o ©
o o o ©
= o o o ©
o © © o o

Chromosome: 0 0 00000000110001100000110

Figure 4.7 Illustration of Miller, Todd, and Hedge’s representation scheme.

Miller, Todd, and Hedge used a simple fitness-proportionate selection
method and mutation (bits in the string were flipped with some low probability).
Their crossover operator randomly chose a row index and swapped the
corresponding rows between the two parents to create two offspring. The intuition
behind that operator was similar to that behind Montana and Davis’s crossover
operator-each row represented all the incoming connections to a single unit, and
this set was thought to be a functional building block of the network. The fitness
of a chromosome was calculated in the same way as in Montana and Davis’s
project: for a given problem, the network was trained on a training set for a certain
number of epochs, using backpropagation to modify the weights. The fitness of
the chromosome was the sum of the squares of the errors on the training set at the
last epoch. Again, low error translated to high fitness. Miller, Todd, and Hedge
tried their genetic algorithm on several problems with very good results. The
problems were relatively easy for multilayer neural networks to learn to solve
under backpropagation. The networks had different number of units for different
tasks; the goal was to see if the genetic algorithm could discover a good
connection topology for each task. For each run the population size was 50, the
crossover rate was 0.6, and the mutation rate was 0.005. In all cases, the genetic
algorithm was easily able to find networks that readily learned to map inputs to
outputs over the training set with little error. However, the tasks were too easy to
be a rigorous test of this method-it remains to be seen if this method can scale up
to more complex tasks that require much larger networks with many more
interconnections.

Grammatical Encoding.

The method of grammatical encoding can be illustrated by the work of Hiroaki
Kitano (1990), who points out that direct encoding approaches become
increasingly difficult to use as the size of the desired network increases. As the

77

network’s size grows, the size of the required chromosome increases quickly,
which leads to problems both in performance and in efficiency. In addition, since
direct encoding methods explicitly represent each connection in the network,
repeated or nested structures cannot be represented efficiently, even though these
are common for some problems.

The solution pursued by Kitano and others is to encode networks as
grammars; the genetic algorithm evolves the grammars, but the fitness is tested
only after a “development” step in which a network develops from the grammar.
A grammar is a set of rules that can be applied to produce a set of structures (e.g.,
sentences in a natural language, programs in a computer language, neural network
architectures).

Kitano applied this general idea to the development of neural networks
using a type of grammar called a “graph-generation grammar”, a simple example
of which is given in Figure 4.8a. Here the right-hand side of each rule is a 2x2
matrix rather than a one-dimensional string. Each lower-case letter from a through
p represents one of the 16 possible 2x2 arrays of ones and zeros. There is only one
structure that can be formed from this grammar: the 8x8 matrix shown in Figure
4.8b. This matrix can be interpreted as a connection matrix for a neural network: a
1 in row i and column i means that unit i is present in the network and a 1 in row i
and column , i # j, means that there is connection from unit i to unit j. The result is
the network shown in Figure 4.8c which, with appropriate weights, computes the
Boolean function XOR.

Kitano’s goal was to have a genetic algorithm evolve such grammars.
Figure 4.9 illustrates a chromosome encoding the grammar given in Figure 4.8a.
The chromosome is divided up into separate rules, each of which consists of five
elements. The first element is the left-hand side of the rule; the second through
fifth elements are the four symbols in the matrix on the right-hand side of the rule.
The possible values for each element are the symbols A-Z and a-p. The first
element of the chromosome is fixed to be the start symbol, S; at least one rule
taking S into a 2x2 matrix is necessary to get started in building a network from a
grammar

The fitness of a grammar was calculated by constructing a network from
the grammar, using backpropagation with a set of training inputs to train the
resulting network to perform a simple task, and then, after training, measuring the
sum of the squares of the errors made by the network on either the training set or a
separate test set. The genetic algorithm used fitness-proportionate selection, multi-
point crossover, and mutation. A mutation consisted of replacing one symbol in
the chromosome with a randomly chosen symbol from the A-Z and a-p alphabets.
Kitano used what he called “adaptive mutation”: the probability of mutation of an
offspring depended on the Hamming distance (number of mismatches) between
the two parents. High distance resulted in low mutation, and vice versa. In this
way, the genetic algorithm tended to respond to loss of diversity in the population
by selectively raising the mutation rate.

78

a a
S > A= a¢ |B ae [C>laa |D=>ab

Q>
O w

p
(@
10110000
01110000
cpaa 00100001
S A B acace 00010001
—>|cp —> | aaaa => 00000000
aaab 00000000
00000000
00000001
(b)

D
C v 40D
O O
©

Figure 4.8 Illustration of Kitano’s graph generation grammar for the XOR
problem. (a) Grammatical rules. (b) A connection matrix is
produced from the grammar. (c) The resulting network.

[STATB[CIo[ATc v [ale B a]a ale]-

Figure 4.9 Illustration of a chromosome encoding a grammar.

79

Kitano (1990) performed a series of experiments on evolving networks
for simple “encoder/decoder” problems to compare the grammatical and direct
encoding approaches. He found that, on these relatively simple problems, the
performance of a genetic algorithm using the grammatical encoding method
consistently surpassed that of a genetic algorithm using the direct encoding
method, both in the correctness of the resulting neural networks and in the speed
with which they were found by the genetic algorithm. In the grammatical
encoding runs, the genetic algorithm found networks with lower error rate, and
found the best networks more quickly, than in direct encoding runs. Kitano also
discovered that the performance of the genetic algorithm scaled much better with
network size when grammatical encoding was used.

What accounts for the grammatical encoding method’s apparent
superiority? Kitano argues that the grammatical encoding method can easily create
“regular”, repeated patterns of connectivity, and that this is a result of the repeated
patterns that naturally come from repeatedly applying grammatical rules. We
would expect grammatical encoding approaches, to perform well on problems
requiring this kind of regularity. Grammatical encoding also has the advantage of
requiring shorter chromosomes, since the genetic algorithm works on the
instructions for building the network (the grammar) rather that on the network
structure itself. For complex networks, the later could be huge and intractable for
any search algorithm.

Evolving a Learning Rule.
David Chalmers (1990) took the idea of applying genetic algorithms to neural
networks in a different direction: he used genetic algorithms to evolve a good
learning rule for neural networks. Chalmers limited his initial study to fully
connected feedforward networks with input and output layers only, no hidden
layers. In general a learning rule is used during the training procedure for
modifying network weights in response to the network’s performance on the
training data. At each training cycle, one training pair is given to the network,
which then produces an output. At this point the learning rule is invoked to
modify weights. A learning rule for a single layer, fully connected feedforward
network might use the following local information for a given training cycle to
modify the weight on the link from input unit i to output unit j:

a;: the activation of input i

o;: the activation of output unit

t;: the training signal on output unit j

wj;: the current weight on the link from i to

The change to make in the weight w;; is a function of these values:

AWij = f(ai,oj,tj,wij).
The chromosomes in the genetic algorithm population encoded such functions.

Chalmers made the assumption that the learning rule should be a linear
function of these variables and all their pairwise products. That is, the general
form of the learning rule was

80

AWij = ko(k1Wij+kzai+k3Oj+k4tj+k5Wijai+k6Wij0j+k7Wijtj+kgain+kgaitj+k1oojtj).
The k,, (1<m<10) are constant coefficients, and kO is a scale parameter that affects
how much the weights can change on any cycle. Chalmer’s assumption about the
form of the learning rule came in part from the fact that a known good learning
rule for such networks is the “delta rule”. One goal of Chalmer’s work was to see
if the genetic algorithm could evolve a rule that performs as well as the delta rule.
The task of the genetic algorithm was to evolve values for the km’s. The
chromosome encoding for the set of km’s is illustrated in Figure 4.10. The scale
parameter k, is encoded as five bits, with the zeroth bit encoding the sign (1
encoding + and 0 encoding -) and the first through fourth bits encoding an integer
n: ko = 0 if n = 0; otherwise |ko| = 2™°. Thus k, can take on the values 0,+-1/256,+-
1/128,...,+-32,+-64. The other coefficients km are encoded by three bits each, with
the zeroth bit encoding the sign and the first and second bits encoding an integer
n. For i=1,...,10, km=0 if n=0; otherwise |k = 2"

ko k] k2 k3
10010 001 000 110
k, encoding by 5 bits:
sign
integer n
\ p = .
b, b, b, b; bs
o =2

other k’s encoded by 3 bits each:

sign
\ integer n
—_———
b, b b,
|ko! — 2n-1

Figure 4.10 Illustration of the method for encoding the km’s.

The fitness of each chromosome (learning rule) was determined as
follows. A subset of 20 mappings was selected from the full set of 30 linear
separable mappings. For each mapping, 12 training examples were selected. For
each of these mappings, a network was created with the appropriate number of

81

input units for the given mapping. The network’s weights were initialized
randomly. The network was run on the training set for some number of epochs
(typically 10), using the learning rule specified by the chromosome. The
performance of the learning rule on a given mapping was a function of the
network’s error on the training set, with low error meaning high performance. The
overall fitness of the learning rule was a function of the average error of 20
networks over the chosen subset of 20 mappings. This fitness was then
transformed to be a percentage, where a high percentage meant high fitness.

Using this fitness measure, the genetic algorithm was run on a population
of 40 learning rules, with two-point crossover and standard mutation. The
crossover rate was 0.8 and the mutation rate was 0.01. Typically, over 1000
generations, the fitness of the best learning rules in the population rose from
between 40% and 60% in the initial generation to between 80% and 98%. The
fitness of the delta rule is around 98%, and on one out of a total of ten run the
genetic algorithm discovered this rule. On three of the ten runs, the genetic
algorithm discovered slight variations of this rule with lower fitness.

These results show that, given a somewhat constrained representation,
the genetic algorithm was able to evolve a successful learning rule for simple
single layer networks. The extent to which this method can find learning rules for
more complex networks remains an open question, but these results are a first step
in that direction. Chalmers suggested that it is unlikely that evolutionary methods
will discover learning methods that are more powerful than backpropagation, but
he speculated that genetic algorithms might be a powerful method for discovering
learning rules for unsupervised learning paradigms or for new classes of network
architectures.

4.3.2 Evolving Fuzzy Systems

Ever since the very first introduction of the fundamental concept of fuzzy logic by
Zadeh in 1973, its use in engineering disciplines has been widely studied. Its main
attraction undoubtedly lies in the unique characteristics that fuzzy logic systems
possess. They are capable of handling complex, non-linear dynamic systems using
simple solutions. Very often, fuzzy systems provide a better performance than
conventional non-fuzzy approaches with less development cost.

However, to obtain an optimal set of fuzzy membership functions and
rules is not an easy task. It requires time, experience, and skills of the operator for
the tedious fuzzy tuning exercise. In principle, there is no general rule or method
for the fuzzy logic set-up. Recently, many researchers have considered a number
of intelligent techniques for the task of tuning the fuzzy set.

Here, another innovative scheme is described (Man, Tang & Kwong,
1999). This approach has the ability to reach an optimal set of membership
functions and rules without a known overall fuzzy set topology. The conceptual
idea of this approach is to have an automatic and intelligent scheme to tune the

82

membership functions and rules, in which the conventional closed loop fuzzy
control strategy remains unchanged, as indicated in Figure 4.11.

Genetic Algorithm

| 1
| |
: Input Fuzzy Output :
| | Membership Rules Membership | |
r € | functions functions | Au
1
% 'l Fuzzifier Inference Defuzzifier | !
: Engine :
| |
: Fuzzy Logic System {
____________________________ u
C 1l Y
ontroller
Process >

Figure 4.11 Genetic algorithm for a fuzzy control system.

In this case, the chromosome of a particular is shown in Figure 4.12. The
chromosome consist of two types of genes, the control genes and parameter genes.
The control genes, in the form of bits, determine the membership function
activation, whereas the parameter genes are in the form of real numbers to
represent the membership functions.

Membership Control Genes Parameter Genes
Chromosome (z) (zp)
(Z) ! 0 1 0 Qg Qyp Aye Ol2a Agp Oloe Yna Ynb ¥Ync

Figure 4.12 Chromosome structure for the fuzzy system.

83

To obtain a complete design for the fuzzy control system, an appropriate
set of fuzzy rules is required to ensure system performance. At this point it should
be stressed that the introduction of the control genes is done to govern the number
of fuzzy subsets in the system.

Once the formulation of the chromosome has been set for the fuzzy
membership functions and rules, the genetic operation cycle can be performed.
This cycle of operation for the fuzzy control system optimization using a genetic
algorithm is illustrated in Figure 4.13.

Selection
Start
membership Crossover New .
—» Chromosome ™ anq —9» membership
Mutation Chromosome z
from A
Determine
the number
Membership of active
population A fuzzy subsets

v v

F Rul Select the Formulate
uzzy rule Fuzzy Rule the
population Q2 Chromosome Membership
Functions
A 4
Mutation
Z H

; \ 4

Fitness Evaluation

v

Check whether insert Z
and H into A and Q

Figure 4.13 Genetic cycle for fuzzy system optimization.

84

There are two population pools, one for storing the membership
chromosomes and the other for storing the fuzzy rule chromosomes. We can see
this in Figure 4.13 as the membership population and fuzzy rule population,
respectively. Considering that there are various types of gene structure, a number
of different genetic operations can be used. For the crossover operation, a one
point crossover is applied separately for both the control and parameter genes of
the membership chromosomes within certain operation rates. There is no
crossover operation for fuzzy rule chromosomes since only one suitable rule set
can be assisted.

Bit mutation is applied for the control genes of the membership
chromosome. Each bit of the control gene is flipped if a probability test is satisfied
(a randomly generated number is smaller than a predefined rate). As for the
parameter genes, which are real number represented, random mutation is applied.

The complete genetic cycle continues until some termination criteria, for
example, meeting the design specification or number of generation reaching a
predefined value, are fulfilled.

4.4 Summary

We have presented in this chapter the basic concepts of genetic algorithms and
simulated annealing. These optimization methodologies are motivated by nature’s
wisdom. Genetic algorithms emulate the process of evolution in nature, while
simulated annealing is based in thermodynamic processes. We have also presented
the application of genetic algorithms to the problems of optimizing neural
networks and fuzzy systems. Genetic algorithms can then be viewed as a
technique for efficient design of intelligent systems, because they can be used to
optimize the weights or architecture of the neural network, or the number of rules
in a fuzzy system. In later chapter we will make use of this fact to design
intelligent systems for controlling real world dynamical systems.

Chapter 5

Dynamical Systems Theory

This chapter introduces the basic concepts of dynamical systems theory, and
several basic mathematical methods for controlling chaos. The main goal of this
chapter is to provide an introduction to and a summary to the theory of dynamical
systems with particular emphasis on fractal theory, chaos theory, and chaos
control. We first define what is meant by a dynamical system, then we define an
attractor, and the concept of the fractal dimension of a geometrical object. Also,
we define the Lyapunov exponents as a measure of the chaotic behavior of a
dynamical system. On the other hand, the fractal dimension can be used to classify
geometrical objects because it measures the complexity of an object. We finish the
chapter by reviewing mathematical methods for controlling chaos in dynamic
systems. These methods can be used to control a real dynamic system, however,
due to efficiency and accuracy requirement we will be forced to consider more
advanced methods in the following chapters.

5.1 Basic Concepts of Dynamical Systems

In this section we present a brief overview of the field of Non-Linear Dynamical
Systems and Fractal Theory. Recently research has shown that many simple non-
linear deterministic systems can behave in an apparently unpredictable and
"chaotic" manner (Grebogi, Ott, & Yorke, 1987). The existence of complicated
dynamics has been discussed in the mathematical literature for many decades with
important contributions by Poincaré, Birkhoft, Smale and Kolmogorov and his
students, among others. Nevertheless, it is only recently that the wide-ranging
impact of "chaos" has been recognized. Consequently, the field is now undergoing
explosive growth, and many applications have been made across a broad spectrum
of scientific disciplines-robotics, engineering, physics, chemistry, fluid mechanics

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

86

and economics, to name several. We start with some basic definitions of concepts
used in this book.

Dynamic System: This is a set of mathematical equations that allows one, in
principle, to predict the future behavior of the system given the past. One example
is a system of first-order ordinary differential equations in time:

dx = Gx.p) .0
dt

where x(t) is a D-dimensional vector and G is a D-dimensional vector function of
x and t. Another example is a map.

Map: A map is an equation of the following form:

Xt+1 = F(Xt) (52)

where the "time" t is discrete and integer valued. Thus, given X, the maps gives
x1. Given x|, the map gives x», and so on.

Dissipative system: In Hamiltonian (conservative) systems such as the ones
arising in Newtonian mechanics of particles (without friction), phase space
volumes are preserved by time evolution (the phase space is the space of variables
that specify the state of the system). Consider, for example, a two-dimensional
phase space (q, p), where q denotes a position variable and p a momentum
variable. Hamilton's equations of motion take the set of initial conditions at time t
=ty and evolve them in time to the set at time t = t]. Although the shapes of the

sets are different, their areas are the same. By a dissipative system we mean one
that does not have this property. Areas should typically decrease (dissipate) in
time so that the area of the final set would be less than the area of the initial set.
As a consequence of this, dissipative systems typically are characterized by the
presence of attractors.

Attractor: If one considers a system and its phase space, then the initial conditions
may be attracted to some subset of the phase space (the attractor) as time t = oo,
For example, for a damped harmonic oscillator the attractor is the point at rest. For
a periodically driven oscillator in its limit cycle the limit set is a closed curve in
the phase space.

Strange attractor: In the above two examples, the attractors were a point, which is
a set of dimension zero, and closed curve, which is a set of dimension one. For
many other attractors the attracting set can be much more irregular (some would

87

say pathological) and, in fact, can have a dimension that is not an integer. Such
sets have been called "fractal" and, when they are attractors, they are called
strange attractors. The existence of a strange attractor in a physically interesting
model was first demonstrated by Lorenz (see Lorenz, 1963).

Chaotic attractor: By this term we mean that if we take two typical points on the
attractor that are separated from each other by a small distance A(0Q) at t = 0, then
for increasing t they move apart exponentially fast. That is, in some average sense:

A(t) ~ A(0) exp(A t) (5.3)

with A > 0 (where A is called the Lyapunov exponent). Thus a small uncertainty in
the initial state of the system rapidly leads to inability to forecast its future. It is
typically the case that strange attractors are also chaotic.

One of the most prominent, chaotic, continuous-time dynamical systems
is the "Lorenz attractor", named after the meteorologist E.N. Lorenz who
investigated the three-dimensional, continuous-time system

x'=S(-x+y)
y'=rx-y-Xxz s, 1,b>0 5.4
z'=-bz+xy

emerging in the study of turbulence in fluids. For r above the critical value of r =
28.0, trajectories of Equation (5.4) evolve in a rather unexpected way. Suppose
that a trajectory starts at an initial value near the origin. For some time the
trajectory regularly spirals outward from one fixed point, then the trajectory jumps
to a region near another fixed point and does the same thing. As trajectories
starting at different initial values all converge to and remain in the same region
near the two fixed points, the region is considered an "attractor". It is a "strange
attractor” because it is neither a point nor a closed curve. In general, this chaotic
behavior can only occur for systems of at least three simultaneous non-linear
differential equations or for systems of at least a one-dimensional non-linear map
(Devaney, 1989).

Fractal geometry is a mathematical tool for dealing with complex
systems that have no characteristic length scale. A well known example is the
shape of a coastline. When we see two pictures of a coastline on two different
scales, we cannot tell which scale belongs to which picture: both look the same.
This means that the coastline is scale invariant or, equivalently, has no
characteristic length scale. Other examples in nature are rivers, cracks, mountains,
and clouds. Scale-invariant systems are usually characterized by non-integer
("fractal") dimensions.

88

The dimension tells us how some property of an object or space changes
as we view it at increased detail. There are several different types of dimension.
The fractal dimension d¢ describes the space filling properties of an object. Three

examples of the fractal dimension are the self-similarity dimension, the capacity
dimension, and the Hausdorff-Besicovitch dimension. The topological dimension
dT describes how points within an object are connected together. The embedding
dimension d, describes the space in which the object is contained.

The fractal dimensions dy are useful and important tools to quantify self-

similarity and scaling. Essentially, the dimension tells us how many new pieces
are resolved as the resolution is increased. The self-similarity dimension can only
be applied to geometrical self-similar objects, where the small pieces are exact
copies of the whole object. However the capacity dimension can be used to
analyze irregularly shaped objects that are statistically self-similar. On the other
hand, the Hausdorff-Besicovitch dimension requires more complex mathematical
tools. For this reason, we will limit our discussion here to the capacity dimension.

A ball is the set of points within radius r of a given point. We determine
N(r) the minimum number of balls required so that each point in the object is
contained within at least one ball of radius r. In order to cover all the points of the
object, the balls may need to overlap. The capacity dimension is defined by the
following equation:

d.= lim logN(r) . (5.5
150 Jog(1/r)

The capacity dimension defined as above is a measure of the space filling
properties of an object because it gives us an idea of how much work is needed to
cover the object with balls of changing size.

A useful method to determine the capacity dimension is to choose balls
that are the non-overlapping boxes of a rectangular coordinate grid. N(r) is then
the number of boxes with side of length r that contain at least one point of the
object. Efficient algorithms have been developed to perform this "box counting"
for different values of r, and thus determine the box counting dimension as the
best fit of log N(r) versus log(1/r).

The fractal dimension d¢ characterizes the space-filling properties of an
object. The topological dimension d characterizes how the points that make up

the object are connected together. It can have only integer values. Consider a line
that is so long and wiggly that it touches every point in a plane and thus covers an
area. Because it covers a plane, its space-filling fractal dimension df = 2.

However, no matter how wiggly it is, it is still a line and thus has topological
dimension d1=1. Thus, the essence of a fractal is that its space-filling properties

are larger than one anticipates from its topological dimension. Thus we can now

89

present a formal definition of a fractal (Mandelbrot, 1987), namely, that an object
is a fractal if and only if

de>dT .

However, there is no one definition that includes all the objects or processes that
have fractal properties.

Despite the identification of fractals in nearly every branch of science,
too frequently the recognition of fractal structure is not accompanied with any
additional insight as to its cause. Often we do not even have the foggiest idea as to
the underlying dynamics leading to the fractal structure. The chaotic dynamics of
non-linear systems, on the other hand, is one area where considerable progress has
been made in understanding the connection with fractal geometry. Indeed, chaotic
dynamics and fractal geometry have such a close relationship that one of the
hallmarks of chaotic behavior has been the manifestation of fractal geometry,
particularly for strange attractors in dissipative systems (Rasband, 1990). For a
practical definition we take a "strange attractor”, for a dynamic system, to be an
attracting set with fractal dimension. For example, the famous Lorenz strange
attractor has a fractal dimension of about 2.06. Also, we think that beyond only
this relationship between strange attractors and the fractal dimension of the set,
there is a deeper relationship between the underlying dynamics of a system and
the fractal nature of its behavior. We will explore this relationship in more detail
in the following chapter.

Let us consider as an example, the use of the fractal dimension as a
mathematical model of the time series in the following form:

d = [log(N)/log(1/r)] (5.6)

where d is the fractal dimension for an object of N parts, each scaled down by a
ratio r. For an estimation of this dimension we can use the following equation:

N(r)=B[1/14] (5.7)

where N(r) = number of boxes contained in a geometrical object and r = size of
the box. We can obtain the box dimension of a geometrical object (Mandelbrot,
1987) counting the number of boxes for different sizes and performing a
logarithmic regression on this data. For our particular case the geometrical object
consists of the curve constructed using the set of points from the time series. We
show in Figure 5.1 (a) the curve and the boxes used to cover it. In Figure 5.1 (b)
the corresponding logarithmic regression is illustrated.

90

Y(t) A InN(r) o

™~

y2 Ya e
. InN(r) =InB-dinr
Y1 y3
> >
0 t time 0 In(r)

(2) (b)

Figure 5.1 Fractal dimension of a time series: (a) curve and the boxes covering it,
(b) the logarithmic regression to find d

5.2 Controlling Chaos

More than two decades of intensive studies on non-linear dynamics have posed
the question on the practical applications of chaos (Kapitaniak, 1996). One of the
possible answers is to control chaotic behavior in such a way as to make it
predictable. Indeed, nowadays the idea of controlling chaos is an appealing one.

Chaos occurs widely in engineering and natural systems; historically it
has usually been regarded as a nuisance and is designed out if possible. It has been
noted only as irregular or unpredictable behavior, often attributed to random
external influences. More recently, there have been examples of the potential
usefulness of chaotic behavior (Kapitaniak, 1996).

We can divide chaos controlling approaches into two broad categories:
firstly those in which the actual trajectory in the phase space of the system is
monitored and some “feedback™ process is employed to maintain the trajectory in
the desired mode, and secondly “non-feedback” methods in which some other
property or knowledge of the system is used to modify or exploit chaotic behavior.
Feedback methods do not change the controlled systems and stabilize unstable
periodic orbits or strange chaotic attractors, while non-feedback methods slightly
change the controlled system, mainly by a small permanent shift of control
parameter, changing the system behavior from chaotic attractor to periodic orbit
which is close to the initial attractor.

91

We describe in this section several methods by which chaotic behavior in
a dynamical system may be modified, displaced in parameter space or removed.
The Ott-Grebogi-Yorke (OGY) method (Ott et al.,,1990) is extremely general,
relying only on the universal property of chaotic attractors, namely that they have
embedded within them infinitely many unstable periodic orbits. On the other
hand, the method requires following the trajectory and employing a feedback
control system, which must be highly flexible and responsive; such a system in
some experimental configurations may be large and expensive. It has the
additional disadvantage that small amounts of noise may cause occasional large
departures from the desired operating trajectory.

The non-feedback approach is inevitable much less flexible, and requires
more prior knowledge of equations of motion. On the other hand, to apply such a
method, we do not have to follow the trajectory. The control procedures can be
applied at any time and we can switch from one periodic orbit to another without
returning to the chaotic behavior, although after each switch, transient chaos may
be observed. The lifetime of this transient chaos strongly depends on initial
conditions. Moreover, in a non-feedback method we do not have to wait until the
trajectory is close to an appropriate unstable orbit; in some cases this time can be
quit long. The dynamic approach can be very useful in mechanical systems, where
feedback controllers are often very large. In contrast, a dynamical absorber having
a mass of the order of 1% of that of the control system is able, as we will see later,
to convert chaotic behavior to periodic one over a substantial region of parameter
space. Indeed, the simplicity by which chaotic behavior may be changed in this
way may actually motivate the search for, and exploitation of, chaotic behavior in
practical systems.

The essential property of a chaotic trajectory is that it is not
asymptotically stable.
Closely correlated initial conditions have trajectories, which quickly become
uncorrelated. Despite this obvious disadvantage, it has been established that
control leading to the synchronization of two chaotic systems is possible.

The methods described in this section are illustrated by the example of
Chua’s circuit (Chua, 1993) shown in Figure 5.2. Chua’s circuit contains three
linear energy storage elements (an inductor and two capacitors), a linear resistor,
and a single non-linear resistor NR, namely Chua’s diode with a three segment
piecewise linear v-i characteristic defined by

f(ve)=mover + Y2(my - mo)(Jver + 1]-] ver - 1)) (5.8)

where the slopes in the inner and outer regions are m0 and ml respectively
(Figure 5.3).

In this case the state equations for the dynamics of Chua’s circuit are as
follows:

92

Cldlﬂ-z G(VC2 - Vcl) - f(Vcl)

dt
nggg_: G(Vcl - ch) - iL (5.9)
dt
LdiL_: Ve
dt
where G=1/R.
R
+ + 1R +
ver ve Vg
L —— ——— NR
e C
iL - -

(|

Figure 5.2 Chua’s circuit.

m,

m,

-1 1 Ve

Figure 5.3 ig-V,, characteristic of the non-linear resistor.

93

The chaotic dynamics of Chua’s circuit have been widely investigated
(e.g. Madan, 1993). One of the main advantages of this system is the very good
accuracy between numerical simulations of the model and experiments on real
electronic devices. Experiments with this circuit are very easy to perform, even for
non-specialists.

5.2.1 Controlling Chaos through Feedback

5.2.1.1 Ott-Grebogi-Yorke Method

Ott, Grebogi and Yorke (Ott et al., 1990) have proposed an developed a method
by which chaos can always be suppressed by shadowing one of the infinitely
many unstable periodic orbits embedded in the chaotic attractor.

The basic assumptions of this method are as follows.

(a) The dynamics of the system can be described by an n-dimensional map
of the form:

Xn+1 =f(Xp, p) (5.10)

(b) p is some accessible system parameter which can be changed in some
small neighborhood of its nominal value p*.

(¢) For this value p* there is a periodic orbit within the attractor around
which we would like to stabilize the system.

(d) The position of this orbit changes smoothly with changes in p, and there
are small changes in the local system behavior for small variations of p.

Let Xz be a chosen fixed point of the map f of the system existing for the
parameter value p*. In the close vicinity of this fixed point with good accuracy we
can assume that the dynamics are linear and can be expressed approximately by

X1 — Xp = M(X; — XF) (5.11)

The elements of the matrix M can be calculated using the measured chaotic
time series and analyzing its behavior in the neighborhood of the fixed point. The
OGY algorithm is schematically explained in Figure 5.4 and its main properties
are as follows.

(a) No model of dynamics is required. One can use either full information
from the process or a delay coordinate embedding technique using single
variable experimental time series.

94

(b) Any accessible variable (controllable) system parameter can be used as
the control parameter.

(c) In the absence of noise and error, the amplitude of applied control signal
must be large enough (exceed a threshold) to achieve control.

(d) Inevitable noise can destabilize the controlled orbit, resulting in
occasional chaotic bursts.

(e) Before settling into the desired periodic mode, the trajectory exhibits
chaotic transients, the length of which depends on the actual starting
point.

Xp(p*)

Xe(p*)

XN+1

Figure 5.4 General idea of the Ott-Grebogi- Y orke method.

In Ogorzalek (1993) the OGY method was applied to control chaos in
Chua’s circuit. Using a specific software package, unstable periodic orbits
embedded in the attractor which could serve as goals of control were found. The
controlling method was implemented in the way shown in Figure 5.5.

The computer was used for data acquisition, identification of the chaotic
system in terms of unstable periodic orbits and calculation of the control signal.
When applying the OGY method to control chaos in a real electronic circuit the
main problem encountered was the noise introduced due to inevitable noise of the
circuit elements. The method was found to be very sensitive to the noise level —
very small signals sometimes are hidden within the noise, and control is
impossible.

95

X X
Chua’s Y Data Y
circuit > acquisition » Computer
d
Z ; car Z N
o S—
Control Control

Figure 5.5 Practical implementation of OGY method.

Generally, the experimental application of the OGY method requires a
permanent computer analysis of the state of the system. The changes of the
parameters, however, are discrete in time and this leads to some serious
limitations. The method can stabilize only those periodic orbits which maximal
Lyapunov exponent is small compared to the reciprocal of the time interval
between parameter changes. Since the corrections of the parameter are rare and
small, the fluctuation noise leads to occasional bursts of the system into regions
far from the desired periodic orbit, especially in the presence of noise.

5.2.1.2 Pyragas’s Control Methods

A different approach to feedback control which allows the above mentioned
problems to be avoided was proposed by Pyragas (1992). This method is based on
the construction of a special form of a time continuous perturbation, which does
not change the form of the desired unstable periodic orbit, but under certain
constraints can stabilize it. Two feedback controlling loops, shown in Figure 5.6,
have been proposed.

A combination of feedback and periodic external force is used in the first
method (Figure 5.6(a)). The second method (Figure 5.6(b)) does not require any
external source of energy and it is based on self-controlling delayed feedback. If
the period of external force or a time delay is equal to the period of one of the
unstable periodic orbits embedded in the chaotic attractor it is possible to find a
constant K which allows stabilization of the unstable periodic orbit. This
approach, being noise resistant, can easily be used in experimental systems.

The first of Pyragas’s methods can be considered as the special case of
the direct application of classical controlling methods to the problem of
controlling chaos.

96

X(® > Chaotic Y
Systems
ycos(wt)
(a)
X > Chaotic Y(®
Systems >
Delay <
(b)
Figure 5.6 Feedback controlling loops; (a) control by periodic external
perturbation, (b) control by time delay.
The dynamical system
X =1(X) (5.12)
Where x € R", is controllable if there exists a contro! function u(t), such that
X = f(X) + u(t) (5.13)

allows to move trajectory X(t) from point X, at time t; to the desired point X in
finite time T.

The controllability concept can be applied to the chaos controlling
problems. For example, for Chua’s circuit the equations for the controlled circuit
are

97

X = a(Y-X-f(X))
Y’ = X-Y+Z-K(Y-Y*) (5.14)
7> =-bY

This approach is illustrated in Figure 5.7. The main advantages of this method are
as follows.

(a) Any solution of the original system can be a goal of the control (fixed
point, unstable periodic orbit, etc.)

(b) The controller has a very simple structure.

(c) Access to system parameters is not required.

(d) Tt is not affected by small parameter variations.

Y % -+ k) Y
| K p{ Chua’s >
Circuit

“le

Figure 5.7 Closed loop feedback control configuration.

5.2.1.3 Controlling Chaos by Chaos

In this section, we show that the chaotic behavior of one system can be controlled
by coupling it with another one which can also be chaotic (Kapitaniak, 1996).
Thus we consider two chaotic systems, which we call A and B respectively,

X’ = f(X)
Y’ =¢(X) (5.15)

where x,y € R", and we use the controlling strategy which is schematically
illustrated in Figure 5.8; the two systems are coupled through the operators A,u,
which have a very simple linear form. We assume that some or all state variables
of both systems A and B can be measured, so that we can measure signal X(t)

98

from system A and signal Y(t) from B, and that the systems are coupled in such a
way that the differences D; and D, between the signals X(t) and Y(t) are

Fi(t) = A[X(0)-Y(®] = ADu(t)
Fa(t) = p[Y(O-X(®)] = uDa(t) (5.16)
used as control signals introduced respectively into each of the chaotic systems A

and B as negative feedback. We take A, u > 0 to be experimentally adjustable
weights of the perturbation.

Chaotic
> Svstem A

AMY-X)

HX-Y) Chaotic
Svstem B

Figure 5.8 Controlling chaos by chaos scheme.

Using the coupling schematically shown in Figure 5.8, it has been shown
that one chaotic system coupled with the other one can significantly change the
behavior of one of them (unidirectional coupling, i.e. A or p =0) or of both
systems (mutual coupling, i.e. A, u # 0). This property allows us to describe the
above procedure as the “controlling chaos by chaos” method. In Kocarev and
Kapitaniak (1995), rigorous conditions are given, under which chaotic attractors
of systems A and B are equivalent, or the evolution of one of them is forced to
take place on the attractor of the other one. Kapitaniak (1996) shows an example
of coupling two Lorenz chaotic attractors, which results in chaos control and
increase of the predictability.

99

5.2.2 Controlling Chaos without Feedback

5.2.2.1 Control through Operating Conditions

Virtually all engineering and most natural systems are subjected during operation
to external forcing. This forcing will contain (and hopefully be dominated by)
planned and intentional components; it will also almost invariably contain
unintentional “noise”. Smart design and control of this forcing is often able to
annihilate, or shift to a harmless region of parameter space, an unwanted chaotic
behavior.

In this case, the method consists in finding the chaotic region in
parameter space by analytical and numerical methods (Kapitaniak, 1996). Then
based on this region change the parameters to control the dynamical system. The
procedure described in this section is based on the direct change of one of the
system parameters to shift system behavior from chaotic to periodic, close to the
chaotic attractor. It cannot be called a control method in the sense of the methods
described before, but it illustrates that having a system designed as chaotic, we
obtain easy access to different types of periodic behavior.

5.2.2.2 Control by System Design

In this section, we explore the idea of modifying or removing chaotic behavior by
appropriate system design. It is clear that, to a certain extent, chaos may be
“designed out” of a system by appropriate modification of parameters, perhaps
corresponding to modification of mass or inertia of moving parts. Equally clearly,
there exist strict limits beyond which such modifications cannot go without
seriously affecting the efficiency of the system itself.

In this section, we describe a method for controlling chaos in which the
chaos effect is achieved by coupling the chaotic main system to a simpler
autonomous system (controller), usually linear, as shown in Figure 5.9. This
method (Kapitaniak, 1996) is developed for chaotic systems in which for some
reason it is difficult, if not impossible, to change any parameter of the main
system. In particular consider the coupling of the chaotic system

X =1X,n) (5.17)

where x € R", n 2 3 and |l € R is a system parameter, to another (simpler)
asymptotically stable system (controller) described by

Y’ =g(Y.e) (5.18)

100

Chaotic Autonomous
< P
System Controller

Figure 5.9 Coupling scheme,

where Y € R, e is a vector denoting the controller’s parameters, where at least
one of the parameters e; can be easily changed. For practical reasons, the
dimension m of the controller system (5.18) should be chosen as low as possible.
Since the method was mainly designed for controlling chaos in mechanical
systems, we choose m = 2, i.e., a one degree of freedom controller (the simplest
mechanical system). The equations for the extended system are

X =fX,pn) +AY
Y’ =g(Y,e) + BX (5.19)

where A and B are the coupling matrices. Since the Y subsystem is asymptotically
stable, the role of the controller is to change the behavior of the system from
chaotic to some desired periodic, possibly constant, operating regime.

The idea of this method is similar to that of the so-called dynamical
vibration absorber. A dynamical vibration absorber is a one degree of freedom
system, usually mass on a spring, which is connected to the main system as shown
in Figure 5.10.

fX) =kX + k. X° ’_J_'
T
I .

F cos wt

ma
lY

Figure 5.10 Dynamical damper as chaos controller.

101

Although such a dynamical absorber can change the overall dynamics
substantially, it need usually only be physically small in comparison with the main
system, and does not require an increase of excitation force. It can be easily added
to the existing system without major changes of design or construction. This
contrasts with devices based on feedback control, which can be large and costly.

To explain the role of dynamical absorbers in controlling chaotic
behavior let us consider the Duffing oscillator, coupled with an additional linear
system:

X +aX +bX + X +d(X-Y) =Bg + Bicoswt (20a)
Y7+ e(Y-X)=0 (20b)

where a, b, c, d, €, By, B}, and w are constants. Here d and e are the characteristic
parameters for the absorber, and we take ¢ as the control parameter.

It is well known that the Duffing oscillator shows chaotic behavior for
certain parameter regions. As has been mentioned in the previous section, in many
cases the route to chaos proceeds via s sequence of period doubling bifurcations,
and in such cases this method provides an easy way of switching between chaotic
and periodic behavior.

Let us consider the parameters of Equation (20) to be fixed at the values
a=0.077, b=0, ¢=1.0, B;=0.045, B,=0.16, w=1.0, then we can find (Kapitaniak,
1996) that we have chaos for e € [0, 0.10], and we can control this chaos by
increasing ¢ above 0.10. As this method is designed mainly for experimental
applications, we shall now briefly suggest some guidelines for applying it.

(1) The coupled system has to be as simple as possible.

(2) The coupling e should be chosen as small as possible.

(3) If it is possible one should couple the controller in such a way that the
locations of the fixed points of the original system are not changed.

5.2.2.3 Taming Chaos

In paper by Steeb et al. (1986) it was first demonstrated that chaos in a dynamical
system can be reduced (the largest Lyapunov exponent is decreased) or replaced
by regular behavior by applying a weak external periodic signal. Periodic
perturbation can be introduced to the system as external force or as a perturbation
of one of the internal system parameters. Given an external perturbation, it is
possible to show that a chaotic system is capable of finding an appropriate orbit.

In Kapitaniak (1988) it was shown that the chaotic system can be set into
regular motion by addition of suitable random noise. Other authors have described
similar approaches. Later these approaches have been called “taming chaos”.
Possible outputs of the taming chaos procedure are shown in Figure 5.11.

102

/w Periodic Orbit
Periodic
+ Perturbation
Chaotic \
Systems Reduced Chaos
Random /
+ Noise
\ Noisy Periodicity

Figure 5.11 General idea of taming chaos.

5.2.3 Method Selection

Although the methods described in the previous sections have been developed
mainly by physicists and mathematicians, generally most of them can be applied
to control engineering systems.

In particular, the non-feedback methods can practically always be used.
Their applications are straightforward and do not require special complicated
controllers to be used. The main disadvantage of these methods is that the goal of
controlling has to be determined by trial and error method.

The motivations for using feedback systems to control chaos are the
following: feedback controllers are easy to implement, especially in electrical
systems, they can perform the job automatically, and stabilize the overall control
system efficiently. On the other hand, conventional feedback controllers are
designed for non-chaotic systems. A chaotic system sensitivity to initial
conditions may lead to the impression that in chaotic systems their sensitivity to
small errors makes them very difficult. Such an impression may lead to the
argument that once the control is initiated there is no need for further monitoring
of the system’s dynamics, nor feeding back this information in order to sustain the
control. Indeed, it turns out that conventional feedback control of chaotic systems
is generally difficult, but not impossible. Recently, Chen and Dong (1995) used a
neural network approach for identification and control of chaotic systems. In
many cases, a specially implemented feedback method can guarantee stabilization

103

of the dynamic system. To summarize, the selection of the controlling method has
to be based on the following:

(1) the goal of controlling (e.g. if the suppression of chaos is the main goal,
then non-feedback methods can be applied in an easier way);

(2) the level of noise in the system (e.g. if the level of noise is large, then
Pyragas’s methods can be more effective than the OGY approach);

(3) the particular characteristics of the system. (Generally, in electrical
systems one can try to use both feedback and non-feedback methods. In
mechanical systems where the suppression of chaos is the main goal of
controlling, non-feedback methods are recommended).

5.3 Summary

In this chapter, we have presented the main ideas underlying Dynamical
Systems, Fractal theory, and Chaos theory, and we have only started to point out
the many possible applications of these powerful mathematical theories. We have
discussed in some detail the concepts of strange attractors, chaotic behavior and
fractal dimension. The concept of the fractal dimension will be the basis of the
method for time series analysis that will be used in Chapter 6, to achieve
Mathematical Modelling of dynamic systems. Also, we have introduced several
methods for controlling chaos that use some of the basic concepts of dynamical
systems. These methods for controlling chaos can be used for real time control of
dynamical systems, or can be used in combination with other computational
techniques when the complexity of the problem requires more efficiency and
accuracy. We will see in later chapter that many real world problems require
hybrid control systems that combine several techniques to achieve the desired
level of performance.

Chapter 6

Hybrid Intelligent Systems for Time Series
Prediction

We describe in this chapter a new method for the estimation of the fractal
dimension of a geometrical object using fuzzy logic techniques. The fractal
dimension is a mathematical concept, which measures the geometrical complexity
of an object. The algorithms for estimating the fractal dimension calculate a
numerical value using as data a time series for the specific problem. This
numerical (crisp) value gives an idea of the complexity of the geometrical object
(or time series). However, there is an underlying uncertainty in the estimation of
the fractal dimension because we use only a sample of points of the object, and
also because the numerical algorithms for the fractal dimension are not completely
accurate. For this reason, we have proposed a new definition of the fractal
dimension that incorporates the concept of a fuzzy set. This new definition can be
considered a weaker definition (but more realistic) of the fractal dimension, and
we have named this the “fuzzy fractal dimension”. We apply our fuzzy fractal
approach to the problem of forecasting a particular time series, and compare our
results to a neural network approach. The fuzzy fractal approach has some definite
advantages over using neural networks, and we discuss these at the end of this
chapter.

6.1 Problem of Time Series Prediction

Traditionally, we would assign a particular geometrical object a crisp value of the
fractal dimension, and this numerical value was considered as a specific label for
the object. However, this numerical value is difficult to use in classification or
recognition applications because calculated values won’t match these crisp values.
We have experienced this problem when we used this idea for classifying bacteria
with the fractal dimension (Castillo & Melin, 1994). We have found particular

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

106

numerical labels for each of the bacteria, but when we try to use these values for
recognizing specific bacteria in samples we have run into problems because of
uncertainties. For this reason, we have proposed the following scheme for
estimating the fuzzy fractal dimension of a set of geometrical objects. First, we
calculate the standard fractal dimension of the objects, using the box counting
algorithm with samples of points from the objects. Second, with the crisp values
for the fractal dimensions of the objects build linguistic values for the dimensions,
these will be the fuzzy fractal dimensions of the objects. Third, using these
linguistic values of the fractal dimensions build a set of fuzzy rules that relate each
object with each rule. This set of fuzzy if-then rules can be considered a
classification scheme for the set of geometrical objects, and can be used for
recognizing these objects because a particular value is mapped to an object. We
can apply this method either for pattern recognition or for time series analysis as
follows. First, we need to build the specific classification rules for the application
using the fractal dimension. Then, we need to implement a method for sampling
the object to obtain the data needed to calculate the crisp value of the fractal
dimension. Finally, we use this crisp value as input in the set of fuzzy rules to
obtain as output the specific classification for the object. For real image
processing this can be used to recognize a particular object as needed for robotic
applications (Castillo & Melin, 1998a). For time series analysis, this can be used
for modeling and forecasting purposes. In any case, the generalization of the
mathematical concept of the fractal dimension (Mandelbrot, 1987), to include now
the ideas of fuzzy logic (Zadeh, 1975) is also important from the theoretical point
of view because is only the initial point in the fuzzy generalization of Fractal
Theory.

6.2 Fractal Dimension of an Object

Recently, considerable progress has been made in understanding the complexity
of an object through the application of fractal concepts (Mandelbrot, 1987) and
dynamic scaling theory. For example, financial time series show scaled properties
suggesting a fractal structure (Castillo & Melin, 1999a). The fractal dimension of
a geometrical object can be defined as follows:

d = lim [InN(¥)] / [In(1/1)] 6.1)

where N(r) is the number of boxes covering the object and r is the size of the box.
An approximation to the fractal dimension can be obtained by counting the
number of boxes covering the boundary of the object for different r sizes and then
performing a logarithmic regression to obtain d (box counting algorithm). In
Figure 6.1, we illustrate the box counting algorithm for a hypothetical curve C.

107

Counting the number of boxes for different sizes of r and performing a
logarithmic linear regression, we can estimate the box dimension of a geometrical
object with the following equation:

In N(r) =Inp - d Inr (6.2)

this algorithm is illustrated in Figure 6.2.

The fractal dimension can be used to characterize an arbitrary object. The
reason for this is that the fractal dimension measures the geometrical complexity
of objects. In this case, a time series can be classified by using the numeric value
of the fractal dimension (d is between 1 and 2 because we are on the plane x y).
The reasoning behind this classification scheme is that when the boundary is
smooth the fractal dimension of the object will be close to one. On the other hand,
when the boundary is rougher the fractal dimension will be close to a value of
two.

YA
C
<_
r
>
0 X
Figure 6.1 Box counting algorithm for a curve C.
A
In N(r) In N(r) = In3 - dlInr
>
0 Inr

Figure 6.2 Logarithmic regression to find dimension.

108

6.3 Fuzzy Logic for Object Classification

We can use a fuzzy rule base as a classification scheme if we can make a suitable
partition of the input space such that we are able to distinguish different
geometrical objects by their characteristics. We will consider geometrical objects
in the plane for simplicity. We can now use fuzzy clustering techniques (Yager &
Filev, 1994) to cluster the data, and then build a fuzzy rule base that will actually
be a classification scheme for the particular application.

We will consider that we have n objects O1, O2, ..., On, and that we are
able to apply fuzzy clustering techniques to obtain n pairs (Xi, Yi) i=1,...,n, which
are the respective centers of the n clusters. Then a fuzzy rule base can be
constructed as follows:

If X is x; and Y is y; then Object is O
If X is x; and Y is y; then Object is O, (6.3)

If X is x, and Y is y, then Object is O,

These rules can be used for pattern classification or time series analysis
because in both cases the data has the same general structure. For applications of
higher dimensionality this approach can be generalized in a straightforward
manner, but of course the problem is that the number of rules increases
dramatically (which is known as the curse of dimensionality).

To illustrate these ideas we will consider a particular application. Lets
consider the problem of forecasting the time series of the exchange rate US
dollar/MX peso. We used the time series of average weekly rates for 36 weeks to
find the fuzzy model as explained above. We then used the fuzzy model to predict
future values of the exchange rate and compare these to the actual values to
validate this approach.

We show in Figure 6.3 the time series of exchange rates for 36 weeks of
US dollar/MX peso from August 1999 to April 2000. We can notice from this
figure the cyclical behavior of the time series over this short period of time.

We used the Fuzzy Logic Toolbox of MATLAB for fuzzy clustering of
this data, and then for implementing the fuzzy rule base using the recognized
clusters. In this case, five rules of the form shown in Equation 6.3 were used. We
show in Figure 6.4 the general architecture of the fuzzy system. In this case, the
Mamdani fuzzy reasoning procedure was used due to its simplicity.

We also show in Figure 6.5 how we can use this fuzzy system to predict
a particular value of the exchange rate base on the actual value of the exchange
rate and the value of future time. We validated these results against the real values
that occurred during the following four weeks.

109

Figure 6.3 Time series of exchange rates US/Mexico.

Figure 6.4 General Architecture of the fuzzy system.

110

Figure 6.5 Fuzzy Prediction of the exchange rate.

6.4 Fuzzy Estimation of the Fractal Dimension

The fractal dimension of a geometrical object is a crisp numerical value measuring
the geometrical complexity of the object. However, in practice it is difficult to
assign a unique numerical value to an object. It is more appropriate to assign a
range of numerical values in which there exists a membership degree for this
object. For this reason, we will assign to an object O a fuzzy set Mo, Which
measures the membership degree for that object.

Lets consider that the object O is in the plane x y, then a suitable
membership function is a generalized bell function:

o= 1/[1+](x-c)/al?] (6.4)

where a, b and ¢ are the parameters of the membership function. Of course other
types of membership functions could be used depending on the characteristics of
the application.

By using the concept of a fuzzy set we are in fact generalizing the
mathematical concept of the fractal dimension. In fact, our definition of the fuzzy
fractal dimension is as follows.

111

Definition 6.1: Let O be an arbitrary geometrical object in the plane x y. Then the
fuzzy fractal dimension is the pair: (dos Ho)

where d, is the numerical value of the fractal dimension calculated by the box
counting algorithm, and p, is the membership function for the object.

With this new definition we can account for the uncertainty in the
estimation of the fractal dimension of an object. Also, this new definition enables
easier pattern recognition for objects, because it is not necessary to match an exact
numerical value to recognize a particular object.

6.5 Fuzzy Fractal Approach for Time Series
Analysis and Prediction

Let us consider now the problem of time series analysis and prediction. Let y;, y,,
..., Yn be an arbitrary time series. If we want to be able to forecast this time series,
we need to analyze the data and extract the trends and periodicities of the series.
Assuming that the time series can be clustered into n objects O,, O,, ..., O, as
shown in Figure 6.6, then we can build a fuzzy rule base as in Section 6.3 of this
chapter. However, we now also want to consider the geometrical complexity of
the objects Oy, O,, ..., O, as measured by their fractal dimensions d;, doa, ..., don
respectively. Then a fuzzy rule base for time series prediction can be expressed as
follows.

If dim is d,; and pos is x; then prediction is O,

If dim is d,; and pos is x; then prediction is O,
(6.5)
If dim is d,, and pos is x, then prediction is O,

In this case, we need to define membership functions for the fractal
dimension, position, and for the geometrical objects. This fuzzy rule base can be
used with the Mamdani reasoning method, and center of gravity as defuzzification
method. However, it is also possible to use a Sugeno type fuzzy system in which
the consequents can be linear functions. This is illustrated in Equation (6.6).

If dim is d,; and pos is x; then y=a,;x;+b;d,+c;
If dim is dy; and pos is x, then y=a,x,+b,d,,+c;
(6.6)
If dim is d,, and pos is x, then y =a,x,+b,d,,tc,

In this case, we can use a neuro-fuzzy approach for adapting the parameters of the
fuzzy system using real data of the problem. We can use, for example, an ANFIS
approach (Jang, Sun & Mizutani, 1997) to learn from real data the best values for
the coefficients of the linear functions and for the membership functions.

112

Figure 6.6 Fuzzy clustering of the time series.

We show in Figure 6.7 an implementation of the Mamdani type fuzzy
system in the Fuzzy Logic Toolbox of MATLAB for the time series of exchange
rates of US dollars/MX pesos. In this figure, we can see the non-linear surface for
the fuzzy inference system of prediction.

Figure 6.7 Non-Linear Surface for time series.

113

We also show in Figure 6.8 the implementation of the Sugeno type fuzzy
system for the same time series. In this figure, we can see the non-linear surface
for the Sugeno fuzzy system for time series prediction. This surface represents the
fuzzy model for the problem of predicting the exchange rate of the US dollar/MX
peso.

Finally, we show in Figure 6.9 the fuzzy reasoning for prediction for
particular values of the fractal dimension and time.

Figure 6.8 Surface for Sugeno type fuzzy system.

Figure 6.9 Fuzzy reasoning for time series prediction.

114

6.6 Neural Network Approach for Time Series
Prediction

We can also use neural networks for time series analysis and prediction. In this
case, a neural network is given a time series as training data, and then the
forecasting ability of the network is measured with new data. We use a
feedforward neural network with the Levenberg-Marquardt learning algorithm for
time series prediction, to compare the results of this approach with our fuzzy
fractal methodology. We will first present our results with the neural network
approach, and then we discuss how these results compare with the ones that we
obtained before with the fuzzy fractal approach.

We consider the same time series of exchange rates of the US dollar/MX
peso to train a feedforward neural network of three layers, with 15 nodes in the
hidden layer. We used the Levenberg-Marquardt training algorithm, which is a
modification of the basic backpropagation method allowing a variable learning
rate. We show in Figure 6.10 the initial function approximation with the neural
network described before. Of course, at the beginning the approximation is not
good because the network is initialized with random weights by the computer
program.

Figure 6.10 Initial function approximation with the neural network.

115

We show in Figure 6.11 the results of training the neural network for 420
epochs. The sum of squared errors after training was about 0.0002, which satisfied
our goal error in the computer program. We can see in this figure, that the network
follows very closely the training data. Also, the resuits of the neural network were
compared to the real values of the exchange rate for the following weeks after
training, and forecasts were always within a 5% error of the real values.

Figure 6.11 Final function approximation of the neural network.

Finally, we show in Figure 6.12 the results of plotting the sum of squared
errors against the number of epochs. We can see from this figure how the neural
network learns very rapidly the pattern of the time series.

The results of the neural network can be considered very good if we
validate in the short term, as mentioned before. The problem of these type of
results is that when the time series starts to behave more erratically then the
network loses its forecast ability. Here is when a fuzzy fractal approach becomes
more powerful because it has more flexibility in adapting to different types of
situations. Our fuzzy fractal approach also has short term forecast ability (within
5% of real values), but at the same time is able to give good results in the long
term. This is true because the fuzzy rule base contains a kind of knowledge about
the time series.

116

Figure 6.12 Sum of squared errors against the number of epochs.

6.7 Fuzzy Fractal Approach for Pattern
Recognition

We can also use the above ideas for pattern recognition in image processing
applications. The method is very similar to the one for time series prediction, the
only difference is that the data is not directly related to time. For pattern
recognition only real geometrical variables are used. In this case, we also consider
n objects Oy, O,, ..., On with n corresponding cluster centers (x;, yy), i=1,...,n.
Then the fuzzy rule base can be stated as follows.

If dimension is d,,; then Object is O,
If dimension is d,; then Object is O,
6.7)
If dimension is d,, then Object is O,

To completely define this fuzzy system for pattern recognition, we will need to
define the membership functions for the fractal dimensions and the objects. The

117

method for calculating the fractal dimension is the same as before and for fuzzy
reasoning we can use Mamdani or Sugeno type.

6.8 Summary

We have presented in this chapter a new approach for time series analysis and
pattern recognition combining fuzzy logic and fractal theory. With the new
approach, we can always build a set of fuzzy rules using the fractal dimension of
the objects to solve the problem of forecasting or recognition. We have shown
very good results in predicting the exchange rate of the US dollar/MX peso with
this new approach. Our new method can also be applied to similar problems of
prediction. We compared the results of our approach with the ones given by a
neural network, and we discuss the advantages of using a fuzzy rule base instead
of a network. We have to mention here that the problem of time series analysis
and prediction is very important in the real world, because we are always in need
of forecasting the future behavior of a dynamical system to be able to control it or
for decision making.

Chapter 7

Modelling Complex Dynamical Systems with a
Fuzzy Inference System for Differential
Equations

We describe in this chapter a new method for modelling complex dynamical
systems based on the use of a new fuzzy inference system for multiple differential
equations. It is well known that formulating a unique and sufficiently accurate
mathematical model for a complex dynamical system (over a whole region of
discourse) may be very difficult or even impossible in some cases (Castillo and
Melin, 1996). For this reason, it may be more efficient to formulate a set of
mathematical models that approximate the local behavior of the dynamical system
for different parameter regions. We can then formulate a set of fuzzy if-then rules
relating these regions to their corresponding mathematical models. We can
assume, without loss of generality that the models can be expressed as non-linear
differential equations (Castillo and Melin, 1997). We have developed a fuzzy
inference system that enables fuzzy reasoning with multiple differential equations.
The new fuzzy system can be considered as a generalization of Sugeno’s inference
procedure, in which we are now using differential equations as consequents of the
fuzzy rules instead of simple polynomials like in Sugeno’s original method. We
illustrate our new method for modelling with two cases: robotic dynamic systems,
and aircraft systems. These two applications are complex enough to illustrate the
power of our method for modelling.

7.1 The Problem of Modelling Complex Dynamical
Systems

The classical Sugeno fuzzy inference system (also known as the TSK fuzzy
model) was proposed by Takagi, Sugeno, and Kang (1985) in an effort to develop

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

120

a systematic approach to generating fuzzy rules from a given input-output data set.
A typical fuzzy rule in a Sugeno fuzzy model has the form

If x is A and y is B then z = f(x,y) (7.1)

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a crisp function
in the consequent. Usually f(x,y) is a polynomial in the input variables x and y,
but it can be any function as long at it can appropriately describe the output of the
model within the fuzzy region specified by the antecedent of the rule. When f(x,y)
is a first order polynomial, the resulting fuzzy inference system is called a “first-
order Sugeno fuzzy model”, which was originally proposed in (Sugeno & Kang,
(1988). When f is a constant, we then have a “zero-order Sugeno fuzzy model”,
which can be viewed as a special case of the Mamdani inference system. The
overall output of the Sugeno fuzzy model is obtained via a weighted average
operator, thus avoiding the time-consuming process of defuzzification required by
a Mamdani model (Mamdani & Assilian, 1975).

Our new fuzzy inference system uses differential equations as
consequents in the rules, instead of simple polynomials. The new fuzzy inference
system can be considered a generalization of Sugeno’s original inference system,
because we are now modelling a particular problem by using the appropriate
differential equation for each region of the domain. A typical rule in this case has
the form

If x is A and y is B then dz/dt = f(x,y) (7.2)

where A and B are fuzzy sets in the antecedent, while dz/dt = f(x,y) is crisp
differential equation in the consequent. Usually f(x,y) is a non-linear function of
the input variables x and y, and this means that we have a non-linear differential
equation in the consequent. We have to note here that this new fuzzy inference
system reduces to the standard Sugeno system only when the differential
equations have closed form solutions in the form of polynomials. However, the
solutions to the differential equations can be more complicated analytic functions
or in most cases the solutions are so complex that can only be approximated by
numerical methods. The advantage of this generalization of Sugeno’s original
method is that, in general, we can represent more complicated dynamic behaviors
and also because of this fact, the number of rules needed to represent a given
dynamical system is smaller.

7.2 Modelling Complex Dynamical Systems with
the new Fuzzy Inference System

For a real-world dynamical system it may be necessary to consider a set of
mathematical models to represent adequately all of the possible dynamic

121

behaviors of the system (Castillo & Melin, 1998b). In this case, we need a fuzzy
decision procedure to select the appropriate model to use according to the value of
a selection parameter vector .. To implement this decision procedure, we need a
fuzzy inference system that can use differential equations as consequents. For this
purpose, we have developed a new fuzzy inference system that can be considered
as a generalization of Sugeno's inference system (Sugeno & Kang, 1988), in
which we are now using differential equations as consequents of the fuzzy rules,
instead of simple polynomials like in the original Sugeno's method. Using this
method, a fuzzy model for a general dynamical system can be expressed as
follows:

IF o is A AND o is A, .. AND o is A
THEN dy/dt={(y, o)

IF o is A, AND o, is A, .. AND o is A _
THEN dy/dt={f(y, o)
(7.3)

IF a, is Anl AND o, 1s Anz ... AND o 1s Anm
THEN dy/dt=f (y, o)

where Aij is the linguistic value of o for rule i-th, o € R" and is defined by o =

[oseens a] andy e R is the output obtained by the numerical solution of the
corresponding differential equation. Of course, it is assumed that each differential
equation in (7.3) locally approximates the real dynamical system over a

neighborhood (or region) of R
The numerical solution of the differential equations can be achieved by
the standard Runge-Kutta type method (Nakamura, 1997):

y., =RK(y)+ 12k +k) (7.4)
k, = hfy, 1)
k,=hf(y +k,t)

where h is the step size of the method and RK can be considered as the Runge-
Kutta operator that transforms numerical solutions from time n to time n+l.
Numerical solutions are then aggregated by weighted average with weights
obtained by the minimum of the firing strengths of the inputs:

y=wy Twy f.twy (7.5)

n o n

wt+tw +..w
1 2 n

122

where:

y, =RK(f(y, 0)), y, = RK((y,), ..., y, = RK(f (y, a0)).

The new fuzzy inference system for differential equations can be
illustrated as in Figure 7.1, where a complex dynamical system is modeled by
using four different mathematical models (M;, M,, M; and M,). The decision
scheme can be expressed as a single-input fuzzy model as follows:

IF o is small THEN dy/dt=1f(y, o)
IF o is regular THEN dy/dt=1{(y, o) (7.6)
IF o is medium THEN dy/dt=1{(y, a)
IF o is large THEN dy/dt=f(y, o)

where the output y is obtained by the numerical solution of the corresponding
differential equation.

3

ES

M,

M,

T iy

=2 2

0 small o regular oy medium o3 large oy

Figure 7.1 Modelling a complex dynamical system with the new
fuzzy inference system.

7.3 Modelling Robotic Dynamic Systems with the
New Fuzzy Inference System

We describe in this section the application of the new fuzzy inference method for
differential equations to the case of robotic dynamic systems. We first review the

123

general mathematical models for robotic systems. We then show how to use the
new fuzzy reasoning methodology to the problem of modelling complex robotic
dynamic systems. Finally, we show results of the simulations of the fuzzy system
for modelling. These results closely resemble the real dynamic behaviors of these
robotic systems.

7.3.1 Mathematical Modelling of Robotic Systems

In the last several years, many papers have been published, rendering an important
contribution to the development of computer methods for the mathematical
modelling of robotic systems. The modelling methods may be classified with
respect to the laws of mechanics on the basis of which motion equations are
formed. One may distinguish methods based on Lagrange, Newton-Euler,
D'Alembert, and other formalisms for dynamic modelling of interconnected
multibody systems. The dynamic model of the robot consists of the model of the
mechanical part of the robot (mechanism) and the model of the actuators that are
driving the robot joints. The model of the mechanical part of the robot is usually
assumed, see Vukobratovic' (1989), in the following form:

P=H(q) q" + h(q, q) (1.7)

where: P =n x 1 vector of driving torques in the joints, H = n x n inertia matrix
of the mechanism, h = n x 1 vector of centrifugal, Coriolis, and gravity moments
(forces) around the axes of the joints.

Various types of actuators are applied to drive robots: dc motors, ac
motors, hydraulic actuators, pneumatic actuators and so on. The models of
actuators are in general non-linear, but for the dc motors (which are still most
often applied for industrial robots) a linear state model may be used:

(Xl), _ Al Xl N bl ul + fl Pi, i=1,2,...n (7.8)

i T
where: X =(q, q/, iRj) =3 x 1 state vector of ith actuator model, iRj = rotor
i 1 .
1
current of ith dc motor, u = scalar input to ith actuator, P_ = driving torque (load)
1

in ith joint, A1 =3 x 3 matrix, bl, fl =3 x 1 vectors.
The connection between the models (7.7) and (7.8) (through the state
coordinates q, q', and driving torques P) are evident. Certain constraints upon the
1 1 1

actuators input u amplitude as well as on the allowable driving torques should be
also added to these models.

124

7.3.2 Fuzzy Modelling of Robotic Dynamic Systems

We will consider, in this section, the case of modelling robotic manipulators to
illustrate the application of the method for fuzzy modelling complex dynamical
systems. The general mathematical model for this kind of robotic system is the
following (Zomaya, 1992):

M(q)q" +V(q,q9))q' + G(q@) + Fgq' = (1.9)

where q € R denotes the link position, M(q) € R1XD s the inertia matrix, V(q,q')
€ RDIX1 js the centripetal-Coriolis matrix, G(q) € R represents the gravity vector,
Fq € RIX1 js a diagonal matrix representing the friction term, and t is the input

torque applied to the links.
For the simplest case of a one-link robot arm (Yamamoto & Yun, 1997),
we have the scalar equation:

Mgq" +Fgq'+ G(@ =1 (7.10)
If G(q) is a linear function (G = Nq), then we have the "linear oscillator" model:
qQ"+aq' +bg=c

where a = Fg/Mg , b = N/Mq and ¢ = T/Mq. This is the simplest mathematical
model for a one-link robot arm. More realistic models can be obtained for more

complicated functions G(q). For example, if G(q) = Nq2, then we obtain the
"quadratic oscillator" model:

q"+aq +bg2=c (7.11)

where a, b and c are defined as above.
A more interesting model is obtained if we define G(q) = Nsinq. In this
case, the mathematical model is

q"+taq +bsing=c (7.12)

where a, b and c are the same as above. This is the so-called "sinusoidally forced
oscillator". More complicated models for a one-link robot arm can be defined
similarly.

For the case of a two-link robot arm, we can have two simultaneous
differential equations as follows:

q"1 +a1q'1 *b1g?r =cq (7.13)
q"2 +apq'y + byg? =)

125

which is called the "coupled quadratic oscillators" model. In Equation (7.13) aq,
b}, ap, by, ¢ and cy are defined similarly as in the previous models. We can also
have the "coupled cubic oscillators" model:

q'1 +a1q'1 +b1ady =cy (7.14)
q"2+axq2 +bpad =

We can also have the "coupled forced quadratic oscillators" model:

q"1 +a1q'] +b1q?] = cysingy (7.15)
q"y +axq'p + bog2y = cpsingy

which is a system of two coupled second-order non-linear differential equations.
More complicated models for a two-link robot arm can be defined similarly.

We use a fuzzy rule base for model selection for the case of robotic
manipulators. We presented before mathematical models that can be used to
model the dynamic behavior of robotic manipulators. Lets call Mj the

mathematical model given by Equation (7.11), M5 the mathematical model given
by Equation (7.12), M3 the model given by Equation (7.13), and My the model

given by Equation (7.14). Then we can establish a fuzzy rule base for these
models as explained in Section 2 of this chapter. We will assume here without loss
of generality that the selection parameters are the fractal dimension of a time
series of measured values of the relevant variables in the problem (angle, angular
velocity) and the number of links of the manipulator. Also, we are assuming that
only four models are needed to model completely the robotic system. Then, we
can define a set of four fuzzy if-then rules that basically relate the fuzzy values of
the selection parameters with the corresponding mathematical model. We show in
Table 7.1 this set of fuzzy rules for model selection for the case of manipulators of
one and two links.

We also need to define the membership functions for the fuzzy values in
Table 7.1. The membership functions for the models should give us the degree of
belief that a particular mathematical model is the correct one for the specific
values of the selection parameters. We have to note here that for using a fuzzy rule
base (like the one described in Table 7.1) with mathematical models, we need to
use our new fuzzy inference system for multiple differential equations (described
in Section 2 of this chapter).

126

Table 7.1 Fuzzy rule base for model selection of
robotic systems

IF THEN
Fractal dimension Number of links Model
low one M;
high one M,
low two M3
high two My

7. 3. 3 Experimental Results

To give an idea of the performance of our new method for modelling
complex dynamical systems, we show below simulation results for several types
of robotic systems. First, we show in Figure 7.2 the membership functions for the
fractal dimension variable. The membership functions were defined in the
membership function editor of the fuzzy logic toolbox of MATLAB.

We show in Figure 7.3 the non-linear surface for the problem of
modelling robotic manipulators using as input variables: the fractal dimension and
number of links. The three dimensional surface represents the non-linear fuzzy
model for the problem.

Figure 7.2 Membership function plots for the linguistic values of the fractal
dimension variable.

127

Figure 7.3 Non-linear surface for modelling robotic manipulators.

We show in Figure 7.4 the reasoning procedure for modelling robotic
dynamic systems when specific values for the fractal dimension and number of
links are given. In this figure we can see how the final output (combined) model is
obtained with the new fuzzy inference system. The results correspond to the
values for the domain of application.

Figure 7.4 Reasoning procedure for specific values of the
fractal dimension and number of links.

128

We show in Figure 7.5 the general structure of the fuzzy intelligent
system for modelling robotic dynamic systems, developed with the fuzzy logic
toolbox of the MATLAB programming language.

Figure 7.5 General structure of the fuzzy intelligent system
with the new fuzzy inference system.

We show simulation results for a robotic system obtained using our new
method for modelling dynamical systems. In Figure 7.6 we show the simulation
results for a two-link robotic dynamic system with a mathematical model given by
Equation (7.13).

Figure 7.6 Simulation of a two-link robot arm showing chaotic behavior for
position q;.

129

The solution shown in Figure 7.6 is what is known as a "chaotic solution"
because the orbit is oscillating (in an unstable manner) between an infinite number
of periodic points. As a consequence of this fact the behavior identification in this
case is of a "chaotic solution".

In Figure 7.7 we can see how both q; and q; tend to a "strange attractor”,

which is one of the distinguishing signs of "chaotic" behavior (Rasband, 1990). Of
course, in robotic applications this behavior has to be avoided because it will
cause physical damage to the robotic system. This is why it is important to
identify when this behavior can occur in advance to avoid critical situations.

Figure 7.7 Simulation of a two-link robot arm showing chaotic behavior for
positions q1 and q».

Finally, we show in Figure 7.8 simulation results for a one-link robotic
manipulator, were the dynamic behavior is a cycle of period 8. This dynamic
behavior shows the existence of a cascade of period doubling bifurcations (and
eventually chaos) for a single-link robotic system.

We have developed a new fuzzy inference system for modelling complex
dynamical systems using multiple differential equations. The new fuzzy inference
system can be considered a generalization of the classical Sugeno fuzzy model.
The use of differential equations as consequents instead of polynomials, gives to
our new fuzzy modelling procedure more approximating power and as a result of
this fact, a smaller number of fuzzy rules are needed to model a given problem.
We have illustrated in this paper our new method for modelling with the complex
case of robotic dynamic systems. Our new fuzzy inference system allows the

130

change of mathematical models according to the changing conditions of the
robotic system and its environment. Adequate modelling of complex dynamic
systems (like the robotic system) enables adaptive model-based control, which is a
very important problem in real-world applications.

Figure 7.8 Simulation of a one-link robot manipulator.

7.4 Modelling Aircraft Dynamic Systems with the
new Fuzzy Inference System

We describe in this section the application of our new fuzzy inference
system to the problem of modelling aircraft dynamic systems. The mathematical
models of aircraft systems can be represented as coupled non-linear differential
equations (Melin & Castillo, 1998). In this case, we can develop a fuzzy rule base
for model selection that enables the use of the appropriate mathematical model
according to the changing conditions of the aircraft and its environment. For
example, we can use the following model of an airplane when wind velocity is
relatively small:

p’=L(-q+] (7.16)
q =L(p+m)
where I; and I, are the inertia moments of the airplane with respect to axis x and y,

respectively, 1 and m are physical constants specific to the airplane, and p, q are
the positions with respect to axis x and y, respectively. However, a more realistic

131

model of an airplane in three dimensional space, is as follows:

p’=Li(qr+1) (7.17)
q’ = L(pr + m)
r’ =I3(-pq + n)

where now I; is the inertia moment of the airplane with respect to the z axis, n is a
physical constant specific to the airplane, and r is the position along the z axis.
Considering now wind disturbances in the model, we have the following equation:

p’=lLi(-qr+1)-u, (7.18)
q’ =I(pr + m)
r’ =I3(-pq + n)

where u, is the wind velocity. The magnitude of wind velocity is dependent on the
altitude of the airplane in the following form:

Ug = Uwinds510 {1 +In (r/510) J (7.19)
In(51)

where U,;ng510 1S the wind speed at 510 ft altitude (typical value = 20 fi/sec).

If we use the general mathematical models of Equations (7.16)-(7.18) for
describing aircraft dynamics, we can formulate a set of if-then rules that relate the
models to the conditions of the aircraft and its environment. Lets assume that M,
is given by Equation (7.16), M, is given by Equation (7.17), and M; is given by
Equation (7.18). Now using the wind velocity u, and inertia moment I, as
selection parameters, we can establish the fuzzy rule base for model selection as in
Table 7.2.

In Table 7.2, we are assuming that the wind velocity u, can have only
two possible fuzzy values (small and large). This is sufficient to know if we have
to use the mathematical model that takes into account the effect of wind (M3) for
u, large or if we don’t need to use it and simply the model M, is sufficient (for ug
small). Also, the inertia moment (I,) helps in deciding between models M, and M,
(or M3).

We show simulation results for an aircraft system obtained using our new
method for modelling dynamical systems. In Figure 7.9 we show the simulation
results for an airplane with inertia moments: I, =0.9, ,=0.5,I; = 0.1 and the
physical constants are: | = m = n = 0.1. The initial conditions are the following:
p(0) =0, q(0)=0,r(0) = 0.

We have implemented the new fuzzy inference system for multiple
differential equations for modelling aircraft dynamic systems with very good
results. We can conclude by saying that we consider our new method for

132

modelling dynamical systems a good alternative for modelling complex real-
world phenomena.

Figure 7.9 Simulation of position q for an airplane with I; =0.9, 1, =0.5,1;=0.1

Table 7.2 Fuzzy rule base for model selection of aircraft systems.

IF THEN
Wind Velocity, u, Inertia Moment, I; Mathematical Model
Small Small M,
Small Large M,
Large Large M;

7. S Summary

We have developed a new fuzzy inference system for modelling complex
dynamical systems using multiple differential equations. The new fuzzy inference
system can be considered a generalization of the classical Sugeno fuzzy model.
The use of differential equations as consequents instead of polynomials, gives to
our new fuzzy modelling procedure more approximating power and as a result of
this fact, a smaller number of fuzzy rules are needed to model a given problem.

133

We have illustrated in this paper our new method for modelling with the complex
case of aircraft dynamic systems. Our new fuzzy inference system allows the
change of mathematical models according to the changing conditions of the
aircraft and its environment. Adequate modelling of complex dynamic systems
(like the aircraft system) enables adaptive model-based control, which is a very
important problem in real-world applications. We also illustrated our new method
with the problem of modelling robotic dynamic systems. In this case, adequate
modelling of these systems can help in achieve real time control, which is very
important in real-world applications.

Chapter 8

A New Theory of Fuzzy Chaos for Simulation of
Non-Linear Dynamical Systems

We describe in this chapter a new theory of chaos using fuzzy logic techniques.
Chaotic behavior in non-linear dynamical systems is very difficult to detect and
control. Part of the problem is that mathematical resuits for chaos identification
are difficult to use in many cases, and even if one could use them there is an
underlying uncertainty in the accuracy of the numerical simulations of the
dynamical systems. For this reason, we can model the uncertainty of detecting the
range of values where chaos occurs, using fuzzy set theory. Using fuzzy sets, we
can build a new theory of Fuzzy Chaos, where we can use fuzzy sets to describe
the behaviors of a system. We can also use fuzzy logic to build rules for behavior
identification, using the mathematical knowledge from dynamical systems theory.

8.1 Problem Description

In the traditional mathematical theory of chaos, we have that ‘chaotic behavior’ is
defined as sensitive dependence on initial conditions (Devaney, 1989). This
sensitive dependence is measured with concepts like the Lyapunov exponents or
the fractal dimension for the dynamical system. However, in the numerical
simulations usually we have uncertainty related to numerical errors in the methods
and also in the initial values (which are only approximated). For this reason, is
very difficult to identify (in many cases) real chaotic behavior. The approach
presented in this chapter is to relax the traditional mathematical definition of
‘chaos’ by using the theory of fuzzy logic (Zadeh, 1975), in this way obtaining a
new more realistic definition of chaotic behavior. Our fuzzy chaos definition is a
weaker definition of chaos, because we do not impose strict conditions on the
accuracy of the numerical values for this behavior to occur. Also, it is an easier
definition to apply to real world problems because in many cases we only have

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

136

relative empirical evidence of chaos, which of course means that we have
uncertainty about the identification of this behavior.

In this chapter, we propose several alternative definitions of fuzzy chaos
and explore the advantages of each of these definitions. Also, we apply these
definitions to the problems of modelling, simulation, and control of non-linear
dynamical systems. In particular, we will consider the case of robotic dynamic
systems, which is a very interesting problem from the point of view of the
applications to manufacturing, but also it is important from the theoretical point of
view. At the end, we also give fuzzy definitions for other types of dynamic
behaviors because the identification of these behaviors can’t be made without
considering the associated uncertainty in predicting them. We will also show the
implementation of these definitions as an intelligent system (developed in
MATLAB) for simulation and behavior identification of robotic dynamic systems,
to give an idea of the performance of this approach compared with the traditional
one.

8.2 Towards a New Theory of Fuzzy Chaos

For a given dynamical system expressed as a non-linear differential
equation:

dy/dt=f(t,y) y(0)=yo (8.1)

Or as non-linear difference equation:

yu1=f(ys...) Y(0)Fyo (82)

We can have many different types of dynamic behaviors, for the above
equations, depending on the parameter values and also, depending on the
analytical properties of the function f. Also, there exists a fundamental difference
between Equations (8.1) and (8.2), namely, that differential equations can only
exhibit chaos when they are at least three-dimensional. However, difference
equations can exhibit chaos even for the one-dimensional case.

In particular, we can have “chaotic behavior”, defined formally as
sensitive dependence on initial conditions for many real dynamical systems.
However, in numerical simulations we usually have uncertainty related to
numerical errors in the methods and also in the initial values. For this reason, is
very difficult to identify precisely real chaotic behavior (Devaney, 1989). We can
relax the traditional mathematical definition of “chaos” by using the theory of
fuzzy logic (Zadeh, 1975), in this way obtaining a new more realistic definition of
chaotic behavior. In a sense, we can say that our fuzzy chaos definition can be
considered a weaker definition of chaos because we will require weaker
conditions to identify this behavior.

137

We assume for the moment that we have a dynamical system in the real
line given as:

ye = f(ye1, 0) (8.3)

In this case, we can associate chaotic behavior with the number of period
doublings (or bifurcations) that occur when the parameter © is varied. According
to this fact, we can state the following definition:

Definition 8.1 (chaotic behavior according to period doublings)
A one-dimensional dynamical system shows fuzzy chaos when the number of
period doublings is considered to be large:

If number of period doublings is large Then behavior is fuzzy chaos.

Of course, other definitions can be made using other measures, like the fractal
dimension or the Lyapunov exponents of the time series. For the case of the
fractal dimension, we have extensive experimental results that show empirical
evidence of chaos when the fractal dimension is close to a value of 2 in the plane.
For this reason, we have proposed the following definition of fuzzy chaos:

Definition 8.2 (fuzzy chaos by the fractal dimension)
A one-dimensional dynamical system shows fuzzy chaos, when the value of the
fractal dimension is large (close to a numeric value of 2 for the plane):

If the fractal dimension is large Then behavior is fuzzy chaos.

8.3 Fuzzy Chaos for Behavior Identification in the
Simulation of Dynamical Systems

The simulation of Non-Linear Dynamical Systems consists in the iteration of a
map or the numerical approximation of differential equations. In any case, the
numerical simulation generates a time series:

YI, Y2, LEREY Yn- (84)

After this, we have to perform behavior identification for the dynamical
system. Here, we can apply the definition of fuzzy chaos to make a more efficient
identification (because the theoretical definitions of chaos are difficult to apply).
Of course, other types of behaviors can be defined similarly. For example, we can
define the typical dynamic behaviors of a three-dimensional system with the
following fuzzy rules:

138

If fractal dimension is low Then behavior is cycle of period 2
If fractal dimension is small Then behavior is cycle of period 4
If fractal dimension is regular Then behavior is cycle of period 8
If fractal dimension is medium Then behavior is cycle of period 16
If fractal dimension is high Then behavior is high order cycles
If fractal dimension is large Then behavior is fuzzy chaos.

Of course here the fractal dimension and the behavior are considered as
linguistic variables and for a particular application the membership functions for
the linguistic values will need to be defined. Also, the numerical value of the
fractal dimension has to be calculated from the time series using the box
dimension algorithm (Mandelbrot, 1987).

8.4 Simulation of Dynamical Systems

The problem of performing an efficient simulation for a particular dynamical
system can be better understood if we consider a specific mathematical model. Let
us consider the following model:

X' = o(Y-X)
Y =1X-Y-XZ (8.5)
Z'=XY - bZ

where X, Y, Z, o,1,b € R, and 5, r and b are three parameters which are normally
taken, because of their physical origins, to be positive. The equations are often
studied for different values of r in 0 < r < . This mathematical model, has been
studied in (Rasband, 1990) to some extent, however there are still many questions
to be answer for this model with respect to its very complicated dynamics for
some ranges of parameter values.

If we consider simulating Equation (8.5), for example, the problem is of
selecting the appropriate parameter values for o, r, b, so that the interesting
dynamical behavior of the model can be extracted. The problem is not an easy
one, since we need to consider a three-dimensional search space o r b and there
are many possible dynamical behaviors for this model. In this case, the model
consisting of three simultaneous differential equations, the behaviors can range
from simple periodic orbits to very complicated chaotic attractors. Once the
parameter values are selected then the problem becomes a numerical one, since
then we need to iterate an appropriate map to approximate the solutions
numerically.

The problem of performing automated simulation for a particular
dynamical system is then of finding the "best" set of parameter values for the

139

mathematical model. Our general algorithm (Castillo & Melin, 1995) for selecting
the "best" set of parameter values is shown in Figure 8.1.

The algorithm shown in Figure 8.1 can be explained as follows. First, the
mathematical model is analyzed to "understand" it. Second, a set of admissible
parameters is generated using the understanding of the model. Third, a specific
genetic algorithm is used to select the best set of parameter values. Finally, the
numerical simulations are performed and the dynamical behaviors are identified
using fuzzy logic .

STEP 1 Read the mathematical model M.

STEP 2 Analyze the model M to "understand" its complexity.

STEP 3 Generate a set of admissible parameters using the understanding of the
model.

STEP 4 Perform a selection of the "best" set of parameter values. This set is
generated using a specific genetic algorithm.

STEP 5 Perform the simulations by solving numerically the equations of the
mathematical model. At this time the different types of dynamical
behaviors are identified using a fuzzy rule base.

Figure 8.1 New algorithm for selecting the best set of parameter values.

The implementation of the new method for Automated Simulation as a
computer program was done using the MATLAB programming language. The
choice of MATLAB is because of its symbolic manipulation features and also
because it is an excellent language for developing prototypes (Nakamura, 1997).
The knowledge base for simulation consists of two modules: Parameter Selection,
and Dynamic Behavior Identification. In the following lines we will describe these
two modules in more detail.

8.5 Method for Automated Parameter Selection
using Genetic Algorithms

The knowledge for simulation of the intelligent system consists in the application
of a specific genetic algorithm (Goldberg, 1989) to select the best set of
parameters of a particular dynamical system. Our genetic algorithm for parameter
value selection (Castillo & Melin, 1998) can be defined as shown in Figure 8.2.
The fitness function should evaluate the dynamical information given by
a particular set of parameter values, i.e. the fitness function should measure the
power of the parameter set. Lets consider a three-dimensional model with 3

140

parameters 0, a, and y, then assuming that we have only four possible dynamical
behaviors (for a given system):

BO: fixed point of period 1
B1: fixed point of period 2
B2: fixed point of period 4
B3: fixed point of period 8
B4: chaotic behavior

STEP 1 Initialize a population with randomly generated individuals
(parameters) and evaluate the fitness value of each individual

STEP 2 (a) Select two members from the population with probabilities
proportional to their fitness values
(b) Apply crossover with a probability equal to the crossover rate
(c) Apply mutation with a probability equal to the mutation rate
(d) Repeat (a) to (d) until enough members are generated to form the
next generation

STEP 3 Repeat steps 2 and 3 until the stopping criterion is met

Figure 8.2 Genetic algorithm for parameter value selection.

we will have that the parameter set n = (6,a,Y), where 6,a,y € R, can result in any
of the five possible behaviors. In this case, we need to consider 5 individuals in
the population and an initial population can be denoted as:

Po = (701, 702, ™03 ™04 T05)

For an initial population there is a high probability that most of the =; could give

the B0 behavior, so there has to be evolution to obtain a better parameter set. The
identification of the respective behaviors can be done by iteration of the dynamic
systems or by other mathematical means, for example the fractal dimension or the
Lyapunov exponents (Rasband, 1990). The fitness value of each individual in
population P; can by defined as follows:

F(nij)=1 for fixed point of period 1
F(nij)=2 for fixed point of period 2
F(nij)=4 for fixed point of period 4
F(nij)=8 for fixed point of period 8

F(nij) =10 for chaotic behavior

141

this is only one of the possible schemes that can be used for this case. In this case,
we have assigned the fitness values proportional to the complexity of the dynamic
behavior to guide the search of the genetic algorithm. However, the specific
numeric values could be changed to suit the needs of particular applications. We
need to remember here that the fitness function has to be designed for each
specific application of a genetic algorithm.

A more general form for defining the fitness function for real dynamical
systems can be establish by using the fractal dimension (Mandelbrot, 1987) dg¢ of

the time series generated by the numerical simulation of the dynamical system.
Mathematically, we can define the fitness function as:

F(m;;) =edf(ni)) | 0<de<3, (8.6)

where df(nij) = fractal dimension of the time series for parameter set Tjj- The

general idea of Equation (8.6) is to assign a bigger value to the fitness function
when the complexity of the time series, generated by the simulation, is greater
(which is true, of course, when dy is of a higher value). Of course, here the use of

the exponential function is only to spread the values of the fractal dimension but
other functions could be used as well.

8.6 Method for Dynamic Behavior Identification
using Fuzzy Logic

Once the parameter values have been found and the numerical simulations have
been performed then the final step is to identify the possible dynamic behaviors of
the system. The knowledge for behavior identification can be expressed as a
fuzzy-rule base that uses the information obtained in the numerical simulation to
identify the different behaviors of the model. To give an idea of how this
knowledge can be expressed as a fuzzy-rule base we show below two sample
schemes that can be used for behavior identification (Castillo & Melin, 1999).

8.6.1 Behavior Identification Based on the
Analytical Properties of the Model

We can build a set of fuzzy rules for dynamic behavior identification based on the
analytical properties of the mathematical models and using the well known
theorems of dynamical systems theory (Castillo & Melin, 1997). To give an idea
of how this knowledge can be translated to fuzzy rules we show below some
sample rules for several types of dynamical systems.

142

1) Single-link Robot Model: This mathematical model, of a sinusoidally non-
linear robot, consists of two simultaneous differential equations:

o (8.7)
Q' = (K4I - Nsin(q) - F4Q) / Mg

where the parameters I, Mq, N, Fq and K; are all positive. Lim, Hu and Dawson
(1996) have presented an extensive gallery of periodic and a-periodic motions for
this model. In this case the equilibria (q*,Q*) is stable if and only if the real parts
of the eigenvalues are negative and this is equivalent to the rule:

If a>0 Then Equilibria = stable

where a is defined by the characteristic equation:

AM2+al+b=0

with a = - tr], b = det]. Where "tr]" is the trace and "det]" is the determinant of the
Jacobian Matrix.

2) Other Bi-dimensional Models: Similar bi-dimensional autonomous models can
be written in the following manner:

X' = o f(X,Y) (8.8)
Y'=p gX.Y)

In this case, the Equilibria (X*,Y*) is stable if:
o fy +(gy-P) <0

where fy and gy are partial derivatives. In fuzzy logic language we have the

following rule:

If fofy + (gy -B)<0] Then Equilibria = stable

Also we have the following rule for a Hopf Bifurcation:

If ag =@ - gy)/fx Then Hopf Bifurcation

which gives us the condition for a Hopf bifurcation to occur.

143

3) Firth's Mode! of a single-mode laser: The basic equations of a single-mode
(unidirectional) homogeneously broadened laser in a high-finesse cavity, tuned to
resonance, may be written as a system of three differential equations (Abraham &
Firth, 1984):

X' =7¢ (X +2Cp)

P'=-T (P-XD) (8.9)
D'=-y(D+XP-1)

Here X is a scaled electric field (or Rabi frequency), v, is a constant describing the

decay of the cavity field and C is the cooperativity parameter.

In this case, the Equilibria (X*,P*,D*) is stable if a, b, ¢ > 0 and (ab - c)
> 0, where a, b and c are defined by the characteristic equation for the system. We
can also have more complicated rules for other types of dynamical behaviors.

4) Other three-dimensional Models: A three-dimensional system of differential
equations can be written in the following form:

X' = of(X,Y,Z)
Y' = Bg(X,Y,Z) 8.10)
Z'=yh(X.,Y,Z)

In this case, the Equilibria (X*,Y*,Z*) is stable if a, b, ¢ > 0 and (ab - ¢) > 0,
where a, b and c are defined by the characteristic equation for the system:

AM+arZ+br+c=0
In fuzzy logic language we have the rule:
If a,b,c>0 And (ab-c) >0 Then Equilibria = stable

other rules follow in the same manner for all the types of dynamical behaviors
possible for this class of mathematical models.

We have to note here that in this case the computer program for this
method needs to obtain the symbolic derivatives for the functions in the conditions
of the rules. This is critical for the problem of behavior identification, since we
require these derivatives to obtain the values of the parameters in the rules. This
will make this method time consuming because the time series from the
simulations are not used at all.

144

8.6.2 Behavior Identification Based on the
Fractal Dimension and the Lyapunov Exponents

We can obtain a more efficient method of dynamic behavior identification, if we
make use of the information contained in the time series that resulted from the
simulation of the dynamical system. From the time series of the numerical
simulations, we can calculate the Lyapunov exponents of the dynamical system
and also the fractal dimension of the time series. With this dynamical information,
we can easily identify the corresponding behaviors of the system.

For dissipative dynamical systems, we can use a set of fuzzy rules for
behavior identification using the Lyapunov exponents. However, since the
Lyapunov exponents can only identify between asymptotic stability, general limit
cycles and chaos, we need to use the fractal dimension dg to discriminate between

the different periodic behaviors possible. Based on prior empirical work (Castillo
& Melin, 1996), we have been able to use the fractal dimension to discriminate
between different periodic behaviors. Then, if we combine the use of the
Lyapunov exponents with the use of the fractal dimension, we can obtain a set of
fuzzy rules that can identify in a one-to-one manner the different dynamic
behaviors. The if-then rules have to be "fuzzy" because there is uncertainty
associated with the numerical values of the Lyapunov exponents and also the
classification scheme (for the limit cycles) using the fractal dimension is only-
approximated.

We show in Table 8.1 the knowledge base that we have developed for

Table 8.1 Knowledge base for behavior identification using Lyapunov exponents
and fractal dimension

IF THEN
Lyapunov Fractal Behavior
exponents Dim Identification
) stable fixed point
(--) stable fixed point
©,-) [1.1,1.2) cycle period 2
,-) [1.2,1.3) cycle period 4
©,-) [1.3,1.4) cycle period 8
©,-) [1.4,1.5) cycle period 16
(=) stable fixed point
©,-,-) [2.1,2.2) cycle period 2
@, -,-) [2.2,2.4) cycle period 4
©,-,-) [2.4,2.6) cycle period 8
©,-,-) [2.6,2.8) cycle period 16

(+,0,-) [2.8,3.0) chaos

145

dynamic behavior identification for dynamical systems of up to three variables.
The empty fields in Table 8.1 indicate no use of the fractal dimension for that
case.

We can define membership functions for the numerical intervals of the
fractal dimension, for the Lyapunov exponents and for the behavior identifications
shown in Table 8.1. Once these membership functions are defined, the usual fuzzy
reasoning methodology can be applied to implement this method of behavior
identification. We show in the next section the implementation of this method in
the fuzzy logic toolbox of MATLAB

8.7 Simulation Results for Robotic Systems

Our new method for automated simulation of non-linear dynamical systems was
implemented as a prototype intelligent system in the MATLAB programming
language. We tested the prototype intelligent system with different data to validate
the new method and also the implementation with very good results. In this
section, we show some of the results obtained using the intelligent system for
automated simulation, to give an idea of the performance of the system. To give
an idea of the performance of our fuzzy-fractal-genetic approach for simulation,
we show below simulation results obtained for several types of dynamical
systems. First, we show in Figure 8.3 the fuzzy rule base for the prototype
intelligent system developed in the fuzzy logic toolbox of the MATLAB language.

Figure 8.3 Fuzzy rule base in the rule editor.

146

We show in Figure 8.4 the membership functions for the linguistic values
of the behavior identification. The membership functions were defined in the
membership function editor of the fuzzy logic toolbox.

Figure 8.4 Membership function plots for the linguistic values of the behavior
identification.

We show in Figure 8.5 the non-linear surface for the problem of behavior
identification using as input variables Lyapunov exponents and fractal dimension.

Figure 8.5 Non-linear surface for behavior Identification

147

We show in Figure 8.6 the reasoning procedure for behavior
identification when specific values of the Lyapunov exponents and fractal
dimension are given. In this figure, we can see how the final behavior
identification for the dynamical system is evaluated with the Mamdani inference
system.

Figure 8.6 Behavior identification for specific values of Lyapunov
exponents and fractal dimension

In Figure 8.7 we show the simulation results for a two-link robotic
dynamic system with a mathematical model given by the two coupled second
order differential equations:

q"1 +a1q'1 +bysing) = cq
q"p +apq'p +basingy =c¢) (8.11)

where af, ap, by, by, ¢ and c9 are physical parameters of the robotic system.

The simulation results shown in Figure 8.7 correspond to the parameter values:

a; =212, ap=20, b; =by=60, c{=¢cp=72 and to the initial conditions:
q1(0)=0.5, q'1(0) =35, q2(0) =5, q'2(0) =5. The solution shown in Figure 8.7
is what is known as a "chaotic solution" because the orbit is oscillating (in an

unstable manner) between an infinite number of periodic points. As a consequence
of this fact the behavior identification in this case is of a "chaotic solution".

148

Figure 8.7 Simulation of a two-link robot arm showing chaotic behavior
for position qj.

8.8 Summary

We have presented in this chapter a new theory of Fuzzy Chaos for non-linear
dynamical systems. We can apply this theory for behavior identification. We also
presented in this chapter a new method for automated simulation of non-linear
dynamical systems. This method is based on a hybrid fuzzy-fractal-genetic
approach to achieve, in an efficient way, automated simulation for a particular
dynamical system given its mathematical model. The use of genetic algorithms is
to achieve automated parameter selection for the models. The use of fuzzy logic is
to simulate the process of expert behavior identification by implementing the
knowledge of identification by a set of fuzzy rules. We illustrated the application
of this method for automated simulation for the case of robotic dynamic systems.
The results show the efficiency of this new method for the simulation of complex
non-linear. dynamical systems. Of course, we need to apply our new approach for
other types of dynamical systems, but we expect to get similar results.

Chapter 9

Intelligent Control of Robotic Dynamic Systems

We describe in this chapter a new method for adaptive model-based control of
robotic dynamic systems using a new hybrid neuro-fuzzy-fractal approach.
Intelligent control of robotic systems is a difficult problem because the dynamics
of these systems is highly non-linear. We describe an intelligent system for
controlling robot manipulators to illustrate our neuro-fuzzy-fractal hybrid
approach for adaptive control. We use a new fuzzy inference system for
reasoning with multiple differential equations for model selection based on the
relevant parameters for the problem. In this case, the fractal dimension of a time
series of measured values of the variables is used as a selection parameter. We
use neural networks for identification and control of robotic dynamic systems.

9.1 Problem Description

Given the dynamic equations of motion of a manipulator, the purpose of robot
arm control is to maintain the dynamic response of the manipulator in accordance
with some pre-specified performance criterion (Fu, Gonzalez & Lee, 1987).
Although the control problem can be stated in such a simple manner, its solution
is complicated by inertial forces, coupling reaction forces, and gravity loading on
the links. In general, the control problem consists of (1) obtaining dynamic
models of the robotic system, and (2) using these models to determine control
laws or strategies to achieve the desired system response and performance.

Among various adaptive control methods, the model-based adaptive
control is the most widely used and it is also relatively easy to implement. The
concept of model-based adaptive control is based on selecting an appropriate
reference model and adaptation algorithm, which modifies the feedback gains to
the actuators of the actual system.

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

150

Many authors have proposed linear mathematical models to be used as
reference models in the general scheme described before. For example a linear
second-order time invariant, differential equation can be used as the reference
model for each degree of freedom of the robot arm. Defining the vector y(t) to
represent the reference model response and the vector x(t) to represent the
manipulator response, the joint i of the reference model can be described by

ajy"i(t) + biy'j(t) + yi(t) = rj(t) (9.1)

If we assume that the manipulator is controlled by position and velocity feedback
gains and the coupling terms are negligible, then the manipulator equation for
joint i can be

o(D)x"j(t) + Bi®X'i() + xj(t) =1i(1) 9.2)

where the system parameters o;(t) and B;(t) are assumed to vary slowly with

time.

The fact that this control approach is not dependent on a complex
mathematical model is one of its major advantages, but stability considerations of
the closed-loop adaptive system are critical. A stability analysis is difficult and
has only been carried out using linearized models. However, the adaptability of
the controller can become questionable if the interaction forces among the
various joints are severe (non-linear). This is the main reason why soft computing
techniques (Miller, Sutton & Werbos, 1995) have been proposed to control this
type of dynamic systems.

9.2 Mathematical Modelling of Robotic Dynamic
Systems

We will consider, in this section, the case of modelling robotic manipulators
(Castillo & Melin, 1997). The general model for this kind of robotic system is the
following:

M(q)q" +V(q,9))q' + G(q) +Fqq' =7 9.3)

where q € R denotes the link position, M(q) € ROXD js the inertia matrix,
V(q,q) € ROXD js the centripetal-Coriolis matrix, G(q) € R represents the
gravity vector, Fq € RMXT is a diagonal matrix representing the friction term, and

7 is the input torque applied to the links.

151

For the simplest case of a one-link robot arm, we have the scalar
equation:

Mqq" + Fgqq'+ G(g) =7 ¥4
If G(q) is a linear function (G = Nq), then we have the "linear oscillator" model:
qQ"+aq' +bg=c

where a = Fg/Mg , b = N/Mg and ¢ = ©/M. This is the simplest mathematical
model for a one-link robot arm. More realistic models can be obtained for more

complicated functions G(q). For example, if G(q) = Nq2, then we obtain the
"quadratic oscillator" model:

q"+aq'+ bq2 =c 9.5)

where a, b and c are defined as above.
A more interesting model is obtained if we define G(q) = Nsinq. In this
case, the mathematical model is

q" +aq' +bsing=c (9.6)

where a, b and ¢ are the same as above. This is the so-called "sinusoidally forced
oscillator". More complicated models for a one-link robot arm can be defined
similarly.

For the case of a two-link robot arm, we can have two simultaneous
differential equations as follows:

Q"1 +a1q'] +bia%y=cy
q"2 taxq'y + b2q21 =¢) 9.7)
which is called the "coupled quadratic oscillators” model. In Equation (9.7) aj,

by, ay, by, ¢y and c; are defined similarly as in the previous models. We can
also have the "coupled cubic oscillators" model:

q"1 +ajq'1 +bigr =cy,
Q"2 +a3q'2 + bag3) = ¢ 9.8)

152

9.3 Method for Adaptive Model-Based Control

Parametric Adaptive Control is the problem of controlling the output of a
dynamical system with a known structure but unknown parameters. These
parameters can be considered as the elements of a vector p. If p is known, the
parameter vector 6 of a controller can be chosen as 6* so that the plant together
with the fixed controller behaves like a reference model described by a
differential equation with constant coefficients (Miller, Sutton & Werbos, 1995).
If p is unknown, the vector 6(t) has to be adjusted on-line using all the available
information concerning the dynamical system.

The structure of the adaptive system proposed in this work, to control a
non-linear robotic dynamic system is similar to the one described in (Castillo &
Melin, 1998), the main difference is that we use a decision scheme to select the
appropriate reference model for the plant. The parameters of the neural network
N; are adjusted by backpropagating the identification error e; while those of the
neural network N, are adjusted by backpropagating the control error (between the

output of the reference model and the identification model) through the
identification model.

9.3.1 Fuzzy Logic for Dynamic System Modelling

For a complex dynamical system (Rasband, 1990) it may be necessary to
consider a set of models to represent adequately all of the possible dynamic
behaviors of the system. We have designed a method (Castillo & Melin, 1999),
based on fuzzy logic (Zadeh, 1975), for model selection using as input the
numerical value of a selection parameter o. We assume, in what follows, that
parameter o is defined over a real-valued interval:
oapsSosay . 9.9

We also assume that we have n mathematical models considered appropriate for
the respective n subintervals, defined on [o) , o, 1, as follows:

apsa<al, 0] SU<OY e, Op]SSy (9.10)

The corresponding n mathematical models for these subintervals can be
expressed as differential equations:

dy/dt=1fi(y,a),
dy/dt=1fr(y, o), (9.11)

dy/dt=1f,(y, o).

153

Then, we can define a set of fuzzy if-then rules that basically relate the
subintervals to the mathematical models in a one-to-one fashion. The advantage
of using fuzzy rules (instead of conventional simple if-then rules) is that we can
manage the underlying uncertainty of this process of model selection.

To implement this decision scheme, we need a reasoning method that
can use differential equations as consequents. We have developed a new fuzzy
inference system that can be considered as a generalization of Sugeno's inference
system (Sugeno & Kang, 1988) in which we are now considering differential
equations as consequents of the fuzzy rules, instead of simple polynomials. Using
this method, the decision scheme can be expressed as a single-input fuzzy model
as follows:

If aissmall then dy/dt=fj(y,a)
If oisregular then dy/dt=f5(y,a)

If oislarge then dy/dt=f,(y,0)

where the output y is obtained by the numerical solution of the corresponding
differential equation. We have to note here that this new fuzzy inference system
reduces to the standard Sugeno system only when the differential equations have
closed-form solutions in the form of polynomials.

We describe below the reasoning procedure for our fuzzy inference
system for the case of a one-input single-output fuzzy model. The procedure is
very similar to the original Sugeno's procedure, except that now in the output we
obtain the crisp values of "y" by solving numerically the corresponding
differential equations. The numerical solutions of the differential equations can
be achieved by the standard Runge-Kutta type method (Nakamura, 1997):

Yn+1 = RK(yn) = yn + 1/2(k1 +k2) (9.12)
k1 = hi(yn.tn)
ko =hf(yn + k1, th+1)

where h is the step size of the numerical method and RK can be considered as the
Runge-Kutta operator that transforms numerical solutions from time n to time
n+li.

The reasoning procedure for differential equations can also be used for
rules with multiple inputs (for the case of several selection parameters) by simply
considering the minimum of the firing strengths of each of the inputs.

154

9.3.2 Neuro-Fuzzy-Fractal Adaptive Model-Based
Control

In this section, we combine the method for adaptive model-based control using
neural networks (Melin & Castillo, 1998) with the method for model selection
using fuzzy logic to obtain a new hybrid neuro-fuzzy method for control of non-
linear dynamical systems. This new method combines the advantages of neural
networks (ability for identification and control) with the advantages of fuzzy
logic (ability for decision and use of expert knowledge) to achieve the goal of
robust adaptive control of non-linear systems.

An intelligent control system designed with this method is capable of
adapting to changing dynamic conditions in the plant, because it can change the
control actions (given by the neural networks N¢) according to the data that is

been measured on-line and also can change the reference mathematical model if
there is a large enough change in the value of the selection parameter o. Of
course, a change in the reference mathematical model also causes that the neural
network N; performs a new identification for the model. This is the reason why

the whole process is called adaptive model-based control of non-linear dynamical
systems.

This new method can be used for constructing intelligent control systems
for different applications. This can be done by defining the appropriate set of
mathematical models for the particular application (according to the type and
complexity of the plant or system) and the correct architecture of the neural
networks for identification and control. Initial training data can then be used to
obtain the initial weights for the networks. The intelligent control system will
then be ready for use on-line in the real plant or dynamical system. We have
implemented a prototype intelligent control system, with the neuro-fuzzy
approach for control, using the MATLAB® programming language.

9.4 Adaptive Control of Robotic Dynamic Systems

We use a fuzzy rule base for model selection for the case of robotic manipulators.
We presented before mathematical models that can be used to model the dynamic
behavior of robotic manipulators. Lets call My the mathematical model given by

Equation (9.5), My the mathematical model given by Equation (9.6), M3 the
model given by Equation (9.7), and My the model given by Equation (9.8). Then
we can establish a fuzzy rule base for these models as explained before. We will
assume here without loss of generality that the selection parameters are the fractal
dimension of a time series of measured values of the relevant variables in the

problem (angle, angular velocity) and the number of links of the manipulator.
Also, we are assuming that only four models are needed to model completely the

155

robotic system. Then, we can define a set of four fuzzy if-then rules that basically
relate the fuzzy values of the selection parameters with the corresponding
mathematical model. We show in Table 9.1 this set of fuzzy rules for model
selection for the case of manipulators of one and two links.

We also need to define the membership functions for the fuzzy values in
Table 9.1. The membership functions for the models should give us the degree of
belief that a particular mathematical model is the correct one for the specific
values of the selection parameters. We have to note here that for using a fuzzy
rule base (like the one described in Table 9.1) with mathematical models, we
need to use our new fuzzy inference system for multiple differential equations.

We use neural networks for identification and control of the robotic
dynamic system. The neural networks are trained with the Levenberg-Marquardt
algorithm with real data to achieve the desired level of performance. Two
multilayer neural networks are used, one for identification of the model of the
robotic system and the second for the controller. If we combine the fuzzy rule
base for model selection with the neural networks for identification and control,
we can obtain an intelligent system for adaptive model-based control of robotic
dynamic systems.

Table 9.1. Fuzzy rule base for model selection of robotic systems

IF THEN
Fractal dimension Number of links Mathematical Model
low one My
high one M,
low two M3
high two My

The intelligent control system combines the advantages of neural
networks (ability for identification and control) with the advantages of fuzzy
logic (use of expert knowledge) to achieve the goal of robust adaptive control of
robotic dynamic systems. The general architecture of the intelligent control
system for robotic systems is shown in Figure 9.1. In this figure, we have a
module for the fuzzy-rule base of model selection, a module for the neural
network of control, and a module for the neural network of identification.

An intelligent control system with the architecture shown in Figure 9.1 is
capable of adapting to changing dynamic conditions in the robotic system,
because it can change the control actions (given by the network Nc) according to
the data measured on-line and also can change the reference mathematical model
if there is a large enough change in the fractal dimension of the time series. Of

156

course, a change in the reference mathematical model also causes that the neural
network Ni performs a new identification for the model. In conclusion, the
intelligent system with the architecture shown in Figure 9.1 achieves model-
based control of robotic systems using a combination of Neural Networks and
Fuzzy Logic.

Fuzzy rule base Neural Network
> for > for
Model Selection Identification Ni

_ec

A 4
Neural Network

u Robotic

for
—> Control Nc ‘ System

Figure 9.1. General architecture of the intelligent control system.

9.5 Simulation Results for Robotic Dynamic
Systems

To give an idea of the performance of our neuro-fuzzy-fractal approach for
adaptive model-based control of robotic systems, we show below simulation
results obtained for a single-link robot arm. The desired trajectory for the link
was selected to be

qq = tsin(2.0t) (9.13)

and the simulation was carried out with the initial values: q(0)=0.1q';(0) =0

We used three-layer neural networks (with 15 hidden neurons) with the
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as
the activation functions for the neurons. We show in Figure 9.2 the function

157

approximation achieved with the neural network for control after 9 epochs of
training with a variable learning rate. The identification achieved by the neural
network can be considered very good because the error has been decreased to the

order of 10-4. We show in Figure 9.3 the curve relating the sum of squared errors
SSE against the number of epochs of neural network training. We can see in this

figure how the SSE diminishes rapidly from being of the order of 102 to smaller

value of the order of 10-4. Still, we can obtain a better approximation by using
more hidden neurons or more layers. In any case, we can see clearly how the
neural networks learns to control the robotic system, because it is able to follow
the arbitrary desired trajectory.

Figure 9.2 Function approximation after 9 epochs.

Figure 9.3 Sum of Squared Errors of the neural network.

158

We also show results for another desired trajectory for a one link robot arm. We
used the following desired trajectory for the position of the arm

ad = 1.0sin(2.0(1-e-t3)t)
and the simulation was carried out with the initial values:
q0)=0.1 q'1(0)=0

We used three-layer neural networks (with 10 hidden neurons) with the
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as
the activation functions for the neurons. We show in Figure 9.4 the initial
function approximation achieved with the neural network for control. Of course,
the approximation is not good (at the beginning) because the net hasn't been
trained yet with the data.

We show in Figure 9.5 the function approximation achieved with the
neural network for control after 400 epochs of training with a variable learning
rate. The identification achieved by the neural network (after 400 epochs) can be
considered very good because the error has been decreased to the order of 10-1.
Still, we can obtain a better approximation by using more hidden neurons or more
layers. In any case, we can see clearly how the neural network learns to control
the robotic system, so it is able to follow the arbitrary desired trajectory.

Figure 9.4. Initial function approximation of the neural network for control.

159

Figure 9.5. Function approximation of the neural network for control after 400
epochs.

We also show in Figure 9.6 the curve relating the sum of squared errors
SSE against the number of epochs of neural network training. We can see in

Figure 9.6 how the SSE diminishes rapidly from being of the order of 10! to a
smaller value of the order of 1071

Figure 9.6 Sum of squares of errors for the neural network.

160

We have to mention here that these simulation experiments for a single
link robot arm show very good results. We have also tried our approach for
control with more complex robotic systems with encouraging results.

We show in Figure 9.7 the non-linear surface for the fuzzy rule base of
Table 9.1. The fuzzy system was implemented in the fuzzy logic toolbox of
MATLAB. We show in Figure 9.8 the reasoning procedure for specific values of
the fractal dimension and number of links of the robotic system.

Figure 9.7 Non-linear surface for modelling,

Figure 9.8 Fuzzy reasoning procedure

161

In Figures 9.9 and 9.10 we show simulation results for a two-link robot arm with
a model given by two coupled second order differential equations. Figure 9.9

shows the behavior of position q1 and Figure 9.10 shows it for position q2 of the
robot arm.

Figure 9.9 Simulation of position q1.

Figure 9.10 Simulation of position g2.

162

9.6 Summary

We have very good simulation results for several types of robotic systems for
different conditions. The new method for control combines the advantages of
neural networks (learning and adaptability) with the advantages of fuzzy logic
(use of expert knowledge) to achieve the goal of robust adaptive control of
robotic dynamic systems. We consider that our method for adaptive control can
be applied to general non-linear dynamical systems because the hybrid neuro-
fuzzy-fractal approach does not depend on the particular characteristics of the
robotic dynamic systems. Controlling unstable and chaotic behavior in robotic
dynamic systems is very important to achieve the desired performance in robots
and also to avoid dangerous behavior of the system, which may cause physical
damage to the system. We think that our contribution is a step in the right
direction in achieving real time control for robotic systems.

Chapter 10

Controlling Biochemical Reactors

We describe in this chapter a general method for adaptive model-based control of
non-linear dynamic plants using Neural Networks, Fuzzy Logic and Fractal
Theory. The new neuro-fuzzy-fractal method combines Soft Computing (SC)
techniques with the concept of the fractal dimension for the domain of Non-Linear
Dynamic Plant Control. The new method for adaptive model-based control has
been implemented as a computer program to show that our neuro-fuzzy-fractal
approach is a good alternative for controlling non-linear dynamic plants. We
illustrate in this chapter our new methodology with the case of controlling
biochemical reactors in the food industry. For this case, we use mathematical
models for the simulation of bacteria growth for several types of food. The goal of
constructing these models is to capture the dynamics of bacteria population in
food, so as to have a way of controlling this dynamics for industrial purposes. We
use the fractal dimension for bacteria identification during the production process.
We use neural networks for control and parameter identification, and fuzzy logic
for modelling the complete dynamic system.

10.1 Introduction

We describe in this chapter a new method for adaptive control of non-linear
dynamic plants based on the use of Neural Networks, Fuzzy Logic and Fractal
Theory. Production processes in real world plants are often highly non-linear and
difficult to control (Melin & Castillo, 1996). The problem of controlling them
using conventional controllers has been widely studied (Albertos, Strietzel &
Mart, 1997). Much of the complexity in controlling any process comes from the
complexity of the process being controlled. This complexity can be described in
several ways. Highly non-linear systems are difficult to control, particularly when
they have complex dynamics (such as instabilities to limit cycles and chaos).
Difficulties can often be presented by constraints, either on the control parameters

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

164

or in the operating regime. Lack of exact knowledge of the process, of course,
makes control more difficult. Optimal control of many processes also requires
systems, which make use of predictions of future behavior. The mathematical
models for the plants are assumed to be systems of differential equations. The goal
of having these models is to capture the dynamics of production processes, so as
to have a way of controlling this dynamics for industrial purpose (Melin &
Castillo, 1997).

We need a mathematical model of the non-linear dynamic plant to
understand the dynamics of the processes involved in production. For a specific
case, this may require testing several models before obtaining the appropriate
mathematical model for the process (Melin & Castillo, 1998). For real world
plants with complex dynamics, we may even need several models for different
sets of parameter values to represent all of the possible behaviors of the plant. The
general mathematical model of a plant can be expressed as follows:

dx/dt = fl(x, D, a)- sz(x, D, o) (10.1)
dp/dt = Bf,(x, D, o)

where x € R’ is a vector of state variables, p € R is a vector of products, B € R
is a constant measuring the efficiency of the conversion process, D € (0, 3) is the
fractal dimension of the process, and o € R is a selection parameter. The fractal
dimension is used to characterize the production process, for example in the case
of biochemical reactors D represents the fractal dimension of the bacteria used for
production (Melin & Castillo, 1998).

For a complex dynamical system it may be necessary to consider a set of
mathematical models to represent adequately all of possible dynamic behavior of
the system. In this case, we need a decision scheme to select the appropriate
model to use according to the linguistic value of a selection parameter o. We use a
new fuzzy inference system for differential equations to achieve model selection.
We have fuzzy rules of the form:

IF o is A, AND D is B, THEN M, (102

IF o is A, AND D is B THEN M

where Al, s A" are linguistic values for o, Bl, - Bn are linguistic values for the
fractal dimension D, and Ml, s Mn are mathematical models of the form given by

equation (1). The selection parameter o can be the temperature for biochemical
processes, because temperature changes cause the presence of new bacteria in this
case (Melin & Castillo, 1998).

165

We combine adaptive model-based control using neural networks with
the method for model selection using fuzzy logic and fractal theory, to obtain a
new hybrid neuro-fuzzy-fractal method for control of non-linear plants. This
general method combines the advantages of neural networks (ability for
identification and control) with the advantages of fuzzy logic (ability for decision
and use of expert knowledge) to achieve the goal of robust adaptive control of
non-linear dynamic plants. We also use the fractal dimension to characterize the
production processes in modelling these dynamical systems. We have developed
intelligent control systems using this new method for adaptive control for several
applications, to validate our new approach for control. We have obtained very
good results in controlling biochemical reactors and chemical reactors with the
hybrid approach for control.

10.2 Fuzzy Logic for Modelling

We have designed a method, based on fuzzy logic techniques, for mathematical
model selection using as input the numerical value of a selection parameter o. We
assume, in what follows, that parameter o is defined over a real-valued interval;

OLOSOL<O(. . (10.3)
We also assume that we have n mathematical models considered the most
appropriate ones for the respective n subintervals, defined on [o , o], as follows:
oc0<0c<ocl oc<oc<0c,.,oc1<oc<oc. (10.49)
The corresponding n mathematical models for these subintervals can be expressed
as differential equations:

dy/dt = f (y, o) (10.5)
dy/dt = f,(y,)

dy/dt=f (y, o)

Then, we can define a set of fuzzy if-then rules that basically relate the
subintervals to the mathematical models in a one-to-one fashion. The advantage of
using fuzzy rules (instead of conventional simple if-then rules) is that we can
manage the underlying uncertainty of this process of model selection. We show
the basic decision scheme for developing a fuzzy rule base for model selection in
Table 10.1.

166

Table 10.1 Decision scheme for model selection.

IF THEN

o <o<o M;: dy/dt=f](y, o)
a<a<a, MZ: dy/dt = fz(y, o)
a,sa<a M. dy/dt = fs(y, o)
o oo M : dy/dt=f (y, a)

Of course, for this decision scheme to work we need to define
membership functions for the corresponding mathematical models. The
membership functions for the models should give us the degree of belief that a
particular model is the correct one for a specific value of the parameter .

To apply this method of model selection, to a particular application, we
have to find the corresponding selection parameter o to be used in the decision
scheme proposed in Table 10.1. Then, a partition of the definition interval for a
has to be performed. After this, the one-to-one map between the mathematical
models and the subintervals (obtained from the partition) is constructed. In this
way, we can obtain the fuzzy rule base for model selection for a particular
application.

10.3 Neural Networks for Control

Parametric Adaptive Control is the problem of controlling the output of a system
with a known structure but unknown parameters. These parameters can be
considered as the elements of a vector p. If p is known, the parameter vector 6 of a
controller can be chosen as 6* so that the plant together with the fixed controller
behaves like a reference model described by a difference (or differential) equation
with constant coefficients (Narendra & Annaswamy, 1989). If p is unknown, the
vector O(t) has to be adjusted on-line using all the available information
concerning the system.

Two distinct approaches to the adaptive control of an unknown plant are
(i) direct control and (ii) indirect control. In direct control, the parameters of the
controller are directly adjusted to reduce some norm of the output error. In indirect
control, the parameters of the plant are estimated as p(t) at any time instant and the
parameter vector 8(t) of the controller is chosen assuming that p(t) represents the
true value of the plant parameter vector. Even when the plant is assumed to be
linear and time-invariant, both direct and indirect adaptive control results in non-
linear systems.

When indirect control is used to control a non-linear system, the plant is
parameterized using a mathematical model of the general form described in

167

section 1 and the parameters of the model are updated using the identification
error. The controller parameters in turn are adjusted by backpropagating the error
(between the identified model and the reference model outputs) through the
identified model. A block diagram of such an adaptive system is shown in Figure
10.1.

The overall structure of the adaptive system proposed in this paper to
control a non-linear dynamical system is the same as shown in Figure 10.1 and is
independent of the specific model used to identify the plant. The delayed values of
the plant input and plant output form the inputs to the neural network Nc which
generates the feedback control signal to the plant. The parameters of the Neural
Network Ni are adjusted by backpropagating the identification error ¢; while those
of the Neural Network Nc are adjusted by backpropagating the Control error
(between the output of the reference model and the identification model) through
the identification model.

Di Iy 1 Mj y
Fractal | “1 [Modelling] ™! m
1 Module Module I——" Reference Model

Neural
r — Network
Nj
i Tt___

N I TDL

Network U [NonLinear | P

Nc Plant
TDL TOL

Figure 10.1 Indirect Adaptive Neuro-Fuzzy-Fractal Control.

The mathematical model for the non-linear plant in the time domain is
generated by the method of modelling (described in section 10.2) using the real
data that is measured on-line in the plant. On the other hand, the fractal module is
used to characterize the production process and this information is used to specify
the mathematical model in the time and space domain. This scheme enables the
dynamic changes of models according to the changes of on-line process
identification. Our new method for adaptive model-based control combining
Neural Networks, Fuzzy Logic and Fractal Theory differs from our previous

168

approach of considering only the use of neural networks and models (Melin &
Castillo, 1997).

10.4 Adaptive Control of a Non-Linear Plant

Process control of biochemical plants is an attractive application because of the
potential benefits to both adaptive network research and to actual biochemical
process control. In spite of the extensive work on self-tuning controllers and
model-reference control, there are many problems in chemical processing
industries for which current techniques are inadequate. Many of the limitations of
current adaptive controllers arise in trying to control poorly modeled non-linear
systems (Albertos, Strietzel & Mart, 1997). For most of these processes extensive
data are available from past runs, but it is difficult to formulate precise models.
This is precisely where adaptive networks are expected to be useful (Ungar,
1995).

Bioreactors are difficult to model because of the complexity of the living
organisms in them and also they are difficult to control because one often can't
measure on-line the concentration of the chemicals being metabolized or
produced. Bioreactors can also have markedly different operating regimes,
depending on whether the bacteria is rapidly growing or producing product.
Model-based control of this reactors offers a dual problem: determining a realistic
process model and determining effective control laws in the face of inaccurate
process models and highly nonlinear processes.

Biochemical systems can be relatively simple in that they have few
variables, but still very difficult to control due to strong nonlinearities which are
difficult to model accurately. A prime example is the bioreactor. In its simplest
form, a bioreactor is simply a tank containing water and cells (e.g.. bacteria)
which consume nutrients ("substrate") and produce products (both desired and
undesired) and more cells. Bioreactors can be quite complex: cells are self-
regulatory mechanisms, and can adjust their growth rates and production of
different products radically depending on temperature and concentrations of waste
products. Systems with heating or cooling, multiple reactors or unsteady operation
greatly complicate the analysis. Mathematical models for these systems can be
expressed as differential (or difference) equations.

Now we propose mathematical models that integrate our method for
geometrical modelling of bacteria growth using the fractal dimension (Castillo &
Melin, 1994) with the method for modelling the dynamics of bacteria population
using differential equations (Melin & Castillo, 1998). The resulting mathematical
models describe bacteria growth in space and in time, because the use of the
fractal dimension enables us to classify bacteria by the geometry of the colonies
and the differential equations help us to understand the evolution in time of
bacteria population.

169

We will consider first the case of using one bacteria for food production.
The mathematical model in this case can be of the following form:

D -D D
AN/t =r(1-N/KN" - pN
dP/dt = BN (10.6)

where D is the fractal dimension, N is the bacteria population, P is quantity of
chemical product, r is the rate of bacteria growth, K is the environment capacity,
and P is a biochemical conversion factor.

We will consider now the case of two bacteria used for food production:

-D1 -D2 -D1 -D1
dN /dt=[r -(r, /K)N, - /K)3,N," N~ BN,

-D2 -Dl1 -D2 -D2
AN Jdt= [KON, /K8, N, N,

dp/dt=pN" +4N, (10.7)

where D, is the fractal dimension of bacteria 1, D, is the fractal dimension of
bacteria 2 and the rest of variables are as described in the last equation.

As we can see from equations (10.6) and (10.7) the idea of our method of
modelling is to use the fractal dimension D as a parameter in the differential
equations, so as to have a way of classifying for which type of bacteria the
equation corresponds. In this way, equation (10.6), for example, can represent the
model for food production using one bacteria (the one defined by the fractal
dimension D).

We have implemented a model-based neural controller using the
architecture of Figure 10.1. Two multilayer networks are used, one for the model
of the plant and the second for the controller. Each network at the moment has 2
layers of 5 hidden nodes; more nodes will, of course, give better accuracy. The
Neural Networks were implemented in the MATLAB programming language to
achieve a high level of efficiency on the numerical calculations needed for these
modules. The Fractal module was also implemented in the MATLAB
programming language for the same reason. In this way we combine the three
methodologies to obtain the best of the three worlds (Neural Networks, Fuzzy
Logic and Fractal Theory) using for each the appropriate implementation
language.

10.5 Fractal Identification of Bacteria

In this section we describe a method for the identification of microorganisms that
enables quality control for the food preduction process. This Quality Control is
done by monitoring the types of Bacteria present in samples of food extracted

170

from production lines. We use a method for the identification of microorganisms
developed by the authors (Castillo & Melin, 1994), based on the use of the fractal
dimension, to eliminate the need of applying a long sequence of microbiological
techniques to the samples of food.

This method uses the fractal dimension to make a unique classification of
the different types of microorganisms, because it is a known experimental fact that
the colonies of different types of bacteria have different geometrical forms. The
problem is then to finding a one to one map between the different types of bacteria
and their corresponding fractal dimension, in this way obtaining a unique method
of identification of microorganisms for the food industry. The first step in
obtaining this map is to find experimentally (in the lab) the different geometrical
forms for the bacteria. The second step is to calculate the corresponding fractal
dimensions for the different types of bacteria. This fractal dimension can be
calculated for a selected type of bacteria with several samples, to obtain as a result
a statistical estimation of the dimension and the corresponding error of the
estimation. In order to make an efficient use of this map between the different
types of bacteria and their corresponding estimated dimensions, we need to
implement it as a module in the computer program.

The method for the identification of microorganisms using the fractal
dimension can be stated mathematically in the following form: let Mm be a one to

one map between the sets I and Dm, where the set Im can be called set of
m
identifications of microorganisms and the set Dm can called set of fractal

dimensions. The set of identifications can be as follows:

[= {staphylococcus_ . streptococcus;, ..

pseudomona salmonellatyphi, .

aureuginosa’

and the set of fractal dimensions can be as follows:

D_={D_D,D_,D, ..}

sa’ pa’

where D) is the fractal dimension of the Staphylococcus aureus bacteria, DSf is the
s
fractal dimension of the Streptococcus fecalis bacteria, Dpa is the fractal dimension
of the Peseudomona aureuginosa, Dt is the fractal dimension of the Salmonella
S

typhi and so on. In all of the above the fractal dimension is given by:

D = [log(N)/log(1/1)] (10.8)

for an object of N parts each scaled down by a ratio, r. For an estimation of the
fractal dimension we can use the equation:

171

N@) =p Ur (10.9)

where N(r) = number of boxes contained in a piece of object and r = size of the
box. Counting the number of boxes for different sizes and performing a linear
logarithmic regression we can estimate the box dimension of an object with the
equation:

InN(r) = Inp -Dlnr (10.10)

The authors have implemented this method as a computer program to
obtain an automated method of identification of bacteria (Castillo & Melin, 1994).
In this case this method is used to verify the types of bacteria that we have at any
moment in our industrial microbiology process, in this way controlling the types
of bacteria in the process. This is important for quality control because in some
cases harmful bacteria can appear during the production.

10.6 Experimental Results

We describe in this section some of the experimental results that we have
achieved with the intelligent system for adaptive neuro-fuzzy-fractal control. In
Table 10.2 we show the training data and results obtained with the neural network
for identification (Ni). The neural network identification has the goal of
simulating the mathematical mode! of the non-linear dynamic plant.

Table 10.2.- Training data and results for Ni.

Training Learning Number Math Initial Final

method rate epochs Model Cond. error

BP 0.001 80,000 M2 P=0 10’
N,=26.5
N,=26.5

BP 0.000001 120,000 M2 P=0 10°
N =26.5
N,=26.5

BP 0.0001 40,000 M2 P=0 10
N,=26.5
N,=26.5

BP 0.0001 80,000 M2 P=0 107
N =26.5

N,=26.5

172

From Table 10.2, we can see that we achieved very good identification
results with network used for a learning rate of 0.0001 (In all cases, we denote the
model of one bacteria as M1, the model of two bacteria as M2 and the one of three
bacteria as M3). In Table 10.3 we show some of the numerical simulations of the
dynamical behavior of the typical biochemical reactors.

We can see from Table 10.3 that there is a wide range of possible
dynamical behaviors for biochemical reactors. This makes the problem of
controlling these reactors very difficult. The results obtained for the Neural
Network of Control (N¢) were similar than the ones achieved for identification.
The errors of control achieved are relatively small and can be considered very
good for this application.

Table 10.3.-Simulations of the dynamical behavior of biochemical
reactors

Temp. Math Initial Final Limiting
Model Cond. Product dynamical behavior
102 °F Ml N=97.5 70 % cycle of period 8
110°F M2 N =26.5 80 % cycle of period 16
N,=26.5
115°F M3 N =65 60 % fixed points: N =20
N,=6.5 N, =0 N =120
N,=10
118°F M3 N =60 65 % fixed points: N =0
N,=60 N, =190 N =70
N,=0.5

We show in Figure 10.2 simulation results of bacteria population used for
food production. We can see from this figure the complicated dynamics for the
case of two bacteria competing in the same environment, and at the same time
producing the chemical product necessary for food production.

We also show in Figure 10.3 simulation results for the case of two good
bacteria used for food production and one bad bacteria that is attacking the other
ones. We can see from this figure how one of the good bacteria is eliminated (the
population goes down to zero), which of course results in a decrease of the
resulting quantity of the food product. This is a case, which has to be avoided
because of the bad resulting effect of the bad bacteria. Intelligent control helps in
avoiding these types of scenarios for food production.

173

Figure 10.2 Simulation of the model for two bacteria used in food production.

Figure 10.3 Simulation of the model for two good bacteria and one bad bacteria.

174

10.7 Summary

We have developed a general method for adaptive model based control of non-
linear dynamic plants using Neural Networks, Fuzzy Logic and Fractal Theory.
We illustrated our method for adaptive control with the case of biochemical
reactors in the food industry. In this case, the mathematical models represent the
process of biochemical transformation between the microbial life and their
generation of the chemical product. The chemical product is the one responsible
for producing the food in the process. So, the goal here is to increase as much as
possible the quantity of the chemical produced by the bacteria in the biochemical
reactor. We used the new fuzzy inference system for multiple differential
equations to take into consideration the appropriate models for different
conditions in the biochemical reactor. We also described in this chapter an
adaptive controller based on the use of neural networks and mathematical models
for the plant (the reactor). The proposed adaptive controller performs rather well
considering the complexity of the domain being considered in this research work.
We can say that combining Neural Networks, Fuzzy Logic and Fractal Theory,
using the advantages that each of these methodologies has, can give good results
for this kind of application. Also, we believe that our neuro-fuzzy-fractal approach
is a good alternative for solving similar problems.

Chapter 11

Controlling Aircraft Dynamic Systems

We describe in this chapter a hybrid method for adaptive model-based control of
non-linear dynamic systems using Neural Networks, Fuzzy Logic and Fractal
Theory. The new neuro-fuzzy-fractal method combines Soft Computing (SC)
techniques with the concept of the fractal dimension for the domain of Non-Linear
Dynamic System Control. The new method for adaptive model-based control has
been implemented as a computer program to show that our neuro-fuzzy-fractal
approach is a good alternative for controlling non-linear dynamic systems. It is
well known that chaotic and unstable behavior may occur for non-linear systems.
Normally, we will need to control this type of behavior to avoid structural
problems with the system. We illustrate in this chapter our new methodology with
the case of controlling aircraft dynamic systems. For this case, we use
mathematical models for the simulation of aircraft dynamics during flight. The
goal of constructing these models is to capture the dynamics of the aircraft, so as
to have a way of controlling this dynamics to avoid dangerous behavior of the
aircraft dynamic system.

11.1 Introduction

We describe in this chapter a new method for adaptive control of non-linear
dynamic systems based on the use of Neural Networks, Fuzzy Logic and Fractal
Theory. The dynamics of real world systems are often highly non-linear and
difficult to control (Melin & Castillo, 1996). The problem of controlling them
using conventional controllers has been widely studied (Albertos, Strietzel &
Mart, 1997). Much of the complexity in controlling any process comes from the
complexity of the process being controlled. This complexity can be described in
several ways. Highly non-linear systems are difficult to control, particularly when
they have complex dynamics (such as instabilities to limit cycles and chaos).
Difficulties can often be presented by constraints, either on the control parameters
O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems

© Physica-Verlag Heidelberg 2001

176

or in the operating regime. Lack of exact knowledge of the process, of course,
makes control more difficult. Optimal control of many processes also requires
systems, which make use of predictions of future behavior. The mathematical
models for the dynamic systems are assumed to be non-linear differential
equations. The goal of having these models is to capture the dynamics of non-
linear processes, so as to have a way of controlling this dynamics for industrial
purpose (Melin & Castillo, 1997).

We need a mathematical model of the non-linear dynamic system to
understand the dynamics of the processes involved in the evolution of the system.
For a specific case, this may require testing several models before obtaining the
appropriate mathematical model for the process (Melin & Castillo, 1998). For real
world systems with complex dynamics, we may even need several models for
different sets of parameter values to represent all of the possible behaviors of the
system. A general mathematical model of a dynamic system can be expressed as
follows:

dx/dt = f,(x, D,) - Bf,(x, D, o) (11.1)
dp/dt = Bf.(x, D, o)

where x € R is a vector of state variables, p € R is a vector of outputs, f € R is
a constant measuring the efficiency of the conversion process, D € (0, 3) is the
fractal dimension of the process, and o € R is a selection parameter. The fractal
dimension is used to characterize the process, for example in the case of
biochemical reactors D represents the fractal dimension of the bacteria used for
production (Castillo & Melin, 1994).

For a complex dynamical system it may be necessary to consider a set of
mathematical models to represent adequately all of possible dynamic behaviors of
the system. In this case, we need a decision scheme to select the appropriate
model to use according to the linguistic value of a selection parameter a. We use a
new fuzzy inference system for differential equations to achieve fuzzy modelling
(Castillo & Melin, 1999). We have fuzzy rules of the form:

IFois A’ AND Dis B, THEN M, (112)
IFois A AND Dis B THEN M

where Al, s An are linguistic values for o, Bl, ey Bn are linguistic values for the
fractal dimension D, and M, ..., M_are mathematical models of the form given by
equation (11.1). The selection parameter o can be the temperature for biochemical
processes, because temperature changes cause the presence of new bacteria in this

case (Melin & Castillo, 1998). For the case of aircraft dynamic systems, o can be
related to environment parameters.

177

We combine adaptive model-based control using neural networks with
the method for modelling using fuzzy logic and fractal theory, to obtain a new
hybrid neuro-fuzzy-fractal method for control of non-linear dynamic systems.
This general method combines the advantages of neural networks (ability for
identification and control) with the advantages of fuzzy logic (ability for decision
and use of expert knowledge) to achieve the goal of robust adaptive control of
non-linear dynamic systems. We also use the fractal dimension to characterize the
processes in modelling these dynamical systems. We have developed intelligent
control systems using this new method for adaptive control for several
applications, to validate our new approach for control. We have obtained very
good results in controlling biochemical reactors and chemical reactors with the
hybrid approach for control (Melin & Castillo, 1998). In this chapter, we describe
the application of our new method to the case of controlling aircraft dynamic
systems.

11.2 Fuzzy Modelling of Dynamical Systems

For a real-world dynamical system it may be necessary to consider a set of
mathematical models to represent adequately all of the possible dynamic
behaviors of the system. In this case, we need a fuzzy decision procedure to select
the appropriate model to use according to the value of a selection parameter vector
o. To implement this decision procedure, we need a fuzzy inference system that
can use differential equations as consequents. For this purpose, we have
developed a new fuzzy inference system that can be considered as a generalization
of Sugeno's inference system (Sugeno & Kang, 1988), in which we are now using
differential equations as consequents of the fuzzy rules, instead of simple
polynomials like in the original Sugeno's method. Using this method, a fuzzy
model for a general dynamical system can be expressed as follows:

IF o is A AND o, is A, .. AND a_is A| THEN dy/dt=f (y, @)
IFa isA AND a is A .. AND a is A THEN dy/dt = £ (y, o)

(11.3)

IF o is A AND o, is A .. AND o is A THEN dy/dt=f(y, a)

where Aij is the linguistic value of o for rule i-th, o € R’ and is defined by a =

[cxl,..., am], andy e R’ is the output obtained by the numerical solution of the

corresponding differential equation. Of course, it is assumed that each differential
equation in (11.3) locally approximates the real dynamical system over a

neighborhood (or region) of R

178

The numerical solution of the differential equations can be achieved by
the standard Runge-Kutta type method:

Y, = RK(y,) +172(k, + k) (11.4)
k, =hf(y ,t)
k2 - hf(yn + k1’ tn+1)

where h is the step size of the method and RK can be considered as the Runge-
Kutta operator that transforms numerical solutions from time n to time n+1.
Numerical solutions are then aggregated by weighted average with weights
obtained by the minimum of the firing strengths of the inputs:

y=wytwyt.twy (11.5)

(1§

w, + w, + ... w
where:
y, = RK(f,(y, @) y, = RK(£,(y, 0)) ...y, = RK(f (y, @)

The new fuzzy inference system for differential equations can be
illustrated as in Figure 11.1, where a complex dynamical system is modeled by
using four different mathematical models (M,, M,, M; and M,). The decision
scheme can be expressed as a single-input fuzzy model as follows:

y A

M; M,

M,

|
! i
: . -
H | |

1 |
\ | . H
| | | |
! [1 |
| | H h
1 | | |
[1 H H
[\ H \
1 | H |
| | | |
| | . 1
| | f H
! ! 1 {

4>

0 small o, regular o, medium o; large oy o

Figure 11.1 Modelling a complex dynamical system with the new fuzzy system.

179

IF o is small THEN dy/dt=fl(y, o)
IF o is regular THEN dy/dt=f2(y, o) (11.6)
IF o is medium THEN dy/dt=f3(y, o)
IF o is large THEN dy/dt=f4(y, o)

where the output y is obtained by the numerical solution of the corresponding
differential equation.

11.3 Neural Networks for Control

Parametric Adaptive Control is the problem of controlling the output of a system
with a known structure but unknown parameters. These parameters can be
considered as the elements of a vector p. If p is known, the parameter vector 6 of a
controller can be chosen as 0* so that the plant together with the fixed controller
behaves like a reference model described by a difference (or differential) equation
with constant coefficients (Narendra & Annaswamy, 1989). If p is unknown, the
vector O(t) has to be adjusted on-line using all the available information
concerning the system.

Two distinct approaches to the adaptive control of an unknown system
are (i) direct control and (ii) indirect control. In direct control, the parameters of
the controller are directly adjusted to reduce some norm of the output error. In
indirect control, the parameters of the system are estimated as p(t) at any time
instant and the parameter vector 6(t) of the controller is chosen assuming that p(t)
represents the true value of the system parameter vector.

When indirect control is used to control a non-linear system, the plant is
parameterized using a mathematical model of the general form described in
Section 1 and the parameters of the model are updated using the identification
error. The controller parameters in turn are adjusted by backpropagating the error
(between the identified model and the reference model outputs) through the
identified model. A block diagram of such an adaptive system is shown in Figure
11.2.

The overall structure of the adaptive system proposed in this paper to
control a non-linear dynamical system is the same as shown in Figure 11.2 and is
independent of the specific model used to identify the system. The delayed values
of the system input and system output form the inputs to the neural network Nc
which generates the feedback control signal to the system. The parameters of the
Neural Network Ni are adjusted by backpropagating the identification error ¢;
while those of the Neural Network Nc are adjusted by backpropagating the control
error (between the output of the reference model and the identification model)
through the identification model.

180

The mathematical model for the non-linear dynamic system in the time
domain is generated by the method of modelling (described in Section 11.2) using
the real data that is measured on-line in the system. On the other hand, the fractal
module is used to characterize the process and this information is used to specify
the mathematical model in the time and space domain. This scheme enables the
dynamic changes of models according to the changes of on-line process
identification. Our new method for adaptive model-based control combining
Neural Networks, Fuzzy Logic and Fractal Theory differs from our previous
approach of considering only the use of neural networks and models (Melin &
Castillo, 1997).

> Fuzzy Rule Base > Neural Network

For Modelling For Identification
- - €
r €
.
+ +
u . .
> Neural Network > Aircraft Dynamic
For Control System

Figure 11.2. General Architecture for Adaptive Neuro-Fuzzy-Fractal Control.

11.4 Adaptive Control of Aircraft Systems

The mathematical models of aircraft systems can be represented as coupled non-
linear differential equations (Melin & Castillo, 1998). In this case, we can develop
a fuzzy rule base for modelling that enables the use of the appropriate
mathematical model according to the changing conditions of the aircraft and its
environment. For example, we can use the following model of an airplane when
wind velocity is relatively small:

*=D(p+m) (11.7)

where I, and I, are the inertia moments of the airplane with respect to axis x and vy,
respectively, | and m are physical constants specific to the airplane, and p, q are
the positions with respect to axis x and y, respectively. However, a more realistic
model of an airplane in three dimensional space, is as follows:

181

p’=Li(-gr+1)
q’ = Lx(pr + m) (11.8)
r’ =I3(-pq +n)

where now I; is the inertia moment of the airplane with respect to the z axis, n is a
physical constant specific to the airplane, and r is the position along the z axis.
Considering now wind disturbances in the model, we have the following equation:

p=h(qr+l)-ug
q’ = L(pr + m) (11.9)
r’ =I3(-pq + n)

where u, is the wind velocity. The magnitude of wind velocity is dependent on the
altitude of the airplane in the following form:

Ug = Uwind510 1 +1n(r/510) (11.10)
In(51)

where Uings10 iS the wind speed at 510 ft altitude (typical value = 20 ft/sec).

If we use the models of Equations (11.7)-(11.9) for describing aircraft
dynamics, we can formulate a set of rules that relate the models to the conditions
of the aircraft and its environment. Lets assume that M, is given by Equation
(11.7), M, is given by Equation (11.8), and M; is given by Equation (11.9). Now
using the wind velocity ug and inertia moment I; as parameters, we can establish
the fuzzy rule base for modelling as in Table 11.1.

In Table 11.1, we are assuming that the wind velocity u, can have only
two possible fuzzy values (small and large). This is sufficient to know if we have
to use the mathematical model that takes into account the effect of wind (M,) for
u,, large or if we don’t need to use it and simply the model M, is sufficient (for u,
small). Also, the inertia moment (I;) helps in deciding between models M, and M,
(or M;)

Table 11.1. Fuzzy rule base for modelling aircraft dynamic systems.

IF THEN

Wind Velocity Inertia Moment Fractal dimension Model
Small Small Low M,
Small Small Medium M,
Small Large Low M,
Small Large Medium M,
Large Small Medium M;
Large Large Medium M;

Large Large High M,

182

11.5 Experimental Results

To give an idea of the performance of our neuro-fuzzy-fractal approach for
adaptive control, we show below simulation results for aircraft dynamic systems.
First, we show in Figure 11.3 the fuzzy rule base for a prototype intelligent system
developed in the fuzzy logic toolbox of the MATLAB programming language. We
show in Figure 11.4 the non-linear surface for the problem of aircraft dynamics
using as input variables: fractal dimension and wind velocity.

Figure 11.3. Fuzzy rule base

Figure 11.4 Non-linear surface for aircraft dynamics

183

We show simulation results for an aircraft system obtained using our new
method for modelling dynamical systems. In Figure 11.5 and Figure 11.6 we show
results for an airplane with inertia moments: I, = 1, I, = 0.4, I; = 0.05 and the
constants are: | =m = n = 1. The initial conditions are: p(0) = 0, q(¢) = 0, r(0) = 0.

Figure 11.5 Simulation of position q

Figure 11.6 Simulation of position p

184

To give an idea of the performance of our neuro-fuzzy approach for
adaptive model-based control of aircraft dynamics, we show below (Figure 11.7)
simulation results obtained for the case of controlling the altitude of an airplane
for a flight of 6 hours. We assume that the airplane takes about one hour to
achieve the cruising altitude 30 000 ft, then cruises along for about three hours at
this altitude (with minor fluctuations), and finally descends for about two hours to
its final landing point. We will consider the desired trajectory as follows:

30t + sin2t for 0<t<1
rg <X 30 +2sinl0t for 1<t<4
90 - 15t for 4<t<6

Of course, a complete desired trajectory for the airplane would have to include the
positions for the airplane in the x and y directions (variables p, q in the models).
However, we think that here for illustration purposes is sufficient to show the
control of the altitude r for the airplane.

We used three-layer neural networks (with 10 hidden neurons) with the
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as the
activation functions for the neurons. We show in Figure 11.7 the function
approximation achieved by the neural network for control after 800 epochs of
training with a variable learning rate. The identification achieved by the neural
network (after 800 epochs) can be considered very good because the error has
been decreased to the order of 101, Still, we can obtain a better approximation by
using more hidden neurons or more layers. In any case, we can see clearly (from
Figure 11.7) how the neural network learns to control the aircraft, because it is
able to follow the arbitrary desired trajectory.

Figure 11.7 Function approximation of the neural network for
control of an airplane.

185

We have to mention here that these simulation experiments for the case
of a specific flight for a given airplane show very good results. We have also tried
our approach for control with other types of flights and airplanes with very good
results. Of course, experimentation with real aircraft dynamic systems is still
needed to really measure the power of the intelligent control approach. We expect
that the efficiency of our method will be reduced slightly by real disturbances
when applied to a real aircraft system. However, no major changes in hybrid
architecture for the intelligent control system are expected.

11.6 Summary

We have developed a general method for adaptive model based control of non-
linear dynamic systems using Neural Networks, Fuzzy Logic and Fractal Theory.
We illustrated our hybrid method for control with the case of controlling aircraft
dynamics. In this case, the mathematical models represent the aircraft dynamics
during flight. We also described in this chapter an intelligent adaptive controller
based on the use of neural networks, fuzzy logic and mathematical models for the
system. The proposed adaptive controller performs rather well considering the
complexity of the domain being considered in this research work. We have shown
that our method can be used to control chaotic and unstable behavior in aircraft
systems. Chaotic behavior has been associated with the “flutter” effect in real
airplanes, and for this reason is very important to avoid this kind of unstable
behavior. We can say that combining Neural Networks, Fuzzy Logic and Fractal
Theory, using the advantages that each of these methodologies has, can give good
results for this kind of application. Also, we believe that our neuro-fuzzy-fractal
approach is a good alternative for solving similar problems. Finally, we have to
mention here that genetic algorithms could be used to increase even more the
efficiency of the hybrid system for control. Genetic algorithms may be used to
optimize the membership functions needed in the fuzzy rule base for modelling, or
to optimize the architecture of the neural networks for control and identification.

Chapter 12

Controlling Electrochemical Processes

We describe in this chapter, different hybrid approaches for controlling dynamical
systems in manufacturing applications. The hybrid approaches combine soft
computing techniques and mathematical models to achieve the goal of controlling
the manufacturing process to follow a desired production plan. We have
developed several hybrid architectures that combine fuzzy logic, neural networks,
and genetic algorithms, to compare the performance of each of these combinations
and decide on the best one for our purpose. Electrochemical processes, like the
ones used in battery formation, are very complex and for this reason very difficult
to control. We have achieved very good results using fuzzy logic for control,
neural networks for modelling the process, and genetic algorithms for tuning the
hybrid intelligent system. For this reason, we consider that the neuro-fuzzy-
genetic approach is the most appropriate for this case.

12.1 Introduction

The dynamics of an electrochemical system is non-linear and for this reason can
be very difficult to predict in an accurate manner (Melin & Castillo, 1999). Also,
mathematical models of electrochemical processes are difficult to derive and they
are not very accurate. Traditionally, the models that have been used for
electrochemical processes are from Statistics, but these models do not
approximate the dynamic behavior of the processes with the accuracy required in
practice. We need adaptive control of the electrochemical process to achieve on-
line control of the production line. Of course, adaptive control is easier to achieve
if one uses a reference model of the process (Melin & Castillo, 1998). The
problem is how to obtain a good model for the process, considering that
mathematical models are very inefficient. The use of soft computing techniques
has been recognized as a different approach to modeling with good results, and for
this reason we decided to turn to these techniques for our problem (Castillo &

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

188

Melin, 1999). We have tested fuzzy logic and neural networks for modeling the
electrochemical processes and we have decided that the best choice for this case is
to use neural networks. The other part of the problem is how to control the non-
linear electrochemical process in the desired way to achieve the production with
the required quality. We tested different techniques and we arrived to the
conclusion that fuzzy logic (Zadeh, 1975) was the best choice for this case. We
developed a set of fuzzy rules with the expert knowledge for controlling the
manufacturing process. The membership functions for the linguistic variables in
the rules were tuned using a specific genetic algorithm. The genetic algorithm was
used for searching the parameter space of the membership functions using real
data from production lines. Our particular neuro-fuzzy-genetic approach has been
implemented as an intelligent system to control the formation of batteries in a real
plant with good results. We think that this hybrid approach can be used for
controlling similar processes, the only change that will be required is to adapt the
parameters and rules to the new application.

12.2 Problem Description

In a battery a process of conversion of chemical energy into electrical energy is
carried out. The chemical energy contained in the electrode and electrolyte is
converted into electrical power by means of electrochemical reactions. When
connecting the battery to a source of direct current a flow of electrons takes place
for the external circuit, and of ions inside the battery, giving an accumulation of
load in the battery. The quantity of electric current that is required to load the
battery is determined by an unalterable law of nature, that was postulated by
Michael Faraday, which is known as the Law of Faraday (Bode, Brodd &
Kordesch, 1977). Faraday found that the quantity of electric power required to
perform an electrochemical change in a metal is related to the relative weight of
the metal. In the specific case of lead this is considered to be 118 amperes hour for
pound of positive active material for cell. In practice, more energy is required to
counteract the losses due to the heat and to the generation of gas.

We show in Table 12.1 experimental data for a specific type of battery
with different sizes of the plates, and different number of plates for each cell. In
this table, we show the load time and the average current needed for the respective
load. In Table 12.1 we can observe that to form a battery we need to apply a
particular current intensity during a certain amount of time to achieve the required
loading for the battery. For example, from the first line of Table 12.1 we can see
that a battery with positive plate of 0.060" and negative plate of 0.050" requires
155 amperes in 1 hour, or 2.2 amperes during 72 hours.

The goal of the manufacturers of batteries is to reduce the time required
to load the battery. However, current intensity can't be increased arbitrarily
because of the physical characteristics of the specific battery. If the current is

189

increased too much, the temperature in the battery will go over a safe temperature
value eventually causing the destruction of the battery. The problem is then, of
finding out how much can we increase the current without causing the battery to
explode. Of course, we need to control the current during the process of battery
formation, and we want to do this in such a way as minimize the time of loading.

With the purpose of finding out, during the process of formation of the
battery, the appropriate values of current intensity without surpassing the limits of
temperature (Hehner & Orsino, 1985), we propose three systems for intelligent
control of the process. The first one uses only fuzzy logic for control and
statistical models of the process. The second one uses a neuro-fuzzy approach to
develop the fuzzy rules controlling the electrochemical process. The third
approach uses neural networks to model the process, fuzzy rules for control and
genetic algorithms to tune the membership functions. Of course, this last approach
gave us better results as we will show later in the chapter.

Table 12.1 Experimental data for different types of batteries

Type of Plate

Positive 0.060” Positive 0.070”

Negative 0.050” Negative 0.060”
Plate Total 72 hr | 96 hr | Total 72 hr [96 hr
cell A H. Amp. Amp. [A.H. Amp Amp
7 155 2.2 1.6 165 24 1.8
9 180 2.8 2.0 200 2.8 2.2
11 2230 3.2 24 245 3.4 2.4
13 260 3.6 2.6 295 4.0 3.0
15 300 4.2 3.0 345 4.8 3.6
17 400 5.6 4.2 415 5.8 4.4

12.3 Fuzzy Method for Control

In this approach we use a statistical model to represent the electrochemical
process and a fuzzy rule base for process control. The temperature in the battery
depends on the electrical current that circulates in it during its formation, this
means that to maintain the temperature below a specific threshold it is important
to control the intensity of the current. Therefore for this case the independent
variable is the average current I, and the dependent variable is the average
temperature T. A simple statistical model can stated as follows:
T=PBo+Pi1 (12.1)

where B, and B, are parameters to be estimated (by least squares) using real data
for this problem. In Table 12.2, we show experimental values for a battery of 6

190

Volts, which according to manufacturer’s specifications should be loaded by using
200 amperes hour.

Using the data from Table 12.2 we can obtain (by least squares method)
the values of 3, and B, (Sepulveda, Castillo, Montiel, & Lopez, 1998). The
equation is as follows:

T=288.03 +2.53041 (12.2)
with correlation value of only 0.57 which is understandable because of the
complexity of the data.

For the fuzzy controller we used as input variables, the temperature T and
the change of temperature dT/dt, and as output variable the current intensity that
should be applied to the battery. In Figure 12.1 we show the architecture of our
control system.

Table 12.2 Measured values of temperature and electrical current for a
battery of 200 amperes hour.

Hrs T 1 Hrs T 1
21:00 111 5.22 23:00 93 3.53
23:00 100 5.21 1:00 91 3.40
1:00 105 5.52 3:00 92 3.32
3:00 100 5.66 5:00 96 3.16
5:00 100 5.60 7:00 98 3.10
7:00 97 5.72 9:00 98 3.14
9:00 92 4.82 11:00 102 3.12
11:00 95 4.32 13:00 99 3.03
13:00 102 4.10 15:00 98 3.05
15:00 103 4.05 17:00 97 3.06
17:00 100 3.40 19:00 95 2.96
19:00 97 3.77 21:00 94 2.60
21:00 94 3.62 23:00 96 2.76
T
—» Fuzzy I Electro-chemical T
dT/dt controller e process
—>

Figure 12.1 Fuzzy Control of the process

191

The control method was implemented in the MATLAB programming
language. For each of the linguistic variables in the fuzzy system it was
considered convenient to use five linguistic terms. In Figure 12.2 we show the
fuzzy rule base implemented in the Fuzzy Logic Toolbox of MATLAB. We have
25 rules because we are using 5 linguistic terms for each variable. The
membership functions were tuned manually until they give the best values for the
problem. We discuss the results of this approach later in the chapter.

Figure 12.2 Fuzzy rule base for controlling the Process

12.4 Neuro-Fuzzy Method for Control

Since it is difficult to tune a particular inference system to model a complex
dynamical system (Castillo & Melin, 1998) it is convenient to use adaptive fuzzy
inference systems. Adaptive neuro-fuzzy inference systems (ANFIS) can be used
to adapt the membership functions and consequents of the rule base according to
historical data of the problem (Jang, Sun & Mizutani, 1997). The ANFIS
methodology has been applied to many real world problems with good results, and
we consider it as a good option to investigate for this application. In this case, we
can use the data from Table 12.2 and apply the ANFIS methodology to find the
best fuzzy system for our problem. We used the fuzzy logic toolbox of MATLAB
to apply the ANFIS methodology to our problem with 5 membership functions
and first order Sugeno functions in the consequents.

192

In Figure 12.3 we show the architecture of the intelligent control system.
The fuzzy rule base was implemented in the MATLAB programming language.
We show in Figure 12.4 the non-linear surface for control. We only used 5 rules
because there is only one input variable (temperature) and one output variable
(electrical current) with 5 linguistic variables each. We describe in detail the
results of this approach later in the chapter, but we can anticipate better results
that in the previous approach using only fuzzy logic.

Figure 12.3 ANFIS Control of the process

Figure 12.4 ANFIS surface for the process.

193

12.5 Neuro-Fuzzy-Genetic Method for Control

In this case, we consider using neural networks for modelling the electrochemical
process, fuzzy logic for controlling the electrical current in the process, and
genetic algorithms for adapting the membership functions of the fuzzy system
(Castillo & Melin, 1998). The general architecture of the intelligent control
system is shown in Figure 12.5. In this figure, we can see clearly the basic idea of
the hybrid approach, which is to use the advantages of each SC technique to
achieve efficient real time control.

A multilayer feedforward neural network was used for modelling the
electrochemical process. We used the data form Table 12.2 and the Levenberg-
Marquardt learning algorithm to train the neural network. We used a three layer
neural network with 15 nodes in the hidden layer. The results of training for 2000
epochs are shown in Figure 12.6. The sum of squared errors was reduced from
about 200 initially to 11.25 at the end, which is a very good approximation in this
case due to the complexity of the problem.

T Neural
————— P Network

T v

 — IC Electro- T

dT/dt Fuzzy > chemical
> controller process

T 1

I Genetic
dT/dt algorithm

Figure 12.5 Neuro-Fuzzy-Genetic Control

194

Figure 12.6 Final training for the neural network.

The fuzzy rule base was implemented in the Fuzzy Logic Toolbox of MATLAB.
We used 25 fuzzy rules because there were 5 linguistic terms for each input
variable. The initial membership functions were obtained from experts, but they
were improved using a specific genetic algorithm to arrive to the final
membership functions. The genetic algorithm had mutation, single crossover and
elitism. The mutation rate was 0.05, and the crossover rate was 0.1. These specific
values were found by experimentation with different values until the best ones
were selected. We show in Figure 12.7 the implementation of the fuzzy system for
intelligent control.

Figure 12.7 Non-linear surface for control,

195

12.6 Experimental Results for the Three Hybrid
Approaches

We compared the three hybrid intelligent control systems by simulating the
formation (loading) of a 6 Volts battery. This particular battery is manually loaded
(in the real manufacturing plant) by applying 2 amperes for 50 hours under
manufacturer’s specifications. We show in Table 12.3 the results of the three
hybrid methods for control.

Table 12.3 Comparison of the methods for control

Control Method Time for Loading
Manual Control 50 hours
Conventional Control 36 hours
Fuzzy Control 32 hours
Neuro-Fuzzy Control 30 hours
Neuro-Fuzzy-Genetic 25 hours

We can see from Table 12.3 that the fuzzy control method reduces 36% the time
required to form the battery compared with manual control, and 11.11% compared
with conventional PID control (Sepulveda, Castillo, Montiel, Ross, 1998). We can
also see how ANFIS helps in reducing even more this time of formation because
we are using neural networks for adapting the system. Now the reduction is of
40% with respect to manual control. Finally, we can notice that using a neuro-
fuzzy-genetic approach reduces even more the time of formation because the
genetic algorithm optimizes even more the fuzzy system for control and we are
also using the neural network as a model of the process. In this case, the reduction
is of 50 % with respect to manual control. These results are only for a specific
type of battery (the 6 Volts type of battery). For other types of batteries the results
are similar, with the best results for the neuro-fuzzy-genetic approach, but
reductions in time oscillate between 40% and 50%. From these results, we can see
very clearly that combining different soft computing techniques in the right way,
we can increase performance of an intelligent system for control. Of course, we
are not suggesting that we always need to combine techniques, in some cases this
may not be necessary. Also, in other type of applications the best hybrid
combination needed may not be the neuro-fuzzy-genetic one used here, other
combinations may be better for other situations.

196

12.7 Summary

We have described in this chapter, three different approaches for controlling a
complex electrochemical process. We have implemented these hybrid approaches
as intelligent systems for control in the MATLAB programming language. We
compared the results of these systems with conventional PID control, to measure
the efficiency of the hybrid intelligent control systems. We have shown that for
this type of application the use of several, soft computing, techniques can help in
reducing the time required to produce a battery in the manufacturing plant. Even
fuzzy control alone can reduce the formation time, but using neural networks and
genetic algorithms reduces even more the time for production. Of course, this
means that manufacturers can produce the batteries in roughly half the time
needed before. These are very good results for this application. A hardware
implementation is still needed to completely automate the control of the process.

Chapter 13

Controlling International Trade Dynamics

We describe in this chapter the application of our new method for adaptive model-
based control (using a neuro-fuzzy-genetic approach) to the problem of
controlling international trade dynamics. The problem of international trade
between two or more countries is a very complex one because of the non-
linearities involved in the mathematical models (Castillo and Melin, 1998). In this
chapter, we describe the methodology to develop an intelligent system for
controlling international trade that can be used by the government of a specific
country to maximize the profit from its international trade with other countries.
Our method for adaptive model-based control of non-linear dynamical systems
consists of using a fuzzy rule base for model selection, a genetic algorithm for
identification and a neural network for control (Melin and Castillo, 1998).
Accordingly, an intelligent control system based on our methodology has an
architecture with three main modules: model selection, identification and control.
For the case of international trade, we have developed the fuzzy rule base for
selecting the appropriate mathematical models for the problem, the genetic
algorithm for parameter identification, and the neural network for control.

13.1 Introduction

Mathematical modelling of international trade has been done traditionally with
linear statistical models from classical Econometric Theory (Gujarati, 1987).
However, more recently some researchers have found statistical evidence
(Anderson, Arrow, and Pines, 1988) that time series from financial and
economical variables show erratic fluctuations in time. It is well known that
simple linear models can not represent this erratic dynamic behavior that has been
found in several time series. Then, it becomes necessary to use non-linear
mathematical models that will enable us to represent this complex dynamic
behavior found for systems in economics or finance. Non-linear models from the

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001

198

theory of Dynamical Systems can show the behavior known as "chaos" for
different ranges of parameter values (Devaney, 1989) and for this reason they
become a good choice in modelling complex financial or economic problems. Our
experience on this matter (Castillo and Melin, 1995a, 1995b, 1996, 1997) has
shown that this line of research is very promising.

The mathematical models of international trade can be represented as
systems of coupled non-linear differential equations. The general mathematical
model for describing the international trade between two or more countries can be
written as follows:

Y =a(l-S +y(EX-IM) =23,
r;=B; (L, - M/P)

where: Yi is the national income, r is the interest rate, Mi is the nominal money
supply, P are the goods prices, L national gross investment, S, national savings,
EXi is the total exports, M, is the total imports and o, Bi are parameters to be

estimated. We use parameter y as a decision parameter in the fuzzy rule base for
model selection, because we consider that y measures the effect of international
trade in the economies. We can then formulate a fuzzy rule base for model
selection (based on the selection parameter y) that enables the use of the
appropriate specific mathematical model according to the changing conditions of
the economies involved.

We use a specific genetic algorithm to estimate the parameters of the
specific mathematical model of international trade being considered at the
moment by the fuzzy selection process. Parameter estimation for the models
(identification) is performed by using a genetic algorithm for the minimization of
an objective function measuring how well the specific model is fitting real data for
the problem (time series).

We use a feedforward multilayer neural network for control with the
Levenberg-Marquardt learning algorithm (Jang, Sun and Mizutani, 1997). We
have obtained simulation results for the case of three countries (USA, Canada and
Mexico) with international trade.

13.2 Mathematical Modelling of International
Trade

Mathematical modelling of problems in finance and economics has been always
very important in the applications, since it enables the simulation and forecasting
of the relevant financial and economical variables. Mathematical modelling, from
the theoretical point of view, contributes to the understanding of economical and

199

financial phenomena, since it enables the investigation of possible relationships
between different financial and economical variables. On the other hand,
mathematical modelling, from the practical point of view, can be used as a tool for
planning and decision making in the industry or in government.

Mathematical modelling of international trade has been done traditionally
with linear statistical models from classical Econometric Theory (Gujarati, 1987).
However, more recently some researchers have found statistical evidence
(Anderson, Arrow, and Pines, 1988) that time series from financial and
economical variables show erratic fluctuations in time. It is well known that
simple linear models can not represent this erratic dynamic behavior that has been
found in several time series. Then, it becomes necessary to use non-linear
mathematical models that will enable us to represent this complex dynamic
behavior found for systems in economics or finance. Non-linear models from the
theory of Dynamical Systems can show the behavior known as "chaos" for
different ranges of parameter values (Devaney, 1989, Lorenz, 1987) and for this
reason they become a good choice in modelling complex financial or economic
problems. Our experience on this matter has shown that this line of research is
very promising.

We will consider first modelling the dynamics of autonomous
economies, i.e.., study the oscillations of an autonomous economy. Then, we will
consider modelling the problem of International Trade as a perturbation of the
internal oscillations of an autonomous economy.

13.2.1 Oscillations in Autonomous Economies

Consider the Keynesian macroeconomic model (Lorenz, 1987) of a single
economy with Y as income, r as the interest rate, M as the (constant) nominal
money supply, and assume that the good prices, P, are fixed during the relevant
time interval. Suppose that gross investment, I, and savings, S, depend both on
income and the interest rate in the familiar way, i.e.,

I=I(Y,r) , Iy>0,Ir<0
S=S{Y,») , Sy>0,Sr<0

Income adjusts according to excess demand in the goods market, i.e.,
Y=a(l-S) o>0 (13.1)

The set of points {(Y,r)] I(Y,r) = S(Y,r)} constitutes the IS-curve of the model. Let
L(Y,r) denote the liquidity preference with Ly > 0, Lr <0 and assume that the
interest rate adjusts according to:

200

=B (L(Y.,)-Mp) ,Bp>0 (13.2)

with the set of points {(Y,r)| L(Y,r) = M/p} forming the LM-curve of the model.
As is well known, the equilibrium (Y*,r*) is asymptotically (locally) stable if trJ
< 0 and det J >0, where J is the Jacobian of the system and Tr=trace, det =
determinant. Also, it can be demonstrated by means of the Poncaré-Bendixon
Theorem that system (13.1) - (13.2) is able to generate oscillating behavior.

13.2.2 International Trade as a Perturbation
of Internal Oscillations

Consider three economies, each of which is described by equations like (13.1)-
(13.2) with possibly different numerical specifications of the functions, i.e.,

Y'i= o i (Ji(Yi,ri) - Si(Yi,ri))
i=1,2,3 (13.3)
r'i =P i (Li(Yi,ri) - Mi/pi)

Equation (13.3) constitutes a six-dimensional differential equation system, which
can also be written as a system of three independent two-dimensional limit cycle
oscillators.

By introducing international trade with linear functions
EXi=EXi(Y]j,YXk), i#j,k and Imi=Imi(Y1i), equation (13.3) becomes:

Y'i = ai (Ti(Yi,ri) - Si(Yi,ri) + EXi(Yj,Yk) - Imi(Yi)) (13.9)
r'i = Bi (Li(Yi,ri) - Mi/pi)

with i,j, k=1, 2, 3; j, k=1, and Mi as the money supplies reflecting balance of
payments equilibria. Equation (13.4) constitutes a system of three linearly coupled
limit cycle oscillators. The following theorem can then be demonstrated for
system (13.4).

Theorem 13.1: If all three autonomous economies are oscillating, the introduction
of international trade may imply the existence of a strange attractor (chaotic
behavior).

Of course, chaotic behavior may occur for certain ranges of parameter
values for the ai, Bi, Mi parameters. However, the emergence of strange attractors
is not exclusive in models like these: some variations in the parameters can lead to
the occurrence of other phenomena like quasi-periodic motion or phase-locking.
The main goal for a certain country is to achieve a stable behavior in its economy

201

while in this International Trade System, in this way controlling its future
behavior in this system. As a result of this, a specific country (like Mexico) can
optimize its profit while in a system of three countries (like with the NAFTA trade
agreement).

13.3 Fuzzy Logic for Model Selection

For a complex dynamical system it may be necessary to consider a set of
mathematical models to represent adequately all of the possible dynamic
behaviors of the system (Melin & Castillo, 1998). In this case, we need a decision
scheme to select the appropriate model to use according to the value of a selection
parameter a. In this section, we show a method for model selection based on
fuzzy logic and a new fuzzy inference system for differential equations.

We have designed a method, based on fuzzy logic techniques, for
mathematical model selection using as input the numerical value of a selection
parameter o.. We assume, in what follows, that parameter o is defined over a real-
valued interval:

Opg S0y . (13.5)

We also assume that we have n mathematical models considered appropriate for
the respective n subintervals, defined on [ag , o], as follows:

opSo<oy, 0] <o<OY e, op.1Sasa,. (13.6)

The corresponding n mathematical models for these subintervals can be expressed
as differential equations:

dy/dt=fi(y, a)
dyldt=fx(y, o)

(13.7)
dy/dt =f,(y, o).

Then, we can define a set of fuzzy if-then rules that basically relate the
subintervals to the mathematical models in a one-to-one fashion. The advantage of
using fuzzy rules (instead of conventional simple if-then rules) is that we can
manage the underlying uncertainty of this process of model selection. We show
the set of fuzzy rules for model selection in Table 13.1.

202

Table 13.1 Decision scheme for model selection

IF THEN
op <a<a M: dy/dt = f1(y, o)
a1 fa<a My: dy/dt = fH(y, o)
1 2 2 2
oy La<a Mj: dy/dt = f3(y, o)
2 3 3 3
Op-1 Sa<oy, Mp: dy/dt = f,(y, o)

To implement this decision scheme, we need a reasoning method that can
use differential equations as consequents. We have developed a new fuzzy
inference system that can be considered as a generalization of Sugeno's inference
system (Sugeno & Kang, 1988) in which we are now considering differential
equations as consequents of the fuzzy rules, instead of simple polynomials. Using
this method, the decision scheme of Table 13.1 can be expressed as a single-input
fuzzy model as follows:

(If o issmall then dy/dt= f;(y,)
If o isregular then dy/dt=f5(y,o)
If oismedium then dy/dt = f3(y,o)

\ If oislarge then dy/dt = £ (y,a)

where the output y is obtained by the numerical solution of the corresponding
differential equation. We have to note here that this new fuzzy inference system
reduces to the standard Sugeno system only when the differential equations have
closed-form solutions in the form of polynomials. However, the solutions to the
differential equations can be more complicated analytical functions or in most
cases the solutions are so complex that can only be approximated by numerical
methods. The advantage of this generalization of Sugeno's original method is that,
in general, we can represent more complicated dynamic behaviors and also
because of this fact, the number of rules needed to represent a given dynamical
system is smaller.

The reasoning procedure is very similar to the original Sugeno's
procedure, except that now in the output we obtain the crisp values of "y" by
solving numerically the corresponding differential equations. The numerical

203

solutions of the differential equations can be achieved by the standard Runge-
Kutta type method (Nakamura, 1997):

Yn+1 = RK(yp) = yp + 172(k; +k3)

k] = hf(Ynatn)
ko = hf(yn + ki, th41)

where h is the step size of the numerical method and RK can be considered as the
Runge-Kutta operator that transforms numerical solutions from time n to time
n+l.

The reasoning procedure for differential equations can also be used for
rules with multiple inputs (for the case of several selection parameters) by simply
considering the minimum of the firing strengths of each of the inputs. The fuzzy
inference system for differential equations can be illustrated as in Figure 13.1,
where a complex dynamical system is modeled by using four different
mathematical models (M, My, M3 and My).

Of course, for this decision scheme to work we need to define
membership functions for the different values of the parameter o corresponding to
the mathematical models. The membership functions for the models should give
us the degree of belief that a particular model is the correct one for a specific
value of the parameter o.

To apply this method of model selection, to a particular application, we
have to find the corresponding selection parameter o (or even several parameters)
to be used in the decision scheme proposed in Table 13.1. Then, a partition of the
definition interval for o has to be performed. After this, the one-to-one map
between the mathematical models and the subintervals (obtained from the
partition) is constructed. In this way, we can obtain the fuzzy rule base for model
selection for a particular application.

y4

M 1 M2 i M3

' >
0 small o; regular o, medium o3 large oy o

[}
[}
|
|
|
|
[}
[}
[}
[}
[}
[}
|
[}
[}
I
™ T
|

M4§

Figure 13.1 Modelling a complex dynamical system with the fuzzy
inference system.

204

13.4 Adaptive Model-Based Control of
International Trade

We describe in this section the application of our new method for adaptive model-
based control to the problem of controlling international trade dynamics. The
problem of international trade between three or more countries is a very complex
one because of the couplings and non-linearities involved in the mathematical
models (Castillo & Melin, 1998). In this section, we describe the methodology to
develop an intelligent system for controlling international trade that can be used
by the government of a specific country to maximize the profit from its
international trade with other countries.

13.4.1 Adaptive model-based control of international
trade

The method for adaptive model-based control of non-linear dynamical systems
consists of using a fuzzy rule base for model selection, a genetic algorithm for
identification, and a neural network for control. For the case of international trade,
we need to define each of the method's components, mentioned above, to achieve
the goal of controlling the dynamical system of three (or more) countries with
trade between them.

The mathematical models of international trade can be represented as
systems of coupled non-linear differential equations (as described in Section
13.2). In this case, we can establish a fuzzy rule base for model selection that
enables the use of the appropriate mathematical model according to the changing
conditions of the economies involved. For example, if we use the general
mathematical models of Equations (13.3) and (13.4) for describing the
international trade dynamics between one, two or three countries, we can have the
following specific models. For one country with no international trade we have:

M;: y'1= oy -Sy) (13.8)
r'y=By(Ly - My/py)

For two countries with no international trade:

M,: v'i= oy - Si) i=1,2 (13.9)
r'i = Bi(L; - Mi/pp)

For two countries with international trade:

205
Mj: y'i=0ci(Ii- Si+Y(EXi'IMi) 1i=1,2 (13.10)
r'i = Bi(Li - Mi/py)

For three countries with no international trade:

Mg yi=ay(- S)) i=123 (13.11)
r'; = Bi(L; - My/py)

And for three countries with international trade:

Ms: yi=o4(;-S;+y EX;-IM;) i=1,2,3 (13.12)
r'; = Bi(L; - My/py)

where I;, S, L;, M, EXj, IM;, and pj are defined as in Section 2 of this chapter.

Now, using y as a selection parameter we can establish the fuzzy rule base for
model selection as in Table 13.2.

Table 13.2 Fuzzy rule base for model selection of international trade

IF THEN
Y Number of countries Mathematical Model
one M,
small two M,
large two M3
small three My
large three M;

In Table 13.2 we are assuming that the selection parameter y can have
only two possible fuzzy values (small and large). The reasoning behind this is that
when v is small, we can use the model with no international trade and when y is
large we can use the model with international trade. We have to note here that the
fuzzy rule base has to be developed according to the particular case that is being
considered.

The integration of the fuzzy rule base for model selection with the
genetic algorithm for identification, and the neural network for control, results in
an intelligent system for adaptive model-based control of international trade. This
intelligent system combines the advantages of neural networks (ability for

206

identification and control) with the advantages of fuzzy logic (use of expert
knowledge), and the advantages of genetic algorithms (for optimization) to
achieve the goal of robust adaptive control of international trade. The general
architecture of the intelligent control system for international trade is similar to the
one shown in (Melin and Castillo, 1998), except that now instead of the plant we
have a non-linear dynamical system in economics. An intelligent system with this
architecture is capable of adapting to changing conditions in the economies of the
countries, because it can change the control actions according to the data available
and also can change the reference mathematical model if there is a large enough
change in the parameter y. Of course, for this method to work we need to estimate
parameter y from time series of the real values for the variables in the
mathematical models.

13.5 Simulation Results for Control of
International Trade

To give an idea of the performance of our neuro-fuzzy-genetic approach for
adaptive model-based control of international trade dynamics, we show below
simulation results obtained for the case of three countries (USA, Canada and
Mexico) with international trade. We will consider the problem of controlling the
economy of the less developed country (Mexico) because it is the most
challenging from the control point of view. For the case of Mexico, one problem
is that of reducing interest rates in the short term so we will consider as a desired
trajectory for this economy:

rq = 0.25e°0-1t + 0.02sint + 0.05

with initial values of :
r(0)=0.30 r(0)=0.

In this desired trajectory for the economy, we are assuming that the goal interest
rate is 5% and that we need to decrease the initial rate of 30% to the final interest
rate of 5%. We also consider that the economy has natural cycles and because of
this fact we use the "sine' function.

We use three-layer neural networks (with 10 hidden neurons) with the
backpropagation algorithm and hyperbolic tangent sigmoidal functions as the
activation functions for the neurons. We show in Figure 13.2 the initial function
approximation achieved with the neural networks for control.

207

Figure 13.2 Initial function approximation of the neural network for control.

We show in Figure 13.3 the function approximation achieved with the
neural network for control after 59 epochs of training with a variable learning rate.
The identification achieved by the neural network (after 59 epochs) can be

considered very good because the error has been decreased to the order of 1074
Still, we can obtain a better approximation by using more hidden neurons or more
layers. In any case, we can see clearly how the neural network learns to control
the economic dynamic system, because it is able to follow the arbitrary desired
trajectory.

Figure 13.3 Function approximation of the neural network for control
after 59 epochs.

208

We have to mention here that these simulation experiments for the case
of three specific countries (USA, Canada and Mexico) show very good results.
We have also tried our approach for control with other dynamic systems in
economics with encouraging results. We recommend. to the interested reader to
use our methodology for this type of economic systems or other similar systems to
explore on his (or her) own the interesting problem of controlling complex non-
linear dynamical systems.

13.6 Summary

We described in this chapter a hybrid neuro-fuzzy-genetic approach for
controlling international trade dynamics. The integration of the fuzzy rule base for
model selection, with the genetic algorithm for identification and the neural
network for control, results in an intelligent system for adaptive model-based
control of international trade. This intelligent system was written in the MATLAB
programming language (Nakamura, 1997) and combines the advantages of fuzzy
logic (use of expert knowledge), the advantages of genetic algorithms (function
optimization) and the advantages of neural networks (learning and adaptability) to
achieve the goal of robust adaptive control of international trade. An intelligent
system with this neuro-fuzzy-genetic approach is capable of adapting to changing
conditions in the economies of the countries, because it can change the control
actions according to the data available and also can change the reference
mathematical model if there are large enough variations in the economies. We
think that this hybrid neuro-fuzzy-genetic approach can be used for similar
problems in economics and finance. Of course, in this case we will need to change
the variables involved in the process of control.

References

Abraham, E. & Firth, W. J. (1984). "Multiparameter Universal Route to Chaos
in a Fabry-Perot Resonator", Optical Bistability, Vol. 2, pp. 119-126.
Albertos, P., Strietzel, R. & Mart, N. (1997). "Control Engineering Solutions: A

Practical Approach”, IEEE Computer Society Press.

Badiru, A.B. (1992). "Expert Systems Applications in Engineering and
Manufacturing", Prentice-Hall.

Barto, A. G., Sutton, R. S. & Anderson, C. (1983). "Neuronlike Elements that
can Solve Difficult Learning Control Problems", IEEE Transactions on
Systems, Man & Cybernetics, Vol. 13, pp. 835-846.

Bernard, J. A. (1988). "Use of Rule-Based System for Process Control”, IEEE
Control Systems Magazine, Vol. 8, pp. 3-13.

Bezdek, J.C. (1981). "Pattern Recognition with Fuzzy Objective Function
Algorithms", Plenum Press, New York.

Bode, H., Brodd, R.J. and Kordesch, K.V. (1977). Lead-Acid Batteries, John
Wiley & Sons.

Bratko, I. (1990). "Prolog Programming for Artificial Intelligence", Addison
Wesley.

Brogan, W. (1991). "Modern Control Theory", Prentice-Hall.

Bryson, A. E. & Ho Y.-C. (1969). "Applied Optimal Control", Blaisdell Press.

Castillo, 0. & Melin, P. (1994a). "Developing a New Method for the
Identification of Microorganisms for the Food Industry using the Fractal
Dimension, Journal of Fractals, World Scientific, Vol. 2, No. 3, pp. 457-
460.

Castillo, O. & Melin, P. (1994b). "An Intelligent System for Discovering
Mathematical Models for Financial Time Series Prediction", Proceedings
of TENCON'94, IEEE Computer Society Press, Vol. 1, pp. 217-221.

210

Castillo, O. & Melin, P. (1995a). "An Intelligent System for Financial Time
Series Prediction Combining Dynamical Systems Theory, Fractal Theory
and Statistical Methods", Proceedings of CIFER'95, IEEE Computer
Society Press, pp.151-155.

Castillo, O. & Melin, P. (1995b). "Intelligent Model Discovery for Financial
Time Series Prediction using Non-Linear Dynamical Systems and
Statistical Methods", Proceedings of the Third International Conference on
Artificial Intelligence Applications on Wall Street", Software Engineering
Press, pp. 80-89.

Castillo, O. & Melin, P. (1995c). "An Intelligent System for the Simulation of
Non-Linear Dynamical Economical Systems", Journal of Mathematical
Modelling and Simulation in Systems Analysis, Edited by Achim Sydow,
Gordon and Breach Publishers, Vol. 18-19, pp. 767-770.

Castillo, O. & Melin, P. (1996a). "Automated Mathematical Modelling for
Financial Time Series Prediction using Fuzzy Logic, Dynamical Systems
and Fractal Theory", Proceedings of CIFER'96, IEEE Computer Society
Press, pp. 120-126.

Castillo, 0. & Melin, P. (1996b). "Automated Mathematical Modelling and
Simulation of Dynamical Engineering Systems using Artificial Intelligence
Techniques", Proceedings CESA'96, Gerf EC Lille, pp. 682-687.

Castillo, 0. & Melin, P. (1996¢). "An Intelligent System for Financial Time
Series Prediction using Fuzzy Logic Techniques and Fractal Theory",
Proceedings ITHURS'96, Vol. 1, AMSE Press, pp. 423-430.

Castillo, O. & Melin, P. (1997a). "Mathematical Modelling and Simulation of
Robotic Dynamic Systems using an Intelligent Tutoring System based on
Fuzzy Logic and Fractal Theory", Proceedings of AIENG'97, Wessex
Institute of Technology, pp. 97-100.

Castillo, O. & Melin, P. (1997b). "Mathematical Modelling and Simulation of
Robotic Dynamic Systems using Fuzzy Logic Techniques and Fractal
Theory", Proceedings of IMACS World Congress'97, Wissenschaft &
Technik Verlag, Vol. 5, pp.343-348.

Castillo, O. & Melin, P. (1998a). "A New Fuzzy-Fractal-Genetic Method for
Automated Mathematical Modelling and Simulation of Robotic Dynamic
Systems", Proceedings of World Congress on Computational Intelligence
FUZZ'98, IEEE Computer Society Press, Vol. 2, pp. 1182-1187.

Castillo, O. & Melin, P. (1998b). "Modelling, Simulation and Behavior
Identification of Non-Linear Dynamical Systems with a New Fuzzy-
Fractal-Genetic Approach", Proceedings of IPMU'98, EDK Publishers, Vol.
1, pp. 467-474.

Castillo, O. & Melin, P. (1998c). "Modelling, Simulation and Forecasting of
International Trade Dynamics using a New Fuzzy-Genetic Approach”,
Proceedings of CCM'98, AMSE Press, pp. 21-24.

211

Castillo, O. and Melin, P. (1999). “A New Fuzzy Inference System for
Reasoning with Multiple Differential Equations for Modelling Complex
Dynamical Systems”, CIMCA’99, 10S Press, Vienna Austria, pp.224-229.

Castillo, O. and Melin, P. (1999). “Intelligent Model-Based Adaptive Control of
Robotic Dynamic Systems with a New Neuro-Fuzzy-Genetic Approach”,
Proceedings of Robotics and Applications, Acta Press, Santa Barbara,
USA. pp. 270-275.

Castillo, O. & Melin, P. (1999). "A General Method for Automated Simulation
of Non-Linear Dynamical Systems using a New Fuzzy-Fractal-Genetic
Approach”, Proceedings CEC’99, IEEE Press, Vol. 3, pp. 2333-2340.

Castillo, O. & Melin, P. (1999). "Automated Mathematical Modelling,
Simulation and Behavior Identification of Robotic Dynamic Systems using
a new Fuzzy-Fractal-Genetic Approach”, Journal of Robotics and
Autonomous Systems, Vol. 28, No. 1, pp. 19-30.

Chalmers, D. (1990). " The evolution of learning: an experiment in genetic
connectionism". Proceedings of the 1990 Connectionist Models Summer
School. Morgan Kaufmann.

Chen, V. C. & Pao, Y. H. (1989). "Learning Control with Neural Networks",
Proceedings of the International Conference on Robotics and Automation,
pp. 1448-1453.

Chiu, S., Chand, S., Moore, D. & Chaudhary, A. (1991). "Fuzzy Logic for
Control of Roll and Moment for a Flexible Wing Aircraft", IEEE Control
Systems Magazine, Vol. 11, pp. 42-48.

Chua, L.O. (1993). "Global unfolding of Chua's circuit", IEICE Transactions
Fundam., pp. 704-734.

Cybenko, G. (1989). "Approximation by Superpositions of a Sigmoidal
Function", Mathematics of Control, Signals and Systems, Vol. 2, pp. 303-
314.

Davidor, Y. (1991). "Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization", World Scientific Publishing.

Devaney, R. (1989). "An Introduction to Chaotic Dynamical Systems", Addison
Wesley Publishing.

Fahlman, S. E. & Lebiere C. (1990). "The Cascade-Correlation Learning
Architecture”, Advances in Neural Information Processing Systems,
Morgan Kaufmann.

Fu, K.S., Gonzalez, R.C. & Lee, C.S.G (1987). "Robotics: Control, Sensing,
Vision and Intelligence", McGraw-Hill.

Geman, S. & Geman, D. (1984). "Stochastic Relaxation, Gibbs Distribution and
the Bayesian Restoration in Images", IEEE Transactions of Pattern
Analysis and Machine Intelligence, Vol. 6, pp. 721-741.

Goldberg, D.E. (1989). "Genetic Algorithms in Search, Optimization and
Machine Learning", Addison Wesley Publishing.

212

Grebogi, C., Ott, E. & Yorke, J. A. (1987). "Chaos, Strange Attractors, and
Fractal Basin Boundaries in Nonlinear Dynamics", Science, Vol. 238, pp.
632-637.

Gujarati, D. (1987). "Basic Econometrics", McGraw-Hill Publishing.

Gupta, M. M. & Sinha, N. K. (1996). "Intelligent Control Systems: Theory and
Applications", IEEE Computer Society Press.

Hanselman D. & Littlefield B. (1995). "The Student Edition of MATLAB
Version 4 : User's Guide", The Math-Works, Inc. Prentice-Hall.

Hehner, N. and Orsino, J.A. (1985). Storage Battery Manufacturing Manual 111,
Independent Battery Manufacturers Association.

Holland, J. H. (1975). "Adaptation in Natural and Artificial Systems", University
of Michigan Press.

Hunt, K. J., Sbarbaro, D., Zbikowski R. & Gawthrop, P. J. (1992). "Neural
Networks for Control Systems-A survey", Automatica, Vol. 28 No. 6, pp.
1083-1112.

Ingber, L. & Rosen, B.E. (1992). "Genetic Algorithms and Very Fast Simulated
Reannealing", Journal of Mathematical and Computer Modelling, Vol. 16,
pp- 87-100.

Jamshidi, M. (1997). "Large-Scale Systems: Modelling, Control and Fuzzy
Logic", Prentice-Hall

Jang, J.-S. R. (1993). "ANFIS: Adaptive-Network-Based Fuzzy Inference
Systems", IEEE Transactions on Systems, Man and Cybernetics", Vol. 23,
pp. 665-685.

Jang, J.-S. R. & Gulley, N. (1997). "MATLAB: Fuzzy Logic Toolbox, User's
Guide", The Math-Works, Inc.Publisher.

Jang, J.-S. R., Sun, C.-T. & Mizutani, E. (1997). "Neurofuzzy and Soft
Computing: A Computational Approach to Learning and Machine
Intelligence", Prentice-Hall.

Kandel, A. (1992). "Fuzzy Expert Systems", CRC Press Inc.

Kapitaniak, T. (1996). "Controlling Chaos: Theoretical and Practical Methods in
Non-Linear Dynamics", Academic Press.

Karnik, N.N & Mendel, J.M. (1998). “An Introduction to Type-2 Fuzzy Logic
Systems”, Technical Report, University of Southern California.

Kasai, Y. & Morimoto, Y (1988). "Electronically Controlled Continuously
Variable Transmission", Proceedings of International Congress
Transportation Electronics.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). "Optimization by
Simulated Annealing", Science, Vol. 220, pp. 671-680.

Kitano, H. (1990). "Designing neural networks using genetic algorithms with
graph generation system", Journal of Complex Systems, Vol. 4, pp. 461-
476.

Kocarev, L. & Kapitaniak, T. (1995). "On an equivalence of chaotic attractors",
Journal of Physics A., Vol. 28, pp. 249-254.

213

Korn, G. A. (1995). "Neural Networks and Fuzzy Logic Control on Personal
Computers and Workstations", MIT Press.

Kosko, B. (1992). "Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence", Prentice-Hall.

Kosko, B. (1997). "Fuzzy Engineering", Prentice-Hall.

Lilly, K. W. (1993). "Efficient Dynamic Simulation of Robotic Mechanisms",
Kluwer Academic Press.

Lim, S.Y., Hu, J. & Dawson, D.M. (1996). "An Output Feedback Controller for
Trajectory Tracking of RLED Robots using Observed Backstepping
Approach", Journal of Robotics and Automation, pp. 149-160.

Lippmann, R. P. (1987). "An Introduction to Computing with Neural Networks",
IEEE Acoustics, Speech, and Signal Processing Magazine, Vol. 4, pp. 4-22.

Madan, R. (1993). "Chua's Circuit: Paradigm for Chaos", World Scientific,
Singapore.

Mamdani, E. H. & Assilian, S. (1975). "An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller", International Journal of Man-Machine
Studies, Vol. 7, pp. 1-13.

Mandelbrot, B. (1987). "The Fractal Geometry of Nature", W. H. Freeman and

Company.

Man, K. F.,, Tang, K.S. & Kwong, S. (1999). "Genetic Algorithms". Springer-
Verlag.

Masters, T. (1993). "Practical Neural Network recipe in C++", Academic Press,
Inc.

Melin, P. & Castillo, O. (1996). "Modelling and Simulation for Bacteria Growth
Control in the Food Industry using Artificial Intelligence", Proceedings of
CESA'96, Gerf EC Lille, pp. 676-681.

Melin, P. & Castillo, O. (1997a). " An Adaptive Model-Based Neural Network
Controller for Biochemical Reactors in the Food Industry"”, Proceedings of
Control'97, Acta Press, pp.147-150.

Melin, P. & Castillo, O. (1997b). "Mathematical Modelling and Simulation of
Bacteria Growth in the Time and Space Domains using Artificial
Intelligence, Dynamical Systems and Fractal Theory", Proceedings of
AMS'97, Acta Press, pp. 484-487.

Melin, P. & Castillo, O. (1997c). "An Adaptive Neural Network System for
Bacteria Growth Control in the Food Industry using Mathematical
Modelling and Simulation", Proceedings of IMACS World Congress'97,
Wissenschaft & Technik Verlag, Vol 4 pp. 203-208.

Melin, P. & Castillo, O. (1997d). "Automated Mathematical Modelling and
Simulation for Bacteria Growth Control in the Food Industry using
Artificial Intelligence and Fractal Theory", Journal of Systems Analysis,
Modelling and Simulation, Edited by Achim Sydow, Gordon and Breach
Publishers, Vol. 29, pp. 189-206.

214

Melin, P. & Castillo, O. (1998a). "An Adaptive Model-Based Neuro-Fuzzy-
Fractal Controller for Biochemical Reactors in the Food Industry",
Proceedings of IJCNN'98, IEEE Computer Society Press, Vol. 1, pp.106-
111.

Melin, P. & Castillo, O. (1998b). "A New Method for Adaptive Model-Based
Neuro-Fuzzy-Fractal Control of Non-Linear Dynamic Plants: The Case of
Biochemical Reactors", Proceedings of IPMU'98, EDK Publishers, Vol. 1,
pp- 475-482.

Melin, P. and Castillo, O. (1999). A New Method for Adaptive Model-Based
Neuro-Fuzzy-Fractal Control of Non-Linear Dynamical Systems,
Proceedings of the International Conference of Non-Linear Problems in
Aviation and Aerospace’98, European Conference Publications, Daytona
Beach, USA, pp. 499-506

Melin, P. and Castillo, O. (1999). “A New Neuro-Fuzzy-Fractal Approach for
Adaptive Model-Based Control of Non-Linear Dynamic Plants”, »,
Proceedings of Intelligent Systems and Control, Acta Press, Santa Barbara,
USA. pp. 397-401.

Miller, G., Todd,P. & Hedge, S. (1989). "Designing Neural Networks using
Genetic Algorithms", Proceedings of the Third International Conference on
Genetic Algorithms", Morgan Kauffmann.

Miller, W. T., Sutton, R. S. & Werbos P. J. (1995). "Neural Networks for
Control", MIT Press.

Minsky, M. & Papert, S. (1969). "Preceptrons", MIT Press.

Mitchell, M. (1996). "An Introduction to Genetic Algorithms", MIT Press.

Montana, G. & Davis, L. (1989). "Training feedforward networks using genetic
algorithms", Proceedings of the International Joint Conference on Artificial
Intelligence, Morgan Kauffmann.

Morari, M. & Zafiriou, E. (1989). "Robust Process Control", Prentice-Hall.

Moulet, M. (1992). "A Symbolic Algorithm for Computing Coefficients
Accuracy in Regression", Proceedings of the International Workshop on
Machine Learning, pp. 332-337.

Nakamura, S. (1997). "Numerical Analysis and Graphic Visualization with
MATLAB", Prentice Hall.

Narendra, K. S. & Annaswamy, A. M. (1989). "Stable Adaptive Systems",
Prentice Hall Publishing Company.

Ng, G. W. (1997). "Application of Neural Networks to Adaptive Control of Non-
Linear Systems", John Wiley & Sons.

Ogorzalek, M. J. (1993). "Taming Chaos-Part II: Control. IEEE Transactions on
Circuit Systems, Vol. 40, pp. 700-721.

Omidvar, O. & Elliot, D. L. (1997). "Neural Systems for Control", Academic
Press.

Ott, E., Grebogi, C. & Yorke, J.A. (1990). "Controlling Chaos". Physical
Review Letters, Vol. 64, pp. 1196-1199.

215

Otten, R. H. J. M. & van Ginneken, L. P. (1989). "The Annealing Algorithm",
Kluwer Academic.

Pelczar, M. J. & Reid, R. D. (1982). "Microbiology", McGraw Hill.

Parker D. B. (1982). "Learning Logic", Invention Report S81-64, File 1, Office
of Technology Licencing,.

Pham, D. T. & Xing, L. (1995). "Neural Networks for Identification, Prediction
and Control", Springer-Verlag.

Pomerleau, D. A. (1991). "Efficient Training of Artificial Neural Networks for
Autonomous Navigation", Journal of Neural Computation, Vol. 3, pp. 88-
97.

Psaltis, D., Sideris, A. & Yamamura, A. (1988). "A Multilayered Neural
Network Controller", IEEE Control Systems Magazine, Vol. 8, pp.17-21.

Pyragas, K. (1992). "Continuous control of chaos by self-controlling feedback",
Physical Letters, pp. 421-428.

Rao, R. B. & Lu, S. (1993). "A Knowledge-Based Equation Discovery System
for Engineering Domains", IEEE Expert, pp. 37-42.

Rasband, S.N. (1990). "Chaotic Dynamics of Non-Linear Systems", Wiley
Interscience.

Rich, E. & Knight, K. (1991). "Artificial Intelligence", McGraw-Hill.

Rosenblatt, F. (1962). "Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms", Spartan.

Ruelle, D. (1990). "Deterministic Chaos: The Science and the Fiction", Proc. Roy.
Soc. London, Vol. 427, pp. 241-248.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). "Learning Internal
Representations by Error Propagation”, Parallel Distributed Processing:
Explorations in the Microestructure of Cognition, Vol. 1, Chapter 8, pp.
318-362, MIT Press.

Runkler, T. A. & Glesner, M. (1994). "Defuzzification and Ranking in the
Context of Membership Value Semantics, Rule Modality, and
Measurement Theory", Proceedings of European Congress on Fuzzy and
Intelligent Technologies.

Russell, S. & Norvig, P. (1995). "Artificial Intelligence: A Modern Approach",
Prentice-Hall.

Sackinger, E., Boser, B. E., Bromley, J., LeCun, Y. & Jackel, L. D. (1992).
"Application of the Anna Neural Network Chip to High-Speed Character
Recognition", IEEE Transactions on Neural Networks, Vol. 3, pp. 498-505.

Samad, T. & Foslien, W. (1994). "Neural Networks as Generic Nonlinear
Controllers", Proceedings of the World Congress on Neural Networks, pp.
191-194.

Sejnowski, T. J. & Rosenberg, C. R. (1987). "Parallel Networks that Learn to
Pronounce English Text", Journal of Complex Systems, Vol. 1, pp. 145-
168.

216

Sepulveda, R., Castillo, O., Montiel, O. and Lopez, M. (1998). “Analysis of
Fuzzy Control System for the Process of Forming Batteries”, Proceedings
of ISRA’98, Coahuila, Mexico, pp. 203-210.

Sleeman, D. & Edwards, P. (1992). "Proceedings of the International Workshop
on Machine Learning", Morgan Kauffman Publishers.

Soucek, B. (1991). "Neural and Intelligent Systems Integration: Fifth and Sixth
Generation Integrated Reasoning Information Systems", John Wiley and
Sons.

Staib, W. E. (1993). "The Intelligent Arc Furance: Neural Networks
Revolutionize Steelmaking", Proceedings of the World Congress on Neural
Networks, pp. 466-469.

Staib, W. E. & Staib, R. B. (1992). "The Intelligent Arc Furnace Controller: A
Neural Network Electrode Position Optimization System for the Electric
Arc Furnace", Proceedings of the International Conference on Neural
Networks, Vol. 3, pp. 1-9.

Su, H. T. & McAvoy, T. J. (1993). "Neural Model Predictive Models of
Nonlinear Chemical Processes", Proceedings of the 8th International
Symposium on Intelligent Control, pp. 358-363.

Su, H. T., McAvoy, T. J. & Werbos, P. J. (1992). "Long-term Predictions of
Chemical Processes using Recurrent Neural Networks: A Parallel Training
Approach”, Industrial & Engineering Chemistry Research, Vol. 31, pp.
1338-1352.

Sueda, N. & Iwamasa, M. (1995). "A Pilot System for Plant Control using
Model-Based Reasoning", IEEE Expert, Vol. 10, No. 4, pp.24-31.

Sugeno, M. & Kang, G. T. (1988). "Structure Identification of Fuzzy Model",
Journal of Fuzzy Sets and Systems", Vol. 28, pp. 15-33.

Szu, H. & Hartley, R. (1987). "Fast Simulated Annealing", Physics Letters, Vol.
122, pp. 157-162.

Takagi, T. & Sugeno, M. (1985). "Fuzzy Identification of Systems and its
Applications to Modeling and Control", IEEE Transactions on Systems,
Man and Cybemetics, Vol. 15, pp. 116-132.

Troudet, T. (1991). "Towards Practical Design using Neural Computation”,
Proceedings of the International Conference on Neural Networks, Vol. 2,
pp. 675-681.

Tsukamoto, Y. (1979). "An Approach to Fuzzy Reasoning Method", In Gupta,
M. M,, Ragade, R. K. and Yager, R. R., editors, Advanced in Fuzzy Set
Theory and Applications, pp. 137-149, North-Holland.

Ungar, L. H. (1995). "A Bioreactor Benchmark for Adaptive Network-Based
Process Control", Neural Networks for Control, MIT Press, pp. 387-402.

Von Altrock, C. (1995). "Fuzzy Logic & Neuro Fuzzy Applications Explained",
Prentice Hall.

Wagenknecht, M. & Hartmann, K. (1988). “Application of Fuzzy Sets of Type
2 to the solution of Fuzzy Equation Systems”, Fuzzy Sets and Systems,
Vol. 25, pp. 183-190.

217

Weigend, A. & Gershenfeld, N.A. (1994). "Time Series Prediction: Forecasting
the Future and Understanding the Past", Addison Wesley Publishing.
Werbos, P. J. (1991). "An Overview of Neural Networks for Control", IEEE

Control Systems Magazine, Vol. 11, pp. 40-41.

Werbos, P. J. (1974). "Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences", Ph.D. Thesis, Harvard University.

Widrow, B. & Stearns, D. (1985). "Adaptive Signal Processing", Prentice-Hall.

Yager, R.R. (1980). “Fuzzy Subsets of Type Il in Decisions”, Journal of
Cybernetics, Vol. 10, pp. 137-159.

Yager, R.R. & Filev, D.P. (1993). "SLIDE: A Simple Adaptive Defuzzification
Method", IEEE Transactions on Fuzzy Systems, Vol. 1, pp. 69-78.

Yager, R. R. & Filev, D.P. (1994). "Generation of Fuzzy Rules by Mountain
Clustering", Journal of Intelligent and Fuzzy Systems", Vol. 2, No. 3, pp.
209-219.

Yamamoto, Y. & Yun, X. (1997). "A Modular Approach to Dynamic Modelling
of a Class of Mobil Manipulators", Journal of Robotics and Automation.
pp- 41-48.

Yasunobu, S. & Miyamoto, S. (1985). "Automatic Train Operation by Predictive
Fuzzy Control", Industrial Applications of Fuzzy Control, pp.1-18, North
Holland.

Yen, J., Langari, R. & Zadeh, L. A. (1995). "Industrial Applications of Fuzzy
Control and Intelligent Systems", IEEE Computer Society Press.

Zadeh, L.A. (1965). "Fuzzy Sets", Journal of Information and Control, Vol. 8, pp.
338-353.

Zadeh, L.A. (1971). "Similarity Relations and Fuzzy Ordering", Journal of
Information Sciences", Vol. 3, pp. 177-206.

Zadeh, L.A. (1973). "Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes", IEEE Transactions on Systems, Man and
Cybernetics, Vol. 3, pp. 28-44.

Zadeh, L.A. (1975). “The Concept of a Linguistic Variable and its Application to
Aproximate Reasoning —1”, Information Sciences, Vol. 8, pp. 199-249.

Zomaya, A. Y. (1992). "Modelling and Simulation of Robot Manipulators: A
Parallel Processing Approach", World Scientific Publishing.

Index

activation function,
hyperbolic function,
identity function,
logistic function,

adaptive model-based control,

adaptive control of robotic

systems,

adaptive control of biochemical

reactors,

adaptive control of international

trade,
adaptive control of

electrochemical processes 189,

adaptive control of aircraft

systems,
adaptive network,
feedforward,
layered representation,
learning rules

35,36
35,36
35,36
35,36
150
154, 156
168,172
204,206
191, 193
180, 184
31

32

37
33,34

adaptive neuro-fuzzy inference

system, (see ANFIS)
aircraft dynamic systems,
automated modelling,
automated simulation,
intelligent control,

mathematical modelling,

ANFIS,

175

177

183

180
180, 181
39,41

consequent parameters,
learning algorithm,
premise parameters,
automated modelling,
the problem of,
fuzzy-fractal method,
implementation,
automated simulation,
the problem of;
parameter selection,
behavior identification,

backpropagation,
epoch,
epoch size,
learning rate,
batch learning,
Boltzmann machines,
Boltzmann probability,

Cauchy machine,
characteristic function,
control,

40
42

40

120

120

125

126, 127
135

135

137

137, 141,
142

34
34
34
35
34
70,71
70

71
6

of robotic dynamic systems,

of biochemical reactors,
of international trade,

150, 152
163, 168
197, 204,
206

220

of aircraft dynamic systems

of electrochemical processes

of non-linear dynamical
systems,
correlation dimension,
curse of dimensionality,

defuzzification,
dilation,
direct control,

dynamic behavior identification,

direct neuro-control,

epoch,
evolving fuzzy systems
evolving neural networks

fractal theory,
fractal dimension,

food industry,

fuzzy chaos

fuzzy fractal dimension

fuzzy-fractal method for
modelling,

fuzzy-genetic method for
simulation,

fuzzy inference systems,
Mamdani fuzzy models,
Sugeno fuzzy models,

Tsukamoto fuzzy models,

fuzzy modelling,

fuzzy logic for modelling,
fuzzy reasoning,

fuzzy set theory,

fuzzy type-2 logic

genetic algorithms,
chromosome,
Crossover,

175, 180
187, 191
1,2,3
88, 89
20

16, 17
12

51, 56
135, 141,
146

51, 56
34

81

72

88

89, 90,
106

163, 164
135

105

126, 128
139, 145
15

15, 16
17,18
18, 19
25

25

14, 15

6

6,21, 24
63, 65
65

66, 68

fitness function,
mutation,
mutation rate,

indirect control,
indirect neuro-control,
intelligent control,

66
67, 68
67

51
51
150

of robotic dynamic systems,

of biochemical reactors,

150
164

of electrochemical processes

of international trade,

187
197

of aircraft dynamic systems,

intelligent systems,
for automated modelling,

for automated simulation,

175
126, 139,
156
126, 128,
132
139, 145,
146

for adaptive model-based control,

inverse learning,
Jacobian matrix,

linguistic value,
linguistic variable,
Lorenz attractor,
Lyapunov exponents,

156, 184,
194,207
45

50

11, 12
11
87, 138
87

Mamdani fuzzy inference system,

mathematical modelling of
robotic systems
of biochemical reactors,
of international trade,
of aircraft systems,
membership function,
bell,
Cauchy,
Gaussian,

15,16

150, 151
169

198, 199
180, 181
6,8

10

10

9

sigmoidal, 10

trapezoidal, 9

triangular, 8
model-based control, 149, 152

modelling and simulation
of robotic dynamic systems

150, 151
of biochemical reactors, 169
of international trade, 198, 199
of aircraft systems, 180, 181
modelling the process of the
plant, 164
multilayer preceptron, 35
neural networks, 29, 31
neuro-fuzzy inference systems,
39,40
neuro-fuzzy control, 44,154
neuro-fuzzy adaptive model-based
control, 154
numerical simulation of
dynamical systems, 138
off-line learning, 34, 38
on-line learning, 34,38
ordered derivative, 33
pattern recognition 116

principle of incompatibility, 11
prototype intelligent systems,
for automated modelling, 126, 127,

128, 132
for automated simulation, 139, 145,
146
for adaptive control, 156, 173,
194,207
robotic dynamic systems,
automated modelling, 152
automated simulation, 145, 148
intelligent control, 149
mathematical modelling, 123, 150,
151

Runge-Kutta method, 121

simulated annealing,
simulation,
the problem of,
automated,
results,

strange attractor,
Sugeno fuzzy model,

time series analysis,

221

68, 69
135

138

139

145, 156,
171, 182
86

17, 18

105, 111

transfer function (see activation

function),
Tsukamoto fuzzy models,

18, 19

very fast simulated annealing,

71

