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Preface

This book is a revised and extended third edition of the second edition of
Correspondence Analysis in Practice (Chapman & Hall/CRC, 2007), first pub-
lished in 1993. In the original first edition I wrote the following in the Preface,
which is still relevant today:

“Correspondence analysis is a statistical technique that is useful to all students,
researchers and professionals who collect categorical data, for example data col-
lected in social surveys. The method is particularly helpful in analysing cross-
tabular data in the form of numerical frequencies, and results in an elegant but
simple graphical display which permits more rapid interpretation and under-
standing of the data. Although the theoretical origins of the technique can be
traced back over 50 years, the real impetus to the modern application of corre-
spondence analysis was given by the French linguist and data analyst Jean-Paul
Benzécri and his colleagues and students, working initially at the University of
Rennes in the early 1960s and subsequently at the Jussieu campus of the Univer-
sity of Paris. Parallel developments of correspondence analysis have taken place
in the Netherlands and Japan, centred around such pioneering researchers as
Jan de Leeuw and Chikio Hayashi. My own involvement with correspondence
analysis commenced in 1973 when I started my doctoral studies in Benzécri’s
Data Analysis Laboratory in Paris. The publication of my first book Theory and
Applications of Correspondence Analysis in 1984 coincided with the beginning
of a wider dissemination of correspondence analysis outside of France. At that
time I expressed the hope that my book would serve as a springboard for a much
wider and more routine application of correspondence analysis in the future. The
subsequent evolution and growing popularity of the method could not have been
more gratifying, as hundreds of researchers were introduced to the method and
became familiar with its ability to communicate complex tables of numerical
data to non-specialists through the medium of graphics. Researchers with whom
I have collaborated come from such varying backgrounds as sociology, ecology,
palaeontology, archaeology, geology, education, medicine, biochemistry, microbi-
ology, linguistics, marketing research, advertising, religious studies, philosophy,
art and music. In 1989 I was invited by Jay Magidson of Statistical Innovations
Inc. to collaborate with Leo Goodman and Clifford Clogg in the presentation of a
two-day short course in New York, entitled “Correspondence Analysis and Asso-
ciation Models: Geometric Representation and Beyond”. The participants were
mostly marketing professionals from major American companies. For this course
I prepared a set of notes which reinforced the practical, user-oriented approach to
correspondence analysis. ... The positive reaction of the audience was infectious
and inspired me subsequently to present short courses on correspondence analysis
in South Africa, England and Germany. It is from the notes prepared for these
courses that this book has grown.”

In 1991 Prof. Walter Kristof of Hamburg University proposed that we orga-
nize a conference on correspondence analysis, with the assistance of Dr. Jorg
Blasius of the Zentralarchiv fiir Empirische Sozialforschung (Central Archive

Extract from
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for Empirical Social Research) at the University of Cologne. This confer-
ence was the first international one of its kind and drew a large audience
to Cologne from Germany and neighbouring European countries. This ini-
tial meeting developed into a series of quadrennial conferences, repeated in
1995 and 1999 in Cologne, at the Pompeu Fabra University in Barcelona
(2003), the Erasmus University in Rotterdam (2007), Agrocampus Rennes
(2011) and the University of Naples Federico II (2015). The 1991 conference
led to the publication of the book Correspondence Analysis in the Social Sci-
ences, while the 1995 conference gave birth to another book, Visualization
of Categorical Data, both of which received excellent reviews. For the 1999
conference on Large Scale Data Analysis, participants had to present analyses
of data from the multinational International Social Survey Programme (ISSP
— see www.issp.org). This interdisciplinary meeting included presentations
not only on the latest methodological developments in survey data analysis
but also topics as diverse as religion, the environment and social inequality.
In 2003 we returned to the original theme for the Barcelona conference, which
was baptized with the Catalan girl’s name CARME, standing for Correspon-
dence Analysis and Related MEthods; hence the formation of the CARME
network (www.carme-n.org). This led once more to Jérg Blasius and myself
editing a third book, Multiple Correspondence Analysis and Related Methods,
which was published in 2006. As with the two previous volumes, our idea was
to produce a multi-authored book, inviting experts in the field to contribute.
Our editing task was to write the introductory and linking material, unifying
the notation and compiling a common reference list and index. As a result of
the Rennes conference in 2011, which celebrated 50 years of correspondence
analysis, the book Visualization and Verbalization of Data was published, half
of which is devoted to the history of multivariate analysis. These books mark
the pace of development of correspondence analysis, at least in the social sci-
ences, and are highly recommended to anyone interested in deepening their
knowledge of this versatile statistical method as well as methods related to it.

I have been very gratified to be invited to prepare a new edition of Correspon-
dence Analysis in Practice, having accumulated considerably more experience
in social and environmental research in the nine years since the publication of
the second edition. Apart from revising the existing chapters, five new chapters
have been added, on “Compositional Data Analysis” (an area highly related
to correspondence analysis), “Analysis of Matched Matrices” (joint analysis
of data tables with the same rows and columns), “Correspondence Analysis of
Networks” (applying correspondence analysis to graphs), “Co-Inertia and Co-
Correspondence Analysis” (analysis of relationships between two tables with
common rows), and “Permutation Tests” (performing statistical inference in
the context of correspondence analysis and related methods). All in all, I can
say that this third edition contains almost all my practical knowledge of the
subject, after more than 40 years working in this area.


http://www.issp.org
http://www.carme-n.org
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At a conference I attended in the 1980s, I was given this lapel button with its “Statisticians
nicely ambiguous maxim, which could well be the motto of correspondence count!”
analysts all over the world:

LI |
Slallsllcga(l)lagn[

h _

To illustrate the more technical meaning of this motto, and to give an initial Textual analysis of
example of correspondence analysis, I made a count of the most frequent words third edition
in each of the 30 chapters of this new edition. I had to aggregate variations of

the same word, e.g. “coordinate” and “coordinates”, “plot” and “plotting”,

a process called lemmatization in textual data analysis. The top 10 most

frequent words were, in descending order of frequency: “row/s”, “profile/s”,

“inertia” (which is the way correspondence analysis measures variance in a

table), “point/s”, “column/s”, “data”, “CA” (abbreviation for correspondence

analysis), “variable/s”, “value/s” and “average”. I omitted words that occur

in one chapter only, such as “fuzzy” and “degree”, which are specific to a

single chapter, and removed words that described particular applications. This

left an eventual total of 167 words, which can be regarded as reflecting the
methodological content of the book.

Exhibit 0.1:
analyse/sis association/s asymmetric average axis/es ... First few rows and
columns of the table
Chap 1 10 0 0 0 5 .. of counts of the 167
Chap 2 0 0 0 29 22 .. most frequent words
Chap 3 0 0 0 95 0 .. in the 30 chapters of
Chap 4 0 6 0 22 0o .. Correspondence
Chap 5 0 0 0 29 13 ... Analysis in Practice,
Chap 6 0 0 0 8 0o .. Third Edition,
Chap 7 0 0 0 29 0 .. Visua]i.zed in Exhibit
Chap 8 A7 0 0 14 20 .. 0-2using
Chap 9 0 0 14 6 32 .. correspondence
0 0 17 0 14 analysis.

Chap 10

Total 369 12 39 370 277
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Exhibit 0.2:
Correspondence
analysis display of
30 chapters of the
present book in
terms of the most
frequent words in
each chapter.
Numbers in boldface
indicate the
positions of the
chapters, and their
proximity signifies
relative similarity of
word distribution.
Directions of the
words give the
interpretation for
the positioning of
the chapters.
Technically, this is a
so-called “contribu-
tion biplot” (see
Chapter 13).
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per{ggttation
profile/s
o
=}
dlstnbutlon
p-value 30
s:gmflcant/ce
dlstance/s statistic bootstrap sample/ing
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(8] Broje lon 4 ., Pairs
c vertex7¥c es caiegoncal
g 9|2 110 A on/ive
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Q] MCA
diagonal
@
< matrix/ices
I I [ I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

CA dimension 1

The final table of word counts was composed of the 30 chapters as rows,
and the 167 words as columns (see Exhibit 0.1). This table is very sparse,
i.e. it has many zeros. In fact, 80% of the cells of the table have no counts.
Correspondence analysis copes quite well with such data, which has made it a
popular method in research areas such as linguistics, archaeology and ecology,
where data sets of frequency counts occur that are very sparse.

Exhibit 0.2 shows the “map” of the table, resulting from applying correspon-
dence analysis. The first thing to notice is that the rows (chapters, indicated
by their numbers) and the columns (words, connected to the centre by lines)
are displayed with respect to two “dimensions”. These dimensions are de-
termined by the analysis with the objective of exposing the most important
features of the associations between chapters and words. An alternative way
of thinking about this is that the chapters are mapped according to the simi-
larity in their distributions of words, with closer chapters being more similar
and distant chapters more different. Then the directions of the words explain
the differences between the chapters. Not all the words are shown, because
about two-thirds of the words turn out to be not so important for the interpre-
tation of the result, so only those words are shown that contribute highly to
the positioning of the chapters. Without further explanation of the concepts
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underlying correspondence analysis (after all, this is the aim of the book that
follows!) the map clearly shows three sets of words emanating from the centre.
The words out to the top right clearly distinguish Chapters 29 and 30 from all
the others — these are the chapters that concentrate on the sampling, distri-
butional and inferential properties of correspondence analysis, with main key-
words “permutation” and “test”. Chapter 15 on clustering also tends in that
direction because it contains some hypothesis testing. Out in the upper left
direction are all the words describing basic concepts and terminology of corre-
spondence analysis associated with Chapters 1-14 that introduce the method
and develop it, exemplified by the most prominent keyword “profile/s”. To-
wards the bottom of the map are the words associated with a generalization of
correspondence analysis, called multiple correspondence analysis, usually ap-
plied to questionnaire data, described in later chapters. This method involves
various coding schemes in different types of matrices, hence the important
keyword “matrix/ices” down below.

Like the second edition, the book maintains its didactic format, with exactly
eight pages per chapter to provide a constant amount of material in each
chapter for self-learning or teaching (a feature that has been commented on
favourably in book reviews of the second edition). One of my colleagues re-
marked that it was like writing 14-line sonnets with strict rules for metre
and rhyming, which was certainly true in this case: the format definitely con-
tributed to the creative process. The margins are reserved for section headings
as well as captions of the tables and figures — these captions tend to be more
informative than conventional one-liner ones. Each chapter has a short intro-
duction and its own “Contents” list on the first page, and the chapter always
ends with a summary in the form of a bulleted list.

As in the first and second editions, the book’s main thrust is towards the
practice of correspondence analysis, so most technical issues and mathemati-
cal aspects are gathered in a theoretical appendix at the end of the book. It is
followed by a computational appendix, which describes some features of the R
language relevant to the methods in the book, including the ca package for cor-
respondence analysis. R scripts are placed on the website www.carme-n.org,
along with several of the data sets. No references at all are given in the 30
chapters — instead, a brief bibliographical appendix is given to point readers
towards further readings and more complete literature sources. A glossary of
the most important terms in the book is also provided and the book concludes
with some personal thoughts in the form of an epilogue.

The first edition of this book was written in South Africa, and the second and
present third editions in Catalonia, Spain. Many people and institutions have
contributed in one way or another to this project. I would like to thank the
BBVA Foundation in Madrid and its director Prof. Rafael Pardo, for sup-
port and encouragement in my work on correspondence analysis. The BBVA
Foundation has published a Spanish translation of the second edition of Cor-
respondence Analysis in Practice, called La Practica del Anélisis de Corre-

XV
Format of third
edition
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Acknowledgements

spondéncias, available for free download at www.multivariatestatistics.org.
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I would like to thank all my friends and colleagues in many countries for
moral and intellectual support, especially my wife Zerrin Agsan Greenacre,
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Michael Greenacre
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Scatterplots and Maps

Correspondence analysis is a method of data analysis for representing tabu-
lar data graphically. Correspondence analysis is a generalization of a simple
graphical concept with which we are all familiar, namely the scatterplot. The
scatterplot is the representation of data as a set of points with respect to
two perpendicular coordinate axes: the horizontal axis often referred to as
the z-axis and the vertical one as the y-axis. As a gentle introduction to the
subject of correspondence analysis, it is convenient to reflect for a short time
on our perception of scatterplots and how we interpret them in relation to the
data they represent graphically. Particular emphasis will be placed on how we
interpret distances between points in a scatterplot and when scatterplots can
be seen as a spatial map of the data.

Contents

Data set 1: My travels . . . . . . .. . ... e 1
Continuous variables . . . . . . . .. ... o 2
Expressing data in relative amounts . . . . . . . . . . .. ... .. ... 2
Categorical variables . . . . . . . . . . ... ... o 2
Ordering of categories . . . . . . . . . . . . 3
Distances between categories . . . . . . . .. .. ... ... 3
Distance interpretation of scatterplots . . . . . . . . ... .. ... ... 3
Scatterplots as maps . . . . . . . ... oo e e e 3
Calibration of a direction in the map . . . . . . . . . . . ... ... ... 4
Information-transforming nature of the display . . . . . .. .. ... .. 4
Nominal and ordinal variables . . . . . . . . . .. ... ... ....... 5
Plotting more than one set of data . . . . . . ... ... ... ...... 5
Interpreting absolute or relative frequencies . . . . . . . ... ... ... 6
Describing and interpreting data, vs. modelling and statistical inference 7
Large data sets . . . . . . . . . .. e 7
SUMMARY: Scatterplots and Maps . . . . . . . ... ... ....... 8

During the original writing of this book, I was reflecting on the journeys I
had made during the year to Norway, Canada, Greece, France and Germany.
According to my diary I spent periods of 18 days in Norway, 15 days in
Canada and 29 days in Greece. Apart from these longer trips I also made
several short trips to France and Germany, totalling 24 days. This numerical
description of my time spent in foreign countries can be visualized in the
graphs of Exhibit 1.1. This seemingly trivial example conceals several issues
that are relevant to our perception of graphs of this type that represent data
with respect to two coordinate axes, and which will eventually help us to

Data set 1: My
travels



Exhibit 1.1:
Graphs of number of
days spent in foreign

countries in one
year, in scatterplot
and bar-chart
formats respectively.
A percentage scale,
expressing days
relative to the total
of 86 days, is given
on the right-hand
side of each graph.

Continuous
variables

Expressing
data in relative
amounts

Categorical
variables

Scatterplots and Maps

40% 40%

30 ¢ 30 —
30% 30%

¢
2 2
g ¢ 20% g ! 20%
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0 10% E 10%
Norway  Canada  Greece France/Germany Norway  Canada  Greece France/Germany

understand correspondence analysis. Let me highlight these issues one at a
time.

The left-hand vertical axis labelled Days represents the scale of a numeric piece
of information often referred to as a continuous, or numerical, variable. The
scale on this axis is the number of days spent in some foreign country, and the
ordering from zero days at the bottom end of the scale to 30 days at the top end
is clearly defined. In the bar-chart form of this display, given in the right-hand
graph of Exhibit 1.1, bars are drawn with lengths proportional to the values
of the variable. Of course, the number of days is a rounded approximation of
the time actually spent in each country, but we call this variable continuous
because the underlying time variable is indeed truly continuous.

The right-hand vertical axis of each plot in Exhibit 1.1 can be used to read the
corresponding percentage of days relative to the total of 86 days. For example,
the 18 days in Norway account for 21% of the total time. The total of 86 is
often called the base relative to which the data are expressed. In this case
there is only one set of data and therefore just one base, so in these plots the
original absolute scale on the left and the relative scale on the right can be
depicted on the same graph.

In contrast to the vertical y-axis, the horizontal x-axis is clearly not a numer-
ical variable. The four points along this axis are just positions where we have
placed labels denoting the countries visited. The horizontal scale represents a
discrete, or categorical, variable. There are two features of this horizontal axis
that have no substantive meaning in the graph: the ordering of the categories
and the distances between them.



Ordering of categories

Firstly, there is no strong reason why Norway has been placed first, Canada
second and Greece third, except perhaps that I visited these countries in that
order. Because the France/Germany label refers to a collection of shorter trips
scattered throughout the year, it was placed after the others. By the way, in
this type of representation where order is essentially irrelevant, it is usually
a good idea to re-order the categories in a way that has some substantive
meaning, for example in terms of the values of the variable. In this example
we could order the countries in descending order of days, in which case we
would position the countries in the order Greece, France/Germany, Norway
and Canada, from most visited to least. This simple re-arrangement assists
in the interpretation of data, especially if the data set is much larger: for
example, if I had visited 20 different countries, then the order would contain
relevant information that is not quickly deduced from the data in their original
ordering.

Secondly, there is no reason why the four points are at equal intervals apart
on the axis. There is also no immediate reason to put them at different in-
tervals apart, so it is purely for convenience and aesthetics that they have
been equally spaced. Using correspondence analysis we will show that there
are substantively interesting ways to define intervals between the categories
of a variable such as this one, when it is related to other variables. In fact,
correspondence analysis will be shown to yield values for the categories where
both the distances between the categories and their ordering have substantive
meaning.

Since the ordering of the countries is arbitrary on the horizontal axis of Ex-
hibit 1.1, as well as the distances between them, there would be no sense
in measuring and interpreting distances between the displayed points in the
left-hand graph. The only distance measurement that has meaning is in the
strictly vertical direction, because of the numerical nature of the vertical axis
that indicates frequency (left-hand scale) or relative frequency (right-hand
scale).

In some special cases, the two variables that define the axes of the scatterplot
are of the same numerical nature and have comparable scales. For example,
suppose that 20 students have written a mathematics examination consisting
of two parts, algebra and geometry, each part counting 50% towards the final
grade. The 20 students can be plotted according to their pair of grades, shown
in Exhibit 1.2. It is important that the two axes representing the respective
grades have scales with unit intervals of identical lengths. Because of the simi-
lar nature of the two variables and their scales, it is possible to judge distances
in any direction of the display, not only horizontally or vertically. Two points
that are close to each other will have similar results in the examination, just
like two neighbouring towns having a small geographical distance between

Ordering of
categories

Distances between
categories

Distance
interpretation of
scatterplots

Scatterplots as
maps



Exhibit 1.2:
Scatterplot of grades
of 20 students in two

sections (algebra
and geometry) of a
mathematics
examination. The
points have spatial
properties: for
example, the total
grade is obtained by
projecting each
point perpendi-
cularly onto the 45°
line, which can be
calibrated from 0
(bottom left corner)
to 100 (top right
corner).

Calibration of a
direction in the
map

Information-
transforming
nature of the

display

Scatterplots and Maps
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them. Thus, one can comment here on the shape of the scatter of points and
the fact that there is a small cluster of four students with high grades and a
single student with very high grades. Exhibit 1.2 can be regarded as a map,
because the position of each student can be regarded as a two-dimensional
position, similar to a geographical location in a region defined by latitude and
longitude co-ordinates.

Maps have interesting geometric properties. For example, in Exhibit 1.2 the
45° dashed line actually defines an axis for the final grades of the students,
combining the algebra and geometry grades. If this line is calibrated from 0
(bottom left) to 100 (top right), then each student’s final grade can be read
from the map by projecting each point perpendicularly onto this line. An
example is shown of a student who received 12 out of 50 and 18 out of 50
for the two sections, respectively, and whose position projects onto the line at
coordinates 15 and 15, corresponding to a total grade of 30.

The scatterplots in Exhibit 1.1 and Exhibit 1.2 are different ways of expressing
in graphical form the numerical information in the two sets of travel and
examination data respectively. In each case there is no loss of information
between the data and the graph. Given the graph it is easy to recover the data



Nominal and ordinal variables

exactly. We say that the scatterplot or map is an “information-transforming
instrument” — it does not process the data at all; it simply expresses the data
in a visual format that communicates the same information in an alternative
way.

In my travel example, the categorical variable “country” has four categories,
and, since there is no inherent ordering of the categories, we refer to this vari-
able more specifically as a nominal variable. If the categories are ordered, the
categorical variable is called an ordinal variable. For example, a day could be
classified into three categories according to how much time is spent working:
(i) less than one hour (which I would call a “holiday”), (ii) more than one but
less than six hours (a “half day”, say) and (iii) more than six hours (a “full
day”). These categories, which are based on the continuous variable “time
spent daily working” divided up into intervals, are ordered and this ordering
is usually taken into account in any graphical display of the categories. In
many social surveys, questions are answered on an ordinal scale of response,
for example, an ordinal scale of importance: “not important”/“somewhat
important” / “very important”. Another typical example is a scale of agree-
ment /disagreement: “strongly agree”/“somewhat agree” /“neither agree nor
disagree” / “somewhat disagree” / “strongly disagree”. Here the ordinal position
of the category “neither agree nor disagree” might not lie between “somewhat
agree” and “somewhat disagree”; for example, it might be a category used
by some respondents instead of a “don’t know” response when they do not
understand the question or when they are confused by it. We shall treat this
topic later in this book (Chapter 21) once we have developed the tools that
allow us to study patterns of responses in multivariate questionnaire data.

COUNTRY Holidays  Half days  Full days TOTAL
Norway 6 1 11 18
Canada 1 3 11 15
Greece 4 25 0 29
France/Germany 2 2 20 24
TOTAL 18 31 42 86

Let us suppose now that the 86 days of my foreign trips were classified into one
of the three categories holidays, half days and full days. The cross-tabulation
of country by type of day is given in Exhibit 1.3. This table can be considered
in two different ways: as a set of rows or a set of columns. For example, each
column is a set of frequencies characterizing the respective type of day, while
each row characterizes the respective country. Exhibit 1.4(a) shows the latter
way, namely a plot of the frequencies for each country (row), where the hori-
zontal axis now represents the type of day (column). Notice that, because the
categories of the variable “type of day” are ordered, it makes sense to connect

Nominal and
ordinal variables

Exhibit 1.3:
Frequencies of
different types of
day in four sets of
trips.

Plotting more than
one set of data



Exhibit 1.4:
Plots of (a)
frequencies in
Exhibit 1.3 and (b)
relative frequencies
in each row
expressed as
percentages.

Exhibit 1.5:
Percentages of types
of day in each
country, as well as
the percentages
overall for all
countries combined;
rows add up to
100%.

Interpreting
absolute or relative
frequencies

Scatterplots and Maps

the categories by lines. Clearly, if we want to make a substantive comparison
between the countries, then we should take into account the fact that different
numbers of days in total were spent in each country. Each country total forms
a different base for the re-expression of the corresponding row in Exhibit 1.3
as a set of percentages (Exhibit 1.5). These percentages are visualized in Ex-
hibit 1.4(b) in a plot that expresses better the different compositions of days
in the respective trips.
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COUNTRY Holidays Half days Full days
Norway 33% 6% 61%
Canada 7% 20% 73%
Greece 14% 86% 0%
France/Germany 8% 8% 83%
Owverall 15% 36% 49%

There is a lesson to be learnt from these displays that is fundamental to the
analysis of frequency data. Each trip has involved a different number of days
and so corresponds to a different base as far as the frequencies of the types of
days are concerned. The 6 holidays in Norway, compared to the 4 in Greece,
can be judged only in relation to the total number of days spent in these
respective countries. As percentages they turn out to be quite different: 6 out
of 18 is 33%, while 4 out of 29 is 14%. It is the visualization of the relative
frequencies in Exhibit 1.4(b) that gives a more accurate comparison of how I
spent my time in the different countries. The “marginal” frequencies (18, 15,
29, 24 for the countries, and 13, 31, 42 for the day types) are also interpreted
relative to their respective totals — for example, the last row of Exhibit 1.5
shows the percentages of day types for all countries combined, and could have
been plotted similarly in Exhibit 1.4(b).



Describing and interpreting data, vs. modelling and statistical inference

Any conclusion drawn from the points’ positions in Exhibit 1.4(b) is purely
an interpretation of the data and not a statement of the statistical signifi-
cance of the observed feature. In this book we shall address the statistical
aspects of graphical displays only towards the end of the book (Chapters 29
and 30); for the most part we shall be concerned only with the question of
data visualization and interpretation. The deduction that I had proportion-
ally more holidays in Norway than in the other countries is certainly true in
the data and can be seen strikingly in Exhibit 1.4(b). It is an entirely dif-
ferent question whether this phenomenon is statistically compatible with a
model or hypothesis of my behaviour that postulates that the proportion of
holidays was generally intended to be the same for all countries, in which case
any observed differences are purely random. Most of statistical methodology
concentrates on problems where data are fitted and compared to a theoretical
model or preconceived hypothesis, with little attention being paid to enlight-
ening ways for describing data, interpreting data and generating hypotheses.
A typical example in the social sciences is the use of the ubiquitous chi-square
statistic to test for association in a cross-tabulation. Often statistically sig-
nificant association is found but there are no simple tools for detecting which
parts of the table are responsible for this association. Correspondence analysis
is one tool that can fill this gap, allowing the data analyst to see the pattern of
association in the data and to generate hypotheses that can be tested in a sub-
sequent stage of research. In most situations data description, interpretation
and modelling can work hand-in-hand with one other. But there are situa-
tions where data description and interpretation assume supreme importance,
for example when the data represent the whole population of interest.

As data tables increase in size, it becomes more difficult to make simple graph-
ical displays such as Exhibit 1.4, owing to the overabundance of points. For
example, suppose I had visited 20 countries during the year and had a break-
down of time spent in each one of them, leading to a table with many more
rows. I could also have recorded other data about each day in order to study
possible relationships with the type of day I had; for example, the weather on
each day — “fair weather”, “partly cloudy” or “rainy”. So the table of data
might have many more columns as well as rows. In this case, to draw graphs
such as Exhibit 1.4, involving many more categories and with 20 sets of points
traversing the plot, would result in such a confusion of points and symbols
that it would be difficult to see any patterns at all. It would then become clear
that the descriptive instrument being used, the scatterplot, is inadequate in
bringing out the essential features of the data. This is a convenient point to in-
troduce the basic concepts of correspondence analysis, which is also a method
for visualizing tabular data, but which can easily accommodate larger data
sets in a natural and intuitive way.

Describing and
interpreting data,
vs. modelling and
statistical inference

Large data sets



SUMMARY:
Scatterplots and
Maps

1.

2.

Scatterplots and Maps

Scatterplots involve plotting two variables, with respect to a horizontal axis
and a vertical axis, often called the “z-axis” and “y-axis” respectively.

Usually the x variable is a completely different entity to the y variable. We
can often interpret distances along at least one of the axes in the specific
sense of measuring the distance according to the scale that is calibrated on
the axis. It is usually meaningless to measure or interpret oblique distances
in the plot.

In a few cases the z and y variables are similar entities with comparable
scales, in which case interpoint distances can be interpreted as a measure
of difference, or dissimilarity, between the plotted points. In this special
case we call the scatterplot a map. For such maps it is important that the
horizontal and vertical scales have physically equal units, i.e. the aspect
ratio of the axes is equal to 1.

. When plotting positive quantities (usually frequencies in our context), both

the absolute and relative values of these quantities are of interest.

The more complex the data are, the less convenient it is to represent these
data in a scatterplot.

This book is concerned with visually describing and interpreting complex
information, rather than modelling it.



Profiles and the Profile Space

The concept of a set of relative frequencies, or a profile, is fundamental to
correspondence analysis (referred to from now on by its abbreviation CA).
Such sets, or wectors, of relative frequencies have special geometric features
because the elements of each set add up to 1 (or 100%). In analysing a fre-
quency table, relative frequencies can be computed for rows or for columns —
these are called row or column profiles respectively. In this chapter we shall
show how profiles can be depicted as points in a profile space, illustrating the
concept in the special case when each profile consists of only three elements.
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Let us look again at the data in Exhibit 1.3, a table of frequencies with four
rows (the countries) and three columns (the type of day). The first and most
basic concept in CA is that of a profile, which is a set of frequencies divided
by their total. Exhibit 2.1 shows the row profiles for these data: for example,
the profile of Norway is [0.33 0.06 0.61], where 0.33 =6/18, 0.06 = 1/18, 0.61
= 11/18. We say that this is the “profile of Norway across the types of day”.
The profile may also be expressed in percentage form, i.e. [33% 6% 61%] in
this case, as in Exhibit 1.5. In a similar way, the profile of Canada across the
day types is [0.07 0.20 0.73], concentrated mostly in the full day category, as
is Norway. In contrast, Greece has a profile of [0.14 0.86 0.00], concentrated
mostly in the half day category, and so on. The percentages are plotted in
Exhibit 1.4(b) on page 6.

Profiles



10

Exhibit 2.1:

Row (country)
profiles: relative
frequencies of types
of day in each set of
trips, and average
profile showing
relative frequencies
in all trips.

Average profile

Row profiles
and column
profiles

Exhibit 2.2:
Profiles of types of
day across the
countries, and
average column
profile.

Profiles and the Profile Space

COUNTRY Holidays Half days Full days
Norway 0.33 0.06 0.61
Canada 0.07 0.20 0.73
Greece 0.14 0.86 0.00
France/Germany 0.08 0.08 0.83
Average 0.15 0.36 0.49

In addition to the four country profiles, there is an additional row in Exhibit
2.1 labelled Average. This is the profile of the final row [13 31 42] of Exhibit
1.3, which contains the column sums of the table; in other words this is the
profile of all the trips aggregated together. In Chapter 3 we shall explain more
specifically why this is called the average profile. For the moment, it is only
necessary to realize that, out of the total of 86 days travelled, irrespective
of country visited, 15% were holidays, 36% were half days and 49% were full
days of work. When comparing profiles we can compare one country’s profile
with another, or we can compare a country’s profile with the average profile.
For example, eyeballing the figures in Exhibit 2.1, we can see that of all the
countries, the profiles of Canada and France/Germany are the most similar.
Compared to the average profile, these two profiles have a higher percentage
of full days and are below average on holidays and half days.

In the above we looked at the row profiles in order to compare the different
countries. We could also consider Exhibit 1.3 as a set of columns and compare
how the different types of days are distributed across the countries. Exhibit 2.2
shows the column profiles as well as the average column profile. For example,
of the 13 holidays 46% were in Norway, 8% in Canada, 31% in Greece and 15%
in France/Germany, and so on for the other columns. Since I spent different
numbers of days in each country, these figures should be checked against those
of the average column profile to see whether they are lower or higher than
the average pattern. For example, 46% of all holidays were spent in Norway,
whereas the number of days spent in Norway was just 21% of the total of 86 —
in this sense there is a high number of holidays there compared to the average.

COUNTRY Holidays Half days  Full days Average
Norway 0.46 0.03 0.26 0.21
Canada 0.08 0.10 0.26 0.17
Greece 0.31 0.81 0.00 0.34

France/Germany 0.15 0.07 0.48 0.28




Symmetric treatment of rows and columns

Looking again at the proportion 0.46 (= 6/13) of holidays spent in Norway
(Exhibit 2.2) and comparing it to the proportion 0.21 (= 18/86) of all days
spent in that country, we can calculate the ratio 0.46/0.21 = 2.2, and conclude
that holidays in Norway were just over twice the average. Exactly the same
conclusion is reached if a similar calculation is made on the row profiles. In
Exhibit 2.1 the proportion of holidays in Norway was 0.33 (= 6/18) whereas
for all countries the proportion was 0.15 (= 13/86). Thus, there are 0.33/0.15
= 2.2 times as many holidays compared to the average, the same ratio as was
obtained when arguing from the point of view of the column profiles (this
ratio is called the contingency ratio and will re-appear in future chapters).
Whether we argue via the row profiles or column profiles we arrive at the
same conclusion. In Chapter 8 it will be shown that CA treats the rows and
columns of a table in an equivalent fashion or, as we say, in a symmetric way.

Nevertheless, it is true in practice that a table of data is often thought of and
interpreted in a non-symmetric, or asymmetric, fashion, either as a set of rows
or as a set of columns. For example, since each row of Exhibit 1.3 constitutes a
different country (or pair of countries in the case of France/Germany), it might
be more natural to think of the table row-wise, as in Exhibit 2.1. Deciding
which way is more appropriate depends on the nature of the data and the
researcher’s objective, and the decision is often not a conscious one. One
concrete manifestation of the actual choice is whether the researcher refers to
row or column percentages when interpreting the data. Whatever the decision,
the results of CA will be invariant to this choice, but the interpretation will
adapt to the researcher’s viewpoint.

Let us consider the four row profiles and average profile in Exhibit 2.1 and
a completely different way to plot them. Rather than the display of Exhibit
1.4(b), where the horizontal axis serves only as labels for the type of day
and the vertical axis represents the percentages, we now propose using three
axes corresponding to the three types of day, which is a scatterplot in three
dimensions. To imagine three perpendicular axes is not difficult: merely look
down into an empty corner of the room you are sitting in and you will see
three axes as shown in Exhibit 2.3. Each of the three edges of the room
serves as an axis for plotting the three elements of the profile. These three
values are now considered to be coordinates of a single point that represents
the whole profile — this is quite different from the graph in Exhibit 1.4(b)
where there is a point for each of the three profile elements. The three axes
are labelled holidays, half days and full days, and are calibrated in fractional
profile units from 0 to 1. To plot the four profiles is now a simple exercise.
Norway’s profile of [0.33 0.06 0.61] (see Exhibit 2.1) is 0.33 of a unit along
axis holidays, 0.06 along axis half days and 0.61 along axis full days. To take
another example, Greece’s profile of [0.14 0.86 0.00] has a zero coordinate
in the full days direction, so its position is on the “wall”, as it were, on the
left-hand side of the display, with coordinates 0.14 and 0.86 on the two axes
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Exhibit 2.3:
Positions of the four
row profiles (s) of
Exhibit 2.1 as well
as their average
profile (x)in
three-dimensional
space, depicted as
the corner of a room
with “floor tiles”.
For example,
Norway is 0.06 along
the half days axis,
0.61 along the full
days axis and 0.33 in
a vertical direction
along the holidays
axis. The unit
(vertex) points are
also shown as empty
circles on each axis.

Vertex points
define the
extremes of the
profile space

Triangular (or
ternary)
coordinate system

Profiles and the Profile Space
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holidays and half days that define the “wall”. All other row profile points in this
example, including the average row profile [0.15 0.36 0.49], can be plotted
in this three-dimensional space.

With a bit of imagination it might not be surprising to discover that the
profile points in Exhibit 2.3 all lie exactly in the plane defined by the triangle
that joins the extreme unit points [1 0 0],[0 1 0] and [0 O 1] on the three
respective axes, as shown in Exhibit 2.4. This triangle is equilateral and its
three corners are called vertex points or wvertices. The vertices coincide with
extreme profiles that are totally concentrated into one of the day types. For
example, the vertex point [I 0 0] corresponds to a trip to a country consisting
only of holidays (fictional in my case, unfortunately). Likewise, the vertex point
[0 0 1] corresponds to a trip consisting only of full days of work.

Having realized that all profile points in three-dimensional space actually lie
exactly on a flat (two-dimensional) triangle, it is possible to lay this triangle
flat, as in Exhibit 2.5. Looking at the profile points in a flat space is clearly
better than trying to imagine their three-dimensional positions in the corner of
a room! This particular type of display is often referred to as the triangular (or
ternary) coordinate system and may be used in any situation where we have
sets of data consisting of three elements that add up to 1, as in the case of the
row profiles in this example. Such data are common in geology and chemistry,
for example where samples are decomposed into three constituents, by weight
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Exhibit 2.4:

The profile points in
Exhibit 2.3 lie
exactly on an
equilateral triangle
joining the vertex
points of the profile
space. Thus the
three-dimensional
profiles are actually
two-dimensional.
The profile of
Greece lies on the
edge of the triangle
because it has zero
full days.

Exhibit 2.5:
The triangle in
Exhibit 2.4 that
contains the row
(country) profiles.
The three corners,
or vertices, of the
triangle represent
the columns (day
types).
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Exhibit 2.6:
Norway’s profile
[0.33 0.06 0.61] is
positioned using
triangular
coordinates as
shown, using the
sides of the triangle
as axes. Fach side is
calibrated in profile
units from 0 to 1.
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triangular

coordinate system
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or by volume. A particular sample is characterized by the three proportions
of the constituents and can thus be displayed as a single point with respect
to triangular (or ternary) coordinates.

Given a blank equal-sided triangle and the profile values, how can we find the
position of a profile point in the triangle, without passing via the underlying
three-dimensional space of Exhibits 2.3 and 2.47 In the triangular coordinate
system the sides of the triangle define three axes. Each side is considered
to have a length of 1 and can be calibrated accordingly on a linear scale
from 0 to 1. In order to position a profile in the triangle, its three values
on these axes determine three lines drawn from these values parallel to the
respective sides of the triangle. For example, to position Norway, as illustrated
in Exhibit 2.5, we take a value of 0.33 on the holidays axis (see Exhibit 2.6),
0.06 on the half days axis and 0.61 on the full days axis. Lines from these
coordinate values drawn parallel to the sides of the triangle all meet at the
point representing Norway. In fact, any two of the three profile coordinates
are sufficient to situate a profile in this way, and the remaining coordinate is
always superfluous, which is another way of demonstrating that the profiles
are inherently two-dimensional.

The triangular coordinate system may be used only for profiles with three
elements. But the idea can easily be generalized to profiles with any number
of elements, in which case the coordinate system is known as the barycen-
tric coordinate system (“barycentre” is synonymous with “weighted average”,
to be explained in the next chapter, page 19). The dimensionality of this



Data on a ratio scale

coordinate system is always one less than the number of elements in the
profile. For example, we have just seen that three-element profiles are con-
tained exactly in a two-dimensional triangular profile space. For profiles with
four elements the dimensionality is three and the profiles lie in a four-pointed
tetrahedron in three-dimensional space. The two-dimensional triangle and the
three-dimensional tetrahedron are examples of what is known in mathematics
as a reqular simplex. R code for visualizing an example in three dimensions is
given in the Computing Appendix, pages 257-258, so you can get a feeling for
three-dimensional profile space. For higher-dimensional profiles some strong
imagination would be needed to be able to “see” the profile points spaces of
dimension greater than three, but fortunately CA will be of great help to us
in visualizing such multidimensional profiles.

We have illustrated the concept of a profile using frequency data, which is
the prime example of data suitable for CA. But CA is applicable to a much
wider class of data types; in fact it can be used whenever it makes sense to
express the data in relative amounts, i.e. data on a so-called ratio scale. For
example, suppose we have data on monetary amounts invested by countries
in different areas of research — the relative amounts would be of interest, e.g.
the percentage invested in environmental research, biomedecine, etc. Another
example is of morphometric measurements on a living organism, for example
measurements in centimeters on a fish, its length and width, length of fins, etc.
Again all these measurements can be expressed relative to the total, where
the total is a surrogate measure for the size of the fish, so that we would be
analysing and comparing the shapes of different fish in the form of profiles
rather than the original values.

A necessary condition of the data for CA is that all observations are on the
same scale: for example, counts of particular individuals in a frequency table,
a common monetary unit in the table of research investments, centimeters
in the morphometric study. It would make no sense in CA to analyse data
with mixed scales of measurement, unless a pre-transformation is conducted
to homogenize the scales of the whole table. Most of the data sets in this book
are frequency data, but in Chapter 26 we shall look at a wide variety of other
types of data and ways of recoding them to be suitable for CA.
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SUMMARY:
Profiles and the
Profile Space

1.

Profiles and the Profile Space

The profile of a set of frequencies (or any other amounts that are positive
or zero) is the set of frequencies divided by their total, i.e. the set of relative
frequencies.

In the case of a cross-tabulation, the rows or columns define sets of fre-
quencies which can be expressed relative to their respective totals to give
row profiles or column profiles.

The marginal frequencies of the cross-tabulation can also be expressed
relative to their common total (i.e. the grand total of the table) to give the
average row profile and average column profile.

Comparing row profiles to their average leads to the same conclusions as
comparing column profiles to their average.

Profiles consisting of m elements can be plotted as points in an m -dimen-
sional space. Because their m elements add up to 1, these profile points
occupy a restricted region of this space, an (m—1)-dimensional subspace
known as a simplex. This simplex is enclosed within the edges joining all
pairs of the m unit vectors on the m perpendicular axes. These unit points
are also called the vertices of the simplex or profile space. The coordinate
system within this simplex is known as the barycentric coordinate system.

A special case that is easy to visualize is when the profiles have three
elements, so that the simplex is simply a triangle that joins the three
vertices. This special case of the barycentric coordinate system is known
as the triangular (or ternary) coordinate system.

The idea of a profile can be extended to data on a ratio scale where it is
of interest to study relative values. In this case the set of numbers being
profiled should all have the same scale of measurement.



Masses and Centroids

There is an equivalent way of thinking about the positions of the profile points
in the profile space, and this will be useful to our eventual understanding and
interpretation of correspondence analysis (CA). This is based on the notion
of a weighted average, or centroid, of a set of points. In the calculation of
an ordinary (unweighted) average, each point receives equal weight, whereas
a weighted average allows different weights to be associated with each point.
When the points are weighted differently, then the centroid does not lie exactly
at the “geographical” centre of the cloud of points, but tends to lie in a position
closer to the points with higher weight.
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We now use a typical set of data in social science research, a cross-tabulation
(or “cross-classification”) of two variables from a survey. The table, given in
Exhibit 3.1, concerns 312 readers of a certain newspaper, in particular their
level of thoroughness in reading the newspaper. Based on data collected in the
survey, each respondent was classified into one of three groups: glance readers,
fairly thorough readers and very thorough readers. These reading classes have
been cross-tabulated against education, an ordinal variable with five categories
ranging from some primary education to some tertiary education. Exhibit 3.1
shows the raw frequencies and the education group profiles in parentheses,
i.e. the row profiles. The triangular coordinate plot of the row profiles, in the
style described in Chapter 2, is given in Exhibit 3.2. In this display the corner
points, or vertices, of the triangle represent the three readership groups —
remember that each vertex is at the position of a “pure” row profile totally
concentrated into that category; for example, the very thorough vertex C3
is representing a fictitious row profile of [0 0 1] that contains 100% very
thorough readers.

Data set 2:
Readership and
education groups
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Exhibit 3.1:
Cross-tabulation of
education group by

readership class,
showing row profiles
and average row
profile in
parentheses, and the
row masses (relative
values of row totals).

Exhibit 3.2:
Row profiles
(education groups)
of Exhibit 3.1
depicted in
triangular
coordinates, also
showing the position
of the average row
profile (last row of
Exhibit 3.1).

Points as
weighted averages

Masses and Centroids

Fairly Very
EDUCATION Glance  thorough thorough Row
GROUP CI1 c2 c3 Total masses
Some primary 5 7 2 14 0.045
El (0.357) (0.500) (0.143)
Primary completed 18 46 20 84 0.269
E2 (0.214) (0.548) (0.238)
Some secondary 19 29 39 87 0.279
E3 (0.218) (0.333) (0.448)
Secondary completed 12 40 49 101 0.324
E4 (0.119) (0.396) (0.485)
Some tertiary 3 7 16 26 0.083
E5 (0.115) (0.269) (0.615)
Total 57 129 126 812
Average row profile  (0.183)  (0.413)  (0.404)
c3
o E5
o E4
o E3
xaverage
oE2
o E1
c2

C1

Another way to think of the positions of the education groups in the trian-
gle is as weighted averages. Assigning weights to the values of a variable is
a well-known concept in statistics. For example, in a class of 26 students,
suppose that the average grade turns out to be 7.5, calculated by summing
the 26 grades and dividing by 26. In fact, 3 students obtain the grade of 9, 7
students obtain an 8, and 16 students obtain a 7, so that the average grade
can be determined equivalently by assigning weights of 3/26 to the grade of
9, 7/26 to the grade of 8 and 16/26 to the grade of 7 and then calculating the
weighted average. Here the weights are the relative frequencies of each grade,
and because the grade of 7 has more weight than the others, the weighted av-



Profile values are weights assigned to the vertices

erage of 7.5 is “closer” to this grade, whereas the ordinary arithmetic average
of the three values 7, 8 and 9 is clearly 8.

Looking at the last row of data in Exhibit 3.1, for education group E5 (some
tertiary education), we see the same frequencies of 3, 7 and 16 for the three re-
spective readership groups, and associated relative frequencies of 0.115, 0.269
and 0.615. The idea now is to imagine 3 cases situated at the glance vertex CI
of the triangle, 7 cases at the fairly thorough vertex C2 and 16 cases at the very
thorough vertex C3, and then consider what would be the average position for
these 26 cases. In other words, we do not associate the weights with values
of a variable but with positions in the profile space, in this case the positions
of the vertex points. There are more cases at the very thorough corner, so we
would expect the average position of E5 to be closer to this vertex, as is indeed
the case. For the same reason, row profile E1 lies far from the very thorough
corner C3 because it has a very low weight (2 out of 14, or 0.143) on this
category. Hence each row profile point is positioned within the triangle as an
average point, where the profile values, i.e. relative frequencies, serve as the
weights allocated to the vertices. Thus, we can think of the profile values not
only as coordinates in a multidimensional space, but also as weights assigned
to the vertices of a simplex. This idea can be extended to higher-dimensional
profiles: for example, a profile with four elements is also at an average position
with respect to the four corners of a three-dimensional tetrahedron, weighted
by the respective profile elements.

Alternative terms for weighted average are centroid or barycentre. Some par-
ticular examples of weighted averages in the profile space are given in Exhibit
3.3. For example, the profile point [1/3 1/3 1/3], which gives equal weight to
the three corners, is positioned exactly at the centre of the triangle, equidis-
tant from the corners, in other words at the ordinary average position of the
three vertices. The profile [1/2 1/2 0] is at a position midway between the
first and second vertices, since it has equal weight on these two vertices and
zero weight on the third vertex. In general, we can write a formula for the
position of a profile as the centroid of the three vertices as follows, for a profile
[a b c] wherea+b+c=1:

centroid position = (a x vertex 1) + (b x vertex 2) + (¢ x vertex 3)

For example, the position of education group E5 in Exhibit 3.2 is obtained as
follows:

E5 = (0.115 x glance) + (0.269 x fairly thorough) + (0.615 x very thorough)

Similarly, the position of the average profile is also a weighted average of the
vertex points:

average = (0.183 x glance) + (0.413 x fairly thorough) + (0.404 x very thorough)
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Profile values are
weights assigned to
the vertices

Each profile point
is a weighted
average, or
centroid, of the
vertices
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Exhibit 3.3:
Examples of some
centroids (weighted
averages) of the
vertices in triangular
coordinate space:
the three values are
the weights assigned
to vertices
(C1,C2,C3).

Average profile

is also a weighted
average of the
profiles themselves

Row and
column masses

Masses and Centroids

3. [0.0,1]

[0,1/5,4/5]

[1/5/1/5,3/5]

[1/3,1/3,1/3]
(/] L ]
[7/15,1/5/1/3]

[1,0,0] [1/2,1/2,0] c2

C1 [0,1,0]

The average is farther from the glance corner since there is less weight on
the glance vertex than on the other two, which have approximately the same
weights (see Exhibit 3.2).

The average profile is a rather special point — not only is it a centroid of
the three vertices as we have just shown, just like any profile point, but it is
also a centroid of the five row profiles themselves, where different weights are
assigned to the profiles. Looking again at Exhibit 3.1, we notice that the row
totals are different: education group E1 (some primary education) includes only
14 respondents whereas education group E4 (secondary education completed)
has 101 respondents. In the last column of Exhibit 3.1, headed “row masses”,
we have these marginal row frequencies expressed relative to the total sample
size 312. Just as we thought of row profiles as weighted averages of the vertices,
we can think of each of the five row profile points in Exhibit 3.2 being assigned
weights according to their marginal frequencies, as if there were 14 respondents
(proportion 0.045 of the sample) at the position E1, 84 respondents (0.269 of
the sample) at the position E2, and so on. With these weights assigned to
the five profile points, the weighted average position is exactly at the average
profile point:

Average row profile = (0.045 x E1) + (0.269 x E2) 4 (0.279 x E3)
+(0.324 x E4) + (0.083 x E5)

This average row profile is at a central position amongst the row profiles but
more attracted to the profiles observed with higher frequency.

The weights assigned to the profiles are so important in CA that they are given
a specific name: masses. The last column of Exhibit 3.1 shows the row masses:



Interpretation in the profile space

0.045, 0.269, 0.279, 0.324 and 0.083. The word “mass” is the preferred term in
CA although it is entirely equivalent for our purpose to the term “weight”. An
alternative term such as mass is convenient here to differentiate this geometric
concept of weighting from other forms of weighting that occur in practice, such
as weights assigned to population subgroups in a sample survey.

All that has been said about row profiles and row masses can be repeated in a
similar fashion for the columns. Exhibit 3.4 shows the same contingency table
as Exhibit 3.1 from the column point of view. That is, the three columns have

Fairly Very Average
EDUCATION Glance  thorough thorough column
GROUP C1 2 C3 Total  profile
Some primary 5 7 2 14 (0.045)
E1 (0.088)  (0.054)  (0.016)
Primary completed 18 46 20 84  (0.269)
E2 (0.316)  (0.357) (0.159)
Some secondary 19 29 39 87 (0.279)
E3 (0.333)  (0.225) (0.310)
Secondary completed 12 40 49 101 (0.324)
E4 (0.211)  (0.310)  (0.389)
Some tertiary 3 7 16 26 (0.083)
E5 (0.053)  (0.054) (0.127)
Total 57 129 126 312
Column masses 0.183 0.413 0.404

been expressed as relative frequencies with respect to their column totals,
giving three profiles with five values each. The column totals relative to the
grand total are now column masses assigned to the column profiles, and the
average column profile is the set of row totals divided by the grand total.
Again, we could write the average column profile as a weighted average of the
three column profiles CI, C2 and C3:

Average column profile = (0.183 x CI) + (0.413 x C2) + (0.404 x C3)

Notice how the row and column masses play two different roles, as weights
and as averages: in Exhibit 3.4 the average column profile is the set of row
masses in Exhibit 3.1, and the column masses in Exhibit 3.4 are the elements
of what was previously the average row profile in Exhibit 3.1.

At this point, even though the final key concepts in CA still remain to be
explained, it is possible to make a brief interpretation of Exhibit 3.2. The ver-
tices of the triangle represent the “pure profiles” of readership categories CI,
C2 and C3, whereas the education groups are “mixtures” of these readership
categories and find their positions within the triangle in terms of their respec-
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Exhibit 3.4:
Cross-tabulation of
education group by
readership cluster,
showing column
profiles and average
column profile in
parentheses, and the
column masses.

Interpretation in
the profile space
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Merging rows
or columns

Masses and Centroids

tive proportions of each of the three categories. Notice the following aspects
of the display:

® The degree of spread of the profile points within the triangle gives an idea
of how much variation there is the contingency table. The closer the profile
points lie to the centroid, the less variation there is, and the more they
deviate from the centroid, the more variation. The profile space is bounded
and the most extreme profiles will lie near the sides of the triangle, or in
the most extreme case at one of the vertices (for example, an illiterate
group with profile [1 0 0] would lie on the vertex CI). In tables of social
science data such as this one, profiles usually occupy a small region of the
profile space close to the average because the variation in profile values
for a particular category will be relatively small. For example, the range
in the first element (i.e. readership category CI) across the profiles is only
from 0.115 to 0.357 (Exhibit 3.1), in a potential range from 0 to 1. In
contrast, for data in ecological research, as we shall see later, the range of
profile values is much higher, usually because of many zero frequencies in
the table — the profiles are then more spread out inside the profile space
(see the second example in Chapter 10).

® The profile points are stretched out in what is called a “direction of spread”
more or less from the bottom to the top of the display. Looking from the
bottom upwards, the five education group profiles lie in their natural or-
der of increasing educational qualifications, from E1 to E5. At the top,
group E5 lies closest to the vertex C3, which represents the highest cat-
egory of very thorough reading — we have already seen that this group
has the highest proportion (0.615) of these readers. At the bottom, the
lower educational group is not far from the edge of the triangle which we
know displays profiles with zero C3 readers (for example, see the point
[1/2 1/2 0] in Exhibit 3.3 as an illustration of a point on the edge). The
interpretation of this pattern would be that as we move up from the bot-
tom of this display to the top, from lower to higher education, the profiles
are generally changing with respect to their relative frequency of type C3
as opposed to that of CI and C2 combined, while there is no particular
tendency towards either CI or C2. In addition, the relative frequency of
(1 is decreasing as the education points move away from CI towards the
edge joining C2 and C3.

Suppose we wanted to combine the two categories of primary education, E1
and E2, into a new row of Exhibit 3.1, denoted by E1&2. There are two ways
of thinking about this. First, add the two rows together to obtain the row
of frequencies [23 53 22], with total 98 and profile [.235 .541 .224]. The
alternative way is to think of the profile of E1&2 as the weighted average of
the profiles of E1 and E2:

.045

269
51 % |
314

357 500 .143] + 0 x [.214 548 .238]

[.235 541 .224] = 314



Distributionally equivalent rows or columns

where the masses of E1 and E2 are .045 and .269, with sum .314 (notice that
the weights in this weighted average are identical to 14/98 and 84/98, where
14 and 84 are the totals of rows E1 and E2). Geometrically, E1&2’s profile
lies on a line between E1 and E2, but closer to E2 as shown in Exhibit 3.5.
The distances from E1 to E1&2 and E2 to E1&2 are in the same proportion
as the totals 84 and 14 respectively; i.e. 6 to 1. E1&2 can be thought of as
the balancing point of the two masses situated at E1 and E2, with the heavier
mass at E2.

Suppose that we had an additional row of data in Exhibit 3.1, a category of
“no formal education” denoted by EOQ, with frequencies [ 10 14 4] across the
reading categories. The profile of EQ is identical to E1’s profile, because the
frequencies in EOQ are simply twice those of E1. The two sets of frequencies are
said to be distributionally equivalent. Thus the profiles of EO and E1 are at
exactly the same point in the profile space, and can be merged into one point
with mass equal to the combined masses of the two profiles, i.e. a single point
with frequencies [ 15 21 6 ].

The row and column masses are proportional to the marginal sums of the
table. If the masses need to be modified for a substantive reason, this can be
achieved by a simple transformation of the table. For example, suppose that we
require the five education groups of Exhibit 3.1 to have masses proportional to
their population sizes rather than their sample sizes. Then the table is rescaled
by multiplying each education group profile by its respective population size.
The row profiles of this new table are identical to the original row profiles, but
the row masses are now proportional to the population sizes. Alternatively,
suppose that the education groups are required to be weighted equally, rather
than differentially as described up to now. If we regard the table of row profiles
(or, equivalently, of row percentages) as the original table, then this table has
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Exhibit 3.5:
Enlargement of
positions of E1 and
E2 in Exhibit 3.2,
showing the position
of the point E1&2
which merges the
two categories; E2
has 6 times the mass
of E1, hence E1&?2
lies closer to E2 at a
point which splits
the line between the
points in the ratio
84:14 = 6:1.

Distributionally
equivalent rows or
columns

Changing the
masses
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Masses and Centroids

row sums equal to 1 (or 100%), so that each education group is weighted
equally. Hence analysing the table of profiles implies weighting each profile
equally.

1. We assume that we are analysing a table of data and are concerned with
the row problem, i.e. where the row profiles are plotted in the simplex space
defined by the column vertices. Then each vertex point represents a column
category in the sense that a row profile that is entirely concentrated into
that category would lie exactly at that vertex point.

2. Each profile can be interpreted as the centroid (or weighted average) of the
vertex points, where the weights are the individual elements of the profile.
Thus a profile will tend to lie closer to those vertices for which it has higher
values.

3. Each row profile in turn has a unique weight associated with it, called
a mass, which is proportional to the row sum in the original table. The
average row profile is then the centroid of the row profiles, where each
profile is weighted by its mass in the averaging process.

4. Everything described above for row profiles applies equally to the columns
of the table. In fact, the best way to make the jump from rows to columns
is to re-express the table in its transposed form, where columns become
rows, and vice versa — then everything applies exactly as before.

5. Rows (or columns) that are combined by aggregating their frequencies have
a profile equal to the weighted average of the profiles of the component rows
(or columns).

6. Rows (or columns) that have the same profile are said to be distributionally
equivalent and can be combined into a single point with a mass equal to
the sum of the masses of the combined rows (or columns).

7. Row (or column) masses can be modified to be proportional to prescribed
values by a simple rescaling of the rows (or columns).



Chi-Square Distance and Inertia

In correspondence analysis (CA) the way distance is measured between profiles
is a bit more complicated than the one that was used implicitly when we
drew and interpreted the profile plots in Chapters 2 and 3. Distance in CA is
measured using the so-called chi-square distance and this distance is the key
to the many favourable properties of CA. There are several ways to justify
the chi-square distance: some are more technical and beyond the scope of
this book, while other explanations are more intuitive (see Appendix B, pages
270-271 for one theoretical justification). In this chapter we choose the latter
approach, starting with a geometric explanation of the well-known chi-square
statistic computed on a contingency table. All the ideas embodied in the chi-
square statistic carry over to the chi-square distance in CA and to the related
concept of inertia, which is the way CA measures variation in a data table.
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Consider the data in Exhibit 3.1 again. Notice that, of the sample of 312
people, 57 (or 18.3%) are in readership category CI (“glance”), 129 (41.3%)
in C2 (“fairly thorough”) and 126 (40.4%) in C3 (“very thorough”); i.e. the
average row profile is the set of proportions [0.183 0.413 0.404]. If there were
no difference between the education groups as far as readership is concerned,
we would expect that the profile of each row is more or less the same as the
average profile, and would differ from it only because of random sampling
fluctuations. Assuming no difference, or in other words assuming that the
education groups are homogeneous with respect to their reading habits, what
would we have expected the frequencies in row E5, for example, to be? There
are 26 people in the E5 education group, and we would thus have expected
18.3% of them to be in category CI; i.e. 26 x 0.183 = 4.76 (although it is

Hypothesis of
independence or
homogeneity for a
contingency table
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Exhibit 4.1:
Observed
frequencies, as given
in Exhibit 3.1, along
with expected
frequencies (in
parentheses)
calculated assuming
the homogeneity
assumption to be
true.

Chi-square (x?)
statistic to test the
homogeneity
hypothesis

Chi-Square Distance and Inertia

Fairly Very

EDUCATION Glance  thorough thorough Row

GROUP CI1 c2 c3 Total masses

Some primary 5 7 2 14 0.045
El (2.56) (5.78) (5.66)

Primary completed 18 46 20 84 0.269
E2 (15.37) (34.69) (33.94)

Some secondary 19 29 39 87 0.279
E3 (15.92) (35.93) (35.15)

Secondary completed 12 40 49 101 0.324
E4 (18.48) (41.71) (40.80)

Some tertiary 3 7 16 26 0.083
E5 (4.76) (10.74) (10.50)

Total 57 129 126 812

Average row profile 0.183 0.413 0.404

ridiculous to talk of 0.76 of a person, it is necessary to maintain such fractions
in these calculations). Likewise, we would have expected 26 x 0.413 = 10.74
of the Eb subjects to be in category C2, and 26 x 0.404 = 10.50 in category
C3. There are various names in the literature given to this “assumption of
no difference” between the rows of a contingency table (or, similarly, between
the columns) — the “hypothesis of independence” is one of them, or perhaps
more aptly for our purpose here, the “homogeneity assumption”. Under the
homogeneity assumption, we would therefore have expected the frequencies for
E5 to be [4.76 10.74 10.50], but in reality they are observed to be [3 7 16].
In a similar fashion we can compute what each row of frequencies would be
if the assumption of homogeneity were exactly true. Exhibit 4.1 shows the
expected values in each row underneath their corresponding observed values.
Notice that exactly the same expected frequencies are calculated if we argue
from the point of view of column profiles, i.e. assuming homogeneity of the
readership groups.

It is clear that the observed frequencies are always going to be different from
the expected frequencies. The question statisticians now ask is whether these
differences are large enough to contradict the assumed hypothesis that the
rows are homogeneous, in other words whether the discrepancies between ob-
served and expected frequencies are so large that it is unlikely they could have
arisen by chance alone. This question is answered by computing a measure
of discrepancy between all the observed and expected frequencies, as follows.
Each difference between an observed and expected frequency is computed,
then this difference is squared and finally divided by the expected frequency.
This calculation is repeated for all pairs of observed and expected frequencies
and the results are accumulated into a single figure — the chi-square statistic,



Calculating the x? statistic

denoted by x2:

observed — expected)?
v=Y ( )
expected

Because there are 15 cells in this 5-by-3 (or 5 x 3) table, there will be 15 terms
in this computation. For purposes of illustration we show only the first three
and last three terms corresponding to rows E1 and Eb:

o (5—256)2 (7-5.78) (2—5.66)

= 286 578 " 566
(3 —-4.76)>  (7—-10.74)%> (16 — 10.50)? (4.1)
4.76 10.74 10.50 '

The grand total of the 15 terms in this calculation turns out to be equal to
26.0. The larger this value, the more discrepant the observed and expected
frequencies are, i.e. the less convinced we are that the assumption of homo-
geneity is correct. In order to judge whether this value of 26.0 is large or small,
we use probabilities of the chi-square distribution corresponding to the “de-
grees of freedom” associated with the statistic. For a 5 x 3 table, the degrees
of freedom are 4 x 2 = 8 (one less than the number of rows multiplied by one
less than the number of columns), and the p-value associated with the value
26.0 of the x? statistic with 8 degrees of freedom is p = 0.001. This result
tells us that there is an extremely small probability — one in a thousand —
that the observed frequencies in Exhibit 4.1 can be reconciled with the homo-
geneity assumption. In other words, we reject the homogeneity of the table
and conclude that it is highly likely that real differences exist between the
education groups in terms of their readership profiles.

The statistical test of homogeneity described above is relevant to statistical
inference, but we are more interested here in the ability of the y? statistic
to measure discrepancy from homogeneity, in other words to measure hetero-
geneity of the profiles. We shall now re-express the x? statistic in a different
form by dividing the numerator and denominator of each set of three terms
for a particular row by the square of the corresponding row total. For exam-
ple, looking just at the last three terms of the y? calculation given in (4.1)
above, we divide the numerator and denominator of each term by the square
of E5’s total, i.e. 262, in order to obtain observed and expected profiles in the
numerators rather than the original raw frequencies:

(i _ 4.76)2 (l _ 10.74)2 (E _ 10.50)2
2 _ o 26 26 26 26 26 26
x“ = 12 similar terms- - - + 3 + 1071 + 1050

262 262 262

= 12 similar terms- - -

(0.115 — 0.183)? (0.269 — 0.413)? (0.615 — 0.404)>
0.183 +26 % 0.413 +26 % 0.404
(4.2)

+ 26 X

Notice in the last line above that one of the factors of 26 in each denominator
has been taken out, so that the denominators are also profile values, equal to
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(Total) inertia
is the x? statistic
divided by sample

size

Euclidean, or
Pythagorian,
distance

Chi-Square Distance and Inertia

the average profile values. Each of the 15 terms in this calculation is thus of
the form

total x (observed row profile — expected row profile)?
row tota

expected row profile

We now make one more modification of the y? calculation above to bring
it into line with the CA concepts introduced so far: we divide both sides of
Equation (4.2) by the total sample size so that each term involves an initial
multiplying factor equal to the row mass rather than the row total:

2

;@ = 12 similar terms- - -
(0.115—-0.183)? (0.269—0.413)? (0.615—0.404)>
+0'083X—0.183 +O.083><—0.413 + 0.083><—0.404
(4.3)

where 0.083 = 26/312 is the mass of row E5 (see Exhibit 4.1). The quantity
x?/n on the left-hand side, where n is the grand total of the table, is called
the total inertia in CA, or simply the inertia. It is a measure of how much
variance there is in the table and does not depend on the sample size. In statis-
tics this quantity has alternative names such as the mean-square contingency
coefficient, and its square root is known as the phi coefficient (¢); hence we
can denote the inertia by ¢2. If we gather together terms in (4.3) in groups of
three corresponding to a particular row, we obtain the following form for the
inertia:
2

?f(@ = ¢? = 4 similar groups of terms - - -
— 2 — 2 — 2
L 0.083 x |(0-115 —0.183)? | (0260 — 0.413)°  (0.615 — 0.404) (4.4)

0.183 0.413 0.404

Each of the five groups of terms in this formula, one for each row of the table,
is the row mass (e.g. 0.083 for row E5) multiplied by a quantity in square
brackets which looks like a distance measure (or, to be precise, the square of
a distance).

In (4.4) above, if it were not for the fact that each squared difference between
observed and expected row profile elements is divided by the expected ele-
ment, then the quantity in square brackets would be exactly the square of the
“straight-line” regular distance between the row profile E5 and the average
profile in three-dimensional physical space. This distance is also called the
Euclidean distance or the Pythagorian distance. Let us state this in another
way so that it is fully understood. Suppose we plot the two profile points
[0.115 0.269 0.615] and [0.183 0.413 0.404] with respect to three perpen-
dicular axes. Then the distance between them would be the square root of the
sum of squared differences between the coordinates, as follows:

Euclidean distance = /(0.115—0.183)2 + (0.269—0.413)2 + (0.615—0.404)2
(4.5)




Chi-square distance: An example of a weighted FEuclidean distance

This familiar distance, whose value in (4.5) is calculated as 0.264, is exactly
the distance between the points E5 and their average in Exhibit 3.2.

However, the distance function in (4.4) is not the Euclidean distance — it
involves an extra factor in the denominator of each squared term. Because this
factor rescales or reweights each squared difference term, this variant of the
Euclidean distance function is referred to in general as a weighted Euclidean
distance. In this particular case where the scaling factors in the denominators
are the expected profile elements, the distance is called the chi-square distance,
or }2-distance for short. For example the y2-distance between row E5 and the
centroid is:

_ 2 _ 2 _ 2
XQ-distance:\/(0'115 0.183) | (0.269 0413 | (0.615 — 04047 o

0.183 0.413 0.404
and has value 0.431, higher than the Euclidean distance in (4.5) because each
term under the square root sign has been increased in value. In the next
chapter we will show how y2-distances can be visualized.

From (4.4) and (4.6) we can write the inertia in the following form:

inertiazZ(i—th mass) x (x2-distance from i-th profile to centroid)? (4.7)
K3

where the sum is over the five rows of the table. Since the masses add up
to 1, we can also express (4.7) in words by saying that the inertia is the
weighted average of the squared y2-distances between the row profiles and
their average profile. So the inertia will be high when the row profiles have
large deviations from their average, and will be low when they are close to
the average. Exhibit 4.2 shows a sequence of four small data matrices, each
with five rows and three columns, as well as the display of the row profiles in
triangular coordinates, going from low to high total inertia. The examples have
been chosen especially to illustrate inertias in increasing order of magnitude.
This sequence of maps also illustrates the concept of row—column association,
or row—column correlation. When the inertia is low, the row profiles are not
dispersed very much and lie close to their average profile. In this case we say
that there is low association, or correlation, between the rows and columns.
The higher the inertia, the more the row profiles lie closer to the column
vertices, i.e. the higher is the row—column association. Later, in Chapter 8, we
shall describe a correlation coefficient between the rows and columns which
links up more formally to the inertia concept.

If all the profiles are identical and thus lie at the same point (their average), all
chi-square distances are zero and the total inertia is zero. On the other hand,
maximum inertia is attained when all the profiles lie exactly at the vertices of
the profile space, in which case the maximum possible inertia can be shown
to be equal to the dimensionality of the space (in the triangular examples of
Exhibit 4.2, this maximum would be equal to 2).
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Exhibit 4.2:

A series of data
tables with
increasing total
inertia. The higher
the total inertia, the
greater is the
association between
the rows and
columns, displayed
by the higher
dispersion of the
profile points in the
profile space. The
values in these
tables have been
chosen specifically
so that the column
sums are all equal,
so the weights in the
x2-distance
formulation are the
same, and hence
distances we observe
in these maps are
true x>-distances.

Inertia of rows
is equal to inertia
of columns

Some notation

Chi-Square Distance and Inertia
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So far we have explained the concepts of profile, mass, y2-distance and inertia
in terms of the rows of a data table. As we said in Chapter 3, everything
described so far applies in an equivalent way to the columns of the table
(see the column profiles, average profile and column masses in Exhibit 3.4).
In particular, the calculation of inertia in (4.7) gives an identical result if it
is calculated on the column profiles; i.e. the total inertia of a table is the
weighted average of the squared x2-distance between the column profiles and
their average profile, where the weights are now the column masses.

This section is not essential to the understanding of the practical aspects
of correspondence analysis and may be skipped. But for those who do want
to understand the literature on correspondence analysis and its theory, this
section will be useful (for example, we shall use these definitions in Chapter
14). We introduce some standard notation for the entitities defined so far,
using the data in Exhibit 3.1 as illustrations (the data have been repeated in
Exhibit 4.1).



Some notation

® n;; — the element of the cross-tabulation (or contingency table) in the
i-th row and j-th column, e.g. ny; = 18.

® n,. — the total of the i-th row, e.g. ngy = 87 (the + in the subscript
indicates summation over the corresponding index).

® n,; — the total of the j-th column, e.g. nys = 129.
® n, 4, or simply n, the grand total of the table, e.g. n = 312.

® pi; — n; divided by the grand total of the table, e.g. pa1 = noi/n =
18/312 = 0.0577.

® 7, — the mass of the i-th row, i.e. r; = n; /n (which is the same as p;, the
sum of the i-th row of relative frequencies p;;); e.g. 73 = 87/312 = 0.279;
the vector of row masses is denoted by r.

® ¢; — the mass of the j-th column, i.e. ¢; = n4;/n (which is the same
as p4;, the sum of the j-th column of relative frequencies p;;); e.g. co =
129/312 = 0.414; the vector of column masses is denoted by c.

® q;; — the j-th element of the profile of row ¢, i.e. a;; = n;j/nit; e.g. az1 =
18/84 = 0.214; the i-th row profile is denoted by vector a;.

® b;; — the i-th element of the profile of column j, ie. bj; = n;;/nij;
e.g. byy = 18/57 = 0.316; the j-th column profile is denoted by vector b;.

o \/Zj (a;j —airj)?/c; — the x*-distance between the i-th and i’-th row
profiles, denoted by ||a; — a;||¢; e.g. from Exhibit 3.1,

_ [(0.357—0.214)> | (0.500—0.548)2 | (0.143—0.238)> _
lar —asle = \/ 0.183 + 0.413 + 0.404 = 0.374

* \/Zz (bij — bij)?/r; — the x*-distance between the j-th and j’-th column
profiles, denoted by ||b; — bj/||,; e.g. from Exhibit 3.4,

— 2 — 2
by — by, = /L0 0054 4 (0316-055D% 4 | ete. = 0.323

where 0.088 = 5/57, 0.054 = 7/129, 0.045 = 14/312, etc.

o \/ZJ (aij — ¢;)?/c; — the x?-distance between the i-th row profile a; and
the average row profile ¢ (the vector of column masses), denoted by
lla; — c||¢; e.g. from Exhibit 3.1,

0.357—0.183)> | (0.500—0.413)2 | (0.143—0.404)2
lar —cfle = \/( 0.183 L d 0.413 L ! 0.404 E = 0.594
® /> (bij —ri)?/r; — the x*-distance between the j-th column profile b;

and the average column profile r (the vector of row masses), denoted by
|b; —r|; e.g. from Exhibit 3.4,
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0.088-0.045)> | (0.316—0.269)2
by — |, = \/( 0.045 4 0.269 4. ete. = 0.332

With this notation, the formula (4.7) for the total inertia is

2
P = X Zﬁ‘”ai —c|? (for the rows)
n -
=>"n) (rﬂ - cj> /¢ (4.8)
i J ‘
= Z cjlbi — |2 (for the columns)
J
Dij
:ZCJZ(C,_Tl> /Tl (49)
J i J

and has the value 0.0833, hence y? = 0.0833 x 312 = 26.0.

1. The chi-square (x?) statistic is an overall measure of the difference between
the observed frequencies in a contingency table and the expected frequen-
cies, calculated under a hypothesis of homogeneity of the row profiles (or
of the column profiles).

2. The (total) inertia of a contingency table is the x? statistic divided by the
total of the table.

3. Geometrically, the inertia measures how “far” the row profiles (or the col-
umn profiles) are from their average profile. The average profile can be
considered to represent the hypothesis of homogeneity (i.e. equality) of
profiles.

4. Distances between profiles are measured using the chi-square distance (x2-
distance). This distance is similar to the Fuclidean (or Pythagorian) dis-
tance between points in physical space, except that each squared difference
between coordinates is divided by the corresponding element of the average
profile. The y2-distance is an example of a weighted Euclidean distance.

5. The inertia can be rewritten in a form which can be interpreted as the
weighted average of squared y2-distances between the row profiles and their
average profile (similarly, between the column profiles and their average).



Plotting Chi-Square Distances

In Chapter 3 we interpreted the positions of two-dimensional profile points
in a triangular coordinate system where distances were Euclidean distances.
In Chapter 4 the chi-square distance (x2-distance) between profile points was
defined, as well as its connection with the chi-square statistic and the inertia
of a data matrix. The y?-distance is a weighted Euclidean distance, where
each squared term corresponding to a coordinate is weighted inversely by the
average profile value corresponding to that coordinate. So far we have not
actually visualized the y2-distances between profiles, apart from Exhibit 4.2,
where the average profile values were equal, so that the y2-distances were also
FEuclidean in that case. In this chapter we show that by a simple transforma-
tion of the profile space, the distances that we observe in our graphical display
are actual y2-distances.

Contents

Difference between x?-distance and ordinary Euclidean distance . . .. 33
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Exhibit 5.1 shows the row profiles of Exhibit 3.1 plotted according to perpen-
dicular coordinate axes in the usual three-dimensional physical space. Here the
distances between the profiles are not y2-distances, but rather (unweighted)
Euclidean distances — see an example of the calculation in formula (4.5). In
such a space distances between two profiles with elements z; and y; respec-
tively (where j = 1,...,J) are calculated by summing the squared differences
between coordinates, of the form (z; — y;)?, over all dimensions j and then
taking the square root of the resultant sum. This is the usual “straight-line”
Euclidean distance in physical space with which we are familiar. As we have
seen, the y2-distance differs from this distance function by the division of
each squared difference by the corresponding element of the average profile;
i.e. each term is of the form (x; — y;)?/c;, where ¢; is the corresponding ele-
ment of the average profile. Since we can interpret and compare distances only
in our familiar physical space, we need to be able to organize the points in the

Difference between

x2-distance and

ordinary Euclidean

distance
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Exhibit 5.1:

The profile space
showing the profiles
of the education
groups on the
equilateral triangle
in three-dimensional
space; the distances
here are Fuclidean
distances.

Transforming
the coordinates
before plotting

Effect of the
transformation in
practice
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map in such a way that familiar “straight-line” distances turn out to be -
distances. Luckily, this is possible thanks to a straightforward transformation
of the profiles.

In the calculation of the x2-distance every term of the form (z; —y;)?/c; can
be rewritten as (z;/\/¢; — y;/\/¢; )2. This equivalent way of expressing the
general term in the distance formula is identical in form to that of the ordinary
Euclidean distance function; i.e. it is in the form of a squared difference. The
only change is that the coordinates are not the original z; and y; values
but the transformed z;/ V/Cj and y; / /Cj ones. This suggests that, instead
of using the elements of the profiles as coordinates, we should rather use
these elements divided by the square roots of the corresponding elements of
the average profile. In that case the usual Euclidean distance between these
transformed coordinates gives the y2-distance that we require.

The values of ¢; are elements of the average profile and are thus all less than
1. Hence, dividing each profile element by its respective ,/c; will result in an
increase in the values of all coordinates, but some will be increased more than
others. If a particular c¢; is relatively small compared to the others (i.e. the
j-th column category has a relatively low frequency), then the correspond-
ing coordinates z;/,/¢c; and y;/,/c; will be increased by a relatively large
amount. Conversely, a large c¢; corresponding to a more frequent category
will lead to a relatively smaller increase in the transformed coordinates. Thus



Alternative interpretation in terms of recalibrated coordinate axes

the effect of the transformation is to increase the values corresponding to
low-frequency categories relatively more than the coordinates corresponding
to high-frequency categories. We will see that this makes sense because the
differences between low-frequency categories are generally smaller than those
between high-frequency categories, so the transformation tends to balance out
the contributions of the different categories.

In the untransformed space of Exhibit 5.1 the vertex points lie at one physical
unit of measurement from the origin (or zero point) of the three coordinates
axes. The first vertex, with coordinates [1 0 0], is transformed to the po-
sition [1/,/c1 0 0]; i.e. its position on the first axis is stretched out to be
1/4/0.183 = 2.34. Similarly, the second and third vertices are stretched out to
values 1/,/c2 = 1/1/0.413 = 1.56 and 1/,/c3 = 1/v/0.404 = 1.57 respectively.
These values are indicated at the vertices on the three axes in Exhibit 5.2.
The profiles are plotted according to their transformed values and find new
positions in the space, but are still in the triangle joining the transformed
vertex points. Notice that the stretching is relatively more in the direction of
C1, the category with the lowest marginal frequency.

c3
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There is an equivalent way of thinking of this situation geometrically. In the
untransformed coordinate systems of Exhibits 2.4 and 5.1, the tic marks indi-
cating the scales (for example, the values 0.1, 0.2, 0.3, etc.) along the three axes
were at equal intervals apart. The effect of the transformation is to stretch out
the three vertices as shown in Exhibit 5.2. But we can still think of the three
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Exhibit 5.3:

The triangular space
of the profiles in the
stretched space of
Exhibit 5.2 laid
“flat” (compare with
Exhibit 3.2). The
triangle has been
stretched most in
the direction of CI,
the category with
the lowest frequency.

Geometric
interpretation of
the inertia and x>
statistic

Plotting Chi-Square Distances

vertex points as being one profile unit from the origin, but then the scales are
different on the three axes. On the CI axis, an interval of 0.1 between two
tic marks would be a physical length of 0.234, while on the C2 and C3 axes
these intervals would be 0.156 and 0.157 respectively. Hence a unit interval on
the C1 axis is approximately 50% longer than the same interval on the other
two axes. Along these recalibrated axes we would still use the original profile
elements to situate a profile in three-dimensional space. Whichever way you
prefer to think about the transformation, either as a transformation of the
profile values or as a stretching and recalibrating of the axes, the outcome is
the same: the profile points now lie in the stretched triangular space shown in
Exhibit 5.2. In Exhibit 5.3 the stretched triangle has been laid flat and it is
clear that vertex CI, corresponding to the rarest category of glance reading,
has been stretched the most.
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glance fairly thorough

Now that the observed straight-line distances in the transformed space are
actual y2-distances, the profile points may be joined to the average point to
show the y2-distances between the profiles and their average — see Exhibit
5.4. In the case of row profiles, if we associate each row mass with its re-
spective profile, we know from formula (4.7) that the weighted sum of these
squared distances is identical to the inertia of the table. If we associate the
row totals with the profiles rather than the masses (where each row total is
n times the respective row mass, n being the grand total of the whole table),
then the weighted sum of these squared distances is equal to the x? statistic.
Equivalent results hold for the column profiles relative to their average point.
Thus the inertia or x? statistic may be interpreted geometrically as the degree
of dispersion of the set of profile points (rows or columns) about their aver-



Principle of distributional equivalence

age, where the points are weighted by their relative frequencies (i.e. masses)
or total frequencies respectively.
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glance fairly thorough

In Chapter 3 the concept was introduced of distributionally equivalent rows
or columns of a table, i.e. those with the same profiles. Considering Exhibits
3.1 or 4.1 again, suppose that we could distinguish two types of fairly thorough
readers, those who concentrated more on the political content of the news-
paper and those who concentrated more on the cultural and sports sections;
these categories could be denoted by C2a and C2b. Suppose further that in
both these new columns, the relative frequencies (i.e. profiles) of education
groups were the same; in other words, there was no difference between these
two subdivisions of the fairly thorough reading group as far as education is
concerned, i.e. they were distributionally equivalent. The subdivision of col-
umn C2 into C2a and C2b brings no extra information about the differences
between the education groups; hence any analysis of these data should give the
same results whether C2 is subdivided or left as a single category. An analysis
that satisfies this property is said to obey the principle of distributional equiv-
alence. If we used ordinary Euclidean distances between the education group
profiles, this principle would not be obeyed because different results would
be obtained if such a subdivision were made. The x2-distance, on the other
hand, does obey the principle, remaining unaffected by such a partitioning
of a category of the data matrix: if two distributionally equivalent columns
are merged, the y2-distance between the rows does not change. In practice,
this means that columns that have similar profiles can be aggregated with
almost no effect on the geometry of the rows, and vice versa. This gives the
researcher a certain assurance that introducing many categories into the anal-
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The “stretched”
profile space
showing the
x2-distances from
the profiles to their
centroid; the inertia
is the weighted
average of the sum
of squares of these
distances, and the
x? statistic is the
inertia multiplied by
the sample size

(n = 312 in this
example).
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ysis adds only substantive value and is not affected by some technical quirk
that depends on the number of categories.

We know now how to organize the display in order to visualize x2-distances,
but why do we need to go to all this trouble to see x?-distances rather than Eu-
clidean distances? There are many ways to defend the use of the x2-distance,
some more technical than others, and the reason is more profound than simply
being able to visualize the x? statistic. One clear reason is that there are inher-
ent differences in the variances of sets of frequencies. For example, in Exhibit
3.1 one can see that the range of profile values in the less frequent column CI
(from 0.115 to 0.357) is less than the range in the more frequent column C3
(from 0.143 to 0.615). This is a general rule for frequency data, namely that a
set of smaller frequencies has less dispersion than a set of larger frequencies.
The effect of this disparity in the spread of the profile values can be seen by
measuring the contributions of each category to the distance function. For ex-
ample, let us compare the squared values of the Euclidean distances and the
x2-distances between the education group profiles and their centroid (average
profile) in the data set of Exhibit 3.1. For example, for the fifth education
group E5, the squared Euclidean distance between its profile and the centroid
is

Euclidean distance® = (0.115 — 0.183)% 4 (0.269 — 0.413)% + (0.615 — 0.404)?
= 0.00453 + 0.02080 + 0.04475
= 0.07008

whereas the squared x2-distance is

_ 2 _ 2 _ 2
distance? — (0115 = 0-183)7 | (0.260 —0.413)° (0615 — 0.404)

0.183 0.413 0.404
= 0.02480 + 0.05031 + 0.11081
= 0.18592

(see (4.5) and (4.6) on pages 28-29). Each of these squared distances is the sum
of three values, one term for each column category, and can be expressed as
percentages of the total to assess the contributions of each category of reader-
ship. For example, in the squared Euclidean distance category CI contributes
0.00453 out of 0.07008, which is 6.5%, whereas in the squared x2-distance its
contribution is 0.02480 out of 0.18592, i.e. 13.3% (see the row E5 in Exhibit
5.5). If all the terms for CI are summed over the five education groups and
expressed as a percentage of the sum of squared distances we get the over-
all percentage contribution of 17.0% for the Euclidean distance, and 31.3%
for the y2-distance (see the last row of Exhibit 5.5). This exercise illustrates
the phenomenon that the lowest frequency category CI generally contributes
less to the Euclidean distance compared to C3, for example, whereas in the
x2-distance its contribution is boosted owing to the division by the average
frequency.



Weighted Euclidean distance

FEuclidean X2
Row C1 c2 c3 C1 c2 c3
El 287 7.1 64.2 471 5.1 47.7
E2 2.1 38.7 59.1 4.7 372 58.1
E3 13.2 664 204 25.5  56.7 17.8
E4 371 28 60.1 56.6 1.9 415
E5 6.5 29.7 63.9 13.3 271 59.6
Overall 17.0 21.8 61.2 31.3 177 51.0

As described in Chapter 4, the x2-distance is an example of a weighted Eu-
clidean distance, whose general definition is as follows:

p
weighted Euclidean distance = Z wj(z; —y;)? (5.1)
j=1

where w; are nonnegative weights and z;, j = 1,...,pand y;, j = 1,...,p are
two points in p-dimensional space. In principal component analysis (PCA),
a method closely related to CA, the p dimensions are defined by continuous
variables, often on different measurement scales. It is necessary to remove
the effect of scale in some way, and this is usually done by dividing the data
by the standard deviations s; of the respective variables; i.e. by replacing
observations x; and y; for variable j by «;/s; and y;/s;. This operation can be
thought of as using a weighted Euclidean distance with weights w; =1/ s?, the
inverse of the variances. In the definition of the y2-distance between profiles,
the weights are equal to w; = 1/¢;, i.e. the inverses of the average profile
elements.

Although the profiles are on the same relative frequency scale, there is still a
need to compensate for different variances, similar to the situation in PCA.
The phenomenon that sets of frequencies with higher average have higher
variance than those with a lower average is embodied in the Poisson distri-
bution — one of the standard statistical distributions for count variables. A
property of the Poisson distribution is that its variance is equal to its mean.
Hence, transforming the frequencies by dividing by the square roots of the
expected (mean) frequencies is one way of standardizing the data because the
square root of the mean is a surrogate for the standard deviation. But it is not
the only way to standardize, so why is the y?-distance so special? There are
many advantages of the y2-distance, apart from its obeying the principle of
distributional equivalence and giving CA the property of symmetry between
the treatment of rows and columns. A more technical reason for using the
x2-distance can be found in the properties of a multivariate statistical distri-

39

Exhibit 5.5:
Percentage
contributions of
each column
category to the
squared Euclidean
and squared
x?2-distances from
the row profiles to
their centroid (data
of Exhibit 3.1).

Weighted
FEuclidean distance

Theoretical
Jjustification of
x2-distance



40

SUMMARY:
Plotting
Chi-Square
Distances

Plotting Chi-Square Distances

bution for count data, called the multinomial distribution. This subject will
be discussed again in the Epilogue, Appendix E, pages 299-301.

1. x2-distances between profiles can be observed in ordinary physical (or Eu-
clidean) space by transforming the profiles before plotting. This transfor-
mation consists of dividing each element of the profile by the square root
of the corresponding element of the average profile.

2. Another way of thinking about y2-distances is not to transform the profile
elements but to stretch the plotting axes by different amounts, so that a
unit on each axis has a physical length inversely proportional to the square
root of the corresponding element of the average profile.

3. The x2-distance is a special case of a weighted Euclidean distance where
the weights are the inverses of the corresponding average profile values.

4. Assuming that we are plotting row profiles, the rescaling of the coordinates
(or, equivalently, the stretching of the axes) can be regarded as a way of
standardizing the columns of the table. This makes visual comparisons
between the row profiles more equitable across the different columns.

5. The y2-distance obeys the principle of distributional equivalence, which
guarantees stability in the distances between rows, say, when columns are
disaggregated into columns with similar profiles, or when columns with
similar profiles are aggregated.



Reduction of Dimensionality

Up to now, small data sets (Exhibits 2.1 and 3.1) were used specifically because
they were low-dimensional and hence easy to visualize exactly. These tables
with three columns involved three-dimensional profiles, which were actually
two-dimensional, as we saw in Chapter 2, and could thus be laid flat for
inspection in a triangular coordinate system. In most applications, however,
the table of interest has many more rows and columns and the profiles lie
in a space of much higher dimensionality. Since we cannot easily observe or
even imagine points in a space with more than three dimensions, it becomes
necessary to reduce the dimensionality of the points. This dimension-reducing
step is the crucial analytical aspect of correspondence analysis (CA) and can
be performed only with a certain loss of information, but the objective is to
restrict this loss to a minimum so that a maximum amount of information is
retained.
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An example of a table of higher dimensionality is given in Exhibit 6.1, a
cross-tabulation generated from the database of the Spanish National Health
Survey (Encuesta Nacional de la Salud) in 1997. One of the questions in this
survey concerns the opinions that respondents have of their own health, which
they can judge to be “very good” (muy bueno in the original survey), “good”
(bueno), “regular” (regular), “bad” (malo) or “very bad” (muy malo). The
table cross-tabulates these responses with the age groups of the respondents.
There are seven age groups (rows of Exhibit 6.1) and five health categories
(columns). A total of 6371 respondents are cross-tabulated and give a rep-
resentative snapshot of how the Spanish nation views its own health at this
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Spanish National
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Exhibit 6.1:
Cross-tabulation of
age group with
self-assessed health
category. Data
source: Spanish
National Health
Survey (Encuesta
Nacional de la
Salud), 1997.

Exhibit 6.2:
Profiles of age
groups across the
health categories,
expressed as
percentages.

Comparison of

age group (row)
profiles

Reduction of Dimensionality

Very Very
AGE GROUP  good Good Regular Bad bad Sum
16-24 243 789 167 18 6 1223
25-34 220 809 164 35 6 1234
35-44 147 658 181 41 8 1035
45-54 90 469 236 50 16 861
55-64 53 414 306 106 30 909
65-74 44 267 284 98 20 713
75+ 20 136 157 66 17 396
Sum 817 83542 1495 414 103 6371
Very Very
AGE GROUP  good Good Regular Bad bad Sum
16-24 19.9 64.5 13.7 1.5 0.5 100.0
25-34 17.8 65.6 13.3 2.8 0.5 100.0
35-44 14.2 63.6 17.5 4.0 0.8 100.0
45-54 10.5 54.5 27.4 5.8 1.9 100.0
55-64 5.8 45.5 33.7 11.7 3.3 100.0
65-74 6.2 374 39.8 13.7 2.8 100.0
75+ 5.1 34.3 39.6 16.7 4.3 100.0
Average 12.8 55.6 23.5 6.5 1.6 100.0

point in time. But what is that view, and how does it change with age? Using
CA we will be able to understand very quickly the relationship between age
and self-assessment of health.

Let us suppose for the moment that we are interested in the profiles of the age
groups across the health categories, i.e. the row profiles. The row profiles are
given in percentage form in Exhibit 6.2. The last row is the average row profile,
or the profile across the health categories for the sample as a whole, without
distinguishing between age groups. Thus we can see, for example, that of the
total of 6371 Spaniards sampled in this study, 12.8% regarded themselves as
in very good health, 55.6% in good health, and so on. Looking at specific
age groups we see that there are the differences that one would expect; for
example, the youngest age group has higher percentages of these categories
(19.9% very good and 64.5% good) whereas the oldest group has lower per-
centages (5.1% and 34.3% respectively). Perusing this table we quickly come
to the conclusion that self-assessed health becomes worse with age, which is
no surprise at all. It is not so easy, however, to see in the numbers how fast or
slow this change is occurring; for example, where the changes in self-assessed
health from one age group to the next are bigger or smaller.



Identifying lower-dimensional subspaces

It is possible to compute y2-distances between the row (age group) profiles,
but the problem is that one cannot visualize these profiles exactly, since they
are points situated in a five-dimensional space. As we saw in the previous
three-dimensional examples, where profiles lay in a planar triangle, the age
group profiles lie in a space of one less dimension because the elements of each
profile add to 1, but even direct visualization in four-dimensional space is im-
possible. We might be able to visualize the profiles approximately, however,
hoping that they do not “fill” the whole four-dimensional space but rather
lie approximately in some low-dimensional subspace of one, two or three di-
mensions. This is the essence of CA, the identification of a low-dimensional
subspace which approximately contains the profiles. Putting this the opposite
way, CA identifies dimensions along which there is very little dispersion of the
profile points and eliminates these low-variation directions of spread, thereby
reducing the dimensionality of the cloud of points so that we can more easily
visualize their relative positions.

In this example it turns out that the profiles actually lie very close to a line, so
that the points can be imagined as forming an elongated cigar-shaped cloud of
points in the four-dimensional profile space. If we now identify the line which
comes “closest” to the points (we define the measure of closeness soon), we can
drop (or project) the points perpendicularly onto this line, take the line out
of the multidimensional space and lay it from left to right on a display which
is now much easier to interpret. In Exhibit 6.3 we see this one-dimensional
representation of the age group profiles, with the age groups lying in their
inherent order from oldest on the left to youngest on the right, even though
the method has no knowledge of the ordering of the categories. In this display
we can see immediately that there are smaller differences amongst the younger
age groups, and bigger differences in the middle-age groups.

754+ 65-74 55-64 45-54 35-44 16-24
- - - - ®- - - - @ - — - — — - — - - - e - 4+ - - - - - - - - - -0 -
25-34
scale
0.1

Since the lower-dimensional projections of the profiles are no longer at their
true positions, we need to know how large a discrepancy there is between their
exact positions and their approximate ones. To do this we use the total inertia
of the profiles as a measure of the total variation, or geometric dispersion, of
the points in their true four-dimensional positions. Both quality of display
and its counterpart, the loss, or error of display, are measured in the form of
percentages of the total inertia, and they add up to 100%: the lower the loss,
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Exhibit 6.4:
Observed interpoint
distances measured

in Exhibit 6.3
between all pairs of

points, plotted
against the true
x?2-distances
between the row
profiles of Exhibit
6.3.

Approximation
of interprofile
distances

Reduction of Dimensionality

the higher the quality, and the higher the loss the lower the quality. In the
present example the loss incurred by projecting the points onto the straight
line of Exhibit 6.3 turns out to be only 2.7% of the total inertia; in other
words the quality of the unidimensional approximation of the profiles is equal
to 97.3%. This is a very favourable result — we started with a 7 x 5 table
of numbers with a total dimensionality of 4 and, by sacrificing only 2.7% of
the dispersion of the points in three dimensions of the space, the remaining
97.3% is represented by a scatter of points along a single dimension! This
percentage can be interpreted exactly as in regression as a “percentage of
explained variance”: the single dimension showing the seven projected profile
points in Exhibit 6.3 explains 97.3% of the inertia of the true profiles (or
97.3% of the total inertia of the table in Exhibit 6.1).
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The distances between the projected profiles in Exhibit 6.3 are approximations
of the true x2-distances between the row profiles in their full four-dimensional
spatial positions. Exact y2-distances, computed directly from Exhibit 6.2, can
be compared with those displayed in Exhibit 6.3, and this comparison is made
graphically in Exhibit 6.4. Because there are 7 points there are % XTx6=21
pairs of interpoint distances. Clearly the agreement is excellent, which was
expected because of the relatively small loss in accuracy of 2.7% incurred in
reducing the profiles to a one-dimensional display. Notice in Exhibit 6.4 that
the observed distances are always less than or equal to the true distances —
we say that the distances are approximated “from below”. This is because the
square of the true distance is the sum of a set of squared components, one
for each dimension of the profile space, whereas the square of the projected
distance is the sum of a reduced number of squared components, which in this
unidimensional projection is just a single component. The “unexplained” part



Display of the projected vertex points

of the distances is shown by the deviations of the points from the 45° line in
Exhibit 6.4, mostly for the small distances.

In the space of the seven age group profiles, there are five vertex points rep-
resenting the health categories. Recall once more that each of these extreme
profile points represents a fictitious profile totally concentrated into one health
category; for example, the vertex point [1 0 0 0 0] represents a group which
has only very good self-assessed health. These vertex points can also be pro-
jected onto the optimal dimension in Exhibit 6.3 — see Exhibit 6.5. Notice the
change in scale compared to Exhibit 6.3 — the age group profiles are in exactly
the same positions in both these maps. The vertices are much more spread
out than the profiles because they are the most extreme profiles obtainable.

65-74 25-34
bad 75+  55-64 45-54 35-44 16-24
- @@= = = - - - - - - 0- - - - = ®-o-0 - - 0+ -0 @ -O- - - - — - e -
very bad regular good very good
scale
H
0.1

Notice in the joint display of Exhibit 6.5 how the health categories are also
spread out in their intrinsic order, with the very bad health category on the
extreme left and the very good on the extreme right. The positions of these
reference points along the dimension gives us the key to the interpretation
of the association between the rows (age groups) and columns (health cat-
egories), with the youngest age group farthest towards good health and the
oldest group farthest towards bad health. The origin (or zero point, indicated
by a + on the dashed line in Exhibits 6.3 and 6.5) represents the average
profile; thus we can deduce that the age groups up to 44 years are on the
“good” side of average, and groups 45 years and older on the “bad” side. The
fact that very bad is so far away from the age group profiles shows that no
age group is close to this extreme — indeed in Exhibit 6.2 we can see per-
centage values of 0.5-4.3% and an average of 1.6% (the average value is at the
origin). The category bad is almost at the same position, but with a range of
1.5-16.7% and an average of 6.5% at the origin (more details about the joint
interpretation will be given in Chapters 8 and 13). The relationship between
the row profiles and column vertices in this one-dimensional projection is the
same as we described for the triangular space in Chapters 2 and 3 — each age
group profile is at the weighted average of the health category vertices, using
the profile elements as weights. Hence the youngest age group 16-24 is at the
rightmost position of the age groups because it has the highest profile values
on the health categories very good and good on the right.
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health categories.
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Exhibit 6.6:
Profile points in a
multidimensional
space and a plane
cutting through the
space; the
best-fitting plane in
the sense of least
squares must pass
through the centroid
of the points.

Reduction of Dimensionality

Definition of The present example is simpler than usual because a single dimension ade-

closeness of points
to a subspace

quately summarizes the data. In most cases we shall look for at least a two-
dimensional plane that comes “closest to”, or “best fits”, the high-dimensional
cloud of profiles. The profiles are then projected onto this plane, and the ex-
treme vertices of the profile space as well. Exhibit 6.6 shows several profile
points in an imaginary high-dimensional space, and their projections onto a
plane cutting through the space. Whether we project the profiles onto a best-
fitting line (a one-dimensional subspace), a plane (two-dimensional subspace)
or even a subspace of higher dimensionality, we need to define what we mean
by “closeness” of the points to that subspace.

Imagine any straight line in the multidimensional space of the profiles. The
shortest distance from each profile to the line can be computed (by distance
in this context we implicitly mean the y2-distance). Then to arrive at a single
measure of closeness of all points to the line, an obvious choice would be to
sum up the distances from all profiles to the imaginary line. Then our task
would be to find the line for which this sum-of-distances is the smallest. In
principle there is nothing stopping us from optimizing this criterion, but the
mathematics involved in minimizing such a sum-of-distances is quite compli-
cated. As in many other areas of statistics, the problem simplifies greatly if
one defines a criterion in terms of sum of squared distances, rather than the
distances alone, leading to what is called a least-squares optimization prob-
lem. In the present case, we also have a mass associated with each profile
which quantifies the importance of the profile in the analysis. The criterion
used in correspondence analysis is thus a weighted sum of squared distances,
in other words the inertia, and the lines and planes of best fit are found by
minimizing the inertia that is lost when projecting the points onto spaces of
lower dimension.



Formal definition of criterion optimized in CA

Suppose that we have I profile points in a multidimensional space and that
a candidate low-dimensional subspace is denoted by S. For the i-th profile
point, with mass m;, we compute the x2-distance between the point and
S, denoted by d;(S). The closeness of this profile to the subspace is then
m;[d;(S)]?; i.e. the squared distance weighted by the mass. The closeness of
all the profiles to S is the sum of these quantities:

I
closeness to S = Z m;[d;(S)]? (6.1)

i=1

The objective of CA is to find the subspace S which minimizes this criterion.
It can be shown that the subspace S being sought necessarily passes through
the centroid of the points, as depicted in Exhibit 6.6, so we need to consider
only subspaces that contain the centroid.

It is not necessary here to enter into the mathematical operations involved in
this minimization. It suffices to say here that the most elegant way to define
the theory of CA as well as to compute the solution to the above minimization
problem is to use what is known in mathematics as the singular value decom-
position, or SVD for short. The SVD is one of the most useful results in matrix
theory, and has special relevance to all the methods of dimension reduction
in statistics. It is to rectangular matrices what the eigenvalue—eigenvector de-
composition is to square matrices, namely a way to break down a matrix into
components, from the most to least important. The algebraic notion of rank
of a matrix is equivalent to our geometric notion of dimension (or dimension-
ality), and the SVD provides a straightforward mechanism of approximating
a rectangular matrix with another matrix of lower rank (i.e. lower dimension)
by least squares. These results transfer directly into the theory of CA, and
all the entities we need, the inertia, the definition of the optimal subspace,
the coordinates, etc., are obtained directly from the SVD. Since the SVD is
available in many computing languages, the analytical part of CA is easily
executed. In the Computational Appendix we shall show how compactly CA
can be programmed using the SVD function in the computing language R —
see pages 259-260.

We have been describing the search for low-dimensional subspaces, for exam-
ple, lines and planes, by least squares, and this sounds just like the objective
of regression analysis, which also fits lines and planes to data points which can
be situated in multidimensional space. But there is a major difference between
regression and what we are doing here. In regression one of the variables is
regarded as a response variable and the distances that are minimized are par-
allel to the response variable axis. In the present situation, by contrast, there
is no response variable, and fitting is done by minimizing the distances per-
pendicular to the subspace being fitted (see Exhibit 6.6 where the projections
are perpendicular onto the plane, giving the shortest distances between the
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SUMMARY:
Reduction of
Dimensionality

Reduction of Dimensionality

points and the plane). Sometimes this way of fitting a low-dimensional sub-
space to points is referred to as “orthogonal regression”, where the dimensions
of the subspace are regarded as new variables explaining the data points.

1. Dimensionality refers to the number of inherent dimensions in a table of
data. Usually, multivariate observations on m variables are m-dimensional,
i.e. require m coordinate axes for their exact visualization. Reduction of
dimensionality (also called dimension reduction) is the process of approxi-
mating multivariate data of high dimensionality by lower-dimensional ver-
sions, conserving as much as possible the properties of the original data.

2. Profiles consisting of m elements, which have the particular property that
these elements sum to 1, are situated exactly in a space of dimensionality
m—1. Hence, profiles with more than four elements are situated in spaces
of dimensionality greater than three, which we cannot observe directly.

3. If we can identify a subspace of lower dimensionality, preferably not more
than two or three dimensions, which lies close to all the profile points,
then we can project the profiles onto such a subspace and look at the
profiles’ projected positions in this subspace as an approximation to their
true higher-dimensional positions.

4. What is lost in this process of dimension reduction is the knowledge of
how far and in what direction the profiles lie “off” this subspace. What is
gained is a view of the profiles that would not be possible otherwise.

5. The accuracy of display is measured by a quantity called the percentage of
inertia. For example, if 85% of the inertia of the profiles is represented in
the subspace, then the residual inertia, or error, which lies external to the
subspace, is 15%.

6. The vertices, or unit profiles, can also be projected onto the optimal sub-
space. The object is not to represent the vertices accurately but to use
them as reference points for interpreting the displayed profiles.

7. The actual computation of the low-dimensional subspace relies on measur-
ing the closeness between a set of points and a subspace as the weighted-
sum-of-squared y2-distances between the points and the subspace, where
the points are weighted by their respective masses.



Optimal Scaling

So far correspondence analysis (CA) has been presented as a geometric method
of data analysis, stressing the three basic concepts of profile, mass and -
distance, and the four derived concepts of centroid (weighted average), iner-
tia, subspace and projection. Profiles are multidimensional points, weighted
by masses, and distances between profiles are measured using the x2-distance.
The profiles are visualized by projecting them onto a subspace of low dimen-
sionality which best fits the profiles, and then projecting the vertex profiles
onto the subspace as reference points for the interpretation. There are, how-
ever, many other ways to define and interpret CA and this is why the same
underlying methodology has been rediscovered many times in different con-
texts. One of these alternative interpretations is called optimal scaling and a
discussion of this approach at this point will provide additional insight into
the properties of CA.
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We refer again to the example in Exhibit 6.1, the cross-tabulation of age
groups by self-assessed health categories. Both the row and column variables
are categorical variables and are stored in a computer data file using codes
1 to 7 for age, and 1 to 5 for health. If we wanted to calculate statistics on
the health variable such as mean and variance, or to use self-assessed health
as a variable in a statistical analysis such as regression, it would be necessary
to have acceptable values for each health category. It may not be true that
each of the health categories is exactly one unit apart on such a scale, as is
implicitly assumed if we use the values 1 to 5. The health categories are ordered
(i.e. self-assessed health is an ordinal categorical variable), which indeed gives

Quantifying a set

of categories
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Optimal Scaling

some minimal justification for using the values 1 to 5, but what if the variable
were nominal, such as the country variable in Chapter 1 (see Exhibit 1.3) or
a variable such as marital status?* The age group variable is also ordinal,
established by defining intervals on the original age scale, so we could use the
midpoints of each age interval as reasonable scale values, but it is not obvious
what value to assign to age group 7, which is open-ended (75+ years). Failing
any alternative, when categories are ordered as in this case, the integer values
(1to 7 and 1 to 5 here) are often used as default values in calculations. Optimal
scaling provides a way of obtaining quantitative scale values for a categorical
variable, subject to a specific criterion of optimality.

Initially we will use the default integer values in some simple calculations,
but let us first reverse the coding of the health categories so that the higher
value corresponds to better health — hence 5 indicates very good health,
down to 1 indicating very bad health. In the data set as a whole, there are
817 respondents with very good health (code 5), 3542 with good health (code
4), and so on, out of a total sample of 6371 respondents. Using these integer
codes as scale values for the health categories, an average health in this sample
can be calculated as follows:

[(817 x 5) 4 (3542 x 4) + ... + (103 x 1)]/6371 = 3.72

Le. (0.128 x 5) + (0.556 x 4) + ... + (0.016 x 1) = 3.72 (7.1)

where 817/6371 = 0.128, 3542/6371 = 0.556, etc. are the elements of the
average row profile (see the last row of Exhibit 6.2). Therefore, this average
across all the respondents is simply the weighted average of the scale values
where the weights are the elements of the average profile.

Considering a particular age group now, say 16-24 years, we see from the
first row of data in Exhibit 6.1 that there are 243 respondents with very good
health, 789 with good, and so on, out of a total of 1223 in this young age
group. Again, using the integer scale values from 5 down to 1 for the health
categories, the average health for the 16-24 group is:

[(243 x 5) + (789 x 4) + ... 4 (6 x 1)]/1223 = 4.02

i.e.
(0.199 x 5) + (0.645 x 4) + ... + (0.005 x 7) = 4.02 (7.2)

where the second line again shows the profile values (for age group 16-24)
being used as weights: 243/1223 = 0.199, 789/1223 = 0.645, etc. Thus we
could say that the youngest age group has an average self-assessed health
higher than the average: 4.02 compared to the average of 3.72. We could
repeat the above calculation for the other six age groups and obtain averages

* In my experience as a statistical consultant I once did see a survey with a variable “Re-
ligious Affiliation: 0=none, 1=Catholic, 2=Protestant, etc.” and the researcher seriously
calculated an “average religion” for the sample!



Computation of variance using integer scale

as follows:

16-24 25-34 35-44 45-54 55-64 65-74 75+ Qwverall
4.02 3.97 3.86 3.66 3.39 3.30  3.19 3.72

Now that we have calculated health category means for the age groups using
the integer scale values, we can compute the health category variance across
the age groups. This is similar to the inertia calculation of Chapter 4 because
each age group will be weighted proportional to its sample size. Alternatively
you can think of all 6371 respondents being assigned the values corresponding
to their respective age group, followed by the usual calculation of between-
group variance. The variance is calculated as (see Exhibit 6.1 for row totals):

1223 a2, 1234 Camon2 ., 396 N2
o (402 = 3.72)% 4 20 (3.07 = 3.72)° -+ S22 (3.19 - 3.72)° = 0.0857

with standard deviation 4/0.0857 = 0.293.

Given any set of scale values for the health categories, we can assign to each re-
spondent a score, i.e. the scale value corresponding to the respondent’s chosen
category. This leads to an overall average score for the whole sample as well
as age group averages and the variance of the scores across the age groups. All
the previous calculations depend on the initial use of the 1-to-5 integer scale
for the health categories, from very bad to very good, an arbitrary choice which
is, admittedly, difficult to justify, especially after seeing the results of Chapter
6. The question is whether there are more justifiable scale values that lead to
more informative group average scores. Answering this question depends on
what is meant by “more informative”, so we now consider one possible crite-
rion which leads to scale values that turn out to be directly related to CA.
Let us suppose that the scale values for the health categories are denoted by
unknown quantities vy, vo, v3, v4 and vy, which are to be determined. Then
the average score for all respondents would be, in terms of these unknowns,
as in (7.1):

average health overall = (0.128 x v1) + (0.556 X v3) +- - -+ (0.016 x v5) (7.3)
while the average score for age group 1624, for example, would be, as in (7.2),

average health 16-24 years = (0.199 X v1) 4 (0.645 X vg) + - - - + (0.005 X vs)
(7.4)

Let s; denote the average score (7.4) for the first age group. For each age
group, the score can be formulated in the same way, leading to seven scores
$1, 82, ..., 87, each defined in terms of the unknown scale values. The between-
group variance is then computed as before: for example, the 1223 respondents
in the 16-24 years age group are imagined notionally as piling up at the score
s1 in (7.4), and similarly for the other age groups at their respective group
average scores. The variance is then computed between the group means, but
still depends on the original unknown scale values.
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Exhibit 7.1:
Coordinate values of
the points in
Exhibit 6.5, i.e. the
coordinates of the
column vertices and
the row profiles on
the dimension that
best fits the row
profiles.

Optimal Scaling

Now in order to determine a set of “informative” scale values, we can propose
a property which we would like these age group average scores to have, namely
that the age groups should be as distinct from one another as possible. Putting
this the opposite way, what we do not want is to obtain age group scores so
close to one another that it is difficult to distinguish between them. One way
of phrasing this requirement more precisely is that we want scale values that
lead to the maximum possible variance between age groups. Scale values vy,
va, ..., U5 that lead to scores si, So, ..., s7 and thus age group averages with
maximum variance will define what we call an optimal scale.

Fortunately, it turns out that the positions of the health categories along the
best-fitting CA dimension solve this optimal scaling problem exactly: first,
the coordinate values of the vertices in Exhibit 6.5 provide the optimal scale
values, v1 to vs; second, the coordinate values of the profiles provide the corre-
sponding group mean scores, ;1 to s7; and third, the maximum between-group
variance is equal to the inertia on this optimal CA dimension. The actual co-
ordinate values are given in Exhibit 7.1. We already know from Chapter 3
that an age group lies at the centroid of the five health category vertices, and
this property carries over to any projection of the points onto a subspace.
For example, if the profile of age group 16-24 (Exhibit 6.2) is used to weight
the positions of the vertices of the five health categories (Exhibit 7.1), the
following score is obtained:

(0.199 x 1.144) + (0.645 x 0.537) 4+ ... + (0.005 x —2.076) = 0.371
which agrees with the coordinate of the profile 1624 in Exhibit 7.1.

HEALTH Vertex AGE Profile
CATEGORY coordinate GROUP coordinate
Very good 1.144 16-24 0.371
Good 0.537 25-34 0.330
Regular —1.188 35-44 0.199
Bad —2.043 45-54 -0.071
Very bad -2.076 55-64 —0.396
65—74 -0.541
75+ -0.658

The optimal scaling problem can be turned around by making a similar search
for scale values for the age groups which maximize the variance of the health
categories. The solution is given by the vertex coordinates for the age groups,
and the scores for the health categories are their profile coordinates. The
symmetry in the row and column problems is discussed further in the next
chapter. This symmetry, or duality, of the scaling problems has led to calling
the method dual scaling, a synonym for this form of correspondence analysis.



Interpretation of optimal scale

The optimal scale does not position the five health categories at equal dis-
tances from one another, like the original integer scale. Exhibit 6.5 showed
that there is a big difference between good and regular and a very small dif-
ference between bad and very bad. These scale values lead to average health
scores for the age groups that are the most separated in terms of the variance
criterion, in other words we have the maximum discrimination between the age
groups using the optimal scale for the health categories. In Exhibit 6.3, which
displays only the age group scores, we can see that there are small changes in
self-assessed health up to the age group 34-45 years, followed by large changes
in the middle age categories, especially from 45-54 to 55—64 years, and then
slower changes in the older groups. Checking back to the profile data in Ex-
hibit 6.2, we can verify that from the 45-54 to 55-64 age group there is an
approximate 50% drop in the very good category and a more than doubling
of the bad category, which accounts for this large change in the scores.

The optimal health category scale values obtained are 1.144, 0.537, —1.188,
—2.043 and —2.076 respectively (Exhibit 7.1). These numbers are calculated
under certain restrictions which are required in order that a unique solution
can be found. These restrictions are that, for all 6371 respondents, the average
on the health scale is 0 and the variance is 1:

(0.128 x 1.144) + (0.556 x 0.537) + ...+ (0.016 x —2.076) =0 (mean 0)
and
(0.128x1.144%)4(0.556 x0.537%) +. . .4+(0.016 x(—2.076)*) =1 (variance 1)

These prerequisites for the scale values are known as identification conditions
or constraints in the jargon of mathematical optimization theory. The first
condition is necessary since it is possible for two different sets of scale values to
have different means but the same variance, so that it would be impossible to
fix (or identify) a solution without specifying the mean. The second condition
is required because if we arbitrarily multiplied the scale values by any large
number, the variance of the eventual scores would be greatly increased as
well — this would make no sense at all since we are trying to maximize the
variance. Hence, it is necessary to look for a solution amongst scale values
which have a fixed mean and fixed range of variation. The “mean 0, variance
1”7 condition is a conventional choice in such a situation, and conveniently
leads to the vertex coordinates in CA, which satisfy the same conditions.

To determine the optimal scale, the two identification conditions described
above are simply technical devices to ensure a unique mathematical solution
to our problem. Having obtained the scale values, however, we are at liberty
to transform them to a more convenient scale, as long as we remember that
the mean and variance of the transformed scale are chosen for convenience
and have no substantive or statistical relevance. The redefinition of this scale
is usually performed by fixing the endpoints at some substantively meaningful
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values. For example, in the present case we could fix the very bad health cate-
gory at 0 and the very good one at 100. So we need to make a transformation
that takes the value of —2.076 to 0 and the 1.144 to 100. We can first add
2.076 to all five scale values, so that the lowest value is zero. The scale now
ranges from 0 to 1.144 + 2.076 = 3.220. In order to have the highest value
equal to 100, we then multiply all values by 100/3.220. So the formula in this
particular case for computing a new scale value from the old one is simply

100
new = (old 4+ 2.076) x 3990
or, in the general case,
new = |(old — old lower limit) x DOW TASC | | hew lower limit (7.5)
old range

(in our example the new lower limit is zero). Applying this formula to all five
optimal scale values results in the following transformed values (Exhibit 7.2):

HEALTH Optimal Transformed
CATEGORY  scale value  scale value
Very good 1.144 100.0
Good 0.537 81.1
Regular —1.188 27.6
Bad —2.043 1.0
Very bad -2.076 0.0

The previous five-point integer scale with four equal intervals between the
scale points would imply values 0 (very bad), 25, 50, 75, 100 (very good) on
the scale with range 100. The optimal transformed values show that regular
is not at the midpoint (50) of the scale, but much closer to the “bad” end of
the scale.

We should stress that the optimal scale depends on the criterion laid down
for its determination as well as the chosen identification conditions. Apart
from these purely technical issues, it clearly also depends on the particular
cross-tabulation on which it is based. If we had a table which cross-tabulates
health with another demographic variable, say education group, we would
obtain a difference set of optimal scale values for the health categories, since
they would now be optimally discriminating between the education groups.

Finally, in contrast to the maximization criterion described above for optimal
scaling, we present a minimization criterion for finding scale values which
also leads to the CA solution, based on the distances from each row to each
column — in the present example these will be distances between the health
categories and age groups. Firstly, imagine the health categories on any scale,



A criterion based on row-to-column distances

65-74 45-54 25-34
75+ 55-64 35-44 16-24
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for example the 1-to-5 integer scale from very bad to very good health, shown
in Exhibit 7.3. Then the objective is to find the positions of the age groups on
the same scale so that they come as “close” as possible to the health categories
in the sense that an age group that has higher frequency of a particular health
category tends to be closer on the scale to that category. Suppose the health
category values are hy, ha,...,hs (in this initial example, the values 1 to 5) and
the age group values ai, as,...,a7. The distance between an age group and a
health category is the absolute difference |a; — h;|, but we will prefer to use
the squared distance (a; — h;)? as a measure of closeness’. To make distances
count more depending on the frequency of occurrence in the cross-tabulation
each squared distance is weighted by p;;, the relative frequency as defined in
Chapter 4, page 31, i.e. the counts in Exhibit 6.1 divided by the grand total
6371 (hence all the p;;’s sum to 1). Our objective would then be to minimize

the following function:
Z Zpijdfj = Zpij(ai — hyj)? (7.6)
g i

showing that distances should be shorter when p;; is higher and longer when
pij is lower. It is straightforward to show that, for any fixed set of health cate-
gory points h;, the minimum of (7.6) is achieved by the weighted averages for
each age group. For the 1-to-5 scale values these weighted averages are just
the set of age group scores calculated before (see formula (7.2) and the set of
scores shortly afterwards), which are also shown in Exhibit 7.3. But the posi-
tions of the two sets of points in Exhibit 7.3 minimize (7.6) conditional on the
fixed set of health categories, so the question is what the minimum would be
over all possible configurations of scale values for the health categories. Again
we need identification conditions for this question to make sense, otherwise
the solution would simply put all health categories at the same point. If we
add the same identification conditions that we had before, namely mean 0 and
variance 1 for the scale values of the health categories, then the minimum is
achieved by the optimal CA dimension once again.

Comparing the positions of the age groups in Exhibit 7.3 with the optimal
positions in Exhibit 6.5, it is clear that the spread is higher in Exhibit 6.5,

T Again, as before, it is always easier to work with squared distances than distances — the
square root in the Euclidean distance function causes many difficulties in optimization,
and these disappear when we consider least-squares optimization.

95

Exhibit 7.3:

The 1-to-5 scale of
the health
categories, and the
corresponding
weighted averages of
the age groups.



56

SUMMARY:
Optimal Scaling

Optimal Scaling

which means that all age group points are closest to the health category points
in terms of criterion (7.6). The value of the minimum achieved in Exhibit 6.5
is equal to 1 minus the (maximized) variance on the optimal CA dimension,
and is sometimes referred to as the loss of homogeneity — we will return
to this concept in Chapter 20 when discussing homogeneity analysis. Notice
that the criterion (7.6) is easily generalized to two dimensions or more, say K
dimensions, simply by replacing a; and h; by vectors of K elements and the
squared differences (a; —hj)2 by squared Euclidean distances in K-dimensional
space.

1. Optimal scaling is concerned with assigning scale values to the categories
(or attributes) of a categorical variable to optimize some criterion which
separates, or discriminates between, groups of cases, where these groups
have been cross-tabulated with that variable.

2. The positions of the categories as vertex points on the optimal dimension
of a CA provide optimal scale values in terms of a criterion that maximizes
the variance between groups. The maximization is performed under the
identification conditions that the mean and variance of the scale values are
0 and 1 respectively, which are conveniently satisfied by the vertex points.

3. The average scores for the groups are the projections of their profiles on
this dimension and their maximized variance is equal to the inertia of these
projected profiles.

4. The coordinate positions of the scale categories on the optimal dimension
are standardized to mean 0 and variance 1, a standardization that is par-
ticular to the geometry of the vertex points in CA. For purposes of optimal
scaling the mean and variance of the scale can be redefined; hence the scale
values may be recentred and rescaled to conform to any scale convenient
to the user, for example 0-to-1, or 0-to-100.

5. The optimal scale also satisfies a criterion based on the distances from each
row point to each column point: that is, where the objective is to place the
row and column points in a map such that the row-to-column distances,
weighted by the frequencies in the contingency table, are minimized. This
minimum, also called the loss of homogeneity, is equal to 1 minus the
maximum variance achieved in optimal scaling.



Symmetry of Row and Column Analyses

In all the examples and analyses presented so far, we have dealt with the anal-
ysis of the rows of a table, visualizing the row profiles and using the columns
as reference points for the interpretation: let’s call this the “row analysis”. All
this can be applied in a completely symmetric way to the columns of the same
table. This can be thought of as transposing the table, making the columns the
rows and vice versa, and then repeating all the procedures described in Chap-
ters 2 to 7. In this chapter we shall show that the row analysis and column
analysis are intimately connected. In fact, if a row analysis is performed, then
the column analysis is actually being performed as well, and vice versa. Cor-
respondence analysis (CA) can thus be regarded as the simultaneous analysis
of the rows and columns.
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Let us again consider the data in Exhibit 6.1 on self-assessment of health. In
Chapter 6 we performed the row analysis of these data since the object was
to display the profiles of the age groups across the health categories. These
seven profiles are contained in a four-dimensional space bounded by the five
vertices that represent the extreme unit profiles corresponding to each health
category. Then we diagnosed that most of the spatial variation of the profiles
was along a straight line (Exhibit 6.3). The profiles were projected onto that
line and the relative positions of these projections were interpreted as well as
the projections of the five vertices (Exhibit 6.5).

Summary of row
analysis

o7
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AGE Very Very

GROUP good Good Regular Bad  bad Average
16-24 29.7 223 11.2 4.3 5.8 19.2
25-34 26.9 228 11.0 8.5 5.8 19.4
35-44 18.0 18.6 12.1 9.9 7.8 16.2
45-54 11.0 13.2 15.8 12.1 15.5 13.5
55-64 6.5 11.7 20.5 25.6  29.1 14.3
65-74 5.4 7.5 19.0 23.7 194 11.2
75+ 24 3.8 10.5 159  16.5 6.2
Sum 100 100 100 100 100 100

We now consider the alternative problem of displaying the column profiles of
Exhibit 6.1, i.e. the profiles of the health categories across the age groups,
shown as percentages in Exhibit 8.1. The column profiles give, for each health
category, the percentages of respondents across the age groups: for example,
in the bad health category, 4.3% are 16-24 years, 8.5% 25-34 years, and so on.
Although this table of column profiles looks completely different to the row
profiles in Exhibit 6.2, when we look at specific values and compare them to
their averages we can see that they contain the same information (we already
noticed this in Chapter 2, page 11, for the travel data set). For example,
consider the value in the bad column for the age group 65-74 years: 23.7%.
Compare this value with the average percentage of 65—74 year olds in the whole
sample, given in the last column: 11.2%. Thus we can conclude that in the 65—
74 age group there are just over twice as many respondents saying their health
is bad compared to the overall percentage in this age group — in fact, the ratio
is 23.7/11.2 = 2.1. If we look at the same cell of Exhibit 6.2, we see that, of the
65-74 year olds, 13.7% assess their health as bad, while the percentage of bad
responses in the sample is 6.5% (last row of Exhibit 6.2). Again, compared
to the marginal percentage, just over twice as many say their health is bad,
and in fact the ratio is identical: 13.7/6.5 = 2.1. We can show this result
theoretically, using the notation at the end of Chapter 4: the first ratio we
computed was (p;;/c;)/ri, whereas the second was (p;;/c;)/ri, both equal to
Dij / (ricj) — this ratio, called the contingency ratio, is an important concept
in the theory of correspondence analysis (see the last section of Chapter 22
and the Theoretical Appendix, pages 244 and 250).

In Chapter 4 it was shown that the total inertia of the column profiles is
equal to the total inertia of the row profiles — the two calculations are just
alternative ways of writing the same formula, the x? statistic divided by the
sample size. For the health assessment data, the total inertia is equal to 0.1404.

The column profiles define a cloud of five points, each with seven components,
which should then lie in a space of dimension six, using the same argument
as before because the components add up to 1. It turns out, however, that



Column analysis — same low-dimensional approximation

the five points do not fill all six dimensions of this space, but only four of the
dimensions. One way to grasp this fact intuitively is to realize that two points
lie exactly on a one-dimensional line, three points lie in a two-dimensional
plane, four points lie in a three-dimensional space, and so five points lie in a
four-dimensional space. Hence, although the row profiles and column profiles
lie in different spaces, the dimensionality of these two clouds of points is
identical — in this case it is equal to four. This is the first geometric way in
which the analyses of the row and of the column profiles are the same. Many
more similarities will soon become apparent.

Still considering the five health category profiles in four-dimensional space,
we now ask the same question as before: Can these points be approximately
displayed in a lower-dimensional subspace and what is the quality of this ap-
proximation? By performing an analogous set of computations as was required
in Chapter 6, it turns out that the column profiles are well approximated by a
one-dimensional line, and the quality of the approximation is 97.3%, exactly
the same percentage that was obtained in the case of the row profiles. This is
the second geometric property that is common to the two analyses.

very very
bad regular good good
-e® - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - . -
bad
scale
0.1

The projections of the column profiles onto the best-fitting line are shown
in Exhibit 8.2. Here we see that the health categories lie in an order which
concurs exactly with the positions of the vertices in Exhibit 6.5. The actual
values of their coordinate positions are not the same but the relative positions
are identical. According to the scale of Exhibit 8.2 and comparing the posi-
tions of the health categories in Exhibit 6.5, it appears that the coordinates
of the profiles are a contracted, or shrunken, version of the vertices. A specific
interpretation of this “contraction factor” will be given soon. Furthermore, in
Exhibit 8.3 the projections onto this line of the seven outer vertices, repre-
senting the age groups, are displayed. Comparing the positions of the vertices
here with those of the age group profiles in Exhibit 6.5 (or Exhibit 6.3 where
the scale is larger) reveals exactly the same result for the rows — the positions

very very
bad regular good good 25-34
-----0----©06-- @ ----06-+4+ -0- -0 - - -0 ©0- -
75+ 65-74 55-64 bad 45-54 35-44 16-24
scale
H
0.1
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of the row profiles with respect to their best-fitting line in Exhibit 6.5 are a
contracted version of the positions of the age group vertices projected onto
the best-fitting line of the health category profiles in Exhibit 8.2. Putting this
the opposite way, the positions of the row vertices in the column analysis are a
simple expansion of the positions of the row profiles in the row analysis. This
is the third and most important way in which the two analyses are related
geometrically.

The best-fitting line in each analysis is called a principal axis. More specifically
it is referred to as the first principal axis, since there are other principal axes,
as we shall see in the following chapters. We have seen that in both row and
column analyses the total inertia is equal to 0.1404 and that the percentage of
inertia accounted for by the first axis is 97.3%. The specific part of inertia that
is accounted for by the first axis is equal to 0.1366 in both cases, which gives
the percentage explained as 100 x 0.1366,/0.1404 = 97.3%. The inertia amount
(0.1366) accounted for by a principal axis is called a principal inertia, in this
case the first principal inertia because it refers to the first principal axis. It is
also often called an eigenvalue because of the way it can be calculated, as an
eigenvalue of a specific square symmetric matrix (see Theoretical Appendix,
pages 243-244).

It seems, then, that we have to do only one analysis — either the row analysis
or the column analysis. The results of the one can be obtained from those of
the other. But what is the exact connection between the two; in other words
what is the scaling factor which can be used to pass from vertex positions in
one analysis to profile positions in the other? This scaling factor turns out to be
equal to the square root of the principal inertia itself (i.e. the square root of an
eigenvalue, which is also called a singular value, as explained in the Theoretical
Appendix A, page 244); e.g. in this example it is 1/0.1366 = 0.3696. Thus to
pass from the row vertices in Exhibit 8.3 to the row profiles in Exhibits 6.3
or 6.5, we simply multiply the coordinate values by 0.3696, which is just
over one-third. Conversely, to pass from the column profiles in Exhibit 8.3 to
the column vertices in Exhibit 6.5, we multiply the coordinate values by the
inverse, namely 1/0.3696 = 2.706. The numerical values of all the profile and
vertex coordinates are given in Exhibits 7.1 and 8.4, and the following simple
relationship for both rows and columns can easily be verified comparing these
two exhibits:

profile coordinate = vertex coordinate x 4/ principal inertia

Notice in Exhibits 6.5 and 8.3 that the profile points are more bunched up than
the vertex points. The scaling factor is a direct measure of how bunched up the
“inner” profiles are compared to the “outer” vertices. In this case, the scaling
factor of 0.3696 implies that the spread of the profiles is about one-third that
of the vertices. At the end of Chapter 4 the total inertia was interpreted as
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Exhibit 8.4:
HEALTH Profile AGE Vertex Coordinate values of
CATEGORY coordinate GROUP  coordinate the points in
Exhibit 8.2, i.e. the
Very good 0.423 16-24 1.004 coordinates of the
Good 0.198 25-34 0.893 column profiles and
Regular —0.439 35-44 0.538 the row vertices on
Bad -0.755 45-54 -0.192 the first principal
Very bad -0.767 55-64 -1.070 axis of the column
65—74 ~1.463 profiles (cf. Exhibit
75+ ~1.782 7.1).

the amount of dispersion in a set of profiles relative to the outer vertices (see
Exhibit 4.2). The principal inertias (or their square roots considered here) are
also measures of dispersion but refer to individual principal axes rather than
to the whole profile space. The higher the principal inertia is, and thus the
higher the scaling factor is, the more spread out the profiles are relative to the
vertices, along the respective principal axis. It should now be obvious that a
principal inertia cannot be greater than 1 — the profiles must be in positions
“interior” to their corresponding vertices.

The square root of the principal inertia, which as we already pointed out is al-  Correlation
ways less than 1, has an alternative interpretation as a correlation coefficient. interpretation of
A correlation coefficient is usually calculated between pairs of measurements, the principal
for example the correlation between income and age. In the present exam- inertia

ple there are two observations on each respondent — age group and health

category — but these are categorical observations, not measurements. A cor-

relation coefficient between these two variables can be computed using the

default integer codes of 1 to 7 for the age groups and 1 to 5 for the health cat-

egories. The correlation is then computed to be 0.3456. Using any other set of

scale values would give a different correlation, so the following question arises:

Which scale values can be assigned to the age groups and health categories

such that the correlation is the highest? The maximum correlation found in

this way is sometimes called a canonical correlation. In the present example,

the canonical correlation turns out to be 0.3696, exactly the square root of the

principal inertia, i.e. the scaling factor linking the row and column analyses.

The scale values for the age groups and the health categories that yield this

maximum correlation are just the coordinate values of the age groups and

health categories on the first CA principal axis, given in Exhibits 7.1 and 8.4

and displayed in Exhibits, 6.3, 6.5, 8.2 and 8.3. We can use profile or vertex

coordinates, since correlation is unaffected by recentring or rescaling the scale

values. It is conventional to use standardized scale values, with mean 0 and

variance 1, to identify the solution uniquely, i.e. the coordinate values of the

vertices.
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Exhibit 8.5:
Scatterplot
according to the
scale values that
maximize the
correlation between
health category and
age group; squares
are shown at each
combination of
values, with area
proportional to the
number of
respondents. The
correlation is equal
to 0.3696, the square
root of the first
principal inertia.
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A correlation between two variables is usually illustrated graphically by a
scatterplot of the cases, e.g. age group (y-axis) by health category (z-axis).
Although we have 6371 cases in the scatterplot, there are only 7 values along
the y axis and 5 values along the x axis, thus only 7 x 5 = 35 possible points
in this scatterplot (Exhibit 8.5). At a specific point corresponding to a health
category and age group lie all the cases in the respective cell of the original
cross-table (Exhibit 6.1), displayed here in the form of a square with an area
proportional to the cell frequency. The canonical correlation is then the usual
Pearson correlation of all 6371 cases in this scatterplot. The optimal property
of the canonical correlation means that there is no other way of scaling the
row and column categories which would yield a higher correlation coefficient in
such a scatterplot. A canonical correlation of 1 would be attained if all points
were lying on a straight line, which means that each age group is associated
with only one health category (i.e. the profiles are all unit profiles, or vertex
points).

It is convenient to introduce some terminology at this stage to avoid constant
repetition of the phrases “coordinate positions of the vertices” and “coordi-
nate positions of the profiles”. Since the former coordinates are standardized
to have mean 0 and variance 1, we call them standard coordinates. Since the
latter coordinates refer to the profiles with respect to principal axes, we call
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them principal coordinates. For example, the first column of numerical re-
sults in Exhibit 8.4 contains the principal coordinates of the health categories
(columns), while the second column contains the standard coordinates of the
age groups. In both cases these are coordinates on the first principal axis of
the CA; in future chapters we shall usually have more than one principal axis.

Another way of thinking about the correlation definition of CA is that each
of the 6371 individuals in the health survey example can be assigned a pair
of scale values, one (a;, say) for age group and one (h;) for health category.
As before, these scale values are unknown but we can define a criterion to
optimize in order to determine them. Each individual has a score equal to
the sum of these two scale values, a; + h;; for example, someone in the 25-34
age group with very good health (second age group and first health category)
would have a score of as + hy. Suppose that the correlation of the pairs of
values {a;,a; + h;} is denoted by cor(a,a + h), where a and h denote the
6371 scale values for the whole sample; similarly, the correlation for the pairs
{hj,a; + h;} is denoted by cor(h,a + h). A criterion to optimize would be
to find the scale values that optimize these two correlations in some way. It
can be shown that the first dimension of the CA solution gives scale values
that are optimal in the sense that they maximize the average of the squares
of these correlations:

average squared correlation = %[Corz(a, a+ h) + cor®(h,a + h)) (8.1)

Since cor(X, X +Y) = /[1 + cor(X,Y)]/2 for any two standardized variables
X and Y, the average squared correlation in (8.1) is equal to:

1+ cor(a, h)
2
Therefore, when the CA solution maximizes cor(a, h), i.e. the canonical cor-
relation, it also maximizes (8.2), equivalently (8.1). This result will be useful

later because it can easily be generalized to more than two variables — see
Chapter 20.

average squared correlation = (8.2)

Yet another equivalent way of expressing the optimality of the CA solution is
as follows, using the notation of the previous section. Instead of sums of scale
values, calculate an average for each person: %(ai + h;). Then calculate the
respective differences between each person’s age value and health value with
respect to the average: a; — 3(a; + h;) and hj — 3(a; + h;). A measure of how
similar the age values are to the health values is the sum of squares of these
two differences, again averaged, leading to a measure of variance of the two
values a; and h;:

variance (for one case) = % ([ai — %(ai +h)?+ [k — %(ai + hj)]z) (8.3)

The term homogeneity is used in this context because if the scale values a; and
h; were the same, their variance would be zero; hence an individual with such

63

Maximizing
squared correlation
with the average

Minimizing loss of
homogeneity
within variables



64

SUMMARY:
Symmetry of Row
and Column
Analyses

Symmetry of Row and Column Analyses

a pair of values is called homogeneous. An alternative term for homogeneity
is internal consistency. Averaging the values (8.3) for the whole sample, we
obtain an amount which is called the loss of homogeneity (see page 56, where
this term was used in the same sense). If all the age values coincided with the
health values, the loss of homogeneity would be zero, that is the sample would
be completely homogeneous (or internally consistent). The aim is to find scale
values which minimize this loss, and once more the solution coincides with the
coordinates of the age and health points on the first CA dimension. Again it
is clear that this definition is easily extended to more than two variables, as
we shall do in Chapter 20.

1. The series of operations and displays in the row analysis can be performed
in a completely symmetric fashion to the columns, as if the table were
transposed and everything repeated.

2. The column analysis thus leads to the visualization of the column profiles
in their optimal subspace of display, along with the display of the vertices
representing the rows.

3. In either analysis the best-fitting line, or dimension, is called the first prin-
cipal axis of the profiles. The amount of inertia this dimension accounts
for is called the first principal inertia.

4. These two “dual” analyses are equivalent in the sense that each has the
same total inertia, the same dimensionality and the same part of inertia
along the first principal axis in each analysis (in the following chapter, this
last property extends to additional principal axes).

5. The coordinate positions of profiles with respect to a principal axis are
called principal coordinates and the coordinate positions of vertices with
respect to a principal axis are called standard coordinates.

6. Furthermore, the profiles and vertices in the two analyses are intimately
related as follows: along the first principal axis, for example, profile posi-
tions (in principal coordinates) have exactly the same relative positions as
the corresponding vertices (in standard coordinates) in the dual analysis,
but are reduced in scale. The scaling factor involved is the square root of
the principal inertia along that axis, which is always less than 1.

7. The scaling factor (or its square, the principal inertia itself) quantifies how
spread out the row profiles are along a principal axis compared to the outer
column vertices, and equivalently how spread out the column profiles are
compared to the outer row vertices.

8. This scaling factor can also be interpreted as a canonical correlation. It
is the maximum correlation that can be attained between the row and
column variables as a result of assigning numerical quantifications to the
categories of these variables.



Two-Dimensional Displays

We have discussed at some length the projections of a cloud of profiles onto
a single principal axis, the best-fitting straight line. In practice you will find
that most of the reported correspondence analysis (CA) displays are two-
dimensional, usually with the first principal axis displayed horizontally (the
x-axis) and the second principal axis vertically (the y-axis). In general, the
projections may take place onto any low-dimensional subspace, but the two-
dimensional case is, of course, rather special because of our two-dimensional
style of displaying graphics on computer screens or on paper. In the Com-
putational Appendix there are also some examples using the R programming
language to do CA graphics in three dimensions (e.g. Exhibit B.4 on page
268; see also pages 257-258).
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The next example, which appeared originally in my 1984 book Theory and
Applications of Correspondence Analysis, has been adopted as a test example
in many implementations of CA in major commercial statistical packages. This
example still serves as an excellent introduction to two-dimensional displays
and has also been referred to in several journal articles, even though it is an
artificial data set. It concerns a survey of all 193 staff members of a fictitious
company, in order to formulate a smoking policy. The staff members are cross-
tabulated according to their rank (five levels) and a categorization of their
smoking habits (four groups) — the contingency table is reproduced in Exhibit
9.1. Because it is a 5 x 4 table, its row profiles and column profiles lie exactly
in three-dimensional spaces.

Data set 4:

Smoking habits of

staff groups
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Exhibit 9.1:

Cross-tabulation of

staff group by
smoking category,
showing row profiles

and average row

profile in
parentheses, and the
row masses.

Row analysis

Interpretation
of row profiles and
column vertices

Two-Dimensional Displays

STAFF SMOKING CATEGORIES Row

GROUPS None  Light Medium Heavy Totals Masses

Senior Managers 4 2 3 2 11 0.057
SM (0.364) (0.182) (0.273) (0.182)

Junior Managers 4 3 7 4 18 0.093
M (0.222) (0.167) (0.389) (0.222)

Senior Employees 25 10 12 4 51 0.279
SE (0.490) (0.196) (0.235) (0.078)

Junior Employees 18 24 33 13 88 0.456
JE (0.205) (0.273) (0.375) (0.148)

Secretaries 10 6 7 2 25 0.130
SC (0.400) (0.240) (0.280) (0.080)

Total 61 45 62 25 193

Awverage Profile (0.316) (0.233) (0.321) (0.130)

As before, this table may be thought of as a set of rows or a set of columns.
We assume that the row analysis is more relevant; that is, we are interested
in displaying for each staff group what percentage are non-smokers, what per-
centage are light smokers, and so on. The row profile space is a four-pointed
simplex, a tetrahedron, in three dimensions, which is the three-dimensional
equivalent of the triangular space in two dimensions (this can be seen using
the three-dimensional graphics described in the Computational Appendix).
To reduce the dimensionality of the profiles, they should be projected onto
the best-fitting plane (see Exhibit 6.6 on page 46). The map, shown in Ex-
hibit 9.2, also shows the projections of the four vertex points representing the
smoking groups. Notice that the first principal axis customarily defines the
horizontal axis of the map, and the second principal axis the vertical axis.
On the axes the respective principal inertias are given (0.07476 and 0.01002
respectively), as well as the corresponding percentages of inertia. These values
can be accumulated to give the amount and percentage of inertia accounted
for by the plane of the two axes. Thus the inertia in the plane is 0.08478,
which is 99.5% of the total inertia of 0.08519. This means that by sacrific-
ing one dimension we have lost only 0.5% of the inertia of the profile points.
Putting this another way, the five row profiles lie very close to this plane of
representation, so close that we can effectively ignore their distance from the
plane when interpreting their relative positions.

Looking only at the profiles’ positions for a moment, we can see that the
groups farthest apart are Junior Employees (JE) and Junior Managers (JM)
on the left-hand side, opposed to Senior Employees (SE) on the right-hand
side — hence the greatest differences in smoking habits are between these
extremes. Senior Managers (SM) appear to lie between Junior Managers and
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Senior Employees, while Secretaries (SC) are quite close to Senior Employees.
In order to explain the similarities and differences between the staff groups, it
is necessary to inspect the positions of the profiles relative to the vertices. Since
the three smoking categories are on the left and the non-smoking category is
on the right, the left-to-right distinction is tantamount to smokers versus non-
smokers. The groups JE and JM are different to SE because the former groups
have relatively more smokers, and SE has relatively more non-smokers. The
centre of such a display is always the average profile, so that we can also
consider the deviations of the staff groups outwards from the average profile
in different directions, the main deviations being from left to right.

The two-dimensional display is such that it actually contains the best one-
dimensional display in it as well. If all the points in Exhibit 9.2 were projected
vertically onto the horizontal axis, then this unidimensional display would be
the one obtained by looking for the best one-dimensional display right from
the start. The principal axes are said to be nested, in other words an optimal
display of a certain dimensionality contains all the optimal displays of lower
dimensionality. Notice that the three smoking groups on the left will project
very close together on the first axis, a long way from the non-smoking point
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Exhibit 9.2:
Optimal
two-dimensional CA
map of the smoking
data of Exhibit 9.1,
with rows in
principal
coordinates
(projections of
profiles) and
columns in standard
coordinates
(projections of
vertices).

Nesting of
principal axes
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Verifying the
profile-vertex
interpretation

Asymmetric
maps

Two-Dimensional Displays

on the right. This is the greatest single feature in the data. Putting this in
the optimal scaling terminology of Chapter 7, a “smoking scale” which best
differentiates the five staff groups is not one which assumes equal intervals
between the four smoking categories, but rather one which places all three
smoking categories quite close to one another but far from the non-smoking
category, effectively a smoking/non-smoking dichotomy.

Continuing with the two-dimensional interpretation, we see that the second
(vertical) principal axis pulls apart the three smoking levels. The profiles do
not differ as much vertically as horizontally, as indicated by the much lower
percentage of inertia on the second axis. Nevertheless, we can conclude that
the profile of JE has relatively more light smokers than heavy smokers com-
pared to that of JM, even though both these groups have similar percentages
of smokers as seen by their similar positions on the horizontal axis.

Each row profile point (staff group) is at a weighted average position of the
column vertex points (smoking categories), where the weights are the elements
of the respective row profile. As a general rule, assuming that the display
is of good quality, which is true in this case, the closer a profile is to that
vertex, the higher its profile value is for that category. One way of verifying
the interpretation of the positions of the profiles relative to the vertices is
to measure the profile-to-vertex distances in Exhibit 9.2 and then compare
these to the profile values. This verification should be performed one vertex
at a time, for example the five distances from the staff groups to the vertex
light. Therefore, the interpretation that we made in the previous paragraph
can be confirmed in another way: because JE lies more towards light than JM,
JE should have relatively more light smokers than JM. The actual data are
that 24/88 or 27% of JEs are light smokers, whereas 3/18 or 17% of JMs are
light smokers, so this agrees with our interpretation. Exhibit 9.3 graphically
compares all profile-to-vertex distances to their corresponding profile values.
The abbreviation 42, for example, is used for JE-to-light (row 4, column 2)
and 22 for JM-to-light (row 2, column 2). Clearly, the higher profile element
of 0.27 for 42 corresponds to a smaller distance than the profile of 0.17 for 22.
For each vertex, we say that the profile elements are monotonically inversely
related to the profile-to-vertex distances, which in graphical terms means that
each set of five points in Exhibit 9.3 corresponding to a particular vertex forms
a descending pattern from top left to bottom right. For example, the set of
five points corresponding to the fourth vertex point (heavy), with labels 34,
54, 44, 14 and 24, are arranged in such a descending sequence.

We say that the Exhibit 9.2 is an asymmetric map, or a map which is asym-
metrically scaled, because it is the joint display of profile and vertex points. In
an asymmetric map, therefore, one of the sets of points, in this case the rows,
is scaled in principal coordinates, while the other is scaled in standard coor-
dinates. If we were more interested in the column analysis, then the column
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points would be in principal coordinates and the row points in standard coor-
dinates. What we said in Chapter 8 about the scaling factor between the row
and column problems holds for each principal axis. Thus the two-dimensional
display of the column profiles would be a shrunken version of the positions
of the column vertices given in Exhibit 9.2, but the “shrinking factors” (i.e.,
the canonical correlations, equal to the square roots of the principal inertias)
along the two axes are not the same: 1/0.07476 = 0.273 and 1/0.01002 = 0.100
respectively. Thus along the first axis the shrinking is by a factor of 0.273
(i.e. just over a quarter) and along the second axis by a factor of 0.1 (i.e. a
tenth). By the same argument, to pass from the row profiles in Exhibit 9.2 to
their vertex positions in the column problem we would simply expand them
nearly fourfold along the first axis and tenfold along the second axis. Apart
from these scaling factors the relative positions of the profiles and the vertices
are the same. Exhibit 9.4 shows the other possible asymmetric map, where
the columns are represented as profiles in principal coordinates and the rows
as vertices in standard coordinates. In this map the column points are at
weighted averages of the row points using the elements of the column profiles
as weights. The asymmetric map of Exhibit 9.2 is often called the row prin-
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Exhibit 9.3:

The measured
profile-to-vertex
distances in Exhibit
9.2 plotted against
the corresponding
values of the row
profiles of Exhibit
9.1. Fach
row-column pair is
labelled with their
respective category
numbers: for
example, row profile
3 (senior employees)
and column vertex 4
(heavy smoking) are
denoted by 34.
Notice the
descending pattern
with increasing
profile value for each
set of distances
corresponding to a
particular vertex,
with some small
exceptions.
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Exhibit 9.4:
Asymmetric CA
map of the smoking
data of Exhibit 9.1,
with columns in
principal
coordinates and
rows in standard
coordinates.

Symmetric map

Two-Dimensional Displays
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cipal map (because row points are in principal coordinates) and Exhibit 9.4
the column principal map.

Having gone to great lengths to explain the geometry of asymmetric displays,
we now introduce an alternative way of mapping the results, called the sym-
metric map. This option is by far the most popular in the CA literature,
especially amongst French researchers. In a symmetric map the separate con-
figurations of row profiles and column profiles are overlaid in a joint display,
even though they emanate, strictly speaking, from different spaces. In a sym-
metric map, therefore, both row and column points are displayed in principal
coordinates. Exhibit 9.5 shows the symmetric map of the smoking data, and
is thus an overlay of the two sets of “inner” points in black in Exhibits 9.2 and
9.4. This simultaneous display of rows and columns finds some justification
in the intimate relationship between the row and column analyses, involving
a simple scaling factor between profiles and corresponding vertices. The con-
venience of such a display is that, whatever the absolute level of association
might be, we always have both clouds of points equally spread out across
the plotting area, hence there is less possibility of overlapping labels in the
display. In asymmetric maps, by contrast, the profile points (which are usu-
ally the points of primary interest) are often bunched up in the middle of
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the display, far from the outer vertices, and the visualization is generally less
aesthetic.
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Since both clouds of profiles are displayed simultaneously in Exhibit 9.5,
the plotted row-to-row distances approximate the inter-row y2-distances and
the plotted column-to-column distances approximate the inter-column x?-
distances. Of course, the inter-row distance interpretation applies to the points
in Exhibit 9.2 as well, since this is the identical display of the rows which is
used in Exhibit 9.5 (note the difference in scales between these two maps) —
a similar remark applies to the column points in Exhibit 9.4. The interpoint
x2-distances can be verified by plotting the observed distances versus the true
ones (Exhibit 9.6). For the five row points there are 10 = 5 x 4/2 interpoint
distances, and for the four column points there are 6 = 4 x 3/2 interpoint
distances. There is an excellent agreement, which was to be expected since
the quality of display of the profiles is 99.5% in both cases.

observed S
distance ] )

0.0 +————————
0.0 0.5

true distance (rows)

0.0 +—————7——
0.0 0.5

true distance (columns)
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Exhibit 9.5:
Symmetric map of
smoking data; both
rows and columns
are in principal
coordinates.

Verification of
interpoint
chi-squared
distances in
symmetric map

Exhibit 9.6:
Observed interpoint
row distances and
interpoint column
distances measured
in Exhibit 9.5,
plotted against the
true x>-distances
between the row
profiles and between
the column profiles,
respectively, of
Exhibit 9.1.
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SUMMARY:
Two-Dimensional
Displays

Two-Dimensional Displays

There is a price to pay for the convenience of the symmetric map which comes
in the form of a danger in interpreting row-to-column distances directly. No
such distance is defined or intended in this map. This is the aspect of CA that
is often misunderstood and has caused some confusion amongst users who
would like to make clusters of row and column points in a symmetric map
(see the Epilogue, page 296). Strictly speaking, it is not possible to deduce
from the closeness of a row and column point the fact that the corresponding
row and column necessarily have a high association. Such an interpretation is
justified to a certain extent in the case of the asymmetric map, as illustrated in
Exhibit 9.3. A golden rule in interpreting maps of this type is that interpoint
distances can be interpreted whenever the points concerned are situated in the
same space, for example row profiles along with the vertex points representing
the columns in the row profile space. When interpreting a symmetric map, the
fact that this is the overlay of two separate maps should always be borne in
mind. In Chapter 13 the row—column interpretation called the “biplot” will be
described — this is the more accurate way of thinking about the joint display
of rows and columns.

1. Asthe dimensionality of the subspace of display is increased, so the capacity
of the display to represent the profile points accurately is improved. There
is, however, a trade-off in the sense that the visualization of the points
becomes more and more complex beyond two dimensions. Two-dimensional
displays are usually the displays of choice.

2. The principal axes are nested; i.e. the first principal axis found in the
one-dimensional solution is identical to the first principal axis in the two-
dimensional solution, and so on. Increasing the dimensionality of the dis-
play simply implies adding new principal axes to those already found.

3. An asymmetric map is one in which the row and column points are scaled
differently, e.g. the row points in principal coordinates (representing the
row profiles) and the column points in standard coordinates (represent-
ing the column vertices). There are thus two asymmetric plots possible,
depending on whether the row or column analysis is of chief interest.

4. In an asymmetric map where the rows, for example, are in principal co-
ordinates (i.e. the row analysis), distances between displayed row points
are approximate y2-distances between row profiles; and distances from the
row profile points to a column vertex point are, as a general rule, inversely
related to the row profile elements for that column.

5. A more common type of display, however, is the symmetric map where
both rows and columns are scaled in principal coordinates.

6. In a symmetric map, the row-to-row and column-to-column distances are
approximate y2-distances between the respective profiles. There is no spe-
cific row-to-column distance interpretation in a symmetric map.



Three More Examples

To conclude these first 10 introductory chapters, three additional applications
of correspondence analysis (CA) are now given: (i) a table which summarizes
the classification of scientists from 10 research areas into different categories
of research funding; (ii) a table of counts of 92 marine species at a number
of sampling points on the ocean floor; (iii) a linguistic example, where the
letters of the alphabet have been counted in samples of texts by six English
authors. In the course of these examples we shall discuss some further issues
concerning two-dimensional displays, such as the interpretation of dimensions,
the difference between asymmetric and symmetric maps, and the importance
of the aspect ratio of the map.
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The data come from a scientific research and development organization which
has classified 796 scientific researchers into five categories for purposes of
allocating research funds (Exhibit 10.1). The researchers are cross-classified
according to their scientific discipline (the 10 rows of the table) and funding
category (the 5 columns of the table). The categories are labelled A, B, C, D
and E, and are in order from highest to lowest categories of funding. Categories
A to D are for researchers who are receiving research grants, from A (most
funded) to D (least funded), while E is a category assigned to researchers
whose applications have not been successful (i.e. funding application rejected).

Data set 5:
Evaluation of
scientific
researchers
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Exhibit 10.1:
Frequencies of
funding categories
for 796 researchers
who applied to a
research agency: A is
the most funded, D
is the least funded
and E is not funded.
The last row shows
the average row
profile, i.e. relative
frequencies of the
column sums, in
percentage form.

Decomposition
of inertia

Asymmetric
map of row profiles

Three More Examples

SCIENTIFIC FUNDING CATEGORIES
AREAS A B C D E Sum
Geology 3 19 39 14 10 85
Biochemistry 1 2 13 1 12 29
Chemistry 6 25 49 21 29 130
Zoology 3 15 41 35 26 120
Physics 10 22 47 9 26 114
Engineering 3 11 25 15 34 88
Microbiology 1 6 14 b) 11 37
Botany 0 12 34 17 23 86
Statistics 2 5 11 4 7 29
Mathematics 2 11 37 8 20 78
Sum 31 128 310 129 198 796

Average row profile 3.9% 16.1% 38.9% 16.2% 24.9%

This 10 x 5 table lies exactly in four-dimensional space and the decomposition
of inertia along the four principal axes is as follows:
Dimension  Principal inertia  Percentage of inertia

1 0.03912 47.2%
2 0.03038 36.7%
3 0.01087 13.1%
4 0.00251 3.0%

Each axis accounts for a part of the inertia, expressed as a percentage. Thus
the first two dimensions account for almost 84% of the inertia. The sum of the
principal inertias is 0.08288, so the y? statistic is 0.08288 x 796 = 65.97. If one
wants to perform the statistical test using the y? distribution with 9 x 4 = 36
degrees of freedom, this value is highly significant (p = 0.002).

Exhibit 10.2 shows the asymmetric map of the row profiles and the column
vertices. In this display we can see that the magnitude of the association
between the disciplines and the research categories is fairly low; in other words
the profiles do not deviate too much from the average (cf. Exhibit 4.2). This
situation is fairly typical of social science data, so the asymmetric map is
not so successful because all the profile points are bunched up in the middle
of the display — in fact, they are so close to one another that we cannot
write the full labels and have just put the first two letters of each discipline.
Nevertheless, we can interpret the space easily looking at the positions of
the vertices. The horizontal dimension lines up the four categories of funding
in their inherent ordering, from D (least funded) to A (most funded), with B
and C close together in the middle. The vertical dimension opposes category E
(not funded) against the others, so the interpretation is fairly straightforward.
The more a discipline is high up in this display the less its researchers are
granted funding. The more a discipline lies to the right of this display, the more
funding its funded researchers receive. Using marketing research terminology,
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the “ideal point” is in the lower right of the map: more grant applications
accepted (low down), and those accepted receiving good classifications (to
the right). Hence, if we were doing a trend study over time, disciplines would
need to move towards the lower right-hand side to show an improvement in
their funding status. At the moment there are no disciplines in this direction,
although Physics is the most to the right (highest percentage — 10 out of 114,
or 8.8% — of type A researchers). But Physics is at the middle vertically since
it has a percentage of non-funded researchers close to average (26 out of 114
not funded, or 22.8%, compared to the average of 198 out of 796, or 26.5%).

Exhibit 10.3 shows the symmetric map of the same data, so that the only dif-
ference between this display and that of Exhibit 10.2 is that the column profiles
are now displayed rather than the column vertices, leading to a change in scale
which magnifies the display of the row profiles. This zooming in on the con-
figuration of disciplines facilitates the interpretation of their relative positions
and also gives space for fuller labels. The relative positions of the disciplines
can now be seen more easily: for example, Geology, Statistics, Mathematics
and Biochemistry are all at a similar position on the first axis, but widely
different on the second. This means that the researchers in these fields whose
grants have been accepted have similar positions with respect to the funded
categories A to D, but Geology has many fewer rejections (11.8% of category
E) than Biochemistry (41.4%). In this symmetric display we cannot assess
graphically the overall level of association (inertia) between the rows and the
columns. This can be assessed only from the numerical value of the principal

Exhibit 10.2:
Asymmetric CA
map of the row
profiles of Exhibit
10.1 (scientific
funding data).

Symmetric map
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Exhibit 10.3:
Symmetric CA map
of Exhibit 10.1
(scientific funding
data).

Dimensional
interpretation of
maps

Data set 6:
Abundances of
marine species in
seabed samples

Three More Examples
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inertias along the axes, or their square roots which are the canonical corre-
lations along each axis, namely 1/0.039117 = 0.198 and +/0.030381 = 0.174
respectively. The level of row—column association can be judged graphically
only in an asymmetric map such as Exhibit 10.2 (compare again the different
levels of association illustrated in Exhibit 4.2).

Whether the joint map is produced using asymmetric or symmetric scaling,
the dimensional style of interpretation remains universally valid. This involves
interpreting one axis at a time, as we did above and as is customary in factor
analysis. The relative positions of one set of points — the “variables” of the
table, in this case the funding categories — are used to give a descriptive
name to the axis. Then the positions of the scientific discipline points are
interpreted with respect to each axis. All statements in such an interpretation
are relative and it is not possible to judge the absolute difference in funding
profiles between the disciplines unless we refer to the original data. Putting
this another way, symmetric maps similar to Exhibit 10.3 could be obtained for
other data sets where there are much larger (or smaller) levels of association
between the funding categories and the disciplines.

CA is used extensively to analyse ecological data, and the second example
represents a typical data set in marine biology. The data, given partially in
Exhibit 10.4, are the counts of 92 marine species identified in 13 samples
from the seabed in the North Sea. Most of the samples are taken close to an
oil-drilling platform where there is some pollution of the seabed, while two
samples, regarded as reference samples and assumed unpolluted, are taken far
from the drilling activities. These data, and biological data of this kind in



Data set 6: Abundances of marine species in seabed samples

-2

-3

STATIONS (SAMPLES)

SPECIES S4 S8 S9 S12 S13 S14 S15 S18 S19 S23 S24 R40R42
Gala.ocul. 193 79 150 72 141 302 114 136 267 271 992 5 12
Chae.seto. 34 4 247 19 52 250 331 12 125 37 12 8 3
Amph.falc. 49 58 66 47 78 92 113 38 96 76 37 0O 5
Myse.bide. 30 11 36 65 35 37 21 3 20 156 12 58 43
Goni.macu. 35 39 41 37 32 45 41 41 31 29 64 32 23
Ophi.flex. 0 1 1 0 0 0 0 1 0 0 0 0 O
Eucl.sp. 0 0 0 0 1 0 0 1 1 0 0 0 O
Scal.infl. 0 1 0 O 0 1 0 0 0 0 0 O 1
Eumi.ocke. 0 0 1 0 0 1 1 0 0 0 0 0 O
Modi.modi. 0 O 0 1 1 0 0 1 0 0 0 0 O
0.204 (26.1%)
Gala.ocul.
S24
® Timo.ovat.
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S4 e S8 . o Mysebide.
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°
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Exhibit 10.4:
Frequencies of 92
marine species in 13
samples (the last
two are reference
samples); the species
(rows) have been
ordered in
descending order of
total abundance;
hence, the five most
abundant and five
least abundant
species are shown
here.

Exhibit 10.5:
Asymmetric CA
map of abundance
data of Exhibit 10.4,
with stations in
principal
coordinates and the
species in standard
coordinates. The
species symbols have
sizes proportional to
the total species
abundance (mass)
— some important
species for the
interpretation are
labelled, with the
first letter of the
label being close to
its corresponding
triangular symbol
(see text why these
species are singled
out). Inertia
explained in map:
57.5%.
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Asymmetric
CA map of species
abundance data

Data set 7:
Frequencies of
letters in books by
six authors

One of the

lowest inertias one
can get, but with a
significant
structure

Three More Examples

general, are characterized by high variability, which can already be seen by
simple inspection of the small part of the data given here. The total inertia
of this table is 0.7826, much higher than in the previous examples, so we can
expect the profiles to be more spread out relative to the vertices. Notice that
in this example the y2-test is not applicable, since the data do not constitute
a true contingency table — each individual count is not independent of the
others, since the marine organisms often occur in groups at a sampling point.

Exhibit 10.5 shows the asymmetric map of the sample (column) profiles and
species (row) vertices. In ecology this is frequently referred to as an ordination
of the samples and species. Since there are 92 species points, it is impossible
to label each point so we have labelled only the points which have a high
contribution to the map; these are generally the most abundant ones. (The
topic of how to measure this contribution is described in Chapter 11; for
the moment let us simply report that 10 out of the 92 species contribute over
85% to the construction of this map, the other 82 could effectively be removed
without the map changing very much.) The stations form a curve from bottom
left (actually, the most polluted stations) to top right (the least polluted), with
the reference stations far from the drilling area at upper right. An exception
is station 24, which separates out notably from the others, mainly because of
the very high abundance of species Gala.ocul. (Galathowenia oculata) which
can be seen in the first row of Exhibit 10.4. Notice that the asymmetric map
functions well in this example because the inertia is so high, which is typical
of ecological data where there is high variability between the samples. The
next example is the complete opposite!

This surprising example is a data set provided in the ca package of the R
program (see Computational Appendix, pages 260-265). The data form a
12 x 26 matrix with the rows representing 12 texts which form six pairs,
each pair by the same author (Exhibit 10.6 shows a part of the matrix).
The columns are the 26 letters of the alphabet, a to z. The data are the
counts of these letters in a sample of text from each of the books. There are
approximately 6500-7500 letter counts for each book or chapter.

This data set has one of the lowest total inertias I have seen in my experience
with CA: the total inertia is 0.01873, which means that the data are very
close to the expected values calculated from the marginal frequencies; i.e. the
profiles are almost identical. The asymmetric map of these data is shown in
Exhibit 10.7, showing the letters in their vertex positions and the 12 texts as
a tiny blob of points around the origin, showing how little variation there is
between the texts in terms of letter distributions, as expected. If one expands
the tiny blob of points, it is surprising to see how much structure there is
within such tiny variation. Each pair of texts by the same author lies in the
same vicinity, and the result is highly significant from a statistical viewpoint
(this permutation test is described in Chapter 30, pages 235-236).



Importance of preserving a unit aspect ratio in maps

BOOKS a b c d e - w X y z  Sum
TD-Buck 550 116 147 374 1015 155 5 150 3 7144
EW-Buck 557 129 128 343 996 187 10 184 4 7479
Dr-Mich 515 109 172 311 827 156 14 137 5 6669
As-Mich 554 108 206 243 797 149 2 80 6 6510
LW-Clar 590 112 181 265 940 146 13 162 10 7100
PF-Clar 592 151 251 238 985 106 15 142 20 7505
FA-Hemi 589 72 129 339 866 225 1 155 2 6877
Is-Hemi 576 120 136 404 873 250 3 104 5 6924
SF7-Faul 541 109 136 228 763 160 11 280 1 6885
SF6-Faul 517 96 127 356 771 216 12 171 5 6971
Pe3-Holt 557 97 145 354 909 194 9 140 4 6650
Pe2-Holt 541 93 149 390 887 218 2 127 2 6933

Abbreviations:

TD (Three Daughters), EW (East Wind) -Buck (Pearl S. Buck)

Dr (Drifters), As (Asia) -Mich (James Michener)

LW (Lost World), PF (Profiles of Future) -Clar (Arthur C. Clarke)

FA (Farewell to Arms), Is (Islands) -Hemi (Ernest Hemingway)

SF7 and SF6 (Sound and Fury, chapters 7 and 6) -Faul (William Faulkner)
Pen3 and Pen2 (Bride of Pendorric, chapters 3 and 2) -Holt (Victoria Holt)

An important final remark concerns the physical plotting of two-dimensional
CA maps. Since distances in the map are of central interest, it is clear that
a unit on the horizontal axis of a plot should be equal to a unit on the
vertical axis. Even though this requirement seems obvious, it is commonly
overlooked in many software packages and spreadsheet programs that produce
scatterplots of points with different scales on the axes. For example, the points
might in reality have little variation on the vertical second axis, but the map
is printed in a pre-defined rectangle which then exaggerates the second axis.
We say that the aspect ratio of the map, that is the ratio of one unit length
horizontally to one unit vertically, should be equal to 1. A few options for
producing maps are described at the end of the Computational Appendix,
pages 283-284.

1. When applicable, it is useful to test a contingency table for significant
association, using the x2 test. However, statistical significance is not a
crucial requirement for justifying an inspection of the maps. CA should be
regarded as a way of re-expressing the data in pictorial form for ease of
interpretation — with this objective any table of data is worth looking at.

2. In both asymmetric and symmetric maps the dimensional style of inter-
pretation is valid. This applies to one axis at a time and consists of using
the relative positions of one set of points on a principal axis to give the
dimension a conceptual name, and then separately interpreting the relative
positions of the other set of points along this named dimension.
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Exhibit 10.6:
Letter counts in 12
samples of texts
from books by 6
different authors,
showing data for 9
out of 26 letters.

Importance of
preserving a unit
aspect ratio in
maps

SUMMARY:
Three More
Examples
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Exhibit 10.7:
Asymmetric CA
map of the author
data of Exhibit 10.6,
with row points
(texts) in principal
coordinates. The
very low inertia in
the table is seen in
the closeness of the
row profiles to the
centroid. A
“blow-up” of the
rectangle at the
centre of the map
shows the relative
positions of the row
profiles.

Three More Examples
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3. The asymmetric map functions well when total inertia is high, but it is
problematic when total inertia is small because the profile points in prin-
cipal coordinates occupy a small space around the origin.

4. Tt is important to have plotting facilities which preserve the aspect ratio of
the display. A unit on the horizontal axis must be as close as possible to a
unit on the vertical axis of the map; otherwise distances will be distorted
if the unit lengths are different.



Contributions to Inertia

The total inertia of a cross-tabulation is a measure of how much variation there
is in the table. We have seen how this inertia is decomposed along principal
axes and also how it is decomposed amongst the rows or amongst the columns.
The inertia can be further broken down into row and column components
along individual principal axes. The investigation of these parts of inertia,
analogous to an analysis of variance, plays an important supporting role in
the interpretation of correspondence analysis (CA). They provide diagnostics
which allow the user to identify which points are the major contributors to a
principal axis and to assess how well individual points are displayed.
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In Chapter 4, Equation (4.7), we saw that the total inertia can be interpreted
geometrically as the weighted average of squared y2-distances between the
profiles and their average profile, and is identical for row profiles and for
column profiles. If there are only small differences between the profiles and
their average, then the inertia is close to zero; i.e. there is low dispersion
(see Exhibit 4.2, top left display). At the other extreme, if each profile is
highly concentrated in a few categories, and in different categories from profile
to profile, then the inertia is high (Exhibit 4.2, lower right display). The
inertia is a measure of how spread out the profiles are in the profile space,
which is a simplex delimited by the vertex points. If all the profiles are at the
vertices of the space, i.e. each in one category only, the inertia is equal to the
dimensionality of the space: 2 for a 3-vertex triangle, 3 for a tetrahedron, etc.

Total inertia
measures overall
variation of the
profiles
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Row and
column inertias

Exhibit 11.1:

Row and column
contributions to
inertia, in raw
amounts which sum
up to the total
inertia, or expressed
relatively as permills
(%o) which add up
to 1000.

Large and
small contributions

Cell
contributions to
inertia

Contributions to Inertia

There are various ways that the inertia can be decomposed into the sum of
positive components, and this provides a numerical “analysis of inertia” which
is helpful in interpreting the results of CA. According to Equation (4.7), each
row makes a positive contribution to the inertia in the form of its mass times
squared distance to the row centroid — we call this the row inertia. The
same applies to the columns, leading to column inertias. The actual values of
these parts of inertia are numbers that are inconvenient to interpret and it
is easier to judge them relative to the total inertia, expressed as proportions,
percentages or more conveniently as permills (i.e. thousandths, denoted by °
Joo). Exhibit 11.1 gives the row and column inertias for the scientific funding
data of Exhibit 10.1, first in their “raw” form, and then in their relative
form expressed as permills (°%o0). Permills are used extensively throughout
the numerical results of the “ca” package in R (see Computational Appendix,
pages 262-263), because they provide three significant digits without using a
decimal point, thus improving legibility of the results.

ROWS Inertia Yoo Inertia COLUMNS  Inertia %o Inertia
Geology 0.01135 137 A 0.01551 187
Biochemistry  0.00990 119 B 0.00911 110
Chemistry 0.00172 21 C 0.00778 94
Zoology 0.01909 230 D 0.02877 347
Physics 0.01621 196 E 0.02171 262
Engineering 0.01256 152

Microbiology  0.00083 10

Botany 0.00552 67

Statistics 0.00102 12

Mathematics  0.00466 56

Total 0.08288 1000 Total 0.08288 1000

From the “%oo inertia” columns in Exhibit 11.1 we can see at a glance that
the major contributors to inertia are the rows Zoology, Physics, Engineering,
Geology and Biochemistry, in that order, while for the columns the major
contributors are categories D and E. As a general guideline for deciding which
contributions are large and which are small, we use the average as a threshold.
For example, there are 10 rows, so on a permill scale this would be 100 on
average per row; hence we regard rows with contributions higher than 100%o
as major contributors. On the other hand, there are five columns, which give
an average of 200%o, so the two columns D and E are the major contributors.

A finer look at the inertia contributions can be made by looking at each in-
dividual cell’s contribution. As described in Chapter 4, each cell of the table
contributes a positive amount to the total inertia, which can again be ex-
pressed on a permill scale — see Exhibit 11.2. Here we can see specific cells
such as [Zoology,D] and [Physics,A], that are contributing highly to the inertia



Decomposition along principal axes

SCIENTIFIC FUNDING CATEGORIES

AREAS A B c D E Sum
Geology 0 32 16 0 89 137
Biochemistry 0 23 4 44 48 119
Chemistry 3 12 1 0 5 21
Zoology 9 15 11 189 8 230
Physics 106 11 2 74 3 196
Engineering 1 11 38 1 102 152
Microbiology 2 0 0 3 5 10
Botany 51 4 0 10 2 67
Statistics 10 0 0 2 0 12
Mathematics 5 3 22 26 0 56
Sum 187 110 94 347 262 1000

— just these two cells together account for almost 30% of the table’s total
inertia (189 + 106 = 295%u, i.e. 29.5%). The cell contributions to inertia are
sometimes called chi-square contributions because they are identical to the
relative contributions of each cell to the x? statistic. The row and column
sums of this table give the same permill contributions of FExhibit 11.1.

The other major decomposition of inertia is with respect to, or “along”, prin-
cipal axes. On page 74 we gave the first two principal inertias for this 10 x 5
table, which has four dimensions. Exhibit 11.3 gives all the principal inertias,
their precentages and a bar chart (this type of bar chart is often called a
scree plot). We have seen that the principal inertias have an interpretation in
their own right, for example as squared canonical correlations (see Chapter
8, page 61), but we mainly interpret their values relative to the total, usually
expressed as percentages rather than permills in this particular case.

Dim. Principal inertia % inertia Cumulative % |
1 0.03912 47.2% 47.2%
2 0.03038 36.7% 83.9%
3 0.01087 13.1% 97.0% I
4 0.00251 3.0% 100.0% o
Total 0.08288 i i . ,
0 001 002 003 0.04

Each principal inertia is itself an inertia, calculated for the projections of the
row profiles (or column profiles) onto a principal axis. For example, the 10
row profiles of the scientific funding data lie in a full space of dimensionality
4 — as we have seen before, this is one less than the number of columns, since
there are less columns than rows. Their weighted sum of squared distances
to the row centroid is equal to the total inertia, with value 0.08288. The first
principal axis is the straight line that comes closest to the profile points in
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Exhibit 11.2:

Cell contributions to
inertia, expressed as
permills; the row
and column sums of
this table are
identical to the row
and column inertias
in permills given n

Exhibit 11.1.

Decomposition
along principal
axes

Exhibit 11.3:
Principal inertias,
percentages and
cumulative
percentages for all
dimensions of the
scientific-funding
data, and a scree
plot.

Components of
each principal
inertia
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Exhibit 11.4:

Row and column
contributions to the
first principal
inertia, in raw
amounts which sum
up to the principal
inertia, or expressed
relatively as permills

(%00).

Exhibit 11.5:

Raw components of
inertia for each row
(scientific area) over
all four principal
axes: the sums over
the axes (row totals)
are the row inertias
of Exhibit 11.1, the
sums over the rows
(column totals) are
the principal inertias
of Exhibit 11.3, and
the grand total is
the total inertia.

Complete
decomposition of
inertia over profiles
and principal axes

Contributions to Inertia

ROWS Inertia %o inertia COLUMNS  Inertia %o inertia
Geology 0.00062 16 A 0.00890 228
Biochemistry  0.00118 30 B 0.00260 67
Chemistry 0.00023 6 C 0.00265 68
Zoology 0.01616 413 D 0.02471 632
Physics 0.01426 365 E 0.00025 6
Engineering 0.00153 39

Microbiology ~ 0.00001 0

Botany 0.00345 88

Statistics 0.00057 14

Mathematics  0.00112 29

Total 0.03912 1000 Total 0.03912 1000
SCIENTIFIC PRINCIPAL AXES

AREAS Axis 1 Axis 2 Axis 3 Axis 4 Total

Geology 0.00062 0.00978 0.00082 0.00013 0.01135
Biochemistry 0.00118 0.00754 0.00084 0.00034 0.00990
Chemistry 0.00023 0.00088 0.00029 0.00032 0.00172

Zoology 0.01616 0.00158 0.00063 0.00073 0.01909

Physics 0.01426  0.00010 0.00169 0.00016 0.01621
Engineering 0.00153  0.00941 0.00127 0.00036 0.01256
Microbiology 0.00001  0.00056 0.00008 0.00019 0.00083

Botany 0.00345 0.00016 0.00180 0.00011 0.00552

Statistics 0.00057  0.00001 0.00042 0.00003 0.00102
Mathematics 0.00112 0.00037 0.00302 0.00015 0.00466

Total 0.03912 0.03038 0.01087 0.00251 0.08288

the sense of least squares. This axis passes through the row centroid, which is
at the origin, or zero point, of the display. Suppose that all the row profiles
are projected onto this axis, as was done for the health categories in Exhibit
6.3. The first principal inertia, equal to 0.03912, is then the weighted sum
of squared distances from these projections to the centroid, i.e. the inertia
of the set of projected points on the first principal axis. Using the principal
coordinates on the axis we obtain the row and column components of the
first principal inertia, shown in Exhibit 11.4. This shows that category D is
the dominant contributor to the first axis, followed by A, while the other
categories contribute very little. As for the rows, Zoology (highly associated
with D) and Physics (highly associated with A) contribute almost 78% of the
inertia on the first axis.

We can repeat the above for all the principal axes, and Exhibit 11.5 shows
the raw components of inertia of the rows for all four axes, (a similar table
can be constructed for the columns). Just as the raw inertias in Exhibit 11.4
have been expressed in permills relative to the first principal inertia, we could
do the same for axes 2 to 4 as well. For example, the major row contribu-



Components of each profile’s inertia

tions to the second axis are Geology, Engineering and Biochemistry. Inspecting
these contributions of each row point (and, similarly, each column point) to
the principal axes gives numerical support to our interpretation of the map,
showing which rows and which columns are important in constructing the
axes.

Whereas the column sums of Exhibit 11.5 give the principal inertias on re-
spective axes, the row sums give the inertias of the profiles (hence these row
sums are the same as the first column of Exhibit 11.1). We can also express
these components relative to the row inertias, again either as proportions,
percentages or permills. These will tell us how well each row is explained by
each principal axis. This is a pointwise version of the way we interpreted the
principal inertias, which quantified the percentage of the total inertia that
was contained on each axis — here we do the same for each point separately.
Exhibit 11.6 gives these relative amounts in permills, so that each row now
adds up to 1000. For example, Geology is mostly explained by axis 2, whereas
Physics mostly by axis 1. Mathematics, on the other hand, is not well explained
by axis 1 or axis 2; in fact, its inertia is mostly in the third dimension.

SCIENTIFIC PRINCIPAL AXES

AREAS Axis 1  Axis 2 Axis 3 Axis 4 Total
Geology 55 861 72 11 1000
Biochemistry 119 762 85 35 1000
Chemistry 134 510 170 186 1000
Zoology 846 83 33 38 1000
Physics 880 6 104 10 1000
Engineering 121 749 101 28 1000
Microbiology 9 671 96 224 1000
Botany 625 29 326 20 1000
Statistics 554 7 410 30 1000
Mathematics 240 79 649 33 1000
Average 472 367 131 30 1000

Exhibit 11.7 illustrates the decomposition of inertia geometrically and intro-
duces some notation at the same time. The point a; is a general profile point
in multidimensional space, i.e. the i-th row profile, with mass r;, at a distance
of d; from the average row profile c. Hence, using formula (4.7), the total
inertia is equal to ), 7;d?. A general principal axis k is shown and the point’s
principal coordinate on this axis is denoted by f;x. Thus the inertia along this
axis (i.e. the k-th principal inertia) is >, r; f3, usually denoted by A;. The
contribution of each point ¢ to the principal inertia of axis k is r; fl%c relative to
Ak (these proportions are given in permills for axis 1 in Exhibit 11.4). Exhibit
11.5 is actually the table of values r; fk for the 10 rows and 4 principal axes
of the scientific funding data, with column sums equal to the A;’s and the
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inertia

Exhibit 11.6:
Relative contri-
butions (in permills,
i.e. Yo) of each
principal axis to the
inertia of individual
points; the last row
shows the same
calculation for the
principal inertias
(cf. Exhibit 11.3),
which can be
regarded as average
relative
contributions.

Algebra of inertia
decomposition
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Exhibit 11.7:
Example of a profile
point in
multidimensional
space at a
XQ—djstance d; from
the centroid,
projecting onto the
k-th principal axis
at the principal
coordinate fij.

Relative
contributions as
squared angle
cosines

Relative
contributions as
squared
correlations

Contributions to Inertia

ith point a;

. with mass r;
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kth principal axis

centroid projection on axis
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row sums equal to the row inertias r;d?. Thanks to Pythagoras’ theorem, we
have d? = Y, f7., which is why the rows of Exhibit 11.5 sum up to the row

inertias:
Z T iZk = ’I“idiQ
k
Hence, the contribution of axis k to the inertia of point i is 7; f3 relative to
r;d? (these proportions are given in Exhibit 11.6).

There is an alternative geometric interpretation of the relative contributions
in Exhibit 11.6. Since the proportion of inertia of point i explained by axis k
is v f2./rid? = (fir/di)?, it is clear from Exhibit 11.7 that this is the square of
the angle cosine between the point and the axis. Suppose this angle is denoted
by 0k, then cos(6;x) = fir/d; and the relative contribution is cos?(6;x). For
example, axis 1 has a relative contribution of 0.880 to the point Physics; hence
cos?(051) = 0.880, from which we can evaluate cos(f51) = 0.938 and the angle
051 = 20°. This shows that the point Physics, which is mostly explained by
axis 1, is close to axis 1, subtending a small angle of 20° with it. A point such
as Geology, with a relative contribution of 0.055, subtends a large angle of
011 = 76° with axis 1, so it is not at all aligned with this axis but lying closer
to different dimensions of the space (in fact, mostly along axis 2, as can be
seen by the high relative contribution to Geology of 0.861 by the second axis).

There is a further interpretation of the relative contributions: angle cosines
between vectors can be interpreted as correlation coefficients; hence the rela-
tive contributions are also squared correlations. We can thus say that Physics
has a high correlation of +/0.880 = 0.938 with axis 1, whereas Geology has a
low correlation of /0.055 = 0.234. If the correlation is 1, the profile point lies
on the principal axis, and if the correlation is 0 the profile is perpendicular to
the principal axis (angle of 90°).



Quality of display in a subspace

SCIENTIFIC FUNDING

AREAS Quality CATEGORIES Quality
Geology 916 A 587
Biochemistry 881 B 816
Chemistry 644 C 465
Zoology 929 D 968
Physics 886 E 990
Engineering 870

Microbiology 680

Botany 654

Statistics 561

Mathematics 319

Overall 839 Overall 839

Thanks to Pythagoras’ theorem, the squared cosines of the angles between a
point and each of a set of axes can be added together to give squared cosines
between the point and the subspace generated by those axes. For example, the
angle between a row profile and the principal plane can be computed from the
sum of the relative contributions along the first two principal axes. Exhibit
11.8 gives the sum of the first two columns of Exhibit 11.6, and these are
interpreted as measures of quality of individual points in the two-dimensional
CA maps, just as the sum of the first two percentages of inertia (83.9%)
is interpreted as a measure of overall (or average) quality of display. Here
we can see which points are well represented in the two-dimensional display
and which are not. Some profiles will not be accurately represented because
they lie more along the third and fourth axes than along the first two. Thus
Mathematics is poorly displayed, with over two-thirds of its inertia lying off
the plane of Exhibits 10.2 and 10.3. The position of Mathematics looks quite
similar to that of Statistics, but this projected position of Mathematics is not
an accurate reflection of its true position.

This section is mainly aimed at readers with a knowledge of factor analysis
— several entities in CA have direct analogues with those in factor analysis.

® The analogue of a factor loading is the angle cosine between a point and
an axis, i.e. the square root of the squared correlation along with the sign
of the point’s coordinate. For example, from Exhibits 11.1 and 11.4, the
squared correlations of the categories A to E are:

0.00890 0.00260 0.00265
A: 001551 — 0.574 B: 000911 — 0.286 C: 000778 — 0.341
0.02471 0.00025
— =0. E: ——— =0.012
0.02877 0859 0.02171 0.0

Exhibit 11.8:

Quality of display

(in permills) of
individual row
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profile points in two

dimensions; only
Mathematics has

less than 50%

(i.e. 500%) of its
inertia explained.

Quality of display

in a subspace

Analogy with
factor analysis
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SUMMARY:
Contributions to
Inertia

1.

2.

Contributions to Inertia

Using the signs of the column coordinates in Exhibit 10.3, the CA “factor
loadings” would be the signed square roots:

A:0.758 B:0.535 C:0.584 D: —0.927 E: —0.108

The analogue of a communality is the quality measure on a scale of 0 to
1. For example, in the two-dimensional solution, the CA “communalities”
of the five column categories are given by the last column of Exhibit 11.8
on the original scale: 0.587, 0.816, 0.465, 0.968 and 0.990 respectively.

The analogue of a specificity is 1 minus the quality measure on a scale of
0 to 1. For example, in the two-dimensional solution, the CA “specifici-
ties” of the five column categories are 0.413, 0.184, 0.535, 0.032 and 0.010
respectively.

The (total) inertia of a table quantifies how much variation is present in
the set of row profiles or in the set of column profiles.

Each row and each column makes a contribution to the total inertia, called
a row inertia and a column inertia respectively.

CA is performed with the objective of accounting for a maximum amount
of inertia along the first axis. The second axis accounts for a maximum of
the remaining inertia, and so on. Thus, the total inertia is also decomposed
into components along principal axes, called principal inertias.

. The principal inertias are themselves decomposed over the rows and the

columns. These inertia contributions are more readily expressed in relative

amounts, and there are two possibilities:

(a) express each contribution to the k-th axis relative to the corresponding
principal inertia;

(b) express each contribution to the k-th axis relative to the corresponding
point’s inertia.

. Possibility (a) allows diagnosing which points have played a major part

in determining the orientation of the principal axes. These contributions
facilitate the interpretation of each principal axis.

. Possibility (b) allows diagnosing the position of each point and whether a

point is well represented in the map, in which case the point is interpreted
with confidence, or poorly represented, in which case its position is inter-
preted with more caution. These quantities are squared cosines between
the points and the principal axes, also interpreted as squared correlations.

. The sum of squared correlations for a point in a low-dimensional solution

space gives a measure of quality of representation of the point in that space.

. The correlations of the points with the axes are the analogues of factor

loadings, the qualities are analogues of communalities and 1 minus the
qualities the analogues of specificities.



Supplementary Points

It frequently happens that there are additional rows and columns of data
that are not the primary data of interest, but which are useful in interpreting
features discovered in the primary data. Any additional row (or column) of a
data matrix can be positioned on an existing map, as long as the profile of this
row (or column) is meaningfully comparable to the existing row profiles (or
column profiles) that have determined the map. These extra rows or columns
that are added to the map afterwards are called supplementary points.

Contents

Active points . . . . . . .. e 89
Definition of a supplementary point . . . . . . ... ... ... ... . 89
First case — a point inherently different from the rest . . . . . .. . .. 90
Second case — an outlier of low mass . . . . . . . .. ... ... 91
Third case — displaying groups or partitions of points . . . . . . . . . . 93
Positioning a supplementary point relative to the vertices . . . . . . . . 93
Contributions of supplementary points . . . . . . . . .. ... ... ... 94
Vertices are supplementary points . . . . . . . . . . ... ... ... .. 94
Categorical supplementary variables and dummy variables . . . . . . . . 95
Continuous supplementary variables . . . . . . .. ... ... ...... 95
SUMMARY: Supplementary Points. . . . . . . . ... ... .. ..... 96

Up to now all rows and all columns of a particular table of data have been
used to determine the principal axes and hence the map — we say that all
rows and columns are active in the analysis. One can think of each active
point having a different force of attraction for the principal axes, where this
force depends on the position of the point as well as its mass. Profiles farther
from the average have more “leverage” in orienting the map towards them,
and higher mass profiles have a greater “pull” on the map.

There are situations, however, when we wish to suppress some points from
the actual computation of the solution while still being able to inspect their
projections onto the map which best fits the active points. The simplest way to
think of such points is that they have a position but no mass at all, so that their
contribution to the inertia is zero and they have no influence on the principal
axes. Such zero mass points are called supplementary points, sometimes also
called passive points to distinguish them from the active points that have
positive mass. There are three common situations when supplementary rows
or columns can be useful, and we now illustrate each of these in the context
of the scientific funding data set of the previous chapters. Exhibit 12.1 shows

Active points

Definition of a
supplementary
point

89



90

Exhibit 12.1:
Frequencies of
funding categories
for 796 researchers
(Exhibit 10.1), with
additional column Y
for a new category
of “promising young
researchers”, an
additional row for
researchers at
museums, and a row
of cumulated
frequencies for
Statistics and
Mathematics,
labelled Math

Sciences

First case — a
point inherently
different from the
rest

Supplementary Points

SCIENTIFIC  FUNDING CATEGORIES

AREAS A B C D E Y
Geology 3 19 39 14 10 0
Biochemistry 1 2 13 1 12 1
Chemistry 6 25 49 21 29 0
Zoology 3 15 41 35 26 0
Physics 10 22 47 9 26 1
Engineering 3 11 25 15 34 1
Microbiology 1 6 14 5 11 1
Botany 0 12 34 17 23 1
Statistics 2 5 11 4 7 0
Mathematics 2 11 37 8 20 1
Museums 4 12 11 19 7
Math Sciences 4 16 48 12 27

an expanded version of that data set where we have added:

1. an additional column, labelled Y, which is a special category of funding
for young researchers, a category which had just been introduced into the
funding system:;

2. an additional row, labelled Museums, containing the frequencies of re-

searchers working at museums (as opposed to universities, in the rest of
the table);

3. another row, labelled Math Sciences, which is the sum of the rows Statistics

and Mathematics.

The study from which these data are derived was primarily aimed at univer-
sity researchers. Researchers from museums, however, were similarly graded
and sponsored by the same funding organization, hence the frequencies of 53
museum researchers in the five funding categories. While it is necessary to
consider the museum researchers separately from those at universities, it is
still of interest to visualize the profile of museum researchers in the “space” of
the university researchers, which can be done by declaring the row Museums
to be a supplementary point. Its profile does not participate in the determi-
nation of the principal axes, but its profile can be projected onto the map.
Exhibit 12.2 shows the symmetric map, as in Exhibit 10.2, with the additional
point Museums in the lower left-hand side of the map. This point has no con-
tribution to the principal inertia, but we can still look at the contributions
of the axes to the point (i.e. the relative contributions or squared cosines or
squared correlations). It turns out that this point is quite well displayed in
the map, with over 50% of its inertia explained by it. Its position indicates
that relatively few of the museum researchers have their applications rejected,



Second case — an outlier of low mass
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while those that do receive funding tend towards the lower categories. Various
types of supplementary information may be added to an active data set. Such
information may be part of the same study, as in the case of Museums above,
or it may come from separate but similar studies. For example, a similar table
of frequencies may be available from a previous, or subsequent, classification
of scientific researchers, and may be added as a set of supplementary rows in
order to trace the evolution of each discipline’s funding position over time.
Another example is when some target profiles for the disciplines are specified,
e.g. in the favourable bottom-right quadrant, and we want to judge how far
away their actual positions are from these targets. This concept of an “ideal
point” is frequently used in product positioning studies in marketing research.

Because the additional Y category had only just been introduced into the
funding system, very few researchers were allocated to that category, in fact
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Exhibit 12.2:
Symmetric map of
the data of Exhibit
12.1 (cf. Exhibit
10.2), showing in
addition the profile
positions of the
supplementary
column Y and
supplementary rows
Museums and Math
Sciences.

Second case — an
outlier of low mass



92

Exhibit 12.3:
Correspondence
analysis map of the
columns of Exhibit
12.1 when Y is
included as an active
point. The axes have
rotated clockwise by
about 30° compared
to Exhibit 12.2.
Exhibits 12.2 and
12.3 are on the same
scale to facilitate
comparison.
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only six researchers and each one in a different discipline. This means that the
profile of this column is quite unusual: six of the profile values have the value
% = 0.167 and the others are 0. No other column profile has the slightest
resemblance to this one, so it is to be expected that it has a very unusual
position in the multidimensional space. As we see in Exhibit 12.2, this point
is an outlier and if it were to be included as an active point in the analysis, it
may contribute greatly to the map. This would not be a satisfactory situation
since only six people are contained in the column Y — hence, apart from the
substantive reason for making it supplementary, there is also a technical one.
In this particular case, if we do include Y as an active point, its mass is less
than 1% of the columns, but the total inertia of the table increases from 0.0829
to 0.0920, an increase of 11%. In addition, the map changes substantially,
as can be seen in Exhibit 12.3 — there appears to be an approximate 30°
clockwise rotation in the solution compared to the previous solution; hence
the inclusion of Y has swung the axes around. We should be on the lookout for
such outlying points with low mass that contribute highly to the inertia of the
solution. In some extreme cases outliers can start to dominate a map so much
that the more interesting contrasts between the more frequently occurring
categories are completely masked. By declaring outliers supplementary, their
positions can still be approximately visualized without influencing the solution



Third case — displaying groups or partitions of points

space. Another way of dealing with rows or columns of low mass is to combine
them with other rows or columns in a way which conforms to the data context:
if we had an additional discipline, for example “Computer Science”, with very
few researchers in this category and a possibly strange profile as a result, we
could combine them with an allied field, say Statistics. Having said this, it is
a fact that outliers of low mass are often not such a serious problem in CA,
since influence is measured by mass times squared distance and the low mass
decreases the influence. The real problem is the fact that they lie so far from
the other points — we return to this subject in Chapter 13 when we discuss
alternative scalings for the map.

Supplementary points can be used to display a group of categories or to display
subdivisions of a category. For example, the additional row Math Sciences in
Exhibit 12.1 is the sum of the frequencies for Mathematics and Statistics, two
disciplines which are frequently grouped together. The profile of this new
row is the centroid of the two component rows, which are weighted by their
respective masses. Since there are 78 and 29 researchers in Mathematics and
Statistics respectively, the profile of Math Sciences would thus be:

Math Sciences profile = % x Mathematics profile + % X Statistics profile

so that the Math Sciences profile would be more like the Mathematics profile
than the Statistics one. Geometrically, this means that the point representing
the profile of Math Sciences is on a line between the Mathematics and Statis-
tics points, but closer to Mathematics (cf. Exhibit 3.5 on page 23). In order
to display the point Math Sciences, as in Exhibit 12.2, we do not have to ac-
tually compute the weighted average; the new row is simply declared to be a
supplementary point. We would not make this point active along with its two
component rows, since this would mean that the 107 researchers in these two
disciplines would be counted twice in the analysis. In the same way, subdivi-
sions of categories may be displayed on existing CA maps. Suppose that data
were available for a breakdown of Engineering into its different branches, for
example mechanical, civil, electrical, etc. Then, to investigate whether the pro-
files of these subgroups lie in the same general region, these additional rows of
frequencies can simply be declared supplementary. The result described above
still applies: in the map the active Engineering point would be at the centroid
of all the points representing its different branches.

In the above we have described supplementary points as additional profile
points that are projected onto a previously computed map. An alternative
way of obtaining their positions is to position them relative to the set of
vertex points in an asymmetric map. For example, in Chapter 3 it was shown
that the position of a row profile, say, is a weighted average of the column
vertices, where the weights are the profile elements. A supplementary point
can be positioned in exactly the same way. Once the principal axes of the
row profiles have been determined, the standard coordinates of the columns
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Exhibit 12.4:
Contributions of
supplementary row
and column points
to the first two
principal axes of
Exhibit 12.2.

Vertices are
supplementary
points

Exhibit 12.5:
Supplementary rows
which could be
added to the table
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their positions are
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column vertex
points.

Supplementary Points

are the projections of the column vertex points onto the principal axes. An
extra row profile can now be placed on any map by evaluating the appropriate
centroid of the vertices on each principal axis of the map, using the elements
of the new profile as weights. For example, to calculate the position of the
supplementary point Museums,

position of Museums = % X vertex A + g X vertex B+ - - -etc.

i.e. calculate the weighted average of the standard coordinates of the columns
along each principal axis.

Since supplementary points have zero mass, they also have zero inertia and
make no contribution to the principal inertias. Their relative contributions,
which relate to the angles between profiles and axes and do not involve masses,
can still be interpreted to diagnose how well they are represented. The relative
contributions of the three supplementary points described above, and their
qualities in the two-dimensional space are as follows (Exhibit 12.4):

SUPPLEMENTARY Relative contributions Quality
POINTS Axis 1 Axis 2 in 2 dimensions
Museums 225 331 556

Math Sciences 493 66 559

Y 54 587 641

These quantities describe how well these additional points are being displayed.
For example, the supplementary point Y subtends an angle whose squared
cosine is 0.054 with the first axis and 0.587 with the second axis. Its quality of
display in the plane is thus 0.054+0.587 = 0.641, so that 64.1% of its position
is contained in the plane, and 35.9% in the remaining dimensions. Or we can
say that Y is correlated +/0.641 = 0.801 with the plane.

We have already encountered supplementary points in the form of the ver-
tex points that were projected onto maps for purposes of interpretation, but
whose positions were not taken into account in computing the map itself.
This suggests an alternative way of determining the positions of the vertices:
firstly, increase the data set by a number of rows, shown in Exhibit 12.5, as
many rows as there are columns of data, each of which consists of zeros except

FUNDING

CATEGORIES A B C D E
A 1 0 0 0 0
B 0 1 0 0 0
c 0 0 1 0 0
D 0 0 0 1 0
E 0 0 0 0 1




Categorical supplementary variables and dummy variables

for a single 1 (this is called an identity matriz); and secondly, declare these
additional rows to be supplementary points.The positions of these supplemen-
tary rows are identical to those of the column vertices; in other words their
coordinates will be the standard coordinates of the columns.

The example of column Y and the vertex points in Exhibits 12.2 and 12.4
should not be confused with what is called “dummy variable” coding, a subject
which we shall treat in detail when we come to multiple correspondence anal-
ysis in later chapters. For example, suppose that we had a classification of the
scientific areas into “Natural Sciences” (NS) and “Biological Sciences” (BS),
the latter group including Biochemistry, Zoology, Microbiology and Botany and
the former group containing the rest. A standard way of coding this in CA
is as a pair of dummy variables, NS and BS say, zero-one variables with the
values NS = 1 and BS = 0 for Geology (a natural science), for example, and
NS = 0 and BS = 1 for Biochemistry (a biological science), and so on. One
might be tempted to add these dummy variables as columns of the table and
display them as supplementary points, but this would not be correct. This is
not a count variable like the Y variable, which happened to have had 0’s and
1’s as well; in that case the data were real counts and could have been other
integer values. The correct way to display this NS/BS information is as a pair
of rows, similar to the way we displayed Math Sciences above. That is, sum
up the frequencies for the NS rows and add an extra row called NS to the
table, and do the same for the BS rows. In this way the NS and BS points
will be weighted averages of the points representing the two sets of scientific
areas (we shall return to this subject in Chapter 18).

Additional information in the form of continuous variables also needs special
consideration. Suppose we had some external information about each scientific
area, for example, the average impact factor of all papers published in these
areas in international journals. This would also be stored as a column of data,
and because these are all positive numbers one might be tempted to repre-
sent the profile of this column in the standard supplementary point fashion.
But remember that it is the profile of the column that is represented, not the
original numbers, so the values should be nonnegative and expressing them
as proportions of the total should make sense in the context of the study. But
what if the data were changes in the average impact factors over a period of
time, so that some changes were positive and some negative? Clearly, express-
ing these changes relative to their sum makes no sense. In this situation the
continuous variable can be depicted in the map in a completely different way,
using regression analysis (for an example, see Computational Appendix, page
264). This subject will be treated in more detail in later chapters, especially
in Chapter 27 on canonical correspondence analysis, which is a combination
of CA and regression — for the moment, we merely alert the reader to this
possibility.
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1.

Supplementary Points

The rows and columns of a table analysed by CA are called active points.
These are the points that determine the orientation of the principal axes
and thus the construction of low-dimensional maps. The active rows and
columns are projected onto the map.

Supplementary (or passive) points are additional rows or columns of a table
which have meaningful profiles and which exist in the full spaces of the row
and column profiles respectively. They can also be projected onto a low-
dimensional map in order to interpret their positions relative to the active
points.

Since supplementary points have zero mass, all quantities involving the
mass, the point inertia and the contribution of the point to an axis are also
Zero.

The contribution of each principal axis to a supplementary point (i.e.
squared cosine or squared correlation) can be computed and allows an
assessment of whether a supplementary point lies to a larger or lesser ex-
tent in the subspace of the map. For example, the map might explain the
supplementary point quite well even though the supplementary point has
not determined the solution.

Be on the lookout for outliers with low mass — their presence in the anal-
ysis might have high influence on the solution. If they do, they should be
made supplementary or combined with other rows or columns in a sub-
stantively sensible way.

An additional column categorical variable should not be coded in the form
of dummy variables and added as supplementary columns, but rather rows
of frequencies should be aggregated according to its categories and then
these aggregated rows treated as supplementary rows.

Care is needed when adding an external continuous variable as a supple-
mentary point: its values have to be nonnegative and its profile must make
sense in the context of the example. An alternative approach to displaying
such variables, using regression analysis, will be described in the following
chapters.



Correspondence Analysis Biplots

Up to now we have drawn and interpreted correspondence analysis (CA) maps
in two possible ways. In the asymmetric map, for example in the row analysis,
the x2-distances between row profiles are displayed as accurately as possi-
ble, taking into account the masses of each profile, while the column vertices
serve as references for the interpretation. In the symmetric map, the rows and
the columns are both represented as profiles, thus the y2-distances between
row profiles and between column profiles are approximated. The biplot is an
alternative way of interpreting a joint map of row and column points. This
approach is based on the scalar products between row vectors and column
vectors, which depend on the lengths of the vectors and the angles between
them rather than their interpoint distances. In the biplot only one of the
profile sets, either the rows or the columns, are represented in principal coor-
dinates. In fact, asymmetric CA maps, with one set in principal coordinates
and the other in standard coordinates, are biplots. But there are alternative
choices of coordinates for the other set of points serving as the references for
the interpretation.
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In Euclidean geometry a scalar product between two vectors x and y with
coordinates x1, x3, ... and y1, y2, ... is the sum of products of respective
elements 1y, denoted by x"y = 3", xyy (7 is the notation for the transpose
of a vector or a matrix). Geometrically the scalar product is equal to the
product of the lengths of the two vectors, multiplied by the cosine of the
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Exhibit 13.1:
Example of two
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whose vectors
subtend an angle of
0 with respect to an
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onto y, multiplied
by the length of y.
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Correspondence Analysis Biplots

angle between them:

Xy =Y @y = ||| - |yl - cos 0 (13.1)
k

where ||x|| denotes the length of the vector x, i.e. the distance between the

point x and the zero point, and similarly for ||y||. This result is illustrated in

Exhibit 13.1 (notice that two vectors in multidimensional space can always

be represented exactly in a plane).

Another standard geometric result is that the perpendicular projection of a
vector x onto a direction defined by a vector y has a length equal to the
length of x multiplied by the cosine of the angle between x and y, i.e. the
|Ix|| - cos @ part of (13.1). Thus, the scalar product between x and y can be
thought of as the projected length of x onto y multiplied by the length of
y (illustrated in Exhibit 13.1). Equivalently, it is the projected length of y
onto x, i.e. ||y|| - cos§ multiplied by the length of x. If the length of one of
the vectors, say y, is one (i.e. y is a unit vector), then the scalar product is
simply the length of the projection of the other vector x onto y.

If we think of y as a fixed reference vector, and then imagine several vectors
X1, X9, ... projecting onto y, then it is clear that

e the scalar products xjy, %}y, ... have magnitudes proportional to the pro-
jections, since they are the projections multiplied by the fixed length of
Y;

e the sign of a scalar product is positive if the vector x makes an acute angle
(< 90°) with y and it is negative if the angle is obtuse (> 90°).

These properties are the basis for the biplot interpretation of CA.



A simple exact biplot

The biplot is a low-dimensional display of a rectangular data matrix where
the rows and columns are represented by points, with a specific interpretation
in terms of scalar products. The idea is to recover the individual elements of
the data matrix approximately in these scalar products. As an initial example
of a biplot that recovers the data exactly, consider the following 5 x 4 table,
denoted by T:

8 2 2 -6
5 0 3 —4

T=|-2 -3 3 1 (13.2)
2 3 -3 -1
4 6 —6 —2]

and then compare it to the map in Exhibit 13.2, which also gives the coordi-
nates of each point. (Notice the convention in matrix algebra to denote vectors
as columns, so that a vector is transposed if it is written as a row.)

xi=[2 27
xo=[1 2]
xg=[-1 1]
xq=[1 17
xs=[2 2
yi=[3 17
ya=[2 1]
ys=[-1 2]
yva=[-2 17

For example, the scalar product between x; and y; is equal to 2x3+2x1 = 8,
the first element of T. Just to show that (13.1) can also be used, although
with much more trouble, first calculate the respective angles that x; and y;
make with the horizontal axis, using basic trigonometry: arctan(2/2) = 45°
and arctan(1/3) = 18.43° respectively; hence the angle between x; and y; is
45 — 18.43 = 26.57°. Equation (13.1) thus gives the scalar product as:

xly1 = [|x1]| - [|y1] - cos@ = V8- V10 - cos(26.57°) = 8.00

so this checks. The projection of x; onto y; is equal to \/5005(26.570) = 2.530,
and the length of y; is v/10 = 3.162, the product of which is 8.00.
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The “bi” in the name biplot comes from the fact that both rows and columns
are displayed in a map, not because of the bidimensionality of the map —
biplots could be of any dimensionality, but the most common case is the
planar one. The points in Exhibit 13.2 have been chosen to illustrate some
other properties of a biplot:

e x5 and y, are at right angles, so xo projects onto the origin; hence the
value t95 in table T is 0.

e x5 and x3 project onto y3 at the same point; hence the values to3 and t33
are equal (= 3 in this case).

e x, is a reflection of x3 with respect to the origin, which shows that the
fourth row of T is the negative of the third row: x4 = —x3. Similarly, x5
is opposite x3 with respect to the origin and twice as far away; hence the
fifth row of table T is twice the third row, with a change of sign.

e x3, x4 and x5 are on a straight line (this could be any straight line, not
necessarily through the origin), so they have a linear relationship, specifi-
cally x4 = %X3 + %x;,; this weighted average relationship carries over to the
corresponding rows of T, for example t4; = %tgl + %tsl = %(—2) +%(4) = 2.

In mathematics we would say that the rank of the matrix T in (13.2) is equal to

2, and this is why the table can be perfectly reconstructed in a two-dimensional

biplot. In our geometric approach, rank is equivalent to dimensionality.

In real life, a data matrix has higher dimensionality and cannot be recon-
structed exactly in a low-dimensional biplot. The idea of the biplot is to find
row points x; and column points y; such that the scalar products between the
row and column vectors approximate the corresponding elements of the data
matrix as closely as possible. So we can say that the biplot models the data
t;; as the sum of a scalar product in some low-dimensional subspace (say K*
dimensions) and a residual “error” term:

tij = Xjyj + €ij
P
= Z TikYjk T €45 (13.3)
k=1
This biplot “model” is fitted by minimizing the errors, usually by least squares
where > . > j efj is minimized. This looks just like a multiple linear regression
equation, except that there are two sets of unknown parameters, the row
coordinates {z;,} and the column coordinates {y;i} — we shall return to the
connection with regression analysis in Chapter 14.

To understand the link between CA and the biplot, we need to introduce a
mathematical formula which expresses the original data n;; in terms of the
row and column masses and coordinates. One version of this formula, known



Biplot of contingency ratios

as the reconstitution formula (see Theoretical Appendix, page 244), is:

K
pij = ric;(1+ Z VAbikvik) (13.4)
k=1
where

e p;; are the relative proportions n;;/n, where n is the grand total ), Zj Nj;
e r; and ¢; are the row and column masses;

e )\, is the k-th principal inertia;

® ¢;;, and vy;;, are row and column standard coordinates respectively.

In the summation in (13.4) there are as many terms K as there are dimensions
in the data matrix, which we have seen to be equal to one less than the number
of rows or columns, whichever is smaller. If we map the CA solution in K*
dimensions, where K* is usually 2, then the fit is optimal since the terms in
(13.4) from K*+1 onwards are minimized — these latter terms thus constitute
the “error”, or residual.

Equation (13.4) can be slightly re-arranged so that the right-hand side is in
the form of a scalar product in a space of dimensionality K*, plus an error
term, as in (13.3):

K*

—1= i i 13.5
7'70] ka%k""ej ( )

where fir = VAx¢ir, the principal coordlnate of the i-th row on the k-th
axis. This shows that the row asymmetric map, which displays row principal
coordinates f;; and column standard coordinates ;, is an approximate biplot
of the values on the left-hand side of (13.5). The ratios p;;/(ric;) of observed
proportions to expected ones are called contingency ratios — the closer these
ratios are to 1, the closer the data are to the independence (or homogeneity)
model.

Equation (13.5) can be rewritten in terms of the row profiles as:

(T~ ej)/e; = Z Firvik + e (13.6)
k=1

which shows that the row asymmetric map is also a biplot of the deviations of
the row profiles from their average, relative to their average (see, for example,
Exhibit 10.2). As we have seen, however, the asymmetric map can be quite
unsatisfactory when inertia is small, because the row profiles (with coordinates
fir) are concentrated into a small space at the centre of the map, while the
column vertex points (with coordinates +,) are very far out.

In the biplot it is the direction of each vertex point which is of interest,
since this direction defines the line onto which the row profiles are projected.
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Different variations of this biplot have been proposed to redefine the lengths
of these vectors. The most useful alternative is to rewrite (13.6) as

Pij 1/2
— —c, E i i 13.7
( r fir(c; ’Vak +€ij (13.7)

(notice that the residuals e;; in (13.7) have a different definition and stan-
dardization compared to (13.6), although we use the same notation in each
case). Thus we have expressed the left-hand side as a standardized deviation
from the average, and then we absorb the remaining factor /% into the co-
ordinate of the column point on the right-hand side. In this way, the vertex
point gets pulled inwards by an amount equal to the square root of the mass
of the corresponding category, so that the rarer categories are pulled in more

which is just what we want to improve the legibility of the asymmetric map.
Moreover, with this alternative scaling of the column points, the squared co-
ordinate values of the columns are exactly their contributions to the inertia of
the respective axis, hence this is called a contribution biplot, with the columns
in contribution coordinates. Exhibit 13.3 shows the CA contribution biplot
for the research funding example; compare this map with Exhibits 10.2 and
10.3. In all these maps the positions of the row points are the same, it is the
positions of the column points that change (compare the scales of each map).

Exhibit 13.3 clearly shows that D and E are the largest contributors to the
first and second axes respectively.



Interpretation of the biplot

In Exhibit 13.3 the column points have no distance interpretation; they point
in the directions of the biplot axes, and it is the projections of the row points
onto the biplot axes which give estimates of the standardized values on the
left-hand side of (13.7). Thus we can take a fixed reference direction, such as
D, and then line up the projections of all the rows on this axis to estimate
that Zoology has the highest profile element, then Botany, Geology, and so
on, with Physics and Biochemistry having the lowest profile values on D (a
few calculations on Exhibit 10.1 show this to be correct, with some small
exceptions since this is an approximate biplot, representing 84% of the total
inertia of the table).

Since the projections of the rows onto the biplot axes are proportional to the
values on the left-hand side of (13.7), each biplot axis can be calibrated in
profile units. For example, to estimate the standardized profile values for cat-
egory A, the projections of the row points have to be multiplied by the length
of the A vector in Exhibit 13.3, equal to 0.484 (note that we are illustrating
this calculation using the contribution coordinates). To unstandardize and re-
turn to the original profile scale, multiply this length by the square root of the
mass (1/0.0389 = 0.197) to obtain the scale factor of 0.0955. The calibration
of a biplot axis is computed by simply inverting this value: 1/0.0955 = 10.47.
This is the length of the full range of one unit on the profile scale. An interval
of 1% (i.e. 0.01) on the biplot axis in Exhibit 13.4 is thus a hundredth of this
length, i.e. 0.1047. So we know all three facts necessary for calibrating the
biplot axis for A: (i) the origin of the map represents the average of 0.039
(or 3.9%) for A), which gives a fixed point on the axis; (ii) a length of 0.01
(1%) is equal to 0.1047, according to the scale shown in Exhibit 13.3; and (iii)
the vector in Exhibit 13.3 indicates the positive direction of the axis. Exhibit
13.4 shows the calibrations on the A axis as well as the result of a similar
calibration exercise on the D axis.

Previously we thought of the overall quality of a two-dimensional CA map as
the amount of inertia accounted for by the first two principal axes. The biplot
provides another way of thinking about the map’s quality, namely as the suc-
cess of recovering the profile values in the map. The row profiles of the original
data in Exhibit 10.1 can be approximately recovered by the two-dimensional
biplot in Exhibit 13.3, for example by projecting all the row points onto the
calibrated column axes. The closer the estimated profile values are to the true
ones, the higher the quality of the map. Conversely, the differences between
the true profile elements and the estimated ones can be accumulated to give an
overall measure of error. When accumulated in a chi-squared fashion, i.e. by
taking squared differences divided by the expected values, exactly the same
measure of error will be obtained as before. In this particular example, the
percentage of explained inertia in the two-dimensional map is 84%; hence the
error is 16%.
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Exhibit 13.4:
Contribution biplot
of Eshibit 10.1
(scientific funding
data), with
calibrated axes for
categories A and D.
Notice that the
calibrated axes pass
through the column
points in
contribution
coordinates (these
are the same
directions as the
outlying vertex
points in standard
coordinates, since
the contribution
coordinates are a
simple shrinking of
the standard
coordinates).
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. A scalar product between two vectors is the product of their lengths mul-

tiplied by the cosine of the angle between them.

. The projected length of a vector x onto the direction defined by a second

vector y is equal to the length of x multiplied by the cosine of the angle
between x and y. Thus the scalar product can be thought of as the product
of the projected length of x onto y and the length of y.

. A biplot is a method of displaying a point for each row and column of a data

matrix in a joint map such that the scalar products between the row vectors
and the column vectors approximate the values in the corresponding cells
of the matrix as closely as possible.

. Asymmetric maps in CA are biplots. Strictly speaking, symmetric maps

are not, although in practice the directions defined by the profile point and
the corresponding vertex point are often not too different, in which case
the biplot interpretation is still valid.

. A variation of the asymmetric map which is a convenient biplot is the one

where the position of each vertex point is pulled in towards the origin by
an amount equal to the square root of the mass associated with the vertex
category — this is called the contribution biplot for CA.

. For a biplot the axes passing through the origin of the map may be cal-

ibrated in profile units (either proportions or percentages). This allows
approximate profile values to be read directly off the map by projecting
profile points onto the calibrated biplot axes.



Transition and Regression Relationships

Correspondence analysis (CA) produces a map where the rows and columns
are depicted together as points, with an interpretation that depends on the
choice amongst the many scaling options for the row and column points.
Geometrically, we have seen how the positions of the row points depend on
the positions of the column points, and vice versa. In this chapter we focus on
the mathematical relationships between the row and column points, known as
the transition equations. In addition, since regression analysis is a well-known
method in statistics, we show how the row and column results and the original
data can be connected through linear regression models. This chapter gives
insight into the theory of CA and can be skipped without losing the thread
of the geometric understanding of CA.
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In this chapter we are interested in the relationships between all the coor-
dinates for the rows and columns — principal, standard or contribution —
that emanate from a CA, as well as their relationships with the original data.
Initially we look at the relationships that are valid for each principal axis sepa-
rately. Using the scientific funding example again, Exhibit 14.1 reproduces all
the results for the first principal axis (the contribution coordinates are given
for the columns only). This axis has inertia A; = 0.03912, with v/A; = 0.1978.
In Chapter 8 this latter value, which is the scaling factor which links the
principal to the standard coordinates, was also seen to be the correlation
coefficient between rows and columns in terms of their coordinates on the
first dimension. Since correlation is related to regression, we first look at the
regression of row coordinates on column coordinates and vice versa.

Coordinates on
first axis of

scientific funding

example
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Exhibit 14.1:
Principal and
standard
coordinates of the
scientific disciplines
and research funding
categories on the
first principal axis of
the CA (original
data in Exhibit
10.1), as well as the
contribution
coordinates of the
funding categories.
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between
coordinates

The
profile—vertex
relationship

Transition and Regression Relationships

SCIENTIFIC Princ. Stand. FUNDING Princ. Stand. Contrib.
DISCIPLINE coord. coord. CATEGORY coord. coord. coord.
Geology 0.076  0.386 A 0.478  2.417 0.477
Biochemistry  0.180  0.910 B 0.127  0.643 0.258
Chemistry 0.038  0.190 C 0.083  0.417 0.260
Zoology -0.327 -1.655 D -0.390 -1.974 -0.795
Physics 0.316  1.595 E -0.032 -0.161 —0.080
Engineering  -0.117 -0.594

Microbiology ~ 0.013  0.065

Botany -0.179 -0.904

Statistics 0.125  0.630

Mathematics  0.107  0.540

In Exhibit 8.5, using the health survey data, we showed the scatterplot of
values of the row and column coordinates on the first principal axis, for each
individual constituting the contingency table. Exhibit 14.2 shows the same
type of plot for the standard coordinates of the scientific funding data. There
are 50 points in this plot, corresponding to the 50 cells in the contingency table
of Exhibit 10.1. Each box is centred on the pair of values for the respective
cell, and has area proportional to the number of individuals (scientists) in that
cell. We know that the correlation, calculated for all 796 individuals that occur
at the 50 points in this plot, is equal to 0.1978. Here we are interested in the
regressions of scientific discipline on funding category, and funding category
on scientific discipline. To compute a regression analysis we could string out
all 796 scientists and assign their corresponding pair of values, for example a
geologist in the A category would have the pair of standard coordinate values
0.386 (the y-variable, say) and 2.417 (the z-variable), according to Exhibit
14.1. Since there are only 50 unique pairs, an alternative is to list the 50 pairs
of coordinate values along with their frequencies and then perform a weighted
regression with the frequencies as weights. A standard result in simple linear
regression is that the slope coefficient is equal to the correlation multiplied by
the ratio of the standard deviations of the y-variable to the z-variable. The
variances of the row and column standard coordinates are the same (= 1);
hence the slope of the regression of y on x will be the same as the correlation,
i.e. 0.1978 (Exhibit 14.2). In a symmetric way, the regression of « onto y will
also have a slope of 0.1978, but this is with respect to the x-axis as vertical
and the y-axis as horizontal — this is a slope of 1/0.1978 = 5.056 in the plot
of Exhibit 14.2 where y is the vertical axis.

We saw as early as Chapter 3 that the row profiles are at weighted averages
of the column vertices, where the weights are the values of the row profiles.
The same relationship holds between column profiles and row vertices. These
weighted average relationships hold in any projected space, in particular they
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hold for the coordinates along the principal axes, as illustrated in Chapter 8.
In other words, along an axis k, the principal coordinates of the row points
are at weighted average positions of the standard coordinates of the column
points, and vice versa. This relationship can be illustrated for the first princi-
pal axis by calculating weighted average positions for each row according to
the standard coordinates of the columns and vice versa, shown by the dots
on the two regression lines in Exhibit 14.2. This shows that the principal
coordinates lie on the two regression lines.

Regression is a model for the conditional means of the response variable with
respect to the predictor variable. The dots in Exhibit 14.2 are simply the dis-
crete sets of conditional means of y on = (five means on the line with slope
0.1978) and = on y (ten means on the line with slope 5.056). These means are
the principal coordinates, which thus define the two regression functions. For
example, the row of squares for Physics depicts the corresponding row of fre-
quencies in the data matrix of Exhibit 10.1, plotted horizontally according to
the first standard coordinates of the five column categories, that is the vertex
positions on principal axis 1. The conditional mean is just the weighted aver-
age, shown by the black dot at the top of the diagram, which is thus the first
principal coordinate of Physics. Similarly, the column of squares for category
A depicts the frequencies for the first column of the data matrix, plotted ver-
tically at the first standard coordinate positions (i.e. vertices projected on the
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first dimension) of the ten rows. The conditional mean, shown by the black
dot at the right, is then the weighted average position, which is the principal
coordinate of A. Thus Exhibit 14.2 shows both the principal and standard
coordinates together; for example, to read the principal coordinates for the
rows, read the values of the ten dots on the regression line on the horizontal
axis according to the scale of the standard column coordinates, and vice versa.

The fact that the regressions of y on z (rows on columns) and = on y (columns
on rows) turn out to be straight lines in the CA solution is one of the oldest
definitions of CA, called simultaneous linear regressions. If the row—column
correlation is high, then the two regression lines will subtend a smaller angle
and the principal coordinates will be more spread out, i.e. the inertia will be
higher (remember that the principal inertia is the square of the correlation).
In other words, CA could be alternatively defined as trying to achieve simul-
taneous linear regressions (i.e. a scatterplot such as Exhibit 14.2) with the
smallest possible angle between the two regression lines, which is equivalent
to maximizing the row—column correlation.

Using notation defined on pages 31 and 101, we can write these weighted
average (or conditional mean) relationships between rows and columns as
follows, remembering that principal coordinates correspond to profiles and
standard coordinates to vertices:

row profile < column vertices : fix = E (?) Vik (14.1)
. K
J

column profile < row vertices : ik = Z <pc”> Dik (14.2)
3 j
(the « stands for “is obtained from”, for example “row profile < column
vertices” means that the principal coordinates of a row are obtained from the
standard coordinates of all the columns using the relationship shown in the
formula). Here we use the notation f and g for the row and column principal
coordinates, ¢ and ~ for the row and column standard coordinates, index i
for rows, j for columns and k for dimensions. In the parentheses we have the
elements of the row and column profiles in (14.1) and (14.2) respectively —
these add up to 1 in each case and serve as weights. The weighted average
relationships in (14.1) and (14.2) are called the transition equations. Recall
the relationships between principal and standard coordinates:

row profile < row vertex : fir = \/Egbik (14.3)
column profile < column vertex : gk = \/E’ij (14.4)

where A, is the principal inertia (eigenvalue) on the k-th axis. So we could
write the transition equation between row and column principal coordinates



Regression between coordinates using transition equations

as:
row profile < column profiles : fik = Z (J) gjr (14.5)
\ﬁ
column profile < row profiles : gjk = (p”> fir (14.6)
and similarly between row and column standard coordmates
row vertex < column vertices : dik = (p” ) ik (14.7)

column vertex < row vertices : Yik

Any of the above transition equations can be used trivially in a standard lin-
ear regression analysis, with the profiles as predictors, in order to “estimate”
a set of coordinates. As an illustration, we recover the column standard co-
ordinates in (14.1), using the 10 x 5 matrix of row profiles of Exhibit 10.1 as
five predictors and the first principal coordinates of the rows (first column of
Exhibit 14.1) as response. The regression analysis gives the following results
for the regression coeflicient:

Source  Coefficient

Intercept 0.000
2.417
0.643
0.417

—1.974

—0.161

moOnNnw>

R? =1.000

The variance explained is 100% and the regression coefficients are the column
standard coordinates on the first axis (see last column of Exhibit 14.1).

The more interesting and relevant regression analysis is when the data are
to be predicted from the coordinates, as summarized in the CA model given
in Chapter 13, Equations (13.4)—(13.7). We repeat this model here in three
different versions, a “symmetric” version using only standard coordinates (see
(13.4)), and the two asymmetric versions using row and column principal
coordinates, respectively:

T‘Z‘Cj

K-
P~ 14 >V bk + € (14.9)
k=1

.
<p”> Je; =1+ fuvie + eij (14.10)

k=1
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K
D
(gj) Jri =1+ ; Pikgjk + €ij (14.11)

This model is called bilinear because it is linear in the products of parameters.
We shall, however, fix either the row or column standard coordinates, and show
how to obtain the principal coordinates of the other set by multiple regression
analysis.

On the left-hand sides of (14.9), (14.10) and (14.11) are the contingency ratios
defined in Chapter 13, written in three equivalent ways. Taking (14.10) as an
example, and assuming that the standard coordinates ;5 of the columns are
known, we have on the right-hand side a regular regression model which is
predicting the values of the rows on the left. Suppose that we are interested
in the first row (Geology) and want to perform a regression for K* = 2. To
fit the CA model, we have to minimize a weighted sum of squared residu-
als, where the categories (columns) are weighted by their masses. Another
way of understanding this is that in (14.10) the “predictors” 7, are normal-
ized with respect to column masses as follows: ) . Cj%zk = 1. Furthermore,
the predictors are orthogonal as well when we weight by the column masses:
Zj ¢k = 0 if j # j'. Hence, to perform the regression we set up the
response vector as the 5 x 1 vector of contingency ratios for Geology, and the
predictors as the 5 x 2 matrix of column standard coordinates on the first two
principal axes. A weighted regression analysis is then performed, with regres-
sion weights equal to the column masses c;. The data for the regression are
as follows (contingency ratios p1;/(r1¢;) for Geology, standard coordinates ~1
and 7y for dimensions 1 and 2, and weights ¢;):

Category  Geology Y1 Yo Weight
A 0.9063 24175 —0.4147  0.0389
B 1.3901 0.6434 —0.9948 0.1608
C 1.1781 0.4171 —0.2858  0.3894
D 1.0163 —1.9741 —0.7991 0.1621
E 0.4730 —0.1613 1.6762  0.2487

The results of the regression are:

Source Coefficient Standardized coefficient

Intercept 1.000 —
fi1 0.076 0.234
fi2 —0.303 —0.928

R%*=10.916

The coefficients are the principal coordinates f11 and f12 of Geology (see the
first one, f11, in Exhibit 14.1) while the variance explained (R?) is the quality
of Geology in the two-dimensional map (see Exhibit 11.8).



Correlations in weighted regression recover the relative contributions

Since the predictors are standardized and orthogonal in the weighted regres-
sion, it is known that the standardized regression coefficients are also the
partial correlations between the response and the predictors. The correlation
matrix between all three variables is as follows (remember that the weights
are included in the calculation):

Variables Geology 1 Yo

Geology 1.000 0.234 —0.928
Y1 0.234 1.000 0.000
Y2 —0.928 0.000 1.000

The two predictors are uncorrelated, as expected, and the correlations be-
tween Geology and the two predictors are exactly the standardized regression
coefficients. The squares of these correlations, 0.234% = 0.055 and (—0.928)2 =
0.861, are the squared cosines (relative contributions) given in Exhibit 11.6.
The above series of results illustrates the property in regression that if the
predictors are uncorrelated, then the variance explained R? is equal to the
sum of squares of the partial correlations.

The transition equations (14.1) and (14.2) are the basis of a popular algo-
rithm for finding the solution of a CA, called reciprocal averaging. The algo-
rithm starts from any set of standardized values for the columns, say, where
centring and normalizing are always with respect to weighted averages and
weighted sum of squares. Then the averaging in (14.1) is applied to obtain a
set of row values. The row values are then used in the averaging equation of
(14.2) to obtain a new set of column values. The column values are restandard-
ized (otherwise the sucessive averages would just collapse the values to zero).
The above process is repeated until convergence, giving the coordinates on the
first principal axis. Finding the second set of coordinates is more complicated
because we have to ensure orthogonality with the first, but the idea is the
same. We have shown in different ways that the passage from column to row
coordinates and row to column coordinates can be described by a regression
analysis in each case, so that this flip-flop process is also known as alternating
least-squares, or alternating regressions. Numerically, it is better to perform
the computations using the singular value decomposition (SVD) (see page 47
as well as the Theoretical and Computational Appendices), but for a fuller
understanding of CA it is illuminating to be aware of these alternative algo-
rithms.

The alternative form of the CA biplot given in (13.7), repeated here,

Pij oA/2
(Ji j / Zflk "Y]k Jre’Lj

i
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expresses standardized row profile values as a bilinear function of row points
in principal coordinates and column points in contribution coordinates. Thus,
similar to the above arguments, this implies that if the standardized values
for a particular column are regressed on the row principal coordinates (always
using weighted least-squares regression), then the regression coefficients will be
exactly the contribution coordinates. This gives an alternative intepretation
for the contribution biplot as visualizing these regression coefficients in the
map of the row profiles, just like standardized variables can be added as
supplementary variables to an existing map.

N

For any values assigned to the row and column categories, the conditional
means (i.e. regressions) can be computed for rows on columns or columns
on rows.

The CA solution, using standard coordinates on a particular axis as the

two sets of values, has the following properties:

— the two regressions are linear (hence the name simultaneous linear re-
gressions);

— the angle between the two regression lines is minimized;

— the conditional means that lie on the two regression lines are the prin-
cipal coordinates.

The weighted average relationship between row and column coordinates,
when the weights are the elements of profiles (row or column profiles as
the case may be) are called transition equations. Successive applications
of the pair of transition equations lead to an algorithm for finding the CA
solution, called reciprocal averaging.

CA can be defined as a bilinear regression model, since the data can be
recovered by a model that is linear in products of the row and column co-
ordinates. This model becomes linear if either set of coordinates is regarded
as fixed, leading to an algorithm for finding the CA solution called alternat-
ing least-squares regressions (which, in fact, is identical to the reciprocal
averaging algorithm).

The CA contribution biplot, showing rows in principal coordinates, has
coordinates for the columns with multiple interpretations: (i) the squared
coordinates are column contributions to the inertias on corresponding prin-
cipal axes, useful for deciding which columns are important for the con-
struction of the axes and thus for their interpretation (see Chapter 13); (ii)
the coordinates are regression coeflicients in the weighted regression of the
standardized row profile values for a particular column on the row principal
coordinates. Both interpretations lead to the same conclusion: the higher
the regression coefficient on a principal axis, the more important is the
column’s relationship with the axis.



Clustering Rows and Columns

Up to now we have been transforming data matrices to maps or biplots where
the rows and columns are displayed as points in a continuous space, usually
a two-dimensional plane. An alternative way of displaying structure consists
in performing separate cluster analyses on the row and column profiles. This
approach has close connections to correspondence analysis (CA) and decom-
poses the inertia according to the discrete groupings of the profiles rather than
along continuous axes. In the case of a contingency table there is an inter-
esting spin-off of this analysis in the form of a statistical test for significant
clustering of the rows or columns.
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The idea of grouping objects is omnipresent in data analysis. The group-
ing might be a given classification, or it might be determined according to
some criterion that clusters similar objects together. We first consider the
former case, when the grouping is established according to a categorical vari-
able which classifies the rows or columns of a table. Taking the scientific
research funding example again, suppose that there is a predetermined group-
ing of the scientific disciplines into four groups, according to university fac-
ulties: {Geology, Physics, Statistics, Mathematics}, {Biochemistry, Chemistry},
{Zoology, Microbiology, Botany} and {Engineering}. As we pointed out in Chap-
ter 12, when a categorical variable is defined on the rows, as in this example,
each category defines a supplementary row of the table that aggregates the
frequencies of the rows corresponding to that category. Thus the ten rows of
Exhibit 10.1 are condensed into four rows corresponding to the four groups,

Partitioning the

rows or the
columns
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Exhibit 15.1:
Frequencies of
funding categories
for 796 researchers
grouped into four
categories according
to scientific
discipline.

Between- and
within-groups
inertia

Clustering Rows and Columns

SCIENTIFIC FUNDING CATEGORIES

GROUPS A B C D E Sum
Geology/Physics/Statistics/Mathematics 17 57 134 35 63 306
Biochemistry /Chemistry 727 62 22 41 159
Zoology/Microbiology /Botany 4 33 89 57 60 243
Engineering 3 11 25 156 34 88
Sum 31 128 310 129 198 796

shown in Exhibit 15.1. The CA of the original data of Exhibit 10.1 had a
total inertia of 0.08288, whereas if we perform the CA of Exhibit 15.1, the
total inertia turns out to be 0.04386. There is a loss of inertia when points are
merged, or putting this the other way around, there is an increase in inertia
if a row or column is split apart according to some subclassification.

The inertia of the merged table in Exhibit 15.1 is called the between-groups
inertia, since it measures the variation in the table between the four groups
of rows. The difference between the total inertia of 0.08288 and the between-
groups inertia of 0.04386 is called the within-groups inertia, measuring the
variation within the four groups which is lost when we merge the original ten
rows into the four groups. This decomposition of inertia is a classic result of
analysis of variance, usually applied to a single variable, but equally applicable
to multivariate data. In the CA context each row profile, denoted by a;, has a
mass r; assigned to it, and the average row profile (centroid) is the vector ¢ of
column masses (see Chapter 4). Distances between row profiles are measured
by the x2-distance: for example, if d; denotes the y2-distance between a; and
c, then the total inertia is Y, 7;d? (formula (4.7), page 29). Between-group
inertia is a similar formula, but applied to the merged rows as follows. Suppose
a, denotes the profiles of the merged rows, where g = 1,...,G is the index of
the groups (here G = 4), and the mass of the g-th group, 7, is the sum of the
masses of the members of the group. The group profiles a4 still have centroid
at ¢ and, denoting their x2-distances to the centroid by Jg, the between-group
inertia is Zg FQJ;. Finally, each group ¢ has an inertia with respect to its own
centroid a,: if d;; denotes the x*-distance from each profile i in group g to
the centroid a4, then the inertia within the g-th group is ), ; Tidng, where ieg
means the set of rows in group g. Summing this quantity over all the groups
gives the within-groups inertia. The decomposition of inertia is thus:

total inertia = between-groups inertia 4+ within-groups inertia
Somd} = redl + >0 rid? (15.1)
i g g ieg

0.08288 = 0.04386 + 0.03902



Calculating the inertia within each group

The within-groups inertia is equal to 0.03902, according to the above, but
what is the contribution from each of the four groups? One can calculate this
directly, remembering to use the same values of ¢ for the normalization in all
x2-distance calculations, but a quicker way is to apply CA to a matrix where,
one at a time, we merge the groups. For example, if we merge Geology, Physics,
Statistics and Mathematics into the first group and then analyse this merged
row along with the other (unmerged) rows (i.e. seven rows in total), the total
inertia is 0.06446. Compared to the total inertia 0.08288 of the original data
set, the reduction by 0.01842 represents the within-group inertia that was lost
in the merging. Then we merge Biochemistry and Chemistry and analyse the
matrix with six rows, and the inertia now drops to 0.05382, so the within-
group inertia of that group is the difference, 0.06446 — 0.05382 = 0.01064 and
so on. Exhibit 15.2 gives the complete decomposition of inertia, in raw units
and percentages. Notice that there is no within-group inertia for the group
composed of one row, Engineering — it is 0.

Group Definition Component % of part % of total
Between-groups inertia:

Geol /Phys/Stat/Math Fdf 0.01482 33.8% 17.9%
Bioc/Chem rod? 0.00099 2.3% 1.2%
Zool /Micr/Bota Fad3 0.01548 35.3% 18.7%
Engi Tad? 0.01256 28.6% 15.2%
Total >, od? 0.04386  100.0% 52.9%
Within-groups inertia:

Geol/Phys/Stat/Math Y. | r;d3 0.01842 47.2% 22.2%
Bioc/Chem D e ridz% 0.01064 27.3% 12.8%
Zool /Micr/Bota Dies Tidy 0.00996 25.5% 12.0%
Engi > i ridd 0 0% 0%

2
Total Zg Zisg ridig 0.03902 100.0% 47.1%

In the above, the partition of the rows into groups was given by available
information, but we now consider constructing groups using a particular type
of cluster analysis. We use a small data matrix to illustrate the calculations
involved. This example is taken from an actual sample of 700 shoppers at
five different food stores. The sample has been tabulated according to store
and age group, yielding the 5 x 4 table in Exhibit 15.3. The ? statistic for
this table is 25.06, which corresponds to a p-value of 0.015. Thus we would
conclude that there exists a significant association between age and choice
of store. Alongside the table we show the symmetric CA map. A market
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Exhibit 15.2:
Decomposition of
inertia between and
within groups,
including
components of each
part and
percentages with
respect to the part
and the total. The
sum of the total of
the between-groups
inertia and the total
of the within-groups
inertia is the total
inertia 0.08288 of
the original table
(Exhibit 10.1).

Data set 8: Age
distribution in
food stores
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Exhibit 15.3:
Cross-tabulation of
food stores by age
groups, for 700
consumers, and
symmetric CA map
which explains
97.2% of the inertia.

Clustering
algorithm

Clustering Rows and Columns

FOOD AGE GROUP (years) Total inertia = 0.03580

|

STORE 16-24 25-34 35-49 50+ Sum oF g s Esen)
b I 35-49
A 37 30 45 64 185 504 N
B 13 23 33 38 107 A + - - ,C',‘g
c 33 60 67 56 295 0.02635 (73.6%) | D
D 16 31 34 22 103 \
E 8§ 16 21 35 80 ° ‘
A | scale

Sum 107 178 200 215 700 1@124 T

researcher would be interested to know where this significant association is
concentrated; for example, which stores or group of stores have a significantly
different age profile from the others. The major contrast in the data is between
the oldest group on the left of the CA map and the second youngest group
on the right. Store E is the most associated with the oldest group and stores
C and D tend more towards the younger ages. The vertical axis contrasts the
youngest age group with the others. Store A appears to separate from the
others towards the youngest age group.

We now construct a partition of the rows and columns using a clustering
algorithm which tries to maximize the between-groups inertia and — simul-
taneously — minimize the within-groups inertia. The clustering algorithm
is illustrated in Exhibit 15.4 for the rows. At the start of the process, each
row is separate and the between-groups inertia is just the total inertia. Any
merging will reduce the between-groups inertia, so the first step is to identify
which pair of rows (stores) can be merged to result in the least reduction in
the inertia. The two rows which are the most similar in this sense are stores
C and D. When these rows are merged to form a new row, labelled (C,D),
the inertia for the resultant 4 x 4 table is reduced by 0.00084 to 0.03496, or
on the x? scale by 0.59 to 25.06 (in Exhibit 15.4 we report the x? values,
which are always the inertia values multiplied by the sample size N = 700:
x? = 0.03496 x 700 = 25.06). In percentage terms this is a decrease of 2.3%
in x? or, equivalently, in inertia. The procedure is then repeated to find the
rows in the new table that again decrease the between-groups inertia the least.
These turn out to be stores B and E, leading to a further reduction in x? of
1.53 (6.1%). The table now has three rows labelled A, (B,E) and (C,D). The
procedure is repeated and the smallest reduction is found when store A joins
the pair (B,E) to form a new row labelled (A,B,E), reducing x? by a further
5.95 (23.7%). Finally, the two rows (A,B,E) and (C,D) merge to form a single
row, consisting of the marginal column sums of the original table, for which
the x? is zero. The final reduction is thus 16.99 (67.8%), which was the inertia
of the penultimate table in Exhibit 15.4. The whole procedure can be repeated
on the columns of the table in an identical fashion.



Tree representations of the clusterings

A |37|39|45]|64
B [13(233338
C [33]69 6756
D |16|31 (34|22
E | 8{16(21|35| x2 = 25.06

merge C and D | reduction = 0.59 (2.4%)

A |37|39|45|64

B |13]23|33|38

(C,D) |49/|100/101|78

E | 8[16|21|35| Y2 =24.47

merge B and E | reduction = 1.53 (6.1%)

A |37]39|45|64

(B,E) |21(39|54|73

(C.D) |49 [100[101| 78| 2 = 22.94

merge A and (B,E) | reduction = 5.95 (23.7%)

(A,B,E) |58|78]|99 137

(C.D) |49 [100[101| 78| 2 = 16.99

merge (A,B,E) and (C,D) | reduction = 16.99 (67.8%)

The successive merging of the rows, called hierarchical clustering, can be de-
picted graphically as a binary tree or dendrogram — this is shown in Exhibit
15.5 along with a similar hierarchical clustering of the columns. Notice that
the ordering of the rows and columns of the original table usually requires
modification to accommodate the tree displays, although in this particular
example only the rows need to be reordered. The fact that stores C and D are
the first to merge is apparent on the tree. The point at which this merging
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Exhibit 15.4:
Steps in the
clustering of the
rows of Exhibit 15.1:
at each step two
rows are merged,
chosen to induce the
minimum decrease
in the x? statistic,
or equivalently in
the between-group
inertia (to convert
the x* values to
inertias, divide by
the sample size

N =700).

Tree
representations of
the clusterings
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Exhibit 15.5:

The tree structures
depicting the
hierarchical
clusterings of the
rows and columns.
The clustering is in
terms of x?, and can
be converted to
inertias by dividing
by the sample size,
700. The critical
level of 15.24 on the
x? scale is indicated,
for both rows and
columns.

Decomposition
of inertia (or x?)

Deciding on the
partition

Clustering Rows and Columns

20

10

16-24 25-34 35-49 50+

r C 33 69 67 56

A 37 39 45 64

|— B 13 23 33 38

|— E 8 16 21 35

|
|
|
|
|
|
|
|
|
|
|
! L D 16 | 31 | 34 | 22
|
|
|
|
|
|
|
|
|
|

20 10 0
occurs is called a node, and in each case the level of the node corresponds to
the associated reduction in y2.

Since the original y? statistic is reduced to zero at the end of the clustering
process, it is clear that the set of reductions forms a decomposition of x?2:
25.06 = 16.99 + 5.95 + 1.53 4+ 0.59. Dividing by the sample size 700 gives
the corresponding decomposition of inertia: 0.03580 = 0.02427 + 0.00851 +
0.0021840.00084. The percentages remain the same, whatever decomposition
is reported: 67.8%, 23.7%, 6.1% and 2.4%. The columns are merged in an
identical fashion and the values of the nodes again constitute a decomposition
of inertia (or x?): 0.03580 = 0.02383 + 0.00938 + 0.00259, or in percentage
form 66.6%, 26.2% and 7.2%.

In cluster analyses of this type, the trees are inspected to deduce the number
of clusters of objects. For example, looking at the row clustering we see that
there is a large difference between the two clusters of food stores (C,D) and
(A,B,E), indicated by the high value at which these clusters merge. Thanks
to the decomposition of inertia, we could say that 67.8% of the inertia is
accounted for if we condense the rows into these two clusters. If we separate
store A as a third cluster, then a further 23.7% of the inertia is accounted for,
i.e. 91.5%. Percentages of inertia associated with the nodes of such a cluster



Testing hypotheses on clusters of rows or columns

analysis are thus interpreted in much the same way as percentages of inertia
of principal axes in CA. The decision as to what percentage is great enough
to halt the interpretation is usually an informal one, based on the sequence of
percentages and the substantive interpretation of each node or principal axis.

The x? statistic for the original contingency table was reported to be signif-
icant (p = 0.015); hence somewhere in the table there must be significant
differences amongst the profiles. To pinpoint which profiles are significantly
different in a statistical sense is not a simple question because there are many
possible groupings of the stores that could be tested and the significance level
has to be adjusted if many tests are performed on the same data set. Fur-
thermore, particular groupings, for example of stores C with D and B with
E, have been suggested by the data themselves and have not been set up as
hypotheses before the data were collected.

Here we are treading the fine line between exploratory and confirmatory data
analysis, trying to draw statistical conclusions from data that were analysed
in an exploratory fashion with no fixed a priori hypotheses. Fortunately, an
area of statistical methodology has been developed to cope with this situa-
tion, called multiple comparisons. This approach is often used in the analysis
of experiments where there are several “treatments” being tested against a
“control”. A multiple comparisons procedure allows any treatment (or group
of treatments) to be tested against any other, and statistical decisions may be
made at a prescribed significance level to protect all these tests from the so-
called “Type I Error”, i.e. finding a result which has arisen purely by chance.
This is also known as controlling the false discovery rate.

As in the case of different treatments in an experimental situation, we would
like to test the differences between any two rows, say, of the table or any two
groups of rows. If there were only one test to do, we would calculate the re-
duced table consisting of the two rows (or merged groups) and make a one-off
X2 test in the usual way. The multiple comparisons procedure developed for
this situation allows testing for differences between any two rows (or groups
of rows). The usual x? statistic for the reduced table is calculated but com-
pared to different critical values for significance. In the Theoretical Appendix,
Exhibit A.1 on page 254, a table of critical points is given for this test, at the
5% significance level, for contingency tables of different sizes. In the present
5 x 4 example the critical point can be read from the table as 15.24: so if the
x? statistic is superior to 15.24, then it can be deduced that the two rows (or
groups of rows) are significantly different.

The critical value for the multiple comparison test can be used for any subset
or merging of the rows or columns of the table, in particular it can be used
for the hierarchical clusterings, allowing us to separate out the statistically
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SUMMARY:
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and Columns

Clustering Rows and Columns

significant groups, as shown in Exhibit 15.5. The interpretation of this cut-off
point is that, amongst the age groups, it is really the contrast between the
oldest age group and the rest that is statistically significant; and, concerning
the food stores, the statistical differences lie between two groups, (A,B,E)
and (C,D). Thus the contrast observed along the second axis of Exhibit 15.3
could be due to random variation in the observed data — the separation of
the youngest age group from the others is not significant, and the distinction
between age groups 16—24 and 35—49 years along the second axis is equally
difficult to justify from a statistical point of view. This does not mean, of
course, that we are prevented from inspecting the original information in
the form of the two-dimensional map of Exhibit 15.3 — the data content is
always worth considering irrespective of the statistically significant features. In
Chapter 29, page 230, these same critical values will be used for a significance
test on the principal inertias of a contingency table.

The clustering algorithm described in this chapter is a special case of Ward
clustering. In this type of clustering, clusters are merged according to a
minimum-distance criterion which takes into account the weights of each point
being clustered. So, instead of thinking of this as a reduction in x? (or iner-
tia) at each step, the y2-distances between the profiles could be used along
with the associated masses. For purposes of clustering the specific (squared)
“distance” between two row clusters g and h, for example, is then:
TgTh
Tg+Th

2y — a2 (15.2)

where 7y and 7, are the masses of the respective clusters, and ||a, — ay||. is
the y2-distance between the profiles of the groups.

1. Cluster analyses of the rows or columns provide an alternative way of
looking for structure in the data, by collecting together similar rows (or
columns) in discrete groups.

2. The results of the clusterings can be depicted graphically in a tree structure
(dendrogram or binary tree), where nodes indicate the successive merging
of the rows (or columns).

3. The total inertia (or equivalently the x? statistic) of the table is reduced
by a minimum at each successive level of merging of the rows (or columns).
This Ward clustering procedure provides a decomposition of inertia with
respect to the nodes of the tree, analogous to the decomposition of inertia
with respect to principal axes in correspondence analysis.

4. Thanks to a multiple comparisons procedure, the inertia component ac-
counted for by each node can be tested for significance, leading to statisti-
cal statements of difference between groups of rows (or groups of columns).
This test applies to valid contingency tables only.



Multiway Tables

Up to now we have dealt exclusively with two-way tables in which the fre-
quencies of co-occurrence of two variables have been mapped. We now start
to consider situations where data are available on more than two variables
and how we can explore such data graphically. One approach is to re-format
the multiway frequency table as a two-way table and to use the usual simple
correspondence analysis (CA) approach. The various ways of reformatting the
table give different viewpoints of the association patterns in the data.
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We return to the health assessment data (data set 3) that were discussed
at length in Chapters 6 and 7, namely the representative sample of 6371
Spaniards cross-tabulated by age and self-assessment of their own health (Ex-
hibit 6.1). Several other variables are available, for example gender, education,
region of residence, and so on. We use the simplest of these, gender with two
categories, as an example of how to introduce a third variable into the CA.
Two further cross-tabulations can now be made: gender by age group and
gender by health category. While the former table might be interesting from a
demographic point of view, the latter table is more relevant to the substantive
issue of health assessment — see Exhibit 16.1. There is no need to perform
a CA of this table to see the pattern in the numbers — this 2 x 5 table is
inherently one-dimensional and all the patterns are clear in the percentages.
It is clear that males generally have a better opinion of their health; there are
higher percentages of males in the very good and good categories, while the
females are higher in the regular, bad and very bad categories.

We saw previously in Chapter 6 that self-assessed health deteriorated with age.
Separately, Exhibit 16.1 shows a gender-related effect, with men on average
more optimistic about their health than women. The question now is whether
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Exhibit 16.1:
Cross-tabulation of
gender with
self-assessed health,
showing row profile
values as
percentages. Data
source: Spanish
National Health
Survey, 1997.

Interactive
coding

CA of the
interactively coded
cross-tabulation

Data set 9:
Attitudes to
working women

Multiway Tables

Very Very
GENDER  good Good Regular Bad  bad Sum
male 448 1789 636 177 39 3089
% 14.5 579 20.6 5.7 1.3
female 369 1753 859 237 64 3282
% 11.2 534 26.2 7.2 2.0
Sum 817 3542 1495 414 103 6371
% 12.8 55.6 23.5 6.5 1.6

the gender effect is the same across all age groups or whether it changes; for
example, it could be that in a particular age group the gender effect is greater
or is even reversed. This phenomenon is called an interaction, in this case
an interaction between age and gender with respect to self-assessed health
— notice that we think of the five-category profile of self-assessed health as
a single response here. Absence of an interaction would mean that the same
gender difference in the response exists across all age groups.

To be able to visualize possible interactions between gender and age, we need
to code the data in a more detailed manner. A new variable is created of all
the combinations of the two genders and age groups, giving 2 X 7 = 14 combi-
nations in total — this process is called interactive coding. The interactively
coded variable is then cross-tabulated with the health categories to give the
contingency table of Exhibit 16.2.

Exhibit 16.3 shows the symmetric map of Exhibit 16.2. Here again the two-
dimensional map is given although the result is still highly one-dimensional,
as we saw in Chapter 6. In this map there are two points showing male—
female differences for each age group. Comparing these pairs of gender points
across the age groups, we see consistently that the female point is to the left
of the male counterpart, illustrating the effect in Exhibit 16.1 that females
are generally less optimistic about their health. There is no reversing of this
phenomenon in any age group; however, there are some differences in the
distances between the male and female points. At the younger ages the male—
female distances are relatively small, up to the 35-44 age group. In the 45-54
age group, where large changes appear in self-assessed health, there is also
a bigger difference between men and women. This change is maintained in
the older age groups, and females in the 55-64 age group are seen to be more
pessimistic than males in the higher 65-74 age group. Similarly, females in
age group 65-74 are more pessimistic than males in the older group 75+. This
changing difference between men and women across the age groups is evidence
of a gender—age interaction when it comes to self-assessment of health.

As another illustration of interactive coding, we now introduce a data set
that we shall be using several times in this and following chapters. These data
are taken from the International Social Survey Programme (ISSP) survey of



Data set 9: Attitudes to working women

GENDER- Very Very

AGE good Good Regular bad Bad Sum

m16-24 145 402 84 5 3 639

m25-34 112 414 74 13 2 615

m35-44 80 331 82 24 4 521

m45-54 54 231 102 22 6 415

mb55-64 30 219 119 53 12 433

m65-74 18 125 110 35 4 292

m75+ 9 67 65 25 8 174

f16-24 98 387 83 13 3 584

f25-34 108 395 90 22 4 619

f35-44 67 327 99 17 4 514

f45-54 36 238 134 28 10 446

f55-64 23 195 187 53 18 476

f65-74 26 142 174 63 16 421

f75+ 11 69 92 41 9 222

10.0039 (2.6%)
. f75+ \ Very good .15 o
Bad \ m16-

° ?/ery bad f65r;17?5+ \ 5.34

,,,,,,,,, Regular_ _ _ m55.64 - - - - + - - - - -m35:-44 2m25-34 _ _

. =070 - 16-24
0.1417 (94.5%) f55.-g)165'74 m45-54- 4 ® 6
f35-44

Family and Changing Gender Roles in 1994, involving a total sample of 33590
respondents and conducted in 24 countries (former East and West Germany
are still considered separately in the ISSP surveys, as are Great Britain and
Northern Ireland). For our purposes here we consider the relationships be-
tween some demographic variables and the responses to the following question
related to women’s participation in the labour market: “Considering a woman
who has a schoolchild at home, should she work full-time, work part-time, or
stay at home?” As in all such questionnaire surveys, there is an additional
response option “unsure/don’t know” to which we have also added the few
non-responses (dealing with non-responses will be discussed in more detail
in Chapter 21). In addition to the responses to this question, we have data
on several demographic variables for each respondent, of which the following
three will be of interest here: gender (2 categories), age (6 categories) and
country (24 categories). The response frequencies for each country are given
in Exhibit 16.4.
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Exhibit 16.2:
Cross-tabulation of
interactively coded
gender—age variable
with self-assessed
health (m=male,
f=female, seven age
groups as in Exhibit
6.1). Each row of
Exhibit 6.1 has been
subdivided into two
rows according to
gender.

Exhibit 16.3:
Symmetric CA map
of interactively
coded gender—age
variable cross-
tabulated with
health categories;
the gender—age
profiles are situated
at the positions of
the m and f labels.
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Exhibit 16.4:
Frequencies of
response to question
on women working
when they have a
schoolchild at home,
for 24 countries
(source: ISSP survey
on Family and
Changing Gender
Roles, 1994; West
and East Germany
are still kept
separate), with the
average profile in
percentage form.
The following
abbreviations are
used: W =work
full-time, w=work
part-time, H=stay
at home, ?=don’t

know/unsure/missing.

Basic CA map
of countries by
responses

Multiway Tables

COUNTRIES w w H 7 Sum (N)
AUS  Australia 256 1156 176 191 1779
DW  West Germany 101 1394 581 248 2324
DE East Germany 278 691 62 66 1097
GB Great Britain 161 646 70 107 984
NIRL Northern Ireland 126 394 75 52 647
USA  United States 482 686 107 172 1447
A Austria 84 632 202 59 977
H Hungary 285 736 447 32 1500
I Ttaly 171 670 167 10 1018
IRL Ireland 223 424 209 82 938
NL Netherlands 539 1205 143 81 1968
N Norway 487 1242 205 153 2087
S Sweden 295 833 39 105 1272
Ccz Czechoslovakia, 228 585 198 13 1024
SLO Slovenia 341 428 222 41 1032
PL Poland 431 425 589 152 1597
BG Bulgaria 270 427 335 94 1126
RUS Russia 175 1154 550 119 1998
NZ New Zealand 120 754 72 101 1047
CDN Canada 566 497 108 269 1440
RP Philippines 243 448 484 25 1200
IL Israel 468 664 92 63 1287
J Japan 203 671 313 120 1307
E Spain 738 1012 514 230 2494
Sum 7271 17774 5960 2585 33590
% 21.7% 529% 17.7% 7.7%

The CA map of this table is shown in Exhibit 16.5 (here the graphical style of
the CA maps is changing slightly — different software options for producing
the maps will be discussed at the end of the Computational Appendix). The
interpretation of this map is quite clear; the contrast from left to right is
between women working (on the left) versus women staying at home (on the
right), while the vertical contrast is between women working full-time (at
the top) versus women working part-time (at the bottom). Countries such as
the Philippines and Poland are the most traditional on this issue, whereas
countries such as Sweden, East Germany, Israel, New Zealand, Great Britain
and Canada are the most liberal. On the left, the difference between the
countries in the vertical direction separates out those such as Canada that
are the most in favour of women working full-time versus New Zealand, for
example, more in favour of part-time employment. Remember that the origin
of the map represents the average profile in the last row of Exhibit 16.4, so that
all countries on the left are more liberal than average, while if two countries



Introducing gender interactively
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04 (ofuII-time)
JPL

USA

L ° E ..SLO
02 (BK/missing) -BG

.IRL
RF,
(stay home)
O L)
0 . 0.0737 (50.6%)
DE NL N o o H
°’s . cz J
NIRL
0.2 GB ) 7part-time)
AUS I. .
RUS

NZ A W

04
04 -0.2 0 0.2 04 0.6

are at the same position on the horizontal axis (for example, USA and Great
Britain) the country more positive on the vertical axis will be more in favour
of women working full-time than part-time.

Gender can now be interactively coded with country in order to visualize male—
female differences, as was done for the health assessment example. However,
there is a weighting issue that needs attention, and which we avoided in the
previous example: there are many more women respondents in these samples
than men (in Exhibit 16.1, women formed 51.5% of the data set, but here they
are 54.6% overall). We prefer to express each male and female sample relative
to its respective total, which is in effect reweighting the samples. Male and
female samples now have the same weight, as well as the countries, since there
is no substantive reason why the countries should be weighted proportional
to their sample sizes. Exhibit 16.6 shows the first and last rows of the 48 x 4
table of percentages. The map in Exhibit 16.7 has not changed much in terms
of the positions of the reponse categories, but it is interesting to compare
the pairs of points for each country. In almost all cases the female point
is more to the left compared to the male counterpart (Bulgaria is the only
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Exhibit 16.5:
Symmetric CA map
of 24 countries and
4 question-response
categories (Exhibit
16.4).

Introducing gender
interactively
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Exhibit 16.6:
Percentages of
response to question
on women working
when they have a
schoolchild at home,
for 24 countries,

i.e. Exhibit 16.4
split by gender and
then expressed as
row percentages
with respect to the
respective sample
size N. Small
differences in sample
sizes compared to
Exhibit 16.4 are due
to missing values for
gender.

Introducing age
group and gender

Multiway Tables

COUNTRY w w H ? N

AUSm 129 656 125 9.0 909
AUSS 159 645 6.9 126 866
DWm 3.6 56.3 29.8 103 1198
DWf 52 639 199 11.1 1126
DEm 2v.7 598 55 7.0 528
DEf 232 659 58 5.1 569
ILm 379 473 98 5.0 581
ILf 35.1 55.0 5.0 438 703
Jm 144 471 289 9.6 592
J 16.5 54.8 199 88 715
Em 29.0 372 246 93 1197
Ef 30.2 438 169 9.1 1292

exception). Gender attitudes within a country are surprisingly homogeneous
compared to the large between-country differences. The countries where there
is the biggest distance between male and female opinion are mostly on the
conservative side of the map, for example the Philippines, Japan, Northern
Ireland, West Germany and Spain, while on the left side of the map Australia
shows one of the biggest male—female differences. In this analysis the inertia
must be higher than the previous one since the splitting of the samples by
gender must add inertia (see Chapter 15). We return to this subject of inertia
components again in Chapter 23.

Since the sample sizes in each country are so large, we can split the samples
even further by age, that is each country—gender group is subdivided into six
age groups: up to 25 years old, 26-35, 36-45, 46-55, 56-65, and 66+ years.
Hence we code interactively three variables into one, with 24 x 2 x 6 = 288
categories in total. The CA of the resultant 288 x 4 table is shown in Exhibit
16.8, and again remains remarkably stable as far as the response categories are
concerned. The 288 row points are represented by dots since it is impossible to
label each one. Some outlying points are labelled; for example, the most liberal
group lying far out at top left is the youngest group of female Canadians up
to 25 years old. Of this subsample of 168 women, 101 (60.1%) are in favour
of women with a schoolchild at home working full-time, 32 (19.0%) respond
part-time, 3 (1.8%) say women should stay at home, and 32 (19.0%) do not
respond or are missing (as we shall see in Chapter 21, there are a lot of “don’t
knows” in the Canadian sample as a whole). The most liberal male group is
the youngest East German male group. At the other extreme on the right
we have the oldest group of Hungarian and Polish males; for example, of the
76 Polish men 66 years or older, 16 (21.1%) respond full-time, 13 (17.1%)
part-time, 41 (53.9%) stay at home, with a non-response of 6 (7.9%). At the



Arch (“horseshoe”) pattern in the map

0.0503(33.1%)

06 CDNf |
CDNm
0.4 w -
USAf, itm
USAm 1 PLf
|Lf. ¢ Ef SLOI SI=0n.1 . PLm
0.2 1 Em  BGm :
IRLm
DEm, - IRLf Bef
. Sm N NLm 7T, 0.0811(53.4%)
DEf M« . . . .
P Gem  NIRLm CzZm Rt H e
Sf .. °Jf £ *Jm
AUSH X Hf .
{ NRLf - Hm
02 w . .
NZf. IF* AUSm Im RUSm
NZm' .
Af*pws Am . <DWm
o4 RUSf
0.4 0.2 0 0.2 0.4 0.6 0.8

bottom we have the oldest group of New Zealand males — these will be the
most in favour of part-time work.

Finally, notice the curve of the cloud of points in Exhibit 16.8, called the arch
effect or the horseshoe, which follows the shape of the sequence of categories
W-?-w-H. This commonly found phenomenon is a result of the profile space
being a simplex, in the present case a tetrahedron in three dimensions since
there are four columuns (cf. the two-dimensional triangular geometry of profiles
with three elements in Chapter 2). Any gradient of change from one extreme
corner of the space (W: work full-time) to the other (H: stay at home), via the
intermediate category (w: work part-time), will follow a curved path in this
restricted space, rather than a straight line. Points that lie inside the arch,
such as the labelled group of Polish males 26-35 years old, will tend to be
polarized in the sense of being high on the two extreme responses. Of the 141
Polish respondents in this specific age group, 45 (31.9%) respond full-time, 31
(22.0%) part-time, 45 (31.9%) stay at home, and 20 did not respond (14.2%)
— so this group does have above average responses on both extremes W and
H — see the percentages in the last row of Exhibit 16.4, which show 21.7% as
the overall average percentage for work full-time and 17.7% for stay at home.
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Exhibit 16.7:
Symmetric CA map
of interactively
coded data (Exhibit
16.6). The male
points are
consistently to the
right of their female
counterparts, with
the exception of
Bulgaria (BG),
where females have
a more conservative
attitude than males
(also New Zealand
(NZ), but very
slightly).

Arch (“horseshoe”)
pattern in the map
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Exhibit 16.8:
Symmetric CA map
of three-way
interactively coded
data. The
country—gender—age
groups are
represented by dots,
and form a curved
pattern that is
encountered
frequently in CA
maps when the
profiles fall on a
gradient from one
extreme (W) to the
other (H).

SUMMARY: 1.

Multiway Tables

Multiway Tables
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Two or more categorical variables can be interactively coded into a new
variable that consists of all combinations of the categories. For example,
two variables with J; and Js categories would be coded into a new variable
with J;Jy categories.

CA can be applied to a table that cross-tabulates an interactively coded
variable with another variable. The resulting map shows the interaction
pattern between the variables that have been interactively coded, in their
relationship to the other variable.

Interactive coding of multiway tables would normally not proceed beyond
three variables, since the number of categories increases rapidly, as well as
the complexity of the map. The level of interaction that can be investi-
gated depends on how much data are available, because interactive coding
fragments the sample into subsamples with lower sample sizes, and these
subsamples should not be too small, otherwise their positions in the map
are imprecise.



Stacked Tables

Survey research in the social sciences usually involves a multitude of variables.
For example, in a questionnaire survey there are many questions related to the
survey objective as well as many demographic characteristics that are used to
interpret and explain respondents’ answers. The advantage of correspondence
analysis (CA) is the ability to visualize many variables simultaneously, but
there is a limit to the number of variables that can be interactively coded,
as illustrated in the previous chapter, owing to the large number of category
combinations. When there are many variables an alternative procedure is to
code the data in the form of stacked, or concatenated, tables. The relationship
between each demographic variable and each attitudinal variable can then be
interpreted in a joint map. In this chapter we give examples of this approach,
both when there are several demographic characteristics and when there are
responses to several questions.

Contents

Several demographic variables, one question . . . . . . . . ... ... .. 129
Stacking as an alternative to interactive coding . . . . . . . . . .. ... 130
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We now expand the data set from Chapter 16 on attitudes towards working
women by including, in addition to country (24 categories, see Exhibit 16.4 for
abbreviations), gender (2 categories, M and F) and age group (6 categories,
Al to A6), the two variables marital status (5 categories) and education level
(7 categories), totalling five demographic variables. The definitions and ab-
breviations of the two additional variables are as follows:

— Marital status: ma (married), wi (widowed), di (divorced), se (separated),
si (single)

— Education: E1 (no formal education), E2 (incomplete primary), E3 (pri-

mary), E4 (incomplete secondary), E5 (secondary), E6 (incomplete tertiary),
E7 (tertiary)

Several
demographic
variables, one
question
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Exhibit 17.1:
Stacking of
contingency tables
which separately
cross-tabulate five
demographic
variables with the
responses to the
question on women
working

(W =full-time,
w=part-time,
H=stay at home,
?=don’t know/non-
response).

Stacking as an
alternative to
interactive coding

CA of stacked
tables

Stacked Tables

Question Responses
WwH 7

country (24)

gender (2)

age (6)

marital status (5)

education (7)

It is clearly not possible to code interactively all five variables: the number of
combinations would be 24 x 2 x 6 X 5 x 7 = 10080 combinations! As an alter-
native, each demographic variable can be cross-tabulated with the responses
and the contingency tables can be stacked on top of one another, as depicted
in Exhibit 17.1. The top table is the one in Exhibit 16.4, with countries as
rows, then the table with two rows for gender, then six rows for age group
and so on, constituting a table with 24 +2 46 + 5 + 7 = 44 rows, one for
each demographic category. This type of coding will not reveal interactions
and should be regarded as a type of average CA of the five individual tables.

Applying CA to the 44 x 4 matrix of stacked tables results in the map of
Exhibit 17.2. The relative positions of the four reponses, W, w, H and 7,
appear almost the same as in Exhibit 16.8. Compared to Exhibits 16.5 and 16.7
the positions are slightly rotated (rotations of CA solutions are discussed in
the Epilogue). Each demographic category is defined by a profile of responses
and finds its position in the map relative to the four response categories. The
following features of the map are of special interest:

® The categories of an ordinal variable such as age can be connected, as
shown in the map. Age follows the curved pattern of the responses W-w-—
H from liberal to traditional, as might be expected.

® Education has a similar pattern, but from right to left, except for category
E1l (no formal education), which is near the average.
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Categories of marital status show si (single) on the liberal side, and wi
(widowed) on the traditional side, probably correlated with age group.

The male and female points M and F lie opposite each other with respect
to the average, showing the overall differences between males and females
across all countries (we saw the specific differences in Exhibit 16.7).

Of all the demographical variables, the cross-national differences are still
the most important on this issue.

Countries such as Spain, Slovenia, Ireland and Bulgaria that lie within the
arch are polarized countries with higher than average percentages of both
W (work full-time) and H (stay at home) responses.

The non-response point 7 lies more towards the liberal side of the map;
i.e. its profile across the demographics is more similar to W than to H (in
Chapter 21 we will see that Canada, for example, has a high percentage
of non-responses).
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Exhibit 17.2:
Symmetric CA map
of five stacked
contingency tables
shown schematically
in Exhibit 17.1;
total inertia =
0.05271, percentage
inertia in map:
91.2%.
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Limitations in
interpreting
analysis of stacked
tables

Decomposition
of inertia in
stacked tables

Stacking tables
row- and
columnwise

Stacked Tables

It is important to realize that Exhibit 17.2 is showing the separate associations
between the demographic variables and the question responses, and not the
relationships amongst the demographic variables. There is no information in
the stacked tables about the relationship between age, education and country;
for example, the fact that the youngest age group Al, the highest education
group E7, and the countries Canada, USA and Israel all lie on the left-hand
side does not mean that these countries have predominantly younger, more
highly educated respondents. Since the variables are being related separately
to the question responses, the interpretation is that the youngest age group,
the highest education group and these countries all have a predominant, higher
than average percentage of W (work full-time) responses. To confirm any
relationships between the demographic variables, cross-tabulations between
them would need to be made and analysed.

A very useful result here and in future chapters is the fact that when the
same individuals are cross-tabulated and stacked, as in Exhibit 17.1, the total
inertia in the stacked CA is the average of the inertias in the individual CAs.
This result is illustrated by calculating the inertias in each of the five cross-
tabulations shown in Exhibit 17.1:

Table Inertia
Country 0.14558
Gender 0.00452
Age 0.04216
Marital Status 0.02675
Education 0.04221
Average 0.05224

The total inertia of the stacked analysis is 0.05271, slightly higher than the
above figure, because there are some missing data for some of the demograph-
ics, which introduces some additional inertia into the stacked analysis. The
totals in each table vary from 30471 for education (the whole Spanish sam-
ple, for example, has education coded as “not available”) to 33590 (the full
sample) for age and country. The effect of the different totals is to increase
the total inertia in the stacked analysis, but only slightly since there are small
differences in the column totals of each table. For the above decomposition
to hold exactly each table must have the same grand total and thus exactly
the same column marginal totals. Looking at the above table of inertias also
shows how much more inertia there is between countries than between cate-
gories of the other variables; hence the relationship of the question responses
with countries must dominate the results.

The idea of stacking can be broadened to include additional questions which
are cross-tabulated with the demographics. In the International Social Survey
Programme (ISSP) survey from which these data are taken, there were in



CA of row- and columnwise stacked tables

fact four questions relating to attitudes about women working, each with the
same set of four responses: work full-time, work part-time, stay at home and
a category gathering the various non-responses. The respondents were asked
about women working or not when they were (1) married with no children,
(2) with a pre-school child at home, (3) with a schoolchild living at home
(the question we have been analysing up to now), and (4) when all children
are no longer living at home. Each of the five demographic variables can be
cross-tabulated with each of these four questions, leading to 20 contingency
tables which can be stacked row- and columnwise as shown schematically in
Exhibit 17.3.

Questions on working women

1 2 3 4
WwH?”WwH?WwH?WwH ?

country (24)

gender (2)

age (6)

marital status (5)

education (7)

Applying CA to the 20 tables stacked in this block format of five rows and four
columns leads to the map in Exhibit 17.4, where each category is represented
by a point. The following features of the map are of special interest:

® The 16 column categories form an even clearer arch pattern, stretching
from 2W and 3W at top left down to 3w, 4w and 2H at the bottom
and up to 4H and 1H at top right. This is a typical result in CA where
there is what ecologists call a gradient in the data, the gradient here being
the liberal to traditional spread of attitudes. More or less one can order
the categories along this curved gradient as follows (omitting the non-
responses (7) from the discussion for the moment):

2W -3W - 2w & 4W - IW - 3w — 4w — 2H — 1w — 3H - 4H - 1H

which shows how the categories line up from extreme liberal attitudes on
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Exhibit 17.3:
Stacking of
contingency tables
which separately
cross-tabulate five
demographic
variables with the
responses to the
question on women
working

(W =full-time,
w=part-time,
H=stay at home,
?=don’t know/
non-response).

CA of row- and
columnwise
stacked tables
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Exhibit 17.4:
Symmetric CA map
of 20 stacked
contingency tables
shown schematically
in Exhibit 17.3;
total inertia =
0.04273, percentage
inertia in map:
71.1%.
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the left (women should work full-time even when they have children at
home) to extreme traditional ones on the right (women should stay at
home even though there are no children at home).

Most of the demographic points lie along this curve, but there is a sub-
stantial spread along the second dimension which opposes groups with a
polarized opinion (upper part of map, especially Spain) with groups that
have higher than average percentages of the intermediate categories 3w,
4w, 2H (lower part of the map, with New Zealand, Australia, Austria and
West Germany). Notice that staying at home with a pre-school child (2H)
is grouped in this intermediate part of the attitude gradient.

The four non-response points are all in a small bunch just left of the aver-
age — in fact, these points are better represented on the third dimension
of this analysis; in other words they should be imagined coming out of
the page towards you, which means that the third dimension is mostly
a dimension which will line up the demographic groups in terms of their
non-response percentages over the four questions.

Partitioning of Again, the result mentioned previously about decomposition of inertia will

the inertia over all
subtables

apply here. First, the exact result is that if every contingency table in the
stacked table is the cross-tabulation of exactly the same number of respon-



Partitioning of the inertia over all subtables

Variable Qu. 1 Qu. 2 Qu. 3 Qu. 4 Average
Country 0.15268 0.12834 0.14558 0.13410 0.14018
Gender 0.00821 0.00336 0.00452 0.00484  0.00523
Age 0.01033 0.03359 0.04216 0.01266  0.02469
Marital Status  0.00529 0.01341 0.02675 0.00869  0.01354
Education 0.02306 0.02380 0.04221 0.02430 0.02834
Average 0.03991  0.04050 0.05224 0.03692  0.04239

dents, then the inertia of the stacked table is the average of the inertias of the
individual contingency tables. Let us state this a little more formally, since we
will be using this result again in the next chapter. Suppose Ngs, ¢ =1,...,Q,
s = 1,...,5 are contingency tables cross-tabulating ) categorical variables
pairwise with another set of S categorical variables for the same n individuals
(in our example, @ = 5 and S = 4). Let N be the stacked table formed by
stacking row- and columnwise the QxS tables. Then

Q S
inertia(N) = % D) inertia(Ngq) (17.1)

q=1 s=1
This result holds approximately if there is a loss of data in some of the con-
tingency tables owing to missing values. In the present example we have com-
bined the missing values for the four questions about women working with
other responses such as “don’t know” in their respective ? categories, so their
“‘missingness” is specifically coded. But there are some missing values for the
demographic variables as a result of the data collection in different countries,
which will affect the result in (17.1), which then doeds not hold exactly. In
fact, the inertia of the stacked table N (left-hand side of (17.1)) will increase
by a small amount € because of differences between the marginal frequencies,

so that (17.1) becomes:

Q S

inertia(N) = é ; ; inertia(Ngs) + € (17.2)
Exhibit 17.5 reports the inertias of all the contingency tables, as well as row
and column averages and overall average: as expected, the total inertia in the
stacked analysis is slightly higher (0.04273) than the average of the tables
(0.04239), which gives ¢ = 0.00034, i.e. an increase of 0.8%. Exhibit 17.6
expresses the 20 inertia values in Exhibit 17.5 (i.e. values of inertia(Ngs)) as
permills of 0.04273 x 20 (the left-hand side of (17.2) multiplied by Q.S = 20) to
be able to judge the quantities more easily, just as was done in Chapter 11 to
facilitate the interpretation of the numerical contributions. This shows that on
average the countries account for 65.6% of the inertia in the stacked analysis,
followed by education (13.3%) and age (11.6%). On question 3 the inertias
are generally higher (30.6% of total inertia) — i.e. there are more differences
between the demographic groups for question 3 — while on question 4 they are
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Exhibit 17.5:
Inertias of 20
contingency tables
in the stacked table
analysed in Exhibit
17.4; averages of the
rows and columns
are given as well as
the overall average.
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Exhibit 17.6:
Permill contribu-
tions of 20 tables to
the inertia of the
stacked table; the
remaining 8 permills
(0.8%) is the extra
inertia caused by
the differing
marginal totals due
to missing data.

Only
“between”
associations
displayed, not
“within”

SUMMARY:
Stacked Tables

Stacked Tables

Variable Qu. 1 Qu. 2 Qu. 8 Qu. 4 Total
Country 179 150 170 157 656
Gender 10 4 5 6 24
Age 12 39 49 15 116
Marital Status 6 16 31 10 63
Education 27 28 49 28 138
Total 23/ 237 306 216 992

generally lower (21.6% of total inertia). The total of 992 for this table shows,
as we have already remarked above, that 0.8% of the inertia is accounted
for by the small disparities between the margins of the 20 contingency tables
owing to missing data, i.e. the contribution of € to (17.2).

Once again we stress the limits of our interpretation of a map such as Exhibit
17.4. When it comes to the four questions, it should be remembered that we
are not analysing the associations within this set of questions, but rather the
associations between them and the demographic variables. Analysing associ-
ations within a set of variables is the subject of the next chapter on multiple
correspondence analysis.

1. An approach to analysing the responses to several questions and their
relationships to demographic variables is to concatenate all the contingency
tables that cross-tabulate the two sets of variables and to analyse this
stacked table by regular CA.

2. The interpretation of the CA map of a stacked table is always made bear-
ing in mind that the information being analysed is the set of pairwise
relationships between each question and each demographic variable. There
is no specific information being mapped about relationships amongst the
questions or amongst the demographics.

3. The analysis of a stacked table can be thought of as a consensus or average
map from all the CAs of the individual contingency tables.

4. The total inertia of the stacked table is the average of the inertias of each
subtable, when the row margins in each row of subtables and the column
margins in each column of subtables are identical (this is true when the
same number of individuals are cross-tabulated in each subtable). When
there is some loss of individuals in some subtables due to missing data,
this result is approximate and the total inertia of the stacked table will be
slightly higher than the average of the individual subtable inertias.



Multiple Correspondence Analysis

Up to now we have analysed the association between two categorical variables
or between two sets of categorical variables where the row variables have a
different substantive “status” compared to the column variables, e.g. demo-
graphics versus survey questions. In this and the following two chapters we
turn our attention to the association within one set of variables of similar
status, where interest is in how strongly and in which way these variables
are interrelated. In the present chapter we will concentrate on the two clas-
sic ways to approach this problem, called multiple correspondence analysis
(MCA). One way is to think of MCA as the analysis of the whole data set
coded in the form of dummy variables, called the indicator matriz, while the
other way is to think of it as analysing all two-way cross-tabulations amongst
the variables. These two ways are very closely connected, but suffer from some
deficiencies that will be resolved in Chapter 19, where some improved versions
of MCA are presented.
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In this chapter we are concerned with a single set of variables, usually in the
context of a specific phenomenon of interest. For example, the four variables
used in Chapter 17, on whether women should work or not, could be such a set
of interest, or a set of questions about people’s attitudes to science, or a set of
categorical variables describing environmental conditions at several terrestrial
locations. The set of variables is “homogeneous” in that the variables are of
the same substantive type, and often measured on the same scale.

As an example let us consider the four questions on working women analysed
in Chapter 17. The explanation is simplified by avoiding the large range of
cross-cultural differences seen in previous analyses, using only the data from

A single set of
“homogeneous”
categorical
variables

Indicator matrix
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Exhibit 18.1:
Raw data and the
indicator (dummy

variable) coding, for
the first six
respondents out of
N = 3418.

MCA definition
number 1: CA of
the indicator
matrix

Multiple Correspondence Analysis

Questions Qu. 1 Qu. 2 Qu. 3 Qu. 4
1 2 3 4 WwH? WwH? WwH? WwH?
1 3 2 2 1000 0010 0100 0100
2 3 3 2 0100 0010 0010 0100
4 3 3 2 0001 0010 0010 0100
4 4 4 4 0001 0001 0001 0001
4 4 4 4 0001 0001 0001 0001
1 3 2 1 1000 0010 0100 1000

. and so on for 3418 rows

one country, Germany, but including both the West and East German sam-
ples for comparison, totalling 3418 respondents (three cases with some missing
demographic information were omitted from the original samples — see Com-
putational Appendix, page 272). As before, these four variables are labelled 1
to 4, and each has four categories of response, labelled: W (work full-time),
w (work part-time), H (stay at home) and ? (don’t know/non-response). The
indicator matrixz is the 3418 x 16 matrix which codes all responses as dummy
variables, where the rows are the respondents and the 16 columns correspond
to the 16 possible response categories. Exhibit 18.1 illustrates this coding for
the first six rows: for example, the first respondent has responses 1, 3, 2 and
2 to the four questions, which are then coded as [ 1 0 0 0 ] indicating the
response 1 (W) to question 1, [ 0 0 1 0 ] indicating the response 3 (H) to
question 2, and [0 1 0 0] indicating the responses 2 (w) to both questions
3 and 4.

The most common definition of MCA is that it is simple CA applied to this
indicator matrix. This would provide coordinates for all 3418 rows and 16
columns, but it is mainly the positions of the 16 category points that are
of interest for the moment, shown in Exhibit 18.2. The first principal axis
shows all four non-response categories together, opposing all the substantive
responses. In the previous analysis of these questions (see Exhibit 17.4) where
the responses were related to demographic variables, the non-response points
were not prominent on the first two axes. But here, because we are looking
at relationships within the four questions, this is the most important feature:
people who do not respond to one question tend to do the same for the others
— for example, amongst the first six respondents in Exhibit 18.1 there are
already two respondents who have non-responses for all four questions. On the
second axis of Exhibit 18.2, we have the line-up of substantive categories from
traditional attitudes at the bottom to liberal attitudes on top. Exhibit 18.3
shows the second and third dimensions of the map, which effectively partials
out most of the effect of the non-response points. The positions of the points
are now strikingly similar to those in Exhibit 17.4, apart from the fact that
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Exhibit 18.2:
MCA map of four
questions on women
working; total
inertia = 3,
percentage inertia in
map: 40.2%.

Exhibit 18.3:
MCA map of four
questions on women
working, showing
second and third
dimensions; total
inertia = 3,
percentage inertia in
map: 29.3%.
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the liberal attitude is now on the right (positive side) of the second dimension,
compared to the first dimension of Exhibit 17.4. This flipping of a dimension
is of no consequence to the interpretation; in fact, it is always possible to
reverse a dimension by multiplying all its coordinates by —1.

The total inertia of an indicator matrix takes on a particularly simple form,
depending only on the number of questions and number of response categories
and not on the actual data. Suppose there are @) variables, and each variable ¢
has J,, categories, with J denoting the total number of categories: J = 0 Ja
(in the present example, @ = 4, J, = 4, ¢ = 1,...,Q, so J = 16). The
indicator matrix, denoted by Z, with J columns, is composed of a set of
subtables Z, stacked side by side, one for each variable, and the row margins
of each subtable are the same, equal to a column of ones. Thus the result (17.1)
in Chapter 17 applies: the total inertia of the indicator matrix is equal to the
average of the inertias of the subtables. Each subtable Z, has a single one in
each row, otherwise zeros, so this is an example of a matrix where all the row
profiles lie at the vertices, the most extreme association possible between rows
and columns; hence the inertias are 1 on each principal axis of the subtable,
and the total inertia of subtable Z, is equal to its dimensionality, which is
Jg — 1. Thus the inertia of Z is the average of the inertias of its subtables:

. . 1 . . 1 J-Q

inertia(Z) 0 ;mertla(zq) 0 ;(Jq 1) 0
Since J — @ is the dimensionality of Z, the average inertia per dimension is
1/Q. Notice that the first three dimensions that were interpreted in Exhibits
18.2 and 18.3 have principal inertias 0.693, 0.513 and 0.365, all above the
average of 1/4 = 0.25. The value 1/Q serves as a threshold for deciding
which axes are worth interpreting in MCA (analogous to the average variance
threshold of 1 for the eigenvalues in principal component analysis).

(18.1)

An alternative data structure for MCA is the set of all two-way cross-tabulations
of the set of variables being analysed. The complete set of pairwise cross-
tabulations is called the Burt matriz, shown in Exhibit 18.4 for the present
example. The Burt matrix is a 4 x 4 block matrix, with 16 subtables. Each of
the 12 off-diagonal subtables is a contingency table cross-tabulating the 3418
respondents on a pair of variables. The Burt matrix is symmetric so there are
only 6 unique cross-tabulations, which are transposed on either side of the
diagonal blocks. The diagonal subtables (by which we mean the tables on the
block diagonal) are cross-tabulations of each variable with itself — these are
diagonal matrices with the marginal frequencies of the variables down their
diagonals. For example, the marginal frequencies for question 1 are 2501 W
responses, 476 ws, 79 Hs and 362 7s. The Burt matrix, denoted by B, is
simply related to the indicator matrix Z as follows:

B=2"Z (18.2)
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The other “classic” way of defining MCA is the application of CA to the Burt
matrix B. Since B is a symmetric matrix, the row and column solutions are
identical, so only one set of points is shown — see Exhibit 18.5. Because of the
direct relationship (18.2), it is no surprise that the solutions are related, in
fact at first glance Exhibit 18.5 looks identical to Exhibit 18.2, only the scale
has changed slightly on the two axes. This is the only difference between the
two analyses — the Burt version of MCA gives principal coordinates which
are reduced in scale compared to the indicator version, where the reduction
is relatively more on the second axis compared to the first.

The CAs of the indicator matrix and the Burt matrix are almost identical
with respect to the category points, specifically:

® In both analyses the standard coordinates of the category points are iden-
tical — this is a direct result of the relationship (18.2).

® Also as a result of (18.2), the principal inertias of the Burt analysis are
the squares of those of the indicator matrix. Since the principal inertias
are less than 1, squaring them makes them smaller in value (and the lower
principal inertias relatively smaller still).

® Consequently, the percentages of inertia are always higher in the Burt
analysis.

® The principal coordinates are the standard coordinates multiplied by the
square roots of the principal inertias, which accounts for the reduction in
scale in Exhibit 18.5 compared to Exhibit 18.2. Apart from the overall
reduction in scale the dispersion along the first axis of the Burt analysis
(Exhibit 18.5) is relatively higher than on the second, as if the display has
been squashed down slightly on the vertical axis.
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Exhibit 18.4:
Burt matrix of all
two-way
cross-tabulations of
the four variables of
the example on
attitudes to women
working. Down the
diagonal are the
cross-tabulations of
each variable with
itself.

MCA definition
number 2: CA of
the Burt matrix

Comparison of
MCA based on
indicator and Burt
matrices
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Exhibit 18.5:
MCA map of Burt
matrix of four
questions on women
working, showing
first and second
dimensions; total
inertia = 1.145,
percentage inertia in
map: 65.0%. The
limits of the plot
box are the same as
Exhibit 18.2 to show
the reduction in
scale, which is
different for each
dimension (second
reduced slightly
more than the first).

Inertia of the
Burt matrix

Exhibit 18.6:
Inertias of each of
the 16 subtables of
the Burt matrix,
from their individual
CAs.

Multiple Correspondence Analysis
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The subtables of the Burt matrix have the same row margins in each set of
horizontal tables and the same column margins in each set of vertical tables,
so the result (17.1) applies exactly: the inertia of B will be the average of the
inertias of the subtables By,. Exhibit 18.6 shows the 16 individual inertias of
the Burt matrix, and their row and column averages. The overall average is
equal to the total inertia 1.145 of B. In this table the inertias of the diagonal
blocks are exactly 3; in fact their inertias have the same definition (18.1) as
the inertias of the subtables of the indicator matrix — they are J, x J, tables
of dimensionality J, — 1 with perfect row—column association, and so have
maximal inertia equal to the number of dimensions. These high values on the
diagonal of Exhibit 18.6 demonstrate why the total inertia of the Burt matrix

QUESTIONS Qu.1 Qu.2 Qu. 3 Qu.4 Average
Qu. 1 3.0000 0.3657 0.4262 0.6457 1.1094
Qu. 2 0.3657 3.0000 0.8942 0.3477 1.1519
Qu. 3 0.4262 0.8942 3.0000 0.4823 1.2007
Qu. 4 0.6457 0.3477 0.4823 3.0000 1.1189
Average 1.1094 1.1519 1.2007 1.1189 1.1452




Positioning supplementary categories in the map

is so high, which is the cause of the low percentages of inertia on the axes.
We return to this topic in the next chapter.

Suppose we wish to relate the demographic variables gender, age, etc. to the
patterns of association shown in the MCA maps. There are two ways of doing
this, highly related, but one of these has some advantages. The first way is
to code these as additional dummy variables and add them as supplemen-
tary columns of the indicator matrix. The second way is to cross-tabulate
the demographics with the four questions, as we did in the stacked analysis of
Chapter 17, and add these cross-tables as supplementary rows of the indicator
matrix or as supplementary rows (or columns) of the Burt matrix. The latter
strategy is preferred because it can be used in both forms of MCA as well as
in the improved versions that we present in the next chapter. In the indicator
matrix version of CA each respondent has a position in the display, usually
not shown when there are thousands of respondents. The respondents can be
similarly added as supplementary points in the Burt matrix version of CA —
these have the same positions as for the indicator matrix. Thus the supple-
mentary points for demographic groups have the same locations in both MCA
versions and are the average positions of those respondent points belonging
to the particular demographic category. Exhibit 18.7 shows the positions of
five of the demographic variables that were used previously, which can be
superimposed on either of the maps in Exhibit 18.2 or 18.5. Notice that the
scale in Exhibit 18.7 is quite reduced — these average points lie quite close to
the centre of the maps, since the differences between the groups are relatively
small. Remember that MCA is showing the differences between the response
categories, not between the demographics (cf. Chapter 17, where demographic
differences across the response categories were displayed).
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Exhibit 18.7:
Supplementary
demographic
category points,
based on (row)
profiles of responses
aggregated into each
category, with
respect to first two
principal axes.
These points should
be superimposed on
the maps of Exhibits
18.2 or 18.5, where
they occupy a small
area at the centre of
the map (note the
scale).
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Multiple Correspondence Analysis

Based on the positions of the response categories on the first two dimensions
of Exhibit 18.2 (similarly, Exhibit 18.5), the farther a demographic category is
to the right, the higher will be the frequency of non-responses. The higher up
a category is, the more liberal the attitude, and the lower down it is, the more
traditional the attitude. Hence West Germany (DW) has more traditional
attitudes and more non-responses than East Germany (DE), a pattern that
is mimicked almost identically by the male—female (M—F) contrast but not as
much as the difference between the two German regions. The age groups show
the same trend as before, from young (Al) at the top (liberal) to old (A6) at
the bottom (traditional). The lowest education groups E1 and E2 have the
highest frequency of non-response. The highest education groups tend to have
more liberal attitudes, but so does the lowest education group E1 (but note
that this is a very small group). Amongst the marital status groups, single
(si) respondents have higher than average non-response and liberal attitudes,
opposing separated (se) respondents who have the least non-response, but are
otherwise average on the liberal-traditional dimension. The widowed group
wi is clearly on the traditional side, but this is surely related to the older age
groups.

1. MCA is concerned with relationships amongst a set of variables that are
usually homogeneous in the sense that they revolve around one particular
substantive issue, and often the response scales are the same.

2. The variables can be recoded as dummy variables in an indicator matriz,
which has as many rows as cases and as many columns as categories of
response. The data in each row are Os apart from the 1s that indicate the
particular category of each variable corresponding to the individual case.

3. An alternative coding of such data is as a Burt matriz, a square symmetric
categories-by-categories matrix formed from all two-way contingency tables
of pairs of variables, including on the block diagonal the cross-tabulations
of each variable with itself.

4. The two alternative definitions of MCA, applying CA to the indicator
matrix or to the Burt matrix, are almost equivalent. Both yield identical
standard coordinates for the category points.

5. The difference between the two definitions is in the principal inertias: those
of the Burt matrix are the squares of those of the indicator matrix. As a
result, the percentages of inertia in the Burt analysis are always more
optimistic than those in the indicator analysis.

6. In both approaches, however, the percentages of inertia are artificially low,
due to the coding, and underestimate the true quality of the maps as
representations of the data.

7. Each respondent has a position in either version of MCA, and additional
categorical variables (e.g. demographics) can be displayed as supplemen-
tary points at positions of respondent category averages.



Joint Correspondence Analysis

Extending simple correspondence analysis (CA) of a two-way table to many
variables is not so straightforward. The usual strategy is to apply CA to the
indicator or Burt matrices, but we have seen that the geometry is not so clear
any more — for example, the total inertia and principal inertias change de-
pending on the matrix analysed, and percentages of inertia explained are low.
The Burt matrix version of multiple correspondence analysis (MCA) shows
that the problem lies in trying to visualize the whole matrix, whereas we are re-
ally interested only in the off-diagonal contingency tables which cross-tabulate
distinct pairs of variables. Joint correspondence analysis (JCA) concentrates
on these tables, ignoring those on the diagonal, resulting in improved measures
of total inertia and much better data representation in the maps.

Contents

MCA gives bad fit because the total inertia is inflated . . . . . . . . .. 145
Ignoring the diagonal blocks — joint CA. . . . . .. . ... ... .... 146
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Exhibit 18.6 shows the inertias in each subtable of the Burt matrix, and their
average which is the total inertia of the Burt matrix. This average is inflated
by the inertias on the diagonal, which are fixed values equal to the number of
categories minus 1 of the corresponding variable (e.g. 4—1 = 3 in this example,
with four categories for each variable). Since the analysis tries to explain the
inertia in the whole table, the high inertias on the diagonal are going to
seriously affect the fit to the whole table. For example, we can evaluate from
the results of the MCA how much inertia for each subtable is explained by the
two-dimensional MCA map — see Exhibit 19.1. Although the MCA reports
that 65.0% of the total inertia is explained, we can see that the off-diagonal
tables are explained much better than that, and the tables on the diagonal
much worse. By summing the parts explained in the off-diagonal tables and
expressing this sum relative to the sum of their total inertias, it turns out that

MCA gives bad fit
because the total
inertia is inflated
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Exhibit 19.1:
Percentage of inertia
explained in each
subtable of the Burt
matrix, based on
two-dimensional
MCA of the Burt

matrix.

Ignoring the
diagonal blocks —
joint CA

Results of JCA

Joint Correspondence Analysis

QUESTIONS Qu.1 Qu.2 Qu.3 Qu.4 Per question

Qu. 1 51.9 78.4 82.5 80.4 61.2
Qu. 2 78.4 95.5 88.2 76.6 65.3
Qu. 3 82.5 88.2 59.6 86.6 69.7
Qu. 4 80.4 76.6 86.6 54.6 63.5

83.2% of the off-diagonal tables is explained by the MCA solution (the parts
explained in each subtable can be recovered using the percentages in Exhibit
19.1 and the total inertias in Exhibit 18.6). Similarly, we can calculate that
55.4% of the inertia on the diagonal tables is explained (this is a simple average
of the diagonal of Exhibit 19.1 because the total inertias for these tables are
constant). So, since we are really interested in only the off-diagonal tables,
we should report a figure such as 83.2% explained rather than 65.0%. But, as
will be shown now, the fit is even better than 83.2%.

It is clear that the inclusion of the tables on the diagonal of the Burt matrix
degrades the whole MCA solution. The method is trying to visualize these ta-
bles unnecessarily, and moreover these are tables with extremely high inertias,
in fact the highest possible inertias attainable. It is possible to improve the
calculation of explained inertia by completely ignoring the diagonal blocks in
the search for an optimal solution. To do this we need a special algorithm to
solve the problem, called joint correspondence analysis (JCA). This is an it-
erative algorithm that performs CA on the Burt matrix, treating the diagonal
subtables as missing values, so that attention is focused on optimizing the fit
to the off-diagonal subtables only. The method uses an imputation algorithm
for missing values, starting from the MCA solution and then replacing the
diagonal subtables with values estimated from the solution itself, calculated
by the reconstitution formula (13.4). Since there is only one set of coordi-
nates and masses for the rows and columns of the symmetric Burt matrix,
this formula takes the following form, for a two-dimensional solution, say:

Diy = cjcy (L+ VA1 + vV A2y527502) (19.1)

where p;;/ is the estimated value of the relative frequency in the (7, j')-th cell
of the Burt matrix, and the ~y;;s are the standard column coordinates. Using
this formula the diagonal subtables of the Burt matrix are replaced with these
estimated values, giving a modified Burt matriz. CA is then performed on the
modified Burt matrix to get a new solution, from which the diagonal subtables
are replaced again with estimates from the new solution to update the mod-
ified Burt matrix. This process is repeated several times until convergence,
and at each iteration the fit to the off-diagonal subtables is improved.

Applying JCA to the four-variable data set on women working leads to the
following results: 90.2% inertia explained, and percentages for individual ta-
bles as shown in Exhibit 19.2. The results are clearly much better than before;



Results of JCA

QUESTIONS Qu.1 Qu.2 Qu.3 Qu.4 Per question
Qu. 1 — 978 95.8 77.8 88.2
Qu. 2 97.8 — 874 97.0 91.8
Qu. 3 95.8 87.4 —  96.7 91.9
Qu. 4 77.8 97.0 96.7 — 88.5

all subtables are very well represented, the worst being the cross-tabulation
of question 1 with question 4, where the explained inertia is 77.8%. Exhibit
19.3 shows the JCA map, where the scale is intentionally kept identical to
that of Exhibits 18.2 and 18.5 for purposes of comparison. It is clear that the
solution is practically identical apart from a contraction of the points in scale.
In Exhibit 18.5 the principal inertias along the first two axes were 0.481 and
0.263, and here they are 0.353 and 0.128 respectively. So once again there
has been a contraction but more of a contraction on the second axis than on
the first. This also happened when passing from the MCA of the indicator
matrix in Exhibit 18.2 to that of the Burt matrix in Exhibit 18.5, but in that
case the standard coordinates of the two analyses were identical — the JCA
solution here is different from the MCA solution, with slight rearrangement
of the category points, as can be seen by closer inspection of Exhibit 19.3 and
comparison with the MCA maps in Exhibits 18.2 and 18.5.

0.128

2W
3w

2w 2?

4w’ W
0 3we } 4? 1? . 3?

0.353

4He

147

Exhibit 19.2:
Percentage of inertia
explained in each of
the 12 off-diagonal
subtables of the
Burt matrix, based
on results of JCA of
the Burt matrix.

Exhibit 19.3:
JCA map of Burt
matrix of four
questions on women
working; percentage
of inertia in map:
90.2%. The
percentage of inertia
is the sum of the
parts explained in
each subtable
(obtained from
Exhibits 19.2 and
18.6) expressed as a
percentage of the
sum of off-diagonal
inertias — see also
the Theoretical
Appendix, pages
247-248).
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Joint Correspondence Analysis

The principal axes in JCA are not nested as in the MCA analyses — that
is, the solution in two dimensions does not exactly contain the best one-
dimensional solution as its first axis, although in practice the nesting is ap-
proximate. This is why no percentages of inertia are reported along the axes in
Exhibit 19.3 — it is possible to report only a percentage of inertia explained
for the solution as a whole, in this case 90.2%. This will affect the reporting
of inertia contributions as well: each category point has a certain quality of
representation in the map, but cannot be decomposed into parts for each axis.

The similarity between the JCA solution and the MCA solution occurs in
almost all examples in our experience. This suggests that it is mainly the
scale change in the solution that distinguishes JCA from MCA; hence, as an
alternative, we can investigate simple scale changes of the MCA solution to
improve the fit. Given the standard coordinates of the MCA solution, there-
fore, the question is how the solution should be rescaled (i.e. how to define
principal coordinates) so that the data in the off-diagonal subtables of the
Burt matrix are optimally reconstructed. This turns out to be a regression
problem, again using the reconstitution formula (19.1), but considering the
scale factors (the square roots of the principal inertias) as unknown regression
coefficients 31 and B, for example, in a two-dimensional solution:

Pjj’

— 1= Bivjivin + Bavjevie + €5 (19.2)
Cjcy

The regression is performed by stringing out all the values on the left-hand side
of (19.2) in a vector, just for the cells in the off-diagonal tables, constituting the
“response variable” of the regression — in the present four-variable example,
with six 4 x 4 tables off the diagonal, there will be 6 x 16 = 96 values in this
vector. As “explanatory variables” we have the corresponding products 7,151
and 7;27;72, also strung out as vectors. A weighted least-squares regression
with no constant is performed with weights c; ¢jr on the respective values —
in this example this gives coefficient estimates 81 = 0.5922 and 62 = 0.3532.
Squaring these values gives the optimal values 0.351 and 0.125 respectively
for the “principal inertias”, for which the explained inertia is 89.9% (this is
the coefficient of determination R? of the regression). This is the best we
can do with the MCA solution — notice how close these are to the principal
inertias in the JCA of Exhibit 19.3, which were 0.353 and 0.128. For mapping
the categories, the principal coordinates are calculated as the MCA standard
coordinates on the first two axes multiplied by the scaling factors By and fBs.
But once again the solution is not nested and depends on the dimensionality
of the solution — if we perform the same calculation for the three-dimensional
solution the first two regression coefficients will not be exactly those obtained
above. The nested property will hold only if the “explanatory variables” in
(19.2) are uncorrelated. By simply ignoring their correlations, we obtain a
simpler (but sub-optimal) way to adjust the solution, which is indeed nested,
as described in the following section.



A simple adjustment of the MCA solution

We now describe a simpler adjustment of the principal inertias, which has the
nested property; in our experience it gives a solution that is usually very close
to optimal. It is also quite easy to compute, involving (i) a recomputation of
the total inertia, just for the off-diagonal subtables, and (ii) a simple adjust-
ment of the principal inertias emanating from MCA. Principal coordinates
are then calculated in the usual way, as are percentages of inertia.

In MCA of the Burt matrix B, total inertia is the average of the inertias
of all subtables, including the problematic ones on the diagonal. But now,
as in JCA, the total inertia is the average of the inertias of the off-diagonal
subtables. This is easily calculated from the total inertia of B because we
know exactly what the values are of the inertias of the diagonal subtables:
Jg — 1, where J; is the number of categories of the ¢-th variable. Hence

sum of inertias of @ diagonal subtables = J — @ (19.3)
while

sum of inertias of all two-way tables = Q? x inertia(B) (19.4)

Subtracting (19.3) from (19.4) to obtain the sum of inertias in the off-diagonal
blocks and then dividing by Q(Q — 1) to obtain the average, leads to:

average off-diagonal inertia = QCE T % (inertia(B) - JC;QQ) (19.5)
Using our data on women working as an example:
average off-diagonal inertia = g X (1.1452 — %) = 0.5270
Another way to compute this value is by directly averaging the inertias of
each subtable, which are given in Exhibit 18.6. This needs to be done on only
one triangle of the symmetric Burt matrix, which contains $Q(Q — 1) = 6

pairwise cross-tables:

%(0.3657 + 0.4262 + 0.6457 + 0.8942 + 0.3477 + 0.4823) = 0.5270

Suppose that the principal inertias (eigenvalues) in the MCA of the Burt
matrix B are denoted by Ay, for k = 1,2, etc. The adjusted principal inertias
)\idj are calculated as follows:

A2l — <Q>2 X (ﬁ— 1)2, k=1,2,... (19.6)

Q-1 Q
In our example the first two adjusted inertias are:
% (06934 — 1) = 0.3495 and

%6 x (0.5132 — 3)2 = 0.1232

(notice again how close these are to the optimal ones from the regression,
which were given on the previous page as 0.351 and 0.125).
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Adjusted inertia =
average inertia in
off-diagonal blocks
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principal inertia
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Adjusted
percentages of
inertia

Data set 10:
News interest in
FEurope

Joint Correspondence Analysis

The adjusted inertias are then expressed relative to the adjusted total to give
percentages of inertia along each principal axis:

0.3495 — 66.3% and 100 x 0.1232

100 x
00 0.5269 0.5269

= 23.4%

The percentage of inertia in the two-dimensional adjusted solution (which is
nested) is thus 89.7%, only 0.2% less than the optimal adjustment from the
regression (which is not nested) and 0.5% less than the JCA solution. It has
been proved that the percentages calculated according to these simple ad-
justments give an overall percentage for the solution which is a lower bound
for the optimal percentage explained in a JCA solution, as illustrated in this
example. Hence, when reporting an MCA, the best way to express measure
of fit is as above, and then the square roots of the adjusted principal inertias
should be used to scale the standard coordinates to obtain principal coordi-
nates for mapping. We do not give the map here since the relative positions
of the points along the two axes are identical to those in Exhibits 18.2 and
18.5 — just the scales are different, more like the scale of Exhibit 19.3.

As another example of JCA, and also to illustrate supplementary points for
JCA, consider a large data set from the 2005 Eurobarometer survey on inter-
est in science. As part of this survey each respondent was asked how interested
he or she was in the following six news issues: sports news (S), politics (P),
new medical discoveries (M), environmental pollution (E), new inventions and
technologies (T), and new scientific discoveries (D). The response scale was
“very interested” (++), “moderately interested” (+) and “not at all inter-
ested” (0). Hence the response categories are depicted by, for example, E+ for
“moderately interested in environmental pollution”, or PO for “not at all in-
terested in politics”. In order to avoid the usual phenomenon of non-responses
that strongly affect the results, as in the previous example, respondents with
any “don’t know” and missing responses were omitted, which reduced the
sample size from 33190 to 29652, a reduction of 10.7% — we shall deal with
non-response issues specifically in Chapter 21. The adjusted MCA map of
these data is shown in Exhibit 19.4. The map shows the “no interest” points
forming a diagonal spread of their own to the right and the “interest” points
spreading from “moderately interested” at the bottom to “very interested”
top left. This is an example of a map whose axes could be rotated, if one
wanted these two lines of dispersion to coincide more with the principal axes.
But a rotation would destroy the property of the horizontal first axis to cap-
ture a dimension of general interest in news issues — see the remark about
rotations in CA in the Epilogue.

This first axis accounts for 67.0% of the inertia. The second axis (22.0%)
shows the interest in scientific discovery (D) and technological innovation (T)
at the extremes, indicating high correlation between these two. The two points
for interest in sports, however, are near the centre of this spread of points,
which indicates that high and moderate interest in sport (S++ and S+), for
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example, must be also associated with moderate interest in the other issues,
and vice versa. Remember that what is being visualized is the association
of each category of a particular variable with the categories of all the other
variables.

Even though we do not show the positions of the 29652 cases in this data set,
they can be imagined in the map as supplementary points. That is, if we added
the huge 29652 x 18 indicator matrix to the Burt matrix as supplementary
rows, each respondent would have a position in the MCA map (but notice that
there are only 3% = 729 unique response patterns, so the respondents would
pile up at the points representing each response pattern). Since the standard
coordinates in the three versions of MCA (indicator, Burt and adjusted) are
the same, the principal coordinate positions of the respondents would be the
same in all three. As stated in Chapter 18, the way to show supplementary
categories is to add their cross-tabulations with the active variables as sup-
plementary rows of the Burt matrix. For example, in this data set there are
samples from 34 European countries. Each respondent from a particular coun-
try has a position in the map and the row of frequencies in the aggregation
of responses for a particular country has a profile exactly at the average posi-
tion of that country’s respondents. Exhibit 19.5 shows the positions of these
average country points, labelled by their local names — this display should
be imagined overlaid on Exhibit 19.4. Of all the countries TURKIYE (Turkey)
is the most in the “no interest” direction — about 40% of Turkish respon-
dents express very little interest on all issues except environmental pollution
(22%); whereas KYPROS (Cyprus), ELLADA (Greece) and MALTA seem to
be the most interested — for example, Cyprus has the highest percentages of
“very interested” responses in issues of environmental pollution (75%), medi-
cal discoveries (62%), technological innovation (53%) and scientific discoveries

(55%).
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Exhibit 19.4:
Adjusted MCA map
of news interest
data. Percentage
inertia in map:
89.2%. (If the MCA
of the indicator
matrix were
performed, the
percentage of
explained inertia
would be only
41.1%.)

Supplementary
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Exhibit 19.5:
Supplementary
country points in
the MCA space of
the data set of news
interest. The
original country
names are used as
labels, as given in
the Eurobarometer.
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One way of defining MCA is as the CA of the Burt matrix of all two-way
cross-tabulations of a set of variables, including the cross-tables of each
variable with itself, which inflate the total inertia.

Joint correspondence analysis (JCA) finds a map which best explains the
cross-tabulations of all pairs of variables, ignoring those on the block diag-
onal of the Burt matrix. This requires a different iterative algorithm, but
in the optimal solution the axes are not nested.

The total inertia to be explained is now the average of all the inertias in
the off-diagonal tables of the Burt matrix.

An intermediate solution is to condition on the standard coordinates of
the MCA solution and find the best weighted least-squares fit to the cross-
tables of interest, using regression analysis. However, this solution is again
not nested.

A simple solution, called adjusted MCA  jwhich is nested and thus conserves
all the good properties of MCA while approximating the JCA solution, is
to apply certain adjustments to the MCA principal inertias of the axes and
to the total inertia.

Supplementary categories are represented as in all forms of MCA, i.e. by
cross-tabulating them with the active variables and then adding them as
supplementary rows of the Burt matrix (or modified Burt matrix in JCA).
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As was shown in Chapters 7 and 8, there are several alternative definitions
of correspondence analysis (CA) and different ways of thinking about the
method. In this book Benzécri’s geometric approach has been emphasised,
leading to data visualization. In Chapters 18 and 19 it was clear that the
passage from simple two-variable CA to the multivariate form of the analysis
is not straightforward, especially if one tries to generalize the geometric inter-
pretation. An alternative approach to the multivariate case, which relies on
exactly the same mathematics as multiple correspondence analysis (MCA),
is to see the method as a way of quantifying categorical data, generalizing
the optimal scaling ideas of Chapter 7. As before, there are several equiv-
alent ways to think about MCA as a scaling technique, and these different
approaches enrich our understanding of the method’s properties. The optimal
scaling approach to MCA is often referred to in the literature as homogeneity
analysis.
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This data set is taken from the multinational International Social Survey Pro-
gram (ISSP) survey on environment in 1993. We are going to look specifically
at Q = 4 questions on attitudes towards the role of science. Respondents were
asked if they agreed or disagreed with the following statements:

A We believe too often in science, and not enough in feelings and faith.
B Overall, modern science does more harm than good.

C Any change humans cause in nature, no matter how scientific, is likely to
make things worse.

D Modern science will solve our environmental problems with little change to
our way of life.

Data set 11:
Attitudes to
science and

environment
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There were five possible response categories: 1. strongly agree, 2. somewhat
agree, 3. neither agree nor disagree, 4. somewhat disagree, 5. strongly disagree.
For simplicity data for the West German sample only are used and cases with
missing values on any one of the four questions are omitted, reducing the
sample size to N = 871 (these data are provided with the ca package in R —
see the Computational Appendix).

In Chapter 7 CA was defined as the search for quantifications of the categories
of the column variable, say, which lead to the greatest possible differentiation,
or discrimination, between the categories of the row variable, or vice versa.
This is what we would call an “asymmetric” definition because the rows and
columns play different roles in the definition and the results reflect this too;
for example, the column solution turns out to be in standard coordinates
and the row solution in principal coordinates. In Chapter 8 CA was defined
“symmetrically” as the search for new scale values which lead to the highest
correlation between the row and column variables. Here the rows and columns
have an identical role in the definition. These scaling objectives do not include
any specific geometric concepts and, in particular, make no mention of a full
space in which the data are imagined to lie, which is an important concept in
the geometric approach for measuring total inertia and percentages of inertia
explained in lower-dimensional subspaces.

The asymmetric definition of optimal scaling, when applied to an indicator
matrix, resembles closely principal component analysis (PCA). PCA is usu-
ally applied to matrices of continuous-scale data, and has close theoretical and
computational links to CA — in fact, one could say that CA is a variant of
PCA for categorical data. In the PCA of a data set where the rows are cases
and the columns variables (m variables, say, x1,...,2,,), coefficients aq ...,
(to be estimated) are assigned to the columns, leading to linear combinations
for the rows (cases) of the form «yx1 + -+ 4+ axm,, called scores. The co-
efficients are then calculated to maximize the variance of the row scores. As
before, identification conditions are required to solve the problem, and in PCA
this is usually that the sum of squares of the coefficients is 1: 3 j a? =1. Ap-
plying this idea to the indicator matrix, which consists of zeros and ones only,
assigning coefficients aq,...,a; to the J dummy variables and then calculat-
ing linear combinations for the rows, simply means adding up the coefficients
(i.e. scale values) for each case. Then maximizing the variance for each case
sounds just like the optimal scaling procedure of Chapter 7 (maximizing dis-
crimination between the rows); in fact this is almost the same except for one
aspect, namely the identification conditions. In optimal scaling the identifica-
tion conditions would be that the weighted variance (inertia) of the coefficients
(not the simple sum of squares) be equal to 1: Zj cja? = 1. Here the weights
c; are the column masses, i.e. the column sums of the indicator matrix divided
by the grand total V@) of the indicator matrix — thus each set of c;s for one
categorical variable adds up to 1/@Q. So with this change in the identification
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condition, MCA could be called the PCA of categorical data, maximizing the
variance across cases. The coeflicients are the standard coordinates of the col-
umn categories, while the MCA principal coordinate of a case is the average
of that case’s scale values, i.e. 1/Q times the sum that was called the score
before. The first dimension of MCA maximizes the variance (first principal
inertia), the second dimension maximizes the variance subject to the scores
being uncorrelated with those on the first dimension, and so on.

MCA as a scaling technique, usually called homogeneity analysis, is more
commonly seen as a generalization of the correlation approach of Chapter 8.
In Equation (8.1) on page 63, an alternative way of optimizing correlation
between two categorical variables was described, which is easy to generalize
to more than two variables. Again we shall use a pragmatic notation for this
specific four-variable example, i.e. Q = 4, with total number of categories J =
20, but the idea easily extends to ) variables with any number of categories.
Suppose that the four variables have (unknown) scale values a; to as, by
to bs, c1 to cs, and dy to ds. Assigning four of these values a;, b;, ¢, and
d; to each respondent according to his or her set of responses leads to the
quantified responses for the whole sample, which we denote by a, b, ¢ and
d (i.e. the vector a denotes all 871 quantified responses to question A, etc.).
Each respondent has a score a; + b; + c; + d; which is the sum of the scale
values, so the scores for the whole sample are denoted by a+ b+ ¢+ d. In this
context the variables are often referred to as items and we talk of the values
in a to d as item scores and those in a+ b+ ¢+ d as the summated scores.
The criterion for finding optimal scale values is thus to maximize the average
squared correlation between the item scores and the summated score:

ave. squared (zorrelation:i[corQ(a7 a+b+c+d)+cor’(bat+b+c+d)
+cor’(c,a+b+c+d)+cor’(d,a+ b+ c+d)] (20.1)

(cf. the two-variable case, (8.1) on page 63). Again, identification conditions
are required, and it is convenient to use the mean 0 and variance 1 conditions
on the summated scores: mean(a+b+c+d) =0, var(a+ b+ c+d) = 1. The
solution to this maximization problem is then given exactly by the standard
coordinates of the item categories on the first principal axis of MCA, and the
maximized average squared correlation of (20.1) is exactly the first principal
inertia of the indicator matrix version of MCA.

Exhibit 20.1 shows the two-dimensional MCA map based on the indicator
matrix, showing again the very low percentages of inertia (the percentages
based on adjusted inertias are 44.9% and 34.2% respectively). But in this
case the percentages should be ignored, since it is the values of the principal
inertias that are of interest per se, being average squared correlations. The
maximum value of (20.1) is thus 0.457. The second principal inertia, 0.431,
is found by looking for a new set of scale values that lead to a set of scores
uncorrelated with those obtained previously, and which maximize (20.1) —
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Exhibit 20.1:
MCA map
(indicator matrix
version) of science
attitudes, showing
category points in
principal coordi-
nates. Since the
principal inertias
differ only slightly
(and even less in
their square roots),
these principal
coordinates are
almost the same
scale contraction
(approximately 2/3,
close to the square
roots of 0.457 and
0.431) of the
standard coordi-
nates on both axes.

Individual
squared
correlations
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this maximum is the value 0.431. And so it would continue for solutions on
subsequent axes, always uncorrelated with the ones already found. Looking
at the map in Exhibit 20.1, questions A, B and C can be seen to follow a very
similar pattern, with strong disagreements on the left to strong agreements
on the right, in a wedge-shaped curved pattern (the arch, or “horseshoe”).
Question D, however, has a completely different trajectory, with the two poles
of the scale very close together. Now the first three questions were all worded
negatively towards science whereas question D was worded positively, so we
would have expected D5 to lie towards AI, BI and CI, and DI on the side
of A5, B5 and C5. The fact that DI and D5 lie close together inside the
horseshoe means that they are both associated with the extremes of the other
three questions — the most likely explanation is that some respondents are
misinterpreting the change of direction of the fourth question.

Knowing the values of the individual squared correlations in (20.1) is also in-
teresting information. These can be obtained adding up the individual inertia
contributions to the first principal inertia for each question. The results of
an MCA usually give these expressed in proportions or permills, so we show
these as permills in Exhibit 20.2 as an illustration of how to recover these
correlations. Questions A to D thus contribute proportions 0.279, 0.317, 0.343
and 0.062 of the principal inertia of 0.457. Since 0.457 is the average of the
four squared correlations, the squared correlations and thus the correlations
are:
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QUESTIONS
CATEGORIES A B C D Sum
1 “strongly agree” 115 174 203 25 518
2 "somewhat agree” 28 21 6 3 57
3 “neither—nor"” 12 7T 22 9 49
4 “somewhat disagree" 69 41 80 3 194
5 “strongly disagree” 55 74 32 22 182
Sum 279 317 343 62 1000

0.279 x 0.457 x 4 = 0.510  correlation = v/0.510 = 0.714
0.317 x 0.457 x 4 = 0.579  correlation = v/0.579 = 0.761
0.343 x 0.457 x 4 = 0.627  correlation = v/0.627 = 0.792
0.062 x 0.457 x 4 = 0.113  correlation = v/0.113 = 0.337

Saow >

This calculation shows how much lower the correlation is of question D with
the summated score on the first dimension. Notice that, although the MCA
of the indicator matrix was the worst from the usual CA geometric point of
view of x2-distances, total inertia, etc., the principal inertias and the contri-
butions to the principal inertias do have a very interesting interpretation by
themselves. In the approach called homogeneity analysis, which is theoreti-
cally equivalent to the MCA of the indicator matrix but which interprets the
method from a scaling viewpoint, the squared correlations 0.510, 0.579, 0.627
and 0.113 are called discrimination measures.

In homogeneity analysis the objective function (8.3) (see Chapter 8, page 63)
is generalized to many variables. Using the notation above for the present
four-variable example, the average score (az +b; +c +d;) of the item scores
can be calculated for each respondent and then the respondent’s measure of
variance within his or her set of quantiﬁed responses is:

variance (for one case) = 411( [a; ai +bj +cx +dp))?

+[b;
+ e —

+[di

The average of all these values over the N cases is then calculated, called
the loss of homogeneity, and the objective is to minimize this loss. Again the
MCA (indicator matrix version) solves this problem and the minimized loss
is 1 minus the first principal inertia; i.e. 1 — 0.457 = 0.543. Minimizing the
loss is equivalent to maximizing the correlation measure defined previously.

5 )
(a;i +bj + cx + dp))?
(ai +bj + cx +dp))?
)

(ai +bj +ex +dp))?) (20.2)
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Exhibit 20.2:
Permill (%)
contributions to
inertia of first
principal axis of
MCA (indicator
matrix version) of
data on science and
environment.

Loss of
homogeneity
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Exhibit 20.3:
Asymmetric MCA
map (indicator
matrix version) of
science attitudes,
showing respondents
in principal
coordinates and
categories in
standard
coordinates. Each
respondent is at the
average of the four
categories given as
responses. MCA
minimizes the sum
of squared distances
between category
points and
respondents.

Scaling Properties of MCA

The objective of minimizing loss has a very attractive geometric interpreta-
tion which is closely connected to the row-to-column distance definition of CA
discussed in Chapter 7. In fact, the homogeneity loss function is exactly the
weighted distance function (7.6) on page 55, applied to the indicator matrix.
Exhibit 20.3 shows the asymmetric MCA map of all N = 871 respondents (in
principal coordinates) and the J = 20 category points (in standard coordi-
nates), which means that the respondents lie at the centroids of the categories,
where the weights are the relative values in the rows of the indicator matrix.
Each respondent has a profile consisting of zeros apart from values of i in

0.413
C5
A

A5
A

0.457

the positions of the four responses; hence each repondent point lies at the
ordinary average position of his or her responses. Two respondents, #679 and
#521, are labelled in Exhibit 20.3. Respondent #679 chose the categories
(A4,B5,C5,D1), disagreeing with the first three questions and agreeing to the
fourth those categories are linked to the respondent point on the upper
left-hand side of the display. This is a strong and consistent position in favour
of science. Respondent #521, however, has a mixed opinion: (A1,B4,C1,D1),
strongly agreeing that we believe too much in science and that human in-
terference in nature will make things worse, but at the same time strongly
agreeing that science will solve our environmental problems while disagreeing




Reliability and Cronbach’s alpha

that science does more harm than good. This shows one of the reasons why
D1 has been pulled to the middle between the two extremes of opinion. Every
respondent is at the average of the four categories in his or her set of answers.
For any configuration of category points, the respondents could be located
at average positions, but the result of Exhibit 20.3 is optimal in the sense
that the lines linking the respondents to the category points are the shortest
possible (in terms of sum of squared distances). Showing all the links between
respondents and their response categories has been called a star plot, so the
objective of MCA can be seen as obtaining the star plot with the shortest
links in the least-squares sense. The number of links between the N respon-
dent points and the corresponding ) category points is N@Q. The value of the
loss is actually the average of the squares of the links (for example, in (20.2)
where Q = 4 the sum of the four squares is divided by 4, and then the average
over N is calculated, so that the sum of squared values is divided by 4N). So
the average sum of squared links on the first dimension is 1 — 0.457 = 0.513,
and on the second dimension it is 1 —0.413 = 0.587; by Pythagoras’ theorem,
the average sum of squared links in the two-dimensional map of Exhibit 20.3
is 0.513 + 0.587 = 1.100.

In the present example of the science and environment data, we saw that
question D is not correlated highly with the others (see page 157). If we were
trying to derive an overall measure of attitude towards science in this context,
we would say that these results show us that question D has degraded the
reliability of the total score, and should preferably be removed. In reliability
theory, the @) variables, or items, are supposed to be measuring one underlying
construct. Cronbach’s alpha is a standard measure of reliability, defined in

general as:
§2
a= % (1 — Z;Q 1 (20.3)
where sg is the variance of the g-th item score, ¢ = 1,...,Q (e.g. variances

of a+ b+ c+ d) and s? is the variance of the average score (e.g. variance
of 1(a+b+c+d)). Applying this definition to the first dimension of the MCA
solution, it can be shown that Cronbach’s alpha reduces to the following:

__@ 1
a=G5og (1 - Qh) (20.4)

where A; is the first principal inertia of the indicator matrix. Thus the higher
the principal inertia, the higher the reliability. Using @ = 4 and A\ = 0.4574
(four significant digits for slightly better accuracy) we obtain:

4 1
‘T3 <1 T ix 0.4574> = 06046

Having seen the low correlation of question D with the other questions, an
option now is to remove it and recompute the solution with the three questions
that are more highly intercorrelated. The results are not given here, apart
from reporting that the first principal inertia of this three-variable MCA is

159

Reliability and
Cronbach’s alpha



160

The
adjustment
threshold
rediscovered

SUMMARY:
Scaling Properties
of MCA

Scaling Properties of MCA

A1 = 0.6018, with an increase in reliability to o = 0.6692 (remember to use
(20.4) with @ = 3).

As a final remark, it is interesting to notice that the average squared correla-
tion of a set of random variables, with no zero pairwise correlation between
them, is equal to 1/@Q), and this corresponds to a Cronbach’s alpha of 0. The
value 1/Q is exactly the threshold used in (19.6) for adjustment of the princi-
pal inertias (eigenvalues), and is also the average principal inertia in the MCA
of the indicator matrix, mentioned in Chapter 18. See also the conjecture in
the last paragraph of this book — page 304 of the Epilogue in Appendix E.

1. Optimal scaling in a two-variable context was defined as the search for
scale values for the categories of one variable which lead to the highest
separation of groups defined by the other variable. This problem is equiv-
alent to finding scale values for each set of categories which lead to the
highest possible correlation between the row and column variables.

2. In a multivariate context, optimal scaling can be generalized as the search
for scale values for the categories of all variables so as to optimize a measure
of correlation between the variables and their sum (or average). Specifically,
the average squared correlation is maximized between the scaled observa-
tions for each variable, called item scores, and their sum (or average), called
simply the score.

3. Equivalently, a minimum can be sought for the variance between item
scores within each respondent, averaged over the sample. This is the usual
definition of homogeneity analysis.

4. The scaling approach in general, exemplified by homogeneity analysis, is
a better framework for interpreting the results of MCA of an indicator
matrix. The principal inertias and their breakdown into contributions are
more readily interpreted as squared correlations, rather than quantities
with a geometric significance as in simple CA.

5. The first principal inertia in the indicator matrix version of MCA has a
monotonic functional relationship with Cronbach’s alpha measure of relia-
bility: the higher the principal inertia, the higher the reliability.

6. Since the standard coordinates are identical for the MCA of the indicator
matrix, the Burt matrix and in the adjusted form, these scaling properties
apply to all three versions of MCA.
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It is often desirable to restrict attention to part of a data matrix, leaving out
either some rows or some columns or both. For example, the columns might
subdivide naturally into groups and it would be interesting to analyse each
group separately. Or there might be categories corresponding to missing val-
ues and one would like to exclude these from the analysis. The most obvious
approach would be simply to apply correspondence analysis (CA) to the sub-
matrix of interest. However, one or both of the margins of the submatrix would
differ from those of the original data matrix, and so the profiles, masses and
distances would change accordingly. The approach presented in this chapter,
called subset correspondence analysis, fixes the original margins of the whole
matrix, using these to determine the masses and y2-distance in the analysis of
any submatrix. Subset CA has many advantages; for example, the total iner-
tia of the original data matrix is decomposed amongst the subsets, hence the
information in a data matrix can be partitioned and investigated separately.
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The author data set of Exhibit 10.6 is a good example of a table with columns
that naturally divide into subsets — the 26 letters of the alphabet formed by
21 consonants and 5 vowels. We have seen in Chapter 10, page 78, that the
total inertia of this table is very low, 0.01873, but that there is a definite
structure amongst the rows (the 12 texts by the six authors). It would be
interesting to see how the results are affected if attention is restricted to the
subset of consonants or the subset of vowels. One way of proceeding would
be simply to analyse the two submatrices, the 12 x 21 matrix of consonant
frequencies and the 12 x 5 matrix of vowel frequencies. But this means that
the values in the profiles of each text would be recalculated with respect to the
new margins of the submatrix. In the analysis of consonants, for example, the

Analysing the
consonants and

vowels of author

data set

161



162

Subset analysis
keeps original
margins fixed

Subset CA of
consonants,
contribution biplot

Subset CA of
the vowels,
contribution biplot

Subset Correspondence Analysis

relative frequencies of b, ¢, d, f, ..., etc. for each text (row) would be calculated
relative to the total number of consonants in the text, not the total number of
letters. As for the consonant profiles (columns), these would remain the same
as before but the y2-distances between them would be different because they
depend on the row masses, which have changed.

An alternative approach, which has many advantages, is to analyse the sub-
matrix but keep the original margins of the table fixed for all calculations
of mass and distance. Algorithmically, this is a very simple modification of
any CA program — all that needs to be done is to suppress the calculation
of marginal sums that are “local” to the submatrix selected, maintaining the
calculation of the row and column sums of the original complete table, and
using these sums to determine the profile values, masses and distances. This
method is called subset correspondence analysis.

Applying subset CA to the table of consonant frequencies (see pages 265-266)
gives the map of Exhibit 21.1. Here the standard CA biplot is given rather than
the symmetric or asymmetric map (see Chapter 13). The texts are in prin-
cipal coordinates, so their interpoint distances are approximate x2-distances,
where the distances are based on that part of the original y2-distance func-
tion due only to the consonants, dropping the terms due to the vowels. The
consonants are in standard coordinates multiplied by the respective square
roots of the relative frequency of the consonant (i.e. relative frequency in the
set of 26 letters, remembering that the marginal sums are always those of the
original table). The squared lengths of the consonant vectors on each axis are
proportional to their contribution to the axis, which is why the letter y is so
prominent on the second axis (more than 50% in this case). This contribution
biplot works just as well for tables with low or high inertias and is particularly
useful in this example where the inertia is extremely small. Comparing this
map with the asymmetric map of Exhibit 10.7, we can see that the letters are
pointing in more or less the same directions and that the configuration of the
texts is quite similar. The total inertia is 0.01637, and this value is exactly the
sum of the inertias of the consonants in the previous full analysis in Chapter
10. On page 79 we reported the total inertia of the full table to be 0.01873;
hence the consonants are responsible for 87.4% (0.01637 relative to 0.01873)
of the inertia. Having realized that the consonants contribute the major part
of the inertia, it is no surprise that most of the structure displayed in the full
analysis of Exhibit 10.7 and the subset analysis of Exhibit 21.1 is the same.

The total inertia of the orginal table is decomposed as follows between the
consonants and the vowels:
total inertia = inertia of consonants -+ inertia of vowels
0.01873 = 0.01637 + 0.00236
(87.4%) (12.6%)



Subset CA of the vowels, contribution biplot
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The inertia in the vowels subtable is much smaller, only 12.6% of the original
total. The vowels are, as expected, more frequent (38.3% of the letters corre-
spond to the 5 vowels, compared to 61.7% for the 21 consonants). The subset
CA of the vowels, again with contribution biplot scaling, is shown in Exhibit
21.2. The biplot is on the same scale as Exhibit 21.1 and the lower dispersion
of the texts compared to the vectors for the letters is immediately apparent.
However, some pairs of texts are still lying in fairly close proximity. There is
an opposition of the letter e on the left versus the letter o on the right, with
a corresponding opposition of the texts by Buck versus those by Faulkner. Of
the six authors, the texts of Holt seem to be the most different. In Chapter 29,
page 232, permutation tests for testing the significance of these results will
be reported — anticipating this, it turns out the pairing of the texts is highly
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Exhibit 21.1:
Subset analysis of
consonants in
author example;
contribution CA
biplot, with rows
(texts) in principal
coordinates and
columns (letters) in
contribution
coordinates,

i.e. standard
coordinates
multiplied by the
square roots of
column masses.



164

Exhibit 21.2:
Subset analysis of
vowels in author
example;
contribution CA
biplot, with rows
(texts) in principal
coordinates and
columns (letters) in
contribution
coordinates,

i.e. standard
coordinates
multiplied by the
square roots of
column masses.

Subset MCA

Subset Correspondence Analysis
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significant for both consonants and vowels. So, even though the inertia in the
vowels is much lower than the consonants, they still signficantly distinguish
between the authors.

The subset idea can be applied to multiple correspondence analysis (MCA) in
much the same way and provides a very useful tool for investigating patterns
in specific categories in multivariate categorical data. In questionnaire surveys
it may be interesting to focus on a particular subset of responses, for example
only the categories of agreement on a five-point agreement—disagreement scale,
or all the “middle” response categories (“neither agree nor disagree”) or the
various non-substantive response categories (“don’t know”, “no response”,
“other”, etc.). Or we might want to exclude the non-substantive response
categories and focus only on the categories of substantive responses. In all
these cases, a subset analysis will allow us to see more clearly how demographic
variables relate to these specific response categories, which might not be so
clear when all categories are analysed together. The subset option allows us
to partition the variation in the data into parts for different sets of categories,



Subset analysis on an indicator matrix

which can then be visualized separately. Subset MCA is performed by applying
subset CA to the appropriate parts of the indicator matrix or Burt matrix,
as we illustrate now.

We return to the data set on working women introduced in Chapter 17 and
analysed by MCA in Chapter 18. Each of the four questions has a response
category for “don’t know” /missing responses, labelled by 7. These categories
were prominent on the first principal axis of the MCA (Exhibit 18.2). A subset
analysis can exclude these columns of the indicator matrix corresponding to
the non-substantive responses, so the subset includes only the substantive
response categories, W (work full-time), w (work part-time) and H (stay
at home), maintaining the original row sums of the indicator matrix. Since
the row sums of the indicator matrix are 4 in this case, the subset analysis
maintains the equal weighting for each row (respondent) and the profile values
are still zero or i. The respondents with four substantive answers will have
four nonzero values of % in their profiles, while those with three substantive
answers will have three values of i, and so on. If we had simply omitted these
columns of the indicator matrix and performed a regular CA, then there would
be values of % for those with three substantive responses, % for those with
two, and 1 for those with just one substantive response. The profile of a case
with four non-substantive responses would be ill-defined, whereas in a subset
analysis such a case has a set of zeros as data and is represented at the origin
of the map. The total inertia of the subset of 12 categories is 2.1047. Since
the total inertia of the whole indicator matrix is 3, this shows that the inertia
is decomposed as 2.1047 (70.2%) for the substantive categories and 0.8953
(29.8%) for the non-substantive ones. The principal inertias and percentages
of inertia for the first two dimensions of this subset analysis are 0.5133 (24.4%
of the total of 2.1047) and 0.3652 (17.4%), i.e. 41.8% in the two-dimensional
solution. These percentages again suffer from the problem, as in MCA, of
being artificially low. As in Chapter 19, an adjustment of the scaling factors
on the axes can be implemented, as will be demonstrated below.

As in regular MCA, the subset analysis can also be performed on the appro-
priate part of the Burt matrix. To illustrate the procedure, the Burt matrix,
given in Chapter 18 in Exhibit 18.4, can be rearranged so that all categories of
the subset are in the top left part of the table, as shown in Exhibit 21.3. So the
subset of interest is the 12 x 12 submatrix, itself in a block structure made up
of the four sets of three substantive responses, while the four non-substantive
categories are now the last rows and columns of the table. The analysis of the
subset gives a total inertia of 0.6358 and principal inertias and percentages of
0.2635 (41.4%) and 0.1333 (21.0%) on the first two dimensions: as in MCA,
this is an improvement over the indicator matrix version, explaining 62.4%
of the inertia compared to 41.8%. Notice that the connection between the
indicator and Burt versions of subset MCA is the same as in regular MCA: the
principal inertias in the Burt analysis are the squares of those in the indicator
version, for example 0.2635 = 0.51332.
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Exhibit 21.3:

Burt matrix of four
categorical variables
of Exhibit 18.4,
re-arranged so that
all non-substantive
response categories
(7) are in the last
rows and columns.
All substantive
responses (W, w and
H) are in the upper
left 12 x 12 part,
while the lower right
4 x 4 corner contains
the co-occurences of
the non-substantive
responses (“don’t
know/missing” ).

Subset MCA
with rescaled
solution and
adjusted inertias

Supplementary
points in subset

CA

Subset Correspondence Analysis

IW IwlH |2W 2w 2H [|3W 3w 3H | 4W 4w 4H | 17 27 37 47
2501 0 0 |172 1107 1131 |355 1710 345 | 1766 538 40 0 91 91 157
0476 0 7 129 335 | 16 261 181 | 128 293 17 0 5 18 38

0 079 1 6 72 1 17 61 14 21 38 0O 0 0 6
172 7 1 |181 0 0 |127 48 4 | 165 15 O 0 2 1
1107 129 6 0 1299 01219 997 61 | 972239 13 | 57 0 22 75
1131 335 72 0 01646 | 24 989 573 | 760 616 84 [108 O 60 186
355 16 1 |127 219 24 |379 0 0] 360 14 1 7 9 0 4
1710 261 17 | 48 997 989 02084 0 [1348 567 23 | 96 50 0 146
345 181 61 4 61 573 0 0642 | 202286 73 | 85 4 0 81
1766 128 14 |165 972 760 [360 1348 202 (1959 0 O | 51 62 49 O
538 293 21 | 15 239 616 | 14 567 286 0897 0| 45 27 30 O
40 17 38 0 13 84 1 23 73 0 097 2 0 0 O
0 0 1 57 108 7 96 55 51 45 2 |362 196 204 264

91 5 O 0 0 0 9 50 4 62 27 0 |196 292 229 203
91 18 O 2 22 60 0 0 0 49 30 0 |204 229 313 234
157 38 6 1 75 186 4 146 81 0 0 0 [264 203 234 465

The problem of low inertias is the same here as in MCA: in Exhibit 21.3
there are still 3 x 3 diagonal matrices on the block diagonal of the 12 x 12
submatrix which forms the subset being analysed. As described in Chapter
19, it is possible to rescale the solution by regression analysis so that the
off-diagonal submatrices are optimally fitted. This involves stringing out the
elements of these 6 off-diagonal matrices, each with 9 elements, as a vector
of 54 elements, forming the “y”-variable of the regression. These elements
should be expressed as in (19.2), as contingency ratios minus 1. The two “z”-
variables (for a two-dimensional solution) are formed by the corresponding
products of the standard coordinates. The optimal values for the scale factors
are then found by weighted least squares, as before (see Chapter 19, page
148), giving a fit of R? = 0.849. Once again, this fit applies to the two-
dimensional solution only and there is no nesting of the dimensions. However,
a simple sub-optimal adjustment is also available here, which is nested, and
is implemented in the ca package — see the Computational Appendix, page
276). For this example, the percentage explained in this adjusted solution
is 82.9% (thus, only 2 percentage points lower than the optimally adjusted
84.9%), but this percentage can be decomposed on the two dimensions: 69.6%
and 13.3% respectively — see Exhibit 21.4.

Displaying supplementary points depends on whether rows or columns have
been subsetted. In the case of the author data, for example, where the subset
of the vowels was analysed (Exhibit 21.2), the usual centring condition holds
for the rows (texts), which were not subsetted, but it does not hold for the
columns (vowels). If we wanted to project the letter Y onto the subset map
of the vowels, we use the zero-centred row coordinates ¢; (i.e. row vertices),
S0 it is not necessary to centre Y’s profile, and the usual weighted averaging



Supplementary points in subset MCA
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gives the principal coordinates — see Chapter 12 and the specific transition
formula (14.2) applicable to this case (for a two-dimensional solution):

Z YiPik

where y; is the i-th profile value of Y. On the other hand, to project a new
text, with profile values ¢; for the subset (these add up to the proportion
of vowels in that text, not 1), centring has to be performed with respect to
the original centroid values c¢; before performing the scalar product operation
with the standard column coordinates ;:

D (=)

J

k=1,2 (21.1)

k=1,2 (21.2)
Notice that to situate a supplementary point in subset CA and in regular
CA, this type of centring can always be done, but is not necessary when the
standard coordinates satisfy D, rip; = 0 and ) ; ¢iYjk = 0, which is the case
when the summation is over the complete set.

Every respondent (row) of the indicator matrix can be represented as a supple-
mentary point, as well as any grouping of rows into education groups, gender
groups, etc. So, as in regular MCA, the categories of supplementary vari-
ables are displayed at the centroids of the respondent points that fall into the
respective groups. Exhibit 21.5 shows the positions of various demographic
categories with respect to the same principal axes as in Exhibit 21.4. Since
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Exhibit 21.4:
Map of subset of
response categories,
excluding the
non-substantive
categories. The
solution has been
adjusted to fit the
off-diagonal tables of
the subset matrix,
explaining 82.9% of
the inertia.

Supplementary
points in subset
MCA



168

Exhibit 21.5:
Positions of
supplementary
points in the map of
Exhibit 21.4. Some
abbreviations can be
found in Chapter
17, page 129; DW
and DE are West
and East Germany.

SUMMARY:
Subset
Correspondence
Analysis

0.1

Subset Correspondence Analysis

the horizontal axis now coincides with a traditional attitude (on the left) to
liberal (on the right), we see again West Germany opposing East Germany

on

this axis and the line-up of the other demographic categories, similar to

previous solutions.
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. The idea in subset CA is to visualize a subset of the rows or a subset of

the columns (or both) in subspaces of the same full space as the original
complete set. The original centroid is maintained at the centre of the map,
as well as the original masses and y2-distance weights.

. Because the properties of the original space are conserved in the subset

analysis, the original total inertia is decomposed exactly into parts of in-
ertia for each subset.

Subset CA is implemented simply by suppressing the recomputation of the
margins of the subset, and using the original margins (masses) in all the
usual CA computations.

. This idea extends to MCA as well, allowing the selection of any subset of

categories, providing an analytic strategy that can be put to great advan-
tage in the analysis of questionnaire data. For example, missing categories
can be excluded, or the analysis can focus on one type of response cate-
gory for all questions, visualizing the dimensions of the subset without any
interference from the other categories.

As in regular MCA, subset MCA can be applied to the indicator matrix
or Burt matrix, and the solutions can be rescaled to optimize the fit to the
actual subtables of interest, which dramatically improves the percentages
of explained inertia.

Supplementary points can also be added to a subset map. In subset MCA
this facility allows demographic categories to be related to particular types
of response categories.




Compositional Data Analysis

Compositional data consist of sets of osbervations that add up to a constant,
such as proportions that sum to 1, or percentages that sum to 100. Data
such as these, called compositions, are prolific in chemistry, biochemistry and
geology, where samples are analytically measured for their relative contents
of different substances, for example oxides in chemistry, fatty acids in bio-
chemistry and grain sizes in geology. But compositional data are also found in
the social and economic sciences, such as daily time budgets that sum to 24
hours, family expenses on different items as proportions of total expenditure,
or government budgets for different public services. Methods for visualizing
compositional data are intimately related to correspondence analysis, since
correspondence analysis also analyses the relative values in a data set. In this
chapter we will look at methods for visualizing compositional data and show
their relationship with correspondence analysis.
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Compositional data are special because they have the property of closure,
i.e. each set of values for each sample has a constant sum. The original meas-
urements, for example the weights in grams of different oxides in a chemical
sample, do have a certain total, but this total is of no interest — it is the
proportional amounts that are relevant. We have seen that correspondence
analysis treats the rows and/or columns of a table after they have been closed,
i.e. expressed relative to their respective marginal totals, but these marginal
totals are also of interest and used in the analysis as weights.

Consider the small set of three biological samples in Exhibit 22.1(a), ana-
lysed for their proportions of four fatty acids. The column variables are often
referred to as parts, and so each row is a four-part composition. In the sec-

Compositional
data

Subcompositional
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Exhibit 22.1:

(a) Table of fatty
acid compositions
and (b) table of
subcompositions
after eliminating the
last part.

Ratios and
log-ratios are
subcompositionally
coherent

Compositional Data Analysis

(a)
Samples  16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00 Sum
A 0.342 0.217 0.054 0.387 1
B 0.350 0.196 0.050 0.404 1
C 0.442 0.294 0.018 0.246 1
Average 0.378 0.236 0.041 0.346 1
(b)
Samples 16:1(n-7) 20:5(n-3) 18:4(n-3) Sum
A 0.558 0.354 0.088 1
B 0.587 0.329 0.084 1
C 0.586 0.390 0.024 1
Average 0.577 0.358 0.065 1

ond table, Exhibit 22.1(b) the fourth fatty acid has been removed and the
compositions recomputed, i.e. the table has been reclosed to give three-part
subcompositions. The values for sample C do not change too much because its
proportion of 18:00 is smaller than the others, whereas the values for samples
A and B change more. This means that the usual statistical measures for the
column variables, for example the correlation coefficient, are meaningless for
such data. Even though one would not seriously compute correlations for such
a small table, the correlation between 16:1(n-7) and 20:5(n-3) is 0.962 in the
full composition (Exhibit 22.1(a)), whereas it is 0.070 in the subcomposition
(Exhibit 22.1(b)) — from almost 1 to almost 0! The means and the variances
of the three fatty acids in the subcomposition are also radically changed by
the dropping of the fourth one. These regular summary statistics are not
following what is called the principle of subcompositional coherence — this
principle states that statistics computed on the parts should be unaffected by
the presence or absence of other parts.

One relationship between parts that remains stable, whether in a composition
or subcomposition, is the ratio between them. In Exhibit 22.1(a) the ratio
16:1(n-7)/20:5(n-3) for sample A is 0.342/0.217 = 1.58, identical to the corre-
sponding ratio in the subcomposition in Exhibit 22.1(b): 0.558,/0.354 = 1.58.
Generally, ratios are compared multiplicatively, so the logarithmic transfor-
mation is appropriate: log(0.342/0.217) = 0.455, and the logarithm of the in-
verse ratio is conveniently log(0.217/0.342) = —0.455, which is obvious since
log(a/b) = log(a) — log(b). This is called the log-ratio transformation, and
it is the subcompositionally coherent transformation that is at the heart of
compositional data analysis (the natural logarithm is always used). If the com-
positional values are the same, the ratio is 1 and the log-ratio is log(1) = 0.



Log-ratio distances between samples and between parts

There are two equivalent ways of measuring the distances between samples
(i.e. the rows) based on their m parts. The first involves the sum of squared
differences over their full set of m(m—1)/2 log-ratios, while the more compact
second way involves sum of squared differences using the set of m so-called
centred log-ratios, i.e. the logarithm of each compositional part a;; relative to
its respective geometric mean g across the m parts:

)] =\ Sl ]

(22.1)
where g; = ([, a;j)*/™. For the small data matrix of Exhibit 22.1(a), these
log-ratio distances are given in Exhibit 22.2:

= | S5 e

J<j’

A B C

A 0 0.0622 0.5754
B 0.0622 0 0.5735
C 0.5754 0.5735 0

The indices 7 and j in the log-ratio distance function between samples in (22.1)
can be interchanged to give the log-ratio distance between parts (i.e. the
columns), either on pairwise log-ratios across the samples or using centred
log-ratios with respect to geometric means g; = ([[, aij)l/ " of the columns:

)] - Zalen ) e )]

K3

(22.2)
Since log(ai;/aij) — log(asj /aij) =log(asj/ai; ) — log(a j/aij) (notice the
interchange of a;; and aijf), and the ratios a;; / a;j remain constant in sub-
compositions for all 7 and j, 5/, it follows that the log-ratio distances between
the three parts of the subcomposition in Exhibit 22.1(b) are exactly the same
as those computed from the full composition — the log-ratios are subcompo-
sitionally coherent, hence also the log-ratio distances between parts.

djj = erﬂ {1 g(

i<’

The distance function (22.1) is more specifically called the unweighted log-
ratio distance between samples. An alternative version, which proves to be
more useful, is the weighted log-ratio distance between samples, which uses
the component averages c; as weights, rather than the equal weights %

) o (20)] = S o (22) s (2]

j (22.3)

g = | S e [bg(

J<j’
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between samples
and between parts

Exhibit 22.2:
Log-ratio distances
between samples
(rows) of Exhibit
22.1(a)

Weighted log-ratio
distances between
samples
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Data set 12:
Time budgets

Exhibit 22.3:
Average time
budgets (in hours)
for men and women
in the USA, Western
and FEastern
countries.
Abbreviations in
row labels: M/F is
male/female, s/m is
single/married,
U/W/E is
USA/Western
countries/Fastern
countries. The three
rounded zero values
0.00 have been
replaced by 0.01 to
make the log-ratio
analysis possible.

Log-ratio
analysis

Compositional Data Analysis

(see, for example, the averages c; in the last rows of the tables in Exhibit 22.1).
This means that the log-ratios involving rarer parts get less weight than those
involving more “frequent” parts. This makes sense if one realizes that the
ratios log(a;;/aq ) for a fixed part j will generally have higher variance when
the values are on average smaller. For example, in the column for the most
common fatty acid 16:1(n-7) in Exhibit 22.1(a), notice that the ratios are
generally close to 1, e.g. 0.342/0.442 or 0.350/0.442, whereas in the column
for the least common one 18:4(n-3) there are two large ratios, 0.054/0.018 and
0.050/0.018, in addition to the smaller one 0.054/0.050. The weighting thus
serves as a normalizing factor, similar to the idea in correspondence analysis.

To illustrate the visualization of compositional data, we use a data set on
average time budgets in samples from the USA, some Western countries and
Eastern countries (Exhibit 22.3). The data are in hours and the sums of every
row are a constant 24 hours, hence making these data compositional.

Prof Tran Hous Kids Shop Pers Eat Slee Tele Leis Sum
MsU 5.85 1.15 0.50 0.00 1.50 1.05 1.00 7.60 1.50 3.85 24
FsU 4.82 094 196 0.18 141 1.30 0.96 7.75 1.32 3.36 24
MmU  6.15 1.40 0.65 0.10 1.15 0.90 1.15 7.65 1.80 3.05 24
FmU 1.79 0.29 4.21 0.87 1.61 1.12 1.19 7.76 1.43 3.73 24
MsW  6.43 1.05 0.72 0.00 0.62 0.77 1.40 8.13 1.00 3.88 24
FsW 4.29 0.34 2.62 0.14 092 0.97 1.47 849 0.84 3.92 24
MmW  6.56 0.97 0.97 0.10 0.52 0.85 1.52 8.08 1.22 3.21 24
FmW 1.68 0.22 5.28 0.69 1.02 0.83 1.74 8.24 1.19 3.11 24
MsE 6.27 1.48 0.68 0.00 0.88 0.92 0.86 7.70 0.58 4.63 24
Fsk 4.34 0.86 2.97 0.21 1.29 1.02 0.94 7.99 0.58 3.80 24
MmE  6.52 1.33 1.34 0.22 0.68 0.94 1.02 7.63 1.22 3.10 24
FmE  4.36 0.79 4.33 0.60 1.19 0.90 1.07 7.72 0.73 231 24
Means 4.92 0.90 2.19 0.26 1.07 0.96 1.19 7.90 1.12 3.50 24
Masses .205 .038 .091 .011 .044 .040 .050 .329 .047 .146 1

Prof =Professional activity, Tran=Transportation linked to professional activity,
Hous=Household occupation, Kids=Occupation linked to children,
Shop=Shopping, Pers=Time spent for personal care, Eat=Eating,
Slee=Sleeping, Tele=Watching television, Leis=Other leisure.

The technical details of log-ratio analysis (abbreviated as LRA) are given in
the Theoretical Appendix, but they are similar to correspondence analysis
(CA), with a few interesting variations. We will generally use the weighted
form of log-ratio analysis, where the parts (in this case, the categories of
daily activity) are weighted by their averages — these are exactly the column
masses in a CA of this table. Since all the row sums are equal, the column
masses in CA would be the usual means of the columns, divided by 24 (see



Interpretation of links as estimated log-ratios

0.6
|

0.0153 (9.7%)

0.4

FmE
MmE

MmW FsU FsE
MmuU s 0.1238 (77.9%)

FsW
MiSw

MsU

0.0
|

Weighted LRA dimension 2
0.
|

FmU“W

I I I I
-05 0.0 0.5 1.0

Weighted LRA dimension 1

-0.2
1

the means and masses in the last two rows of Exhibit 22.3). The results of
the LRA are shown in Exhibit 22.4. The interpretation is quite clear. The
activities form two patterns, one from Tran/Prof (upper left quadrant) to
Slee/Pers/Eat/Shop/Tele/Leis (centre) and another one from Kids/Hous (up-
per right quadrant) again to the group of points in the centre. All the male
points are shifted in the direction of Tran/Prof, for obvious reasons. With
respect to this direction they all seem to be more or less at the same posi-
tion, but they differ in their positions in the direction defined by Kids/Hous.
So married males in Eastern countries (MmE) are at one extreme, spending
more time with the kids and with household occupation than single males in
the USA at the other extreme (MsU). All “male single” groups have zeros
for spending time with kids, which explains their positions the lowest down
amongst the male groups, but single males in USA must be spending less time
with household occupation to be the farthest down (see Exhibit 22.3 — their
value is 0.50 hours, whereas the other single values are 0.72 and 0.68).

As for the female groups, they have a different alignment of positions. Mar-
ried women in the Western countries as well as USA separate away from the
professional activities and associated transportation. Married women from the
Eastern countries as well as all single women occupy an intermediate position.
Married females from Eastern countries separate from all single female groups
in the direction of household occupation and spending time with children —
in Exhibit 22.3 it can be verified that the category FmE is similar to the female
single categories in terms of professional activities, but higher on household
and children occupation.

An aspect that is particular to log-ratio analysis is that the lines joining pairs
of parts represent the log-ratios, and these are also optimally represented.
This means that if we had analysed a much wider matrix with the columns
being all the % x 10 x 9 = 45 possible log-ratios, then the solution in Exhibit
22.4 would have been exactly the same in that the groups (rows) would have
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Exhibit 22.4:
Symmetric map of
Exhibit 22.3, using
log-ratio analysis
(LRA). Variance
explained is 87.6%.

Interpretation of
links as estimated
log-ratios
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identical positions. In Exhibit 22.4 all possible lines connecting pairs of parts,
called links, represent the directions of the respective log-ratios.

For example, in Exhibit 22.4 imagine a link in the form of an arrow connecting
Prof (professional activity) to Shop (shopping), in the direction of Shop. This
represents the log-ratio log(Shop/Prof), so the groups FmW and FmU are
clearly the highest on this log-ratio, while all male groups are the lowest. If
the arrow link pointed in the reverse direction from Shop to Prof then the
link would represent the inverse log-ratio log(Prof/Shop), which just changes
sign. If the wide matrix of all 45 log-ratios had been analysed, then the log-
ratio log(Prof/Shop) would be exactly the same link but transferred so the
link vector is anchored at the origin of the display. Thus, instead of having 45
points, anchored at the origin, that represent all the log-ratios, Exhibit 22.4
only has 10 points, with their 45 pairwise links representing all unique log-
ratios (or their inverses, depending in which direction the links are considered).

Notice that this is not the case of related methods such as principal com-
ponent analysis (PCA) and CA. For example, in a PCA each variable has
a location in the graphical display, and we can certainly link pairs of vari-
ables and interpret them as difference vectors, assuming the difference makes
sense (for variables on the same scale, for example). But that difference vector
is not optimally displayed, and would not be the same if we had separately
analysed the wider matrix of all the difference vectors. In log-ratio analysis,
however, the difference vectors are optimally displayed in the analysis, and
one should think of the method as exactly that, namely the optimal display
of the log-ratios in the form of the links in the graphical result.

Another particular property of LRA is that any lining up of points for the
parts in the display indicates a power relationship between the corresponding
parts. In Exhibit 22.4, for example, there is lining up of the parts Kids, House
and Leis& Tele together. The log-ratio distance between Leis and Tele being
so small, we can combine these two activities into one, which we denote by
LeTe: i.e. LeTe = Leis + Tele. As in CA, the new merged point LeTe would
be located somewhere between Leis and Tele. The lining up in Exhibit 22.4
of the log-ratios log(LeTe/Kids) and log(LeTe/Hous), and thus their linear
relationship, can be plotted in the scatterplot of Exhibit 22.5. The dashed
line shown is not the least-square linear regression line, but rather the first
principal axis through the points, with the following equation:

log(LeTe/Kids) = 1.609 + 1.982log(LeTe/Hous) (22.4)
which, after exponentiating both sides, becomes:
LeTe/Kids = 4.998 (LeTe/ Hous)*-9%?
Since exp(1.609) = 4.998 is almost exactly 5, and 1.982 very close to 2, we
can simplify (22.4) to obtain the power model

(Hous)?

TeTe) (Kide) — 5 (22.5)
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Interestingly, (22.5) shows that, for a fixed time of the “household” occupation
(Hous), there is a trade-off between “time with kids” (Kids) and “other leisure”
& “watching television” (LeTe). It also shows demographic clusters: married
females with proportionally higher Kids and Hous relative to LeTe at one
extreme and single males at the other extreme with proportionally less.

A table of compositional data can usually be analysed quite successfully using
CA as well (Exhibit 22.6). Since the rows have constant sums, the rows are
equally weighted and the columns are weighted proportionally to the column
means, just like in (weighted) LRA. So the only difference is the distance func-
tion: chi-square distance for CA and log-ratio distance for LRA. Each method
has its advantages: CA can handle zeros without any need for introducing the
additive constant for the log-transformation, but the y2-distance lacks the
LRA property of subcompositional coherence. The overall interpretation of
Exhibit 22.6 is the same as Exhibit 22.4, but any lining up of the activities
has no model diagnostic implications as in LRA. There is, nevertheless, an in-
timate theoretical connection between LRA and CA. To explain this we recall
a well-known data transformation in statistics, the Boz-Cox transformation:

fl#) =@ 1)
=log(z)

f <1
or 0 <a< (22.6)

fora=0

This is a power transformation that has the log-transformation as its limit
when the power a tends to 0. Using this transformation gives a continu-
ous family of methods applicable to the contingency ratios transformed as
(1/a)[pij/(ric;)]™ (the —1 of (22.6) can be omitted, since any additive con-
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Exhibit 22.5:

Plot of two log-
ratios suggested by
the approximate
lining up in Exhibit
22.4 of the links
between LeTe
(combination of Leis
and Tele), Hous and
Kids. The dashed
line is the first
principal axis
through the points,
with intercept 1.609
and slope 1.982. The
axis explains 96.2%
of the points’
variance.

Correspondence
analysis and
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Exhibit 22.6:
Symmetric map of
Exhibit 22.3, using

CA. Inertia
explained is 87.3%.
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stant is removed by the double-centring inherent in CA and LRA). When
a = 1, the matrix elements are just the contingency ratios, hence we obtain
CA. As «a is reduced and approaches 0, the CA of the power-transformed ma-
trix tends to the analysis of the log-ratios. For a close to — but not exactly
equal to — 0, CA will produce a result almost identical to LRA. This also
hints at the fact that CA is not far from compositional coherence.

1.

Compositional data have the property that the multivariate observations
on their variables (called parts) are nonnegative and have constant sums:
1, or 100% or any other fixed total.

Subcompositional coherence of any statistic or method means that the re-
sults on the parts of the composition remain the same if some more parts
are included or some are removed. Most regular statistics, e.g. the correla-
tion, do not have subcompositional coherence.

Ratios between parts are subcompositionally coherent: ratios are usually
log-transformed to log-ratios. Log-ratio analysis is a method similar to prin-
cipal component analysis and correspondence analysis, but measures differ-
ences between multivariate samples and between their parts by the log-ratio
distance.

. In a LRA map the lines connecting pairs of parts in a LRA map, or links,

optimally display the corresponding log-ratios.

CA can also be applied to compositional data, but lacks the property of
subcompositional coherence. However, there is a close relationship between
CA and LRA thanks to the Box-Cox power transformation. The CA of
power-transformed contingency ratios tends to LRA as the power of the
transformation tends to 0.

. CA is generally close to being subcompositionally coherent, and thus forms

a good alternative to LRA, especially when there are a lot of data zeros.



Analysis of Matched Matrices

In Chapters 16 and 17 the analysis of concatenated tables was considered,
either when two categorical variables were combined interactively (e.g. country
and gender in Exhibit 16.6), or several variables were stacked (e.g. Exhibit
17.1). It often occurs that we want to compare two tables of the same size, with
the same row and column entities, in order to understand their similarities
and differences. The gender comparison is a classic example, where we split a
cross-tabulation into two tables, one for males and another for females. But
we could be comparing other groups such as Western versus Eastern Europe,
urban versus rural, treatment versus control, or first time period versus second
time period. Two such binary factors could also classify the data, giving four
tables, e.g. males versus females in Western Europe, to be compared with
males versus females in Eastern Europe. Correspondence analysis (CA) can
be used to display variation common to these tables, and variation accounting
for their differences.
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In Exhibit 16.6 the categorical variables “country” and “gender” were inter-
actively coded to give a row for each country—gender combination. That table
shows the male—female groups alternating for each country, but it is equivalent
to stack the table for males on the table for females, as was in fact done in
Exhibit 16.2 for the health assessment data set. The male and female tables
are matched matrices: in the one example, a 24 x 4 country-by-attitude table
for each gender, and in the other, a 7 x 5 age group-by-health category table.
The male and female tables have the same row and column entities and the
idea is to compare them to see on which aspects males and females tend to
agree or differ the most. The correspondence analyses in Exhibits 16.3 and 16.7
showed points for each male and female group within the categories of the cor-
responding demographic variable, and each difference between the male and
female points could be interpreted for its direction and magnitude. In these

Matched matrices
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plots the male and female points were optimally displayed, but this does not
necessarily mean that the male—female differences were optimally displayed.
This is reminiscent of what we said in the previous chapter about the special
property of log-ratio analysis, that it optimally displays differences between
parts in the form of links between pairs of points, whereas methods such as
principal component analysis (PCA) and CA do not. In order to specifically
optimize the display of male—female differences in tables such as Exhibits 16.2
and 16.6, we would need to compute the actual table of differences between
males and females and visualize these differences directly. We can do this with
a special version of CA that splits the inertia in two matched matrices into
inertias for the average and the difference components, and then visualizes
these parts separately.

As in Chapter 16, we are going to reweight the data for gender, since females
are over-represented in the samples. This is achieved by expressing each row
of the country—gender table as percentages of its respective sample size. In so
doing we are assigning equal masses to each male and female point but also
equal masses to every country. We could make the country masses proportional
to their overall sample sizes, but there is no clear reason to do this, since the
sample sizes were not related to any substantive feature of the country itself. In
the analysis of the percentaged data, shown in Exhibit 16.7, the first two axes
explain 0.08106 (53.4%) and 0.05030 (33.1%) of the total inertia of 0.15181.
The total inertia can be decomposed into two parts: a “between-country”
part and a “within-country” part. This is the same decomposition that we
had in Chapter 15 when we looked at between- and within-groups inertia in
cluster analysis — see Equation (15.1). Here the “groups” are defined by the
24 countries, each consisting of two elements, the male and female points,
so that the within-country inertia consists of the inertias of the male—female
differences in all the countries. It is easy to obtain the “between” and “within”
inertia amounts — the simplest is to perform the CA on the 24 x 4 table
where the male and female samples have been combined (because we are
analysing the percentages, this aggregation is just the average of the male
and female percentages). This analysis gives a total inertia of 0.14288, which
is the between-country inertia (94.1% of the total), hence the part due to
male—female differences that is “lost” in going from the original 48 x 4 table
to the gender-averaged 24 x 4 table is 0.15181 — 0.14288 = 0.00893 (5.9%).

Let’s denote the two 24 x 4 matrices of percentaged data for the males and
females respectively by A and B. In the stacked analysis, CA was applied to
the 48 x 4 matrix of A stacked on top of B, obtaining the total inertia of
0.1518. Now a new concatenated matrix is set up in the following format:

[A B} (23.1)



Display of the sum and difference components

referred to as the “ABBA matrix” (technically, this is called a block circulant
matriz). For this data set the ABBA matrix is 48 x 8, repeating the rows and
columns twice. Having 8 columns, the table would be 7-dimensional in a CA,
but each set of four columns has the same marginal row sums of 1, so the
dimensionality is further reduced by one. The resultant six dimensions turn
out to split exactly into two sets, one set for the between-country effect and
one set for the within-country male—female differences. In order to identify
which axes correspond to which set, it is necessary to look at the pattern of
signs in the coordinates of the points, either the row points or the column
points. For example, all principal coordinates of the eight column points in
the ABBA analysis are given in Exhibit 23.1.

Diml Dim2 Dim3 Dim4 Dim5 Dimb6
w —0.050 0.383 —0.102 —-0.017  0.037 —0.048
w —0.153 —0.160 —-0.028 —0.052 —-0.023 0.012
H 0.588 —0.067 0.014 0.163 —0.029 —0.001
? —0.142  0.181  0.464 0.037  0.124  0.057
w —0.050 0.383 —0.102  0.017 —-0.037  0.048
w —0.153 —0.160 —-0.028 0.052  0.023 —-0.012
H 0.588 —0.067 0.014 —-0.163 0.029  0.001
? —0.142  0.181  0.464 —-0.037 —0.124 —-0.057
sign + + + + + +
pattern + + + - - -
inertias (sum) 0.07516 0.04886 0.01886
inertias (diff.) 0.00624 0.00186 0.00083

The coordinate values in the upper set of the four columns are identical to
those in the lower set, but some have a sign change, specifically the last three
dimensions where the lower set is the negative of the upper set (note that, in
general, the dimensions with a sign change can occur on any of the dimensions,
not necessarily in a contiguous group as in this example). This is the indication
that the first three dimensions correspond to the sum (or, equivalently, the
average) A + B, i.e. the between-country table, and the last three dimensions
to the difference A — B, i.e. the within-country table of gender differences.
Summing the principal inertias for these two sets of dimensions, the total of
the three corresponding to the sum is 0.07516 + 0.04886 + 0.01886 = 0.14288,
the between-country inertia; and the total of the three corresponding to the
difference: 0.00624 + 0.00186 4 0.00083 = 0.00893, the within-country gender
difference inertia. Exactly the same inertia components were computed in a
different way in the previous section.

The beauty of the ABBA analysis is that it separates the “between” and
“within” inertia components (equivalently, “sum” and “difference” compo-
nents) on different dimensions of the solution space. Exhibit 23.2 shows the
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Exhibit 23.1:
Principal coordi-
nates of columns in
the CA of the
ABBA matrix of
(23.1). There are
two sets of identical
coordinates up to
possible sign
changes. The last
three dimensions
with a sign change
correspond to the
male—female
differences.

Display of the sum
and difference
components
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Exhibit 23.2:

CA maps of (a)
between-country
and (b) within-
country (i.e. gender
difference) compon-
ents of the matrices
A and B for the
working women data
in 1994. In map (b)
the male—female
differences are
plotted, with the
female points
anchored at the
origin.

Interpretation
of the difference
map

Analysis of Matched Matrices
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two solutions plotted in symmetric maps side by side. The coordinates for
these maps are obtained from the first set of row and column principal co-
ordinates of the ABBA analysis: dimensions 1 and 2 for the sum component
and dimensions 4 and 5 for the difference component. In each case the per-
centages indicated on the axes are those of the inertias relative to the total of
the respective component.

Notice that the map of Exhibit 23.2(a) strongly resembles those of Exhibits
16.5 and 16.7 — in the latter case, one should imagine a country point mid-way
between its coresponding male and female points. In Exhibit 23.2(a) 86.8%
(86.80% to two decimals) of the between-country inertia is displayed, while
in Exhibit 23.2(b) 90.8% of the within-country (gender-difference) inertia is
displayed. Both these percentages are necessarily as good or better than the
corresponding percentages that can be computed in Exhibit 16.7, where both
between- and within-country inertias were accounted for together in a single
map: there these percentages were 86.8% (86.78% to two decimals) and 82.6%
respectively. Thus the gain in Exhibit 23.2(a), compared to Exhibit 16.7, is
only 0.02 percentage points for the explanation of the between-country inertia
— remember that the between-country inertia dominates the total inertia,
being 94.1% of the total, so it is no surprise that the map of Exhibit 16.7
concentrates almost exclusively on this aspect. The gender difference (within-
country) component, on the other hand, is noticeably better explained in
Exhibit 23.2(b) — 90.8% compared to 82.6% in Exhibit 16.7.

Apart from this improvement in explained inertia for the difference map, the
gender differences are much easier to interpret in Exhibit 23.2(b) when there
is just one point displaying each country. Firstly, the countries close to the
origin have short lines indicating small differences between male and female
attitudes. Secondly, the horizontal dimension is still a “work” versus “stay at
home” one, like in the between-country analysis, but the second dimension
is more clearly defined by the missing response category. Remember that



Data set 13: Attitudes to women working in 2012
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the origin in Exhibit 23.2(b) is not the average male-female difference, but
the point representing zero difference. Only Bulgaria and New Zealand point
slightly to the left of the origin — these were the only countries in Exhibit
16.7 that showed a slightly different direction in between-gender attitudes,
whereas all the other countries point to the right, indicating the consistently
more conservative attitude of the males, especially for Italy, Ireland, Japan,
Philippines, former West Germany and Spain. Countries such as Russia and
Bulgaria show male differences still more conservative but also giving more
missing responses, whereas in Australia and Canada it is the females who give
more missing responses.

The same approach can be adopted when two data sets are available at dif-
ferent time points, in which case the difference map would show the different
trends amongst the countries. It is then even more interesting if one wants
to compare trends in male-female differences over time. The data set used up
to now has been from the International Social Survey (ISSP) survey in 1994,
from the second Family & Changing Gender Roles survey. More recently in
2012, the fourth survey on the same theme was conducted. The same set of
countries was not present in this more recent survey: absent were Italy, Hun-
gary, the Netherlands, New Zealand and Northern Ireland, so the common set
between the two surveys consists of only 19 countries. The same analysis as
was performed in Exhibit 23.2 for the 1994 survey is repeated in Exhibit 23.3
for the 2012 data, where the tables of percentages for the male and female
samples across the 19 countries are denoted by C and D respectively, and in
the format of (23.1) we call this the CDDC matrix. It again turns out that
dimensions 1 to 3 coincide with the between-country differences and dimen-
sions 4 to 6 with the within-country gender differences. The configurations in
Exhibit 23.3 are different from those in Exhibit 23.2: notably the first axis
in Exhibit 23.3(a) opposes working full-time (W) and the other categories,
and the second axis resembles more the first axis in Exhibit 23.2(a), with
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Exhibit 23.3:

CA maps of (a)
between-country
and (b) within-
country (i.e. gender
difference) compon-
ents of the matrices
C and D for the
working women data
set of 2012 (some
countries in Exhibit
22.2 were not
present in this
survey).

Data set 13:
Attitudes to
women working in

2012
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Exhibit 23.4:
Pattern of signs in
the four sets of
coordinates
emanating from the
CA of the
super-matrix (23.2).
FEach pattern
corresponds to a
different effect.
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traditional groups lower down on this axis, versus more liberal groups ver-
tically. The positions of Slovenia (SI) and former East Germany (D-E) have
changed substantially from the previous survey. The gender-difference map
in Exhibit 23.3(b) is similar to Exhibit 23.2(b) as far as response categories
are concerned, where staying at home (H) mainly accounts for the male—
female contrast, with Austrian, Japanese, Polish and Russian males showing
the strongest traditional contrast with their female counterparts. Notice that
there are no countries here that are to the left of the zero difference ori-
gin. On the second vertical dimension (dimension 5 of the CDDC analysis)
the missing response category (?) is no longer so prominent. This dimension
contrasts working full-time (W) with working part-time (w), showing that
Bulgarian, Israeli and Swedish males prefer the former compared to females,
while Canadian, USA and Polish males prefer the latter compared to females.

The data sets are split two ways by gender (male—female) and two ways by sur-
vey time (1994-2012). A further separation of effects can be made by setting
up the ABBA matrix for 1994 and the CDDC matrix for 2012 in a super-
matrix as follows (the ABBA matrix now includes the 19 countries that are
common between the two surveys):

CD AB
DC BA
(23.2)
AB CD
BA DC

The two block circulant matrices ABBA and CDDC for the gender differ-
ences are nested within another “ABBA” style block circulant matrix for the
two time periods. This super-matrix has 16 columns (4 times the 4 response
categories), but has maximum CA dimensionality of only 12 because of the
constant row sums of each of the four tables. The coordinates of the row or
column points on these 12 dimensions now turn out in four sets of repeated
numerical values, with changes of sign depending on which effect is isolated
on the respective dimension. The pattern of signs is given in Exhibit 23.4.

Dimensions
1 2 3 4 5 6 7 8 9 10 11 12
+ + 4+ + + 4+ + 4+ +  + + +
+ + + + + 4+ - - - — — —
- 4+ + 4+ - - + + + = - -
- 4+ + 4+ - - - - - + + +
T A A A T T G G G TG TG TG

A = average effect when collapsing over time and gender,
T = time effect, G = gender effect, TG = timexgender effect.

There are inertias on each of these 12 dimensions, 3 dimensions for each effect,
and their aggregated sums for the respective effects are as follows:



Visualizing the effects

A T G TG Total
Effect sums 0.13467 0.08434 0.00758 0.00136 0.22795
Percentages  59.1%  37.0% 3.3% 0.6% 100%

The orders of magnitude of the inertias of the average effect and gender effect
are similar to what we have seen before. The time effect is very strong, testi-
fying to large changes in the countries’ attitudes over this 18-year time period
— the first dimension of the analysis is, in fact, a time effect dimension. A
large amount of additional variation has been introduced due to this time ef-
fect. The timexgender effect is tiny, which means that the gender-differences
have changed very slightly over time.

Each effect can be visualized separately, using the first two dimensions of each
set of three classified in Exhibit 23.4. Exhibit 23.5 shows the four maps: the
best two dimensions for visualizing the average matrix, equivalent in CA to
analysing the sum A + B+ C+ D, are dimensions 2 and 3; for the time effect
C+D— A —B they are dimensions 1 and 5 (notice the set-up in (23.2) so that
the years 2012 minus 1994 is visualized); for the gender effect C+ A —-D —B
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Visualizing the
effects

Exhibit 23.5:

CA maps of (a)
overall between-
country effect,
averaged over time
and gender — 59.1%
of total inertia, (b)
time effect — 37.0%
(i.e. year 2012 minus
1994), (c) gender
effect — 3.3% (male
minus female), and
(d) timex gender
effect — 0.6%, all
gleaned from the CA
of the super-matrix
(23.2). Notice the
decreasing scales
from (a) to (d)
according to
decreasing
percentages of
inertia explained.
Percentages on axes
are those relative to
the corresponding
inertia component.
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Exhibit 23.6:
Selected plots for
Israel and Ireland,
showing original
percentages for
males and females at
the two time points.
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the best dimensions are 6 and 7; and for the timexgender effect C+B—-D—A
they are dimensions 10 and 11. The average map in Exhibit 23.5(a), based
on the average table over the two time periods and two genders, shows the
general positions of the countries with respect to the response categories. The
countries’ positions have changed somewhat compared to Exhibit 16.4 since
attitudes have changed significantly over the 18-year period. Exhibit 23.5(b)
shows the three categories W, w and H from left to right (remember this is
the first dimension of the whole analysis), indicating the clear movement of
all countries away from the “stay at home” attitude towards “work full-time”,
especially Slovenia (SI). The gender effect, visualized in Exhibit 23.5(c), shows
male—female differences consistently towards “stay at home”, but less so for
countries such as Bulgaria, Sweden and former East Germany, which line up
more on the second axis towards “work full-time”.

Even though the timexgender effect in Exhibit 23.5(d) explains only a tiny
percentage of inertia (0.6%), the way to understand the nature of this effect
is to consider examples such as those given in Exhibit 23.6. These plots show
male—female differences that change over the years (if the lines shown were
more or less parallel, then this combined effect would be nearly zero) — in
fact males are changing more towards a liberal attitude than females, which
explains why Israel and especially Ireland are away from the “stay at home”
point in Exhibit 23.5(d). This could be because the females already showed a
more liberal attitude, so their changes are smaller.

1. Matched matrices have the same numbers of rows and columns referring
to the same entities in each case.

[\

. Often these are analysed by CA as matrices concatenated either row-
or columnwise. This analysis does not show the differences between the
matched matrices optimally.

3. In the case of two matched matrices, they can be arranged in a special
circulant block format, in which case the average matrix and the difference
between the matrices are separated on different CA dimensions.

4. When there are two binary variables that interactively define four matched
matrices, this idea can be generalized to nesting the block matrices for the
first variable within a super block matrix for the second variable: then the
average effect, individual effects for each binary variable and the combined
effect are separated neatly on their respective sets of CA dimensions.



Analysis of Square Tables

In this chapter we consider the special case when the table of frequencies
is square and the rows and the columns refer to the same set of objects in
two different states. Such data are found in many situations, for example so-
cial mobility tables, confusion matrices in psychology, brand switching tables
in marketing research, cross-citations between journals, transition matrices
between behavioural states and migration tables. These tables are often char-
acterized by relatively high values down the diagonal, which is such a strong
source of association that the more subtle patterns off the diagonal are not
seen in the major principal axes. One approach to applying correspondence
analysis (CA) to square tables is to split the analysis into two parts: (i) an
analysis of the symmetric part of the table, which absorbs the main component
of inertia, including the diagonal, and (ii) an analysis of the remaining part
of the table called the skew-symmetric part, which contains the information
related to the non-symmetric “flow” between the rows and the columns.
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To give an immediate context to this approach, consider a classic data set
on social mobility. This is a historical data set published by Karl Pearson
more than 100 years ago on the occupations of fathers and their sons —
see Exhibit 24.1. Each father—son pair is counted in one of the cells of the
table according to the father’s and son’s respective occupations. Square tables
such as these usually have strong diagonals, since many sons follow their
fathers’ occupations, but there are some notable asymmetries in the table:
for example, in the first line of the table there are 50 fathers in the army,
while in the first column there are 84 sons in the army. The flow to the army
from other occupations has mostly been from landownership (row 7) and
commerce (row 10). Commerce, on the other hand, has had a large outflow to
other occupations, with 106 fathers in commerce but only 24 sons, the outflow
being mainly to art, divinity, literature and scholarship & science.

Data set 14: Social
mobility —
occupations of
fathers and sons
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Exhibit 24.1:
Contingency table
between the
occupations of
fathers and sons. For
example, of the 50
fathers employed in
the army, 28 of their
sons were also in the
army, 4 went into
teaching/clerical
work /civil service,
and so on.

CA of square
table

Diagonal of
table dominates
the CA

Analysis of Square Tables

FATHER’S SON’S OCCUPATION
OCCUPATION ARM ART TCC CRA DIV AGR LAN LAW LIT COM MED NAV POL SCH Sums

Army 20 4 0 0 01 3 3 0 3 1 5 2 50
Art 251 1 1 2 0 0 1 2 0 0 0 1 1 62
Teaching...” 6 5 7 0 9 1 3 6 4 2 1 1 2 54
Crafts 012 0 6 5 0 0 1 7 1 2 0 0 10 44
Divinity 5 5 2 154 0 0 6 9 4 12 3 1 13 115
Agriculture 0 2 3 0 3 0 0 1 4 1 4 2 1 5 26
Landowner 7 1 4 014 0 6 11 4 1 3 3 17 7 88
Law 3 5 6 0 6 0 2 18 13 1 1 1 8 5 69
Literature 0 1 1.0 4 0 0 1 4 0 2 1 1 4 19
Commerce 12 16 4 115 0 0 513 11 6 1 7 15 106
Medicine o 4 2 0 1 0 0 0 3 0 20 0 5 6 41
Navy 1 3 1.0 0 O 1 0 1 1 1 6 2 1 18
Politics..." 5 0 2 0 3 0 1 8 1 2 2 323 1 5l
Scholarship..® 5 3 0 2 6 0 1 3 1 0 0 1 1 9 32
Sums 84108 37 11122 1 15 64 69 24 57 23 74 86 775

*Teaching, Clerical Work & Civil Service TPolitics & Court °Scholarship & Science

Because this is a contingency table, CA is once more an appropriate method
to visualize it (Exhibit 24.2). The table has a high inertia (1.297) because of
the strong association between rows and columns, so the asymmetric map is
used, with father points in principal coordinates and son points in standard
coordinates. If the profile of a father’s occupation has all zeros except for
the value on the diagonal, then that occupation will lie at the vertex of the
respective son’s occupation. The second row for the occupation Art is almost
like that, with the highest relative value (51 out of 62, or 82%) of fathers having
sons in the same occupation, and this fact is reflected by the separating out of
Art in Exhibit 22.2, with the father-occupation Art almost reaching the son-
occupation vertex point ART. The row point Cra(fts) is between the vertex
points ART and SCH (Scholarship & Science) because high proportions of sons
of fathers in crafts end up in these two occupations (see row 4 of Exhibit 22.1).

The problem with trying to visualize a square matrix such as this one is the
presence of the strong diagonal which tends to dominate the analysis. Since
CA is trying to explain as much inertia as possible, it is not surprising that the
focus is on the high source of inertia on the diagonal, to the detriment of the
rest of the table which contains the interesting flows between the occupations.
To back up this assertion with some figures, the 14 diagonal values account
for 70.9% of the total inertia, while the 182 off-diagonal values account for
29.1% — i.e. the total inertia is decomposed as follows:
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total inertia = inertia on diagonal + inertia off-diagonal
1.2974 = 0.9200 4 0.3774 (24.1)
100% = 70.9% + 29.1%

In the two-dimensional display of Exhibit 24.2, 0.6613 (51.0%) of the total
inertia is explained, i.e. 0.6361 (49.0%) is error. This error is spread between
the diagonal and off-diagonal elements as follows:

error in 2-d = error on diagonal + error off diagonal
0.6361 = 0.3717 + 0.2644

The errors on and off the diagonal cannot be expressed as percentages of their
respective totals in (24.1), but it is a fact that the high inertia on the diagonal
is favouring its explanation to the detriment of the smaller component of
inertia in the off-diagonal part of the table.
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Exhibit 24.2:
Asymmetric CA
map of mobility
data table in
Exhibit 24.1, row
points
(abbreviations with
some lower-case
letters) in principal
coordinates, column
points (in
upper-case italic) in
standard
coordinates. Row
points are at
weighted averages of
the column points,
so row points are
attracted to their
respective column
points because of
high values on the
table’s diagonal.
Percentage of
explained inertia:
51.0%.
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Symmetry and
skew-symmetry in
a square table

CA of the
symmetric part

Analysis of Square Tables

To be able to explain the off-diagonal elements better, as well as quantify
their explained inertia and error correctly, the table can be separated into two
parts, one part that contains the symmetric component of the table, i.e. the
average flow between rows and columns, and another part that contains the
so-called skew-symmetric component quantifying the differential flow. The
original table, denoted by N, can be written as follows:

N = J(N+N)+ ;(N-N) (24.2)

=S+T

where S is the symmetric part, containing the averages of elements on opposite
sides of the diagonal, and T the skew-symmetric part, containing half of the
differences: 1 1

sij = 5(nij +ngi) i = 5 (i — 1) (24.3)

The following illustrates this decomposition for the top left-hand corner of
Exhibit 24.1:

28 040 -- 28 15 0 0 —-1-1 0--
251 11-- 1 51 36.5 1 0-2-55--
6 570---]_| 5 37 0 + (1 2 0 0--
0 12 0 6 -- 065 0 6 0 55 0 0--

For example, the count of 1 in the second row (father—art) and fourth column
(son—crafts) and the count of 12 in the fourth row (father—crafts), second
column (son—art), are averaged in S as 6.5 in both cells, while the deviations
(£5.5) from the average appear in T. The symmetric matrix has the same
diagonal as the original table and the property of symmetry: s;; = s;;, while
the skew-symmetric matrix has zeros on the diagonal and the property of
skew-symmetry, namely that elements on opposite sides of the diagonal have
the same absolute value but different sign: ¢;; = —¢;.

CA is now applied to the symmetric and skew-symmetric parts separately.
Exhibit 24.3 shows the analysis of the symmetric matrix, showing just one set
of profile positions because rows and column coordinates are identical. Apart
from the single point for each occupation, this map looks very similar to the
configuration of the row points in principal coordinates in Exhibit 24.2, and
shows the average association between the occupations. The first percentage
on the axes refers to inertia explained relative to the original asymmetric
table, while the percentage in italics refers to inertia explained relative to the
total inertia of the symmetric part S that is visualized here. Notice that the
row and column margins of S are the averages of the row and column margins
of the asymmetric matrix N: if the latter’s row and column masses are r and ¢
respectively, then the masses for the rows and columns of S are w = 1 (r+c).



CA of the skew-symmetric part
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There are two problems to overcome before CA can be applied to the skew-
symmetric matrix T. First, T has positive and negative values; in fact the
sum of the elements of the matrix is zero, and it makes no sense to centre it
with respect to its margins, which is the first step in the CA algorithm. The
algorithm must be changed so that CA analyses the data without the centring
step, just the normalization step which leads to the y2-distances. This leads
to the second problem: the sums of the rows and columns make no sense as
masses. The obvious solution is to adopt the same masses as S, i.e. the masses
in w defined above. This looks like we need a special modified algorithm to
analyse T, but fortunately the results for matched matrices in Chapter 23
solve the problem by a simple set-up of the matrix input to the CA.

The decomposition (24.2) is identical to what we did in Chapter 23 when the
inertia in two matched matrices A and B was split into an average (or sum)
part and a difference part, achived in one step by analysing the matrices in
the “ABBA” block circulant matrix format of (23.1). In this case A = N and
B = N, the transpose of N, so the block matrix to analyse is:

N N
N' N
If N is an I x I matrix, then the block matrix (24.4) is 2/ x 2I and yields

271 —1 dimensions, I —1 of which correspond to the dimensions of the symmetric
matrix S and the remainder to the skew-symmetric matrix T. To diagnose

(24.4)
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Exhibit 24.3:

CA of symmetric
part of Exhibit 22.1.
The first
percentages are
calculated with
respect to the total
inertia of 1.5991,
while percentages in
italics are with
respect to the
inertia of the
symmetric part,
1.1485. (The values
1.5991 and 1.1485
are explained on the
next page.)

CA of the
skew-symmetric
part

CA of symmetric
and
skew-symmetric
parts in one step
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Exhibit 24.4:
Principal inertias of
all 27 dimensions in

the analysis of the
28 x 28 block matrix
(24.4) formed from
the social mobility
data. The principal
inertias that occur
in pairs (in boldface)
correspond to the
skew-symmetric
matrix.

Visualization of
the symmetric and
skew-symmetric
parts

Analysis of Square Tables

which dimensions correspond to which of these two matrices is even easier
than before in this special case of square matrices, because the dimensions of
the skew-symmetric matrix always occur in pairs of equal principal inertias.
In the present social mobility example, where I = 14, the 27 principal inertias
(eigenvalues) are given in Exhibit 24.4. The seven pairs of dimensions with

Dim.  Princ. inertia Dim.  Princ. inertia Dim.  Princ. inertia
1 0.38868 10 0.04184 19 0.00309
2 0.23204 11 0.04184 20 0.00309
3 0.15836 12 0.02287 21 0.00166
4 0.15836 13 0.02205 22 0.00115
5 0.14391 14 0.01287 23 0.00115
6 0.12376 15 0.01287 24 0.00062
7 0.08184 16 0.01036 25 0.00038
8 0.07074 17 0.00759 26 0.00038
9 0.04984 18 0.00759 27 0.00015

equal principal inertias (shown in boldface), 3 & 4, 10 & 11, 14 & 15, 17
& 18, 19 & 20, 22 & 23, and 25 & 26, correspond to the skew-symmetric
analysis, and the other 13 dimensions correspond to the symmetric analysis.
The total inertia of the symmetric matrix is the sum of the 13 respective

principal inertas: 0.3887 + 0.2320 + 0.1439 + --- = 1.1485, which is 71.8% of
the total 1.5991, and the total inertia of the skew-symmetric matrix is the sum
of the seven pairs: 2 x 0.1584 + 2 x 0.0418 + - - - = 0.4506, which is 28.2% of

the total. Notice that because N and NT are placed next to each other, both
row- and columnwise, the row and column masses in the analysis of (24.4)
will be proportional to the average masses w (specifically, the masses will be
1(r+c) repeated twice to form a 21 x 1 vector, where r and c are the row and
column masses of N). Furthermore, the total inertia of (24.4), equal to 1.5991,
is higher than that of the original matrix, given as 1.2974 in (24.1), because
the subtables in (24.4) are centred at 1(r + ¢). In the CA of N both row and
column margins, i.e. r and ¢, are “closer” to the respective profiles, hence the
inertia of N is lower. Thus, in the analysis of the block matrix (24.4), there
is an additional part of inertia due to the differences between r and c.

Dimensions 1 and 2 are thus the best two for visualizing the symmetric ma-
trix: they explain 0.6217 of the inertia of 1.1485, or 54.0%, and the results are
identical to those of Exhibit 24.3. As for matched matrices, CA of the block
matrix (24.4) yields twice the sets of results for rows and columns, simple
repeats of each other, so it is necessary to use only one set of principal coor-
dinates to obtain the map (see part of the coordinate matrix in Exhibit 24.6,
also the Computational Appendix, pages 277-278). Dimensions 3 and 4 are
the best for visualizing the skew-symmetric matrix: they explain 0.3167 out



Visualization of the symmetric and skew-symmetric parts

of 0.4506, or 70.3% of the inertia of the skew-symmetric part. Notice that two
analyses are being performed in one, and the two sets of inertias are judged
separately when selecting the ones for visualizing each part. The map of the
skew-symmetric part, shown in Exhibit 24.5, has some unusual properties.
Firstly, because of the equality of the principal inertias, the coordinates are
free to rotate in the two-dimensional map and are not identified with respect
to principal axes — hence no axes are drawn in the map. Secondly, the skew-
symmetry of the matrix gives a map where again only one set of points is
plotted (these are repeated in the CA solution of the block matrix, with a
change of sign — see Exhibit 24.6, where the second set of coordinates for
dimensions 3 and 4 were used for Exhibit 24.5). In this case the interpretation
is not in terms of interpoint distances but rather by looking at triangular ar-
eas in the map. For example, Commerce and Scholarship & Science subtend a
large triangle with the origin, which is interpreted as a strong differential flow
between these two occupations. The clockwise arrow indicates the direction
of the flow from fathers to sons: fathers in Commerce have sons who are going
to Scholarship & Science relatively frequently (in Exhibit 24.1, the frequency
is 15, whereas there is zero flow in the other direction). Thus, the ocupations
Landownership, Agriculture, Commerce and Crafts are experiencing outflows to
Literature and Scholarship & Science. Some pairs of occupations make very
small triangular areas with the origin, for example Army, Politics and Navy,
which means that there are no differential flows between these occupations,
but they would be experiencing inflows from Agriculture, Crafts, etc.

0.5

0.1584 (9.9% /35.1%)
Landowner Agriculture
0 + Commerce 0.1584
Teaching,clerical, Crafts 9.9%/35.1%)
civil service
Navy, . ‘Law
Politics* ivinity
Army Divinity
Art. “Madici
05 edicine
Scholgrship &
science
Literature
-1

-0.5 0 0.5 1 15
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Exhibit 24.5:

CA of skew-
symmetric part of
Exhibit 24.1. The
first percentages are
calculated with
respect to the total
inertia of 1.5991,
while percentages in
italics are with
respect to the
inertia of the
skew-symmetric
part, 0.4506.
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Exhibit 24.6:
Some of the row
principal
coordinates of the
28 x 28 block matrix
(24.4) using the
social mobility data.
The dimensions for
the symmetric part
(first two in this
case) are simple
repeats, while for
the skew-symmetric
part (dimensions 3
and 4 here) they are
repeated with a
change of sign.

SUMMARY:
Analysis of Square
Tables

Analysis of Square Tables

OCCUPATION Dim.1 Dim.2 Dim.3 Dim.4
Army —0.632 0.671 —0.011 0.416
Art 1.521 0.520 0.089 0.423
Teaching... —-0.195 0.073 —0.331 0.141
Crafts 0.867 —0.298 —0.847 0.092
Divinity —0.077 —0.709 —0.189 0.305
Army —0.632 0.671 0.011 —-0.416
Art 1.521 0.520 —0.089 —0.423
Teaching... —0.195 0.073 0.331 —0.141
Crafts 0.867 —0.298 0.847 —0.092

Divinity —-0.077 —0.709 0.189 —0.305

. For square tables with the same row and column entities and with large

values down the diagonal, the diagonal usually plays a strong role in the
analysis, dominating the information off the diagonal.

. An alternative to a regular CA of such a table is to split the table into

two parts: a symmetric table and a skew-symmetric table, where the latter
table — usually of lower inertia than the symmetric part — encapsulates
the asymmetries in the table.

. The symmetric table is analysed in the usual way, while the skew-symmetric

table needs a modified CA algorithm which suppresses the centring and
normalization of the table with respect to its margins, which have no sense
as masses in this case.

. The masses used for weighting and x2-distances in both analyses are the

averages of the row and column masses from the original table.

. Both analyses can be obtained in one single CA of the table and its trans-

pose set up as matched matrices in a block circulant (“ABBA”) form. The
dimensions corresponding to the symmetric table have unique principal
inertias and those for the skew-symmetric table occur in equal pairs.

. The map of the symmetric table is interpreted in the usual way, showing

the overall association between the entities.

. The map of the skew-symmetric table has a special geometry where the

asymmetries in pairs of entities are visualized approximately as the areas
of the triangles that they make with the origin, and the direction of the
asymmetry is the same for all pairs.



Correspondence Analysis of Networks

The social mobility application of the previous chapter can be considered as
an example of a network that links the set of occupations. Each element of the
table linked two occupations with a certain strength of association according
to the number of father—son counts for that occupation pair. In network the-
ory a set of items is linked to items of the same set or to items of a different set
by a measure of their relationship. Relationships between two sets of items,
or two-mode networks, fit into the general scheme of correspondence analysis
(CA) of a rectangular matrix of associations, usually counts. CA is thus a nat-
ural methodology for analysing and interpreting two-mode networks. In this
chapter we will concentrate on one-mode networks, where the relationships
are coded into a square matrix, which presents unique features reminiscent of
multidimensional scaling. This square matrix can be either symmetric, for an
undirected network, or non-symmetric, for a directed network.
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The data of Exhibit 25.1 is a classic example of a network, or graph. These
are the marriages between 15 key Florentine families in the 15th century. This
is an example of an undirected and unweighted network, with a single mode
(the 15 families). No direction is implied in the marriage links between pairs
of families and all marriages are considered equally important.

Exhibit 25.2 is one of many possible representations of the marriage network,
using package igraph in R. The families form the vertices of the network and
the links between the vertices are called edges: thus, in Exhibit 25.2 there
are 15 vertices (families) and 20 edges (marriages). Both the vertices and
the edges could have weights: for example, the vertices could be weighted by
the wealth of the families, and the edges could be weighted by the amount
of commercial exchange between them. The network could be called directed

Data set 15: The
Florentine
marriage network

Network concepts
and terminology
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Exhibit 25.1:
Marriages between
Florentine families
(left-hand list) and

the corresponding
symmetric matrix
coding the
marriages, with a 1
in each correspond-
ing row and column.
The column (or row)
sums of the table
are the number of
families each one is
connected to (called
their “degrees” —
see next section).

Exhibit 25.2:
Representation of
the Florentine
marriages network,
using R package
igraph. Each marri-
age between two
families (i.e. each 1
in the upper or
lower triangle of the
matrix in Exhibit
25.1) is indicated by
an edge linking two
families. The
numbers of
marriages per family
(column sums of the
matrix in Exhibit
25.1, i.e. the
degrees) are given
below the respective
labels.

Correspondence Analysis of Networks

Marriages

Acc — Med AABBCGGLMPPRSST
Alb — Gin cl aiaiuaeaeiato
Alb — Gua c b ssnamdzrdl rr
égeigﬂaid Acc 000000001 00O00O00O
Bar — Med Alb 000001101000000
Bis — Gua Bar 000010001000000O
Bis — Per Bis 000000100010010
Bis — Str Cas 00100000O0CO0O10010
Cas — Per Gin 01 000000O0OOCOO0O0O0O
Cas — Str Gua 01010001 00000O01
Gua — Lam lam 000000100000000O0
Gua — Tor Med 111000000001101
Med — Rid Paz 00000000O0OO0COO1IO00O
Med — Sal Per 00011000000O0O010
Med — Tor Rid 000000001 O0OO0OO0CO01T1
Paz — Sal Sal 000000001 100000
Per — Str Str 000110000011000
Rid — Str Tor 000000101 001000
Rid — Tor Sums 1 832 331416133243

Acc=Acciaiuoli, Alb=Albizzi, Bar=Barbadori, Bis=Bischeri, Cas=Castellani, Gin=Ginori,
Gua=Guadagni, Lam=Lamberteschi, Med=Medici, Paz=Pazzi, Per=Peruzzi, Rid=Ridolfi,
Sal=Salviati, Str=Strozzi, Tor=Tornabuoni.
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if non-symmetric information were available: for example, from which of the
two families the bride came from, or the direction of the trade between two
families (i.e. who buys how much from whom). The matrix in Exhibit 25.1
is called an adjacency matriz — it is symmetric, with row and column sums
equal to the number of edges linked to each vertex, called the degrees of the



Square symmetric tables revisited: direct and inverse axes

vertices. Notice that the degree wvector, the vector of marginal sums of the
adjacency matrix, is proportional to what would be the masses in the CA of
the matrix. In the case of an edge-weighted network, the ones in the adjacency
matrix would be replaced by their weights, and the marginal sums would then
form the weighted degree vector, again proportional to CA masses. Directed
networks lead to asymmetric square matrices, the subject of Chapter 24 —
our attention here is focused on symmetric matrices, which could arise from
undirected networks or be the symmetric part of a directed network.

The marriage network is coded in the form of a square symmetric matrix, so
let us first examine more closely the properties of such matrices in the context
of CA. In the mobility table of Exhibit 24.1, the symmetric part (matrix S)
was visualized by CA in Exhibit 24.3 (a small part of this matrix is shown
on page 188). Of the total inertia (1.1485) of this symmetric matrix, 54.0%
was explained in the two-dimensional solution. Most of this total inertia is
due to the diagonal of the matrix, which contains high counts of the number
of fathers whose sons have continued in the same occupation — in fact, the
diagonal constitutes 70.4% of the total inertia. It is not surprising, then, that
the display concentrates on explaining the diagonal values more than on the
off-diagonal ones, a similar situation to the multiple correspondence analysis
(MCA) of the Burt matrix in Chapter 18. In order to reduce the effect of the
diagonal, we could divide all the diagonal values by 4, for example, in which
case the total inertia of the matrix falls to 0.4509, of which only 15.6% is due
to the diagonal, and the off-diagonal values are now better explained. But
a strange phenomenon is now discovered on the second dimension: although
this is a symmetric matrix, the column coordinates are the negatives of the
row coordinates — see column Dim. 2 of Exhibit 25.3.

At the heart of CA is a singular value decomposition (see the Theoretical
Appendix), which is the rectangular generalization of the eigenvalue decom-
position of a square matrix. For square symmetric matrices CA can be com-
puted using an eigenvalue decomposition, but the eigenvalues can be negative.
Such negative eigenvalues induce so-called inverse dimensions, for example
the second dimension of Exhibit 25.3. We are usually not interested in these
dimensions, since they imply double points for some of the objects being dis-
played. So we prefer to concentrate on the direct dimensions that give exactly
the same coordinates for rows and columns, thus just one set of points. For a
result such as Exhibit 25.3, dimensions 1 and 3 would be chosen to display the
occupations, and then we obtain a result not too much different from Exhibit
24.3, but with improved variance explained on the off-diagonal cells. Rather
than this ad hoc manipulation of the diagonal elements, a specific procedure
is required to shift attention to the off-diagonal elements of the table.

This sounds very much like the case of joint correspondence analysis (JCA,
Chapter 19), where we avoided fitting the diagonal subtables of the Burt
matrix. So we now implement a similar algorithm that regards the diagonal as
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Exhibit 25.3:
Principal

coordinates of first
three dimensions of

CA

of mobility table
of Exhibit 24.1,

where the diagonal
has been multiplied
by 0.25. The second
dimension is inverse:
the row and column

coordinates have
different signs.

CA of an

adjacency matrix

The Laplacian
matrix

Correspondence Analysis of Networks

OCCUPATION  Dim. 1 Dim.2 Dim. 3
Row points:

Army -0.519 0.097  -0.202
Arts 0.839 0.266  -0.481
Teaching... -0.151 0.002  -0.001
Crafts 0.920 -0.639 -0.116
Column points:

Army -0.519  -0.097 -0.202
Arts 0.839 -0.266  -0.481
Teaching... -0.151  -0.002  -0.001

Crafts 0.920 0.639 -0.116

missing and attempts to find the best fit to the off-diagonal elements, avoiding
the dominating effect of the diagonal. This algorithm imputes new diagonal
elements in each iteration based on the CA performed in the previous iteration
until convergence at the optimum fit to the off-diagonal elements is achieved.
A big difference, however, is that we cannot maintain the same margins as
the original matrix in the process of diagonal replacement, as we could do in
JCA. Also, we have to be careful to avoid using inverse factors in the iterative
substitution of the diagonal elements.

Returning now to the Florentine marriage network example, we notice that
the adjacency matrix in Exhibit 25.1 is special in that it has a diagonal of
zeros: the edge between a vertex and itself is not observed (unless a marriage
took place within a family, which is unlikely). If CA is applied to the adjacency
matrix of marriages, the first and third dimensions, amongst several others,
turn out to be inverse, so a two-dimensional map would be constructed using
dimensions 2 and 4. The question arises once again whether the fit to the off-
diagonal values can be improved by replacing the zeros on the diagonal with
other values. A reasonable option, which has some spin-offs, is to insert the
degree vector down the diagonal, which ensures that there will be no inverse
dimensions, as well as preserve the CA masses. The result of the CA is given in
Exhibit 25.4, showing quite well the basic structure of the network. Although
distances between families are defined by y2-distances between profiles, the
CA solution turns out to almost equivalent to the one classically obtained in
network theory, based on a matrix called the “Laplacian”.

A standard result in network theory is the following. Suppose that the sym-
metric adjacency matrix W defines an edge-weighted undirected network
on n vertices, with elements w;; that are all positive or zero, with zeros



The Laplacian matrix
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CA dim 2
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CA dim1

down the diagonal: w;; > 0, w; = 0. Let the row (or column) sums of W,
i.e. the (weighted) degrees, be denoted by d and denote the diagonal matrix
D, = diag(d), called the (weighted) degree matrix. One way to represent
the network in a space of given dimensionality K* is to search for vectors
X1,X2, . ..,X, that minimize the following objective function:

Xn) = Y wijllxi — x|
i<j

Thus, the higher the edge weight w;;, the closer x; and x; should be*. An

identification condition is required to find the minimum of (25.1), and the

standard one is that X'X = I, where the unknown vectors x; are rows of the

n X K* matrix X. The solution is given by the eigenvectors of the Laplacian:

L=D,-W (25.2)

There are no negative eigenvalues of the Laplacian, so no inverse dimensions,
but it is not the eigenvectors corresponding to the highest eigenvalues that
solve the problem, but rather the smallest ones.

f(XhXQa"'a (251)

Laplacian :

This theory can be transferred into the CA context by introducing the CA
masses ¢ for the vertices (i.e. the degrees in d divided by their sum), implying
the weighted normalization X' D.X = I. It turns out that the (weighted)

* For zero/one weights this objective is identical to that of a definition of MCA for what
can be considered a two-mode network — see the definition of star plots on page 159.
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Exhibit 25.4:

CA of adjacency
matrix of Florentine
marriage network in
Exhibit 25.2, with
diagonal replaced by
the vertex degrees
(i.e. column sums).
Edges (marriages)
have been added
and the circle areas
are proportional to
the respective
degrees.
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Laplacian has exactly the same standard coordinates as the CA of the matrix
Dg+ W visualized in Exhibit 25.4, but in the reverse order, so the solutions of
the problems are identical. The results of Chapter 23 can be used to verify this,
because the analysis of both the sum D4+ W and the difference L = Dy —W
can be obtained neatly from a single CA of the matrices in the block circulant
(“ABBA”) format:

W b

W D, (25.3)

Separating the sum and difference components by looking at the signs of the
repeated eigenvectors, we get the CA performed on Dy;+ W and the Laplacian
analysis on the difference matrix L.

In the previous section the diagonal of zeros was replaced by the vertex de-
grees. Hence, the margins of the table are just multiplied by 2, and their
relative values are preserved, i.e. the CA masses remain the same. In addi-
tion, the standard coordinates of the CA are identical to those of the original
analysis of the adjacency matrix; it is just the principal inertias (eigenvalues)
that change — in fact, one can insert any multiple of the degrees on the di-
agonal and this only affects the eigenvalues. A family of transformations of
the adjacency matrix can be defined with this property, in terms of the corre-
spondence matrix P (the original matrix, denoted by W above, divided by its
grand total) and the marginal sums ¢ of P (i.e. the row and column masses,
which are identical and equal to the vector d divided by its sum). This family
is defined by the parameters o and 3 as follows:

P(a,f)=aP+D.+ (1 —a—pf)cc’ (25.4)

In the present case, we are just creating mixtures of P and D., so a+ =1
(the last term of (25.4) falls out) and the matrix W + Dy corresponds to
(25.4) with o = 3 = 1. The principal inertias (eigenvalues) of P(«, 3) are:

A, B) = (o v/ Aer + B)? (25.5)

where A\ are the eigenvalues of the original adjacency matrix W and ¢, = 1 or
—1 for direct and inverse dimensions respectively. Thus, the eigenvalues of any
such combination (25.4) can be computed, and the corresponding standard
coordinates are simply re-ordered in terms of the new descending order of
the eigenvalues. As 8 increases relative to « (the diagonal part increases),
all the inverse dimensions disappear — in fact, we are assured of no inverse
dimensions for W + Dy, which is positive semi-definite, as is the Laplacian
Dg; — W. An alternative strategy to reduce the effect of the diagonal is to
replace it by fractions kd of the degree vector, from k& = 1 down to 0 in steps
of —0.01 and checking the fit to off-diagonal elements using some measure
such as root mean-squared error (RMSE). For the marriage network matrix,
the value k£ = 0.30 is found to be optimal (RMSE = 0.1474), corresponding to
a=1/1.30 =0.77, 8 = 0.23. The inertia explained by the two CA dimensions,
for k = 0.30, is 45.4%, compared to the figure of 38.1% when the degree vector
replaces the diagonal (k = 1) — thus, the effect of the diagonal has been



Multidimensional scaling of a network

reduced and the percentage of inertia explained is a more accurate measure
of display quality.

In the CA map of Exhibit 25.4 there was no direct fitting of the edge weights to
the interpoint distances in the network representation. Multidimensional scal-
ing (MDS) specifically aims to optimally visualize distances between objects
in a spatial map of low dimensionality. CA is itself an MDS, but visualizes
the y2-distances between profiles of the data matrix, not actual inter-vertex
network distances. One way to measure distances between two vertices is the
sum of the weights on the shortest paths linking them. In the present exam-
ple, the edge weights are all equal to 1 so the shortest path is simply the
minimum number of connections between vertices. For example, in Exhibit
25.3, the shortest path between Gin and Bis is 3, and from Sal to Bis it is 4.
These shortest-path distances fill a square matrix, with diagonal values zero,
which is suitable input to MDS. Using the classical MDS algorithm, which is
also based on an eigendecomposition, the map of Exhibit 25.5 is obtained.

The square symmetric matrix of shortest-path distances has high values for
vertices that should be far apart in the map, and low values for those that
should be closer. To apply CA to this matrix would not make sense, since CA
visualizes a matrix of associations, where high values between objects imply
their closeness in the map. It turns out that CA can mimick an MDS by
simply reversing the values in the distance matrix, by subtracting the whole

@

D)
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MDS dim 2
®
®
®
®
®
®
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matrix of squared distances from a very large number, at least as large as the
largest squared distance. The transformation is:

a;; =D — d?j where D >> max{dfj} (25.6)

The higher D is, the closer the CA solution comes to the MDS solution. An
adjustment for scale is necessary, since the inertia reduces considerably as D
increases. We used the value D = 1000 and obtained a result that was almost
identical to Exhibit 25.4. The adjustment of the CA solution is as follows:

® Replace the CA inertias Ay by v Ar(D/2).

® The absolute values of the eigenvalues py of the classical MDS are ap-
proximately the transformed inertias above multiplied by the number I of
vertices: pg = I /A(D/2).
To show how close the solutions are, the eigenvalues of the MDS are listed
below as well as the inertias from the CA after being adjusted as specified
above. Notice that the negative eigenvalues in the MDS, shown in italics, turn
up as positive inertias in the CA, also shown in italics.
MDS eigenvalues:
28.41 17.83 6.89 3.98 1.50 0.75 0.37 0.26 0.03 0.00 -0.83 -1.75 -2.79 -3.78

CA inertias:
28.66 17.97 6.94 4.01 8.80 2.82 1.79 1.51 0.84 0.76 0.37 0.26 0.03 0.00

In the MDS the negative eigenvalues are interpreted as non-Euclidean dimen-
sions, whereas in CA they correspond to inverse dimensions.

1. A network is characterised by a graph consisting of a set of vertices and a
set of inter-vertex edges.

Undirected networks can be coded as a square symmetric adjacency ma-
triz, with nonnegative values, and zeros down the diagonal. The positive
entries of the matrix are edge weights, that can be either all equal to 1, for
an unweighted network, or different weights quantifying the strengths of
connection of the respective vertex pairs.

3. The vertex degrees are the sums of the weights of the edges connected to
each vertex, i.e. the row or column sums of the adjacency matrix.

4. CA of the adjacency matrix visualizes the network, but the inverse dimen-
sions should be ignored. Replacing the diagonal of zeros with the vertex
degrees gives a matrix with no inverse dimensions, and with the same an-
alytical solution as that of the Laplacian matrix, which is the diagonal
degree matrix minus the adjacency matrix.

5. A distance matrix corresponding to the network can be defined in terms of
shortest-path distances between vertices. Classical multidimensional scal-
ing of this matrix gives a distance-based representation of the network. An
almost identical solution can be obtained by applying CA to a matrix of
the squared distances that have been subtracted from a very large number.



Data Recoding

In all the chapters up to now we have dealt exclusively with categorical data
and frequency tables, either a single table or in sets. In this chapter we will
look at other types of data and how they can be recoded, or transformed, in
such a way that correspondence analysis (CA) can still be applied as a method
of visualization. This strategy is particularly well developed in Benzécri’s ap-
proach to data analysis, where CA is the central algorithm and different data
types are preprocessed before being analysed. The types of data treated here
are ratings, preferences, paired comparisons and data on continuous scales.
In all of these cases the original CA paradigm should be remembered: CA
analyses count data, so if we can transform other types of data to counts of
some kind, then it is likely that CA will be appropriate. A standard checklist
to perform on the recoded data will be to see if the basic concepts of profile,
mass and x2-distance make sense in the context of the data.
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We have already met a typical rating scale in Chapter 20, the five-point scale of
agreement /disagreement used in the example of science and the environment:

O O O O O
strongly somewhat  neither agree  somewhat strongly
agree agree nor disagree disagree disagree

Previously we treated data on a scale such as this as observations on a nominal
categorical variable, creating a dummy variable for each category. This was
already an example of data recoding, because CA could not be applied to the
original data using values 1 to 5, for example — the notion of a profile would
make no sense since a set of responses to the four questions [ 111 1] (strongly
agree to all four statements) and another set [ 55 5 5] (strongly disagree to

Rating scales
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all four) would have the same profile. Other types of rating scales often found
in social surveys and marketing research are:

— 9-point scale (one extra category between points on 5-point scale):

O O O O O O O O O
strongly somewhat  neither agree  somewhat strongly
agree agree nor disagree disagree disagree
— 4-point scale of importance:
O O O O
not fairly very extremely

important  important  important  important
— T-point semantic differential scale in a customer satisfaction survey

Seruvice Seruvice
unfriendly e friendly
— continuous rating scale (e.g. 0 to 10 scale)
Very 0 10 Very
dissatisfied satisfied

In this last example the respondent can choose any value between 0 and 10,
even with decimal points if desired, but we still think of the data as a rating
scale and the recoding will be similar for all the above examples. Notice that
when the number of scale points is large, it becomes unwieldy to use the
dummy variable coding of multiple correspondence analysis (MCA).

A recoding scheme often used in CA for ratings data is called doubling. The
idea behind doubling is to redefine each rating scale as a pair of complementary
scales, one labelled the “positive”, or “high”, pole of the scale and the other
the “negative”, or “low”, pole. Before performing the doubling, it is preferable
to have rating scales with a lower endpoint of zero, so 1-to-5 and 1-to-7 scales,
for example, should first be converted to 0 to 4 and 0 to 6 respectively, simply
by subtracting 1. These values define the data assigned to the positive pole
of each scale, assuming a high value refers to the substantively positive end
of the scale (e.g. high satisfaction, high importance, high agreement). The
negative pole of the scale is then defined as M minus the positive pole, where
M is the maximum value of the positive pole (4 or 6 in the above examples,
or 10 for the 0-to-10 scale). Actually, in the agreement—disagreement scale on
the previous page, the high value refers to high disagreement, so the labels
“+” and “—” would be reversed to avoid confusion — or we could just reverse
this scale beforehand. The idea is illustrated for the agreement ratings in the
science and environment data set of Chapter 20. Exhibit 26.1 shows the first
five rows of data and their doubled counterparts. For example, the first value
for respondent 1 is a 2, subtracting 1 gives the value 1 and its doubled value
is 3, hence the values 1 and 3 in the doubled columns for question 1. These
columns are labelled A— and A+ because the first column quantifies how
much the respondent disagrees and agrees respectively with the first question.
Similarly, the original value of 3 for the second question becomes a 2 and a
doubled value of 2, i.e. equal values for the disagreement and agreement poles
B— and B+, and so on.



The counting paradigm

Questions Qu. A Qu. B Qu. C Qu. D
B C A- A+ B- B+ (- + D- D+

>
o)

W NN WN
W N Wk W
W NN DN
W N W W
N = = N =
D W W N W
N~ NN W N
N W N~ N
N — = =W
DWW W
N = W NN
DN W NN

. and so on for 871 rows

The doubled values can be thought of as counts in the following sense. The
doubled values 1 and 3 are counts of how many scale points are below and
above the observed value of 1. The response of 2 (“agree”) on the five-point
scale has one scale point below it and three above it. Similarly, the “neither
agree nor disagree” response of 3 is in the middle of the scale and has two
scale points below and above it. In this way the doubled data table substitutes
the original data by measuring association between each respondent and the
agreement and disagreement poles of the rating scale.

CA is applied to the doubled table on the right-hand side of Exhibit 26.1,
which has 871 rows and 8 columns. The rows all have the same sums (16 in
this example); hence the respondent masses are equal, which makes sense —
there is no reason to give respondents different weights. Each of the four pairs
of columns has the same row sums of 4, so there are four linear restrictions
on the columns and not just one as in regular CA. Hence the dimensionality
of the data matrix is 8 — 4 = 4. Exhibit 26.2 shows the map of the column
points, two points for each question. The positive poles are directly opposite
their negative counterparts relative to the origin, as shown by the dashed
lines joining the pairs of poles. The fact that question D is out of line with
the other three, already seen in Chapter 20, is shown clearly here. We would
have expected D— on the right and D+ on the left but the direction of this
question is practically at right angles to the others.

Notice that all four rating scale “axes” pass through the origin of the map. The
dashed lines between the poles can be subdivided into four equal intervals,
and labelled by the five scale points (shown for question C, using the original
1-to-5 scale where 1 corresponded to strong agreement). The average rating for
each question can then be read at the origin on the respective calibrated axis.
Thus the average ratings on questions A and C are more to the agreement ()
side of the scale (the actual average for question C is 2.58), while the averages
for B and D are slightly to the disagreement side. Another way of thinking
about this is to imagine the endpoints of each rating scale axis having weights
proportional to the average of the values attributed to the respective poles —
thus C+ is closer to the origin than C— because it is “heavier”.
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Exhibit 26.1:
Raw data (left-
hand side) for the
variables on science
and environment,
and the doubled
coding (right-hand
side), for the first
five respondents out
of N = 871 (former
West German
sample).
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Exhibit 26.2:

CA of doubled
ratings of science
and environment
data, showing
doubled ratings
only. Percentage of
explained inertia is
70.6%. The rating
scale can be
imagined at equal
intervals along each
“axis” connecting
the poles (e.g.,
1-to-5 scale shown
for question C) and
the average for each
question is exactly
at the origin.
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The alignments of the four rating scale axes in Exhibit 26.2 visually depict
the correlations between the variables — specifically the cosines of the angles
between them approximate the correlations. Thus we can deduce that vari-
ables A, B and C are positively correlated with one another, but uncorrelated
with D. The four variables have correlation coefficients as follows:

Questions A B C D
A 1 0.378 0.357 0.036
B 0.378 1 0.436 0.016
C 0.357 0.436 1 —0.062
D 0.036 0.016 —0.062 1

which agrees with our visual deduction. The correlations are not exactly equal
to the angle cosines because this map explains only 70% of the inertia. For
example, B and C should make a smaller angle than A and B, but this would
be seen more accurately only in a three-dimensional view of the rating scales.

Each respondent has a profile and position in the map, as in a regular CA.
But, as in MCA of survey data with large samples, the individual positions are
not of interest, but rather positions of groups of respondents as supplementary
points. For example, to represent males and females in the six different age
groups in this data set, the average ratings for these 12 groups are computed
and added as supplementary rows (doubled). Their positions are shown in



Preference data
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Exhibit 26.3. Apart from the oldest group, the female groups are on the right-
hand side of the map, that is, the agreement side of questions A, B and C.
All the male groups are on the disagreement side of these questions, i.e. less
critical of science’s role in the environment.

Preference data can be regarded as a special case of ratings data. A typical
study in marketing research is to ask respondents to order a set of products
from most preferred to least preferred, or a set of product attributes from
most important to least important. As an example, suppose that there are six
products, A to F, and that a respondent orders them as follows:

most preferred: B> E > A > C > F > D : least preferred

This ordering corresponds to the following ranks for the six products:

A B C D E F
31 4 6 2 5

The six ranks are just like ratings on a 6-point scale, the difference being that
the respondent has been forced to use each scale point only once. These data
can be doubled in the usual way, with the doubled columns assigned labels
where “4” indicates high preference and “—” low preference:
A- A+ B- B+ C- C+ D- D+ E- E+ F- F+
2 3 0 5 3 2 5 0 1 4 4 1

Frequently, respondents are allowed to rank order a smaller set of most-
preferred objects (e.g. first three choices), in which case the objects not ranked
are considered to be jointly in the last position, which gets the value of a tied
rank. For example, if the best three out of six products are rank-ordered, then
the three omitted products obtain ranks of 5 each, the average of 4, 5 and 6.

Paired (or pairwise) comparisons are a freer form of preference rankings. For
example, each of the 15 possible pairs of the six products A to F is presented
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Exhibit 26.3:
Supplementary
points for males and
females in the six
age groups. The
males are all on the
left-hand side
(disagreement on A,
B and C) while the
females — apart
from the oldest
group F6 — are on
the agreement side.
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Paired
comparisons
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Exhibit 26.4:
European Union
economic indicators,
and their ranks from
smallest to largest.

Recoding
continuous data by
ranks and doubling

Data Recoding

to the respondent, who selects the more preferred of the pair. The doubled
data for each respondent are then established as follows:

A+: number of times A is preferred to the five other products
A—: number of times the other products are preferred to A (=5 — A+)
and so on. Then proceed as before, applying CA to the doubled data.

Continuous data can also be visualized with CA after the data are suitably
recoded, and several possibilities exist. As an example, consider the data on
the left-hand side of Exhibit 26.4, five economic indicators for the 12 European
Union countries in the early 1990s. There are a mixture of measurement scales
in these data, with some index values and unemployment rate and change in
personal consumption measured in percentages.

Original data Ranked data
COUNTRIES Unemp GDP PCH PCP RULC Unemp GDP PCH PCP RULC

Belgium 8.8 102 1049 3.3 89.7 7 7 7T 7.5 5.5
Denmark 7.6 1344 117.1 1 924 5 12 11

Germany 5.4 128.1 126 3 90 3 11 12 6 7
Greece 85 37.7 40.5 2 105.6 6 2 2 2 12
Spain 16.5 67.1 68.7 4  86.2 12 4 4 11 3
France 9.1 1124 110.1 2.8 89.7 8 9 9 45 5.5
Ireland 16.2 64 60.1 4.5 819 11 3 3 12 2
Italy 10.6 105.8 106 3.8 974 10 8 8 10 10
Luxemburg 1.7 119.5 110.7 2.8 95.9 1 10 10 4.5 9
Holland 96 996 96.7 3.3 86.6 9 6 5 7.5 4
Portugal 5.2 326 348 35 783 2 1 9

UK 6.5 953 99.7 2.1 989 4 5 6 3 11

Une=Unemployment rate (%), GDP=Gross Domestic Product/Head (index),
PCH=Personal Consumption per Head (index), PCP=Change in Personal Con-
sumption (%), RUL=Real Unit Labour Cost (index).

A simple recoding scheme is to convert all the observations to ranks, as shown
on the right-hand side of Exhibit 26.4. The observations are now ranked within
a variable across the countries; for example Luxemburg has the lowest unem-
ployment and so gets rank 1, then Portugal with rank 2 and so on. Tied ranks
are given average ranks; for example France and Luxemburg tie for fourth place
on the variable PCP, so they are given the average 4.5 of ranks 4 and 5. With
the transformation of the data to ranks, the doubling can take place as before
for each variable: first 1 is subtracted from the ranks to get the positive pole of
the scale (the high value) and the negative pole is calculated as 11 minus the
positive pole. The CA of the doubled matrix is shown in Exhibit 26.5. Again,
the opposite poles of each variable could be connected, but the distances from
the origin for each variable are the same in this case because their average
ranks are identical — hence, plotting just the positive pole is sufficient. The



Other recoding schemes for continuous data
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map shows two sets of variables, strongly correlated within each set but with
low correlation between them. Notice that RULC (Real Unit Labour Cost) is
negatively correlated with Unemp (Unemployment Rate) and PCP (Percent-
age Change in Personal Consumption) (correlations here are nonparametric
Spearman rank correlations because ranks are used). Each country finds its
position in terms of its rank orders on the five variables. Since the ranks are
analysed and not the original values, the analysis would be robust with respect
to outliers and can be called a nonparametric CA of the data.

The transformation of the continuous variables to ranks loses some informa-
tion, although in our experience the loss is minimal in terms of data visual-
ization, and the robustness of the ranks is an advantage in many situations.
However, if all the information in the continuous data is needed, other possibil-
ities exist. For example, a transformation that works well is the following;: first,
convert all variables to standardized values (so-called z-scores) by subtracting
their respective means and dividing by standard deviations; then create two
doubled versions of each variable from its standardized z using the recoding
positive pole = (1 + z)/2 and negative pole = (1 — z)/2 . Even though it has
some negative values, the row and column margins are still positive, and equal
for all rows and for all doubled column pairs, so the cases and the variables
are weighted equally. CA of this doubled matrix gives a map almost identical

207

Exhibit 26.5:
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map of European
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indicators, recoded
as ranks. Inertia
explained is 81.0%.
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Exhibit 26.6:
Fuzzy coding of a
variable x into three
categories, using
triangular
membership
functions.
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category 1 category 2 category 3
1
0.78
0.5
0.22
0
minimum xX* median maximum

continuous variable x

to that of Exhibit 26.5. This is one of the few examples of a data matrix with
some negative values that can be validly analysed by CA.

Another solution is to use fuzzy coding, which is especially useful when the
variables are a mix of categorical and continuous variables. The idea is illus-
trated in Exhibit 26.6, transforming a continuous variable z (the horizontal
axis) to a fuzzy categorical variable with a pre-specified number of categories.
For this three-category example above, the transformation is performed using
three membership functions: for example, straight line triangular member-
ship functions. These are defined by three hinges, chosen in Exhibit 26.6 as
the minimum, median and maximum of the variable’s distribution. A value
of = such as z*, shown below the median, is converted to the three values
[0.22 0.78 0]. The fuzzy values add up to 1, and allow these categories of =
to be analysed alongside other categorical variables coded as zero/one dummy
variables (called crisp coding, as opposed to fuzzy coding).

1. Data on different measurement scales can be recoded to be suitable for CA.
As long as the recoded data matrix has meaningful profiles and marginal
sums in the context of the application, CA will give valid visualizations of
the data.

2. One of the main recoding strategies is to double the variables, that is
convert each variable to a pair of variables where the sums of the paired
values are constant.

3. Doubling can be performed in the case of ratings, preferences and paired
comparisons, leading to a map where each variable is displayed by two
points directly on opposite sides of the origin. In the case of ratings data,
the origin indicates the average value of the variable on the line connecting
its extreme poles.

4. Continuous data can be recoded as doubled ranks, leading to a nonpara-
metric form of CA, or can be transformed to a continous pair of doubled
variables, using their standardized values.

5. Fuzzy coding converts a continuous variable to a set of fuzzy categories,
that can be analysed jointly with dummy (0/1) categorical variables..



Canonical Correspondence Analysis

The objective of correspondence anaysis (CA) is to visualize a table of data in
a low-dimensional subspace with optimal explanation of inertia. When addi-
tional external information is available for the rows or columns, these can be
displayed as supplementary points that do not play any role at all in determin-
ing the solution (see Chapter 12). By contrast, we may actually want the CA
solution to be directly related to some external variables, in an active rather
than a passive way. The context where this often occurs is in environmental
research, where information on both biological species composition and envi-
ronmental parameters are available at the same sampling locations. Here the
low-dimensional subspace is required that best explains the biological data
but with the condition that the space is forced to be related to the environ-
mental data. This adaptation of CA to the situation where the dimensions
are assumed to be responses in a regression-like relationship with external
variables is called canonical correspondence analysis, or CCA for short.
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To motivate the idea behind CCA, we look again at the marine biological
data of Exhibit 10.4, page 77. In addition to the species information at each
sampling location on the sea bed, several environmental measurements were
made: metal concentrations (lead, cadmium, barium, iron, ...), sedimentary
composition (clay, sand, pelite, ...) and other chemical measurements such
as hydrocarbon and organic content. Since some of these are highly inter-
correlated, we chose three representative variables as examples: barium and
iron, measured in parts per million, and pelite as a percentage, shown in Ex-
hibit 27.1 (pelite is sediment composed of fine clay-size or mud-size particles).
These variables will be used as explanatory variables within CCA. We prefer
to use their values on a logarithmic scale, a typical transformation to convert

Supplementary
continuous
variables
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Exhibit 27.1:
Environmental data
measured at the 13
sampling points (see
Exhibit 10.4); 11
sites in vicinity of
oil-drilling platform
and 2 reference sites
10 km away.

Representing
explanatory
variables as
supplementary
variables

Canonical Correspondence Analysis

STATIONS (SAMPLES)

VARIABLES S4 S8 S9 812 S13 S14 S15 S18 S19 S23 S24 R40 R42

Barium (Ba) 1656 1373 3680 2094 2813 4493 6466 1661 3580 2247 2034 40 85

Iron (Fe) 2022 2398 2985 2535 2612 2515 3421 2381 3452 3457 2311 1804 1815
Pelite (PE) 29 149 38 53 41 91 53 41 74 31 65 25 20
log(Ba) 3.219 3.138 3.566 3.321 3.449 3.653 3.811 3.220 3.554 3.352 3.308 1.602 1.929
log(Fe) 3.306 3.380 3.475 3.404 3.417 3.401 3.534 3.377 3.538 3.539 3.364 3.256 3.259
log(PE) 0.462 1.173 0.580 0.724 0.623 0.959 0.724 0.613 0.869 0.491 0.813 0.398 0.301

ratio-scale measurements on a multiplicative scale to an additive scale — their
log-transformed values are also given in Exhibit 27.1. This transformation not
only has a normalizing effect on the scales of the variables but also reduces
the influence of large values.

Before entering the world of CCA, let us first display these three variables on
the map previously shown in Exhibit 10.5. The way to obtain coordinates for
the continuous variables is to perform a weighted least-squares regression of
the variable on the two principal axes, using the column standard coordinates
~1 and -2 on the first two dimensions as “predictors” and the column masses
as weights, as shown in Chapter 14, page 110. For example, for the regression
of log(Ba), part of the data are as follows:

Stations log(Ba) 1 Yo Weight
S4 3.219 1.113 0.417 0.0601
S8 3.138 —0.226 —1.327 0.0862
S9 3.566 1.267 0.411 0.0686

R42 1.929 2.300 0.7862 0.0326

The results of the regression are:

Source Coefficient  Standardized coefficient
Intercept 3.322 —
Y1 —0.301 —0.641
Yo —0.229 —0.488
R? =0.648

The usual way of displaying the variable is to use the standardized regression
ceofficients as coordinates. As illustrated in Chapter 14, page 111, these are
identical to the (weighted) correlation coefficients of log(Ba) with the two
sets of standard coordinates. Repeating the regressions (or, equivalently, cal-
culating the correlation coefficients) the three environmental variables can be
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placed on the map of Exhibit 10.5, which we show in Exhibit 27.2, omitting
the species points. The percentage of variance explained (R?) for each variable
is the sum of the squared correlation coefficients, exactly what we called the
quality of display of a point. For log(Ba) it is quite high, 0.648 (or 64.8%) as
given above, while for log(Fe) it is 0.326 and for log(PE) only 0.126.

We now turn the problem around: instead of regressing the continuous ex-
planatory variables on the dimensions, we regress the dimensions on the ex-
planatory variables, always incorporating the masses as weights in the re-
gression. The results of the two regression analyses are given in Exhibit 27.3.
Notice that the standardized coefficients are, unfortunately, no longer the cor-
relation coefficients we used to display the variables in Exhibit 27.2, because
the explanatory environmental variables are correlated. For example, the cor-

Response: CA dimension 1 Response: CA dimension 2

Source Coeff. Stand. coeff. Source Coeff. Stand. coeff.

Intercept —9.316 — Intercept 14.465 —

log(Ba) —1.953 —0.918 log(Ba) —0.696 —0.327

log(Fe) —4.602 0.398 log(Fe) —3.672 0.318

log(PE) 0.068 0.014 log(PE) 0.588 0.123
R? =0.494 R? =0.319
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Exhibit 27.2:
Station map of
Exhibit 10.5,
showing positions of
three environmental
variables as
supplementary
variables according
to their correlations
with the two
principal axes.

Dimensions as
functions of
explanatory
variables

Exhibit 27.3:
Regressions of first
two CA dimensions
on three
environmental
variables.
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the dimensions of
CA

Exhibit 27.4:
Regressions of first
two CCA
dimensions on three
environmental
variables.

Constrained
and unconstrained
spaces in CCA

Decomposition
of inertia in CCA

Canonical Correspondence Analysis

relations between log(Ba) and the two dimensions are —0.641 and —0.488,
while in the regression analyses above the standardized regression coefficients
are —0.918 and —0.327 respectively.

Each CA dimension has a certain percentage of variance explained by the
environmental variables — 49.4% and 31.9% respectively (see bottom line of
Exhibit 27.3). The CA solution, computed on the species data, imposes no
restriction on the dimensions, whereas in CCA the condition will be imposed
that the dimensions be linear functions of the environmental variables. This
will increase the explained variance of the dimensions as a function of the en-
vironmental variables to 100%, but at the same time degrade the explanation
of the species data. The way the solution is computed is to project the whole
data set onto a subspace which is defined linearly by the three environmental
variables, and then perform the CA in the usual way in this restricted space.
So CCA could just as well stand for “constrained” correspondence analysis —
performing CA in a space constrained by the explanatory variables. Having
done the CCA (we show the full results later), the regressions of the first two
CCA dimensions on the environmental variables are given in Exhibit 27.4.
The R? for both regressions are now indeed 1, which is what was intended
— by construction, the dimensions are now exact linear combinations of the
environmental variables.

Response: CCA dimension 1 Response: CCA dimension 2
Source Coeff. Stand. coeff. Source Coeff. Stand. coeff.
Intercept 2.719 — Intercept 14.465 —
log(Ba) —2.297 —1.080 log(Ba) —0.877 —0.412
log(Fe) 1.437 0.124 log(Fe) 12.217 1.058
log(PE) —0.008 —0.002 log(PE) —2.378 —0.497

R*=1 R?=1

CCA restricts the search for the optimal principal axes to a part of the total
space, called the constrained space, while the rest of the space is called the
unconstrained space (also called restricted and unrestricted, or canonical and
non-canonical spaces respectively). Within the constrained space the usual
CA algorithm proceeds to find the best dimensions to explain the species
data. The search for the best dimensions can also take place within the un-
constrained space — this space is the one that is linearly unrelated (i.e. uncor-
related) with the environmental variables. So if we are interested in partialling
out some variables from the analysis, we could do a CCA on these variables
and then investigate the dimensions in the unconstrained part of the space.

In the present example, the total inertia of the species-by-sites table of Ex-
hibit 10.4 is 0.7826. The inertias in the constrained and unconstrained spaces
decompose this inertia into two parts, with values 0.2798 and 0.5028 respec-



Decomposition of inertia in CCA

tively, i.e. 35.8% and 64.2% of the total inertia. This explains why the original
CA dimensions were not strongly correlated with the environmental variables,
because CA tries to explain the maximum inertia possible, and there is more
inertia in the unconstrained space than in the constrained one. The decom-
position of inertia in the CCA is illustrated in Exhibit 27.5, including the
decomposition along principal axes. Once the search is restricted to the con-
strained space (depicted by the shaded area in Exhibit 27.5), the first two
dimensions have principal inertias of 0.1895 and 0.0615 respectively, totalling
0.2510 or 89.7% of the constrained inertia of 0.2798. Relative to the original
total inertia of 0.7826, these two dimensions are explaining 32.1% (cf. Ex-
hibit 10.5 where the two-dimensional unconstrained CA explained 57.5%).
On the other hand, in the unconstrained space (not shaded in Exhibit 27.5),
if this space is also of interest, the first two dimensions have principal iner-
tias 0.1909 and 0.1523, totalling 0.3432 which is 68.3% of the unconstrained
inertia of 0.5028, or 43.8% of the total inertia. Notice that if the regression of
the dimensions of the unconstrained space were made on the environmental
variables, there would be no relationship, i.e. regression coefficients of zero
and explained variance also zero.

UNCONSTRAINED SRACE () {504

(31.7%)

2-D solution:
0.3432
(68.3%)

CONSTRAINED SPACE

0.0488
(10.3%)

2-D solution:
0.2510
(89.7%)

Total inertia = Constrained inertia + Unconstrained inertia

= 0.2510 +0.0488 + 0.3432 + 0.1596

L J L J
T T

0.2798 + 0.5028

\ J
Y

0.7826
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Exhibit 27.5:
Schematic diagram
of the decomposition
of inertia into parts
in the constrained
space (shaded) and
in the unconstrained
space, showing the
parts of each
explained by
respective
two-dimensional
maps. The parts to
the right of the
straight lines
(inertias of 0.0488
and 0.1596) remain
unexplained by the
respective
two-dimensional
solutions.
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The CCA
triplot

Exhibit 27.6:
CCA triplot where
the species (rows)
and stations
(columns) are
plotted as a row
asymmetric map
(i.e. species in
principal
coordinates, stations
in standard).
Coordinates of
environmental
variables are
standardized linear
combination
coefficients. Species
are shown by
triangle symbols
with sizes propor-
tional to their total
abundance, with
only a few species’
names indicated for
commentary in the
text.

Canonical Correspondence Analysis

The results of CCA in the constrained space involve the usual row and col-
umn coordinates, as in CA, with the same scaling options for joint plotting,
plus the possibility of adding vectors for the explanatory variables — this is
called a triplot. The most problematic aspect is how to visualize the explana-
tory variables: on the one hand, their correlation coefficients with the axes
could be used to define their positions, or their standardized regression co-
efficients in their relationship to the axes. The latter choice, used in Exhibit
27.6, gives direct information to the user how the dimensions are related to
the explanatory variables. The sites are now in standard coordinates and the
species in principal coordinates, so the basic CA display is a row principal
asymmetric map (remember that species are rows in Exhibit 10.4). As far as
the sites and species are concerned, the biplot interpretation holds: each site
in standard coordinates indicates a biplot axis onto which the species can be
projected to estimate their relative abundances at that site (relative to their
total abundances across all sites). The site positions along each axis are, by
construction, linear combinations of their three standardized values on the
environmental variables, using the plotted coefficients. If a site has average
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Categorical explanatory variables

value on an environmental variable the contribution of that variable to its
position is zero. So the fact that the reference stations R40 and R42 are so
far on the other side of log(Ba) means that its values must be low in barium,
which is certainly true. Likewise, $23, S19, S15 and S9 must be high in iron
(especially S23) and S8 and S14 must be high in pelite. This can be confirmed
by looking at the actual values in Exhibit 27.1. The relationship between the
species and the environmental variables is through the sites that they have
in common. Species like Para.gaud. and Aoni.pauc. are associated with the
reference stations, and these reference stations have low barium. Species such
as Thar.sp. and Serp.inde. are associated with stations that have high iron
and/or low pelite, while Samy.sexc. down below is associated with stations
that have high pelite and/or low iron. The reference stations are more or less
in the middle of the vertical axis — they are low in both iron and pelite, and
this has effectively cancelled out their vertical positionings.

If there are categorical variables such as Region (e.g. with categories North-
east/Northwest/South) or Rocky (e.g. with categories yes/no) as explanatory
variables, then these are included as dummy variables in the CCA just as
they would be included in a regression analysis. In the CCA solution these
dummy variables are not represented by arrows; rather, the sites that are in
each category are averaged (and, as always, applying the usual weights in
the averaging), so that each category is represented by a point in the CCA
map. Continuous variables can also be included as fuzzy categorical variables
as a way of investigating possible nonlinearities in their explanation of the
dimensions, rather than the straight-line linear effects of Exhibit 27.6.

An alternative way of thinking about CCA is as an analysis of the weighted
averages of the explanatory variables for each species. Exhibit 27.7 shows a
small part of this set of averages, for some of the species that have been referred
to before. For example, the frequencies of Galathowenia oculata (Gala.ocul.)
are given in Exhibit 10.4 as 193, 79, 150, etc. for stations S4, S8, S9, etc.,
and these stations have values for log(Ba) of 3.219, 3.138, 3.566, etc. So the
weighted average for Gala.ocul. on that variable is:

193 x 3.219 + 79 x 3.138 + 150 x 3.566 + - - -
193 + 79+ 150 + - - -

which is the scalar product of the profile of the species with the values of the
variable. The “global (weighted) average” in the last line of Exhibit 27.7 is
the same calculation using the totals of all species. Hence we can see that
Gala.ocul. is quite close to the global average, and so does not play as im-
portant a role as it did in the CA of Exhibit 10.5. Para.gaud. and Aoni.pauc.
have low averages on log(Ba) because of their relatively high frequencies at
the reference sites R40 and R42 where barium is very low. Sami.sezc. has a
high average on log(PFE) and the reason why Thar.sp. and Serp.inde. lie at
the top is more to do with their low pelite averages than their high iron ones.

= 3.393
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Exhibit 27.7:
Weighted averages
of the three
environmental
variables across the
sites for a selection
of species, using the
frequencies of the
species at each site
as weights.

Partial CCA

SUMMARY:
Canonical
Correspondence
Analysis

Canonical Correspondence Analysis

Variables
SPECIES log(Ba) log(Fe) log(PE)
Gala.ocul. 3.393 3.416 0.747
Serp.inde. 3.053 3.437 0.559
Thar.sp. 3.422 3.477 0.651
Para.gaud. 2.491 3.352 0.534
Aoni.pauc. 2.543 3.331 0.537

Samy.sexc. 3.373 3.409 0.971

Global average 3.322 3.424 0.711

The idea of partialling out the variation due to some variables can be carried
a step further in a partial CCA. Suppose that the explanatory variables are
divided into two sets, labelled A and B, where the effect of A is not of primary
interest, possibly because it is well known, for example spatial or temporal
differences. In a first step the effect of the set A of variables is removed, and in
the space uncorrelated with these variables a CCA is performed with respect
to the set of variables B. There is thus a decomposition of the original total
inertia into three parts: the part due to A which is partialled out, and the
remainder which decomposes into a part constrained to be linearly related to
the B variables (but not to A) and the unconstrained part (unrelated to both
A and B).

1. In CA the dimensions are found so as to maximize the inertia explained in
the solution subspace.

2. In canonical correspondence analysis (CCA) the dimensions are found with
the same CA objective but with the restriction that the dimensions are
linear combinations of a set of additional explanatory variables.

3. CCA necessarily explains less of the total inertia than CA because it looks
for a solution in a constrained space, but it may be that this constrained
space is of more interest to the researcher.

4. Total inertia can be decomposed into two parts: the part in the constrained
space where the CCA solution is sought, and the part in the unconstrained
space which is not linearly related to the explanatory variables. In both
these spaces principal axes explaining a maximum amount of inertia can
be identified: these are the constrained and unconstrained solutions respec-
tively.

5. In partial CCA the effect of one set of variables is first partialled out before
a CCA is performed using another set of explanatory variables.



Co-Inertia and Co-Correspondence Analysis

It is frequently the case that two data sets are available on the same set of
individuals and we are interested in relationships between them. The previous
chapter dealt with one such situation, where sets of biological and environ-
mental variables were observed at the same sampling points, and the idea was
to look for the principal gradients (dimensions) of the biological variables that
were directly related to the environmental variables. There was an asymmetry
in the way these two sets were considered: the biological variables as responses
and the environmental variables as predictors. In this chapter we will look at a
general framework for analysing two data matrices, where the set of rows, usu-
ally individuals or sampling units, are common to both. Each data set implies
a configuration of the individuals in the space of its respective variables. We
will be mainly interested in symmetric measures of relationship between the
two data sets, answering such questions as: What is the concordance between
the two configurations? What are the structures common to both data sets?
What are the common dimensions? As specific examples we will concentrate
on categorical and count data in the correspondence analysis context.
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Suppose two data matrices, X (nxp) and Y (n X g), are observed on the same
number n of individuals (the rows), with p and ¢ column variables respectively.
Euclidean distances between the rows of these matrices can be defined in a very
general way, but for our purposes it is sufficient to consider weighted Euclidean
distances with weights g1, g2, . . ., gp for matrix X and hq, ho, . .., by for matrix
Y. Diagonal matrices of these weights are denoted by D, and Dy, respectively.
We also suppose that the n individuals are weighted by positive weights w;,
i=1,2,...,n,that sumto 1: ), w; = 1, and that the diagonal matrix of these
weights is D,,. If X and Y are centred (as they usually are), then the matrix
of all covariances between the two sets of variables is S = X'D,Y (p x q),
with general element s;;, = >, w;(xi; — Z;)(yir — Yr). Since the term “inertia”
is used for weighted variance in the correspondence analysis (CA) context,
the term co-inertia matriz is similarly used for this covariance matrix that
includes the individual weights. But the co-inertias are themselves weighted

Co-inertia analysis
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Some special
cases of co-inertia
analysis

Co-Inertia and Co-Correspondence Analysis
when it comes to combining them into a global measure of covariation between
the two sets of variables. The total co-inertia is the weighted sum of squared

co-inertias:

total co-inertia =

'Mﬁ

gihis’y (28.1)
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Inside the square brackets in (28.2) one can see the original variables trans-
formed by the square roots of their respective weights, so if the weights were
the inverses of the respective variances, this would be a regular standardizing
transformation and the total co-inertia would be the sum of squares of the
weighted correlations between the two sets of variables. The analysis of the
co-inertias, taking into account the different weighting systems for the two
sets of variables, is called co-inertia analysis. The analysis attempts to reduce
the dimensionality of the co-inertia matrix S = X'D,, Y in order to optimally
visualize the linear relationships between the two sets of data. As special cases
there are many methods of multivariate analysis, some of which have already
been treated in earlier chapters.

Suppose X and Y are two indicator matrices Z; and Zs of dummy vari-
ables coding two categorical variables on n individuals, and suppose that the
individuals are equally weighted, i.e. w; = 1/n. Let the vectors of column
averages of the two matrices be denoted by c¢; and cg respectively — since
each row of the matrices consists of zeros and a single 1, the row sums are
all 1, as well as the sums of the column averages. Then the co-inertia matrix
is S = (1/n)(Z1 — 1c])"(Z2 — 1c}) = (1/n)Z]Zy — c1c}. This is just the con-
tingency table N = Z{Zy cross-tabulating the two variables, divided by the
total n of N, which we previously denoted by P, double-centred with respect
to its margins. If the distances between the rows of Z; and Z, are defined
by weights equal to the inverses of the elements of c; and cy respectively,
i.e. the chi-square distances, then (28.1) is exactly equal to the total inertia
of simple CA: 37, >, (pjk — cjcr)?/(cjcx). Thus simple CA is a very special
case of co-inertia analysis.

Now extend the two matrices so that
X=[212y -+ Zp] and Y =[Zp11 Zpio -+ Zpyq]

X and Y each consists of several indicator matrices coding p and ¢ categor-
ical variables respectively, again on the same n individuals. Using the same
argument as above, the co-inertia matrix turns out to be the centred matrix
of all two-way cross-tabulations between the p and ¢ variables, divided by its
grand total, and the total co-inertia is the average of all the inertias of the pq
subtables. Thus we obtain the CA of the stacked matrix in Chapter 17 as a
special case as well. If the two sets of categorical variables are the same set, so



Data set 17: T'wo ecological abundance matrices at the same locations

that X =Y, then the co-inertia analysis reduces to the analysis of the Burt
matrix, i.e. MCA.

Another scenario is where one of the sets of variables is a single categorical
variable defining groups of cases. Suppose in general that X consists of p
quantitative variables, possibly on different scales, and that Y is an indicator
matrix Z based on a single categorical variable that assigns the n rows to
q disjoint groups. The natural distance metrics for these two matrices are
defined by the inverses of the variances, 1/s3,1/s3,...,1/s2, for X, and the
inverses of the column means of Z, which we denote by 1/c1,1/ca,...,1/cq —
in other words, the Euclidean distance on standardized variables for the rows
of X and the chi-square distance for the rows of Z. Then it can be shown that
the co-inertia matrix S between X and Z has element cy, (jjk — jj), where T,
is the mean of the j-th variable of X in the k-th group, and Z; is, as before,
the overall mean of the j-th variable. The total co-inertia in this case turns
out to be:

P11 , q P Zje— I 2
DIPPETNCICTEESIED SIS () (28.3)
J k=1 j=1
which is the between-group variance of the multivariate (standardized) data
in X. This is called centroid discriminant analysis because the optimal di-
mensions for separating the group means will be found in this special case of
co-inertia analysis.

As examples of co-inertia analysis in the next two sections, Exhibit 28.1 shows
the layout of two matrices collected in a marine ecological survey of 158 sam-
pling stations in the Barents Sea, north of Norway. Sampling took place over
a period of four years, from 2006 to 2009. The columns are two sets of species,
142 benthic (sea-bed) species and 41 fish species, that are counted for their
abundances in each sample. These two marine communities are interesting
to analyse in their own right but also to see how they co-vary. Like most
community ecological data sets like these, the data matrices are very sparse,
with many zeros and few positive numbers. For several reasons, one of them
being some extremely large values in the data set, it was considered better
to analyse these data at the presence—absence level. Before considering both
matrices in a joint analysis, let us look at just at the benthos data matrix
and perform a co-inertia analysis where the second matrix is defined by the
categories of a separate variable.

The above description of centroid discriminant analysis, based on the co-
inertia defined in (28.3), applies to continuous variables in X for which the
usual standardization is appropriate. If the benthos data of Exhibit 28.1 form
the X matrix, then we are back in the CA framework again and the chi-square
standardization is appropriate. Let Y now be the indicator matrix, denoted
by Z, consisting of four dummy variables for the four years 2006 to 2009 dur-
ing which the sampling took place. Interest now is specifically focussed on the

219

Data set 17: Two
ecological
abundance
matrices at the
same locations

Centroid
discriminant
analysis for CA



220

Exhibit 28.1:
Schematic set-up of
two data matrices,
with two sets of
variables (marine
species of benthos
and fish respect-
ively) observed at
the same stations in
the Barents Sea. A
map is shown
indicating the
locations of the 158
sampling stations
north of the
Norwegian northern
coastline, with Bear
Island at
approximately

long. 19°, lat. 74.4°.

Exhibit 28.2:
Centroid
discriminant CA,
applied to the
benthic species data
set. The centroids of
the year points 2006
to 2009 for the four
respective sub-
samples of stations
are optimally
separated.

Co-Inertia and Co-Correspondence Analysis
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Centroid discriminant analysis for CA

between-year variation and this comparison is forced by looking only at the
common inertia between the benthic species and the year dummies. Techni-
cally, the rows of X are the station profiles and the row weights are the usual
row masses, proportional to the number of benthic species observed at the re-
spective stations, known as “species richness”. Between-row distances are the
usual y2-distances for both matrices, i.e. the column weights are the inverses
of the relative species counts for X and the inverses of the relative frequencies
of the years for Z. The result is shown in Exhibit 28.2. The contribution biplot
scaling is used, where only those species that make more than average contri-
butions to the two-dimensional solution are shown (40 out of the 142 species).
The main differences are between the last sampling year 2009 and the first
three years, along the first dimension, and the subset of species causing this
separation can be identified, for example the main contributor appears to be
Euph_sp (present at 13 stations in 2009, totally absent in the other years). The
first three years are separated on the second dimension and again the species
responsible for this separation can be identified: for example, Echi_ac at bot-
tom is only present in 6 of the 2008 samples, otherwise absent. To enhance the
display, 95% confidence regions in the form of ellipses can be added for each
year centroid, shown in Exhibit 28.3 (the way this is computed is explained in
the next chapter). The elliptical confidence regions are not overlapping, which
is an informal way of concluding that the year averages are significantly sepa-
rated. This need not be strictly due to temporal differences, however, because
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Exhibit 28.3:

The station points
of Exhibit 28.2 and
year centroids, along
with their 95%
confidence regions
(shaded ellipses).
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the annual sampling was not evenly distributed across the region — in 2008,
for example, there tended to be more samples taken in the south. One could
rather relate the distributions to environmental variables such as depth and
temperature. A possible approach in the same spirit is to code these variables
into fuzzy categories (see last section of Chapter 26), and perform the same
discriminant version of co-inertia analysis.

As a final example of co-inertia analysis, let us now consider both matrices of
Exhibit 28.1, each of which is a candidate for a CA. In general, suppose that we
have two data matrices with n common rows, whose elements are nonnegative
counts or other nonnegative values where all values within a matrix are on the
same scale, but could be different for each matrix: for example, one matrix
could be in counts and the other matrix in percentages. Both matrices are
suitable for CA, to identify the most important dimensions in the respective
space of each data matrix, but now the objective is rather to find common
dimensions in the two spaces. The matrices, denoted N1 and N», have different
numbers of columns as well as different row sums, so the question is what the
row weights will be. An obvious solution is to set the row weights equal to the
average of the row masses of the separate matrices, or the masses implied by
the matrices together [Ny Ny, if it makes sense to make combined row sums
of both matrices. The analysis proceeds as before, using the relative values
of the respective column margins in the y2-distances between row profiles in
the two spaces. The total co-inertia between the two matrices is (28.2) with
w; the chosen row weights, g; the inverse of the j-th column mass of the first
matrix, x;; the j-th element of the i-th row profile of the first matrix, z; the
j-th column mass (of which g, is the inverse), and similarly for h;, y;; abd gx
for the second matrix. This total co-inertia is decomposed along the principal
dimensions of the analysis (see Appendix A). This form of co-inertia analysis
is called co-correspondence analysis (CoCA).

Exhibit 28.4 shows the CoCA of the benthic and fish presence—absence data
matrices. Row (station) weights were chosen as the average of the row masses
of the respective matrices, but could also have been defined as the (relative)
species richness at each station, i.e. the sum of each row of the concatenated
presence/absence matrices [Ny N ], divided by the grand total. Again, only
the species of each set that contribute more than average to the common
solution are shown: 53 of the benthic species and 16 of the fish species. The
station positions are obtained in each space as weighted averages of the species
points using the elements of the station profiles as weights (notice that this is
done using the standard coordinates of the species, whereas what are shown
in Exhibit 28.4 are their contribution coordinates, which are the standard
coordinates “shrunk” by multiplying them by the square roots of the species
masses — see Chapter 13). There is a single measure of total co-inertia, equal
to 0.2430 in this example, of which 44.4% and 24.4% are explained by the
two dimensions common to each matrix. Also shown in Exhibit 28.4 are the
direction vectors emanating from the origin of temperature and depth, added
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Exhibit 28.4:
Co-correspondence
analysis (CoCA) of
the benthos and fish
species observed at
the same stations.
The stations are
shown as gray
circles. Only the
species contributing
more than average
to the dimensions
are shown with their
abbreviated labels.
The contribution
biplot scaling is
used, so all the
omitted species are
farther towards the
centres of the
respective biplots
and have lower than
average contribu-
tions to the dimen-
sions. Contribution
coordinates have
been scaled up in
both displays to
enhance legibility.
Emanating from the
origin are vectors
representing the
directions of
temperature and
depth, as supple-
mentary variables.
Percentages of
co-inertia explained
by the two
dimensions are
44.4% and 24.4%
respectively.
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as supplementary variables (see Chapter 27, page 210). This shows that the
station points extending to upper left tend to have higher than average tem-
peratures, while the spread of stations diagonally from lower left to upper
right correspond to deeper to shallower stations. Species in the correspond-
ing directions indicate higher than average presences at stations with these
environmental characteristics.

1. The co-inertia between two variables, observed on the same individuals,
is their weighted covariance, where (optional) weights are assigned to the
individuals.

2. The total co-inertia between two sets of variables is a weighted sum of
squared co-inertias between all pairs of variables (one from each set). The
weights referred to now are associated with the variables, and correspond
to the appropriate standardization of the variables when combining them
within each of the sets.

3. Co-inertia analysis is the study of the total co-inertia between two sets of
variables. The total co-inertia is decomposed along principal axes.

4. CA is a special case of co-inertia analysis, when the two sets of variables
are indicator matrices of dummy variables coding two categorical variables.

5. The analysis of stacked (or concatenated) contingency tables, each one
based on the same individuals, is a co-inertia analysis where the two sets
of variables are indicator matrices coding respective categorical variables,
as in multiple correspondence analysis (MCA). If the two sets of categorical
variables, and thus indicator matrices, are the same, then co-inertia analysis
is the same as the MCA of the Burt matrix.

6. Centroid discriminant analysis, which optimally separates group centroids,
is a co-inertia analysis when one of the sets of variables is an indicator
matrix coding the groups.

7. If the two matrices are individually suitable for visualization by CA, a co-
inertia analysis can be performed, called co-correspondence analysis. The
respective weightings by variable (column) masses are respected in each
matrix, but a single set of individual (row) masses needs to be defined by,
for example, the averages of the row masses of the separate matrices.



Aspects of Stability and Inference

Apart from the passing mention of the chi-square test, the discussion about
significant clustering in Chapter 15 and the visualization of confidence ellipses
in Chapter 28, this book has concentrated exclusively on the geometric proper-
ties of correspondence analysis (CA) and its interpretation. In these two final
chapters we explain some approaches to statistical inference in the context
of CA and related methods. In the present chapter we shall be investigating
the stability of CA solutions and the sampling properties of statistics such as
the total inertia, principal inertias and principal coordinates. The distinction
is made between (i) stability of the solution, irrespective of the source of the
data, (ii) sampling variability, assuming the data arise out of some form of
random sampling from a wider population, and (iii) testing specific statistical
hypotheses.
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Throughout this book CA has been described as a method of data description,
as a way of re-expressing the data in a more accessible graphical format to
facilitate the exploration and interpretation of the observed data. Whether
the features in the map are evidence of real phenomena or arise by chance
variation is a separate issue. To make statements, or so-called inferences,
about the population is a different exercise, and is feasible only when the data
are validly sampled from a wider population. For the type of categorical data
considered in this book, there are many frameworks that allow hypotheses
to be tested and inferences to be made concerning the characteristics of the
population from which the data are sampled. For example, log-linear modelling
allows interactions between variables to be formally tested for significance,
while association modelling is closely connected to CA and enables a wide
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range of hypotheses to be tested, for example differences between category
scale values,. There is, however, a certain amount of statistical inference that
can be accomplished within the CA framework, as well as some innovative
investigation of variability or stability of the maps, thanks to modern high-
speed computing.

By stability of the CA solution (the map, the inertias, the coordinates on spe-
cific principal axes, etc.), we are referring to the particular data set at hand,
without reference to the population from which the data might come. Hence,
the issue of stability is relevant in all situations, even for population data or
data obtained by convenience sampling. Here we assess how our interpreta-
tion is affected by the particular mix of row and column points that are active
in determining the map. Would the map change dramatically (and thus our
interpretation too) if one of the points were omitted (for example, one of the
species in our marine biology example, or one of the authors in the set of texts
— see the data sets of Chapter 10)? This aspect of solution stability has al-
ready arisen several times when we discussed the concept of influence and how
much each point influences the determination of the principal axes. In Chap-
ter 11 the numerical inertia contributions were shown to provide indicators of
the influence of each point. If a row or column contributes highly to an axis,
then it is influential in the solution and the solution would change noticeably
if it were omitted. On the other hand, some points contribute very little to
the solution, and can be removed without changing the map dramatically —
that is, the map is stable with respect to including or removing these points.

Now looking outward beyond the data matrix, let us suppose that the data
are collected by some sampling scheme from a wider population. For example,
in the author data set of Exhibit 10.6 we know that the data represent a
small part of the complete texts, and if the whole exercise were repeated on a
different sample of each text, the counts of each letter would not be the same.
It would be perfect, of course, if the sampling exercise could be repeated
many times, and each time a CA performed to see if the features observed in
the original map remained more or less the same or whether the books’ and
letters’ positions changed. In other words, did what we see in the map arise
by chance or was it a real feature of the 12 books being studied?

Since we cannot repeat the study, we have to rely on the actual data them-
selves to help us understand the sampling variability of the matrix. The usual
way to proceed in statistics is to make assumptions about the population and
then derive results about the uncertainty in the estimated values, which in
the present case are the coordinates of points in the map. A less formal way
which avoids making any assumptions is provided by the bootstrap®. The idea

* The English expression “pulling yourself up by your own bootstraps” means using your
own resources to get yourself out of a difficult situation.



Multinomial sampling

of the bootstrap is to regard the data as the population, since the data are
the best representation one has of the population. New data sets are created
by resampling from the data in the same way as the data themselves were
sampled. In the author data, the sampling has been performed for each text,
not for each letter, so this is the way we should resample. For example, for the
first book, “Three Daughters”, 7144 letters were sampled, so we imagine —
notionally, at least — these 7144 letters strung out in a long vector, in which
there are 550 as, 116 bs, 147 cs, ... etc. Then we take a random sample of
7144 letters, with replacement, from this vector — the frequencies will not be
exactly the same as those in the original table, but will reflect the variability
that there is in those frequencies. This exercise is repeated for all the other
rows of Exhibit 10.6, until we have a replicated table with the same row totals.
This whole procedure can be repeated several times, usually between 100 and
1000 times, to establish many bootstrap replicates of the original data matrix.

An equivalent way to think about (and to execute more efficiently) the re-
sampling is to make use of multinomial sampling. Each row profile defines a
set of probabilities that can be regarded as the probability of obtaining an a,
b, ¢, etc. in the respective text. Then it is a matter of sampling from a pop-
ulation with these probabilities, which is a computational algorithm, already
implemented in R (see the Computational Appendix, page 281). So it is not
necessary to create the vector of 7144 letters for example; we need to use only
the 26 probabilities of the letters in a multinomial sampling scheme. This is
sometimes referred to as Monte Carlo simulation.

To illustrate the procedure on the author data, we first computed 100 repli-
cates of the table by the sampling procedure described above. There are two
ways to proceed now. The more difficult way is to repeat the CA on each repli-
cate and then somehow compare the results to those obtained originally. The
easier way is demonstrated here, called the partial bootstrap. Each replicated
table can be regarded as a set of row profiles or set of column profiles, so the
100 replicated profiles are simply projected onto the CA map of the original
data as supplementary points. Exhibit 29.1 shows the partial bootstrap of the
26 letters — each letter in larger font shows its original position in principal
coordinates, with the 100 replicates in a tiny font. Usually we would not show
all the replicates, but just show the conver hull of each set of points — this
is the outer set of points connected by dotted lines in Exhibit 29.1, as if an
elastic band has been placed around them.

Since the convex hull is sensitive to outlying replicates (for example, see the
point for z on the right of Exhibit 29.1), it is usually peeled; that is, the
convex hull of points is removed. The convex hull of the remaining points can
be peeled again, and this process repeated until 5% of the outermost points
in each subcloud have been removed. The convex hull of the remaining points
is thus an estimate of a 95% confidence region for each letter. To make the
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Exhibit 29.1:
(Partial) bootstrap
of 26 letters, after
100 replications of
the data matrix.
The more frequent
the letter is in the
texts, the more
concentrated (less
variable) are the
replicates. Convex
hulls are shown
around each set of
100 replicated
profiles.

Exhibit 29.2:
Peeled convex hulls
of points based on
1000 replicates (10
times more than in
Exhibit 29.1),
showing an
approximate 95%
confidence region for
their distribution.
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estimation of these convex regions smoother, we generated 1000 replicates of
each letter and then peeled off as close to 50 of them as possible (Exhibit 29.2),
showing the convex hulls of the remaining subclouds. If two convex hulls do
not overlap then this gives some assurance that the letters are significantly
different in the texts. The actual level of significance is difficult to calculate



The delta method

because of the lack of formality in the procedure and the issue of multiple
comparisons mentioned in Chapter 15. Fortunately, however, the procedure is
conservative because of the projections onto the original map. If two convex
hulls overlap in the map (for example, x and g), then it may still be possible
that they do not overlap in the full space, but we would not be able to conclude
this fact from the map. If they do not overlap in the projection (for example,
k and y), then we know they do not overlap in the full space.

An alternative method for visualizing the confidence regions for each point in
a CA map is to use confidence ellipses. These can be based on the replicates
in the partial bootstrap above, or can be calculated making some theoretical
assumptions. For example, the delta method uses the partial derivatives of the
eigenvectors with respect to the multinomial proportions to calculate approxi-
mate variances and covariances of the coordinates. Then, assuming a bivariate
normal distribution in the plane, confidence ellipses can be calculated — these
enclose the true coordinates with 95% confidence, just like a confidence inter-
val for single variables. This approach relies on the assumption of independent
random sampling, which is not strictly satisfied in the author data because
the occurrence of a particular letter is not independent of the occurrence of
another (there is a similar problem in ecological sampling, where the same
type of species seems to be found in groups in the samples). Nevertheless, the
confidence ellipses for the letters in the author data are shown in Exhibit 29.3
and they bear a strong resemblance to the convex hulls in Exhibit 29.2, at least
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Exhibit 29.3:
Confidence ellipses
based on the delta
method and the
normal
approximation to
multinomial
sampling.
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as far as overlapping is concerned. The distribution of bootstrap replicates in
Exhibit 29.1 can also be summarized by 95% confidence ellipses, rather than
peeled convex hulls.

The x?2 test has been mentioned before as a test of independence on a contin-
gency table. For example, the 5 x 3 table of Exhibit 4.1, which cross-tabulates
312 people on their level of readership and age group, has an inertia of 0.08326
and thus a x2 of 312 x 0.08326 = 25.98. The p-value for the x? test is com-
puted as 0.0011, a highly significant result. It is also possible to test the first
principal inertia of a contingency table using a statistical approximation to
the true distribution called an asymptotic distribution. The critical points for
this test are exactly those that were used in Chapter 15 to test for significant
clustering. The first principal inertia has value 0.07037, and its value as a 2
component is 312 x 0.07037 = 21.96. To test this value, refer to the table in
the Theoretical Appendix, page 254, where the critical point at the 0.05 level
is shown as 12.68 for a 5 x 3 table. Since 21.96 is much higher than this value
we can conclude that the first dimension of the CA is significant and has not
arisen by chance. The second principal inertia is more difficult to test, espe-
cially if we assume that the first principal inertia is significant, so we again
resort to computer-based methods.

Given a hypothesis on the population, and knowing the way the data were
sampled, we can set up a Monte Carlo simulation to calculate the null dis-
tribution of the test statistic. For example, suppose we want to test both
principal inertias of the readership data for significance. The null hypothesis
is that there is no association between the rows and columns. The sampling
here was not done as in the author data, where the text was sampled within
each book — the analogy here would be that we sampled within each edu-
cation group. In reality, 312 people were sampled and then their education
groups and readership categories were ascertained, so that the distribution of
the education groups is also random, not fixed. Therefore we need to gener-
ate repeated samples of 312 people from the multinomial distribution which
corresponds to the whole matrix, not row by row or column by column. The
expected probabilities in the 15 cells of the table are equal to the products
r;c; of the masses. These define a vector of 15 probabilities under the null hy-
pothesis, which will be used to generate simulated multinomial samples of size
312. Two samples are given in Exhibit 29.4 alongside the original contingency
table — in total 9999 tables were generated. For each simulated table the CA
was performed and the two principal inertias calculated; hence along with the
original observed value there are 10000 sets of values in total. Exhibit 29.5
shows the scatterplot of all of these, indicating the pair of values correspond-
ing to the observed contingency table. It turns out there are only 18 values
out of 9999 that are larger than the observed first principal inertia; hence,
including the actual value, its p-value is estimated as 0.0019. For the second
principal inertia there are 580 simulated values larger than the observed one,
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Exhibit 29.4:

EDUCATION  Original data 1st Sitmulation  2nd Simulation . . . The original
Exhibit 4.1 and two

E1l 5 7 2 2 9 5 4 5 T of the 9999

E2 18 46 20 15 40 38 23 33 37 ... simulated tables

E3 19 29 39 13 36 27 17 34 25 ... under the null

E4 12 40 49 11 43 40 14 43 37 ... hypothesis of no

E5 3 7 16 8 12 13 5 12 16 ... row—column
association.

Exhibit 29.5:
Scatterplot of
o principal inertias
0,03 e o from original CA
and 9999
simulations of the
9 & 5 X 3 contingency
table under the null
a hypothesis of no
row—column
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actual principal
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giving a p-value of 0.0581. At the 5% level the first is significant but not the
second. At the same time we calculated the total inertia in each simulation —
there are 17 simulated values larger than the observed total inertia of 0.08326.
Therefore the p-value is 0.0018, which is our Monte Carlo estimate for the x?2
test, compared to the p-value of 0.0011 based on the x? test.

Permutation tests (or randomization tests, discussed more fully in the next A permutation test
chapter) are slightly different from the bootstrap and Monte Carlo proce-
dures described above. For example, in the “blow-up” of the book points in
Exhibit 10.7 we observed that the pairs of books by the same author lay
in the same vicinity. It does seem unlikely that this could have occurred by
chance, but what is the probability, or p-value, associated with this result?
A permutation test can answer this question. First, calculate a measure of
proximity between the pairs of books — an obvious measure is the sum of the
six distances between pairs, which is equal to 0.4711. Then generate all pos-
sible ways of assigning the pairs of authors to the 12 texts; there are exactly
11 x 9 x 7 x5 x 3 = 10395 unique ways to rearrange them into six groups
of 2. For each of these re-assignments of the labels to the points in the map,
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calculate the sum-of-distance measure. All these values define the permuta-
tion distribution of the test statistic, which has mean 0.8400 and standard
deviation 0.1246. It turns out that there is no other assignment of the labels
that gives a sum-of-distances smaller than the value observed in the CA map.
Hence the p-value to support the assertion that the pairs of texts are close is
p =1/10395, i.e. less than 0.0001, which is a highly significant result. Similar
permutation tests were conducted for the subset CAs of the consonants and
vowels separately (Exhibits 21.1 and 21.2), yielding p = 0.0046 and p = 0.0065
respectively. Thus the consonants and the vowels explain almost equally the
differences between authors, even though the vowels have less inertia in total.
Permutation tests are routinely used in many situations where comparisons
are made between groups or where the significance of relationships is being
tested. This will be the subject of the next and final chapter.

1. Stability concerns the data at hand and how much each row or column of
data has influenced the display. The level of internal stability can be judged
(a) by studying the row and column contributions and (b) by embarking
on various re-analyses of the data that involve omitting single points or
groups of points and seeing how the map is affected.

2. When the data are regarded as a sample of a wider population, the sampling
variability can be investigated through a bootstrap resampling procedure
to create replicates of the data table. The resampling should respect the
row or column margins if these were fixed by the original sampling design.

3. In the partial bootstrap the row and/or column profiles of the replicated
matrices are projected onto the CA solution as supplementary points. The
replicate points can be summarized by drawing convex hulls or confidence
ellipses.

4. Various theoretical approaches also exist, which rely on distributional as-
sumptions in the population, for example the delta method and asymptotic
theory based on normal approximations of the multinomial distribution.

5. Monte Carlo methods and permutation tests can be used to test specific
hypotheses, relying on generating data under the null hypothesis to sim-
ulate (or calculate exactly) the null distribution of chosen test statistics,
from which p-values can be deduced.
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When studying single variables in univariate statistics or pairs of variables in
bivariate statistics, the testing of group differences and the study of pairwise
variable relationships are fairly straightforward and well known, even when the
variables might not be normally distributed. In the case of multivariate data
when sample differences are measured by distance functions such as the -
distance, possibly involving sample weighting, the theory becomes extremely
complex. The concept of permutation testing has been known for a long time,
but it is only with the advent of high-speed computing that they have come
into their own as viable distribution-free methods for testing hypotheses using
multivariate data. In this chapter we will look at several types of permutation
tests that make it possible to draw statistical conclusions (inferences) in this
more complex setting.
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Let us suppose that an experimenter observed the data in Exhibit 30.1, two
sets of values for a test (T) and control (C) group respectively. The question
is whether there is a difference in the means of the populations from which
these two samples come. The protocol of the experiment might have been to
randomize the 25 values between the test and control groups, or to draw two
random samples from each population. The difference in the means is 1.81
and the standard two-group t-test that might be applied results in a p-value
of 0.063 — thus, according to the convention of the 0.05 significance level
the difference would be deemed non-significant. These data suffer from two
problems that make the t-test questionable. Firstly, the samples are too small
to assume normality in their respective means, so normality of the parent
distribution needs to be assumed, but all tests for normality reject this as-
sumption. And secondly, there is a very conspicuous outlier in the test group,
as can be seen in the dotplots of Exhibit 30.1. The lack of normality as well

A simple
univariate example
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Exhibit 30.1:
Test and control
data, plotted as

“jittered” dotplots,
with overlain
boxplots. The
outlier for the test
group is clearly
visible on the right.

Permutation
test for difference
in means

Exhibit 30.2:
Null permutation
distribution of the
difference between
treatment and
control means,
showing the actual
difference obtained.

Permutation Tests
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as the outlier can be partially rectified by log-transforming the data, in which
case all tests accept the assumption of normal distribution and the p-value
for the difference is 0.036, a significant result.

Permutation testing is a way to avoid the assumptions, keep the data on their
original scale and not be too concerned about the outlier. Since the null hy-
pothesis being tested is that the means are the same, i.e. the observations
come from the same distribution, whatever that distribution is, the null dis-
tribution of the difference in means can be approximated by simulating many
versions of the same data, with the 14 T labels and 11 C labels randomly as-
signed to the 25 observed values. Technically, this is done by fixing the vector
of 25 values, then randomly permuting (i.e. shuffling up) the order of the 25
labels, and finally computing the difference in means between the simulated
“T” and “C” groups. This operation is repeated very many times to obtain
the so-called permutation distribution of the test statistic, i.e. difference in
means in this case. There are almost four and a half million ways that we can
split the 25 observations into two sets of 14 and 11. But we will only do this
for a large random sample, say 9999 permutations of the data, to which we
add the original assignment of the observations, with associated difference in
mean value of 1.81, totalling 10000 permutations in all. Exhibit 30.2 shows a
histogram of this permutation distribution, and points out where the observed
mean of 1.81 lies. Notice how non-normal this distribution looks, far different
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Permutation test in multidimensional space

from the assumption of normality that the small sample t-test relies on. In
order to estimate the p-value we need to count how many of the simulated
values are equal or larger in absolute value to 1.81, i.e. we need to count how
many are 1.81 or more or —1.81 or less, since the test is two-sided. It turns
out there are 336 out of the 10000 values of the simulated null distribution
that are in the tails, giving an estimate of p = 336/10000 = 0.034, very close
to the p-value of the t-test on the log-transformed data.

The technology of permutation testing transfers quite smoothly to multivari-
ate data, for example the time budget compositional data in Exhibit 22.3,
which is visualized using log-ratio analysis in Exhibit 22.4. There are 12 rows
of this matrix, composed of combinations of region (USA/Western/Eastern),
marital status (married/single) and gender (male/female). Permutation tests
can give an indication whether there are signficant differences between regions,
between marital status groups and between sexes. For example, the six rows
for each sex can be aggregated into two vectors of mean time and then a suit-
able test statistic would be the log-ratio distance (22.3) between them. Then
the 12 labels for gender are randomly permuted, the mean vectors recomputed
and the log-ratio distance computed, and this is repeated a large number of
times. But in this specific case, there are only 462 unique re-allocations of
the male and female labels, so — as for the permutation test at the end of
Chapter 29 — it is feasible to run through all of these to get an exact p-value.
It turns out that the original log-ratio distance on the unpermuted data, equal
to 0.578, is larger than all those based on the permutations, so the p-value
is p = 1/462 = 0.002, and significant. The permutation distribution is shown
in Exhibit 30.3. The same permutation test can be conducted to test the dif-
ference between the mean vectors for married and single groups. Since the
permutations for the six married and six single groups are identical for the
six male and six female groups, the permutation distribution is identical to
Exhibit 30.3. But the observed statistic is 0.277 for this comparison, and not
significant (p = 0.15). Finally, to compare the three regions, where the total

Frequency
20 40 60 80 100 120

#

235

Permutation test
in
multidimensional
space

Exhibit 30.3:
Exact null
permutation
distribution of the
log-ratio distance
between male and
female average time
budget vectors, for
the data of Exhibit
22.3. The actual
observed value for
the unpermuted
data is indicated.
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correlation

Exhibit 30.4:
Null permutation
distribution of the
Spearman rank
correlation
coefficient for a
sample of 25 pairs of
observations. There
are 211 simulated
values greater than
or equal to 0.411.

Permutation Tests

number of unique permutations is several thousands, we resort to considering
999 random permutations, and also find the regional differences not signifi-
cant (p = 0.62). Because there are three log-ratio distances between pairs of
the three regions, the test statistic is the average of these pairwise distances,
equal to 0.198.

The way association is measured between two variables depends on the type
of data. The most common way for two quantitative variables is the Pearson
correlation coefficient, but in the presence of outliers the Spearman rank cor-
relation is often used — each set of observations is converted to ranks and
then the Pearson correlation is computed. Suppose there is a second set of
25 observations (contained in vector y, say) that we want to correlate with
those of Exhibit 30.1 (contained in vector x), and because of the outlier in
x the Spearman correlation is preferred, calculated to be 0.411. To evaluate
the significance of this correlation, the null hypothesis is that there is zero
correlation between the ranks. Under this hypothesis any value in y can be
paired with any value in x, so we can fix x, for example, and then randomly
permute the values in y and then compute the Spearman correlation. In this
case it would be identical to take two vectors of numbers 1 to 25, and permute
one of the vectors randomly and compute the Pearson correlation. Doing this
a large number of times, say 9999, yields the estimate of the null distribution
(Exhibit 30.4) and, if we are interested in testing whether the correlation is
significantly positive, the number of simulated correlations greater than or
equal to the observed one of 0.411 is counted (there are 211 of them) and
expressed as a fraction of 10000, so p = 0.021. The p-value is always an esti-
mate of the true p-value, and its accuracy increases with increasing number
of permutations. The margin of error for the above estimate is about 0.003,
so the confidence interval would be [0.018;0.024]. Generating more permuta-
tions gives more accuracy: for example, generating 99999 permutations leads
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Permutation tests for bivariate categorical data

to an estimate of p = 0.02164, i.e. p = 0.022 to three decimals, a margin of
error of 0.001, thus a confidence interval of [0.021;0.023].

Notice that the permutation test for correlation, whether it is the Pearson
or Spearman form, maintains the same marginal distributions for the two
variables throughout the permutations. So we have to proceed a bit more
carefully for bivariate categorical data, since there may or may not be some
constraint on the margins due to the sampling protocol. We refer back to
the cross-tabulation in Exhibit 4.1 between the two variables education (five
categories, EI to E5) and readership group (three categories, C1 to C3). The
original data for the sample of 312 people consist of two vectors of group
assignments, with 312 pairs of observations such as (E2, CI), (E5, C3), etc.,
and the sampling was such that neither of the margins was fixed. If the cate-
gories of the variables are permuted then their marginal distributions remain
the same, which is then not a faithful simulation of the null distribution. In
this case one should sample with replacement, i.e. bootstrap, both sets of
observations, which will be equivalent to what was done in Exhibit 29.4, but
less efficient computationally than using multinomial sampling. In Chapter 29
the inertia measure of association for this table was reported as 0.08326, and
the corresponding chi-square test gave a p-value of 0.0011. Using bootstrap
instead of permutation (i.e. sampling with replacement instead of sampling
without replacement), and generating 9999 bootstrap samples of each variable,
the estimated p-value is p = 12/10000 = 0.0012.

Various ways of analysing several categorical variables have been described in
previous chapters. The way permutation tests are implemented depends on
the way the data have been set up to satisfy the study objective. For example,
the stacked tables of Exhibits 17.1 and 17.3 have several demographic vari-
ables in blocks of rows and one or more substantive “response” variables in
blocks of columns. The null hypothesis is that there is no association between
the demographics and the substantive responses, so under this hypothesis the
link between the two sets of variables can be broken. The set of demographic
characteristics and the set of responses for each respondent should be kept
intact, and the permutation (or bootstrapping) should be conducted on the
complete demographic sets and response sets — for example, in the data set
underlying Exhibit 17.3, 33590 respondents for the rows of the original data
table, with five columns for demographic variables and four columns for the
variables about working women. The demographic data could be fixed, which
obviously preserves the margins and interaction structure of these variables,
and the rows of four responses permuted. While breaking the connection be-
tween the two sets of variables, this would also preserve the margins and in-
teraction structure of the response variables. This might have some sense for
the demographics, assuming there was some sampling protocol that ensured
representativity of the population, but seems less defensible for the substan-
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Exhibit 30.5:
Permutation
distributions for
explained inertias in
CCA, first for three
explanatory
variables barium,
iron and pelite, and
then for barium
only.

Permutation Tests

tive responses. Hence, at least for the response variables, bootstrapping seems
more appropriate.

In Chapters 27 and 28 we looked at the relationship between two sets of data.
In canonical correspondence analysis (CCA, Chapter 27) one set is regarded
as multivariate responses that are suitable for CA, while the second set con-
tains explanatory variables of any type, continuous or categorical. In Exhibit
27.5 the total inertia (0.7826) in the response data was decomposed into a part
(0.2798) that is directly correlated with the three chosen explanatory variables
— barium, iron and pelite (all log-transformed) — and a part (0.5028) that is
uncorrelated. The value 0.2798 is 35.8% of the total inertia, and the question
is whether this is a significant part. We can proceed as before by generating
a null permutation distribution under the null hypothesis that there is no
relationship between the two sets of data. This is achieved by randomly per-
muting the rows of the explanatory variable matrix, say, changing the order
randomly of these rows, while keeping the set of three values for each sam-
ple together. Even though this sample is small (13 stations), there are over
6 billion possible permutations, hence we again take a large random sample
of 9999 permutations, each of which is subjected to a CCA, and each part of
inertia accounted for is retained to establish the null distribution. In this case
the p-value is p = 0.073 (Exhibit 30.5, left-hand side), which would not be
judged significant according to convention, but this does not imply that every
subset of the explanatory variables is not significant. Going through the same
exercise, one variable at a time, barium is very significant (explained inertia
= 0.1884, p = 0.0007, Exhibit 30.5, right-hand side), but not iron (0.1053,
p = 0.14) nor pelite (0.0745, p = 0.36). A stepwise process of variable selec-
tion can proceed as follows. Barium is first introduced into the model and
then the other two variables, one at a time, are added, again with permuta-
tion. The p-value that results is focused on the additional inertia explained,
i.e. how much of the residual inertia is explained after barium is introduced.
In this case adding another variable turns out to be not significant (for iron:
p = 0.50, for pelite: p = 0.64), so from a statistical inference standpoint, only
barium is worth introducing into the CCA. The CCA could then have barium
as a single constraining variable, which would then be identified as the first
dimension, while iron and pelite are added as supplementary variables.

For all three variables For barium only
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Permutation test for matched matrices

The four parts of inertia in the doubly-matched example, visualized in Exhibit
23.5, can be neatly tested using CCA. Three categorical explanatory variables
labelled C' (country, 19 categories), T (time period, 2 categories) and G (gen-
der, 2 categories) can be defined, each with 19 x 2 x 2 = 76 combinations, and
lined up according to the order of the four matrices A, B, C and D stacked on
top of one another. Thus C' lists the 19 country labels four times, T lists the
first year 38 times then the second year 38 times, and G lists male 19 times,
female 19 times, male 19 times and female 19 times. The stepwise order of the
effects entering the CCA makes no diference to the permutation tests since
all the effects of this balanced design are orthogonal. The results are shown in
Exhibit 30.6. The first row is the between-country effect, which is equivalent

Effect DF Inertia % p-value
C 18 0.13467 59.1 < 0.0001
T 1 0.05549 24.3 < 0.0001
C:T 18  0.02885 12.7 < 0.0001
G 1 0.00337 1.5 < 0.0001
C:G 18 0.00421 1.8 < 0.0001
T:G 1 0.00034 0.1 0.004
Residual 18 0.00103 0.5 —
Total 75 0.22795 100.0

to the average effect in Exhibit 23.5(a), acounting for 59.1% of the inertia.
The next two rows give exactly what we called before the “time effect”, which
here is the combination of time and country—time interaction (remember that
every matched table has the countries as the set of rows), accounting for 37.0%
of the inertia (Exhibit 23.5(b)). The next two rows give exactly what we called
the “gender effect”, which again is the combination of country and country—
gender interaction, accounting for 3.3% (Exhibit 23.5(c)). Finally the last two
rows sum up to what was called the “timexgender effect”, again across coun-
tries, so this is what is coded as time—gender interaction in Exhibit 30.6 plus
the residual, with a tiny percentage of 0.6% (Exhibit 23.5(d)). The p-value
of 0.004 corresponds to this last effect, but the “Residual” from the CCA
cannot itself be tested alone. All effects are highly significant according to the
permutation tests.

The different variations of co-inertia analysis are multivariate versions of the
bivariate correlation. For a permutation test, one of the matrices is fixed, and
the other one has its rows permuted, each time the co-inertia analysis is re-
peated and the total co-inertia is saved to generate the null distribution. For
example, in the centroid discriminant analysis of the marine biological pres-
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Exhibit 30.6:
The decomposition
of total inertia for
the example in
Exhibit 23.5 and
associated p-values
from permutation
tests for all effects.
The colon indicates
an interaction. The
residual is equivalent
to the three-way
interaction.
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ence/absence data of Chapter 28 (see Exhibits 28.2 and 28.3), where stations
are compared across the four years, the rows of the indicator matrix for the
years are randomly permuted, thereby randomly assigning the year labels to
the samples. As could be expected from Exhibit 28.3, the year separation is
highly significant, with a p-value from the permutation test of p < 0.0001.
Similarly, the co-inertia between benthos and fish in the co-correspondence
analysis of Exhibit 28.4 is also highly significant, with p < 0.0001.

1. Permutation testing is a distribution-free procedure for performing hypoth-
esis tests on data, especially useful in complex situations where generation
of the theoretical null distribution of a statistic is impossible.

2. In general, permutation methods are for computing p-values for statisti-
cal tests, whereas bootstrapping is for computing confidence intervals (for
single statistics) or confidence regions (for multivariate statistics).

3. Usually, there are two vectors or matrices of data, and one is kept fixed
while the observations in the other one are randomly permuted, assuming
the null hypothesis of no relationship. This is performed a large number
of times (9999 is a reasonable amount to achieve acceptable accuracy),
each time computing the statistic in question. These values define the null
distribution and the position of the originally observed statistic in this
distribution leads to an estimate of the p-value.

4. When the second set of data is a single categorical variable, the permutation
test performs an analysis of variance if the first set consists of univariate
observations, or a centroid discriminant analysis if it consists of several
variables.

5. To test explanatory variables in CCA, a stepwise procedure can be followed
by first introducing the variable that is most significant, then fixing it in
the analysis and testing each of the remaining ones in turn by permutation
of their values. If a second variable explains an additional part of the in-
ertia that is significant, it is also fixed in the analysis and each one of the
remaining variables is tested as a third variable. The process stops when
no significant additional inertia can be explained.

6. Co-inertia methods investigating relationships between two sets of vari-
ables can be tested, like a correlation coefficient, except that whole rows
of observations have to be permuted in one of the matrices.



Theory of Correspondence Analysis

Correspondence analysis (CA) is based on fairly straightforward, classical re-
sults in matrix theory. The central result is the singular value decomposition
(SVD), which is the basis of many multivariate methods such as principal
component analysis, canonical correlation analysis, all forms of linear biplots,
discriminant analysis and metric multidimensional scaling. In this appendix
the theory of CA is summarized, as well as the theory of related methods
discussed in the book. Matrix—vector notation is preferred because it is more
compact, as well as being closer to the implementation of the method in the
R computing language.
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Let N denote a I x J data matrix, with positive row and column sums (almost
always N consists of nonnegative numbers, but there are some exceptions such

Correspondence
analysis notation
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as the one described at the end of Chapter 26). For notational simplicity the
matrix is first converted to the correspondence matriz P by dividing N by
its grand total n =), Zj ni; = 1'N1 (the notation 1 is used for a vector of
ones of length that is appropriate to its context; hence the first 1 is I x 1 and
the second is J x 1 to match the row and column lengths of N).

Correspondence matriz:

1
P=-N (A1)
n
The following notation is used (see also the end of Chapter 4):

Row and column masses:

J I
ri = Zj:l Pij ¢ =D i1Pij

(A.2)
ie. r=P1 c=P1
Diagonal matrices of row and column masses:
D, = diag(r) and D, = diag(c) (A.3)

Note that all subsequent definitions and results are given in terms of these
relative quantities P = [p;;], r = [r;] and ¢ = [¢;], whose elements add up
to 1 in each case. Multiply these by n to recover the elements of the original
matrix N: np;; = ng;, nr; = i-th row sum of N, nc; = j-th column sum of N.

The computational algorithm to obtain coordinates of the row and column
profiles with respect to principal axes, using the SVD, is as follows:

CA Step 1 — Calculate the matriz S of standarized residuals:
S=D,*(P - rc"\D,” (A.4)
CA Step 2 — Calculate the SVD of S:
S =UD,V' where UU=V'V =1 (A.5)

where D,, is the diagonal matrix of (positive) singular values in
descending order: ay > g > - - -

CA Step 8 — Standard coordinates ® of rows:

$=D,°U (A.6)
CA Step 4 — Standard coordinates T' of columns:

r=p.iv (A7)
CA Step 5 — Principal coordinates F of rows:

F =D, ?UD, = D, (A.8)
CA Step 6 — Principal coordinates G of columns:

G =D.*VD, =ID, (A.9)



A note on the singular value decomposition (SVD)

CA Step 7 — Principal inertias i :
e =0ai, k=1,2,... K where K = min{l — 1,.J — 1} (A.10)

The rows of the coordinate matrices in (A.6)—(A.9) refer to the rows or
columns, as the case may be, of the original table, while the columns of
these matrices refer to the principal axes, or dimensions, of which there are
min{l —1, J —1}, i.e. one less than the number of rows or columns, whichever
is smaller. Notice how the principal and standard coordinates are scaled:

FD,F' = GD.G' =D, (A.11)
®D,®" = I'D.I''=1 (A.12)

In (A.11) the weighted sum of squares of the principal coordinates on the k-th
dimension (i.e. their inertia in the direction of this dimension) is equal to the
principal inertia (or eigenvalue) A\, = a%, the square of the k-th singular value.
The standard coordinates in (A.12), however, have weighted sum of squares
equal to 1. All coordinate matrices have orthogonal columns, where the masses
are always used in the calculation of the (weighted) scalar products.

The contribution coordinates are equal to U for rows and V for columns,
since they are the standard coordinates rescaled1 by the square roots of the
respective masses (see (A.6) and (A.7)), e.g. D2® = DZD. 2V = V. The
contribution coordinates have sums of squares equal to 1 on each dimension:
U'U = V'V =1, each squared term being the contribution of the row or
column to the inertia of the respective dimension. If the columns serve as
variables describing the rows, which is usually the case, then it is the column
contribution coordinates that are relevant for the plotting.

Notice also that (A.4) can be written in terms of the so-called contingency
ratios D IPD; ! = [p;;/(ric)] as

D} (D-'PD;! — 11D} (A.13)

which is a convenient alternative form that is useful for showing relationships
with other methods.

The SVD is the fundamental mathematical result for CA, as it is for other
dimension-reduction techniques such as principal component analysis, canon-
ical correlation analysis, linear discriminant analysis, and other methods de-
scribed in this book such as log-ratio analysis (Chapter 22) and co-inertia
analysis (Chapter 28). This matrix decomposition expresses any rectangular
matrix as a product of three matrices of simple structure, as in (A.5) above:
S = UD,V". The columns of the matrices U and V are the left and right
singular vectors respectively, and the positive values ay, in descending order
down the diagonal of D, are the singular values. The SVD is related to the
well-known eigenvalue—eigenvector decomposition (or eigendecomposition) of
a square symmetric matrix as follows: SS" and S'S are square symmetric
matrices that have eigendecompositions SS* = UD2U" and S'S = VD2V

A note on the
singular value
decomposition
(SVD)
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Hence the singular vectors are also eigenvectors of these respective matrices
and the squared singular values are their eigenvalues, conventionally denoted
by A: A, = aj. The practical utility of the SVD is that if another I x J matrix
S(m) is constructed using the first m columns of U and V, U, and V),
and the first m singular values in D) Sin) = U(m)Da(m)V(Tm) , then
S(m) is the least-squares rank m approximation of S (this result is known
as the Eckart-Young theorem). Since the objective of finding low-dimensional
best-fitting subspaces coincides with the objective of finding low-rank ma-
trix approximations by least-squares, the SVD solves this problem perfectly
and in a very compact way. The only adaptation needed is to incorporate the
weighting of the rows and columns by the masses into the SVD so that the ap-
proximations are by weighted least squares. If a generalized form of the SVD
is defined, where the singular vectors are normalized with weighting by the
masses, then the CA solution can be obtained in one step. For example, the
generalized SVD of the contingency ratios p;;/(r;c;), centred at the constant
value 1, leads to the standard row and column coordinates directly:

D 'PD;!' - 11" = ®D,I'" where D, =T'D.I' =1 (A.14)

From steps 1 to 4 of the basic algorithm, the data in P can be written as
follows (see also (13.4) on page 101 and (14.9) on page 109):

K
pij = ric; (1+ Y vV Medinvin) (A.15)
k=1

(also called the reconstitution formula). In matrix notation,
P =D, (11 + #D:I")D, (A.16)

Because of the simple relations (A.8) and (A.9) between the principal and
standard coordinates, this bilinear model can be written in several alternative
ways — see also (14.10) and (14.11) on pages 109-110.

The left and right singular vectors are related linearly, for example by multi-
plying the SVD on the right by V: SV = UD,,. Expressing such relations in
terms of the principal and standard coordinates gives the following variations
of the same theme, called transition equations (see Equations (14.1), (14.2),
(14.5) and (14.6) on pages 108-109 for the equivalent scalar versions):

Principal as a function of standard (barycentric relationships):
F=D/'PT G=D.'P'® (A.17)
Principal as a function of principal:
F=D;'PGD,” G=DI'P'FD,’ (A.18)
The equations (A.17) are those that were mentioned as early as Chapter 3,

expressing the profile points as weighted averages of the vertex points, where
the weights are the profile elements. These are the equations that govern the



Supplementary points

asymmetric maps. The equations (A.18) show that the two sets of principal
coordinates, which govern the symmetric map, are also related by a barycen-
tric (weighted average) relationship, but with scale factors (the inverse square
roots of the principal inertias) that are different on each dimension.

The transition equations are used to situate supplementary points on the map.
For example, given a supplementary column point with values in h (I x1), it is
first divided by its total 1h to obtain the column profile h = (1/1"h)h. Then
this profile is transposed as a row vector in the second equation of (A.17) to
calculate the coordinates g of the supplementary column:

g=h'® (A.19)

The total inertia of the data matrix is the sum of squares of the matrix S in

(A.4), or equivalently in (A.13):
I

J )2
inertia = trace(SS") Z Z Py = rics)” (A.20)
et TiC;
=1 5=1

The inertia is also the sum of squares of the singular values, i.e. the sum of

the eigenvalues: K K
inertia = Z o = Z Ak (A.21)
k=1 k=1

The y2-distances between row profiles and between column profiles are:

J 2
2 - . .y Dij  Dirj
-distance between rows 7 and ¢’ : E — - —= Ci A.22
X =~ ( r; Ty ) / J ( )

I 2
x2-distance between columns j and j' : Z <p” - M) /ri (A.23)
¢j cjr
i=1 7 J
To write the full set of y2-distances in the form of a square symmetric matrix

requires a bit more work. First, calculate the matrix Q of “x2 scalar products”
between row profiles, for example, as:

x? scalar products between rows : Q =D 'PD_'P'D ! (A.24)

Then define the vector a as the elements on the diagonal of this matrix (i.e. the
scalar products of the row profiles with themselves):

q = diag(Q) (A.25)
Then the I x I matrix of squared y2-distances is:
squared y?-distance matrix between rows : ql' + 1q" — 2Q (A.26)

To calculate the .J x .J matrix of squared y2-distances between column profiles,
interchange rows with columns in (A.24), defining Q as D_!P'D.'PD_! and
then following with (A.25) and (A.26).

The y2-distance between a row profile a; = (1/r;)[ pi1 piz --+ pis]" and the

245

Supplementary
points

Total inertia and
x2-distances



246

Contributions
of points to
principal inertias

Contributions

of principal axes to
point inertias
(squared
correlations)

Ward
clustering of row
or column profiles

Appendix A: Theory of Correspondence Analysis

average row profile ¢ = [¢; ¢ -+ ¢;]" (written as ||a; — ¢||. on page 31)
is >, (wij/ri — ¢j)?/cj, which can be expressed in terms of the contingency
ratios as > ¢j[pij/(rics) — 1]2. Incorporating the mass 7; of each row and
summing over the rows, the total inertia in (A.20) is obtained: ), 7;||a;—c||. =

> 2oy ricilpig/ (rics) — 112

The contributions of the row and columns points to the inertia on the k-th
dimension are the inertia components:

rif? c‘g2k

. iJ; . 39

for row i: 2)\7”“ =12 for column j: J
k

= Cj’Y?k (A.27)

recalling the relationship between principal and standard coordinates given
in (A.8) and (A.9): fir = VAkdir, 9jk = VAkvjk. The square roots of the
values in (A.27) are exactly the contribution coordinates proposed for the CA
contribution biplot of Chapter 13, i.e. the squared lengths of these coordinates
are the contributions to the principal axes.

The contributions of the dimensions to the inertia of the i-th row and j-th
column points (i.e. the squared cosines or squared correlations) are:
2 2
; . 9jk
ik for column j: J
2 : 2
>k fik Xk ik

As shown in Chapter 11, the denominators in (A.28) are the squared x>2-
distances between the corresponding profile point and the average profile.

(A.28)

for row i:

The clustering of Chapter 15 is described here in terms of the rows; exactly the
same applies to the clustering of the columns. The rows are clustered at each
step of the algorithm to minimise the decrease in the x? statistic (equivalently,
the decrease in the inertia since inertia = x?/n, where n is the total of the
table). This clustering criterion is equivalent to Ward clustering, where each
cluster is weighted by the total mass of its members. The measure of difference
between rows can be shown to be the weighted form of the squared chi-squared
distance between profiles. Suppose a; and r;, i = 1,...,1, denote the I row
profiles of the data matrix, and their masses respectively. Then identifying
the pair that gives the least decrease in inertia is equivalent to looking for the
pair of rows (4,4') that minimizes the following measure:

Ty
Ty + Ty

||ai — ai/||3 (A29)

The two rows are then merged by summing their frequencies, and the profile
and mass are recalculated. The same measure of difference as (A.29) is cal-
culated at each stage of the clustering for the row profiles at that stage (see
(15.2) on page 120 for the equivalent formula based on profiles of clusters),
and the two profiles with the least difference are merged. Hence (A.29) is the
level of clustering in terms of the inertia decrease, or if multiplied by n it is
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the decrease in x2. In the case of a contingency table the level of clustering
can be tested for significance using the tables at the end of this Appendix.

Suppose tables Ny, ¢ =1,...,Q, s=1,...,5 are concatenated row- and/or
columnwise to make a block matrix IN. If the marginal frequencies are the
same in each row and in each column (as is the case when the same individuals
are cross-tabulated separately in several tables), then the inertia of N is the
average of the separate inertias of the tables Ny,:

inertia(IN Z Z inertia(INys) (A.30)

qlsl

Suppose the original matrix of categorical data is N x @), i.e. N cases and @Q
variables. Classical multiple CA (MCA) has two forms. The first form converts
the cases-by-variables data into an indicator matrix Z where the categorical
data have been recoded as dummy variables. If the ¢g-th variable has J, cat-
egories, this indicator matrix will have J = 5" 4 Jq columns (see Chapter 18,
Exhibit 18.1 for an example). Then the indicator version of MCA is the ap-
plication of the basic CA algorithm to the matrix Z, resulting in coordinates
for the N cases and the J categories. The second form of MCA calculates the
Burt matrix B = Z'Z of all two-way cross-tabulations of the Q variables (see
Chapter 18, Exhibit 18.4 for an example). Then the Burt version of MCA
is the application of the basic CA algorithm to the matrix B, resulting in
coordinates for the J categories (B is a symmetric matrix). The standard co-
ordinates of the categories are identical in the two versions of MCA, and the
principal inertias in the Burt version are the squares of those in the indicator
version.

Joint CA (JCA) is the fitting of the off-diagonal cross-tabulations of the Burt
matrix, ignoring the cross-tabulations on the block diagonal. The algorithm
we use is an alternating least-squares procedure which successively applies CA
to the Burt matrix which has been modified by replacing the values on the
block diagonal with estimated values from the CA of the previous iteration,
using a chosen dimensionality of the solution. On convergence of the JCA
algorithm, the CA is performed on the last modified Burt matrix, B, which has
its diagonal blocks perfectly fitted by construction. In other words, supposing
that the solution requested is two-dimensional, then the modified diagonal
blocks satisfy (A.15) exactly using just two terms in the bilinear CA model
(or reconstitution formula).

Hence the total inertia of B includes a part A for these “imputed” diagonal
blocks, and so do the first two principal inertias, A1 and )\2, which perfectly
explain the part A. To obtain the percentage of inertia explained by the two-
dimensional solution, the amount A has to be discounted both from the total
and from the sum of the two principal inertias. The value of A can be obtained
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via the difference between the inertia of the original Burt matrix B (whose
inertias in the diagonal blocks are known) and the modified one B, as follows

(here we use the result (A.30) which applies to the subtables of B, denoted
by Bys, and those of B, whose off-diagonal tables are the same):

inertia(B) = é (Z Zq#inertia(qu) + Zinertia(qu)>
q

é (Z Zqisinertia(qu) +(J - Q))
inertia(B) = é (Z Zq?&sinertia(qu)) +A

Subtracting the above leads to

~ J—
inertia(B) — inertia(B) = QzQ —A
which gives the value of A:
J - -
A= TQQ — (inertia(B) — inertia(B)) (A.31)

Discounting this amount from the total and the sum of the principal inertias,
assuming a two-dimensional solution, gives the percentage of inertia explained
by the JCA solution:
A+ A — A
100 x 2 FA2 =2 (A.32)
inertia(B) — A

The previous section showed how to discount the extra inertia as a result of
the modified diagonal blocks of the Burt matrix in JCA. There is an identical
situation at the level of each point. Each category point j has an additional
amount of inertia, d;, due to the modified diagonal blocks. In the case of the
original Burt matrix B we know exactly what this extra amount is due to the
diagonal matrices in the diagonal blocks: for the j-th point it is (1 —Qc;)/Q?,
where ¢; is the j-th mass (summing these values for j = 1,...,J, we obtain
(J —Q)/Q? which was the total additional amount due to the diagonal blocks
of B). Therefore, just as above, we can derive how to obtain contributions of
the two-dimensional solution to the point inertias as follows:

1—QCj

inertia(j-th category of B) = off-diagonal components + 02

inertia(j-th category of ]§) = off-diagonal components + J;

Subtracting the above (the “off-diagonal components” are the same) leads to

1-— QCj
QQ

inertia(jth category of B) — inertia(j-th category of ﬁ) = —9;
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which gives the value of §;:

1 — Oc: ~
9 = 1-Qg (inertia(j—th category of B) — inertia(j-th category of B))

Q2
(A.33)
Discounting this amount from the j-th category’s inertia and similarly from

the sum of the components of inertia in two dimensions gives the relative
contributions (qualities) with respect to the two-dimensional JCA solution:

i + ¢jdFs — ;
(> k ng?k) — 0
where g;i is the principal coordinate of category j on axis k in the CA of B

(JCA solution), and the summation in the denominator is for all the dimen-
sions. Notice that } . d; = A (i.e. summing (A.33) gives (A.31)).

(A.34)

The MCA solution can be adjusted to optimize the fit to the off-diagonal tables
(this could be called a JCA conditional on the MCA solution). The optimal
adjustments can be determined by weighted least squares, as described in
Chapter 19, but the problem is that the solution is not nested. So we prefer
slightly sub-optimal adjustments that retain the nesting property and are very
easy to compute from the MCA solution of the Burt matrix. The adjustments
are made as follows (see Chapter 19, pages 149-150, for an illustration):

Adjusted total inertia of Burt matriz:

adjusted total inertia =

% (inertia of B— o > (A.35)

Adjusted principal inertias (eigenvalues) of Burt matriz:

' 0 2 1\2
NG (2 ) (V- =), E=1,2,... A.36
k Q 1 k Q ) ) 4y ( )
Here Ay refers to the k-th principal inertia of the Burt matrix; hence /Ay is
the k-th principal inertia of the indicator matrix. The adjustments are made
only to those dimensions for which v Ag > é and no further dimensions are
used — hence, the percentages of inertia do not add up to 100%, which is
correct since these dimensions cannot fully explain the inertia of B. It can
be proved that these percentages are lower bound estimates of those that are
obtained in a JCA, and in practice they are close to the JCA percentages.

Subset CA is simply the application of the same CA algorithm to a selected
part of the standardized residual matrix S in (A.4) (not to the subset of
the original matrix). The masses of the full matrix are thus retained and all
subsequent calculations are the same, except they are applied to the subset.
Suppose that the columns are subsetted, but not the rows. Then the rows still
maintain the centring property of CA; i.e. their weighted averages are at the
origin of the map, whereas the columns are no longer centred. Subset MCA
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is performed by applying subset CA on a submatrix of the indicator matrix
or the Burt matrix. In the case of the Burt matrix, a selection of categories
implies that this subset has to be specified for both the rows and columns.

The definition of the standardized residuals matrix (A.4) in terms of the con-
tingency ratios, given in (A.13), has yet another equivalent form:

D; (I 1r")(D;'PD;Y)(I - 1¢")'D¢? (A.37)

where, instead of the contingency ratios minus 1 in the centre, there are sim-
ply the contingency ratios, with row- and column-centring matrices on either
side. The pre-multiplying matrix I—1r™ subtracts the weighted average of each
column from the elements of the respective column, and the post-multiplying
matrix (I — 1c")" subtracts the weighted average of each row from the re-
spective row elements. This is a convenient form to compare with weighted
log-ratio analysis (LRA), which is defined on the weighted double-centred
matrix of log-transformed data:

D (I 1) log(N)(I — 1¢")'DZ (A.38)

where log(N) = [log(n;;)]. Now the logarithms of the contingency ratios are
log(n;) — log(n) — log(r;) — log(c;) (since p;; = mn;j/n), and the row- and
column-centrings will remove all the terms except log(n;;). Hence log(N) in
(A.38) can be replaced by log(D; 'PD_!) and the only difference between
(A.37) and (A.38) is the log-transformation, showing the close relationship
between the two methods. Letting S in (A.4) be equal to (A.38) and then
following with steps (A.5)—(A.10) results in the LRA of the matrix N. The
only disadvantage of LRA is that data zeros can not be log-transformed,
whereas CA can handle matrices with many zero values, as often found in
applications in ecology, linguistics and archaeology.

There is an even more intimate relationship between LRA and CA, thanks to
the Boz—Cox transform:

flz; o) = é(xo‘ —1)fora#0

log(z) for a =0

As a tends to 0, f(z;«) tends to log(z). If the contingency ratios are trans-
formed as (1/a)[psj/(ric;)]*, then o = 1 gives the matrix (A.37) analysed in
CA, while letting o descend to 0 (but not equal to 0) gives, in the limit, the
matrix (A.38) analysed in LRA.

Matched matrices A and B are both I x J matrices of comparable data with
the same row and column labels. The CA of the 21 x 2J block matrix

A B

[B A} (A.39)

yields the CA of the sum A + B and the uncentred CA of the difference
A — B. Dimensions corresponding to the sum have coordinate vectors that
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have repeats of a vector, whereas dimensions corresponding to the difference
have coordinate vectors that have repeats of a vector with a sign change:

. . X . . .
sum dimension: [x] difference dimension: { y}

The dimensions corresponding to the sum and the difference are interleaved in
the analysis of the block matrix, so the major dimensions for each part need
to be selected for visualization (see Chapter 23 for an example). The row and
column masses of the block matrix (A.39) are the averages of those of the two
matched matrices A and B, which are the same as those of their sum A + B.
The same masses are implicitly used for the analysis of the difference A — B.

If the data matrix N is square asymmetric, where both rows and columns
refer to the same objects, then N can be written as the sum of symmetric and
skew-symmetric parts:

N = J(N+N)+ (N-N (A.40)
= symmetric + skew-symmetric

CA is applied to each part separately, but with a slight variation for the skew-
symmetric part. The analysis of the symmetric part %(N + N7) is the usual
CA — this provides one set of coordinates, and the masses are the averages of
the row and column masses corresponding to the same object: w; = %(ri +ci).
The analysis of the skew-symmetric part %(N — N7") is the application of the
CA algorithm, again without centring, and using the same masses as in the
symmetric analysis; i.e. the “standardized residuals” matrix of (A.4) is rather
the “standardized differences” matrix

_1 _1

S =D, [%(P _P"D,? (A.41)
where P is the correspondence matrix and D,, is the diagonal matrix of the
average masses w;. This is a special case of matched matrices and both these

analyses are subsumed in the regular CA of the block matrix
T

[ N } (A.42)
If N is an I x I matrix, then the 2 — 1 dimensions that emanate from
this CA can be easily allocated to the symmetric and skew-symmetric so-
lutions, since the symmetric dimensions have unique principal inertias while
the skew-symmetric dimensions occur in pairs with equal principal inertias.
Similarly, as for matched matrices, the coordinate vectors for each dimension
have two subvectors: for dimensions corresponding to the symmetric analysis
these are repeats of each other, while for dimensions corresponding to the
skew-symmetric analysis these are repeats with a change of sign (see Chapter
24 for an example).

A square symmetric matrix can be observed as the symmetric part of an
asymmetric matrix (see previous section) or, for example, directly observed
as an adjacency matrix coding an undirected network (see Chapter 25). The
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row and column masses are equal in this case, and the square symmetr}c
matrix S of standardized residuals (A.4) has the form D, 2 (P — cc™)D, 2.
The SVD of S can coincide with its eigendecomposition (EVD) if S has no
negative eigenvalues, in which case S = VD, V' and the eigenvalues \ are the
same as the singular values. But usually S will have some negative eigenvalues
in which case the corresponding singular values will be the absolute values
of these and the corresponding left and right singular vectors will differ in
sign. These latter dimensions are called inverse dimensions, as opposed to
the direct dimensions that correspond to the positive eigenvalues (equal to
singular values) that have identical left and right sigular vectors. In order to
visualize a symmetric matrix using a single set of points, the most important
direct dimensions should be selected.

An interesting family of symmetric matrices is defined by parameters o and
5, a linear combination of the correspondence matrix P, the diagonal matrix
of masses D, and the rank one matrix of mass products cc':

P(a,B) =aP 4+ BD. + (1 —a — B)cc’ (A.43)

for which the dimensions have the same coordinates and only the principal
inertias vary (and thus induce different orderings of the dimensions):

Mo, B) = (ay/Arex + B)? (A.44)

where A\ is the k-th eigenvalue of P and ¢, = 1 for direct dimensions, and
= —1 for inverse dimensions. The set of («, §) that gives matrices P(a, §) in
(A.43) with nonnegative elements forms a convex polygon in the a-3 plane.

The Burt matrix B is a square symmetric matrix central to MCA and its
variants. B has the property that its diagonal is proportional to its margins,
so that if «4+ 5 =1 (i.e. the third term in (A.43) is zero), then varying « (and
B =1—«) is simply varying the role of the diagonal values (see also the case
in Chapter 25, page 198, where the vertex degrees are inserted on the diagonal
of the adjacency matrix). An interesting special case is when the diagonal is
set to 0, called the nullified Burt matriz, which occurs for o = Q/(Q — 1) and
B =-1/(Q — 1) (where @ is the number of categorical variables), for which

o= (i ghe) = () () o

These are exactly the adjusted inertias in (A.36), corresponding to direct
dimensions for which /Ay > 1/Q (ex = 1). The other dimensions of the
nullified Burt matrix for which /Ay < 1/Q are inverse (¢, = —1), including
several dimensions corresponding to zero inertias of the Burt matrix (Ax = 0)
for which Ao, 8) = 1/(Q — 1)2.

In canonical correspondence analysis (CCA) an additional matrix X of ex-
planatory variables is available, and the requirement is that the dimensions
of the analysis of the correspondence matrix P be linearly related to X. The
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total inertia is split into two parts: a part that is linearly related to the ex-
planatory variables, called the inertia in the constrained space, and a part
that is not, the inertia in the unconstrained space. The usual data structure
is that the rows of P are sampling units and X is an additional set of M vari-
ables in columns, i.e. I x M. The first step in CCA is a weighted regression
step that calculates the I x J constrained matrix, by projection of P (in its
form of standardized residuals) onto X, giving a matrix whose columns are
linearly related to X. The residual part from this regression step is the uncon-
strained matrix, whose columns are not linearly related (i.e. uncorrelated) to
X. CCA thus consists of applying CA to the constrained matrix and (option-
ally) to the unconstrained residual matrix. In each application the original
row and column masses are maintained for all computations, and the various
results such as coordinates, principal inertias, contributions, reconstruction
formula, etc. are the same as in a regular application of CA. We assume that
the columns of X are standardized, using the row masses as weights in the
calculation of means and variances. If there are some categorical explanatory
variables, these are coded as dummy variables, dropping one category of each
variable as in a conventional regression analysis, or — even better — includ-
ing all dummy variables and then using a generalized inverse in Step 2 below.
The dummy variables are also standardized in the same way as the columns
of X, but in the eventual display are shown as row centroids.

The steps in CCA are as follows:
CCA Step 1 — Calculate the standardized residuals matrix S as in CA:

S=D;*(P - rc")D; (A.46)

CCA Step 2 — Calculate the I x I (weighted) projection matriz, of rank M,
which projects onto the constrained space:

Nl

Q = D!X(X'D,X)"'X'D;? (A.47)

CCA Step 83 — Project the standardized residuals to obtain the constrained

matrix:
S*=QS (A.48)

CCA Step 4 — Apply CA Steps 1-6 (page 242) to S*:
CCA Step 5 — Principal inertias A}, in constrained space:

r=a?, k=1,2,...,K where K = min{l — 1,.J — 1, M} (A.49)

CCA Step 6 (optional) — Project the standardized residuals onto the uncon-
strained space:
St=1I-QS=S-8" (A.50)

CCA Step 7 (optional) — Apply CA Steps 1-6 to S*.

As described in Chapter 24, the principal inertias in (A.49) can be expressed
as percentages of the total inertia, or as percentages of the constrained inertia,
which is the sum of squares of the elements in S*, equal to Zszl AL
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The most general form of co-inertia analysis that we need involves the co-
variance matrix between two data matrices X (n x p) and Y (n X ¢), usually
centred and optionally normalized, where the n common rows are weighted by
the diagonal elements of D,, and the columns of X and Y are weighted by the
dlagonal elements of D, and Dy, respectively. The analysis involves the SVD

of D2 .4 D“,YD 7 = UD, V', Wlth standard coordlnates for the two sets of

variables computed as ® = D, 2U and T' = D, 2V and the two sets of row
points X® and YTI'. Various spec1al cases are debcrlbed in Chapter 28, for
example co-correspondence analysis, which looks at the relationship between
two tables with common rows, each of which is suitable for a regular CA.
The contingency ratios minus 1 of the separate matrices (see left-hand side
of (A.14)) are conveniently taken as X and Y, the column weights (masses)
are those of the respective tables. The row weights need to be pre-specified:
for example, two possible options are the averages of the row masses of the
separate matrices, or the masses of the rows of the concatenated matrices.

In the case of a contingency table based on a random sample, the first principal
inertia can be tested for statistical significance. This is the same test as was
used in the case of the Ward clustering of Chapter 15. In that case a critical
level for clustering, on the chi-square scale (i.e. inertia times the grand total
of the table), can be determined from Exhibit A.1, according to the size of
the contingency table (see page 118 for the food store example, a 5 x 4 table
for which the critical point according to Exhibit A.1 is 15.24). These critical
points are the same for testing the first principal inertia for significance. For
example, in the same example of the food stores, given in Exhibit 15.3, the first
principal inertia was 0.02635, which if expressed as a chi-square component
is 0.02635 x 700 = 18.45. Since 18.45 is greater than the critical point 15.24,
the first principal inertia is statistically significant at the 5% level.

J
I 3 4 5 6 7 8 9 10 11
3 8.59
4 10.74 13.11
5 12.68 15.24 17.52
6 14.49 17.21 19.63 21.85
7 16.21 19.09 21.62 23.95 26.14
8 17.88 20.88 23.53 25.96 28.23 30.40
9 19.49 22.62 25.37 2788 30.24 32.48 34.63
10 21.06 24.31 27.15 29.75 32.18 34.50 36.70 38.84
11 22.61 2596 28.90 31.57 34.08 36.45 38.72 4091 43.04
12 24.12 2758 30.60 33.35 3593 38.36 40.69 4293 45.10
13 25.61 29.17 32.27 35.09 37.73 40.22 42.60 44.90 47.12

Source: Pearson, E.S. & Hartley, H.O. (1972). Biometrika Tables for Statisticians,
Volume 2: Table 51. Cambridge, UK: Cambridge University Press.
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In this appendix the computation of CA is illustrated using the object-oriented
computing language R, which can be freely downloaded from the website:

http://www.r-project.org

We assume here that the reader has some basic knowledge of this language,
which has become the de facto standard for statistical computing. If not,
the above website gives many resources for learning it. In this chapter various
computational issues are discussed and commented on, illustrated with R code.
The R scripts for creating the analyses and graphics in this book are given at
the website of the CARME network:

http://www.carme-n.org

Contents

The R program . . . . . . . . .. . e 255
All the computing steps of CA . . . . . . . . .. ... ... 259
Thecapackage . . . . . . . . . . e 261
MCA in ca package . . . . . . . . .. . e 268
Canonical correspondence analysis (CCA) . . . . ... ... ... .... 278
Inference using resampling . . . . . . . . . ... 281
Graphical options . . . . . . . ... 283

The R system provides all the tools necessary to produce CA maps. These tools
are encapsulated in R functions, and several functions and related material can
be gathered together to form an R package. A package called ca (by Nenadié
and Greenacre, see Bibliographical Appendix, page 288) is already available
for doing the various types of CA described in this book, to be demonstrated
later in this appendix. But before that, we show step-by-step how to perform
various computations using R. The three-dimensional graphics package rgl
will also be demonstrated in the process. In the following a Courier font is
used for all R commands, which are slanted, and R output, which is upright.
For example, here we create the matrix (13.2) on page 99, calculate its singular
value decomposition (SVD) and store it in an R object, and then ask for the
part of the object labelled d, which contains the singular values:

> table.T <- matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,

+ -6,-4,1,-1,-2), nrow=5)

> table.SVD <- svd(table.T)

> table.SVD$d

[1] 1.412505e+01 9.822577e+00 1.376116e-15 7.435554e-32

The >is a “prompt” that indicates the start of an R command but is not typed

The R program
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manually. Similarly, a + at the start of the line indicates the continuation of
a command and is also not manually entered.

Entering data into R has its peculiarities, but once you have managed to do
it, the rest is easy! The read.table () function is one of the most useful ways
to input data matrices, and the easiest data sources are a text file or an Excel
file. For example, suppose we want to input the 5 x 3 data table on readership
given in Exhibit 3.1. Here are three options for reading it in.

1. Suppose the data are in a text file as follows:

c1 C2 C3
E1l 5 7 2
E2 18 46 20
E3 19 29 39
E4 12 40 49
E5 3 7 16

and suppose the file is called reader.txt and stored in the present R
working directory. Then, executing the following command in R,
> tab <- read.table("reader.txt")

results in the table being stored as an R “data frame” object with the name
tab.

2. Data can be read from an Excel file, as well as other data formats, e.g. Stata,

Minitab, SPSS, SAS, Systat and DBF, using the R package foreign.

3. A convenient alternative is to copy the file into the clipboard (assuming

a Windows platform) by selecting the contents in the text or word pro-
cessor and copying using the pull-down Edit menu by or right-clicking the
mouse, or the Ctrl+-C combination. Then use function read.table() to
read directly from the clipboard:

> tab <- read.table("clipboard")

This works just as well if the data are in an Excel file, as displayed be-
low. The cells of this table are selected and then copied and the same
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command read.table("clipboard") is performed. On a Macintosh, re-
place "clipboard" by pipe("pbpaste"). Notice that the success of this
read.table() command relies on the fact that the first line of the copied
table contains one less entity than the other lines — this is why there is an
empty cell in the top left-hand corner of the Excel table, similarly in the
text file. If the read.table () function finds one less entity in the first line,
it assumes that the first line consists of column labels and the subsequent
lines have the row labels in the first column. The contents of table can be
seen by entering
> tab

Cl1 C2 C3
El 56 7 2
E2 18 46 20
E3 19 29 39
E4 12 40 49
E6 3 7 16

The object includes the row and column names, which can be accessed by
typing rownames (tab) and colnames(tab), for example:

> rownames (tab)
[1] llElll ||E2’| ||E3l| ||E4l| |’E5||

Let’s start ambitiously with the most spectacular use of R graphics: three-
dimensional graphics that you can spin around on your computer screen.
Suppose that the profile data of Exhibit 2.1 are input as described before
and stored in the data frame profs in R; i.e. after entering the data, the
object looks like this:

> profs

Holidays HalfDays FullDays
Norway 0.333 0.056 0.611
Canada 0.067 0.200 0.733
Greece 0.138 0.862 0.000

France/Germany 0.083 0.083 0.833

(notice that the row and column names have to be written without blanks,
otherwise the data will not be read correctly). A three-dimensional view of
these profiles can be achieved using the contributed rgl package, but this
package first needs to be installed and loaded into the R session, either using
the pull-down menu in R (Packages — Install packages) or with the following
R commands:

> install.packages("rgl")
> library(rgl)

Then the three-dimensional view is obtained using the following commands,
producing the views in Exhibit B.1:

> open3d()
> lines3d(c(0,1.2), c(0,0), c(0,0))
> lines3d(c(0,0), c(0,1.2), c(0,0))

257

Some examples of
R code

Three-dimensional

graphics
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Exhibit B.1:
Three-dimensional
views of the country
row profiles of the
travel data set,
using the R package
rgl: (a) a particular
view after rotating
with the mouse; (b)
another view
looking flat onto the
triangular profile
space.

Chi-square
statistic, inertia
and distances

Appendix B: Computation of Correspondence Analysis

> lines3d(c(0,0), c(0,0), c(0,1.2))
> lines3d(c(0,0), c(0,1), c(1,0), lwd=2)
> 1ines3d(c(0,1), c(1,0), c(0,0), 1lwd=2)
> lines3d(c(0,1), c(0,0), c(1,0), 1lwd=2)
> points3d(profs, size=6)
> texts3d(profs, text=rownames (profs), adj=c(0,-0.3), font=2)
> texts3d(rbind(c(1.25,0,0), c(0,1.25,0), c(0,0,1.25)),
+ text=colnames (profs))
FullDays FullDays
(b)
fr celGermany
/ Holidays
Haolidays

The three-dimensional scatterplot can be rotated at will by pressing the left-
hand mouse button and moving the mouse around — the view in Exhibit
B.1(b) shows the triangle linking the unit points “flat on”, and the country
points arranged in the triangle. The mouse wheel allows zooming into the
display.

To have some basic exercise with useful R functions, let’s compute a few basic
CA statistics: first, the chi-square (x?) statistic and inertia, and then the
x2-distance between profiles, using the readership data in tab (see pages 256
257). The x? statistic is computed as follows, where tab.exp is the matrix of
expected frequencies using the marginal sums of the table:

> tab.rowsum <- apply(tab, 1, sum)

> tab.colsum <- apply(tab, 2, sum)

> tab.sum <- sum(tab)

> tab.exp <- tab.rowsum %*% t(tab.colsum) / tab.sum
> tab.chi2 <- sum((tab - tab.exp)”2 / tab.exp)

> tab.chi2

[1] 25.97724

> tab.chi2 / tab.sum
[1] 0.08326039

In the above code, the matrix multiplication operator %*% and the transpose
function t () are used. The x? statistic (25.98) divided by the sum of the table
(312) is the total inertia (0.0833).
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To compute the y2-distances we first use a for loop and then more com-
pactly the function dist (). For example, to compute the y2-distance between
the first two rows of tab, we need the profiles and average profiles (column
masses), and then a sum is made over the elements of the profiles:

> tab <- as.matrix(tab)
> tab.pro <- tab / apply(tab, 1, sum)
> tab.colmass <- apply(tab, 2, sum) / sum(tab)
> chidist <- 0
> for(j in 1:ncol(tab))
+ chidist <- chidist +
+ (tab.prol1,j] - tab.pro[2,j]1)~2 / tab.colmass[j]
> sqrt(chidist)
C1
0.3737004

The label C1 is given to the value of chidist because this is the first column
of the loop. Notice the use of the apply() function, which computes all the
sums over the first or second indices (i.e. rows or columns) of tab.

A more elegant way is to compute all inter-row distances in one step. The
columns of the profile matrix tab.pro need to be normalized by dividing by
the square roots of the respective column masses, then Euclidean distances
can be computed between rows. All this can be achieved in a single command:

> dist (tab.pro %*% diag(1/sqrt(tab.colmass))) Computing

E1l E2 E3 E4 x2-distances
E2 0.3737004 between all
E3 0.6352512 0.4696153 profiles, using
E4 0.7919425 0.5065568 0.2591401 dist

E5 1.0008054 0.7703644 0.3703568 0.2845283

The function dist () computes by default the Euclidean distances between the
rows of the matrix argument. The columns of tab.pro are first normalized
by post-multiplying by the diagonal matrix, using function diag(), of the
inverse square roots of the column masses, leading to y2-distances. Notice the
triangular structure of the distance object resulting from dist ().

Let’s now compute a complete CA “by hand”, using the algorithm described All the computing
in Appendix A, specifically the basic objects (A.1) to (A.3) and then the steps of CA
computational steps (A.4) to (A.10).

### Correspondence matrix
> tab.P <- as.matrix(tab) / sum(tab)

### Row and column masses

> tab.r <- apply(tab.P, 1, sum)

> tab.c <- apply(tab.P, 2, sum)

### CA Step 1: the matrix S

> tab.S <- diag(1/sqrt(tab.r)) YxJ, (tab.P - tab.r %xJ, t(tab.c))
+ %*% diag(1/sqrt(tab.c))
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Plotting the
computed CA
coordinates

Exhibit B.2:
Symmetric CA map
of the readership
data. Since the data
matrix has only
three columns, 100%
of the inertia is
displayed: 84.5%
and 15.5%
respectively on the
two dimensions.

Appendix B: Computation of Correspondence Analysis

### CA Step 2: the SVD of S
> tab.svd <- svd(tab.S)

### CA Steps 3 & 4: standard row and column coordinates
> tab.rsc <- diag(1/sqrt(tab.r)) %%}, tab.svd$u
> tab.csc <- diag(1/sqrt(tab.c)) %*J, tab.svd$v

### CA Steps 5 & 6: principal row and column coordinates
> tab.rpc <- tab.rsc Y%xJ, diag(tab.svd$d)
> tab.cpc <- tab.csc Y%xY, diag(tab.svd$d)

#i#t# CA Step 7: principal inertias (eigenvalues) and %s

> tab.svd$d” 2; round(100 * tab.svd$d 2 / sum(tab.svd$d 2), 2)
[1] 7.036859e-02 1.289180e-02 6.222235e-34

[1] 84.52 15.48 0.00

Three eigenvalues are given but only the first two (0.07037 and 0.01289) are
nonzero (the dimensionality of CA is one less than the number of rows or
columns, whichever is smallest). The contribution coordinates are simply the
left and right singular vectors of the “S” matrix tab.S, i.e. tab.svd$u and
tab.svd$v. The above R commands constitute the whole basic CA algorithm
— simply replace tab with any other data matrix to compute the solution.

It only remains to plot the results. We use the principal row and column
coordinates to make the CA map of Exhibit B.2, and leave it up to the reader
to study the various options used in this sequence of commands:

### Plot the row and column principal coordinates
par(mar=c(4.2,4,1,1), mgp=c(2,0.5,0), cex.axis=0.8, font.lab=2)
plot(rbind(tab.rpc, tab.cpc), type="n", asp=1,

xlab="CA dimension 1", ylab="CA dimension 2")
abline(h=0, v=0, 1ty=2, col="gray")
text (tab.rpc, labels=rownames (tab), font=2)
text (tab.cpc, labels=colnames(tab), font=4, col='"gray")

vV V.V + VvV

S E2 E4

ES5

E3

CA dimension 2
0
|

" E1

T T T
-0.4 -0.2 0.0 0.2 0.4

CA dimension 1

The most important option in the plot() function above is asp=1, which
ensures that the scales on the two dimensions are the same, i.e. aspect ratio
=1.
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The ca package in R is a comprehensive package to compute the various forms
of CA, to be illustrated in the following. All the work of the previous section
can be executed with one simple statement: ca(tab), resulting in a ca object,
with a list of components. The plotting is just as simple, wrapping the generic
plot ) function around the object: plot (ca(tab)) will give Exhibit B.2, only
differing in the format. Like rgl, this package needs to be installed and loaded
into the session. The “smoking” data of Chapter 9 are included in the package,
as well as the “author” data of Chapter 10. To illustrate simple CA, the first
data set will be used, which can be loaded simply by issuing the command

> data(smoke)

giving the data frame smoke:

> smoke

none light medium heavy
SM 4 2 3 2
JM 4 3 7 4
SE 256 10 12 4
JE 18 24 33 13
sSC 10 6 7 2

The CA of the smoking data is obtained easily by saying ca(smoke), giving
some minimal default output:

> ca(smoke)

Principal inertias (eigenvalues):

1 2 3
Value 0.074759 0.010017 0.000414
Percentage 87.76), 11.76%  0.49}
Rows:
SM M SE JE SC
Mass .056995 0.093264 0.264249 0.455959 0.129534

0
ChiDist 0.216559 0.356921 0.380779 0.240025 0.216169
Inertia 0.002673 0.011881 0.038314 0.026269 0.006053
Dim. 1 -0.240539 0.947105 -1.391973 0.851989 -0.735456
Dim. 2 -1.935708 -2.430958 -0.106508 0.576944 0.788435

Columns:

none light medium heavy
Mass 0.316062 0.233161 0.321244 0.129534
ChiDist 0.394490 0.173996 0.198127 0.355109
Inertia 0.049186 0.007059 0.012610 0.016335

Dim. 1 -1.438471 0.363746 0.718017 1.074445
Dim. 2 -0.304659 1.409433 0.073528 -1.975960

Several numerical results are listed which should be familiar: the principal
inertias and their percentages, and then for each row and column the mass,
x2-distance to the centroid, the inertia, and the standard coordinates on the
first two dimensions. The features of this package will be described in much
more detail later on, but just to show the graphical output, simply wrap the

The ca package
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Exhibit B.3:
Symmetric map of
the data set smoke,
using the ca
package.

Numerical results
of CA: inertias
and contributions

Appendix B: Computation of Correspondence Analysis

plot () function around ca(smoke) to get the default symmetric CA map in
Exhibit B.3:

> plot(ca(smoke))

Alight
— JE
2 °
© .
- aAmedium
T O BB A
N
c
0
n =
c o
(1) [
E 5
o o oM heley
S :
! JM
[ ]
I I I I I I I I
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Dimension 1 (87.8%)

Notice that both principal axes have been inverted compared to the map of
Exhibit 9.5 — this easily happens with different software, and is of no con-
sequence (below we show how one can access the coordinates if a different
orientation of an axis is preferred). To obtain the asymmetric maps, add the
option map="rowprincipal" or map="colprincipal" to the plot() func-
tion; for example, Exhibit 9.2 (also with axes inverted) is obtained with the
following command:

> plot(ca(smoke), map="rowprincipal")

The complete set of the numerical results can be obtained using the summary ()
function around ca(smoke): summary(ca(smoke)). Here the summary results
are given of the funding example of Chapter 11, where the CA numerical
diagnostics were explained, assuming that the table has been read into fund:
> summary (ca(fund))

Principal inertias (eigenvalues):

[oN)

im value % cumj), scree plot

1 0.039117 47.2 4T7.2 skkskkkrkskrkskrkskxskrkkrkkhk
2 0.030381 36.7 83.9 sxkkkkikkskkkskkkskkkokk

3 0.010869 13.1 97.0 ¥dkkk

4 0.002512 3.0 100.0

Total: 0.082879 100.0

Rows

name mass qlt inr k=1 cor ctr k=2 cor ctr
1 | Gel | 107 916 137 | 76 55 16 | 303 861 322 |
2 | Bic | 36 881 119 | 180 119 30 | -455 762 248 |
3 | Chm | 163 644 21| 38134 61| 73510 29 |
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4 | Zol | 151 929 230 | -327 846 413 | 102 83 52 |
5 | Phy | 143 886 196 | 316 880 365 | 27 6 3|
6 | Eng | 111 870 152 | -117 121 39 | -292 749 310 |
7 | Mcr | 46 680 10 | 13 9 0| -110 671 18 |
8 | Bot | 108 654 67 | -179 6256 88 | -39 29 b5 |
9 | Sttt | 36 561 12| 125554 14| 14 7 0 |
10 | Mth | 98 319 56 | 107 240 29 | -61 79 12 |
Columns
name mass qlt inr k=1 cor ctr k=2 cor ctr

1| A 39 587 187 | 478 574 228 | 72 13 7 |
2 | B | 161 816 110 | 127 286 67 | 173 531 159 |
3| C | 389 465 94 | 83 341 68 | 50 124 32 |
4 | D | 162 968 347 | -390 859 632 | 139 109 103 |
5 | E| 249 990 262 | -32 12 6 | -292 978 699 |

In the first part of the summary output, the principal inertias are given, as
well as their percentages of the total, cumulative percentages and a bar chart
called a scree plot (see Exhibit 11.3). In the second part there are two tables
for the rows and columns respectively, in identical formats. By default, the
results for two dimensions are given; if more are required, for example 4,
the option nd=4 should be added to the ca() function: ca(fund, nd=4). All
quantities are multiplied by 1000 to make the output more readable:

® mass: masses (x1000) of the respective row and column points;

® glt: quality of representation (out of 1000) of the point in the solution of
chosen dimensionality, in this case two-dimensional (see Exhibit 11.8);

® inr: part of total inertia (out of 1000) of the point in the full space of the
rows or columns (see permill values in Exhibit 11.1);

® k=1 and k=2: principal coordinates on first two dimensions, multiplied
by 1000 (once again, the axes have been reversed compared to those in
Exhibits 10.2 and 10.3 — do a plot(ca(fund)) to see for yourself);

® cor: relative contributions (out of 1000) of each dimension to the inertia
of individual points (see Exhibit 11.6) — these are also interpreted as
squared correlations (x1000);

® ctr: contributions (out of 1000) of each point to the principal inertia of a
dimension (see Exhibit 11.4 for contributions to the first dimension).

Adding a supplementary row or column to an existing plot “by hand” is
achieved using the barycentric relationship between standard coordinates of
the column points, say, and the principal coordinates of the row points; in
other words, profiles lie at weighted averages of vertices. The example at the
top of page 94 shows how to situate the supplementary point Museums, which
has data vector [ 4 12 11 19 7 ], summing up to 53. Calculating its profile and
then the profile’s scalar products with the standard column coordinates gives
the supplementary point’s coordinates in the map (the standard coordinates
are in the colcoord component of the ca object):

> fund.pro <- c(4,12,11,19,7)/53

> fund.csc <- ca(fund)$colcoord

Supplementary
profiles
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Supplementary
continuous
variables

Options in ca
package

Appendix B: Computation of Correspondence Analysis

> t(fund.pro) %x}, fund.csc
[,1] [,2]
[1,] -0.3143203 0.3809511
(the sign of the second axis is again reversed in this solution compared to
Exhibit 12.2).

Of course, the ca function has an option for supplementary points: either
suprow for rows or supcol for columns. For example, if the matrix fund
included an 11th row with the Museums data, then the analysis of the active
part of the table (rows 1 to 10), along with row 11 as a supplementary point,
would be achieved using ca(fund, suprow=11).

Adding a continuous supplementary variable involves performing a weighted
linear regression of the variable on the standard coordinates of the existing
solution. As an example, consider the row sums of the fund data set as a pos-
sible variable to relate to the dimensions. Notice this is not a supplementary
point, which would define a profile that is exactly at the centre of the display.
The objective is to see if the number of researchers applying for funding is re-
lated to the CA dimensions. This is performed as follows, using the logarithm
of the count as the supplementary variable:

> fund.s  <- apply(fund, 1, sum)
> fund.rsc <- ca(fund)$rowcoord[,1:2]
> fund.1lm <- 1m(log(fund.s) ~ fund.rsc, weights=fund.s)
> fund.lm$coefficients[2:3]
fund.rscDiml fund.rscDim2

-0.07654946 0.18589467
Notice that the regression includes the row masses as weights — here the row
sums were equivalently used. The two coefficients would then be used to plot
the supplementary variable, usually as an arrow from the centre. The sec-
ond coefficient of the regression indicates a tendency of the disciplines with
more applicants to receive funding more than average, but this effect is not
significant, as can be seen if one looks at a summary of the regression, using
summary (fund.1m). At the time of writing the ca package has no supplemen-
tary variable option, but this will be introduced in a future version.

The ca package comprises functions for simple, multiple and joint CA with
support for subset analyses and the inclusion of supplementary points. Fur-
thermore, it offers functions for the graphical display of the results in two and
three dimensions. The package is comprised of the following components:

®* Simple CA:
— Main computational function: ca()
— Printing and summaries: print.ca() and summary.ca()
(and print.summary.ca())
— Plotting: plot.ca() and plot3d.ca()
® Multiple CA and joint CA:

— Main computational function: mjca()
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— Printing and summaries: print.mjca() and summary.mjca()
(and print.summary.mjca())
— Plotting: plot.mjca() and plot3d.mjca()

® Data sets:
— smoke, author and wg93

Note that the print, summary, plot and plot3d functions are generic and the
suffixes .ca and .mjca, indicating the corresponding method, can be omit-
ted. The package contains further functions, such as iterate.mjca() for the
updating of the Burt matrix in JCA.

A list of all available objects that are returned by ca (i.e. the values of the ca
object), is obtained with names, for example using the smoke data:

> names (ca(smoke))

[1] "sv" "nd" "rownames" "rowmass" "rowdist"
[6] "rowinertia" "rowcoord" "rowsup" "colnames" "colmass"
[11] "coldist" "colinertia" "colcoord" "colsup" "Nt

[16] "call"

The output of ca() is structured as a list-object; for example, the row masses
are obtained with

> ca(smoke)$rowmass

(for more details of the returned objects, see the help file obtained by ?ca or
equivalently help(ca)).

Optional arguments for the ca() function include an option for setting the
dimensionality of the solution (nd), options for marking selected rows and/or
columns as supplementary ones (suprow and supcol respectively — see page
264) and options for setting subset rows and/or columns (subsetrow and
subsetcol respectively) for subset CA (see below).

In the case of supplementary points, an asterisk is appended to the variable
names in the output; for example, the summary for the CA of the smoke data,
where the none category (the first column) is treated as supplementary, is:
> summary (ca(smoke, supcol=1))
In the corresponding section of the output the following is given:

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr
1 | (®*)non | <NA> 55 <NA> | 292 39 <NA> | -187 16 <NA> |

showing that masses, inertias and contributions are “not applicable”, but the
glt and cor values are still valid, since they do not depend on the masses.
A subset analysis is achieved using the option subsetrow or subsetcol. The
following reproduces the subset analyses in Chapter 21, i.e. subsets of conso-
nants and vowels in the author dataset (which is part of the ca package):

> data(author)
> vowels <- ¢(1,5,9,15,21)

Output of ca
function

Subset analysis
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> consonants <- (1:26) [-vowels]
> summary (ca(author, subsetcol=consonants))

Principal inertias (eigenvalues):

dim value % cum), scree plot

1 0.007607 46.5 46.5  skskkskokskokskokskokskokskokskok ok ok sk ok sk ok
2 0.003253 19.9 66.4 skkkkkkkkkk

3 0.001499 9.2 75.6  *xkkk

4

0.001234 7.5 83.1 k¥xx

Total: 0.01637 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr
11 td( | 85 59 29 | 7 8 1] -17 50 7 |
2 | dO0 | 80 360 37 | -39 196 16 | -35 164 31 |
3 | w( | 85 641 81 | -100 637 111 | 8 4 2|
4 | ew( | 89 328 61 | 17 27 4| 58 300 92 |
Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | b | 16 342 21 | -86 341 15 | -6 2 0|
2 | c| 23 888 69 | -186 699 104 | -97 189 66 |
3 | d | 46 892 101 | 168 783 171 | -63 110 56 |
4 | £ I [

19 558 33 | -113 467 33 -50 91 15

Similarly, the summary of vowels analysis is obtained using subsetcol=vowels.

Visualization The graphical representation of CA and MCA solutions is often done us-
options in the ca ing symmetric maps, and this is the default option in the plot() function
package (map="symmetric"). The complete set of map options is as follows:

—  "symmetric" Rows and columns in principal coordinates
(default), i.e. inertia of points equal to principal
inertia (eigenvalue, or square of singular value)

—  "rowprincipal" Rows in principal, columns in standard coordinates

—  "colprincipal" Columns in principal, rows in standard coordinates

—  "symbiplot" Row and column coordinates scaled to have
inertias equal to the singular values
—  "rowgab" Rows in principal coordinates, columns in

standard coordinates times masses (according to
a proposal by Gabriel)
—  "colgab" Columns in principal coordinates, rows in
standard coordinates times masses
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— '"rowgreen" Rows in principal coordinates, columns in standard
coordinates times square root of masses
(i.e. contribution coordinates, according to a
proposal by Greenacre; see Chapter 13,
Contribution Biplots)

— "colgreen" Columns in principal coordinates, rows in standard
coordinates times square root of masses
(i.e. contribution coordinates)

For true biplots, it might be desired to use arrows from the origin to the points
regarded as variables. For example, the following does a contribution biplot
of the author data, and draws an arrow to each letter (column) point:

> data(author)
> plot(ca(author), map="rowgreen", arrows=c(FALSE, TRUE))

By default, supplementary points are added to the plot with a different sym-
bol. The symbols can be defined with the pch option in plot.ca(). This
option takes four values in the following order: plotting point character or
symbol for (i) active rows, (ii) supplementary rows, (iii) active columns and
(iv) supplementary columns. The set of pch characters can be obtained using
the ca package function pchlist(), with no arguments. As a general rule,
options that contain entries for rows and for columns contain the entries for
the rows first and then those for the columns. For example, the colour of the
symbols and labels are specified with the col and col.lab options; by default
they are col=c("blue", "red") and col.lab=c("blue", "red"), blue for
rows and red for columns, but can be reset by the user.

The option what controls the content of the plot. It can be set to "all",
"active", "passive" or "none" for the rows and for the columns. For exam-
ple, a plot of only the active (i.e. excluding supplementary) points is created
by using what=c("active", "active").

In addition to the map scaling options, various options allow certain values
to be added to the plot as graphical attributes. The option mass selects if
the masses of rows or columns should be indicated by the size of the point.
Similarly, relative or absolute contributions can be indicated by the colour
intensity in the plot by using the contrib option.

The plot.ca() function (generically plot () of a ca object) conveniently has
a value with components row and col where the coordinates of the chosen
joint plot can be obtained. For example,

> plot.ca.author <- plot(ca(author), map="rowgreen",
+ arrows=c (FALSE, TRUE) )

will make the plot and then the row and column coordinates of the biplot are
in the components plot.ca.author$row and plot.ca.author$col.

The option dim selects which dimensions to plot, the default being dim=c (1,2),
i.e. the first two dimensions are plotted, first dimension horizontally, second
vertically. A plot of the second and third dimensions, for example, is obtained
by setting dim=c(2,3). Another possibility for adding the third dimension to
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Exhibit B.4:
Three-dimensional
display of a simple
CA (compare with
two-dimensional
map in Exhibit B.3).

MCA in ca
package

Appendix B: Computation of Correspondence Analysis

the plot is given with the functions plot3d.ca() and plot3d.mjca(). These
two functions rely on the rgl package for three-dimensional graphics in R (see
pages 257-258). Their structure is kept similar to their counterparts for two
dimensions; for example,

> plot3d(ca(smoke, nd=3))

creates a three-dimensional display, shown in Exhibit B.4.

This display can be rotated using the left mouse button. The mouse wheel or
the right button allows zooming in and out of the display, and holding the
wheel while moving the mouse adds more or less perspective to the view.

MCA and JCA are performed with the function mjca(). The structure of the
function is kept similar to its counterpart from simple CA. The two most strik-
ing differences are the format of the input data, which is a response pattern
matrix where the rows are the individual cases and the columns the categor-
ical variables. Within the function, the response pattern matrix is analysed
as an indicator matrix or a Burt matrix, depending on the type of analysis.
Options for the columns only are given, for example supplementary columns
(supcol) or subsets of categories (subsetcat). The “approach” to MCA is
specified by the lambda option in mjca():

® lambda="indicator": Analysis based on a simple CA of the indicator
matrix

® lambda="Burt": Analysis based on a simple CA of the Burt matrix

® lambda="adjusted": Analysis based on the Burt analysis with an adjust-
ment of inertias (default option)

® lambda="JCA": Joint correspondence analysis, iterating to optimize fit to
the off-diagonal tables of the Burt matrix.

By default, function mjca() performs an adjusted analysis, i.e. the option
lambda="adjusted", which is the solution of the Burt analysis where the
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dimensions are rescaled to optimize fit to the off-diagonal tables. For JCA
(lambda="JCA"), the diagonal tables of the Burt matrix are updated itera-
tively by weighted least squares, using the internal function iterate.mjca().
This updating function has two convergence criteria, namely epsilon and
maxit. Option epsilon sets a convergence criterion by means of maximum
absolute difference of the Burt matrix in an iteration step compared to the
Burt matrix of the previous step. The maximum number of iterations is given
by the option maxit. The program iterates until any one of the two conditions
is satisfied. Setting one option to NA results in ignoring that criterion; for ex-
ample, exactly 50 iterations without considering convergence are performed
with maxit=50 and epsilon=NA.

As with simple CA, the solution is restricted by the nd option to two di-
mensions. However, eigenvalues are given for all possible dimensions, which
number (J — Q) for the “indicator” and “Burt” versions of MCA. In the case
of an adjusted analysis or a JCA, the eigenvalues are given only for those
dimensions k, where the singular values from the Burt matrix A, (i.e. the
principal inertias, or eigenvalues, of the indicator matrix) satisfy the condi-
tion Ay > 1/Q.

Now suppose the raw data from the data set on working women is in an Excel
file as shown below: four questions from Q1 to Q4, country (C), gender (G), age
(A), marital status (M) and education (E). To input the data into R, copy the

H ©- dat_0.xlsx -

File Home  Insert  Page layout  Formulas  Data Review  View

[+-RIEN I W, N SR PR SR
F R R R N
MNORN W W N W
B NN R NN
R R R R R
R i
R R -]
= U R R U e e
B I I SR N R VY

columns to the clipboard as before, using function read.table() (see page
256). But now the table does not have row names, and so no blank in the top
left-hand cell; hence the option header=TRUE needs to be specified:

> women <- read.table("clipboard", header=TRUE)

The column names of data frame women are obtained using function colnames:

> colnames (women)
[1] ||Q1|l ||Q2|| ||Q3|| ||Q4|l llCll llGll llAll llMll llEll

Preparation of
multivariate
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To obtain the table in Exhibit 16.4:
> table(women/[,"C"], women[,"Q3"])

Notice how the columns of women can be accessed by name or by number. In
order to facilitate referencing the columns, it is convenient to use the attach()
function, which allows all the column names to be available as if they were
regular object names (to make these names unavailable the inverse operation
detach() should be used). So the following is equivalent to obtain Exhibit
16.4:

> attach(women)

> table(C, @3)

Q3

256 1166 176 191
101 1394 581 248
278 691 62 66
161 646 70 107

S wWw N -

21 243 448 484 25
22 468 664 92 63
23 203 671 313 120
24 738 1012 514 230

(cf. Exhibit 16.4).

There are a few missing values for gender, which has missing value code of 9,
so these should be removed, or missing values in the gender column number
6 can be assigned R’s missing value code NA, as follows:

> women/[,6] [women[,6]==9] <- NA

To get the interactively coded country—gender variable and the frequencies on
which the percentages in Exhibit 16.6 are computed:

>CG <-2x* (C-1) +G
> table(CG, Q3)
Q3

CG 1 2 3 4

117 596 114 82

138 559 60 109

43 675 357 123

58 719 224 125

S wWw N

47 347 445 294 111

48 390 566 218 118
The combinations of CG and A are coded as follows in order to construct the
variable with 288 categories that interactively codes country, gender and age
group, used for the analysis of Exhibit 16.8:

> CGA <- 6 * (CG - 1) + A
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To stack or concatenate tables, the functions rbind() and cbind() enable
binding rows or columns together. The five cross-tabulations corresponding
to Question 3 depicted in Exhibit 17.1 can be built up as follows in a for
loop:

> women.stack <- table(C, Q3)

> for(j in 6:9) {

+ women.stack <- rbind(women.stack, table(women[,j], Q3))

+ 7

The contents of women . stack will contain several rows corresponding to miss-
ing data codes for the demographic variables marital status and education
(assuming that missing gender values have already been changed to NAs).
These would have to be omitted before the CA is performed, which can be
done in three different ways: (i) by deleting these rows from the stacked ma-
trix; (ii) by changing the missing value codes to NAs as described on the
previous page; or (iii) by declaring the missing rows outside the subset of
interest in a subset CA as described in Chapter 21 (this is possibly the best
option, since it keeps the sample size in each table the same).

To build up the table in Exhibit 17.3, the stacked tables for each of the
four questions (each with five tables) are bound columnwise using cbind. An
alternative way is to use the mjca() function to generate the Burt matrix,
which is the matrix of all two-way tables, and then select the set of stacked
tables directly from the square Burt matrix. First look at the row names (same
as the column names) of this matrix:

> rownames (mjca(women)$Burt)

[1] llQ-l:lll IIQ1:2" IIQ1:3II IIQ1:4II IIQ2:1II IIQ2:2I| IIQ2:3II IIQ2:4II IIQ3:1II IIQ3:2I'
[11] IIQ3:3" |IQ3:4I| |IQ4:1I| IIQ4:2I| IIQ4:3I| IIQ4:4I| IIC:1I| IIC:2" IIC:S" IIC:4II
[21] IIC:5I| IIC:6I| |IC:7I| IIC:8|| IIC:9I| IlC:lOII IIC:11I| IIC:12|| IIC:13II IIC:14II
[31] "C:15" "C:16" "C:17" "C:18" "C:19" "C:20" "C:21" "C:22" "C:23" "C:24"
[41] llG:lll llG:Qll llA:ill IIA:2|| IIA:3|| IIA:4II IIA:SII IIA:GII IIM:1" |IM:2"
[51] llM:Bl' llM:4|| llM:Sl' llM:Qll llE:Oll I|E:1ll ||E:2ll |IE:3" |IE:4" |IE:5YI
[61] "E:6" "E:7" "E:98" "E:99"

The required submatrix consists of the first 16 columns, from Q1:1 to Q4:4
and rows 17 onwards, but dropping the missing value categories M:9, E:98
and E:99 (rows 54, 63 and 64):

> women.stack <- mjca(women)$Burt[-c(1:16, 54,63,64),1:16]
> women.stack

Q1:1 Q1:2 Q1:3 Q1:4 Q2:1 Q2:2 Q2:3 Q2:4 Q3:1
C:1 1353 215 33 178 63 491 1043 182 256
C:2 1576 382 70 296 27 632 1431 234 101
E:6 2888 543 137 305 420 1483 1619 351 969
E:7 2858 388 101 329 516 1441 1325 394 1103
One advantage of this latter way is that row and column labels are given
with the table, although the labels will preferably be changed to better labels
for the plots, using functions rownames () and colnames(), e.g. changing the
country labels to country codes, the gender codes to “M” and “F”, etc.
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In Chapter 18 the data on working women, for West and East German sam-
ples, were analysed using the indicator and Burt versions of MCA. Assuming
that the women data frame (with 33590 rows) read previously is available and
“attached”, the two German samples have country codes 2 and 3 repectively.
The part of the women corresponding to these two samples can be accessed
using a logical vector which we call germany:

> germany <- C == | ==

> womenG <- women[germany, ]

The first command creates a vector of length 33590 with values TRUE corre-
sponding to the rows of the German samples, otherwise FALSE (the symbol |
is the logical “or”). The second command then passes only those rows with
TRUE values to the new data frame womenG. There are 3421 rows in womenG,
whereas the matrix analysed in Chapter 18 has 3418 rows — three cases that
have some missing demographic data have been eliminated (called listwise
deletion of cases with missing data). Variables gender and marital status have
missing value codes 9, whereas for education they are 98 and 99. The steps
needed to eliminate the missing rows use the same method as above to flag
the rows and then eliminate them, but be careful to first detach women and
then attach womenG, since they have the same column names:

detach (women)

attach (womenG)

missing <- G==9 | M==9 | E > 90

womenG <- womenG[!missing,]

dim(womenG)

[1] 3418 9

Notice the negation !'missing which changes the FALSE (is not missing) to
TRUE for the complete cases.

vV Vv Vv Vv

v

The indicator version of MCA for the first four columns (the four questions
on women working or staying at home) is obtained simply as follows:

> mjca(womenG[,1:4], lambda="indicator")

Eigenvalues:

1 2 3 4 5 6
Value 0.693361 0.513203 0.364697 0.307406 0.21761 0.181521
Percentage 23.11%  17.11% 12.16% 10.25% 7.25} 6.05}

7 8 9 10 11 12
Value 0.164774 0.142999 0.136322 0.113656 0.100483 0.063969
Percentage 5.49% 4.77% 4.547, 3.79% 3.35% 2.13%

Columns:
Q1:1 Q1:2 Q1:3 Q1:4 Q2:1 Q2:2
Mass 0.182929 0.034816 0.005778 0.026477 0.013239 0.095012 ...
ChiDist 0.605519 2.486096 6.501217 2.905510 4.228945 1.277206 ...
Inertia 0.067071 0.215184 0.244222 0.223523 0.236761 0.154988 ...
Dim. 1 -0.355941 -0.244454 -0.279167 2.841498 -0.696550 -0.428535 ...
Dim. 2 -0.402501 1.565682 3.971577 -0.144653 -2.116572 -0.800930 ...

and the Burt version:
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> mjca(womenG[,1:4], lambda="Burt") MCA of Burt
Eigenvalues: matrix
1 2 3 4 5 6
Value 0.480749 0.263377 0.133004 0.094498 0.047354 0.03295
Percentage 41.98), 23% 11.61%  8.25% 4.13Y 2.88%
7 8 9 10 11 12
Value 0.027151 0.020449 0.018584 0.012918 0.010097 0.004092
Percentage 2.37% 1.79% 1.62% 1.13% 0.88% 0.36%
Columns:
Q1:1 Q1:2 Q1:3 Q1:4 Q2:1 Q2:2 ...
Mass 0.182929 0.034816 0.005778 0.026477 0.013239 0.095012 ...

ChiDist 0.374189 1.356308 3.632489 2.051660 2.354042 0.721971 ...
Inertia 0.025613 0.064046 0.076244 0.111452 0.073363 0.049524 ...
Dim. 1  0.355941 0.244454 0.279167 -2.841498 0.696550 0.428535 ...
Dim. 2 -0.402501 1.565682 3.971577 -0.144653 -2.116572 -0.800930 ...

Notice that the eigenvalues (principal inertias) of the Burt version are the
squares of those of the indicator one. The standard coordinates are identical
apart from possible sign changes. The total inertia can be computed in the
two cases as the sum of squared singular values, as in the simple CA case:

> sum(mjca(womenG[,1:4], lambda="indicator")$sv~2)

(11 3

> sum(mjca(womenG[,1:4], lambda="Burt")$sv~"2)
[1] 1.145222

The contributions of each subtable of the Burt matrix to the total inertia is
given in the component called subinertia of the mjca object, so the sum of
these also gives the total inertia:

> sum(mjca(womenG[,1:4], lambda="Burt")$subinertia)

[1] 1.145222

Since the total inertia is the average of the 16 subtables, the inertias of indi-
vidual subtables are 16 times the values in $subinertia:
> 16#*mjca(womenG[,1:4], lambda="Burt")$subinertia
[,1] [,2] [,3] [,4]
[1,] 3.0000000 0.3657367 0.4261892 0.6457493
[2,] 0.3657367 3.0000000 0.8941517 0.3476508
[3,] 0.4261892 0.8941517 3.0000000 0.4822995
[4,] 0.6457493 0.3476508 0.4822995 3.0000000

To obtain the positions of the supplementary columns:
> summary(mjca(womenG, lambda="Burt", supcol=5:9))

Principal inertias (eigenvalues):

dim value % cumj), scree plot

1 0.480749  42.0 42.0 skkkskikskkkskrkskkkskkskkskkk
2 0.263377 23.0 65.0 xskkxsiokkkskokkxk

3 0.133004 11.6 76.6 wkkkkkx

4 0.094498 8.3 84.8 k¥kkx
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5 0.047354 4.1 89.0 *xx

Total: 1.145222 100.0

Columns:
name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Q1:1 | 183 740 22 | 247 435 23 | -207 305 30 |

| Q1:2 | 35 367 56 | 169 16 2 | 804 351 85 |
3 | Q1:3 | 6 318 67 | 194 3 0 | 2038 315 91 |
17 | (*¥)C:2 | <NA> 283 <NA> | -89 48 <NA> | 195 234 <NA> |
18 | (*)C:3 | <NA> 474 <NA> | 188 81 <NA> | -413 393 <NA> |
19 | (*¥)G:1 | <NA> 26 <NA> | -33 5 <NA> | 67 21 <NA> |
20 | (%x)G:2 | <NA> 24 <NA> | 34 5 <NA> | -68 19 <NA> |
21 | (%)A:1 | <NA> 41 <NA> | -108 12 <NA> | -170 29 <NA> |

| (%)A:2 | | | I

22 <NA> 52 <NA> -14 0 <NA> -172 52 <NA>
The supplementary categories are marked by a * and have no masses, inertia

values (inr) nor contributions to the principal axes (ctr).
Adjusted MCA  To obtain the adjusted MCA solution, i.e. the same standard coordinates as
solution in MCA but rescaled to be close to the optimal JCA solution, either use the
lambda option "adjusted" or leave out this option since it is the default:
> summary (mjca(womenG[,1:4]))

Principal inertias (eigenvalues):

dim value % cum), scree plot

1 0.349456 66.3 66.3  skkkkokokokokskokokskokokok sk k ok ok kk ok kkk
2 0.123157 23.4 89.7 kkkkkkkkk

3 0.023387 4.4 94.1 =

4 0.005859 1.1 95.2

Total: 0.526963

Columns
name mass qlt inr k=1 cor ctr k=2 cor ctr

1 1 Q1:1 | 183 996 22 | -210 687 23 | -141 309 30 |
2 | Q1:2 | 35 822 56| -145 53 2| 549 769 85 |
3 | Q1:3 | 6 562 67 | -165 8 0| 1394 554 91 |
4 | Q1:4 | 26 1000 97 | 1680 1000 214 | -51 0o 1]
5 | Q2:1 | 13 505 64 | -412 119 6 | -743 387 59 |
6 | Q2:2 | | I

95 947 43 -263 424 17 -281 522 61
(again, it is of no consequence that the first dimension has now been inverted
compared to previous solutions).

The adjusted total inertia, used to calculate the percentages above, is calcu-
lated just after (19.5) on page 149. The first two adjusted principal inertias
(eigenvalues) are calculated just after (19.6) on page 149 (see also (A.35) and
(A.36)).
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To obtain the JCA of the same data as in Exhibit 19.3, use the lambda =
"JCA" option, which gives the optimal fit to the off-diagonal subtables of the
Burt matrix. In this case percentages of inertia are not given for individual
axes, but only for the solution space as a whole (by default, two-dimensional)
since the axes are not nested:

> summary(mjca(womenG[,1:4], lambda="JCA"))

Principal inertias (eigenvalues):

0.353452
0.128616
0.015652
0.003935

Total: 0.520617

B w N

Diagonal inertia discounted from eigenvalues: 0.125395
Percentage explained by JCA in 2 dimensions: 90.2%
(Eigenvalues are not nested)

[Iterations in JCA: 31 , epsilon = 9.33e-05]

Columns:
name mass inr k=1 k=2 cor ctr

1 | Q1:1 | 183 22 | 204 -129 | 962 24 |
2 | Q1:2 | 35 56 | 144 503 | 772 22 |
3 | Q1:3 | 6 67 | 163 1260 | 512 22 |
4 | Q1:4 | 26 97 | -1637 -45 | 990 154 |
5 | Q2:1 | 13 64 | 394 -764 | 534 21 |
6 | Q2:2 | | | I

95 43 250 -276 943 29
Also notice the single set of contributions for the two-dimensional solution, not
dimension by dimension: one squared correlation for each point with respect
to the plane (i.e. quality) and one set of contributions to the inertia in two

dimensions.

Furthermore, in the JCA solution, the “total” inertia is the inertia of the
modified Burt matrix, which includes a part due to the modified diagonal
blocks — this additional part is the “Diagonal inertia discounted from
eigenvalues: 0.125395” which has to be subtracted from the total to get
the total inertia due to the off-diagonal blocks. Since the solution requested is
two-dimensional and fits the diagonal blocks exactly by construction, the first
two eigenvalues also contain this additional part, which has to be discounted
as well. The proportion of (off-diagonal) inertia explained is thus:

0.3534 4 0.1286 — 0.1254

0.5206 — 0.1254
i.e. the percentage of 90.2% reported above — see Theoretical Appendix,
(A.32). The denominator above, the adjusted total 0.5206 — 0.1254 = 0.3952,
can be verified to be the same as:
J-Q

. . 12
inertia of B — T 1.1452 — 6= 0.3952

= 0.9024

Joint
correspondence
analysis
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Subset MCA does not involve defining a subset of variables (columns of the
response pattern data matrix), but rather a subset of categories. A useful
application is to the subset of substantive categories, excluding the missing
value categories. Again, the default implementation adjusts the inertias to
give percentages of explained inertia without the diagonal table subsets, and
the percentages do not sum to 100%, as was the case for the adjusted analysis
of the complete set of categories.

> summary (mjca(womenG, subsetcol=(1:16)[-seq(4,16,4)]))

Principal inertias (eigenvalues):

dim value % cum), scree plot

1 0.123352 69.6 69.6 kkkskkkskskokkskokkokskokokokokok
2 0.023647 13.3 82.9 k¥xxk

3 0.006831 3.3 86.2 =

4 0.003651 2.1 88.3 =*

Total: 0.177293

Columns

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 1 Q1:1 | 183 854 37 | 162 850 39 | 11 4 1]
2 | Q1:2 | 35 871 94 | -531799 79 | -159 72 37 |
3 | QL:3 | 6 811 111 | -1363 540 87 | 965 271 227 |
4 | Q2:1 | 13 681 107 | 781 4569 66 | 543 222 165 |
5 | Q2:2 | 95 933 72 | 308 915 73 | -43 18 7 |
6 | Q2:3 | | [ [

120 880 65 -324 879 103 -10 1 1

Alternatively, the Burt matrix can be computed and then the subset CA
applied to that square part of the Burt matrix corresponding to the subset
(see re-arranged Burt matrix in Exhibit 21.3).

> womenG.B <- mjca(womenG)$Burt

> subset <- ¢c(1:16) [-seq(4,16,4)]

> summary (ca(womenG.B[1:16,1:16], subsetrow=subset,
+ subsetcol=subset))

(Output not given here, but remember that the inertias will not be adjusted)

Another possibility is to select the demographic rows of the Burt matrix and
the subset of substantive categories as columns:

> summary (ca(womenG.B[17:38,1:16], subsetcol=subset))

When two matrices are matched row- and columnwise, an analysis of the sum
(equivalently, average) and difference between the matrices can be achieved by
setting up the two matrices in a block matrix format. This is illustrated here
for the example of a mobility table in Chapter 24, a square asymmetric matrix
which is used along with its transpose as the matched matrices. The matrix
sum and matrix difference are then the symmetric and skew-symmetric parts.
After reading the mobility table into a data frame named mob, the sequence
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of commands to set up the block matrix and then do the CA is as follows.
Notice that mob has to be first converted to a matrix; otherwise we cannot
bind the rows and columns together properly to create the block matrix mob2
(see (24.4)).

> mob <- as.matrix(mob)
> mob2 <- rbind(cbind(mob,t (mob)), cbind(t(mob), mob))
> summary (ca(mob2))

Principal inertias (eigenvalues):

dim value % cumj)4 scree plot

1 0.388679 24.3 24.3 skckkskckcksksokkokskokokskokkokskokokkkokok

2 0.232042 14.5 38.8 skkkkkkkkkkkkkk

3 0.158364 9.9 48.7 kkickkkkickxk

4 0.158364 9.9 58.6 kkxxkkxiokk

5 0.143915 9.0 67.6 k¥xkkkkokk

6 0.123757 7.7 T75.4 kkkkkkkk

7 0.081838 5.1 80.5 k*xxx

8 0.070740 4.4 84.9 kkxxk

9 0.049838 3.1 88.0 *k*x

10 0.041841 2.6 90.6 *k*x

11 0.041841 2.6 93.3 k**

12 0.022867 1.4 94.7 x*

26 0.000381 0.0 100.0

27 0.000147 0.0 100.0

Total: 1.599080 100.0
Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr
1 | Arm | 43 426 54 | -632 200 44 | 671 226 84 |
2 | Art | 565 886 100 | 1521 793 327 | 520 93 64 |
3 | Tcc | 29 83 10| -195 73 3 | 73 10 1
15 | ARM | 43 426 54 | -632 200 44 | 671 226 84 |
16 | ART | 55 886 100 | 1521 793 327 | 520 93 64 |
17 | TCC | 29 83 10 | -195 73 3 | 73 10 1
Columns:
name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | ARM | 43 426 54 | -632 200 44 | 671 226 84 |
2 | ART | 55 886 100 | 1521 793 327 | 520 93 64 |
3 | TCC | 29 83 10 | -195 73 3 | 73 10 1
15 | Arm | 43 426 54 | -632 200 44 | 671 226 84 |
16 | Art | 55 886 100 | 1521 793 327 | 520 93 64 |

17 | Tcc | 29 83 10 | -195 73 3 | 73 10 1
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The principal inertias coincide with Exhibit 22.4, and since the first two di-
mensions correspond to the symmetric part of the matrix, each set of coordi-
nates is just a repeat of the same set of values.

Dimensions 3 and 4, with repeated principal inertias (eigenvalues), correspond
to the skew-symmetric part and their coordinates turn out as follows (to get
more than the default two dimensions in the summary, change the original
command to summary(ca(mob2, nd=4))):

Rows:
name k=3 cor ctr k=4 cor ctr
1 | Arm | -11 0 0| 416 87 47 |
|  Art | 89 3 3| 423 61 62 |
3 | Tcc | -331 211 20 | 141 38 4 |
15 | ARM | 11 0 0| -416 87 47 |
16 | ART | -89 3 3 | -423 61 62 |
17 | TCC | 331 211 20 | -141 38 4 |
Columns:
name k=3 cor ctr k=4 cor ctr
1 | ARM | -416 87 47| -11 0 0 |
| ART | -423 61 62 | 89 3 3|
3 | TCC | -141 38 4 | -331 211 20 |
15 | Arm | 416 87 47 | 11 0 0 |
16 | Art | 423 61 62 | -89 3 3|

17 | Tcc | 141 38 4 | 331 211 20 |

which shows that the skew-symmetric coordinates reverse sign within the row
and column blocks, but also swap over, with the third axis row solution equal
to the fourth axis column solution and vice versa. Only one set of coordinates
is needed to plot the objects in each map, but the interpretation of the maps
is different, in terms of areas of triangles, as explained in Chapter 24.

The ca package does not contain CCA, but it is available in the very compre-
hensive vegan package (see web resources in the Bibliographical Appendix).
Not only does vegan have CCA but also CA, principal component analysis
(PCA) and redundancy analysis (RDA), which is the constrained version of
PCA. Some features of the ca package, such as supplementary points and con-
tribution biplots, are not available in vegan. Since this package is usually used
in an ecological context, like the example in Chapter 27, we shall use vegan’s
terminology: “sites” (samples, the rows), “species” (the columns) and “vari-
ables” (additional columns used as “explanatory” variables that constrain the
solution). Using vegan is just as easy as using ca: the main function is called
cca() and can be used in either of the two following formats:

cca(X, Y, Z)
cca(X ~ Y + condition(Z))
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where X is the sites xspecies matrix of counts, Y is the sitesxvariables matrix
of explanatory data and Z is the sitesxvariables matrix of conditioning data
for a partial CCA. The second format is in the form of a regression-type model
formula. If only X is specified, the analysis is a CA — so try one of the previous
analyses, for example summary (cca(author)) to compare the results with the
ca package version summary (ca(author)). Notice that the books are referred
to as “sites” and the letters as “species”, and that the default plotting option
in vegan, for example plot(cca(author)), is the same as the ca package
plotting option map="colprincipal". If X and Y are specified, the analysis is
a CCA. If X, Y and Z are specified, the analysis is a partial CCA.

Assuming now that the biological data of Chapters 10 and 27 are read into the
data frame bio as a 13x92 table, and that the three variables Ba, Fe and PE are
read into env as a 13 x 3 table whose columns are log-transformed to variables
with names logBa, logFe and logPE; then the CCA can be performed simply
as follows:

> summary (cca(bio, env))

Call:
cca(X = bio, Y = env)

Partitioning of mean squared contingency coefficient:

Inertia Proportion

Total 0.7826 1.0000
Constrained 0.2798 0.3575
Unconstrained 0.5028 0.6425

Eigenvalues, and their contribution to the
mean squared contingency coefficient

CCA1  CCA2  CCA3 CA1 CA2 CA3
Eigenvalue 0.1895 0.0615 0.0288 0.1909 0.1523 0.0416
Proportion Explained 0.2422 0.0786 0.0368 0.2439 0.1946 0.0531
Cumulative Proportion 0.2422 0.3208 0.3576 0.6014 0.7960 0.8492

CA4  CA5 CA6 CA7 CA8 CA9
Eigenvalue 0.0278 0.0254 0.0230 0.0165 0.0146 0.0108
Proportion Explained 0.0356 0.0324 0.0293 0.0211 0.0187 0.0137
Cumulative Proportion 0.8847 0.9171 0.9465 0.9676 0.9863 1.0000

Accumulated constrained eigenvalues
Importance of components:

CCA1  CCA2 CCA3
Eigenvalue 0.1895 0.0615 0.02879
Proportion Explained 0.6773 0.2198 0.10288
Cumulative Proportion 0.6773 0.8971 1.00000

Scaling 2 for species and site scores
—--- Species are scaled proportional to eigenvalues
--- Sites are unscaled: weighted dispersion equal on all dimensions
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Species scores

CCA1 CCA2 CCA3 CAl CA2 CA3

Gala.ocul 0.173239 0.24592 -0.07091 0.635963 -0.06348 0.031990
Chae.seto 0.574797 -0.27082 0.01181 -0.502916 -0.67421 0.093354
Amph.falc 0.295388 -0.11407 0.07598 -0.222414 0.04180 -0.005020
Myse.bide -0.527109 -0.50526 -0.10398 -0.078991 0.17668 -0.484208

Site scores (weighted averages of species scores)

sS4
S8
S9

CCA1 CCA2 CCA3 CA1 CA2 CA3
-0.1079 0.39195 -2.02902 -0.2161 0.1892 -0.33692
-0.6697 0.59302 4.10104 -0.9267 1.1969 -0.04428

0.7372 -1.37510 -0.65372 -0.6732 -0.8301 0.50189

S12 -0.7843 -0.39022 2.65081 -0.9392 1.8756 -0.64818

Site constraints (linear combinations of constraining variables)

sS4
58
S9

CCA1 CCA2 CCA3 CA1 CA2 CA3
-0.06973 0.75885 -2.29951 -0.2161 0.1892 -0.33692
-0.35758 1.47282 2.27467 -0.9267 1.1969 -0.04428

0.48483 -0.72459 -0.66547 -0.6732 -0.8301 0.50189

S12 0.02536 0.27129 -0.14677 -0.9392 1.8756 -0.64818

Biplot scores for constraining variables

CCA1 CCA2 CCA3 CA1 CA2 CA3

logBa 0.9957 -0.08413 0.03452 0 O O
logFe 0.6044 -0.72088 0.33658 0 O O
logPE 0.4654 0.55594 0.68710 0 O O

Notice the following:

the mean squared contingency coefficient is another name for the total in-
ertia;

the constrained inertia is the part of the total in the space of the explanatory
variables, and the unconstrained inertia is the remainder, uncorrelated with
the explanatory variables;

the principal inertias (eigenvalues) in the constrained space are headed CCA1,
CCA2, etc., and the principal inertias in the unconstrained space CA1, CA2 etc.;
each set of values is in descending order and expressed relative to the total
inertia;

the accumulated constrained eigenvalues are those in the constrained space
and expressed as proportions of the total in the constrained space;

all other proportions are expressed relative to the total inertia;

scaling 2 is the default scaling where rows (sites) are in standard coordinates,
and columns (species) in principal coordinates, i.e., the "colprincipal" scaling
in the plot.ca() function; scaling 1 would be the other way round, i.e. the
"rowprincipal" scaling;
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— the Species scores are the column principal coordinates;
— the Site constraints are the row standard coordinates;

— the Biplot scores for constraining variables are the weighted correlation
coefficients between the explanatory variables and the site coordinates.

For inferential purposes, methods such as multinomial sampling, bootstrapping and
permutation testing are easily performed in R using various functions and packages.
For example, the 100 replications of the author data, shown in the partial bootstrap
CA map of Exhibit 29.1, are obtained by multinomial sampling using the function
rmultinom() for each row of the table. The relative frequencies in each row define the
multinomial distribution and each row’s total defines the sample size. For example, if
the row sums of the table are in object author.rowsums, then 100 replicate samples
of the j-th row of the table are obtained by

> rmultinom(n=100, size=author.rowsum[j], prob=author[j,])

Notice that the probabilities do not have to be specifically computed and can be
specified simply by giving the corresponding row. Points defining the convex hulls
are obtained using the function chull (). In Exhibit 29.2, 1000 replications are made
and then the points defining the convex hulls are removed to get the convex hulls of
the remaining points, and this process of peeling continues until approximately 950
points (i.e. 95%) remain.

The Monte Carlo simulation of Exhibit 29.5 also makes use of function rmultinom(),
using the expected relative frequencies of the whole table in Exhibit 29.4, under the
null hypothesis of independence, as parameters of the multinomial distribution, with
option size equal to 312 in the function. A total of 9999 tables with the same total
of 312 are generated from this distribution and CA is applied to each table to obtain
principal inertias that form the null distribution, against which the actual principal
inertias are compared — see Exhibit 29.5.

For permutation tests and bootstrapping the key R function is sample(), which
does sampling without replacement, to get sample permutations, or sampling with
replacement (using option replace=TRUE), to obtain bootstrap samples. For exam-
ple, the data of Exhibit 30.1 consist of two vectors of 25 elements each, say values
and groups respectively, containing the numerical values and the group labels (T or
C). A random permutation of the labels is obtained simply by

> group.perm <- sample(group)

and so, under the null hypothesis of no difference between the groups, the two group
means and their difference are computed according to the labels in group.perm. This
is repeated 9999 times to obtain the null distribution of the difference between means
in Exhibit 30.2, against which the actual difference is judged.

Similarly, to generate the permutation distribution of a correlation between two
variables, as in Exhibit 30.4, one variable’s values are randomly permuted and the
correlation recomputed. The same strategy is applied to obtain null distributions
of statistics that quantify the relationship between two sets of variables, as in the
CCA of Exhibit 30.5. In this case complete rows of one of the sets are permuted, not
single values. For example, suppose the two sets of variables are in matrices Y and
X, each with n rows. Then the rows of X are randomly permuted using the following;:

> X.perm <- X[sample(1:nrow(X)),]

Inference using
resampling

Permutation
testing and
bootstrapping
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Here the row numbers are permuted, which induces the permutation of the rows of
the matrix.

The vegan package incorporates this test, which can be obtained with the anova()
function around the cca() analysis. For example, in Exhibit 30.5 the p-value cor-
responding to the observed proportion 0.2798 of explained inertia was estimated as
0.073. An estimate can be obtained in vegan, where bio and env are the matrices
defined earlier on page 279, as follows:

> anova(cca(bio, env))
Permutation test for cca under reduced model

Df ChiSquare F Pr(>F)
Model 3 0.27984 1.6696 0.074 .
Residual 9  0.50281

Signif. codes: O *xx 0.001 ** 0.01 *x 0.05 . 0.1 1

The observed proportion 0.27984 of explained inertia is reported in the column
ChiSquare, while the column F is a “pseudo-F” statistic, as if an analysis of variance
is being performed (for more details, see the vegan documentation). Notice that
the p-values are estimates and can vary from one permutation test to the next,
depending on how many permutations are used. To improve the estimation of the
p-value, simply increase the number of permutations — by default, the number
of permutations in the above is 999 (see the help documentation for the function
anova.cca). The same function can be used to test variables in a stepwise fashion,
but the CCA has to be specified in the format of a formula, as follows:

> anova(cca(bio ~ env[,1] + env[,2] + env([,3]))

Permutation test for cca under reduced model
Terms added sequentially (first to last)

Df ChiSquare F Pr(>F)
env[, 1] 1 0.18842 3.3726 0.004 *x*
env[, 2] 1 0.05668 1.0145 0.488
env[, 3] 1 0.03474 0.6218 0.741
Residual 9 0.50281

Signif. codes: O *%* 0.001 *x 0.01 * 0.05 . 0.1 1

The variables are entered in the order specified in the model formula, so here we see
that the first variable (log of barium) enters with high significance, the others not,
as was found in Chapter 30 (page 238).

Chapter 15 deals with Ward clustering of the row or column profiles, where the
profiles are weighted by their masses. The R function for performing hierarchi-
cal clustering is hclust (), which does not allow differential weights in the option
for Ward clustering (see formula (15.2) on page 120); neither does the function
agnes() in the package cluster. In his book Correspondence Analysis and Data
Coding with Java and R (see Bibliographical Appendix), Fionn Murtagh gives many
R scripts for CA and especially data recoding, all of which are available on the
website www.correspondances.info. In particular, on pages 21-26 he describes a
program for hierarchical clustering by Ward’s method, with incorporation of weights,
which is exactly what was used in Chapter 15, but which is otherwise unavailable in


http://www.correspondances.info
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R. Assuming you have downloaded Murtagh’s code from his website, and have read
the table of data of Exhibit 15.3 as the data frame food, then the cluster analysis
of the row profiles in Exhibit 15.5 can be achieved using his function hierclust as
follows:

> food.rpro  <- food /apply(food,1,sum) # row profiles
> food.r <- apply(food,1,sum) / sum(food) # row masses
> food.rclust <- hierclust(food.rpro, food.r)

> plot(as.dendrogram(food.rclust))

Producing a CA map with specific characteristics that is ready for publication is
not a trivial task. Here three different technologies are shown that were used in this
book to produce the graphical exhibits. These technologies coincide with the three
successive editions of the book.

This book was typeset by the author in ITEX. ITEX itself and various BTEX macros
can produce maps directly, without passing through another graphics package. Most
of the figures produced in the first part of the book were produced using the macro
package PicTEX. As an example, the following code, which is embedded in the XTEX
text of the book itself, produced Exhibit 9.2, the asymmetric map of the smoking
data:

\beginpicture

\setcoordinatesystem units <2.5cm,2.5cm>

\setplotarea x from -2.40 to 1.70, y from -1.6 to 2.25

\accountingoff

\gray

\setdashes <5pt,4pt>

\putrule from 0 O to 1.7 O
\putrule from O O to -1.4 O
\putrule from 0 0 to 0 2.25
\putrule from 0 O to O -1.6

\put {+} at 0 0

\black

\small

\put {Axis 1} [Br] <-.2cm,.15cm> at 1.70 O

\put {0.0748 (87.8\%)} [tr] <-.2cm,-.16cm> at 1.70 O
\put {Axis 2} [Br] <-.1lcm,-.4cm> at 0 2.25

\put {0.0100 (11.8\%)} [Bl] <.lcm,-.4cm> at 0 2.25
\setsolid

\putrule from 1.3 -1.3 to 1.4 -1.3

\putrule from 1.3 -1.32 to 1.3 -1.28

\putrule from 1.4 -1.32 to 1.4 -1.28

\put {\it scale} [b] <Ocm,.25cm> at 1.35 -1.3

\put {0.1} [t] <Ocm,-.2cm> at 1.35 -1.3

\multiput {$\bullet$} at

0.06577 0.19373

-0.25896 0.24330

0.38059 0.01066

-0.23295 -0.05775

0.20109 -0.07891

/
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\sf
\put {SM} [1] <.15cm,0cm> at 0.06577 0.19373
\put {JM} [r] <-.15cm,Ocm> at -0.25896 0.24330
\put {SE} [bl] <.15cm,0cm> at 0.38059 0.01066
\put {JE} [r] <-.15cm,0cm> at -0.23295 -0.05775
\put {SC} [t1l] <.15cm,0cm> at 0.20109 -0.07891
\gray
\multiput {$\circ$} at

1.4384 0.3046
-0.3638 -1.4094
-0.7180 -0.0735
-1.0745 1.9760

/
\sl
\put {none} [b] <Ocm,.2cm> at 1.4384 0.3046
\put {light} [b] <Ocm,.2cm> at -0.3638 -1.4094
\put {medium} [T] <Ocm,-.3cm> at -0.7180 -0.0735
\put {heavy} [b] <Ocm,.2cm> at -1.0745 1.9760
\black
\endpicture

Comparing the above code with Exhibit 9.2 itself shows how each line and each
set of characters is laboriously placed in the plotting area. One advantage of this
approach, however, is that once you have set the units on the horizontal and vertical
coordinate axes to be the same (2.5 cm per unit in the example above), then you
are assured that the aspect ratio of 1 is perfectly preserved in the eventual result.

Many of the figures produced for the second edition were made in Excel using
XLSTAT — see, for example, the maps in Chapters 17-19. XLSTAT is a commercial
add-on for Excel, and contains a comprehensive set of statistical analyses, including
many discussed in this book, as well as some graphical options not available in Excel.
A certain amount of trimming of the maps was needed in the XLSTAT ouput, which
is given conveniently in an Excel sheet: for example, redefining the maxima and
minima on the axes, and also stretching the graph window vertically or horizontally
until the aspect ratio appeared correct. The graphic was then copied as a metafile
and pasted into Adobe Illustrator, where further trimming and character redefinition
were performed. The aspect ratio may become slightly deformed when copying into
Adobe Illustrator, with a vertical unit appearing slightly longer than a horizontal
unit, so some resizing may be necessary at this stage as well. The graphic was then
saved as a PDF file and then included in the LaTeX file using the \includegraphics
instruction, for example:

\begin{figure} [h]
\center{\includegraphics [width=10cm,keepaspectratio] {Ex18_2.pdf}}
\caption{\sl MCA map of four questions on women working:

total inertia = 3, percentage inertia in map: 40.2\%.}
\end{figure}

Finally, many maps, especially in the new chapters of this third edition, were pro-
duced directly in R. These were exported as PDF files and opened in Adobe Illus-
trator, fine-tuned and then saved for including in the WTEX code, as shown above.



Glossary of Terms

In this appendix an alphabetical list of the most common terms used in this
book is given, along with a short definition of each. Words in italics refer to
terms which are themselves contained in the glossary.

e adjacency matriz — in network theory, a matrix that codes the edges among
a set of nodes (one-mode network) or between two sets of nodes (two-mode
network); the value of an edge is 0 if there is no connection, otherwise 1 for
an unweighted network or the weight for a weighted network.

e adjusted principal inertias — a modification of the results of a multiple
correspondence analysis that gives a more realistic estimate of the inertia
accounted for in the solution.

e arch effect — the tendency for points in a CA map to form a curve, owing
to the particular geometry of CA where the profiles lie inside a simplex; also
called the “horseshoe” effect.

e aspect ratio — the ratio between a unit length on the horizontal axis and a
unit length on the vertical axis in a spatial representation; should be equal to
1 for a CA map.

e asymmetric map — a joint display of the rows and columns where the two
clouds of points have different normalizations (also called scalings), usually one
in principal coordinates and the other in standard coordinates; the asymmetric
map is often a biplot.

e biplot — a joint display of points representing the rows and columns of a
table such that a scalar product between a row point and a column point
approximates optimally the corresponding element in the table.

e biplot axis — a line in the direction of a point vector in a biplot onto which
the other set of points can be projected in order to estimate values in the
table being analysed.

® bootstrapping — a computer-based method of investigating the variability of
a statistic, by generating a large number replicate samples from the observed
sample.

e Box—Cox transformation — a particular power transformation which has as
limiting case the logarithmic transformation as the power parameter tends to
Zero.

e Burt matriz — a particular matrix of stacked tables, consisting of all two-
way cross-tabulations of a set of @) categorical variables, including the cross-
tabulations of each variable with itself.

e calibration — in biplots, the process of putting a scale on a biplot axis with
specific tic-marks and values; in CA, where profiles are being mapped, this is
a scale in units of proportions or percentages.

e canonical correspondence analysis (CCA) — extension of CA to include
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external explanatory variables; the CA solution is constrained to have dimen-
sions which are linearly related to these explanatory variables.

e centroid — the weighted average point.

e centroid discriminant analysis — an analysis where attention is focused
on group means rather than individual observations, where the group means
(i.e. centroids) are weighted by their respective group sizes or aggregated
weights.

e chi-square distance (x*-distance)— weighted Buclidean distance between
profiles, where each squared difference between profile elements is divided by
the corresponding element of the average profile.

e chi-square statistic — the statistic used commonly for testing the indepen-
dence model for a contingency table; calculated as the sum of squared differ-
ences between observed frequencies and frequencies expected according to the
model, each squared difference being divided by the corresponding expected
frequency.

e co-correspondence analysis — a form of correspondence analysis applied to
two tables with the same rows, aiming to show the relationship between the
tables rather than the relationships within each one; a special case of co-inertia
analysis.

e co-inertia — just like the inertia measures the variance within a table in
terms of weighted average sum of squared distances of the row points to
the centroid, so co-inertia measures the covariance between two tables with
common rows as the weighted average sum of cross-products of the two sets
of row points to their respective averages.

e co-inertia analysis — a general approach to analysing the co-inertia between
two tables that have the same rows, identifying dimensions that are common
to both tables.

e composition — a set of observed nonnegative values that sum to 1, or to
100% when expressed as percentages (also called a profile in correspondence
analysis when computed on a vector of nonnegative values by dividing by
their sum); the components of a composition are called “parts”, and the fact
that the sum of the parts is a constant is referred to as their being “closed”.

e compositional data analysis — the analysis of data in the form of observed
compositions.

e contingency ratio — for a contingency table, the observed frequency divided
by the expected frequency according to the independence model.

e contingency table — a cross-tabulation of a set of individuals according to
two categorical variables; hence the grand total of the table is the number of
individuals.

e contribution to inertia — component of inertia accounted for by a particular
point on a particular principal azis; these are usually expressed relative to the
corresponding principal inertia on the axis (giving a diagnostic of how the axis
is constructed) or relative to the inertia of the point (giving a measure of how
well the point is explained by the axis).
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e correspondence analysis (CA) — a method of displaying the rows and
columns of a table as points in a spatial map, with a specific geometric inter-
pretation of the positions of the points as a means of interpreting the simi-
larities and differences between rows, the similarities and differences between
columns and the association between rows and columns.

e degree vector — in network theory, the vector of the number of edges (i.e. de-
grees) connected to each node (unweighted network), or the sum of the weights
of the edges connected to each node (weighted network).

e dimensionality — the number of dimensions inherent in a table needed to
reproduce its elements exactly in a CA map.

e direct dimension — in the analysis of a square symmetric matrix, a dimen-
sion defined by an eigenvector with positive eigenvalue (see indirect dimen-
sion).

e doubling — a recoding scheme where a row (or column) is recoded as a pair
of rows (or columuns) in order to map the extremes, or poles, of a scale; used
in CA to analyse ratings, preferences and paired comparisons.

o dummy variable — a variable that takes on the values 0 and 1 only; used in
one form of multiple correspondence analysis to code multivariate categorical
data.

e cigenvalue — a quantity inherent in a square matrix, part of a decomposi-
tion of the matrix into the product of simpler matrices; in general, a square
matrix has as many eigenvalues and associated eigenvectors as its rank; in
the context of CA, eigenvalue is a synonym for principal inertia (see singular
value decomposition).

e cigenvector — a vector associated with an eigenvalue of a square matrix,
defining a dimension inherent in the matrix (see singular value decomposition).

e Fuclidean distance — distance measure between vectors where squared dif-
ferences between corresponding elements are summed, followed by taking the
square root of this sum.

o fuzzy coding — a transformation of a continuous variable into a set of cat-
egories, where the value in each category is between 0 and 1 (inclusive) and
the sum of the values across the categories is equal to 1; this is a more general
coding than the dummy variable coding in an indicator matrix, where values
are strictly 0 or 1.

e homogeneity — in the context of multivariate categorical data a measure of
how far case scores are from their corresponding category scale values.

e homogeneity analysis — theoretically equivalent to multiple correspondence
analysis, it quantifies the categories of multivariate categorical data in order
to minimize the loss of homogeneity between cases and categories.

e identification condition — a condition which needs to be imposed on an
optimization problem in order to obtain a unique solution.

e independence model — (also called the “homogeneity hypothesis”) a model
for the counts in a contingency table, which assumes that the rows (or columns)
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are sampled randomly from the same population; i.e. the expected relative fre-
quencies (proportions) in each row, or in each column, are the same.

e indicator matrizx — the coding of a multivariate categorical data set in the
form of dummy variables.

e inertia — weighted sum of squared distances of a set of points to their
centroid; in CA the points are profiles, weights are the masses of the profiles
and the distances are chi-square distances.

e interactive coding — the formation of a single categorical variable from all
the category combinations of two categorical variables.

e inverse dimension — in the analysis of a square symmetric matrix, a dimen-
sion defined by an eigenvector with negative eigenvalue (see direct dimension);
the singular vectors corresponding to these eigenvectors are reversed in sign.

e joint correspondence analysis (JCA)— an adaptation of multiple correspon-
dence analysis to analyse all unique two-way cross-tabulations of a set of ()
categorical variables while ignoring the cross-tabulations of each variable with
itself.

e Laplacian matriz — in network theory, the matrix equal to the diagonal
matrix of the degree vector minus the adjacency matriz.

e log-ratio analysis (LRA) — an approach highly related to correspondence
analysis, but applied to the logarithms of a table with strictly positive values;
the weighted form of LRA, where rows and columns are weighted by the table
margins, as in CA, is usually preferred over the unweighted form.

e map — a spatial representation of points (row and column profiles in CA)
with a distance or scalar product (biplot) interpretation.

e mass — the marginal total of a row or a column of a table, divided by the
grand total of the table; used as weights in CA.

e matched matrices — matrices that have exactly the same rows and columns.

e multiple correspondence analysis (MCA) — for more than two categorical
variables, the CA of the indicator matrixz or Burt matriz formed from the
variables.

e network — a set of objects, called nodes, some of which are joined by links
called edges; when the edges have no sense of direction, for example two
people linked by friendship, it is called an undirected network; if the edges
have a sense of direction, for example two countries between which migration
flows are different, it is called a directed network; the nodes can be of two
different types and the edges can then connect nodes between the two types,
for example companies and clients, in which case the network is called a two-
mode network, as opposed to a single-mode network where edges are internal
to a single group (see also weighted network).

e optimal scale — a set of scale values assigned to the categories of several
categorical variables, which optimizes some criterion such as maximum corre-
lation (with another variable) or maximum discrimination (between a set of
groups).
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e outlier — a point on the periphery of a display that is well separated from
the general scatter of points.

e partial bootstrap — in CA, the display of many replicate samples, obtained
by bootstrapping, as supplementary points in the map of the original table.

e permutation test— a distribution-free strategy of statistical inference achieved
through the generation of data permutations, either all possible ones or a large
random sample, assuming a null hypothesis, leading to the null distribution
of a test statistic and thus an estimate of the p-value associated with the
observed value of the statistic.

e principal axis — a direction of spread of points in multidimensional space
that optimizes the inertia displayed; can be thought of equivalently as an axis
which best fits the points in a weighted least-squares sense.

e principal coordinates — coordinates of a set of points projected onto a
principal azis, such that their weighted sum of squares along an axis equals
the principal inertia on that axis.

e principal inertia — the inertia displayed along a principal azis; also referred
to as an eigenvalue.

e profile — a row or a column of a table divided by its total; the profiles are
the points visualized in CA.

e root mean-squared error (RMSE) — when comparing a set of estimated
values with their true values, the square root of the average sum of squared
differences.

e scalar product — for two point vectors, the product of their lengths mul-
tiplied by the cosine of the angle between them; directly proportional to the
projection of one point on the vector defined by the other.

e shortest path distance — in network theory, the minimum number of edges
connecting two nodes.

e simplexr — a triangle in two dimensions, a tetrahedron in three dimensions
and generalizations of these geometric figures in higher dimensions; in CA
J-dimensional profiles lie inside a simplex defined by J wvertices in (J — 1)-
dimensional space.

o singular value decomposition (SVD) — a matrix decomposition similar to
that of eigenvalues and eigenvectors, but applicable to rectangular matrices;
the squares of the singular values are eigenvalues of particular square matrices,
and the left and right singular vectors are also eigenvectors.

o skew-symmetric matric — a square matrix with zeros on the diagonal and
the property that the elements above the diagonal have the same absolute
value as those opposite them below the diagonal, but with opposite sign.

e stacked table — a set of tables concatenated rowwise or columnwise or
both, often based on cross-tabulating the same individuals. See also matched
matrices, which are often analysed in a stacked format.

e standard coordinates— coordinates of a set of points such that their weighted
sum of squares along an axis equals 1.
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e symmetric map — a joint display of the rows and columns where the two
clouds of points have the same normalization in principal coordinates ; strictly
speaking, the symmetric map is not a biplot.

e subcomposition — a reduced set of parts of a composition, where the parts
are re-closed to sum to 1.

e subcompositional coherence — a desirable property of compositional data
analysis whereby relationships between the parts of a subcomposition remain
the same as in an extended composition.

e subset correspondence analysis — a variant of CA which allows subsets of
rows and/or columns to be analysed, while maintaining the same geometry of
the full table.

e supplementary point — a point which has a position (a profile in CA) with
mass set equal to 0; in other words a supplementary point is displayed on the
map but has not been used in the construction of the map.

e transition relationship — the relationship between the row and column co-
ordinates in a map.

e verter — a unit profile, i.e. a profile with all elements 0 except one with
value 1.

o Ward clustering — a specific hierarchical clustering algorithm which min-
imizes the within-cluster inertia at each clustering step, equivalent to maxi-
mizing the between-cluster inertia.

e weighted Fuclidean distance — similar to Fuclidean distance, but with a
positive weighting factor for each squared difference term.

e weighted network — a network where the edges have positive values attached
to them, quantifying the strength of the edges between pairs of nodes; more
specifically called an edge-weighted network.



Bibliography of Correspondence Analysis

Because of the didactic aim of this book, no references have been given in the
chapters. This Appendix aims to highlight the main bibliographical sources
for learning more about correspondence analysis.

Although the theory of CA dates back to much earlier in the 20th century,
CA as presented in this book originates in the work of Jean-Paul Benzécri
and his co-workers in France in the 1960s, which was published in the two
volumes of Analyse des Données (literally, Data Analysis):

— Benzécri, J.-P. & collaborateurs (1973) Analyse des Données. Téme 1: La
Classification. Tome 2: L’Analyse des Correspondances. Paris: Dunod.

However, even with a knowledge of French, these books remain inaccessible to
most readers who are not initiated into Benzécri’s particular notational style,
different from the more pragmatic matrix-vector notation. The following book
by Le Roux & Rouanet gives an authentic account of Benzécri’s approach to
analysing large data sets, which the authors have coined as “geometric data
analysis”. They have also maintained a complex notational style, however,
which limits understanding:

—Le Roux, B. & Rouanet, H. (2004) Geometric Data Analysis: From Corre-
spondence Analysis to Structured Data. Dordrecht: Kluwer.

One of the best publications in English for understanding Benzécri’s work is
the book by Fionn Murtagh, who was also a student of Benzécri. Not only
does he communicate much more of the Benzecrian philosophy (there is also a
foreword by Benzécri himself, with an English translation), but also the book
is innovative in its approach and highly oriented to computing, providing
many interesting applications and details of R programming.

— Murtagh, F. (2005) Correspondence Analysis and Data Coding with Java
and R. London: Chapman & Hall/CRC.

Brigitte Escofier, one of the leading and most creative members of Benzécri’s
original group from the French city of Rennes, has been commemorated posthu-
mously by a collection of her most important articles (in French):

— Escofier, B. (2003) Analyse des Correspondances: Recherches au Coeur de
I’Analyse des Donées. Rennes, France: Presses Universitaires de Rennes.

In 1984 two English books on CA appeared almost simultaneously, expressing
Benzécri’s work in a more conventional mathematical notation:

— Lebart, L., Morineau, A. & Warwick, K. (1984) Multivariate Descriptive
Statistical Analysis. Chichester, UK: Wiley.

Benzécri’s school of
data analysis

The two English books
published in 1984
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— Greenacre, M.J. (1984) Theory and Applications of Correspondence Anal-
ysis. London: Academic Press.

These books are both out of print, but Greenacre’s book is now available
online for free download at www.carme-n.org. Lebart et al.’s book gives a less
detailed description of CA itself but a broader view of its use in the context of
large-scale social surveys. Greenacre’s book attempts to be a complete account
of the method’s theory and practice at that time. Both these books serve as
good literature sources for work up to 1984.

A group in Holland, originally led by Jan de Leeuw under the nom-de-plume of
Albert Gifi, was involved with the most important developments of CA outside
France, and still remains very active today. This group mostly explored the
use of MCA — which they called homogeneity analysis — as a quantification
technique embedded in classical multivariate analysis to achieve nonlinear
generalizations of multivariate methods. The work of the Gifi group is exposed
in the book:

—Gifi, A. (1990) Nonlinear Multivariate Analysis. Chichester, UK: Wiley.
As an excellent summary of the “Gifi system”, see:

— Michalidis, G. & de Leeuw, J. (1998) The Gifi system for descriptive mul-
tivariate analysis. Statistical Science, 13, 307-336. (Can be googled.)

Founded by Chikio Hayashi, this group developed, in parallel to the French
and Dutch schools, an equivalent system of data analysis called “quantifica-
tion of qualitative data”, imbued with its own cultural aspects. Several books
by Shizuhiko Nishisato describe this approach, renamed as “dual scaling”,
concentrating more on the algebraic properties of the quantified scale values,
although the book by Nishisato does contain many graphical displays:

— Nishisato, S. (2006) Multivariate Nonlinear Descriptive Analysis. London:
Chapman & Hall/CRC.

Nishisato’s book contains many historical details and a very comprehensive
reference list of CA-related literature, but no details about computing.

As mentioned in the Preface, international conferences on correspondence
analysis have been organized every four years since 1991. The first three were
held in 1991, 1995 and 1999 at the Central Archive for Empirical Social Re-
search, Cologne, then in 2003 at the Universitat Pompeu Fabra, Barcelona, in
2007 at the Erasmus University, Rotterdam, in 2011 at Agrocampus in Rennes,
and in 2015 at the University of Naples, these conferences have come to be
known as the CARME conferences, standing for “Correspondence Analysis
and Related Methods”. Several publications have emerged as a direct product
of these conferences, in the form of books collectively written by statisticians
and social scientists to reflect the development of the theoretical and practical
aspects of CA and related methods, all peer-reviewed and extensively edited
by Jorg Blasius and Michael Greenacre:


http://www.carme-n.org
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— Greenacre, M. & Blasius, J., eds (1994) Correspondence Analysis in the
Social Sciences. London: Academic Press.

—Blasius, J. & Greenacre, M., eds (1998) Visualizing Categorical Data. San
Diego: Academic Press.

— Greenacre, M. & Blasius, J., eds (2006) Multiple Correspondence Analysis
and Related Methods. Boca Raton, FL: Chapman & Hall/CRC.

—Blasius, J. & Greenacre, M., eds (2015) Visualization and Verbalization of
Data. Boca Raton, FL: Chapman & Hall/CRC.

These four volumes, to which over 100 authors have contributed, are highly
recommended for further reading. The third volume is particularly oriented
to computing as well, and many sources of computer software are given by
the individual authors. Half of the latest volume is devoted to the history of
multivariate methods, written by experts in each area, and is the ultimate
reference for the methodological origins of this area of statistics.

In addition, a special journal issue was published in 2009, as a result of the
CARME conference in Rotterdam:

— Blasius, J., Greenacre, M., Groenen, P. and van der Velden, M., eds (2009)
Special issue on correspondence analysis and related methods. Computa-
tional Statistics and Data Analysis 53, 3103-3106.

Several other books have appeared in recent years related to CA. The first
three books below are available at www.multivariatestatistics.org for
free download, thanks to the support of the BBVA Foundation in Spain:

—Greenacre, M. (2008) La Préctica del Andlisis de Correspondéncias. Bilbao:
BBVA Foundation.
(The Spanish translation of the second edition of Correspondence Analysis
in Practice.)

— Greenacre, M. (2010) Biplots in Practice. Bilbao: BBVA Foundation.
(A comprehensive practical treatment of all types of biplots, including CA,
MCA, CCA and the related methods of PCA and LRA.)

— Greenacre, M. & Primicerio, R. (2015) Multivariate Analysis of Ecological
Data. Bilbao: BBVA Foundation.
(Aimed specifically at ecologists, based on a short course, this book includes
the full spectrum of multivariate descriptive methods including cluster anal-
ysis, generalized linear models and classification and regression trees.)

—Husson, F., Lé, S. & Pages, J. (2011) Exploratory Multivariate Analysis by
Example Using R. Boca Raton, FL: Chapman & Hall/CRC.
(Covering a wide range of multivariate methods, this book is based on the
FactoMineR package in R.)

Other books
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—Beh, E. & Lombardo, R. (2015) Correspondence Analysis: Theory, Practice
and New Strategies. Chichester, UK: John Wiley.
(A comprehensive treatment of correspondence analysis, with some nov-
elties developed by the authors themselves, for example when categorical
variables are ordinal.)

— Friendly, M.. & Meyer, D. (2016) Discrete Data Analysis with R. Boca
Raton, FL: Chapman & Hall/CRC.
(An applied treatment of modern methods for the analysis of categorical
data, both discrete response data and frequency data, including correspon-
dence analysis. Uses R packages vcd, vedExtra and ca.)

The aim of Correspondence Analysis in Practice is not only to present a
didactically structured text about the method, but also the computational
aspects, using the R programming environment. One of the many books on
R programming which can be recommended to anyone starting off, as well as
an excellent introduction to statistical concepts and methods, is:

— Crawley, M. (2005) Statistics: An Introduction using R. Chichester, UK:
John Wiley.

The ca package for R is discussed in more detail in the following article:

— Nenadi¢, O. & Greenacre, M. (2007) Correspondence analysis in R, with
two- and three-dimensional graphics: The ca package. Journal of Statistical
Software. Free download from http://www. jstatsoft.org.

The following websites can be consulted for further information and software

about CA and related methods:

— http://www.carme-n.org
(Correspondence Analysis and Related Methods Network, with R scripts
and data from Correspondence Analysis in Practice, Second and Third
Editions)

— http://gifi.stat.ucla.edu

(Jan de Leeuw’s website for the Gifi system and R functions)

— http://www.correspondances.info

(Fionn Murtagh’s website for his book, with R scripts and data sets)
— http://www.datavis.ca
(Michael Friendly’s website for data visualization, books and software)

— http://www.imperial.ac.uk/bio/research/crawley/statistics
(Michael Crawley’s material from his book Statistics: An Introduction
using R)

— http://www.issp.org

(website of International Social Survey Programme)
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Epilogue

Correspondence analysis (CA) has been presented in this book as a versatile
method of data visualization, applicable in a wide variety of situations. This
epilogue serves to elaborate further on certain aspects of the method that
arise frequently in discussions, and to add some personal thoughts.

The interpretation of the symmetric map remains one of the method’s most
controversial aspects, even though it is the option of choice for CA maps.
This map displays both rows and columns in principal coordinates — that is,
the projections of the row profiles and the projections of the column profiles
are shown in a joint map even though, strictly speaking, they occupy different
spaces. We have seen (see, for example, Chapters 9 and 10) that the difference
between the symmetric map and the asymmetric map (where the points do lie
in the same space) is the rescaling along principal axes by the square roots of
the respective principal inertias. Thus the directions indicated by the points
in principal coordinates and by their counterparts in standard coordinates are
almost the same when the square roots of the principal inertias are not too
different — an example can be seen by comparing the directions of the biplot
axes in Exhibit 13.4 with those defined by the corresponding profile points
in Exhibit 12.2. In such a case, the biplot style of interpreting the display is
valid whether the display is symmetric or asymmetric. If the square roots of
the principal inertias are very different, however, there can be problems with
the biplot style interpretation of the symmetric map — see, for example, the
differences in the directions defined by the smoking categories in Exhibits 9.2
and 9.5. Even so, the distortion induced by using the symmetric map as if
it were a true biplot is not so great, as discussed in the following paper by
Gabriel:

— Gabriel, R. (2002) Goodness of fit of biplots and correspondence analysis.
Biometrika, 89, 423-436.

This means that the scaling debate is really an academic issue and, as far as
the practice of CA is concerned, hardly worth all the discussion that it has
generated. In my opinion, the symmetric map is still one of the best scal-
ing options for CA, and is thus the default option in our ca package for R.
If the data matrix is to be interpreted asymmetrically, with the rows (say)
representing “observational units” (e.g. demographic groups in sociology such
as marital status and educational levels, or sampling locations in ecology or
archeology, or texts in linguistics, etc.) and the columns representing “vari-
ables” (e.g. response categories in sociology, species in ecology, artefacts in
archaeology or stylistic indicators in linguistics, etc.), then the contribution
biplot is a good alternative. This version of the biplot displays optimally the
distances between the sampling units and gives a valid biplot interpretation of

The symmetric
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the units projected onto the variable directions, as well as giving meaningful
lengths to the variable vectors, which is especially useful when there are a lot
of variables.

This English saying is unfortunately true in this case, as well as the similar
expression “You can’t get everything in life!” It would be wonderful if we could
represent optimally in a single map the following three desirable aspects for
interpretation:

(i) the distances between the row profiles,
(ii) the distances between the column profiles and

(iii) the scalar products between row and column points, which reconstruct the
original data (i.e. the biplot).

But the reality is that we can see at most only two of these three represented
optimally at the same time. In the symmetric map we see optimal represen-
tations of the chi-square distances for the row profiles and for the column
profiles; hence row-to-row distances and column-to-column distances can be
interpreted (i.e. (i) and (ii)). The row—column relationship is not optimally
represented, but can still be interpreted with reasonable assurance, taking into
account the remarks on the previous page. In the asymmetric map we see the
optimal representation of one set of profiles, say the row profiles, while the
column vertices give the extreme profiles as reference points and also lie on
the biplot axes for interpreting the optimal row—column relationship (i.e. (i)
and (iii)). The contribution CA biplot is a variation of the asymmetric map
which also shows one set of profiles, say the row profiles, but pulls in the
column vertices by the square roots of their masses to improve the joint rep-
resentation (i.e. (i) and (iii)). In this biplot the lengths of the column vectors
on the biplot axes can be related to their contributions on the principal axes
(see Chapter 13), but there is no distance interpretation between the column
points.

Apart from R and a brief mention of XLSTAT, T have not discussed other soft-
ware packages that include CA, among which are Minitab, Stata, Statistica,
SPAD, SAS and SPSS. Because SPSS is widely used, a comment about its
options is necessary here. In SPSS’s CA program in the Categories module,
an alternative biplot is given that has not been illustrated in this book, called
the “symmetrical normalization”, which may be confused with the symmet-
ric map described in this book. It is not exactly the same thing, however,
since it uses standard coordinates scaled by the square roots of the singu-
lar values (i.e. fourth roots of the principal inertias) instead of the singular
values themselves: in other words (veferring to (A.8) and (A.9) on page 242),
$D2 and I'D2 instead of the symmetric map’s #D,, and I'D,. SPSS’s “sym-
metrical normalization” gives optimal representation of scalar products but
non-optimal representations of distances since neither rows nor columns are
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represented in principal coordinates. Hence this display gives only one of the
three desired properties (i.e. the biplot property (iii) but not the distance
properties (i) and (ii)). Even though the difference between this display and
the symmetric map is also a matter of scale factors along the two axes, and
in most cases is hardly distinguishable to an untrained eye, we would not
recommend this map in practice, because it represents no benefit (in fact, a
loss) over existing options. If the principal inertias on the two axes are fairly
close, then, as before, the relative positions of points in the “symmetrical nor-
malization” are practically identical to those in the symmetric map, but the
symmetric map is definitely preferable since it shows the chi-square distances
to their true scale. For purposes of comparison, this option is provided in our
R package ca, where it is called the “symmetric biplot”, specified as follows
in the plotting: map="symbiplot" (see page 266). Curiously, the symmetric
map, one of the most popular display options of French researchers, has never
been available in SPSS (module Categories), and it is still not possible in IBM
SPSS version 20 to obtain a joint map of the rows and columns in principal
coordinates. The best one can do is to select the “principal” normalization,
which gives the row and column principal coordinates in numerical form, but
the program does not allow a joint map of them, preferring separate maps. Un-
less the user’s raw respondent-level data are in SPSS format, the CA program
in SPSS is not the best option available. However, the other optimal scaling
programs in Categories, for multiple correspondence analysis (called by its
synonym, homogeneity analysis, in previous versions) and nonlinear principal
component analysis (CatPCA), are very useful for social science applications.

The issue of rare categories and their effect on the x2-distance and the CA
solution is also one that has generated much discussion, especially in ecologi-
cal circles, almost entirely without justification. For example, C. R. Rao has
stated that “since the chi-square distance uses the marginal proportions in the
denominator, undue emphasis is given to the categories with low frequencies
in measuring affinities between profiles” — see page 42 of the following article:

— Rao, C.R. (1995) A review of canonical coordinates and an alternative
to correspondence analysis using Hellinger distance. Qtestiio, 19, 23-63.
Downloadable from the website of the Institute of Statistics of Catalonia
at www.idescat.cat/sort/questiio.

Similarly, in the ecological context of analysing abundance counts of species,

Pierre Legendre states that “a difference between abundance values for a

common species contributes less to the distance than the same difference for

a rare species, so that rare species may have an unduly large influence on the

analysis.” — see page 271 of this article:

—Legendre, P. (2001) Ecologically meaningful transformations for ordination
of species data. Oecologia, 129, 271-280.

But the fact is that in CA each category is weighted in the analysis propor-
tional to its mass, which reduces the role played by low-frequency categories
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in the analysis. It can be shown very simply by looking at the numerical con-
tributions of each category to the principal axes that rare categories generally
have low influence in the solution — i.e. the solution would be almost the
same if they were removed from the analysis entirely.

As an illustration, for the species abundance data set of Chapter 10 (see
page 77), we calculated the relative abundance for the 10 most abundant and
10 least abundant species and compared this to their respective percentage
contributions to the first two axes of the CA map in Exhibit 10.5. The results
are as follows:

Contributions to axes

Species Relative abundance Awis 1 Axis 2
10 most abundant 74.6% 77.3% 89.3%
10 least abundant 0.4% 0.8% 0.5%

This illustrates that the rare species do not make an excessive contribution to
the two-dimensional solution — the contributions are very much in line with
the abundances in each subset of species. Only a few times, in our experience,
do low-frequency categories make an excessively large contribution to the
major principal axes, in which case they should be removed or combined with
another category. A case in point is in sociological applications, when low
frequency categories such as missing values coincide in the same subgroup of
respondents. These categories can dominate an MCA solution, often defining
the first principal axis as in Exhibits 18.2 and 18.5. This situation can be
rectified by using a subset analysis, or by combining rare response categories
with others in a sensible way. The analogous situation in ecology would be
when several rare species co-occur in the same samples, but this is not a
common situation — usually rare species occur randomly in different samples.

In a statistical report in the journal Fcology, I have refuted the belief that
rare objects generally perturb the results of CA:

— Greenacre, M. (2013) The contribution of rare objects in correspondence
analysis. Ecology, 94, 241-249.

Having said that the rows or columns with low frequencies generally have low
influence on the solution, because of low mass, it is true that these points are
often outliers in the CA map, owing to their strange profiles. Outliers draw
attention to themselves and it is probably for this reason that the impression is
created that they may be affecting the analysis strongly. As shown in Chapter
13 and mentioned above, the contribution biplot would solve this problem by
“pulling in” these points by the square root of their masses, which effectively
eliminates the low frequency outliers since these end up closer to the origin.
This also demonstrates graphically that their influence on each principal axis
is mostly quite low. When points are represented in contribution coordinates
the distance property between them is sacrificed (once more supporting the
saying “You can’t have your cake and eat it too!”).



A suitable graphic for CA of a large data set

I have performed hundreds of CAs and especially when there are many points
and labels the graphing of the results becomes problematic. Gradually I have
homed in on a way to make an acceptable plot, illustrated by the following
case. I was involved in a research paper on the fatty acid compositions of am-
phipods (family of small marine species). These compositional data suggest
the use of log-ratio analysis (see Chapter 22) but there are approximately
a hundred zeros in the data set, so the next best thing is to use CA (see
Chapter 22). There are four species of amphipods, abbreviated C.g, T.a, T.c
and T.l, and each has been sampled several times in the winter (W) and the
summer (S): for example, the label C.gS stands for the summer samples of
species abbreviated as C.g. The data set has 57 samples distributed among
the eight species—season groups, and 40 variables, divided into three composi-
tional data sets of fatty acids (e.g. 20:4(n-3)), fatty alcohols (with _Alc suffix,
e.g. 14:0_Alc) and lipid classes (e.g. WE = wax esters).

Trying to represent all 57 samples, their group means, as well as the 40 vari-
ables in one ordination plot, is a challenge. The contribution biplot reduces
the number of variables to 16, so this is much more manageable. Exhibit E.1
shows these variables, along with the group means linked to the individual
samples displayed as small circles. Alternatively, if one is not so concerned to
see the individual samples, but more interested in the precision of the group
means, Exhibit E.2 shows 95% confidence ellipses for the means, obtained by
bootstrapping the samples within each group (see Chapter 29). The groups
T.cW and C.gW have only one and two samples respectively, so confidence
regions are not well defined, but the other confidence regions show that there
is a significant difference between the winter samples of T.IW and T.aW and
their corresponding summer samples as well as the summer samples of the
other two species. The clear difference between the summer samples T.IS and
T.aS contrasts with the proximity of these species in the winter. The variables
that are responsible for the separation of the sample means can be clearly seen
in the contribution biplot, for example the group of five fatty acids at the top
of the ordination are the ones higher in the winter samples, as opposed to
the variables across the lower area of the ordination that are higher in the
summer samples.

This section is a bit technical but will demonstrate to the statistically minded
reader that the chi-square distance, apart from being the key to all the proper-
ties of CA, can also be defended on theoretical grounds as an appropriate sta-
tistical distance measure. A bit of matrix notation is needed for the weighted
Euclidean distance function in (5.1), which can be written as:

weighted Euclidean distance = \/(x —y)Dy,(x—y) (E.1)

where x and y are vectors with elements z; and y;, j=1,...,J, T indicates
transposition of a vector or matrix, and D,, is the diagonal matrix of the
dimension weighting factors w;’s. The rows, say, of a contingency table can be
assumed to be realizations of a multinomial random variable. The multinomial
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Exhibit E.1:

CA centroid
discriminant
analysis, showing
the eight group
centroids, each
linked to their
respective sample
points, and the
variables in
contribution coordi-
nates. Only those
variables with
contributions to the
solution higher than
the average are
shown (larger font)
as well as two more
variables that have
lower than average
contribution but
above average
correlation with the
solution.

Exhibit E.2:

An alternative
version of Exhibit
E.1, showing 95%
confidence regions
for the group
average points,
rather than the
individual sample
points. Group C.gW
has only two sample
points, and group
Tc.W only one. Size
of the group labels
in both these
exhibits is related to
sample size. Also
notice in both
exhibits the different
scales for samples
and variables.
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distribution is a generalization of the binomial distribution, and is a model
to describe the behaviour of data sampled from a population where there
are probabilities p;, j = 1,...,J, of observing a sampling unit in one of J
groups, e.g. the three readership groups in Chapter 3 (see Exhibit 3.1 on
page 18). Under the null hypothesis that the data are sampled from the same
population, the five education groups in this data set would be multinomial
samples from a population with probabilities p1, p2, p3, where the estimates of
p; for the three groups are the elements of the average profile p; = ¢; = 0.183,
P2 = co = 0.413 and ps = c3 = 0.404 (see last row of Exhibit 3.1). The classic
distance function for grouped multivariate data is the so-called Mahalanobis
distance, based on the inverse of the covariance matrix of the variables:

Mahalanobis distance = \/(x —y)E N x-y) (E.2)

which looks like the weighted Euclidean distance (E.1), except that it involves
a full square matrix of weights £ 7!, not a diagonal matrix. The covariance
matrix X for the multinomial distribution has a simple form, for example for
our trinomial case J = 3 (the results are similar for any number of groups):

p1(1—p1) —p1p2 —Dp1D3
Y= —Pp2p1 p2(1 — p2) —p2p3 =D, —pp’ (E.3)
—p3p1 —pap2  p3(1l—ps3)

where p is the vector of the p;’s and D,, is the corresponding diagonal matrix.
(E.3) is estimated by substituting the probabilities p; by their estimates c;.
To invert the covariance matrix ¥ in the usual way is not possible since it is a
singular matrix, so we cannot find a matrix X! such that XX ~! = I. One way
to get around this is to drop one of the categories and use just J — 1 categories
throughout. Whichever category is omitted, the Mahalanobis distance will be
the same. An alternative more elegant approach, which is entirely equivalent
but uses all J categories, is to use a so-called generalized inverse, denoted by
3.7, which has the property that 33~ 3=3 (this is also known specifically as
the Moore—Penrose inverse). It turns out that the Moore—Penrose generalized
inverse of (E.3) is equal to

1/p1 0 0
X =| 0 1/pp 0 |=D,! (E.4)

which means that the Mahalanobis distance in (E.2) is estimated exactly by
the x2-distance. The situation here is similar to that in linear discriminant
analysis: to discriminate maximally between groups, the groups are assumed
to have equal covariance matrices, which in the multinomial case translates
to our assuming the independence model, and then the data vectors are em-
bedded in Mahalanobis space, which translates to chi-square space.

The issue of rotations has not been treated in this book because rotations
are seldom justified or needed in CA. On the one hand, the profile space is
not unbounded real vector space but a space delimited by the unit points,
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or vertices, defining a simplex in multidimensional space. The idea of lining
up the category points along specific axes at right angles does not have the
same meaning as in factor analysis where right-angledness really means zero
correlation between variables (remember that one category point in CA is
always determined by all the others, because the elements of a profile add up
to 1). Rotations can be appropriate in some contexts in MCA and nonlinear
PCA (not treated in this book) where several variables are analysed simul-
taneously. For example, it frequently occurs that all non-response points in
MCA lie together in a bunch owing to high association in the data set but
not coinciding with a principal axis, in which case it would be good to be able
to rotate the solution as a way to “partial out” the non-response points. But
this problem can be better solved by doing a subset analysis (Chapter 21)
which completely ignores the non-response points and focuses totally on the
substantive responses. If rotation of a solution is required, then the masses of
the category points should be taken into account in the rotation. For example,
a weighted version of the usual varimax rotation in factor analysis would be to
maximize the criterion (assuming rotation of the column points is required):

Z Z C?(g?k - % Zﬂ?‘/k)Q (E.5)
Jj ok j’

where g, is the rotated standard coordinate, that is the (j, k)-th element
of Y = YQ, for Q an orthogonal rotation matrix. Notice that the mass ¢
is squared because the objective function involves the fourth powers of the
coordinates. Since cjﬂjz.k = (cjfg]jk)Q, an almost identical alternative is sug-
gested, which is a small modification of the usual varimax critlerion: perform
a rotation (unweighted) on the rescaled standard coordinates cf Y;k, which are
exactly those used in the contribution biplot (see Chapter 13). In other words,
rotate the solution to concentrate (or reify in factor analysis terminology) the
contributions of the categories on the rotated axes.

In Chapter 13 CA in K* dimensions was shown to be a decomposition which
can be written as follows (see (13.4), also (A.14) in the Theoretical Appendix):

K
Pij = Ticj +1icj (Z \/)\k(biijk) +e; 1= 1,...,I; j=1,...,J (E6)
k=1

The CA solution is obtained by minimizing the weighted sum of squares of
the residuals e;;. The first part of the decomposition, r;c;, is the expected
value under the model of independence, so that the second part is explaining
the deviations from the independence model as the sum of K* bilinear terms
(this bilinear part has a geometric interpretation in K* dimensions which is
the subject of most of this book). Any other model of the user’s choice can be
substituted for the independence model. For example, in the following article,
the authors consider log-linear models for a contingency table, and then use
CA as a way of exploring the structure, if any, in the deviations from the
log-linear model:
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— van der Heijden, P.G.M., de Falguerolles, A. and de Leeuw, J. (1989) A
combined approach to contingency table analysis and log-linear analysis
(with discussion). Applied Statistics, 38, 249-292.

This strategy can be used for multiway tables as well, using a contingency
table modelling approach to account for main effects and chosen interactions
in a first step, then calculating the residuals from the model and analysing
these by CA. But note that this is not a straightforward application of CA,
since the data have already been centred with respect to the model. The
centring step in CA must not be performed and the original margins of the
table must be used in the weighted least-squares fitting.

CA has a close affinity to spectral mapping, a method developed originally
by Paul Lewi in the 1970s and used extensively in the analysis of biological
activity spectra in the development of new drugs. Some later references are:

— Lewi, P.J. (1998) Analysis of contingency tables. In Handbook of Chemo-
metrics and Qualimetrics: Part B (eds. B.G.M. Vandeginste, D.L. Massart,
L.M.C. Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke), Chapter 32,
pp- 161-206. Amsterdam: Elsevier.

—Wouters, L., Géhlmann, H.-W., Bijnens, L., Kass, S.U., Molenberghs, G. and
Lewi, P.J. (2003) Graphical exploration of gene expression data: a compar-
ative study of three multivariate methods. Biometrics, 59, 1131-1139.

Spectral mapping operates on the logarithms of the table, but incorporates
the same weighting of rows and columns as in CA, i.e. by the row and col-
umn masses computed on the original table. The log-transformed table is
double-centred with respect to the weighted row and column averages before
applying the SVD as in CA. Hence, spectral mapping is exactly what was
called weighted log-ratio analysis in Chapter 22. If the inertia in the data is
low, then spectral mapping and CA are almost identical. The difference be-
tween the two methods is more pronounced when the inertia is high. Spectral
mapping involves mapping the logarithms of ratios of the data, and has very
interesting model-diagnostic properties, demonstrated in Exhibit 22.5. It also
obeys the principle of distributional equivalence (see pages 37-38) and, in ad-
dition, has the property of subcompositional coherence, which is the property
that underpins the analysis of compositional data: since the ratio between
two data values remains the same whether or not other rows or columns are
excluded from the table, subsets of rows or columns can be analysed with
impunity. In CA on the other hand, profiles and distances are affected when
analysing subsets; that is, CA is not subcompositionally coherent, hence the
special adaptation called subset CA described in Chapter 21. For more details
and further references, consult the following article:

— Greenacre, M. and Lewi, P.J. (2005) Distributional equivalence and sub-
compositional coherence in the analysis of compositional data, contingency
tables and ratio-scale measurements. Journal of Classification, 26, 29-54.
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The
dimensionality of a
multivariate
categorical data
set

Appendix E: Epilogue

The rather surprising relationship between weighted LRA, alias spectral map-
ping, and CA (see Chapter 22, page 175), is explained in more detail in the
following article:

— Greenacre, M. (2009) Power transformations in correspondence analysis.
Computational Statistics and Data Analysis, 52, 3269-3281.

To conclude this epilogue, here is an interesting problem, still unsolved since I
stated it as a conjecture in the second edition! It is well known that in simple
CA the dimensionality of an I x J table is min(/ — 1, J — 1). For a J x J Burt
matrix based on @) categorical variables, the CA dimensionality is J — @, but
we know that J — @) dimensions are many more than are needed to reproduce
the off-diagonal tables exactly. We propose that the dimensionality of a Q-
variable data set be defined as the number of dimensions required to reproduce
the %Q(Q — 1) cross-tabulations exactly. In other words, the dimensionality
is the number of dimensions required in a joint CA to explain 100% of the
inertia. The question is: Can this dimensionality be determined beforehand
or does it need to be discovered empirically? The rule in adjusted MCA is to
consider only the K* dimensions for which v/Ax > 1/Q (see, for example, the
adjusted inertias in Equation (19.6) on page 149, as well as the last paragraph
of Chapter 20 on page 160). It would be convenient if this provided the clue
to the dimensionality. In empirical studies the inertia explained using this
number (K*) of dimensions is usually very close to 100%, but this is no proof,
of course, that the dimensionality is K*. Perhaps, by the time a fourth edition
of this book is published, this problem will have been finally solved!

Here’s to correspondence analysis: Cheers!
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“ABBA” matrix, 178, 198
active point, 89, 96
adjacency matrix, 194, 285
adjusted principal inertia, see principal
inertia, adjusted
Adobe Tllustrator, 284
alternating least squares, 111, 112
arch effect, 127, 285
aspect ratio, 80, 285
association model, 225
asymmetric map, 68-70, 72, 74-75, 77,
78, 79, 187, 244-245, 262, 285
as a biplot, 101, 104
column principal, 69
in MCA, 158
row principal, 69

bar-chart, 2
barycentre, 19
see also weighted average
barycentric coordinate system, 14, 16
bilinear model, see model, bilinear
binary tree, see dendrogram
biplot, 97-104, 99, 104, 285, 296, 297
as a model, 100
axis, 285
calibration of, 103, 104, 285
interpretation of, 103
of contingency ratios, 101
contribution, 101-102, 104, 162-163
block circulant matrix, 178
bootstrap, 226227, 281, 285
partial, 227, 288
Box—Cox transformation, 250, 285
Burt matrix, 140-141, 144, 145, 247,
285
ignoring the diagonal blocks, 146
in subset CA, 165
modified, 146
nullified, 252

ca package, 78
contributions, 262-263
plot options, 266267
CA, see correspondence analysis

calibration, of biplot axes, 103, 104, 285
canonical correlation, 61, 62, 64, 69
canonical correspondence analysis
(CCA), 209216, 252-253, 285
partial, 216, 285
permutation test, 238
categorical variable, 2
as supplementary point, 95, 96
category quantification, 154
CCA, see canonical correspondence
analysis
centroid, 17-24, 19, 24, 86, 286
chi-square contributions, see
contributions to inertia
chi-square (x?) distance, 25-32, 80, 120,
245, 261, 286, 299-300
and standardization, 39-40
compared to Euclidean distance,
38-39
plotting, 33—40
chi-square (x?) statistic, 26-28, 32, 58,
83, 115, 118, 246, 258, 286
calculation, 27
geometric interpretation, 36-37
in terms of profiles and masses, 2728
chi-square test, 74, 77-78, 80, 230
clipboard
reading data from, 256
cluster analysis, 113-120, 246247, 254
algorithm, 116-117
hypothesis testing, 118, 119-220
co-correspondence analysis, 222—-224,
254, 286
co-inertia, 218, 224, 286
co-inertia analysis, 217-218, 224, 254,
286
column inertia, see inertia of a column
column principal map, see asymmetric
map
communality, 88
composition, 169, 286
fatty acid, 170-172
compositional data analysis, 169-176,
286
concatenated tables, see stacked tables
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confidence ellipse, 221, 229, 300
constrained space, 212, 213, 253
constraining CA, 211-212
contingency ratio, 11, 101, 243, 244, 286
contingency table, 25—26, 286
continuous data, 206—208
continuous variable, 2
as supplementary, 95, 96, 209-210
contribution biplot, see biplot,
contribution
contributions, 81-88, 262-263, 286
in JCA, 248-249
of cells of table, 83
of points to principal inertias, 246
of principal axes to points, 246
relative, see Relative contributions,
convex hull, 227-228
peeling, 227-228
correlation, 204
as cosine, 204-205
between items, 155
for visualizing continuous variable,
211
interpretation of CA, 61-62
of item with score, 156-157
Spearman rank, 207
correspondence analysis (CA),
algorithm, 242-243
bibliography, 291-294
computation, 255-284
model, 100-101, 109-110, 244,
302-303
nonparametric, 208
of block matrix, 189-190
of doubled ratings, 203—-204, 206, 208
of interactively coded table, 123, 127,
128
of skew-symmetric matrix, 189, 191
of square matrix, 251-252
of stacked table, 131, 134
of symmetric matrix, 188-189
rotation of solution, 271-272
theory, 241-243
correspondence matrix, 242
cosine, as correlation, 205-205
counting paradigm, 203
Cronbach’s alpha, 159, 160

data recoding, 17-184, 247
data set,

Index

1. My travels, 1-2, 5-6
2. Readership and education groups,
17-18, 21, 26
3. Spanish National Health Survey,
41-42, 49, 57, 121-123
4. Smoking habits of staff groups,
65-66
5. Evaluation of scientific researchers,
73-74
6. Abundances of marine species in
seabed samples, 76-77, 89-95
7. Frequencies of letters in books by
six authors, 78-79, 161, 226230
8. Age distribution in food stores,
78-79
9. Attitudes to working women in
1994, 122-123
10.News interest in Europe, 150-151
11.Attitudes to science and
environment, 153—154
12.Time budgets, 172
13.Attitudes to working women in
2012, 181-182
14.Social mobility — occupations of
fathers and sons, 185-186
15.Florentine marriage network,
193-194
16.European Union indicators,
206207
decomposition of inertia, in stacked
table, 132
degree, 195, 200
vector, 195, 287
degrees of freedom, 27
delta method, 229-230
dendrogram, 117, 120
diagonal of square table, 170-171
dimension, see also principal axis
as function of explanatory variables,
211
dimensionality, 58—59, 287
and rank, 100
in MCA, 304
of profiles, 14-15, 48
reduction of, 41-48
direct dimension (or axis), 252, 287
discrimination measure, 157
distance
approximation of, 44-45
between categories, 3
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between profile and vertex, 68
chi-square, see chi-square distance
Euclidean, see Euclidean distance
interpretation of scatterplots, 3
Pythagorian, 28
weighted Euclidean, 29, 39, 40

distributional equivalence, 23, 24,
37-38, 40

doubling, 202-203, 287

dual scaling, 52

duality, 52

dummy variable, 138, 208, 215, 287

Eckart—Young theorem, 244
edge, of network, 193, 200
eigendecomposition, 243
eigenvalue, 60, 197, 243, 245, 260, 287
adjusted, 149, 249
testing, 254
eigenvector, 197, 243-244, 287
Euclidean distance, 28, 32, 287
compared to chi-square distance,
38-39
weighted, 39, 171, 290
Excel, reading data, 255-256
explanatory variable
categorical, 191
continuous, 186-187

factor analysis, 87
factor loading, 87
fitting subspace to points, 46-47, 48
frequency
absolute vs. relative, 6
expected, 2627
marginal, 6
observed, 26-27
full space, 83
fuzzy coding, 208, 287

generalized inverse, 301
graphics

in BTEX, 283-284

in Excel, 284

in R, 284

homogeneity, 287
assumption of, 26, 27
hypothesis, 287
loss, 56, 63,157-158, 160
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minimizing loss, 63-64
homogeneity analysis, 153, 160, 287
horseshoe, see arch effect
hypothesis of independence, 26, see also
independence model

identification condition, 53, 154, 287
independence model, 287, see also
hypothesis of independence
indicator matrix, 137-138, 144, 154,
218, 219, 247, 288
inertia, 25-32, 288
between groups, 114
cell contributions to, 83
decomposition, 84-85
decomposition, in CCA, 213
decomposition, in cluster analysis,
118
decomposition, in subset CA, 162
geometric interpretation of, 29, 36-37
maximum, 29
of subtables of Burt matrix, 143
percentage, see percentage of inertia
principal, see principal inertia
total, see total inertia
within groups, 114, 178
interaction, 121-122, 182-183, 184
interactive coding, 122, 125-126, 128,
288
internal consistency, 63, see also
homogeneity
International Social Survey Program
(ISSP), 122-123, 153
interpretation of data, 7
inverse dimension (or axis), 252, 288
ISSP, see International Social Survey
Program

JCA, see joint correspondence analysis
joint correspondence analysis (JCA),
145-152, 247, 275-276, 288

Laplacian matrix, 196-197, 200

logarithmic transformation, 170, 172,
209-210

log-linear model, 225, 302

log-ratio, 170-172, 176

log-ratio analysis (LRA), 172-174, 250,
288
as limiting case of CA, 175-176



link, 173-174

log-ratio distance, 171, 176
weighted, 171

loss of homogeneity, see homogeneity,
loss

LRA, see log-ratio analysis

Mahalanobis distance, 299-300
map, 3, 8, 288
asymmetric, see asymmetric map
calibration, 4
dimensional interpretation, 76, 80
joint interpretation of rows and
columns, 45-46
preserving aspect ratio, 80
mass, 17-24, 20, 24, 242, 288
modification of, 23
matched matrix, 177-184, 250-251,
276-278, 288
MCA, see multiple correspondence
analysis
merging rows or columns, 22
missing values
in subset MCA, 165
listwise deletion, 272
model, bilinear, 110, 112
modelling, 7, 8
Monte Carlo simulation, 230-231
Moore—Penrose inverse, 301
multidimensional scaling (MDS), 199
multinomial distribution, 40
multinomial sampling, 227, 254
multiple comparisons, 118, 120
for contingency tables, 119
multiple correspondence analysis
(MCA), 137-144, 247, 288
adjusted, 148-150, 152
as CA of Burt matrix, 141-142,
155-156
as CA of indicator matrix, 138-139
as a PCA, 154-155
scaling properties, 153—-160, 240-242
multiway tables, 121-128, 229

nesting, see principal axis, nested
property
network, 193-200, 288
degree, 195, 200
degree vector, 195
directed, 193
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edge, 193, 200
edge-weighted, 195
one-mode, 193
two-mode, 193
undirected, 193, 200
vertex, 193, 200

node, 118

nominal variable, 5, 50

notation, 31-32

null distribution, 234-238

optimal scale, 52, 288
by maximizing variance, 51-52
from first dimension of CA, 52
identification conditions for, 53
interpretation of, 53
linear transformation of, 53
maximizing average squared
correlation, 63
minimizing homogeneity loss, 63
optimal scaling, 49-54, 160
based on row-to-column distances, 55
ordinal variable, 5, 49
outlier, 91-92, 96, 288, 298

p-value, 27
paired comparisons, 206
partitioning rows or columns, 113-114
passive point, 89, 96, see also
supplementary point
percentage of inertia, 48
underestimation in MCA, 145-146
permill, 82
permutation distribution, 232
permutation test, 80, 233-240, 289
for CCA, 238
for co-inertia analysis, 239-240
for matched matrices, 239
for multivariate categorical data,
237-238
in multidimensional space, 235236
PCA, see principal component analysis
phi coefficient, 28
Poisson distribution, 39
preference data, 205-206
principal axis, 60, 64, 86, 289
direct and inverse, 195
nested property, 67-68, 148
principal component analysis (PCA),
154
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principal coordinate, 62, 64, 106, 108,
112, 260, 289
as conditional mean in regression,
107
principal inertia, 60, 64, 88, 260, 289
adjusted in MCA, 149-150, 160,
208-209, 248-249, 285
adjusted in subset MCA, 166, 274
distribution of, 230
in JCA, 207, 247248, 275-276
testing for significance, 211
principle of distributional equivalence,
see distributional equivalence
profile, 9-16, 42, 86, 258, 263, 289
average, 10, 16, 20, 21
plotting, 11-13
row and column, 10
vertex, see vertex
homogeneous, 25
profile space, 22, 34
stretched, 35
projection
of profiles onto subspaces, 43, 48
of vertices onto subspaces, 45, 48
relationship to scalar product, 98
projection matrix, 253

quality of display, 43—44, 87
of biplot, 103

R program, 78, 255
data set author, 267-268
data set smoke, 261
function abline(), 260
function apply(), 258
function as.matrix(), 259
function attach(), 270
function ca() in ca, 264-267
function cbind (), 271
function cca() in vegan, 278-279
function colnames (), 271
function detach(), 272
function diag(), 260
function dist (), 259
function for(), 259
function 1m() 264
function mjca() in ca, 268
function plot (), 260
function plot.ca() in ca, 262
function plot3d.ca() in ca, 232

function rbind (), 271
function read.table(), 256—257
function rmultinom(), 281
function rownames(), 271
function summary.ca() in ca, 267
function svd(), 255, 260
function table(), 270
function text (), 260
graphical options for CA, 266-267
matrix product operator %*%, 258
options for MCA and JCA, 268
package ca, 255, 261-269
package igraph, 193, 194
package rgl, 257-258
package vegan, 248, 253
reading data, 256257
rank, 100
ranking data, 207
rare categories, 297-298
rating scale, 201-202
ratio scale, 15, 16
reciprocal averaging, 111, 112
recoding data, see data recoding
reconstitution formula, 101, 244
reduction of dimensionality, see
dimensionality reduction
regression, 47, 210
between row and column coordinates,
106-107
partial correlations, 111
weighted, 110, 264
relative contributions, 85, 90
as squared angle cosines, 86, 96
as squared correlations, 86, 88, 96
reliability, 159, 160
restricted space, see constrained space
row principal map, see asymmetric map

scalar product, 97-99, 104, 245, 289
relationship to projection, 98
scatterplot, 1-2, 8
as map, 3—4
score, 51, 154, 160
summated, 155
scree plot, 83
semantic differential scale, 202
simplex, 289
simplex space, 24
simultaneous linear regressions, 108,
112

309
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singular value, 203, 205
singular value decomposition (SVD),
47, 242, 243244 289
in R, 255
singular vector, 243-244
skew-symmetric matrix, 188, 192, 251,
289
specificity, 88
spectral mapping, 303-304
SPSS, 296-297
square table, 198-199, 251-252
symmetric, 185-192, 195-196,
symmetric and skew-symmetric part,
188
stability, 226
stacked table, 129-136, 247, 289
standard coordinate, 62, 64, 106, 108,
289
in CCA, 281
in JCA, 147
standardized residuals, 253
subcomposition 170, 290
subcompositional coherence, 169-170,
176, 289
subset CA, 161-168, 249-250, 265-266,
290
adjusted inertias, 166-167
ignoring missing values, 165
of Burt matrix, 165
of indicator matrix, 165
subset JCA, 249-250
subset MCA, 249, 276
supplementary point, 89-96, 245,
263-264, 290
as centroid, 168, 245
categorical variable, 95, 96
contributions of, 94
in adjusted MCA, 151-152
in JCA, 151
in MCA, 143-144
in subset CA, 167
in subset MCA, 168
interpretation of, 144
position of, 93-94
vertex, 95-96
supplementary variable, 95, 96, 264
SVD, see singular value decomposition
symmetric map, 70, 72, 75-76, 91, 104,
123, 125, 128, 131, 134, 245, 260, 262,
290, 295
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compared to asymmetric map, 70,
295
interpoint distances, 71
row-to-column distances, 72
symmetric matrix, 188, 192, 251-252
symmetry of row and column analyses,
57-64

ternary coordinates, 12, 14, 16

three-dimensional graphics, ‘257258,
268

total inertia, 29, 30, 32, 81, 85, 245, 247
adjusted, 149, 249, 274
of indicator matrix, 140
of stacked table, 135-136

transition equation, 108-109, 112, 244
for supplementary point in subset

CA, 167

transition relationship, 105-112, 266

triangular coordinates, 12, 13-14, 16,
258

triplot, 214

unconstrained space, 212, 213, 253
unrestricted space, see unconstrained
space

variable
categorical, 2
continuous, 2
nominal, 5
ordinal, 5
variance
maximizing, 51-52
vertex, 12, 167, 263, 266
as supplementary point, 94-95
of network, 193, 200
relationship to profile, 59-60

Ward clustering, 120, 246247, 266,
282-283
testing for significance, 254
weighted average, see also centroid, 14,
18, 20, 24
in CCA, 215
weighted Euclidean distance, see
Fuclidean distance, weighted

XLSTAT, 284
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