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Preface 

This book presents a unified view of modelling, simulation, and control of non­
linear dynamical systems using soft computing techniques and fractal theory. Our 
particular point of view is that modelling, simulation, and control are problems 
that cannot be considered apart, because they are intrinsically related in real world 
applications. Control of non-linear dynamical systems cannot be achieved if we 
don't have the appropriate model for the system. On the other hand, we know that 
complex non-linear dynamical systems can exhibit a wide range of dynamic 
behaviors ( ranging from simple periodic orbits to chaotic strange attractors), so 
the problem of simulation and behavior identification is a very important one. 
Also, we want to automate each of these tasks because in this way it is more easy 
to solve a particular problem. A real world problem may require that we use 
modelling, simulation, and control, to achieve the desired level of performance 
needed for the particular application. 

Soft computing consists of several computing paradigms, including fuzzy 
logic, neural networks, evolutionary computation, and chaos theory, which can be 
used to produce powerful hybrid intelligent systems. We believe that to really be 
able to automate modelling, simulation, and control of dynamical systems, we 
require the use of hybrid combinations of soft computing techniques. In this way, 
we can exploit the advantages that each technique offers for solving these difficult 
problems. On the other hand, fractal theory provides us with powerful 
mathematical tools that can be used to understand the geometrical complexity of 
natural or computational objects. We believe that, in many cases, it is necessary to 
use fractal techniques to understand the geometry of the problem at hand. 

This book is intended to be a major reference for scientists and engineers 
interested in applying new computational and mathematical tools to modelling, 
simulation, and control of non-linear dynamical systems. This book can also be 
used as a textbook or major reference for graduate courses like: soft computing, 
control of dynamical systems, applied artificial intelligence, and similar ones. We 



VI 

consider that this book can also be used to get novel ideas for new lines of 
research, or to continue the lines of research proposed by the authors of the book. 

In Chapter one, we begin by giving a brief introduction to the problems 
of modelling, simulation, and control of non-linear dynamical systems. We 
discuss the importance of solving these problems for real-world applications. We 
motivate the reasons for automating modelling, simulation, and control using 
computational techniques. We also outline the importance of using soft computing 
techniques and fractal theory to really achieve automated modelling, simulation, 
and adaptive control of non-linear dynamical systems. 

We describe in Chapter 2 the main ideas underlying fuzzy logic, and the 
application of this powerful computational theory to the problems of modelling 
and control of dynamical systems. We discuss in some detail fuzzy set theory, 
fuzzy reasoning, and fuzzy inference systems. We also describe briefly the 
generalization of conventional ( type-I) fuzzy logic to what is now known as type-
2 fuzzy logic. At the end, we also give some general guidelines for the process of 
fuzzy modelling and control. The importance of fuzzy logic as a basis for 
developing intelligent systems for control has been recognized in several areas of 
application. For this reason, we consider this chapter essential to understand the 
new methods for modelling, simulation, and control that are described in 
subsequent chapters. 

We describe in Chapter 3 the basic concepts, notation, and the learning 
algorithms for neural networks. We discuss in some detail feedforward networks, 
adaptive neuro-fuzzy inference systems, neuro-fuzzy control, and adaptive neuro­
control. First, we give a brief review of the basic concepts of neural networks and 
the backpropagation learning algorithm. We then continue with a general 
description of adaptive neuro-fuzzy systems. Finally, we end the chapter with a 
review of the most important current methods for neuro-control, and some general 
remarks about adaptive control and model-based control. The importance of 
neural networks as a computational tool to achieve "intelligence" for software 
systems has been well recognized in the literature of the area. For this reason, 
neural networks have been applied for solving complex problems of modelling, 
identification and control. 

We describe in Chapter 4 the basic concepts and notation of genetic 
algorithms, and simulated annealing. We also describe the application of genetic 
algorithms for evolving neural networks, and fuzzy systems. Both genetic 
algorithms and simulated annealing are basic search methodologies that can be 
used for modelling and simulation of complex non-linear dynamical systems. 
Since both techniques can be considered as general purpose optimization 
methodologies, we can use any of them to find the model which minimizes the 
fitting error for a specific problem. Also, genetic algorithms can be used to 
automate the simulation of dynamical systems, because it can be used to produce 
the best set of parameter values for a model of the system. As genetic algorithms 
are based on the ideas of natural evolution, we can use this methodology to try 
evolving a neural network or fuzzy system for a particular application. The 
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problem of finding the best architecture of a neural network is very important 
because there are no theoretical results on this, and in many cases we are forced to 
trial and error unless we use a genetic algorithm to automate this process. A 
similar thing occurs in the determining the optimum number of rules and 
membership functions of a fuzzy system for a particular application, here a genetic 
algorithm can also help us avoid time consuming trial and error. 

We describe in Chapter 5 the basic concepts of dynamical systems and 
fractal theory, which are two powerful mathematical theories that enable the 
understanding of complex non-linear phenomena. We also describe the general 
mathematical methods for controlling chaos in dynamical systems. Dynamical 
systems theory gives us the general framework for studying non-linear systems. It 
can also be used to for behavior identification in complex non-linear dynamical 
systems. On the other hand, fractal theory gives us powerful concepts and 
techniques that can be used to measure the complexity of geometrical objects. In 
particular, the concept of the fractal dimension is very useful in classifying the 
complexity for time series of measured data for a problem. We discuss at the end 
of the chapter the problem of controlling chaotic behavior in non-linear dynamical 
systems. We review several methods for chaos control based on different ideas of 
how to move from a chaotic orbit of the dynamical system to a periodic stable 
orbit. This is very important in real world applications, because in many cases we 
need to control chaos to avoid physical damage to the system. 

We describe in Chapter 6 our new method for time series analysis and 
prediction. This method is based on a new hybrid fuzzy-fractal approach, that 
combines the advantages of the fractal dimension for measuring the complexity of 
the time series, and of fuzzy logic for constructing a set of fuzzy rules to model 
the problem. We also define a new concept, which we have called the fuzzy 
fractal dimension, to generalize the mathematical definition of the capacity 
dimension. We show results of the application of our new method to real time 
series and measure the efficiency of our new hybrid approach for modelling. This 
new approach for time series prediction can be very useful for forecasting the 
behavior of complex non-linear dynamical systems. 

We describe in Chapter 7 a new method for modelling complex 
dynamical systems using multiple differential equations. This method is a new 
fuzzy reasoning procedure that can be considered as a generalization of Sugeno's 
original fuzzy inference system. Our method uses a set of fuzzy rules, which have 
as consequents non-linear differential equations. Each equation is viewed as local 
model, for each region of the domain of definition for a complex non-linear 
dynamical system. The general idea of the approach is to simplify the task of 
modelling complex dynamical systems, by dividing the domain in smaller regions 
in which a simpler model can be formulated. We show the application of our new 
approach to the problems of modelling complex robotic dynamic systems, and 
aircraft systems. Modelling these dynamical systems can be used in controlling 
their complex non-linear dynamic behavior. 
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We describe in Chapter 8 a new method for automated simulation of non­
linear dynamical systems with a hybrid fuzzy-genetic approach. Genetic 
algorithms are used, in this case, to generate the parameter values for the 
mathematical models of the dynamical systems. Fuzzy logic is used to model the 
uncertainty in behavior identification for a particular dynamical system. A set of 
fuzzy rules can be developed as a classification scheme of the dynamic behaviors 
using as information the fractal dimension or the Lyapunov exponents of the 
system. We also present a new concept, which we have called fuzzy chaos, to 
generalize the mathematical definition of chaos. In many cases, due to uncertainty 
it is more appropriate to find fuzzy regions of specific dynamic behaviors, even 
more for the complex chaotic behavior. We show results of the application of this 
hybrid fuzzy-genetic approach to the problem of automated simulation for robotic 
dynamic systems. 

We present in Chapter 9 a new method for adaptive model-based control 
of robotic dynamic systems. This method combines the use of neural networks, 
fuzzy logic, and fractal theory to achieve real time control of robotic systems. Our 
neuro-fuzzy-fractal approach uses neural networks for identification and control, 
fuzzy logic for modelling, and fractal theory for time series analysis. We show 
results of our hybrid approach for several types of robot manipulators. Robotic 
systems are highly non-linear dynamical systems with a wide range of dynamic 
behaviors going from simple periodic behavior to the completely unstable chaotic 
behavior. In this case, chaotic behavior has to be avoided to prevent physical 
damage to the robot, and also other types of unstable behavior could be dangerous 
for the system. For this reason, the control of these systems is very important in 
real world applications. Our hybrid neuro-fuzzy-fractal approach exploits the 
advantages that each technique has for achieving the ultimate goal of controlling 
robotic dynamic systems in an efficient way. 

We present in Chapter 10 the application of our new method for adaptive 
model-based control to the case of controlling biochemical reactors in the food 
industry. We use our hybrid neuro-fuzzy-fractal approach for controlling the 
complex behavior of biochemical reactors during production. Bioreactors are used 
in food production plants to produce the food with the required characteristics and 
level of quality. In this case, we need to control the reactor to optimize the 
production and the quality of the food product. Biochemical reactors use specific 
bacteria to produce chemical compounds that needed to obtain particular food 
products. The behavior of these reactors is highly non-linear and requires complex 
control strategies. For this reason, the application of soft computing techniques 
can help in achieving the goal of adaptive control of this type of reactors. In this 
case, neural networks are used for identification and control, fuzzy logic for 
modelling, and fractal theory for identifying bacteria during the production 
process. 

We describe in Chapter 11 the application of soft computing techniques 
to the problem of controlling complex electrochemical processes. Electrochemical 
processes, like the ones used in battery formation, are highly non-linear and 
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difficult to control. Also, mathematical models of these processes are difficult to 
obtain. The ultimate goal, in this case, is to control the process to optimize the 
manufactured product, avoiding at the same time going over the limiting 
temperature value for the electrochemical reaction. We use a hybrid neuro-fuzzy­
genetic approach to control the electrochemical process during battery formation 
in a manufacturing plant. Neural networks are used for modelling the 
electrochemical reaction, fuzzy logic is used for controlling the process, and 
genetic algorithms are used to optimize the membership functions for the fuzzy 
systems using as input the measured data for the process. 

We describe in Chapter 12 the application of soft computing techniques 
to the problem of controlling aircraft dynamic systems. Aircraft systems, are very 
complicated non-linear dynamical systems that show a wide range of dynamic 
behaviors even chaos. For this reason, controlling these systems is a very difficult 
task. We use a hybrid neuro-fuzzy-fractal approach for controlling the aircraft 
dynamics during flight. Neural networks are used for identification and control of 
the system, fuzzy logic for modelling, and fractal theory to measure the 
complexity of dynamic situation. We use our new fuzzy reasoning procedure for 
multiple differential equations to model the complex dynamical system. Our 
hybrid neuro-fuzzy-fractal approach enables on-line real time control of these type 
of dynamical systems. 

Finally, we present in Chapter 13 the application of soft computing 
techniques to the problem of controlling dynamic economic systems. We consider 
the complex situation of the competing economies of three countries with 
international trade. This economic system is highly non-linear and coupled, and 
for this reason has a wide range of dynamic behaviors going from simple stable 
periodic orbits to the very unstable chaotic behavior. The ultimate goal, in this 
case, is to control international trade so as achieve stable economic growth and 
optimize the national income. We can use mathematical models of this economic 
system to simulate different kinds of behaviors and analyze the possible routes for 
control. We can then use a fuzzy system with rules having as consequents 
differential equations, to completely model the economic dynamic system. We can 
also use neural networks to control the economic system. The neural networks can 
be trained with historical data or using a genetic algorithm and simulations. Our 
hybrid approach can enable the control of this complex economic dynamic 
system, and illustrates that computing techniques can also be applied to problems 
in economics. 
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Chapter 1 

Introduction to Control of Non-Linear 
Dynamical Systems 

We describe in this book, new methods for modelling, simulation, and control of 
dynamical systems using soft computing techniques and fractal theory. Soft 
Computing (SC) consists of several computing paradigms, including fuzzy logic, 
neural networks, and genetic algorithms, which can be used to produce powerful 
hybrid intelligent systems. Fractal theory provides us with the mathematical tools 
to understand the geometrical complexity of natural objects and can be used for 
identification and modelling purposes. Combining SC techniques with fractal 
theory, we can take advantage of the "intelligence" provided by the computer 
methods and also take advantage of the descriptive power of fractal mathematical 
tools. Non-linear dynamical systems can exhibit extremely complex dynamic 
behavior, and for this reason, it is of great importance to develop intelligent 
computational tools that will enable the identification of the best model for a 
particular dynamical system, then obtaining the best simulations for the system, 
and also achieving the goal of controlling the dynamical system in a desired 
manner. 

As a prelude, we provide a brief overview of the existing methodologies 
for modelling, simulation, and control of dynamical systems. We then show our 
own approach in dealing with these problems. Our particular point of view is that 
modelling, simulation and control are problems that can not be considered apart 
because they are intrinsically related in real-world applications. We think that in 
many cases control of non-linear dynamical systems can not be achieved if we 
don't have proper mathematical models for the systems. Also, useful simulations 
of a model, that can give us numerical insights into the behavior of a dynamical 
system, can not be obtained if we don't have the appropriate model. 

Traditionally, mathematical models of dynamical systems have been 
obtained by statistical methods, which lack the accuracy needed in real-world 
applications. We instead of the traditional approach, consider a general modelling 
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method using fuzzy logic techniques. Our modelling approach consists in a set of 
fuzzy if-then rules that relate a specific mathematical model to a specific region of 
the universe of discourse. We have proposed a new reasoning methodology for 
multiple differential equations that can be considered as a generalization of 
Sugeno's original approach. In Sugeno's original approach the fuzzy if-then rules 
have polynomials in the consequent part. Instead of simple polynomials, we are 
now using non-linear differential equations. The idea of our approach is to use 
relatively simple models for each region of the universe of discourse, instead of 
trying to use only one complicated model for the complete system. We have 
applied this approach to the case of robotic systems, aircraft systems, and 
biochemical reactors with excellent results. In all of these cases, the dynamical 
systems have very complicated behaviors and for this reason it is very difficult to 
develop a unique model for the system. Instead, we use local models for each 
region of the universe of discourse and relate them by fuzzy rules to the necessary 
conditions for the application of the models. 

The problem of numerical simulation of non-linear dynamical systems 
consists in the application of an appropriate mapping for different parameter 
values, and behavior identification according to the time series generated in the 
simulation. Traditionally, the simulation of a specific dynamical system is done 
by, manually trying different sets of parameter values for the mathematical model, 
and then checking the dynamic behaviors corresponding to these parameter 
values. The problem of this approach is that is time consuming and in many cases 
interesting behaviors are never explored. We have used SC techniques to automate 
the process of parameter value selection for a mathematical model and then the 
subsequent identification of the limiting behavior of the system. We use genetic 
algorithms to evolve a popUlation of parameter values and find at the end the best 
ones for identification. Once the mapping is iterated with the best parameter 
values, a set of fuzzy rules is used for behavior identification. The set of fuzzy if­
then rules represents the expert knowledge for dynamic behavior identification. 
We also use the concept of the fractal dimension as a measure of the complexity 
of the time series generated by the iteration of the dynamical system. The fuzzy­
fractal-genetic approach for automated simulation has been applied to different 
types of dynamical systems with excellent results. As an example, we can mention 
that for robotic dynamic systems we can automatically find out interesting 
parameter values in the sense that interesting behavior is explored. These 
simulations are useful in finding out how to control a complex dynamical system. 

The problem of controlling non-linear dynamical systems consists in 
finding out control laws to achieve a desired trajectory for the system. Of course, 
control laws can be deduced from the mathematical models of the dynamical 
system or from computational models that use real data for the problem. 
Traditionally, the control of dynamical systems has been considered as a linear 
control problem, i.e., linear models are used to represent the dynamical system 
and accordingly linear control laws are obtained. Of course, many real world 
problems have been solved to a certain degree with this approach. However, real 
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world dynamical systems are intrinsically non-linear in nature, and assuming that 
they are linear is only a very crude approximation of reality. We have to say here 
that some researchers are trying right now to generalize the results of classical 
linear control theory to the case of non-linear dynamical systems. However, 
results have been difficult to achieve to the moment. Another approach is to use 
computational models to represent the non-linear dynamical system and the 
control laws needed to achieve the desired level of performance in real world 
applications. Our approach is to use SC techniques and fractal theory to control 
non-linear dynamical systems in real time. We use fuzzy logic for modelling the 
dynamical system with a set of fuzzy rules relating the models (as differential 
equations) to their corresponding regions in the universe of discourse. On the 
other hand, we use neural networks for control of the dynamical system using as a 
reference model the one given by the fuzzy system for modelling. Of course, the 
neural network has to be trained with real control data for the specific problem. 
We can also use neural networks for identification of the parameters of the 
specific models used in the fuzzy rule base mentioned above. In many cases, we 
also use the fractal dimension as a measure of classification for the complexity of 
the problem at hand. For example, for the case of biochemical reactors we use the 
fractal dimension to classify bacteria by the geometrical complexity of their 
colonies. In this way, the fractal dimension is used to control the process of 
production because bacteria are responsible for the quality of the food being 
produced. The neuro-fuzzy-fractal hybrid approach for controlling non-linear 
dynamical systems uses the best that each technique has to offer for these types of 
applications. Of course, other SC techniques can also be used in controlling non­
linear dynamical systems, for example in the hybrid approach mentioned above, 
we can also use genetic algorithms to find the best architecture for the neural 
networks, i.e., the best number of nodes and layers of the neural network. This 
genetic approach can help in the design of the intelligent control system for a 
particular application. 

We illustrate these ideas in this book with several real world applications. 
We consider the problem of controlling robotic dynamic systems with our neuro­
fuzzy-fractal approach. The problem of robot control is how to make the system 
follow a pre-specified desired trajectory while satisfying certain constraints. In 
this case, fuzzy logic is used for modelling these dynamical systems, and neural 
networks are used for control and identification. We also consider the use of a 
fuzzy-genetic approach for automated simulation of robotic systems. On the other 
hand, we consider the application of our neuro-fuzzy-fractal approach for 
controlling aircraft dynamic systems. This is done similarly to the case of robots, 
the main difference is in the type of models that we need to use for aircraft 
dynamic systems. We can also use the fuzzy-genetic approach for automated 
simulation of aircraft systems if we want to explore the diversity of dynamic 
behaviors possible for this type of systems. Also, we consider the application of 
our hybrid neuro-fuzzy-fractal approach for the case of controlling biochemical 
reactors used for food production. In this case, mathematical models are used to 
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represent the population of bacteria in the bioreactor and the chemical compound 
been produced by the bacteria. The problem here is how to control conditions in 
the bioreactor in such a way as to optimize food production. We also consider the 
problem of controlling electrochemical processes as the ones used in battery 
formation. In this case, we have used a hybrid neuro-fuzzy-genetic approach for 
intelligent control of the electrochemical process. The neural network is used for 
modelling the process, fuzzy logic is used for control, and genetic algorithms for 
evolving the fuzzy system. Of course, this is another hybrid architecture for 
control of non-linear dynamical systems, but in this case we have found that this is 
the most appropriate one. Finally, we also consider the problem of controlling 
international trade between countries. This application comes from the field of 
economics and is very important for planning the economy of a specific country. 
The problem here is how to control the trade between countries in such a way as 
to optimize national income and achieve stable growth of the country. We have 
shown that international trade can produce chaotic unstable behavior of a system 
of at least three countries under certain specific conditions. Of course, we want to 
avoid this type of erratic dynamic behavior in the economy of the countries 
involved. We have used a hybrid approach combining SC techniques for 
controlling dynamic behavior in this type of economic systems. 

The diversity of the applications considered in this book, gives idea of 
the universality of the hybrid approach of combining SC techniques for 
controlling non-linear dynamical systems. The best combination of SC techniques 
may change because of the properties of the system under consideration, but one 
can always find the hybrid architecture needed for achieving the ultimate goal of 
control. Of course, we still need to do a lot of work in finding out general rules for 
knowing in advance the best combination of techniques. The best architecture of 
the intelligent control system has to be determined in many cases by a lot 
experimental work. But at the end the rewards of this experimental work are 
satisfying. 



Chapter 2 

Fuzzy Logic 

This chapter introduces the basic concepts, notation, and basic operations for 
fuzzy sets that will be needed in the following chapters. Since research on Fuzzy 
Set Theory has been underway for over 30 years now, it is practically impossible 
to cover all aspects of current developments in this area. Therefore, the main goal 
of this chapter is to provide an introduction to and a summary of the basic 
concepts and operations that are relevant to the study of fuzzy sets. We also 
introduce in this chapter the definition of linguistic variables and linguistic values 
and explain how to use them in fuzzy rules, which are an efficient tool for 
quantitative modelling of words or sentences in a natural or artificial language. By 
interpreting fuzzy rules as fuzzy relations, we describe different schemes of fuzzy 
reasoning, where inference procedures based on the concept of the compositional 
rule of inference are used to derive conclusions from a set of fuzzy rules and 
known facts. Fuzzy rules and fuzzy reasoning are the basic components of fuzzy 
inference systems, which are the most important modelling tool, based on fuzzy 
set theory. 

The "fuzzy inference system" is a popular computing framework based 
on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang, 
Sun & Mizutani, 1997). It has found successful applications in a wide variety of 
fields, such as automatic control, data classification, decision analysis, expert 
systems, time series prediction, robotics, and pattern recognition (Jamshidi, 1997). 
Because of its mUltidisciplinary nature, the fuzzy inference system is known by 
numerous other names, such as "fuzzy expert system" (Kandel, 1992), "fuzzy 
model" (Sugeno & Kang, 1988), "fuzzy associative memory" (Kosko, 1992), and 
simply "fuzzy system". 

The basic structure of a fuzzy inference system consists of three 
conceptual components: a "rule base", which contains a selection of fuzzy rules; a 
"data base" (or "dictionary"), which defines the membership functions used in the 
fuzzy rules; and a "reasoning mechanism", which performs the inference 
procedure upon the rules and given facts to derive a reasonable output or 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001



6 

conclusion. In general, we can say that a fuzzy inference system implements a 
non-linear mapping from its input space to output space. This mapping is 
accomplished by a number of fuzzy if-then rules, each of which describes the 
local behavior of the mapping. In particular, the antecedent of a rule defines a 
fuzzy region in the input space, while the consequent specifies the output in the 
fuzzy region. 

We also describe very briefly a new area in fuzzy logic, which studies 
type-2 fuzzy sets and type-2 fuzzy systems. Basically, a type-2 fuzzy set is a set in 
which we also have uncertainty about the membership function. Since we are 
dealing with uncertainty for the conventional fuzzy sets (which are called type-I 
fuzzy sets here) we can achieve a higher degree of approximation in modelling 
real world problems. Of course, type-2 fuzzy systems consist of fuzzy if-then 
rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a 
generalization of conventional fuzzy logic (type-I) in the sense that uncertainty is 
not only limited to the linguistic variables but also is present in the definition of 
the membership functions. 

In what follows, we shall first introduce the basic concepts of fuzzy sets, 
and fuzzy reasoning. Then we will introduce and compare the three types of fuzzy 
inference systems that have been employed in various applications. We will also 
consider briefly type-2 fuzzy logic systems and the comparison to type-I fuzzy 
systems. Finally, we will address briefly the features and problems of fuzzy 
modelling, which is concerned with the construction of fuzzy inference systems 
for modelling a given target system. 

2.1 Fuzzy Set Theory 

Let X be a space of objects and x be a generic element of X. A classical set A, 
A~X, is defined by a collection of elements or objects x E X, such that each x can 
either belong or not belong to the set A. By defining a "characteristic function" for 
each element x E X, we can represent a classical set A by a set of order pairs (x,O) 
or (x,I), which indicates x ~ A or x E A, respectively. 

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965) 
expresses the degree to which an element belong to a set. Hence the characteristic 
function of a fuzzy set is allowed to have values between 0 and I, which denotes 
the degree of membership of an element in a given set. 

Definition 2.1 Fuzzy sets and membership functions 
If X is a collection of objects denoted generically by x, then a "fuzzy set" A in X 
is defined as a set of ordered pairs: 

A = {(x, JlA(X)) I x EX}. (2.1) 
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where Il/x) is called "membership function" (or MF for short) for the fuzzy set A. 

The MF maps each element of X to a membership grade (or membership value) 
between 0 and 1. 

Obviously, the definition of a fuzzy set is a simple extension of the 
definition of a classical set in which the characteristic function is permitted to 
have any values between 0 and 1. If the values of the membership function Il/x) 

is restricted to either 0 or 1, then A is reduced to a classical set and 11 A (x) is the 

characteristic function of A. 
A fuzzy set is uniquely specified by its membership function. To describe 

membership functions more specifically, we shall define the nomenclature used in 
the literature (Jang, Sun & Mizutani, 1997). 

Definition 2.2 Support 
The "support" of a fuzzy set A is the set of all points x in X such that 11 A (x) > 0: 

support (A) = { X I IlA(X) > 0 }. (2.2) 

Definition 2.3 Core 
The "core" ofa fuzzy set is the set of all points x in X such that IlA(x) = 1: 

core (A) = { x I IlA(X) = 1 }. (2.3) 

Definition 2.4 Normality 
A fuzzy set A is "normal" if its core is nonempty. In other words, we can always 
find a point x E X such that IlA(x) = 1. 

Definition 2.5 Crossover points 
A "crossover point" ofa fuzzy set A is a point x E X at which IlA(x) = 0.5: 

crossover (A) = { x I IlA(X) = 0.5 }. (2.4) 

Definition 2.6 Fuzzy singleton 
A fuzzy set whose support is a single point in X with IlA(x) = 1 is called a "fuzzy 

singleton" . 

Corresponding to the ordinary set operations of union, intersection and 
complement, fuzzy sets have similar operations, which were initially defined in 
Zadeh's seminal paper (Zadeh, 1965). Before introducing these three fuzzy set 
operations, first we shall define the notion of containment, which plays a central 
role in both ordinary and fuzzy sets. This definition of containment is, of course, a 
natural extension of the case for ordinary sets. 
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Definition 2.7 Containment 
The fuzzy set A is "contained" in fuzzy set B (or, equivalently, A is a "subset" of 
B) if and only if Il A (x) $ IlB(x) for all x. Mathematically, 

(2.5) 

Definition 2.8 Union 
The "union" of two fuzzy sets A and B is a fuzzy set C, written as C = AuB or C 
= A OR B, whose MF is related to those of A and B by 

Definition 2.9 Intersection 
The "intersection" of two fuzzy sets A and B is a fuzzy set C, written as C = AnB 
or C = A AND B, whose MF is related to those of A and B by 

Definition 2.10 Complement or Negation 
The "complement" of a fuzzy set A, denoted by A ( l A, NOT A), is defined as 

(2.8) 

As mentioned earlier, a fuzzy set is completely characterized by its MF. 
Since most fuzzy sets in use have a universe of discourse X consisting of the real 
line R, it would be impractical to list all the pairs defining a membership function. 
A more convenient and concise way to define a MF is to express it as a 
mathematical formula. First we define several classes of parameterized MFs of 
one dimension. 

Definition 2.11 Triangular MFs 
A "triangular MF" is specified by three parameters {a, b, c} as follows: 

0, 

y = triangle(x;a,b,c) = (x-a) / (b-a), 

(c-x) / (c-b), 
0, 

x $a. 
a$x$b. 

b$x$c. 
c $ x. 

(2.9) 

The parameters {a,b,c} (with a < b < c) determine the x coordinates of the three 
comers of the underlying triangular MF. 
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Figure 2.1 (a) illustrates a triangular MF defined by triangle(x; 10, 20, 
40). 

Definition 2.12 Trapezoidal MFs 
A "trapezoidal MF" is specified by four parameters {a, b, c, d} as follows: 

0, 
(x-a) / (b-a), 

trapezoid (x;a,b,c,d) - 1, 
(d-x) / (d-c), 

0, 

x ~a. 
a~x~b. 

b~x~c. 

c~x~d. 

d ~x . 

(2.10) 

The parameters {a, b, c, d } (with a < b ~ c <d) determine the x coordinates of the 
four comers of the underlying trapezoidal MF. Figure 2.1 (b) illustrates a 
trapezoidal MF defined by trapezoid(x; 10,2040,75). 

Due to their simple formulas and computational efficiency, both 
triangular MFs and trapezoidal MFs have been used extensively, especially in 
real-time implementations. However, since the MFs are composed of straight line 
segments, they are not smooth at the comer points specified by the parameters. In 
the following we introduce other types of MFs defmed by smooth and nonlinear 
functions. 

" " ! 0 9 ~ -.., o. 
" o , .. 0 , , 
~ 

o • - o 0 -~ 0 5 

" o. 

~ 0' 

" .. 
o • t o • 

:< 0 , 
o , 0 , , 
o , 0 , , 

0 • o. 20 .0 &0 ':!I 0 1CO 

II.Dpml]IU 211 411 151 

(a) Triangular MF b) Trapezoidal MF 

Figure 2.1 Examples of two types of parameterized MFs 

Definition 2.13 Gaussian MFs 
A "Gaussian MF" is specified by two parameters {c , cr }: 
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_I(x-c)2 

gaussian(x; c, (J) = e 2 (J (2.11 ) 

A "Gaussian MF is determined completely by c and (J ; c represents the MFs 
center and (J determines the MFs width . Figure 2.2 (a) plots a Gaussian MF 
defined by gaussian (x; 50, 20). 

Definition 2 .14 Generalized bell MFs 
A "generalized bell MF" is specified by three parameters {a, b, c} : 

bell(x; a, b, c) = ----"--- (2.12) 

+ I (x -c) / a 12b 

where the parameter b is usually positive. We can note that this MF is a direct 
generalization of the Cauchy distribution used in probability theory, so it is also 
referred to as the "Cauchy MF". Figure 2.2 (b) illustrates a generalized bell MF 
defined by bell(x; 20, 4, 50). 

Although the Gaussian MFs and bell MFs achieve smoothness, they are 
unable to specify asymmetric MFs, which are important in certain applications. 
Next we define the sigmoidal MF, which is either open left or right. 

t u, G "U!'l ~ I . n , F ( b ) C e ne, . IIH:d B e ll M F 

u 
~ ~ . o • . •• -

o • r -
" " • • 
~ o 7 ~ o 7 
~ ~ . - o • : o • 
u u 
~ o • ~ o • 

u o. u o • 

::l': o , ::l': o , 

o 2 02 

0 1 o 1 

• • 0 '0 .. 60 .. 0 ,. • 0 •• 10. 
G I U :I,jI m r. (20 501 G bellm f.(20 , 

(a) Gaussian MF (b) Generalized Bell MF 

Figure 2.2 Examples of two classes of parameterized continuous MFs. 

Definition 2 .1 5 Sigmoidal MFs 
A "Sigmoidal MF" is defined by the following equation: 

sig(x; a, c) = ---------''-------- (2 .13) 

I + exp [-a(x-c)] 
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where a controls the slope at the crossover point x = c. 
Depending on the sign of the parameter "a", a sigmoidal MF is inherently 

open right or left and thus is appropriate for representing concepts such as "very 
large" or "very negative". Figure 2.3 shows two sigmoidal functions y 1 =sig(x; 1, 

-5) and Y2 =sig(x; -2, 5). 

( . ) ) I . S I II ( \. . I . . s , 
M 

U U ... 
0 • ... o • ~ : 

" 0 • " • • 
~ 0 , ~ 0 , 
~ ~ 

: • • -- • • 
u u 

" • • D 
• , t · . • I 

u u . 
::; 

0 ) ::; 
0 , 

• , 0 , 
0 I 0 I 

10 
0 
. 10 -5 0 10 

S I" 1'1'\ f . I ' . >1 $ 19'" ' . 1· 2 $ I 

(a) Yl = sig(x; 1, -5) (b) Y2 = sig(x; -2, 5) 

Figure 2.3 Two sigmoidal functions Yl and Y2 . 

2.2 Fuzzy Reasoning 

As was pointed out by Zadeh in his work on this area (Zadeh, 1973), conventional 
techniques for system analysis are intrinsically unsuited for dealing with 
humanistic systems, whose behavior is strongly influenced by human judgment, 
perception, and emotions. This is a manifestation of what might be called the 
"principle of incompatibility": "As the complexity of a system increases, our 
ability to make precise and yet significant statements about its behavior 
diminishes until a threshold is reached beyond which precision and significance 
become almost mutually exclusive characteristics" (Zadeh, 1973). It was because 
of this belief that Zadeh proposed the concept of linguistic variables (Zadeh, 
1971) as an aItemati ve approach to modelling human thinking. 

Definition 2.16 Linguistic variables 
A "Linguistic variable" is characterized by a quintuple (x, T(x), X, G, M) in which 
x is the name of the variable; T(x) is the "term set" of x-that is, the set of its 
"linguistic values" or "linguistic terms"; X is the universe of discourse, G is a 
"syntactic rule" which generates the terms in T(x); and M is a "semantic rule" 
which associates with each linguistic value A its meaning M(A), where M(A) 
denotes a fuzzy set in X. 
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Definition 2.17 Concentration and dilation of linguistic values 
Let A be a linguistic value characterized by a fuzzy set membership function 

flA(.). Then Ak is interpreted as a modified version of the original linguistic value 

expressed as 

(2.14) 

In particular, the operation of "concentration" is defined as 

CON (A) = A2 , (2.15) 

while that of "dilatation" is expressed by 

0.5 
DIL (A) = A (2.16) 

Conventionally, we take CON(A) and DIL(A) to be the results of 
applying the hedges "very" and "more or less", respectively, to the linguistic term 
A. However, other consistent definitions for these linguistic hedges are possible 
and weIl justified for various applications. 

Following the definitions given before, we can interpret the negation 
operator NOT and the connectives AND and OR as 

NOT(A)= lA= fx [l-IlA(x)]/x 

A AND B = A (l B = fx [IlA(X) J\ 1l8(X)] / x, 

A OR B = A u B = fx [IlA(X) V 1l8(X) ] / x . 

(2.17) 

respectively, where A and B are two linguistic values whose meanings are defined 
by flA(.) and flB(.). 

Definition 2.18 Fuzzy If-Then Rules 
A "fuzzy if-then rule" (also known as "fuzzy rule", "fuzzy implication", or "fuzzy 
conditional statement") assumes the form 

if x is A then y is B , (2.18) 

where A and B are linguistic values defined by fuzzy sets on universes of 
discourse X and Y, respectively. Often "x is A" is called "antecedent" or 
"premise", while "y is B" is called the "consequence" or "conclusion". 

Examples of fuzzy if-then rules are widespread in our daily linguistic 
expressions, such as the foIlowing: 
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• If pressure is high, then volume is small. 
• If the road is slippery, then driving is dangerous. 
• If the speed is high, then apply the brake a little. 

Before we can employ fuzzy if-then rules to model and analyze a system, 
first we have to formalize what is meant by the expression "if x is A then y is B", 
which is sometimes abbreviated as A -7 B. In essence, the expression describes a 
relation between two variables x and y; this suggests that a fuzzy if-then rule is 

defined as a binary fuzzy relation R on the product space X x Y. Generally 
speaking, there are two ways to interpret the fuzzy rule A -7 B. If we interpret A 
-7 B as A "coupled with" B then 

where * is an operator for intersection (Mamdani & Assilian, 1975). On the other 
hand, if A -7 B is interpreted as A "entails" B, then it can be written as one of two 
different formulas: 

• Material implication: 
R=A-7B=lAuB 

• Propositional Calculus: 
(2.19) 

R = A -7 B = l A u (A n B) (2.20) 

Although these two formulas are different in appearance, they both reduce to the 
familiar identity A -7 B == l A u B when A and B are propositions in the sense of 
two-valued logic. 

Fuzzy reasoning, also known as approximate reasoning, is an inference 
procedure that derives conclusions from a set of fuzzy if-then rules and known 
facts. The basic rule of inference in traditional two-valued logic is "modus 
ponens", according to which we can infer the truth of a proposition B from the 
truth of A and the implication A -7 B. This concept is illustrated as follows: 

premise 1 (fact): 
premise 2 (rule): 
consequence (conclusion): 

x is A, 
if x is A then y is B , 
Y is B. 

However, in much of human reasoning, modus ponens is employed in an 
approximate manner. This is written as 

premise 1 (fact): 
premise 2 (rule): 
consequence (conclusion): 

X IS A' 
if x is A then y is B , 
Y is B' 



14 

where A' is close to A and B' is close to B. When A, B, A' and B' are fuzzy sets of 
appropriate universes, the foregoing inference procedure is called "approximate 
reasoning" or "fuzzy reasoning"; it is also called "generalized modus ponens" 
(GMP for short), since it has modus ponens as a special case. 

Definition 2.19 Fuzzy reasoning 
Let A, A', and B be fuzzy sets of X, X, and Y respectively. Assume that the fuzzy 

implication A -7 B is expressed as a fuzzy relation R on X x Y. Then the fuzzy set 
B induced by "x is A"' and the fuzzy rule "ifx is A then y is B" is defined by 

/lB'(Y) = maxx min [ /lA'(X), /lR(X, y) ] 

= V x [ /lA'(X) /\ /lR(X, y) ] . (2.21) 

Now we can use the inference procedure of fuzzy reasoning to derive 
conclusions provided that the fuzzy implication A -7 B is defined as an 
appropriate binary fuzzy relation. 

Single Rule with Single Antecedent 
This is the simplest case, and the formula is available in Equation (2.21). A further 
simplification of the equation yields 

/lB'(Y) = [Vx (/lA'<X) /\ /lA(X»)] /\ /lB(Y) 

= 0) /\ /lB(Y) 

In other words, first we find the degree of match 0) as the maximum of /lA>(X) /\ 

/l A (x); then the MF of the resulting B' is equal to the MF of B clipped by 0). 

Intuitively, 0) represents a measure of degree of belief for the antecedent part of a 
rule; this measure gets propagated by the if-then rules and the resulting degree of 
belief or MF for the consequent part should be no greater than 0). 

Multiple Rules with Multiple Antecedents 
The process of fuzzy reasoning or approximate reasoning for the general case can 
be divided into four steps: 

1) Degrees of compatibility: Compare the known facts with the antecedents of 
fuzzy rules to find the degrees of compatibility with respect to each 
antecedent MF. 

2) Firing Strength: Combine degrees of compatibility with respect to antecedent 
MFs in a rule using fuzzy AND or OR operators to form a firing strength that 
indicates the degree to which the antecedent part of the rule is satisfied. 
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3) Qualified (induced) consequent MFs: Apply the firing strength to the 
consequent MF of a rule to generate a qualified consequent MF. 

4) Overall output MF: Aggregate all the qualified consequent MFs to obtain an 
overall output MF. 

2.3 Fuzzy Inference Systems 

The "Mamdani fuzzy inference system" (Mamdani & Assilian, 1975) was 
proposed as the first attempt to control a steam engine and boiler combination by a 
set of linguistic control rules obtained from experienced human operators. Figure 
2.4 is an illustration of how a two-rule Mamdani fuzzy inference system derives 
the overall output z when subjected to two numeric inputs x and y. 

In Mamdani's application, two fuzzy inference systems were used as two 
controllers to generate the heat input to the boiler and throttle opening of the 
engine cylinder, respectively, to regulate the steam pressure in the boiler and the 
speed of the engine. Since the engine and boiler take only numeric values as 
inputs, a defuzzifier was used to convert a fuzzy set to a numeric value. 

Min ~ 

L-...I...-_I-'-_.... x Y z 

~ ~ 

x y z 
~ Max 

x y 

z 

Figure 2.4 The Mamdani fuzzy inference system using the min and max operators. 
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Defuzzification 
Defuzzification refers to the way a numeric value is extracted from a fuzzy set as 
a representative value. In general, there are five methods for defuzzifying a fuzzy 
set A of a universe of discourse Z, as shown in Figure 2.5 (Here the fuzzy set A is 
usually represented by an aggregated output MF, such as C' in Figure 2.4). A brief 
explanation of each defuzzification strategy follows. 

• Centroid of area ZCOA: 

ZCOA = iZJ1,.,<z)zdz 

fz JlA(z)dz 

(2.22) 

where JlA(z) is the aggregated output MF. This is the most widely adopted 

defuzzification strategy, which is reminiscent of the calculation of expected values 
of probability distributions. 

• centroid 

• b fu c 10 r 

• mom 

• • om 

.4 -2 \ 0 

~o. n \':-~d '----'1\ 1 
b 1 se: c:: to r 

• mom 

Figure 2.5 Various defuzzification methods for obtaining a numeric output. 

• Bisector of area ZSOA : ZSOA satisfies 

(2.23) 

where ex = min{z I z E Z} and P = max{z I z E Z}. 
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• Mean of maximum ZMOM : ZMOM is the average of the maximizing z 
at which the MF reach a maximum J..l*. Mathematically, 

~OM = Iz' zdz , 

Iz' dz 

(2.24) 

where z' = { z I J..lA(z) = J..l* }. In particular, if J..l/z) has a single maximum at z = 

z*, then ZMOM = z*. Moreover, if J..lA(z) reaches its maximum whenever z E [zleft' 

zright] then ~OM = (zleft + Zright ) / 2. 

• Smallest of maximum ZSOM : ZSOM is the minimum (in terms of 
magnitude) of the maximizing z. 

• Largest of maximum zLOM : ZLOM is the maximum (in terms of 
magnitude) of the maximizing z. Because of their obvious bias, ZSOM 
and zLOM are not used as often as the other three defuzzification 

methods. 

The calculation needed to carry out any of these five defuzzification 
operations is time-consuming unless special hardware support is available. 
Furthermore, these defuzzification operations are not easily subject to rigorous 
mathematical analysis, so most of the studies are based on experimental results. 
This leads to the propositions of other types of fuzzy inference systems that do not 
need defuzzification at all; two of them will be described in the following. Other 
more flexible defuzzification methods can be found in several more recent papers 
(Yager & Filer, 1993), (Runkler & Glesner, 1994). 

Sugeno Fuzzv Models 
The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was proposed 
by Takagi, Sugeno and Kang in an effort to develop a systematic approach to 
generating fuzzy rules from a given input-output data set (Takagi & Sugeno, 
1985), (Sugeno & Kang, 1988). A typical fuzzy rule in a Sugeno fuzzy model has 
the form: 

if x is A and y is B then z = f(x,y) 

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a traditional 
function in the consequent. Usually f(x,y) is a polynomial in the input variables x 
and y, but it can be any function as long as it can appropriately describe the output 
of the model within the fuzzy region specified by the antecedent of the rule. When 
f(x,y) is a first-order polynomial, the resulting fuzzy inference system is called a 
"first-order Sugeno fuzzy model". When f is constant, we then have a "zero-order 
Sugeno fuzzy model", which can be viewed either as a special case of the 
Mamdani inference system, in which each rule's consequent is specified by a 
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fuzzy singleton, or a special case of the Tsukamoto fuzzy model (to be introduced 
next), in which each rule's consequent is specified by a MF of a step function 
center at the constant. 

Figure 2.6 shows the fuzzy reasoning procedure for a first-order Sugeno 
model. Since each rule has a numeric output, the overall output is obtained via 
"weighted average", thus avoiding the time-consuming process of defuzzification 
required in a Mamdani model. In practice, the weighted average operator is 
sometimes replaced with the "weighted sum" operator (that is, w z + W z in 

I I 2 2 

Figure 2.6) to reduce computation further specially, in the training of a fuzzy 
inference system. However, this simplification could lead to the loss of MF 
linguistic meanings unless the sum of firing strengths (that is, LWi) is close to 

unity. 

W2 

x y 

Figure 2.6 The Sugeno fuzzy model. 

Tsukamoto Fuzzy Models 

.(l. 

weighted average 

z = ~JZl + w:f.z:f 
WI +W2 

In the "Tsukamoto fuzzy models" (Tsukamoto, 1979), the consequent of each 
fuzzy if-then rule is represented by a fuzzy set with a monotonical MF, as shown 
in Figure 2.7. As a result, the inferred output of each rule is defined as a numeric 
value induced by the rule firing strength. The overall output is taken as the 
weighted average of each rule's output. Figure 2.7 illustrates the reasoning 
procedure for a two-input two-rule system. 
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Since each rule infers a numeric output, the Tsukamoto fuzzy model 
aggregates each rule's output by the method of weighted average and thus avoids 
the time-consuming process of defuzzification. However, the Tsukamoto fuzzy 
model is not used often since it is not as transparent as either the Mamdani or 
Sugeno fuzzy models . 
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Figure 2.7 The Tsukamoto fuzzy model. 

There are certain common issues concerning all the three fuzzy inference 
systems introduced previously, such as how to partition an input space and how to 
construct a fuzzy inference system for a particular application. 

Input Space Partitioning 
Now it should be clear that the spirit of fuzzy inference systems resembles that of 
"divide and conquer" - the antecedent of a fuzzy rule defines a local fuzzy region, 
while the consequent describes the behavior within the region via various 
constituents. The consequent constituent can be a consequent MF (Mamdani and 
Tsukamoto fuzzy models), a constant value (zero-order Sugeno model), or a linear 
equation (first-order Sugeno model). Different consequent constituents result in 
different fuzzy inference systems, but their antecedents are always the same. 
Therefore, the following discussion of methods of partitioning input spaces to 
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form the antecedents of fuzzy rules is applicable to all three types of fuzzy 
inference systems. 

• Grid partition: This partition method is often chosen in designing a 
fuzzy controller, which usually involves only several state variables 
as the inputs to the controller. This partition strategy needs only a 
small number of MFs for each input. However, it encounters 
problems when we have a moderately large number of inputs. For 
instance, a fuzzy model with 10 inputs and 2 MFs on each input 

would result in 210 = 1024 fuzzy if-then rules, which is prohibitively 
large. This problem, usually referred to as the "curse of 
dimensionality", can be alleviated by other partition strategies. 

• Tree partition: In this method each region can be uniquely specified 
along a corresponding decision tree. The tree partition relieves the 
problem of an exponential increase in the number of rules. However, 
more MFs for each input are needed to define these fuzzy regions, 
and these MFs do not usually bear clear linguistic meanings. In other 

words, ortogonality holds roughly in X x Y, but not in either X or Y 
alone. 

• Scatter partition: By covering a subset of the whole input space that 
characterizes a region of possible occurrence of the input vectors, the 
scatter partition can also limit the number of rules to a reasonable 
amount. However, the scatter partition is usually dictated by desired 
input-output data pairs and thus, in general, orthogonality does not 

hold in X, Y or X x Y. This makes it hard to estimate the overall 
mapping directly from the consequent of each rule's output. 

2.4 Type-2 Fuzzy Logic Systems 

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is 
used to build these rules is uncertain. Such uncertainty leads to rules whose 
antecedents or consequents are uncertain, which translates into uncertain 
antecedent or consequent membership functions (Kamik & Mendel 1998). Type-l 
fuzzy systems (like the ones seen in previous sections), whose membership 
functions are type-l fuzzy sets, are unable to directly handle such uncertainties. 
We describe briefly in this section, type-2 fuzzy systems, in which the antecedent 
or consequent membership functions are type-2 fuzzy sets. Such sets are fuzzy 
sets whose membership grades themselves are type-l fuzzy sets; they are very 
useful in circumstances where it is difficult to determine an exact membership 
function for a fuzzy set. 
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2.4.1 Type-2 Fuzzy Sets 

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an 
extension of the concept of an ordinary fuzzy set (henceforth called a "type-l 
fuzzy set"). A type-2 fuzzy set is characterized by a fuzzy membership function, 
i.e., the membership grade for each element of this set is a fuzzy set in [0,1], 
unlike a type-l set where the membership grade is a crisp number in [0,1]. Such 
sets can be used in situations where there is uncertainty about the membership 
grades themselves, e.g., an uncertainty in the shape of the membership function or 
in some of its parameters. Consider the transition from ordinary sets to fuzzy sets. 
When we cannot determine the membership of an element in a set as ° or 1, we 
use fuzzy sets of type-I. Similarly, when the situation is so fuzzy that we have 
trouble determining the membership grade even as a crisp number in [0,1], we use 
fuzzy sets oftype-2. 

This does not mean that we need to have extremely fuzzy situations to 
use type-2 fuzzy sets. There are many real-world problems where we cannot 
determine the exact form of the membership functions, e.g., in time series 
prediction because of noise in the data. Another way of viewing this is to consider 
type-I fuzzy sets as a first order approximation to the uncertainty in the real­
world. Then type-2 fuzzy sets can be considered as a second order approximation. 
Of course, it is possible to consider fuzzy sets of higher types but the complexity 
of the fuzzy system increases very rapidly. For this reason, we will only consider 
very briefly type-2 fuzzy sets. Lets consider some simple examples of type-2 
fuzzy sets. 

Example 2.1 Consider the case of a fuzzy set characterized by a Gaussian 
membership function with mean m and a standard deviation that can take values 
in [cr\,cr2], i.e., 

~(x)=exp {- Yz[(x - m)/cr]2 }; cr E [crl,cr2] (2.25) 

Corresponding to each value of cr, we will get a different membership curve (see 
Figure 2.8). So, the membership grade of any particular x (except x=m) can take 
any of a number of possible values depending upon the value of cr, i.e., the 
membership grade is not a crisp number, it is a fuzzy set. Figure 2.8 shows the 
domain of the fuzzy set associated with x=0.7; however, the membership function 
associated with this fuzzy set is not shown in the figure. 
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Figure 2.8 A type-2 fuzzy set representing a type-l fuzzy set with uncertain 
standard deviation. 

Example 2.2 Consider the case of a fuzzy set with a Gaussian membership 
function having a fixed standard deviation cr, but an uncertain mean, taking values 
in [mt, m2l, i.e., 

~(x)=exp {- Y2[(x - m)/cr]2 }; m E [m\,m2] (2.26) 

Again, ~(x) is a fuzzy set. Figure 2.9 shows an example of such a set. 
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Figure 2.9 A type-2 fuzzy set representing a type-l fuzzy set with uncertain mean. 
The mean is uncertain in the interval [0.4,0,6] , 
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Example 2.3 Consider a type-I fuzzy set characterized by a Gaussian membership 
function (mean M and standard deviation O"x), which gives one crisp membership 
m(x) for each input x E X, where 

m(x)=exp {- Yz [(x - M)/crx]2} (2.27) 

This is shown in Figure 2.10. Now, imagine that this membership ofx is a fuzzy 
set. Let us cal1 the domain elements of this set "primary memberships" of x 
(denoted by ~l) and membership grades of these primary memberships "secondary 
memberships" ofx [denoted by ~2(X,~.)]. SO, for a fixed x, we get a type-I fuzzy 
set whose domain elements are primary memberships of x and whose 
corresponding membership grades are secondary memberships of x. If we assume 
that the secondary memberships fol1ow a Gaussian with mean m(x) and standard 
deviation am, as in Figure 2.10, we can describe the secondary membership 
function for each x as 

(2.28) 

where ~l E [0,1] and m is as in equation (2.27). 
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Figure 2.10 A type-2 fuzzy set in which the membership grade of every domain 
point is a Gaussian type-I set. 

We can formal1y define these two kinds oftype-2 sets as follows . 
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Definition 2.20 Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every 
domain point is a Gaussian type-I set contained in [0,1]. 

Example 2.3 shows an example of a Gaussian type-2 fuzzy set. 

Definition 2.21 Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every 
domain point is a crisp set whose domain is some interval contained in [0, I]. 

Example 2.1 shows an example of an interval type-2 fuzzy set. 

2.4.2 Type-2 Fuzzy Systems 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in 
general, will not change for any type-n (Karnik & Mendel 1998). A higher-type 
number just indicates a higher "degree of fuzziness". Since a higher type changes 
the nature of the membership functions, the operations that depend on the 
membership functions change; however, the basic principles of fuzzy logic are 
independent of the nature of membership functions and hence, do not change. 
Rules of inference like Generalized Modus Ponens or Generalized Modus Tollens 
continue to apply. 

In Figure 2.11 we show the general structure of a type-2 fuzzy system. 
We assume that both antecedent and consequent sets are type-2; however, this 
need not necessarily be the case in practice. 
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Figure 2.11 General structure of a type-2 fuzzy system. The structure of the 
"output processing" block is shown in Figure (b). In order to 
emphasize the importance of the type-reduced set, we have shown 
two outputs for the fuzzy system, the type reduced set and the 
crisp defuzzified value. 
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The structure of the type-2 fuzzy rules is the same as for the type-l case 
because the distinction between type-2 and type-l is associated with the nature of 
the membership functions. Hence, the only difference is that now some or all the 
sets involved in the rules are oftype-2. In a type-l fuzzy system, where the output 
sets are type-l fuzzy sets, we perform defuzzification in order to get a number, 
which is in some sense a crisp (type-O) representative of the combined output sets. 
In the type-2 case, the output sets are type-2; so we have to use extended versions 
of type-l defuzzification methods. Since type-l defuzzification gives a crisp 
number at the output of the fuzzy system, the extended defuzzification operation 
in the type-2 case gives a type-l fuzzy set at the output. Since this operation takes 
us from the type-2 output sets of the fuzzy system to a type-l set, we can call this 
operation "type reduction" and call the type-l fuzzy set so obtained a "type­
reduced set". The type-reduced fuzzy set may then be defuzzified to obtain a 
single crisp number; however, in many applications, the type-reduced set may be 
more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership 
functions of type-l fuzzy sets, due to the dependence of the membership functions 
on available linguistic and numerical information. Linguistic information (e.g. 
rules from experts), in general, does not give any information about the shapes of 
the membership functions. When membership functions are determined or tuned 
based on numerical data, the uncertainty in the numerical data, e.g., noise, 
translates into uncertainty in the membership functions. In all such cases, any 
available information about the linguistic/numerical uncertainty can be 
incorporated in the type-2 framework. However, even with all of the advantages 
that fuzzy type-2 systems have, the literature on the applications of type-2 sets is 
scarce. Some examples are Yager (1980) for decision making, and Wagenknecht 
& Hartmann (1988) for solving fuzzy relational equations. We think that more 
applications of type-2 fuzzy systems will come in the near future as the area 
matures and the theoretical results become more understandable for the general 
public in the fuzzy arena. 

2.5 Fuzzy Modelling 

In general, we design a fuzzy inference system based on the past known behavior 
of a target system. The fuzzy system is then expected to be able to reproduce the 
behavior of the target system. For example, if the target system is a human 
operator in charge of a chemical reaction process, then the fuzzy inference system 
becomes a fuzzy logic controller that can regulate and control the process. 

Let us now consider how we might construct a fuzzy inference system 
for a specific application. Generally speaking, the standard method for 
constructing a fuzzy inference system, a process usually called "fuzzy modelling", 
has the following features: 
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• The rule structure of a fuzzy inference system makes it easy to 
incorporate human expertise about the target system directly into the 
modelling process. Namely, fuzzy modelling takes advantage of 
"domain knowledge" that might not be easily or directly employed in 
other modelling approaches. 

• When the input-output data of a target system is available, 
conventional system identification techniques can be used for fuzzy 
modelling. In other words, the use of "numerical data" also plays an 
important role in "fuzzy modelling", just as in other mathematical 
modelling methods. 

Conceptually, fuzzy modelling can be pursued in two stages, which are 
not totally disjoint. The first stage is the identification of the "surface structure", 
which includes the following tasks: 

1. Select relevant input and output variables. 
2. Choose a specific type of fuzzy inference system. 
3. Determine the number of linguistic terms associated with each input and 

output variables. 
4. Design a collection of fuzzy if-then rules. 

Note that to accomplish the preceding tasks, we rely on our own 
knowledge (common sense, simple physical laws, an so on) of the target system, 
information provided by human experts who are familiar with the target system, 
or simply trial and error. 

After the first stage of fuzzy modelling, we obtain a rule base that can 
more or less describe the behavior of the target system by means of linguistic 
terms. The meaning of these linguistic terms is determined in the second stage, the 
identification of "deep structure", which determines the MFs of each linguistic 
term. Specifically, the identification of deep structure includes the following tasks: 

1. Choose an appropriate family of parameterized MFs. 
2. Interview human experts familiar with the target systems to determine 

the parameters of the MFs used in the rule base. 
3. Refine the parameters of the MFs using regression and optimization 

techniques. 

Task 1 and 2 assume the availability of human experts, while task 3 
assumes the availability of a desired input-output data set. 
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2.6 Summary 

In this chapter, we have presented the main ideas underlying Fuzzy Logic and we 
have only started to point out the many possible applications of this powerful 
computational theory. We have discussed in some detail fuzzy set theory, fuzzy 
reasoning and fuzzy inference systems. We also reviewed briefly type-2 fuzzy 
logic, which is a generalization of conventional fuzzy logic (type-I). At the end, 
we also gave some remarks about fuzzy modelling. In the following chapters, we 
will show how fuzzy logic techniques (in some cases, in conjunction with other 
methodologies) can be applied to solve real world complex problems. This chapter 
will serve as a basis for the new hybrid intelligent methods, for modelling and 
simulation, that will be described in Chapters 6, 7 and 8 of this book. Fuzzy Logic 
will also play an important role in the new neuro-fuzzy methodology for control 
that is presented in Chapters 9 to 13 of this book. 



Chapter 3 

Neural Networks for Control 

Application of fuzzy inference systems to automatic control was first reported in 
Mamdani's paper (Mamdani & Assilian, 1975), where a "fuzzy logic controller" 
(FLC) was used to emulate a human operator's control of a steam engine and 
boiler combination. Since then, "fuzzy logic control" has been recognized as the 
most significant and fruitful application for fuzzy logic (Kosko, 1992). In the past 
few years, advances in microprocessors and hardware technologies have created 
an even more diversified application domain for fuzzy logic controllers, which 
ranges from consumer electronics to the automobile industry. However, without 
adaptive capability, the performance ofFLCs relies exclusively on two factors: the 
availability of human experts, and the knowledge acquisition techniques to 
convert human expertise into appropriate fuzzy rules. These two factors 
substantially restrict the application domain ofFLCs. 

On the other hand, investigation into using neural networks in automatic 
control systems did not receive much attention until the "backpropagation" 
learning rule was formulated by Rumelhart and others (Rumelhart, Hinton & 
Williams, 1986). Since then, research of neural control has evolved quickly and a 
number of neural controller design methods have been proposed in the literature 
(Werbos, 1991). 

Figure 3.1 is a block diagram of a typical "feedback control system", 
where the "plant" (or "process") represents the dynamic system to be controlled 
and the "controller" employs a control strategy to achieve a control goal. Here we 
shall denote the state variables of the plant as a vector x(t); these variables are 
usually governed by a set of "state equations" (usually differential equations) that 
characterize the dynamic behavior of the plant. Since the state variables are 
internal to the plant, some of them may not be directly measurable from the 
external world. The measurable quantities of the plant, also known as its outputs, 
are denoted as a vector yet). We shall assume that all states are measurable; thus 
the output of the plant yet) is equal to the state x(t). 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001
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The state equation for a general non-linear plant can be expressed in the 
matrix notation 

x'(t) = f (x(t), u(t)) (plant dynamics) (3.1) 

u(t) Plant yet) = x(t 
Controller I .... Dynamics .. ... ... 

yet) 

x(t) 

Figure 3.1 Block diagram for a continuous feedback control system. 

where u(t) is the controller's output at time t, and the size of the vector x(t) is 
called the "order" of the plant. A general control goal is to find a controller with a 
static function ~ that maps an observed plant output x(t) to a control action u-that 
is, u(t) = ~ (x(t))- such that the plant output can follow some given desired output 
signal xd(t) as closely as possible. If xd(t) is a constant vector, then the control 

problem is referred to as "regulator problem", where the plant states are directly 
fed back to the controller. This is actually what Figure 3.1 shows. On the other 
hand, if the desired trajectory xd(t) is a time-varying signal, then we have a 

"tracking problem" in which an error signal, defined as the difference between 
desired and actual outputs, is fed back to the controller. If f is unknown, we need 
to perform system identification first to find a model for the plant. Moreover, if f 
is time varying, it is desirable to make ~ adaptive to respond to the changing 
characteristics of the plant. 

In the case of linear feedback control systems, the plant and controller 
can be reformulated as the following equations: 

x'(t) = Ax(t) + Bu(t) 
u(t) = kx(t) 

(plant dynamics) 
(linear controller) 

(3.2) 

The treatment of linear control systems is relatively complete in the literature (for 
example, see Brogan, 1991) and will not be discussed here. On the other hand, the 
area of non-linear control is still with many open problems and its more 
interesting. In this book, the treatment will be restricted to non-linear plants with a 
general form given by Equation (3.1). 

If we replace the controller block in Figure 3.1 with neural networks or 
fuzzy systems, then we end up with "neural" or "fuzzy control systems", 
respectively. In other words, neural or fuzzy control design methods are 
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systematic ways of constructing neural networks or fuzzy inference systems, 
respectively, as controllers intended to achieve prescribed control goals. In the 
same vein, the term "neuro-fuzzy control" has been used when one is speaking 
about design methods for fuzzy logic controllers that use neural network 
techniques. 

Most neural or fuzzy controllers are nonlinear; thus rigorous analysis for 
neuro-fuzzy control systems is difficult and remains a challenging area for further 
investigation. On the other hand, a neuro-fuzzy controller usually contains a large 
number of parameters; it is thus more versatile than a linear controller in dealing 
with non-linear plant characteristics. Therefore, neuro-fuzzy controllers almost 
always surpass pure linear controllers if designed properly. 

In this chapter, we present the basic concepts, notation, and basic 
learning algorithms for neural networks that will be needed in the following 
chapters of this book. The chapter is organized as follows: Backpropagation for 
Feedforward Networks, Adaptive Neuro-Fuzzy Inference Systems, Neuro-Fuzzy 
Control and Adaptive Neuro-Control. First, we give a brief review of the basic 
concepts of neural networks and the backpropagation learning algorithm. Second, 
we give a brief description of adaptive neuro-fuzzy systems. Third, we give a brief 
review on the current methods for neuro-fuzzy control. Finally, we end the chapter 
with some remarks about adaptive control and model-based control. We consider 
this material necessary to understand the new methods for control that will be 
presented in Chapter 7 of this book. 

3.1 Backpropagation for Feedforward Networks 

This section describes the architectures and learning algorithms for adaptive 
networks, a unifying framework that subsumes almost all kinds of neural network 
paradigms with supervised learning capabilities. An adaptive network, as the 
name indicates, is a network structure consisting of a number of nodes connected 
through directional links. Each node represents a process unit, and the links 
between nodes specify the causal relationship between the connected nodes. The 
learning rule specifies how the parameters (of the nodes) should be updated to 
minimize a prescribed error measure. 

The basic learning rule of the adaptive network is the well-known 
steepest descent method, in which the gradient vector is derived by successive 
invocations of the chain rule. This method for systematic calculation of the 
gradient vector was proposed independently several times, by Bryson and Ho 
(1969), Werbos (1974), and Parker (1982). However, because research on 
artificial neural networks was still in its infancy at those times, these researchers' 
early work failed to receive the attention it deserved. In 1986, Rumelhart et al. 
used the same procedure to find the gradient in a multilayer neural network. Their 
procedure was called "backpropagation learning rule", a name which is now 
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widely known because the work of Rumelhart inspired enormous interest in 
research on neural networks. In this section, we introduce Werbos's original 
backpropagation method for finding gradient vectors and also present improved 
versions of this method. 

3.1.1 The Backpropagation Learning Algorithm 

Suppose that a given feedforward adaptive network has L layers and layer 1 (l = 0, 
1, ... , L) has N(l) nodes. Then the output and function of node i [i = 1, ... , N(l)] in 
layer 1 can be represented as xl,i and fl,i' respectively, as shown in Figure 3.2. 

Since the output of a node depends on the incoming signals and the parameter set 
of the node, we have the following general expression for the node function fl i : , 

Xl' = fl i (x, , ... , XII N(I-I) ex,~, y, ... ) (3.3) ,1 '1-1,1 -, , 

where ex, ~, y , etc. are the parameters of this node. 

XO,I 

• 

XO,2 

• 

t t t t 
Layer 0 Layer I Layer 2 Layer 3 

Figure 3.2 Feedforward adaptive network. 

Assuming that the given training data set has P entries, we can define an 
error measure for the pth (1 s P s P) entry of the training data as the sum of the 
squared errors: 

(3.4) 



33 

where dk is the kth component of the pth desired output vector and x is the kth 
L,k 

component of the actual output vector produced by presenting the pth input vector 
to the network. Obviously, when Ep is equal to zero, the network is able to 

reproduce exactly the desired output vector in the pth training data pair. Thus our 
task here is to minimize an overall error measure, which is defined as E = I Ep . 

We can also define the "error signal" E . as the derivative of the error 
1,1 

measure Ep with respect to the output of the node i in layer I, taking both direct 

and indirect paths into consideration. Mathematically, 

El,i = a+ Ep_ 

ax 
I,i 

(3.5) 

this expression was called the "ordered derivative" by Werbos (1974). The 
difference between the ordered derivative and the ordinary partial derivative lies 
in the way we view the function to be differentiated. For an internal node output 

xl i ' the partial derivative a+Ep / ax . is equal to zero, since Ep does not depend , ~ 

on xl i directly. However, it is obvious that Ep does depend on xl i indirectly, , , 
since a change in xl i will propagate through indirect paths to the output layer and , 
thus produce a corresponding change in the value ofEp . 

The error signal for the ith output node (at layer L) can be calculated 
directly: 

E =a+E =aE 
L,i --p- -p-

ax. ax. 
L,I L.I 

(3.6) 

This is equal to EL,i = -2(di - xL,i ) if Ep is defined as in Equation (3.4). For the 

internal node at the ith position of layer I, the error signal can be derived by the 
chain rule of differential calculus: 

N(I+I) N(I+I) 

E =O+E = L a+E 
l,i --p- --p- af =LE 

-l+I,m- l+I,m 

ax l,i 

'---v---' 
error signal 
at layer I 

m=1 ax 
l+I,m 

a x m=l 
l,i 

'-~--v--~J 

error signal 
at layer 1+ I 

af 
-1+I,m-

(3.7) 

aXl,i 

where 0 ~ I ~ L-I. That is, the error signal of an internal node at layer I can be 
expressed as a linear combination of the error signal of the nodes at layer 1+ I. 
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Therefore, for any I and i, we can find 81 i by first applying Equation (3.6) once to , 
get error signals at the output layer, and then applying Equation (3.7) iteratively 
until we reach the desired layer l. The underlying procedure is called 
backpropagation since the error signals are obtained sequentially from the output 
layer back to the input layer. 

The gradient vector is defined as the derivative of the error measure with 
respect to each parameter, so we have to apply the chain rule again to find the 
gradient vector. If a is a parameter of the ith node at layer I, we have 

8+E =a+E 8fl · = ci' 8£1' --p- --p- - ,1- ,I - ,1- (3.8) 

8 a 8xI i 8a 8a , 

The derivative of the overall error measure E with respect to a is 

p 

a+E = I a+Ep_ 
8 a p~1 8 a 

(3.9) 

Accordingly, for simple steepest descent (for minimization), the update 
formula for the generic parameter a is 

L1a = -11 a+ E 
8a 

in which 11 is the "learning rate", which can be further expressed as 

(3.10) 

(3.11) 

where k is the "step size", the length of each transition along the gradient direction 
in the parameter space. 

There are two types of learning paradigms that are available to suit the 
needs for various applications. In "off-line learning" (or "batch learning"), the 
update formula for parameter a is based on Equation (3.9) and the update action 
takes place only after the whole training data set has been presented-that is, only 
after each "epoch" or "sweep". On the other hand, in "on-line learning" (or 
"pattern-by-pattern learning"), the parameters are updated immediately after each 
input-output pair has been presented, and the update formula is based on Equation 
(3.8). In practice, it is possible to combine these two learning modes and update 
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the parameter after k training data entries have been presented, where k is between 
1 and P and it is sometimes referred to as the "epoch size". 

3.1.2 Backpropagation Multilayer Perceptions 

Artificial neural networks, or simply "neural networks" (NNs), have been studied 
for more than three decades since Rosenblatt first applied single-layer 
"perceptrons" to pattern classification learning (Rosenblatt, 1962). However, 
because Minsky and Papert pointed out that single-layer systems were limited and 
expressed pessimism over multilayer systems, interest in NNs dwindled in the 
1970s (Minsky & Papert, 1969). The recent resurgence of interest in the field of 
NNs has been inspired by new developments in NN learning algorithms (Fahlman 
& Lebiere, 1990), analog VLSI circuits, and parallel processing techniques 
(Lippmann, 1987). 

Quite a few NN models have been proposed and investigated in recent 
years. These NN models can be classified according to various criteria, such as 
their learning methods (supervised versus unsupervised), architectures 
(feedforward versus recurrent), output types (binary versus continuous), and so 
on. In this section, we confine our scope to modelling problems with desired 
input-output data sets, so the resulting networks must have adjustable parameters 
that are updated by a supervised learning rule. Such networks are often referred to 
as "supervised learning" or "mapping networks", since we are interested in 
shaping the input-output mappings of the network according to a given training 
data set. 

A backpropagation "multilayer perceptron" (MLP) is an adaptive 
network whose nodes (or neurons) perform the same function on incoming 
signals; this node function is usually a composite of the weighted sum and a 
differentiable non-linear activation function, also known as the "transfer function". 
Figure 3.3 depicts three of the most commonly used activation functions in 
backpropagation MLPs: 

Logistic function: 

Hyperbolic tangent function: 

Identity function: 

f(x) == --=:;1 __ 
1 + e-X 

f(x) == tan h (x/2) = 

f(x) = X 

1 - e-X 

1 + e-X 

Both the hyperbolic tangent and logistic functions approximate the 
signum and step function, respectively, and provide smooth, nonzero derivatives 
with respect to input signals. Sometimes these two activation functions are 
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referred to as "squashing functions" since the inputs to these functions are 
squashed to the range [0,1] or [-1,1]. They are also called "sigmoidal functions" 
because their s-shaped curves exhibit smoothness and asymptotic properties. 

Backpropagation MLPs are by far the most commonly used NN 
structures for applications in a wide range of areas, such as pattern recognition, 
signal processing, data compression and automatic control. Some of the well­
known instances of applications include NETtalk (Sejnowski & Rosenberg, 1987), 
which trained an MLP to pronounce English text, Carnegie Mellon University's 
AL V INN (Pomerleau, 1991), which used an MLP for steering an autonomous 
vehicle; and optical character recognition (Sakinger, Boser, Bromley, Lecun & 
Jackel, 1992). In the following lines, we derive the backpropagation learning rule 
for MLPs using the logistic function. 

r":;r::"I H'T~"~2fr"T",{:EJ - 1 , ............ ~ .. .. .. .. .. .. .. - 1 .. -; .. .. .. .. .. .. .. -5.. .. .. .. -: - ...... .... .. 

-?'o 0 10 -?'o ~ 10 -1~1O ~ 10 
00 00 ~ 

Figure 3.3 Activation functions for backpropagation MLPs: (a) logistic function; 
(b) hyperbolic function; (c) identity function. 

The "net input" x of a node is defined as the weighted sum of the 
incoming signals plus a bias term. For instance, the net input and output of node j 
in Figure 3.4 are 

Xj = Ii Wij Xi + Wj , 

Xj = f( Xj ) = 1 
1 + exp (- Xj) , 

(3.12) 

where Xi is the output of node i located in anyone of the previous layers, Wij is the 

weight associated with the link connecting nodes i and j, and Wj is the bias of node 

j. Since the weights Wij are actually internal parameters associated with each node 

j, changing the weights of a node will alter the behavior of the node and in tum 
alter the behavior of the whole backpropagation MLP. 
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Figure 3.4 Node j of a backpropagation MLP. 

Figure 3.5 shows a three-layer backpropagation MLP with three inputs to 
the input layer, three neurons in the hidden layer, and two output neurons in the 
output layer. For simplicity, this MLP will be referred to as a 3-3-2 network, 
corresponding to the number of nodes in each layer. 

11 
Layer 0 

(Input Layer) 

11 
Layer 1 

(Hidden Layer) 

1------l.X 7 

1--_---l.Xg 

11 
Layer 2 

(Output Layer) 

Figure 3.5 A 3-3-2 backpropagation MLP. 

The "backward error propagation", also known as the "backpropagation" 
(BP) or the "generalized data rule" (GDR), is explained next. First, a squared error 
measure for the pth input-output pair is defined as 

Ep = L: (dk - Xk)2 (3.13) 
k 



38 

where dk is the desired output for node k, and xk is the actual output for node k 

when the input part of the pth data pair presented. To find the gradient vector, an 
error term ei is defined as 

E' = a+ E 1 --p- (3.14) 

ax' 1 

By the chain rule, the recursive formula for !:':i can be written as 

c· 1 

-2(di - xi) a xi_ = -2(di - xj} xi (1- xi) 

aXi 

if node i is a output 

node 

(3.15) 

a xi_ Lj,i<j a+ Ep_ a Xj_ xi (1- xj} Lj,i<j Ej Wij otherwise 

a xi a Xj a xi 

where wij is the connection weight from node i to j; and Wij is zero if there is no 

direct connection. Then the weight update wki for on-line (pattern-by-pattern) 

learning is 

!1 wk' = - 11 a+ E = - 11 a+ E a X· 1 'I __ p_ 'I--p- -1-

a wk' ax' a wk' 1 1 1 

where T] is a learning rate that affects the convergence speed and stability of the 
weights during learning. 

For off-line (batch) learning, the connection weight wki is updated only 

after presentation of the entire data set, or only after an "epoch": 

!1 wki = - TJ a+ E = - TJ L a+ Ep_ (3.17) 

aWki p aWki 

or, in vector form, 



llw=-ll a+E=-ll V'w E 

8w 
(3.18) 
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where E = Lp Ep. This corresponds to a way of using the true gradient direction 

based on the entire data set. 
The approximation power of backpropagation MLPs has been explored 

by some researchers. Yet there is very little theoretical guidance for determining 
network size in terms of say, the number of hidden nodes and hidden layers it 
should contain. Cybenko (1989) showed that a backpropagation MLP, with one 
hidden layer and any fixed continuous sigmoidal non-linear function, can 
approximate any continuous function arbitrarily well on a compact set. When used 
as a binary-valued neural network with the step activation function, a 
backpropagation MLP with two hidden layers can form arbitrary complex 
decision regions to separate different classes, as Lippmann (1987) pointed out. For 
function approximation as well as data classification, two hidden layers may be 
required to learn a piecewise-continuous function (Masters, 1993). 

3.2 Adaptive N euro-Fuzzy Inference Systems 

In this section, we describe a class of adaptive networks that are functionally 
equivalent to fuzzy inference systems (Kosko, 1992). The architecture is referred 
to as ANFIS, which stands for "adaptive network-based fuzzy inference system". 
We describe how to decompose the parameter set to facilitate the hybrid learning 
rule for ANFIS architectures representing both the Sugeno and Tsukamoto fuzzy 
models. 

3.2.1 ANFIS Architecture 

A fuzzy inference system consists of three conceptual components: a fuzzy rule 
base, which contains a set of fuzzy if-then rules; a database, which defines the 
membership functions used in the fuzzy rules; and a reasoning mechanism, which 
performs the inference procedure upon the rules to derive a reasonable output or 
conclusion (Kandel, 1992). For simplicity, we assume that the fuzzy inference 
system under consideration has two inputs x and y and one output z. For a first­
order Sugeno fuzzy model (Sugeno & Kang, 1988), a common rule set with two 
fuzzy if-then rules is the following: 

Rule 1: IfxisAI andyisBl, then fl =Plx+qly+rl, 

Rule 2: Ifx is A2 and y is B2, then f2 = P2x + q2Y + r2 ' 
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Figure 3.6 (a) illustrates the reasoning mechanism for this Sugeno model; the 
corresponding equivalent ANFIS architecture is as shown in Figure 3.6 (b), where 
nodes of the same layer have similar functions, as described next. (Here we denote 
the output of the ith node in layer I as 01 i). , 

Layer 1: Every node i in this layer is an adaptive node with a node function 

0 1 i = I-lAi (x), for i = 1, 2 , , 

01 i = I-lBi-2 (y), for i = 3, 4 , , (3.19) 

where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such as 

"small" or "large") associated with this node. In other words, 01 i is the , 
membership grade of a fuzzy set A and it specifies the degree to which the given 
input x (or y) satisfies the quantifier A. Here the membership function for A can 
be any appropriate parameterized membership function, such as the generalized 
bell function: 

I-lA (x) = __ -=-1 __ 

1 + I (x-ci)/ai 12bi 

(3.20) 

where {ai, bi ' ci} is the parameter set. As the values of these parameters change, 

the bell-shaped function varies accordingly, thus exhibiting various forms of 
membership functions for a fuzzy set A. Parameters in this layer are referred to as 
"premise parameters". 

Layer 2: Every node in this layer is a fixed node labeled II, whose output is the 
product of all incoming signals: 

02,i = Wi = I-lAi (x) I-lBi (y), i = 1,2. (3.21) 

Each node output represents the firing strength of a fuzzy rule. 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node 
calculates the ratio of the ith rule's firing strength to the sum of all rules' firing 
strengths: 

(3.22) 

For convenience, outputs of this layer are called "normalized firing strengths". 



X 

Y 

Wl 

fl = PIX + qlY + rl 

y => f=w1fl +wl6 

Wl+W2 

= w1fl + W2f2 

B2 

-------- W2 

6 = P2X + Q2Y + r2 
y 

x Y 

(a) 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

• • • • ~ 

(b) 

Figure 3.6 (a) A two-input Sugeno fuzzy model with 2 rules; (b) equivalent 
ANFIS architecture (adaptive nodes shown with a square and 

fixed nodes with a circle). 
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Layer 4: Every node i in this layer is an adaptive node with a node function 

04 . = w· f = w· ( p·x + q.y + r· ) ,1 1 1 1 1 1 1 , (3.23) 

where wi is a normalized firing strength from layer 3 and {Pi ' qi ' ri } is the 

parameter set of this node. Parameters in this layer are referred to as "consequent 
parameters" . 

Layer 5: The single node in this layer is a fixed node labeled ~, which computes 
the overall output as the summation of all incoming signals: 

overall output = 05,i = L wi fi = ~i wJi_ 

LiWi 

(3.24) 

Thus we have constructed an adaptive network that is functionally 
equivalent to a Sugeno fuzzy model. We can note that the structure of this 
adaptive network is not unique; we can combine layers 3 and 4 to obtain an 
equivalent network with only four layers. In the extreme case, we can even shrink 
the whole network into a single adaptive node with the same parameter set. 
Obviously, the assignment of node functions and the network configuration are 
arbitrary, as long as each node and each layer perform meaningful and modular 
functionalities. 

The extension from Sugeno ANFIS to Tsukamoto ANFIS is 
straightforward, as shown in Figure 3.7, where the output of each rule ( fi' i = I, 2) 

is induced jointly by a consequent membership function and a firing strength. 

3.2.2 Learning Algorithm 

From the ANFIS architecture shown in Figure 3.6 (b), we observe that when the 
values of the premise parameters are fixed, the overall output can be expressed as 
a linear combination of the consequent parameters. Mathematically, the output fin 
Figure 3.6 (b) can be written as 

(3.25) 

WI +W2 WI +W2 

=Wl (Pl x +qly+rl )+W2 (P2x +q2y+r2) 

= (Wlx) PI + (WlY) ql + (WI) rl + (W2x) P2 + (W2Y) q2 + (W2) r2 



x 

y 

x 
x 

Bl I 

----i------ WI ---r----
I 

y 

y 

y 

(a) 

(b) 
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fl Z ~ f= wl!+w~t 
Wl+ W 2 

=WJl +W2f2 

z 

f 

Figure 3_7 (a) A two-input Tsukamoto fuzzy model with two rules; 
(b) equivalent ANFIS architecture_ 
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which is linear in the consequent parameters PI> qI> q, P2, q2, and r2. From this 

observation, we can use a hybrid learning algorithm for parameter estimation in 
this kind of models (lang, 1993). More specifically, in the forward pass of the 
hybrid learning algorithm, node outputs go forward until layer 4 and the 
consequent parameters are identified by the least-squares method. In the backward 
pass, the error signals propagate backward and the premise parameters are updated 
by gradient descent. 

It has been shown (Jang, 1993) that the consequent parameters identified 
in this manner are optimal under the condition that the premise parameters are 
fixed. Accordingly, the hybrid approach converges much faster since it reduces 
the search space dimensions of the original pure backpropagation method. For 
Tsukamoto ANFIS, this can be achieved if the membership function on the 
consequent part of each rule is replaced by a piecewise linear approximation with 
two consequent parameters. 

3.3 Neuro-Fuzzy Control 

The original purpose of fuzzy logic control, as proposed in Mamdani's paper in 
1975, was to mimic the behavior of a human operator able to control a complex 
plant satisfactorily. The complex plant in question could be a chemical reaction 
process, a subway train, or a traffic signal control system. After more than 20 
years, the ultimate goal of fuzzy controllers remains the same-that is, to automate 
an entire control process by replacing a human operator with a fuzzy controller 
made up of computer softwarelhardware. 

To construct a fuzzy controller, we need to perform "knowledge 
acquisition", which takes a human operator's knowledge about how to control a 
system and generates a set of fuzzy if-then rules as the backbone for a fuzzy 
controller that behaves like the original human operator. Usually we can obtain 
two types of information from a human operator: "linguistic information" and 
"numerical information". 

Linguistic information: An experienced human operator can usually summarize 
his or her reasoning process in arriving at final control actions or decisions as a set 
of fuzzy if-then rules with imprecise but roughly correct membership functions; 
this corresponds to the linguistic information supplied by human experts, which is 
obtained via a lengthy interview process plus a certain amount of trial and error. 

Numerical information: When a human operator is working, it is possible to 
record the sensor data observed by the human and the human's corresponding 
actions as a set of desired input-output data pairs. This data set can be used as 
training data in constructing a fuzzy controller. 
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Prior to the emergence of neuro-fuzzy approaches, most design methods 
used only linguistic information to build fuzzy controllers; this approach is not 
easily formalized and is more of an art than an engineering practice. Following 
this approach usually involves manual trial-and-error processes to fine-tune the 
membership functions. Successful fuzzy control applications based on linguistic 
information plus trial-and-error tuning include steam engine and boiler control 
(Mamdani & Assilian, 1975), Sendai subway systems (Yasunobu & Miyamoto, 
1985), nuclear reaction control (Bernard, 1988), automobile transmission control 
(Kasai & Morimoto, 1988), aircraft control (Chiu, Chand, Moore & Chaudhary, 
1991), and many others. 

Now, with learning algorithms, we can take further advantage of the 
numerical information (input-output data pairs) and refine the membership 
functions in a systematic way. In other words, we can use linguistic information to 
identify the structure of a fuzzy controller, and then use numerical information to 
identify the parameters such that the fuzzy controller can reproduce the desired 
action more accurately. 

3.3.1 Inverse Learning 

The development of "inverse learning" (Widrow & Stearns, 1985) for designing 
neuro-fuzzy controllers involves two phases. In the learning phase, an on-line or 
off-line technique is used to model the inverse dynamics of the plant. The 
obtained neuro-fuzzy model, which represents the inverse dynamics of the plant, 
is then used to generate control actions in the application phase. These two phases, 
can proceed simultaneously, hence this design method fits in perfectly with the 
classical adaptive control scheme. 

By assuming that the order of the plant (that is, the number of state 
variables) is known and all state variables are measurable, we have 

x(k+l) = f(x(k), u(k)) (3.26) 

where x(k+ 1) is the state at time k+ I, x(k) is the state at time k, and u(k) is the 
control signal at time k (assuming for simplicity that u(k) is a scalar). Similarly, 
the state at time k+ 2 is expressed as 

x(k+2) = f(x(k+l), u(k+l)) = f(f(x(k), u(k)), u(k+l)) (3.27) 

In general, we have 

x(k+n) = F(x(k), U) (3.28) 
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where n is the order of the plant, F is a multiple composite function of f, and U is 
the control actions from k to k+n-l, which is equal to 

ruCk), u(k+l), ... , u(k+n-l)]T 

The preceding equation points out the fact that given the control input u from time 
k to k+n-I, the state of the plant will move from x(k) to x(k+n) in exactly n time 
steps. Furthermore, we assume that the inverse dynamics of the plant do exist, that 
is, U can be expressed as an explicit function ofx(k) and x(k+n): 

U = G(x(k), x(k+n)) (3.29) 

This equation essentially says that there exists a unique input sequence U, 
specified by mapping G, that can drive the plant from state x(k) to x(k+n) in n 
time steps. The problem now becomes how to find the inverse mapping G. 

Although the inverse mapping G in Equation (3.29) exists by 
assumption, it does not always have an analytically closed form. Therefore, 
instead of looking for methods of solving Equation (3.29) explicitly, we can use 
an adaptive network or ANFIS with 2n inputs and n outputs to approximate the 
inverse mapping G according to the generic training data pairs 

[X(k)T , x(k+n)T ; UT ] (3.30) 

Figure 3.8 illustrates the situation in which n is equal to 1. Figure 3.8 (a) 
shows a plant block in which the plant output x(k+ 1) is a function of a previous 

state x(k) and input u(k); we use z-1 block to represent the unit-time delay 
operator. Figure 3.8 (b) is the block diagram during the training phase; Figure 3.8 
(c) is the block diagram during the application phase. 

Assume that the adaptive network truly imitates the input-output 
mapping of the inverse dynamics G. Then, given the current state x(k) and the 

A 

desired future state xd(k+n), the adaptive network will generate an estimated U: 

A '" 
U = G(x(k), xd(k+n)) (3.31 ) 

After n steps, this control sequence can bring the state x(k) to the desired state 
xd(k+n), assuming that the adaptive network function G is exactly the same as the 

inverse mapping G. This application phase is shown in the block diagram of 
Figure 3.8 (b). If the future desired state xd(k+n) is not available in advance, we 

can use the current desired state xd(k) in Figure 3.8 (b). This implies that the 

current desired state will appear after n time steps and the whole system behaves 
like a pure n-step time delay system. 
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Figure 3.8 Block diagram for the inverse learning method: (a) plant block; 
(b) training phase; (c) application phase 

.. ) 

~ ~ 

When G is not close to G, the control sequence U cannot bring the state 
to xd(k+n) in exactly the next n time step. As more data pairs are used to refine 

""" the parameters in the adaptive network, G will become closer to G and the control 
will be more and more accurate as the training process goes on. 

For off-line applications, we have to collect a set of training data pairs 
and then train the adaptive network in the batch mode. For on-line applications to 
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deal with time-varying systems, the control actions in Equation (3.31) are 
generated every n time steps while on-line learning occurs at every time step. 
Alternatively, we can generate the control sequence at every time step and apply 
only the first component to the plant. Figure 3.9 is a block diagram for on-line 
learning when n is equal to I. The dashed line in the figure indicates that the two 
ANFIS blocks are exact duplicates of each other. (For simplicity, we have 
removed the unit-time delay operator from this figure). 

x(k) 

ANFIS 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 

\ 
\ , 

u(k) 

Plant 

+ 

"'-- -- --~ ~~Duplicate 

Figure 3.9 Block diagram for on-line inverse learning 

3.3.2 Specialized Learning 

x(k+ 1) 

A major problem with inverse learning is that an inverse model does not always 
exist for a given plant. Moreover, inverse learning is an indirect approach that 
tries to minimize the network output error instead of the overall system error 
(defined as the difference between desired and actual trajectories). "Specialized 
learning" (Psaltis, Sideris & Yamamura, 1988) is an alternative method that tries 
to minimize the system error directly by backpropagating error signals through the 
plant block. The price that we pay is that we need to know more about the plant 
under consideration. 

Figure 3.10 illustrates the most basic type of specialized learning, Figure 
3.10 (a) is the plant block (assuming its order is I), and Figure 3.10 (b) indicates 
the training of the ANFIS controller. The ANFIS parameters are updated to reduce 
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the system error ex(k), which is defmed as the difference between the system's 

output x(k) and the desired output xd(k). 

Desired Model 

x(k) 
x(k+ 1) = f(u(k), x(k» 

u(k) ---+------+1 
"-----' 

(a) 

xd(k+l) 
Desired 
Model 

u(k) ----.----------+1 

x(k) 

IS 
Plant 

(b) 

Figure 3.10 (a) Desired model block; (b) specialized learning 
with model referencing 

To be more specific, let the plant dynamics be specified by 

x(k+l) = f(x(k), v(k)) 

and the ANFIS output be denoted as 

VCk) = F(x(k), u(k), 8) 

+ 
ex 

(3.32) 

where e is a parameter vector to be updated. If we set the ANFIS output as the 
plant's input, then v(k) = v(k) and we have a closed-loop system specified by 
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x(k+ 1) = f(x(k), F(x(k), u(k), 8» 

The objective of specialized learning is to minimize the difference 
between the closed-loop system and the desired model. Hence we can define an 
error measure: 

J(8) = L Ilf(x(k), F(x(k), u(k), 8» - xd(k+ 1)112 (3.33) 
k 

We can use backpropagation or steepest descent to update 8 to minimize the 
above error measure. To find the derivative of J(8) with respect to 8, we need to 
know the derivative of f with respect to its second argument. In other words, to 
backpropagate error signals through the plant block in Figure 3.10 (b), we need to 
know the "Jacobian matrix" of the plant, where the element at row i and column j 
is equal to the derivative of the plant's ith output with respect to its jth input. This 
usually implies that we need a model for the plant and the Jacobian matrix 
obtained from the model, which could be a neural network, an ANFIS, or another 
appropriate mathematical description of the plant. 

For a single-input plant, if the Jacobian matrix is not easily found 
directly, a crude estimate can be obtained by approximating it directly from the 
changes in the plant's input and output(s) during two consecutive time instants. 
Other methods that aim at using an approximate Jacobian matrix to achieve the 
same learning effects can be found in Chen and Pao (1989). 

It is not always convenient to specify the desired plant output xd(k) at 

every time instant k. As a standard approach in model reference adaptive Control, 
the desired behavior of the overall system can be implicitly specified by a model 
that is able to achieve the control goal satisfactorily. Let the desired model be 
specified by 

xd(k+ 1) = f(x(k), u(k» 

Then the error measure in Equation (3.33) becomes 

J(8) = L Ilf(x(k), F(x(k), u(k), 8» - f(x(k), u(k»112 (3.34) 
k 

Again, we still need the Jacobian matrix of the plant to do backpropagation. 
Note that the ANFIS controller in Equation (3.32) represents the most 

general situation. More commonly, the ANFIS controller is a function of x(k) and 
8 only and the input to the plant v(k) is expressed as the difference between the 
command signal u(k) and ANFIS output, as follows: 

~(k) = u(k) - F(x(k), 8) . 
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3.4 Adaptive Model-Based Neuro-Control 

This section briefly reviews various approaches in current adaptive neuro-control 
design (Odmivar & Elliot, 1997). Although there are other ways to classify these 
approaches (e.g., Hunt, Sbarbaro, Zbikowski & Gawthrop, 1992) this section 
nevertheless adopts one similar to adaptive control theory: 1) indirect neuro­
control and 2) direct neuro-control. 

In the indirect neuro-control scheme, a neural network does not send a 
control signal "directly" to the process. Instead, a neural network is often used as 
an indirect process characteristics indicator. This indicator can be a process model 
that mimics the process behavior or a controller auto-tuner that produces 
appropriate controller settings based upon the process behavior. In this category, 
the neuro-control approaches can be roughly distinguished as follows: 1) neural 
network model-based control, 2) neural network inverse model-based control, and 
3) neural network auto-tuner development. 

In the direct neuro-control scheme, a neural network is employed as a 
feedback controller, and it sends control signals "directly" to the process. 
Depending on the design concept, the direct neuro-control approaches can be 
categorized into: 1) controller modelling, 2) model-free neuro-control design, 3) 
model-based neuro-control design, and 4) robust model-based neuro-control 
design. 

Regardless of these distinctions, a unifying framework for neuro-control 
is to view neural network training as a non-linear optimization problem, 

NN: minJ(w) (3.35) 
w 

in which one tries to find an optimal representation of the neural network that 
minimizes an objective function J over the network weight space w. Here, NN 
indicates that the optimization problem formulation involves a neural network. 
The role a neural network plays in the objective function is then a key to 
distinguishing the various neuro-control design approaches. 

3.4.1 Indirect Neuro-Control 

The most popular control system application of neural networks is to use a neural 
network as an input-output process model. This approach is a data-driven 
supervised learning approach, i.e., the neural network attempts to mimic an 
existing process from being exposed to the process data (see Figure 3.11). The 
most commonly adopted model structure for such a purpose is the non-linear auto­
regressive and moving average with exogenous inputs (known as NARMAX) 
model or a simpler NARX (Su, McAvoy & Werbos, 1992). Alternatively, one can 
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choose to identify a continuous-time model with a dynamic neural network. 
Regardless of the model structure and the control strategy, the neuro-control 
design in this case can be conceptually stated as follows: 

NN: min F { Yp - Yn(w, ... ) } (3.36) 

w 

where YP stands for plant/process output, Yn for neural network output, and w for 

neural network weights. Here F is a functional that measures the performance of 
the optimization process. It is usually an integral or sum of the prediction errors 
between YP and Yn' For example, in this model development stage, process inputs 

and outputs {up, yp} are collected over a finite period of time and used for neural 

network training. 
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Figure 3.11 Neural Network as a black-box model of a process 

At the implementation stage, nevertheless, the neural network model 
cannot be used alone. It must be incorporated with a model-based control scheme. 
In the chemical process industry, for example, a neural network is usually 
employed in a non-linear model predictive control (MPC) scheme (Su & McAvoy, 
1993). Figure 3.12 illustrates the block diagram of an MPC control system. In 
fact, the MPC control is also an optimization problem. 

The optimization problem here can be expressed as follows: 

min F' { y* - Yn (u, ... ) } (3.37) 

u 

where y* designates the desired close-loop process output, u the process/model 
input or control signal, and Yn the predicted process output (by the neural network 
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model). Here F' stands for an objective function that evaluates the closed-loop 
performance. For example, the optimization problem in the implementation stage 
is usually as follows: 

mm L II y*(t) - Yn(t) - d(t) Ie , Yn = t{ (u, ... ) (3.38) 

u 

~ x U ~d ;0-~ Optim izer Plant +~ 
Y 

~. -

Constraints 

,, + 
, Model 

Model -
" Y 

>< 
~ 
~ xxxxxxxx 

Figure 3.12 Neural network model with non-linear model predictive control 

where y*(t) stands for desired set point trajectory and d(t) for estimated 
disturbance. This optimization is performed repeatedly at each time interval 
during the course of feedback control. Although the constrains are not particularly 
of interest in the discussion, one advantage of this indirect control design 
approach over the direct ones is that the constraints can be incorporated when 
solving the above optimization problem. 

In some cases, a certain degree of knowledge, about the process might be 
available, such as model structure or particular physical phenomena that are well 
understood. In this case, a full black-box model might not be most desirable. For 
example, if the structure of the process model is available, values for the 
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associated parameters can be determined by a neural network. Examples of these 
parameters can be time constants, gains, and delays or physical parameters such as 
diffusion rates and heat transfer coefficients. When model structure is not known a 
priori, neural networks can be trained to select elements of a model structure from 
a predetermined set. Lastly, in other cases where model structure is partially 
known, neural networks can also be integrated with such a partial model so that 
the process can be better model (see Figure 3.13). 

For illustration purposes, the parametric or partial neural network 
modelling problem can be formulated as follows: 

NN: mm F { Yp - Ym (8, ... ) } 8 = ~ (w, ... ) (3 .39) 

w 

where Ym is the predicted output from the model and e stands for the process 

parameters, model structural information and other elements required to complete 
the model. Notice the only difference between Equation (3.39) and Equation 
(3 .36) is that Ym replaces Yn' From a model-based control standpoint, this 

approach is essentially identical to the fuil black-box neural network model except 
that the neural network does not directly mimic the process behavior. 
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Figure 3.13 A neural network can be a parameter estimator, model structure 
selector, or a partial element of a physical model 
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A neural network can be trained to develop an inverse model of the plant. 
The network input is the process output, and the network output is the 
corresponding process input (see Figure 3.14). In general, the optimization 
problem can be formulated as 

NN: min F {U*p_l - un (w, ... )} 
w 

(3.40) 

where U*p-l is the process inputs. Typically, the inverse model is a steady 

state/static model, which can be used for feedforward control. Given a desired 
process set point y*, the appropriate steady-state control signal u * for this set 
point can be immediately known: 

U*=~(y*, ... ) (3.41) 

Successful applications of inverse modelling are discussed in (Miller, 
Sutton & Werbos, 1995). Obviously, an inverse model exists only when the 
process behaves monotonically as a "forward" function at steady state. 
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Figure 3.14 A neural network inverse model 

As in the previous case where neural networks can be used to estimate 
parameters of a known model, they can also be used to estimate tuning parameters 
of a controller whose structure is known a priori. A controller's tuning parameter 
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estimator is often referred to as an autotuner. The optimization problem in this 
case can be formulated as follows: 

NN: min F { YI* -YIn (w, ... )} (3.42) 

w 

where 11 * denotes the controller parameters as targets and 11n stands for the 

predicted values by the neural network. Network input can comprise sampled 
process data or features extracted from it. However, these parameters 11 cannot be 
uniquely determined from the process characteristics. They also depend on the 
desired closed-loop control system characteristics. Usually, the controller 
parameters are solutions to the following closed-loop control optimization: 

min F' { y* - Yp/m (u, ... )} ; u = C( YI, ... ) 

11 

(3.43) 

where C is a controller with a known structure. Here, Yp/m denotes that either a 

process or a model can be employed in this closed-loop control in order to find the 
target controller C. 

3.4.2 Direct Neuro-Control 

Among the four direct neuro-control schemes, the simplest for neuro-controller 
development is to use a neural network to model an existing controller (see Figure 
3.15). The input to the existing controller is the training input to the network and 
the controller output serves as the target. This neuro-control design can be 
formulated as follows: 

NN: min F {u* c - un (w, ... )} (3.44) 

w 

where u*c is the output of an existing controller C*. Usually, the existing 

controller C* can be a human operator or it can be obtained via 

min F' {y* - Yp/m (u, ... )} ; u = C( ... ) (3.45) 

c 

Like a process model, a controller is generally a dynamical system and 
often comprises integrators or differentiators. If a feedforward network is used to 
model the existing controller, dynamical information must be explicitly provided 
as input to the network. 
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Figure 3.15 The simplest approach to neuro-control is to use a 
neural network to model an existing controller 

While the benefits of this approach may be apparent when the existing 
controller is a human, its utility may be limited. It is applicable only when an 
existing controller is available, which is the case in many applications. Staib & 
Staib (1992) discuss how it can be effective in a multistage training process. 

In the absence of an existing controller, some researchers have been 
inspired by the way a human operator learns to "control/operate" a process with 
little or no detailed knowledge of the process dynamics. Thus they have attempted 
to design controllers that by adaptation and learning can solve difficult control 
problems in the absence of process models and human design effort. In general, 
this model-free neuro-control can be stated as: 

NN: min F {y* - yp (u, ... )} , u = ~ (w, ... ) (3.46) 

w 

where yp is the output from the plant. The key feature of this direct adaptation 

control approach is that a process model is neither known in advance nor 
explicitly developed during control design. Figure 3.16 is a typical representation 
of this class of control design. 

The first work in this area was the "adaptive critic" algorithm proposed 
by Barto et al. (1983). Such an algorithm can be seen as an approximate version of 
dynamic programming. In this work, they posed a well-known cart-pole balancing 
problem and demonstrated their design concept. In this class of control design, 
limited/poor information is often adopted as an indication of performance criteria. 
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For example, the objective is the cart-pole balancing problem is simply to 
maintain the pole in a near-upright balanced position for as long as possible. The 
instructional feedback is limited to a "failure" signal when the controller fails to 
hold the pole in an upright position. The cart-pole problem has become a popular 
test-bed for explorations of the model-free control design concept. 
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Figure 3.16 The model-free control design concept 

Despite its historical importance and intuitive appeal, model-free 
adaptive neuro-control is not appropriate for most real-world applications. The 
plant is most likely out of control during the learning process, and few industrial 
processes can tolerate the large number of "failures" needed to adapt the 
controller. 

From a practical perspective, one would prefer to let failures take place in 
a simulated environment (with a model) rather than in a real plant even if the 
failures are not disastrous or do not cause substantial losses. As opposed to the 
previous case, this class of neuro-control design is referred to as "model-based 
neuro-control design". Similar to Equation (3.46), as a result, the problem 
formulation becomes 

NN: min F {y* - Ym (u, ... )} , u = t-{ (w, ... ) (3.47) 

w 

Here, yp in Equation (3.46) is replaced by Ym-the model's output. In this case, 

knowledge about the processes of interest is required. As can be seen in Figure 
3.17, a model replaces the plant/process in the control system. 
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If a process model is not available, one can first train a second neural 
network to model the plant dynamics. In the course of modelling the plant, the 
plant must be operated "normally" instead of being driven out of control. After the 
modelling stage, the model can then be used for control design. If a plant model is 
already available, a neural network controller can then be developed in a 
simulation in which failures cannot cause any loss but that of computer time. A 
neural network controller after extensive training in the simulation can then be 
installed in the actual control system. 

In fact, these "model-based neuro-control design" approaches have not 
only proven effective in several studies (Troudet, 1991), but also have already 
produced notable economic benefits (Staib, 1993). Nevertheless, the quality of 
control achieved with this approach depends crucially on the quality of the process 
model. If a model is not accurate enough, the trained neuro-controller is unlikely 
to perform satisfactorily on the real process. Without an on-line adaptive 
component, this neuro-controller does not allow for plant drifts or other factors 
that could adversely affect the performance of the control system. 

,- - - - - - - - -- - - --. 
.... ___ .: Training :~ __________________________ , 

I I 
1- ______ , _______ I 

I 
I 
I 
I 
I 
I 
I 

Neural 
Network 

u 

Model 

y 

Figure 3.17 A model replaces the plant/process in the control system during 
the control design phase 

The neuro-controller approaches discussed above still share a common 
shortcoming: A neural network must be trained for every new application. 
Network retraining is needed even with small changes in the control criterion, 
such as changes in the relative weighting of control energy and tracking response, 
or if the controller is to be applied to a different but similar processes. In order to 
avoid such drawbacks, the concept of "robustness" is naturally brought into the 
design of a neuro-controller. In robust model-based neuro-control design, a family 
of process models is considered instead of just a nominal one (see Figure 3.18). 
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Often such a family is specified by a range of noise models or range of the process 
parameters. Robust neuro-control design can be formulated as follows: 

NN: min F {y* - Ymi (u, ... )} , u = ~ (w, ... ), V mi E M (3.48) 

w 

where mi stands for the ith member of the model family M. Ideally, the real 

process to be controlled should belong to this family as well so that the controller 
is robust not only for the model but also for the real process. 

Two aspects of robustness are commonly distinguished. Robust Stability 
refers to a control system that is stable (qualitatively) over the entire family of 
processes, whereas robust performance refers to (quantitative) performance 
criteria being satisfied over the family (Morari & Zafiriou, 1989). Not 
surprisingly, there is a tradeoff to achieve robustness. By optimizing a neural 
network controller based upon a fixed (and accurate) process model, high 
performance can be achieved as long as the process remains invariant, but at the 
likely cost of brittleness. A robust design procedure, on the other hand, is not 
likely to achieve the same level of nominal performance but will be less sensitive 
to process drifts, disturbances, and other sources of process-model mismatch. 

r - - - - - - - - - - -, 

, __ __ ..: Training :. __ ________________ _______ ___ __ ., 
I I I I 

I '- - - - - , - - - - - I : 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

: I I 
I I 

I I J I 
I • I 
I I 
I U I 
I I Y 

r .. .. Neural ... I ... ... ... Model ... 
Network - .. 

Figure 3.18 Robust model-based neuro-control 
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3.4.3 Parameterized Neuro-Control 

All the above neuro-control approaches share a common shortcoming-the need for 
extensive application-specific development efforts. Each application requires the 
optimization of the neural network controller and may also require process model 
identification. The expense in time and computation has been a significant barrier 
to widespread implementation ofneuro-contro1 systems. 

In an attempt to avoid application-specific development, a new neuro­
control design concept-parameterized neuro-control (PNC)-has evolved (Samad & 
Foslien, 1994). Figure 3.19 illustrates this PNC strategy. The PNC controller is 
equipped with parameters that specify process characteristics and those that 
provide performance criterion information. For illustration purposes, a PNC can 
be conceptually formulated as follows: 

NN: min F(E) {y* - Ymi (e, u, ... )} , 
w (3.49) 

U = ~ (w, e, E, ... ) , 'II miCe) E M(e) 

where E designates the parameter set that defines the space of performance 
criteria, 8 stands for the process parameter set, 8 is the estimates for process 
parameters, and again M(8) is a family of parameterized models mi(8) in order to 

account for errors in process parameters estimates 8. 
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Figure 3.19 Parameterized Neuro-Control 
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In fact, the two additional types of parameters ( E and e ) make a PNC 
generic. A PNC is generic in two respects: 1) the process model parameters e 
facilitate its application to different processes and 2) the performance parameters E 

allow its performance characteristics to be adjustable, or "tunable". For example, 
if a PNC is designed for first-order plus delay processes, the process parameters 
(Le., process gain, time constant, and dead time) will be adjustable parameters to 
this PNC. Once developed, this PNC requires no application-specific training or 
adaptation when applied to a first-order plus delay process. It only requires 
estimates of these process parameters. These estimates do not have to be accurate 
because the robustness against such inaccuracy is considered in the design phase. 

3.5 Summary 

In this chapter, we have presented the main ideas underlying Neural Networks and 
the application of this powerful computational theory to general control problems. 
We have discussed in some detail the backpropagation learning algorithm for 
feedforward networks, the integration of fuzzy logic techniques to neural 
networks to form powerful adaptive neuro-fuzzy inference systems and the basic 
concepts and current methods of neuro-fuzzy control. At the end, we also gave 
some remarks about adaptive neuro-control and model-based control of non-linear 
dynamical systems. In the following chapters, we will show how neural network 
techniques (in conjunction with other techniques) can be applied to solve real 
world complex problems of control. This chapter will serve as a basis for the new 
hybrid intelligent control methods that will be described in Chapter 7 of this book. 



Chapter 4 

Genetic Algorithms and Simulated Annealing 

This chapter introduces the basic concepts and notation of genetic algorithms and 
simulated annealing, which are two basic search methodologies that can be used 
for modelling and simulation of complex non-linear dynamical systems. Since 
both techniques can be considered as general purpose optimization methodologies, 
we can use them to find the mathematical model which minimizes the fitting 
errors for a specific problem. On the other hand, we can also use any of these 
techniques for simulation if we exploit their efficient search capabilities to fmd the 
appropriate parameter values for a specific mathematical model. We also describe 
in this chapter the application of genetic algorithms to the problem of finding the 
best neural network or fuzzy system for a particular problem. We can use a 
genetic algorithm to optimize the weights or the architecture of a neural network 
for a particular application. Alternatively, we can use a genetic algorithm to 
optimize the number of rules or the membership functions of a fuzzy system for a 
specific problem. These are two important application of genetic algorithms, 
which will be used in later chapters to design intelligent intelligent systems for 
controlling real world dynamical systems. 

Genetic algorithms and simulated annealing have been used extensively 
for both continuous and discrete optimization problems (Jang, Sun & Mizutani, 
1997). Common characteristics shared by these methods are described next. 

• Derivative freeness: These methods do not need functional derivative 
information to search for a set of parameters that minimize (or maximize) a 
given objective function. Instead they rely exclusively on repeated 
evaluations of the objective function, and the subsequent search direction 
after each evaluation follows certain heuristic guidelines. 

• Heuristic guidelines: The guidelines followed by these search procedures are 
usually based on simple intuitive concepts. Some of these concepts are 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001
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motivated by so-called nature's wisdom, such as evolution and 
thermodynamics. 

• Flexibility: Derivative freeness also relieves the requirement for differentiable 
objective functions, so we can use as complex an objective function as a 
specific application might need, without sacrificing too much in extra coding 
and computation time. In some cases, an objective function can even include 
the structure of a data-fitting model itself, which may be a fuzzy model. 

• Randomness: These methods are stochastic, which means that they use 
random number generators in determining subsequent search directions. This 
element of randomness usually gives rise to the optimistic view that these 
methods are "global optimizers" that will find a global optimum given enough 
computing time. In theory, their random nature does make the probability of 
finding an optimal solution nonzero over a fixed amount of computation time. 
In practice, however, it might take a considerable amount of computation 
time. 

• Analytic opacity: It is difficult to do analytic studies of these methods, in part 
because of their randomness and problem-specific nature. Therefore, most of 
our knowledge about them is based on empirical studies. 

• Iterative nature: These techniques are iterative in nature and we need certain 
stopping criteria to determine when to terminate the optimization process. Let 
K denote an iteration count and fk denote the best objective function obtained 

at count k; common stopping criteria for a maximization problem include the 
following: 

1) Computation time: a designated amount of computation time, or 
number of function evaluations and/or iteration counts is reached. 

2) Optimization goal: fk is less than a certain preset goal value. 

3) Minimal improvement: fk - fk-I is less than a preset value. 

4) Minimal relative improvement: (fk - fk-l)/ fk_1 is less than a preset 

value. 

Both genetic algorithms (GAs) and simulated annealing (SA) have been 
receiving increasing amounts of attention due to their versatile optimization 
capabilities for both continuous and discrete optimization problems. Moreover, 
both of them are motivated by so-called "nature's wisdom": GAs are based on the 
concepts of natural selection and evolution; while SA originated in annealing 
processes found in thermodynamics and metallurgy. 
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4.1 Genetic Algorithms 

Genetic algorithms (GAs) are derivative-free optimization methods based on the 
concepts of natural selection and evolutionary processes (Goldberg, 1989). They 
were first proposed and investigated by John Holland at the University of 
Michigan (Holland, 1975). As a general-purpose optimization tool, GAs are 
moving out of academia and finding significant applications in many areas. Their 
popularity can be attributed to their freedom from dependence on functional 
derivatives and their incorporation of the following characteristics: 

• GAs are parallel-search procedures that can be implemented on parallel 
processing machines for massively speeding up their operations. 

• GAs are applicable to both continuous and discrete (combinatorial) 
optimization problems. 

• GAs are stochastic and less likely to get trapped in local minima, which 
inevitably are present in any optimization application. 

• GAs' flexibility facilitates both structure and parameter identification in 
complex models such as fuzzy inference systems or neural networks. 

GAs encode each point in a parameter (or solution) space into a binary 
bit string called a "chromosome", and each point is associated with a "fitness 
value" that, for maximization, is usually equal to the objective function evaluated 
at the point. Instead of a single point, GAs usually keep a set of points as a 
"population", which is then evolved repeatedly toward a better overall fitness 
value. In each generation, the GA constructs a new population using "genetic 
operators" such as crossover and mutation; members with higher fitness values are 
more likely to survive and to participate in mating (crossover) operations. After a 
number of generations, the population contains members with better fitness 
values; this is analogous to Darwinian models of evolution by random mutation 
and natural selection. GAs and their variants are sometimes referred to as methods 
of "population-based optimization" that improve performance by upgrading entire 
populations rather than individual members. Major components of GAs include 
encoding schemes, fitness evaluations, parent selection, crossover operators, and 
mutation operators; these are explained next. 

Encoding schemes: These transform points in parameter space into bit string 
representations. For instance, a point (11, 4, 8) in a three-dimensional parameter 
space can be represented as a concatenated binary string: 

1011 0100 1000 
~~~ 

11 4 8 
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in which each coordinate value is encoded as a "gene" composed of four binary 
bits using binary coding. other encoding schemes, such as gray coding, can also be 
used and, when necessary, arrangements can be made for encoding negative, 
floating-point, or discrete-valued numbers. Encoding schemes provide a way of 
translating problem-specific knowledge directly into the GA framework, and thus 
playa key role in determining GAs' performance. Moreover, genetic operators, 
such as crossover and mutation, can and should be designed along with the 
encoding scheme used for a specific application. 

Fitness evaluation: The first step after creating a generation is to calculate the 
fitness value of each member in the population. For a maximization problem, the 
fitness value fi of the ith member is usually the objective function evaluated at this 

member (or point). We usually need fitness values that are positive, so some kind 
of monotonical scaling and/or translation may by necessary if the objective 
function is not strictly positive. Another approach is to use the rankings of 
members in a population as their fitness values. The advantage of this is that the 
objective function does not need to be accurate, as long as it can provide the 
correct ranking information. 

Selection: After evaluation, we have to create a new population from the current 
generation. The selection operation determines which parents participate in 
producing offspring for the next generation, and it is analogous to "survival of the 
fittest" in natural selection. Usually members are selected for mating with a 
selection probability proportional to their fitness values. The most common way to 
implement this is to set the selection probability equal to: 

k=n 

fi I I fk' 
k=i 

where n is the population size. The effect of this selection method is to allow 
members with above-average fitness values to reproduce and replace members 
with below-average fitness values. 

Crossover: To exploit the potential of the current population, we use "crossover" 
operators to generate new chromosomes that we hope will retain good features 
from the previous generation. Crossover is usually applied to selected pairs of 
parents with a probability equal to a given "crossover rate". "One-point crossover" 
is the most basic crossover operator, where a crossover point on the genetic code 
is selected at random and two parent chromosomes are interchanged at this point. 
In "two-point crossover", two crossover points are selected and the part of the 
chromosome string between these two points is then swapped to generate two 
children. We can define n-point crossover similarly. In general, (n-l )-point 
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crossover is a special case of n-point crossover. Examples of one-and two-point 
crossover are shown in Figure 4.1. 

crossover point 

100 11110 100 10010 
=> 

101 10010 101 11110 
(a) 

1 0011 110 1 0110 110 
=> 

1 0110 010 1 0011 010 
(b) 

Figure 4.1 Crossover operators: (a) one-point crossover; (b) two-point crossover. 

Mutation: Crossover exploits current gene potentials, but if the population does 
not contain all the encoded information needed to solve a particular problem, no 
amount of gene mixing can produce a satisfactory solution. For this reason, a 
"mutation" operator capable of spontaneously generating new chromosomes is 
included. The most common way of implementing mutation is to flip a bit with a 
probability equal to a very low given "mutation rate". A mutation operator can 
prevent any single bit from converging to a value throughout the entire population 
and, more important, it can prevent the population from converging and stagnating 
at any local optima. The mutation rate is usually kept low so good chromosomes 
obtained from crossover are not lost. If the mutation rate is high (above 0.1), GA 
performance will approach that of a primitive random search. Figure 4.2 provides 
an example of mutation. 

10011110 

Mutated bit 
-.II 

10011010 

Figure 4.2 Mutation operator. 

In the natural evolutionary process, selection, crossover, and mutation all 
occur in the single act of generating offspring. Here we distinguish them clearly to 
facilitate implementation of and experimentation with GAs. 

Based on the aforementioned concepts, a simple genetic algorithm for 
maximization problems is described next. 
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Step 1: Initialize a population with randomly generated individuals and evaluate 
the fitness value of each individual. 

Step 2: Perform the following operations: 
(a) Select two members from the population with probabilities 
proportional to their fitness values. 
(b) Apply crossover with a probability equal to the crossover rate. 
(c) Apply mutation with a probability equal to the mutation rate. 
(d) Repeat (a) to (d) until enough members are generated to form the next 
generation. 

Step 3: Repeat steps 2 and 3 until a stopping criterion is met. 

Figure 4.3 is a schematic diagram illustrating how to produce the next 
generation from the current one. 

10010110 ... 10010110 ... 

01100010 ... I selection I 01100010 ... 

10100100 ... 
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10100100 ... 
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I mutation I 
01111101 100 III 01 ... 

Current Generation Next Generation 

Figure 4.3 Producing the next generation in GAs. 

4.2 Simulated Annealing 

"Simulated Annealing" (SA) is another derivative-free optimization method that 
has recently drawn much attention for being as suitable for continuous as for 
discrete (combinational) optimization problems (Otten & Ginneken, 1989). When 
SA was first proposed (Kirkpatrick, Gelatt & Vecchi, 1983) it was mostly known 
for its effectiveness in finding near optimal solutions for large-scale combinatorial 
optimization problems, such as traveling salesperson problems and placement 
problems. Recent applications of SA and its variants (Ingber & Rosen, 1992) also 
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demonstrate that this class of optImIzation approaches can be considered 
competitive with other approaches when there are continuous optimization 
problems to be solved. 

Simulated annealing was derived from physical characteristics of spin 
glasses (Kirkpatrick, Gelatt & Vecchi, 1983). The principle behind simulated 
annealing is analogous to what happens when metals are cooled at a controlled 
rate. The slowly falling temperature allows the atoms in the molten metal to line 
themselves up and form a regular crystalline structure that has high density and 
low energy. But if the temperature goes down too quickly, the atoms do not have 
time to orient themselves into a regular structure and the result is a more 
amorphous material with higher energy. 

In simulated annealing, the value of an objective function that we want to 
minimize is analogous to the energy in a thermodynamic system. At high 
temperatures, SA allows function evaluations at faraway points and it is likely to 
accept a new point with higher energy. This corresponds to the situation in which 
high-mobility atoms are trying to orient themselves with other non local atoms and 
the energy state can occasionally go up. At low temperatures, SA evaluates the 
objective function only at local points and the likelihood of it accepting a new 
point with higher energy is much lower. This is analogous to the situation in 
which the low-mobility atoms can only orient themselves with local atoms and the 
energy state is not likely to go up again. 

Obviously, the most important part of SA is the so-called "annealing 
schedule" or "cooling schedule", which specifies how rapidly the temperature is 
lowered from high to low values. This is usually application specific and requires 
some experimentation by trial-and-error. 

Before giving a detailed description of SA, first we shall explain the 
fundamental terminology of SA. 

Objective function: An objective function f(.) maps an input vector x into a scalar 
E: E == f(x), 
where each x is viewed as a point in an input space. The task of SA is to sample 
the input space effectively to find an x that minimizes E. 

Generating function: A generating function g(. , .) specifies the probability density 
function of the difference between the current point and the next point to be 
visited. Specifically, dx (== xnew - x ) is a random variable with probability 

density function g(dX,T), where T is the temperature. For common SA ( especially 
in combinatorial optimization applications), g(. ,.) is usually a function 
independent of the temperature T. 

Acceptance function: After a new point xnew has been evaluated, SA decides 

whether to accept or reject it based on the value of an acceptance function h(. , .). 
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The most frequently used acceptance function is the "Boltzmann probability 
distribution": 

h(dE, T) = __ -=-1 __ _ (4.1) 

1 + exp(dE / (cT» 

where c is a system-dependent constant, T is the temperature, and ilE is the energy 
difference between xnew and x: 

dE = f( xnew ) - f(x) 
The common practice is to accept xnew with probability h( ilE , T). 

Annealing schedule: An annealing schedule regulates how rapidly the temperature 
T goes from high to low values, as a function of time or iteration counts. The 
exact interpretation of "high" and "low" and the specification of a good annealing 
schedule require certain problem-specific physical insights and/or trial-and-error. 
The easiest way of setting an annealing schedule is to decrease the temperature T 
by a certain percentage at each iteration. 

The basic algorithm of simulated annealing is the following: 

Step I: Choose a start point x and set a high starting temperature T. Set the 
iteration count k to 1. 

Step 2: Evaluate the objective function E = f(x) . 
Step 3: Select ilx with probability determined by the generating function g(ilx, 

T). Set the new point xnew equal to x + ilx . 

Step 4: Calculate the new value of the objective function: Enew = f(xnew) . 
Step 5: Set x to xnew and E to Enew with probability determined by the 

acceptance function h( ilE , T), where ilE = Enew- E . 

Step 6: Reduce the temperature T according to the annealing schedule (usually 
by simply setting T equal to TJT, where TJ is a constant between 0 and 1). 

Step 7: Increment iteration count k. If k reaches the maximum iteration count, 
stop the iterating. Otherwise, go back to step 3. 

In conventional SA, also known as "Boltzmann machines", the 
generating function is a Gaussian probability density function: 

g( dx , T) = (21tT)-nl2 exp[-II dx 112/ (2T)] (4.2) 
where ilx ( = xnew - x) is the deviation of the new point from the current one, Tis 

the temperature, and n is the dimension of the space under exploration. It has been 
proven (Geman & Geman, 1984) that a Boltzman machine using the 
aforementioned generating function g( . , . ) can find a global optimum of f(x) if 
the temperature T is reduced no faster than To/Ink . 
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Variants of Boltzmann machines include the "Cauchy machine" or "fast 
simulated annealing" (Szu & Hartley, 1987), where the generating function is the 
Cauchy distribution: 

g (~x) = __ --"'T __ _ (4.3) 

( II ~x 112 + T2)(n + \)/2 

The fatter tail of the Cauchy distribution allows it to explore farther from the 
current point during the search process. 

Another variant of the original SA, the so-called "very fast" simulated 
annealing (Ingber & Rosen, 1992), was designed for optimization problems in a 
constrained search space. Very fast simulated annealing has been reported to be 
faster than genetic algorithms on several test problems by the same authors. 

4.3 Applications of Genetic Algorithms 

The simple version of the genetic algorithm described in the previous section is 
very simple, but variations of this algorithm have been used in a large number of 
scientific and engineering problems and models (Mitchell, 1996). Some examples 
follow. 

• Optimization: genetic algorithms have been used in a wide variety of 
optimization tasks, including numerical optimization and such combinatorial 
optimization problems as circuit layout and job-shop scheduling. 

• Automatic Programming: genetic algorithms have been used to evolve 
computer programs for specific tasks, and to design other computational 
structures such as cellular automata and sorting networks. 

• Machine Learning: genetic algorithms have been used for many machine 
learning applications, including classification and prediction tasks, such as the 
prediction of weather or protein structure. Genetic algorithms have also been 
used to evolve aspects of particular machine learning systems, such as 
weights for neural networks, rules for learning classifier systems or symbolic 
production systems, and sensors for robots. 

• Economics: genetic algorithms have been used to model processes of 
innovation, the development of bidding strategies, and the emergence of 
economic markets. 

• Immune Systems: genetic algorithms have been used to model various 
aspects of natural immune systems, including somatic mutation during an 
individual's lifetime and the discovery of multigene families during 
evolutionary time. 

• Ecology: genetic algorithms have used to model ecological phenomena such 
as biological arms races, host-parasite coevolution, symbiosis, and resource 
flow. 
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• Social Systems: genetic algorithms have been used to study evolutionary 
aspects of social systems, such as the evolution of social behavior in insect 
colonies, and, more generally, the evolution of cooperation and 
communication in multi-agent systems. 

This list is by no means exhaustive, but it gives the flavor of the kinds of things 
genetic algorithms have been used for, both in problem solving and in scientific 
contexts. Because of their success in these and other areas, interest in genetic 
algorithms has been growing rapidly in the last several years among researchers in 
many disciplines. 

We will describe bellow the application of genetic algorithms to the 
problem of evolving neural networks, which is a very important problem in 
designing the particular neural network for a problem. 

4.3.1 Evolving Neural Networks 

Neural Networks are biologically motivated approaches to machine learning, 
inspired by ideas from neuroscience. Recently, some efforts have been made to 
use genetic algorithms to evolve aspects of neural networks (Mitchell, 1996). 

In its simplest feedforward form, a neural network is a collection of 
connected neurons in which the connections are weighted, usually with real­
valued weights. The network is presented with an activation pattern on its input 
units, such as a set of numbers representing features of an image to be classified. 
Activation spreads in a forward direction from the input units through one or more 
layers of middle units to the output units over the weighted connections. This 
process is meant to roughly mimic the way activation spreads through networks of 
neurons in the brain. In a feedforward network, activation spreads only in a 
forward direction, from the input layer through the hidden layers to the output 
layer. Many people have also experimented with "recurrent" networks, in which 
there are feedback connections between layers. 

In most applications, the neural network learns a correct mapping 
between input and output patterns via a learning algorithm. Typically the weights 
are initially set to small random values. Then a set of training inputs is presented 
sequentially to the network. In the backpropagation learning procedure, after each 
input has propagated through the network and an output has been produced, a 
"teacher" compares the activation value at each output unit with the correct 
values, and the weights in the network are adjusted in order to reduce the 
difference between the network's output and the correct output. This type of 
procedure is known as "supervised learning", since a teacher supervises the 
learning by providing correct output values to guide the learning process. 

There are many ways to apply genetic algorithms to neural networks. 
Some aspects that can be evolved are the weights in a fixed network, the network 
architecture (i.e., the number of neurons and their interconnections can change), 
and the learning rule used by the network. 
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4.3.1.1 Evolving Weights in a Fixed Network 

David Montana and Lawrence Davis (1989) took the first approach of evolving 
the weights in a fixed network. That is, Montana and Davis were using the genetic 
algorithm instead of backpropagation as a way of finding a good set of weights for 
a fixed set of connections. Several problems associated with the backpropagation 
algorithm (e.g., the tendency to get stuck at local minima, or the unavailability of 
a "teacher" to supervise learning in some tasks) often make it desirable to find 
alternative weight training schemes. 

Montana and Davis were interested in using neural networks to classify 
underwater sonic "lofargrams" (similar to spectrograms) into two classes: 
"interesting" and "not interesting". The networks were to be trained from a 
database containing lofargrams and classifications made by experts as to whether 
or not a given lofargram is "interesting". Each network had four input units, 
representing four parameters used by an expert system that performed the same 
classification. Each network had one output unit and two layers of hidden units 
(the first with seven units and the second with ten units). The networks were fully 
connected feedforward networks. In total there were 108 weighted connections 
between units. In addition, there were 18 weighted connections between the non­
input units and a "threshold unit" whose outgoing links implemented the 
thresholding for each of the non-input units, for a total of 126 weights to evolve. 

The genetic algorithm was used as follows. Each chromosome was a list 
of 126 weights. Figure 4.4 shows (for a much smaller network) how the encoding 
was done: the weights were read off the network in a fixed order (from left to right 
and from top to bottom) and placed in a list. Notice that each "gene" in the 
chromosome is a real number rather than a bit. To calculate the fitness of a given 
chromosome, the weights in the chromosome were assigned to the links in the 
corresponding network, the network was run on the training set (here 236 
examples from the database), and the sum of the squares of the errors was 
returned. Here, an "error" was the difference between the desired output value and 
the actual output value. Low error meant high fitness in this case. 

Chromosome: (0.3 -0.4 -0.3 -0.1 0.7 -0.3) 

Figure 4.4 Encoding of network weights for the genetic algorithm. 

An initial population of 50 weights vectors was chosen randomly, with 
each weight being between -1.0 and + 1.0. Montana and Davis tried a number of 
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different genetic operators in various experiments. The mutation and crossover 
operators they used for their comparison of the genetic algorithm with 
backpropagation are illustrated in Figures 4.5 and 4.6. The mutation operator 
selects n non-input units, and for each incoming link to those units, adds a random 
value between -1.0 and + 1.0 to the weight on the link. The crossover operator 
takes two parent weight vectors, and for each non-input unit in the offspring 
vector, selects one of the parents at random and copies the weights on the 
incoming links from that parent to the offspring. Notice that only one offspring is 
created. 

(0.3 -0.4 0.2 0.8 -0.3 -0.1 0.7 -0.3) (0.3 -0.4 0.2 0.6 -0.3 -0.9 0.7 -0.1) 

Figure 4.5 Illustration of the mutation method. Here the weights on incoming links 
to unit 5 are mutated. 

Parent 1 Parent 2 

(0.3 -0.4 0.2 0.8 -0.9 0.3 0.4 0.8 -0.2 0.1 0.5) 

2 

(0.7 -0.9 0.2 0.4 -OJ -0.2 0.7 

Figure 4.6 Illustration of the crossover method. In the child network shown here, 
the incoming links to unit 4 come from parent 1 and the incoming 
links 5 and 6 come from parent 2. 
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The perfonnance of a genetic algorithm using these operators was 
compared with the performance of a backpropagation algorithm. The genetic 
algorithm had a population of 50 weight vectors, and a rank selection method was 
used. The genetic algorithm was allowed to run for 200 generations. The 
backpropagation algorithm was allowed to run for 5000 iterations, where one 
iteration is a complete epoch (a complete pass through the training data). Montana 
and Davis found that the genetic algorithm significantly outperforms 
backpropagation on this task, obtaining better weight vectors more quickly. 

This experiment shows that in some situations the genetic algorithm is a 
better training method for neural networks than simple backpropagation. This 
does not mean that the genetic algorithm will outperform backpropagation in all 
cases. It is also possible that enhancements of backpropagation might help it 
overcome some of the problems that prevented it from perfonning as well as the 
genetic algorithm in this experiment. 

4.3.1.2 Evolving Network Architectures 

Neural network researchers know all too well that the particular architecture 
chosen can determine the success or failure of the application, so they would like 
very much to be able to automatically optimize the procedure of designing an 
architecture for a particular application. Many believe that genetic algorithms are 
well suited for this task (Mitchell, 1996). There have been several efforts along 
these lines, most of which fall into one of two categories: direct encoding and 
grammatical encoding. Under direct encoding a network architecture is directly 
encoded into a genetic algorithm chromosome. Under grammatical encoding, the 
genetic algorithm does not evolve network architectures; rather, it evolves 
grammars that can be used to develop network architectures. 

Direct Encoding. 
The method of direct encoding is illustrated in work done by Geoffrey Miller, 
Peter Todd, and Shailesh Hedge (1989), who restricted their initial project to 
feedforward networks with a fixed number of units for which the genetic 
algorithm was used to evolve the connection topology. As is shown in Figure 4.7, 
the connection topology was represented by a NxN matrix (5x5 in Figure 4.7) in 
which each entry encodes the type of connection from the "from unit" to the "to 
unit". The entries in the connectivity matrix were either "0" (meaning no 
connection) or "L" (meaning a "learnable" connection). Figure 4.7 also shows 
how the connectivity matrix was transfonned into a chromosome for the genetic 
algorithm ("0" corresponds to 0 and "L" to 1) and how the bit string was decoded 
into a network. Connections that were specified to be learnable were initialized 
with small random weights. 
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From 2 3 4 5 
unit ._. __ • __ n __ ' ___ ~H_Nq __ .. _______ .. ____ • __________ _ 

To unit 0 0 0 0 0 

2 0 0 0 0 0 

3 L L 0 0 0 

4 L L 0 0 0 

5 0 0 L L 0 

Chromosome: 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 I I 0 0 0 0 0 I I 0 

Figure 4.7 Illustration of Miller, Todd, and Hedge's representation scheme. 

Miller, Todd, and Hedge used a simple fitness-proportionate selection 
method and mutation (bits in the string were flipped with some low probability). 
Their crossover operator randomly chose a row index and swapped the 
corresponding rows between the two parents to create two offspring. The intuition 
behind that operator was similar to that behind Montana and Davis's crossover 
operator-each row represented all the incoming connections to a single unit, and 
this set was thought to be a functional building block of the network. The fitness 
of a chromosome was calculated in the same way as in Montana and Davis's 
project: for a given problem, the network was trained on a training set for a certain 
number of epochs, using backpropagation to modify the weights. The fitness of 
the chromosome was the sum of the squares of the errors on the training set at the 
last epoch. Again, low error translated to high fitness. Miller, Todd, and Hedge 
tried their genetic algorithm on several problems with very good results. The 
problems were relatively easy for multilayer neural networks to learn to solve 
under backpropagation. The networks had different number of units for different 
tasks; the goal was to see if the genetic algorithm could discover a good 
connection topology for each task. For each run the population size was 50, the 
crossover rate was 0.6, and the mutation rate was 0.005. In all cases, the genetic 
algorithm was easily able to find networks that readily learned to map inputs to 
outputs over the training set with little error. However, the tasks were too easy to 
be a rigorous test of this method-it remains to be seen if this method can scale up 
to more complex tasks that require much larger networks with many more 
interconnections. 

Grammatical Encoding. 
The method of grammatical encoding can be illustrated by the work of Hiroaki 
Kitano (1990), who points out that direct encoding approaches become 
increasingly difficult to use as the size of the desired network increases. As the 
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network's size grows, the size of the required chromosome increases quickly, 
which leads to problems both in performance and in efficiency. In addition, since 
direct encoding methods explicitly represent each connection in the network, 
repeated or nested structures cannot be represented efficiently, even though these 
are common for some problems. 

The solution pursued by Kitano and others is to encode networks as 
grammars; the genetic algorithm evolves the grammars, but the fitness is tested 
only after a "development" step in which a network develops from the grammar. 
A grammar is a set of rules that can be applied to produce a set of structures (e.g., 
sentences in a natural language, programs in a computer language, neural network 
architectures). 

Kitano applied this general idea to the development of neural networks 
using a type of grammar called a "graph-generation grammar", a simple example 
of which is given in Figure 4.Sa. Here the right-hand side of each rule is a 2x2 
matrix rather than a one-dimensional string. Each lower-case letter from a through 
p represents one ofthe 16 possible 2x2 arrays of ones and zeros. There is only one 
structure that can be formed from this grammar: the SxS matrix shown in Figure 
4.Sb. This matrix can be interpreted as a connection matrix for a neural network: a 
I in row i and column i means that unit i is present in the network and a I in row i 
and column, i :f:. j, means that there is connection from unit i to unit j. The result is 
the network shown in Figure 4.Sc which, with appropriate weights, computes the 
Boolean function XOR. 

Kitano's goal was to have a genetic algorithm evolve such grammars. 
Figure 4.9 illustrates a chromosome encoding the grammar given in Figure 4.Sa. 
The chromosome is divided up into separate rules, each of which consists of five 
elements. The first element is the left-hand side of the rule; the second through 
fifth elements are the four symbols in the matrix on the right-hand side of the rule. 
The possible values for each element are the symbols A-Z and a-po The first 
element of the chromosome is fixed to be the start symbol, S; at least one rule 
taking S into a 2x2 matrix is necessary to get started in building a network from a 
grammar 

The fitness of a grammar was calculated by constructing a network from 
the grammar, using backpropagation with a set of training inputs to train the 
resulting network to perform a simple task, and then, after training, measuring the 
sum of the squares of the errors made by the network on either the training set or a 
separate test set. The genetic algorithm used fitness-proportionate selection, multi­
point crossover, and mutation. A mutation consisted of replacing one symbol in 
the chromosome with a randomly chosen symbol from the A-Z and a-p alphabets. 
Kitano used what he called "adaptive mutation": the probability of mutation of an 
offspring depended on the Hamming distance (number of mismatches) between 
the two parents. High distance resulted in low mutation, and vice versa. In this 
way, the genetic algorithm tended to respond to loss of diversity in the population 
by selectively raising the mutation rate. 
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Figure 4.8 Illustration of Kitano's graph generation grammar for the XOR 
problem. (a) Grammatical rules. (b) A connection matrix is 
produced from the grammar. (c) The resulting network. 

S ABC 1 D I Ale 1 pia c I B 1 a 1 a 1 a e 1-

Figure 4.9 Illustration of a chromosome encoding a grammar. 
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Kitano (1990) perfonned a series of experiments on evolving networks 
for simple "encoder/decoder" problems to compare the grammatical and direct 
encoding approaches. He found that, on these relatively simple problems, the 
perfonnance of a genetic algorithm using the grammatical encoding method 
consistently surpassed that of a genetic algorithm using the direct encoding 
method, both in the correctness of the resulting neural networks and in the speed 
with which they were found by the genetic algorithm. In the grammatical 
encoding runs, the genetic algorithm found networks with lower error rate, and 
found the best networks more quickly, than in direct encoding runs. Kitano also 
discovered that the perfonnance of the genetic algorithm scaled much better with 
network size when grammatical encoding was used. 

What accounts for the grammatical encoding method's apparent 
superiority? Kitano argues that the grammatical encoding method can easily create 
"regular", repeated patterns of connectivity, and that this is a result of the repeated 
patterns that naturally come from repeatedly applying grammatical rules. We 
would expect grammatical encoding approaches, to perform well on problems 
requiring this kind of regularity. Grammatical encoding also has the advantage of 
requiring shorter chromosomes, since the genetic algorithm works on the 
instructions for building the network (the grammar) rather that on the network 
structure itself. For complex networks, the later could be huge and intractable for 
any search algorithm. 

Evolving a Learning Rule. 
David Chalmers (1990) took the idea of applying genetic algorithms to neural 
networks in a different direction: he used genetic algorithms to evolve a good 
learning rule for neural networks. Chalmers limited his initial study to fully 
connected feedforward networks with input and output layers only, no hidden 
layers. In general a learning rule is used during the training procedure for 
modifying network weights in response to the network's performance on the 
training data. At each training cycle, one training pair is given to the network, 
which then produces an output. At this point the learning rule is invoked to 
modify weights. A learning rule for a single layer, fully connected feedforward 
network might use the following local information for a given training cycle to 
modify the weight on the link from input unit i to output unit j: 

aj: the activation of input i 
OJ: the activation of output unit j 
tj: the training signal on output unit j 
Wjj: the current weight on the link from i to j 
The change to make in the weight Wjj is a function of these values: 
!lWjj = f(aj,oj,tj,Wjj)' 

The chromosomes in the genetic algorithm population encoded such functions. 
Chalmers made the assumption that the learning rule should be a linear 

function of these variables and all their pairwise products. That is, the general 
form of the learning rule was 
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~ Wjj = ko(k 1 Wjj+k2aj+k30j+k4tj+kswjjaj+k6WjjOj+k7Wjjtj+kgajoj+k9ajtj+k JOOjt). 
The km (1 <m<lO) are constant coefficients, and kO is a scale parameter that affects 
how much the weights can change on any cycle. Chalmer's assumption about the 
form of the learning rule came in part from the fact that a known good learning 
rule for such networks is the "delta rule". One goal of Chalmer's work was to see 
if the genetic algorithm could evolve a rule that performs as well as the delta rule. 

The task of the genetic algorithm was to evolve values for the km's. The 
chromosome encoding for the set ofkm's is illustrated in Figure 4.10. The scale 
parameter ko is encoded as five bits, with the zeroth bit encoding the sign (I 
encoding + and 0 encoding -) and the first through fourth bits encoding an integer 
n: ko = 0 ifn = 0; otherwise Ikol = 2n-9. Thus ko can take on the values 0,+-11256,+-
11128, ... ,+-32,+-64. The other coefficients km are encoded by three bits each, with 
the zeroth bit encoding the sign and the first and second bits encoding an integer 
n. For i=I, ... ,10, km=O ifn=O; otherwise Ikml = 2n-1. 

10010 

ko encoding by 5 bits: 
sign 

00 I 000 

integer n 
r----------~---------_~ 

other k's encoded by 3 bits each: 
sign 

integer n 
r~--A----__ --" 

Figure 4.10 Illustration of the method for encoding the km' s. 

110 

The fitness of each chromosome (learning rule) was determined as 
follows. A subset of 20 mappings was selected from the full set of 30 linear 
separable mappings. For each mapping, 12 training examples were selected. For 
each of these mappings, a network was created with the appropriate number of 
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input units for the given mapping. The network's weights were initialized 
randomly. The network was run on the training set for some number of epochs 
(typically 10), using the learning rule specified by the chromosome. The 
performance of the learning rule on a given mapping was a function of the 
network's error on the training set, with low error meaning high performance. The 
overall fitness of the learning rule was a function of the average error of 20 
networks over the chosen subset of 20 mappings. This fitness was then 
transformed to be a percentage, where a high percentage meant high fitness. 

U sing this fitness measure, the genetic algorithm was run on a population 
of 40 learning rules, with two-point crossover and standard mutation. The 
crossover rate was 0.8 and the mutation rate was 0.01. Typically, over 1000 
generations, the fitness of the best learning rules in the population rose from 
between 40% and 60% in the initial generation to between 80% and 98%. The 
fitness of the delta rule is around 98%, and on one out of a total of ten run the 
genetic algorithm discovered this rule. On three of the ten runs, the genetic 
algorithm discovered slight variations of this rule with lower fitness. 

These results show that, given a somewhat constrained representation, 
the genetic algorithm was able to evolve a successful learning rule for simple 
single layer networks. The extent to which this method can find learning rules for 
more complex networks remains an open question, but these results are a first step 
in that direction. Chalmers suggested that it is unlikely that evolutionary methods 
will discover learning methods that are more powerful than backpropagation, but 
he speculated that genetic algorithms might be a powerful method for discovering 
learning rules for unsupervised learning paradigms or for new classes of network 
architectures. 

4.3.2 Evolving Fuzzy Systems 

Ever since the very first introduction of the fundamental concept of fuzzy logic by 
Zadeh in 1973, its use in engineering disciplines has been widely studied. Its main 
attraction undoubtedly lies in the unique characteristics that fuzzy logic systems 
possess. They are capable of handling complex, non-linear dynamic systems using 
simple solutions. Very often, fuzzy systems provide a better performance than 
conventional non-fuzzy approaches with less development cost. 

However, to obtain an optimal set of fuzzy membership functions and 
rules is not an easy task. It requires time, experience, and skills of the operator for 
the tedious fuzzy tuning exercise. In principle, there is no general rule or method 
for the fuzzy logic set-up. Recently, many researchers have considered a number 
of intelligent techniques for the task of tuning the fuzzy set. 

Here, another innovative scheme is described (Man, Tang & Kwong, 
1999). This approach has the ability to reach an optimal set of membership 
functions and rules without a known overall fuzzy set topology. The conceptual 
idea of this approach is to have an automatic and intelligent scheme to tune the 
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membership functions and rules, in which the conventional closed loop fuzzy 
control strategy remains unchanged, as indicated in Figure 4.11. 

Genetic Algorithm I 
I 

1---- --------- -------- ----I 
1 ., ,. ., ,. , r 1 
1 Input Fuzzy Output 1 
1 1 
1 Membership Rules Membership 1 i1u r e 1 functions functions 

:~ .. .. 
1 

.... 
Inference 

... 
~~ Fuzzifier Defuzzifier 

1 Engine 1 
- 1 1 

1 1 
1 Fuzzy Logic System 1 
1 ______ ----------------------1 u 

+ y 
Controller .. 

Process 

Figure 4.11 Genetic algorithm for a fuzzy control system. 

In this case, the chromosome of a particular is shown in Figure 4.12. The 
chromosome consist of two types of genes, the control genes and parameter genes. 
The control genes, in the form of bits, determine the membership function 
activation, whereas the parameter genes are in the form of real numbers to 
represent the membership functions. 

Membership 
Chromosome 

Control Genes Parameter Genes 
(ze) (Zp) 

(z) ~ ... [!] "'L..I_O_LI_U_la_U_I_b_U_IC_,--U_2_a_U_2_b_U_2C---,I ... I
r 

-Y-na-Y-nb-Y-n-c--' 

Figure 4.12 Chromosome structure for the fuzzy system. 
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To obtain a complete design for the fuzzy control system, an appropriate 
set of fuzzy rules is required to ensure system performance. At this point it should 
be stressed that the introduction of the control genes is done to govern the number 
of fuzzy subsets in the system. 

Once the formulation of the chromosome has been set for the fuzzy 
membership functions and rules, the genetic operation cycle can be performed. 
This cycle of operation for the fuzzy control system optimization using a genetic 
algorithm is illustrated in Figure 4.13. 

z H I Mutation I 

Fitness Evaluation 

Check whether insert Z 
and H into A and Q 

Figure 4.13 Genetic cycle for fuzzy system optimization. 
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There are two population pools, one for storing the membership 
chromosomes and the other for storing the fuzzy rule chromosomes. We can see 
this in Figure 4.13 as the membership population and fuzzy rule population, 
respectively. Considering that there are various types of gene structure, a number 
of different genetic operations can be used. For the crossover operation, a one 
point crossover is applied separately for both the control and parameter genes of 
the membership chromosomes within certain operation rates. There is no 
crossover operation for fuzzy rule chromosomes since only one suitable rule set 
can be assisted. 

Bit mutation is applied for the control genes of the membership 
chromosome. Each bit ofthe control gene is flipped if a probability test is satisfied 
( a randomly generated number is smaller than a predefined rate). As for the 
parameter genes, which are real number represented, random mutation is applied. 

The complete genetic cycle continues until some termination criteria, for 
example, meeting the design specification or number of generation reaching a 
predefined value, are fulfilled. 

4.4 Summary 

We have presented in this chapter the basic concepts of genetic algorithms and 
simulated annealing. These optimization methodologies are motivated by nature's 
wisdom. Genetic algorithms emulate the process of evolution in nature, while 
simulated annealing is based in thermodynamic processes. We have also presented 
the application of genetic algorithms to the problems of optimizing neural 
networks and fuzzy systems. Genetic algorithms can then be viewed as a 
technique for efficient design of intelligent systems, because they can be used to 
optimize the weights or architecture of the neural network, or the number of rules 
in a fuzzy system. In later chapter we will make use of this fact to design 
intelligent systems for controlling real world dynamical systems. 



Chapter 5 

Dynamical Systems Theory 

This chapter introduces the basic concepts of dynamical systems theory, and 
several basic mathematical methods for controlling chaos. The main goal of this 
chapter is to provide an introduction to and a summary to the theory of dynamical 
systems with particular emphasis on fractal theory, chaos theory, and chaos 
control. We first defme what is meant by a dynamical system, then we define an 
attractor, and the concept of the fractal dimension of a geometrical object. Also, 
we define the Lyapunov exponents as a measure of the chaotic behavior of a 
dynamical system. On the other hand, the fractal dimension can be used to classify 
geometrical objects because it measures the complexity of an object. We finish the 
chapter by reviewing mathematical methods for controlling chaos in dynamic 
systems. These methods can be used to control a real dynamic system, however, 
due to efficiency and accuracy requirement we will be forced to consider more 
advanced methods in the following chapters. 

5.1 Basic Concepts of Dynamical Systems 

In this section we present a brief overview of the field of Non-Linear Dynamical 
Systems and Fractal Theory. Recently research has shown that many simple non­
linear deterministic systems can behave in an apparently unpredictable and 
"chaotic" manner (Grebogi, Ott, & Yorke, 1987). The existence of complicated 
dynamics has been discussed in the mathematical literature for many decades with 
important contributions by Poincare, Birkhoft, Smale and Kolmogorov and his 
students, among others. Nevertheless, it is only recently that the wide-ranging 
impact of "chaos" has been recognized. Consequently, the field is now undergoing 
explosive growth, and many applications have been made across a broad spectrum 
of scientific disciplines-robotics, engineering, physics, chemistry, fluid mechanics 
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and economics, to name several. We start with some basic definitions of concepts 
used in this book. 

Dynamic System: This is a set of mathematical equations that allows one, in 
principle, to predict the future behavior of the system given the past. One example 
is a system of first-order ordinary differential equations in time: 

dx = G(x,t) 
dt 

(5.1) 

where x(t) is a D-dimensional vector and G is a D-dimensional vector function of 
x and t. Another example is a map. 

Map: A map is an equation of the following form: 

(5.2) 

where the "time" t is discrete and integer valued. Thus, given xo' the maps gives 

x 1. Given x I, the map gives x2, and so on. 

Dissipative system: In Hamiltonian (conservative) systems such as the ones 
arising in Newtonian mechanics of particles (without friction), phase space 
volumes are preserved by time evolution (the phase space is the space of variables 
that specify the state of the system). Consider, for example, a two-dimensional 
phase space (q, p), where q denotes a position variable and p a momentum 
variable. Hamilton's equations of motion take the set of initial conditions at time t 
=to and evolve them in time to the set at time t = tl' Although the shapes of the 

sets are different, their areas are the same. By a dissipative system we mean one 
that does not have this property. Areas should typically decrease (dissipate) in 
time so that the area of the final set would be less than the area of the initial set. 
As a consequence of this, dissipative systems typically are characterized by the 
presence of attractors. 

Attractor: If one considers a system and its phase space, then the initial conditions 
may be attracted to some subset of the phase space (the attractor) as time t ~ 00. 

For example, for a damped harmonic oscillator the attractor is the point at rest. For 
a periodically driven oscillator in its limit cycle the limit set is a closed curve in 
the phase space. 

Strange attractor: In the above two examples, the attractors were a point, which is 
a set of dimension zero, and closed curve, which is a set of dimension one. For 
many other attractors the attracting set can be much more irregular (some would 
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say pathological) and, in fact, can have a dimension that is not an integer. Such 
sets have been called "fractal" and, when they are attractors, they are called 
strange attractors. The existence of a strange attractor in a physically interesting 
model was first demonstrated by Lorenz (see Lorenz, 1963). 

Chaotic attractor: By this term we mean that if we take two typical points on the 
attractor that are separated from each other by a small distance ~(O) at t = 0, then 
for increasing t they move apart exponentially fast. That is, in some average sense: 

f1(t) ~ f1(O) exp(A t) (5.3) 

with 'A> 0 (where 'A is called the Lyapunov exponent). Thus a small uncertainty in 
the initial state of the system rapidly leads to inability to forecast its future. It is 
typically the case that strange attractors are also chaotic. 

One of the most prominent, chaotic, continuous-time dynamical systems 
is the "Lorenz attractor", named after the meteorologist E.N. Lorenz who 
investigated the three-dimensional, continuous-time system 

x'=S(-x+y) 
y' = rx - y - xz 
z' = - bz + xy 

s, r, b > 0 (5.4) 

emerging in the study of turbulence in fluids. For r above the critical value ofr = 
28.0, trajectories of Equation (5.4) evolve in a rather unexpected way. Suppose 
that a trajectory starts at an initial value near the origin. For some time the 
trajectory regularly spirals outward from one fixed point, then the trajectory jumps 
to a region near another fixed point and does the same thing. As trajectories 
starting at different initial values all converge to and remain in the same region 
near the two fixed points, the region is considered an "attractor". It is a "strange 
attractor" because it is neither a point nor a closed curve. In general, this chaotic 
behavior can only occur for systems of at least three simultaneous non-linear 
differential equations or for systems of at least a one-dimensional non-linear map 
(Devaney, 1989). 

Fractal geometry is a mathematical tool for dealing with complex 
systems that have no characteristic length scale. A well known example is the 
shape of a coastline. When we see two pictures of a coastline on two different 
scales, we cannot tell which scale belongs to which picture: both look the same. 
This means that the coastline is scale invariant or, equivalently, has no 
characteristic length scale. Other examples in nature are rivers, cracks, mountains, 
and clouds. Scale-invariant systems are usually characterized by non-integer 
("fractal") dimensions. 
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The dimension tells us how some property of an object or space changes 
as we view it at increased detail. There are several different types of dimension. 
The fractal dimension df describes the space filling properties of an object. Three 

examples of the fractal dimension are the self-similarity dimension, the capacity 
dimension, and the Hausdorff-Besicovitch dimension. The topological dimension 
dT describes how points within an object are connected together. The embedding 

dimension de describes the space in which the object is contained. 

The fractal dimensions df are useful and important tools to quantify self­

similarity and scaling. Essentially, the dimension tells us how many new pieces 
are resolved as the resolution is increased. The self-similarity dimension can only 
be applied to geometrical self-similar objects, where the small pieces are exact 
copies of the whole object. However the capacity dimension can be used to 
analyze irregularly shaped objects that are statistically self-similar. On the other 
hand, the Hausdorff-Besicovitch dimension requires more complex mathematical 
tools. For this reason, we will limit our discussion here to the capacity dimension. 

A ball is the set of points within radius r of a given point. We determine 
NCr) the minimum number of balls required so that each point in the object is 
contained within at least one ball of radius r. In order to cover all the points of the 
object, the balls may need to overlap. The capacity dimension is defined by the 
following equation: 

dc = lim log NCr) 

r7 0 log(lIr) 

(5.5) 

The capacity dimension defined as above is a measure of the space filling 
properties of an object because it gives us an idea of how much work is needed to 
cover the object with balls of changing size. 

A useful method to determine the capacity dimension is to choose balls 
that are the non-overlapping boxes of a rectangular coordinate grid. NCr) is then 
the number of boxes with side of length r that contain at least one point of the 
object. Efficient algorithms have been developed to perform this "box counting" 
for different values of r, and thus determine the box counting dimension as the 
best fit oflog N(r) versus log(l/r). 

The fractal dimension df characterizes the space-filling properties of an 

object. The topological dimension dT characterizes how the points that make up 

the object are connected together. It can have only integer values. Consider a line 
that is so long and wiggly that it touches every point in a plane and thus covers an 
area. Because it covers a plane, its space-filling fractal dimension df = 2. 

However, no matter how wiggly it is, it is still a line and thus has topological 
dimension dT=l. Thus, the essence of a fractal is that its space-filling properties 

are larger than one anticipates from its topological dimension. Thus we can now 
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present a formal definition of a fractal (Mandelbrot, 1987), namely, that an object 
is a fractal if and only if 

However, there is no one definition that includes all the objects or processes that 
have fractal properties. 

Despite the identification of fractals in nearly every branch of science, 
too frequently the recognition of fractal structure is not accompanied with any 
additional insight as to its cause. Often we do not even have the foggiest idea as to 
the underlying dynamics leading to the fractal structure. The chaotic dynamics of 
non-linear systems, on the other hand, is one area where considerable progress has 
been made in understanding the connection with fractal geometry. Indeed, chaotic 
dynamics and fractal geometry have such a close relationship that one of the 
hallmarks of chaotic behavior has been the manifestation of fractal geometry, 
particularly for strange attractors in dissipative systems (Rasband, 1990). For a 
practical defmition we take a "strange attractor", for a dynamic system, to be an 
attracting set with fractal dimension. For example, the famous Lorenz strange 
attractor has a fractal dimension of about 2.06. Also, we think that beyond only 
this relationship between strange attractors and the fractal dimension of the set, 
there is a deeper relationship between the underlying dynamics of a system and 
the fractal nature of its behavior. We will explore this relationship in more detail 
in the following chapter. 

Let us consider as an example, the use of the fractal dimension as a 
mathematical model of the time series in the following form: 

d = [log(N)/log(l/r)] (5.6) 

where d is the fractal dimension for an object of N parts, each scaled down by a 
ratio r. For an estimation of this dimension we can use the following equation: 

N(r) = P[ lIrd ] (5.7) 

where N(r) = number of boxes contained in a geometrical object and r = size of 
the box. We can obtain the box dimension of a geometrical object (Mandelbrot, 
1987) counting the number of boxes for different sizes and performing a 
logarithmic regression on this data. For our particular case the geometrical object 
consists of the curve constructed using the set of points from the time series. We 
show in Figure 5.1 (a) the curve and the boxes used to cover it. In Figure 5.1 (b) 
the corresponding logarithmic regression is illustrated. 
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Figure 5.1 Fractal dimension of a time series: (a) curve and the boxes covering it, 
(b) the logarithmic regression to find d 

5.2 Controlling Chaos 

More than two decades of intensive studies on non-linear dynamics have posed 
the question on the practical applications of chaos ( Kapitaniak, 1996). One of the 
possible answers is to control chaotic behavior in such a way as to make it 
predictable. Indeed, nowadays the idea of controlling chaos is an appealing one. 

Chaos occurs widely in engineering and natural systems; historically it 
has usually been regarded as a nuisance and is designed out if possible. It has been 
noted only as irregular or unpredictable behavior, often attributed to random 
external influences. More recently, there have been examples of the potential 
usefulness of chaotic behavior (Kapitaniak, 1996). 

We can divide chaos controlling approaches into two broad categories: 
firstly those in which the actual trajectory in the phase space of the system is 
monitored and some "feedback" process is employed to maintain the trajectory in 
the desired mode, and secondly "non-feedback" methods in which some other 
property or knowledge of the system is used to modify or exploit chaotic behavior. 
Feedback methods do not change the controlled systems and stabilize unstable 
periodic orbits or strange chaotic attractors, while non-feedback methods slightly 
change the controlled system, mainly by a small permanent shift of control 
parameter, changing the system behavior from chaotic attractor to periodic orbit 
which is close to the initial attractor. 
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We describe in this section several methods by which chaotic behavior in 
a dynamical system may be modified, displaced in parameter space or removed. 
The Ott-Grebogi-Yorke (OGY) method (Ott et al.,1990) is extremely general, 
relying only on the universal property of chaotic attractors, namely that they have 
embedded within them infinitely many unstable periodic orbits. On the other 
hand, the method requires following the trajectory and employing a feedback 
control system, which must be highly flexible and responsive; such a system in 
some experimental configurations may be large and expensive. It has the 
additional disadvantage that small amounts of noise may cause occasional large 
departures from the desired operating trajectory. 

The non-feedback approach is inevitable much less flexible, and requires 
more prior knowledge of equations of motion. On the other hand, to apply such a 
method, we do not have to follow the trajectory. The control procedures can be 
applied at any time and we can switch from one periodic orbit to another without 
returning to the chaotic behavior, although after each switch, transient chaos may 
be observed. The lifetime of this transient chaos strongly depends on initial 
conditions. Moreover, in a non-feedback method we do not have to wait until the 
trajectory is close to an appropriate unstable orbit; in some cases this time can be 
quit long. The dynamic approach can be very useful in mechanical systems, where 
feedback controllers are often very large. In contrast, a dynamical absorber having 
a mass of the order of 1% of that of the control system is able, as we will see later, 
to convert chaotic behavior to periodic one over a substantial region of parameter 
space. Indeed, the simplicity by which chaotic behavior may be changed in this 
way may actually motivate the search for, and exploitation of, chaotic behavior in 
practical systems. 

The essential property of a chaotic trajectory is that it is not 
asymptotically stable. 
Closely correlated initial conditions have trajectories, which quickly become 
uncorrelated. Despite this obvious disadvantage, it has been established that 
control leading to the synchronization of two chaotic systems is possible. 

The methods described in this section are illustrated by the example of 
Chua's circuit ( Chua, 1993) shown in Figure 5.2. Chua's circuit contains three 
linear energy storage elements (an inductor and two capacitors), a linear resistor, 
and a single non-linear resistor NR, namely Chua's diode with a three segment 
piecewise linear v-i characteristic defined by 

f(Vcl)=mOVc1 + Yz( ml - mo)(lvcl + 11-1 Vcl - 11) (5.8) 

where the slopes in the inner and outer regions are mO and ml respectively 
(Figure 5.3). 

In this case the state equations for the dynamics of Chua's circuit are as 
follows: 



92 

where G=llR. 

L 

CldVtl_= G(Ve2 - Vel) - [(ved 
dt 

C2dv~_= G(Vc1 - Ve2) - iL 
dt 

LdiL_= Ve2 
dt 

R 

+ 

VC2 

C2 

+ 

VCl 

C] 

Figure 5.2 Chua's circuit. 

(5.9) 

iR + 

VR 
NR 

Figure 5.3 iR-VcI characteristic ofthe non-linear resistor. 
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The chaotic dynamics of Chua's circuit have been widely investigated 
(e.g. Madan, 1993). One of the main advantages of this system is the very good 
accuracy between numerical simulations of the model and experiments on real 
electronic devices. Experiments with this circuit are very easy to perform, even for 
non-specialists. 

5.2.1 Controlling Chaos through Feedback 

5.2.1.1 Ott-Grebogi-Yorke Method 

Ott, Grebogi and Yorke (Ott et a!., 1990) have proposed an developed a method 
by which chaos can always be suppressed by shadowing one of the infinitely 
many unstable periodic orbits embedded in the chaotic attractor. 

The basic assumptions of this method are as follows. 

(a) The dynamics of the system can be described by an n-dimensional map 
of the form: 

Xn+ I =f(Xn, p) (5.\0) 

(b) P is some accessible system parameter which can be changed in some 
small neighborhood of its nominal value p*. 

(c) For this value p* there is a periodic orbit within the attractor around 
which we would like to stabilize the system. 

(d) The position of this orbit changes smoothly with changes in p, and there 
are small changes in the local system behavior for small variations of p. 

Let XF be a chosen fixed point of the map f of the system existing for the 
parameter value p*. In the close vicinity of this fixed point with good accuracy we 
can assume that the dynamics are linear and can be expressed approximately by 

(5.11) 

The elements of the matrix M can be calculated using the measured chaotic 
time series and analyzing its behavior in the neighborhood of the fixed point. The 
OGY algorithm is schematically explained in Figure 5.4 and its main properties 
are as follows. 

(a) No model of dynamics is required. One can use either full information 
from the process or a delay coordinate embedding technique using single 
variable experimental time series. 
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(b) Any accessible variable (controllable) system parameter can be used as 
the control parameter. 

(c) In the absence of noise and error, the amplitude of applied control signal 
must be large enough (exceed a threshold) to achieve control. 

(d) Inevitable noise can destabilize the controlled orbit, resulting in 
occasional chaotic bursts. 

(e) Before settling into the desired periodic mode, the trajectory exhibits 
chaotic transients, the length of which depends on the actual starting 
point. 

• 

Figure 5.4 General idea of the Ott-Grebogi-Yorke method. 

In Ogorzalek (1993) the OGY method was applied to control chaos in 
Chua's circuit. Using a specific software package, unstable periodic orbits 
embedded in the attractor which could serve as goals of control were found. The 
controlling method was implemented in the way shown in Figure 5.5. 

The computer was used for data acquisition, identification of the chaotic 
system in terms of unstable periodic orbits and calculation of the control signal. 
When applying the OGY method to control chaos in a real electronic circuit the 
main problem encountered was the noise introduced due to inevitable noise of the 
circuit elements. The method was found to be very sensitive to the noise level -
very small signals sometimes are hidden within the noise, and control is 
impossible. 
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Figure 5.5 Practical implementation ofOGY method. 

Generally, the experimental application of the OGY method requires a 
permanent computer analysis of the state of the system. The changes of the 
parameters, however, are discrete in time and this leads to some serious 
limitations. The method can stabilize only those periodic orbits which maximal 
Lyapunov exponent is small compared to the reciprocal of the time interval 
between parameter changes. Since the corrections of the parameter are rare and 
small, the fluctuation noise leads to occasional bursts of the system into regions 
far from the desired periodic orbit, especially in the presence of noise. 

5.2.1.2 Pyragas's Control Methods 

A different approach to feedback control which allows the above mentioned 
problems to be avoided was proposed by Pyragas (1992). This method is based on 
the construction of a special form of a time continuous perturbation, which does 
not change the form of the desired unstable periodic orbit, but under certain 
constraints can stabilize it. Two feedback controlling loops, shown in Figure 5.6, 
have been proposed. 

A combination of feedback and periodic external force is used in the first 
method (Figure 5.6(a)). The second method (Figure 5.6(b)) does not require any 
external source of energy and it is based on self-controlling delayed feedback. If 
the period of external force or a time delay is equal to the period of one of the 
unstable periodic orbits embedded in the chaotic attractor it is possible to find a 
constant K which allows stabilization of the unstable periodic orbit. This 
approach, being noise resistant, can easily be used in experimental systems. 

The first of Pyragas's methods can be considered as the special case of 
the direct application of classical controlling methods to the problem of 
controlling chaos. 
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Figure 5.6 Feedback controlling loops; (a) control by periodic external 
perturbation, (b) control by time delay. 

The dynamical system 

.. .. 

X' = f(X) (5.12) 

Where x ERn, is controllable if there exists a control function u(t), such that 

X' = f(X) + u(t) (5.13) 

allows to move trajectory X(t) from point Xo at time to to the desired point X in 
finite time T. 

The controllability concept can be applied to the chaos controlling 
problems. For example, for Chua's circuit the equations for the controlled circuit 
are 



X' = a(Y-X-f(X)) 
Y' = X-Y+Z-K(Y-Y*) 
Z'=-bY 
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(5.14) 

This approach is illustrated in Figure 5.7. The main advantages of this method are 
as follows. 

(a) Any solution of the original system can be a goal of the control (fixed 
point, unstable periodic orbit, etc.) 

(b) The controller has a very simple structure. 
(c) Access to system parameters is not required. 
(d) It is not affected by small parameter variations. 

y* K + 

K 

Chua's 
Circuit 

Figure 5.7 Closed loop feedback control configuration. 

5.2.1.3 Controlling Chaos by Chaos 

y 

In this section, we show that the chaotic behavior of one system can be controlled 
by coupling it with another one which can also be chaotic (Kapitaniak, 1996). 
Thus we consider two chaotic systems, which we call A and B respectively, 

X' = f(X) 
Y' =g(X) (5.15) 

where x,y ERn, and we use the controlling strategy which is schematically 
illustrated in Figure 5.8; the two systems are coupled through the operators A,/J, 
which have a very simple linear form. We assume that some or all state variables 
of both systems A and B can be measured, so that we can measure signal X(t) 
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from system A and signal yet) from B, and that the systems are coupled in such a 
way that the differences DI and D2 between the signals X(t) and yet) are 

FI(t) = ,,-[X(t)-yet)] = ,,-DI(t) 
F2(t) = /-![Y(t)-X(t)] = /-!D2(t) (5.16) 

used as control signals introduced respectively into each of the chaotic systems A 
and B as negative feedback. We take 'A, !l > 0 to be experimentally adjustable 
weights of the perturbation. 

'A(Y-X) 

!l(X-Y) 

Chaotic 
Svstem A 

Chaotic 
Svstem B 

Figure 5.8 Controlling chaos by chaos scheme. 

Using the coupling schematically shown in Figure 5.8, it has been shown 
that one chaotic system coupled with the other one can significantly change the 
behavior of one of them (unidirectional coupling, i.e. 'A or !l =0) or of both 
systems (mutual coupling, i.e. 'A, !l =f; 0). This property allows us to describe the 
above procedure as the "controlling chaos by chaos" method. In Kocarev and 
Kapitaniak (1995), rigorous conditions are given, under which chaotic attractors 
of systems A and B are equivalent, or the evolution of one of them is forced to 
take place on the attractor of the other one. Kapitaniak (1996) shows an example 
of coupling two Lorenz chaotic attractors, which results in chaos control and 
increase of the predictability. 
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5.2.2 Controlling Chaos without Feedback 

5.2.2.1 Control through Operating Conditions 

Virtually all engineering and most natural systems are subjected during operation 
to external forcing. This forcing will contain (and hopefully be dominated by) 
planned and intentional components; it will also almost invariably contain 
unintentional "noise". Smart design and control of this forcing is often able to 
annihilate, or shift to a harmless region of parameter space, an unwanted chaotic 
behavior. 

In this case, the method consists in finding the chaotic region in 
parameter space by analytical and numerical methods (Kapitaniak, 1996). Then 
based on this region change the parameters to control the dynamical system. The 
procedure described in this section is based on the direct change of one of the 
system parameters to shift system behavior from chaotic to periodic, close to the 
chaotic attractor. It cannot be called a control method in the sense of the methods 
described before, but it illustrates that having a system designed as chaotic, we 
obtain easy access to different types of periodic behavior. 

5.2.2.2 Control by System Design 

In this section, we explore the idea of modifying or removing chaotic behavior by 
appropriate system design. It is clear that, to a certain extent, chaos may be 
"designed out" of a system by appropriate modification of parameters, perhaps 
corresponding to modification of mass or inertia of moving parts. Equally clearly, 
there exist strict limits beyond which such modifications cannot go without 
seriously affecting the efficiency of the system itself. 

In this section, we describe a method for controlling chaos in which the 
chaos effect is achieved by coupling the chaotic main system to a simpler 
autonomous system (controller), usually linear, as shown in Figure 5.9. This 
method (Kapitaniak, 1996) is developed for chaotic systems in which for some 
reason it is difficult, if not impossible, to change any parameter of the main 
system. In particular consider the coupling of the chaotic system 

X' = f(X,Il) (5.17) 

where x E RD, n ;;: 3 and 11 E R is a system parameter, to another (simpler) 
asymptotically stable system ( controller) described by 

Y' = g(Y,e) (5.18) 
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System 
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Figure 5.9 Coupling scheme. 

where Y E RD, e is a vector denoting the controller's parameters, where at least 
one of the parameters ei can be easily changed. For practical reasons, the 
dimension m of the controller system (5.18) should be chosen as low as possible. 
Since the method was mainly designed for controlling chaos in mechanical 
systems, we choose m = 2, i.e., a one degree of freedom controller (the simplest 
mechanical system). The equations for the extended system are 

X' = f(X,).!) + A Y 
Y' = g(Y,e) + BX (5.19) 

where A and B are the coupling matrices. Since the Y subsystem is asymptotically 
stable, the role of the controller is to change the behavior of the system from 
chaotic to some desired periodic, possibly constant, operating regime. 

The idea of this method is similar to that of the so-called dynamical 
vibration absorber. A dynamical vibration absorber is a one degree of freedom 
system, usually mass on a spring, which is connected to the main system as shown 
in Figure 5.10. 

f(X) = kX + kc X3 

x 
F cos wt 

Y 

Figure 5.10 Dynamical damper as chaos controller. 
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Although such a dynamical absorber can change the overall dynamics 
substantially, it need usually only be physically small in comparison with the main 
system, and does not require an increase of excitation force. It can be easily added 
to the existing system without major changes of design or construction. This 
contrasts with devices based on feedback control, which can be large and costly. 

To explain the role of dynamical absorbers in controlling chaotic 
behavior let us consider the Duffing oscillator, coupled with an additional linear 
system: 

X" + aX' + bX + cX3 + d(X-Y) = Bo + B]coswt (20a) 

Y" + e(Y-X) = 0 (20b) 

where a, b, c, d, e, Bo, B!, and ware constants. Here d and e are the characteristic 
parameters for the absorber, and we take e as the control parameter. 

It is well known that the Duffmg oscillator shows chaotic behavior for 
certain parameter regions. As has been mentioned in the previous section, in many 
cases the route to chaos proceeds via s sequence of period doubling bifurcations, 
and in such cases this method provides an easy way of switching between chaotic 
and periodic behavior. 

Let us consider the parameters of Equation (20) to be fixed at the values 
a=O.077, b=O, c=1.0, Bo=0.045, B 1=0.16, w=1.0, then we can find (Kapitaniak, 
1996) that we have chaos for e E [0, 0.1 0], and we can control this chaos by 
increasing e above 0.10. As this method is designed mainly for experimental 
applications, we shall now briefly suggest some guidelines for applying it. 

(1) The coupled system has to be as simple as possible. 
(2) The coupling e should be chosen as small as possible. 
(3) If it is possible one should couple the controller in such a way that the 

locations of the fixed points of the original system are not changed. 

5.2.2.3 Taming Chaos 

In paper by Steeb et al. (1986) it was first demonstrated that chaos in a dynamical 
system can be reduced (the largest Lyapunov exponent is decreased) or replaced 
by regular behavior by applying a weak external periodic signal. Periodic 
perturbation can be introduced to the system as external force or as a perturbation 
of one of the internal system parameters. Given an external perturbation, it is 
possible to show that a chaotic system is capable of finding an appropriate orbit. 

In Kapitaniak (1988) it was shown that the chaotic system can be set into 
regular motion by addition of suitable random noise. Other authors have described 
similar approaches. Later these approaches have been called "taming chaos". 
Possible outputs of the taming chaos procedure are shown in Figure 5.11. 
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Figure 5.11 General idea of taming chaos. 

5.2.3 Method Selection 

Although the methods described in the previous sections have been developed 
mainly by physicists and mathematicians, generally most of them can be applied 
to control engineering systems. 

In particular, the non-feedback methods can practically always be used. 
Their applications are straightforward and do not require special complicated 
controllers to be used. The main disadvantage of these methods is that the goal of 
controlling has to be determined by trial and error method. 

The motivations for using feedback systems to control chaos are the 
following: feedback controllers are easy to implement, especially in electrical 
systems, they can perform the job automatically, and stabilize the overall control 
system efficiently. On the other hand, conventional feedback controllers are 
designed for non-chaotic systems. A chaotic system sensitivity to initial 
conditions may lead to the impression that in chaotic systems their sensitivity to 
small errors makes them very difficult. Such an impression may lead to the 
argument that once the control is initiated there is no need for further monitoring 
of the system's dynamics, nor feeding back this information in order to sustain the 
control. Indeed, it turns out that conventional feedback control of chaotic systems 
is generally difficult, but not impossible. Recently, Chen and Dong (1995) used a 
neural network approach for identification and control of chaotic systems. In 
many cases, a specially implemented feedback method can guarantee stabilization 
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of the dynamic system. To summarize, the selection of the controlling method has 
to be based on the following: 

(I) the goal of controlling (e.g. if the suppression of chaos is the main goal, 
then non-feedback methods can be applied in an easier way); 

(2) the level of noise in the system (e.g. if the level of noise is large, then 
Pyragas's methods can be more effective than the OGY approach); 

(3) the particular characteristics of the system. (Generally, in electrical 
systems one can try to use both feedback and non-feedback methods. In 
mechanical systems where the suppression of chaos is the main goal of 
controlling, non-feedback methods are recommended). 

5.3 Summary 

In this chapter, we have presented the main ideas underlying Dynamical 
Systems, Fractal theory, and Chaos theory, and we have only started to point out 
the many possible applications of these powerful mathematical theories. We have 
discussed in some detail the concepts of strange attractors, chaotic behavior and 
fractal dimension. The concept of the fractal dimension will be the basis of the 
method for time series analysis that will be used in Chapter 6, to achieve 
Mathematical Modelling of dynamic systems. Also, we have introduced several 
methods for controlling chaos that use some of the basic concepts of dynamical 
systems. These methods for controlling chaos can be used for real time control of 
dynamical systems, or can be used in combination with other computational 
techniques when the complexity of the problem requires more efficiency and 
accuracy. We will see in later chapter that many real world problems require 
hybrid control systems that combine several techniques to achieve the desired 
level of performance. 



Chapter 6 

Hybrid Intelligent Systems for Time Series 
Prediction 

We describe in this chapter a new method for the estimation of the fractal 
dimension of a geometrical object using fuzzy logic techniques. The fractal 
dimension is a mathematical concept, which measures the geometrical complexity 
of an object. The algorithms for estimating the fractal dimension calculate a 
numerical value using as data a time series for the specific problem. This 
numerical (crisp) value gives an idea of the complexity of the geometrical object 
(or time series). However, there is an underlying uncertainty in the estimation of 
the fractal dimension because we use only a sample of points of the object, and 
also because the numerical algorithms for the fractal dimension are not completely 
accurate. For this reason, we have proposed a new definition of the fractal 
dimension that incorporates the concept of a fuzzy set. This new definition can be 
considered a weaker definition (but more realistic) of the fractal dimension, and 
we have named this the "fuzzy fractal dimension". We apply our fuzzy fractal 
approach to the problem of forecasting a particular time series, and compare our 
results to a neural network approach. The fuzzy fractal approach has some definite 
advantages over using neural networks, and we discuss these at the end of this 
chapter. 

6.1 Problem of Time Series Prediction 

Traditionally, we would assign a particular geometrical object a crisp value of the 
fractal dimension, and this numerical value was considered as a specific label for 
the object. However, this numerical value is difficult to use in classification or 
recognition applications because calculated values won't match these crisp values. 
We have experienced this problem when we used this idea for classifying bacteria 
with the fractal dimension (Castillo & Melin, 1994). We have found particular 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001



lO6 

numerical labels for each of the bacteria, but when we try to use these values for 
recognizing specific bacteria in samples we have run into problems because of 
uncertainties. For this reason, we have proposed the following scheme for 
estimating the fuzzy fractal dimension of a set of geometrical objects. First, we 
calculate the standard fractal dimension of the objects, using the box counting 
algorithm with samples of points from the objects. Second, with the crisp values 
for the fractal dimensions of the objects build linguistic values for the dimensions, 
these will be the fuzzy fractal dimensions of the objects. Third, using these 
linguistic values of the fractal dimensions build a set of fuzzy rules that relate each 
object with each rule. This set of fuzzy if-then rules can be considered a 
classification scheme for the set of geometrical objects, and can be used for 
recognizing these objects because a particular value is mapped to an object. We 
can apply this method either for pattern recognition or for time series analysis as 
follows. First, we need to build the specific classification rules for the application 
using the fractal dimension. Then, we need to implement a method for sampling 
the object to obtain the data needed to calculate the crisp value of the fractal 
dimension. Finally, we use this crisp value as input in the set of fuzzy rules to 
obtain as output the specific classification for the object. For real image 
processing this can be used to recognize a particular object as needed for robotic 
applications (Castillo & Melin, 1998a). For time series analysis, this can be used 
for modeling and forecasting purposes. In any case, the generalization of the 
mathematical concept of the fractal dimension (Mandelbrot, 1987), to include now 
the ideas of fuzzy logic (Zadeh, 1975) is also important from the theoretical point 
of view because is only the initial point in the fuzzy generalization of Fractal 
Theory. 

6.2 Fractal Dimension of an Object 

Recently, considerable progress has been made in understanding the complexity 
of an object through the application of fractal concepts (Mandelbrot, 1987) and 
dynamic scaling theory. For example, financial time series show scaled properties 
suggesting a fractal structure (Castillo & Melin, 1999a). The fractal dimension of 
a geometrical object can be defined as follows: 

d = lim [InN(r)] / [In(1/r)] (6.1) 
r~O 

where N(r) is the number of boxes covering the object and r is the size of the box. 
An approximation to the fractal dimension can be obtained by counting the 
number of boxes covering the boundary of the object for different r sizes and then 
performing a logarithmic regression to obtain d (box counting algorithm). In 
Figure 6.1, we illustrate the box counting algorithm for a hypothetical curve C. 
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Counting the number of boxes for different sizes of r and performing a 
logarithmic linear regression, we can estimate the box dimension of a geometrical 
object with the following equation: 

In NCr) = In~ - dIm (6.2) 

this algorithm is illustrated in Figure 6.2. 
The fractal dimension can be used to characterize an arbitrary object. The 

reason for this is that the fractal dimension measures the geometrical complexity 
of objects. In this case, a time series can be classified by using the numeric value 
of the fractal dimension (d is between 1 and 2 because we are on the plane x y). 
The reasoning behind this classification scheme is that when the boundary is 
smooth the fractal dimension of the object will be close to one. On the other hand, 
when the boundary is rougher the fractal dimension will be close to a value of 
two. 

y 

o x 

Figure 6.1 Box counting algorithm for a curve C. 

In NCr) In NCr) = Inl3 - dlnr 

o In r 

Figure 6.2 Logarithmic regression to find dimension. 
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6.3 Fuzzy Logic for Object Classification 

We can use a fuzzy rule base as a classification scheme if we can make a suitable 
partition of the input space such that we are able to distinguish different 
geometrical objects by their characteristics. We will consider geometrical objects 
in the plane for simplicity. We can now use fuzzy clustering techniques (Yager & 
Filev, 1994) to cluster the data, and then build a fuzzy rule base that will actually 
be a classification scheme for the particular application. 

We will consider that we have n objects 01, 02, ... , On, and that we are 
able to apply fuzzy clustering techniques to obtain n pairs (Xi, Yi) i=I, ... ,n, which 
are the respective centers of the n clusters. Then a fuzzy rule base can be 
constructed as follows: 

If X is XI and Y is YI then Object is 01 
If X is X2 and Y is Y2 then Object is 02 (6.3) 

If X is Xn and Y is Yn then Object is On 

These rules can be used for pattern classification or time series analysis 
because in both cases the data has the same general structure. For applications of 
higher dimensionality this approach can be generalized in a straightforward 
manner, but of course the problem is that the number of rules increases 
dramatically (which is known as the curse of dimensionality). 

To illustrate these ideas we will consider a particular application. Lets 
consider the problem of forecasting the time series of the exchange rate US 
dollarlMX peso. We used the time series of average weekly rates for 36 weeks to 
find the fuzzy model as explained above. We then used the fuzzy model to predict 
future values of the exchange rate and compare these to the actual values to 
validate this approach. 

We show in Figure 6.3 the time series of exchange rates for 36 weeks of 
US dollarlMX peso from August 1999 to April 2000. We can notice from this 
figure the cyclical behavior of the time series over this short period of time. 

We used the Fuzzy Logic Toolbox of MA TLAB for fuzzy clustering of 
this data, and then for implementing the fuzzy rule base using the recognized 
clusters. In this case, five rules ofthe form shown in Equation 6.3 were used. We 
show in Figure 6.4 the general architecture of the fuzzy system. In this case, the 
Mamdani fuzzy reasoning procedure was used due to its simplicity. 

We also show in Figure 6.5 how we can use this fuzzy system to predict 
a particular value of the exchange rate base on the actual value of the exchange 
rate and the value of future time. We validated these results against the real values 
that occurred during the following four weeks. 
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Figure 6.3 Time series of exchange rates US/Mexico. 
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Figure 6.5 Fuzzy Prediction of the exchange rate. 

6.4 Fuzzy Estimation of the Fractal Dimension 

The fractal dimension of a geometrical object is a crisp numerical value measuring 
the geometrical complexity of the object. However, in practice it is difficult to 
assign a unique numerical value to an object. It is more appropriate to assign a 
range of numerical values in which there exists a membership degree for this 
object. For this reason, we will assign to an object 0 a fuzzy set /-lo, which 
measures the membership degree for that object. 

Lets consider that the object 0 is in the plane x y, then a suitable 
membership function is a generalized bell function: 

110= 1/[ 1 + I (x-c) / a 1
2b ] (6.4) 

where a, band c are the parameters of the membership function. Of course other 
types of membership functions could be used depending on the characteristics of 
the application. 

By using the concept of a fuzzy set we are in fact generalizing the 
mathematical concept of the fractal dimension. In fact, our definition of the fuzzy 
fractal dimension is as follows. 
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Definition 6.1: Let 0 be an arbitrary geometrical object in the plane x y. Then the 
fuzzy fractal dimension is the pair: (do, 110) 
where do is the numerical value of the fractal dimension calculated by the box 
counting algorithm, and 110 is the membership function for the object. 

With this new definition we can account for the uncertainty in the 
estimation of the fractal dimension of an object. Also, this new definition enables 
easier pattern recognition for objects, because it is not necessary to match an exact 
numerical value to recognize a particular object. 

6.5 Fuzzy Fractal Approach for Time Series 
Analysis and Prediction 

Let us consider now the problem of time series analysis and prediction. Let yJ, Y2, 
... , Yn be an arbitrary time series. If we want to be able to forecast this time series, 
we need to analyze the data and extract the trends and periodicities of the series. 
Assuming that the time series can be clustered into n objects OJ, O2, ... , On as 
shown in Figure 6.6, then we can build a fuzzy rule base as in Section 6.3 of this 
chapter. However, we now also want to consider the geometrical complexity of 
the objects OJ, Oz, ... , On as measured by their fractal dimensions doJ, do2, ... , don 
respectively. Then a fuzzy rule base for time series prediction can be expressed as 
follows. 

If dim is dOl and pos is XI then prediction is 0 1 

If dim is do2 and pos is X2 then prediction is O2 

If dim is don and pos is Xn then prediction is On 
(6.5) 

In this case, we need to define membership functions for the fractal 
dimension, position, and for the geometrical objects. This fuzzy rule base can be 
used with the Mamdani reasoning method, and center of gravity as defuzzification 
method. However, it is also possible to use a Sugeno type fuzzy system in which 
the consequents can be linear functions. This is illustrated in Equation (6.6). 

If dim is dOl and pos is XI then y=alxl+bldol+cl 
If dim is do2 and pos is X2 then y=a2x2+b2do2+c2 

(6.6) 
If dim is don and pos is Xn then y =anxn +bndon +cn 

In this case, we can use a neuro-fuzzy approach for adapting the parameters of the 
fuzzy system using real data of the problem. We can use, for example, an ANFIS 
approach (Jang, Sun & Mizutani, 1997) to learn from real data the best values for 
the coefficients of the linear functions and for the membership functions. 
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Figure 6.6 Fuzzy clustering of the time series. 

We show in Figure 6.7 an implementation of the Mamdani type fuzzy 
system in the Fuzzy Logic Toolbox of MA TLAB for the time series of exchange 
rates of US dollars/MX pesos. In this figure, we can see the non-linear surface for 
the fuzzy inference system of prediction. 
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Figure 6.7 Non-Linear Surface for time series. 
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We also show in Figure 6.8 the implementation of the Sugeno type fuzzy 
system for the same time series. In this figure, we can see the non-linear surface 
for the Sugeno fuzzy system for time series prediction. This surface represents the 
fuzzy model for the problem of predicting the exchange rate of the US dollar/MX 
peso. 

Finally, we show in Figure 6.9 the fuzzy reasoning for prediction for 
particular values of the fractal dimension and time. 
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Figure 6.8 Surface for Sugeno type fuzzy system. 
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Figure 6.9 Fuzzy reasoning for time series prediction. 
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6.6 Neural Network Approach for Time Series 
Prediction 

We can also use neural networks for time series analysis and prediction. In this 
case, a neural network is given a time series as training data, and then the 
forecasting ability of the network is measured with new data. We use a 
feedforward neural network with the Levenberg-Marquardt learning algorithm for 
time series prediction, to compare the results of this approach with our fuzzy 
fractal methodology. We will fIrst present our results with the neural network 
approach, and then we discuss how these results compare with the ones that we 
obtained before with the fuzzy fractal approach. 

We consider the same time series of exchange rates of the US dollarlMX 
peso to train a feedforward neural network of three layers, with 15 nodes in the 
hidden layer. We used the Levenberg-Marquardt training algorithm, which is a 
modifIcation of the basic backpropagation method allowing a variable learning 
rate. We show in Figure 6.10 the initial function approximation with the neural 
network described before. Of course, at the beginning the approximation is not 
good because the network is initialized with random weights by the computer 
program. 
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Figure 6.10 Initial function approximation with the neural network. 
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We show in Figure 6.11 the results of training the neural network for 420 
epochs. The sum of squared errors after training was about 0.0002, which satisfied 
our goal error in the computer program. We can see in this figure, that the network 
follows very closely the training data. Also, the results of the neural network were 
compared to the real values of the exchange rate for the following weeks after 
training, and forecasts were always within a 5% error of the real values. 
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Figure 6.11 Final function approximation of the neural network. 

Finally, we show in Figure 6.12 the results of plotting the sum of squared 
errors against the number of epochs. We can see from this figure how the neural 
network learns very rapidly the pattern of the time series. 

The results of the neural network can be considered very good if we 
validate in the short term, as mentioned before. The problem of these type of 
results is that when the time series starts to behave more erratically then the 
network loses its forecast ability. Here is when a fuzzy fractal approach becomes 
more powerful because it has more flexibility in adapting to different types of 
situations. Our fuzzy fractal approach also has short term forecast ability (within 
5% of real values), but at the same time is able to give good results in the long 
term. This is true because the fuzzy rule base contains a kind of knowledge about 
the time series. 
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Figure 6.12 Sum of squared errors against the number of epochs. 

6.7 Fuzzy Fractal Approach for Pattern 
Recognition 

We can also use the above ideas for pattern recognition in image processing 
applications. The method is very similar to the one for time series prediction, the 
only difference is that the data is not directly related to time. For pattern 
recognition only real geometrical variables are used. In this case, we also consider 
n objects 0), O2, ... , On with n corresponding cluster centers (Xi, Yi), i=l, ... ,n. 
Then the fuzzy rule base can be stated as follows. 

If dimension is dOl then Object is 0 1 

If dimension is do2 then Object is O2 

If dimension is do2 then Object is On 
(6.7) 

To completely define this fuzzy system for pattern recognition, we will need to 
define the membership functions for the fractal dimensions and the objects. The 
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method for calculating the fractal dimension is the same as before and for fuzzy 
reasoning we can use Mamdani or Sugeno type. 

6.8 Summary 

We have presented in this chapter a new approach for time series analysis and 
pattern recognition combining fuzzy logic and fractal theory. With the new 
approach, we can always build a set of fuzzy rules using the fractal dimension of 
the objects to solve the problem of forecasting or recognition. We have shown 
very good results in predicting the exchange rate of the US dollar/MX peso with 
this new approach. Our new method can also be applied to similar problems of 
prediction. We compared the results of our approach with the ones given by a 
neural network, and we discuss the advantages of using a fuzzy rule base instead 
of a network. We have to mention here that the problem of time series analysis 
and prediction is very important in the real world, because we are always in need 
of forecasting the future behavior of a dynamical system to be able to control it or 
for decision making. 



Chapter 7 

Modelling Complex Dynamical Systems with a 
Fuzzy Inference System for Differential 
Equations 

We describe in this chapter a new method for modelling complex dynamical 
systems based on the use of a new fuzzy inference system for multiple differential 
equations. It is well known that formulating a unique and sufficiently accurate 
mathematical model for a complex dynamical system (over a whole region of 
discourse) may be very difficult or even impossible in some cases (Castillo and 
Melin, 1996). For this reason, it may be more efficient to formulate a set of 
mathematical models that approximate the local behavior of the dynamical system 
for different parameter regions. We can then formulate a set of fuzzy if-then rules 
relating these regions to their corresponding mathematical models. We can 
assume, without loss of generality that the models can be expressed as non-linear 
differential equations (Castillo and Melin, 1997). We have developed a fuzzy 
inference system that enables fuzzy reasoning with multiple differential equations. 
The new fuzzy system can be considered as a generalization of Sugeno's inference 
procedure, in which we are now using differential equations as consequents of the 
fuzzy rules instead of simple polynomials like in Sugeno's original method. We 
illustrate our new method for modelling with two cases: robotic dynamic systems, 
and aircraft systems. These two applications are complex enough to illustrate the 
power of our method for modelling. 

7.1 The Problem of Modelling Complex Dynamical 
Systems 

The classical Sugeno fuzzy inference system (also known as the TSK fuzzy 
model) was proposed by Takagi, Sugeno, and Kang (1985) in an effort to develop 
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a systematic approach to generating fuzzy rules from a given input-output data set. 
A typical fuzzy rule in a Sugeno fuzzy model has the form 

If X is A and y is B then z = f(x,y) (7.1) 

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a crisp function 
in the consequent. Usually f(x,y) is a polynomial in the input variables x and y, 
but it can be any function as long at it can appropriately describe the output of the 
model within the fuzzy region specified by the antecedent of the rule. When f(x,y) 
is a first order polynomial, the resulting fuzzy inference system is called a "first­
order Sugeno fuzzy model", which was originally proposed in (Sugeno & Kang, 
(1988). When f is a constant, we then have a "zero-order Sugeno fuzzy model", 
which can be viewed as a special case of the Mamdani inference system. The 
overall output of the Sugeno fuzzy model is obtained via a weighted average 
operator, thus avoiding the time-consuming process of defuzzification required by 
a Mamdani model (Mamdani & Assilian, 1975). 

Our new fuzzy inference system uses differential equations as 
consequents in the rules, instead of simple polynomials. The new fuzzy inference 
system can be considered a generalization of Sugeno's original inference system, 
because we are now modelling a particular problem by using the appropriate 
differential equation for each region of the domain. A typical rule in this case has 
the form 

If X is A and y is B then dz/dt = f(x,y) (7.2) 

where A and B are fuzzy sets in the antecedent, while dz/dt = f(x,y) is crisp 
differential equation in the consequent. Usually f(x,y) is a non-linear function of 
the input variables x and y, and this means that we have a non-linear differential 
equation in the consequent. We have to note here that this new fuzzy inference 
system reduces to the standard Sugeno system only when the differential 
equations have closed form solutions in the form of polynomials. However, the 
solutions to the differential equations can be more complicated analytic functions 
or in most cases the solutions are so complex that can only be approximated by 
numerical methods. The advantage of this generalization of Sugeno's original 
method is that, in general, we can represent more complicated dynamic behaviors 
and also because of this fact, the number of rules needed to represent a given 
dynamical system is smaller. 

7.2 Modelling Complex Dynamical Systems with 
the new Fuzzy Inference System 

For a real-world dynamical system it may be necessary to consider a set of 
mathematical models to represent adequately all of the possible dynamic 
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behaviors of the system (Castillo & Melin, 1998b). In this case, we need a fuzzy 
decision procedure to select the appropriate model to use according to the value of 
a selection parameter vector <X. To implement this decision procedure, we need a 
fuzzy inference system that can use differential equations as consequents. For this 
purpose, we have developed a new fuzzy inference system that can be considered 
as a generalization of Sugeno's inference system (Sugeno & Kang, 1988), in 
which we are now using differential equations as consequents of the fuzzy rules, 
instead of simple polynomials like in the original Sugeno's method. Using this 
method, a fuzzy model for a general dynamical system can be expressed as 
follows: 

IF 0.1 is All AND 0.2 is AI2 ... AND am is Aim 
THEN dy/dt = fl(y, a) 

IF 0.1 IS A21 AND 0.2 IS A22 ... AND a IS A m 2m 
THEN dy/dt = f2(y, a) 

(7.3) 

IF 0.1 IS A AND 0.2 IS A ... AND a IS A nl n2 m nm 

THEN dy/dt = f (y, a) n 

m 
where A.. is the linguistic value of <X. for rule i-th, <X E R and is defined by <X = 

IJ J 

[<X , ••• , <X ], and y E RP is the output obtained by the numerical solution of the 
I m 

corresponding differential equation. Of course, it is assumed that each differential 
equation in (7.3) locally approximates the real dynamical system over a 

m 
neighborhood (or region) of R . 

The numerical solution of the differential equations can be achieved by 
the standard Runge-Kutta type method (Nakamura, 1997): 

y = RK (y ) + 1/2(k + k ) n+1 n I 2 (7.4) 

k = hf(y , t) Inn 
k = hf(y + k , t ) 2 n I n+1 

where h is the step size of the method and RK can be considered as the Runge­
Kutta operator that transforms numerical solutions from time n to time n+ 1. 
Numerical solutions are then aggregated by weighted average with weights 
obtained by the minimum of the firing strengths of the inputs: 

Y=wy +wv + ... +wv 
-I 1--2.1-2 11"'- (7.5) 

W +w + ... w 
I 2 n 
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where: 

The new fuzzy inference system for differential equations can be 
illustrated as in Figure 7.1, where a complex dynamical system is modeled by 
using four different mathematical models (M" M2, M3 and M4)' The decision 
scheme can be expressed as a single-input fuzzy model as follows: 

IF a IS small THEN dy/dt = fl(y, a) 

IF a IS regular THEN dy/dt = f2(y, a) (7.6) 

IF a IS medium THEN dy/dt = f3(y, a) 

IF a IS large THEN dy/dt = f4(y, a) 

where the output y is obtained by the numerical solution of the corresponding 
differential equation. 

o small a} regular a2 medium a3 large a4 a 

Figure 7.1 Modelling a complex dynamical system with the new 
fuzzy inference system. 

7.3 Modelling Robotic Dynamic Systems with the 
New Fuzzy Inference System 

We describe in this section the application of the new fuzzy inference method for 
differential equations to the case of robotic dynamic systems. We first review the 
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general mathematical models for robotic systems. We then show how to use the 
new fuzzy reasoning methodology to the problem of modelling complex robotic 
dynamic systems. Finally, we show results of the simulations of the fuzzy system 
for modelling. These results closely resemble the real dynamic behaviors of these 
robotic systems. 

7.3.1 Mathematical Modelling of Robotic Systems 

In the last several years, many papers have been published, rendering an important 
contribution to the development of computer methods for the mathematical 
modelling of robotic systems. The modelling methods may be classified with 
respect to the laws of mechanics on the basis of which motion equations are 
formed. One may distinguish methods based on Lagrange, Newton-Euler, 
D'Alembert, and other formalisms for dynamic modelling of interconnected 
multibody systems. The dynamic model of the robot consists of the model of the 
mechanical part of the robot (mechanism) and the model of the actuators that are 
driving the robot joints. The model of the mechanical part of the robot is usually 
assumed, see Vukobratovic' (1989), in the following form: 

P = H(q) q" + h(q, q') (7.7) 

where: P = n x 1 vector of driving torques in the joints, H = n x n inertia matrix 
of the mechanism, h = n x 1 vector of centrifugal, Corio lis, and gravity moments 
(forces) around the axes of the joints. 

Various types of actuators are applied to drive robots: dc motors, ac 
motors, hydraulic actuators, pneumatic actuators and so on. The models of 
actuators are in general non-linear, but for the dc motors (which are still most 
often applied for industrial robots) a linear state model may be used: 

iii I I i 
(X)' = A X + b u + f P" 

I 
i = 1,2, ... , n (7.8) 

j T 
where: X = (qj' qj', iRi ) , = 3 x 1 state vector of ith actuator model, iRi = rotor 

I 

current of ith dc motor, u = scalar input to ith actuator, P, = driving torque (load) 
I 

iii 
in ith joint, A = 3 x 3 matrix, b, f = 3 x 1 vectors. 

The connection between the models (7.7) and (7.8) (through the state 
coordinates q" q,', and driving torques P) are evident. Certain constraints upon the 

I I I 

actuators input u amplitude as well as on the allowable driving torques should be 
also added to these models. 
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7.3.2 Fuzzy Modelling of Robotic Dynamic Systems 

We will consider, in this section, the case of modelling robotic manipulators to 
illustrate the application of the method for fuzzy modelling complex dynamical 
systems. The general mathematical model for this kind of robotic system is the 
following (Zomaya, 1992): 

M(q)q" + V(q, q'))q' + G(q) + Fdq' = 't (7.9) 

where q E Rn denotes the link position, M(q) E Rnxn is the inertia matrix, V(q,q') 

E Rnxn is the centripetal-Coriolis matrix, G(q) E Rn represents the gravity vector, 

Fd E Rnxn is a diagonal matrix representing the friction term, and t is the input 

torque applied to the links. 
For the simplest case ofa one-link robot arm (Yamamoto & Yun, 1997), 

we have the scalar equation: 

Mqq" + Fdq' + G(q) = 't (7.10) 

IfG(q) is a linear function (G = Nq), then we have the "linear oscillator" model: 
q" + aq' + bq = c 

where a = F dlMq , b = NlMq and c = tlMq. This is the simplest mathematical 

model for a one-link robot arm. More realistic models can be obtained for more 

complicated functions G(q). For example, if G(q) = Nq2, then we obtain the 
"quadratic oscillator" model: 

q" + aq' + bq2 = c (7.11 ) 

where a, band c are defined as above. 
A more interesting model is obtained if we define G(q) = Nsinq. In this 

case, the mathematical model is 

q" + aq' + bsinq = c (7.12) 

where a, band c are the same as above. This is the so-called "sinusoidally forced 
oscillator". More complicated models for a one-link robot arm can be defined 
similarly. 

For the case of a two-link robot arm, we can have two simultaneous 
differential equations as follows: 

q"l + alq'l + blq22 = q (7.13) 

q"2 + a2Q'2 + b2Q21 = c2 
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which is called the "coupled quadratic oscillators" model. In Equation (7.13) aI, 

bl, a2, b2, cl and c2 are defined similarly as in the previous models. We can also 

have the "coupled cubic oscillators" model: 

q"l + alq'l + blq32 = CI 

q"2 + a2q'2 + b2q31 = c2 

We can also have the "coupled forced quadratic oscillators" model: 

q"l + alq'l + blq21 = CIsinq2 

q"2 + a2q'2 + b2q22 = c2sinq2 

(7.14) 

(7.15) 

which is a system of two coupled second-order non-linear differential equations. 
More complicated models for a two-link robot arm can be defined similarly. 

We use a fuzzy rule base for model selection for the case of robotic 
manipulators. We presented before mathematical models that can be used to 
model the dynamic behavior of robotic manipulators. Lets call M 1 the 

mathematical model given by Equation (7.11), M2 the mathematical model given 

by Equation (7.12), M3 the model given by Equation (7.13), and M4 the model 

given by Equation (7.14). Then we can establish a fuzzy rule base for these 
models as explained in Section 2 of this chapter. We will assume here without loss 
of generality that the selection parameters are the fractal dimension of a time 
series of measured values ofthe relevant variables in the problem (angle, angular 
velocity) and the number of links of the manipulator. Also, we are assuming that 
only four models are needed to model completely the robotic system. Then, we 
can define a set of four fuzzy if-then rules that basically relate the fuzzy values of 
the selection parameters with the corresponding mathematical model. We show in 
Table 7.1 this set of fuzzy rules for model selection for the case of manipulators of 
one and two links. 

We also need to define the membership functions for the fuzzy values in 
Table 7.1. The membership functions for the models should give us the degree of 
belief that a particular mathematical model is the correct one for the specific 
values of the selection parameters. We have to note here that for using a fuzzy rule 
base (like the one described in Table 7.1) with mathematical models, we need to 
use our new fuzzy inference system for multiple differential equations (described 
in Section 2 of this chapter). 
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Table 7.1 Fuzzy rule base for model selection of 
robotic systems 

IF THEN 
Fractal dimension Number of links Model 

low one M\ 
high one M2 
low two M3 

high two M4 

7.3.3 Experimental Results 

To give an idea of the performance of our new method for modelling 
complex dynamical systems, we show below simulation results for several types 
of robotic systems. First, we show in Figure 7.2 the membership functions for the 
fractal dimension variable. The membership functions were defined in the 
membership function editor of the fuzzy logic toolbox of MA TLAB. 

We show in Figure 7.3 the non-linear surface for the problem of 
modelling robotic manipulators using as input variables: the fractal dimension and 
number of links. The three dimensional surface represents the non-linear fuzzy 
model for the problem. 
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Figure 7.2 Membership function plots for the linguistic values of the fractal 
dimension variable. 

I 



127 

x 

35 

"ks:R:~~~ 
125 

2 
, S 

2 

I model 

Help I 0--- a ..... 

I Ready 

Figure 7.3 Non-linear surface for modelling robotic manipulators. 

We show in Figure 7.4 the reasoning procedure for modelling robotic 
dynamic systems when specific values for the fractal dimension and number of 
links are given. In this figure we can see how the final output (combined) model is 
obtained with the new fuzzy inference system. The results correspond to the 
values for the domain of application. 
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Figure 7.4 Reasoning procedure for specific values of the 
fractal dimension and number of links. 
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We show in Figure 7.5 the general structure of the fuzzy intelligent 
system for modelling robotic dynamic systems, developed with the fuzzy logic 
toolbox of the MATLAB programming language. 
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Figure 7.5 General structure of the fuzzy intelligent system 
with the new fuzzy inference system. 
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We show simulation results for a robotic system obtained using our new 
method for modelling dynamical systems. In Figure 7.6 we show the simulation 
results for a two-link robotic dynamic system with a mathematical model given by 
Equation (7.13). 
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Figure 7.6 Simulation of a two-link robot arm showing chaotic behavior for 
position q I . 
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The solution shown in Figure 7.6 is what is known as a "chaotic solution" 
because the orbit is oscillating (in an unstable manner) between an infinite number 
of periodic points. As a consequence of this fact the behavior identification in this 
case is ofa "chaotic solution" . 

In Figure 7.7 we can see how both ql and q2 tend to a "strange attractor", 

which is one of the distinguishing signs of "chaotic" behavior (Rasband, 1990). Of 
course, in robotic applications this behavior has to be avoided because it will 
cause physical damage to the robotic system. This is why it is important to 
identify when this behavior can occur in advance to avoid critical situations. 
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Figure 7.7 Simulation of a two-link robot arm showing chaotic behavior for 
positions q I and q2· 

Finally, we show in Figure 7.8 simulation results for a one-link robotic 
manipulator, were the dynamic behavior is a cycle of period 8. This dynamic 
behavior shows the existence of a cascade of period doubling bifurcations (and 
eventually chaos) for a single-link robotic system. 

We have developed a new fuzzy inference system for modelling complex 
dynamical systems using multiple differential equations. The new fuzzy inference 
system can be considered a generalization of the classical Sugeno fuzzy model. 
The use of differential equations as consequents instead of polynomials, gives to 
our new fuzzy modelling procedure more approximating power and as a result of 
this fact, a smaller number of fuzzy rules are needed to model a given problem. 
We have illustrated in this paper our new method for modelling with the complex 
case of robotic dynamic systems. Our new fuzzy inference system allows the 
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change of mathematical models according to the changing conditions of the 
robotic system and its environment. Adequate modelling of complex dynamic 
systems (like the robotic system) enables adaptive model-based control, which is a 
very important problem in real-world applications. 
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Figure 7.8 Simulation of a one-link robot manipulator. 

7.4 Modelling Aircraft Dynamic Systems with the 
new Fuzzy Inference System 

We describe in this section the application of our new fuzzy inference 
system to the problem of modelling aircraft dynamic systems. The mathematical 
models of aircraft systems can be represented as coupled non-linear differential 
equations (Melin & Castillo, 1998). In this case, we can develop a fuzzy rule base 
for model selection that enables the use of the appropriate mathematical model 
according to the changing conditions of the aircraft and its environment. For 
example, we can use the following model of an airplane when wind velocity is 
relatively small: 

p' = Il(-q + 1) 
q'=Jz(p+m) 

(7.16) 

where II and 12 are the inertia moments of the airplane with respect to axis x and y, 
respectively, I and m are physical constants specific to the airplane, and p, q are 
the positions with respect to axis x and y, respectively. However, a more realistic 



model of an airplane in three dimensional space, is as follows: 

p' = Il(-qr + 1) 
q' =h(pr+m) 
r' = h(-pq + n) 
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(7.l7) 

where now 13 is the inertia moment of the airplane with respect to the z axis, n is a 
physical constant specific to the airplane, and r is the position along the z axis. 
Considering now wind disturbances in the model, we have the following equation: 

p' = Il(-qr + 1) - ug 

q' =h(pr+m) 
r' = 13(-pq + n) 

(7.l8) 

where ug is the wind velocity. The magnitude of wind velocity is dependent on the 
altitude of the airplane in the following form: 

Ug =Uw indSl0 [1 + In (r/51O) ] 
In(51) 

(7.l9) 

where UwindSIO is the wind speed at 510 ft altitude (typical value = 20 ftlsec). 
If we use the general mathematical models of Equations (7 .l6)-(7 .18) for 

describing aircraft dynamics, we can formulate a set of if-then rules that relate the 
models to the conditions of the aircraft and its environment. Lets assume that MI 
is given by Equation (7.16), M2 is given by Equation (7.17), and M3 is given by 
Equation (7.18). Now using the wind velocity ug and inertia moment II as 
selection parameters, we can establish the fuzzy rule base for model selection as in 
Table 7.2. 

In Table 7.2, we are assuming that the wind velocity ug can have only 
two possible fuzzy values (small and large). This is sufficient to know if we have 
to use the mathematical model that takes into account the effect of wind (M3) for 
ug large or if we don't need to use it and simply the model M2 is sufficient (for ug 

small). Also, the inertia moment (II) helps in deciding between models MI and M2 
(or M3)' 

We show simulation results for an aircraft system obtained using our new 
method for modelling dynamical systems. In Figure 7.9 we show the simulation 
results for an airplane with inertia moments: II = 0.9, h = 0.5, 13 = O.l and the 
physical constants are: I = m = n = 0.1. The initial conditions are the following: 
p(O) = 0, q(O) = 0, r(O) = 0. 

We have implemented the new fuzzy inference system for multiple 
differential equations for modelling aircraft dynamic systems with very good 
results. We can conclude by saying that we consider our new method for 
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modelling dynamical systems a good alternative for modelling complex real­
world phenomena. 
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Figure 7.9 Simulation of position q for an airplane with II = 0.9, lz = 0.5,13 = 0.1 

Table 7.2 Fuzzy rule base for model selection of aircraft systems. 

Wind Velocity, Ug 

Small 
Small 
Large 

7.5 Summary 

IF 
Inertia Moment, I I 

Small 
Large 
Large 

THEN 
Mathematical Model 

We have developed a new fuzzy inference system for modelling complex 
dynamical systems using multiple differential equations. The new fuzzy inference 
system can be considered a generalization of the classical Sugeno fuzzy model. 
The use of differential equations as consequents instead of polynomials, gives to 
our new fuzzy modelling procedure more approximating power and as a result of 
this fact, a smaller number of fuzzy rules are needed to model a given problem. 
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We have illustrated in this paper our new method for modelling with the complex 
case of aircraft dynamic systems. Our new fuzzy inference system allows the 
change of mathematical models according to the changing conditions of the 
aircraft and its environment. Adequate modelling of complex dynamic systems 
(like the aircraft system) enables adaptive model-based control, which is a very 
important problem in real-world applications. We also illustrated our new method 
with the problem of modelling robotic dynamic systems. In this case, adequate 
modelling of these systems can help in achieve real time control, which is very 
important in real-world applications. 



Chapter 8 

A New Theory of Fuzzy Chaos for Simulation of 
Non-Linear Dynamical Systems 

We describe in this chapter a new theory of chaos using fuzzy logic techniques. 
Chaotic behavior in non-linear dynamical systems is very difficult to detect and 
control. Part of the problem is that mathematical results for chaos identification 
are difficult to use in many cases, and even if one could use them there is an 
underlying uncertainty in the accuracy of the numerical simulations of the 
dynamical systems. For this reason, we can model the uncertainty of detecting the 
range of values where chaos occurs, using fuzzy set theory. Using fuzzy sets, we 
can build a new theory of Fuzzy Chaos, where we can use fuzzy sets to describe 
the behaviors of a system. We can also use fuzzy logic to build rules for behavior 
identification, using the mathematical knowledge from dynamical systems theory. 

8.1 Problem Description 

In the traditional mathematical theory of chaos, we have that 'chaotic behavior' is 
defmed as sensitive dependence on initial conditions (Devaney, 1989). This 
sensitive dependence is measured with concepts like the Lyapunov exponents or 
the fractal dimension for the dynamical system. However, in the numerical 
simulations usually we have uncertainty related to numerical errors in the methods 
and also in the initial values (which are only approximated). For this reason, is 
very difficult to identify (in many cases) real chaotic behavior. The approach 
presented in this chapter is to relax the traditional mathematical definition of 
'chaos' by using the theory of fuzzy logic (Zadeh, 1975), in this way obtaining a 
new more realistic definition of chaotic behavior. Our fuzzy chaos definition is a 
weaker definition of chaos, because we do not impose strict conditions on the 
accuracy of the numerical values for this behavior to occur. Also, it is an easier 
definition to apply to real world problems because in many cases we only have 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001
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relative empirical evidence of chaos, which of course means that we have 
uncertainty about the identification of this behavior. 

In this chapter, we propose several alternative definitions of fuzzy chaos 
and explore the advantages of each of these definitions. Also, we apply these 
definitions to the problems of modelling, simulation, and control of non-linear 
dynamical systems. In particular, we will consider the case of robotic dynamic 
systems, which is a very interesting problem from the point of view of the 
applications to manufacturing, but also it is important from the theoretical point of 
view. At the end, we also give fuzzy definitions for other types of dynamic 
behaviors because the identification of these behaviors can't be made without 
considering the associated uncertainty in predicting them. We will also show the 
implementation of these defmitions as an intelligent system (developed in 
MATLAB) for simulation and behavior identification of robotic dynamic systems, 
to give an idea of the performance of this approach compared with the traditional 
one. 

8.2 Towards a New Theory of Fuzzy Chaos 

For a given dynamical system expressed as a non-linear differential 
equation: 

dy/dt==f(t,y) (8.1) 

Or as non-linear difference equation: 

(8.2) 

We can have many different types of dynamic behaviors, for the above 
equations, depending on the parameter values and also, depending on the 
analytical properties of the function f. Also, there exists a fundamental difference 
between Equations (8.1) and (8.2), namely, that differential equations can only 
exhibit chaos when they are at least three-dimensional. However, difference 
equations can exhibit chaos even for the one-dimensional case. 

In particular, we can have "chaotic behavior", defined formally as 
sensitive dependence on initial conditions for many real dynamical systems. 
However, in numerical simulations we usually have uncertainty related to 
numerical errors in the methods and also in the initial values. For this reason, is 
very difficult to identify precisely real chaotic behavior (Devaney, 1989). We can 
relax the traditional mathematical definition of "chaos" by using the theory of 
fuzzy logic (Zadeh, 1975), in this way obtaining a new more realistic definition of 
chaotic behavior. In a sense, we can say that our fuzzy chaos definition can be 
considered a weaker definition of chaos because we will require weaker 
conditions to identify this behavior. 



137 

We assume for the moment that we have a dynamical system in the real 
line given as: 

Yt = f(Yt-J, 8) (8.3) 

In this case, we can associate chaotic behavior with the number of period 
doublings (or bifurcations) that occur when the parameter e is varied. According 
to this fact, we can state the following definition: 

Definition 8.1 (chaotic behavior according to period doublings) 
A one-dimensional dynamical system shows fuzzy chaos when the number of 
period doublings is considered to be large: 

If number of period doublings is large Then behavior is fuzzy chaos. 

Of course, other defmitions can be made using other measures, like the fractal 
dimension or the Lyapunov exponents of the time series. For the case of the 
fractal dimension, we have extensive experimental results that show empirical 
evidence of chaos when the fractal dimension is close to a value of 2 in the plane. 
For this reason, we have proposed the following definition of fuzzy chaos: 

Definition 8.2 (fuzzy chaos by the fractal dimension) 
A one-dimensional dynamical system shows fuzzy chaos, when the value of the 
fractal dimension is large (close to a numeric value of 2 for the plane): 

If the fractal dimension is large Then behavior is fuzzy chaos. 

8.3 Fuzzy Chaos for Behavior Identification in the 
Simulation of Dynamical Systems 

The simulation of Non-Linear Dynamical Systems consists in the iteration of a 
map or the numerical approximation of differential equations. In any case, the 
numerical simulation generates a time series: 

Yl, Y2, ... , Yn· (8.4) 

After this, we have to perform behavior identification for the dynamical 
system. Here, we can apply the definition of fuzzy chaos to make a more efficient 
identification (because the theoretical definitions of chaos are difficult to apply). 
Of course, other types of behaviors can be defined similarly. For example, we can 
define the typical dynamic behaviors of a three-dimensional system with the 
following fuzzy rules: 
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If fractal dimension is low 
If fractal dimension is small 
If fractal dimension is regular 
If fractal dimension is medium 
If fractal dimension is high 
If fractal dimension is large 

Then behavior is cycle of period 2 
Then behavior is cycle of period 4 
Then behavior is cycle of period 8 
Then behavior is cycle of period 16 
Then behavior is high order cycles 
Then behavior is fuzzy chaos. 

Of course here the fractal dimension and the behavior are considered as 
linguistic variables and for a particular application the membership functions for 
the linguistic values will need to be defined. Also, the numerical value of the 
fractal dimension has to be calculated from the time series using the box 
dimension algorithm (Mandelbrot, 1987). 

8.4 Simulation of Dynamical Systems 

The problem of performing an efficient simulation for a particular dynamical 
system can be better understood if we consider a specific mathematical model. Let 
us consider the following model: 

X' = cr(Y-X) 
Y' =rX- Y -XZ 
Z'=XY - bZ 

(8.5) 

where X, Y, Z, cr, r, b E R, and cr, rand b are three parameters which are normally 
taken, because of their physical origins, to be positive. The equations are often 
studied for different values of r in 0 < r < 00. This mathematical model, has been 
studied in (Rasband, 1990) to some extent, however there are still many questions 
to be answer for this model with respect to its very complicated dynamics for 
some ranges of parameter values. 

If we consider simulating Equation (8.5), for example, the problem is of 
selecting the appropriate parameter values for cr, r, b, so that the interesting 
dynamical behavior of the model can be extracted. The problem is not an easy 
one, since we need to consider a three-dimensional search space cr r b and there 
are many possible dynamical behaviors for this model. In this case, the model 
consisting of three simultaneous differential equations, the behaviors can range 
from simple periodic orbits to very complicated chaotic attractors. Once the 
parameter values are selected then the problem becomes a numerical one, since 
then we need to iterate an appropriate map to approximate the solutions 
numerically. 

The problem of performing automated simulation for a particular 
dynamical system is then of finding the "best" set of parameter values for the 
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mathematical model. Our general algorithm (Castillo & Melin, 1995) for selecting 
the "best" set of parameter values is shown in Figure 8.1. 

The algorithm shown in Figure 8.1 can be explained as follows. First, the 
mathematical model is analyzed to "understand" it. Second, a set of admissible 
parameters is generated using the understanding of the model. Third, a specific 
genetic algorithm is used to select the best set of parameter values. Finally, the 
numerical simulations are performed and the dynamical behaviors are identified 
using fuzzy logic . 

STEP 1 Read the mathematical model M. 
STEP 2 Analyze the model M to "understand" its complexity. 
STEP 3 Generate a set of admissible parameters using the understanding of the 

model. 
STEP 4 Perform a selection of the "best" set of parameter values. This set is 

generated using a specific genetic algorithm. 
STEP 5 Perform the simulations by solving numerically the equations of the 

mathematical model. At this time the different types of dynamical 
behaviors are identified using a fuzzy rule base. 

Figure 8.1 New algorithm for selecting the best set of parameter values. 

The implementation of the new method for Automated Simulation as a 
computer program was done using the MA TLAB programming language. The 
choice of MA TLAB is because of its symbolic manipulation features and also 
because it is an excellent language for developing prototypes (Nakamura, 1997). 
The knowledge base for simulation consists of two modules: Parameter Selection, 
and Dynamic Behavior Identification. In the following lines we will describe these 
two modules in more detail. 

8.5 Method for Automated Parameter Selection 
using Genetic Algorithms 

The knowledge for simulation of the intelligent system consists in the application 
of a specific genetic algorithm (Goldberg, 1989) to select the best set of 
parameters of a particular dynamical system. Our genetic algorithm for parameter 
value selection (Castillo & Melin, 1998) can be defined as shown in Figure 8.2. 

The fitness function should evaluate the dynamical information given by 
a particular set of parameter values, i.e. the fitness function should measure the 
power of the parameter set. Lets consider a three-dimensional model with 3 
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parameters e, a, and y, then assuming that we have only four possible dynamical 
behaviors (for a given system): 

BO: fixed point of period 1 
B 1: fixed point of period 2 
B2: fixed point of period 4 
B3: fixed point of period 8 
B4: chaotic behavior 

STEP 1 Initialize a population with randomly generated individuals 
(parameters) and evaluate the fitness value of each individual 

STEP 2 (a) Select two members from the population with probabilities 
proportional to their fitness values 
(b) Apply crossover with a probability equal to the crossover rate 
(c) Apply mutation with a probability equal to the mutation rate 
(d) Repeat (a) to (d) until enough members are generated to form the 
next generation 

STEP 3 Repeat st~s 2 and 3 until the stopping criterion is met 

Figure 8.2 Genetic algorithm for parameter value selection. 

we will have that the parameter set 7t = (9,a,y), where e,a,y E R, can result in any 
of the five possible behaviors. In this case, we need to consider 5 individuals in 
the popUlation and an initial population can be denoted as: 

Po = ( 7tO 1, 7t02, 7t03 7t04 7tOS) 

For an initial population there is a high probability that most of the 7ti could give 

the BO behavior, so there has to be evolution to obtain a better parameter set. The 
identification of the respective behaviors can be done by iteration of the dynamic 
systems or by other mathematical means, for example the fractal dimension or the 
Lyapunov exponents (Rasband, 1990). The fitness value of each individual III 

population Pi can by defined as follows: 

F( 7tij ) = 1 for fixed point of period 1 

F( 7tij ) = 2 for fixed point of period 2 

F( 7tij ) = 4 for fixed point of period 4 

F(7tij ) = 8 for fixed point of period 8 

F( 7tij ) = 10 for chaotic behavior 
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this is only one of the possible schemes that can be used for this case. In this case, 
we have assigned the fitness values proportional to the complexity of the dynamic 
behavior to guide the search of the genetic algorithm. However, the specific 
numeric values could be changed to suit the needs of particular applications. We 
need to remember here that the fitness function has to be designed for each 
specific application of a genetic algorithm. 

A more general form for defining the fitness function for real dynamical 
systems can be establish by using the fractal dimension (Mandelbrot, 1987) df of 

the time series generated by the numerical simulation of the dynamical system. 
Mathematically, we can define the fitness function as: 

F(n ·· ) = e df(nij) 0 < df< 3 IJ ' - -, (8.6) 

where df{7tij) = fractal dimension of the time series for parameter set 7tij' The 

general idea of Equation (8.6) is to assign a bigger value to the fitness function 
when the complexity of the time series, generated by the simulation, is greater 
(which is true, of course, when df is of a higher value). Of course, here the use of 

the exponential function is only to spread the values of the fractal dimension but 
other functions could be used as well. 

8.6 Method for Dynamic Behavior Identification 
using Fuzzy Logic 

Once the parameter values have been found and the numerical simulations have 
been performed then the final step is to identify the possible dynamic behaviors of 
the system. The knowledge for behavior identification can be expressed as a 
fuzzy-rule base that uses the information obtained in the numerical simulation to 
identify the different behaviors of the model. To give an idea of how this 
knowledge can be expressed as a fuzzy-rule base we show below two sample 
schemes that can be used for behavior identification (Castillo & Melin, 1999). 

8.6.1 Behavior Identification Based on the 
Analytical Properties of the Model 

We can build a set of fuzzy rules for dynamic behavior identification based on the 
analytical properties of the mathematical models and using the well known 
theorems of dynamical systems theory (Castillo & Melin, 1997). To give an idea 
of how this knowledge can be translated to fuzzy rules we show below some 
sample rules for several types of dynamical systems. 
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1) Single-link Robot Model: This mathematical model, of a sinusoidally non­
linear robot, consists of two simultaneous differential equations: 

q'=Q (8.7) 

Q' = (KtI - Nsin(q) - FdQ) / Mq 

where the parameters I, Mq, N, F d and Kt are all positive. Lim, Hu and Dawson 

(1996) have presented an extensive gallery of periodic and a-periodic motions for 
this model. In this case the equilibria (q*,Q*) is stable if and only if the real parts 
of the eigenvalues are negative and this is equivalent to the rule: 

If a>O Then Equilibria = stable 

where a is defined by the characteristic equation: 

with a = - trJ, b = detJ. Where "trJ" is the trace and "detJ" is the determinant of the 
Jacobian Matrix. 

2) Other Bi-dimensional Models: Similar bi-dimensional autonomous models can 
be written in the following manner: 

X' = a f(X,Y) 
Y' = ~ g(X,Y) 

In this case, the Equilibria (X*,Y*) is stable if: 

a fx + (gy - ~) < 0 

(8.8) 

where fx and gy are partial derivatives. In fuzzy logic language we have the 

following rule: 

If Then Equilibria = stable 

Also we have the following rule for a HopfBifurcation: 

If Then Hopf_Bifurcation 

which gives us the condition for a Hopfbifurcation to occur. 
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3) Firth's Model of a single-mode laser: The basic equations of a single-mode 
(unidirectional) homogeneously broadened laser in a high-finesse cavity, tuned to 
resonance, may be written as a system of three differential equations (Abraham & 
Firth, 1984): 

X' = y c (X + 2Cp) 

P' = - r (P - XD) 
D' = - Y (D + XP - 1) 

(8.9) 

Here X is a scaled electric field (or Rabi frequency), Yc is a constant describing the 

decay of the cavity field and C is the cooperativity parameter. 
In this case, the Equilibria (X*,P*,D*) is stable ifa, b, c> 0 and (ab - c) 

> 0, where a, band c are defined by the characteristic equation for the system. We 
can also have more complicated rules for other types of dynamical behaviors. 

4) Other three-dimensional Models: A three-dimensional system of differential 
equations can be written in the following form: 

X' = af(X, Y,Z) 
Y' = ~g(X,Y,Z) 

Z' = yh(X,Y,Z) 
(8.10) 

In this case, the Equilibria (X*,Y*,Z*) is stable if a, b, c > 0 and (ab - c) > 0, 
where a, band c are defined by the characteristic equation for the system: 

In fuzzy logic language we have the rule: 

If a,b,c >0 And (ab-c) >0 Then Equilibria = stable 

other rules follow in the same manner for all the types of dynamical behaviors 
possible for this class of mathematical models. 

We have to note here that in this case the computer program for this 
method needs to obtain the symbolic derivatives for the functions in the conditions 
of the rules. This is critical for the problem of behavior identification, since we 
require these derivatives to obtain the values of the parameters in the rules. This 
will make this method time consuming because the time series from the 
simulations are not used at all. 
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8.6.2 Behavior Identification Based on the 
Fractal Dimension and the Lyapunov Exponents 

We can obtain a more efficient method of dynamic behavior identification, if we 
make use of the information contained in the time series that resulted from the 
simulation of the dynamical system. From the time series of the numerical 
simulations, we can calculate the Lyapunov exponents of the dynamical system 
and also the fractal dimension of the time series. With this dynamical information, 
we can easily identify the corresponding behaviors of the system. 

For dissipative dynamical systems, we can use a set of fuzzy rules for 
behavior identification using the Lyapunov exponents. However, since the 
Lyapunov exponents can only identify between asymptotic stability, general limit 
cycles and chaos, we need to use the fractal dimension df to discriminate between 

the different periodic behaviors possible. Based on prior empirical work (Castillo 
& Melin, 1996), we have been able to use the fractal dimension to discriminate 
between different periodic behaviors. Then, if we combine the use of the 
Lyapunov exponents with the use of the fractal dimension, we can obtain a set of 
fuzzy rules that can identify in a one-to-one manner the different dynami't 
behaviors. The if-then rules have to be "fuzzy" because there is uncertainty 
associated with the numerical values of the Lyapunov exponents and also the 
classification scheme (for the limit cycles) using the fractal dimension is only 
approximated. 

We show in Table 8.1 the knowledge base that we have developed for 

Table 8.1 Knowledge base for behavior identification using Lyapunov exponents 
and fractal dimension 

IF THEN 
Lyapunov Fractal Behavior 
exponents Dim Identification 

(-) stable fixed point 
(-, -) stable fixed point 
(0, -) [1.1, 1.2) cycle period 2 
(0, -) [1.2,1.3) cycle period 4 
(0, -) [1.3,1.4) cycle period 8 
(0, -) [1.4, 1.5) cycle period 16 
(-, -, -) stable fixed point 
(0,-,-) [2. 1,2.2) cycle period 2 
(0,-,-) [2.2,2.4) cycle period 4 
(0, -,-) [2.4,2.6) cycle period 8 
(0, -, -) [2.6,2.8) cycle period 16 
(+,0,-) [2.8,3.0) chaos 
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dynamic behavior identification for dynamical systems of up to three variables. 
The empty fields in Table 8.1 indicate no use of the fractal dimension for that 
case. 

We can define membership functions for the numerical intervals of the 
fractal dimension, for the Lyapunov exponents and for the behavior identifications 
shown in Table 8.1. Once these membership functions are defined, the usual fuzzy 
reasoning methodology can be applied to implement this method of behavior 
identification. We show in the next section the implementation of this method in 
the fuzzy logic toolbox of MA TLAB 

8.7 Simulation Results for Robotic Systems 

Our new method for automated simulation of non-linear dynamical systems was 
implemented as a prototype intelligent system in the MA TLAB programming 
language. We tested the prototype intelligent system with different data to validate 
the new method and also the implementation with very good results. In this 
section, we show some of the results obtained using the intelligent system for 
automated simulation, to give an idea of the performance of the system. To give 
an idea of the performance of our fuzzy-fractal-genetic approach for simulation, 
we show below simulation results obtained for several types of dynamical 
systems. First, we show in Figure 8.3 the fuzzy rule base for the prototype 
intelligent system developed in the fuzzy logic toolbox of the MATLAB language. 

19 If (~1 IS negatlYe) end 1~2 ..... 01 and Ilr""'<oI-dUn IS _)I~ (be~ __ it h-fX'l'C • 
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22 II (~1 it _ive) and 1l¥..,...."..2 ... 0101 end ll¥oounovJ is neo<>bvo) and (Iractol-dm i. f<wge) the. 
23 If (~ ___ 1 i. _lYe) end 1l¥""""",,2 ... oro) end ll¥oounovJ " nog«rve) end Vractol-dWn is v!orge) 1 
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Figure 8.3 Fuzzy rule base in the rule editor. 
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We show in Figure 8.4 the membership functions for the linguistic values 
of the behavior identification. The membership functions were defined in the 
membership function editor of the fuzzy logic toolbox. 

I Ren..med FlS '0 .'b ..... _ .. 

Figure 8.4 Membership function plots for the linguistic values of the behavior 
identification. 

We show in Figure 8.5 the non-linear surface for the problem of behavior 
identification using as input variables Lyapunov exponents and fractal dimension. 
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Figure 8.5 Non-linear surface for behavior Identification 
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We show in Figure 8.6 the reasoning procedure for behavior 
identification when specific values of the Lyapunov exponents and fractal 
dimension are given. In this figure, we can see how the final behavior 
identification for the dynamical system is evaluated with the Mamdani inference 
system. 

, Rule V.a w Ol b e h d VIOI R~ D 
fllo ji;dit y",,,, Qpbon. 

tyopunav2 - 0 Iy~ •• ' ,S, fr ..... ~dtm ~ <!..as 

It 

Figure 8.6 Behavior identification for specific values of Lyapunov 
exponents and fractal dimension 

In Figure 8.7 we show the simulation results for a two-link robotic 
dynamic system with a mathematical model given by the two coupled second 
order differential equations: 

qflI + aIq'I + bIsinq2 = CI 

qfl2 + a2Q'2 + b2sinQ2 = C2 (8.Il) 

where aI, a2, bl , b2, cI and c2 are physical parameters of the robotic system. 

The simulation results shown in Figure 8.7 correspond to the parameter values: 
al = 212, a2 = 20, bI = b2 = 60, cI = c2 = 72 and to the initial conditions: 

ql(O) = 0.5, q'l(O) = 5, q2(0) = 5, q'2(0) = 5. The solution shown in Figure 8.7 

is what is known as a "chaotic solution" because the orbit is oscillating (in an 
unstable manner) between an infinite number of periodic points. As a consequence 
of this fact the behavior identification in this case is of a "chaotic solution". 
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Figure 8.7 Simulation of a two-link robot arm showing chaotic behavior 
for position ql' 

8.8 Summary 

We have presented in this chapter a new theory of Fuzzy Chaos for non-linear 
dynamical systems. We can apply this theory for behavior identification. We also 
presented in this chapter a new method for automated simulation of non-linear 
dynamical systems. This method is based on a hybrid fuzzy-fractal-genetic 
approach to achieve, in an efficient way, automated simulation for a particular 
dynamical system given its mathematical model. The use of genetic algorithms is 
to achieve automated parameter selection for the models. The use of fuzzy logic is 
to simulate the process of expert behavior identification by implementing the 
knowledge of identification by a set of fuzzy rules. We illustrated the application 
of this method for automated simulation for the case of robotic dynamic systems. 
The results show the efficiency of this new method for the simulation of complex 
non-linear dynamical systems. Of course, we need to apply our new approach for 
other types of dynamical systems, but we expect to get similar results. 



Chapter 9 

Intelligent Control of Robotic Dynamic Systems 

We describe in this chapter a new method for adaptive model-based control of 
robotic dynamic systems using a new hybrid neuro-fuzzy-fractal approach. 
Intelligent control of robotic systems is a difficult problem because the dynamics 
of these systems is highly non-linear. We describe an intelligent system for 
controlling robot manipulators to illustrate our neuro-fuzzy-fractal hybrid 
approach for adaptive control. We use a new fuzzy inference system for 
reasoning with multiple differential equations for model selection based on the 
relevant parameters for the problem. In this case, the fractal dimension of a time 
series of measured values of the variables is used as a selection parameter. We 
use neural networks for identification and control of robotic dynamic systems. 

9.1 Problem Description 

Given the dynamic equations of motion of a manipulator, the purpose of robot 
arm control is to maintain the dynamic response of the manipulator in accordance 
with some pre-specified performance criterion (Fu, Gonzalez & Lee, 1987). 
Although the control problem can be stated in such a simple manner, its solution 
is complicated by inertial forces, coupling reaction forces, and gravity loading on 
the links. In general, the control problem consists of (1) obtaining dynamic 
models of the robotic system, and (2) using these models to determine control 
laws or strategies to achieve the desired system response and performance. 

Among various adaptive control methods, the model-based adaptive 
control is the most widely used and it is also relatively easy to implement. The 
concept of model-based adaptive control is based on selecting an appropriate 
reference model and adaptation algorithm, which modifies the feedback gains to 
the actuators of the actual system. 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001
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Many authors have proposed linear mathematical models to be used as 
reference models in the general scheme described before. For example a linear 
second-order time invariant, differential equation can be used as the reference 
model for each degree of freedom of the robot arm. Defining the vector yet) to 
represent the reference model response and the 'vector x(t) to represent the 
manipulator response, the joint i of the reference model can be described by 

(9.1) 

If we assume that the manipulator is controlled by position and velocity feedback 
gains and the coupling terms are negligible, then the manipulator equation for 
joint i can be ' 

Ui(t)X"i(t) + Pi(t)X'i(t) + Xi(t) = fi(t) (9.2) 

where the system parameters ai(t) and ~i(t) are assumed to vary slowly with 

time. 
The fact that this control approach is not dependent on a complex 

mathematical model is one of its major advantages, but stability considerations of 
the closed-loop adaptive system are critical. A stability analysis is difficult and 
has only been carried out using linearized models. However, the adaptability of 
the controller can become questionable if the interaction forces among the 
various joints are severe (non-linear). This is the main reason why soft computing 
techniques (Miller, Sutton & Werbos, 1995) have been proposed to control this 
type of dynamic systems. 

9.2 Mathematical Modelling of Robotic Dynamic 
Systems 

We will consider, in this section, the case of modelling robotic manipulators 
(Castillo & Melin, 1997). The general model for this kind of robotic system is the 
following: 

M(q)q" + V(q, q'))q' + G(q) + Fdq' = 't (9.3) 

where q E Rn denotes the link position, M(q) E Rnxn is the inertia matrix, 

V(q,q') E Rnxn is the centripetal-Coriolis matrix, G(q) E Rn represents the 

gravity vector, Fd E RnXll is a diagonal matrix representing the friction term, and 

't is the input torque applied to the links. 
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For the simplest case of a one-link robot arm, we have the scalar 
equation: 

(9.4) 

IfG(q) is a linear function (G = Nq), then we have the "linear oscillator" model: 

q" + aq' + bq = c 

where a = F d/Mq , b = N/Mq and c = 't/Mq. This is the simplest mathematical 

model for a one-link robot arm. More realistic models can be obtained for more 

complicated functions G(q). For example, if G(q) = Nq2, then we obtain the 
"quadratic oscillator" model: 

q" + aq' + bq2 = c (9.5) 

where a, b and c are defined as above. 
A more interesting model is obtained if we define G( q) = Nsinq. In this 

case, the mathematical model is 

q" + aq' + bsinq = c (9.6) 

where a, b and c are the same as above. This is the so-called "sinusoidally forced 
oscillator". More complicated models for a one-link robot arm can be defined 
similarly. 

For the case of a two-link robot arm, we can have two simultaneous 
differential equations as follows: 

q"l + alq'l + blq22 = cl , 
q"2 + a2q'2 + b2q21 = C2 (9.7) 

which is called the "coupled quadratic oscillators" model. In Equation (9.7) aI> 

bI> a2, b2, c1 and c2 are defined similarly as in the previous models. We can 

also have the "coupled cubic oscillators" model: 

q"l + alq'l + blq32 = cl , 

q"2 + a2q'2 + b2q31 = c2 (9.8) 
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9.3 Method for Adaptive Model-Based Control 

Parametric Adaptive Control is the problem of controlling the output of a 
dynamical system with a known structure but unknown parameters. These 
parameters can be considered as the elements of a vector p. If P is known, the 
parameter vector 9 of a controller can be chosen as 9* so that the plant together 
with the fixed controller behaves like a reference model described by a 
differential equation with constant coefficients (Miller, Sutton & Werbos, 1995). 
If P is unknown, the vector 9(t) has to be adjusted on-line using all the available 
information concerning the dynamical system. 

The structure of the adaptive system proposed in this work, to control a 
non-linear robotic dynamic system is similar to the one described in (Castillo & 
Melin, 1998), the main difference is that we use a decision scheme to select the 
appropriate reference model for the plant. The parameters of the neural network 
Ni are adjusted by backpropagating the identification error ei while those of the 

neural network Nc are adjusted by backpropagating the control error (between the 

output of the reference model and the identification model) through the 
identification model. 

9.3.1 Fuzzy Logic for Dynamic System Modelling 

For a complex dynamical system (Rasband, 1990) it may be necessary to 
consider a set of models to represent adequately all of the possible dynamic 
behaviors of the system. We have designed a method (Castillo & Melin, 1999), 
based on fuzzy logic (Zadeh, 1975), for model selection using as input the 
numerical value of a selection parameter a. We assume, in what follows, that 
parameter a is defined over a real-valued interval: 

ao ~ a ~ an . (9.9) 

We also assume that we have n mathematical models considered appropriate for 
the respective n subintervals, defined on [ aO ' an ], as follows: 

a 1 ~ a < a2 , "" an-l ~ a ~ an . (9.1 0) 

The corresponding n mathematical models for these subintervals can be 
expressed as differential equations: 

dy/dt = [1 (y, a ) , 

dy/dt = [2(y, a) , (9.11) 

... , 
dy/dt = [n(y, a) . 
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Then, we can define a set of fuzzy if-then rules that basically relate the 
subintervals to the mathematical models in a one-to-one fashion. The advantage 
of using fuzzy rules (instead of conventional simple if-then rules) is that we can 
manage the underlying uncertainty of this process of model selection. 

To implement this decision scheme, we need a reasoning method that 
can use differential equations as consequents. We have developed a new fuzzy 
inference system that can be considered as a generalization of Sugeno's inference 
system (Sugeno & Kang, 1988) in which we are now considering differential 
equations as consequents of the fuzzy rules, instead of simple polynomials. Using 
this method, the decision scheme can be expressed as a single-input fuzzy model 
as follows: 

{

If a is small then dy/dt = fl (y,a) 

If a is ~~gUlar then dy/dt = f2~~,a) 

If a is large then dy/dt = fn(y,a) 

where the output y is obtained by the numerical solution of the corresponding 
differential equation. We have to note here that this new fuzzy inference system 
reduces to the standard Sugeno system only when the differential equations have 
closed-form solutions in the form of polynomials. 

We describe below the reasoning procedure for our fuzzy inference 
system for the case of a one-input single-output fuzzy model. The procedure is 
very similar to the original Sugeno's procedure, except that now in the output we 
obtain the crisp values of "y" by solving numerically the corresponding 
differential equations. The numerical solutions of the differential equations can 
be achieved by the standard Runge-Kutta type method (Nakamura, 1997): 

Yn+1 = RK(Yn) = Yn + 1I2(kl + k2) 
kl = hf(Yn,tn) 

k2 = hf(Yn + k}, tn+ I) 

(9.12) 

where h is the step size of the numerical method and RK can be considered as the 
Runge-Kutta operator that transforms numerical solutions from time n to time 
n+1. 

The reasoning procedure for differential equations can also be used for 
rules with multiple inputs (for the case of several selection parameters) by simply 
considering the minimum of the firing strengths of each of the inputs. 
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9.3.2 Neuro-Fuzzy-Fractal Adaptive Model-Based 
Control 

In this section, we combine the method for adaptive model-based control using 
neural networks (Melin & Castillo, 1998) with the method for model selection 
using fuzzy logic to obtain a new hybrid neuro-fuzzy method for control of non­
linear dynamical systems. This new method combines the advantages of neural 
networks (ability for identification and control) with the advantages of fuzzy 
logic (ability for decision and use of expert knowledge) to achieve the goal of 
robust adaptive control of non-linear systems. 

An intelligent control system designed with this method is capable of 
adapting to changing dynamic conditions in the plant, because it can change the 
control actions (given by the neural networks Nc) according to the data that is 

been measured on-line and also can change the reference mathematical model if 
there is a large enough change in the value of the selection parameter a. Of 
course, a change in the reference mathematical model also causes that the neural 
network Ni performs a new identification for the model. This is the reason why 

the whole process is called adaptive model-based control of non-linear dynamical 
systems. 

This new method can be used for constructing intelligent control systems 
for different applications. This can be done by defining the appropriate set of 
mathematical models for the particular application (according to the type and 
complexity of the plant or system) and the correct architecture of the neural 
networks for identification and control. Initial training data can then be used to 
obtain the initial weights for the networks. The intelligent control system will 
then be ready for use on-line in the real plant or dynamical system. We have 
implemented a prototype intelligent control system, with the neuro-fuzzy 
approach for control, using the MA TLAB© programming language. 

9.4 Adaptive Control of Robotic Dynamic Systems 

We use a fuzzy rule base for model selection for the case of robotic manipulators. 
We presented before mathematical models that can be used to model the dynamic 
behavior of robotic manipulators. Lets call M I the mathematical model given by 

Equation (9.5), M2 the mathematical model given by Equation (9.6), M3 the 

model given by Equation (9.7), and M4 the model given by Equation (9.8). Then 

we can establish a fuzzy rule base for these models as explained before. We will 
assume here without loss of generality that the selection parameters are the fractal 
dimension of a time series of measured values of the relevant variables in the 
problem (angle, angular velocity) and the number of links of the manipulator. 
Also, we are assuming that only four models are needed to model completely the 
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robotic system. Then, we can define a set of four fuzzy if-then rules that basically 
relate the fuzzy values of the selection parameters with the corresponding 
mathematical model. We show in Table 9.1 this set of fuzzy rules for model 
selection for the case of manipulators of one and two links. 

We also need to define the membership functions for the fuzzy values in 
Table 9.1. The membership functions for the models should give us the degree of 
belief that a particular mathematical model is the correct one for the specific 
values of the selection parameters. We have to note here that for using a fuzzy 
rule base (like the one described in Table 9.1) with mathematical models, we 
need to use our new fuzzy inference system for multiple differential equations. 

We use neural networks for identification and control of the robotic 
dynamic system. The neural networks are trained with the Levenberg-Marquardt 
algorithm with real data to achieve the desired level of performance. Two 
multilayer neural networks are used, one for identification of the model of the 
robotic system and the second for the controller. If we combine the fuzzy rule 
base for model selection with the neural networks for identification and control, 
we can obtain an intelligent system for adaptive model-based control of robotic 
dynamic systems. 

Table 9.1. Fuzzy rule base for model selection of robotic systems 

IF THEN 
Fractal dimension Number of links Mathematical Model 

low one MI 

high one M2 

low two M3 

high two M4 

The intelligent control system combines the advantages of neural 
networks (ability for identification and control) with the advantages of fuzzy 
logic (use of expert knowledge) to achieve the goal of robust adaptive control of 
robotic dynamic systems. The general architecture of the intelligent control 
system for robotic systems is shown in Figure 9.1. In this figure, we have a 
module for the fuzzy-rule base of model selection, a module for the neural 
network of control, and a module for the neural network of identification. 

An intelligent control system with the architecture shown in Figure 9.1 is 
capable of adapting to changing dynamic conditions in the robotic system, 
because it can change the control actions (given by the network Nc) according to 
the data measured on-line and also can change the reference mathematical model 
if there is a large enough change in the fractal dimension of the time series. Of 
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course, a change in the reference mathematical model also causes that the neural 
network Ni performs a new identification for the model. In conclusion, the 
intelligent system with the architecture shown in Figure 9.1 achieves model­
based control of robotic systems using a combination of Neural Networks and 
Fuzzy Logic. 

Fuzzy rule base 
for 

Model Selection 

Neural Network 
for 

Control Nc 
u 

Neural Network 
for 

Identification Ni 

Robotic 
System 

- ec 

+ 

Figure 9.1. General architecture of the intelligent control system. 

9.S Simulation Results for Robotic Dynamic 
Systems 

To give an idea of the performance of our neuro-fuzzy-fractal approach for 
adaptive model-based control of robotic systems, we show below simulation 
results obtained for a single-link robot arm. The desired trajectory for the link 
was selected to be 

qd = tsin(2.0t) (9.13) 

and the simulation was carried out with the initial values: q(O) = 0.1 q'l (0) = 0 

We used three-layer neural networks (with 15 hidden neurons) with the 
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as 
the activation functions for the neurons. We show in Figure 9.2 the function 
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approximation achieved with the neural network for control after 9 epochs of 
training with a variable learning rate . The identification achieved by the neural 
network can be considered very good because the error has been decreased to the 

order of 10-4. We show in Figure 9.3 the curve relating the sum of squared errors 
SSE against the number of epochs of neural network training. We can see in this 

figure how the SSE diminishes rapidly from being of the order of 102 to smaller 

value of the order of 10-4. Still, we can obtain a better approximation by using 
more hidden neurons or more layers. In any case, we can see clearly how the 
neural networks learns to control the robotic system, because it is able to follow 
the arbitrary desired trajectory. 
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Figure 9.2 Function approximation after 9 epochs. 
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We also show results for another desired trajectory for a one link robot arm. We 
used the following desired trajectory for the position of the arm 

qd = 1.0sin(2.0(1-e-t3)t) 

and the simulation was carried out with the initial values: 

q(O) = 0.1 q'1 (0) = 0 

We used three-layer neural networks (with 10 hidden neurons) with the 
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as 
the activation functions for the neurons. We show in Figure 9.4 the initial 
function approximation achieved with the neural network for control. Of course, 
the approximation is not good (at the beginning) because the net hasn't been 
trained yet with the data. 

We show in Figure 9.5 the function approximation achieved with the 
neural network for control after 400 epochs of training with a variable learning 
rate. The identific(,ltion achieved by the neural network (after 400 epochs) can be 

considered very good because the error has been decreased to the order of 10-1. 
Still, we can obtain a better approximation by using more hidden neurons or more 
layers. In any case, we can see clearly how the neural network learns to control 
the robotic system, so it is able to follow the arbitrary desired trajectory. 
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Figure 9.5. Function approximation of the neural network for control after 400 
epochs. 

We also show in Figure 9.6 the curve relating the sum of squared errors 
SSE against the number of epochs of neural network training. We can see in 

Figure 9.6 how the SSE diminishes rapidly from being of the order of 10 1 to a 

smaller value of the order of 10-1. 
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Figure 9.6 Sum of squares of errors for the neural network. 
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We have to mention here that these simulation experiments for a single 
link robot arm show very good results. We have also tried our approach for 
control with more complex robotic systems with encouraging results. 

We show in Figure 9.7 the non-linear surface for the fuzzy rule base of 
Table 9.1. The fuzzy system was implemented in the fuzzy logic toolbox of 
MATLAB. We show in Figure 9.8 the reasoning procedure for specific values of 
the fractal dimension and number of links of the robotic system. 
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In Figures 9.9 and 9.10 we show simulation results for a two-link robot arm with 
a model given by two coupled second order differential equations. Figure 9.9 
shows the behavior of position q I and Figure 9.10 shows it for position q2 of the 
robot arm. 
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Figure 9.9 Simulation of position q I. 
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Figure 9.10 Simulation of position q2. 
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9.6 Summary 

We have very good simulation results for several types of robotic systems for 
different conditions. The new method for control combines the advantages of 
neural networks (learning and adaptability) with the advantages of fuzzy logic 
(use of expert knowledge) to achieve the goal of robust adaptive control of 
robotic dynamic systems. We consider that our method for adaptive control can 
be applied to general non-linear dynamical systems because the hybrid neuro­
fuzzy-fractal approach does not depend on the particular characteristics of the 
robotic dynamic systems. Controlling unstable and chaotic behavior in robotic 
dynamic systems is very important to achieve the desired performance in robots 
and also to avoid dangerous behavior of the system, which may cause physical 
damage to the system. We think that our contribution is a step in the right 
direction in achieving real time control for robotic systems. 



Chapter 10 

Controlling Biochemical Reactors 

We describe in this chapter a general method for adaptive model-based control of 
non-linear dynamic plants using Neural Networks, Fuzzy Logic and Fractal 
Theory. The new neuro-fuzzy-fractal method combines Soft Computing (SC) 
techniques with the concept of the fractal dimension for the domain of Non-Linear 
Dynamic Plant Control. The new method for adaptive model-based control has 
been implemented as a computer program to show that our neuro-fuzzy-fractal 
approach is a good alternative for controlling non-linear dynamic plants. We 
illustrate in this chapter our new methodology with the case of controlling 
biochemical reactors in the food industry. For this case, we use mathematical 
models for the simulation of bacteria growth for several types of food. The goal of 
constructing these models is to capture the dynamics of bacteria population in 
food, so as to have a way of controlling this dynamics for industrial purposes. We 
use the fractal dimension for bacteria identification during the production process. 
We use neural networks for control and parameter identification, and fuzzy logic 
for modelling the complete dynamic system. 

10.1 Introduction 

We describe in this chapter a new method for adaptive control of non-linear 
dynamic plants based on the use of Neural Networks, Fuzzy Logic and Fractal 
Theory. Production processes in real world plants are often highly non-linear and 
difficult to control (Melin & Castillo, 1996). The problem of controlling them 
using conventional controllers has been widely studied (Albertos, Strietzel & 
Mart, 1997). Much of the complexity in controlling any process comes from the 
complexity of the process being controlled. This complexity can be described in 
several ways. Highly non-linear systems are difficult to control, particularly when 
they have complex dynamics (such as instabilities to limit cycles and chaos). 
Difficulties can often be presented by constraints, either on the control parameters 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
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or in the operating regime. Lack of exact knowledge of the process, of course, 
makes control more difficult. Optimal control of many processes also requires 
systems, which make use of predictions of future behavior. The mathematical 
models for the plants are assumed to be systems of differential equations. The goal 
of having these models is to capture the dynamics of production processes, so as 
to have a way of controlling this dynamics for industrial purpose (Melin & 
Castillo, 1997). 

We need a mathematical model of the non-linear dynamic plant to 
understand the dynamics of the processes involved in production. For a specific 
case, this may require testing several models before obtaining the appropriate 
mathematical model for the process (Melin & Castillo, 1998). For real world 
plants with complex dynamics, we may even need several models for different 
sets of parameter values to represent all of the possible behaviors of the plant. The 
general mathematical model of a plant can be expressed as follows: 

dx/dt = fl(x, D, a) - ~fix, D, a) 

dp/dt = ~fix, D, a) 

n m 

(10.1) 

where x E R is a vector of state variables, pER is a vector of products, ~ E R 
is a constant measuring the efficiency of the conversion process, D E (0, 3) is the 
fractal dimension of the process, and a. E R is a selection parameter. The fractal 
dimension is used to characterize the production process, for example in the case 
of biochemical reactors D represents the fractal dimension of the bacteria used for 
production (Melin & Castillo, 1998). 

For a complex dynamical system it may be necessary to consider a set of 
mathematical models to represent adequately all of possible dynamic behavior of 
the system. In this case, we need a decision scheme to select the appropriate 
model to use according to the linguistic value of a selection parameter a.. We use a 
new fuzzy inference system for differential equations to achieve model selection. 
We have fuzzy rules of the form: 

IF a IS Al AND D IS BI THEN MI (10.2) 

IF a IS A 
n AND D IS Bn THEN Mn 

where A , ... , A are linguistic values for a., B , ... , B are linguistic values for the 
1 n 1 n 

fractal dimension D, and M , ... , M are mathematical models of the form given by 
1 n 

equation (I). The selection parameter a. can be the temperature for biochemical 
processes, because temperature changes cause the presence of new bacteria in this 
case (Melin & Castillo, 1998). 
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We combine adaptive model-based control using neural networks with 
the method for model selection using fuzzy logic and fractal theory, to obtain a 
new hybrid neuro-fuzzy-fractal method for control of non-linear plants. This 
general method combines the advantages of neural networks (ability for 
identification and control) with the advantages of fuzzy logic (ability for decision 
and use of expert knowledge) to achieve the goal of robust adaptive control of 
non-linear dynamic plants. We also use the fractal dimension to characterize the 
production processes in modelling these dynamical systems. We have developed 
intelligent control systems using this new method for adaptive control for several 
applications, to validate our new approach for control. We have obtained very 
good results in controlling biochemical reactors and chemical reactors with the 
hybrid approach for control. 

10.2 Fuzzy Logic for Modelling 

We have designed a method, based on fuzzy logic techniques, for mathematical 
model selection using as input the numerical value of a selection parameter a. We 
assume, in what follows, that parameter a is defined over a real-valued interval: 

(10.3) 

We also assume that we have n mathematical models considered the most 
appropriate ones for the respective n subintervals, defined on [a , a ], as follows: 
a o :$ a < ai' a 1 :$ a < a 2 , ••• , an_1 :$ a :$ an . 0 n (lOA) 

The corresponding n mathematical models for these subintervals can be expressed 
as differential equations: 

dy/dt = t(y, a) 
dy/dt = tiY, a) 

dy/dt = fn(y, a) 

(10.5) 

Then, we can define a set of fuzzy if-then rules that basically relate the 
subintervals to the mathematical models in a one-to-one fashion. The advantage of 
using fuzzy rules (instead of conventional simple if-then rules) is that we can 
manage the underlying uncertainty of this process of model selection. We show 
the basic decision scheme for developing a fuzzy rule base for model selection in 
Table 10.1. 
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Table 10.1 Decision scheme for model selection. 

IF 

a ~a<a o I 
a ~a<a 

I 2 
a ~a<a 

2 3 

a ~a~a 
n J p 

THEN 

M I : dy/dt = fl(y, a) 
M2: dy/dt = f (y, a) 
M3: dy/dt = ~(y, a) 

Mp: dy/dt = (y, a) 

Of course, for this decision scheme to work we need to define 
membership functions for the corresponding mathematical models. The 
membership functions for the models should give us the degree of belief that a 
particular model is the correct one for a specific value of the parameter a. 

To apply this method of model selection, to a particular application, we 
have to find the corresponding selection parameter a to be used in the decision 
scheme proposed in Table 10.1. Then, a partition of the definition interval for a 
has to be perfonned. After this, the one-to-one map between the mathematical 
models and the subintervals (obtained from the partition) is constructed. In this 
way, we can obtain the fuzzy rule base for model selection for a particular 
application. 

10.3 Neural Networks for Control 

Parametric Adaptive Control is the problem of controlling the output of a system 
with a known structure but unknown parameters. These parameters can be 
considered as the elements of a vector p. If P is known, the parameter vector 8 of a 
controller can be chosen as 8* so that the plant together with the fixed controller 
behaves like a reference model described by a difference (or differential) equation 
with constant coefficients (Narendra & Annaswamy, 1989). If P is unknown, the 
vector 8(t) has to be adjusted on-line using all the available information 
concerning the system. 

Two distinct approaches to the adaptive control of an unknown plant are 
(i) direct control and (ii) indirect control. In direct control, the parameters of the 
controller are directly adjusted to reduce some nonn of the output error. In indirect 
control, the parameters of the plant are estimated as pet) at any time instant and the 
parameter vector 8(t) of the controller is chosen assuming that pet) represents the 
true value of the plant parameter vector. Even when the plant is assumed to be 
linear and time-invariant, both direct and indirect adaptive control results in non­
linear systems. 

When indirect control is used to control a non-linear system, the plant is 
parameterized using a mathematical model of the general fonn described in 
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section 1 and the parameters of the model are updated using the identification 
error. The controller parameters in tum are adjusted by backpropagating the error 
(between the identified model and the reference model outputs) through the 
identified model. A block diagram of such an adaptive system is shown in Figure 
10.1. 

The overall structure of the adaptive system proposed in this paper to 
control a non-linear dynamical system is the same as shown in Figure 10.1 and is 
independent of the specific model used to identify the plant. The delayed values of 
the plant input and plant output form the inputs to the neural network Nc which 
generates the feedback control signal to the plant. The parameters of the Neural 
Network Ni are adjusted by backpropagating the identification error ej while those 
of the Neural Network Nc are adjusted by backpropagating the Control error 
(between the output of the reference model and the identification model) through 
the identification model. 

D' M'I Fractal I Modelling 
Module Module 1-~====~:::::;R:-e:-:f_er_e_nc_e_M_o_d_e_I---I 

Neural Yp 

Neural 
Network 

Nc 

Network t-----""""1 
Ni 

+ 

Figure 10.1 Indirect Adaptive Neuro-Fuzzy-Fractal Control. 

The mathematical model for the non-linear plant in the time domain is 
generated by the method of modelling (described in section 10.2) using the real 
data that is measured on-line in the plant. On the other hand, the fractal module is 
used to characterize the production process and this information is used to specify 
the mathematical model in the time and space domain. This scheme enables the 
dynamic changes of models according to the changes of on-line process 
identification. Our new method for adaptive model-based control combining 
Neural Networks, Fuzzy Logic and Fractal Theory differs from our previous 
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approach of considering only the use of neural networks and models (Melin & 
Castillo, 1997). 

10.4 Adaptive Control of a Non-Linear Plant 

Process control of biochemical plants is an attractive application because of the 
potential benefits to both adaptive network research and to actual biochemical 
process control. In spite of the extensive work on self-tuning controllers and 
model-reference control, there are many problems in chemical processing 
industries for which current techniques are inadequate. Many of the limitations of 
current adaptive controllers arise in trying to control poorly modeled non-linear 
systems (Albertos, Strietzel & Mart, 1997). For most of these processes extensive 
data are available from past runs, but it is difficult to formulate precise models. 
This is precisely where adaptive networks are expected to be useful (Ungar, 
1995). 

Bioreactors are difficult to model because of the complexity of the living 
organisms in them and also they are difficult to control because one often can't 
measure on-line the concentration of the chemicals being metabolized or 
produced. Bioreactors can also have markedly different operating regimes, 
depending on whether the bacteria is rapidly growing or producing product. 
Model-based control of this reactors offers a dual problem: determining a realistic 
process model and determining effective control laws in the face of inaccurate 
process models and highly nonlinear processes. 

Biochemical systems can be relatively simple in that they have few 
variables, but still very difficult to control due to strong nonlinearities which are 
difficult to model accurately. A prime example is the bioreactor. In its simplest 
form, a bioreactor is simply a tank containing water and cells (e.g .. bacteria) 
which consume nutrients ("substrate") and produce products (both desired and 
undesired) and more cells. Bioreactors can be quite complex: cells are self­
regulatory mechanisms, and can adjust their growth rates and production of 
different products radically depending on temperature and concentrations of waste 
products. Systems with heating or cooling, multiple reactors or unsteady operation 
greatly complicate the analysis. Mathematical models for these systems can be 
expressed as differential (or difference) equations. 

Now we propose mathematical models that integrate our method for 
geometrical modelling of bacteria growth using the fractal dimension (Castillo & 
Melin, 1994) with the method for modelling the dynamics of bacteria population 
using differential equations (Melin & Castillo, 1998). The resulting mathematical 
models describe bacteria growth in space and in time, because the use of the 
fractal dimension enables us to classify bacteria by the geometry of the colonies 
and the differential equations help us to understand the evolution in time of 
bacteria population. 
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We will consider first the case of using one bacteria for food production. 
The mathematical model in this case can be of the following form: 

-D -D -D 
dN/dt = r(1 - N IK)N - ~N 

dP/dt = ~N 
-D 

(10.6) 

where D is the fractal dimension, N is the bacteria population, P is quantity of 
chemical product, r is the rate of bacteria growth, K is the environment capacity, 
and ~ is a biochemical conversion factor. 

We will consider now the case of two bacteria used for food production: 

where DJ is the fractal dimension of bacteria 1, D2 is the fractal dimension of 
bacteria 2 and the rest of variables are as described in the last equation. 

As we can see from equations (10.6) and (10.7) the idea of our method of 
modelling is to use the fractal dimension D as a parameter in the differential 
equations, so as to have a way of classifying for which type of bacteria the 
equation corresponds. In this way, equation (10.6), for example, can represent the 
model for food production using one bacteria (the one defined by the fractal 
dimension D). 

We have implemented a model-based neural controller using the 
architecture of Figure 10.1. Two multilayer networks are used, one for the model 
of the plant and the second for the controller. Each network at the moment has 2 
layers of 5 hidden nodes; more nodes will, of course, give better accuracy. The 
Neural Networks were implemented in the MATLAB programming language to 
achieve a high level of efficiency on the numerical calculations needed for these 
modules. The Fractal module was also implemented in the MA TLAB 
programming language for the same reason. In this way we combine the three 
methodologies to obtain the best of the three worlds (Neural Networks, Fuzzy 
Logic and Fractal Theory) using for each the appropriate implementation 
language. 

10.5 Fractal Identification of Bacteria 

In this section we describe a method for the identification of microorganisms that 
enables quality control for the food production process. This Quality Control is 
done by monitoring the types of Bacteria present in samples of food extracted 
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from production lines. We use a method for the identification of microorganisms 
developed by the authors (Castillo & Melin, 1994), based on the use of the fractal 
dimension, to eliminate the need of applying a long sequence of microbiological 
techniques to the samples offood. 

This method uses the fractal dimension to make a unique classification of 
the different types of microorganisms, because it is a known experimental fact that 
the colonies of different types of bacteria have different geometrical forms. The 
problem is then to finding a one to one map between the different types of bacteria 
and their corresponding fractal dimension, in this way obtaining a unique method 
of identification of microorganisms for the food industry. The first step in 
obtaining this map is to find experimentally (in the lab) the different geometrical 
forms for the bacteria. The second step is to calculate the corresponding fractal 
dimensions for the different types of bacteria. This fractal dimension can be 
calculated for a selected type of bacteria with several samples, to obtain as a result 
a statistical estimation of the dimension and the corresponding error of the 
estimation. In order to make an efficient use of this map between the different 
types of bacteria and their corresponding estimated dimensions, we need to 
implement it as a module in the computer program. 

The method for the identification of microorganisms using the fractal 
dimension can be stated mathematically in the following form: let M be a one to 

m 

one map between the sets I and D , where the set I can be called set of 
m m m 

identifications of microorganisms and the set D can called set of fractal 
m 

dimensions. The set of identifications can be as follows: 

I = {staphylococcus ,streptococcusfi 10' m aureus eca IS 

pseudomonaaUreUginosa' salmonellatyphi'···} 

and the set of fractal dimensions can be as follows: 

where D is the fractal dimension of the Staphylococcus aureus bacteria, D is the 
~ ~ 

fractal dimension of the Streptococcus fecalis bacteria, D is the fractal dimension 
pa 

of the Peseudomona aureuginosa, D is the fractal dimension of the Salmonella 
51 

typhi and so on. In all of the above the fractal dimension is given by: 

D = [log(N)/log(l/r)] (10.8) 

for an object of N parts each scaled down by a ratio, r. For an estimation of the 
fractal dimension we can use the equation: 
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D 
N(r) = p Ifr (10.9) 

where N(r) = number of boxes contained in a piece of object and r = size of the 
box. Counting the number of boxes for different sizes and performing a linear 
logarithmic regression we can estimate the box dimension of an object with the 
equation: 

InN(r) = lop -Dlnr (10.10) 

The authors have implemented this method as a computer program to 
obtain an automated method of identification of bacteria (Castillo & Melin, 1994). 
In this case this method is used to verify the types of bacteria that we have at any 
moment in our industrial microbiology process, in this way controlling the types 
of bacteria in the process. This is important for quality control because in some 
cases harmful bacteria can appear during the production. 

10.6 Experimental Results 

We describe in this section some of the experimental results that we have 
achieved with the intelligent system for adaptive neuro-fuzzy-fractal control. In 
Table 10.2 we show the training data and results obtained with the neural network 
for identification (Ni). The neural network identification has the goal of 
simulating the mathematical model of the non-linear dynamic plant. 

Table 10.2.- Training data and results for Ni. 

Training Learning Number Math Initial Final 
method rate epochs Model Condo error 

BP 0.001 80,000 M2 p=o 103 

N 1=26.5 
N2=26.5 

BP 0.000001 120,000 M2 p=o 102 

N 1=26.5 

N2=26.5 

BP 0.0001 40,000 M2 p=o 101 

N1=26.5 

N2=26.5 

BP 0.0001 80,000 M2 p=o 10-2 

N 1=26.5 

N2=26.5 
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From Table 10.2, we can see that we achieved very good identification 
results with network used for a learning rate of 0.0001 (In all cases, we denote the 
model of one bacteria as M 1, the model of two bacteria as M2 and the one of three 
bacteria as M3). In Table 10.3 we show some of the numerical simulations of the 
dynamical behavior of the typical biochemical reactors. 

We can see from Table 10.3 that there is a wide range of possible 
dynamical behaviors for biochemical reactors. This makes the problem of 
controlling these reactors very difficult. The results obtained for the Neural 
Network of Control (Nc) were similar than the ones achieved for identification. 
The errors of control achieved are relatively small and can be considered very 
good for this application. 

Table 10.3.-Simulations of the dynamical behavior of biochemical 
reactors 

Temp. Math Initial Final Limiting 
Model Condo Product dynamical behavior 

102 OF Ml N=97.5 70% cycle of period 8 
110 OF M2 N,=26.5 80% cycle of period 16 

N2=26.5 

115 OF M3 N,=65 60% fixed points: N,=20 

N2=6.5 N =0 N =120 
2 3 

N3=1O 

118 OF M3 N,=60 65 % fixed points: N,=O 

N2=60 N =190 N =70 
2 3 

N3=0.5 

We show in Figure 10.2 simulation results of bacteria population used for 
food production. We can see from this figure the complicated dynamics for the 
case of two bacteria competing in the same environment, and at the same time 
producing the chemical product necessary for food production. 

We also show in Figure 10.3 simulation results for the case oftwo good 
bacteria used for food production and one bad bacteria that is attacking the other 
ones. We can see from this figure how one of the good bacteria is eliminated (the 
population goes down to zero), which of course results in a decrease of the 
resulting quantity of the food product. This is a case, which has to be avoided 
because of the bad resulting effect of the bad bacteria. Intelligent control helps in 
avoiding these types of scenarios for food production. 
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Figure 10.2 Simulation of the model for two bacteria used in food production. 
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Figure 10.3 Simulation of the model for two good bacteria and one bad bacteria. 
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10.7 Summary 

We have developed a general method for adaptive model based control of non­
linear dynamic plants using Neural Networks, Fuzzy Logic and Fractal Theory. 
We illustrated our method for adaptive control with the case of biochemical 
reactors in the food industry. In this case, the mathematical models represent the 
process of biochemical transformation between the microbial life and their 
generation of the chemical product. The chemical product is the one responsible 
for producing the food in the process. So, the goal here is to increase as much as 
possible the quantity of the chemical produced by the bacteria in the biochemical 
reactor. We used the new fuzzy inference system for multiple differential 
equations to take into consideration the appropriate models for different 
conditions in the biochemical reactor. We also described in this chapter an 
adaptive controller based on the use of neural networks and mathematical models 
for the plant (the reactor). The proposed adaptive controller performs rather well 
considering the complexity of the domain being considered in this research work. 
We can say that combining Neural Networks, Fuzzy Logic and Fractal Theory, 
using the advantages that each of these methodologies has, can give good results 
for this kind of application. Also, we believe that our neuro-fuzzy-fractal approach 
is a good alternative for solving similar problems. 



Chapter 11 

Controlling Aircraft Dynamic Systems 

We describe in this chapter a hybrid method for adaptive model-based control of 
non-linear dynamic systems using Neural Networks, Fuzzy Logic and Fractal 
Theory. The new neuro-fuzzy-fractal method combines Soft Computing (SC) 
techniques with the concept of the fractal dimension for the domain of Non-Linear 
Dynamic System Control. The new method for adaptive model-based control has 
been implemented as a computer program to show that our neuro-fuzzy-fractal 
approach is a good alternative for controlling non-linear dynamic systems. It is 
well known that chaotic and unstable behavior may occur for non-linear systems. 
Normally, we will need to control this type of behavior to avoid structural 
problems with the system. We illustrate in this chapter our new methodology with 
the case of controlling aircraft dynamic systems. For this case, we use 
mathematical models for the simulation of aircraft dynamics during flight. The 
goal of constructing these models is to capture the dynamics of the aircraft, so as 
to have a way of controlling this dynamics to avoid dangerous behavior of the 
aircraft dynamic system. 

11.1 Introduction 

We describe in this chapter a new method for adaptive control of non-linear 
dynamic systems based on the use of Neural Networks, Fuzzy Logic and Fractal 
Theory. The dynamics of real world systems are often highly non-linear and 
difficult to control (Melin & Castillo, 1996). The problem of controlling them 
using conventional controllers has been widely studied (Albertos, Strietzel & 
Mart, 1997). Much of the complexity in controlling any process comes from the 
complexity of the process being controlled. This complexity can be described in 
several ways. Highly non-linear systems are difficult to control, particularly when 
they have complex dynamics (such as instabilities to limit cycles and chaos). 
Difficulties can often be presented by constraints, either on the control parameters 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
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or in the operating regime. Lack of exact knowledge of the process, of course, 
makes control more difficult. Optimal control of many processes also requires 
systems, which make use of predictions of future behavior. The mathematical 
models for the dynamic systems are assumed to be non-linear differential 
equations. The goal of having these models is to capture the dynamics of non­
linear processes, so as to have a way of controlling this dynamics for industrial 
purpose (Melin & Castillo, 1997). 

We need a mathematical model of the non-linear dynamic system to 
understand the dynamics of the processes involved in the evolution of the system. 
For a specific case, this may require testing several models before obtaining the 
appropriate mathematical model for the process (Melin & Castillo, 1998). For real 
world systems with complex dynamics, we may even need several models for 
different sets of parameter values to represent all of the possible behaviors of the 
system. A general mathematical model of a dynamic system can be expressed as 
follows: 

dx/dt = fleX, D, a) - Pfix, D, a) 

dp/dt = Pf2(x, D, a) 

n m 

(1Ll) 

where x E R is a vector of state variables, pER is a vector of outputs, ~ E R is 
a constant measuring the efficiency of the conversion process, D E (0, 3) is the 
fractal dimension of the process, and a E R is a selection parameter. The fractal 
dimension is used to characterize the process, for example in the case of 
biochemical reactors D represents the fractal dimension of the bacteria used for 
production (Castillo & Melin, 1994). 

For a complex dynamical system it may be necessary to consider a set of 
mathematical models to represent adequately all of possible dynamic behaviors of 
the system. In this case, we need a decision scheme to select the appropriate 
model to use according to the linguistic value ofa selection parameter a. We use a 
new fuzzy inference system for differential equations to achieve fuzzy modelling 
(Castillo & Melin, 1999). We have fuzzy rules of the form: 

IF a is Al AND D is BI THEN MI (11.2) 

IFais A AND DisB THEN M 
n n n 

where A , ... , A are linguistic values for a, B , ... , B are linguistic values for the 
I n I n 

fractal dimension D, and MI, ... , Mn are mathematical models of the form given by 

equation (ILl). The selection parameter a can be the temperature for biochemical 
processes, because temperature changes cause the presence of new bacteria in this 
case (Melin & Castillo, 1998). For the case of aircraft dynamic systems, a can be 
related to environment parameters. 
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We combine adaptive model-based control using neural networks with 
the method for modelling using fuzzy logic and fractal theory, to obtain a new 
hybrid neuro-fuzzy-fractal method for control of non-linear dynamic systems. 
This general method combines the advantages of neural networks (ability for 
identification and control) with the advantages of fuzzy logic (ability for decision 
and use of expert knowledge) to achieve the goal of robust adaptive control of 
non-linear dynamic systems. We also use the fractal dimension to characterize the 
processes in modelling these dynamical systems. We have developed intelligent 
control systems using this new method for adaptive control for several 
applications, to validate our new approach for control. We have obtained very 
good results in controlling biochemical reactors and chemical reactors with the 
hybrid approach for control (Melin & Castillo, 1998). In this chapter, we describe 
the application of our new method to the case of controlling aircraft dynamic 
systems. 

11.2 Fuzzy Modelling of Dynamical Systems 

For a real-world dynamical system it may be necessary to consider a set of 
mathematical models to represent adequately all of the possible dynamic 
behaviors of the system. In this case, we need a fuzzy decision procedure to select 
the appropriate model to use according to the value of a selection parameter vector 
a. To implement this decision procedure, we need a fuzzy inference system that 
can use differential equations as consequents. For this purpose, we have 
developed a new fuzzy inference system that can be considered as a generalization 
of Sugeno's inference system (Sugeno & Kang, 1988), in which we are now using 
differential equations as consequents of the fuzzy rules, instead of simple 
polynomials like in the original Sugeno's method. Using this method, a fuzzy 
model for a general dynamical system can be expressed as follows: 

IF a l is All AND a 2 is AI2 AND a is A THEN dy/dt = fl(y, a) m 1m 
IF a l is A21 AND a is A22 AND a is A THEN dy/dt = f/y, a) 2 m 2m 

( 11.3) 

IF a l is A AND a is A AND a is A THEN dy/dt = f (y, a) nl 2 n2 m nm n 

m 
where A. is the linguistic value of a. for rule i-th, a E R and is defined by a = 

IJ J 

[a , ... , a ], and y E RP is the output obtained by the numerical solution of the 
I m 

corresponding differential equation. Of course, it is assumed that each differential 
equation in (1\.3) locally approximates the real dynamical system over a 

m 
neighborhood (or region) ofR . 
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The numerical solution of the differential equations can be achieved by 
the standard Runge-Kutta type method: 

y n+ I = RK. (y n) + 1I2(kI + k2) 

kI = hf(y n' tn) 

~ = hf(Yn + kp tn+I ) 

(11.4) 

where h is the step size of the method and RK can be considered as the Runge­
Kutta operator that transforms numerical solutions from time n to time n+ 1. 
Numerical solutions are then aggregated by weighted average with weights 
obtained by the minimum of the firing strengths of the inputs: 

y = WIYI + W2Y2 + ... + WnYn- (11.5) 

WI +W2 + ... Wn 

where: 

The new fuzzy inference system for differential equations can be 
illustrated as in Figure 11.1, where a complex dynamical system is modeled by 
using four different mathematical models (Mh M2, M3 and ~). The decision 
scheme can be expressed as a single-input fuzzy model as follows: 

y 

o small <Xl regular <X2 medium <X3 large <X4 <X 

Figure 11.1 Modelling a complex dynamical system with the new fuzzy system. 
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IF a is small THEN dy/dt = fl(y, a) 

IF a is regular THEN dy/dt = f2(y, a) ( 11.6) 

IF a is medium THEN dy/dt = f3(y, a) 

IF a is large THEN dy/dt = fiy, a) 

where the output y is obtained by the numerical solution of the corresponding 
differential equation. 

11.3 Neural Networks for Control 

Parametric Adaptive Control is the problem of controlling the output of a system 
with a known structure but unknown parameters. These parameters can be 
considered as the elements of a vector p. If P is known, the parameter vector S of a 
controller can be chosen as S* so that the plant together with the fixed controller 
behaves like a reference model described by a difference (or differential) equation 
with constant coefficients (Narendra & Annaswamy, 1989). If P is unknown, the 
vector Set) has to be adjusted on-line using all the available information 
concerning the system. 

Two distinct approaches to the adaptive control of an unknown system 
are (i) direct control and (ii) indirect control. In direct control, the parameters of 
the controller are directly adjusted to reduce some norm of the output error. In 
indirect control, the parameters of the system are estimated as pet) at any time 
instant and the parameter vector S(t) of the controller is chosen assuming that pet) 
represents the true value of the system parameter vector. 

When indirect control is used to control a non-linear system, the plant is 
parameterized using a mathematical model of the general form described in 
Section 1 and the parameters of the model are updated using the identification 
error. The controller parameters in tum are adjusted by backpropagating the error 
(between the identified model and the reference model outputs) through the 
identified model. A block diagram of such an adaptive system is shown in Figure 
11.2. 

The overall structure of the adaptive system proposed in this paper to 
control a non-linear dynamical system is the same as shown in Figure 11.2 and is 
independent of the specific model used to identify the system. The delayed values 
of the system input and system output form the inputs to the neural network Nc 
which generates the feedback control signal to the system. The parameters of the 
Neural Network Ni are adjusted by backpropagating the identification error ej 
while those of the Neural Network Nc are adjusted by backpropagating the control 
error (between the output of the reference model and the identification model) 
through the identification model. 
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The mathematical model for the non-linear dynamic system in the time 
domain is generated by the method of modelling (described in Section 11.2) using 
the real data that is measured on-line in the system. On the other hand, the fractal 
module is used to characterize the process and this information is used to specify 
the mathematical model in the time and space domain. This scheme enables the 
dynamic changes of models according to the changes of on-line process 
identification. Our new method for adaptive model-based control combining 
Neural Networks, Fuzzy Logic and Fractal Theory differs from our previous 
approach of considering only the use of neural networks and models (Melin & 
Castillo, 1997). 

Fuzzy Rule Base Neural Network 
For Modelling For Identification 

r ej 

+ 
Neural Network u Aircraft Dynamic 

For Control System 

Figure 11.2. General Architecture for Adaptive Neuro-Fuzzy-Fractal Control. 

11.4 Adaptive Control of Aircraft Systems 

The mathematical models of aircraft systems can be represented as coupled non­
linear differential equations (Melin & Castillo, 1998). In this case, we can develop 
a fuzzy rule base for modelling that enables the use of the appropriate 
mathematical model according to the changing conditions of the aircraft and its 
environment. For example, we can use the following model of an airplane when 
wind velocity is relatively small: 

p' = I1(-q + 1), 
q' = h(p + m) (11.7) 

where 1\ and 12 are the inertia moments of the airplane with respect to axis x and y, 
respectively, I and m are physical constants specific to the airplane, and p, q are 
the positions with respect to axis x and y, respectively. However, a more realistic 
model of an airplane in three dimensional space, is as follows: 



p' = It(-qr + 1) 
q' = h(pr+ m) 
r' = h(-pq + n) 
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(1l.8) 

where now 13 is the inertia moment of the airplane with respect to the z axis, n is a 
physical constant specific to the airplane, and r is the position along the z axis. 
Considering now wind disturbances in the model, we have the following equation: 

p' = It(-qr + 1) - ug 

q' = h(pr+ m) 
r' = h(-pq + n) 

(1l.9) 

where ug is the wind velocity. The magnitude of wind velocity is dependent on the 
altitude of the airplane in the following form: 

ug = Uw ind510 ~ + In (r/51 0)\ (11.1 0) 

In(51) j 
where Uwind510 is the wind speed at 510 ft altitude (typical value = 20 ftlsec). 

If we use the models of Equations (11.7)-(1l.9) for describing aircraft 
dynamics, we can formulate a set of rules that relate the models to the conditions 
of the aircraft and its environment. Lets assume that MI is given by Equation 
(1l.7), M2 is given by Equation (1l.8), and M3 is given by Equation (1l.9). Now 
using the wind velocity ug and inertia moment II as parameters, we can establish 
the fuzzy rule base for modelling as in Table 11.1. 

In Table Il.l, we are assuming that the wind velocity ug can have only 
two possible fuzzy values (small and large). This is sufficient to know if we have 
to use the mathematical model that takes into account the effect of wind (M3) for 
ug large or if we don't need to use it and simply the model M2 is sufficient (for ug 

small). Also, the inertia moment (II) helps in deciding between models MI and M2 
(or M3)' 

Table 11.1. Fuzzy rule base for modelling aircraft dynamic systems. 

IF THEN 
Wind Velocity Inertia Moment Fractal dimension Model 

Small Small Low Ml 
Small Small Medium M2 
Small Large Low M2 
Small Large Medium M2 

Large Small Medium M3 
Large Large Medium M3 
Large Large High M3 
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11.5 Experimental Results 

To give an idea of the performance of our neuro-fuzzy-fractal approach for 
adaptive control, we show below simulation results for aircraft dynamic systems. 
First, we show in Figure 11.3 the fuzzy rule base for a prototype intelligent system 
developed in the fuzzy logic toolbox of the MATLAB programming language. We 
show in Figure 11.4 the non-linear surface for the problem of aircraft dynamics 
using as input variables: fractal dimension and wind velocity. 

~ :: I:::::~~:: ::::~ ~ F:=:::=: =~ =I:':=:'~ ~ ~t~~~)~) (1) 
4 If (M-td.v I •• ..-moI) end [ntM:t ... ·n"QII'n it: .... ;0) bnd (It.etot-.dit'n .. moOurn) than (modoll8' m2) (1) 
5. If (wind-vol' .. &etgo) ond (If"'IOt'tLO-ft"IOI'ft lI' _moll <Ond (hOCfaJ.-dim ia ~) then (modoI 1 .. mJ) (1) 
6. If (~''Yel l' latge) and (lI'lGfbaomom .. large) and (hactakim II madum) then {model ... m3) (1 ) 
7 If (~·..,ell* !.orge) .end (.netII4-tnOIY't is &0100) 6J"d (hoetol-dm is high) tt-.en (modei it; m3) (1) 
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We show simulation results for an aircraft system obtained using our new 
method for modelling dynamical systems. In Figure 11.5 and Figure 11 .6 we show 
results for an airplane with inertia moments: II = 1, 12 = 0.4, 13 = 0.05 and the 
constants are: I = m = n = 1. The initial conditions are: p(O) = 0, q(O) = 0, r(O) = O. 
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Figure 11.5 Simulation of position q 
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Figure 11.6 Simulation of position p 
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To give an idea of the performance of our neuro-fuzzy approach for 
adaptive model-based control of aircraft dynamics, we show below (Figure 11.7) 
simulation results obtained for the case of controlling the altitude of an airplane 
for a flight of 6 hours. We assume that the airplane takes about one hour to 
achieve the cruising altitude 30 000 ft, then cruises along for about three hours at 
this altitude (with minor fluctuations), and fmally descends for about two hours to 
its final landing point. We will consider the desired trajectory as follows: 

fd= 30 +2sin10t fOf 1<t~4 

90 - 15t fOf 4< t ~ 6 

{ 
30t + sin2t fOf 0 ~ t ~ 1 

Of course, a complete desired trajectory for the airplane would have to include the 
positions for the airplane in the x and y directions (variables p, q in the models). 
However, we think that here for illustration purposes is sufficient to show the 
control of the altitude r for the airplane. 

We used three-layer neural networks (with 10 hidden neurons) with the 
Levenberg-Marquardt algorithm and hyperbolic tangent sigmoidal functions as the 
activation functions for the neurons. We show in Figure 11.7 the function 
approximation achieved by the neural network for control after 800 epochs of 
training with a variable learning rate. The identification achieved by the neural 
network (after 800 epochs) can be considered very good because the error has 

been decreased to the order of 10-1. Still, we can obtain a better approximation by 
using more hidden neurons or more layers. In any case, we can see clearly (from 
Figure 11.7) how the neural network learns to control the aircraft, because it is 
able to follow the arbitrary desired trajectory. 

30 

25 
+ 

$20 
- / ~ 15 ". 

.5 + 
10 

5 
". 

I ". 

0 
0 2 3 4 5 6 

Input 

Figure 11.7 Function approximation of the neural network for 
control of an airplane. 
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We have to mention here that these simulation experiments for the case 
of a specific flight for a given airplane show very good results. We have also tried 
our approach for control with other types of flights and airplanes with very good 
results. Of course, experimentation with real aircraft dynamic systems is still 
needed to really measure the power of the intelligent control approach. We expect 
that the efficiency of our method will be reduced slightly by real disturbances 
when applied to a real aircraft system. However, no major changes in hybrid 
architecture for the intelligent control system are expected. 

11.6 Summary 

We have developed a general method for adaptive model based control of non­
linear dynamic systems using Neural Networks, Fuzzy Logic and Fractal Theory. 
We illustrated our hybrid method for control with the case of controlling aircraft 
dynamics. In this case, the mathematical models represent the aircraft dynamics 
during flight. We also described in this chapter an intelligent adaptive controller 
based on the use of neural networks, fuzzy logic and mathematical models for the 
system. The proposed adaptive controller performs rather well considering the 
complexity of the domain being considered in this research work. We have shown 
that our method can be used to control chaotic and unstable behavior in aircraft 
systems. Chaotic behavior has been associated with the "flutter" effect in real 
airplanes, and for this reason is very important to avoid this kind of unstable 
behavior. We can say that combining Neural Networks, Fuzzy Logic and Fractal 
Theory, using the advantages that each of these methodologies has, can give good 
results for this kind of application. Also, we believe that our neuro-fuzzy-fractal 
approach is a good alternative for solving similar problems. Finally, we have to 
mention here that genetic algorithms could be used to increase even more the 
efficiency of the hybrid system for control. Genetic algorithms may be used to 
optimize the membership functions needed in the fuzzy rule base for modelling, or 
to optimize the architecture of the neural networks for control and identification. 



Chapter 12 

Controlling Electrochemical Processes 

We describe in this chapter, different hybrid approaches for controlling dynamical 
systems in manufacturing applications. The hybrid approaches combine soft 
computing techniques and mathematical models to achieve the goal of controlling 
the manufacturing process to follow a desired production plan. We have 
developed several hybrid architectures that combine fuzzy logic, neural networks, 
and genetic algorithms, to compare the performance of each of these combinations 
and decide on the best one for our purpose. Electrochemical processes, like the 
ones used in battery formation, are very complex and for this reason very difficult 
to control. We have achieved very good results using fuzzy logic for control, 
neural networks for modelling the process, and genetic algorithms for tuning the 
hybrid intelligent system. For this reason, we consider that the neuro-fuzzy­
genetic approach is the most appropriate for this case. 

12.1 Introduction 

The dynamics of an electrochemical system is non-linear and for this reason can 
be very difficult to predict in an accurate manner (Melin & Castillo, 1999). Also, 
mathematical models of electrochemical processes are difficult to derive and they 
are not very accurate. Traditionally, the models that have been used for 
electrochemical processes are from Statistics, but these models do not 
approximate the dynamic behavior of the processes with the accuracy required in 
practice. We need adaptive control of the electrochemical process to achieve on­
line control of the production line. Of course, adaptive control is easier to achieve 
if one uses a reference model of the process (Melin & Castillo, 1998). The 
problem is how to obtain a good model for the process, considering that 
mathematical models are very inefficient. The use of soft computing techniques 
has been recognized as a different approach to modeling with good results, and for 
this reason we decided to tum to these techniques for our problem (Castillo & 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
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Melin, 1999). We have tested fuzzy logic and neural networks for modeling the 
electrochemical processes and we have decided that the best choice for this case is 
to use neural networks. The other part of the problem is how to control the non­
linear electrochemical process in the desired way to achieve the production with 
the required quality. We tested different techniques and we arrived to the 
conclusion that fuzzy logic (Zadeh, 1975) was the best choice for this case. We 
developed a set of fuzzy rules with the expert knowledge for controlling the 
manufacturing process. The membership functions for the linguistic variables in 
the rules were tuned using a specific genetic algorithm. The genetic algorithm was 
used for searching the parameter space of the membership functions using real 
data from production lines. Our particular neuro-fuzzy-genetic approach has been 
implemented as an intelligent system to control the formation of batteries in a real 
plant with good results. We think that this hybrid approach can be used for 
controlling similar processes, the only change that will be required is to adapt the 
parameters and rules to the new application. 

12.2 Problem Description 

In a battery a process of conversion of chemical energy into electrical energy is 
carried out. The chemical energy contained in the electrode and electrolyte is 
converted into electrical power by means of electrochemical reactions. When 
connecting the battery to a source of direct current a flow of electrons takes place 
for the external circuit, and of ions inside the battery, giving an accumulation of 
load in the battery. The quantity of electric current that is required to load the 
battery is determined by an unalterable law of nature, that was postulated by 
Michael Faraday, which is known as the Law of Faraday (Bode, Brodd & 
Kordesch, 1977). Faraday found that the quantity of electric power required to 
perform an electrochemical change in a metal is related to the relative weight of 
the metal. In the specific case of lead this is considered to be 118 amperes hour for 
pound of positive active material for cell. In practice, more energy is required to 
counteract the losses due to the heat and to the generation of gas. 

We show in Table 12.1 experimental data for a specific type of battery 
with different sizes of the plates, and different number of plates for each cell. In 
this table, we show the load time and the average current needed for the respective 
load. In Table 12.1 we can observe that to form a battery we need to apply a 
particular current intensity during a certain amount of time to achieve the required 
loading for the battery. For example, from the first line of Table 12.1 we can see 
that a battery with positive plate of 0.060" and negative plate of 0.050" requires 
155 amperes in 1 hour, or 2.2 amperes during 72 hours. 

The goal of the manufacturers of batteries is to reduce the time required 
to load the battery. However, current intensity can't be increased arbitrarily 
because of the physical characteristics of the specific battery. If the current is 
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increased too much, the temperature in the battery will go over a safe temperature 
value eventually causing the destruction of the battery. The problem is then, of 
finding out how much can we increase the current without causing the battery to 
explode. Of course, we need to control the current during the process of battery 
formation, and we want to do this in such a way as minimize the time of loading. 

With the purpose of finding out, during the process of formation of the 
battery, the appropriate values of current intensity without surpassing the limits of 
temperature (Hehner & Orsino, 1985), we propose three systems for intelligent 
control of the process. The first one uses only fuzzy logic for control and 
statistical models of the process. The second one uses a neuro-fuzzy approach to 
develop the fuzzy rules controlling the electrochemical process. The third 
approach uses neural networks to model the process, fuzzy rules for control and 
genetic algorithms to tune the membership functions. Of course, this last approach 
gave us better results as we will show later in the chapter. 

Table 12.1 Experimental data for different types of batteries 

Type of Plate 
Positive 0.060" Positive 0.070" 
Negative 0.050" Negative 0.060" 

Plate Total 72 hr 96 hr Total 72 hr 96 hr 
cell A. H. Amp. Amp. A.H. Amp Amp 
7 155 2.2 1.6 165 2.4 1.8 
9 180 2.8 2.0 200 2.8 2.2 
11 2230 3.2 2.4 245 3.4 2.4 
13 260 3.6 2.6 295 4.0 3.0 
15 300 4.2 3.0 345 4.8 3.6 
17 400 5.6 4.2 415 5.8 4.4 

12.3 Fuzzy Method for Control 

In this approach we use a statistical model to represent the electrochemical 
process and a fuzzy rule base for process control. The temperature in the battery 
depends on the electrical current that circulates in it during its formation, this 
means that to maintain the temperature below a specific threshold it is important 
to control the intensity of the current. Therefore for this case the independent 
variable is the average current I, and the dependent variable is the average 
temperature T. A simple statistical model can stated as follows: 

T = Po + PI I (12.1) 
where ~o and ~ 1 are parameters to be estimated (by least squares) using real data 
for this problem. In Table 12.2, we show experimental values for a battery of 6 
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Volts, which according to manufacturer's specifications should be loaded by using 
200 amperes hour. 

Using the data from Table 12.2 we can obtain (by least squares method) 
the values of ~o and ~l (Sepulveda, Castillo, Montiel, & Lopez, 1998). The 
equation is as follows: 

T = 88.03 + 2.5304 I (12.2) 
with correlation value of only 0.57 which is understandable because of the 
complexity of the data. 

For the fuzzy controller we used as input variables, the temperature T and 
the change of temperature dT/dt, and as output variable the current intensity that 
should be applied to the battery. In Figure 12.1 we show the architecture of our 
control system. 

Table 12.2 Measured values of temperature and electrical current for a 
battery of 200 amperes hour. 

Hrs T I Hrs T I 
21:00 III 5.22 23:00 93 3.53 
23:00 100 5.21 1:00 91 3.40 

1:00 105 5.52 3:00 92 3.32 
3:00 100 5.66 5:00 96 3.16 
5:00 100 5.60 7:00 98 3.10 
7:00 97 5.72 9:00 98 3.14 
9:00 92 4.82 11:00 102 3.12 

11 :00 95 4.32 13:00 99 3.03 
13:00 102 4.10 15:00 98 3.05 
15:00 103 4.05 17:00 97 3.06 
17:00 100 3.40 19:00 95 2.96 
19:00 97 3.77 21:00 94 2.60 
21:00 94 3.62 23:00 96 2.76 

T 
--"- Fuzzy I Electro-chemical T ... 

dT/dt controller .. process ... 
... ... 

Figure 12.1 Fuzzy Control of the process 
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The control method was implemented in the MA TLAB programming 
language. For each of the linguistic variables in the fuzzy system it was 
considered convenient to use five linguistic terms. In Figure 12.2 we show the 
fuzzy rule base implemented in the Fuzzy Logic Toolbox of MATLAB. We have 
25 rules because we are using 5 linguistic terms for each variable. The 
membership functions were tuned manually until they give the best values for the 
problem. We discuss the results of this approach later in the chapter. 
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Figure 12.2 Fuzzy rule base for controlling the Process 

12.4 Neuro-Fuzzy Method for Control 

Iii 

Since it is difficult to tune a particular inference system to model a complex 
dynamical system (Castillo & Melin, 1998) it is convenient to use adaptive fuzzy 
inference systems. Adaptive neuro-fuzzy inference systems (ANFIS) can be used 
to adapt the membership functions and consequents of the rule base according to 
historical data of the problem (lang, Sun & Mizutani, 1997). The ANFIS 
methodology has been applied to many real world problems with good results, and 
we consider it as a good option to investigate for this application. In this case, we 
can use the data from Table 12.2 and apply the ANFIS methodology to find the 
best fuzzy system for our problem. We used the fuzzy logic toolbox of MATLAB 
to apply the ANFIS methodology to our problem with 5 membership functions 
and first order Sugeno functions in the consequents. 
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In Figure 12.3 we show the architecture of the intelligent control system. 
The fuzzy rule base was implemented in the MA TLAB programming language. 
We show in Figure 12.4 the non-linear surface for control. We only used 5 rules 
because there is only one input variable (temperature) and one output variable 
(electrical current) with 5 linguistic variables each. We describe in detail the 
results of this approach later in the chapter, but we can anticipate better results 
that in the previous approach using only fuzzy logic. 

T ANFIS I Electro-chern ical T .. .. .. controller ... -process 

Figure 12.3 ANFIS Control of the process 
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Figure 12.4 ANFIS surface for the process. 
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12.5 Neuro-Fuzzy-Genetic Method for Control 

In this case, we consider using neural networks for modelling the electrochemical 
process, fuzzy logic for controlling the electrical current in the process, and 
genetic algorithms for adapting the membership functions of the fuzzy system 
(Castillo & Melin, 1998). The general architecture of the intelligent control 
system is shown in Figure 12.5. In this figure, we can see clearly the basic idea of 
the hybrid approach, which is to use the advantages of each SC technique to 
achieve efficient real time control. 

A multilayer feedforward neural network was used for modelling the 
electrochemical process. We used the data form Table 12.2 and the Levenberg­
Marquardt learning algorithm to train the neural network. We used a three layer 
neural network with 15 nodes in the hidden layer. The results of training for 2000 
epochs are shown in Figure 12.6. The sum of squared errors was reduced from 
about 200 initially to 11.25 at the end, which is a very good approximation in this 
case due to the complexity of the problem. 

T Neural .. Network .. 

+ Ip 

T ... 
Ie Electro- T ... 

dT/dt_ .... Fuzzy ... chemical ... ... controller process 

T t ... 
Genetic ... 

dT/dt ... algorithm ... 

Figure 12.5 Neuro-Fuzzy-Genetic Control 
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The fuzzy rule base was implemented in the Fuzzy Logic Toolbox of MA TLAB. 
We used 25 fuzzy rules because there were 5 linguistic terms for each input 
variable. The initial membership functions were obtained from experts, but they 
were improved using a specific genetic algorithm to arrive to the fmal 
membership functions . The genetic algorithm had mutation, single crossover and 
elitism. The mutation rate was 0.05, and the crossover rate was 0.1. These specific 
values were found by experimentation with different values until the best ones 
were selected. We show in Figure 12.7 the implementation of the fuzzy system for 
intelligent control. 
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Figure 12.7 Non-linear surface for control. 
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We compared the three hybrid intelligent control systems by simulating the 
formation (loading) ofa 6 Volts battery. This particular battery is manually loaded 
(in the real manufacturing plant) by applying 2 amperes for 50 hours under 
manufacturer's specifications. We show in Table 12.3 the results of the three 
hybrid methods for control. 

Table 12.3 Comparison of the methods for control 

Control Method Time for Loading 
Manual Control 50 hours 
Conventional Control 36 hours 
Fuzzy Control 32 hours 
Neuro-Fu~_ Control 30 hours 
Neuro-Fuzzy-Genetic 25 hours 

We can see from Table 12.3 that the fuzzy control method reduces 36% the time 
required to form the battery compared with manual control, and 11.11 % compared 
with conventional PID control (Sepulveda, Castillo, Montiel, Ross, 1998). We can 
also see how ANFIS helps in reducing even more this time of formation because 
we are using neural networks for adapting the system. Now the reduction is of 
40% with respect to manual control. Finally, we can notice that using a neuro­
fuzzy-genetic approach reduces even more the time of formation because the 
genetic algorithm optimizes even more the fuzzy system for control and we are 
also using the neural network as a model of the process. In this case, the reduction 
is of 50 % with respect to manual control. These results are only for a specific 
type of battery (the 6 Volts type of battery). For other types of batteries the results 
are similar, with the best results for the neuro-fuzzy-genetic approach, but 
reductions in time oscillate between 40% and 50%. From these results, we can see 
very clearly that combining different soft computing techniques in the right way, 
we can increase performance of an intelligent system for control. Of course, we 
are not suggesting that we always need to combine techniques, in some cases this 
may not be necessary. Also, in other type of applications the best hybrid 
combination needed may not be the neuro-fuzzy-genetic one used here, other 
combinations may be better for other situations. 
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12.7 Summary 

We have described in this chapter, three different approaches for controlling a 
complex electrochemical process. We have implemented these hybrid approaches 
as intelligent systems for control in the MATLAB programming language. We 
compared the results of these systems with conventional PID control, to measure 
the efficiency of the hybrid intelligent control systems. We have shown that for 
this type of application the use of several, soft computing, techniques can help in 
reducing the time required to produce a battery in the manufacturing plant. Even 
fuzzy control alone can reduce the formation time, but using neural networks and 
genetic algorithms reduces even more the time for production. Of course, this 
means that manufacturers can produce the batteries in roughly half the time 
needed before. These are very good results for this application. A hardware 
implementation is still needed to completely automate the control of the process. 



Chapter 13 

Controlling International Trade Dynamics 

We describe in this chapter the application of our new method for adaptive model­
based control (using a neuro-fuzzy-genetic approach) to the problem of 
controlling international trade dynamics. The problem of international trade 
between two or more countries is a very complex one because of the non­
linearities involved in the mathematical models (Castillo and Melin, 1998). In this 
chapter, we describe the methodology to develop an intelligent system for 
controlling international trade that can be used by the government of a specific 
country to maximize the profit from its international trade with other countries. 
Our method for adaptive model-based control of non-linear dynamical systems 
consists of using a fuzzy rule base for model selection, a genetic algorithm for 
identification and a neural network for control (Melin and Castillo, 1998). 
Accordingly, an intelligent control system based on our methodology has an 
architecture with three main modules: model selection, identification and control. 
For the case of international trade, we have developed the fuzzy rule base for 
selecting the appropriate mathematical models for the problem, the genetic 
algorithm for parameter identification, and the neural network for control. 

13.1 Introduction 

Mathematical modelling of international trade has been done traditionally with 
linear statistical models from classical Econometric Theory (Gujarati, 1987). 
However, more recently some researchers have found statistical evidence 
(Anderson, Arrow, and Pines, 1988) that time series from financial and 
economical variables show erratic fluctuations in time. It is well known that 
simple linear models can not represent this erratic dynamic behavior that has been 
found in several time series. Then, it becomes necessary to use non-linear 
mathematical models that will enable us to represent this complex dynamic 
behavior found for systems in economics or finance. Non-linear models from the 

O. Castillo et al., Soft Computing for Control of Non-Linear Dynamical Systems
© Physica-Verlag Heidelberg 2001
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theory of Dynamical Systems can show the behavior known as "chaos" for 
different ranges of parameter values (Devaney, 1989) and for this reason they 
become a good choice in modelling complex fmancial or economic problems. Our 
experience on this matter (Castillo and Melin, 1995a, 1995b, 1996, 1997) has 
shown that this line of research is very promising. 

The mathematical models of international trade can be represented as 
systems of coupled non-linear differential equations. The general mathematical 
model for describing the international trade between two or more countries can be 
written as follows: 

y'. = a.(1. - S. + Y (EX. - 1M.)) 
I 1 I 1 I 1 

i = 2,3, ... 

r'o = p (L. - MJP.) 
I I I I I 

where: Y is the national income, r is the interest rate, M. is the nominal money 
I I I 

supply, P are the goods prices, 1. national gross investment, S national savings, 
I I I 

EX. is the total exports, 1M. is the total imports and ex, ~. are parameters to be 
I I 1 I 

estimated. We use parameter y as a decision parameter in the fuzzy rule base for 
model selection, because we consider that y measures the effect of international 
trade in the economies. We can then formulate a fuzzy rule base for model 
selection (based on the selection parameter y) that enables the use of the 
appropriate specific mathematical model according to the changing conditions of 
the economies involved. 

We use a specific genetic algorithm to estimate the parameters of the 
specific mathematical model of international trade being considered at the 
moment by the fuzzy selection process. Parameter estimation for the models 
(identification) is performed by using a genetic algorithm for the minimization of 
an objective function measuring how well the specific model is fitting real data for 
the problem (time series). 

We use a feedforward multilayer neural network for control with the 
Levenberg-Marquardt learning algorithm (Jang, Sun and Mizutani, 1997). We 
have obtained simulation results for the case of three countries (USA, Canada and 
Mexico) with international trade. 

13.2 Mathematical Modelling of International 
Trade 

Mathematical modelling of problems in finance and economics has been always 
very important in the applications, since it enables the simulation and forecasting 
of the relevant financial and economical variables. Mathematical modelling, from 
the theoretical point of view, contributes to the understanding of economical and 
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financial phenomena, since it enables the investigation of possible relationships 
between different financial and economical variables. On the other hand, 
mathematical modelling, from the practical point of view, can be used as a tool for 
planning and decision making in the industry or in government. 

Mathematical modelling of international trade has been done traditionally 
with linear statistical models from classical Econometric Theory (Gujarati, 1987). 
However, more recently some researchers have found statistical evidence 
(Anderson, Arrow, and Pines, 1988) that time series from financial and 
economical variables show erratic fluctuations in time. It is well known that 
simple linear models can not represent this erratic dynamic behavior that has been 
found in several time series. Then, it becomes necessary to use non-linear 
mathematical models that will enable us to represent this complex dynamic 
behavior found for systems in economics or fmance. Non-linear models from the 
theory of Dynamical Systems can show the behavior known as "chaos" for 
different ranges of parameter values (Devaney, 1989, Lorenz, 1987) and for this 
reason they become a good choice in modelling complex financial or economic 
problems. Our experience on this matter has shown that this line of research is 
very promising. 

We will consider first modelling the dynamics of autonomous 
economies, i.e .. , study the oscillations of an autonomous economy. Then, we will 
consider modelling the problem of International Trade as a perturbation of the 
internal oscillations of an autonomous economy. 

13.2.1 Oscillations in Autonomous Economies 

Consider the Keynesian macroeconomic model (Lorenz, 1987) of a single 
economy with Y as income, r as the interest rate, M as the (constant) nominal 
money supply, and assume that the good prices, P, are fixed during the relevant 
time interval. Suppose that gross investment, I, and savings, S, depend both on 
income and the interest rate in the familiar way, i.e., 

I = I (Y,r) 
S = S (Y,r) 

Iy> 0, Ir < 0 
Sy> 0, Sr < 0 

Income adjusts according to excess demand in the goods market, i.e., 

Y' = a (I - S) a>O (l3.1) 

The set of points {(Y,r)1 I(Y,r) = S(Y,r)} constitutes the IS-curve of the model. Let 
L(Y,r) denote the liquidity preference with Ly > 0, Lr < 0 and assume that the 
interest rate adjusts according to: 
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r' = ~ (L(Y,r) - M/p) , ~ > 0 (13.2) 

with the set of points {(Y,r)1 L(Y,r) = M/p} forming the LM-curve of the model. 
As is well known, the equilibrium (y* ,r*) is asymptotically (locally) stable if tr J 
< 0 and det J >0, where J is the Jacobian of the system and Tr=trace, det == 
determinant. Also, it can be demonstrated by means of the Poncare-Bendixon 
Theorem that system (13.1) - (13.2) is able to generate oscillating behavior. 

13.2.2 International Trade as a Perturbation 
---

of Internal Oscillations 

Consider three economies, each of which is described by equations like (13.1)­
(13.2) with possibly different numerical specifications of the functions, i.e., 

Y'i = a i (Ii(Yi,ri) - Si(Yi,ri)) 
i=1,2,3 (13.3) 

r'i = ~ i (Li(Yi,ri) - Mi/pi) 

Equation (13.3) constitutes a six-dimensional differential equation system, which 
can also be written as a system of three independent two-dimensional limit cycle 
oscillators. 

By introducing international trade with linear functions 
EXi=EXi(Yj,Yk), i*j,k and Imi=Imi(Yi), equation (13.3) becomes: 

Y'i = ai (Ii(Yi,ri) - Si(Yi,ri) + EXi(Yj,Yk) - Imi(Yi)) (13.4) 

r'i = ~i (Li(Yi,ri) - Mi/pi) 

with i, j, k= 1,2, 3; j, k = i, and Mi as the money supplies reflecting balance of 
payments equilibria. Equation (13.4) constitutes a system of three linearly coupled 
limit cycle oscillators. The following theorem can then be demonstrated for 
system (13.4). 

Theorem 13.1: If all three autonomous economies are oscillating, the introduction 
of international trade may imply the existence of a strange attractor (chaotic 
behavior). 

Of course, chaotic behavior may occur for certain ranges of parameter 
values for the ai, Pi, Mi parameters. However, the emergence of strange attractors 
is not exclusive in models like these: some variations in the parameters can lead to 
the occurrence of other phenomena like quasi-periodic motion or phase-locking. 
The main goal for a certain country is to achieve a stable behavior in its economy 
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while in this International Trade System, in this way controlling its future 
behavior in this system. As a result of this, a specific country (like Mexico) can 
optimize its profit while in a system of three countries (like with the NAFT A trade 
agreement). 

13.3 Fuzzy Logic for Model Selection 

For a complex dynamical system it may be necessary to consider a set of 
mathematical models to represent adequately all of the possible dynamic 
behaviors of the system (Melin & Castillo, 1998). In this case, we need a decision 
scheme to select the appropriate model to use according to the value of a selection 
parameter a. In this section, we show a method for model selection based on 
fuzzy logic and a new fuzzy inference system for differential equations. 

We have designed a method, based on fuzzy logic techniques, for 
mathematical model selection using as input the numerical value of a selection 
parameter a. We assume, in what follows, that parameter a is defined over a real­
valued interval: 

(13.5) 

We also assume that we have n mathematical models considered appropriate for 
the respective n subintervals, defined on [ 0.0 ' an ], as follows: 

ao :s; a < ai, a I :s; a < a2 , ... , (13.6) 

The corresponding n mathematical models for these subintervals can be expressed 
as differential equations: 

dy/dt = fl (y, a) 

dy/dt = f2(y, a ) 

dy/dt = fn(y, a ). 
(13.7) 

Then, we can define a set of fuzzy if-then rules that basically relate the 
subintervals to the mathematical models in a one-to-one fashion. The advantage of 
using fuzzy rules (instead of conventional simple if-then rules) is that we can 
manage the underlying uncertainty of this process of model selection. We show 
the set of fuzzy rules for model selection in Table 13.1. 
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Table 13.1 Decision scheme for model selection 

IF THEN 

aO~a<al Mr dy/dt = fl (y, a ) 

al ~ a < a2 M2: dy/dt = f2(y, a ) 

a2 ~ a < a3 M3: dy/dt = f3(y, a) 

dy/dt = fn(y, a) 

To implement this decision scheme, we need a reasoning method that can 
use differential equations as consequents. We have developed a new fuzzy 
inference system that can be considered as a generalization of Sugeno's inference 
system (Sugeno & Kang, 1988) in which we are now considering differential 
equations as consequents of the fuzzy rules, instead of simple polynomials. Using 
this method, the decision scheme of Table 13.1 can be expressed as a single-input 
fuzzy model as follows: 

If a is small 

If a is regular 

If a is medium 

If a is large 

then dy/dt = f1(y,a) 

then dy/dt = f2(y,a) 

then dy/dt = f3(y,a) 

then dy/dt = fn(y,a) 

where the output y is obtained by the numerical solution of the corresponding 
differential equation. We have to note here that this new fuzzy inference system 
reduces to the standard Sugeno system only when the differential equations have 
closed-form solutions in the form of polynomials. However, the solutions to the 
differential equations can be more complicated analytical functions or in most 
cases the solutions are so complex that can only be approximated by numerical 
methods. The advantage of this generalization of Sugeno's original method is that, 
in general, we can represent more complicated dynamic behaviors and also 
because of this fact, the number of rules needed to represent a given dynamical 
system is smaller. 

The reasoning procedure is very similar to the original Sugeno's 
procedure, except that now in the output we obtain the crisp values of "y" by 
solving numerically the corresponding differential equations. The numerical 
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solutions of the differential equations can be achieved by the standard Runge­
Kutta type method (Nakamura, 1997): 

Yn+1 = RK(Yn) = Yn + 1I2(kl + k2) 

kl = hf(Yn,tn) 

k2 = hf(Yn + k., tn+l) 

where h is the step size of the numerical method and RK can be considered as the 
Runge-Kutta operator that transforms numerical solutions from time n to time 
n+1. 

The reasoning procedure for differential equations can also be used for 
rules with multiple inputs (for the case of several selection parameters) by simply 
considering the minimum of the firing strengths of each of the inputs. The fuzzy 
inference system for differential equations can be illustrated as in Figure 13.1, 
where a complex dynamical system is modeled by using four different 
mathematical models (Ml' M2, M3 and M4)· 

Of course, for this decision scheme to work we need to define 
membership functions for the different values of the parameter <X corresponding to 
the mathematical models. The membership functions for the models should give 
us the degree of belief that a particular model is the correct one for a specific 
value of the parameter <X. 

To apply this method of model selection, to a particular application, we 
have to find the corresponding selection parameter <X (or even several parameters) 
to be used in the decision scheme proposed in Table 13.1. Then, a partition of the 
definition interval for <X has to be performed. After this, the one-to-one map 
between the mathematical models and the subintervals (obtained from the 
partition) is constructed. In this way, we can obtain the fuzzy rule base for model 
selection for a particular application. 

Y 

o small Ul regular U2 medium U3 large U4 U 

Figure 13.1 Modelling a complex dynamical system with the fuzzy 
inference system. 
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13.4 Adaptive Model-Based Control of 
International Trade 

We describe in this section the application of our new method for adaptive model­
based control to the problem of controlling international trade dynamics. The 
problem of international trade between three or more countries is a very complex 
one because of the couplings and non-linearities involved in the mathematical 
models (Castillo & Melin, 1998). In this section, we describe the methodology to 
develop an intelligent system for controlling international trade that can be used 
by the government of a specific country to maximize the profit from its 
international trade with other countries. 

13.4.1 Adaptive model-based control of international 
trade 

The method for adaptive model-based control of non-linear dynamical systems 
consists of using a fuzzy rule base for model selection, a genetic algorithm for 
identification, and a neural network for control. For the case of international trade, 
we need to defme each of the method's components, mentioned above, to achieve 
the goal of controlling the dynamical system of three (or more) countries with 
trade between them. 

The mathematical models of international trade can be represented as 
systems of coupled non-linear differential equations (as described in Section 
13.2). In this case, we can establish a fuzzy rule base for model selection that 
enables the use of the appropriate mathematical model according to the changing 
conditions of the economies involved. For example, if we use the general 
mathematical models of Equations (13.3) and (13.4) for describing the 
international trade dynamics between one, two or three countries, we can have the 
following specific models. For one country with no international trade we have: 

Y'l = al(I1 - Sl) (13.8) 

r'l = ~I(LI - MI/PI) 

For two countries with no international trade: 

Y'· = a·(J. - s·) 1 1 1 1 i = 1,2 (13.9) 

r'· = A·(L· - M·/p·) 1 1-'1 1 1 1 

For two countries with international trade: 



y'j = ai(Ii - Si + Y (EXi - IMi)) 

r'i = Pi(Li - M/pD 

For three countries with no international trade: 

YI. = a·(I· - S·) 1 1 1 1 

rl. = A·(L· - M·/p·) 1 1-'1 1 1 1 

And for three countries with international trade: 

y'j = ai(Ii - Si + Y (EXi - IMi )) 

rl. = A·(L· - M·/p·) 1 1-'1 1 1 I 
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i = 1,2 (13.10) 

i = 1,2,3 (13.11) 

i = 1,2,3 (13.12) 

where Ii, Si, Li, Mi, EXi, IMi, and Pi are defined as in Section 2 of this chapter. 

Now, using y as a selection parameter we can establish the fuzzy rule base for 
model selection as in Table 13.2. 

Table 13.2 Fuzzy rule base for model selection of international trade 

IF THEN 

Y Number of countries Mathematical Model 
one Ml 

small two M2 
large two M3 
small three M4 
large three MS 

In Table 13.2 we are assuming that the selection parameter y can have 
only two possible fuzzy values (small and large). The reasoning behind this is that 
when y is small, we can use the model with no international trade and when y is 
large we can use the model with international trade. We have to note here that the 
fuzzy rule base has to be developed according to the particular case that is being 
considered. 

The integration of the fuzzy rule base for model selection with the 
genetic algorithm for identification, and the neural network for control, results in 
an intelligent system for adaptive model-based control of international trade. This 
intelligent system combines the advantages of neural networks (ability for 
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identification and control) with the advantages of fuzzy logic (use of expert 
knowledge), and the advantages of genetic algorithms (for optimization) to 
achieve the goal of robust adaptive control of international trade. The general 
architecture of the intelligent control system for international trade is similar to the 
one shown in (Melin and Castillo, 1998), except that now instead of the plant we 
have a non-linear dynamical system in economics. An intelligent system with this 
architecture is capable of adapting to changing conditions in the economies of the 
countries, because it can change the control actions according to the data available 
and also can change the reference mathematical model if there is a large enough 
change in the parameter y. Of course, for this method to work we need to estimate 
parameter y from time series of the real values for the variables in the 
mathematical models. 

13.5 Simulation Results for Control of 
International Trade 

To give an idea of the performance of our neuro-fuzzy-genetic approach for 
adaptive model-based control of international trade dynamics, we show below 
simulation results obtained for the case of three countries (USA, Canada and 
Mexico) with international trade. We will consider the problem of controlling the 
economy of the less developed country (Mexico) because it is the most 
challenging from the control point of view. For the case of Mexico, one problem 
is that of reducing interest rates in the short term so we will consider as a desired 
trajectory for this economy: 

rd = 0.25e-0.lt + 0.02sint + 0.05 

with initial values of: 

reO) = 0.30 r'(O) = O. 

In this desired trajectory for the economy, we are assuming that the goal interest 
rate is 5% and that we need to decrease the initial rate of 30% to the final interest 
rate of 5%. We also consider that the economy has natural cycles and because of 
this fact we use the "sine' function. 

We use three-layer neural networks (with 10 hidden neurons) with the 
backpropagation algorithm and hyperbolic tangent sigmoidal functions as the 
activation functions for the neurons. We show in Figure 13.2 the initial function 
approximation achieved with the neural networks for control. 
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Figure 13.2 Initial function approximation of the neural network for control. 

We show in Figure 13.3 the function approximation achieved with the 
neural network for control after 59 epochs of training with a variable learning rate. 
The identification achieved by the neural network (after 59 epochs) can be 

considered very good because the error has been decreased to the order of 10-4. 
Still, we can obtain a better approximation by using more hidden neurons or more 
layers. In any case, we can see clearly how the neural network learns to control 
the economic dynamic system, because it is able to follow the arbitrary desired 
trajectory. 
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We have to mention here that these simulation experiments for the case 
of three specific countries (USA, Canada and Mexico) show very good results. 
We have also tried our approach for control with other dynamic systems in 
economics with encouraging results. We recommend, to the interested reader to 
use our methodology for this type of economic systems or other similar systems to 
explore on his (or her) own the interesting problem of controlling complex non­
linear dynamical systems. 

13.6 Summary 

We described in this chapter a hybrid neuro-fuzzy-genetic approach for 
controlling international trade dynamics. The integration of the fuzzy rule base for 
model selection, with the genetic algorithm for identification and the neural 
network for control, results in an intelligent system for adaptive model-based 
control of international trade. This intelligent system was written in the MA TLAB 
programming language (Nakamura, 1997) and combines the advantages of fuzzy 
logic (use of expert knowledge), the advantages of genetic algorithms (function 
optimization) and the advantages of neural networks (learning and adaptability) to 
achieve the goal of robust adaptive control of international trade. An intelligent 
system with this neuro-fuzzy-genetic approach is capable of adapting to changing 
conditions in the economies of the countries, because it can change the control 
actions according to the data available and also can change the reference 
mathematical model if there are large enough variations in the economies. We 
think that this hybrid neuro-fuzzy-genetic approach can be used for similar 
problems in economics and fmance. Of course, in this case we will need to change 
the variables involved in the process of control. 
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of robotic dynamic systems 

of biochemical reactors, 
of international trade, 
of aircraft systems, 

modelling the process of the 
plant, 

multilayer preceptron, 

10 
9 
8 
149, 152 

150, 151 
169 
198, 199 
180,181 

164 
35 

neural networks, 29, 31 
neuro-fuzzy inference systems, 

39,40 
neuro-fuzzy control, 44, 154 
neuro-fuzzy adaptive model-based 

control, 154 
numerical simulation of 

dynamical systems, 

off-line learning, 
on-line learning, 
ordered derivative, 

138 

34,38 
34,38 
33 

pattern recognition 116 
principle of incompatibility, II 
prototype intelligent systems, 

for automated modelling, 126, 127, 
128, 132 

for automated simulation, 139, 145, 
146 

for adaptive control, 

robotic dynamic systems, 
automated modelling, 
automated simulation, 
intelligent control, 
mathematical modelling, 

Runge-Kutta method, 

156,173, 
194,207 

152 
145, 148 
149 
123, 150, 
151 
121 

simulated annealing, 
simulation, 

the problem of, 
automated, 
results, 

strange attractor, 
Sugeno fuzzy model, 

221 

68,69 
135 
138 
139 
145, 156, 
171, 182 
86 
17, 18 

time series analysis, 105, 111 
transfer function (see activation 

junction), 
Tsukamoto fuzzy models, 18, 19 

very fast simulated annealing, 
71 


